
Dissertation
submitted to the

Combined Faculties for the Natural Sciences and for Mathematics
of the

Ruperto-Carola-University of Heidelberg
for the degree of

Doctor of Natural Sciences

Put forward by

Santiago Casas

born in: Bogotá

Oral examination: June 14, 2017

http://www.uni-heidelberg.de/




Non-linear structure formation in models of Dark Energy and Modified
Gravity

Referees:
Dr. Valeria Pettorino

Prof. Dr. Volker Springel





RUPERTO-CAROLA-UNIVERSITY OF HEIDELBERG

DOCTORAL THESIS

Non-linear structure formation in models
of Dark Energy and Modified Gravity

Author:
Santiago CASAS CASTRO

Supervisor:
Dr. Valeria PETTORINO

Dissertation
submitted to the

Combined Faculties for the Natural Sciences and for Mathematics
of the

Ruperto-Carola-University of Heidelberg

for the degree of
Doctor of Natural Sciences

May 2, 2017

http://www.uni-heidelberg.de/
http://www.thphys.uni-heidelberg.de/~casas/
https://valeriapettorino.wordpress.com/
http://www.uni-heidelberg.de/


ii

“Die Natur verbirgt ihr Geheimnis durch die Erhabenheit ihres Wesens, aber nicht durch
List.”

A. Einstein
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Zusammenfassung

Nicht-lineare Strukturentstehung in Modelle für Dunkle Energie und
modifizierte Schwerkraft

Im Rahmen dieser Arbeit untersuchen wir die Relevanz der nicht-linearen Struk-
turentstehung zur Bestimmung von kosmologischen Parametern in Modellen jen-
seits des Standard-ΛCDM-Szenarios. Zukünftige Galaxiendurchmusterungen wer-
den die Zwei-Punkt-Korrelationsfunktion von mehr als 107 Galaxien sehr präzi-
se messen können. Die Gewinnung der in dieser Funktion kodierten Information
auf kleinen Skalen ermöglicht die Eingrenzung des zugrundeliegenden kosmolo-
gischen Modells. Dabei betrachten wir verschiedene Modelle jenseits ΛCDM: CDE
(Coupled Dark Energy), GNQ (Growing Neutrino Quintessence), EFT (Effektive
Feldtheorie), Horndeski-Theorie und allgemeine phänomenologische Parametri-
sierungen für modifizierte Schwerkraft. Um die nicht-linearen Effekte in diesen
Modellen zu analysieren, benutzen wir verschiedene Methoden: Anpassformeln,
semi-analytische Präskriptionen, die auf dem Halo-Modell basieren, Resummati-
onsmethoden für die kosmologische Störungstheorie und spezialisierte N-body-
Simulationen. Um die Eingrenzungsstärke der Durchmusterungen der nächsten
Generation (z.B. Euclid, SKA und DESI) vorherzusagen, haben wir einen Code ent-
wickelt, der den Bayesschen Fisher-Matrix-Formalismus benutzt. Damit lassen sich
die abgeleiteten Fehler in den Parametern berechnen, die durch den Gravitations-
linseneffekt und durch die Beobachtung der Galaxien-Häufung gewonnen werden
können. Wir untersuchen hinsichtlich der modifizierten Schwerkraft die Auswir-
kungen, die verschiedene Parametrisierungen und nicht-lineare Präskriptionen auf
die Fisher-Prognosen haben. Damit erhalten wir die besten Kombinationen aus
“Redshift-binned”-Parametern, die in zukünftigen Experimenten gemessen wer-
den können. Im “Coupled Dark Energy”-Szenario führen wir die ersten Progno-
sen durch, in denen die Anpassformeln aus N-body-Simulationen verwendet wer-
den. Dabei zeigt sich, dass nicht-lineare Skalen die Eingrenzungen um mehr als
eine Größenordnung im Vergleich zu den linearen Prognosen verbessern. Im GNQ-
Modell benutzen wir nicht-Newtonsche N-body-Simulationen, um die verschiede-
nen Strukturen der Dynamik von Neutrinoklumpen zu untersuchen. Wir zeigen,
dass es in diesem Modell realisierbare Kosmologien gibt und dass die Wechsel-
wirkungen der Klumpen eine Erhitzung der Neutrino-Flüssigkeit induzieren. Ab-
schließend untersuchen wir die nicht-linearen Korrekturen am Leistungsspektrum
im Falle der Horndeski-Theorie unter Berücksichtigung der quasistatischen An-
nahme. Um das zu erreichen, verwenden wir eine Resummationsmethode für Stö-
rungstheorien höherer Ordnung, die bislang nur im kosmologischen Standardmo-
dell eingesetzt wurde. Die Hauptthese dieser Dissertation ist, dass die nicht-lineare
Strukturenstehung einen signifikanten Einfluss auf die Schätzung der kosmologi-
schen Parameter hat. Wenn wir unter Einbeziehung der zu erwartenden Daten aus
den konkurrierenden Theorien auswählen wollen, müssen wir Nicht-Linearitäten
und ihre Implikationen berücksichtigen.
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Abstract

Non-linear structure formation in models of Dark Energy and Modified Gravity

In this thesis we investigate the importance of non-linear structure formation on the
determination of cosmological parameters for models beyond the standard ΛCDM
scenario. Future galaxy surveys will be able to determine the two-point correlation
function of more than 107 galaxies in a very precise way. Extracting the informa-
tion encoded in this function at small scales, allows us to constrain the underlying
cosmological model. Here we consider different models beyond ΛCDM: Coupled
Dark Energy, Growing Neutrino Quintessence, Effective Field Theory, Horndeski
theory and general phenomenological parameterizations of Modified Gravity. To
study the non-linear effects in these models, we use different methodologies: fit-
ting formulae, semi-analytic prescriptions based on the Halo model, resummation
methods in cosmological perturbation theory and specialized N-body simulations.
In order to forecast the constraining power of next-generation surveys, such as Eu-
clid, SKA and DESI, we developed a code that uses the Bayesian Fisher matrix for-
malism to compute the inferred error on the parameters for Galaxy Clustering and
Weak Lensing observables. For Modified Gravity we study the effect that different
parameterizations and different non-linear prescriptions have on the Fisher fore-
casts. We obtain the best combination of redshift-binned parameters which will
be measured by future experiments. Within the Coupled Dark Energy scenario
we perform the first forecasts using fitting formulae from N-body simulations and
show that using non-linear scales improves the constraints by more than an order
of magnitude compared to linear forecasts. In the Growing Neutrino Quintessence
model, we use non-Newtonian N-body simulations to study the different regimes
for the dynamics of neutrino lumps. We show that there are viable cosmologies
within this model and that the lump interactions induce a heating of the neutrino
fluid. Finally, we also study analytically the non-linear corrections to the power
spectrum in the case of Horndeski theory under the quasistatic approximation. To
achieve this, we apply a resummation method for higher order perturbation theory,
which had so far only been employed within the standard cosmological model. The
main message of this thesis is that non-linear structure formation has a significant
impact on cosmological parameter estimation. In order to discriminate between
competing theories, using forthcoming data, we need to take non-linearities and
their implications into account.
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Introduction

In the first years after Einstein crafted his theory of General Relativity (GR), other
important theoretical and experimental physicists like Hubble, Slipher, Lemaître
and Friedmann (among many others) delivered the first steps to the discovery that
the Universe is a dynamical entity and laid the foundations for the field of modern
cosmology.

During the 20th century, the advances in cosmology were exceptional. Many
more galaxies with many different morphologies were discovered, and it was found
that they were not just randomly located in space, but that they clustered into large
and coherent structures. The Cosmic Microwave Background (CMB) radiation was
discovered, which gave us a picture of the early Universe and provided the initial
conditions for our calculations. Later on, galaxy rotation curves and galaxy cluster
dynamics hinted strongly at the existence of a cold "Dark Matter" (CDM) compo-
nent that interacts only gravitationally with common matter. Finally, towards the
end of the century, supernovae observations confirmed that the Universe has been
experiencing an accelerated rate of expansion in recent times, which might be ex-
plained by introducing a Cosmological Constant (Λ) into Einstein’s equations. By
the turn of the century, the standard concordance model of cosmology, known as
Λ-Cold-Dark-Matter (ΛCDM), was already a well established theory.

In the last decade, cosmology has entered the so-called precision era, and it is
now a field of science that is driven by large amounts of data; modern measure-
ments are able to constrain the parameters of the cosmological model with very
high precision. This is possible, despite the narrow window we have for obser-
vations, compared to other areas of science. In cosmology we only observe basi-
cally electromagnetic radiation and how its wavelength is redshifted with time and
space, plus the positions of galaxies in the sky and their shapes. We are now able to
perform measurements of very small effects, which were thought to be too difficult
to be realized in practice just a few years ago. An incomplete list of these measure-
ments are: Weak (gravitational) Lensing (WL), Baryon Acoustic Oscillations (BAO),
Redshift Space Distortions (RSD) and CMB polarization. Very recently, due to the
newly discovered detection of gravitational waves, a new window of gravitational
wave astronomy is now open and cosmologists are already thinking on how to use
it to constrain, even more, the parameters of the Universe.

In this thesis we will deal with two topics in cosmology that have gained a lot of
attention in recent years. The first one is the investigation of the possible extensions
to the ΛCDM model and the modifications of standard Einstein’s General Relativ-
ity. The second one is the study of non-linear formation of large scale structures in
the Universe.

Modified Gravity and Dark Energy have earned a lot of interest, since there
is yet no successful explanation of the Cosmological Constant problem —its mea-
sured value does not match, by far, the expectations from the Quantum Field The-
ory point of view. Moreover, it is difficult to explain why the onset of acceleration is
happening “just now“ in cosmological time scales, in other words, why the energy
density fraction of Dark Energy and Dark Matter are of the same order of magni-
tude just during a very short period of time, and that time is precisely now.
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Non-linear structure formation is of great importance nowadays, since present
and future observations are capable of measuring more deeply into the non-linear
regime which manifests itself at small scales. These scales contain a lot of informa-
tion about the underlying cosmology and might hint at physics beyond the con-
cordance model. Cosmological many-particle simulations and perturbation theory
have confirmed that these scales contain valuable information, but cosmologists
have realized that extracting this information in practice is a very difficult task.

In the first half of chapter 1, we briefly review the formalism of General Relativ-
ity and the standard cosmological ΛCDM scenario. We will explain why the Cos-
mological Constant is not completely satisfactory and we will derive the linearized
Einstein equations, which form the departure point of the theory of cosmological
structure formation.

In the second half of chapter 1 we introduce the concepts of Dark Energy and
Modified Gravity driven by a scalar field. We will divide the models into those
in which the scalar field is coupled universally to all particles in the Universe and
models in which the scalar field is only coupled to specific particles, like Dark Mat-
ter or neutrinos. The models for which we will show results in this work are: Cou-
pled Dark Energy, Growing Neutrino Quintessence, Effective Field Theories and
Horndeski models. We will also deal with parameterizations of Modified Gravity
which encompass general modifications to the relativistic gravitational potentials.

In chapter 2 we explain the underlying concepts in statistics that will help us
make sense of the observations of galaxy surveys and non-linear structures in the
Universe. We detail the Bayesian approach to statistical inference and how we can
forecast the results of future experiments using the Fisher Matrix formalism. We
focus on two observables: Galaxy Clustering and Weak Lensing. The first one is
the study of the two-point correlation function of galaxies and the second is the
correlation among galaxy ellipticities, also known as cosmic shear. This chapter in-
cludes details on the implementation of a Fisher Matrix forecasting code developed
by the author, which was used in the author’s publications.

Chapter 3 studies three general parameterizations of Modified Gravity, two
of them in which the deviations compared to standard GR are parameterized as
smooth functions of time and one in which the deviations are binned in indepen-
dent redshift intervals. We perform forecasts for future surveys using Galaxy Clus-
tering and Weak Lensing and we test thoroughly the effects of including non-linear
prescriptions into the analysis. We also look at the correlation between parameters
and how we can find a decorrelated set of optimally constrained parameters.

