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Abstract

Abstract (German)

Theorien von Spin-2 Feldern nehmen eine besondere Rolle in der modernen Physik
ein. Sie beschreiben nicht nur die Vermittlung von Gravitation, die einzige Theorie funda-
mentaler Wechselwirkung, welche keine quantenfeldtheoretische Beschreibung besitzt, es
wurde weiterhin angenommen, dass sie notwendigerweise masselose Eichbosonen vorher-
sagen. Erst kürzlich konnte eine Theorie massiver Gravitonen konstruiert werden und
wurde anschließend zu einer bimetrischen Theorie zweier interagierender Spin-2 Felder
verallgemeinert. Diese Dissertation untersucht die Gültigkeit und Konsquenzen auf kos-
mologischen Skalen sowohl in massiver als auch bimetrischer Gravitation. Wir zeigen,
dass sich alle konsistenten und von Gradienten- sowie Geistinstabilitäten freie Modelle
wie das kosmologische Standardmodell, ΛCDM, verhalten. Zudem entwickeln wir eine
neue Theorie einer massiven Gravitation, welche, obgleich von einem Boulware-Deser
Geist geplagt, stabil im klassischen Hintergrund und auf Quantenebene ist.

Abstract (English)

Theories of spin-2 fields take on a particular role in modern physics. They do not
only describe the mediation of gravity, the only theory of fundamental interactions of
which no quantum field theoretical description exists, it furthermore was thought that
they necessarily predict massless gauge bosons. Just recently, a consistent theory of
a massive graviton was constructed and, subsequently, generalized to a bimetric theory
of two interacting spin-2 fields. This thesis studies both the viability and consequences
at cosmological scales in massive gravity as well as bimetric theories. We show that
all consistent models that are free of gradient and ghost instabilities behave like the
cosmological standard model, ΛCDM. In addition, we construct a new theory of massive
gravity which is stable at both classical background and quantum level, even though it
suffers from the Boulware-Deser ghost.
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Frank Könnig, Aashay Patil, and Luca Amendola. Viable cosmological solutions in massive

bimetric gravity, JCAP 1403 (2014) 029, arXiv:1312.3208

Principal author: Frank Könnig
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Chapter 1

WHY TO MODIFY GRAVITY?
or: Breaking from Jail of the Effective Field Theory

What is gravity? A question that was already raised when no elementary particle
had been discovered, no neighboring planet observed, and still, even after the

detection of gravitational waves, no convincing answer exists. Newton’s picture of gravity
as a force between massive objects is certainly the most commonly used theory of gravity
today. Not only in everyday life to describe simple processes on Earth, it is even often
used to compute the gravitational interactions between galaxies in huge cosmological
simulations. The reason of the success is merely its simplicity; it surely does not reflect
any conviction that gravitational interactions are based on Newton’s law. In fact, various
measurements on scales of our Solar System conflict with Newtonian gravity. One of the
most prominent one is the measurement of Mercury’s orbit indicating that its perihelion,
i.e., its closest point to our Sun, is shifting less than a tenth of what is predicted by
Newtonian gravity.

Several possibilities to rescue the classical theory were suggested. Could there be an
unobserved planet that influences the motion of Mercury? This is the crossroad at which
scientists stood, and are still standing today: Contradictions with theoretical predictions
may indicate that there are additional, unobserved objects or could point to a failure of
the theory itself. More than a century after the prediction of an additional dark planet
Vulcan in order to reconcile Newtonian gravity with observations, the modern cosmological
framework again predicts not only a yet unobserved Dark Matter (DM) component, but,
additionally, a Dark Energy (DE) whose origin is not understood either. Both together
seem to account for around 95 percent of the energy content of our Universe [1]. Predicting
such a dark sector is certainly not illegitimate in order to approach a better understanding
of the physics at the largest scales, but at the same time the question of the fundamental
theory of gravity has to be not forgotten about.

Today, a more modern way to describe gravity is favored, Einstein’s General Relativity

(GR). But it was not the number of discrepancies that arise when using Newton’s law to
describe the physics in our Solar System that initiated Einstein’s belief in the necessity
to revise the picture of gravity. GR was originally constructed from the equivalence prin-
ciple, i.e., the space-time measured by a freely falling observer can locally be described
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Chapter 1. Why to modify Gravity? or: Breaking from Jail of the Effective Field Theory

by a flat Minkowski metric, together with the assumption of the invariance under diffeo-
morphisms. This concept of an underlying symmetry as a starting point to construct a
theory is a rather modern approach. The construction of the theory on the basis of Gen-
eral Covariance is perhaps the main reason for the success of GR. While most theories of
modified gravity try to add or adjust specific properties of the standard model of gravity,
e.g., a change in the number of space-time dimensions [2] or the usage of an additional
field [3, 4], GR is rather based on fundamental principles. Ironically, in most theories
of modified gravity the additional freedom introduces new challenges or even renders the
theory nonviable. A prominent example, one in which the graviton is allowed to carry a
mass, will be investigated in chapter 3. But despite these setbacks, the continuation of
finding alternatives to GR remains an important task. Not only to solve open questions
in modern cosmology, but also in order to better understand gravity by itself. And if all
modifications are theoretically or observationally ruled out, one can even more appreciate
the success of GR.

However, the minimal freedom in GR also implies its rigidity. Recent observations
indicate an accelerating expansion of our Universe [5, 6]. A behavior that cannot be ex-
plained with ordinary baryonic matter and requires an energy component whose pressure
is negative, a DE. This discovery has completely knocked the view of cosmic evolution on
the head and was consequently honored by the award of the Nobel prize in 2011. Al-
though GR exhibits the freedom to add a bare Cosmological Constant (CC) in order to
obtain an accelerating epoch and, thus, evades any conflict with observations, it intro-
duces various theoretical problems rendering GR with a CC less appealing (see section
2.4). Its most problematic property is the technically unnatural connection of ultraviolet
(UV) with infrared (IR) physics. One could similarly think of a theory of thermodynamics
where the precise values of the macroscopic quantities (pressure, volume, and temper-
ature) strongly depend on how every single molecule moves. The beauty of symmetries
and simplicity that originally characterized GR is now challenged by modifications to fit
observational data. While the perihelion shift of Mercury can nowadays be well under-
stood in a different theoretical framework that generalizes Newtonian physics without any
requirement of an additional unobserved planet, the origin of DE is still a mysterious
puzzle and could either be a consequence of a CC or an additional field, or hints towards
new physics beyond the cosmological standard model.

Finding a satisfying answer to explain recent observations is surely one of the main
reasons to think about modifications of the theory of gravity. But the search for new
theories is not only restricted to the field of cosmology, it is rather of great importance
to properly understand the gravitational sector in order to draw conclusions about a
fundamental theory which combines Quantum Field Theory (QFT) and gravity. Due to
the nonrenormalizability of GR, it can just be seen as an Effective Field Theory (EFT) and,
thus, an IR limit of a, though not yet existing, quantum gravity. Without any doubts,
the great success of GR should not be denied. Just like Newtonian physics is a great
choice to measure the movement of many objects on Earth, GR with a CC explains most
astrophysical and cosmological processes with sufficiently high accuracy. However, to
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answer the question of a fundamental field theory it is inevitable to modify the theory of
gravity.

A common field theoretical approach to understand gravity is often the analysis of the
full class of theories that are allowed and obey various assumptions, e.g., on the number
of fields or the exhibition of an invariance under symmetries. In fact, there are a number
of theorems that seem to indicate that GR is the unique theory of gravity (see section 2.1);
the most famous one is the so-called Lovelock theorem. Although there are many, partly
strong, assumptions that render the theorem less significant, it simplifies the search
for possible modifications of gravity by softening exactly these assumptions. Asking for
viable modifications of GR is then often translated to questions for the, under certain
assumptions, most general theory that, e.g., includes an additional scalar or tensor field.

In this thesis we are especially concentrating on modifications that render the gravi-
ton, the gauge boson mediating gravitational interactions, massive. Equivalently, we are
asking for modifications of gravity with an additional tensor field. While this formula-
tion sounds like a rather less motivated approach, a very old underlying question stays
behind: Can a spin-2 field be massive?

Our Standard Model of particle physics predicts particles of spin 0, 1
2 , and 1. While the

Higgs boson, a massive spin-0 field, was just recently discovered, massive fermions with
spin 1

2 , like electrons or quarks, are known for many decades. Furthermore, several spin-
1 bosons can acquire a mass by the Higgs mechanism, too, e.g., the W- or Z-bosons. While
all these particles are allowed to be massive, the only known spin-2 field, the graviton,
seems to be massless, as predicted by GR. Naturally, one asks the question whether a
spin-2 field is theoretically allowed to be massive. And, if the answer is positive, how
does a theory with two interacting spin-2 fields look like? First attempts to answer this
question had been as negative as old: In the seventies, Boulware and Deser claimed to
prove that such theories are ill behaved [7]. They would necessarily contain a ghost field,
a scalar field with the wrong sign in front of its kinetic term. A field that would not only
be responsible for a spontaneous emission of other particles, but would even cause an
immediate decay of the vacuum state. Fortunately, several decades after their conjecture
a loophole in their argument was found [8, 9] and has paved the way towards a theory
describing a massive graviton.

With all the questions that have been arising in our cosmological standard model
and the knowledge of the theoretical possibility to allow the graviton to be massive, it is a
justified hope that these theories manifest themselves in the observation of an accelerated
expansion of our Universe.

This introduction to the papers that have been written over the period of the PhD stud-
ies continues with chapter 2, which provides a brief review of the cosmological standard
model to lay the foundations for an understanding of both the necessity of modifications
and its success to describe the cosmic evolution with which every other theory has to com-
pete. Subsequently, an introduction into massive and bimetric gravity together with an
elaboration of the results that have been obtained during the doctoral studies is presented
in chapter 3 and 4, respectively.
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Chapter 1. Why to modify Gravity? or: Breaking from Jail of the Effective Field Theory

Notations and Conventions

Throughout the thesis, we will set the speed of light as well as Planck’s constant to
unity: c ≡ ~ ≡ 1. Furthermore, a dot will denote a derivative with respect to cosmic time
whereas a prime indicates a derivative with respect to e-folding time. A trace of a tensor
field will either be indicated by an absence of indices or, in case of matrices, by squared
brackets [·]. For the metric we will use the signature (−,+,+,+). Finally, the spatial
derivatives ∑

j X,jY,j are often shortened with XiYi .
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Chapter 2

GENERAL RELATIVITY

or: The Standard Picture of Gravity

Even if observations would be able to rule out GR, the current standard model of
gravity, it would certainly survive as a useful recipe to construct new theories of

gravity. A proper understanding of its peculiarities as well as the way GR can be derived
from basic principles can provide an idea how to find similarly elegant alternatives.

The following chapter aims to provide an insight into the theoretical fundament on
which GR is based on and, subsequently, sketches both its success in describing the
cosmic evolution as well as open problems that might indicate a failure of GR to describe
gravity on all scales.

2.1 Uniqueness of General Relativity

Standard gravity with a CC is not only well accepted due to its success to describe
physical phenomenons even on the largest scales we have observed, it is also its simplicity
that makes the theory attractive. Its field equation, the Einstein equation,

Gµν + Λ gµν = M−2
P Tµν, (2.1)

combines the Planck mass (MP) suppressed energy momentum tensor Tµν with a cosmo-
logical constant Λ and the Einstein tensor

Gµν ≡ Rµν −
1
2R gµν, (2.2)

which depends on the curvature of the space-time and the metric gµν. In the geometrical
picture, the curvature tensor

R (x, y) v = ∇x∇yv − ∇y∇xv − ∇[x,y]v (2.3)

measures the change of a vector v after parallel transporting it along an infinitesimal
closed curve. Since only its contractions affect the Equations of Motion (EoM), the Einstein
equation is only sensitive to the change of a volume, described by the Ricci tensor Rµν,
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Chapter 2. General Relativity, or: The Standard Picture of Gravity

and the Ricci scalar R which is closely related to the Gaussian curvature of a hyperspace
embedded in a Euclidean space, i.e., the ratio of a surface of a sphere in the curved
manifold and its surface in a flat space.

Einstein himself had started to search for the field equations by assuming a Newtonian
limit. While this approach seems to look arbitrary and not unique, a modern approach
is the usage of Lovelock’s theorem which shows that, under certain assumptions, the
Einstein equation is the only allowed field equation, without the need of demanding a
Newtonian limit. With this level of simplicity, a minimal set of fields and parameters, it
challenges all competitors.

Before stating Lovelock’s theorem explicitly, we will discuss its descent in more detail.
A proper analysis could then enable us to explicitly see which assumptions enter and
could, or even should, potentially be lifted.

Throughout this thesis, we implicitly assume that for every function f , therewith any
tensor component, living on a manifold X it holds f ∈ C∞(X ). Moreover, we presume any
dependence to be natural, i.e., 1

Definition 1. (Naturalness) Let V be an open set on X and x ∈ V. A tensor T is naturally

constructed from a metric g if the following properties hold:

1. Restriction: T is compatible with restriction, i.e., T (g(x |V )) = T (g(x))
∣∣∣
V

.

2. Regularity: If g is smooth in x, then T (g(x)) is smooth in x, too.

With this, we can formulate the theorem of Vermeil-Cartan, who independently proved
[10, 11]:

Theorem 1. (Vermeil-Cartan) Let K be a natural tensor that

1. is symmetric,

2. is divergence-free,

3. has rank-2,

4. is of second order in the derivatives of the coefficients of the pseudo-Riemannian

metric gµν, and

5. is linear in these second derivatives.

Then K is a linear combination of the Einstein tensor Gµν and the metric gµν, i.e.,

Kµν = α Gµν + � gµν ≡ α Rµν +

(
� −

α

2R
)
gµν, α, � ∈ R. (2.4)

1This condition is often equated with being local. However, this terminology carries an ambiguity since
an increased interest in so-called non-local theories has been arising which still satisfy the conditions of
naturalness.
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2.1 Uniqueness of General Relativity

Lovelock’s theorem is now a specialization in four dimensions [12]:

Theorem 2. (Lovelock) In four dimensions, every divergence-free, rank-2 tensor that is

of second order in the derivatives of the metric is symmetric and linear in the second

derivatives.

Since Einstein’s idea to relate a tensor originated from geometry with the rank-2
energy-momentum tensor, which is assumed be conserved, i.e.,

∇µT
µν = 0, (2.5)

the only possible field equation that is compatible with the assumptions of naturalness
and those that enter in Theorem 1 is indeed the Einstein equation (2.2).2

A strong restriction is the dependency on the metric tensor only. The presence of
additional fields can not only enlarge the class of viable theories significantly but, at the
same time, is often required to manifest specific properties of a theory. For instance, a
massive graviton has to be described by a Lagrangian that contains a mass term which, as
will be motivated in section 3.1, needs to be build by an additional tensor field. Therefore,
the assumption of the absence of additional, even non-dynamical, fields automatically
implies the assumption of a massless graviton.

Furthermore, the metric entering in the theorems above describes a (pseudo-) Rie-
mannian manifold. This implies a space-time without torsion T , which defined by

T (X, Y ) ≡ ∇XY − ∇YX − [X, Y ] , (2.6)

as well as a metric compatible connection, i.e.,

∇c gab = 0. (2.7)

Since gravity is a gauge theory, GR is, in fact, not unique. Theories in which only the
torsion tensor is the non-vanishing gauge field and, thus, the manifold is not curved and
has a metric-compatible connection or, equivalently, neither curvature nor torsion but the
non-metricity tensor is non-zero can be formulated such that they are indistinguishable
from GR [13]. Therefore, the Einstein-Hilbert action leading to the Einstein equation (2.2)
has to read

SEH =

∫
d4x
√
−g

(
R + gµν Λ + ρµab Q

ab
µ + σα�γ T

γ
α�

)
. (2.8)

Here, the Lagrange multipliers ρµab and σα�γ are introduced by hand to enforce a vanishing
torsion T and non-metricity tensor Q.

Even though the analysis of the theorem of Vermeil-Cartan makes several strong
assumptions and the non-uniqueness of GR apparent, Einstein’s theory is nevertheless
an incredibly successful framework that still withstands all observational challenges.

2This corollary is often attributed to Lovelock’s theorem.
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Chapter 2. General Relativity, or: The Standard Picture of Gravity

2.2 Ghost Instabilities

All Lovelock assumptions except one seem to be unbreakable: The absence of third-
or higher-order derivatives in the EoM. It is not only a violation of the compatibility with
Newtonian gravity in the weak field limit. As will be discussed in the following, a theory
with higher-order EoM necessarily leads to a ghost instability.

While GR is ghost-free, many theories of modified gravity do not preserve this property.
Because this problem occurs in almost all theories of massive gravity, we will dedicate this
section to all ghosts, discuss their potential to render a theory unphysical and comment
on possibilities to evade ghost instabilities.

2.2.1 Ostrogradsky Ghost

Generally, a non-degenerated Lagrangian L
(
x, ẋ, ẍ, ..., x (n)

)
, i.e.,

det

 ∂2L

∂x (n)
i ∂x (n)

j

 , 0, (2.9)

where x ≡ (x1, ..., xN ), leads to EoM with derivatives of order 2n. Thus, 4n initial conditions
are needed to be set in order to solve the full system. In a specific example with n = 2, a
Legendre transform of the Lagrangian results in a Hamiltonian

H = P1 Q̇1 + P2 Q̇2 − L (2.10)

that requires four canonical variables, which can be chosen to be

Q1 = x, Q2 = ẋ , (2.11)

P1 =
∂L

∂ẋ
−

d
dt
∂L

∂ẍ
, P2 =

∂L

∂ẍ
. (2.12)

Since for n = 2 one has L = L (x, ẋ, ẍ), all terms with at most second derivatives can be
replaced by a combination of Q1, Q2, and P2. Remarkably, all higher derivatives only
appear in P1 which is not constrained and, therefore, can take arbitrary values. Since
the Hamiltonian depends linearly on P1, it becomes unbounded. The system contains
a degree of freedom that can even carry negative energy values! Such a mode is called
ghost. In general, Ostrogradsky showed:

Theorem 3. (Ostrogradsky theorem) Every non-degenerated Lagrangian that contains

derivatives of order two or higher describes a theory that propagates a least one ghost

degree of freedom.

The consequences are indeed fatal. If a ghost degree of freedom interacts with other
particles, then the ghost can excite them to arbitrary high energies. The system will
become unstable. Even worse: In a quantum mechanical system with a ghost, the vac-
uum is able to decay into ghosts by emitting other particles. Because interactions at
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2.2 Ghost Instabilities

higher energies are entropically favored, the decay of the vacuum will happen almost
instantaneously.

Even though Ostrogradsky’s theorem only holds for non-degenerated Lagrangians, it
was recently shown that the same conclusions can be generalized to theories that are
described by degenerated Lagrangians leading to third-order derivatives in the EoM [14].

2.2.2 Ghosts in EFTs

Ghosts are often seen to render every physical theory nonviable. However, their most
dangerous consequence is the vacuum decay; a catastrophe in the UV which is, in fact,
a régime outside the validity of the EFT. Is this argument enough to justify the ignoring
of ghosts? The EFT limitation indeed opens two possible paths to cure a ghost mode, but
both should be taken with care.

If the theory itself is only an EFT, then the unknown fundamental theory might predict
new operators that break either Lorentz Invariance (LI) or locality and thereby modify the
decay time of the vacuum [15, 16]. The viability of a toy model in which a Lorentz breaking
(LB) above the cutoff is assumed is discussed in section 3.5.

Moreover, the ghost mode itself is often thought to be harmless if its mass lies above
the cutoff of the EFT. However, this conclusion dangerously exploits the limits of an EFT.
In this framework, a field can be neglected if it is not excitable below the cutoff. This could
be the case if the mass is very large. It is often commonly said that everything above the
cutoff of an EFT can be ignored. But if a ghost is present then this statement is not
correct anymore. Since a ghost does not require positive energy to become excited, any
interaction with a ghost can and will occur at all energy scales, even if its mass lies above
the cutoff. A scattering with a ghost is rather more likely if the mass is huge because the
entropy of the final state is larger [16]. Therefore, any propagating ghost, regardless of its
mass, invalidates the consistency of the EFT and destabilizes the theory [17].

Fortunately, some, but not all, theories benefit from a loophole to evade the fatal
instability with ghosts above the cutoff. In ref. [18], the author made it explicit by
studying a simple scalar field ϕ of mass m that contains a higher-derivative operator
suppressed by a high mass M and an external current J :

L = −
1
2

[
∂µϕ ∂

µϕ +m2ϕ2 +
1
M2 (�ϕ)2

]
+ Jϕ. (2.13)

The vacuum persistance amplitude for this Lagrangian

Γ = i

∫
d4k

∣∣∣J ∣∣∣2
k2 +m2 + k4

M2

(2.14)

suggests that there might be another particle state with mass M+O
(
m2/M

)
. On the other

hand, if we treat the dangerous term M−2 (�ϕ)2 as just a first-order perturbation, then
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the effective Lagrangian (2.13) can be expressed as an expansion of

L = −
1
2

[
∂µϕ ∂

µϕ +m2ϕ2 +m4M−2ϕ2
]

+

(
1 +

m2

M2

)
Jϕ −

1
2M2 J (2.15)

and the vacuum persistance amplitude

Γ = i

∫
d4k

∣∣∣J ∣∣∣2 [
1

k2 +m2 −
k4

M2 (
k2 +m2)2 + O

(
M−4

)]
(2.16)

is indeed compatible with only one particle with mass m + O
(
m3/M2

)
. This example

demonstrates that a ghost with mass above a cutoff might be ignorable if the corre-
sponding theory can be written as a first-order expansion of a ghost-free Lagrangian.
Equivalently, if higher-order derivatives introduce a ghost above the EFT cutoff then they
have to be eliminated, with, e.g., the leading-order field equations [18]. If this procedure
is not successful then the theory is very likely not viable.

2.2.3 Putting on the Weights

A proof of the absence of ghosts does often require a rather complicated counting of
degrees of freedom in the Hamiltonian. The analysis of higher-order derivatives in the
action alone is not sufficient as the EoM might still be of second-order. Already the quite
simple Einstein-Hilbert Lagrangian introduces non-trivial terms with derivatives of order
two. It has become a challenging task to find alternative ways of proving the viability of a
Lagrangian.

One way is to find an equivalent, trivially ghost-free formulation. In fact, the rea-
son why the Einstein equation does not contain higher-order derivatives is the choice of
the connection to be Levi-Civita, the unique metric-compatible connection in a pseudo-
Riemannian space-time without torsion. If one expresses the curvature tensor in terms
of an a priori unknown connection,

Rmikp = Γmip,k − Γmik,p + Γaip Γmak − Γaik Γmap, (2.17)

then the variation with respect to the connection provides a constraint that enforces Γ

to be the Levi-Civita connection. In this so-called Palatini approach, the field equations
are, indeed, the Einstein equations but the Lagrangian does not contain any dangerous
derivative terms.

Despite the quite simple analysis that avoids the need of a Hamiltonian analysis this
approach is rather uncommon since a search for an equivalent theory is often not success-
ful. A promising alternative is the analysis of intrinsic properties of the tensors present in
the Lagrangian that are related to the number of propagating degrees of freedom. Specif-
ically, the weight w of a homogeneous tensor field K, defined through the dependence on
the metric g via

K
(
λ2g

)
= λwK (g) ∀ g ∀λ ∈ R+, (2.18)
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seems to play such a role. Recently, an alternative to Lovelock’s theorem was presented
in ref. [19] that has all assumptions but one, the absence of higher-order derivatives, and
adds an additional requirement for the weight:

Theorem 4. (Navarro-Sancho) In four dimensions, every rank-2 tensor K with weight

w > −2 that naturally depends on a pseudo-Riemannian metric g and is both symmetric

and divergence-free can be written as a linear combination of the Einstein tensor and the

metric itself.

Is the requirement of having the highest weight equivalent to a minimization of the
number of degrees of freedom and therefore the absence of ghosts? This question cannot
be safely answered yet and formulating its proof is still an ongoing work, but preliminary
results indeed indicate that even the ghost-free action describing a massive graviton natu-
rally arises which support the conjecture of a relation between the weight of a Lagrangian
and its viability [20].

2.3 Cosmological Solutions

Especially the cosmological picture has undergone a revolution. Although it has
changed quite recently, its phenomenological consequences, inter alia a Big Bang sin-
gularity, an inflationary epoch, and the composition of the total energy content which
results in a late-time acceleration, are widely accepted and serve as important consis-
tency tests for a comparison with alternative models.

To analyze the evolution of our Universe at large scales, the background can very
well be approximated by a flat, homogeneous, and isotropic background described by a
Friedmann-Lemaître-Robertson-Walker (FLRW) metric,

gµν dxµ dxν = −N(t)2 dt2 + a(t)2 δij dx i dx j. (2.19)

Due to GR’s invariance under diffeomorphisms, a gauge can be chosen to set the lapse
function N to unity such that the Universe is solely describable by the scale factor a(t) that
measures the spatial size of the Universe. If it is filled with just a single homogeneously
distributed fluid with density ρ and pressure p, then the components of the Energy-
Momentum (EM) tensor reduce to

Tµν = diag (−ρ, p, p, p) (2.20)

and the only non-redundant components in the EoM (2.2) lead to the Friedmann equations,
which read

H2 ≡
( ȧ
a

)
= M−2

P ρ +
Λ

3 , (2.21)

Ḣ + H2 =
ä

a
= −

1
2M

−2
P (ρ + 3p) +

Λ

3 . (2.22)

27
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The presence of a constant term Λ/3 is, in fact, a possible explanation of DE that drives
an acceleration. Recent measurements have shown that it does, in fact, dominate over
the gravitational attraction due to ordinary matter today [5, 6]. Observations of distant
Supernovae of Type Ia (SNe Ia) appear to be much fainter than expected in a universe
without DE and require a dynamical space-time that acceleratetly expands, while the
photons emitted from SNe Ia have been traveling towards us.

The first hurdle of describing the recent acceleration has quite simply been taken by
the consideration of just an additional constant term in the action. However, our Universe
is only be describable as a homogeneous and isotropic fluid on its largest scales. In fact,
all structure in the Universe, including galaxy clusters and even our Earth, perturb the
FLRW metric (2.19). The distribution of matter on scales larger than roughly some Mpc
(1 Mpc ' 3×106 light years) today can be described by linear scalar perturbations around
an FLRW background ḡ:

g = ḡ + δg, (2.23)

where the corresponding line element for δg is built out of the four scalar potentials
Ψ,Φ, B, and E and reads

ds2
δg = a2

−2 Ψ E,i

E,i 2 Φ δij +
(
∂i ∂j −

1
3δij ∇

2
)
B

 . (2.24)

Here, and from now on, the components belong to a frame in which the time is measured
by a conformal time dη = adt and a dot denotes the derivative with respect to it.

Fortunately, we are again able to benefit from the gauge invariance of GR and are
allowed to fix two potentials suitably. In the following, the Newtonian gauge E = B = 0
will be chosen. The potentials are generated by perturbations of the EM tensor that are,
if we assume dark pressureless matter only, induced by the density contrast δ ≡ δρ/ρ
and the peculiar velocity divergence θ ≡ vi;i , and reads

δT0
0 = −δρ, and δT0

i = −δT i0 = ρ vi . (2.25)

The linear perturbation equations correspond to the (0,0)-,(0,i)-, (i,i)-, and (i,j)-components
of the Einstein equations and become in Fourier space

3H
(
H Ψ − Φ̇

)
− k2 Φ = −

1
2M

−2
P a2 δρ, (2.26)

−k2
(
Φ̇ −H Ψ

)
=

1
2M

−2
P a2 ρ θ, (2.27)

Φ̈ + 2H Φ̇ −H Ψ̇ −
(
H2 + 2 Ḣ

)
Ψ = 0, (2.28)

Ψ + Φ = 0, (2.29)

where k denotes the wave number and H ≡ H/a the conformal Hubble function.

Since GR describes a massless spin-2 field that only carries two helicity-2 degrees
of freedom, the only propagating scalar degree of freedom comes from the matter per-
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turbation δρ. In fact, eq. (2.29) indicates that a change in the EM tensor induces just
one effective potential. Moreover, the velocity divergence θ is only auxiliary and does not
correspond to a dynamical field. Therefore, the set of scalar perturbation equations can
be reduced to a single differential equation describing one propagating scalar degree of
freedom. On scales that are much smaller then the Hubble radius, i.e., on sub-horizon

scales, k/H � 1, one obtains
δ̈ +H δ̇ −

3
2H

2δ = 0, (2.30)

or, in e-folding time parametrization N ≡ loga and X ′ ≡ dX/dN ,

δ′′ +
(
H−1H ′ + 1

)
δ′ −

3
2δ = 0. (2.31)

As previously mentioned, the inclusion of a positive CC in the Friedmann equations
(2.21, 2.22) is necessary in order to be compatible with observational data. However, this
modification will also propagate into a change of the evolution of the density contrast.
Surprisingly, this was measured by analyzing a catalog of galaxy distributions and found
to be compatible with a DE due to a CC [21].

2.4 The Achilles’ heel(s) of the Cosmological Standard Model

The standard model of cosmology has not only been found to be compatible with
various observations but is at the same time a rather minimal and well motivated theory.
However, its framework is built on GR and the limited freedom in Einstein gravity requires
additional ingredients. Since many of them come along with new problems, they are often
seen as signatures of modified gravity theories.

2.4.1 Dark Matter

The main part of the energy content of our Universe today, DE, is responsible for its
acceleration and is, at least in the standard picture, constant in time. While the universe
expands, the density of matter and radiation gets diluted. Hence, when going back in
time, the CC becomes less dominant. But even all observable matter in our Universe
could not counteract the CC enough to produce the distribution of galaxies that we can
observe today.

A second, yet unknown, matter component has indirectly been observed in the sev-
enties by Vera Rubin [22] who found that most stars in almost all galaxies rotate around
their center with roughly the same speed. A surprising discovery since most visible mat-
ter is expected to be localized near the galaxy’s core and stars in the outer region should
move with

v '

√
GMcore
r

. (2.32)

Instead, the velocities seem to be constant. If the theory of gravity is assumed to work
properly on these scales, then this behavior can only be explained if much more gravi-
tating matter is present outside the center of the galaxy, a huge amount of unobservable
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DM. Later, this conclusion was supported by independent indirect observations, like the
deflection of light due to the gravitational potential of DM.

Observations on cosmological scales require an amount of DM that is even larger
than the amount of all baryonic matter. Its origin is still completely unknown and the
list of candidates is growing constantly. The only knowledge about this type of matter
is its weak, or even absent, interaction with baryonic matter and photons, as well as is
presumably non-relativistic motion. The cosmological standard model including a CC
and cold DM (CDM) is therefore often referred to ΛCDM.

Instead of predicting new particles, the indirect discovery of DM could also be a sig-
nature of a modification of gravity. Several candidates already exist, e.g., mimetic gravity
[23, 24], gravitons with high-masses [25], and doubly-coupled bimetric gravity [26]. And
as long as no DM particle has been directly detected, the list of alternatives will keep
growing.

2.4.2 Inflation

When the Friedmann equations (2.21,2.22) were discussed, the geometry of the Uni-
verse was assumed to be flat. This is indeed in great agreement with current observations
of the Cosmic Microwave Background (CMB) [1], albeit surprising because due to the
different scaling of curvature and radiation with the scale factor the Universe should
have been extremely flat at very early times. The necessity of a fine-tuned curvature
contribution is known as flatness problem.

The analysis of the CMB has further shown that the measured temperature is almost
the same in every direction. This would not be a surprising observation if all parts in
the Universe are causally connected. But the expansion of the space-time influences the
causal connection, which is limited due to the speed of light, between two points in the
sky and the entire Universe should not necessarily be thermalized. In fact, one would
expect that just a region with an angular size of order 1◦, which roughly corresponds to
the area on the sky covered by the moon, has been in causal contact; a horizon problem!

Both problems can be tackled with one extension of ΛCDM: an additional inflationary
epoch at very early times. One (or even more) additional scalar field with a suitable
potential could drive an acceleration period right after the Big Bang and this would quickly
flatten the Universe and freeze tiny quantum fluctuations, the seeds of all structure in
our present Universe. Many models were suggested, but all require the usage of at least
one additional degree of freedom (see, e.g., ref. [27] for a comprehensive list of models).

Despite the success of inflationary models, it should not be left unsaid that they
are not free from criticism. Especially the probability with which an inflationary epoch
could produce suitable initial values and whether the quantum fluctuations are stable
are still controversially discussed. As a result, different scenarios were suggested. One
possibility, a bouncing model in which the universe collapses and undergoes a bounce
before it expands again, even arises automatically in theories of modified gravity. In ref.
[28] we could show that solutions of bimetric gravity, a generalization of a massive gravity
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that is discussed in more detail in chapter 4, exist that predict such a bouncing behavior.

2.4.3 The Cosmological Constant Problem

Many, perhaps all but one, challenges in the standard picture can be solved elegantly,
often by utilizing additional fields. The most prominent exception is the unsatisfactory
interpretation of the CC, the Cosmological Constant problem.

At first glance, a non-vanishing CC is an auspicious step towards an understanding
of a theory of quantum gravity. In QFT, the vacuum state is expected to carry a vacuum
energy

〈0 | Tµν |0〉 = −ρvac gµν, (2.33)

which contributes to a CC in the field equations. Therefore, observations are sensible
to the sum of the vacuum contribution and the bare value from the Einstein-Hilbert
Lagrangian,

Λobs = Λbare +M−2
P ρvac. (2.34)

To approximate the value of the vacuum energy one can consider a canonical scalar field
with mass m and integrate over all modes

ρvac ∝

∫
d3k
√
k2 +m2. (2.35)

Regularizing this integral leads to [29]

ρvac '
m4

64π2 log
(
m2

µ2

)
, (2.36)

where µ denotes the renormalization scale. If the mass of the scalar field corresponds to
the mass of the heaviest particle in the Standard Model of particle physics, then the vac-
uum energy value will become around 55 orders of magnitudes larger than the observed
one [29]. Therefore, the bare CC then has to be extremely fine-tuned! This already seems
to be unappealing but acceptable. However, the quartic dependence on the field’s mass
makes the CC technically unnatural: Since the dominant contribution comes from the
field with the highest mass, one should fine-tune the CC again whenever a new particle
with a higher mass will be detected. In the extreme case, the masses could become of
order the Planck mass and one should expect ρvac = O

(
10120ρobs

)
. If the CC would be

technically natural, then a change in the cut-off would not cause such a huge correction
by many orders of magnitudes.
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Chapter 3

MASSIVE GRAVITY

or: The Unique Theory of a Massive Spin-2 Field

Rarely before have two different camps in physics worked together to find a theory of
a massive graviton. Particle physicist have searched for a proper understanding

of the theory describing spin-2 fields, while cosmologists realized its potential and saw
an elegant theory solving the puzzles of cosmology. The search for a massive gravity
received renewed interest when SNe Ia have been discovered and appeared to be fainter
than expected in a universe that solely consists of ordinary matter [5, 6]. A gauge boson
with massm was expected to cause an additional Yukawa suppression of the gravitational
potential V (r),

V (r) ∝
1
r
e−mr

2
, (3.1)

which could explain the weakening of gravity on large scales. Even better, such a suppres-
sion would screen a large CC that naturally arises due to a vacuum energy. Unfortunately,
all viable theories of massive gravity turned out to not be able to solve the CC problem.
Nonetheless, the discovery of a ghost-free massive gravity has initiated an exciting search
for alternative cosmological models to finally understand the origin of DE.

3.1 Linear Theory of a Massive Spin-2 Field

Finding a viable non-linear theory of a massive graviton turned out to become quite
challenging. Much simpler is the concentration on a linear version, though, which has
already been found by Markus Fierz and Wolfgang Pauli in 1939 [30]. Considering small
fluctuations around a Minkowski background,

hµν ≡ gµν − ηµν, (3.2)

limits the numer of possible mass terms drastically. As the action requires the con-
struction of a scalar, the only non-trivial potential term without derivatives is a linear
combination of all possible contractions of hµν. Thus, the linear Fierz-Pauli (FP) theory of
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a massive spin-2 field simply reads

SFP = S(lin)
GR −

1
2m

2
∫

d4x
(
hµνh

µν − (1 − a)h2
)
, a ∈ R. (3.3)

Let us first assume the special choice a = 0, the Fierz-Pauli tuning. Although the EoM
for hµν are lengthy and not much illuminating, an equivalent reformulation into three
equations can be found which especially simplifies the counting of propagating degrees
of freedom enormously [31]: (

� −m2
)
hµν = 0, (3.4)

∂µ hµν = 0, (3.5)

h = 0. (3.6)

In d dimensions, the first equation describes the propagation of 1
2

(
d2 + d

)
degrees of

freedom, while the second and third one add d + 1 constraints. In a four dimensional
space-time, this leaves in total five degrees of freedom. A result which is indeed expected
for a massive spin-2 field, as it can carry at most one helicity-0 (scalar), two helicity-1
(vector), and two helicity-2 (tensor) modes.

Interestingly, it turns out that eq. (3.6) is not present for the choice a , 0. In this
case, the loss of one constraint implies an additional degree of freedom, which turns out
to be a ghost. Hence, the requirement of stability uniquely fixes the linear theory for a
spin-2 field with mass m.

Although the FP theory is only a linear version of a massive gravity, it should already
be sufficient to analyze phenomenons in the weak field limit, e.g., in our Solar System.
In fact, one of the first major successes of GR was the prediction and observational
confirmation of the correct light deflection around the Sun using the linear theory. For
this, one can use the Newtonian limit for the metric,

gµν = diag [− (1 + 2ψ) ,1 + 2φ,1 + 2φ,1 + 2φ] , (3.7)

to obtain a solution of the geodesic equation

ẍµ + Γ
µ
α� ẋ

α ẋ� = 0. (3.8)

Assuming a photon (ds2 = 0) with energy E that moves along the x3 direction and is
deflected in x1 direction due to an object with mass M, then the momentum will gain a
contribution

p1 = −

∫
dx3

(
1 − φ

ψ

)
M E

x1

b3 , (3.9)

where b denotes the photon’s impact factor. An integration then leads to the deflection
angle

α = 2
(
1 − ψ

φ

)
GM

b
. (3.10)

34



3.2 Ghost-free Non-Linear Massive Gravity

Since the perturbation equations for GR (2.29) imply φ = −ψ, the bending of light in
Einstein’s theory is found to be twice as large as in Newtonian gravity.

For a massive FP theory the metric potentials become [31]

h00 =
2M
3MP

1
4πr e

−mr , (3.11)

hij =
M

3MP

1
4πr e

−mrδij, (3.12)

and indicate an O (1) difference in their ratio compared to the massless GR solution. An
extremely surprising result – shouldn’t the ratio reduce to the standard value in limit of
a vanishing graviton mass m? Because of the highly accurate measurements of the light
bending in our Solar System, such a large deviation would immediately rule out a theory
of massive gravity.

That a measurement could distinguish between an incredibly tiny graviton mass and
an exactly vanishing mass indicates the presence of a discontinuity in the theory. In
massive gravity, this is often referred as van Dam-Veltman-Zakharov (vDVZ) discontinuity
[32, 33]. The graviton in the FP theory propagates five modes instead of two in the
massless case. The additional scalar helicity-0 degree of freedom gets strongly coupled
and therefore does not vanish in the smooth limit m → 0. However, in a strong coupling
régime the linear theory looses its predictability and higher orders necessarily play a
significant role. Specifically, Vainshtein has found the breakdown of the linear FP massive
gravity for regions inside a sphere with radius [34]

rV ≡

(
M

m4M2
P

)1/5
(3.13)

around an object of mass M. The knowledge of a non-linear theory is therefore not only
demanded by curiosity or consistency, but required in order to obtain valid predictions
with which observations can be compared.

3.2 Ghost-free Non-Linear Massive Gravity

Constructing a ghost-free non-linear theory has turned out to be a complicated chal-
lenge. For decades it has been thought that every non-linear extension will reintroduce a
pathological sixth degree of freedom, the Boulware-Deser (BD) ghost [7, 8, 9].

A promising ansatz to derive a consistent non-linear theory is to extend the unique
ghost-free linear massive gravity. For this, one can introduce a covariant tensorH through
rewriting the metric as [8]

gµν = ηµν + hµν = Hµν + ηab ∂µφ
a ∂νφ

b, (3.14)

where φ are Stückelberg fields that can be introduced to restore diffeomorphism invari-
ance, which is originally broken due to the presence of a mass term. Additionally, these
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scalar fields can be used to decompose all graviton degrees of freedom, for instance the
helicity-0 mode π through

φa = xa − ηaµ ∂µπ, (3.15)

which yields an explicit expression for Hµν in terms of π [35],

Hµν = hµν + 2Πµν − η
α� ΠµαΠ�ν, with Πµν ≡ ∂µ∂νπ. (3.16)

Note that the combination [Π]2 − [Π2] is just a total derivative which ensures the ghost-
freedom at this stage. A non-linear generalization to the potential is given by

Lpot ∝ U (g, H) ≡ −4
((
gµν Kµν

)2
− gα� gµν Kαµ K�ν

)
, (3.17)

where K is defined such that it reduces to Πµν in the limit hµν → 0,

Kµν ≡ gµα
(
δαν −

√
δαν − H

α
ν

)
. (3.18)

An expansion of the potential (3.17) leads to an infinite series in H and a subsequent
resummation in which only total derivatives are added provides a recursivly defined mass
term [35]

Lpot ∝
∑
n≥2

αn L
(n) (K) , (3.19)

with

L(n) (K) = −

n∑
m=1

(−1)m
(n − 1)!
(n −m)!

[
Km

]
L(n−m) (K) . (3.20)

This de Rham-Gabadadze-Tolley (dRGT) mass term has been shown to be free of ghosts
up to quartic order in the decoupling limit [35, 36], which corresponds to

MP → ∞ and m → 0 while Λ3 ≡
(
m2MP

)1/3
= fixed, (3.21)

and effectively decouples the helicity-0, the usually most dangerous degree of freedom,
from all other modes. Almost at the same time, Hassan and Rosen discovered that the
infinite series in the mass term indeed terminates and have presented a proof of the
equivalence of this mass term with [37]

L ∝

4∑
n=0

�n en
( √
g−1f

)
, (3.22)

where fµν is an arbitrary fixed tensor field, the parameters �n denote dimension-free real
coefficients and en(X ) represents the elementary symmetric polynomials of the eigenvalues
λi of a matrix X , i.e.,

e0 (X ) = 1, (3.23)

e1 (X ) =

4∑
i=1

λi , (3.24)

36



3.3 Cosmology with Massive Gravitons

e2 (X ) =

4∑
1≤i<j

λi λj, (3.25)

e3 (X ) =

4∑
1≤i<j<k

λi λj λk , (3.26)

e4 (X ) = λ1 λ2 λ3 λ4 = detX. (3.27)

A full, but tedious, Hamiltonian analysis showed that the linear combination of these
terms indeed provides an additional constraint, that removes one degree of freedom, and
with this the absence of the BD ghost in the full non-linear theory [38, 39, 40, 41, 42].
The complete non-linear and ghost-free massive gravity theory with a minimally coupled
matter Lagrangian Lm is dubbed dRGT massive gravity and reads

SdRGT = −M2
P

∫
d4x
√
−g

R − 2m2
4∑
n=0

�n en
( √
g−1f

) +

∫
d4x
√
−gLm . (3.28)

Note that even though an explicit CC has been omitted, the parameter �0 indeed takes
over its role as e0 = 1.

From now one, we will assume the reference metric to be Minkowskian, fµν = ηµν,
which will not only significantly simplify the analysis, but, in addition, this restriction
also ensures the absence of gradient or even ghost instabilities [43].1 Furthermore, the
square root

√
g−1f is not uniquely defined for matrices. In order to ensure differentiability,

we will define it as the positive solution, i.e., the one that obeys
√
X
√
X = X . Finally, a

variation with respect to gµν and the assumption of diagonality of g yields the EoM [37],

Gµν +m2
3∑
n=0

(−1)n �n gµα Y ν(n)α

( √
g−1f

)
= M−2

P Tµν. (3.29)

Here, the matrices Y ν(n)α(X ) follow from the variation of en(X ) and read

Y(0)(X ) = 1, (3.30)

Y(1)(X ) = X − 1 [X ] , (3.31)

Y(2)(X ) = X2 − X [X ] +
1
21

(
[X ]2 −

[
X2

])
, (3.32)

Y(3)(X ) = X3 − X2 [X ] +
1
2X

(
[X ]2 −

[
X2

])
−

1
61

(
[X ]3 − 3 [X ]

[
X2

]
+ 2

[
X3

])
. (3.33)

3.3 Cosmology with Massive Gravitons

Contrary to the original expectation that an additional massive term in the action will
weaken gravitational interactions on large scales, the modified Einstein eq. (3.29) with
the freedom in the parameters �n is able to influence gravity at all scales and might even

1The claim that dRGT massive gravity is ghost-free is only restricted to the absence of an additional sixth
ghost degree of freedom. All other five helicity modes crucially depend on the background and might also
carry a wrong sign in their kinetic term (see also section 4.5 for a more detailed discussion).
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strengthen gravity. The cosmological phenomenology can, similar to the previously dis-
cussed Einstein case, be studied by assuming an FLRW background, with one exception:
The loss of the gauge freedom due to a breaking of diffeomorphism invariance forbids us to
choose the lapse arbitrarily. In GR, the combination of both Friedmann equations (2.21,
2.22) is redundant with the energy-meomentum conservation, Tµν;µ = 0. It is different
in massive gravity where a conserved Tµν just enters as an, though very well motivated,
assumption. In addition to the Friedmann equations, the combination of this assumption
together with a reformulation of the Bianchi identities,

∇µG
µν = 0, (3.34)

enforces the term that modifies the EoM to be covariantly conserved:

m2 ∇µ

 3∑
n=0

(−1)n �n gµα Y ν(n)α

 = 0. (3.35)

In an FLRW universe, this Bianchi constraint yields [43]

m2a2
(
�1 + 2 �2 a

−1 + �3 a
−2

)
= 0. (3.36)

Remarkably, this equation does not constrain the lapse function, as one would expect,
but fixes the value of the scale factor. It is not only the inability of dRGT to describe the
accelerating epoch of our Universe, it is, in fact, not even compatible with a dynamical
universe.

If the Bianchi constraint were slightly different, it would indeed serve as a constraint
for the lapse and allow for a dynamical universe. The specific form of the dRGT potential,
which ensures the ghost freedom, manifests itself in the lack of dynamics. If the potential
stays untouched, then additional dynamics should be added by hand to, for instance, the
matter sector. Tiny, even unobservable, anisotropies, that are larger than the horizon,
could allow for dynamical FLRW solutions [43] (see also refs. [44, 45] for a general FLRW
metric with inhomogeneous Stückelberg fields). But such a modification would surely
render a massive gravity less appealing.

3.4 Generalized Matter Couplings

Without explicitly utilizing a new freedom in the matter sector by modifying the EM
tensor, the dRGT Lagrangian still makes a strong assumption on how the matter content
is coupled. In GR, the minimal coupling of the matter Lagrangian, i.e., to just the volume
element √−g, is a direct consequence of General Covariance. If this has been broken by a
mass term, then there is no fundamental reason why the coupling should stay minimally.
Especially in the presence of two tensor fields a generalization of the coupling has to be
taken into account [46, 47, 48]. But such a modification is expected to reintroduce the
BD ghost and was therefore thought to destabilize the theory [38, 49, 50].
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3.4 Generalized Matter Couplings

Recently, a coupling to a certain combination of both metrics was suggested [49],
shown to be free of ghosts below the strong coupling scale Λ3 [49, 51, 17], and can
therefore evade the ghost problem. In this scenario, all matter is coupled to the effective
metric

geff
µν ≡ α

2gµν + 2α � gµαXαν + �2 ηµν, α, � ∈ R, (3.37)

where Xµν ≡
( √
g−1η

)µ
ν
. The modification will then become perceivable on the right hand

side of eq. (3.29),

Gµν +m2
3∑
n=0

(−1)n �n gµα Y ν(n)α

( √
g−1f

)
= M−2

P α det (α + �X )
(
α Tµν + � Xµα T

να
)
. (3.38)

Its consequences for the cosmological evolution have been analyzed in publication 4 and
will be summarized in the following.

If, again, an FLRW ansatz for g is chosen, then the line element of the effective metric
can be written has

geff
µν dxµ dxν = −N2

eff dt2 + a2
eff δij dx

i dx j, (3.39)

and only depends on an effective lapse function Neff and scale factor aeff:

Neff ≡ α N + �, aeff ≡ α a + �. (3.40)

Let us assume a scenario in which the matter fluid is still conserved with respect to the
effective metric, i.e., ∇eff

µ T
µν = 0, but, contrary to what has been assumed in section 2.3,

is allowed to have a non-vanishing pressure

p =
1
3 − g

eff
00 T

00. (3.41)

Per construction, the new dynamics in the matter sector propagate into the Bianchi
constraint,

m2M2
P a

2
(
�1 + 2 �2 a

−1 + �3 a
−2

)
= α � a2

eff p ȧ, (3.42)

If the pressure is parameterized by an equation-of-state (EoS) parameter w with p = wρ,
then the energy conservation,

d log ρ
d logaeff

+ 3 (1 +w (aeff)) = 0, (3.43)

can be integrated to obtain an expression for ρ(aeff) which, in fact, conflicts with eq. (3.42).

However, the situation sounds worse than it actually is. In order to use the standard
methods to describe cosmology, the pressure requires a lapse dependence, which is au-
tomatically the case for any fundamental field with a kinetic term. Consider for instance
an EM tensor from a canonical scalar field χ with potential V (χ),

Tµν = ∇
µ
eff χ∇

ν
eff χ −

(1
2∇effα χ ∇

α
eff χ + V (χ)

)
gµνeff . (3.44)
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Although the scalar field is now explicitly allowed to depend on the lapse, the Klein-Gordon
equation [52]

d
dt

 χ̇2

2N2
eff

+ V (χ)
 + 3 ȧeff

aeff

χ̇2

N2
eff

= 0 (3.45)

clearly shows that if the potential is independent of Neff then neither can χ̇2/2N2
eff. Since

the pressure is just

p =
χ̇2

2N2
eff
− V (χ), (3.46)

the no-go theorem of dRGT massive gravity for dynamical FLRW solutions can be extended
to doubly-coupled theories, in which either the pressure of an effective fluid or, in case
there is just one scalar field present, the potential does not depend on the lapse.

The situation changes in the presence of a perfect fluid with an additional canonical
scalar field. The new freedom evades the no-go theorem but it will lead to a highly
nonstandard cosmological evolution: Both χ2 and H2

eff will become negative for positive-
definite potentials, or, otherwise, H2

eff will blow up as aeff → ∞, indicating a late-time
background instability [52].

A viable theory of doubly-coupled massive gravity seems to be hardly constructable,
even in the presence of additional fields, and, if possible, it requires the usage of tech-
niques beyond those, which are used in standard cosmology.

3.5 Haunted Massive Gravity

Since the time when the linear FP theory was originally formulated and even before,
ghosts have always been seen as an unacceptable pathological behavior. They seem to
destabilize the vacuum as well as produce potentially dangerous classical instabilities.
The latter is still acceptable as long as no contradictions with observations appear. A
vacuum instability, however, is often thought to be a disastrous behavior. The only hope
to tame a ghost seems to be a modification at UV scales.

3.5.1 Lorentz Breaking UV Operators

The motivation to even think about a UV modification are twofold. Theories of mas-
sive gravity do not just add a mass to the graviton, their entire foundation is based on
the breaking of General Covariance. One possible consequence, a generalization of the
coupling to matter, has been discussed in the previous section. However, this symme-
try under diffeomorphisms is directly related to an LI. How justified would it be to give
up one symmetry and still enforce to other? Furthermore, all theories of modified grav-
ity, regardless of whether they introduce a mass to the graviton or break other Lovelock
assumptions, still live inside the framework of the EFT. A UV completion will surely intro-
duce new operators above the cutoff of the theory, or already above the strong-coupling
scale in theories of massive gravity. As some of these operators are expected to break
Lorentz invariance, any conclusion about the stability of the vacuum state necessarily
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has to take a possible LB into account.
Before summarizing the consequences of an LB for both the classical and quantum

stability for one specific model that was discussed in publication 8, we assume an arbi-
trary scattering between a ghost mode and other fields. The decay rate Γ is then obtained
by integrating the scattering amplitudeM over the entire phase space. More specifically,

Γ =
1

2mg

∫ ∏
f

d3pf
π

Ef

∣∣∣M∣∣∣2 δ(4)

pg −∑
f

pf

 , (3.47)

where pg and mg denote the ghost momentum and its mass, respectively, and the sub-
script f indicates all final particles. In a Lorentz invariant theory, the phase-space is
infinitely large leading to a divergent decay rate. Note that an EFT cutoff is not able to
simply cut the integral. However, an LV operator will automatically induce an LB scale
that renders the decay rate finite. The decay rate can then be determined by the most
dominant scattering process. This possibility was already proposed in refs. [15, 16]
and simple scalar field models have been studied [15, 53, 54]. But their results should
be taken with care, when applying them to theories of modified gravity with a minimal
coupling, where derivative interactions play the major role.

3.5.2 Cosmological Viability with Ghosts

Classical Instability

To tackle the question of how the decay rate generally scales with the LB cutoff in
minimally coupled theories of modified gravity, we have discussed a specific model of
massive gravity that differs from dRGT and, thus, introduces a BD ghost. Doing this, one
can kill two birds with one stone: Besides understanding the vacuum decay in modified
gravity, at the same time the question, whether a theory of massive gravity can be made
cosmologically viable, without explicitly introducing new degrees of freedom, can finally
be answered positively! To see this, the model

SHMG = M2
P

∫
d4x
√
−g

[
R + 2m2

(
(1 − α1 (g, f ))

[ √
g−1f

]
−

1
2

(1 − α2 (g, f ))
([ √

g−1f
]2
−

[
g−1f

]))]
(3.48)

with

αi (g, f ) ≡ ᾱi gα� f�α, ᾱi ∈ R (3.49)

has been studied and was dubbed Haunted Massive Gravity (HMG). This action contains
the first and second order interactions of the dRGT potential and explicitly violates its
ghost-free structure by a detuning with αi (g, f ).

The no-go result for FLRW backgrounds in dRGT has signalized that additional dy-
namics at background level are required in order obtain a viable theory. In HMG, the
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ghost will take over this part. This is certainly a dangerous endeavor, even at classical
level one has to expect an instability due to the pathological BD ghost, that is usually
associated with growing modes. For instance, the scale factor might grow exponentially –
a ghost as the origin of the cosmic acceleration?

If one assumes a dark matter fluid, then the combination of the Friedmann equation

3H2 = ρ +
m2

a4Ng

[
a3 (− (aᾱ1 + 6ᾱ2)) − 3a2Ng (2aᾱ1 + ᾱ2) + 3N3

g (a ((a − 1)a − 3ᾱ1) + 3ᾱ2)
]
,

(3.50)

together with the Bianchi constraint(
1 + 3a−2N2

g

) [
N ′g

(
a (aᾱ1 + 6ᾱ2) + 2Ng (2aᾱ1 + ᾱ2)

)
+HNg

(
−6aᾱ2 + N2

g (4ᾱ1 − (a − 2)a) − 2Ng (aᾱ1 + ᾱ2) + 9ᾱ1a
−1N3

g

)]
= 0, (3.51)

provides a simply relation between the lapse and the scale factor in the limit a � 1 [55],

Ng = ±
1
3

√
ᾱ2
ᾱ1
a, (3.52)

and implies H2 ∝ a−3. This result is indeed consistent with the early-time evolution in
ΛCDM. The late time behavior in HMG can easily computed numerically and, for ᾱi = O(1),
predicts an effective EoS parameter weff < −1/3 [55], indicating an acceleration. It is
exactly the ghost instability that was expected to be visible at classical level and could
potentially solve the DE problem.

Once again, it needs to be emphasized that HMG should not be seen as a new can-
didate of modified gravity that was intended to compete with ΛCDM, but it serves as a
perfect counter-example for the conjecture that every massive gravity without an extra
freedom does not produce a viable cosmological evolution.

Still, the dangerous quantum instability is not cured yet. But as the scattering pro-
cesses at tree-level do indeed correspond to the classical background instability, we expect
a maximization of the timescale of the background instability to likewise slow down the
vacuum decay. For this, the time tc can be computed at which the lapse Ng crosses zero
denoting a Big Bang singularity. A maximization of the timescale then corresponds to
tc = 0, which is achieved if the parameters of the theory approximately obey the linear
relation [55]

ᾱ2 '
1
6 ᾱ1 −

2
45 . (3.53)

Quantum Instability

As mentioned before, the instability at quantum level can be cured by the influence
of an LB operator, but it is neither obvious which interaction is dominant, nor at which
scale this operator has to set in to preserve viability. Let us first discuss the linear HMG
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mass term:

S(2)
mass = M2

Pm
2
∫

d4x
(1
4 + ᾱ1 − 2ᾱ2

) [
η (δg)

]2
−

(1
4 + 3ᾱ1 − 8ᾱ2

) [
η (δg) η (δg)

]
, (3.54)

which, as constructed, violates the FP tuning for non-vanishing parameters ᾱi . In addi-
tion, a canonical non-linear matter scalar field ϕ minimally coupled to gravity is consid-
ered. Since the vacuum decay is expected (and for HMG also explicitly shown in ref. [55])
to occur at small scales at which the metric is very well approximated by fluctuations
around a flat Minkowski metric, the ansatz (2.24) with a(t) = 1 can be used to obtain the
second-order action,

S(2)
HMG =

∫
d4x

[
4M2

P
(
Φ2
i − 2∆ΦΨ − 2Φ′∆E′ − 3Φ′2 − 2BiΦ′i

)
+

1
2m

2M2
P
(
c1B

2
i + c2

(
Ψ2 + (∆E)2

)
+ 8c3Φ∆E + 12c3Φ2 + 4c4Ψ (∆E + 3Φ)

)
−

(
1 + B2

i − (∆E)2 + 3Φ2 + 6ΦΨ − Ψ2 + 2∆E (Φ + Ψ)
)
Xϕ

]
, (3.55)

where we have defined
Xϕ ≡ −ϕ

′2 + ϕ2
i +m2

ϕ ϕ
2 (3.56)

together with the parameters ci

c1 ≡ 1 + 12ᾱ1 − 32ᾱ2, (3.57)

c2 ≡ −16ᾱ1 + 12ᾱ2, (3.58)

c3 ≡ 1 + 4ᾱ2, (3.59)

c4 ≡ 1 + 4ᾱ1 − 8ᾱ2. (3.60)

The combination of all five scalars in the action (3.55) should describe one helicity-0
mode, a BD ghost, and an external matter field. Surprisingly, not two but three of them,
i.e., Ψ, Bi , and ∆E, are, in fact, auxiliary. However, integrating them out introduces
fourth-order derivatives, which indicates the presence of an Ostrogradsky ghost in addi-
tion to the two dynamical degrees of freedom and, therefore, matches up the counting of
the total number of degrees of freedom.

