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Abstract

Abstract (German)

Theorien von Spin-2 Feldern nehmen eine besondere Rolle in der modernen Physik
ein. Sie beschreiben nicht nur die Vermittlung von Gravitation, die einzige Theorie funda-
mentaler Wechselwirkung, welche keine quantenfeldtheoretische Beschreibung besitzt, es
wurde weiterhin angenommen, dass sie notwendigerweise masselose Eichbosonen vorher-
sagen. Erst kurzlich konnte eine Theorie massiver Gravitonen konstruiert werden und
wurde anschliefend zu einer bimetrischen Theorie zweier interagierender Spin-2 Felder
verallgemeinert. Diese Dissertation untersucht die Gultigkeit und Konsquenzen auf kos-
mologischen Skalen sowohl in massiver als auch bimetrischer Gravitation. Wir zeigen,
dass sich alle konsistenten und von Gradienten- sowie Geistinstabilitdten freie Modelle
wie das kosmologische Standardmodell, ACDM, verhalten. Zudem entwickeln wir eine
neue Theorie einer massiven Gravitation, welche, obgleich von einem Boulware-Deser

Geist geplagt, stabil im klassischen Hintergrund und auf Quantenebene ist.

Abstract (English)

Theories of spin-2 fields take on a particular role in modern physics. They do not
only describe the mediation of gravity, the only theory of fundamental interactions of
which no quantum field theoretical description exists, it furthermore was thought that
they necessarily predict massless gauge bosons. Just recently, a consistent theory of
a massive graviton was constructed and, subsequently, generalized to a bimetric theory
of two interacting spin-2 fields. This thesis studies both the viability and consequences
at cosmological scales in massive gravity as well as bimetric theories. We show that
all consistent models that are free of gradient and ghost instabilities behave like the
cosmological standard model, ACDM. In addition, we construct a new theory of massive
gravity which is stable at both classical background and quantum level, even though it

suffers from the Boulware-Deser ghost.
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Chapter E

WHY TO MODIFY GRAVITY?

OR: BREAKING FROM JAIL OF THE EFFECTIVE FIELD THEORY

What is gravity? A question that was already raised when no elementary particle
had been discovered, no neighboring planet observed, and still, even after the
detection of gravitational waves, no convincing answer exists. Newton’s picture of gravity
as a force between massive objects is certainly the most commonly used theory of gravity
today. Not only in everyday life to describe simple processes on Earth, it is even often
used to compute the gravitational interactions between galaxies in huge cosmological
simulations. The reason of the success is merely its simplicity; it surely does not reflect
any conviction that gravitational interactions are based on Newton’s law. In fact, various
measurements on scales of our Solar System conflict with Newtonian gravity. One of the
most prominent one is the measurement of Mercury’s orbit indicating that its perihelion,
i.e., its closest point to our Sun, is shifting less than a tenth of what is predicted by
Newtonian gravity.

Several possibilities to rescue the classical theory were suggested. Could there be an
unobserved planet that influences the motion of Mercury? This is the crossroad at which
scientists stood, and are still standing today: Contradictions with theoretical predictions
may indicate that there are additional, unobserved objects or could point to a failure of
the theory itself. More than a century after the prediction of an additional dark planet
Vulcan in order to reconcile Newtonian gravity with observations, the modern cosmological
framework again predicts not only a yet unobserved Dark Matter (DM) component, but,
additionally, a Dark Energy (DE) whose origin is not understood either. Both together
seem to account for around 95 percent of the energy content of our Universe [1]. Predicting
such a dark sector is certainly not illegitimate in order to approach a better understanding
of the physics at the largest scales, but at the same time the question of the fundamental
theory of gravity has to be not forgotten about.

Today, a more modern way to describe gravity is favored, Einstein’s General Relativity
(GR). But it was not the number of discrepancies that arise when using Newton’s law to
describe the physics in our Solar System that initiated Einstein’s belief in the necessity
to revise the picture of gravity. GR was originally constructed from the equivalence prin-

ciple, i.e., the space-time measured by a freely falling observer can locally be described
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by a flat Minkowski metric, together with the assumption of the invariance under diffeo-
morphisms. This concept of an underlying symmetry as a starting point to construct a
theory is a rather modern approach. The construction of the theory on the basis of Gen-
eral Covariance is perhaps the main reason for the success of GR. While most theories of
modified gravity try to add or adjust specific properties of the standard model of gravity,
e.g., a change in the number of space-time dimensions [2] or the usage of an additional
field [3, 4], GR is rather based on fundamental principles. Ironically, in most theories
of modified gravity the additional freedom introduces new challenges or even renders the
theory nonviable. A prominent example, one in which the graviton is allowed to carry a
mass, will be investigated in chapter 3. But despite these setbacks, the continuation of
finding alternatives to GR remains an important task. Not only to solve open questions
in modern cosmology, but also in order to better understand gravity by itself. And if all
modifications are theoretically or observationally ruled out, one can even more appreciate
the success of GR.

However, the minimal freedom in GR also implies its rigidity. Recent observations
indicate an accelerating expansion of our Universe [5, 6]. A behavior that cannot be ex-
plained with ordinary baryonic matter and requires an energy component whose pressure
is negative, a DE. This discovery has completely knocked the view of cosmic evolution on
the head and was consequently honored by the award of the Nobel prize in 2011. Al-
though GR exhibits the freedom to add a bare Cosmological Constant (CC) in order to
obtain an accelerating epoch and, thus, evades any conflict with observations, it intro-
duces various theoretical problems rendering GR with a CC less appealing (see section
2.4). Its most problematic property is the technically unnatural connection of ultraviolet
(UV) with infrared (IR) physics. One could similarly think of a theory of thermodynamics
where the precise values of the macroscopic quantities (pressure, volume, and temper-
ature) strongly depend on how every single molecule moves. The beauty of symmetries
and simplicity that originally characterized GR is now challenged by modifications to fit
observational data. While the perihelion shift of Mercury can nowadays be well under-
stood in a different theoretical framework that generalizes Newtonian physics without any
requirement of an additional unobserved planet, the origin of DE is still a mysterious
puzzle and could either be a consequence of a CC or an additional field, or hints towards
new physics beyond the cosmological standard model.

Finding a satisfying answer to explain recent observations is surely one of the main
reasons to think about modifications of the theory of gravity. But the search for new
theories is not only restricted to the field of cosmology, it is rather of great importance
to properly understand the gravitational sector in order to draw conclusions about a
fundamental theory which combines Quantum Field Theory (QFT) and gravity. Due to
the nonrenormalizability of GR, it can just be seen as an Effective Field Theory (EFT) and,
thus, an IR limit of a, though not yet existing, quantum gravity. Without any doubts,
the great success of GR should not be denied. Just like Newtonian physics is a great
choice to measure the movement of many objects on Earth, GR with a CC explains most

astrophysical and cosmological processes with sufficiently high accuracy. However, to



answer the question of a fundamental field theory it is inevitable to modify the theory of
gravity.

A common field theoretical approach to understand gravity is often the analysis of the
full class of theories that are allowed and obey various assumptions, e.g., on the number
of fields or the exhibition of an invariance under symmetries. In fact, there are a number
of theorems that seem to indicate that GR is the unique theory of gravity (see section 2.1);
the most famous one is the so-called Lovelock theorem. Although there are many, partly
strong, assumptions that render the theorem less significant, it simplifies the search
for possible modifications of gravity by softening exactly these assumptions. Asking for
viable modifications of GR is then often translated to questions for the, under certain
assumptions, most general theory that, e.g., includes an additional scalar or tensor field.

In this thesis we are especially concentrating on modifications that render the gravi-
ton, the gauge boson mediating gravitational interactions, massive. Equivalently, we are
asking for modifications of gravity with an additional tensor field. While this formula-
tion sounds like a rather less motivated approach, a very old underlying question stays
behind: Can a spin-2 field be massive?

Our Standard Model of particle physics predicts particles of spin O, % and 1. While the
Higgs boson, a massive spin-0 field, was just recently discovered, massive fermions with
spin % like electrons or quarks, are known for many decades. Furthermore, several spin-
1 bosons can acquire a mass by the Higgs mechanism, too, e.g., the W- or Z-bosons. While
all these particles are allowed to be massive, the only known spin-2 field, the graviton,
seems to be massless, as predicted by GR. Naturally, one asks the question whether a
spin-2 field is theoretically allowed to be massive. And, if the answer is positive, how
does a theory with two interacting spin-2 fields look like? First attempts to answer this
question had been as negative as old: In the seventies, Boulware and Deser claimed to
prove that such theories are ill behaved [7]. They would necessarily contain a ghost field,
a scalar field with the wrong sign in front of its kinetic term. A field that would not only
be responsible for a spontaneous emission of other particles, but would even cause an
immediate decay of the vacuum state. Fortunately, several decades after their conjecture
a loophole in their argument was found [8, 9] and has paved the way towards a theory
describing a massive graviton.

With all the questions that have been arising in our cosmological standard model
and the knowledge of the theoretical possibility to allow the graviton to be massive, it is a
justified hope that these theories manifest themselves in the observation of an accelerated
expansion of our Universe.

This introduction to the papers that have been written over the period of the PhD stud-
ies continues with chapter 2, which provides a brief review of the cosmological standard
model to lay the foundations for an understanding of both the necessity of modifications
and its success to describe the cosmic evolution with which every other theory has to com-
pete. Subsequently, an introduction into massive and bimetric gravity together with an
elaboration of the results that have been obtained during the doctoral studies is presented

in chapter 3 and 4, respectively.
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Notations and Conventions

Throughout the thesis, we will set the speed of light as well as Planck’s constant to
unity: ¢ =% = 1. Furthermore, a dot will denote a derivative with respect to cosmic time
whereas a prime indicates a derivative with respect to e-folding time. A trace of a tensor
field will either be indicated by an absence of indices or, in case of matrices, by squared
brackets [-]. For the metric we will use the signature (—,+, +, +). Finally, the spatial
derivatives Zj X;Y; are often shortened with X;Y;.



Chapter g

GENERAL RELATIVITY

OR: THE STANDARD PICTURE OF GRAVITY

Even if observations would be able to rule out GR, the current standard model of
gravity, it would certainly survive as a useful recipe to construct new theories of
gravity. A proper understanding of its peculiarities as well as the way GR can be derived
from basic principles can provide an idea how to find similarly elegant alternatives.

The following chapter aims to provide an insight into the theoretical fundament on
which GR is based on and, subsequently, sketches both its success in describing the
cosmic evolution as well as open problems that might indicate a failure of GR to describe

gravity on all scales.

2.1 Uniqueness of General Relativity

Standard gravity with a CC is not only well accepted due to its success to describe
physical phenomenons even on the largest scales we have observed, it is also its simplicity

that makes the theory attractive. Its field equation, the Einstein equation,
le"'Ag]w = M1;2 Tuw, (2.1)

combines the Planck mass (Mp) suppressed energy momentum tensor T, with a cosmo-

logical constant A and the Einstein tensor
1
Guw =Ry - ERg,w, (2.2)

which depends on the curvature of the space-time and the metric g,,. In the geometrical

picture, the curvature tensor
Rx,y)v=V,Vyo-V, V0 -V v (2.3)

measures the change of a vector v after parallel transporting it along an infinitesimal
closed curve. Since only its contractions affect the Equations of Motion (EoM), the Einstein

equation is only sensitive to the change of a volume, described by the Ricci tensor Ry,
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and the Ricci scalar R which is closely related to the Gaussian curvature of a hyperspace
embedded in a Euclidean space, i.e., the ratio of a surface of a sphere in the curved
manifold and its surface in a flat space.

Einstein himself had started to search for the field equations by assuming a Newtonian
limit. While this approach seems to look arbitrary and not unique, a modern approach
is the usage of Lovelock’s theorem which shows that, under certain assumptions, the
Einstein equation is the only allowed field equation, without the need of demanding a
Newtonian limit. With this level of simplicity, a minimal set of fields and parameters, it
challenges all competitors.

Before stating Lovelock’s theorem explicitly, we will discuss its descent in more detail.
A proper analysis could then enable us to explicitly see which assumptions enter and
could, or even should, potentially be lifted.

Throughout this thesis, we implicitly assume that for every function f, therewith any
tensor component, living on a manifold X it holds f € C*(X). Moreover, we presume any

dependence to be natural, i.e., !

Definition 1. (Naturalness) Let V be an open set on X and x € V. A tensor T is naturally

constructed from a metric g if the following properties hold:

1. Restriction: T is compatible with restriction, i.e., T (g(x|v)) = T (g(x)) |v‘

2. Regularity: If g is smooth in x, then T (g(x)) is smooth in x, too.

With this, we can formulate the theorem of Vermeil-Cartan, who independently proved
[10, 11]:

Theorem 1. (Vermeil-Cartan) Let K be a natural tensor that
1. is symmetric,
2. is divergence-free,
3. has rank-2,

4. is of second order in the derivatives of the coefficients of the pseudo-Riemannian

metric g,,,, and

5. is linear in these second derivatives.

Then K is a linear combination of the Einstein tensor Gy, and the metric g,,,, i.e.,

a
Ky =aGu +Bgu = aRy, + (ﬁ— ER)guv’ a BeR. (2.4)

This condition is often equated with being local. However, this terminology carries an ambiguity since
an increased interest in so-called non-local theories has been arising which still satisfy the conditions of
naturalness.



2.1 Uniqueness of General Relativity

Lovelock’s theorem is now a specialization in four dimensions [12]:

Theorem 2. (Lovelock) In four dimensions, every divergence-free, rank-2 tensor that is
of second order in the derivatives of the metric is symmetric and linear in the second

derivatives.

Since Einstein’s idea to relate a tensor originated from geometry with the rank-2

energy-momentum tensor, which is assumed be conserved, i.e.,
v, T* =0, (2.5)

the only possible field equation that is compatible with the assumptions of naturalness
and those that enter in Theorem 1 is indeed the Einstein equation (2.2).2

A strong restriction is the dependency on the metric tensor only. The presence of
additional fields can not only enlarge the class of viable theories significantly but, at the
same time, is often required to manifest specific properties of a theory. For instance, a
massive graviton has to be described by a Lagrangian that contains a mass term which, as
will be motivated in section 3.1, needs to be build by an additional tensor field. Therefore,
the assumption of the absence of additional, even non-dynamical, fields automatically
implies the assumption of a massless graviton.

Furthermore, the metric entering in the theorems above describes a (pseudo-) Rie-

mannian manifold. This implies a space-time without torsion T, which defined by
TXY)=VxY-VyX-[X Y], (2.6)
as well as a metric compatible connection, i.e.,
Ve gap = 0. 2.7)

Since gravity is a gauge theory, GR is, in fact, not unique. Theories in which only the
torsion tensor is the non-vanishing gauge field and, thus, the manifold is not curved and
has a metric-compatible connection or, equivalently, neither curvature nor torsion but the
non-metricity tensor is non-zero can be formulated such that they are indistinguishable
from GR [13]. Therefore, the Einstein-Hilbert action leading to the Einstein equation (2.2)

has to read
Sgy = fd4x V—g (R +gw A+ph, Qall’l + oa’[; Tyaﬂ). (2.8)

Here, the Lagrange multipliers p’éb and oaf are introduced by hand to enforce a vanishing
torsion T and non-metricity tensor Q.

Even though the analysis of the theorem of Vermeil-Cartan makes several strong
assumptions and the non-uniqueness of GR apparent, Einstein’s theory is nevertheless

an incredibly successful framework that still withstands all observational challenges.

2This corollary is often attributed to Lovelock’s theorem.
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2.2 Ghost Instabilities

All Lovelock assumptions except one seem to be unbreakable: The absence of third-
or higher-order derivatives in the EoM. It is not only a violation of the compatibility with
Newtonian gravity in the weak field limit. As will be discussed in the following, a theory
with higher-order EoM necessarily leads to a ghost instability.

While GR is ghost-free, many theories of modified gravity do not preserve this property.
Because this problem occurs in almost all theories of massive gravity, we will dedicate this
section to all ghosts, discuss their potential to render a theory unphysical and comment

on possibilities to evade ghost instabilities.

2.2.1 Ostrogradsky Ghost

Generally, a non-degenerated Lagrangian L (x, X, x, ..., x(”)), ie.,

&L
det ) —m # 0, (2.9)
ax" axj")

where x = (x, ..., xy), leads to EoM with derivatives of order 2n. Thus, 4n initial conditions
are needed to be set in order to solve the full system. In a specific example with n = 2, a

Legendre transform of the Lagrangian results in a Hamiltonian
H=P Q1+P,Qs—L (2.10)

that requires four canonical variables, which can be chosen to be

O1=x, Qo = X, (2.11)
oL doJL oL

1= = - T P, = —. (2.12)
ox dtox ox

Since for n = 2 one has L = L(x, x, X), all terms with at most second derivatives can be
replaced by a combination of @Q;, @2, and P,. Remarkably, all higher derivatives only
appear in P; which is not constrained and, therefore, can take arbitrary values. Since
the Hamiltonian depends linearly on P, it becomes unbounded. The system contains
a degree of freedom that can even carry negative energy values! Such a mode is called

ghost. In general, Ostrogradsky showed:

Theorem 3. (Ostrogradsky theorem) Every non-degenerated Lagrangian that contains
derivatives of order two or higher describes a theory that propagates a least one ghost

degree of freedom.

The consequences are indeed fatal. If a ghost degree of freedom interacts with other
particles, then the ghost can excite them to arbitrary high energies. The system will
become unstable. Even worse: In a quantum mechanical system with a ghost, the vac-

uum is able to decay into ghosts by emitting other particles. Because interactions at
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higher energies are entropically favored, the decay of the vacuum will happen almost

instantaneously.

Even though Ostrogradsky’s theorem only holds for non-degenerated Lagrangians, it
was recently shown that the same conclusions can be generalized to theories that are

described by degenerated Lagrangians leading to third-order derivatives in the EoM [14].

2.2.2 Ghosts in EFTs

Ghosts are often seen to render every physical theory nonviable. However, their most
dangerous consequence is the vacuum decay; a catastrophe in the UV which is, in fact,
a régime outside the validity of the EFT. Is this argument enough to justify the ignoring
of ghosts? The EFT limitation indeed opens two possible paths to cure a ghost mode, but
both should be taken with care.

If the theory itself is only an EFT, then the unknown fundamental theory might predict
new operators that break either Lorentz Invariance (LI) or locality and thereby modify the
decay time of the vacuum [15, 16]. The viability of a toy model in which a Lorentz breaking

(LB) above the cutoff is assumed is discussed in section 3.5.

Moreover, the ghost mode itself is often thought to be harmless if its mass lies above
the cutoff of the EFT. However, this conclusion dangerously exploits the limits of an EFT.
In this framework, a field can be neglected if it is not excitable below the cutoff. This could
be the case if the mass is very large. It is often commonly said that everything above the
cutoff of an EFT can be ignored. But if a ghost is present then this statement is not
correct anymore. Since a ghost does not require positive energy to become excited, any
interaction with a ghost can and will occur at all energy scales, even if its mass lies above
the cutoff. A scattering with a ghost is rather more likely if the mass is huge because the
entropy of the final state is larger [16]. Therefore, any propagating ghost, regardless of its
mass, invalidates the consistency of the EFT and destabilizes the theory [17].

Fortunately, some, but not all, theories benefit from a loophole to evade the fatal
instability with ghosts above the cutoff. In ref. [18], the author made it explicit by
studying a simple scalar field ¢ of mass m that contains a higher-derivative operator

suppressed by a high mass M and an external current J:
1 " 2.2, 1 2
L:—E oupd'e+me +W(D¢) + Je. (2.13)
The vacuum persistance amplitude for this Lagrangian
R
I'=i f d*k o (2.14)
k2 +m? + 15

suggests that there might be another particle state with mass M+0O (m2 /M ) On the other

hand, if we treat the dangerous term M2 (0g)? as just a first-order perturbation, then



Chapter 2. General Relativity, or: The Standard Picture of Gravity

the effective Lagrangian (2.13) can be expressed as an expansion of

1 m? 1
_ 1 n 2 2 4pr-2 2 _
L= 2[81@8 p+m°e +m'M “¢ ]+(1+ 2)J¢> 5 5J (2.15)

and the vacuum persistance amplitude

r= ifd41c|J|2

is indeed compatible with only one particle with mass m + O(m3 /MZ). This example

1 It
K2+ m2 M2 (k2 + m2)?

+0 (M_4)] (2.16)

demonstrates that a ghost with mass above a cutoff might be ignorable if the corre-
sponding theory can be written as a first-order expansion of a ghost-free Lagrangian.
Equivalently, if higher-order derivatives introduce a ghost above the EFT cutoff then they
have to be eliminated, with, e.g., the leading-order field equations [18]. If this procedure

is not successful then the theory is very likely not viable.

2.2.3 Putting on the Weights

A proof of the absence of ghosts does often require a rather complicated counting of
degrees of freedom in the Hamiltonian. The analysis of higher-order derivatives in the
action alone is not sufficient as the EoM might still be of second-order. Already the quite
simple Einstein-Hilbert Lagrangian introduces non-trivial terms with derivatives of order
two. It has become a challenging task to find alternative ways of proving the viability of a
Lagrangian.

One way is to find an equivalent, trivially ghost-free formulation. In fact, the rea-
son why the Einstein equation does not contain higher-order derivatives is the choice of
the connection to be Levi-Civita, the unique metric-compatible connection in a pseudo-
Riemannian space-time without torsion. If one expresses the curvature tensor in terms
of an a priori unknown connection,

—Tm

m _ pm
R =1 ile,p

ilkp ip.k + Iﬁaip Fn;k - raik 'y (2.17)

ap’

then the variation with respect to the connection provides a constraint that enforces I'
to be the Levi-Civita connection. In this so-called Palatini approach, the field equations
are, indeed, the Einstein equations but the Lagrangian does not contain any dangerous
derivative terms.

Despite the quite simple analysis that avoids the need of a Hamiltonian analysis this
approach is rather uncommon since a search for an equivalent theory is often not success-
ful. A promising alternative is the analysis of intrinsic properties of the tensors present in
the Lagrangian that are related to the number of propagating degrees of freedom. Specif-
ically, the weight w of a homogeneous tensor field K, defined through the dependence on
the metric g via

K(g) = AK(g) VgV¥aeR", (2.18)
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seems to play such a role. Recently, an alternative to Lovelock’s theorem was presented
in ref. [19] that has all assumptions but one, the absence of higher-order derivatives, and

adds an additional requirement for the weight:

Theorem 4. (Navarro-Sancho) In four dimensions, every rank-2 tensor K with weight
w > -2 that naturally depends on a pseudo-Riemannian metric g and is both symmetric
and divergence-free can be written as a linear combination of the Einstein tensor and the

metric itself.

Is the requirement of having the highest weight equivalent to a minimization of the
number of degrees of freedom and therefore the absence of ghosts? This question cannot
be safely answered yet and formulating its proof is still an ongoing work, but preliminary
results indeed indicate that even the ghost-free action describing a massive graviton natu-
rally arises which support the conjecture of a relation between the weight of a Lagrangian
and its viability [20].

2.3 Cosmological Solutions

Especially the cosmological picture has undergone a revolution. Although it has
changed quite recently, its phenomenological consequences, inter alia a Big Bang sin-
gularity, an inflationary epoch, and the composition of the total energy content which
results in a late-time acceleration, are widely accepted and serve as important consis-
tency tests for a comparison with alternative models.

To analyze the evolution of our Universe at large scales, the background can very
well be approximated by a flat, homogeneous, and isotropic background described by a
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric,

Gy dxH dx¥ = —N(t)* dt® + a(t)® & dx' dx'. (2.19)

Due to GR’s invariance under diffeomorphisms, a gauge can be chosen to set the lapse
function N to unity such that the Universe is solely describable by the scale factor a(t) that
measures the spatial size of the Universe. If it is filled with just a single homogeneously
distributed fluid with density p and pressure p, then the components of the Energy-

Momentum (EM) tensor reduce to

T%, = diag (-p, p, p. p) (2.20)

and the only non-redundant components in the EoM (2.2) lead to the Friedmann equations,

which read

H2E(E)=M1;2p+é, (2.21)

a 3

) . 1 A

H+H?=2=——M;2 (p+3p) + —. (2.22)
a 2 3
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The presence of a constant term A/3 is, in fact, a possible explanation of DE that drives
an acceleration. Recent measurements have shown that it does, in fact, dominate over
the gravitational attraction due to ordinary matter today [5, 6]. Observations of distant
Supernovae of Type Ia (SNe Ia) appear to be much fainter than expected in a universe
without DE and require a dynamical space-time that acceleratetly expands, while the

photons emitted from SNe Ia have been traveling towards us.

The first hurdle of describing the recent acceleration has quite simply been taken by
the consideration of just an additional constant term in the action. However, our Universe
is only be describable as a homogeneous and isotropic fluid on its largest scales. In fact,
all structure in the Universe, including galaxy clusters and even our Earth, perturb the
FLRW metric (2.19). The distribution of matter on scales larger than roughly some Mpc
(1 Mpc ~ 3% 10° light years) today can be described by linear scalar perturbations around
an FLRW background g:

g=g+og, (2.23)

where the corresponding line element for 6g is built out of the four scalar potentials
Y, ®, B, and E and reads

,(-2% E,

. (2.24)
E; 2(D6y+(alaj—é6yv2)8

dsgg =a
Here, and from now on, the components belong to a frame in which the time is measured

by a conformal time dn = adt and a dot denotes the derivative with respect to it.

Fortunately, we are again able to benefit from the gauge invariance of GR and are
allowed to fix two potentials suitably. In the following, the Newtonian gauge E = B = 0
will be chosen. The potentials are generated by perturbations of the EM tensor that are,
if we assume dark pressureless matter only, induced by the density contrast 6 = 6o/p

and the peculiar velocity divergence 8 = U;iv and reads
6T = —6p, and 6T = —6T, = pv'. (2.25)

The linear perturbation equations correspond to the (0,0)-,(0,i)-, (i,i)-, and (i,j)-components

of the Einstein equations and become in Fourier space

BH(HY - d) -1 @ = —%Ml;2 a’ 6p, (2.26)

I (b - H¥) = %Mgz a?pa, (2.27)

b +2HO—HP - (H> +2H)¥ =0, (2.28)
¥Y+d=0, (2.29)

where k denotes the wave number and H = H/a the conformal Hubble function.

Since GR describes a massless spin-2 field that only carries two helicity-2 degrees

of freedom, the only propagating scalar degree of freedom comes from the matter per-
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turbation 6p. In fact, eq. (2.29) indicates that a change in the EM tensor induces just
one effective potential. Moreover, the velocity divergence 8 is only auxiliary and does not
correspond to a dynamical field. Therefore, the set of scalar perturbation equations can
be reduced to a single differential equation describing one propagating scalar degree of
freedom. On scales that are much smaller then the Hubble radius, i.e., on sub-horizon
scales, k/H > 1, one obtains

5+ HE- 2?{25 =0, (2.30)

or, in e-folding time parametrization N = log a and X’ = dX/dN,
1/ 1y’ / 3
& +(H 7{+1)5—56=0. (2.31)

As previously mentioned, the inclusion of a positive CC in the Friedmann equations
(2.21, 2.22) is necessary in order to be compatible with observational data. However, this
modification will also propagate into a change of the evolution of the density contrast.
Surprisingly, this was measured by analyzing a catalog of galaxy distributions and found
to be compatible with a DE due to a CC [21].

2.4 The Achilles’ heel(s) of the Cosmological Standard Model

The standard model of cosmology has not only been found to be compatible with
various observations but is at the same time a rather minimal and well motivated theory.
However, its framework is built on GR and the limited freedom in Einstein gravity requires
additional ingredients. Since many of them come along with new problems, they are often

seen as signatures of modified gravity theories.

2.4.1 Dark Matter

The main part of the energy content of our Universe today, DE, is responsible for its
acceleration and is, at least in the standard picture, constant in time. While the universe
expands, the density of matter and radiation gets diluted. Hence, when going back in
time, the CC becomes less dominant. But even all observable matter in our Universe
could not counteract the CC enough to produce the distribution of galaxies that we can
observe today.

A second, yet unknown, matter component has indirectly been observed in the sev-
enties by Vera Rubin [22] who found that most stars in almost all galaxies rotate around
their center with roughly the same speed. A surprising discovery since most visible mat-

ter is expected to be localized near the galaxy’s core and stars in the outer region should

L~ ’ G Mcore ] (2.32)
r

Instead, the velocities seem to be constant. If the theory of gravity is assumed to work

move with

properly on these scales, then this behavior can only be explained if much more gravi-

tating matter is present outside the center of the galaxy, a huge amount of unobservable
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DM. Later, this conclusion was supported by independent indirect observations, like the
deflection of light due to the gravitational potential of DM.

Observations on cosmological scales require an amount of DM that is even larger
than the amount of all baryonic matter. Its origin is still completely unknown and the
list of candidates is growing constantly. The only knowledge about this type of matter
is its weak, or even absent, interaction with baryonic matter and photons, as well as is
presumably non-relativistic motion. The cosmological standard model including a CC
and cold DM (CDM) is therefore often referred to ACDM.

Instead of predicting new particles, the indirect discovery of DM could also be a sig-
nature of a modification of gravity. Several candidates already exist, e.g., mimetic gravity
[23, 24], gravitons with high-masses [25], and doubly-coupled bimetric gravity [26]. And
as long as no DM particle has been directly detected, the list of alternatives will keep

growing.

2.4.2 Inflation

When the Friedmann equations (2.21,2.22) were discussed, the geometry of the Uni-
verse was assumed to be flat. This is indeed in great agreement with current observations
of the Cosmic Microwave Background (CMB) [1], albeit surprising because due to the
different scaling of curvature and radiation with the scale factor the Universe should
have been extremely flat at very early times. The necessity of a fine-tuned curvature
contribution is known as flatness problem.

The analysis of the CMB has further shown that the measured temperature is almost
the same in every direction. This would not be a surprising observation if all parts in
the Universe are causally connected. But the expansion of the space-time influences the
causal connection, which is limited due to the speed of light, between two points in the
sky and the entire Universe should not necessarily be thermalized. In fact, one would
expect that just a region with an angular size of order 1°, which roughly corresponds to
the area on the sky covered by the moon, has been in causal contact; a horizon problem!

Both problems can be tackled with one extension of ACDM: an additional inflationary
epoch at very early times. One (or even more) additional scalar field with a suitable
potential could drive an acceleration period right after the Big Bang and this would quickly
flatten the Universe and freeze tiny quantum fluctuations, the seeds of all structure in
our present Universe. Many models were suggested, but all require the usage of at least
one additional degree of freedom (see, e.g., ref. [27] for a comprehensive list of models).

