
DISSERTATION
submitted

to the
Combined Faculty for the Natural Sciences and Mathematics

of
Heidelberg University, Germany

for the degree of
Doctor of Natural Sciences

Put forward by

Diplom-Informatiker: Alexander Alexopoulos

Born in: Heidelberg

Oral examination:

Multi-Agent Pursuit of a Faster Evader
with Application to Unmanned Aerial

Vehicles

Advisor: Prof. Dr. sc. techn. Essameddin Badreddin

Για τoυς γoνέις µoυ.

For my parents.

Abstract

Robotic applications like search and rescue missions, surveillance, police mis-
sions, patrolling, and warfare can all be modeled as a Pursuit-Evasion Game
(PEG). Most of these tasks are multi-agent problems, often including a co-
operation between team members and a conflict between adversarial teams.
In order to realize such a situation with robots, two major problems have
to be solved. Initially, a decomposition of the PEG has to be performed for
getting results in reasonable time. Present embedded computers lack the
computational power enabling them to process the highly complex solution
algorithm of the non-decomposed game fast enough. Secondly, a framework
has to be defined, enabling the computation of optimal actions for both the
pursuers and the evaders when a cooperation within the teams is possible. It
is intended to develop strategies, that allow the team of pursuers to capture
a faster evader in a visibility-based PEG setup due to cooperation.

For tackling the first problem a game structure is sought, aiming to consider-
ably reduce the time complexity of the solution process. The first step is the
decomposition of the action space, and the second is the change of the game
structure itself. The latter is reached by defining a two-pursuer one-evader
PEG with three different game structures, which are the Non-Decomposed
Game, the Multiple Two-Player Game Decomposition (MTPGD) game, and
the Team-Subsumption Two-Player Game (TSTPG). Several simulation re-
sults demonstrate, that both methods yield close results in respect to the
full game. With increasing cardinality of each player’s strategy space, the
MTPGD yields a relevant decrease of the run-time. Otherwise, the TSTPG
does not minimize the time complexity, but enables the use of more sophis-
ticated algorithms for two-player games, resulting in a decreased runtime.

The cooperation within a team is enabled by introducing a hierarchical de-
composition of the game. On a superordinate collaboration level, the pur-
suers choose their optimal behavioral strategy (e.g. pursuit and battue)
resulting in the case of a two-pursuer one-evader PEG in a three-player non-
cooperative dynamic game, which is solved in a subordinate level of the
overall game. This structure enables an intelligent behavior change for the

ABSTRACT iv

pursuers based on game-theoretical solution methods. Depending on the
state of the game, which behavioral strategy yields the best results for the
pursuers within a predefined time horizon has to be evaluated. It is shown
that the pursuer’s outcome can be improved by using a superordinate co-
operation. Moreover, conditions are presented under which a capture of a
faster evader by a group of two pursuers is possible in a visibility-based PEG
with imperfect information.

Since Unmanned Aerial Vehicles (UAVs) are increasingly a common platform
used in the aforementioned applications, this work focuses only on PEGs with
multi-rotor UAVs. Furthermore, the realization of the concepts in this thesis
are applied on a real hex rotor. The feasibility of the approach is proven in
experiments, while all implementations on the UAV are running in real-time.

This framework provides a solution concept for all types of dynamic games
with an 1-M or N -1 setup, that have a non-cooperative and cooperative
nature. At this stage a N -M dynamic game is not applicable. Nevertheless,
an approach to extend this framework to the N -M case is proposed in the
last chapter of this work.

Zusammenfassung

Robotikanwendungen wie Such- und Rettungseinsätze, Überwachung, Poli-
zeieinsätze, Patrouille, und Kriegsführung können alle als PEG modelliert
werden. Die meisten dieser Aufgabenbereiche sind Multi-Agenten-Probleme,
welche oftmals sowohl eine Kooperation zwischen Teammitgliedern, als auch
eine Konfliktsituation mit einem gegnerischen Team beinhalten. Um eine
solche Situation mit echten Robotern realisieren zu können, müssen zwei
wesentliche Probleme gelöst werden. Zuerst muss eine Zerlegung des PEG
durchgeführt werden, um Ergebnisse in akzeptabler Zeit bekommen zu kön-
nen. Die heutigen Embedded Computer wiesen nicht die nötige Rechenleis-
tung auf, um den höchst komplexen Lösungsalgorithmus des nichtzerlegten
Spiels schnell bearbeiten zu können. Zweitens muss ein Framework definiert
werden, das die Berechnung von optimalen Aktionen sowohl für die Verfolger
als auch für die Verfolgten ermöglicht, wobei eine Kooperation innerhalb der
Teams möglich ist. Es ist beabsichtigt, Strategien zu entwickeln, mit denen
es einem Team von Verfolgern ermöglicht wird, einen schnelleren Verfolgten
in sichtbasierten PEGs durch Kooperation einzufangen.

Um das erste Problem anzugehen, werden Spielstrukturen gesucht, die die
Zeitkomplexität des Lösungsprozesses erheblich reduzieren. Der erste Schritt
ist die Zerlegung des Aktionsraumes, der zweite die Veränderung der Spiel-
struktur selbst. Für letzteres wird ein zwei-Verfolger-ein-Verfolgter PEG in
drei verschiedenen Spielstrukturen definiert: das nichtzerlegte Spiel, das MT-
PGD Spiel und das TSTPG. Durch eine Simulationsreihe wird gezeigt, dass
beide Methoden Lösungen nahe den Lösungen des nichtzerlegten Spiels lie-
fern. Mit steigender Kardinalität des Strategieraums der Spieler, liefert die
MTPGD eine erhebliche Minderung der Laufzeit. Außerdem wird durch die
TSTPG die Zeitkomplexität zwar nicht vermindert, jedoch können nun aus-
geklügelte Algorithmen für Zwei-Spieler-Spiele benutzt werden, die wiederum
die Laufzeit erheblich reduzieren.

Die Kooperation innerhalb eines Teams wird durch die Einführung einer
hierarchischen Zerlegung des Spiels ermöglicht. Auf einer übergeordneten
Kollaborationsstufe können Verfolger ihre optimalen Verhaltensstrategien

ZUSAMMENFASSUNG vi

wählen (z.B. Verfolgung und Treibjagd), die im Falle eines zwei-Verfolger-
ein-Verfolgter PEGs zu einem Drei-Spieler-, nicht-kooperativen dynamischen
Spiel führen, das auf der darunterliegenden Stufe des Spiels gelöst wird. Diese
Struktur ermöglicht den Verfolgern eine intelligente, auf Spieltheorie basie-
rende Verhaltensumschaltung. Abhängig vom aktuellen Spielzustand kann
evaluiert werden, welche Verhaltensstrategiekombination das beste Resultat
über einen vordefinierten Zeithorizont für die Verfolger erzielt. Es wird ge-
zeigt, dass das Ergebnis der Verfolger durch eine übergeordnete Kooperation
verbessert werden kann. Außerdem wird gezeigt unter welchen Bedingungen
der Fang eines schnelleren Verfolgten durch eine Gruppe von zwei Verfolgern
in sichtbasierten PEGs mit imperfekter Information möglich ist.

Da unbemannte Luftfahrzeuge heutzutage häufig als Platform für die oben
genannten Anwendungen eingesetzt werden, wird in dieser Arbeit der Fokus
auf PEG mit mehrrotorigen UAVs gelegt. Außerdem werden alle Konzep-
te, welche in dieser Arbeit entwickelt werden, auf einem echten Hexakopter
realisiert. In Experimenten wird die Umsetzbarkeit der Methoden bewiesen,
wobei alle Implementierungen auf dem UAV in Echtzeit laufen.

Das Framework bietet ein Lösungskonzept für jegliche Art von dynamischen
Spielen mit einem 1-M oder N -1 Setup, die einen nicht-kooperativen und
einen kooperativen Anteil haben. In diesem Stadium ist ein dynamisches N -
M Spiel nicht durchführbar. Nichtsdestotrotz wird im letzten Kapitel dieser
Arbeit ein Lösungsvorschlag beschrieben, wie das beschriebene Framework
auf den N -M Fall erweitert werden kann.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof.
Dr. sc. techn. Essameddin Badreddin for the continuous support, for his
patience, motivation, and immense knowledge. His guidance helped me in
all the time of research and writing of this thesis.

I am especially grateful to M.Sc. Tobias Schmidt, M.Sc. Benjamin Kirsch
and M.Sc. Tim Cottin for the support in overcoming numerous obstacles I
have been facing through my research.

I would like to thank all my fellow workers at the Automation Laboratory of
the Institute for Computer Engineering (ZITI) of the Heidelberg University
for their feedback, cooperation and of course friendship.

Last but not the least, I would like to thank my friends and my family: my
parents, my fiancée and my sisters for supporting me throughout writing this
thesis and my life in general.

Contents

Nomenclature xviii

1 Introduction 1

1.1 Motivation . 1

1.2 State of the Art . 4

1.3 Main Contributions . 9

1.4 Problem Statement and Solution Approach 12

1.4.1 Problem Statement . 12

1.4.2 Solution Approach . 13

1.5 Outline of the Thesis . 15

2 Assumptions, Formulations, and Definitions 17

2.1 Assumptions . 17

2.1.1 Unknown Environment with Obstacles 17

2.1.2 Discretization of Time and Euclidean Space 18

2.1.3 Sensing within a Bounded Line of Sight 18

2.1.4 Multi-Pursuer-Single-Evader PEGs 18

2.2 The Properties of Pursuit-Evasion Games 19

2.2.1 Teams and Players . 19

CONTENTS ix

2.2.2 Stages . 19

2.2.3 Attribute Information 20

2.2.4 Dynamics . 20

2.2.5 Observations . 21

2.2.6 State Information . 21

2.2.7 Strategies . 23

2.2.8 Cost Functional . 24

2.2.9 Termination . 24

3 Game Theory Preliminary 25

3.1 Non-Cooperative Games . 25

3.1.1 Two-Player Zero-Sum Games 25

3.1.2 Discrete-Time Dynamic Zero-Sum Games 28

3.1.3 N-Player Non-Zero-Sum Games 29

3.1.4 Discrete-Time Dynamic N-Player Non-Zero-Sum Games 31

3.2 Cooperative Games . 32

3.2.1 Nash Bargaining Solution 32

3.2.2 Pareto Efficiency . 34

4 Time-Complexity Reduction for Multi-Player Games 35

4.1 Full-Dimensional Action Space vs Decomposed Action Space . 35

4.1.1 Two-Player PEG with UAVs (Full Game) 36

4.1.2 Decomposition of the Action Set 39

4.1.3 Time-Complexity Analysis 40

4.1.4 Comparison . 40

4.2 Multi-Player Game Decomposition 43

CONTENTS x

4.2.1 Two-Pursuer-One-Evader Pursuit-Evasion Game . . . 45

4.2.2 Full Game . 47

4.2.3 Multiple Two-Player Game Decomposition 48

4.2.4 Team-Subsumption Two-Player Game 51

4.2.5 Time-Complexity Analysis 54

4.2.6 Comparison . 55

4.3 Conclusion . 59

5 Cooperation and Behavior Assignment 61

5.1 Superordinate Cooperation in PEGs 62

5.2 Team-Behavior Game . 65

5.2.1 Battue and Pursuit . 65

5.2.2 Comparison for Games with Perfect State Information 67

5.3 Team-Behavior Game with Delayed Observation Sharing and
Imperfect Information . 70

5.3.1 PEGs with Zero-Delay Observation Sharing 73

5.3.2 PEGs with N-Delay Observation Sharing 83

5.4 Conclusion . 84

6 Implementation and Comparative Study 87

6.1 RNBC Structure for UAV Agents 87

6.2 Comparison to the Performance Map Approach [RT07] 89

6.2.1 The Performance Map Approach for PEGs with UAVs 90

6.2.2 Simulation Set-Up . 93

6.2.3 Performance Measure 94

6.2.4 Simulation: Slower Evader 95

CONTENTS xi

6.2.5 Simulations: Equally Fast Evader 98

6.2.6 Simulations: A Faster Evader 101

6.2.7 Conclusion . 104

7 Realization of the Experimentation Platform 107

7.1 Autonomous Hex-Rotor UAV for PEGs 107

7.2 Hardware . 109

7.3 Dynamical Model . 113

7.4 Attitude Control Layer . 116

7.5 Velocity Control Layer . 117

7.6 Collision Avoidance . 120

7.6.1 The Repulsion Force Approach 120

7.6.2 Simulations . 121

7.6.3 Conclusion . 124

7.7 Pursuit-Evasion Layer . 124

7.7.1 Validation of the Algorithm 125

7.8 Cooperative Behavior Assignment Layer 128

8 Practical Real-Time Experiments 129

8.1 Experimental Set-Up . 129

8.2 Experimental Results . 132

8.3 Conclusion . 136

9 Conclusion and Final Remarks 137

Bibliography 143

A Experimental Results (cont.) 153

List of Figures

1.1 Classification of pursuit-evasion games. 3

1.2 Decomposition of the action space. 10

4.1 Difference of the values of the game with full-dimensional ac-
tion space and game with decomposed action space. 42

4.2 Comparison of computational times for one stage. 43

4.3 Two-pursuer-one-evader pursuit-evasion game structures. . . . 44

4.4 Average runtime as a function of the number of strategies in
one stage. 56

4.5 Average of terminal stages in each quadrant. 57

5.1 Player’s structure in game with perfect state information. . . 64

5.2 Green pursuer drives evader (red) towards blue pursuer. . . . 66

5.3 Difference of average terminal stages of coop. and non.-coop
solution. 69

5.4 Player’s structure in a game with observation sharing. 72

5.5 Imperfect information: initial positions and sensing radii. . . 74

5.6 Average of terminal stages in each quadrant (evader 20% slower). 75

5.7 Average of terminal stages in each quadrant (evader 10% slower). 77

5.8 Perfect state information (all players with equal max speed). . 79

LIST OF FIGURES xiii

5.9 Imperfect state information (all players with equal max speed). 79

5.10 Imperfect state information (evader 25% faster). 80

5.11 Imperfect state information (evader 50% faster). 81

5.12 Imperfect state information (evader 75% faster). 82

5.13 Imperfect state information (evader 100% faster). 82

5.14 Imperfect state information: average of terminal stages with
increasing evader speed. 83

5.15 Course of terminal stages with increasing observation delay. . 84

6.1 RNBC structure for UAV agents. 88

6.2 PMA: minimum time map. 92

6.3 Slower evader: GTA only. 96

6.4 Slower evader: pursuers: PMA vs. evaders: GTA. 96

6.5 Slower evader: pursuers: GTA vs. evaders: PMA. 97

6.6 Slower evader: PMA only. 98

6.7 Equally fast evader: GTA only. 99

6.8 Equally fast evader: pursuers: PMA vs. evaders: GTA. 99

6.9 Equally fast evader: pursuers: GTA vs. evaders: PMA. 100

6.10 Equally fast evader: PMA only. 101

6.11 Faster evader: GTA only. 102

6.12 Faster evader: pursuers: PMA vs. evaders: GTA. 103

6.13 Faster evader: pursuers: GTA vs. evaders: PMA. 103

6.14 Faster evader: PMA only. 104

7.1 Implementation of the autonomous agent. 108

7.2 Hex-rotor UAV. 109

LIST OF FIGURES xiv

7.3 BeagleBone black [Bbb]. 110

7.4 Vectornav VN-200 rugged [Vn2]. 111

7.5 ComNav K501 GNSS board [K50]. 111

7.6 ComNav T-300 GNSS base station [T30]. 112

7.7 XBee RF module [Xbea]. 112

7.8 Graupner MX-20 [Mx2]. 113

7.9 Mechanical configuration of a hex rotor with body fixed and
inertial frame [Kir15]. 114

7.10 Repulsion force principle. 121

7.11 Values of stages required for capture. 123

7.12 Pursuit-evasion game with a moving obstacle. 124

7.13 Value of stages needed for capture (embedded computer). . . 126

7.14 Difference of value of stages needed for capture in Matlab

and on the embedded computer. 127

8.1 Experimental set-up. 130

8.2 Anemometer Windmaster 2 [Wm2]. 131

8.3 Experiment 1: actual UAV evader. 133

8.4 Experiment 2: actual UAV pursuer 1. 133

8.5 Experiment 3: actual UAV pursuer 2. 134

8.6 Experiment 4: actual UAV evader. 135

8.7 Experiment 5: actual UAV pursuer 2. 135

9.1 Exemplary RNBC implementation for PEG UAV agents with
player assignment. 142

A.1 Experiment 1: actual UAV pursuer 1. 153

A.2 Experiment 1: actual UAV pursuer 2. 154

LIST OF FIGURES xv

A.3 Experiment 2: actual UAV evader. 154

A.4 Experiment 2: actual UAV pursuer 2. 155

A.5 Experiment 3: actual UAV evader. 155

A.6 Experiment 3: actual UAV pursuer 1. 156

A.7 Experiment 4: actual UAV pursuer 1. 156

A.8 Experiment 4: actual UAV pursuer 2. 157

A.9 Experiment 5: actual UAV evader. 157

A.10 Experiment 5: actual UAV pursuer 1. 158

List of Tables

3.1 Zero-sum matrix game. 26

5.1 Static cooperative game for behavior assignment. 64

5.2 Average of terminal stages in B1. 70

5.3 Average of terminal stages in B2. 70

5.4 Average of terminal stages in B3. 70

5.5 Average of terminal stages in B4. 70

5.6 Terminal stages in games with perfect and imperfect state
information in quadrant B1 (evader 20% slower). 75

5.7 Terminal stages in games with perfect and imperfect state
information in quadrant B2 (evader 20% slower). 75

5.8 Terminal stages in games with perfect and imperfect state
information in quadrant B3 (evader 20% slower). 76

5.9 Terminal stages in games with perfect and imperfect state
information in quadrant B4 (evader 20% slower). 76

5.10 Terminal stages in games with perfect and imperfect state
information in quadrant B1 (evader 10% slower). 77

5.11 Terminal stages in games with perfect and imperfect state
information in quadrant B2 (evader 10% slower). 77

LIST OF TABLES xvii

5.12 Terminal stages in games with perfect and imperfect state
information in quadrant B3 (evader 10% slower). 77

5.13 Terminal stages in games with perfect and imperfect state
information in quadrant B4 (evader 10% slower). 78

6.1 Simulation configurations. 94

6.2 Approach combinations for each series (1000 simulations). . . 94

6.3 Results GTA vs. PMA: slower evader. 97

6.4 Results GTA vs. PMA: equally fast evader. 100

6.5 Results GTA vs. PMA: faster evader. 102

7.1 Identified system parameters. 116

7.2 Back-stepping controller parameter set. 117

8.1 Experiment 1: set-up. 131

8.2 Experiment 2: set-up. 131

8.3 Experiment 3: set-up. 131

8.4 Experiment 4: set-up. 131

8.5 Experiment 5: set-up. 132

Nomenclature

Variables
Υ Multi-Rotor Input Space
υ Multi-Rotor Inputs
∆t Time Step
Γ Strategy Space of the Game
Γki Set of Strategies of pi in Stage k
γki Strategy of pi in Stage k
Γi Strategy Space of pi
X̂ Observation Set of the Game
X̂k
i Observation Set of pi in Stage k

x̂ki Observation of pi in Stage k
ι State Information of the Game
κki State-Observation Equation of pi in Stage k
b Behavioral Strategy
E Evading Team
K Set of Stages
P Pursuing Team
pj Pursuing Player j
Φ Set of Roll Angles
Φ×Θ×Ψ Attitude Space
Π N -team discrete-time deterministic dynamic game with non-

fix terminal time
πki Attribute Information of pi in Stage k
Ψ Set of Yaw Angles
τ Set of all Players of the Game
Θ Set of Pitch Angles

NOMENCLATURE xix

X State Space of the Game
Ξ Terminal Set of the Game
τ ιkJ State Information of Team J in Stage k
τπkJ Attribute Information of Team J in Stage k
dϵ Capture Distance
fk Difference Equation of the Game
g Gravitation Constant
gk Cost of pi in stage k
Ir Rotor Moment of Inertia
Ix Inertia around x-axis
Iy Inertia around y-axis
Iz Inertia around z-axis
J Cost Functional with Mixed Strategies
K Terminal Stage of the Game
k Stage
L Cost Functional of the game
l Cantilever Length
P ×Q×R Angular Velocity Space
P Angular Velocity around x-Axis
Q Angular Velocity around y-Axis
R Angular Velocity around z-Axis
rS Sensing Range
U Action Set of the Game
Uki Action Space of pi in Stage k
V Value Function
Vx × Vy × Vz Linear Velocity Space
Vx Linear Velocity Set in x-direction
Vy Linear Velocity Set in y-direction
Vz Linear Velocity Set in z-direction
X × Y × Z Position Space
X Position Set of the x-Axis
Y Position Set of the y-Axis
Z Position Set of the z-Axis
eo Evading Player o
qk∗ Optimal Probability Distribution over the Action Space
uki Actions of pi in Stage k

NOMENCLATURE xx

xk State of the Game in Stage k

Abbreviations
LoS Line of Sight
MTPGD Multiple Two-Player Game Decomposition
PEG Pursuit-Evasion Games
PMA Performance Map Approach
RNBC Recursive Nested Behavioral Control
TSTPG Team-Subsumption Two-Player Game
UAVs Unmanned Aerial Vehicles
VTOL Vertical Take-Off and Landing

1 Introduction

1.1 Motivation

Game theory is the study of non-cooperative and cooperative decision situ-
ations. It is a framework for the modeling of situations where two or more
players are faced with choices of action. These choices affect the outcome
of every player. With other words, the final outcome of a game depends on
the strategies chosen by all participants. Hence, game theory is the general-
ization of single-agent optimization problems, like optimal control or linear
programming. A wide class of multi-player games are called Pursuit-Evasion
Games (PEGs). PEGs describe a class of optimization problems, in which
an agent or a team of agents aim to catch an adversarial agent or team of
agents, while the latter try to avoid capture. In general, capture is equal
to the fulfillment of one or more conditions, which depend on the specific
problem being considered. Ever since carnivorous creatures have existed,
pursuit-evasion games have taken place in the natural world. The predator
hunting the prey, or in other words the pursuer chasing the evader. Espe-
cially for predators hunting in packs, e.g. lions, intelligent hunting behaviors
have been observed. Regarding a lion versus a gazelle scenario, the possi-
bility for the lion to capture the gazelle through an ordinary pursuit (one
on one) is not as big as one might assume. Although the lion has a higher
maximal speed, his limited stamina demands that capture occurs in the first
few seconds of the chase. Especially for feral feline predators, intelligent pur-
suing strategies are essential for their survival. In order to maximize their
chances of getting a meal, lions often try to ambush their prey by applying
a battue; one or more lions hiding in the bushes, while another lion drives

Chapter 1 – Introduction 2

the prey towards this direction. Once the prey spots the hidden lions, it is
often too late to escape.

Some conceivable applications for PEGs are search and rescue missions
[CHI11], police missions (search and capture) [CHI11; Mor+05], patrolling
[AGI08], surveillance [BBH14b; ZL11], and warfare [SS95; Pon11; TS03].
As depicted on Figure 1.1, each application incorporates several topics. Al-
though capture-and-escape problems are a sub-class of PEGs, battue games
[She02] have fuzzy borders to PEGs. Search games are a distinct class of
problems and are not regarded in this work. The visibility-based PEG are
often treated in literature as a combination of search and PEG [GTG06;
SO14a; SO14b]. One or more pursuers, having a limited visibility, try to
find one or more evaders, and depending on the problem formulation, try to
catch them. Regarding most applications in which PEGs could be utilized,
a search of the targets must be performed at first, e.g. cops and robbers
games or search and capture games. This work focuses on the search-free
game classes, while regarding mostly the class of multiple-pursuer single-
evader PEGs providing a game-theoretical formulation for such problems.
Game theory is used to solve these type of games, as it represents the most
general framework for multi-player optimization problems. Game theory is
characterized by the following three properties:

• The solution of the problem depends on the actions of all involved
players.

• Everybody considers the actions of all involved players.

• Everybody is acting rationally.

Generally, such multi-player games are problems with more than one in-
volved player or party. The solution process of such problems is often very
complex and depends on the number of players and the number of available
strategies for each player. One may distinguish between non-cooperative and
cooperative games. In non-cooperative games or conflict games, all involved
parties have differing goals, meaning that every party wants to maximize its
outcome and at the same time maximize the losses of the adversarial agents.
In cooperative games usually all involved agents have the same overall goal
and try to find optimal strategies that maximize the outcome of the team.

Chapter 1 – Introduction 3

Figure 1.1: Classification of pursuit-evasion games.

No matter which applications are modeled as PEG, the essence of the fol-
lowing questions can be projected to any of them. ”Is the pursuer able to
catch the evader?” or in other words ”Does the PEG converge to a solution?”

This thesis proposes a framework enabling the computation of such hybrid
game-theoretical problems. The multi-player PEG is divided into two levels.
The lower level describes the non-cooperative part of the game and the upper
level describes the cooperative part of the game. In the upper level, a team
has the opportunity to negotiate about the ideal role for each team-mate to
maximize the outcome. In the lower layer, this behavior is applied against
the opponents in the non-cooperative game. Regarding the PEG example
with the hunting lions, a hard-running and more maneuverable animal like
a gazelle can be caught much more easily through cooperation and outnum-
bering. This approach is formulated in this work for a team of autonomous
pursuers trying to catch a faster and more maneuverable autonomous evader.
In chapter 5, an approach is proposed imitating this behavior.

As stated above, one disadvantage of a game-theoretical solution process lies
in the computational complexity. Regarding the utilization of PEGs in real
applications, the following question arises: ”Can I obtain a solution within a
reasonable time period?” With respect to the above mentioned applications,
it is more than likely that a team of pursuers and a team of evaders are
opposing each other. Utilization demands a short reaction time and thus

Chapter 1 – Introduction 4

the answer to this questions will mostly be “no”. This work emphasizes the
reduction of time complexity by means of game decompositions for which
computationally efficient algorithms exist.

Due to the recent development status of embedded computers and batteries,
more and more battery-driven unmanned aerial vehicles (UAVs) are used
for the aforementioned applications. Especially rotary-wing or vertical take-
off and landing (VTOL) UAVs are a common platform in these applications.
Even though the mission time of such UAV agents is still limited, the trend in
battery research points to a rapid increase of the energy density of batteries,
making the usage of battery-driven UAVs even more attractive. This work
focuses on the application of UAVs in PEGs. In particular, the realization
of a hex rotor test platform will be described, which is used to show the
feasibility of the presented approaches in this work by experiments.

1.2 State of the Art

The very first step for a general definition of game theory were made by
Emile Borel in 1921 [Bor21], when he proved a minimax theorem for two-
player zero-sum games with symmetric pay-off matrix. He presumed, that
there are cases in two-player zero-sum games where a mixed strategy is non-
existent. The work of John von Neumann published in 1928 [Neu28] demon-
strated that Borel’s presumption was wrong. Von Neumann proved that each
two-player zero-sum game has a solution in mixed-strategies. This work and
his book published with Oskar Morgenstern in 1944 [NM07], which focused
on game theory and its applications to economics including concepts for co-
operative games, initiated the birth of modern game theory. John Nash was
the one to prove the existence of an equilibrium for non-cooperative nonzero-
sum n-player games [Nas50a]. Even today, the Nash equilibrium is still the
most common method for solving non-cooperative games. John Nash also
published [Nas50b] and [Nas53], where he proved the existence of the Nash
bargaining solution for cooperative games. In addition to von Neumann and
Nash is Shapley, who also contributed to solution methods for cooperative
games, such as the Core [Sha52] and the Shapley Value [Sha53]. Another
key figure in this space is Rufus Isaacs, the father of differential games, was
a member of the RAND Corporation (Research and Development) where he

Chapter 1 – Introduction 5

conducted his studies in this topic. RAND was founded to act as a “think
tank” financed, among others, by the U.S. government, which loomed large
especially in the cold war.

One of the first, if not the first, formulated and most famous PEGs is the
lion-and-man problem, which originated in the 1920s when R. Rado posed
the following question: ”A lion and a man are both inside a circular arena,
each running at the same constant speed. Can the lion catch the man?”
[Nah12]. However, Rufus Isaacs was the first to mathematically formulate
PEGs in [Isa51] and his book “Differential Games” [Isa65]. He addressed
PEG problems of the two-player zero-sum type, while the kinematics of the
players are described by differential equations. He defined a framework for
solving such games, by solving partial differential equations, later called the
Hamilton-Jacobi-Isaacs equation, and also known as the Hamilton-Jacobi-
Bellman-Issacs equation, because of the affinity with dynamic programming
[Bel57] introduced by Bellman at about the same time (1957). Furthermore,
Isaacs introduced discrete differential games, providing a dynamic program-
ming like solution. Many famous two-player PEG were introduced in Isaacs
book. For example, the “homicidal chauffeur game”, which is, alongside “the
game of two identical cars”, one of the most investigated differential games.
Extensive research has been done on both problems, resulting in many rele-
vant variations [Mer72; PT00; Mit01; PT11]. Later, differential games were
generalized to N-Player games, while dynamic programming for N-player
games was introduced as a solution method in [BO99] yielding a Nash equi-
librium, when a solution is existent. As, Bellman’s dynamic programming
was introduced to be applied on discrete-time optimal control problems, and
as game theory is the generalization of optimal control, [BO99] introduced
a framework to solve N-player discrete-time dynamic games with dynamic
programming. Dynamic programming suffers from the “curse of dimension-
ality”. This means that the computation of an optimization problem, like a
dynamic game, becomes very complex, as the time-complexity is increasing
exponentially with the number of players, the number of strategies and the
number of state variables.

In recent years, the multi-player (mostly 1-N or N-1 games) PEG have been
investigated more and more, especially for the utilization in robotic applica-
tions. Two problems arise when regarding such games. On the one hand, the

Chapter 1 – Introduction 6

cooperation between team-mates and on the other hand the increase in time-
complexity. While in literature some solution methods for 1-N or N-1 PEGs
can be found [KR05; BBH07; Ls10; LQT12; Liu+13; WF13], these methods
either neglect an explicit cooperation within teams or provide a limited co-
operation capability. Another method that was utilized in [CSG09], [RT07],
and [Pan+12] were two solution approaches for n-pursuer single-evader PEGs
enabling a dynamic role assignment, e.g. pursue or contain target. In both
approaches, the player’s role assignment depends on specific conditions on
the player’s states. In terms of game theory, a negotiation and agreement
between team-mates on which role to be assigned has to take place, which
is not the case.

When it comes to multi-pursuer multi-evader PEGs, little work has been
done mainly due to the time-complexity of present solution algorithms.
[LU06] and [LCS08] for instance tackled this problem by trying to extend the
differential game theory for multi-pursuer multi-evader PEGs. A subopti-
mal solution was iteratively improved based on limited look-ahead methods
that approach an optimal solution. Nevertheless, the authors stated that no
practical algorithm exists for such a problem. Another work dealing with
this problem is [Wei+07]. Decomposition of the game is used to reduce the
time-complexity of the solution process. However, as in the above mentioned
literature tackling 1-N and N-1 games, no explicit cooperation takes place
regarding the assignment of a pursuer to an evader.

