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Axions, Wormholes and Inflation in the String Landscape

This thesis explores the string theory landscape in two distinct approaches. First, we
study dark radiation predictions in Large Volume Scenarios (LVS). Specifically, we realise
the visible sector by D7-branes wrapping a 4-cycle. In consequence, the tension between
the predicted effective number of relativistic species and recent cosmological measurements is
reduced, and further ameliorated by accepting fine-tuning. Next, we investigate whether large-
field inflation is consistent with quantum gravity. We propose realisations of axion monodromy
inflation and alignment inflation in string theory. Due to backreaction of moduli on the
inflaton, axion monodromy inflation requires potentially severe fine-tuning, which we realise
on Calabi-Yau 4-folds, whereas we find no-go results on Calabi-Yau 3-folds. The severity of the
tunings is quantified by the diminution of the landscape vacua after imposing the fine-tuning
conditions. Furthermore, alignment inflation is realised by a winding trajectory in the field
space of two complex structure moduli. Severe fine-tuning seems avoidable and consistency
with the mild Weak Gravity Conjecture possible, albeit not with its strong version. Finally,
we investigate the role of gravitational instantons for axion inflation. Although Giddings-
Strominger wormholes are shown to induce corrections to the axion potential, a derivation of
relevant constraints on the axion field range remains challenging.

Axione, Wurmlocher und Inflation in der String-Landschaft

Die vorliegende Arbeit untersucht die String-Landschaft durch zwei Methoden. Zuerst
studieren wir Vorhersagen zu Dunkler Strahlung im Rahmen des “Large Volume Scenar-
ios” (LVS). Insbesondere betrachten wir Modelle, in denen der Sektor des Standardmodells
durch D7-Branes, die einen 4-Zykel umwickeln, realisiert wird. Daraus resultiert eine Ver-
ringerung der Abweichung theoretischer Vorhersagen beziiglich der effektiven Anzahl rela-
tivistischer Spezies von kosmologischen Messungen. Diese Diskrepanz kann durch Feinab-
stimmung weiter reduziert werden. Anschliefend gehen wir der Frage nach, ob “Large-Field
Inflation” mit Quantengravitation konsistent sein kann. Dazu schlagen wir Realisierungen
von “Axion Monodromy Inflation” und “Alignment-Inflation” in Stringtheorie vor. Aufgrund
von Riickkopplungseffekten von Modulifeldern auf das Inflaton erfordert “Axion Monodromy
Inflation” potenziell starke Feinabstimmung, die wir auf Calabi-Yau 4-Falten realisieren. Auf
Calabi-Yau 3-Falten ist die Moglichkeit dieser Feinabstimmungen weitgehend untersagt. Die
Strenge dieser erforderlichen Bedingungen quantifizieren wir, indem die verbleibende An-
zahl der String-Vakua nach Beriicksichtigung der Feinabstimmungen abgeschétzt wird. Des
Weiteren realisieren wir “Alignment-Inflation” auf Basis einer Trajektorie, die den Feldraum,
aufgespannt durch zwei Parameter der komplexen Struktur der zugrunde liegenden Calabi-
Yau 3-Falt, mehrfach umwindet. Dabei ist keine strenge Feinabstimmung erforderlich und
Konsistenz mit der milden “Weak Gravity Conjecture”, nicht aber mit der starken Version
derselben, méglich. Schliellich untersuchen wir die Rolle gravitativer Instantone fiir Axion-
Inflation. Wir stellen fest, dass Giddings-Strominger Wurmlécher zwar Korrekturen zum
Axion-Potential induzieren, sich jedoch nicht ohne Weiteres relevante Einschrankungen auf
den Axion-Feldraum herleiten lassen.
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CHAPTER 1

Introduction and Basics of String Cosmology

The aim of this chapter is to make the reader familiar with the minimal basics of string cos-
mology and to summarise both the goals and results of the projects the thesis is based on.
Therefore, we begin by a general introduction and motivation of the thesis. The subsequent
sections summarise the basic concepts and notions of cosmological inflation, moduli stabili-
sation and the string landscape. Afterwards, a more technical and detailed summary of the
contents of the thesis is provided.

1.1. Motivation of the Thesis

Theoretical and experimental high energy physicists arguably live in an exciting era of fun-
damental research. The progress in mathematical and theoretical physics has resulted in a
rich toolbox for model building in particle physics and cosmology. At the same time, model
builders and phenomenologists can expect even more guidance from collider physics experi-
ments and astrophysical as well as cosmological observations in the near future.

Most prominently, the Large Hadron Collider (LHC) is able to probe energy scales of ap-
proximately 14 TeV and, therefore, recent data put already stringent constraints on various
models of particle physics beyond the Standard Model (SM) or even exclude them. In par-
ticular, many physicists are/were hoping to find supersymmetry (SUSY) at the LHC, but at
least up to now there is no experimental evidence for SUSY at the accessible energy scale.
Not finding any superpartners at the TeV scale could force us to drop the hope to ameliorate
the hierarchy problem via supersymmetry, and instead we might have to accept a fine-tuned
Higgs mass. A possible conclusion could be that (bottom-up) naturalness is not always the
guiding principle of nature. In this case, one would have to face the possibility of fine-tuned
physical parameters.

Furthermore, recent measurements of the Cosmic Microwave Background (CMB) provide
new data on cosmological parameters with unprecedented precision. For instance, the effec-
tive number of relativistic neutrino species is quoted to be Neg = 3.15 + 0.23 (1o; Planck
TT+lowP+BAO) [1], which is to be compared with the value Neg.sm = 3.046 expected from
the Standard Model. Those measurements put tight constraints on models predicting an
extra type of hidden relativistic species, which is (in analogy to “dark matter”) called dark
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radiation. Moreover, the Planck collaboration can measure scalar perturbations predicted
by inflation. They are quantified by the scalar spectral index ng, which is measured to be
ns = 0.968 £ 0.006 (Planck TT+lowP+lensing) [2]. Apart from scalar perturbations one also
expects tensor perturbations from inflation, which are quantified by the tensor-to-scalar ratio
r. So far, measurements could only provide an upper bound r < 0.11 (95% CL) (Planck
TT+lowP+lensing) [2]. If the measurements by the Planck and BICEP2/Keck Array collab-
orations are combined [3], the upper bound is even reduced to r < 0.07 (95% CL). Due to
the increasing sensitivity of planned experiments and measurements we can expect stricter
bounds in the near future or, in the case of a detection of primordial gravitational waves, even
a precise value of r. From a theoretical point of view it is important to know whether r is
below or above the value r ~ 0.01, because r 2 0.01 requires super-Planckian field displace-
ments of the inflaton field. Thus, fine-tuning of the Wilson coefficients of higher-dimensional
operators to protect the inflaton-potential is no longer sufficient. Instead, a shift symmetry
is needed to protect the flatness of the potential.

There are certainly more astrophysical measurements and missions to be mentioned here, for
instance missions of detecting gravitational waves from black holes or from phase transitions
in early epochs of the universe. Furthermore, missions probing the late-time evolution of
the universe are expected to improve our understanding of dark energy and dark matter. In
addition, such missions allow for further tests of general relativity at large scales. Discussing
these topics in detail goes however beyond the scope of this thesis.

String theory is a prominent candidate for a unifying framework of all four fundamental
forces (electromagnetism, strong force, weak force, and gravity) we observe in nature. It
is thus exciting to understand the implications of string theory applied to particle physics
and cosmology, e.g. in the context described above. This area of research is called string
phenomenology and the (in itself very rich) subject of string cosmology comprises all questions
related to applications of string theory to cosmology.

Crucially, (super-)string theory is a theory in ten dimensions.' In fact there are five con-
sistent versions, namely type I, type IIA, type IIB, SO(32) heterotic, and Eg x Eg heterotic
string theory, but they are related to each other via dualities (see e.g. [4] for a review).

Effective four-dimensional theories from string theory can be obtained as follows: Take a
string theory, for example type 1IB string theory, and consider its low-energy limit, which is
(in our example) 10-dimensional type IIB supergravity. This theory needs to be compactified
to four dimensions. The compactification geometries are typically Calabi- Yau (CY) manifolds
(of complex dimension three).

However, given any CY 3-fold?, one does not obtain a unique vacuum of the four-dimensional
theory. Instead, one discovers a large but discrete set of vacua. This set of vacua is referred to
as the string theory landscape. Qualitatively, one can understand its origin as follows: the size
and shape of the CY geometry is accounted for by the appearance of scalar fields, so-called
moduli fields, in the four-dimensional effective theory. Those moduli fields have to be fixed in
order to obtain a (sufficiently) stable vacuum. There are well-known mechanisms of moduli
stabilisation (see e.g. [5-7]). The stabilisation requires non-zero fluxes® and one finds that the
vacuum is parameterised by a set of integers. For distinct choices of flux numbers one obtains

!There is also bosonic string theory, which requires 26 spacetime dimensions. Superstring theory, however, is
consistent only for ten spacetime dimensions. In the following we mostly write “string theory”, but actually
mean “superstring theory”.

2CY manifolds of complex dimension d are often referred to as CY d-fold.

3The fluxes occurring in type IIB string theory are analogous to the 2-form flux in electrodynamics; specifically
in type IIB string theory, 3-form fluxes will be used for moduli stabilisation.
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EFT in the string landscape v et - i _ EFT in the swampland

Stringy EFT
consistent with observations -

string landscape

swampland

Figure 1.1.: Effective field theories (EFTs) which can be obtained from string compactifica-
tions are part of the string landscape (blue region). The rules of string theory (or
quantum gravity) are expected to define the shape of the boundary of the string
landscape within an even much larger set of EFTs, which cannot be obtained from
string theory. This set is referred to as the swampland (green region). The red
dot symbolises a stringy EFT, which is part of the string landscape and consistent
with current data. This illustration is inspired from typical representations of the
landscape within the swampland, such as in [20].

different vacua. Since the flux numbers are subject to a constraint (the tadpole-cancellation
condition), the number of string vacua is believed to be finite, see [8-13] and e.g. [14-18] for
reviews on the topic. In the past, the number of such vacua has been estimated and the
results are often quoted as 10°% vacua [17].

This diversity of string vacua allows in principle to construct many models of particle
physics and cosmology, each with distinctive features and parameters. In particular, the
string landscape may support the concept of fine-tuned physical parameters as an alternative
to the idea of naturalness. For instance, the small Higgs mass or the tiny cosmological constant
[8] can be explained by the huge number of string vacua in combination with the anthropic
principle.?

In this thesis, we want to understand how generic certain features of the string landscape
are. We focus on applications to early-universe cosmology. In particular, the guiding questions
of this thesis are:

e How generic is dark radiation in reheating models obtained from string compactifica-
tions?

4Reviews on the string landscape, anthropic arguments in physics and the multiverse can be found in [19].
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e Are there no-go arguments for large-field inflation models in string theory?

The first question is addressed in Chapter 2 using the Large-Volume Scenario [7] as a moduli
stabilisation scheme, in which the occurrence of dark radiation is generic due to the presence
of an essentially massless axion. We demonstrate how and under which circumstances such
models can still be consistent with the latest measurements Neg = 3.15 4+ 0.23. While it is
still possible to realise Large-Volume models consistent with current measurements of Neg
(accepting some fine-tuning in such models), these scenarios may easily be ruled out when
error bars of the measurements continue to decrease and the central value converges towards
the value predicted by the SM. In consequence, a large set of string vacua could easily be
ruled out just because of the dark radiation excess.

We approach the second question in Chapters 3 to 5 by exploring the “shape” of the string
landscape in the so-called swampland [21]. It is defined as the set of all effective field theories
(EFTs), whose UV-completions are inconsistent with quantum gravity. Using string theory
as a theory of quantum gravity, the string landscape is expected to be surrounded by a much
larger swampland [21], see Figure 1.1, because string vacua are parametrised only by integral
flux numbers. The boundaries of the string landscape within the swampland are investigated in
three distinct approaches. We demonstrate how geometric constraints in type IIB string theory
can complicate the explicit construction of a fine-tuned model of axion monodromy inflation in
the string landscape. Under certain circumstances the required fine-tuning conditions cannot
be met, see Chapter 3. Furthermore, various quantum gravity arguments suggest that string
vacua must obey the so-called Weak Gravity Conjecture (WGC) which states the following: in
any U (1) gauge theory there must always be a charged particle whose charge-to-mass ratio is
such that the gravitational attraction between two such particles is always subdominant over
their repulsion due to the gauge theory [20]. Thus, there must be a particle of mass m and
charge ¢ such that ¢M,/m 2 1, where M, is the reduced Planck mass. Depending on details
of its formulation, the WGC has the potential to rule out models of axion inflation. Hence,
the WGC may provide explicit examples of EFTs of inflation residing in the swampland. In
Chapter 4, we propose an example of axion inflation consistent with a “mild version” but in
conflict with a “strong version” of the WGC (for details of these versions of the WGC see
Section 1.4). Finally, in Chapter 5 we investigate whether gravitational instantons in theories
of axions coupled to gravity are able to break their shift symmetry strongly enough, such that
axion inflation can be constrained in a model-independent manner. We show, however, that
effects of gravitational instantons are too weak to formulate general non-trivial constraints on
axion inflation.

We conclude that certain corners of the string landscape can have common phenomeno-
logical features such as dark radiation, and thus are falsifiable already by present data. It is
therefore crucial to work out and to improve our understanding of phenomenological features
of the string landscape. Moreover, exploring the boundaries of the string landscape within
the swampland is a promising path towards a tool to evaluate whether an EFT is part of the
swampland or the landscape. Specifically, we hope to gain further constraints for inflationary
model building.

1.2. Cosmological Inflation in String Theory — A Brief Overview

The framework of cosmological inflation [22-25] is widely accepted to complete the standard
Big Bang cosmology by solving the horizon and flatness problems.® Additionally, quantum

SFurthermore, cosmic inflation automatically explains why no magnetic monopoles have been observed.
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fluctuations during inflation [26-30] give rise to observable cosmological density perturbations.
This section aims to briefly review the basics of slow-roll inflation and to argue why it is
important to investigate inflation in string theory. Nice and detailed presentations of these
topics can be found e.g. in [31; 32].

1.2.1. Slow-Roll Inflation

Most models of cosmological inflation are based on the idea of a scalar field ¢ with minimal
coupling to Einstein gravity, which slowly rolls down its potential. This slow-roll phase ensures
that the potential energy V(¢) of the scalar field dominates over its kinetic energy so that a
controlled (approximate) exponential expansion of the universe can take place. This is the
idea behind slow-roll inflation. The action for single-field slow-roll inflation is given by®

2
5= [dtav=g [AZR — 58" 00000 — V<¢>] , (12.1)

where M, is the (reduced) Planck mass and R the Ricci scalar for the metric g,,. As a
background we use the Friedman-Robertson-Walker (FRW) metric

dr?
d32 = —dtz =+ GQ(t) (1—]{7’2 + 7"2d93> y (122)
where k = —1,0, +1 is the curvature parameter and d23 the line element on S2. The function

a(t) is the well-known scale factor. Variations of the action with respect to g,, and ¢ yield
the Friedman equation (neglecting the spatial curvature term),

1.
2772 o L2
3M,H" ~ §¢ + V(o) , (1.2.3)
and the Klein-Gordon equation,
¢+3HO+ V() =0, (1.2.4)

where H = a/a is the Hubble parameter and V' = 04V . Here, we assumed that ¢ is spatially
homogeneous, i.e. » = ¢(t), being consistent with the symmetries of the FRW metric.
Slow-roll inflation requires to find a solution to these equations of motion while satisfying
the slow-roll conditions V (¢) > ¢?/2 and |¢| < 3H¢ (i.e. the dynamics is dominated by the
friction term). One can show [31; 32] that these requirements are met as long as the two

conditions
M2 V/ 2 V
_Mp _ a2
=+ (= 1 =M:|—
v = (v) <1, |l » |7
are satisfied. Inflation stops whenever at least one of those two conditions gets violated as ¢,
called the inflaton, moves.” Hence, eq. (1.2.5) requires one to have a sufficiently flat inflaton

"

<1 (1.2.5)

6There are obvious extensions of single-field slow-roll inflation [31]: (i) One can consider multi-field inflation
models. (ii) One can include higher-derivative corrections, so that £ = F(¢, X) — V(¢) with X = 9,¢0"¢.
(iii) We can also choose ¢ to couple non-minimally to gravity, e.g. by a term f(¢)R. However, such
theories can be rewritten as minimally-coupled theories upon field redefinition. (iv) One can also consider
f(R) gravity theories. But again, they can also be rewritten as theories with minimal coupling to Einstein
gravity. For a review on inflation in modified gravity theories such as f(R)-gravity see e.g. [33] and references
therein.

7 Actually, the slow-roll conditions in (1.2.5) are approximate conditions. There are pathological cases, in which
(1.2.5) can be violated, while the ezact slow-roll conditions (see e.g. [31]) are still satisfied. Nevertheless,
in practice, the approximate slow-roll conditions are good criteria for slow-roll inflation.
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potential V(¢). After inflation stops, the inflaton oscillates around the minimum and decays
into Standard Model particles. This process is called (p)reheating (see e.g [34] for a review
on reheating).

While inflation takes place, the universe approximately expands exponentially, a(t) ~ e’
The horizon problem is solved if inflation drives the expansion by at least 40 to 60 e-folds
(depending on the energy scale of inflation and the reheating temperature) [31; 32]. The rapid
exponential expansion automatically solves the flatness problem, too.®

So far, this was the classical treatment of inflation. Taking into account quantum mechan-
ics, spatially-dependent quantum fluctuations add to the classical dynamics and lead to the
inflaton randomly jumping up and down the potential. These fluctuations in the field variable
give rise to measurable density perturbations, which can be finally expressed in terms of the
slow-roll parameters ey and 7y . Similarly, the metric is subject to quantum fluctuations. A
rigorous computation of these density perturbations is rather involved and for details we refer
to [31; 32]. However, there is a quick and intuitive approach to obtain the correct density
perturbations up to numerical factors. The following is based on [29; 35] and on lectures by
N. Arkani-Hamed [36].7

The size of the inflaton field fluctuations d¢(x) during slow-roll inflation depends on its
wavelength k~'. As the universe inflates, the wavelength gets stretched proportional to eff*
until it is comparable to the Hubble scale H~'. When the wavelength is larger than the Hubble
horizon, the fluctuations get frozen (more technically, it can be shown that the comoving
curvature perturbation is constant on super-horizon scales for adiabatic expansion). After
the end of inflation the horizon gets larger again and the fluctuations eventually re-enter the
horizon. At horizon exit the wavelength is k=% ~ H~!. Since H is the only dimensionful
quantity the fluctuations could depend on, we expect by dimensional analysis

Sp(x) ~ H . (1.2.6)

Note that due to the quantum fluctuations the time slice for the end of inflation fluctuates as
well. Hence, in some regions reheating starts earlier and correspondingly in those regions the
energy density is below average because of redshift. Analogously, regions in which reheating
is delayed the energy density is above average. The fluctuations in time at which inflation
ends scale as 6t(x) ~ 0¢/¢ ~ H/p. Since the density perturbations are then determined by
the variations in the number of e-folds, defined by dN = Hdt, we have

Hé¢ H

P/ ¢ ¢

The index s reminds us that these are scalar perturbations at horizon crossing (denoted by
*). During slow-roll inflation ¢ ~ —V'/H and H? ~ V/MZ2 hold, and therefore it follows that

A2 1 v

8Strictly speaking, a phase of exponential expansion is sufficient but not necessary to solve the horizon and
the flatness problem. If the dynamics of the universe is governed by some matter content with equation
of state p = wp, both problems are solved whenever w < —1/3, i.e. the strong-energy condition must be
violated. Thus, the condition w < —1/3, or equivalently, a shrinking comoving horizon, d((aH)™")/dt < 0,
can be used as a general definition of inflation. Slow-roll inflation is then a special realisation of inflation
with w ~ —1 [31].

9 A nice presentation of the estimation of density perturbations during slow-roll inflation can also be found in
a blog post by J. Preskill [37].
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at horizon crossing. The formula with numerical factors taken into account is

1 v
2 _
AS — WW . (1.2.9)
p
It is convenient to define the spectral index ng:
dln A2
ng—1= d?n = (1.2.10)

Hence, ns is a measure of scale invariance of the scalar perturbations with perfect scale
invariance for ngy = 1. This parameter can be directly related to the slow-roll parameters:

ns— 1= (2nv — Gev), | (1.2.11)

at horizon crossing. Therefore, given an inflaton potential V' (¢), one can calculate explicitly
the expected deviation from scale invariance. Since ns is already known by measurements,
one can immediately check whether the proposed model with potential V'(¢) is consistent with
present data.

Very similarly, we can estimate the quantum fluctuation g of the gravitational field. Since
guv is dimensionless we have at horizon crossing ég ~ H/M,. These tensor perturbations can
observationally be distinguished from scalar perturbations. In analogy to Ag one can define
A; and obtain

H? Vv
A~ o~ (1.2.12)
My M
Accounting for all numerical factors one gets
2V
2
=——-— 1.2.13
t 372 Mg ( )

at horizon crossing. It is convenient to introduce the tensor-to-scalar ratio v, which is directly
given by ey at horizon exit:

r=— = 16ey4 | . (1.2.14)

Recent data collected by the Planck satellite [2] yields Ag ~ 4.7 - 107° at a pivot scale of
k = 0.05 Mpc~!. Moreover, n, = 0.968 £ 0.006 (Planck TT+lowP+lensing), i.e. there is a
small deviation from scale invariance, as predicted by slow-roll inflation. For r we currently
only have upper bounds ranging from r < 0.07 (95% CL; Planck + BICEP 2) [3] to r < 0.11
(95% CL) (Planck TT-+lowP+lensing) [2]. In the near future values below r ~ 0.01 are
expected to be experimentally accessible.

For many reasons it is exciting to know the value of r as precisely as possible. For one,
a measurement of inflationary tensor perturbations would give direct observational evidence
that the gravitational field is also quantised. Additionally, the energy scale V1/4 at which
inflation took place, can be directly calculated [31; 32; 38]:

0.01

1/4 r \M* 16
V=~ -107° GeV|. (1.2.15)

Note that for » = (0(0.01) the energy scale is only two orders of magnitude below the Planck
scale. Finally, the value of r tells by what distance in field space the inflaton ¢ had to move
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during inflation. The question of which lengths in field space an inflaton can traverse, is of
theoretical interest, as we explain below. Equation (1.2.14) implies that
do T
— =My /= . 1.2.16
The dependence of  on NNV is subleading. Knowing that at least 40 to 60 e-folds are required
to solve the horizon problem, we obtain the Lyth bound [39]:

A T
ﬁp = 0(1) - ,/m ) (1.2.17)

If » > 0.01 is measured in the near future, then the Lyth bound implies that A¢ > M,,.
Inflationary models with such trans-Planckian field ranges belong to the class of large-field
inflation scenarios. So-called small-field inflation models require only A¢ < M,. The distinc-
tion between those two cases is crucial for inflation model building as we will discuss in the
next subsection.

Besides measuring scalar and tensor fluctuations it is also important to search for primordial
non-Gaussianities. Single-field inflation models based on (1.2.1) predict a three-point func-
tion for the fluctuations proportional to the deviation from scale invariance, 1 — ns. Hence,
measuring a significant amount of primordial non-Gaussianities in the CMB can rule out
such single-field models. In contrast, single-field models with higher-derivative interactions
or multi-field inflation models can obtain support from detecting of non-Gaussianities. For
more details on this topic including further possibilities to exclude certain classes of inflation
models we refer to [32].

1.2.2. Why Inflation in String Theory?

The constraints on the potential V' (¢) from the slow-roll conditions (1.2.5) raise the question
of naturalness of slow-roll inflation. Indeed, we expect non-renormalisable contributions to
the effective Lagrangian. Those arise from integrating out massive degrees of freedom (of mass
A), to which the inflaton ¢ couples. Such massive degrees of freedom are expected to arise
at or below the Planck scale in a UV-completion of gravity [32]. Naively, these corrections
spoil slow-roll inflation and this failure is known as the eta-problem (the subsequent discussion
follows [31; 32]). To see this, consider a classical Lagrangian

2 = L ¢"Bu000 — Vo(0) (1.2.18)

with renormalisable potential V{ suitable for slow-roll inflation. Integrating out heavy fields
of masses m > A is reflected by inclusion of non-renormalisable terms ¢ Os[¢]/A°~*, where
Oy is a higher-dimensional operator of dimension . Without further assumptions the Wilson
coefficient c is expected to be ¢ ~ 1. In principle, every allowed higher-dimensional operator
term should be added to the Lagrangian. Let us specifically look at the correction with
Os5 = Vo4,

¢574
This term induces a significant change in the slow-roll parameter 7:
M. 2 6—6
A~ o6 — 4)(5 — 5) <Ap> (i) . (1.2.20)
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We see that the dimension-six operator yields An = O(1) even for A = M, because c is in
general of order unity. Hence, this term prohibits successful slow-roll inflation. Terms with
d > 6 are, in general, not dangerous for small-field inflation with A¢ < A < M,,, because then
(¢/A)°~6 < 1. In contrast, for large-field inflation we have A¢ > M, and, hence, arbitrarily
many terms contribute to n during inflation.

The options to evade this severe problem are as follows: for small-field inflation there is in
principle the option of making the Wilson coefficients sufficiently tiny by fine-tuning. However,
this is rather unsatisfactory. More appealing is to assume a shift symmetry ¢ — ¢ + const
in the UV-theory, which clearly implies an exactly flat potential. To obtain an appropriately
small potential the shift symmetry must be broken by a small effect. Then the inflaton mass
and the Wilson coefficients of dangerous terms are tiny due to the approximate shift symmetry.
The inflation model is then said to be technically natural. In the case of large-field inflation
such a symmetry is in fact mandatory since fine-tuning of infinitely many Wilson coefficients
is not an option.

The origin of such a symmetry is expected to be understandable within a UV-complete
theory of gravity, such as string theory. Indeed, string theory allows for a top-down approach
towards inflationary models. If the idea of a string theory landscape within a much vaster
swampland [21] is taken seriously, the construction of EFTs of inflation via bottom-up ap-
proaches can easily lead to swampland models. To give a concrete example for this statement,
let us consider an axion 6, whose global shift symmetry 8 — 6+ c is non-perturbatively broken
by a term (6/f)F A F, where F is the 2-form field strength of some gauge theory and f is the
axion decay constant. The shift symmetry is broken to a discrete shift symmetry 6 — 6+ 27 f
and, thus, a periodic potential V(6) ~ cos(0/f) is generated. This model of natural infla-
tion requires f > M), to be consistent with recent Planck data [2]. However, string theory
provides many arguments [20; 40; 41] why super-Planckian axion decay constants are hard to
realise. Hence, at this level natural inflation seems to be part of the swampland rather than
the landscape. We explain this in more detail in Section 1.4.

However, this is not the end of inflationary model-building using axions. For instance, it is
possible to construct inflation models (at least in EFT) with two or more axions, all having
a sub-Planckian axion decay constant, but the “effective axion decay constant” is super-
Planckian (see e.g. [42; 43]). Furthermore, the idea of axion monodromy inflation [44; 45] has
been developed, where the axionic shift symmetry is weakly broken so that not even a discrete
shift symmetry remains. In this way, a monomial potential term is generated. The size of f
is then no longer important.

All the just mentioned models of axion inflation predict sizeable tensor-to-scalar ratios
r 2 0.01 and can thus be tested in the near future. For this reason, and additionally with
the hope to obtain a better understanding of the string theory landscape including all its
constraints it may impose on EFTs, we find it interesting to study such inflationary scenarios
in string theory.!?

1.3. Basics of Moduli Stabilisation in Type IIB String Theory

We have argued that it is worthwhile studying inflation in string theory. In this thesis, we
focus on the realisation of inflation in type IIB string theory, for which well-known methods
for moduli stabilisation exist [5-7]. The origin of the string landscape, which is a core element

10A review of inflationary scenarios in string theory, both small- and large-field inflation models, can be found
in [32].
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of this thesis, is directly linked to moduli stabilisation: starting from the low-energy limit of
type IIB string theory, we use bulk fluxes to freeze certain moduli, arising from a given Calabi-
Yau manifold, at the SUSY minimum. Typically, a huge set of flux numbers is admissible to
obtain a SUSY minimum. Every consistent choice of flux vectors then corresponds to a SUSY
minimum. This is the origin of the string landscape (often also called flux landscape).

This section aims to briefly review the notation of type IIB string theory/supergravity and
to outline the basics of moduli stabilisation. Everything what follows is textbook material
and can be found e.g. in [14-18; 32; 46; 47|, which are the main sources for this section.

The problem of moduli stabilisation arises in any theory with extra-dimensions. Given a
Lagrangian of a d-dimensional manifold My with d > 4 and My = My x My_4, our goal
is to obtain an effective four-dimensional Lagrangian on M. Upon dimensional reduction,
metric moduli turn out to be typically massless, unless there is a mechanism (i.e. moduli
stabilisation) yielding a potential for these moduli. Phenomenologically, massless scalar fields
are, however, a problem. For instance, a modulus ¢ would couple gravitationally to ordinary
matter, inducing a fifth force and thus modifying the 1/r?-behaviour of the gravitational
force below length scales m;l (see also [48] for a review of the arguments). This contradicts
experiments in the submillimetre regime (see e.g. [49]). Hence, moduli must not be massless
(or they must be completely absent).

Independently of this issue, light moduli go along with further problems. If a modulus
couples only gravitationally (this is the case for moduli in string compactifications), the decay
rate is I' ~ mg /Mg Hence, very light moduli have highly suppressed decay rates so that the
moduli would have not decayed by today. In consequence these moduli would overclose the
universe. Making the modulus slightly heavier will lead to a decay during or after Big Bang
Nucleosythesis (BBN), resulting in deviations from the successful BBN predictions of light
element abundances [50]. If, however, my > O(10) TeV, this so-called cosmological moduli
problem [51-55] can be avoided. Further problems with massless moduli are described in [16].

Before heading towards moduli stabilisation in string theory, we want to demonstrate the
origin of massless moduli in a simple toy example.

1.3.1. Toy Model: 6D Einstein-Maxwell Theory

Let us understand moduli stabilisation in six-dimensional Einstein-Maxwell theory (see also
[56] and [14; 16] for reviews):

Sﬁd ~ /dﬁx\@ [R[GMN] - FMNFMN} (1.3.1)

on Mg = My x My with metric Gysny and compact manifold Ms. Capital indices run
from M, N = 0,...,5, while Greek indices and lower-case indices run from u,v = 0,...,3 and
i,7 = 4,5, respectively. R[Gsn] is the Ricci scalar of the 6d metric and Fyn are the indices
of the 2-form field strength F'. Note that for the discussion of this toy-model we do not take
into account numerical factors. We also set the fundamental scale Mg = 1.

For the metric ansatz on Mg we choose

ds? = GyndzMdaN = gfﬁ)dm“dm” + TQ(x)§§]2)dyidyj , (1.3.2)

(4)

where glﬁ, is the (Lorentzian) metric on My and g(?)

(]

/ d?y\ /g =1 . (1.3.3)
Mo

the metric on My normalised such that

10
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Our goal is to dimensionally reduce (1.3.1) to a 4d action Siq. Let us first consider pure

Einstein-Hilbert gravity in 6d, i.e. F' = 0. We will show that r = r(x) is to be interpreted as a

scalar field in the 4d effective theory and that its potential V' (r) shows a runaway behaviour.
We can write

SGd;EH ~ /d6$\/ —GR[GMN] ~
N Ao [ @42 (4)/ 2, [a@ 4 1 / 2, /52 ~(?>]
fu 2o =072 [Rif2) [ 0+ s [ /a@ma)] +
o [t r) {R[gﬁ?]—er(;zjj)} +o (1.3.4)
My

where in the last line we used (1.3.3) and a standard formula for the Euler character x(Ms3)
of a 2d manifold Mj. The ellipses stand for gradient terms of r(z). This result is to be
(4)

converted to Einstein frame by a rescaling h,, = r2(x) g, yielding

SEH,6d—4d ™~ /M d*ev/=h [Rlhu] = V()] + .. (1.3.5)

with potential
X(Ma) 292
ri(z) i)
with genus g of Ms. For g = 0 (sphere) we observe a runaway behaviour towards r — 0,
i.e. the two extra-dimensions collapse. For g = 1 (torus T?) the potential vanishes identically
and the modulus 7 is not fixed. For ¢ > 1 we find that r is driven to r — oo and thus the
extra-dimensions decompactify. Thus, for F' = 0 the scalar field » and hence the volume of
the extra-dimensions is not stable. This result exemplifies the aforementioned problem of
massless moduli arising in compactifications of higher-dimensional theories.

This is different for F # 0. Let us therefore turn on magnetic flux F = (1/2)F;;dy’ A dy’.
Assuming dF = 0 it holds

Ven(r) ~ — (1.3.6)

F=neZ (1.3.7)
Mo

due to compactness of Ms. (See also Appendix C.2 for a review of Dirac quantisation for a
3-form flux.) We then have

Sed:n ~ —/d6m\/—GGMPGNQFMNFPQ ~
1 . 1
~— dz\/—gWr?(x / d?y\/ 5@ T G F Fly ~
/./Vl4 g ( ) Mo Y\ g T2($)g T2($)g JLEl
2 2
~— | da -~ [ @ —h—— 1.3.8
fu @V =555~ Lo () (1.38)

where in the last step we used Weyl-rescaling h,, = r%(z) gfﬁ,) from above.

Consequently, the full 4d effective potential for r in our toy-model is

29 —2 n?
VerM(T) ~ 4 (2) t5 (1.3.9)

up to normalisation factors. The second term, induced by non-vanishing fluxes, can now be
used to stabilise 7, although only for ¢ = 0. In this case, i.e. My = S?, the potential has

11
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a minimum and thus, runaway behaviour is avoided. For g > 1 we find, however, runaway
behaviour towards r — oo. This simple toy-model demonstrates why in dimensionally reduced
theories we often find unstable moduli, unless one can generate additional terms, e.g. by
turning on fluxes, such that the potential can have a minimum. In string theory, there will
be further positive contributions to Vggim(r) from D-branes and negative contributions from
O-planes (orientifold planes).

1.3.2. Type IIB String Theory/Supergravity

In this subsection we summarise the basic ingredients of type IIB string theory/supergravity
and introduce the common notation. The main reference for this subsection is [46].

Bosonic Type IIB Supergravity Action

For our purpose of deriving effective Lagrangians for cosmology from type IIB string theory,
it is not necessary to take into account the whole string spectrum. Instead, it usually suffices
to take the low-energy limit of type IIB string theory and only work with the massless modes.
This limit is called type IIB supergravity.!!

The massless bosonic field content of type IIB string theory is as follows [46]:

e In the NS-NS-sector (“NS” for “Neveu-Schwarz”) we have the massless fields Gy, Byrv, @
(also in type IIA string theory). Gsn is the ten-dimensional metric, By are the com-
ponents of the NS-NS 2-form Bs, and @ is the dilaton.

e In the R-R-sector (“R” for “Ramond”) the massless states are C)-forms with p = 0,2, 4.
(In type ITA we have p = 1,3,5.)'?

The bosonic part of the type IIB supergravity action is given by [46]:

St = W /dl%v [ —2e ( [Gun] +4(VE)? — ’H?)’Z) — *|F1’2
10 (1.3.10)

—*\F3|2 - |F5|2] - 7/04 NH3AFy .

In this equation, k19 is the ten-dimensional gravitational coupling constant defined by k%, =
(4m%a/)*/(47), where o sets the string length ¢, = 2mv/a’ and the string mass M, = 1/(,.
Higher-order corrections in o/ are neglected as we are interested in energy scales well below
M. The differential forms Hs, I, F3 and Fy are defined as follows:

H3 = dBQ y (1311)
F = dCy , (1.3.12)
F3 = dCQ — COdB2 = F3 — C()Hg 5 (1.3.13)
- 1 1 1 1

Fs=dCy — 502 A dBy + 532 ANdCy = Fy5 — 502 N Hs + 532 A Fy (1.3.14)

1Note that in the literature “type IIB string theory” and “type IIB supergravity” are often used synonymously.

12Sometimes it is useful to switch to the “democratic formulation” of type IIB string theory. This requires
additionally Cs and Cs as the duals to C2 and Co, respectively. The duality is constructed as follows: the
kinetic term of a p-form gauge field C} in d dimensions is given by f dCyp A %qdCp. For the dual Cy to C,
it holds dC, = x4dC,. Hence ¢ =d —p — 2.

12
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i.e. we also defined F3 = dCy and F5 = dCy (this is the usual definition of field strength
tensors). We use the notation |Fy|* = (1/¢!)Fay,.. ., FM-Ma. (For further details and con-
ventions related to differential forms, see Appendix A 1.) Note that on top of (1.3.10) one has
to impose the self-duality condition 5 = «F5. Unfortunately, this cannot be done at the level
of the action, because this self-duality condition would immediately imply [ Fs A *Fy = 0.
Instead, the self-duality condition is to be imposed in addition to the equations of motion
derived from (1.3.10).
It is convenient to express (1.3.10) in Einstein frame by a rescaling G%,y = e~®/2Gy/n. By
defining
S=Cy+ ie”® , Gs = F3 — ieiq)Hg =F3;— SHj , (1.3.15)

we obtain (dropping the label E)

_ OmSOMS 1 |Gy
2(Im(5))2  2Im(S)

1
SIIB = ﬁ/dml‘\/ —G [R *| ‘2
Ko (1.3.16)

CyNG3 NG
82&10/1 AR

where G is the complex-conjugate of G3. We also define |G3|? = (1/3))GanpGMNT. The
field S is called axio-dilaton.'® The dilatonic VEV (vacuum expectation value) (®) fixes the
string coupling g, = e(®.

The type IIB supergravity action (1.3.16) is the starting point of type IIB flux compactifica-
tion in analogy to the previously discussed 6D Einstein-Maxwell toy-model (1.3.1). However,
there will be important contributions to (1.3.16) from localised objects such as D-branes and
O-planes. Furthermore it is crucial to understand which compactification geometries with
metric gy, are admissible. We go through these important points step by step.

D-Branes

Following [32], we only want to collect the most crucial facts about D-branes. Those are
objects charged under the gauge symmetry of the R-R-fields Cpy1. More precisely, Cpi1
is sourced by a p-dimensional object, called Dp-brane. The coupling term is given by the
Chern-Simons term

Scs = Mp/ Cpy1 (1.3.17)
Ypt1

where 1, is the electric coupling and ¥,,1 the worldvolume of the Dp-brane. The idea is
identical to classical electrodynamics, where a point-particle, a DO-brane, sources the gauge-
field A;. The coupling term is then given by ¢ fEl Ay, where ¢ is the electric charge and 3
the worldline described by the particle.

In string theory, open strings can end on a D-brane. One needs to impose Dirichlet boundary
conditions on the transversal directions of the D-brane (this is where the letter “D” in “D-
brane” comes from) together with Neumann boundary conditions along the spatial directions
of the brane. Hence, endpoints of an open string can move along the D-brane, but they are
fixed to this object.

One can quantise these open strings with endpoints on a D-brane. The massless spectrum
consists of scalar fields parametrising the fluctuations of the D-brane position, a gauge field

13Be aware that in the literature such as [46] the axio-dilaton field S is often labeled by 7. We choose the
symbol S, which we have also used in most of our papers this thesis is based on.
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A, living on the worldvolume of the D-brane, and their superpartners [32]. The effective
action governing the dynamics of the massless field on a Dp-brane is given by

Spet = —gs1p / derlO'\/— det (Gap + Fap) » (1.3.18)

where Gy is the pull-back of G onto the Dp-brane worldvolume parametrised by oV, ..., oP:

_ OXM (o) 0XN(0)

Gab 0o oo

Gun , (1.3.19)

where X are the coordinates of the target space. Furthermore, Fyy, is defined by
Fub = Bap + 21’ Fy, . (1.3.20)

Therein, By is again the pull-back of By/n and Fyp = 20|, Ay the field strength tensor. The
motivation for the definition of Fg; is to construct a gauge-invariant quantity. Finally, g is
again the string coupling and 7}, the brane-tension:

1
Ty = (27)Pgs(a/)P+D)/2

(1.3.21)

We call (1.3.18) the Dirac-Born-Infeld (DBI)-action, because it combines the Born-Infeld
action of non-linear electrodynamics together with the Dirac action for a Dp-brane (for more
details, see [32]).

Finally, the CS-action (1.3.17) for a Dp-brane in the presence of background fields is mod-

ified to
SCS:,U';D/ ch/\e]:
Ypr1 Ty

where the sum goes over all R-R-forms of the theory, and only the (p + 1)-forms of this
expression are to be integrated.
The action of a Dp-brane is then given by

, (1.3.22)
(p+1)-forms

Spp = Sppr + Scs - (1.3.23)

Finally, we remark that D-branes are also of interest in the context of higher-dimensional
black hole physics. For instance, Dp-branes with p > 0, for which u, = g7, are higher-
dimensional generalisations of extremal black holes. Such Dp-branes are called BPS-branes,
and are stable objects. For more details, see e.g. [57].

Before discussing O-planes, it is necessary to say some words about the geometry of the
compact manifold Xg when compactifying (1.3.16) to four dimensions.

Calabi-Yau Manifolds and Geometric Moduli

We will now introduce the basic language of geometry required to talk about compactifications
from ten-dimensional type IIB supergravity (SUGRA) to four dimensions. The main reference
is [32; 46].

First of all, the 10d type IIB SUGRA action (1.3.16) enjoys N = 2 supersymmetry. How-
ever, solutions to the equations of motion do not have to preserve supersymmetry. For various
reasons [32] mostly supersymmetric compactifications were studied. One motivation has been

14
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to address the hierarchy problem via N/ = 1 supersymmetry broken near the electroweak
scale rather than the compactification scale. Preserving supersymmetry in four dimensions
puts constraints on the type of geometry for Xg to be used. Choosing Xg to be a so-called
Calabi-Yau 3-fold, one still arrives at N' = 2 supersymmetry theory in 4d. By orientifold
projections, which we discuss later, one can finally obtain N’ = 1 SUSY. Hence, Calabi-Yau
manifolds are frequently used as compactification geometries in type II string theories.

Calabi-Yau 3-folds are Ricci-flat Kdhler manifolds of complex dimension three. Kéahler
manifolds themselves are defined as follows: A manifold, equipped with a Hermitian metric
(i.e. vanishing components g,, = 0 = g5 and the reality condition g,; = Gsg), is called Kahler
manifold if dJ = 0, where

J =iggdz® Adz° (1.3.24)

is called the Kdhler form. For more details on complex manifolds, Kéhler manifolds and
Calabi-Yau geometries, see Appendix A.3.

From the Ricci-flatness it follows that Calabi-Yau geometries are automatically solutions
to the vacuum Einstein equations, i.e. to the equations of motion.

Moreover, using the Ricci-flatness, we can classify metric deformations into Kdhler moduli
and complex structure moduli. From the requirement that deformations of the metric should
preserve Ricci-flatness,

Ron(g+0g) =0, (1.3.25)

one can show that metric fluctuations of the types dg,; and dgz; decouple, i.e. they can be
treated independently [15; 32; 46]. The former can be associated with (1, 1)-forms

0J = idgdz" A dz* € Hy' (Xq, T) (1.3.26)
and the latter with (2, 1)-forms
X = Qabeg8gg2dz" N d2? A dZ° € H2' (X, ©) (1.3.27)

via the unique holomorphic (3,0)-form Q on the Calabi-Yau 3-fold X4 (see [15; 46]). The
complex forms §J and x are harmonic and thus representatives of the Dolbeault cohomology
classes H (%’l(Xﬁ,(D) and Hg’l(Xg, ), respectively. This leads directly to the definition of
Kéhler- and complex structure moduli.

We express the Kihler form J in a basis of harmonic (1, 1)-forms w! € H é’l(Xf;, C), where

I=1,..,hM" =dim Hy' (X, ©):
J=> tl(z)wr . (1.3.28)

We call the h'! real-valued moduli ¢/ (x), which are functions of the 4d spacetime coordinates,
Kihler moduli.

In analogy we can use a harmonic (2,1)-basis x4 € H;’I(Xﬁ,@) with A = 1,...,h%! =
dim H;’l(X(g, C) to express:

h2’1

Vg 895 = 3 u (@) (xa)ate + (1.3.29)
A=1

where u4(z) are complex scalar fields in 4d spacetime. We call these h>! fields the complex
structure moduli."*

141n later parts of the thesis we will denote the complex structure moduli mostly by the variable z. Here, we
refrain from doing so in order to avoid confusion with the labeling of our complex coordinates z.

15



1. Introduction and Basics of String Cosmology

Hence, given a Calabi-Yau 3-fold Xg the dimensions of the Dolbeault cohomology classes
H(%’l(XG, C) and H;’l(X(g, ©) tell us that there are h'! and h?! Kihler and complex structure
moduli arising in the 4d field theory after Calabi-Yau compactification.

On top of that there arise also scalar fields from the type IIB gauge potentials By, Cy and
Cy. Following [32] we expand these differential forms in a basis of corresponding harmonic
forms:

hl’l
By = By(x) + Y _ b/ (2)wr , (1.3.30)
I=1
hl’l
Cy = Colz) + > (x)wr , (1.3.31)
I=1
hl’l
Cy=> V(z)ar, (1.3.32)
I=1

where By(x) = (1/2) B, da* Adx” and Cy(x) = (1/2)Cppdat Adx” are the 4d space-time parts
of the 10d 2-form fields Bs and Cs. A similar, though much more complicated expression can
also be included (see [58]) in the last equation, but we dropped these terms, because they are
unimportant for our purposes. Note that w; denote again a harmonic basis of H é’l(Xﬁ, C).

Since CYy is a 4-form, we must introduce a harmonic basis @; of H;’Q(X(;, C). Its dimension
is still A%! because of the the relation h?? = h'! on a CY 3-fold due to Poincaré duality (see
Proposition A.24 of Appendix A.2).

Finally, the dilaton ® and the zero-form C (or in combination the previously defined axio-
dilaton field S) also yield two scalars in the 4d theory.

Since the above field content obtained from CY-compactifications of type IIB supergravity
is also part of the multiplets of N' = 2 supersymmetry in four dimensions, our 4d effective
theory is indeed N’ = 2 supersymmetric.

However, from a phenomenological point of view it is desirable to have N/ = 1 supersym-
metry in 4d rather than N/ = 2, because the latter, for instance, forbids chiral fermions [32],
which we need to describe the Standard Model of particle physics.

A good way to arrive at N/ = 1 supersymmetry in 4d from type IIB string theory is by
performing an orientifold projection of a type IIB Calabi-Yau compactification. The afore-
mentioned O-planes as additional local sources contributing to (1.3.16) are an automatic
consequence of this projection, which we want to describe now. We follow again [32; 46].

Orientifold Action and Orientifold-Planes
We restrict our description of orientifold actions O to the ones of the form
O =(-1)"tQu0 , (1.3.33)

where s is the (string-)worldsheet orientation reversal and Fj, is the worldsheet fermion
number in the left-moving sector (for details on the superstring see e.g. [15; 46]). The map
o:RM x Xg = R x X is an involution, i.e. 02 = id, and acts trivially on R3, but non-
trivially on the Calabi-Yau manifold Xg as follows: ¢ changes the sign of the holomorphic
(3,0)-form Q, i.e. 0*(Q) = —Q (0* denotes the pull-back of ¢)'%, but it leaves the metric and
complex structure invariant, o*(J) = J.

51t is also possible to have o*(Q2) = +Q, but we do not consider this case any further.

16



1.3. Basics of Moduli Stabilisation in Type IIB String Theory

— o

Figure 1.2.: This simplified picture shows a CY manifold. After orientifold projection there
arises an O-plane depicted in red. It is defined by the set of all loci invariant
under the involution ¢. This picture is inspired from the lectures “Advanced
String Theory” by Timo Weigand, summer term 2016, at Heidelberg University
[59].

Orientfolds planes (O-planes) are precisely the fixed points of O (see Figure 1.2). Since o
acts trivially on R!3, O-planes have at least three spatial dimensions. Due to ¢*(Q) = —€,
O-planes can fill either no or four further spatial dimensions in Xg. Hence, the O-planes we
are considering have either three or seven spatial dimensional and we denote them as O3- and
O7-planes, respectively.'8 As opposed to D-branes, these O-planes are non-dynamical objects,
but they are also charged under R-R-gauge fields.

Upon the orientifold action O of (1.3.33) one finds that the Dolbeault cohomology class
Hb! decomposes into two subspaces:

HY' = H '@ HY (1.3.34)

All (1,1)-forms which are invariant under O belong to the subspace H}_’l and correspondingly
all (1,1)-forms, which obtain a minus sign are elements of H'. In consequence, the basis
w! of HY! decomposes into w' € Hi’l with i = 1, ...,h}r’l and w® € Hi’l with a = 1, ...,hl_’l.
Likewise, all other cohomology classes are decomposed into a direct sum of even and odd
subspaces: HP1 = H? @ H?.

From type IIB string theory and the definition of o one obtains the behaviour under (1.3.33)
of the 4d fields t/,u4,b’, ¢!, 9!, By(z), Cz(x), Cp, ®, which we introduced previously. To do
so, one has to analyse the behaviour under (—1)2(Q separately, see [60]. One then finds
that the even fields under O are t/,9!, Cy, ®. The remaining fields ua, b, ¢!, Bo(z) and Co(x)
are odd under the orientifold action [32]. Since ¢/ (x) is even and o*(.J) = .J, the expansion of

181 we had chosen o*(92) = 4+, one would obtain O5- and O9-planes.
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J under orientifolding can only contain w’:

1,1
hy

J=> t(x)w; . (1.3.35)
=1

Likewise, Bz, Cy and Cy are expanded in terms of b%(x), c¢*(x), 9¥(x), respectively. Fur-
thermore, the complex structure moduli u®(z) with a = 1,...,h>' remain in the orientifolded
theory. The fields ® and Cj are already invariant under (1.3.33).

These invariant scalars now have to be combined to obtain the bosonic components of chiral

multiplets of A/ = 1 supersymmetry in 4d. One defines

S=Cy+ie® (1.3.36)
as the axio-dilaton and furthermore one combines b* and ¢ into
Gy =co — Sb,, . (1.3.37)
Moreover, the volume V of Xg is given by
1 1 i
V = = JNINJT = *k?ijkt tjt 5 (1338)
6 Jxg 6

where (1.3.35) and the definition of the triple intersection numbers
iy = / wi Awj A wi (1.3.39)
Xs

are used. The Kéhler moduli ¢; describe the 2-cycle volume. The 4-cycle volume 7; (which
we will be using mostly in the thesis) is obtained from

_owv 1
ot 2
The complexified 4-cycle volumes are given by [58; 60]:

Ti

kiptIt® . (1.3.40)

1 ~ 1 _
T, = ik:ijktjtk + i + Ze%waa(c -G)7, (1.3.41)
and very often the last term is omitted for practical purposes and we write:
T, =1 +19; . (1.3.42)

The imaginary part 9; is then given by the integral of Cy over the corresponding 4-cycle Xi:

Y= Cy. (1.3.43)
Xy
This field 1; is an example of an axion arising in string compactifications from integrating
gauge-potentials over corresponding cycles. Similarly, b, and ¢, can be identified as axions
obtained in this way by integrating By and Cs over 2-cycles, respectively.

We conclude this digression by summarising the 4d field content after applying an orientifold
projection on a type IIB CY-compactification. There are hi’l 4-cycle Kahler moduli T; and
R complex structure moduli . Furthermore, we have R scalars G descending from 2-
form fields. Last, we have the axio-dilaton S. In total we have hi’l +h% 4 b 41 fields in the
4d theory obtained from a Calabi-Yau compactification after orientifold projection (1.3.33).