Despite the success of inflationary models, it should not be left unsaid that they
are not free from criticism. Especially the probability with which an inflationary epoch
could produce suitable initial values and whether the quantum fluctuations are stable
are still controversially discussed. As a result, different scenarios were suggested. One
possibility, a bouncing model in which the universe collapses and undergoes a bounce
before it expands again, even arises automatically in theories of modified gravity. In ref.

[28] we could show that solutions of bimetric gravity, a generalization of a massive gravity
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that is discussed in more detail in chapter 4, exist that predict such a bouncing behavior.

2.4.3 The Cosmological Constant Problem

Many, perhaps all but one, challenges in the standard picture can be solved elegantly,
often by utilizing additional fields. The most prominent exception is the unsatisfactory
interpretation of the CC, the Cosmological Constant problem.

At first glance, a non-vanishing CC is an auspicious step towards an understanding
of a theory of quantum gravity. In QFT, the vacuum state is expected to carry a vacuum
energy

(01T | 0) = —pvac Guv- (2.33)

which contributes to a CC in the field equations. Therefore, observations are sensible
to the sum of the vacuum contribution and the bare value from the Einstein-Hilbert
Lagrangian,

Aobs = Avare + Mp? Pvac- (2.34)

To approximate the value of the vacuum energy one can consider a canonical scalar field

with mass m and integrate over all modes
Ovac dek Vi2 + m2. (2.35)

Regularizing this integral leads to [29]

m* m?
= ().
where p denotes the renormalization scale. If the mass of the scalar field corresponds to
the mass of the heaviest particle in the Standard Model of particle physics, then the vac-
uum energy value will become around 55 orders of magnitudes larger than the observed
one [29]. Therefore, the bare CC then has to be extremely fine-tuned! This already seems
to be unappealing but acceptable. However, the quartic dependence on the field’s mass
makes the CC technically unnatural: Since the dominant contribution comes from the
field with the highest mass, one should fine-tune the CC again whenever a new particle
with a higher mass will be detected. In the extreme case, the masses could become of
order the Planck mass and one should expect pyac = 0(10120p0bs). If the CC would be
technically natural, then a change in the cut-off would not cause such a huge correction

by many orders of magnitudes.






Chapter E

MASSIVE GRAVITY

OR: THE UNIQUE THEORY OF A MASSIVE SPIN-2 FIELD

Rarely before have two different camps in physics worked together to find a theory of
a massive graviton. Particle physicist have searched for a proper understanding
of the theory describing spin-2 fields, while cosmologists realized its potential and saw
an elegant theory solving the puzzles of cosmology. The search for a massive gravity
received renewed interest when SNe Ia have been discovered and appeared to be fainter
than expected in a universe that solely consists of ordinary matter [5, 6]. A gauge boson
with mass m was expected to cause an additional Yukawa suppression of the gravitational
potential V(r),

V(r) %e‘mrz, 3.1)
which could explain the weakening of gravity on large scales. Even better, such a suppres-
sion would screen a large CC that naturally arises due to a vacuum energy. Unfortunately,
all viable theories of massive gravity turned out to not be able to solve the CC problem.
Nonetheless, the discovery of a ghost-free massive gravity has initiated an exciting search

for alternative cosmological models to finally understand the origin of DE.

3.1 Linear Theory of a Massive Spin-2 Field

Finding a viable non-linear theory of a massive graviton turned out to become quite
challenging. Much simpler is the concentration on a linear version, though, which has
already been found by Markus Fierz and Wolfgang Pauli in 1939 [30]. Considering small

fluctuations around a Minkowski background,

h;w = Juv — NMuw- (3.2)

limits the numer of possible mass terms drastically. As the action requires the con-
struction of a scalar, the only non-trivial potential term without derivatives is a linear

combination of all possible contractions of hy,. Thus, the linear Fierz-Pauli (FP) theory of
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a massive spin-2 field simply reads
; 1
Srp = SEY — 5m2 fd‘*x(hw,h"” -(1-a) h2), acR. (3.3)

Let us first assume the special choice a = 0, the Fierz-Pauli tuning. Although the EoM
for hy, are lengthy and not much illuminating, an equivalent reformulation into three
equations can be found which especially simplifies the counting of propagating degrees

of freedom enormously [31]:

(|:| - m2) h, =0, (3.4)
d hy, =0, (3.5)
h=0. (3.6)

In d dimensions, the first equation describes the propagation of %(d2 + d) degrees of
freedom, while the second and third one add d + 1 constraints. In a four dimensional
space-time, this leaves in total five degrees of freedom. A result which is indeed expected
for a massive spin-2 field, as it can carry at most one helicity-O (scalar), two helicity-1

(vector), and two helicity-2 (tensor) modes.

Interestingly, it turns out that eq. (3.6) is not present for the choice a # 0. In this
case, the loss of one constraint implies an additional degree of freedom, which turns out
to be a ghost. Hence, the requirement of stability uniquely fixes the linear theory for a

spin-2 field with mass m.

Although the FP theory is only a linear version of a massive gravity, it should already
be sufficient to analyze phenomenons in the weak field limit, e.g., in our Solar System.
In fact, one of the first major successes of GR was the prediction and observational
confirmation of the correct light deflection around the Sun using the linear theory. For

this, one can use the Newtonian limit for the metric,
g =diag[-(1+2y),1+2¢,1+2¢.1+2¢], (8.7)
to obtain a solution of the geodesic equation
©+Th x5 = 0. (3.8)

Assuming a photon (ds?> = 0) with energy E that moves along the x° direction and is

deflected in x! direction due to an object with mass M, then the momentum will gain a

contribution .
1 3 P X
=— | dx’'|1-—|ME —, 3.9
P f ( w) b’ 59
where b denotes the photon’s impact factor. An integration then leads to the deflection
angle
v\ GM
a=2|1-—]—. (3.10)
@) b
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Since the perturbation equations for GR (2.29) imply ¢ = —y, the bending of light in
Einstein’s theory is found to be twice as large as in Newtonian gravity.

For a massive FP theory the metric potentials become [31]

hoo = —L L gomr (3.11)
= e , .
0 3Mp 4nr
M 1 _
hy = S_I%Ee mr6ij, (312)

and indicate an O (1) difference in their ratio compared to the massless GR solution. An
extremely surprising result - shouldn’t the ratio reduce to the standard value in limit of
a vanishing graviton mass m? Because of the highly accurate measurements of the light
bending in our Solar System, such a large deviation would immediately rule out a theory
of massive gravity.

That a measurement could distinguish between an incredibly tiny graviton mass and
an exactly vanishing mass indicates the presence of a discontinuity in the theory. In
massive gravity, this is often referred as van Dam-Veltman-Zakharov (vDVZ) discontinuity
[32, 33]. The graviton in the FP theory propagates five modes instead of two in the
massless case. The additional scalar helicity-O degree of freedom gets strongly coupled
and therefore does not vanish in the smooth limit m — 0. However, in a strong coupling
régime the linear theory looses its predictability and higher orders necessarily play a
significant role. Specifically, Vainshtein has found the breakdown of the linear FP massive

gravity for regions inside a sphere with radius [34]

v\ -
rv = )
v m* M3

around an object of mass M. The knowledge of a non-linear theory is therefore not only
demanded by curiosity or consistency, but required in order to obtain valid predictions

with which observations can be compared.

3.2 Ghost-free Non-Linear Massive Gravity

Constructing a ghost-free non-linear theory has turned out to be a complicated chal-
lenge. For decades it has been thought that every non-linear extension will reintroduce a
pathological sixth degree of freedom, the Boulware-Deser (BD) ghost [7, 8, 9].

A promising ansatz to derive a consistent non-linear theory is to extend the unique
ghost-free linear massive gravity. For this, one can introduce a covariant tensor H through

rewriting the metric as [8]

Guw = Mo + Wy = Hyy + Nap auQDa anDb, (3.14)

where ¢ are Stiickelberg fields that can be introduced to restore diffeomorphism invari-

ance, which is originally broken due to the presence of a mass term. Additionally, these
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scalar fields can be used to decompose all graviton degrees of freedom, for instance the
helicity-O mode © through
% = x* —n*o,m, (3.15)

which yields an explicit expression for Hy, in terms of m [35],
Hyy = hyy + 210, — n% 000g,,  with TT,, = 9,9,m. (3.16)

Note that the combination [I1]? — [[12] is just a total derivative which ensures the ghost-

freedom at this stage. A non-linear generalization to the potential is given by
Lot < U(g. H) = -4 ((g’“’ 7%)2 - 9% ¢ Kq, Wﬁu), (3.17)
where K is defined such that it reduces to II,, in the limit h,, — O,
Ky = Gua (67 — V65 - HY). (3.18)

An expansion of the potential (3.17) leads to an infinite series in H and a subsequent
resummation in which only total derivatives are added provides a recursivly defined mass
term [35]

Lpot Z an L™ (), (3.19)
n=2
with
-1
L™ (50 = Z (- 1)'” )), [K™] L8 (%) (3.20)

This de Rham-Gabadadze-Tolley (dRGT) mass term has been shown to be free of ghosts

up to quartic order in the decoupling limit [35, 36], which corresponds to
. 9 1/3
Mp— oo and m— 0 while Ag=(m*Mp) = fixed, (3.21)

and effectively decouples the helicity-0, the usually most dangerous degree of freedom,
from all other modes. Almost at the same time, Hassan and Rosen discovered that the
infinite series in the mass term indeed terminates and have presented a proof of the

equivalence of this mass term with [37]

4
Lo Bren(Va'f), (3.22)
n=0

where f,, is an arbitrary fixed tensor field, the parameters 3,, denote dimension-free real
coefficients and e, (X) represents the elementary symmetric polynomials of the eigenvalues
A; of a matrix X, i.e.,

e X)=1, (3.23)

4
er(X)= > i, (3.24)
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4
e (X)= ). A, (3.25)
1<i<j
4
e3(X) = Z A A A, (3.26)
1<i<j<k
€4 (X) = jh flo i3 s = det X. (3.27)

A full, but tedious, Hamiltonian analysis showed that the linear combination of these
terms indeed provides an additional constraint, that removes one degree of freedom, and
with this the absence of the BD ghost in the full non-linear theory [38, 39, 40, 41, 42].
The complete non-linear and ghost-free massive gravity theory with a minimally coupled

matter Lagrangian £, is dubbed dRGT massive gravity and reads

4
Sarar = ~Mp f d*xv=g (R -2m® ) B en(\/g-lf)] + f d*x =g L. (3.28)
n=0

Note that even though an explicit CC has been omitted, the parameter Sy indeed takes
over its role as ey = 1.

From now one, we will assume the reference metric to be Minkowskian, f., = 1.
which will not only significantly simplify the analysis, but, in addition, this restriction
also ensures the absence of gradient or even ghost instabilities [43].] Furthermore, the
square root \/g‘_f is not uniquely defined for matrices. In order to ensure differentiability,
we will define it as the positive solution, i.e., the one that obeys \/)_( \/)_{ = X. Finally, a
variation with respect to g,, and the assumption of diagonality of g yields the EoM [37],

3
G+ m? Y (D" B g Vi (Vo) = M2 T, (3.29)
n=0

Here, the matrices Y(‘;L)a(X) follow from the variation of e,(X) and read

Yo (X) = 1, (3.30)
Yoy(X) = X - 1[X]. (3.31)
Yio)(X) = X% - X [X] + %1 (1x1* - [Xz]), (3.32)
Y5 (X) = X° - X2 [X] + %X([X]Z - [x?]) - 2131 (Ix1° - 3(x1[x*] + 2 [x?]). (3.33)

3.3 Cosmology with Massive Gravitons

Contrary to the original expectation that an additional massive term in the action will
weaken gravitational interactions on large scales, the modified Einstein eq. (3.29) with

the freedom in the parameters 3, is able to influence gravity at all scales and might even

The claim that dRGT massive gravity is ghost-free is only restricted to the absence of an additional sixth
ghost degree of freedom. All other five helicity modes crucially depend on the background and might also
carry a wrong sign in their kinetic term (see also section 4.5 for a more detailed discussion).



Chapter 3. Massive Gravity, or: The Unique Theory of a Massive Spin-2 Field

strengthen gravity. The cosmological phenomenology can, similar to the previously dis-
cussed Einstein case, be studied by assuming an FLRW background, with one exception:
The loss of the gauge freedom due to a breaking of diffeomorphism invariance forbids us to
choose the lapse arbitrarily. In GR, the combination of both Friedmann equations (2.21,
2.22) is redundant with the energy-meomentum conservation, T" U;u = 0. It is different
in massive gravity where a conserved TH just enters as an, though very well motivated,
assumption. In addition to the Friedmann equations, the combination of this assumption

together with a reformulation of the Bianchi identities,
V,.G* =0, (3.34)

enforces the term that modifies the EoM to be covariantly conserved:
3
m2V, Z (=1)" B g Yy, | = O. (3.35)
n=0
In an FLRW universe, this Bianchi constraint yields [43]

m*a® (.Bl +2Bya ! + B3 0_2) =0. (3.36)

Remarkably, this equation does not constrain the lapse function, as one would expect,
but fixes the value of the scale factor. It is not only the inability of dRGT to describe the
accelerating epoch of our Universe, it is, in fact, not even compatible with a dynamical
universe.

If the Bianchi constraint were slightly different, it would indeed serve as a constraint
for the lapse and allow for a dynamical universe. The specific form of the dRGT potential,
which ensures the ghost freedom, manifests itself in the lack of dynamics. If the potential
stays untouched, then additional dynamics should be added by hand to, for instance, the
matter sector. Tiny, even unobservable, anisotropies, that are larger than the horizon,
could allow for dynamical FLRW solutions [43] (see also refs. [44, 45] for a general FLRW
metric with inhomogeneous Stiickelberg fields). But such a modification would surely

render a massive gravity less appealing.

3.4 Generalized Matter Couplings

Without explicitly utilizing a new freedom in the matter sector by modifying the EM
tensor, the dRGT Lagrangian still makes a strong assumption on how the matter content
is coupled. In GR, the minimal coupling of the matter Lagrangian, i.e., to just the volume
element /—g, is a direct consequence of General Covariance. If this has been broken by a
mass term, then there is no fundamental reason why the coupling should stay minimally.
Especially in the presence of two tensor fields a generalization of the coupling has to be
taken into account [46, 47, 48]. But such a modification is expected to reintroduce the
BD ghost and was therefore thought to destabilize the theory [38, 49, 50].
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Recently, a coupling to a certain combination of both metrics was suggested [49],
shown to be free of ghosts below the strong coupling scale Az [49, 51, 17], and can
therefore evade the ghost problem. In this scenario, all matter is coupled to the effective
metric

gleg = a2gw, +2aBguX; + B2 Myw- a BeR, (3.37)

where X' = ( g‘ln)l:. The modification will then become perceivable on the right hand
side of eq. (3.29),

3
GH + m2 Z (=D"Bn g Yo (Vo f) = Mp2 adet(a+ BX) (a T + BXET™).  (3.38)
n=0

Its consequences for the cosmological evolution have been analyzed in publication 4 and

will be summarized in the following.

If, again, an FLRW ansatz for g is chosen, then the line element of the effective metric
can be written has
gondxt dx” = —NZpdt® + aZy 65 dx' dx’, (3.39)

and only depends on an effective lapse function Ng and scale factor aeg:
Neg = aN + 5, def = aa+ . (3.40)

Let us assume a scenario in which the matter fluid is still conserved with respect to the
effective metric, i.e., Vzﬂ T*Y = 0, but, contrary to what has been assumed in section 2.3,
is allowed to have a non-vanishing pressure

eff TOO.

1
p= 5 = oo (3.41)

Per construction, the new dynamics in the matter sector propagate into the Bianchi
constraint,
m? Mg a? (ﬂ1 +2 5 a! + f33 a_z) = aﬁaezﬂpa, (3.42)

If the pressure is parameterized by an equation-of-state (EoS) parameter w with p = wp,

then the energy conservation,

dlogp

+3(1 + w(aw)) = O, (3.43)
dlog aeg

can be integrated to obtain an expression for p(aeg) which, in fact, conflicts with eq. (3.42).

However, the situation sounds worse than it actually is. In order to use the standard
methods to describe cosmology, the pressure requires a lapse dependence, which is au-
tomatically the case for any fundamental field with a kinetic term. Consider for instance

an EM tensor from a canonical scalar field y with potential V(y),

1
™ = VE XV x - (Eveﬁ’a x VX + V(x)) g (3.44)
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Although the scalar field is now explicitly allowed to depend on the lapse, the Klein-Gordon
equation [52]
2

d( X
— +V +3
dt (2N§ff (X))

e X _
Qeft Nesz

(3.45)

clearly shows that if the potential is independent of N.; then neither can 2/ 2Nesz' Since

the pressure is just
X.Q

= on2
2Neff

p - V(0. (3.46)

the no-go theorem of dRGT massive gravity for dynamical FLRW solutions can be extended
to doubly-coupled theories, in which either the pressure of an effective fluid or, in case
there is just one scalar field present, the potential does not depend on the lapse.

The situation changes in the presence of a perfect fluid with an additional canonical
scalar field. The new freedom evades the no-go theorem but it will lead to a highly
nonstandard cosmological evolution: Both x? and Hfff will become negative for positive-
definite potentials, or, otherwise, Hgff will blow up as a.f — oo, indicating a late-time
background instability [52].

A viable theory of doubly-coupled massive gravity seems to be hardly constructable,
even in the presence of additional fields, and, if possible, it requires the usage of tech-

niques beyond those, which are used in standard cosmology.

3.5 Haunted Massive Gravity

Since the time when the linear FP theory was originally formulated and even before,
ghosts have always been seen as an unacceptable pathological behavior. They seem to
destabilize the vacuum as well as produce potentially dangerous classical instabilities.
The latter is still acceptable as long as no contradictions with observations appear. A
vacuum instability, however, is often thought to be a disastrous behavior. The only hope

to tame a ghost seems to be a modification at UV scales.

3.5.1 Lorentz Breaking UV Operators

The motivation to even think about a UV modification are twofold. Theories of mas-
sive gravity do not just add a mass to the graviton, their entire foundation is based on
the breaking of General Covariance. One possible consequence, a generalization of the
coupling to matter, has been discussed in the previous section. However, this symme-
try under diffeomorphisms is directly related to an LI. How justified would it be to give
up one symmetry and still enforce to other? Furthermore, all theories of modified grav-
ity, regardless of whether they introduce a mass to the graviton or break other Lovelock
assumptions, still live inside the framework of the EFT. A UV completion will surely intro-
duce new operators above the cutoff of the theory, or already above the strong-coupling
scale in theories of massive gravity. As some of these operators are expected to break

Lorentz invariance, any conclusion about the stability of the vacuum state necessarily
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has to take a possible LB into account.

Before summarizing the consequences of an LB for both the classical and quantum
stability for one specific model that was discussed in publication 8, we assume an arbi-
trary scattering between a ghost mode and other fields. The decay rate I' is then obtained

by integrating the scattering amplitude M over the entire phase space. More specifically,

1 114 2
r=— d®pr — IM|" 69| p, - , (3.47)
2mgf]:[ pr g M [Pg ;pr

where p; and my denote the ghost momentum and its mass, respectively, and the sub-
script f indicates all final particles. In a Lorentz invariant theory, the phase-space is
infinitely large leading to a divergent decay rate. Note that an EFT cutoff is not able to
simply cut the integral. However, an LV operator will automatically induce an LB scale
that renders the decay rate finite. The decay rate can then be determined by the most
dominant scattering process. This possibility was already proposed in refs. [15, 16]
and simple scalar field models have been studied [15, 53, 54]. But their results should
be taken with care, when applying them to theories of modified gravity with a minimal

coupling, where derivative interactions play the major role.

3.5.2 Cosmological Viability with Ghosts
Classical Instability

To tackle the question of how the decay rate generally scales with the LB cutoff in
minimally coupled theories of modified gravity, we have discussed a specific model of
massive gravity that differs from dRGT and, thus, introduces a BD ghost. Doing this, one
can kill two birds with one stone: Besides understanding the vacuum decay in modified
gravity, at the same time the question, whether a theory of massive gravity can be made
cosmologically viable, without explicitly introducing new degrees of freedom, can finally

be answered positively! To see this, the model

Stmc = Mp f d*xv=g[R+2m*((1 - a1 (g./) [ Vo If]
5 1 -a@n (Vo] - [o]) (3.49)
with
ai(g.f) = ag¥ fa @ eR (3.49)

has been studied and was dubbed Haunted Massive Gravity (HMG). This action contains
the first and second order interactions of the dRGT potential and explicitly violates its
ghost-free structure by a detuning with a; (g, f).

The no-go result for FLRW backgrounds in dRGT has signalized that additional dy-

namics at background level are required in order obtain a viable theory. In HMG, the
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ghost will take over this part. This is certainly a dangerous endeavor, even at classical
level one has to expect an instability due to the pathological BD ghost, that is usually
associated with growing modes. For instance, the scale factor might grow exponentially -

a ghost as the origin of the cosmic acceleration?

If one assumes a dark matter fluid, then the combination of the Friedmann equation

2

3H? = p+ —; [a3 (- (a@, + 6ay)) — 3a2N, (2aa, + az) + 3N2 (a((a - 1)a - 3a,) + 3a2)] ,
a*Ny g
(3.50)
together with the Bianchi constraint
(1+3aN2) [Né (a(ad +6a) + 2Ny (2aa; + @)
+HN, (—Gaa2 + N2 (4@, - (a—2)a) - 2Ny (aa; + ap) + 9a1a—1Ng)] =0, (3.51)

provides a simply relation between the lapse and the scale factor in the limit a <« 1 [55],

N, =+ ,/az (3.52)
= x— —a, .
9 3V

and implies H? o« a™3. This result is indeed consistent with the early-time evolution in
ACDM. The late time behavior in HMG can easily computed numerically and, for a; = O(1),
predicts an effective EoS parameter wey < —1/3 [55], indicating an acceleration. It is
exactly the ghost instability that was expected to be visible at classical level and could

potentially solve the DE problem.

Once again, it needs to be emphasized that HMG should not be seen as a new can-
didate of modified gravity that was intended to compete with ACDM, but it serves as a
perfect counter-example for the conjecture that every massive gravity without an extra

freedom does not produce a viable cosmological evolution.

Still, the dangerous quantum instability is not cured yet. But as the scattering pro-
cesses at tree-level do indeed correspond to the classical background instability, we expect
a maximization of the timescale of the background instability to likewise slow down the
vacuum decay. For this, the time t. can be computed at which the lapse N, crosses zero
denoting a Big Bang singularity. A maximization of the timescale then corresponds to
t. = 0, which is achieved if the parameters of the theory approximately obey the linear
relation [55]

1 2

Gy ~ —@) — —. 3.53
76 45 (8.53)

Quantum Instability

As mentioned before, the instability at quantum level can be cured by the influence
of an LB operator, but it is neither obvious which interaction is dominant, nor at which

scale this operator has to set in to preserve viability. Let us first discuss the linear HMG
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mass term:
1 _ 1 _ _
S2hes = M2 [ atx (5 + a1 - 200) [n(60) - (5 + 5@ - 82 (@) (@) (.50

which, as constructed, violates the FP tuning for non-vanishing parameters a;. In addi-
tion, a canonical non-linear matter scalar field ¢ minimally coupled to gravity is consid-
ered. Since the vacuum decay is expected (and for HMG also explicitly shown in ref. [55])
to occur at small scales at which the metric is very well approximated by fluctuations
around a flat Minkowski metric, the ansatz (2.24) with a(t) = 1 can be used to obtain the

second-order action,
S2 = f d*x [4MZ (07 - 2AQY - 20 AE - 30 - 2B,D))

1
+§m2MP2, (clBiZ + e (‘{'2 + (AE)2) + 8c3DAE + 12c3D? + 4¢,¥ (AE + 3cI>))

—(1+B? - (AE)” + 30° + 60 — W2 + 2AE (@ + ¥)) X, | . (3.55)

where we have defined

X, =-¢%+ 67 + m;f @2 (3.56)
together with the parameters c;

c1 =1+ 12a, —32ay, (3.57)

c = —16a; + 12ay, (3.58)

cs =1+4a, (3.59)

cs =1+4a, —8ag. (3.60)

The combination of all five scalars in the action (3.55) should describe one helicity-0
mode, a BD ghost, and an external matter field. Surprisingly, not two but three of them,
i.e., ¥, B;, and AE, are, in fact, auxiliary. However, integrating them out introduces
fourth-order derivatives, which indicates the presence of an Ostrogradsky ghost in addi-
tion to the two dynamical degrees of freedom and, therefore, matches up the counting of

the total number of degrees of freedom.

To properly discuss the ghost instability, all degrees of freedom have to be decoupled
from each other. A recipe, how to separate all modes in a general, not even necessarily
covariant, theory of both two and three interacting scalar fields, was first presented in
publication 8.? These results were used to find that HMG can equivalently be described
by an interaction of two tachyonic fields = and ¢, respectively, and one ghost ®4. The
tachyonic instability should, however, not be taken too seriously as this is just an effective

reformulation to compute the scattering amplitudes and does not imply that the physical

2During the analysis, a remarkable side product was found: While Ostrogradsky’s theorem does not make
any statement about the number of ghosts that will show up in higher-derivative theories, we have found
that, in fact, the property of a theory being covariant is crucially related to the number of propagating degrees
of freedom.
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helicity-0 or the matter field is really tachyonic.
Once all modes are decoupled, the most dominant interactions can be read off from

the Lagrangian and were found to be

m6

6 12
MP

Ldom o

D3 &0, €. (3.61)

The timescale of the vacuum instability is, therefore, determined by the derivative inter-
actions between two ghost fields and four matter fields, which leads to a vacuum decay

rate [55] y s
3A me Alg

2(277:)10 Mg,

where A comprises the prefactor of the Lagrangian (3.61). Cosmological viability requires

To, +0(Afg). (3.62)

the decay time to be larger than the age of our Universe, i.e., 7! > Hy 1. Assuming the
graviton mass m to be of order Hp, which is necessary to ensure that modifications of

gravity appear at cosmological scales, shows that the scale at which LI has to be broken,

(3.63)

12 2 ,81/6
mg, Mg
ml4 ’

A < Agax) =0 ((

can easily be much larger than not only the strong coupling scale of the theory As =
(m*Mp)'/® but even the Planck mass! Only for incredibly tiny masses of ¢, i.e., m, <
Hp ~ 2 X 10733 eV, the decay of the vacuum might occur too fast, but a massive scalar
field with such a small mass has never been observed.

To summarize, a model of massive gravity has been found that disproves two old con-
jectures. Firstly, a massive graviton alone is indeed able to provide a viable cosmological
evolution and, secondly, a ghost in theories of modified gravity can be harmless. Even
more, the interaction that dominates the vacuum decay is expected to be the same for
most minimally coupled theories of modified gravity and, thus, will also render many

theories viable again that had been discarded due to the existence of a ghost.
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BIMETRIC GRAVITY

OR: THE UNIQUE THEORY OF TwO INTERACTING SPIN-2 FIELDS

aximizing the symmetry of an action plays a crucial role in field theory and is often
regarded as a step towards a more fundamental description of gravity. Certainly

the biggest disadvantage in a theory of a massive gravity is the breaking of diffeomorphism
invariance. Quite naturally, one will ask whether this symmetry can be restored. The

answer turns out to lead to a theory of two metrics, a bimetric theory.

4.1 Generalizing Massive Gravity to a Bimetric Theory

A massive gravity action that exhibits a diffeomorphism invariance requires additional
kinetic terms to compensate the transformation behavior of the mass term. While any
modification in the Einstein-Hilbert action is likely to introduce new degrees of freedom,
the kinetic term for the metric g should be kept and the reference metric has to obtain
its own kinetics which will cause the second metric to become dynamical. In other
words, restoring General Covariance in massive gravity seems to lead to a theory of two
interacting spin-2 fields. In order to construct the corresponding action it is reasonable to
just use two copies of GR, one for each tensor field, and add a suitable interaction term.
The ghost-free proof in dRGT massive gravity can be generalized to a dynamical reference
metric and will not affect the form of the potential [38, 40, 41]. Therefore, the action can

finally be written as

4
S = —%MZ f d*x+=g (R(g) -2m? Z Bn en(X)] - %MJ? f d*x-f R(f) + f d*x V=g Lm.

= (4.1)
where a second Planck scale My in addition to My; = Mp is introduced. Because each
single Einstein-Hilbert term is invariant under diffeomorphisms, the invariance of the
mass term, and therefore the whole action, possesses this symmetry, too, if both g and
f are transformed with the same diffeomorphism. Thus, giving dynamics to f has indeed

restored this gauge symmetry.

Even though the second tensor field f gets its own Einstein-Hilbert action with the
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volume element v—f and looks like a second metric, there is still only one metric space-
time over which all integrations are performed. However, this language of “two metrics”
is often used and explains its name bimetric gravity, or in short, bigravity. Right after this
action was proposed by Hassan and Rosen, it was explicitly shown to be free of the BD
ghost [38, 40].

At first glace, the metric g seems to play a special role. This is, in fact, not wrong since
the entire matter sector couples to g only. But apart from that, the mass term carries a
symmetry that ensures that both metrics are equally footed. To see this explicitly, one

can utilize the properties of the elementary symmetric polynomials [38],

e i ( f_lg)

, (4.2)
€y ( f_lg)

e (NTT7) =

and finds
V%imahgm=¢?qwﬁaiﬁﬁhgﬂ 43
=ﬁ2mwﬁa 4

The bimetric action is then indeed symmetric under the exchanges f < g, 8n — fS4-n,

and My < M; together with a simultaneous rescaling m*> — m> M2 /MJ? [56].

Clearly, with the new dynamics for the reference metric f,,, we have entered a new
field with more than just a massive graviton. Generally, analyzing the spectrum to find all
propagating modes is quite complicated, if possible at all, and crucially depends on the
background. In a simple case where both metrics just describe small fluctuations around

the same background gy,

9w = G + Mg_lfsguv and f;w =g + Mfléfuv, (4.5)

and all higher-order interactions are switched-off by using 8; = (-3,-1,0,0, 1) [56], the

action (4.1) at second-order becomes [38]

2
_ 4 ASuvaf Suvaf _ m 2 4
S= f d*x (8Gyy " Egap + 8fuw E" &fp) - My f d*x M YRR

(4.6)

@Lﬁﬁ%@hﬂﬂ

where E®% denotes the Lichnerowicz operator, defined such that gy, Epvah 6gap describes

the linearized Einstein-Hilbert action, and the effective Planck mass My is defined as
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-2
(Mg_ 2+ M _2) . To decouple all modes, one introduces

'
G = Mvef"jguv + %6fum 4.7)
My = A;Zf 6y + Mvifafw (4.8)

to obtain [38]
S= f d*x (G E% Giap + Wy E W) — m{a@ f d*x [M¥ 8L, - M?]. (4.9)

The mass term that appears in (4.9) depends only on Muv and precisely obeys the FP
structure. With this, both a massless Guv and massive le mode, respectively, are de-
coupled, pointing to the presence of two spin-2 fields of which one is massive. Bimetric
gravity does not just generalize massive gravity by giving the reference metric dynamics,

it is rather a completely different theory of two interacting gravitons.