While currently the computation of two-player dynamic games with a rea-
sonable set of strategies and states is utilizable for most real-time applica-
tions, the time-complexity of the solution method for multi-player games is
not feasible. There are two ways to tackle this problem. The first one is
to determine the open-loop solution of the game, as presented in [Liu+13].
An open-loop formulation of a single-pursuer multiple-evader PEG was pre-
sented there. The open-loop approach was chosen here, to avoid the com-
putational burden, given by the Hamilton-Jacobi-Isaacs equation, giving a
closed-loop solution. Within an actual application, the open-loop method
would fail. Since in open-loop games the opponents play cannot be observed,
even a slight disturbance or sensing errors lead to a non-predictable deviation
of the opponents state. The second way is to decompose the game into multi-
ple, easier to handle, two-player games, or even into multiple optimal control

Chapter 1 – Introduction 7

problems as proposed in [Ge+06; RT07; FV13]. In [RT07], for instance, two
different approaches were discussed for time-complexity reduction. In one
approach, the game is decomposed into multiple two-player PEGs, while
the Hamilton-Jacobi-Bellman-Isaacs equation is solved using “fast marching
methods” [SV03], as a conditional pursuer-evader assignment is performed.
The other proposed approach is a method for solving multi-pursuer and
faster single-evader games. The “performance map approach (PMA)” di-
vides the game into multiple minimum-time optimal control problems solved
with the “fast marching method”. Having the minimum-time maps, the pur-
suers are able to compute possible interception strategies, while the evader
can determine the best escape path. In [Ge+06] a hierarchical decompo-
sition approach for pursuit-evasion differential games was proposed. They
aimed to decompose the game, such that it can be solved in a distributed
fashion. After a prediction step, all evaders are assigned to a pursuer, result-
ing in multiple two-player games. Whereas a reassignment of an evader to a
pursuer is possible, implying some kind of cooperation between pursuers, an
evader is always only playing one two-player game against one single evader,
while pursuers without an assigned evader try to remain in “potential future
capture regions”, which are seen as obstacles the evader will have to avoid. A
sophisticated approach for the pursuers is given, yet a game-theoretical solu-
tion for the evaders against all other pursuers is neglected. [FV13] provides
an analytical solution of a decomposed multi-pursuer single-evader PEG. For
certain specially structured differential games, it is shown that a decompo-
sition of the original problem into a family of simpler differential games is
possible. These games can be computed by solving the Hamilton-Jacobi-
Isaacs equations for each sub-game and constructing optimal strategies for
the overall game from those for the simpler problems. At this point this so-
lution approach is applicable on a class of multi-pursuer single-evader games.

Besides the performance map approach presented in [RT07] (stated above)
more effort was done in the field of multi-pursuer pursuit of a faster evader.
[Wei+07], for instance, states that capturing of a faster evader in a game with
perfect state information cannot be guaranteed, while giving a necessary
condition for capturing on the plane. In [AS16] a decentralized learning
method based on fuzzy reinforcement for pursuing teams in PEGs with a
faster evader on the plane is proposed. The learning algorithm is used to tune

Chapter 1 – Introduction 8

the parameters of a formation controller. The pursuer surround the evader,
trying to overlap their capture regions. Thereby the evader’s escape strategy
is to maximize the distance to only the nearest pursuer. This fact restricts the
evader strategy considerably. It was not analyzed whether the evader can be
captured, while escaping from each pursuer in equal measure. Another multi-
pursuer faster-single-evader situation, where the pursuers and the evader
form an Apollonius circle was regarded in [JQ10] and [RK15]. Under specific
conditions, the pursuers are able to maintain a shrinking Apollonius circle,
making an escape of the evader impossible. Both propose evading strategies,
aiming to prolong the capture, or even leading to a successful escape, in the
case of a gap appearing in the Apollonius circle, caused by a limited number
of pursuers. Nevertheless, such a formation is very hard to achieve in real
applications, due to dependencies of the initial position of each player.

Generally, PEGs may include static and moving obstacles of all shapes
and sizes. Furthermore, all involved players have to be seen as obstacles.
Therefore, a collision avoidance capability is indispensable for the players
in such PEGs. Two different approaches to this can be found in the liter-
ature. Firstly, the obstacles are included in the optimization process, and
secondly the obstacle avoidance task is treated as a distinct behavior of
the autonomous agent. Regarding the first approach, [GRH10] established
a sufficient condition for capture of an evader with a single pursuer in a
visibility-based pursuit and an environment with unknown obstacles. Pur-
suing strategies were developed for a circular and a single unknown convex
obstacle. Moreover, [BHB09] presents a solution for a differential game for a
visibility-based two-player PEG with holonomic agents in a known bounded
environment, showing optimal strategies for a point and hexagonal obsta-
cle and a corner. Following this work, [BBH14a] proposed a solution for a
visibility-based PEG in presence of one circular obstacle, while in [BBF14]
a numerical approximation for that solution was developed. Later, an ex-
tension of that approach to polygonal obstacles for agents with no motion
constraints was proposed in [ZB16]. Since those approaches include the
obstacle in their optimization process, and in addition can only apply to
specific shapes, neglecting the dynamical constraints of the agents, they do
not yet seem to be applicable to real applications. The second approach was
addressed by [AX09] and [DZJ12]. In [AX09], the two-dimensional environ-

Chapter 1 – Introduction 9

ment was represented by a graph. For each robot an evaluation function
determines the vertices, that should be visited to fulfill its mission (i.e.,
pursue or evade). Furthermore, the collision avoidance is implemented on
the wheel-axis-level control. Three sensors cause the wheel motors to speed
up or slow down proportionally with the distance to the detected obstacle.
[DZJ12] proposes an hybrid algorithm for PEGs in a two-dimensional space,
based on improved potential field and differential games. According to the
distances to obstacles and the adversarial agent, the algorithm determines
either to avoid collisions or to play the PEG.

In summary, the current methods for solving PEG are either extensively
time-complex, or the decomposition of the game leads to results far away
from those of the full game. Mostly, those approaches make a one-to-one as-
signment, neglecting the presence of all other players participating in the full
game. Moreover, a cooperation in multi-player games within a team is either
neglected or performed limitedly. Furthermore, there are no approaches for
PEGs, where the obstacle avoidance runs simultaneously to the PEG, but
those that include them in their optimization problem as additional con-
straints. Lastly, all present approaches for PEG are difficult to extend to the
N-pursuer-M-evader case. In the following, those issues will be addressed.

1.3 Main Contributions

The overall goal of this thesis is to demonstrate a framework for multi-
pursuer single-faster-evader PEGs, which is utilizable in real-time applica-
tions with UAVs. Therefore, this work focuses on the following major topics:

• Reducing the time-complexity of a game.

• Introducing the cooperation and the behavior assignment within a
team.

• Incorporating the collision avoidance as an integral part of the solution
approach.

• Facilitating the extensibility to multi-pursuer multi-evader games.

Chapter 1 – Introduction 10

Figure 1.2: Decomposition of the action space.

The first part deals with the time-complexity reduction of multi-player
games. Generally, this is achieved by two concepts:

i. Action space decomposition

ii. Game decomposition

In PEG all players have to decide whether, and if so, in what amount to
move to a specific direction in x, y, and z. As depicted on figure 1.2, the
action vector is a combination of inputs manipulating the motion in all di-
rections for an agent. For example, a reference velocity vector for x, y, and
z, a decomposition of the action space to motion commands in x, y, and z

direction, respectively, is possible. Therefore, e.g., the optimal x-action for
each player is determined independently to the optimal action for the y and
z direction. This results in three distinct games. It is shown that the time
complexity is reduced by an exponent of 3, but at the same time increased
by a factor of 3. Moreover, the approach provides close results to the full
game. The average terminal stage difference of all considered simulations
with full and the decomposed action space, is given by 0.039 stages with a
standard deviation of 0.37 stages (≡ 0.037s capture time).

Next, two different game structures, which are utilizable for multi-player
games are presented:

i. The first approach, the Multiple Two-Player Game Decomposition
(MTPGD), decomposes the game into multiple two-player games, while

Chapter 1 – Introduction 11

the results in respect to the full game deviate with an average of 0.66
stages with a standard deviation of 6.81 stages (≡ 0.681s capture time).
The cost functionals of each resulting two-player game, are such that
the actual position of all other involved players are also taken into
account. After the computation of all distinct solutions, they are com-
bined to one overall solution of the game. This approach reduces the
time-complexity and enables the usage of more sophisticated solution
algorithms, existing only for two-player games, like the Lemke-Howson
algorithm [LJTH64]. Using the latter reduces the run-time by a factor
of ≈ 70 for S = 9, while S is the number of strategies per axis and per
player.

ii. The second approach, the Team-Subsumption Two-Player Game
(TSTPG), encapsulates each team to one super player with extended
action set. While the solution of this type of game is closer to the
solution of the full game (average deviation of 0.23 and standard devi-
ation of 3.53 stages (≡ 0.353s capture time)), there is no improvement
in the time complexity. Nevertheless, the usage of the Lemke-Howson
algorithm is possible, providing a run-time improvement by a factor of
≈ 21 for S = 9, while S is the number of strategies per axis and per
player.

In the sequel, a framework is presented, enabling a superordinate coopera-
tion within a team. Due to a negotiation process, team-mates are able to
assess, which behavioral strategy maximizes the outcome of the team for a
given time horizon. While this approach is generally applicable, it is used
here, to introduce the two pursuing behavioral strategies pursuit and battue.
The behavior of a player is switched by altering its cost functional, whereby
a higher outcome for the team can be achieved. However, in a PEG with
perfect information structure, the gain in outcome is limited (up to 13.25%).
The benefit in visibility-based PEG with imperfect information under real-
istic circumstances is even bigger. This set-up enables the lion-like hunting
behavior; one or more pursuers in the visibility of the evader try to drive
it towards one or more pursuers outside its visibility. The results against
an slower evader are much better under this set-up (up to 73.89%), as the
capture of a faster evader is possible. With the results of two-pursuer-one-
evader PEG simulations with autonomous agents, sets of initial positions for

Chapter 1 – Introduction 12

which the evader can be captured, for different pursuer-evader speed ratios,
have been determined. It is also assumed that members of a team are able to
share their observations. Under realistic conditions, such a communication
results in a delayed observation sharing. It is found out that the usage of
a Kalman Filter makes a capture of an equally fast evader, even with an
observation delay of 6 stages, possible.

Besides the above mentioned capabilities of the autonomous agents in the
game, a collision avoidance behavior is implemented. The obstacle avoidance
is separated from the optimization problem, being a behavior on a lower level
of complexity than the non-cooperative and the cooperative game. The re-
pulsion force approach is used to generate a reference velocity vector, which
is added to the reference provided by the PEG behavior, resulting in a pursu-
ing/evasion behavior with obstacle avoidance. The simulation results reveal,
that a one-pursuer-one-evader game with a faster pursuer still converges in
presence of obstacles. Moreover, it can be seen that the capture time in-
creases for initial conditions in the vicinity of obstacles.

Lastly, several practical experiments with an actual multi-rotor UAV prove
the real-time feasibility of these approaches.

1.4 Problem Statement and Solution Approach

1.4.1 Problem Statement

A team of UAV pursuers and a single UAV evader with identical dynamic
constraints are facing a conflict situation called PEG. The pursuing agents
try to capture the evader, while the evader tries to avoid capture. The game
takes place in a three-dimensional unbounded and unknown environment.
The UAVs are capable of avoiding collisions with static and dynamic obsta-
cles. Moreover, an attitude and linear velocity controller is implemented on
each UAV agent.

Since, the situation is considered as a N-player discrete-time deterministic
dynamic game, a solution must fulfill the following requirements:

Chapter 1 – Introduction 13

• All agents have to consider that the solution of the problem depends
on the decisions of each participant.

• The players must be able to react to unexpected behavior (closed-loop
solution).

• The pursuers have to cooperate, allowing the capture of a faster evader.

In general, the solution process of such a game is very complex. It is required,
that the time and space complexity of the solution algorithm allow an ap-
plication in real-time. Regarding present computers, the time-complexity
reduction of the solution methods for dynamic games is necessary to deal
with multi-pursuer-single-evader PEGs.

1.4.2 Solution Approach

First of all, a two-player PEG with UAVs is defined. This example enables
the demonstration of the action space decomposition. This decomposition
method is applicable to any type of game, provided the players have more
than one controllable degree of freedom.

Based on the action space decomposition, alterations of the game structure
itself are regarded. Without loss of generality, a two-pursuer-one-evader PEG
with UAVs is chosen for the definition of the approaches. Besides the full
game, the MTPGD and the TSTPG approaches are introduced and defined.

The MTPGD, partitions the regarded game in two independent two-player
PEGs. It is expected that the time-complexity of the solution algorithm
can be reduced by its multiple with increasing strategy space. Moreover, a
combination method of the distinct two-player game results has to be found,
leading to a solution as close as possible to that of the full game. The
MTPGD is supposed to be a decomposition which enables a real-time com-
putation in games with many players and/or strategies demanding a short
reaction time. Since it decomposes the game into many independent two-
player games, a parallel computation is possible. Consequently, a processor
with N computational units, is able to compute the solution of a 2N -player
game without any time loss.

Chapter 1 – Introduction 14

In the TSTPG the two pursuers are combined to one super-pursuer. Ob-
viously, the combination of the pursuers yields in an expanded pursuer’s
strategy space. Due to this transformation of the game structure, the time
complexity does not change at all for the utilized algorithm (npg). Never-
theless, it is expected, that the solution is much closer to the solution of the
full game, than it is with the MTPGD. The advantage of this decomposition
is that more sophisticated solution approaches, only available for two-player
games, can be utilized. The TSTPG is supposed to be used in games with
a relatively small number of players and strategies, demanding a more exact
solution in respect to the full game.

In order to enable an intelligent team-based pursuit, a novel cooperative
approach on top of the non-cooperative game is introduced. A superordi-
nate cooperative team-behavior game is defined, while the solution of this
game yields an optimal behavior for every player within a team. For the
multi-pursuer-single-evader game, two behavioral strategies are defined: On
the one hand, the conventional pursuit and on the other hand the battue
behavior. Based on game-theoretical methods for cooperative games, the
pursuers are able to negotiate from time to time, which pursuing behavior
maximizes their outcome. Therefore, a comparison of three game-theoretical
solution methods (Pareto Efficiency, Nash Bargaining Solution, Nash Equi-
librium) with the original game is done. While the improvement in games
with perfect state information is expected to be limited, games with imper-
fect information, in particular visibility-based PEGs with UAVs are analyzed,
too. It is given, that the pursuers are able communicate with each other in
such a set-up. This assumption is used, to analyze whether an equally fast
or faster evader can be caught with and without an information-exchange
delay of α-stages (α ∈ N).

In a next step, the cooperative and the non-cooperative game are included,
together with all other UAV behaviors, into the Recursive Nested Behavioral
Control (RNBC) structure. Using this implementation, a comparison to
another approach [RT07] is done, pursuing similar goals, which are: (i) the
time-complexity reduction of game and (ii) the capture of a faster UAV
evader with a team of UAV pursuers. A performance measure is defined
enabling the comparison of the solutions of the two approaches. A three-
pursuer-one-evader game is regarded with three different configurations: (i)

Chapter 1 – Introduction 15

slower evader, (ii) equally fast evader, and (iii) faster evader. The Monte-
Carlo method is used to perform 1000 simulations per configuration.

The applicability of practical real-time experiments is shown in five different
two-pursuer-one-evader PEG. For that, a real hex rotor UAV agent for PEGs
is realized. In the first three experiments a perfect state information struc-
ture is assumed, while the evader is slower than the two pursuers. The last
two experiments describe visibility-based PEG with imperfect information
and zero-delay observation sharing between the pursuers. In Experiment 4
the pursuers and the evader have an equal maximal speed, while in exper-
iment 5 a faster evader is assumed. A total of 15 experimental runs are
accomplished, while the UAV agent takes every player role in each of the
five experiments.

1.5 Outline of the Thesis

In chapter 2 some general assumptions, formulations and definitions are given
which are important throughout this thesis.

Chapter 3 presents all game-theoretical solution approaches used in this
work. This chapter includes, on the one hand, solution methods for static
non-cooperative and cooperative games and, on the other hand, solution
methods for dynamic games in discrete-time.

Then, solution concepts, reducing the time-complexity for multi-player
games are provided in chapter 4. It is shown, how the time-complexity
is reduced by the decomposition of the action space of the game or due to
the transformation of the game structure.

Chapter 5 demonstrates how the outcome of a team can be enhanced by
using the proposed framework for cooperation and behavior assignment for
teams in multi-player games. Moreover, it is analyzed if a faster evader can
be caught by a team of pursuers in a visibility-based PEG with imperfect
information.

In chapter 6, it is shown how the approaches can be applied to UAV agents.
Moreover, a comparison to the “Performance Map Approach” from [RT07]

Chapter 1 – Introduction 16

is performed, being a work pursuing similar goals, namely the cooperative
pursue of a faster UAV evader and complexity reduction of the algorithm.

In chapter 7 the realization of a hex rotor test platform is provided, while
all relevant parts for the PEG are described in detail. Moreover, a collision
avoidance implementation for the PEG-UAV agents is provided.

Next to the last, chapter 8 presents the experimental set-up and the results
accomplished with the test platform described in chapter 7.

Finally, a conclusion and a look ahead are stated in chapter 9.

2 Assumptions, Formulations,
and Definitions

This chapter describes all fundamental formulations, definitions, and as-
sumptions required across this work. A precise mathematical formulation
of pursuit-evasion games lays the foundations for the definition of a solu-
tion approach. Further, several assumptions have to be made to specify the
regarded problems.

2.1 Assumptions

2.1.1 Unknown Environment with Obstacles

One goal is to create a scenery for pursuit-evasion simulations, which is
a tradeoff between generality and implementability. Naturally a three-
dimensional environment with randomly arranged obstacles is assumed.
Though, an approach is sought for solving PEGs in an infinite general en-
vironment, the decisions the players are going to make in the PEG do not
depend on the environment. Nevertheless, in a general environment, all
players can face moving or static obstacles, being a threat. Therefore, each
system could be equipped with a collision avoidance. In chapter 7.6 the col-
lision avoidance extension of the UAV agents is provided. It will be analyzed
how the PEG is affected by the collision avoidance.

Chapter 2 – Assumptions, Formulations, and Definitions 18

2.1.2 Discretization of Time and Euclidean Space

The real-world PEGs take place in continuous time and space, but to be able
to simulate those scenarios and to calculate solutions numerically on digital
computers, it is suitable to discretize the mathematical evolution models
and equations, thus the game can be divided into stages of constant time
steps ∆t with each stage having a distinct solution. The fragmentation of
the overall problem into sub-problems enables the usage of several solution
methods, like e.g. dynamic programming [Bel57]. The three-dimensional
space in which the players are moving is considered to be continuous during
a PEG, but for simulation purposes all initial positions a player can take
in the environment are represented by a two-dimensional grid with integer
values.

2.1.3 Sensing within a Bounded Line of Sight

Realistic scenarios modeled as PEGs are mostly visibility-based PEGs. This
leads to at least two key questions in each pursuit-evasion situation a player
has to answer: “Where are my foes?" and “Where are my allies?". Assuming
that each player has the ability of self localization and assuming a permanent
intra-team communication, the answer to the latter seems trivial. For the
former, the following assumption is set. If there is a line of sight (LoS)
between two adversarial players and if this LoS is smaller or equal to a pre-
specified sensing range rS , both can observe each other. In other words, the
states (e.g. position, linear velocities) of a player can be estimated by the
other one and vice versa. Taken together, the intra-team communication and
the ability of estimating the states of a foe under specific conditions, enables
the observation sharing within a team. Certainly, several sensing devices
and filters need to be implemented, to be able to detect and to estimate the
states of an adversarial player, but this goes beyond the scope of this work
and thus the state estimation capability is assumed to be given.

2.1.4 Multi-Pursuer-Single-Evader PEGs

In this work, only multi-pursuer-single-evader PEGs are regarded. Since,
PEGs with an arbitrary number of teams and players are conceivable, an

Chapter 2 – Assumptions, Formulations, and Definitions 19

important question, especially for the pursuers, arises; Which evader am I
going to pursue? For the main part, this question will not be answered in
this thesis. This problem goes beyond the scope of this work. Nevertheless, a
solution concept will be introduced in chapter 9. Above all, this work tackles
the problem of catching a faster evader due to cooperation.

2.2 The Properties of Pursuit-Evasion Games

As described in chapter 1, PEGs describe a wide class of problems (see
figure 1.1). For a mathematical description a unified structure is defined,
enabling a precise characterization of such a problem. A N -team discrete-
time deterministic dynamic game with non-fix terminal time can be defined
by a decuplet Π= {τ,K,X , U, f, X̂, κ, ι,Γ, L}, with τ being the set of all
players, K being the set of stages, X being the state space of the game, U
being the action space of the game, f being the difference function of the
game, X̂ being the observation space, κ being the observation function, ι
being the state information, Γ being the strategy space, and L being the
cost functional of the game. All characteristics and attributes of a game are
described in the following sections.

2.2.1 Teams and Players

In terms of game theory, a game is an optimization problem with at least
two parties involved. Regardless whether the parties represent one or more
players, PEGs describe, in the first instance, a conflicting no-compromise
problem. Thus, on the one hand there is a pursuing team consisting of a
finite non-empty set of pursuing players P = {p1, . . . , pj}, j ∈ N. On the
other hand there is a an evading team E consisting of a finite non-empty set
of evading players E = {e1, . . . , eo}, o ∈ N. The set τ = P ∪ E contains all
teams and players involved in a game.

2.2.2 Stages

Since only discrete-time dynamic games are considered in this work, they are
divided into stages with a fixed duration ∆t. Thus, a set K= {1, 2, . . . ,K}

Chapter 2 – Assumptions, Formulations, and Definitions 20

is introduced, denoting the stages of the game, while K is non-fix and is the
stage where the game terminates.

2.2.3 Attribute Information

One of the most relevant aspects is the information available to each arbitrary
team J ⊂ τ and in particular to each arbitrary player i ∈ τ . In other
words, what does a player know about the other players at a specific time.
This includes the state variables, strategies, cost functional, but also the
number of involved players and teams in the game. The attribute information
πki summarizes all relevant characteristics of a game at stage k. Thus, it
is a subset of the complete game definition Π. If a player has complete
information, its attribute information πki is given by Πk, meaning overall
knowledge of the game in stage k. Otherwise, incomplete information means
for a player a partial knowledge about Π at a given stage k, and thus its
attribute information πki ⊂ Πk. In consequence of the cooperation between
team members, it is assumed that a team’s attribute information τπkJ, with
J ⊂ τ being an arbitrary team, is the union of all attribute information πkj ,
with j ∈ J in stage k.

2.2.4 Dynamics

Since the PEG takes place in a region of the three-dimensional Euclidean
space, each player i ∈ τ can be represented by a set of states. A dynamical
model describes the constraints of the state change. The collection of all
player’s dynamical equations constitutes the dynamical model of the game.
Given an infinite set X , being the state space with the states xk ∈ X ,∀
k ∈ K ∪ {K + 1} and a finite set U with U = Uk1 × Uk2 × · · · × UkN , while
an element Uki , with k ∈ K and i ∈ τ is the action space of player i in stage
k, whereas the elements uki are all admissible actions of player i in stage k,
the difference equation fk : X × Uk1 × Uk2 × · · · × UkN → X , defined for each
k ∈ K, is

xk+1 = fk(xk,uk1, . . . ,u
k
N), k ∈ K (2.1)

with x1 ∈ X being the initial state, describing the evolution of the game
state.

Chapter 2 – Assumptions, Formulations, and Definitions 21

2.2.5 Observations

The set X̂ ⊆ X is called the observation set of the game, while X̂k
i ⊂ X̂

defined ∀k ∈ K and ∀i ∈ τ is called the observation set of player i in stage
k. The elements of these sets x̂ki are the observations of player i in stage
k. Moreover, ∃κki (xk) : X → X̂k

i , ∀k ∈ K and ∀i ∈ τ, κki ∈ κ, being the
state-observation equation of player i, while κ =

⋃
j∈τ

κki .

2.2.6 State Information

As a strict subset of πki the finite set ιki , defined ∀k ∈ K and ∀i ∈ τ , is
the state information of each distinct player i ∈ τ , while the collection of
all ιkj of players j within an arbitrary team J ⊂ τ , with j ∈ J, is the state
information τ ιkJ of the team J in stage k. The collection of all player’s state
information ιki is the state information ι of the game. The topology of the
state information ι is given by the state-observation equation κ. Amongst
others, the following types of state information for a player i ∈ τ can be
distinguished:

Open-Loop State Information

An open-loop state information means that for all stages k, player i ∈ τ

knows only the initial state of a game:

ιki = {x1}, k ∈ K (2.2)

Closed-Loop Perfect State Information

A player i ∈ τ with a closed-loop perfect state information, has access to all
previous states of a game in stage k:

ιki = {x1, . . . ,xk}, k ∈ K (2.3)

Chapter 2 – Assumptions, Formulations, and Definitions 22

Closed-Loop Imperfect State Information

With this type of information a player i ∈ τ is able to observe or to measure
the states x̂k of a game entirely or partially in each stage k, depending on
the observation function κki :

ιki = {x̂1, . . . , x̂k}, k ∈ K (2.4)

Memoryless Perfect State Information

Contrary to the closed-loop perfect state information, a player i ∈ τ with
memoryless perfect state information, has access to the initial and to the
actual state of a game in stage k:

ιki = {x1,xk}, k ∈ K (2.5)

Feedback (Perfect) State Information

If a player i ∈ τ has only access to the actual state of a game at stage k, a
feedback information is present:

ιki = {xk}, k ∈ K (2.6)

Feedback Imperfect State Information

Player i ∈ τ is able to observe or to measure the state vector of a game x̂k

in stage k entirely or partially, depending on the observation function κki :

ιki = {x̂k}, k ∈ K (2.7)

Delayed Feedback State Information

If for player i ∈ τ the actual state of a game in stage k is only available after
a delay α, an α-step delayed feedback state information is given:

ιki = {xk−α}, k ∈ K, k > α (2.8)

Chapter 2 – Assumptions, Formulations, and Definitions 23

Delayed Imperfect State Information

An α-step delayed imperfect state information is present, if the observations
or measurements of player i ∈ τ regarding the states of a game at time k are
available after a delay α:

ιki = {x̂k−α}, k ∈ K, k > α (2.9)

Observation Sharing

For a multi-player game it is advantageous for team members to share their
information. In other words, a fixed set of players J = {j, . . . , l} ⊂ τ should
have access to all states of the game that are available to each player i ∈ J.
Thus, this type of state information is called observation sharing and is
defined by the collection of all individual state information of players i ∈ J

in stage k:

osιki = {ιki , ιkj , . . . , ιkl }, k ∈ K,∀m ∈ J | m = j, . . . , l ∧ i ∈ J (2.10)

Delayed Observation Sharing

Another state information, being relevant for this work is the delayed obser-
vation sharing. Due to a required communication channel between a fixed
set of players J = {j, . . . , l} ⊂ τ sharing their state information, a transmis-
sion delay of α stages could exist, leading to an α−step delayed observation
sharing in stage k:

osιki = {ιki , ιk−α
j , . . . , ιk−α

l }, k ∈ K, k > α, ∀m ∈ J | m = j, . . . , l ∧ i ∈ J (2.11)

2.2.7 Strategies

The strategies a player can choose during a game are defined by a set Γki
of mappings γki : X → Uki , defined ∀k ∈ K, and ∀i ∈ τ , while Γi is the
strategy space of player i. The strategy space Γ of the game is defined as
Γ = Γ1 × · · · × Γ|τ |.

Chapter 2 – Assumptions, Formulations, and Definitions 24

2.2.8 Cost Functional

The cost functional L : (X ×U1
1 ×· · ·×U1

|τ |)×· · ·×(X ×UK1 ×· · ·×UK|τ |) → ℜ
for a discrete-time dynamic game is formulated as follows:

L(u1, . . . ,u|τ |) =
K∑
k=1

gk(xk+1,uk1, . . . ,u
k
|τ |,x

k), (2.12)

with uj = (u1
j
′
, . . . ,uKj

′
)′, j ∈ {1, . . . , |τ |}. This cost functional L is called

stage-additive and implies the existence of a gk: X × Uk1 × · · · × Uk|τ | ×X →
ℜ, k ∈ K.

2.2.9 Termination

The game stops as soon as the terminal set Ξ ⊂ X × {1, 2, ...} is reached,
meaning for a given |τ |-tuple of actions in stage k, k is the smallest integer
with (xk, k) ∈ Ξ. With this definition it is possible to describe the dynamic
game in normal form (matrix form). Each fixed initial state x1 and each fixed
|τ |-tuple of admissible strategies {γi ∈ Γi; i ∈ τ} yield a unique set of vectors
{uki ≜ γki (ι

k
i),x

k+1; k ∈ K, i ∈ τ}, due to the causality of the information
and the evolution of the states according to a difference equation. Inserting
this vector in Li (i ∈ τ) yields a unique |τ |-tuple of numbers, reflecting
the costs of each player. This implicates the existence of the mapping Ji :
Γ1×· · ·×Γ|τ | → ℜ for all i ∈ τ , being also the cost functional of player i with
i ∈ τ . According to that, the spaces (Γ1, . . . ,Γ|τ |) and the cost functional
(J1, . . . , J|τ |) built the normal-form description of the dynamic game with a
fixed initial state x1.

3 Game Theory Preliminary

Game theory is an approach for strategical decision-making, considering that
the solution depends on the decision of other agents, while everybody is aware
of that. This makes the solution process, especially if the number of players
increases, very complex. One can distinguish between non-cooperative and
cooperative game theory. Non-cooperative games treat a conflict situation
where increasing the pay-off of one player results in decreasing that of an-
other. In cooperative games, however, all players contribute to the benefit of
all. In this chapter, all basic concepts for solving static and dynamic games
in discrete-time are presented, which are to be used throughout this work. In
the first part of this chapter, the non-cooperative game solution conditions
are presented. Relevant for this work are the static and dynamic two-player
zero-sum games and the static and dynamic N-player non-zero-sum games.
Moreover, in the second part, solution conditions for static cooperative games
which are used in this work are discussed. All concepts and definitions in
this chapter can be found in [BO99; Neu28; Nas50a; Nas50b; Nas53].

3.1 Non-Cooperative Games

3.1.1 Two-Player Zero-Sum Games

Matrix Games

The most common type of zero-sum games are the matrix games. There are
two players P1 and P2 and an (n ×m) matrix A = {aij} with real values.
Each row of matrix A is assigned an admissible strategy γi of P1 and each

Chapter 3 – Game Theory Preliminary 26

column is assigned an admissible strategy γj of P2 (tab. 3.1). That means
when the strategy pair (γi, γj) is played, the outcome of the game is aij . In
a zero-sum game, there is always a minimizer (P1) and a maximizer (P2).
The outcome of such a game has to be interpreted as follows: Is the outcome
positive, P2 has to pay aij to P1, and if its negative, P1 has to pay to P2 the
amount of |aij |.

P1|P2 γ1 γ2
γ1 a11 a12
γ2 a21 a22
γ3 a31 a32

Table 3.1: Zero-sum matrix game.

Assuming that this game has only one stage, it can be said that P1 is trying
to secure a possible loss against P2 by choosing the strategy which gives the
minimum loss, no matter what P2 does. In other words, P1 chooses γi∗ where
the inequality

max
j
ai∗j ≤ max

j
aij (3.1)

with i = 1, . . . ,m holds. The other way around, P2 will try to secure his loss
against P1 by playing a strategy γj∗ while the inequality

min
i
aij∗ ≥ min

i
aij (3.2)

with j = 1, . . . , n holds.

It is defined that a strategy pair (γi∗, γj∗) constitutes a saddle-point equilib-
rium if the inequalities

ai∗j ≤ ai∗j∗ ≤ aij∗, (3.3)

∀i = 1, . . . , n and ∀j = 1, . . . ,m are satisfied. If such a strategy pair (γi∗, γj∗)
exists, ai∗j∗ is called the value of the game. The general definition for the
saddle-point equilibrium in zero-sum games is given in the following section.