To properly discuss the ghost instability, all degrees of freedom have to be decoupled
from each other. A recipe, how to separate all modes in a general, not even necessarily
covariant, theory of both two and three interacting scalar fields, was first presented in
publication 8.2 These results were used to find that HMG can equivalently be described
by an interaction of two tachyonic fields π and ξ , respectively, and one ghost Φ . The
tachyonic instability should, however, not be taken too seriously as this is just an effective
reformulation to compute the scattering amplitudes and does not imply that the physical

2During the analysis, a remarkable side product was found: While Ostrogradsky’s theorem does not make
any statement about the number of ghosts that will show up in higher-derivative theories, we have found
that, in fact, the property of a theory being covariant is crucially related to the number of propagating degrees
of freedom.
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helicity-0 or the matter field is really tachyonic.
Once all modes are decoupled, the most dominant interactions can be read off from

the Lagrangian and were found to be

Ldom ∝
m6

m6
ϕ M

2
P

Φ2 ξ3 ∂µ ∂
µξ . (3.61)

The timescale of the vacuum instability is, therefore, determined by the derivative inter-
actions between two ghost fields and four matter fields, which leads to a vacuum decay
rate [55]

ΓΦ =
3A2m4

ξ Λ6
LB

2 (2π)10mΦ

+ O
(
Λ5

LB
)
, (3.62)

where A comprises the prefactor of the Lagrangian (3.61). Cosmological viability requires
the decay time to be larger than the age of our Universe, i.e., Γ−1 & H−1

0 . Assuming the
graviton mass m to be of order H0, which is necessary to ensure that modifications of
gravity appear at cosmological scales, shows that the scale at which LI has to be broken,

ΛLB . Λ
(max)
LB ≡ O

m12
ϕ M8

P
m14

1/6 , (3.63)

can easily be much larger than not only the strong coupling scale of the theory Λ5 =

(m4MP)1/5 but even the Planck mass! Only for incredibly tiny masses of ϕ, i.e., mϕ �

H0 ' 2 × 10−33 eV, the decay of the vacuum might occur too fast, but a massive scalar
field with such a small mass has never been observed.

To summarize, a model of massive gravity has been found that disproves two old con-
jectures. Firstly, a massive graviton alone is indeed able to provide a viable cosmological
evolution and, secondly, a ghost in theories of modified gravity can be harmless. Even
more, the interaction that dominates the vacuum decay is expected to be the same for
most minimally coupled theories of modified gravity and, thus, will also render many
theories viable again that had been discarded due to the existence of a ghost.
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Chapter 4

BIMETRIC GRAVITY

or: The Unique Theory of Two Interacting Spin-2 Fields

Maximizing the symmetry of an action plays a crucial role in field theory and is often
regarded as a step towards a more fundamental description of gravity. Certainly

the biggest disadvantage in a theory of a massive gravity is the breaking of diffeomorphism
invariance. Quite naturally, one will ask whether this symmetry can be restored. The
answer turns out to lead to a theory of two metrics, a bimetric theory.

4.1 Generalizing Massive Gravity to a Bimetric Theory

A massive gravity action that exhibits a diffeomorphism invariance requires additional
kinetic terms to compensate the transformation behavior of the mass term. While any
modification in the Einstein-Hilbert action is likely to introduce new degrees of freedom,
the kinetic term for the metric g should be kept and the reference metric has to obtain
its own kinetics which will cause the second metric to become dynamical. In other
words, restoring General Covariance in massive gravity seems to lead to a theory of two
interacting spin-2 fields. In order to construct the corresponding action it is reasonable to
just use two copies of GR, one for each tensor field, and add a suitable interaction term.
The ghost-free proof in dRGT massive gravity can be generalized to a dynamical reference
metric and will not affect the form of the potential [38, 40, 41]. Therefore, the action can
finally be written as

S = −
1
2M

2
g

∫
d4x
√
−g

R(g) − 2m2
4∑
n=0

�n en(X )

 − 1
2M

2
f

∫
d4x

√
−f R(f ) +

∫
d4x
√
−gLm ,

(4.1)
where a second Planck scale Mf in addition to Mg ≡ MP is introduced. Because each
single Einstein-Hilbert term is invariant under diffeomorphisms, the invariance of the
mass term, and therefore the whole action, possesses this symmetry, too, if both g and
f are transformed with the same diffeomorphism. Thus, giving dynamics to f has indeed
restored this gauge symmetry.

Even though the second tensor field f gets its own Einstein-Hilbert action with the
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volume element
√
−f and looks like a second metric, there is still only one metric space-

time over which all integrations are performed. However, this language of ‘‘two metrics’’
is often used and explains its name bimetric gravity, or in short, bigravity. Right after this
action was proposed by Hassan and Rosen, it was explicitly shown to be free of the BD
ghost [38, 40].

At first glace, the metric g seems to play a special role. This is, in fact, not wrong since
the entire matter sector couples to g only. But apart from that, the mass term carries a
symmetry that ensures that both metrics are equally footed. To see this explicitly, one
can utilize the properties of the elementary symmetric polynomials [38],

ek
( √
g−1f

)
=
e4−k

( √
f −1g

)
e4

( √
f −1g

) , (4.2)

and finds

√
−g

4∑
n=0

�n en
( √
g−1f

)
=

√
−f e4

( √
f −1g

) 4∑
n=0

�n en
( √
g−1f

)
(4.3)

=
√
−f

4∑
n=0

�n e4−n
( √
f −1g

)
. (4.4)

The bimetric action is then indeed symmetric under the exchanges f ↔ g, �n → �4−n,
and Mg ↔ Mf together with a simultaneous rescaling m2 → m2M2

g /M
2
f [56].

Clearly, with the new dynamics for the reference metric fµν, we have entered a new
field with more than just a massive graviton. Generally, analyzing the spectrum to find all
propagating modes is quite complicated, if possible at all, and crucially depends on the
background. In a simple case where both metrics just describe small fluctuations around
the same background ḡµν,

gµν = ḡµν +M−1
g δgµν and fµν = ḡµν +M−1

f δfµν, (4.5)

and all higher-order interactions are switched-off by using �i = (−3,−1,0,0,1) [56], the
action (4.1) at second-order becomes [38]

S =

∫
d4x

(
δgµν Ê

µνα� δgα� + δfµν Ê
µνα� δfα�

)
−
m2

4 M2
eff

∫
d4x

(δgµνMg
−
δf µν
Mf

)2
−

δgµµ
Mg
−
δf µµ
Mf

2 ,
(4.6)

where Êµνα� denotes the Lichnerowicz operator, defined such that δgµν Êµνα� δgα� describes
the linearized Einstein-Hilbert action, and the effective Planck mass Meff is defined as
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(
M−2
g +M−2

f

)−2
. To decouple all modes, one introduces

G̃µν ≡
Meff
Mf

δgµν +
Meff
Mg

δfµν, (4.7)

M̃µν ≡
Meff
Mg

δgµν +
Meff
Mf

δfµν (4.8)

to obtain [38]

S =

∫
d4x

(
G̃µν Ê

µνα� G̃α� + M̃µν Ê
µνα� M̃α�

)
−
m2

4 M2
eff

∫
d4x

[
M̃µνM̃µν − M̃

2
]
. (4.9)

The mass term that appears in (4.9) depends only on M̃µν and precisely obeys the FP
structure. With this, both a massless G̃µν and massive M̃µν mode, respectively, are de-
coupled, pointing to the presence of two spin-2 fields of which one is massive. Bimetric
gravity does not just generalize massive gravity by giving the reference metric dynamics,
it is rather a completely different theory of two interacting gravitons.

4.2 Cosmological Background Solutions

With the development of bigravity, a new hope arose to finally tackle the DE problem
successfully. Suddenly, many different classes of solutions describing completely dif-
ferent phenomenologies were available. Most of them are able to explain the accelerated
expansion [56, 57, 58, 59, 60], others contain an inflationary epoch or could even describe
bouncing solutions [55]. However, a comprehensive analysis of their phenomenology and
a comparison with observational data in publication 1 demonstrated that quite a number
of models are not cosmologically viable. To see this explicitly, we choose an FLRW ansatz
for both metrics,

ds2
g = a2

(
−H−2 dt2 + dxi dx i

)
, (4.10)

ds2
f = b2

(
−H−2 N2

f dt2 + dxi dx i
)
. (4.11)

Note that the combined diffeomorphism invariance allows us to choose one time parametriza-
tion, in this case the e-folding time t ≡ loga. Before analyzing the set of background
equations, it is useful to introduce the ratio between both scale factors,

r ≡
b

a
, (4.12)

which will be assumed to be positive. Furthermore, we can fix two redundancies in the set
of free parameters of the theory. Under the transformation fµν → M−2

f fµν the elementary
symmetric polynomials transform as

4∑
n=0

�n en
( √
g−1f

)
→

4∑
n=0

M−nf �n en
( √
g−1f

)
, (4.13)
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demonstrating that the Planck scale Mf can be set to Mg by rescaling �n → Mn
f �n. Finally,

the graviton mass scale m will be absorbed into the �n and all masses will be expressed
in units of Planck masses.

Because the bimetric action should be varied with respect to all dynamical fields, we
obtain two EoM in addition to the EM conservation. The set of independent equations
becomes

3H2 = a2
(
ρ + �0 + 3�1r + 3�2r

2 + �3r
3
)
, (4.14)

3H2 =
a2r N2

f

(r′ + r)2

(
�1 + 3�2r + 3�3r

2 + �4r
3
)
, (4.15)

ρ′ = −3ρ (1 +wtot) . (4.16)

As already mentioned earlier, the parameter �0 appears as a CC. Because the entire
matter sector is minimally coupled to g, it is only this parameter that will receive quantum
corrections [61, 62, 63, 64] leading to the CC problem. All other coupling parameter �n are
protected against loops and, therefore, preserve technical naturalness. This motivates the
search for models in which �0 is set to zero in order to obtain self-accelerating models.1

All background equations (4.14) - (4.16) can now be used to solve for the lapse, which
leads to

Nf = 1 +
r′

r
. (4.17)

The same constraint would also directly follow from the Bianchi constraint. In addition,
the background equations also allow to directly solve for ρ in terms of r only:

ρ = �1r
−1 − �0 + 3�2 + 3 (�3 − �1) r + (�4 − 3�2) r2 − �3r

3. (4.18)

Therefore, to analyze the phenomenology of possible cosmological solutions, it is only
important to know how the ratio of the scale factors evolves. One way to analyze the
evolution of r is the usage of

r′ =
ρ′

ρ,r
= −3 (1 +wtot)

ρ

ρ,r
, (4.19)

and employing eq. (4.18) to obtain a differential equation for r. Instead of solving this
equation explicitly, it turns out to be very convenient to discuss its phase space. Even
beyond the background level, the evolution in the phase space will allow us to immediately
draw conclusions about the existence of different types of instabilities, as discussed in
sections 4.3.1 and 4.5. One representative phase space diagram is illustrated in Fig. 4.1
[28].

All viable cosmological solutions, i.e., those in which the density is positive, the Hubble
expansion real, and a matter dominated period exists, fall into one of the following three

1By assuming �0 = 0, one has, of course, not obtained a solution for the CC problem. It is rather assumed
that a symmetry, possibly predicted by a more fundamental theory, exists that enforces the CC to vanish
and, consequently, requires an explanation for the late-time acceleration of the Universe.
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qualitatively different types of branches [60, 28]:

Finite Branches

During the entire cosmic evolution the ratio of the scale factors stays finite, r ∈ (0, rc),
and increases with time, i.e., r′ ≥ 0. In the asymptotic past, r → 0 causes the density
(4.18) to diverge and indicates a Big Bang singularity. While the universe expands, r
increases and approaches a root at rc: r′|rc = 0, which corresponds to the asymptotic
future. Because of eq. (4.19), a constant r implies a vanishing density and the Hubble
function will approach a constant; we have entered a de Sitter epoch in which the universe
is dominated by DE only.

A model that deserves special attention is the Minimal Bimetric Model (MBM) and has
been analyzed in publication 2. It is the only viable one-parameter model that is not just
equivalent to ΛCDM. Here, all �-parameters except �1 are zero and, therefore, the model
contains the same number of free parameters as in ΛCDM. Furthermore, it is particulary
simple as the entire evolution can be solved analytically and agrees with observational
data [60]. Interestingly, the EoS always evolves from -2 to -1; a phantom behavior that
distinguishes all finite branch models in bigravity from the standard cosmological evolu-
tion.

Infinite Branches

If the scale factor b dominates over a at early times, then eq. (4.19) shows that r′ is
negative. Such a model evolves from the limit r → ∞ in the asymptotic past towards a
root at rc, which, again, indicates a de Sitter point. Even though no viable one-parameter
model exists in this branch, it can reproduce the success of ΛCDM if at least �1, �4 > 0,
the so-called Infinite Branch Bigravity (IBB) model [60, 65].

Exotic Branches

All cosmological solutions discussed so far start with a Big Bang singularity and reach
a de Sitter state at late times. However, there are branches in which r is always finite
and non-zero, even in the early- and late-time limits. In the phase-space diagram the
asymptotic points are then described by either a pole or a root. While the latter has
already been discussed in the other branches and corresponds to a vanishing density,
the existence of a pole2 indicates a point in time at which H = 0: A bounce! One possible
scenario is a contraction from an infinitely large universe until a non-singular bounce
occurs, followed by an (accelerated) expansion. Such a model could potentially explain
not only the recent accelerated expansion of our Universe but, at the same time, does not
require an inflationary epoch and comes out without any Big Bang singularity.

2Note that a pole in r ′ is not an unphysical behavior because the prime denotes the derivative with respect
to e-folding time, i.e., r ′ = aH−1 ṙ, and leads to a divergence if H crosses zero.
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Figure 4.1: Representative phase space diagram of a model that contains three different
cosmological solutions: Two of them, those on the finite and infinite branch, describe an
expanding universe towards a de Sitter state, while the third solution on the exotic branch
corresponds to a bouncing model. The colored regiones indicate the existence of gradient
instabilities (diagonal blue stripes) and ghost instabilities (vertical orange stripes signal that
the helicity-2 modes are ghosts, whereas diagonal red stripes denote a helicity-0 ghost),
respectively.

4.3 Linear Scalar Perturbations

At background level, bimetric gravity provides a huge number of viable models that
are not only consistent with current data but also predicts new phenomenologies that
might be testable in the near future. Consequently, studying their behavior at linear level
received an increasing interest [66, 67, 68, 69, 70, 65, 71, 55, 72, 73, 74].

4.3.1 Gradient Instabilities

It has not last long until the first simple models were found to develop dangerous
instabilities [68, 69, 65, 71]. To properly understand their origin and consequences, we
have studied the particular MBM in detail in Publication 2. By finding stability conditions
for general models in publication 3 we could then identify all possible models that do not
suffer from gradient instabilities.

Let us first focus on scalar perturbations around an FLRW background that can be
described by the line elements

ds2
δg = 2a2

[
−Ψ dt2 +

(
Φδij + ki kj E

)
dx i dx j

]
exp

(
i ~k~r

)
, (4.20)

ds2
δf = 2b2

[
−N2

f Ψf dt2 +
(
Φf δij + ki kj Ef

)
dx i dx j

]
exp

(
i ~k~r

)
(4.21)
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in Fourier space. Because solving the set of perturbation equations turns out to be quite
cumbersome, a suitable gauge transformation can be used to simplify the analysis by,
e.g., rendering some variables auxiliary. A convenient choice is the transformation to
gauge-invariant variables [68] (see also refs. [75, 71] on how to choose a useful gauge by
using the Noether identities),

Φ −→ Φ −H2E′, (4.22)

Ψ −→ Ψ −H
(
H ′E′ +H

(
E′′ + E′

))
, (4.23)

Φf −→ Φf −
H2r E′f
r′ + r

, (4.24)

Ψf −→ Ψf −
Hr2H ′ (r′ + r)E′f +H2r

(
r (r′ + r)E′′f + E′f

(
2r′2 + r (2r′ − r′′) + r2

))
(r′ + r)3 . (4.25)

In total, one obtains ten independent perturbation equations of which eight equations
follow from the (0,0)-, (0,i)-, (i,i)-, and (i,j)-EoM for gµν and fµν, respectively; the remaining
two arise from the energy-momentum conservation of the perturbed EM tensor. Since
we have just one propagating helicity-0 mode and a scalar matter fluctuation, we should
expect the set of equations to be reducible to only two second-order differential equations.
After integrating out all auxiliary variables one, indeed, obtains [76, 65, 71]

X ′′i + Fij X
′
j + Sij Xj = 0, (4.26)

where Xi ≡ (Φ,Ψ) and F and S are matrices that contain the model dependency. To
dicsuss the stability of X it is sufficient to use the ansatz Xi ∝ eωt in combination with
the assumption that w does not depend on t.3 Furthermore, a possible instability will
lead to a growth at especially sub-horizon scales. In this régime, the eigenfrequencies are
[65, 28]

ω2 =

( k
H

)2

r′

(
(r2+1)(�1−�3r2)r′

ρ(w+1) −
r2(�1+4�2r+3�3r2)
�1+2�2r+�3r2

)
3r3 − 1

 . (4.27)

For models in which the highest-order interactions are switched-off, i.e., �2 = �3 = 0, it
reduces to the remarkably simple expression

ω2
�0�1�4

=

( k
H

)2 r′′

3r′ , (4.28)

which is very convenient to study the stability as just the sign is of importance. A negative
one implies imaginary eigenfrequencies and, thus, stable, oscillating modes. Otherwise,
if the sign os positive, the scalar perturbations undergo an exponentially fast growth.
Especially the scale dependence signalizes a dramatic behavior at small scales which
does not seem to withstand any comparison with observations.

In the finite branch model MBM, the early-time evolution satisfies r′, r′′ > 0 and,

3Neglecting the time dependence is allowed if the WKB approximation, i.e.,
∣∣∣ω′/ω2

∣∣∣ � 1 , holds. In the
sub-horizon approximation, this was indeed found to be valid [65].

51



Chapter 4. Bimetric Gravity, or: The Unique Theory of Two Interacting Spin-2 Fields

therefore, indicates unstable linear perturbations! In fact, the presence of gradient insta-
bilities at early times can be generalized to all finite branch models that produce a viable
background [65]. All models living in the exotic branch are also plagued by instabilities
[55]. Only one candidate has survived the instability check: the models on the infinite
branch.

4.3.2 Quasi-Static Approximation

In order to compare the evolution of scalar perturbations in IBB, the only model that
has a viable background evolution and is free of gradient instabilities, with observations
of large-scale structure, it is sufficient to use both the sub-horizon limit together with
the quasi-static approximation, since these experiments especially probe modes within
the horizon [65]. While the sub-horizon approximation only considers small modes that
satisfy k/H � 1, the quasi-static limit restricts to slowly oscillating modes. In this limit,
we can introduce the anisotropic stress

η ≡ −
φ

ψ
(4.29)

and the effective gravitational coupling

Y ≡ −
2k2 ψ

3H2Ωmδ
, (4.30)

where Ωm denotes the ratio between the matter density and the critical density, i.e., for
which the universe would be flat. Both modified gravity parameters are defined to be
unity if the evolution is equivalent to the one in ΛCDM. We have shown that IBB predicts
[65]

lim
t→−∞

η =
1
2 and lim

t→−∞
Y =

4
3 , (4.31)

and therefore deviates significantly from the standard model in the asymptotic past. So
far, both ΛCDM as well as IBB agree with all current observed growth data [65], but
near-future experiments will soon be able to discriminate between IBB and ΛCDM [77].

4.4 Growing Tensor Modes

Cosmological perturbations comprise small fluctuations in the scalar as well as in
the vector and tensor sector. The gradient instabilities that have been discussed in the
previous section only affect scalar perturbations. In publication 5 we have focused on the
tensor sector to extend the picture of cosmological viability.

Consider transverse gravitational waves propagating in the z direction for both met-
rics, g and f ,

hf/g (ij) =


hf/g (+) hf/g (×) 0
hf/g (×) −hf/g (+) 0

0 0 0

 . (4.32)
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The EoM for both metrics provide [68, 71, 73]

h′′g + γg h
′
g +

(
m2
g + c2

g H
−2 k2

)
hg = qg hf , (4.33)

h′′f + γf h
′
f +

(
m2
f + c2

f H
−2 k2

)
hf = qf hg, (4.34)

where the following coefficients have been defined:

γg = 2 +
H ′

H
, γf =

2r2 + 3r′2 + r (4r′ − r′′)
r (r′ + r)

+
H ′

H
, (4.35)

m2
g = H−2a2B r, m2

f =
(r′ + r)
H2r2 a

2B , (4.36)

c2
g = 1, c2

f =
(r′ + r)2

r2 , (4.37)

qg = H−2a2B r, qf =
(r′ + r)
H2r2 a

2B , (4.38)

with
B ≡ �1 + �3r

2 + r
(2�2 + �3r

′) + �2r
′. (4.39)

Contrary to the scalar case, the phenomenological behavior of the gravitational waves is
much easier to understand and can easily be computed numerically. The tensor fluctua-
tions hg are, as in GR, damped by γg > 0. However, the friction term for hf , γf , is negative
if b′ < 0, which is always fulfilled at early times in models on the infinite branch, and
signalizes a fast grow. Due to the coupling of both modes, this growth propagates into hg.

Because growing modes would influence the CMB, we have compared the IBB model
to present CMB data in publication 5. Whether the gravitational waves hg grow too fast
or not does not only depend on the choice of parameters, but also crucially on the initial
conditions set by an inflationary epoch. The list of models for inflation is long. Often the
end of inflation occurs at energies around some MeV up to 1015 GeV [27].

In addition, fast growing tensor modes will rapidly reach large values that are not
consistent anymore with the linear perturbation approximation and non-linearities should
be taken into account. One should, therefore, only trust the solutions of the perturbation
equations when hf/g . 1.

However, for the IBB model a very optimistic assumption of a low-energy inflation, that
stops at an energy scale of O(GeV), with an additional cutoff is required to evade conflicts
with recent observations of the CMB [73]. Albeit less appealing, another possible solution
is a tuning of the model parameters to achieve a very small coupling qg with an additional
CC to ensure the viability at background level.

4.5 Reopening the Ghost Hunt

Bimetric gravity contains many viable cosmological background solutions that easily
pass all observational tests. All their linear perturbations are, however, plagued by either
scalar gradient instabilities or growing tensor modes. To properly understand their origin
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it is useful to directly check the behavior of the single helicity modes of both gravitons, as
it has been done in publication 6.

4.5.1 Higuchi Ghost in Massive Gravity

The absence of ghosts was one, and perhaps the most important, requirement that a
theory of a massive bimetric gravity has to fulfill. All ghost-free proofs have concentrated
on finding only an additional Hamiltonian constraint, though, which ensures that no BD
ghost will appear. This does, however, not automatically imply that all graviton degrees
of freedom are well behaved. Before discussing the bimetric case, let us focus on a linear
massive gravity around a de Sitter background first (for a generalization to an FLRW
background, see ref. [78]), i.e.,

gµν = g(dS)
µν +M−1

P hµν. (4.40)

After a decomposition into the two tensor (h̄µν) and one scalar (π) degrees of freedom by
replacing hµν = h̄µν + π g(dS)

µν , the Lagrangian for the helicity-0 can be then read off from
the FP action and becomes [79]

Lhel-0
dS = −

3
4

[
1 − 2

(H
m

)2] (
(∂π)2 −m2 h̄ π − 2m2π2

)
. (4.41)

Because the scalar mode of the graviton is coupled to the trace T of the EM tensor (which
is, in fact, the origin of the vDVZ discontinuity [31]), the matter Lagrangian reads

Lhel-0
matter =

m2

MP
√
m2 − 2H2

φT, (4.42)

where φ is the normalized helicity-0 mode,

φ =

√
1 − 2H2

m2 π. (4.43)

This expression is quite useful as the following cases can easily be distinguished:

• m2 = 0: This corresponds to a vanishing helicity-0 mode, as expected for massless
gravitons. When taking the limit m → 0, the Lagrangian (4.42) indicates a strong
coupling and the validity of the linear FP theory breaks down.

• m2 < 0: Even though we cannot directly read off the properties of this theory from
the Lagrangian, one finds that this yields an unhealthy helicity-1 mode [79].

• 0 < m2 < 2H2: A forbidden mass range due to the change of the overall sign. In
this case, the helicity-0 of the graviton becomes a ghost, which is named Higuchi

ghost, after Higuchi who has observed this condition first [80, 81].

• m2 > 2H2: This bound preserves the overall sign and avoids the Higuchi ghost.
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• m2 = 2H2: Such a tuning of the graviton mass implies a precise cancellation of the
first bracket in the Lagrangian (4.41) indicating a vanishing helicity-0 mode. In fact,
in this case we observe an additional gauge symmetry [82]

hµν → hµν +
(
∇µ∇ν + H2 g(dS)

µν

)
ξ (x) (4.44)

where ξ (x) plays the role of an arbitrary gauge parameter. A theory that possesses
this symmetry is called partially massless (PM).

4.5.2 Higuchi Ghost in Bimetric Gravity

In a bimetric theory, the condition to ensure a healthy helicity-0 mode was derived
in a minisuperspace approximation around an FLRW background by Fasiello and Tolley
who found 4 [83]

3
2

(
�1 + 2�2r + �3r

2
) (

1 + r2
)
≥ �1 + 3�2r + 3�3r

2 + �4r
3 = 3r

(
H

a

)2
. (4.45)

Remarkably, this condition is similar to [28]

r′ ≥ 0, (4.46)

and immediately shows that all models on the infinite branch suffer from the Higuchi
ghost. Therefore, the absence of gradient instabilities in these models does not automat-
ically imply a healthy theory. The ghost will cause a fast growth of scalar perturbations
and, even worse, a quantum instability will arise.

4.5.3 Tensor Ghosts

To understand the growing modes in the tensor sector for IBB, the authors in ref.
[72] pointed out that the relative factor between the kinetic tensor modes for gµν and
fµν is the lapse Nf . Because of eq. (4.17) and the early time limit r → ∞ and, thus,
r′ ' −3/2(1+wtot)r, the lapse is negative leading to a sign difference in both kinetic terms
[28]: The helicity-2 modes of the second metric are ghosts, too.

All infinite branch models are therefore plagued by in total three ghost degrees of
freedom which, without any modifications in the UV, immediately rules the models out.
Additionally, all models on the exotic branch suffer from either gradient instabilities or
ghosts, too [28]; likewise all finite branch solutions that seem to be nonviable at early
times due to (only) unstable scalar perturbations.

4Note that the authors have used a slightly different convention in the mass term that was compensated
by a rescaling of the �-parameters.
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4.6 Evading Gradient Instabilities

Let us now focus on the finite branch solutions, the only one being free of ghosts.
Gradient instabilities which affect the scalar sector can only hardly be compatible with
the observed structure in our Universe that is, in fact, very well described by linear
fluctuations. Since the enhanced growth only occurs at early times, one can hope to find
a suitable parameter region to push this instability to the far past in order to minimize
observable consequences.

4.6.1 Pushing the Instability Away

In Publication 2, we have noted that the possibility of adding a CC to the MBM can
stop the instability to evolve at r = �1/2�0, which can, if �1 � �0, happen at arbitrarily
early times [69]. The growth could stop very early and might not be observable today.
One can even go further and push the instability beyond the strong coupling scale of the
theory. At these energy scales, the theory is not trustable anymore and new operators
become important.

A non-vanishing CC can indeed solve the instability problem in the scalar sector, but
at the same time it introduces new, though less dangerous, problems. The limit �1 → 0
implies the limit of a vanishing graviton mass, m → 0, which is associated with the vDVZ
discontinuity and, thus, non-linear effects become important. Furthermore, a non-zero
CC lets the theory again run into the CC problem that was originally intended to get
solved.

4.6.2 Planck Mass Scaling

Besides taking the limit �1 → 0, there is the possibility to assume extremely large
values for the �-parameters. This approach might look highly unnatural but can be
translated to a much more meaningful limit in which the Planck mass Mf for the second
metric goes to zero. The redundancy in the parameter space of the Lagrangian (4.1) has
been used to fix Mf = Mg just for convenience but it encumbers the real massless limit.
In publication 7 we have revealed this limit again and reintroduced both Planck masses
and the graviton mass scale. To explicitly see the massive and massless limits, one can
write the field equations as

Gµν(g) +m2 V gµν =
1
M2
g
Tµν, (4.47)

α2Gµν(f ) +m2 V fµν = 0, (4.48)

where α ≡ Mf /Mg and V g/f denotes the variation of the potential with respect to g and f ,
respectively. For α → 0, the f-equation (4.48) becomes a constraint for V fµν that can be
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used together with the identity [84]

√
−g gµα V gαν +

√
−f f µα V fαν =

√
−g

4∑
n=1

�n en
( √
g−1f

)
δµν , (4.49)

to solve for fµν.5 Plugging this solution into eq. (4.47) yields an ordinary Einstein equation
with an effective CC. Let us make this explicit for the �1�2 model with �0 = �3 = �4 = 0.
In the limit α → 0, the combination of both EoM leads to

r → −
1
3
�1
�2

(4.50)

and the g-equation (4.47) becomes

3H2 =
ρ

M2
g
−

2
3
�2

1
�2
m2. (4.51)

Because the former parameter choice Mf = 1 has implicitly rescaled the coupling param-
eters by �n → Ω−n�n when Mf → ΩMf for Ω ∈ R+, the GR limit α → 0 corresponds to the
limit where all parameters �n go to infinity in a parametrically different way.

Since ΛCDM is free of any type of instability at linear level, the limit of a small Planck
scale Mf to approach GR has reanimated the hope to solve the gradient instabilities in
bigravity. And indeed, the eigenfrequencies (4.27) can be solved for the transition time t*
at which all scalar modes stabilize and yields for the �1�2 model [85]

H2
* = ±

�2m2
√

3α2
+ O

(
α′

)
, (4.52)

where H* ≡ H(t*). This directly shows that the transition time can be pushed to arbitrarily
early times by suitably lowering α.

It seems that the only way to evade unstable scalar modes is the use of the limit α → 0.
Even though the complete non-linear bimetric theory will almost exactly look like GR, it
keeps the advantage of solving the DE problem with a technically-natural effective CC.

The entire theory of two interacting spin-2 fields that generalizes massive gravity
and GR, that contains so many free parameters, that allows the choice between various
solutions on different branches – all this freedom seems to collapse to just one class of
models: Those that look exactly like ΛCDM.

5During this procedure, one has to assume that at least two of �i-parameters do not vanish, where i , 0.
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Abstract. We find the general conditions for viable cosmological solution at the background
level in bigravity models. Furthermore, we constrain the parameters by comparing to the
Union 2.1 supernovae catalog and identify, in some cases analytically, the best fit parameter
or the degeneracy curve among pairs of parameters. We point out that a bimetric model
with a single free parameter predicts a simple relation between the equation of state and
the density parameter, fits well the supernovae data and is a valid and testable alternative
to ΛCDM. Additionally, we identify the conditions for a phantom behavior and show that
viable bimetric cosmologies cannot cross the phantom divide.
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1 Introduction

The discovery of cosmic acceleration has sparked a renewed interest in theories that go beyond
standard gravity. Beside the possibility of explaining dark energy, the main motivation is
to find new observationally testable features of gravity that allow one to test it beyond the
narrow limits of the solar system.

It is possible to identify three main classes of models of modified gravity: based on
additional scalar fields, vectors or tensors, respectively. The first one is perhaps the most
studied one, owing to the similarity with inflation and to its simpli city. Even restricting
oneself to single scalar fields with second order equation of motion, the class of possible
Lagrangians, represented by the so-called Horndeski Lagrangian [8, 16], is however huge. In
this paper we concern us with the third class, namely models that modify Einstein’s gravity
by introducing a massive term in the equations of motion.

The history of massive gravity is an old one, dating back to 1939, when the linear model
of Fierz and Pauli was published. We refer to the review [15] for a reconstruction of the steps
leading to the modern approach. The key point of these new forms of massive gravity is the
introduction of a second tensor field, beside the metric. Such a theory of massive gravity
was studied in [7] and was later shown to be free of ghosts [11]. Furthermore, the interaction
of the two tensor fields creates a mixture of massless and massive gravitons that apparently
avoid the appearance of ghosts [10].

In ref. [10, 12] the authors proposed to render the second tensor field dynamical, just
as the standard metric, although only the latter is coupled to matter (for a generalization,
see [1]). This approach, denoted bimetric gravity, keeps the theory ghosts-free and has the
advantage of allowing cosmologically viable solutions. The cosmology of bimetric gravity
has been studied in several papers, e.g. in refs. [2, 4–6, 19, 20]. The main conclusion is
that bimetric gravity allows for a cosmological evolution that can approximate the ΛCDM
universe and can therefore be a candidate for dark energy. For a criticism of these theories
see e.g. ref. [9], whose conclusions are however apparently contradicted by the results in [14].

Bimetric gravity has been compared to background data, in particular supernovae Ia,
in [2, 20], where confidence regions have been obtained for various cases. We will recover
indeed several results already presented in [2]. We feel however that several interesting
questions concerning the possibility of obtaining a viable cosmological evolution in bimetric

– 1 –



J
C
A
P
0
3
(
2
0
1
4
)
0
2
9

models have not been fully addressed yet. Some of the questions that this paper addresses
are: 1) for which values of the parameters and of the initial conditions does bimetric gravity
allow for viable cosmologies? 2) For which values of the parameter there appear an effective
phantom (i.e. an equation of state less than -1) behavior? 3) Can one find simple expressions
for the parameters for which the supernovae data can be fitted?

We will find that in several cases these questions can be answered in a simple analytical
way, providing a number of alternatives to ΛCDM. Interestingly, these alternative models
do not reduce to ΛCDM for some values of the parameters (unless of course a cosmological
constant is added as an additional parameter) and can therefore be ruled out by precise
cosmological observations (if they are not yet ruled out!). In particular, we point out that a
minimal bimetric model with a single free parameter predicts a simple relation between the
equation of state and the density parameter, fits well the supernovae data and is a valid and
testable alternative to ΛCDM.

The results of this paper provide a preliminary choice of well-behaved cosmological
evolutions that can be further analyzed at the perturbation level. This task will be carried
out in a companion paper.

2 Background equations

We start with the action of the form [10]

S = −
M2
g

2

∫
d4x

√
−det g R(g)−

M2
f

2

∫
d4x

√
−det f R(f)

+m2M2
g

∫
d4x

√
−det g

4∑

n=0

βnen

(√
gαβfβγ

)
+

∫
d4x

√
−det g Lm(g,Φ) (2.1)

where en are suitable polynomials and βn arbitrary constants. Here gµν is the standard
metric coupled to matter fields in the Lm Lagrangian, while fµν is a new dynamical tensor
field. In the following we express masses in units of M2

g and the mass parameters m2 will be
absorbed into the parameters βn. The action then becomes

S = −1

2

∫
d4x

√
−det g R(g)−

M2
f

2

∫
d4x

√
−det f R(f)

+

∫
d4x

√
−det g

4∑

n=0

βnen

(√
gαβfβγ

)
+

∫
d4x

√
−det g Lm(g,Φ) . (2.2)

Varying the action with respect to gµν , one obtains the following equations of motion,

Rµν−
1

2
gµνR+

1

2

3∑

n=0

(−1)nβn

[
gµλY

λ
(n)ν

(√
gαβfβγ

)
+ gνλY

λ
(n)µ

(√
gαβfβγ

)]
= Tµν (2.3)

where the expressions Y λ
(n)ν

(√
gαβfβγ

)
are defined as, putting X =

(√
g−1f

)
,

Y(0)(X) = I, (2.4)

Y(1)(X) = X − I[X], (2.5)

Y(2)(X) = X2 −X[X] +
1

2
I
(
[X]2 − [X2]

)
(2.6)

Y(3)(X) = X3 −X2[X] +
1

2
X
(
[X]2 − [X2]

)
− 1

6
I
(
[X]3 − 3[X][X2] + 2[X3]

)
(2.7)

where I is the identity matrix and [. . .] is the trace operator.
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Varying the action with respect to fµν we get

R̄µν −
1

2
fµνR̄+

1

2M2
f

3∑

n=0

(−1)nβ4−n

[
fµλY

λ
(n)ν

(√
fαβgβγ

)
+ fνλY

λ
(n)µ

(√
fαβgβγ

)]
= 0

(2.8)
where the overbar indicates fµν curvatures. Under the rescaling f →M−2

f f , the Ricci scalar

transforms as R̄(f)→M2
f R̄(f) which results in

√
−det fR̄(f)→M−2

f

√
−det fR̄(f) . (2.9)

Next to the Einstein-Hilbert term for fµν , there is another term in the action that depends
on fµν which transforms as

4∑

n=0

βnen

(√
g−1f

)
→

4∑

n=0

βnen

(
M−1
f

√
g−1f

)
. (2.10)

Since the elementary symmetric polynomials en(X) are of order Xn, the rescaling of fµν by a
constant factor M−2

f translates into a redefinition of the couplings βn →Mn
f βn which allows

us to assume Mf = 1 in the following.
We assume now a cosmological spatially flat FRW metric

ds2 = a2(t)
(
−dt2 + dxidx

i
)

(2.11)

where t represents the conformal time and a dot will represent the derivative with respect to
it. The second metric is chosen as

fµν =




−ḃ(t)2/H2(t) 0 0 0
b(t)2

0 0 b(t)2 0
0 0 0 b(t)2


 (2.12)

where H ≡ ȧ/a is the conformal Hubble function. This form of the metric fµν ensures that
the equations satisfy the Bianchi identities (see e.g. [12]).

Inserting gµν in eq. (2.3) we get

3H2 = a2 (ρm + ρmg) (2.13)

where the massive gravity energy density is

ρmg = B0 ≡ β0 + 3β1r + 3β2r
2 + β3r

3 (2.14)

with

r =
b

a
(2.15)

The matter energy density follows the usual conservation law

ρ̇m + 3Hρm = 0 . (2.16)

Notice that although we do not consider explicitly a radiation epoch (since we confine our-
selves to observations at low redshifts), a radiation component could be easily added to the
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pressureless matter and would not change qualitatively any of the conclusions below. We can
also define

Ωmg =
ρmg

ρm + ρmg
= 1− Ωm (2.17)

where Ωm = ρm/ (ρm + ρmg).
Similarly, the background equation for the f metric is

H2 =
a2

3r
B1 (2.18)

if B1 6= 0 (and ḃ = 0 if B1 = 0) where

B1 = β1 + 3β2r + 3β3r
2 + β4r

3 . (2.19)

Combining (2.13) and (2.18), differentiating and inserting (2.16) we obtain the constraint

ḃ = −
(
4β0 + 9β1r + 6β2r + β3r

2
)
ȧ

3B2
(2.20)

where
B2 = β1 + 2β2r + β3r

2 . (2.21)

The background equations can be conveniently written as a first order system for r and H,
where the prime denotes the derivative with respect to N = log a:

2H′H+H2 = a2
(
B0 +B2r

′) , (2.22)

r′ =
3rB1Ωm

β1 − 3β3r2 − 2β4r3 + 3B2r2
, (2.23)

Ωm = 1− B0

B1
r (2.24)

(the r′ equation has been first obtained in ref. [2]). We can define the effective equation
of state

weff ≡ Ωmgwmg = −1

3

(
1 + 2

H′
H

)
= −r (B0 +B2r

′)
B1

(2.25)

= −1 + Ωm −
B2rr

′

B1
. (2.26)

Eq. (2.23) is particularly useful for our discussion below. Notice that it can be written also as

r′ = − 3ρm
ρm,r

(2.27)

where ρm,r denotes differentiation with respect to r of the function

ρm(r) =
B1

r
−B0 (2.28)

obtained by combining eqs. (2.13) and (2.18).
It is convenient from now on to express the β parameters in units of H2

0 and H in
units of H0.
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3 Conditions for cosmological viability

Several possible branches of the solution of eq. (2.23) are possible, depending on the initial
condition for r. We distinguish in the following between finite branches, that are confined
within two successive roots or poles of r′, and infinite branches, which can extend to infinite
values of r. We define now a viable cosmological solution one in which the following conditions
are satisfied: a) ρm > 0 and ρmg not identically zero, b) a monotonic expansion, i.e. ρm +
ρmg > 0, c) the evolution in the asymptotic past is dominated by ρm, i.e. ρm(N → −∞)→∞,
Ωm(N → −∞) = 1 (and therefore weff(N → −∞) = 0), d) no singularities in r′ at finite
times and e) r ≥ 0 at all times. Violations of these conditions do not necessarily imply
contradiction with observable data if they occur outside the observable range and could in
principle be lifted or relaxed. However, when they are satisfied the cosmological evolution
is much safer, simpler and requires no special tuning. Most of what follows is devoted to
determining the conditions under which cosmological viable solutions take place.

Combining these conditions and analyzing eq. (2.23) yields the following properties of
viable models:

1. All viable models except βi = 0 ∀ i > 0, i.e. the ΛCDM case, must fulfill r′ → −∞ as
r →∞. To see this, we use eq. (2.23) to find that models in which we can not observe
this limit need to satisfy β1 = β3 = 0 and β2 = 1

3β4. With this choice, the combination
of eq. (2.22) and the background equation (2.18) together with its derivative yields

√
β2 (1 + r2) (β0 − 3β2) = 0 (3.1)

which provides the constraint β0 = 3β2. But this corresponds to a vanishing matter
density ρm which is not viable. Note that the choice of parameters β1 = β3 = 0 and
β0 = 3β2 = β4 matches with those of the partially massless bimetric theory which was
studied in [13]. However, in those theories the authors assumed the reference metric
to be proportional to gµν which is explicitly avoided in this work due our choice of the
Bianchi constraint.

2. If a viable range in r is infinite then, as just shown, r decreases with time since the
limit r′ → −∞ as r → ∞ must hold. Then r → ∞ corresponds to the infinite
past and therefore, if this branch is viable, then it needs to satisfy limr→∞Ωm = 1.
With eq. (2.24) one finds that a viable solution with an infinite range in r requires
β2 = β3 = 0 6= β4. Moreover, β4 is enforced to be positive in order to produce a
positive expansion rate at early times.

3. A non-vanishing massive gravity part, i.e. B0 6= 0, always implies that if there is a root
r = 0, then for this root, and only for this one, Ωm = 1. For all other roots we need
Ωm = 0 in order to fulfill eq. (2.23).

4. Let r ∈ (r1, r2) be a branch with r′|r1 = r′|r2 = 0 for r1, r2 strictly positive. As seen
before, a root at r > 0 corresponds to ρm = 0. For a non-constant evolution of the
matter density, the mean value theorem always provides a r̄ ∈ (r1, r2) with ρm,r = 0
causing a singularity in r′. Since eq. (2.28) shows that the matter density can not
become divergent at a finite and non-zero r, a viable model always evolves from either
r = 0 or r =∞ to a root of ρ.
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5. We will find that r = 0 always corresponds to the asymptotic past. If it would instead
describe a final state, then a vanishing ρm asN →∞ (which has to hold since the matter
density follows the usual conservation rule) needs β1 = 0 and β0 = 3β2. Additionally,
this requires β3 > 0, otherwise we have either a negative β3 which means that the
density is not positive or β3 = 0 in which the branch would be infinite with ρmg = 0,
i.e. Ωm = 1, at all times. However, we then obtain a finite branch between two roots
of ρ(r) at r = 0 and rc > 0 but we already concluded in point 4 that r = 0 must then
correspond to the asymptotic past.

6. The previous conclusions imply for all viable cases an evolution from Ωm = 1 to the
final state Ωm = 0, just like ΛCDM.

7. We can use eq. (2.23) to find that there is always a root at r = 0 for non-vanishing β1.
All models without a root at r = 0 need to satisfy

lim
r→0

Ωm

∣∣
β1=0

= 1− lim
r→0

β0 + 3β2r
2 + β3r

3

3 (β2 + β3r) + β4r2
= 1 (3.2)

In this case, viability enforces β0 = 0. Models with a pole at r = 0 need to satisfy
β1 = β3 = 0 with β2 6= 1

3β0 and must fulfill

lim
r→0

weff

∣∣
β0=β1=β3=0

= − 3β2

3β2 − β4
= 0 . (3.3)

This contradicts the condition β2 6= 0. If r = 0 is neither a root nor a pole, then from
eq. (2.23) we see that this corresponds to β3 6= 0 and β0 6= 3β2 (note that this implies
β2 6= 0) instead. However, the resulting matter density

ρm

∣∣∣
β0=β1=0

= 3β2 + 3β3r + (β4 − 3β2) r2 − β3r
3 (3.4)

violates the requirement of a divergent density for r → 0. Therefore, every viable
branch that evolves from r = 0 must satisfy r′|r=0 = 0.

8. If r evolves from r = 0, then a positive H2 at early times implies βk > 0 where βk
denotes the non-vanishing β-parameter with the smallest index k 6= 0.

9. A model which produces two viable branches has to satisfy β1 ≥ 0 and β4 > 0, in order
to produce positive Hubble functions in both branches.

10. From eq. (2.26) we find that the equation of state always evolves from weff = 0, as
required from the conditions of viability, to weff = −1 on a viable solution. Notice that
weff = −1 even for a vanishing explicit cosmological constant β0 = 0.

Depending on the number of non-negative roots, we therefore find that several cases
can not be viable:

11. The number of non-negative roots can be zero only if β1 = β2 = β3 = 0, which leads to

r′ =
3
(
β0 − β4r

2
)

2β4r
. (3.5)

As already remarked, a viable model must therefore evolve from r =∞ to r = 0 since
r′ < 0 for r →∞ and this requires a positive and non-zero β4. However, this produces
a singular r′ at r = 0 (unless β0 = 0 but we are now only interested in models with no
positive roots) which was already shown to be non-viable.
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12. A model that has at least one positive root and does not have a root at r = 0 may
only be able to produce a viable infinite branch. A finite but non-zero r′ at r = 0
can not be achieved with a vanishing β3 but this is enforced by the criteria of viable
infinite branches (see point 2). Thus, all models with only non-zero roots must fulfill
β1 = β2 = β3 = 0 < β4, β0. With e.g. Descartes’ rule of sign we see that we can
not expect more than one positive root. Whenever there is a model with at least two
positive roots producing a viable branch, there must be one root at r = 0.

13. If there is only one root r = 0, then this root is reached in the asymptotic future, i.e.
for N =∞, since the range must be infinite. This contradicts the previous conclusion
that r = 0 has to correspond to the asymptotic past. Therefore, no viable cosmologies
exist if there is only one root at r = 0.

14. If there are n ≥ 2 positive roots at rc1 , . . . , rcn , where rci < rcj for i < j, then only the
two branches r ∈ (0, rc1) and r ∈ (rcn ,∞) may be viable.

15. Models with two viable branches require β2 = β3 = 0 and β1, β4 > 0. Descartes’ rule
of sign then shows that those models must have exactly two positive roots.

16. With, again, Descartes’ rule of sign we find that there is no model with β2 = β3 = 0
that produce three positive roots. For this reason, we can not expect any viable infinite
branch in models with three positive roots.

Finally, we can employ these results to show that several simple models do not produce viable
solutions:

• Consider models in which only one β-parameter does not vanish. Let’s call them βi
models. Then only β0 or β1 models may produce viable solutions. This first one is
not surprising since it is equivalent to a ΛCDM universe. For all the other βi models,
we find

r′
∣∣∣
βi=0,i 6=2

= −3
(
r2 − 1

)

2r
, r′

∣∣∣
βi=0,i 6=3

= −r
(
r2 − 3

)

r2 − 1
, r′

∣∣∣
βi=0,i 6=4

= −3

2
r .

(3.6)
The infinite branch in β2 or β3 models can not be viable. In addition, their finite
branches suffer from a pole in r′. Therefore, we can not expect any viable solutions.
These arguments do not hold for the β4 model. However, we already concluded (see
point 13) that a model with only one root at r = 0 is not viable.

• In a more general case, in which two free β-parameters are allowed to vary (let’s denote
them βiβj models), we will find that only the combination involving β0 or β1 are
generally able to produce viable solutions. To see that the models β2β3, β2β4 and β3β4

can not be viable, we first assume that both couplings in all three combinations do not
vanish, otherwise we would obtain non-viable minimal models. This also rejects the
possibility of viable models with an infinite branch in these cases. In the β2β3 model,
the matter density evolves like

ρm = 3
(
β2 + β3r − β2r

2
)
− β3r

3 , (3.7)

and is therefore finite at r = 0, which contradicts condition c). In fact this solution
can be continued to negative r, which implies that |b| reaches zero and increases again.
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This is therefore a bouncing cosmology which is interesting on its own but violates our
viability condition and we leave its study to future work. For the β2β4 model we have
already shown that only a finite branch (0, rc) could be viable. Simplifying eq. (2.23)
yields

r′
∣∣∣
βi=0,i 6=2,4

= −3

2
r +

3β2

2r (3β2 − β4)
. (3.8)

This exhibits a pole at r = 0 which indicates non-viability. To analyze the β3β4 models,
we again use eq. (2.23) which directly shows that we need to have β3 6= 0 in order to
get a positive root. In this case, the only positive root is given by

rc =
β4 +

√
12 + β2

3 + β2
4

2β3
. (3.9)

In addition, we will find that r′ is singular at

rs =
β4 +

√
9β2

3 + β2
4

3β3
. (3.10)

Since β3 6= 0, only the branch (0,rc) could be viable and therefore either rs < 0 or
rs > rc must hold. Notice that rs = 0 is not viable. Both relations require β3 < 0.
However, a positive Hubble function enforces β3 > 0 which shows that the branch
(0, rc) always contains a singularity in r′. We therefore conclude that models with
β0 = β1 = β2 = 0 are not able to produce viable solutions.

• The subset of cosmological solutions with an infinite range in r and without an explicit
cosmological constant is described by the relation β0 = β2 = β3 = 0 < β4 together with
β1 6= 0. For these models, we obtain

Ωm,r =
3β1r

(
−2β1 + β4r

3
)

(β1 + β4r3)2 (3.11)

from which we see that Ωm increases with time when the following condition holds:

Ωm,r < 0 ⇐⇒
(
β1 < 0 ∧ β1 + β4r

3 6= 0
)
∨
(
β1 > 0 ∧ r <

(
2β1

β4

) 1
3

)
. (3.12)

Viable models are therefore only possible if β1 > 0. In addition, the solution rc of the
equation

Ωm = 1− 3β1r
2
c

β1 + β4r3
c

= 0 (3.13)

is negative (or zero but this, as already discussed, does not correspond to a viable
solution) if β4 > 2β1. This shows that only models with β0 = 0 satisfying β0 = β2 =
β3 = 0 < 1

2β4 ≤ β1 are able to produce viable branches (rc,∞).

• A simple model with all identical couplings, i.e. β0 = βi = β̂, needs β̂ > 0 in order to
produce a positive expansion rate. The matter density

ρm = −β̂ (r − 1)(r + 1)3

r
(3.14)
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then shows that only the finite branch (0,rc) with rc = 1 could be viable. Additionally,
the Hubble function at present time

1

3
β̂ (1 + r0)3 r−1

0 = 1 (3.15)

is only solved by a purely real and positive present value r0 if β̂ ≤ 4
9 .

In practice, to see if a viable solution exists, one first has to find all positive solutions r0 that
fulfill both Friedmann equations (2.13) and (2.18) at present time. One then needs to check
whether the branches r ∈ (0, rc1) and r ∈ (rcn ,∞), where rc1 and rcn denote the smallest
and largest strictly positive root of ρm(r), respectively, contain r0 and, finally, ensure that
those branches do not contradict the criteria of viability. In general, one can show that a
finite branch between two roots (0, rc) with 0 < r0 < rc in which r′ is positive and does not
have any pole is always viable if the matter density is positive in this range. This provides a
very simple recipe to find viable cosmologies without solving the evolution equations.

It is also interesting to provide the general conditions for a phantom (wmg < −1) solution
to appear. From weff we see that

wmg = −1− B2rr
′

ΩmgB1
. (3.16)

Combining with eq. (2.24) we obtain

wmg = −1− B2

B0
r′ . (3.17)

Near the de Sitter final state we can assume Ωm → 0 and therefore B0 = B1/r from eq. (2.24).
This implies

wmg ≈ −1− B2

B1
rr′ . (3.18)

In a viable branch with a finite range in r, both r and r′ are positive. If the range is infinite,
then r′ is negative. In addition, B1 is always positive due to eq. (2.18). We conclude that
a necessary and sufficient condition for a phantom equation of state is B2 > 0 for a finite
branch (0, rc1). If the branch is infinite, then a phantom requires B2 < 0 which results in
β1 < 0 since viable models in infinite branches need to fulfill β2 = β3 = 0. From eq. (2.20)
we notice that B2 cannot be zero in a viable region of r and therefore wmg cannot cross the
−1 line. This shows that every viable bigravity cosmology is either phantom or non-phantom
throughout its evolution. Conversely, finding a phantom crossing would rule out the entire
class of viable bimetric cosmologies.

We chose two representative models to sketch a possible viable evolution of a bimetric
gravity in figures 1 and 2. The model A, described by βi =

(
1, 1

5 , 0, 0, 1
)
, produces two

viable branches. Although Ωm and weff evolve similarly in both branches, we find a phantom
equation of state only in the finite one. An one-parameter model β0 = βi = β̂, such as model
B with β̂ = 4

9 , is only able to produce a viable finite branch. Those models always produce

a phantom since a positive expansion rate requires β̂ > 0.

4 Comparing to supernovae Ia Hubble diagram

To compare the background evolution of bimetric gravity models with observed SNe Ia, we
use the SCP Union 2.1 Compilation [18] containing 580 SNe Ia. For each observed SN Ia we
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Figure 1. The evolution of r′(r) corresponding to the models A and B with βi =
(
1, 1

5 , 0, 0, 1
)

(left)
and βi = 4

9 (right), respectively, visualizing all possible branches. The first model contains two finite
(∼ (0, 0.2) and ∼ (0.2, 1.30)) and one infinite branch (∼ (1.3,∞)). However, only the first and third
branch may be viable which, indeed, turns out to be the case. On the contrary, the one-parameter
model B only produces one viable branch (0, 1) with r0 = 1

2 , though r′ seems to evolve viable even in
the infinite branch.

Figure 2. A comparison of r (top left), Ωm (top right), weff (bottom left) and wmg (bottom right)
of all viable branches in the models A (blue and green) and B (yellow) whose evolution of r′ were
already discussed in figure 1. Additionally, the latter three plots contain the ΛCDM expectation for
Ωm = 0.3.

can use the measured maximum magnitude in the B-band mmax
B together with the stretch

correction s and the color correction c to compute the likelihood for a bimetric model θ with

L(θ) ∝
∫

exp

(
−

N∑

i=1

(µi − µtheo)2

2σ2
i

)
dM dα dβ , (4.1)

where α and β are nuisance parameters which weight the stretch- and color correction and
M denotes the absolute magnitude,

µi = mmax
Bi
−M + α (si + 1)− βci . (4.2)
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The marginalization over M can be performed analytically, whereas we simplify the compu-
tation by using the values for α and β that minimize χ2

red instead of computing the marginal-
ization numerically. In addition, we add an intrinsic dispersion which we assume to be
σint = 0.1345 mag in order to obtain a χ2

red = 1 for the best fit in a ΛCDM cosmology.
We decided not to use other cosmological datasets like baryon acoustic oscillations

because they are at the moment far weaker than SN Ia and CMB peak positions because
their analysis depends on various assumptions which are not warranted in a non-standard
model as the one we explore here. Nevertheless, our results are in agreement with ref. [2],
where these additional datasets have been employed.

5 Minimal models: 1-parameter models

It is very instructive to study in detail some simple subset among all the possible viable
cosmologies. During our analysis we will mostly assume a vanishing explicit cosmological
constant, i.e. β0 = 0 (the only model with a non-vanishing cosmological constant that is
studied in this work will be the 1-parameter model β0 = βi = β̂). This subset of models is
a very interesting one since those models may fit observational data without the need of a
cosmological constant. In this section we assume moreover that all of the other βi vanish,
except one, i.e. we restrict ourselves to βi models. In this case, as already shown, only one
possibility, the β1 model, turns out to be viable. In terms of simplicity, this is the minimal
bimetric model, so it can help us gaining intuition on the behavior of this class of models. This
model was already studied and compared to the SN Ia data in [2]; the same paper excludes
the other β models on the ground of their poor fit to data. The β1 model is interesting also
because r can be easily solved analytically. Its evolution follows from eq. (2.23),

r′ =
3r
(
1− 3r2

)

1 + 3r2
. (5.1)

Note that the evolution of r does not depend on β1. In terms of the scale factor, the solution
reads

r(a) =
1

6
a−3

(
−A±

√
12a6 +A2

)
. (5.2)

To determine the constant A, we use the background equation (2.13) at current time which
provides r0 = 1−Ωm0

β1
and therefore

A =
3(Ωm0 − 1)2 − β2

1

β1 (Ωm0 − 1)
. (5.3)

Depending on β1 and Ωm0, both a negative and positive A is possible. To satisfy r(a→ 0) = 0,
we need to choose the positive sign in eq. (5.2) if A is positive, or the negative sign in case
of a negative A. The comparison with the SNIa Hubble diagram shows that A has to be
positive (see below).