4.2 Cosmological Background Solutions

With the development of bigravity, a new hope arose to finally tackle the DE problem
successfully. Suddenly, many different classes of solutions describing completely dif-
ferent phenomenologies were available. Most of them are able to explain the accelerated
expansion [56, 57, 58, 59, 60], others contain an inflationary epoch or could even describe
bouncing solutions [55]. However, a comprehensive analysis of their phenomenology and
a comparison with observational data in publication 1 demonstrated that quite a number
of models are not cosmologically viable. To see this explicitly, we choose an FLRW ansatz

for both metrics,

ds? = a® (—7{*2 de? + dx; dxl’), (4.10)
ds? = b? (_71—2 NZde? +dx; dx") . (4.11)

Note that the combined diffeomorphism invariance allows us to choose one time parametriza-
tion, in this case the e-folding time t = loga. Before analyzing the set of background

equations, it is useful to introduce the ratio between both scale factors,

, (4.12)

.{
Il
Qs

which will be assumed to be positive. Furthermore, we can fix two redundancies in the set
of free parameters of the theory. Under the transformation f,, — MJ:Z Juw the elementary

symmetric polynomials transform as
Zﬂn en( g_lf)_> ZMf_nﬁn en( g_lf)5 (4.13)
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demonstrating that the Planck scale My can be set to My by rescaling 3, — MJK‘ Bn. Finally,
the graviton mass scale m will be absorbed into the 8, and all masses will be expressed
in units of Planck masses.

Because the bimetric action should be varied with respect to all dynamical fields, we

obtain two EoM in addition to the EM conservation. The set of independent equations

becomes
3H> = a®(p+ Bo + 31T + 3far® + Bar”), (4.14)
aerJ?
3H? = ——L (B +3Bor + 3Bsr® + Bar®). (4.15)
(r'+r)
P =-3p(1+ wir) . 4.16)

As already mentioned earlier, the parameter 3y appears as a CC. Because the entire
matter sector is minimally coupled to g, it is only this parameter that will receive quantum
corrections [61, 62, 63, 64] leading to the CC problem. All other coupling parameter 8, are
protected against loops and, therefore, preserve technical naturalness. This motivates the
search for models in which Sy is set to zero in order to obtain self-accelerating models.!
All background equations (4.14) - (4.16) can now be used to solve for the lapse, which

leads to ,
r

Ny=1+—. 4.17)
r
The same constraint would also directly follow from the Bianchi constraint. In addition,

the background equations also allow to directly solve for p in terms of r only:

p=Pp1r = Bo+3Bs+3(Bs—B1)r+ (Bs—3B2)r* — Bar’. (4.18)

Therefore, to analyze the phenomenology of possible cosmological solutions, it is only
important to know how the ratio of the scale factors evolves. One way to analyze the

evolution of r is the usage of

=2 - 301+ we 2, (4.19)
T T
and employing eq. (4.18) to obtain a differential equation for r. Instead of solving this
equation explicitly, it turns out to be very convenient to discuss its phase space. Even
beyond the background level, the evolution in the phase space will allow us to immediately
draw conclusions about the existence of different types of instabilities, as discussed in
sections 4.3.1 and 4.5. One representative phase space diagram is illustrated in Fig. 4.1
[28].

All viable cosmological solutions, i.e., those in which the density is positive, the Hubble

expansion real, and a matter dominated period exists, fall into one of the following three

By assuming B, = 0, one has, of course, not obtained a solution for the CC problem. It is rather assumed
that a symmetry, possibly predicted by a more fundamental theory, exists that enforces the CC to vanish
and, consequently, requires an explanation for the late-time acceleration of the Universe.
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qualitatively different types of branches [60, 28]:

Finite Branches

During the entire cosmic evolution the ratio of the scale factors stays finite, r € (0, r),
and increases with time, i.e., r’ > 0. In the asymptotic past, r — O causes the density
(4.18) to diverge and indicates a Big Bang singularity. While the universe expands, r
increases and approaches a root at r.: r’|,, = 0, which corresponds to the asymptotic
future. Because of eq. (4.19), a constant r implies a vanishing density and the Hubble
function will approach a constant; we have entered a de Sitter epoch in which the universe
is dominated by DE only.

A model that deserves special attention is the Minimal Bimetric Model (MBM) and has
been analyzed in publication 2. It is the only viable one-parameter model that is not just
equivalent to ACDM. Here, all S-parameters except 8; are zero and, therefore, the model
contains the same number of free parameters as in ACDM. Furthermore, it is particulary
simple as the entire evolution can be solved analytically and agrees with observational
data [60]. Interestingly, the EoS always evolves from -2 to -1; a phantom behavior that
distinguishes all finite branch models in bigravity from the standard cosmological evolu-

tion.

Infinite Branches

If the scale factor b dominates over a at early times, then eq. (4.19) shows that r’ is
negative. Such a model evolves from the limit r — co in the asymptotic past towards a
root at r., which, again, indicates a de Sitter point. Even though no viable one-parameter
model exists in this branch, it can reproduce the success of ACDM if at least 81, 84 > O,
the so-called Infinite Branch Bigravity (IBB) model [60, 65].

Exotic Branches

All cosmological solutions discussed so far start with a Big Bang singularity and reach
a de Sitter state at late times. However, there are branches in which r is always finite
and non-zero, even in the early- and late-time limits. In the phase-space diagram the
asymptotic points are then described by either a pole or a root. While the latter has
already been discussed in the other branches and corresponds to a vanishing density,
the existence of a pole? indicates a point in time at which H = 0: A bounce! One possible
scenario is a contraction from an infinitely large universe until a non-singular bounce
occurs, followed by an (accelerated) expansion. Such a model could potentially explain
not only the recent accelerated expansion of our Universe but, at the same time, does not

require an inflationary epoch and comes out without any Big Bang singularity.

2Note that a pole in 1’ is not an unphysical behavior because the prime denotes the derivative with respect
to e-folding time, i.e., I’ = aH'f, and leads to a divergence if H crosses zero.
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Figure 4.1: Representative phase space diagram of a model that contains three different
cosmological solutions: Two of them, those on the finite and infinite branch, describe an
expanding universe towards a de Sitter state, while the third solution on the exotic branch
corresponds to a bouncing model. The colored regiones indicate the existence of gradient
instabilities (diagonal blue stripes) and ghost instabilities (vertical orange stripes signal that
the helicity-2 modes are ghosts, whereas diagonal red stripes denote a helicity-O ghost),
respectively.

4.3 Linear Scalar Perturbations

At background level, bimetric gravity provides a huge number of viable models that
are not only consistent with current data but also predicts new phenomenologies that
might be testable in the near future. Consequently, studying their behavior at linear level
received an increasing interest [66, 67, 68, 69, 70, 65, 71, 55, 72, 73, 74].

4.3.1 Gradient Instabilities

It has not last long until the first simple models were found to develop dangerous
instabilities [68, 69, 65, 71]. To properly understand their origin and consequences, we
have studied the particular MBM in detail in Publication 2. By finding stability conditions
for general models in publication 3 we could then identify all possible models that do not
suffer from gradient instabilities.

Let us first focus on scalar perturbations around an FLRW background that can be

described by the line elements

ds}, = 2a® [-¥ dt? + (@6 + ki I E) dx' do | exp (i k7)., (4.20)
dsgf = op2 [_Nfz ¥y de? + (d)f 5 + ki kJEf) dx! dxj] exp (iE?) (4.21)
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in Fourier space. Because solving the set of perturbation equations turns out to be quite
cumbersome, a suitable gauge transformation can be used to simplify the analysis by,
e.g., rendering some variables auxiliary. A convenient choice is the transformation to
gauge-invariant variables [68] (see also refs. [75, 71] on how to choose a useful gauge by

using the Noether identities),

O — O - HE, (4.22)
Y —Y-H(HE +HE +E)), (4.23)
O — Oy — W2rE}, (4.24)
r+r
Hr2H' (' + 1) E} + Wzr(r (r'+r) E}’ + EJQ (2r’2 +r@2r -r")+ rz))
¥ — W — T (4.25)

In total, one obtains ten independent perturbation equations of which eight equations
follow from the (0,0)-, (0.i)-, (i.i)-, and (i,j)-EoM for g,, and f,,, respectively; the remaining
two arise from the energy-momentum conservation of the perturbed EM tensor. Since
we have just one propagating helicity-O mode and a scalar matter fluctuation, we should
expect the set of equations to be reducible to only two second-order differential equations.

After integrating out all auxiliary variables one, indeed, obtains [76, 65, 71]
X/" +Fy X/ + SjX; = 0, (4.26)

where X; = (O,¥) and F and S are matrices that contain the model dependency. To
dicsuss the stability of X it is sufficient to use the ansatz X; « e in combination with
the assumption that w does not depend on t.° Furthermore, a possible instability will
lead to a growth at especially sub-horizon scales. In this régime, the eigenfrequencies are
[65, 28]

, (r2+1)(ﬁ1—ﬁ3r2)r’ _ rz(ﬂ1+4ﬁ2r+3ﬂ3r2)
2 ( k )2 r p(w+1) Br+2Br+B3r2
3r3

H

-1]. (4.27)

For models in which the highest-order interactions are switched-off, i.e., 82 = 83 = O, it

reduces to the remarkably simple expression

I )2 r//

2 —
DBy = (ﬂ a7’ (4.28)

which is very convenient to study the stability as just the sign is of importance. A negative
one implies imaginary eigenfrequencies and, thus, stable, oscillating modes. Otherwise,
if the sign os positive, the scalar perturbations undergo an exponentially fast growth.
Especially the scale dependence signalizes a dramatic behavior at small scales which
does not seem to withstand any comparison with observations.

In the finite branch model MBM, the early-time evolution satisfies r’,r” > 0 and,

3Neglecting the time dependence is allowed if the WKB approximation, i.e., |a)’ / a)2| < 1, holds. In the
sub-horizon approximation, this was indeed found to be valid [65].
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therefore, indicates unstable linear perturbations! In fact, the presence of gradient insta-
bilities at early times can be generalized to all finite branch models that produce a viable
background [65]. All models living in the exotic branch are also plagued by instabilities
[55]. Only one candidate has survived the instability check: the models on the infinite

branch.

4.3.2 Quasi-Static Approximation

In order to compare the evolution of scalar perturbations in IBB, the only model that
has a viable background evolution and is free of gradient instabilities, with observations
of large-scale structure, it is sufficient to use both the sub-horizon limit together with
the quasi-static approximation, since these experiments especially probe modes within
the horizon [65]. While the sub-horizon approximation only considers small modes that
satisfy k/H > 1, the quasi-static limit restricts to slowly oscillating modes. In this limit,

we can introduce the anisotropic stress

@
n=s—— (4.29)
y
and the effective gravitational coupling
Y= 21 y (4.30)
- B3H2Qu,6° '

where Q,, denotes the ratio between the matter density and the critical density, i.e., for
which the universe would be flat. Both modified gravity parameters are defined to be
unity if the evolution is equivalent to the one in ACDM. We have shown that IBB predicts
[65]
. 1 . 4
lim n=— and lim Y =—, (4.31)
t—>—o00 2 t——co 3
and therefore deviates significantly from the standard model in the asymptotic past. So
far, both ACDM as well as IBB agree with all current observed growth data [65], but

near-future experiments will soon be able to discriminate between IBB and ACDM [77].

4.4 Growing Tensor Modes

Cosmological perturbations comprise small fluctuations in the scalar as well as in
the vector and tensor sector. The gradient instabilities that have been discussed in the
previous section only affect scalar perturbations. In publication 5 we have focused on the
tensor sector to extend the picture of cosmological viability.

Consider transverse gravitational waves propagating in the z direction for both met-

rics, g and f,
hygvy hygeo O
hygwy = "hyygoo —Nyge O |- (4.32)
0 0 0
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The EoM for both metrics provide [68, 71, 73]

” ’ 2 2qr-212
R +vghy +(mZ + 2 H ) hy = gq by, (4.33)

R+ yp b+ (mf + ¢ H2 1) by = qp hy, (4.34)

where the following coeflicients have been defined:

_2+7-(’ B 2r2+3r'2+r(4r’—r")+7-(’ (4.35)

Yo = H'’ V= r(r'+r) H ' '

2 _ g2 2 o (1) 4
my = H “a’Br, m; = 722 a’B, (4.36)
' +r)?
cg =1, cJ% = ) , (4.37)
_ (r'+r)
gg=H?a®Br, g = rom a’B. (4.38)
with

B =By + Bsr® + 1 (2B + Bar’) + Bor. (4.39)

Contrary to the scalar case, the phenomenological behavior of the gravitational waves is
much easier to understand and can easily be computed numerically. The tensor fluctua-
tions hy are, as in GR, damped by y, > 0. However, the friction term for hy, yy, is negative
if b < 0, which is always fulfilled at early times in models on the infinite branch, and
signalizes a fast grow. Due to the coupling of both modes, this growth propagates into hy.

Because growing modes would influence the CMB, we have compared the IBB model
to present CMB data in publication 5. Whether the gravitational waves hy, grow too fast
or not does not only depend on the choice of parameters, but also crucially on the initial
conditions set by an inflationary epoch. The list of models for inflation is long. Often the
end of inflation occurs at energies around some MeV up to 101° GeV [27].

In addition, fast growing tensor modes will rapidly reach large values that are not
consistent anymore with the linear perturbation approximation and non-linearities should
be taken into account. One should, therefore, only trust the solutions of the perturbation
equations when hf/g < 1.

However, for the IBB model a very optimistic assumption of a low-energy inflation, that
stops at an energy scale of O(GeV), with an additional cutoff is required to evade conflicts
with recent observations of the CMB [73]. Albeit less appealing, another possible solution
is a tuning of the model parameters to achieve a very small coupling g, with an additional
CC to ensure the viability at background level.

4.5 Reopening the Ghost Hunt

Bimetric gravity contains many viable cosmological background solutions that easily
pass all observational tests. All their linear perturbations are, however, plagued by either

scalar gradient instabilities or growing tensor modes. To properly understand their origin
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it is useful to directly check the behavior of the single helicity modes of both gravitons, as

it has been done in publication 6.

4.5.1 Higuchi Ghost in Massive Gravity

The absence of ghosts was one, and perhaps the most important, requirement that a
theory of a massive bimetric gravity has to fulfill. All ghost-free proofs have concentrated
on finding only an additional Hamiltonian constraint, though, which ensures that no BD
ghost will appear. This does, however, not automatically imply that all graviton degrees
of freedom are well behaved. Before discussing the bimetric case, let us focus on a linear
massive gravity around a de Sitter background first (for a generalization to an FLRW

background, see ref. [78]), i.e.,

ds —
G = G + Mp Ry (4.40)

After a decomposition into the two tensor (ﬁuv) and one scalar (n) degrees of freedom by
replacing hy, = hy, + ngd®

w >
the FP action and becomes [79]

the Lagrangian for the helicity-O can be then read off from

3 H\?
ds 4 m

((871)2 -m?hn- 2m2n2) ) (4.41)

Because the scalar mode of the graviton is coupled to the trace T of the EM tensor (which
is, in fact, the origin of the vDVZ discontinuity [31]), the matter Lagrangian reads
m2
e e —, ) (4.42)

T Ny Vi — 21

where ¢ is the normalized helicity-O mode,

2H?2
Q= 1- — . (4.43)
m

This expression is quite useful as the following cases can easily be distinguished:

e m? = 0: This corresponds to a vanishing helicity-O mode, as expected for massless
gravitons. When taking the limit m — O, the Lagrangian (4.42) indicates a strong

coupling and the validity of the linear FP theory breaks down.

e m? < 0: Even though we cannot directly read off the properties of this theory from
the Lagrangian, one finds that this yields an unhealthy helicity-1 mode [79].

e 0 < m? < 2H?: A forbidden mass range due to the change of the overall sign. In
this case, the helicity-O of the graviton becomes a ghost, which is named Higuchi
ghost, after Higuchi who has observed this condition first [80, 81].

e m? > 2H?: This bound preserves the overall sign and avoids the Higuchi ghost.
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e m? = 2H?: Such a tuning of the graviton mass implies a precise cancellation of the
first bracket in the Lagrangian (4.41) indicating a vanishing helicity-0 mode. In fact,

in this case we observe an additional gauge symmetry [82]
huw = P + (VY + H? g107) €(x) (4.44)

where £(x) plays the role of an arbitrary gauge parameter. A theory that possesses

this symmetry is called partially massless (PM).

4.5.2 Higuchi Ghost in Bimetric Gravity

In a bimetric theory, the condition to ensure a healthy helicity-O mode was derived
in a minisuperspace approximation around an FLRW background by Fasiello and Tolley
who found * [83]

3 H\?
5 (ﬂ1 + 2851 +j33r2)(1 + r2) > fB1 + 3By + 3_537‘2 +J84r3 = Sr(z) . (4.45)
Remarkably, this condition is similar to [28]

r >0, (4.46)

and immediately shows that all models on the infinite branch suffer from the Higuchi
ghost. Therefore, the absence of gradient instabilities in these models does not automat-
ically imply a healthy theory. The ghost will cause a fast growth of scalar perturbations

and, even worse, a quantum instability will arise.

4.5.3 Tensor Ghosts

To understand the growing modes in the tensor sector for IBB, the authors in ref.
[72] pointed out that the relative factor between the kinetic tensor modes for g,, and
Juw is the lapse Ny. Because of eq. (4.17) and the early time limit r — oo and, thus,
r’ ~ —3/2(1 + wyet)r, the lapse is negative leading to a sign difference in both Kinetic terms

[28]: The helicity-2 modes of the second metric are ghosts, too.

All infinite branch models are therefore plagued by in total three ghost degrees of
freedom which, without any modifications in the UV, immediately rules the models out.
Additionally, all models on the exotic branch suffer from either gradient instabilities or
ghosts, too [28]; likewise all finite branch solutions that seem to be nonviable at early

times due to (only) unstable scalar perturbations.

“Note that the authors have used a slightly different convention in the mass term that was compensated
by a rescaling of the S-parameters.
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4.6 Evading Gradient Instabilities

Let us now focus on the finite branch solutions, the only one being free of ghosts.
Gradient instabilities which affect the scalar sector can only hardly be compatible with
the observed structure in our Universe that is, in fact, very well described by linear
fluctuations. Since the enhanced growth only occurs at early times, one can hope to find
a suitable parameter region to push this instability to the far past in order to minimize

observable consequences.

4.6.1 Pushing the Instability Away

In Publication 2, we have noted that the possibility of adding a CC to the MBM can
stop the instability to evolve at r = /28y, which can, if 8; < By, happen at arbitrarily
early times [69]. The growth could stop very early and might not be observable today.
One can even go further and push the instability beyond the strong coupling scale of the
theory. At these energy scales, the theory is not trustable anymore and new operators

become important.

A non-vanishing CC can indeed solve the instability problem in the scalar sector, but
at the same time it introduces new, though less dangerous, problems. The limit 8; — O
implies the limit of a vanishing graviton mass, m — 0, which is associated with the vDVZ
discontinuity and, thus, non-linear effects become important. Furthermore, a non-zero
CC lets the theory again run into the CC problem that was originally intended to get

solved.

4.6.2 Planck Mass Scaling

Besides taking the limit 8; — O, there is the possibility to assume extremely large
values for the B-parameters. This approach might look highly unnatural but can be
translated to a much more meaningful limit in which the Planck mass M; for the second
metric goes to zero. The redundancy in the parameter space of the Lagrangian (4.1) has
been used to fix My = My just for convenience but it encumbers the real massless limit.
In publication 7 we have revealed this limit again and reintroduced both Planck masses
and the graviton mass scale. To explicitly see the massive and massless limits, one can

write the field equations as

1

G;w(g) +m? V]gv = _ZT],LU’ (4.47)
Mg

aGu(f) + m? Vi, = 0, (4.48)

where a = My /My and Vv9/f denotes the variation of the potential with respect to g and f,

respectively. For a — O, the f-equation (4.48) becomes a constraint for V;{u that can be
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used together with the identity [84]
4
V_ggua ng + V _ffp—a ng =N g Zﬁn en( Vg_lf) 65! (4-49)
n=1

to solve for flw.5 Plugging this solution into eq. (4.47) yields an ordinary Einstein equation
with an effective CC. Let us make this explicit for the ;3 model with By = 83 = 84 = O.
In the limit a — O, the combination of both EoM leads to

1
r— ——& (4.50)
3 B2
and the g-equation (4.47) becomes
9 B2
3H2 = % - g%mz. 4.51)
2

Because the former parameter choice My = 1 has implicitly rescaled the coupling param-
eters by B, — Q7 "B, when My — QM for Q € R*, the GR limit a — O corresponds to the
limit where all parameters 3, go to infinity in a parametrically different way.

Since ACDM is free of any type of instability at linear level, the limit of a small Planck
scale My to approach GR has reanimated the hope to solve the gradient instabilities in
bigravity. And indeed, the eigenfrequencies (4.27) can be solved for the transition time t
at which all scalar modes stabilize and yields for the 3; 85 model [85]

2
B2 =+ P2 o(a), (4.52)

V3a?
where H+ = H(t-). This directly shows that the transition time can be pushed to arbitrarily
early times by suitably lowering a.

It seems that the only way to evade unstable scalar modes is the use of the limit a — O.
Even though the complete non-linear bimetric theory will almost exactly look like GR, it
keeps the advantage of solving the DE problem with a technically-natural effective CC.

The entire theory of two interacting spin-2 fields that generalizes massive gravity
and GR, that contains so many free parameters, that allows the choice between various
solutions on different branches - all this freedom seems to collapse to just one class of
models: Those that look exactly like ACDM.

SDuring this procedure, one has to assume that at least two of 8;-parameters do not vanish, where i # 0.
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1 Introduction

The discovery of cosmic acceleration has sparked a renewed interest in theories that go beyond
standard gravity. Beside the possibility of explaining dark energy, the main motivation is
to find new observationally testable features of gravity that allow one to test it beyond the
narrow limits of the solar system.

It is possible to identify three main classes of models of modified gravity: based on
additional scalar fields, vectors or tensors, respectively. The first one is perhaps the most
studied one, owing to the similarity with inflation and to its simpli city. Even restricting
oneself to single scalar fields with second order equation of motion, the class of possible
Lagrangians, represented by the so-called Horndeski Lagrangian [8, 16], is however huge. In
this paper we concern us with the third class, namely models that modify Einstein’s gravity
by introducing a massive term in the equations of motion.

The history of massive gravity is an old one, dating back to 1939, when the linear model
of Fierz and Pauli was published. We refer to the review [15] for a reconstruction of the steps
leading to the modern approach. The key point of these new forms of massive gravity is the
introduction of a second tensor field, beside the metric. Such a theory of massive gravity
was studied in [7] and was later shown to be free of ghosts [11]. Furthermore, the interaction
of the two tensor fields creates a mixture of massless and massive gravitons that apparently
avoid the appearance of ghosts [10].

In ref. [10, 12] the authors proposed to render the second tensor field dynamical, just
as the standard metric, although only the latter is coupled to matter (for a generalization,
see [1]). This approach, denoted bimetric gravity, keeps the theory ghosts-free and has the
advantage of allowing cosmologically viable solutions. The cosmology of bimetric gravity
has been studied in several papers, e.g. in refs. [2, 4-6, 19, 20]. The main conclusion is
that bimetric gravity allows for a cosmological evolution that can approximate the ACDM
universe and can therefore be a candidate for dark energy. For a criticism of these theories
see e.g. ref. [9], whose conclusions are however apparently contradicted by the results in [14].

Bimetric gravity has been compared to background data, in particular supernovae Ia,
in [2, 20], where confidence regions have been obtained for various cases. We will recover
indeed several results already presented in [2]. We feel however that several interesting
questions concerning the possibility of obtaining a viable cosmological evolution in bimetric



models have not been fully addressed yet. Some of the questions that this paper addresses
are: 1) for which values of the parameters and of the initial conditions does bimetric gravity
allow for viable cosmologies? 2) For which values of the parameter there appear an effective
phantom (i.e. an equation of state less than -1) behavior? 3) Can one find simple expressions
for the parameters for which the supernovae data can be fitted?

We will find that in several cases these questions can be answered in a simple analytical
way, providing a number of alternatives to ACDM. Interestingly, these alternative models
do not reduce to ACDM for some values of the parameters (unless of course a cosmological
constant is added as an additional parameter) and can therefore be ruled out by precise
cosmological observations (if they are not yet ruled out!). In particular, we point out that a
minimal bimetric model with a single free parameter predicts a simple relation between the
equation of state and the density parameter, fits well the supernovae data and is a valid and
testable alternative to ACDM.

The results of this paper provide a preliminary choice of well-behaved cosmological
evolutions that can be further analyzed at the perturbation level. This task will be carried
out in a companion paper.

2 Background equations

We start with the action of the form [10]
M2 M2
S = —79 d4x\/—deth(g)—Tf d*z \/—det f R(f)

4
-f—m2Mg2 / d*z\/—detg Z Bnen (y/go‘ﬁfm) + [ d*z+/—detg L,(g,®) (2.1)
n=0

where e, are suitable polynomials and (3, arbitrary constants. Here g,, is the standard
metric coupled to matter fields in the L,, Lagrangian, while f,, is a new dynamical tensor
field. In the following we express masses in units of Mg2 and the mass parameters m? will be
absorbed into the parameters 3,. The action then becomes

2
S = —% d*z \/—det g R(g) — ]\gf d*z \/—det f R(f)
4
+/d4$ \/—detg Zﬁnen <\/gaﬂf57> + [ d*z\/—detg L,(g,®) . (2.2)
n=0

Varying the action with respect to g,,,, one obtains the following equations of motion,

3
1 1
Ruu—§9uuR+§ E (=1)"Bn |:g/1«)‘}/(i\l)l/ <\/ gaﬁfﬁ'y> + 91’/\Y(>r\z)u (\/ gaﬂfﬁ’V)] =Tw (23)
n=0

where the expressions Y(’T\L)V (\/gaﬁfm) are defined as, putting X = < g*1f>7
Y)(X) =1, (2.4)
Yi)(X) = X - I[X],
1
Yig)(X) = X* = X[X] + ST ([X]* = [X7]) (2.6)

Vip(X) = X* = X2[X] 4+ 0 X (XP - [X%) - oI (IXP - 31X 4 2%%) (2.7

where I is the identity matrix and [...] is the trace operator.



Varying the action with respect to f,,, we get

f/ﬂ/R+ 2M2 Z n,84 n |:fu)\Yn)u <\/%> + fV)‘Yv(i\z)u <W>:| =0

(2.8)
where the overbar indicates f,,, curvatures. Under the rescaling f — MJTQ f, the Ricci scalar
transforms as R(f) — M}R( f) which results in

V/—det fR( ) = My 2\/—det fR(f (2.9)

Next to the Einstein-Hilbert term for f,,, there is another term in the action that depends
on f,,, which transforms as

Z&M( ) Zﬁnen (M ﬁ) (2.10)

Since the elementary symmetric polynomials e, (X) are of order X", the rescaling of f,,, by a
constant factor Mf_2 translates into a redefinition of the couplings 5,, — M}Lﬂn which allows
us to assume My = 1 in the following.

We assume now a cosmological spatially flat FRW metric

ds® = a*(t) (—dt2 + dx;dz") (2.11)

where ¢ represents the conformal time and a dot will represent the derivative with respect to
it. The second metric is chosen as

—b(t)2/H2t) 0 0 0

2
Juw = 0 b(é) b2 0 (2.12)
0 0 0 bt)?

where H = a/a is the conformal Hubble function. This form of the metric f,,, ensures that
the equations satisfy the Bianchi identities (see e.g. [12]).
Inserting g, in eq. (2.3) we get

3H? = a® (pm + Pmg) (2.13)

where the massive gravity energy density is

pPmg = Bo = Bo + 3511 + SBQTZ + 537“3 (2.14)
with
r= b (2.15)
== )

The matter energy density follows the usual conservation law
Pm +3Hpm =0. (2.16)

Notice that although we do not consider explicitly a radiation epoch (since we confine our-
selves to observations at low redshifts), a radiation component could be easily added to the



pressureless matter and would not change qualitatively any of the conclusions below. We can

also define

Pmg
Qpe = ——=>—=1-0Q 2.17
g p Pmg m ( )

where Q= pi/ (Pm + Pmg)-
Similarly, the background equation for the f metric is

a2

2-_B 2.1
H 3 1 (2.18)

if By #0 (and b= 0 if By = 0) where
By = By + 3Bar + 3B3r” + Bar’ . (2.19)
Combining (2.13) and (2.18), differentiating and inserting (2.16) we obtain the constraint

(480 + 9617 + 6821 + B31?) @
3By

b=— (2.20)

where

By = By + 2o + B3r* . (2.21)

The background equations can be conveniently written as a first order system for r and H,
where the prime denotes the derivative with respect to N = loga:

2H'H + H* = a® (By + Bar’) (2.22)
37”B1Q
r_ m 2.23
" ﬁl - 3ﬁ37‘2 — 2,847‘3 + 3327‘2 ’ ( )
B
Qp=1-— E?T (2.24)

(the r" equation has been first obtained in ref. [2]). We can define the effective equation
of state

1 H' By + Bor’
Weff = ngwmg = —g <1 + 2H> = —w (225)
Borr’
=—-14Q,, — 2.2
- 22 (2:20

Eq. (2.23) is particularly useful for our discussion below. Notice that it can be written also as

p = _3Pm (2.27)

Pm,r

where p;, ,» denotes differentiation with respect to r of the function

pm(r) = 2 — By (2.28)

obtained by combining egs. (2.13) and (2.18).
It is convenient from now on to express the S parameters in units of Hg and H in
units of Hy.



3 Conditions for cosmological viability

Several possible branches of the solution of eq. (2.23) are possible, depending on the initial
condition for r. We distinguish in the following between finite branches, that are confined
within two successive roots or poles of v/, and infinite branches, which can extend to infinite
values of r. We define now a viable cosmological solution one in which the following conditions
are satisfied: a) pp, > 0 and pyg not identically zero, b) a monotonic expansion, i.e. pn, +
pmg > 0, c¢) the evolution in the asymptotic past is dominated by p,, i.e. pp, (N — —o00) — 00,
Qn(N — —o0) = 1 (and therefore weg(N — —o0) = 0), d) no singularities in 7’ at finite
times and e) r > 0 at all times. Violations of these conditions do not necessarily imply
contradiction with observable data if they occur outside the observable range and could in
principle be lifted or relaxed. However, when they are satisfied the cosmological evolution
is much safer, simpler and requires no special tuning. Most of what follows is devoted to
determining the conditions under which cosmological viable solutions take place.