Chapter 3 – Game Theory Preliminary 27

Saddle-Point Equilibrium

A tuple of action variables (u∗
1,u

∗
2) ∈ U,U = U1 × U2 in a two-player game

with cost functional L is in saddle-point equilibrium, if

L(u∗
1,u2) ≤ L(u∗

1,u
∗
2) ≤ L(u1,u

∗
2), ∀(u1,u2) ∈ U. (3.4)

This means that the order of the maximization and minimization done is
irrelevant:

min
u1∈U1

max
u2∈U2

L(u1,u2) = max
u2∈U2

min
u1∈U1

L(u1,u2) = L(u∗
1,u

∗
2) =: L∗ (3.5)

Note that if a value exists (a saddle-point exists), it is unique, meaning
if another saddle-point (û1, û2) exists, L(û1, û2) = L∗ applies. Moreover
(u∗

1, û2) and (û1,u
∗
2) constitute also a saddle-point. This feature does not

hold for Nash equilibria (non-zero-sum games). If there is no value in a
zero-sum game,

min
u1∈U1

max
u2∈U2

L(u1,u2) > max
u2∈U2

min
u1∈U1

L(u1,u2) (3.6)

holds. Hence, there is no saddle-point solution. Therefore, we consider the
saddle-point equilibrium in mixed strategies with the following property:

Minimax-Theorem 1 Each finite two-player zero-sum game has a saddle-
point equilibrium in mixed strategies [NM07].

Saddle-Point Solution in Mixed Strategies
If there is no saddle-point solution in pure strategies, the strategy space
is extended, thus, the players can choose their strategies based on random
events, leading to the so called mixed strategies. That means, a mixed
strategy for a player i is a probability distribution pi over the action space
Ui. This holds also for general games having no Nash equilibrium. To get a
solution in mixed strategies, Li is replaced by its expected value, according
to the chosen mixed strategies, denoted by Ji(p1,p2). A 2-tuple (p∗

1,p
∗
2) is

a saddle-point equilibrium in mixed strategies of a two-player game, if

J(p∗
1,p2) ≤ J(p∗

1,p
∗
2) ≤ J(p1,p

∗
2), ∀(p1,p2) ∈ P, P = P1 × P2 (3.7)

Chapter 3 – Game Theory Preliminary 28

holds, with J(p1,p2) = Ep1,p2 [L(u1,u2)]. Thus, J∗ = J(p∗
1,p

∗
2) is called

the value of the zero-sum game in mixed strategies.

3.1.2 Discrete-Time Dynamic Zero-Sum Games

Dynamic Programming for Discrete-Time Dynamic Zero-Sum
Games

Stage-Additive Cost Functional
The cost functional for the discrete-time dynamic game is formulated as
follows:

L(uk1,u
k
2) =

K∑
k=1

gki (x
k+1,uk1,u

k
2,x

k), (3.8)

with uj = (u1
j
′
, . . . ,uKj

′
)′. This cost functional for player i is called “stage-

additive" and implies the existence of a gki : X ×X × Uk1 × Uk2 → ℜ, k ∈ K.

Information Structure
It is assumed that a feedback information structure is available to all agents
during the game ιki = {xk}, k ∈ K, i ∈ N.

Since a stage-additive cost functional and a feedback information structure
is assumed, dynamic programming and the Principle of Optimality [Bel57]
can be applied. The solution of the following value function V provides the
value of the game. It is defined as:

V (k,xk) = min
uk
1∈Uk

1

max
uk
2∈Uk

2

L(u1,u2), (3.9)

with k ∈ K, and x ∈ X. The set of strategies {γk∗i (xk); k ∈ K, i = 1, 2} is for
a two-player discrete-time dynamic zero-sum game a feedback-saddle-point

Chapter 3 – Game Theory Preliminary 29

solution if, and only if a function V (k, ·) : ℜn → ℜ, k ∈ K exists, thus the
following recursion is satisfied:

Vi(k,x) = min
uk

1∈Uk
1

max
uk

2∈Uk
2

[
gki
(
fk(x,uk

1 ,u
k
2),u

k
1 ,u

k
2 ,x
)

+V
(
k + 1, fk(x,uk

1 ,u
k
2)
)]

= max
uk

2∈Uk
2

min
uk

1∈Uk
1

[
gki
(
fk(x,uk

1 ,u
k
2),u

k
1 ,u

k
2 ,x
)

+V
(
k + 1, fk(x,uk

1 ,u
k
2)
)]

= gki
(
fk(x, γk∗1 (x), γk∗2 (x)), γk∗1 (x), γk∗2 (x),x

)
+ V

(
k + 1, fk(x, γk∗1 (x), γk∗2 (x))

)
;

V (K+1,x) = 0. (3.10)

3.1.3 N-Player Non-Zero-Sum Games

N-player non-zero-sum games are a much more general class of games than
the two-player zero-sum games regarded before. On the one hand, the game
could have more than two participants, and on the other hand, the outcome
of the game cannot be described by one single value. In other words, the
outcome of the game is an N-tuple of outcome values. Such decision making
problems, can be solved by finding a Nash equilibrium as described in the
following section.

Nash Equilibrium

An N-tuple of strategies {γ1∗, γ2∗, . . . , γN∗}, γi∗ ∈ Γi, i ∈ τ constitutes a
Nash equilibrium solution for an static finite N-player nonzero-sum game in
pure strategies if the inequalities

a1∗=̂a1γ1∗,γ2∗,...,γN∗ ≤ a1γ1,γ2∗,...,γN∗

a2∗=̂a2γ1∗,γ2∗,...,γN∗ ≤ a2γ1∗,γ2,...,γN∗

. . .

aN∗=̂aNγ1∗,γ2∗,...,γN∗ ≤ aNγ1∗,γ2∗,...,γN

(3.11)

are satisfied ∀γi ∈ Γi and ∀i ∈ τ . The N-tuple (a1∗, a2∗, . . . , aN∗) is the
Nash equilibrium outcome of the N-player game in pure strategies [BO99].
As discussed above for the zero-sum games, it is not guaranteed, that a

Chapter 3 – Game Theory Preliminary 30

Nash equilibrium solution in pure strategies exists. If this is the case, the
Nash equilibrium in mixed strategies has to be considered while having the
following property:

Nash’s Existence Theorem 1 Every N-person static finite game in nor-
mal form admits a non-cooperative (Nash) equilibrium solution in mixed
strategies. [BO99]

Nash Equilibrium in Mixed Strategies
The Nash equilibrium solution in mixed strategies is an optimal probability
distribution over the strategy space Γi of each player i ∈ τ . To define the set
of inequalities which have to be satisfied to have a Nash equilibrium solution
in mixed strategies, the mixed strategy spaces Y i, ∀i ∈ τ with elements yi

are introduced. Moreover, it is defined that its kth component is denoted by
yik.

An N-tuple {yi∗; i ∈ τ} constitutes a Nash equilibrium solution in mixed
strategies for an N-person finite static game in normal form if the following
inequalities

J1∗=̂
∑
Γ1

· · ·
∑
ΓN

y1∗γ1y
2∗
γ2 . . . y

N∗
γN
a1γ1,γ2,...,γN

≤
∑
Γ1

· · ·
∑
ΓN

y1γ1y
2∗
γ2 . . . y

N∗
γN
a1γ1,γ2,...,γN

J2∗=̂
∑
Γ1

· · ·
∑
ΓN

y1∗γ1y
2∗
γ2 . . . y

N∗
γN
a2γ1,γ2,...,γN

≤
∑
Γ1

· · ·
∑
ΓN

y1γ1y
2
γ2 . . . y

N∗
γN
a2γ1,γ2,...,γN

. . .

JN∗=̂
∑
Γ1

· · ·
∑
ΓN

y1∗γ1y
2∗
γ2 . . . y

N∗
γN
aNγ1,γ2,...,γN

≤
∑
Γ1

· · ·
∑
ΓN

y1γ1y
2∗
γ2 . . . y

N
γN
aNγ1,γ2,...,γN

(3.12)

∀yj ∈ Y i, j ∈ τ , hold. The N-tuple (J1∗, . . . , JN∗) is the noncooperative
Nash equilibrium outcome of the N-player game in mixed strategies. [BO99]

Each type of game presented in this chapter has a Nash equilibrium in mixed
strategies. The Nash equilibriums in mixed strategies include also those in

Chapter 3 – Game Theory Preliminary 31

pure strategies, since they are a generalization of the latter. Note, that the
Nash equilibrium solution of a zero-sum game is identical to the saddle-point
equilibrium solution.

3.1.4 Discrete-Time Dynamic N-Player Non-Zero-Sum
Games

Dynamic Programming for Discrete-Time Dynamic N-Player
Games

Stage-Additive Cost Functional
The cost functional for the discrete-time dynamic game is formulated as
follows:

L(uk1, . . . ,u
k
|τ |) =

K∑
k=1

gki (x
k+1,uk1, . . . ,u

k
|τ |,x

k), (3.13)

with uj = (u1
j
′
, . . . ,uKj

′
)′. This cost functional for player i is called “stage-

additive" and implies the existence of a gki : X ×X ×Uk1 ×· · ·×Uk|τ | → ℜ, k ∈
K.

Information Structure
It is assumed that a feedback information structure is available to all agents
during the game ιki = {xk}, k ∈ K, i ∈ N.

The solution of the following value function provides the value of the game.
It is defined as:

V (k,xk) = min
uk
i ∈Uk

i

L(u1, . . . ,u|τ |), (3.14)

with k ∈ K, i ∈ {1, . . . , |τ |}, and x ∈ X.

The set of strategies {γk∗i (xk); k ∈ K, i = 1, . . . , |τ |} is for a N-player
discrete-time dynamic zero-sum game a feedback-nash-equilibrium solution
if, and only if a function V (k, ·) : ℜn → ℜ, k ∈ K exists, thus the following
recursion is satisfied:

Chapter 3 – Game Theory Preliminary 32

Vi(k, χ
k) = min

uk
i ∈Uk

i

[
gki

(
f̃k∗i (χk,uki), γ

k∗
1 (χk), . . . , γk∗i−1(χ

k),uki ,

γk∗i+1(χ
k), . . . , γk∗N (χk), χk

)
+Vi(k + 1, f̃k∗i (χk,uki))

]
= gki

(
f̃k∗i (χk, γk∗i (χk)), γk∗1 (χk), . . . , γk∗N (χk), χk

)
+ Vi

(
k + 1, f̃k∗i (χk, γk∗i (χk))

)
;

Vi(K + 1, χK+1) = 0, i ∈ N, (3.15)

with f̃k∗i (χk,uki)=̂

fk
(
χk, γk∗1 (χk), . . . , γk∗i−1(χ

k),uki , γ
k∗
i+1(χ

k), . . . , γk∗N (χk)
)
.

3.2 Cooperative Games

In this work, bargaining problems are considered. A bargaining problem is
a situation in which:

• N-players with specific objectives seek a mutual agreement, with N >

1.

• Each player has to approve the agreement, meaning that a disagree-
ment is possible.

• A mutual agreement is reachable.

• Presence of a conflict of interests among players about the agreements.

That means, there are two possibilities when solving such a game: The
players agree or disagree. In the following section, solution methods for the
latter problem are presented.

3.2.1 Nash Bargaining Solution

In [Nas50b] a solution concept for a two player bargaining problem is pre-
sented. Nash’s solution method is an axiomatic approach which abstracts the

Chapter 3 – Game Theory Preliminary 33

details of a bargaining process and considering only the outcomes and agree-
ments that satisfy “reasonable” properties. Nash claimed, that this solution
approach yields a fair bargaining solution, which will be accepted by each
rational player. The Nash bargaining solution is calculated as follows: The
result u∗ of a two-player bargaining game (P, c), with P being the outcome
matrix and c being the conflict outcome when the player disagree, is given by
the outcome vector u ∈ P , for which ui > ci, ∀i ∈ τ , and which maximizes
the Nash product NP = (u1 − c1)(u2 − c2). Then, for the maximum Nash
product NP, one has

NP ∗ = (u∗1 − c1)(u
∗
2 − c2) (3.16)

such that u∗ = (u∗1, u
∗
2) ∈ P and u∗i > ci, ∀i ∈ τ . According to Nash, this

bargaining solution is unique and satisfies the following four axioms:

• Pareto optimality : No player can be better off without making at least
one player worse off.

• Symmetry: If the players are indistinguishable, the solution should not
discriminate between them.

• Invariant to affine transformations: An affine transformation of the
payoff and disagreement point should not alter the outcome of the
bargaining process.

• Independence of irrelevant alternatives: If the solution (u1, u2) chosen
from a feasible set P is an element of a subset B ⊆ P , then (u1, u2)

must be chosen from B.

Extension to N-Players

The result u∗ of an N-player bargaining game (P, c), with P being the out-
come matrix and c being the conflict outcome when the player disagree, is
given by the outcome vector u ∈ P , for which ui > ci, ∀i ∈ τ , and which
maximizes the Nash product NP = (u1 − c1)(u2 − c2) . . . (uN − cN). Then,
for the maximum Nash product NP, one has

NP ∗ = (u∗1 − c1)(u
∗
2 − c2) . . . (u

∗
N − c∗N) (3.17)

Chapter 3 – Game Theory Preliminary 34

such that u∗ = (u∗1, u
∗
2, . . . , u

∗
N) ∈ P and u∗i > ci, ∀i ∈ τ .

Conflict Outcome

In order to calculate the Nash bargaining solution, a conflict outcome has
to be defined. When no agreement is achieved, the players get a conflict
outcome. Thus it is favorable to choose a non-cooperative Nash equilibrium
as conflict outcome, which is followed throughout this work.

3.2.2 Pareto Efficiency

As stated before, no player can be better off without making at least one
player worse off. Regarding a bargaining game P , with P being the outcome
matrix, a set U ⊆ P with elements u∗i ∈ U , ∀i ∈ τ is called the set of Pareto
optimal outcomes, if there exist no other elements ui ∈ P so that for all
i = 1, . . . , |τ |

ui ≥ u∗i (3.18)

and for at least one player
ui > u∗i (3.19)

holds.

Solution Choice

Since the Pareto Efficiency Method can yield more than one solution (Pareto
optimal set U), a superordinate selection has to be made, regarding the
application in this work. Therefore, the solution u∗ ∈ U is chosen, with the
property:

minu∗ ≤ minu, (3.20)

∀u ∈ U , for minimizing players, and

maxu∗ ≤ maxu, (3.21)

∀u ∈ U , for maximizing players.

4 Time-Complexity Reduction
for Multi-Player Games

The purpose of this chapter is to introduce a methodology for the reduction
of the complexity of the full PEG’s solution process. This is based on two
different decompositions. The decomposition of the action space and the
decomposition of the original game.

4.1 Full-Dimensional Action Space vs Decomposed
Action Space

In some applications it is possible to decompose the problem at a low level,
like for example the decomposition of the single-action game through de-
composition of the action space. The single-action game is defined as the
game which is played in one stage k. Regarding a full single-action PEG, the
action space is for example given by Ui ⊂ Vx×Vy×Vz for each player i ∈ N,
where Vx, Vy, and Vz are linear velocity sets in x, y, and z direction. It can
be seen that the actions are a combination of admissible actions ux ∈ Vx,
uy ∈ Vy, and uz ∈ Vz. This circumstance enables the decomposition of
the single-action game, into three distinct games where the optimal actions
u∗x ∈ Vx, u∗y ∈ Vy, and u∗z ∈ Vz are sought (see figure 1.2). In other words,
the optimal linear velocities for x, y, and z are independently calculated and
combined afterwards to a single optimal velocity vector u∗ = (u∗x, u

∗
y, u

∗
z).

First of all, for being able to verify the decomposition approach, an example
problem has to be defined. Without loss of generality, a two-player PEG
with UAVs is regarded.

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 36

4.1.1 Two-Player PEG with UAVs (Full Game)

The PEG is described by following characteristics:

• A set of two players {e, p}.

• A set K = {1, . . . ,K} with variable number of stages K. K is the time
p needs to capture e, i.e., to minimize the distance dϵ to player e (e
reaches the terminal set Ξ). Thus, K depends on the initial states of
e and p.

• A set X = X × Y ×Z × Vx× Vy × Vz ×Φ×Θ×Ψ×P ×Q×R being
the state space, while the sets X, Y and Z span the position space,
Vx, Vy, and Vz span the linear velocity space, Φ, Θ, and Ψ span the
attitude space, and P , Q, and R span the angular velocity space.

• The terminal set Ξ ⊂ X × Y ×Z ×{1, 2, . . . } is the set of all elements
ξ ∈ Ξ of a sphere around the pursuer’s position (xp, yp, zp) with radius
dϵ in stage k.

• Two finite discrete action spaces Up = Ue ⊂ Vx × Vy × Vz. Up and
Ue are steady during each stage k of the game. They are defined as

Up =

{
upu,1 + i

upu,2 − upu,1

s
,upv,1 + j

upv,2 − upv,1

s
,

upw,1 + l
upw,2 − upw,1

s

}
, with i = 0, . . . , s; j = 0, . . . , s; l = 0, . . . , s

and Ue = Up, while (s + 1)3 is the number of strategies available
for each player and [upu,1,upu,2] = [upv,1,upv,2] = [upw,1,upw,2] =

[ueu,1,ueu,2] = [uev,1,uev,2] = [uew,1,uew,2] = [−1, 1] are the contin-
uous action spaces. up and ue are elements of the sets Up and Ue,
while u ∈ Up × Ue.

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 37

• The state of the PEG between two UAVs in the pursuers reference
frame is defined as

xk = xke − xkp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk

yk

zk

vkx

vky

vkz

ϕk

θk

ψk

pk

qk

rk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xke − xkp

yke − ykp

zke − zkp

vkxe − vkxp

vkye − vkyp

vkze − vkzp

ϕke − ϕkp

θke − θkp

ψke − ψkp

pke − pkp

qke − qkp

rke − rkp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk1
xk2
xk3
xk4
xk5
xk6
xk7
xk8
xk9
xk10
xk11
xk12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.1)

with the difference function xk+1 = f
(
xk, h(wk)

)
given by:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk+1
1

xk+1
2

xk+1
3

xk+1
4

xk+1
5

xk+1
6

xk+1
7

xk+1
8

xk+1
9

xk+1
10

xk+1
11

xk+1
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk1
xk2
xk3
xk4
xk5
xk6
xk7
xk8
xk9
xk10
xk11
xk12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk4
xk5
xk6

−(cxk7sx
k
8cx

k
9 + sxk7sx

k
9)
υk1

m

−(cxk7sx
k
8sx

k
9 + sxk7cx

k
9)
υk1

m

g − cxk7cx
k
8

υk1

m
xk10
xk11
xk12

Iy − Iz

Ix
xk11x

k
12 +

L

Ix
υk2 −

IR

Ix
xk8g(υ)

Iz − Ix

Iy
xk10x

k
12 +

L

Iy
υk3 −

IR

Iy
xk7g(υ)

Ix − Iy

Iz
xk10x

k
11 +

1

Iz
υk4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∆t, (4.2)

with υ = (υ1, υ2, υ3, υ4)
T ,υ ∈ Υ being the inputs for altitude, roll,

pitch and yaw, Ix, Iy, Iz are the inertia around x, y, z-axes, Ir is the
rotor moment of inertia, l is the length between the center of gravity
of the UAV and the center of one rotor, g is the gravitation constant,
g(υ) is a function of υ depending on the rotor’s angular velocities, and

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 38

∆t is the sampling time, while s and c are abbreviations for sin(·) and
cos(·), respectively. The function

h : Vx × Vy × Vz → Υ, (4.3)

yields an input vector υ given an admissible action uki∈N. A more
detailed description of the utilized UAV system and its controllers, i.e.
attitude and velocity control, can be found in chapter 7.

• A feedback perfect state information structure ιke = ιkp = {xk},∀k ∈ K.

• The strategy spaces Γp = Up and Γe = Ue.

• A cost functional J

J(qkp,q
k
e) = E

[
K∑
k=1

d(f
(
xk, h(wk)

)
,xk)

]
, (4.4)

with d(·) being a function describing the change in distance between
p and e in one stage k, playing the control action (ukp,u

k
e).

• The value function

V (k,xk) = min
qk
p

max
qk
e

J(qkp,q
k
e). (4.5)

• qk∗= (qk∗p ,q
k∗
e) is the optimal solution of the game in stage k. It is

calculated by solving the closed-loop saddle-point equilibrium in mixed
strategies. The optimal probability distributions qk∗ = (qk∗p ,q

k∗
e) over

the action space Up × Ue in stage k is given by

qk∗ = argV (k,xk), ∀k ∈ K. (4.6)

• The optimal control actions uk∗ = (uk∗p ,u
k∗
e) are those where the prob-

abilities qk∗p and qk∗e are maximal. The reference velocities for the
pursuers’ and evaders’ velocity controller are given by

vr,kp = (vkxp, v
k
y p, v

k
z p)

T + (uk∗p)T (4.7)

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 39

and

vr,ke = (vkxe, v
k
y e, v

k
z e)

T + (uk∗e)T . (4.8)

4.1.2 Decomposition of the Action Set

While all other properties from above stay the same, the action spaces
Ui ⊂ Vx × Vy × Vz are divided into three distinct action spaces for each
player i ∈ N. As a consequence, the three action spaces are defined as:

Uix =

(
ui,u,1 + a

ui,u,2 − ui,u,1

si,u
, 0, 0

)
, Uiy =

(
0, ui,v,1 + b

ui,v,2 − ui,v,1

si,v
, 0

)
,

and Uiz =

(
0, 0, ui,w,1 + c

ui,w,2 − ui,w,1

si,w

)
with a ∈ [0, si,u]N, b ∈

[0, si,v]N and c ∈ [0, si,w]N while (si,u + 1), (si,v + 1), and (si,w +

1) are the number of available actions of player i for each decom-
posed single-action game. Given the maximal velocity vector vmaxi =

(vmaxi,x , vmaxi,y , vmaxi,z)T ∈ Vx × Vy × Vz of a player i, the continuous ac-

tion spaces are given by [ui,u,1, ui,u,2] = [−vmax
i,x

2 ,
vmax
i,x

2], [ui,v,1, ui,v,2] =

[−vmax
i,y

2 ,
vmax
i,y

2] and [ui,w,1, ui,w,2] = [−vmax
i,z

2 ,
vmax
i,z

2]. Solving the above defined
game for each of the three action sets in a stage k, three distinct solutions
uk∗x , uk∗y , and uk∗z are obtained. The distinct solutions are combined such that
an optimal linear velocity vector for all three directions uk∗ = (uk∗x , u

k∗
y , u

k∗
z)

is constituted.

Solving the full single-action game, means finding an optimal strategy combi-
nation while each player has a number of (si,u+1)·(si,v+1)·(si,w+1) admissi-
ble actions. Due to the decomposition, three distinct games have to be solved
while each player has a number of (si,u+1), (si,u+1), or (si,u+1) admissible
actions, respectively. Assuming, that (si,u+1) = (si,v +1) = (si,w +1) = S,
each player i ∈ N has a number of S3 admissible actions in one stage k when
playing the full game and S admissible actions when playing one of the three
sub-games resulting from the decomposition. Regarding a N -player game,
the optimal solution is sought in an action space with cardinality S3N for
the full game and 3 · SN for the decomposed one. It can be seen that the
cardinality of the action space is always greater for S > 1 by an exponent

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 40

of 3 in the full game, and thus the time complexity of finding a solution is
obviously larger.

4.1.3 Time-Complexity Analysis

The resource-intensive part of the algorithm solving the PEG is the func-
tion NPG which computes the Nash equilibrium in mixed strategies in one
stage of the game. This function transforms the game to a non-linear opti-
mization problem with non-linear constraints and solves it using the SLSQP
algorithm. According to the documentation of the NLOpt package [Joh13],
which is used by the authors to implement this algorithm, the SLSQP al-
gorithm requires O(n2) storage and O(n3) time in n dimensions. The di-
mension of the optimization problem depends, according to [Cha09], on the
number of strategies of each player and on the number of involved players,
i. e. on all possible strategy combinations. For instance, a game with three
players and two strategies per player gives an overall number of eight strat-
egy combinations, and thus an optimization problem with eighth dimension
has to be solved. Regarding the two-player PEG with full dimensional action
space, each player has S = s3 admissible actions per stage, while s ∈ N is
the number of options for each degree of freedom. The solution of this game
needs O(s6) time. With a decomposed action space, the time complexity for
the calculation is given by 3 · O(s3). For s > 1 the time complexity of the
solution process is always for the decomposed game.

4.1.4 Comparison

The comparison of the game with full-dimensional action space and the game
with decomposed action space is accomplished through several simulations.
Following assumptions are set:

• Since the chosen optimal control actions represent a velocity change
in three linear directions of p and e, a maximum velocity vmax with

vmaxp =
[
15 15 3.5

]T
and vmaxe =

vmax
p

1.5 and a maximal absolute

value of vmaxAp = 15 for the pursuer and vmaxAe = 10 for the evader is
defined.

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 41

• The numerical solution of the PEG is computed by solving it for each
initial positions (x1, y1, z1) ∈ X × Y ×Z, while x1 and y1 take integer
values in a 61× 61 grid, with X = [−30, 30] and Y = [−30, 30] in the
pursuer’s reference frame (pursuer’s position is the origin). In each
simulation, the initial altitude of both UAVs is 20, i.e., z1 = −20 .
This is necessary for the visualization of the value function.

• The simulations are carried out for S = 3, S = 5, S = 7, and S = 9,
i.e., each player has 33, 53, 73 93 available strategies in each time step
k for the full game, while in the decomposed version three sub-games
are played in each time step k with 3, 5, 7, 9 available strategies,
respectively.

• The stage duration is chosen to be ∆T = 0.1, while the velocity control
is sampled with ∆t = 0.005.

• A capture distance dϵ = 5 is chosen.

Evaluation

To verify whether the decomposition approach yields approximate results to
the full game, a difference between the stage counts for capture of both vari-
ants for each regarded initial state is carried out. In this way, it can be seen
where the decomposed game deviates from the full one. As depicted in Fig-
ure 4.1, 89.57% of the initial states yield for both variants the same terminal
time, while all differences are between −3 and 4 stages. The average of the
value difference is given with 0.039 stages, having a standard deviation of
0.37 stages. Thus, the decomposed action-space game solution yields similar
results to the full-dimensional action space game solution. These result are
expected due to the fact that the non-holonomic connections are neglected,
due to the reduction to point-mass motion, and due to the convexity of the
cost functional.

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 42

Figure 4.1: Difference of the values of the game with full-dimensional
action space and game with decomposed action space.

Figure 4.2 depicts the computational time for one stage depending on the
number of strategies. The progression for the decomposition approach is
represented by the green curve, while the red curve shows it for the full
game. A comparing of those two curves reveals that with increasing S the
computational time of one stage of the full game increases tremendously.
While for S = 3 the computational time of the decomposed approach is with
0.393s/Stage about twice as fast as the full game with 0.65s/Stage, the first
significant gain can be observed for S = 5 (decomposition: 0.73s/Stage, full
game: 13.37s/Stage, factor: 18.32). For S = 7 and S = 9 the computational
time of the decomposed is, with 1.32s/Stage and 2.65s/Stage, in respect
to the full game solution, with 98.44s/Stage and 453.61s/Stage, 74.58 or
171.17 times faster. Due to the vast increasing of the computational time
with increasing S, no more simulations with S > 9 could be carried out in
reasonable time. Regarding the fact that this approach yields approximate
results in much less time, it will be used for the single-action decomposition
from this point on throughout the remaining work.

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 43

Number of Strategies (per axis)
3 4 5 6 7 8 9

C
o

m
p

.
T

im
e

 [
s

/S
ta

g
e

]

10
-1

10
0

10
1

10
2

10
3

Figure 4.2: Comparison of computational times for one stage.

4.2 Multi-Player Game Decomposition

In respect to two-player pursuit-evasion games, multi-player pursuit-evasion
games with an arbitrary number of players are much more complex to solve.
The game changes from a pure non-cooperative into a cooperative one be-
tween the players of one team, and to a non-cooperative one between the
parties. Thus, the complexity of solving such games increases massively.
The requirements on the solution approach are the time-complexity reduc-
tion by decomposition of the full game, and the parallel computability by
allocating the decomposed game to multiple processing units. This results
in a faster solution derivation. The computational time is constant with an
increasing number of adversarial players as long as each involved player has
as many processors as foes available for the solution computation. Hence,
an appropriate game structure has to be found. The concept and the results
of the following parts in this chapter have been published in [AB16].

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 44

P1

E

P2

Figure 4.3: Two-pursuer-one-evader pursuit-evasion game structures.

Two possible game structures are proposed and compared to the full game
regarding time-complexity, convergence, and solution of a two-pursuer-one-
evader PEG. Figure 4.3a) depicts the original game structure of the PEG,
while 4.3b) and 4.3c) depict two other structures for this game. In method
4.3b), the Multiple Two-Player Game Decomposition (MTPGD), the game is
solved by decomposing the multi-player game into multiple two-player games
between each pursuer and each evader. In the specific case of a three-player
PEG, it is decomposed into two two-player games. Since those two games
have both distinct solutions a fusion of the latter must be performed. In the
second method depicted in 4.3c), the Team-Subsumption Two-Player Game
(TSTPG), each team is treated as one super-player, resulting in only one two-
player PEG. Hence, all distinct states like the position, velocity and attitude
of all players within a team are encapsulated into a single super-player state
and the strategy space of this super-player contains each possible strategy
combinations of all encapsulated players, meaning if each of them has n
admissible strategies, the super-player has nm admissible strategies, with m
being the number of players within the team. Both pursuers try to minimize
their distance to the evader, while the evader tries to maximize it. At this
point, there is no cooperation (agreement) between the pursuers assumed.
The pursuing team wins, if one of the pursuers catches the evader and the
evader wins if the game never stops (diverges). With the help of simulation
results all three different structures of the game have to be analyzed and an
answer to the following questions has to be given:

• Does the game converge?

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 45

• Does the solution of a game with changed structure yield other results
than the original one?

• Does another structure give a gain in run-time?

Therefore, a two-pursuer-one-evader PEG with multi-rotor UAVs is defined
and solved with the above described approaches. It is assumed that all
multi-rotor UAVs have an identical system structure and identical dynamical
constraints as described in chapter 7. All systems can be controlled by
providing a linear velocity reference vector in x, y, z-direction. The solution
of the PEG provides optimal linear velocity vectors for all involved players.

4.2.1 Two-Pursuer-One-Evader Pursuit-Evasion Game

The PEG Π = (N,K,X ,U, f, X̂, κ, ι,Γ, L) between the three UAV players
is described by following properties:

Players

N = P∪E is the set of all players, while P = {p1, p2} is the team of pursuers
and E = {e} the evader.

Termination

K = {1, . . . ,K} is the integer set of stages with K time steps. K is called
the terminal time. K is finite if the pursuing team P catches the evader e
and infinite if e manages to escape. e is caught if a pursuer p ∈ P reaches a
terminal position in ξk ⊂ X×Y ×Z and thus (χk, k) ∈ Ξ holds. ξk is defined
by a sphere with radius dϵ around the evader’s position poske = (xke , y

k
e , z

k
e)
T

in the inertial frame.

State Space

The state space X of each player is given by X = X×Y ×Z×Vx×Vy×Vz×
Φ×Θ×Ψ×P ×Q×R with xk∈Ki∈N ∈ X having the subspaces: position space

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 46

(X ×Y ×Z), linear velocity space (Vx×Vy ×Vz), Euler angles (Φ×Θ×Ψ),
and angular velocity space (P ×Q×R).