Knowing the field content of our N’ = 1 supersymmetric 4d theory, the next logical step is to
obtain an effective 4D Lagrangian obtained from orientifolded type IIB CY-compactifications.
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1.3.3. Towards an N =1 SUSY Lagrangian in 4d from Type |IB
Compactifications

So far we saw that the choice of a Calabi-Yau geometry Xg defines the 4d field content
obtained from the corresponding type IIB CY-compactification. The effective Lagrangian in
4d is obtained from dimensional reduction of (1.3.16).

In the following we describe several important constraints that arise in the 10d type 1IB
theory (1.3.16) and state the result of the 4d effective Lagrangian. Much more details can be
found in the original paper [5] and in many reviews such as [18; 35; 46], which are the main
sources we follow closely.

10d Solutions and Tadpole Constraints

Starting point of this discussion is (1.3.16) and we now also include local sources, such as
D3/D7-branes and 03/07-planes:

1 OSOMS 1 |Gs)? 1 -
Sup = =— [ d°2v-G |R - - — 2 |F5)?
LEAE TR l Sm(S)E ~2im(s) 11|
1 ] (1.3.44)
— | —=Ci ANG3 AG3+ Soc -
+ 8ilﬂ7%0 / Im(S) 4 3 3 + Sloc
For instance, Sioc of a Dp-brane looks like (see (1.3.23) with no background fluxes)
Sloc = _Tp derlO'\/ —g + Mp/ Cp+1 (1345)
RL3XxY,_3 RL3 XY, _3

with Dp-brane tension T}, and charge p,. Moreover, ¥, 3 is a (p — 3)-cycle in X¢. Hence-
forth we describe compactifications with no sources for the fluxes F3 and H3. Their Bianchi
identities then read:

dF; =0, dH;=0. (1.3.46)
The fluxes F3 and H3 are then quantised (see e.g. Appendix C.2 for details):
1 1
F3 =2wm; € 2nZ , — Hs =2mn; € 277 (1.3.47)
2 Iy 2ma’ Jsi

for 3-cycles ¥i. The factors 2ra’ arise from the string charges: e.g. p fzg F3 € 277 with
1 = (2ma’) 7! [18; 46].
Moreover, Fy satisfies the Bianchi identity

dﬁ5 = H3 AN F5+ 2%%0[13/)3’1% . (1.3.48)

The first term is straightforwardly obtained from (1.3.14) and the second term arises from the
inclusion of D3-branes and O3-planes, which contribute to the localised source contribution.
Since Fj is self-dual, i.e. we have Fy = xF5, the Bianchi identity can also be seen as an
equation of motion.

Integrating the Bianchi identity over the compact manifold leads to a global constraint,
which is called the tadpole cancellation condition. Since [ Xo dF5 = 0 it follows

1
25%0/1«3 X6

H3 A F3 + Qg}]oc =0, (1.3.49)

where ()310c is the total charge of the local objects. In fact this logic is very familiar from
electrodynamics on a compact space (see the below aside).
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Aside: FElectrodynamics on a compact space — Maxwell’s equations for a gauge field A; in four dimen-
sions are given by
dxFy =%j , dFy =0,

where j is the 1-form current of the sources. The second equation is simply the Bianchi identity. If
we want to put charged particles on a compact 3-manifold, e.g. S3, Gauss’ law implies for the total

charge Qtot:
Qtot:/*j:/d*FQZf FQZO.
53 53 o83

Consequently, all charges must add up to zero. In particular, in the 2d case S? this is also pictorially
clear. Putting a charge +¢ on S? automatically implies to have a charge (—q) at the antipodal point,
as the green coloured field lines of the electric field E show. Clearly, Qior = (+¢) + (—q) = 0.

+aq

g2

—q

For the very same reason the tadpole cancellation condition (1.3.49) arises: the charges of D-branes
and O-planes have to cancel due to the compactness of Xg. In the case of D3-branes or O3-planes
there is in addition the contributions from F3 and Hj3 to cancel.

Note that there are further contributions to (1.3.49) coming from curvature couplings on
wrapped D7-branes, which contribute negative D3-charge Q3 p7 [48]. This effect can be un-
derstood in the F-theory language, which uses elliptically fibred Calabi-Yau 4-folds, Yz (for a
few more comments on F-theory, see Section 1.3.5). It can be shown that

x(Ys)
= — 1.3.50
@s3,07 YR ( )
where x(Y3) is the Euler character of the CY 4-fold Yg. It follows
1 x(¥s)

H3 N F3+ Q3100 = (1.3.51)

2/1%0”3 X6 24

This formula is of great importance. It limits the number of possibilities of choosing flux
numbers m;,n; defined in (1.3.47). We return to this issue in Section 1.4.
For the 10d metric and F5 the following ansatz is made [18]:

dsyy = AWy datde” + e W) g, (y)dy™dy"™ (1.3.52)
Fy = (1 4+ %) da(y) A dz¥ A dat A da® A da? (1.3.53)
where e24W) is called warp factor and o = a(y) is a function of the extra-dimensional co-

ordinates y™. By plugging this ansatz into the Bianchi identity (1.3.48) and into Einstein’s
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equations, one can obtain a relation between « and the warp factor. Subtracting the resulting
equations from each other yields [5]:

- 24 2
V(e — ) = 616 [iGs — %G + 704 o(e* — )|+
(5) (1.3.54)
9 2 2A 1 T _ Tk
+ R10€ 1 ( m ﬂ)loc — KU3P3loc| -

In this equation V2 is the Laplacian with respect to gms and *g is the Hodge-star operator
on the CY 3-fold. Furthermore, T} and T;7! are the traces of the energy-momentum tensor
derived from Sj,. with respect to the 4d and the 6d components of the CY, respectively.
When integrating (1.3.54) over the compact CY-manifold Xg, the LHS vanishes due to
Gauss’ theorem. On the RHS the first two terms are non-negative. Hence, this equation
imposes constraints on the choice of localised sources. We want to restrict to D3/D7-branes
and O3-planes, for which the last term on the RHS of (1.3.54) vanishes identically. It then
follows:
w6 Gz =iGs , MW =q(y) . (1.3.55)

The first equation is referred to as the ISD (imaginary self-dual)-condition. It fixes the moduli
of X which enter the ISD-condition through the Hodge-star operator ¢ [18]. The issue of
moduli stabilisation is however most easily studied in the 4d effective theory. Indeed, moduli
stabilisation can be studied purely in 4d EFT for the following reason (see also [18]): As we
just argued the moduli are stabilised by fluxes (this will be made more precise later), so we
expect the moduli masses to be set by the scale of the local flux densities. Using (1.3.47) we

expect

Oé/

R3’
where R is the typical radius of a 1-cycle in the compactification manifold. However, the
compactification scale, i.e. the Kaluza-Klein scale, is mgg ~ 1/R. Hence, for rather large R
we have mmoq <€ mgk. Consequently, for the analysis of moduli stabilisation it suffices to
restrict our attention to the 4d effective Lagrangian.

(1.3.56)

Mmod ™~

The Effective 4d Lagrangian

The 4d effective Lagrangian is then obtained by performing the dimensional reduction of the
10d type 1IB supergravity action. The kinetic term of the 4d Lagrangian .Z is best obtained
in the approximation of constant warp factor and vanishing F5, which is justified in the limit
of large radii [5]. The potential in the Lagrangian is induced by fluxes and requires the

computation of
1 / Gman
- y vV )
24%%0 X6 )

where the indices of G5 are to be raised an lowered with respect to §,,. It is again convenient

to work in the limit of large radii. We skip details of the rather tedious derivation of the 4d

Lagrangian and only state the results. More explanations can be found in the appendix of [5].
The 4d N = 1 supergravity Lagrangian is given by

(1.3.57)

&L = —Kijoud' o' — Vp(¢', ¢') (1.3.58)

where K;; = 9;0;K (with 8; = 0/0¢") is the Kihler metric corresponding to the Kdihler
potential K. The potential Vi is the N/ = 1 F-term scalar potential. The field variable ¢
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summarises the moduli we introduced previously. In the following we set M, = 1, except
where otherwise stated.
At leading order in o/ and string loop expansions, the Kahler potential K is given by [48]:

K=-m[-i($-5)]-2m(V)-1In (z Q3 A Qg) . (1.3.59)

Xe

At this level K consists of three separate sectors: the first is represented by a term containing
the axio-dilaton S. The Ké&hler moduli enter the second term, see (1.3.38). The last term
represents the complex structure sector. It can also be expressed in terms of the period vector
defined by

o=/ Qs, (1.3.60)
=4

where ¥ is a 3-cycle. Choosing a symplectic basis of 3-cycles, it then holds [48]:

Kes = —In (—illt -2 10) (1.3.61)

where X is a 2n x 2n-matrix, n = R34 117

0 1,
Y= (—Jln 0) . (1.3.62)

Moreover, Gukov, Vafa and Witten have shown [61] that a potential

W = G3 N Q3 (1.3.63)
X6

is generated, where G3 = F3 — SH3 as previously introduced. This result will obtain instan-
tonic corrections, which we ignore for the moment, but become crucial later. Hence, we see
that a non-vanishing flux GG3 induces a non-zero superpotential. Using the quantisation of Fj
and Hs in (1.3.47), the Gukov-Vafa-Witten potential can be expressed as

W = (2r)% (m; — Sn;) - T (u) , (1.3.64)
where we wrote IT* = IT*(u) to emphasise the dependence on the complex structure moduli.

Knowing the Kéhler- and the superpotential we can write down the N' = 1 F-term scalar
potential:

Vi = & [KTD,WD;W - 3| | (1.3.65)

where D; = 9; + (0;K) is the (Kéhler-)covariant derivative. It is one of the most frequently
used formulae in this thesis. For one, it is the basis for our construction of large-field inflation
models. Furthermore, the best known methods of moduli-stabilisation are based on the F-
term potential. The latter is discussed now.

"The dimension 2n = 2h*"' 4 2 is obtained from (1.3.60) using the fact that there are h*"' (2,1)-cycles and
hb? = h*' (1,2)-cycles. Moreover, there is one (3,0)-cycle and one (0,3)-cycle. Due to hP4 = pn—Pn=4
for CY n-folds, this gives in total 2h** + 2 3-cycles.

22



1.3. Basics of Moduli Stabilisation in Type IIB String Theory

1.3.4. Moduli Stabilisation in Type IIB: An Overview

We are given many Kihler moduli 7%, complex structure moduli 4%, and the axio-dilaton
S. Those fields need to be given a mass so that these moduli are stable. Mass terms can
only arise from (1.3.65). We assume that the Kahler potential is given by (1.3.59) and the
superpotential is generated only by fluxes via the Gukov-Vafa-Witten potential (1.3.63).

It follows that at tree-level the Kéhler moduli are not stabilised. They enter the Kéhler
potential via (1.3.38). It holds [48]

pLit
> KY9:K0,K =3, (1.3.66)
i=1

where we sum over the Kéhler moduli only. The Kéhler moduli do also not occur in the

superpotential W, at least not at tree-level. Thus, D;W = (9;K)W for all Kdhler moduli.

Then, using (1.3.66) we see that

hit
KYD;WD;W = 3|[W|?, (1.3.67)

i,0=1

called no-scale structure, where we sum again only over the Kédhler moduli. Consequently, the
Kahler moduli remain unfixed at tree-level. Quantum effects will eventually fix them.

In contrast, the stabilisation of the axio-dilaton and the complex structure moduli is
straightforward. Since the Kéhler moduli cancel the —3|W |*-term, the remaining F-term
potential reads )

Vi = KCD WD W (1.3.68)

where we implicitly sum only over the complex structure moduli and the axio-dilaton. The
potential is positive definite and the minimum is obtained by solving the Rt 41 complex
equations

D,W =0, (1.3.69)

i.e. the F-terms have to vanish. Hence, the solution to (1.3.69) yields a 4d Minkowski vacuum
— the cosmological constant is zero due to the no-scale structure. This 4d Minkowski vacuum
does not have to be supersymmetric, because D:W # 0 in general. But if we also require
DWW = 0, the vacuum would be supersymmetric. Note that (1.3.69) is directly related to
the ISD-condition x6Gs = iG3 in (1.3.55); for details see the below aside.

Aside: Minkowski vacua and the ISD-condition — For the stabilisation of moduli we demand D, W = 0.
This SUSY condition for the axio-dilaton S reads:

0=DsW = Dg G3 ANQ3 = 0g GsNANQ3+Kg G3 N Q3 =
X6 Xe X6

1 1 -
=— HsANQg — —— G3 N Q3 = =—— G3 N\ Q3.
. R . 3N = =g . 3 Nl3

Now, since Q3 is a (3, 0)-form, it follows that the (0, 3)-part of G5 must be zero; we write é3|(0,3) =0.
Thus, we must have G330y = 0.
Similarly, one obtains

O:DuaW: GB/\XCL7
X6

where x, is some (2,1)-form. This follows from 9,.Q3 being (3,0) + (2,1). Consequently, we then
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obtain the condition G3|(; 2) = 0.

Therefore, the requirement (1.3.69) implies that G3 = G3|(2,1) + G3l(0,3). But the ISD-condition
*3G3 = iG3 is equivalent to the statement that harmonic forms are of the type (2,1) + (0,3), see
e.g. [15]. Hence, the above construction of 4d Minkowski vacua indeed requires the ISD-condition.

For a SUSY vacuum one also needs D;W = 0 with ¢ labelling the Kéhler moduli. Although this
condition does not fix the Kéahler moduli, it imposes the condition W = 0 at the SUSY minimum:

DrW =0 = G3NQ3=0.
X6

Thus, G3|(,3) = 0. All three constraints then imply G3 = G3](2,1).
For further details see e.g. [15; 18], which are the sources of this aside.

So far, this procedure stabilises the complex structure moduli and the axio-dilaton. The
Kéahler moduli are unfixed due to the no-scale structure. The procedure described in [5]
and summarised above, is often referred to as GKP-stabilisation. However, quantum correc-
tions lead to deviations from the no-scale structure and generate a potential for the Kéh-
ler moduli. Specifically, non-perturbative D-brane instanton effects give rise to a correction
SW = A(u)e=?™T of the superpotential. In this term, A(u) is a holomorphic function of the
complex structure moduli v and a > 0 is a model-dependent quantity [6; 18]. Such corrections
were used in [6] to stabilise the Kéhler moduli, and the setup proposed therein is now known
as the KKLT-scenario. For the description of this model we follow [6; 18].

Let us consider a toy model with only one Kéhler modulus 7. At tree-level we have §W = 0,
so T remains massless, while the complex structure moduli as well as the axio-dilaton receive
masses of the order m ~ o/ /R?, see (1.3.56). One can thus integrate out the complex structure
moduli and the axio-dilaton. Effectively, we are left with a single-field model:

W =Wy + Ae 27T | (1.3.70)
K=-3W(T+T) . (1.3.71)

Here, Wy denotes the VEV of the Gukov-Vafa-Witten potential (1.3.63). If we had W = W,
the potential would be exactly flat and thus the stabilisation of T' would be impossible. Now,
thanks to the instanton correction, a potential for 7' is generated. This field is stabilised by
DpW = 0. For simplicity, we take T' = 7 (and thus set the axionic part to zero) following [6].
One obtains [6; 18]

4
Wy = —Ae2m7 (1 + g‘%) and (1.3.72)
27T2a2A2€—47mT

Vinin = —3eX|W % = (1.3.73)

31
We observe that Vi < 0, so we find an anti-de Sitter minimum in four dimensions, in
short AdS4. This vacuum is supersymmetric because we stabilised all fields by D;W = 0,
where ¢ runs over all complex structure moduli, the axio-dilaton and the Ké&hler modulus.
Furthermore, stabilising 7 at moderately large values, which ensures that the supergravity
approximation is valid and that o/-corrections are under control [6], implies that |[Wp| < 1.
To meet this requirement, a delicate fine-tuning is necessary. Due to the vast flux-landscape
(see Section 1.4), at least some of the vacua are expected to allow for [Wy| < 1 [18; 62].
However, it would be desirable to obtain a de Sitter vacuum in four dimensions (dS4) with
small cosmological constant, instead of AdS,. In [6] it was proposed to include anti-D3-branes
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dS

no-scale

AdS

Figure 1.3.: The red curve presents the potential for 7 giving rise to a SUSY AdS; minimum
and the blue curve shows the potential after uplifting via D3-branes, yielding a
non-supersymmetric dS4 minimum. Note that the curves are only schematic and
do not present the precise potential. Without non-perturbative corrections the
potential would vanish identically (green curve) due to the no-scale structure.

D3 to arrive at de Sitter vacua. Note that they contribute negatively to @310c in the tadpole
cancellation constraint (1.3.49). Their extra contribution then needs to be compensated by
“additional” fluxes. The F-term scalar potential obtains a correction [18]

V= (T+DT)3 , (1.3.74)

where D is a model-dependent parameter. If the anti-D3-branes are put at (or dynamically
driven to) the tip of a so-called KS-throat!®, D is a small number such that Vie; = Vipin +
6V has a minimum, at which V;y is just above zero, i.e. we obtain dS4 vacua with a tiny
cosmological constant. This idea is often called de Sitter uplift.'"® These vacua are non-
supersymmetric because SUSY is broken by the D3-branes. For more on this, see e.g. [18].
The non-supersymmetric dSy vacuum we obtained are metastable (a sketch of the potentials

8 These Klebanov-Strassler (KS) throats [63] typically occur in CY geometries with non-zero fluxes. See [64]
for a statistical analysis.

Note that this uplift to dS vacua via D3-branes is controversially discussed in the literature (for a rather
recent analysis and discussion see e.g. [65] and references therein).
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giving rise to dS and AdS vacua is shown in Figure 1.3). In [6] it was demonstrated that they
can have lifetimes much larger than 10'° years.

Consequently, even though Kéahler moduli stabilisation is in general much more complicated
than in the presented toy example, it demonstrates that the KKLT scenario can yield realistic
4d de Sitter vacua, at least in principle. For completeness, we want to remark that the so-
called uplift to dS vacua via D3-branes is controversially discussed in the literature (for a
rather recent analysis and discussion see e.g. [65] and references therein).

Another scheme of Kéhler moduli stabilisation is the Large Volume Scenario (LVS) [7; 66].
It avoids the tuning of |Wy| to small values. The idea is to include leading o’-corrections to the
Kéhler potential. We briefly present the basics of the LVS following the toy example given in
[7; 18]. The toy model uses a CY 3-fold (DP(4171’17679)[18] and has only k%! = 2 Kéhler moduli

and h?! = 272 complex structure moduli.?® Again, we assume that all the complex structure
moduli and the axio-dilaton are integrated out, so that a theory with only two Kéhler moduli
remains. We denote them by Tj and Ts. The real part of the former approximately measures
the volume of Xg, i.e. Re(T}) =7 ~ V2/3 whereas the real part of the latter, 75, measures the
size of a small 4-cycle in X (see Figure 1.4). The Kéhler potential with leading o/-corrections
then reads [7; 18]:

_ L/ 32 £ _ x(X6)<(3)
K=—2In l9\/§ (rb - 73/2) + 292/2] ., &= “ o (1.3.75)

In our example we have x = 2(hb! —h?1) = —540 (see Appendix A.3, in particular (A.3.23)),
so that £ > 0, which is a necessary requirement for the stabilisation procedure. Moreover, we
assume that the superpotential is given by

W =W, + Age T (1376)
Inserting this into the F-term scalar potential yields [18]

~ Aa§|A8|2\/7TSe_2a5TS . :U'U’SWOAsTse_asTs + V§|W0’2

v
1% V2 gg/ 23

: (1.3.77)

where A\, and v are O(1) factors. Let us assume that V is exponentially larger than 7:
InV ~ ag7s. For very large V the second term dominates so that the potential goes to
zero from below. For smaller V the other two terms dominate and the potential is positive.
Consequently, there exists a minimum at which V' < 0. This minimum fixes V (and thus 73)
and 75 as follows [7; 18]:

2/3
Y~ et and T~ 3 . (1.3.78)
gs

Note that the existence of this minimum does not require any tunings of Wy (as is required
in KKLT). It is again an AdS; vacuum but, as opposed to the KKLT scenario, it is not
supersymmetric (on has in general Dy, W # 0 and D7, W # 0). Hence, uplifts to dS4 vacua
are once again required, e.g. by D3-branes.

20The CY manifold CP(41,1,1,6,9)[18] is an example of a hypersurface in weighted complex projective space.
Generally, CP(, . . [p] is obtained as follows: First, consider C™t \ {0} with the identification
(215 ey Zng1) ~ ()\1“21, ..4,)\’””'1,2”“)7 where A € C\ {0}. Such spaces are compact and K&hler. Then,
7777 knio)[P] 18 @ subspace defined by fp(z1,...,2n41) = 0, where f, is a homogeneous polynomial of

degree p. The subspace is CY if p = k1 + ... + kn41. These statements and more details can be found e.g. in
[18].
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)

Figure 1.4.: Here we illustrate a Calabi-Yau 3-fold with several small 4-cycles, whose size is
parametrised by 7;, ¢ = 1,2, 3. The size of the whole CY 3-fold is measured by 7,
(corresponding to the volume of the bulk 4-cycle 7). Due to the presence of the
holes such CY 3-folds are often called Swiss-cheese CY manifolds. The toy model
we are considering has just two Kéhler moduli, so only one small 4-cycle would
be present. This picture is inspired from the typical illustration of Swiss-cheese
CY 3-folds, such as in [18].

Since the volume (and hence the bulk 4-cycle 7,) is stabilised at large values, this mecha-
nism is called Large Volume Scenario (LVS). It has the nice feature that the SUSY breaking
effects due to D3-branes are subdominant compared to the SUSY-breaking induced by the
stabilisation scheme. The gravitino mass (which can be used as an order parameter of SUSY
breaking) can be expressed in terms of V (measured in units of string-length) as follows [48]:

2
W,
M3/ ~ gSV 2, (1.3.79)

where we ignore numerical factors. For sufficiently large compactification volumes one can
obtain gravitino masses at the TeV scale.?! A large V also yields a relatively small string-scale

Js
mstring ~ m . (1380)

However, mgting at TeV scale is not possible to achieve, because this renders the Kéhler
moduli too light and one runs into the cosmological moduli problem. The masses of 7, and

21'While this possibility might not be too attractive anymore given the present LHC results, low-scale super-
symmetry was certainly one of the interesting features of the LVS.
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Ts are given by [48]:

~ ggWG M~ asTsgsWo
V3/2 Ts v :

In the LVS, 73 is the lightest modulus. Its SUSY partner, the axion a; is even exponentially

lighter:

(1.3.81)

M,

Ma, ~e V" (1.3.82)

This is a generic feature of the LVS. Hence, a prediction of the LVS is a contribution to the
effective number of relativistic species by the axion a; acting as dark radiation (see Chapter 2).

It is fair to say that the KKLT scenario and the LVS are the most frequently used mech-
anisms to stabilise Kéhler moduli, although there are further approaches such as Kéhler
uplifting [67].

1.3.5. A Few Comments on F-Theory

It is often useful and necessary to consider F-theory compactifications, which are more general
than type IIB compactifications. In F-theory one considers elliptically fibred CY 4-folds Xg
and the axio-dilaton S varies over the six-dimensional base space. Instead of the fluxes F3 and
Hj (which are combined to G3) one has a 4-form flux G4 in F-theory. The Gukov-Vafa-Witten
superpotential is expressed as [17; 18; 61]

W = Gy NSy, (1.3.83)
Xs

where €24 is the holomorphic (4, 0)-form on Xg. Locally, one can describe an elliptically fibred
CY 4-fold Xg as a product of a CY 3-fold and a torus (except at singular fibres) [15; 18].
Then, G4 and Q4 can be related to Gs and 3 as follows [17; 18]:

Gs3 N\ dw
Gi=—2""" the., 1.3.84
1T 5o T (1.3.84)
Oy = Q3 ANdw (1.3.85)
where
dw = dx + Sdy (1.3.86)

with x and y denoting the coordinates of the fibre. One can then show that (1.3.83) reduces
to the type IIB expression (1.3.63). Similarly, the axio-dilaton part and the complex structure
moduli part in (1.3.59) can be obtained from

K:—m( suAm>. (1.3.87)
Xs
Of course, one can define a four-fold period vector IT¢ similar to (1.3.60):

=/ Q. (1.3.88)
=

Here, Y are the 4-cycles in Xg. It follows that W can be expressed in terms of the flux
numbers N of Gyu:

W = NII'(u) , (1.3.89)
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where u denotes all the complex structure moduli. Their number is given by h3! (this can be
seen by straightforwardly generalising the construction (1.3.29) using the holomorphic (4, 0)-
form Q4), whereas the number of Kihler moduli is still A*!. The potential for these fields is
again given by the F-term scalar potential (1.3.65).

One advantage of using F-theory is that D7-brane position moduli in the type IIB language
correspond to complex structure moduli of the CY 4-fold in F-theory [17; 18]. There are
clearly many more interesting things to say about F-theory, but this goes beyond the scope
of the thesis. For reviews on F-theory see for instance [17; 68].

1.4. An Introduction to the String-Landscape

The agenda of this section is as follows: First, following [17], we outline how to count the
number of supersymmetric flux vacua given a Calabi-Yau geometry. Next, we summarise how
the huge landscape can be applied to our observation of the smallness of the cosmological
constant. Finally, we present the Weak Gravity Conjecture (WGC) as an argument that the
string landscape must be landlocked by an even larger swampland.

1.4.1. Counting of Supersymmetric Flux Vacua in F-/Type IIB Theory

We already sketched the origin of the string landscape: Given a Calabi-Yau manifold /orientifold
and a set of flux numbers (corresponding to F3 and Hj in type IIB string theory, or G4 in
F-theory), one can write down the effective F-term potential V. The supersymmetric min-
imum is defined by the vanishing of the F-terms, i.e. D;W = 0 for all fields. Clearly, due to
integrality of the flux numbers one obtains a discrete set of SUSY flux vacua. Crucially, the
choice of flux numbers is subject to the tadpole cancellation constraint. For type IIB string
theory the tadpole condition is (1.3.51), where we are working in the spirit of type IIB as the
weak coupling limit of F-theory on an elliptically fibred Calabi-Yau 4-fold Yg. One can write
schematically
x(¥s)

24
where 73 is a quadratic form of the flux vectors N r and N 7 corresponding to F3 and Hj.
Note that n3(Np, Ni) can be directly computed from Jx, Hs A F3 by specifying the fluxes in
terms of a basis of 3-cycles (7 is then the intersection form of the 3-cycles). Compared with
(1.3.51) the inequality is obtained by assuming Q31oc > 0. In principle, one can also have
Q310c < 0 by including anti-D3-branes, but then one would break supersymmetry.?2 We are
interested in counting SUSY vacua and thus we have Q3o > 0 implying (1.4.1) (see also
[10]). Note that the RHS of (1.4.1) contains topological data of Yg, and hence implicitly also
of the base space Xg.

For F-theory vacua we have an analogous tadpole constraint:

x(Y3)
24

n3(Np, Ni) < Ly =

(1.4.1)

774(]\77]\7) < L,

(1.4.2)

Here, 74 is the intersection form of 4-cycles and 774(]\7 , N ) is a quadratic expression in the
components of the flux vector N corresponding to the G4-flux. The expression 1y (N, N) is
obtained from ng Ga NGy

22Independently of this, note that the tadpole cannot be made arbitrarily large by including anti-D3-branes,
because in a flux background a sufficiently large number of D3-branes decays into a state with flux and
D3-branes only [12; 69; 70]

29



1. Introduction and Basics of String Cosmology

One can prove that for SUSY vacua one always has n3(Ng, Ni) > 0 and ny(N, N) > 0. We
explain this in the aside below.

Aside: Positivity of the flux-contribution to the tadpole for SUSY wvacua — We show that for SUSY
vacua one has fXﬁ H3 A F3 > 0. The idea is (see e.g. [18]) to use G5 = *¢i(G3 (which necessarily holds
for SUSY vacua) and G3 = F3 — SH3 with S = Cy + /g5 to obtain

1
F3 = CyHs + — ¢ Hs3 .

s

It follows 1
Hg/\Fng H3/\*6H320
X6 gS XG
and equality holds if and only if fluxes are turned off.
In the case of F-theory one has G4 = xgG4 for SUSY vacua (for a proof see [17]; this proof is based
on deriving constraints on G4 from the SUSY condition DW = 0 in the same spirit as we did for G3
in the aside in Section 1.3.4). It follows immediately

GiNGy = GiN*xgGy4 >0 . (143)
Ya Ya

Again, equality holds if and only if G4 = 0.

Hence, the task is to count how many choices for the integral flux numbers can be made such
that (1.4.1) or (1.4.2) hold true together with n3(Np, Ng) > 0 or n4(N, N) > 0 in the cases of
type 1IB or F-theory. Each viable choice yields a SUSY vacuum. The set of all vacua defines
the string/flux landscape [9].%3

A concrete systematics of counting SUSY flux vacua has been developed in [10; 12]. They
are partially based on [8]. In the subsequent presentation we mostly follow [17], which presents
the counting of SUSY flux vacua in F-theory. The approach can, however, also be applied to
SUSY vacua in type IIB string theory.

Let us formulate the counting problem mathematically more precisely: Given an elliptically
fibred CY 4-fold Yy and a G4-flux with flux numbers N1 € Z, we want to solve

DaWN(Z) =0, where WN(Z) = Gy NSQy (1.4.4)
Ys
and
1 Ys
0< 51)”]\7[]\7‘] <L, = X(248) , where nry = / sians], (1.4.5)
Ys

where a = 1,...,h3Y(Yg) = h and I = 1,...,b4(Ys). Recall that by(Yg) is the Betti-number of
Ys and given by by (Ygs) = 2h%1(Y3) +h?>2(Y3), see also Appendix A.3. Moreover, z summarises
all the complex structure moduli. Note that in the following we only count the number of
SUSY vacua on the complex structure moduli space M and ignore the Kéhler moduli sector.
The Kéhler moduli are unfixed at tree-level and should be stabilised by quantum effects. The

23The tadpole conditions together with ng(NF,NH) > 0 or 74 (]\7, ]\7) > 0 seem to suggest that there exists
only a finite number of SUSY flux vacua. However, in [71] it was demonstrated that e.g. on T°/Z one can
find infinitely many inequivalent flux solutions to the D3-tadpole, but only finitely many lead to 4d vacua
while the other vacua give rise to (partial) decompactification (see also [10]).
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number Ny, of SUSY vacua in a subset S C M can be formally written down as?*

Neae =Y /S d?h 262 (DW )| det(D*Wy)| | (1.4.6)
N

where we only sum over flux vectors N € 7 satisfying (1.4.5). One can show that the
number Ny,e of SUSY vacua respecting the tadpole condition can be approximated as [17]

1 (27L,)%/?
Vdetnry  (ba/2)!

where R is the curvature form on the holomorphic tangent bundle to S, and J is the Kéhler
form on S. To arrive at (1.4.7), one has to replace the sum over N in (1.4.6) by an integral
J d’ N, which is justified for a sufficiently dense distribution of the flux vacua. One then
ends up with a Gaussian integral, which gives rise to the factor in front of the integral.
Moreover, in the computation one drops the modulus in (1.4.6), assuming that there is no
severe cancellation occurring. We omit the technical details, which can be found in [17] (see
also Section 3.6, where we present technicalities of a similar computation taking into account
fine-tuning conditions in the landscape). However, the prefactor in (1.4.7), which is most
important for the estimation of the number of SUSY vacua, can be understood intuitively:
The factor (2wL,)%/2/(bs/2)! coincides with the volume of a bs-dimensional ball of radius
V2L,. (If n was the identity this is indeed what one would expect from (1.4.5).) For practical
purposes it is usually enough consider the volume factor for a good estimation of Nyaec.

Let us look at the example of an elliptic fibration over CP? analysed in [17]. The Hodge-
numbers are bt = 2, 21 =0, K31 = 3878 and h*? = 15564 (the last Hodge-number can be
computed from the previous ones by (A.3.24)). The Betti-number by is then by = 23320 and
the Euler character x = 23328 (see (A.3.25)), thus L, = 972. Inserting these numbers into
(1.4.7), one obtains from the volume factor:

1
Noac =~ /Sﬁdet (R+J1) , (1.4.7)

Nuac ~ 101789 (1.4.8)
This is much more than the often quoted 10°° string vacua. This number rather arises in
type IIB string compactifications. It can be obtained by considering the orientifold limit of
the above example (see [17] for details on this). But now by has to be replaced by 2bs = 600
in (1.4.7). (Note that one has b3 flux numbers for each F3 and Hs.) Taking L, = 972 one
finds

Nvac, type I1IB ™~ 10522 . (1.4.9)

Hence, there are much less type IIB than F-theory vacua. This is because in the counting of
the latter the D7-brane degrees of freedom are taken into account [17].

Note that one has to carefully check whether (1.4.7) is really suitable to obtain a good
estimate for Nyae: If by > 4mely, one has Ny — 0 as by — oo. This is clearly a wrong
behaviour. In the 4-fold model above we are precisely in this critical regime, where by 2 4mel,.
Following [72; 73] one can estimate Ny, by choosing n non-zero flux numbers out of by flux
numbers in total. Then, for each possibility we apply (1.4.7) (with by being replaced by n,
of course) and sum over all possibilities. We cut the sum at n = Ly, because for n > L, the

24To see this, recall that the zeros of a smooth function f : R — R can be counted by the expression

Ja dzd(f(@))If' ()]
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contributions to Ny, is negligible [72; 73]. One has (for L, < by):
L
5 (bg\ @rL)Y2 (b (2wL,)E/?
Nvac ~ Z (:) 7( (n*))| ~ <L4> 7( L*) : ~
n=1 : * (7) (1.4.10)
ba L,
~exp |LyIn 47reL— +(bg—L)In(1+ e .

* 4

For the above example the approximation yields Ny ~ 102483 (computation of the whole
sum gives Myae ~ 1024%) and hence somewhat more vacua than expected from (1.4.7).2°

We would like to stress that Ay.. depends strongly on the choice of CY geometry. In
principle, NMyac can therefore be much smaller or much larger than in the aforementioned
examples. But according to [74] there are many CY 3-folds with b5 = (©(100). Thus, obtaining
Niac > 1099 is not unusual. Recently, in [75] it was argued that virtually all F-theory
compactifications arise from an elliptically fibred CY 4-fold, whose topological data give rise
t0 Meae ~ 10272990 yacua. Despite these huge numbers, the 4d vacua obtained from F-
theory/type IIB compactifications are expected to be not at all arbitrary — we comment on
this issue in Section 1.4.3.

1.4.2. Application to the Cosmological Constant

Now we briefly describe how the existence of a huge string landscape can be used to accommo-
date a small cosmological constant, about 120 orders of magnitudes below our expectations
from quantum field theory. This section is not relevant for the thesis itself and can therefore
be skipped. The following outline, which is based on [8; 17; 18], is included for completeness
of the introduction to the string landscape.

Bousso and Polchinski famously proposed in [8] to consider a compactification, not neces-
sarily in the context of string theory, and to take into account contributions to the vacuum
energy density induced by non-zero fluxes:

Va(2) = Vo(2) + /ZG A %G = Vo(2) + g1s(-)NTNY | (1.4.11)

where Z is the compactification manifold and z the moduli of Z. The metric on the moduli
space is denoted by gr;(z). Moreover, G is a p-form flux with flux numbers N! € Z, where
I =1,...,b. To keep the discussion general, we neither specify the dimension of Z nor the
rank of G. Furthermore, Vy < 0 denotes the bare potential. One expects |Vp| ~ M*, where
M is the cutoff energy scale of the theory. Equation (1.4.11) clearly shows that one obtains
a discrete set of vacuum energy densities.

It is therefore interesting to ask how many choices of flux numbers satisfy the condition

Vol < grsN"NT < [Vo| + Aobs (1.4.12)

where Agps denotes the value of the observed cosmological constant in our vacuum. This
counting problem is similar to (1.4.5). The suitable sets of flux numbers are lying inside of a
thin shell with thickness dR of a b-dimensional ball of radius R = /|Vp| + A. One therefore
expects that the number dNyac(A) of vacua with cosmological constant A £ dA is given by the
volume of this thin shell:

b/2 b/2—1 b/2
SN (M) ~ L 72|Vl +A) SA {27re(|Vo|+A)] SA | (1.4.13)
Vdetg  (b/2-1)! pt Vol + A

25T would like to thank T. Watari for helpful email correspondence on this issue.
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where p? ~ b(det g)l/ b should be understood as the scale of the energy density of the flux part
of the potential.

Thus, around A ~ 0 one finds exponentially many flux choices consistent with (1.4.12). For
instance, if |Vo|/u* = O(10) one gets

A
Nyac(A ~ 0) ~ 10b|§/0| (1.4.14)

Then, in examples where |Vp| ~ M;l and 0A = Agps = 10729M% and b = 300 (like in the
type IIB string theory example), one still has approximately 101%0 vacua with cosmological
constants 0 < A < Agps.

In combination with the anthropic principle [76], the existence of a landscape of vacua, each
having a different cosmological constant, can justify the unnatural smallness of Agps. It is,
however, necessary to have a mechanism that populates the whole landscape. An example for
such a mechanism is eternal inflation [77; 78| (see also [19] for reviews). It leads to the concept
of the multiverse. Of course, it is particularly tempting to aim for statistical predictions of
typical parameters one would expect within any of the universes. Unfortunately, there are
technical and conceptual issues, known as the measure problem (see for instance [19; 79]).

1.4.3. Landscape vs. Swampland: The Weak Gravity Conjecture

As we have seen, the number of supersymmetric flux vacua is typically very large, but probably
finite. On the one hand, this result is appealing because the huge landscape could represent
an alternative to naturalness [9]. On the other hand, one could be concerned about the
predictivity of string theory. If there are so many 4d string vacua one could believe that
the bottom-up approach by simply writing down any 4d effective field theory is the more
efficient method for model building. However, there are several arguments that such bottom-
up approaches have a good chance to fail. Indeed, according to [21] the string landscape is
surrounded by an even larger swampland (see again Figure 1.1). The swampland contains (by
definition) all effective field theories which cannot be UV-completed to a consistent quantum
gravity theory. Assuming that string theory is a correct theory of quantum gravity, this means
that EFTs in the swampland can never be obtained from string compactifications. Hence, it
is crucial and exciting to understand how 4d EFTs from string compactifications differ from
swampland EFTs.

An example of an EFT in the swampland could be as follows: EFTs with an exact continuous
global symmetry are believed to be inconsistent with quantum gravity, and hence part of the
swampland. One of the most solid arguments for this inconsistency of exact global continuous
symmetries in quantum gravity comes from perturbative string theory: global symmetries on
the string worldsheet always correspond to gauge symmetries in spacetime (see [80; 81]). How-
ever, it is desirable to also have general quantum gravity arguments against global symmetries,
independently of string theory. Several rather general arguments against global symmetries
in quantum gravity have been put forward in e.g. [20; 81-83]. One heuristic argument goes
as follows [20; 83]: given an EFT with a continuous global symmetry, one can throw particles
charged under this global symmetry into a black hole. An observer outside the black hole has
no chance to measure how many of such particles have been falling into the black hole. Hence,
it seems that conservation of this global charge is violated. (Note that the situation is different
for local gauge symmetries. If particles charged under this gauge symmetry are thrown into
the black hole, their total charge can still be determined from outside by Gauss’ theorem.)
There is further evidence supporting that there cannot be global continuous symmetries in
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quantum gravity. Take a U(1) gauge symmetry with coupling constant g and consider the
limit g — 0, in which we recover a global continuous theory (gauge bosons decouple). It seems
to be possible to construct black holes of arbitrary charge. However, this charge cannot be
radiated away, although the black hole keeps losing mass due to Hawking evaporation. Hence,
after the evaporation process one expects an arbitrarily large number of extremal black holes
of a few Planck masses. Their number goes to infinity as g — 0. This leads to problems [84]
such as the violation of the covariant entropy bound [83; 85]. Therefore, quantum gravity
should censor the limit g — 0.

A possibility to avoid problems with those so-called black hole remnants is to assume that
extremal black holes can decay. Thereby the limit ¢ — 0 is prohibited. We explain how
this comes about. An extremal black hole of mass M and charge @ satisfies M = v/2¢9Q
(extremality condition), where g is the electric coupling constant. (Note that by choosing
appropriate normalisations, one can also formulate the extremality condition as M = @,
i.e. without coupling constant g and numerical factors. However, in this discussion it is
convenient to keep g explicitly and follow the standard normalisation.) Since we want this
extremal black hole to be able to decay, we need to impose charge and energy conservation:

Q=Nqg, M>Nm, (1.4.15)

where we assume that the black hole decays into N particles with charge ¢ and mass m. Using
the extremality condition M = g(@, these two equations yield

M =+V29Q = v2gNq > Nm = m < V2gq . (1.4.16)

Note that a decay of an extremal black hole into subextremal particles (m > v/2gq) and a
superextremal (M < v/2¢gQ) black hole is prohibited by the cosmic censorship hypothesis (see
e.g. [86; 87] for reviews). We conclude that the assumption of unstable extremal black holes
requires the existence of an elementary particle, whose charge-to-mass ratio is v/2¢q /m > 1.
(Note that this result can also be obtained by allowing the black hole to decay into different
particles.) In particular, we observe that the limit ¢ — 0 cannot be taken.

The result of (1.4.16) is the heart of the so-called Weak Gravity Conjecture (WGC), which
represents one of the most prominent examples for a criterion to distinguish swampland theo-
ries from theories of the landscape.?® It was motivated [20] precisely for the reasons outlined
above. The name of this conjecture is easily understood: The inequality m < /2gq simply
means that the repulsion of the U(1) force dominates over the gravitational force between
two particles of mass m and charge ¢. Unfortunately, it is currently unclear, how the exact
formulation of the WGC should look like. For instance, it might be necessary to demand that
the lightest particle of mass m and charge ¢ has to obey m < v/2gq. This is often referred
to as the strong electric WGC. In contrast, the mild electric WGC' only requires that there
is some particle in the spectrum satisfying m < v/2gq. Further formulations are conceivable
and supported by more or less solid evidence from Kaluza-Klein theories or string theory. A
list of recent discussions can be found in [90-99]. Since in this thesis we will be applying only
the mild and strong forms of the WGC, we want to draw our attention to those ones [20]:

26For other attempts to delineate the boundary between the landscape and the swampland, see also [88] and
recently [89].
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The electric Weak Gravity Conjecture — A U(1) gauge theory with gauge coupling g, which
is consistent with quantum gravity, contains a charged particle of electric charge ¢ and
mass m such that (in Planck units)

m < v2gq . (1.4.17)

In the mild form it is sufficient if there is just one such state in the particle spectrum.
The strong form requires that the state satisfying (1.4.17) must also be the lightest one.

Note that the mild WGC is sufficient to avoid the problems with black hole remnants.
While the strong WGC seems unmotivated at this stage, it finds support by various concrete
examples within string theory (see [20] for details). A Weak Gravity Conjecture can also be
formulated for the dual objects to charged particles, namely magnetic monopoles. Assuming
that also magnetically charged black holes should be able to decay, it follows for the mass of
a magnetic monopole (ignoring O(1) factors)

1
Mmon < Jmag@mag ~ — - (1.4.18)
o agdmag 99
This is not yet how the magnetic WGC is formulated traditionally. Rather, a further obser-
vation is used. The mass of the magnetic monopole is bounded from below by the energy
density of its magnetic field, i.e.

m (gmangag)Q ~ A
mon < _ ’
A1 92 (]2

(1.4.19)

where A is the cutoff of the U(1) gauge theory. Together with (1.4.18) it follows A < ggq,
which is what the traditional formulation of the magnetic WGC states [20]:

The magnetic Weak Gravity Conjecture — A U(1) gauge theory consistent with quantum
gravity has a cutoff A with upper bound

A < gq (1.4.20)

in Planck units.

Note that this inequality can also be obtained by demanding that the magnetic monopole
should not be a black hole [20]. Once again, we observe that the limit ¢ — 0 yielding a
continuous global symmetry leads to an immediate breakdown of the EFT.

The Weak Gravity Conjecture (both electric and magnetic) is expected to generalise to
p-dimensional coupled to (p + 1)-forms in d > p dimensions. (The above WGC is stated for
p = 0 (particle) and d = 4.) Heuristically, the generalisation follows from the requirement
that extremal p-dimensional black branes should be able to decay. However, this heuristic
argument fails for axions, i.e. O-forms in d dimensions. These O-form fields are sourced by
instantons, which are localised in time, i.e. the black hole argument is not (directly) applicable.
Nevertheless, there are various ways to motivate the WGC also for instantons coupled to axion
fields, e.g. by string dualities (in combination with dimensional reduction) [100], Kaluza-Klein
reduction [92], or by expressing the WGC in string compactifications in geometric terms [93].
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Now, assuming that the WGC is applicable not only to particles/1-form gauge fields but
also to instantons/axions, natural inflation can be shown to reside in the swampland: the
instanton charge is given by the inverse of the axion decay constant f and its mass corre-
sponds to the instanton action S. The (electric) WGC then tells us that S < 1/f. In the
regime S > 1 (in string theory this is necessary to impose in order to have perturbative
control) it then follows f < 1, which is the exact opposite of what is needed for successful
natural inflation. Consequently, the WGC implies sub-Planckian axion decay constants. This
finding is consistent with independent results from string theory [40; 41], see also the aside
below.

Aside: Axion decay constants in string compactifications — We exemplify why axion decay constants of
axions from string theory are expected to be sub-Planckian. As in [32] we consider the axion arising
from the NS-NS-field B,. In an O3/07 orientifold compactification we can write By = b, (z)w®, where
a=1,..,h"" The type IIB SUGRA action (1.3.10) contains a term

1 1
= 2 / d'%xv/=GldBy[* 5 5 / Ao/ =gy P 0,ba0"bg |
107s
where )
2-31k2,02 Jx, (%)

We assume an isotropic compactification so that the volume of Xg is given by V ~ LS, where L is the

characteristic length of the compactification manifold Xg. Since the basis w® is normalised such that

fzg w® = dg, where Zg is a 2-cycle (and thus scales like ~ L?), one deduces a scaling w® ~ 1/L?.
2

Hence, in a diagonal basis the integral in (x) scales as §*%V/L*. Taking into account that the Planck
mass in 4d is given by M} = V/(k3,92), we get
2
s = L My as

2.3 L*
The axion decay constant f, for axion b, () is given by f2 = ~%®. In order to have perturbative
control, we need L > M~ 1. Hence, f, is sub-Planckian. More examples and details can be found in
[40; 41].

Since the WGC censors trans-Planckian axion decay constants, more refined constructions of
axion inflation models are needed, such as the KNP-mechanism (alignment inflation) [42] or
models of N-flation [43]. However, there can be constraints of those models from the WGC
extended to theories with multiple U(1) gauge fields. In this case, the WGC requires that
the convex hull of the set of charge-to-mass vectors z; = +¢;/m;, i = 1,..., N (N number
of gauge fields), has to contain the unit ball in RY (the surface of this unit ball is defined
by the charge-to-mass ratios of extremal black holes) [90]. This criterion is again motivated
by avoiding black hole remnants. In [100; 101] this extended WGC was used to analyse
constraints on axion inflation such as the KNP-mechanism. Indeed, attempts to realise the
KNP-mechanism with two axions seems to runs afoul with the extended WGC. However,
there is a loophole pointed out in [100; 101], which is based on introducing a “spectator
instanton”. In this way, consistency with the mild form of the WGC can be ensured. We do
not go into further details in this introduction and refer to Chapter 4 for more remarks on
the KNP-mechanism and the potential conflict with the WGC.

In summary, we learn that the WGC is an interesting tool, which can improve our un-
derstanding of the boundaries of the string landscape within the swampland (apart from
applications of the WGC to inflation, the Weak Gravity Conjecture has recently brought into
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connection regarding the stability of non-supersymmetric vacua, see e.g. [102-105]).

1.5. Structure and Short Summary of the Thesis

Here we describe the structure of the next parts of the thesis. Thereby we provide a summary
of the individual chapters and briefly present our conclusions and results. At the end of this
section, we also explicitly list the publications, which constitute the heart of this thesis.

We begin our exploration of string landscape vacua by investigating whether the Large
Volume Scenario (LVS) admits realistic reheating scenarios consistent with present cosmo-
logical measurements. The LVS possesses a light bulk volume modulus 75, whose mass is
my, ~ 1/ V3/2 and an exponentially lighter axionic partner a; of mass mg, ~ exp(—VQ/ 3).
Since this axion is essentially massless, it gives rise to dark radiation and may therefore yield
inconsistencies with recent measurements of the effective number of relativistic species. In
Chapter 2 we review the dark radiation problem in reheating models based on the so-called
sequestered LVS. Here, the Standard Model (SM) is realised by D3-branes at a singularity
of the CY orientifold. Reheating occurs due to the decay of 7, into SM particles, where the
channel for decays into the Higgs sector is dominant. At the same time the coupling of 7, to ay
leads to a decay into very light axions. Hence, dark radiation is produced and it contributes
significantly to ANeg = Neg — 3.046. Recent measurements allow only for small deviations
from the SM value Neg = 3.046. Therefore such LVS models can easily be in tension with
present cosmological data. In Chapter 2 we go beyond the sequestered LVS. We propose to
realise the visible sector by a stack of D7-branes wrapping a stabilised 4-cycle of the CY 3-fold.
This 4-cycle can be stabilised in three different ways, either by D-terms, string-loop effects or
non-perturbative effects. The first two possibilities enhance the decay into the SM sector by
a new channel of decays of 7, into gauge bosons of the Standard Model. Thereby, AN.g can
be reduced. The possibilities of lowering the prediction for ANeg are, however, limited. The
price to pay for an enhancement of the decay into the visible sector is a delicate fine-tuning
of a parameter of the model. Nevertheless, in comparison with the sequestered LVS, our
scenarios are more flexible in making A Neg consistent with recent data. Only in the case of
stabilising the visible sector by non-perturbative effects the decays into SM gauge bosons is
not efficient enough to ameliorate the dark radiation excess. Our conclusion is as follows (up
to some technicalities explained in Chapter 2): the two non-sequestered LVS models with the
visible sector being stabilised by D-terms or string-loops are not yet ruled out. However, if the
measurements of AN.g keep decreasing toward zero, our models will be pushed to their limits
and may finally be excluded. This would not imply that those models are in the swampland,
but rather that we are most likely not living in an LVS vacuum. At the end of Chapter 2 we
also comment on variants of the sequestered LVS equipped with flavour branes, as well as on
further progress in this field beyond our work.

Afterwards, we continue the exploration of the string landscape based on the idea that 4d
EFTs of the string landscape are expected to have particular features, which distinguish those
from EFTs of the swampland [21]. In particular, we investigate whether models of large-field
inflation can be realised in the string landscape. If this were not possible, large-field inflation
models would reside in the swampland.

