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Zusammenfassung:

Aus dem zweiten Gesetz der Thermodynamik folgt, dass jede Zelle durch eine
Grenzflache von ihrer Umwelt abgetrennt sein muss. Deshalb sind alle Zellen von
einer Lipidmembran ummantelt. Erst dadurch wird der hohe Grad an Organisa-
tion moglich. Damit jedoch Néhrstoffe und Informationen diese Barriere passieren
kénnen, sind diverse Transmembranproteine notig. Diese Voraussetzungen muss
auch die Synthetische Biologie bei der Erschaffung kiinstlicher Zellen beriicksichti-
gen. In dieser Doktorarbeit wurde ein simples und leicht beeinflussbares Modell-
system fiir Zelladhdsion entwickelt. Zunéchst wurde die Adhésion von sogenan-
nten “Small Unilamellar Vesicles”, Proteoliposomen mit Thrombozyten-Integrin,
auf eine mit extrazellularen Matrixproteinen funktionalisierte Oberflaichen mit
einer Quarzkristall-Mikrowaage untersucht. Des Weiteren wurde, wegen der gerin-
gen Stabilitdt von “Giant Unilamellar Vesicles” (GUVs), ein neues Komparti-
mentsystem entwickelt, das “droplet-stabilized Giant Unilamellar Vesicle” (ds-
GUV). Hierfiir wurde die Vielseitigkeit und Stabilitdt von Trépfchenmikrofluidik
mit der Biokompatibilitdt von Lipidmembranen kombiniert. Durch die Verwen-
dung von mikrofluidischer Pico-Injektionstechnologie ist es mdglich Komponenten
nacheinander in ein Modellkompartiment einzufiihren. Dies 6ffnet den Weg zu
komplexeren und vielfaltigeren Modellsystemen. In dieser Arbeit wird als Beispiel
die Rekonstitution von Thrombozyten-Integrin in dsGUV gezeigt. Dariiber hin-
aus wird ein Verfahren gezeigt, mit dem GUV aus dsGUV herausgeholt werden
konnen.

Abstract:

The second law of thermodynamics requires life processes to be separated by a
boundary from their environment. Therefore, all cells are encapsulated by a lipid
membrane. This enables life’s great degree of organization. To allow nutrients and
information to pass this barrier, cells use various transmembrane proteins for ma-
terial and signal transduction. When creating artificial cells, synthetic biology has
to account for these facts. This thesis presents the development of such a stable
and easy-to-manipulate protocell model for cellular adhesion experiments. First
adhesion of small unilamellar vesicles containing reconstituted blood-platelet inte-
grin to functionalized surfaces were studied using quartz crystal microbalance. Due
to restrictions of giant unilamellar vesicles (GUV), a novel compartment system,
named droplet-stabilized giant unilamellar vesicles (dsGUV), was created combin-
ing the versatility of microfluidics, the stability of surfactant-stabilized water-in-oil
droplets, with the high level of bio-mimicry of lipid membranes. Through the use
of microfluidic pico-injection technology, components can be sequentially added to
the compartment, pathing the way for more complex and diverse model systems.
In this work, reconstitution of integrin into dsGUVs is presented. The system was
characterized using different methods. Finally the recovery of GUVs from dsGUVs
to a physiological environment is presented.
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Part I.

Introduction






1. Cell Structure

The cell is the basic biological, functional, structural and self-replicating unit of
all organisms from bacteria to complex multicellular life forms. Eukariotic cells
consist of a plasma membrane, which encloses the cytoplasm, the cytoskeleton
and a range of organelles, such as the nucleus, as depicted in figure 1.1.[1] The
plasma membrane is a selectively permeable barrier separating the cell’s interior
from the extracellular environment. It is composed of a phospholipid bilayer of
approximately 5 nm thickness with embedded proteins.[1, 2| Endo- / exocytosis
and transmembrane proteins such as ion channels allow the cell to establish and
maintain gradients of ions, nutrients and metabolites across the membrane.|3, 4]
Cell membranes with the embedded proteins are involved in a variety of cellular
processes such as cell adhesion and signalling and serve as the attachment surface
for several extracellular structures, including the glycocalyx and the intracellular
cytoskeleton.[5-9)

microtubule

nuclear pore

7\ centrosome with i 3
o . i . extracellular matrix
| I c __pair of centrioles . tin (DNA)
nuclear envelope

vesicles

lysosome

actin

filaments .

peroxisome

nucleolus
ribosomes

in cytosol Golgi intermediate plasma nucleus endoplasmic mitochondrion
apparatus filaments membrane reticulum

Figure 1.1.: A schematic representation of a typical animal cell, showing its compartmentaliza-
tion into many different organelles. Reprinted from Alberts et al. [1].

The cytoskeleton is a network of interlinked filaments that extends throughout
the cytoplasm thereby maintaining the overall shape and mechanical resistance to
deformation.[10] In multicellular organisms the cytoskeleton stabilizes the entire



1. Cell Structure

tissues through association with extracellular connective tissue and other cells. |1,
11] The cytoskeleton is a highly dynamic structure composed of three main pro-
teins (figure 1.2) — filamentous actin (F-actin), intermediate filaments and micro-
tubules — which are capable of rapid growth or disassembly dependent on the cell’s
processes at a certain period of time.[12] Both actin filaments and microtubules as-
semble from globular monomers, G-actin and tubulin, respectively allowing for the
high dynamics of their structures. In contrast, intermediate filaments are made up
from fibrous subunits forming a coiled-coil. By actively contracting and relaxing
the cytoskeleton facilitates cellular morphogenesis and motility.|[13]

(@) Actin filaments (@ ~ 6 nm) | |

. p | 17 pm | L~L
O EEREIOR OSSR 0N © — T~~~ (semiflexible)
S ¢
() ntermediate filaments @ ~ 10-12nm) TP ]
ESSsss——— roxibe
(flexible)
(C) Microtubules (@ ~ 25 nm)
llll L.>>L
(stiff rods)
1000 pym

Figure 1.2.: Eucariotic cells are stabilized by a highly dynamic and adaptive cytoskeletal system
consisting of three types of filaments. Actin filaments (F-actin) form from globular monomers
(G-actin). They determine the morphology of the cell’s surface and play an important role in
cell locomotion. Intermediate filaments provide mechanical strength to cells and whole tissues.
Microtubules are long hollow cylinders that form from « and 8 heterodimers and are usually
attached at one end to a microtubule-organizing center or centrosome. They play an important
role in intracellular transport and determine the positions of the organelles. The scale bars
indicate the persistence length L, of the different fibers in comparison to an average filament
length L. Reproduced from Martin Deibler. [14].

Cells sense and interact with their environment in many different ways. One of
these processes, cell adhesion, is the ability of cellular membrane proteins to at-
tach to surfaces such as the extracellular matrix (ECM) and other cells. Together
with biochemical sensing,[15, 16] mechanosensing is essential for a cell to adjust
internal mechanisms to its surrounding.[17, 18] Hence, it is fundamental for reg-
ulating motility, differentiation, apoptosis, as well as the development of complex
multicellular organisms. Cell adhesion is mediated through the action of trans-
membrane glycoproteins, called cell adhesion molecules, like cadherins, integrins,
selectins and syndecans.|1] In section 1.2 cell adhesion in general and especially
integrins will be discussed in more detail.



1.1. Cell Adhesion

1.1. Cell Adhesion

The ability of cells to adhere to surfaces of other cells, or to the ECM is crucial for
the structure and development of tissue, but also to cell mobility in general. This
process is governed by a complex interplay between the ECM, cell junctions, adhe-
sion mechanisms and the cytoskeleton.[19] The binding of cell adhesion molecules
(CAMs), mainly transmembrane proteins, to molecules on adjacent cells or the
ECM is specific and follows the key-lock principle. The specificity arises from
a complementary geometrical shape and charge. The binding sites are shaped
to maximize electrostatic interactions between oppositely charged amino acid side
chains of CAM and ligand and to maximize the number of hydrogen bonds between
both proteins.|20] Four different functions of cell adhesion can be distinguished, as
presented in figure 1.3, each with a different molecular basis:[1]

(@) Anchoring junctions: These cell-cell or cell-matrix adhesions transmit
stress and are tethered to the cytoskeleton. Cell-Matrix adhesions can stabi-
lize tissue through binding to the ECM. In epithelial cells, cell-cell adhesion
junctions form a stable sheet by directly linking the cytoskeleton of neigh-
bouring cells.

(b) Occluding junctions: Common in epithelial cells, they seal gaps between
cells to create an impermeable sheet.

(¢) Channel-forming junctions: By creating channels they link the cytoplasm
of adjacent cells.

(d) Signal-relaying junctions: Important for synapses these junctions allow
for signal molecules to be relayed between connected cells.

(a) .@ (b) H (C) @ (d) ii

ANCHORING OCCLUDING CHANNEL-FORMING SIGNAL-RELAYING
JUNCTIONS JUNCTIONS JUNCTIONS JUNCTIONS

Figure 1.3.: Schematic representation of the four different functional classes of cell junctions.
(a) Through anchoring junctions cells are either linked to other cells, typically via cadherins, or
to the ECM, typically via integrin. (b) Epithelial cells form occluding junctions to form a sealed
layer. (c) To transfer small molecules and ions between each other, cells form passageways
called channel-forming junctions. (d) Common in nerve synapses, signal-relaying junctions are
complex structures, consisting of anchorage and signaling proteins. Reproduced from Alberts
et al. [1].
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CAMs are organized into four protein superfamilies; selectins, integrins, syndecans
and cadherins. Commonly they consist of a large extracellular domain, a helical
transmembrane domain and an intracellular domain. The later is often connected
to the cytoskeleton.|1, 21|

1.2. Focal Adhesions

Focal adhesions (FAs) are large macromolecular assemblies, shown in figure 1.4,
through which actomyosin-driven contractile forces and regulatory signals are
transmitted between the ECM and an interacting cell. These sub-cellular struc-
tures mediate the regulatory effects of cells in response to cell-ECM adhesion.[18,
22| The pivotal elements of FAs are the transmembrane receptor proteins of the
integrin family, which will be discussed in more detail in section 1.3.[6] Integrins
bind to different ligands of the ECM and are mechanically linked to actin fibers
by complex multi-protein structures. This network of proteins is collectively re-
ferred to as the “adhesome” containing >100 different components with multiple
interactions.[23-26] It can be differentiated into several functional “subnets”. Each
of these signalling pathways switches different molecular interactions within the
whole network, consequently regulating cell adhesion.|6] FAs assemble, grow and
disassemble in time scales of minutes. The pseudo steady state of a focal adhesion
is maintained by rapid exchange of material with the cytosol. The large number of
proteins involved in a FA complex suggests a considerable functional diversity. It
has been shown, that signals transmitted from FAs to other parts of the cell, relate
to a wide range of cellular processes from cell motility to cell fate decisions.|27, 28|

-140
-120 Cell edge
- —

Actin stress fibre

Actin regulatory layer

z (nm)

Force transduction layer

Integrin signalling layer

Plasma membrane
Integrin extracellular domain

ECM

U & ¢ = g @& o \ o*

Integrin o, FAK Paxillin Talin  Vinculin  Zyxin VASP  o-Actinin Actin

Figure 1.4.: Schematic model of the proteins constituting FAs. The sketch depicts experimen-
tally determined protein interactions and the vertical positioning of the components. Note that
the model does not depict protein stoichiometry. Taken from Kanchanawong et al.[29].



1.3. Integrins

During cell migration cell-matrix adhesion sites assemble dynamically in a sequen-
tial cascade of compositional changes.[27, 30] Integrins spontaneously diffuse and
aggregate in the plasma membrane.[31] Through association of talin to their cy-
toplasmic tails, integrins get activated and show increased binding affinity to the
ECM.[32] Integrin-talin pairs can bind to the ECM, resulting in their immobiliza-
tion. Engagement to the ECM promotes recruitment of adapter protein paxilin
to the integrin clusters. This in turn recruits additional integrins to enlarge the
clusters and they mature to nascent adhesions.|31, 33-35] The majority of these
nascent adhesions disassemble within minutes, while a subpopulation mature into
focal complexes.[36] This development is promoted by the recruitment of the actin-
bundling protein a-actinin. Together with talin, a-actinin established a link be-
tween the ECM-bound integrins and the actin cytoskeleton.[37, 38] The transition
of nascent adhesions to focal complexes is facilitated by mechanical tension caused
by the polymerization of actin.[39-42] Larger forces induced by actomyosin con-
tractility further promote the maturation of focal complexes to FAs, by mechanical
stretching of focal complexes (e.g. talin, cas) and them exposing binding sites.[43—
45]

1.3. Integrins

Integrins are heterodimeric transmembrane proteins which are important for cell-
cell and cell-kECM interactions. An integrin receptor is composed of one of 18
known a-subunits noncovalently bound to one of 8 S-subunit assembling into 24
different pairing combinations.[46] Both subunits cross the cell membrane, with
short intracellular C-terminals and large extracellular N-terminal domains at their
respective ends, see figure 1.5. The intracellular domains are linked to the cy-
toskeleton through a complex of proteins called adhesome, as described in section
1.2. The extracellular parts of integrin bind to specific binding sites of ECM pro-
teins such as collagen or fibronectin. Integrin not only senses environmental cues
and transfers the information into the cell, but also the conformation of integrin
can be actively altered upon intracellular signals thereby actively regulating adhe-
sion.|[47]. Both mechanisms depend on transmission of forces across the membrane
and conversion into electrochemical activity — a process called mechanotransduc-
tion.[48, 49] As these dual function receptors are wired to other signaling pathways,
integrin-mediated cell anchorage can affect cytoskeletal organization and cell motil-
ity as well as differentiation and apoptosis.|50]

A characteristic feature of most integrin receptors is their ability to bind a vari-
ety of ligands on other cells or more often in the ECM. Moreover, many ECM
and cell surface adhesion proteins bind to multiple integrin receptors.|52] One of
this binding sites is the short amino-acid sequence arginine-glycine-aspartic acid
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(b)

Figure 1.5.: Structure of integrin « 33 obtained through X-ray crystallography, small angle
neutron scattering and cryo TEM measurements. (a) Surface-shaded 3D density map of the
integrin a;r,83 heterodimer at 20 A resolution. The dimensions and domains are indicated.
Ribbon models depicting integrin a; 53 in the (b) low-affinity state, which can transform to the
(c) active state (only the extracellular parts are shown). Reproduced from Adair and Yaeger.
Copyright (2002) National Academy of Sciences, U.S.A.[51]

(RGD), which is exposed in many ECM proteins like fibrinogen and fibronectin.
Integrins selectively recognizes differently structured biomimetic RGD-containing
peptides.[53] One type of integrin, that binds specifically to RGD, is integrin
arpPs.]54, 55] This type of integrin is an abundant membrane protein in blood
platelets and epithelial cells.|50, 56] The vascular localization places this integrin in
a strategic position to provide adhesive functions necessary for hemostasis, wound
healing and angiogenesis. As a protocol for purifying integrin «;;,33 from blood
platelets was well established within our group and thrombocyte concentrate is
readily available, it was a preferable choice to continue working with this type of
integrin for synthetic biology (SB) applications.|57]

The structure of integrin and its function were reconstructed using different anal-
ysis methods such a X-ray protein cristallography, small angle neutron scattering
or cryo electron microscopy in combination with molecular dynamics (MD) sim-
ulations, shown in figure 1.5.[51, 61, 63-67] The mechanism by which integrin
receptors are triggered to change their confirmation to activate or deactivate ad-
hesion has long been controversial.[68] There are three conformational states of
integrins on cell surfaces (figure 1.6) — two inactive, bent closed (figure 1.5a and
1.5b) and extended-closed as well as one active, extended-open (figure 1.5¢).[62]
According to one model, the deadbolt model,[69] integrin can be activated despite
of a bent head domain through binding of a ligand and a consequent conforma-
tion change. This claim is supported by a range of experiments, that indicate no
change in height of the extracellular domains after incubation liposomes contain-
ing reconstituted integrin in Mn*",[69, 70| although it had previously been shown
that addition of Mn*" results in the activation of integrin.[46] On the other side a
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Figure 1.6.: The three overall integrin conformational states. (a) The bent conformation has a
() closed headpiece and a low binding affinity. Extension at the a-knee and -knee releases an
interface between the headpiece and lower legs and yields an (ll) extended-closed conformation
also with low binding affinity. Swing-out of the hybrid domain at its interface results in the (lll)
extended-open conformation with an increase of the binding affinity by three orders. Image of (b)
Integrin o83 in detergent (1, 3 and 5 [58] and 6 [59]) and embedded in lipoprotein nanodisks
(2, 4 [60]), with no additives (1 and 2), Mn?2* (3), talin head domain (4) and RGD peptides
(5, 6). Negative stain electron tomography class average (6). Three-dimensional molecular
envelopes of purified, detergent-soluble native integrin a;,33 in solution determined by small-
angle neutron scattering (7)[61] or X-ray scattering (8-10)[58] with no additions (7 and 8), Mn?2*
(9), or Mn2* and RGD mimetic (10). Adapted from Rpinger at al.[62].

switchblade model was proposed, where the integrin is first brought to its active
confirmation before binding a ligand.[71] More recent results suggest that cyto-
plasmic regulators, such as talin and kindlin, mediate the conformational change
of integrin and thus, activation is likely triggered from inside the cell, not through
binding of a ligand.[50, 62| Therefore, the switchblade model is the more probable
description of the integrin activation mechanism.






2. Synthetic Biology

SB is an emerging, complementary approach to traditional “classical” biology that
applies engineering principles to design and assemble biological components.|[72-74|
Traditional cell-biologists apply the so called “top-down” approach, where genetic
engineering is used to manipulate cellular processes and observe the effect. SB
is an alternative approach, often referred to as “bottom-up”, since the studied
system is commonly build from the ground up, e.g. single proteins. SB can be
broadly categorized into two branches. One uses mostly natural molecules to re-
engineer emergent behaviors from natural biology, with the goal to understand
the design principles of its functional moduls.[75, 76] The other seeks to design
and construct new bio-inspired components such as enzymes, genetic circuits, or
artificial cells.|75, 77|

2.1. Model Systems

The chemistry of life takes place in the microscopic, enclosed volume of cells. Its
picoliter volume is even further subdivided into even smaller compartments by
cellular organelles and vesicles. To understand processes at these small scales it
can be beneficial to recreate compartments of the same dimensions to perform
controlled experiments in such confined spaces.|78] This strategy constitutes the
so called “bottum-up” approach, where the experimenter attempts to build up
the observed system freed from the enormous complexity exhibited by cells. The
three different complementary techniques for forming microscopic compartments
are sketched in figure 2.1.

2.1.1. Lipid Vesicles

A common compartment used in SB are vesicles consisting of lipids, which have
the advantage of mimicking the structure and dynamics of a cell membrane to a
high degree.|79] This approach has been employed mostly in the first half of the
research presented in this thesis and will be described in more detail in section 4.2.
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Figure 2.1.: Schematic representations of three different SB compartment model systems. (a)
Spheres consisting of a lipid bilayer, so called vesicles or liposomes, are the most traditional
model system in SB. They mimic biological systems to a high grade. (b) Polymersomes replace
the lipid bilayer by triblock polymers. These polymers can be modified to have special chemical
or mechanical properties. (c) Technically water-in-oil polymer-stabilized droplets are also poly-
mersomes. To avoid confusion and to distinguish them from older water-in-water polymersomes
they are usually referred to as water-in-oil droplets.

2.1.2. Polymersomes

A parallel approach employs block-polymers instead of lipids for the self-assembly
of cell-like confinements, so called polymersomes. These vesicles are made of am-
phiphilic copolymers that provide the compartments a higher stability, rigidity
and longer lifetime than lipid vesicles.[80, 81| The use of artificial polymers al-
lows to finely tune the properties of the interface, such as thickness, bending and
stretching moduli and the permeability of the membrane. Polymers can also be
tweaked to allow the incooperation of (transmembrane) proteins with controlled
orientation via tethering to functional groups or antibodies.|82, 83| Currently, the
most common method to prepare cell-sized polymersomes are electroformation and
double emulsion techniques.|84, 85

2.1.3. Droplets

An alternative approach, which experiences growing popularity since the begin-
ning of the millennium, is the use of fluidic chips with channels and chamber
in the order of micrometers, hence called microfluidics. This technology will be
introduced in section 3. A method combining both polymersomes and microflu-
idics is droplet-based microfluidics. Here microfluidic chips are used to form self-
assembled droplets at a flow junction between at least one hydrophobic and one
hydrophilic phase. Similar to polymersomes, the droplet interface properties can
be finely tuned using different block-copolymer surfactant molecules. The second
half of the research presented in this thesis was based on this approach, it will be
discussed in more detail in section 3.2.
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2.1.4. Cellular Adhesion as a Model System

Since SB has come to prominence around the year 2000,[86, 87| the introduced
compartment systems have been used for various applications. Due to its com-
plexity, cellular adhesion (section 1.1) is a promising model system to be examined
with the methods of SB. Moreover, to the best of my knowledge, there have so
far only been a few studies reported in this field.[28, 88, 89| Probably the main
cause that has constrained developments in this field is the low stability of lipid
compartment systems.[90] Commonly in experiments with large vesicles surfaces
are passivated, to prevent attractive forces, such as Van der Waals forces causing
rupture of the lipid membrane. However, modelling of adhesion requires a pro-
tocell binding to a functionalized surface. Here, either the compartment can be
strengthened, e.g. by adding a cytoskeleton, or the interaction can be tuned, e.g.
by controlling ligand spacing, or adding a space such as a glycocalyx.

In the first part of this thesis the adhesion properties of traditional lipid vesi-
cles with reconstituted integrin were studied. Due to the mechanical and chemical
instabilities of lipid vesicles a further expansion of this approach was restricted.
Therefore, the development of a new model system combining droplet-based mi-
crofluidics with a phospholipid bilayer is presented in the second part. However,
first microfluidics will be introduced in chapter 3 followed by an overview on lipid
model systems in chapter 4. This arrangement is due to contentual reasons, as
microfluidics is a common method to form lipid vesicles and is therefore part of
both chapters.
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3. Microfluidics

With the development of soft-lithography technologies, the production of fluidic
chips with micrometer scale structures in large quantities and at a low cost be-
came widely available. Therefore, microfluidics experienced a wide adoption and
an acceleration of its developmet.[91, 92] With growing access to this method to
produce chips containing complex but microscopic fluidic structures, this technol-
ogy was poised to advance a broad range of chemical and biological research. By
way on miniaturization and parallelization microfluidics allows for the integration
of multiple experiments into one single micro-fabricated chip. The picoliter-scale
analysis coupled with the high integration of functionality results in a substantial
leap in throughput.[93| Figure 3.1 gives a good example of these advantages. This
technology has seen tremendous development over the last years, resulting in the
adaptation into commercial products such as DNA microarrays.|94| The technology
offers wide opportunities for biological,[95-97| chemical[97-99] and medical|[100-
103| research and applications, but only a fraction of its potential is yet unrav-
eled.[104] With an ever growing palette of functional units in microfluidics, e.g.
the integration of valves, which can also function as pumps,|[105] electronics,[106,
107] and even logical elements [108, 109], single devices can now generate, handle
and analyze samples with minimal user intervention.|[93, 110|

2 mm

Input Supply

ports (—-7 channels

Growth LSS
chamber
loop

()

Peristaltic.pump

Figure 3.1.: Microfluidics allows the downscaling of many laboratory functions. The micro-
graphs show six microchemostats that operate in parallel on a single chip. Various inputs have
been loaded with food dyes to visualize channels and sub-elements of the microchemostats. On
the left the whole structure is shown with a coin of 18 mm in diameter as comparison. The opti-
cal micrograph on the right shows a single microchemostat and its main components. Adapted
from from Balagaddé et al. [111].
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The major aim of the research was to combine the high grade of biomimetic prop-
erties of liposomes, see section 4.2, with the advantages of droplet-based microflu-
idics, see section 3.2. Therefore, a new compartment assembly was developed
overcoming restrictions of previous model systems. This novel system merges lipid
vesicles with the high production rate of microfluidic droplets. This includes the
possibility to sequentially add biomolecules via pico-injection droplet-based mi-
crofluidic technology.|106] Section 3.2 will discuss droplet-based microfluidics in
more detail.

3.1. Fluid Dynamics of Microfluidics

A basic understanding of fluid dynamics, especially at small scales, is crucial to
understand and design microfluidic chips. In our daily life, we experience nearly
exclusively turbulent flows, e.g. a stone in a river will drag eddies behind itself,
a vortex will form after the removal of the plug from in a bathtub. At these
dimensions inertial forces dominate the dynamics of flows. But when scaling down
to the level of cells and of course microfluidics viscous forces start to dominate. In
these regimes the behavior of fluids changes quite drastically. This observation is
quantified by the Reynolds number.

3.1.1. Reynolds Number

The concept of the Reynolds number was first introduced by Sir George Stokes
in 1851,[112| but was later popularized and named after Osborne Reynolds in
1883.[113, 114] The dynamics of a fluid element are driven by the hydraulic pressure
acting to accelerate it by overcoming its inertia and friction, given by its viscosity.
The Reynolds number Re is defined as the ratio of these inertial forces to viscous
forces acting on the element and consequently quantifies the relative importance of
these two types of forces for given flow conditions.|[113, 115] Mathematically this
relation is quantified as
~ pUL
P
where p is the dynamic viscosity, U is the mean velocity of the liquid, p is the
density and L is a characteristic linear dimension of the system. The Reynolds
number is a dimensionless parameter characterizing the flow regime. It is not a
property of a fluid but rather a combination of fluid properties (p and u) with
geometric properties and flow velocity.[115] At high Reynolds numbers (Re >
4000) flows tend to be turbulent where viscous effects are mainly important in

Re (3.1)
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narrow boundary layers. In a microfluidic context, the characteristic dimension L
is considered to equal the hydraulic diameter of a channel,

_aa

DH P:

(3.2)
where A is the cross sectional area and P the wetted perimeter of the channel.
Inserting equation 3.2 in equation 3.1, results in

_4dpe AU,

R
e P

(3.3)

here the index ¢ marks that these are properties of the carrier fluid. Due to the
length scale and velocities this is the flow regime where cellular processes and mi-
crofluidics take place.[116]

As an example of the flow regimes in which microfluidics operates, the Reynolds
number for the most common microchannels used in this research will be cal-
culated. The properties of the carrier fluid, FC-40, are p. = 1855kg/m3 and
pe =4.1mPas =4.1-10"3kg/(m s), the channel has a rectangular cross-section
with L = 30 wm side length and the volumetric flow is usually 500 ul/h = 1.389 -
1071%nm3/s. By inserting these values into equation 3.3, results in a Reynolds
number for common microfluidic structures is in the range of

e ApLPQ[L7 1855-10° K% .1.380-1070% )
" ALp, 3105 m - 4. 1103 2L ' '

The consequences of low Reynolds number on the fluid dynamics will be addressed
in the next section.

3.1.2. Laminar Flow

The general condition for laminar flow is a Reynolds number below Re < 2000 —
a condition met by all microfluidic chips. Here that fluid flows in parallel layers,
so called laminae!, with adjacent layers sliding past each other without disrup-
tion.[113] In this flow regime there are neither cross-currents perpendicular to the
direction of flow, nor eddies or swirls of fluids. Despite the laminae moving in
parallel lines, they do not move at uniform velocities. If the mean flow speed
along a tube is u, the layer in the centre is moving at approximately 2u, while the
layers in touch with the wall are almost stationary due to the no slip boundary
condition.|[115]

Latin: lamina, n. pl. laminae, a thin plate, sheet, or layer
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In many microfluidic experiments a further condition for the flow regime is met —
at Reynolds numbers below Re < 1 Stokes flow or creeping motion occurs.[117]
In this extreme case of laminar flow viscous forces predominate over comparable
small advective inertial forces.[118] Furthermore, the differential equations describ-
ing Stokes flow are reduced to a linearization of the Navier-Stokes equation.|[118§]
Therefore, two interesting conclusions about the properties of stokes flow can be
drawn:

Instantaneity: A stokes flow is only time dependent if time dependent
boundary conditions exist. In other words, there is no history dependence.

Time-reversibility: An immediate consequence of linearization, time-re-
versibility means that a time-reversed Stokes flow solves the same equations
as the original Stokes flow. This also means that is very difficult to mix fluids
in this flow regime.?

These principles have to be taken into account when designing microfluidic chips.
However, these can be used to the microfluidic engineers advantage: having parallel
streams with little mixing or to create finely tuned gradients.[119] With this the
theoretical considerations on fluid behavior can be concluded. In the following,
practical guidelines for microfluidic chip design will be introduced.

3.1.3. Elementary Principles for Fluidic Networks

In high school physic teachers tend to explain electric circuits with the flow of water
along ducts. Many microfluidic textbooks use the analogy of electric circuits to
explain their fluid analog.[115] In actual fact, by replacing electric properties with
their fluidic counterparts, the laws of electronic circuits can be transformed into
fluidic ones. The following considerations are only valid for single phase flow.

Ohm’s law,
AV = IR, (3.5)

where AV is the change in electric potential, I the current and R the resistance,
translates to

Ap = QRpy, (3.6)

where Ap is the pressure drop, @) the volumetric flow rate and Ry the hydraulic
resistance. A summary of further equivalent laws is shown in table 3.1. Most
commonly, in microfluidics we are interested in the pressure cost of a structural unit
at a certain volume flow. Continuing the electric circuit analogy, if N microfluidic

2There is still mixing due to diffusion.
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structures are connected in series, the effective hydraulic resistance Ry ¢y equals
the sum of all NV hydraulic resistances Ry,

N
Riepr =Y Rin, (3.7)

n=1

as the same volumetric flow has to pass through all of them. This is not the case
when structural units are placed in parallel. As the stream splits up the volumetric
flow through each element is decreased. Again, the equation describing the effective
hydraulic resistance Rpfs should be familiar from high school physics,

1 1

— = 3.8
RHeff 25:1RH,n (3.8)

As the hydraulic resistance can increase drastically for very thin channels, the
design of a structure, as described in section 3.2.4, relied heavily on the principle
described by equation 3.8.

Electrical relation Fluid mechanical relation

AV = IR Ap = QRy
ZnNzl I, =0 27]:[:1 @n=0
P =IAV = I’R P =QAp= Q"
R = U:a2 RH = %T’;f

Table 3.1.: A list of electrical laws and their fluid analogs. For electrical systems, AV is the
potential difference, I is the current, R is the resistance and o is the conductivity of the ma-
terial. With single phase non-compressible laminar flows, Ap is the pressure difference, Q is
the volumetric flow rate, Ry is the hydraulic resistance, k is the permeability (k is related to the
cross-sectional shape of the channel) and 1 is the dynamic viscosity. In the last row of the table
we compare the electrical and hydraulic resistance of a rod with a circular cross-section with
radius a. [115]

3.1.4. Hydraulic Resistance of Common Ducts

Since it is useful to know the results of hydraulic resistance to estimate flows,
shear forces, or the effect of a change in geometry, the solution for two common
geometries will be presented, but largely without derivation. Many of the early
microfluidic devices were fabricated using glass capillaries. For a tube of circu-
lar cross-section the Navier-Stokes equation can be easily solved. For the more
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common channel geometry in microfluidics, the rectangular cross section, the hy-
draulic resistance is considerably more difficult to derive. Generally the hydraulic
resistance of microfluidic chips can be found for any channel geometry by solving
the Navier-Stokes equations for uniform, incompressible Newtonian fluids,

ou

Par = —puVu — Vp+ pAu (3.9)

where u is the velocity field, p is the density, u the dynamic viscosity and p is
the pressure. As it was shown in section 3.1.1, microfluidic flows are “nearly”
instantaneous. Thus, in case of a a constant flow, it is sufficient to derive the
solution for a fully developed (0u/d, = 0, where u, is the direction of flow) and
steady flow (Opu = 0). Focusing on laminar flows in a uniformly shaped ducts,
there are no swirls and orthogonal flows (u, = u, = 0). In a circular tube the flow
is also axisymmetric. Applying these conditions to equation 3.9 simplifies to

Vp = pAu. (3.10)

The no slip boundary condition at the pipe wall requires that the speed of the fluid
is 0 at the duct wall, u,.; = 0. Thus the solution for the velocity field for a tube
of circular cross-section in cylindrical coordinates, also called Hagen-Poiseuille’s
law,[118] is

1
A

dp

u(r) = 2|3z (@ =), (3.11)

where g—i’ is the pressure gradient along the flow axis, which can be assumed con-

stant for most microfluidic flows. The Poiseuille flow is characterized by a parabolic
velocity profile. From equation 3.11 the volumetric flow rate,

rat

Q= 27T/au(7“)rd7“ = @
0

dp

= (3.12)

can be derived. Hence the flow rate depends on the fourth power of the radius a.
The moral here is that even small changes to channel diameters have a high impact
on flow rates or pressure within the system. Note, here the analogy to an electric
circuit breaks, as the electro-osmotic flow displays a flat velocity profile across a
conductor and the resistance is only dependent on the cross sectional area. Since
for most microfluidic devices a linear pressure gradient along each channel can be
assumed, }%} is often replaced by %. Therefore equation 3.12 can be simplified
to a more practical form for microfluidics,

Q== (3.13)
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where the hydraulic resistance of a cylindrical duct is defined as

8
=2
mat

Ry (3.14)
In general, this equation can be used as an approximation for non-circular chan-
nels, by replacing the radius a with the hydraulic radius r, = %, where A is the
cross-sectional area and P the wetted perimeter.

Recalling the Reynolds number, see section 3.1.1 and especially equation 3.1, the
average velocity U can be of interest,

Q _a

dp
a2 8y

dz

. (3.15)

Combining equations 3.1 and 3.15, we see that the Reynolds number is propor-

tional to the third power of the radius, Re o a®.