X = (X)3 is the state space of the game with χk = (xkp1 ,x
k
p2 ,x

k
e) ∈ X , while

xki ∈ X is the respective state vector of player i ∈ N in stage k ∈ K. Hence,

χk = (xkp1 ,x
k
p2 ,x

k
e) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xkp1
ykp1
zkp1
vkx,p1
vky,p1
vkz,p1
ϕkp1
θkp1
ψk
p1

pkp1
qkp1
rkp1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xkp2
ykp2
zkp2
vkx,p2
vky,p2
vkz,p2
ϕkp2
θkp2
ψk
p2

pkp2
qkp2
rkp2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xke
yke
zke
vkx,e
vky,e
vkz,e
ϕke
θke
ψk
e

pke
qke
rke

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.9)

The evolution of the PEG is given by:

f(χk,ukp1 ,u
k
p2 ,ue) = χk+1 = (xk+1

p1 ,xk+1
p2 ,xk+1

e) =(
f(xkp1 , h(u

k
p1)), f(x

k
p2 , h(u

k
p2)), f(x

k
e , h(u

k
e))
)

(4.10)

with the difference function xk+1 = f(xk, υk) from equation 7.3.

Information

Attribute Information
It is assumed that each player has a complete attribute information, thus
πki = Πk,∀k ∈ K,∀i ∈ N.

State Information
The state information ιki ∈ ι ⊆ X , ∀k ∈ K and ∀i ∈ N is of type feedback
(perfect state) information, hence ιki = {χk}, k ∈ K. For the observation set
X̂k
i of each player i ∈ N, X̂k

i = χk holds. As a consequence, the observation
function is given by κki (χ

k) = χk.

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 47

Action Space

The finite and discrete action spaces Ui ⊂ Vx × Vy × Vz (linear velocity
spaces in the body fixed frame of a UAV) of each player i ∈ N are constant
throughout the game. Using the single-action decomposition, the action sets

are defined for a player i as Uix =

(
ui,u,1 + a

ui,u,2 − ui,u,1

si,u
, 0, 0

)
, Uiy =(

0, ui,v,1 + b
ui,v,2 − ui,v,1

si,v
, 0

)
, and Uiz =

(
0, 0, ui,w,1 + c

ui,w,2 − ui,w,1

si,w

)
with a ∈ [0, si,u]N, b ∈ [0, si,v]N and c ∈ [0, si,w]N while (si,u + 1),
(si,v + 1), and (si,w + 1) are the number of available actions of player i
for each decomposed single-action game. Given the maximal velocity vector
vmaxi = (vmaxi,x , vmaxi,y , vmaxi,z)T ∈ Vx × Vy × Vz of a player i, the continu-

ous action spaces are given by [ui,u,1, ui,u,2] = [−vmax
i,x

2 ,
vmax
i,x

2], [ui,v,1, ui,v,2] =
[−vmax

i,y

2 ,
vmax
i,y

2] and [ui,w,1, ui,w,2] = [−vmax
i,z

2 ,
vmax
i,z

2].

4.2.2 Full Game

Cost Functional

The cost functional of the full game is defined as follows:

L(ukp1 ,u
k
p2 ,u

k
e) =

K∑
k=1

p
(
ukp1 ,u

k
p2 ,u

k
e , χ

k
)

(4.11)

with p(·) given by

p
(
ukp1 ,u

k
p2 ,u

k
e , χ

k
)
=

2∑
i=1

d(ukpi ,u
k
e , χ

k) (4.12)

and giving an estimation of the costs in stage k if the action tuple
(ukp1 ,u

k
p2 ,u

k
e) is played. In particular d(ukpi ,u

k
e , χ

k) provides the change in
distance of one pursuer pi to the evader, while the sum of all d(·)’s constitutes
the costs in stage k.

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 48

Value Function

The value function V (k, χk) is defined as

V (k, χk) = min
uk
p1

min
uk
p2

max
uk
e

L(ukp1 ,u
k
p2 ,u

k
e). (4.13)

Action Choice

Since it has to be guaranteed that a solution is found, all sub-problems are
solved by finding the Nash-equilibrium in mixed strategies. This yields in an
optimal probability distribution qk∗ over the action space Up1 ×Up2 ×Ue

in stage k. In real applications only pure actions can be performed, there-
fore it has been defined that the optimal action tuple in pure strategies
uk∗ = (uk∗p1 ,u

k∗
p2 ,u

k∗
e) is determined by choosing the pure actions where the

probability distributions qk∗ = (qk∗p1 ,q
k∗
p2 ,q

k∗
e) are maximal. With the solu-

tion of the value function the optimal actions uk∗ are given by

uk∗ = arg V (k, χk), ∀k ∈ K. (4.14)

The optimal linear reference velocities for the UAV controller are computed
by

vr,k∗i = sat(vki + uk∗i ,v
max
i), i ∈ N (4.15)

while the function sat(·) limits the reference velocity vector to the maximum
velocity vector.

4.2.3 Multiple Two-Player Game Decomposition

Cost Functional

In the MTPGD game multiple two-player games are solved while at the
end the solutions of the distinct games are combined to one overall solu-

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 49

tion. Since, a two-pursuer-one-evader game is regarded, the game can be
decomposed into two two-player PEGs with following cost functionals:

L1(u
k
p1 ,u

k
e′) =

K∑
k=1

p
(
ukp1 ,u

k
e′ , χ

k
)

(4.16)

L2(u
k
p2 ,u

k
e′′) =

K∑
k=1

p
(
ukp2 ,u

k
e′′ , χ

k
)

(4.17)

with p(·) being defined as

p
(
ukpi ,u

k
e′ , χ

k
)
= t(ukpi ,u

k
e′ , χ

k), i ∈ P (4.18)

giving an estimation of the costs in stage k if the action tuple (ukpi ,u
k
e′) is

played. In particular t(ukpi ,u
k
e′ , χ

k), i ∈ P provides the change in distance of
the evader to pursuer pi, while taking into account the actual position of the
other pursuer p1∨2 in stage k. In other words, L1 provides the payoff for a
two-player game between p1 and e, while p2’s position is taken into account
whereas the position of p2 is assumed to remain static during the actual
stage. The same applies to L2, vice versa. The definition of the distinct cost
functionals for this decomposition method turned out to be very crucial,
regarding the value of the game and its conformability to the value of the
original game. The fusion of all sub-game solutions to one reasonable overall
game solution is a highly challenging problem and depends strongly on the
regarded application and even the number of pursuers is a critical factor.
The analysis of a vast number of simulation results figured out that the
proposed method provides results with a high similarity to the full game as
described later in this chapter.

Value Function

The value functions are defined as

V1(k, χ
k) = min

uk
p1

max
uk
e′

L1(u
k
p1 ,u

k
e′). (4.19)

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 50

V2(k, χ
k) = min

uk
p2

max
uk
e′′

L2(u
k
p2 ,u

k
e′′). (4.20)

Action Choice

As described above the optimal solutions in each stage of the game are cal-
culated by solving both value functions by computing the Nash-equilibrium
in mixed strategies for each sub-problem (stage) of the game. Whereas each
pursuer gets assigned a single solution uk∗pi , ∀i ∈ P by solving the two value
functions from above, the evader has an optimal solution uk∗e for playing
against pursuer p1 and an optimal solution uk∗e′ for playing against pursuer
p2 which have to be combined to one optimal solution. With the solution of
the two value functions, the optimal action tuples are given by

(up1
k∗,ue′

k∗) = arg V1(k, χ
k),∀k ∈ K. (4.21)

(up2
k∗,ue′′

k∗) = arg V2(k, χ
k),∀k ∈ K. (4.22)

The optimal strategies describe linear velocities in x, y, z-direction, hence the
combination of both optimal evader strategies uk∗e′ and uk∗e′′ can be performed
by calculating the vector sum of each optimal strategy vector of e:

ue
k∗ = uk∗e′ + uk∗e′′ . (4.23)

The optimal linear reference velocities for the UAV controller are computed
by

vr,k∗i = sat(vki + uk∗i ,v
max
i), i ∈ N (4.24)

while the function sat(·) limits the reference velocity vector to the maximum
velocity vector.

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 51

4.2.4 Team-Subsumption Two-Player Game

Unlike the MTPGD, in which the cost functional is split into many cost
functionals describing many two-player games, the TSTPG requires a en-
tirely different game structure. The basic idea of the TSTPG is that all
players of a team are encapsulated into one single super-player, while the
cost functional of the game is a combination of two cost functionals defined
for each pursuer with the evader. This results in the following new game
definition of the PEG 2Π = (N,K,X ,U, f, X̂, κ, ι,Γ, L) between the three
UAV players:

Players

N = P ∪E is the set of all players, while P = {Sp}, with Sp = {p1, p2} is a
super-pursuer representing two pursuers and E = {e} is the evader.

Termination

K = {1, . . . ,K} is the integer set of stages with K time steps. K is called
the terminal time. K is finite if the super-pursuer Sp catches the evader e
and infinite if e manages to escape. e is caught if a pursuer pi ∈ Sp, i = 1, 2

reaches a terminal position in ξk ⊂ X × Y × Z and thus (poskpi , k) ∈ Ξ

holds. ξk is defined by a sphere with radius dϵ around the evader’s position
poske = (xke , y

k
e , z

k
e)
T in the inertial frame.

State Space

The state space X of e is given by X = X × Y × Z × Vx × Vy × Vz × Φ ×
Θ × Ψ × P × Q × R with xk∈Ke ∈ X having the subspaces: position space
X × Y ×Z, linear velocity space Vx × Vy × Vz, Euler angles Φ×Θ×Ψ, and
angular velocity space P × Q × R. For Sp the state space is given by X2

with xk∈KSp
= (xk∈Kp1 ,xk∈Kp2) ∈ X2.

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 52

X = (X)3 is the state space of the game with χk = (xkSp,x
k
e) ∈ X . Hence,

χk = (xkSp,x
k
e) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xkSp

ykSp

zkSp

vk
x,Sp

vk
y,Sp

vk
z,Sp

ϕkSp

θkSp

ψk
Sp

pkSp

qkSp

rkSp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xke
yke
zke
vkx,e
vky,e
vkz,e
ϕke
θke
ψk
e

pke
qke
rke

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.25)

with

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xkSp

ykSp

zkSp

vk
x,Sp

vk
y,Sp

vk
z,Sp

ϕkSp

θkSp

ψk
Sp

pkSp

qkSp

rkSp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xkp1
ykp1
zkp1
vkx,p1
vky,p1
vkz,p1
ϕkp1
θkp1
ψk
p1

pkp1
qkp1
rkp1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xkp2
ykp2
zkp2
vkx,p2
vky,p2
vkz,p2
ϕkp2
θkp2
ψk
p2

pkp2
qkp2
rkp2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.26)

The evolution of the PEG is given by f(χk,ukSp,ue) =

χk+1 = (xk+1
Sp

,xk+1
e) =

(
Sf(xkSp,

S h(ukSp)), f(x
k
e , h(u

k
e))
)
, (4.27)

while

Sf(xkSp,
S h(ukSp)) = (f(xkp1 , h(u

k
p1)), f(x

k
p2 , h(u

k
p2)) (4.28)

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 53

and with the difference function xk+1 = f(xk, υk) defined above in equation
7.3. The function Sh is defined as

Sh : V 2
x × V 2

y × V 2
z → Υ2, (4.29)

yields an input matrix Sυ for players p1 and p2 given an admissible action
ukSp.

Information

The same attribute and state information as defined for the other two cases
is assumed.

Action and Strategy Space

Since, the pursuers p1 and p2 are represented by a super-player Sp, a strategy
of the latter is a mapping γkSp : ιkSp ↦→ Up1 × Up2 , ∀k ∈ K. The evader’s
strategies are mappings γke : ιke ↦→ Ue, ∀k ∈ K. In this case γkSp(ι

k
i) = Up1 ×

Up2 = USp having the elements uSp = (ukp1 ,u
k
p2) and γke (ιke) = Uk

e having the
elements uke , ∀k ∈ K is defined. The exact declaration of the action spaces
is the same as proposed above with single-action game decomposition.

Cost Functional

The cost functional defined as follows:

L(ukSp,u
k
e) = p

(
ukSp,u

k
e , χ

k
)

(4.30)

with p(·) defined as

p
(
ukSp,u

k
e , χ

k
)
=

K∑
k=1

d(ukp1 ,u
k
e , χ

k) ·
K∑
k=1

d(ukp2 ,u
k
e , χ

k) (4.31)

and giving an estimation of the costs in stage k if the action tuple (ukSp,u
k
e)

is played. In particular d(ukpi ,u
k
e , χ

k) provides the change in distance of one
pursuer pi to the evader.

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 54

Value Function

The value function V (k, χk) is defined as

V (k, χk) = min
uk
Sp

max
uk
e

L(ukSp,u
k
e). (4.32)

Action Choice

Here, too, the solution method described above is used to solve the value
function. The present game definition reduces the three-player game to a two
player game by representing the pursuer team by a super-pursuer, having
an extended strategy space. The solution of the value function yields the
optimal actions uk∗

uk∗ = (uk∗Sp,u
k∗
e) = arg V (k, χk), ∀k ∈ K. (4.33)

Since, the optimal action of the super-pursuer uk∗Sp is an action combination
of p1 and p2 the optimal actions can be assigned to uk∗p1 and uk∗p2 .The optimal
linear reference velocities for the UAV controller are computed by

vr,k∗i = sat(vki + uk∗i ,v
max
i), i ∈ N (4.34)

while the function sat(·) limits the reference velocity vector to the maximum
velocity vector.

4.2.5 Time-Complexity Analysis

Regarding the solution process for one call of NPG for the above defined
game structures having a number of N -players, while each player has a num-
ber of S admissible actions, an optimal strategy has to be found out of SN

combinations. The full game is transformed to one optimization problem
with dimension SN , the MTPGD game is transformed to N optimization
problems with dimension S2, and the the TSTPG game is transformed to
one optimization problem with dimension SN . Regarding the time complex-
ity of NPG, this means the full game requires O(S3N) time, the MTPGD

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 55

O(NS6) time, and the TSTPG O(S3N) time to find a solution. While the
MTPGD provides a relevant time-complexity reduction with an increasing
number of players and strategy combinations, the TSTPG yields no improve-
ment towards the original game using this algorithm. Another big advantage
of the MTPGD in opposition to the other approaches is, that N distinct op-
timization problems have to be solved enabling a parallel computation. In
other words, a player with N processors can solve the game requiring O(S6)

time.

4.2.6 Comparison

In order to compare the proposed multi-player game structures, several nu-
merical simulations have to be carried out. The following assumptions are
made for the PEG simulations:

• Each variant is simulated by running simulations with 61×61 different
initial values χ1

x,y, with:

χ1
x,y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

y

0

vmax
x,p1

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

vmax
x,p2

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

30

30

0

vmax
x,e

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, x, y ∈ [0, 60].

• The evader’s initial position is always (30, 30, 0)T and that of pursuer
p2 is always (0, 0, 0)T . Pursuer p1 starts from varying positions to be
able to analyze all different position constellations between all agents.

• The maximum translational velocity of the pursuers is set to vmaxp1 =

vmaxp2 = (15, 15, 3.5)T , and the maximal absolute velocity to vmaxAp1 =

vmaxAp2 = 15. Also, vmaxe = (10, 10, 2)T , and vmaxAe = 10, are set for
the evader, respectively.

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 56

Number of Strategies (per axis)
3 4 5 6 7 8 9

C
o

m
p

.
T

im
e

 [
s

/S
ta

g
e

]

10
-1

10
0

10
1

10
2

10
3

Full Game (npg)
MTPGD (npg)
TSTPG (npg)
MTPGD (Lemke-Howson)
TSTPG (Lemke-Howson)

Figure 4.4: Average runtime as a function of the number of strategies in
one stage.

• The number of discrete actions in one stage for each player is set to
sp1 = sp2 = se = s = 27, 125, 343, and 729, resulting in four simulation
series with each having 3721 game simulations.

• The stage duration of the PEG is set to ∆T = 0.1 while the velocity
and attitude controller are sampled with ∆t = 5e− 3.

• The capture radius is set to dϵ = 5.

The results revealed that each game converged in all three game variants.
Figure 2 depicts the average runtime of each of the four simulation series for
each variant as a function of the strategy options of each player in one stage
of the game. The total number of simulated games is 44652. To analyze the

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 57

10

10 10

10

30

30 30

30

50

50 50

50

70

70 70

70

B1/Stages

B2/Stages B3/Stages

B4/Stages

MTPGD

Non-Dec.

ETTPGD

Figure 4.5: Average of terminal stages in each quadrant.

results, the position space Ej is divided into quadrants Bj
1, . . . ,B

j
4:

B1 =
{
χ1
x,y|x, y ∈ [0, 30]

}
B2 =

{
χ1
x,y|x ∈ [0, 30], y ∈ [31, 60]

}
B3 =

{
χ1
x,y|x, y ∈ [31, 60]

}
B4 =

{
χ1
x,y|x ∈ [31, 60], y ∈ [0, 30]

}
Ej = B1 ∪ · · · ∪B4

Regarding the average run-time of all simulation series in figure 4.4, the re-
sults reflect mostly the time complexity analysis in the last section. While the

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 58

original game reveals a shorter run-time in respect to TSTPG with increas-
ing strategy space, the MTPGD, otherwise, enables a calculation equally
fast for s = 3, ≈ 1.57 times faster for s = 5, ≈ 4.2 times faster for s = 7, and
≈ 8.6 times faster for s = 9, using the npg algorithm. The run-time of the
TSTPG and the MTPGD can be reduced even more, when using the Lemke-
Howson algorithm, which is only available for two-player games. Thus, for
the TSTPG solution a calculation ≈ 2.8 times faster for s = 3, ≈ 4.7 times
faster for s = 5, ≈ 9.75 times faster for s = 7, and ≈ 20.79 times faster for
s = 9. For the MTPGD solution a calculation ≈ 2.9 times faster for s = 3,
≈ 7.75 times faster for s = 5, ≈ 24.77 times faster for s = 7, and ≈ 70.36

times faster for s = 9.

Figure 4.5 depicts the average of terminal stages in each quadrant of the
position space. It can be seen that all three approaches yield almost identical
average values in each quadrant (< |2| stages). The standard deviation in
B1, B2, B3 and B4 of the difference of the MTPGD and the full game
are given by 2.23 stages (≡ 0.223s capture time), 6.86 stages (≡ 0.686s

capture time), 2.34 stages (≡ 0.234s capture time), and 11.83 stages (≡
1.183s capture time). The results total up to an average of 0.66 stages
difference and a standard deviation of 6.81 stages (≡ 0.681s capture time).
Due to the decomposition process, a portion of information gets lost in the
distinct 2-Player games, leading to these deviations.

The difference of the TSTPG to the full game sums up to an average value of
0.23 stages and a standard deviation of 3.53 stages (≡ 0.353s capture time).
The average value’s standard deviation in B1, B2, B3 and B4 are given by
1.44 stages (≡ 0.144s capture time), 2.33 stages (≡ 0.233s capture time),
2.06 stages (≡ 0.206s capture time), and 5.97 stages (≡ 0.597s capture time).

Despite the fact that the average of the difference of the terminal stage val-
ues is almost zero, a standard deviation of up to 11.83 stages in B4 could be
observed. The results indicates, that in some cases the strategies computed
with the MTPGD differ from those of the full game. Due to the fact that
the pursuers are regarded separately, the evader considers only the strategy
option of each antagonist independently. In opposition to the single-action
game decomposition, where no qualitative detriment regarding the solution
is observed, the MTPGD differs from the original solution under specific
circumstances. The fusion of the distinct sub-game solutions is very cru-

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 59

cial. Although the property of game theory, that the solution of a game
depends on the decision of each involved player, is not violated, the solution
of the regarded game is no longer a pure three-player game solution. It is a
composition of two distinct two-player games. The main advantage of this
approach is the computational time gain. Figure 4.4 depicts the average
runtime of each game, starting at the above defined initial positions, as a
function of the strategy options each player has in one stage of the game per
axis. With increasing strategy space the TSTPG has even a bigger run-time
as the full game. It can also be seen, that the run-time of the MTPGD
is considerably smaller with increasing strategy space. Since the two new
structures regard only two-player games, more sophisticated algorithms, only
available for two-player games, can be used. As depicted on figure 4.4, the
Lemke-Howson algorithm gives an significant reduction to the run-time of
the TSTPG and MTPGD. The TSTPG solution is even faster calculated
with the Lemke-Howson algorithm then the MTPGD solution with the npg
algorithm. However, the fastest combination is constituted by the MTPGD
and the Lemke-Howson algorithm. Due to the tremendous time-complexity
reduction of the game with the MTPGD, this approach yields an acceptable
trade-off between time-complexity and solution quality.

4.3 Conclusion

First, the decomposition of the action sets of each player in a game is shown,
resulting in three distinct games. It is presented that the results of both
methods yield close results, while the time-complexity could be reduced
markably. Moreover, two different game structures for multi-player dy-
namic games are introduced and applied to a two-pursuer-one-evader pursuit-
evasion game. It is shown that the MTPGD provides a game-theoretical solu-
tion approach for a multi-player game that considerably reduces the run-time
of the solution algorithm. Both, the MTPGD and TSTPG approach pro-
vided close results to the original game. In addition, the MTPGD provides
a solution approach which enables a parallel computation of all distinct two-
player games. That means, with N processors, the run-time can be improved
by a factor of N . Both methods enable the usage of the Lemke-Howson algo-
rithm for the solution of the game, which is a more sophisticated algorithm

Chapter 4 – Time-Complexity Reduction for Multi-Player Games 60

only available for two-player games. In summary, by the decomposition of
the action space and the usage of the MTPGD game solved with the Lemke-
Howson algorithm, the run-time of a game with 3 strategies per axis, per
player and per stage, can be improved by a factor of ≈ 5.8, with 5 strategies
by a factor of ≈ 141.8, with 7 by a factor of ≈ 1847.3 and with 9 strate-
gies by a factor of ≈ 12043.52. For the usage of the TSTPG solved with
the Lemke-Howson algorithm the run-time of a game with 3 strategies per
axis, per player and per stage, can be improved by a factor of ≈ 5.6, with
5 strategies by a factor of ≈ 86, with 7 by a factor of ≈ 727, 16 and with
9 strategies by a factor of ≈ 3558.62. Since, [ASB14b; ASB16] proved that
a real-time implementation of a two-player PEG with two identical UAVs
is applicable, especially the MTPGD enables the real-time applicability for
PEGs with multiple UAVs.

5 Cooperation and Behavior
Assignment

In this chapter a solution concept for general multi-team games is presented.
It is aimed to define a solution concept that allows a superordinate co-
operation between team-members. Since this work focuses on PEGs with
UAVs, this class of games is used to verify the presented solution concept.
In respect to two-player pursuit-evasion games, multi-player pursuit-evasion
games with an arbitrary number of players are much more complex. The
game changes from a pure non-cooperative into a cooperative one between
the players within a team and to a non-cooperative one between the parties.
Furthermore, a certain degree of flexibility for the team’s strategies is de-
sired. In other words, the teams should be able to negotiate about different
behavioral strategies and assign them to each team-mate. This negotiation
process can be defined as a superordinate cooperative game.

The problem which is treated in this chapter has been firstly stated in [AB12],
briefly: Is a team of pursuers able to catch a faster evader by cooperation in
a visibility-based PEG with imperfect information? The solution approach
described in [AB12] includes the use of a cascaded system structure for the
UAV agents, similar to that depicted in figure 5.4. Due to a communication
channel between the pursuers, they are able to maximize their information
set. This can be used for a battue against the evader and to contain or
ambush the evader, which requires that the pursuers are able to change
their behavior from time to time. Therefore, two behaviors, the pursue and
the battue behavior will be introduced. In [AB12] an urban environment is
assumed, which will be neglected in this chapter. In order to move in an en-

Chapter 5 – Cooperation and Behavior Assignment 62

vironment with many obstacles, a collision avoidance behavior as introduced
in [ASB14a] for PEG is required. The PEG in an environment with moving
and static obstacles will be treated in chapter 7.6.

Other than stated in [AB12], the PEG will be separated into two levels,
the cooperative and non-cooperative level. This gives a higher flexibility to
the cooperating teams. The system structure of each player in a perfect
information PEG could then be defined as depicted in figure 5.1. Due to
the perfect state information, each player has full knowledge about the game
state in each time step. This system structure is an analogical representation
of a RNBC-structure realization, which is introduced in [ASB14a] for a non-
cooperative two player PEG as a preliminary work and will be presented in
the next chapter in detail.

This structure is extended by adding the “Cooperative Behavior Assignment”
layer on top, analogical to figure 5.1. The implementation of this structure
is done in [Sch14] where two-pursuer one-evader PEGs with UAVs moving
on a 2-D plane with faster pursuers in games with perfect state information
structure are analyzed. The main tasks of this work are, amongst others,
on the one hand to find out, which game-theoretical cooperation approach
yields the best results for the pursuers, and on the other hand whether a
cooperation yields a gain in the pursuer’s outcome. This implementation is
used in this work and extended to 3D motion and to games with imperfect
information and delayed information sharing.

The results of the multi-player PEG with UAVs and cooperating pursuers
moving in a 3D environment in PEGs with perfect state information, pre-
sented in this work, have been published in [ASB15].

5.1 Superordinate Cooperation in PEGs

The two-pursuer one-evader game defined in 4.2.1 is extended by a superor-
dinate cooperation level enabling multiple pursuers and evaders to team up.
In simulations it will be shown, that the outcome of the pursuers in a two-
pursuer one-evader PEG can be enhanced by cooperation. The pursuers are
able to negotiate which pursuing behavior (pursuit or battue) is assigned to
them by applying game-theoretical solution methods for cooperative games.

Chapter 5 – Cooperation and Behavior Assignment 63

The two pursuers one-evader problem stated above with UAV agents with
identical dynamical constraints has to be solved assuming that:

• The 3-D environment is unbounded and without obstacles.

• The evader is slower than the pursuers.

• All players have perfect state information and complete attribute in-
formation.

A solution to this problem is sought that fulfils following requirements:

• All agents have to consider that the solution of the problem depends
on the decisions of each participant.

• The players must be able to react to unexpected behavior (closed-loop
solution).

• The pursuers have to cooperate.

Therefore, following solution approach is proposed:

• Definition of a superordinate cooperative game between the pur-
suers enabling a strategical behavior change, solved with game-
theoretical methods (Nash Equilibrium [Nas50a], Nash Bargaining So-
lution [Nas53], Pareto Efficiency [McL08]).

• Game-theoretical solution approach for the subordinate non-
cooperative game.

Figure 5.1 illustrates the general structure of the players (in this case only
the pursuers). In the cooperative game set-up a behavioral strategy is as-
signed by solving a static normal-form cooperative game between the pur-
suers. Each player has two admissible behavioral strategies, which are pursuit
and battue. The payoff matrix of this game is constituted as defined in table
5.1. A payoff tuple (KLb∗1 ,

K Lb∗2) denotes the optimal payoff of playing the
non-cooperative game against the evader for a duration of K stages, while act-
ing according to the behavioral strategy b∈ {p, b}, while p stands for pursuit
and b for battue, respectively. The sub-game solutions of the non-cooperative

Chapter 5 – Cooperation and Behavior Assignment 64

Behavioral Strategy pursuit battue
pursuit (KLp∗1 ,

K Lp∗2) (KLp∗1 ,
K Lb∗2)

battue (KLb∗1 ,
K Lp∗2) (KLb∗1 ,

K Lb∗2)

Table 5.1: Static cooperative game for behavior assignment.

-
+

Cooperative

Game

Set-Up

optimal

team

strategy

game

state

optimal

action

UAV Player

Controller

Non-

Cooperative

Game

Set-Up

error control output

UAV

Figure 5.1: Player’s structure in game with perfect state information.

game can be memorized to avoid a recalculation. The solution of that game,
yields an optimal team strategy. Now that each pursuer knows its optimal
behavior, the perviously calculated optimal actions for the non-cooperative
game can be recalled, if and only if the evader plays as expected, i.e. opti-
mal. If the evader doesn’t play optimal, the behaviors are kept anyway for
the duration of K stages. So the sub-game solutions of the non-cooperative
game have to be calculated for the actual, unexpected, state of the game.
The sub-game solutions for each stage of the non-cooperative game, i.e the
optimal actions, are passed to the UAV controller and executed by the UAV
system. Up to this point, a perfect state information is assumed, thus the
adversary state estimation is a perfect state observer with no time delay, just
like the team-information sharing has no time delay in such a game. Later, it
will be shown, how an imperfect state information with delayed observation
sharing affects the solution of the game.

Chapter 5 – Cooperation and Behavior Assignment 65

5.2 Team-Behavior Game

As stated before, the pursuers are able to chance their behavior within a
given time horizon of K stages. The two behaviors are pursuit and battue.
In the following it is described which cost functionals describe the behavior
of the pursuers within the PEG.

5.2.1 Battue and Pursuit

Assuming that the evader is permanently maximizing the distance to the
pursuers, the latter can either minimize the distance (pursuit) to the evader
or follow the so called battue point (battue). To understand how the battue
point is determined the situation as depicted on figure 5.2 is regarded (blue
pursuer is kept at a constant position for demonstration purposes). The green
pursuer is supposed to drive the evader towards the blue one. Therefore,
a line through the blue pursuer’s position posk+1

p′ and the evader’s position
posk+1

e is set. The battue point is a point on this line with a specific distance
to the evader’s position in opposite direction to the blue pursuer. Pursuing
the battue point results in driving the evader towards a teammate. The
battue point is calculated by

bpp = posk+1
p′ + ξ · (posk+1

e − posk+1
p′) (5.1)

with

ξ =
∥posk+1

p′ − posk+1
p ∥2 + ∥posk+1

e − posk+1
p′ ∥2

∥posk+1
e − posk+1

p′ ∥ · ∥posk+1
p′ − posk+1

p ∥
− c. (5.2)

The constant c in the latter equation affects the distance of the battue point
to the evader. With a value of c = 0.9 the best results could be achieved,
while this value is determined empirically. If both pursuers play pursue the
cost functional is given by:

L(ukp1 ,u
k
p2 ,u

k
e) =

K∑
k=1

p
(
ukp1 ,u

k
p2 ,u

k
e , χ

k
)

(5.3)

Chapter 5 – Cooperation and Behavior Assignment 66

k=1

k=1

k=1

k=6

k=6

k=6

k=12

k=12

k=12

2nd Pursuer

Evader

Battue Pursuer

Battue Point

Figure 5.2: Green pursuer drives evader (red) towards blue pursuer.

with p(·) being defined as

p
(
ukp1 ,u

k
p2 ,u

k
e , χ

k
)
=

2∑
i=1

d(ukpi ,u
k
e , χ

k) (5.4)

and giving an estimation of the costs in stage k if the action tuple
(ukp1 ,u

k
p2 ,u

k
e) is played. In particular d(ukpi ,u

k
e , χ

k) provides the change in
distance of one pursuer pi to the evader, while the sum of all d(·)’s consti-
tutes the costs in stage k. If a pursuer plays battue its cost functional is
given by:

L(ukp1 ,u
k
p2 ,u

k
e) =

K∑
k=1

h(χk+1,up, χ
k) =

K∑
k=1

∥bpp − posk+1
p ∥, (5.5)

while the outcome of the remaining players results from d(ukpi ,u
k
e , χ

k).