In Chapter 3 we propose a fine-tuned realisation of F-term axion monodromy inflation,
where backreaction of the inflaton on the remaining moduli, which are stabilised at the SUSY
locus, is under control. We take an axion associated with a D7-brane modulus or a complex
structure modulus as the inflation and its potential is protected from quantum corrections
by shift symmetry, which arises at the large complex structure (LCS) limit (we refer to the
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—2mz

LCS limit as the regime in which terms of the form e are highly suppressed due to the
stabilisation of Re(z) at large values). An inflaton mass is generated by turning on fluxes
appropriately so that the structure of the superpotential is given by W = wg(z) + a(2)u,
where u is the modulus corresponding to the inflaton and z labels the remaining moduli. In
order to keep the inflaton mass light and to control backreaction of u on the other moduli
z, it is necessary to make the coefficient a(z) and its derivatives 0,a(z) with respect to all
moduli small by fine-tuning. The main emphasis of the presentation will be an analysis of the
required geometry of the CY manifolds followed by a quantitative study regarding the severity
of the required fine-tuning in the string landscape. We find that there is a no-go theorem for
our proposed F-term axion monodromy inflation model on CY 3-folds, because it turns out
that the necessary fine-tuning is prohibited in the perturbative regime. The basic idea of
the no-go theorem is the observation that the coefficient a(S) of the coupling term a(S)u,
with axio-dilaton S, can never be tuned small. Indeed, one always has a(S) ~ (n1 + n2S5),
ni,ng € Z and S = Cp+i/gs. Hence, the tuning condition |a(S)| < 1 yields two requirements
|n1 +n2Cy| < 1 and |ny/gs| < 1, corresponding to the tuning of the real and imaginary part
of a(S), respectively. The latter condition can be achieved in the perturbative regime g5 < 1
only for ng = 0. In consequence, we then find n; = 0 and hence a(S) = 0. By similar
arguments one can show that all the coupling terms of the inflaton to the other moduli must
vanish identically. Considering F-theory on Calabi-Yau 4-folds instead, this problem can be
avoided. Their much richer geometrical structure allows to make the inflaton mass small by
fine-tuning. Moreover, due to the fine-tuning the field space of the inflaton admits a long
enough trajectory, along which quadratic inflation can take place. To complete the analysis,
we study how many string vacua of the landscape remain after imposing the required tuning
conditions. We show that a landscape of vacua remains as long as not too many complex
structure moduli couple to the inflaton modulus «. If no such landscape were to remain, we
would conclude that F-term axion monodromy inflation could not be realised in type IIB
string theory. To summarise, we can put forward an explicit proposal for realising large-field
inflation in string theory at the cost of accepting potentially severe fine-tuning. Currently,
this scenario seems to be robust against strong quantum gravity constraints [93; 106; 107].
Hence, F-term axion monodromy inflation seems to be a viable candidate for the realisation
of large-field inflation in the string landscape.

In Chapter 4 we take up the challenge of realising alignment inflation, for which quantum
gravity constraints from the Weak Gravity Conjecture have been discussed in e.g. [100; 101;
108], in type IIB string theory. First, we briefly review the basic logic of alignment inflation
and then explain the implementation in type IIB string theory. Here, we focus again on the
geometric setup as well as on the consistency of our model with Kahler moduli stabilisation
a la LVS. We consider two complex structure moduli v and v in the LCS limit (where u is
assumed to be deeper in the LCS limit so that the non-perturbative corrections containing
u are more suppressed than the ones for v). By flux choice we ensure that the leading
order superpotential terms exhibit the structure W = wqg(z) + f(2)(u — Nv), where N is a
combination of certain flux numbers, which must be taken large, i.e. N > 1. Moreover, z
again labels the remaining complex structure moduli. At the SUSY locus the variables Im(u),
Im(v) and the combination Re(u — Nv) are stabilised. This leaves one unfixed and hence
flat direction, which is a winding trajectory in the Re(u)-Re(v)-space. Therefore, the unfixed
orthogonal combination to Re(u — Nv) is a good inflaton candidate (which can be identified
with Re(u) up to O(1/N) corrections). A non-vanishing inflaton potential is then generated
by including leading order instanton corrections for v. Taking into account backreaction of
the inflaton modulus on other moduli, our setup yields a potential V' (0) ~ (1 —cos(8/ fax)) for
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the canonically normalised axion § with axion decay constant fux ~ N/(4m), which becomes
effectively trans-Planckian for sufficiently large N. Our scenario is therefore similar to the
alignment mechanism in field theory proposed by Kim, Nilles and Peloso [42]. For a consistent
realisation in type IIB string theory, Kéhler moduli stabilisation is to be taken into account.
We show that the magnitude of the energy scale of the inflaton potential can be well below
the energy scale of Kédhler moduli stabilisation. Thus, destabilisation of Kahler moduli during
inflation is avoided. Furthermore, we address the question whether our inflation model is
consistent with the Weak Gravity Conjecture (WGC) if it is applicable to our construction.
We observe that our model precisely realises a loophole pointed out in [100; 101], which only
exists if the mild WGC holds true. The existence of a heavier instanton with sufficiently
large charge suffices to satisfy the mild WGC. The instanton we need is precisely the one
that generates an instanton potential for u. Note that what we mean by “instantons” here
are actually worldsheet instantons on the dual (type IIA) side, which give rise to “instanton”
corrections on the type IIB side. (We therefore often refer to these “instanton” or “non-
perturbative corrections” e?™ or e~2™* depending on conventions, as instanton corrections.)
Since w is, by construction, stabilised deeper in the LCS limit, the corresponding instanton
is heavy enough to suppress any dangerous corrections to the inflaton potential. If, however,
the strong WGC is valid, the instanton satisfying the WGC must also be the lightest one.
Obviously, our model would then be censored by the strong WGC. Finally, we also comment
on some further concerns with respect to the realisation of our model in string theory. For
instance, we comment on possible challenges in obtaining N > 1 in the light of the D3-tadpole
cancellation constraint. To conclude, our model, which we call “F-term winding inflation”,
realises alignment inflation in string theory. In order to answer the question whether this
scenario is ruled out by the WGC, a deeper understanding of the Weak Gravity Conjecture
is necessary.

It is moreover desirable to delineate the string landscape without relying on conjectures,
ideally in a model-independent way. In [108] it was suggested that models of axion inflation,
such as natural inflaton or alignment inflation, are constrained by effects induced by gravita-
tional instantons. In our context, these are finite-action solutions of Euclidean Einstein-axion
systems. The metric solution is a wormhole, which we henceforth refer to as the Giddings-
Strominger wormhole [109]. It connects two distant regions of the asymptotically flat space
by a throat. However, the Euclidean Einstein-axion system is just an effective theory, which
reaches its limits of validity at very small distances or large curvatures. Consequently, the
wormhole solutions can only be trusted up to a certain energy cutoff scale A. In particular,
wormholes with throat radii 79 < A~ cannot be trusted. In terms of the cutoff scale, the
corrections of the axion potential are of order 8V (#) ~ cosfe™5 ~ cos Ge="8 ~ cosfe1/A%,
Hence, such corrections are only relevant for inflation if A is just below the Planck scale,
i.e. A < 1. However, in the context of string theory, there are many scales below the Planck
scale at which the validity of our Einstein-axion system can be lost. A breakdown of the de-
scription is expected to occur at the Kaluza-Klein scale and possibly even much below at the
stabilisation scale of the lightest moduli. In the latter case, the correction 6V (#) ~ cos e~/ A2
would be totally irrelevant for axion inflation. Apart from this concern, doubts have been
raised in [92], whether such wormbhole contribute at all to the potential. Globally, a wormhole
connecting two different regions of the same manifold does not lead to a net change in the in-
stanton flux number, and hence one may wonder whether the presence of Giddings-Strominger
wormbholes can really break the axionic shift symmetry.

These two questions are treated in Chapter 5. Regarding the issue whether Giddings-
Strominger wormholes can contribute at all to the axion potential, our approach is as follows:
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we write down the partition function for any distribution of wormholes in Euclidean space and
deduce the effective axion potential in some region of this Euclidean space. We find that there
is indeed a contribution to the effective potential of the type cos e, originating from a non-
local effect. Locally, it looks like shift symmetry is broken, although it is preserved globally.
This result is supported by a quantum mechanical toy-model, where we compute the energy
eigenvalues of a Hamiltonian for a gas of paired instantons and anti-instantons. Thus, worm-
holes could spoil axion inflation if the generated potential is of the right magnitude. In the
next part of the project, we therefore study the effective description of gravitational instanton
solutions. To see whether this EFT breaks down due to destabilisation of light moduli, we
consider Einstein-axion-dilaton systems, which occur frequently in string compactifications.
As opposed to the Einstein-axion system, gravitational instanton solutions now come in three
types [110]: there are again wormhole solutions, but also a flat space solution (which we
call extremal gravitational instanton) and a solution with a singularity (cored gravitational
instanton). The origin of these two solutions can be traced back to contributions from the
kinetic energy of the dilaton to the energy momentum tensor. Note that wormhole solutions
can only arise for a certain range of dilaton couplings, which are more difficult to obtain in
string compactifications. All three solutions are expected to break down below some length
scale A~!. However, we show that the dilaton variations with respect to Euclidean time can
be controlled and thus destabilisation of the dilaton is in general not an issue. Hence, the
cutoff scale A can be taken up to the Kaluza-Klein (KK) scale. We push the KK-scale as
close to the Planck scale as possible and find that there are no model-independent constraints
on axion inflation. In particular, Giddings-Strominger wormholes with the smallest possible
throat radius induce a potential, which is negligible in comparison with the potential during
inflation. Therefore, we come to the conclusion that possible constraints on large-field infla-
tion (if existent) must come from the “quantum part” of any quantum gravity theory rather
than from semi-classical treatments. Furthermore, we make a couple of observations related
to the Weak Gravity Conjecture. For instance, we note that the wormholes are precisely the
instantons satisfying the WGC. Moreover, the WGC implies the instability of extremal and
cored gravitational instantons, which can be obtained by dimensional reduction of extremal
and sub-extremal five-dimensional Reissner-Nordstrom black holes, respectively. The WGC in
5d implies the instability of these black holes. Therefore, it is conceivable that the instability
is inherited by the extremal and cored instantons.

Finally, Chapter 6 summarises the results of this thesis and discusses how they shape the
direction of future work. In brief, we learn that despite the huge number of string vacua within
the landscape, the properties of EFTs from string compactifications are by far not arbitrary.
For instance, some corners of the string landscape predict dark radiation and thus, those
parts of the landscape might face more stringent constraints from observations in the near
future or even be ruled out. Furthermore, we find that large-field inflation has not yet been
proven to reside in the swampland. Instead, we were able to put forward two different types
of large-field inflation scenarios, which seem to work from the perspective of string theory
modulo some technical details, which are still to be clarified in future work. We also conclude
that gravitational instantons are not suitable for deriving generic and strong constraints on
large-field inflation. Whether the WGC has to say more about large-field inflation can only
be decided by making more progress in understanding the WGC itself.

Various appendices add technical details to the main chapters or contain some general
background material.
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List of Publications and Specification of Own Contributions

The contents of Chapter 2 to Chapter 5 are based on [111-114] (see also the list at the end of
this thesis). All the papers are published in peer-reviewed journals. These publications were
written in collaboration, in which I was involved in all aspects of each paper. In the following
I describe, however, my main contributions to these publications.

Project 1: Dark Radiation predictions from general Large Volume Scenarios [111]

My main contributions to [111] are in section 3 of this work. Therein I was mostly responsible
for the computation of decay rates in the presented models and the possibility of enhancing
the decay rate into gauge bosons by fine-tuning. Hence, Chapter 2 is particularly based on
those aspects and further parts of our joint work are summarised for completeness.

Project 2: Tuning and Backreaction in F-term Axion Monodromy Inflation [112]

My main contributions to [112] are the analysis of the geometric setup (sections 2.2 and
2.3) and the quantification of the tunings in the landscape (section 4). Furthermore, the
observation that fine-tuning of the derivatives of a(z) is required as well, is based on my
computations at an early stage of this project. Hence, Chapter 3 is particularly based on
those aspects and further parts of our joint work are summarised for completeness.

Project 3: Winding out of the Swamp: Evading the Weak Gravity Conjecture with
F-term Winding Inflation? [113]

For this project I was in particular working on how the phenomenology of alignment inflation
translates into a constraint on the flux number N. Furthermore, I analysed the geometry of
the setup as well as the compatibility of our winding inflation model with Kahler moduli sta-
bilisation. Concerning section D, I contributed in particular to the discussion on gravitational
instantons, which we postpone to Chapter 5. Hence, Chapter 4 is particularly based on the
described aspects and further parts of our joint work are summarised for completeness.

Project 4: Can Gravitational Instantons Really Constrain Axion Inflation? [114]

In this project I was the principal author of this paper. Hence, I include all of my results in
this thesis so that Chapter 5 coincides with most of [114].
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CHAPTER 2

Testing String-Vacua: Contraints from Observational Bounds on
Dark Radiation

2.1. Motivation and Summary

The Large Volume Scenario (LVS) is arguably one of the most prominent proposals to stabilise
the Kéhler moduli of a Calabi-Yau 3-fold in the framework of type IIB string theory. One of
its key features is that the mass of the axion a corresponding to the bulk-cycle is exponentially
volume-suppressed, m, ~ exp(—VQ/ 3), where V is the volume of the CY manifold. Hence,
there will always be a light axion, which contributes to the effective number of relativistic
species, Neg. Such key features allow us to investigate the phenomenological compatibility of
those corners of the string landscape with current observational data, such as from Planck
2015 [1], proposing a maximal ANz = 0.56 (20; Planck TT+lowP+BAO), where ANg is
defined by the deviation from the Standard Model value, i.e. ANgg = Neg — 3.046. This result
does not leave much space for abundant dark radiation, and hence it is a challenge to realise
a Large Volume model consistent with this finding. Note that, depending on the combination
of available data, there is room for debate which value of ANy should be taken. For instance,
when taking into account preliminary polarisation data, the current value of Neg would reduce
to Neg = 3.04 £ 0.18 (Planck TT, TE, EE+lowP+BAO) [1] consistent with the Standard
Model prediction Neg = 3.046. This measurement corresponds to ANeg < 0.35 at a 20 level.
However, there seems to be a mismatch between the preferred Hubble rate Hy reported by
Planck 2015, namely Hy = (67.840.9) km s~ 'Mpc ™! (68% CL, Planck TT+4lowP+lensing) [1],
and the Hubble rate measured by local experiments. For instance, in [115] the “best estimate”
is Hy = (73.24 + 1.74) km s~'Mpc~!. Those two results can be reconciled by allowing for
a larger ANeg ~ 0.4 — 1 [115]. In [116] the combination lowP+TT+CMB lensing allows for
ANeg < 0.77 (95% CL) with Hy = 71.3735 km s~ ™Mpc~!. Alternatively, it is conceivable
that tensions in the measurement of Hy arise due to our location in an underdense region
of the universe [117]. Clearly, there are some open questions left! and for the remainder of
this chapter we will stick with the ‘conservative’ Planck 2015 result AN.g = 0.56 (20; Planck
TT+lowP+BAO).

T wish to thank Viraj Sanghai and Benjamin Wallisch for discussions on local vs. Planck measurements of
Hy. In particular, I am grateful to Benjamin Wallisch for helpful email correspondence.
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We will first review how dark radiation arises in the so-called sequestered Large Volume
Scenario. In such models the visible sector is realised by a stack of D3-branes located at
a singularity of the CY 3-fold and the most relevant decays during reheating are given by
T, — apap (decay of the bulk cycle modulus 73, to its corresponding axion) and the decay into
Higgs scalars 7, — H,H,;. The contribution to Neg can be generally computed as follows?:

43
ANy = —

- (2.1.1)

( 10.75 >1/3 (1, — DR)
9+(Ty) (1, — SM) ’

where g,(T}) is the effective number of particle species at the decay temperature (i.e. reheating
temperature) Ty. The number 10.75 arises from g, = 10.75 at neutrino decoupling. I'(7, —
DR) and I'(7, — SM) are the decay rates of 7, into dark radiation (DR) and Standard Model
particles (SM), respectively. In the sequestered LVS the latter is dominated by the decay
into the Higgs sector. We argue that the resulting branching ratio is typically too high to be
consistent with present data.

Thus, we propose to reduce the branching ratio by considering more general Large Volume
models. Specifically, we suggest to wrap a stack of D7-branes (representing the visible sector)
on a stabilised 4-cycle of the CY 3-fold. In doing so, another decay channel of 7, into Standard
Model gauge bosons becomes relevant, lowering the branching ratio of the decay into dark
radiation axions. The stabilisation of the 4-cycle can be achieved by D-terms, string-loop or
non-perturbative corrections. All three cases are described in this chapter in the respective
order. We point out explicitly that the decay into gauge-bosons can be enhanced by some
fine-tuning of a flux-parameter. In this way consistency with data is improved. It remains an
open question how much of this fine-tuning in the string landscape can be achieved.

Furthermore, we give a brief overview on other phenomenological issues and properties
of our models. Our extensions of the sequestered LVS goes hand in hand with high-scale
supersymmetry. Additionally, we briefly discuss whether the axion a; can also be the QCD-
axion at the same time.

To put our most important conclusions in a nutshell, we find that our rather generic Large
Volume constructions described above are still compatible with recent measurements Nqg =
3.15 £ 0.46 (20; Planck TT+lowP+BAO). However, if future measurements of Neg continue
to approach the Standard Model value Nog = 3.046 (as suggested by including preliminary
polarisation data), our proposed scenarios, and hence the corresponding parts of the string
landscape, are on the verge of being ruled out.

This whole chapter is a summary of our published work [111] with the focus on non-
sequestered LVS variants, whose presentation follows closely section 3 of this paper.

The paper [111] will also be discussed in [120] with particular attention to section 4 of our
joint work.

2.2. Brief Review of Previous Work

We begin by reviewing dark radiation predictions within the sequestered LVS of the papers
[119; 121; 122] that motivated our project. A similar summary can be found in our work [111].

The starting point of [121] is a so-called Swiss-cheese CY 3-fold, whose volume V can be
expressed as

V=a (7‘5/2 - Z’yﬂif) , (2.2.1)

7

For a nice description of the origin of this formula we refer to [118] and [119].
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bulk cycle
Tbh

D3 small cycle
T 2
visible sector

Sequestered LVS

Figure 2.1.: This is an illustration of a Swiss-cheese Calabi-Yau 3-fold of the sequestered LVS.
For simplicity, only two small cycles 751 and 752 are shown. In the sequestered
LVS the visible sector (represented by a red dot) is realised by D3-branes at a
singularity of the CY manifold.

with some parameters a and 7;. V and at least one of the small cycles 7; ; are fixed by the
LVS scheme, such that V ~ 017'5’ 2 i exponentially large (see also Section 1.3.4 for a brief
review of the LVS). The LVS gives rise to a mass-hierarchy of the moduli. For our purpose,
the masses of the lightest fields 7, and its axion a; are particularly interesting;:
M,
M,

~ pas e M~ My e 2V (2.2.2)

In [121] the sequestered LVS was considered. As already mentioned, the idea is to realise
the visible sector via D3-branes at a singularity of the CY manifold (see Figure 2.1). The
sequestered LVS has the interesting feature to allow for TeV-scale supersymmetry. This can
be seen as follows: the gaugino- and soft scalar masses scale as [121]

M
m1/2 ~ Mgoft ™~ v—g s (223)
whereas the gravitino mass goes as
M
m3/e ~ T (2.2.4)

and therefore my /5 ~ mgof, < mg3/p. Consequently, one can have soft masses at TeV-scale,
while the gravitino and other moduli are sufficiently massive so that there is no conflict with
the cosmological moduli problem (CMP) (see Section 1.3).

The decay rates for 7, into dark radiation and Standard Model particles can be read off
from the interacting terms of the Lagrangian .. Everything we need are the relevant terms

45



2. Testing String-Vacua: Contraints from Observational Bounds on Dark Radiation

of the Kéhler potential K and the tree-level gauge couplings f,, which read

1, _ _
K= —3In (Tb +Th— |CICT 4 Hy Hy + HyHy + {2H,Hy + h.c.}D +... (225)

cict Huﬁu +Hdﬁd zH,Hi+ h.c.
Tb+Tb T +Tb Tb—f—Tb
fa =S+ ha,kTsa,k R (2.2.6)

= — 31H<Tb -+ Tb) -+

for the sequestered LVS. We denote by T, = 7, + iap the bulk volume modulus superfield, by
T, « the blow-up modes and by S the axio-dilaton. C' are the chiral matter superfields and
H,, H; the Higgs bosons. z is an undetermined parameter. In the gauge-coupling f, depends
linearly on S and the blow-up modes T, x, multiplied by a parameter A, .

47_2 12 1 ) . . .;

The kinetic terms of 7, and a; have to be canonically normalised by 7, = exp(¢+/2/3) and
ap = a/2/3, where ¢ is the physical field corresponding to the bulk volume modulus. This
yields the interacting term

2
Z D \/Q(ﬁ@uaﬁ"a , (2.2.8)
and the decay rate for the process ¢ — aa can be read off:
r L m% 2.2.9
The relevant coupling-term of ¢ to the Higgs-bosons is given by [121]
1
¥ D —(zH,H;p + h.c.) . 2.2.10
One can show that the decay rate for ¢ — H,Hy is
222 mg;
r H,H)) = ——= . 2.2.11
(¢ = HuHa) = 2o M2 (22.11)

As long as z 2 O(1) the decay into the Standard Model sector is governed by ¢ — H, Hy.
For completeness we briefly argue why the remaining decay channels are subleading (relative
to ¢ — aa and ¢ — H,Hy) [111]:

1. Gauge bosons and gauginos — In the sequestered LVS the decays into gauge bosons and
gauginos are highly suppressed. This follows from the fact that in the sequestered LVS
the gauge kinetic function is independent of the bulk Kéhler modulus T; at tree level.
Therefore, decays of ¢ into gauge bosons can occur at loop level, i.e. I' ~ (agn/47)? x
(m“; /Mg), where agy is the visible sector coupling. This can be computed from the
loop-correction ~ (agm/4m)pF,, F* [121].

2. Matter scalars — The decay rate for ¢ — C*CY into matter scalars C' is given by
I ~ mZ ;mg/M?2 and this channel is due to the term .2 D K;C'CY. In the sequestered

LVS we have mgo ~ M,/V? (see (2.2.3)). It follows mgos < mg due to mg ~ Mp/V3/2.
Hence, this channel is negligible.
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3. Matter fermions and Higgsinos — For the decay channel into fermions one obtains a
chirality-suppressed decay rate I' ~ m%m¢/M§. Loop-induced contributions are at
most of order I' ~ (agy/47)? x (mz’)/Mg) as in the case of gauge bosons.

Consequently, I'(p — SM) ~ I'(¢p — H,H;). We can then plug (2.2.9) and (2.2.11) into

(2.1.1) to arrive at
43 £ 10.75\'3 1
ANog = — 2.2.12
T (9*(Td)> npz?’ ( )

where ny counts the number of Higgs doublets in our model. Note the influence of the
reheating temperature Ty on ANeg through ¢.(T;). One has

o M\ 1y My
Ty~ LMy~ (010785 | = 00107 57 (2.2.13)

where (2.2.2) was used. Due to (2.2.3) the reheating temperature is essentially determined by
the SUSY-breaking scale. In particular, the smaller the SUSY-breaking scale the smaller the
reheating temperature and the more dark radiation.

For instance, supersymmetry at TeV-scale would imply Ty ~ 1 GeV and thus ¢.(Ty) =
247/4. According to Planck 2015 we have ANeg < 0.56 (20; Planck TT+lowP+BAO) [1],
implying that nzz2 > 6.1. If our model contains only one pair of Higgs doublets, we require
z > 1.7. It is however not yet clear which values of z are preferred in the string landscape. If,
for example, z ~ 1 is a typical value, it follows that more than six Higgs doublets are needed,
i.e. further fields would have to be added to the Minimal Supersymmetric Standard Model
(MSSM).

Since SUSY at TeV-scale has not yet been found, it is also an option to consider SUSY at
a higher scale, e.g. with soft masses above 10 TeV, yielding T,; > 100 GeV so that g, = 106.75
(this is the maximum value attained in the Standard Model). We then still find ngz? > 5.1.

In summary, in the sequestered LVS one has only two options to limit the dark radiation
contributions to Neg: First, one can include sufficiently many pairs of Higgs doublets. Second,
one can make the Giudice-Masiero coupling z large enough to avoid conflicts with current data.
However, as already mentioned, it is an open question to determine preferred values of z from
string theory. Let us be more precise about this point. One can see from (2.2.5) that there is
a shift symmetry in the Higgs-sector for z = 1:

H,H, + HyHy + {zH,Hy + h.c.} =5 (H, + Hy)(H, + Hy) , (2.2.14)

which is invariant under H,, — H,+c¢, Hy — Hyz—c. Such a shift symmetry has been obtained
within type IIB/F-theory (see [123-126]). Note, however, that in those cases, where the Higgs
is contained in brane deformation moduli, the K&hler metric is independent of Kahler moduli.
This would prohibit the decay of 7, into the Higgs fields due to the absence of mixing of
Kahler moduli with the Higgs fields, worsening the dark radiation problem.

2.3. Dark Radiation Predictions from Models Beyond the
Sequestered Large Volume Scenario

In our project [111] we were seeking for alternatives to keep ANg sufficiently small without
relying on too many Higgs doublets or large values of z. The easiest way to suppress the dark
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-cycle stabilise small cycle
by D-terms T2

"

visible sector

bulk cycle

Ty

Non-sequestered LVS with D-term stabilisation

Figure 2.2.: This illustration shows a Swiss-cheese CY manifold where one 4-cycle is stabilised
by D-terms. The visible sector (D7-brane) wraps this 4-cycle.

radiation abundance is to allow for further decay channels into SM particles. As we sum-
marised in the previous section, decays into gauge bosons or matter particles are subleading
(compared to the Higgs channel) in the sequestered LVS.

It is thus clearly interesting to study models beyond the sequestered LVS. Instead of realising
the visible sector by a stack of D3-branes at a singularity we will rather wrap stacks of D7-
branes on a 4-cycle of the Calabi-Yau manifold. This will the lead to a tree level coupling
TpF MY 50 that the decay channel into SM gauge bosons becomes relevant. In such scenarios
decays into matter fermions are still chirality-suppressed [121]. Moreover, we do not know
whether mgog ~ m, can be obtained in LVS models in a natural way. In the non-sequestered
LVS the soft masses turn out to be much larger than the mass of the lightest modulus (see
e.g. [66; 127; 128)), i.e. decays into matter scalars are kinematically forbidden.

Hence, for the subsequent analysis we restrict ourselves to the additional decay channel
to gauge bosons due to the realisation of the visible sector on a 4-cycle. It is, however,
necessary to stabilise this 4-cycle. This can be done by gauge-flux induced D-terms, string-loop
corrections or non-perturbative effects. We will discuss these three options in the respective
order, following [111].

2.3.1. Stabilisation of the Visible Sector via D-Terms

The first scenario we propose is depicted in Figure 2.2. It shows the visible sector realised by
a stack of D7-branes wrapped around a 4-cycle, which is stabilised by D-terms.
Before discussing the phenomenology of this scenario we first explain the idea behind the
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stabilisation of 4-cycles via D-terms. Most of the below description on D-term stabilisation
follows our paper [111].

Cycle Stabilisation via D-Terms

In the following we consider a Calabi-Yau orientifold X with several 4-cycles D; whose volumes
are given by 7;. For this discussion it will be convenient to also introduce the moduli ¢,
which give the volumes of 2-cycles. In terms of these the overall volume can be written as
V = k;jt't7t* /6, where k;;x, are the triple intersection numbers of X (see also (1.3.38)). We
also have the relation 7; = 9V /ot = k:l-jktj tk/2.

The goal is to stabilise the overall volume of X and one small 4-cycle using the LVS proce-
dure, whereas all other 4-cycles will be stabilised by D-terms. One of those 4-cycles will be
wrapped by D7-branes, realising the visible sector.

D-terms are induced due to fluxes on D7-branes wrapping these 4-cycles. The resulting
D-term potential is given by [18]

2
2
Vp =3 % (Z cijloi|® — gi) , (2.3.1)
i j

where &; are Fl-terms and ¢; are open string states charged under the anomalous U(1) giving
rise to the D-term. The sum over ¢ is over all 7-branes and the sum over j is over all charged
open string states.

We assume that supersymmetric stabilisation can be achieved, without appealing to VEVs
of charged fields, by the simultaneous vanishing of all FI-terms, i.e. £ = 0 for all i.

The FI-terms can be expressed by an integral over X:

1 .
m%’jtﬂ ) (2.3.2)

fizéml])/xﬁi/\J/\fi:
Where~f),~ are Poincaré dual 2-forms to the 4-cycles D;, J = t'D; is the Kihler form and
Fi = fij ﬁj is the gauge flux (for Poincaré duality see also proposition A.24). The ¢;; = ffk‘ijk
are then the charges of the Kéhler moduli 7; under the anomalous U(1) [129; 130].
Clearly, every &; can be expressed as a linear combination of the 2-cycle volumes t; and
imposing & = 0 Vi in (2.3.2) yields a linear system of equations for the ¢;:

=0 < 0=qut'+qut®+...4+qnt", (2.3.3)
H=0 & OZQQ1t1+....

As a result D-terms fix volumes of some 2-cycles in terms of the volumes of other 2-cycles.
We apply this technique of D-term stabilisation to the LVS as follows. Let us consider a
situation, where one of the 2-cycles, say t!, does not appear in the expressions for the FI-terms,
while all other 2-cycles #/ with j # 1 are fixed with respect to one another by the system of
equations (2.3.3). We then arrive at the following situation: At this stage, t' remains unfixed,
whereas all other 2-cycles can be expressed in terms of one other 2-cycle, say ¢2. Further, we
consider geometries where ¢! enters the volume in a diagonal way: kiji = 0 for j,k # 1 only,
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such that ¢! only contributes to the volume as V D %/{:111(751)3. Consequently

1
T = 5’6111(751)2 : (2.3.4)
1 .
Ty = §k2jk(7fjtk) x ()", (2.3.5)
: 1 j 2,2
fori>3: 7,= §k:¢jk(tjt )x (t°) = T=c¢Ta, (2.3.6)

where ¢; is a numerical factor. At the level of 4-cycles this leads to the desired result: D-
terms stabilisation leaves two flat directions which we can parametrise by 7, and 75. All other
4-cycles are stabilised with respect to 7».

Thus, after D-term stabilisation the volume V of X depends on 7 and 75 only. Here, we
consider geometries which lead to a volume of Swiss-Cheese form:

V= a(rs? = 4732 (2.3.7)

Without loss of generality we define 75 = 7,, 71 = 73, and we fix them using the standard
LVS procedure. Then 7, remains the lightest modulus and its axionic partner a; is a nearly
massless dark radiation candidate, see (2.2.2). An explicit example for a construction of this
type is given in [130].

How do we include the visible sector? The visible sector 4-cycle of volume 7, is fixed by
D-terms as 17, = cq7p. Ignoring flux contributions the gauge coupling of the visible sector
branes is directly related to the VEV of 7,, namely as aghl/[ = (14) =~ 25. Therefore, the
parameter ¢, has to be tuned appropriately in order to obtain the right value of (7,). This
potentially severe tuning of fluxes is unavoidable in our models we consider in the following.

Actually, the D-term stabilisation condition 7, = ¢,7 should rather be formulated super-
symmetrically, i.e. in terms of the superfields T: T, = ¢,T3. This is because stabilisation via
D-terms is achieved at the supersymmetric locus Vp = 0 so that the effective theory remains
supersymmetric.

We are then in the position to understand why our model gives rise to a relevant interaction
of 7, with SM gauge bosons. The superfield Lagrangian for the visible sector gauge theory
reads:

£> / d?0 T,W,W* = / d%0 ca TyWaW® = campFlu F* + cqapFl, F* . (2.3.8)

As a result, the lightest modulus 7, now couples to visible sector gauge bosons, which was the
objective of the current construction. This result opens another channel for 7, to decay into
SM particles.

Phenomenology

Let us now discuss the implications of realising the visible sector on a 4-cycle stabilised by
D-terms. We find that we can expect 7, to reheat the Standard Model only by decays into the
Higgs channel and into gauge bosons. Note that the decay of the volume modulus into matter
scalars and the heavy Higgs is kinematically forbidden. This is because msof; ~ mg/o ~ M /V
(mind the difference to (2.2.3) in the sequestered LVS), whereas m,, ~ M,/V3/?. Hence,
the bulk modulus can only decay into the light Higgs of the Higgs sector. Moreover, we
necessarily have to consider high-scale supersymmetry in order to avoid the cosmological
moduli problem. It imposes that all moduli masses satisfy mpyoq = 10 TeV and hence mgqg 2
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10% TeV. Furthermore, the role of a; is now slightly more complicated. From (2.3.8) we can
see that ap couples to the gauge sector via the topological term. Hence, QCD effects will
generate a potential, making the axion massive. The decay of 7, into a; then gives rise to
dark radiation and through the misalignment mechanism the axions become dark matter.

At first we have a look at the predictions for dark radiation. Again, we can compute the
decay rates from the low energy effective Lagrangian. For our model the Kéhler potential and
the gauge kinetic function now read [111]

K= —3In(T, +T,)+ (2.3.9)
_ 12 —\1/2
(To + To) - - (To + To)
~e =Y (HH, + HgHy) + %% (zH,Hg+hec)+...,
Ty + T ( d d> T, + T, (zHuHy+hec)
fa=T,+hS . (2.3.10)

The visible cycle modulus 7, can be integrated out after D-term stabilisation by simply
substituting T, = ¢,T}. As in the sequestered LVS the decay rates can be directly computed
from the relevant interaction terms of the Lagrangian. For the decays into dark radiation we
still find

I'(p—aa) = ——5 (2.3.11)

see (2.2.9). As opposed to the sequestered LVS the canonically normalised volume modulus
¢ can only decay into the light Higgs labelled by h and we obtain
22 sin?(23) TﬁQ

where [ is defined such that tan§ is the ratio of the two Higgs-VEVs. In addition, our
non-sequestered LVS gives rise to a decay into gauge bosons with decay rate

N, ,m}
I(¢— AA) = ﬁ”2ﬁ(§ : (2.3.13)
p

where Ny is the number of gauge bosons and the parameter 7 is defined as

Ta

— IR (2.3.14)

Y=

This factor 42 arises essentially from T’ ~ KL ITblaTb fuis?/(Re(fvis))?, see Appendix B for a
summary of formulae. Various values for v correspond to the following regimes: For the case
that gauge fluxes do not contribute to the gauge kinetic function, i.e. h = 0, one finds v = 1.
For || < 1 the gauge kinetic function is dominated by the flux-dependent part h Re(S). For
v > 1 we require a delicate cancellation between contributions from 7, and h Re(S). Since it
is not known how much cancellation can be achieved in the string landscape, we cannot safely
rely on arbitrarily large values of ~.
Now, using (2.1.1), we can write down AN,g for our first scenario:

43 /10.75 \ /3 1
ANy = — ( ) . . (2.3.15)
T \gu(Ta))  sn220) 2 4 Moo
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(a) Predictions for g.(T4) = 10.75. (b) Predictions for g.(Tq) = 106.75.

Figure 2.3.: Dark radiation predictions for non-sequestered LVS with cycle-stabilisation via
D-terms. Plots (a) and (b) of ANg vs. z and «y show the predictions for g.(7Ty) =
10.75 and g«(Ty) = 106.75, respectively. For the plots we choose sin(23) = 1, but
the plots are applicable to any value of 8 by simply redefining 2 = sin?(23)22 and
relabieling z — Z on the horizontal axis. If we take the Planck 2015 measurements
ANeg < 0.56 (20) [1] at face value, the regions of the plots below the red curve
are disfavoured at 2¢. In particular the dotted curve corresponding to AN.g = 1
is excluded. Those plots are based on fig. 1 in [111], but adapted and modified in
the light of the new Planck data.

In the following we assume Ny = 12 of the SM gauge group SU(3) x SU(2) x U(1), in order to
keep the matter spectrum minimal. Furthermore, we choose sin(23) = 1 to minimise A Neg.
Since high-scale supersymmetry suggests sin(28) = 1 [124; 131-133], the choice is indeed
well-motivated as our model requires high-scale SUSY.

Let us analyse the consequences of a 20 bound AN.g < 0.56. For a rather low reheating
temperature such that g.(7,) = 10.75 we obtain the condition

2
21692 >109. (2.3.16)

4
Already a mild tuning v > 1.4 is sufficient to fulfil this inequality, even if z = 0. For large
enough temperatures such that g.(7y) = 106.75, we obtain the condition

2

ZZ +69% > 5.07, (2.3.17)

and vy > 0.92 already satisfies the bound even without Higgs-channel. Thus, we conclude that
current bounds on dark radiation can be satisfied already if the gauge coupling is dominated by
the contribution from 7,. A delicate cancellation can evade even slightly stronger bounds. For
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instance, if future measurements suggest ANeg < 0.1 then we need v > 2.2 for g, (7;) = 106.75
(or v > 3.2 for g.(Ty) = 10.75). This corresponds to a fine-tuning between 7, and hRe(.S) of
one part in two (or one part in three). Predictions for various choices of z and « are shown
in Figure 2.3.

As we pointed out already, the coupling of our axion a; to QCD has to be taken into account.
The coupling term ~ aptr(F A F') leads to a potential for the axion and via the misalignment
mechanism the axion contributes to dark matter. The resulting amount of axion dark matter
decisively depends on the coupling to QCD. In order to determine the axion decay constant
we start from the relevant terms of the effective Lagrangian (see e.g. [134; 135]):

CaTh

Z D KTbTb(?#aba“ab + 4 Cald

F, Fr (2.3.18)

F,,F*
o +47T

Canonical normalisation requires to replace a, — ap/, /2K, 7, and F,, — V1 /(caTa) Fp in
the above Lagrangian. We then arrive at

2

g° Cq ~
LD ———aqpF, F* 2.3.19
327'('2 fab b v ( )
where
2K+ +
_9 CaTh TpTy
= = 2.3.2
g e fay 5 (2.3.20)

Note that there are observational bounds on the ‘effective’ axion decay constant f,, /c,. For
one, observation requires fs, /c, < 102 GeV [136], which can however be relaxed if the initial
misalignment angle is tuned. Moreover, to avert excessive cooling of stars an axion coupling
to QCD also has to satisfy fa,/ca > 109 GeV.

Let us now quantify the axion dark matter abundance (here we follow closely our work
[111]). If the Pecci-Quinn (PQ) symmetry is broken before inflation, the initial misalignment

angle 0; = a)ﬁ’a:‘/‘zzl € [—m, ) is homogeneous in our patch. The axion relic density is then (see
e.g. [136]): »

Qah? ~ 3 x 103<f“/6“> 62 | 2.3.21

¢ 1016GeV ' ( )

The axions can contribute to the amount of cold dark matter, whose density parameter has
been measured [1]: Qpyh? = 0.1197 + 0.0022 (68% CL; Planck + lowP). Hence, for generic
initial misalignment angles there is an overproduction of axion dark matter if f,,/c, > 102
GeV. Using (2.3.19), we obtain

2K o M, GM
Jor _ e VBMp 10" GV for comy =gl ~ 25, (2.3.22)
Ca 2mce, dme,

where we used in the second step the leading order result K7 = 3/(477). Thus only a
misalignment angle 6; fine-tuned to sufficiently small values can evade an overabundance of
axion dark matter. This tuning can be justified anthropically [137] and we find that 6; ~ 1072
is sufficient to evade dark matter bounds.

Bounds on isocurvature perturbations can lead to even stricter constraints for the QCD
axion. If the tensor-to-scalar ratio r is of order O(0.1) the QCD axion candidate with fg, /cq ~
10'6 GeV will source excessive isocurvature perturbations [138]. In consequence, the scenario
described in this section would be ruled out.
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To avoid those problems it is conceivable to include another axion @ with a decay constant
10° GeV < f; < 10'2 GeV which couples to QCD as follows:

92 a a [V
Z D 392 (f@ + fab/ca> F,F* . (2.3.23)
The QCD axion is then mainly given by @, which can evade all bounds: its axion decay
constant fz is small enough to evade the dark matter bounds without any fine-tuning of the
misalignment angle. Further, f; is lower than the Hubble scale of inflation H; ~ 104 GeV
in case of large-field inflation, which implies that the PQ symmetry is intact during inflation.
In this case the axion will not source excessive isocurvature perturbations. Beyond the QCD
axion there will also be a combination of axions, dominantly given by a;, which will remain
light and contribute to dark radiation. This axion is then unaffected by isocurvature and dark
matter bounds.

2.3.2. Stabilisation of the Visible Sector via String-Loop Corrections

In the following we make use of string-loop corrections to stabilise the 4-cycle wrapped by
the visible sector. For this purpose we will consider fibred Calabi-Yau manifolds, for which
examples of LVS models exist. The below presentation is a summary of our work [111].3

For our purpose we consider a CY 3-fold of volume

V= a(yim = ) - (2.3.24)

The total volume V and 7, are stabilised via the LVS procedure, such that V ~ /71 >
1.* Since V ~ \/T172 is fix only as a combination, there is clearly one flat direction. This
mode, which we denote as x in the subsequent computations, has to be fixed by string-loop
corrections as in [140].

Let us realise the visible sector by D7-branes on the fibre 7, see Figure 2.4. In order to
obtain an appropriate physical gauge coupling, the fibre volume 7 has to be small compared
to 7. This leads to the “anisotropic limit” 7o > 7 > 7, which is also discussed e.g. in
[130; 141]. One could also realise the Standard Model by D7-branes on another cycle 7,
stabilised by D-terms so that 7, is coupled to the size of the K3-fibre [141].5 Then the
constraint on the size of 71 can be relaxed, but one still has to ensure that 7, is fixed with the
correct size for the gauge coupling. Once again, a tuning is required, albeit potentially less
severe than in our previous model. In any case, as the visible sector gauge coupling depends
on 71 in both cases, our results in what follows will be the same for both situations.

As reheating proceeds via decays of the lightest modulus, we need to look carefully at the
masses of the bulk volume V and the mode x (orthogonal to V) [143]:

2 ; d m? 7 (2.3.25)
my, ~ —5——— an m, ~ Y. .O.
Y gy X vsAn)

30ur work [111] appeared simultaneously with [139], which also studies dark radiation in fibred LVS models.
However, in that paper the visible sector was realised at a singularity, resulting in a severe dark radiation
excess.

4Tt is possible to stabilise some of the cycles via D-terms as in the previous section. If this is the case, we
interpret V as the volume after integrating out the moduli stabilised by D-terms.

SFor a visible sector on two intersecting blow-up modes stabilised by both D-terms and string-loops see [142].
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D7
visible sector K3-fibre

base

Non-sequestered LVS with stabilisation via string-loops

Figure 2.4.: This illustration shows a K3-fibration. The visible sector is realised by a D7-brane
wrapping the K3-fibre, which is here naively represented as a complex torus. It
is fibred over a base illustrated as S2.

For simplicity we will assume that y is lighter than the volume mode®, such that the latter
can be integrated out. Then, one can see immediately that 7 cannot be fixed too small.”

There is also another difference with respect to the previous model to be aware of. For every
cycle 7; stabilised by string-loop corrections the corresponding axion a; will remain light. (Due
to shift symmetry perturbative effects cannot generate an axion potential.) Hence, in our setup
we will have to deal with two light axions a; = Im(7}) and ag = Im(73). Both will contribute
positively to ANgg, but only a; will couple to QCD, because we realise the Standard Model
on D7-branes wrapping the cycle 7. Thus, the axion a; will once again constrain our setup,
while ag will only contribute to dark radiation.

Phenomenology

We begin by looking at the kinetic terms for 7, 75, a1 and as, which can be obtained from
the Kéhler potential K D —2InV. We find

3/2
1 1 Yop Th
LD —9,m0" —= 0, 10" 2P 9, ot
47_12 W T1 7'1—1-27_22 20" T2 + 5 Tf/2T22 W T10" T2

3/2

1 1 Ynp Tn
—-9,,a10" —_0,a20" B8P 5 a10Mas . 2.3.26
+47_12 pa10”ar + 27_22 a0 a2 + 9 7-13/27'22 u@10" a2 ( )

SIf both masses were comparable, one would have to analyse the decay of both moduli simultaneously. In
this case the analysis would be considerably more complicated.

" Another reason why 71 cannot be too small is the following: The presence of fluxes could generate a non-
perturbative superpotential with the term e~ %7, Hence 71 should be large enough to suppress e~ 7!
sufficiently.
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/

To get the Lagrangian for x we integrate out 72 by 7 = o~ V71 12 Upon canonical normal-

isation (see also [144])

2 %
T =ev3X a1 = \/iai , as = —a) (2.3.27)
o
we obtain
1 L 1 4 T, 1 2y ! aw !
Z D 5(‘3“)(8 X + 3¢ v3td,ai0tay + 56\/5 Ouay0fay . (2.3.28)

Henceforth we will drop the primes on the canonically normalised axions. From the Lagrangian
we can now read off® the decay rates for y — aja; and x — asas:

1 m3

L(x — ==_———X 2.3.29
(X CLlafl) U7 Mg ( )
1 md
I(x — ==_——X 2.3.30
(X a2a2) 967 Mg ( )
To calculate the decay rate into the Higgs fields we use
= \1/2 —\1/2
T+ T = = T+ T
K> (1]}2/;) (Hu L, + HyHy) + (1])2/5) (zH,Hg+hc)+ ... (2.3.31)

The decay into the light Higgs h is then given by

22 sin%(20) mi

(2.3.32)

Finally, the decay into gauge bosons of the visible sector is due to the gauge kinetic function
fvis =T1 + hS (2.3.33)

for the case of D7-branes wrapping the 4-cycle 11. It follows

N, ,m3
r AA) = L2 X 2.3.34
(x = A4) = =7 M2 ( )
where v is defined in analogy to (2.3.14) by
71
= 2.3.35
7= H + hRe(S) (2:3:35)

Once again, v = 1 means that the gauge coupling is primarily determined by 71 (geometric
regime). For |y| < 1 the gauge kinetic function is dominated by the flux-dependent part
h Re(S). For v > 1 we require a cancellation between contributions from 71 and h Re(.5).

In this model AN.g can be computed as follows:

43 £ 10.75 \ /3 5
ANy = — . 2.3.36
=7 (g*(Td)) 22 sin?(283) + 2Ny~y? ( )

8Indeed, the numerical factors can be obtained immediately by comparison with (2.2.9) obtained from a
coupling term +/2/3¢(da)?. Since we have now 2/v/3x(da1)? and 1/4/3x(8a)?, the corresponding decay
rates are obtained by multiplying (2.2.9) by factors of (v/2)? = 2 and (1/v/2)? = 1/2, respectively.
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(a) Predictions for g.(Tq) = 10.75. (b) Predictions for g.(Ty) = 106.75.

Figure 2.5.: Dark radiation predictions for non-sequestered LVS with cycle-stabilisation via
string-loop corrections. Again, plots (a) and (b) of ANeg vs. z and v show the
predictions for g.(Ty) = 10.75 and g¢.(Ty) = 106.75, respectively. As in the
previous plots we chose sin(23) = 1, but the plots are applicable to any value of 3
by simply redefining 2 = sin?(23)2? and relabieling z — Z on the horizontal axis.
If we take the Planck 2015 measurements AN.g < 0.56 (20) [1] at face value, the
regions of the plots below the red curve are disfavoured at 20. In particular the
dotted curve corresponding to ANeg = 1 is excluded. Those plots are based on
fig. 2 in [111], but adapted and modified in the light of the new Planck data.

For a comparison with observational data we choose once again N, = 12 and sin(23) = 1.
Then, AN.g < 0.56 translates into

22 4+ 244> > 55 (2.3.37)

for g.(T4) = 10.75 and
22 4 24~% > 26 (2.3.38)

for g.(Ty) = 106.75. We can satisfy these inequalities without the Higgs sector if v > 1.5
and v > 1.0, respectively. Thus, a mild tuning allows to saturate observational bounds
even without the Higgs-channel. However, much more fine-tuning is required if observational
bounds become tighter in the future. For instance, if ANeg < 0.1 one needs v > 3.6 (for
9x«(Ty) = 10.75) and v > 2.4 (for ¢.(T,;) = 106.75). Our results for various choices of z and ~
are presented in Figure 2.5.

Further constraints due to the coupling of a; to QCD will arise in analogy to the previous
model. Once again, the misalignment angle has to be tuned to avoid overabundance of dark
matter. This fine-tuning may be justified anthropically. Moreover, if primordial gravitational
waves are detected with tensor-to-scalar ratio r ~ 0.01 —0.1 the axion a; with f,, ~ 1016 GeV
will lead to excessive isocurvature perturbations and thus, our model would be ruled out. A
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possible loophole would then be again to include an additional axion that takes over the role
of the QCD axion (see explanations in the previous section).

2.3.3. Stabilisation of the Visible Sector via Non-Perturbative Effects

We will now describe dark radiation predictions for the case where the visible sector cycle
is stabilised by non-perturbative effects. Our conclusion will be that for those models dark
radiation bounds are even more restrictive than in the sequestered scenarios. Correspondingly,
our analysis here will be less detailed than our examinations in the previous sections. Much
of the subsequent discussions follow our paper [111] with only few modifications.

Here, we will analyse a simple toy model which nevertheless exhibits all the necessary
features. To be specific, we consider a compactification with a volume of Swiss-Cheese type:

V=nn/? - (2.3.39)

Generalisations to setups with more than one cycle of type 7, are straightforward. The visible
sector will be realised by D7-branes wrapping 7s. At the same time 75 will be wrapped by an
E3-instanton or D7-branes exhibiting gaugino condensation, thus giving a non-perturbative
contribution W, to the superpotential:

W =Wy + Wyp = Wy + Age%Ts (2.3.40)

The parameter as is model-dependent and depends on the non-perturbative effect wrapping
the small cycle 75. For the case of an E3-instanton we have as; = 27 while for for gaugino
condensation on a stack of N D7-branes we have as; = QW” The prefactor A depends on the
dilaton and the complex structure moduli and is a constant at this stage.

The moduli 7, and 75 will be stabilised by the standard LVS procedure. As before, the
lightest modulus is 7, and its axion partner is essentially massless (2.2.2).

Phenomenology

Here we will analyse the rates for decays of 7, into axions a; vs. SM fields.

First of all, realising the visible sector on 75 leads to superpartners which are heavier than
o Mg ~ Maopt ~ Mp/V (see e.g. [66]). Hence, decays of the canonically normalised bulk
modulus field ¢ into matter scalars, the heavy Higgs and gauginos are kinematically forbidden.

As in our previous models, decays into the light Higgs will arise through the Giudice-Masiero
term with a decay rate of the form

222 sin%(20) m‘z

p

(2.3.41)

Note that the exact expression for decay rate into the light Higgs will depend on the moduli
dependence of the Kéhler metric for Higgs fields. We do not give more detail as we do not
expect any improvement compared to previous sections.

We will be most interested in the decay rate into gauge bosons, which can be calculated
given the gauge kinetic function

fvis =Ts + hS . (2.3.42)
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To study decays of ¢ we need the effective theory for ¢ which is obtained by integrating out
7s. By minimising the F-term potential w.r.t. 7, one obtains (see e.g.[7; 145]):°

1 dasAs V >
=—1 — ol 2.3.44
ne o () o) (2348
Most importantly, this introduces a dependence of the tree-level visible sector gauge coupling
on InV ~ In7,. The rates for the decay channels of interest are then

(¢ — apay) = — m (2.3.45)

apap) = — —= .3.
T s M2

3N, A2 omy
1287 (agT)? M2

T(¢ — AA) (2.3.46)

for decays of the canonically normalised field ¢ into axions a; and gauge bosons, respectively.

Once again, « is defined by
Ts

7s + h Re(5)

as in the previous sections, and N, is the number of generators of the SM gauge group.

Let us analyse what we found: The decay rate into axions is unchanged compared to the
sequestered scenario. Further, we find that the decay rate into Higgs fields is not parametri-
cally different from the expressions found in previous sections. In contrast, the decay rate into
SM gauge bosons is suppressed by (as7s)~2 compared to the cases where the visible sector
cycle was stabilised by D-terms or string loops.