With this result, the equation of state and Ωm are fully described through

Ωm(a) = −1

6
Aa−6

(
A∓

√
12a6 +A2

)
, (5.4)

weff(a) = ± A√
12a6 +A2

− 1 , (5.5)

wmg(a) = ∓ A√
12a6 +A2

− 1 . (5.6)

– 11 –



J
C
A
P
0
3
(
2
0
1
4
)
0
2
9

Thus, in the β1 viable minimal model, the equation of state always evolves from −2 to −1.
These equations imply a simple and testable relation between wmg and Ωm valid at all times
during matter domination:

wmg =
2

Ωm − 2
. (5.7)

In general, denoting with a subscript 0 the present time, the following conditions must
be satisfied by any model:

Ωm0 = 1− B0(r0)

B1(r0)
r0 , (5.8)

1 =
B1(r0)

3r0
(5.9)

(the last one is obtained from eq. (2.18) after expressing the βs in units of H2
0 ). In particular,

for the β1 minimal model we obtain then a direct relation to the present value of the matter
fractional density, β1 =

√
3(1− Ωm0) which yields

A =

√
3Ωm0√

1− Ωm0
. (5.10)

We fitted the β1 model to the SN Union 2.1 catalog (see figure 3) and obtained A ≈
0.8 for the best fit. The most likely values for β1 and Ωm0 are summarized in table 1.
We list also the present value of the equation of state expressed using the simple CPL
parametrization [3, 17]

w(a) = w0 + wa(1− a) (5.11)

in order to provide a quick comparison to present and future cosmological data.
The β1 model is then a valid alternative to ΛCDM in terms of simplicity, and although

it does not reduce to ΛCDM in any limit, it gives a good fit to the background data.
A second type of minimal models is described by identical couplings β0 = βi = β̂. As

noted earlier, only those models with 0 < β̂ ≤ 4
9 produce one viable finite branch. The

evolution of r, described by

r′ =
3r
(
1− r2

)

1− 2r + 3r2
, (5.12)

has an analytical solution, though it is much more complicated than in a minimal model with
only one non-vanishing coupling. However, the matter density parameter follows the simple
relation

Ωm = 1− r (5.13)

which, just like r′, is independent of β̂. Of course, the present value r0 is a function of β̂.
Again, we can use the set of equations (5.9) to obtain a relation between β̂ and Ωm0,

β̂ =
3 (Ωm0 − 1)

(Ωm0 − 2)3 . (5.14)

We found that both types of minimal models are only able to produce viable branches
if the coupling parameters are positive and r0 is located in a finite branch. Then eq. (3.17)
directly implies that all these minimal models are described by a phantom equation of state at
any time. A comparison of both minimal models with observed SNe Ia yields the likelihoods
in figure 3 which provide the best fits listed in table 1. Their equation of state is plotted in
figure 5.

– 12 –
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Figure 3. Likelihood for the coupling parameter in the minimal β1 (left) and β̂ model (right). The

maxima of the likelihoods were rescaled to unity. Note that the β̂ model produces non-viable solutions
for β̂ > 4

9 .

β(Ωm0) χ2
min β1 or β̂ Ωm0 w0 wa

β1

√
3(1− Ωm0) 578.3 1.38+0.03

−0.03 0.37+0.02
−0.02 −1.22+0.02

−0.02 −0.64+0.05
−0.04

β̂ 3(Ωm0−1)
(Ωm0−2)3

606.3 0.44+0.00
−0.01 0.50+0.01

−0.00 −2.00+0.00
−0.01 −1.97+0.07

−0.00

Table 1. Best fit values for the two minimal models. The column β(Ωm0) lists the relation between

the value of the coupling parameter β1 and β̂, respectively, and the present matter density parameter.
The parameters w0 and wa describe the CPL parametrization at present time.

6 Two-parameter models

We move now to models in which all βi vanish except two, taken in turn to be all possible
combinations (we keep β0 = 0). As already shown, we need to exclude all cases in which
β1 = 0 since we do not expect any viable models.

To compute the likelihood for Ωm,0, we divide the range in Ωm,0 in bins Bk of constant
width and marginalize the likelihood over both β-parameters with the restriction Ωm,0 ∈ Bk.
Our results are summarized in figure 4 where the left plots show the 68%, 95% and 99.7%
confidence regions in the βi−βj plane, the corresponding likelihoods for Ωm,0 are illustrated
in the right column. In all cases that are shown in figure 4, we found bimetric gravity models
which are consistent with observed SNe Ia. We always observe a strong degeneracy between
the two free parameters, as already remarked in ref. [2].

As in the minimal cases, the system (5.9) gives a relation between pairs of β and Ωm0:

1. For β1β2:

β2 =
β2

1 +
√
β4

1 − 9β2
1Ωm0 + 9β2

1

9 (Ωm0 − 1)
+ 1 . (6.1)

2. For β1β3:

β3 =
−32β3

1 ±
√(

8β2
1 + 27 (Ωm0 − 1)

)2 (
16β2

1 − 27 (Ωm0 − 1)
)
− 81β1 (Ωm0 − 1)

243 (Ωm0 − 1)2 ,

(6.2)

where the positive sign should be taken if β1 <
3
2

√
3
2

√
1− Ωm0 and the negative one

otherwise.
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Figure 4. Left: likelihoods from observed SNe Ia with only two β-parameter varying while all other
βi vanish. In β1β4 models we distinguish between finite (plots in third row) and infinite (last row
plots) branches. The filled regions correspond to the 68% (red), 95% (orange) and 99.7% (yellow)
confidence level. In each two-dimensional likelihood, the analytic result βj(βi,Ωm0) is illustrated by
a black solid line and corresponds to the most likely value Ωm0. Right: likelihood for Ωm,0 obtained
after a marginalization over the β parameters corresponding to the likelihoods on the left side.
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In all cases Ωm0 should be taken as the best fit value. The β1β4 model does not have a simple
analytic solution but the relation is easily solved numerically. These relation are plotted in
the same figure 4; as one can see, they fit very well the degeneracy curves.

At 1σ, the relative error ∆ on the fitted βj(βi,Ωm0), with (βi < βj), are given in
table 4, where we determined the error by fitting the 68% contour with β′j = βj(1 + ∆). For
the best fit in all analyzed combinations, we show the evolution of the equation of state wmg

in figure 5 and the distance moduli µ(z) in comparison with the measured SNe Ia of the
Union 2.1 Compilation in figure 6.

Note that the analytic fit does not always need to correspond to a viable solution since
it ignores the condition 0 < r0 < rc and rc < r0 in the finite and infinite branch, respectively.
We therefore need to exclude some parameter regions. As an example, we analyze all β1β3

models with positive β3 and obtain

r0 =
3±√9− 12β1β3

6β3
and rc = ±

√√√√−3 (β1 − β3)±
√

9
(
β2

1 + β2
3

)
− 14β1β3

2β3
. (6.3)

A necessary condition to satisfy the relation 0 < r0 < rc is

β3 <
1

243

(
81β1 − 32β3

1 +

√(
27 + 16β2

1

) (
−27 + 8β2

1

)2
)

(6.4)

which excludes most of the models with β3 > 0. Similar boundaries of the coupling parameter
corresponding to the highest order interaction exist in the β1β2 and β1β3 models, too.

Only the model β1β4 is able to produces infinite branches. The likelihoods in figure 4
for finite and infinite branches show that there is no parameter region in which the contours
of both likelihoods overlap. If there is a β1β4 model in which two viable branches co-exist,
then at least one branch is strongly disfavored by SNe Ia observations.

7 Conclusions

In this paper we studied a class of bimetric gravitational models that have been shown
to be ghost-free and to induce cosmological acceleration. We define a viable cosmology as
one in which the cosmic evolution broadly resembles the standard one, without bounces,
singularities at finite time, and with a matter (or radiation) dominated past. Adopting
spatially flat metrics we find that the system becomes effectively unidimensional and in some
cases even analytical. This allows us to find a number of simple rules for viability which
selects a subset of models and initial conditions. We show that if a branch is viable, then its
final state is always deSitter. We also find the analytical condition for the occurrence of a
phantom phase and we remark that observing a phantom crossing would rule out the entire
class of viable bimetric models.

Then we show that among the models with only a single non-zero parameter, only
one gives a viable cosmology, which well reproduces the SN data and can be taken as a
simple, distinguishable alternative to ΛCDM. The relation (5.7) provides a stringent test for
this minimal model. For models with two coupling constants and without a cosmological
constant, only three cases produce a viable cosmology. In several cases we find also an
analytic expression for the background best fit which very closely approximates our numerical
likelihood results.

These results allow to pre-select a number of cases for which a detailed study, including
perturbation growth, can be performed. This task is carried out in a companion paper.
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Model χ2
min Ωm0 ∆

ΛCDM 578.00 0.27+0.02
−0.02

β1, β2 577.99 0.28+0.04
−0.03 ∼ 0.03

β1, β3 578.02 0.30+0.02
−0.04 ∼ 0.08

β1, β4 578.04 0.34+0.03
−0.04 ∼ 0.20

β1, β4 (inf. branch r ∈ (rc,∞)) 578.60 0.16+0.02
−0.03 ∼ 0.03

Table 2. Numerical results of the best fit to SNe Ia data for different models with only two free
β-parameter. The relative error on the fit βj(βi,Ωm0) (i < j) corresponding to the most likely value
for Ωm0 is denoted by ∆.

Figure 5. Evolution of the equation of state in the best fits in the minimal β1 and β̂ models and
the two-parameter models β1β2, β1β3 and β1β4. Here, we distinguish between finite (light blue) and
infinite (dark blue) branches in β1β4 models.

Figure 6. Hubble diagram with the best fit in the minimal one-parameter models and two-parameter
models compared to all measured SNe Ia from the Union Data 2.1. As already indicated by the
numerical values of the χ2 (see tables 1 and 2), the best fit in the β1 and in all analyzed two parameter
models are close to the ΛCDM result (red).
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We discuss in detail a particularly simple example of a bimetric massive gravity model which seems to
offer an alternative to the standard cosmological model at background level. For small redshifts, its
equation of state is wðzÞ ≈ −1.22þ0.02

−0.02 − 0.64þ0.05
−0.04z=ð1þ zÞ. Just like ΛCDM, it depends on a single

parameter, has an analytical background expansion law and fits the expansion cosmological data well.
However, confirming previous results, we find that the model is unstable at early times at small scales and
speculate over possible ways to cure the instability. In the regime in which the model is stable, we find that
it fits the linear perturbation observations well and has a growth index of approximately γ ¼ 0.47.

DOI: 10.1103/PhysRevD.90.044030 PACS numbers: 04.50.Kd

I. INTRODUCTION

The history of massive gravity dates back to 1939, when
the linear model of Fierz and Pauli was published (see e.g.
Refs. [1] and [2] for a review). Massive gravity requires the
introduction of a second tensor field in addition to the
metric (or some form of nonlocality in the action; see
Ref. [3]). The interaction of the two tensor fields creates a
mixture of massless and massive gravitons that apparently
avoids the appearance of ghosts [4–7].
In the model introduced in Refs. [8,9], the second

tensor field becomes dynamical, just like the standard
metric, although only the latter is coupled to matter (for
a generalization, see Ref. [10]). This approach, denoted
bimetric gravity, keeps the theory ghost free and has the
advantage of allowing cosmologically viable solutions. The
cosmology of bimetric gravity has been studied in several
papers, e.g. in Refs. [11–17].
In this paper we select among the class of bimetric

models a particularly simple case, which we dub the
minimal bimetric model (MBM). Just like ΛCDM, this
model depends on a single parameter and has an analytical
background behavior that is at all times distinguishable
from ΛCDM. In a previous paper we have shown that the
MBM is the only one-parameter version of bimetric gravity
(beside the trivial case in which only a cosmological
constant is left) that is cosmologically well behaved at
the background level and fits the supernovae Hubble
diagram well [18] (see also Refs. [11,12]).
Unfortunately, considering the full set of equations

beyond the quasistatic limit, we find that the model is
unstable at large wave numbers k in the past and up to a
redshift of order unity. This instability has been discussed
previously by other authors for bimetric models in general
[13,19] and, if taken at face value, would rule out the
model. Nevertheless, we believe it is worth analytically
identifying the epoch in which the instability takes place
and discussing possible ways to overcome it. This could

help to find other cases, within the class of bimetric models,
that do not suffer from the same problem.
In the regime in which the model is stable we derive its

scalar cosmological perturbation equations in the subhor-
izon limit and integrate them numerically. We then compare
the results with a recent compilation of growth data [20].
We find that the MBM fits both supernovae and growth rate
data, while remaining well distinguishable from ΛCDM.
If a variant of the model is found that cures the instability
in the past, the model could be an interesting competitor
to ΛCDM.

II. BACKGROUND EQUATIONS

We start with the action of the form [8]

S ¼ −
M2

g

2

Z
d4x

ffiffiffiffiffiffi
−g

p
RðgÞ −M2

f

2

Z
d4x

ffiffiffiffiffiffi
−f

p
RðfÞ

þm2M2
g

Z
d4x

ffiffiffiffiffiffi
−g

p X4
n¼0

βnenðXÞ þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm;

ð1Þ

where Xα
γ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβfβγ

q
, en are elementary symmetric poly-

nomials, βn are arbitrary constants and Lm ¼ Lmðg;ψÞ is a
matter Lagrangian. Here gμν is the standard metric coupled
to matter fields in the Lm Lagrangian, while fμν is an
additional dynamical tensor field. In the following we
express masses in units of the Planck massMg and the mass
parameter m2 will be absorbed into the parameters βn.
Varying the action with respect to gμν, one obtains the
following equations of motion:

Gμν þ
1

2

X3
n¼0

ð−1Þnβn½gμλYλ
ðnÞνðXÞ þ gνλYλ

ðnÞμðXÞ� ¼ Tμν;

ð2Þ
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whereGμν is Einstein’s tensor, and the expressions Yλ
ðnÞνðXÞ

are defined as

Yð0Þ ¼ I; ð3Þ

Yð1Þ ¼ X − I½X�; ð4Þ

Yð2Þ ¼ X2 − X½X� þ 1

2
Ið½X�2 − ½X2�Þ; ð5Þ

Yð3Þ ¼ X3 − X2½X� þ 1

2
Xð½X�2 − ½X2�ÞÞ

−
1

6
Ið½X�3 − 3½X�½X2� þ 2½X3�Þ; ð6Þ

where I is the identity matrix and ½…� is the trace operator.
Varying the action with respect to fμν we get

Ḡμνþ
X3
n¼0

ð−1Þnβ4−n
2M2

f

½fμλYλ
ðnÞνðX−1ÞþfνλYλ

ðnÞμðX−1Þ�¼0;

ð7Þ

where the overbar indicates fμν curvatures. Notice that β0
acts as a pure cosmological constant. Finally, the rescaling
f → M−2

f f, βn → Mn
fβn allows us to assumeMf ¼ 1 in the

following (see Ref. [17]).
We assume now a cosmological spatially flat Friedmann-

Robertson-Walker (FRW) metric

ds2 ¼ a2ðtÞð−dt2 þ dxidxiÞ; ð8Þ

where t represents the conformal time and a dot will
represent the derivative with respect to it. The second
metric is chosen also in a FRW form,

ds2f ¼ −½ _bðtÞ2=H2ðtÞ�dt2 þ bðtÞ2dxidxi; ð9Þ

where H≡ _a=a is the conformal Hubble function. This
form of the metric fμν ensures that the equations satisfy the
Bianchi identities (see e.g. Ref. [9]).
Defining r ¼ b=a, the background equations can be

conveniently written as a first-order system for r;H, using
N ¼ loga as the time variable and denoting d=dN with a
prime [18] (see also Ref. [12]):

2E0Eþ E2 ¼ a2ðB0 þ B2r0Þ; ð10Þ

r0 ¼ 3rB1Ωm

β1 − 3β3r2 − 2β4r3 þ 3B2r2
; ð11Þ

where Ωm ¼ 1 − B0

B1
r, E≡H=H0 and the couplings βi are

measured in units of H2
0 and finally

B0 ¼ β0 þ 3β1rþ 3β2r2 þ β3r3; ð12Þ

B1 ¼ β1 þ 3β2rþ 3β3r2 þ β4r3; ð13Þ

B2 ¼ β1 þ 2β2rþ β3r2: ð14Þ

III. MINIMAL BIMETRIC MODEL

In Ref. [18] we identified the conditions for standard
cosmological viability, i.e. for a matter epoch followed by a
stable acceleration, without bounces or singularities beside
the big bang. We found that among the models with a
single nonvanishing parameter only two cases give a viable
cosmology, namely, the cases with only β0 or only β1. The
former one is indeed the ΛCDM model, while the β1 case
is what we call the minimal bimetric model. One has then
for the MBM

r0 ¼ 3rð1 − 3r2Þ
1þ 3r2

; ð15Þ

independent of β1. This equation has two branches for
r > 0, but only the one that starts at r ¼ 0 and ends at
r ¼ 1=

ffiffiffi
3

p
is cosmologically viable. In terms of the scale

factor, this solution reads [18,21]

rðaÞ ¼ 1

6
a−3ð−A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a6 þ A2

p
Þ; ð16Þ

where A ¼ −β1 þ 3=β1. These equations imply a remark-
ably simple and testable relation between the equation of
state w and Ωm valid at all times during matter domination:

w ¼ 2

Ωm − 2
; ð17Þ

where the density parameter is given by

Ωm ¼ 1 − 3rðaÞ2: ð18Þ

Since the Friedmann equation of the second metric pro-
vides r0 ¼ β1=3, the present value of the matter density
parameter is therefore simply related to single parameter
value of the model. Together with Eq. (17) this shows
that all viable parameter values for β1 lead to a phantom
equation of state at present time. Another useful relation for
the MBM that we will use below is H2 ¼ β1a2=3r.
In Ref. [18] we found that the MBM fits the supernovae

data well if β1 ¼ 1.38� 0.03, corresponding to
Ωm0 ¼ 1 − β20=3 ¼ 0.37� 0.02. The equation of state
turns out to be approximated at small redshifts by
wðzÞ ≈ −1.22þ0.02

−0.02 − 0.64þ0.05
−0.04z=ð1þ zÞ. However this par-

ametrization is not adequate at z ≥ 0.5 and the analytic
expressions (16)–(18) should be employed instead.
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IV. PERTURBATION EQUATIONS

We now find the perturbation equations for the MBM.
For the perturbed part of the metrics we adopt the gauge
defined in Fourier space as

ds2f ¼ 2Fb2
�
−

_bðtÞ2Ψf

bðtÞ2H2ðtÞdt
2 þ ðΦfδij þ kikjEfÞdxidxj

�
;

ds2 ¼ 2Fa2½−Ψdt2 þ ðΦδij þ kikjEÞdxidxj�; ð19Þ

where F ¼ eik·r. After a transformation to the gauge-
invariant variables [13]

~Φ ¼ Φ −H2E0; ð20Þ

~Ψ ¼ Ψ − ðH2 þHH0ÞE0 −H2E00; ð21Þ

~Φf ¼ Φf −
rH2Ef

0

ðr0 þ rÞ ; ð22Þ

~Ψf ¼Ψf −
Hr2ðHEf

0Þ0
ðr0 þ rÞ2 −

H2Ef
0rðr2 þ 2r02 þ 2rr0 − rr00Þ

ðr0 þ rÞ3 ;

ð23Þ

we obtain from the Einstein equations a set of perturbation
equations in Ξ ¼ f ~Φ; ~Ψ; ~Φf; ~Ψf; E;ΔE≡ E − Efg,

½00�Φ
�
1þ 2k2

3a2rβ1

�
− Φf þ

a2ð1 − 3r2Þβ1
−4rþ 6r3

E0 þH2ð1þ 3r2Þ
−4þ 6r2

ΔE0 þ 1

3
k2ΔE −

að−1þ 3r2Þ ffiffiffiffiffi
β1

p
ffiffiffi
3

p
k2r5=2

θ −
δρ

3B2r
¼ 0; ð24Þ

½0i�Φ0 −Ψþ a2ρ
2Hk2

θ þ ðH2 −HH0ÞE0 ¼ 0; ð25Þ

½ij�ΦþΨþ a2rβ1ΔE ¼ 0; ð26Þ

½ii�−
�
2þ 2k2

3a2rβ1

�
Φþ2Φf−Ψ

�
1þ 2k2

3a2rβ1

�
þ6ð2−3r2Þ

3þ9r2
Ψfþ

H3rð3þ9r2ÞðH−H0Þ
a2ð2−3r2Þβ1

E00 þ3a2ð2þ9r2Þð1−3r2Þ2β1
4rð2−3r2Þ2ð1þ3r2Þ E0

−
2k2

3
ΔEþa2ð1þ3r2Þβ1

6rð2−3r2Þ ΔE00 þa2ð22−9r2ð−19þ42r2þ15r4ÞÞβ1
12rð4−27r4þ27r6Þ ΔE0 ¼ 0; ð27Þ

½00�Φþ
�
−1 −

2k2r
3a2β1

�
Φf þ

k2

3
ΔEþ a2ð−1þ 3r2Þβ1

4r − 6r3
E0 −

a2ð1þ 3r2Þβ1
6rð2 − 3r2Þ ΔE0 ¼ 0; ð28Þ

½0i�Φf
0 þ ð−4þ 6r2Þ

1þ 3r2
Ψf þ

3a2ð−1þ 3r2Þβ1
4rð−2þ 3r2Þ E0 þ 3a2ð1 − 3r2Þβ1

4rð−2þ 3r2Þ ΔE0 ¼ 0; ð29Þ

½ij�Ψf þ Φf þ
a2ð1þ 3r2Þβ1
−4rþ 6r3

ΔE ¼ 0; ð30Þ

½ii�Φþ
�
−1þ 2k2rð−2þ 3r2Þ

3a2ð1þ 3r2Þβ1

�
Φf þ

Ψ
2
þ
�
1−

3

1þ 3r2
þ 2k2rð−2þ 3r2Þ

3a2ð1þ 3r2Þβ1

�
Ψf þ

a2ð1− 3r2Þβ1
4rð−2þ 3r2Þ E

00 þ a2ð1þ 3r2Þβ1
12rð−2þ 3r2ÞΔE

00

þ 1

3
k2ΔEþ a2ð−22þ 9r2ð−19þ 42r2 þ 15r4ÞÞβ1

24rð4− 27r4 þ 27r6Þ ΔE0 −
3ð2þ 9r2Þða− 3ar2Þ2β1
8ð2− 3r2Þ2ðrþ 3r3Þ E0 ¼ 0; ð31Þ

and from the conservation of matter we get two more
equations for the matter density contrast δ and the velocity
divergence θ,

δ0 þ θH−1 þ 3Φ0 − 3H2E00 − 6HH0E0 þ k2E0 ¼ 0; ð32Þ

θ0 þ θ þ k2E0H0 − k2ΨH−1 þ k2HðE00 þ E0Þ ¼ 0: ð33Þ

V. INSTABILITY

Recently some authors [13,19] found an instability at
small scales in massive bimetric theories. Here we revisit
this issue in the MBM. Starting from the set of general
perturbation equations (24)–(31), one can replace all
Ψf;Φf;ΔE and their derivatives by using g00; gii, and
gij. This also shows that gij and fij are linearly dependent.
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Then we can replace δ; θ with the help of g0i and f00.
Finally, one can find a linear combination of f0i, and gii
which allows one to express E0 as a function of Ψ;Φ and
their derivatives. In this way, we can express our original
ten equations as just two second-order equations for
X ≡ fΨ;Φg which can be written as ði; j ¼ 1; 2Þ

Xi
00 þMijX0

j þ NijXj ¼ 0; ð34Þ

where Mij and Nij are two matrices that depend only on k,
β1 and r. For the explicit expressions of their elements
see Appendix A. The eigenfrequencies of this equation can
be found by substituting X ¼ X0eiωN , assuming that the
dependence of ω on time is negligibly small. In the limit
of large k we find

ω∓ ¼ � k
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 12r2 þ 9r4

p

1þ 3r2
ð35Þ

(here k is in the same units as H) plus two other solutions,
one of which is zero while the other is independent of k and
therefore subdominant. One can then see that real solutions
(needed to obtain an oscillating, rather than a growing,
solution for X) are found only for r > 0.28, which occurs
for N ≈ −0.4, i.e. z ≈ 0.5. This is exactly the same instant
at which r00 crosses zero. At any epoch before this, the
perturbation equations are unstable for large k, i.e. they
grow as aωþ . Notice that ω∓ are independent of β1; this
means that the instability remains even in the limit of zero
mass, which is similar to the van Dam-Veltman-Zakharov
discontinuity [22,23]. Similar to that case, one might
speculate that when nonlinear order effects start being
important they might cure the instability. Notice also that
the large-k limit we have taken is valid only for k=H ≫ 1,
i.e. for r > rH, where rHðkÞ is the solution of the equation
aðrÞ2 ¼ 3rk2=β1 and aðrÞ is obtained by inverting Eq. (16).
This explosively large growth is in obvious contrast with

what we know about the growth of linear perturbations
in our Universe, for instance, with the smoothness of the
microwave cosmic background and the linearity of present
fluctuations on scales larger than a few megaparsecs.
However, one might imagine that by adjusting for instance
the initial conditions or by playing with other assumptions,
the model could be saved. Therefore, in order to quantify
the real impact of the instability, we estimate a directly
observable quantity that is independent of initial condi-
tions: the growth rate of the linear perturbations as
measured with redshift distortions. Since all the perturba-
tion variables can be written as a linear combination of Φ
and Ψ, their dominant behavior will have the same growth
∼eiωþN . This means that during the instability epoch the
matter density contrast grows as δ ∼ aω where ω ¼ jωþj.
This allows us to estimate the growth rate f ≡ d log δ=dN
and to obtain the observable combination fðzÞσ8ðzÞ ¼
σ8fδ=δ0 as

fðzÞσ8ðzÞ ¼ Aaωðωþ Nω0Þ; ð36Þ
where A is a normalization constant. The combination
fσ8ðzÞ has been estimated through redshift distortions at
various redshifts up to unity (see for instance Ref. [20]),
and it has been found to be practically constant in the range
from z ¼ 0.8 to z ¼ 0.3 for scales around k ¼ 0.1 h=Mpc,
corresponding to k=H0 ≈ 50. In stark contrast, using the
expression (36), we estimate an extremely fast growth
during the instability epoch; for instance, between z ¼ 0.8
and z ¼ 0.6 the growth of fσ8ðzÞ is found to be around
180 000 times.
Adding the cosmological constant β0, one obtains

ω∓ ¼ � k
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 2ðβ0=β1Þrþ 12r2 þ 9r4

p
1þ 3r2

: ð37Þ

In this case the instability region occurs for any
r < β1=2β0; if β1=β0 ≪ 1 this unstable epoch can be
pushed arbitrarily back into the past but then the model
would effectively behave like ΛCDM.
It is possible that a different choice of parameters βi leads

to an evolution which is free from instabilities, or a value
of rHðkÞ such that (at least for the scales that are today in
the linear regime) the subhorizon evolution occurs during
the stable phase. Finally, one could also assume that β1 is
actually a time-dependent variable [e.g., it could be a
function of a scalar field, β1ðϕÞ], so that its value is
very small in the past—therefore recovering a standard
evolution—and comparable to H0 near the present epoch.

VI. QUASISTATIC LIMIT

Taken at face value, the instability rules out the MBM,
unless nonlinear effects are able to rescue it. However,
we think it is still worthwhile to consider some of its
cosmological effects for two reasons. First, one of the
mentioned mechanisms or some variants thereof might be
able to cure the past instability while leaving unaltered the
recent epoch. Second, the methods we investigate below
can be applied to other choices of parameters in the
bimetric class that allow for a stable evolution.
In the regime in which the model is stable, i.e. for

z ≤ 0.5, one can simplify the perturbation equations by
taking the quasistatic limit. In this regime and at subhorizon
scales, i.e. k=H ≫ 1, we can in fact assume that Ξiðk=HÞ2
is much larger than Ξi and its derivatives Ξi

0;Ξi
00 for

any Ξi ¼ fΦ;Ψ;Φf;Ψf;ΔE;Eg and also δðk=HÞ2;
δ0ðk=HÞ2 ≫ θ=H; then the set of differential equations
becomes algebraic (except for the matter conservation
equations) and we obtain the Poisson-like relations

Ψ ¼ −
H2Ωmδð2k2r3ð11þ 6r2Þ þ 3β1a2ð1þ 7r2 − 6r4ÞÞ
2k2ðβ1a2ð1þ r2Þ2ð1þ 3r2Þ þ k2r3ð7þ 3r2ÞÞ ;

ð38Þ
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Φ ¼ H2Ωmδð2k2r3ð10þ 3r2Þ þ 3β1a2ð1þ 4r2 þ 3r4ÞÞ
2k2ðβ1a2ð1þ r2Þ2ð1þ 3r2Þ þ k2r3ð7þ 3r2ÞÞ ; ð39Þ

Ψf ¼ −
H2Ωmδð3r2 þ 1Þð3β1a2ð6r4 − 7r2 − 1Þ þ 2k2rð6r2 − 1ÞÞ
4k2ð3r2 − 2Þðβ1a2ðr2 þ 1Þ2ð3r2 þ 1Þ þ k2ð3r2 þ 7Þr3Þ ; ð40Þ

Φf ¼ H2Ωmδð3r2 þ 1Þð3β1a2ðr2 þ 1Þ þ k2rÞ
2k2ðβ1a2ðr2 þ 1Þ2ð3r2 þ 1Þ þ k2ð3r2 þ 7Þr3Þ ;

ð41Þ

ΔE ¼ H2Ωmδrð9β1a2ð1 − 3r2Þ þ 2k2rð3r2 þ 1ÞÞ
2a2β1k2ðβ1a2ðr2 þ 1Þ2ð3r2 þ 1Þ þ k2ð3r2 þ 7Þr3Þ ;

ð42Þ

which reduce to the standard ones during the matter epoch,
i.e. for r → 0. In the quasistatic limit the set of equations
does not contain the ð0; iÞgμν and ð0; iÞfμν equations. Since
both equations were used to simplify the remaining ones,
we have checked the consistency of the solutions with
both ð0; iÞ equations. We then obtain the two modified
gravity parameters

η≡ −
Φ
Ψ

¼ H2

1þH4ðk=HÞ2
1þH3ðk=HÞ2 ; ð43Þ

Y ≡ −
2k2Ψ

3H2Ωmδm
¼ H1

1þH3ðk=HÞ2
1þH5ðk=HÞ2 ; ð44Þ

where

H1 ≡ 1þ 7r2 − 6r4

ð1þ r2Þ2ð1þ 3r2Þ ; ð45Þ

H2 ≡ 1þ 4r2 þ 3r4

1þ 7r2 − 6r4
; ð46Þ

H3 ≡ 2H2r3ð11þ 6r2Þ
3β1a2ð1þ 7r2 − 6r4Þ ; ð47Þ

H4 ≡ 2H2r3ð10þ 3r2Þ
3β1a2ð1þ 4r2 þ 3r4Þ ; ð48Þ

H5 ≡ H2r3ð7þ 3r2Þ
β1a2ð1þ r2Þ2ð1þ 3r2Þ : ð49Þ

For β1 → 0 the only consistent background solution is
r → 0; in this limit the model reduces to pure CDM and
consequently H1;2 ¼ 1 and H3;4;5 ¼ 0. The expressions
(43) and (44) have the same structure as the Horndeski
Lagrangian [24–26] since both Lagrangians produce

second-order equations of motion. The matter evolution
equations can now be written as a single equation:

δ00m þ δ0m

�
1þH0

H

�
−
3

2
YðkÞΩmδm ¼ 0: ð50Þ

Integrating numerically this equation along the background
solution (16), we find that near k ¼ 0.1 h=Mpc and β1 ¼
1.39we can approximate f ≡ δ0=δ ≈ Ωγ

m [27] with γ ≈ 0.47
in the range z ∈ ð0; 5Þ (see Fig. 1). Near β1 ¼ 1.39 the
dependence on β1 at k ¼ 0.1 h=Mpc can be linearly
approximated as γ ¼ 0.26þ 0.15 β1, while the weak
dependence on k is approximately

γðkÞ ¼ 0.47þ 0.001

�
k

0.1 h=Mpc

�
−1=2

: ð51Þ

Future experiments, like the Euclid satellite [28], plan to
measure γ to within 0.02; this will amply allow one to
distinguish the MBM from ΛCDM and standard quintes-
sence, which predict γ ≈ 0.54.
Let us remark, however, that the growth rate is signifi-

cantly larger than 1 for redshifts z≳ 1 and cannot be well
approximated with the standard Ωγ

m fit. We find that an
additional correction

numerical result

best fit model A

best fit model B

CDM with m 0.27

0 1 2 3 4 5

0.6

0.7

0.8

0.9

1.0

1.1

z

f
z

FIG. 1 (color online). Growth rate f ¼ δ0=δ in the quasistatic
limit for β1 ¼ 1.39 and k ¼ 0.1 h=Mpc. The numerical result (in
blue) is approximated by the fitting model f ¼ Ωγ

m (model A, red
dotted curve) and f ¼ Ωγ0

m ð1þ γ1
zþ1

Þ (model B, green dash-dotted
curve). For a comparison we plot the ΛCDM result (gray dashed
line) while using Ωm0 ¼ 0.37 which corresponds to the present
matter density in our analyzed MBM.
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f ≈ Ωγ0
m

�
1þ γ1

zþ 1

�
ð52Þ

with γ0 ¼ 0.58 and γ1 ¼ 0.07 is better able to reproduce
our numerical result.
The quasistatic limit is an excellent approximation to the

full behavior, provided one considers only the stable epoch
z < 0.5, as shown in Fig. 2.

VII. COMPARISON TO THE GROWTH RATE

The quasistatic limit can be compared to measurements
of fðzÞσ8ðzÞ where σ8ðzÞ ¼ σ8GðzÞ, with GðzÞ being the
growth rate normalized to unity today. Most of the present
measurements actually extend to redshifts higher than 0.5,
which is outside the stability regime. Nevertheless, as a way
to demonstrate the feasibility of constraining this model
with growth data, we include these measurements as well.
The likelihood is given by

χ2fσ8 ¼
X
ij

ðdi − σ8tiÞC−1
ij ðdj − σ8tjÞ; ð53Þ

in which di and ti are vectors containing the measured and
theoretically expected data, respectively, and Cij denotes
the covariance matrix. Since the current constraints on σ8
depend on the theory of gravity, for generality we mar-
ginalize analytically the likelihood over σ8 > 0, obtaining

χ2fσ8 ¼ S20 −
S211
S02

þ log S02 − 2 log

�
1þ Erf

�
S11ffiffiffiffiffiffiffiffiffi
2S02

p
��

;

ð54Þ

where

S11 ¼ diC−1
ij tj; ð55Þ

S20 ¼ diC−1
ij dj; ð56Þ

S02 ¼ tiC−1
ij tj ð57Þ

(see also e.g. Ref. [29]). Since current data are not binned in
k space, we choose an average value k ¼ 0.1 h=Mpc
in Eq. (50).
We compute the likelihood from the data set compiled in

Ref. [20] which contains measured growth histories from
the 6dFGS [30], LRG200, LRG60 [31], BOSS [32], WiggleZ
[33] and VIPERS [34] surveys. Our results are shown in
Fig. 3. The growth data constraints appear much broader
than, but consistent with, the supernova type Ia (SN Ia)
data. The combined result from SNe and growth data is
β1 ¼ 1.39� 0.03, practically identical to the best fit from
SN Ia alone. We also plot in Fig. 3 the likelihood from
cosmic microwave background (CMB) and baryon acoustic
oscillation (BAO) measurements where we use the results
from the first peak angular size WMAP 7.2 data [35] and
the SDSS DR7 sample including the LRG and 2dFGRS
data set [36]. The combined result from all data, SNþ
CMBþ BAOþ growth turns out to be β1 ¼ 1.43� 0.02.
However, one should keep in mind that the CMB data
analysis assumes a pure ΛCDM so it is not obvious that it
can be applied here without corrections. Note that including
the CMB/BAO data does not change the best-fit parameters
for wðzÞ and γ significantly.

0.0 0.5 1.0 1.5 2.0

0.8

1.0

1.2

1.4

N

N

FIG. 2 (color online). The oscillating blue line represents the
numerical integration of the full set of perturbation equations
for k=H0 ¼ 100; β1 ¼ 1.4. The red smooth line is the solution of
the growth equation (50) in the quasistatic limit for the same
parameters.
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CMB BAO

Growth data
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FIG. 3 (color online). Likelihood for β1 obtained from observed
SNe Ia (blue dashed), measured growth data (red dot-dashed) and
the combination of CMB and BAO measurements (dotted gray).
The full combined likelihood is indicated by a gray solid line.
All likelihoods are rescaled to unity at their maximum. For the
most likely values we obtain β1 ¼ 1.38þ0.03

−0.03 ðχ2min ¼ 578.3Þ and
β1 ¼ 1.52þ0.09

−0.13 ðχ2min ¼ 10.48Þ for the comparison with SNe Ia
and growth data, respectively. Due to the broad width of the
growth likelihood, its combination with the other probes does not
sensibly change the results.
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Finally, in Fig. 4 we compare the growth history
corresponding to the most likely MBM with the measured
growth data and the ΛCDM expectation.

VIII. CONCLUSIONS

We have shown that a minimal bimetric model exists
which closely reproduces the success and the simplicity of
ΛCDM at the background level. We fixed its single param-
eter, β1, to percent accuracy by fitting to supernovae and
growth data. The MBM has several unique signatures, like
the w −Ωm relation (17), the phantom equation of state, the
k dependence of the growth factor [Eq. (51)] and the values
of f above unity [Eq. (52)], all of which will make it easily
distinguishable from ΛCDM with future experiments.
We have shown however that the model suffers from a

perturbation instability at large k at epochs before z ≈ 0.5,
confirming previous results [13,19] but also identifying the
exact epoch of transition. Taken at face value, such an
instability seems to rule out this particular form of bimetric
model. A possible way to save the model is to assume that
when the perturbations become nonlinear the instability
becomes under control. This conjecture can be confirmed
only by going to higher order in perturbation theory. Of
course the instability might also disappear by choosing a
different set of parameters. We leave a complete analysis of
other models to future work.
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APPENDIX A: EXPLICIT EXPRESSION
FOR THE MATRICES MIJ AND NIJ

In this appendix we will present the elements of the
matrices Mij and Nij appearing in the second-order differ-
ential equation (34). We start by defining the functions

K1 ≡ K2 ≡ 4r − 6r3

a2ð3β1r2 þ β1Þ
; K3 ≡ K4 ≡ 1

a2rβ1
;

ðA1Þ

K5 ≡ K6 ≡ −
24k2ð2 − 3r2Þ2
a2rð3r2 þ 1Þ2β1

;

K7 ≡ −
12ð2 − 3r2Þ2ð3r2 − 1Þ

ð3r3 þ rÞ2 ; ðA2Þ

K8 ≡ −
12

ffiffiffi
3

p
að2 − 3r2Þ2ð3r2 − 1Þ ffiffiffiffiffi

β1
p

r5=2ð3kr2 þ kÞ2 ;

K9 ≡ −
að3r2 − 1Þ ffiffiffiffiffi

β1
p

k
ffiffiffi
r

p ; ðA3Þ

K10 ≡ −
a2kð3r2 − 1Þβ1ffiffiffi

3
p ð3r3 þ rÞ ; K11 ≡ 4kð3r2 − 2Þffiffiffi

3
p ð3r2 þ 1Þ ;

ðA4Þ

K12 ≡K13 ≡
ffiffiffi
3

p
a2kð3r2 − 1Þβ1
4r− 6r3

;

K14 ≡K15 ≡ 1

a2rβ1
; ðA5Þ

K16 ≡ 9r2 − 6

k2ð3r2 þ 1Þ ; K17 ≡ K18 ≡ 1

a2rβ1
þ 3

2k2
;

ðA6Þ

K19 ≡ a2ð135r6 þ 378r4 − 171r2 − 22Þβ1
8k2ð2 − 3r2Þ2ð3r3 þ rÞ ;

K20 ≡ −
9a2ð1 − 3r2Þ2ð9r2 þ 2Þβ1
8k2ð2 − 3r2Þ2ð3r3 þ rÞ ; ðA7Þ

K21 ≡ a2ð3r2 þ 1Þβ1
4k2rð3r2 − 2Þ ; K22≡ −

3a2ð3r2 − 1Þβ1
4k2rð3r2 − 2Þ ;

ðA8Þ

K23 ≡ 1

H
; K24 ≡ k2 − 6HH0; ðA9Þ

K25 ≡ −3H2; K26 ≡ −
k2

H
; ðA10Þ

K27 ≡ k2ðHþH0Þ; K28 ≡ k2H; ðA11Þ

MBM

CDM m0 0.27

CDM m0 0.37

0.0 0.2 0.4 0.6 0.8
0.25

0.30

0.35

0.40

0.45

0.50

0.55

z

f
z

G
z

FIG. 4 (color online). Comparison of growth histories in the
MBM with β1 ¼ 1.39 (blue) and ΛCDM (dotted red:
Ωm0 ¼ 0.27; dot-dashed green: Ωm0 ¼ 0.37 which corresponds
to the present matter density in the best-fit MBM). The data
points are taken from Ref. [20]. Note that the normalization of the
curves is immaterial due to the marginalization over σ8.
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K29 ≡ −
12k2ð2 − 3r2Þ2
ð3r2 þ 1Þ2 ; K30 ≡ −

36ð2 − 3r2Þ2
ð3r2 þ 1Þ2 ;

ðA12Þ

K31 ≡ 12ð2 − 3r2Þ2ð3β1a2 þ 2k2rÞ
a2ð3r2 þ 1Þ2β1

;

K32 ≡ −
6a2ð3r2 − 2Þβ1

3r3 þ r
; ðA13Þ

K33 ≡ 18a2ð3r2 − 2Þð3r2 − 1Þβ1
rð3r2 þ 1Þ2 ;

K34 ≡ 4r − 6r3

a2ð3β1r2 þ β1Þ
; ðA14Þ

K35 ≡ 4r − 6r3

a2ð3β1r2 þ β1Þ
;

K36 ≡ K37 ≡ 1

a2rβ1
; ðA15Þ

which only depend on the background quantities β1, r, H
and the wave number k. Although we introduced several
redundant functions, the definitions of those functions turn
out to be useful since in every bimetric model the
dependencies of both Mij and Nij on the Ki functions
are the same. We proceed by defining

L1 ≡ K13 þ ð3K2K2
31Þ−1ð3K1K11K31K33 þ 2

ffiffiffi
3

p
kK2ðK33K0

31 − K31K0
33ÞÞ; ðA16Þ

L2 ≡ ð3K2K2
31Þ−1½2

ffiffiffi
3

p
kK2ðK14ðK31ðK29 þ K0

32Þ − K32K0
31Þ − K31ðK30 − 2K32K0

14ÞÞ
− 3K14K31ðK12K2K31 þ K1K11K32Þ�; ðA17Þ

L3 ≡ ð3K2K2
31Þ−1½2

ffiffiffi
3

p
kK2ð2K31K32K0

15 þ K15ðK31ðK29 þ K0
32Þ − K32K0

31ÞÞ
− 3K15K31ðK12K2K31 þ K1K11K32Þ�; ðA18Þ

L4 ≡ −ð3K2K2
31Þ−1½3ðK11K3 þ K12K2K0

14ÞK2
31 þ 3K1K11ðK14K29 − K30 þ K32K0

14ÞK31

− 2
ffiffiffi
3

p
kK2ðK14K0

29 − K0
30 þ K0

14ðK29 þ K0
32Þ þ K32K00

14ÞK31 þ 2
ffiffiffi
3

p
kK2ðK14K29 − K30 þ K32K0

14ÞK0
31�; ðA19Þ

L5 ≡ ð3K2K2
31Þ−1½−3K11K4K2

31 − 3K1K11ðK15K29 þ K32K0
15ÞK31

þ K2ð2
ffiffiffi
3

p
kð−K32K0

15K
0
31 þ K29ðK31K0

15 − K15K0
31Þ þ K31ðK15K0

29 þ K0
15K

0
32 þ K32K00

15ÞÞ − 3K12K2
31K

0
15Þ�;

ðA20Þ

L6 ≡ −
2kK33ffiffiffi
3

p
K31

; ðA21Þ

L7 ≡ 2kK14K32ffiffiffi
3

p
K31

; ðA22Þ

L8 ≡ 2kK15K32ffiffiffi
3

p
K31

; ðA23Þ

L9 ≡ K20 þ
ðK1K16k2 þ 3K2ÞK33

k2K2K31

; ðA24Þ

L10 ≡ K14

�
−K19 −

ðK1K16k2 þ 3K2ÞK32

k2K2K31

�
− 2K21K0

14; ðA25Þ

L11 ≡ K15

�
−K19 −

ðK1K16k2 þ 3K2ÞK32

k2K2K31

�
− 2K21K0

15; ðA26Þ
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L12 ≡ −ðk2K2K31Þ−1½−K18K2K31k2 þ K16K3K31k2 þ K1K16ðK14K29 − K30 þ K32K0
14Þk2

þ K19K2K31K0
14k

2 þ K2K21K31K00
14k

2 − 3K2K30 þ K14K2ðK31k2 þ 3K29Þ þ 3K2K32K0
14�; ðA27Þ

L13 ≡ K17 − K19K0
15 − K21K00

15 − ðk2K2K31Þ−1½K16K31K4k2

þ K1K16ðK15K29 þ K32K0
15Þk2 þ K15K2ðK31k2 þ 3K29Þ þ 3K2K32K0

15�; ðA28Þ

L14 ≡ K22; ðA29Þ

L15 ≡ −K14K21; ðA30Þ

L16 ≡ −K15K21; ðA31Þ

L17 ≡ ½K9ðK7ðK24K7K9K2
31 þ ðK31K8K0

10 þ K6K9K0
33 þ K33K9K0

6ÞK31 − K33K6K9K0
31Þ − K31K33K6K9K0

7Þ
− K10K2

31ðK9ðK23K2
7 − K0

8K7 þ K8K0
7Þ þ K7K8K0

9Þ�ðK31K7K9Þ−2; ðA32Þ

L18 ≡ ð
ffiffiffi
3

p
K31K7K9Þ−2½−2

ffiffiffi
3

p
kK2

31ðK9ðK23K2
7 − K0

8K7 þ K8K0
7Þ þ K7K8K0

9Þ þ 3K2
9ðK14K31K32K6K0

7

− K7ððK5 − 3K7ÞK2
31 þ ðK6ð−K30 þ 2K32K0

14 þ K14ðK29 þ K0
32ÞÞ þ K14K32K0

6ÞK31 − K14K32K6K0
31ÞÞ�; ðA33Þ

L19 ≡ ð3K2
31K

2
7K9Þ−1½−2

ffiffiffi
3

p
kK7K8K2

31 þ 3K15K32K6K7K9K0
31

þ 3K9ðK15K32K6K0
7 − K7ð2K32K6K0

15 þ K15ðK6ðK29 þ K0
32Þ þ K32K0

6ÞÞÞK31�; ðA34Þ

L20 ≡ −ðK31K7Þ−2½K7K0
5K

2
31 − K5K0

7K
2
31 þ K14K6K7K0

29K31 − K6K7K0
30K31 þ K6K7K0

14K
0
32K31

− K30K7K0
6K31 þ K32K7K0

14K
0
6K31 þ K30K6K0

7K31 − K32K6K0
14K

0
7K31 þ K32K6K7K00

14K31

þ K30K6K7K0
31 − K32K6K7K0

14K
0
31 þ K29ðK31ðK6K7K0

14 þ K14K7K0
6 − K14K6K0

7Þ − K14K6K7K0
31Þ�; ðA35Þ

L21 ≡ ð
ffiffiffi
3

p
K31K7K9Þ−2½2

ffiffiffi
3

p
kK2

31ðK9ðK23K2
7 − K0

8K7 þ K8K0
7Þ þ K7K8K0

9Þ
− 3K2

9ðK15K31K6K7K0
29 þ K29ðK31ðK6K7K0

15 þ K15K7K0
6 − K15K6K0

7Þ − K15K6K7K0
31Þ

þ K0
15ðK31K6K7K0

32 þ K32ðK31K7K0
6 − K6ðK7K0

31 þ K31K0
7ÞÞÞ þ K31K32K6K7K00

15Þ�; ðA36Þ

L22 ≡ K25 þ K−1
7

�
K33K6

K31

þ K10K8

K9

�
; ðA37Þ

L23 ≡ ð3K7Þ−1
�
2

ffiffiffi
3

p
kK8

K9

−
3K14K32K6

K31

�
; ðA38Þ

L24 ≡ −
K15K32K6

K31K7

; ðA39Þ

L25 ≡ K26 þ
2kðK9 − K0

9Þffiffiffi
3

p
K2

9

; ðA40Þ

L26 ≡ K10K0
9 − K9ðK10 − K27K9 þ K0

10Þ
K2

9

; ðA41Þ

L27 ≡ 2kðK0
9 − K9Þffiffiffi
3

p
K2

9

; ðA42Þ

L28 ≡ 2kffiffiffi
3

p
K9

; ðA43Þ
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L29 ≡ K28 −
K10

K9

; ðA44Þ

L30≡ −
2kffiffiffi
3

p
K9

; ðA45Þ

and

G1 ≡ −L12L23L8 þ L12L24L7 þ L15L20L8 − L15L24L4 − L16L20L7 þ L16L23L4

−L1L15L24 þ L1L16L23 þ L15L17L8 − L16L17L7 − L23L8L9 þ L24L7L9

; ðA46Þ

G2 ≡ −L13L23L8 þ L13L24L7 þ L15L21L8 − L15L24L5 − L16L21L7 þ L16L23L5

−L1L15L24 þ L1L16L23 þ L15L17L8 − L16L17L7 − L23L8L9 þ L24L7L9

; ðA47Þ

G3 ≡ −L10L23L8 þ L10L24L7 þ L15L18L8 − L15L2L24 − L16L18L7 þ L16L2L23

−L1L15L24 þ L1L16L23 þ L15L17L8 − L16L17L7 − L23L8L9 þ L24L7L9

; ðA48Þ

G4 ≡ −L11L23L8 þ L11L24L7 þ L15L19L8 − L15L24L3 − L16L19L7 þ L16L23L3

−L1L15L24 þ L1L16L23 þ L15L17L8 − L16L17L7 − L23L8L9 þ L24L7L9

: ðA49Þ

The elements of the matrices Mij and Nij are then given by

M11 ¼
L11 − G4L9 − L14ðG2 þ G0

4Þ þ ðL23 −G3L22Þ−1ðG3L14 − L15Þð−G4L17 þ L19 − L22ðG2 þG0
4ÞÞ

−G4L14 þ L16 þ ðL23 −G3L22Þ−1ðG3L14 − L15ÞðL24 −G4L22Þ
; ðA50Þ

M12 ¼
L10 − G3L9 − L14ðG1 þ G0

3Þ þ ðL23 −G3L22Þ−1ðG3L14 − L15Þð−G3L17 þ L18 − L22ðG1 þG0
3ÞÞ

−G4L14 þ L16 þ ðL23 −G3L22Þ−1ðG3L14 − L15ÞðL24 −G4L22Þ
; ðA51Þ

M21 ¼ ðL16ðL23 − G3L22Þ þ L15ðG4L22 − L24Þ þ L14ðG3L24 −G4L23ÞÞ−1½L14L17G2
4 − L22L9G2

4 − L14L19G4

þ L24L9G4 þ L11ðG4L22 − L24Þ þ G2L14L24 þ L14L24G0
4 þ L16ð−G4L17 þ L19 − L22ðG2 þ G0

4ÞÞ�; ðA52Þ

M22 ¼ ðL16ðG3L22 − L23Þ þ L15ðL24 −G4L22Þ þ L14ðG4L23 −G3L24ÞÞ−1½−G3G4L14L17 þ G4L14L18

−G1L14L24 þ L10ðL24 − G4L22Þ þG3G4L22L9 −G3L24L9 − L14L24G0
3 þ L16ðG3L17 − L18 þ L22ðG1 þ G0

3ÞÞ�;
ðA53Þ

and

N11 ¼
L13 −G2L9 − L14G0

2 þ ðL23 −G3L22Þ−1ðG3L14 − L15Þð−G2L17 þ L21 − L22G0
2Þ

−G4L14 þ L16 þ ðL23 −G3L22Þ−1ðG3L14 − L15ÞðL24 −G4L22Þ
; ðA54Þ

N12 ¼
L12 −G1L9 − L14G0

1 þ ðL23 −G3L22Þ−1ðG3L14 − L15Þð−G1L17 þ L20 − L22G0
1Þ

−G4L14 þ L16 þ ðL23 − G3L22Þ−1ðG3L14 − L15ÞðL24 − G4L22Þ
; ðA55Þ

N21 ¼ ðL16ðL23 −G3L22Þ þ L15ðG4L22 − L24Þ þ L14ðG3L24 − G4L23ÞÞ−1½G2G4L14L17 − G4L14L21

þ L13ðG4L22 − L24Þ − G2G4L22L9 þ G2L24L9 þ L14L24G0
2 þ L16ð−G2L17 þ L21 − L22G0

2Þ�; ðA56Þ

N22 ¼ ðL16ðL23 −G3L22Þ þ L15ðG4L22 − L24Þ þ L14ðG3L24 − G4L23ÞÞ−1½G1G4L14L17 − G4L14L20

þ L12ðG4L22 − L24Þ − G1G4L22L9 þ G1L24L9 þ L14L24G0
1 þ L16ð−G1L17 þ L20 − L22G1

0Þ�: ðA57Þ
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Nonlinear, ghost-free massive gravity has two tensor fields; when both are dynamical, the mass of the
graviton can lead to cosmic acceleration that agrees with background data, even in the absence of a
cosmological constant. Here the question of the stability of linear perturbations in this bimetric theory is
examined. Instabilities are presented for several classes of models, and simple criteria for the cosmological
stability of massive bigravity are derived. In this way, we identify a particular self-accelerating bigravity
model, infinite-branch bigravity (IBB), which exhibits both viable background evolution and stable linear
perturbations. We discuss the modified gravity parameters for IBB, which do not reduce to the standard
ΛCDM result at early times, and compute the combined likelihood from measured growth data and
type Ia supernovae. IBB predicts a present matter density Ωm0 ¼ 0.18 and an equation of state
wðzÞ ¼ −0.79þ 0.21z=ð1þ zÞ. The growth rate of structure is well approximated at late times by
fðzÞ ≈ Ω0.47

m ½1þ 0.21z=ð1þ zÞ�. The implications of the linear instability for other bigravity models are
discussed: the instability does not necessarily rule these models out, but rather presents interesting
questions about how to extract observables from them when linear perturbation theory does not hold.

DOI: 10.1103/PhysRevD.90.124014 PACS numbers: 04.50.Kd, 95.36.+x, 98.80.-k

I. INTRODUCTION

Testing gravity beyond the limits of the Solar System is an
important task of present and future cosmology. The detec-
tion of any modification of Einstein’s gravity at large scales
or in past epochs would be an extraordinary revolution and
change our view of the evolution of the Universe.
A theory of a massless spin-2 field is either described by

general relativity [1–6] or unimodular gravity [7,8].
Consequently, most modifications of gravity proposed so

far introduce one or more new dynamical fields, in addition
to the massless metric tensor of standard gravity. This new
field is usually a scalar field, typically through the so-called
Horndeski Lagrangian [9,10], or a vector field, such as in
Einstein-aether models (see Refs. [11,12] and references
therein). A complementary approach which has gained
significant attention in recent years is, rather than adding a
new dynamical field, to promote the massless spin-2
graviton of general relativity to a massive one.
The history of massive gravity is an old one, dating back

to 1939, when the linear theory of Fierz and Pauli was
published [13]. We refer the reader to the reviews [14,15]

for a reconstruction of the steps leading to the
modern approach, which has resulted in a ghost-free, fully
nonlinear theory of massive gravity [16] (see also
Refs. [17–21]). A key element of these new forms of
massive gravity is the introduction of a second tensor field,
or “reference metric,” in addition to the standard metric
describing the curvature of spacetime. When this reference
metric is fixed (e.g., Minkowski), this theory propagates the
five degrees of freedom of a ghost-free massive graviton.
However, the reference metric can also be made dynami-

cal, as proposed in Refs. [22,23]. This promotes massive
gravity to a theory of bimetric gravity. This theory is still
ghost free and has the advantage of allowing cosmologi-
cally viable solutions. The cosmology of bimetric gravity
has been studied in several papers, e.g., in Refs. [24–30].
The main conclusion is that bimetric gravity allows for a
cosmological evolution that can approximate the ΛCDM
universe and can therefore be a candidate for dark energy
without invoking a cosmological constant. Crucially, the
parameters and the potential structure leading to the
accelerated expansion are thought to be stable under
quantum corrections [31], in stark contrast to a cosmo-
logical constant, which would need to be fine-tuned against
the energy of the vacuum [32,33].
Bimetric gravity has been successfully compared to

background data [cosmic microwave background, baryon
acoustic oscillations, and type Ia supernovae (SNe)] in
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Refs. [24,25], and to linear perturbation data in
Refs. [34,35]. The comparison with linear perturbations
has been undertaken on subhorizon scales assuming a
quasistatic (QS) approximation, in which the potentials are
assumed to be slowly varying. This assumption makes it
feasible to derive themodification to thePoisson equation and
the anisotropic stress, two functions of scale and time which
completely determine observational effects at the linear level.
The quasistatic equations are, however, a valid subhor-

izon approximation only if the full system is stable for large
wave numbers. Previous work [27,36,37] has identified a
region of instability in the past.1 Here we investigate this
problem in detail. We reduce the linearized Einstein equa-
tions to two equations for the scalar modes, and analytically
determine the epochs of stability and instability for all the
models with up to two free parameters which have been
shown to produce viable cosmological background evolu-
tion. The behavior of more complicated models can be
reduced to these simpler ones at early and late times.
We find that several models which yield sensible back-

ground cosmologies in close agreement with the data are in
fact plagued by an instability that only turns off at recent
times. This does not necessarily rule these regions of the
bimetric parameter space out, but rather presents a question
of how to interpret and test these models, as linear
perturbation theory is quickly invalidated. Remarkably,
we find that only a particular bimetric model—the one
in which only the β1 and β4 parameters are nonzero (that is,
the linear interaction and the cosmological constant for the
reference metric are turned on)—is stable and has a
cosmologically viable background at all times when the
evolution is within a particular branch. This shows that a
cosmologically viable bimetric model without an explicit
cosmological constant (by which we mean the constant
term appearing in the Friedmann equation) does indeed
exist, and raises the question of how to nonlinearly probe
the viability of other bimetric models.
This paper is part of a series dedicated to the cosmo-

logical perturbations of bimetric gravity and their proper-
ties, following Ref. [35].