Chapter 5 – Cooperation and Behavior Assignment 67

To make a choice which behavior is assigned to the pursuers for the regarded
time horizon, a static two-player cooperative game is solved with the outcome

η(σ) = (∥posk+κe,σ − posk+κp1,σ∥, ∥pos
k+κ
e,σ − posk+κp2,σ∥), (5.6)

while posk+κi,σ is the position of player i ∈ N of the PEGs in stage k+κ, if the
pursuers played in the stages [k, k + κ] the behavioral strategy combination
σ = (σp1 , σp2) ∈ Σ × Σ, with Σ = p, h being the behavioral strategy space
with the elements p for pursuit and h for battue. This results in a normal-
form game with the strategies pursuit and battue for each player, and the
outcomes η(σ), while both players want to minimize their outcome. The
solution of this game provides a behavioral strategy combination, which is
applied by the pursuers in the subsequent stages. This problem is solved by
using different game-theoretical approaches to determine which one yields the
best results. Therefore, the Nash Equilibrium, the Nash Bargaining Solution,
and the Pareto Efficiency are utilized. To evaluate the simulation results,
two questions have to be answered:

• Do cooperating pursuers achieve better results?

• Which solution approach for the cooperative game yields the best re-
sults?

Therefore, the solutions of the cooperative game with four different solution
variants have to be compared, namely the Nash Equilibrium (Variant 1),
Nash Bargaining Solution (Variant 2), Pareto Efficiency (Variant 3), and no
cooperative game is played while each pursuer minimizes the distance to the
evader (Variant 4).

5.2.2 Comparison for Games with Perfect State Information

The following assumptions are made for the PEG simulations:

• Each variant is simulated by running simulations with 61×61 different
initial values χ1

x,y, with:

Chapter 5 – Cooperation and Behavior Assignment 68

χ1
x,y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

y

−2

vmax
x,p1

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−2

vmax
x,p2

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

30

30

−2

vmax
x,e

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, x, y ∈ [0, 60].

• The evader’s initial position is always (30, 30,−2)T and that of pursuer
p2 is always (0, 0,−2)T . Pursuer p1 starts from varying positions to be
able to analyze all different position constellations between all agents.

• The maximum translational velocity of the pursuers is set to vmaxp1 =

vmaxp2 = (15, 15, 3.5)T , and the maximal absolute velocity to vmaxAp1 =

vmaxAp2 = 15. Also, vmaxe = (12, 12, 2)T , and vmaxAe = 12, are set for
the evader, respectively.

• The number of different discrete actions for each player is set to sp1 =

sp2 = se = 9, while sp1,u = sp2,u = se,u = sp1,v = sp2,v = se,v = 2, and
sp1,w = sp2,w = se,w = 1.

• The stage duration of the PEG is set to ∆T = 0, 1 while the velocity
and attitude controller are sampled with ∆t = 5e− 3.

• The stage duration for the superordinate cooperative game is set to
10 ·∆T .

• The capture radius is set to dϵ = 5.

The analyze the results, the position space Ej is divided into quadrants
Bj

1, . . . ,B
j
4:

B1 =
{
χ1
x,y|x, y ∈ [0, 30]

}
B2 =

{
χ1
x,y|x ∈ [0, 30], y ∈ [31, 60]

}
B3 =

{
χ1
x,y|x, y ∈ [31, 60]

}
B4 =

{
χ1
x,y|x ∈ [31, 60], y ∈ [0, 30]

}
Ej = B1 ∪ · · · ∪B4

Chapter 5 – Cooperation and Behavior Assignment 69

Quadrant

B
1

B
2

B
3

B
4

S
ta

g
e

s

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

Diff. Nash Eq.-No Coop.
Diff. Nash Bargaining-No Coop.
Diff. Pareto Efficiency-No Coop.
No Coop.

Figure 5.3: Difference of average terminal stages of coop. and non.-coop
solution.

Figure 4.5 depicts how many stages are needed to capture the evader in av-
erage for each quadrant in respect to the game with no cooperation. While
the solution derived with the Nash Equilibrium and the Nash Bargaining
Solution are almost equal, the solution derived with the Pareto Efficiency
points up a significant improvement regarding the terminal stage, especially
in respect to the solution without cooperation and thus without behavior
assignment. Taking a closer look at figure 4.5 reveals, that the initial po-
sitions of all players are affecting the solution considerably as documented
in table 5.2, 5.3, 5.4, and 5.5. Most notably in B3, where the two pursuers
“surround” the evader, the Pareto Efficiency solution yields an average im-
provement of 13.25% in opposition to the non-cooperative solution. These
two facts are an important indication for a good pursuing strategy: If the
pursuers surround the evader, playing the cooperative game with the Pareto
Efficiency approach will yield a remarkable improvement in capture time.

Chapter 5 – Cooperation and Behavior Assignment 70

Method Average of Stages Improvement
Nash Equilibrium 62.78 3.54%

Nash Bargaining Solution 62.76 3.59%

Pareto Efficiency 62.59 3.37%

No Cooperation 64.70 −

Table 5.2: Average of terminal stages in B1.

Method Average of Stages Improvement
Nash Equilibrium 67.30 8.00%

Nash Bargaining Solution 67.27 8.05%

Pareto Efficiency 66.09 9.98%

No Cooperation 72.69 −

Table 5.3: Average of terminal stages in B2.

Method Average of Stages Improvement
Nash Equilibrium 53.90 1.79%

Nash Bargaining Solution 53.85 1.89%

Pareto Efficiency 48.45 13.25%

No Cooperation 54.87 −

Table 5.4: Average of terminal stages in B3.

Method Average of Stages Improvement
Nash Equilibrium 53.27 0.24%

Nash Bargaining Solution 53.27 0.24%

Pareto Efficiency 51.23 4.23%

No Cooperation 53.40 −

Table 5.5: Average of terminal stages in B4.

5.3 Team-Behavior Game with Delayed Observa-
tion Sharing and Imperfect Information

In general, a perfect state information is unrealistic. Perfect state informa-
tion signifies that each player is able to observe the whole state space in each
time step of a game with an instantaneous perfect state observer. Regarding

Chapter 5 – Cooperation and Behavior Assignment 71

real applications, like search and rescue missions or air combat maneuvering,
an agent i ∈ τ is only able to estimate its own states and the state of others
within its observable space, i.e. observable set X̂k

i ⊂ X in stage k with the
help of a set of arbitrary sensors and filters/observers as depicted in figure
5.4. The observable set of player i in stage k results directly from the sensing
area of player i’s sensors. There exists an observation function κ : X → X̂k

i ,
with

x̂ki = κ(xk), (5.7)

giving an estimation of the state of the game x̂k, ∀k ∈ K. Due to a physically
limited rate of sensing and due to information processing the state estima-
tions are available after a certain constant time delay of α stages. Certainly
each real sensor has a physically limited sensing range. Hence, each agent
can only observe its own state vector, and the state vector of each agent
within its sensing area. This opens the door for observation sharing within
a team of agents. It is assumed that a secure data link between all m ∈ Pm,
∀m ∈ {1, 2, . . . ,M} and between all l ∈ El, ∀l ∈ {1, 2, . . . , L} exists. The
transmission time β stages for a full information exchange between all play-
ers within a team is assumed to be constant. All in all, in real applications
each player i gathers as much information as possible, resulting generally in
an β-step delayed imperfect state information ιki = x̂k−βi . Moreover, i is a
member of a team Q ⊂ τ , while i is able to share its state information ιki ,
with all q ∈ Q, ∀q ̸= i and vice versa. In particular, the state information
of player i results in:

OSιki = {ιki , ι
k−β
l , . . . , ιk−βm }, (5.8)

while k ∈ K, o = {m, . . . , l}, and o ∪ i = J.

Regarding figure 5.4, the control structure of one UAV player i in a multi-
player PEG is depicted. The sensors and filters are estimating on the one
hand the state of player i, and on the other hand an adversary state estimator
is estimating the states of each foe within the observable set of player i. The
estimation of those states takes α stages to be completed. In a next step, this
information is shared with all teammates, which takes another β steps. At
this point, each player within a team knows the states of all his teammates
and the states of all foes within an observable set of each teammate α+β steps

Chapter 5 – Cooperation and Behavior Assignment 72

Figure 5.4: Player’s structure in a game with observation sharing.

ago. Based on that information an estimate of the actual position of each
observable player can be conducted and the cooperative game can be player
to obtain an optimal behavioral strategy, based on the observable game state
x̂k of the regarded team. This optimal solution is used to determine the non-
cooperative game set-up, and estimate the optimal actions of each UAV.

Due to the high complexity of obtaining a game-theoretical solution the
absolute state estimation time is in general much smaller then the stage
duration ∆t of one stage k. Thus, α is assumed to be 0. Vice versa, a
secure team-information sharing can be assumed to generate more overhead.
Hence, it is assumed that β is a multiple of k, with β = r · k, r ≥ 0, and
r ∈ N.

The delayed observation sharing with imperfect information as presented
above seems to be very close to reality. This type of games, enables a large
set of opportunities for strategical behavior in PEGs. Regarding the two-
player PEG from above, the results reveal that the game converges for each
initial state of the game. It can be said, that a PEG between two players
having the same dynamics with perfect state information converges for each
initial state, as long as the pursuer is faster than the evader. The other

Chapter 5 – Cooperation and Behavior Assignment 73

way around, it holds that such a game will never converge if the pursuer is
slower or as fast as the evader. The same holds if the number of pursuers is
increased by a plausible quantity. If the evader is faster, there will exist an
arbitrary number of escape paths.

The two-pursuer one-evader game with cooperating pursuers and delayed
observation sharing, represents a more realistic set-up for PEGs. Now, it
is conceivable that the pursuers gain a big advantage in opposition to the
evader. In other words, if one pursuer is able to observe the evader, the
second pursuer will be informed about the evaders position while the evader
might not even know about the presence of a second pursuer. This circum-
stance opens the door for many different pursuing strategies, e.g. ambushing
the evader and others. The battue behavior described before makes more
sense in such a configuration then in a set-up with perfect state informa-
tion. Although, as illustrated in figure 5.3, the results of the cooperating
pursuers reveal an improvement in capture time, the main contribution of
this approach is to establish a general framework for dynamic games with
cooperative and non-cooperative nature, giving the ability of switching the
general behavior of each player from time to time to improve the outcome.
It is expected that the key advantage of the pursuer’s battue strategy comes
to light in multi-pursuer one-evader games with imperfect state information
and a faster evader.

5.3.1 PEGs with Zero-Delay Observation Sharing

To verify the latter, a simulations series with a similar set-up for the two-
pursuer one-evader game with cooperating pursuers is chosen. The evader’s
initial position is changed to (15, 15, 0) and the second pursuers initial posi-
tion to (3, 3, 0). Moreover, an observation set X̂k

i , which contains all posi-
tions in a sphere around player i’s position in the 3D-Euclidean space with
sensing radius rS = 15 ·

√
2, i ∈ N and ∀k ∈ K is assumed. This means,

that initially at least one pursuer is observing the evader and vice versa as
depicted on figure 5.5. From this point on, only the Pareto Efficiency ap-
proach will be used for the cooperative game between the pursuers since it
produced the best results. In this simulation the pursuers are able to share
their game states with their team-mates without delay. At this point, no

Chapter 5 – Cooperation and Behavior Assignment 74

0

10

20

30

40

50

60

10 20 30 40 50 60

Figure 5.5: Imperfect information: initial positions and sensing radii.

delay is assumed to enable a more precise analysis of the effect of a delayed
state information, which is done in the next section of this chapter.

A comparison of the results of the perfect state information game and the im-
perfect information game with an evader being 20% slower than the evaders
reveals the advantage of the pursuing team (figure 5.6). Table 5.6, 5.7, 5.8,
and 5.9 underpins that by showing the percentage improvement in capture
time in all four quadrants. Especially, when the first pursuer starts in quad-
rant B2 or B4 the improvement in capture time is more than 40%.

Since in the perfect state information game the evader “sees” both pursuer
coming, it is able to act from the beginning against the incoming “threat”. In
case of the imperfect information game, the evader knows initially only the
first pursuer’s state and does not even know that there is another pursuer
on its way to capture it. The evader knows about the presence of the second
pursuer not until it undercuts its sensing radius rS .

Chapter 5 – Cooperation and Behavior Assignment 75

10

10 10

10

30

30 30

30

50

50 50

50

B1/Stages

B2/Stages B3/Stages

B4/Stages

Perfect Information

Imperfect Information

Figure 5.6: Average of terminal stages in each quadrant (evader 20%
slower).

Information Average of Stages Improvement
Perfect 23.49 −

Imperfect 22.37 5.00%

Table 5.6: Terminal stages in games with perfect and imperfect state
information in quadrant B1 (evader 20% slower).

Information Average of Stages Improvement
Perfect 44.86 −

Imperfect 31.18 43.87%

Table 5.7: Terminal stages in games with perfect and imperfect state
information in quadrant B2 (evader 20% slower).

In the upcoming simulation series it is analyzed how the results change,
when the speed of the evader is increased. First, the evaders maximal speed
is raised to 90% of the maximal speed of the pursuers. The results are de-
picted on figure 5.7 and a comparison of the simulation results of the perfect

Chapter 5 – Cooperation and Behavior Assignment 76

Information Average of Stages Improvement
Perfect 32.13 −

Imperfect 27.05 18.78%

Table 5.8: Terminal stages in games with perfect and imperfect state
information in quadrant B3 (evader 20% slower).

Information Average of Stages Improvement
Perfect 44.38 −

Imperfect 31.36 41.51%

Table 5.9: Terminal stages in games with perfect and imperfect state
information in quadrant B4 (evader 20% slower).

and imperfect game cases is given in table 5.10, 5.11, 5.12, and 5.13. As one
can see, especially in quadrant B2, B3, and B4 the improvement is much
bigger than before although the evader’s speed is higher. At a first glance
this may seem paradox but there is a simple explanation. The initial sit-
uation where the pursuers do not start side by side, which is particularly
when the first pursuer starts not in quadrant B1, and moreover the initial
positions where the first pursuer is not in the sensing radius of the evader,
bring out the real benefits of the cooperative approach presented above. In
most cases (especially in B2, B3, and B4) the pursuers’ choice of the be-
havioral strategies result in an ambushing approach. The pursuer, which is
sensed by the evader, drives the evader towards the other pursuer. Opti-
mally, this brings the evader on a direct course to the second pursuer, that is
also approaching the evader. When entering the sensing radius, the evader
has almost no chance of escaping the approaching pursuer. This situation
also explains, why the increased speed of the evader, results in a relatively
improved capture time. Since, the dynamics of the evader allow a higher ma-
neuverability at lower speeds, i.e. the evader is able to fly narrower curves at
lower speed, ambushing could be prevented in many cases when the evader
is 20% slower, delaying its capture.

At this point, a much more interesting question arises: Is it possible to
capture an faster evader under this circumstances?. To answer that question
the evaders speed is raised incrementally.

Chapter 5 – Cooperation and Behavior Assignment 77

10

10 10

10

30

30 30

30

50

50 50

50

70

70 70

70

90

90 90

90
B1/Stages

B2/Stages B3/Stages

B4/Stages

Perfect Information

Imperfect Information

Figure 5.7: Average of terminal stages in each quadrant (evader 10%
slower).

Information Average of Stages Improvement
Perfect 42.90 −

Imperfect 37.00 15.94%

Table 5.10: Terminal stages in games with perfect and imperfect state
information in quadrant B1 (evader 10% slower).

Information Average of Stages Improvement
Perfect 74.74 −

Imperfect 49.51 50.95%

Table 5.11: Terminal stages in games with perfect and imperfect state
information in quadrant B2 (evader 10% slower).

Information Average of Stages Improvement
Perfect 62.73 −

Imperfect 37.30 68.17%

Table 5.12: Terminal stages in games with perfect and imperfect state
information in quadrant B3 (evader 10% slower).

In the next simulation series the evader’s maximal speed is set equal to
the maximal speed of the pursuers. From this point on it is obvious that

Chapter 5 – Cooperation and Behavior Assignment 78

Information Average of Stages Improvement
Perfect 88.86 −

Imperfect 51.10 73.89%

Table 5.13: Terminal stages in games with perfect and imperfect state
information in quadrant B4 (evader 10% slower).

the evader has the power to escape the pursuers. Therefore, a comparison
between the perfect information and the imperfect information case by means
of average terminal time in each quadrant is not possible because some or
even all terminal stages are infinite. For instance, regarding the values of the
game with perfect state information depicted on figure 5.8, the convergence of
the game is given only for initial positions within the terminal set plus some
few initial positions in the vicinity of the latter. This proves that the capture
of an equally powerful evader in a game with perfect state information is
virtually impossible. Hence, it is unnecessary to regard situations with a
higher speed for the evader because the result would be qualitatively the
same.

Now, what happens in the game with imperfect information? The values
of this game are illustrated in figure 5.9. As expected, the cooperative be-
havioral strategy of the pursuers comes into effect. The results reveal how
the pursuers must be positioned so that the first pursuer is able to drive the
evader towards the second one such that the ambush succeeds. The initial
positions where the evader can be captured trends lobe-like away from the
evader in opposite direction of the second pursuers position, while there are
still positions inside the lobe where capture is not possible.

Chapter 5 – Cooperation and Behavior Assignment 79

Figure 5.8: Perfect state information (all players with equal max speed).

Figure 5.9: Imperfect state information (all players with equal max
speed).

Chapter 5 – Cooperation and Behavior Assignment 80

Figure 5.10 depicts the values of the game with imperfect information with
an evader 1.25 times faster than the pursuers. Now, a new problem appears
which makes the capture even more difficult. The ambushing strategy works
fine for equally powerful evaders and should probably work also for faster
evaders, but a faster evader is able to cross and leave the sensing area of the
pursuer. And the faster the evader is, the faster it will leave the sensing area.
So the time of the pursuer to drive the evader in the right direction is limited.
From this point on, the pursuers have to estimate the evaders position based
on the last sensed state of the evader, which is anything but optimal. It is
assumed that the direction of the evader when leaving the sensing radius does
not change, while it is assumed that the evader accelerates till its maximal
speed is reached.

Figure 5.10: Imperfect state information (evader 25% faster).

As one can see, with increasing evader speeds like 1.5 times (figure 5.11),
1.75 times (figure 5.12) and 2.0 times (figure 5.13) faster than the pursuers,
the set of initial positions, where the evader is captured, shrinks more and
more (Note that setting higher maximal speeds for the evader is not possible
due to the fact that the utilized UAV system becomes very uncertain or even
unstable when setting too high reference values for the speed). Figure 5.14

Chapter 5 – Cooperation and Behavior Assignment 81

illustrates the trend of the terminal stages with increasing maximal speed
of the evader. The average is calculated by assigning a relatively high value
to all games with infinite terminal time, which is 300. The latter is also the
value at which the simulations stopped and the divergence of the game is
assumed.

Figure 5.11: Imperfect state information (evader 50% faster).

Chapter 5 – Cooperation and Behavior Assignment 82

Figure 5.12: Imperfect state information (evader 75% faster).

Figure 5.13: Imperfect state information (evader 100% faster).

Chapter 5 – Cooperation and Behavior Assignment 83

Evader Max Speed [% of Pursuers Max Speed]
100 110 120 130 140 150 160 170 180 190 200

A
v
e

ra
g

e
 o

f
T

e
rm

in
a

l
S

ta
g

e
s

170

180

190

200

210

220

230

240

250

Figure 5.14: Imperfect state information: average of terminal stages
with increasing evader speed.

5.3.2 PEGs with N-Delay Observation Sharing

In this section, the effect of a delayed information exchange between team-
members is analyzed. Therefore, the same simulation setup as in the last
section is chosen but this time the evader’s maximal speed is kept constant
in each simulation series, while the pursuers and the evader have the same
maximal speed. In addition, the observation sharing delay is increased by 1
stage in each simulation series and the effect on the average terminal stage
is regarded. In the last section’s simulation series, where all players had the
same maximal speed and an observation delay of zero, an average terminal
time of 179.14 stages is reached. All player’s receiving delayed information,
have to estimate the actual state of the game. Linear Kalman filters are
used for this purpose. Figure 5.15 depicts the course of the average terminal
stage with and without estimated states. It can be seen that an observation
delay of one step has a minimal impact on the average terminal time with
and without estimation. Regarding a delay > 2 it can be seen, that with the
estimation states, the capture is still possible even with a delay of 6 stages,

Chapter 5 – Cooperation and Behavior Assignment 84

Observation Delay [Stages]
0 1 2 3 4 5 6

A
v

e
ra

g
e

 o
f

T
e

rm
in

a
l

S
ta

g
e

s

180

200

220

240

260

280

300

No Estimation

Kalman Filter

Figure 5.15: Course of terminal stages with increasing observation
delay.

while the usage of the received states makes the capture impossible having a
delay > 3. Here, due to the fact that for initial positions inside the terminal
set of the game, the latter terminates immediately, the limit value for the
average terminal stages results for the regarded position space and terminal
set in 284.24 stages.

5.4 Conclusion

In the first instance, this chapter treats a solution concept for general multi-
agent games on the example of PEGs with UAVs. It is shown how a su-
perordinate cooperation between team-members results in a better outcome.
Regarding the PEG, two behavioral strategies for the pursuers are proposed,
the pursuit and the battue behavior. By playing a cooperative game, the pur-
suers are able to assess which behavior combination yields the best outcome
for the pursuers over a fixed time horizon. Regarding games with perfect
state information, the gain in the outcome is not significant. In more real-
istic scenarios with imperfect information and observation sharing between

Chapter 5 – Cooperation and Behavior Assignment 85

team-members, the supremacy of the approach comes to light. Since the
evader has an information inferiority in situations where it cannot observe
all pursuers, one observable pursuer is able to drive the evader towards a
second pursuer. If the second pursuer’s initial position allows a convergence
of the game, as depicted for instance on fig. 5.9, it will be able to cap-
ture an equally powerful or even a faster evader. It could be also observed
that the set of initial positions, where the pursuer is caught, shrinks with
increasing evader speed (fig. 5.10-5.13). Another important point is that
the observation sharing between team-members could take a delay which is
a multiple of the stage duration ∆t. Regarding the imperfect information
game with delayed observation sharing and an equal speed for all players, it
could be observed, that a delay of one step is of no significant consequence
but a delay beyond that carries weight. Nevertheless, a state estimation with
linear kalman filters considerably raises the number of initial states where
the evader is caught, having a delay of up to 6 stages.

6 Implementation and
Comparative Study

6.1 RNBC Structure for UAV Agents

In general, complex UAV systems supply a number of behaviors forming an
overall complex system behavior. For the purpose of controlling all these
behaviors in a dependable way a well-defined control structure is needed.
Therefore, the RNBC structure is used successfully in different application
domains [Bad06; Bar+09]. [Kan+10] proposes a RNBC structure for an au-
tonomous helicopter platform with eight behavioral levels. The upper levels
of this architecture include the more sophisticated but slower behaviors. The
lower levels contain the more dynamic behaviors having a shorter reaction
time. For instance, the levels 1 (axis-level control), 2 (robot-level control),
and 4 (homing) realize a typical cascaded control structure for a UAV posi-
tion control. This nested structure is extended with the collision avoidance
behavior, which is integrated in the intermediate level 3. In this section a
conceptional realization of the pursuing UAV agents taking place in a PEG
is presented. The proposed RNBC structure for the UAV agents is depicted
in figure 6.1.

Chapter 6 – Implementation and Comparative Study 88

Cooperative Pursuit

Pursuit-Evasion Game

Collision Avoidance

Velocity Control

Attitude Control

Stereo

Camera

GNSS

Radar

INS

Magneto-

meter

Radio

Link

b

Sensors

Figure 6.1: RNBC structure for UAV agents.

The lowest layer controls the attitude of the UAV and is fed by the sen-
sors with the measured angular velocities ϕ̇, θ̇, ψ̇ and the magnetic field H,
while being provided with the reference angles ϕr, θr, ψr from the velocity
control layer. The reference velocity vcfr provided by the collision avoidance
layer forms the input of the latter. It assures a collision-free flight and is
controlled with help of the linear acceleration measurements axyz and the an-
gles ϕm, θm, ψm. The estimated velocity vm is fed to the collision avoidance
layer. In presence of obstacles the collision avoidance behavior computes a
new reference velocity vector vcfr , based on the reference vper provided by
the pursuit/evasion behavior. The obstacles are detected, e.g., by a radar
sensor giving the distance do and the relative velocity vector to the UAV
agent vrelo . In the pursuit/evasion layer an optimal strategy, in particular, a
reference velocity vper , is calculated, causing a pursuing or evasive behavior
for the pursuing or the evading UAV, respectively. Therefore, information
about the adversarial UAV has to be gathered. A sensor, e.g., a stereo cam-

Chapter 6 – Implementation and Comparative Study 89

era, can be used to estimate the states xe and xp, respectively, in particular,
the position and velocity of the foe. The own states xp and xe, respectively,
are estimated on-board, supported by the GPS, inertial, and magnetometer
sensor measurements. The estimated velocity vm is fed from the subjacent
collision avoidance layer, while the current position is provided by the GPS
sensor directly. In the uppermost layer, the cooperative pursue, the approach
described in chapter 5 is implemented. An observation sharing of all pursuer
states is done over a radio link between all team members. These information
is used to decide the behavioral strategy b ∈ Σ of the pursuer.

After defining the system architecture, all necessary structures are given to
built a real experimentation platform for PEGs with UAVs. The implemen-
tation of the real system platform is described in the next chapter in detail.
Before moving to the next step, a very important step must be carried out.
To be able to asses the PEG approach described in this work, it has to be
compared to an approach which has been designed for the same or a similar
task.

6.2 Comparison to the Performance Map Approach
[RT07]

In literature, approaches for multi-player PEGs with UAVs, regarding faster
evaders, can hardly be found. A very promising method approaching this
problem appears in the PhD thesis of J. Reimann [RT07]; the Performance
Map Approach (PMA). In this section, the PMA is briefly described, and
a comparison between the latter and the game-theoretical approach (GTA),
described in this work, is performed. Therefore, several simulations, under
equal conditions for both approaches, are done. The simulations are ran for
three different configurations: (1) faster pursuers, (2) equally fast pursuers
and evader, and (3) faster evader with four distinct simulation series. All of
those simulation series regard 1000 different PEG simulations. Each of the
simulation configurations is done with the same initial conditions of these
1000 simulations. The initial conditions are set by using the Monte-Carlo
Method, meaning that the initial positions of all players are uniformly dis-
tributed random integer numbers inside a 40×40 grid. The four simulations

Chapter 6 – Implementation and Comparative Study 90

series regard: (1) Both teams use the GTA, (2) The pursuers use the PMA
and the evader the GTA, (3) The pursuers use the GTA and the evader the
PMA, and (4) Both teams use the PMA.

6.2.1 The Performance Map Approach for PEGs with UAVs

The PMA for UAV agents has been developed within the scope of the
PhD thesis “Using Multiplayer Differential Game Theory to Derive Effi-
cient Pursuit-Evasion Strategies for Unmanned Aerial Vehicles” [RT07] of
J. Reimann at the Georgia Institute of Technology, USA. His work tackles
the problem of PEG with UAVs in 2D and proposes three different solution
approaches. The PMA has been mainly developed to solve the problem,
similar to this work, of catching an equally or more powerful evader with
multiple pursuers. The main idea is that through cooperation, more com-
plex tasks can be performed by the pursuers. Therefore, “minimum time
information” from each pursuer and evader is used to intercept the evaders.
In other words, the author assumes a finite 2-D integer position space and
calculates the minimum time needed for each player to reach each point in
this position space originally in a game-theoretical way. To get the solution
the minimum time Hamilton-Jacobi-Bellman-Isaacs equation

min
up∈Up

max
ue∈Ue

{⟨∂V
∂x

, f(x,up,ue, t)⟩}+ 1 = 0 (6.1)

has to be solved. Since the computational complexity using the differen-
tial game framework is assumed to be too high, the author replaces the
latter equation by a collection of simpler Hamilton-Jacobi-Bellman equa-
tions which are given in equation 6.2. The author denotes that the latter
two equation sets are not equivalent. Indeed, a differential game is cut into
many single player optimization problems. Due to that step, information is
lost and thus the solution of the equations is in general not identical. The
main property of a game, which is that the solution depends on the decisions
of each involved player, is violated. Of course, the single player optimiza-
tion problems are much simpler to solve. Reimann uses the Fast Marching

Chapter 6 – Implementation and Comparative Study 91

Approach ([SV03],[Set98]) to solve the Hamilton-Jacobi-Bellman equations
given in equation 6.2.

min
up1∈Up

{⟨∂Vp1
∂xp1

, f(xp1 ,up1 , t)⟩}+ 1 = 0

...

min
upn∈Up

{⟨∂Vpn
∂xpn

, f(xpn ,upn , t)⟩}+ 1 = 0

min
ue1∈Up

{⟨∂Ve1
∂xe1

, f(xe1 ,ue1 , t)⟩}+ 1 = 0

...

min
uen∈Up

{⟨∂Ven
∂xen

, f(xen ,uen , t)⟩}+ 1 = 0.

(6.2)

After solving the minimum time problem, a so called minimum time map is
established (figure 6.2). The minimum time map consists of regions overlay-
ing the whole position space for each involved player. All positions within
a player’s region can be reached fastest by the player itself. As long as the
evader stays in its region, it cannot be caught. The capture time for an
evader is given by the minimum time at the boundaries of its region. If a
region boundary adjoins the position space boundary, as depicted in figure
6.2, the evader is able to escape. Hence, the evader will try to minimize the
distance to that boundary point in his region with the highest time value.
On the other side, the pursuers will also try to minimize the distance to
the point with the maximal time value which is adjacent to the border of
the evaders region. This results in an interception or containment strategy.
Reimann proposes two escaping strategies. In the first one, the so called
“Simple Evasion Strategy”, the evader decides at the beginning which escape
corridor it wants to use to escape and it will not change the strategy till the
end of the game (open-loop approach). In the second one, the “Adaptive
Pursuit and Evasion Strategies”, both the evaders and the pursuers are able
to change their strategy (escape routes or interception points) from time to
time, based on the actual system state (closed-loop solution). The game
ends when the pursuers catch the evader or when the evader is able to reach
the border of the regarded position space.

Chapter 6 – Implementation and Comparative Study 92

Figure 6.2: PMA: minimum time map.

The author used for the simulations very simple vehicle dynamics which are:

dr

dt
≤ vi, i ∈ τ, (6.3)

with vi being the maximum velocity of a player i. Reimann presented a
total of 15 simulations where he showed that under specific conditions a
faster evader can be caught with this approach. It must be noted, that the
complexity increases exponentially with the size of the mesh.

In the next section the PMA with “Adaptive Pursuit and Evasion Strategies”
is used to be compared with the GTA from this work since both are closed-
loop approaches. The PMA with “Adaptive Pursuit and Evasion Strategies”
is implemented in MATLAB, while using the toolbox “Toolbox Fast March-
ing” [Pey09].

Chapter 6 – Implementation and Comparative Study 93

6.2.2 Simulation Set-Up

The following assumptions are made for all simulations:

• The pursuing team P consists of three pursuers p1, p2, and p3.

• The evading team E consist of one evader e.

• The players are multi-rotor UAVs with the model described in 7.3.

• A perfect state information structure is assumed.

• Since the PMA works only on a bounded 2-D grid, the operation space
is limited to Xo × Y o, with Xo, Y o ∈ [80, 80].

• All initial positions are assumed to be on a 40× 40 grid which covers
the plane [20, 60]× [20, 60] in Xo × Y o.

• Each series is simulated by running i = 1..1000 simula-
tions with uniformly distributed random initial positions
{(x̃ip1 , ỹ

i
p1), (x̃

i
p2 , ỹ

i
p2), (x̃

i
p3 , ỹ

i
p3), (x̃

i
e, ỹ

i
e)} inside a 40 × 40, with

the resulting initial game states:

χ1
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃ip1
ỹip1
0

0

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃ip2
ỹip2
0

0

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃ip3
ỹip3
0

0

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃ie
ỹie
0

0

0

0

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, x̃i· , ỹ

i
· ∈ [20, 60], i = 1..1000.