As most microfluidic chips are produced using photolithography, the most common
channel structure these days is rectangular. Deriving the exact solution for this
problem is quite complicated. The commonly used approach is a Fourier series
expansion of the channel cross-section, where the hydraulic resistance is given by
[115, 120]

12pL .
Ry = s 7! with (3.16)
1927 <= 1 nmww
— 1 ~t h(—) . 3.17
¥ [wﬂ5 = nd an 2h ] ( )

Usually it is sufficient to truncate the Fourier series in equation 3.17 after the first
harmonics, since the error is below 1% for h/w < 1,

12uL 192h rwy\]
- 1— h (-) . 1
Ry e [ - tan o } (3.18)

This concludes the summary of basic principles concerning the fluid dynamics
necessary for the design of microfluidic chips.
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3.2. Droplet-Based Microfluidics

Forming compartments as reactors for biological and chemical reactions is obvi-
ously one key element for many chemical and biological experiments, especially
for SB purposes. Through two-phase microfluidic devices aqueous droplets® can
be generated for stable separation of chemicals, biomolecules and even cells.[121]
Despite the fact that the potential of water-in-oil micro-emulsion droplets was
already described in 1954 by Joshua Lederberg,[122| the first devices for the mi-
crofluidic generation of droplets using capillary systems were published in 2000
by Vyawahare et al. and Umbanhowar et al.[121, 123] Today most droplet-based
microfluidic devices are made of polydimethylsiloxane (PDMS) using standard and
soft-lithography methods.|92, 124]

Droplets are generated either in a hydrodynamic flow-focusing junction, where
the aqueous flow is cut by the immiscible phase from two opposing orthogonal
channels (cross-junction or flow focusing junction, figure 3.2a), or injecting an
aqueous phase orthogonally into a flow of the immiscible phase (the T junction,
figure 3.2b).[125-128] Daisy-chaining cross-junctions allows the formation of multi-
phase droplets.[129-131] In this work only cross-junctions were used. In both cases
the aqueous flow is cut into distinct droplets. Encapsulated chemicals mix within
milliseconds through chaotic convection and are not subject to diffusion or disper-
sion.[128, 132] Microfluidic chips allow for the generation of highly mono-disperse
droplets, < 1% in diameter or < 3% in volume, [133| at a wide band of frequencies
up to megahertz rates.|93, 121]

Beside the droplet formation units, there is a wide palette of functional units
available to the microfluidic circuit engineer, see figure 3.3. There are various
possibilities to manipulate formed droplets, for example to pico-inject additional
aqueous solution into the droplet (see section 3.2.3) or to split them into daughter
droplets (see section 3.2.4). Additionally, several methods have been proposed to
sort droplets passively by size through channel geometry,[135] pillar arrays,[136] or
Dean flows [137, 138| and actively through dielectrophoretic forces.[108, 109, 139].
The use of two layer devices also allows the implementation of gates and peristaltic
pumps.[140] These are a few examples from a long list of functional units that can
be integrated and combined in microfluidic chips.

3Like many other terms, the word “droplet” was first coined by William Shakespeare in his
play “Timon of Athens”.
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Figure 3.2.: Two microfluidic junction geometries for droplet production. (a) Presentation of a
microfluidic chip containing a flow-focusing junction used to generate droplets. I) A 2-D sketch
of the chip as drawn in the CAD software. There are three inlets, one oil and two aqueous,
in the left half and one outlet on the right side. Orange indicates channels carrying oil (pure
or as continuous phase) and blue indicates the solely aqueous channels. Il) Photograph of a
microfluidic chip for droplet production. (The channels are filled with ink to provide contrast.) IlI)
Droplets being generated in a flow-focusing junction. Adapted from Frohnmayer et al.[134] (b)
Sketches showing a T-junction design.
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Figure 3.3.: Presentative microscopic pictures of common droplet-based microfluidic functional
units. These include I pico-injection,[106] Il droplet-sorting by changing the droplet trajectory
through dielectrophoretic forces,[108, 109, 141] lll droplet-content mixing through bending, IV
two layer network of microfluidic channels (the colored control lines manipulate valves that func-
tion as gates and pumps),[142] V cell separation using Dean-flow in spirals,[143] VI dropsplitting
in reverse-T-junctions,[120, 144] and VIl droplet-fusion by electrophoresis .[145, 146] Figures IV
and V have been reproduced from Squires et al.,[142] and Kemna et al., respectively. Figures
VI and VIl have been adapted from Baret et al. http://sms. crpp-bordeaux.cnrs.fr/movies.
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3.2.1. Droplet Formation in two Phase Flows

Thus far, only the fluid dynamics of single phase flows were discussed. One of
the important principles in the low Reynolds numbers regime is the laminarity
of flows. That that posts the basic question, why do droplets form in the first
place. Between immiscible fluids surface tension 7 increases the free energy of
the interface between the fluids and the dynamics are drawn towards reducing the
interfacial area.[142| If there was no interfacial tension between water and oil, the
streams would just flow parallel to each other in laminar sheets. As an example, a
thin water stream breaks into droplets due to the Plateau-Rayleigh instability.[147—
149] In 1873, Joseph Plateau determined experimentally that a vertically falling
stream of water will break up into droplets if the column length is greater than
about 3.13 to 3. 18 times its diameter; later a more precise value of 3. 143 0. 004
was obtained.[150] The theoretical value of 7 for this multiple was derived by John
William Strutt, 3'¢ Baron Rayleigh.[147] Competing stresses drive the interface:
Surface tension acts to reduce the interfacial area, while viscous forces act to extend
and drag the interface in the direction of flow.[151, 152] These stresses destabilize
the interface and tiny perturbations in the flow grow and cause droplets of radius
rq to form, thus reducing the free energy.[149] The resulting droplet size can be
estimated by balancing the two stresses on the interface, Laplace pressure 7 /74 on
one side, viscous stresses 1 U/a on the other side:

v d

where U is the flow speed, p the dynamic viscosity and d the channel width (see
section 3.1.4). Here we also introduced the capillary number

fY

Ca = ——
a U

(3.20)

a dimensionless parameter found whenever interfacial stresses competes with vis-
cous stresses.[142, 152]

In the most common droplet formation structure, with a flow-focusing cross-
junction, the calculation of droplet size is complicated due to the flow of the second
phase and the channel geometry. Experiments showed that only slight variations
in the channel geometry[153] and fluid viscosity[154] influenced the droplet size
strongly. There are different flow regimes in a cross junction depending on the
flow ratio Q = 9¢ between the absolute volumetric flows of the dispersed Q, and
the continuous pﬁases (.. These range from viscous displacement at low flow rates
and high @ to jetting at high absolute volumetric flows, jetting mono-dispersed for
small @ and jetting-plug for high @.[155] The following droplet size estimations
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are only valid for values of Q where mono-dispersed droplets are formed.

The earliest proposed solution by Ward et al. included only the flow rates of
the dispersed @4 and the continuous phases Q.,[156]

0.25
é = a (%) : (3.21)

where « is a geometry and fluid property dependent coefficient.[156] Since the
droplet is deformed through geometry constraints by the channel, not the radius
rq of an undeformed droplet, but the length [ to width d ratio is given. Equation
3.21 fits well with experimental data for capillary numbers from 0.1 to 1. The
model was further improved by including the capillary number explicitly,[157]

0.2
Loa <%) Ca02. (3.22)

More recently, the model was expanded based on theoretical considerations in
combination with numerical results,

Lo (m " QQ% Ca (3.23)

where a;5 and m are fitting parameter.|158] The model was later confirmed by
numeric simulations and expanded by viscoelastic models to predict the conditions
for the onset of jetting.[159] Many microfluidic experimenter rely on experience
when designing and operating a device. But especially for corner cases, knowledge
of theory can prevent some tedious steps of trial and error.

3.2.2. Surfactants

Amphiphilic molecules called surfactants?, short for “surface active agents”’, may
act as detergents, wetting agents, emulsifiers, foaming agents and dispersants.
These usually organic compounds stabilized the first vessels of life[160, 161| and
to this day, in the form of lipids, they form the membrane which separates the cells
of all known organisms from their environment.|1] Without this barrier, life would
be thermodynamically impossible.[162] Moreover, with an annual world produc-
tion of 15 Mtons artificial surfactants, half of which are soaps, are also a major
industrial product.[163]

4The word surfactant is often used synonymously for the pulmonary surfactant. However, in
this work the term will be used solely for the chemical class of molecule.
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Surfactants consist of both a hydrophilic (head) and one or two hydrophobic groups
(tails). The latter usually consist of branched, linear, or aromatic hydrocarbon or
perfluorinated chains. Surfactants are usually classified as non-, cat-, an-, or zwit-
terionic by the net charge of their polar heads, where zwitterionic heads contain
two oppositely charged groups. Due to their amphiphilic structure, surfactants
preferentially aggregate at the interface between two immiscible phases. This
lowers the surface free energy by reducing the surface tension and removing the
hydrophobic part from the water. The decrease of surface tension depends directly
on the amount of molecules accumulated at the interface, as given by the Gibbs
adsorption isotherm for dilute solutions,
c dv

= ——— 24
RT dCb’ (3 )

where I' is the surface concentration, R is the gas constant, T is temperature, ¢,
the surfactant bulk concentration and 7 the surface tension.[164] As surfactants
aggregate at the interface between two phases, it rigidifies through the so called
Maragoni effect.[165, 166]

Upon reaching the critical micelle concentration (CMC) the surfactants start form-
ing aggregates, such as micelles, thus again decreasing the system’s free energy by
decreasing the contact area of hydrophobic parts of the surfactant with water.[167|
The formation of micelles strongly depends on the CMC, which represents the low-
est concentration at which excess surfactants form micelles.[168] The concentration
of free surfactants stays constant. Other types of aggregates can also be formed,
such as spherical or cylindrical micelles or bilayers, depending on their hydropho-
bic to hydrophilic ratio and overall structure. Below this concentration surfactants
dissolve as monomers. A widespread definition of the CMC is

dS

0 = <—f) (3.25)
de; ) e tome

¢ = a]micelle] + bmonomer| (3.26)

where ¢ is the function of the tenside solution, ¢; is the total concentration and a,
and b are proportional coefficients.|169]

In emulsions, surfactants have the elementary role of preventing droplet coales-
cence — a requirement critical for droplet based-microfluidics.[170] Adding sur-
factants provides an energy barrier and by reducing the surface tension of the
unfavourable large interfacial area, it lowers the overall energy level of the system,
thus stabilizing the metastable state of a dispersion.[170, 171]
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A wide variety of head groups, polar and non polar groups, have been tested.[172]
The most commonly used head groups for biological applications are poly(ethylene
glycol) (PEG) chains. PEG molecules passivate the droplet’s inner interface
and therefore minimize unspecific adhesion of proteins and other biologic com-
pounds.[172, 173] Special synthesized surfactants that present specific binding
sites on the inner surface of the droplet have been synthesized to functionalize
the droplet’s interface.[174]

The hydrophobic tail, usually consisting of hydrocarbon or perluorinated chains,
is selected according to the chemical properties of the used oil. Generally, fluoro-
based surfactants are considered to be more effective in stabilizing droplets and
content retention compared to hydrocarbon-based surfactants of the same chain
length and with the same hydrophilic head.[175, 176] This can be attributed to
the difference in energy required to transfer a CFy group from bulk into micel-
lar state in comparison to a CHy group.|[175] The surfactant layer also functions
as a steric barrier shielding the droplets from coalescence. The ability of a sur-
factant to stabilize droplets is mainly determined by the structure, length and
chemical composition of the hydrophobic part and is quantitatively described as
the hydrophilic-lipophilic balance (HLB),

H,
HLB =20——— 3.27
Hy+ Ly’ (3:27)
where H,, and L, are the molecular weights of the hydrophilic and hydrophobic
parts, respectively.[168, 177] HLB values range from 0 for a hydrophobic and 20
for a hydrophilic molecule.[176] For the stabilization of water-in-oil emulsions sur-
factants require a HLB value in the range on 1 to 10.[175]

The number of hydrophobic tail chains also influences the CMC of surfactants.
Polymeric surfactants with a single tail chain are referred to as di-block, double-
chained surfactants are called tri-block. Other factors are the hydrophilic and
hydrophobic moieties, the nature of the solvent and the temperature. A high
droplet stability can be achieved using surfactants with long hydrophobic fluoro-
carbon chains. They form a dense layer of 10 to 50 nm thickness.|[173] However,
surfactants exceeding a molecular weight of 20,000 D A are subject to slow diffusion
and thus aggregation.[173] To prevent droplet coalescence it is vital to account for
surfactant diffusion rates and adjust production rates and chip design accordingly.
Furthermore, surfactants are vital for the retention of molecules within droplets,
especially for molecules with a hydrophilicity in the range 0 > log (D) > —7.[178§]
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Here D is the ratio of the sums of the experimentally measured concentrations of
the ionized and un-ionized forms of the compound in each of the phases,[179, 180]

[Solute] ionized + [SOlutB] un—ionized

b= o o 3.28
[solute]ionized 4 [solute] " iomi=ed (3.28)

3.2.3. The Microfluidic Pico-Injector

A critical challenge for the adoption of droplet-based microfluidics for SB research
was the development of a method to carry out multi-step reactions with precise
and sequential addition of reagents to the droplets.[128] Omitting surfactants, this
could be achieved by a simple T-junction.[181, 182] However, since the surfac-
tants prevent reagents from entering the droplets, this method cannot be used
with stable emulsions. This is a significant limitation, because stability is essen-
tial to ensure that droplets in contact do not merge and their contents remain
isolated.[106] One approach is the controlled fusion of pairs of droplets either pas-
sively through channel geometry or actively through electrocoalescence, whereby
an electric field destabilizes the droplet interfaces.[183-186| Since for each fusion
two streams of droplets need to be perfectly aligned, it is a challenge to perform
multiple additions and reagents will be strongly diluted with each step. To over-
come these limitations Abate et al. developed the pico-injector, see figure 3.4.[106|

Towards this end, first, a spacer junction, a T-junction with oil phase flowing
from the orthogonal channel, aligns preformed droplets with an even, adjustable
distance. The space between the droplets was necessary to prevent neighboring
droplets to coalesce. Second, the pico-injector consists of a pair of electrodes and
a pressurized injection channel — commonly with these elements on opposing sides
of the main channel. The injection channel narrows to a small slit, resulting in a
high curvature between the aqueous solution and the oil in the main channel. This
creates a high pressure differential between the channel, which is approximately
determined by the Laplace pressure

Py, — Pyt = 27/, (3.29)

where P, is the pressure of the injection fluid, P,,; the pressure in the flow chan-
nel, v the water/oil surface tension and r the radius of curvature of the interface
in the slit.

Abate et al. originally proposed to energize one electrode with a negative and one
electrode with a positive potential, each time a droplet passes.[106] Today, usually
the upstream electrode is used as a ground/shield electrode while a high frequency
potential is applied to the downstream electrode.[107, 187 The surfactant layer at
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Figure 3.4.: (a) Structure of a droplet-based pico-injection device. (b,c) Bright-field images of
the major features in a pico-injection device. Pico-injection technology allows the controlled
injection of aqueous solutions into surfactant-stabilized droplets. (b) The spacing between the
droplets is controlled through addition of oil via the second oil channel. (c) An electric field
reduces the stability (poration) of the surfactant layer at the droplet interface and allows for
injection of an aqueous solution containing reagants from the pico-injection channel. The in-
jection process can be visualized by comparing the droplet size before and after the injection.
(d) Shows an image of a microfluidic chip for pico-injection. The channels are filled with ink to
provide contrast. Adapted from [134].
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the water-oil interface ruptures due to an electrically induced thin-film instability,
allowing the reagent from the injection channel to flow into the droplet.[184, 188|
As the droplet progresses along the channel, it remains connected to the orifice
of the injection channel by a narrow bridge of fluid until the surface tension is
broken.

By placing several pico-injectors in a row, multiple reagents can be added se-
quentially, as shown in figure 3.5. Triggering the electrodes separately also allows
combinatorial injections. [106, 190] The electrode material, commonly an expan-
sive indium alloy with a low melting temperature, can also be replaced by salt
water.[107] By adding electrolytes to the injection solution, electrodes can be om-
mited.[191]
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Alexa 488-labelled actin| Alexa 568-labelled actin| Alexa 647-labelled actin

Figure 3.5.: A triple-pico-injector injecting G-actin labeled with different fluorescent dyes into
droplets. The bottom row displays the actin networks generated through this pico-injection
device. Picoinjectors could also be used in combination for serial and combinatorial injection.
Adapted from Janiesch.[189].

3.2.4. The Dropsplitter

One of the challenges of this research was the generation of small droplets (2 um
diameter), for cryo TEM observation. This challenge requires the use of very nar-
row channel. In section 3.1.4 it was described that the hydraulic resistance of a
3 wm rectangular channel is four orders, O(4), higher than of a 30 um rectangular
channel. The obvious consequence is that downscaling of well known structures
would not work. Therefore, a different approach was required.

To overcome the limitations associated with very narrow channels a droplet split-
ter, as designed by Link et al. in 2004|144] and improved by Abate et al. in
2009,{120] was adapted. The original idea consisted of a reverse T-junction, where
a flow is split along two rectangular channels. Once a critical capillary number
C., is reached, viscous and pressure forces break up the droplets into two daugh-
ter droplets. The critical capillary number depends on flow conditions, channel
dimensions and the interfacial tension between the fluids (see equation 3.20). Be-
low the critical capillary number, the droplets will randomly choose one path and
remain intact. The critical capillary number was derived as

Cor = acy(1/ed* —1)2 (3.30)

where « is a dimensionless coefficient, depending on the viscosity difference of the
two fluids and the geometry and the initial droplet elongation ¢y = [/7d. By ad-
justing the ratio of hydraulic resistances between the two forks, the flow rate and
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consequently the relative size of the daughter droplets can adjusted, see section
3.1.3.

Figure 3.6.: Representative bright-field image of droplet-splitting array for production of
monodisperse droplets at high throughput and small diameter. In this device droplets are split
five times with the smallest channels only 3um in diameter. A device with maximum six level of
splitting units (splitting every droplet into 64 daughter droplets) with the smallest channels only
measuring 2um in width was developed in this research.

Additional splits can be added to break down the original droplets in two even
smaller fractions, see figure 3.6. Each split halves the volume, so that every three
divisions halve the diameter. However, the original design kept the channel dimen-
sions constant and as the fluid is divided into an increasing number of channels,
the flow velocity drops. Eventually, the capillary number falls below C,, and split-
ting fails.[120, 192] This can be to some degree delayed, by increasing the initial
flow rates. Abate et al. proposed the simple solution of decreasing the channel
cross-section after each split, optimally by 50%. Thus keeping the capillary num-
ber constant. Here microfluidic engineer has to balance the increasing hydraulic
resistance of each single channel (equation 3.18) and the reduced effective resis-
tance R.ss (equation 3.8) of the splitting array.

An interesting implementation of the droplet splitting design was proposed, where
a small arbitrarily angled side channel is used to collect a small volume droplet
from the larger mother droplet.[193] This could be used to take probes of reactions
within droplets, without destroying the overall integrity of the droplet.
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4. Lipid Model Systems

Lipid membranes are an important structural unit of cells, as described in section
1. A lipid membrane confines a compartment that is the physical barriers of all
cells. In the case of eucariotic cells further lipid membranes shape the subcompart-
ments and form the various organelles. The thickness of lipid bilayers is estimated
to be as thin as 4nm. Moreover, small lipid vesicles with diameter of 50 nm to
100 nm are used by the cells for transport of different bio-reagents for necessary
metabolism..[1, 194] Furthermore lipid membranes are the home of 27% of the
human proteome — the transmembrane proteins.[195] Therefore, lipid bilayer is an
obvious choice for protocell systems.

Lipids with a concentration above the critical CMC values (see section 3.2.2) in
aqueous environments spontaneously form bilayers due to the amphiphilic nature
of the molecules. The CMC for common lipids such as phosphatidylcholine (PC)
can vary strongly from 0.46nM for 16:0 PC to 90mM for 5:0 PC! depending
on their acyl composition.[196] Studies have found a significant and substantial
allometric decline with increasing body mass in different species.[197, 198|

The most abundant types of lipids composing cellular membranes are phospho-
lipids, sphingolipids and cholesterol.[199] Phospholipid molecules generally consist
of a tail, two hydrophobic fatty acids, bound together by a glycerol molecule, the
headgroup. Phospholipids are classified depending on the residue bound to the
phosphate. Many headgroups have a residual negative charge under physiological
conditions. Saturated lipid molecules have no multiple bonds between in their tail
chains.

As the number of tails can vary from one to four, lipids differ greatly in shape. The
molecular geometry of lipids strongly influences assembly into micelles, membrane
structure, curvature and permeability as well as membrane-protein interactions. |2,
200, 201]| The so called packing parameter (PP),

PP =wv,/ag - lc, (4.1)

describes the relation between the molecular chain volume v,,, the optimal head-
group area ag and the maximal possible extension of the acyl chains. Phospho-

Values taken from avantilipids.com/tech-support/physical-properties/cmcs/
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(a) DOPC  (b) DOPE (c) DOPS  (d)egg PC  (e) egg PG

Figure 4.1.: Chemical structures of the most used lipids in this work: (a) 1,2-dioleoyl-
sn-glycerol-3-phosphocholine (DOPC), (b) 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
(DOPE), (c) 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), (d) L-a-phosphatidylcholine
(egg PC) and (e) L-a-phosphatidylglycerol (egg PG). The two different fatty acid tails are col-
ored green, the glycerol backbone in black, the phosphate group in red, the choline headgroup
in light blue, the amine headgroup in pink, the serine headgroup in violet, an the glycerol head-
group in brown. Structures are taken from https://avantilipids.com/ and were drawn with
ChemDraw 15 (Perkin Elmer, USA).

lipids and sphingolipids have cylindrical shape (PP = 1). These self-assemble into
a bilayer exposing their hydrophilic headgroups, shielding the hydrophobic tails
from the surrounding aqueous phase. Cone shaped lipids, such as isyophospho-
lipids and polyphosphoinositides, (PP < 0.5) normally form micellar aggregates
with the hydrophobic lipid tails being located at the micelle core while the hy-
drophilic headgroups are exposed towards the aqueous bulk solution. Truncated
cone-shaped lipids (PP > 1) form reverse micelles with the lipid tails directed
towards the continuous phase and the hydrophilic heads at the micellar core en-
closing small volumes of aqueous solution.|200] Biological membranes of living cells
are in constant flux, consisting out of several hundred of different lipids and pro-
teins.

Due to differences in phase transition temperatures, interactions between lipids

and miscibility limitations, lipids composing a membrane can laterally demix form-
ing rafts of different phase.[202, 203] In the fluid phase lipid molecules can diffuse
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4.1. Supported Lipid Bilayer

freely in the two dimensional membrane, while in the gel phase their position is
fixed, resulting in a higher rigidity of the membrane. The longer the fatty acid
chains are, the higher is the phase transition temperature due to increased Van-
der-Waals interactions between the tails.

4.1. Supported Lipid Bilayer

Supported lipid bilayers (SLBs) are planar membranes formed on a rigid hy-
drophilic support such as glass or silica.[204, 205] Common methods for SLB for-
mation are vesicle fusion, Langmuir-Blodgett deposition and the surfactant deple-
tion method. When vesicles are exposed to a polar surface, such as oxygen plasma
treated glass, they initially adhere and rupture to form planar bilayer patches.[206—
208|] Electrostatic interactions are an important factor for this process. However,
Van-der-Waals and steric forces also play a role.[209, 210| Since all of these factors
are influenced by surface properties and lipid composition, they are considered
crucial elements for bilayer formation.[211] Neutrally or positively charged lipids
— the latter are not existing in nature at physiological conditions — are more prone
to the formation of SLB. For negatively charged lipids a concentration of bivalent
cations, especially Mg?" and Ca®", of 1mM or higher can be required to induce
rupture.[206, 207] Recent findings suggest, that bilayer formation is not triggered
by reaching a critical concentration,|212] instead single ruptured liposomes appear
to form patches, which grow and merge until full coverage is reached.[204, 213]
The growth of a SLB is shown in figure 4.2. Bearing this in mind, the possibility
of an incomplete or patchy SLB if the reservoir of liposome is insufficient for full
coverage exists.

4.2. Lipid Vesicles

A key factor of living cells is compartmentalization. A standard method in SB
to encapsulate small volumes is the creation of lipid vesicles, so called protocells.
These are spontaneously formed when dried lipids are exposed to water.[214] These
spontaneously formed vesicles are typically multilamellar (many-walled, multil-
amellar vesicle, MLV) and of a wide range of sizes from tens of nanometers to
several micrometers.[215] Methods such as sonication or extrusion through a mem-
brane break these initial vesicles into single-walled vesicles of uniform diameter
known as small unilamellar vesicles (SUVs), smaller than 100 nm and large unil-
amellar vesicles (LUVs), between 100 nm and a few micrometers. For cell size
compartments, GUVs, usually several tens of micrometers, were developed. In
comparison to SUVs and LUVs, GUVs can be observed with standard microcopy
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(a) after 5min (b) after 10 min (c) after 17 min (d) after 20 min

Figure 4.2.: Time series of a DOPC supported lipid bilayer formation acquired with AFM. Four
separate samples of DOPC supported lipid bilayer on mica that were incubated for (a) 5min,
(b) 10min, (c) 17min and (d) 20min. Below each image is a sketch of the state of the lipid
coverage on the the mica surface. The time series shows that an incomplete coverage with SLB
patches is possible. These images were taken in pure water at room temperature. Adapted
from Attwood et al. licensed under CC BY 3.0/ Lipid bilayer design has been harmonized with
other figures.[213]

techniques. However, GUVs are mechanically and chemically unstable. Therefore
their production is time consuming and at low yield compared to SUVs/LUVs.[216]
A general note, a vesicle is not a state of thermodynamic equilibrium, but rather
a kinetically trapped state.[215, 217|

4.2.1. Small and Large Unilamellar Vesicles

SUVs and LUVs have been hugely popular in research for a long time with ap-
plications ranging from drug delivery to SB.[218-221] SUVs/LUVs can easily be
produced at a high yield by common methods such as sonication, which has been
used since the 1950s,[222] extrusion,[223] and detergent removal. The latter al-
lows for reconstitution of transmembrane proteins.[224, 225 These methods are
sketched in figure 4.3.

Most protocols start by mixing the desired composition and amount of lipids solved
in chloroform within a tainted glass vial. The solvent is then completely evaporated
under a gentle stream of an inert gas. Afterwards, the lipid residue is rehydrated
with the desired buffer at target concentration. At this point the protocols of the
three different production techniques, presented here, diverge. In case of sonica-
tion and extrusion the solution is given time to allow the lipids to swell and form
MLVs. Sonication with either a tip or a bath sonicator leads to SUVs of around
30 nm in size depending on the lipid composition and sonication, as shown in figure
4.3a.|226] The main complications of this approach are lipid degradation caused
by the high energy input and contamination with metal chips from the sonicator

tip.
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(a) Sonication (b) Extrusion (c) Detergent Removal

Figure 4.3.: Different methods of SUV/LUV preparation. MLVs are broken down into SUVs or
LUVs through (a) sonication with a tip sonicator or (b) by extrusion through a porous membrane.
(c) SUVs/LUVs formation by detergent removal, through porous polysterene beads that adsorb
detergend molecules. Adapted from [57].

Alternatively the solution containing MLVs can also be extruded several times
through a porous polycarbonate or anodized aluminium membrane yielding SUVs/
LUV, see figure 4.3b. The vesicle diameter can be finely tuned by choice of the
pore diameter. Noting that the resulting vesicle diameter is relative to the pore
diameter but generally considerably larger. With good quality membranes very
monodispers vesicles can be produced. Normally around 9 passes through the
membrane are sufficient to form unilamellar vesicles.[227] This method results in
no detectable lipid degradation.|[223|

In contrast to the two previously introduced methods, the detergent removal ap-
proach was introduced in the 70s to allow the reconstitution of transmembrane pro-
tein.|228, 229] Here the dried lipids are dissolved in a buffer containing a detergent
and if required a transmembrane protein. The detergent shields the hydrophobic
part of the transmembrane protein preventing denaturation. After incubation of
the solution, the detergent is subsequently removed by either dialysis,[230, 231]
gel filtration,|232] or by the addition of polystyrene beads.|233] The latter method
is presented in figure 4.3c. Through the removal of detergent, the liposomes self-
assemble with the transmembrane protein reconstituted into their lipid bilayer.
These liposomes are normally referred to as proteoliposomes.

As SUVs/LUVs are to small to be observed with most optical microscopy tech-
niques, their size distribution has to be measured with techniques like dynamic
light scattering (DLS).[234-236]. Common method to analyze SUVs/LUVs are
AFM and quartz crystal microbalance with dissipation monitoring (QCM-D), see
section 7.
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4.2.2. Giant Unilamellar Vesicles

GUVs are a widely used as protocells and, additionally they also used to study lipid
membrane behavior because they closely resemble the basic membrane structure
of biological cells.[237-239] Compared to SLBs, GUVs present better biological
environment as there is no interaction with a nearby solid surface to induce friction
defects or denature proteins.[240] Due to such advantages a variety of techniques to
form GUVs have been developed. In the following sections some of these techniques
will be described. These techniques are shown in figure 4.4.
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Figure 4.4.: Schematic representation of different methods for GUVs preparation. (al) Gentle
hydration of dried lipid layers. (all) Modofoed gentle hydration method. In this method agarose
or hydrogels are incorporated between the lipids. This method improves the encapsulation
of molecules. (b) Electroformation: Under optimal conditions electroformation can form ho-
mogeneous GUVs and also allows the formation of GUVs with reconstituted transmembrane
proteins. (c) Double emulsion based-methods: In this method leaflets of GUVs are formed sep-
arately. First a water-in-oil emulsion is created and then the water droplets are passed through
a second lipid leaflet to an aqueous phase forming a complete GUV.

4.2.2.1. Spontaneous Swelling

Proposed in 1969 by Reeves and Dowben, this is the first published method for
GUV formation.[241] Lipids are dried as for the formation of SUVs/LUVs (see
section 4.2.1). They are then gently hydrated in purified water. Subsequently,
the vial is left undisturbed for a period, generally a few hours, of time to allow
swelling. The initial swelling conditions are depicted in figure 4.4al. However, this
method stands as a good example for the challenges faced when producing GUVs.
If the flask containing the hydrated lipids is subject to shaking, the lipid layer
ruptures and MLVs form.[242-244] Deposition of layers containing to many lipids
has a similar effect.[245, 246] With this approach it is also impossible to grow
large liposomes in a physiological buffer unless 10 — 20 % of negatively charged
lipids are part of the composition.[247] However, when the buffer contains the
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critical concentrations of cations, Mg*" and Ca®", there is no GUV growth with
mixtures containing negatively charged lipids. Instead, enhanced formation was
observed with solely neutral lipid compositions.|[248] Similarly, GUV formation can
be achieved from lipid compositions containing pegylated lipids, i.e. lipids with a
PEG-functionalized headgroup.[249] The PEG chains protrude from the membrane
into the surrounding medium. This increases the repulsive force between the layers
and promotes the growth of GUVs. It also has a stabilizing effect on the formed
GUVs. Other factors like nanostructured surfaces,[250] temperature|251| and other
additives, e.g. mnonelectrolytic monosaccarides (glucose, mannose and fructose),
can also play a role.[248|

4.2.2.2. Electroformation

In 1986 Angelova and Dimitrov proposed a method to improve GUV formation
from thin films by applying an electric potential on the hydrated lipid layers.[252—
254| The method is sketched in figure 4.4b. Under optimal conditions this method,
known as electroformation or electroswelling, can lead to rather homogeneous
GUVs.[255] Commonly the lipids are deposited on conducting surfaces, such as
indium tin oxide-coated (ITO-coated) glasses, or platinum wires . TheGUVs are
produced using direct current (DC) or alternating current (AC) potentials. Con-
cerns that lipids, in particularly polyunsaturated lipids, might oxidate through
contact with the electrodes, have been voiced. Therefore, a method applying an
externally applied field has been shown to work.[256] For ion concentrations below
10mM frequencies of around 10 Hz are used. It was long thought impossible to
grow GUVs at higher salt concentrations. However, recent studies showed that
GUVs can be prepared at physiological conditions unsig an AC field with a fre-
quency of 500 Hz.[238, 257, 258|

Similar to spontaneous swelling the surface structure, e.g. micropatterns,|259] and
chemistry[260] have an impact on vesicle growth. Moreover, lipid layer preparation
method may also influence the GUVs generation. For example, homogeneous de-
position of lipid films through spincoating results in twice bigger GUVs even with
lipid compositions that do not work with standard electroswelling.[261] In contrast
to spontaneous swelling, if the lipid composition contains too many charged lipids
(~ 10%), growth of GUVs fails using standard electroformation.|262] The tech-
nique is not limited to lipids solved in chloroform. Aqueous solutions containing
preformed SUVs or LUV can be used instead.[258| In this case, the lipid film was
not completely dried after deposition, incidentally making the method more stable
to high salt concentrations. The use of proteoliposomes allows the growth of GUVs
preserving reconstituted transmembrane protein.|[263|
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The electroformation approach was adapted to grow GUVs in flow chambers|264|
or microfluidic channels,[265] through which it was subsequently possible to re-
place the medium inside and outside of the grown GUVs.[266] This indicates a
quite permeable bilayer, supporting the concerns that lipids might oxidize. It was
shown that macromolecules could be entrapped during vesicle growth by a subse-
quent replacement of the outside buffer.|264] This intake appears to occur through
lipid tubules interconnecting the vesicles.[266, 267| Generally with some reported
exceptions,[264, 266, 268] both, the spontaneous swelling and the electroforma-
tion method, do not allow efficient encapsulation of large water-soluable molecules
or charged compounds, as these molecules have to permeate the lipid film. An
alternative approach is microinjection, puncturing individual vesicles with micro
needles, into preformed GUVs.[269-271]

4.2.2.3. Gel-Assisted Formation

For many SB applications encapsulation of large molecules, such as proteins, is
crucial. As discussed in the previous sections, both, spontaneous swelling as well
as electroformation, provide partial solutions to encapsulation related issues and
microinjection into preformed GUV has a low yield. For this purpose an interesting
variation on the spontaneous swelling method using hydrogels can be employed.
Here the lipid precursor is applied on a dry hydrogel, such as agarose,[272, 273|
polyvinyl alcohol[274] and dextran(ethylene glycol).[275] The process is sketched
in figure 4.4all. Modulation of the degree of hydrogel network cross-linkage tunes
the vesicle size distribution.|275] However, hydrogen polymers, especially agarose,
can be encapsulated into the GUVs and can change their mechanical properties
and reduce their stability.[276] MD simulations indicate that the encapsulation
efficiency is dominated by the interaction of the proteins with the membrane,
while no significant dependence on the size of the encapsulated molecule nor on
the speed of the vesicle formation was found.|277| Gel-assisted formation works for
many different lipid mixtures, covering a wide range of lipids with headgroups of
zwitterionic, cationic or anionic nature.[274]

4.2.2.4. Emulsion-Based Methods

Emulsion-based techniques step away from spontaneous bilayer assembly. Instead
by using emulsions the layers of the bilayer membrane, often referred to as leaflets,
are formed separately.[273| Figure 4.4c sketches this two-step process. These meth-
ods commonly start by creating water-in-oil droplets. Lipids, which are solved in
the oil, aggregate in a monolayer at the oil water interface and thus stabilize the
droplets. To form complete GUVs, these droplets have to be enveloped by a second
leaflet. The primary disadvantage of emulsion based techniques is that residual
oil might be trapped in the final lipid bilayer, which might alter the rheological
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properties of the membrane.|[278, 279] However, on the other hand these meth-
ods can reach an encapsulation efficiency of 100 %.[273] Various techniques have
been developed, to achieve this goal. Here we will discuss inverted emulsions and
microfluidic formation as examples.