II. BACKGROUND EQUATIONS

We start with the action of the form [23]

S ¼ −
M2

g

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
RðgÞ −M2

f

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
RðfÞ

ð1Þ

þm2M2
g

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p X4
n¼0

βnen

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβfβγ

q �

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Lmðg;ΦÞ; ð2Þ

where en are elementary symmetric polynomials and βn are
free parameters. Here gμν is the standard metric coupled to
the matter fields Φ in the matter Lagrangian, Lm, while fμν
is a new dynamical tensor field with metric properties. In
the following we express masses in units of Mg and absorb
the mass parameterm2 into the parameters βn. The graviton
mass is generally of order m2βn. The action then becomes

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
RðgÞ −M2

f

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
RðfÞ

ð3Þ

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p X4
n¼0

βnen

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβfβγ

q �

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Lmðg;ΦÞ: ð4Þ

There has been some discussion in the literature over
how to correctly take square roots. We will find solutions in
which det

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
becomes zero at a finite point in time

(and only at that time), and so it is important to determine
whether to choose square roots to always be positive, or to
change sign on either side of the det ¼ 0 point. This was
discussed in some detail in Ref. [39] (see also Ref. [40]),
where continuity of the vielbein corresponding to

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
demanded that the square root not be positive definite. We
will take a similar stance here, and make the only choice
that renders the action differentiable at all times, i.e., such
that the derivative of

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
with respect to gμν and fμν is

continuous everywhere. In particular, using a cosmological
background with fμν ≡ diagð−X2; b2; b2; b2Þ, this choice

implies that we assume
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p ¼ Xb3, where X ¼ _b=H
with H is the g-metric Hubble rate. This is important
because, as we will see later on, it turns out that in the
cosmologically stable model, the f metric bounces, so X
changes sign during cosmic evolution. Consequently the
square roots will change sign as well, rather than develop
cusps. Note that sufficiently small perturbations around the
background will not lead to a different sign of this
square root.
Varying the action with respect to gμν, one obtains the

following equations of motion:

Rμν −
1

2
gμνRþ

X3
n¼0

ð−1ÞnβngμλYλ
ðnÞν

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβfβγ

q �
¼ Tμν:

ð5Þ

1This should not be confused with the Higuchi ghost insta-
bility, which affects most massive gravity cosmologies and some
in bigravity, but is, however, absent from the simplest bimetric
models which produce ΛCDM-like backgrounds [38].
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Here the matrices Yλ
ðnÞνð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβfβγ

q
Þ are defined as, setting

X ¼ ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þ,

Yð0ÞðXÞ ¼ I; ð6Þ

Yð1ÞðXÞ ¼ X − I½X�; ð7Þ

Yð2ÞðXÞ ¼ X2 −X½X� þ 1

2
Ið½X�2 − ½X2�Þ; ð8Þ

Yð3ÞðXÞ ¼ X3 −X2½X� þ 1

2
Xð½X�2 − ½X2�Þ

−
1

6
Ið½X�3 − 3½X�½X2� þ 2½X3�Þ; ð9Þ

where I is the identity matrix and ½…� is the trace operator.
Varying the action with respect to fμν we find

R̄μν −
1

2
fμνR̄þ 1

M2
f

X3
n¼0

ð−1Þnβ4−nfμλYλ
ðnÞνð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fαβgβγ

q
Þ ¼ 0;

ð10Þ

where the overbar indicates the curvature of the fμν metric.
The f-metric Planck mass,Mf, is a redundant parameter

and can be freely set to unity [41]. To see this, consider the
rescaling fμν → M−2

f fμν. The Ricci scalar transforms as
R̄ðfÞ → M2

fR̄ðfÞ, so the full Einstein-Hilbert term in the
action becomes

M2
f

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
R̄ðfÞ → 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
R̄ðfÞ: ð11Þ

The other term in the action that depends on fμν is the mass
term, which transforms as

X4
n¼0

βnenð
ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ →

X4
n¼0

βnenðM−1
f

ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ

¼
X4
n¼0

βnM−n
f enð

ffiffiffiffiffiffiffiffiffiffi
g−1f

q
Þ; ð12Þ

where in the last equality we used the fact that the
elementary symmetric polynomials enðXÞ are of order
Xn. Therefore, by additionally redefining the interaction
couplings as βn → Mn

fβn, we end up with the original
bigravity action but with Mf ¼ 1.2 Consequently we set
Mf ¼ 1 in the following.
Let us now consider the background cosmology of

bimetric gravity. We assume a spatially flat Friedmann-

Lemaître-Robertson-Walker (FLRW) metric,

ds2g ¼ a2ðτÞð−dτ2 þ dxidxiÞ; ð13Þ

where τ is conformal time and an overdot represents
the derivative with respect to it. The second metric is
chosen as

ds2f ¼ −½ _bðτÞ2=H2ðτÞ�dτ2 þ bðτÞ2dxidxi; ð14Þ

where H≡ _a=a is the conformal-time Hubble parameter
associated with the physical metric, gμν. The particular
choice for the f-metric lapse, f00, ensures that the Bianchi
identity is satisfied (see, e.g., Ref. [22]).
Inserting the FLRW ansatz for gμν into Eq. (5) we get

3H2 ¼ a2ðρtot þ ρmgÞ; ð15Þ

where we define an effective massive-gravity energy
density as

ρmg ¼ B0 ≡ β0 þ 3β1rþ 3β2r2 þ β3r3 ð16Þ

with

r≡ b
a
; ð17Þ

while ρtot is the density of all other matter components (e.g.,
dust and radiation). The total energy density follows the
usual conservation law,

_ρtot þ 3Hρtot ¼ 0: ð18Þ

It is useful to define the density parameter for the mass term
(which will be the effective dark energy density):

Ωmg ≡ ρmg

ρtot þ ρmg
¼ 1 −Ωm − Ωr; ð19Þ

where Ωi ¼ ρi=ðρtot þ ρmgÞ for matter and radiation.
The background dynamics depend entirely on the

g-metric Hubble rate, H, and the ratio of the two scale
factors, r ¼ b=a [25]. Moreover, by using N ¼ log a as
time variable, with 0 denoting derivatives with respect to N,
the background equations can be conveniently reformu-
lated as a first-order autonomous system [42]:

2H0HþH2 ¼ a2ðB0 þ B2r0 − wtotρtotÞ; ð20Þ

r0 ¼ 3ð1þ wtotÞB1Ωtotr
β1 − 3β3r2 − 2β4r3 þ 3B2r2

; ð21Þ

Ωtot ¼ 1 −
B0

B1

r; ð22Þ
2Recall that we are expressing masses in units of the Planck

mass, Mg. In more general units, the redundant parameter is
Mf=Mg.
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where

B1 ≡ β1 þ 3β2rþ 3β3r2 þ β4r3; ð23Þ

B2 ≡ β1 þ 2β2rþ β3r2; ð24Þ

and wtot denotes the equation of state (EOS) corresponding
to the sum of matter and radiation density parameter Ωtot.
We can define the effective equation of state

weff ≡Ωmgwmg þΩtotwtot ¼ −
1

3

�
1þ 2

H0

H

�

¼ −
rðB0 þ B2r0Þ

B1

ð25Þ

¼ −1þ Ωtot −
B2rr0

B1

; ð26Þ

from which we obtain

wmg ¼ −1 −
B2rr0

ΩmgB1

¼ −1 −
B2

B0

r0: ð27Þ

Another useful relation gives the Hubble rate in terms of r
without an explicit ρ dependence,

H2 ¼ a2B1

3r
: ð28Þ

The background evolution of r will follow Eq. (21) from
an initial value of r until r0 ¼ 0, unless r hits a singularity.
In Ref. [42] it was shown that cosmologically viable
evolution can take place in two distinct ways, depending
on initial conditions: when r evolves from 0 to a finite value
(we call this a finite branch) and when r evolves from
infinity to a finite value (infinite branch). In all viable cases,

the past asymptotic value of r corresponds toΩm ¼ 1while
the final point corresponds to a de Sitter stage with Ωm ¼ 0
(see Fig. 1 for an illustrative example).
In the following, we consider only pressureless matter,

or dust, with wtot ¼ 0. The reason is that we are interested
only in the late-time behavior of bigravity when the
Universe is dominated by dust. We also assume r ≥ 0,
although in principle nothing prevents a negative value
of b.
We will find it convenient to express all the βi parameters

in units of H2
0 and H in units of H0.

3 In this way all the
quantities that enter the equations are dimensionless.

III. PERTURBATION EQUATIONS

In this section we study linear cosmological perturba-
tions. We define our perturbed metrics in Fourier space
by

gαβ ¼ g0;αβ þ hαβ; ð29Þ

fαβ ¼ f0;αβ þ hf;αβ; ð30Þ

where g0;αβ and f0;αβ are the background metrics with
line elements

ds2g ¼ a2ðtÞð−dt2 þ dxidxiÞ; ð31Þ

ds2f ¼ −½ _bðtÞ2=H2ðtÞ�dt2 þ bðtÞ2dxidxi; ð32Þ

while hαβ and hf;αβ are perturbations around the back-
grounds g0;αβ and f0;αβ, respectively, whose line elements
are

ds2h ¼ 2a2½−Ψdt2 þ ðΦδij þ kikjEÞdxidxj� expðik · rÞ;
ð33Þ

ds2hf ¼ 2b2
�
−
_b2Ψf

b2H2
dt2 þ ðΦfδij þ kikjEfÞdxidxj

�

× expðik · rÞ: ð34Þ

After transforming to gauge-invariant variables [27],

Φ ⟶ Φ −H2E0; ð35Þ

Ψ ⟶ Ψ −HðH0E0 þHðE00 þ E0ÞÞ; ð36Þ

Φf ⟶ Φf −
H2rE0

f

r0 þ r
; ð37Þ

finite branch

infinite

branch

de Sitter poin

0.0 0.5 1.0 1.5 2.0 2.5 3.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

r

r'

FIG. 1 (color online). Plot of the function r0ðrÞ for the β1β4
model for β1 ¼ 0.5, β4 ¼ 1. For both the finite and infinite
branches, the final state is the de Sitter point. The arrows show the
direction of movement of r.

3With this convention, our βi parameters are equivalent to the
Bi ≡m2βi=H2

0 used in Refs. [25,26,35].
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Ψf ⟶ Ψf −
Hr2H0ðr0 þ rÞE0

f þH2rðrðr0 þ rÞE00
f þ E0

fð2r02 þ rð2r0 − r00Þ þ r2ÞÞ
ðr0 þ rÞ3 ; ð38Þ

and using N ¼ loga as the time variable, the perturbation equations for the gμν metric read

½00�
�

2k2

3B2a2r
þ 1

�
Φ − Φf þ

1

3
k2ΔEþ 2H3rð−HþH0Þ

A2

E0 −
H2A1

A2

ΔE0 −
2H2ðA1 þ a2r2B2ÞðH −H0Þ

a2k2rA1B2

θ −
δρ

3B2r
¼ 0;

ð39Þ

½0i�Φ0 −Ψþ a2ρ
2Hk2

θ þ ðH2 −HH0ÞE0 ¼ 0; ð40Þ

½ij�ΦþΨþ 1

2
a2rA3ΔE ¼ 0; ð41Þ

½ii�
�

2k2

3B2a2r
þA3

B2

�
Φþ

�
2k2

3B2a2r
þ 1

�
Ψ −

A3

B2

Φf −
A2

A1

Ψf þ
k2A3

3B2

ΔE −
2H3rðH −H0Þ

A2

E00

−
H2A1

A2

ΔE00 þA4E0 þA5ΔE0 ¼ 0; ð42Þ

while the corresponding equations for fμν are

½00�Φ −
�
1þ 2k2r

3a2B2

�
Φf þ

k2

3
ΔE −

A1H2

A2

ΔE0 −
2H3rðH −H0Þ

A2

E0 ¼ 0; ð43Þ

½0i�Φ0
f −

A2

A1

Ψf þ
a2HB2ðH0 −HÞ

A2

ΔE0 −
a2HB2ðH0 −HÞ

A2

E0 ¼ 0; ð44Þ

½ij�Φf þΨf −
a2A1A3

2rA2

ΔE ¼ 0; ð45Þ

½ii�
�

2rk2A2

3a2B2A1

þA3

B2

�
Φf þ

�
2k2rA2

3a2B2A1

þA2

A1

�
Ψf −

A3

B2

Φ −Ψ −
k2A3

3B2

ΔEþ 2H3rðH0 −HÞ
A2

E00

þH2A1

A2

ΔE00 −A4E0 −A5ΔE0 ¼ 0; ð46Þ

where ΔE≡ E − Ef and the Ai coefficients are defined as

A1 ¼ a2B2 − 2H2r; ð47Þ
A2 ¼ a2B2 − 2HrH0; ð48Þ

A3 ¼ 2B2 þ B0
2; ð49Þ

A4 ¼ −
ðA1 −A2Þ2ð−a4ð1þ 2r2ÞB2

2 þA1ðA1 þA2Þ þ a2r2B2ð2A1 þA2ÞÞ
2rða2r2B2 þA1ÞA2

2

þ ð−a2B2 þA1ÞðA1 −A2ÞðA1A2 − a2B2ðð1þ r2ÞA1 − r2A2ÞÞB0
2

2rB2ða2r2B2 þA1ÞA2
2

; ð50Þ

A5 ¼
A2

1ðA2
1 −A1A2 − 4A2

2Þ þ a2B2A1ð2r2A2
1 − 3r2A1A2 þ ð4 − 3r2ÞA2

2Þ
2rða2r2B2 þA1ÞA2

2

−
a4B2

2ðð1þ 2r2ÞA2
1 − 2ð1þ 2r2ÞA1A2 þ ð1 − 2r2ÞA2

2Þ
2rða2r2B2 þA1ÞA2

2

þA1ð−a2B2 þA1Þð−A1A2 þ a2B2ðð1þ r2ÞA1 − ð1þ 2r2ÞA2ÞÞB0
2

2rB2ða2r2B2 þA1ÞA2
2

: ð51Þ
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These equations are in agreement with those presented in
Refs. [27,35,41] (for a more detailed derivation see, e.g.,
Ref. [43]).
The matter equations are

δ0 þ θH−1 þ 3Φ0 − 3H2E00 − 6HH0E0 þ k2E0 ¼ 0; ð52Þ

θ0 þ θ þ k2E0H0 − k2ΨH−1 þ k2HðE00 þ E0Þ ¼ 0; ð53Þ
where δ and θ are the matter density contrast and peculiar
velocity divergence, respectively. Differentiating and com-
bining Eqs. (52) and (53) we obtain

δ00 þ
�
1þH0

H

�
δ0 þ k2Ψ

H2
− 6E0ð2H02 þHðH00 þH0ÞÞ

− 3HE00ð5H0 þHÞ − 3Eð3ÞH2 þ 3

�
1þH0

H

�
Φ0

þ 3Φ00 ¼ 0: ð54Þ
Note that E enters the equations only with derivatives; one
could then define a new variable Z ¼ E0 to lower the degree
of the equations.4 One could also adopt the gauge-invariant
variables

δ → δþ 3H2E0; ð55Þ

θ → θ − k2HE0 ð56Þ
to bring the matter conservation equations into the standard
form of a longitudinal gauge but since this renders the other
equations somewhat more complicated we will not
employ them.

IV. QUASISTATIC LIMIT

Large-scale structure experiments predominantly probe
modes within the horizon. Conveniently, in the subhorizon
and quasistatic limit, the cosmological perturbation

equations simplify dramatically. In this section we consider
this QS limit of subhorizon structures in bimetric gravity.
The subhorizon limit is defined by assuming k ≫ H,

while the QS limit assumes that modes oscillate on a Hubble
timescale:Ξ0 ∼ Ξ for any variableΞ.5 Concretely, thismeans
that we consider the regimewhere ðk2=H2ÞΞi ≫ Ξi ∼ Ξi

0 ∼
Ξi

00 for each field Ξi ¼ fΨ;Φ;Ψf;Φf;ΔE; Eg. We addi-
tionally take δðk=HÞ2; δ0ðk=HÞ2 ≫ θ=H. In this limit we
obtain the system of equations

3k2ΔEþ
�
9þ 6k2

B2a2r

�
Φ − 9Φf −

3δρ

B2r
¼ 0; ð57Þ

1

2
a2rA3ΔEþ ΦþΨ ¼ 0; ð58Þ

3
k2A3

B2

ΔEþ
�
9
A3

B2

þ 6k2

B2a2r

�
Φþ

�
9þ 6k2

B2a2r

�
Ψ

− 9
A3

B2

Φf − 9
A2

A1

Ψf ¼ 0; ð59Þ

3k2ΔE −
�
9þ 6k2r

a2B2

�
Φf þ 9Φ ¼ 0; ð60Þ

−
a2A1A3

2rA2

ΔEþ Φf þΨf ¼ 0; ð61Þ

3k2A3

B2

ΔEþ 9A3

B2

Φþ 9Ψ −
�
6rk2A2

a2B2A1

þ 9A3

B2

�
Φf

−
�
6k2rA2

a2B2A1

þ 9A2

A1

�
Ψf ¼ 0; ð62Þ

where we have used the momentum constraints, Eqs. (40)
and (44), to replace time derivatives ofΦ andΦf. The above
set of equations can be solved for Ψ, Φ, Ψf, Φf, and ΔE in
terms of δ (see also Ref. [35]):

Ψ ¼ 3ð3a2A1A3B2
2 þ 3a2A2A3B2

2r
2 þ k2ð2A1A2

3r
3 − 2B2rðA2B2 − 2A1A3ÞÞÞΩmH2

k4ðB2
2ð4A1r3 þ 4A2rÞ − 8A1A3B2rðr2 þ 1ÞÞ − 6k2ðr2 þ 1Þ2a2A1A3B2

2

δ; ð63Þ

Φ ¼ −
3ð3a2A1A3B2 þ 3a2A1A3B2r2 þ k2ðrð4A1A3 − 2A2B2Þ þ 2A1A3r3ÞÞΩmH2

k4ðB2ð4A1r3 þ 4A2rÞ − 8A1A3rðr2 þ 1ÞÞ − 6k2ðr2 þ 1Þ2a2A1A3B2

δ; ð64Þ

Ψf ¼ −
3ð−3a4A2

1A3B2
2 − 3a4A1A2A3B2

2r
2 þ 2A1k2rða2A1A2

3 − a2ðA1 þA2ÞA3B2 þA2B2
2ÞÞΩmH2

k4ðB2
2ð4A1A2r3 þ 4A2

2rÞ − 8A1A2A3B2rðr2 þ 1ÞÞ − 6k2ðr2 þ 1Þ2a2A1A2A3B2
2

δ; ð65Þ

Φf ¼ −
3ð3a2A1A3B2 þ 3a2A1A3B2r2 þ 2A1k2rðA3 − B2ÞÞΩmH2

k4ðB2ð4A1r3 þ 4A2rÞ − 8A1A3rðr2 þ 1ÞÞ − 6k2ðr2 þ 1Þ2a2A1A3B2

δ; ð66Þ

4E only appears without derivatives in the mass terms, specifically in differences with Ef, and so all appearances of E are accounted
for by the separate gauge-invariant variable ΔE.

5Recall that we are using the dimensionless N ¼ log a as our time variable.
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ΔE ¼ 3rð3a2ðA1 −A2ÞB2
2 þ 2A1k2rðB2 −A3ÞÞΩmH2

k4a2ðB2
2ð2A1r3 þ 2A2rÞ − 4A1A3B2rðr2 þ 1ÞÞ − 3a2k2ðr2 þ 1Þ2a2A1A3B2

2

δ: ð67Þ

The QS limit is, however, only a good approximation if
the full set of equations produces a stable solution for large
k. In fact, if the solutions are not stable, the derivative terms
we have neglected are no longer small (as their mean values
vary on a faster timescale than Hubble), and the QS limit is
never reached. We therefore need to analyze the stability of
the full theory.

V. INSTABILITIES

Let us go back to the full linear equations, presented in
Sec. III. While we have ten equations for ten variables, there
are only two independent degrees of freedom, correspond-
ing to the scalar modes of the two gravitons. The degrees-
of-freedom counting goes as follows (see Ref. [44] for an
in-depth discussion of most of these points): four of the
metric perturbations (δg00, δg0i, δf00, and δf0i) and θ are
nondynamical, as their derivatives do not appear in the
second-order action. These can be integrated out in terms of
the dynamical variables and their derivatives.We can further
gauge fix two of the dynamical variables. Finally, after the
auxiliary variables are integrated out, one of the initially
dynamical variables becomes auxiliary (its derivatives drop
out of the action) and can itself be integrated out.6

This leaves us with two independent dynamical degrees
of freedom. The aim of this section is to reduce the ten
linearized Einstein equations to two coupled second-order
equations, and then ask whether the solutions to that system
are stable. We will choose to work with Φ and Ψ as our
independent variables, eliminating all of the other pertur-
bations in their favor.
We can begin by eliminating Ψf, Φf, ΔE, and their

derivatives using the 0 − 0, i − i, and i − j components of
the g-metric perturbation equations. We will herein refer to
these equations as g00, gii, and so on for the sake of
conciseness. Doing this we see also that the gij and fij
equations are linearly related. Then we can replace δ and θ
with the help of the g0i and f00 equations. Finally, one can
find a linear combination of the f0i and gii equations which
allows one to express E0 as a function of Φ, Ψ, and their
derivatives. In this way, we can write our original ten
equations as just two second-order equations for Xi ≡
fΦ;Ψg with the following structure:

X00
i þ FijX0

j þ SijXj ¼ 0; ð68Þ

where Fij and Sij are complicated expressions that depend
only on background quantities and on k. The

eigenfrequencies of these equations can easily be found
by substituting X ¼ X0eiωN , assuming that the dependence
ofω on time is negligibly small.7 For instance, assuming that
only β1 is nonzero, in the limit of large k we find [34]

ωβ1 ¼ � k
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 12r2 þ 9r4

p

1þ 3r2
; ð69Þ

plus two other solutions that are independent of k and are
therefore subdominant. One can see then that real solutions
(needed to obtain oscillating, rather than growing and
decaying, solutions for X) are found only for r > 0.28,
which occurs for N ¼ −0.4, i.e., z ≈ 0.5. At any epoch
before this, the perturbation equations are unstable for large
k. In other words, we find an imaginary sound speed. This
behavior invalidates linear perturbation theory on subhor-
izon scales and may rule out the model, if the instability is
not cured at higher orders, for instance by a phenomenology
related to the Vainshtein mechanism [45,46].
Now let us move on to more general models. Although

the other one-parameter models are not viable in the back-
ground8 (i.e., none of them have a matter dominated epoch
in the asymptotic past and produce a positive Hubble rate)
[42], it is worthwhile to study the eigenfreqencies in these
cases too, particularly because theywill tell us the early time
behavior of the viable multiple-parameter models. For
simplicity, from now on we refer to a model in which,
e.g., only β1 and β2 are nonzero as the β1β2model, and so on.
At early times, every viable, finite-branch, multiple-

parameter model reduces to the single-parameter model
with the lowest-order interaction. For instance, the β1β2,
β1β3, and β1β2β3 models all reduce to β1, the β2β3
model reduces to β2, and so on. Similarly, in the early
Universe, the viable, infinite-branch models reduce to
single-parameter models with the highest-order interaction.
Therefore, in order to determine the early time stability, we
need to only look at the eigenfrequencies of single-
parameter models, for which we find

ωβ2 ¼ � k
Hr

; ð70Þ

ωβ3 ¼ � ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − 8r2 þ 3

p
ffiffiffi
3

p
Hðr2 − 1Þ ; ð71Þ

6We thank Macarena Lagos and Pedro Ferreira for discussions
on this point.

7The criterion for this WKB approximation to hold is
jω0=ω2j ≪ 1. We find that for large k this approximation is
almost always valid.

8With the exception of the β0 model, which is simply ΛCDM.
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ωβ4 ¼ � kffiffiffi
2

p
H

: ð72Þ

Therefore, the only single-parameter models without insta-
bilities at early times are the β2 and β4 models. Using the
rules discussed above, we can now extend these results to
the rest of the bigravity parameter space.
Since much of the power of bigravity lies in its potential

to address the dark energy problem in a technically-natural
way, let us first consider models without an explicit
g-metric cosmological constant, i.e., β0 ¼ 0. On the finite
branch, all such models with β1 ≠ 0 reduce, at early times,
to the β1 model, which has an imaginary eigenfrequency for
large k (69) and is therefore unstable in the early Universe.
Hence the finite-branch β1β2β3β4 model and its subsets
with β1 ≠ 0 are all plagued by instabilities. All of these
models have viable background evolution [42]. This leaves
the β2β3β4 model; this is stable on the finite branch as long
as β2 ≠ 0, but its background is not viable. We conclude
that there are no models with β0 ¼ 0 which live on a finite
branch, have a viable background evolution, and predict
stable linear perturbations at all times.
This conclusion has two obvious loopholes: either includ-

ing a cosmological constant, β0, or turning to an infinite-
branch model. We first consider including a nonzero
cosmological constant, although this may not be as interest-
ing theoretically as themodelswhich self accelerate. Adding

a cosmological constant can change the stability properties,
although it turns out not to do so in the finite-branch models
with viable backgrounds. In the β0β1 model, the eigenfre-
quencies,

ωβ0β1 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r4 þ 2ðβ0=β1Þrþ 12r2 − 1

p
Hð3r2 þ 1Þ ; ð73Þ

are unaffected by β0 at early times and therefore still imply
unstable modes in the asymptotic past. This result extends
(at early times) to the rest of the bigravity parameter space
with β0, β1 ≠ 0. No other finite-branch models yield viable
backgrounds. Therefore, all of the solutions on a finite
branch, for any combination of parameters, are either
unviable (in the background) or linearly unstable in the past.
Let us now turn to the infinite-branchmodels. In this case,

it turns out that there exists a small class of viable models
which has stable cosmological evolution: models where the
only nonvanishing parameters are β0, β1, and β4, as well as
the self-accelerating β1β4 model. Here, r evolves from
infinity in the past and asymptotes to a finite de Sitter value
in the future. As mentioned in Ref. [42], a nonvanishing β2
or β3 would not be compatible with the requirement
limt→−∞Ωtot ¼ 1. This can be seen directly from Eq. (22)
in the limit of large r. For these β0β1β4 models we perform a
similar eigenfrequency analysis and obtain

ωβ0β1β4 ¼ �
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9þ 2β0β4=β21Þr4 þ 2ðβ0=β1Þrþ 12r2 − 1þ ðβ4=β1Þ½2ðβ4=β1Þr6 − 6r5 − 8r3�

q
Hð3r2 þ 1 − 2ðβ4=β1Þr3Þ

: ð74Þ

Restricting ourselves to the self-accelerating models (i.e., β0 ¼ 0), we obtain

ωβ1β4 ¼ � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r4 þ 12r2 − 1þ ðβ4=β1Þ½2ðβ4=β1Þr6 − 6r5 − 8r3�

p
Hð3r2 þ 1 − 2ðβ4=β1Þr3Þ

: ð75Þ

Notice that, for large r, the eigenvalues (74)–(75) reduce to
the expression (72) for ωβ4. This frequency is real, and
therefore the β1β4 model, as well as its generalization to
include a cosmological constant, is stable on the infinite
branch at early times.
It is interesting to note that the eigenfrequencies can also

be written as

ωβ0β1β4 ¼ � ik
H

ffiffiffiffiffiffi
r00

3r0

r
: ð76Þ

Therefore, the condition for the stability of this model in the
infinite branch, where r0 < 0, is simply r00 > 0. One might
wonder whether this expression for ω is general or model
specific. While it does not hold for the β2 and β3 models,
Eqs. (70)–(71), it is valid for all of the submodels of β0β1β4,

including Eqs. (69) and (72). We can see from this, for
example, that the finite-branch (r0 > 0) β1 model is
unstable at early times because initially r00 is positive. In
Fig. 1 we show schematically the evolution of the β1β4
model on the finite and infinite branches. The stability
condition on either branch is r00=r0 ¼ dr0=dr < 0. For the
parameters plotted, β1 ¼ 0.5 and β4 ¼ 1, one can see
graphically that this condition is met, and hence the model
is stable, only at late times on the finite branch but for all
times on the infinite branch. Our remaining task is to extend
this to other parameters.
Let us now prove that the infinite-branch β1β4 model is

stable at all times for all viable choices of the parameters. In a
previous work we showed that background viability and the
condition that we live on the infinite branch restrict
us to the parameter range 0 < β4 < 2β1 [35,42]. We have
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already seen that at early times, r → ∞, and the eigenfre-
quencies match those in the β4 model (72) which are purely
real. What about later times? The discriminant is positive
and hence the model is stable whenever r > 1. The question
then is the following: do the infinite-branch models in this
region of the parameter space always have r > 1?
The answer is yes. To see this, consider the algebraic

equation for r, which can be determined by combining the
g- and f-metric Friedmann equations [see Eq. (2.17) of
Ref. [35]], and focus on the asymptotic future by taking
ρ → 0. This gives

β4r3c − 3β1r2c þ β1 ¼ 0; ð77Þ
where rc is the far-future value of r. When β4 ¼ 2β1
exactly, this is solved by rc ¼ 1. We must then ask whether
for 0 < β4 < 2β1, rc remains greater than 1. Writing
p≡ rc − 1, using Descartes’ rule of signs, and restricting
ourselves to 0 < β4 < 2β1, we can see that p has one
positive root, i.e., there is always exactly one solution with
rc > 1 in that parameter range. Therefore, in all infinite-
branch solutions with 0 < β4 < 2β1, r evolves to some
rc > 1 in the asymptotic future. We conclude that all of the
infinite-branch β1β4 cosmologies which are viable at the
background level are also linearly stable at all times,
providing a clear example of a bimetric cosmology which
is a viable competitor to ΛCDM.
The models without quadratic- and cubic-order inter-

actions were also discussed in Ref. [47]. Interestingly, for
those models, as well as other models where only one of the
three parameters β1, β2, and β3 is nonvanishing, the authors
found that if one metric is an Einstein metric, i.e.,
Gμν þ Λgμν ¼ 0, then the other metric is proportional to
it. This automatically avoids pathologic solutions when
choosing the nondynamical constraint in the Bianchi con-
straint [47] (which are, however, explicitly avoided in the
present work by imposing the dynamical constraint in order
to find cosmological solutions that differ from ΛCDM).

VI. QUASISTATIC LIMIT OF
INFINITE-BRANCH BIGRAVITY

In the previous section we found that most bigravity
models which are viable at the background level suffer from
a linear instability at early times. A prominent exception
was the model with the β1 and β4 interactions turned on
(i.e., the first-order interaction between the two metrics
and the f-metric cosmological constant) in the case of
solutions on the infinite branch, where r evolves from
infinity at early times to a finite value in the far future. This
means that we can safely use the QS approximation for the
subhorizon modes in the infinite-branch β1β4 model,
hereafter referred to (interchangeably) as infinite-branch
bigravity (IBB); in this section, we compare the QS limit of
this model to observations.
The background cosmology of IBB was studied in

Refs. [35,42]. Reference [35] further studied the linear
perturbations and quasistatic limit, finding results in agree-
ment with those presented in the following two sections.
Using the Friedmann equations, it has been shown that the
background cosmology only selects a curve in the param-
eter space, given by

β4 ¼
3Ωmg;0β

2
1 − β41

Ω3
mg;0

; ð78Þ

where we recall that Ωmg;0 ≡ β1r0 is the present-day
effective density of dark energy that appears in the
Friedmann equation (15). This does not need to coincide
with the value of ΩΛ derived in the context of ΛCDM
models; indeed, the best-fit value to the background data is
Ωmg;0 ¼ 0.84þ0.03

−0.02 [42]. Furthermore, as discussed in the
previous subsection, to ensure that we are on the infinite
branch we impose the condition 0 < β4 < 2β1.
The QS-limit equations in terms of δ now read [recall

B1 ¼ β1 þ β4r3; see Eq. (23)]

k2Ψ ¼ ð3
2
a2β1ð9β1ðr2 − 1Þr2 þ ðr2 − 2ÞBÞ − 1

2
k2rð9β1ðr2 − 1Þ þ ð8r2 þ 9ÞBÞÞΩmH2

3a2β1ðr2 þ 1Þ2B þ k2ð2r3B þ 3β1ðr2 − 1Þrþ 3rBÞ δ; ð79Þ

k2Φ ¼ ð3a2β1ðr2 þ 1ÞB þ 1
2
k2rð9β1ðr2 − 1Þ þ ð4r2 þ 9ÞBÞÞΩmH2

2a2β1ðr2 þ 1Þ2B þ k2ð2r3B þ 3β1ðr2 − 1Þrþ 3rBÞ δ; ð80Þ

k2Ψf ¼ ð−3a2β1Bð9β1ðr2 − 1Þr2 þ ðr2 − 2ÞBÞ − k2rBð9β1ðr2 − 1Þ þ 5BÞÞΩmH2

2a2β1ðr2 þ 1Þ2Bð9β1ðr2 − 1Þ þ BÞ þ k2rð3β1ðr2 − 1Þ þ ð2r2 þ 3ÞBÞð9β1ðr2 − 1Þ þ BÞ δ; ð81Þ

k2Φf ¼ ð3a2β1ðr2 þ 1ÞB þ k2rBÞΩmH2

2a2β1ðr2 þ 1Þ2B þ k2ð2r3B þ 3β1ðr2 − 1Þrþ 3rBÞ δ; ð82Þ

k2ΔE ¼ ð2k2r2B − 9
2
a2β1rð3β1ðr2 − 1Þ þ BÞÞΩmH2

2a4β21ðr2 þ 1Þ2B þ β1a2k2rð3β1ðr2 − 1Þ þ ð2r2 þ 3ÞBÞ δ; ð83Þ
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where we have used the combination B≡ 3β1ðr2 þ 1Þ −
2B1 to further simplify the expressions.
In order to compare with observations, we calculate two

common modified gravity parameters: the anisotropic
stress, η≡ −Φ=Ψ, and the effective gravitational coupling
for the growth of structures, Y ≡ −2k2Ψ=ð3H2ΩmδmÞ. In
general relativity with ΛCDM, η ¼ Y ¼ 1, while in β1β4
IBB they possess the following structure,

η ¼ H2

1þH4ðk=HÞ2
1þH3ðk=HÞ2 ; ð84Þ

Y ¼ H1

1þH3ðk=HÞ2
1þH5ðk=HÞ2 ; ð85Þ

with coefficients

H1 ¼ −
9β1ðr2 − 1Þr2 þ ðr2 − 2ÞB

2ðr2 þ 1Þ2B ; ð86Þ

H2 ¼ −
2ðr2 þ 1ÞB

9β1ðr2 − 1Þr2 þ ðr2 − 2ÞB ; ð87Þ

H3 ¼ −
H2rð9β1ðr2 − 1Þ þ ð8r2 þ 9ÞBÞ
3a2β1ð9β1ðr2 − 1Þr2 þ ðr2 − 2ÞBÞ ; ð88Þ

H4 ¼
H2rð9β1ðr2 − 1Þ þ ð4r2 þ 9ÞBÞ

6a2β1ðr2 þ 1ÞB ; ð89Þ

H5 ¼
H2rð6r2B þ 9β1ðr2 − 1Þ þ 9BÞ

6a2β1ðr2 þ 1Þ2B : ð90Þ

As a side remark, we note that in this model the
asymptotic past corresponds to the limit r → ∞ and
r0 → − 3

2
r, i.e., r → a−3=2. This implies that b ∼ a−1=2,

i.e., the second metric initially collapses while our metric
expands. On the approach to the final de Sitter stage, r
approaches a constant rc, so the scale factors a and b both
expand exponentially. The f-metric scale factor, b, there-
fore undergoes a bounce in this model.
This bounce has an unusual consequence. Recall from

Eq. (14) that, after imposing the Bianchi identity, we have
f00 ¼ − _b2=H2. Therefore, when b bounces, f00 becomes
zero: at that one point, the lapse function of the f metric
vanishes.9 We believe, however, that this does not render
the solution unphysical, for the following reasons. First,
the f metric does not couple to matter and so, unlike the
g metric, it does not have a geometric interpretation. A
singularity in the f metric therefore does not necessarily
imply a singularity in observable quantities. In fact, we find

no singularity in any of our background or perturbed
variables. Second, although the Riemann tensor for the f
metric is singular when f00 ¼ 0, the Lagrangian densityffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det f

p
Rf remains finite and nonzero at all times, so the

equations of motion can be derived at any points in time.
In the asymptotic past, every infinite-branch β1β4 model

satisfies

lim
N→−∞

η ¼ 1

2
and lim

N→−∞
Y ¼ 4

3
ð91Þ

and therefore does not reduce to the standard ΛCDM. In the
future one finds η → 1 if k is kept finite, but this is
somewhat fictitious: for any finite k there will be an epoch
of horizon exit in the future after which the subhorizon QS
approximation breaks down. We can see both this asymp-
totic past and future behavior in Fig. 2, although the late-
time approach of η to unity is not easily visible.

VII. COMPARISON TO MEASURED
GROWTH DATA

In this section we compare the predictions in the
quasistatic approximation to the measured growth rate.
In Ref. [35], we discussed the numerical results of the
modified-gravity parameters, Eqs. (84)–(85), for β1β4
infinite-branch bigravity and their early time limits,10 and
compared to the data. Although we found strong deviations

0.2

0.4

0.6

0.8

 1

1.2

1.4

-1  0  1  2  3  4  5
z

1 = 0.48, 4 = 0.94, k = 0.1 h/Mpc

CDM

present time

Y

FIG. 2 (color online). The modified-gravity parameters, Y and
η, for the β1β4 IBB model, from z ¼ 5 until the asymptotic
(de Sitter) future. Notice that the parameters approach a constant
late-time value until a late era of horizon exit, when the k ¼
0.1h=Mpc mode becomes superhorizon and the QS limit breaks
down. The horizontal line corresponds to the ΛCDM prediction
for Y and η, and the vertical line is the present day. These curves
are very weakly dependent on k. For concreteness, we use the
best-fit values β1 ¼ 0.48 and β4 ¼ 0.94, calculated in Sec. VII.

9Moreover, the square root of this, _b=H, appears in the mass
terms. This quantity starts off negative at early times and then
becomes positive.

10Note that Ref. [35] uses a slightly different effective
gravitational constant, Q≡ ηY.
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from the ΛCDM values, the model is at present still in
agreement with the observed growth data. However, as we
mentioned, future experiments will be able to distinguish
between the predictions of the ΛCDM and bimetric gravity
for η and Y.
We use the data set compiled by Ref. [48] containing the

current measurements of the quantity

fðzÞσ8ðzÞ ¼ fðzÞGðzÞσ8; ð92Þ
where fðzÞ≡ δ0=δ and GðzÞ is the growth factor normal-
ized to the present. The data come from the 6dFGS [49],
LRG200, LRG60 [50], BOSS [51], WiggleZ [52], and
VIPERS [53] surveys. These measurements can be com-
pared to the theoretical growth rate which follows from
integrating Eq. (54) in the QS limit:

δ00m þ δ0m

�
1þH0

H

�
−
3

2
YðkÞΩmδm ¼ 0: ð93Þ

The theoretically expected and observed data, ti and di,
respectively, can be compared to compute

χ2fσ8 ¼
X
ij

ðdi − σ8tiÞC−1
ij ðdj − σ8tjÞ; ð94Þ

where Cij denotes the covariance matrix. Since no model-
free constraints on σ8 exist, one can remove this depend-
ency with a marginalization over positive values which can
be performed analytically:

χ2fσ8 ¼ S20 −
S211
S02

þ logS02 − 2 log

�
1þ Erf

�
S11ffiffiffiffiffiffiffiffiffi
2S02

p
��

:

ð95Þ

Here, S11 ¼ diC−1
ij tj, S20 ¼ diC−1

ij dj, and S02 ¼ tiC−1
ij tj.

Note that Y is (weakly) scale dependent but the current
observational data are averaged over a range of scales. For
the computation of the likelihood, we assume an average
scale k ¼ 0.1h=Mpc.
As shown in Fig. 3, the confidence region obtained from

the growth data is in agreement with type Ia SNe data (see
Ref. [42] for the likelihood from the SCP Union 2.1
Compilation of SNe Ia data [54]). The growth data alone
provides β1 ¼ 0.40þ0.14

−0.15 and β4 ¼ 0.67þ0.31
−0.38 with a χ2min ¼

9.72 (with nine degrees of freedom) for the best-fit value
and is in agreement with the SNe Ia likelihood. The
likelihood from growth data is, however, a much weaker
constraint than the likelihood from background observa-
tions. Thus, the combination of both likelihoods, providing
β1 ¼ 0.48þ0.05

−0.16 and β4 ¼ 0.94þ0.11
−0.51 , is similar to the SNe Ia

result alone.
Note that those favored parameter regions were obtained

by integrating the two-dimensional likelihood and are
not Gaussian distributed due to the degeneracy in the

parameters β1 and β4 [see Eq. (78)]. This degeneracy curve
is unaffected by additional growth data and is still para-
metrized by the SNe Ia result Ωm0 ¼ 1 −Ωmg0 ¼ 0.16þ0.02

−0.03
(note that the combination of the most likely parameters
predicts, however, Ωm0 ¼ 0.18). According to Eq. (27), the
EOS of modified gravity, wmg, is best fit by w0 ¼ −0.79
and wa ¼ 0.21, where we use the Chevallier-Polarski-
Linder (CPL) parametrization [55,56],

wðzÞ ¼ w0 þ waz=ð1þ zÞ: ð96Þ

However, since we approximated the EOS near the present
time, we cannot expect Eq. (96) to fit the real EOS well at
early times or in the future. As shown in Fig. 4, the fit is in
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FIG. 4 (color online). The equation of state (EOS, solid blue) in
the IBB model with β1 ¼ 0.48, β4 ¼ 0.94, along with the CPL
approximation wðaÞ ≈ w0 þ waz=ð1þ zÞ (dotted green) where
wa corresponds to the slope at present time. In the asymptotic
future, wmg tends to −1, i.e., the EOS of a cosmological constant
(dashed red).

FIG. 3 (color online). Likelihood from measured growth rates,
where the gray, light gray and lighter gray filled regions corre-
spond to 68%, 95%, and 99.7% confidence levels. Both black
(68%) and dark gray (99.7%) regions illustrate the combination of
the likelihoods from measured growth data and type Ia super-
novae. The blue line indicates the degeneracy curve corresponding
to the background best-fit points. Note that the viability condition
enforces the likelihood to vanish when β4 > 2β2.
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fact valid in the past only up to z ≈ 0.5, while in the future
the limit wmg → −1 is lost.
For one specific choice of parameters, corresponding to

the best-fit values, we compared the quantity fðzÞGðzÞwith
the measured growth data and fits from ΛCDM in Fig. 5.
Although the modified-gravity parameters differ signifi-
cantly from the ΛCDM result Y ¼ η ¼ 1, the prediction for
fðzÞGðzÞ is in good agreement with measurements and is
close to the ΛCDM result.
The difference between the growth rate fðzÞ in the best-

fit model and ΛCDM is, however, quite large. Therefore,
the common approximation f ≈ Ωγ

m fits the growth rate
very badly, even if the range in the redshift is small [where
fðzÞ is still smaller than unity] [35]. We have found a two-
parameter scheme,

f ≈Ωγ0
m

�
1þ α

z
1þ z

�
; ð97Þ

which is able to provide a much better fit (see Fig. 5). Using
this approximation, we obtain γ0 ¼ 0.47 and α ¼ 0.21 as
best-fit values.

VIII. CONCLUSIONS AND OUTLOOK

We have investigated the stability of linear cosmological
perturbations in bimetric gravity. Many models with viable
background cosmologies exhibit an instability on small
scales until fairly recently in cosmic history. However, we
also found a class of viable models which are stable at all
times: IBB with the interaction parameters β1 and β4 turned
on. In thesemodels, the ratio r ¼ b=a of the two scale factors

decreases from infinity to a finite late-time value. IBB is able
to fit observations at the level of both the background (type Ia
supernovae) and linear, subhorizon perturbations (growth
histories) without requiring an explicit cosmological constant
for the physical metric, although the region of likely
parameters is small. The combination of both likelihoods
yields the parameter constraints β1 ¼ 0.48þ0.05

−0.16 and β4 ¼
0.94þ0.11

−0.51 . IBB with these best-fit parameters predictsΩm0 ¼
0.18 andan equationof statewðzÞ ≈ −0.79þ 0.21z=ð1þ zÞ.
The growth rate, f ≡ d ln δ=d ln a, is approximated verywell
by the two-parameter fit fðzÞ≈Ω0.47

m ½1þ0.21z=ð1þzÞ�.
Additionally, the two main modified-gravity parameters,
the anisotropic stress η andmodification toNewton’s constant
Y, tend to η ¼ 1

2
and Y ¼ 4

3
for early times and therefore

do not reduce to the standard ΛCDM result. The predictions
of this two-parameter model will be testable by near-future
experiments [57].
On the surface, our results would seem to place in

jeopardy a large swath of bigravity’s parameter space, such
as the minimal β1-only model which is the only single-
parameter model that is viable at the background level [42].
It is important to emphasize that the existence of such an
instability does not automatically rule these models out. It
merely impedes our ability to use linear theory on deep
subhorizon scales (recall that the instability is problematic
specifically for large k). Models that are not linearly stable
can still be realistic if only the gravitational potentials
become nonlinear, or even if the matter fluctuations also
become nonlinear but in such a way that their properties do
not contradict observations. The theory can be saved if, for
instance, the instability is softened or vanishes entirely
when nonlinear effects are taken into account. We might
even expect such behavior: bigravity models exhibit a
Vainshtein mechanism [45,46] which restores general
relativity in environments where the new degrees of free-
dom are highly nonlinear.
Consequently there are two very important questions for

future work: can these unstable models still accurately
describe the real Universe, and if so, how can we perform
calculations for structure formation?
Until these questions are answered, the β1β4 infinite-branch

model seems to be themost promising target at themoment for
studying bigravity. Because this instability appears to be
absent in the superhorizon limit, it may also be feasible to
test the unstable models using large-scale modes.
What other escape routes are there? Throughout this

analysis we have assumed that only one of the metrics
couples to matter. A possible way to cure bimetric gravity
from instabilities while only allowing one nonvanishing β
parameter could be to allow matter to couple to both
metrics [26,58]. In such a theory, the finite-branch solutions
asymptote to a nonzero value for r in the far past, so these
theories may avoid the instability. This would introduce a
new coupling parameter, so if only one β parameter is
turned on, there are two free parameters and such a model is

IBB �Β1�0.48 , Β4�0.94 �

IBB fit model

�CDM ��m0�0.27 �

�CDM ��m0�0.18 �

0.0 0.2 0.4 0.6 0.8
z

f�
z�

G
�z
�

0.25

0.30

0.35

0.40

0.45

0.50

0.55

FIG. 5 (color online). Growth history for the best-fit IBB model
(solid blue) with β1 ¼ 0.48 and β4 ¼ 0.94 compared to the result
obtained from the best fit (97) (solid orange) with γ0 ¼ 0.47 and
α ¼ 0.21, and the ΛCDM predictions forΩm0 ¼ 0.27 (dotted red)
and Ωm0 ¼ 0.18 (dotted-dashed green). The latter value for the
matter density is similar to that corresponding to IBB. Note that a
vertical shift of each single curve is possible due to the
marginalization over σ8. Here, we choose that value for σ8 for
each curve individually such that it fits the data best. The growth
histories are compared to observed data compiled by Ref. [48].
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arguably as predictive as the β1β4 model. Unfortunately,
this way of double-coupling would introduce a ghost
[59–61]. However, the authors in Ref. [59] proposed a
coupling to matter using a new composite metric which is
free of the ghost in the decoupling limit. The cosmological
background solutions in bigravity with this type of cou-
pling together with a comparison to observations were
studied in [62] (see also Ref [63] for the case of massive
gravity). The consequences for linear perturbations will be
discussed in a future work (in preparation).
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1 Introduction

Massive gravity has a long history [1–5], but only recently has the fully nonlinear, consis-
tent theory of a massive graviton been constructed by de Rham, Gabadadze, and Tolley
(dRGT) [6–11] (see ref. [12] for a comprehensive review). However, this theory does not
possess flat or closed Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmological solutions
with a flat reference metric [13], and the solutions which do exist, by choosing open curva-
ture or a different reference metric, are unstable to the Higuchi ghost [14] or other linear and
nonlinear instabilities [15–20].

The search for viable cosmologies with a massive graviton has involved two routes. One
is to extend dRGT by adding extra degrees of freedom. For example, these problems are at
least partially cured in bigravity, where the second metric is given dynamics [21–33]. Other
extensions of massive gravity, such as quasidilaton [34], varying-mass [13, 35], nonlocal [36–
38], and Lorentz-violating [39, 40] massive gravity, also seem to possess improved cosmological
behavior. The other approach is to give up on homogeneity and isotropy. While FLRW
solutions are important for their mathematical simplicity, which renders them easy both to
compute and to compare to observations, the Universe could in principle have anisotropies
which have such low amplitude, are so much larger than our horizon, or both, that we cannot
readily observe them. Remarkably, these cosmologies not only exist in massive gravity but
are locally (i.e., within the horizon) arbitrarily close to the standard FLRW case [13]. The
general scenario of an FLRW metric with inhomogeneous Stückelberg fields has been derived
in refs. [41, 42]. This includes, but is not limited to, the case in which the reference metric is
still Minkowski space, but only has the canonical form ηµν = diag(−1, 1, 1, 1) in coordinates
where gµν is not of the FLRW form [43]. The inhomogeneous and anisotropic solutions are
reviewed thoroughly in ref. [12]. See ref. [44] for a review of cosmology in massive gravity
and some of its extensions.

Recently a workaround that allows consistent flat FLRW solutions in the context of
dRGT massive gravity — i.e., the theory with only a single, massive graviton — was dis-
covered in ref. [45]. This solution is based on the fact that massive gravity contains a fixed
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reference metric, and matter can in principle couple to both metrics [46–48], although care
must be taken to ensure this coupling does not reintroduce the exorcised ghost [45, 49]. In
this scenario, matter is coupled to an effective or Jordan-frame metric given by

geff
µν ≡ α2gµν + 2αβgµαXα

ν + β2ηµν , (1.1)

where gµν is the dynamical metric, ηµν is the Minkowski reference metric, and Xµ
ν ≡

(
√

g−1η)µ
ν . This effective metric was arrived at in the vielbein formulation by a comple-

mentary derivation in ref. [50], and is claimed to be ghost-free at least within the effective
theory’s régime of validity [45, 51, 52]. In ref. [45], it was shown that flat FLRW solutions
exist when α, β 6= 0, and a worked example was presented in which one or more scalar
fields couples to geff

µν . The matter coupling has since been studied in the context of bigravity
in refs. [53, 54], where it was shown to be consistent with observational data of the cosmic
expansion.

In this paper we explore the basic properties of these newly-allowed massive cosmologies
from an observationally-oriented standpoint. Unusually, the proof that FLRW cosmologies
exist leans heavily on the choice of a fundamental field as the matter source coupled to the
effective metric. In a standard late-Universe setup where matter is described by a perfect
fluid with constant equation of state w (or even more generally when w only depends on the
scale factor), this result does not hold, and FLRW solutions are constrained to be nondy-
namical, just as in standard dRGT. More generally, the pressure of at least one of the matter
components coupled to geff

µν must depend on something besides the scale factor — such as
the lapse or the time derivative of the scale factor — for massive-gravity cosmologies to be
consistent. This is why fields, which have kinetic terms where the lapse necessarily appears,
are good candidates to obtain sensible cosmological solutions. Consequently the standard
techniques of late-time cosmology cannot be applied to this theory. We emphasize this does
not necessarily imply that cosmological solutions do not exist, but rather that we must ei-
ther employ a more sophisticated description of the matter sector or include new degrees of
freedom in order to obtain realistic models which can be reliably confronted with data.

Our focus here is on models with an extra, “dark” scalar degree of freedom coupled to
geff
µν . While we do not aim to rule these out, we show that these solutions exhibit pathologies in

the early- and late-time limits if all matter couples to the effective metric, and the scalar-field
physics would need to be highly contrived to avoid these issues, although these pathologies are
largely avoided if the equivalence principle is broken and only the new dark sector couples to
geff
µν . Moreover, the reliance on a dark sector which may well be gravitationally subdominant

and high-energy implies a violation of the decoupling principle, in which the low-energy
expansion of the Universe should not be overly sensitive to high-energy physics.

During the completion of this paper, ref. [55] appeared which studied the background
cosmology of this theory with a scalar field coupled to the effective metric, and demonstrated
its perturbative stability. We agree with their results wherever we overlap. Our emphasis
differs, however, as we focus on the effects of the perfect fluids, particularly dust and radiation,
expected to be gravitationally dominant in the late Universe.

The rest of this paper is organized as follows. In section 2 we derive and discuss the
cosmological evolution equations in this theory. In section 3 we elucidate the conditions
under which the no-go theorem is violated and dynamical cosmological solutions exist. We
discuss in section 4 some of the nonintuitive features of the Einstein-frame formulation of
the theory, and how these are resolved in the Jordan-frame description. In section 5 we
study cosmologies containing only a scalar field, and generalize this to include a perfect fluid

– 2 –
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coupled to the effective metric in section 6. In section 7 we consider an alternative setup in
which the scalar field couples to the effective metric while the perfect fluid couples to the
dynamical metric. We discuss our results and conclude in section 8.

2 Cosmological backgrounds

If all matter fields couple to geff
µν , the theory is defined by the action

S = −M2
Pl

2

∫
d4x

√−gR + m2M2
Pl

∫
d4x

√−g
4∑

n=0

βnen (X)

+

∫
d4x

√−geffLm (geff , Φ) , (2.1)

where en are the elementary symmetric polynomials of the eigenvalues of X, βn are dimen-
sionless free parameters characterizing the strength of the different graviton interactions, and
Φ represents the matter fields. The Einstein equation for this theory was derived in ref. [54]
and can be written in the form1

(X−1)(µαGν)α+m2
3∑

n=0

(−1)nβngαβ(X−1)(µαY
ν)
(n)β =

α

M2
Pl

det(α+βX)(α(X−1)(µαT ν)α+βTµν),

(2.2)
where the stress-energy tensor is defined in the usual way with respect to the effective metric,

Tµν =
2√−geff

δ
[√−geffLm

(
geff
µν , Φ

)]

δgeff
µν

, (2.3)

and the matrices Y(n) are given by

Y(0) ≡ 1,

Y(1) ≡ X − 1 [X] ,

Y(2) ≡ X2 − X [X] +
1

2
1

(
[X]2 −

[
X2

])
,

Y(3) ≡ X3 − X2 [X] +
1

2
X

(
[X]2 −

[
X2

])

− 1

6
1

(
[X]3 − 3 [X]

[
X2

]
+ 2

[
X3

])
. (2.4)

Notice that for diagonal metrics, including the FLRW metric, the symmetrization in the
Einstein equation can be dropped and we can obtain a simpler version,

Gµν + m2
3∑

n=0

(−1)nβngµαY ν
(n)α =

α

M2
Pl

det(α + βX) (αTµν + βXµ
αT να) . (2.5)

Let us assume a flat FLRW ansatz for gµν of the form

gµνdxµdxν = −N2(t)dt2 + a2(t)δijdxidxj , (2.6)

1Our convention is that indices on the Einstein tensor Gµν are raised with gµν .
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and choose unitary gauge for the Stückelberg fields, ηµν = diag(−1, 1, 1, 1), so the effective
metric is given by

geff
µνdxµdxν = −N2

eff(t)dt2 + a2
eff(t)δijdxidxj , (2.7)

where the effective lapse and scale factor are related to N and a by

Neff = αN + β, aeff = αa + β. (2.8)

We will define the Hubble rates for gµν and geff
µν by

H ≡ ȧ

aN
, Heff ≡ ȧeff

aeffNeff
. (2.9)

Notice that these are defined slightly differently than usual because of the inclusion of the
lapse. This is because in diffeomorphism-invariant theories, such as general relativity, the
lapse can be fixed by a gauge transformation and so corresponds to a choice of time coordinate.
Indeed, in such a theory ȧ/aN would simply be the Hubble rate defined in cosmic time (i.e.,
ȧ/a with N = 1). Because we do not have this freedom in massive gravity (once we have fixed
the Stückelberg fields), we cannot freely choose a time coordinate in this way, and neither
the lapse nor the time coordinate, t, has any physical meaning on its own. Instead these
quantities will only appear through the combinations Ndt and Neffdt. This motivates the
Hubble rates we have defined in eq. (2.9), which are simply d ln a/Ndt and d ln aeff/Neffdt.

Now let us derive the cosmological equations of motion. The time component of eq. (2.2)
yields the Friedmann equation,

3H2 =
αρ

M2
Pl

a3
eff

a3
+ m2

(
β0 +

3β1

a
+

3β2

a2
+

β3

a3

)
, (2.10)

where ρ ≡ −geff
00 T 00 is the density of the matter source coupled to geff

µν .
2 The spatial compo-

nent of eq. (2.2) gives us the acceleration equation,

3H2 +
2Ḣ

N
+

αp

M2
Pl

Neffa2
eff

Na2
= m2

[
β0 + β1

(
1

N
+

2

a

)
+ β2

(
2

aN
+

1

a2

)
+

β3

Na2

]
, (2.11)

where p ≡ (1/3)geff
ij T ij is the pressure. Notice that the double coupling leads to a time-

dependent coefficient multiplying the density and pressure terms in eqs. (2.10) and (2.11) and
hence a varying gravitational constant for cosmological solutions. The Friedmann equation
for the effective Hubble rate, Heff , can be determined from eq. (2.10) by the relation

Heff = α
Na

Neffaeff
H, (2.12)

which follows from eq. (2.8). Note that for practical purposes one could freely set α = 1 here
by rescaling gµν , MPl, and βn; only the ratio β/α is physical [53].

Matter is covariantly conserved with respect to geff
µν ,

∇eff
µ Tµν = 0, (2.13)

2If we have additional matter coupled to gµν , its density will enter the Friedmann equation (2.10) in the
standard way.
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from which we can obtain the usual energy conservation equation written in terms of the
effective metric,

ρ̇ + 3
ȧeff

aeff
(ρ + p) = 0. (2.14)

As in general relativity, this holds independently for each species of matter as long as we
assume that interactions between species are negligible. Finally, we can take the divergence
of the Einstein equation (2.2) with respect to gµν and specialize to the FLRW background
to find, after imposing stress-energy conservation, the “Bianchi constraint,”

m2M2
Pla

2P (a)ȧ = αβa2
effpȧ, (2.15)

where we have defined

P (a) ≡ β1 +
2β2

a
+

β3

a2
. (2.16)

This can equivalently be derived using eqs. (2.10), (2.11), and (2.14), as well as by leaving
the Stückelberg fields unfixed (recall that we have been working in unitary gauge from the
start) and taking their equation of motion [13, 45]. The pressure, p, appearing in eq. (2.15)
is the total pressure of the Universe, or, if different species couple to different metrics, the
total pressure of all matter coupled to geff

µν .