• The maximum translational velocity of the pursuers is set to vmaxp1 =

vmaxp2 = vmaxp3 = (15, 15, 0)T , and the maximal absolute velocity to
vmaxAp1 = vmaxAp2 = vmaxAp3 = 15. Also, vmaxe = (10, 10, 0)T , and
vmaxAe = 10, are set for the evader in configuration one, vmaxe =

(15, 15, 0)T , and vmaxAe = 15 for configuration two, and vmaxe =

(16.5, 16.5, 0)T , and vmaxAe = 16.5 for configurations three, respec-
tively.

Chapter 6 – Implementation and Comparative Study 94

• For the game-theoretical approach: the number of different discrete
actions for each player is set to sp1 = sp2 = sp3 = se = 9, while
sp1,u = sp2,u = sp3,u = se,u = sp1,v = sp2,v = sp3,v = se,v = 2, and
sp1,w = sp2,w = sp3,w = se,w = 1.

• The stage duration of the PEG is set to ∆T = 0.1 while the velocity
and attitude controller are sampled with ∆t = 5e− 3.

• The game-theoretical approach with cooperating pursuers (Pareto ef-
ficiency solution), as described in section 5.2 is used, while using the
MTPGD for the non-cooperative part of the PEG.

• The capture radius is set to dϵ = 5.

• The evader escapes when it leaves the operation space Xo×Y o or when
300 stages are exceeded.

• Simulations pattern:

Configuration vmaxApi vmaxAe

1 15 10

2 15 15

3 15 16.5

Table 6.1: Simulation configurations.

Series Pursuers Evader
1 GTA GTA

2 PMA GTA

3 GTA PMA

4 PMA PMA

Table 6.2: Approach combinations for each series (1000 simulations).

6.2.3 Performance Measure

A performance measure Λ is defined to be able to assess the two regarded
algorithms. Therefore, the following four criteria are taken into account:

Chapter 6 – Implementation and Comparative Study 95

• The average of terminal stages KC for all games which converged
(evader is caught).

• The variance of terminal stages σ2K for all games which converged.

• The number of games which diverged D (evader is not caught).

• The total number of computational operations O (time complexity).

Those factors are normalized to the highest value of each regarded run per
configuration, and are summed up, having a maximum value of 4:

Λ = K̂C + σ̂2K + D̂ + Ô (6.4)

Note, that the smaller the value the better.

6.2.4 Simulation: Slower Evader

The first simulation series regards the case, when both teams P and E are
choosing their actions by using the game-theoretical approach (GTA). Figure
6.3 illustrates the results in form of a histogram. It can be seen that 114

simulations have a value of 1, which means that the initial condition is inside
the terminal set or in the vicinity and thus the evader is caught immediately
or after one action. There are 236 simulations that diverged. Regarding the
remaining simulation results, an average capture time of 14.50 stages and a
variance of 65.63 can be seen. Note, that the games that diverged here when
using the GTA approach for both teams happened only because the evader is
able to reach the boundary of the regarded position space. An open position
space as regarded before would lead to a convergence of all games. In the
second simulation series the pursuers are using the PMA and the evader the
GTA. It can be seen that 114 simulations terminated after 1 stage. When
using the PMA, the pursuers are not able to capture the evader in 392 of the
simulations which is a first indicator for the superiority of the evader using
the GTA. An average capture time of 13.59 stages with variance 53.96 results
for this configuration. The results of the third simulation series, where the
pursuers are using the GTA and the evader the PMA, are depicted in fig.
6.5. A total of 128 diverging games can be observed and a total number
of 116 simulations ended after one stage. The result of the average capture

Chapter 6 – Implementation and Comparative Study 96

Terminal Stages
0 5 10 15 20 25 30 35 40

F
re

q
u

e
n

c
y

0

20

40

60

80

100

120

2
3
6

Figure 6.3: Slower evader: GTA only.

Terminal Stages
0 5 10 15 20 25 30 35 40

F
re

q
u

e
n

c
y

0

20

40

60

80

100

120

3
9
2

Figure 6.4: Slower evader: pursuers: PMA vs. evaders: GTA.

Chapter 6 – Implementation and Comparative Study 97

Terminal Stages
0 5 10 15 20 25 30 35 40 45

F
re

q
u

e
n

c
y

0

20

40

60

80

100

120

140

1
2
8

Figure 6.5: Slower evader: pursuers: GTA vs. evaders: PMA.

time is for this combination 17.23 stages with a variance of 132.38. The
simulation results of the series in which all players have been using the PMA
can be seen in fig. 6.6. Here, a total number of 345 of diverging simulations
could be stated and a total number of 116 simulations ended after one stage.
The average capture time results in 14.99 stages with a variance 91.82. All
values of the relevant criteria are summarized in table 6.3.

P/E K̂C σ̂2 D̂ Ô Λ

GTA/GTA 0.8416 0.4958 0.602 0.0452 1.9846

PMA/GTA 0.7887 0.4076 1 1 3.1963

GTA/PMA 1 1 0.3265 1 3.3265

PMA/PMA 0.87 0.6936 0.6811 0.9567 3.2014

Table 6.3: Results GTA vs. PMA: slower evader.

Chapter 6 – Implementation and Comparative Study 98

Terminal Stages
0 10 20 30 40 50 60

F
re

q
u

e
n

c
y

0

20

40

60

80

100

120

140

3
4
5

Figure 6.6: Slower evader: PMA only.

6.2.5 Simulations: Equally Fast Evader

In the second configuration all players have the same maximal speed. More-
over, the same set of the 1000 initial player positions, as utilized for config-
uration one, are used.

In the GTA vs. GTA simulation series it can be seen (figure 6.7), that way
more games diverge (760) than in configuration one. The average terminal
stage results in 7.07 with variance 16.28. Moreover, 118 game ended after
one stage. It can be observed, that for a relatively small set of initial con-
ditions the convergence of the game is achievable. Only initial states in the
neighborhood of the terminal set result in the capture of the evader, which
is also the result achieved in section 5 and depicted on figure 5.8. In the next
simulation series it is examined how the PMA pursuers perform against the
GTA evader (figure 6.8). The evader is able to escape in 868 games, while
115 games converged after one stage. That results in an average terminal
stage of 2.94. The two latter simulation series show, that the GTA evader
achieves better results against the PMA pursuers. The other way around,
GTA pursuers vs PMA evaders is examined here. With a total of 532 es-

Chapter 6 – Implementation and Comparative Study 99

Terminal Stages
0 5 10 15 20 25 30 35 40

F
re

q
u

e
n

c
y

0

20

40

60

80

100

120

140

7
6
0

Figure 6.7: Equally fast evader: GTA only.

Terminal Stages
0 10 20 30 40 50 60

F
re

q
u

e
n

c
y

0

20

40

60

80

100

120

8
6
8

Figure 6.8: Equally fast evader: pursuers: PMA vs. evaders: GTA.

Chapter 6 – Implementation and Comparative Study 100

Terminal Stages
0 10 20 30 40 50 60

F
re

q
u

e
n

c
y

0

50

100

150

5
3
2

Figure 6.9: Equally fast evader: pursuers: GTA vs. evaders: PMA.

capes and an average terminal stage of 13.55 and a variance of 98.04, while
115 game ended after one stage, the GTA evader shows again its superior-
ity against the PMA evader, regarding the evasion behavior. To complete
the simulations, the PMA pursuers vs PMA evader games are examined,
too (figure 6.10). It can be observed, that there are 791 escapes with an
average of 10.17 for the terminal stage and a variance of 51.44, while 115

games ended after one step. In respect to simulation series three, where
the evader uses also the PMA to escape, the pursuers did worse when using
the PMA regarding the convergence of the game. The performance for this
configuration can be found in table 6.4.

P/E K̂C σ̂2 D̂ Ô Λ

GTA/GTA 0.5218 0.1661 0.8756 0.0453 1.6088

PMA/GTA 0.217 0.0795 1 1 2.2965

GTA/PMA 1 1 0.6129 1 3.6129

PMA/PMA 0.7506 0.5247 0.9113 0.9533 3.1399

Table 6.4: Results GTA vs. PMA: equally fast evader.

Chapter 6 – Implementation and Comparative Study 101

Terminal Stages
0 10 20 30 40 50 60

F
re

q
u

e
n

c
y

0

20

40

60

80

100

120

7
9
1

Figure 6.10: Equally fast evader: PMA only.

6.2.6 Simulations: A Faster Evader

In the third configuration the evader is 10% faster than the pursuers. Here,
too, the same set of the 1000 initial player positions, as utilized for the other
configurations, is used.

In simulation series one it can be observed (figure 6.11), that some more
games diverge (809) in respect to configuration two. The average terminal
stage and variance is also less with 5.32 and 9.80, respectively. This is be-
cause the relatively small set of initial states where the evader can be caught
(with configuration two) shrinks for configuration three. In other words,
more games diverge, while the neighborhood in which a game converges gets
smaller for a faster evader. This results also in a smaller average terminal
stage and variance for the games that converge. For simulation series two
with configuration three (figure 6.12) the evader is able to escape in 887

games, while 111 games converged after one stage. That results in an aver-
age terminal stage of 1.14 and variance of 0.14. As regarded for configuration
one and two, the two latter simulation series reveal, that the GTA evader
did much better against the PMA pursuers than against the GTA pursuers.

Chapter 6 – Implementation and Comparative Study 102

Terminal Stages
0 5 10 15 20 25 30 35 40

F
re

q
u

e
n

c
y

0

20

40

60

80

100

120

8
0
9

Figure 6.11: Faster evader: GTA only.

Next, series three is regarded, where the GTA pursuers compete against the
PMA evader (figure 6.13). With a total of 400 escapes and an average ter-
minal stage of 15.72 and a variance of 154.32, while 163 game ended after
one stage, the GTA evader is able to enforce much more diverging games
than the PMA evader. Lastly, the PMA pursuers vs PMA evader games are
examined (figure 6.14). It can be seen, that with 840 escapes and with an
average of 6.62 for the terminal stage with variance 32.38, while 112 games
ended after one step. The performance of this run is summarized in table
6.5.

P/E K̂C σ̂2 D̂ Ô Λ

GTA/GTA 0.3384 0.0635 0.9121 0.0452 1.3592

PMA/GTA 0.0725 0.001 1 1 2.074

GTA/PMA 1 1 0.451 1 3.451

PMA/PMA 0.4211 0.21 0.947 0.9560 2.534

Table 6.5: Results GTA vs. PMA: faster evader.

Chapter 6 – Implementation and Comparative Study 103

Terminal Stages
0 2 4 6 8 10

F
re

q
u

e
n

c
y

0

20

40

60

80

100

120

8
8
7

Figure 6.12: Faster evader: pursuers: PMA vs. evaders: GTA.

Terminal Stages
0 10 20 30 40 50 60

F
re

q
u

e
n

c
y

0

20

40

60

80

100

120

140

160

180

4
0
0

Figure 6.13: Faster evader: pursuers: GTA vs. evaders: PMA.

Chapter 6 – Implementation and Comparative Study 104

0 10 20 30 40 50 60
0

20

40

60

80

100

120

8
4
0

Figure 6.14: Faster evader: PMA only.

6.2.7 Conclusion

In the first part of this chapter, the system architecture of each of the UAV
players is presented. The UAV agents are modeled by using a behavior
based description, the RNBC structure. While the pursuers follow a one
to one description of the structure depicted in fig. 6.1, the evaders are
missing the uppermost layer. By regarding PEGs with more than one evader,
a cooperation between evaders seems reasonable. Hence, evaders with a
“Cooperative Evasion” layer are conceivable.

In the second part, a comparison of the game-theoretical approach for PEGs
with UAVs presented in this work to the Performance Map Approach for
PEGs with UAVs is given. This approach has been designed with the aim
of being able to catch faster evaders by outnumbering. In order to compare
the approaches in a fair way, some restrictions to the GTA had to be set like
the fixed and finite set of position states the game can reach. This impacts
especially the termination condition. The game ends when the evader reaches
the boundary of the position state. Moreover, a performance measure is
introduced including the average of terminal stages, the variance of terminal

Chapter 6 – Implementation and Comparative Study 105

stages, the diverged games and the operations needed for calculation of the
regarded approach combination.

Nevertheless, for a slower evader, it can be seen that in series one and four,
the average terminal stages are similar with 14.50 (GTA only) and 14.99

(PMA only), while the number of games that diverged are also almost equal.
The two criteria that had a big difference are on the one hand the variance of
the terminal stage (65.63 for GTA and 91.82 for PMA) and on the other hand
the total operations needed to compute the simulation results. While for
simulation series one (GTA only) 1.045 ·108 operations are needed, 2.21 ·109

are needed for simulation series four (PMA only), which is more than 21

times more. The latter makes the biggest difference between the approaches.
Regarding the Λ’s of each series for a slower evader, series one (GTA only)
has the best performance with Λ1

1 = 1.9846 by far. All other series had
very similar results with Λ2

1 = 3.1963, Λ3
1 = 3.3265, and Λ4

1 = 3.2014. The
reason for the high values of series two and three is easily explained. It is
observed that in series two (P:PMA/E:GTA) the GTA evader does slightly
better against the PMA pursuers regarding the average terminal stage and
the variance. In reverse this results in a higher number of diverging games.
Moreover, in series three (P:GTA/E:PMA) a higher average value and a
higher variance is calculated. In addition, the number of diverging games
is much smaller than in the other series. Since both approaches have to be
used in series two and three, the operations needed for calculation reach their
maximum here, which is only slightly bigger than that of the fourth series
(PMA only). In this configuration the fourth and the first series yield similar
results, but the big difference in operations needed for the calculation yields
a much worse performance for series four (PMA only).

Making the evader equally fast yields a bigger gap between all different
series regarding the performance. While series one (GTA only) gives again
the best performance with Λ1

2 = 1.6088, the second best performance could
be achieved in the second series (P:PMA/E:GTA). Due to the fact that
almost in all games the GTA evader is able to escape the PMA pursuers,
and thus capture occurred only when one pursuer started in the vicinity
of the terminal set, resulting in a very low value for the average terminal
stage and the variance, the performance reaches a value of Λ2

2 = 2.2965.
In series three (P:GTA/E:PMA), the worst performance could be observed.

Chapter 6 – Implementation and Comparative Study 106

Since the GTA pursuers are able to catch the PMA evader in 468 of the
games and since the average value of terminal stages (13.55), the variance
(98.04) and the number of operations (2.57 ·109) needed for calculation have
high values, the performance is given by Λ3

2 = 3.6129. Lastly, in series
four (PMA only) a relatively high value for all four criteria can be observed
leading to a performance of Λ4

2 = 3.1399 and the second worse result for this
configuration.

The results for the final configuration where the evader is faster than all
pursuers, have the same trend as regarded in the last configuration, while
the gap between the performance values is even bigger. This is because the
effects observed for a equally fast evader affect the results even more when
the evader is faster. This yields to the performance values Λ31 = 1.3592,
Λ2
3 = 2.074, Λ3

3 = 3.451, and Λ = 2.534.

The comparison leads to the following three conclusions: (1) In a PEG with
perfect state information structure, as it is demanded by the PMA, it is
almost impossible to catch an equally fast evader. It is only possible when
the pursuer’s initial positions are inside or in the vicinity of the terminal
set. Since in [RT07] only 15 selected simulations with appropriate initial
conditions are presented and assessed, no significant statement about the
approach could be made before. (2): The GTA escape/pursuing behavior
has an advantage over the PMA. Regarding the number of converging games
in series two (P:PMA/E:GTA) and three (P:GTA/E:PMA) for each configu-
ration, it can be seen that the GTA approach yields always the better results.
In other words, more diverging games when the evader is using the GTA and
more captures when the pursuers are using the GTA. Regarding series one
(GTA only) and four (PMA only) in each configuration, the number of di-
verging games and the average terminal stage are approximately equal, but
the variance of series four (PMA only) is always much bigger. (3): The time
complexity of the GTA algorithm, even when restricting the mesh size, is
significantly smaller than the one of the PMA. Regarding the operations for
the calculation of the solutions in each configuration the PMA needed 21.14,
21.06, and 21.15 times more operations, respectively.

7 Realization of the
Experimentation Platform

7.1 Autonomous Hex-Rotor UAV for PEGs

Experiments with a real platform demand the design and the implementation
of real UAV agents. Therefore, a hex-rotor system which has been designed
in [Kir15] is utilized. Within the scope of the work in [Kir15], an attitude
and linear velocity controller have been designed and tested and are used
for the implementation of the UAV agents for the PEGs. The flight control,
attitude control, and velocity control run on two embedded computers which
are described in the next section of this chapter. The system architecture of
this system follows the RNBC structure and includes the last two layers of the
RNBC structure depicted in figure 6.1. For this work, the Pursuit-Evasion
Layer and the Cooperative Pursue Layer are implemented as well on the real
system. The collision avoidance layer is neglected for the experiments, but
in chapter 7.6 simulations of two-player PEGs in an environment with static
and moving obstacles are treated with the collision avoidance layer included.
Figure 7.1 depicts a block diagram of the realization of the autonomous agent.
In the following sections, a more detailed description of all key components
is given.

Chapter 7 – Realization of the Experimentation Platform 108

Attitude

Controller

VN-200

Ressource

Manager

Shared

Memory

Battery

Pack 1

Brushless

Motor

Controller

HiSystems GmbH

BL-Ctrl V2.0

Brushless Motors

MK3640/34

Hex Rotor

Phase U Phase V Phase W

BeagleBone Black (QNX 6.6)

Battery

Pack 2

Linear

Velocity

Controller

Serial Com

Ressource

Manager

Serial Com

Ressource

Manager

K501

Ressource

Manager

Shared

Memory
Non-Coop.

PEG

Coop. Game

RF Com

Ressource

Manager

BeagleBone Black (QNX 6.6)

datadata

Serial 3.3V TTL

data

I2C

Serial 3.3V TTL

data data

data

data

data

data

Serial 3.3V TTLSerial 3.3V TTL

Remote

Control

Ressource

Manager

Serial 3.3V TTL

RF

Receiver

Graupner

GR-16

data

Power Distribution

ComNav

K501 GNSS

Board

XBee

RF Module

VectorNav

VN-200

INS

Autonomous PEG

UAV Agent

Power

Power

Power Power

Power

Power

Power

Figure 7.1: Implementation of the autonomous agent.

Chapter 7 – Realization of the Experimentation Platform 109

7.2 Hardware

Hex Rotor

Most of the basic components of the MK-Hexa XL manufactured by HiSys-
tems GmbH are used for the realization of the test platform. The basic set
includes, amongst others, six rotors, six motors, six cantilevers, a mounting
plate, six brushless motor controllers, a power distribution board and a land-
ing skid. Furthermore, two battery packs (one for the motor and one for the
electronic parts) and a battery holder are implemented. The original flight
control unit is removed and replaced by an own realization described below.
Figure 7.2 shows the completed hex rotor with a custom electronics box on
its top.

Figure 7.2: Hex-rotor UAV.

Embedded Computers

There are many low-power and small-size computers available, e.g., Rasp-
berry Pi [Ras14], Cubieboard [Cub14], BeagleBoard [Tex14a], and some vari-

Chapter 7 – Realization of the Experimentation Platform 110

ants. Many of those single-board computers are open-source hardware, as-
sembled with a low-frequency processor. For this work two BeagleBone Black
(figure 7.3) are utilized, a community-supported development platform with
a TI Sitara AM335x 1GHz ARMCortex A8 processor and 512MB DDR3
RAM ([Tex14b]). The embedded computers run QNX 6.6, a RTOS en-
abling the implementation and execution of real-time applications written in
C/C++ programming language. Two BeagleBone Black are implemented on
the hex rotor, while the first computer is running the attitude control and
the second one the linear velocity control, the pursuit-evasion game, and the
cooperative pursue.

Figure 7.3: BeagleBone black [Bbb].

Inertial Navigation System

The Inertial Navigation System (INS) used to measure all states required
for the attitude control is the Vectornav VN-200 Rugged (figure 7.4). It
includes a 10-axis MEMS IMU (3-axis accelerometer, 3-axis gyroscope, 3-axis
magnetometer and barometer) and a GPS receiver. It runs Kalman filtering
algorithms providing position, velocity, and orientation, while having a size
of 36x33x9.5mm and a weight of 16g.

GNSS

The Vectornav VN-200 Rugged is able to provide 3-axis linear velocity es-
timations. Nevertheless, experiments revealed that the required accuracy

Chapter 7 – Realization of the Experimentation Platform 111

Figure 7.4: Vectornav VN-200 rugged [Vn2].

for the linear velocity control cannot be achieved. Despite the manufac-
turer specifications of an accuracy of +/ − 0.05m/s, an accuracy of about
+/ − 1m/s is measured. In order to provide the linear velocity controller
with proper linear velocity measurements, a differential GNSS is used. The
utilized GNSS includes the ComNav K501 GNSS Board (figure 7.5) with
an RF module for the communication with the ComNav T-300 GNSS base
station (figure 7.6). The ComNav GNSS is able to receive GPS, BeiDou and
GLONASS signals, while providing a linear velocity accuracy of 0.03m/s.

Figure 7.5: ComNav K501 GNSS board [K50].

RF Module

The XBee-PRO modules by Digi International [Xbeb], depicted on figure
7.7, are used for the inter-team communication. The XBee-PRO has a range
of up to 100m in urban/indoor areas and up to 1600m in outdoor/RF LoS
while a serial communication with 1200bps-250kbps is possible.

Chapter 7 – Realization of the Experimentation Platform 112

Figure 7.6: ComNav T-300 GNSS base station [T30].

Figure 7.7: XBee RF module [Xbea].

Remote Control

The Graupner MX-20 RF remote control (figure 7.8) is used for the manual
control of the hex rotor. Moreover, all implemented modes can be activated
by several triggers. The implemented modes are manual control, assisted
control (linear velocity control with reference velocities provided over the
D-Pad) or PEG (fully autonomous). The Graupner MX-20 has 12 channels
and operates at a 2.4GHz frequency.

Chapter 7 – Realization of the Experimentation Platform 113

Figure 7.8: Graupner MX-20 [Mx2].

7.3 Dynamical Model

The detailed derivation of the dynamic model used in this work can be found
in [Voo09]. For modeling the hex-rotor dynamics the mechanical configura-
tion depicted in figure 7.9 is assumed. The body fixed frame and the inertial
frame are denoted by eB and eI, respectively. The UAV is defined as a
point mass. To derive the equations of motions, the following notations are
necessary. PI = (x, y, z)T is the position vector of the hex-rotor’s center
of gravity in the inertial frame, PB = (xB, yB, zB)

T is the position vector
of the hex-rotor’s center of gravity in the body fixed frame, v = (u, v, w)T

are the linear velocities in body fixed frame, ω = (p, q, r)T are the angular
rates for roll, pitch, and yaw in body fixed frame, and Θ = (ϕ, θ, ψ)T is
the vector of Euler angles. A key component of the hex-rotor model is the
transformation between inertial and body frames. Rigid body dynamics are
derived with respect to the body frame that is fixed in the center of gravity
of the hex-rotor. However, to simulate the motion of the hex-rotor in the
inertial frame a transformation of the coordinates is needed. If the multi-
rotor’s attitude is parameterized in terms of Euler angles the transformation
can be performed using the rotation matrix R(Θ), which is a function of
roll, pitch, and yaw angles. Using s and c as abbreviations for sin(·) and

Chapter 7 – Realization of the Experimentation Platform 114

Figure 7.9: Mechanical configuration of a hex rotor with body fixed and
inertial frame [Kir15].

cos(·) the linear velocities (vx, vy, vz)
T defined in the inertial frame can be

obtained by R(Θ) · v, i.e.,⎡⎢⎣vxvy
vz

⎤⎥⎦ =

⎡⎢⎣cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ

cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ

⎤⎥⎦
⎡⎢⎣uv
w

⎤⎥⎦ (7.1)

The transformation of positions defined in the body frame into the corre-
sponding positions in the inertial frame can be obtained by[

PI

1

]
=

[
R(Θ) PI

B,org

0 1

][
PB

1

]
. (7.2)

Chapter 7 – Realization of the Experimentation Platform 115

The equations of motion are derived from the first principles (Newton-Euler
laws [Bea06]) to describe both, the translational and rotational motion of
the multi-rotor leading to the following discrete-time non-linear state-space
model with the state vector x = [xk yk zk uk vk wk ϕk θk ψk pk qk rk]T =

[xk1 xk2 xk3 xk4 xk5 xk6 xk7 xk8 xk9 xk10 xk11 xk12]
T :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk+1
1

xk+1
2

xk+1
3

xk+1
4

xk+1
5

xk+1
6

xk+1
7

xk+1
8

xk+1
9

xk+1
10

xk+1
11

xk+1
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk1
xk2
xk3
xk4
xk5
xk6
xk7
xk8
xk9
xk10
xk11
xk12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk4
xk5
xk6

−(cxk7sx
k
8cx

k
9 + sxk7sx

k
9)
υk1

m

−(cxk7sx
k
8sx

k
9 + sxk7cx

k
9)
υk1

m

g − cxk7cx
k
8

υk1

m
xk10
xk11
xk12

Iy − Iz

Ix
xk11x

k
12 +

L

Ix
υk2 −

IR

Ix
xk8g(υ)

Iz − Ix

Iy
xk10x

k
12 +

L

Iy
υk3 −

IR

Iy
xk7g(υ)

Ix − Iy

Iz
xk10x

k
11 +

1

Iz
υk4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∆t, (7.3)

with υ = (υ1, υ2, υ3, υ4)
T ,υ ∈ Υ being the inputs for altitude, roll, pitch

and yaw, Ix, Iy and Iz are the inertia about x-, y-z−axes, IR is the rotor
moment of inertia, l is the length between the center of gravity of the UAV
and the center of one rotor, g is the gravitation constant, g(υ) is a function
of υ depending on the rotor’s angular velocities ω1 . . . ω6, m is the mass
of the UAV and ∆t is the sampling time. It can be seen that the angular
accelerations depend only on the angular rates and the input vector υ, while
the linear accelerations depend on the Euler angles and υ. Hence, the state-
space model can be divided into two interlinked sub-models M1 and M2.
In [Kir15] all parameter for the hex rotor system depicted in figure 7.2 are
identified. The values of the parameters can be found in the following table:

Chapter 7 – Realization of the Experimentation Platform 116

Parameter Value Unit
m 3.305 kg
l 0.34 m
Ix 0.297584 kg ·m2

Iy 0.297584 kg ·m2

Iz 0.342668 kg ·m2

IR 2.70253 · 10−5 kg ·m2

Thrust constant 7.413 · 10−6 kg ·m
Yaw constant 4.3411 · 10−7 kg ·m

Table 7.1: Identified system parameters.

The model structure is suitable for an integration of the attitude and velocity
control behavior in the RNBC structure. The attitude control behavior,
controlling subsystem M1 is ordered in the lowest (and fastest) layer and the
velocity control behavior, controlling M2 in the second layer of the RNBC
structure.

7.4 Attitude Control Layer

The attitude control behavior is realized with a non-linear attitude controller
based on the back-stepping approach (BSA). The BSA is a recursive algo-
rithm for designing stabilizing controls for a class of nonlinear dynamical
systems [KKK95]. Applying the BSA [BS05], the following control inputs
are obtained. The roll control input υ2 is given by

υ2 =
Ix
L
(k1

z1
k − z1

k−1

∆t
− x11x12

Iy − Iz

Ix
− x11(−

IR

Ix
)g(υ) + z1 + k2z2) (7.4)

with
z1 = xr7 − x7, (7.5)

z2 = xr10 + k1z1 − x10, (7.6)

and
g(υ) = ω1 − ω2 + ω3 − ω4 + ω5 − ω6. (7.7)

Chapter 7 – Realization of the Experimentation Platform 117

The control υ3 for the pitch angle is given by

υ3 =
Iy
L
(k3

z3
k − z3

k−1

∆t
− x10x12

Iz − Ix

Iy
− x10

IR

Iy
g(υ) + z3 + k4z4) (7.8)

and z3 and z4 are defined as

z3 = xr8 − x8 (7.9)

and
z4 = xr11 + k3z3 − x11. (7.10)

The input command υ4, controlling the yaw angle is given by

υ4 = Iz(k5
z5
k − z5

k−1

∆t
− x10x11

Ix − Iy

Iz
+ z5 + k6z6) (7.11)

with
z5 = xr9 − x9 (7.12)

and
z6 = xr12 + k5z5 − x12. (7.13)

Table 7.2 summarizes the parameters for k1 . . . k6 proposed by [Kir15] for
the given hex-rotor system.

Parameter Value
k1 2

k2 2

k3 2

k4 2

k5 0.3

k6 3

Table 7.2: Back-stepping controller parameter set.

7.5 Velocity Control Layer

In this section, the implementation of the linear velocity control layer from
[Kir15], controlling the translational velocities in x− y−, and z−direction is

Chapter 7 – Realization of the Experimentation Platform 118

presented. The attitude of the hex rotor is controlled by the back-stepping
attitude controller described above, which has a very fast behavior. For the
outer velocity control loop the system is simplified to a static system as
described in [Voo09].

First, new input variables are defined:⎡⎢⎣x6x4
x5

⎤⎥⎦ =

⎡⎢⎣Ũ5

Ũ6

Ũ7

⎤⎥⎦ =

⎡⎢⎣h1(x
r
7, x

r
8, x

r
9, υ1)

h2(x
r
7, x

r
8, x

r
9, υ1)

h3(x
r
7, x

r
8, x

r
9, υ1).

⎤⎥⎦ (7.14)

For the control of the translational velocities of the hex rotor system(static
velocity subsystem h), a proportional controller is used.⎡⎢⎣Ũ5

Ũ6

Ũ7

⎤⎥⎦ =

⎡⎢⎣ k8 · (x
r
6 − x6)

k9 · (xr4 − x4)

k10 · (xr5 − x5)

⎤⎥⎦ (7.15)

The inverse of the subsystem h−1(Ũ5, Ũ6, Ũ7) has to be found to be able to
find the solution for the reference attitude [xr7, x

r
8, x

r
9]
T and thus the input

υ1. Desired translational velocities in each direction can be achieved by the
hex-rotor system without changing the yaw angle. Therefore, the system is
simplified by setting the reference for the yaw angle to zero (ψr = xr9 = 0).
Hence, ⎡⎢⎣Ũ5

Ũ6

Ũ7

⎤⎥⎦ =

⎡⎢⎣g − cosxr7 · cosxr8 1
mυ1

−cosxr7sinxr8 1
mυ1

sinxr7
1
mυ1

⎤⎥⎦ (7.16)

With help of the following substitutions, an analytical solution for the non-
linear equations 7.16 can be found:

α = sin(xr7)

cos(xr7) = ±
√
1− α2

β = sin(xr8)

cos(xr8) = ±
√

1− β2.

(7.17)

Chapter 7 – Realization of the Experimentation Platform 119

Thus the equation is given by⎡⎢⎣Ũ5

Ũ6

Ũ7

⎤⎥⎦ =

⎡⎢⎣g − ((±
√
1− α2) · (±

√
1− β2) · 1

mυ1)

∓
√
1− α2 β

mυ1
α
mυ1

⎤⎥⎦ (7.18)

and the solution yields for Ũ6 ̸= 0

β = ±

⎡⎣(g − Ũ5

Ũ6

)2

+ 1

⎤⎦− 1
2

(7.19)

υ1 = ±m ·

√
Ũ2
6

β2
+ Ũ2

7 (7.20)

α = Ũ7 ·
m

υ1
(7.21)

The solution for υ1 gives two possible solutions but since the value has to be
always positive, because no negative thrust can be created by the propellers,
a possible negative solution can be neglected. Thus, only one admissible
solution for υ1 exists while xr7 = arcsin(α) is in the interval [−π/2,+π/2].
Regarding the second line in equation 7.16, the sign of xr7 gives the sign of
xr8 because if xr7 is negative, xr8 will be positive and vice versa. Hence, there
is also only one solution for xr8 = arcsin(β) left.