The purpose of the next investigation, detailed on chapter 4, is to use fitting
functions from N-body simulations in a specific model, namely Coupled Dark En-
ergy, to improve previous forecasts on the coupling parameter governing a "fifth-
force" interaction between CDM and the scalar field. We also show how the igno-
rance on the correct non-linear power spectrum can bias our results.

In chapter 5 we elaborate on a technique called "eikonal Renormalized Pertur-
bation Theory" which is capable of yielding the non-linear matter power spectrum
at mildly non-linear scales, by using resummation methods borrowed from Quan-
tum Field Theory. We apply this method to a very general theory of gravity plus
a scalar field, called Horndeski’s theory, but we restrict ourselves to some special
limiting cases, in order to simplify the calculations. This method is very promis-
ing, because it could provide a faster way of calculating non-linear corrections to
the power spectrum for Horndeski models and therefore improve the actual con-
straints on the model parameters, which are based on linear quantities only.
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Finally, in chapter 6 we present a different model of Dark Energy, called Grow-
ing Neutrino Quintessence. In this scenario, the sum of the neutrino masses are
varying as a function of time and space, and are driven by the value of the Dark
Energy scalar field. This yields very interesting phenomenological predictions, but
also complicates the equations, which become highly non-linear. Therefore a non-
perturbative treatment is needed, that also takes into account the effects of backre-
action. We perform our own (non-Newtonian) N-body simulations and find some
interesting regions in parameter space, in which the evolution of the cosmological
background is very similar to the standard ΛCDM scenario, but in which neutrinos
form very large structures, so-called "lumps". Interestingly, we discover that the
dynamics of these neutrino lumps follow two very distinctive regimes.

Most of the work presented here has been published by the author in different
papers. Some of the contents of chapter 3 have appeared in [84]. Chapter 4 is based
on [83], while parts of chapter 6 have been presented in [82]. Certain sections of
chapter 2 and chapter 1 have also appeared in some of these publications. The
work explained in chapter 5 and the FISHERTOOLS code described in chapter 2
belong to papers in preparation.
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Chapter 1

Dark Energy and Modified Gravity

The theoretical framework to describe gravity and space-time in cosmology is Ein-
stein’s General Relativity which is one of the cornerstones of modern physics. Ein-
stein formulated this theory more than 100 years ago, without the purpose of ex-
plaining cosmology, but mostly to solve the theoretical challenges posed by his
relativistic mechanics under the influence of a gravitational field. Besides maybe
the perihelion shift of Mercury there was no experimental need for it. It was more
than a decade later, thanks to observations by Hubble and Slipher, that physicists
where convinced that there were objects much farther away from our galaxy and
that these objects were receding away from us.

One century later, General Relativity (GR) has passed numerous very stringent
tests; from laboratory experiments [109] , to low orbit [144] and solar system tests
[60], to constraints from pulsar timing [160] and the recent exciting first detection
of gravitational waves by the LIGO/VIRGO collaboration [1]. It is impressive that
a theory that was formulated on the grounds of some very fundamental principles,
has proven to be so accurate across several orders of magnitude in scales.

In section 1.1 we will review the main principles and the mathematical formu-
lation of General Relativity, its field equations and its linearized Newtonian limit.
In section 1.2 we will deal with the composition of the Universe, its evolution and
the standard cosmological scenario.

Despite the successes of standard GR, there is one extra ingredient that has to be
added to explain the observations at the largest scales of the Universe. To account
for the accelerated expansion of the Universe, which was observationally verified
almost 20 years ago, ([229, 208]), Einstein’s General Relativity needs to be supple-
mented with a Cosmological Constant (known as CC or Λ). Even taking into ac-
count the fact that Λ is allowed by the classical theory, as was proven by Lovelock
in the 1970’s [180] (see section 1.1) and it fits well present cosmological observa-
tions [219], it possesses many unsatisfactory properties from the theoretical point
of view. We will review the problems associated to the Cosmological Constant in
section 1.2.3 below.

A popular alternative to the cosmological constant is to introduce an extra dy-
namical degree of freedom, which is able to explain the present acceleration of the
Universe and its apparent dominance at late cosmological times. Many of these
models can also lead to modifications of gravitational structure formation at small
and large scales. This will be the main topic of this chapter and will be covered in
sections 1.3 to 1.6.
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1.1 The framework of General Relativity

Einstein based its construction of General Relativity on considerations of the Equiv-
alence Principle and relativity of inertial frames, but, in more modern terms, we can
say that General Relativity is a theory of a dynamical tensor field, the metric gµν ,
which defines the lengths of space-time intervals ds2 = gµνdx

µdxν and which is co-
variant under diffeomorphisms. All particles and fields couple to the metric g in a
universal way. This means that the equations of motion and all the physical prop-
erties do not depend on the chosen coordinates. This metric lives on a generally
curved 4-dimensional manifold, which by definition, can be transformed locally
into Euclidean Rn space —the mathematical description of Einstein’s Equivalence
Principle.

The Einstein-Hilbert action and the field equations

Although Einstein postulated the field equations of General Relativity in a heuristic
form, they can be obtained by varying the so-called Einstein-Hilbert action

S =
1

16πG

ˆ
dx4√−g (R− 2Λ + Lm) (1.1)

with respect to the metric gµν . Here, R = Rµµ is the Ricci scalar and Rµν is the
Riemann tensor (see standard GR textbooks like the Wald [274], for a thorough
definition of these terms), both of them which are functions of derivatives of the
metric up to second order. The volume element is defined as dx4√−g, where

√−g
is the square root of the determinant of the metric. Furthermore, the cosmological
constant is Λ, the gravitational constant is G and Lm is the Lagrangian of matter
and radiation species. Then the variation (δS/δgµν = 0), yields the field equations:

Gµν + gµνΛ = 8πGTµν , (1.2)

where the Einstein tensor is defined as Gµν ≡ Rµν − 1
2gµνR and the energy-

momentum tensor is defined as:

Tµν = − 2√−g
δLm
δgµν

. (1.3)

What eq. (1.2) expresses is that geometry (and therefore the dynamics of the metric)
is sourced by the energy and momentum of the fields living on this manifold. As it
was famously expressed by Misner, Thorne, and Wheeler [194]: "Matter tells space-
time how to curve and geometry tells matter how to move" .

Another important property of these field equations, is that due to a geometric
property called the Bianchi identity, which states that the covariant divergence of
the Einstein tensor is identically zero, ∇µGµν = 0, we can ensure that the energy-
momentum tensor is covariantly conserved:

∇µTµν = 0 , (1.4)

therefore, locally, one recovers all the properties of classical and fluid mechanics.
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Lovelock’s theorem and the uniqueness of General Relativity

One might then ask if these field equations are unique, especially if as in our case,
we are interested in testing these equations at the very largest scales of the Universe
and we might be interested in modifying General Relativity in order to match cur-
rent observations. Thanks to a theorem by Vermeil and Cartan ([211]) and fur-
ther simplified by Lovelock ([180]) we can state that in 4 dimensions, the only
divergence-free, rank-2 tensor G, which depends on at most second derivatives of
the metric must be of the form:

G = αRµν +
(

Λ− α

2
R
)
gµν . (1.5)

Therefore, to ensure the correct Newtonian limit of the theory (Newtonian Poisson
equation), we must set α ≡ 1 and the proportionality constant between the Ein-
stein tensor Gµν and the energy-momentum tensor Tµν has to be set to 8πG. This
theorem has fundamental implications for cosmology, which we will comment in
the following sections, when needed.

1.2 The standard cosmological model

The cosmological principle states that no observer in the Universe is special and
that each observer sees the Universe in the same way independently of spatial ro-
tations, therefore space-time has to be described by a homogeneous and isotropic
metric gµν . If furthermore, we can define a foliation of space-time, in which there
is a preferred timelike direction, orthogonal to the spatial hypersurfaces, we end up
with a metric which solves the Einstein’s field equations 1.2; the so-called Friedmann-
Lemaître-Robertson-Walker (FLRW) metric:

ds2 = gµνdx
µdxν = −dt2 + a2(t)dς2 , (1.6)

where a is the scale factor, t the cosmic time coordinate, and dς2 is the time-independent
spatial metric:

dς2 = γijdx
idxj =

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2) , (1.7)

where r is the radial coordinate, θ the polar angle and φ the azimuthal angle. The
curvature k which can be 0, 1 or -1, corresponds to Universes which are flat, closed
or open, respectively. Due to the stringent constraints on k given by recent obser-
vations, we will use for the rest of this work only a flat geometry with k = 0. Also
we will use the convention that "Greek" indices run from 0 to 3, as in eq. (1.6), while
"Latin" indices run from 1 to 3 as in equations involving only spatial coordinates,
like eq. (1.7).

1.2.1 The Friedmann equations

The FLRW metric eq. (1.6) due to its scale factor, which is dependent on time, im-
plies immediately that the Universe has dynamics in its spatial coordinates. The
equations describing the evolution of the scale factor are called the Friedmann equa-
tions. To derive them, we need to introduce in the right hand side of Einstein’s
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equations eq. (1.2) an energy-momentum tensor of a perfect fluid:

Tµν = (ρ+ p)uµuν + pgµν , (1.8)

which is justified since at cosmological scales, we expect the background matter in
the Universe to be absent of dissipative and viscous forces. The density ρ and the
pressure p are the sum of the densities and pressure terms of all matter and radi-
ation species in the universe. If we write down now the (00) and (ii) components
of the Einstein’s field equations eq. (1.2), computing the Riemann and Ricci tensors
of a FLRW metric, we end up with two ordinary differential equations for the scale
factor a(t): (

ȧ

a

)2

=
8πG

3
ρ+

Λ

3
(1.9)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(1.10)

These are the so-called Friedmann equations, which determine the evolution of the
Hubble function defined as:

H(t) ≡ ȧ(t)

a(t)
. (1.11)

The critical density of the Universe is defined as:

ρcr =
3H2

8πG
, (1.12)

which is the critical density that an Universe with zero curvature k = 0 would have
according to the observed value of the Hubble function. So, for each species in the
Universe, with energy density ρi, we can define the energy density fraction as:

Ωi(t) =
ρi(t)

ρcr(t)
, (1.13)

so that the first Friedmann equation eq. (1.9) (for a flat Universe) can be written as:∑
i

Ωi(t) = 1 . (1.14)

Another important quantity for each matter species is its equation of state:

w ≡ p

ρ
, (1.15)

which enters in its cosmological evolution equation.

1.2.2 The ΛCDM model

As we have seen before, the field of cosmology is relatively new, with less than
100 years of theoretical development and even much less time of observational
progress. However, in the last few decades, with the precise measurements of the
Cosmic Microwave Background (CMB) radiation, the rapid progress in galaxy sur-
veys and the impressive development of cosmological simulations, an observation-
ally very successful standard model has emerged, the so-called ΛCDM model.
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In this model, and according to the latest observations (see [219]), almost 70%
of the energy density of the Universe is composed by vacuum energy, attributed
to the Cosmological Constant Λ, 25% by Cold Dark Matter and less than 5% by
baryons. The remaining components are photons —which are basically negligible
today, despite the amount of light and radiation in the Universe— and massive
neutrinos, whose mass and therefore its contribution to the "cosmic pie" has not
been measured precisely enough yet.