3 When do dynamical solutions exist?

In the original, singly-coupled formulation of massive gravity, β = 0 and so the right-hand
side of eq. (2.15) vanishes, with the result that a is constrained to be constant. This is nothing
other than the no-go theorem on flat FLRW solutions in massive gravity. A nondynamical
cosmology is, of course, still a solution when α and β are nonzero, in which case the values
of a and N are determined from eqs. (2.10) and (2.11). The question is now under which
circumstances the theory also allows for dynamical a.

To begin with, let us follow the standard techniques of cosmology by modeling the
matter as a perfect fluid with p = wρ, where w is either a constant or depends only on aeff .
Assuming that ȧ 6= 0, eq. (2.15) becomes

m2M2
Pla

2P (a) = αβwa2
effρ. (3.1)

Notice that due to our equation of state, ρ is a function only of a (or, equivalently, aeff). To
see this, consider eq. (2.14) in the form

d ln ρ

d ln aeff
+ 3 [1 + w(aeff)] = 0. (3.2)

Integrating this will clearly yield ρ = ρ(aeff). Unless the left-hand side of eq. (3.1) has
exactly the same functional form for aeff as the right hand side (which is, e.g., the case when
w = −1/3 and β2 = β3 = 0), this equation is not consistent with a time-varying a. The
theory does therefore not give viable cosmologies where all matter coupled to geff

µν is described
with an equation of state p = wρ if w is constant or depends only on the scale factor, as is
the case with, e.g., a standard perfect fluid.

This conclusion is avoided if the pressure also depends on the lapse. In this case, eq. (2.15)
becomes a constraint on the lapse, unlocking dynamical solutions.3 The most obvious way to

3Another possibility is that the pressure depends on ȧ. Given the functional form of this dependence, the
effective Hubble parameter in terms of aeff can then be determined by combining eqs. (2.12), (2.15), and (4.3).
We do not discuss this case any further.
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obtain a lapse-dependent pressure is to source the Einstein equations with a fundamental field
rather than an effective fluid. This was exploited by ref. [45] to find dynamical cosmologies
with a scalar field coupled to geff

µν . We discuss this case in more detail below. Therefore, while
physical dust-dominated solutions may exist, we must either include additional degrees of
freedom or treat the dust in terms of fundamental fields.4 The standard methods of late-time
cosmology cannot be applied to doubly-coupled massive gravity.

4 Einstein frame vs. Jordan frame

Before examining the cosmological solutions in detail, it behooves us to further clarify the
somewhat unusual differences between this theory’s Einstein and Jordan frames. If all matter
couples to the effective metric, then, as we show below, the Friedmann equation in the
Einstein frame is completely independent of the matter content of the Universe (up to an
integration constant which behaves like pressureless dust). In the Einstein-frame description,
matter components with nonzero pressure affect the cosmological dynamics not through
the Hubble rate but rather through the lapse, N . Because the lapse is involved in the
transformation from the Einstein-frame H to the Jordan-frame Heff , cf. eq. (2.12), the Jordan-
frame Friedmann equation (corresponding to the observable Hubble rate) does depend on
matter.

We proceed to demonstrate this explicitly. Regardless of the functional form of p,
and whether or not it depends on the lapse, as long as ȧ 6= 0 the pressure is constrained
by eq. (2.15) to have an implicit dependence on a given by

p(a) =
m2M2

Pla
2P (a)

αβa2
eff

. (4.1)

The continuity equation (2.14) can then be integrated to obtain

ρ(a) =
C

a3
eff

− 3m2M2
Pl

βa3
eff

(
β1

3
a3 + β2a

2 + β3a

)
, (4.2)

where C is a constant of integration. Inserting this into eq. (2.10), we find a generic form for
the Einstein-frame Friedmann equation,

3H2 = m2
(
c0 + 3

c1

a
+ 3

c2

a2
+

c3

a3

)
, (4.3)

where we have defined the coefficients

c0 ≡ β0 − α

β
β1,

c1 ≡ β1 − α

β
β2,

c2 ≡ β2 − α

β
β3,

c3 ≡ β3 +
αC

m2M2
Pl

. (4.4)

4We note, however, that if the pressure of the dust is truly taken to be vanishing on large scales, then it
would seem from the Bianchi constraint (2.15) that the no-go theorem is still a problem.
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Notice that the functional forms of p(a), ρ(a), and H2(a) are completely independent of the
energy content of the Universe, except for an integration constant scaling like pressureless
matter. It is interesting to note that in the vacuum energy case (see ref. [53]) with βn =
(α/β)βn+1, all of the ci coefficients apart from c3 vanish. Therefore if the metric interactions
took the form of a cosmological constant for geff

µν , then the Einstein-frame Friedmann equation
would scale as a−3.

We emphasize that the dependence of the Einstein-frame quantities solely on a and the
mass terms is interesting and is certainly unusual, but it does not mean that matter does
not affect the cosmological dynamics; as discussed above, if all matter couples to geff

µν , then
the observable Hubble rate is Heff , and this does depend on the matter content. If not all
matter were coupled to geff

µν — for example, if the standard model fields were coupled to gµν

(as it is argued they should in ref. [45]) — then the expression (4.2) for ρ(a) would only apply
to the total density of the matter coupling to the effective metric, while the density of the
fields coupled to the dynamical metric would appear in the Friedmann equation for H in the
usual way.

5 Massive cosmologies with a scalar field

Let us turn to the properties of cosmological solutions. Recall that if we include matter whose
pressure does not only depend on the scale factor, aeff , then the Bianchi constraint (2.15)
may not rule out dynamical cosmological solutions. For a pressure that also depends on the
lapse, eqs. (2.15) and (4.3) determine N and H, respectively. These can be used in turn
to derive the Jordan-frame Friedmann equation. Because the lapse enters into the frame
transformation (2.12), the Jordan frame can be sensitive to matter even though the Einstein
frame is not. The lapse thus plays an important and novel role in massive gravity compared
to general relativity.

As discussed above, lapse-dependent pressures are not difficult to obtain: they enter
whenever we consider a fundamental field with a kinetic term. Consider a universe dominated
by a scalar field, χ, with a canonical kinetic term and an arbitrary potential.5 Its stress-energy
tensor is given by

Tµν = ∇µ
effχ∇ν

effχ −
(

1

2
∇αχ∇α

effχ + V (χ)

)
gµν
eff , (5.1)

where ∇µ
eff ≡ gµν

eff ∇eff
ν and V (χ) is the potential. The density and pressure associated to χ are

ρχ =
χ̇2

2N2
eff

+ V (χ), pχ =
χ̇2

2N2
eff

− V (χ). (5.2)

The constraint (2.15) now has a new ingredient; the lapse, Neff , which appears through the
scalar field pressure.6

One can then use the Bianchi identity to solve for the lapse and substitute it into
the Friedmann equation to obtain an equation for the cosmological dynamics that does not

5We note here that, for illustrative purposes, all of our discussions of a scalar field will assume that it is
canonical. The more general P (X) case is discussed in some detail in ref. [45].

6The α2 theory studied in ref. [45] can be obtained by setting β0 = 3, β1 = −3/2, β2 = 1/2, and β3 = 0 [10].
With this parameter choice, the Bianchi constraint (2.15) reproduces eq. (5.8) of ref. [45].
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involve the lapse [45]. A simple way to substitute out the lapse is to use the relation, following
straightforwardly from eq. (2.15),

χ̇2

2N2
eff

= V (χ) +
m2M2

Pla
2P (a)

αβa2
eff

, (5.3)

as the lapse only appears in the Einstein-frame Friedmann equation through χ̇2/2N2
eff . Note

however that we can also use eq. (5.3) to solve for the potential, V (χ), and write the Einstein-
frame Friedmann equation in a form that does not involve the potential. Of course, if we were
to additionally integrate the continuity equation as discussed above, then the Einstein-frame
Friedmann equation would take the form of eq. (4.3) which contains neither the kinetic nor
the potential term.

Using eqs. (4.1) and (4.2) we can find expressions for the kinetic and potential energies
purely in terms of a,

K(a) =
m2M2

Pla
3

2αa3
eff

(c1

a
+ 2

c2

a2
+

c3

a3

)
, (5.4)

V (a) = −m2M2
Pla

3

2αa3
eff

(
2d0 +

d1

a
+ 2

d2

a2
+

d3

a3

)
, (5.5)

where K ≡ χ̇2/2N2
eff , the ci are defined in eq. (4.4), and we have further defined

d0 ≡ α

β
β1,

d1 ≡ β1 + 5
α

β
β2,

d2 ≡ β2 + 2
α

β
β3,

d3 ≡ β3 − αC

m2M2
Pl

. (5.6)

The integration constant, C, appears when solving the continuity equation (2.14). The
Friedmann equation is given by the generic eq. (4.3). That is, we are left with the pecu-
liar situation that the pressure, energy density, and Einstein-frame Friedmann equation are
completely insensitive to the form of the scalar field potential. As discussed above, this lack
of dependence on the details of the scalar field physics is illusory; the lapse does depend on
V (χ) and χ̇, cf. eq. (5.3), and in turn the Jordan-frame expansion history depends on the
lapse, cf. eq. (2.12).

Let us briefly remark on a pair of important exceptions. The no-go theorem forbidding
dynamical a still applies when there is a scalar field present if either the potential does not
depend on the lapse (such as a flat potential) or the field is not rolling. Let us rewrite eq. (2.14)
(which is equivalent to the Klein-Gordon equation) as

d

dt

(
χ̇2

2N2
eff

+ V (χ)

)
+ 3

ȧeff

aeff

χ̇2

N2
eff

= 0. (5.7)

If V (χ) is independent of Neff then χ̇2/N2
eff cannot depend on Neff and, by extension, neither

can p = χ̇2/2N2
eff − V (χ). In the specific case of V (χ) = const. this is clearly true, and we

find χ̇2/N2
eff ∝ a−6

eff , so p = p(a). Similarly, if the field is not rolling, χ̇ = 0, then it is clear
from eq. (5.2) that p loses its dependence on the lapse.
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To conclude this section, when a scalar field is coupled to the effective metric, we avoid
the no-go theorem and it is possible to have dynamical a, unless the potential does not
depend on the lapse (including a constant potential) or the field is not rolling. This result
agrees with and slightly generalizes that presented in refs. [45, 55]. In a realistic scenario,
however, we will have not only a scalar field but also matter components present. We now
turn to that scenario.

6 Adding a perfect fluid

We have seen that the no-go theorem on FLRW solutions in dRGT massive gravity continues
to hold in the doubly-coupled theory if the only matter coupled to the effective metric is
a perfect fluid whose energy density and pressure depend only on the scale factor. This
complicates the question of computing dust-dominated or radiation-dominated solutions in
massive gravity. One solution might be to treat the dust in terms of fundamental fields.
Another would be to add an extra degree of freedom such as a scalar field. Its role is to
introduce a lapse-dependent term into the Bianchi constraint (2.15) and thereby avoid the
no-go theorem.

It is this possibility which we study in this section. In section 5 we examined the
scalar-only case. Let us now include other matter components, such as dust or radiation,
also coupled minimally to geff

µν . We assume that the density and pressure of these matter
components, ρm and pm, only depend on aeff .7 We can then write the total density and
pressure as

ρ = K + V + ρm,

p = K − V + pm, (6.1)

so that

K =
ρ + p − (ρm + pm)

2
,

V =
ρ − p − (ρm − pm)

2
. (6.2)

Note that eqs. (5.4) and (5.5) no longer hold, as they were derived in the absence of other
matter, but eqs. (4.1) and (4.2) are still valid and are crucial.

We would like to investigate the cosmological dynamics of this model. Rather than
explicitly solving for the lapse and substituting it into the Friedmann equation for Heff ,
which leads to a very complicated result, we will take advantage of the known forms of
K(aeff) and V (aeff), as well as the fact that Neff only appears in Heff and K through the
operator

d

dτ
=

1

Neff

d

dt
. (6.3)

The physical Hubble rate is given by

Heff ≡ ȧeff

aeffNeff
=

αȧ

aeffNeff
. (6.4)

7As discussed above and in ref. [45], in principle any dust or radiation is made of fundamental particles for
which the stress-energy tensor does depend on the lapse. We introduce this effective-fluid description because
it is the standard method of deriving cosmological solutions in nearly any gravitational theory and is thus an
important tool for comparing to observations.
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Using the chain rule, we can write

ȧ =
da

dt
=

da

dV

dV

dχ

dχ

dt
=

V ′χ̇
(dV/da)

, (6.5)

where a prime denotes a derivative with respect to χ. We also know that χ̇ = Neff

√
2K,

giving

ȧ =
V ′Neff

√
2K

(dV/da)
, (6.6)

which we can plug into eq. (6.4) to obtain

H2
eff =

(V ′)22K

a2
eff(dV/daeff)2

. (6.7)

This is the Friedmann equation for any universe with a scalar field rolling along a
nonconstant potential. Every term in eq. (6.7) can be written purely in terms of aeff , allowing
the full cosmological dynamics to be solved in principle. K and dV/daeff are given in terms
of aeff by eq. (6.2) [using eqs. (4.1) and (4.2)]. V ′ as a function of aeff can be determined
from the same equations once the form of V (χ) is specified. Note that while the lapse is not
physically observable, its evolution in terms of a can then be fixed by using eq. (2.12) to find

N2

N2
eff

= 2K

(
V ′

αaH(dV/daeff)

)2

, (6.8)

where H(a) is given by eq. (4.3).
Assuming that the matter has a constant equation of state, we can use the known forms

of K(a) and V (a) to find a relatively simple expression for the Friedmann equation up to V ′,

(
Heff

V ′

)2

=
4α3βa3

eff

(
C0 + C1aeff + C2a

2
eff + Cρa

3
eff

)
[
3C0 + 4C1aeff + 5C2a2

eff + 3(1 − w)Cρa3
eff

]2 , (6.9)

where for brevity we have defined

C0 ≡ β
[
α3C + β2β1 + m2M2

Pl (3α (αβ3 − ββ2))
]
,

C1 ≡ −2m2M2
Pl

[
α (αβ3 − 2ββ2) + β2β1

]
,

C2 ≡ m2M2
Pl (ββ1 − αβ2) ,

Cρ ≡ −α3β(1 + w)ρm. (6.10)

Notice that the right-hand side is a function of a only.
The Friedmann equation (6.9) cannot be straightforwardly solved for generic choices of

the potential, so we will make progress by examining past and future asymptotics, taking
into account radiation (w = 1/3) in the former and dust (w = 0) in the latter. Before we do
this, it is important to note that taking these asymptotics is not always simple, as we cannot
necessarily assume that aeff → 0 at the beginning of the Universe or that aeff → ∞ as t → ∞.
This means that, for example, our late-time analysis (in which aeff is taken to infinity) will
only be applicable for cosmologies in which the Universe expands ad infinitum. Depending
on the choice of scalar field potential, the Universe might end up, for example, recollapsing
or approaching an asymptotic maximum value of aeff . A major aim of this section is to show
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the difficulties in obtaining standard cosmologies with a scalar field and perfect fluid both
coupled to geff

µν ; since a Universe which does not expand to infinity is highly nonstandard,
we will find it sufficient to take aeff → ∞ as the late-time limit in our search for viable
cosmologies.8 We will see an example of when this limit may not be applicable.

Taking aeff → ∞ in eq. (6.2), we find

χ̇2

2N2
eff

aeff→∞−−−−−→ m2M2
Pl (ββ1 − αβ2)

2α3βaeff
, (6.11)

V (χ)
aeff→∞−−−−−→ −β1m

2M2
Pl

α3β
. (6.12)

We see that the scalar field slows to a halt: V (χ) approaches a constant, while dχ/dτ , where
dτ = Neffdt is the proper time, approaches zero. Notice that V (χ) is forced by the dynamics
to approach a specific value, V → −β1m

2M2
Pl/α3β. A priori there is no guarantee this

value is within the range of V (χ), assuming the scalar field potential is not somehow set
by gravitational physics. For example, a positive-definite potential like V ∼ χ2 or V ∼ χ4

would never be able to reach such a value, assuming α, β, and β1 are positive. Indeed, one
can solve eq. (6.2) explicitly for χ(aeff) in such a case and find that, for large values of aeff ,
χ and Heff are imaginary: there is a maximum value of aeff at which χ2 and H2

eff cross zero
and become negative. Because such cosmologies are highly nonstandard and are unlikely to
agree with data, we leave their study for future work.

Taking the large-aeff limit of the Friedmann equation (6.9), we obtain

(
Heff

V ′

)2
aeff→∞−−−−−→ 4α3β

25C2
aeff . (6.13)

Because V (χ) approaches a late-time value given by eq. (6.12), then assuming V (χ) is invert-
ible, χ must also approach a constant χc. This means that V ′ = (dV/dχ)|χ=χc contributes a
constant to eq. (6.13). This is counter-intuitive; while the scalar field approaches a constant,
χ̇ → 0, V ′ can and generically will approach a nonzero constant, which is just the slope of the
potential evaluated at the asymptotic-future value of χ, χc. The Klein-Gordon equation (5.7)
is still satisfied because, as long as V ′ does not go to zero, we can see from eq. (6.13) that
Heff → ∞ at late times. Therefore, the reason the scalar field slows down, in terms of the
Klein-Gordon equation, is that the Hubble friction grows arbitrarily large, bringing the field
to a halt even on a potential with a nonzero slope.9 Unless the potential is contrived such
that V ′ → 0 as V → −β1m

2M2
Pl/α3β, we see from eq. (6.13) that Heff generically blows up,

which is potentially disastrous behavior. This implies a violation of the null energy condition.
As we discuss below, if V ′ goes to 0 then, depending on the speed at which it does so,

Heff may be better behaved.
At early times, demanding the existence of a sensible radiation era leads to further

problems. Assuming radiation couples to geff
µν , then ρm ∼ a−4

eff with pm = ρm/3. We have,
cf. eq. (6.2), that 2K = ρ + p − (ρm + pm), but, cf. eq. (4.2), ρ and p do not have any
terms scaling as steeply as a−4

eff . Therefore, in the presence of radiation, ρχ and pχ pick up a
negative term going as a−4

eff to exactly cancel out ρm and pm, leading to K < 0 at sufficiently
early times. From eq. (6.7) we see that this would lead to a negative H2

eff , and hence to an

8Of course, observations do not necessarily rule out the possibility of the scale factor not evolving to infinity,
but it seems likely that making such a model agree with the data would require some serious contrivances.

9We thank the referee for helpful discussions on this point.
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imaginary Hubble rate. Equivalently, we can take the early-time limit of eq. (6.9) to show,
setting ρm = ρ0a

−4
eff , (

Heff

V ′

)2
aeff→0−−−−→ − 3

4ρ0
a4

eff , (6.14)

so that again we see (for a real potential) Heff becoming imaginary.
How could these conclusions be avoided? We can reproduce sensible behavior, but only

if the potential is extremely contrived. At early times, we would need to arrange the scalar’s
dynamics so that V ′ → ∞ “before” (i.e., at a later aeff than) K crosses zero.10 We would then
reach the initial singularity, Heff → ∞, before the kinetic term turns negative.11 Moreover,
we would need to tune the parameters of the theory so that K = 0 happens at extremely early
times, specifically before radiation domination. At intermediate times, V ′ would need to scale
in a particular way to [through eq. (6.9)] reproduce H2

eff ∼ a−4
eff and H2

eff ∼ a−3
eff during the

radiation- and matter-dominated eras, respectively. Finally, in order to have Heff → const.

at late times, we see from eq. (6.13) that we would require V ′ to decay as a
−1/2
eff . We can

construct such a potential going backwards by setting Heff = HΛCDM in eq. (6.9), but there
is no reason to expect such an artificial structure to arise from any fundamental theory. Even
then we may still get pathological behavior: we can see from eq. (2.12) that Neff diverges if,
at some point during the cosmic evolution, Heffaeff = Ha.

7 Mixed matter couplings

Before concluding, we briefly discuss a slightly different formulation which avoids some of
these problems. If we consider a scalar field and a perfect fluid, the avoidance of the no-go
theorem on FLRW solutions only requires that the scalar field couple to geff

µν . In principle, all
other matter could still couple to gµν . In fact, this is the theory that was studied in ref. [45],
where it was argued more generally that only a new dark sector should couple to geff

µν , while
the standard model, as well as dark matter and dark energy, should couple to gµν . This
theory violates the equivalence principle in the scalar sector, but is not a priori excluded,
and will turn out to have somewhat better cosmological behavior. Moreover, there is a
compelling theoretical reason to consider such “mixed” couplings: matter loops would only
generate a cosmological constant and would not destabilize the rest of the potential. This is
because the vacuum energy associated to geff

µν takes the form of the dRGT potential with all
βn parameters nonzero, while the vacuum energy of matter coupled to gµν only contributes
to β0 [56]. We note that this problem may nevertheless persist with the dark fields that
couple to geff

µν , unless their vacuum energy is somehow protected from loop corrections. We
have seen in section 5 that one simple possibility, using a massless field, does not seem to
work because after integrating the Klein-Gordon equation, the pressure loses its dependence
on the lapse.

Because the perfect fluid couples to gµν and we derived the Bianchi constraint (2.15) by
taking the g-metric divergence of the Einstein equation, the constraint will now only contain
pχ rather than the total pressure, i.e.,

m2M2
Pla

2P (a)ȧ = αβa2
effpχȧ. (7.1)

10The other obvious possibility, having dV/daeff reach 0 before K does, is impossible given the forms of
K(a) and V (a).

11This proposal has an interesting unexpected advantage: the Universe would begin at finite aeff , so a UV
completion of gravity might not be needed to describe the Big Bang in the matter sector.
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This is the same constraint as in the scalar-only case discussed in section 5, so the scalar’s
kinetic and potential energies have the same forms, K(a) and V (a), as in eqs. (5.4) and (5.5).
The physical Hubble rate is now H, which after solving for the lapse is determined by the
equation12

3H2 =
ρm

M2
Pl

+ m2
(
c0 + 3

c1

a
+ 3

c2

a2
+

c3

a3

)
, (7.2)

where the ci coefficients are defined in eq. (4.4). We emphasize that eq. (7.2) is completely
generic when some matter couples to gµν and some, possibly in a dark sector, couples to
geff
µν . We have not assumed anything about the structure of the fields coupling to the effective

metric, as we can derive eq. (4.2) for ρ(a) and hence eq. (7.2) simply by using the Bianchi
constraint to integrate the stress-energy conservation equation.

The cosmological behavior in this theory is fine. Because the scalar field does not have
to respond to matter to maintain a particular form of ρ(a) and p(a), we no longer have
pathological behavior in the early Universe, where there will be a standard a−4 evolution.
Moreover, as was pointed out in ref. [55], there is late-time acceleration: as ρm → 0, 3H2 →
m2(β0 − (α/β)β1), which, if positive, leads to an accelerating expansion.

However, these are not always self -accelerating solutions. We will demand two condi-
tions for self-acceleration: that the late-time acceleration not be driven by a cosmological
constant, and that it not be driven by V (χ), as both of these could easily be accomplished
without modifying gravity. In other words, we would like the effective cosmological constant
at late times to arise predominantly from the massive graviton.

Let us start with the first criterion, the absence of a cosmological constant. One can
write the dRGT interaction potential in terms of elementary symmetric polynomials of the
eigenvalues of either X ≡

√
g−1f or K ≡ I − X, with the strengths of the interaction terms

denoted by βn in the first case and by αn in the latter [10, 12]. What is notable is that
α0 6= β0: the cosmological constant is not the same in these two parametrizations. Terms
proportional to

√−g arise from the other interaction terms when transforming from one basis
to the other. We have worked in terms of βn as it is mathematically simpler, but in massive
gravity with a Minkowski reference metric, the presence of a Poincaré-invariant preferred
metric allows for a more concrete definition of the cosmological constant in terms of αn.13

Consider expanding the metric as

gµν = ηµν + 2hµν + hµαhνβηµν . (7.3)

This expansion is useful because the metric is quadratic in hµν but is fully nonlinear, i.e., we
have not assumed that hµν is small [12]. In this language, the cosmological constant term,
proportional to

√−g, can be eliminated by setting α0 = α1 = 0. Making this choice of
parameter, and using the fact that αn and βn are related by [10]

βn = (4 − n)!
4∑

i=n

(−1)i+n

(4 − i)!(i − n)!
αi, (7.4)

12Using the transformations to the α2 theory in footnote 6, we recover eq. (5.9) of ref. [45].
13We thank Claudia de Rham for helpful discussions on this point.
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we find the effective cosmological constant can be expressed in terms of α2,3,4 by

Λeff =
m2

3

(
β0 − α

β
β1

)

=
m2

3

[
3α2

(
2 +

α

β

)
− α3

(
4 + 3

α

β

)
+ α4

(
1 +

α

β

)]
. (7.5)

Part of this constant comes from the fixed behavior of the scalar field potential.14 This
piece is not difficult to single out: it consists exactly of the terms in eq. (7.5) proportional to
α/β. Taking the late-time limit of eq. (5.5), we can see that V (χ) asymptotes to

V (χ)
aeff→∞−−−−−→ −m2M2

Plβ1

α3β
. (7.6)

Now consider the Friedmann equation in the form (2.10) with, at late times, ρ → 0. We can
define a cosmological-constant-like piece solely due to the late-time behavior of V given by

Λχ ≡ αV

3M2
Pl

(aeff

a

)3 aeff→∞−−−−−→ m2

3

α

β
(3α2 − 3α3 + α4) . (7.7)

Then eq. (7.5) can simply be written in the form

Λeff =
m2

3
(6α2 − 4α3 + α4) + Λχ =

m2

3
β0 + Λχ, (7.8)

where in the last equality we mention that the residual term is nothing other than m2β0/3,
which is simply a consistency check.

The modifications to gravity induced by the graviton mass therefore lead to a constant
contribution to the Friedmann equations at late times, encapsulated in m2β0/3 (with α0 =
α1 = 0, so we do not identify this term with a cosmological constant). In a truly self-
accelerating universe, this term should dominate Λχ. If it did not, the acceleration would be
partly caused by the scalar field’s potential, and one could get the same end result in a much
simpler way with, e.g., quintessence. For generic values of αn and for β ∼ O(1), both of
these contributions are of a similar size and will usually have the same sign. To ensure self-
accelerating solutions, one could, for example, tune the coefficients so that 3α2−3α3+α4 = 0
(the scalar field contributes nothing to Λeff) or 3α2−3α3+α4 < 0 (the scalar field contributes
negatively to Λeff), or take β ≪ 1 (the scalar field contributes negligibly to Λeff).

We end this section by briefly discussing the link between theory and observation in this
particular model. One might worry that the predictivity of the theory is hurt by demanding
that there be a new dark sector coupled to geff

µν . It is then natural to suspect that the task
of confronting doubly-coupled massive gravity with observations is hopelessly dependent
on the nature of this new dark sector, and the theory’s parameters will consequently be
more difficult to constrain. Yet we have seen in this section that that is not true: the
Friedmann equation (7.2) makes no reference to any details of the dark field or fields.15

14Notice from eq. (5.4) that, as in section 6, the scalar field slows down to a halt at late times, so there is
no contribution from the kinetic energy.

15This is not the case when all matter couples to the effective metric, as observations would trace geff
µν , which

is sensitive to the nature of the dark sector, rather than gµν . We have, however, seen that the case where the
standard model couples to gµν is by far the best-behaved version.
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Recall from section 4 that this is a consequence of the Bianchi constraint on the dark sector.
We thus have the unusual result that the expansion history in the theory with a new dark
sector, and nothing else, coupled to geff

µν is completely insensitive to the nature of the dark
fields.16 There could be one scalar field or more, with any assortment of potentials and
kinetic terms, and as long as they exist, and are subject to the technical conditions discussed
above (such as having a nontrivial potential, if the kinetic term is canonical), then their
contribution to the cosmological dynamics is given by the mass term in eq. (7.2). This is
good news for observers looking to perform geometrical tests of this theory. However, we are
not aware of any reason that this lack of dependence on the details of the dark sector should
extend beyond the simple background FLRW case. Even linear cosmological perturbations
might be sensitive to the dark physics [55], which would present a challenge in comparing
this theory to structure formation.

8 Discussion and conclusions

One can extend dRGT massive gravity by allowing matter to couple to an effective metric
constructed out of both the dynamical and the reference metrics. The no-go theorem ruling
out flat or closed homogeneous and isotropic cosmologies in massive gravity [13] can be
overcome when matter is “doubly coupled” in such a way [45, 55]. We have shown that
this result is, unusually, dependent on coupling the effective metric to a fundamental field,
as the no-go theorem is specifically avoided because the pressure of such matter depends
on the lapse function. This lapse dependence is not present in the perfect-fluid description
typically employed in late-time cosmological setups, such as radiation (p ∼ a−4

eff ) and dust
(p = 0), and therefore a universe containing only such matter will still run afoul of the
no-go theorem. While this may not be a strong physical criterion — cosmological matter
is still built out of fundamental fields — it presents a sharp practical problem in relating
the theory to cosmological observations. If we assume that matter is described by perfectly
pressureless dust, which is sensible on very large scales, then even the field description might
not be sufficient, as the absence of pressure would set the right-hand side of eq. (2.15) to
zero. Furthermore, if one uses a scalar field to avoid the no-go theorem, it cannot live on a
flat potential and must be rolling. The latter consideration would seem to rule out the use
of the Higgs field to unlock massive cosmologies, as we expect it to reside in its minimum
cosmologically.

Overall, in principle one can obtain observationally-sensible cosmologies in doubly-
coupled massive gravity, but either a new degree of freedom must be included, such as a
new dark field or some other matter source with a nontrivial pressure, or we must treat
cosmological matter in terms of their constituent fields. Thus we cannot apply the standard
techniques of late-time cosmology to this theory.

We have further shown that if dust and radiation are doubly coupled as well — which
is necessary if we demand the new scalar matter obey the equivalence principle — then the
cosmologies generically are unable to reproduce a viable radiation-dominated era, and in
the far future the Hubble rate diverges, rather than settling to a constant and producing
a late-time accelerated expansion. These pathologies can only be avoided if the scalar field
potential is highly contrived with tuned theory parameters, or dust and radiation do not
doubly couple. In the latter case, there is generically late-time acceleration, but for much
of the parameter space this is driven in large part by the potential of the scalar field. In

16See ref. [45] for a complementary derivation of this result.
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those cases the modification to general relativity may not be especially well motivated by
cosmological concerns, as the scalar field would play the role of dark energy and not provide
much benefit over simple quintessence. Otherwise, the parameters of the theory need to be
tuned to ensure that the theory truly self-accelerates.

It seems that the dRGT massive gravity only has viable FLRW cosmological solutions
— i.e., that evade the no-go theorems on existence [13] and stability [20] — if one either
includes a scalar field or some other “exotic” matter with a lapse-dependent pressure (or
possibly a pressure depending on ȧ) and couples it to the effective metric proposed in ref. [45]
or goes beyond the perfect-fluid description of matter. Even if one includes a new scalar
degree of freedom, significant pathologies arise if normal matter couples to the same effective
metric. In all setups, the need for descriptions beyond a simple perfect fluid makes this
theory problematic from an observational standpoint. Indeed, one might compare this to
the situation with the original dRGT theory, in which all matter couples to gµν . While
FLRW solutions do not exist in this case, it is possible by mildly breaking the assumption
of isotropy and homogeneity to evade the no-go theorem [13]. The real problem is that by
dropping the highly-symmetric FLRW ansatz, we lose a great deal of predictability and it
becomes significantly more difficult to unambiguously compare the theory to observations.

We end with three small caveats. Notice that we have assumed that in unitary gauge for
the Stückelberg fields, i.e., choosing coordinates such that ηµν = diag(−1, 1, 1, 1), the metric
has the usual FLRW form (2.6). However, that form is arrived at by taking coordinate
transformations of a more general homogeneous and isotropic metric, so that assumption
may be overly restrictive.17 Equivalently, one could consider a more general, inhomogeneous
and/or anisotropic gauge for the Stückelbergs.

We also note that if this theory does possess a ghost, even with a mass above the
strong-coupling scale, solutions to the nonlinear equations of motion could contain the ghost
mode and therefore not be physical.18 In other words, the ghost-free effective theory below
the strong coupling scale and the theory we have been studying may not have coinciding
solutions. However, a Hamiltonian analysis showed that the ghost does not appear around
FLRW backgrounds [45], suggesting that we have studied the correct cosmological solutions
to any underlying ghost-free theory.

Finally, if one simply gives dynamics to the reference metric, we end up with a theory of
doubly-coupled bigravity which treats the two metrics on completely equal footing and has
been shown to produce observationally viable cosmologies [53], although some of the issues
with doubly-coupled massive gravity, such as the potential ghost problem, will still remain.
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Abstract. The theory of bigravity offers one of the simplest possibilities to describe a mas-
sive graviton while having self-accelerating cosmological solutions without a cosmological
constant. However, it has been shown recently that bigravity is affected by early-time fast
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up to when perturbations are in the linear regime and use a cut-off to stop the growing of the
metric perturbations. This analysis, although more consistent, still leads to growing tensor
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Keywords: modified gravity, CMBR polarisation, gravitational waves and CMBR polariza-
tion, dark energy theory

ArXiv ePrint: 1503.02490

c© 2015 IOP Publishing Ltd and Sissa Medialab srl doi:10.1088/1475-7516/2015/05/052



J
C
A
P
0
5
(
2
0
1
5
)
0
5
2

Contents

1 Introduction 1

2 Bigravity 2

3 Tensor perturbations 5

3.1 Inflation 7

3.2 Radiation and matter dominated era 7

3.3 Inflationary initial conditions 8

3.4 The non-linear cut-off 9

4 Cosmic Microwave Background anisotropies in bigravity 11

5 Possible solutions to the growing mode problem 12

5.1 Changing the initial conditions for hf 15

5.2 Lowering the cut-off 16

5.3 Modifying the theory 17

6 Conclusions 18

1 Introduction

Evidence from an increasing number of cosmological observables favours an accelerating uni-
verse at late times [1–9]. This era of accelerated expansion may be due to novel gravitational
physics, which will be tested by ongoing and future experiments [10]. This possibility has
triggered vigorous interest in alternative theories of gravity [8, 11, 12]. Any modification of
gravity requires new degrees of freedom (dof). Since the theory of a massless graviton is
unique, new dofs are often gained by adding new fields. The simplest possibility is the addi-
tion of a scalar field, typically resulting in theories belonging to the Horndeski class [13, 14]
or beyond [15–17].

Formulating a theory of massive gravity has been a long standing problem in theoret-
ical physics due to the difficulties to incorporate the right degrees of freedom. The linear
Fierz-Pauli theory had been developed long time ago [18], but until recently all non-linear
completions introduced the so called Bouleware-Deser (BD) ghost [19], an extra dof that
makes the theory not viable. Despite the difficulties, a class of healthy theories has been
recently identified [20] in which a specific choice of the potential terms makes the theory
ghost-free [21]. All these theories of massive gravity describe an interaction of two tensor
fields in which the second one, the so called reference metric, is fixed. While massive gravity
only allows static solutions on homogeneous backgrounds [22], a bimetric theory with a dy-
namical reference metric does not introduce the BD ghost and describes dynamical cosmolo-
gies [23–25] (see also the reviews [26, 27]). Cosmological solutions in these bimetric theories
often allow for self-acceleration without the introduction of a cosmological constant [28] and
were successfully compared to observations at background level [28–30].

Many bigravity theories are however affected by gradient instabilities in their scalar
sector, as has been shown by studies of the linear perturbations [31–33] (see refs. [32, 34] for
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derivations of the equations refs. [35–39] for discussion of their dynamics). Stable evolution
can be achieved only in a two parameters class of models known as Infinite-Branch Bigravity
(IBB) [36]. In IBB, the reference metric (in keeping with common usage, we keep referring
to the second metric as reference metric even if in reality is dynamical; we also use the
notation f -metric) is contracting during the radiation and most of the matter era, until
it undergoes a bounce at low redshift and begins to expand, coinciding with the onset of
accelerated expansion in the physical metric without the need for a cosmological constant.
The early time contraction of the reference metric makes tensor perturbations grow with time
in IBB theories, as it was first shown in refs. [37, 40] (see also [32, 41] for modified tensor
perturbation equations). This growing mode couples to the physical metric and severely
modifies its dynamics, leading to observable consequences.

In this paper we will investigate the effects of these large tensor perturbations on the
Cosmic Microwave Background (CMB) and possible mechanisms to make the theory compat-
ible with current observations. The perturbations in the reference metric grow very fast and
rapidly become non-linear. At this point we will assume that tensor perturbations stabilize,
modeling this effect by introducing a cut-off in the perturbations of the reference metric.
Despite this treatment, the tensor growing mode significantly affects the evolution of the
physical metric, and the consequences can be seen as an enhancement of both temperature
and polarization spectra on low multipoles. These effects cannot be sufficiently reduced by
varying the bigravity or other cosmological parameters: making the theory viable requires
either fine tuning of the initial conditions, lowering the cut-off or modifying the theory. As
it will be shown below, sufficient suppression of the growing mode can be achieved by an
inflationary mechanism that produces Hubble-scale tensor perturbations at an energy scale
of order few GeV.

2 Bigravity

We start with the action of the form [23]

S = −
M2
g

2

ˆ

d4x
√−gR(g)−

M2
f

2

ˆ

d4x
√
−fR(f) (2.1)

+m2M2
g

ˆ

d4x
√−g

4∑

n=0

βnen(X) +

ˆ

d4x
√−gLm

where en(X) are the elementary symmetric polynomials of the eigenvalues of the matrices
Xα
γ ≡

√
gαβfβγ , Mg and Mf are the Planck masses for gµν and fµν , respectively, m is the

mass scale of the graviton, βn are arbitrary constants and Lm = Lm(g, ψ) is the matter
Lagrangian. Throughout the paper we will use a mostly plus metric signature convention
and natural units in which the speed of light c is set to one.

Here gµν is the standard metric coupled to matter fields in the Lm Lagrangian, while
fµν is an additional dynamical tensor field. In the following we express masses in units of
the Planck mass Mg and the mass parameter m2 will be absorbed into the parameters βn.
Varying the action with respect to gµν , one obtains the following equations of motion:

Gµν +
1

2

3∑

n=0

(−1)nm2βn

[
gµλY

λ
(n)ν(X) + gνλY

λ
(n)µ(X)

]
= Tµν (2.2)
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where Gµν is Einstein’s tensor, and the expressions Y λ
(n)ν(X) are defined as

Y(0) = I, (2.3)

Y(1) = X − I[X], (2.4)

Y(2) = X2 −X[X] +
1

2
I
(
[X]2 − [X2]

)
(2.5)

Y(3) = X3 −X2[X] +
1

2
X
(
[X]2 − [X2]

)

− 1

6
I
(
[X]3 − 3[X][X2] + 2[X3]

)
(2.6)

where I is the identity matrix and [...] is the trace operator.
Varying the action with respect to fµν we get

Ḡµν +

3∑

n=0

(−1)nm2β4−n
2M2

f

[
fµλY

λ
(n)ν(X−1) + fνλY

λ
(n)µ(X−1)

]
= 0 (2.7)

where the overbar indicates fµν curvatures. Notice that β0 acts as a pure cosmological
constant, which is however not required to satisfy current observations. Finally, the rescaling
f →M−2f f , βn →Mn

f βn allows us to assume Mf = 1 in the following (see [42]). Additionally,
from now on we absorb the graviton mass m into the constants βi.

We assume now a cosmological spatially flat FRW metric:

ds2 = a2(τ)
(
−dτ2 + dxidx

i
)

(2.8)

where τ represents the conformal time and a dot will represent the derivative with respect
to it. The second metric is chosen also in a spatially FRW form

ds2f = −
[
ḃ(τ)2/H2(t)

]
dτ2 + b(τ)2dxidx

i (2.9)

where H ≡ ȧ/a is the conformal Hubble function and b(τ) is the ‘scale’ factor associated
with the second metric f . This form of the metric fµν ensures that the equations satisfy the
Bianchi constraints (see e.g. [25]).

The background equations for the two metrics have been obtained and discussed at
length in several papers [28, 29, 36, 43]. Here we summarize the main properties in the nota-
tion of [36]. Defining r(τ) ≡ b(τ)/a(τ) as the ratio of the two scale factors, the background
equations can be conveniently written as a first order system of two equations for r(t) and H:

2H′H+H2 = a2(B0 +B2r
′ − wtotρtot), (2.10)

r′ =
3rB1Ωtot(1 + wtot)

β1 − 3β3r2 − 2β4r3 + 3B2r2
, (2.11)

where the prime denotes derivative with respect to N ≡ log a [29, 30], wtot denotes the
equation of state (EOS) corresponding to the total density parameter Ωtot and the functions
B0(τ), B1(τ), B2(τ) are related to the βi and r(τ) as follows:

B0(τ) = β0 + 3β1r + 3β2r
2 + β3r

3, (2.12)

B1(τ) = β1 + 3β2r + 3β3r
2 + β4r

3, (2.13)

B2(τ) = β1 + 2β2r + β3r
2. (2.14)
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For simplicity the time dependence of B0,1,2 will be understood from now on. The Friedmann
equation (i.e. the (0, 0) component of eq. (2.2)) gives

3H2 = a2(ρtot +B0) , (2.15)

and by combining with the (0, 0) component of eq. (2.7) we obtain a useful relation between
H and the ratio r(τ):

H2 =
a2B1

3r
. (2.16)

Finally, the combination of the last two expressions for H provide Ωtot(τ) = 1− B0
B1
r(τ) which

can be inserted in eq. (2.11) to produce a closed differential equation for r(τ) alone.
The behavior of the background solutions depends on the choice of the βi constants and

on the initial value of r. We denote solutions with the same βi but different initial conditions
as branches of the same theory. In ref. [30] it was shown that for each choice of βi only two
branches exist that agree with a standard cosmological early time evolution (like a matter
dominated era at early times) and allow for physical solutions (e.g. ρ, H > 0). In the first
branch, r evolves from r = 0 to a de Sitter point at a finite value rc > 0. These branches,
however, suffer from scalar gradient instabilities [31]. Only choosing β2 = β3 = 0 and the
second type of branches in which r evolves from r →∞ in the asymptotic past towards a de
Sitter point at a constant rc > 0, leads to the absence of these gradient instabilities in the
scalar sector and is compatible with background data [36]: we dubbed this case infinite-branch
bigravity (IBB). Note that even though an additional non-vanishing effective cosmological
constant β0 is viable, we assume β0 = 0 since it would not affect the early-time evolution
and is not required in order to fit observational data (see [29, 30]). From now on we restrict
ourselves to IBB, in which only β1 and β4 are non-zero. This choice avoids introducing
an explicit cosmological constant, which would make the entire bigravity model somewhat
less appealing.

As shown in [36], IBB models have to satisfy 0 < β4 < 2β1 in order to get an initial
value of r on the infinite branch. In particular, it was found that the best fit model occurs
for β1 = 0.48 and β4 = 0.94: from now on we refer to this choice as the reference IBB model.
We then have

H2 =
a2(β1 + β4r

3)

3r
. (2.17)

Here we derive the early time behaviour of the background evolution for later use. (corre-
sponding to early time in IBB), eq. (2.11) for IBB reduces to

r′ ∼ −3

2
(1 + wtot)r (2.18)

so that for wtot = const (i.e., in radiation or matter dominated epochs) one has

r ∼ a−3(1+wtot)/2 , (2.19)

and the fµν scale factor b(τ) = r(τ)a(τ) goes as:

b ∼ a−(1+3wtot)/2 . (2.20)

The scale factor b(τ) therefore contracts instead of expanding as long as wtot > −1/3. More-
over, in the same approximation,

H2 ≈ a2β4r
2

3
. (2.21)
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It is useful to derive an approximated estimate for the b(τ) bounce epoch. The bounce

occurs b′ = 0 ⇔ r′
∣∣∣
rb

= −rb. If we assume a bounce after the radiation epoch, then the

ratio at the bounce has to satisfy

4β1 − 6β1r
2
b + β4r

3
b = 0. (2.22)

From comparisons with observational data, we know that the best fit is close to β4 ≈ 2β1
which leads to

rb ' 1 +
√

3 . (2.23)

It is also useful, for future purposes, to take note of the approximate observational relation
between β1 and β4:

β4 = β21
3 (1− Ωtot0)− β21

(1− Ωtot0)
3 =

3β21
(Ωtot0 − 1)2

+O(β41) ; (2.24)

This relation approximately corresponds to the degenerate line between β1 and β4 for a flat
universe, when fitting data sets such as supernovae, CMB and baryonic acoustic oscillation
data [36]. Moreover, we require β1 . 0.5, to ensure that the solution of eq. (2.16) at present
time lies on the infinite branch.

3 Tensor perturbations

As we are interested on the effect of bigravity on gravitational waves, we now proceed with
writing the tensor perturbation equations [32, 37, 40]. For the perturbed part of the metrics
we adopt the transverse-traceless (TT) gauge, i.e. we select a transverse wave propagating
along the z direction. Then, the tensor metric perturbations are given by:

hg(ij) =



hg(+) hg(×) 0

hg(×) −hg(+) 0

0 0 0


 (3.1)

and similarly for the tensor modes of the f metric. We then obtain the following equations
for both components (suppressing the subscripts +,×)

h′′n + γnh
′
n +

(
m2
n + c2nH−2k2

)
hn = qnhm , (3.2)

where the indices n 6= m refer to g-metric and f -metric, respectively; we have then

γg = 2 +
H′
H , γf =

2r2 + 3r′2 + r (4r′ − r′′)
r (r′ + r)

+
H′
H ; (3.3)

m2
g = qg = H−2a2Br, m2

f = qf =
(r′ + r)

H2r2
a2B; (3.4)

c2g = 1, c2f =
(r′ + r)2

r2
, (3.5)

and where:
B ≡ β1 + β3r

2 + r
(
2β2 + β3r

′)+ β2r
′. (3.6)

These equations are equivalent to the ones in refs. [32, 37, 40]. In IBB (i.e. for β0 = β2 =
β3 = 0), B is simply given by β1. The coefficients (3.3)–(3.5) for the two tensor equations

– 5 –



J
C
A
P
0
5
(
2
0
1
5
)
0
5
2

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

a

10-3

10-2

10-1

100

101

102

103
fri

ct
io

n
β1 =0.48, β4 =0.94

γg

γf

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

a

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

In
te

ra
ct

io
n 

an
d 

ef
fe

ct
iv

e 
m

as
s

β1 =0.48, β4 =0.94

qg , m
2
g

qf , m
2
f

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

a

10-3

10-2

10-1

100

sp
ee

d 
of

 s
ou

nd

β1 =0.48, β4 =0.94

c 2
g

c 2
f

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

a

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104
105
106

sc
al

e 
fa

ct
or

β1 =0.48, β4 =0.94

a

b

Figure 1. Coefficients of the tensor equations for IBB (3.3)–(3.5). Solid/dashed lines indicate
positive/negative values and the vertical dotted line marks the bounce of the reference metric. Note
that the friction term in the f -metric is negative at early times, when the f -metric is contracting.
Note also that the coupling and effective mass terms are equal, and the ones corresponding to the
f metric are very suppressed at early times. The bottom-right panel shows the evolution of the two
scale factors.

are plotted in figure 1 as a function of redshift, for the choice β1 = 0.48 and β2 = 0.94. For
this reference model, when considering both matter and radiation, the bounce happens at a
redshift zb ' 0.9, with a corresponding rb ' 2.8.

Let us anticipate here an important feature of these equations. As it will be shown
below (see also ref. [40]), the equation for hf is unstable at early times since its friction term
is negative as long as the scale factor b(t) is collapsing instead of expanding. The fast growth
of hf will then drive a fast growth of hg as well, through the coupling term. However, in the
limit r →∞, the coupling coefficient qg becomes

qg =
a2rβ1
H2

r→∞−−−→ 3
β1
β4r

, (3.7)

and is therefore relatively small for large r. For the reference IBB model we have β1/β4 ≈ 0.5;
more in general, according to eq. (2.24), β1/β4 ≈ 1/3β1 to within factors of order unity, and
therefore since β1 < 0.5, we have the lower bound

qg ≈
1

β1r
≥ 1

r
. (3.8)
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At recombination, for instance, we have r ≈ 104 in IBB so that one needs a hf roughly 104

times bigger than hg before the coupling term qghf becomes comparable to the hg terms in
eq. (3.2) and it starts driving the evolution of hg. This means that, in principle, a growing
mode in hf will take some time before affecting hg. Whether this is enough to spoil the
physical metric, is what we are going to test below.

In the following subsections we discuss more in detail the time behavior of hg, hf during
the inflationary, radiation and matter eras.

3.1 Inflation

During a de Sitter epoch in which H = const, one has H′ ∼ H and from eq. (2.11):

r ∼ const . (3.9)

The tensor equations (3.2) then reduce to:

h′′g + 3h′g + hg

(
k2

H2
+
a2β1r

H2

)
=
a2β1r

H2
hf , (3.10)

h′′f + 3h′f + hf

(
k2

H2
+
a2β1
rH2

)
=
a2β1
rH2

hg (3.11)

We can now assume a2β1r � H2 during inflation (ie ρinf � ρmg) so hg behaves as in GR.
The same is true for hf since a2β1/rH2 ∼ (β1/β4)r

−3 � 1 . Since the inflationary equations
are the standard ones, we expect the initial conditions to be unchanged and to apply equally
well to hg and hf .

3.2 Radiation and matter dominated era

In the early time, we can approximate the ratio of scale factors as r′ = −3
2 (1 + wtot) r which

is solved by

r = Aa−
3
2
(1+wtot), (3.12)

where A is a suitable normalization constant of order unity. Furthermore we approximate
H2 ' 1

3β4a
2r2. If the initial conditions for hg and hf are similar, then the source terms (3.5)

are negligible at early times, i.e. small a, and the equations decouple. Furthermore, we find

γg '
3

2
(1− wtot) , γf ' −

3

2
(3wtot + 1) , (3.13)

m2
g '

3β1
Aβ4

a
3
2
(wtot+1), m2

f ' −
3β1(3wtot + 1)

2A3β4
a

9
2
(wtot+1), (3.14)

c2g ' 1, c2f '
(3wtot + 1)2

4
. (3.15)

Neglecting the mass term m2
f at early times, the tensor evolution for fµν is described by

h′′f −
3

2
(3wtot + 1)h′f +

hfk
2(3wtot + 1)2

4H2
= 0. (3.16)

At large scales the last term is negligible and one finds a growth of hf as a3(3wtot+1)/2. Thus,
when radiation dominates, hf increases very fast as a3. Clearly, if one starts with h′f = 0
then this growing mode is initially absent and it takes some time before it becomes visible.
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The evolution of hg has instead a constant mode h ∼ const until hf is large enough to source
the growth of hg, cf eq. (3.7).

The early time approximation that leads to eq. (3.16) turns out to be a very good
approximation also in the matter domination. In this regime hf increases as a3/2 for super-
horizon modes. When the coupling term becomes important, hg is driven by hf and acquires
the same trend. Finally, when MDE ends and the system approaches a de Sitter behavior,
the perturbations begin to decay.

For sub-horizon scales the behavior is influenced by the hf time-dependent sound speed.
An asymptotic form for large k can however be found. In this regime we can neglect the
mass and the coupling terms, and the hg, hf equations during either RDE or MDE have the
general form

h′′n + γnh
′
n + βnk

2aηhn = 0 , (3.17)

where the index n stands for g, f and η = 1 + 3wtot and βn is an irrelevant constant. The
general solution can be easily written in terms of the Bessel functions but here we need only
the asymptotic behavior for large k or late times, which is

hn ∼ a−( γn2 + η
4 ) (3.18)

times fast oscillations. We see then that for sub-horizon modes hf grows as a1 in RDE, as
a1/2 in MDE and a final decay as a−1 when approaching the future deSitter phase, while hg
decays as in the standard case as a−1 in all eras (before being driven to growth by the coupling
to hf ). Both the super-horizon and the sub-horizon behaviors found here analytically are
confirmed by our numerical findings and agree, and generalize, the analytic results of [40].
For very large wavenumbers the coupling and the mass terms are ineffective at all times and
the hg equation reduces to the standard case. This implies that there is no large effect to
be expected for the directly detectable range of gravitational waves, which is around 0.1Hz
or k ≈ 1014 Mpc−1 (see e.g. [44]), although a precise calculation is beyond the scope of
this paper.

3.3 Inflationary initial conditions

We can now use the a3 growth mode during radiation to estimate the order of magnitude effect
of the tensor modes at recombination (a more precise estimation will be obtained numerically
in sections 4, 5). Inflation ends at some energy scale that can vary from 1015 GeV to few MeV
depending on the model. The upper limit comes from the bounds on the amplitude of tensor
perturbations, indicating that the energy scale of inflation is at most that of Grand Unified
Theories when observable modes are produced. The lower bound is inferred from the need
of a radiation dominated universe in thermal equilibrium during big bang nucleosynthesis.
These values are reached when the scale factor was ainf ≈ 10−9 at the latest. Since super-
horizon tensor modes grow as a3 during radiation domination, in the most favourable case
of inflation ending just before big bang nucleosynthesis one would obtain an enhancement
until recombination arec ≈ 10−3 of hf(rec) ∼ 1018hf(e) roughly, where the subscript e denotes
the end of inflation. If hf(e) has the standard value approximately equal to He/TP ≈ T 2

e /T
2
P

during inflation, where TP ≈ 2.4 · 1018 GeV is the reduced Planck temperature/energy and
Te is the inflationary energy scale (here for simplicity assumed to be similar to the energy at
the end of inflation), then the value at recombination of hf for a wave that reenters horizon
at recombination or larger is roughly

hf(rec) ≈
(
arec
ae

)3

hf(e) =

(
Te
Trec

)3( Te
TP

)2

(3.19)
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Shorter waves reenter before and therefore grow less. If this value has to be compatible with
the level of fluctuations in the CMB polarization spectra, then it should be lower than about
one tenth of the temperature fluctuations; we take conservatively the level 10−7. The same
value should be taken for h′f since inflation excites both the tensor mode and its momentum
conjugate. However we do not detect directly hf but rather the g-metric mode hg which is
coupled to matter, so as already noticed one can have a value of hf larger than hg by a factor
of q−1g ≈ 104 at recombination. Putting therefore hf(rec) ≤ 10−3, we obtain an upper limit
to the temperature at the end of inflation Te ≈ 10 GeV. Since tensor modes impact CMB
also at reionization, when the coupling term qg is closer to unity, this limit should be lowered
to roughly

Te ≈ 1 GeV (3.20)

(a similar limit has been obtained also in [40]). It might be interesting to remark that the
superhorizon growing mode breaks the standard link between tensor modes and inflationary
scale due to the presence of the coupling: now in principle one can have observable tensor
modes even in low scale inflation.

Any inflationary model with higher energy scale will generate excessive power on the
tensor modes unless the inflationary initial conditions are suppressed with respect to the
standard value or their growth is reduced. Taken at face value, this shows that the a3

growing mode can be reconciled with observations only in the rather extreme scenarios of
very low-energy inflation, as e.g. in the models discussed in ref. ([45, 46]). Fixing the initial
conditions to a more conservative era for the end of inflation, e.g. T ∼ 103 GeV, would
produce the huge value hf(rec) ∼ 1039hf(e) ∼ 107.

Barring the case of very low-energy inflation, then, the IBB model is at odds with CMB
observations. In the rest of the paper we will explore more or less contrived ways to overcome
this difficulty.

3.4 The non-linear cut-off

The tensor perturbations in the reference metric grow so fast that they will eventually become
non-linear. At this point, the perturbative treatment followed so far breaks down and one
has to take into account higher order corrections, or even the full equations of motion in
order to correctly reproduce the dynamics. A natural question is then what happens to the
two metrics after non-linearity is reached: the evolution would then need to be calculated
self-consistently in a non-linear theory for bigravity, which is beyond the scope of this paper.
This problem is not new to Dark Energy models. There are cases such as growing neutrino
cosmologies [47] in which the effect of non-linearities becomes important and needs to be
taken into account also when dealing with the CMB predictions [48]. In that scenario, the
fast growth actually leads to stable non-linear structures (which are a way to test the model
rather than an argument to exclude it based on linear theory).

Following the idea of ref. [48], we then stop the evolution of perturbations at some cut
off amplitude value hcut ≈ 1, when non-linearity is approximately reached. This prescription
is applied to both hg and hf and has the effect to partially stop the ‘dragging’ of the second
metric hf over the standard one hg. Such assumption is adopted here for simplicity, as a
toy model, our interest being to give a consistent estimate of how big is the impact of the
growing mode on CMB spectra and tensor perturbations when non-linearity is reached.

In practice, since the growth of hf is very rapid in the early Universe, this is equivalent
to fixing hf = hcut = 1 from the very beginning, with the consequence that the perturbations
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Figure 2. Evolution of tensor perturbations at different scales (top panels) and scale dependence
of tensor perturbations at z = 0 (bottom left panel). All scales include a cut-off when non-linearity
is reached; hg does not reach the cut-off for any scale and redshift. The initial conditions have been
chosen so that hf = 1 is initially non-linear (solid lines) or starts at a small value (dashed lines)
and becomes non-linear at later times. The latter choice corresponds to h′f(in) ≈ hf(in) = 10−20 at

a = 10−10 (see section 5.1). The top right panel overlays the analytic approximaton for super-horizon
evolution and sub-horizon envelope (black dotted/dash-dotted lines) described in section 3.2. The
two modes shown in the top panel correspond to the vertical dash-dotted lines in the bottom left
panel. For reference, we recall the standard CMB photon visibility function (bottom right panel),
whose peaks correspond to recombination and reionization epochs (see section 4). The bounce of the
reference metric has been indicated with a dotted vertical line.

of the reference metric are not dynamical anymore. Nevertheless they still affect the tensor
modes of the physical metric due to the coupling (3.7). The overall evolution as a function of
the scale factor for two values of k and two different choices of the initial conditions is plotted
in figure 2 for both hg and hf , once the bound has been applied. Figure 2 also shows a similar
behavior between a model in which hf starts saturated and one in which the cutoff value
is reached during the evolution. It is also shown how, even though the cutoff is applied to
both metrics, hg never reaches it during its evolution. Note that the full non-linear dynamics
might produce other effects. For example, in the limit of scales smaller than the horizon, one
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finds the oscillating behavior in e-folding time hg, hf ∼ eimN with eigenfrequencies:

m = ±r + r′

Hr . (3.21)

This oscillating behavior is then always present in the sub-horizon solutions, overimposed
to an amplitude modulation, as shown for the smallest scale in figure 2 (top right panel).
In this case, setting hf to the non-linear cut-off value leads to a growing behavior plus a
damping of the initial oscillations. On the other hand, the model with fine tuned initial
conditions displays the oscillatory behavior expected from linear theory (3.21), and in this
case the non-linear value hf ∼ 1 is not reached, at least for Fourier modes corresponding to
small scales. In this case the negative friction of the reference metric gets compensated by
the positive friction from the physical metric. Nonetheless we expect our method to give a
consistent qualitative estimate of the observable effects of the growing mode on the CMB,
focusing on the tensor contribution and neglecting scalar or vector perturbations.