Therefore, it is easy to see that this construction is more constrained by dark radiation
bounds than the setups with the visible sector being stabilised by D-terms or string loops.
As the visible sector is realised on 74, we require 7, ~ 25 for an acceptable gauge coupling.
In addition as = 27 or 27/N depending on the non-perturbative effect sourced by 75. Also,
unless there is tuning between 75 and h Re(S) we have v ~ 1. Then it follows that the decay
rate into gauge bosons is typically suppressed with respect to the decay rate into axions.
This negative conclusion would only fail if we have N 2 100, corresponding to a gauge group
SU(N 2 100) on the stack of D7-branes exhibiting gaugino condensation. Alternatively, one
could tune v to adjust the amount of dark radiation. As the amount of dark radiation is
not expected to have an effect on the development of life, such a tuning cannot be justified
anthropically.

v = (2.3.47)

2.3.4. Comparison with Previous Work

In this section we briefly comment!'® on further extensions of LVS models which have been

suggested in [146] and [147], where a non-sequestered LVS is combined with poly-instanton
corrections to the superpotential. The authors consider a scenario with a Swiss-cheese CY with
volume V = (171)%? — (1m212)%/% — (n373)%/2. Two separate stacks of D7-branes wrapping the
4-cycle T yield a superpotential with terms e~/ (race-track model), where the gauge-kinetic

9Here, the F-term potential is given by (see e.g. [145])

V= 8a2| A, |*\/Toe 2057 _ das|As|[Wolrse™ 0T n 3&|Wo?
B 3nsV V2 492/2);3

, (2.3.43)

_ <Bx(X)
2(2m)3

'0This discussion follows sect. 3.4 of our paper [111].

parameterises the (a')® correction to the Kéhler potential: K = —2In(V + —55).

where £ = s
295/
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function is of the form f; = T5 4+ C;e=?™13 4 S due to gaugino condensations and Euclidean
D3-instantons on the non-rigid cycle 73. Additionally, the VEV of the flux superpotential is
assumed to be zero.

This race-track model allows to construct (large volume) minima by integrating out the
heaviest modulus 75 near the supersymmetric locus, O, Wy, = 0. Hence, one is left with an
effective superpotential Weg which is small due to its exponential suppression by the VEV of
7o. The stabilisation of 77 and T3 then proceeds as in the usual LVS.

In our work we do not consider this scenario any further since no substantial improvement
of dark radiation bounds relative to more conventional LVS constructions is expected. The
main hope for such an improvement is associated with modulus decays to gauginos which,
according to [147], are very light. However, the corresponding rate I'y /o ~ (Mf/2m¢) /Mg is

much smaller than the decay rate I' ~ mg; /Mg of the lightest modulus ¢ into axions due to
the hierarchy M/, < mgy. This scaling of I'y j, can be understood by expanding the generic
gaugino Lagrangian

FOOAIN+ g(V)AN, (2.3.48)

where My, =g / f is the physical gaugino mass, around the VEV of the volume: V = Vy+ V.
We use the fact that both f and g do not depend on V more strongly than through some
power, f ~ V* and g ~ V?. This implies that, at most f'(V) ~ f(V)/V, and similarly for
g. Furthermore, one has to recall that the modulus V and the corresponding canonically
normalised field ¢ are related by V ~ exp(¢/M,). With the expansion ¢ = ¢g + d¢ one then
finds the following parametric form of the Lagrangian relevant for the three-particle vertex
and hence for the decay: 5

— . 2.3.4
i (2:3.49)

f(V)jZAaMg(w

Now we canonically normalise, A — \/y/f, and use equations of motion in the first term,
ig\ = M, s2A. This gives a contribution of the order of

Ml 2
~=2pint D /

SOAN. (2.3.50)
p

from both the first and second term above. From here, one can read off the decay rate (up to
some numerical factors). Due to its suppression via the mass hierarchy, one can safely neglect
this channel.

2.4. Further Comments and Conclusions

In the previous sections we discussed how to ameliorate the dark radiation excess in non-
sequestered Large Volume Scenarios. In our work [111] we also proposed a sequestered LVS
with flavour branes included. Here, we only briefly sketch the idea and results. More details
can be found in [111] and in the thesis of F. Rompineve [120].

Flavour branes are 7-branes in the geometric regime passing through a singularity of a
CY manifold with the Standard Model being realised at this singularity, see Figure 2.6.!
Our motivation behind the inclusion of flavour branes is to obtain an indirect decay channel
of the canonically normalised volume modulus ¢ into Standard Model gauge bosons in the

"Flavour branes have been known for a long time in the context of “model building at a singularity” [148].
For rather recent string model building using flavour branes see [149].
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bulk cycle
Tbh

D3 small cycle
T 2
visible sector

Sequestered LVS with flavour brane

Figure 2.6.: This picture illustrates the realisation of the sequestered LVS with a flavour brane
(shown in blue) included. It wraps the bulk cycle and intersects the singularity,
in which a D3-brane for the realisation of the visible sector (in red) is located.

sequestered LVS. Due to the flavour branes, on which there live gauge bosons Aﬁ, one has not
only the decay channel ¢ — apap into dark radiation, but also a new decay channel ¢ — AEAE-
The Standard Model is then reheated by the subsequent decay Ag — SM. For this proposed
scenario to work the mass my4 of the flavour gauge bosons must be below m,, /2 for the decay
to be kinematically possible. One can show that there are no strong lower bounds on my4
(e.g. from imposing a lower bound on the reheating temperature of the Standard Model in
order not to affect the standard Big Bang Nucleosynthesis (BBN)) [111]. Note that there are
also consistency conditions from string theory on this model, which turn into a constraint
on the number of flavour branes allowed [149]. An advantage of this model compared to our
previously proposed non-sequestered Large Volume models is that the dark radiation axion
does not couple to QCD and hence there are no constraints from dark matter overproduction
or isocurvature bounds.

The decay rates into dark radiation and the Higgs sector are given by the formulae for the
sequestered LVS, i.e. (2.2.9) and (2.2.11). The decay rate into the flavour gauge bosons is
given by (2.3.13) with N, = N; being the number of generators of the flavour gauge group
and v = 1 (geometric regime, i.e. fg = Tp). It follows that for ANeg < 0.56 one needs at least
O(10) flavour gauge bosons. If the dark radiation bounds become tighter, this flavour brane
scenario could turn out to be more constrained. It would be interesting to work out details
of this model, especially how many flavour branes can be embedded at most. We leave this
question for future work.
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Further Comments on Recent Progress

In the recent work [150] the authors proposed to ameliorate the dark radiation excess within
the sequestered LVS. The idea is to investigate decay channels of the bulk modulus into
scalars in the context of split-SUSY. In such models the masses mg of squarks and sleptons
are at the order of m,,. For a decay of 7, into such scalars to be possible one must have
my, > 2mg. In [150] it was, however, shown that squarks and sleptons are typically, i.e. for
most of the parameter space, heavier than 7;,. For those cases one would run into a severe
dark radiation excess. The authors therefore proposed to include string-loop corrections to the
Kahler potential, which then allow for a subset of parameter space in which decays into SUSY
scalars are kinematically admissible. Furthermore, it was shown that this decay channel leads
to a significant suppression of the branching ratio for the decay into dark radiation. Thereby
it is possible to obtain 0.14 < ANeg < 1.6 for their models, depending on the precise SUSY
scalar masses [150].

Conclusions

In summary, we found that our proposed non-sequestered models as well as the combination
of the sequestered LVS with flavour branes are more flexible in terms of evading observational
bounds on dark radiation than the original sequestered LVS models of e.g. [121]. For instance,
in the first two models we presented (stabilisation of the visible sector cycle by D-terms or
string-loop corrections) we do not rely on a particularly huge number of Higgs doublets or
sufficiently large Giudice-Masiero coupling z. Instead, we have a considerable suppression of
AN due to the decay channel to Standard Model gauge bosons. Depending on how much
fine-tuning in the sense of a cancellation between the contributions from ;s and hRe(S) is
admissible, the dark radiation abundance can be below current bounds. To give an example
for our model with D-term stabilisation Section 2.3.1, a tuning 7vis : (vis + hRe(S)) = 2: 1
yields a prediction of 0.12 < AN.g < 0.26, depending on the reheating temperature. This
result is consistent with the results of Planck 2015 [1].

Another concrete prediction of those non-sequestered models is high-scale supersymmetry.
The conditions for avoiding the cosmological moduli problem forces us to have soft masses far
above 10 TeV.

Moreover, a feature of those models is the coupling of the dark radiation axion to QCD. This
requires us to accept a fine-tuning of the initial misalignment-angle to 6; ~ 1072, otherwise
one would end up with an overproduction of axionic dark matter. In case the tensor-to-scalar
ratio r turns out to be O(0.1), isocurvature bounds would rule out our scenario. However,
a possible loophole consists in including an additional axion with decay constant below the
energy scale of inflation, which then takes over the role of the QCD-axion.

Finally, we also briefly mentioned sequestered scenarios with flavour branes. For z < 1 the
amount of dark radiation AN,g scales inversely with the number Ny of flavour gauge bosons.
Details of the model will put an upper bound on N; and therefore yield testable predictions
for ANeg.

In the context of the vast string landscape we learn the following: We investigated string
compactifications where moduli are stabilised according to the Large Volume Scenario. Those
corners of the type IIB string landscape exhibit a special feature. There is always a very
light axion, the superpartner of the bulk volume modulus. It unavoidably contributes to
ANgg. Hence, due to cosmological measurements of increasing precision and sensitivity it is
possible to rule out certain corners of the landscape, at least if the parameters of the concrete
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models in question are specified. Let us imagine that future measurements leave no room for
dark radiation. Such a finding would rule out a whole popular framework of Kéhler moduli
stabilisation. One would then have to restrict to Kdhler moduli stabilisation mechanisms such
as the KKLT scenario, which — by construction — does not suffer from problems with dark
radiation overproduction.

We conclude that the studies of dark radiation in string compactifications nicely underline
that many string vacua can easily share several common and fairly generic features. This
gives hope for projects aiming at a classification of string vacua according to phenomenological
features. This is not only crucial for the understanding of the structure of the string landscape
but also for bringing string theory in contact with experiments and observations.
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CHAPTER 3

Tuning and Backreaction in F'-term Axion Monodromy Inflation

3.1. Introduction

The aim of this chapter is to propose a model of F-term axion monodromy inflation as
an example of large-field inflation in string theory and to analyse the price to pay for its
realisation. The whole presentation is based on our work [112]. In this thesis we mainly follow
sections 2.2, 2.3 and 4 of our paper, and summarise the remaining parts for completeness. A
more detailed exposition of the backreaction analysis is given in our original paper and in the
thesis of F. Rompineve [120].

Before going into details we briefly review the motivation of this project and summarise our
findings.

3.1.1. Motivation and Summary

Several years ago a series of papers [44; 151; 152] have defined axion monodromy inflation
in string and field theory. On the one hand, this is very exciting because models of axion
monodromy inflation typically predict a tensor-to-scalar ratio of r ~ ((0.1) and hence allow
for testable predictions in this decade. On the other hand, the energy scale of inflation
is thus very high (cf. (1.2.15)), putting lower bounds on the mass of the lightest modulus
in string compactifications such as KKLT or LVS, in order to avoid destabilisation of the
lightest moduli. As a result, a proper realisation of large-field inflation (and hence also axion
monodromy inflation) in string theory has been considered to be at least difficult.

However, the excitement about the measurement of B-modes by the BICEP2 collaboration
[153] triggered a large series of papers on large-field inflation in general and string theory in
particular. Specifically, the idea of axion monodromy inflation was picked up. The paper
[154] defined “F-term axion monodromy inflation” and the papers [155; 156], which appeared
immediately after, suggested more concrete examples of F-term axion monodromy inflation
with attention to the issue of moduli stabilisation.

Although the measurement r = 0.20f8:8g [153] by BICEP2 could finally not be confirmed,
the interest in realising large-field inflation in string theory remained. The exciting ques-
tion whether the existence of strong no-go theorems could prohibit large-field inflation in
string theory became one of the main issues of recent research in string cosmology. We were
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therefore motivated to investigate further the possibility of realising or, by means of no-go
theorems, ruling out F-term axion monodromy inflation within string theory, regardless of
phenomenological aspects.

Being the starting point of our project [112], we briefly sketch the idea behind “D7-brane
chaotic inflation” [155] as a model of F-term axion monodromy inflation. The crucial idea
is to rely on the shift symmetry of a complex structure modulus or, equivalently a D7-brane
modulus, of an F-theory CY 4-fold in the large complex structure (LCS) limit. The period
vector II, which determines the complex structure Kéhler potential I, and, given some flux,
the superpotential W, contains non-perturbative corrections (corresponding to instantonic
corrections in type ITA) of the form ~ e~27%* where a is an O(1) number and z a complex
structure modulus. Thus, instantonic corrections are suppressed as exp(—2mwaRe(z)), i.e. they
vanish as Re(z) — oo, which defines the LCS limit. In the following we will refer to a complex
structure modulus z to be stabilised in the LCS regime if e=27% is sufficiently small for our
purposes. This may already be the case for Re(z) = O(1) due to the 27-factor in the exponent.
If the instanton corrections for z are negligible, the Ké&hler potential K depends on z, z only
as K(z,z) = K(z — 2), i.e. K is invariant under z — z 4+ ¢, ¢ € R. We refer to this as shift
symmetry. Moreover, if fluxes are turned off, z does not appear in the superpotential W. In
consequence, there is no potential for Re(z). Such flat directions are of course appealing for
inflationary model building. The shift symmetry can then be broken by turning on fluxes
appropriately. This yields polynomial terms in the superpotential. In the following, u denotes
a complex structure modulus in the LCS limit and z labels the remaining complex structure
moduli, not necessarily stabilised in the large complex structure limit — we call this the “partial
large complex structure” regime. It follows that

b(z) 4

W(z,u) = w(z) + a(z)u + 57 U + .., (3.1.1)

and on CY 4-folds, W can be a polynomial up to power u*. We do not focus on such

higher powers as they can be removed by an appropriate flux-choice which, together with
geometrical and topological properties of the underlying 4-fold, determines the structure of
the coefficients a(z) and b(z). From the structure of the F-term scalar potential it can be
seen that a necessary condition for a small inflaton mass is to make the coefficients a(z) and
b(z) small by fine-tuning. This can in principle be achieved by playing with the VEVs of
the complex structure moduli. As a result an embedding of chaotic inflation consistent with
Kéhler moduli stabilisation within the LVS was obtained [156]. Since u is 4-fold complex
structure or D7-brane modulus, this model was dubbed “D7-brane chaotic inflation” [156].
Since fluxes are turned on to generate an F-term potential this model is an example of F-term
axion monodromy inflation. This fine-tuning is to be understood in the context of the type
IIB flux-landscape [8; 17]: Various terms, all depending on the moduli as well as the flux
numbers, enter the coefficients a(z) and b(z). The VEVs of the complex structure moduli
themselves also depend on the flux numbers. A sufficiently dense and vast flux-landscape is
expected to contain sets of flux numbers, where the coefficients a(z) and b(z) are small enough
to yield the correct inflaton mass for quadratic inflation.

Unfortunately, tuning the coefficients a(z) and b(z) small is not sufficient to get a flat
potential. In addition to that, also every single derivative of ¢ and b with respect to each
modulus entering those coefficients have to be tuned small individually. This is necessary in
order to control the field displacements of the complex structure moduli. Depending on the
choice of Calabi-Yau geometries a severe amount of fine-tuning might have to be accepted.

Therefore, the main goal of this chapter is to understand if the realisation of F-term axion
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monodromy inflation in the flux-landscape is at all possible, and which price is to be paid due
to the tuning.

The structure of this chapter is as follows: At first we explain in more detail how the
fine-tuning requirements for our model of F-term axion monodromy inflation arise. While
this fine-tuning controls the displacement of the complex structure moduli interacting with
the inflaton, there is still some backreaction on the inflaton-potential to be expected. We
comment on this issue in the section below.

Next, we show that Calabi-Yau 3-folds are generically not suited to support the fine-tuning
of the coefficients to obtain F-term axion monodromy inflation for a model like (3.1.1) with u
being a 3-fold complex structure modulus. The no-go-theorem we are able to formulate can,
however, be circumvented by considering D7-brane moduli or complex structure moduli of a
CY 4-fold. We find that such geometries allow for the required tuning, at least in principle.
Afterwards, we provide a brief summary of the backreaction analysis of complex structure
moduli on the inflation-potential. It turns out that backreaction affects the inflaton potential,
but there are still suitable regions in field space of the inflaton in which the potential is
quadratic, admitting chaotic inflation. Finally, we explain how to estimate the fraction of
flux vacua with appropriate inflaton mass. Relying on toy-examples (see e.g. [12; 17]) for the
estimation of the number of type IIB and F-theory flux vacua, our result is that after fine-
tuning there can still remain a small landscape of suitable vacua, but only if the coefficients
in the superpotential (3.1.1) do not depend on too many complex structure moduli. Finally,
we summarise our findings and discuss them in the light of recent developments.

This chapter is based on [112] with the focus on the tuning issues and the geometrical
realisation of this model. For details on the backreaction analysis see [112] or the thesis [120].

3.2. Problems of Tuning and Backreaction

In this section we describe the origin of the fine-tuning and backreaction problems in F-term
axion monodromy inflation.! Thereby we define the setup and the notation for this chapter.
The crucial ingredients are — as we already explained — a shift-symmetric Kéhler potential
and a superpotential, which then breaks this shift symmetry:

Kes = Kes(z, Z2,u + 1) , W =w(z)+a(z)u+ ..., (3.2.1)

where z stands collectively for a set of moduli {2%}. Since the imaginary part y = Im(u) of the
modulus v does not occur in g, the Kéhler potential is invariant under the shift u — u +ic,
¢ € R. This shift symmetry can be realised by stabilising « in the large complex structure
(LCS) limit of the underlying type IIB orientifold or F-theory fourfold. Note that the shift
symmetry was exact if W = w(z), and in consequence the potential was flat. Since we want to
create a potential for the inflaton, one needs to have a superpotential of the form (3.1.1). We
will see that it is sufficient to restrict to a superpotential linear in . This can be achieved by
appropriate flux-choice. In case of type IIB string theory this is done by choosing the Fs- and
Hj-flux vectors accordingly. In F-theory a suitable choice of the flux vector corresponding to
the G4-flux is required.

Further, slow-roll inflation requires a sufficiently flat inflaton potential. Additionally we
need to avoid any interference with moduli stabilisation. Thus, shift symmetry should be

n this section we stick closely to section 2.1 of [112].
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3. Tuning and Backreaction in F-term Axion Monodromy Inflation

broken only weakly. The breaking of shift symmetry is quantified by the parameter a(z),
which then needs to be made small at the SUSY locus z = z, by fine-tuning.?

Unfortunately, this tuning of a(z) is only necessary, but not sufficient. In the following we
explain why further tunings are present in F-term axion monodromy inflation.

Starting from a type IIB orientifold or a F-theory setting, z and u can be identified as
complex structure moduli (or D7-brane position moduli). Note that in the type IIB case the
axio-dilaton is included in the labelling z as well.

The potential responsible for moduli stabilisation as well as inflation is the supergravity
F-term scalar potential (see also (1.3.65))

V = (KD WD W + KT Dy, WD, W = 3[W2) (3.2.2)

where K = —2In V+Ks(z, z, u+u), with V being the volume of the compact extra-dimensions.
The index I runs over all moduli z as well as u. The Kéhler moduli T, are assumed to be
stabilised via the Large Volume Scenario (LVS) [7]. Then, due to the no-scale structure in
the Kéhler moduli sector the last two terms cancel at leading order®. Thus,

V = &K DyWD, W) (3.2.3)

Since our aim is to study field displacements and backreaction of the moduli z during inflation,
we do not integrate out all complex structure moduli at this stage. To get across the origin of
the tuning-requirements, we restrict ourselves to a model with only two moduli fields z and
u. The two F-terms entering (3.2.3) are then given by
D,W = Dyw+a+ Kyau , (3.2.4)
D.W = D,w+ (0;a+ K.a)u .

The SUSY-minimum is defined by the solution of the two equations
D,W =0, D,W=0. (3.2.6)

Those two equations translate into conditions on the derivatives of the Kéhler potential at
the SUSY-minimum:

a
DWW — N 2.
WW =0 = Ky|min e I (3.2.7)
0 d.a -
DWW = 0 = [y i = — 20 F 04 (3.2.8)
w + au min

The idea is now to expand the potential around the SUSY-minimum {u = u,,z = 2.} in
powers of Ay =y — y,. One obtains:

V = 5[KU T Kual + K(0.0 + Koa? + K7 Kya(@a + Kza) +he| A+, (329)
min

where the ellipses summarise terms arising from backreaction of z. The details of backreaction

are studied in our work [112] and we summarise the main results later. From (3.2.9) we can

now read off that a small parameter a(z) is not sufficient to ensure a small potential. Instead,

we also require |0,a| to be sufficiently small. It is important to notice that small |a| does not

2 Alternatively, one could try to go to the regime w(z) > 1 [157]. A comparision of our approach with [157]
is presented in appendix A of [112]. We also comment on this possibility later in this section.
3The LVS yields a contribution Viys ~ —|W|?/V?, which we ignore for the moment.
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imply small |0,a|. In the context of string theory compactifications with fluxes, parameters
can be made small by tuning: various terms which are not small individually contribute to
a(z) and can be made to cancel up to a small remainder. However, this cancellation will
generically not occur in d,a. Requiring a small value for |0,a| hence introduces an additional
tuning. The analysis can be easily generalised to the case of more than two moduli. For every
additional modulus 2/ entering a we also require |0,;a| to be sufficiently small. Therefore, for
n moduli z* we have to tune (n + 1) quantities.

Indeed, one cannot get away with less tunings. To see this, we choose a basis in which the
Kahler metric is diagonal. In such a basis the inflationary potential is a sum of positive terms
(the mixed terms in (3.2.9) disappear). Therefore, in order to achieve a flat direction, each
contribution has to be tuned small. One then has to tune (n + 1) different combinations of
a and d,ia, i = 1,...,n. Since these combinations involve elements of the original inverse
Kéhler metric as coefficients one could hope that these terms become small at special points
of moduli space?, where certain elements of the metric blow up. However, we do not know
whether such situations can occur so that we do not consider this option in the following.?
Thus, for the case of n moduli z° entering the parameter a(z), we require |al, |0,1al, |0,2a,
<ty |0znal to be small.

If one admits higher powers of u in the superpotential, e.g. the term b(z)u? in (3.1.1), then
one obtains the same tuning conditions as above, that is |b(z)| as well as |0,:b(z)| have to
be small individually for all ¢ = 1,...,n. The same applies to all further coefficients in the
superpotential.

Note that a loophole to circumvent the fine-tuning is to assume that a¢ and b do not depend
on any other moduli. This approach was chosen in [157]. Then, one cannot have parametrically
small coefficients a and b as they are determined by integers (a combination of integral flux
numbers and intersection numbers of the 4-fold). Instead, by flux choice one has to make
the term w(z) sufficiently large to control the backreaction of the complex structure moduli z
with «. While the remaining complex structure moduli can be made parametrically heavier
than the inflaton, this is not the case for Kéhler moduli. The mass of the lightest Kéhler
modulus scales as my ~ |[W|/V3/2) whereas the inflaton mass scales as mins ~ 1/V (this can
be inferred from the factor e in the scalar potential). Since the inflaton mass cannot be
tuned parametrically small the only option to obtain heavier Kdhler moduli is to aim for
large W. But there is a constraint [W| < V'/3 for LVS models due to mg/y < mgg. It then
follows my << myye. This observation makes a successful embedding of such an inflation model
with non-tuned inflaton mass in the LVS difficult. Therefore, we find the option of moduli-
dependent coefficients, allowing for a fine-tuning of the inflaton mass, more promising.

We conclude already at this stage that models of F-term monodromy inflation are more
severely tuned than initially anticipated. One aim of this chapter is to estimate the number of
string vacua consistent with the desirable properties for F-term axion monodromy inflation.
While our estimate will be fairly rough, it will be sufficient to decide whether there is still a
landscape of acceptable vacua. We will address this issue in Section 3.6.

F-term axion monodromy inflation faces yet another problem. The term a(z)u C W gen-
erates the inflaton potential and the parameter a has to be small, which can only achieved

4See also [158] for attempts to realise inflation on special points of Calabi-Yau geometries other than the LCS
regime.

®In fact, given that one complex structure modulus (the inflaton) must be stabilised in the large complex
structure limit, we expect at least a few other complex structure moduli to be stabilised in the LCS regime
as well. Then, K.z ~ (z + 2)72 is small in the LCS limit, which is the opposite behaviour.

For details of this statement see e.g. appendix A of our work [112].
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3. Tuning and Backreaction in F-term Axion Monodromy Inflation

by allowing it to depend on other complex structure moduli. But this introduces a cross-
coupling between z and u. The concern is then that for large field displacements of u, as
required in models of large-field inflation, the moduli z could be significantly displaced from
their values at the global minimum, possibly resulting in a destabilisation of the moduli. In
the following we show that this backreaction is under control due to the fine-tuning of a(z)
and its derivatives (this part can be found in appendix A of our work [112]).

The superpotential we are interested in can be written more generally as

W = wmass(zi) + wax(zia U) s (3210)

i.e. we split W into one part which only depends on the complex structure moduli z; and
a part allowing for couplings to the modulus u containing the inflaton. wax(z;, u) may be
written as in (3.1.1) or, by suitable flux-choice, simply as a(z)u. Then the F-term scalar
potential splits into

V' = Vinass(2i) + Vinix (25, u) + Vax (2, 1) (3.2.11)
where
Vinass = eKICIJDIwmassDmeass ) (3-2-12)
Vinix = €K' (D1wmass D jwax + Dwmass D jwax) (3.2.13)
Vix = €K1 Dywa D jway (3.2.14)

If wax = 0 the moduli z; are stabilised at Djwmass = 0. In the following we will assess to what
extent the moduli z; will be destabilised if we turn on w,x to generate an inflaton potential.

For simplicity we reduce the system to a setup with only two moduli v and z. Moreover,
for this analysis we pretend that all quantities including those two fields are real variables.
Although this is in general not realistic, the conclusions regarding the backreaction will be
the same as in a more complete analysis.

The displacement dz of the complex structure modulus z is obtained from expanding the
scalar potential up to second order in 6z about the SUSY minimum. But first we need to
expand the covariant derivatives Djw:

Diwimass(2 +02) = 0. (Drwmass )|z, 62 + 02 (D1wimass) |-, (02)% + O((62)3) , (3.2.15)
Diwax (24 + 02,u) = Diwax (24, u) + 0:(Drwax) |z, w02 + O((52)2) . (3.2.16)
Note that Diwmass(zx) = 0 at the SUSY minimum, while for general u # 0 the term
Drwax (24, u) does not vanish. The F-term scalar potential reads
V= Viasslz (575)2 + Vinixclze 02 + Vrﬁix’z*,uwz)z"' (3.2.17)
+ Vsl + Vel 82 + Vil u(82) -

The displacement dz is obtained by minimising this potential with respect to dz. We get

! !
~ Vmix|Z*,u + Vax|2* U
" " " :
2(Vmass‘z* + ijx‘z*,u + Vax‘«’«’*ﬂ)

As long as the numerator is small or the denominator large, the displacements ¢z are small
and retrospectively justify our expansion of V. We show that we can keep dz sufficiently
small by the above proposed tuning. We quantify the tuning by a parameter A > 1 (used as
a bookkeeping device for keeping track of terms which we tune small). We write

5z (3.2.18)

Wax (25, ) = A Wax (24, 1) ,  Drwax (25, 1) = X Drwax (ze,u) ,  A> 1, (3.2.19)
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/naive inflaton potential

’
/

backreacted inflaton potential

| ¢/ M,

Figure 3.1.: The dashed (red) line shows the naively expected inflaton potential V(¢) for
inflaton ¢, and the solid (blue) line represents the actual inflaton potential after
backreaction with other moduli is taken into account. This backreacted inflaton
potential does not automatically have to come out sufficiently flat over super-
Planckian field distances.

which represents our fine-tuning. Note that 0, Diwax]s, « is not necessarily small. It follows

that Vix|z, u — A" 2Vax|z, u, while Vielzow — AW, and Vil e = AW s e The
F-term scalar potential then reads
V= Vitassle (02)% + X Vil w02 + Vil (62)*+ (3.2.20)
+ >\_2Vvax|z*,u + )\_lvalx‘z*yuéz + Va/;(|z*7u(5z)2 .
By minimising this expression with respect to dz, we obtain
V!, V!
8z ~ )\71 m1x|Z*,u + ax|Z*,U 4 O()\72) . (3221)

2(Vrﬁass|z* + VIgiX|Z*7u + Va/)l(|z*7u)

As a result, we find that the size of displacements in dz can be controlled as long as A\™! < 1
is ensured.” In other words, displacements are small if we tune D jw,y| 20,u SIall.

However, note that 0z depends non-trivially on u. This backreaction must be taken into
account by inserting z = dz(u) into the scalar potential and the result is the effective potential
for the inflaton. Due to the non-trivial u-dependence this effective potential might not be flat
enough for a sufficiently long trajectory in field-space. Instead, after an initial rise one might
encounter a series of local minima, see Figure 3.1. In [112] we computed the effective potential

"With the same methods we just presented, one can also show that displacements 6z are small in the model
[157], where Wmass is scaled up by flux choice: Wmass — AWmass- Note that this is physically different from
our proposed tuning and may be problematic in the context of Kahler moduli stabilisation — cf. previous
discussion and appendix A of [112].
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3. Tuning and Backreaction in F-term Axion Monodromy Inflation

and figured out region in field-space where a quadratic potential for a sufficiently long field-
distance is obtained thanks to the tuning we discussed. In this chapter, we will however only
state the results of this analysis. A presentation of the details can found in our original paper
or [120].

In the following we review how models of type (3.2.1) can arise in string compactifications.
Additionally, we derive a no-go theorem for the realisation of the required tunings on type
IIB orientifolds and present Calabi-Yau 4-fold geometries as a possible loophole. Finally, we
will quantify how severe the tuning is in the context of the string landscape.

3.3. A No-Go-Theorem for Type IIB Orientifolds at Weak Coupling

This section follows sect. 2.2 of our work [112] with minor modifications.

As argued in Section 3.2, any successful large-field inflation model based on (3.2.1) with
a complex structure modulus u in the large complex structure (LCS) regime requires a flux
tuning of not only |a| but also of all |0,:a| and |0ga| at the minimum with S = i/gs+ Cy being
the axio-dilaton.® Let X be the orientifold on which we wish to realise large-field inflation.
We denote by 2/, I =0,...,n the h%l(X) = n+1 complex structure moduli with the inflaton
being 20 = ju. Throughout the whole chapter upper-case indices run from 0 to n, while
lower-case indices run from 1 to n. In the orientifold case, the most general form of the
superpotential W with u in the LCS limit is given by

1 1
W =w(S,z)+a(S, z)u+ ab(S, 2)u® + gc(S)u:}’. (3.3.1)

Here, z denotes all the 2%, i = 1,...,n. We now briefly show that a and b depend on S and
the 2, while only S enters c. One starts from the Gukov-Vafa-Witten potential [5]

W = / (Fg — SHg) ASQg (3.3.2)
X

where F3 and Hj are the type IIB three-form fluxes and 23 is the holomorphic (3,0)-form on
the threefold X. After flux quantisation one can write

W = (Np — SNy )11, (3.3.3)

with the flux vectors Np, Ny and the period vector II, which is given by [159; 160]

1
S
I, = %H[JKZJZK + f]JZJ + fr+ Zp A[pe*ZprJzJ (334)
_%’QIJKZIZJZK + frel g+ 2p Bpe_ZJbPJZJ
Here, krjx (I,J, K = 0,...,n) denote the triple intersection numbers of the 4-cycles of the

mirror dual CY threefold X. Moreover, the flux index « runs from ae = 1,.. ., Qh%l(X) +2=
2n + 4 in our case. By stabilising v in the LCS limit, i.e. Re(u) 2 O(1), the (worldsheet)
instanton terms e~ 2™ are suppressed. Instanton terms containing Z* but not u are not sup-
pressed, but they only enter w(S, z). Not much is known about the subleading terms frs, fr
and g. In examples we are aware of, those terms turn out to be zero or half-integers (see

8In the orientifold case S enters the F-term scalar potential similarly to the complex structure moduli. Thus
also |dsa| has to be tuned to a small value.
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e.g. [160-163]) and hence, as we will explain, they will be irrelevant for the arguments below.
Therefore we drop those terms in the following. Then, from (3.3.3) it follows that u enters W
up to power three, as stated in (3.3.1). Clearly, S only appears linearly in W. In particular,
¢ cannot depend on the 2% because only kgoou® can contribute to ¢, and thus

c(S) ~ (m+nS) (3.3.5)

with m,n € Z. Similarly, from (3.3.3) together with (3.3.4) one can easily see that a and b
depend on the 2’ and S as follows:

a(S,2) ~ (a+ BS +viz' + NSzt + (5220 + €&;82'27) (3.3.6)

and 3 S
b(S,z) ~ (a+ BS + Fiz" + NSz (3.3.7)

with integers a, ﬁ, Yis )\i, Q’j, 51-]-, d, B, ’%, 5\1

Note that for successful inflation we not only have to tune |a| and its derivatives small (as
explained in the previous section), but also |b|, |0,:b|, |0sb|, |c|, |Osc| have to be small quantities
at the minimum. This can be seen as follows. First of all, as we only want to break the
shift symmetry in u weakly |a|, [b] and |c| need to be small. However, the scalar potential
will receive further contributions which break the shift symmetry. In particular, we have
D;W D ((0,ia)u + (0,:b)u?/2) and DsW D ((0sa)u + (9sb)u?/2 + (dsc)u®/3!), which do
not obey the shift symmetry. Thus, the derivatives |0,:al, |0sal, |0,:b|, |0sb|, |0sc| indeed need
to be tuned small as well. We will show in the following that these tunings either make it
impossible to stabilise g, in the perturbative regime or to stabilise Re(u) successfully.

For this, we first prove the following statement:

Statement 1: In the perturbative regime one cannot tune |c(S)| small, i.e. |c(S)| < € with
€ < 1, as long as ¢(S) # 0.

By (3.3.5), the tuning condition |¢(S)| < € translates into
|m 4+ nS| <e, (3.3.8)

where m,n € Z. Therefore, both the real and the imaginary part of m + nS have to be as
small as € individually. Thus, |n Im(S)| < € for the imaginary part. However, because of
S =1i/gs + Cp, it follows that

|n Im(S)| = In| <e. (3.3.9)

Js

If n # 0, then gs > |n|/e > 1. Hence, in this case it is impossible to stabilise g5 in the
perturbative regime. Since n € Z, one cannot simply tune n small. Therefore, one can only
evade g5 > 1 if we choose n = 0. But then, |¢(S)| = |m| < ¢, i.e. m = 0. This implies that
c¢(S) has to vanish identically.
This observation allows to go even one step further and to state and prove the following:

Statement 2: On any CY threefold with Kooy # 0 or Kio # 0 for some 2, the tuning require-
ments for large-field inflation imply that the string coupling is stabilised at gs > 1.

The proof is as follows. We have to tune all the parameters a,b,c and their derivatives as
small as € < 1. Statement 1 shows that being in the perturbative regime requires ¢ = 0.
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3. Tuning and Backreaction in F-term Axion Monodromy Inflation

There are two possibilities to make ¢ vanish identically. One could choose a CY threefold
with koo = 0 or turn off the last entries of the flux vectors (i.e. choosing the flux numbers
(NF)2n+ta and (Ng)anta to zero). Let us first consider the latter possibility. From (3.3.4) one
can see that turning off these flux numbers indeed prevents rggou® from entering W. However,
one would also simultaneously forbid the terms ~ rip02'u?, i.e. 4; = S\i = 0 for all 5. Thus,
b(S,z) = b(S) (see (3.3.7)), i.e. it then has the same moduli-dependence as c. In analogy, by
using statement 1, we can then infer that b = 0. Furthermore, (Np)anta = (Ng)onta = 0
implies that (;; = &; = 0 for all 4, j. We see that (3.3.6) becomes

a(S, 2) ~ (a+ BS + 72" + NSz, (3.3.10)

and therefore 0;a(S, z) ~ (v; + A\;S), 75, A; € Z for all j. Consequently, the tuning condition
|0;a(S, 2)| < € translates into |vy; 4+ A;S| < € and again, by statement 1 we are forced to choose
v; = Aj = 0, and we are left with a(S) ~ (o + 85). Once more, |a(S)| < € yields a = 0 by
statement 1.9

However, even for kggg = 0 we are forced to set a = b = 0 in order to avoid gs > 1. The
requirement |Oxb| < € yields | + AeS | < e with Ay, i € Z. By statement 1 one must have
i = S\j = 0 for all j. Then, again, the condition |b| < e forces us to choose & = B =0 due
to statement 1. Hence, b has to vanish identically, too. Since, by assumption, ko9 # 0 for
some z° if koo = 0, one cannot avoid choosing (Ng)2,+4 and (Ng)2,14 to be zero, otherwise
b # 0. This then implies (;; = &;; = 0. By repeating the above arguments, we find a = 0 or
gs > 1/e. This proves statement 2.

Obviously, if we consider a CY threefold with rogp = 0 = k4o for all 2* (K3-fibrations admit
such triple intersection numbers), then we have b = ¢ = 0, but generically (;;,&;; # 0, because
no fluxes have to vanish. In this case, it seems possible to stabilise g5 in the perturbative
regime. However, it is then not clear how to stabilise Re(u) successfully. Note that a CY
threefold with the above triple intersection numbers yields a Kéahler potential of the form

Kes = —In(A(z) + B(z)(u+ u)) (3.3.11)
with A, B being functions of the remaining complex structure moduli. Then, the contribution

2

eXesVivg ~ —e’Ccsm (3.3.12)
from the LVS-potential, which dominates the F-term potential for Re(u), does not admit a
minimum for Re(u) in the regime where A + B(u + w) > 0, but rather shows a runaway
behaviour. This issue is rooted in the simple structure of the Kéhler potential. Note that
an analogous problem occurs in inflation models with the universal axion, where the string
coupling g needs to be stabilised. Consequently, large-field inflation with a complex structure
modulus in the LCS limit cannot be realised on CY threefolds with kggg = 0 = kigo for all z°.
Together with statement 2, we summarise our findings as follows (and refer to it as the no-go
theorem henceforth):

f frs is an integer or a half-integer it does not influence the argument. However, if there are cases in
which fr; can be irrational or a sufficiently complicated fraction, there is a chance to evade the conclusion
a(S) = 0. Instead one could use fr; to tune the whole expression a(S) small. Since we are not aware of
examples in which the terms fr; are irrational numbers or complicated fractions, we do not consider this
possibility any further.
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No-Go-Theorem — For any orientifold with at least one complex structure modulus « in
the large complex structure limit, at least one of the following three conditions cannot be
satisfied:

1. The coefficients in front of the inflaton field v in the superpotential W and their
derivatives are tuned sufficiently small to allow for inflation.

2. The string coupling g, is stabilised in the perturbative regime.

3. Re(u) can be stabilised using the classical supergravity F-term scalar potential.

Note that possible scenarios where only condition 3 is violated deserve more detailed in-
vestigation in future work. For instance, certain uplifting scenarios or a mild interference
with Kahler moduli stabilisation could turn out to be a loophole concerning the problems in
stabilising Re(u) that were outlined above.

This no-go theorem can be evaded by considering Calabi-Yau fourfolds as the starting point
for the subsequent analysis.

3.4. Calabi-Yau Fourfolds in a Partial Large Complex Structure
Regime

This section follows our work [112] (section 2.3) with minor modifications.

As explained, the no-go theorem forces us to work with Calabi-Yau fourfolds X, whose
complex structure moduli are denoted by u = 2" and 2%, i = 1,...,n, where n = h3}(X) — 1.
Useful references for this section are [5; 17]. Again, u labels the complex structure modulus
in the large complex structure regime which contains the inflaton field.

The superpotential W can be computed directly from the Gukov-Vafa-Witten potential [5]

W:/ Gy NSQy (3.4.1)
X

with G4 and €4 being the 4-form flux and the holomorphic 4-form on X, respectively. After

flux quantisation this gives
W = N°Il, , (3.4.2)

where N is flux vector and IT denotes the period vector with « = 1,...,bs(X). Schematically,
IT has the following structure [159; 160; 164]:

1
S
I, ~ kryrnz™ 2P + Inst(u, 2) , (3.4.3)
rryrrz? 2525 4 Inst(u, 2)
kryrnz' 2?2528 + Inst(u, 2)

where kjji 1 denote the intersection numbers of the 6-cycles of the mirror dual CY fourfold,
and Inst(u, z) summarises various instanton terms, depending on u and all the z°.

In general, W is a holomorphic function in # and the remaining complex structure moduli.
In this work we wish to only consider superpotentials where u appears at most linearly:
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3. Tuning and Backreaction in F-term Axion Monodromy Inflation

W = w + au. The main motivation behind this restriction is to keep the analyses in the
following chapters simple. In principle, the study of backreaction performed in this work
should also be possible for models with a more complicated superpotential, but we leave this
for future studies.

In the following we will argue how a superpotential linear in w can be obtained. One
obstruction to this is the presence of non-perturbative terms of the form ~ e~ 2™ in II. As
before, by working in the LCS regime where u is large we can ensure that all non-perturbative
terms containing u are exponentially suppressed. Note that we do not require that all moduli
2! need to be in the LCS regime: we only require a subset including v to be at LCS, which
we refer to as ‘partial large complex structure’. Then, at this stage, u can arise at most as u*
in W.

In order to achieve a superpotential of the form W = w(z) + a(z)u, we assume X to have
intersection numbers rgooo = 0 = kio00 for all z°. Hence, cubic or quartic terms in w are
prohibited by the geometry of X. All terms which potentially give rise to quadratic terms in
u need to be set to zero by a corresponding flux choice. For instance, the last component of
II contains /@Z-joozizj u?, which does not necessarily vanish, and thus the last component of N
must be chosen to be zero. Since the Betti number b4(X) does not only receive contributions
from h31(X) but also from h*?(X), we expect that the available number of flux parameters
exceeds the number of required tunings. For instance, if X is an elliptic fibration over CP3
one obtains h?1(X) = 3878, h%2(X) = 15564 and hence by(X) = 23320 [17]. Thus, in this
example one has many more flux numbers than complex structure moduli.

We now want to write down the tuning conditions explicitly and argue that these require-
ments can be satisfied in principle. Using the notation z = (z!,...,2"), we can write a(?)
schematically as

a(Z) ~ (m+ 'z + 2'N2) (3.4.4)

with m € Z, i € Z" and N being an integer valued matrix. The tuning condition on the
derivatives of a(Z2) is |Va| < e ~ 0. This gives two real equations

2N
N

<L
12

—, (3.4.5)

0,

g
é

where ¥ = ReZ and & = Im?2. Inserting these results into a(2), we find
, 1o, 1.,
a(zZ) ~ (m+ S + Sin w) . (3.4.7)
As we need to tune |a(2)| < e ~ 0 we also require

i

&
2

0 (3.4.8)

1
‘m + 577%7 ~ 0. (3.4.9)

A solution to these four conditions is as follows. Suppose det N £ 0, then w ~ 0, i.e. the
second and the third conditions are satisfied. The first condition (3.4.5) can be solved for ¥
and plugged into (3.4.9) to get the requirement
1
m ~ Zﬁt(Nt)_lﬁ. (3.4.10)
This can be satisfied easily if e.g. det N = +1, since in this case N~! is again integer valued.
Of course, there can also be solutions to the tuning conditions for det N = 0, but we do not
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study them any further since our intention was to show that one can in principle satisfy the
tuning requirements.

We now turn to the Kéhler potential Kcs for the complex structure moduli. It can be
determined from the period vector II as

Kes = —1In (Ha(z,u)QaﬁlTﬁ(z, a)) (3.4.11)

with the intersection matrix Qaﬁ' Most importantly, since u is taken to be in the LCS
regime, it appears only as u + « in the Kédhler potential. Consequently, the Kéhler potential
for the complex structure moduli is indeed of the form K.s = Kcs(z, 2z, u + u), as stated in
(3.2.1). From the structure of the period vector it is also evident that K.s can in principle
contain a polynomial in (u + u) of degree four (at most). Since, for simplicity, we consider
ko000 = 0 = koo for all 2%, we have in fact a quadratic polynomial in (u+u) in the logarithm
of the Kéhler potential. However, note that we do not rely on the specific structure of s for
the subsequent analysis. The crucial point is the existence of the shift symmetry of .5 (under
u — u + ic, ¢ € R), which is a necessary requirement to evade the n-problem.!? Again, to
arrive at a Kéhler potential with one shift-symmetric direction, we do not require all complex
structure moduli to be at LCS: only a subset of complex structure moduli containing u has to
be large. As before, ‘partial large complex structure’ is sufficient. Overall, this leaves F-theory
4-folds as a promising starting point for models of F-term axion monodromy inflation.

For the sake of simplifying the notation, we henceforth abbreviate ff = 0,1f, I =0,...,n
and f; =0, f,i=1,...,n for any function f.

3.5. Summary of the Backreaction Analysis

In Section 3.2 we explained that complex structure moduli get displaced due to their coupling
to the modulus u as the inflaton field traverses large distances in field-space. We showed,
however, that these displacements can be controlled by ensuring (via fine-tuning) that |a(z)| <
e and |a;(z)| < e with e < 1. Nevertheless, we still have to establish that backreaction of
the complex structure moduli on the “naive” inflaton potential does not spoil inflation. A
complete analysis can be found in [112] and in the thesis of F. Rompineve [120]. Here we only
summarise and state the main results.

Our starting point is (3.2.1) and we choose the fluxes such that W is only linear in u. The
first step is to calculate the F-term scalar potential

V =& DwD,w) (3.5.1)

where we can ignore the Kéhler-moduli part (see discussion around (3.2.3)). Recall that
our inflaton is the imaginary part of u and therefore we write out explicitly u = = + y.
Schematically, the F-term scalar potential then reads

V = A(z,2,2) + Bz, 2,2)y + C(z, 2, 2)y? (3.5.2)

and the last two interaction terms reveal the origin of the backreaction problem. For large
field displacements dy = y — y, of the inflaton from the minimum y, the other moduli fields z,

9Tn addition, we require the existence of a point where 9, K = 0. This will allow us to stabilise Re(u) through
K and w only (see [156] for more detail). We can then ensure that Re(u) is parametrically heavier than
the inflaton Im(u), which only acquires a mass through au C W. A Kéhler potential with a quadratic
polynomial in (u + @) inside the logarithm is sufficient to stabilise Re(u) through K and w only.
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3. Tuning and Backreaction in F-term Axion Monodromy Inflation

2" are also displaced from their minimum. Even if these displacements are small, the dynamics
backreacts and induces corrections to the “naive” inflaton potential

Viaive = €[ K" Kyal? + K]0 + Keal? + KKua(@oa+ Koa) + he|  Ay? . (353)
min
which is obtained by expanding V about y,, while keeping the other fields at the SUSY
minimum. For this computation it is important to recall that K does not depend on y due to
the shift symmetry u — u + ic. The result corresponds to the term C(z, z, 2)Ay? in (3.5.2),
with A =0 = B at the SUSY minimum (i.e. we neglect backreaction for the moment).

We see that |a| and |0,a + K,a| must be small quantities at the SUSY minimum. For the
tuning condition we propose two variants:

Variant I: € =lal <« 1, 0.0 + K.a| ~ €, (3.5.4)
Variant II: €= lal < 1, |0,a + K.a| ~ €.

Note that both variants imply in particular |0,a| < 1. Clearly, the tuning in variant I is more
severe than in II. Now, we analyse the effective potential for both variants individually.

Tuning Variant |

If we impose € = |a| < 1 and |9,a + K.a| ~ €2, one can easily show that
Viaive ~ €1Ay? | (3.5.6)

To see this, notice that the SUSY condition D,W = 0 implies IC,, ~ a.

Let us now take into account backreaction. To do so, the potential V needs to be expanded
up to quadratic order in the displacements 6z and §z° of the moduli. It is also convenient to
write z¢ = v + iw’. Then, as a result one obtains a quadratic form in A = {6z, 60v¢, dw'}:

-

1- " "
V = SAD(Ay)A + (b(Ay)) A + WAy, (3.5.7)

where D and b are matrix- and vector-valued expressions. Although they are very complicated,
they can in principle be computed explicitly, see [112] for details. Rather than calculating D
and b explicitly, we only wish to outline the logic behind the computation to the corrections
to the naive potential Viaive ~ u2Ay? ~ e*Ay?.

Minimising (3.5.7) with respect to 6z, Jv’ and dw' yields the effective potential Vig(Ay) for
the inflaton:

V() = — 5 (B(A9))' D (Ay)(Ay) + i Ay (3.5.5)

Unfortunately, Vog(Ay) is a very complicated function. However, we can extract relevant
information by looking at different values of Ay. If Ay < 1 then the displacements of the other
moduli grow linearly in Ay, more precisely dz ~ 6z° ~ €2Ay. Hence, the displacements are
tiny in this regime. More difficult to analyse is the regime Ay = O(1). While the displacements
are still suppressed by €2, the functional dependence of dz,8z* on Ay is complicated. In
particular we cannot expect inflation to work in this regime. But for Ay > 1 the displacements
behave as §z° ~ O(1)e?, whereas éx ~ O(1)e2Ay. Requiring dx < 1 implies Ay < 1/€%.
Furthermore, in the regime 1 < Ay < 1/e (i.e. dx ~ €) the effective potential is quadratic in
Ay:

Vst = (—0(1)646’C + ,u2> Ay? = peAy? (3.5.9)
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3.6. Fine-Tuning in the String Landscape

Hence, we find a flattening of the naive potential (see also [165; 166] for similar effects).
To summarise, the effective Lagrangian in the regime 1 < Ay < 1/, in which we want to
study inflation, reads:

Lo = —KuaOu Ayo' Ay — plsAy? (3.5.10)
where p2g ~ e*eX. The canonically normalised inflaton field ¢ is then given by ¢ = /2K, zAy
and the inflaton mass is m? = ,ugff/ Kua-

Tuning Variant Il
We can also aim for less severe tuning: ¢ = |a|] < 1 and |0,a + K,a| ~ e. The analysis to

be done is analogous to the previous case. One includes backreaction to the naive potential
order by order in € by calculating dz, 6v, dw® as a function of Ay. As a result one can still
obtain a quadratic effective potential in Ay, but only in the regime Ay > 1/e. Once again
one obtains at leading order in e that u2¢ ~ €®¢* (but this time due to cancellations of terms
quadratic in €). However, because of the term au C W the superpotential changes a lot during
inflation (note that AW ~ aAy > e-1/e = 1). In consequence, the bulk Kéhler modulus will
also backreact on the inflaton potential (note that in the LVS the compactification volume
V is stabilised at ¥V ~ |W|). An analysis of this inflation scenario therefore requires to add
the LVS potential and an uplift-term to the potential 2;Ay?. Nevertheless, one can obtain a
monotonically rising potential in Ay, so that large-field inflation remains in principle possible,
although details are left for future work.

In summary, we find that the two proposed tuning conditions can give rise to large-field
inflation. Both the stronger tunings (e = |a| < 1 and |0,a + K,a| ~ €2) and the less severe
tuning conditions (e = |a| < 1 and |0,a + K.a| ~ €) lead to a quadratic potential in Ay for
1 < Ay < 1/e and Ay > 1/e, respectively. However, the latter possibility requires to take
into account backreaction of the lightest Kédhler modulus.

3.6. Fine-Tuning in the String Landscape

The goal of this section is to estimate the abundance of flux vacua remaining after imposing
the tuning conditions for the realisation of our model of F-term axion monodromy inflation.
We follow section 4 of our work [112].