Next, the reference values [xr7, x
r
8, x

r
9]
T are transformed to reference angles

and passed to the attitude controller, which results in the desired velocity.
In case of Ũ6 = 0 the analytical solution can be obtained by:

β = 0 (7.22)

υ1 = m ·
√

(Ũ5 − g)2 − Ũ2
7 (7.23)

α = Ũ7 ·
m

υ1
. (7.24)

Chapter 7 – Realization of the Experimentation Platform 120

7.6 Collision Avoidance

For the sake of completeness, the collision avoidance layer is presented here,
too. A real-system implementation is not accomplished yet, but simulations
of PEGs in an environment with static and moving obstacles are provided
in this section.

7.6.1 The Repulsion Force Approach

In [Ale+13] a comparison between several collision avoidance techniques for
UAVs is conducted, using the same dynamical model for a multi-rotor as
used in this work. The repulsion force approach provided the best results
regarding obstacle avoidance and complexity of the algorithm. Therefore,
this approach is the first choice here. As proposed in [Ale+13] the algorithm
computes a repulsive force to each obstacle i according to the formula

Fi = sat

[
cosαi

(
c1 + c2v

rq

ri − dS

)2
]
, (7.25)

while sat(·) constrains to the maximal possible repulsion force. The angle

to an obstacle i is denoted by αi, vrq =
vr

vqmax
is the quotient of the relative

velocity vector vr to the obstacle i and the maximum velocity vector of the
UAV vqmax, ri is the distance to the obstacle i, dS is the safety distance in
which the repulsion force is at its maximum (fig. 7.10). The two parameters
c1 and c2 are used for repulsion force calibration at zero and maximum
velocity, respectively. Very satisfying results are achieved in the simulations
with c1 = c2 = 10. The sum of all repulsion forces for n obstacles is given
by

Fsum =

n∑
i=1

Fi(ri, αi,v
r). (7.26)

A function g : ℜ3 → ℜ3 provides a velocity vector vo to be added to vper ,
hence vo = g(Fsum), and thus vcfr = vper + vo.

Chapter 7 – Realization of the Experimentation Platform 121

Figure 7.10: Repulsion force principle.

7.6.2 Simulations

Simulation Set-Up

• Since the strategies represent a velocity change in three linear direc-

tions of p and e a maximum velocity vpmax =
[
15 15 3.5

]T
and

vemax = vpmax · 1.5−1 and a maximal absolute value of vpmaxA = 15 for
the pursuer and vemaxA = 10 for the evader are defined.

• The numerical solution of the PEG is computed by solving it for each
initial positions (x1, y1, z1) ∈ X × Y ×Z, while x1 and y1 take integer
values in a 61 × 61 grid, with X = [−30, 30] and Y = [−30, 30] in
the pursuers reference frame. In each simulation, the initial altitude of

Chapter 7 – Realization of the Experimentation Platform 122

both UAVs is 20, i.e., z1 = −20. This is necessary for the visualization
of the value function.

• s = 6 is chosen, meaning that each player has 73 strategies available
in each time step k.

• The stage duration is chosen to be ∆T = 20 ·∆t, while ∆t = 0.005 is
the period time of the velocity control behavior.

• A capture distance dϵ = 5 is chosen, since it is the maximum change
in distance, which can be achieved in ∆t = 1 regarding vpmaxA = 15

and vemaxA = 10.

• For the collision avoidance a detection radius of rd = 10 and a desired
safety distance of dS = 3 to the obstacles are assumed. The collision
avoidance approach is evaluated as follows: A safety distance violation
is detected if dS is undercut, while undercutting dC = 1 results in a
collision. Note, that all obstacles have a spherical shape and that the
pursuer and the evader are not considered as obstacles.

PEG with Unknown Static Obstacles

The upper part of figure 7.11 depicts the value of stages needed for capture.
Since p is superior regarding the maximum velocity, it is always able to
catch e. The value function of the stages depicted on the lower part of
figure 7.11 shows the result of the same PEG, but with four static obstacles
(blank nodes in the grid). The value is identical to the upper one where the
collision avoidance did not interfere. It can be observed, that starting at
initial positions forcing e towards an obstacle yields in smaller values, while
initial positions beside or behind the obstacles lead to much higher values.
Still, p is always able to catch e. While there is not even a dS violation on
pursuers’ side, no collision happened for p and e. Only e suffered from some
dS violations when starting in front of an obstacle.

PEG with a Unknown Moving Obstacle

In this simulation both players had to face a moving obstacle on a frontal
collision course. The resulting trajectories are depicted in figure A.10. The

Chapter 7 – Realization of the Experimentation Platform 123

Figure 7.11: Values of stages required for capture.

Chapter 7 – Realization of the Experimentation Platform 124

Figure 7.12: Pursuit-evasion game with a moving obstacle.

initial position is (x1, y1, z1) = (30, 28, 20), while the obstacle is moving on a
straight line from (40, 38, 30) to (20, 18, 20) with a velocity of vo = 10 in the
inertial frame. In contrast to 74 stages in the obstacle-free case, the value of
this game is 136 stages.

7.6.3 Conclusion

The convergence of the PEG in a three-dimensional environment with UAV
agents having dynamical constraints is shown. Due to the collision avoidance
behavior the convergence is also achieved in presence of previously unknown
obstacles. Despite the value of the game increases in the most cases where
the agents had to face an obstacle, the imminent collisions could always been
prevented. Since [Ale+13] shows that for the same system configuration the
proposed repulsion force mechanism could prevent the UAV of colliding in
a general three-dimensional environment with static and dynamic obstacles,
pursuit and evasion is applicable in an unknown environment.

7.7 Pursuit-Evasion Layer

The implementation of the two-player PEG with UAVs, defined in section
4.1.1, on an embedded computer is briefly described hereafter. For that
reason, an algorithm is used, namely NPG, which enables the determination
of Nash equilibria in mixed strategies of N-player games.

Chapter 7 – Realization of the Experimentation Platform 125

Algorithm for N-Player Nash-Equilibrium in Mixed Strategies

As described above, an optimal control action tuple uk∗ = (uk∗p ,u
k∗
e) for the

agents p and e in stage k of the PEG is derived by the determination of the
Nash equilibrium. The Matlab-function npg [Cha10] is able to solve an
N-player finite non-cooperative game by computing one Nash equilibrium in
mixed strategies. Thereby, the optimization formulation of a N-player non-
cooperative game according to [Cha09] is used for computation. The function
uses the sequential quadratic programming based quasi Newton method to
solve a non-linear minimization problem with non-linear constraints.

Since it is not feasible to generate C code of the npg function automatically,
the algorithm to compute one Nash equilibrium has been implemented from
scratch in C to be applicable on the embedded computer. For that, the NLopt
package [Ste13] is utilized to solve the non-linear minimization problem, more
precisely the SLSQP [Kra88; Kra94] algorithm included there.

Moreover, an open-source C library for computing Nash equilibria in mixed
strategies with the Lemke-Howson algorithm is used for the implementation
of the MTPGD game.

7.7.1 Validation of the Algorithm

The correctness of the algorithm implementation is validated by running
the same simulations on MATLAB and on the embedded computer and the
comparison of the resulting value functions. Therefore, the two-player game
from section 4.1.1 is chosen with the following set-up:

• Since the chosen optimal control actions represent a velocity change
in three linear directions of p and e, a maximum velocity vmax with

vpmax =
[
15 15 3.5

]T
and vemax = vp

max
1.5 and a maximal absolute

value of vpmaxA = 15 for the pursuer and vemaxA = 10 for the evader is
defined.

• The numerical solution of the PEG is computed by solving it for each
initial positions (x1, y1, z1) ∈ X × Y ×Z, while x1 and y1 take integer
values in a 61x61 grid, with X = [−30, 30] and Y = [−30, 30] in the
pursuers’ reference frame (pursuers’ position is the origin). In each

Chapter 7 – Realization of the Experimentation Platform 126

simulation, the initial altitude of both UAVs is 20, i.e., z1 = −20 .
This is necessary for the visualization of the value function.

• s = 6 is chosen, i.e., each player has 73 strategies available in each time
step k.

• The stage duration is chosen to be ∆T = 0.1, while the velocity control
is sampled with ∆t = 0.005. The real-time specification to be satisfied
by the embedded computer is ∆T = 0.1s for one stage k.

• A capture distance dϵ = 5 is chosen, since it is the maximum change
in distance, which can be achieved in ∆t = 1 regarding vpmaxA = 15

and vemaxA = 10.

Figure 7.13: Value of stages needed for capture (embedded computer).

Chapter 7 – Realization of the Experimentation Platform 127

Figure 7.14: Difference of value of stages needed for capture in
Matlab and on the embedded computer.

Figure 7.13 depicts the value function over the regarded discretized state
space computed by the embedded computer. Regarding this solutions the
convergence of the PEG in three dimensions is given everywhere, meaning
that in this configuration the evader can never avoid to be captured by the
pursuer. Figure 7.14 depicts the difference of the value of stages between the
Matlab simulation and the simulation on the embedded computer. The
differences are slightly in the whole state space. Moreover, due to the very
small differences (caused by possible rounding errors and varieties in the
minimization algorithm implementation) between the Matlab and the em-
bedded computer solution, the implementation on the BeagleBone Black is
accomplished successfully. The next important point is to check the real-
time applicability of the approach. The demanded computational time of
∆T = 0.1s for one stage of the game is successfully satisfied. By config-
uring the algorithm for the saddle-point computation of one stage k, such
that it stops after maximal 0.09s, the minimization algorithm is still able to
maintain the demanded absolute tolerance of 10−6 for the minimum func-

Chapter 7 – Realization of the Experimentation Platform 128

tion value. The use of an RTOS assures that the algorithm yields a solution
within ∆T = 0.1s, thus the real-time specifications are satisfied.

7.8 Cooperative Behavior Assignment Layer

In this layer the behavioral strategy of each pursuer is determined. This
layer demands the possible outcomes when playing all possible combinations
of behaviors by the underlying layer, the pursuit-evasion game. Having those
possible outcomes, a static cooperative game as described in chapter 5 has
to be solved. The algorithm for the computation of e.g. the pareto efficiency
solution is relatively trivial for static games and follows the description in
chapter 3. A more crucial task of this layer is the data transfer and the
synchronization between the pursuers. Therefore, the embedded computer
responsible for the cooperative behavior assignment is equipped with an RF
module. This module is used as communication interface between the pur-
suers, while one of the pursuers is declared as the master, and is responsible
for the synchronization and the data transfer between all teammates. The
master sends out a specific bit sequence in every time cycle. When this bit
sequence is received by the other pursuers it triggers them to broadcast their
information set, while the master broadcasts its own one. In real experi-
ments, it is determined that the computation of one stage of a two-pursuer
one-evader game with observation sharing over a serial RF connection takes
about 120ms.

8 Practical Real-Time
Experiments

8.1 Experimental Set-Up

To prove the feasibility of the algorithms developed in this work, real sys-
tem experiments are carried out. In particular, the single-action game de-
composition and the MTPGD presented in chapter 4 is used to solve the
non-cooperative games, while for the cooperation team-behavior game of
the pursuers the Pareto Efficiency approach presented in chapter 5 is uti-
lized. Five different two-pursuer one-evader PEGs is defined. The first three
experiments are situations, where all players have perfect state information.
Moreover, the pursuers are faster than the evader. Next, in experiment four,
a situation with imperfect state information and observation sharing is re-
garded while all players have equal maximum speed. The initial positions
of the players are chosen such that the evader is supposed to be caught as
shown in section 5.3.1. In the last experiment the same configuration as in
experiment four is assumed, but with a faster evader.

Due to the fact, that only one test platform is available (chapter 7), each
experiment is carried out for each player separately. Therefore, a total num-
ber of 15 experiments with two emulated players are applied. Due to safety
reasons the PEGs take place in the plane, while the altitude is held to a
fixed value. The stage time ∆t for the non-cooperative game is set to 0.2s.
Normally a stage duration of ∆t > 120ms is demanded, because of the ob-
servation sharing when using the communication hardware described above,
but since two emulated players are used here, this is not the reason to raise

Chapter 8 – Practical Real-Time Experiments 130

the stage duration. The stage duration is set to ∆t = 0.2s because the GNSS
provides a position update with a frequency of 5Hz being the limiting factor
here. The capture radius is set to 3m for each experiment.

Figure 8.1 depicts the experimental set-up. The GNSS base station, mounted
on a tripod, is depicted on the left. The experiments take place within a
radius of 30m (free space) to the base station. The differential measurements
are carried out with data of 17-20 satellites for each experiment. While the
middle of the figure shows the autonomous agent described in the last chap-
ter, the right side depicts the wind measurement station. A simple compass,
a windsock, and an anemometer (figure 8.2) enabled the measurement of the
wind direction and the average wind strength during an experiment.

Figure 8.1: Experimental set-up.

The following tables summarize the configuration of each experiment:

Chapter 8 – Practical Real-Time Experiments 131

Figure 8.2: Anemometer Windmaster 2 [Wm2].

Player Init. Position Max. Speed Visibility Wind
Evader (0, 0) 1.33ms Inf 1ms SE

Pursuer 1 (−5.5m,−5m) 2ms Inf 1.5ms NW
Pursuer 2 (−0.5m,−5m) 2ms Inf 0.5ms NW

Table 8.1: Experiment 1: set-up.

Player Init. Position Max. Speed Visibility Wind
Evader (7.5m, 6m) 1.33ms Inf 0

Pursuer 1 (0, 0) 2ms Inf 1.6ms NE
Pursuer 2 (2m, 10m) 2ms Inf 1ms N

Table 8.2: Experiment 2: set-up.

Player Init. Position Max. Speed Visibility Wind
Evader (8.5m,−7.5m) 1.33ms Inf 0

Pursuer 1 (15m,−15m) 2ms Inf 0

Pursuer 2 (0, 0) 2ms Inf 0

Table 8.3: Experiment 3: set-up.

Player Init. Position Max. Speed Visibility Wind
Evader (0, 0) 2ms 4 0.1ms W

Pursuer 1 (−3.5m,−3.5m) 2ms 4 1ms N
Pursuer 2 (11.5m, 11.5m) 2ms 4 0.5ms NW

Table 8.4: Experiment 4: set-up.

Chapter 8 – Practical Real-Time Experiments 132

Player Init. Position Max. Speed Visibility Wind
Evader (3.5m, 3.5m) 2ms 4 0.2ms W

Pursuer 1 (−15m,−15m) 1.8ms 4 0.5ms E
Pursuer 2 (−11.5m,−11.5m) 1.8ms 4 1ms S

Table 8.5: Experiment 5: set-up.

8.2 Experimental Results

In this section, the results of five selected experiments are presented. The
player’s trajectories of the remaining experiments can be found in the ap-
pendix.

Firstly, in figure 8.3 the trajectories of the three players for experiment one
can be seen, while the evader is the actual player. Since both pursuers are
initially positioned behind the evader, both are playing the “pursue” behavior
through out the game and are able to catch the evader after 35 stages (7s).
The real system had to deal with wind coming from south-east direction with
a velocity of 1ms . Since the evader is heading in north-east direction it had
to struggle with relatively strong upwind in east direction.

In the second experiment depicted on figure 8.4, the effect of the wind can
be observed even more. Regarding the velocity vectors of pursuer one, being
the actual UAV in this experiment, one can see that the demanded speed
and direction cannot be maintained. During the experiment a strong upwind
from north-east is blowing with a velocity of 1.6ms causing, that unlike in
the simulations, the other pursuer catches the evader. Moreover, it can
be observed, that pursuer 2 is herding the evader most of the game, until
catching him after 73 stages (14.6s).

While no wind is present in experiment three (figure 8.5), another reason
affects the trajectory of the real UAV. In the other two runs of this experi-
ments with the other players being the actual UAV, trajectories close to the
simulation are achieved. Here, pursuer two is acting differently. At the be-
ginning of the experiment, some measuring errors of the GNSS system cause
a temporary position inaccuracy of about 1m, causing the UAV to drift away
in the first stages of the game. Nevertheless, pursuer two is able to catch the
evader after 79 stages (15.8s).

Chapter 8 – Practical Real-Time Experiments 133

-4 -2 0 2 4 6 8

-4

-2

0

2

4

6 Pursuer1

Pursuer2

Evader

N

E

S

W

1 m/s
Wind

meters

m
e
te

rs

Figure 8.3: Experiment 1: actual UAV evader.

0 5 10 15 20

0

2

4

6

8

10

12

14

16

18
Pursuer1

Pursuer2

Evader

1.6 m/s

Wind

N

E

S

W

meters

m
e
te

rs

Figure 8.4: Experiment 2: actual UAV pursuer 1.

Chapter 8 – Practical Real-Time Experiments 134

0 5 10 15 20 25
-15

-10

-5

0

5
Pursuer1

Pursuer2

Evader
m
e
te
rs

meters

N

E

S

W

Figure 8.5: Experiment 3: actual UAV pursuer 2.

In the following experiment, the evader is initially only escaping from pursuer
one. Since, a visibility radius of 4m for each player is assumed, the evader
does not know about the second pursuer yet. The second pursuer knows
about the position of the evader due to the observation sharing with pursuer
one. In figure 8.6 it can be seen, that pursuer one is herding the evader
towards the other pursuer. After entering the visibility radius of the evader,
the latter has no chance to escape from pursuer two anymore, while all
players have equal maximal speed. The capture of the evader occurs after
30 stages (6s). The south wind with a velocity of 0.1ms has no noticeable
effect on the UAV.

In the last experiment, depicted on figure 8.7, the biggest difference to the
expected behavior of the UAVs can be regarded caused by wind. Here, the
upwind (south wind) with a velocity of 1ms slows down the second evader in
such a way, that the evader, which is 10% faster than the pursuers, is able
to escape both UAVs. In the other two runs, with the other players being
the real UAV, the evader is caught as expected.

Chapter 8 – Practical Real-Time Experiments 135

-4 -2 0 2 4 6 8 10 12

-2

0

2

4

6

8

10

Pursuer1

Pursuer2

Evader

N

E

S

W

Wind 0.1 m/s

meters

m
e
te

rs

Figure 8.6: Experiment 4: actual UAV evader.

-18 -16 -14 -12 -10 -8 -6 -4 -2 0 2

-14

-12

-10

-8

-6

-4

-2

0

2

Pursuer1

Pursuer2

Evader

N

E

S

W

1 m/s

Wind

meters

m
e
te

rs

Figure 8.7: Experiment 5: actual UAV pursuer 2.

Chapter 8 – Practical Real-Time Experiments 136

8.3 Conclusion

Regarding the experimental results, the applicability of the approaches pre-
sented in this work are shown. All 15 experiments are carried out successfully,
meeting the expected trajectories from the simulations in almost every case.
Despite the fact that the simulation model of the game does not meet the
actual system with 100%, there are two factors that influence the reference
trajectories for the actual game. Firstly, it is observed that to a certain
degree, sensor uncertainties, e.g. a degraded satellite signal, are leading to
inaccurate measurements and thus to a deviating behavior. The second and
more severe reason is the disturbances caused by wind and wind gusts. While
the average wind throughout an experiment is measured, the wind gusts are
not registered. The observations during the experiments reveal, that rela-
tively strong wind gusts with a velocity over 2ms affect the behavior of the
UAV strongly. As is evident from the experimental results, especially when
the UAV is facing an upwind with an average velocity greater than 0.5ms , it
is significantly decelerated.

9 Conclusion and Final
Remarks

A framework enabling the application of multi-pursuer single-evader PEG
with actual UAVs in real-time is presented. The problem is defined as a
multi-player discrete-time deterministic dynamic game with non-fixed ter-
minal time. The complexity of the solution process increases rapidly with
the number of players and strategies. Therefore, a suitable method is sought,
reducing the time-complexity such that a real-time implementation is feasi-
ble. The reduction takes place on two different levels of the game. While
computing the result of a single stage of the game, the action set is decom-
posed into three distinct games. Hence, the optimal strategies for a motion
in x-, y-, and z-direction are calculated independently. The decomposed
single-stage game yields very close results to the full game, while signifi-
cantly reducing the time-complexity. In other words, the difference between
the results of the decomposed and the full game have an average value of
0.039 stages and a standard deviation of 0.37 stages which is negligibly small
for all practical purposes. The time complexity of the full game, being O(s6),
is reduced to 3 ·O(s3), where s is the number of strategies for each degree of
freedom. The reduction of the exponential complexity is, thus, significant.
For instance, the solution calculation for a game with s = 9 is performed
171.17 times faster through decomposition of the action space. The sec-
ond approach for time-complexity reduction is changing the game structure.
Two different methods are introduced, namely the MTPGD and TSTPG,
which are applied to a two-pursuer single-evader game. In the MTPGD,
the original game is decomposed into many two-player games, for which less
complex algorithms exist, while the cost functional of each player in the

Chapter 9 – Conclusion and Final Remarks 138

two-player game has a constant term considering the actual state of each
other players of the overall game. Due to a fusion of those intermediate
results, a close solution to the solution of the full game is achieved. De-
pending on the cardinality of the action space the time-complexity could be
decreased considerably (From O(S3N) to O(NS6), where N is the number
of players and S is the number of strategies per player)). Therefore, this de-
composition is most beneficial for a larger number of players. The TSTPG
encapsulates a team of players to one super pursuer, while the action set of
this super player consist of each possible combination of the players of the
team. While the results using this approach are even closer to those of the
full game, the time-complexity of the utilized solution algorithm stays the
same (O(NS6)). Nevertheless, other algorithms that are only available for
two-player games, like the Lemke-Howson algorithm, enable a computation
in PTIME for zero-sum games to be used. In simulation it is shown that
using the Lemke-Howson algorithm results in a huge reduction of the run
time for both the MTPGD and the TSTPG, being considerably faster (≈ 21

times faster with TSTPG and ≈ 70 times faster with MTPGD for S = 9) in
opposition to the computational time of the full game. In total, the action
space decomposition and the complexity reduction with the TSTPG result
in a 3558.62 times faster calculation, and with the MTPGD a 12043.52 times
faster calculation, with 9 strategies per axis and player.

Moreover, it is demanded that a team of pursuers is able to capture a single
faster evader through cooperation. Therefore, a superordinate cooperation
on top of the non-cooperative game is proposed, enabling the change of be-
havior for a pursuer. Two pursuing behaviors are defined, namely pursuit
and battue. The first behavioral strategy is a conventional pursue, while the
second one is a behavior where the pursuer is trying to drive the evader to-
wards another pursuer. It is shown that due to the cooperation on a higher
level, the outcome of the pursuing team is increased (up to 13.25%) for a
game with perfect information structure and a slower evader. While the gain
of the outcome of such a game is not significant, it is when it comes to games
with imperfect information e.g. visibility-based PEGs. Due to the observa-
tion sharing between the pursuers, it is only necessary that one pursuer is
able to sense the evader. This information superiority enables the capture
of a faster evader. This is shown due to simulations. With increasing evader

Chapter 9 – Conclusion and Final Remarks 139

speed the initial states for which the evader can be captured increasingly
shrinks. Another issue is that because of the observation sharing, some in-
formation may be received by other pursuers with a delay of multiple stages.
It is shown that when using a Kalman filter for the estimation of the ac-
tual state, a capture of the evader is still possible with a delay of 6 stages.
Without an estimator, a delay of 4 steps makes a capture impossible.

The results obtained are demonstrated in practice using UAVs. The UAV
agents behaviors are encapsulated in the RNBC structure. This architec-
ture is a generalized cascaded control structure which arranges the fastest
and more reflexive behaviors in the lower layers, while the slower and more
complex behaviors are placed at the upper levels. Using this implementa-
tion for UAVs, a comparison to the PMA from [RT07] is performed. This
work, focuses on a similar topic, namely the time-complexity reduction of
the game and the capture of a faster evader with multiple pursuers. In or-
der to compare the approaches in a fair way, some restrictions to the GTA
are set, like the fixed and finite set of position states the game can reach.
This impacts especially the termination condition. The game ends when the
evader reaches the boundary of the position state. Moreover, a performance
measure is introduced including the average of terminal stages, the variance
of terminal stages, the diverged games and the operations needed for calcula-
tion of the regarded approach combination. The two methods are compared
by running a large number of simulations for three different configurations:
(i) faster pursuers, (ii) equally fast players, and (iii) a faster evader. The re-
sults show the advantage of the escaping and pursuing behavior of the GTA
of the present work. The biggest advantage can be seen in the run-time of
the GTA, which is about 21 times faster regarding the collectivity of the
operations conducted in all simulations.

With the successful realization of an actual PEG UAV it is possible to run
several experiments. The simulation results show the feasibility of a two-
pursuer one-evader scenario. Sensor uncertainties and especially wind and
wind gusts affect the results, leading partly to deviations in respect to the
simulation results. Most notably, strong upwind could cause a completely
different outcome in opposition to the simulation, while in one experiment
the evader which is supposed to be caught, is able to escape.

Chapter 9 – Conclusion and Final Remarks 140

Finally, few remarks are due. The action space decomposition does not
take the non-holonomic constraints of the hex rotor into consideration. In
this specific example, the impact on the dynamic behavior is acceptable. A
motion of a multi rotor in x− or y−direction is achieved by changing the
pitch or roll angle and the thrust. For instance, a motion only in a positive
x-direction demands a positive pitch angle and a proper additional positive
thrust. Without a proper thrust, the multi rotor would also perform a motion
in z−direction. The roll and pitch angles are independently controllable but
to maintain the z−velocity an additional thrust must be provided. Due to
this coupling, the maximal allowed velocity commands in z−direction in the
PEGs are kept about four times less than those for x and y. The action
space decomposition can only be performed for holonomic systems, or for
special non-holonomic systems (like multi rotors) by proper adaptations on
the action space.

Changing the game structure is a very critical task. The choice of suitable
cost functionals is especially crucial. The procedure of how to constitute
the cost functional for a TSTPG or MTPGD game structure varies with
the application and needs a detailed analysis of the process to be regarded.
When using the MTPGD a suitable fusion of the interim solutions must also
be performed. The fusion procedure also varies with the application and
demands extensive investigation of the specific problem.

The superordinate cooperation gives the members of a team the ability to
negotiate about which behavioral strategy is the best one to use to maximize
the outcome of the team. Thus, the superordinate cooperative provides more
flexibility to a team regarding their behavior. It is shown that the results of a
game with perfect state information can be improved, enabling the possibility
to capture a faster evader in visibility-based PEGs. The drawback of this
approach is the increased complexity to the solution process. The complexity
increases by a factor of nS with every additional behavioral strategy, S, with
n as is the number of players in a team.

The cooperation between team-members demands a permanent communica-
tion between team-members. The present solution takes 120ms for one full
data exchange between two players. With an increasing number of players
the communication overhead gets even bigger. Thus, a delay of multiple
stages can occur. To overcome this problem, a space-saving encoding could

Chapter 9 – Conclusion and Final Remarks 141

be implemented or another communication structure or channel could be
used.

Future Work
First and foremost the n-pursuer m-evader PEGs is still a little examined
topic in current research. In 1-pursuer m-evader PEGs a similar approach as
discussed in chapter 5 could be applied, a cooperative evasion against a faster
pursuer for instance. The evaders could have several behavioral strategies,
e.g. “evade”, “hide” or “attract”. A conceivable strategy could be that one
evader tries to attract the pursuer, such that the other evaders are able to
escape or to hide. When it comes to n-pursuer m-evader PEGs the problem
gets much more complex. The complexity increases because both teams are
able to cooperate. Especially the pursuers have to decide which evader to
pursue. A suggested approach could be by adding an additional level to
the RNBC structure of the agents superordinate to the cooperative layer,
namely the “Assignment Layer” as depicted on figure 9.1. Analogical to the
cooperative layer, a static cooperative game could be defined to determine
which pursuer combinations is the optimal one against each evader. The
result of this cooperative game would be to determine optimal single-pursuer
multiple-evader or multiple-pursuer single-evader combinations, considering
all behavioral strategies on the lower layer, to maximize the outcome of the
team. Of course, with this additional layer the total game becomes on the one
hand applicable on n-pursuer m-evader PEGs, while on the other hand the
time-complexity increases exponentially with the number of possible player
combinations. Therefore, an accurate analyzation has to be carried out.
As a pre-step to the assignment game, an elimination of non-reasonable
combinations could be carried out to minimize the combination space and
thus the time-complexity of the solution process of the game.

Chapter 9 – Conclusion and Final Remarks 142

Cooperative Pursuit/Evasion

Pursuit-Evasion Game

Collision Avoidance

Velocity Control

Attitude Control

Stereo

Camera

GNSS

Radar

INS

Magneto-

meter

Radio

Link

b

Sensors

Player Assignment
M

D
istu

rb
a
n
ce
s

Figure 9.1: Exemplary RNBC implementation for PEG UAV agents
with player assignment.

Bibliography

[CHI11] T. H. Chung, G. A. Hollinger, and V. Isler. „Search and pursuit-
evasion in mobile robotics“. In: Autonomous Robots 31.4 (2011),
pp. 299–316. issn: 1573-7527. doi: 10.1007/s10514-011-9241-4.

[Mor+05] S. Morris et al. Cooperative Tracking of Moving Targets by Teams
of Autonomous Unmanned Air Vehicles. Defense Technical In-
formation Center, 2005.

[AGI08] F. Amigoni, N. Gatti, and A. Ippedico. „A Game-Theoretic Ap-
proach to Determining Efficient Patrolling Strategies for Mobile
Robots“. In: Proceedings of the 2008 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence and Intelligent Agent
Technology - Volume 02. WI-IAT ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 500–503. isbn: 978-0-7695-
3496-1. doi: 10.1109/WIIAT.2008.324.

[BBH14b] S. Bhattacharya, T. Başar, and N. Hovakimyan. „On the con-
struction of barrier in a visibility based pursuit evasion game“.
In: European Control Conference, ECC 2014, Strasbourg, France,
June 24-27, 2014. 2014, pp. 1894–1901. doi: 10.1109/ECC.2014.
6862391.

[ZL11] M. Zhang and H. Liu. „Persistent tracking using unmanned
aerial vehicle: A game theory method“. In: AIAA Guidance, Nav-
igation, and Control Conference. 2011.

[SS95] J. Shinar and G. Silberman. „A Discrete Dynamic Game Mod-
elling Anti-missile Defense Scenarios“. In: Dyn. Control 5.1 (Jan.
1995), pp. 55–67. issn: 0925-4668. doi: 10.1007/BF01968535.

http://dx.doi.org/10.1007/s10514-011-9241-4
http://dx.doi.org/10.1109/WIIAT.2008.324
http://dx.doi.org/10.1109/ECC.2014.6862391
http://dx.doi.org/10.1109/ECC.2014.6862391
http://dx.doi.org/10.1007/BF01968535

BIBLIOGRAPHY 144

[Pon11] M. Pontani. „Numerical Solution of Orbital Combat Games In-
volving Missiles and Spacecraft“. In: Dynamic Games and Ap-
plications 1.4 (2011), pp. 534–557.

[TS03] V. Turetsky and J. Shinar. „Missile guidance laws based on pur-
suit–evasion game formulations“. In: Automatica 39.4 (2003),
pp. 607 –618. issn: 0005-1098. doi: 10 .1016/S0005- 1098(02)
00273-X.