This special mixture of cosmological ingredients in the Universe, leads to a well
defined background evolution of the Hubble function H(z). However, as we will
see below, the Cosmological Constant is not very satisfactory from the theoretical
point of view. Therefore if we leave open the possibility that the accelerated expan-
sion of the Universe is caused by a "Dark Energy" component, with an unknown
equation of state wDE(z) (where wDE(z) = −1 would correspond to the Cosmo-
logical Constant), then together with the "standard" matter species (with w = 0 for
CDM and baryons and w = 1/3 for radiation), we can write down the evolution of
the Hubble parameter as a function of redshift z ≡ 1/a− 1 :

H2(z) =H0

(
Ωc(1 + z)3 + Ωb(1 + z)3 + Ωr(1 + z)4

+ΩDE exp

[ˆ z

0
dz̃

3(1 + wDE(z̃))

1 + z̃

]) (1.16)

where we have left out neutrinos, since their evolution at high and low redshifts
is not so straightforward to write, due to their changing from relativistic to non-
relativistic particles in the history of the Universe. If we assume a constant w and a
single matter species, one can analytically solve eqs. (1.9) to (1.10) and find that the
scale factor behaves as:

a ∝ t
2

3(1+w) . (1.17)

Since each species evolves with a different power of the scale factor, there were
three different epochs in the evolution of the Universe, the radiation dominated era
(RDE) in which a ∝ t1/2, the matter domination era (MDE) in which a ∝ t2/3 (also
called the Einstein-de Sitter Universe) and finally the future dark energy dominated
era, also called the de Sitter regime, in which the total energy density is constant
and therefore a ∝ exp(Ht). From the Hubble function, one can obtain measurable
cosmological distances to astrophysical objects and the the age and the size of the
observable Universe.

Since the Universe is expanding and we measure astrophysical objects using
only electromagnetic radiation (except after 2016 when Gravitational Wave Astron-
omy was born [1]), it is important to define certain distances that can be measured
in cosmological observations. Light follows null-geodesics, so that under an FLRW
metric as in eq. (1.6), null-like particles satisfy the equation:

− cdt2 + a2(t)dς2 = 0 , (1.18)

where we have recovered the speed of light c to avoid confusion. Solving for ς and
therefore integrating this equation, defines the comoving distance dc:

dc ≡
ˆ ς1

0
dς = −

ˆ t1

t0

c

a(t)
dt . (1.19)
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Since H = (da/dt)/a = (d(1/(1 + z))/dt)/(1/(1 + z)), then dt = −dz/((1 + z)H), so
that the comoving distance can be defined as:

dc(z) =

ˆ z

0

dz̃

H(z̃)
. (1.20)

Making similar geometrical considerations (which we will not detail here, see [17]),
one can find the luminosity distance:

dL = (1 + z)dc , (1.21)

and the angular diameter distance:

dA =
dc

1 + z
, (1.22)

where we have set the curvature k a priori to zero.

1.2.3 The cosmological constant problem

After more than two decades of intensive experimental and observational searches,
physicists are still not clear about what constitutes almost 95% of the energy budget
of the Universe. These are the so-called Dark Matter and Dark Energy problems.

The fine-tuning problem

While a Cosmological Constant can explain very well observations so far, the Cos-
mological Constant (CC) problem is a more profound one, since it involves a miss-
ing understanding of both Quantum Field Theory and General Relativity, as we
will see now in more detail. From eq. (1.9), we see that under dark energy domina-
tion, the CC is of the order of the square of the Hubble parameter today:

Λ ≈ H2
0 = (2.1h× 10−42GeV)2 . (1.23)

so that as an energy density ρΛ = Λ/8πG we would obtain:

ρΛ ≈ 10−47GeV4 , (1.24)

where we have used 1/G = mPl and the Planck mass is equal to mPl = 1019GeV.
Making a very rough quantum field theory calculation, one can see that if the vac-
uum energy density comes from the zero point energy of a single field with mass
m and momentum k, with energy E =

√
k2 +m2/2, then one can sum all contribu-

tions from all momenta up to a cut-off scale kmax:

〈ρvac〉 =

ˆ kmax

0

4πk2dk

(2π)3

√
k2 +m2

2
≈ k4

max

16π2
, (1.25)

where we have used the fact that the integral will be dominated by large modes
(k � m). If we take this cut-off scale to be of the order of the Planck mass mPl,
which is a scale up to which we believe GR might be still valid, then we find

〈ρvac〉 ' 1074GeV4 , (1.26)
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which is 10121 larger than the value found above in eq. (1.24). This is the famous
“fine-tuning“ problem: If we want to reconcile the measured value of Λ with the
expected vacuum energy provided by quantum fields, there has to be a cancellation
which is exact to 120 orders of magnitude.

However, we must stress here again that the result in eq. (1.26) is a very rough
calculation that does not consider the symmetries of the problem and does not
respect the equation of state of vacuum energy: doing the above rough calcula-
tion also for the pressure would yield 〈pvac〉/〈ρvac〉 = 1/3, instead of the expected
w = −1 (see [191]). Therefore, under a proper regularization scheme, the vac-
uum energy density is calculated to be 〈ρvac〉 u 1010GeV4, which is more or less
"just" 50 orders of magnitude larger than ρΛ (see [191]). In the absence of a power-
ful symmetry able to cancel vacuum fluctuations, such as supersymmetry [277] or
scale-invariance [45], this unnatural fine tuning has to be performed order by order
in perturbation theory. This instability under radiative corrections, is the core of
the Cosmological Constant problem [78, 191].

The coincidence problem

Apart from the unsatisfactory discrepancy between the Cosmological Constant and
the expected vacuum energy density, the value of ΩΛ today is suspiciously close
to the value of Ωm, for no apparent reason, and this has been the case only very
recently in cosmological time scales. The redshift at which both energy densities
coincide (zco) is:

zco =

(
ΩΛ

1− ΩΛ

) 1
3

− 1 . (1.27)

(see [17]). Therefore, for a value today of ΩΛ = 0.7, the coincidence redshift is
zco ≈ 0.3. This is indeed a very recent time and depends strongly on the ratio of
ΩΛ/Ωm: if this ratio was just 10 times smaller or larger, we as observers would not
measure accelerated expansion today.

Several models have been proposed so far to deal with this apparent coinci-
dence, for example Dark Energy models with tracker and scaling solutions (see
[17]) in which ρDE catches the trend of ρm no matter which initial conditions have
been chosen or where one constructs an equation of state for DE that changes just
very recently in time. Other models try to link the onset of acceleration by connect-
ing it with the evolution of non-linear structure formation, for example through
backreaction effects [75]. However, these models have not been able to fully ex-
plain the observations so far.

In section 1.6.2 we will see how a coupling of the scalar field to the mass of neu-
trinos could link the onset of acceleration to the neutrinos becoming non-relativistic
and therefore it can alleviate the coincidence problem.

Other scientists resort to the anthropic principle [276, 250] and claim that for us
observers to exist in a Universe with galaxies, stars and planets and to have evolved
sufficiently to develop advanced civilizations, the Cosmological Constant can only
have certain precise range of values [278, 276]. While it is true that these constraints
are applicable to our case, this explanation is not widely accepted as a "physical"
solution of the problem.

1.2.4 Linearized Einstein Equations

Since we observe non-homogeneities in the Universe around us, we need to go
beyond the background description of General Relativity given by the Friedmann
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equations 1.9-1.10. Observations of the CMB tell us that the initial fluctuations
are small —of the order of 10−5— and therefore we can split the metric gµν in a
background part ḡµν and a perturbation part δgµν .

Introducing the conformal time dτ = dt /a and using the FLRW metric eq. (1.6)
as the background one, the perturbed metric can be written as:

ds2 = a2(τ)
(
−(1 + 2Ψ)dτ2 + (B,i + Si)dτdx

i

−(−2Φδij + 2E,ij + Fi,j + Fj,i + hij)dx
idxj

) (1.28)

where we have decomposed the metric into 4 scalar functions Φ, Ψ, E and B, two
vectors Fi and Si and a tensor hij perturbation. Moreover the vector perturbations
satisfy the constraints F i,i = 0 and Si,i = 0 (divergence-free) and the tensor pertur-
bation satisfies the traceless and transverse constraints hii = 0, hij,i = 0. Therefore,
counting the total number of degrees of freedom, we end up with 10 independent
components, which are the same independent components that a (symmetric) met-
ric gµν has.

Vector perturbations decay very quickly and therefore are uninteresting in stan-
dard cosmology. Tensor perturbations describe gravitational waves, and though
there is an increased interest in them due to gravitational wave detection [1] and
B-mode polarization in the CMB [4], we will not treat them in this work.

Moreover, it can be shown that under a change of coordinates xµ → xµ + ξµ,
there is still a gauge freedom that can be fixed and therefore only 6 degrees of free-
dom are really independent. In the following we will choose the conformal Newto-
nian gauge , which is defined by Ei = Bi = 0.

Therefore, in linear perturbation theory, only the scalar perturbations of the
metric are important for studying structure formation in the Universe. In our cho-
sen Newtonian gauge, we end up with:

ds2 = −(1 + 2Ψ)dt2 + a2(1− 2Φ)dx2 , (1.29)

where the potentials Φ and Ψ are functions of time and agree with the gauge invari-
ant “Bardeen“ potentials, since in this gauge: E = B = 0 ( see Mukhanov [198]).
Let us now decompose the energy-momentum tensor Tµν also into a background
(T̄ ) and a perturbation part (δT ):

T 0
0 = −(ρ̄+ δρ)

T 0
i = (ρ̄+ p̄)vi

T ij = (p̄+ δp)δij + Σi
j ,

(1.30)

where Σi
j ≡ T ij − δijT kk /3 is the traceless part of the energy momentum tensor and

Σi
i = 0. Introducing eq. (1.29) and eq. (1.30) into the Einstein equations 1.2, we find

to linear order:

∇2Φ− 3H
(

Φ̇ +HΨ
)

= 4πGa2δρ (1.31)

∇2
(

Φ̇ +HΨ
)

= −4πGa2(ρ̄+ p̄)θ (1.32)

Φ̈ +H
(

Φ̇ + 2Ψ̇
)

+
(

2Ḧ+H2
)

Ψ

+
1

3
∇2(Ψ− Φ) = 4πGa2δp

(1.33)

∇2 (Ψ− Φ) = 12πGa2(ρ̄+ p̄)σ (1.34)
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with the peculiar velocity gradient θ ≡ ∂ivi and the anisotropic stress perturbation
σ defined through (p̄ + ρ̄)∇2σ = −(∂i∂

j − 1
3δ
j
i∇2)Σi

j . Additionally to eqs. (1.31)
to (1.34), we still have the covariant conservation of the energy-momentum tensor:
∇µTµν , which yields:

δ̇ = −(1 + w)(θ − 3Φ̇)− 3H(c2
s − w)δ (1.35)

θ̇ = −H(1− 3w)θ − ẇ

1 + w
θ − c2

s

1 + w
∇2δ +∇2σ −∇2Ψ , (1.36)

where we have defined c2
s ≡ δp/δρ and we now use the notation δ ≡ δρ/ρ̄. In order

to close these set of equations, one needs to specify a sound speed and an equation
of state and furthermore fix the anisotropic stress perturbation σ. The anisotropic
stress perturbation σ is usually only sourced by relativistic particles, like photons
and neutrinos in the early Universe. For Cold Dark Matter (CDM), the equations
simplify considerably by taking σ = w = c2

s = 0, as we will see below in chapter 5.
If we go now to Fourier space, where∇2 → −k2, and ∂ivi → ikivi = ikv (where

the last equality is valid if the wavevector and the velocity vector are aligned), then
eq. (1.31) and eq. (1.32) can be combined to give the relativistic Poisson equation:

− k2Φ = 4πGa2ρ̄∆ , (1.37)

where we have defined the comoving relativistic perturbation ∆ as:

∆ = δ +
3H
k

(1 + w)iv . (1.38)

The Newtonian limit of these equations is obtained for non-relativistic particles,
when σ � v2 ≈ 0 and we focus on the sub-horizon limit, in which the scales k we
are interested in, are much larger than the Hubble horizon, k � H. In this limit we
obtain from eq. (1.34) and eq. (1.37):

Φ = Ψ (1.39)

∇2Φ = 4πGa2ρ̄δ (1.40)

1.3 Dark Energy and Modified Gravity

In the introduction to this work we have motivated why in the absence of a sat-
isfactory solution to the Cosmological Constant problem, an extension of General
Relativity is preferred in the light of present observations. In this chapter we will
deal with one of the most widely investigated solutions to the Dark Energy prob-
lem, namely the addition of an extra dynamical degree of freedom in the form of a
scalar field.