The previous sections have shown the necessity of tuning of certain parameters, namely
a(z) and a;(z) with ¢ running over all complex structure moduli entering a. In Section 3.5
we explained that backreaction of complex structure moduli can be controlled when we tune
parameters as follows:

Variant I: |a|=e <1 la; + KCia| ~ €,
Variant II: |a|=e <1 la; + KCia| ~ €.

Let J;/2 — 1 be the number of complex structure moduli which a depends on, ie. i =
1,...,J¢/2 — 1. Then J; counts the required number of tunings in both cases (note that
the tuning of one complex parameter results into two tuning conditions for real parameters).
In this section we provide an estimate of the number of remaining supersymmetric F-theory
flux vacua after imposing the tuning conditions. In particular, we wish to count the number
of vacua where |a| and |a; + K;a| are sufficiently small, i.e. |a| < € and |a; + K;a| < €2, ¢ for
tuning variants I and II, respectively.
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3. Tuning and Backreaction in F-term Axion Monodromy Inflation

We will closely follow [12] although the authors counted the number of SUSY flux vacua
in the type IIB theory on a CY threefold Y, where X = (T2 x Y)/Z3.'' However, due
to our no-go theorem for complex structure inflation on CY threefolds, we actually do not
want to consider threefolds. Nevertheless, we follow the computation in [12] and modify it
appropriately in order to find the parametric dependence of the number of vacua on the tuning
parameter €, also in the fourfold case.!?

Recall that in [12] the number of supersymmetric flux vacua satisfying the tadpole condition
L <L,=x(X)/24 on a CY fourfold X was estimated to be

(27 Ly )%™

N(L<L L) = v I d?™z det(g) p(2), (3.6.1)

where 7 is the intersection form on X and m = h*'(Y) + 1. M denotes the moduli space
over which the density p of supersymmetric vacua (per unit volume of M) is integrated. The
authors arrived at this result by changing variables from the flux vector (of F-theory) to a set
of variables (X,Y,Z,X,Y, Z) defined by

XE/ GyNQy =W, Ya=DaW, Zy = DgDiW (362)
X

in the orientifold limit. Using these variables, one can express p as follows:

FrxZ5  6pyx — 2

p(z) = 7r_2m/d2Xal2m_2Ze_|X‘2_|Z|2 | X% |det (
X

617X — ZZ1 Fp 7

The tensor Frjx has a purely geometric meaning and is defined by
Frik = / DrDjDrQy A Qy . (3.6.4)
Y

The prefactor in (3.6.1) will be modified if we impose the J; tuning conditions. For tuning
variant I discussed in Section 3.5 we require |ar| < € with ap = a and a; = 0;a for i =
1,...,J¢/2 —1 and € < 1. From the Gukov-Vafa-Witten potential it is clear that the a; are
linear functions of the F-theory flux vector components N, with o = 1,..., K = 4m — Jy,
where J; counts the number of flux components chosen to be zero in order to construct a
superpotential linear in u.

To see how N = N (L < Ly, |as| < ¢) differs from N (L < L,) shown in (3.6.1), we redo the
derivation in [12] and implement the tuning conditions by including factors ©(e — |az|) for all
I as follows:

1 da ,r,
N = 27”,/0 ¢ N(a), (3.6.5)
Ji/2—1
N(a) =~ / 2 / X Ne= NN (DW) | det D*W | x [ © (e~ [araNal).  (3.6.6)
M =0

where the aj, are the coeflicients of the linear expansion of a; in terms of the components of
N, ie. af = ajoNq- The curve C goes along the imaginary axis and passes the pole to the

HNotice however some minor differences in the notation. While derivatives with respect to the axio-dilaton
are denoted by 9y or Dy in [12], we write dg or Dg, respectively. The index 0 is reserved for the inflaton
field.

12 A more precise analysis would presumably be possible using the techniques of [72; 73], where the counting
of vacua on fourfolds was discussed in the context of F-theory GUTs.
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3.6. Fine-Tuning in the String Landscape

right. It is easy to show that this gives rise to a parametric behaviour N («) ~ a~(K=J)/2,

Indeed, one can write

Ji/2—1
N(a):/ d2mz/dKNe_%N’7N52m(DW)‘detDZW‘ IT ©(c— laraNal)
M 1=0
o Ji/2—1
:/ d2mz/dKNa_K/Qe_%N"N62m(DW)‘detDQW’ [T o (vae|ara).
M 1=0

where we substituted N = N /+/a and simultaneously rescaled the argument in the ©-function
by v/a. This rescaling clearly does not modify the result but it allows to read off the parametric
dependence of N on « easily: we will justify in the steps from (3.6.10)-(3.6.12) that the J;/2
O-factors give rise to an overall factor ~ (aeQ)Jt/ 2. Hence, the parametric dependence on «
is indeed

N(a) ~ o= E=II2N (o = 1).

Note that without the rescaling of the argument of the ©-functions the tuning conditions
would have introduced factors of « into the terms §°™(DW) |det D*W |, which makes it more
difficult to find the overall parametric dependence on . Now, the contour integral (3.6.5)
can be readily evaluated:

LZm—(Jf+Jt)/2

= L dia al, _ o .
=5 /C o+ (K—7)/2 ¢ Na=1)= @m—(J;+ Jt)/2)!N(a =1). (3.6.7)

Consequently, the tuning conditions modify (3.6.1) as follows:
N(L < Ly, lar| Se)
_ 2m—(Jp+Jp)/2
~ (2m)>m 2L o / d*"z det g x
(2m— (Jp+ J)/2)detn Jm

y W*meJf/Z/dZXdefoJf/ZZGf|X|27|Z|2 X

o X —ZZe Frp 2t
det _ K ? 7z X
FrixZ OryX — 224

Ji/2—1
x [ ©e—lar(X, Z, 2)|) (3.6.8)
i=0
Now one can make the following change of variables: we can express some X, Z,z by ay,
8((107041,...7aJt/2_1)

(Y0, Y15esYg, j2—1)
the X, Z and z. We expect it to be neither particularly large nor small, since the components

of the Jacobian are typically O(1). As a result, the number of remaining supersymmetric flux
vacua is estimated to be

which introduces a factor ‘det ( )‘ with {yo,...,¥s,/2—1} being a subset of all

(QW)Zm—(Jf+Jt)/2Lzm*(Jf+Jt)/2

N(L < Ly, lar| S €) ~ 2m — (Jr+ Jp)/2)!

- (we) /2, (3.6.9)

where we also neglected y/det7. The factor (2r)~”#/2 arises from integrating out the tuning
conditions. The factor (me2)”#/2 can be understood by the following considerations:
First of all, we can rewrite the integral in eq. (3.6.8) symbolically as

Ji/2—1

N~ dlzf(@) [[ ©(e— las(@)]), (3.6.10)
1=0

MxRK/2
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3. Tuning and Backreaction in F-term Axion Monodromy Inflation

where the components of Z = (z, ..., 2%) with d = 2m + K/2 replace the variables 2!, Z; and
X. We assume that the combined zero locus of the ay is a (d — J;)-dimensional submanifold
R C M x RE/2. Without loss of generality we parametrize this submanifold by z!,..., 2",

k = d — J;. The remaining variables 2**1, ... 2% are traded for .J;/2 pairs of variables a7, 87,
such that a;y = a5 + i8;. Thus, we have

Ji/2—1

N ~ d"zdaogdfy ... dag, ;o 1dBy, a1 f(a', ..., 25 @ 5) T] ©le— /a3 + B3,
I=0

MxRK/2
(3.6.11)
where the determinant of the Jacobian for the transformation is absorbed into f. Next, it
is convenient to introduce polar coordinates (ry, ¢y) for every pair ag, 5;. Hence, one has to
evaluate

Jij2—1
NN/ d*z H
R 1=0

Jij2—-1

€ 27 - - Ji /2
:/ d*z H / dry dorrif(zt,. .. aF 7 @) ~ <7re2) o/ ,
R o Jo 0

e’} 27 - -
/ dr[/ dorri©®(e —rp) f(at, ... 2% 7. ¢) = (3.6.12)
0 0

where we assumed that f is approximately constant inside the small region of size ~ e.
Therefore, the number of remaining flux vacua is indeed suppressed by a factor of ~ (7762)Jt/ 2,

We expect that (3.6.9) can be used to count the remaining F-theory flux vacua by simply
replacing the dimension of the flux space in type IIB by the dimension of the F-theory flux
space, which is given by the Betti number b, of X, from which we have to subtract the number
Jt of flux components that had to be turned off in order to admit a linear superpotential in
u and in order to allow for an F-theory limit. Thus, we use

(ZTrL*)b4/2_(Jf+Jt)/2
(ba/2 = (Jp + J1)/2)!

N(L < Ly, |ar| <€) ~ me?)7t/?

: (3.6.13)

to estimate the number of flux vacua admitting large-field inflation with complex structure
moduli, where tuning condition II, |as| < e, is applied.

In Section 3.5 we also considered the more severe tuning variant I. There we have |a| < € and
|Dja| = |a; + K;a| < €2. Repeating the above analysis we find that the tuning of a introduces
a factor of (me?) into N, while for every |D;a| which we tune small we get a contribution
(met). In this case the counting formula is modified as

o L. \ba/2—=(Jp+Je) /2
N(L < Ly, |a] < € |Djal < €%) ~ ((64/2*_) SIESATE L lt/2e202, (3.6.14)

Since the potential found in Section 3.5 is purely quadratic for sufficiently large Ay, we can
now estimate the required size of the tuning parameter e for successful chaotic inflation. The
inflaton potential is given by Viys = %chpz, where ¢ = /2,3 Ay is the canonically normalised
inflaton field. In order to have enough e-foldings (or equivalently in order to match the correct
spectral index), chaotic inflation fixes the beginning of slow-roll inflation at @max =~ 15. Thus,
the requirement Ay < 1/e for variant I turns into an upper bound for e:

1 1
€= ©v2Re(u) - 15v/2Re(u)

(3.6.15)
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Together with (3.6.14) we find as an upper bound for the number of supersymmetric flux
vacua with the required tuning:

2L, )ba/2=Us+I0)/2 1 i
N(L < Ly, |a| S e, |Dia] S €%) < (27 L, AL . (3.6.16

Unfortunately we do not know .Jy and Jy, i.e. the number of fluxes to be turned off and the
number of tuning conditions. It is moreover not quite clear how large Re(u) can be. We
therefore assume that Re(u) ~ O(1).! This should be sufficient to suppress the instanton
corrections which scale as ~ e~2™. Nevertheless, we try to give an estimate of how large J;
can be at most, assuming that Re(u) ~ 1.2 (equivalently ¢ < 0.04). Then, for the study of one
particular case with L, = 972, by = 23320, h*1(X) = 3878 (see [17]), which gives rise to the
famous number of 101790 F-theory flux vacua, there will be a leftover of at most ~ 10%°° vacua
if we require J; = 600 tunings (i.e. the geometry of the CY fourfold is such that only ~ 300
out of the 3877 complex structure moduli (without u) enter a). In this estimate we ignored
the variable Jy, but if it is small compared to b4, this estimate should still be an appropriate
approximation. Clearly, one cannot afford much more than 300 tuning conditions due to the
severe suppression factor €2/t=2. However, if it is possible to realise our inflation model on a
fourfold along the lines of Section 3.5 via variant I, such that much less than 600 tunings are
required, then there should still be a vast landscape of F-theory flux vacua left.!* Note that
in setups following Section 3.5 with variant II, where the tuning conditions are just |as| < e,
the number of flux vacua is suppressed by €, see (3.6.13), and hence the tuning is less severe
(using the above numbers, i.e. J; = 600 and € = 0.04, one has a leftover of 1011% vacua).

It would be interesting to work out the required tuning conditions more specifically in the
future by analysing specific CY fourfolds. This would allow us to determine J; as well as J;
and hence to estimate the number of remaining flux vacua more explicitly.

Apart from the tuning conditions, the landscape will be further suppressed due to the
stabilisation of Re(u) in the LCS limit. If, however, this requirement does not enforce too
many other complex structure moduli to be stabilised in the LCS regime as well, then this
constraint is not expected to be too severe. Scenarios in which all complex structure moduli
are stabilised in the LCS limit are presumably difficult to realise in the string landscape.

3.7. Conclusion and Further Comments

In this chapter we presented crucial developments of the initial proposal of F-term axion
monodromy inflation via four-fold complex structure moduli or D7-brane moduli [156]. The
idea is to consider a complex structure modulus u in the partial large complex structure
limit. Then, due to shift symmetry of the Kéhler potential K the imaginary part Im(u) of
this modulus (corresponding to the axionic part of the Kéhler modulus of the mirror-dual
type-ITA model) is absent in K. Hence, it represents a periodic variable and it is a suitable
inflaton candidate. Shift-symmetry and this periodicity are weakly broken by turning on
fluxes. By appropriate flux-choice one can obtain a superpotential of the form W = w + au.
The flux-induced term au gives rise to a monodromy.

3Interestingly, one can derive an upper bound on Re(u) from the energy scale of inflation. After canonical
normalisation one obtains Vins ~ €20?/V? ~ 0.5 - 1078, Using (3.6.15), one finds that Re(u) < 10*/V.

MEurthermore, notice that for this chosen example, the integration over the flux space rather underestimates
the correct value of the sum over the flux space due to the fact that the dimension of the flux space is very
large. This indicates that there should be more vacua satisfying the tuning conditions left than estimated.
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Since the inflaton mass has to be below the Kéhler modulus stabilisation scale, this mon-
odromy effect has to be sufficiently weak. Our aim was to make a, which generically depends
on many other moduli, i.e. a = a(z), small by flux-tuning. For this proposal the dependency
of a on other moduli is crucial, because such a fine-tuning is impossible to achieve with integer
flux-numbers only.

However, this dependency a = a(z) comes with some further challenges to make this scenario
work. As the inflaton field moves over large field distances, the other moduli are displaced
due to the interaction term a(z)u. We argued that fine-tuning of the derivatives d,a(z) with
respect to every complex structure modulus are required to control the displacements of the
moduli z. However, there is significant backreaction on the inflaton potential, but there is a
regime in which the potential remains sufficiently flat for large-field inflation.

Rather than discussing these backreaction issues in detail in this thesis, we focused on the
realisation of such an F-term axion monodromy inflation model in the type IIB flux-landscape.
We also paid particular attention to geometric constraints on the mandatory fine-tuning. First
of all, we derived a no-go theorem for complex structure inflation on type IIB orientifolds.
It turns out that the geometry of Calabi-Yau 3-folds are typically not rich enough to allow
for the tuning of a(z) and its derivatives in the perturbative regime. Next, we showed that
this no-go theorem does not apply to Calabi-Yau 4-folds. Hence, F-term axion monodromy
inflation via complex structure moduli should rather be addressed in F-theory (or by inflation
with a D7-brane modulus in type IIB). Our analysis demonstrates that the tunings can be
realised, at least in principle. It would nevertheless be interesting to realise such a tuning
on concretely chosen 4-folds. This is most likely a computationally very challenging, but
certainly interesting problem. Finally, we addressed the question whether the flux-landscape
of F-theory is large enough to be consistent with our set of tuning conditions. Our philosophy
of this issue is as follows: if, after imposing the tuning conditions, no or only few vacua of
an initially large landscape remain, we conclude that the tuning is not realisable. However,
taking a 4-fold with sufficiently large Euler character and many moduli, the initial landscape
should typically be large enough to allow for the tuning, unless many moduli also enter the
function a = a(z).

Concerning the question of realising large-field inflation in string theory, our conclusion is
therefore positive, even though the necessity of the potentially large amount fine-tuning might
be disappointing at first sight. We demonstrated that our model of F-term axion monodromy
inflation has a chance to work. To our present knowledge it resists stringent quantum gravity
constraints, such as the Weak Gravity Conjecture (see e.g. [93; 100; 107], but also [106; 167]
for constraints on relaxion models). Instead, we observe geometric constraints from string
theory (such as moduli stabilisation and our no-go theorem) in combination with constraints
due to the finiteness of the landscape. We therefore believe that the understanding of the fine-
tuning on concrete Calabi-Yau geometries as well as possible developments of our presented
landscape counting deserve further investigations in future work.

As to the realisation of our model in more concrete settings, it would be interesting to
improve our understanding of the role of o’-corrections. The N = 2 level o/-corrections
on the type IIB side do not depend on complex structure moduli and therefore we expect
these corrections to be irrelevant for our inflation scenario. On the type IIA side, such o/-
corrections are reflected in the linear terms appearing in the period vector (3.3.4) in type
IIB (see e.g. [168] and earlier works [169-171]). However, it would be important to account
for a/-corrections arising from 7-branes.!® In [172] it is demonstrated that on CY 4-folds

53ee also our discussion in [112].
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a certain class of F-theory o/-corrections does not modify the functional form of the Kihler
potential (see also [173]). Additionally, in [154] it was argued that a more complete analysis of
large-field inflation with D7-branes requires the incorporation of higher-derivative corrections
to the 4d supergravity description coming from DBI-terms. This was also discussed in much
more detail in [174], which appeared shortly after the first version of our work [112]. Further
developments [175] on this indicate a flattening of the inflaton potential due to such DBI-
induced o'-corrections, consistent with [176], where a flattening from Kéhler moduli was
observed as well. It would be interesting to analyse whether these flattening effects can relax
the tuning conditions of our model.

Another hope in relaxing the tuning would consist in combining [157], where w was chosen
to be large, with our fine-tuning of a and we leave such an analysis for future work.

Finally, the implications of the complicated behaviour of the potential close to the SUSY-
minimum deserve further investigations. For instance, the non-monotonic behaviour of the
potential could prevent the inflaton from rolling down to its minimum. Instead it could get
stuck in a SUSY-breaking local minimum. This idea could provide a new F-term uplifting
mechanism (similar to [177]).
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CHAPTER 4

F-Term Winding Inflation: Realisation of Alighment Inflation in
String Theory

4.1. Introduction and Summary

Using F-terms we were able to present in Chapter 3 a model of F-term axion monodromy
inflation in supergravity language, taking into account backreaction. Although large-field
inflation can in principle be achieved in this way, the required amount of fine-tuning may be
disappointing. Furthermore, geometric constraints make a concrete realisation challenging, or
— at least in the 3-fold case — even impossible.

In this chapter we therefore aim to establish a different, much less tuned, inflation model
using F-terms. Specifically, we aim to realise alignment inflation, similar to the Kim-Nilles-
Peloso (KNP)-mechanism [42], in string theory. This mechanism may, however, be in the
swampland due to quantum gravity constraints such as the Weak Gravity Conjecture (WGC).
We take this as an opportunity to construct an alignment model from string theory and to
explore in which sense it is consistent or constrained by quantum gravity arguments. Thus,
rather than trying to derive no-go theorems from some quantum gravity arguments, which
finally may or may not hold true, we address the problem of establishing a viable model of
alignment inflation by proof by existence.

The construction of natural inflation via complex structure moduli has been attempted in
[178]. Our work [113] follows the spirit of [42; 179]: we try to achieve large field displacements
by a winding trajectory in the compact field space of two complex structure “axions™! We
therefore call our scenario “F-term winding inflation”. More specifically, it is based on three
observations (see also our introduction in [113]): First, as explained in Chapter 3, complex
structure moduli exhibit an axionic shift symmetry in the large complex structure (LCS)
limit. Second, bulk fluxes F3 and Hj3 lead to a non-vanishing F-term scalar potential for these
axions. Appropriate flux choices allow to fix some of the axions such that only one flat axionic
direction remains [157; 178]. In particular, one can achieve a flat direction by a long winding
trajectory wrapping the compact field space multiple times (see e.g. Figure 4.2). Finally,
corrections to the large complex structure geometry generate a potential along the previously

'Recently, in [180] it was proposed to realise alignment inflation in the spirit of our work [113] near a conifold
locus of the complex structure moduli space.
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flat direction. These corrections correspond to instantons in the mirror dual 3-fold. There
are two types of relevant instantonic terms: those with a long period, corresponding to the
full length of the trajectory, and those with a short period, potentially ruining inflation. We
stabilise the saxions such that the long-period terms are reasonably small while the dangerous
terms are completely negligible.

Our proposed model is subject to constraints from string theory and quantum gravity effects
in general. First of all, it needs to be ensured that the Kédhler moduli remain stabilised during
inflation. Our analysis shows that this requirement is non-trivial but it can still be met in the
Large Volume Scenario (LVS). Moreover, we learn that type IIB string theory puts an upper
bound on the effective axion decay constant. This bound follows from the D3-tadpole can-
cellation condition. Nevertheless, at present this constraint is not strong enough to rule out
our inflationary scenario. More stringent bounds on the axionic field displacement could be
obtained from quantum gravity arguments such as the WGC. Indeed, if the particle satisfying
the WGC must also be the lightest one (this is the “strong” form of the Weak Gravity Con-
jecture), our winding inflation model is ruled out. If, in contrast, the mild version holds true,
there is a loophole [100; 101] in this argument and we can show that our model precisely fits
this loophole. Moreover, [108] opened the question whether gravitational instantons, arising
from a shift-symmetric axion coupled to Einstein gravity, can lead to dangerous corrections.
We give a few remarks on this problem and postpone a detailed analysis to Chapter 5.

This chapter begins with a brief review of the realisation of alignment inflation via the
KNP-mechanism. The remainder of this chapter is based on our paper [113]. Parts of this
work, particularly the derivation of the inflaton potential including backreaction, will also be
reviewed in the thesis [120] by coauthor F. Rompineve. In Section 4.3 we explain the technical
details of our winding inflation proposal with focus on the geometric setup and the issue of
Kéhler moduli stabilisation. Most of Section 4.3.1 and Section 4.3.3 follows [113]. The issue
with quantum gravity constraints is discussed in Section 4.4, where the explanations of the
loophole [113] are extended by further details. Finally, we give a summary of our results and
remark on recent progress in this field.

4.2. Review of Alignment Inflation in Effective Field Theory

We briefly sketch the idea of alignment inflation, known as the KNP-mechanism [42]. Our
choice of notation anticipates what follows in the subsequent sections. The presentation is
similar to some slides of a talk given by L.T. Witkowski [181]. For a more general description
of the KNP-mechanism, we refer to the original work [42] and [32].

Consider a model in which a potential of the form

- N
V= (1 — Cos JZ) + e <1 —cos & 7 U) (4.2.1)

is generated for the axion fields v and v. We assume that fi, fo < 1 so that there is no imme-
diate conflict with the Weak Gravity Conjecture, or with negative results like [40] concerning
large axion decay constants. Moreover we take N >> 1, which will finally make the effective
axion decay constant parametrically large. Furthermore, let us assume that the instanton
generating the first term is heavier than the one yielding the second term, i.e. So < S7. It is
convenient to express the potential in terms of a field basis defined by

1

= —(u— Nv), o=

N Nu+v) . (4.2.2)

1
~
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Hence, we have u ~ () + N¢)/N and v ~ (¢ — Nv)/N. It follows:

V=" (1 — €oS W) + e <1 — cos ]\JZ/}> . (4.2.3)

By virtue of the hierarchy Sy < Sj, the second term stabilises ¢ at ¢ = (fo/N)w - Z. For
simplicity we take ¢ = 0. Then, integrating out 1 yields
V=e (1 - ¢>
e cos (4.2.4)
f eff
with effective axion decay constant feg = Nfi. Since N > 1, the effective axion decay
constant can be trans-Planckian, allowing to realise successful inflation.

Unfortunately, the WGC extended to multiple U(1) gauge field rules out this model. This
extended WGC demands that the convex hull spanned by the charge-to-mass vectors of each
state has to span the unit ball, whose surface is given by the charge-to-mass vectors of an
extremal black hole charged under these multiple U(1)’s. Applied to our case, we see that
the convex hull spanned by the directions corresponding to v and v — Nv can never contain
the unit circle for N > 1. This problem is depicted in on the left of Figure 4.1. Hence, the
alignment inflation scenario is in conflict with the extended WGC.

A way out is to add a term e 3(1 — cosu/f3) generated by a third “spectator instanton®
(see again Figure 4.1) [100; 101] to (4.2.1). We assume that also S3 > S3. Again, ¢ can be
integrated out and hence

Vo= <1 — cos f) +e % (1 — Cos ¢ ) : (4.2.5)

eff E
It still holds feg = N f1, but it must be guaranteed that the second term is highly suppressed,

e.g. by S3 > S;. If the mild WGC holds true, this hierarchy turns out to be viable. We
discuss this point in some more detail in Section 4.4.

4.3. Alignment via Winding Inflation in String Theory

Our inflation model is formulated in the effective supergravity description of type IIB string
compactifications, where our inflaton arises from the complex structure moduli sector. The
model is captured by the following Kéhler potential and superpotential?

K =—log [A(z, Z,u—u,v— )+ (B(z, Z,v —0)eX™ 4 C.C.)} , (4.3.1)
W = w(z) + f(2)(u — Nv) + g(2)e*™™ | (4.3.2)

with N € Z where we take N > 1. These are the necessary ingredients to compute the F-term
scalar potential. The latter is minimised by imposing the conditions D;WWW = 0, where I runs
over all moduli. Assuming that the exponential terms in (4.3.1) and (4.3.2) are suppressed,
only the fields Im(u) and Im(v) as well as the combination Re(u — Nv) are stabilised at the
minimum. The fourth scalar component parametrises a flat direction which is closely aligned

2Mind the change of conventions with respect to Chapter 3, where a complex structure modulus v in the LCS
limit entered the Kéhler potential as K = K(u + @). In this chapter we choose opposite conventions such
that K = IC(u — u) in the LCS regime. This means that the inflaton should then be identified with Re(uw)
instead of Im(u) (as in the previous chapter).
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S I

Figure 4.1.: The illustration on the left shows the charge vectors in alignment inflation. The
red arrows correspond to the direction +(—1,1/N) of ¢) and the blue arrows
correspond to the direction (+1,0) of v. Large N therefore corresponds to small
angles 6, but also implies a large effective axion decay constant. The convex hull
spanned by charge vectors along the described directions is depicted in gray. It
does not contain the unit ball. On the right hand side, a “spectator instanton” is
added. The corresponding directions (in orange) (0,+1) make sure that the unit
ball is contained in the new convex hull.

with Re(u). As will be shown, the exponential terms lift this flat direction introducing a
cosine-potential with a large period.

In the following we will examine in more detail how the structure of (4.3.1) and (4.3.2)
arises from the geometry of Calabi-Yau 3-folds and argue that the resulting scalar potential
is suitable for inflation.

4.3.1. Geometry, Fluxes and Instanton Corrections

We begin with a type IIB Calabi-Yau orientifold X with h2_’1(X ) = n complex structure
moduli {z}. The quantum-corrected Kéhler potential can be written as (see e.g. [160; 164])

K = —log (—;Faijk(zi — ) (0 — ) (2F - ) +ic

_ > 2ng[l — mimpB;(2¢ — 7
i Y% sl Bi( )]

: — (2wim)3
BeH»(X,Z) m=1
\{0}
« {627rimﬁizi + €2ﬂim5izi}> , (4.3.3)

where ng are constants related to Gromov-Witten invariants, r;j;, are intersection numbers

of the dual 3-fold and ¢ = —5((3)x(X). Summations over 4, j, k run from 1 to h>(X).
The structure for K in (4.3.1) can be achieved when working in a regime of large complex
structure (LCS) for some of the complex structure moduli. In particular, we consider two
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complex structure moduli which we label by v and v. We then assume that the F-term
conditions stabilise u and v such that the following hierarchy is realised:

e—27rIm(u) < e—27rIm(v) <1. (434)
As we will show later, inflation proceeds along a direction in which the condition (4.3.4)
remains true. At LCS for u and v terms of the form e?™ and e?™™ are suppressed and the

leading term in the Kéahler potential only depends on the shift-symmetric combinations (u—u)
and (v — v). By enforcing (4.3.4) terms of the form e?™* are subleading compared to e2™%
and are thus ignored in the following. We only retain the leading instantonic term in v. With
the mild assumption that the dominant such term contributes as 2™ (i.e. assuming 3, = 1)
we obtain the term Be?™™ in (4.3.1). The superpotential (4.3.2) is the Gukov-Vafa-Witten
superpotential and takes the form

W = (Np — 7N)°Il, (4.3.5)

where N, N € Z are flux integers, 7 is the axio-dilaton and IT is the period vector (see also
(3.3.4)). It has entries (now writing down the structure of the instanton terms more explicitly)

1
i
II= kit 28+ Laijel + b + %:n (;fi£§z e2mimpiz" ) (4.3.6)

—EE IR b+ S+ Y %Wezmmﬁizi
B,m

The parameters a;; and b; are taken to be real (and, as we discussed in Section 3.3, they seem

to be typically half-integers).

The structure observed in (4.3.2) can be recovered as follows. By choosing appropriate flux
integers Nz, N7, corresponding to the F3- and Hs-fluxes, one can ensure that w and v only
appear linearly in W at leading order. In particular, the last entry of the period vector will
typically give rise to quadratic and cubic terms in v and v. We forbid these contributions by
setting the last entry of the flux vector to zero. Choosing certain flux numbers large we can
ensure that N > 1. As before, instantonic terms in u are ignored. We include the leading
instantonic contribution in v which gives rise to g(2)e*™™ in (4.3.2).

In the following, we denote the remaining (n — 2) complex structure moduli (except u and
v) as well as the axio-dilaton by z. All in all, we find that the structure of (4.3.1) and (4.3.2)
can indeed be realised in the complex structure moduli sector of a Calabi-Yau 3-fold.

4.3.2. Moduli Stabilisation, Winding Trajectory and the Inflaton Potential

Moduli stabilisation and the generation of the inflationary potential then proceed as follows.
Besides fixing complex structure moduli and the axio-dilaton, we also need to stabilise Kéhler
moduli, which we do according to the Large Volume Scenario (LVS) [7]. At leading order, the
theory for Kéhler moduli is of no-scale type giving rise to the no-scale cancellation in V' (see
also Section 3.2):

V =< (K7 DWDW + KT Dy, WD, W = 3)W[°) ~ KTV DWD, W, (43.7)

with 7, J running over all complex structure moduli and the axio-dilaton. The potential is
thus minimised for D;WW = 0 for all I. Subleading terms due to o/- and non-perturbative
corrections stabilise the Kahler moduli.
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Re(v)

Figure 4.2.: Inflaton trajectory in Re(v)-Re(u)-plane. The winding trajectory is a result of
stabilising one direction in Re(v)-Re(u)-space by an F-term potential due to bulk
fluxes.

Ignoring instantonic corrections, our ansatz (4.3.1) and (4.3.2) is such that only Re(u) —
NRe(v) enters the F-term scalar potential, i.e. V = f(Re(u) — NRe(v)). Hence, after min-
imisation of V' with respect to this combination, one obtains a linear equation that describes
the flat direction in terms of the variables Re(u) and Re(v). This flat direction, depicted in
Figure 4.2, is independent of the metric of the moduli space and it can be parametrised in
any field basis. For convenience, we thus choose the set of complex variables ¢ and v defined
by

p=u, Yv=u—Nv. (4.3.8)

The flat direction is now parametrised by Re(¢) while Re(t)) is fixed. (Note that the orthog-
onal direction to v is actually ¢ = u + v/N, but for N > 1 this yields ¢ ~ u.)
The exponential term in these field variables reads:

Im(¢)—Im(+)
e~ 2mmv) — —2r g =ex 1, (4.3.9)

where € = e~ 2mm(%0) ig introduced to keep track of small corrections for the below computa-

tions. Since v is stabilised in the LCS regime, one has € < 1.
Furthermore, X and W can be expressed as:

K= K(z,z,Im(¢),Im(¢)) + O(e) , (4.3.10)
W=w(z)+ f(z)Y+ O(e) . (4.3.11)

The SUSY conditions D)WW = 0 stabilise all the moduli z, as well as Im(¢), Im(v) and Re()),
while Re(¢) is unfixed.® Therefore, we see that the term f(z)i in the superpotential results
in a breakdown of the two shift-symmetries in the variables u,v such that only one shift
symmetry remains. Hence, Re(¢), which does not appear in L and W, is a suitable inflaton
candidate.

Let us interpret Figure 4.2 in the ¢-i-language. Since Re()) = Re(u) — NRe(v) is fixed,
we see that 0Re(u) = NéRe(v). In words, for N > 1 (achieved by flux-choice) the modulus u

3The existence of a flat direction is also clear from counting the SUSY-constraints. There are 2n + 2 real
moduli, but only 2n + 1 real equations D;W = 0, because DyW = K4V = 0 yields only one real equation
Ky =0.
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changes much more strongly than v. This reproduces Figure 4.2 with the depicted trajectory
being parameterised by Re(¢), which is closely aligned with Re(u).

The idea of using winding trajectories in the field space of two axions for inflation was
originally developed in field theory in [42] (KNP-mechanism). Prior to the publication of our
work [113] various different realisations of the KNP-mechanism in string theory have been
proposed, see for instance [179; 182-187]. Our proposal is different: we establish a winding
trajectory from an F-term potential, which is induced by non-vanishing fluxes.

Note that at this stage, without taking into account instanton corrections, the potential of
our inflaton candidate is exactly flat. To turn it around, the non-zero slope for inflation will
be created by these instanton corrections. For the computation of the inflaton potential we
therefore have to include the subleading term

eZm’v

— 2mi(¢—P)/N _ o 2mi(Re(d)—Re(y))/N ’ (4.3.12)

where € is defined in (4.3.9). Up to second order in e the covariant derivative D)WV can be
expressed as

-DIW :A[(Z,2,1/J,’QE,¢*§5)+ (4313)
+ € |:BI(27 27 "pa 1;7 ¢ - (E)€2ﬂi¢1/N + CI(Za 2) wv '(Z? d) - Qg)e_Qﬂi(m/N] + 0(62) )

where ¢; = Re(¢). The complex functions A7, By and C7 depend on z,%,v, 1 and Im(¢);
note that the phases e~ 27¥1/N and e2™¥1/N have been absorbed into the complex functions
By and Cj. Only this structure of DWW is of relevance for the computation. Given a specific
3-fold one could calculate these functions explicitly.

One can show that the resulting inflaton potential Vi,¢, with backreaction of the moduli
taken into account, is given by

2 2 2
Vigs = eXé? (b’ cos < 7;\?) + sin ( 7;\?)) ) (4.3.14)

or

2 2
Ving = €% €2\ {sin ( 7;\?1 + 9)] : (4.3.15)

with some phase 6 and constant A\, depending on ¥, ¢’. The coefficients ', ¢ themselves depend
on the moduli z, Z, 1, ¢ and Im(¢). To arrive at this result it is necessary to diagonalise the
(leading order) Kéhler metric by an orthogonal transformation. Furthermore, backreaction on
the complex structure moduli is to be taken into account. It turns out that the displacements
are of order O(e). Minimisation of the potential with respect to the displacements yields
(4.3.14). Details of these computations are explained in our paper [113] and in the thesis
[120].

4.3.3. Compatibility with Kdhler Moduli Stabilisation

Finally, we analyse the compatibility of our inflation model with the LVS. Phenomenologically,
it is identical to natural inflation. Using the definitions of u, v in terms of ¢, ¥ and d¢; = N Oy
we have

&L D Kua(001)? + Kus(01)?/N? + Kus(001)? /N + c.c. (4.3.16)

4For instance, in [183], the winding trajectory arises from non-perturbative effects.
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Therefore, for large IV, we have K5 = Kyz + O(1/N) and the canonically normalised inflaton

field is defined by: ¢ = 2Kua¢1 + O(1/N). In terms of ¢, the potential (4.3.15) reads (after
also using a trigonometric identity):

Vint () ~ efe2\2 {1 — cos <;f + 29)} , (4.3.17)
with the axion decay constant f ~ N/(4nIm(u)) and the canonically normalised inflaton .
Recent Planck results [2] impose a lower bound of f > 6.8 (at 95% CL), and thus our model
has to satisfy the phenomenological constraint

T (a) > 85 . (4.3.18)
Notice that the flux number N receives also an upper bound coming from the tadpole can-
cellation condition. If the tadpole L, = x(CY4)/24 is not sufficiently large, it can turn out
to be challenging to achieve N = (O(100) to satisfy the above constraint. However, a detailed
analysis could reveal that the above bound is too strict. So far we have not included back-
reaction of Kéahler moduli which is expected to lead to a flattening of the inflaton potential
[112; 165] (see in particular the recent analysis of [188]). In this case the bound on N would
have to be modified which we leave for future work.

In the following, we demonstrate that the parameters A, e, Im(u) and N can be arranged
such that the Kéhler moduli can in principle be stabilised successfully in the framework of
the LVS.

In order to avoid destabilisation of the Kédhler moduli during inflation, we require

kWP g w2

in ~1 -8 ~ )
Vine 07" < Vivs ~e V3 V3Im(u)3

(4.3.19)

where we used that the energy density of the inflaton potential in natural inflation is Viys ~
10~8 in Planck units. Moreover, there is the well-known constraint on the ratio of the gravitino
mass and the Kaluza-Klein scale [189]:

mg/o

<1. (4.3.20)
MKK

This constraint can be translated into the condition®

My V9sIW|
MKK Im(u)V1/3

<1. (4.3.21)

Combining the constraints (4.3.19) and (4.3.21) yields

1
10 %<« ———— . 4.3.22
< Im (u)V7/3 ( )

In order to fulfil the bounds described above, we choose the following numerical example:
N =150, Im(u) = 1.5, e = 0.02 (i.e. Im(v) ~ 0.6), V = 100 and A ~ O(10). The choices for

®One can derive this relation as follows: the gravitino mass is given by mzje  ~ e/ W~
‘/gS|W|V711m(u)73/2. In anisotropic compactifications, e.g. in cases where one modulus is stabilised in

the large complex structure limit, the Kaluza-Klein mass scales as mxx ~ L™V7™Y2 ~ (Im(u))~Y/2p~2/3,
where we parametrised the volume as V ~ L3R? with L > R and Im(u) ~ L/R.
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27Im(v) 27 Im(u)

Im(u) and Im(v) ensure that terms of the form e~ are small while the terms e~
are negligible. At the same time it is ensured that inflation occurs at the correct energy scale
V}nf ~ 1078-

In this case, (4.3.18) and (4.3.22) are easily satisfied. If g; ~ 0.01 and W < O(10), then
(4.3.21) holds true as well. For this, we have to compensate the large contribution coming
from N = 150 by a mild tuning of the coefficient f(z) = 0(0.1). Since the LVS potential
is O(10) times larger than the inflaton potential, there is no danger of destabilisation of the
Kaéhler moduli.

4.4. Is F-Term Winding Inflation Part of the String-Landscape?

Finally, we discuss to what extent our inflation model might be censored by further constraints
from string theory and by generic quantum gravity arguments. Each of these constraints shape
the string landscape and hence winding inflation could still be an element of the swampland
rather than the landscape. Possible concerns are the following;:

Large N, the Tadpole and Landscape Vacua

As we already remarked, the choice of N = O(100) might clash with the D3-tadpole cancel-
lation constraint (see (1.4.1))
n3(m,n) < L, , (4.4.1)

where 73 denotes a quadratic form of the flux vectors m and 7 corresponding to F3 and Hs,
respectively.

Let us describe the potential problem in more detail. In type IIB string theory there are 2b
flux numbers my,...,mp and nq,...,np. The condition N > 1 will generally translate into an
additional constraint f(my,,...ms,, nj,...,n5,) = N > 1, where 1 < p,q < band f is a model-
dependent function of the flux numbers. The set of SUSY flux choices (yielding n3(m, 1) > 0,
see Section 1.4.1) supporting our model is then given by solutions to

0 < n3(m,n) < L, and fmiy,omi,njy,.mg ) = N> 1. (4.4.2)

Very naively, one could be concerned about terms like n? for some 1 < i < b occurring in
n3(m, 1), specifically in cases where 73 is positive definite (which is, however, not in general
true). One could then conclude that there is an upper bound |n;| < v/2L4. In the example
of L, = 972, we considered in Section 3.6, we obtain |n;| < 44, which might hint at an
inconsistency with (4.3.18) for our winding inflation model if our variable N is such a flux
number. However, we should notice that in our model, N is a combination of flux numbers
and the intersection numbers. Moreover, since 73 is in general indefinite, it is conceivable
to obtain a large N by choosing (almost) orthogonal vectors m and 7 with respect to 7s.
This seems to imply that the length of the flux vectors can be arbitrarily large. But again,
one should be cautious because this might lead to decompactification [10; 71]. Hence, to
arrive at a final conclusion whether the tadpole constraint generically rules out our proposed
scenario, further analysis using a concrete compactification geometry with sufficiently large
L, is needed.

Another concern is that N > 1 may reduce significantly the number of flux vacua of the
string landscape consistent with our model. It is conceivable that the additional constraint
f(miy,..mi,,njy,.omy ) = N > 1 leads to a drastic reduction of the number of flux vacua
consistent with F-term winding inflation. For instance, in the worst (but also most naive)
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case, the effective tadpole number would be reduced to LT ~ L, — N2, shrinking the landscape
significantly.

Consequently, a final answer on how restrictive the tadpole condition finally is for our
inflationary scenario, can only be obtained by a concrete case study. This problem certainly
deserves attention in future work.

Stringy Instanton Corrections and String-Loop Effects

The superpotential written down in (4.3.2) is not quite complete. For a complete descrip-
tion we are missing the “small 4-cycle” instanton contributions of the LVS construction,
Aexp(—2n7s). Note that it has a complex structure dependent prefactor A(z,u,v). This
term could in principle destroy the flatness of the inflaton potential.® We hope, based on the
fact that this instanton is a highly local effect (associated with the small blow-up cycle), that
there are models where the u-dependence of A is subdominant. However, we do not know
whether this can be realised.

Similarly, there are loop corrections to the Kéhler-moduli-part of the Kahler potential
which, however, affect the scalar potential only at subleading order [140; 190; 191]. As the
explicit string-loop results of [191] demonstrate, these effects depend in general on complex
structure moduli and can ruin the inflationary potential in principle. One may however hope
that (as shown in [192] in a special case) the dependence on certain complex structure moduli
is exponentially suppressed in the LCS limit. Furthermore, the suppression by the (Volume)l/ 3
factor relative to the leading-order LVS potential may be sufficient to control the effect.

We have to leave the detailed study of the above corrections to future work.

Gravitational Instantons and the Weak Gravity Conjecture (WGC)

We begin with brief comments on gravitational instantons. In [108] corrections of the inflaton
potential due to gravitational instantons were considered. It was argued that they can con-
strain models of natural inflation (single axion and the KNP-mechanism), at least if the cutoff
for the effective description of gravitational instantons can be pushed sufficiently close to the
Planck-scale. Hence, F-term winding inflation could be affected as well. Taking string theory
seriously, one might expect a breakdown of the effective description at a scale set by the mass
of the lightest modulus, or at latest at the Kaluza-Klein (KK) scale. In [113] we assumed
that due to displacements of the lightest modulus the effective description of gravitational
instantons must break down. We then found that the generated instanton potential is many
orders of magnitudes too week to constrain natural inflation. However, in [114] we showed
that the description of gravitational instantons via axions coupled to Einstein gravity can be
trusted even to the KK-scale. Nevertheless, even when pushing the KK-scale as close to the
Planck-scale as possible, the effects turn out to be insufficient to generically constrain natural
inflation. We postpone an extensive discussion on these topics to Chapter 5 of this thesis.

In contrast, the Weak Gravity Conjecture (WGC) can potentially rule out our proposed
model. If the WGC is to be extended to instantons (for discussions see [100] and our paper
[113]), we come to the following conclusions ([113]):

e If the strong version of the WGC is correct, all models with large axion decay constants
in a calculable regime should be inconsistent.” In this case one should be able to rule

5Note that due to holomorphicity of the superpotential, the dependence of A on the complex structure moduli
will definitely break shift symmetry.
"By calculable regime we mean situations where S > 1 and hence exp(—S) is small.
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out our proposal: by studying our model in more detail we would then expect obstacles
to large-field inflation to appear.

e On the other hand, if the WGC only holds in its mild form, there is a loophole [100; 101]
which allows for simultaneously satisfying the mild WGC and realising trans-Planckian
axion inflation. Very intriguingly, our model appears to fit precisely into this loophole
as we now explain.

Let us describe this loophole pointed out in [100; 101]%: To be consistent with the mild form
of the WGC the relevant axion ¢ has to couple to two instantons giving rise to a potential of
the structural form [100]

V =Ale ™ [1 — cos (jﬁ)} +Aje™ {1 — Cos (kj;b)] , (4.4.3)

with k € Z. The first term is due to a light instanton of mass m and charge ¢ < m (note
that M, = 1), i.e. it does not satisfy the WGC. The axion decay constant is f ~ 1/q. The
second term arises from a heavier instanton of mass M > m and charge Q = kq such that
the WGC is satisfied: M < Q. Then, as long as f/k is sub-Planckian the mild form of the
WGC is satisfied in virtue of the second term, even for a trans-Planckian f. The second term
is not suitable for inflation while the first term can sustain inflation for trans-Planckian f. A
successful model for inflation can then be achieved when e™™ < ™™ such that contributions
from the second term are suppressed.

We observe this structure in our setup. We begin with two instantons e?™** and e?™*. We
stabilise and integrate out the “saxions” ug = Im(u), vo = Im(v) such that exp(—2mus) <
exp(—27mvy). In addition, we stabilise one axionic direction Re(1)) = Re(u) — NRe(v) such that
we are left with one axion ¢; = Re(u) coupling to two instantons. Canonically normalising
p=,/2K 5% ¢1 and defining feg = N, /2K P the axion ¢ couples to instantonic terms as

Ajem2mvee2mielfen and  Age2mu2emiNe/ e (4.4.4)

This is just as in the loophole presented above. Notice that we have here performed the change
of basis only for the real parts of u and v , to make connection with (4.4.3). Choosing N > 1
one can achieve a trans-Planckian feg. The first term in (4.4.4) then gives rise to the inflaton
potential, while the second instanton ensures that the mild form of the WGC is satisfied. By
having stabilised exp(—2mus) < exp(—27mv2) we also prevent the second term from spoiling
the inflaton potential.

We learn that it is fairly challenging to prove or disprove inconsistency of F-term wind-
ing inflation with string theory or quantum gravity. We conclude that the embedding of
our scenario in a concrete string compactification could clarify whether the string landscape
accommodates F-term winding inflation.

Unfortunately, it is still unclear which formulation, if any, of the WGC could be the correct
one.? Therefore, it is too early to definitely decide whether F-term winding inflation is part
of the swampland or the string landscape.

8Yet there is another loophole pointed out in [193], based on models with instanton action S < 1. In such cases
f > 1 is consistent with the WGC. However, in general it is difficult to calculate the instanton potential in
the regime S < 1 explicitly.

9Note that further investigation of our model in string theory can be rewarding: if F-term winding inflation
can be shown to be consistent with string theory, then the strong version of the WGC cannot be true.
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4.5. Conclusions

We introduced a new model of large-field inflation in string theory, which employs axionic fields
arising from complex structure moduli of a Calabi-Yau 3-fold at large complex structure. The
trans-Planckian field range is generated as a winding trajectory in the compact field space
of two (or more) axions. One new aspect of this construction is that this winding trajectory
can be generated by an F-term potential from bulk fluxes in type IIB string theory. Such
a trajectory requires a hierarchy in the flux superpotential, and a certain combination of
flux numbers must be chosen large. As the size of flux numbers is limited by the tadpole
cancellation condition, there seems to be a natural cutoff for the axion field range, such that
it cannot get arbitrarily large.

The inflaton potential is generated by instanton corrections, which sum up to an oscilla-
tory potential. Phenomenologically, we end up with a realisation of natural inflation. We
also demonstrated that destabilisation of Kéhler moduli in the LVS can be avoided, without
requiring excessive tuning. It would, however, be interesting to consider backreaction of the
Kéahler moduli as well, see e.g. [194]. This might result in a flattening of the potential and
relax our requirement of having a large flux number N. Such effects could dispel any worry of
inconsistency with tadpole cancellation or a decimation of the number of suitable flux vacua.

Further progress in the understanding of the Weak Gravity Conjecture is needed to finally
reach a decisive conclusion whether our winding inflation model is censored by the WGC. We
showed that, if only the “mild WGC” holds, then our model precisely realises the loophole
[100; 101]. Given the current theoretical understanding, we thus believe that our construction
is a valuable addition to the set of large-field models in string theory.
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CHAPTER D

Constraints on Axion Inflation from Gravitational Instantons?

This chapter follows our paper [114].

5.1. Introduction and Summary of Results

Slow-roll inflation relies on flat scalar potentials, making axion-like fields ideal inflaton candi-
dates. This is especially true in the context of large-field inflation. The latter is of particular
interest since, on the one hand, it is arguably the most natural form of inflation and, on the
other hand, it will be discovered or experimentally ruled out in the foreseeable future.

The flatness of axion potentials (we denote the axion henceforth by 6) is protected by a
shift symmetry which is only broken non-perturbatively, i.e. by instantons. However, possible
problems with consistently embedding axionic models of inflation in quantum gravity are an
issue of continuing concern [20; 40; 82; 90; 92-95; 100; 101; 106; 108; 113; 193; 195-207]. In
particular, the focus has recently been on the Weak Gravity Conjecture [20]. In the context
of axions, it states that with growing axion decay constant f,x the action S of the ‘lightest’
instanton decreases, such that the flatness of the potential is spoiled by corrections ~ exp(—S).

However, the Weak Gravity Conjecture has not been firmly established. In particular, its
validity remains unclear outside the domain of UV completions of quantum gravity provided by
the presently understood string compactifications. This is even more true for the extension
to axions. Moreover, the prefactors of the exp(—S) corrections mentioned above may be
parametrically small, especially if SUSY or the opening up of extra dimensions come to rescue
just above the inflationary Hubble scale.

Thus, it is useful to pursue the related but complementary approach of constraining axionic
potentials on the basis of gravitational instantons. Indeed, the very fundamental statement
that quantum gravity forbids global symmetries is, in the context of shift symmetries, explic-
itly realised by instantonic saddle points of the path integral of Euclidean quantum gravity.
These are also known as Giddings-Strominger wormholes [109]. If, as proposed in [108],
gravitational instantons yield significant contributions to the axion potential, some models
of natural inflation would be under pressure (at least those with one or only few axions like
alignment scenarios), while axion monodromy inflation models seem to be unaffected.! Tt is

!Natural inflation [208] with one axion requires a trans-Planckian axion field space. Ideas for realising natural
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Figure 5.1.: Hierarchy of scales in a string model of inflation.

our goal to study the effect of Fuclidean wormholes and that of related instantonic solutions in
detail. In particular, in the spirit of what was said above, we want to be as model-independent
and general as possible, ideally relying only on Einstein gravity and the additional axion. The
goal is to constrain large classes of string models or even any model with a consistent UV
completion. As we go along, we will however be forced to consider certain model-dependent
features and take inspiration from the known part of the string theory landscape.

The aim of this chapter is thus to determine the strongest constraints on axion inflation due
to gravitational instantons. One important aspect of our analysis is that — to be as model-
independent as possible — calculations are performed in an effective 4-dimensional Einstein-
axion(-dilaton) theory. However, this theory is only valid up to an energy-scale A and, for
consistency, we have to make sure that our analysis only includes gravitational instanton
solutions within the range of validity of our effective theory.

This leads to the following challenge pointed out in [113] (see also [82]) and which we will
repeat here. Given an energy cutoff A, gravitational instantons within the range of theoretical
control contribute at most as 6V ~ e=5 ~ e~ Mp/A? {6 the axion potential. Then, gravitational
instantons are dangerous for inflation if their contribution to the potential is comparable to
the energy density in the inflationary sector, i.e. 6V ~ H?2. If the cutoff A is not much above
H gravitational instantons are clearly harmless. However, if A is close to M), gravitational
instantons can easily disrupt inflation. As a result, the importance of gravitational instantons
for inflation hinges on a good understanding of the scale A where the 4-dimensional Einstein-
axion(-dilaton) theory breaks down.