Inverted Emulsions The inverted emulsion technique starts by creating stable
water-in-oil emulsions in lipid saturated oil. The water droplets are surrounded
by a monolayer of lipids.|[280, 281] The emulsion is then transferred to a tube con-
taining two layered phases, on top lipid saturated oil (for example dodecane, squa-
lene,|280] or mineral 0il[281]) containing lipids and at the bottom aqueous phase.
If the two phase system is incubated prior to the addition of the stable emulsion,
a monolayer of lipids forms at the interface. Due to the density difference between
water and oil, the droplets are pulled by gravity towards and across the interface.
The planar monolayer at the interface wraps around the droplet moving across it,
forming a complete GUV. The process can be accelerated by centrifugation|280] or
addition of sucrose to the internal content of the droplets and equiosmotic glucose
solution to the aqueous bulk phase.[282, 283] The separate formation of the two
bilayers allows the preparation of GUVs with asymmetric transbilayer lipid com-
positions between the inner and out leaflet.[282, 284] This enables the tweaking
of mechanical and dynamical properties of the membrane.[284—286] The produc-
tion of inverted emulsion droplets with microfluidic techniques narrows their size
distribution (see section 3).[281, 287]

Microfluidic Formation Microfluidic techniques are not limited to produce mono-
disperse water-in-oil droplets, but also water-oil-water double emulsions (see sec-
tion 3).[278, 288-290] In double emulsion droplets an inner water droplet is sur-
rounded by a thin oil shell, which in turn is surrounded by water — each of these
interfaces are stabilized by a lipid monolayer. If the oil phase is thin enough it
can shrink to an oil pocket, in an otherwise completely defect free GUV.[278, 291]
By replacing the junction forming the second emulsion with a phase separation
structure the inverted emulsion approach can be remolded.[292] Another approach
is the replacement of oil by a non-water miscible volatile organic solvent, e.g. mix-
tures of toluene and chloroform.[289, 290|

This concludes the selection of techniques for the formation of GUVs. The full
list of published methods is quite extensive, but many of the omitted approaches,
such as microfluidic jetting,[293], or vesicle fusion are variations of the introduced
methods, or difficult to implement, respectively.[294-297|
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4.3. Reconstitution of Membrane Proteins

In principle, all methods for the formation of unilamellar vesicles, as presented in
sections 4.2.1 and 4.2.2, can be modified to prepare proteoliposomes. However,
for each method there are pros and cons that have to be taken into account.|[298-
301] Nevertheless, as illustrated, some of these techniques are fit better than others.

Organic solvents or high energy exposure may lead to denaturation. Therefore,
detergents are a key ingredient for the extraction of membrane proteins from nat-
ural membranes,|[57| it is obvious that detergent removal is currently the method
of choice for the production of proteoliposomes. The detergent and the way to re-
move it, may differ between protocols and proteins, but the principle is preserved.
The starting point of this approach is mixing and incubation of detergent, lipids
and solubilized protein, which leads to the formation of lipid-detergent-protein and
lipid-detergent micelles.[229, 233] The gradual removal of the detergent by differ-
ent methods like dilution, dialysis, gel filtration, or adsorption into polystyrene
beads promotes the growth of proteoliposomes.

In the detergent removal method, the critical element is to bring the detergent
concentration below the CMC (see 3.2.2). The simplest way to achieve this is di-
lution, obviously. But there are some drawbacks, such as decreased concentration
and the detergent removal limitations. Dialysis faces a similar challenge, it only
works well with detergents with a high CMC. The method relies on the selective
retention of a semipermeable dialysis membrane. This size exclusive penetrabil-
ity only allows the passage of single detergent molecules. The rate is driven by
gradient of the detergent concentration. Even if the outside buffer is exchanged
regularly this method is still time consuming. Gel filtration in contrast is quite
fast. Depending on the sample volume it takes minutes to hours.[302] Due to the
rapidity of the removal, proteins may be reconstituted incompletely and inhomo-
geneously. Therefore, gel chromatography has largely gone out of fashion. The
currently most widely used method is detergent removal via adsorption through
porous, hydrophobic polystyrene beads, synonymously referred to by their com-
mercial name “Bio-Beads”.[303-306] The main drawback of this method is con-
comitant adsorption of lipids. However, the capacity to adsorb lipids is two orders
smaller than for detergents. This high difference in capacity could be related to
the small pores of the polystyrene beads measuring only 9nm in diameter. Only
minuscule molecules are able to penetrate into these channels. Where, the total
surface area of the pores is four orders bigger than the outer surface of the bead.
Nonetheless, adsorption capacity of the beads is an important factor that has to
be taken in account.|233]
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4.3. Reconstitution of Membrane Proteins

Girard et al. formalized a general strategy that combined detergent removal fol-
lowed by electroformation to produce GUVs with reconstituted proteins.[57] Vari-
ations of the protocol were applied for the hydrophobic proteins such as bacteri-
orhodopsin, ATPase,[263] and SNARE[307] using gel filtration and voltage-gated
potassium channel protein using polystyrene beads.[308, 309] Furthermore, elec-
troformation was succesfully applied to natural membrane extracts.|[239, 257, 310]
As some proteins require high ion concentrations to preserve their conformation
and/or functionality, it is important to mention that more recent developments
have overcome the low salt restriction by using AC electric field frequencies of
500 Hz (see section 4.2.2.2).[238, 257, 258]

Some proteins, e.g. OmpF|[311| and the bacterial mechanosensitive ion channel
proteins MscS (Small conductance mechanosensitive channel) and MscL (Large
conductance mechanosensitive channel)[312], can be directly reconstituted into
detergent destabilized GUVs. Another reported approach is the reconstitution of
membrane protein into GUVs via peptide-induced fusion. Here proteoliposomes
functionalized with the fusogenic peptide WAE (N-Trp-Ala-Glu-Ser-Leu-Gly-Glu-
Ala-Leu-Glu-Cys) were fused into preformed GUV.[313| This method was further
improved by the proposal of fusogenic (proteo-)liposomes — usually by charged me-
diated fusion.|314, 315] For SB cell model system it could be interesting to combine
one of these techniques with a technique that allows effective encapsulation.
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5. Motivation

Physics is the search for the underlying principle. From Newton’s apple to gravi-
tational wave detectors physicists have strived to find the basic rules governing the
observed. At the heart of many complex processes are simple sets of laws. New-
ton’s laws of motion stand as a good example.|316] Three simple laws are sufficient
to describe the relation between force, matter and movement. Yet if we look at
the world around, its complexity often diverts from seeing these fundamental prin-
ciples. Something as simple as the outcome of a coin toss, can prove impossible
to predict. Thus many experiments have been designed to isolate and reveal these
underlying principles and describe them as the laws and theories of physics.

The subject of my study as a biophysicist has been life in its many facets. In itself
life is one of the most elaborate processes. Even the basic building block of life,
the cell, is overwhelming in its complexity. Applying the methods of traditional
cell biology it can be a delicate to connect cause and effect in the multi-branched
labyrinths of cellular signaling pathways. In the pursuit of finding these basic
mechanisms that control these processes a complementary approach was devel-
oped, synthetic biology (SB). SB is the attempt of rebuilding functional units
of biology isolated from the complexity of their original surrounding. The goal of
these simplified model system is to keep the experiment as simple while controlling
as many parameters as possible.

Excited by this approach, my research was focused on the development of a model
system to study focal adhesions (FAs). FAs are complex sub-cellular macromolec-
ular assemblies, consisting of a large number of proteins. Through them mechani-
cal force and regulatory signals are transmitted between the extracellular matrix
(ECM) and an interacting cell.[52] Currently 156 different components and 690
interactions with an average of 8.66 interactions per component have been identi-
fied.|6] The vision was to develop a FA model system that reduces the complexity
to the minimal but still functional number of components. Moreover, the system
should be adapted to technology allowing subsequent and sequential addition of
components and to permit evaluation their exact function within the larger ma-
chinery. The basis of this system would be the cell-like compartment and the
transmembrane glycoprotein integrin, which is the link between the cell interior
and its surrounding.



5. Motivation

As a cell can’t exist without the lipid membrane enclosing it, the same is true for
most SB model systems. For this purpose many approaches use lipid-based vesi-
cles — so called protocells — as a compartment of choice. The obvious advantage
of using a lipid compartment are the cell-membrane-like properties such as con-
trolled structure, permeability, stiffness and diffusion.[161] However, as it became
apparent during my initial research and literature a solely lipid-based compart-
ment system poses many limitations that don’t support my vision. Mainly due to
the low mechanical and chemical stability of lipid vesicles,[90] it is very difficult to
manipulate them after their creation and especially inject additional components
into the protocell. As a conclusion I needed to develop a novel compartment sys-
tem that will be more stable, yet preserved the biophysical properties of known
protocells.

The sparking idea, the combination of water-in-oilemulsion droplets produced by
microfluidic technology with lipid vesicles. Droplet-Based microfluidics offers im-
pressive features such as kH z production rates of mono-disperse, stable polymer-
stabilized emulsion droplets. Moreover, it offers a pico-injection method to inject a
controlled amount reagents into preformed droplets at high-throughput.[106] Due
to such advantages my motivation was to merge this technology with lipid vesicles.
More specifically the major goals of my research were: 1) To use polymer-stabilized
droplets as a stabilizing scaffold for lipid vesicles; 2) to implement pico-injection
for subsequent and precise delivery of biological components — the basis concept
of bottom-up assembly; 3) to reconstitute functional transmembrane proteins; 4)
and if all of these would be achieved to recover the assembled protocells to a
physiological environment.
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6. Proteins

Proteins are the chief actors within cells, their vast array of functions includes
structural stabilization, catalyzing metabolic reactions, transporting molecules and
vesicles and replicating, transcoding and repairing DNA. There is a plethora of dif-
ferent protein with various different shapes.[1] Many proteins, like a Swiss army
knife, perform multiple functions.[317, 318] In fact, proteins are present in such
abundance, that they make up for up to half the dry mass of a cell.[319] There-
fore, to mimic functional units of cells any model system in SB requires high
quality, functional proteins (or artificial alternatives). Due to the quality and pu-
rity of self-purified proteins being often superior to these commercially available
— if available at all — the facilities to purify part of the proteins used in this work
were established. An endeavour made largely possible by Christine Mollenhauer
and Christian Eberhard. In the following sections the steps necessary to purify
integrin ayF3, section 6.2 and fibronectin, section 6.4 will be described.

Protein purification requires a set of common procedures from protein biochem-
istry, such as sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE), enzyme-linked immunosorbent assay (ELISA), ultracentrifugation
and purification over specific gel filtration columns respectively affinity columns.
As these methods are standard and can be found in any appropriate textbook,
they will not be explained in this thesis.[320, 321]

6.1. Buffers

Buffers used for protein purification and reconstitution were prepared with ultra-
pure water (> 18 MQ/cm, Millipore) and stored at 4°C'. The pH-values were
adjusted with HCI solution. The following buffers were used:

Platelet washing buffer: 20 mM Tris-HCI, pH 7.4, 150 mM NaCl, 1 mM
EDTA, 0.01 % (w/v) acetylsalicylic acid

Platelet lysis buffer 1: 50 mM Tris-HCl, pH 7.4, 1mM CaCly, 1mM
Mng

Platelet lysis buffer 2: 0.1% (w/v) Triton X-100 dissolved in platelet
lysis buffer 1
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Elution buffer: 20mM Tris-HCI, pH 7.4, 100mM NaCl, 1mM CaCls,
1mM MgCly, 0.1% (w/v) Triton X-100, 0.02 % (w/v) NaNj

Column buffer: 20mM Tris-HCl1, pH 7.4, 150 mM NaCl, 1mM CaCls,
1mM MgCly, 0.1% (w/v) Triton X-100, 0.02 % (w/v) NaN3, 2mg/l Apro-
tinin

Reconstitution buffer: 20mM Tris-HCl, pH 7.4, 50mM NaCl, 1mM
CaCly, 0.1% (w/v)

6.2. Integrin Purification

The integrin «;p,f3 purification protocol was adapted from Kai Peter[322] and
established in our lab by Christian Eberhard and Christine Mollenhauer.[57] The
purification process spans over three days. Normally, integrin a;;,03 was puri-
fied from ~ 21 of outdated human blood platelet concentrate (within 14 days of
venipuncture, Katharinenhospital Stuttgart, Germany).

Day 1: As the first step, contamination through other, mainly larger cells like
erythrocytes and leukocytes were removed through differential centrifugation for
20 minutes at 1400 rpm (~ 300 ¢) at room temperature with a Sorvall RC6 cen-
trifuge using an SLA 3000 rotor (both Thermo Scientific, USA). After the platelets
were pelleted at 4000 rpm (~ 2700 g) for 30 minutes, the supernatant was replaced
by platelet washing buffer and the pellet was resuspended. This washing step
was repeated three times. The washed platelet pellet was resuspended in 100 ml
platelet lysis buffer 1 and placed on ice. Platelets were broken with a Turrax
homogenizer (IKA, Germany) in two 20 seconds intervals, adding two tablets of
cOmplete protease inhibitor (Roche, Switzerland) during the first and one tablet
during the second run. A sample to monitor the process with SDS-PAGE was
taken. The lysis solution was then centrifuged with an Optima L-80 XP ultracen-
trifuge (Beckman Coulter, USA) for 30 minutes at 39,000 rpm (~ 120,000¢) at
4°C using a Beckman 45 Ti rotor (Beckman Coulter,USA). The platelet was then
resuspended in 150 ml of platelet lysis buffer 2 and kept on ice. The platelets were
further broken down during two 20 seconds intervals processing with the Turrax,
adding one cOmplete protease inhibitor during each step. The solution was then
rotated slowly at 4°C' for one hour. A second sample was taken to monitor the
process with SDS-PAGE. The solution was centrifuged using the ultracentrifuge
for 15 minutes at 4°C' at 19,000 rpm. The pellet was disposed and 1ml of the
supernatant was kept as third sample for documentation. The supernatant was
loaded for affinity chromatography onto an equilibrated Concanavalin A column
(GE Healthcare Life Sciences, USA) using an AKTA protein purification system
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6.3. Integrin Labeling

(GE Healthcare Life Sciences, USA) at 0. 5ml/min. The column was subsequently
washed overnight at 0.2ml/min.

Day 2: Elution buffer for the ConA column was prepared by adding 100 mM
mannose to the equilibration buffer and used to elude bound glycoproteins from
the ConA column with a flow rate of 0.5ml/min. The elution was collected
in 5ml fractions. The fractions around the peak of ultraviolet (UV) detection
were checked on their integrin content through SDS-PAGE. Fractions containing
integrin were pooled, the rest was discarded. Next the pooled solution was ap-
plied to an equilibrated heparin column (GE Healthcare Life Sciences, USA) at
0.5ml/min for heparin affinity chromatography and the direct flow-through was
collected in fractions. The fractions around the peak of UV detection were checked
by SDS-PAGE for their integrin concentration. Again integrin-containing fractions
were pooled, the rest was discarded. The pooled solution was concentrated to less
than 5ml by ultrafiltration (Amicon Ultra-15, 50 kDa MWCO, Merck, Germany).
The concentrate was loaded to a Superdex 200 column (GE Healthcare Life Sci-
ences, USA) and eluded overnight with elution buffer at a flow rate of 1ml/min
and collected in 10 ml fractions.

Day 3: Once again UV peak fractions were analysed by SDS-PAGE. The frac-
tions of the highest concentrations and purity of integrin «;;,B3 were filtered
through a hidrophilic 0.22 ym membrane and aliquoted. The purified protein
was stored at —80°C'. Biological activity of the purified integrin was determined
by ELISA using AB1967 anti-integrin «;, antibodies (Merck, Germany).

6.3. Integrin Labeling

The protocol for integrin labeling with fluorescent dyes has been adapted from Kai
Peter.[322] If necessary, integrin ay,53 was concentrated by ultrafiltration (Ami-
con Ultra-15, 50 kDa MWCO, Merck, Germany) to a concentration of > lmg/ml
in column buffer. 10mg/ml 5-(and-6)-Carboxytetramethylrhodamine (TAMRA),
succinimidyl ester (C1171, Thermo Fisher Scientific, USA) was dissolved in anhy-
drous dimethylformamide (DMF). Immediately, followed by the dropwise addition
of 50 ul of dye solution to 1ml of integrin solution, while swirling the container
lightly. The solution was kept in the dark while being rotated at room temperature
for one hour. The protein was separated from unbound dye via an equilibrated
PD-10 desalting column (GE Healthcare Life Sciences, USA). The dye/protein ra-
tio was determined through the molecular dye extinction (g555 = 92,000M ~tem ™1
[322]) and protein extinction coefficient (950 = 1. 18ml/(mgem) [323]). Biological
activity of the labeled integrin was determined by ELISA using AB1967 anti-
integrin oy, antibodies (Merck, Germany).
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6.4. Fibronectin Purification

Fibronectin, a glycoprotein, is most abundant in the blood plasma, in this case
human blood plasma. The purification protocol relies on its specific, high-affinity
binding to denatured collagen.[324] The following steps were performed at room
temperature. First, the plasma was centrifuged at 10,000 g for 30 minutes to
remove erythrocytes or other particles by differential centrifugation. After phenyl-
methane sulfonyl fluoride (PSMF) and ethylenediaminetetraacetic acid (EDTA)
were added to a final concentration of 100 mM and 10 mM, respectively, the su-
pernatant was filtered by an equilibrated Sepharose CL-4B column (GE Healthcare
Life Sciences, USA) to remove contaminants, e.g. fibrinogen. The flow-through
was directly loaded to a Gelatin Sepharose column (GE Healthcare Life Sciences,
USA), where the fibronectin bound to the gelatin. The process was monitored by
UV detection at 280 nm. The column was washed with phosphate-buffered saline
(PBS) buffer, pH 7.4, until the optical density (OD) level returned the level of pure
buffer. Bound fibronectin was eluded with 6 M urea in PBS, pH 7.4, with a flow
rate of 2ml/min and collected in 2ml fractions. The fractions corresponding to
peak of UV detection were assessed by SDS-PAGE. The appropriate fractions were
pooled and the final concentration was measured by absorbance at UV 280 nm.
Fibronectin was sterile filtrated and stored by —80°C in PBS with 6M Urea. For
use as a binding agent, fibronectin was dialysed against PBS, pH 7.4. and subse-
quently stored at —20°C for about 4 weeks with no apparent deterioration.

6.5. Integrin reconstitution into Liposomes

Liposomes containing reconstituted integrin a3 were prepared by adapting a
protocol proposed by Erb and Engel.[325, 326] In brief, 50 mol% of egg PC and
egg PG respectively were dried under a gentle stream of nitrogen and kept in
vacuum overnight. Subsequently, the dried lipids were dissolved in reconstitution
buffer and integrin a;p,3 at a 1:1000 integrin-lipid ratio was added. The solution
was incubated at 37°C' for 2 hours in a shaker at 600rpm. Triton X-100 was
removed in two subsequent washing steps of 3.5 hours using 50 mg/ml SM-2 Bio-
beads. The size distribution of liposomes and integrin-liposomes was measured by
DLS in a Malvern Zetasizer Nano ZS setup (Malvern, UK).
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6.6. Peptides

6.6. Peptides

Two peptides, named SN528 and SN529, were kindly provided by Prof. Horst
Kesslers group at the technical university of Munich. Both contain the same RGD
binding site. The peptides were designed for high binding affinity for integrin
arnPs. Their structures are shown in figure 6.1. In difference to SN529, SN528
contains a thiol group for immobilization on gold surfaces. SN529 was used for
QCM-D experiments and SN528 was used to functionalize gold-linked surfactants.

(a) SN528 (b) SN529

0o (o}
COOH
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HN N
HN N
O\/\ /©)LH/:N‘/ o) O\/\ /©)LH/:r
o) O

N.__O
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i . Exact Mass: 497,25
Chemical Formula: CagHsiNsOsS & R S: 497, o
Exact Mass: 713,35 ~ Y\Muk/\SH Molecular Weight: 497,58 Y
o

Molecular Weight: 713,88

Figure 6.1.: Chemical structures of mimetic peptides SN529 and SN529. These compounds
are tuned for high binding affinity to integrin a3 and contain a binding site similar to the RGD
motif. (a) A version of the molecule with a thiol end-group. This peptide was used to function-
alizie gold nanoparticles on the inner interface of microfluidic water-in-oil emulsion droplets. (b)
This version lacks the thiol group and was used in QCM-D experiments as a competitive binding
site.

In addition to these custom highly specific peptides a commercially available RGD-
ligand peptide was acquired. The chemical structure of Gly-Arg-Gly-Asp-Ser-Pro
(GRGDSP, Sigma-Aldrich, USA) is shown in figure 6.2. The compound’s molecu-
lar weight of 587 Da makes it 18% heavier than SN529. The peptide was used as
a commercial comparison to the newly synthesized counterparts.

GRGDSP

Chemical Formula: CooH37NgO4q
Exact Mass: 587.27
Molecular Welght 587.59

MHYO LRI

Figure 6.2.: Chemical structure of mimetic peptide GRGDSP. This compound contains a RGD
binding site for integrin a;,53.
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7. QCM-D

Quartz crystal microbalance with dissipation monitoring (QCM-D) is a powerful
method to study adhesion of lipid vesicles. The immobilization of intact liposomes
on various crystal coatings has been extensively studied over the past years.[327—
332] QCM-D experiments were also used for detailed analysis of the mechanisms
of vesicle rupture and their transformation into SLBs in more detail. When a
critical surface coverage of intact vesicles is reached on planar substrates, such as
gold or SiO,, they rupture and a SLB spreads out on the surface.[211, 333| The
underlying kinetics of this process depend on many parameters including vesicle
size,[327, 334] surface chemistry,|327] temperature,[327, 335] lipid charge,[207] os-
motic pressure,[327, 336] membrane fluidity,[329] electrostatic interactions and the
presence of bivalent cations.[337]

Quantifying the specific binding of proteoliposomes containing reconstituted in-
tegrin agp83 to ECM proteins by QCM-D analysis, gives an important insight
into their potential as a model system for FA. To investigate the interaction be-
tween these protocells with biointerfaces, SiO, crystals were coated with different
ECM proteins. Fibrinogen (purified from human plasma, Calbiochem, USA) and
fibronectin (see section 6.4) were chosen because they are natural ligands of integrin
agpfs and contain a RGD binding site. Collagen type I (calf skin, Sigma Aldrich,
Germany) was chosen as a negative control to exclude unspecific interactions.|52]
Furthermore, the controllability of integrin-mediated adhesion on fibrinogen coated
crystals was studied by the effect of various free RGD-peptides in solution on ad-
hered proteoliposomes and pure integrin. The results will be discussed in chapter
13.

7.1. Buffers

Buffers used for QCM-D experiments were prepared with ultra-pure water (>
18 M) /em, Millipore) and stored at 4°C. The pH-values were adjusted with HCI
solution. The following buffers were used:

Standard buffer: 20 mM Tris-HCI, pH 7.4, 50 mM NaCl, 1mM CaCl,

Activation buffer: dissolve 1mM MgCl, and 1mM MnCl, in standard
buffer
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. . Protein binding
Protein coating

Frequency change [Hz| Dissipation change [1079]

Fibrinogen -98.9+2.2 3.46 + 0.06
Fibronectin -74.3+2.2 3.04 +0.07
Collagen -151+4 34+1

Table 7.1.: Frequency and dissipation shifts as monitored by QCM-D after 2.5 hours of coating
SiO, crystals with different ECM proteins and an additional 30 minutes washing step. Frequency
decreases and increases in dissipation indicate successful ECM protein binding.

7.2. QCM-D Experimental Protocol

QCM-D (E4, Q-Sense AB, Sweden) was used to investigate the adhesion of pure
liposomes and integrin-liposomes.The signals measured by the piezoelectric quartz
crystal sensor were the frequency shift AF and the change in energy dissipation
AD. SiOy coated sensor crystals (QSX 303, Q-Sense AB, Sweden) were cleaned
with a 2 % Hellmanex III solution (Hellma, Germany) followed by oxygen plasma
treatment at 150 W with 0.4mbar for 30 minutes (Gigabatch, PVA TePla Ag.,
Germany). A constant flow of 25 ul/min through the measurement chamber was
preserved through each experiment. The sample solution was continuously fed to
the crystal chamber by a peristaltic pump (Ismatec IPC, IDEX, Germany) and
the working temperature was retained at 21°C'. The resonance frequency and dis-
sipation were measured at 6 harmonics (15, 25, ..., 65 M H z) simultaneously. The
operating frequency analyzed for the results and reported here is the 7*" overtone
(35 M Hz) and was normalized by the order of the overtone.

After equilibrating the system with activation buffer for 40 minutes (step I), the
crystals were coated with either fibronectin, fibrinogen or collagen diluted in acti-
vation buffer at a concentration of 50 ug/ml (stepll). During the adhesion of the
different ECM proteins over a periode of 2.5 hours the frequency decreased and
the dissipation increased accordingly. The absolute changes are listed in table 7.1
and shown in figure 13.3(b) to (d).

Binding of fibrinogen for 2.5 hours and a consequent 30 minuntes washing step
(step III) with activation buffer led to a reduction from the initial resonance fre-
quency by AFp, = (—98.8 £2.2)Hz and an increase in dissipation by ADp, =
(3.46 £0.06) - 107°. For fibronectin the frequency and dissipation were shifted by
AFp, = (=74.34+ 2.2)Hz and ADp, = (3.04 4 0.07) - 107, respectively. Colla-
gen binding led to a resonance frequency decrease of AFg, = (—151+4)Hz and a
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7.3. Adhesion Kinectics

dissipation increase of ADp, = (34 1) - 1075, After the washing step liposomes,
integrin-liposomes or integrin were loaded into the flow system (step IV). Finally,
in a fifth step the crystals were washed for 4 or more hours with activation buffer.

Fibrinogen Fibronectin Collagen

density Voigt Sauerbrey Voigt Sauerbrey | Voigt  Sauerbrey

1.150 16.1£16 151+£03|174+04 11.0£0.6 | 56 +£12 20.4+0.5
1.300 143+15 133£03]150£04 97x£05|54£8 18.0+£0.5

Table 7.2.: Thickness estimates of the three different ECM protein films on SiO, crystals. The
software QTools from Q-Sense was used to calculate the film thicknesses with the Voigt and the
Sauerbrey model.[338, 339] The density of he protein layers was estimated using comparable
values in both models.[340] The densities are given in [¢/cm] and the thickness is given in [nm].

The thickness of the three different ECM protein layers on the quartz crystals was
estimated according to the Voigt and the Sauerbrey model.[338, 339] The Sauer-
brey model, a model for thin rigid films, provides a lower limit of the thickness for
these viscoelastic protein layers. The Voigt model also takes the viscoelasticity of
the film into account, thus yielding more accurate results. As densities of the pro-
tein coatings comparable values from literature in both models were used.[340] The
fits were carried out using the software QTools (Q-Sense, Sweden) and are listed
in table 7.2. The results estimate all protein layers to exceed 10 nm in thickness.
This indicates that the protein coatings form a closed layer and should prevent
any direct interaction between the crystals and the samples.

7.3. Adhesion Kinectics

Here, it might be appropriate to add some theoretical considerations on the kinetics
of adhesion. In the previously described experiments proteins or liposomes were
flown from a reservoir over a quartz crystal coated with different protein. Some of
the specimen bind with a given probability A; to the functionalized surface. But
the binding isn’t an irreversible process as some of the adhered specimen dissociate
with a given probability As. This can be written as

A1

Ny = M. (7.1)
A2
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where n,, is the number of unbound vesicles in solution and n; is the number of
bound vesicles. Since the surface is small and we constantly renew the supply of
vesicles we can assume that n, is a constant,

on,
ot

=0. (7.2)

From equation 7.1 we derive the following function for n:

3nb

—— = Any (bs — ny) — Aanyp. 7.3

b — Ny (bs = ) = damy (73)
1 T2 z3

x1: The binding of vesicles from solution to the surface with rate A;.

2o As the surface area is limited we have to introduce a restricting factor for the
total amount of possible bound vesicles. Here bs is the number of possible
binding spots and is defined as total area divided by the area available to
each vesicle at the maximal packing density. Also a monolayer is assumed.

x3: Vesicles unbinding from the surface depending on both the dissociation rate
Ay and the number of bound vesicles ny.

Integration of equation 7.3 yields an exponential recovery curve,

Abs n, — npoexp |—(An, + A2)(t + const.
ny(t) = L0 pA[ﬂ; . 2)( i} (7.4)

For many experiments the equilibrium or fixed point of this system can be of
interest,

872,1)
— =0. 7.5
Y (7.5)
Combining equatiosn 7.3 and 7.5 gives
0 = Ainy(bs — np) — Aan. (7.6)
Rearanging equation 7.6 and abbreviating A = A\ /A, yields
- Aingbs  Anybs (7.7)

T Me A Mg+ 1

which is also called Langmuir isotherm.[341] Following this calculation, an expo-
nential saturation can be expected from the results. Whereby, the measured signal
should converge against the Langmuir isotherm.
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7.4. Plotting of QCM-D Data

The data collected during QCM-D experiments, was exported from a proprietary,
binary format to a text file using QTools 3.1.21.593 (Q-Sense, Sweden). The
data was plotted using the open-source software Gnuplot 4.6 (http://gnuplot.
sourceforge.net/). The script plotting the data points acquired for frequency
and dissipation against time is attached in the appendix II.1. The script also adds
vertical lines indicating when a new reagent reached the analysis chamber.

Due to the complexity of adhesion dynamics, two further scripts were written.
The first of these scripts plots the dissipation at given time point against the cor-
responding frequency. To indicate the progression of time, data points are color
coded. Through this method changes in the conformation of adhering reagents can
be made visible. The script is reproduced in the appendix I1.2. The second script
comprises of a function computing the shift between neighboring data sets and
thus computing the first derivative of the measured data. As this method is highly
susceptible to noise, the processing of the data included averaging over 5 or 10
(corresponding to 1second or 2 seconds of measurement time, respectively) data
points. The code computing this manipulation is added to the appendix II.3.
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8. Droplet-Based Microfluidics Methods

The following chapter summarizes the materials and methods used for the mi-
crofluidic experiments in this work. This includes all the surfactants synthesis
protocols, a step-by-step guide for the production of designs and clean room pro-
tocols. Finally, the design of the observation chambers used to image droplets with
a microscope is presented.

8.1. Surfactant Synthesis

The essential factor for the stability of water-in-oil emulsion droplets are the surfac-
tants aggregating at their interfaces as described in section 3.2.2. Nonionic fluoro-
surfactants consisting of perfluorinated polyether (PFPE) hydrophobic blocks pro-
vide their long-term stability by preventing coalescence, whereas PEG hydrophilic
blocks serve as a biocompatible, inert droplet interface.[173] Optionally, to provide
active sites for biochemical interactions within the droplets, surfactants that were
covalently linked to gold nano particles (GNPs), with a diameter of ~ 5nm can be
added.[174] Mixed with gold-free surfactants at molar ratios ranging from 1:1000
to 1:2000, stable droplets with a inner surface, that can easily functionalized via
thiol chemistry, can be formed. Most of the synthesis protocols were established by
Jan-Willi Janiesch and he also performed most of the syntheses of most surfactants
used during this research.

8.1.1. Triblock

The synthesis of the PFPE-PEG-PFPE triblock-copolymer surfactants was based
on a protocol reported earlier,[173] but with several modifications.[174] The sur-
factants were synthesized using perfluorinated polyether (PFPE, Krytox FSH,
Chemours, USA), with a molecular weights of 2500 g/mol and 7000 g/mol and
poly(ethylene glycol) (PEG, Fluka, Germany) with molecular weights of 600 g/mol
and 1400 g/mol. Two different versions were synthesized, TRI2500 consisting of
PFPE(2500 g/mol)-PEG(600 g/mol)-PFPE(2500 g/mol) and TRI7000 consisting
of PFPE(7000 g/mol)-PEG(1400 g/mol)-PFPE(7000 g/mol).