4 Cosmic Microwave Background anisotropies in bigravity

The Cosmic Microwave Background (CMB) was shown to be a powerful probe to test not only
early time cosmology but also Dark Energy and Modified Gravity models [49]. In particular,
in this paper we are interested in the effect that tensor perturbations in bigravity have on
the CMB power spectra. At recombination, when photons are not anymore tightly coupled
to baryons but decoupling has not occurred yet, electrons can be scattered simultaneously by
photons coming from cold and hot spots. In presence of a quadrupole temperature anisotropy,
the scattered photons will be linearly polarized and the CMB radiation will be characterized
not only by its intensity, but also by its polarization. CMB polarization can be expressed in a
tensor normal basis in Fourier space, in terms of E and B modes. While scalar perturbations
can only produce an E mode (primordial) polarization pattern, tensor perturbations can
feed both E and B primordial modes. Therefore any change in the evolution of tensor
perturbations predicted in bigravity will affect the polarization spectra.

At later times, polarization and temperature anisotropies are further modified during
reionization. Reionization occurs at a much lower redshift, when the universe becomes par-
tially ionized due to the formation of the first stars, allowing CMB photons to partially
rescatter. The recombination and reionization eras correspond to peaks in the visibility
function shown in figure 2. The visibility function g(t) = exp(−κ)κ̇ (where κ is the optical
depth and κ̇ is its derivative with respect to conformal time τ) gives the probability that a
photon last scattered in the conformal time interval [τ, τ +dτ ]. Due to the importance of the
coupling at relatively low redshift, the most important effects of tensor modes on the CMB
are imprinted during the reionization epoch.

In the following, we have only modified tensor perturbations, assuming that the con-
tribution of scalar perturbation is small enough to be neglected, as scalar modes affect B
mode polarization only indirectly, via lensing of E modes, at scales ` & 150. Of course, if
polarization is large enough, it might also feed back the scalar spectra. However, this seems
a good enough first approximation to test the specific effect of the growing mode on the BB
spectra. We implemented the tensor evolution equations in two publicly available Boltzmann
codes, CAMB [50] and CLASS [51], and compared the results obtained in the various cases
to verify their mutual consistency.

As discussed in the previous section, our aim is to check the effect on the CMB spectra
consistently, i.e. taking into account that, by definition, we cannot trust any result derived
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assuming linear perturbation theory when perturbations become non-linear. We then fix
hf = hcut = 1 from the beginning and evolve only the g-metric tensor hg, for which we will
assume standard initial conditions:

At = rT/SAs

(
k

kp

)nT
, (4.1)

with a fiducial tensor-to-scalar ratio rT/S = 0.05, a scalar amplitude As = 2.21× 10−9 and a
tensor spectral index given by the self-consistency condition of single field slow-roll inflation
nT = −(2 − rT/S/8 − ns)rT/S/8, where the fiducial scalar spectral index is ns = 0.9645 (in
section 5.1 we explore the effects of changing the IC on the tensor modes.). For bigravity
we choose the best fit model β1 = 0.48, β4 = 0.94 with Ωcdm = 0.13, Ωb = 0.05, while
for the reference ΛCDM model we choose Planck 2015 TT, EE, TE+lowP marginalized
values [52], i.e. Ωcdm = 0.26, Ωb = 0.05. In both bigravity and ΛCDM cases the fiducial
optical depth is τ = 0.079, corresponding to zreio = 10. In order to test the IBB model,
we compare the achieved spectra with up to date CMB observations, using Planck 2015
data [53] for TT, TE and EE spectra, while for the BB spectrum we rely on WMAP [54] and
BICEP1 [55] together with the joint BICEP2, Keck, Planck analysis [56]. Figure 3 shows the
tensor contribution to the CMB temperature, polarization and cross spectra for the fiducial
bigravity model described above. Large angular scales are the most sensitive to the growing
modes in the f -metric, because the coupling to the physical metric is only important at low
redshifts, after recombination. On these scales the tensor perturbations give contributions to
the power spectra that are too large to be compatible with CMB data. Even for the T and E
polarization spectra, the tensor contribution in IBB bigravity overshoots the observed values
by several orders of magnitude for ` . 60. Since both the scalar and tensor contributions to
TT and EE spectra are positive definite, it is impossible that a reduced scalar contribution
compensates the (large) tensor part in order to fit the data. The conclusion is that the cut-off
on the growing mode is not enough to save the model.

5 Possible solutions to the growing mode problem

A first attempt to overcome the growing mode problem is to verify how much the effect on the
spectra depends on the choice of the fiducial model. We investigated the effect of changing
the bigravity parameters β1 and β4, choosing them close to the degeneracy curve (2.24), the
redshift of reionization zreio, the tensor to scalar ratio rT/S and the tensor spectral index nT
characterizing the shape of the primordial power spectrum for tensor perturbations. These
effects are shown in figure 4, showing that simple variations of these cosmological parameters
do not offer a sufficient improvement.

The observable impact on the CMB is produced in the reionization era because the
coupling between the physical and reference metric’s tensor perturbations is only relevant at
low redshift. Shifting zreio in the range (5, 15) has only a small effect on the BB spectrum.
Further changes would spoil the predictions for EE and TE spectra and enter in contradiction
with the Gunn-Peterson limit [57]. Higher reionization redshifts reduce the tension slightly,
mainly because the perturbations in hg are smaller at earlier times and on smaller scales.
Another attempt that does not work is to modify the initial conditions for perturbations of the
physical metric. Varying the spectral index and the tensor to scalar ratio only has an impact
on relatively high multipoles ` > 30, on which the tensor perturbations are predominantly
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Figure 3. Effects of the growing mode in the f -tensors on the CMB. All the plots assume IBB with
β1 = 0.48, β4 = 0.94, Ωm = 0.18 with Ωb = 0.05, h = 0.67, rT/S = 0.05 and the spectral index
determined by inflationary self-consistency conditions. The tensor perturbations have been assumed
to start at non-linear cutoff value hf = 1.

imprinted during recombination. For lower multipoles the evolution of hg is dominated by the
coupling to hf , which overshoots the initial conditions on large scales due to its large value.

Concordance with observations can neither be achieved by varying the IBB parameters
β1, β4. The fast growth of the hf tensor perturbations leads to growing hg tensors due to
the coupling in (3.2) which is proportional to β1r/H2. One might expect that a change in
the betas could lead to higher values of r and, thus, a suppression of the coupling at early
times (note that H2 ∝ r2 in RDE). Higher values of r are possible when lowering β1 since
r0 = (1− Ωtot0)/β1, where r0 denotes the present value of r and one has r > r0 during the
entire evolution. However, in order to fit observations we have to choose parameters being
close to the degeneracy curve (2.24), i.e. β4/β

2
1 ' const. As already mentioned, at early times

the coupling term is then proportional to qg ≈ 1/β1r (see eq. (3.8)). A smaller coupling would
of course help in delaying or reducing the effect of the hf growing mode on hg. Since the
evolution for large r is nearly independent of the coupling parameters (see eq. (2.18)), and
since β1 > 0.5, the ratio 1/(β1r) cannot decrease much below the reference case. Figure 4
shows clearly that the effect of varying β’s is negligible, at least when the coefficients remain
along the degeneracy line.
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Figure 4. Non-solutions to the problem of growing modes in the reference metric: varying the IBB
parameters across the degeneracy line (top left panel), the reionization redshift (top right) and the
initial conditions for tensor perturbations in the physical metric (bottom panels). The remaining
model details are the same as in figure 3. In particular, the reference metric perturbations are set
initially to the non-linear cutoff value. All solid lines correspond to the standard values described in
section 4.

One loophole in the line of argument above is to leave the observational degeneracy
curve (2.24) and add an explicit cosmological constant β0. The coupling coefficient qg does
not explicitly depend on β0 and reduces to:

qg =
3β1r

2

β1 + β4r3
. (5.1)

From the fµν-Friedmann eq. (2.16) we find that r scales like β
−1/2
4 for β1 � β4r

3 which
leads to

qg ∝
√

3
β1√
β4
. (5.2)

Thus, one is able to get an arbitrarily small coupling when choosing values of β1 that
are sufficiently smaller than

√
β4. In this regime, the massless graviton dominates over the

massive one and the cosmological evolution tends to that of ΛCDM. It is clear that such
a model is not particularly interesting from a cosmological point of view because hardly
distinguishable from the standard model and therefore here we will not investigate it further.
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Figure 5. BB (left panel) and TT (right panel) spectra using fine-tuned initial conditions as described
in section 5.1. The initial amplitude and time derivative have been specified according to the growing
solution (5.3) at a fiducial scale factor ain = 10−10. Bigravity BB spectra (red lines) only contain
the primordial tensor contribution, while ΛCDM spectra (black solid lines) includes the contribution
of both scalar and tensor perturbations. The evolution of tensor perturbations has been stopped
whenever hg,f = 1 is reached (cf. section 3.4).

In order to render the model viable without adding a cosmological constant, it is neces-
sary to adopt a more radical solution. In the following subsections we explore how IBB can
be reconciled with observations by fine-tuning the initial conditions in the reference metric
perturbations, lowering the non-linear cut-off or modifying the theory.

5.1 Changing the initial conditions for hf

Our next attempt consists in checking whether fine tuning the initial conditions can com-
pensate the effect of the growing mode on the CMB spectra, as illustrated in figure 5. We
specify the initial conditions in terms of the growing solution in the radiation era

hf (a) = hf(in) (a/ain)3 , h′f = 3hf (a) , (5.3)

found in section 3.2.1 We find that the initial conditions have to be fine tuned to zero
to at least the level of one part in 1026 at zin = 1010 in order to fit current limits on
the BB spectrum. This choice of the initial epoch corresponds to an era before Big Bang
Nucleosynthesis, which as already mentioned is a hard lower bound for the end of inflation.
One can easily relate to earlier times in order to specify the IC at the reheating epoch, when
inflation ends and tensor perturbations start growing. Table 1 extrapolates the result to the
range of energies in which inflation might have ended.

As already noticed, the only way to generate naturally a very low level of tensor modes
compatible with CMB without any cut-off is to assume that inflation ends at an energy scale

1One can in general fix hf and h′
f independently for each wavenumber, but we restrict to the simpler

choice (5.3) here. If more general IC are considered, a necessary condition for the growing mode to be
sufficiently suppressed is that the time derivative is small. This condition is sufficient as long as hf(in) is well
below the cutoff value (see next subsection).
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BBN fiducial 1 GeV GUT

Bounds on hf(in) . 10−19 . 10−25 . 10−31 . 10−82

Scale factor a ∼ 10−8 ∼ 10−10 ∼ 10−12 ∼ 10−29

Temperature T ∼ 0.1 MeV ∼ 10 MeV 1 GeV ∼ 1016 Gev

Table 1. Upper bounds on hf extrapolated to different epochs using the growing mode, eq. (5.3).
The limits shown are based on the results for BB spectra, which only depend on the tensor sector
at low multipoles where the theory enters in tension with the data. Considering TT spectra would
tighten these bounds, as can be inferred from the left panel of figure 5.

not larger than 1 GeV.2 If however one assumes the non-linear cut-off, then the inflation
energy scale bound can be relaxed. From table 1 we see empirically that the initial condition
for hf is related to the end of inflation energy scale Te (expressed in GeV) as hf(in) ≈
10−31T−3e . Then one has

hf(in) ≈
(
Te
TP

)2

≈ 10−31
(

1 GeV

Te

)3

, (5.4)

or Te ≈ 25 GeV, a more realistic scale range for low-energy inflation.

A sufficiently small value of h′f might also be provided by a more exotic inflation-
ary mechanism. During inflation no growing modes occur on the perturbations of the f
metric. Some solutions, such as increasing the mass of the graviton at very early times,
might naturally generate the low values needed to reconcile the model with observations (the
problem of growing classical perturbations is common to ekpyrotic scenarios alternative to
inflation [59]). Outside of these rather unconventional, although not impossible, cases, the
conclusion we draw is that only very fine tuned initial conditions allow to reconcile bigravity
with CMB observations.

Even if inflation ends at a sufficiently low scale or a mechanism to suppress h′f(in) exists,

it has been argued by Cusin et al. [40] that non-linear corrections would spoil the small value
of h′f . Although we will not investigate this issue further here, we note that the nature of the
theory might protect the tensor modes against such terms. This is precisely what happens
in the linear equation (3.2), in which the source term is highly suppressed. If a similar
suppression occurs also on the non-linear source terms, the fine tuned initial conditions can
render the model compatible with CMB observations (assuming that there are no additional
complications in the scalar sector).

5.2 Lowering the cut-off

Another possible solution to mitigate the effect of IBB on CMB spectra is to assume that
non linear effects begin to be not negligible before hf reaches unity; this can be thought as
an effective way to treat the impact of non linear effects which, even if dominant when hf
is above unity, can start to affect the evolution of the perturbations even for lower values.
Therefore, in figure 6 we show the behavior of TT and BB spectra for different values of hcut

2After this manuscript had been submitted, a work studying inflation in bigravity appeared in which
the authors argue that highly suppressed reference metric tensor initial conditions are naturally generated if
inflation leads to a cosmology of the IBB type [58]. This is because of the large hierarchy between the physical
and reference metric, that makes the tensor modes in f suppressed by a factor 1/r with respect to those in g.
The results of ref. [58] make it unnecessary to lower the inflationary scale to meet the bounds of table 1.
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Figure 6. BB (left panel) and TT (right panel) using a varying cutoff hcut. The evolution of hf and
hg is frozen when those reach, respectively, the cutoff value hcut. Bigravity BB spectra (red lines) only
contain the primordial tensor contribution, while ΛCDM spectra (black solid lines) and observational
data points contains the contribution of both scalar and tensor perturbation.

at which we freeze the evolution of the metric perturbations. One would need to suppress
the cutoff scale by at least three orders of magnitude to reconcile theoretical BB spectra
with currently available limits and possibly an even lower value to make the TT spectrum
acceptable for current data, once the scalar contribution is taken into account.

It seems contrived that non-linear effects might play a role at such small values of the
cutoff. However, theories of massive gravity are known for having strong non-linear effects
in certain limits, such as the Vainshtein mechanism [60, 61]. As long as numerical results for
the non-linear evolution of tensor perturbations are not available, we must contemplate the
possibility that the cut-off could be lower than unity and even significantly lower.

5.3 Modifying the theory

The growing modes in the reference metric could possibly be reconciled with CMB data by
a suitable modification of the theory. Here we explore a phenomenological modification in
which a redshift dependence of the βi parameters is assumed; this kind of behavior might be
achieved in generalized massive gravity models [62], where a time dependence of the mass
parameters is introduced without the addition of any new dynamical degree of freedom. Our
modification consists on setting β1 = β4 = 0 until a certain switch redshift zs is reached.
Then bigravity becomes active and the evolution described in section 3 is switched on. The
considered background evolution instead is the one produced by bigravity at all redshift,
as IBB well approximates the standard background, which should take place at z > zs, at
early times.

The results in figure 7 show how switching on bigravity at approximately the redshift of
matter-radiation equality (zs ≈ 103) can produce an acceptable BB spectra when comparing
with current data. In the TT case instead, the contribution of scalar modes to the spectrum
can possibly lead to the necessity of an even lower value of zs.

There are additional ways in which the theory might be modified while retaining the
original field content of bigravity. In the following we will describe these possibilities, al-
though addressing them in detail will be left for future work. A possible modification is to
allow for branches different than IBB. So far, only branches in which r evolves from r = 0
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Figure 7. BB (left panel) and TT (right panel) using a varying initial redshift zs. If z > zs hf follows
the same standard equation as hg, while for z ≤ zs the evolution described in section 3 is switched
on. Bigravity BB spectra (red lines) only contain the primordial tensor contribution, while ΛCDM
spectra (black solid lines) and observational data points contains the contribution of both scalar and
tensor perturbation.

or r →∞ were considered. In [30] all remaining cases due to a non-viable behavior were ex-
cluded. However, some of those conditions based on expectations of a standard cosmological
evolution, like an expansion at all times and the existence of a matter/radiation dominated
era in the asymptotic past. It might be interesting to study these disregarded branches. Ad-
ditionally, both metrics are usually assumed to be FLRW at background level, even though
this is assumed only for simplicity. In ref. [63] the authors considered more general types of
metrics which might lead to interesting evolutions at background and linear level and could
also have an impact on the tensor evolution.

An additional possibility is to modify the coupling to matter. Even though both metrics
are a priori equally footed, we let only one of them couple to matter while the remaining metric
stays unobservable. An additional coupling of the reference metric to matter would influence
the tensor perturbation and might be able to tame the fast growth (see e.g. refs. [64, 65]
for further discussion on bi-metric couplings) . An additional coupling of the same matter
Lagrangian to fµν is not possible as it will generally reintroduce the BD ghost [66–68]. Even
though this will not happen if a different matter Lagrangian (an unobservable dark sector)
is coupled to fµν , we will usually meet a new fine tuning [69] that would make the theory
less appealing. One way out would be a coupling through a new composite metric that is
constructed such that it avoids the BD ghost [66]. This choice would lead to viable, self-
accelerating backgrounds [70] but still does not yield a realistic cosmological evolution at the
linear level [71, 72].

6 Conclusions

We have analyzed the behavior of tensor perturbations in the infinite-branch bigravity (IBB)
model and the signatures they produce on the CMB. In this model the reference metric
contracts at early times, causing tensor perturbations in this metric to grow rapidly. These
modes have ample time to grow since the end of inflation. However, a consistent analysis
of linear perturbations and CMB spectra cannot include the regime in which perturbations
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become non-linear. We then assume that this growth stops when perturbations become non-
linear, with an amplitude saturated at a value of order unity. The coupling between the
two metrics produces in turn a growth of the tensor perturbations in g. If the coupling is
weak enough at early times, the growing mode will in principle propagate to the physical
metric only after some time. Our first objective has been then to check whether this effect
is late enough to keep the spectra of tensor perturbations compatible with present CMB
data. Our conclusion is that, even when perturbations remain below order unity, they are
still large enough to have a twofold impact on CMB spectra: first, the tensor modes provide
a large contribution to the TT, EE and TE spectra which is orders of magnitude larger than
the scalar contribution; second, the tensor modes induce a strong B-mode polarization on
the CMB. Both effects dominate on the largest angular scales and are incompatible with
observations from CMB experiments.

Varying the IBB parameter (β1, with β4 being derived from it via eq. (2.24)) or other
cosmological parameters offers little help in reconciling IBB bigravity theory with observa-
tions. We further explore five scenarios in which the theory might be rendered viable:

1. Lowering the energy scale of inflation. If the energy scale of inflation is very small,
around 1 GeV, the tensor modes are naturally suppressed and the growing mode has
less time to grow until recombination or reionization: the combined effect makes the
IBB model acceptable without any change. If one invokes the freezing of the growing
mode when it reaches non-linearity, then the inflationary energy scale can be increased
up to 25 GeV roughly. Such a scale is much lower than the one predicted in simple slow
roll inflation but could in principle be achieved in alternative scenarios [59].

2. Fine-tuning the initial conditions. If h′f is very small at early times, the perturbations
will not have reached the non-linear value at late times, when the coupling to g becomes
important. This requires a fabulous degree of fine-tuning, of one part in 1026 at z =
1010 (1028 when TT modes are considered). For this solution to work beyond the
linear approximation, it is necessary that non-linear sources in the equation for hf are
suppressed at early times. Even if stable agains non-linear corrections, fine tuning the
initial conditions for hf seems a highly ad-hoc requirement for the theory in the absence
of a mechanism, perhaps generalizing inflation, able to naturally produce such small
initial conditions. As mentioned in the previous point, this fine-tuning occurs naturally
only in the case of very low-energy inflation.

3. Lowering the non-linear cutoff. IBB becomes safe if hf stabilizes at a value smaller
than unity due to non-linear effects. This requires the non-linear effects to act at most
when hf . 10−3 (and . 10−4 when TT modes are considered).

4. Adding a cosmological constant. In that case the theory still describes a massive
graviton, although it would not be responsible for the acceleration of the universe.
From a purely cosmological point of view, the model will be very similar to ΛCDM.

5. Modifying the theory. One possibility is to allow for a time dependence to the the-
ory parameters β1, β4 in the tensor perturbation equations. This phenomenological
parametrization of modified IBB allows to satisfy CMB data if the parameters become
non-zero only after z = 1000.
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While our assumption stops the growth of perturbations when they become non-linear, a full
analysis would require an understanding of the actual non-linear behaviour of perturbations,
which could be used to exclude or validate such scenarios in a fully consistent way.

Finding a modification of bigravity that overcomes the difficulties of the growing modes
could be possible within the framework of generalized massive gravity [62]. In this class
of theories, the interaction terms are given an additional dependence in the Stückelberg
fields, which allows the couplings to vary over time without introducing additional degrees of
freedom. Another possibility in this direction is allowing a composite coupling that involves
both tensor, possibly on an equal footing. Theories with additional degrees of freedom, such
as scalar-bitensor or multigravity, might as well prove useful to solve the problem of growing
modes. More exotic modifications of the theory remain to be explored.

Constructing a viable theory of massive gravity has proven to be a challenge. Only after
eight decades could the linear Fierz-Pauli theory be generalized to a ghost-free non-linear
completion, albeit one that forbids any interesting cosmological solution. This difficulty
could be overcome by giving a kinetic term to the reference metric, allowing the existence of
accelerating cosmologies at the price of two additional degrees of freedom, corresponding to
a massless tensor. Of all the five-parameter set of bigravity theories, only the two-parameter
IBB family is able to accelerate the universe with neither a cosmological constant nor scalar
instabilities. Yet, such a theory is affected by growing modes that generically spoil the
predictions of the cosmic microwave background. The results presented here represent a
setback for the simple and appealing self-accelerating bigravity paradigm, a paradigm that,
unless saved by non-linear effects or a tiny amplitude of the initial conditions, will have to
be abandoned.
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I. INTRODUCTION

The question whether the graviton can have a mass has
been asked for a long time, and its answer has always been
accompanied by uncertainties. The linear theory of a
massive gravity was first analyzed by Fierz and Pauli
[1]. Since then the van Dam-Veltman-Zakharov disconti-
nuity [2,3] and the appearance of the Boulware-Deser (BD)
ghost [4] has been challenging the theory. Recently, a
theory of a massive spin-2 field was presented in which the
coupling between an additional fixed tensor field and the
metric has a specific structure and is free of the BD ghost
[5–12] (see Refs. [13,14] for recent reviews on massive
gravity). To promote this theory of a massive gravity to a
bimetric theory, Hassan and Rosen considered a dynamical
tensor field fμν where its kinetic term has the same
Einstein-Hilbert structure as gμν and does not introduce
the BD ghost [11,15]. This bimetric theory is described by
the action

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
RðgÞ − 1

2

Z
d4x

ffiffiffiffiffiffi
−f

p
RðfÞ

þ
Z

d4x
ffiffiffiffiffiffi
−g

p X4
n¼0

βnenðXÞ þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð1Þ

where we already set the Planck mass for fμν to Mg (see
Refs. [16,17] for further explanation), absorbedm, the mass
scale of the graviton, into βn and expressed masses in units
of M2

g. The interaction between both tensor fields is
determined by the elementary symmetric polynomials en

of the eigenvalues of the matrices Xα
γ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβfβγ

q
,

multiplied by arbitrary real coupling constants βn. It is
convenient to express these free parameters in units of the
present Hubble expansion rate, H2

0.
A remarkable property of bimetric gravity theories is the

possibility of nonstandard, self-accelerating cosmological
solutions and the ability of making predictions that are
different from ΛCDM. Some of these might be useful for
future measurements in order to distinguish standard
ΛCDM from bigravity. To benefit from that, one has to
pay the price and needs to disentangle all the nonviable
models from the viable ones.
Even though this theory has five free parameters, it is not

clear whether viable models exist (except for β1 ¼ … ¼
β4 ¼ 0 which is simply ΛCDM) and, if they do, what they
look like. In Ref. [18] simple criteria of viability were
considered and viable background solutions were presented
(see also Ref. [19]). One choice of the coupling parameters,
in the following simple “model,”will usually lead to several
different cosmological solutions [16,18–22]. In the follow-
ing, every possible solution will be called a “branch.” We
distinguish between different types of branches, depending
on how the ratio of the scale factors r of the metrics fμν and
gμν evolves. In solutions on “finite branches,” the ratio
evolves from zero towards a finite asymptotic value,
whereas on “infinite branches” r becomes infinitely large
at early times and decreases with time. We call all other
branches “exotic branches,” and these usually describe
bouncing cosmologies or a static universe in the asymptotic
past or future.
So far, only finite and infinite branches were studied in

the literature. While many of these are in good agreement
with observational data at the background level [18,20,23],
most of them suffer from scalar instabilities [24–27]. It
seems that only one specific class of models, the infinite
branch bigravity (IBB), is free of scalar instabilities [24].*koennig@thphys.uni‑heidelberg.de
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These models are specific infinite branch solutions in
which β2 and β3 vanish. Moreover, IBB agrees very well
with observations at the background and linear level
[24,28]. Unfortunately, the authors in Ref. [29] noted that
the Higuchi bound is generally violated in the early time
limit. This bound, first derived in Ref. [30], ensures a
healthy helicity-0 mode of the graviton. Aviolation leads to
the appearance of the Higuchi ghost, named after Higuchi
who found that a spin-2 particle with mass m and 0 <
m2 < 2H2 in a de Sitter space leads to a negative norm
[31,32] (see also Ref. [33] in which the Higuchi bound was
derived for arbitrary spatially flat FLRWmetrics in massive
gravity). Note that even though IBB seems to be well
behaved at the linear level, the appearance of the Higuchi
ghost may only be visible at higher orders or maybe even
only in the full solution [34]. Furthermore, it was found that
cosmological solutions on this infinite branch suffer from a
ghost in the helicity-2 sector at early times [35].
The analysis of viable backgrounds in Ref. [18], that

leaded e.g. to the exclusion of solutions on the exotic
branch or a vanishing β2 and β3 in the infinite branch, are,
however, based on assumptions like the existence of a
matter dominated past or the absence of poles in r0, where
the prime indicates the derivative with respect to the
e-folding time t. Even though it would be probably difficult
to get exotic solutions in agreement with observations, they
are a priori not excluded. Moreover, poles in r0 ¼ d

dt r could
have a very physical meaning: If r0 reaches a pole, then dt
becomes zero and the Universe undergoes a bounce. Such
an example is shown in Fig. 1.1

In the following, we will first briefly discuss the back-
ground evolution in Sec. II, before we then analyze
conditions for the absence of the Higuchi ghost and scalar
instabilities (Secs. III–IV) to draw conclusions about the
viability of all theoretically possible solutions (Sec. V).

II. EQUATIONS OF MOTION AT
BACKGROUND LEVEL

To find the cosmological background evolution, we vary
the action (1) with respect to both metrics and find the
equations of motion,

Rμν −
1

2
gμνRþ 1

2

X3
n¼0

ð−1Þnβn
h
gμλYλ

ðnÞν
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

gαβfβγ
q �

þ gνλYλ
ðnÞμ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβfβγ

q �i
¼ Tμν; ð2Þ

R̄μν −
1

2
fμνR̄þ 1

2

X3
n¼0

ð−1Þnβ4−n½fμλYλ
ðnÞν

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
fαβgβγ

q �

þ fνλYλ
ðnÞμ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
fαβgβγ

q �i
¼ 0; ð3Þ

where the overbar denotes curvature of fμν and Yλ
ðnÞν are

suitable polynomials (see Ref. [20] for their definitions). At
the background level, we will use a Friedmann-Lemaître-
Robertson-Walker (FLRW) ansatz for both metrics with
two different scale factors, a and b, together with two
different time parametrizations t and ~t≡ Xt. Throughout
this work, t represents the e-folding time and a prime
denotes the derivative to it. With this ansatz for the metrics,

gμνdxμdxν ¼ a2ð−H−2dt2 þ d~x2Þ; ð4Þ

fμνdxμdxν ¼ b2ð−X2H−2dt2 þ d~x2Þ; ð5Þ

where H is the dimensionless conformal Hubble function,
we obtain the g00 and f00 equations,

3H2 ¼ a2ðρþ β0 þ 3β1rþ 3β2r2 þ β3r3Þ; ð6Þ

3H2 ¼ a2rX2

ðr0 þ rÞ2 ðβ1 þ 3β2rþ 3β3r2 þ β4r3Þ: ð7Þ
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FIG. 1 (color online). Example of a model [βi ¼ ð0; 0.3;−0.8; 1;−1Þ] that describes a bouncing universe. Here, the asymptotic past of
this universe is described by a root at r≃ 0.8.It then contracts, i.e.dt<0, until r reaches the pole and, finally, expands towards a root at
r≃ 1.9, which describes a de Sitter point.

1Note that this specific model is not viable due to a negativeH2

and is only shown for motivation purposes.
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Here we introduced the ratio of the scale factors r≡ b=a.
As usual, both the Friedmann and acceleration equations
for gμν are degenerated with the conservation of the energy,

ρ0 ¼ −3ρð1þ wtotÞ; ð8Þ

where wtot denotes the equation of state (EOS) parameter of
the total energy density, while there is no extra constraint
from the acceleration equation for fμν due to the missing
coupling to the energy-momentum tensor. The combination
of this set of equations leads to

X ¼ 1þ r0

r
: ð9Þ

Replacing this constraint in the equations of motion yields

3H2 ¼ a2ðρþ β0 þ 3β1rþ 3β2r2 þ β3r3Þ; ð10Þ

3H2 ¼ a2

r
ðβ1 þ 3β2rþ 3β3r2 þ β4r3Þ: ð11Þ

The second alternative Friedmann equation is particularly
interesting since it directly determines the evolution of the
scale factor if the evolution of r is known.
The sign of b is a priori unknown and, therefore, r could

be negative. However, odd powers of r are always propor-
tional to either β1 or β3. All cosmological solutions with
negative r due to a negative scale factor for fμν are therefore
equivalent to those with positive r after the redefinition
β2nþ1 → −β2nþ1. From now on, wewill assume r ≥ 0.2 The
combination of both Friedmann equations leads to an
equation for the density as a function of r only,

ρ¼β1r−1−β0þ3β2þ3ðβ3−β1Þrþðβ4−3β2Þr2−β3r3:

ð12Þ

It will be useful to study r0, which can be written as

r0 ¼ ρ0

ρ;r
¼ −3ð1þ wtotÞ

ρ

ρ;r
; ð13Þ

where we used Eq. (8) in the last step.

III. HIGUCHI GHOSTS

Bimetric theories are called ghost-free since the specific
structure of the potential term in the Lagrangian avoids an
additional degree of freedom (d.o.f.), which usually would

be the BD ghost. This, however, does not imply that all
d.o.f. of the massless and massive graviton are not ghosts.

A. Higuchi bound

Bimetric gravity theories describe a mixture of a mass-
less and massive spin-2 field. The latter carries five dofs,
including one helicity-0 mode. In pure massive gravity
around a de Sitter spacetime, Higuchi derived a bound for
the graviton mass to ensure positive norm states [31,32]. A
negative norm would imply a ghost helicity-0 mode and is
usually dubbed an Higuchi ghost. The condition for its
absence in bimetric gravity theories around a FLRW
background was derived in Ref. [30].3 In our notations,
the bound is

3

2
ðβ1 þ 2β2rþ β3r2Þð1þ r2Þ ≥ β1 þ 3β2rþ 3β3r2 þ β4r3

¼ 3r

�
H
a

�
2

; ð14Þ

which is equivalent to

β1 þ 3r2ðβ1 − β3Þ þ 2r3ð3β2 − β4Þ þ 3r4β3 ≥ 0: ð15Þ
Interestingly, using Eqs. (12)–(13) leads to the simple
bound

ρ;r ≤ 0: ð16Þ

This condition for the absence of the Higuchi ghost was
already derived in Ref. [36] (see also Ref. [27]). Since

ρ;r ¼ −3ð1þ wtotÞ
ρ

r0
ð17Þ

and ρ > 0 together with 1þ wtot > 0 (we are usually
considering a combination of pressureless and relativistic
matter), the bound is equivalent to

r0 ≥ 0: ð18Þ
Note that this holds even for negative values of r.
Therefore, in an expanding universe the ratio of the scale
factors b and a has to increase at all times in order to satisfy
the Higuchi bound. Since r0 is negative on all infinite
branches [18], this directly shows that these branches suffer
from the Higuchi ghost at all times and confirms the
findings in Ref. [29] that the bound is violated at least at
early times on infinite branches, i.e. large r. On the other
hand, all finite branches that produce viable backgrounds
are free from the Higuchi ghost since viability in these
branches enforces r0 ≥ 0 [18]. This especially includes the

2This assumption might only be unjustified if both positive and
negative values of r are reached at some time. In the later
discussion we will find that this requires finite, nonzero values of
r0 at r ¼ 0 in order to produce viable branches. It turns out that
these specific models will not be able to produce viable
cosmologies.

3Note that the authors in Ref. [30] used an overall factor of 1
2
in

front of the potential term in the Lagrangian, which can be
compensated for by a redefinition of the β couplings.
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finite branch in the β1 model, i.e. only β1 ≠ 0, which was
already shown to be free of the ghost in Ref. [30].
The rhs of the bound (14) has to be non-negative at all

times. Since we already concluded that r ≥ 0 is a valid
assumption without loss of generality, the Higuchi bound
enforces

B2 ≡ β1 þ 2β2rþ β3r2 ≥ 0; ð19Þ

where B2 is simply the derivative of ρmg, the modified part
in the Friedmann equation (10), with respect to r.
Therefore, the Higuchi bound is related to the change of
the amount of dark energy in our Universe with time.

B. Phantom dark energy

It is often useful to study the equation of state parameter
(EOS), wmg, i.e. the ratio between the pressure and the
density, from contributions of the modification of gravity. If
we know how the matter density in our Universe evolves,
then the knowledge of wmg enables us to draw conclusions
about the acceleration and even the future of our Universe.
In Ref. [18] we showed that Eq. (19) is directly related to

the EOS via

wmg ¼ −1 −
B2

ρmg
r0: ð20Þ

If ρmg > 0 (which, as observations indicate, should hold at
least around present time), then the Higuchi bound enforces
a phantom dark energy. Every cosmological solution in
bimetric gravity should therefore have either a Higuchi
ghost or a phantom dark energy.
The property of being a phantom is usually thought to

come along with a future instability, the “big rip” [37].
Note, however, that the EOS is highly time dependent and
tends to −1 in the asymptotic future if it described by a root
in r0, e.g. in most of the finite branch models. A sufficiently
fast increase of wmg could then avoid this instability and
guarantee a better behaved future. A phantom in bimetric
gravity is, therefore, not as frightening as in ΛCDM. Thus,
a model implying a phantom dark energy should not
automatically be related with a problematic future, much
less be rejected.

C. Tensor ghosts

Interestingly, the only factor in the lapse of fμν that is not
strictly positive is rþ r0. Thus, the only way to get a
negative lapse is a negative r0. Therefore, fulfilling the
Higuchi bound implies a nonvanishing and especially
positive lapse at all times.
It was mentioned in Ref. [35] that the relative factor

between the kinetic tensor modes for gμν and fμν is the
lapse function of fμν and, therefore, a negative lapse is
responsible for a ghost in the helicity-2 sector. We conclude

that the absence of the Higuchi ghost automatically implies
the absence of a ghost in the helicity-2 sector.
As shown in Ref. [38], the lapse of fμν directly enters in

the friction and mass term of the fμν-tensor perturbation
equation leading to negative values at early times, which is
responsible for a fast grow of the tensor modes [35,38].
This is already a signal of the existence of a ghost. To get
such a fast growth in the tensor evolution in accordance
with observations is a challenging but not undoable task
[38]. The main problem, however, is the existence of the
ghost itself.

D. Consequences of the existence of ghosts

A ghost helicity-0 or helicity-2 will have a dramatic
impact on the viability of a theory. It will lead to an
unbounded Hamiltonian from below and allow the exist-
ence of particles with positive and negative energies. As
expounded in Ref. [34], the vacuum state will immediately
decay into positive and negative energy particles. This
behavior is enough to rule out the underlying theory.4 It is,
therefore, not a question of how problematic the evolution
is of a field described by the equation of motion. A ghost
might influence its evolution in a (more or less) unaccept-
able way, e.g. through a negative friction. However, it is not
the possibly ill-behaved solution of the perturbation equa-
tions that renders the theory unphysical, but rather the
absence of a stable vacuum state and interactions with
negative energy particles. It is even possible that such a
system could seem to be completely well behaved at all
orders in perturbation theory, but the perturbative solution
still not converge to the exact solution. An example where
perturbation theory is even able to hide the negative energy
solutions, which are present in the full theory, is discussed
in Ref. [34].
Since bimetric gravity is only an effective field theory,

one might wonder whether a ghost could be harmless in this
setup or whether a ghost is necessarily excited. This is,
unfortunately, not the case. As explained in Ref. [39], only
modes with positive energy are able to decouple, but not a
ghost state since there is no positive energy necessary to
excite a ghost (see also Ref. [40]). Even in effective field
theories (and even if the mass of the ghost lies above the
cutoff) one has to avoid ghosts at all costs.

IV. EIGENFREQUENCIES OF SCALAR
PERTURBATIONS

After reducing the number of possible cosmological
solutions with the demand of the absence of ghosts, we will
analyze the behavior of scalar perturbations at the linear
level. Even though there are already quite a number of

4Note that there are “good ghosts,” e.g. the Faddeev-Popov
ghost, which are not related to physical degrees of freedom and
are, therefore, harmless.
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works in which similar properties were studied, all these
investigations were based on strong assumptions, mostly a
restriction in the parameter space, fixing the EOS of the
matter fluid, or focusing on a specific type of branch. In the
majority of cases, this is a consequence of the complexity
of the perturbation equations. Since the aim of this work is
to draw conclusions about the viability of the most general
cosmological solutions in bimetric theories with a FLRW
background, we will now work out conditions for the
absence of gradient instabilities without resigning from
generality regarding the parameter space, type of branch,
and nature, i.e., EOS, of the fluid.
The set of scalar perturbation equations at the linear

level can be reduced to a system of two second-order
differential equations for two potentials Ξi describing the
two propagating scalar degrees of freedom [26] (see also
Refs. [16,22,25,29,35,41]),

Ξi
00 þ AijΞj

0 þ BijΞj ¼ 0; ð21Þ

where Aij and Bij are matrices which depend on the
background quantities r, H and the parameters of the
models. The complexity of this system depends crucially
on the choice of the gauge. Avery convenient one was used
in Ref. [29], leaned on Ref. [42]. In this work, we take
advantage of the relatively simple5 perturbation equations
that the authors found in this gauge (see Ref. [29] for the
derivation and printed equations) and analyze them by
using the ansatz Ξi ∝ eωt. For simplicity, we assume that
the eigenfrequencies ω do not depend on time. This is a
valid assumption as long as jω0=ω2j ≪ 1 holds and was
confirmed for all models studied in Ref. [24]. In the
subhorizon limit, we obtain a surprisingly simple expres-
sion for the eigenfrequencies,

ω2 ¼
�
k
H

�
2
�r0ððr2þ1Þðβ1−β3r2Þr0

ρðwþ1Þ − r2ðβ1þ4β2rþ3β3r2Þ
β1þ2β2rþβ3r2

Þ
3r3

− 1

�

ð22Þ

¼
�
k
H

�
2

×

�r0ð−ρ−1;r ðr2 þ 1Þðβ1 − β3r2Þ − r2ðβ1þ4β2rþ3β3r2Þ
β1þ2β2rþβ3r2

Þ
3r3

− 1

�
;

ð23Þ

which agrees with all previous, but much more compli-
cated, results for one- and two-parameter models that were
studied in [24]. As already mentioned in Ref [24], if
we assume dark matter only, then for models in which
β2 ¼ β3 ¼ 0 this reduces to

ω2
β0β1β4

¼
�
k
H

�
2 r00

3r0
: ð24Þ

In order to discuss stability, we only need to analyze the
sign of ω2: A negative value would imply oscillating and,
therefore, stable potentials Ξi. If, however, ω2 is positive,
then Ξi grows quickly with time and even faster as the
scales become smaller. Such an instability is not compatible
with the structure in our Universe and needs to be avoided
in a viable model.
Let us now introduce B2 ¼ β1 þ 2β2rþ β3r2 to obtain

ω2 ¼ k2

3rρ;rH2

�
r0
�
3ðr2 þ 1Þ

�
B2

r

�
;r

− ρ;r

�
r
B2;r

B2

þ 1

��
− 3rρ;r

�
ð25Þ

Interestingly, the condition for stability depends on how
dark energy (and the density of the cosmic fluid) changes
but not explicitly on how large it is. We observed a similar
property during the analysis of the Higuchi bound. Note
that B2 is related to the change of the energy density, ρ;r,
and the Hubble expansion via

B2 ¼ −
r

1þ r2

�
1

3
rρ;r − 2

�
H
a

�
2
�
: ð26Þ

Together with

�
B2

r

�
;r
¼ r−2B2

�
r
B2;r

B2

− 1

�
; ð27Þ

we finally arrive at

ω2 ¼
�
k
H

�
2
�
2r0ðrðr2 þ 1ÞB2;rρ;r − ðHaÞ2ð3ðr2 þ 1ÞB2;r þ rρ;rÞ þ 6ðHaÞ4Þ

r2ρ;rðrρ;r − 6ðHaÞ2Þ
− 1

�
: ð28Þ

5Where “simple” means that printing these equations would fill only a couple of pages.
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As we will see later, this expression for the eigenfrequen-
cies will become very convenient when analyzing the
stability around poles in r0, which e.g. always appear in
exotic branches.
It might be useful to study an expression for ω2

which does not explicitly depend on the β parameters

but on r and its derivatives, like Eq. (24). Finding such
an expression is always possible when using a set of
five independent equations to eliminate all coupling
parameters. One possibility is the set of equations for r0,
r00, r000,H2 and ρ (note that the result will not depend on r000)
which yields

ω2 ¼
�
k
H

�
2 a2ρr2ðwþ 1Þ½2ðwþ 1Þr00 þ r0ð6w2 − 2w0 þ 9wþ 3Þ� − 2H2r0½r0ððwþ 1Þðr0 − 3rwÞ þ rw0Þ − rðwþ 1Þr00�

3rðwþ 1Þr0ða2ρrðwþ 1Þ þ 2H2r0Þ
ð29Þ

Here, and in all the following equations, we dropped the subscript in wtot for simplicity. If we are interested in analyzing the
eigenfrequencies at specific epochs, e.g. radiation-dominated era (RDE) and matter-dominated era, we can assume w≃
const and obtain

ω2 ¼
�
k
H

�
2 a2ρr2ðwþ 1Þ½2r00 þ 3r0ð2wþ 1Þ� þ 2H2r0½rðr00 þ 3wr0Þ − r02�

3rr0ða2ρrðwþ 1Þ þ 2H2r0Þ : ð30Þ

This leads to the condition

r0½a2ρrðwþ 1Þ þ 2H2r0�½a2ρr2ðwþ 1Þð2r00 þ ð6wþ 3Þr0Þ þ 2H2r0ðrðr00 þ 3wr0Þ − r02Þ� < 0 ð31Þ

in order to get stable scalar perturbations, i.e. ω2 < 0.
When using the Higuchi bound, r0 > 0, the first bracket
term is always positive and, thus, the second one has to be
negative. This is equivalent to

r00 <
r0

2r
2H2r0ðr0 − 3rwÞ − 3a2ρr2ðwþ 1Þð2wþ 1Þ

a2ρrðwþ 1Þ þH2r0
;

ð32Þ

where we also used r0 > 0. Note that the denominator is
always positive. If the numerator would be negative, then
the bound would especially imply r00 < 0. However, this is
not generally the case and, thus, the condition for stable
scalar modes is not automatically equivalent to r00 < 0 in
contrast to the case for β0β1β4 models during matter
domination [see Eq. (24)].

A. Radiation-dominated era

Even though we will not aim to exclude models which
are theoretically allowed but do very likely not reproduce
observational data (an example would be a nearly static
universe that did not have a radiation-dominated epoch), it
is worthwhile to analyze the conditions when the Universe
is filled with either relativistic particles or pressureless
matter only.
When radiation dominates, i.e. w≃ 1=3, the eigenfre-

quencies simplify to

ω2 ¼ k2

3H2rr0
4
3
a2ρr2ð2r00 þ 5r0Þ þ 2H2r0ðrr00 − r02 þ rr0Þ

4
3
a2ρrþ 2H2r0

:

ð33Þ
In the early Universe, the Hubble expansion is usually
driven by radiation, i.e. 3H2 ≃ a2ρ. With this approxima-
tion, the condition for stability in the scalar sector becomes

r00 > −
r0ðr0 þ 10rÞ
r0 þ 4r

: ð34Þ

For large absolute values of r0, which is the case e.g. near a
pole, we simply obtain r00 > −r0.
In a previous work [24], we studied the eigenfrequencies

for IBB and confined ourselves to a universe filled with
dark matter only. According to Eq. (24), we concluded
stable scalar modes because r0 increases with time but stays
negative until reaching the final de Sitter point. Since r0 is
always negative in IBB, the condition (34) is not neces-
sarily valid anymore. However, we can still use condition
(31). Here, the product of the first two terms is always
positive since

r0ða2ρrðwþ 1Þ þ 2H2r0ÞjIBB
¼ 9a2β1rðr2 þ 1Þ

�ðwþ 1Þðβ1 þ β4r3 − 3β1r2Þ
β1 − 2β4r3 þ 3β1r2

�
2

> 0:

ð35Þ
Therefore, we can analyze the third factor and, assuming
w ∈ ð−1; 1Þ for simplicity, find that stable modes are

FRANK KÖNNIG PHYSICAL REVIEW D 91, 104019 (2015)

104019-6



guaranteed if

3β1r2 < β1 þ β4r3; ð36Þ

which is not only satisfied in the RDE, i.e. large r (note that
both β1 and β4 have to be positive in order to get a viable
cosmological background), but, in fact, is equivalent to the
condition ρ > 0 on that branch and, therefore, trivially
satisfied at all times.

B. Matter-dominated era

Let us study the regime when matter dominates the
Universe. Now the EOS vanishes and the scalar modes are
described through

ω2¼ k2

3H2rr0
a2ρr2ð2r00 þ3r0Þþ2H2r0ðrr00−r02Þ

a2ρrþ2H2r0
: ð37Þ

For stability, we need to satisfy the condition

r00 <
2H2r03 − 3a2ρr2r0

2a2ρr2 þ 2rH2r0
: ð38Þ

If we assume that a2ρ
H2 → 0 for late times, which should be

true when dark energy starts to dominate, then the condition
of stability reduces to

r00 ≲ r02

r
: ð39Þ

V. FINDING VIABLE BRANCHES

We will now raise the question whether branches exist
that satisfy both the Higuchi bound and the condition for
scalar stability. Here we will only focus on cosmological
solutions that are not equivalent to ΛCDM, which of course
satisfy both conditions. We therefore assume that at least
one of the couplings β1;…; β4 is nonzero. Together with
conditions of physicality, a; ρ, H2 > 0, we define these as
criteria of viability. Note that we allow for solutions that
have a very nonstandard past, e.g. no matter- or radiation-
dominated epoch, or even contracting backgrounds, even
though these might be hard to compare with observational
data. This extends the more restrictive background analysis
of [18]. Therefore, not only the finite branch with small r or
the infinite one could be viable but also many solutions on
exotic branches. Many different types of branches exist:
some of them start from a root r0 ¼ 0, while others may
evolve from a pole or even pass a pole at some finite time.
In many cases, it is not directly clear whether such branches
solve the equations of motion. In particular, every branch
always needs to contain a solution of Eq. (11) at present
time, i.e. when H ¼ a ¼ 1.
We start with focusing on finite branches with a root at

r ¼ 0. Let us first concentrate on models with β1 ≠ 0,

which always have a root at r ¼ 0 [see Eq. (13)]. In
Ref. [24] we generally found scalar instabilities in these
type of branches. Even though this is based on the
assumption of a universe filled with dark matter only, this
conclusion does not change when considering arbitrary but
reasonable EOS parameters. We take the same line of
argument and study the simple β1-models, i.e. models with
only nonvanishing β1, since all other models will reduce to
these in the limit when r gets close to r ¼ 0. The
eigenfrequencies in β1 models are given by

ω2
β1
¼ 1þ 2w − 6r2ðwþ 2Þ − 9r4

ð3r2 þ 1Þ2
�
k
H

�
2

≃ 1þ 2w
ð3r2 þ 1Þ2

�
k
H

�
2

ð40Þ

and, therefore, indicate unstable modes for small values of r
as long w > −1=2. Let us consider the previously excluded
models with β1 ¼ 0 and find

r0jr¼0 ¼
β0 − 3β2

β3
ðwþ 1Þ: ð41Þ

Even though the combination β0 ¼ 3β2 is able to produce a
root at r ¼ 0, it will not lead to viable solutions since in this
case r0 ¼ −3ð1þ wÞ þOðr2Þ indicates a violation of the
Higuchi bound. From this we conclude that
(1) Finite branches with a root at r ¼ 0 always lead to

either unstable modes (if β1 ≠ 0) or violate the
Higuchi bound (if β1 ¼ 0) for small r.

On the other hand, r0 could be nonzero but still finite at
r ¼ 0. In this case, one of the asymptotic points is either a
pole or the whole branch evolves between two roots at
negative and positive r. In the first case, we can assume that
at least one of the poles is reached at r > 0, otherwise we
are able to analyze viability in the “mirrored” model
corresponding to β2nþ1 → −β2nþ1. If the branch does not
contain any pole, then ρ;r has to vanish at r ¼ 0 (roots at
r ≠ 0 always indicate a vanishing density whereas a
maximum of the density at r ≠ 0 leads to a pole). The
position of the maximum of ρ at r ¼ 0 requires β3 ¼ 0 and
leads to ρ;r ∝ r which cannot be negative for both regions,
r > 0 and r < 0. We can summarize that
(2) All finite branches with a nonzero and finite r0 at

r ¼ 0 have to have a pole either in the asymptotic
past or future.

Roots, except for those at r ¼ 0, always correspond to a
vanishing density. Due to Eq. (13), we will always find a
pole between two roots r1 and r2, if both r1 and r2 are
nonzero. Therefore, poles could be interesting starting or
final points of a branch. Whenever such a pole describes the
asymptotic future, then _r has to go to zero, otherwise the
pole would not be a stable asymptotic point. Since r0 ¼
H−1 d

dτ r ¼ H−1a_r diverges, we find thatH needs to vanish
at this point. On the other hand, if a pole describes the
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asymptotic past, then we can use the fact that the density
starts from a finite value. For nonzero values of r, this is
clear from Eq. (12). It also holds if r ¼ 0 is a pole, since this
would require β1 ¼ β3 ¼ 0 due to Eq. (13) [18] and,
therefore, implies ρjr¼0 ¼ 3β2 − β0. If the density is finite
at early times, the scale factor a has to have a finite but
nonzero value. In this case, H needs to be zero at early
times, too, otherwise one could go backwards in time and
we would not have an asymptotic past. Thus, we conclude
(3) H has to become zero on a pole, if it describes an

asymptotic point.
Let us assume a pole at r ¼ 0, which, as we already noted,
requires β1 ¼ β3 ¼ 0 and leads toH2jr¼0 ¼ β2a2. From the
previous conclusion, we need a vanishing H2 at r ¼ 0.
Note that a > 0, otherwise this would contradict a finite
density. Therefore, we need β2 ¼ 0 and, thus, obtain
B2 ¼ 0 for all r, which means that
(4) A pole at r ¼ 0 violates the Higuchi bound.

For simplicity, we will from now on assume that if there is a
pole at rp, then rp > 0. Additionally, we can exclude r ¼ 0
from being an asymptotic point due to the previous
conclusions.Furthermore, Eqs. (13) and (12) provide the
limit r0 ∝ −r when taking r → ∞ as long as the density
does not vanish (see Ref [18] more detailed explanations).
This excludes infinite branches, i.e. branches in which r
evolves from or to r → ∞, from being viable due to the
violation of the Higuchi bound and we find that
(5) The limits r → 0 and r → ∞ are no viable asymp-

totic points.
We will now consider a root at r ≠ 0 as the asymptotic past.
Due to Eq. (13), the density vanishes on a root. To fulfill the
conservation of energy, those models require a contracting
universe at early times. If this universe evolves to another
root (on which again ρ ¼ 0), then it has to undergo a
bounce at ρ;r ¼ 0 leading to a pole at which H ¼ 0.
Employing the previous conclusions, we find the general
statement
(6) Every viable branch needs to contain at least one

pole on which H vanishes.
This result is particularly interesting as it will allow us to
draw conclusions when connecting this with the require-
ment of stable scalar perturbations and the absence of the
Higuchi ghost. The necessary condition for a pole is
ρ;r → 0. Then, the eigenfrequencies of scalar perturbations
around the pole (28) reduce to

ω2 →

�
k
H

�
2
�
2B2;r

r0ð1þ r2Þ
r2ρ;r

rρ;r − 3ðHaÞ2
rρ;r − 6ðHaÞ2

− 1

�
ð42Þ

≃
�
k
H

�
2
�
2B2;r

r0

ρ;r

ð1þ r2Þ
r2

− 1

�
; ð43Þ

where we used ðHaÞ4 ≪ ðHaÞ2, ðHaÞ2ρ;r ≪ ðHaÞ2 (and, addi-
tionally, B2;r ≠ 0 which, as we will see later, is justified),
together with

rρ;r − 3ðHaÞ2
rρ;r − 6ðHaÞ2

¼ B2ð1þ r2Þ − ðHaÞ2r
B2ð1þ r2Þ ≃ 1; ð44Þ

which follows from Eq. (26) and B2ð1þ r2Þ − ðHaÞ2r≃
B2ð1þ r2Þ (note that the Higuchi bound (14) implies
B2ð1þ r2Þ > 2rðHaÞ2 > 0). Since r0 → ∞ and ρ;r → 0
(but still ρ;r < 0 and r0 > 0), the first term in the bracket
of Eq. (43) dominates unless B2;r ¼ 0.
Let us first assume that B2;r ¼ 0 at the pole rp. We then

find

B2;rjr¼rp ¼ 0 ⇒ β2 ¼ −β3rp; ð45Þ
�
H
a

�
2
				
r¼rp

¼ 0 ⇒ β1 ¼ −β4r3p; ð46Þ

ρ;rjr¼rp ¼ 0 ⇒ β3 ¼ −β4rp; ð47Þ

which leads to

3H2 ¼ a2

r
β4ðr − rpÞ3; ð48Þ

as well as

B2 ¼ −β4rpðrp − rÞ2: ð49Þ

If r increases with time (which implies that dt > 0 since
r0 > 0), then β4 has to be positive in order to get a positive
H2. On the other hand, this would imply a negative B2 and,
thus, would violate the Higuchi bound. We therefore have
to have a decrease of r with time (which implies contrac-
tion, dt < 0). Now, this is only compatible with negative
values for β4. Of course, such a model would be hard to
believe in since it would contract at all times. But there is a
more solid argument for ruling out these models: The
contraction would lead to an increasing density. Since a
root corresponds to a vanishing density, there must be a
point of maximum density which always indicates a pole
[see Eq. (13)]. Note, that we already excluded both r ¼ 0
and r → ∞ as asymptotic states, which are the only ones
that would be able to describe an infinitely large density.
However, on this one, H cannot vanish. Even though this
second pole does not necessarily need to be an asymptotic
point, H ¼ 0 is required due to the bounce. Neither the
positive nor the negative values for β4 lead to viable
solutions, and we conclude that
(7) Viability enforces a nonzero value for B2;r around

a pole.
We are now allowed to assume B2;r ≠ 0. Then the term −1
in Eq. (43) is negligible and, thus, B2;r has to be positive in
order to get stability, i.e. ω2 < 0.
We will now study the expansion rate around the pole rp

and check whether H2 is positive. Note that ðH2Þ;rjrp does
not automatically vanish since H2 could become negative,
too (which, however, would not correspond to physical
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solutions). However, the conditions for scalar stability
(B2;rjrp > 0), the existence of a pole (ρ;rjrp ¼ 0 with
H2jrp ¼ 0) and physicality (ρjrp ≥ 0) together with the
assumption that ðH2Þ;rjrp ≠ 0 lead to a contradiction.
Therefore, let us assume ðH2Þ;rjrp ¼ 0 which, together
with H2jrp ¼ 0, implies

β2 ¼ −
1

3
r−1p ð2β1 − β4r3pÞ; ð50Þ

β3 ¼
1

3
r−2p ðβ1 − 2β4r3pÞ: ð51Þ

If we now assume that H2 is positive and nonzero at
second order, then we need to have

3

�
H
a

�
2

¼ ðrp − rÞ2
rr2p

ðβ1 þ β4rr2pÞ

¼ r−3p ðβ1 þ β4r3pÞðr − rpÞ2 þOððr − rpÞ3Þ > 0:

ð52Þ

However, this would imply that

ρ;r ¼ 2
1þ r2p
r3p

ðβ1 þ β4r3pÞðr − rpÞ þOððr − rpÞ2Þ ð53Þ

only becomes negativewhen leaving the pole, if r decreases
with time, i.e. in a contracting universe. We can now use the
same argument that we used before and conclude that we
need to reach a second pole which will either describe an
asymptotic point or a bounce. Equation (52) provides the
possibility of another point rp2

¼ −β1=ðβ4r2pÞ at which the
expansion stops, but this cannot be a pole since then we
would find

ρ;rjrp2 ¼ −
ðβ1 þ β4r3pÞ2ðβ21 þ β24r

4
pÞ

β1β
2
4r

6
p

≠ 0: ð54Þ

Our last chance are models in which H2 vanishes up to
second order, implying that

β1 ¼ −β4r3p; ð55Þ

β2 ¼ β4r2p; ð56Þ

β3 ¼ −β4rp: ð57Þ

These solutions lead to B2;r ¼ 0, which we already
excluded earlier. Therefore,
(8) A negative B2;r around a pole leads to gradient

instabilities whereas a positive value violates either
the Higuchi bound or leads to unstable scalar
perturbations.