To arrive at a quantitative expression for A requires some knowledge about the UV comple-
tion of our theory. Here, we take string theory as our model of a theory of quantum gravity,
i.e. we assume that the effective Einstein-axion(-dilaton) theory is derived from string theory
upon compactification. String compactifications give rise to a hierarchy of scales as shown in
Figure 5.1. Inflation is assumed to take place below the moduli scale my,,q where only gravity
and one or more axions are dynamical. Above my,.q further scalars in the form of moduli
become dynamical. As a result, if we want to work with a Einstein-axion theory the cutoff A
is the moduli scale.

Here, we want to do better. An analysis using 4-dimensional gravitational instantons can
in principle be valid up to the Kaluza-Klein (KK) scale mg g, at which a description in terms
of a 4-dimensional theory breaks down. However, to be able to go beyond mycq we have to
allow for dynamical moduli. Hence, for this purpose Einstein-axion theories are insufficient
and we have to study gravitational instantons in Einstein-axion-moduli theories instead.

These considerations give rise to the following structure of this chapter. We start by re-

inflation in a subplanckian field space of multiple axions were proposed in [42; 43; 186; 209]. For models
implementing these ideas see e.g. [113; 178; 180; 182-185; 187; 210-222]. Axion monodromy inflation was
introduced in [44; 151] (for a field theory implementation see [45; 152]). A realisation of this idea with
enhanced theoretical control is F-term axion monodromy [154-156]. For further work in this context see
[112; 157; 166; 174; 179; 194; 223-230).
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calling the Giddings-Strominger or Euclidean wormhole solution [109] in Section 5.2. This is
a classical solution of the axion-gravity system which gives space-time a ‘handle’ with cross-
section S3. In fact, this solution can be interpreted as a real saddle point of the path integral
only in the dual 2-form theory. We take some care to describe the relevant subtleties of
the dualisation procedure in Section 5.2.1. Subsequently, we generalise to the case with an
additional dilatonic scalar in Section 5.2.2. Now extremal as well cored instanton solutions
[92; 110] also exist. The situation with a dilaton is important for us as a model of the re-
alistic string-phenomenology case with light moduli. Section 5.2.3 focusses on the way in
which cored and extremal gravitational instantons may arise from a Euclidean black 0-brane
in an underlying 5d theory. In this way we obtain a UV-completion of cored and extremal
gravitational instantons, which can then be understood by parameters of the 5d theory.

Section 5.3 is devoted to the crucial issue whether a scalar potential is induced by Euclidean
wormholes. We will provide an explicit computation of the contributions to the axion poten-
tial from Euclidean wormholes. Thereby, we describe how to circumvent a recent counter-
argument given in [92], suggesting that Euclidean wormholes could not break the axionic shift
symmetry. Thus, we stress that Euclidean wormholes are by no means less important than
cored or extremal gravitational instantons.

In Section 5.4 we calculate the instanton actions for Euclidean wormholes as well as for
cored and extremal gravitational instantons. We also give a quantitative answer to the ques-
tion which gravitational instantons can be trusted within our effective theory with cutoff A.
The result is as follows. As in the case of gauge instantons one can associate gravitational
instantons with an instanton number n. Given an energy cutoff A one can then only trust
gravitational instantons with a sufficiently high instanton number n >> faxM,/A%, where fax
is the axion decay constant.?

In Section 5.5 we take first steps towards studying gravitational instantons in the presence
of dynamical moduli. We argue that the case with one light modulus coupled to the Einstein-
axion theory can be modelled by an Einstein-axion-dilaton theory with massless dilaton. For
one, in Section 5.5.1 we show that for our purposes the modulus potential can be neglected if
there is a sufficient hierarchy between the modulus mass and the cutoff A. The reason is that
deep inside the ‘throat’ of a gravitational instanton the modulus mass only gives a subleading
contribution to the stress-energy tensor, while curvature and gradient terms dominate. As this
region is also the source of the dominant part of the instanton action, we conclude that the
action obtained for a massless modulus will remain a good approximation even in the massive
case. We then motivate our restriction to moduli with dilatonic couplings. This implies that
the modulus ¢ is coupled to the axion @ through the kinetic term for the axion as e®¥(96)2.
In Section 5.5.2 we review that dilatonic couplings arise frequently in string compactification.

In Section 5.6 we analyse possible constraints for inflation due to gravitational instantons.
To this end we identify the instantons with the largest contributions to the axion potential in
Section 5.6.1. We arrive at the strongest constraint if the cutoff A is as high as possible. In
Section 5.6.2 we identify the highest possible cutoff Ap.x for an effective 4-dimensional theory
arising from a string compactification. This is given by the KK scale of a compactification
with smallest possible compactification volume, which we take as the self-dual volume under
T-duality. Unfortunately, there is an ambiguity in this definition of Ay up to factors of =,
which can be crucial. We then determine the maximal contribution 6V to the axion potential
due to gravitational instantons and compare this to the scale of inflation in models of large-field
axion inflation. Our main result is as follows. We find that gravitational instantons do not

ZNote that this implies that we neglect potentially more severe, but incalculable contributions due to instan-
tons with low instanton numbers.
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give rise to strong model-independent constraints on axion inflation. Extremal gravitational
instantons may be important for inflation, but this is model-dependent, as the size of their
contribution depends on the value of the dilaton coupling a.

Last, in Section 5.7 we record some observations regarding the Weak Gravity Conjecture
(WGC) [20] in the context of gravitational instantons. We pick up the idea from [92] that
extremal instantons play the role extremal charged black holes for the WGC. We then find
that the WGC appears to be satisfied due to the existence of Euclidean wormholes. This
either hints at a realisation of the WGC in the context of gravitational instantons, or implies
a different definition of the WGC in the presence of wormholes.

We summarise our findings in Section 5.8 and point out directions for future work. Various
appendices contain detailed computations on which some of our results are based, or clarify
subtleties which are not absolutely essential for the understanding of the main body of this
chapter.

Overall, our analysis leaves us with the following: a semi-classical approach to quantum
gravity via gravitational instantons does not give rise to strong constraints for large-field in-
flation. Thus, if quantum gravity has anything to say about large-field inflation, the quantum
part will have to speak.

5.2. Gravitational Instanton Solutions

A model of axion inflation will necessarily involve an axionic field coupled to gravity. One
feature of such a system is that it may allow for gravitational instantons, i.e. finite-action
solutions to the equations of motion of the Euclidean axion-gravity theory.

Our starting point is the Euclidean action for an axionic field § coupled to gravity, which
takes the form (M, =1)

1 1
S:/d4x\/§ [—2R+2Kg’“’8u98ﬁ . (5.2.1)

The prefactor K can in principle depend on further fields. In this section we ignore the
Gibbons-Hawking-York boundary terms, because we will be focussing on the dynamics of the
system. Instead of working with the axionic field 8, one can write the action in terms of the
dual 2-form B and its field strength H = dB:

1 1
S = / /g [—QR S FHyu H"| (5.2.2)
where F = 1/(3!K). The field strength H is related to df via

H=K=xdf . (5.2.3)

The dualisation from (5.2.1) to (5.2.2) must be done under the path integral using Lagrange
multipliers. We will explain this in the following subsection.

In Euclidean space the theory of the 3-form H coupled to gravity (5.2.2) then has non-
trivial solutions. In particular, gravitational instantons are rotationally symmetric solutions
with metric

-1
ds? = <1 + f;) dr? + r2dQ3, (5.2.4)

where the parameter C arises as a boundary condition or integration constant (see Ap-
pendix C.1). For C < 0 this is known as a Giddings-Strominger or Euclidean wormhole
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o 1=cycle

Figure 5.2.: This picture illustrates a Euclidean wormhole, whose two ends are connected to
the same asymptotically flat space. Then there is a non-trivial 1-cycle (dotted
line) passing through the wormhole. The cycle orthogonal to this 1-cycle is a S°
(symbolised by the dashed line around the right-hand throat).

[109]: for large r it approaches flat space, while for decreasing r the geometry exhibits a
throat with cross-section S%. At r = |C |1/4 one encounters a coordinate singularity, where an-
other solution of this type can be attached (see e.g. Figure 5.2 and 5.3(a) for two possibilities).
Gravitational instanton solutions for C' = 0 and C' > 0 can also be found if a dilaton-type
field is included [92; 110].

Before we extend our system to dilaton-type couplings, we review and discuss several sub-
tleties involved in the aforementioned dualisation between 6 and B in Euclidean space.

5.2.1. Dualisation

For the sake of clarity, in this subsection we index the field variables by their rank, i.e. we write
0y and By. Those fields are sourced by an instanton and a microscopic string, respectively.
We start from the two Euclidean actions in 4d:3

1
S[HO] = / FFl N *F7 + iQe/(go, Fy = dby, (5.2.5)
M 299 I
1
S[Ba] :/ 272]‘[3 /\*H3+iQB/B2, Hj = dBy, (5.2.6)
M gB o

where M denotes our 4-manifold, I the set of points where the instantons are located, and
o is the surface swept out by the string. One can identify the kinetic terms of (5.2.5) and
(5.2.6) by imposing

Hs = g3+ I} (5.2.7)
and g% =1/ gg . This now becomes a single theory with both strings and instantons allowed

and either 6y or Bs to be used locally as the appropriate field variable.
Note that the Hs-flux is quantised by

H=neZ, (5.2.8)
S3

3The appearance of the i-factor in front of the coupling terms can be understood by writing these terms as
f Iy fp A ja—p with p-form field f, and source current js—,. One of the relevant tensor components of either
fp or ja_p then always carries a zero-index and hence acquires an i-factor by Wick rotation.
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as we review in Appendix C.2 in the context of the existence of fundamental strings and
instantons.

We now couple the 1-form/3-form theory to gravity. It is well-known that choosing either
6y or By as the fundamental field leads to Einstein equations differing by an overall sign [109].
Indeed, the action of (5.2.5) gives the energy-momentum tensor

T = glg (590002 + 000,60 ) (5.2.9)
while (5.2.6) leads to
T = g% <—;mgﬂyﬂ§ + ;HWHJ"’> = (5.2.10)
= —glg <_;guu(690)2 + 5u903y90) =-T9.

In the second line we used (5.2.7) together with g% = 1/g3.

The above sign difference implies that Euclidean wormholes exist in the Bs but not in the
0o formulation. Technically, this is due to the Hodge star being introduced before or after the
variation w.r.t. the metric. Also at the intuitive level the difference is clear: The Hs-flux on
the transverse S2, which is fixed due to the Bianchi identity, supports the finite-radius throat.
By contrast, the dual quantity 6/ = 9,0, i.e. the variation of # along the throat, is not fixed
by the dual Bianchi identity and the solution is lost.

We note that the Minkowski-space Einstein equations remain the same on both sides of the
duality. However, we are interested in the path integral in the Fuclidean theory with gravity,
so this observation does not help.

Thus, one may wonder whether Giddings-Strominger wormholes do contribute to the action
or whether the dual descriptions are really fully equivalent. This problem has been intensively
investigated in the past, see e.g. [82; 109; 231-244] and our present understanding mainly
derives from [241-243].

Indeed, it should be possible to resolve the problem by dualising under the Euclidean path
integral and following the fate of the instanton solution. We review the dualisation following
[235; 241; 242]. To be specific, let M be a cylinder, M = S3 x I, with an interval I C R. This
is the simplest relevant topology since the S3 can carry Hs-flux, supporting a narrow throat
somewhere within 7.

Starting on the Bs-side, the partition function reads

Z~ [ dBsexp (/ 12ng/\*ng) , (5.2.11)
b.c. M 293

where “b.c.” denotes the boundary conditions By (S3) = Bél) and By(S3) = BéF) at the initial
and final boundaries S})’ and S%. The possibility of a non-trivial flux, [¢s Hz # 0, can as usual
be implemented by defining By in patches over the transverse S® and choosing appropriate
transition functions.

One can also express Z as a path integral over Hs, imposing dH3 = 0 with the help of a
Lagrange-multiplier 6g:

Z ~ d[Hg]dwo] exp {—/ % (Hg N *Hs + 2ig2390dH3)} . (5.2.12)
b.c. M 293
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The previous Bs-boundary conditions now translate into boundary conditions on the pull-
back? of Hj to the initial and final boundary, i.e. H3(S3) = Hél) and H3(S3) = H:,()F). In
this language, the information about a possible Hs-flux is simply part of the H3 boundary
conditions. The fp-integral is unconstrained. The ¢ in front of the Lagrange-multiplier is
needed to get a delta-functional §(dHs) in the path integral after integrating out 6y. Hence,
we have dH3 = 0 and Stokes theorem yields Hy()j) = 3()F). In other words Z ~ § (H?EI) — ?EF))

Equation (5.2.12) can be rewritten by integrating the second term by parts and completing

the square:

Zn [ didisolexp {—i /8 ; eoﬂg} (5.2.13)

exp {— /M 2;29 |(Hs — igh + dio) A x (Hs — ig} * dfo ) + ghdfo A xdbo] } .
According to [235; 241; 242] one can now shift the variable Hsz — Hs; = Hy — ig% * dfy and
trivially perform the Gaussian integral. One may however also be concerned about this step
since, for any fixed 6, the boundary conditions, e.g. H3(S3) = H3(S3) —ig x dfy, clash with
the saddle point value H3 = 0 of the Gaussian integral in the interior of M.

To make this issue more explicit, let us write Hz = (H3)+dHs, where (Hs) is constant along
the S but time dependent. Its boundary values are determined by the H3-flux. Furthermore,
decompose §H3 into spherical harmonics on S3. If the cylinder M were flat and gravity
non-dynamical, we would now simply have a quantum mechanical system of infinitely many,
independent oscillators. The dualisation process sketched above would correspond, as is well
known from T-duality for a scalar field on the cylinder S* x R, to a canonical transformation
(p <> q) for each oscillator. In our case, the dual variables are coefficients of the spherical
harmonic decomposition of 6.

Let us focus on the most interesting subsystem (see also the discussion in [243]) with the
variable (Hs3) ~ p and the dual variable (6y) ~ ¢q. Thus, we first restrict our attention to the
question whether it is correct to naively integrate out ¢ in

Z~ [ dp) /d[q] exp{—;/tjf dt [(p —ig)? +<ﬂ} . (5.2.14)

Based on an explicit, discretised calculation in Appendix C.3, we claim this is indeed the
case. One can now argue that, also for the full system (5.2.13) including all oscillators and
gravity, this formal manipulation with path integrals is correct. It will then also remain
correct if, as argued in Appendix C.2, (H3) is initially quantised, i.e. [q3(H3) = n € Z.
Indeed, this quantisation is ‘neutralised’ once the Lagrange multiplier is introduced and the
now continuous variable (Hs) is integrated out as above.

As a result of all this the partition function can eventually be given as

1
7~ /d[eo] exp <—/ 72d00 A *dby — Z/ 90H3> , (5215)
M 29 oM

where g3 = 1/g%. We emphasise that the sign of the kinetic term is the one required for a
well-defined Euclidean path integral. This sign will become important below. We also note
that this procedure can be straightforwardly generalised to any p-form in arbitrary dimensions

4 This is not the same as Hs at the position of the boundaries, which contains time-derivatives of By and
should not be constrained.
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d > p. Moreover, we observe that despite the shift H3 — Hj — ig% x dfl, the field 6y can be
kept real (see also [242]).5
Varying the action in (5.2.15),

1 1
58 = / 80y % dfy — / 80y + by —i/ 500Hs = 0, (5.2.16)
M Gy oM Gy oM
we find the equation of motion d * dfy = 0 in the bulk and

H3(OM) = —5 % dfg(OM) (5.2.17)
9o

at the boundary. Thus, the 6y path integral has only complex saddle points [241; 242].5
Indeed, the possibility of taking fy imaginary at stationary points was discussed before, see
e.g. [235; 236].

To summarise, dualisation leads to a Euclidean path integral in which 6y is a priori real
and the kinetic term has the standard sign. However, a semi-classical evaluation is only
possible on the basis of complex saddles. Crucially, the relevant field-theory solutions then
also solve Einstein equations because imaginary 6 flips the sign of T;Sz) (cf. (5.2.10)). Thus,
one can expect gravitational instantons to contribute consistently both in the By and the 6
formulation. Nevertheless, it is natural to use the By path integral to keep the saddle points
real [241; 242], and we will do so in what follows.

5.2.2. Gravitational Instantons in the Presence of a Massless Scalar Field

One goal of this work is to study the effect gravitational instantons can have on geometric
moduli of string compactifications. In the 4-dimensional theory these moduli appear as scalar
fields. Consequently, we will study systems of an axion # and a scalar ¢ coupled to gravity.”
The relevant Euclidean action then takes the form

1 1 1
S = / d*z./g [—QR + S K(2)9"0,00,0 + 59" Oyp0i (5.2.18)

Here we already canonically normalised the field ¢. At 2-derivative level, the axion 6 can only
enter the action through a term 9,000 due to its shift symmetry. There is no such symmetry
for ¢ and hence the kinetic term for 6 can in general depend on . This situation is typically
encountered in string compactifications, see Section 5.5.2 for examples. In this subsection we
consider a massless scalar field ¢ and apply the subsequent results to the case of a massive
scalar in Section 5.5.

As we are interested in gravitational instantons, we should consider the dual formulation
of the above theory. The relevant Euclidean action is then

S = / d*z\/g [—;R + %}'((p)Hz - %g’“’@ugoaytp , (5.2.19)

®In other references, e.g. [240; 244], the axion field was taken to be imaginary. Then, however, we do not see
how to ensure dH3 = 0 using (5.2.12).

® For a treatment of path integrals with complex phase space or complex saddles, see e.g. [245] and [246],
respectively.

" A string compactification will typically give rise to many axionic fields and many geometric moduli. We focus
here on one, potentially super-Planckian, light axion which may be identified with the inflaton. Similarly,
the scalar can be identified with the lightest modulus. Note that the analysis in this subsection neglects
any mass term for the modulus ¢, which will be included only later in Section 5.5.

106



5.2. Gravitational Instanton Solutions

where F = 1/(3!K) = 1/(3!f2.). Here fax is the ¢-dependent analogue of the familiar axion
decay constant.

In the following we will review explicit solutions of this system corresponding to gravita-
tional instantons. Following [92] we will construct solutions to the equations of motion for
the metric, the 3-form H and the scalar ¢.

General solution

For completeness, let us recall the metric given in (5.2.4):
C —1
ds® = (1 + 4> dr? + r2dQ3.
r

The derivation of the functional form of g, can be found in Appendix C.1. There we show that
the equation of motion for g,, decouples from the equations of motion of the massless fields
¢ and B. In particular, the form of the metric (5.2.4) is independent of the functional form
of the kinetic terms of these fields. The constant C' can a priori be negative, positive or zero.
Depending on the sign of this parameter C', this solution has the following interpretations.
Using the terminology of [92; 110] we can distinguish between three types of gravitational
instantons (see Figure 5.3 for an illustration).

e FEuclidean wormholes (C' < 0):

The case C' < 0 leads to a geometry with a throat and we call this solution a Euclidean
wormhole. The divergence of g, at r = ro = |C|'/* is only a coordinate singularity.
The Ricci scalar R is o

R= 6775 (5.2.20)
and thus it is finite for all » > rg. The locus r = rg can then be interpreted as the end
of one wormhole throat. We can then attach another solution of this type at r = rq
which can either be attached to our universe (see Figure 5.2) or a different universe
(see Figure 5.3). In this work we will only consider wormholes which close again in our
universe, i.e. we are dealing with pairs of holes each connected by a “handle”.

e FExtremal instantons (C' = 0):
The solution for C' = 0 is called an extremal gravitational instanton [92; 110]. Even
though space is flat in that case, the fields ¢ and 6 still exhibit a nontrivial profile.
This is possible due to a complete cancellation of terms in the energy-momentum tensor
[247).

o Cored gravitational instantons (C > 0):
The case C' > 0 gives rise to a geometry with a curvature singularity at » = 0. Such
solutions are called cored gravitational instantons [92].

Having reviewed the solution for the metric, we will now solve the equation of motion for
H without specifying F(y). From (5.2.19) we obtain the equation of motion:

F' ()
F(p)

We expect that solutions for ¢ and H should exist that respect the spherical symmetry of the
background. We thus propose that ¢ = ¢(r). Similarly, following [109], we make the ansatz

H = h(r)e (5.2.22)

dxH = —

do N *H. (5.2.21)
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K >

(a) Wormbhole connected to another (b) Extremal gravitational instan- (c) Cored gravitational instanton
universe ton

Figure 5.3.: The three types of gravitational instantons are depicted. (a) Euclidean wormhole
connecting two asymptotically flat spaces. It is also possible to connect both ends
to the same space as shown in Figure 5.2. (b) Extremal gravitational instanton:
in this case space is flat everywhere. The cross in the middle indicates the locus
r = 0. (c) Cored gravitational instanton: there is a curvature singularity at r = 0.

with € the volume form on S® such that

/ e =213 . (5.2.23)
SS

From (5.2.22) it follows that xH ~ h(r)dr and the LHS of (5.2.21) vanishes. As we have
chosen ¢ = p(r) the RHS of (5.2.21) equally vanishes and the equation of motion for H is
satisfied.

In addition, H also has to satisfy the Bianchi identity dH = 0. This enforces

n

= A3

with A = A(S3) = 272 the area of the unit sphere. Charge quantisation (5.2.8) implies that
n 7.

In order to find the solution for ¢ it is sufficient to consider the rr-component of the Einstein
equations, G, = T}, which can be shown to be equivalent to the Klein-Gordon equation for
. It reads

h(r) (5.2.24)

2

where we already used the solution for H. We also defined ¢’ = d¢/0r. The solution for ¢
can then be found by integrating this differential equation.

1 2/A2
<1 n ﬁ) (¥)?2 — 3f(%0)”r/6 30 ¢ (5.2.25)

Model-dependent solutions

From (5.2.25) it is clear that explicit solutions for ¢ will depend on the functional form of
the term F(p). In this subsection we will restrict our attention to functions of the form
F(p) ~ exp(—ayp), where we choose without loss of generality o > 0, as this functional form
arises frequently in string compactifications. For example, this behaviour is observed when ¢
is identified with the dilaton. Similarly, the same functional form appears if ¢ corresponds to
the volume modulus in setups with large compactification volume (e.g. [7]) or if ¢ is a complex
structure modulus at large complex structure. We will study such examples in Section 5.5.2.
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5.2. Gravitational Instanton Solutions

To be specific, we take
1

BENES
where f,y is from now on a constant. The value of the parameter o will depend on the type
of geometric modulus. We can assume lim, o, ¢(r) = 0 without loss of generality. Then fox
will correspond to the asymptotic value of the axion decay constant.

In the following, we will summarise the explicit solutions for ¢ for the Euclidean worm-

hole, the extremal instanton and for the cored instanton. Further details can be found in
Appendix C.4.

F(o) exp(—ay) , (5.2.26)

e Fuclidean Wormhole (C < 0):
The analytical solution to (5.2.25) in this case is [109; 110]

1 3 C
e?(r) — m cos? (K_ + g\/;arcsin ( 7"‘2 ’)) . (5.2.27)

Here, we already implemented the boundary condition lim, ,~, ¢(r) = 0, which also
implies that

n2
3lf5A?
The integration constant K_ is not a free parameter. This can be seen as follows. When

the field reaches the wormhole throat at r = ro = |C|'/4, the factor (14+C/r*) in (5.2.25)
vanishes, hence

cos®(K_). (5.2.28)

3F (¢(ro))n’/A* +3C = 0. (5.2.29)
Using (5.2.28), this translates to
cos? (K- + 27 [3) =1 (5.2.30)
TaV2) -
and thus
ar |3
K_=-——/5. 2.31
1 V3 (5.2.31)

Inserting this back into the solution yields

1 a /3 IC]
ap(r) 2 \/7
e cos?(/3/2am/4) coS (2  AIceos ( 2 )) . (5.2.32)

To see that one can take two wormhole solutions and glue them together, let us now
change coordinates by writing = a(t) such that the metric becomes

ds® = dt* + a*(t)dQ3 . (5.2.33)

One can show that a(t) and () are symmetric under ¢ — —¢. This implies the existence
of a “handle” as shown in Figure 5.2, assuming also that the two throats are very distant
in R*.

Interestingly, not all values for a will lead to physically acceptable solutions. Note
that o(r) is regular everywhere on 7 € [|C|'/4, +00) only for dilaton couplings in the
range 0 < a < 2/2/3. For o > 2+/2/3 there is always a value of r > |C|'/*, where
e®?(r) = 0, i.e. p(r) — —oo. This is consistent with [82; 109; 110]. In our case the field ¢
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30
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(a) (b)

Figure 5.4.: Illustration of dilaton profiles. The values of r and ¢ are in Planck units.
(a) Euclidean wormhole (C' < 0):

Here we choose n/ fay such that C' = — cos? (oz7r\/3/2/4) and plot for a = 1.
(b) Extremal instanton (C' = 0) with a = 2,/2/3.

corresponds to the string coupling or a geometric modulus of the string compactification.
A runaway behaviour ¢(r) — —oo is then pathological as it would correspond to a limit
of decompactification or vanishing string coupling. In all these cases new light states
will appear resulting in a loss of control over the effective theory. This pathology is
avoided for o = 24/2/3. However, in this case we obtain C' = 0 which will be discussed
next. Overall, we find that only the range 0 < o < 2,/2/3 is physically allowed for
Euclidean wormholes.

Last, note that the limit @« — 0 can be identified with the Giddings-Strominger wormhole
[109] which exhibits a constant dilaton profile.

e Extremal Instanton (C' = 0):
For the case of an extremal instanton we find

1 2
(1) — (1+4Z; 7«2) : (5.2.34)

which is valid for all @ > 0. (For o = 2+/2/3 this solution agrees with (5.2.32). A plot of
the dilaton profile in this case can be found in Figure 5.4.). The result can be obtained
most easily by solving (5.2.25) for C' = 0. Notice that (5.2.34) with a minus sign in the
bracket would in principle also be a solution (see Appendix C.4), but then there would
again be a value of r > 0 so that e = 0, leading to the same problems as described
above. We hence exclude this possibility.

o Cored gravitational instantons (C' > 0):
Finally, for the case of cored gravitational instantons C' > 0 one finds [92; 110]

aolr 1 . 12 a |3 . \/5
eP(r) — msmh <K+ + 2\/;arcs1nh <r2>> , (5.2.35)
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B
=
s

0.0 05 1.0 15 2.0 25 3.0

Figure 5.5.: This plot shows dilaton profiles for the cored gravitational instanton with a = 15
(solid line) and a = 0.1 (dashed line). Again, r and ¢ are given in Planck units.
For the purpose of illustration we have chosen K; = 0.5 and n/fax such that
C/sinh? K| = 1.

where we again ensured lim, o ¢(r) = 0 by demanding

n2
a

=5

sinh?(K ) . (5.2.36)
In Figure 5.5 two plots of the dilaton profile are presented. The integration constant
K should be positive in order to again avoid a divergence of ¢ for some r > 0, but is
otherwise unconstrained. This is different compared to wormholes or extremal instan-
tons, which do not exhibit a free parameter. From this 4d effective theory one is lead
to believe that there exists a whole family of cored instanton solutions parametrised by
K. However, by considering the microscopic origin of gravitational instanton solutions,
one finds evidence that only certain values of K are allowed, as we will now discuss.

5.2.3. Interpretation of the Integration Constant K,

The integration constant K, or equivalently C', seems to be a free and continuous parameter
giving rise to a family of solutions. We want to argue that this is not the case. Note that
the cored gravitational instanton solutions are UV-sensitive and therefore a naive 4d field
theory treatment is not sufficient. Instead, it is crucial to understand those solutions in a
UV-complete theory, such as string theory. In this context the role of the integration constant
K becomes clear. Specifically, it was pointed out in [110] that the parameter C' is determined
by the mass M and charge () of a dilatonic black brane wrapping internal cycles in a higher-
dimensional theory, whose dimensionally reduced action coincides with (5.2.19). This holds
true at least for some values of . Consequently, we conjecture that C and K, generically take
discrete and well-defined values determined by the underlying microscopic theory. Further, if
the Weak Gravity Conjecture holds in 5d, cored gravitational instantons may not be stable.
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We support this conjecture by providing a specific toy-example borrowed from [110]. Fol-
lowing their results, we can consider a five-dimensional model with Euclidean action in 5d
Planck units

1o 1, -0 1 52
S:/d5x\/§[—2R+2(8¢)2+4e“¢F2 : (5.2.37)

where F' = dA is a 2-form field strength tensor. For the dimensional reduction to a 4d theory
we choose®
d§%5) = e2P¥r? 4 ewwdsa) (5.2.38)

together with A = 6dr and b = ¢, i.e. the fields # and qg do not depend on the extra-
dimensional coordinate 7. In Einstein-frame with canonically normalised kinetic terms di-
mensional reduction fixes the constants 51 and (s to

1

B B2 B2 NG ( )
After redefining the fields ¢ and 1 via a rotation in the (¢, ¥)-plane we get
4 1 Loogro 1 a0 1 ad 2
S:/d VG |~ 5 R+ 500 + 5 (00) + e (90)?) (5.2.40)

where ¢ denotes the metric corresponding to the 4d-line-element. Setting ¥ = 0 in this action
one obtains the model considered in (5.2.18) with dilatonic dependence in the kinetic term of
6. The 4d dilaton coupling « is related to the 5d dilaton coupling a via®

o =a+ <. (5.2.41)

Therefore, the interpretation of the 4d theory in terms of a 5d theory is only possible if
a>2./2/3.

Let us now explicitly relate the integration constant C' to microscopic properties of a higher-
dimensional theory. In [110] it was shown that for a = 2,/2/3 the solutions of the 4d model
(5.2.40) can be uplifted to a five-dimensional Reissner-Nordstrém (RN) black hole solution

dp? ~ Q
ds?y = g1 (p)g—(p)dr? + ———— + p2d0%,  F,, = V6% 5.2.42
o = 0+ 00T+ ) SR (5242)
where
i
g+(p) =1- p (5.2.43)
with

=M+ /M2 - Q2. (5.2.44)

We take this as a simple toy-model to argue that C' is generically fixed by properties of a
black brane wrapping internal cycles. The RN black hole can be interpreted as N particles
or O-branes (or just one O-brane wrapping the cycle N times) of total mass M and total

8For the purpose of compactification we switch to Euclidean time 7 by Wick-rotation. For simplicity we
choose the periodicity 7 ~ 7 4+ 1. Later in this subsection we allow the circumference of the S to have
length ¢ > 0. This will then have to be taken into account in order to determine the axion decay constant.

9Notice that our normalisation of ¢ is such that the prefactors of the Ricci scalar R and the kinetic term
(0¢)? are equal, while in [110] the prefactor of the dilaton has a factor 1/2 relative to R. This is why our
dilaton-coupling « differs by a factor of /2.
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charge (). Note however that the ADM-mass Mapy is related to the mass parameter M by
Mapm = 6m2M. Nevertheless, we henceforth call M the mass of the RN-black hole. The
charge @ is defined such that M = @ sets the extremality bound. That is, Q@ = NGv/6/(672),
where the charge § is defined by N¢g =1/2 [gs x5 [ 10

Upon toroidal dimensional reduction along the coordinate 7 with the identification 7 ~ 7+/¢
and the circumference ¢ > 0 of the compactified dimension, the 5d solution (5.2.42) turns into
an instanton solution (5.2.4). Note that the coordinate singularity at p = p4 of the 5d solution
becomes a curvature singularity (at » = 0) in the 4d solution (5.2.4). In the subsequent
computation we show that our integration constant C' is simply given by C = £2(M? — Q?)
in 4d Planck units.

Denote by g](\Z)N the RN-metric (5.2.42), where M, N run over the coordinates of the 4d

space and the extra-dimensional coordinate 7. Now, rescale the metric as follows: g](\j)N =

91(\2)1\[ /(g+9-). From the canonical Einstein-Hilbert term we then get:

/ &1/ g Rlgi)y] = / d1(g49-)**\ /GO RG] + .. =
:/d4$€(g+g_)3/2\/§(4)R[§fﬁ)]—l—... (5.2.45)

The last term occurs in the compactified 4d theory using the identification 7 ~ 7 + £. We
want to point out that for generic ¢ > 0 there is a conical singularity at the outer horizon
p = p+. In principle, one could avoid such a conical singularity by choosing the periodicity of
7 appropriately (it would be the inverse of the Hawking-temperature [249]), but this would
mean to fix the compactification radius. Instead, we accept the conical singularity as a
necessary feature of Euclidean branes wrapped on cycles of the compact space.!' Since it is
known that Euclidean branes wrapped on non-trivial cycles give rise to instantonic terms (see
e.g. [250; 251]), we assume that the corresponding conical spacetimes are saddle-points of the
Euclidean path integral.

We go to the Einstein frame (with 4d Planck mass M), = 1) by rewriting the Einstein-Hilbert
term using the rescaled metric gfﬁ) = V(g4 g,)?’/ 2 f],(ﬁ,). The compactified 4d line-element then
reads

dp?
NG =

For the comparison with the metric (5.2.4), the obvious coordinate transformation to be made
is simply 7% = p?¢,/g+g—. Using the definitions of g+ it follows

dsiyy = ¢ + 091 g_p2dQ3. (5.2.46)

(p* = M)

rdr = (22 5 dp. (5.2.47)

r
Together with (p? — M)? = r*/0? 4 (M? — Q?), this implies:

’ dp? B dr?
VIrg— 1+ E(M?2—-Q%)/rt

%For the normalisation we found it useful to translate the conventions in [57; 248] to our situation.

"Note that in the so-called dual frame metric discussed in [110] non-extremal instantons with o = 24/2/3
can be interpreted as sections of constant time of the RN black hole metric. In this frame one recovers a
wormhole geometry connecting two asymptotically flat regions smoothly. One pays the price of rescaling
by a divergent factor. The above is technically different from our approach of obtaining gravitational
instantons by compactification of a 5d black hole solution on an S*. In our case the RN black hole solution
(5.2.42) in general yields conical singularities.

(5.2.48)
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Hence, we find the simple relationship
C =0r(M?—Q? (5.2.49)

in 4d Planck units. Upon dimensional reduction of (5.2.37) and using the periodicity of the
Wilson line A, = A, 4+ 7w/(¢¢) one can easily check that the axion decay constant reads
Jax = 1/(2¢¢) for an axion 6 with 27-periodicity. It follows that

C= 24?;&2)( [(]5)2 - 1] . (5.2.50)

We can compare this result to our previous expression (5.2.36). First, we can identify the
wrapping number/number of 0-branes N with the flux number n. We then find that the
integration constant K, in (5.2.36) is completely determined by the parameters M and @
describing black holes/branes in the 5d theory. An immediate result is that K, and hence C
are not free parameters. The possible range of values is determined by the spectrum of black
branes in the higher-dimensional theory. Furthermore, as M and @) are discrete quantities it
follows that C' can also only take discrete values (for a given value of fax). This property is
only important as long as M and @) are small. In the macroscopic regime of large M and @
the value of C can be dialed to any positive value and it becomes effectively continuous. We
come back to this in Section 5.4.

Notice that the case of M = @Q, which gives C' = 0, corresponds to an extremal Reissner-
Nordstrém black hole. In this sense, the name extremal instanton for flat 4d solutions (5.2.4)
is justified. In Section 5.4 we comment on how to express the extremal instanton action in
terms of ¢ and Mapy, consistent with, for instance, [92; 244; 252].

This example illustrates nicely how 4d cored or extremal instanton solutions can be obtained
from black holes/branes with mass M and charge Q). Of course, one could also go beyond
such simple toy-models we just discussed, allowing also for dilaton couplings a # 21/2/3. We
expect the relation C' = ¢2(M? — Q?) to be modified by the corresponding parameter a # 0
in this more general case. Furthermore, one would expect that after SUSY-breaking extremal
objects in string theory would appear as non-extremal instantons in the 4d effective theory.

Last, let us remark on possible implications for cored gravitational instantons arising from
the Weak Gravity Conjecture. In particular, if the Weak Gravity Conjecture holds in the 5d
model we expect that objects with M > @ can in principle decay. As cored gravitational
instantons arise from such unstable objects upon dimensional reduction, one may wonder
whether this instability is then inherited by the instantons. Here ‘unstable instanton’ means
that two instantons exist which cause the same flux change but have smaller total action. In
this sense, the contribution of cored instantons to the Euclidean path integral is subdominant
if cored instantons are ‘unstable’. This point will me made more precise in Section 5.7.

5.3. Instanton Potentials from Euclidean Wormholes

The goal of this section is to show that the one-instanton action, describing a Giddings-
Strominger wormbhole, gives rise to an instanton potential of the structure cosfe .

We begin with a brief review of Coleman’s derivation [253; 254] of the energy eigenvalues for
a simple one-dimensional quantum mechanical system with periodic potential V, e.g. V(z) ~
sin?(27z). These considerations can be applied to quantum field theory and in particular to

our system as well.
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The Hamiltonian is H = p?/2 + V(z). An instanton or an anti-instanton correspond to
tunnelling events from x to £ +1 or x — 1, respectively. Using the dilute-gas approximation we
can distribute instantons and anti-instantons freely in time. Let us introduce a basis of states
|7) in which the particle is localised at x ~ j. Then for some time interval 7' > 0, transition
amplitudes are [253]

. B . w 1/2 . o0 1 B _
(Gyle o) = (W> N Y i BT Sy (53
&=, &= NIN!

where j_ and j, are the positions of the initial and final state, respectively. N and N count
the number of instantons and anti-instantons. Moreover, w is defined by w = V"(0). K is
the familiar determinant factor, which depends on details of the potential V. Sy denotes the
instanton action. The Kronecker delta can be rewritten as

2mdo
w= [ o, (5.3.2)
and thus, after performing the summation,
1/2 o dqe .. .
Gole HTj_) = (w> e_“’T/Q/ —l-=7+)0 exp (QKT Cos 96_SO> . (5.3.3)
T 0 27

From this we can read off that the system has an energy eigenbasis
10) =" 7’ j) (5.3.4)
J

with eigenvalues

E9) = %w — 2K cos e, (5.3.5)

This derivation reveals the logic behind the famous contribution ~ cosfe™° to the axion
potential in quantum field theory, where the centres of the instantons are not distributed on
a time interval but instead in a region of spacetime with volume V. One then simply has to
replace the variable T' by the volume V.

In the following we explain how this computation can be used to derive an instanton poten-
tial induced by Euclidean wormholes. In the previous Section 5.2 we reviewed that Euclidean
wormbholes exist in the presence of a non-vanishing 3-form flux H with quantised charge n € Z.
An instanton would then correspond to a transition from n to n+1. By the logic of Coleman’s
computation above, this should induce a shift symmetry breaking potential.

In [92] this was questioned, because Euclidean wormholes appear as conduits and charges
would not disappear. In other words, one always has an instanton and an anti-instanton, thus
preserving n.

We argue that this issue is more subtle: the two ends of a Euclidean wormhole do not
necessarily have to end at the same hypersurface of constant Euclidean time, but can also
close on distant hypersurfaces. Similarly, the two ends can have very large spatial separation
such that, from a local perspective, a potential a la Coleman should be induced. Then,
a Minkowskian observer would only see either the instanton or anti-instanton part of the
wormhole and thus find a change in the charge n, see Figure 5.6. This invalidates the reasoning

115



5. Constraints on Axion Inflation from Gravitational Instantons?

w Euclidean Time

_—

Figure 5.6.: This picture presents a wormhole which opens at some initial time ¢; and closes
at ty > t;. The dotted line indicates the separation of the two events.

in [92], and hence we do not see any argument against the breaking of the shift symmetry due
to Euclidean wormbholes.

We want to make this mathematically more precise. This requires to compute the path
integral contribution of all possible wormhole configurations. This allows us to infer the
effective potential Veg(6) for the axion field . The logic behind the computation of Veg () is
the following. The expectation value of any observable O(#) is given by

©0) ~ [ d10®)exp (3 [ d'xr2(00)) Zunlo). (5.3.6)

where the path integral contribution of wormholes is schematically (i.e. no combinatioral
factors included yet) given by

Zynl0] ~ Z H H /d4xn/d4xme_sei9(x")e_Se_w(“’") ) (5.3.7)

w n=1m=1

Here w denotes the number of wormholes of a configuration. Note that the phase difference
occurs because one factor is for the instantons, the other for anti-instantons. Those factors
arise from the second term of (5.2.5), where QQp = £1 (+ for instantons, — for anti-instantons).
We write out these factors explicitly, because they finally give rise to the cos-potential for 6.
The contribution Zyy[0] induces a change 6Si4(6) of the action for the axion and we expect

©0)) ~ [ dB10®)exp (3 [ d2fA(@0) - 55ma(®)) | (5.3.8)

where §5i,q(0) contains by definition the effective potential of 6 plus higher derivative correc-
tions:

0Sinda(0) = /d4x (Ve (6) + higher derivative terms) . (5.3.9)

Hence, the effective potential Vog(f) can be determined by computing Zy), using any field
configuration # for which Veg(#) dominates all derivative terms. We choose a smooth version
of the profile

Oy f I xR?
0(z) = { o forzelxR (5.3.10)

0 else,
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Fuclidean time

Figure 5.7.: This illustration shows pairs of connected black and white dots, each representing
an end of a wormhole (black if the end corresponds to an instanton and white for
an anti-instanton). Only few wormholes lie completely inside the shaded region
I x R3.

i.e. a profile which is only non-zero in a small Euclidean time interval I (see Figure 5.7) and
goes to zero smoothly at the boundary of I. This is illustrated in Figure 5.8. The volumes of
I x R? and of the remaining part of Euclidean space are denoted by W and V), respectively.
We assume that W <V with W being large enough to typically contain many wormhole ends.
We first check that the derivative terms can indeed be made subdominant with respect to
the effective potential. For simplicity, we work near the minimum and use the approximation
Veg ~ m262. Tt is crucial that our axion profile at the boundary of I features a smooth
transition of characteristic length ¢ from 0 to 6y with ¢ < L, where L is the length of the
Euclidean interval /. We then have 00 ~ 6y /¢ close to the boundary (and zero elsewhere) and
the comparison of [ d*zf2 (06)? with [ d*zV.g should yield
> 05 202

ﬁ/},]"axg—2 < LVsm=; (5.3.11)
where V3 denotes the corresponding 3-volume of the Euclidean spacetime regions we consider.
It follows that

fax

m2/
has to be imposed. Note that ¢ cannot be arbitrarily small as we have to ensure that also
higher-derivative terms must be subdominant. Comparing f2 (96)? with (90)* yields

L> (5.3.12)

0o 1
0> — ~ — . 5.3.13
oo~ Tn (5.3.13)

It is not hard to see that these two conditions together with L > ¢ can be satisfied simulta-
neously. Thus, our field configuration (5.3.10) is suitable for the calculation of the effective
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Figure 5.8.: We illustrate the smooth axion profile corresponding to the approximation in
(5.3.10). In the Euclidean time interval of length L the axion field is constant
(value y) and outside this interval the field decays smoothly. The characteristic
length of this transition from 6y to 0 is denoted by ¢.

potential given below. For this computation we find it useful to group the sum in the above
expression (5.3.7) according to the position of the wormhole ends, see again Figure 5.7. Let
us assume that a wormhole corresponds, from the perspective of the 6-field theory, simply to
an instanton-anti-instanton pair. Then, denoting by 6 the field configuration of Figure 5.8,
we can write:

Zanl0] ~ > ﬁ [Te 2 K> (V+we) (v we ) . (5.3.14)
— il 4

Note that this differs from the toy model (5.3.1) in the sense that the sector with N # N is not
contained in (5.3.14). But this is precisely our point: we want to find out whether a potential
can still be generated if we impose N = N, i.e. an equal number of instantons and anti-
instantons. The combinatorial factor 1/(n!)? is due to the indistinguishability of instantons
and anti-instantons, respectively. The cross-terms YWe* correspond to wormholes where
only one end is within I x R3. The sum can be expressed as a Bessel function I

Zn ~ Io(z) (5.3.15)

with

> 1 xz\ 2"
Io(z) = mZ::o e (2) (5.3.16)
z = 2Ke™V (14 (W/V)cosy + O (W/V)?)) . (5.3.17)

Furthermore, there is an integral expression for I:

1 27
Io(x) = %/0 dpe™T59 (5.3.18)
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5.3. Instanton Potentials from Euclidean Wormbholes

Hence, we arrive at

Tty ~ 76 / doe —x(l—i—coszz) / doe —z(p—m)2/2 ~ \/ﬂ\(e/»

where we relied on the fact that in our case x is large (because V and W are large). Since we
are interested in the effective potential —WVg(6p) ~ In Zyp,, we can focus on the exponential
factor:

T

(5.3.19)

Zyn ~ exp [2Ke™ (V + Weosby)] . (5.3.20)

From here it is clear that, to explain the W cos 0y term, the effective action for # must contain
a potential (which in our case contributes only in the region I x R3):

Vert(0p) ~ 2Ke % cosby . (5.3.21)

The #-dependency is as in the case of an instanton-anti-instanton gas without any constraints
imposed. Actually, the term generated by wormhole instantons, which looks like a potential
term for the field configuration (5.3.10), is in fact a non-local interaction term. This can be
seen by modifying (5.3.10) such that 8(x) = 6y # 0 for x € V. Then, cos(6p) in (5.3.20) is
replaced by cos(fp — 6y). Indeed the exponential now contains non-local terms. Globally, this
non-local term preserves shift symmetry. Nevertheless, we observe a crucial effect induced
by Giddings-Strominger wormholes: The change of the action due to a local fluctuation,
S[0 + d6] — S[60], corresponds to that induced by a potential V' (06) ~ 2K exp(—S) cos(60).

This can also be seen by applying Coleman’s computation [253] to our problem. We are then
interested in computing the partition function Z = 3", (n|le=#7T|n). It is therefore sufficient
to focus on transition functions (n|e~"7|n), although transitions from |m) to |n) will occur
as well (the Hamilitonian H is in general non-diagonal is this basis). Due to the trace we do
not need to consider the latter in our calculation. The result of this computation has to be
compared with the partition function Z = f027r df (le~HT|6) /(2r) in the A-language.

In the free theory n is the dual variable to our axion field €, which can be seen as follows:
The free theory action for the axion is given by S = [ d*z 1262 /2 or, after integrating out the
spatial directions, S = [dtA#?/2 with A = f2V3, where V3 is the 3-volume (6 is then the
zero mode). The canonical momentum p is then given by p = Af. As it is well known from
quantum mechanics on S', p is quantised as p = n € Z. One can therefore relate |§)-states

to |n)-states via '
0) => e |n) (5.3.22)

in the free theory (see also [243]), where we chose the normalisation (6|6') = 27w6(6 — ¢’). The
Hamiltonian of the free theory is then given by H = n?/(2A) and in the free theory we have
the transition amplitude

—HT|pg) = ¢=Tn?/24) (5.3.23)

<n ’ € free

Let us now return to interacting theory and take into account the effects of the wormhole
gas induced by the coupling of 6 to gravity. We assume that instantons and anti-instantons
are randomly distributed and that wormhole ends can have arbitrarily long separation with
no physical effect. By applying Coleman’s formula (5.3.1) to our situation and taking into
account (5.3.23), we find:

(nfe=HT|n) = e~Tn?/24) $° ﬁ(xe%z’)m. (5.3.24)
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5. Constraints on Axion Inflation from Gravitational Instantons?

We emphasise once more that off-diagonal elements (m|e~#7|n) are in general non-zero. For
instance, if T' corresponds to half of the time interval of Figure 5.6, the instanton number
clearly changes by unity. However, such off-diagonal elements never appear explicitly in our
calculation, which relies solely on the partition function.

We can once again express the sum in (5.3.24) by Iy via (5.3.16) and then use the integral

expression (5.3.18) with integration variable . We find:
(nle "T|n) = e T”2/(2A)/ 2, &XP (—2KTCOS€6_S°) . (5.3.25)

For the partition function Z = Y, (n|e T |n) one then obtains

2TA 2™
1/ i —exp 2KTC0596_S°) . (5.3.26)

As we already mentioned, this should be compared with
27 d0
Z = / (0l HT)0) . (5.3.27)

For a first naive comparison of (5.3.26) and (5.3.27) we ignore the non-exponential T-dependence
in the prefactor of (5.3.26).!2 Then |f) is an eigenbasis of the Hamiltonian with eigenvalues
V(). We see by comparison with (5.3.26) that V(6) = 2 cos 0 Ke™0.

We can, however, be more precise and understand also the prefactor. To do so we observe
that (5.3.26) was derived on the basis of (5.3.24), and in this equation a non-trivial approxima-
tion was made: Indeed, we placed the factor exp(—Tn?/(2A)) outside the instanton sum. In
general, that is not justified for the following reason. If we start at ¢ = 0 with flux number n,
and the first instanton occurs e.g. at t = T, we get a factor exp(—T1n?/(2A)) from the kinetic
term. If then the next instanton occurs at T, we get a further factor exp(—Ta(n + 1)2/(24))
and so on. The times T; have to be integrated over and these prefactors can not be extracted
from the instanton sum. However, we can find conditions under which it is safe to approximate
the (n + N;)? in the exponents (where N; is the number of instantons present at some given
time) simply by n2. To do so we note that, on the one hand, the instanton sum is dominated
by instanton numbers of the order of

(N) ~ Ke 5T . (5.3.28)

On the other hand typical values of n dominating the sum over exp(—Tn?/(24)) are of the
order of n ~ \/A/T. Thus, disregarding N; relative to n in the (n+ N;)?-terms will be justified
if
(N) < \/A/T or A>(N)T. (5.3.29)

Given that we anyway choose T' large enough to ensure (N) > 1, this implies in particular
A>T.

With this in mind, we return to the corresponding quantum mechanical model. We conjec-
ture that the instanton dynamics is captured by an effective potential V' (6) = 2 cos(8) Ke ™.
To confirm this, we calculate the partition function

~ 7/ /9(0) 0 expl /OTdt <A62 +V(§)>] . (5.3.30)

20ur parametrisation is then equivalent to Z(T) = dep(E)efET. Thus, we found the partition function.
The latter characterises the system unambiguously.
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5.3. Instanton Potentials from Euclidean Wormbholes

It has to be compared to (5.3.26) to establish the correctness of the chosen effective description
and, in particular, the potential. But working out (5.3.30) in the regime A > T is easy.
Indeed, if we first disregard the potential, we are simply dealing with a 1-dimensional system
on the interval (0,27) and a kinetic-term prefactor A. This prefactor sets the minimum time
by which any wave packet unavoidably spreads to an O(1) width due to quantum dynamics.
In addition, the potential has a maximal steepness |V/| ~ Ke™, leading to a displacement
of Ke™%0T?/A ~ (N)T/A during a time interval T. Our previously derived conditions on A,
which underly our derivation of (5.3.26), are sufficient to ensure that the particle moves only
by a distance Af < 1 during the time 7. Hence, in evaluating (5.3.30) we can approximate
V(A(t)) ~ V(0). The path integral then becomes that of free particle, to be evaluated on
times too short for the periodicity of the configuration space to be relevant. One obtains the
well-known time-dependence ~ /A /T of the amplitude, to be multiplied by the integral over
exp(—TV(#)). This is now in perfect agreement with (5.3.26).'3

Thus, we find that Giddings-Strominger wormholes give rise to an effective potential V' (6) ~
2Ke % cosf in two independent approaches. We wish to remark that in both approaches we
can be agnostic about details of the interpretation of wormholes connecting to baby-universes.
Crucially, the axionic shift symmetry is broken locally even if the condition of having equally
many instantons and anti-instantons is imposed on the global space-time.