[She02] S. Shedied. Optimal Control for a Two Player Dynamic Pur-
suit Evasion Game: The Herding Problem. University Libraries,
Virginia Polytechnic Institute and State University, 2002.

[GTG06] B. P. Gerkey, S. Thrun, and G. Gordon. „Visibility-based
Pursuit-evasion with Limited Field of View“. In: Int. J. Rob.
Res. 25.4 (Apr. 2006), pp. 299–315. issn: 0278-3649. doi: 10.
1177/0278364906065023.

[SO14a] N. M. Stiffler and J. M. O’Kane. „A complete algorithm for
visibility-based pursuit-evasion with multiple pursuers“. In: 2014
IEEE International Conference on Robotics and Automation
(ICRA). 2014, pp. 1660–1667. doi: 10.1109/ICRA.2014.6907074.

[SO14b] N. M. Stiffler and J. M. O’Kane. „A sampling-based algo-
rithm for multi-robot visibility-based pursuit-evasion“. In: 2014
IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2014, pp. 1782–1789. doi: 10.1109/IROS.2014.6942796.

[Bor21] Émile Borel. „La théorie du jeu et les équations intégrales
à noyau symétrique“. In: Comptes Rendus Hebdomadaires des
Séances de l’Academie des Sciences 173 (1921), 1304–8.

[Neu28] J. v. Neumann. „Zur Theorie der Gesellschaftsspiele“. In: Math-
ematische Annalen 100 (1928), pp. 295–320.

[NM07] J. von Neumann and O. Morgenstern. Theory of Games and Eco-
nomic Behavior (60th-Anniversary Edition). Princeton Univer-
sity Press, 2007, pp. I–XXXII, 1–739. isbn: 978-0-691-13061-3.

[Nas50a] J. F. Nash. „Non-cooperative Games“. PhD thesis. Princeton,
NJ: Princeton University, May 1950.

[Nas50b] J. Nash. „The Bargaining Problem“. In: Econometrica 18.2
(1950), pp. 155–162.

http://dx.doi.org/10.1016/S0005-1098(02)00273-X
http://dx.doi.org/10.1016/S0005-1098(02)00273-X
http://dx.doi.org/10.1177/0278364906065023
http://dx.doi.org/10.1177/0278364906065023
http://dx.doi.org/10.1109/ICRA.2014.6907074
http://dx.doi.org/10.1109/IROS.2014.6942796

BIBLIOGRAPHY 145

[Nas53] J. Nash. „Two-Person Cooperative Games“. In: Econometrica
21.1 (1953), pp. 128–140.

[Sha52] L. S. Shapley. „Notes on the n-Person Game, III: Some Variants
of the Von Neumann-Morgenstern Definition of Solution“. In:
Research Meomoranda, Santa Monica, CA: RAND Corporation
RM-817 (1952).

[Sha53] L. S. Shapley. „A value for n-person games. Contribution to the
Theory of Games“. In: Annals of Mathematics Studies 2 (1953).
Ed. by H. Kuhn and A. Tucker, p. 28.

[Nah12] P. J. Nahin. Chases and Escapes: The Mathematics of Pursuit
and Evasion (Princeton Puzzlers). Princeton University Press,
2012. isbn: 0691155011.

[Isa51] R. Isaacs. „Games of Pursuit“. In: Santa Monica, CA: RAND
Corporation (1951).

[Isa65] R. Isaacs. Differential Games: A Mathematical Theory with Ap-
plications to Warfare and Pursuit, Control and Optimization.
New York: John Wiley and Sons, Inc., 1965. isbn: 0486406822.

[Bel57] R. Bellman. Dynamic Programming. 1st ed. Princeton, NJ, USA:
Princeton University Press, 1957.

[Mer72] A. W. Merz. „The game of two identical cars“. In: Journal of
Optimization Theory and Applications 9.5 (1972), pp. 324–343.
issn: 1573-2878. doi: 10.1007/BF00932932.

[PT00] V. S. Patsko and V. L. Turova. Numerical Study of Differential
Games with the Homicidal Chauffeur Dynamics. Tech. rep. IMM
Ural Branch of RAS, Ekaterinburg, Russia, 2000.

[Mit01] I. Mitchell. Games of Two Identical Vehicles. Tech. rep. SU-
DAAR740. Stanford University, Department of Aeronautics and
Astronautics, 2001.

[PT11] V. S. Patsko and V. L. Turova. „Homicidal Chauffeur Game:
History and Modern Studies“. In: Advances in Dynamic Games:
Theory, Applications, and Numerical Methods for Differential
and Stochastic Games. Ed. by M. Breton and K. Szajowski.
Boston: Birkhäuser Boston, 2011, pp. 227–251. isbn: 978-0-8176-
8089-3. doi: 10.1007/978-0-8176-8089-3_12.

http://dx.doi.org/10.1007/BF00932932
http://dx.doi.org/10.1007/978-0-8176-8089-3_12

BIBLIOGRAPHY 146

[BO99] T. Başar and G. J. Olsder. Dynamic Noncooperative Game The-
ory (Classics in Applied Mathematics). 2nd ed. Soc for Industrial
& Applied Math, Jan. 1999. isbn: 089871429X.

[KR05] S. Kopparty and C. V. Ravishankar. „A framework for pursuit
evasion games in Rn“. In: Information Processing Letters 96.3
(2005), pp. 114 –122. issn: 0020-0190. doi: 10.1016/j.ipl.2005.
04.012.

[BBH07] S. D. Bopardikar, F. Bullo, and J. Hespanha. „A cooperative
homicidal chauffeur game“. In: Decision and Control, 2007 46th
IEEE Conference on. 2007, pp. 4857–4862. doi: 10.1109/CDC.
2007.4434251.

[Ls10] R. Liu and C. ze su. „A novel approach based on evolutionary
game theoretic model for multi- player pursuit evasion“. In: 2010
International Conference on Computer, Mechatronics, Control
and Electronic Engineering. Vol. 1. 2010, pp. 107–110. doi: 10.
1109/CMCE.2010.5609628.

[LQT12] Y. LIU, N. QI, and Z. TANG. „Linear Quadratic Differential
Game Strategies with Two-pursuit Versus Single-evader“. In:
Chinese Journal of Aeronautics 25.6 (2012), pp. 896 –905. issn:
1000-9361. doi: 10.1016/S1000-9361(11)60460-3.

[Liu+13] S. Y. Liu et al. „Evasion as a team against a faster pursuer“. In:
2013 American Control Conference. 2013, pp. 5368–5373. doi:
10.1109/ACC.2013.6580676.

[WF13] T. K. Wang and L. C. Fu. „A guidance strategy for multi-player
pursuit and evasion game in maneuvering target interception“.
In: Control Conference (ASCC), 2013 9th Asian. 2013, pp. 1–6.
doi: 10.1109/ASCC.2013.6606182.

[CSG09] Z.-s. Cai, L.-n. Sun, and H.-b. Gao. „A Novel Hierarchical
Decomposition for Multi-player Pursuit Evasion Differential
Game with Superior Evaders“. In: Proceedings of the First
ACM/SIGEVO Summit on Genetic and Evolutionary Computa-
tion. GEC ’09. Shanghai, China: ACM, 2009, pp. 795–798. isbn:
978-1-60558-326-6. doi: 10.1145/1543834.1543945.

http://dx.doi.org/10.1016/j.ipl.2005.04.012
http://dx.doi.org/10.1016/j.ipl.2005.04.012
http://dx.doi.org/10.1109/CDC.2007.4434251
http://dx.doi.org/10.1109/CDC.2007.4434251
http://dx.doi.org/10.1109/CMCE.2010.5609628
http://dx.doi.org/10.1109/CMCE.2010.5609628
http://dx.doi.org/10.1016/S1000-9361(11)60460-3
http://dx.doi.org/10.1109/ACC.2013.6580676
http://dx.doi.org/10.1109/ASCC.2013.6606182
http://dx.doi.org/10.1145/1543834.1543945

BIBLIOGRAPHY 147

[RT07] J. Reimann and G. I. of Technology. Using Multiplayer Differen-
tial Game Theory to Derive Efficient Pursuit-evasion Strategies
for Unmanned Aerial Vehicles. Georgia Institute of Technology,
2007. isbn: 9780549112112.

[Pan+12] S. Pan et al. „Pursuit, evasion and defense in the plane“. In: 2012
American Control Conference (ACC). 2012, pp. 4167–4173. doi:
10.1109/ACC.2012.6315389.

[LU06] D. Li and T. O. S. University. Multi-player Pursuit-
evasion Differential Games. Ohio State University, 2006. isbn:
9780542930645.

[LCS08] D. Li, J. B. Cruz, and C. J. Schumacher. „Stochastic multi-player
pursuit–evasion differential games“. In: International Journal of
Robust and Nonlinear Control 18.2 (2008), pp. 218–247. issn:
1099-1239. doi: 10.1002/rnc.1193.

[Wei+07] M. Wei et al. „Multi-Pursuer Multi-Evader Pursuit-Evasion
Games with Jamming Confrontation“. In: JACIC 4.3 (2007),
pp. 693–706. doi: 10.2514/1.25329.

[Ge+06] J. Ge et al. „Hierarchical decomposition approach for pursuit-
evasion differential game with multiple players“. In: 2006 IEEE
Aerospace Conference. 2006, 7 pp.–. doi: 10.1109/AERO.2006.
1656027.

[FV13] A. Festa and R. B. Vinter. „A decomposition technique for pur-
suit evasion games with many pursuers“. In: 52nd IEEE Con-
ference on Decision and Control. 2013, pp. 5797–5802. doi: 10.
1109/CDC.2013.6760803.

[SV03] J. A. Sethian and A. Vladimirsky. „Ordered Upwind Methods for
Static Hamilton–Jacobi Equations: Theory and Algorithms“. In:
SIAM Journal on Numerical Analysis 41.1 (Jan. 2003), pp. 325–
363. issn: 0036-1429. doi: 10.1137/s0036142901392742.

[AS16] M. D. Awheda and H. M. Schwartz. „Decentralized learning in
pursuit-evasion differential games with multi-pursuer and single-
superior evader“. In: 2016 Annual IEEE Systems Conference
(SysCon). 2016, pp. 1–8. doi: 10.1109/SYSCON.2016.7490516.

http://dx.doi.org/10.1109/ACC.2012.6315389
http://dx.doi.org/10.1002/rnc.1193
http://dx.doi.org/10.2514/1.25329
http://dx.doi.org/10.1109/AERO.2006.1656027
http://dx.doi.org/10.1109/AERO.2006.1656027
http://dx.doi.org/10.1109/CDC.2013.6760803
http://dx.doi.org/10.1109/CDC.2013.6760803
http://dx.doi.org/10.1137/s0036142901392742
http://dx.doi.org/10.1109/SYSCON.2016.7490516

BIBLIOGRAPHY 148

[JQ10] S. Jin and Z. Qu. „Pursuit-evasion games with multi-pursuer
vs. one fast evader“. In: Intelligent Control and Automation
(WCICA), 2010 8th World Congress on. 2010, pp. 3184–3189.
doi: 10.1109/WCICA.2010.5553770.

[RK15] M. V. Ramana and M. Kothari. „A cooperative pursuit-evasion
game of a high speed evader“. In: 2015 54th IEEE Conference
on Decision and Control (CDC). 2015, pp. 2969–2974. doi: 10.
1109/CDC.2015.7402668.

[GRH10] C. Giovannangeli, E. Rivlin, and M. Heymann. Pursiut-Evasion
Games in Presence of Obstacles in Unknown Environments: To-
wards an Optimal Pursuit Strategy. INTECH Open Access Pub-
lisher, 2010. isbn: 9789533070629.

[BHB09] S. Bhattacharya, S. Hutchinson, and T. Başar. „Game-theoretic
analysis of a visibility based pursuit-evasion game in the pres-
ence of obstacles“. In: 2009 American Control Conference. 2009,
pp. 373–378. doi: 10.1109/ACC.2009.5160610.

[BBH14a] S. Bhattacharya, T. Başar, and N. Hovakimyan. „On the con-
struction of barrier in a visibility based pursuit evasion game“.
In: Control Conference (ECC), 2014 European. 2014, pp. 1894–
1901. doi: 10.1109/ECC.2014.6862391.

[BBF14] S. Bhattacharya, T. Başar, and M. Falcone. „Numerical approx-
imation for a visibility based pursuit-evasion game“. In: 2014
IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2014, pp. 68–75. doi: 10.1109/IROS.2014.6942542.

[ZB16] R. Zou and S. Bhattacharya. „Visibility-Based Finite-Horizon
Target Tracking Game“. In: IEEE Robotics and Automation Let-
ters 1.1 (2016), pp. 399–406. issn: 2377-3766. doi: 10.1109/LRA.
2016.2521429.

[AX09] J. Annas and J. Xiao. „Intelligent pursuit & evasion in an
unknown environment“. In: Intelligent Robots and Systems,
2009. IROS 2009. IEEE/RSJ International Conference on. 2009,
pp. 4899–4906. doi: 10.1109/IROS.2009.5354246.

http://dx.doi.org/10.1109/WCICA.2010.5553770
http://dx.doi.org/10.1109/CDC.2015.7402668
http://dx.doi.org/10.1109/CDC.2015.7402668
http://dx.doi.org/10.1109/ACC.2009.5160610
http://dx.doi.org/10.1109/ECC.2014.6862391
http://dx.doi.org/10.1109/IROS.2014.6942542
http://dx.doi.org/10.1109/LRA.2016.2521429
http://dx.doi.org/10.1109/LRA.2016.2521429
http://dx.doi.org/10.1109/IROS.2009.5354246

BIBLIOGRAPHY 149

[DZJ12] J. Dong, X. Zhang, and X. Jia. „Strategies of Pursuit-Evasion
Game Based on Improved Potential Field and Differential Game
Theory for Mobile Robots“. In: Instrumentation, Measurement,
Computer, Communication and Control (IMCCC), 2012 Second
International Conference on. 2012, pp. 1452–1456. doi: 10.1109/
IMCCC.2012.340.

[LJTH64] C. E. Lemke and J. J. T. Howson. „Equilibrium Points of Bima-
trix Games“. In: Journal of the Society for Industrial and Applied
Mathematics 12.2 (1964), pp. 413–423. doi: 10.1137/0112033.

[Joh13] S. G. Johnson. The NLopt nonlinear-optimization package.
http://ab-initio.mit.edu/nlopt. 2013.

[Cha09] B. Chatterjee. „An optimization formulation to compute Nash
equilibrium in finite games“. In: Methods and Models in Com-
puter Science, 2009. ICM2CS 2009. Proceeding of International
Conference on. 2009, pp. 1–5.

[AB16] A. Alexopoulos and E. Badreddin. „Decomposition of multi-
player games on the example of pursuit-evasion games with un-
manned aerial vehicles“. In: 2016 American Control Conference
(ACC). 2016, pp. 3789–3795. doi: 10.1109/ACC.2016.7525503.

[ASB14b] A. Alexopoulos, T. Schmidt, and E. Badreddin. „A pursuit-
evasion game between unmanned aerial vehicles“. In: Informatics
in Control, Automation and Robotics (ICINCO), 2014 11th In-
ternational Conference on. Vol. 02. 2014, pp. 74–81.

[ASB16] A. Alexopoulos, T. Schmidt, and E. Badreddin. „Real-Time
Implementation of Pursuit-Evasion Games Between Unmanned
Aerial Vehicles“. In: Informatics in Control, Automation and
Robotics: 11th International Conference, ICINCO 2014 Vienna,
Austria, September 2-4, 2014 Revised Selected Papers. Ed. by
J. Filipe et al. Cham: Springer International Publishing, 2016,
pp. 147–163. isbn: 978-3-319-26453-0. doi: 10.1007/978-3-319-
26453-0_9.

[AB12] A. Alexopoulos and E. Badreddin. „Multi-Agent Pursuit-
Evasion Game with Unmanned Aerial Vehicles (UAVs)“. In: An-
nual Report of the Institute for Computer Engineering (2012).

http://dx.doi.org/10.1109/IMCCC.2012.340
http://dx.doi.org/10.1109/IMCCC.2012.340
http://dx.doi.org/10.1137/0112033
http://dx.doi.org/10.1109/ACC.2016.7525503
http://dx.doi.org/10.1007/978-3-319-26453-0_9
http://dx.doi.org/10.1007/978-3-319-26453-0_9

BIBLIOGRAPHY 150

[ASB14a] A. Alexopoulos, T. Schmidt, and E. Badreddin. „Pursuit and
evasion in a recursive nested behavioral control structure for
unmanned aerial vehicles“. In: Control, Automation and Sys-
tems (ICCAS), 2014 14th International Conference on. 2014,
pp. 1175–1180. doi: 10.1109/ICCAS.2014.6987737.

[Sch14] T. Schmidt. „Drei-Agenten Pursuit-Evasion-Spiel mit unbeman-
nten Luftfahrzeugen“. Master Thesis. Heidelberg University,
2014.

[ASB15] A. Alexopoulos, T. Schmidt, and E. Badreddin. „Cooperative
pursue in pursuit-evasion games with unmanned aerial vehicles“.
In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ In-
ternational Conference on. 2015, pp. 4538–4543. doi: 10.1109/
IROS.2015.7354022.

[McL08] M. McLure. „Vilfredo Pareto, 1906 Manuale di Economia Polit-
ica, Edizione Critica, Aldo Montesano, Alberto Zanni and Luig-
ino Bruni (eds), (Milan: EGEA—Università Bocconi Editore,
2006) pp. XXII, 706, ISBN 88-8350-084-9“. In: Journal of the
History of Economic Thought 30.01 (2008), pp. 137–140.

[Bad06] E. Badreddin. „Recursive behavior-based architecture for mo-
bile robots.“ In: Robotics and Autonomous Systems 8.3 (Apr. 20,
2006), pp. 165–176.

[Bar+09] C. Bartolein et al. „Dependable Design for Assistance Systems:
Electrical Powered Wheelchairs“. In: DDCS. Hamburg, Ger-
many, 2009.

[Kan+10] A. A. Kandil et al. „Collision avoidance in a recursive nested
behaviour control structure for Unmanned Aerial Vehicles.“ In:
SMC. IEEE, 2010, pp. 4276–4281.

[Set98] J. Sethian. „Adaptive fast marching and level set methods for
propagating interfaces.“ eng. In: Acta Mathematica Universitatis
Comenianae. New Series 67.1 (1998), pp. 3–15.

[Pey09] G. Peyre. Toolbox Fast Marching. http://www.mathworks.com/
matlabcentral/fileexchange/6110- toolbox- fast - marching. Ac-
cessed: 2016-02-15. 2009.

http://dx.doi.org/10.1109/ICCAS.2014.6987737
http://dx.doi.org/10.1109/IROS.2015.7354022
http://dx.doi.org/10.1109/IROS.2015.7354022
http://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching
http://www.mathworks.com/matlabcentral/fileexchange/6110-toolbox-fast-marching

BIBLIOGRAPHY 151

[Kir15] B. F. Kirsch. „Non-linear model based control of a hex rotor“.
Master Thesis. Heidelberg University, Dec. 2015.

[Ras14] Raspberry Pi Foundation. Raspberry Pi. www.raspberrypi.org.
2014.

[Cub14] CubieTech Ltd. Cubieboard – A series of open ARM miniPCs.
www.cubieboard.org. 2014.

[Tex14a] Texas Instruments Inc. BeagleBoard.org. www.beagleboard.org.
2014.

[Tex14b] Texas Instruments Inc. BeagleBone Black. www.beagleboard .
org/Products/BeagleBoneBlack. 2014.

[Bbb] BeagleBone Black. http : / / beagleboard . org / static / uploads /
BBB_Alt_View_Small.png. Accessed: 2016-12-30.

[Vn2] Vectornav VN-200 Rugged. http://www.vectornav.com/images/
default - source / products / vn - 200 - rugged - (1) .gif ? sfvrsn=6.
Accessed: 2016-12-30.

[K50] ComNav K501 GNSS Board. http://www.gpsworld.com/wp-
content/uploads/2013/05/201342815202868161.jpg. Accessed:
2016-12-30.

[T30] ComNav T-300 Base Station. https : / / geo - matching . com /
upload/2148-general.png. Accessed: 2016-12-30.

[Xbeb] XBee-Pro. https://www.digi.com/products/xbee-rf-solutions/
modules/xbee-digimesh-2-4. Accessed: 2016-10-14.

[Xbea] XBee-Pro S1 RF module. https : / /www . electronic - shop . lu /
media/catalog/product/9/6/964-02.jpg. Accessed: 2016-10-14.

[Mx2] Graupner MX-20. https://img.conrad.de/medias/global/ce/
2000_2999/2000/2090/2099/209941_BB_00_FB.EPS_1000.
jpg. Accessed: 2016-12-30.

[Voo09] H. Voos. „Entwurf eines Flugreglers für ein vierrotoriges unbe-
manntes Fluggerät (Control Systems Design for a Quadrotor
UAV)“. In: Automatisierungstechnik 57.9 (2009), pp. 423–431.

www.raspberrypi.org
www.cubieboard.org
www.beagleboard.org
www.beagleboard.org/Products/BeagleBone Black
www.beagleboard.org/Products/BeagleBone Black
http://beagleboard.org/static/uploads/BBB_Alt_View_Small.png
http://beagleboard.org/static/uploads/BBB_Alt_View_Small.png
http://www.vectornav.com/images/default-source/products/vn-200-rugged-(1).gif?sfvrsn=6
http://www.vectornav.com/images/default-source/products/vn-200-rugged-(1).gif?sfvrsn=6
http://www.gpsworld.com/wp-content/uploads/2013/05/201342815202868161.jpg
http://www.gpsworld.com/wp-content/uploads/2013/05/201342815202868161.jpg
https://geo-matching.com/upload/2148-general.png
https://geo-matching.com/upload/2148-general.png
https://www.digi.com/products/xbee-rf-solutions/modules/xbee-digimesh-2-4
https://www.digi.com/products/xbee-rf-solutions/modules/xbee-digimesh-2-4
https://www.electronic-shop.lu/media/catalog/product/9/6/964-02.jpg
https://www.electronic-shop.lu/media/catalog/product/9/6/964-02.jpg
https://img.conrad.de/medias/global/ce/2000_2999/2000/2090/2099/209941_BB_00_FB.EPS_1000.jpg
https://img.conrad.de/medias/global/ce/2000_2999/2000/2090/2099/209941_BB_00_FB.EPS_1000.jpg
https://img.conrad.de/medias/global/ce/2000_2999/2000/2090/2099/209941_BB_00_FB.EPS_1000.jpg

BIBLIOGRAPHY 152

[Bea06] M. Beatty. Principles of Engineering Mechanics: Volume 2 Dy-
namics – The Analysis of Motion. Mathematical Concepts and
Methods in Science and Engineering. Springer, 2006. isbn:
9780387237046.

[KKK95] M. Krstic, P. V. Kokotovic, and I. Kanellakopoulos. Nonlinear
and Adaptive Control Design. 1st. New York, NY, USA: John
Wiley & Sons, Inc., 1995. isbn: 0471127329.

[BS05] S. Bouabdallah and R. Siegwart. „Backstepping and sliding-
mode techniques applied to an indoor micro quadrotor“. In: Pro-
ceedings of the 2005 IEEE International Conference on Robotics
and Automation, 2005. ICRA 2005. IEEE. 2005, pp. 2247–2252.

[Ale+13] A. Alexopoulos et al. „A Comparative Study of Collision Avoid-
ance Techniques for Unmanned Aerial Vehicles“. In: SMC. 2013,
pp. 1969–1974.

[Cha10] B. Chatterjee. N-person game. www . mathworks . com /
matlabcentral/fileexchange/27837-n-person-game. 2010.

[Ste13] Steven G. Johnson. The NLopt nonlinear-optimizazion package.
http://ab-initio.mit.edu/nlopt. 2013.

[Kra88] D. Kraft. A software package for sequential quadratic program-
ming. Tech. rep. DFVLR-FB 88-28. DFVLR, Cologne, Germany,
1988.

[Kra94] D. Kraft. „Algorithm 733: TOMP–Fortran modules for optimal
control calculations“. In: ACM Transactions on Mathematical
Software 20.3 (1994), pp. 262–281.

[Wm2] Kaindl Electronic Windmaster 2. https : / / img . conrad . de /
medias/global/ce/8000_8999/8100/8130/8135/100464_BB_
00_FB.EPS.jpg. Accessed: 2016-12-30.

www.mathworks.com/matlabcentral/fileexchange/27837-n-person-game
www.mathworks.com/matlabcentral/fileexchange/27837-n-person-game
http://ab-initio.mit.edu/nlopt
https://img.conrad.de/medias/global/ce/8000_8999/8100/8130/8135/100464_BB_00_FB.EPS.jpg
https://img.conrad.de/medias/global/ce/8000_8999/8100/8130/8135/100464_BB_00_FB.EPS.jpg
https://img.conrad.de/medias/global/ce/8000_8999/8100/8130/8135/100464_BB_00_FB.EPS.jpg

A Experimental Results (cont.)

All remaining figures of the player’s trajectories for all experiments described
in chapter 8 can be found below. Note, that the initial position of the actual
UAV is always assumed to be the origin. Thus, the initial positions of the
other players change respectively to maintain the relative positioning to each
other.

-4 -2 0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Pursuer1

Pursuer2

Evader

N

E

S

W

meters

m
e
te

rs

1.5 m/s

Wind

Figure A.1: Experiment 1: actual UAV pursuer 1.

Appendix A – Experimental Results (cont.) 154

-6 -4 -2 0 2 4 6 8
0

2

4

6

8

10

12 Pursuer1

Pursuer2

Evader

0.5 m/s

Wind

N

E

S

W

meters

m
e
te

rs

Figure A.2: Experiment 1: actual UAV pursuer 2.

-8 -6 -4 -2 0 2 4 6 8 10
-6

-4

-2

0

2

4

6

8

10
Pursuer1

Pursuer2

Evader

N

E

S

W

meters

m
e
te
rs

Figure A.3: Experiment 2: actual UAV evader.

Appendix A – Experimental Results (cont.) 155

0 5 10 15 20

-10

-8

-6

-4

-2

0

2

4

6

8

Pursuer1

Pursuer2

Evader

N

E

S

W

1 m/s

Wind

meters

m
e
te

rs

Figure A.4: Experiment 2: actual UAV pursuer 2.

-10 -5 0 5 10 15

-6

-4

-2

0

2

4

6

8

10

12

14
Pursuer1

Pursuer2

Evader

m
e
te
rs

meters

N

E

S

W

Figure A.5: Experiment 3: actual UAV evader.

Appendix A – Experimental Results (cont.) 156

-15 -10 -5 0 5 10

0

5

10

15

20

Pursuer1

Pursuer2

Evader

N

E

S

W

meters

m
e
te
rs

Figure A.6: Experiment 3: actual UAV pursuer 1.

0 2 4 6 8 10 12 14 16
0

5

10

15

Pursuer1

Pursuer2

Evader

m
e
te

rs

meters

N

E

S

W

1 m/s

Wind

Figure A.7: Experiment 4: actual UAV pursuer 1.

Appendix A – Experimental Results (cont.) 157

-16 -14 -12 -10 -8 -6 -4 -2 0 2
-15

-10

-5

0 Pursuer1

Pursuer2

Evader

N

E

S

W

0.5 m/s

Wind

meters

m
e
te

rs

Figure A.8: Experiment 4: actual UAV pursuer 2.

-4 -2 0 2 4 6 8 10 12

-2

0

2

4

6

8

10

Pursuer1

Pursuer2

Evader

m
e
te

rs

meters

N

E

S

W

Wind 0.2 m/s

Figure A.9: Experiment 5: actual UAV evader.

Appendix A – Experimental Results (cont.) 158

0 2 4 6 8 10 12 14 16
0

5

10

15

Pursuer1

Pursuer2

Evader

0.5 m/sWind

meters

m
e
te

rs
N

E

S

W

Figure A.10: Experiment 5: actual UAV pursuer 1.

	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 State of the Art
	1.3 Main Contributions
	1.4 Problem Statement and Solution Approach
	1.4.1 Problem Statement
	1.4.2 Solution Approach

	1.5 Outline of the Thesis

	2 Assumptions, Formulations, and Definitions
	2.1 Assumptions
	2.1.1 Unknown Environment with Obstacles
	2.1.2 Discretization of Time and Euclidean Space
	2.1.3 Sensing within a Bounded Line of Sight
	2.1.4 Multi-Pursuer-Single-Evader PEGs

	2.2 The Properties of Pursuit-Evasion Games
	2.2.1 Teams and Players
	2.2.2 Stages
	2.2.3 Attribute Information
	2.2.4 Dynamics
	2.2.5 Observations
	2.2.6 State Information
	2.2.7 Strategies
	2.2.8 Cost Functional
	2.2.9 Termination

	3 Game Theory Preliminary
	3.1 Non-Cooperative Games
	3.1.1 Two-Player Zero-Sum Games
	3.1.2 Discrete-Time Dynamic Zero-Sum Games
	3.1.3 N-Player Non-Zero-Sum Games
	3.1.4 Discrete-Time Dynamic N-Player Non-Zero-Sum Games

	3.2 Cooperative Games
	3.2.1 Nash Bargaining Solution
	3.2.2 Pareto Efficiency

	4 Time-Complexity Reduction for Multi-Player Games
	4.1 Full-Dimensional Action Space vs Decomposed Action Space
	4.1.1 Two-Player PEG with UAVs (Full Game)
	4.1.2 Decomposition of the Action Set
	4.1.3 Time-Complexity Analysis
	4.1.4 Comparison

	4.2 Multi-Player Game Decomposition
	4.2.1 Two-Pursuer-One-Evader Pursuit-Evasion Game
	4.2.2 Full Game
	4.2.3 Multiple Two-Player Game Decomposition
	4.2.4 Team-Subsumption Two-Player Game
	4.2.5 Time-Complexity Analysis
	4.2.6 Comparison

	4.3 Conclusion

	5 Cooperation and Behavior Assignment
	5.1 Superordinate Cooperation in PEGs
	5.2 Team-Behavior Game
	5.2.1 Battue and Pursuit
	5.2.2 Comparison for Games with Perfect State Information

	5.3 Team-Behavior Game with Delayed Observation Sharing and Imperfect Information
	5.3.1 PEGs with Zero-Delay Observation Sharing
	5.3.2 PEGs with N-Delay Observation Sharing

	5.4 Conclusion

	6 Implementation and Comparative Study
	6.1 RNBC Structure for UAV Agents
	6.2 Comparison to the Performance Map Approach reimann
	6.2.1 The Performance Map Approach for PEGs with UAVs
	6.2.2 Simulation Set-Up
	6.2.3 Performance Measure
	6.2.4 Simulation: Slower Evader
	6.2.5 Simulations: Equally Fast Evader
	6.2.6 Simulations: A Faster Evader
	6.2.7 Conclusion

	7 Realization of the Experimentation Platform
	7.1 Autonomous Hex-Rotor UAV for PEGs
	7.2 Hardware
	7.3 Dynamical Model
	7.4 Attitude Control Layer
	7.5 Velocity Control Layer
	7.6 Collision Avoidance
	7.6.1 The Repulsion Force Approach
	7.6.2 Simulations
	7.6.3 Conclusion

	7.7 Pursuit-Evasion Layer
	7.7.1 Validation of the Algorithm

	7.8 Cooperative Behavior Assignment Layer

	8 Practical Real-Time Experiments
	8.1 Experimental Set-Up
	8.2 Experimental Results
	8.3 Conclusion

	9 Conclusion and Final Remarks
	Bibliography
	A Experimental Results (cont.)