In combination with the requirement of a positive B2;r, in
order to get stable scalar perturbations this shows that every

branch is plagued by either the Higuchi ghost or scalar
gradient instabilities.

VI. CONCLUSIONS AND OUTLOOK

We analyzed general models in singly coupled bimetric
gravity around a FLRW background and found that all
physical cosmological solutions that are not equivalent to
ΛCDM have a period in time in which either linear scalar
perturbations undergo a gradient instability or the Higuchi
ghost appears. The condition for the absence of ghosts is
surprisingly equivalent to r0 > 0, which means that the ratio
of the scale factors b and a has to increase as long as the
Universe expands. Moreover, satisfying this bound ensures
a positive lapse of fμν which is related to the absence of a
helicity-2 ghost.
In fact, all infinite branches suffer from the Higuchi

ghost at all times and a ghost in the helicity-2 sector at early
times, whereas in all finite branches, and even exotic
branches that do not contain the limit r → 0, there exists
at least one epoch in which there is either a gradient
instability in the scalar sector or a ghost appears. A
schematic illustration of a typical phase space diagram
with the forbidden regions is presented in Fig. 2.
While the existence of a ghost already renders the model

unphysical and forces us to discard this type of model,
unstable scalar modes will not necessarily rule out the
theory. A Vainshtein screening may be able to prevent the
scalar sector from getting unstable. Furthermore, this
gradient instability is not present at all times. Every finite
branch has a point in time at which the instability stops and
the scalar perturbations begin to oscillate. As shown in [43],
a small, but natural, Planck mass for fμν

6 would shift this
gradient instability to very early times or even to energy
scales above the cutoff of the effective field theory. In the
latter case, the cosmological evolution would be very close
to ΛCDM. On the other hand, if the instability ended
between inflation and big bang nucleosynthesis, only very
small scales would be affected [43]. These could, in
principle, lead to a creation of many seeds for black holes.7

All models which we do not have to exclude due to the
presence of a ghost will describe a phantom dark energy.
Such a property would cause an anxious future in a ΛCDM
model but not necessarily in bimetric theories due the
time dependence of EOS corresponding to dark energy. In
fact, it could cause welcome signatures that might allow
observations to distinguish bimetric gravity from general
relativity.

6Note that in this and many previous works, the Planck mass
Mf was set to Mg, which is allowed due to a redundancy in the
parameters but is, however, not the most natural choice.

7Since the cosmological evolution at the time where the
instability would end is not yet close to ΛCDM, the fast change
in ρmg might have an even stronger influence on the evolution of
primordial black holes compared to standard ΛCDM [44].
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Throughout this work we assumed a very simple, but
well-motivated, type of bigravity. We considered a fluid
that is only singly coupled to an observable metric and
where both metrics are of FLRW type. Several extensions
exist in the literature. One example would be the coupling
of matter to both metrics gμν and fμν simultaneously
[27,45–49], which, however, would introduce the BD
ghost if the same matter sector is coupled to both metrics
[45,50,51]. Ghost-free (but not always with well-behaved
cosmological solutions) scenarios exist if one assumes a
coupling through a composite metric [40,50,52–59]. But
even the bimetric gravity with a standard matter coupling
could allow for cosmological solutions without any gra-
dient or ghost instabilities at the cost of giving up a FLRW
background [60,61].
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Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous 
work has suggested that its cosmological solutions are generically plagued by instabilities. We show that 
by taking the Planck mass for the second metric, M f , to be small, these instabilities can be pushed 
back to unobservably early times. In this limit, the theory approaches general relativity with an effective 
cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides 
a late-time expansion history which is extremely close to �CDM, but with a technically-natural value 
for the cosmological constant. We find M f should be no larger than the electroweak scale in order for 
cosmological perturbations to be stable by big-bang nucleosynthesis. We further show that in this limit 
the helicity-0 mode is no longer strongly-coupled at low energy scales.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

“The reports of my death have been greatly exaggerated.”
—Metrics Twain

1. Introduction

The Standard Model of particle physics contains fields with 
spins 0, 1/2, and 1, describing matter as well as the strong and 
electroweak forces. General relativity (GR) extends this to the grav-
itational interactions by introducing a massless spin-2 field. There 
is theoretical and observational motivation to seek physics beyond 
the Standard Model and GR. In particular, GR is nonrenormaliz-
able and is associated with the cosmological constant, dark energy, 
and dark matter problems. To compound the puzzle, the GR-based 
�-cold dark matter (�CDM) model provides a very good fit to 
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observational data, despite its theoretical problems. In order to be 
observationally viable, any modified theory of gravity must be able 
to mimic GR over a wide range of distances.

A natural possibility for extending the set of known classical 
field theories is to include additional spin-2 fields and interactions. 
While “massive” and “bimetric” theories of gravity have a long 
history [1,2], nonlinear theories of interacting spin-2 fields were 
found, in general, to suffer from the Boulware–Deser (BD) ghost 
instability [3]. Recently a particular bimetric theory (or bigravity) 
has been shown to avoid this ghost instability [4,5]. This theory 
describes nonlinear interactions of the gravitational metric with an 
additional spin-2 field. It is an extension of an earlier ghost-free 
theory of massive gravity (a massive spin-2 field on a nondynam-
ical flat background) [6–8] for which the absence of the BD ghost 
at the nonlinear level was established in Refs. [5,9–11].

Including spin-2 interactions modifies GR, inter alia, at large 
distances. Bimetric theory is therefore a candidate to explain the 
accelerated expansion of the Universe [12,13]. Indeed, bigravity has 
been shown to possess Friedmann–Lemaître–Robertson–Walker 
(FLRW) solutions which can match observations of the cosmic 

http://dx.doi.org/10.1016/j.physletb.2015.06.062
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expansion history, even in the absence of vacuum energy [14–20].1

Linear perturbations around these cosmological backgrounds have 
also been studied extensively [28–41]. The epoch of acceleration is 
set by the mass scale m of the spin-2 interactions. Unlike a small 
vacuum energy, m is protected from large quantum corrections 
due to an extra diffeomorphism symmetry that is recovered in the 
limit m → 0, just as fermion masses are protected by chiral sym-
metry in the Standard Model (see Ref. [42] for an explicit analysis 
in the massive gravity setup). This makes interacting spin-2 fields 
especially attractive from a theoretical point of view.

Cosmological solutions lie on one of two branches, called the 
finite and infinite branches.2 The infinite-branch models can have 
sensible backgrounds [19,32], but the perturbations have been 
found to contain ghosts in both the scalar and tensor sectors 
[33,34,41]. Most viable background solutions lie on the finite 
branch [16–19]. While these avoid the aforementioned ghosts, they 
contain a scalar instability at early times [29,32,33] that invali-
dates the use of linear perturbation theory and could potentially 
rule these models out. For parameter values thought to be fa-
vored by data, this instability was found to be present until re-
cent times (i.e., a similar time to the onset of cosmic acceleration) 
and thus seemed to spoil the predictivity of bimetric cosmol-
ogy.

In this Letter we study a physically well-motivated region in 
the parameter space of bimetric theory that has been missed in 
earlier work due to a ubiquitous choice of parameter rescaling. We 
demonstrate how in this region the instability problem in the finite 
branch can be resolved while the model still provides late-time 
acceleration in agreement with observations.

Our search for viable bimetric cosmologies will be guided by 
the precise agreement of GR with data on all scales, which mo-
tivates us to study models of modified gravity which are close to 
their GR limit. Often this limit is dismayingly trivial; if a theory 
of modified gravity is meant to produce late-time self-acceleration 
in the absence of a cosmological constant degenerate with vacuum 
energy, then we would expect that self-acceleration to disappear as 
the theory approaches GR. We will see, however, that there exists 
a GR limit of bigravity which retains its self-acceleration, leading 
to a GR-like universe with an effective cosmological constant pro-
duced purely by the spin-2 interactions.

2. Bimetric gravity

The ghost-free action for bigravity containing metrics gμν and 
fμν is given by [4,43]

S =
∫

d4x
[

− M2
Pl

2

√
g R(g) − M2

f

2

√
f R( f )

+ m2M2
Pl
√

g V (X) + √
gLm (g,�i)

]
. (1)

Here MPl and M f are the Planck masses for gμν and fμν , respec-
tively, and we will frequently refer to their ratio,

α ≡ M f

MPl
. (2)

The potential V (X) is constructed from the elementary symmetric 
polynomials en(X) of the eigenvalues of the matrix X ≡ √

g−1 f , 
defined by

1 Stable FLRW solutions do not exist in massive gravity [21–27].
2 There is a third branch containing bouncing solutions, but these tend to have 

pathologies [41].

Xμ
αXα

ν ≡ gμα fαν, (3)

and has the form [8,43],3

√
g V (X) = √

gβ0 + √
g

3∑
n=1

βnen(X) + √
f β4. (4)

In the above, m is a mass scale and βn are dimensionless interac-
tion parameters. β0 and β4 parameterize the vacuum energies in 
the two sectors. Guided by the absence of ghosts and the weak 
equivalence principle, we take the matter sector to be coupled to 
gμν .4 Then the vacuum-energy contributions from the matter sec-
tor Lm are captured in β0. We can interpret gμν as the spacetime 
metric used for measuring distance and time, while fμν is an ad-
ditional symmetric tensor that mixes nontrivially with gravity. As 
we discuss further below, the two metrics do not correspond to 
the spin-2 mass eigenstates but each contain both massive and 
massless components. Even before fitting to observational data, 
the parameters in the bimetric action are subject to several the-
oretical constraints. For instance, the squared mass of the massive 
spin-2 field needs to be positive, it must not violate the Higuchi 
bound [59,60], and ghost modes should be absent.

In terms of the Einstein tensor, Gμν , the equations of motion 
for the two metrics take the form

Gμν(g) + m2 V g
μν = 1

M2
Pl

Tμν, (5)

α2Gμν( f ) + m2 V f
μν = 0, (6)

where V (g, f )
μν are determined by varying the interaction poten-

tial, V . Taking the divergence of eq. (5) and using the Bianchi 
identity leads to the Bianchi constraint,

∇μ
(g)V g

μν = 0. (7)

The analogous equation for fμν carries no additional information 
due to the general covariance of the action.

Finally, note that the action (1) has a status similar to Proca 
theory on curved backgrounds. It is therefore expected to require 
an analogue of the Higgs mechanism, with new degrees of free-
dom, in order to have improved quantum behavior. The search for 
a ghost-free Higgs mechanism for gravity is still in progress [61].

3. The GR limit

When bigravity is linearized around proportional backgrounds 
f̄μν = c2 ḡμν with constant c,5

gμν = ḡμν + 1

MPl
δgμν, (8)

fμν = c2 ḡμν + c

M f
δ fμν, (9)

the canonically-normalized perturbations can be diagonalized into 
massless modes δGμν and massive modes δMμν as [4,62]

δGμν ∝ (
δgμν + cα δ fμν

)
, (10)

δMμν ∝ (
δ fμν − cα δgμν

)
. (11)

3 This is a generalization of the massive-gravity potential [8] (to which it reduces 
for fμν = ημν and a restricted set of βn) given in Ref. [43].

4 More general matter couplings not constrained by these requirements have 
been studied in Refs. [20,44–58].

5 These correspond to Einstein spaces and, for nonvanishing α, solve the field 
equations only in vacuum. A quartic equation determines c = c(βn, α).
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Notice that when α → 0 (or MPl � M f ), the massless state aligns 
with δgμν , i.e., up to normalization,

δGμν → δgμν + O(α2). (12)

Because gμν is the physical metric, this suggests that α → 0 is 
the general-relativity limit of bigravity.6 We will see below that 
the nonlinear field equations indeed reduce to Einstein’s equations 
for α = 0 and that the limit is continuous. Thus gμν is close to a 
GR solution for sufficiently small values of α. We therefore iden-
tify MPl with the measured physical Planck mass whenever α 	 1, 
holding it fixed while making M f smaller. Interestingly, in the bi-
metric setup a large physical Planck mass is correlated with the 
fact that gravity is approximated well by a massless field. In other 
words, when bimetric theory is close to GR, the gravitational force 
is naturally weak.

The GR limit can be directly realized at the nonlinear level 
[64,65]. The metric potentials satisfy the identity

√
g gμα V g

αν + √
f f μα V f

αν = √
gV δμ

ν, (13)

where V is the potential in the action (1). For M f = 0, the fμν

equation (6) gives V f
μν = 0, an algebraic constraint on fμν . Then, 

using the above identity, the gμν equation (5) becomes

Gμν(g) + m2 V gμν = 1

M2
Pl

Tμν. (14)

Since Tμν is conserved, taking the divergence gives

∂μV = 0. (15)

We see that eq. (14) is the Einstein equation for gμν with cos-
mological constant m2 V . Remarkably, because V depends on fμν

and all the βn , this effective cosmological constant is generically 
not simply the vacuum energy from matter loops (which is pa-
rameterized by β0). Even in the GR limit, the impact of the spin-2 
interactions remains and bigravity’s self-acceleration survives.

It is straightforward to see that, unlike the m → 0 limit, the 
α → 0 limit is not affected by the van Dam–Veltman–Zakharov 
(vDVZ) discontinuity [66,67]. The cause of this discontinuity is the 
Bianchi constraint (7) which constrains the solutions even when 
m = 0. On the contrary, when α → 0, the Bianchi constraint simply 
reduces to eq. (15) and is automatically satisfied.

The conditions V f
μν = 0 and ∂μV = 0 determine fμν alge-

braically in terms of gμν , generically as fμν = c2 gμν . In the limit 
M f = 0, the f sector is infinitely strongly coupled.7 Due to the 
nontrivial potential, this causes the f metric to exactly follow the 
g metric (both at the background and perturbative levels), while 
the g sector remains weakly coupled.

4. Strong-coupling scales

We now argue that at energy scales relevant to cosmology, this 
model avoids known strong-coupling issues, sometimes contrary to 
intuition gained from massive gravity.

There are several strong-coupling scales one might expect to 
arise. At an energy scale k, the f sector has an effective coupling 
k/M f , as can be seen from expanding the Einstein–Hilbert action 
in δ fμν/M f , just as in GR. Then, for small but nonzero α, which 
is the case of interest here, one might worry that perturbations 

6 See Ref. [63] for an early discussion of such a limit.
7 Strongly-coupled gravity in the context of GR has been studied, for instance, in 

Refs. [68–71] and has been argued to allow for a simplified quantum-mechanical 
treatment.

of fμν with momentum k become strongly coupled at low scales 
k ∼ M f . However, we have seen that in the limit of infinite strong 
coupling, M f = 0, fμν becomes nondynamical and is entirely de-
termined in terms of gμν , while the gμν equation is degenerate 
with GR and its perturbations remain weakly coupled. Due to the 
continuity of the limit, we expect that, for small enough α, strong-
coupling effects will continue to not affect the g sector, even when 
perturbations of fμν are strongly coupled at relatively small en-
ergy scales. In practice, however, since the measured value of MPl
is very large, even reasonably high values of M f can still lead to 
small α. In cosmological applications, all observable perturbations 
satisfy k/M f 	 1 for M f � 100H0 ∼ 10−31 eV, roughly the scale 
at which linear cosmological perturbation theory breaks down at 
recent times, so that perturbations of fμν remain weakly coupled 
in any case.

Another potentially-problematic scale is associated with the 
helicity-0 mode of the massive graviton. In massive gravity, this 
mode becomes strongly coupled at the scale [72,73]

�3 ≡
(

m2MPl

)1/3
, (16)

where m is defined to coincide with the Fierz–Pauli mass [1]
on flat backgrounds. This scale is rather small, �3 ∼ 10−13 eV ∼
(1000 km)−1 for m ∼ H0 ∼ 10−33 eV, and severely restricts the ap-
plicability of massive gravity [74]. The same scale also appears in 
the decoupling-limit analysis of bimetric theory [37], where m is 
now the parameter in front of the potential in the action (1). In the 
limit α → 0, the f sector approaches massive gravity [65] and one 
might worry that the strong-coupling problem persists or becomes 
worse with the emergence of an even lower scale (m2 M f )

1/3. This 
is not the case. In the bimetric context, the scale defined in eq. (16)
is not physical, since m2 is degenerate with the βn . The physically 
relevant strong-coupling scale must be defined with respect to the 
bimetric Fierz–Pauli mass [62],

m2
FP = m2

(
1

c2α2
+ 1

)(
cβ1 + 2c2β2 + c3β3

)
, (17)

which is only defined around proportional backgrounds, fμν =
c2 gμν . In the massive-gravity limit, α → ∞, the helicity-0 mode 
is mostly contained in g with a strong-coupling scale

�3 ≡
(

m2
FPMPl

)1/3
, (18)

consistent with eq. (16) for appropriately restricted parameters. 
However, in the GR limit, α → 0, the helicity-0 mode resides 
mostly in f , where the strong-coupling scale is

�̃3 ≡
(

m2
FPM f

)1/3 →
(

m2MPl

α
O(βn)

)1/3

, (19)

which is no longer small. Note that for solutions that admit this 
limit, c becomes independent of α. We can also consider the 
α → 0 limit of eq. (18), to verify that the small part of the 
helicity-0 mode in g is not strongly coupled,

�3 →
(

m2MPl

α2
O(βn)

)1/3

. (20)

This is even higher than �̃3. Therefore the strong-coupling issues 
with the helicity-0 mode are alleviated, rather than exacerbated, 
when α → 0.
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5. Cosmology

We now proceed to apply the above arguments to the particular 
example of a homogeneous and isotropic universe. We will take 
both metrics to be of the diagonal FLRW form [14–16],8

gμνdxμdxν = −dt2 + a2(t)δi jdxidx j, (21)

fμνdxμdxν = −X2(t)dt2 + Y 2(t)δi jdxidx j, (22)

where we can freely choose the cosmic-time coordinate for gμν

(g00 = −1) because of general covariance. Because matter couples 
minimally to gμν , this choice is physical, and a(t) corresponds to 
the scale factor inferred from observations. We furthermore take 
the matter source to be a perfect fluid, T μ

ν = diag(−ρ, p, p, p). 
The g-metric equation (5) leads to the Friedmann equation,

3H2 = ρ

M2
Pl

+ m2
(
β0 + 3β1 y + 3β2 y2 + β3 y3

)
, (23)

where the Hubble rate is defined as H ≡ ȧ/a and the ratio of the 
scale factors is

y ≡ Y

a
. (24)

The analogous equation for the f metric is

3K 2 = m2

α2
X2

(
β1

y3
+ 3

β2

y2
+ 3

β3

y
+ β4

)
, (25)

with K ≡ Ẏ /Y . The final ingredient is the Bianchi constraint (7), 
which yields

(H X − K y)
(
β1 + 2β2 y + β3 y2

)
= 0. (26)

Taking the first or second term of eq. (26) to vanish selects the so-
called dynamical or algebraic branches, respectively. Perturbations 
in the algebraic branch are pathological [29], so we will consider 
the dynamical branch in which the f -metric lapse is fixed,

X = K y

H
. (27)

Inserting this into the fμν equation (25) transforms it into an “al-
ternate” Friedmann equation,

3α2 H2 = m2
(

β1

y
+ 3β2 + 3β3 y + β4 y2

)
. (28)

We take at least two of the βn for n ≥ 1 to be nonzero in order to 
ensure the existence of interesting solutions in the GR limit α → 0. 
The solutions to eq. (28) in the GR limit are always on the “finite” 
branch, i.e., y evolves from 0 to a finite late-time value. The per-
turbations on this branch are healthy except for a scalar instability, 
which we discuss below.

Equation (28) has two features which are useful for our pur-
poses. First, in the limit α → 0 it tends to a polynomial constraint 
that leads to a constant solution for y, so that the potential term 
in the Friedmann equation (23) becomes a cosmological constant. 
This provides an explicit example of the statement above that as 
α → 0, the theory approaches general relativity with an effec-
tive cosmological constant (even with β0 = 0). Recall that even 
though the theory approaches GR in this limit, the bigravity in-
teractions survive in the form of this constant. The other useful 
feature is that, because eq. (28) does not involve ρ , it can be used 

8 See Ref. [75] and the references therein for other possible metrics in bimetric 
cosmology.

to rephrase the potential term in eq. (23) in terms of the Hubble 
rate. This will allow us to determine the time-dependence of the 
potential term order by order in α.9

6. The effective cosmological constant

Let us illustrate the new viable bimetric cosmologies qualita-
tively by selecting the model with β0 = β3 = β4 = 0,10 which we 
will refer to as the β1β2 model. The Friedmann and “alternate” 
Friedmann equations (23) and (28) are

3H2 = ρ

M2
Pl

+ 3m2
(
β1 y + β2 y2

)
, (29)

3α2 H2 = m2
(

β1

y
+ 3β2

)
. (30)

We can use eq. (30) to eliminate y in eq. (29). It is instructive to 
work in the GR limit where eq. (30) gives

y α→0−−−→ −1

3

β1

β2
. (31)

The α → 0 limit is nonsingular only if both β1 and β2 are nonzero. 
Plugging this into eq. (29) we obtain

3H2 = ρ

M2
Pl

− 2

3

β2
1

β2
m2. (32)

The effective cosmological constant is

�eff = −2

3

β2
1

β2
m2. (33)

Late-time acceleration requires β2 < 0.
When we are not exactly in the GR limit, we should consider 

corrections to eq. (32),

3H2 = ρ

M2
Pl

+ β2
1m4

3
(

H2α2 − β2m2
)2

(
3α2 H2 − 2β2m2

)

= ρ

M2
Pl

− 2

3

β2
1

β2
m2 − α2β2

1

3β2
2

H2 + O(α4). (34)

This expansion is valid as long as

H2 � β2m2

α2
. (35)

Rearranging and again keeping terms up to O(α2), we find a stan-
dard Friedmann equation with a time-varying effective cosmologi-
cal constant given by

�eff = −2

3

β2
1

β2
m2 − 2

9

β2
1

β2
2

α2

(
ρ

2M2
Pl

− β2
1

3β2
m2

)
+ O(α4). (36)

Because matter is coupled minimally to gμν , it will have the stan-
dard behavior ρ ∼ a−3(1+w) , where w = p/ρ is the equation-of-
state parameter, allowing ρ to stand in for time. This captures the 
first hint of the dynamical dark energy that is typical of bigrav-
ity [16–20].

These results generalize easily to other parameter combinations. 
We list the effective cosmological constant up to O(α2) for all the 

9 One can also combine eqs. (23) and (28) to obtain a quartic equation for y
involving ρ [14–17,31], but this is more cumbersome as it involves higher powers 
of y than eq. (28) does.
10 Since we are interested in finding self-accelerating solutions in the absence of 

vacuum energy, we will set β0 = 0 herein, but emphasize that this is not necessary.



Y. Akrami et al. / Physics Letters B 748 (2015) 37–44 41

Table 1
The effective cosmological constant and lowest-order corrections (which are time-
dependent through ρ) for a variety of two-parameter models. We have chosen 
solution branches which lead to positive �eff for appropriate signs of the βn , and 
generally take β1 ≥ 0 based on viability conditions [19]. The β3, β4 
= 0 model does 
not possess a finite-branch solution [19].

Model �eff (α → 0) O(α2) correction

β1, β2 
= 0 − 2
3

β2
1

β2
m2 − 2

9
β2

1
β2

2
α2

(
ρ

2M2
Pl

− β2
1

3β2
m2

)

β1, β3 
= 0 8
3
√

3

β
3/2
1√−β3

m2 β1
β3

α2
(

ρ

3M2
Pl

− 8β
3/2
1

9
√−3β3

m2
)

β1, β4 
= 0 3
β

4/3
1

3√−β4
m2 −

(
− β1

β4

) 2
3
α2

(
ρ

M2
Pl

+ 3
β

4/3
1

3√−β4
m2

)

β2, β3 
= 0 2
β3

2
β2

3
m2 − β2

2
β2

3
α2

(
ρ

M2
Pl

+ 2β3
2

β2
3

m2
)

β2, β4 
= 0 −9
β2

2
β4

m2 3 β2
β4

α2
(

ρ

M2
Pl

− 9β2
2

β4
m2

)

two-parameter models (setting β0 = 0) in Table 1. We remind the 
reader that, in order for the α → 0 limit to be well-behaved, at 
least two of the βn parameters (excluding the vacuum energy con-
tribution, β0) must be nonzero.

7. Exorcising the instability

The stability of cosmological perturbations in bigravity was in-
vestigated in Ref. [32] by determining the full solutions to the 
linearized Einstein equations in the subhorizon régime. The per-
turbations were shown to obey a WKB solution given by

� ∼ eiωN , (37)

where � represents any of the scalar perturbation variables, N ≡
ln a, and we have taken the limit k � aH where k is the comoving 
wavenumber. The eigenfrequencies ω were presented for particular 
models in Ref. [32], where it was found that all models with viable 
backgrounds have ω2 < 0 at early times, revealing a gradient insta-
bility that only ends at a very low redshift. Using the formulation 
of the linearized equations of motion presented in Ref. [33], we 
can write the eigenfrequencies for general βn and α in the com-
pact form [41]

(
aH

k

)2

ω2 = 1 +
(
β1 + 4β2 y + 3β3 y2

)
y′

3y
(
β1 + 2β2 y + β3 y2

)
−

(
1 + α2 y2

) (
β1 − β3 y2

)
y′ 2

3α2 y3ρ̃(1 + w)
, (38)

where ρ̃ ≡ ρ/m2M2
Pl and primes denote d/d ln a.

We apply this to the β1β2 model. Assuming a universe domi-
nated by dust (w = 0), ω2 crosses zero when11

18α2β2

(
α2β2

1 + 4β2
2

)
y5 + 9α2β1

(
α2β2

1 + 10β2
2

)
y4

+ 48α2β2
1β2 y3 + 6β2

(
2α2β2

1 − β2
2

)
y2 − 6β2

1β2 y − β3
1 = 0.

(39)

Solving this for y, we can then use eq. (30) to determine the value 
of Hubble rate at the transition era, before which the gradient in-
stability is present and after which it vanishes. While this solution 

11 We have used eqs. (29) and (30) and their derivatives to solve for y′ and ρ in 
eq. (38) in terms of βn and y [31]. Note that ω2 = 0 does not imply strong coupling 
because, while the gradient terms vanish, the kinetic terms remain nonzero.

Table 2
The values of α and M f for a few choices of the era at which perturbations become 
stable.

Era of transition to stability H� α M f

BBN 10−16 eV 10−17 100 GeV

�̃3 = (
m2 MPl/α

)1/3
10−3 eV 10−31 10−3 eV

GUT-scale inflation 1013 GeV 10−55 10−27 eV
MPl 1019 GeV 10−61 10−33 eV

is too complicated to write down explicitly, in the limit α → 0 the 
leading-order term is remarkably simple,12

H2
� = ± β2m2

√
3α2

+ O(α0), (40)

where H� is defined as the Hubble rate at the time when ω2 = 0, 
i.e., after which the gradient instability is absent. We pick the neg-
ative branch of eq. (40) for physical reasons, i.e., so that H2

� > 0
given that β2 < 0. We have checked explicitly that by solving for 
y with this value of H and plugging it into ω2, all terms up to 
O(α2) vanish.

Interestingly, eq. (40) is the same as the condition (35) for the 
small-α expansion of the background solution to be valid. There-
fore, simply by pushing the instability back to early times, one gets 
late-time bimetric dynamics that can be described as perturbative 
corrections to GR, except for the effective cosmological constant 
which remains nonperturbative. This is nontrivial; while we expect 
everything to reduce to GR at late times when we can expand in 
αH/

√
βnm, there could in principle have been earlier times during 

which perturbations were stable but still fundamentally different 
than in GR.

We can rewrite eq. (40) in more physical terms as

H2
� = −3

√
3

2α2

(
β2

β1

)2

H2
�, (41)

where H� is the far-future value of H and should be comparable 
to the present Hubble rate, H0. For |β1| ∼ |β2|, this implies simply

H� ∼ H0

α
. (42)

We see that as we approach the GR limit, the smaller one takes 
the f -metric Planck mass, the earlier in time bigravity’s gradient 
instability is cured. Our goal is to make this era so early as to be 
effectively unobservable. One has a variety of choices for the scale 
where the instability sets in; the values of α and M f for various 
choices are summarized in Table 2.

A natural requirement would be to push the instability out-
side the range of the effective field theory, i.e., above either the 
cut-off scale where new physics must enter, or the strong-coupling 
scale where tree-level unitary breaks down.13 The cut-off scale in 
massive and bimetric gravity is not known. The strong-coupling 
scale, to the extent it is understood, was discussed above. Here 
we focus on observational constraints. It is natural to demand 
that the instability lie beyond some important cosmic era which 
we can indirectly probe, such as big-bang nucleosynthesis (BBN) 
or inflation. Both of these possibilities are then likely to be ob-
servationally safe as long as the Universe is decelerating (e.g., is 

12 While eq. (40) only holds exactly in the presence of dust, w = 0, for other rea-
sonable equations of state, such as radiation (w = 1/3), it will only be modified 
by an O(1) factor. Since we will be using this analysis only to make order-of-
magnitude estimates, the exact factors are unimportant.
13 These two are not always the same, and may not be in massive and bimetric 

gravity [76,77].
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radiation-dominated) after inflation, because the instability is only 
a problem for subhorizon modes with large k/aH , and during a 
decelerating epoch modes with fixed comoving wavelength always 
become smaller with respect to the horizon. Consider, as an ex-
ample, that the transition to stability occurs between inflation and 
BBN. During that period, modes will grow rapidly on small scales, 
but those will be far, far smaller than the modes relevant for the 
cosmic microwave background or large-scale structure. One might 
worry that inflation’s ability to set initial conditions is spoiled in 
this scenario (assuming that the linear theory is even valid during 
inflation, which is not guaranteed due to the arguments above). 
However, the instability should be absent during inflation; notice 
from eq. (38) that ω2 generically becomes large and positive for w
close to −1.14 Therefore the instability would not affect the gener-
ation of primordial perturbations during inflation. If the instability 
later appears with the onset of radiation domination, it would only 
affect small scales which are irrelevant for present-day cosmology.

If the instability ends at the time of BBN, M f can be as high 
as about 100 GeV, far larger than the wavenumbers probed by 
cosmological observations. We remind the reader that for such a 
“large” M f , perturbations in the Einstein–Hilbert term for fμν re-
main weakly-coupled for all observationally-relevant k.

While analytic results like eq. (40) cannot be obtained for most 
of the other two-parameter models, we have checked that in each 
case the relevant behavior, H� ∼ H�/α, holds.15 The values given 
in Table 2 are therefore fairly model-independent.

The other pathology that is typical of massive and bimetric 
gravity, the Higuchi ghost, is not present in these models. There 
is a simple condition for the absence of this ghost, dρ/dy < 0
[35,36] (see also Refs. [33,37]). Because for normal matter ρ is 
always decreasing with time, this amounts to demanding that y
be increasing. In the “finite-branch” solutions which we are con-
sidering, y evolves monotonically from 0 at early times to a fixed 
positive value at late times, and so the Higuchi bound is always 
satisfied [41].

8. Parameter rescalings

We have presented a physically well-motivated region of bi-
metric parameter space, near the GR limit, in which observable 
cosmological perturbations are stable and yet self-acceleration re-
mains. One is naturally led to ask how this has been missed by 
the many previous studies of bimetric cosmology. The issue lies in 
a rescaling which leaves the action (1) invariant [28,62],

fμν → 
2 fμν, βn → 1


n
βn, M f → 
M f , (43)

and hence gives rise to a redundant parameter. It has become com-
mon to let α play this role and perform the rescaling 
 = 1/α
such that α is set to unity. While our results do not invalidate 
this rescaling, they do show that it picks out a particular region of 
parameter space which may not capture all physically-meaningful 
situations. In particular, the α → 0 limit, in which the theory ap-
proaches GR—the behavior at the heart of our removing the gradi-
ent instability—would look extremely odd after this rescaling: the 
βn would not only be very large, but each βn+1 would be para-

14 This depends on the exact βn parameters and the evolution of y. Background 
viability requires β1 > 0 [19], so as long as β3 ≤ 0, at the very least the last term in 
eq. (38) is large and manifestly positive.
15 Specifically, this holds in the models with β1 
= 0. The gradient instability is 

absent from the β2β3 and β2β4 models at early times [32]. These were shown in 
Ref. [19] to have problematic background behavior at early times, but these again 
can be made unobservably early in the GR limit.

metrically larger than βn .16 Therefore, studies which set α to unity 
could in principle have found the GR-like solutions which we study 
here, but only by looking at what would have appeared to be a 
highly unnatural and tuned set of parameters, even though they 
have a simple and sensible physical explanation. Without perform-
ing this rescaling, we can simply take the nonzero βn to be O(1)

and consider that we are in the small-M f régime.
It is clear that in phenomenological studies of bigravity, α must 

not automatically be set to unity. When working with a two-βn

model, perhaps a more sensible rescaling would be one such that 
the two βn are equal to each other (up to a possible sign). They 
can further be absorbed into m2. In this case, the free parameters 
are effectively the spin-2 interaction scale, m2, and the f -metric 
Planck mass, M f . Their effects decouple nicely: M f controls the 
earliness of the instability, while m sets the acceleration scale. Al-
ternatively, one may consider that the rescaling (43) simply tells 
us that rather different regions of parameter space happen to have 
the same solutions, and therefore not perform any rescaling a priori
at all.

9. Summary and discussion

We have shown that a well-motivated but heretofore underex-
plored region of parameter space in bimetric gravity can lead to 
cosmological solutions which are observationally viable and close 
to general relativity, with an effective cosmological constant that 
is set by the spin-2 interaction scale m. In this limit, obtained 
by taking a small f -metric Planck mass, the gradient instability 
that seems to generically plague bimetric models at late times 
is relegated to the very early Universe, where it can be either 
made unobservable or pushed outside the régime of validity of 
the effective theory. This instability had been considered in pre-
vious work to make bimetric cosmologies nonpredictive even at 
late times. Furthermore, in this limit the theory avoids the usual 
low-scale strong-coupling issue that affects the helicity-0 sector in 
the massive-gravity limit.

What is encouraging is that the one property of bigravity which 
survives in the small-α limit is its cosmologically most useful fea-
ture, the technically-natural dark energy scale. In other words, the 
effective cosmological constant of bigravity in a region close to GR 
is not just the vacuum-energy contribution and can give rise to 
self-acceleration in its absence.

The model we have presented is expected to be extremely close 
to GR at all but very high energy scales. In particular the Newto-
nian limit is well-behaved; unlike m2 → 0, which suffers from the 
vDVZ discontinuity, the GR limit α → 0 is completely smooth be-
cause all the helicity states of the massive spin-2 mode decouple 
from matter. Note also that massive gravity does not possess such 
a continuous GR limit.

It is worth emphasizing that the α → 0 limit brings bimet-
ric theory arbitrarily close to GR even for a large value of the 
spin-2 mass scale, m � H0. The presence of heavy spin-2 fields 
in the Universe is therefore not excluded as long as their self-
interaction scale (set by M f ) is sufficiently small compared to MPl. 
In this case, however, the βn parameters need to be highly tuned 
for the effective cosmological constant small enough to be com-
patible with observations.17 Note however that, since the βn are 

16 We can recast this as a large m2, but there would remain a specific tuning 
among the βn of the form βn/βn+1 ∼ ε , where ε is the value of α before the rescal-
ing.
17 Indeed, without this tuning of the βn , the interaction term would lead to ac-

celeration at an unacceptably early epoch. This scenario is related to the findings 
of Ref. [36], where it was shown that the instability becomes negligible for large 
values of m.
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protected against loop corrections [42,78,79], this tuning does not 
violate technical naturalness.

Finally we comment on the potential observable signatures of 
this theory. While at low energies, corresponding to recent cosmo-
logical epochs, this limit of bigravity is extremely close to GR, there 
may be observable effects at early times when the effects of strong 
coupling become important. In this case, given by H > H� , the 
small-α approximation breaks down and modified-gravity effects 
must be taken into account. This may be particularly important for 
inflation, which will see such effects unless M f is extraordinarily 
small. A better understanding of strong coupling in the fμν sector 
will therefore point the way towards tests of this important re-
gion of bimetric parameter space, since at this point it is not clear 
how to perform computations in the strong-coupling regime. There 
may also be effects related to the Vainshtein mechanism [80,81]. 
We conclude that the closeness of this theory to GR is both a 
blessing and a curse: while it is behind the exorcism of the gra-
dient instability and brings the theory in excellent agreement with 
experiments, it presents a serious observational challenge if it is 
to be compared against GR. It is nevertheless encouraging that 
this “GR-adjacent” bigravity naturally explains cosmic acceleration 
while avoiding the instabilities that plague other bimetric models, 
and therefore merits serious consideration.
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Fasiello, Emir Gümrükçüoğlu, Nima Khosravi, Edvard Mörtsell, Luigi 
Pilo, Marit Sandstad, and Sergey Sibiryakov for useful discussions. 
We thank the “Extended Theories of Gravity” workshop at Nordita 
for providing a stimulating atmosphere during the completion of 
this work. Y.A. and F.K. acknowledge support from DFG through the 
project TRR33 “The Dark Universe.” F.K. is also supported by the 
Graduate College “Astrophysics of Fundamental Probes of Gravity.” 
The work of A.S.M. is supported by ERC grant No. 615203 under 
the FP7 and the Swiss National Science Foundation through the 
NCCR SwissMAP. A.R.S. acknowledges support from the STFC.

References

[1] M. Fierz, W. Pauli, On relativistic wave equations for particles of arbitrary spin 
in an electromagnetic field, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 173 
(1939) 211–232.

[2] C.J. Isham, Abdus Salam, J.A. Strathdee, F-dominance of gravity, Phys. Rev. D 3 
(1971) 867–873.

[3] D.G. Boulware, Stanley Deser, Can gravitation have a finite range?, Phys. Rev. D 
6 (1972) 3368–3382.

[4] S.F. Hassan, Rachel A. Rosen, Bimetric gravity from ghost-free massive gravity, 
J. High Energy Phys. 1202 (2012) 126, arXiv:1109.3515 [hep-th].

[5] S.F. Hassan, Rachel A. Rosen, Confirmation of the secondary constraint and ab-
sence of ghost in massive gravity and bimetric gravity, J. High Energy Phys. 
1204 (2012) 123, arXiv:1111.2070 [hep-th].

[6] Paolo Creminelli, Alberto Nicolis, Michele Papucci, Enrico Trincherini, Ghosts in 
massive gravity, J. High Energy Phys. 0509 (2005) 003, arXiv:hep-th/0505147.

[7] Claudia de Rham, Gregory Gabadadze, Generalization of the Fierz–Pauli action, 
Phys. Rev. D 82 (2010) 044020, arXiv:1007.0443 [hep-th].

[8] Claudia de Rham, Gregory Gabadadze, Andrew J. Tolley, Resummation of mas-
sive gravity, Phys. Rev. Lett. 106 (2011) 231101, arXiv:1011.1232 [hep-th].

[9] S.F. Hassan, Rachel A. Rosen, Resolving the ghost problem in non-linear massive 
gravity, Phys. Rev. Lett. 108 (2012) 041101, arXiv:1106.3344 [hep-th].

[10] S.F. Hassan, Rachel A. Rosen, Angnis Schmidt-May, Ghost-free massive gravity 
with a general reference metric, J. High Energy Phys. 1202 (2012) 026, arXiv:
1109.3230 [hep-th].

[11] S.F. Hassan, Angnis Schmidt-May, Mikael von Strauss, Proof of consistency of 
nonlinear massive gravity in the Stúckelberg formulation, Phys. Lett. B 715 
(2012) 335–339, arXiv:1203.5283 [hep-th].

[12] Adam G. Riess, et al., Supernova Search Team, Observational evidence from su-
pernovae for an accelerating universe and a cosmological constant, Astron. J. 
116 (1998) 1009–1038, arXiv:astro-ph/9805201.

[13] S. Perlmutter, et al., Supernova Cosmology Project, Measurements of Omega 
and Lambda from 42 high redshift supernovae, Astrophys. J. 517 (1999) 
565–586, arXiv:astro-ph/9812133.

[14] Mikhail S. Volkov, Cosmological solutions with massive gravitons in the bigrav-
ity theory, J. High Energy Phys. 1201 (2012) 035, arXiv:1110.6153 [hep-th].

[15] D. Comelli, M. Crisostomi, F. Nesti, L. Pilo, FRW cosmology in ghost free massive 
gravity, J. High Energy Phys. 1203 (2012) 067, arXiv:1111.1983 [hep-th].

[16] Mikael von Strauss, Angnis Schmidt-May, Jonas Enander, Edvard Mörtsell, S.F. 
Hassan, Cosmological solutions in bimetric gravity and their observational 
tests, J. Cosmol. Astropart. Phys. 1203 (2012) 042, arXiv:1111.1655 [gr-qc].

[17] Yashar Akrami, Tomi S. Koivisto, Marit Sandstad, Accelerated expansion from 
ghost-free bigravity: a statistical analysis with improved generality, J. High En-
ergy Phys. 1303 (2013) 099, arXiv:1209.0457 [astro-ph.CO].

[18] Yashar Akrami, Tomi S. Koivisto, Marit Sandstad, Cosmological constraints on 
ghost-free bigravity: background dynamics and late-time acceleration, arXiv:
1302.5268 [astro-ph.CO], 2013.

[19] Frank Könnig, Aashay Patil, Luca Amendola, Viable cosmological solutions in 
massive bimetric gravity, J. Cosmol. Astropart. Phys. 1403 (2014) 029, arXiv:
1312.3208 [astro-ph.CO].

[20] Jonas Enander, Adam R. Solomon, Yashar Akrami, Edvard Mortsell, Cosmic ex-
pansion histories in massive bigravity with symmetric matter coupling, J. Cos-
mol. Astropart. Phys. 01 (2015) 006, arXiv:1409.2860 [astro-ph.CO].

[21] G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava, et al., Mas-
sive cosmologies, Phys. Rev. D 84 (2011) 124046, arXiv:1108.5231 [hep-th].
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Abstract: Many theories of modified gravity with higher order derivatives are usually

ignored because of serious problems that appear due to an additional ghost degree of free-

dom. Most dangerously, it causes an immediate decay of the vacuum. However, breaking

Lorentz invariance can cure such abominable behavior. By analyzing a model that describes

a massive graviton together with a remaining Boulware-Deser ghost mode we show that

even ghostly theories of modified gravity can yield models that are viable at both classical

and quantum levels and, therefore, they should not generally be ruled out. Furthermore,

we identify the most dangerous quantum scattering process that has the main impact on

the decay time and find differences to simple theories that only describe an ordinary scalar

field and a ghost. Additionally, constraints on the parameters of the theory including some

upper bounds on the Lorentz-breaking cutoff scale are presented. In particular, for a sim-

ple theory of massive gravity we find that a breaking of Lorentz invariance is allowed to

happen even at scales above the Planck mass. Finally, we discuss the relevance to other

theories of modified gravity.
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1 Introduction

Despite the fact that the standard theory of gravity, general relativity (GR), is already

around one century old, there has always been interest in finding viable modifications to

it. In particular, the discovery of the late-time acceleration of our Universe [1, 2] driven

by some dark energy has led to an additional motivation, as GR requires a technically

unnatural cosmological constant (CC) in order to be compatible with observations. The

list of problems with the standard theory goes much further (see for example ref. [3] for

a recent review): GR is not renormalizable and can only be regarded as an effective field

theory (EFT). Furthermore, the formation of structure at early times needs an additional

inflationary epoch, and even the requirement of some additional dark matter might be

the consequence of the inability of GR to properly describe the evolution of the cosmic

structure. It is however not only these problems that make a search for modifications of

GR attractive; there is also the more fundamental question of which classes of theories are

allowed and consistent.

– 1 –
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Under certain assumptions, Vermeil and Cartan independently proved that Einstein

equations are the only allowed field equations to describe gravity [4, 5]. In particular,

if a rank-2 tensor K is naturally constructed from only a pseudo-Riemannian metric g,

and is symmetric, divergence-free, only second order in the derivatives of g, and linear in

these derivatives, then K has to be a linear combination of the Einstein tensor and the

metric itself. Later, Lovelock showed that the requirements of symmetry and linearity

are redundant in four dimensions [6]. A generalization of this theorem has recently been

suggested by Navarro and Sancho [7], who replaced the assumptions of the number of

dimensions and absence of higher order derivatives by a simpler requirement that K is

homogeneous, i.e., K(λ2g) = λwK(g) ∀g, ∀λ > 0, and of weight w > −2.

Thinking about modifying GR can be translated into relaxing these so-called Lovelock

assumptions. Higher dimensional spacetimes, as well as unnaturalness (understood in the

mathematical sense, i.e., either breaking of locality or generally non-C∞), enable a richer

phenomenology and do not necessarily require a CC in order to fit current observations.

Additionally, a pseudo-Riemannian geometry is quite restrictive as it both implies a van-

ishing torsion and enforces the connection to be metric-compatible. Certainly the strongest

assumption, however, is the dependence on the metric only. Consequently, most theories

of modified gravity assume additional fields that can be either scalar, vector, or tensor.

There is, however, one assumption that usually stays untouched: the absence of

higher order derivatives. An old theorem from Ostrogradski states that non-degenerate

Lagrangians that lead to third or higher order derivatives in the equations of motion (EoM)

always house an additional ghost, i.e., a degree of freedom with the wrong kinetic sign. But

even degenerate Lagrangians producing third order derivatives are affected by ghosts [8].

The consequences that come along with a ghost are usually believed to be fatal (see, e.g.,

refs. [9, 10]). Such a negative energy mode could drive the classical theory into an instabil-

ity. Even though this might still be acceptable as long as the theory is in agreement with

observations, it indeed limits the number of viable theories drastically. The real catastro-

phe appears, however, at the quantum level: ghost fields can decay into ordinary matter

fields by reaching arbitrarily large negative energy states. And, even worse, this decay will

practically happen instantaneously (see refs. [10, 11] for more details). Such a theory can-

not describe a stable vacuum and therefore has to be ruled out. The origin of the fast decay

lies in an integration over the entire phase space when computing scattering amplitudes

which diverge in the ultraviolet (UV) region. Therefore, the only way to tame the ghost is

to modify the integration in the UV. In ref. [12], the authors suggested that new operators

beyond the EFT would allow us to cut this integral and, therefore, a theory with ghosts

could theoretically be cured. In fact, it has been shown that the vacuum in simple theories

with two oscillators, of which one is a ghost, can indeed have a decay time that is larger

than the Hubble time [12, 13] (see also refs. [14, 15] for discssions of ghosts in Chern-Simons

and Hořava-Lifshitz theories, respectively). The energy scale at which new physics might

enter and break Lorentz invariance (LI) can be low enough to slow down the vacuum decay

sufficiently and circumvent any violation of experimental constraints, but at the same time

be high enough to be above the cutoff of the EFT. In fact, a Lorentz breaking (LB) does

not render the theory unappealing as long as it occurs above the EFT cutoff scale.
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In this work, we discuss a theory of modified gravity that automatically introduces a

ghost instead of adding a simple ghost field by hand to a well behaved theory. In fact, as

will be shown, many properties of such a theory, like the decay time of the vacuum, may

be significantly different, and therefore the conclusions from simpler toy models should

not be adopted blindly. In order to modify GR suitably, we assume a massive graviton.

Even though the idea of studying massive gravity is very old [16], ghost-free non-linear

theories were discovered only recently [17–23]. Here we use the so-called ghost-free de

Rham-Gabadadze-Tolley (dRGT) theory to construct a theory of a massive graviton with

an additional Boulware-Deser (BD) ghost [24], which we then dub haunted massive gravity

(HMG). We first study the classical behavior of the theory for a Friedmann-Lemâıtre-

Robertson-Walker (FLRW) background in order to identify the models that do not intro-

duce potentially dangerous instabilities already at this level. With HMG we find the first

theory of a canonical non-linear massive gravity which possesses models that are free of any

background pathologies, and allows for dynamical, even self-accelerating, FLRW solutions.

We finally discuss the quantum stability of the viable models by computing the ghost and

vacuum decay rates in HMG.

Although the theory that is discussed in this work has some nice features, e.g., it

can provide a solution to the dark energy problem, it is certainly not the most promising

contender of GR. For example, the construction of the mass term is mainly based on keeping

simplicity, and the strong coupling scale of the theory is very low, losing predictivity on

small scales. This work, however, does not intend to present a new theory of modified

gravity in order to address the problems with GR, but rather to examine the behavior of

ghosts appearing in more realistic theories of gravity. We find that the scattering processes

that dominate in the ghost and vacuum decay rates do not coincide with those that appear

in theories with two coupled canonical scalar fields where one of the fields is a ghost. While

in such a simple scenario the decay time has been found to scale only quadratically with the

cutoff at which Lorentz violation (LV) occurs [12] (see also refs. [13, 25] for a discussion on

decay rates for other setups), we find a completely different scaling for HMG. Furthermore,

we expect the type of interaction that we find in this work as the most important one in

HMG to in fact determine the decay time also in many other theories of gravity with a

present ghost mode.

2 HMG with dRGT limit

Since we are interested in a theory of a massive graviton with an additional BD ghost, we

could simply study any non-linear theory that does not coincide with the dRGT theory.

However, we would like to keep a ghost-free limit, and therefore, we start with dRGT and

modify the tuning between the coefficients of interaction terms.

The dRGT massive gravity can be written as [22, 26]

SdRGT = M2
P

∫
d4x
√−g

[
R+ 2m2U(K)

]
, (2.1)

where U(K) is the mass term, which depends on the eigenvalues of K ≡
√
g−1f−1 ≡ X−1,

and is equivalent to
∑3

n=0 βnUn with Un ≡ en (X), en being the elementary symmetric
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polynomials of the eigenvalues of X. Additionally, f is a non-dynamical symmetric rank-2

tensor field, and βn depend on the two free dimensionless parameters of the theory, α3

and α4 [26]:

β0 = 6− 4α3 + α4, (2.2)

β1 = −3 + 3α3 − α4, (2.3)

β2 = 1− 2α3 + α4, (2.4)

β3 = α3 − α4. (2.5)

Let us first discuss the simplest model, the so-called minimal model [26], and choose α3

and α4 such that we can switch off the highest order interactions, i.e. β2 = β3 = 0, and

obtain

α3 = α4 = 1 ⇔ β0 = 3, β1 = −1. (2.6)

The action in this case becomes

Smin = M2
P

∫
d4x
√−g

[
R+ 2m2 (3− [X])

]
, (2.7)

where [X] denotes the trace of X. If we change the prefactors of the mass term, we then

change either the CC or the graviton mass (or make it tachyonic). Thus, in order to

introduce a ghost, we should switch on higher order interactions. One possibility would be

to remove the CC (which would make the model very appealing especially for cosmology)

and allow for β1 and β2 to be non-vanishing. We then find β0 = β3 = 0 together with

α3 = α4 = 2 ⇔ β1 = 1 = −β2, (2.8)

which results in the action

S = M2
P

∫
d4x
√−g

[
R+ 2m2

(
β1 [X] +

1

2
β2

(
[X]2 −

[
X2
]))]

(2.9)

= M2
P

∫
d4x
√−g

[
R+ 2m2

([√
g−1f

]
− 1

2

([√
g−1f

]2
−
[
g−1f

]))]
. (2.10)

Note that this choice, like all other combinations that satisfy α3 +α4 > 0, does not lead to

a Higuchi ghost, at least around an FLRW background for large H2 [27]. This is important

because we will use this theory as a ghost-free limit which should ensure not only the

absence of the BD ghost but also the presence of five healthy graviton degrees of freedom.

We now modify the theory to introduce a ghost. The simplest way would be to modify

the prefactor in one of the interaction terms which in the linear theory corresponds to a

violation of the Fierz-Pauli (FP) tuning. However, we do not expect this modification to

enable dynamical FLRW solutions for a flat reference metric since the combination of the

Bianchi identities and the conservation of energy-momentum tensor will still be a constraint

for the scale factor, as it has been shown for dRGT in ref. [28]. One way out could be to
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introduce a metric-dependent (and, thus, lapse-dependent) prefactor like α
[
g−1f

]
, with

α ∈ R, and study the action

S = M2
P

∫
d4x
√−g

[
R+ 2m2

([√
g−1f

]
+

1

2

(
α
[
g−1f

]
− 1
)([√

g−1f
]2
−
[
g−1f

]))]
.

(2.11)

Although this theory would certainly allow for dynamical FLRW backgrounds, we found

only unviable solutions for which the scale factor would become imaginary or the lapse

would cross zero, indicating an instability. Therefore, we consider a slightly more compli-

cated theory in which both interaction terms are modified, and dub this theory haunted

massive gravity (HMG):

SHMG = M2
P

∫
d4x
√−g

[
R+ 2m2

(
(1− α1 (g, f))

[√
g−1f

]

− 1

2
(1− α2 (g, f))

([√
g−1f

]2
−
[
g−1f

]))]
, (2.12)

with

α1 (g, f) ≡ ᾱ1X2 = ᾱ1g
αβfβα, (2.13)

α2 (g, f) ≡ ᾱ2X2 = ᾱ2g
αβfβα, (2.14)

where ᾱi are two dimensionless parameters.

This theory has some interesting properties. Firstly, the limit ᾱi → 0 corresponds to

the ghost-free dRGT theory, whereas any other values should introduce a new ghost degree

of freedom as it does not coincide with dRGT, the unique non-linear ghost-free theory

of a massive graviton. Secondly, the additional dynamical factors will enable us to have

dynamical FLRW solutions by modifying the Bianchi constraint, and, finally, we expect the

vacuum to decay more slowly at late times since
[
g−1f

]
∝ a−2 for FLRW backgrounds.1

3 Background cosmology

From now on, let us fix the reference metric to a flat Minkowski background, i.e., fµν = ηµν .

Since massive gravity with fµν = ηµν breaks diffeomorphism invariance, the lapse of gµν
must not be chosen arbitrarily. For an FLRW background we therefore choose

ds2 = −N2
g dt2 + a2d~x2, (3.1)

with Ng and a denoting the lapse and the scale factor, respectively, and t being cosmic

time. Varying the action (2.12) with respect to gµν yields

−2m2M2
Pδ
(√−gU1 (X)

)
= −√−gβ1m

2M2
Pg

µαY ν
(1)α

(√
g−1f

)
δgµν , (3.2)

−2m2M2
Pδ
(√−gU2 (X)

)
=
√−gβ2m

2M2
Pg

µαY ν
(2)α

(√
g−1f

)
δgµν , (3.3)

1This could have an interesting impact on the phenomenology at early times and might lead to an

enhanced creation of particles. The relevant time period would, however, presumably lie above the cutoff

scale of the theory.

– 5 –



J
H
E
P
1
1
(
2
0
1
6
)
1
1
8

with

Y(1) (X) ≡ X− 1 [X] , (3.4)

Y(2) (X) ≡ X2 − X [X] +
1

2
1
(

[X]2 −
[
X2
])
. (3.5)

Furthermore, we need the variation of αi:

δαi (g) = −ᾱigαµgνβηβαδgµν . (3.6)

With this, the variation of the mass term yields

√−gM2
PV

µν ≡ −m2√−gM2
P

[
(α1 (g)− 1) gµαY ν

(1)α + (α2 (g)− 1) gµαY ν
(2)α

− 2U1 (X)
δα1 (g)

δgµν
− 2U2 (X)

δα2 (g)

δgµν

]
. (3.7)

Combining the Bianchi identities with the assumption of a conserved energy-momentum

tensor leads to the Bianchi constraint

∇µV µν = 0, (3.8)

which implies

(
1 + 3a−2N2

g

) [
N ′g (a (aᾱ1 + 6ᾱ2) + 2Ng (2aᾱ1 + ᾱ2))

+HNg

(
−6aᾱ2 +N2

g (4ᾱ1 − (a− 2)a)− 2Ng (aᾱ1 + ᾱ2) + 9ᾱ1a
−1N3

g

)]
= 0. (3.9)

Here, H ≡ a′/a is the Hubble rate, and a prime denotes a derivative with respect to t. In

the limit ᾱi → 0, eq. (3.9) fixes the scale factor confirming the no-go theorem for FLRW

solutions in dRGT massive gravity. In our case, however, we are able to switch on the

dynamics since the Bianchi constraint now depends on both the scale factor and the lapse.

This constraint together with the Friedmann equation

3H2 = ρ+ V00 (3.10)

= ρ+
m2

a4Ng

[
a3 (− (aᾱ1+6ᾱ2))−3a2Ng (2aᾱ1+ᾱ2)+3N3

g (a ((a−1)a−3ᾱ1)+3ᾱ2)
]

(3.11)

and assuming a universe filled with dark matter only,

ρ ≡ ρ0a
−3, (3.12)

can be solved numerically. In the limit a � 1, the combination of the Bianchi constraint

and the Friedmann equation provides

Ng = ±1

3

√
ᾱ2

ᾱ1
a, (3.13)
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Figure 1. Numerical solution of the FLRW background evolution in HMG, corresponding to the

model with ᾱ1 = 0.9 and ᾱ2 ' 0.1025. The plots show the scale factor (upper left), the expansion

rate (upper right), the lapse (lower left), and the effective equation of state (lower right). All the

quantities are plotted versus the cosmic time, t, scaled in such a way that a(t = 1) = 1.

and implies H2 ∝ a−3. Therefore, we find a singularity for a → 0. The time at which it

occurs will be denoted by tc, i.e., Ng(tc) = 0.

Interestingly, for a given ᾱ1 one can find a value for the parameter ᾱ2 that maximizes

the timescale of the background evolution by reaching tc → 0. One example for such a

model is

ᾱ1 = 0.9 ⇒ ᾱ2 ' 0.1025. (3.14)

By solving the background equations numerically, we can search for the parameter

region that leads to tc = 0 and find that it can be fitted very well linearly with

ᾱ2 '
1

6
ᾱ1 −

2

45
. (3.15)

If we promote the maximization of the classical timescale to a constraint, then this

model will effectively lose one free parameter. Furthermore, eq. (3.15) indicates that both

ᾱ1 and ᾱ2 can be of O (1).

Surprisingly, after solving the background equations for the model (3.14) numerically,

we find that at late times the effective equation of state parameter weff < −1/3 indicates

a period of self-acceleration and we thus have found a candidate for a model that could be

able to provide a solution to the dark energy problem. See figure 1 for a numerical solution

of the background evolution, corresponding to model (3.14).
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4 Second order action for HMG around Minkowski

In order to compute the vacuum decay, we have to first identify the ghost mode. For this,

we perturb the background, expand the action to second order, and finally integrate out2

all auxiliary fields.