Combining these conditions and analyzing eq. (2.23) yields the following properties of
viable models:

1. All viable models except 3; = 0V > 0, i.e. the ACDM case, must fulfill v’ — —oco as
r — 0o. To see this, we use eq. (2.23) to find that models in which we can not observe
this limit need to satisfy 81 = 83 = 0 and B3 = % B4. With this choice, the combination
of eq. (2.22) and the background equation (2.18) together with its derivative yields

By (1+72) (fo — 382) = 0 (3.1)

which provides the constraint Sy = 382. But this corresponds to a vanishing matter
density p,, which is not viable. Note that the choice of parameters f; = 83 = 0 and
Bo = 382 = 4 matches with those of the partially massless bimetric theory which was
studied in [13]. However, in those theories the authors assumed the reference metric
to be proportional to g, which is explicitly avoided in this work due our choice of the
Bianchi constraint.

2. If a viable range in r is infinite then, as just shown, r decreases with time since the
limit 7/ — —oo0 as r — oo must hold. Then r — oo corresponds to the infinite
past and therefore, if this branch is viable, then it needs to satisfy lim, o, 2, = 1.
With eq. (2.24) one finds that a viable solution with an infinite range in r requires
Bo = B3 = 0 # B4. Moreover, 54 is enforced to be positive in order to produce a
positive expansion rate at early times.

3. A non-vanishing massive gravity part, i.e. By # 0, always implies that if there is a root
r = 0, then for this root, and only for this one, €2,, = 1. For all other roots we need
Q,, = 0 in order to fulfill eq. (2.23).

4. Let r € (r1,r2) be a branch with /|, = 7’|, = 0 for 71,7 strictly positive. As seen
before, a root at r > 0 corresponds to p,, = 0. For a non-constant evolution of the
matter density, the mean value theorem always provides a 7 € (r1,r2) with py,, = 0
causing a singularity in 7’. Since eq. (2.28) shows that the matter density can not
become divergent at a finite and non-zero r, a viable model always evolves from either
r =0 or r = o0 to aroot of p.



5.

10.

11.

We will find that » = 0 always corresponds to the asymptotic past. If it would instead
describe a final state, then a vanishing p,,, as N — oo (which has to hold since the matter
density follows the usual conservation rule) needs 51 = 0 and 5y = 3. Additionally,
this requires B3 > 0, otherwise we have either a negative 3 which means that the
density is not positive or 83 = 0 in which the branch would be infinite with py, = 0,
i.e. ,, = 1, at all times. However, we then obtain a finite branch between two roots
of p(r) at r =0 and r. > 0 but we already concluded in point 4 that » = 0 must then
correspond to the asymptotic past.

. The previous conclusions imply for all viable cases an evolution from €2,, = 1 to the

final state €, = 0, just like ACDM.

We can use eq. (2.23) to find that there is always a root at » = 0 for non-vanishing ;.
All models without a root at » = 0 need to satisfy

lim |, _ =1 lim Bo +36yr* + fsr® _
r—0 A0 050 3 (By + Bar) + far?

In this case, viability enforces By = 0. Models with a pole at » = 0 need to satisfy
B1 = B3 =0 with 2 # 3o and must fulfill

(3.2)

r—0 eff| gy =p1=83=0 382 — Pa

This contradicts the condition B2 # 0. If 7 = 0 is neither a root nor a pole, then from
eq. (2.23) we see that this corresponds to 83 # 0 and Sy # 352 (note that this implies
B2 # 0) instead. However, the resulting matter density

=38 + 3831 + (By — 3B2) 1% — Bar® (3.4)

0. (3.3)

pm Bo=pB1=0

violates the requirement of a divergent density for » — 0. Therefore, every viable
branch that evolves from r = 0 must satisfy /|,—o = 0.

. If r evolves from r = 0, then a positive H? at early times implies 85 > 0 where £

denotes the non-vanishing S-parameter with the smallest index k& # 0.

. A model which produces two viable branches has to satisfy 81 > 0 and 84 > 0, in order

to produce positive Hubble functions in both branches.

From eq. (2.26) we find that the equation of state always evolves from weg = 0, as
required from the conditions of viability, to weg = —1 on a viable solution. Notice that
wer = —1 even for a vanishing explicit cosmological constant Gy = 0.

Depending on the number of non-negative roots, we therefore find that several cases
can not be viable:

The number of non-negative roots can be zero only if 81 = B3 = B3 = 0, which leads to
o 3(Bo — Bar?)

2ﬁ47“ '

As already remarked, a viable model must therefore evolve from r = co to r = 0 since

r’ < 0 for r — oo and this requires a positive and non-zero 34. However, this produces

a singular 1’ at » = 0 (unless Sy = 0 but we are now only interested in models with no
positive roots) which was already shown to be non-viable.

(3.5)



12

13.

14.

15.

16.

A model that has at least one positive root and does not have a root at r = 0 may
only be able to produce a viable infinite branch. A finite but non-zero r’ at r = 0
can not be achieved with a vanishing f3 but this is enforced by the criteria of viable
infinite branches (see point 2). Thus, all models with only non-zero roots must fulfill
b1 = P2 = Ps =0 < By4,5p. With e.g. Descartes’ rule of sign we see that we can
not expect more than one positive root. Whenever there is a model with at least two
positive roots producing a viable branch, there must be one root at r = 0.

If there is only one root » = 0, then this root is reached in the asymptotic future, i.e.
for N = o0, since the range must be infinite. This contradicts the previous conclusion
that » = 0 has to correspond to the asymptotic past. Therefore, no viable cosmologies
exist if there is only one root at r = 0.

If there are n > 2 positive roots at rc,,...,re,, where r., < rcfor i < j, then only the
two branches r € (0,r,) and r € (1¢,,00) may be viable.

Models with two viable branches require 8o = 83 = 0 and 1, 84 > 0. Descartes’ rule
of sign then shows that those models must have exactly two positive roots.

With, again, Descartes’ rule of sign we find that there is no model with Go = 53 = 0
that produce three positive roots. For this reason, we can not expect any viable infinite
branch in models with three positive roots.

Finally, we can employ these results to show that several simple models do not produce viable
solutions:

e Consider models in which only one S-parameter does not vanish. Let’s call them g;

models. Then only £y or 1 models may produce viable solutions. This first one is
not surprising since it is equivalent to a ACDM universe. For all the other ; models,
we find

, 3(r2—1) ,

J— T’ =
B:=0,i#3 r2 —1

_ r (72 - 3) /
" Bi=0,i#2 o B

; -7

" B:=0,i#4 )
(3.6)

The infinite branch in By or S35 models can not be viable. In addition, their finite
branches suffer from a pole in /. Therefore, we can not expect any viable solutions.
These arguments do not hold for the 84 model. However, we already concluded (see
point 13) that a model with only one root at r = 0 is not viable.

I

In a more general case, in which two free S-parameters are allowed to vary (let’s denote
them (3;8; models), we will find that only the combination involving By or [ are
generally able to produce viable solutions. To see that the models 8203, 8284 and (3054
can not be viable, we first assume that both couplings in all three combinations do not
vanish, otherwise we would obtain non-viable minimal models. This also rejects the
possibility of viable models with an infinite branch in these cases. In the 8283 model,
the matter density evolves like

pm = 3 (B + Bar — Bar®) — Bar® | (3.7)

and is therefore finite at » = 0, which contradicts condition ¢). In fact this solution
can be continued to negative r, which implies that |b| reaches zero and increases again.



This is therefore a bouncing cosmology which is interesting on its own but violates our
viability condition and we leave its study to future work. For the (34 model we have
already shown that only a finite branch (0,7.) could be viable. Simplifying eq. (2.23)

yields
r! = —§r + 3—62 .
Bi=0i#24 2 2r(3B2— Pu)
This exhibits a pole at » = 0 which indicates non-viability. To analyze the 5354 models,
we again use eq. (2.23) which directly shows that we need to have 33 # 0 in order to

get a positive root. In this case, the only positive root is given by

L _ Bt V12 B+ (3.9)

¢ 233

In addition, we will find that 7’ is singular at

- Ba+ /96835 + B3 . (3.10)

i 3633

Since B3 # 0, only the branch (0,7.) could be viable and therefore either rs < 0 or
rs > 1. must hold. Notice that rs = 0 is not viable. Both relations require 83 < 0.
However, a positive Hubble function enforces 83 > 0 which shows that the branch
(0,7.) always contains a singularity in r’. We therefore conclude that models with
By = 1 = B2 = 0 are not able to produce viable solutions.

(3.8)

The subset of cosmological solutions with an infinite range in r» and without an explicit
cosmological constant is described by the relation Sy = f2 = 83 = 0 < 34 together with
51 # 0. For these models, we obtain
3prr (=261 + Bar?)
Qm,r - 372
(B1+ Bar?)

from which we see that €2, increases with time when the following condition holds:

(3.11)

Qpr <0 <= (ﬁ1<0 A 614—647»37&0) Vv (61>0 AT < <2ﬁ’81)3> . (3.12)
4

Viable models are therefore only possible if 5; > 0. In addition, the solution r. of the

equation

_ 3Bre
B+ Bar?

is negative (or zero but this, as already discussed, does not correspond to a viable

solution) if B4 > 2/31. This shows that only models with 5y = 0 satisfying Sy = B2 =

B3 =0< % B4 < B1 are able to produce viable branches (7., c0).

Q=1 (3.13)

A simple model with all identical couplings, i.e. By = §; = B, needs B > 0 in order to
produce a positive expansion rate. The matter density

_B(T - 1)5]“ +1)°

Pm = (3'14)



then shows that only the finite branch (0,r.) with r. = 1 could be viable. Additionally,
the Hubble function at present time

Lt =1 315

is only solved by a purely real and positive present value rq if B < %.

In practice, to see if a viable solution exists, one first has to find all positive solutions rg that
fulfill both Friedmann equations (2.13) and (2.18) at present time. One then needs to check
whether the branches r € (0,r,) and r € (r.,,00), where r., and r., denote the smallest
and largest strictly positive root of p,,(r), respectively, contain ry and, finally, ensure that
those branches do not contradict the criteria of viability. In general, one can show that a
finite branch between two roots (0,7.) with 0 < 79 < r. in which ' is positive and does not
have any pole is always viable if the matter density is positive in this range. This provides a
very simple recipe to find viable cosmologies without solving the evolution equations.

It is also interesting to provide the general conditions for a phantom (wmg < —1) solution
to appear. From weg we see that

Borr!
=—-1- . 3.16
Wimng ngBl ( )
Combining with eq. (2.24) we obtain
B
Wing = —1 — B—ir’ . (3.17)

Near the de Sitter final state we can assume Q,,, — 0 and therefore By = By /r from eq. (2.24).

This implies

Wme ~ —1 — @rr’ .

g B1

In a viable branch with a finite range in r, both r and " are positive. If the range is infinite,
then ' is negative. In addition, B is always positive due to eq. (2.18). We conclude that
a necessary and sufficient condition for a phantom equation of state is By > 0 for a finite
branch (0,7, ). If the branch is infinite, then a phantom requires By < 0 which results in
B1 < 0 since viable models in infinite branches need to fulfill o = 83 = 0. From eq. (2.20)
we notice that By cannot be zero in a viable region of r and therefore wy,s cannot cross the
—1 line. This shows that every viable bigravity cosmology is either phantom or non-phantom
throughout its evolution. Conversely, finding a phantom crossing would rule out the entire
class of viable bimetric cosmologies.

We chose two representative models to sketch a possible viable evolution of a bimetric
gravity in figures 1 and 2. The model A, described by 3; = (1, %,0,0, 1), produces two
viable branches. Although 2, and weg evolve similarly in both branches, we find a phantom
equation of state only in the finite one. An one-parameter model 8y = 5; = 83, such as model

B with B = %, is only able to produce a viable finite branch. Those models always produce

(3.18)

a phantom since a positive expansion rate requires 5 > 0.

4 Comparing to supernovae Ia Hubble diagram

To compare the background evolution of bimetric gravity models with observed SNe Ia, we
use the SCP Union 2.1 Compilation [18] containing 580 SNe Ia. For each observed SN Ia we



Model A Model B
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\
2 \ 2
\\
3 \ 3
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Figure 1. The evolution of r/(r) corresponding to the models A and B with §3; = (1, %, 0,0, 1) (left)
and (3; = % (right), respectively, visualizing all possible branches. The first model contains two finite

(~(0,0.2) and ~ (0.2,1.30)) and one infinite branch (~ (1.3,00)). However, only the first and third
branch may be viable which, indeed, turns out to be the case. On the contrary, the one-parameter
model B only produces one viable branch (0,1) with rq = %, though " seems to evolve viable even in
the infinite branch.

100
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~—_ Model A (inf) | — - Model A (inf)
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Weff
Wmg
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-0.8

Figure 2. A comparison of r (top left), Q,, (top right), weg (bottom left) and wy, (bottom right)
of all viable branches in the models A (blue and green) and B (yellow) whose evolution of r’ were
already discussed in figure 1. Additionally, the latter three plots contain the ACDM expectation for
Q,, = 0.3.

can use the measured maximum magnitude in the B-band mz®* together with the stretch
correction s and the color correction ¢ to compute the likelihood for a bimetric model 8 with

N
L(0) x /exp (— ; W) dM dadB, (4.1)

where o and 3 are nuisance parameters which weight the stretch- and color correction and
M denotes the absolute magnitude,

Wi = m%liax - M+« (Si + 1) — Be; . (4.2)
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The marginalization over M can be performed analytically, whereas we simplify the compu-
tation by using the values for a and  that minimize Xfed instead of computing the marginal-
ization numerically. In addition, we add an intrinsic dispersion which we assume to be
oint = 0.1345 mag in order to obtain a X?ed = 1 for the best fit in a ACDM cosmology.

We decided not to use other cosmological datasets like baryon acoustic oscillations
because they are at the moment far weaker than SN Ia and CMB peak positions because
their analysis depends on various assumptions which are not warranted in a non-standard
model as the one we explore here. Nevertheless, our results are in agreement with ref. [2],
where these additional datasets have been employed.

5 Minimal models: 1-parameter models

It is very instructive to study in detail some simple subset among all the possible viable
cosmologies. During our analysis we will mostly assume a vanishing explicit cosmological
constant, i.e. Sy = 0 (the only model with a non-vanishing cosmological constant that is
studied in this work will be the 1-parameter model 8y = 3; = B) This subset of models is
a very interesting one since those models may fit observational data without the need of a
cosmological constant. In this section we assume moreover that all of the other §; vanish,
except one, i.e. we restrict ourselves to §; models. In this case, as already shown, only one
possibility, the 81 model, turns out to be viable. In terms of simplicity, this is the minimal
bimetric model, so it can help us gaining intuition on the behavior of this class of models. This
model was already studied and compared to the SN Ia data in [2]; the same paper excludes
the other 8 models on the ground of their poor fit to data. The §; model is interesting also
because r can be easily solved analytically. Its evolution follows from eq. (2.23),
3r (1—3r?)

/
= —. 1
: 1+ 3r2 (5.1)

Note that the evolution of r does not depend on ;. In terms of the scale factor, the solution

reads
r(a) = éa—?’ (—A + /1245 + A2> . (5.2)

To determine the constant A, we use the background equation (2.13) at current time which
I_Qmo

provides 1y = 5 and therefore
(o — 1)° — B
B1 (Qmo — 1)

Depending on ; and €,,0, both a negative and positive A is possible. To satisfy r(a — 0) = 0,
we need to choose the positive sign in eq. (5.2) if A is positive, or the negative sign in case
of a negative A. The comparison with the SNIa Hubble diagram shows that A has to be
positive (see below).

With this result, the equation of state and €2, are fully described through

Qn(a) = —éAcfﬁ (A FV12a8 + A2> , (5.4)

A= (5.3)

A
we(a) = i\/ﬁ -1, (5.5)
A (5.6)

W (0) = F—F/———== —1
s(a) :F\/12a6+A2

- 11 -



Thus, in the 8y viable minimal model, the equation of state always evolves from —2 to —1.
These equations imply a simple and testable relation between wy,g and €, valid at all times

during matter domination:
2

Whpg = ——— .
TE Q-2
In general, denoting with a subscript 0 the present time, the following conditions must
be satisfied by any model:

(5.7)

1 Bo(ro)r
= Bilro) (5.9)
3rg

(the last one is obtained from eq. (2.18) after expressing the 8s in units of H2). In particular,
for the 51 minimal model we obtain then a direct relation to the present value of the matter
fractional density, 51 = 1/3(1 — Qo) which yields

\/§Qm0
V1 =m0
We fitted the 8; model to the SN Union 2.1 catalog (see figure 3) and obtained A =
0.8 for the best fit. The most likely values for £ and €,,0 are summarized in table 1.

We list also the present value of the equation of state expressed using the simple CPL
parametrization [3, 17]

A= (5.10)

w(a) = wo + we(1 —a) (5.11)

in order to provide a quick comparison to present and future cosmological data.

The 81 model is then a valid alternative to ACDM in terms of simplicity, and although
it does not reduce to ACDM in any limit, it gives a good fit to the background data.

A second type of minimal models is described by identical couplings Sy = 5; = B. As
noted earlier, only those models with 0 < B < % produce one viable finite branch. The
evolution of r, described by

, 9 (1 — r2)
C1—2r+3r27
has an analytical solution, though it is much more complicated than in a minimal model with
only one non-vanishing coupling. However, the matter density parameter follows the simple
relation

(5.12)

which, just like 7/, is independent of B Of course, the present value rg is a function of /3’
Again, we can use the set of equations (5.9) to obtain a relation between 5 and €0,
(QmO _ 1)

3:3

(Do — 2)3 . (5.14)

We found that both types of minimal models are only able to produce viable branches
if the coupling parameters are positive and rg is located in a finite branch. Then eq. (3.17)
directly implies that all these minimal models are described by a phantom equation of state at
any time. A comparison of both minimal models with observed SNe Ia yields the likelihoods
in figure 3 which provide the best fits listed in table 1. Their equation of state is plotted in
figure 5.

- 12 —
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Figure 3. Likelihood for the coupling parameter in the minimal 8y (left) and B model (right). The

maxima of the likelihoods were rescaled to unity. Note that the B model produces non-viable solutions
for 5 > %.

B(Q2mo) X | Bior B Qmo wo Wq
Bi | /B = Qo) | 578.3 | 1.381005 | 0377003 | —1.227002 | —0.64705)
3 7?5&30_‘2)13 606.3 | 0.447900 | 0.501001 | —2,001000 | —1.97+007

Table 1. Best fit values for the two minimal models. The column 5(,,0) lists the relation between
the value of the coupling parameter 81 and (3, respectively, and the present matter density parameter.
The parameters wy and w, describe the CPL parametrization at present time.

6 Two-parameter models

We move now to models in which all §; vanish except two, taken in turn to be all possible
combinations (we keep Sy = 0). As already shown, we need to exclude all cases in which
£1 = 0 since we do not expect any viable models.

To compute the likelihood for €2, o, we divide the range in €2, ¢ in bins B}, of constant
width and marginalize the likelihood over both S-parameters with the restriction €, o € By.
Our results are summarized in figure 4 where the left plots show the 68%, 95% and 99.7%
confidence regions in the 3; — 3; plane, the corresponding likelihoods for €, o are illustrated
in the right column. In all cases that are shown in figure 4, we found bimetric gravity models
which are consistent with observed SNe Ia. We always observe a strong degeneracy between
the two free parameters, as already remarked in ref. [2].

As in the minimal cases, the system (5.9) gives a relation between pairs of 8 and ,:

1. For ﬁlﬁgt

_ B+ /BT — 98700 + 957

B2 9 (o — 1)

+1. (6.1)

2. For B153:

3287 £/ (862 4+ 27 (o — 1)) (1652 — 27 (o — 1)) — 8151 (Uno — 1)
Ps = 243 (o — 1)° ’
(6.2)

where the positive sign should be taken if 51 < %\/§\/1 — Qo and the negative one
otherwise.

~13 -
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Figure 4. Left: likelihoods from observed SNe Ia with only two S-parameter varying while all other
B; vanish. In /16, models we distinguish between finite (plots in third row) and infinite (last row
plots) branches. The filled regions correspond to the 68% (red), 95% (orange) and 99.7% (yellow)
confidence level. In each two-dimensional likelihood, the analytic result 3;(8;, Qo) is illustrated by
a black solid line and corresponds to the most likely value £2,,,9. Right: likelihood for 2, o obtained
after a marginalization over the  parameters corresponding to the likelihoods on the left side.
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In all cases 2,0 should be taken as the best fit value. The 3184 model does not have a simple
analytic solution but the relation is easily solved numerically. These relation are plotted in
the same figure 4; as one can see, they fit very well the degeneracy curves.

At 1o, the relative error A on the fitted £;(8;, o), with (8; < B;), are given in
table 4, where we determined the error by fitting the 68% contour with B;» = Bj(1+ A). For
the best fit in all analyzed combinations, we show the evolution of the equation of state wyg
in figure 5 and the distance moduli p(z) in comparison with the measured SNe Ia of the
Union 2.1 Compilation in figure 6.

Note that the analytic fit does not always need to correspond to a viable solution since
it ignores the condition 0 < ry < r. and 7. < 7 in the finite and infinite branch, respectively.
We therefore need to exclude some parameter regions. As an example, we analyze all 81033
models with positive 83 and obtain

340 — 12553

=3 (81— Bs) +1/9 (52 + 53) — 14515y

ro = and r.=+ 6.3
‘ 653 203 (6.3)
A necessary condition to satisfy the relation 0 < ry < r. is
1 3 2 2)2
B < 53 (814 — 3261 + (274 16%) (—27 + 8537) (6.4)

which excludes most of the models with 53 > 0. Similar boundaries of the coupling parameter
corresponding to the highest order interaction exist in the 8182 and $1 83 models, too.

Only the model 8184 is able to produces infinite branches. The likelihoods in figure 4
for finite and infinite branches show that there is no parameter region in which the contours
of both likelihoods overlap. If there is a (8134 model in which two viable branches co-exist,
then at least one branch is strongly disfavored by SNe Ia observations.

7 Conclusions

In this paper we studied a class of bimetric gravitational models that have been shown
to be ghost-free and to induce cosmological acceleration. We define a viable cosmology as
one in which the cosmic evolution broadly resembles the standard one, without bounces,
singularities at finite time, and with a matter (or radiation) dominated past. Adopting
spatially flat metrics we find that the system becomes effectively unidimensional and in some
cases even analytical. This allows us to find a number of simple rules for viability which
selects a subset of models and initial conditions. We show that if a branch is viable, then its
final state is always deSitter. We also find the analytical condition for the occurrence of a
phantom phase and we remark that observing a phantom crossing would rule out the entire
class of viable bimetric models.

Then we show that among the models with only a single non-zero parameter, only
one gives a viable cosmology, which well reproduces the SN data and can be taken as a
simple, distinguishable alternative to ACDM. The relation (5.7) provides a stringent test for
this minimal model. For models with two coupling constants and without a cosmological
constant, only three cases produce a viable cosmology. In several cases we find also an
analytic expression for the background best fit which very closely approximates our numerical
likelihood results.

These results allow to pre-select a number of cases for which a detailed study, including
perturbation growth, can be performed. This task is carried out in a companion paper.

~15 —



Model i Qo A

ACDM 578.00 | 0.271003

B, B 577.99 | 0.2870:04 | ~ 0.03

B1, B3 578.02 | 0.307053 | ~0.08

B, Ba 578.04 | 0.341053 | ~ 0.20
B1, Ba (inf. branch r € (re,00)) | 578.60 | 0.167003 | ~ 0.03

Table 2. Numerical results of the best fit to SNe Ia data for different models with only two free
B-parameter. The relative error on the fit 3;(5;, Qmo) (i < j) corresponding to the most likely value
for ©,,0 is denoted by A.

-0.8 -0.2 B B3
B1. Ba (fin)
-1 04 B1. Ba (inf)
ACDM ———
2 12 5
3 2 06
1.4 By
B
-16 P B2 08
1. B3
-1.8 By, Ba (fin) -1
B, Ba (inf)
27 — ACDM ———
1.2 - - -
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2
N N

Figure 5. Evolution of the equation of state in the best fits in the minimal 8; and 3 models and
the two-parameter models /3132, $103 and (1 04. Here, we distinguish between finite (light blue) and
infinite (dark blue) branches in 8; 84 models.
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Figure 6. Hubble diagram with the best fit in the minimal one-parameter models and two-parameter
models compared to all measured SNe Ia from the Union Data 2.1. As already indicated by the
numerical values of the x? (see tables 1 and 2), the best fit in the 31 and in all analyzed two parameter
models are close to the ACDM result (red).
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We discuss in detail a particularly simple example of a bimetric massive gravity model which seems to
offer an alternative to the standard cosmological model at background level. For small redshifts, its
equation of state is w(z) ~ —1.22300% — 0.647007z/(1 + z). Just like ACDM, it depends on a single
parameter, has an analytical background expansion law and fits the expansion cosmological data well.
However, confirming previous results, we find that the model is unstable at early times at small scales and
speculate over possible ways to cure the instability. In the regime in which the model is stable, we find that

it fits the linear perturbation observations well and has a growth index of approximately y = 0.47.

DOI: 10.1103/PhysRevD.90.044030

I. INTRODUCTION

The history of massive gravity dates back to 1939, when
the linear model of Fierz and Pauli was published (see e.g.
Refs. [1] and [2] for a review). Massive gravity requires the
introduction of a second tensor field in addition to the
metric (or some form of nonlocality in the action; see
Ref. [3]). The interaction of the two tensor fields creates a
mixture of massless and massive gravitons that apparently
avoids the appearance of ghosts [4-7].

In the model introduced in Refs. [8,9], the second
tensor field becomes dynamical, just like the standard
metric, although only the latter is coupled to matter (for
a generalization, see Ref. [10]). This approach, denoted
bimetric gravity, keeps the theory ghost free and has the
advantage of allowing cosmologically viable solutions. The
cosmology of bimetric gravity has been studied in several
papers, e.g. in Refs. [11-17].

In this paper we select among the class of bimetric
models a particularly simple case, which we dub the
minimal bimetric model (MBM). Just like ACDM, this
model depends on a single parameter and has an analytical
background behavior that is at all times distinguishable
from ACDM. In a previous paper we have shown that the
MBM is the only one-parameter version of bimetric gravity
(beside the trivial case in which only a cosmological
constant is left) that is cosmologically well behaved at
the background level and fits the supernovae Hubble
diagram well [18] (see also Refs. [11,12]).

Unfortunately, considering the full set of equations
beyond the quasistatic limit, we find that the model is
unstable at large wave numbers k in the past and up to a
redshift of order unity. This instability has been discussed
previously by other authors for bimetric models in general

PACS numbers: 04.50.Kd

help to find other cases, within the class of bimetric models,
that do not suffer from the same problem.

In the regime in which the model is stable we derive its
scalar cosmological perturbation equations in the subhor-
izon limit and integrate them numerically. We then compare
the results with a recent compilation of growth data [20].
We find that the MBM fits both supernovae and growth rate
data, while remaining well distinguishable from ACDM.
If a variant of the model is found that cures the instability
in the past, the model could be an interesting competitor
to ACDM.

II. BACKGROUND EQUATIONS
We start with the action of the form [8]

2
My
2

s=-20 [ dvymgrio - [ aey=r0)

4
+ m>M> / d*x/=g )  Puen(X) + / d*x\/=gL,,,
n=0
(1)

where X7 =/ af py» €, are elementary symmetric poly-
nomials, 3, are arbitrary constants and L,, = L,,(g,y) is a
matter Lagrangian. Here g, is the standard metric coupled
to matter fields in the L,, Lagrangian, while f,, is an
additional dynamical tensor field. In the following we
express masses in units of the Planck mass M, and the mass
parameter m> will be absorbed into the parameters f3,,.
Varying the action with respect to g,,, one obtains the
following equations of motion:

[13,19] and, if taken at face value, would rule out the 1< ) . .

model. Nevertheless, we believe it is worth analytically Gu +§Z(_]) P [gﬂ/ly(n)u(x) +gw1Y(n)ﬂ(X)] =Tw,
identifying the epoch in which the instability takes place n=0

and discussing possible ways to overcome it. This could (2)
1550-7998/2014/90(4)/044030(11) 044030-1 © 2014 American Physical Society
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. . .y . 7]
where G, is Einstein’s tensor, and the expressions Y (H)D(X )
are defined as

Y =1. 3)
Yy =X -I[X], (4)
Vo = X2 = XX + 3 1P - [X7), (5)
Yy = X0 = X2+ 5 X (X - (X))

— XD = 3Xpe) 200, (6)

where [ is the identity matrix and |...] is the trace operator.
Varying the action with respect to f,, we get

3
G,erZO o, (X7 4 (X)) =0
@)

where the overbar indicates f,, curvatures. Notice that f,
acts as a pure cosmological constant. Finally, the rescaling
f = M7Pf, B, = M}p, allows us to assume M ; = 1 in the
following (see Ref. [17]).
We assume now a cosmological spatially flat Friedmann-
Robertson-Walker (FRW) metric
ds* = a®(t)(—df* + dx;dx'), (8)
where ¢ represents the conformal time and a dot will

represent the derivative with respect to it. The second
metric is chosen also in a FRW form,

dsp = ~[b(1)/HA(1)|dr* + b(1)dx,dx’,  (9)

where H = a/a is the conformal Hubble function. This
form of the metric f,, ensures that the equations satisfy the
Bianchi identities (see e.g. Ref. [9]).
Defining r = b/a, the background equations can be
conveniently written as a first-order system for r, H, using
= log a as the time variable and denoting d/dN with a
prime [18] (see also Ref. [12]):

2F'E + E? = a*(B, + B»7r), (10)

, 3rBIQm
r=_— 7 3 5 (11)
ﬂl 3,33}’ 2ﬂ4r + 3327'

where Q,, =1 — B‘l’ r, E="H/H, and the couplings f; are
measured in units of H} and finally

By = o+ 317+ 3for? + 31, (12)
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B =y + 3fyr + 36317 + pur, (13)
By = f + 2P, + B2 (14)

III. MINIMAL BIMETRIC MODEL

In Ref. [18] we identified the conditions for standard
cosmological viability, i.e. for a matter epoch followed by a
stable acceleration, without bounces or singularities beside
the big bang. We found that among the models with a
single nonvanishing parameter only two cases give a viable
cosmology, namely, the cases with only f, or only ;. The
former one is indeed the ACDM model, while the f; case
is what we call the minimal bimetric model. One has then
for the MBM

, 3r(1- 3r?)
TS 13)

independent of ;. This equation has two branches for
r > 0, but only the one that starts at » = 0 and ends at
r = 1/+/3 is cosmologically viable. In terms of the scale
factor, this solution reads [18,21]

r(a) = éa‘3(—A + v 12a° + A?), (16)

where A = —f3; + 3/,. These equations imply a remark-
ably simple and testable relation between the equation of
state w and Q,, valid at all times during matter domination:

= , 17
where the density parameter is given by
Q, =1-3r(a)’ (18)

Since the Friedmann equation of the second metric pro-
vides ry = f3/3, the present value of the matter density
parameter is therefore simply related to single parameter
value of the model. Together with Eq. (17) this shows
that all viable parameter values for f; lead to a phantom
equation of state at present time. Another useful relation for
the MBM that we will use below is H? = ,a*/3r.