All solvents (ultra dry) used for the synthesis were supplied by Sigma-Aldrich (Ger-
many) and stored with a molecular sieve under nitrogen or argon atmosphere. The
synthesis was carried out under argon atmosphere in dry tetrahydrofuran (THF)
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Figure 8.1.: Sketch of PFPE-PEG-PFPE triblock-copolymer surfactant synthesis. Taken from
Frohnmayer et al.[134]

solvent in a tempered Schlenk-flask. In brief, 1 mmol PEG was dissolved in 90 ml
of dry THF and cooled to —78°C. N-butyl lithium (1.25ml of a 1.6 M solved
in hexane equaling 2 mmol) was added drop wise over a period of 60 minutes to
the PEG solution and stirred for additional 30 minutes at —78°C. Thereafter,
under continued stirring, the reaction is gradually brought to room temperature.
Upon reaching room temperature 2 mmol PFPE-carboxylic acid was added drop
wise over a period of 30 minutes and stirred for additional 2 hours. The THF was
removed together with unreacted PEG using a separatory funnel. The product of
the reaction was dissolved in 99.8% methanol to separate it from insoluble, un-
reacted PFPE-carboxylic acid. The PFPE-PEG-PFPE triblock polymers, which
are soluble in methanol, were transferred to a clean flask and dried with a rotary
evaporator at 40°C. The product was a clear and viscous liquid. The synthesized
triblock surfactants were analyzed with nuclear magnetic resonance (NMR) spec-
troscopy and mass spectroscopy (MS).

8.1.2. Gold-linked Surfactant

Gold-linked diblock-copolymer PFPE(7000 g/mol)-PEG(350 g/mol)-Au surfactants
were synthesized in a one-step process.[174] PFPE(7000 g/mol)-carboxylic acid
(9.3mg, 1.3 pmol) and KOH (10 ul of a 5 M solution) were added to 5ml func-
tionalized GNP solution (11-Mercaptoundecyl)tetra(ethylene glycol), 2% w/w,
nanoparticle diameter ~ 5nm (Sigma Aldrich, Germany) and stirred for 1 hour
to achieve flocculation of the PFPE-PEG-Au product and of unreacted PFPE.
Subsequently, the water was removed by freeze-drying the solution for 24 hours.
The PFPE(7000 g/mol)-PEG(350 g/mol)-Au surfactants were dissolved in 1ml of
fluorinated oil, FC-40 (3M, USA) and filtered with a hydrophobic filter (PTFE
0.2 um) to remove unreacted, hydrophilic (11-Mercaptoundecyl)-tetra-(ethylene
glycol)-functionalized GNPs.
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8.1. Surfactant Synthesis

Polymer Full name PEG moiety PFPE moieties
PFPE(25OO ) . g . g

TRI2500 PEG(600 ). M 5 0005 Mw 172500 mol
PFPE(2500 Ll) e me=
PFPE(7000 Ll)— . g

TRI7000 PEG (600 -2 )- 241“ 20 14005 Muw 187000 mol
PFPE(2500 Ll) -
PFPE(7000 il) Mw = 350 % Mw = 7000 %

PEPEPEG-AU ppG(350 2 Au =14 M = 48

Table 8.1.: Molecular characteristics of the synthesized copolymers employed for droplet sta-

bilization and functionalization. The structures of the triblock polymers are shown in figure 8.1
and the structure of the gold-linked diblock polymer is shown in figure 8.2.

8.1.3. Functionalization of Gold-linked Surfactant

To provide adhesion sites for integrin on the surface of gold-nanostructured droplets,
see section 8.1.2, a two-step protocol was devised to functionalize the GNPs with
a RGD-peptide, SN528 (see section 6.6), via thiol chemistry. The RGD peptide
used in the experiments was designed and synthesized for maximum binding affin-
ity for integrin «;;,83 by Dr. Stefanie Neubauer at Prof. Horst Kesslers group
at the technical university of Munich.|342] The structure is presented in section 6.6.

Freeze-dried PFPE-PEG-Au diblock-copolymer surfactants were dissolved in 100l
of fluorinated oil FC-40 at a concentration of 25uM. An aqueous solution con-
taining the RGD peptides (50 M, 100ul) was added and the emulsion was stirred
for 1 hour. To remove unbound RGD peptides, the emulsion was centrifuged, sed-
imenting the heavier oil. Subsequently, the supernatant was discarded and the
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Figure 8.2.: Sketch of the synthesis PFPE-PEG-Au diblock-copolymer surfactants. Taken from
Frohnmayer et al.[134]
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8. Droplet-Based Microfluidics Methods

precipitant was freeze-dried for 24hours to remove any remaining water. Finally,
the product was dissolved in 1 ml of (the oil) FC-40 and filtered with a hydrophobic
filter (PTFE 0.2um), removing traces of unreacted peptide.

8.1.4. Destabilizing Surfactants

Droplet-based microfluidics is often used to manipulate the content of the droplets.
Therefore, it can be of interest to recover or extract the content of the droplets
after processing them. The common approach to achieve this target has thus far
been a bulk demulsification of droplets. By adding an additional aqueous layer
followed by a demulsification reagent to a viol containing the to be broken up
droplets.[174, 343, 344] In this work two different demulsification reagents were
used 1H,1H,2H,2H-perfluoro-1-octanol or perfluoroctanyl-ethylen glycol
(PFO-MEG) (Sigma-Aldrich, USA),[343, 344] and 2-(2-(2-Hydroxyethoxy )ethoxy)-
ethyl 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8- penta- decafluorooctanoate or perfluoroctanyl-
triethylen glycol (PFO-TEG).[174] The chemical structures of both demulsifiers
are shown in figure 8.3.
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O\/\ /\/OH F
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T
=
8 F F F F F F
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F F 2-(2-(2-Hydroxyethoxy)ethoxy)ethyl 2,2,3,3.4.4,5.5,6,6,7,7.8.8.8-penta- decafluorooctanoate
(a) short (b) and long PFO-PEG
Figure 8.3.: Chemical structures of demulsifying (destabilizing) surfactants. (a)

1H,1H,2H,2H-perfluoro-1-octanol acquired from Sigma-Aldrich (USA) and (b) 2-(2-(2-
Hydroxyethoxy)ethoxy)ethyl 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-penta- decafluorooctanoate was syn-
thesized in the group. Figure (b) was adapted from Platzman et al.[174]

PFO-TEG was synthesised under Argon atmosphere in a tempered Schlenk-flask.
6.36 g of triethylene glycol (MW = 208.5 g/mol, Sigma-Aldrich, Germany) were
dissolved in 200 m! dry THF and cooled to —78°C. 18.5ml of an 1.6 M solution
of N-butyl lithium dissolved in hexane was added drop wise over the course of
1 hour and subsequently stirred for 30 minutes. Under continued stirring the so-
lution was brought to room temperature and stirred for an additional 30 minutes.
12.7 g of pentadecafluorooctaoyl chloride (MW = 432.51 g/mol, Sigma-Aldrich,
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Germany) was added drop wise over the course of 30 minutes and stirred for an
additional 4 hours. Thereafter, the THF and unreacted triethylene glycol were
removed through a separatory funnel. The crude product was washed with 10 ml
of pure water to remove the lithiumchloride. Following the washing step the crude
product was dried in vacuum and purified using column chromatography. The col-
umn was filled with a silica gel and a 2:1 petroleum ether (60/40) and THF mixture
was used as mobile phase. The PFO-TEG was analyzed with NMR spectroscopy
and MS.

8.2. Oil-Phase

For droplet-based microfluidics the surfactant concentration should be in the range
between 1 and 20 mM. In general, lager droplets require a lower surfactant con-
centration than small droplets. A lower surfactant concentration reduces droplet
stability.[345] A high concentration causes an incomplete cut-off during droplet cre-
ation and the formation of small intermediary droplets. Additionally, at high sur-
factant concentration diffusion biomolecules into the oil phase is enhanced due to
small surfactant micelles.[178] For most experiments, following synthesis, TRI7000
and TRI2500 surfactants were mixed separately with gold-linked surfactants and
were dissolved in FC-40 (3M, USA) to final concentrations of 2. 5mM and 3 upM
for triblock and gold-linked surfactants, respectively. These mixtures were used as
oil phases in the droplet-based microfluidic experiments in this work.

8.3. Device Production

The overall design of microfluidic devices has evolved drastically since the onset of
the technology. Whereas the first generation microfluidic chips were mostly based
on glass capillaries, the majority of modern chip designs have adapted photo- and
soft-lithography methods in their production. These technologies have boosted
new developments by allowing complicated geometries including steps in hight or
even multi-layer devices. There might be a new revolution dawning on the horizon
with the emerging of micrometer scale 3D printers such as the nanoscribe.|[346,
347] However, as the focus of this work lies on application, Ockham’s razor! was
applied to all designs in this thesis. As the emphasis was not on the possible, but
rather on how much could be achieved with simple means, only the basic soft-
lithography techniques were necessary. The following subsections and figure 8.4
summarize the steps necessary to produce a microfluidic device.

1Ockham’s razor or lex parsimoniae is a problem-solving principle that states among com-
peting hypotheses, the one with the fewest assumptions should be selected.
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1) The CAD design of a device 4) PDMS casting and
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Figure 8.4.: Schematic representation of the steps to produce a microfluidic device. Step 1:
The structure is drawn using CAD software and printed on a chrome coated soda lime glass via
ion-etching. Step 2: A silicon wafer coated with negative SU8 photoresist is then exposed with
UV light through the mask. The UV radiation triggers polymerization of the photoresist. Step
3: The unpolymerized photoresist is washed away with developer. Step 4: PDMS is poured on
the the silicon wafer containing the master. Step 5: The cured PDMS cast is removed from the
master. Step 6: A glass slide and the PDMS were briefly exposed to an oxygen plasma and
then pressed against each other to guaranty fixation. Adapted from Frohnmayer et al.[134]

8.3.1. Design of Microfluidic Structures

A two-dimensional design of the desired device structures was drawn with the
computer aided design (CAD) software QCAD-pro (version 3.15.4, Ribbonsoft,
Switzerland). A negative of the structure, the channels transparent with the
rest opaque, was printed on a chrome coated soda lime glass via ion-etching (JD

PHOTO DATA, UK).
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8.3. Device Production

8.3.2. Photolithography

The mask was used for standard contact photolithography to obtain a positive relief
on a silicon wafer. Different viscosities of SU8% negative photoresis (MicroChem,
USA) were used to achieve structure heights ranging from 5 gm to 80 um on sili-
con wafers. The process sheets provided by MicroChem were a reasonable starting
point, but some alteration and additions were necessary to achieve an optimal
result.

photoresist type 3005 3025 2075
structure height 5—6um  30um 80 um
prespin 10 s 500rpm 500 rpm 500 rpm
spin 30 s 2750 rpm 2750 rpm 2750 rpm
softbake at 65°C — 2min temperature-
softbake at 95°C 3min 5min ( parabola >
exposure 16 s 7s 12 s
hardbake at 65°C - 2min temperature-
hardbake at 95°C 3min 5min ( parabola )
developping 20 s 2min 10 min

Table 8.2.: Summary of the photolithography experimental settings relevant for the structures
in this work. As microfluidic chips with three different structure heights were used, the protocol
needed to be adapted for three different types of SU8 negative photoresist. The roughly linear
relation between structure height and exposure time apparently breaks at very fine structures,
~ 2um, these only developed properly at long exposure times. For thick coating, especially
when larger areas were cured, the photoresist tended to detach from the SiO, wafer if a classical
two step hardtbake was used. Therefore, a gradual temperature parabola starting from 65°C
heating to 95°C and cooling back to 65°C using the hotplates thermal inertia, reduced stressed
to to rapid temperature changes and greatly improved the attachment.

Photolithography was done in a class 100 cleanroom with special UV-light free
illumination to guaranty optimal conditions. Silicon wafers (Prime CZ-Si wafer
2inch or 4inch, p-type (Boron), 1 — 10Q/em, MicroChemicals, Germany) were
backed at 200°C before use to remove any moisture. Wavers were fixated on a spin

2The different types of SU8 can be distinguished by number consisting of up to four digits.
The first two number denote the generation of the photoresist, 20 for 2"4 and 3'¢ generation,
the first generation lacking these digits. The last two digits indicates the approximal intended
structure height.
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8. Droplet-Based Microfluidics Methods

coater and dust was removed with a nitrogen gun. 1ml of SU8 photoresist per
inch wafer diameter was applied using a 10ml pipette. The orifice of the pipet
tip was widened by removing part of the tip with a scalpel for SU8-2075 due to
the high viscosity of the photoresist. The wafers were spin-coated with settings
according to table 8.2. The bulge of photoresist at the edge of the wafers was
scraped of with a razor blade. The spincoated wafers were then softbaked in two
temperature steps, 65°C and 95°C to remove solvent from the photoresist. Follow-
ing exposure to UV-light at hard contact mode in an MJB4 mask aligner (Stiss
MichroTec, Germany) , they were directly placed on a hotplate for the hardbake
at 65°C and 95°C. Unexposed photoresist was removed with mr-DEV 600 devel-
oper (MircoChemicals, Germany). Structures were checked using reflected light
microscopy and structure height was confirmed through profilometry (Dektak 8,
Veeco, USA).

8.3.3. PDMS Molds

Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, USA) was prepared
by mixing the polymerization reagent with the oligomer in a 1 : 9 (w/w) ratio.
Following mixing the polymer was degassed in a centrifuge. To generate a replica
PDMS was poured onto a wafer containing the master. Before curing at 65°C
in an oven for 2 hours or longer, the PDMS was again degassed in a desiccator.
A square of the PDMS containing the replica of the structure was cut out using
disposable scalpels (Cutfix 11, B. Braun, Germany). Following the incision 70%
ethanol was sprayed on the PDMS cutting edges to reduce sticking. The cutout
was then carefully removed. The wafer containing the master was cleaned with
70% ethanol, dried and reused. Inlet and outlet holes (0.5mm and 0.75 mm were
punched through the PDMS with biopsy punchers (Harris Uni-Core, Ted Pella,
USA). Finally, the PDMS cutouts were cleaned with 70% ethanol.

8.3.4. PDMS Device

Cover slides (24 x 60 mm, #1,5) were cleaned by sonicating them for 15 minutes
at 60°C in 20% Extran MAO1 (Merck Millipore, Germany) solution and twice
with pure water. The PDMS molds and the cover slides underwent a short oxy-
gen plasma (PVA TePla 100, PVA TePla, Germany) at 200 W and 0.45mbar
for 20 seconds treatment to achieve better bonding between them. Directly af-
ter the plasma treatment, the PDMS cutouts were placed onto the glass cover
slides and pressed together to remove enclosed air bubbles and increase contact.
Removing dust from PDMS and cover slides with a nitrogen gun after removing
them from the plasma oven and before sticking them together greatly improved
results. The devices were placed in a 65°C oven for two hours to improve seal-
ing stability. For hydrophobic coating of the channels SigmaCote (chlorinated
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8.4. Droplet Formation

organopolysiloxane solved in heptane, Sigma-Aldrich, Germany) or Ombrello (un-
known substance, Motono, Germany) was filtered trough a hydrophobic polyte-
trafluorethylen (PTFE) filter and directly used to passivate the microfluidic chan-
nels in the cured chips with a hydrophobic layer. After around one minute incu-
bation the channels were filled with FC-40 oil and sealed with adhesive tape to
prevent contamination with dust.

Pico-injection devices were additionally equipped with electrodes. The devices
were placed on a hotplate heated to 60°C. Indalloy 19 (51% indium, 32.5% bis-
muth, 16.5% tin, Indium Cooperation, USA) was carefully pushed into the inlets
of the electrode microchannels. When touching the heated glass, the indium alloy
melted and filled the channel. After completely filling the channels striped wire
tips (MC6A-1, Farnell, UK) were pushed in the electrode inlets. The wires were
fixed to the device with Loctite 352 (Henkel, Germany). The glue was then cured
by exposing it with UV light.

8.4. Droplet Formation

As described in section 3.2 microfluidics allows the creation of mono-disperse water-
in-oil emulsion droplets. In this work three different classes of devices were used
for droplet production: The standard forming droplets with diameters in the range
of 30 um to 40 um, a larger counterpart covering 100 um to 120 um and special
structures for droplets below 10 ym. The flow rates were controlled with Standard
Infuse/Withdraw Pump 11 Pico Plus Elite syringe pumps (Harvard Apparatus,
USA). For larger volumes 1ml Luer syringes with a low dead-volume (613-2794,
Henke Sass Wolf, Germany) and for small volumes 0.3ml or 0.5ml insulin sy-
ringes (BD Micro-fine Demi, “Becton, Dickson and Company”, USA) were used.
PTFE-tubing (&, = 0.3mm, Do = 0.6mm, Bola, Germany) was pulled on
Sterican 20 syringe needles (B Braun, Germany) and used to connect the syringes
to the devices.

The standard oil phase consisted of 2. 5mM TRI7000 dissolved in FC-40 oil. If
necessary 3 uM of gold-linked surfactant was added to the solution. Flow ratios
were kept in the range of 2:3 to 1:2 aqueous to oil phase. With absolute flow rates
of 200 pl/hour aqueous and 300 pl/hour oil phase for standard 30 um droplets
and 1800 pl/hour and 3200 ul/hour for large 100 um droplets, respectively. The
process of droplet self-assembly in the flow focusing junction is discussed in more
detail in section 3.2.1. Following production, droplets were collected at the outlet
by transferring via an additional PTFE-tube to an Eppendorf tube (Eppendorf,
Germany) or a micro tube (Sarstedt, Germany).
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8. Droplet-Based Microfluidics Methods

8.5. Pico-Injection

To allow precise delivery of various biological components into preformed droplets,
microfluidic chips can be integrated with small and compact electrodes to apply
electric fields across micro-channels. These electric fields induce a thin film desta-
bility of the surfactant leaflet and facilitate controlled injection of aqueous phase
into the droplets. The technology behind was introduced in more detail in section
3.2.3.

Building and refinement of this set-up was a major task during this Ph.D. The
design of our droplet-based pico-injection unit was adapted from Abate et al.[106|
A microfluidic flow control system (MFCS-EZ, Fluigent, France) was used to con-
trol the pressure on all inlet channels. Preformed droplets were injected into the
pico-injection unit via a designated inlet. The spacing between the droplets was
controlled through addition of oil with 2.5mM surfactants via the second oil
channel. The pressure on the injection and spacing channels had to be slightly
readjusted for each experiment, but was around 200 mbar and 220 mbar, respec-
tively. Following the separation step, isolated droplets passed an electric AC field
(frequency of 1kHz, voltage of 250V") generated by a HM 8150 signal genera-
tor (HAMEG, Germany) and amplified by a 623B-H-CE linear amplifier (TREK,
USA) attached to two electrodes made of Indalloy 19 (51% indium, 32.5% bis-
muth, 16.5% tin, Indium Cooperation, USA). The induced thin film instability
allows injection of reagents via a pressurized injection channel on the opposite site
of the electrodes. The pressure applied to the injection channel was set between
100 mbar and 120 mbar depending on intended injection volume and viscosity of
the injection solution. The injection volume was controlled precisely between 1 pl
to 100 pl dependent on the applied pressure in the injection channel.

8.6. Droplet Observation

Following production or manipulation (e.g. pico-injection), the droplets were col-
lected at the outlet of the microfluidic device and transferred to an analysis cham-
ber, as sketched in figure 8.5(a). The following observation chamber design was
used in this work. A small coverslip (18 mm x 18 mm) coverslides was placed on a
large coverslip (24 mm x 60 mm) with a spacer in between. Commonly glass shards
form cover slips (thicknesses #0 ~ 130 um, #1 ~ 150 um and #1.5 ~ 170 um) or
two strips of double-sided adhesive tape (thickness ~ 80 um, Tesa, Germany) were
used for the spacing.
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Figure 8.5.: (a) Schematic lllustration of an analysis chamber to store droplets for analysis and
characterization. Spacers were chosen according to droplet diameter. (b) Cross section through
an observation chamber.

First the spacers were placed on the large cover slide. Subsequently, roughly 5 um
of droplet emulsion were pipetted in the center of the slide.®> The smaller cover
slide was then placed on top of the spacers. The volume below the small cover
slide is filled with additional FC-40 oil containing the same surfactants as used
for droplet production. After the space between the cover slides was filled, the
chamber was sealed with two-component Twinsil glue (Picodent, Germany).

Due to the density difference, 1,000kg/m?* compared to. 1,855 kg/m?, the droplets
ascend towards the upper cover slide of the observation chamber, as shown in figure
8.5(b). As the objective used in most observations, a HCX PL APO 63x/1.40-0.60
(Leica, Germany), has a very short working distance, a #0 cover slide was used to
allow focusing through the whole droplet.

8.7. Femtoliter Droplets

Cryo-scanning electron microscopy (cryo-SEM) in combination with freeze-fracture
are well established methods to observe the content of droplets.|174, 189] However,
some specimen, such as lipid bilayer, require even higher resolutions as possible
with SEM. An alternative, offering the necessary resolution, is cryo-transmission
electron microscopy (cryo-TEM).[348] However, sample preparation protocols for
cryo-TEM are mainly adapted for observing cell or tissue samples.|[349] As droplets
are surrounded by a continuous oil phase, these protocols can’t be applied. Never-
theless, a collaborator agreed to try measure microfluidic droplets with a cryo-TEM
microscope, if they were as small as 2 um. Creating droplets in these dimensions
requires a special approach, due to the increased hydrodynamic resistance of small
channel (see section 3.1.4). Therefore the dropsplitter design, introduced in sec-

3The amount of droplets should not exceed a monolayer in the finished chamber — less is
preferable.
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8. Droplet-Based Microfluidics Methods

tion 3.2.4, was adapted for these requirements. The final device is shown in figure
8.6. The concept of the published designs were adjusted to the requirements to
produce minuscule droplets. The author is not aware of any publication presenting
microfluidic droplets with these small dimensions.
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(b)

Figure 8.6.: Dropsplitter design with six bifurcations. (a) Drawing of the structure with the main
features enlarged. (b) Brightfield Image of the dropsplitter in action.

To produce droplets in these dimensions the cross-section of the channels has to
be reduced accordingly. Therefore, a photolithography protocol for a structure
height of 5 — 6 um was devised. Reducing the structure height any further, causes
problems in the soft-lithography process. Because the molds are made of the soft
polymer PDMS (see section 8.3.4), the ceiling of channels with a low width to
height radio tends to collapse and bond to the glass slide. This effect can be
partially compensated with pillar structures, as present in figure 8.6a. Yet at the
same time, the channel width should be as large as possible to reduce hydraulic
resistance.

Moreover, due to the elastic nature of the PDMS channels within the mold can
be considerably finer, than PDMS pillars. Small pillars with high aspect ratios
often snap loose when the mold is removed from the master. A fact that led to
the development of the filter structure used in this device. The design was crucial
to preserve functionality of the device during droplet production. The filter struc-
ture’s finest pores are 2 um in diameter. The pillars in between measure 20 pm
in their smallest dimension. The lowest width found to work. The same design
principle was applied to the splitting structure, which uses identical dimensions.
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9. dsGUV

Due to the limitations of GUVs as a protocell model system, a keystone of this
thesis was the development of a novel combined stable lipid-droplet model system,
that combines many of the advantages of droplet-based microfluidics with the high
grade of biocompatibility of lipid membranes. The following sections will provide
the requirements necessary to create a dsGUV within the droplets. Towards this
goal two distinct pathways were developed. The formation of dsGUVs starts by
encapsulating aqueous solution containing liposomes within droplets. A schematic
representation of dsGUVs is shown in figure 9.1. The key factors for the efficient
formation of SLBs were adapted to mediate the creation of a lipid bilayer at the
droplet interface. As the droplet volume only offers a finite reservoir, considerations
about the necessary lipid concentrations in encapsulated solution are described in
section 9.1.1. Knowing the right concentration, SUVs and GUVs can be formed,
as described in sections 9.1.2 and 9.1.3, respectively.
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Figure 9.1.: (a) Schematic representation of a dsGUVs. Water-in-oil droplets are stabilized
in a continuous oil phase by a triblock-copolymer in hairpin conformation. Optionally diblock-
copolymer-linked gold nanoparticles can be added to allow functionalization of the droplet in-
terface. A lipid bilayer is supported by the polymer leaflet at the oil-water-interface. (b) and
(c) present chemical structures of PFPE-PEG-PFPE triblock-copolymer and PFPE-PEG-Gold
diblock-copolymer surfactants, respectively. Taken from [134]




9. dsGUV

9.1. Lipid Vesicle Preparation

The start of every dsGUV experiment is the preparation of lipids. Depending on
the intended droplet size, the right concentration has to be chosen. The theoretical
concentration will be derived in section 9.1.1. For most experiments SUVs prepared
according to section 9.1.2 were used. But in some experiments also relied on the
formation of GUVs as described in section 9.1.3.

9.1.1. Lipid Concentration

Droplet-based microfluidics allows a high-throughput generation of mono-disperse
droplets (diameter variance < 1%) with precise volume and surface area.[126]
Therefore, it is possible to estimate the necessary amount of lipid required for
formation of continuous lipid bilayer at the droplet surface. Because droplets are
spherical, simple arithmetic gives for the necessary lipid concentration needed to
cover the droplet by a bilayer

6

Clz’p - (TNAAlip)

(9.1)
where 7 is the droplet radius, Ay, is the area per lipid in lipid membrane and
N4 is the Avogadro constant. The difference in the radii of the inner and outer
membrane leaflet was ignored because the radius of a droplet is two orders of mag-
nitude larger than the thickness of a lipid layer. Therefore, the error is negligible.
The surface area of common phospholipids in a membrane, e.g. DOPC, is A, ~
0. 7nm?.|350] Applying this value in equation 9.1, the following lipid concentra-
tions for different droplet dimensions cane be derived: Cj;(r = 20um) = 712pM;
Clip(r = 50um) = 285uM and; Cy,(r = T5um) = 190pM. These concentrations
are essential when preparing dsGUVs to assure full bilayer coverage.

Working with concentrations lower than the critical value will result in a partial
lipid bilayer formation (see section 4.1). Concentrations higher than the threshold
will lead to accumulation of liposomes in the aqueous phase and eventual diffusion
into the oil phase.[178] For lipid concentrations as high as the surfactant concen-
trations lipids will compete to accumulate at the droplet interface after droplet
formation and delay the accretion of the stabilizing surfactant layer. Therefore,
special droplet production devices were designed to prevent coalescence — by keep-
ing the droplets spaced in single file in a long and thin channel, surfactants were
given sufficient time to aggregate at the interface.
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9.1. Lipid Vesicle Preparation

9.1.2. Extruding Liposomes

Extrutsion is a standard method to produce monodisperse vesciles in short time
(see section 4.2.1). For this work SUVs were created according to protocols re-
ported earlier.[351, 352| In brief, lipids were dissolved in pure chloroform, mixed at
desired composition and concentration and dried under a gentle stream of nitrogen.
To remove traces of the solvent, lipids were kept in vacuum for roughly 1 hour.
The dried lipids were then hydrated by adding the desired buffer and suspended
by pipetting them up and down. The solution was vortexed for one hour. Note,
often it was more practical to dissolve a multiple of the target concentration in
pure water and combine it with a concentrated buffer for each experiment.

SUVs size was homogenized and multilamellar vesicles were broken up by extrud-
ing the solution 9x times through a polycarbonate filter (Whatman, Germany)
with a pore size of 50 nm using an extruder (Avanti Polar Lipids, USA). The mean
SUVs diameter distribution was determined to be 100 + 10 nm using DLS. So-
lutions containing SUVs were stored at 4°C for not longer than 48 hours or used
immediately after production.

Following is a list of lipid compositions used for SUV creation in this thesis:

1. DOPC:DOPE:DOPS 8:1:1, including 1% 4-(2-(3,6-diamino-4,5-disulfo-3H-
xanthen-9-yl) - N-methylbenzamido) butanoic acid (ATTO488)-DOPE,

2. DOPC:DOPE:DOPS 8:1:1, including 1% rhodamine B-labeled DOPE,
3. egg PC:egg PG 1:1, including 1% rhodamine B-labeled DOPE,

4. egg PC:egg PG, including 1% ATTO0488-DOPE,

5. DOPC:DOPS 9:1, including 1% ATTO0488-DOPE.

6. DOPC:1,2-dioleoyl-sn-glycero-3- [(N-(5-amino-1-carboxypentyl) iminodiacetic
acid) succinyl] (DGS-NTA)(Ni), 9:1.

7. DOPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and choles-
terol, 4:4:2, including 1% ATT0488-DOPE.

9.1.3. Electroformation of GUVs

Electroformation is one of the standard techniques used to form lipid vesicles in
the size of cells (see section 4.2.2). For this work GUVs were formed using the
protocol as described by Herold et al.[353] The steps are sketched in figure 9.2.
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9. dsGUV

In brief, lipid mixtures at the desired concentration (from 1mM to 5mM) were
dissolved in pure chloroform and 10 pul to 20 ul of solution was spread onto the cun-
ducting surface of two ITO coated glasses (Sigma-Aldrich, Germany). Following
chloroform evaporation, the electroformation cell was assembled. Therefore, the
two I'TO coated glasses were placed facing each other with their respective conduc-
tive sides. To avoid direct contact two Teflon spacers (1 mm thickness) were used.
Copper tape (3M, USA) was used to connect the conducting indium alloy layer to
a signal generator (RS Components, Germany). Subsequently, the chamber was
filled with Milli-Q water (Millipore filtered) and sealed with two-component glue
(Twinsil Picodent GmbH, Germany). An alternating electrical potential of 10 H z
at 1V amplitude was applied for 2 hours to form GUVs. Finally the GUVs were
collected using a syringe, stored at 4°C and used for further experiments within
48 hours.

Figure 9.2.: Electroformation assembly for the formation of GUVs. (1) A Teflon spacer and
copper tape is attached to two ITO-coated glass slides. The lipid- chloroform solution is applied
and spread with the flat side of the pipet tip. (2) A two-component glue is applied in a U-shape
to one of the glass slides. Both glass slides are pressed against each other. (3) The cavity is

filled with pure water. (4) The chamber is sealed with two-component glue and an alternating
current with f 10 Hz at 1V is applied for 2 hours.
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9.2. GFP-labeling of Gold-linked Surfactants and DGS-NTA Lipids

9.2. GFP-labeling of Gold-linked Surfactants and
DGS-NTA Lipids

As there were no fluorescently-labeled microfluidic surfactants available when this
project was started, the gold linked surfactant was functionalized with green fluo-
rescent protein (GFP). hexa histidine-tagged (His6-tagged) GFP was a gift from S.
Gardia (Addgene, plasmid #29663). The Protein was expressed in Escherichia coli
using standard protocols and purified by Ni-Nitrilotriacetic acid (NTA) chromatog-
raphy. His6-tagged GFP was bound to gold-linked surfactants via Ni-NTA-thiol
according to the protocol of Platzman et al. with the exception that purified Milli-
Q water (Millipore filtered) was used as aqueous phase instead of PBS buffer.[174]

To achieve a comparable system His6-tagged GFP was also linked to the lipid
bilayer of dsGUVs Therefore NiCly (9 ul, 100mM, Fluka, Germany) was mixed
with water solution of DGS-NTA lipids (300 ul, 1 mM) and stirred for 20 minutes.
SUVs were produced according to the protocol in section 9.1.2 of DOPC:DGS-
NTA(Ni), 9:1 (300 uM) were encapsulated into microfluidic droplets (100um di-
ameter). Following encapsulation, water solution containing His6-tagged GFP
(10 uM) and MgCly (10mAM) was pico-injected into these droplets in order to
form GFP-functionalized dsGUVs.

9.3. Fluorescence Intensity Analysis of dsGUVs

A key question, that arose during the characterization of dsGUVs, was related to
the structure of the lipid layer (partial lipid bilayer, as describe in section 4.1, a
lipid bilayer, or a lipid multilayer). Therefore, an important set of experiments
was investigating the dependency of the encapsulated concentration of lipids with
the fluorescence intensity of the resulting dsGUVs. Here the lipid concentration
was varied from a theoretical undersaturation to an oversaturation (see section
9.1.1). The former only allowed the formation of a partial lipid bilayer, the latter
of a multilayer.

Moreover, the fluorescence intensity of dsGUVs formed with the theoretically cor-
rect concentration of encapsulated lipids was compared to the fluorescence intensity
of freestandin GUVs. To keep parameters as comparable as possible, GUVs were
encapsulated into droplets before the measurement.

However, the refractive index difference between the aqueous droplets and the oil
environment causes refraction and diffraction. Which in turn raises some concerns
regarding the values derived from such microscope observations. To compare the
membrane fluorescence intensity of encapsulated GUVs to that of dsGUVs of the
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9. dsGUV
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Figure 9.3.: (a) and (b) Composite of phase-contrast and fluorescence images of encapsulated
GUVs and dsGUVs (egg PC:egg PG, 9:1, 0.5 % ATTO488-DOPE), respectively. (c) and (d)
Fluorescence intensity profiles along the indicated lines as presented in (a) and (b), respectively.
Adapted from Frohnmayer et al.[134]

same lipid composition (egg PC:egg PG, 9:1, including 0.5 % ATTO488-DOPE),
GUVs were encapsulated into the droplets and dsGUVs were produced. Both
types of droplets were evaluated back-to-back preserving identical settings with a
Leica SP5 confocal microscope (Leica, Germany) equipped with an argon laser as
well as a white-light laser, using a 63x oil objective (HCX PL APO 63x/1.40-0.60,
Leica, Germany), ATTO488 was exited at 488 nm, with the argon laser and the
detection window was set to 498 — 540nm. The pinhole for data acquisition was
set to 1 Airy unit, which corresponds to the diameter of the Airy disk of 96 nm
and 0.9nm thickness of the optical section. More then twenty intensity profiles
were extracted for each droplet type using Fiji/Imagel.
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9.3. Fluorescence Intensity Analysis of dsGUVs

From both, microscope images as well as evaluated data in figure 9.3, a light blur
in the fluorescence from GUVs close to the droplet interface can be observed. This
is caused by refraction and diffraction at the water-oil interface due to a differ-
ence in the refractive indices of water (1.333) and FC-40 oil (1.290). This effect
causes a widening of the intensity profile as shown in figure 9.3 and a reduction
of the fluorescence intensity amplitude of the GUV part close to the droplet inter-
face. Therefore, to compare fluorescence intensities, a Gaussian function with a
background correction was fitted to the intensity profiles using a nonlinear least-
square fit (MATLAB R2015a SP1, MathWorks, USA). The MATLAB script used
for evaluation is attached in the appendix I.3.
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10. FRAP

For the understanding of any biological system, diffusion is a crucial factor.[354—
356] Here it is investigated to derive information about the conformation of the
lipid layer and other molecules confined to the droplet interface.[357] A layer of
intact liposomes adhered to the interface or lipid interwoven with the microfluidic
surfactant would have a significantly lower diffusion speed, than lipids within a
lipid bilayer. Towards this goal, the mobility of fluorescently labelled lipids and
other molecules confined to the interface of the nano-structured droplets were in-
vestigated.

fluorescence recovery after photobleaching (FRAP) was chosen as technique for
these measurements as the method is well established. Data was collected using
a Leica SP5 confocal microscope (Leica, Germany) equipped with an argon laser
as well as a white-light laser. Images were recorded at a constant temperature of
25°C using a 63x oil objective (HCX PL APO 63x/1.40-0.60, Leica, Germany).
The pinhole for data acquisition was set to 1 Airy unit, which corresponds to the
diameter of the Airy disk of 96 nm and 0.9 nm thickness of the optical section.
The focus was set on the lower droplet base as shown in figure 10.1.