There are two basic approaches one can take at this point, either couple this
field universally to all matter species, which we will call universally-coupled theories,
or couple the field just to a specific matter component, which we will call non-
universally coupled theories.

Universally coupled theories include Quintessence, scalar-tensor theories (ST)
[248, 222, 86, 15, 12, 231], Horndeski theories [100, 103] and Effective Field Theories
of Dark Energy [122, 126]. We will review some of these models in sections 1.5.1
to 1.5.3. Non-universally coupled theories are in general built in such a way that
baryons remain uncoupled, due to the stringent local and solar system gravity tests
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that constrain the scalar field–baryon coupling to be practically negligible (see sec-
tion 1.6 below). In this work we will deal with two such theories: The Coupled
Dark Energy model, which couples Dark Matter to a Dark Energy field, which will
be treated in section 1.6.1 and the Growing Neutrino Quintessence model, in which
the neutrino mass is coupled to the “cosmon“ scalar field, which will be the subject
of section 1.6.2.

FIGURE 1.1: Distinction between Dark Energy and Modified Gravity Theo-
ries based on the Strong and Weak Equivalence Principles (SEP and WEP),
according to [147]. The violation of the SEP, implies the existence of an extra
fifth-force among particles, or, equivalently, a modification of the standard
Poisson equation. These are the so-called Modified Gravity theories. If the
scalar degree of freedom is not coupled to matter, then we can talk about a
Dark Energy model. In the case in which Dark Energy is not dynamical, the
theory goes back to GR plus a cosmological constant. If the WEP is violated,
then not all matter species feel the same gravitational forces and therefore
there can be either dark sector interactions or neutrino–scalar-field interac-
tions.

Furthermore, independent of the type of coupling to matter, one can define two
frames in which to study these theories. In the so-called Einstein frame, the action
contains the standard Einstein-Hilbert term R, plus a kinetic and a potential term
for the scalar field φ. However, particles are coupled to a metric that in principle
depends also on the scalar field. On the other hand, in the Jordan frame, the scalar
field ϕ is non-minimally coupled to gravity, which means that in place of the Ricci
scalar, there is a general function f(R,ϕ). Besides, one can also have a potential and
kinetic term for the scalar field. The Einstein-Hilbert term is modified, but particles
feel a metric that is purely of geometrical origin. We will specify the equations for
these two different frames in section 1.4 below.

The distinction between Modified Gravity and Dark Energy is somewhat dif-
fuse, since as mentioned above, an exotic form of matter in the Einstein’s equations
can always be considered as a modification of involving geometry. However, we
will use a definition introduced recently by [147], which is quite practical in terms
of its observable properties.

In this definition, Dark Energy encompasses models which respect both the
Weak and the Strong Equivalence Principles and therefore do not involve extra
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fifth-forces that act between particles besides gravitational interactions (and the
other three fundamental forces of nature). Modified Gravity encompasses models
where the Strong Equivalence Principle is violated and therefore bodies can have
an extra "scalar charge" that leads to the appearance of a fifth force among them.
In non-universally coupled theories, the Weak Equivalence Principle is violated,
since test bodies would feel different accelerations depending on their composi-
tion. Usually, in these models baryons are uncoupled and therefore they might be
called “dark sector interaction“ theories.

The term “modified gravity“ is also more general and it is used for any theory
beyond GR that is able to explain the cosmological history of the Universe. This
can include extra dimensions [102], massive bimetric gravities [7, 158] or Lorentz-
violating theories [65]. However, these models are out of the scope of this disserta-
tion. For the rest of this work, when we mention Modified Gravity, we will refer to
our definition according to our discussion above and the diagram 1.1.

1.4 The Einstein and the Jordan frames

In this section we will review the form of the action for scalar-tensor theories in the
Einstein and Jordan frames, which are going to be useful concepts in the following
chapters. For the moment we will work in units where the reduced Planck mass
M2
Pl = 1/(8πG) is equal to unity.

A scalar-tensor theory can be formulated in the "Jordan frame" as:

S =

ˆ
d4x
√−g

[
1

2
F (ϕ,R)− 1

2
K(ϕ)gµν∂µϕ∂νϕ− U(ϕ)

]
−
ˆ

d4x
√−gLim(gµν , Ψ

i
mζ

i(ϕ)) ,

(1.41)

where an index i in the matter sector stands for each of the matter species in the
Universe. In the case of universal coupling, all matter species “feel“ the same met-
ric g, and are are coupled in the same way to the scalar field, through the function
ζi(ϕ). In this frame, the Ricci scalar is non-minimally coupled to the field ϕ through
a function F (R,ϕ) and, in general, can also contain a potential term for ϕ with an
extra function K(ϕ) multiplying the kinetic term of the scalar field. Matter parti-
cles follow the standard geodesics of GR and the energy momentum tensor of the
matter species is covariantly conserved.

We can relate the Jordan to the Einstein frame, by doing a conformal transfor-
mation of the metric g, where this transformation is defined as:

g̃(i) = Ω2(φ,R)g , (1.42)

and Ω2(φ,R) is a function of the scalar field and —in the most general case— of the
Ricci scalar, given by

Ω2(ϕ,R) ≡ ∂F

∂R
. (1.43)

Then, the scalar-tensor action in the ‘Einstein-frame‘ takes the following form:

S =

ˆ
d4x

√
−g̃
[

1

2
R̃− 1

2
g̃µν∂µφ∂νφ− V (φ)

]
−
ˆ

d4x
√
−g̃Lim(g̃(i)

µν , Ψ
(i)
m ζ̃i(φ)) ,

(1.44)
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where a tilde stands for the conformally transformed quantities. In the case of
universal coupling (see section 1.5 below), all matter species would couple to the
same function ζ̃i(φ). If there is non-universal coupling (see section 1.6 below) each
species would have a different function ζ̃i(φ) or be totally uncoupled from the field
with ζ̃i(φ) = 1. The Einstein frame is defined as the frame in which the gravi-
tational part of the action looks standard, since the Ricci scalar appears without
multiplicative factors. In this formulation, the energy-momentum T

(m)
µν of the cou-

pled matter species is not conserved, but rather the sum of the energy momentum
tensor of matter and the scalar field T (m+φ)

µν is the conserved quantity.
For non-relativistic particles this field dependent function ζ(φ) can be also ab-

sorbed into the mass m = m(φ), giving rise to particles with varying mass, as we
will see below. This field dependent mass can also be linked to an extra "fifth-force",
with a coupling strength Q defined by:

Q(φ) ≡ −1

2

∂ ln f

∂φ
, (1.45)

where, in these theories, the function F above takes the form: F (ϕ,R) = f(ϕ)R −
2U(ϕ), where f and U are free functions of the field. To go from the Jordan frame
action eq. (1.41) to the Einstein frame action eq. (1.44) and at the same time keep a
canonical kinetic term, (1/2∇2φ), a field redefinition has to be performed:

φ =

ˆ
dϕ
√

(3/2)(f,ϕ/f)2 +K/f (1.46)

where the potentials U and V are related by V = U/f2.
For non-universal coupling, we will see two examples of theories formulated

in the Einstein frame in section 1.6.1 and section 1.6.2. In section 1.6.1 we will see
an example of a constant coupling and in section 1.6.2 we will see an example of a
field-dependent coupling, giving rise to very different phenomenologies.

For conformally-invariant theories (those theories in which null-geodesics are
not modified by conformal transformations), the conformal factor just depends on
the scalar field and can be written as Ω2(ϕ) = exp(2ϕ). This can be seen by per-
forming the transformation g → e2ϕg and observing that, at first order in the scalar
field and the gravitational potentials, Φ→ Φ− ϕ and Ψ→ Ψ + ϕ, leaving the Weyl
(lensing) potential ΦWeyl = (1/2)(Ψ + Φ) invariant. These theories are interesting,
since they do not affect gravitational lensing observations, but still can provide in-
teresting non-standard features in the clustering of matter.

We have to emphasize that physical measurable quantities have to be frame-
independent by definition, since this frame transformation amounts to nothing
more than a coordinate and field redefinition and one of the principles of the GR
formalism which we are not abandoning is diffeomorphism invariance, which en-
sures that the theory is invariant under general coordinate transformations.

1.5 Universal coupling to matter

Scalar-tensor theories with universal coupling written in the Jordan frame eq. (1.41),
encompass many of the most widely studied dark energy and modified gravity
models in the literature. For example, f(R) theories [101] are recovered when
F (R,ϕ) = f(R) and K = 0; Brans-Dicke theory [72] is recovered when F (R,ϕ) =
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ϕR and K(ϕ) = ωBD/ϕ, where ωBD is the Brans-Dicke parameter and finally "k-
essence" [27] is the case in which F (R,ϕ) = R and K can be a general function of
ϕ and its kinetic term (∇ϕ)2.

There are also other theories of modified gravity with a scalar field, that are not
encompassed in the set of "scalar-tensor" theories and that have gained a lot of at-
tention recently. Namely, Galileons [104], Horndeski [103] and Beyond-Horndeski
theories [123]. These theories are universally coupled to matter, are formulated in
the Jordan frame and cannot be expressed in the Einstein frame by a conformal
transformation, since they contain much more complicated derivative interactions,
for example free functions of�ϕ (see [295]), where the “box operator“ is defined as
� ≡ gµν∂µ∂ν .

Horndeski’s theory [128] is an interesting case, since it is the most general the-
ory of a scalar field coupled to a metric, with second order equations of motion
and free of ghost instabilities. This theory was first formulated by Horndeski in the
1970’s [128], in a purely mathematical way and was re-discovered by [103] and oth-
ers, at the beginning of the present decade, in the context of Galileon scalar fields.
The simplest Galileon model, the so-called cubic Galileon, has a Lagrangian of the
form: L ∝ R/2− (∂ϕ)2 − (1/Λ3)�ϕ(∂ϕ)2, where Λ3 is a free scale that can be set in
the theory. The term Galileons, comes from the fact that these theories are the more
general theories, which are invariant under a general Galiliean transformation of
the field ϕ→ ϕ+bµx

µ+c. Beyond-Horndeski theories are extensions of Horndeski
that have higher than second order equations of motion, when expressed in the
Newtonian gauge, but where the propagating scalar degree of freedom still obeys
second order differential equations, avoiding instabilities, see [123] and [295] for
more details on this direction of research.

For the purposes of this work, we will now detail one of the oldest models of
Dark Energy, namely the Quintessence model [226, 281] and its extension Coupled
Quintessence introduced by [11].

Later on we will deal with general modifications of gravity, whose effect on
structure formation can be parameterized by two functions of scale and time. Fi-
nally we will shortly explain one of the most general approaches to construct theo-
ries of modified gravity at linear order; the so-called Effective Field Theory of Dark
Energy. We will show also its connection to Horndeski’s theory.