Finally, we wish to remark that the correct choice of the combinatorial factors is a subtle
issue. We interpreted a configuration of N wormholes as an instanton-anti-instanton-gas with
(anti-)instantons randomly distributed. It is then plausible to include the combinatorial factor
1/(N")2. However, one might argue that each instanton has a corresponding anti-instanton
and therefore we should multiply by N! to account for the number of possible pairings. If
we assume that the right combinatorial factor is just 1/N!, we can still do the computation
starting with (5.3.7). We then still get cos 6y, but this time the energy density in I x R? scales
with

V(6g) ~ K?Ve 2% cos by , (5.3.31)

which diverges as V — oo. Possibilities to avoid this divergence were discussed in [255-258],
mostly in the baby-universe interpretation of Giddings-Strominger wormholes. It is possible
to express the partition function as an integral over a parameter a, which is an eigenvalue of
a baby-universe operator [256].

We rather follow Preskill [257] to sketch the idea of how to evade the divergence: For a
combinatorial factor 1/N! the partition function reads

Z ~ P = (5.3.32)
where
Cn~zz, z2=KVe e, (5.3.33)
Clearly, C' ~ V2. But formally, we can write
Z ~ / dadae™*otaztaz (5.3.34)

13While our analysis establishes the quantum mechanical model with effective potential V (6) = 2 cos(0) Ke™*°

only for a certain range of T', we expect it to be valid also for T" — oo.
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5. Constraints on Axion Inflation from Gravitational Instantons?

If « is integrated out we obtain the divergent result (5.3.31). (To see cosfp coming in one has
to group terms carefully as in our first computation.) If, as suggested by Preskill [257], one
has to fix a to a certain value, the energy density is simply given by'4

p~ ae S cosh . (5.3.35)

In any case, no matter which combinatorial factor is correct and no matter how to interpret
«, we always find that a term cos 6 arises in the effective action.

To summarise, we conclude that Euclidean wormholes are expected to induce an instanton
potential ~ cos#e™. Shift-symmetry appears to be broken locally. It would be interesting to
study whether this can be seen more directly by building an analogy between gravitational
and gauge instantons, where the role of the term 0Tr(F A F) is played by 6Tr(R A R).

In the following we apply the presented derivation of the instanton potential to cases of
S = nSp, giving rise to potentials of the form Y, cos(nf)e "%,

5.4. The Limit of Validity of Gravitational Instanton Actions

In this section we summarise the instanton actions for all cases C' < 0, C' =0 and C > 0 and
find limits for the validity of the computation. Qualitatively, we have

S~ 1t 4.
[ (5:4.1)

in all three cases. This is of course already known for Euclidean wormbholes, see e.g. [108—
110; 231-236] and also for C' > 0, see e.g. [92; 110].

Furthermore, we address one concern raised in [110]: the cored gravitational instanton
solutions have a singularity at » = 0 and hence it is unclear whether these solutions can be
trusted all the way to the limit » — 0. In fact, we expect a breakdown of the solutions at some
radius r = r. > 0, which will be estimated in Section 5.6. We expect such a cutoff radius to
be present in any extra-dimensional theory independently of whether a curvature singularity
exists or not. Therefore, even the extremal instantons, which do not have singularities, should
only be trusted down to r = r.. The situation is different for the Euclidean wormhole solutions,
where we can have full control over the solution as long as r¢ 2 r., with ro = |C |'/4 being the
radius of the wormhole throat at the centre.

The limit of validity affects the computation of the instanton action. In the case of C' > 0
one would usually integrate from r = 0 to infinity, but instead we can only rely on the
contribution from the interval (., +00). Whenever a significant fraction of the action comes
from (0, r.), we cannot trust the instanton actions computed in [92; 110] and we will discard
these cases.

Thus, the initial task of this section is the evaluation of the on-shell contribution of the
integral in (5.2.19). We proceed by using the equations of motion successively. Details of the
computations are presented in Appendix C.5.

At first, by tracing Einstein’s equations, we can express the Ricci scalar by the trace of the
energy-momentum tensor:

R=-T. (5.4.2)

M Nevertheless, the divergence remains disconcerting. For instance, the expectation value of the number of
wormholes in a certain space-time region scales as (N) ~ V2 and it is questionable whether the wormhole
gas can be dilute in the limit V — co. See also discussions in e.g. [257; 259-261].
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One can then rewrite (5.2.19) as

S = / d*z/GF (o) H?. (5.4.3)
M

However, this is not yet the full contribution to the instanton action, because the Gibbons-
Hawking-York boundary term has to be taken into account. It is

Sauy = — ng BavVh(K — Ky), (5.4.4)

where h is the determinant of the induced metric on M. K and K| are the traces of the
extrinsic curvatures of M in M and flat space, respectively.
Then, the instanton action is computed as

Sinst = S + Sany = /M d*z/gF (p)H? — - BaxvVh(K — Ko). (5.4.5)
Henceforth, we restrict to the case F(¢) = exp(—agp)/(3!f2,). Using this together with the
equation of motion (5.2.21) and (5.2.27), (5.2.34) or (5.2.35) depending on the choice of C, one
can rewrite the first term, S, in the instanton action as an integral over ¢. The contribution
from Sgpy is computed by considering a surface of constant r, see [92] or Appendix C.5.
In the following we analyse the instanton action case by case:

Case C' =0:

Extremal instanton solutions go along with a flat metric (C' = 0). Thus, we have
Seuy = 0. (5.4.6)

However, the fields ¢ and B have a non-trivial profile giving rise to non-vanishing contributions
to the instanton action. The full contribution from r = 0 to r = oo is given by

n [P0 2 n
Sinst = " /@(0) dpexp(—ap/2) = o T (5.4.7)
As we explained previously, we cannot trust this computation for radii » < r.. Nevertheless, as
long as the main contributions to the action come from the regime r > r. the result (5.4.7) can
still be used to estimate contributions to the instanton potential in Section 5.6. One should
therefore compare the contribution AS from the regime r < r. with (5.4.7). Unfortunately,
the contribution AS is UV-sensitive. We assume, however, that the actual UV-contribution
AS can be parametrically estimated by the naive formula

n [ere) 2 n an 1\7!
AS = ——/ dpexp(—ap/2) = —— <1 + ) , 5.4.8
Jax »(0) 4 Xp( SO/ ) A fax 4A fax 7“3 ( )

where we used (5.2.34) in the second step. Demanding that AS < Sj,s implies

an 9
5.4.9
Afy e (5:49)
which in turn can be rewritten as a lower bound on Sjngt:
8A
Sinst > grz . (5.4.10)
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This bound depends on the cutoff 7. and the dilaton coupling «. Interestingly, the bound gets
weaker for larger a such that contributions from gravitational instantons become increasingly
important with increasing «. However, as we will describe in Section 5.5.2, a regime of large
dilaton coupling a may not be attainable in string theory. We find that only rather small
values of & ~ O(1) arise from the simplest string compactifications.

Before addressing the next case, we want to point out that (5.4.7) can be rewritten as

Sinst = {MapM (5.4.11)
in the case of a = 2,/2/3, where Mapy is the ADM-mass of our extremal 5d RN-black hole
of Section 5.2.3, which is consistent with e.g. [92; 244; 252].1°
Case C' > 0:

The Gibbons-Hawking-York boundary term yields

/ C
Sauy = —3Ar? ( 1+ - = 1)
T
where A = 272,

The contribution from (5.2.19) is given by the integral

o0

= 3Ar2 ( 1+ 94 - 1) : (5.4.12)
T

c

Tec

g / exp(—ay) _
(re) V/n? exp(—ap) /(A% f3,) + 6C
m ¢(o0)
= exp(—agp) + sinh? K| , (5.4.13)
o fax p(re)

where we used (5.2.36). Combining those two results and taking r. — 0, we obtain the

instanton action
2 n _ a [3 .
Sinst = ag <€ K+ 4 2\/;smh K+> . (5.4.14)

As before, we need to ensure that the integral from r = 0 to r = 7. only gives a minor
contribution to the full instanton action (5.4.14). This contribution is

AS = (S + SGHY)|T e = (5.4.15)
2 n 9 a\/§ .
afax [\/exp(—ago(rc)) + sinh® K, — (1 ~ 3 2) sinh K+]

—3Ar§< 1+€—1>.
TC

In the limit 72//C < 1 this can be simplified to

[e3

4n r2 V273
AS = —sinh K. | —= +3A7‘3+...
- (2@)

(o)A () -

5For the derivation of (5.4.11) we used that the black hole charge Q is related to n by n = 272/6Q. This
can be obtained by dimensional reduction of the term 1/(2-3!) [(x5£)? together with [, = v6Q/p* and
(5.2.8).

2
= " Sinh K,
o fax

. (5.4.16)
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where omitted terms decrease as r2/C. The condition AS < Siust turns out to be self-
consistent with the imposed regime r2/+/C < 1. More precisely, by choosing v/C sufficiently
large one can always ensure that AS < Sins. According to (5.2.36) this is equivalent to
choosing (nsinh K )/ fax sufficiently large. This is very similar to the parametric situation
encountered above for C' = 0.

To determine the strongest constraints on inflation we are interested in identifying the
instantons with the smallest action. For a given value of n/ fax and at a fixed dilaton coupling
a cored gravitational instantons correspond to a family of solutions parameterised by K (see
Section 5.2.2). We wish to identify the instanton with the smallest action in this family. As
pointed out in Section 5.2.3, while K is expected to take discrete values, it can be effectively
treated as a continuous parameter in the limit of macroscopic objects. Hence we can determine
the solutions with the smallest action by formally extremising (5.4.14) with respect to K, as
it was done in [92]. For a@ > 2,/2/3 the action of cored instantons is always bigger than that
of extremal instantons. If 0 < a < 2,/2/3, the smallest cored instanton action is as big as the
extremal instanton action for a = 2,/2/3. To summarise, we obtain

Sextremal(a) for o > 2\/2/3

: 5.4.17
Sextremal(a =2y 2/3) for a < 2\/% ( )

Scored(a) > {

where the extremal instanton action was computed above in (5.4.7). The upshot is that the
contributions to the axion potential due to cored gravitational instantons will always be sub-
leading compared to the effects due to a suitable extremal instanton. As we are interested
in determining the strongest constraints on axion inflation, we will hence neglect cored in-
stantons in the following analyses and focus on extremal instantons and Euclidean wormholes
instead.

Case C' < 0:

For Euclidean wormholes the coordinate 7 is defined on r € [rg, +00), where rq = |C|'/* is the
size of the wormhole at the centre. As long as rg = r. one can safely integrate from r = rg
tor = o0o. As g = |C|Y* & n/fap (see (5.2.28)) the condition rg > 7. can be fulfilled by
choosing n/ f,, sufficiently large.

As pointed out in Section 5.2.2 we will only consider wormholes with dilaton couplings
o < 24/2/3 in order to have regular solutions for . We then proceed with calculating the
action. The Giddings-Hawking-York boundary term vanishes [109],

Seuy =0, (5.4.18)

since two asymptotically flat regions are connected by a handle and thus the integral gives
zero. The on-shell contribution from (5.2.19) for only half of the wormhole!S is given by

S =2 [ exp(—av) _
T AL Jore) v/nZexp(—ap)/(AZf2) — 6[C]

2 i (‘” 3) , (5.4.19)

16T get the instanton action, we have to divide the full wormhole action by two, as the wormhole represents
a pair of instanton and anti-instanton. For more details, see Appendix C.5.
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where we used the solutions for C < 0 from Section 5.2.2. Notice that the limit o — 0
corresponds to the Giddings-Strominger wormhole [109], and we have

™6 n

R (5.4.20)

Sinst =

Furthermore, in the limit o — 24/2/3 we find the instanton action of an extremal instanton

with o = 24/2/3.

Summary

We summarise our results for the instanton action. For one, the instanton action Sj,e scales
as Sinst ~ N/ fax for all three types of gravitational instanton. Results were obtained in an
effective theory with a cutoff at a length scale r.. The existence of this cutoff implies that not
all gravitational instanton solutions can be trusted in the framework of the effective theory.
One can derive a criterion for deciding which gravitational instantons to include. While
numerical factors may vary, this condition exhibits the same parametric behaviour for all
three types of gravitational instantons: given a cutoff at a length scale 7. one has to choose
n/ fax > r? for being able to trust the instanton action computed in the effective theory.

In order to determine the importance of such gravitational instantons it is crucial to estimate
the size of the cutoff scale r.. The first step is to see whether moduli stabilisation places a
lower bound on r..

5.5. Gravitational Instantons and Moduli Stabilisation

We now want to make progress towards realistic string compactifications. The pure Einstein-
axion system is relevant only below the moduli scale. Above that scale, moduli can play the
role of an additional scalar ¢ with dilatonic coupling to the axion or 2-form kinetic term. We
will make use of our detailed discussion of this extended system in Section 5.2 and Section 5.4.

5.5.1. Gravitational Instantons in the presence of a potential

We only consider the lightest modulus, which we will call ¢. For instance, it could be the
saxion associated with the axion §. We will assume stabilisation at ¢ = 0. In the throat
region of the instanton, the modulus will be typically driven away from this value. We will
assume that this displacement is small enough so that the potential of the modulus can be
approximated by a mass term, i.e. V = m?2p?/2.

The obvious extension of (5.2.2) is then

1 1 1
S = /d%ﬁ [—QR + 5Jf(go)H? + 59" updup + V()| (5.5.1)

We take F to be exponential, which is the case discussed in detail earlier and which is typical
for string-derived models (see Section 5.5.2). Nevertheless, due to the presence of the potential,
solutions are more complicated than before. We make the most general ansatz respecting
spherical symmetry

ds® = \(r)dr® 4 r2dQ3, (5.5.2)

as in Appendix C.1. From the derivation therein it becomes clear that A\(r) is no longer given
by (1+C/r*)~L. However, we will see that for » < r. = 1/m the mass term is negligible and
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we can use the approximation A(r) ~ (1+C/r*)™! (cf. the related discussion in [233]). Thus,
the three types of gravitational instantons analysed above remain relevant.

The fact that the mass term is negligible close to the centre of the instanton is intuitively
clear: The field strength contribution to the energy-momentum tensor increases as one ap-
proaches the centre and hence, for sufficiently small r, the contribution from the mass term
becomes subdominant. This will become more explicit below.

Employing (5.5.2), the Einstein equation G, = T;, and the Klein-Gordon equation read

2

S = APV(R) + 5 ) ~ 1) BA)F(g) 35 =0 (5:5.3)
'(r n?
o + <fj - ;A((T))) & = NV'(9) = NV F () 35 = 0. (5.5.4)

Here we also used (5.2.22) and (5.2.24), which specify the profile of H.

Approximation

As already sketched above, the strategy is as follows: Let oq(r) and Ao(r) = (14 C/r*)~! be
the field and metric profiles for V' = 0. Then we work out the conditions under which

Trr((po, )\o) > V(QO()) . (5.5.5)

This specifies the regime where we can expect the po(r) and A\g(r) to provide good approxi-
mations to the true solutions ¢(r) and A(r).
We now go into more detail: The full energy-momentum tensor of (5.5.1) reads

1 1
Tow = =G | G F PV H? + 50,000 + V(@) | + 3F(0) Hypo 1, + 040000 (5.5.6)

Taking ¢ = @9 and A = Ay we find

3C V(o)

TTT(SO())/\O) - 7,,6(1 4 C/T4) - 1 _|_C/7'4’

(5.5.7)

where (5.2.25) was used. We see that the potential is negligible compared to the curvature

contributions if (for C' # 0)
1
> —m2pl. (5.5.8)

767 2

Appealing again to (5.2.25), we first consider the regime r > |C|"/%. Then @{(r) ~ 1/r® and

hence
1

wo(r) ~ 2 (5.5.9)
Here we treat n/A and C as ‘O(1) factors’ and disregard them. We explain this below.
With this, (5.5.8) translates to

1
r << rr* = — . (5-5.10)
m

Now, our interest is in the case m < 1, i.e. in moduli much lighter than the Planck scale. This
implies r, > 1 so that r, > |C|'/%, giving us a large validity range for our approximation
o ~ 1/r?. Crucially, while |C| also figured as a large parameter in other parts of this
chapter, here the much stronger hierarchy 1/m > 1 dominates and our crude approximation
concerning ‘O(1) factors’ is justified.
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Next, we need to consider the region r < |C|Y/4. While here the profile @o(r) is more
complicated, we are now deeply inside the regime of large field strength. It is easy to convince
oneself that the potential ~ m?yp? remains subdominant. What is less obvious is whether the
m?2¢? approximation remains justified, given that the field now moves significantly away from
zero. This will be discussed later.

Finally, the extremal instanton with C' = 0 requires an extra comment. In this case the
energy-momentum tensor vanishes and the criterion (5.5.8) is no longer applicable. Instead,
we require that the mass term in (5.5.3) should be subdominant compared to every other
term in this equation, i.e.

3F (po)n®
2 2
%o < A2’f’6 9

which yields again the condition » < 1/m (here we used that F is approximately constant
for large 7). Note that in this case the behaviour of ¢g at large r is specified by (5.2.34) and
the role of the ‘largish’ parameter |C|'/* is taken over by n/ fay.

To summarise, we have now argued rather generally that the gravitational solutions found
in the absence of a potential are good approximations for r < 1/m. We will not need the
behaviour of ¢ outside that region, at r — co. Indeed, by redefining ¢ we can, as argued
before, always ensure that the ¢y asymptotically approaches the minimum of the potential
at ¢ = 0. Thus, even while the actual profile of ¢(r) can significantly deviate from ¢o(r) at
r > 1/m, there is no doubt that the fundamental property of ¢ approaching zero at large r
will be maintained. Crucially, since 1/m > |C|'/* and the action integral is dominated by
the region r < |C ]1/ 4 we can also trust the zero-potential solutions for evaluating the action,
independently of the large-r region.

(5.5.11)

5.5.2. Dilaton Couplings from String Compactifications

The gravitational solutions in Section 5.2.2 were obtained for scalars with dilatonic couplings,
i.e. where the prefactor of the kinetic term for the axion is given by F () = e=2¢/(3!f2). This
form frequently occurs for effective theories obtained from string theory compactifications.
The value of o will depend on the precise identification of the axion and scalar with the
corresponding fields in the string compactifications. In the following, we will provide relevant
examples.

The Axio-Dilaton

Let us first consider the case where both the axion and the scalar descend from the axio-
dilaton field S = Cy + i/gs with string coupling g5 and universal axion Cy. It appears in the
Kahler potential as

K=-mn(-i(s-39). (5.5.12)
The kinetic term of the Lagrangian . D K Sg({)uS@“S’ then becomes

2
9s 2 1 2
= + . 0.1
Z D 1 (0Co) 1g? (9gs) (5.5.13)

Canonical normalisation of our saxion gives g; = ¢%exp(v/2¢). Thus, the field strength

coupling reads
1 1 1

F) = 55k, ~ 360

> exp(—2v2p), (5.5.14)
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5.5. Gravitational Instantons and Moduli Stabilisation

so in our notation the dilaton coupling o is o = 21/2. Notice that ¢ — oo corresponds to the
strong coupling limit, while the weak coupling limit is given by ¢ — —o0.
Kahler Moduli at Large Volume

Let us now consider the Kéhler moduli sector at large volume. In particular, consider the
case where the volume is dominated by one Kdhler modulus T'. For example, this arises in the
scheme of moduli stabilisation known as the Large Volume Scenario (LVS) [7]. The relevant
part of the Kéhler potential is

K=-2mV=-3T+T)+.... (5.5.15)

Here we wish to identify the saxion with Re(7") and the axion with Im(7). The leading
contribution to the kinetic term for the saxion and axion is then given by

3

Kpp = TiTe (5.5.16)

Canonical normalisation gives

Re(T') = exp (— §g0> , (5.5.17)

F(p) ~ exp (—2\/?0) : (5.5.18)

The dilaton coupling is thus o = 24/2/3.

and hence

Complex Structure Moduli in the Large Complex Structure Limit (LCS)

It is well-known that complex structure moduli in the LCS limit give rise to a shift-symmetric
structure in the Kéahler potential. Let u be a complex structure modulus in the LCS regime
and z denote the remaining complex structure moduli. Then we have

Rauij

2!

K=—In ("iuuu(u + ﬂ)g + /ﬁ;um‘(u + ﬂ)Q(ZZ + 21) -+ (u + 'L_L)(Zz + 21)(Zj + Ej) +
Kijk

AT

(s + )z + 5) o+ 30) + 121 ) (5.5.19)

where the x;;, denote the intersection numbers of the mirror-dual Calabi-Yau three-fold and
f is a function of the remaining complex structure moduli z; and accounts for instantonic
corrections to the Kéhler potential. For the moment only u shall be stabilised in the LCS
limit, i.e.

Re(u) > 1. (5.5.20)
Thus, one obtains
3
Kui=—"— 5.5.21
(u+ u)? ( )

at leading order as long as Kyyuy # 0. Omitted terms scale as (u + @) ~3. Therefore, canonical

normalisation yields
2
Re(u) = exp (—\/QQ@) , (5.5.22)
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and hence o = 2,/2/3.

In the situations studied so far the saxion and axion arose from the same complex scalar
field. However, one may also consider the case where the saxion and axion originate from
different moduli. To give just one example, let us again consider the complex structure sector
of a CY threefold, but now we will assume that two complex structure moduli u, v are in the
LCS regime. Further, we assume the following hierarchy

Re(u) > Re(v) > 1. (5.5.23)

We will now consider the axionic field Im(v) and study the coupling to the saxion Re(u). As
before, the leading contribution to the kinetic term of the saxion is

=2 (5.5.24)

and the canonically normalised saxion is given by (5.5.22). The leading contribution to the

kinetic term for the axion is
1 2
Kog ~ ———s ~ 2\/7 , 5.5.25
N e Y O ( 390> ( )

where omitted terms decrease as (u + u)~3. While both Kz and K5 scale as (u + )72,
this behaviour has different origins in the two cases. The leading contribution to I,z comes
from Ky, (u+ )3, whereas it is the terms Ky, (u + ) (v + v)? and Kyyp(u + @)%(v + v) which
contribute to KCy5 at leading order.

Despite these differences we again find

F(p) ~exp (—2\/?0) : (5.5.26)
and a = 2,/2/3.17

Note that in all the cases examined above the dilaton coupling is just outside the range
allowing for Euclidean wormhole solutions 0 < o < 2,/2/3. This observation and a possible
way out have been pointed out in [243; 262]. The idea is as follows. Even if wormholes charged
under individual axions do not exist, one can nevertheless find solutions which are charged
under more than one axion (see also [263]).

We will conclude this section with an example that allows for the existence of Euclidean
wormbhole solutions and may be useful to illustrate and develop the above idea. Let us consider
both the axio-dilaton sector and the complex structure moduli sector of a CY 3-fold at LCS:

K== (=i(S = 8)) = n (suuu(u+ 1)) . (5.5.27)

In the spirit of [243; 262; 263] we could now investigate Euclidean wormhole solutions charged
under both the universal axion as well as the complex structure axion. Alternatively, we may
assume that we can stabilise moduli such that S = tu. Then we effectively have the theory of
one 4-fold complex structure modulus and we obtain (see Appendix C.6 for details)

4

T e

(5.5.28)

" This would be different if kyuy and Ky were the only non-vanishing intersection numbers. Then we would
still have KCuz =~ 3/(u + @)* but now Kus ~ (v + 8)/(u + @)* for Re(u) > Re(v). Assuming that Re(v) is
stabilised such that we can take it as constant, we would now find a dilaton coupling a = /6.
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Taking the saxion as Re(u) and the axion as Im(u) we now find o = v/2 which lies within the
range allowing for wormholes. We leave it for future work to investigate whether this pattern
of moduli stabilisation can be realised in a realistic compactification.

5.5.3. Maximal Field Displacements of Dilatonic Fields

In the previous sections we have made progress towards studying gravitational instantons in
the presence of moduli. The results of Section 5.5.2 imply that a restriction to moduli with
dilatonic couplings is well-motivated from string compactifications. We also made progress
towards understanding the role of the potential stabilising the modulus in Section 5.5.1. In
particular, in the regime r < 1/m the potential can be ignored and gravitational instanton
solutions for a massless dilaton will be good approximations.

There is another effect which we need to take into consideration. When approaching the
core of a gravitational instanton, the value of the dilaton increases. In the case of a Euclidean
wormhole it reaches a maximum at the wormhole throat, while for extremal and cored in-
stantons the dilaton diverges for r — 0. However, we cannot afford arbitrarily large field
displacements, as this will take us outside the range of validity of our effective theory.

To be specific, consider the effective theory of the axio-dilaton at weak string coupling.
When approaching the centre of a gravitational instanton solution the string coupling increases
compared to its asymptotic value. If it becomes too large the supergravity regime breaks down
and we cannot trust our solutions. A similar argument can be made for any effective dilaton-
axion theory from string compactifications.

This gives us an additional criterion to decide which gravitational instantons to trust and
which ones to disregard. We will analyse this condition focussing on Euclidean wormholes
and extremal gravitational instantons. In the following, we will denote by max the threshold
value at which the effective theory breaks down.

Euclidean Wormbholes

For Euclidean wormholes the displacement becomes maximal at the throat of the wormhole.
Using our solution for ¢(r) (5.2.32) one finds:

ar /3

o(rg) = —élncos2 (4 2> . (5.5.29)

To trust the wormhole solution we require ¢(r9) < @max. The maximal displacement only
depends on the dilaton coupling «, which is not a free parameter, but a property of the
physical system studied. As a result the maximal displacement is model-dependent.

Recall that Euclidean wormhole solutions only exist for dilaton couplings in the range

0<acx< 2\/% . The maximal displacement at the wormhole throat is smallest for @ = 0,

grows when « is increased and eventually diverges for o — 2\/2 . To give just one example,

the value o = v/2 yields a displacement ¢(rg) — @(c0) = ¢(rg) ~ 2.2 in Planck units, which
may already be critical.

Another important result from this section is that the maximal displacement ¢(rg) is in-
dependent of the ratio n/ fax, or, equivalently, the wormhole radius at the throat ry. Hence
we do not get any additional constraints on these quantities due to the displacement of the
saxion.
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Extremal Instantons

For extremal gravitational instantons the p-profile exhibits a divergent behaviour for » — 0.
As laid out in Section 5.4, we will nevertheless trust such solutions as long as the dominant
part of the instanton action arises from the region r > r., where . is the length cutoff of our
effective theory. This cutoff will be discussed in more detail in Section 5.6.2. Here we will
show that the displacement of the saxion gives an independent condition for the reliability of
our action.

Let us be more precise. Given a threshold value pn.x beyond which our theory breaks
down, we can identify a radius rpyi, at which the dilaton crosses this value: ¢(min) = @max-
This can be made explicit using (5.2.34):

2
pmax an 1 >
e <1 i) (5.5.30)

min
To trust our solution we need to ensure that AS/S < 1, where AS is the contribution to the
instanton action from the region r < ry,. Using (5.4.7) and (5.4.8) we find

AS _

an 1 \7! N
S <1 + 2> = exp (*§@max) . (5.5.31)

4AfaX rmin

Hence the relevant condition is
exp (—§ Pmax) < 1, (5.5.32)

which gives an additional (model-dependent) constraint.

Last, let us return to one aspect encountered for the case of Euclidean wormholes. There
we observed that for a — 2\/g the saxion displacement at the wormhole throat grows without
bound and would exceed any finite value pnax. Note that this does not necessary constitute
a pathology. Rather, the behaviour observed for a wormhole becomes similar to that of an

extremal instanton. In fact, in the limit o — 2\/2 the Euclidean wormhole becomes a pair
of extremal instantons. We can then deal with the divergence of ¢ as in the case of extremal
instantons and cut our solution off at some r = ryin.

5.6. Consequences for Large Field Inflation

In this section we will analyse to what extent gravitational instantons constrain axion inflation.
The idea is as follows: we will check whether the contribution to the axion potential 6V due
to gravitational instantons can be large enough to disrupt inflation.

To be specific, gravitational instantons contribute as

8V = Acos(nf)e | (5.6.1)

where S ~ n/fax (see Section 5.4). Whether such instanton corrections can have significant
influence on the slow-roll dynamics clearly depends both on the size of the instanton action
S and the prefactor A. The latter is quoted to be of order M;,l [101; 108]. However, in
Appendix C.7 we give arguments why the prefactor A can be significantly below the Planck
scale in more realistic string compactification models. Specifically, we expect A to scale as
A ~ V753 with compactification volume V.

We then compare 6V with the size of the axion potential during inflation. For large-field
inflation the scale of inflation is of the order [2]

Vvinﬂation ~ 1078- (562)
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Hence, whenever we find 6V ~ 10~8 we will conclude that the effects of gravitational instan-
tons on the axion potential are in principle large enough to spoil inflation.

In what follows we compute 0V only for the case of a single axion, but our results can
be straightforwardly extended to models of N-flation, kinetic alignment and the Kim-Nilles-
Peloso mechanism, see [108] for more details.

5.6.1. Action of the most ‘dangerous’ Gravitational Instantons

To check whether gravitational instantons are dangerous for inflation, we want to focus on
the instantons with the smallest action. At the same time, we need to ensure that these are
solutions which we can trust within the framework of our effective theory. In brief, we are
interested in the most relevant instanton within the regime of validity of our theory.

The breakdown of our effective gravity theory is crucial in this context, because it will put
a lower bound on the instanton action S. As explained in Section 5.4, in a theory with length
cutoff 7. we can only trust gravitational instanton solutions with n/ fay > 72. This translates
into a lower bound on the instanton action as S ~ n/ fax.

To calculate the contributions of gravitational instantons to the axion potential we hence
need to determine the cutoff r.. In Section 5.6.2 we will estimate the smallest possible value
of r. at which the description in terms of a 4-dimensional theory may hold. Before doing this
it will be instructive to check how large r. can be so that gravitational instantons still induce
a sizeable contribution to the inflaton potential.

Note that gravitational instanton solutions for the case of a massless dilaton will be sufficient
for our analysis, despite the fact that we are interested in the case of massive dilaton fields.
As described in Section 5.5.1 the non-zero potential does not affect the action significantly.

Euclidean Wormbholes

For any n and fax the Euclidean wormhole action is computed in (5.4.19). At the same time

the wormhole radius rg scales as 19 ~ (n/ fax)l/ 2 according to (5.2.28). As we require g 2 7.
we get
2 3
Sinst 2 (27%)V6= tan (OZT 2) r2 . (5.6.3)
@

On the allowed interval 0 < o < 24/2/3 the instanton action as a function of « increases mono-
tonically. Therefore, the most dangerous wormhole corresponds to the Giddings-Strominger
instanton with o = 0. Hence

Sinst > Sinst(a = 0) Z 37'('37“3- (564)

Demanding that e > 10~® implies r. < 0.4 (in Planck units).
In Section 5.5.2 we found that o = /2 can be obtained from string compactifications
and still lies in the allowed range of dilaton-couplings appropriate to allow for Euclidean

wormbholes. This example requires 7. < 0.2 in order to get a contribution of at least §V ~ 1078,

~

Note that the prefactor A (see Appendix C.7) may potentially lower the size of the contri-
bution to the inflaton potential.
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Extremal Gravitational Instantons

The action for extremal gravitational instantons is obtained from (5.4.7). However, we have
to take into account the computability condition (5.4.9) for the action. It follows that

8- (2772) 2

Sinst > e (5.6.5)

In string theory « cannot be chosen arbitrarily large. The largest o we could obtain
from string compactifications was o = 2v/2. Extremal gravitational instantons then become
relevant if r. < 1. Hence, extremal gravitational instantons may turn out to be somewhat
more dangerous for axion inflation than Euclidean wormbholes.

We do not consider cored gravitational instantons, for which a similar analysis could be
made. The reason is that their action is always larger than that of a suitable extremal
instanton (see Section 5.4).

The question we want to address now is how small 7. can be in any controlled model of
quantum gravity. Knowing that moduli displacements are not an issue, one would naively
expect that . ~ 1 can be problematic as we reach already Planck regime. Notice however
that it is important to determine r. as precisely as possible, because due to 6V ~ e ~ e e
the instanton contributions are very sensitive to every O(1)-factorchange in the cutoff radius.

5.6.2. Estimating the Critical Radius 7.

Let us take string theory as our model of quantum gravity. String compactifications then yield
a hierarchy of scales in the effective theory as depicted in Figure 5.1. We expect that going
beyond the Kaluza-Klein scale will render our effective description insufficient. The reason
is that the gravitational instanton solutions we consider are obtained in a 4-dimensional
effective theory which arises from a more fundamental description upon compactification. For
the 4-dimensional picture to remain valid, we require the length scale r. associated with our
4-dimensional solution not to be smaller than the length scale associated to the compactified
extra-dimensions.

But how small can this length scale be? In string theory it cannot be arbitrarily small.
String compactifications exhibit a property termed T-duality which states that a compactifi-
cation with a small volume describes the same physics as another compactification with large
volume. This gives rise to the notion of a smallest length scale at the self-dual value of the
compactification volume.

Putting everything together, we arrive at the smallest possible value r. where we can trust
our effective 4-dimensional analysis. We find that r. should be related to the length scale of
the compact dimensions at self-dual volume Vyq of the compactification space. In this way, we
push the KK-scale as close to the Planck scale as possible, allowing us to consider the lightest
gravitational instantons we can obtain within the regime of validity of our description.

What we mean by “related” is at this naive level ambiguous. There are at least two
“canonical” possibilities to make the definition of r. more precise. They differ by factors of =,
which are unfortunately crucial when comparing =5 with Vipfiation. Given the volume Vyq of

the six-dimensional compact space at the self-dual point we can define a length scale as Vsld/ 6

and a 3-volume by Vsld/ 2 Two possible definitions of r. are then:

1. The volume of the S of our wormhole solution should not be smaller than VSIG{ 2, ie.
2123 = V22, (5.6.6)
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2. More generously, the great circle of S? should not be smaller than Vslc{ 6, ie.
27, = VI°. (5.6.7)

As a toy-model to compute Vyq we take T and apply T-duality six times for each S' to get
Vaa(T%) = £8 = (27m)%(a’)3. To convert this into Planck units, recall that (see e.g. [48])

A2 4y

In the following we also go to the S-self-dual point g = 1.

The first criterion (5.6.6) then gives r.M, = /4m - (272)~'/3 ~ 1.3. Using (5.6.4) and
(5.6.5), which are both in 4d Planck units, the contributions to the axion potential due to
gravitational instantons are then:

Giddings-Strominger wormbhole: e ~107%

Extremal instantons: e 5 < 107 fora=2v2.

Hence, in both cases the gravitational instantons appear to be irrelevant for inflation.
If we apply the second criterion (5.6.7) we have r.M, = 1/y/m ~ 0.56. This yields

Giddings-Strominger wormhole: e ~ 10713,

Extremal instantons: e ¥ <107 for a=2V2.

Again, Euclidean wormholes contribute to the axion potential too weakly to interfere signif-
icantly with inflation. However, extremal instantons can in principle be important, but this
will depend on the value of the dilaton coupling a. Note that for o = 2/2/3 we still get
e~ < 6-107Y for extremal instantons, which is marginal as far as the significance for inflation
is concerned. However, we want to emphasise that our numerical results should be taken with
a grain of salt. In particular, given a value of a length cutoff r. we only have a lower bound
(5.6.5) for the action of the most important trustworthy extremal instanton. However, §V/
is exponentially sensitive to the instanton action. Thus, unless the instanton action is close
to saturating the inequality (5.6.5) the contributions from extremal instantons can quickly
become irrelevant for inflation.

Of course, the instanton contribution §V = Ae™% cos(nf) also involves the prefactor A,
which we estimate in Appendix C.7. We expect A ~ V~5/3 which is O(1) at the self-dual
point. Note that in more realistic scenarios away from the self-dual point (i.e. compactifica-
tions with a hierarchy of scales) it would suppress the gravitational instanton contributions
even further.

Our results can be summarised as follows: overall, we find that gravitational instantons do
not give rise to strong model-independent constraints on axion inflation, even if we push the
KK-scale as close to the Planck-scale as possible. Extremal gravitational instantons may be
important for inflation, but this is model-dependent, as the size of their contribution depends
on the value of the dilaton coupling a.

5.7. Gravitational Instantons and the Weak Gravity Conjecture

Finally, we want to make further remarks on the relation between gravitational instantons and
the Weak Gravity Conjecture (WGC) [20; 92; 108]. The original form of the WGC requires
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that the particle spectrum of a consistent, UV-complete gravitational theory with a U(1)
gauge field contains at least one particle whose charge-to-mass ratio is larger or equal to that
of an extremal black hole [20]. There exists a straightforward generalisation to gravitational
theories with an axion coupling to instantons. In the following we will argue in analogy with
the WGC for particles with U(1) charges, i.e. we will treat instantons like particles with axion
charge.

We start with the theory of an axion with an instanton-induced potential:

_ 1 2 4 _Si Mg
Z = 5(80) - Xi:Aie cos(7-0) . (5.7.1)

The WGC then requires the existence of an instanton with

z = i/ fax > 20, (5.7.2)
S;

for some zg to be specified shortly.'® The quantity z is the equivalent of the charge-to-mass
ratio for the instanton, where the charge is given by n/fax and the mass corresponds to S.
When working with black holes an object satisfying z > zq is referred to as superextremal,
while a black hole with z < zp is termed subextremal. It will be useful to extend this
nomenclature to the case of instantons. The WGC then requires the existence of superextremal
instantons.

To define the WGC for instantons it is hence important to determine zy. In the black hole
case zq is the charge-to-mass ratio of an extremal RN black hole. By analogy, we will define zg
as the charge-to-mass ratio of an extremal gravitational instanton as suggested in [92]. There
is further support for this assertion. In Section 5.2.3 we saw that gravitational instantons
in 4d are related to RN black holes in 5d. More specifically, the relation C' = ¢2(M? — Q?)
implies that extremal black holes (M? = Q?) are in one-to-one correspondence with extremal
instantons (C' = 0). It is thus plausible that extremal instantons play the role of extremal black
holes in the WGC. Using our expression (5.4.7) for the action of an extremal gravitational
instanton we find

o= (5.7.3)
Sextremal 2

Let us now compute the charge-to-mass ratio z for cored gravitational instantons and Eu-
clidean wormholes to see how they fit into this picture. We begin with cored gravitational
instantons. For fixed n/ fax we have

Sextremal(a) for o > 24/ 2/3

5.7.4
Sextrema1(2 2/3) for a < 2\/2/3, ( )

Scored(a) > {

and thus

20 for a > 2,/2/3

Zcored < 2./2/3 (575)
a

zo for o < 24/2/3

We can make the following observation. For o > 2,/2/3 cored gravitational instantons are
strictly subextremal and do not satisfy the WGC condition z > zg. They hence play a role

8The WCGC can be made more precise by adding further attributes to the condition z > 29 [20]. A more
careful definition becomes important when several U(1) group factors (or axion species) are present. See
[90; 92; 94; 108; 197; 198] for more details.
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Cored instantons

Lightest cored instantons

Cored instantons

Extremal instantons

a<2y/2/3
I

Euclidean wormholes

Extremal instantons

P
a>22/3

n/fax n/fax
(a) (b)

Figure 5.9.: Instanton action S vs. n/ fax for (a) a > 2,/2/3 and (b) a < 2,/2/3.

S extremal
instantons

S extremal
instantons

n/fax n/faX

Figure 5.10.: Possible realisations of the WGC for gravitational instantons [264]. Red dots de-
note extremal gravitational instantons while blue dots correspond to additional
superextremal instantons required by the WGC.

akin to subextremal black holes in the WGC for particles. This is consistent with the finding

that for o > 2,/2/3 cored gravitational instantons are related to subextremal black holes in

higher dimensions (see [110] and Section 5.2.3). The situation is different for v < 21/2/3. The

lightest cored instantons are now superextremal. We illustrate our findings in Figure 5.9.
Next, let us turn to Euclidean wormholes. From (5.4.19) we find

_ n/fax _ (6] > % — 2 (5.7.6)

Swh 2sin (% %)

Zwh

for 0 < a < 24/2/3, which is the allowed range for wormhole solutions. We find that Euclidean
wormbholes are strictly superextremal. In addition, one can also show that zyn > Zcoreq. This
is displayed in Figure 5.9 (b).

What can one learn from these results about the WGC? We will discuss this question for
the two cases o > 24/2/3 and a < 2,/2/3 separately.

For o > 24/2/3 the spectrum of gravitational instantons does not contain any superex-
tremal objects that could satisfy the WGC. This is not surprising. Our analysis is restricted
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to macroscopic gravitational instantons, while it is expected that microscopic physics is re-
sponsible for satisfying the WGC. If the WGC is true, it could be realised in two different
ways which are shown in Figure 5.10. For one, extremal gravitational instantons (red dots
in Figure 5.10) could satisfy the WGC on their own. This occurs if quantum corrections
decrease the instanton action for small n such that they naively become superextremal (LHS
of Figure 5.10). If this is not the case (see RHS of Figure 5.10) the WGC requires the exis-
tence of additional superextremal instantons (blue dot). At the moment it is not clear which
implementation of the WGC, if any, is realised. Unfortunately, our analysis is not suitable for
resolving this issue.

Let us move on to a < 2+/2/3. Interestingly, the set of gravitational instanton solutions now
contains superextremal objects in the form of wormholes and cored instantons. It thus seems
that the WGC is satisfied in Einstein-axion-dilaton systems in virtue of cored instantons and
Euclidean wormholes. Note that this is different to the situations shown in Figure 5.10. Here
the WGC would be satisfied by an infinite tower of superextremal macroscopic objects.

Another interpretation of our findings is that the statement of the WGC has to be modified
for a < 2/2/3. In this regime the ‘lightest’ macroscopic object with given charge n/fay is
not the extremal instanton but the wormhole. Also the correspondence between extremal
instantons and extremal black holes in higher dimensions is lost for a < 24/2/3. This may
imply that the WGC condition is now set by the charge-to-mass ratio of the wormhole rather
than that of the extremal instanton. To satisfy the WGC one would then require the existence
of states with z > zy1. We leave further investigations on this topic for future work.

Last, there may be further implications for gravitational instantons if the WGC for axions
is true: gravitational instantons may not be ‘stable’ in the following sense. To be specific,
consider a cored instanton with action S and axion charge n in a theory with a > 2,/2/3.
This corresponds to a tunnelling process between two configurations differing by n units
of axion charge. Let us then assume that the WGC is true and implies the existence of
instantons with charge-to-mass ratio z > zg, where zy is the charge-to-mass of an extremal
gravitational instanton as before. An immediate consequence is that a tunnelling process will
then always be dominated by the instantons predicted by the WGC. For our example this
works as follows. The instantons needed to satisfy the WGC have z > 29 > Zcored- L€t two
such instantons have nq1, 57 and no, S, such that ny + ng = n. Since z > Zzgoreq it follows
that S1+ S < S and tunnelling via two such instantons will dominate over tunnelling via the
cored instanton.!” Hence, we do not expect ‘unstable’ gravitational instantons to be relevant
in the path integral computation of the instanton potential as the major contributions should
arise from the instantons satisfying the WGC. We leave a more rigorous analysis of this issue
for future work.

5.8. Conclusions and Outlook

It is of great interest to understand whether quantum gravity forbids periodic scalars with large
field range and flat potential. The obvious way in which this can happen is via instanton-
induced corrections. In detail, there are two specific options: On the one hand, quantum
gravity may demand the presence of instantons with certain actions and charges, via a gener-
alized weak gravity conjecture. This is rather indirect: One tries to show that certain things
‘go wrong’ unless the relevant particles (or instantons) exist.

9Note that this is equivalent to the statement that (sub-)extremal black holes can in principle decay if the
WGC for particles holds.
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There is, however, also a more direct approach: gravity itself supplies, in a rather direct
or ‘constructive’ way the instantons which may lift the flat potential. In this chapter, we
have tried to push this direct approach as far as possible, striving also for maximal model-
independence.

Our results are as follows. We observe that in a pure axion-gravity system a potential for the
axion is generated by Giddings-Strominger wormholes and that this potential is parametrically
unsuppressed if the cutoff is at the Planck scale. Trying to be more precise about this, we
encountered a surprise: If, as a model of high-cutoff quantum gravity, we take string theory
at self-dual coupling and self-dual compactification radius, we are still left with a purely
numerical suppression factor of exp(—372) ~ 10713, Such a result makes it hard to hope for
a strong constraint on inflation, even after further refining the analysis.

Furthermore, we continued to ask for generic 4d constraints, but assuming more concretely
that the 4d theory arises from string theory with a potentially low moduli scale. First, we
found that in this setting nothing too dramatic happens to gravitational instantons: One linear
combination of the moduli acts as a 4d dilaton governing the axion coupling; the instantons
become more diverse in that extremal and cored gravitational instantons exist in addition
to wormholes; the calculation still breaks down only at the Kaluza-Klein scale, which can of
course still be high.

Unfortunately, the predictions now become model dependent as the coupling strength of the
4d dilaton to the axion (an O(1) numerical factor) enters. Taking the highest value for this
factor that we could obtain in the simplest models results in a less severe instanton suppression
factor of exp(—2m) ~ 10~3. This is of course highly relevant for inflation, but easily avoided
by considering models with different dilaton coupling.

In both of the above approaches, the suppression factors start out small and further fall
as exp(—r?), with 7 an appropriately normalised compactification radius in 4d Planck units.
As a result, while we do believe that gravitational instantons are the most fundamental and
model-independent way to constrain field ranges, the numbers appear to allow for enough
room for realistic large-field inflation.

Finally, we have attempted to connect our analysis of the various types of gravitational
instantons, including their dependence on the axion-dilaton coupling, to the ongoing discussion
of the weak gravity conjecture. In particular, we found a intriguing regime where wormholes
are the objects with highest charge-to-mass ratio and may thus be sufficient to satisfy the
instanton-axion weak gravity conjecture.

There are many directions for further investigations. By limiting our analysis to gravita-
tional instantons in 4-dimensional Einstein-axion-dilaton theories we were unable to arrive
at strong constraints on inflation. While this approach allows us to remain ignorant about
the detailed UV completion, we are forced to neglect potentially more important contribu-
tions. These would arise from gravitational instantons with low instanton numbers, which
are incalculable in the 4-dimensional Einstein-axion-dilaton theory. However, a quantitative
analysis may be possible if one assumes that UV physics is described by string theory. It is
expected that gravitational instantons will correspond to non-perturbative effects such as D-
brane instantons in string theory. To arrive at stronger constraints a better understanding of
non-perturbative effects in string theory is desirable. In particular, it is expected that poorly
understood non-BPS instantons may become important during inflation [108].

There is a related question that is worthy of further examination. While more important
instanton contributions to the axion potential may exist, it is possible that the overall effect
on the axion potential vanishes once all such contributions are included. To calculate contri-
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butions from ‘more important’ instantons is equivalent to studying instantons in a theory at
a higher energy scale. However, taking string theory as our UV completion, we would expect
the theory to become supersymmetric and/or higher-dimensional at some scale. It is then
possible that, once we work above the supersymmetry scale, there are cancellations between
the various instanton contributions to the axion potential. This is somewhat analogous to the
cancellation between boson and fermion loops in supersymmetric field theory. We regard it
as important to determine whether such cancellations can occur.

While we were unable to arrive at strong model-independent constraints on inflation, gravi-
tational instantons may be important for inflation in models where the dilaton coupling takes
sufficiently large values. In the effective 4-dimensional theory the dilaton coupling is a free
parameter. However, one would expect that its value is constrained by possible UV com-
pletions. Indeed, by considering simple axion-dilaton systems in string compactifications, we
find that the dilaton coupling typically takes O(1) values, i.e. it can neither be very small nor
very large. It would be interesting to examine to what extent these results are generic.

The upshot of these points is clear: It is imperative to understand the ultraviolet end of
the instanton spectrum.
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CHAPTER 0

Conclusions and Outlook

In this thesis we explored the string landscape by investigating models of reheating and large-
field inflation. Even though predictions from string theory may seem to be arbitrary due to the
huge number of type IIB string vacua, we demonstrated that string vacua can have common
features, and that by far not any cosmological scenario can be embedded in string theory.
In this context, we also investigated whether gravitational instanton effects are relevant with
respect to the question whether axion inflation resides in the landscape or swampland. We go
through the chapters of the thesis step by step and summarise our conclusions and glimpse
at possible future work.

Our exploration of the string landscape begins in Chapter 2 by looking at reheating models
in a specific corner of the type IIB landscape with Kéhler moduli being stabilised within
the Large Volume Scenario (LVS). It provides a first example for a generic prediction from a
substantial subset of the landscape. A generic feature of the LVS is an essentially massless
axion ap, which is the supersymmetric partner to the bulk 4-cycle modulus 7,. Hence, in
simple “sequestered” models of reheating, where the Standard Model (SM) sector is realised
by a D3-brane at a singularity of the Calabi-Yau manifold, 7, does not only decay into the SM
sector, dominantly through the decay into Higgs particles, but there is also the decay channel
into axions ap. Phenomenologically, these axions contribute as dark radiation to the effective
number of relativistic species Neg, thus implying ANeg = Negg — 3.046 > 0, where the value
Neg = 3.046 is the prediction by the SM. For instance, a sequestered model with high-scale
supersymmetry and two Higgs doublets predicts ANeg ~ 1.4, which is disfavoured by recent
measurements Neg = 3.15 £ 0.23 (1o; Planck+TT+lowP+BAO) [1] already at 5.60. One
option is to include many more Higgs doublets or to dial a large Giudice-Masiero coupling z.
However, it is not yet fully understood how large this coupling parameter z can be chosen
in string theory. Hence, we aimed for more flexibility in ameliorating the dark radiation
abundance without relying on this Higgs sector. We proposed to go beyond the sequestered
LVS by realising the visible sector via D7-branes wrapping stabilised 4-cycles. This opens a
decay channel of 7, into SM gauge bosons. By some fine-tuning of a parameter related to
the size of the 4-cycle, one can enhance this decay channel. Without any such tuning, our
model with the 4-cycle stabilised by D-terms, would predict ANeg = 0.48 (ignoring the Higgs
sector and assuming sufficiently high reheating temperatures), which deviates by 1.60 from
the central value measured by the Planck collaboration. Obtaining the central value itself
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requires a fine-tuning of about one part in two. Similarly, we considered also models in which
the visible sector is stabilised by string loop corrections. This method yields slightly larger
values of ANgg. Furthermore, it is possible to stabilise the visible sector by non-perturbative
corrections, but such constructions typically yield too large values of AN.g. In addition, we
also commented on a sequestered model including flavour branes, intersecting the singularity
at which the visible sector is located. Thereby, the predictions for AN.g can also be lowered
to some extent. Hence, we find that the Large Volume Scenario can still be consistent with
present data on Neg. However, if ANqg continues to decrease, LVS models will be more
constrained or even be ruled out. Clearly, more progress can be made by investigating the
following directions: it would be desirable to improve our understanding of the decay channel
into the Higgs sector. Especially, it is important to understand which values of z are possible
in string theory. In addition, it is unclear how much fine-tuning for the enhancement of the
decay channel into SM gauge bosons can be realised in our non-sequestered LVS models.
Further ways to reduce the dark radiation abundance, such as in [150] are conceivable and
should be investigated in the future as well.

For the purpose of model building, it is not only of interest which vacua are consistent with
present observations, but also which bottom-up effective field theories (EFTs) are consistent
with quantum gravity, and, for the purpose of our thesis, with string theory in particular.
Therefore, it is important to delineate the string landscape surrounded by a swampland of
EFTs, admitting no UV-completion consistent with string theory. In particular, it is interest-
ing to see whether large-field inflation resides in the swampland or the landscape.