_coverslip |

FC-40 oil
[coverslip

\ p=1855 kg/m?

[\

Figure 10.1.: Schematical representation of the experimental FRAP setup. As the density of the
droplets content(pn,, = 1000kg/m?) is substantially lower than the density of the surrounding
FC-40 oil (prc—40 = 1855kg/m3) the droplets aggregate at the upper cover slide of the observa-
tion chamber (see section 8.6). The focus was adjusted to the bottom of the droplets to exclude
any interactions with the glass surface.



10. FRAP

A circular spot with a diameter of 5um was selected as the bleaching spot. The
chronological sequence in each FRAP experiment consisted of 10 pre-bleaching
images, followed by 2 to 10 bleach pulses at the bleaching most of the fluorescent
signal and finally 50 to 200 post-bleaching images to record the fluorescence recov-
ery at various time intervals. The time intervals and frame number were chosen
matching the recovery to near convergence of the observed sample. Figure 10.2
shows the recovery for three different samples. FRAP analysis followed a protocol
proposed by Axelrod et al. (1976) and Soumpasis (1983).|358, 359]

Recovery Time [s]
(a) Pre-bleach 20.00 50.00 100.00

; 0.10 1.00 2.00 4.00 10.00
ATTO 488 labeled lipids
b o 1oum
iiikeh - . . . . . . . .

Figure 10.2.: Example images from FRAP experiments of the mobility of different interface
components of droplets/dsGUVs. FRAP was performed on (a) fluorescently labeled lipids (b)
droplets containing GFP-linked surfactants and (c) GFP linked lipids. The bleached area is
circled in the pre-bleached frame and the recovery time (seconds after bleaching completion) is
indicated to the top of the fluorescence recovery frames. Adapted from Frohnmayer et al.[134]

(b)

To correct for background noise Ip,, the average fluorescence background signal
was measured in the oil phase using the same settings as for FRAP measurements.
The derived value of I;, was subtracted from all measured values. Mean intensity
values for the bleaching spot I(t) and the whole droplet base T'(t) were extracted.
A sample set of raw data is shown in figure 10.3a. I(¢) and T'(t) were normalized
by the averages of the prebleaching values, I, and T};,. To correct for photofading,
the intensities of the bleached spot were multiplied with the reciprocal, normal-
ized intensities of the droplet base, T'(t). Thus, the normalized and corrected
intensities, I,,,., were calculated according to function

I(t) = Doy Ty — Iy

Lyor(t) = .
) Tpp = Tng T(t) — Ty

(10.1)

To evaluate the kinetics of the fluorescence recovery through diffusion, aa expo-
nential recovery function

f(t) = a(l —exp(At)), (10.2)

was fitted using a robust nonlinear least-square method to the corrected data I,,,,
using MATLAB R2015a SP1 (MathWorks, USA). Figure 10.3b shows a sample set
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of normalized data including the fitted curve. The resulting values of the coeffi-
cient A were then used to calculate the half-recovery time 75 for each bleaching

experiment,

log(0.5
7'1/2 = —¥ (103)

The diffusion coefficient D is related to the half-recovery time 71/, via the square
radius of the bleaching spot, assuming a Gaussian bleaching profile and a nu-

merically derived correction factor 0.32 for the Gaussian shape of the bleaching

spot!,[358, 359
2

r
D =0.32—. (10.4)
T1/2
The average diffusion coefficient for each experiment and its standard error were
calculated from at least 20 measurements measured on different droplets. The
MATLARB script used for this analysis is attached in the appendix, see I.1.
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Figure 10.3.: Sample FRAP data of ATTO488-DOPE set with evaluation. (a) Here the average
fluorescence intensity extracted from different spots of a FRAP experiment is plotted. The blue
dots show the fluorescence intensity at the bleaching spot and the red crosses the average
fluorescence intensity of the whole droplet area in focus. Before analysis the data points were
corrected for background. Furthermore the recovery data is corrected for photofading with the
reciprocal normalized intensity of the corresponding datapoint from the whole droplet. The
fluorophore in this experiment, ATTO488, is very stable against photobleaching. A red line at
the hight of the first post-bleaching datapoint is given as a reference. (b) The corrected and
normalized data points are presented with the corresponding fit.

The quality of the absolute diffusion coefficients can be further improved by taking
the diffusion during the bleaching into account.[360-362] Therefore an intensity
profile across the bleaching spot was taken from the first post-bleaching image.

!The Gaussian shape of the bleaching spot is caused by diffusion during the bleaching process.
The correction factor for a perfect shaped rectangular bleaching spot would be 0. 25, which nicely
matches equation 10.5 for r,, = r,
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10. FRAP

By fitting a Gaussian distribution an effective radius r. can be computed. The
corrected version of equation 10.4 is defined as
e (10.5)

Do = )
co 87’1/2

where 7, is the nominal radius of the bleaching spot. A MATLAB script to derive
the effective radius for a set of measurements is provided in the Appendix I1.2.
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11. Approaches for Recovery of GUVs
from dsGUV

The greatly improved stability and manipulability of dsGUVs over GUVs comes
at the cost of confining the lipid vesicle to a microfluidic droplet. Although there
is the possibility to functionalize the inner surfactant interface of the droplet, the
result a major restrictions to study protocell-surface interactions. Therefore, it
was investigated if dsGUVs could be recovered from the droplets encapsulating
them.

In literature multiple methods have been proposed to recover the content of mi-
crofluidic droplets. The content is usually cells or products from reactions per-
formed within the droplets. Methods using electrocoalescence[363, 364] were ex-
cluded from this search, as strong electrical fields not only destabilize microfluidic
surfactant sheets but also lipid bilayers. Therefore, these methods are unfit for
GUYV recovery. Another common approach to recover the content of droplets is
the use of destabilizing surfactants to break the emulsion.[174, 343, 344| This more
gentle method was adapted and optimized for the recovery of GUVs. The resulting
methods are described in more details in section 11.1 for bulk recovery and section
11.2 for a microfluidic approach.

First, a bulk approach which allows recovery of large numbers in short time will be
described in section 11.1. However the bulk approach makes monitoring of interme-
diate steps difficult and is mainly restricted to viewing the end result. Therefore,
a microfluidic chip was designed to allow observation of recovery one droplet at a
time. This is immensly important as all proofs of lipid bilayer formation in dsGUV
thus far have been indirect. Here, recording recovery in real time additionally pro-
vides a more sound basis for the claims made in this thesis concerning the nature
of dsGUVs. The design and function of the newly designed chip will be explained
in section 11.2.

Additionally, due to the shear forces acting on the GUV during recovery, not
all lipid compositions forming dsGUVs were persistent enough to survive the pro-
cess. Hence, a set of different lipids compositions were investigated fit to survive
the recovery process. An overview of working compositions will be given in section
11.4.



11. Approaches for Recovery of GUVs from dsGUV

The results presented here are were achieved in collaboration with Marian Weiss
and Lucia Benk. They represent an early stage development. Presented here is
a proof of concept. Therefore, at this point applicability of the method can be
proven. Follow-on projects will focus on the optimization of this approach.

11.1. Bulk Recovery

Bulk deemulsification is probably the most intuitive approach to recover the con-
tent of droplets. As surfactants are required to prevent droplets from coalescing
(see section 3.2.2), exchanging long surfactants with short surfactants reverses
this effect. In this thesis two such surfactants were used, PFO-MEG,[343, 344]
and PFO-TEG.|[343, 344] Their chemical structure is provided in further detail in
section 8.1.4. The steps to achieve bulk recovery are sketched in figure 11.1.

/

0000
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(a) Droplets (b) Addition of Buffer (¢) Addition of (d) Final Product:
on top of the vial Deemulsifier recovered GUVs

Figure 11.1.: Sketch of the experimental steps of bulk recovery of GUV from dsGUV. (a)
Droplets are stored in a reaction tube after production. Due to the lower density of the aqueous
medium compared to FC-40 oil the droplets float on top. (b) 100 ul of buffer is added to the
droplet layer. The encapsulated and added buffer should either be the same or matched for
osmotic balance, otherwise the stability of recovered GUV might be reduced.[216, 365-367] (c)
100 pl of deemulsifying surfactant solution are dropwise dripped on the buffer droplet. (d) After
a few minutes the destabilizing surfactant has deemulsified the mixture, resulting in an aqueous
phase containing in GUV on top and oil at the bottom. Centrifugation at low velocities improves
the separation of the two phases.
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11.2. The Droplet-Recovery-Chip

First, droplets are generated and collected in a reaction tube. Due to the density
difference between oil and aqueous medium the droplets float to the top of the vial
and form a dense layer. A drop of 100 ul of buffer is placed in one large drop in the
center of the droplet layer. It is preferable to use the identical aqueous buffer as
used in droplet production to reduce osmotic pressure. It should also be possible
to match osmotic concentrations.|216, 365-367|

Next, a 20w0l% solution of PFO-MEG disolved in FC-40 is gently dripped on
top of the buffer drop. The solution should slowly trickle down on the interface
between the drop and the droplet solution. Tilting the tube to increase the inter-
face area and slowing rotating it about it’s longitudinal axis improves the results.
The whole process of deemulsification takes less then five minutes. Residual oil
drops in the aqueous phase can be centrifuged down by briefly spinning the tube at
low speed. The aqueous solution containing GUV can be carefully removed with
a pipet and immediately used for observation or experiments.

11.2. The Droplet-Recovery-Chip

To proof that dsGUVs contain a fully formed GUV, recovery of the latter is a
credible approach, especially, if the extraction process can be observed. Addition-
ally, it opens up a viable way to optimize the parameters necessary to get a high
recovery yield. Findings acquired with this device can in turn be used to improve
bulk recovery. The microfluidic chip designed for this purpose combines functional
taken from other designs and arranges them to fit this new purpose. The design
and the functional units are shown in figure 11.2. The design was developed by
Marian Weiss.

Using a microfluidic flow control system (MFCS-EZ, Fluigent, France) flows in the
chips were controlled by adjusting the pressure on all inlet channels. As stress on
the droplets, e.g. shear forces, were to be kept at a minimum, all pressures were
chosen below 20 mbar with minor corrections for individual chips and experimental
runs. Additionally, the channels were produced to exceed the droplet hight with
45 pm.

After reinjecting preformed droplets into the recovery chip, they passed a droplet
seperation T-junction, figure 11.2b. This T-junction is identical to the structure
used in pico-injection devices as described in section 3.2.3.[106] In difference to the
pico-injection device, here the TRI7000 is replaced by destabilizing PFO-MEG, or
PFO-TEG surfactants in the spacing oil. At similar pressure on both channels the
spacing channel displaces roughly 80 % to 90 % of the oil from the droplet channel.
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11. Approaches for Recovery of GUVs from dsGUV
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Figure 11.2.: Microfluidic device for recovery of droplet content and its functional units. (a)
The whole design of the device with the droplet injection channel marked green, the channel
containing oil with the destabilizing surfactant in orange and the aqueous channel in blue. (b)
Microscope image of the spacing T-junction. The displacement of each phase without droplets is
indicated in a colored overlay — orange for oil containing the destabilizing surfactant and green
for oil from the reinjection channel. (c) Two microscope images of the droplet trapping and
recovery area merged. Pictures were taken 5ms appart and show a droplet right before and
after fusion. Pillars above and below the droplet carrying channel prevent droplets from entering
the adjecent channels. In absence of droplets in the trapping area, pressure on the aqueous
channel is adjusted, that there is no pressure gradient at the interface between oil and aqueous
channels.

The low flow speed along the channel carrying the droplets to the next functional
unit, gives the destabilizing surfactants time to replace their stable counterparts.
The droplet carrying channel ends in a trapping structure inspired by previously
published structures.[186, 368-371] This subunit is shown in figure 11.2c. Here
four small slits on both sides connect the main channel with two adjacent chan-
nels. The width of these slits were chosen to prevent droplets from entering due to
the Laplace pressure.[372, 373| Thus allowing only the oil phase to flow to the side
channels. Finally the droplet carrying channel ends in a wide orthogonal channel
carrying aqueous solution. The pressure on the aqueous channel is adjusted so the
pressure difference at the interface to the oil channel is zero, Ap = 0, when no
droplet is in the trapping zone. Therefore, with no droplet blocking the slits there
is no net flow between these oil and aqueous channel.
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11.3. Observation of recovered GUVs

When a droplet enters the trapping zone, it blocks the slits on both sides. Thus,
reducing the channel total cross section connecting the main and adjacent oil
channels. According to Hagen-Poiseuille equation, this increases the pressure (see
section 3.1). As the droplet traverses along the trapping area, it passes pairs of
slits, opening them up again for oil flow. With each open pair of slits the channel
cross section for the oil to flow to the adjacent channels increases, subsequently
decreasing pressure pushing the droplet along the channel. The droplet decelerates
as it approaches the oil-water interface. Provided a sufficient concentration of
destabilizing surfactant, the residual surfactant layer peels of the droplet at contact
with the water phase and its content is ejected into the water phase.

11.3. Observation of recovered GUVs

Recovered GUV, especially those extracted through bulk recovery, can be observed
in chambers constructed as described in section 8.6. GUVs are mechanically un-
stable in comparison to droplets and tend to rupture when brought into contact
with bare glass surfaces. Therefore, the glass slides were passivated with bovine
serum albumin (BSA), before assembling the chamber.

A dense surface coating was achieved by incubating oxigen plasma-cleaned glass
slides for 2 hours in 10 mg/ml BSA (SERVA, Germany) dissolved in PBS (Gibco,
USA) on a see-saw rocker. Next, the glass slides were rinsed twice with PBS
and washed in PBS for 5 minutes. The washing process was repeated with HyO.
Finally the glass slides were blow-dried with nitrogen.

11.4. Lipid Compositions for Recovery

Not all lipid compositions forming dsGUV appear to form lipid bilayers durable
enough to survive the forces during the recovery process. Follow-on Projects will
further investigate the necessary conditions and improve the yield of recovered
GUV. Lipid compositions were screened by Lucia Benk.

At this point a few general trends for the stability of lipid bilayers have been iden-
tified. In accordance with published observations,[374-376] 10 mol% to 20 mol%
cholesterol (C8667, Sigma-Aldrich, USA) improve the stability of membranes.
GUV consisting of lipid compositions exceeding net 10 mol% of negatively charged
lipids could not be recovered. There are also indications that using part POPC
instead of DOPC enhances membrane durability.
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11. Approaches for Recovery of GUVs from dsGUV

The main lipid composition for the experiments presented in this work a molar ratio
of 4:4:2 of DOPC, POPC (both Avanti Polar Lipids, USA) and cholesterol. For
recovery experiments 1 mM of SUVs were prepared through extrusion, according
to the protocol described in section 9.1.2.

11.5. Recovery of Integrin-GUVs

For the purpose of recovering GUVs containing reconstituted integrin a3, the
protocol for detergent removal presented in section 6.5 was modified. Instead of a
50mol% : 50mol% of egg PC and egg PG lipid mixture, pure egg PC was used.
Note, the major constituent in egg PC is POPC.! Thus omitting lipids with a
negative net charge completely. The rest of the protocol was kept as described
earlier.

A second solution of liposomes was produced through extrusion as described in
section 9.1.2 with a total concentration of 1.8 uM. The lipid composition for re-
covery listed in section 11.4 was changed to a molar ratio of 4:3:2 of DOPC, POPC
and cholesterol.

For droplet production both liposome solutions were mixed in a 9:1 ratio with
a total concentration of 1 mM in activation buffer (7.1) resulting in dsGUV con-
sisting of lipid composition with a molar ratio of 4:4:2 of DOPC, POPC/egg PC
and cholesterol, closely resembling the composition described in section 11.4. The
buffer used was the activation buffer (see section 7.1). The same buffer was also
used for the QCM-D experiments.

!For more information see: https://avantilipids.com/product/840051/

90


https://avantilipids.com/product/840051/

12. Finite Element Simulations

Finite element method (FEM) is considered as a well established and convenient
technique for solving complex problems in science and technology. It allows to
approximate boundary value problems of differential equations which are otherwise
extremely complicated to solve or generally unsolvable. The first step of the FEM is
the discretization of the continuous domain of the problem into small subdomains,
so called “finite” elements, interconnected at points, nodes, common to two or more
subdomains. Several approaches can be used to transform the physical formulation
of the problem to its finite element discrete analogue. For a physical problem
described by a differential equation the most popular method of its finite element
formulation is the Galerkin method. If the physical problem is a minimization of
a functional then variational formulation of the finite element equations should
be used. Direct and iterative methods can be used for solution. The FEM solves
values for these nodal points, values inside the elements are interpolated using
the nodal points. Many FEM programs also include a post processing system,
which interpolates values to display the solution graphically and derive additional
parameters.

12.1. Model Design

COMSOL Multiphysics 5.2 (COMSOL AB, Sweden) was used for numerical com-
putations in this thesis. A model to approximate the electric fields generated in a
pico-injection device was set up. First the structures from 2D vector files were re-
duced to the relevant parts (see section 8.3.1) and imported into COMSOL. There
they were placed on a work plane and extruded to the height of the corresponding
photolithography process (see section 8.3.2). The geometry was complemented by
adding structures of the glass cover slides, the PDMS mold and a surrounding air
sphere and is shown in figure 12.1a. Values for the relative permittivity e, = €/gg
for boronsilicate ¢, = 4.6 (Schott, Germany), PDMS ¢, = 2.75 (Corning, USA)
and FC-40 ¢, = 1.9 (3M, USA) were taken from the official product information.
Droplets of different volumes were modeled to fit the volume of a spherical droplet
V(d=40pu) = 33.5pl, or V(d = 100 1) = 524pl depending on the structure. Their
relative permittivity was set to an adjustable parameter, with a standard value of
e = 80.1 (HyO at 20°C).



12. Finite Element Simulations

The meshing setting was set to “physics controlled” and an extremely fine grid.
The mesh of the most important structures is shown in figure 12.1b. In the physical
model, the upstream electrode was defined to be a ground and the downstream
electrode was defined to be the terminal. The voltage on the potential was set to
1V in all models. As the electric field is linearly depending on the potential, field
strength for other voltages can thus be easily calculated. All plots of electric fields
show the normalized electric field in SI units V/m. For electroporation experiments
the values are often given in kV/em.[377] So for comparison a correction factor
of 1V/m = 107°kV/cm has to be applied. After completing the setup of the
model the electrostatic field was computed. The capacitance of the system and
the droplet volume were derived from the simulated results. A parametric sweep of
the radius of the air sphere was performed to find the optimal boundary conditions
and minimize errors due to meshing.

12.1.1. Radius of the Air Sphere and Boundary Conditions

As electric charges cause wide ranging fields, the size of the modeled volume and
the boundary conditions are important for the quality of a FEM simulation of
these fields. However, as the FEM approach quantifies the volume into finite ele-
ments, the meshing of these nodes also influences the solution. As the number of
nodes is limited by the computing power, the simulated volume can’t be extended
indefinitely or nodes won’t be able to render the geometry. If the mesh goes below
a minimal domain size, one charge might be split over two nodes, what causes
artifacts of auto-repulsion. Modern meshing algorithms take many of these effects
into account. However, errors still occur.

Therefore, the same geometry was simulated over a range of different radii of
the air sphere. Two parameters derived from the model were compared for the
results, the volume of the droplet and the global capacitance of the system. The
results are shown in figure 12.1.

Both charge and volume show inconsistencies below a radius of 225 mm. To keep
the mesh of the important structures as fine as possible, the radius of the air sphere
was set to 250 mm. The boundary condition for the air sphere surface was tested
with floating potential and zero charge. Simulations yielded the same results for
the capacitance independently of the setting. The boundary condition was then
set to zero charge.
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12.1. Model Design
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Figure 12.1.: Setup of the FEM model to compute electric fields in microfluidic devices. (a)
shows a rendering of the overall geometry and (b) the mesh of the central structure. The graphs
show (c) the capacitance of the simulated geometry plotted against the radius of the air sphere
and (d) the volume of the droplet plotted against the radius of the air sphere.

12.1.2. Electrode Design

During the design of the pico-injection structure and following projects the ques-
tion of the ideal electrode design was raised. The field should be as homogeneously
as possible, while keeping the production of the chip simple. Publications con-
taining microfluidic chips with electrodes show a variety of different designs.[106,
108] Moreover, there is also a variety of techniques used to manufacture the elec-
trodes.[107, 139, 378, 379| The technique of choice in this study is filling channels
with a low melting temperature indium alloy (see section 8.5). This was done
with little effort, but requires a distance of minimum 10 um between electrode and
fluidic channels, that depends on structure height.

Different designs of electrodes were sketched and imported into the model. The

electric field was computed for a each structure. The field distribution was ex-
tracted from a droplet in the center of the electrodes.
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12. Finite Element Simulations

12.2. Electric Field Exposure

The microfluidic droplets are not only used in the field of SB, the technology is
also used for experiments with living cells.[137, 143, 380] It has been shown that
cells can be cultured in microfluidic droplets for multiple days.[174, 381] How-
ever, the exposure to electric fields, such as required in a pico-injection device
could potentially harm cells.[377] At the same time this technology can be used
for transfection of the cells.|380, 382—-384|

-iln -ill -ill -ill -ill
(a) —200 um (b) —100 um (c) O um (d) 100 um (e) 200 um

Figure 12.2.: Electric field in the x-y plane at the half the channel height simulated for droplets
in various positions, ranging from —200 um to 200 pum in 100 pwm steps.

To asses the exposure of cells to electric field, the droplet position was parametrized.
The electric field was computed for droplet positions from —200 pm to +240 um in
5 pum steps in relation to the center of the electrodes. For each position the electric
field strength along the main axes of the droplets were exported. In connection
with the flow speed, derived from recorded high speed camera footage, this can be
used to estimate the exposure to the electric field.

12.3. Electric Droplet Sensing

Previous studies have presented methods to distinguish the content of droplets
through by determining the relative permittivity with capacitor in proximity to the
channels.[139, 378, 379] Therefore, it was interesting if it could also be possible to
detect if a droplet contained a cell. Maybe if it would even be possible to distinguish
the number of cells. Here it should be noted, that the electric permittivity of
cells is a complex, nonlinear problem.|[385-387] Moreover, the electric coefficient
of cells is highly frequency dependent. However, the model currently does an
electrostatic computation. Furthermore, the ion concentration, which is part of
every cell medium, is currently not accounted for in this model. The premise was,
to get an idea if the change in capacitance was strong enough to be measurable.
Here, the capacitive reactance X¢ of the capacitor in the AC current is important,

Xc = (12.1)
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12.3. Electric Droplet Sensing

where f is the frequency of the electric potential and C' is the capacitance. With
both increasing frequency and capacitance the electric resistance of the circuit
decreases in a reciprocal dependency. Therefore, a change in the content of a
droplet can have a measurable effect on the electric current. This simulation was
run to estimate if a setup using the current electrode type could be sensitive enough
to be used as a sensor.
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13. “Classical” Liposomes

This chapter will sumarize the results obtained when studying cellular adhesion
with a traditional liposome model system. The SUV were produced using detergent
removal. This method allowed the reconstitution of integrin a;, 33 into liposomes.
Binding kinetics were measured with the label free QCM-D method. In section
13.1 the stability of liposomes with and without reconstituted integrin a5 due
to unspecifical binding to uncoated SiO, crystals is studied. This is essential as
the stability of liposomes was an ongoing topic throughout this work. Section
13.2 covers the binding of integrin-liposomes, liposomes and integrin to the ECM
protein covered QCM-D crystals. In comparison to previously reported adhesion
model systems using biotin-straptavidin interactions, this is a step towards closer
mimicry of biological systems.|328, 388, 389] Section 13.3 discusses two methods
of controlling adhesion. First, RGD containing peptides were used to mediate un-
binding (subsection 13.3.1). Secondly, various integrin concentrations were used to
tweak the binding affinity of integrin-liposomes (subsection 13.3.2).The relevance
of these findings will be discussed in section 13.4. Buffers used in this chapter are
listed in materials and methods, section 7.1.

13.1. Binding on uncoated SiO, Crystals

Pevious studies observed formation of SLB upon the binding of liposomes to un-
coated quartz crystals by rupture of the liposomes. This indicates a mechanical
instability of the liposomes.|328, 337| Integrins, like many other proteins and lipids,
were also found to unspecifically bind to quartz crystals.[207, 337, 390-392| There-
fore, the interaction of integrin-liposomes and pure liposomes with uncoated SiO,
crystals were studied over 5 hours and 40 minutes to analyze unspecific binding
effects and the respective liposome stability as shown in figure 13.1.

Directly after injection both, liposomes and integrin-liposomes, showed a strong
binding affinity to the uncoated crystals as indicated by the frequency decrease
and dissipation increase directly after introducing the samples to the measurement
chamber. After approximately 30 minutes the resonance frequency drop of the
pure liposome channel reached a minimum of AF,,,, = —56.5 Hz increased again
and converged to a stable value of AF,,,, = —274+3 Hz as listed in table 13.1. The
dissipation signal showed a similar but less pronounced response of opposite sign,
AD e = 3.48-107% and AD, .y, = (0.4940.09) - 107%. These signal changes are



13. “Classical” Liposomes

an indicator for rupture of the pure liposomes and formation of a SLB as sketched
in figure 13.1a. In contrast, the binding of integrin-liposomes on uncoated SiO,
crystals resulted in a continuous frequency drop by AF,,.. = —125.1 + 0.4 Hz
3.5 hours after injection. The corresponding dissipation steadily increased at the
same time by AD,., = (35.89 £ 0.11) - 107%. From this observation it can be
concluded that the integrin-liposomes stayed intact when adhering to uncoated
SiOy crystals. In the subsequent washing step the frequency increased again by
AFyina = 136 Hz and the dissipation declined by ADyi,, = 31.0 - 107°. This
suggests that the adhered integrin-liposomes only bound weakly and thus adhered
unspecifically to the SiO, surfaces. Contrary, the lipid-bilayer as formed on the
glass by liposome rupture could not be removed from the surface by washing with
buffer
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(a) Schematic representation (b) QCM-D results

Figure 13.1.: (a) Schematic drawing of intact integrin-vesicles and the formation of a SLB from
pure liposomes. It may well be that there are oppositely oriented integrins reconstituted in
the liposomes. Since these do not contribute to adhesion they are not drawn in the schemes
throughout the manuscript. (b) Frequency and dissipation recordings for liposomes on untreated
SiO; crystals. After a 1 hour 30 minutes washing step (step 1), liposomes and integrin-liposomes
were loaded onto the crystals for 3 hours 30 minutes (step ll), followed by another 30 minutes
washing step (step Ill). At the beginning of step Il liposomes and integrin-liposomes showed
strong binding to the uncoated crystals. After 30 minutes the resonance frequency for the
pure liposome channel reached a minimum of AF,,,., = —56.5 Hz, increased again and fi-
nally converged to a stable value of AF,, = —27 Hz, thus indicating the formation of a SLB.
The dissipation curve showed a corresponding increase and then declined again. In contrast,
integrin-liposomes showed a pronounced frequency decrease and a corresponding dissipation
increase, which is comparable to the binding experiments on ECM proteins. Hence, integrin-
liposomes were stable on uncoated SiO; crystals and did not rupture. Adapted from Frohnmayer
et al.[342]
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13.1. Binding on uncoated SiO, Crystals

i ) Protein binding
Protein coating ,
Frequency change [Hz| Dissipation change [1079]

Liposomes 27T+3 0.49 + 0.09
Integrin-Liposomes -125.14+04 35.89 +0.11

Table 13.1.: Binding of different ECM proteins and liposomes to SiO, crystals as monitored by
QCM-D: Pure liposomes yielded frequency and dissipation signals, which were characteristic of
SLB formation. Integrin-liposomes led to a frequency decrease and a large dissipation change,
which shows that these vesicles stayed intact and did not form SLBs on the SiO, crystals.

To further analyze the binding of the two different types of liposomes, a different
approach for data visualization reveals additional insights into the binding kinetics.
According to Sauerbrey’s model for the adhesion of rigid thin layers to quartz
crystals, there is a linear relationship between the frequency decrease (—AF') and
the mass increase per unit area (Am/A).[338] As this model was not developed
for soft organic films, it may only be seen as an approximation for our synthetic
cell model of (integrin-)liposomes, which enclose an aqueous medium. However, as
Tellechea et al. reported, plotting the dissipation against frequency can be used
to identify changes in the conformation of the adhering layer.[393|

%40 120 00 20 20 0 B m— =T 0

80 60 50 50
Af7IN [Hz] Af7IN [Hz)

(a) integrin liposome (b) pure lipoisome

Figure 13.2.: Analysis of dissipation versus frequency for (a) binding of integrin-liposomes and
(b) pure liposomes. Graph (a) displays a monotonically decreasing frequency, which indicates
that the integrin-liposomes stayed intact. In graph (b) the trajectory reverses due to the rupture
of the pure liposomes and formation of an SLB. Adapted from Frohnmayer et al.[342]

Figure 13.2a and (b) show the corresponding values of AD against AF analysis
for integrin-liposomes and pure liposomes bound to uncoated quartz crystals. In
figure 13.2b, the AD/AF analysis for the adhesion of integrin-liposomes yielded an
almost linear relationship after the equilibration period, which indicates that the
liposomes did not rupture on the SiOs crystals. In contrast, for pure liposomes the
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13. “Classical” Liposomes

kinetic showed a reversal AD/AF trajectory, which clearly shows that the vesicles
ruptured to form a SLB. Hence, it can be concluded that the reconstitution
of integrin into liposomes has a mechanically stabilizing effect on the liposome
durability as compared to the observed rupturing of pure liposomes on SiOy. One
hypothesis is that the increase of durability is caused by a reduction of van der
Waals forces due to steric hindrance of the integrin.[394] Integrin protrudes ~ 160 A
in active and,[46] and ~ 115 A in inactive conformation from the membrane.[51]
The lipid membrane itself could also be strengthened by the incorporation of the
larger transmembrane protein.

13.2. Binding on ECM Protein Coated Interfaces

The general tendency of frequency and dissipation shifts in QCM-D measurements
was recorded to study the binding of integrin-liposomes, pure liposomes and pure
integrin to different ECM protein coatings over 11 hours and 40 minutes as shown
in figure (b) to d and listed in table 13.2. The experimental setup is schematically
shown in figure 13.3a. DLS revealed that pure liposomes and integrin-liposomes
used in these experiments had an average diameter of 100nm to 200nm (see
section 6.5). In the following QCM-D analysis the binding of integrin-liposomes,
pure liposomes and soluble integrin to fibrinogen- and fibronectin-coated quartz
crystals was studied. The frequency and dissipation shifts were determined by
subtracting the average over the last five minutes of the buffer wash before addition
of the samples (step III) and of the final buffer wash in step V. The errors are the
sum of both standard deviations.

protein Pure Integrin Liposomes Int-Lipo
coating | AF |Hz]  AD[107% | AF [Hz] AD [1079] AF [Hz| AD [1079]

Fg -73.6+0.1 6.78+0.04 | 493+0.15 0.14+0.04 | -153.34 £0.09 23.20 £0.04
Fn -38.84 £0.14 4.52+£0.03 | -0.02+£0.08 0.17£0.03 | -60.79+£0.15 19.69 + 0.04
Col -5.1£02 032£009| -49+£02 0.23+£0.07 -45+£02 -041+0.08

Table 13.2.: Summary of maximal frequency and dissipation shifts during integrin-mediated
adhesion on fibrinogen-coated crystals upon addition of RGD-peptides as monitored by QCM-D.
Addition of the RGD-peptides SN529 and GRGDSP to adhered integrin-liposomes and integrin
led to detachment of both samples, indicated by respective frequency increases and dissipation
decreases. The unit of frequency shifts is Hz and the unit of dissipation shifts is —10°.
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13.2. Binding on ECM Protein Coated Interfaces

For fibrinogen coatings pure liposomes yielded a small increase in frequency and a
very stable dissipation. Integrin binding led to a final reduction of the resonance
frequency by over AFy,q = —73.6 £ 0.1 Hz and an increase in dissipation of
ADjipa = (6.78 £ 0.004) - 107%. For integrin-liposomes a shift of AFyj,q =
—153.34£0. 09 H z and an increase of dissipation by AD ;1 = (23.2£0. 004)~10_6
was measured.
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Figure 13.3.: (a) Schematic representation of integrin-liposomes being flushed over protein-
coated crystals in the QCM-D chamber. (b) to (d) Frequency and dissipation shifts for binding
of liposomes, integrin a;;,33 and integrin-liposomes on three different ECM protein coatings.
For the first 40 minutes activation buffer was flown over the crystals (step I). In the following
2 hours 30 minutes a solution containing 50 pg/ml of (b) fibrinogen, (c) fibronectin and (d) colla-
gen was loaded into the QCM chamber (step Il). After a second 30 minutes washing step with
activation buffer (step Ill) three different samples were added to one QCM-D sensor, respec-
tively. We added pure liposomes to one sensor, 50 ng/ml of activated integrin a;,83 to another
crystal and liposomes containing reconstituted integrin to a third sensor. Pure liposomes were
found to show no interaction with any of the ECM protein coatings. Pure integrin and integrin-
liposomes adhered to fibrinogen and fibronectin surfaces and did not bind to collagen coatings.
Adapted from Frohnmayer et al.[342]
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13. “Classical” Liposomes

The addition of pure liposomes to fibronectin-coated surfaces only caused small
changes of the frequency and dissipation signals. Binding of integrin to these sur-
faces resulted in a decrease of the resonance frequency by AFy, = —38.84 +
0.14 Hz and a dissipation increase of AD fjnq = (4.5340.03)-107%. The binding
of integrin-liposomes lowered the frequency by AFyi, = —60.79 £0.15 Hz and
increased the dissipation by ADy;q = (19.69 £ 0.004) - 107S.