1.5.1 Quintessence

The Quintessence model was introduced by several authors almost 30 years ago
[226, 281], motivated by studying the breaking of scale invariance, which could give
rise to a dynamical cosmological constant. Its Lagrangian is of the form eq. (1.41),
with F (ϕ,R) = R, K = 1 and a potential U(ϕ). Since this is a homogeneous
field without couplings, we can find its energy density and its pressure straight-
forwardly from the energy-momentum tensor of a perfect fluid in a FLRW back-
ground:

ρϕ = −T 0(ϕ)
0 =

1

2
ϕ̇2 + U(ϕ) pϕ =

1

3
T
i(ϕ)
i =

1

2
ϕ̇2 − U(ϕ) , (1.47)

which yields the equation of state:

wϕ =
pϕ
ρ ϕ

=
ϕ̇2 − U(ϕ)

ϕ̇2 + U(ϕ)
. (1.48)
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We can see that for obtaining the required behavior ofw ≈ −1 at late times, in order
to fit the observations of the expansion of the Universe, we need that the kinetic
term ϕ̇2 becomes much smaller than the potential term U . From the continuity
equation for a perfect fluid or from the variation of the action with respect to ϕ, we
can find the Klein-Gordon equation for this field:

ϕ̈+ 3Hϕ̇+ U,ϕ = 0 . (1.49)

The dynamics and the phenomenology of this model are entirely determined by
the shape of the potential and for this there are many possibilities (see [17, chap.
7], for a comprehensive review). The most interesting solutions, which can allevi-
ate the cosmological coincidence problem, are those in which the field tracks the
evolution of matter at early times (wϕ ≈ 1) and then evolves towards an attractor
(effectively being independent of initial conditions) at late times, which yields cos-
mic acceleration with wϕ ≈ −1+ξ. The parameter ξ is a combination of parameters
entering the potential function U(ϕ) and allows to distinguish Quintessence from
a simple cosmological constant at present time. The most studied potentials are the
exponential potential U(ϕ) = U0 exp(−λϕ) (see [90]), where λ is a free parameter
and the inverse power-law potential U(ϕ) = M4+nϕ−n, where M is a mass scale of
the theory.

Due to the so low energy density of dark energy (ρDE ≈ 10−120MPl) com-
pared to typical energies appearing in particle physics, it is not so easy to con-
struct a viable model of Quintessence which is motivated by a fundamental the-
ory. Nevertheless, there are some succesful approaches like fermion condensates,
Pseudo-Nambu-Goldstone models and dilatonic quintessence (see [17] and refer-
ences therein). These models have to satisfy that at present times dark energy is
the dominating energy density in the Universe and therefore from the Friedmann
equation and eq. (1.47):

U(ϕ0) ≈ H2
0M

2
Pl . (1.50)

If we take an inverse power law potential, U(ϕ) = M4+nϕ−n, and take the field to
be at present ϕ0 = MPl, this would yield a mass scale M of the order of:

M ≈ H2/(4+n)
0 M

(2+n)/(4+n)
Pl , (1.51)

where, with H0 ≈ 10−42GeV, we get a mass scale of M ≈ 10−1GeV for n = 2,
which is a scale compatible with Standard Model particles. Moreover, to satisfy the
requirement of acceleration today, the slow-roll condition (analogous to the one in
inflation [47]) must satisfy MPlV,ϕϕ

V (ϕ0) / 1. Defining the mass of the scalar field mϕ as
the second derivative of the potential with respect to the field, m2

ϕ ≡ V,ϕϕ, yields a
condition for the scalar field mass:

mϕ / H0 ≈ 10−33eV . (1.52)

So in order to be compatible with observations, the scalar field mass must be ex-
tremely small. This could cause problems for quintessence models, since the sta-
bility of such small masses is not always guaranteed under radiative corrections
[156].
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1.5.2 Coupled Quintessence

It is also interesting to observe the effects of a coupling between the scalar field and
the matter species. In eq. (1.45) we already saw how from a general Scalar-Tensor
theory, a coupling between matter species and the field can arise from an action
like the one in eq. (1.41). However, the matter equations of motion and the Klein-
Gordon equation become more tractable if we make a conformal transformation
into the Einstein frame, where the scalar field Lagrangian will be canonical, but
matter will be coupled to a metric that contains a function of the field φ. In this case,
as stated before, the individual energy-momentum tensors will not be conserved:

∇µTµν(φ) = −QTm∇νφ ∇µTµν(m) = +QTm∇νφ , (1.53)

where Q is the coupling function and Tm the trace of the energy-momentum tensor
of matter. Through the conformal transformation the field should also be coupled
to radiation, since radiation also feels gravity, but since the trace of the energy-
momentum tensor of radiation vanishes identically, it does not appear in the con-
servation equations. In general, the coupling Q can be different for baryons and
for dark matter. The coupling to baryons is severely constrained by local gravity
experiments (see [200]) and therefore uncoupling the baryons from the theory can
yield a model compatible with observations as we will see below for the Coupled
Dark Energy model in section 1.6.1.

If all matter fields are coupled, then some screening mechanism has to be in-
voked in order to pass the stringent Solar System and local gravity constraints.
One possibility is the chameleon mechanism (see the book by Dark Energy, for
a comprehensive review), which is a coupled quintessence field whose effective
potential (and therefore its effective mass) changes according to the environment
it is in. These kind of theories can arise from an action like in eq. (1.41), with
F (ϕ,R) = exp(−2Qϕ)R and K(ϕ) = (1 − 6Q2) exp(−2Qϕ)R. For each distribu-
tion of matter, taken to be spherically symmetric for simplicity, one has to calculate
the profile of the field ϕ(r) as a function of the radius r, and one can tune the pa-
rameters in such a way that the effective coupling Qeff in a certain region is much
smaller than the bare coupling Q appearing in the action. In this way one can re-
cover for star systems and galaxies the Newtonian predictions. For more details on
these calculations, see [17], chapter 8.4.

1.5.3 Effective Field Theory of Dark Energy and Horndeski Theory

Until now we have treated Dark Energy and Modified Gravity in a rather phe-
nomenological way, adding a scalar field with an kinetic term, a coupling and a po-
tential without a clear understanding of which terms are allowed or not. Recently,
there have been substantial efforts by many authors to build an effective field the-
ory of dark energy and modified gravity that encompasses all possible terms that
are allowed in the action at second order (see [127, 124, 68]). Considering only
one extra dynamical scalar field, respecting the symmetries of homogeneity and
isotropy and following the Weak Equivalence Principle (WEP), this theory can be
uniquely formulated. Its action in the Jordan frame (and written in conformal time
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τ ) takes the form:

S =

ˆ
d4x
√−g

[
M2
Pl

2
[1 + Ω(τ)]R+ Λ(τ)− a2c(τ)δg00

+
M4

2 (τ)

2
(a2δg00)2 − M̄3

1 (τ)2a2δKµ
µδg

00

− M̄2
2 (τ)

2
(δKµ

µ )2 − M̄2
3 (τ)

2
δKµ

ν δK
ν
µ

+ a2 M̂
2(τ)

2
δg00δR(3)

+m2
2(τ)(gµν + nµnν)∂µ(a2g00)∂ν(a2g00)

+Lm(gµν , Ψm)] .

(1.54)

To construct this action, the spacetime has been foliated (similarly to the 3+1 ADM
decomposition) into a time direction and spatial hypersurfaces that coincide with
the uniform scalar field hypersurfaces (this is the so-called unitary gauge). The
preferred time direction is then (c.f. [127])

nµ ≡ −
∂µφ√
−(∂φ)2

, (1.55)

which induces a spatial metric hµν ≡ gµν + nµnν , a spatial Ricci scalar R(3) and
defines an extrinsic curvature:

Kµν ≡ hσµ∇σnν . (1.56)

The rest of the terms in the EFT action eq. (1.54) are nine free functions of time:
{Ω(τ),Λ(τ), c(τ),M4

2 (τ), M̄3
1 (τ), M̄2

2 (τ), M̄2
3 (τ), M̂2(τ),m2

2(τ)}, whose choice spec-
ify the theory. This theory encompasses all theories of an extra dynamical scalar
field, which respect the WEP. At the linear level in perturbations, it includes the
Horndeski theory (mentioned above in section 1.5) and also theories which go
beyond second order equations of motion (in the Newtonian gauge), also called
Beyond-Horndeski theories (see [123])

Since these theory involves many free functions, we need to choose a parametriza-
tion for each of them and we need to take some simplifying assumptions in order
to be able to constrain this theory with data. Recently, a code capable of calculating
the linear Einstein-Boltzmann system of equations for the EFT formalism has been
made public, the so-called EFTCAMB ([138, 140]), which is based on the widely
used CAMB code by[177]. We will use this code to calculate the observables which
we will implement into our Fisher forecast in section 3.7.

Furthermore, we will use the assumptions taken in [218] in order to simplify
the theoretical modeling. If we assume a ΛCDM background, and choose freely a
function Ω(τ), the functions Λ(τ) and c(τ) are then fixed [138]. Furthermore, we
will impose m2

2(τ) = 0 and M̄2
2 (τ) = −M̄2

3 (τ), which eliminates models which
contain third-order spatial derivatives. Now we just have 5 free functions of time
and a function specifying the background cosmology H(τ). These free functions
of time can be mapped to the Bellini-Sawicki αi(τ) functions (see [53]), which fully
specify the evolution of Horndeski models at linear order in perturbation theory.
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The following relations between the EFT functions and the α functions hold:

M2
∗ (τ) = MPlΩ(τ) + M̄2

2 (τ)

M2
∗ (τ)H(τ)αM (τ) = MPlΩ̇(τ) + ˙̄M2

2 (τ)

M2
∗ (τ)H2(τ)αK(τ) = 2c(τ) +M4

2 (τ)

M2
∗ (τ)H(τ)αB(τ) = MPlΩ̇(τ)− M̄3

1 (τ)

M2
∗ (τ)αT (τ) = −M̄2

2 (τ)

M2
∗ (τ)αH(τ) = 2M̂2(τ)− M̄2

2 (τ)

(1.57)

Here, the bare reduced Planck mass is MPl and the effective Planck mass is M2
∗ .

These αi functions are much easier to interpret physically than the EFT functions.
The first four αi functions, αM , αK , αB and αT describe fully the physics of

linear perturbations in Horndeski’s theory (see [53]). For instance, αM (mass run
rate) is the rate of change of the effective Planck mass, produces anisotropic stress;
αK (kineticity) is present in Quintessence (section 1.5.1) models, but also in models
where the scalar field has a non-zero sound speed, like k-essence models; αB (braid-
ing) causes dark energy to cluster and αT is the tensor speed excess, which gives the
deviation of the speed of gravitational waves from that of light. Finally αH is a
term indicating physics that lies beyond the Horndeski models at linear level. For
our results in section 3.7, we will further reduce this theory to a simpler case, which
can be compared easier with Large-Scale-Structure observations.

1.5.4 Parameterizing Modified Gravity

In the previous sections we have seen how to construct Dark Energy and Mod-
ified Gravity theories which have an extra scalar degree of freedom, besides the
Einstein-Hilbert term and the matter and radiation species. As we have seen, one
can successfully construct the most general theory of this kind, by either imposing
some conditions on the equations of motion and the stability of the theory (as in
Horndeski theories) or by considering all possible terms allowed by symmetries in
the second order action (as in EFT).

However, for observations, these general theories are not so practical, since
there is not enough data to constrain all the free functions in the Lagrangian. What
we really can observe with Galaxy Clustering and Weak Lensing are the pertur-
bations of matter δm(z, k), its correlation function across scales Pm(z, k) and the
evolution of matter structures in time, f(z). In Einstein-GR, these three quantities
are determined by the gravitational potentials Φ and Ψ, which follow the general
relativistic Poisson equations (see eq. (1.37)). In linear perturbation theory, scalar,
vector and tensor perturbations do not mix, which allows us to consider only the
scalar perturbations of the metric. We work in the conformal Newtonian gauge,
with the line element given by eq. (1.29) The potentials Φ and Ψ are in functions
of time and in our notation, they coincide with the gauge-invariant Bardeen poten-
tials.