We address this topic in three distinct chapters. In Chapter 3 we proposed a fine-tuned
model of F-term axion monodromy inflation in string theory. The idea is to use D7-brane
moduli or complex structure moduli of Calabi-Yau compactifications as an inflaton candidate.
Crucially, such a complex structure modulus has to be stabilised in the large complex structure
(LCS) limit so that in absence of fluxes there is no potential for the axionic part of the
modulus due to shift symmetry. The inflaton potential is then generated by turning on fluxes
appropriately so that the inflaton modulus occurs linearly in the superpotential. We showed
that not only the coeflicient of the shift symmetry breaking term has to be tuned small, but also
its derivatives with respect to all moduli entering this coefficient. This ensures that the inflaton
mass is small and that backreaction of other moduli is under control. We demonstrated that
such a fine-tuning cannot be realised in orientifolded type IIB CY compactifications, at least
if the inflaton descends from a complex structure modulus. Our no-go theorem has, however,
loopholes and the most obvious one is to consider CY four-folds in the context of F-theory
(alternatively, one can think of the inflaton as a D7-brane modulus in type IIB). In this case,
the fine-tuning seems to be possible, although this needs to be checked in future work upon
choosing concrete CY 4-folds. Accepting the fine-tuning as a necessary ingredient of F-term
axion monodromy inflation, one can show that the backreaction of the other moduli reduces
the naively expected inflaton mass by some amount. Thanks to the fine-tuning, a large enough
field space for quadratic inflation can be achieved. Unfortunately, the required fine-tunings
can in principle be very constraining. In the context of the string landscape, we quantified
how severe the realisation of the tunings finally is. In a case study, we showed that the huge
number of 1017 F-theory vacua is decimated to a landscape of about 103%° vacua consistent
with the tunings if only 10% of the 4-fold complex structure moduli couple to the inflaton
modulus. This remaining landscape is expected to be large enough to accommodate further
tunings for different contexts such as in the case of the cosmological constant or Standard
Model parameters. If, however, many more complex structure moduli couple to the inflaton
modulus such that no landscape remains after imposing the tunings, we conclude that our
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inflation model could not be realised in F-/type IIB theory. The number of required tuning
conditions can only be determined in a very concrete setting. Nevertheless, we were able to
put forward a viable model of F-term axion monodromy inflation in string theory, which seems
to allow for large-field inflation, at least in principle. As we pointed out, a realisation of our
proposed fine-tuned scenario in a concrete geometric setting would be desirable. Moreover,
F-term axion monodromy inflation would clearly be more appealing without this potentially
large amount of fine-tuning. Hence, combining our approach with [174-176], where corrections
from the DBI-term are considered, could be fruitful. These could lead to further flattening of
the potential and hence might relax the tuning conditions. Concerning potential conflicts with
quantum gravity arguments, the current status is that axion monodromy inflation does not
face problematic constraints [93; 106; 107], although obtaining parametrically large field ranges
in string theory remains challenging (see e.g. [265] for a recent analysis of axion monodromy
inflation; due to backreaction the physical field range is reduced, although appropriate tunings
could delay this effect). Hence, F-term axion monodromy inflation demonstrates a realisation
of large-field inflation in string theory, although at the expense of accepting large amount of
fine-tuning. However, in case axion monodromy inflation turns out to be more constrained by
quantum gravity or string theory than currently understood, it would be interesting to learn
where exactly our construction could fail.

In Chapter 4 we proposed a realisation of alignment inflation in type IIB string theory.
Our construction, called “F-term winding inflation”, is based on a flux choice such that a
combination (v — Nv) occurs in the superpotential, where u and v are complex structure
moduli in the LCS limit. Moreover, N > 1 is a combination of flux numbers, which needs
to be chosen large. We showed that there is a flat direction, which is a winding trajectory
in field space. The inflaton potential is generated by including non-perturbative corrections
e?™_ As a result, one obtains the potential of natural inflation and the effective axion decay
constant is enhanced proportional to N. In addition, we also showed consistency of our model
with Kéhler moduli stabilisation & la LVS. Furthermore, our proposal realises the loophole
[100; 101] of certain no-go results for alignment inflation based on the mild version of the Weak
Gravity Conjecture. More specifically, the instanton satisfying the WGC corresponds to e?™,
The mild WGC allows this instanton to be more massive than the one generating the inflaton
potential. In this way, dangerous corrections to the potential are avoided. If, however, the
strong WGC holds true, F-term winding inflation cannot be realised. Consequently, a better
understanding of the WGC is crucial in order to answer the question whether F-term winding
inflation resides in the swampland or not. If our model turns out to be censored by stringent
quantum gravity constraints, it would be, once again, important to understand where our
construction goes wrong. In fact, one can be concerned about a couple of technicalities our
model is based on. For instance, it would be desirable to investigate whether the choice of
large N might result in a conflict with the D3-tadpole cancellation condition. A constraint on
N translates directly into an upper bound on the effective field range. It is also conceivable
that in concrete settings the required hierarchy Im(v) < Im(u) might finally not be feasible.
Furthermore, taking into account non-perturbative corrections Ae=%" for Kéhler moduli, will
modify the inflaton dynamics due to the dependency of A on the complex structure moduli.
Hence, in future work it would be interesting to analyse our model in view of these corrections
along the lines of [266].

Finally, we addressed the question of model-independent quantum gravity constraints on
axion inflation due to gravitational instanton effects. If strong enough they would constrain
e.g. “F-term winding inflation” [108]. In Chapter 5 we addressed several issues related to
these gravitational instantons. First of all, we demonstrated that Giddings-Strominger worm-
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holes induce corrections to the axion potential of the type cosfe™, even though no charges
disappear globally. However, locally shift symmetry appears to be broken. We support this
result by deducing the effective potential from the partition function of a wormhole gas in
a field theory model and a quantum mechanical toy-model. We addressed a subtlety in this
computation [257; 261]: if the connections of instantons and anti-instantons by a wormhole
tube are taken into account explicitly, the combinatorial factors in the partition function
are modified such that there occurs a divergence of the energy density as the volume of the
(sub-)manifold goes to infinity. In particular, the dilute gas approximation, which is used in
such instanton computations, breaks down. We do not know whether the resolution of this
problem may lie in the choice of different combinatorial factors (e.g. ignoring the pairing of
instantons and anti-instantons) or in a more refined treatment of the path integral and the in-
terpretation of these wormholes. However, independently of this problem, we always obtained
corrections to the axion potential of the form cosfe™°. As to the question of constraints on
axion inflation, we analysed Einstein-axion-dilaton systems, because they naturally arise in
string compactifications. In such systems, three types of gravitational instantons occur: Eu-
clidean wormholes, extremal and cored gravitational instantons. We found that the presence
of a gravitational instanton does not threaten the stabilisation of the corresponding dilaton.
Hence, the effective description of gravitational instantons can be trusted up to the Kaluza-
Klein (KK) scale. To maximise the effects of gravitational instantons, we pushed the KK
scale as close to the Planck scale as possible. Specifically, we evaluated the instanton correc-
tions using a cutoff obtained from string theory at the self dual point (i.e. self-dual coupling
and self-dual compactification radius). Model-independent constraints are derived from the
presence of Giddings-Strominger (GS) wormholes, which can be obtained by integrating out
the dilaton. We found that e=° < 10~13 for these GS wormholes. Hence, their effects are not
dangerous for inflation. For the same reason, there is also no danger if Euclidean wormholes
should be interpreted as bounce solutions rather than instantons [238; 239] (see also recent
comments in [267]). For the two other types of gravitational instantons, it is unfortunately
difficult to formulate model-independent constraints. The size of the corrections to the ax-
ion potential depends on the dilaton coupling, which is clearly model-dependent. Therefore,
we find it overall hard to constrain axion inflation using gravitational instantons. However,
more issues related to gravitational instantons need to be resolved. For instance, our ap-
proach is not suitable to calculate effects with low instanton flux numbers. Such a treatment
needs to be done in a UV-complete theory such as string theory, where gravitational instan-
tons should correspond to D-brane instantons. Clearly, these problems are interesting, and
hence, should be addressed in future work. Finally, we investigated the relations between
the Weak Gravity Conjecture and gravitational instantons. We observe that the wormhole
instantons are the objects satisfying the WGC for instantons/axions. Moreover, since the ex-
tremal and cored gravitational instantons have an interpretation in terms of five-dimensional
Reissner-Nordstrom black holes, the application of the WGC in the 5d theory might hint at
an instability of extremal and cored instantons in 4d. We leave a detailed elaboration on these
observations for future research projects.

In summary, we learned that some corners of the string landscape can lead to testable
predictions, such as the prediction of dark radiation. By cosmological measurements, one
can then constrain or rule out models in those parts of the landscape. We learned that the
LVS construction is indeed constrained due to dark radiation production, albeit not ruled
out. Concerning inflation, our conclusion is that large-field inflation, e.g. via F-term axion
monodromy inflation or F-term winding inflation, can in principle be realised in string theory,
at least to our current knowledge. However, we observed that the construction of large-field
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inflation in string theory often goes along with many challenges and obstructions, which need
to be overcome. Apart from technical details of our models, which need to be clarified,
there are also general quantum gravity arguments, which could censor our models. The
direct approach by calculating gravitational instanton effects turned out to be not suitable
for constraining large-field inflation. Hence, a better understanding of the Weak Gravity
Conjecture, which might have more to say about inflation, remains an important goal for
future research in string cosmology.
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APPENDIX A

Mathematical Appendix

This appendix gives an overview of selected concepts, methods and formulae of Riemannian
and complex geometry, which we frequently employ in this thesis, without the intention of
being pedagogical or even complete. The only aim is to collect all important formulae and
concepts at one place (without giving proofs), which hopefully improves the readability of
this thesis. For a much more detailed or pedagogical introduction to mathematical aspects of
topology, geometry and complex manifolds, see e.g. [15; 17; 18; 46; 268-271], which are the
sources of this appendix.

A.1. Differential Forms on Riemannian/Lorentzian Manifolds:
Notation and Useful Identities

Definition A.1 (p-form). An antisymmetric (0, p)-tensor field A on a differentiable manifold
is called p-form.

In what follows QP(X) denotes the vector space of p-forms on a d-dimensional Riemannian
or Lorentzian manifold X at a given point on this manifold.

Definition A.2 (wedge-product). Let A € QP(X) and B € Q9(X). The wedge-product A
yields a (p + ¢)-form A A B as follows:

_(p+q)

(AN B)iy.ipjr.jy = g [i1.ip B1.ja] - (A.1.1)
with anti-symmetrisation | |.
Lemma A.3. The wedge-product obeys the following rules:
1. Let A € QP(X) and B € Q4(X). Then
AANB=(-1)»"BAA. (A.1.2)

In particular it holds A A A =0 if p is odd.
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2. Let C be another differential form, then

(ANBYAC =AN(BAC). (A.1.3)

Definition A.4 (Exterior derivative). Let A € QP(X), then in a chosen coordinate basis the
exterior derivative is defined as

(dA)il_._Z‘pJﬁl = (p —+ 1)8[“ Ai2-~~ip+1} . (A14)
Lemma A.5. The exterior derivative obeys the following rules:

1. Let A € QP(X). Then:
d*A =d(dA) =0 . (A.1.5)
2. Let B be another differential form. Then:

d(ANB)=dANB+ (-1)PANdB . (A.1.6)
Definition A.6 (Hodge-star operator). Let A € QP(X) and g, be a metric on X. Then, the
Hodge dual to this form is a (d — p)-form *A:

1
(*A)GL--(Id_p = peal...ad,pbl..‘prbl.“bp 3 (Al?)

where the volume form ¢;, ;, is defined by

€ir.in = \/|9] - sign(i1...1p) (A.1.8)
and g is the determinant of the metric.
Corollary A.7. From this definition it follows:

*(kA) = £(=1)PldP 4 (A.1.9)
(xdx A)ay..ap_y = £(=1)PEPIVA, o0y, (A.1.10)
where V denotes the covariant derivative on X. For Riemannian (Lorentzian) manifolds ‘+’

(‘=) has to be chosen.
A useful formula to prove these identities is:

Eal...ap6p+1mchbl...bpcerl..‘cd — :i:p'(d _ p)!5a1 5% (Alll)

[b1 """ by]

Theorem A.8 (Stokes). For a (p — 1)-form A and a p-dimensional oriented manifold X it
holds (“Stokes theorem”):

/ A= [ A, (A.1.12)
X oX

where 0X is the boundary of X. Here, integration of a p-form B over X is defined by
Jx B = [dx!...dzP By _,. For more details, see e.g. [268; 269].

Definition A.9 (Inner product). Let A, B € QP(X). We define the inner product of A and
B as:

1
(A,B)E/XA/\*B:p'/X\/|g|Aml,_mmel'”dexl...dxd. (A.1.13)
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The second equality follows from:

Lemma A.10. Let A, B € QP(X). Then,

1
* ANB=—=An, m,B" """ %1, (A.1.14)
p! 8

where x1 = d%x/]g].

Definition A.11 (Closed and exact p-forms). Let A € QP(X). We call A a closed p-form iff
dA = 0. If there is a globally defined (p — 1)-form B such that A = dB then A is called ezact.
Any exact differential form is closed due to d?> = 0. The converse holds only locally.

Definition A.12 (de Rahm Cohomology group). Let ZP be the space of closed p-forms and
BP the space of exact p-forms, where the coefficients of the forms are real. The p-th de Rahm

Cohomology group of X is then the quotient space of the two sets,
HP (X,R) = = (A.1.15)
) Br
The cohomology class of a closed p-form A is denoted by [A].

Definition A.13 (Betti numbers and Euler characteristic). We call

b (X) = dimH? (X, R) (A.1.16)
the Betti number of X. The Euler characteristic is defined by
X(X) = (-D)MF(X) . (A.1.17)
k

Both are topological invariants.
Definition A.14 (Harmonic forms). We call A € QP(X) harmonic iff it satisfies
Ap,A =0, (A.1.18)

where A, = d'd +dd' with d' = (—1)%*+%*+1x dx (and another factor of (—1) is to be included
for Lorentzian manifolds). We call d : QP(X) — QP~1(X) the adjoint exterior derivative.
It holds df? = 0. A is called coclosed iff dfA = 0 and coezact iff 3 B € QPT1(X) such that
A = d' B globally.

Theorem A.15. Let X be a compact, orientable manifold without boundaries, i.e. 0X = 0.
For A € OP(X) and B € QP~1(X) it then holds

(dB, A) = (B,d'A) . (A.1.19)
Corollary A.16. A is a positive operator on a compact Riemannian manifold X, i.e.
(A, AA) = (dA,dA) + (dTA,d"A) >0 . (A.1.20)
In particular, A is harmonic iff it is both closed and coclosed.

Theorem A.17 (Hodge decomposition theorem). Let X be a compact, orientable Rieman-
nian manifold without boundaries. Then, QP(X) can be uniquely decomposed:

QP (X) = dP~1(X) @ d'QPTH(X) & HarmP(X) , (A.1.21)

where Harm?(X) denotes the space of harmonic p-forms on X.
Hence, any p-form D), € QP(X) can always be rewritten as

Dy, =dAy1+d' Byy1 +C)p (A.1.22)
with A,—1 € QP71(X), B,yy1 € QPTH(X) and C) € Harm?(X).
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A.2. Some Facts about Chains and Cycles

Introduction A.18. Chains are in some sense “dual” objects to p-forms. Conceptually, a
p-chain a,, is a linear combination of p-dimensional submanifolds N ,f of a manifold X with real
coefficients: a, = ¢xNE, ¢ € R [18]. For an exact definition via simplices, see e.g. [268; 270].
We refrain from reproducing a rigorous introduction to the concept of p-chains, because those
details are not important for the thesis itself.

In analogy to the exterior derivative operator d one can define a boundary operator d,
acting on a p-chain, such that the result is a (p — 1)-chain. Moreover, in analogy to d? we
have 9% = 0.

Using the boundary operator one can define p-cycles and p-boundaries by the same logic
that leads to closed and exact p-forms.

Definition A.19 (p-cycles and p-boundaries). A p-chain a, is called p-cycle if and only if
Oa, =0 . (A.2.1)
If there exists a (p + 1)-chain by such that
ap = Obyq1 (A.2.2)

then ay, is called p-boundary (or trivial).
Clearly, every p-boundary is a p-cycle, but the converse is in general false (e.g. for topolog-
ically non-trivial manifolds).

Definition A.20 (Homology groups). Let Z, be the space of p-cycles and B, the space of
trivial p-cycles. The pth homology group of X is then the quotient space of the two sets,

Z
Hy(X,R) = 2", (A.2.3)
p

The homology class of a, is denoted by [a,]. The homology class defines a vector space. Its
dimension is a Betti number,

by(X) = dim H, (X, R) . (A.2.4)

Proposition A.21 (De Rahm duality). We have (H?(X,R))" = Hp(X,R), i.e. Hy(X,R) is
the dual space to HP(X,R). This follows from the fact that the integration of a p-form over
a p-cycle is a bilinear map 7 : HP(X,R) x Hyp(X,R) — R.

Corollary A.22. The de Rahm duality implies bP(X) = b,(X).

Remark A.23. Due to the de Rahm duality it is always possible to choose bases of cycles
{(ap);} and forms {(A4,);}, i =1, ..., by, such that

| (A =a; (A25)
[(ap)i]

Proposition A.24 (Poincare duality). We have the relation H?(X,R) = Hg_,(X,R). This
follows because [y ApABq—p definesamap Z : HP(X,R)x HP(X,R) — R, thus H?(X,R) =

*

(H d=r(X, ]R)) . Using de Rahm duality the claim follows.

Corollary A.25. It holds b,(X) = bg—,(X).
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Remark A.26 (Torsional homologies). Note that one can also consider cycles of H,(X,Z).
This allows us to have so-called torsional cycles. They come about as follows: Let c¢p41 be a
(p + 1)-chain with integer coefficients. Then, a p-cycle z, € Z,(X,7Z) satisfying z, = %8cp+1
is non-trivial in H,(X, Z), i.e. 2, ¢ By(X, %), while kz, is trivial in H,(X,Z) (and of course
also trivial in H,(X,R)) for k € Z. Such z, is called a k-torsion cycle.

One can show that to the above introduced torsion cycle z, one can associate a non-
closed p-form A, € HP(X,7Z) such that dA, = kB,11: Given a k-torsion cycle z, such that
2p = %QCP_A'_]_, we first normalise the differential forms A, and B, as follows:

/ A, =1, / Bpi=1. (A.2.6)
Zp Cp+1

But then

1 1
B :1:/A:/ A = A= 44
‘/Cp-&-l o #p 8 %8%-0-1 8 k dcpt1 8 k Cp+1 ’

Hence, dA, = kBp41.
Such torsion cycles were used in [154] to propose axion monodromy inflation with F-terms.

A.3. Facts about Complex Manifolds

Introduction A.27. Complex manifolds are defined in analogy to real manifolds. In brief,
a complex manifold of dimension n is a 2n-dimensional real manifold with coordinate charts
Go 2 O — Uy, C C™ (open subset) and transition functions being holomorphic [32]. For more
details see e.g. [268; 272], on which the following is based.

Remark A.28 (Relation between real and complex manifolds). Every n-dimensional complex
manifold can be identified with a 2n-dimensional real manifold. The converse statement is
not always true. However, if the real manifold admits a tensor J; such that

TP — 5P (A.3.1)

then a 2n-dimensional real manifold can be identified with a n-dimensional complex manifold,
too.

Notation A.29 (Notation of tangent spaces and differential forms). Let X be a complex
manifold of dimension n = 2d, then the tangent space TpXC at p € X is spanned by

0
C _
T,X _{821

Analogously, the cotangent space of X at p € X is spanned by

92
o

0

» 91
p 0z

9
o

} . (A.3.3)

TXC = {dzlj o d2?
p

,dz!
p

e dzd(p} . (A.3.4)

In fact one can decompose these spaces into the direct sum of two real tangent spaces in the
following sense:
T,X¢ = 1,X19 ¢ 7, X O | (A.3.5)
*yC _ 1,0 * 0,1
TXC = X0 g 7O (A.3.6)

151



A. Mathematical Appendix

Furthermore, the notion of differential forms on complex manifolds is a straightforward ex-
tension of differential forms on real manifolds. Due to the above structure of the tangent
space it is, however, possible to separate a p-form into r-holomorphic and s-anti-holomorphic
parts, with p = 7 + s, as follows. Let A be a p-form on X, then we write 4 € Q"9)(X) =
ArTEX 0 @ AsTX O and

A=Ay g 5002 A ANdET NN N (A.3.7)

The exterior derivative acts on A as follows:

A, . - - , . _ _
dA = Wdz“+1 ANdZ" A o NdZTANAZ N N dES (A.3.8)
zr
OAiy v 51 7e 5 i ir A J5dst1 A J5T1 Ts
+Wdz Ao ANAZT NI NdZIY N NS
z S

We often abbreviate this by dA = dA + A, where d and 9 (Dolbeault operators) act as
exterior derivatives on the holomorphic and anti-holomorphic part respectively, as in the case
of differential geometry on real manifolds. It is easy to see that d?> = 0 requires 0% = 9% =

{9,0} =0.
In analogy of Def. A.12 we can define the Dolbeault cohomology:

Definition A.30 (Dolbeault cohomology). Let X be a complex manifold. Then we define
the (7, s)-th Dolbeault cohomology group as

(rs) Z5”
HI (X, €) = ol (A.3.9)

where Z5° and B3" denote the spaces of O-closed and O-exact (r, s)-forms, respectively. This
means that A € Z5° implies A = 0, and if A € B5” then there is a (r,s — 1)-form B such
that A = 0B.

In the following we drop the d-symbol on H g,s) and only write H().

Definition A.31 (Metric). Let X be a complex manifold. Call the map
9:T,X¢ xT,X® = C (A.3.10)

metric if the following properties are satisfied: Let wy,ws € TpXC, i.e. we can write w; = r-+1is,
wo = u + v where r, s,u,v € T, X, then we require linearity

g(wla w2) = g(r, u) - g(s, ’U) +1 [g(’r, U) + 9(87 ’U,)] . (A311)
The components are defined by g;; = g (%, %) and g;; = ¢ (%, %). Clearly, it holds
9ij = 9ji, 9i5 = 97> Giy = 97 and Gi; = gz

Definition A.32 (Hermitian metric). Consider a metric g with the additional restrictions
gi; = 0 and (hence) g;; = 0. Then, g ist called a hermitian metric. One can then write

9 = gizdz' @ dZ7 + grdz' @ d27 . (A.3.12)
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Definition A.33 (Kéhler form and Kéhler manifolds). Let ¢ be a hermitian metric. Then
define the (1,1)-form
J =igidz' NdZ . (A.3.13)

Call J Kahler form iff dJ = 0. The corresponding complex manifold X is then a Ké&hler
manifold.

Corollary A.34. Let g be a hermitian metric on a Kéhler manifold. Then it holds

0gi;  Ogi;
= - A3.14
Ozk 07 (A-3.14)

and there is an analogous relation with z and z interchanged.
Corollary A.35 (Kéhler Potential). Locally there is a scalar function IC such that

Pk
917 yi0m

(A.3.15)

Thus, J = i00K.
Now we return to the Dolbeault cohomology group and define the Hodge numbers:
Definition A.36 (Hodge numbers). Call
h"* = dim H™*(X, C) (A.3.16)
the Hodge numbers of X.

There is an analogy to the Hodge decomposition theorem:

Theorem A.37. The p-th complexified cohomology group HP(X)C of a Kihler manifold X
can be rewritten as the direct sum of the Dolbeault cohomology groups as follows:

H'(X)C = @ H™(X). (A.3.17)
r+s=p

For the proof it is useful to introduce the Laplacian operators Ay = 2014+010, A 5= 00t +0'0,
where 0f = — x 0% as well as 91 = — x 9x. One can show that on Kéhler manifolds A; =
205 = 2A;.

Corollary A.38. It follows that the Betti numbers are given by
P
w(X)=> rPRX) . (A.3.18)
k=0

It is useful to be aware that there is a similar result of Cor. A.25, which implies h™*(X) =
h"=mn=5(X). For a Kéhler manifold X we have, by taking the complex conjugate, h™*(X) =
" (X).

Example A.39 (K&hler Manifolds). Every Riemann surface is a Kéhler manifold. This is
because any 2-form on a manifold with complex dimension 1 is closed. Hence, dJ = 0 follows
automatically.
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Example A.40 (Kéhler Manifolds). The ordinary complex projective n-space CP" is a Kah-
ler manifold. The complex projective space is defined by an equivalence relation (21, ..., z2p41) ~
(Az1, ..., Azn41) where at least one z; # 0 and A € C. Let z; # 0, then choose X\ = % and

local coordinates are defined by

1 ny— (AL F-l ZHl o Entd A.3.19
(g‘] "'75]) - (Zj’“" ZJ ) ZJ 3ty ZJ ) * ( . )

Most importantly for the thesis, there are particular complex manifolds, which are called
Calabi- Yau manifolds.

Definition A.41 (Calabi-Yau manifolds). A Calabi-Yau (CY) manifold is a compact, com-
plex Kéhler manifold with SU(d) holonomy. Equivalently, a CY manifold admits a Ricci flat

metric. Another equivalent definition is that a CY manifold has a vanishing first Chern class,
C1 = 5= [R] =0, where R = iR;;dz' A dZ’ is the Ricci-form.

Theorem A.42 (Holomorphic d-form). Let X be a d-dimensional compact Kéahler manifold.
It holds C'; = 0 iff X admits a nowhere vanishing d-form €2, the holomorphic d-form, i.e.

Q22 = f(2Y o 2Ddzt A A2t (A.3.20)
Thus, CY d-folds always have a nowhere vanishing holomorphic (d, 0)-form.

Remark A.43 (Hodge-diamond of CY manifolds). CY-manifolds exhibit a particular struc-
ture of the Hodge numbers. Generally those can be ordered in a diamond structure. Here we
give some examples.

(i) The K3 surface, a CY 2-fold, has the structure:

h90 1
hl,O hO,l 0 0
h%0 ht:t hO:2 = 1 20 1 (A.3.21)
h! h1:2 0 0
h?2 1

(ii) Calabi-Yau 3-folds generally have the following structure:

ho0 1
ht0 ot 0 0
h2,0 hl’l h0,2 0 hl,l 0
h3,0 h2’1 h1,2 hO,S — 1 h2,1 h2,1 1
h3’1 ]’L2’2 h3,1 0 hl,l 0
]’L3’2 h2,3 0 0
h3:3 1
(A.3.22)
The Euler character of such a CY 3-fold Xg is given by:
6
X(Xe) = 30 (=1)PbP(Xe) = 2 (R (Xe) — ! (Xe)) (A.3.23)
p=0

where the Betti-numbers b” can be computed by (A.3.18).
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(iii) For CY 4-folds Xg a similar, but bigger Hodge diamond can be written down. There
are only three independent Hodge numbers h!, A1 and h?!, characterising Xg. They
determine the Hodge number h%?2 as follows [15; 17]:

h*2(Xg) = 2 (22 + 2011 (Xg) + 20%1 (Xs) — h?L(Xy)) - (A.3.24)

As above, the Euler character is then given by:

8
X(Xg) = Y (—1)P0P(Xs) = 6 (8 + hMH(Xg) + P (Xg) — hz’l(Xg)) . (A.3.25)
p=0

Finally, note that on CY 4-folds the number of complex structure moduli is given by
h31(Xg). The number of Kéhler moduli remains h'!(Xg).

Given a CY-manifold, it is in general highly non-trivial to find the Hodge numbers. Examples
and explanations can be found e.g. in [15; 17].

Remark A.44 (Mirror symmetry). Another feature of complex geometry is closely related
to T-duality in string theory. It is called mirror symmetry and the conjecture is as follows
[15]: Let Xg be a CY 3-fold. Then, in almost every case there exists another CY 3-fold Y
such that

HP(Xg) = H>P9(Yg) (A.3.26)

and thus h''1(Xg) = h?1(Yg) and vice versa.
In fact, this is related to T-duality in string theory. Let us look at a simple example, the
2-torus: T2 = S! x 81, so the torus can be imagined as a S! fibration over S*. Let

T=1— and p=1R1 Ry (A.3.27)

be the complex structure and the Kéhler modulus, respectively. Performing T-duality on the
fibered circle, we exchange R; < R% and hence 7 <+ p. This corresponds precisely to the
exchange of h'! and h?!.

Moreover, since type IIA string theory becomes type IIB under T-duality, we can state that
compactification of type ITA string theory on a CY 3-fold is equivalent to compactification of
type IIB string theory on the mirror manifold (see also [18]).
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APPENDIX B

Decay Rates in the Non-Sequestered LVS

B.1. An Overview of General Results

In this part of the appendix we state for completeness the relevant general formulae for the
decay rates used in Chapter 2. The results can also be found in [122] and are thus not

original.!

Decays into Axions

Let Ty = 7 + iap be the bulk Kéhler modulus. The decay of 7, into the axions a; arises due

the kinetic term
L = Kq, 7, 0T  f(1)(0ap)?

(B.1.1)

which yields, by expanding about the VEV 7, = (13,) + d7p, the relevant interaction term:

Z D 8be(7-b)|7'b:<7b> 5Tb(8ab)2 .

By canonical normalisation, ¢ = /2K, 7, 07, and a = /2K, 1 ap we get

1 abe 2
TyTy

From here one can calculate the decay rate for the process ¢ — aa:

3
['(¢ — aa) = L (On S

T 64t K3 - M2
64m KTbTb M

Plugging in K = —31n(T} + T) the decay rate (2.2.9) follows.

!Mind the slightly different normalisation of the fields in the subsequent presentation.

(B.1.2)

(B.1.3)

(B.1.4)
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Decays into the Higgs Sector

Starting from the Kéhler potential
K D Zy|Hy|* + Za|Ha|* + g(Ty, + Tp)) (H,Hy + h.c.) , (B.1.5)

see [122], the leading interaction term in the Lagrangian is
1 o9

D -
2\ 2Ky 5 ZuZa

where H, ¢ are normalised by H, 4 — /22y qH, 4. We dropped terms involving [1H because
on-shell we have OH = m?; < mé and hence the contributions to the decay rate are subleading
(see also [118]). The decay rate is then

mio(HyHq+h.c.) (B.1.6)

1 (99 M
I'(¢p — H,Hy) 7 Ky Zua Mz (B.1.7)
Again, the respective decay rates for the various scenarios can be computed. For the non-
sequestered LVS we have to take into account that only decays into the light Higgs are
possible and thus the above decay rate has to be multiplied by sin?(23)/2. Furthermore, for
the scenario where the visible cycle is stabilised by D-terms, one first has to integrate out T,
(Kéhler modulus for the visible cycle) by T, = ¢ 1.

Decays into Gauge Bosons

The interaction term is obtained from .# O [ d20T,W,W<, see (2.3.8). By canonical normal-
isation, i.e. Fj, — /fvisFpuw, we get

1

1
D —
8 2K, 7 Re(fuis)

For N, gauge bosons the decay rate for the process ¢ — AA is given by

(Re(@r, fuis)dtr(Fu F*) = T (O, fuss) $tr(F F)) . (B.1.8)

_ N |07, fuis]? 1 ni)’
1287 (Refuis)2 Kq, 7, M2~

T(¢ — AA) (B.1.9)

In the sequestered LVS 07y, fvis = 0 and the decay channel can only take place at one-loop,
which is highly suppressed. For the non-sequestered LVS it is easy to see that the above result
yields (2.3.13)
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APPENDIX C

On Gravitational Instantons

C.1. Derivation of the Metric Structure of Gravitational Instantons

We present a derivation of the metric (5.2.4) following [243], which also shows that C' arises
as an integration constant. The most general 4d line element with rotational symmetry is

ds® = \(r)dr® 4 r2dQ3, (C.1.1)

where d)3 represents the metric on S®. Let us be more generic than in (5.2.1) and consider
a set of moduli ¢! on moduli space with metric G :

S = / dz./g [—;RJF %G[ H(6)g0,0' 0,07 | . (C.1.2)

Due to the rotational symmetry of our system we take ¢! = ¢!(r). Variation of S with respect
to ¢X yields the equation of motion

11
(Vag' Grs0”) = SVag oK Grd” 6" = 0. (C.1.3)

Here, the prime denotes the derivative with respect to the coordinate r and Ok the derivative
with respect to ¢’*. Let us introduce a new variable 7 such that dr/dr = v/99"". The equation
of motion above can then be rewritten as the geodesic equation on moduli space, i.e.

D¢l + 11,0970, 6" =0, (C.1.4)
with Christoffel-symbols I‘g 1, for the metric Gr;. Along the geodesics we then have
0- (G1,0-6"0-¢") =0 (C.1.5)

or, expressed in the coordinate r,
k ~ kX(r)
(Vagm)? 1S

where we introduced a constant k& and used (C.1.1).

Gr¢''e" =

; (C.1.6)
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Furthermore, the rr-component of the energy-momentum tensor is

C.1.6) kA(r)
6

The algebraic form of A(r) can now be read off from the rr-component of Einstein’s equations.

The rr-component of the Einstein tensor is

1
T = 5Gro6” (C.L7)

Grr = 2 (1= A(r)) (C.1.8)

and hence G,, = T, yields

Alr) = (1 + g)_l , (C.1.9)

where C' = k/6 is indeed an integration constant. It is interesting to note that the metric
component g, is determined independently of the functional form of G ().

Also note that the metric is asymptotically flat, because A(r) — 1 as r — oo.

Finally, we want to remark that for the creation of Euclidean wormholes (C' < 0) it is
necessary to have Gy;¢'T¢'/ < 0 (see (C.1.6)). While one cannot simply put a wrong sign
into the kinetic term of the scalar fields, one can instead consider a Lagrangian with a 2-form
gauge field, whose dual field is an axion. According to our discussions of quantum mechanical
dualisation in Section 5.2.1, this axion is imaginary at the saddle-point of the path integral
and effectively obtains an opposite sign in the kinetic term. Moreover, for solutions with
C > 0 one necessarily needs to include dynamical scalar fields so that Gy ¢ ¢’ > 0.

C.2. Charge Quantisation

Let us first recall how flux and charge quantisation usually work in a Ba-/6p-theory with
strings and fundamental instantons. For any 3-cycle S% we have

QB/ H3 = 27n (C.2.1)
S3
with integer n.! Analogously, for any 1-cycle S*, we have

Qg/ Fi =2mm, (C.2.2)
Sl

m € Z. Obviously, n and m can only be non-zero if the relevant cycle is either non-trivial in
M or if it encloses the appropriate charged object.

The above are just the familiar flux quantisation conditions. In order to derive charge
quantisation, we temporarily go back to Minkowskian space and use the equations of motion
of

S:—/ 12H3/\*H3+QB/ Ba A jo, (023)
M 293 M

where jo is the current modelling the distribution of strings. It can be defined explicitly by
Js;j2 = N, where N is the number of strings intersecting some surface ¥. Without loss of
generality we choose N = 1. From the equation of motion for Bs,

d(1/g * H3) = —Qpjo, (C.2.4)

!This follows from assuming gauge invariance of the coupling term in (5.2.6), i.e. one can define B with either
the south- or north pole of S* removed, getting the same result in both cases. This is another argument to
see the necessity of the i-factor in front of the coupling terms.
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we find, using Stokes theorem:

2mm

QB:—/ 1/g%*H3:—/ Flzi. (025)
ox ox o
In the last step we used Fi-flux quantisation. Thus, we see that

QpQy = 2mm, (C.2.6)

which is the well-known Dirac quantisation condition. For the following, we take the freedom
to choose Qg = 1, i.e. the periodicity of the axion field is in this case 6y — 0y + 27. Then,
combining (C.2.6) with m = 1 (here we assume that a string with smallest charge exists) and
(C.2.1), we find that the quantisation condition on Hs can simply be expressed as

/33 Hy—n. (C.2.7)

This flux quantisation condition (C.2.7) is at the heart of gravitational instanton solutions.

Now, we are actually interested in potentials introduced by gravitational instantons, i.e., in
shift symmetry breaking by quantum gravity. Hence, assuming the existence of fundamental
instantons defeats the purpose. So let us see how far we get with the logic above if we abandon
the source term in (5.2.5).

First, if we allow for geometries with non-trivial 3-cycles, the H3 flux quantisation condition
(C.2.1) can still be derived. All we need is the existence of strings coupled to By. This then
also implies that @ p is quantised. By contrast, (C.2.2) cannot be derived without assuming
the existence of fundamental instantons. However, if we allow for geometries which also
have non-trivial 1-cycles (see Figure 5.2), and if we postulate that the dual potential 6y is
a globally defined function taking values on S* (i.e. 6y = 6y + 27)), then both (C.2.2) and
charge quantisation, (C.2.6) and (C.2.7), follow.

C.3. Dualisation under the Path Integral

In Section 5.2.1 we are interested in computing

1 )
<H§F)\ o—HT |H?EI)> ~ / d[H3]d[0o] exp {—/ = (Hg NxHs + QZQ%QOdHS)} , (C.3.1)
b.c. M 2gB

which is (5.2.12). Here, T'= tp — t;. At the end we want to obtain a path integral over the
variable 6y, i.e. (5.2.15). This is nothing but dualising from a set of canonical momentum
variables to their generalised coordinates.

Thus, we illustrate the subtleties of the computation leading to (5.2.15) by considering
the quantum-mechanical harmonic oscillator, i.e. H = ¢?/2 + p?/2. The momentum p then
corresponds to the background flux (H3) or, more precisely, to the quantised charge n, while
the position variable ¢ corresponds to §y. The transition amplitude from state |gr) to |¢r)

reads
(arl e far) = [ dip) |

b.c.

tp

dlg] exp{ dt (ipq — H(q,p»}, (C.3.2)

tr

with boundary conditions ¢(t7) = ¢r and ¢(tp) = qr imposed.
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In fact we rather want to compute (pr|e H7 |pr), which is expressed similarly:

wrle ™ o) = [[ala) [ aesp{ [ e (~iap — )} (€33

b.c. tI
t

— [dia [ deso{ [ at pd ~ Ha.p) fexp (~itarpe — )}

where we impose again p(t;) = pr and p(tr) = pp. In the second step we integrated the first
term of the exponential by parts. In our case we have H = ¢?/2 + p?/2 which allows us to
complete the square. Integrating out p without worrying about the boundary conditions to
be imposed yields the desired result

(prle™ T |pr) ~ /d[q] exp (—i(qrpr — qipr)) e 1%, (C.3.4)

see also [273] for comments on the integration over the momentum. We wish to have a closer
look at this decisive step.
To do so, we write the amplitude (pr|e™ 7T |p;) as:

(prle™ T |pr) = /d(HdQF (prlar) (arle T |ar) (arlp1) - (C.3.5)

Now let us assume that the two dual relations (C.3.2) and (C.3.3) hold. Then, in particular,
(C.3.2) implies
(ol far) = [ dlgle™, (€:3.0)
.C.
and the result (C.3.4) follows immediately (use (p|q) = e~*P?). The operation of integrating
out p while disregarding its boundary conditions is thereby indirectly justified.
Finally, we can demonstrate this directly and explicitly by writing?

(prl e Ipr)
N N-1
:/ I dam [ dpn (prlan) (anle™ ™ Ipr-1) (px—1lan—1) {av—1le "|pn—2) - ..
m=0 n=0
- Ap1lar) {arle"Ipo) (polqo) {qolpr) , (C.3.7)
where e = T/(N + 1) and qo = q7, gv = qr. This becomes the discretised version of (C.3.3):

N N-1
<pF|efHT lpr) :/ H dgm H dpn e~ tan(pr—pNn-1)-H(gN.pN-1)e
m=0

n=0

.. e~ ta1(p1—po)—H(q1,p0)e ,~iqo(po—pr) (C.3.8)

For the harmonic oscillator (and in fact for more general potentials V(g)) we can integrate
out po, ...,pn—1 (after completing the square for each p,,). As a result we find

N 9 5

- | | ; q gqN — gN-1
<pF|€ HT |p[> N/ dqm eXp{_ZQNpF}eXp{—éVE—(%)},“
m=0

2 2
...€exp {—(1216 - ((_1126(10)} exp {iqopr} - (C.3.9)

This is precisely the discretised version of (C.3.4). Hence, integrating out the momenta from
(C.3.3) to (C.3.4) without considering the boundaries is indeed justified.

2We are grateful to K.-M. Lee for pointing out this possibility and for further discussions on this issue. See
also [236].
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C.4. Analytical Solutions to Einstein’s Equation

Einstein’s equation (5.2.25) which follows from the action (5.2.19) can be solved analytically.
We explain how to arrive at solutions (5.2.27), (5.2.34) and (5.2.35) for C' < 0, C' = 0 and
C > 0, respectively.

First of all, (5.2.25) can be rewritten as:

(C.A4.1)

1 1
& [ 4o e = e

Thus, integral representations can in principle be obtained for any F. For F(p) = 1/(3!f2,) exp(—

explicit solutions exist.
For the RHS, one finds

,/2%' arcsin ( v C) +const for C <0

\f/d C'/r4 \/;arcsmh (‘F) + const for C >0 (C.4.2)
_\/gﬁ + const for C' =0,

where we use the substitution y = /]C]/r? for C # 0. The integral on the LHS can be
rewritten as

1 1
+ do ;
VIC] VEexp(—ayp) £1
with k = n2/(3!|C|A2f2). If C > 0 (C < 0), the positive (negative) sign under the square
root applies. In the case of C' > 0 we substitute

(C.4.3)

sinhy = \}E exp(ap/2), (C.4.4)

and for C < 0 we take

siny = \}E exp (ap/2) . (C.4.5)

Using appropriate identities for the hyperbolic or trigonometric functions, one arrives at
+ / d L -
" Vep(—ap)n? [BIEAD + O

iﬁ {arcsin (% exp (a<p/2)) - const} for C <0

= i% [arcsmh (f exp(agp/Q)) — const} for C >0

i% exp (ap/2) + const for C =0.

(C.4.6)

From here one can read off the solutions, which can be rewritten as (5.2.27), (5.2.34) or
(5.2.35).

C.5. Computation of the Instanton Action

We present further details of the computation of the instanton action in Section 5.4. The
computation consists of determining the on-shell contribution from the action and the contri-
bution coming from the Gibbons-Hawking-York boundary term. We begin by looking at the
latter, where we follow [92].
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Gibbons-Hawking-York boundary term:

The Gibbons-Hawking-York boundary term is

Sy = — ¢ d*zvVh(K — Ky), (C.5.1)
oM

as described around (5.4.4). Starting from our metric ansatz (5.2.4) we choose hypersurfaces
of constant r. The normal unit vector n is then

C 9
=4/14+ ——. C.5.2
" + rd Or ( )
The trace of the extrinsic curvature is
K =V,nt = 9gn" + T4, n" (C.5.3)
where V is the Levi-Civita connection on M. One finds
2C c\' o3
FﬁT = = <1 + 104) + o (C.5.4)
and therefore
K=vV,n" 3 1 C\'* C.5.5
_“n_r(+7a4> . (C.5.5)

By taking C' = 0 we can also read off the trace of the extrinsic curvature of 0M embedded in
R4:
Ky=-. (C.5.6)

,
1/2
(e S) ]
T

with surface area A = 272 of S3. Recall that according to our conventions the volume form
on S3 contains a factor r3. Clearly, for C = 0 we have Sgiy = 0. For C' > 0 the boundary is
at r =0 and at r = oo,

It then follows

, (C.5.7)

boundary

Scry = —jf egs(K — Ko) = —3Ar?
oM

Sary = 3ACY/2, C > 0. (C.5.8)
In the case of C' < 0 the integral vanishes, because we always consider instanton-anti-instanton
pairs, so Sguy = 0.
These are the results used in Section 5.4.

On-shell contribution:

We now evaluate the bulk action (5.2.19) on-shell, i.e. we plug in the equations of motion
successively. As described in Section 5.4, the first step is to express the Ricci scalar R by the
trace of the energy-momentum tensor using Einstein’s equations:

R=-T. (C.5.9)

The energy-momentum tensor T}, from the action (5.2.19) is

1 1
T = =guv 5]:(90)}]2 + 58/)@3;)90 +3F(p)Hpupo H,” + 0,00, (C.5.10)
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Consequently,
T =g"Tu = F(p)H? — (0p)*, (C.5.11)

and then (5.2.19) becomes simply
3

S = /d%@f(@fﬂ - A/dr\/lj;w}"(go)Hz, (C.5.12)

where we used the rotational symmetry of our system. Next, we plug in the solution to

(5.2.21),
n

A3

and restrict ourselves to F () = exp(—a)/(3!f2.), for which we know the analytical solutions:

H= (C.5.13)

(C.5.14)

S n’ /dr ! exp(—ay)
= xp(—ap).
Af2 r3y/1+C/rt plmay

It is then convenient to rewrite the action as an integral over dy using Einstein’s equation
(5.2.25). We consider only regular solutions. They are monotonically decreasing and therefore
we have ¢/(r) < 0 everywhere. Hence,

_ exp(—ayp)
i Afi /dgp VnZexp(—ap) /(A2 f2) +6C° (C.5.15)

The integral has to be evaluated case by case.
For extremal gravitational instantons with C' = 0 we have

n [P() 2n
S = ——/ doexp(—ap/2) = . C.5.16
A p(-ap/2) =~ ™ ( )

In the case of C' > 0 we obtain
2 ¢(00) —
so [, exp(~ap)
Afd Jeo) T /n?exp(—ap)/(A2f2) + 6C

2n (o) 2n
= exp(—a) + sinh? K = e K+, C.5.17
0 fax (—ap) + (0) & fax ( )

where we used (5.2.36) and took K4 > 0. Combining this with the GHY boundary term
yields the desired instanton action (5.4.14).
Finally, for Euclidean wormholes, i.e. for C' < 0, we have

3

v1i-=[C]/r

where the factor of two occurs because the left integral is over the whole Euclidean space,
and hence accounts for the whole wormhole and thus for the instanton and anti-instanton,
while the integral on the RHS integrates from the centre of the wormhole to one end. The
appearance of this factor may be seen more easily by evaluating the integral on the LHS using
the t-coordinate (5.2.33) and then changing coordinates from ¢ to r. As was noted in [197],
this contribution has to be divided by two, because the instanton action Sinst should only take

S = /d4x\/§]:(g0)H2 =2x A/OO dr F(p)H?, (C.5.18)
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into account half of the full wormhole action. Consequently, using the equations of motion as
in the previous cases,

n? () exp(—ayp)
Sinst = —ﬁ/ dp——= 272
ax Jo(ro) \/n exp(—acp)/(A fax) - 6|C|
2n

(C.5.19)

am 3
n|l—x1/=11.
4 V2

Hence, (5.4.19) follows, where we can drop the modulus due to the restriction to 0 < a <

2,/2/3.

 afax

C.6. On the Kadhler potential on a CY 3-fold with S = iu

We try to justify that

K=-In(S+S)-3mU+0) (C.6.1)

effectively becomes -
K=—-4In(U +7U) (C.6.2)

upon choosing S = U. Note that for simplicity we defined S such that the i-factor is removed.

Algebraically, this is clear. What is actually happening is the following. Let us define ¢ = U
and ¥ =S — U. The idea is to fix ¢ at ¥ = 0 and keep ¢ dynamical. In terms of ¢, the
Kéhler potential reads

K=—-In(+v%+¢+¢)—3n(p+ ). (C.6.3)
Again, K = —41n(¢ + ¢) follows for ¢ = 0.

This level may still be too naive, hence let us choose another approach following [243]3:

Once again, we start with (C.6.1). We write S = s+ i and U = u + i. The line element
on the Kédhler manifold reads
1
T 4s?

3

de? -
4u?

1 3
2 2 2 2
ds —i-@da + du —i—@du. (C.6.4)

Let us define ,0 as s = e 2% and u = e=20/V3 Tt follows:

di? = dp? + e*¥do? + db? + 646/\/§d1/2, (C.6.5)

where 0 = §/2 and v = /2.
Later we wish to stabilise at S = U. This then implies s = v and ¢ = v. The condition
s = u yields

¢:jg (C.6.6)
This motivates us to introduce 1 as follows:
= \/gi_ 9_ (C.6.7)
The orthogonal direction is parameterised by
§= W, (C.6.8)

31 thank L.T. Witkowski for suggesting this computation.
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as can be seen by the corresponding rewriting of the metric:
A2 = dy? + de2 + 2V o2 4 o 2/V3H2 g2 (C.6.9)

Restriction to ¢ = 0 gives
de* = de? + e*(do? + dv?). (C.6.10)
Furthermore, we have to account for o = v. In the very same spirit as above we define

g —V

P=—7 (C.6.11)
and o+v
r="f (C.6.12)
Again, S = U implies p = 0. Hence, at S = U:
de* = de? + e*dr?. (C.6.13)

But such a line element can also be obtained from K = —4In(V 4 V) with V = v 4 i7:
o L o 1.,

For v = e~¢ this is consistent with (C.6.13).

C.7. Estimating the Size of the Prefactor A in the Instanton
Potential

The contribution of gravitational instantons to the axion potential is given by 6V = Ae~ cos(nf).
While it has been proposed e.g. in [101; 108] that A ~ 1 (in Planck units), we attempt a some-
what more precise estimate. This is inspired by the analogies between gravitational instantons
and instantons arising from Euclidean branes wrapping an internal cycle of the compactifica-
tion manifold (see e.g. [92; 101; 108]). Let us start by recalling how the latter contributes to
the supergravity F-term potential in a simple setup.

We consider a Fuclidean brane instanton modifying the perturbative superpotential Wy as

W =Wy + A(z)e 7T, (C.7.1)

where z denotes the complex structure moduli and 7' is a Kéahler modulus.
Then the supergravity F-term potential

Vi = e (KD;W D;W — 3|W %) (C.7.2)
is corrected at leading order by
oV ~ eBWyA(z)e ™ | (C.7.3)

where 7 is the real part of 7. Recall that K = —2InV+..., which gives a suppression by 1/12.
Furthermore, we rewrite the above expression in terms of the gravitino mass mg,; ~ Wy A%
and the KK-scale mgy ~ 1/V%/3:

1 mg)2

oV ~ ——
V5/3 MKK

z)e . (C.7.4)
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If we were allowed to compare this with (5.6.1) then, using mg/, S mkxk, we would conclude
that AC2)
z

A ’S V5/3

(C.7.5)

in Planck units. Here we identified exp(—a7) with exp(—S) motivated by the obvious analogy:
Indeed, the Euclidean brane action is proportional to the brane tension and the volume of
the cycle. Similarly, the action of a cored gravitational instanton is proportional to the ADM
tension of a black brane wrapping a cycle in a higher-dimensional version of the gravitational
instanton system, see e.g. [92] for an example.

Nevertheless, our proposal to estimate A by (C.7.5) remains nontrivial. Indeed, we first need
to consider a large wrapping number n to relate to the calculable regime on the gravitational
side. This is unproblematic in the present case since these higher instantons will contribute
to W analogously to (C.7.1). Next, we are not interested in Euclidean brane instantons (their
effect is well-known) but in some possibly very different type of instanton arising in a string
model and not having a simple microscopic description. The claim or proposal implicit in
(C.7.5) is then that this instanton may, conservatively, also be suppressed by a factor .4
which becomes small as the KK-scale and SUSY breaking scales go down. This appears to be
reasonable since, beyond the simple Euclidean brane case discussed here, higher-dimensional
and SUSY-based cancellations are expected to occur above those scales.

Accepting the above proposal, compactification volumes in the range V ~ 10% to 10® imply
A ~ 107* and 1075, respectively, assuming that A(z) = O(1). Note that in order to avoid
destabilisation of the Kéhler moduli the compactification volume is at most of order O(103),
see e.g. [112; 155; 156]. Nevertheless, the suppression by e~ remains dominant in all regimes
we considered.
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