In Ref. [18] we found that the MBM fits the supernovae
data well if p;=1.38+0.03, corresponding to
Q0 =1-p3/3=037+0.02. The equation of state
turns out to be approximated at small redshifts by
w(z) & =1.227092 —0.6470:92/(1 + z). However this par-
ametrization is not adequate at z > 0.5 and the analytic
expressions (16)—(18) should be employed instead.
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IV. PERTURBATION EQUATIONS

We now find the perturbation equations for the MBM.
For the perturbed part of the metrics we adopt the gauge
defined in Fourier space as

(1),

b(1)*H (1)
dS2 = ZFGZ[—\IJdtZ + ((1)5” + k,k]E)dx’dx’],

ds? = 2Fb* |~ df* + (@45, + kik;Ef)dx'dx’ |,

(19)

where F = ¢/®T. After a transformation to the gauge-

invariant variables [13]

PHYSICAL REVIEW D 90, 044030 (2014)

U =V - (H>+HH')E — H?E", (21)
~ erEf/
(I)f =FrT (r’ + r)’ (22)
i—w Hrz(HEf’)’ 'HzEf'r(r2 +272 +2rr — ")
F=F T - ’

(7 +r)? (r+r)

(23)

we obtain from the Einstein equations a set of perturbation

=0 -HE, (20) equations in = = {(f U, <i>f, U, E,AE=E-E},
|
2k? a*(1=3r)p H2(1+3r7) 1 a(=1+3r)VB, Sp
00le(1+——) — E AE' + - k*AE — 0— =0, 24
[00] < + 3a2rﬂ1> ! —4r + 673 —4 + 617 + 3 3k 5/2 3B,r (24)
a’p
(07" = W =750+ (M = HH)E' = 0, (25)
[ij]®+ ¥ + a’rp,AE =0, (26)
2k? 2k? 6(2—3r% 3r(3 2 —H 3a%(2 2)(1=3r%)2
lii] = (24— ) ®+20, -0 (14— ) + ( rz) ; Hr(2+9r)(2H H) o 30 +9r2)(2 r)zﬂlE’
3a*rf, : 3a‘rp, 34+9r : a*(2-3r")p, 4r(2-3r*)*(14+3r%)

2k? 2(1 2 2(22=9r% (=19 44212 +15¢*
2k a*(1+3r Zﬂl N ( 9r%( 9+4 r +6 5B AE' =0, 27)
3 6r(2—-3r%) 12r(4=27r*+27r°)
2k%r k2 a*(=1+3r%)p a*(143r)p
00]® -1 ——— )P, +—AE E - AE' =0, 28
[00] +< 3a2ﬂ1> P AT T TR 6r(2 —3r?) (28)
) (=4 + 67%) 3a*(—1+3r2)p, 3a*(1 - 3r%)p,
0i]® E' AE' =0, 29
02+ 3 Y T e 4r(=2 4 37) (29)
a’(1+43r%)p,
ijlV,+ P, +—FS—AE=0 30
(]9 + ®p + —4r + 613 ' 0
2 2 ) 2 U 2 2 -2 2 2 1— 2 2 1 2
i+ -1+ kzr( —1—23r ) L 3 i k2r( +§>r ) ; a*(1=3r )fl o (1+3r )ﬁ; AR
3a*(1+3r)p, 2 143r*  3a*(1+3r7)p 4r(=2+3r%) 12r(=2437%)
1 2(=22 2(=19 + 427 + 1574 3(2 2)(a—3ar?)?
TN (=22 +9r%( 94; r —: N AE — (249r )z(a2 ar )3,31 E—0, (1)
3 24r(4 =277 +271°) 8(2—-3r)*(r+3r°)

and from the conservation of matter we get two more
equations for the matter density contrast 6 and the velocity
divergence 6,

&+ OH + 30 — 3H2E" — 6HH'E' + K2E' =0, (32)

0 +0+KEH —k*VH' + k*H(E"+ E') =0. (33)

[
V. INSTABILITY

Recently some authors [13,19] found an instability at
small scales in massive bimetric theories. Here we revisit
this issue in the MBM. Starting from the set of general
perturbation equations (24)—(31), one can replace all
Uy, @, AE and their derivatives by using go, g;;, and
g;j- This also shows that g;; and f;; are linearly dependent.
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Then we can replace §,6 with the help of gy; and fqp.
Finally, one can find a linear combination of f;, and g;;
which allows one to express E’ as a function of ¥, ® and
their derivatives. In this way, we can express our original
ten equations as just two second-order equations for
X = {¥, ®} which can be written as (i,j = 1,2)

X,‘” + M 'X,- + NUX/ - 0, (34)

ijj
where M;; and N;; are two matrices that depend only on &,
p1 and r. For the explicit expressions of their elements
see Appendix A. The eigenfrequencies of this equation can
be found by substituting X = X,e’®", assuming that the
dependence of @ on time is negligibly small. In the limit
of large k we find

kvV—1+12r% +9/*
=4+ 35
CFTERT 1432 (35)

(here £ is in the same units as H) plus two other solutions,
one of which is zero while the other is independent of k and
therefore subdominant. One can then see that real solutions
(needed to obtain an oscillating, rather than a growing,
solution for X) are found only for r > 0.28, which occurs
for N ~ —0.4, i.e. z~0.5. This is exactly the same instant
at which r” crosses zero. At any epoch before this, the
perturbation equations are unstable for large k, i.e. they
grow as a”+. Notice that w. are independent of f; this
means that the instability remains even in the limit of zero
mass, which is similar to the van Dam-Veltman-Zakharov
discontinuity [22,23]. Similar to that case, one might
speculate that when nonlinear order effects start being
important they might cure the instability. Notice also that
the large-k limit we have taken is valid only for k/H > 1,
i.e. for r > ry, where ry (k) is the solution of the equation
a(r)? = 3rk?/B, and a(r) is obtained by inverting Eq. (16).

This explosively large growth is in obvious contrast with
what we know about the growth of linear perturbations
in our Universe, for instance, with the smoothness of the
microwave cosmic background and the linearity of present
fluctuations on scales larger than a few megaparsecs.
However, one might imagine that by adjusting for instance
the initial conditions or by playing with other assumptions,
the model could be saved. Therefore, in order to quantify
the real impact of the instability, we estimate a directly
observable quantity that is independent of initial condi-
tions: the growth rate of the linear perturbations as
measured with redshift distortions. Since all the perturba-
tion variables can be written as a linear combination of ®
and U, their dominant behavior will have the same growth
~e!®+N_ This means that during the instability epoch the
matter density contrast grows as § ~ a® where 0 = |w, |.
This allows us to estimate the growth rate f = dlog §/dN
and to obtain the observable combination f(z)og(z) =
O 8f5/ 50 as

PHYSICAL REVIEW D 90, 044030 (2014)
f(2)og(z) = Aa”(w + Na), (36)

where A is a normalization constant. The combination
fog(z) has been estimated through redshift distortions at
various redshifts up to unity (see for instance Ref. [20]),
and it has been found to be practically constant in the range
from z = 0.8 to z = 0.3 for scales around k = 0.1 i/Mpc,
corresponding to k/H, ~ 50. In stark contrast, using the
expression (36), we estimate an extremely fast growth
during the instability epoch; for instance, between z = 0.8
and z = 0.6 the growth of fog(z) is found to be around
180000 times.
Adding the cosmological constant f,, one obtains

Lk V=1+2(Bo/B1)r + 1212 + 9r%

H 1+ 372 (37)

D%
In this case the instability region occurs for any
r < p/2Bg; if By/Py <1 this unstable epoch can be
pushed arbitrarily back into the past but then the model
would effectively behave like ACDM.

It is possible that a different choice of parameters f3; leads
to an evolution which is free from instabilities, or a value
of ry (k) such that (at least for the scales that are today in
the linear regime) the subhorizon evolution occurs during
the stable phase. Finally, one could also assume that ; is
actually a time-dependent variable [e.g., it could be a
function of a scalar field, f;(¢)], so that its value is
very small in the past—therefore recovering a standard
evolution—and comparable to Hy near the present epoch.

VI. QUASISTATIC LIMIT

Taken at face value, the instability rules out the MBM,
unless nonlinear effects are able to rescue it. However,
we think it is still worthwhile to consider some of its
cosmological effects for two reasons. First, one of the
mentioned mechanisms or some variants thereof might be
able to cure the past instability while leaving unaltered the
recent epoch. Second, the methods we investigate below
can be applied to other choices of parameters in the
bimetric class that allow for a stable evolution.

In the regime in which the model is stable, i.e. for
7 <0.5, one can simplify the perturbation equations by
taking the quasistatic limit. In this regime and at subhorizon
scales, i.e. k/H > 1, we can in fact assume that =;(k/H)?
is much larger than =; and its derivatives =/, Z;” for
any Z; ={®, ¥, ®, ¥, AE E} and also 5(k/H)?,
8 (k/H)* > 0/H; then the set of differential equations
becomes algebraic (except for the matter conservation
equations) and we obtain the Poisson-like relations

 HQ,8QK P (11 4+ 6r7) 4 3p1a%(1 + 7% — 6r%))
2B (14 )1+ 37 + KPP (T4307)
(38)
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o =

B H?Q,,6(2k*r3 (10 + 3r2) + 3B,a*(1 + 41> + 3r))

PHYSICAL REVIEW D 90, 044030 (2014)

2 (Ba2(1+ PR(L+37) + 2P (T4 37))

H20,3(3r% + 1) (3p1aX(6r* = 77 = 1) + 2U2r(6r* — 1)

(39)

 H*Q,8(3r + 1)(3p1a3 (A 4 1) + K*r)
2k (Ba* (P + 123 + 1) + K232+ 1))’
(41)

s

 H2Q,6r(9B1a*(1 = 3r%) + 2k2r(3r7 + 1))
C 28K (Bra* (P + 1)+ 1) + K23+ 7))
(42)

AE

which reduce to the standard ones during the matter epoch,
i.e. for r — 0. In the quasistatic limit the set of equations
does not contain the (0, i)g,, and (0, i) f,, equations. Since
both equations were used to simplify the remaining ones,
we have checked the consistency of the solutions with
both (0, i) equations. We then obtain the two modified
gravity parameters

¢ H 1+ Hy(k/H)?

=——=H,— 43
1= T U Hy (k) (43)
_ 2w 1+ Hy(k/H)? (44)
~ O3HQ,5, 1+ Hs(k/H)?
where
1+7r% —6r*
1= 2\2 2\’ (45)
(14 r2)2(1 +312)
14472 +3r*
= T 4
T+ -6 (46)
2H2P (11 + 6r7)
H; = , 47
> T34 (1+ 77 - 6r%) 47)
2H?r3(10 + 372)
H, = , 48
4 3p1a%(1 + 417 + 3r%) (48)
23(7 4372
H (7 + 3r%) (49)

Hs = .
> (1 + )1+ 32

For f; — 0 the only consistent background solution is
r — 0; in this limit the model reduces to pure CDM and
consequently H,, =1 and H;45 = 0. The expressions
(43) and (44) have the same structure as the Horndeski
Lagrangian [24-26] since both Lagrangians produce

MG = 2)(pad (P 1)2(BR ) RGP

(40)

second-order equations of motion. The matter evolution
equations can now be written as a single equation:

1/ / H 3
Om + 6, | 1+ ﬁ - EY(k)Qm‘Sm =0. (50)

Integrating numerically this equation along the background
solution (16), we find that near k = 0.1 2/Mpc and g, =
1.39 we can approximate f = §' /6 ~ Q, [27] with y =~ 0.47
in the range z € (0,5) (see Fig. 1). Near #; = 1.39 the
dependence on f; at k=0.1 h/Mpc can be linearly
approximated as y = 0.26 +0.15 f;, while the weak
dependence on k is approximately

k -1/2
=04740.001(————) . 1
y(k) = 0.47 + 0.00 <0‘1 h/MpC> (51)

Future experiments, like the Euclid satellite [28], plan to
measure y to within 0.02; this will amply allow one to
distinguish the MBM from ACDM and standard quintes-
sence, which predict y = 0.54.

Let us remark, however, that the growth rate is signifi-
cantly larger than 1 for redshifts z 2 1 and cannot be well
approximated with the standard Qf, fit. We find that an
additional correction

1.1
1.0
0.91
S
~ o0.8r
— numerical result
0.7[ ---- best fit model A
--- best fit model B
0.6/ | —— ACDM with 0,=0.27
0 1 2 3 4 5

z

FIG. 1 (color online). Growth rate f = §/§ in the quasistatic
limit for ; = 1.39 and k = 0.1 hA/Mpc. The numerical result (in
blue) is approximated by the fitting model f = Qf, (model A, red
dotted curve) and f = Q¥ (1 + %) (model B, green dash-dotted
curve). For a comparison we plot the ACDM result (gray dashed
line) while using Q,,, = 0.37 which corresponds to the present
matter density in our analyzed MBM.
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— 77— —

N

FIG. 2 (color online). The oscillating blue line represents the
numerical integration of the full set of perturbation equations
for k/Hy = 100, #; = 1.4. The red smooth line is the solution of
the growth equation (50) in the quasistatic limit for the same
parameters.

~0 (1 “) 52
f <+Z+1 (52)

with yo = 0.58 and y; = 0.07 is better able to reproduce
our numerical result.

The quasistatic limit is an excellent approximation to the
full behavior, provided one considers only the stable epoch
7 < 0.5, as shown in Fig. 2.

VII. COMPARISON TO THE GROWTH RATE

The quasistatic limit can be compared to measurements
of f(z)og(z) where 6g(z) = 63G(z), with G(z) being the
growth rate normalized to unity today. Most of the present
measurements actually extend to redshifts higher than 0.5,
which is outside the stability regime. Nevertheless, as a way
to demonstrate the feasibility of constraining this model
with growth data, we include these measurements as well.
The likelihood is given by

ﬁag = Z(di - GSti)Ci_jl (d; —o3t;), (53)

i

in which d; and t; are vectors containing the measured and
theoretically expected data, respectively, and C;; denotes
the covariance matrix. Since the current constraints on og
depend on the theory of gravity, for generality we mar-
ginalize analytically the likelihood over og > 0, obtaining

i S
2 =8y — M +logSpy —2log( 1+ Erf( —= ) ).
Koy = 920 S0 +10g 502 og| I+ 750

(54)

where
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1.0 N --- SNela
N
A ---- CMB/BAO
AY
0.8 % --- Growth data
AY
‘.\ —— Combination
— 0.6/ 5\
5 \
] \
\
0.4 \
\
‘\
. ° ‘\«
0.2 -t \
.- AY
Ptag \
.
0.0 =
1.2 1.6 1.7

FIG. 3 (color online). Likelihood for 5| obtained from observed
SNe Ia (blue dashed), measured growth data (red dot-dashed) and
the combination of CMB and BAO measurements (dotted gray).
The full combined likelihood is indicated by a gray solid line.
All likelihoods are rescaled to unity at their maximum. For the
most likely values we obtain f; = 1387055 (y2;, = 578.3) and
p1 = 152700 (42, = 10.48) for the comparison with SNe Ia
and growth data, respectively. Due to the broad width of the
growth likelihood, its combination with the other probes does not
sensibly change the results.

Sll - diCi_jltj, (55)
S20 - d,C;l dj, (56)
S()2 = tiCi_jllj (57)

(see also e.g. Ref. [29]). Since current data are not binned in
k space, we choose an average value k = 0.1 h/Mpc
in Eq. (50).

We compute the likelihood from the data set compiled in
Ref. [20] which contains measured growth histories from
the 6dFGS [30], LRG,(, LRGg [31], BOSS [32], WiggleZ
[33] and VIPERS [34] surveys. Our results are shown in
Fig. 3. The growth data constraints appear much broader
than, but consistent with, the supernova type Ia (SN Ia)
data. The combined result from SNe and growth data is
p1 = 1.39 £ 0.03, practically identical to the best fit from
SN Ia alone. We also plot in Fig. 3 the likelihood from
cosmic microwave background (CMB) and baryon acoustic
oscillation (BAO) measurements where we use the results
from the first peak angular size WMAP 7.2 data [35] and
the SDSS DR7 sample including the LRG and 2dFGRS
data set [36]. The combined result from all data, SN +
CMB + BAO + growth turns out to be f; = 1.43 + 0.02.
However, one should keep in mind that the CMB data
analysis assumes a pure ACDM so it is not obvious that it
can be applied here without corrections. Note that including
the CMB/BAO data does not change the best-fit parameters
for w(z) and y significantly.
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FIG. 4 (color online). Comparison of growth histories in the
MBM with f; =139 (blue) and ACDM (dotted red:
Q,.0 = 0.27; dot-dashed green: Q,,o = 0.37 which corresponds
to the present matter density in the best-fit MBM). The data
points are taken from Ref. [20]. Note that the normalization of the
curves is immaterial due to the marginalization over og.

Finally, in Fig. 4 we compare the growth history
corresponding to the most likely MBM with the measured
growth data and the ACDM expectation.

VIII. CONCLUSIONS

We have shown that a minimal bimetric model exists
which closely reproduces the success and the simplicity of
ACDM at the background level. We fixed its single param-
eter, ff;, to percent accuracy by fitting to supernovae and
growth data. The MBM has several unique signatures, like
the w — Q,, relation (17), the phantom equation of state, the
k dependence of the growth factor [Eq. (51)] and the values
of f above unity [Eq. (52)], all of which will make it easily
distinguishable from ACDM with future experiments.

We have shown however that the model suffers from a
perturbation instability at large k at epochs before z ~ 0.5,
confirming previous results [13,19] but also identifying the
exact epoch of transition. Taken at face value, such an
instability seems to rule out this particular form of bimetric
model. A possible way to save the model is to assume that
when the perturbations become nonlinear the instability
becomes under control. This conjecture can be confirmed
only by going to higher order in perturbation theory. Of
course the instability might also disappear by choosing a
different set of parameters. We leave a complete analysis of
other models to future work.
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APPENDIX A: EXPLICIT EXPRESSION
FOR THE MATRICES M;; AND Ny,

In this appendix we will present the elements of the
matrices M;; and N;; appearing in the second-order differ-
ential equation (34). We start by defining the functions

K =K. = 4r — 613 K= K, = 1
TR0k h) T T a
(A1)
ok o 2430
ST a2 BR  1),
122 =323 = 1)
K, =- A2
7 (3r° +r)? (42)
Ko 12v/3a(2 = 3r2)2(3r* = 1)\/B;
o P2 (3kr? + k)2 ’
a(3r* = 1)v/pB,
Ky=——"— 77— A3
k. — kG2 - 1Dp, _ 43 -2)
RV TC "TVAGBR 1)
(Ad)
V3a*k(3rt = 1)p
Kp=K;= 4r(—6r3 ) L
1
K14_K15_a2r[j’ , (AS)
1
K :9’27_6 K-=K :L_Fi
T RGR+1) Ve T s, 2k
(A6)
k. 2 @135+ 3785 — 17172 ~22)f,
v 8k2(2=3r2)2(3° +r)
9a2(1 = 3r2)2(9r% + 2
KZOE_a( r)(r—i_)ﬁl (A7)

8k2(2—-3r)*(3r* +r)

a*(3r* + 1)p,

3a*(3r* = 1),
K21 = 72 5 s =
4k*r(3r- =2)

2T a3 -2)

(A8)
1
K23 = ﬁ’ K24 = kz - 6HH/, (Ag)
k2
K25 = —3H2, K26 = ——, (AlO)
H
K27 = kZ(H + Hl), K28 = sz, (All)
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12k*(2 — 3r?)? 36(2 —3r?)?
Kzgf—ﬁ’ 305—(3(274_1")2), K 4r—6r3
r r =,
PTG +B)
(A12) .
K=Ky =——, Al5
Ky = 12(2 = 3r%)%(3B,a> + 2k>r) 7 6= 03 =2, (A15)
a*(3r7 +1)*p,
6a*(3r* -2
Ky = —M, (A13)  which only depend on the background quantities 3, r, H
3r+r and the wave number k. Although we introduced several
_ 18a*(3r1 =2)(3r* = 1) redundant functions, the definitions of those functions turn
Ky = r(3r2 + 1) ’ out to be useful since in every bimetric model the
Ay — 63 dependencies of both M;; and N;; on the K; functions
Ky = #’ (A14) are the same. We proceed by defining
TalGprt +p)
|
L = K5+ 3K,K% )" (3K K1 K3, K33 + 2V/3kK, (K33 K}, — K31K}3)). (A16)
Ly = (3K,K3)) ' [2V3kK, (K 14(K 31 (Kao + Kby) — K32K4y) = K3y (K39 — 2K3,K1,))
= 3K14K31 (K12 K2 K31 + K K11 K3,)], (A17)
Ly = (3K,K3)) ' [2V3kK, (2K 31 K3 K' 5 + K5(K31 (Kao + KYy) — K3pK)))
= 3K 5K3, (K12 Ky K31 + K K11 K3)]. (A18)
L, =—(3K,K3,)7'[3(K 11 K3 + K12 K, K',)K3, + 3K K (K 14Ky — K30 + K3, K ,) K3,
— 2V3kKy (K 4Ky — Kby + K4 (Koo + Kby) + K32 KKy + 2V3kKy (K 14K 9 — K30 + K32 K1) K4, (A19)
Ls = (3K,K3,) 7' [-3K 11 K4K3, — 3K K1 (K 5K + K3, K'5) K
+ K (2V3k(—K3 K sKb, + Koo (K31 K5 — Ki5KY,) + K3 (K 5Khg + K sK%, + K3K(5)) — 3K 1,K3,K)],
(A20)
2kK
f= B3 (A21)
V3K3,
2kK 4K
=Kk (A22)
V3K3,
2kK 5K
g =2 (A23)
V3K3,
(KK 6k* + 3K,) K33
Ly=K , A24
9 20 + 12K K, (A24)
(KK 6k* +3K5) K3
Lio=Ky| —Kj9 — =) - 2K, K, A25
10 14< 19 12K K, 2187y (A25)
KK k> +3K,)K
L =K;s —K19—( l 162 3Ky Ky - 2K, K, (A26)
k*K> K3,
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Ly = —(K*K,K31) ™ [-K 5K, K31 k* + K 16K3K31k* + K K 16(K14Ky9 — K30 + K3 K ) K
+ K1oKo K31 K1y k* + KoKy K3 K k2 = 3K,K 30 + K14Ko (K31 k% + 3Ka9) + 3K, K3 K7],

Liz=

Ly=
Lis=
Lig=

L=

Lig = (V3K3 K-Ko) 7 [-2V3kK3, (Ko (KK} — KyK7 + KsK?) + K7KsKj) + 3K3(K 14K 31 Ko KK
— K7((Ks —3K7)K3, + (K(—K30 + 2K3,K, + K14(Kag + K%y)) + K14K3,Kg) K3y — K14K3,KeK5)))].

L=

Ly = —(K31K7) 2 [K7K5K3, — KsK) K3, + K 14KsK7 K5 K3 — KoK7K5 K31 + KoK7 K1, K5, K3
— K30K7K(K31 + K3 K7 K KgK3 + K30Ko K5 K3 — K3 KoK’ K7 K31 + K3, KoK K74 K3,
+ K3OK6K7K/31 — K32K6K7K/14K/31 + K29(K31(K6K7K/]4 + K14K7K'6 — K14K6K/7) — K14K6K7K/31)],

Ly = (V3K K1Ko)*[2V3kK2, (Ko (K23 K2 — KyK7 + KsK%) 4+ K7 K3Kb)
— 3K3(K 5K3 KoK7 Ky + Koo (K31 (KoK7 K5 + K sK7 Ky — Ki5sKoK}) — K sKoK K%, )
+ K'5(K31KeK7K%, + K35 (K31 K7 K — Ko(K7K%, + K31 K7))) + K3 K3 KoK7K7s)],

Ly, =

L23 =

L24 =

Lys=

Ly =

Ly =

Ly =

K7 — K19K)5 — Ky K5 — (KK, K3)) ™' [K 6K K4k2

+ KK 16(K15Ka9 + K3, K'5)k* + K 5K»(K31k* + 3Ka9) + 3K, K3 K 5.

K,
—K4K>1,

_KISKZIa

[Ko(K7(K2uK7KoK3, + (K31 K3KYy + KgKoK'y; + K33KoK() K3y — K33KKoKY, ) — K31 K33K6KoK?)
— K10K3, (Ko(Kp3K7 — KyK7 + K3K3) + K7 K3Kj)| (K31 K7 K o) ™2,

(3K2,K2K) "' [-2V/3kK,K3K2, 4 3K 5K3,KeK7 KoK,

+ 3Ky (K 5K KoK — K7(2K3 KK s + K15(Ke (K9 + K7,) + K3,K)) ) K31,

K33 K K, K
Koo+ kot (K33Ke | KioKy)
S <K31 " Ky
2V3kKg 3K 4K K
(3K7)“< V3kKs 3K 4Kz 6)7
Ky K3
_ Ki5K3 K
K3 K7 -
(Ko — K})
Kog+ 2 =0
26 \/gK%
KoKy — Ky(Kjp — Ky7Kg + K)p)
K32 '
(K - Ko)
V3KE
2k
V3Ky'
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and

_ Ko
Ly = Kyg — ya
9
L%
T V3K,

_L12L23L8 + L12L24L7 + L15L20L8 B L15L24L4 - L16L20L7 + L16L23L4

Gl = 5
—LyLysLyy + LiLy¢Loz + LysLy7Lg — LigLi7L7 — LysLgLg + LysL7Lg
G, = —Ly3Lo3Lg + LizLyslg + LysLyy Ly — LysLysLs — LigLoi Ly + LigLosLs
2 - 9,
—LLsLyy + LiLygLy3 + LysLy7Lg — LygLy7L7 — LysLgLg + LyyL7Lg
Gr = —LyoLosLg + LigLysLy + LysLiglg — LysLyLoy — LigLigLly + LigLyLos
3 = 9’
=L LysLyy + LiLygLy3 + LysLy7Lg — LygLy7L7 — LysLgLg + LyyL7Lg
G, = =Ly LysLg + Ly LogLy + LysLigLg — LisLogLs — LigLigLy + LigLy3L3
4 fr—

—L\LysLyy+ LiLygLoy + LysLy7Lg — LygL17L7 — LosLgLg + LosL7Lg

The elements of the matrices M;; and N;; are then given by

Mll:

M12:

My = (Lyg(Laz — G3Lay) + L15(G4Loy — Log) + L14(G3Log — G4Lo3)) "' [L14L17G5 — LysLoG5 — L14L19Gy
+ LyyLoGy + Ly (GyLyy — Log) + GyLys Loy + L14LoyG) + Li6(—=G4Ly7 + Lig — Lo (G, + GY))].

Lij = G4Lo = L14(Gy + G}) + (Las = G3Lyy) "' (G3Lys = Ly5)(=GaLyz + Lig = Ly (G, + GY))
~GyLyy + Lig + (Lys = G3Lp) ' (GsLis — Lis)(Log — GaLoy)

)

Lig = GsLo = L14(G, + G5) + (Los = G3Lyy) " (GsLys = L15)(=G3L17 + Lig = L (G + GS))
~GyLyy + Lig + (Lys = G3Lyp) ' (GsLig — Lis)(Los — GaLyy)

’

My, = (L16(G3Lyy — Lo3) + Lis(Los — GsLoy) + L14(G4Los — G3Loy)) ™' [=G3G4L14L17 + G4L1aLg
=G LyyLoy + Lyg(Los = GaLyy) + G3G4LyyLg — G3LoyLg — L14Lyy G + L16(G3L17 — Lig + Ly (G + GY))].

and

Ny, = Ly3 = GyLo = L14Gh + (Lys = G3Lyy) ™ (GsLyy = Ly5)(=GaLy7 + Ly = LpG))
—GyLyy + Lyg + (Los = G3Lp) ' (G3Lyy — Lys)(Log — GaLoy) ’
N = Lip = GLo = L4G) + (Lys = G3Lyy) 7' (G3Ly4 = Ly15) (=G L7 + Lyg — L GY)

—G4L14+ Lig+ (Lys — G3Ly) ™ (G3L1y — Lys)(Lyg — GyLy)

Nyy = (Li(Los = G3La) 4 Li5(GaLoy — Los) 4+ L14(G3Los — G4Lo3)) "' [G2GuLysLy7 — GaLygLoy
+ L13(G4Loy = Lyy) = GoGyLypLg + GyLoyLg + L14LyyGh + Li6(=GaL17 + Loy — Ly GY)],

No = (Li6(Las — G3La) 4 Li5(GyLay — Log) 4+ L14(G3Loy — G4L13)) ' [G1G4L1sL17 — G4L14Lyg

+ L12(Ga4Loy = Lyy) = G1GyLypLg + Gy LoyLg + L14LsG' + Li6(=GLy7 + Ly — L5, Gy')].
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Nonlinear, ghost-free massive gravity has two tensor fields; when both are dynamical, the mass of the
graviton can lead to cosmic acceleration that agrees with background data, even in the absence of a
cosmological constant. Here the question of the stability of linear perturbations in this bimetric theory is
examined. Instabilities are presented for several classes of models, and simple criteria for the cosmological
stability of massive bigravity are derived. In this way, we identify a particular self-accelerating bigravity
model, infinite-branch bigravity (IBB), which exhibits both viable background evolution and stable linear
perturbations. We discuss the modified gravity parameters for IBB, which do not reduce to the standard
ACDM result at early times, and compute the combined likelihood from measured growth data and
type la supernovae. IBB predicts a present matter density ,, = 0.18 and an equation of state
w(z) =—=0.79 + 0.21z/(1 4+ z). The growth rate of structure is well approximated at late times by
£(2) Q%41 +0.21z/(1 + z)]. The implications of the linear instability for other bigravity models are
discussed: the instability does not necessarily rule these models out, but rather presents interesting
questions about how to extract observables from them when linear perturbation theory does not hold.

4l

DOI: 10.1103/PhysRevD.90.124014

I. INTRODUCTION

Testing gravity beyond the limits of the Solar System is an
important task of present and future cosmology. The detec-
tion of any modification of Einstein’s gravity at large scales
or in past epochs would be an extraordinary revolution and
change our view of the evolution of the Universe.

A theory of a massless spin-2 field is either described by
general relativity [1-6] or unimodular gravity [7,8].