In theories with an extra scalar degree of freedom (see the discussion around
fig. 1.1 for a distinction between Dark Energy and Modified Gravity) the standard
linear perturbation equations are no longer valid, so that for a given matter source
the values of Φ and Ψ will differ from their Einstein-GR values (see [164, 20]). We
can parameterize this change generally with the help of two new functions µ(a, k)
and η(a, k) that encode the modifications. Many different choices are possible and
have been adopted in the literature, see e.g. [218] for a limited overview. In this
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work we introduce the two functions through a gravitational slip (leading to Φ 6= Ψ
also at linear order and for pure cold dark matter) and as a modification of the
Poisson equation for Ψ,

−k2Ψ(a, k) ≡ 4πGa2µ(a, k)ρ(a)∆(a, k) ; (1.58)
η(a, k) ≡ Φ(a, k)/Ψ(a, k) . (1.59)

These expressions define the modified gravity functions µ and η. Here ρ(a) is the
average dark matter density and δ(a, k) the comoving matter density contrast – we
will neglect relativistic particles and radiation as we are only interested in modeling
the perturbation behaviour at late times. In this formulation, η, which is effectively
an observable [20], is closely related to modifications of GR [231, 235], while µ en-
codes for example deviations in gravitational clustering, as non-relativistic particles
are accelerated by the gradient of Ψ.

When considering Weak Lensing observations then it is also natural to parame-
terize deviations in the lensing or Weyl potential Φ + Ψ, since it is this combination
that affects null-geodesics. To this end we introduce a function Σ(a, k) so that

− k2(Φ(a, k) + Ψ(a, k)) ≡ 8πGa2Σ(a, k)ρ(a)δ(a, k) . (1.60)

Since metric perturbations are fully specified by two functions of time and scale, Σ
is not independent from µ and η, and can be obtained from the latter as follows:

Σ(a, k) = (µ(a, k)/2)(1 + η(a, k)) . (1.61)

Throughout this work, we will denote the standard Lambda-Cold-Dark-Matter
(ΛCDM) model, defined through the Einstein-Hilbert action with a cosmological
constant, simply as Einstein-GR, where µ = η = Σ = 1. If only µ deviates from
unity at late times, it indicates either Modified Gravity or just a Dark Energy field
that clusters. If η deviates from unity, it is an indication for Modified Gravity mod-
els, according to our definitions above fig. 1.1, based on [146].

Using effective quantities like µ and η has the advantage that they are able to
model any deviations of the perturbation behaviour from ΛCDM expectations, they
are relatively close to observations, and they can also be related to other commonly
used parameterizations [221]. On the other hand, they are not easy to map to an
action —as opposed to approaches like Effective Field Theory (EFT, section 1.5.3)—
and in addition they contain so much freedom that we normally restrict their pa-
rameterization to a subset of possible functions.

1.5.4.1 Parameterizing gravitational potentials with simple smooth functions of
the scale factor

The first possibility is to assume simple specific time parameterizations for the µ
and η functions, adopting the ones used in the Planck analysis [218], where we
neglect here any scale dependence:

• a parameterization in which the time evolution is related to the dark energy
density fraction, to which we refer as ‘late-time’ parameterization:

µ(a, k) ≡ 1 + E11ΩDE(a) , (1.62)
η(a, k) ≡ 1 + E22ΩDE(a) ; (1.63)
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• a parameterization in which the time evolution is the simplest first order Tay-
lor expansion of a general function of the scale factor a (and closely resembles
the w0 − wa parametrization for the equation of state of DE), referred to as
‘early-time’ parameterization, because it allows departures from GR also at
high redshifts:

µ(a, k) ≡ 1 + E11 + E12(1− a) , (1.64)
η(a, k) ≡ 1 + E21 + E22(1− a) . (1.65)

The parameters Eij are usually order-unity parameters, which give the amplitude
of the modifications at present time: E11 for µ and E22 for η in the late-time param-
eterization and E11 for µ and E21 for η in the early-time parameterization, while
E12 and E22 measure the slope of the time-evolution function.

The late-time parameterization is forced to behave as Einstein-GR (µ = η = 1) at
high redshift when ΩDE(a) becomes negligible; the early time parameterization al-
lows more freedom as the amplitude of the deviations from Einstein-GR do not nec-
essarily reduce to zero at high redshifts. Both parameterizations have been used in
[218] and in other recent studies of how to constrain Modified Gravity with Galaxy
Clustering and Weak Lensing observations, see [76, 124] and [10]. In chapter 3 we
will study in more detail both the late-time and the early-time parameterizations
and we will try to find out how well future observations will be able to measure µ
and η, using linear and non-linear matter perturbations.

1.5.4.2 Parameterizing gravitational potentials in discrete redshift bins

A second and more model-independent approach is to specify the time evolution of
the functions µ and η without any parameterization. To this purpose we "pixelize"
the functions µ and η at N redshift bins zi, with i = {1, . . . N} and we consider the
values µ(zi) and η(zi) at the right limiting redshift zi of each bin as free parameters.
The µ(z) function (and analogously η(z)) is then reconstructed as

µ(z) = µ(z1) +

N−1∑
i=1

µ(zi+1)− µ(zi)

2

[
1 + tanh

(
s
z − zi+1

zi+1 − zi

)]
, (1.66)

where s = 10 is a smoothing parameter and N is the number of binned values. We
assume that both µ and η reach the Einstein-GR limit for a redshift higher than zh:
to realize this, the last µ(zN ) and η(zN ) values assume the standard ΛCDM value
µ = η = 1 and both functions are kept constant at higher redshifts z > zh.

Similarly, the derivatives of these functions are obtained by computing

µ′(z̄j) =
µ(zi+1)− µ(zi)

zi+1 − zi
, (1.67)

with z̄j = (zi+1 + zi)/2, using the same tanh(x) smoothing function:

dµ(z)

dz
= µ′(z̄1) +

N−2∑
j=1

µ′(z̄j+1)− µ′(z̄j)
2

[
1 + tanh

(
s
z − z̄j+1

z̄j+1 − z̄j

)]
. (1.68)

In particular we assume µ′ = η′ = 0 for z < 0.5 and for z > 3.
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This approach has the advantage of being independent of the parameterization
of the time evolution of µ and η, but at the cost of introducing many more parame-
ters that have to be constrained by observations. Furthermore, one does not know
a priori how many binned parameters have to be taken into account and what are
the degeneracies among them. This will be the subject of study in chapter 3, where
we will introduce the functions µ and η parameterized in redshift bins and we will
forecast how well future observations will be able to measure those functions.

1.6 Non-universal coupling

In section 1.3 we have motivated the inclusion of a scalar field as a way of solving
the dark energy problem and alleviating the coincidence problem. The energy frac-
tion of Dark Energy and that of Dark Matter are of the same order of magnitude
only for a very short period of time in cosmological time scales and that time is
precisely now when we are capable of making observations. This introduces the
question if this is just a coincidence or if somehow Dark Energy and Dark Matter
are connected beyond simple gravitational physics. Therefore a natural way of al-
leviating this "coincidence problem" issue (which we discussed in section 1.2.3) is
to imagine there is a coupling in the dark sector or some mechanism that connects
the onset of non-linear structure formation to the epoch of accelerated expansion of
the Universe. As we will see, the coupling to baryons is extremely well constrained
by solar system and galactic observations and therefore a coupling to baryons has
to be avoided.

In this section we will deal with two non-universally coupled theories which
can yield very distinctive effects on the formation and evolution of structures in
the Universe. In the first model, called (section 1.6.1) Coupled Dark Energy, there
exists an exchange of energy and momentum between a quintessence scalar field
and the dark matter particles. The second one is also a quintessence model, but this
time the masses of neutrinos are coupled to the scalar field. In this model, the DE
domination is triggered by the neutrinos becoming non-relativistic and their mass
is connected to the energy scale attributed to the DE field.

As we have seen before, if the Weak Equivalence principle is violated, then there
exists a fifth force acting between test particles on top of the gravitational interac-
tion. Generally this will yield modifications in the growth rate of perturbations,
the density profiles of structures and the matter power spectrum. Since the effects
appear generally the non-linear regime, we will have to study them by performing
numerically expensive N-body simulations, as we will see in chapter 4 and chap-
ter 6.

1.6.1 Coupled Dark Energy

We explained in section 1.5.2 how a coupling between all matter species and a scalar
field can be realized in the Jordan frame. However, for non-universal couplings it
is easier to work in the Einstein frame, in which the Lagrangian takes the form:

L =
1

2
R̃− 1

2
g̃µν∂µφ∂νφ− V (φ)−m(φ)ψ̄ψ + Lkin(ψ) , (1.69)

where ψ is the coupled dark matter field, m its mass and Lkin(ψ) its kinetic term.
The coupling to baryons is severely constrained by observations at solar sys-

tem scales. The “post-Einstein” coupling parameter γ̄ defined as the quantity that
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measures the local admixture of a scalar field to gravity is constrained in Solar Sys-
tem experiments roughly to |γ̄| ≤ 4 · 10−5 (see e.g. the PDG review [200] and [285,
61]). This parameter enters the modification of the effective Newton constant as
Geff = GN (1− γ̄/2). We will see below, that the effective force coming from a cou-
pling to matter is in our notation, Geff = GN (1+4β2/3) and therefore β2 = −3γ̄/8.
A coupling β2

baryons appears then constrained to be smaller than 10−5 roughly, and
we assume therefore that is completely negligible. As a consequence, baryons fol-
low the usual geodesics of a FLRW cosmology, which allows coupled DE to pass
the stringent local gravity constraints without the need to employ any screening
mechanism [129], [152, 69].

The background evolution for the coupled DE scenario model is described by
the following equations, in which the subscripts r, b, c and φ, indicate radiation,
baryons, cold dark matter (CDM) and the dark energy scalar field, respectively:

φ̈+ 3Hφ̇+
dV

dφ
=

√
2

3
β(φ)

ρc
MPl

, (1.70)

ρ̇c + 3Hρc = −
√

2

3
β(φ)

ρcφ̇

MPl
, (1.71)

ρ̇b + 3Hρb = 0 , (1.72)
ρ̇r + 4Hρr = 0 , (1.73)

3H2 =
1

M2
Pl

(ρb + ρc + ρr + ρφ) . (1.74)

We express the scalar field φ in units of the Planck mass Mpl ≡ 1/
√

8πG, and
choose as potential V (φ) an exponential V (φ) = Ae−αφ [181, 282]. The coupling
function β(φ) defines the strength of the interaction between the DE fluid and CDM
particles and in the present work we will restrict our analysis to the simplified case
of a constant coupling β(φ) = β, although in general it could be a field-dependent
quantity [13, 38].

Due to the exchange of energy between DE and CDM, the energy density of the
latter will no longer scale as the cosmic volume, and by assuming the conservation
of the CDM particle number one can derive the time evolution of the CDM parti-
cle mass by integrating Eq.(1.71) between the present time (z = 0) and any other
redshift z:

mc(z) = mc,0e
−β(φ(z)−φ(0)) . (1.75)

At the level of linear perturbations, coupled DE models are characterized by a
different evolution of the baryonic and CDM density fluctuations, as a consequence
of the selective interaction between DE and CDM particles only. In the sub-horizon
limit, for which aH/k � 1, linear perturbations in coupled dark energy follow the
equations [13, 213]:

δ̈c = −2H

[
1− β φ̇

H
√

6

]
δ̇c + 4πG [ρbδb + ρcδcΓc] (1.76)

δ̈b = −2Hδ̇b + 4πG [ρbδb + ρcδc] (1.77)

where Γc ≡ 1 + 4
3β

2 represents the effective “fifth force” acting on the CDM par-
ticles. The term proportional to βφ̇ in equation (1.76) is a velocity-dependent term
that modifies the standard cosmological friction; this arises as a consequence of
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momentum conservation for the CDM particles and has a considerable effect on
structure formation [41, 35, 178]. Since baryons are uncoupled, their perturbations
evolve according to the standard equation. Nonetheless, baryons will still be indi-
rectly affected by the coupling as the source term on the right-hand side of equation
(1.77) includes the CDM density perturbations.