These results indicate that integrin-liposomes and pure integrin bound to fibrino-
gen and fibronectin while no binding effects were observed for pure liposomes.
In comparison to fibronectin and fibrinogen, collagen has no binding sites for in-
tegrin integrin ayrpB3. Thus, binding of integrin and integrin-liposomes to this
ECM protein was not expected. As shown in figure 13.3d there was only a
small shift in the resonance frequency and dissipation signal when pure integrin
(AFfina = —5.2+0.2 Hz and AD 0 = (0.32+£0.09)-107%) or integrin-liposomes
(AF}ting = —4.5£0.2 Hz and AD e = (—0.4140.008)-107%) were loaded onto
collagen-coated crystals. This observation differs only slightly from the previous
results for pure liposomes on fibrinogen- and fibronectin-coated crystals and con-
firms our assumption that integrin-liposomes or pure integrin did not specifically
bind to collagen.
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Figure 13.4.: Analysis of dissipation versus resonance frequency shifts for the binding of
integrin-liposomes on (a) fibrinogen- and (b) fibronectin-coated SiO, crystals. Both graphs show
a nearly linear relationship between the measured values, which indicates that the liposomes
were stable and did not rupture to form a SLB. Adapted from Frohnmayer et al.[342]

The specific binding of integrin-liposomes to fibrinogen- and fibronectin-coated
crystals was further characterized by analysis of the corresponding AD/AF plots
in figure 13.4. For both protein coatings a linear relationship was obtained. In
case of fibrinogen the linear fit was split into two portions as a change in dy-
namics was observed (see figure 13.4a). During the first 6 minutes of integrin-
liposome adhesion a AD/AF gradient of —2.49 - 107 Hz~! was obtained, which
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13.3. Controlling Synthetic Adhesion

indicates a fast kinetics (green line). After the initial 6 minutes of integrin-
liposome adhesion the dynamics change into a slower regime. Here the linear
fit for a time period of 3hours and 30minutes (blue line) has a gradient of
—0.82 - 1078 Hz~!. The observed linear relationship between bound mass and
dissipation after the equilibration period indicates that the liposomes did not rup-
ture or form a SLB on the fibrinogen surface and thus confirmed our previous
observation. When integrin-lipsomes adhered to fibronectin-coated crystals the
gradient AD/AF reached —3.0 - 1078 Hz~! (figure 13.4b ). As the frequency
and dissipation shifts reach higher values on fibrinogen as on fibronectin, a denser
packing of integrin-liposomes on the surfaces can be assumed. This could cause a
rearrangement and deformation of the vesicles, which would account for the change
in the 0D/AF regime on fibronectin.

A rough estimate places the number of integrins per liposome at around 130
for a diameter of 120mm. However the orientation of the integrin is unknown.
Due to the spontaneous nature of their reconstitution, the distribution is likely
50 : 50 in either direction.[394] Although, membrane curvature could have an ef-
fect on their orientation. Additionally, transmembrane protein are not static in a
membrane.|202, 395 Temporally binding to ligands reduces the integrin diffusion
speed, effectively increasing the concentration in the binding area.[396] Therefore,
the mobile integrins migrate into the contact zone between the vesicle and the
ECM-coated crystal producing more bonds and a larger spreading pressure.|89,
397] If the ligand density is sufficiently high, the spreading pressure could lead to
a deformation of the liposomes.

13.3. Controlling Synthetic Adhesion

Quantifying the specific binding of integrin-liposomes to ECM proteins by QCM-D
analysis gives important insight into the interaction of synthetic cells with vari-
ous biointerfaces. Therefore, the controllability of integrin-mediated adhesion on
fibrinogen-coated crystals was further analyzed. The effect of two RGD-peptides in
solution on specific adhered integrin-liposomes and integrin was also studied. Ad-
ditionally, different lipid to integrin rations were used to form integrin-liposomes,
to examine the concentration dependency on the integrin-mediated specific adhe-
sion to fibrinogen-coated crystals.

13.3.1. Competative Binding

In this series of experiments the effect of free RGD-peptides on the binding of
specifically adhered integrin-liposomes and pure integrin was analyzed. Therefore,
analog to previous experiments integrin-liposomes and integrins were bound to
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13. “Classical” Liposomes

fibrinogen-coated crystals as shown in figure 13.5, step I. Subsequently, in step
IT 500 uM of peptide GRGDSP, or 500 uM of peptide SN529 solved in activa-
tion buffer (for buffers see section 7.1) were introduced to measurement cham-
bers, respectively (step II). Signal changes were recorded for 11 hours. A reference
chamber was washed with pure activation buffers, which did not contain any RGD-
peptides. In step III all channels were switched to the pure activation buffer. The
frequency and dissipation shifts from the end of sample binding to the end of our
final washing step are listed in table 13.3 and were determined as described in
section 13.2.
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Figure 13.5.: Comparison of frequency and dissipation shifts for the competitive vs. uncompeti-
tive unbinding of (a) integrin-liposomes and (b) integrin a;185 on fibrinogen. Integrin-liposomes
and 50 ug/ml of pure integrin a;,83 were added to two fibrinogen-coated SiO, crystals each
(step I). In step Il activation buffer was added to all crystals. For integrin-liposomes and pure
integrin 500 uM of the RGD-peptides GRGDSP and SN529 was added in one channel each,
respectively. A very strong increase in resonance frequency and a strong decrease in dis-
sipation during this step indicated an unbinding of integrin-liposomes and pure integrin in the
channels where SN529 was added. Addition of GRGDSP resulted in a less pronounced unbind-
ing of integrin-liposomes and pure integrin, which was indicated by smaller signal changes than
for SN529. When only activation buffer was loaded into the system no unbinding of integrin-
liposomes or integrin was observed. Adapted from Frohnmayer et al.[342]

For integrin-liposomes the addition of SN529 yielded a frequency increase of

AF o = 135 + 13 Hz and a dissipation decrease of ADYR . = (=26.9 +
1.1) - 107%. 1In the activation buffer the frequency and dissipation only recov-
ered by AF® — (.68 +0.15 Hz and ADY® = (—2.10 4 0.05) - 10~°, respectively.

These signal changes indicated a strong unbinding of the integrin-liposomes from
the fibrinogen-coated crystals. When the peptide GRGDSP was added to ad-
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13.3. Controlling Synthetic Adhesion

hered integrin-liposomes the corresponding signal changes were less pronounced,
AFSE pep = 129418 Hz and AD o ep = (—23.241.9)-1075, so that a weaker
unbinding effect from the fibrinogen surfaces was observed with this peptide, which
has a larger molecular weight than SN529.

Addition of SN529 to pure integrin yielded a frequency increase of AF.,q =
77+ 11 Hz and a dissipation decrease of AD%c,g = (=7.2 +0.6) - 1075, With
GRGDSP the frequency only increased by AFg% hep = 74+ 13 Hz and the dis-
sipation was lowered by AD%..psp = (—6.9 £ 0.7) - 107%. In the activation
buffer the frequency and dissipation only recovered by AF/® = 6.1+ 0.1 Hz and
ADIP = (=1.39 4+ 0.04) - 1075, respectively.

act —

Activation buffer SN529 GRGDSP

int-lipo integrin int-lipo integrin int-lipo integrin

AF | 0.68£0.15 6.1+0.1 135+ 13 Tr£11 129 + 18 T4£13
AD | -210£0.05 -1.39£0.04 |-269+1.1 -72£0.6|-232+19 -6.9=£0.7

Table 13.3.: Summary of maximal frequency and dissipation shifts during integrin-mediated
adhesion on fibrinogen-coated crystals upon addition of RGD-peptides as monitored by QCM-D.
Addition of the RGD-peptides SN529 and GRGDSP to adhered integrin-liposomes and integrin
led to detachment of both samples, indicated by respective frequency increases and dissipation
decreases. The unit of frequency shifts is Hz and the unit of dissipation shifts is 10°.

These signal changes indicate that pure integrin was also unbound by both RGD-
peptides with SN529 resulting in a stronger unbinding effect than GRGDSP due
to the difference in molecular weight. With the peptide SN529 both, integrin-
liposomes and pure integrins, were almost completely removed from the fibrinogen
surfaces as can be seen by the corresponding frequency changes, which re-approach
the pre-sample value after 11 hours. The unbinding of integrin-liposomes and in-
tegrins mediated by the peptide GRGDSP was less complete, as the frequency
signals did not reach the initial value after 12 hours 40 minutes. The chambers,
into which activation buffer without any RGD-peptides was injected, did not show
any frequency or dissipation changes during step II. Hence, the observed unbinding
was caused by the presence of the different free RGD-peptides in the flow system.

These differences between the two peptides are even more pronounced in the first
derivative of the measured data in step II as shown in figure 13.6. The dynamics
quickly increase to a peak and as the amount of bound sample decreases steadily
converges to zero. The first phase could be attributed to a Michaelis-Menten like
substrate-enzyme binding phase.|398] While the latter slow down is, referencing
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Figure 13.6.: First derivative of competitive unbinding of (a) integrin-liposomes and (b) integrin
from ECM proteins coated SiO, QCM-D sensors. As the computing the first derivative from
QCM-D data is very susceptible to noise, all plotted derivative data points were averaged in a
rolling mode over five consecutive measurement points, which accounts for 1 second of mea-
surement time.

figure 13.5, due to a depletion of substrate. Overall the dynamics are comparable
faster and more pronounced for SN529 in comparison to GRGDSP. A possible
explanation is the slower diffusion and permeation of the sample layer, due to the
lager molecule size.

13.3.2. Dependence on Integrin-Concentration

Next the binding affinity of this model system for cellular adhesion was more
thoroughly studied by measuring liposomes with different molar densities of re-
constituted integrin. Therefore, integrin-liposomes with molar ratios of integrin
lipid of 1 : 1000, 1 : 3000 and 1 : 4000 were prepared. The average size of these
samples was determined by DLS to be on average 111 £+ 2nm. The narrow size
distribution is important, as generally an influence of liposome size on the recorded
signals was observed. This effect was not further investigated quantitatively, since
there is currently no method of controlling the liposome size using the detergent
removal method. The general tendency in the 100nm — 200 nm size range used
in these experiments seems to be a decreased frequency shift and an increased
dissipation shift with increasing size.

The specific adhesion of the different integrin-liposomes was studied on fibrinogen-
coated crystals for 11 hours and 40 minutes. The results are shown in figure
13.7 and table 13.4. The frequency shifts were determined as described in sec-
tion 13.2. The acquired values were AFj.1000 = —153.34 + 0,13 Hz, AFi.3000 =
—82.8+ 0.3 Hz and AFj.4000 — 54.71 £ 0.15 Hz. The dissipation signals were
found to be ADj000 = (23.20 £ 0.03) - 10°%, AD; 3000 = (19.84 % 0.004) - 106
and AD;.4000 = (16.9040.03)-1075. These results indicate that the frequency and
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Figure 13.7.: Adhesion of integrin-liposomes with different integrin concentrations to fibrinogen-
coated SiO, crystals. The molar ratio of lipids to proteins were 1 : 1000, 1 : 3000 and 1 :
4000: The (a) frequency and (b) dissipation changes indicate a strong relation between the
integrin concentration and the binding affinity of integrin-liposomes to fibrinogen-coated crystals.
Adapted from Frohnmayer et al.[342]

dissipation changes depend on the integrin:lipid ratio, which is used to initiate the
reconstitution of integrins into lipid vesicles by detergent-mediated self-assembly.
The reconstitution of different integrin concentrations into lipid vesicles was found
to be a valuable tool to tune different adhesion strengths in synthetic model cells,
i.e. reduced integrin concentrations resulted in less adhesion strength.

Different integrin concentrations
1:1000 1:3000 1:4000

Frequency change |H z| -153.34 £0.13 | -82.8 £ 0.3 | -54.71 £0.15
Dissipation change [107°] | 23.20 £0.03 | 19.84 £0.04 | 16.9 £+ 0.03

Table 13.4.: Adhesion of integrin-liposomes with varying integrin concentration to fibrinogen
surfaces as monitored by QCM-D. The signal changes clearly correlated with the integrin con-
centration: For decreasing integrin concentration in the liposomes the frequency and dissipation
shifts were less pronounced, thus leading to reduced binding to the fibrinogen-coated crystals.
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13. “Classical” Liposomes

13.4. Discussion

The research presented here was done in order to investigate the integrin-mediated
adhesion of a minimal synthetic cell systems on naturally occurring ECM proteins
using QCM-D analysis. Previously, biotin-functionalized liposomes have been used
on avidin-coated surfaces to mimic the molecular recognition processes involved in
cell adhesion.[332] In this study a model system was used, which was less biorel-
evant since receptor-ligand pairs are not naturally occurring in cells as it is the
case for integrins.[6] This model system has now overcome these limitations by
reconstituting functionally active integrins into lipid vesicles and studying their
adhesion on ECM proteins like fibrinogen, fibronectin and collagen.

When pure liposomes were loaded onto uncoated quartz crystals a strong un-
specific binding affinity was observed, which resulted in liposome rupture and
the formation of SLBs as it had previously been reported.[336, 399 In contrast,
integrin-liposomes, which were loaded onto uncoated quartz crystals, did not rup-
ture to form bilayers. This finding leads to the conclusion that reconstituted
integrin stabilizes the liposomes. This effect could either be a steric repulsion or
due to an increased mechanical stability. Although integrin-liposomes appear to
be more stable, this experiment points on the general issue of liposome stability.
Based on these results the adhesive behavior of integrin-liposomes as a simplified
cellular model system on different ECM proteins was studied.

On the RGD-containing ECM proteins fibrinogen and fibronectin specific integrin-
mediated adhesion of integrin-liposomes in the presence of bivalent ions was ob-
served. On collagen, which does not contain any RGD binding sites, no adhesion
affinity of integrin-liposomes, liposomes or pure integrin on was measured. Nei-
ther was binding of pure liposomes to any of the crystal coating detected. These
reference measurements confirmed that the observed interaction between integrin-
liposomes or pure integrin and fibronectin as well as fibrinogen was caused by
the specific binding of integrin to the RGD sequence. From these results it can
be concluded, that the ECM proteins used in this study formed confluent lay-
ers on the SiO, surface. Most notably because pure liposomes did neither bind
nor rupture. Pure integrin was found to specifically bind to fibrinogen and fi-
bronectin with frequency changes comparable to the binding of integrin-liposomes
on both RGD-containing ECM proteins. Nevertheless, the dissipation shifts of
pure integrin binding to fibrinogen and fibronectin were less pronounced than for
integrin-liposomes. This observation indicates that pure integrin formed a tight
monolayer on the protein-coated crystals. In comparison, liposomes move a volume
of the enclosed and surrounding liquid when oscillating. This movement results in
a major damping effect, which is responsible for the observed strong dissipation
shifts when integrin-liposomes bind to fibrinogen or fibronectin. Therefore, for the
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first time, a cell model system with reconstituted integrins in lipid vesicles was
established. It mimics integrin-mediated cell adhesion on RGD containing ECM
proteins.

Furthermore, the synthetic adhesion of this model system on fibrinogen surfaces
was reversed by addition of two RGD-peptides with different molecular param-
eters. Here, the binding sites of fibrinogen competed with the binding sites of
free RGD-peptides in solution, which was added in a higher concentration than
the RGD binding sites available on the fibrinogen-coated crystals. In this exper-
iment integrin-liposomes were found to detach from the fibrinogen surfaces even
faster than pure integrins. This more pronounced unbinding of integrin-liposomes
might have occurred because pure integrins formed a tight molecular layer on the
fibrinogen-coated crystals and were less accessible for the free RGD-peptides than
the spherical integrin-liposomes, which protruded into the surrounding peptide-
loaded buffer with an average diameter of 100 nm to 200 nm. In comparison, the
peptide SN529 resulted in a complete unbinding of integrin-liposomes and inte-
grins whereas GRGDSP peptides did not detach the adhered integrin-liposomes
and integrins completely and as quickly. This different competitive unbinding be-
havior is related to the different molecular structures and molecular weights of the
RGD peptides: with 587 Da the peptide GRGDSP is approximately 1. 2 fold larger
than the peptide SN529, which only weighs 498 Da. As a result of this size and
structural difference the smaller peptide SN529 might be more mobile in solution
and accessible for the integrin binding pocket as well as the molecular structure
results in higher affinity binding than peptide GRGDSP. In summary, yielding a
more pronounced unbinding of integrin-liposomes and integrins.

Additionally, by reconstituting different integrin concentrations into lipid vesi-
cles it was also possible to control the adhesion strength of integrin-liposomes on
fibrinogen surfaces even further. With decreasing integrin concentration in the
synthetic cells the adhesion on fibrinogen was reduced proportionally. In future
studies on integrin-mediated adhesion this result will promote the development of
a minimal cell model system with tailored synthetic adhesion. The next step to-
wards synthetic cells, which mimic and control adhesion, will be the reconstitution
of integrins into cell-sized giant unilamellar lipid vesicles. Thereby, reconstituted
integrins might even help to overcome the limitations of current model cells due
to the fragile nature of giant lipid vesicles.
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14. Charaterization of dsGUV

The formation of compartments enclosed by a lipid membrane, is one of the distin-
guishing features of eukaryotic cells. As a key step in the development of life, the
evolution of these compartments allowed spatial and temporal control over biologi-
cal processes.[400, 401] Approaches in SB to remodel cell-like compartments based
on lipids have fundamental limitations. In part, this is due to the mechanical and
chemical instability of lipid vesicles,|90] and lack of technical means available for
their manipulation. The hybrid droplet and lipid compartment system developed
in this thesis, the droplet-stabilized GUV (dsGUV), overcomes many of these re-
strictions. The droplet-microfluidic basis of this technique allows the sequential
loading of such compartments with reagents through pico-injection. The charac-
terization presented in this thesis focused on the transmembrane protein integrin
armpPs. A proof of concept of the dsGUV system was developed in collaboration
with Jan-Willi Janiesch. The characterization of this new model system was done
in close collaboration with Marian Weiss. A submitted publication additionally
includes work done by collaborators analysing a second transmembrane protein,
FoF1-ATP synthase and formation of tubulin (both Marian Weiss) and actomyosin
complexes (Jan-Willi Janiesch and Barabara Haller) within dsGUVs.

Several characterization techniques were employed in order to investigate, if the
inner droplet interface is covered by an intact and continuous lipid layer. As a
straight forward experiment the fluorescence intensity of dsGUVs produced with a
lipid composition containing a percentage of fluorescently labeled lipids was mea-
sured and compared to intensities of GUVs conisting of the same lipid composition.
First, the total concentration of lipids in the aqueous solution was varied from val-
ues below the theoretical coverage to an over saturation. Thus, the dependency
from concentration to fluorescence intensity was derived. Second, droplets formed
with the theoretical correct amount were compared to GUVs formed with the same
lipid composition.

To exclude a combined lipid-surfactant layer the diffusion kinetics of the lipid
bilayer as well as other molecule confined to the droplet interface was studied us-
ing FRAP (see chapter 10). These values were compared to values measured for
SLBs and values taken from literature. This allowed an interesting overview re-
garding the dynamics of the interface and additionally indicates future possibilities
of the dsGUV model system.



14. Charaterization of dsGUV

To conclude the characterization of dsGUVs, the possibility to recover the GUV
from droplets was investigated. Although this method is in an early developmental
stage, the results were highly promising and a proof of concept will be presented.
Of all the characterization methods presented in this thesis, will provide the most
conclusive answer about the nature of the lipid bilayer in the dsGUVs.

14.1. dsGUV Formation

There are two experimental approaches to form dsGUV. Both methods start by
encapsulating SUVs/LUVs, or GUVs dissolved in MilliQ water into water-in-oil
droplets during droplet production. Similar to the formation of planar SLBs the
presence of bivalent cations was identified as a crucial factor for dsGUVs forma-
tion.[402, 403] Omitting bivalent ions no transfer of the encapsulated liposomes to
the droplet interface in the form of lipid bilayer was observed. In these cases, for
SUVs/LUVs a homogeneous distribution of the fluorescence signal was observed
through the whole volume of the droplet and GUVs stayed intact. Therefore,
following optimization the formation of dsGUV requires bivalent cations. A con-
centration of 10mM MgCl, in the aqueous phase has shown the best results as
shown in figure 14.1a. An observation that is supported by studies on the forma-
tion of planar SLBs, Mg®" ions are known to be the most efficient mediators of
lipid vesicle rupturing due to promotion of adhesion to the substrate.[403, 404] The
addition of other bivalent ions, such as Ca*" (10mM) or Mn*" led to slower or par-
tial bilayer formation as presented in figure 14.1b. If bivalent ions were introduced
into preformed droplets containing either LUVs or GUVs through pico-injection,
dsGUV formation was also observed.

The standard way for dsGUV formation was a one-step experimental approach.
Here, both types of lipid vesicles (SUVs and GUVs) were mixed with bivalent ions
and encapsulated within the droplets during the droplets production. This method
allowed a very high production rate in the kHz range. Alternatively, a two-step
approach, where liposomes and bivalent ions are introduced separately, was cho-
sen for some experiments. In that case the bivalent ions were pico-injected into
SUV, or GUV-caontaining droplets. Both experimental approaches are depicted
in figure 14.2.
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14.2. Intensity Analysis

(a) 10mM Mg®* (b) 10mM Ca?*

Figure 14.1.: Fluorescence cross-section images of the lipid distribution (with the LUV composi-
tion DOPC:DOPE:DOPS 8:1:1 including 1% ATTO488-DOPE) within the droplets containing (a)
10mM Ca?* and (b) 10mM Ca?*, measured 1 hour after formation. Adapted from Frohnmayer
et al. [134]

14.2. Intensity Analysis

As described in section 9.3 the intensity signal observed from a lipid membrane in
proximity to the interface of a droplet is distorted by refraction and defraction due
to the oil-water interface (see figure 9.3). This complication was resolved by fitting
a gaussian curve at the intensity profiles and integrating the area under the curve
as described in section 9.3. Therefore in the following sections, 14.2.1 and 14.2.2,
the units given will be an arbitrary unit (a.u.), as measured by the microscopes
photomultiplier, times the dimension integrated over in micrometers um.

14.2.1. Concentration Dependency

By varying the lipid concentration in the encapsulated volume in combination
with the narrow size distribution of microfluidic droplets, the relationship between
the available amount of lipids and the resulting fluorescence intensity could be
determined. A plot of the measured data is shown in figure 14.3. This analysis
provides answers to the following key questions. Are the theoretical considerations
concerning the necessary lipid concentration presented in section 9.1.1 credible?
Is there a partial lipid bilayer (section 4.1) below the threshold?
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Figure 14.2.: Schematic representation of two experimental approaches for dsGUVs formation.
The production of dsGUVs starts by forming (a) SUVs/LUVs or (b) GUVs and encapsulating
them into water-in-oil droplets. In an All-in-one: approach (pathway 1) 10mM Mg?* are en-
capsulated with the liposomes. Alternatively, Mg2+ can also be pico-injected into preformed
droplets containing liposomes (pathway 2). (c) The bivalent ions cause the liposomes to form
a supported lipid bilayer on the droplet interface. Fluorescence signal comes from ATTO488-
DOPE, which making up 0.5% of the lipids mixture consisting of 8:1:1 DOPC:DOPE:DOPS.
Adapted from Frohnmayer et al. [134].
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Figure 14.3.: Intensity analysis of dsGUV with a diameter of 120 nm produced with different
lipid concentrations. The theoretical sufficient amount is indicated by a green vertical bar at
237 uM . The data points up until this point are approximately linear, which matches the expected
behavior. Above an excess amount of lipids is expected. Here liposomes form aggregates at the
interface, which makes intensity analysis difficult. This effect is visible in the increased standard
deviation at the 400 M data point.

Considering the diameter of 120 um of the droplets used in this experiment, a
calculated concentration of 237 M lipids is required for full bilayer coverage. As
can be observed in figure 14.3, the intensity values are increasing approximately
linear up to the theoretical estimated concentration. At elevated concentration
the intensity reaches a plateau. It should be noted that at higher concentrations
the excess lipids form aggregates of liposomes at the interface, thus making it
more difficult to measure credible intensity values. This effect is showing a higher
deveation for the data point at 500 p M.

14.2.2. Intensity Comparison of dsGUVs and GUVs

The intensity of dsGUVs was compared to the intensity of GUV encapsulated into
droplets. The GUVs were encapsulated into droplets to keep results as compa-
rable as possible. The fitting of the measured intensity profiles revealed similar
integrated intensity values of 42+ 8 a. u. xum and 44+4 a. u. x um for dsGUV and
the encapsulated GUVs, respectively. These findings suggest that freely suspended
GUVs and dsGUV consist of the same density of fluorescently labeled lipids. This
concludes the analysis on the intensities of the lipid bilayers.
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14.3. FRAP Analysis

Intensity analysis revealed information regarding the density of fluorescently la-
beled lipids. But the information about the conformation of these lipids is lim-
ited. Moreover, the possibility of a mixed surfactant lipid layer had to be ex-
cluded. It can be predicted, that the diffusion coeficient of TRI7000 surfactants
(MW ~ 15,400 g/mol) will be smaller than the diffusion coefficient of lipids
(MW = 760 — 800 g/mol) not only due to higher molecular weight,[405, 406]
but also due to polymeric spaghetti-like structure.[407, 408] Additionally, in a
mixed layer the diffusion of the lipids would also decrease, as they would need to
diffuse around the larger molecules.[409, 410] Therefore, measuring the diffusion
of different molecules confined to the interface gave insight into its structure. A
detailed explanation of the evaluation is provided in section 10.

14.3.1. GFP-labeled GNP-Surfactants

Due to the lack of fluorescently labeled surfactants, the diffusion of the surfactants
could not be measured directly. Therefore, gold-linked surfactants (see section
8.1.2) were labeled fluorescently using GFP.[174] FRAP analysis of this probe re-
vealed diffusion coefficients of 0.21 £ 0. 05 ym and 0.20 4 0. 05 um? /s when mixed
with TRI7000 and TRI2500, respectively. These values are slightly lower than
literature values obtained for water-in-water polymersomes.[411] A possible expla-
nation for the lower diffusion coefficients of water-in-oil droplets is the viscosity of
the surrounding oil, FC-40, which is 3. 8x times higher than the viscosity of water.
Oil viscosity might be also a potential reason for the similar diffusion coefficients,
independent of the surfactant molecular weight. It is worth mentioning here that
different GFP and the surfactant concentrations in the range between 1 M and
10 uM and 1mM and 10 mM , respectively, did not affect the surfactant mobility.

14.3.2. GFP-labeled Lipids

It can be observed that the fluorescent signal of GFP is localized at the mem-
brane (figure 14.4c) of the DGS-NTA(Ni)-containing dsGUVs in comparison to an
equally distributed fluorescent signal (figure 14.4d) within the droplets containing
no functionalized lipids. It has to be noted here, that this diffusion coefficient is
one order of magnitude higher in comparison to GFP-labeled surfactants. FRAP
measurements of the GFP-functionalized dsGUVs revealed a diffusion coefficient
of 1.22 4+ 0.03 um?/s. Successful functionalization of the dsGUVs with His6-GFP
is particularly important, since the NTA-thiol chemistry behind the immobiliza-
tion of these proteins is the same as required for immobilization of proteins such
as actin and tubulin.
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Figure 14.4.: Cross-section confocal images of (a) gold-nanostructured and (b) gold-free
polymer-stabilized droplets formed with aqueous solution of His6-GFP-NTA-thiol measured 1
day after formation. (c) A fluorescence cross-section image of His6-GFP linked to DGS-NTA(Ni)-
containing dsGUV. (d) In contrast to the dsGUV containing NTA-lipids, the fluorescence intensity
in the dsGUV containing DOPC only is distributed equally. Adapted from Frohnmayer et al.

14.3.3. Lipid Diffusion

As an incorporated layer of lipids and surfactans would result in a decreased lipid
diffusion, FRAP measurements were performed to compare the lipid diffusion co-
efficients in encapsulated GUVs and dsGUVs. The results derived for various lipid
composition and fluorophore types are presented in table 14.1.
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14. Charaterization of dsGUV

o . Diffusion Coefficient [um?/s]
Lipid composition
Encapsulated GUVs dsGUVs

DOPC:DOPE:DOPS (8:1:1),

3.52 +£0.26 3.31 £0.77
1% ATTO488-DOPE

PC: PG (1:1

egg PCregg PG (L:1), 3.96 £ 0.51 2.88 =+ 0.06
1% ATTO488-DOPE
DOPE, 1% Rhb-DOPE 4.42 £+ 0.65 4.11 £+ 0.59

Table 14.1.: Summary of the diffusion coefficients obtained for different lipid compositions in
dsGUV by FRAP measurements.

The data shows a minor reduction of lipid diffusion in dsGUVs. FRAP and fluores-
cence correlation spectroscopy (FCS) measurements performed in previous studies
with similar lipid compositions revealed diffusion coefficients in the same range as
well as a similar tendency to lower values in the case of SLB.[357, 404] In SLBs
this can be related to the fact that lipid membrane is subject to friction with the
supporting material. A comparable effect should be caused by the polymer shell of
the droplet, whose mobility is estimated an order of magnitude lower (see section
14.3.1). Moreover, it is known that bivalent ions bind to phosphatidylcholine mem-
branes and lead to a decrease in the self-diffusion of lipids in the membrane.[412-
414|

14.3.4. Electron Microscopy

In addition to the characterization methods shown here, cryo-SEM and cryo-TEM
were employed to gain additional information about the nature of the lipid bilayer.
However, cryo-SEM ambiguous results, while cryo-TEM yielded no results at all.

Figures show cryo-SEM micrographs of freeze-fractured droplets 14.5a without and
14.5b a dsGUV.

Figure 14.5¢ shows dsGUVs of less than 4 um diameter. These droplets were
produced with the microfluidic chip presented in section 8.7. The intent was to
evaluate if droplets could be observed with a cryo-TEM. Most current cryo-TEM
sample preparation methods, are designed for microscoping cells or tissue.[349] The
oil surrounding the droplet could interfere with these methods or require major
adjustments. However, a collaborator kindly agreed to try, if we were able to
produce droplets with around 2 ym diameter. However, our collaborator was not
able to measure the droplets with a sufficient resolution.
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(c) [Femtoliter Droplets

(a) without lipids (b) with lipids

Figure 14.5.: SEM micrographs of freeze-fractured droplets (a) without and (b) with a dsGUV.
It is not possible to derive a credible conclusion from these micrographs. There is a thin film,
peeling of the interface, visible in the right column of SEM images. However, it is not possible
to determine if this is a lipid bilayer. (c) Fluorescence images of femtoliter droplets containing a
dsGUV with ATTO488-DOPE.

14.4. Pico-Injection of Protein into dsGUV

With most current SB methods, as described in SB chapter 4, it is a tedious task to
reconstitute or encapsulate proteins into GUVs. Applying the currently available
methods, reconstitution and incapsulation of proteins into the freestanding GUVs
is very complicated due to mechanical and chemical instabilities. A major driving
force in the development of dsGUVs was the intend to overcome this restriction.
In fact dsGUVs allow a sequential addition of multiple reagents as they are based
on droplet-based microfluidic technology. The following section will cover the ex-
perimental steps of bottom-up assembly of a cell model system.

A key advantage of this novel protocell system is the possibility to manipulate pre-
formed dsGUVs and thus allow sequential loading of additional components when
building up a model system. Preformed dsGUVs, see section 14.1, were introduced
into a pico-injection device, for subsequent pico-injection of various bioreagents.
As this work was originally focused on modeling integrin-mediated adhesion, inte-
grin a;pp B3 was used as an example to showcase the advantages of the compartment
system. The process is schematically depicted in figure 14.6. Pico-injection of in-
tegrin ajgp,f3-containing proteoliposomes into preformed dsGUVs lead to fusion
of proteoliposomes and reconstitution of integrin into the dsGUVs. The correct
reconstitution of the transmembrane protein was shown using diffusion measure-
ments.
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Figure 14.6.: Schematic representation of subsequent protein injection into dsGUVs via mi-
crofluidic pico-injection technology pico-injection. This can either be done in the (l) form of
protecliposomes, which allows to incorporate the transmembrane proteins into the dsGUVs’
lipid bilayer, or (Il) in form of free proteins, e.g. to observe cytoskeletal formation.