Consequently, most modifications of gravity proposed so
far introduce one or more new dynamical fields, in addition
to the massless metric tensor of standard gravity. This new
field is usually a scalar field, typically through the so-called
Horndeski Lagrangian [9,10], or a vector field, such as in
Einstein-aether models (see Refs. [11,12] and references
therein). A complementary approach which has gained
significant attention in recent years is, rather than adding a
new dynamical field, to promote the massless spin-2
graviton of general relativity to a massive one.

The history of massive gravity is an old one, dating back
to 1939, when the linear theory of Fierz and Pauli was
published [13]. We refer the reader to the reviews [14,15]
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for a reconstruction of the steps leading to the
modern approach, which has resulted in a ghost-free, fully
nonlinear theory of massive gravity [16] (see also
Refs. [17-21]). A key element of these new forms of
massive gravity is the introduction of a second tensor field,
or “reference metric,” in addition to the standard metric
describing the curvature of spacetime. When this reference
metric is fixed (e.g., Minkowski), this theory propagates the
five degrees of freedom of a ghost-free massive graviton.

However, the reference metric can also be made dynami-
cal, as proposed in Refs. [22,23]. This promotes massive
gravity to a theory of bimetric gravity. This theory is still
ghost free and has the advantage of allowing cosmologi-
cally viable solutions. The cosmology of bimetric gravity
has been studied in several papers, e.g., in Refs. [24-30].
The main conclusion is that bimetric gravity allows for a
cosmological evolution that can approximate the ACDM
universe and can therefore be a candidate for dark energy
without invoking a cosmological constant. Crucially, the
parameters and the potential structure leading to the
accelerated expansion are thought to be stable under
quantum corrections [31], in stark contrast to a cosmo-
logical constant, which would need to be fine-tuned against
the energy of the vacuum [32,33].

Bimetric gravity has been successfully compared to
background data [cosmic microwave background, baryon
acoustic oscillations, and type Ia supernovae (SNe)] in

© 2014 American Physical Society
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Refs. [24,25], and to linear perturbation data in
Refs. [34,35]. The comparison with linear perturbations
has been undertaken on subhorizon scales assuming a
quasistatic (QS) approximation, in which the potentials are
assumed to be slowly varying. This assumption makes it
feasible to derive the modification to the Poisson equation and
the anisotropic stress, two functions of scale and time which
completely determine observational effects at the linear level.

The quasistatic equations are, however, a valid subhor-
izon approximation only if the full system is stable for large
wave numbers. Previous work [27,36,37] has identified a
region of instability in the past.1 Here we investigate this
problem in detail. We reduce the linearized Einstein equa-
tions to two equations for the scalar modes, and analytically
determine the epochs of stability and instability for all the
models with up to two free parameters which have been
shown to produce viable cosmological background evolu-
tion. The behavior of more complicated models can be
reduced to these simpler ones at early and late times.

We find that several models which yield sensible back-
ground cosmologies in close agreement with the data are in
fact plagued by an instability that only turns off at recent
times. This does not necessarily rule these regions of the
bimetric parameter space out, but rather presents a question
of how to interpret and test these models, as linear
perturbation theory is quickly invalidated. Remarkably,
we find that only a particular bimetric model—the one
in which only the #; and 84 parameters are nonzero (that is,
the linear interaction and the cosmological constant for the
reference metric are turned on)—is stable and has a
cosmologically viable background at all times when the
evolution is within a particular branch. This shows that a
cosmologically viable bimetric model without an explicit
cosmological constant (by which we mean the constant
term appearing in the Friedmann equation) does indeed
exist, and raises the question of how to nonlinearly probe
the viability of other bimetric models.

This paper is part of a series dedicated to the cosmo-
logical perturbations of bimetric gravity and their proper-
ties, following Ref. [35].

II. BACKGROUND EQUATIONS
We start with the action of the form [23]

M2 M2
5:_79/d4x —deth(g)—Tf/d“x —det fR(f)

(1)

'"This should not be confused with the Higuchi ghost insta-
bility, which affects most massive gravity cosmologies and some
in bigravity, but is, however, absent from the simplest bimetric
models which produce ACDM-like backgrounds [38].
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4
+ m2M§/d4x\/_det92ﬂnen(\/gaﬂfﬂ}’>
n=0
+ / d*x\/—det gL, (g, ®), (2)

where e, are elementary symmetric polynomials and f,, are
free parameters. Here g, is the standard metric coupled to
the matter fields ® in the matter Lagrangian, £,,, while f,,
is a new dynamical tensor field with metric properties. In
the following we express masses in units of M, and absorb
the mass parameter m? into the parameters f,,. The graviton
mass is generally of order m?f,. The action then becomes

2
5= -3 [ de/=dsgrto) - 5 [ dey/=derr(r)
()

+f d“xJTetggﬂnen(\/ng)
+ [ dey=EtgL,(o0) (4)

There has been some discussion in the literature over
how to correctly take square roots. We will find solutions in

which det+/g~'f becomes zero at a finite point in time
(and only at that time), and so it is important to determine
whether to choose square roots to always be positive, or to
change sign on either side of the det = O point. This was
discussed in some detail in Ref. [39] (see also Ref. [40]),

where continuity of the vielbein corresponding to \/g~' f
demanded that the square root not be positive definite. We
will take a similar stance here, and make the only choice
that renders the action differentiable at all times, i.e., such

that the derivative of \/¢g~! f with respect to G and f, is
continuous everywhere. In particular, using a cosmological
background with f,, = diag(—X?, b%, b%, b?), this choice
implies that we assume /—det f = Xb?, where X = b/H
with H is the g-metric Hubble rate. This is important
because, as we will see later on, it turns out that in the
cosmologically stable model, the f metric bounces, so X
changes sign during cosmic evolution. Consequently the
square roots will change sign as well, rather than develop
cusps. Note that sufficiently small perturbations around the
background will not lead to a different sign of this
square root.

Varying the action with respect to g,,, one obtains the
following equations of motion:

1 3
R/w - Eg/wR + Z(_l)nﬂngﬂ}»y?n)y < \/ gaﬁfﬁy) = T/w'
n=0
(5)
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Here the matrices Y{, (1/g%fp,) are defined as, setting
X=(g'f)

(%) = X~ 1], )
Yo (X) = X2 XX+ 20X~ D), (8)

Yy (X) = %P = X2[X] + 2 X(X] - [X?])

2
1
= MIXP = 3XIP) + 2[x7), ©)
where [ is the identity matrix and [...] is the trace operator.

Varying the action with respect to f,, we find

3
(_1)’lﬂ4—nfﬂiY?n)u( \/ faﬂg/}y) =0,
=0

(10)

- 1 - 1
R;w _Ef;wR +V]2(

n

where the overbar indicates the curvature of the f,, metric.

The f-metric Planck mass, My, is a redundant parameter
and can be freely set to unity [41]. To see this, consider the
rescaling f,, — M}z fuw- The Ricci scalar transforms as
R(f) = M7R(f), so the full Einstein-Hilbert term in the
action becomes

2

%\/—detfl_?(f) —>% —detfR(f). (1)

The other term in the action that depends on f, is the mass
term, which transforms as

4 4
D Buen\ g7 ) = Buen(M7'\ g7 )
n=0 n=0
4
= ZﬂnM]_‘”nen(\/ g_lf)7 (12)
n=0

where in the last equality we used the fact that the
elementary symmetric polynomials e,(X) are of order
X". Therefore, by additionally redefining the interaction
couplings as ff, —» M¢f,, we end up with the original
bigravity action but with M, = 1.? Consequently we set
My =1 in the following.

Let us now consider the background cosmology of
bimetric gravity. We assume a spatially flat Friedmann-

*Recall that we are expressing masses in units of the Planck
mass, M,. In more general units, the redundant parameter is
M;/M,.

PHYSICAL REVIEW D 90, 124014 (2014)
Lemaitre-Robertson-Walker (FLRW) metric,

dsy = a*(t)(—dr* + dx;dx"), (13)

where 7 is conformal time and an overdot represents
the derivative with respect to it. The second metric is
chosen as

ds} = =[b(2)2/H2(x)]de? + b(x)dxidx,  (14)

where H = a/a is the conformal-time Hubble parameter
associated with the physical metric, g,,. The particular
choice for the f-metric lapse, f(, ensures that the Bianchi
identity is satisfied (see, e.g., Ref. [22]).

Inserting the FLRW ansatz for g, into Eq. (5) we get

3H? = @ (ot + Pmg ) (15)

where we define an effective massive-gravity energy
density as

Pmg = Bo = Po + 3Pir + 3for? + par (16)

with

ISERS

r=-—, (17)
while p,, is the density of all other matter components (e.g.,
dust and radiation). The total energy density follows the
usual conservation law,

Prot T 3Hpiot = 0. (18)

It is useful to define the density parameter for the mass term
(which will be the effective dark energy density):

pmg

= =1-Q,-Q, (19)
Prot T Pmg

mg

where Q; = p;/(pior + pmg) for matter and radiation.

The background dynamics depend entirely on the
g-metric Hubble rate, H, and the ratio of the two scale
factors, r = b/a [25]. Moreover, by using N = loga as
time variable, with ' denoting derivatives with respect to N,
the background equations can be conveniently reformu-
lated as a first-order autonomous system [42]:

QH'H + H? = QZ(BO + Br — wtotptot)’ (20)

- 3(1 +Wtot)BIQt0tr (21)
ﬂl - 3ﬂ3}"2 — 2ﬁ4r3 + 3327‘2 ’

B
Qo =1 _B_(l)r’ (22)
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FIG. 1 (color online). Plot of the function r/(r) for the 3/,
model for f; =0.5, f; = 1. For both the finite and infinite
branches, the final state is the de Sitter point. The arrows show the
direction of movement of r.

where
By = 1+ 3for + 337 + pur, (23)
By =1 + 2por + fiar?, (24)
and wy, denotes the equation of state (EOS) corresponding

to the sum of matter and radiation density parameter €.
We can define the effective equation of state

1 H
Wett = ngwmg + Qtotwtot = _§ <1 + 2g>

_r(Bo + Byr)

=% 7 25
5 25)
B,rr’
=-1 +Qtot_2—» (26)
B,
from which we obtain

Borr’ B
W = =1 = 2= ] =22, (27)

ngBl BO

Another useful relation gives the Hubble rate in terms of r
without an explicit p dependence,

azBl

2 _
H73r'

(28)

The background evolution of r will follow Eq. (21) from
an initial value of r until # = 0, unless r hits a singularity.
In Ref. [42] it was shown that cosmologically viable
evolution can take place in two distinct ways, depending
on initial conditions: when r evolves from O to a finite value
(we call this a finite branch) and when r evolves from
infinity to a finite value (infinite branch). In all viable cases,

PHYSICAL REVIEW D 90, 124014 (2014)

the past asymptotic value of r corresponds to €, = 1 while
the final point corresponds to a de Sitter stage with Q,, = 0
(see Fig. 1 for an illustrative example).

In the following, we consider only pressureless matter,
or dust, with w,, = 0. The reason is that we are interested
only in the late-time behavior of bigravity when the
Universe is dominated by dust. We also assume r > 0,
although in principle nothing prevents a negative value
of b.

We will find it convenient to express all the 5; parameters
in units of A3 and H in units of H0.3 In this way all the
quantities that enter the equations are dimensionless.

III. PERTURBATION EQUATIONS

In this section we study linear cosmological perturba-
tions. We define our perturbed metrics in Fourier space
by

gaﬂ = gO,a/;' + ha[f’ (29)

Sap = foap + Nraps (30)

where go .4 and fg,s are the background metrics with
line elements

ds? = a*(t)(—dr* + dx;dx’), (31)

ds? = —[b(t)}/H2(1)]dP* + b(t)?dx;dx,  (32)

while h,; and hy s are perturbations around the back-
grounds g oz and f 44, respectively, whose line elements

are

ds? = 2a*[~Wd* + (BS;; + k;k,E)dxidx’] exp(ik - 1),

(33)
2 2 i’ijf 2 i JyJ
dshf = 2b - b2H2 dt + (@f(S,j + k,kjEf)dx dx
x exp(ik - r). (34)

After transforming to gauge-invariant variables [27],

b — & — HE, (35)

UV — U—-H(HE +H(E"+E)), (36)
HrE!
, o f

B — @=L )

With this convention, our p; parameters are equivalent to the
B; = m*p;/H} used in Refs. [25,26,35].
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HrPH (¥ + r)E’f + Hr(r(r + r)E;l + E}(Zr’2 +r2r = 1") + 1))
(r +r) ’

and using N = loga as the time variable, the perturbation equations for the g,, metric read

op

2k2 1 2H3r(=H +H') H2A, 2H* (A, + a®r*By)(H —H')
00 1)®—-®, +-k*AE E — AE —
[ ] <3B2(12r + ) I + 3 + ./42 ./42 Clzkerle

0/ — W + 2H§2 0+ (H? - HH)E =

[l‘]}(b + \I/ + §a2rA3AE = 0,
262 A, 2k? As A, k2A3 2Hr(H —H')
i ———+22|® 1)U =20, -2, SN IR )
7] <3Bza2r + Bz> + (332a > B, A 3B, A,
_HMA

2

ZUAE" + AE + AsAE =0,

while the corresponding equations for f,, are

2 2 2 3 Y
[00]@-(1+ 2kr>c1>f+k Ap AT ppy 2=

34’B, 3 A Ay
[0i]®), — jj Uy + aZHBi(Z:, —H) pp - “ZHBZZj “Mp_,
[ij]®p + V) - azzﬁl? AE =0,
[id] <32a%2;4j] + %) D, (31’;2;;2 + f) Uy - “;Z - "32 ;;3 AE + —2H3V(Z =70 g
1 A“j‘ AE" — A4E' — AsAE' = 0,

where AE=E — E; and the A; coefficients are defined as
./41 = a232 - 2H2}”,
.Az = a232 - 2HVH/,

./43 == 232 + B/ )
A - (A} = ) (=a*(1 4+ 2B + A (A, + Ay) + a®rPB,(2A, + Ay))
+ 2r(a*r*B, + Al)Ag
n (—a?By + A ) (A — A) (A1 A, — @By (1 + ) Ay — P Ay)) B,
2rB2(Cl27'ZB2 + Al)A% ’
A — AT (AT — Ay Ay — 4A3) 4+ a® By Ay (2r7 AT - 3P Ay Ay + (4 - 317) A)
s =

2r(a®r*B, + .Al).Ag
_a*By((1+2r7) AT = 2(1 +27) Aj Ay + (1 -2 43)
2r(a*r*B, + A;) A3
N A (=a®By + A (—A1 Ay + @By (1 + ) A — (1 +2r7)Ay)) B,
2rB,(a*r’B, + A;) A3 '
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These equations are in agreement with those presented in
Refs. [27,35,41] (for a more detailed derivation see, e.g.,
Ref. [43]).

The matter equations are

8 +OH +3%' —3H?E" —

6HH'E + kK*E' =0, (52)

O+ 0+ REH — RUH + PH(E" + E') =0, (53)

where 6 and @ are the matter density contrast and peculiar
velocity divergence, respectively. Differentiating and com-
bining Egs. (52) and (53) we obtain
H’ k>
&+ 8 +— —6E'2QH*+ H(H"+H'))
H H
Hl
(bl
)

+39" =0. (54)

—3HE"(5H' +H) — 3E®H? + 3(

Note that E enters the equations only with derivatives; one
could then define a new variable Z = E' to lower the degree
of the equations.4 One could also adopt the gauge-invariant
variables

5 — 6+ 3HE, (55)

0= 60— K*HE' (56)

to bring the matter conservation equations into the standard
form of a longitudinal gauge but since this renders the other
equations somewhat more complicated we will not
employ them.

IV. QUASISTATIC LIMIT

Large-scale structure experiments predominantly probe
modes within the horizon. Conveniently, in the subhorizon
and quasistatic limit, the cosmological perturbation

|

(3a2A A3B3 + 3a® Ay A3 B3r? + k2 (2A A3 — 2Byr( Ay By —

PHYSICAL REVIEW D 90, 124014 (2014)

equations simplify dramatically. In this section we consider
this QS limit of subhorizon structures in bimetric gravity.

The subhorizon limit is defined by assuming k > H,
while the QS limit assumes that modes oscillate on a Hubble
timescale: =" ~ = for any variable 23 Concretely, this means
that we consider the regime where (k?/H?)=Z,; > =; ~ Z// ~
E," for each field Z; = {V, @, V,, &, AE, E}. We addi-
tionally take 6(k/H)?, & (k/H)* > 6/H. In this limit we
obtain the system of equations

612 38p
3k2AE 9 b -9 =0, (57
" < +Bz ) I Byr 57)

1
Eaer3AE+<I>+\I/=0, (58)
k2A3 A 6k> 6k>
3 9— P 9 v
B, ( B, + Bza2r> * < + Bza2r>
g - e W, =0, (59)
A,
) 6k>r
3KFAE— |9+ — O, +90 =0, (60)
a B2
02A1A3
- AE+ P, + T, =0, 61
2rA2 + ! + ! ( )
3k2./43 9./43 61"]( Az 9./43
AE+—® 4+ 9V — P
B, "B T ( B A B, )"
6k’rA, 9A,
— v, =0, 62
<9232A1 " A, > I ©2)

where we have used the momentum constraints, Egs. (40)
and (44), to replace time derivatives of ® and ® . The above
set of equations can be solved for ¥, ¢, ¥ s P +»and AE in
terms of & (see also Ref. [35]):

2A1A3)))QmH2 S

, 63
k4(B2(4.A1r + 4./427') SA A3B2r(r + )) 6k2(r2 + 1)202./41 A3B% ( )
H— — 3(302A1A3Bz + 3@2A1A3BZF2 + kz(r(4A1A3 - ZAsz) + 2A1A3r3))QmH2 5 (64)
; K (By(4A 7 + 44yr) = 8A  Asr(r? + 1)) = 6K2(r* 4 1)a* A A3 B, ’
3(—3a4A%A3B§ - 304./41./42./433%]’2 + 2./41 kzr(az.Al/@ - a2(A1 + .Az).A3Bz + A2B%))QmH2 s (65)
k(B3 (4A, Ay + 445r) — 8A Ay AsByr(r? + 1)) — 6k2(r? + 1)2a* A A, A3 B3 ’
(bf __ 3(302./41./4382 + 3612A1A3B21"2 + 2A1k2r(A3 - Bz))QmHz 5’ (66)

k4(32(4./41r3 + 4./42}’)

—8A A r(P 1))

—6Kk*(r* + 1)2a’ A, A3B,

‘E only appears without derivatives in the mass terms, specifically in differences with E, and so all appearances of E are accounted

for by the separate gauge-invariant variable AE.
Recall that we are using the dimensionless N =

log a as our time variable.
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3r(3a*(A; — Ay)B3 + 2A,Kr(B; — A3))Q,, H?

PHYSICAL REVIEW D 90, 124014 (2014)

AE

The QS limit is, however, only a good approximation if
the full set of equations produces a stable solution for large
k. In fact, if the solutions are not stable, the derivative terms
we have neglected are no longer small (as their mean values
vary on a faster timescale than Hubble), and the QS limit is
never reached. We therefore need to analyze the stability of
the full theory.

V. INSTABILITIES

Let us go back to the full linear equations, presented in
Sec. III. While we have ten equations for ten variables, there
are only two independent degrees of freedom, correspond-
ing to the scalar modes of the two gravitons. The degrees-
of-freedom counting goes as follows (see Ref. [44] for an
in-depth discussion of most of these points): four of the
metric perturbations (6gqg, 69pi> 0f 00, and ofy;) and @ are
nondynamical, as their derivatives do not appear in the
second-order action. These can be integrated out in terms of
the dynamical variables and their derivatives. We can further
gauge fix two of the dynamical variables. Finally, after the
auxiliary variables are integrated out, one of the initially
dynamical variables becomes auxiliary (its derivatives drop
out of the action) and can itself be integrated out.’

This leaves us with two independent dynamical degrees
of freedom. The aim of this section is to reduce the ten
linearized Einstein equations to two coupled second-order
equations, and then ask whether the solutions to that system
are stable. We will choose to work with & and ¥ as our
independent variables, eliminating all of the other pertur-
bations in their favor.

We can begin by eliminating \I/f, <I>f, AE, and their
derivatives using the 0 — 0, i — i, and i — j components of
the g-metric perturbation equations. We will herein refer to
these equations as gy, ¢;;» and so on for the sake of
conciseness. Doing this we see also that the g;; and f;;
equations are linearly related. Then we can replace 6 and 0
with the help of the g,; and f, equations. Finally, one can
find a linear combination of the f; and g;; equations which
allows one to express E' as a function of ®, ¥, and their
derivatives. In this way, we can write our original ten
equations as just two second-order equations for X; =
{®, U} with the following structure:

X+ FiX; + §;X; =0, (68)
where F;; and §;; are complicated expressions that depend
only on background quantities and on k. The

SWe thank Macarena Lagos and Pedro Ferreira for discussions
on this point.

- k*a*(B3(2A, 13 +2A;5r) —4A  AsByr(r? + 1)) = 3a*k*(r? + 1)2a®? A, A3B3

5 (67)

I

eigenfrequencies of these equations can easily be found
by substituting X = X,e", assuming that the dependence
of @ on time is negligibly small.” For instance, assuming that
only f; is nonzero, in the limit of large k we find [34]

k V=14 12r* +9r*
(U/}l == iﬁ 1+ 3}’2 s (69)

plus two other solutions that are independent of k and are
therefore subdominant. One can see then that real solutions
(needed to obtain oscillating, rather than growing and
decaying, solutions for X) are found only for r > 0.28,
which occurs for N = -0.4, i.e.,, z~0.5. At any epoch
before this, the perturbation equations are unstable for large
k. In other words, we find an imaginary sound speed. This
behavior invalidates linear perturbation theory on subhor-
izon scales and may rule out the model, if the instability is
not cured at higher orders, for instance by a phenomenology
related to the Vainshtein mechanism [45,46].

Now let us move on to more general models. Although
the other one-parameter models are not viable in the back-
ground® (i.e., none of them have a matter dominated epoch
in the asymptotic past and produce a positive Hubble rate)
[42], it is worthwhile to study the eigenfregencies in these
cases too, particularly because they will tell us the early time
behavior of the viable multiple-parameter models. For
simplicity, from now on we refer to a model in which,
e.g.,only f; and f3, are nonzero as the f; , model, and so on.

At early times, every viable, finite-branch, multiple-
parameter model reduces to the single-parameter model
with the lowest-order interaction. For instance, the f/,,
PP, and pBB,B; models all reduce to S, the S,f3;
model reduces to f,, and so on. Similarly, in the early
Universe, the viable, infinite-branch models reduce to
single-parameter models with the highest-order interaction.
Therefore, in order to determine the early time stability, we
need to only look at the eigenfrequencies of single-
parameter models, for which we find

k

Ve v

= AR 7

"The criterion for this WKB approximation to hold is
|o'/®?| < 1. We find that for large k this approximation is
almost always valid.

*With the exception of the f; model, which is simply ACDM.
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Therefore, the only single-parameter models without insta-
bilities at early times are the f, and #, models. Using the
rules discussed above, we can now extend these results to
the rest of the bigravity parameter space.

Since much of the power of bigravity lies in its potential
to address the dark energy problem in a technically-natural
way, let us first consider models without an explicit
g-metric cosmological constant, i.e., f; = 0. On the finite
branch, all such models with f; # 0 reduce, at early times,
to the #; model, which has an imaginary eigenfrequency for
large k (69) and is therefore unstable in the early Universe.
Hence the finite-branch f;/,5;6, model and its subsets
with f; # 0 are all plagued by instabilities. All of these
models have viable background evolution [42]. This leaves
the 3,54, model; this is stable on the finite branch as long
as p, # 0, but its background is not viable. We conclude
that there are no models with f; = 0 which live on a finite
branch, have a viable background evolution, and predict
stable linear perturbations at all times.

This conclusion has two obvious loopholes: either includ-
ing a cosmological constant, 3, or turning to an infinite-
branch model. We first consider including a nonzero
cosmological constant, although this may not be as interest-
ing theoretically as the models which self accelerate. Adding

|

wy (72)

PHYSICAL REVIEW D 90, 124014 (2014)

a cosmological constant can change the stability properties,
although it turns out not to do so in the finite-branch models
with viable backgrounds. In the f,f; model, the eigenfre-
quencies,

k\/9r* +2(By/B1)r + 1277 — 1

==
Chubr HGR +1)

, (73)

are unaffected by f at early times and therefore still imply
unstable modes in the asymptotic past. This result extends
(at early times) to the rest of the bigravity parameter space
with g, ;1 # 0. No other finite-branch models yield viable
backgrounds. Therefore, all of the solutions on a finite
branch, for any combination of parameters, are either
unviable (in the background) or linearly unstable in the past.

Let us now turn to the infinite-branch models. In this case,
it turns out that there exists a small class of viable models
which has stable cosmological evolution: models where the
only nonvanishing parameters are f, ;, and f;, as well as
the self-accelerating f;f, model. Here, r evolves from
infinity in the past and asymptotes to a finite de Sitter value
in the future. As mentioned in Ref. [42], a nonvanishing /3,
or f3 would not be compatible with the requirement
lim;_,_, Qi = 1. This can be seen directly from Eq. (22)
in the limit of large r. For these ff3, f4, models we perform a
similar eigenfrequency analysis and obtain

Wpoppy =

k\/(9 + 28B4/ BT)r + 2(Bo/Br)r + 1207 = 1+ (Ba/ 1) [2(Ba/ B1)r® — 6r° — 817

74
HOP + 1= 206./p0)7) (4
Restricting ourselves to the self-accelerating models (i.e., f; = 0), we obtain
k\/9’4 + 127 =1+ (ﬂ4/ﬁ1)[2<ﬁ4/ﬂ1)”6 —6r° — 8r3]
Dppy = . (75)

Notice that, for large r, the eigenvalues (74)—(75) reduce to
the expression (72) for wg,. This frequency is real, and
therefore the 4, model, as well as its generalization to
include a cosmological constant, is stable on the infinite
branch at early times.

It is interesting to note that the eigenfrequencies can also
be written as

ik |1

7\ 37 (76)

Dpopps =
Therefore, the condition for the stability of this model in the
infinite branch, where ' < 0, is simply # > 0. One might
wonder whether this expression for w is general or model
specific. While it does not hold for the f, and f; models,
Egs. (70)—(71), it is valid for all of the submodels of 5,/ .,

HGr? +1=2(B/B1)r)

|
including Egs. (69) and (72). We can see from this, for
example, that the finite-branch (¥ > 0) B, model is
unstable at early times because initially 7’ is positive. In
Fig. 1 we show schematically the evolution of the f/,
model on the finite and infinite branches. The stability
condition on either branch is /¥ = dr'/dr < 0. For the
parameters plotted, f; = 0.5 and p, =1, one can see
graphically that this condition is met, and hence the model
is stable, only at late times on the finite branch but for all
times on the infinite branch. Our remaining task is to extend
this to other parameters.

Let us now prove that the infinite-branch f; 3, model is
stable at all times for all viable choices of the parameters. In a
previous work we showed that background viability and the
condition that we live on the infinite branch restrict
us to the parameter range 0 < B4 < 2f; [35,42]. We have
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already seen that at early times, r — oo, and the eigenfre-
quencies match those in the 4 model (72) which are purely
real. What about later times? The discriminant is positive
and hence the model is stable whenever r > 1. The question
then is the following: do the infinite-branch models in this
region of the parameter space always have r > 17

The answer is yes. To see this, consider the algebraic
equation for r, which can be determined by combining the
g- and f-metric Friedmann equations [see Eq. (2.17) of
Ref. [35]], and focus on the asymptotic future by taking
p — 0. This gives

Pars =3P+ =0, (77)

where r. is the far-future value of r. When g, =24,
exactly, this is solved by r. = 1. We must then ask whether
for 0 < p, <2p;, r. remains greater than 1. Writing
p =r. — 1, using Descartes’ rule of signs, and restricting
ourselves to 0 < fiy < 2f;, we can see that p has one
positive root, i.e., there is always exactly one solution with
r. > 1 in that parameter range. Therefore, in all infinite-
branch solutions with 0 < 8, < 2p;, r evolves to some
r. > 1 in the asymptotic future. We conclude that all of the
infinite-branch f;, cosmologies which are viable at the
background level are also linearly stable at all times,
providing a clear example of a bimetric cosmology which
is a viable competitor to ACDM.

The models without quadratic- and cubic-order inter-
actions were also discussed in Ref. [47]. Interestingly, for
those models, as well as other models where only one of the
three parameters f3;, },, and S5 is nonvanishing, the authors
found that if one metric is an Einstein metric, i.e.,
G, + Ag,, =0, then the other metric is proportional to
it. This automatically avoids pathologic solutions when
choosing the nondynamical constraint in the Bianchi con-
straint [47] (which are, however, explicitly avoided in the
present work by imposing the dynamical constraint in order
to find cosmological solutions that differ from ACDM).
|

Ga*81(98:(* = )i + (2 = 2)B) = 3K2r(9p:(r* — 1) + (87 + 9)B))Q, H’
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VI. QUASISTATIC LIMIT OF
INFINITE-BRANCH BIGRAVITY

In the previous section we found that most bigravity
models which are viable at the background level suffer from
a linear instability at early times. A prominent exception
was the model with the f; and g, interactions turned on
(i.e., the first-order interaction between the two metrics
and the f-metric cosmological constant) in the case of
solutions on the infinite branch, where r evolves from
infinity at early times to a finite value in the far future. This
means that we can safely use the QS approximation for the
subhorizon modes in the infinite-branch f;fs model,
hereafter referred to (interchangeably) as infinite-branch
bigravity (IBB); in this section, we compare the QS limit of
this model to observations.

The background cosmology of IBB was studied in
Refs. [35,42]. Reference [35] further studied the linear
perturbations and quasistatic limit, finding results in agree-
ment with those presented in the following two sections.
Using the Friedmann equations, it has been shown that the
background cosmology only selects a curve in the param-
eter space, given by

ﬂ4 _ 3ng,0ﬂ% _ﬂélt
Qr3ng,0

(78)

where we recall that Q.= fry is the present-day
effective density of dark energy that appears in the
Friedmann equation (15). This does not need to coincide
with the value of Q, derived in the context of ACDM
models; indeed, the best-fit value to the background data is
ng.o = O.84f8_‘8§ [42]. Furthermore, as discussed in the
previous subsection, to ensure that we are on the infinite
branch we impose the condition 0 < f4 < 2.