At the level of non-linear perturbations, several methods have been devised to
predict the small scale effects of coupled DE, from semi-analytical methods like
spherical collapse [202], to time renormalization group [234] to full N-body sim-
ulations [184, 41, 178, 79]. In chapter 4, we will work with the publicly available
data of the CODECS simulations [37] that represents the largest set of cosmological
N-body simulations for coupled DE models to date.

1.6.2 Growing Neutrino Quintessence

Growing neutrino quintessence, developed in [14, 283], among others, explains the
end of a cosmological scaling solution (in which dark energy scales as the dominant
background) and the subsequent transition to a dark energy dominated era by the
growing mass of neutrinos, induced by the change of the value of the cosmon field
which is responsible for dynamical dark energy. The dependence of the mass of
neutrinos on the cosmon (dark energy) field φ,

mν = mν(φ) ∝ m̂νe
−
´
β(φ)dφ , β(φ) = −∂ lnmν(φ)

∂φ
(1.78)

involves the cosmon-neutrino coupling β(φ) which measures the strength of the
fifth force (additional to gravity). The constant m̂ν is a free parameter of the model
which determines the size of the neutrino mass. (We take for simplicity all three
neutrino masses equal - or equivalently mν stands qualitatively for the average
over the neutrino species.) The special role of the neutrino masses (as compared to
quark and charged lepton masses) is motivated at the particle physics level by the
way in which neutrinos get masses (see [283]). Growing neutrino quintessence with
a sufficiently large negative value of β successfully relates the present dark energy
density and the mass of the neutrinos. The evolution of the cosmon is effectively
stopped once neutrinos become non-relativistic. Dark energy becomes important
now because neutrinos become non-relativistic in a rather recent past, at typical
redshifts of about z = 5 (see [197]). In this way, the “why now problem” is resolved
in terms of a “cosmic trigger event” induced by the change in the effective neutrino
equation of state, rather than by relying on the fine tuning of the scalar potential.
This differs from other mass varying neutrino cosmologies (usually known as Ma-
VaN’s) [73, 165, 62, 114, 149, 251, 255]. Some of the observational consequences of
those models were studied in [165, 149] and more recently a new scalar field - neu-
trino coupling that produces viable cosmologies was proposed in [247]. A viable
cosmic background evolution of growing neutrino quintessence offers interesting
prospects of a possible observation of the neutrino background.

The case in which the coupling β is constant has been largely investigated in
literature at the linear level [197], in semi-analytical non-linear methods [286, 287,
74], joining linear and non-linear information to test the effect of the neutrino lumps
on the cosmic microwave background [215] and within N-Body simulations [30, 31,
43, 32]. For the values of β (β & 103) needed for dark energy to dominate today,
the cosmic neutrino background is clumping very fast. Large and concentrated
neutrino lumps form and induce very substantial backreaction effects. These effects
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are so strong that the deceleration of the evolution of the cosmon gets too weak,
making it difficult to obtain a realistic cosmology [119].

In this dissertation we instead consider the case in which the neutrino-cosmon
coupling β(φ) depends on the value of the cosmon field and changes with time,
along the framework of “varying growing neutrino models” (see [283, 165]).

In a particle physics context this has been motivated in [283] by a decrease with
φ of the heavy mass scale (B-L-violating scale) entering inversely the light neutrino
masses in the seesaw mechanism. In this scenario β(φ) has not been large in all
cosmological epochs - the present epoch corresponds to a crossover where β gets
large. A numerical investigation [43] of this type of model has revealed compati-
bility with observations for the case of a present neutrino mass mν,0 = 0.07 eV. In
the present project we investigate the dependence of cosmology on the value of the
neutrino mass by varying the parameter m̂ν in eq. 1.78. For large neutrino masses
we find a qualitative behavior similar to the case of a constant neutrino-cosmon
coupling β, with difficulties to obtain a realistic cosmology. In contrast, for small
neutrino mass, the neutrino lumps form and dissolve, with small influence on the
overall cosmological evolution. In this case, the neutrino-induced gravitational po-
tentials are found to be much smaller than the ones induced by dark matter. As
we will discuss in chapter 6, it will not be easy to find observational signals for
the neutrino lumps. In-between the regions of small and large neutrino masses we
expect a transition region for intermediate neutrino masses where, by continuity,
observable effects of the neutrino lumps should show up.

As long as neutrinos are relativistic, the coupling is inefficient and the dark en-
ergy scalar field φ rolls down a potential, as in an early dark energy scenario. As
the neutrino mass increases with time, neutrinos become non-relativistic, typically
at a relatively late redshift z ≈ 4−6 [215]. This influences the evolution of φ, which
feels the effect of neutrinos via a coupling to the neutrino mass mν(φ). The evo-
lution of the scalar field slows down and practically stops, such that the potential
energy of the cosmon behaves almost as a cosmological constant at recent times. In
other words, in these models the cosmological constant behavior observed today
is related to a cosmological trigger event (i.e. neutrinos becoming non-relativistic)
and the present dark energy density is directly connected to the value of the neu-
trino mass. In the following we will detail the formalism and equations used to
describe the cosmological evolution of the model.

We will use here the linearized Einstein equations, treated in section 1.2.4, but
now we have to pay attention to the fact that the term δT 0

0 (eq. (1.30)) sourcing the
Poisson equation eq. (1.31), will contain contributions from all matter species (dark
matter & neutrinos) and from the cosmon field, which in this case also clusters.
The total density perturbation will be: δρt = δρν + δρm + δρφ. Moreover, we cannot
neglect the anisotropic stress term σ in eq. (1.34) which is important for relativistic
particles (i.e. the neutrinos).

The cosmon field can be described through a Lagrangian in the standard way

− Lφ =
1

2
∂νφ∂νφ+ V (φ) (1.79)

where for this work we choose an exponential potential V (φ) ∝ e−αφ. The field
dependent mass (eq.1.78) allows for an energy-momentum transfer between neu-
trinos and the cosmon, which is proportional to the trace of the energy momentum
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tensor of neutrinos T(ν) and to a coupling parameter β(φ)

∇ηTµη(φ) = + β(φ)T(ν)∂
µφ , (1.80)

∇ηTµη(ν) =− β(φ)T(ν)∂
µφ . (1.81)

The cosmon is the mediator of a fifth force between neutrinos, acting at cosmo-
logical scales. Its evolution is described by the Klein-Gordon equation sourced by
the trace of the energy-momentum tensor T(ν) of the neutrinos,

∇µ∇µφ− V ′(φ) = β(φ)T(ν). (1.82)

As long as the neutrinos are relativistic (T(ν) = 0) the source on the right hand
side vanishes. During this time, the coupling has no effect on the evolution of φ.
While the potential term ∼ V ′ drives φ towards larger values, the term ∼ β has the
opposite sign and stops the evolution effectively once βT(ν) equals V ′. The trace of
the energy momentum tensor Tν , entering eq.1.82 is equal to:

Tν = mν(φ)ñ(φ) (1.83)

where ñν(φ) = nν(φ)/γ is the ratio of the number density of neutrinos nν , di-
vided by the relativistic γ factor. Eq.1.83 is valid for both relativistic and non-
relativistic neutrinos. Here we consider a coupling β between neutrino particles
and the quintessence scalar field φ as a field dependent quantity:

β(φ) ≡ − 1

φc − φ
. (1.84)

From eq.1.78 the neutrino mass is then given by:

mν(φ) =
m̄ν

φc − φ
. (1.85)

Here φc denotes the asymptotic value of φ for which β and mν(φ) would formally
become infinite. By an additive shift in φ it can be set to an arbitrary value, e.g.
φc = 0. We consider the range φ < φc. The divergence of β for φ → φc in eq.1.84
is not crucial for the results of the present paper - β and mν never increase to large
values, such that the immediate vicinity of φc plays no role.

The coupling induces a total force acting on neutrinos given by∇(Φν+βδφ) and
appearing in the corresponding Euler equation [215], as usual in coupled cosmolo-
gies [42]. For values 2β2 > 1 the fifth force induced on neutrinos by the cosmon
becomes larger than the gravitational attraction. For the large values of |β| ≈ 102

reached during the cosmological evolution, the attraction induced by the cosmon
gives rise to the formation of neutrino lumps. As shown in [197, 215] this repre-
sents the major difficulty encountered within growing neutrino models and also,
simultaneously, one of its clearest predictions with respect to alternative dark en-
ergy models: the presence of neutrino lumps at scales of ≈ 10 Mpc or even larger,
depending on the details of the model [197]. Since the attractive force between neu-
trinos is 104 times bigger than gravity, therefore also the dynamical time scale of the
clumping of neutrino inhomogeneities is a factor 104 faster than the gravitational
time scale. Even the tiny inhomogeneities in the cosmic neutrino background grow
very rapidly non-linear. The impact of such structures, has been shown to depend
crucially on the strength of backreaction effects [31, 32]. For constant coupling,
the effect of backreaction is strong and can lead to neutrino lumps with rapidly
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growing concentration, reaching values of the gravitational potential which exceed
observational constraints. The effect is so strong that it is able to destroy the oscil-
latory effect first encountered in [42], in which neutrino lumps were forming and
then dissipating. No realistic cosmology has been found in this case [119]. With
the varying coupling of eq.1.84 a similar behavior will be found for large neutrino
masses. For small neutrino masses the oscillatory effects will be dominant and re-
alistic cosmologies seem possible [32].
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Chapter 2

Statistics in Cosmology

2.1 The relation between Gaussianity, linearity and homo-
geneity

2.1.1 Gaussian random fields

In cosmology, we are interested in studying observables which are influenced by a
large number of random processes, giving them a stochastic nature. The best exam-
ples are the fluctuations of temperature in the CMB δT/T or the fluctuations of the
matter density in the Universe, usually denoted by the symbol δ, which originate
from complicated interactions between different matter species, gravity and other
fundamental forces. Using the Central Limit Theorem [190], we can show that the
sum of a large number of random variables, that originate from independent ran-
dom processes, will yield a variable that it is almost exactly Gaussian distributed.
The Gaussian probability distribution p(x) for a random variable x, with mean µ
and variance σ is given by

p(x) =
1√

2πσ2
exp

(
(x− µ)2

2σ2

)
(2.1)

As we will see, Gaussian distributed variables will be very important in observa-
tions and analysis of cosmological observables. In the case of structure formation,

δ(~x, t) ≡ (ρ(~x, t)− ρ̄(t))/ρ̄(t) , (2.2)

is a random field that describes inhomogeneities in the density field ρ(~x, t) with
respect to the mean density ρ̄. Due to the assumption that the density fluctuation
δ originates from independent random processes in a homogeneous and isotropic
universe, its statistical properties must be homogeneous and isotropic too [204].
That means that the probability distribution p(δ(~x)) must be invariant under trans-
lations and rotations of space. The expectation value of 〈δn〉 is formally speaking
defined by an ensemble average, meaning that we should actually observe this
process in many random realizations of the Universe. Since this is not possible, in
cosmology we postulate the ergodicity principle [5], which states that for sufficient
large volumes the ensemble average is equal to the volume average and therefore
we can write:

〈δn〉 =
1

V

ˆ
V

d3x δn(~x)p(δ(~x)) (2.3)

The importance of this postulate, in practical terms, is that we can use our formal
statistical tools to compute theoretically the expectation values by just averaging
over large volumes in the sky.



32 Chapter 2. Statistics in Cosmology

2.1.2 The data covariance matrix

Let us introduce at this point the data covariance matrix, not to be confused with the
parameter covariance matrix, which will be introduced later. If we are measuring the
fluctuation δ at three points in space, ~x, ~y and ~z, then their joint probability density
will still be Gaussian:

p(δ(~x), δ(~y), δ(~z)) =
1√

(2π)2 det C
exp

−1

2

δ(~x)
δ(~y)
δ(~z)

T

C−1

δ(~x)
δ(~y)
δ(~z)


 (2.4)

where now instead of a Gaussian dispersion σ, we have a Gaussian data covariance
matrix C, given by:

Cij =

 〈δ2(~x)〉 〈δ(~x)δ(~y)〉 〈δ(~x)δ(~z)〉
〈δ(~x)δ(~y)〉 〈δ2(~y)〉 〈δ(~y)δ(~z)〉
〈δ(~x)δ(~z)〉 〈δ(~y)δ(~z)〉 〈δ2(~z)〉

 (2.5)

Notice that the covariance matrix is symmetric and positive definite. This is the
data covariance matrix for three measurements in real space. If you would mea-
sure the density fluctuations at 1000 different points in space, the covariance matrix
would have 1 million elements. Therefore, it is very important not only for theo-
retical, but for practical reasons of data analysis, that the covariance matrix is as
simple and symmetric as possible.