4.1 Gravity sector

We now choose to work with perturbations around a Minkowski background. Note that

we expect a generalization to an FLRW background to merely modify the decay rate

insignificantly. In fact, corrections from an FLRW background are proportional to H/k and

become negligible in the high-momentum limit, on which we will focus later. Furthermore,

ignoring the cosmological expansion and, therefore, a smaller volume at early times, should

then correspond to maximizing the decay rate and computing an upper bound for a more

realistic scenario.

In this case, the Bianchi constraint (3.9) enforces the lapse to be a constant; here we

set Ng = 1. Furthermore, in order to excite the scalar BD ghost we consider the following

scalar perturbations δg around the background ḡ ≡ η:

ds2
δg = 2

[
−Ψdt2 +B,idx

idt+ (Φδij + E,ij) dxidxj
]
. (4.1)

The Einstein-Hilbert action at second order therefore reads

S
(2)
EH = 4M2

P

∫
d4x

(
Φ2
i + 2ΦiΨi − 2Φ′∆E′ − 3Φ′2 − 2BiΦ

′
i

)
, (4.2)

where we have used the notation

XiYi ≡
∑

j

X,jY,j , ∆X ≡
∑

j

X,jj . (4.3)

We now expand the mass term of action (2.12) to second order and use

√
g−1η '

√
ḡ−1η

[
1− 1

2
ḡ−1 (δg) +

3

8
ḡ−1 (δg) ḡ−1 (δg)

]
(4.4)

= 1− 1

2
η (δg) +

3

8
η (δg) η (δg) , (4.5)

to obtain

(
1− ᾱ1

[
g−1η

]) [√
g−1η

]

'
[
1− 1

2
η (δg) +

3

8
η (δg) η (δg)

]

− ᾱ1 ([1]− [(δg) η] + [η (δg) η (δg)])

(
[1]−

[
1

2
η (δg)

]
+

[
3

8
η (δg) η (δg)

])
(4.6)

' 4 (1− 4ᾱ1)−
(

1

2
− 6ᾱ1

)
[η (δg)]− 1

2
ᾱ1 [η (δg)]2 +

(
3

8
− 11

2
ᾱ1

)
[η (δg) η (δg)] (4.7)

2Since we are interested in computing only tree-level diagrams in order to discuss the quantum behavior

of the theory, the elimination of all auxiliary fields in the action by using their EoM is equivalent to properly

integrating out these fields.
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and

(
1− ᾱ2

[
g−1η

])([√
g−1η

]2
−
[
g−1η

])

' (1− ᾱ2 (4− [(δg) η] + [η (δg) η (δg)]))×

×
([

1− 1

2
η (δg) +

3

8
η (δg) η (δg)

]2

− 4 + [(δg) η]− [η (δg) η (δg)]

)
(4.8)

' 12 (1− 4ᾱ2)− 3 (1− 8ᾱ2) [(δg) η] +

(
1

4
− 4ᾱ2

)
[η (δg)]2

+ 2 (1− 10ᾱ2) [η (δg) η (δg)] . (4.9)

Finally, with

√−g ' 1

4

√−ḡ
(

4 + 2 (δg)µµ − (δg)µν (δg)µν +
1

2

(
(δg)µµ

)2
)

(4.10)

=
1

4

(
4 + 2 [η (δg)]− [η (δg) η (δg)] +

1

2
[η (δg)]2

)
(4.11)

we find the second order action of the mass term as

S(2)
mass = M2

Pm
2

∫
d4x

(
1

4
+ᾱ1−2ᾱ2

)
[η (δg)]2−

(
1

4
+3ᾱ1−8ᾱ2

)
[η (δg) η (δg)] . (4.12)

For the ansatz (4.1), this becomes

S(2)
mass =

1

2
M2

Pm
2

∫
d4x
[
−c1B∆B+c2

(
Ψ2+(∆E)2

)
+8c3Φ∆E+12c3Φ2+4c4Ψ (∆E+3Φ)

]
,

(4.13)

where we have defined the parameters ci as

c1 ≡ 1 + 12ᾱ1 − 32ᾱ2, (4.14)

c2 ≡ −16ᾱ1 + 12ᾱ2, (4.15)

c3 ≡ 1 + 4ᾱ2, (4.16)

c4 ≡ 1 + 4ᾱ1 − 8ᾱ2. (4.17)

Therefore, the (minimal) ghost-free massive gravity corresponds to the limit c1, c3, c4 → 1

and c2 → 0. Note that we should not necessarily expect a smooth limit due to the change

in the number of degrees of freedom in HMG compared to dRGT.

4.2 Full action including matter

For simplicity, we assume the matter sector to contain only a single, minimally-coupled,

scalar field ϕ with mass mϕ, i.e.,

Smatter = −
∫

d4x
√−g

(
∂µϕ∂µϕ+m2

ϕϕ
2
)
, (4.18)

and consider the weak-field limit where only the gravitational sector is expanded to second

order and matter is kept unperturbed. The kinetic and mass terms of ϕ are then given by

its coupling to the background metric.
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By combining the actions (4.2), (4.13), and (4.18), we obtain the final leading order

action of HMG, containing a Boulware-Deser ghost and a matter field, around Minkowski

(modulo total derivatives),

S
(2)
HMG =

∫
d4x

[
4M2

P

(
Φ2
i − 2∆ΦΨ− 2Φ′∆E′ − 3Φ′2 − 2BiΦ

′
i

)

+
1

2
m2M2

P

(
c1B

2
i +c2

(
Ψ2+(∆E)2

)
+8c3Φ∆E+12c3Φ2+4c4Ψ (∆E+3Φ)

)

−
(

1 +B2
i − (∆E)2 + 3Φ2 + 6ΦΨ−Ψ2 + 2∆E (Φ + Ψ)

)
Xϕ

]
, (4.19)

where we have defined

Xϕ ≡ −ϕ′2 + ϕ2
i +m2

ϕϕ
2. (4.20)

In total, all the scalar potentials Φ, Ψ, B, E, and the matter field ϕ should describe

at most three propagating scalar degrees of freedom: one helicity-0 mode of the graviton,

one scalar field from the matter sector, and one additional Boulware-Deser ghost. All these

scalar degrees of freedom are, however, not always excited around all backgrounds. Since

we are interested in the interaction of the ghost with the matter field, we need to ensure

that the BD ghost is indeed a propagating mode in eq. (4.19). To see this, we first integrate

out all the auxiliary fields by using their EoM

∂L
∂X
− ∂t

(
∂L
∂X ′

)
− ∂i

(
∂L
∂Xi

)
+ ∂2

t

(
∂L
∂X ′′

)
+ ∂2

i

(
∂L

∂
(
∂2
iX
)
)

= 0. (4.21)

For X ∈ {Ψ, B, ∆E} this leads to

Ψ =
8M2

P∆Φ− (∆E + 3Φ)
(
2c4m

2M2
P +Xϕ

)

c2m2M2
P −Xϕ

, (4.22)

Bi =
8M2

PΦ′i
c1m2M2

P +Xϕ
, (4.23)

∆E = −Φ
(
4c3m

2M2
P +Xϕ

)
+ Ψ

(
2c4m

2M2
P +Xϕ

)
+ 8M2

PΦ′′

c2m2M2
P −Xϕ

. (4.24)

Solving this set of equations for Ψ, B, and ∆E as functions of Φ, Xϕ, and their derivatives,

yields

Ψ =
8M2

P∆Φ
(
c2m

2M2
P−Xϕ

)
−

(
2c4m

2M2
P+Xϕ

) [
Φ

(
(3c2−4c3) m2M2

P−4Xϕ

)
−8M2

PΦ′′]

(c2
2−4c2

4) m4M4
P−2 (c2+2c4) m2M2

PXϕ
, (4.25)

Bi =
8M2

PΦ′
i

c1m2M2
P + Xϕ

, (4.26)

∆E =

8∆Φ
(
2c4m

2M2
P+Xϕ

)
+Φ

[
4
(
c2c3−3c2

4

)
m4M4

P+(c2−4c3−12c4)m2M2
PXϕ−4X2

ϕ

]
+8M2

PΦ′′(c2m
2M2

P−Xϕ

)

− (c2
2 − 4c2

4) m4M4
P + 2 (c2 + 2c4) m2M2

PXϕ
.

(4.27)

Note that the determinant of the mixing matrix for Ψ and ∆E in eqs. (4.22) and (4.24)

is proportional to the factors m2 and c2 + 2c4 = 2 − 8ᾱ1 + 32ᾱ2. If one of these terms

vanishes, the mixing matrix becomes singular, which is equivalent to it having a zero
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eigenvalue. These eigenvalues correspond to the kinetic terms of the diagonalized degrees

of freedom (given by the eigenvectors). Therefore, the singular situation corresponds to a

combination of the auxiliary fields losing its kinetic term, and leads to a strong coupling

and a breakdown of perturbativity.

Finally, the full second order HMG action

S
(2)
HMG = S

(2)
EH + S(2)

mass + Smatter (4.28)

can be written as

S
(2)
HMG [Φ, ϕ] = S(2)

m [Φ, ϕ] + S
(2)
kin [Φ, ϕ] + S

(2)
int [Φ, ϕ] . (4.29)

The action now depends only on two remaining interacting massive scalar fields ϕ and Φ

described by the mass term

S(2)
m = −

∫
d4x

(
−6c3m

2M2
PΦ2 +m2

ϕϕ
2
)
, (4.30)

and rather complicated kinetic and interaction terms, S
(2)
kin and S

(2)
int , respectively. Because

the action (4.19) contains a term that is proportional to Φ′∆E′, we find, after integrating

out ∆E, terms that include (Φ′′)2. The occurrence of fourth-order derivatives in Φ signals

that the theory is inevitably plagued by an Ostrogradsky ghost. In total, we expect a

composition of three scalar degrees of freedom consisting of a helicity-0 mode from the

graviton, a matter field, and a ghost. In order to analyze the interactions between the

ghost and the other degrees of freedom, we need to decouple all of them.

4.3 Decoupling of the ghost

4.3.1 Decoupling in vacuum

Before analyzing the UV limit, i.e., Xϕ � m2M2
P, we study the simpler case first in which

the matter field is absent, i.e., Xϕ = 0. The action can then be written as

S
(2)
HMG =

∫
d4x

[
C1 (∆Φ)2+C2Φ∆Φ+C3Φ′′∆Φ+C4ΦΦ′′+C5

(
Φ′′
)2

+C6Φ2
]
, (4.31)

where

C1 ≡ −
32c2M

2
P

m2
(
c2

2 − 4c2
4

) , C2 ≡ −
4M2

P

(
c2

2 − 12c2c4 + 4c4(4c3 − c4)
)

c2
2 − 4c2

4

, (4.32)

C3 ≡ −
32M2

P

(
4c4(c1 − c4) + c2

2

)

c1m2
(
c2

2 − 4c2
4

) , C4 ≡
4M2

P

(
3c2

2 − 8c2c3 + 12c2
4

)

c2
2 − 4c2

4

, (4.33)

C5 ≡ −
32c2M

2
P

m2
(
c2

2 − 4c2
4

) , C6 ≡
2m2M2

P(3c2 − 4c3)
(
c2c3 − 3c2

4

)

c2
2 − 4c2

4

. (4.34)

In order to make the additional scalar degree of freedom manifest we can try to find

an equivalent action that descibes two fields with at most second derivatives instead of

one field having fourth order derivatives. A special case where the interaction term is just

(�Φ)2 has already been presented in ref. [18].
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For this, we introduce an auxiliary field χ together with seven unknown constants Di,

and consider a general action of two scalars Φ and χ that contains at most second-order

derivatives,

S′ =
∫

d4x
[
D1ΦΦ′′ +D2Φ∆Φ +D3χΦ′′ +D4χ∆Φ +D5χ

2 +D6χΦ +D7Φ2
]
. (4.35)

The coupling to χ is constructed such that this auxiliary field can easily be integrated

out by using its equation of motion,

χ = − 1

2D5

(
D6Φ +D3Φ′′ +D4∆Φ

)
. (4.36)

We would then obtain an action that looks similar to the action (4.31) with which we

started, except for the coefficients that will now depend on the constants Di. Since we

are interested in finding an equivalent action with two degrees of freedom, we equate these

coefficients and solve for the unknown constants Di. Interestingly, a solution does exist

only if

C1 =
C2

3

4C5
⇔ C1 (∆Φ)2 + C3Φ′′∆Φ + C5

(
Φ′′
)2

=
(√

C1∆Φ +
√
C5Φ′′

)2
, (4.37)

which, as one can easily check, is also satisfied for HMG.3 After fixing the redundancy due

to a free rescaling of the actions by choosing D5 = −m2M2
P,4 we find

D1 = C4 ±
√
C5D6, D2 = C2 ±

C3D6

2
√
C5

, D3 = ∓2
√
C5, (4.38)

D4 = ∓ C3√
C5

, D7 = C6 −
1

4
D2

6. (4.39)

We can now introduce two scalar fields π and Φ (to be pronounced “phi spectre”),

described by a superposition of Φ and χ, which can finally be decoupled with the transfor-

mations

Φ −→ A1π −A2Φ and χ −→ Φ , (4.40)

where A1 and A2 are free coefficients. They can be used to diagonalize the mass terms,

S′m =

∫
d4x

[
D5Φ2 +D6Φ (A1π −A2Φ ) +D7 (A1π −A2Φ )2

]
, (4.41)

to obtain the physical degrees of freedom which can be achieved by setting

A1D6 = 2A1A2D7. (4.42)

3This condition enforces the theory to be covariant. Since we have started with a covariant theory and

then performed a time-space splitting, it is indeed expected that this condition is satisfied. For theories

that violate this constraint due to terms that break covariance, this does, however, not imply that there is

no ghost but rather that our ansatz is not sufficient. This could indicate that the theory does not propagate

only one but more degrees of freedom.
4This choice does also ensure real coefficients for parameter values that we will focus on later. Otherwise,

if c2
2 − 4c2

4 is negative, the coefficient D5 should be positive such that
√

C5 is real.
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For the choice A1 = 1 and D6 = m2M2
P, and using the solution corresponding to the

upper signs in eqs. (4.38) and (4.39), we see that if c2
2 − 4c2

4 > 0 (the parameter region

that we are interested in) then the prefactor in the kinetic terms for Φ is negative and,

therefore, describes a (BD) ghost, whereas the one for π is positive and, thus, corresponds

to the healthy helicity-0 mode. From eq. (4.41) we can read off the diagonalized mass terms

for both scalars and find

m2
Φ M2

P =
4D5D7 −D2

6

4D7
=
−4m2M2

PD7 −m4M4
P

4D7
, (4.43)

m2
πM

2
P = D7. (4.44)

Since D7 is positive if eq. (3.15) is satisfied, this indicates that the ghost is indeed a tachyon.

4.3.2 Decoupling in the presence of matter

So far, we have been able to decouple the ghost and the helicity-0 in the absence of an

additional matter field. Due to integrating out all auxiliary fields in the full action (4.19),

the coupling between matter and both the ghost and the helicity-0 mode is, however, not

trivial and requires a proper decoupling of all present degrees of freedom. Fortunately, the

procedure is conceptually similar to what has been done in the vacuum case. Furthermore,

we can simplify the calculations by considering the small scale limit Xϕ � m2M2
P. Because

the analysis nevertheless becomes a bit lenghtier, we present some itermediate steps in

appendix A.

In the presence of a matter field ϕ and assuming small scales, the action can be

decomposed as

S
(2)
HMG =

∫
d4x

[(
Φ′′
)2 (

C1Φ2ϕ2 + C2Φϕ+ C3

)
+
(
ϕ′′
)2 (

C4Φ2ϕ2 + C5Φϕ+ C6

)
(4.45)

+ (∆Φ)2 (C7Φ2ϕ2+C8Φϕ+C9

)
+(∆ϕ)2 (C10Φ2ϕ2+C11Φϕ+C12

)
+C13∆Φ∆ϕΦϕ

+Φ′′
(
C14∆ϕΦϕ+ C15ϕ

′′Φϕ+ C16∆Φϕ2Φ2 + C17∆ΦϕΦ

+C18∆Φ + C19∆ϕϕ2Φ2 + C20∆ΦϕΦ2
)

+Φ′′
(
C21∆ϕϕ2Φ2 + C22∆ϕ+ C23ϕ

′′ϕ2Φ2 + C24ϕ
′′)

+∆Φ
(
C25ϕ

′′ϕ2Φ2 + C26ϕ
′′ + C27∆ϕϕ2Φ2 + C28∆ϕ

)
+ C29∆ϕϕ′′Φϕ+ C30∆ϕϕ′′

+Φ′′
(
C31Φϕ2 + C32Φ

)
+ ϕ′′

(
C33Φ2ϕ3 + C34Φ2ϕ+C35ϕ

)
+ϕΦ

(
C36Φϕ2 + C37Φ

)

+∆ϕ
(
C38Φ2ϕ3 + C39Φ2ϕ+ C40ϕ

)
+ C41Φ2ϕ4 + C42Φ2ϕ2 + C43ϕ

2 + C44Φ2
]
.

Note that for HMG, some of the constants Ci do indeed vanish. All of them are

explicitly listed in eq. (A.1). Again, we start with an ansatz for an action that explicitly

describes three degrees of freedom with at most second-order derivatives,

S
′(2)
HMG =

∫
d4x

[
Φ′′
(
D1Φϕ2 +D2Φ

)
+ ϕ′′

(
D3ϕ

3Φ2 +D4ϕΦ2 +D5ϕ
)

(4.46)

+∆Φ
(
D6Φϕ2 +D7Φ

)
+ ∆ϕ

(
D8ϕ

3Φ2 +D9ϕΦ2 +D10ϕ
)

+D11Φ2ϕ4 +D12Φ2ϕ2 +D13ϕ
2 +D14Φ2

+χ
(
D15Φ′′ +D16Φ′′ϕΦ +D17∆Φ +D18∆ΦϕΦ +D19ϕ

′′

+ D20ϕ
′′ϕΦ +D21∆ϕ+D22∆ϕϕΦ

)
+D23χ

2
]
.
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After solving for all coefficients Di, applying the field transformations

Φ −→ A1π + Φ +M−1
P ξ, (4.47)

ϕ −→MPπ −MPΦ +A2ξ, (4.48)

χ −→ A3π − Φ +M−1
P ξ, (4.49)

and setting D23 = −m2M2
P, we find by checking the relative signs of all kinetic terms that

Φ is the ghost mode with the mass

m2
Φ M2

P = C44 −m2
ϕM

2
P −m2M2

P, (4.50)

and π and ξ describe the helicity-0 mode and the matter field, respectively, with masses

m2
πM

2
P = C43M

2
P +

(
M2

P

(
m2 − C43

)
+ C44

)2

4C44
−
(
M2

P

(
C43 +m2

)
+ C44

)2

4m2M2
P

(4.51)

= m2
Φ M2

P

(
−1 +

1

4
m2

Φ

(
C−1

44 M
2
P −m−2

))
, (4.52)

m2
ξ = M−2

P

(
C44 −m2M2

P

)
+

1

C43M4
P

(
C44 +m2M2

P

)2
(4.53)

=
m2

Φ m2M2
P − C44

(
m2

Φ + 4m2
)

C44 −
(
m2

Φ +m2
)
M2

P

. (4.54)

We observe that all masses are mainly determined by the coefficient C44. In our favored

parameter region that satisfies eq. (3.15) and α1 = O(1) we find C44 � m2M2
P. Hence, if

m2
ϕ is small (which we will also assume later for the analysis of the vacuum decay) then

eq. (4.50) indicates a positive m2
Φ but tachyonic scalars π and ξ. This is not surprising as

we have already seen the existence of a tachyon in the vacuum case. With an additional

coupling to a new, even non-tachyonic, scalar field the tachyonic instability can leak into

all other mass terms. However, this does not render the theory more dangerous and rather

tells us that the decay processes in our theory of massive gravity with an additional scalar

field can be described by the equivalent setting of one ghost and two tachyonic fields.

4.4 Strong coupling scale of the theory

The constraint that removes the BD ghost in a non-linear theory of a massive graviton

automatically removes all interactions that are suppressed by scales Λ < Λ3 with

Λλ ≡
(
MPm

λ−1
)1/λ

. (4.55)

All other non-linear theories that reduce to FP at the linear level contain terms suppressed

by Λ5. However, this does not necessarily hold for theories that do not reduce to the FP

theory at the linear level.

We can find the cutoff scale of HMG by using the expansion of the mass term (4.12)

and introducing the Stückelberg fields

δgµν −→ hµν + ∂µAν + ∂νAµ, (4.56)
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and, subsequently,

Aµ −→ Aµ + ∂µφ. (4.57)

This decomposition into the three helicity modes allows us to read off the energy scales

with which all single interactions are suppressed (see, e.g., refs. [29, 30]). For this we need

to canonically normalize all the modes through the rescaling

hµν −→
2

MP
hµν , (4.58)

Aµ −→
2

mMP
Aµ, (4.59)

φ −→ 2

m2MP
φ. (4.60)

One now finds that the interactions in HMG that are suppressed by the smallest scale are

of the type

∝ ᾱi
MPm4

(∂∂φ)3 =
ᾱi
Λ5

5

(∂∂φ)3 , (4.61)

and correspond to the cutoff scale Λ5.

5 Quantum instability

5.1 Most dominant interaction terms

The quantum stability depends on the scattering between the ghost Φ and the matter field

ξ. In order to compute the scattering amplitude we move to Fourier space and introduce

kΦ and kξ for the momenta of Φ and ξ, respectively. The final action of the interaction

between these two fields is rather complicated. In general, the interaction terms contain

derivatives of both fields that describe the so-called derivative interactions, which, thus,

have momentum-dependent vertices. It is exactly this type of interaction that might be

dangerous since the scattering amplitude requires an integration over the entire phase space

of the initial and final states of the fields. Therefore, all derivative interactions lead to UV

divergent terms ∝ kα with α ∈ R+. Even though such derivative interactions exist in the

Standard Model (SM), this problem is usually solved by introducing counter terms which

regularize the divergent parts. In our case, we require a Lorentz violation to cut the integral

over the phase space.

If the integral of the phase space is cut at some energy level due to some new Lorentz

breaking operators, then the decay rate might not necessarily be dominated by the UV

behavior anymore. As seen in section 4.4, the cutoff of the EFT is much below the Planck

scale. Depending on the mass of the graviton, terms with a lower number of derivatives

could then become dominant. At the end of this section we will, however, find that these

types of interactions are indeed less important.

From now on, we will need to only focus on the interactions with the highest number

of derivatives where we are allowed to assume that both kΦ and kξ are of the same order

since the cutoff scales above which Lorentz invariance is broken are equivalent for both

momenta. Even though one can directly see from the action (4.46) that there are many
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different types of derivative interations, most of them are suppressed by powers of M−1
P or

mϕ. We find the Lagrangian corresponding to the most dangerous process to be

Ldom '
(
c2

2+4c2(4c3+3c4+1)−8
(
2c2

3+2c3c4+c4(2c4−1)
))4

m6

32m6
ϕM

2
P(c2+2c4)5

Φ2 ξ3 ∂µ∂
µξ. (5.1)

For the analysis of the vacuum decay it will be useful to apply the transformation Φ −→
M−1

P Φ to obtain the same dimensions for both Φ and ξ. Finally, the interaction in

Fourier-space becomes

Ldom '
(
c2

2 + 4c2(4c3 + 3c4 + 1)− 8
(
2c2

3 + 2c3c4 + c4(2c4 − 1)
))4

m6

32m6
ϕM

4
P(c2 + 2c4)5

k2
ξ Φ2 ξ4. (5.2)

Note that this interaction arises from a matter sector, which, as in many other theories

of modified gravity, couples minimally to gravity. Thus, this type of derivative interaction

is not only a property of HMG but rather occurs in a much broader class of theories, even

beyond massive gravity. Since we are studying the Lagrangian on-shell, the exact term

describing the most dominant interaction is, of course, still model-dependent. Especially

the occurrence of derivatives in the potential term of the theory might lead to different

results. However, we expect that the qualitative results for HMG will still be valid for a

huge class of theories of modified gravity that introduce a ghost and have a matter sector

minimally coupled to gravity.

5.2 Ghost decay

The total decay rate of the ghost particle is the sum of the decay rates from all possible

decay channels.5 As already discussed, the dominant contribution to the total decay rate

comes from the process shown in figure 2 (left) and, therefore, the rate can be very well

approximated by

ΓΦ =
1

2mΦ

∫ ∏

f

d3pf

(2π)3 2Ef
|M|2 (2π)4 δ(4)


pΦ −

∑

f

pf


 . (5.3)

Here, M is the scattering amplitude, mΦ and pΦ are the mass and four-momentum of

the ghost particle, respectively,6 and Ef is the energy of a particle appearing in a final

decay product. The dominance of high momenta in the decay rate further justifies the

high energy limit leading to eq. (5.1).

It is important to note that we have different dispersion relations for a ghost and a

standard field. While for a ghost we have EΦ = −
√
m2

Φ + ~p2
Φ , the dispersion relation for

standard matter fields is Esm =
√
m2

sm + ~p2
sm. Here ~pΦ and ~psm are the spatial momenta

for the ghost and matter fields, respectively.

5Since the ghost is a boson, due to spin-statistics its production rate will be enhanced by a factor 1 + n~p

depending on the occupation number of the final state. However, we are interested in the case in which the

phase-space density of ghosts is negligible.
6Even though a (non-tachyonic) ghost is usually recognized as a field with negative kinetic energy, its

mass term does also carry an additional minus sign [11].
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Figure 2. Left: Feynman diagram for the most dominant decay of a Boulware-Deser ghost particle

(left dashed leg) into another ghost and four minimally coupled matter particles (solid legs). Right:

Feynman diagram for the most dominant vacuum decay into ghost and matter paricles.

Since eq. (5.3) contains an integral over the entire phase space of all decay products, the

decay rate is usually expected to be infinitely large. As mentioned earlier, a LB allows us to

cut the integral at ΛLB, which is, in fact, the energy scale that determines the decay time.

We now need to find the M matrix that corresponds to the derivative interaction

between Φ and ξ as described by eq. (5.1). The derivatives yield two powers from the

vertex of the interaction. Furthermore, we multiply the vertex by a factor of 3! as we

can freely swap all lines that correspond to ξ. Thus, the scattering amplitude from the

Feynman diagram shown in figure 2 (left) becomes

M = 3!A (ip3) (ip3) = −3!Aηµν (p3)µ (p3)ν , (5.4)

where we have introduced

A ≡
(
c2

2 + 4c2(4c3 + 3c4 + 1)− 8
(
2c2

3 + 2c3c4 + c4(2c4 − 1)
))4

m6

32m6
ϕM

4
P(c2 + 2c4)5

. (5.5)

In order to find an upper bound on the decay rate or, equivalently, a lower bound on

the decay time, we consider the worst-case scenario in which the matter field is almost

massless. Even though this will generally lead to higher decay rates, it is still a good

approximation as the decay will be dominant at energies near the LI-violating cutoff scale.

Assuming isotropy in the decay process, i.e., d3pf = 4πp2
fdpf , fixing the angles between

different vectors, and using the momentum conservation, we finally obtain the differential

decay rate,

dΓΦ ' −
18A2p2p3p4p5p6m

4
ξ(2π)4δ(4)

(
pΦ −

∑5
f=1 pf

)

(2π)10mΦ

. (5.6)

We are now able to perform the phase-space integral in eq. (5.3) up to the cutoff scale ΛLB,

at which Lorentz breaking occurs, and obtain

ΓΦ '
3A2m4

ξΛ
6
LB

2 (2π)10mΦ

+O
(
Λ5

LB

)
. (5.7)
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Note that A contains the scale with which the tree-level interaction term (5.2) is suppressed.

If one would consider contributions from loops then their vertices that are suppressed by

Λ5 might lower the scale with which the decay rate is suppressed down to Λ5.7

As mentioned before, the decay rate (5.7) corresponds only to the scattering process

that dominates in the UV. The validity of this assumption is not obvious for low cutoff

scales. From eqs. (4.25) and (4.26) we find that interactions with less derivatives of ϕ

introduce additional factors of m2M2
P in A. From a power counting we find that the

corresponding decay rate Γ̃Φ behaves like

Γ̃Φ ∝ m4M4
PΛ−8

LBΓΦ . (5.8)

Therefore, for all cutoff scales that satisfy ΛLB ? √mMP ' 10−2 eV (for m = O (H0))

we do not expect higher decay rates. As we will see in the next section, this condition is

always satisfied for cutoff scales Λ
(max)
LB with which the decay would happen on a timescale

of the Hubble time.

5.3 Vacuum decay

Besides the decay of a ghost, the vacuum itself can also decay into two ghosts and additional

matter particles. The Feynman diagram for the most dominant vacuum decay is shown in

figure 2 (right). The main contribution to the decay rate of the vacuum comes from the

same vertex that we found for the ghost decay and, thus, we find

Γvac =

∫ ∏

fΦ

d3pfΦ

(2π)3 2EfΦ

∏

f

d3pf

(2π)3 2Ef
|M|2 (2π)4 δ(4)


∑

fΦ

pfΦ
+
∑

f

pf


 . (5.9)

After choosing the rest-frame of the ghost particle f1, the M matrix is, up to a sym-

metry factor 2!, similar to eq. (5.4) and, thus, eq. (5.9) reduces to

Γvac = 2ΓΦ . (5.10)

The total decay rate of the interaction described by eq. (5.2) is, however, not simply the

sum of all decay rates Γi. The vacuum |0〉 is defined as the state without any excitations,

which is not a stable state if the theory contains ghost fields. The particle production rate

from the vacuum decay is, therefore, only a good approximation for an initial vacuum state

and might become less trustable as the vacuum decays. For this reason and since the decay

of the vacuum is not more dangerous than the decay of the ghost, we now focus on the

ghost decay only.

5.4 Numerical calculations

The decay rate possesses some model dependencies. A priori the graviton mass scale m is

a free parameter. However, if HMG is to be regarded as a theory of modified gravity that

is supposed to solve the dark energy problem by providing self-accelerating solutions, then

7We thank Claudia de Rham for discussions on this aspect.
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Figure 3. Left: constraints on the parameter space of HMG. The blue solid line indicates the

region in which eq. (3.15) is satisfied, i.e., the timescale of the instability at the classical level to

develop is maximized. Models on the red dashed line satisfy c2 + 2c4 = 0, indicating the strong

coupling regime. Right: numerical results for the upper bound on the Lorentz-breaking cutoff scale,

Λ
(max)
LB (red dashed line) corresponding to a decay time of the order of the Hubble time H−1

0 . As

indicated by the lowest and second-lowest dashed lines, denoting Λ5 and Λ3, respectively, the LB

cutoff scale can be much larger than the strong coupling scale of the EFT.

m should not be chosen arbitrarily. The mass parameter m determines the scale at which

modifications to GR become important and is therefore expected to be ∼ H0.

There is however an additional model dependency. By using the fit (3.15), we get

A ∝ 1/ (c2 + 2c4)5 '
(

45

26− 120ᾱ1

)5

, (5.11)

which, by tuning ᾱ1, might diverge, leading to an infinite decay rate. As discussed previ-

ously, this limit corresponds to a strong coupling of the matter and ghost mode, and thus,

the perturbative approach breaks down.

Since the classical background should also be unstable if the vacuum decays at tree

level, we do not expect to find stable classical backgrounds for ᾱ1 ' 13/60. For a cross-

check, we determine the parameter region that maximizes the timescale of the classical

instability to develop. As shown in figure 3 (left panel), we find that the results of the

background analysis indeed agree with this constraint.

The viability of the theory depends on the decay time of the most dominant scattering

process, and requires Γ−1 ? H−1
0 , which sets an upper bound on the scale ΛLB. For a

graviton mass m = O (H0) and ᾱ1 = O (1), where we approximately find mξ ' mΦ ' m,

we can estimate the order of magnitude for the upper bound Λ
(max)
LB ,

ΛLB . Λ
(max)
LB ≡

(
2 (2π)10mmΦ

3A2m4
ξ

)1/6

= O



(
m12
ϕ M

8
P

m14

)1/6

 . (5.12)

This gives us an upper limit that is much above the cutoff scale of the theory. For more

accurate numerical results see figure 3 (right panel). In the limit mϕ → 0, the amplitude A

diverges and indicates an infinitely large decay rate. However, in this limit the Lagrangian
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of the interaction (5.2) would enter a strongly coupled regime and our perturbative ansatz

would not be trustable anymore. Nevertheless, even considering extremely small masses

mϕ ' m = O(H0) would lead to Λ
(max)
LB > MP.

Even though this LB cutoff scale Λ
(max)
LB is much above the strong coupling scale that

was found in section 4.4, all of our results are still trustable and should be taken seriously.

In fact, the decay products can reach energies near Λ
(max)
LB . In addition, we should expect

the decay processes to occur even above ΛEFT (which is Λ5 for our massive gravity theory).

We should however note that it could indeed be possible that energies above ΛEFT would

lead to new interactions that dominate and result in much larger decay rates, depending

on the underlying new physics at energies above the EFT cutoff scale.

5.5 Comparison to observations

To date, no high-energy physics experiments have found any signals for the violation of

Lorentz invariance, which may seem to indicate that Lorentz-violating operators, if exist,

play a role only at very high energies, perhaps even above the Planck scale. Even though

our results are compatible with this conclusion, a LB at much smaller energy scales but

above Λ3 would nevertheless be allowed.

Even though the arguments above require some speculation about the UV-completed

physics, there is a more profound reason why it is not surprising to find no LV at higher

energies. As recently pointed out in ref. [31], most of the operators that break LI lead

to a strong coupling already above energies of O (meV). It has been conjectured that the

strongly coupled degree of freedom (in our case the one that leads to a LV) effectively

decouples from the high-energy theory and can therefore not be observed yet [31]. Similar

problems appear in QCD (confinement) and massive gravity (Vainshtein screening).

Fortunately, there are possibilities to indirectly detect a breaking of LI that stabilizes

the vacuum decay. For the decay products it is most likely to have energies of order ΛLB,

even if ΛLB � ΛEFT. As long as they do not scatter at these energy levels, they can still

consistently be described by our EFT. A direct observation of these decay products could

then hint towards a breaking of LI. If one assumes a LB above ∼ 1MeV then one could

search for observable effects such as peaks in the gamma-ray background, along the lines

of the studies in ref. [25]. However, the background flux is not well constrained yet for all

(especially higher) energies.

6 Summary and conclusions

In this work, we have discussed the influence of a ghost on the viability of an EFT by

considering the violation of Lorentz invariance above certain energy scales in a particular

theory of modified gravity describing a massive graviton with an additional Boulware-Deser

ghost, which we called haunted massive gravity (HMG). Even though we do not believe

that our HMG model is able to play a major role in the class of theories of modified gravity

attempting to explain, e.g., the late-time acceleration of our Universe, we do expect that

its quantum properties can be mapped onto a huge class of other theories of gravity that

also introduce an Ostrogradski ghost.
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In contrast to simple toy models with a canonical scalar field interacting with a ghost,

we have found a decay rate that does not scale as Λ2
LB, where ΛLB denotes the energy scale

above which Lorentz invariance is broken, or Λ8
LB if one assumes the simplest interaction

with a graviton; the decay rate scales, instead, as Λ6
LB. The origin of this difference lies in

the different dominating scattering processes involved. If the ghost mass is of the order of

the Hubble parameter H0, which is expected for theories of modified gravity that provide

solutions to the dark energy problem, then the upper bound on the cutoff scale at which

LB has to occur is allowed to be extremely high and could even be above the Planck scale.

Finally, with HMG we have found an example of a massive gravity theory which allows

for dynamical, and even self-accelerating, FLRW solutions with a flat reference metric,

contrary to the ghost-free dRGT theory. Furthermore, we obtained a parameter region

in which both free parameters of the theory are of O (1) and maximizes the timescale on

which the classical instability is suppressed to obtain a viable cosmological solution. This

is indeed surprising as one might expect that a ghost that is present at the background

level (which is required in order to obtain dynamical FLRW solutions) will automatically

destabilize the theory. We have however studied only the background solutions, and one

should therefore note that it is very likely that the cosmological perturbations would be

classically unstable, although it is not obvious with which timescale this instability is

suppressed. Furthermore, it might also be possible that quantum loops would render the

theory unviable due to interactions that could theoretically be much more dangerous than

the tree-level interactions which we have studied in this work; we leave the investigation of

these questions for future work.

In general, ghosts are potentially dangerous and can rule out a theory if the quantum

behavior is not under control. However, if one accepts the possibility of Lorentz-violating

physics above the cutoff of the theory, then all these theories should be studied carefully

and might be acceptable and well behaved.
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A Detailed expressions for decoupling of the helicity-0 mode, the ghost

and the matter field

The coefficients Ci corresponding to the action (4.45) read

C1 = 0, C2 = 0, C3 = − 16M2
P

(c2+2c4)m2
, (A.1)

C4 = − 4

(c2 + 2c4)m2M2
P

, C5 = 0, C6 = 0,

C7 = 0, C8 = 0, C9 = − 16M2
P

(c2 + 2c4)m2
,

C10 = − 4

(c2 + 2c4)m2M2
P

, C11 = 0, C12 = 0,

C13 = − 16

(c2 + 2c4)m2
, C14 =

16

(c2 + 2c4)m2
, C15 = − 16

(c2 + 2c4)m2
,

C16 = 0, C17 = 0, C18 =
32M2

P

(c2 + 2c4)m2
,

C19 =
8

(c2 + 2c4)m2M2
P

, C20 =
16

(c2 + 2c4)m2
, C21 = 0,

C22 = 0, C23 = 0, C24 = 0,

C25 = 0, C26 = 0, C27 = 0,

C28 = 0, C29 = 0, C30 = 0,

C31 = − 16m2
ϕ

(c2 + 2c4)m2
, C32 =

8M2
P (c2 − 2c3 − c4)

c2 + 2c4
, C33 = − 8m2

ϕ

(c2 + 2c4)
2
M2

P

,

C34 =
2 (c2 − 4c3 − 4c4)

c2 + 2c4
, C35 = −1, C36 =

16m2
ϕ

(c2 + 2c4)m2
,

C37 = −8 (c2 − 2c3 − c4)

c2 + 2c4
, C38 =

8m2
ϕ

(c2 + 2c4)m2M2
P

, C39 = −2 (c2 − 4c3 − 4c4)

c2 + 2c4
,

C40 = 1, C41 = − 4m4
ϕ

(c2 + 2c4)m2M2
P

, C42 =
2 (c2 − 4c3 − 4c4)m2

ϕ

c2 + 2c4
,

C43 = −m2
ϕ, C44 =

(
c22+4c2 (4c3+3c4)−16

(
c23+c3c4+c24

))
m2M2

P

4 (c2 + 2c4)
.

After integrating out the auxiliary field χ in eq. (4.46), the comparison of the resulting

action with the original one (4.45) provides a set of equations that can be solved with

Di = Ci for 1 ≤ i ≤ 14, (A.2)

D15 = ∓2
√
−C3D23, (A.3)

D16 = D18 = D19 = D21 = 0, (A.4)

D17 = ∓2C13

√−C3D23

C14
, (A.5)

D20 = ∓C15

√
D23

C3
, (A.6)

D22 = ∓C14

√
D23

C3
, (A.7)
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if the following contraints are fulfilled:

C2
15 = 4C3C4, (A.8)

C2
13C3 = D2

14C9, (A.9)

4C3C10 = C2
14, (A.10)

C14C18 = 2C3C13, (A.11)

2C3C19 = C14C15, (A.12)

C13C15 = C14C20. (A.13)

All of them are indeed satisfied for HMG.

For the transformations given in eq. (4.47) and the choice D23 = −m2M2
P we find that

the mass matrix is diagonalized if

2A1C44 + 2A3m
2M2

P − 2C43M
2
P = 0, (A.14)

−2A2C43MP +
2C44

MP
+ 2m2MP = 0, (A.15)

2A1C44

MP
+ 2A2C43MP − 2A3m

2MP = 0. (A.16)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from

supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998)

1009 [astro-ph/9805201] [INSPIRE].

[2] Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of

Omega and Lambda from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565

[astro-ph/9812133] [INSPIRE].

[3] P. Bull et al., Beyond ΛCDM: Problems, solutions and the road ahead, Phys. Dark Univ. 12

(2016) 56 [arXiv:1512.05356] [INSPIRE].

[4] H. Vermeil, Notiz über das mittler Krümmungsmass einer n-fach ausgedehnten
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Summary and Discussion

T he cosmological standard model based on Einstein gravity with an additional CC and
DM is neither plagued by theoretical inconsistencies nor stays in contradiction with

any observation so far. It rather introduces an unsatisfying fine-tuning problem which
is, from the cosmological point of view, the main reason to search for modifications of GR
with self-accelerating solutions, or even theories that are able to solve the CC problem.
In addition, understanding the gravitational interaction from the field theory perspective
without the restriction to GR might be an important step towards a more fundamental
theory. In this thesis we have combined both approaches by analyzing theories in which
gravity is mediated by a massive graviton (massive gravity) and a combination of two
gravitons where one of them is massive (bimetric gravity), respectively. While both massive
and bimetric gravity require an additional tensor field, it crucially depends on the presence
of its dynamics whether the theory describes one or two propagating gravitons.

dRGT Massive Gravity

Giving a mass to the graviton has turned out to be a very cumbersome challenge.
Almost all potentials will introduce an additional BD ghost mode [7] which renders the
theory inconsistent due to a destabilization of the vacuum state. Only one exception was
found, the dRGT massive gravity [35, 38],

SdRGT = −M2
P

∫
d4x
√
−g

R − 2m2
4∑
n=0

�n en
( √
g−1f

) +

∫
d4x
√
−gLm , (4.53)

that has been discussed in section 3.2. It considers an additional fixed tensor field fµν

and ensures the absence of the BD ghost [38] by the precise structure of the potential
term, which is built from the linear combination of the elementary symmetric polynomials
of the eigenvalues of the matrix

√
g−1f .

Unfortunately, when using standard techniques of cosmology, it does not serve as an
alternative to ΛCDM. The Hamilonian constraint, that was found to ensure the absence of
the BD ghost, indirectly affects the background evolution and propagates into the Bianchi
constraint (3.35), which enforces the scale factor to be a constant. However, this does not
immediately rule out massive gravity. For instance, the existence of large anisotropies
in the matter sector would introduce an additional freedom that can be used to obtain a
viable cosmological model [43].
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Doubly-coupled Massive Gravity

In this thesis, a second way to enable dynamical FLRW solutions in dRGT massive
gravity has been discussed. In publication 4 we have studied the case when the entire
matter content is coupled to an effective metric, described by the line-element

geff
µν dxµ dxν = −N2

eff dt2 + a2
eff δij dx

i dx j, (4.54)

which introduces an effective lapse function Neff and scale factor aeff. If, in addition, a
fundamental field is introduced whose pressure depends on the lapse function, then the
original no-go theorem that forbids dynamical FLRW backgrounds can be evaded [52, 86].
In this case, the Bianchi constraint gets additional lapse-dependent modifications and
becomes a constraint for the lapse rather the scale factor.

However, if both dust and radiation are similarly doubly-coupled, then the absence
of a viable radiation dominated era at early times as well as a divergent Hubble rate
indicates the inability of the model to reproduce the comological evolution of our Universe
[52]. This pathological behavior can be avoided if only one scalar field is coupled to the
effective metric while all other oberservable fields are coupled to the physical metric g
[49], at the cost of giving up the equivalence principle.

The examples that have been discussed in section 3.4 demonstrate that doubly-
coupled dRGT massive gravity might be cosmologically viable if suitable modifications
and additional fields are assumed. However, it should be emphasized that a coupling to
an effective metric is still not proven to be quantum mechanically viable. Although it was
claimed in refs. [51, 49] that the BD ghost that will show up is harmless, because its mass
will be above the strong coupling scale Λ3, a proof that the ghost is indeed only an artifact
of a theory that is valid above Λ3 is still missing. As we have argued in section 2.2.2, if an
EFT, and therefore any theory of massive gravity, contains a ghost with mass above the
cutoff then an explicit demonstration that the ghost is indeed unphysical is necessary.
As this proof has not been presented yet, one should assume that the ghost is harm-
ful [16, 17]. Thus, as a precaution, any theory of massive or bimetric gravity, in which
the matter sector is coupled to an effective metric, has to be regarded as theoretically
inconsistent.

Haunted Massive Gravity

Combining all results, that have been obtained in the framework of dRGT massive
gravity, suggests that a theory of a massive graviton cannot be viable if no additional
fields are considered. Our aim in section 3.5 was to tackle this question and present
one counter example, the so-called HMG. Our results have been presented in publication
8. We have shown that the ghost field, which automatically will appear if the dRGT
structure is modified, is sufficient to obtain viable cosmological solutions. With this, we
have presented the first theory of massive gravity that allows for cosmologically viable and
self-accelerating solutions, and does not require any additional degrees of freedom in the
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matter sector. Furthermore, we could argue that the ghost is harmless at classical and
quantum level, even though it is indeed a propagating, physical degree of freedom.

The structure of HMG contains several interesting particularities. Its potential term
was constructed such that the limit in which the two free parameters vanish, i.e., ᾱi , ᾱ2 →

0, corresponds to the original dRGT mass term. However, not only models with very tiny
parameter values are viable, contrary to what one might expect, but the choice ᾱi = O(1)
does indeed provide physical solutions. However, taking this limit is only allowed at the
level of the (off-shell) action. Similar to the vDVZ discontinuity in the FP theory, i.e., the
break-down of the linear theory when taking the massless limit, the BD ghost will get
strongly coupled and the linear approximation is not valid. In fact, HMG exhibits up to
three vDVZ discontinuities. Besides the one corresponding the formerly mentioned limit
ᾱi → 0, the perturbations get strongly coupled if

m2 (c2 + 2c4) = m2 (2 − 8ᾱ1 + 32ᾱ2)→ 0. (4.55)

For m → 0, this indicates a strongly coupled helicity-0 mode, similar to the vDVZ discon-
tinuity in dRGT massive gravity. In addition, if c2 + 2c4 → 0, then the mixing matrix for
two auxiliary potentials becomes singular, indicating the loss of their kinetic terms. Be-
cause these auxiliary fields will introduce the Ostrogradsky ghost (see also section 3.5.2
for details on the counting of propagating degrees of freedom), which is, in fact, the BD
ghost in HMG, the limit corresponds to a strongly coupled ghost. This is a particularly
interesting observation because such a tuning of the parameters might be able to cure the
theory from the ghost.6 However, such a setting requires the consideration of non-linear
corrections as the linear theory breaks down.

We have shown that the ghost instability in HMG at classical and quantum level is
harmless if an LB operator exists, which is even allowed to set in above the Planck scale.
However, during the analysis the contributions of loops were neglected. Since classical
linear perturbations correspond to scattering processes at tree-level, the consistency of
our result depends on whether the assumption, that interactions without loops dominate
the vacuum decay, is justified.7 Because loop contributions would include vertices that
are suppressed by the strong-coupling scale, we should indeed expect that the same LB
operator, which cures the vacuum decay at tree-level, would simultaneously stabilize the
interactions at higher-orders.

While the energy scale at which the invariance under Lorentz transformations has to
get broken was found to be above MP [55], the result might change if interactions with
other particles than just a scalar field are considered. However, even if such an analysis
requires an LB to occur at lower energies, it would be unlikely to detect signatures of
an LB at, e.g., the Large Hadron Collider. Since a violation of LI has to occur in the

6It should be noted that quantum corrections might be able to destabilize this tuning and could reintroduce
the ghost.

7Note that this line of argument is only valid because the BD ghost already appears at background level.
This is not generally true for all theories of modified gravity that excite an Ostrogradsky ghost. Depending
on the background, the ghost might not get excited at background level and, therefore, contributions from
loops should be taken into account.
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gravity sector and most of the operators that could be considered are strongly coupled
above energies of O (meV) [87], the degrees of freedom being responsible for an LB will
effectively decouple and cannot be observable at higher energies. This indicates that a
search for Lorentz violating physics should include indirect observations. If the vacuum,
even slowly, decays, then one expects emitted particles to have an energy which is around
the scale at which LI breaks [54]. An unexplained peak in the spectrum of the observed
cosmic background radiation could then signal an LB.

With HMG we have constructed a viable theory of modified gravity that contains an
Ostrogradsky ghost and serves as an example that a theory with a ghost, not neces-
sarily inside the framework of massive gravity, must not immediately be ruled out. It
rather shows that modifications above the Planck scale might be able to cure quantum
instabilities.

However, even if a theory of massive gravity containing a BD ghost exists that is
theoretically consistent and passes all observational tests, the cosmological solution will
not be as predictive as the one in a ghost-free massive gravity or even GR: The region where
the linear FP theory is invalid, i.e., inside the Vainshtein radius (3.13), corresponds to
the strong coupling scale of the theory [8], Λ5 =

(
m4MP

)1/5
.8 Interestingly, this cut-off

corresponds to the same scale with which the operators are suppressed that introduce
the BD ghost [8]. Hence, the precise dRGT structure, that ensures the absence of a sixth
ghost-degree of freedom, raises the cut-off of the theory to Λ3 =

(
m2MP

)1/3
and, thus,

allows the usage of linear perturbation theory for the analysis of sub-horizon scales in
our Universe. On the other hand, it indicates that every theory of massive gravity with a
ghost is not predictive above Λ5. While this statement has only been proven for extensions
of the linear FP theory [8], we have analyzed the strong coupling scale in HMG and found
that all interactions suppressed by the smallest scales are [55]

∝
ᾱi

MPm4 (∂∂φ)3 =
ᾱi
Λ5

5
(∂∂φ)3 , (4.56)

where φ denotes the canonically normalized helicity-0 mode, and, indeed, shows that the
cut-off of HMG corresponds to Λ5.

Bimetric Gravity

Fortunately, a generalization of dRGT massive gravity was suggested that does not
suffer from a ghost. Instead of adding new fundamental matter fields to dRGT massive
gravity or modifying the coupling to matter, one can simply consider a dynamical ref-
erence metric instead of a fixed second tensor field. This bimetric theory reintroduces
a gauge symmetry, a combined diffeomorphism invariance, and treats both metrics on
equal footing [38] by possessing an invariance under the interchange of both metrics.

8For a graviton mass of order the Hubble scale, H0 ' 10−33 eV, the Vainshtein radius around the Sun
would already be as large as the size of the Milky Way [31].
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Furthermore, if the graviton mass scale is of order of the Hubble parameter9, many como-
logical solutions contain a self-accelerating late-time epoch and agree with observational
data at background level without the need of an additional CC [56, 58, 60]. Especially two
models, the MBM and IBB, were extensively studied in publication 2 and 3, respectively,
and were found to be compatible with current observational data [60, 69, 65] but predict
a significant different evolution of the growth of structure compared to ΛCDM, which will
be testable soon with future probes [77]. However, many other models with different pos-
sible phenomenological consequences have been found [60, 28]. In section 4.2, we have
classified all cosmological solutions into finite-, infinite-, and exotic branch solutions, dis-
cussed their viability in publication 1 and 3, and concluded in publications 6 that every
model contains a period in time at which it develops either a gradient instability of scalar
perturbations or ghost instabilities.

Gradient instabilities in the scalar sector alone do not render a model unphysical [65].
Although the scalar perturbations would grow exponentially and eventually form many
black holes, the theory could still be viable if the instability has not had enough time to
develop. Such a scenario is indeed the case for models that were discussed in publication
7. We have found a class of models in which the perturbations get stabilized at energy
scales that can be arbitrarily large10 and only the smallest scales were affected by the fast
growth. This could possibly lead to an enhancement of the number of primordial black
holes. Such a signature might be the only possible way to discriminate these models from
GR with a CC since, as discussed in section 4.6.2, a model, that is only affected by the
instability at very early times, behaves equivalently to ΛCDM for energy scales at which
linear perturbations are stable.

However, all results that have led to the discovery of unstable scalar modes are based
on the assumption that the fluctuations are well describable by linear perturbations. An
exponential growth will eventually cause the potentials to exceed unity, especially on deep
sub-horizon scales, indicating that non-linear effects are not negligible anymore. It could
be possible that higher-order perturbations are then able to counteract the linear growth
and stabilize the modes. A similar property was already discusses in massive gravity;
the break-down of the FP massive gravity at Solar System scales is a consequence of the
theory being linear. In the non-linear régime, a Vainshtein screening ensures the viability
by taking higher-order perturbations into account and restores GR [34, 89].

9Note that the mass scale m which enters in the potential of the bimetric action (4.1) does not correspond
to the mass of the (massive) graviton mode. Due to the mixing of the massive and massless graviton modes,
the physical mass depends on the background. In the de Sitter state described by proportional metrics, i.e.,
fµν = c2gµν, the bimetric FP mass reads [88]

m2
FP = m2

( 1
c2α2 + 1

) (
c�1 + 2c2�2 + c3�3

)
, (4.57)

and, therefore, depends on the mass scale m as well as on the Planck mass ratio α = Mf /Mg and the model
parameters.

10In order to agree with all observations, it could be sufficient to consider a stabilization at energies before
Big Bang nucleosynthesis sets in, which requires Mf = O (100 GeV). Surprisingly, to push the gradient
instability above the Planck mass Mg, the Planck scale for the second metric should be of order H0, i.e.,
Mf = O

(10−33 eV) [85].
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It is still unknown whether bimetric theories exhibit a similar screening mechanism,
too. However, if a Vainshtein screening exists then it will very likely able to reanimate
many finite-branch models, including the simplest MBM, that has been analyzed in pub-
lication 2. In fact, by analyzing static, spherically symmetric matter distributions, the
authors in ref. [90] have shown that a screening in models, in which the perturbations
are unstable until redshift z ' 0.5, is sufficient to avoid contradictions with observations.

While solutions on the finite (and exotic) branch can potentially be cured by a classical
screening mechanism, the pathologies on the infinite branch are of quantum mechanical
nature and much harder to tackle. Initially, the fast growing tensor modes in these models
[72, 73] were thought to be curable [73] by, e.g., considering non-linearities or with the
help of an additional CC, as discussed in publication 5. But any of these modifications
would just deal with the classical symptoms of a much more dangerous disease: In all
solutions on the infinite branch both helicity-2 modes of the massive graviton are ghosts
at early times and, additionally, the Higuchi bound, which ensures the helicity-0 mode of
the graviton to not be a ghost, is violated at all times, indicating a pathological quantum
instability [28]. At classical level, all three ghosts appear as growing modes in the tensor
as well as in the scalar sector. However, if the quantum interactions, that cause a decay of
the vacuum, are not suppressed by, e.g., LB physics at higher energies, then all solutions
on the infinite branch have to be ruled out.

It seems that the only viable models in bimetric theories, that are free of any type
of instability, are those on the finite branch that satisfy Mf � Mg [85]. As already
discussed, the gradient instability is then pushed back to very early times such that
the entire observable phenomenology is equivalent to the standard picture of cosmology.
Even though the Planck masses for both metrics Mf and Mg, respectively, are required to
differ by many orders of magnitude, there is a priori no reason why both values should
be similar. It is rather justified by the already existing hierarchy problem, i.e., the huge
deviation between the coupling constants of gravity and the weak force.

Modifications of Theories with Massive Spin-2 Fields

In this thesis we have studied the cosmological viability of massive and bimetric gravity
and seen that the way towards a solution to the Dark Energy problem with the use of
massive spin-2 fields is quite cumbersome. However, many modifications, and extensions
of theories, in which the graviton is allowed to carry a mass, exist. For instance, a
generalization of bimetric gravity to a theory that contains a doubly-coupled matter sector
[91, 92, 93, 94, 95], the promotion of the graviton mass to be dynamical in time [96], and
an extension towards a multi-metric theory [46, 97, 98, 99].

While all these approaches add a new freedom to theory, one can also hope to find a
massive (bimetric) gravity that possesses an additional gauge symmetry, which removes
the helicity-0 mode of the massive graviton. Because this mode is often responsible for
ghost- and gradient pathologies, such a theory might be able to provide an attractive
explanation for the origin of Dark Energy. Furthermore, the additional symmetry seems
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to provide a link between the value of the CC and the graviton mass [100] and, therefore,
could provide a solution to the CC problem. While a non-linear version of such a PM
theory with an additional vector field has recently been found [101, 102], the search for
this additional gauge symmetry in the original massive and bimetric setting is still ongoing
[103, 104, 100, 105, 106, 107, 108].
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[55] Frank Könnig, Henrik Nersisyan, Yashar Akrami, Luca Amendola, and Miguel Zu-
malacárregui. A spectre is haunting the cosmos: quantum stability of massive gravity

with ghosts. Journal of High Energy Physics, 2016(11):118, 2016.

[56] Mikaelvon Strauss, Angnis Schmidt-May, Jonas Enander, Edvard Mörtsell, and
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Growth Histories in Bimetric Massive Gravity. JCAP, 1212:021, 2012.

[67] Nima Khosravi, Hamid Reza Sepangi, and Shahab Shahidi. Massive cosmological

scalar perturbations. Phys.Rev., D86:043517, 2012.

[68] D. Comelli, M. Crisostomi, and L. Pilo. Perturbations in Massive Gravity Cosmology.
JHEP, 1206:085, 2012.
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Abbreviations

BD Boulware-Deser (additional ghost mode in many theories of massive gravity)
CC Cosmological Constant (Λ or �0)
CDM Cold Dark Matter
CMB Cosmic Microwave Background
DE Dark Energy
DM Dark Matter
dRGT de Rham-Gabadadze-Tolley (unique ghost-free non-linear massive gravity)
EFT Effective Field Theory
EM Energy-Momentum
EoM Equations of Motion
EoS Equation of State (p = wρ)
FLRW Friedmann-Lemaître-Robertson-Walker (homogeneous and isotropic background)
FP Fierz-Pauli (action of unique ghost-free linear massive gravity)
GR General Relativity
HMG Haunted Massive Gravity (toy model of massive gravity with a ghost)
IBB Infinite Branch Bigravity (�1�4 models)
IR Infrared (large scales)
LB Lorentz Breaking
LI Lorentz Invariance
MBM Minimal Bimetric Model (�1 model)
PM Partially Massless (theory possessing a symmetry that removes the helicity-0 mode)
QFT Quantum Field Theory
SNe Ia Supernovae of Type Ia
UV Ultraviolet (small scales)
vDVZ van Dam-Veltman-Zakharov (discontinuity in the massless limit)
ΛCDM Λ Cold Dark Matter (the cosmological standard model)
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