The QS-limit equations in terms of 6 now read [recall
By = fy + fur’; see Eq. (23)]

2\ —

= 3B (P +1)?B+ k2 (2r B+ 3p,(r* — 1)r + 3rB) > 79)
2 — (Ba®By(r? + 1)B+1K2r(96,(r* = 1) + (472 + 9)B))Q,, H? (30)

288 (P + 1) B+PQ2PB+3 (PP - )r+3rB)
20 — (=3aB, B9, (r* = 1)r? + (r> = 2)B) = K*rB(9p,(r* — 1) + 5B))Q,, H? (81)

57 2a%B, (P +1)2BO, (P - 1) + B) + kr(3p(r* = 1) + (2r2 +3)B) (98, (r* = 1) + B)
b (3a*B,(r* + 1)B+ K*rB)Q,, H?

O = 2B (P + 1B+ R2rB+ 36, (P = )r + 37B) " (82)
AL — k2B =2a*Br(3p,(r* = 1) + B)Q, H? 5 (83)

2a* B3 (r* + 1)2B + pa*k*r(3p,(rF = 1) + (217 + 3)B)
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where we have used the combination B =38,(r*> + 1) —
2B, to further simplify the expressions.

In order to compare with observations, we calculate two
common modified gravity parameters: the anisotropic
stress, 7 = —® /W, and the effective gravitational coupling
for the growth of structures, ¥ = —2k*¥/(3H?Q,,5,,). In
general relativity with ACDM, n =Y = 1, while in 5,
IBB they possess the following structure,

1+ Hy(k/H)

T Y Hy (kR (84)
Y = H, m (85)

with coefficients
H, - 2(r*+1)B (87)

9 (P -1+ (P -2)B’

_ HE9B(P = 1) + (872 +9)B)
= _3azﬁ1(9ﬁll(r2 -1+ (*=2)B)’ (88)

_Hr(9B(FP = 1) + (42 +9)B)
Hy= 6a2p,(r* + 1)B . (89)

H2r(6r2B + 96, (r* — 1) + 9B)

H =
5 6a%p,(r2 +1)2B

(90)

As a side remark, we note that in this model the
asymptotic past corresponds to the limit r - co and
r'— =3r, ie, r—a ¥ This implies that b ~a~"/2,
i.e., the second metric initially collapses while our metric
expands. On the approach to the final de Sitter stage, r
approaches a constant r,, so the scale factors a and b both
expand exponentially. The f-metric scale factor, b, there-
fore undergoes a bounce in this model.

This bounce has an unusual consequence. Recall from
Eq. (14) that, after imposing the Bianchi identity, we have
Sfoo = —152/ H?. Therefore, when b bounces, f, becomes
zero: at that one point, the lapse function of the f metric
vanishes.’ We believe, however, that this does not render
the solution unphysical, for the following reasons. First,
the f metric does not couple to matter and so, unlike the
g metric, it does not have a geometric interpretation. A
singularity in the f metric therefore does not necessarily
imply a singularity in observable quantities. In fact, we find

*Moreover, the square root of this, b/ ‘H, appears in the mass
terms. This quantity starts off negative at early times and then
becomes positive.
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By =0.48, B, =0.94, k = 0.1 h/Mpc
T T T

14+
1.2 r_/

1 ACDM
0.8+
06 i\

present time
0.4
Y ——

02 Il Il Il Il n

-1 0 1 2 3 4 5

z

FIG. 2 (color online). The modified-gravity parameters, ¥ and
n, for the f,f, IBB model, from z =5 until the asymptotic
(de Sitter) future. Notice that the parameters approach a constant
late-time value until a late era of horizon exit, when the k =
0.1h/Mpc mode becomes superhorizon and the QS limit breaks
down. The horizontal line corresponds to the ACDM prediction
for Y and #, and the vertical line is the present day. These curves
are very weakly dependent on k. For concreteness, we use the
best-fit values #; = 0.48 and 4 = 0.94, calculated in Sec. VIL

no singularity in any of our background or perturbed
variables. Second, although the Riemann tensor for the f
metric is singular when f, = 0, the Lagrangian density
\/—det fR; remains finite and nonzero at all times, so the
equations of motion can be derived at any points in time.

In the asymptotic past, every infinite-branch S, £, model
satisfies

lim Y:% (91)

N——0

) 1
Ng@mn =5 and
and therefore does not reduce to the standard ACDM. In the
future one finds # — 1 if k is kept finite, but this is
somewhat fictitious: for any finite k there will be an epoch
of horizon exit in the future after which the subhorizon QS
approximation breaks down. We can see both this asymp-
totic past and future behavior in Fig. 2, although the late-
time approach of # to unity is not easily visible.

VII. COMPARISON TO MEASURED
GROWTH DATA

In this section we compare the predictions in the
quasistatic approximation to the measured growth rate.
In Ref. [35], we discussed the numerical results of the
modified-gravity parameters, Eqs. (84)—(85), for f,f4
infinite-branch bigravity and their early time limits," and
compared to the data. Although we found strong deviations

"Note that Ref. [35] uses a slightly different effective
gravitational constant, Q = Y.
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from the ACDM values, the model is at present still in
agreement with the observed growth data. However, as we
mentioned, future experiments will be able to distinguish
between the predictions of the ACDM and bimetric gravity
for n and Y.

We use the data set compiled by Ref. [48] containing the
current measurements of the quantity

f(2)os(z) = f(2)G(z)os, (92)

where f(z) =&'/8 and G(z) is the growth factor normal-
ized to the present. The data come from the 6dFGS [49],
LRG,yy, LRGy, [50], BOSS [51], WiggleZ [52], and
VIPERS [53] surveys. These measurements can be com-
pared to the theoretical growth rate which follows from
integrating Eq. (54) in the QS limit:

/! / H/ 3

S48, 1+— | -=Y(k)Q,5, =0. (93)
H 2

The theoretically expected and observed data, #; and d,,

respectively, can be compared to compute

Lo = Z(d,- — 03t;)C5; (d; — o3t;), (94)

ij

where C;; denotes the covariance matrix. Since no model-
free constraints on oy exist, one can remove this depend-
ency with a marginalization over positive values which can
be performed analytically:

Y S
2 — S0 — 1 4+ log Spy —2log ( 1 + Erf | —L .
Ko, = 920 S02+ 0g 5 og| 1+ /250

(95)

Here, S]] = diCi_jltj’ S20 = dlcald]’ and S02 = tiCi_jl tj'
Note that Y is (weakly) scale dependent but the current
observational data are averaged over a range of scales. For
the computation of the likelihood, we assume an average
scale k = 0.1h/Mpc.

As shown in Fig. 3, the confidence region obtained from
the growth data is in agreement with type Ia SNe data (see
Ref. [42] for the likelihood from the SCP Union 2.1
Compilation of SNe Ia data [54]). The growth data alone
provides ; = 0.4070'2 and 8, = 0.67703% with a y2, =
9.72 (with nine degrees of freedom) for the best-fit value
and is in agreement with the SNe Ia likelihood. The
likelihood from growth data is, however, a much weaker
constraint than the likelihood from background observa-
tions. Thus, the combination of both likelihoods, providing
B1 = 0.4870% and B, = 0947011 is similar to the SNe Ta
result alone.

Note that those favored parameter regions were obtained
by integrating the two-dimensional likelihood and are
not Gaussian distributed due to the degeneracy in the

PHYSICAL REVIEW D 90, 124014 (2014)

15}

Ba

0.5 -

i i L )
0 0.2 0.4 0.6 0.8
B1

FIG. 3 (color online). Likelihood from measured growth rates,
where the gray, light gray and lighter gray filled regions corre-
spond to 68%, 95%, and 99.7% confidence levels. Both black
(68%) and dark gray (99.7%) regions illustrate the combination of
the likelihoods from measured growth data and type Ia super-
novae. The blue line indicates the degeneracy curve corresponding
to the background best-fit points. Note that the viability condition
enforces the likelihood to vanish when £, > 2f,.

parameters f; and B, [see Eq. (78)]. This degeneracy curve
is unaffected by additional growth data and is still para-
metrized by the SNe la result Q. = 1 — Q0 = 0.161003
(note that the combination of the most likely parameters
predicts, however, Q,,g = 0.18). According to Eq. (27), the
EOS of modified gravity, wy,,, is best fit by wy = —0.79
and w, = 0.21, where we use the Chevallier-Polarski-
Linder (CPL) parametrization [55,56],

w(z) = wy +wuz/(1 +2). (96)
However, since we approximated the EOS near the present

time, we cannot expect Eq. (96) to fit the real EOS well at
early times or in the future. As shown in Fig. 4, the fit is in

—04[

-1.27

—14 0

FIG. 4 (color online). The equation of state (EOS, solid blue) in
the IBB model with ; = 0.48, , = 0.94, along with the CPL
approximation w(a) =~ wy + w,z/(1 + z) (dotted green) where
w, corresponds to the slope at present time. In the asymptotic
future, Wing tends to —1, i.e., the EOS of a cosmological constant
(dashed red).
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T T T T T

0.55F
0.50

0451

f(z) G(z)

0.40F

035 - ’ — | IBB (5,=0.48 , 5,=0.94)

IBB fit model

0301 - ACDM (0,,0=0.27)

-=-  ACDM (0,,0=0.18)

025+ * .
0.0 0.2 0.4 0.6 0.8

z

FIG. 5 (color online). Growth history for the best-fit IBB model
(solid blue) with f; = 0.48 and , = 0.94 compared to the result
obtained from the best fit (97) (solid orange) with y, = 0.47 and
a = 0.21, and the ACDM predictions for Q,,, = 0.27 (dotted red)
and Q,o = 0.18 (dotted-dashed green). The latter value for the
matter density is similar to that corresponding to IBB. Note that a
vertical shift of each single curve is possible due to the
marginalization over og. Here, we choose that value for og for
each curve individually such that it fits the data best. The growth
histories are compared to observed data compiled by Ref. [48].

fact valid in the past only up to z % 0.5, while in the future
the limit wy,,, — —1 is lost.

For one specific choice of parameters, corresponding to
the best-fit values, we compared the quantity f(z)G(z) with
the measured growth data and fits from ACDM in Fig. 5.
Although the modified-gravity parameters differ signifi-
cantly from the ACDM result Y = 5 = 1, the prediction for
f(2)G(z) is in good agreement with measurements and is
close to the ACDM result.

The difference between the growth rate f(z) in the best-
fit model and ACDM is, however, quite large. Therefore,
the common approximation f = QJ, fits the growth rate
very badly, even if the range in the redshift is small [where
f(z) is still smaller than unity] [35]. We have found a two-
parameter scheme,

~ Q0 (1 +a— ) 97
rra(iart 7

which is able to provide a much better fit (see Fig. 5). Using
this approximation, we obtain yy = 0.47 and a = 0.21 as
best-fit values.

VIII. CONCLUSIONS AND OUTLOOK

We have investigated the stability of linear cosmological
perturbations in bimetric gravity. Many models with viable
background cosmologies exhibit an instability on small
scales until fairly recently in cosmic history. However, we
also found a class of viable models which are stable at all
times: IBB with the interaction parameters f; and f, turned
on. In these models, the ratio » = b/a of the two scale factors

PHYSICAL REVIEW D 90, 124014 (2014)

decreases from infinity to a finite late-time value. IBB is able
to fit observations at the level of both the background (type Ia
supernovae) and linear, subhorizon perturbations (growth
histories) without requiring an explicit cosmological constant
for the physical metric, although the region of likely

parameters is small. The combination of both likelihoods

yields the parameter constraints 3, = 0.4870% and f, =

0.94f8"5111. IBB with these best-fit parameters predicts Q,,, =
0.18 and an equation of state w(z) ~ —0.79 + 0.21z/(1 + z).
The growth rate, f = d1né/d In a, is approximated very well
by the two-parameter fit f(z)~Q%*[1+0.21z/(1+42)].
Additionally, the two main modified-gravity parameters,
the anisotropic stress 7 and modification to Newton’s constant
Y, tend to n =4 and Y =% for early times and therefore
do not reduce to the standard ACDM result. The predictions
of this two-parameter model will be testable by near-future
experiments [57].

On the surface, our results would seem to place in
jeopardy a large swath of bigravity’s parameter space, such
as the minimal f$,-only model which is the only single-
parameter model that is viable at the background level [42].
It is important to emphasize that the existence of such an
instability does not automatically rule these models out. It
merely impedes our ability to use linear theory on deep
subhorizon scales (recall that the instability is problematic
specifically for large k). Models that are not linearly stable
can still be realistic if only the gravitational potentials
become nonlinear, or even if the matter fluctuations also
become nonlinear but in such a way that their properties do
not contradict observations. The theory can be saved if, for
instance, the instability is softened or vanishes entirely
when nonlinear effects are taken into account. We might
even expect such behavior: bigravity models exhibit a
Vainshtein mechanism [45,46] which restores general
relativity in environments where the new degrees of free-
dom are highly nonlinear.

Consequently there are two very important questions for
future work: can these unstable models still accurately
describe the real Universe, and if so, how can we perform
calculations for structure formation?

Until these questions are answered, the /3, f, infinite-branch
model seems to be the most promising target at the moment for
studying bigravity. Because this instability appears to be
absent in the superhorizon limit, it may also be feasible to
test the unstable models using large-scale modes.

What other escape routes are there? Throughout this
analysis we have assumed that only one of the metrics
couples to matter. A possible way to cure bimetric gravity
from instabilities while only allowing one nonvanishing
parameter could be to allow matter to couple to both
metrics [26,58]. In such a theory, the finite-branch solutions
asymptote to a nonzero value for r in the far past, so these
theories may avoid the instability. This would introduce a
new coupling parameter, so if only one f parameter is
turned on, there are two free parameters and such a model is
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arguably as predictive as the f;f, model. Unfortunately,
this way of double-coupling would introduce a ghost
[59-61]. However, the authors in Ref. [59] proposed a
coupling to matter using a new composite metric which is
free of the ghost in the decoupling limit. The cosmological
background solutions in bigravity with this type of cou-
pling together with a comparison to observations were
studied in [62] (see also Ref [63] for the case of massive
gravity). The consequences for linear perturbations will be
discussed in a future work (in preparation).
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Abstract. There is a no-go theorem forbidding flat and closed FLRW solutions in massive
gravity on a flat reference metric, while open solutions are unstable. Recently it was shown
that this no-go theorem can be overcome if at least some matter couples to a hybrid met-
ric composed of both the dynamical and the fixed reference metric. We show that this is
not compatible with the standard description of cosmological sources in terms of effective
perfect fluids, and the predictions of the theory become sensitive either to the detailed field-
theoretical modelling of the matter content or to the presence of additional dark degrees of
freedom. This is a serious practical complication. Furthermore, we demonstrate that viable
cosmological background evolution with a perfect fluid appears to require the presence of
fields with highly contrived properties. This could be improved if the equivalence principle is
broken by coupling only some of the fields to the composite metric, but viable self-accelerating
solutions due only to the massive graviton are difficult to obtain.
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1 Introduction

Massive gravity has a long history [1-5], but only recently has the fully nonlinear, consis-
tent theory of a massive graviton been constructed by de Rham, Gabadadze, and Tolley
(dRGT) [6-11] (see ref. [12] for a comprehensive review). However, this theory does not
possess flat or closed Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological solutions
with a flat reference metric [13], and the solutions which do exist, by choosing open curva-
ture or a different reference metric, are unstable to the Higuchi ghost [14] or other linear and
nonlinear instabilities [15-20].

The search for viable cosmologies with a massive graviton has involved two routes. One
is to extend dRGT by adding extra degrees of freedom. For example, these problems are at
least partially cured in bigravity, where the second metric is given dynamics [21-33]. Other
extensions of massive gravity, such as quasidilaton [34], varying-mass [13, 35], nonlocal [36—
38|, and Lorentz-violating [39, 40] massive gravity, also seem to possess improved cosmological
behavior. The other approach is to give up on homogeneity and isotropy. While FLRW
solutions are important for their mathematical simplicity, which renders them easy both to
compute and to compare to observations, the Universe could in principle have anisotropies
which have such low amplitude, are so much larger than our horizon, or both, that we cannot
readily observe them. Remarkably, these cosmologies not only exist in massive gravity but
are locally (i.e., within the horizon) arbitrarily close to the standard FLRW case [13]. The
general scenario of an FLRW metric with inhomogeneous Stiickelberg fields has been derived
in refs. [41, 42]. This includes, but is not limited to, the case in which the reference metric is
still Minkowski space, but only has the canonical form 7, = diag(—1,1,1,1) in coordinates
where g, is not of the FLRW form [43]. The inhomogeneous and anisotropic solutions are
reviewed thoroughly in ref. [12]. See ref. [44] for a review of cosmology in massive gravity
and some of its extensions.

Recently a workaround that allows consistent flat FLRW solutions in the context of
dRGT massive gravity — i.e., the theory with only a single, massive graviton — was dis-
covered in ref. [45]. This solution is based on the fact that massive gravity contains a fixed



reference metric, and matter can in principle couple to both metrics [46-48], although care
must be taken to ensure this coupling does not reintroduce the exorcised ghost [45, 49]. In
this scenario, matter is coupled to an effective or Jordan-frame metric given by

ngg = a2g,uy + QaBguaXS‘ + 6277;1113 (1.1)

where g, is the dynamical metric, 7,, is the Minkowski reference metric, and X/ =
(v g~ ). This effective metric was arrived at in the vielbein formulation by a comple-
mentary derivation in ref. [50], and is claimed to be ghost-free at least within the effective
theory’s régime of validity [45, 51, 52]. In ref. [45], it was shown that flat FLRW solutions
exist when «, 8 # 0, and a worked example was presented in which one or more scalar
fields couples to gff,. The matter coupling has since been studied in the context of bigravity
in refs. [53, 54], where it was shown to be consistent with observational data of the cosmic
expansion.

In this paper we explore the basic properties of these newly-allowed massive cosmologies
from an observationally-oriented standpoint. Unusually, the proof that FLRW cosmologies
exist leans heavily on the choice of a fundamental field as the matter source coupled to the
effective metric. In a standard late-Universe setup where matter is described by a perfect
fluid with constant equation of state w (or even more generally when w only depends on the
scale factor), this result does not hold, and FLRW solutions are constrained to be nondy-
namical, just as in standard dRG'T. More generally, the pressure of at least one of the matter
components coupled to gz,ff must depend on something besides the scale factor — such as
the lapse or the time derivative of the scale factor — for massive-gravity cosmologies to be
consistent. This is why fields, which have kinetic terms where the lapse necessarily appears,
are good candidates to obtain sensible cosmological solutions. Consequently the standard
techniques of late-time cosmology cannot be applied to this theory. We emphasize this does
not necessarily imply that cosmological solutions do not exist, but rather that we must ei-
ther employ a more sophisticated description of the matter sector or include new degrees of
freedom in order to obtain realistic models which can be reliably confronted with data.

Our focus here is on models with an extra, “dark” scalar degree of freedom coupled to
gfﬁ. While we do not aim to rule these out, we show that these solutions exhibit pathologies in
the early- and late-time limits if all matter couples to the effective metric, and the scalar-field
physics would need to be highly contrived to avoid these issues, although these pathologies are
largely avoided if the equivalence principle is broken and only the new dark sector couples to
gfg. Moreover, the reliance on a dark sector which may well be gravitationally subdominant
and high-energy implies a violation of the decoupling principle, in which the low-energy
expansion of the Universe should not be overly sensitive to high-energy physics.

During the completion of this paper, ref. [55] appeared which studied the background
cosmology of this theory with a scalar field coupled to the effective metric, and demonstrated
its perturbative stability. We agree with their results wherever we overlap. Our emphasis
differs, however, as we focus on the effects of the perfect fluids, particularly dust and radiation,
expected to be gravitationally dominant in the late Universe.

The rest of this paper is organized as follows. In section 2 we derive and discuss the
cosmological evolution equations in this theory. In section 3 we elucidate the conditions
under which the no-go theorem is violated and dynamical cosmological solutions exist. We
discuss in section 4 some of the nonintuitive features of the Einstein-frame formulation of
the theory, and how these are resolved in the Jordan-frame description. In section 5 we
study cosmologies containing only a scalar field, and generalize this to include a perfect fluid



coupled to the effective metric in section 6. In section 7 we consider an alternative setup in
which the scalar field couples to the effective metric while the perfect fluid couples to the
dynamical metric. We discuss our results and conclude in section 8.

2 Cosmological backgrounds

If all matter fields couple to gz;ﬁ;, the theory is defined by the action

M?2 !
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where e, are the elementary symmetric polynomials of the eigenvalues of X, 3, are dimen-
sionless free parameters characterizing the strength of the different graviton interactions, and
® represents the matter fields. The Einstein equation for this theory was derived in ref. [54]
and can be written in the form!

3
(X G 3 (1) g™ (XY )y = 20 detlat BX)(a(X ) HaT 4 5TH),
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(2.2)
where the stress-energy tensor is defined in the usual way with respect to the effective metric,

2 0 [V =getLm (95, ®)]

T = o , (2.3)
and the matrices Y], are given by
Yo =1,
Yoy =X - 1[X],
Yo = X% — X [X] + ;]1 ([X]2 _ [XQ]) ,
Vi) = X* — X2[X] + %X (X1 - [x7)
- én ([X]3 ~3[X][x?] +2 [X3]> . (2.4)

Notice that for diagonal metrics, including the FLRW metric, the symmetrization in the
Einstein equation can be dropped and we can obtain a simpler version,

3
G" +m? Y (=1)"Bug" Y4 M2 det(a 4 X) (aT™ + BXFTVY). (2.5)
n=0 Pl

Let us assume a flat FLRW ansatz for g, of the form

gudrtdz” = —N?(t)dt? + a®(t)6;dx"da? (2.6)

!Our convention is that indices on the Einstein tensor G*¥ are raised with g"”.



and choose unitary gauge for the Stiickelberg fields, 7, = diag(—1,1,1,1), so the effective
metric is given by
guydx“dx —NZ(t)dt? + a24(t)6ijda’ da?, (2.7)

where the effective lapse and scale factor are related to N and a by
Neg = aN + 83, aef = aa + . (2.8)
We will define the Hubble rates for g,,, and gﬁ% by

a Qeff

H=— H.g = .
alN ’ eff Qeff N, eff

(2.9)

Notice that these are defined slightly differently than usual because of the inclusion of the
lapse. This is because in diffeomorphism-invariant theories, such as general relativity, the
lapse can be fixed by a gauge transformation and so corresponds to a choice of time coordinate.
Indeed, in such a theory a/aN would simply be the Hubble rate defined in cosmic time (i.e.,
a/a with N = 1). Because we do not have this freedom in massive gravity (once we have fixed
the Stiickelberg fields), we cannot freely choose a time coordinate in this way, and neither
the lapse nor the time coordinate, ¢, has any physical meaning on its own. Instead these
quantities will only appear through the combinations Ndt and Negdt. This motivates the
Hubble rates we have defined in eq. (2.9), which are simply dIna/Ndt and dIn aeg/Negdt.

Now let us derive the cosmological equations of motion. The time component of eq. (2.2)
yields the Friedmann equation,

ap a’ 3 3
32 — 00 Gort <5 +51+52+53>7 (2.10)
Mg, a
where p = —geETOO is the density of the matter source coupled to geff 2 The spatial compo-

nent of eq. (2.2) gives us the acceleration equation,

2H  ap Nega? 1 2 2 B3
o2+ off _ 2 4z i Ll 2.11
SN Tz N S Pty ) TR aN+ T Na| B

where p = (1/3)g;; 71 is the pressure. Notice that the double coupling leads to a time-
dependent coefﬁ(nent multiplying the density and pressure terms in egs. (2.10) and (2.11) and
hence a varying gravitational constant for cosmological solutions. The Friedmann equation
for the effective Hubble rate, Heg, can be determined from eq. (2.10) by the relation

Na
Negraom

Heg = H, (2.12)

which follows from eq. (2.8). Note that for practical purposes one could freely set o = 1 here
by rescaling ¢,.,, Mp1, and (,; only the ratio 3/ is physical [53].
Matter is covariantly conserved with respect to gw,,

eff v
Vel — o, (2.13)

21f we have additional matter coupled to Juv, its density will enter the Friedmann equation (2.10) in the
standard way.



from which we can obtain the usual energy conservation equation written in terms of the
effective metric,

p+3

" (p+p) =0 (2.14)
Qeff

As in general relativity, this holds independently for each species of matter as long as we
assume that interactions between species are negligible. Finally, we can take the divergence
of the Einstein equation (2.2) with respect to g,, and specialize to the FLRW background
to find, after imposing stress-energy conservation, the “Bianchi constraint,”

m?M3,a>P(a)a = afa’gpa, (2.15)

where we have defined 25 5
Pla) = Sy 2.16
(a) =p1+ a + 2 ( )

This can equivalently be derived using egs. (2.10), (2.11), and (2.14), as well as by leaving
the Stiickelberg fields unfixed (recall that we have been working in unitary gauge from the
start) and taking their equation of motion [13, 45]. The pressure, p, appearing in eq. (2.15)
is the total pressure of the Universe, or, if different species couple to different metrics, the
total pressure of all matter coupled to gfj.

3 When do dynamical solutions exist?

In the original, singly-coupled formulation of massive gravity, 8 = 0 and so the right-hand
side of eq. (2.15) vanishes, with the result that a is constrained to be constant. This is nothing
other than the no-go theorem on flat FLRW solutions in massive gravity. A nondynamical
cosmology is, of course, still a solution when « and § are nonzero, in which case the values
of a and N are determined from egs. (2.10) and (2.11). The question is now under which
circumstances the theory also allows for dynamical a.

To begin with, let us follow the standard techniques of cosmology by modeling the
matter as a perfect fluid with p = wp, where w is either a constant or depends only on aeg.
Assuming that a # 0, eq. (2.15) becomes

m?Mp,a*P(a) = afwa’gp. (3.1)

Notice that due to our equation of state, p is a function only of a (or, equivalently, acg). To
see this, consider eq. (2.14) in the form

dlnp

o + 3[1 4+ w(aeg)] = 0. (3.2)
Integrating this will clearly yield p = p(aeg). Unless the left-hand side of eq. (3.1) has
exactly the same functional form for acg as the right hand side (which is, e.g., the case when
w = —1/3 and [y = P3 = 0), this equation is not consistent with a time-varying a. The
theory does therefore not give viable cosmologies where all matter coupled to gffg is described
with an equation of state p = wp if w is constant or depends only on the scale factor, as is
the case with, e.g., a standard perfect fluid.

This conclusion is avoided if the pressure also depends on the lapse. In this case, eq. (2.15)
becomes a constraint on the lapse, unlocking dynamical solutions.®> The most obvious way to

3 Another possibility is that the pressure depends on a. Given the functional form of this dependence, the
effective Hubble parameter in terms of aes can then be determined by combining egs. (2.12), (2.15), and (4.3).
We do not discuss this case any further.



obtain a lapse-dependent pressure is to source the Einstein equations with a fundamental field
rather than an effective fluid. This was exploited by ref. [45] to find dynamical cosmologies
with a scalar field coupled to gfﬁ. We discuss this case in more detail below. Therefore, while
physical dust-dominated solutions may exist, we must either include additional degrees of
freedom or treat the dust in terms of fundamental fields.* The standard methods of late-time

cosmology cannot be applied to doubly-coupled massive gravity.

4 Einstein frame vs. Jordan frame

Before examining the cosmological solutions in detail, it behooves us to further clarify the
somewhat unusual differences between this theory’s Einstein and Jordan frames. If all matter
couples to the effective metric, then, as we show below, the Friedmann equation in the
Einstein frame is completely independent of the matter content of the Universe (up to an
integration constant which behaves like pressureless dust). In the Einstein-frame description,
matter components with nonzero pressure affect the cosmological dynamics not through
the Hubble rate but rather through the lapse, N. Because the lapse is involved in the
transformation from the Einstein-frame H to the Jordan-frame Heg, cf. eq. (2.12), the Jordan-
frame Friedmann equation (corresponding to the observable Hubble rate) does depend on
matter.

We proceed to demonstrate this explicitly. Regardless of the functional form of p,
and whether or not it depends on the lapse, as long as a # 0 the pressure is constrained
by eq. (2.15) to have an implicit dependence on a given by

~ m*M3a*P(a)
pla) = Taegﬁ- (4.1)

The continuity equation (2.14) can then be integrated to obtain

C  3m’M3, <ﬁl 3 ) )
a) = —4— — ——— | —a’ + Ba” + P3a |, 4.2
o) agg Bagg 3 ’ ! 2

where C'is a constant of integration. Inserting this into eq. (2.10), we find a generic form for
the Einstein-frame Friedmann equation,

3H? = m? (co+3ﬂ+3%+c—§>, (4.3)
a a a

where we have defined the coefficients

a

co = Bo — Bﬁlv
c1=p1— %BQ?
co =2 — %ﬁ&
C
c3 = 3+ mgj\ng' (4.4)

4We note, however, that if the pressure of the dust is truly taken to be vanishing on large scales, then it
would seem from the Bianchi constraint (2.15) that the no-go theorem is still a problem.



Notice that the functional forms of p(a), p(a), and H?(a) are completely independent of the
energy content of the Universe, except for an integration constant scaling like pressureless
matter. It is interesting to note that in the vacuum energy case (see ref. [53]) with 3, =
(a/B)Bn+1, all of the ¢; coefficients apart from c3 vanish. Therefore if the metric interactions
took the form of a cosmological constant for gff,, then the Einstein-frame Friedmann equation
would scale as a 3.

We emphasize that the dependence of the Einstein-frame quantities solely on a and the
mass terms is interesting and is certainly unusual, but it does not mean that matter does
not affect the cosmological dynamics; as discussed above, if all matter couples to gz;ff, then
the observable Hubble rate is Heg, and this does depend on the matter content. If not all
matter were coupled to gfg — for example, if the standard model fields were coupled to g,
(as it is argued they should in ref. [45]) — then the expression (4.2) for p(a) would only apply
to the total density of the matter coupling to the effective metric, while the density of the
fields coupled to the dynamical metric would appear in the Friedmann equation for H in the
usual way.

5 Massive cosmologies with a scalar field

Let us turn to the properties of cosmological solutions. Recall that if we include matter whose
pressure does not only depend on the scale factor, aeg, then the Bianchi constraint (2.15)
may not rule out dynamical cosmological solutions. For a pressure that also depends on the
lapse, egs. (2.15) and (4.3) determine N and H, respectively. These can be used in turn
to derive the Jordan-frame Friedmann equation. Because the lapse enters into the frame
transformation (2.12), the Jordan frame can be sensitive to matter even though the Einstein
frame is not. The lapse thus plays an important and novel role in massive gravity compared
to general relativity.