Lipid Composition ‘ Object ‘ Dy [pm? /s Doy |um?/s]
None GFP NA 0.20 £ 0.05
DOPS:DGS-NTA (9:1) GFP NA 1.22 + 0.03
DOPC:DOPE:DOPS (8:1:1 Integri

(8:1:1), Hestn 2.17 + 0.07 0.67 + 0.10
1% ATTO488-DOPE (Liposomes)
DOPC:DOPE:DOP :1:1 Integri

OPC:DOPE:DOPS (8:1:1), Hhestn 2.97 + 0.22 0.70 + 0.06

1% ATTO488-DOPE (pure)
DOPC:DOPE:DOPS (8:1:1 Integri

(8:1:1), HHesHn 2.97 + 0.16 0.13 + 0.03

1% ATTO488-DOPE

(pure) + SN528

Table 14.2.: Summary of the diffusion coefficients of lipids and proteins reconstituted in dsGUVs

obtained by FRAP measurements.
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14.5. Advances in GUV Recovery from dsGUV

FRAP measurements were performed to investigate the mobility of transmembrane
proteins incorporated in the membrane of dsGUV with a diameter of 150 ym. Ta-
ble 14.2 presents a summary of diffusion coefficients of both, the lipids Dy;;, in
dsGUVs and of the corresponding reconstituted proteins D,,,. In all cases, the
measured Dy;, values were lower in comparison to the diffusion coefficients of the
dsGUVs containing no proteins listed in table 14.1. Lower diffusion coefficient
values can be attributed to the fact that the lipid lateral diffusion is a subject to
steric and charge-related perturbations from the incorporated proteins.[415]

The results for the diffusion coefficients measured for the reconstituted integrin
arpBs of Dy = 0. 7 um?/s were consistent, independently on whether they were
introduced as solubilized protein or reconstituted into proteoliposomes. These val-
ues are in good agreement with previously published studies on integrin a3
lateral mobility in planar supported lipid bilayers or in the cellular membranes as
obtained by FRAP,[325, 326, 394| and FCS measurements.|[416|

To asses the functionality of the incorporated integrin, GNP-nanostructured droplets
(section 8.1.2) functionalized with peptide SN528 (section 6.6) were used to pro-
vide binding sites for integrin adhesion. In this case the diffusion coefficient of
integrin dropped significantly (D,,, = 0.13 um?/s) to values closely resembling
the mobility of the surfactant layer. This observation indicates a successful estab-
lishment of a linkage between the integrin and a functionalized droplet interface.
Therefore, it is likely that part of the integrin is oriented correctly and remains
functional within dsGUVs.

14.5. Advances in GUV Recovery from dsGUV

The following results represent early stages of the development of the recovery
process. Nonetheless, they not only give insight into the structure of the dsGUV,
but additionally hint at the future potential of the compartment system. Two
approaches were devised to retrieve GUVs from droplets, a microfluidic approach,
that allowed observation of single recovery events and an easy to apply bulk re-
covery. The former was crucial for a key insight on destabilizing surfactant choice
and will be elemental to the further development of the method. The latter will
very likely be the method of choice in future to recover large quantities of GUVs.
The recovery process was developed in collaboration with Marian Weiss and Lucia
Benk.
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14.5.1. Effects of Destabilizing Surfactants

Although PFO-MEG and PFO-TEG have similar chemical structures as presented
in section 8.1.4, their effects on surfactants and lipid membranes differ strongly.
Both have been used in published work to deemulsify surfactant stabilized water-
in-oil droplets to retrieve their content.[174, 343, 344|

Figure 14.7.: The effects of (a) PFO-TEG and (b) PFO-MEG destabilizing surfactants on dsGUV
observed in fluorescence in the ATTO488-DOPE fluorescence channel. The fluorescence signal
shows that PFO-TEG starts to distort the lipid bilayer after 300 ms of being in contact with a
dsGUV. After 500 ms the lipid bilayer appears to have crumpled in one part of the droplet. In
contrast when using PFO-MEG the lipid bilayer appears to remain intact.

A general observation is the difference in latency between the droplets coming in
contact with the destabilizing surfactant and coalescence of the droplets. At the
same concentration the effect of PFO-TEG is more immediate. In the microfluidic
recovery device concentrations comparable to the regular stabilizing surfactant of
2.5mM to 10 mM were sufficient. For the same experiment 30 vol. % to 50 vol. %
of PFO-MEG were required. In bulk the effects of PFO-TEG are more immediate,
but in case of low concentration of PFO-TEG the deemulsification process slows
down and eventually stops. Given time even at low concentration PFO-MEG com-
pletely deemulsifies droplets.

The usage of an extremely light sensitive Phantom v2511 high-speed camera (Vi-
sion Research, USA) allowed recording fluorescence at 1,000 fps and above. This
enabled a crucial insight into the usability of the destabilizing surfactants. Al-
though PFO-TEG appears to be the reagent of choice, due to its more immediate
effect, there is a show-stopper. As shown in figure 14.7 PFO-TEG not only seems to
interact with the microfluidic surfactants, but also with the lipid layer. Roughly
500 ms after coming in contact with the reagent, the lipid membrane did com-
pletely collapse. In contrast, PFO-MEG does not appear to have any effect on
the membrane and its stability. Therefore, PFO-MEG was used for GUV recovery
experiments following this discovery.
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14.5. Advances in GUV Recovery from dsGUV

14.5.2. Recovery in a Microfluidic Chip

The recovery device used in this thesis was designed by Marian Weiss with the
fast acting PFO-TEG in mind, so channel length was adjusted accordingly. Early
experiments with simple water-in-oil droplets and GUVs encapsulated in droplets
showed promising results. An example of the latter is shown in figure 14.8. Here a
droplet immediately breaks up upon coming in contact with the water phase and
ejects its content, ATTO488-DOPE-containing GUVs. The high concentration
of GUVs in the aqueous phase shows that this process can run stable for a long
time. The concentration is reached even with a flow constantly removing recovered
GUVs. Interestingly, as opposed to the observations described in section 14.5.1
the GUVs do not appear to be affected by the PFO-TEG.

Figure 14.8.: Recovery of encapsulated GUVs in a microfluidic device. The outline are indicated
by dotted yellow lines.

Recovery of dsGUVs in a microfluidic device using PFO-MEG is shown in figure
14.9. 14.9a shows brightfield images of ATTO488-DOPE and (b) a fluorescent
image taken seconds apart. GUVs are not visible in brightfield images under these
conditions. Clearly visible in the brightfield images are oil drops sticking to the
walls. In the fluorescent image these oil drops are covered by fluorescent layer and
not distinguishable from GUVs, or dsGUVs. As PFO-MEG breaks the surfactant
layer only slowly, oil is pushed into the aqueous channel along with the droplets.
Figures 14.9c and (d) also show a backlog due to the slow breakup process. This
increases the probability of two droplets fusing with each other instead of with
the water interface. An event that, in all observed incidents, led to unsuccessful
recovery of the dsGUVs.

There is a variety of challenges this approach of recovery currently faces. For once,
recovered GUVs don’t seperate from the oil-water interface and tend to stick to
the interface. The probability of GUVs to be recovered intact decreases above
30 um.
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14. Charaterization of dsGUV

(d)

Figure 14.9.: Microscope pictures of GUVs being recovered in a microfluidic device in (a) bright-
field illumination and (b)—(d) fluorescence illumination. (b) GUV are practically invisible in bright-
field illumination with the low contrast range of the high speed camera used. In contrast to the
oil droplets which show a stronger contrast. When comparing this image to a fluorescent image
(b) taken seconds apart, previously invisible GUVs can be seen. However, oil drops visible in
the brightfield image, can’t be istinguished from GUVs in the fluorescence observation. These
images were kindly provided by Lucia Benk.

14.5.3. Integrin-containing GUV Recovery

One of the fundamental constraints of current methods of GUV formation in SB
is their restriction to either incorporate transmembrane proteins or to promote
enclosure of cytosolic protein. Something where dsGUV are able to shine. But to
really find adoption as a novel model system, recovery of protein containing GUV
will be necessary. Here recovery of vesicles containing integrin a;,33 is shown as
an example of a transmembrane protein.

Figure 14.10 shows a recovered GUV with integrin «;;,33 embeded in its mem-
brane. In the surrounding volume fragments of broken GUV are visible. Quan-
tification of the survival rate is difficult, but is likely around 1% at the current
developmental stage of the method. Considering the high production rate in the
kHz range, this is still a productive approach. Functionality of the integrin after
recovery was not yet confirmed.
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14.6. Discussion

10 pm

(a) ATTO488-DOPE (b) Integrin-TAMRA (c) brightfield

(d) ATTO488-DOPE (e) Integrin-TAMRA

Figure 14.10.: Microscope images of GUVs containing reconstituted integrin a3 recovered
from dsGUV, (a) ATTO488-DOPE, (b) integrin a; 35 labeled with TAMRA and (c) a brightfield
picture. Volume renderings were genereted from Z-stacks recorded for (d) ATTO488-DOPE and
(e) TAMRA-labeled integrin a5, 83 with FIJI/Imaged. The GUVs shown here preserved the size,
30 um, of the droplets they were recovered from. In the volume projection fragments of broken
GUVs are visible around the intact GUV. Due to the mechanical stress during recovery a ma-
jority of GUVs did not survive the process. Considering the high production rates of microfluidic
droplet formation, even in the current early stages of development, the yield exceeds many other
approaches.

14.6. Discussion

In conclusion, the developed technology overcomes fundamental limitations asso-
ciated with the formation and manipulation of lipid based compartments in SB.
This will enable the construction of more complex and sophisticated synthetic cells.
Assembling such protocells with distinct functionality requires the combination of
different proteins, molecules and buffer conditions. Moreover, many experiments
require substances to be added subsequently to prevent unwanted interactions. A
task impossible with most currently available technologies, where all components
are encapsulated at once.
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14. Charaterization of dsGUV

The formation of dsGUVs enables the generation of mechanically and chemically
stable compartments which can be sequentially loaded by pico-injection technol-
ogy with different proteins and other molecules. It allows for the combination of
molecules and molecular organizations which naturally would not exist. These
system properties will enable the realization of a real bottom-up assembly of com-
plex combinations and functions within synthetic compartments in the future. It
is worthwhile to mention that the formation of synthetic cells by this technology
is a high-throughput method which enables the generation of up to 10* functional
compartments per second. Therefore, it generates a vast number of protocells of
unique precision which may be applied for follow-up scientific and technological
applications.

At the beginning of this work concerns about the nature of the lipid bilayer were
raised. To proof formation of an intact lipid bilayer various characterization tech-
niques were used to investigate the nature of the lipid bilayer. Fluorescence in-
tensity measurements showed comparable values as measured for GUVs under the
same conditions. Analysis of the diffusion kinetics using FRAP yielded similar re-
sults for the lipid diffusion coefficient as reported in SLB. In comparison, diffusion
coefficients measured for surfactants were one order lower. Especially, considering
the positive recovery results an intact lipid bilayer can be assumed.

The potential of the new compartment for SB has been presented in this the-
sis using the transmembrane protein integrin a;,33. Within living cells integrin
is part of a large protein complex called focal adhesion. Any model system mim-
icking this cellular adhesion system will require a variety of proteins to function.
Diffusion measurements for integrin yielded similar results as reported in other
studies for GUVs and SLBs. The activity of integrin was shown by functional-
izing gold-linked surfactants with a RGD-peptide. In this case, diffusion droped
to values in good agreement with the diffusion of the surfactants. Applying the
pico-injection method it will be possible to sequentially add more proteins, such
as talin or vinculin and expand this model system.

A submitted publication will additionally expand the scope of model systems
building on the dsGUVs approach. Collaborator Marian Weiss reconstituted func-
tional FoF{-ATP synthase into dsGUVs. Driven by a pH gradient created by the
addition of a special oil, conversion of adenosine diphosphate to adenosine triphos-
phate could be shown. Aditionally, two cytoskeletal complexes were created within
dsGUVs. Collaborators Jan-Willi Janiesch and Barbara Haller were able to form
actomysin complexes within the droplets and lin the filaments via His6-tags to the
lipid bilayer. Marian Weiss used the dsGUV as a compartment to form tubulin
complexes. In these experiments the lipid layer was important, as tubulin showed
unspecific interaction with the microfluidic surfactant in absence of the lipid layer.
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14.6. Discussion

These examples show some of the possible applications the novel compartment
system offers.

However, the microfluidic droplet stabilizing the dsGUV is a blessing and a curse
at the same time. While providing increased stability and the means to apply mi-
crofluidic techniques such as pico-injection, it limits the scope of possible protocell-
surface interactions. Therefore, the possibility to recover GUVs from dsGUVs was
investigated. Although this technology is still in an early stage, promising results
were achieved. Towards this goal, a microfluidic as well as a bulk method were
developed. The former allowed observation of individual GUVs being recovered
from dsGUVs. While the latter allows to expand this process for a large number in
a short period of time. The recent progresses in recovery show, that the dsGUVs
compartment system could also be an intermediate step. Complex model systems
could be assembled within microfluidic chips and later be recovered to perform
experiments, that were previously impossible. This opens up a broad range of
future applications.
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15. In Silico Microfluidics

The development of increasingly sophisticated functional units in microfluidics
entails a growing complexity in the overall structure of the devices. Therefore, the
design tools have to be updated to keep pace with the evolution of the microfluidic
chips. Previous studies have taken steps into this direction, simulating droplet
formation,[417, 418] and sonic waves in microfluidic chips.s However, an extensive
literature search yielded no results regarding electric fields in microfluidic chips.
For many applications, it might be sufficient to tune up the electric field until the
desired effect occurs.

15.1. Field Strength in standard Pico-Injector

The setup and use of a system for microfluidic pico-injection was a major task
during this thesis. However, during the development and application of the system
questions about the strength an distribution of the electric field arose. Therefore,
a FEM model was set up to settle this question. The simulation was computed
for two sizes of droplets, used for pico-injection experiments in this work and the
corresponding pico-injection structures. The droplets had a diameter of 40 um
(34.388pl) and 120 pm (105.72pl). Channel width and height of the droplet
carrying channels for the former were 30 um and for the latter 80 um. The results
are shown in figure 15.1.

As explained in section 12.1, in all simulations presented here, the potential was
set to 1 V. As the normalized electric field is linearily dependent on the electric
potential, this allows the easy calculation for fields caused by different potentials.
For example the electric field computed in the center of a small droplet had a
strength of Eyy = 777V /m. In most experiments a peak voltage of 250V was
applied, hence the peak electric field was Fasoy = 194 kV/m. This is in the range
most electroporation experiments use.[377] In the center of a 80 um droplet the
field is 28 % (557V/m) weaker than in a 30 um device. This could be compensated
by increasing the potential.



15. In Silico Microfluidics
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Figure 15.1.: Normalized electric field in two pico-injection designs. (a) and (b) show the nor-
malized field in horizontal plane at half the channel height for 30 um and 80 um structures,
respectively. (c) and (d) the normalized electric field along the main axes of a small and large
droplet, respectively. The data points along the y-axis start at the interface to the injection chan-
nel, where the field strength is 681 V/m and 434 V/m for the 30 um and the 80 um structure,
respectively. Considering the distance to the electrodes is 50 um greater, the increased height
of the electrodes partially compensates the larger dimensions of the device.

Probably the most crucial point for pico-injection experiments is the interface to
the injection channel. Here the difference in field strength is considerably greater,
434V /m (80 um) in comparison to 681 V/m (30 um). This 36 % difference is due
to the increased dimensions of the channel and the resulting longer distance be-
tween electrodes and the injection orifice. However, the increased distance between
electrodes and injectors is partially compensated by the increased structure height
of the electrodes.

15.2. Field vs Droplet Position

Until this point, only static droplets were considered. However, in microfluidic
experiments droplets pass a functional unit within milliseconds. This information
can be important, when working with cells. Either to determine if the exposure
to an electric field might damage a cell. Moreover, this information could be used
to determine if the field exposure would be sufficient for electroporation.
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15.3. Electrode Geometry

Therefore the electric field was simulated for various droplet positions. The nor-
malized electric field was extracted from all simulations along the main axes of
the droplet, analogue as presented before in figures 15.1c and 15.1d. These cuts
were then aligned according to droplet position and the resulting kymographs are
shown in figure 15.2.

50 100 100
let fum]

(a) x-axis (b) y-axis (c) z-axis

Figure 15.2.: Kymograph of the normalized electrical field along the main axes of a droplet as
it traverses past two electrodes. The electric field was simulated for droplets moving in 5 um
steps along the channel from —200 pm to 240 um in relation to the center of the electrodes. The
normalized electrical field along the droplets primary axes was extracted from each simulation
results and is printed as a kymograph for (a) the x-axis, (b) the y-axis and (c) the z-axis. In
connection with the flow velocity of a droplet, this can be used to estimate the field exposure.

From high-speed camera footage, the velocity of a droplet in a pico-injection chan-
nel was determined in the range of 10mm/s to 15mm/s. Referencing this infor-
mation with the simulated field strength, it can be estimated that that a cell at the
center of a droplet would be exposed to a field greater than 500V /m for 6.7 ms to
10ms. A value in good agreement with common electroporation protocols.[377]

15.3. Electrode Geometry

For most experiments it is preferable to have a homogeneous field distribution.
However, when fabricating microfluidic chips, the design of the electrode can have
a major impact on the yield of functional chips. The walls between electrodes
and channels often lead to bulging of, or leaking through the separating wall.
Furthermore, as the technique, used in this thesis to incorporate electrodes to
the devices (see section 8.3.4), requires two inlets, addition of electrodes requires
costly space on the chips. Therefore, a range of electrode designs, mostly inspired
by publications, were simulated.[106, 108] The results are shown in figure 15.3.
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Figure 15.3.: Electric field created by different electrode designs. The upper row shows the
electric field strength in the x-y-plane through the middle channel height. The lower row con-
sists of graphs showing the electric field distributions along the main axes of the droplet. The
electrodes in panels (a) and (d) are placed in the same distance to the channel (in the standard
pico-injection design used in this work, the phase electrode is set back by 8 um.), (b) and (e)
are pointed towards the channel and (c) and (f) represent a more elaborate design.

The first design, shown in figure 15.3a, moves the phase electrode in the same
distance to the channel as the ground electrode then the standard design (see sec-
tion 15.1). This 8 um shift strengthens the generated electric field by about 25 %.
However, the overall shape and distribution is very similar.

The pointy design shown in figure 15.3b) is used by Baret et al.,[108]. The re-
tracting electrodes results in field weaker than the parallel design, although the
distance to the channel is identical. This is an interesting observation, because it
shows that the electric field is not only shaped by the two electrodes, but also by
the droplet with a high dielectric constant.

The more elaborate design featuring three ground electrodes 15.3¢c produces a
higher and more homogeneous field in comparison to the simpler designs. Both
upstream electrodes were set to ground, to shield the spacing structure (see sec-
tion 8.5) from electrical fields. Otherwise coalescence in the reinjection channel
has been observed.
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15.4. Sensitivity of a Capacitor

15.4. Sensitivity of a Capacitor

A range of publications have presented methods to determine the content of a
droplet by measuring the difference in capacitance when the droplet passed a pair
of electrodes.[139, 378, 379] They report that it is possible to estimate the ratio of
water to ethanol within the droplets due to the change in capacitance.[378] Cur-
rently, there are techniques available to sort droplets containing cells, through a
fluorescent signal.[108] Therefore, it was considered if it would be possible to sort
droplets by the change in capacity of a pair of electrodes? Does a cell alter the
capacitance enough to be able to determine of a droplet contained any cell or even
to count them?

However, in these works different techniques to fabricate the electrodes were used
which allowed electrodes in direct contact with the channel. This raised the ques-
tion if indium-alloy electrodes could also be employed for this purpose. Therefore
a simple capacitor was sketched an the capacitance was computed for two differ-
ent droplet sizes and various values of the relative permittivity varepsilon,. The
model is shown in figure 15.4 and the results are presented in table 15.1.

(a) Er,droplet = 1.9

(C) Er,droplet = 1.9 (d) Er,droplet = 80.1

Figure 15.4.: Simulation of the electric field in droplets in a simple capacitor design.
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Er.droplet
radius
80. 1% 74.22P 25.3°¢ 1.94
(volume)
22.895 ym
11.0745pF  11.0637pF  10.8358 pF 9.9978 pF
(34.388pl)
60 pm
12.8508 pF* 12.8221pF 12.2170pF 9.9371 pF
(105. 72 pl)

Table 15.1.: Capacitance ofa microfluidic capacitor containing droplets with different relative
permittivity. As values for the relative permittivities e,. for H,O at a) 20°C' and b) 37°C, c) ethanol
and d) FC-40. Capacitance was calculated for two droplet sizes (see figure 15.4).

As presented in section 12.3 the capacitance influences the capacitative reactance.
For example at 600 Hz a capacitor of 11.0745pF is equivalent to 23.952 M),
11. 0637 pF to 23.976 M2, 10. 8358 pF to 24. 480 M) and 9. 9978 pF' to 26. 532 M.

Here, a first step towards a more complex question is taken. It showcases both the
potential and the shortcomings of the current state of the model. On one side the
capacitance for a range of dielectric constants was computed. This information
could be applied to estimate which conditions are to be expected within an actual
experiment. At the same time, the simulation does not yet include AC current or
the effects of ions in the medium. Moreover, it doers not contain the most impor-
tant object the cell. Prodan et al. have shown that the latter is a quite complex
problem.[387]
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15.5. Discussion

Results from numerical simulations should always be taken addito salis grano?.
There is of curse the element of numerical errors and artifacts caused by the the
model. Moreover, a simulation only computed the model defined. However, the
actual problem might be more complex and involve physical properties excluded
from the simulation. In case of the model presented here, only electrostatic com-
putation is provided. A more complete model should surely dive into the realms
of electrodynamics. Furthermore, the model could be expanded to model the ion
concentration in the buffers. The current state represent the groundwork and show
what has been possible in the given time. A follow-on project can build on what
is provided here and expand it.

But there are interesting results from the work done so far. First of all, the
field distribution and strength for a droplet containing pure H5O in a pico-injector
was computed. This fills a gap, that many publications working with electric field
in microfluidics have left open. The results show that the fields generated for in-
jection are comparable to what is used for cell transfection. Moreover, the electric
field distributions for a range of droplet positions was simulated, which could be
of help for future applications including cells.

With the growth of the microfluidic group and the diversification of requirements,
various electrode designs were proposed. A model was established that allows easy
loading of new structures and the computation of the field generated within them.
With this information future designs can be improved. Again, this information
can be used for other applications such as cell transfection.

In future, more complex questions such as dielectrophoretic forces will have to
be tackled. At this point a first step to in silico microfluidics was taken and basic
FEM simulations were produced.

LWith a pinch of salt/wit”, idiom likely coined by Pliny the Elder, that something should
be viewed with skepticism, or to not take it literally.
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16. Summary

In many respects the development of protocell model systems has been stagnant
over the last decade. The application of cell-sized lipid vesicles in SB is partially
restricted by the low chemical and mechanical stability of GUVs.[90] High ion
concentrations, especially bivalent cations,[419] and low pH values[420] cause lipid
membrane fusion. Moreover, the manipulation of GUVs, specifically the injection
of reagents, is very tedious. Therefore, at the beginning of this research to develop a
lipid-based model system for cellular adhesion, SUV's were used due to their higher
stability in comparison to GUVs. Finally, as a result of the gained knowledge a
leap to a completely new approach was taken. Combining the lipid-compartment
approach with water-in-oil droplet-based microfluidics led to the development of a
novel compartment system, the dsGUV. The novel approach has great potential
to break some of the shackles holding back development of cellular model systems.

In the first part of this thesis a minimal synthetic cell system with lipid vesicles
in the range of 100 nm to 200 nm to study integrin-mediated adhesion on various
ECM proteins and two different RGD peptides was established. This model system
was investigated by means of QCM-D. The analysis of the frequency and dissipa-
tion recordings clearly indicate that integrin a3 was functionally reconstituted
into the lipid vesicles. Specific bindings to fibrinogen- and fibronectin-coated crys-
tals were observed when integrin was activated with bivalent ions. The integrin-
mediated adhesion of this cell model system could be controlled by adjusting the
concentration of reconstituted integrin. Moreover, the addition of dissolved RGD-
peptides to specifically adhered integrin-liposomes yielded controlled detachment
of the protocells. The differences in affinity of the two RGD-peptides for inte-
grin binding could be assessed by the QCM-D data. These results show that
integrin-liposomes are a good model system to mimic cell adhesion. Moreover,
this model system allows adhesion quantitification on different binding ligands.
Integrin-liposomes will also be ideal candidates for encapsulation and investiga-
tion of intracellular adhesion-asociated proteins, for instance talin or focal adhe-
sion kinase. However, it is very difficult to scale up this approach to cell size, as a
consequence of the low stability of GUVs. Therefore, as this research progressed,
it became more and more apparent, that a different approach had to be developed.



16. Summary

The electric light did not come from
continuous improvement of candles.

(Oren Harari)

As a result of this knowledge, a new approach that merges lipid vesicles and water-
in-oil copolymer-stabilized droplets to generate mechanically and chemically sta-
ble cell-like compartments, called droplet-stabilized GUV (dsGUV), was devel-
oped. Combining the advantages of microfluidic technology (e.g. stability and
high-throughput generation and manipulation) with the biophysical properties of
lipid membranes (e.g. lipid bilayer structure and diffusion) the dsGUVs provides
this system with superior features in comparison to previously reported synthetic
bio-compartments. Moreover, due to the enhanced stability, dsGUV can be se-
quentially loaded with biomolecules using microfluidic pico-injection[106] and of-
fers optimal conditions for bottom-up assembly of complex synthetic cells.[174,
178, 421, 422| In the following paragraphs a summary of the major steps towards
dsGUVs formation and analysis are described. At the final stage of the research,
methods to recover GUVs from droplets were investigated and a proof of concept
is presented. By replacing stabilizing surfactant with destabilizing surfactants the
polymer shell of the droplet can be removed and the content recovered to an aque-
ous phase. Conditions, e.g. lipid compositions, for successful GUVs recovery have
been identified.

First, the necessary amount of lipids required for a continuous bilayer formation
was calculated according to the mono-disperse size of the droplets. Next, to initi-
ate rupture of the encapsulated liposomes and formation of a SLB at the droplet
inner interface, it has been shown that bivalent cations are required. 10mM
Mg?" ions proved to be the most efficient mediator of vesicle rupture.[403, 404] To
confirm lipid bilayer formation in the dsGUVs and to assess its dynamics, fluores-
cence intensity analyses and FRAP measurements were performed and compared
to encapsulate free-standing GUVs, consisting of the same lipid compositions.
The measurements revealed similar intensity values for dsGUVs and encapsulated
GUVs, respectively. These findings indicate similar lipid composition for dsGUVs
and GUVs. FRAP measurements revealed similar lipid mobility in dsGUVs as
in encapsulated free-standing GUVs. Slightly lower diffusion coefficient values in
the case of dsGUVs are attributed to the fact that the supported lipid membrane
is subject to friction from the copolymer-stabilized droplet inner interface. Sim-
ilar and even stronger tendency towards lower values of the diffusion coefficient
were reported for planar supported lipid membranes compared to free-swimming
GUVs.|240, 357] Moreover, the diffusion coefficient of the surfactants was measured
and determined to be one order lower than the diffusion coefficient of the lipid
membrane. Therefore, a mixed lipid-surfactant layer can be excluded. Moreover,
dsGUVs containing DGS-NTA were successfully functionalized with His6-GFP,
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showing the potential of the system for various synthetic biology applications.
Furthermore, to prove the formation of an intact GUV within a dsGUV, recovery
of the former from the supporting droplets was achieved.

To construct complex cellular machineries by means of bottom-up assembly, auto-
mated microfluidic pico-injection technology was adapted to allow for the sequen-
tial loading of various sub-cellular functional units into the dsGUVs. Following the
formation of dsGUVs, the pico-injection system|[106]| was used to fuse proteolipo-
somes, i.e. liposomes containing TAMRA-labeled integrin a3 integrin, with the
dsGUVs. Co-localization of integrin and lipid fluorescence signals were observed,
indicating successful fusion of proteoliposomes with the dsGUVs.

FRAP measurements of transmembrane proteins reconstituted into dsGUVs re-
vealed diffusion coefficients in good agreement with the previously published stud-
ies on integrin ay,B3 mobility in planar supported lipid bilayers or in cellular
membranes.[326, 394, 416] Moreover, to test integrin activity RGD peptides an-
chored to gold-linked surfactants [174, 342] were used to provide binding sites
for the reconstituted integrin. In that case, the diffusion coefficient of integrin
closely matched the mobility of the copolymer surfactant layer which stabilizes
the droplet. This observation indicates a successful binding between the integrin
and the RGD on the droplet interface and functional incorporation of integrin in
the lipid bilayer of the dsGUVs. It also reveals that at least some of the inte-
grin were oriented correctly, i.e. that the extracellular part points towards the
copolymer-stabilized droplet inner interface.

The developed technology overcomes fundamental limitations associated with the
formation and manipulation of currently existing protocells or polymersoms for the
design of complex synthetic cells. The assembly of a cell-like compartment with
distinct functionality requires the combination of different proteins, molecules and
buffer conditions which are incompatible when applied in the same spatial confine-
ment at once. The formation of dsGUVs enables the generation of mechanically
and chemically stable compartments which can be sequentially loaded by pico-
injection technology with different proteins and molecules. It allows for the com-
bination of biochemical which would be impossible by simply mixing the reagents.
The properties of the system will enable the realization of a real bottom-up assem-
bly of rather complex combinations and functions within synthetic compartments
in the future. It is worthwhile to mention that the formation of synthetic cells by
this technology is a high-throughput method which enables the generation of up
to 10* functional compartments per second. Therefore, it generates a vast number
of synthetic cells of unique precision which may be applied for follow-up scientific
and technological applications.
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16. Summary

In addition to the experimental work, a first step into the simulation of electric
fields in microfluidic steps were undertaken. There is still a lot that needs to be
done, but already some valuable results were achieved. For the first time the field
in pico-injection devices were computed and found to be similar to these used for
cell transfection. Moreover, steps were taken to improve the electrode design in
future microfluidic chips.
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17. Outlook

In this section two pathways of possible future experiments will be discussed. First
of all, there is the further development of a model system for cellular adhesion.
In this thesis, a major obstacle barring future progress has been overcome by
the development of dsGUVs and exciting mile-stones are in reach. Moreover, a
method to recover GUVs from droplets has been presented and this process will
be further refined in the future. By now, this technique already allows the produc-
tion of large numbers of GUVs containing reconstituted integrin. The recovered
protocells could be used to study GUV-surface interactions. However, due to the
low stability of large vesicles, this would require to finely control the affinity of
the surface, e.g. by soft polymer cushions.[19, 395, 423] Interference reflection
microscopy, sometimes referred to as reflection (interference) contrast microscopy,
could be used to investigate the adhesion behavior of the vesicles.[19, 88, 89, 397,
424] Similar GUV-surface interaction experiments would also be possible with one
of the many other CAMs.

In follow-on experiments this model system could be expanded by integrin-linked
action filaments and myosin. Therefore, I would reccomend to combine the advan-
tages of dsGUVs and the recovery of protocells with the achivements of my col-
leagues, Jan-Willi Janiesch and Barabara Haller. In their research they made great
progress in mimicking the actomyosin complex within microfluidic droplets.[189,
425, 426] With the novel dsGUV compartment system and the surrounding mi-
crofluidic technologies it has become feasible to start converging these projects.
The result would be a much more complete model of FAs.[23, 27| The planned
model is sketched in figure 17.1, right inlet. By connecting the integrin to the
actomyosin complex forces can be transduced between the protocell and its envi-
ronment. This could for example be done in a microfluidic chip that dynamically
changes the shape of the droplet.

However, an important linker to connect these two systems is still missing —
talin.[427—431| Talin is known to bind and activate integrin, while simultaneously
anchoring actin filaments.[432-435| As some time past between the heyday of work
with purified talin in the eighties and early nineties,[436, 437| attempts to retrieve
detailed protocols were unsuccessful. Some progress has already been made to fill
in the blanks in the available publications and the protein was purified within the
group. However, the activity of the newly purified has not yet been determined.
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Figure 17.1.: Schematic representation of a complex minimal synthetical cell that could be re-
alized with the dsGUV approach. Here many important components of a FA are present, as
well as an energy supply. An actomyosin complex is bound via talin or alternative linkers to
membrane embedded integrin. The integrin in turn adheres to gold nanoparticles function-
alized via thiol chemistry with peptides containing an RGD binding site. Additionally there is
GUVs encapsulated within the droplet, containing reconstituted FoF{-ATP synthase and bacte-
riorhodopsin. These encapsulated GUVs could provide a light triggered power supply. Such a
sophisticated, bio-inspired protocell requires many different components. This complexity is en-
abled by the use of microfluidic technology and capability to sequentially add new components.
These dsGUVs are easily observable with optical microscopy over long time periods. They offer
a convenient platform as cell-sized compartments within which interactions between different
adhesion-associated proteins can be systematically analyzed by means of a high-throughput
screening.

This is due to the complex binding process of talin to the integrin S-tail. Binding is
mediated by the lipid phosphatidylinositol 4,5-bisphosphate (PIP2), which alters
the conformation of talin to expose its binding site for integrin.[438, 439| Here,
QCM-D in combination with either the integrin-liposome model system presented
in this work, or with SLB containing reconstituted integrin[88, 394, 397| could be
used to determine optimal conditions. The results could than be transferred to
the dsGUV compartment system containing integrin as well as actin fillaments.

As it will take time to adapt the adhesion model system for talin to function
as a linker between integrin and actin, an intermediate solution has been found
in designed ankyrin repeat proteins (DARPins).[440-442] DARPins are genetically
engineered antibody mimetic proteins. They are derivatives of the natural ankyrin
proteins, a protein class that mediates high-affinity protein-protein interactions in
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nature.[443| By genetic fusion multi-specific DARPins constructs can be created.
Recently, a project was started to fabricate a DARPin that specifically binds to
the [-tail of integrin a;j,83 and actin filaments. A DARPin construct anchoring
actin filaments to the [-tail of integrin is expected to be available in the near
future. Implementation of DARPins in SB can be of enormous interest as they
will enable scientists to further reduce the biological complexity by restricting the
function of a protein to its binding capability.

The dsGUV compartment system has already found adoption in the scientific
community. Within the group the compartment system has been used in combi-
nation with another transmembrane protein, FoF1-ATP synthase and cytoskeletal
proteins, actomyosin and tubulin. FgF;-ATP synthase in combination with ei-
ther bacteriorhodopsin,[444| or pH gradients controlled through the oil phase[445]
could provide energy in form of adenosine triphosphate could provide energy to
processes within the droplets. A sketch of the planned model system is shown in
figure 17.1, left inlet. Furthermore, collaborators have build the necessary setups
to apply the developed methods in their own experiments, such as. cell polariza-
tion. Once the dsGUV system has been presented to a wider scientific audience,
its impact should further increase.

A great part of the potential of the model system has yet to be unlocked. Advances
microfluidic techniques, such as pico-injectors,[106| and fluorescence-activated droplet
sorting,[108, 109] allow automated high throughput manipulation and screening of

a large numbers of proto-cells. This would, for example, allow to vary concentra-
tions of multiple reagents dynamically and analyze the effect with minimal user
interaction.

Towards the goal of more integrated and more complex microfluidic chips, new
design approaches will be required.[418, 446, 447| Today most microfluidic chips
are designed with the trial and error method. This usually makes multiple itera-
tions necessary to derive a functioning chip and its important properties, such as
electric field strengths or dielectrophoretic forces. FEM simulations could provide
a reduction in overall design time and cost, while improve the control over the
design function.[417, 448, 449] A good example were this has already been applied
is the design of chips using ultrasonic manipulation.[450] The steps taken in this
work towards simulation of electric fields will be further investigated. Especially,
through the current ongoing work on a fluorescence-activated droplet sorter in the

group.
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17. Outlook

In summary, the new compartment system, the dsGUV, is young but promises to
overcome many restriction of its predecessors. This will hopefully not only lead to
new developments in modelling cellular adhesion but will also promote progress in
the wider SB field.
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Supplementary Materials

|. Matlab Code
I.1. FRAP Recovery Evaluation Script

1
/1 FRAP evaluation

/ wversion 5 20161010

Matlab-script for the evaluation of FRAP data. This script is designed to to evaluate '.csv' files ezported
using the Leica Microscopy Software. For correct evaluation the files should contain

three columns, first the intensity values form the bleaching spot, second a reference spot

and a thrid a larger area containing the bleaching spot. The data sets can differ in time steps and total
number of datapoints. The script will output the computed diffusion coefficient for each dataset as well
the average diffusion coefficient and it's corresponding standard error. Optionally the script will draw
graphs of each evaluation step.

B R R O

2 2 WANIL 7
4 set of parameters that control the evaluation of the results
/ Plotting switch. If value is true all intermediary results are plotted into
X pdf files. This slows down script drastically
plotall = true;
/ Radius of the bleached spot in pum. Important for the evaluation of the
/ diffusion coefficient
w = 2.5;
/ For good results its important, to correct the collected data points for background.
bg=0;

/ The calculation is on standard done according to protocols published by Azelrod et al. (1976) and Soumpasis (1983).
/ Alternatively a model proposed by Kang et al. (2012) can be used, correcting for diffusion during the bleaching.

/X To derive the prefactor the script 'Frap radius evaluation.m' can be used
pf=0.32;

v

KININIL, A3
Main body of code
A A A AR AR A TN

2

A A A A A AR
X% Importing the data and removing rTows with empty cells
files = dir('*.csv');
for i=1:length(files)
data=importdata(files(i) .name);
J=all(“isnan(data.data),2);
A{i}=data.data(J,:);

clear data J

end

A% Plotting of raw data
if plotall == true
for i=1:length(files)
figure('vis', 'off');
ploti=plot (A{i}(:,1),A{i}(:,2:4),'LineStyle', 'none');
set(plot1(1), 'Marker','o', 'DisplayName', 'ROI1');
set(plot1(2), 'Marker','.', 'DisplayName', 'ROI2');
set(plot1(3), 'Marker','x', 'DisplayName', 'ROI3');
xlabel('time [s]');
ylabel('intensity');
title(files (i) .name)
print (sprintf ('raw’02d',i) ,'-dpdf')

AIANBANTRNTANTNNTNLTANTNNTALTANTANTAL

Data correction and normalization

/ Each dataset is corrected for background, nmormalized by the prebleaching value
/ and corrected for photofading in this step

for i=1:length(files)

B{i}=zeros(length(A{i}),2);



63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

Supplementary Materials

A% Mean intensity of focus point before bleach

Ipre=mean(A{i}(1:10,2));

A% Mean intensity of the total cell before bleach

Tpre=mean(A{i}(1:10,4));

A/ Calculating normalized values (without background substration)

B{i}(:,1)=A{i}(:,1);

B{i}(:,2)=(A{i}(:,2)-bg) ./(Ipre-bg) * (Tpre-bg) ./ (A{i}(:,4)-bg);
end

clear i j A Ipre Tpre bg

i/ Plotting normalized graphs
if plotall == true
for i=1:length(files)
figure('vis', 'off');
plot(B{i}(:,1),B{i}(:,2), 'Marker','o','LineStyle', 'none', 'DisplayName','B(:,1.6)');
xlabel('time [s]');
ylabel('intensity');
title(files(i) .name)
print (sprintf('normalized’02d',i) ,'-dpdf')
end
clear i
end

AT
X% Initialization of the fitting model
X As fitting function an ezponential recovery curve is chosen. A robust, non-linear least square has proven to
X show good results. The fit outputs information about the fit quality to allow debugging.
fo = fitoptions('method', 'NonlinearLeastSquares', 'Lower',[0 0], 'Upper',[1 Inf]l, 'Display', 'iter', 'Robust','Bisquare');
st = [1 1]; /starting point
set(fo, 'Startpoint',st);
ft = fittype('a*x(l-exp(-t*b))',...
'dependent',{'y'}, 'independent',{'t'},...
'coefficients',{'a','d'});

A A AR A AA A
4% The normalized data is fitted to the previously initialized fitting model. The results are directly plotted.
C=zeros(2,length(files));
for i=1:length(files)
[cf,gof] = fit(B{i}(11:length(B{i}),1)-B{i}(11,1),B{i}(11:length(B{i}),2)-B{i}(11,2),ft,fo);
C(:,i) = transpose(coeffvalues(cf));
if plotall == true
figure('vis', 'off')
hold on
ylim([-0.2 0.8])
plot(B{i}(:,1)-B{i}(11,1),B{i}(:,2)-B{i}(11,2), 'Marker','o', 'LineStyle', 'none', 'DisplayName','B(:,1.6)');
plot(cf);
xlabel('time [sec]','FontSize',20)
ylabel('normalized fluorescence Intensity','FontSize',20)
title(files (i) .name)
print (sprintf ('fitted%02d',i) ,'-dpdf')
end
clear cf gof
end

clear i st fo ft plotall B

s A

¥% Calculation of diffusion coefficients

X The values are computed from the fitting results and the size of the bleaching spot. They are

X first calculated for each dataset seperately and then the average and standard error is computed

/ The calculation is on standard dome according to protocols published by Azelrod et al. (1976) and Soumpasis (1983)
X Alternatively a model proposed by Kang et al. (2012) can be used, correcting for diffusion during the bleaching
tauh=-1o0g(0.5)./C(2,:);

C(3,:) = pf*w~2./tauh;

D = [mean(C(3,:)), std(C(3,:))/sqrt(length(C(3,:)))]1;

IR
A% Saving the results

save coefficients.txt C -ASCII

fid = fopen('diffusion_coefficient.txt', 'w');

fprintf(fid, 'diffusion_coefficient std_error [pM~2/s]\n');
fprintf (fid, '/f %f',D);

close

A

clear files w fid tauh
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I. Matlab Code

I.2. FRAP Bleaching Spot Evaluation Script

FRAP radius evaluation

version 2 20161010

Script fitting the effective radius of a bleaching spots from FRAP data. Prior to running this script, extract
fluorescence intensity line profiles cutting the center of the bleaching spot from the first post bleach image

and save them as '.tzt' files, e.g. using ImageJ/Fiji. The Script will evaluate all '.tzt' file in the active directory.
The output of this script is the prefactor 'pf' needed to calculate the diffusion coefficient D=pf*r_n-2/tau_0.5
according to Kang et al. (2012).

S¢S S e e e D

A A A AR AR AR AN

X% A set of parameters that control the evaluation of the results

/ Plotting switch. If value is set to true (plotall==true) all intermediary results are plotted into
X pdf files. Slows down script drastically.

plotall = true;

/ Radius of the bleached spot in pum. Important for the evaluation of the

X diffusion coefficient.

w = 2.5;

A A A A AR AT
Main body of code

YA 74
4% Importing the data
files = dir('*.txt');

for i=1:length(files)
data=importdata(files(i) .name);
A{i}=data.data;

clear data

ARV AAY, WKL
A% Initialization of the fitting model
/X As fitting function a Gaussian distribution is chosen. A robust, non-linear least square has proven to
X show good results. The fit outputs information about the fit quality to allow debugging.
fo = fitoptions('method', 'NonlinearLeastSquares', 'Lower',[0 O w 0], 'Upper', [Inf Inf 100 Inf], 'Display', 'iter',
— 'Robust ', 'Bisquare');
st = [20 15 5 6]; /starting point
set(fo, 'Startpoint',st);
ft = fittype('ax(1-b*exp((-2* (x-d)~2)/c"2))',...
'dependent',{'y'}, 'independent',{'x'}, ...
'coefficients',{'a','d','c’, 'd'});
B=zeros(4,length(files));

A AR AR AN
X% The data is fitted to the previously initialized fitting model. The results are directly plotted.
for i=1:length(files)
[cf,gof] = fit(A{i}(:,1),A{i}(:,2),ft,fo);
B(:,i) = transpose(coeffvalues(cf));
if plotall == true
figure('vis', 'off')
hold on
plot (A{i}(:,1),A{i}(:,2), 'Marker','o','LineStyle', 'none', 'DisplayName','B(:,1.6)');
plot(cf);
xlabel('position [pm]','FontSize',20)
ylabel('fluorescence Intensity','FontSize',20)
title(files(i) .name)
print(sprintf('fitted’02d',i) ,'-dpdf')
clear cf gof

end

A A AR AR AR AT

/) Outputof the results the results

C = (1+(B(3,:)./w)"2)/8;

D = [mean(C), std(B(3,:))*mean(B(3,:))/(w~2%4)];

A A
A% Saving the results

save prefactor.txt C -ASCII

fid = fopen('prefactor.txt', 'w');
fprintf(fid, 'prefactor std_deviation \n');
fprintf (fid, 'Uf %f',D);

close

clear i st fo ft plotall files w
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1.3. Intensity Profile Evaluation Script

A AT

A% Droplet intensity profile evaluation script

/4 version 4 20161205

/ As there is refraction and defraction on the water oil interface of the droplets,

/4 it is difficult to compare the fluorescence intensity of GUV and dsGUV. This script
X tries to solve this problem by fitting and integrating the fluorescence

X intensity profile. This script is designed to to evaluate '.csv' files ezported

/ using the Leica Microscopy Software

A AR

X% A set of parameters that control the evaluation of the results

X Plotting switch. If value is true all intermediary results are plotted into
X pdf files. This slows down script drastically

plotall = true;

TUNTKATKURTATAATIATTATAADINTAAIINAINAAAL
4% Main body of code
A e VI

A AR AR AA A
A% Importing the data and removing rows with empty cells
files = dir('*.csv');
for i=1:length(files)
data=importdata(files(i) .name) ;
J=all(“isnan(data.data),2);
A{i}=data.data(J,:);
clear data J

4% Plotting of raw data
if plotall == true
for i=1:length(files)
figure('vis', 'off');
hold on
ploti=plot (A{i}(:,3),A{i}(:,4));
set(plot1(1),'Marker','o','DisplayName', 'ROI1');
xlabel('position [pm]');
ylabel('intensity');
title(files(i) .name, 'FontSize',24)
print(sprintf('raw}02d',i) ,'-dpdf')
end

A ARSI

X% Fitting of Gaussian functions to the peaks

X The data is split in two arrays around each peak and fitted with Gaussian functions
B=zeros(length(files)*2,2);

R A A A A A
X% Finding good starting points
% Searches for the position and values of two intensity peaks of a droplet crossection.
for i=1:length(files)
j=round(length(A{i})/2);
[m1 pll=max(A{i}(1:j,4));
[m2 p2]l=max(A{i}(j:length(A{i}),4));
B(i*2-1,1)=ml;
B(i*2,1)=m2;
A S A AT
A% Fitting a Gaussian function to the data via a nonlinear least square to the 'left' peak
X The fit uses the previously derived values as starting points
fo = fitoptions('method','NonlinearLeastSquares','Lower',[0 0 0 21, 'Upper',[100 A{i}(j,3) 1le-4 3],
st = [m1 A{i}(p1,3) 1le-6 2.2]; /starting point
set(fo, 'Startpoint',st);
ft = fittype('ail*exp(-((x-b1)/c1)~2) +c3',...
'dependent',{'y'}, 'independent',{'x'}, 'coefficients',{'al','bl’','cl','c3'});
x=A{i}(1:j,3);
y=A{i}(1:j,4);
f1=fit(x,y,ft,fo);
c=coeffvalues(f1);
B(i*2-1,2)=c(1)*c(3)*pi~.5;
clear c
A AR AR IAA
A% Fitting a Gaussian function to the data via a nonlinear least square to the 'right’' peak
/4 The fit uses the previously derived values as starting points

'Robust ', 'Bisquare');

fo = fitoptions('method','NonlinearLeastSquares','Lower', [0 A{i}(j,3) 1e-10 2], 'Upper',[100 A{i}(length(A{i}),3) le-4 3],

s 'Robust', 'Bisquare');
st = [m2 A{i}(p2+j,3) le-6 2.2];
set(fo, 'Startpoint',st);
x=A{i}(j:1length(A{i}),3);
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Il. Gnuplot Scripts

Il.1. Basic Frequency, and Dissipation against Time Plotting

# Gnuplot Script for plotting {CH-D data

#Setting up the export document (size labels, etc.)
reset

set terminal pdfcairo enhanced font 'Helvetica,10'
set output 'name_of_output_file.pdf'

set size ratio 0.618

set xlabel 'time [hours]'

set ylabel '{/Symbol D} frequency_7/N [Hz]'

set y2label '{/Symbol D} dissipation_7 [10°{-6}]"'
set y2tics

set key out vert right top

# setting up different line styles

set style line 1 lc rgb '#800000' 1t 1 1w 1 pt 2 ps 0.5
set style line 2 1lc rgb 'red' 1t 1 1w 1 pt 5 ps 0.5

set style line 3 1lc rgb '#FF8C00' 1t 1 1w 1 pt 7 ps 0.5
set style line 4 1lc rgb '#0000CD' 1t 1 1w 1 pt 9 ps 0.5
set style line 5 lc rgb '#1E9OFF' 1t 1 1w 1 pt 11 ps 0.5
set style line 6 lc rgb '#32CD32' 1t 1 1w 1 pt 13 ps 0.5

# list of wvariables used in the plots to denoting timepoints
# when a new solution reached the measurement chamber
v11=0.667

v12=3.1667

v13=3.667

v14=7.667

v156=11.667

# variable for time shift

timeshift=3.5

# if using a timeshift, offset values for different samples
0f1=103

0f2=113.1

0£3=100

# vertical lines (arrow) marking the timepoints when new solutions reached the analysis chamber
# arrow one defined twice as a workaround for a bug

set arrow 1 from 0,0 to 0,1 nohead

set arrow 1 from vll, graph O to vll, graph 1 nohead

set arrow 2 from vl2, graph O to vl2, graph 1 nohead

set arrow 3 from v13, graph O to vl3, graph 1 nohead

set arrow 4 from vl4, graph O to vl4, graph 1 nohead
1

set arrow 5 from v15, graph O to vl5, graph 1 nohead

unset arrow 1

# range, statistics and interval of symbols
set xrange [timeshift:12.66]

stats 'Si.txt' u ($1/3600):7 name "A"
interval=floor (A_records/10)

set title 'title_of_current_experiment'

plot 'S1.txt' u ($1/3600):($7-timeshift) axes x1y2 t '{/Symbol D}D S1_sample name' w 1lp ls 1 pi interval,\
'S2.txt' u ($1/3600): ($7-timeshift) axes x1y2 t '{/Symbol D}D S2_sample name' w lp ls 2 pi interval,\
($1/3600) : ($7-timeshift) axes x1y2 t '{/Symbol D}D S3_sample name' w lp ls 3 pi interval,\

'S3.txt' u

'Si.txt' u ($1/3600): ($6+0f1) axes x1yl t '{/Symbol D}F S2_sample name' w lp 1ls 4 pi interval,\
'S2.txt' u ($1/3600): ($6+0f2) axes x1yl t '{/Symbol D}F S2_sample name' w lp ls 5 pi interval,\
'S3.txt' u ($1/3600):($6+0f3) axes x1yl t '{/Symbol D}F S3_sample name' w lp ls 6 pi interval

LII
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II. Gnuplot Scripts

I.2. Script for Plotting Disipation against Frequency

# Gnuplot Script for plotting (CM-D data (dissipation against frequency) with fitting

#Setting up the ezport document (size labels, etc.)
reset

set terminal pdfcairo enhanced font 'Helvetica,10'
set output 'name_of_output_file.pdf'set grid

set xlabel '{/Symbol D} frequency_7/N [Hz]'

set ylabel '{/Symbol D} dissipation_7 [10~{-6}]'
set cblabel 'time [h]'

#variables

var1=2520 #start of protein binding
var2=var1+7200 #end of protein binding
var3=13500 #start of specimen binding
var4=var3+7200#end of specimen binding
£it1=2750

£it2=6000

fb1=-400

£b2=-580

#fitting
f1(x)=al*x+bl
£2(x)=a2*x+b2

fit £1(x) 'Si.txt' u ($6):($1 >= var3 && $1 <= var3+360 7 $7 :
fit £2(x) 'Si.txt' u ($6):($1 >= var3+720 && $1 <= vard ? $7 : 1/0) via a2, b2
plot 'Si.txt' u ($6):($1 >= var3 && $1 <= vard 7 $7 : 1/0):($1/3600) pt 7 ps 1 palette
x >= -1300 ? f1(x) : 1/0 1w 2 title sprintf('f(x)=%.3f * x + c', al),\
x <= -1350 ? £2(x) : 1/0 1w 2 title sprintf('f(x)=%.3f * x + c', a2)

1/0) via al, bl

var3=13500+720
plot 'Si.txt' u ($6):($1 >= var3 && $1 <= vard ? $7 : 1/0):($1/3600) pt 7 ps 1 palette
x <= -1425 7 £2(x) : 1/0 1w 2 title sprintf('f(x)=%.3f * x + c', a2)

var3=13500 #start of specimen binding

var4=27000

fit £1(x) 'Si.txt' u ($6):($1 >= var3 && $1 <= vard ? $7 : 1/0) via al, bl

plot 'S1.txt' u ($6):($1 >= var3 && $1 <= vard ? $7 : 1/0):($1/3600) pt 7 ps 1 palette
£1(x) 1w 2 title sprintf('f(x)=%.3f * x + %.3f', al, bl)

var3=13150

fit £1(x) 'Si.txt' u ($6):($1 >= var3 && $1 <= var3+150 7 $7 :
fit £2(x) 'Si.txt' u ($6):($1 >= var3+350 && $1 <= vard ? $7 : 1/0) via a2, b2
plot 'S1.txt' u ($6):($1 >= var3 && $1 <= vard ? $7 : 1/0):($1/3600) pt 7 ps 1 palette
x >= -150 ? f1(x) : 1/0 1w 2 title sprintf('f(x .3f * x + c¢', al),\
x <= -190 ? £2(x) : 1/0 1w 2 title sprintf('f(x)=%.3f * x + c', a2)

1/0) via al, bl

e

£ N
FEEIRY
t N
£ N

LIII
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I.3. Script for Computing and Plotting the First Derivative of
Frequency, and Dissipation

# Gnuplot Script for plotting the first derivative of {CH-D data

© OO WN =

#Setting up the export document (size labels, etc.)

reset

set terminal pdfcairo enhanced font 'Helvetica,10'
set output 'name_of_output_file.pdf'
set size ratio 0.618

set xlabel
set ylabel

'time [hours]
'{/Symbol D}

'

frequency_7/N [Hz]'

set y2label '{/Symbol D} dissipation_7 [10~{-6}]"'

set y2tics

set key out vert right top

# setting up different line styles

set style line 1 1lc rgb '#800000' 1t 1 1w 1 pt 2 ps 0.5
set style line 2 1lc rgb 'red' 1t 1 1w 1 pt 5 ps 0.5

set style line 3 1lc rgb '#FF8C00' 1t 1 1w 1 pt 7 ps 0.5
set style line 4 1lc rgb '#0000CD' 1t 1 1w 1 pt 9 ps 0.5
set style line 5 lc rgb '#1E9OFF' 1t 1 1lw 1 pt 11 ps 0.5
set style line 6 lc rgb '#32CD32' 1t 1 1w 1 pt 13 ps 0.5

# list of wariables used in the plots to denoting timepoints

# when a new solution rTeached the measurement chamber

v11=0.667

v12=3.1667

v13=3.667
v14=7.667

v16=11.667

# variable for time shift

timeshift=
# if using a timeshift, offset values for different samples

0f1=103
0f2=113.1
0£3=100

# vertical lines (arrow) marking the timepoints when new solutions reached the analysis chamber

# arrow one defined twice as a workaround for a bug

set arrow
set arrow
set arrow
set arrow
set arrow
set arrow

3.5

from 0,0 to 0,1 nohead

1

1 from vl1, graph O to vll, graph 1

2 from v12, graph O to v12, graph 1

3 from v13, graph O to v13, graph 1 nohead
4 from vl14, graph O to vl4, graph 1

5 from v15, graph O to vl5, graph 1

unset arrow 1
unset arrow 2
unset arrow 3
unset arrow 4
unset arrow 5

nohead
nohead

nohead
nohead

set xrange[timeshift:8.4]

# derivative functions
d=dl =d2 =d3 =d4 = db = d6 = d7 = d8 = d9 = O

x1 =yl =

0

d(x,y) = ($0 < 4) 7 (x2 =x1, x1 =x, y2 =yl, yl =y, d4 = d3, d3 = d2, d2 = d1, d1 = d, d = (y1-y2)/(x1-x2), 1/0) : (x2 = x1,
— x1 =x, y2=yl, yl =y, d4 = d3, d3 = d2, d2 = d1, dl = d, d = (y1-y2)/(x1-x2), (d+d1+d2+d3+d4)/5)

d2(x,y) = ($0 < 9) ? (x2 = x1, x1 = x, y2 =yl, yl =y, d9 = d8, d8 = d7, d7 = d6, d6 = d5, d5 = d4, d4 = d3, d3 = d2, d2 = di,
— dl =d, d= (y1-y2)/(x1-x2), 1/0) : (x2 = x1, x1 = x, y2 =yl, yl =y, d9 = d8, d8 = d7, d7 = d6, d6 = d5, d5 = d4, d4 =
< d3, d3 =d2, d2 =dl, dl =d, d = (y1-y2)/(x1-x2), (d+d1+d2+d3+d4+d5+d6+d7+d8+d9)/10)

62
63
64
65
66
67
68
69
70
71
72
73
74
75

set ylabel '{/Symbol d}_{t} {/Symbol D} frequency [Hz/s]'
set y2label '{/Symbol d}_{t}{/Symbol D} dissipation [10~{-6}/s]'

set title "derivative of integrin-liposomes \nwith 5 data point averaging"

plot 'S1.txt' u ($1/3600):(d($1,$7-timeshift)) axes x1y2 t '{/Symbol D}D nsample name' w lp ls 1 pi interval,\
'S2xt' u ($1/3600): (d($1,$7*-timeshift)) axes x1y2 t '{/Symbol D}D sample name' w lp 1s 2 pi interval,\
'S3.txt' u ($1/3600):(d($1,$7*-timeshift)) axes x1y2 t '{/Symbol D}D sample name' w lp 1ls 3 pi interval,\
'Si.txt' u ($1/3600):(d($1,$6+0f1)) axes x1yl t '{/Symbol D}F sample name' w lp 1ls 4 pi interval,\
'S2.txt' u ($1/3600):(d($1,$6+0f2)) axes x1yl t '{/Symbol D}F sample_name' w lp 1ls 5 pi interval,\
'S3.txt' u ($1/3600):(d($1,$6+0£f3)) axes x1yl t '{/Symbol D}F sample_name' w lp ls 6 pi interval

set title "derivative of sample_name \nwith 10 data point averaging"
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II. Gnuplot Scripts

plot

'Si.txt' u ($1/3600):(d2($1,$7-timeshift)) axes x1y2 t '{/Symbol D}D sample_name' w
:(d2($1,$7-timeshift)) axes x1y2 t '{/Symbol D}D sample_name'
:(d2($1,$7-timeshift)) axes x1y2 t '{/Symbol D}D sample_name'

'82.txt!'
'S3.txt!'
'S1.txt!
'52.txt!
'S3.txt!’

u

u
u
u
u

($1/3600)
($1/3600)
($1/3600)
($1/3600)
($1/3600)

:(d2($1,$6+0f1)) axes x1yl t '{/Symbol D}F sample_name'
: (d2($1,$6+0f2)) axes x1yl t '{/Symbol D}F sample_name'
: (d2($1,$6+0f3)) axes x1yl t '{/Symbol D}F sample_name'

w 1lp
w 1lp
w 1p

1p 1s 1 pi interval,\

w 1p 1s 2 pi interval,\
w 1lp 1s 3 pi interval,\
1s 4 pi interval,\

1s 5 pi interval,\

1ls 6 pi interval
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lll. Estimation of the Electric Field in a
Picoinjection Device

The following calculation will give a rough estimate of the electric fields, created
in a pico-injection device. By showing the amount of simplifications necessary to
derive an analytical solution, the use of the FEM can be motivated.

To calculate the strength of the electric field, the charge distribution in the wires
has to be calculated first. Therefore, the capacitance of the wires close to the
channel is approximated. Note, this ansatz will ignore part of the electric field.
The total capacitance of the wires could also be experimentally measured. However
this method would be ignorant to their distribution.

lll.1. Capacity

The geometry of the electrodes is quite complex and its impossible to calculate
it’s capacitance analytically. As any field within a conductor, immediately causes
charges to align on it’s surface in such a manner, that the field is cancelled. Hence
it can be assumed assumed, that the charges is mostly concentrated at the op-
posing surfaces of the electrodes. Therefore, the geometry is simplified to a plate
capacitor. The capacity of a plate capacitor is approximated as

A Q
R EgE— = —. 1
C QfT =g (S1)

height=30ym

Figure 1.: Sketch of the wires and the charge distribution.

Where A is the surface area of the opposing interfaces of the wires and d is the
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III. Estimation of the Electric Field in a Picoinjection Device

distance in between. @ is the total charge of the capacitor in relation to the applied
voltage U. Equation S1 can be rearranged as follows,

Q = 8057. (82)

As the charge is approximately equally spread over the wire, we can assume the
charge density as

p=0Q/l, (S3)

where [ is the length of the rod. Note, that the charge distribution is reduced by
one dimension, as it is not important in our later calculation.

l1l.2. Vectorial Electric Field

rod

electric constant of PDMS

e~ 2.5

Figure 2.: Sketch of the geometry used to compute the field strength.

The calculation starts by considering the field created by one rod at a point P
at the coordinates r,

_1oam,
k= 47?806/ (r)? dr, (54)

with r =r ' — ry. Where dr is defined as

dr = e,dr = %dr. (S5)
Here charge can be written as
Q(I‘) =p (®($l) - @(xr>> 5(yrod)7 <S6)
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where p is defined in equation S3. Combining equation S4 and S6 gives

E= 2 / 5(yrod) Ldr

4mege r2 |I‘|
o 5(yrod) (‘T — ZL'p)ez + (y — yp)ey
_ _p
- == // N TS Ey s e v drdy (S7)
2] p p p P

= e //xT ! ( —xp)esr + (Yroa — Yp)€y
Ameoe T (l’ - xp)Z + (yrod - yp)Q \/(l‘ - xp)2 + (yrod - yp)2
Which can be split in the electric field in the direction of vector e, and e, part,

Ty 1 .
B =" / " dr,  (S8)

N 47T€05 7 (37 - fljp)Q + (yrod - yp)2 \/(.T} - xp)2 + (yrod - yp)2
and
p Zr 1 Yrod — Yp
g - / dr.  (S9)
Y dmeoe Sy, (@ = %)%+ (Yroa — Yp)? V(@ = 2p)? + (Yroa — Up)?

Integration of equations S8 and S9 yields

Tr—Tp

E, = £ =1 S10
47I'€0€ |: /y/2+I/2:|xl_$p ( )

_ 1 _ 1
Amepe (\/yl2+(iﬂl—l‘p)2 \/y/2+($r—xp)2> )

and

Tr—Tp
!

Ey = 47r§0€ [ y :| (S]_l)

/ 12 12
y\/y + @—ap

— P Ty —Tp o T —Tp
- )
dmeoe y'\/y,2+($r_5’7p)2 y/\/y,2+(zl—$p)2

respectively. To calculate the total field strength, the fields from both rods have
to be added. Note, that the charges of anode and cathode are of opposite charge.
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III. Estimation of the Electric Field in a Picoinjection Device

lI1.3. Matlab Script Implementing the Field Calculation

/4% Picoinjection electric field calculator

/1 device properties
/ sturcture height [um]

height = 70;
/ length were wires are parallel [um]
length = 300;

/ distance of wire [um]
distance = 20;

/ electric constant (PDHS =2.5)
epsilon = 2.5;

/ voltage [V]

U = 250;

/position wire top left [um]
xleft = 20;

yleft = 10;

/% area to be calculated
Jz-area [um]

xmin = -40;

xmax = 10;

Ay-area [um]

ymin = -40;

ymax = 40;

stepsize = 5;

/% calculating the charge for an assumed plate capacitor
Q = pccalc(length,height,distance,epsilon,U);

2 grid

xgrid = xmin:stepsize:xmax;
ygrid = ymin:stepsize:ymax;
clear stepsize

4% field calculator

[Ex,Ey, Eabsolute] = fieldcalc( xgrid , ygrid , Q, length, epsilon, distance, xleft, yleft );

/gnuplot=zeros (numel (ygrid) *numel (zgrid), 3) ;
Alimit = 500;
Afor i=1:numel (ygrid);

7 for j=1:numel(zgrid);

7 if Eabsolute(i,j)> limit

/ gnuplot ((i-1)*numel (zgrid)+j,:) = [zgrid(j),ygrid(i),500];

7 else

i gnuplot ((i-1)*numel (zgrid)+j,:) = [zgrid(j),ygrid(i),Eabsolute(i,j)];
7 end

7 end

Jend

/save('gnuplot.tzt', 'gnuplot’, '-ascizi')

figure (1)

surf (xgrid,ygrid,Eabsolute/100) ;
title('Field distribution');
axis([xmin xmax ymin ymax 0 0.5]);
caxis([0 0.5]);

xlabel('x-axis [pm]');
ylabel('y-axis [pm]');
zlabel('electric field [kV/cm]');

figure(2)

contour (xgrid,ygrid,Eabsolute/100,40) ;
title('Field distribution');
axis([xmin xmax ymin ymax]);

caxis([0 0.5]);

colorbar

xlabel('x-axis [pm]');

ylabel('y-axis [pm]');

figure(3)

quiver (xgrid,ygrid,Ex,Ey);
hold on

contour (xgrid,ygrid,Eabsolute/100,20) ;
hold off

title('Field distribution');
axis([xmin xmax ymin ymax]);
caxis([0 0.5]);

colorbar

xlabel('x-axis [pm]');
ylabel('y-axis [pm]');
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clear distance epsilon height length U xleft yleft i j limit xmin xmax ymin ymax

function [ Ex , Ey , Eabsolute ] = fieldcalc( xgrid , ygrid , Q , length, epsilon, distance, x1, yrod )
€0=8.854187817e-12;
rho = Q/length*10e6;
C = rho/(4*pi*e0*epsilon);
Ex = zeros(numel(ygrid) ,numel(xgrid));
Ey = zeros(numel(ygrid) ,numel(xgrid));
for i=1:numel(ygrid);
for j=1:numel(xgrid)
Ex(i,j) = Cx(((yrod-ygrid(i))~2 + (x1 - xgrid(j))~2)~-0.5-((yrod-ygrid(i))~2 + (x1 + length - xgrid(j))~2)~-0.5-((yrod -
— distance - ygrid(i))~2 + (x1 - xgrid(j))~2)"-0.5+((yrod -distance-ygrid(i))~2 + (x1 + length -
— xgrid(j))~2)"-0.5);
if ygrid(i) == yrod;
Ey(i,j)= Cx((xl+length-xgrid(j))/(distancex*sqrt(distance~2+(x1+length-xgrid(j))~2)) -
— (x1-xgrid(j))/(distance*sqrt (distance~2+(x1-xgrid(j))~2)));
elseif ygrid(i) == yrod - distance
Ey(i,j)= Cx((xl+length-xgrid(j))/(distance*sqrt(distance~2+(xl+length-xgrid(j))~2)) -
— (x1-xgrid(j))/(distance*sqrt(distance~2+(x1-xgrid(j))~2)));
else
Ey(i,j)= Cx((xl+length-xgrid(j))/((yrod-ygrid(i))+*sqrt((yrod-ygrid(i)) 2+ (x1+length-xgrid(j))~2)) -
— (x1-xgrid(j))/((yrod-ygrid(i))+*sqrt((yrod-ygrid(i))~2 + (xl-xgrid(j))~2)) - (xl+length-xgrid(j)) /
— ((yrod-distance-ygrid(i))#*sqrt((yrod-distance-ygrid(i))~2 + (xl+length-xgrid(j))~2)) + (xl-xgrid(j)) /
— ((yrod-distance-ygrid(i))+*sqrt((yrod-distance-ygrid(i))~2 + (xl-xgrid(j))~2)));
end
end
end
Eabsolute =sqrt(Ex. 2+Ey."2);
end

function [ Q ] = pccalce( x,y,d,epsilon,U )
€0=8.854187817e-12;
Q=e0+*epsilon*U*x*y/d*le-6;

end
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The Road Not Taken

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood

And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:

Two roads diverged in a wood, and I—
I took the one less traveled by,

And that has made all the difference.

Robert Frost
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