As discussed above, lapse-dependent pressures are not difficult to obtain: they enter
whenever we consider a fundamental field with a kinetic term. Consider a universe dominated
by a scalar field, x, with a canonical kinetic term and an arbitrary potential.® Its stress-energy
tensor is given by

17 14 1 (6% v
T" = ngfXVeHX - <2vaXVeHX + V(X)) géfff’ (5'1)

where ngf = gé‘f}' Ve and V(x) is the potential. The density and pressure associated to x are

2 -2

X
= +V(X), px="5 -V (5.2)
N, ¥ ang

Px

The constraint (2.15) now has a new ingredient; the lapse, Nog, which appears through the
scalar field pressure.b

One can then use the Bianchi identity to solve for the lapse and substitute it into

the Friedmann equation to obtain an equation for the cosmological dynamics that does not

5We note here that, for illustrative purposes, all of our discussions of a scalar field will assume that it is
canonical. The more general P(X) case is discussed in some detail in ref. [45].

5The as theory studied in ref. [45] can be obtained by setting Bo = 3, f1 = —3/2, B2 = 1/2, and B3 = 0 [10].
With this parameter choice, the Bianchi constraint (2.15) reproduces eq. (5.8) of ref. [45].



involve the lapse [45]. A simple way to substitute out the lapse is to use the relation, following
straightforwardly from eq. (2.15),

(2 m2M?2.a’P(a
eff eff

as the lapse only appears in the Einstein-frame Friedmann equation through y?/2N, ezﬁ. Note
however that we can also use eq. (5.3) to solve for the potential, V' (x), and write the Einstein-
frame Friedmann equation in a form that does not involve the potential. Of course, if we were
to additionally integrate the continuity equation as discussed above, then the Einstein-frame
Friedmann equation would take the form of eq. (4.3) which contains neither the kinetic nor
the potential term.

Using egs. (4.1) and (4.2) we can find expressions for the kinetic and potential energies
purely in terms of a,

m2M2a3 /¢ co  C3
K(a) = ——P17_ (7 22 —) 5.4
(a) 20a3; \a a? * a’/)’ (54)
m2M2 CL3 d1 d2 d3
Via) = ——— (2dy + — +2—5 + — 5.5
(@) = - (20+ % 2%+ %), (5.5)
where K = x?/2NZ2;, the ¢; are defined in eq. (4.4), and we have further defined
a
do = 5/317
a
di =B+ 55527
a
d2 = 62 + 27/337
B
aC
d3s =83 — ———-. 5.6
3 =3 2 (5.6)

The integration constant, C, appears when solving the continuity equation (2.14). The
Friedmann equation is given by the generic eq. (4.3). That is, we are left with the pecu-
liar situation that the pressure, energy density, and Einstein-frame Friedmann equation are
completely insensitive to the form of the scalar field potential. As discussed above, this lack
of dependence on the details of the scalar field physics is illusory; the lapse does depend on
V(x) and x, cf. eq. (5.3), and in turn the Jordan-frame expansion history depends on the
lapse, cf. eq. (2.12).

Let us briefly remark on a pair of important exceptions. The no-go theorem forbidding
dynamical a still applies when there is a scalar field present if either the potential does not
depend on the lapse (such as a flat potential) or the field is not rolling. Let us rewrite eq. (2.14)
(which is equivalent to the Klein-Gordon equation) as

d XQ Qe X2
— | == +V 3 —— = 0. 5.7
dt (2Ne2ff i (X)> T N >0

If V(x) is independent of Neg then x?/NZ% cannot depend on Neg and, by extension, neither
can p = x*/2NZ; — V(x). In the specific case of V(x) = const. this is clearly true, and we
find x?/N2; o ae}? , 80 p = p(a). Similarly, if the field is not rolling, x = 0, then it is clear
from eq. (5.2) that p loses its dependence on the lapse.



To conclude this section, when a scalar field is coupled to the effective metric, we avoid
the no-go theorem and it is possible to have dynamical a, unless the potential does not
depend on the lapse (including a constant potential) or the field is not rolling. This result
agrees with and slightly generalizes that presented in refs. [45, 55]. In a realistic scenario,
however, we will have not only a scalar field but also matter components present. We now
turn to that scenario.

6 Adding a perfect fluid

We have seen that the no-go theorem on FLRW solutions in dRGT massive gravity continues
to hold in the doubly-coupled theory if the only matter coupled to the effective metric is
a perfect fluid whose energy density and pressure depend only on the scale factor. This
complicates the question of computing dust-dominated or radiation-dominated solutions in
massive gravity. One solution might be to treat the dust in terms of fundamental fields.
Another would be to add an extra degree of freedom such as a scalar field. Its role is to
introduce a lapse-dependent term into the Bianchi constraint (2.15) and thereby avoid the
no-go theorem.

It is this possibility which we study in this section. In section 5 we examined the
scalar-only case. Let us now include other matter components, such as dust or radiation,
also coupled minimally to gf“ff. We assume that the density and pressure of these matter
components, p, and pp, only depend on aeg.” We can then write the total density and
pressure as

p=K+V+pn,

p=K—V + pn, (6.1)
so that
g PtP- (pm+pm)’
2
V:p—p—(gm—pm)_ (6.2)

Note that egs. (5.4) and (5.5) no longer hold, as they were derived in the absence of other
matter, but eqs. (4.1) and (4.2) are still valid and are crucial.

We would like to investigate the cosmological dynamics of this model. Rather than
explicitly solving for the lapse and substituting it into the Friedmann equation for Heg,
which leads to a very complicated result, we will take advantage of the known forms of
K (aet) and V(aeg), as well as the fact that Neg only appears in Heg and K through the

operator

d 1 d
& Nepdi' (6.3)

The physical Hubble rate is given by

Qofr aa
Hpg=—— = : 6.4
of Qefr Nefr Qefr Nefr ( )

"As discussed above and in ref. [45], in principle any dust or radiation is made of fundamental particles for
which the stress-energy tensor does depend on the lapse. We introduce this effective-fluid description because
it is the standard method of deriving cosmological solutions in nearly any gravitational theory and is thus an
important tool for comparing to observations.



Using the chain rule, we can write

. da dadVdy  V'y
g—do_dadVdx VX (6.5)
dt — dVdy dt  (dV/da)

where a prime denotes a derivative with respect to x. We also know that x = NegV2K,
giving

. V'NgV2K 66)
- (dV/da) )
which we can plug into eq. (6.4) to obtain
V22K
H?% = (— 6.7
T 624 (dV/daeg)? (6.7)

This is the Friedmann equation for any universe with a scalar field rolling along a
nonconstant potential. Every term in eq. (6.7) can be written purely in terms of aeg, allowing
the full cosmological dynamics to be solved in principle. K and dV/daeg are given in terms
of acg by eq. (6.2) [using egs. (4.1) and (4.2)]. V' as a function of aeg can be determined
from the same equations once the form of V() is specified. Note that while the lapse is not
physically observable, its evolution in terms of a can then be fixed by using eq. (2.12) to find

N2 V/ 2
— =2K | —————— 6.8
Ngﬁ <aaH(dV/daeg)> ’ (6.8)

where H(a) is given by eq. (4.3).
Assuming that the matter has a constant equation of state, we can use the known forms
of K(a) and V (a) to find a relatively simple expression for the Friedmann equation up to V’,

(Heff>2 _ 40’ Baly (Co + Craeg + Caag + Cpaly) (6.9)
4 [3Co + 4C1ac + 5CaaZy + 3(1 — w)Cpady] v
where for brevity we have defined

Co=p [a3C + 8281 + m* Mp, (3 (B3 — B52))]

C1 = —2m> M3, [a (afs — 2882) + B2B1]

Co = m* Mg, (BP1 — afa),

C, = —aB(1+ w)pm. (6.10)

Notice that the right-hand side is a function of a only.

The Friedmann equation (6.9) cannot be straightforwardly solved for generic choices of
the potential, so we will make progress by examining past and future asymptotics, taking
into account radiation (w = 1/3) in the former and dust (w = 0) in the latter. Before we do
this, it is important to note that taking these asymptotics is not always simple, as we cannot
necessarily assume that aegz — 0 at the beginning of the Universe or that aeg — 00 as t — oo.
This means that, for example, our late-time analysis (in which ag is taken to infinity) will
only be applicable for cosmologies in which the Universe expands ad infinitum. Depending
on the choice of scalar field potential, the Universe might end up, for example, recollapsing
or approaching an asymptotic maximum value of a.g. A major aim of this section is to show

— 10 —



the difficulties in obtaining standard cosmologies with a scalar field and perfect fluid both
coupled to gfg; since a Universe which does not expand to infinity is highly nonstandard,
we will find it sufficient to take a.g — o0 as the late-time limit in our search for viable
cosmologies.® We will see an example of when this limit may not be applicable.

Taking aeg — 00 in eq. (6.2), we find

X2 a—oo. MEMB (BB — afs)

: ) 6.11

2Ne2ﬂr 203 Baeg ( )
Qe o0 /Blm2M2

V(x) 2 5 Pl (6.12)

We see that the scalar field slows to a halt: V() approaches a constant, while dx/dr, where
d7T = Negdt is the proper time, approaches zero. Notice that V() is forced by the dynamics
to approach a specific value, V — —61m2M§,1/a3B. A priori there is no guarantee this
value is within the range of V(x), assuming the scalar field potential is not somehow set
by gravitational physics. For example, a positive-definite potential like V ~ x? or V ~ x*
would never be able to reach such a value, assuming «, 3, and [3; are positive. Indeed, one
can solve eq. (6.2) explicitly for x(aeg) in such a case and find that, for large values of acg,
x and Heg are imaginary: there is a maximum value of acg at which x? and H esz Cross zero
and become negative. Because such cosmologies are highly nonstandard and are unlikely to
agree with data, we leave their study for future work.
Taking the large-acg limit of the Friedmann equation (6.9), we obtain

(Heff ) 2 Qeff — 00 40536

v 550, Qoff - (6.13)
Because V(x) approaches a late-time value given by eq. (6.12), then assuming V() is invert-
ible, x must also approach a constant x.. This means that V' = (dV/dx)|y=y. contributes a
constant to eq. (6.13). This is counter-intuitive; while the scalar field approaches a constant,
x — 0, V' can and generically will approach a nonzero constant, which is just the slope of the
potential evaluated at the asymptotic-future value of y, x.. The Klein-Gordon equation (5.7)
is still satisfied because, as long as V' does not go to zero, we can see from eq. (6.13) that
H.g — oo at late times. Therefore, the reason the scalar field slows down, in terms of the
Klein-Gordon equation, is that the Hubble friction grows arbitrarily large, bringing the field
to a halt even on a potential with a nonzero slope.” Unless the potential is contrived such
that V' — 0as V — —ﬂ1m2M§1/a3ﬂ, we see from eq. (6.13) that Heg generically blows up,
which is potentially disastrous behavior. This implies a violation of the null energy condition.

As we discuss below, if V'’ goes to 0 then, depending on the speed at which it does so,
Hog may be better behaved.

At early times, demanding the existence of a sensible radiation era leads to further
problems. Assuming radiation couples to gfﬁ, then py, ~ a;ﬂﬁl with py = pm/3. We have,
cf. eq. (6.2), that 2K = p+ p — (pm + Pm), but, cf. eq. (4.2), p and p do not have any
terms scaling as steeply as ae}f}. Therefore, in the presence of radiation, p, and p, pick up a
negative term going as ae_él to exactly cancel out py and py,, leading to K < 0 at sufficiently
early times. From eq. (6.7) we see that this would lead to a negative H, gﬁ, and hence to an

80f course, observations do not necessarily rule out the possibility of the scale factor not evolving to infinity,
but it seems likely that making such a model agree with the data would require some serious contrivances.
9We thank the referee for helpful discussions on this point.

— 11 —



imaginary Hubble rate. Equivalently, we can take the early-time limit of eq. (6.9) to show,

setting pm = poaeﬂ},
H 2 a— 3
< eﬁ) e . Z6L Y (61 )

v’ 4po

so that again we see (for a real potential) Heg becoming imaginary.

How could these conclusions be avoided? We can reproduce sensible behavior, but only
if the potential is extremely contrived. At early times, we would need to arrange the scalar’s
dynamics so that V' — oo “before” (i.e., at a later acg than) K crosses zero.'? We would then
reach the initial singularity, He.g — 0o, before the kinetic term turns negative.'’ Moreover,
we would need to tune the parameters of the theory so that K = 0 happens at extremely early
times, specifically before radiation domination. At intermediate times, V' would need to scale
in a particular way to [through eq. (6.9)] reproduce H, egﬁ ~ ae};l and Hgﬁ‘ ~ a;ff?’ during the
radiation- and matter-dominated eras, respectively. Finally, in order to have Heg — const.
at late times, we see from eq. (6.13) that we would require V' to decay as ae_ffl 2. We can
construct such a potential going backwards by setting Hog = Hacpwu in eq. (6.9), but there
is no reason to expect such an artificial structure to arise from any fundamental theory. Even
then we may still get pathological behavior: we can see from eq. (2.12) that Neg diverges if,
at some point during the cosmic evolution, Hegaegr = Ha.

7 Mixed matter couplings

Before concluding, we briefly discuss a slightly different formulation which avoids some of
these problems. If we consider a scalar field and a perfect fluid, the avoidance of the no-go
theorem on FLRW solutions only requires that the scalar field couple to gfg. In principle, all
other matter could still couple to g,,. In fact, this is the theory that was studied in ref. [45],
where it was argued more generally that only a new dark sector should couple to gfﬁ, while
the standard model, as well as dark matter and dark energy, should couple to g,,. This
theory violates the equivalence principle in the scalar sector, but is not a priori excluded,
and will turn out to have somewhat better cosmological behavior. Moreover, there is a
compelling theoretical reason to consider such “mixed” couplings: matter loops would only
generate a cosmological constant and would not destabilize the rest of the potential. This is
because the vacuum energy associated to gfﬁf takes the form of the dRGT potential with all
Bn parameters nonzero, while the vacuum energy of matter coupled to g,, only contributes
to fp [56]. We note that this problem may nevertheless persist with the dark fields that
couple to gﬁ%, unless their vacuum energy is somehow protected from loop corrections. We
have seen in section 5 that one simple possibility, using a massless field, does not seem to
work because after integrating the Klein-Gordon equation, the pressure loses its dependence
on the lapse.

Because the perfect fluid couples to g,,, and we derived the Bianchi constraint (2.15) by
taking the g-metric divergence of the Einstein equation, the constraint will now only contain
Dy rather than the total pressure, i.e.,

m?Mpa*P(a)a = aBagpya. (7.1)

The other obvious possibility, having dV/dacs reach 0 before K does, is impossible given the forms of
K(a) and V(a).

HThis proposal has an interesting unexpected advantage: the Universe would begin at finite aeg, so a UV
completion of gravity might not be needed to describe the Big Bang in the matter sector.
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This is the same constraint as in the scalar-only case discussed in section 5, so the scalar’s
kinetic and potential energies have the same forms, K (a) and V' (a), as in egs. (5.4) and (5.5).
The physical Hubble rate is now H, which after solving for the lapse is determined by the
equation'?

C3

3H2 = P +m2<60+3%+3%+$), (7.2)

7,
where the ¢; coefficients are defined in eq. (4.4). We emphasize that eq. (7.2) is completely
generic when some matter couples to g,, and some, possibly in a dark sector, couples to
ngf. We have not assumed anything about the structure of the fields coupling to the effective
metric, as we can derive eq. (4.2) for p(a) and hence eq. (7.2) simply by using the Bianchi
constraint to integrate the stress-energy conservation equation.

The cosmological behavior in this theory is fine. Because the scalar field does not have
to respond to matter to maintain a particular form of p(a) and p(a), we no longer have
pathological behavior in the early Universe, where there will be a standard a~* evolution.
Moreover, as was pointed out in ref. [55], there is late-time acceleration: as py, — 0, 3H? —
m?2(Bo — (a/B)B1), which, if positive, leads to an accelerating expansion.

However, these are not always self-accelerating solutions. We will demand two condi-
tions for self-acceleration: that the late-time acceleration not be driven by a cosmological
constant, and that it not be driven by V(x), as both of these could easily be accomplished
without modifying gravity. In other words, we would like the effective cosmological constant
at late times to arise predominantly from the massive graviton.

Let us start with the first criterion, the absence of a cosmological constant. One can
write the dRGT interaction potential in terms of elementary symmetric polynomials of the
eigenvalues of either X = /g=1f or K=1— X, with the strengths of the interaction terms
denoted by f, in the first case and by «,, in the latter [10, 12]. What is notable is that
ag # Po: the cosmological constant is not the same in these two parametrizations. Terms
proportional to \/—g arise from the other interaction terms when transforming from one basis
to the other. We have worked in terms of 3, as it is mathematically simpler, but in massive
gravity with a Minkowski reference metric, the presence of a Poincaré-invariant preferred
metric allows for a more concrete definition of the cosmological constant in terms of ay,.'3
Consider expanding the metric as

uv = Nuv + Qh;w + huahuﬂnuy‘ (73)

This expansion is useful because the metric is quadratic in A, but is fully nonlinear, i.e., we
have not assumed that hy, is small [12]. In this language, the cosmological constant term,
proportional to y/—g, can be eliminated by setting ap = «; = 0. Making this choice of
parameter, and using the fact that «,, and j,, are related by [10]

4

_1\t+n
Bn=(A—n)y_ (4_(2)1'22_71)'@ (7.4)

i=n

12Using the transformations to the ae theory in footnote 6, we recover eq. (5.9) of ref. [45].
3We thank Claudia de Rham for helpful discussions on this point.
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we find the effective cosmological constant can be expressed in terms of ap 34 by

2
Aer = % <50 - g&)

:";)2 [3@ <2+g> — a3 <4+3g>+a4 (1+;)] (7.5)

Part of this constant comes from the fixed behavior of the scalar field potential.'* This
piece is not difficult to single out: it consists exactly of the terms in eq. (7.5) proportional to
a/f. Taking the late-time limit of eq. (5.5), we can see that V(x) asymptotes to

2072
Mg,51
V() fenmee, TR 7.6
() r (7.6)
Now consider the Friedmann equation in the form (2.10) with, at late times, p — 0. We can
define a cosmological-constant-like piece solely due to the late-time behavior of V' given by

AV (e \3 aug—oo M2
Ay = (B 2 T2 (30, — . .
X 3M1%1 a 33 (Bag — 3as + ay) (7.7)
Then eq. (7.5) can simply be written in the form
m? m?
Aer = 3 (6ag —4das +oy) + Ay = ?50 +A,, (7.8)

where in the last equality we mention that the residual term is nothing other than m?3,/3,
which is simply a consistency check.

The modifications to gravity induced by the graviton mass therefore lead to a constant
contribution to the Friedmann equations at late times, encapsulated in m23y/3 (with ag =
a1 = 0, so we do not identify this term with a cosmological constant). In a truly self-
accelerating universe, this term should dominate A,. If it did not, the acceleration would be
partly caused by the scalar field’s potential, and one could get the same end result in a much
simpler way with, e.g., quintessence. For generic values of «a,, and for § ~ O(1), both of
these contributions are of a similar size and will usually have the same sign. To ensure self-
accelerating solutions, one could, for example, tune the coefficients so that 3as —3as+ay4 =0
(the scalar field contributes nothing to Aeg) or 3ag —3as+ay < 0 (the scalar field contributes
negatively to Aeg), or take 8 < 1 (the scalar field contributes negligibly to Aeg).

We end this section by briefly discussing the link between theory and observation in this
particular model. One might worry that the predictivity of the theory is hurt by demanding
that there be a new dark sector coupled to gﬁfg. It is then natural to suspect that the task
of confronting doubly-coupled massive gravity with observations is hopelessly dependent
on the nature of this new dark sector, and the theory’s parameters will consequently be
more difficult to constrain. Yet we have seen in this section that that is not true: the
Friedmann equation (7.2) makes no reference to any details of the dark field or fields.!

" Notice from eq. (5.4) that, as in section 6, the scalar field slows down to a halt at late times, so there is
no contribution from the kinetic energy.

15This is not the case when all matter couples to the effective metric, as observations would trace gf“ff, which
is sensitive to the nature of the dark sector, rather than g,..,. We have, however, seen that the case where the
standard model couples to g,. is by far the best-behaved version.
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Recall from section 4 that this is a consequence of the Bianchi constraint on the dark sector.
We thus have the unusual result that the expansion history in the theory with a new dark
sector, and nothing else, coupled to gff, is completely insensitive to the nature of the dark
fields.' There could be one scalar field or more, with any assortment of potentials and
kinetic terms, and as long as they exist, and are subject to the technical conditions discussed
above (such as having a nontrivial potential, if the kinetic term is canonical), then their
contribution to the cosmological dynamics is given by the mass term in eq. (7.2). This is
good news for observers looking to perform geometrical tests of this theory. However, we are
not aware of any reason that this lack of dependence on the details of the dark sector should
extend beyond the simple background FLRW case. Even linear cosmological perturbations
might be sensitive to the dark physics [55], which would present a challenge in comparing
this theory to structure formation.

8 Discussion and conclusions

One can extend dRGT massive gravity by allowing matter to couple to an effective metric
constructed out of both the dynamical and the reference metrics. The no-go theorem ruling
out flat or closed homogeneous and isotropic cosmologies in massive gravity [13] can be
overcome when matter is “doubly coupled” in such a way [45, 55]. We have shown that
this result is, unusually, dependent on coupling the effective metric to a fundamental field,
as the no-go theorem is specifically avoided because the pressure of such matter depends
on the lapse function. This lapse dependence is not present in the perfect-fluid description
typically employed in late-time cosmological setups, such as radiation (p ~ agﬁfl) and dust
(p = 0), and therefore a universe containing only such matter will still run afoul of the
no-go theorem. While this may not be a strong physical criterion — cosmological matter
is still built out of fundamental fields — it presents a sharp practical problem in relating
the theory to cosmological observations. If we assume that matter is described by perfectly
pressureless dust, which is sensible on very large scales, then even the field description might
not be sufficient, as the absence of pressure would set the right-hand side of eq. (2.15) to
zero. Furthermore, if one uses a scalar field to avoid the no-go theorem, it cannot live on a
flat potential and must be rolling. The latter consideration would seem to rule out the use
of the Higgs field to unlock massive cosmologies, as we expect it to reside in its minimum
cosmologically.

Overall, in principle one can obtain observationally-sensible cosmologies in doubly-
coupled massive gravity, but either a new degree of freedom must be included, such as a
new dark field or some other matter source with a nontrivial pressure, or we must treat
cosmological matter in terms of their constituent fields. Thus we cannot apply the standard
techniques of late-time cosmology to this theory.

We have further shown that if dust and radiation are doubly coupled as well — which
is necessary if we demand the new scalar matter obey the equivalence principle — then the
cosmologies generically are unable to reproduce a viable radiation-dominated era, and in
the far future the Hubble rate diverges, rather than settling to a constant and producing
a late-time accelerated expansion. These pathologies can only be avoided if the scalar field
potential is highly contrived with tuned theory parameters, or dust and radiation do not
doubly couple. In the latter case, there is generically late-time acceleration, but for much
of the parameter space this is driven in large part by the potential of the scalar field. In

16See ref. [45] for a complementary derivation of this result.
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those cases the modification to general relativity may not be especially well motivated by
cosmological concerns, as the scalar field would play the role of dark energy and not provide
much benefit over simple quintessence. Otherwise, the parameters of the theory need to be
tuned to ensure that the theory truly self-accelerates.

It seems that the dRGT massive gravity only has viable FLRW cosmological solutions
— i.e., that evade the no-go theorems on existence [13] and stability [20] — if one either
includes a scalar field or some other “exotic” matter with a lapse-dependent pressure (or
possibly a pressure depending on @) and couples it to the effective metric proposed in ref. [45]
or goes beyond the perfect-fluid description of matter. Even if one includes a new scalar
degree of freedom, significant pathologies arise if normal matter couples to the same effective
metric. In all setups, the need for descriptions beyond a simple perfect fluid makes this
theory problematic from an observational standpoint. Indeed, one might compare this to
the situation with the original dRGT theory, in which all matter couples to g,,. While
FLRW solutions do not exist in this case, it is possible by mildly breaking the assumption
of isotropy and homogeneity to evade the no-go theorem [13]. The real problem is that by
dropping the highly-symmetric FLRW ansatz, we lose a great deal of predictability and it
becomes significantly more difficult to unambiguously compare the theory to observations.

We end with three small caveats. Notice that we have assumed that in unitary gauge for
the Stiickelberg fields, i.e., choosing coordinates such that 7, = diag(—1,1,1,1), the metric
has the usual FLRW form (2.6). However, that form is arrived at by taking coordinate
transformations of a more general homogeneous and isotropic metric, so that assumption
may be overly restrictive.!” Equivalently, one could consider a more general, inhomogeneous
and/or anisotropic gauge for the Stiickelbergs.

We also note that if this theory does possess a ghost, even with a mass above the
strong-coupling scale, solutions to the nonlinear equations of motion could contain the ghost
mode and therefore not be physical.!® In other words, the ghost-free effective theory below
the strong coupling scale and the theory we have been studying may not have coinciding
solutions. However, a Hamiltonian analysis showed that the ghost does not appear around
FLRW backgrounds [45], suggesting that we have studied the correct cosmological solutions
to any underlying ghost-free theory.

Finally, if one simply gives dynamics to the reference metric, we end up with a theory of
doubly-coupled bigravity which treats the two metrics on completely equal footing and has
been shown to produce observationally viable cosmologies [53], although some of the issues
with doubly-coupled massive gravity, such as the potential ghost problem, will still remain.
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order to suppress the growing modes and make the model compatible with CMB spectra, we
find it necessary to either fine-tune the initial conditions, modify the theory or set the cut-off
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such that the growing mode is sufficiently suppresed can be achieved in scenarios in which
inflation ends at the GeV scale.
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1 Introduction

Evidence from an increasing number of cosmological observables favours an accelerating uni-
verse at late times [1-9]. This era of accelerated expansion may be due to novel gravitational
physics, which will be tested by ongoing and future experiments [10]. This possibility has
triggered vigorous interest in alternative theories of gravity [8, 11, 12]. Any modification of
gravity requires new degrees of freedom (dof). Since the theory of a massless graviton is
unique, new dofs are often gained by adding new fields. The simplest possibility is the addi-
tion of a scalar field, typically resulting in theories belonging to the Horndeski class [13, 14]
or beyond [15-17].

Formulating a theory of massive gravity has been a long standing problem in theoret-
ical physics due to the difficulties to incorporate the right degrees of freedom. The linear
Fierz-Pauli theory had been developed long time ago [18], but until recently all non-linear
completions introduced the so called Bouleware-Deser (BD) ghost [19], an extra dof that
makes the theory not viable. Despite the difficulties, a class of healthy theories has been
recently identified [20] in which a specific choice of the potential terms makes the theory
ghost-free [21]. All these theories of massive gravity describe an interaction of two tensor
fields in which the second one, the so called reference metric, is fixed. While massive gravity
only allows static solutions on homogeneous backgrounds [22], a bimetric theory with a dy-
namical reference metric does not introduce the BD ghost and describes dynamical cosmolo-
gies [23-25] (see also the reviews [26, 27]). Cosmological solutions in these bimetric theories
often allow for self-acceleration without the introduction of a cosmological constant [28] and
were successfully compared to observations at background level [28-30].

Many bigravity theories are however affected by gradient instabilities in their scalar
sector, as has been shown by studies of the linear perturbations [31-33] (see refs. [32, 34] for



derivations of the equations refs. [35-39] for discussion of their dynamics). Stable evolution
can be achieved only in a two parameters class of models known as Infinite-Branch Bigravity
(IBB) [36]. In IBB, the reference metric (in keeping with common usage, we keep referring
to the second metric as reference metric even if in reality is dynamical; we also use the
notation f-metric) is contracting during the radiation and most of the matter era, until
it undergoes a bounce at low redshift and begins to expand, coinciding with the onset of
accelerated expansion in the physical metric without the need for a cosmological constant.
The early time contraction of the reference metric makes tensor perturbations grow with time
in IBB theories, as it was first shown in refs. [37, 40] (see also [32, 41] for modified tensor
perturbation equations). This growing mode couples to the physical metric and severely
modifies its dynamics, leading to observable consequences.

In this paper we will investigate the effects of these large tensor perturbations on the
Cosmic Microwave Background (CMB) and possible mechanisms to make the theory compat-
ible with current observations. The perturbations in the reference metric grow very fast and
rapidly become non-linear. At this point we will assume that tensor perturbations stabilize,
modeling this effect by introducing a cut-off in the perturbations of the reference metric.
Despite this treatment, the tensor growing mode significantly affects the evolution of the
physical metric, and the consequences can be seen as an enhancement of both temperature
and polarization spectra on low multipoles. These effects cannot be sufficiently reduced by
varying the bigravity or other cosmological parameters: making the theory viable requires
either fine tuning of the initial conditions, lowering the cut-off or modifying the theory. As
it will be shown below, sufficient suppression of the growing mode can be achieved by an
inflationary mechanism that produces Hubble-scale tensor perturbations at an energy scale
of order few GeV.

2 Bigravity

We start with the action of the form [23]
M2
/d4x\/ gR(g /d41‘\/ fR(f (2.1)
+m2M92/d4a:\/—gZﬂnen(X) + /d4:z:\/—g/lm
n=0

where e, (X) are the elementary symmetric polynomials of the eigenvalues of the matrices
X5 =y 9“8 fgy, My and My are the Planck masses for g, and f,, respectively, m is the
mass scale of the graviton, (3, are arbitrary constants and L,, = L,,(g,%) is the matter
Lagrangian. Throughout the paper we will use a mostly plus metric signature convention
and natural units in which the speed of light c¢ is set to one.

Here g, is the standard metric coupled to matter fields in the £,, Lagrangian, while
fuw is an additional dynamical tensor field. In the following we express masses in units of
the Planck mass M, and the mass parameter m? will be absorbed into the parameters f3,.
Varying the action with respect to g,,, one obtains the following equations of motion:

3
1 n
G+ 5 D (=128 [ 1Y), (X) + 9020, ()] = Th (2.2)

n=0



where G, is Einstein’s tensor, and the expressions Y(i‘L )V(X ) are defined as

Yoy =1, (2.3)
Yy =X - I[X],
Yo = X — X[X] + %I (X% = [X?)) (2.5)

1
Yoy = X = X°[X] + LX ((X]? ~ [x%)
1
-5l (X% = 3[X][X?] + 2[X?)) (2.6)
where [ is the identity matrix and [...] is the trace operator.
Varying the action with respect to f,, we get

3
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where the overbar indicates f,, curvatures. Notice that 3y acts as a pure cosmological
constant, which is however not required to satisfy current observations. Finally, the rescaling
f—= M 2f. Bn— M7 By, allows us to assume My = 1 in the following (see [42]). Additionally,
from now on we absorb the graviton mass m into the constants ;.

We assume now a cosmological spatially flat FRW metric:

ds* = a*(7) (—dr* + dx;dzx") (2.8)

where 7 represents the conformal time and a dot will represent the derivative with respect
to it. The second metric is chosen also in a spatially FRW form

ds? = — [6(7)2/}12(75)} dr? + b(7)?dz;da’ (2.9)

where H = a/a is the conformal 