Luckily, for Gaussian random fields their statistical properties can be defined
entirely by the their two-point correlation function, where the following recursion
relations (obtained by Isserli’s or Wick’s theorem [57]) are valid:

〈δ2n〉 = (2n− 1)!!〈δ〉 , 〈δ2n+1〉 = 0 (2.6)

Therefore, for Gaussian random variables, the two-point correlation function is ev-
erything we need to know about its statistical properties. This is of course expected,
since we have defined in eq. (2.4) the covariance matrix C as the only statistical
quantity needed to specify fully the distribution of the multivariate Gaussian ran-
dom field.

2.1.3 The two-point correlation function

The advantage of working with fluctuation variables in cosmology is that, by con-
struction, their mean is zero, i.e. 〈δ〉 = 0 and that they are small (δ << 1) at initial
times. Therefore, the first statistical quantity we need is not their mean, but their
variance, 〈δ2〉. If we are measuring the fluctuations at two separated points in the
universe (~x and ~y), then it makes sense to study their two-point correlation func-
tion, defined as:

ξ(~r) = 〈δ(~y − ~r)δ(~y)〉 =
1

V

ˆ
δ(~y − ~r)δ(~y)d3y . (2.7)

As we have seen before, δ is statistically homogeneous and isotropic. Therefore,
due to homogeneity, the correlation function can only depend on separation ~r =
~y − ~x and due to invariance under rotations it can only depend on the magni-
tude of the separation, denoted as r. In simple words —for the case of large scale
structure— ξ(r) is telling us how probable it is to find a galaxy a distance r away
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from a given galaxy at position ~x. This is the ideal case for ideal measurements
of a linear and Gaussian observable, but in the later chapters, when we discuss
non-linearities and observational effects (for example redshift space distortions),
we will see that the situation is in practice not so simple. In reality, the observable
δ will not be specified only by its two-point correlation function and will not be
statistically isotropic. An example of this can be seen in Baryon Acoustic oscilla-
tions [48], in which the correlation function has different values, depending if it is
parallel or perpendicular to the line of sight.

2.1.4 The power spectrum

If density fluctuations are exactly linear, or they remain small (δ � 1) so that
they can be linearized, we will see that observations of the fluctuations at different
scales, remain independent of each other. We can see this more clearly if we work
in Fourier space. For linear equations, transforming into Fourier space (going from
position ~x to wavevectors ~k) is quite useful, since space derivatives become factors
of ~k and the function in Fourier space δ(~k) evolves in time independently for each
k-mode, but only if the field is statistically homogeneous. The Fourier transform of
the density field, denoted δ(~k) is defined as:

δ(~k) =
1

V

ˆ
d3x δ(~x) exp(−i~k · ~x) (2.8)

and its inverse is
δ(~x) =

V

(2π3)

ˆ
d3k δ(~k) exp(i~k · ~x) , (2.9)

where V is the volume and both δ functions in Fourier and real space are dimen-
sionless. Since now δ(~k) can be complex, we can define the variance between two
k-modes as:

〈δ(~k1)δ∗(~k2)〉 =

ˆ
d3x d3y〈δ(~x)δ(~y)〉 exp(−i~k1 · ~x+ i~k2 · ~y)) . (2.10)

Using the definition of the correlation function 2.7 and the fact that the Gaussian
random field δ is homogeneous we can define the power spectrum P (~k) as:

P (~k) =

ˆ
d3r ξ(~r) exp(−i~k · ~r) (2.11)

The relation between the expected value of 〈δ(~k1)δ∗(~k2)〉 and the power spectrum
P (~k) can be obtained by a similar straightforward calculation [110, 17], where tak-
ing into account that the δ field is real-valued, one can obtain:

〈δ(~k)δ(~k′)〉 = (2π)3P (k)δD(~k + ~k′) . (2.12)

The Dirac delta δD in the previous equation, shows us directly what we had ex-
pected from a random Gaussian and homogeneous field; the Fourier modes ~k and
~k′ for the density fluctuations are mutually uncorrelated. Therefore, for linear per-
turbations, the data covariance matrix C, defined in eq. (2.5), is perfectly diagonal
in Fourier space, making an analysis of the observations much more tractable.

However, this is only true if the equations governing δ are linear; otherwise,
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non-linear terms in real space, would introduce convolutions in Fourier space, giv-
ing rise to non-vanishing correlations 〈δ(~k1)δ(~k2)〉. This will be the subject of study
of the non-linear power spectrum, which will be treated with more depth in chapter
5.

2.1.5 Final remarks on linearity, Gaussianity and homogeneity

We have seen in the previous sections, that the concepts of linearity, Gaussian-
ity and homogeneity are strongly related in Cosmology. The fact that observables
like the matter density fluctuations originate from a large number of independent
random processes, leads —thanks to the Central Limit Theorem— to a Gaussian
random field. Then homogeneity and isotropy of the Universe and linear equa-
tions (in space) governing those processes, ensure that the statistical properties of
the Gaussian random field are also homogeneous and isotropic and that we can
use the ergodic theorem to compute ensemble averages. The Gaussianity of the
field (and its vanishing average value) allows us to describe the field, solely with
its two point correlation function, which directly connects us to the power spec-
trum and then to the fact that in Fourier space, pairs of wavemodes are mutually
uncorrelated.

Gaussianity⇔ Linearity⇔ Homogeneity (2.13)

In contrast, non-linear evolution of the density field, would yield correlations
among different k-modes, leading to a non-Gaussian probability distribution and
the loss of homogeneity (or the appearance of k-dependence). This is what happens
at later stages of structure formation, where fluctuations are limited to −1 < δ in
voids, but can grow to very high values δ � 1 inside the cosmic web structure. This
in turn makes the data covariance matrix C in Fourier space not diagonal anymore
and the analysis of cosmological observations more difficult.

2.2 Likelihood and the Bayesian approach

The subject of Bayesian statistics is a very complex, but very important topic in
modern statistics, data science and the physical sciences [125] and it is outside of the
scope of this work to try to even review its more fundamental properties. We will
just comment on the simple but very powerful concept of the likelihood function
and how the Bayesian approach to statistical analysis is best suited in a field like
cosmology.

If an experiment yields a vector of random variables xi, we have to try to build
a theoretical model, which depends on some free parameters θi that can give us
the probability distribution p(xi|θi) to find the variable xi inside an interval ∆x for
a specific measurement. Then what physicists are interested in, is in constraining
the model parameters θi and try to find the set of parameters (or the model) that
best explains the data. There are two possibilities of analyzing the results of that
experiment, the frequentist and the Bayesian approach.

In the frequentist approach, the scientist would repeat many times the experi-
ment and even change the settings and the theoretical parameters θ in the lab, in
order to find the distribution of xi’s (p(xi|θi)) and from there, infer the distribution
of the parameters θ. So this scientist would be able to say (as it is usually done in
particle physics) that a there is a 97% probability that her data is distributed accord-
ing to the model she has found as best fit (where one parameter is for example the
Higgs mass).
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In the Bayesian approach, the reasoning is reversed. The scientist would look
for the probability of having a certain model (with model parameters) given the
data that has already been taken (p(θi|xi)). This is more suitable for cosmology,
since we cannot repeat many times the same experiment and we cannot change the
parameters of the Universe.

How do we then "invert" P (D|T ) —the probability of the data given a model—
to obtain P (T |D)? The solution is given by Bayes’ theorem [51]:

P (T |D) =
P (D|T )P (T )

P (D)
(2.14)

P (T |D) is usually called the posterior probability (of having a theory T given the
data D), P (T ) is the prior probability on the theory (which quantifies our previous
knowledge and prejudices) and P (D) is the evidence (the probability of the data),
which for our purposes we can ignore, since it represents just a normalization fac-
tor in our applications. Also here, a discussion on the significance and the effects
of the prior is out of our scope [17, 110]. However, in our case it will be an effi-
cient way of combining results from previous experiments into our predictions for
future experiments. The prior can be as simple as the theoretical expectation that a
parameter cannot be zero (for example the matter density of the Universe) or it can
be the entire probability distribution of a previous experiment. After this point we
will roughly call the posterior P (T |D) by its more common name: the likelihood
function L(θ|x).

From the likelihood we can obtain some useful quantities:

• The maximum likelihood estimators θ̂i, which are found by solving
∂L(θi)/∂θi = 0. This would amount to the ’best fit’ parameters, but they are
in general different to the frequentist ones, if we have used a prior.

• The confidence regions for the parameters, denoted R(α), for which the nor-
malized likelihood integrated in that region has a specific value:

ˆ
R(α)

L(θi)d
nθ = α . (2.15)

If α = 0.683, 0.954, 0.997, these regions are called 1, 2 and 3σ regions respec-
tively.

• Marginalization over a parameter. If the likelihood depends on three param-
eters θ1, θ2, θ3, but we are not interested in θ3, because it is a nuisance param-
eter or we have no clear idea how to relate it to the theory, we can marginalize
over it by integrating it out: L(θ1, θ2) =

´
L(θ1, θ2, θ3) dθ3

Despite the great usefulness of the likelihood, its evaluation represents a chal-
lenge both numerically and computationally, since it is a complicated multi- di-
mensional function. Evaluating the likelihood for a relatively coarse grid of points
in parameter space, becomes unfeasible for more than 7 or 8 parameters. So, tech-
niques like Markov Chain Monte Carlo (MCMC) (see [111] for a review) have be-
come more and more sophisticated. In these techniques, the basic idea is to explore
the parameter space using a random walk, which is itself guided by the steepness or
flatness of the likelihood at that point. In this way there are much less evaluations
in places where the likelihood is flat and many evaluations where the likelihood
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changes very rapidly. Two very well known codes in the cosmological commu-
nity are MONTEPYTHON and COSMOMC [174, 29] which are used to evaluate the
likelihood of many large and modern experiments like Planck [219].

Many approximations can be made in order to estimate the likelihood or at least
to find its maximum. For a Gaussian distributed data vector xwith n components,
with mean µ and covariance matrix C of dimension n × n we can write the likeli-
hood as L = exp(−χ2/2), which results in:

L =
1

(2π)n/2 det(C)
exp

[
−1

2
(x− µ)TC−1(x− µ)

]
(2.16)

and we can define the matrix of data points as D = (x − µ)T (x − µ) and in full
generality the covariance matrixC is just given by the expected value ofD, namely
C = 〈D〉.

We will see in the next section that a very useful approximation is to say that
the likelihood is Gaussian not only in the data, but also in the parameters. In this
case, a useful quantity will be the log-likelihood L ≡ lnL, since we can get rid
of the exponential function. For (approximately) Gaussian distributed parameters,
the parameter covariance matrix will be of great importance to analyze and forecast
the results of large future experiments.

2.3 Fisher Matrix formalism

We have seen in the previous section, how the log-likelihood function L is a pow-
erful tool to estimate the probability distribution of model parameters, given some
previously measured data. But what if we don’t have data available yet? For ex-
ample when we want to know with which accuracy a certain future experiment is
going to be able to constrain certain parameters of a model. This is where the Fisher
formalism [143, 243] enters. The Fisher matrix is defined as the expectation value
of the curvature of the log-likelihood:

Fij = −
〈
∂2L(θ)

∂θiθj

〉
(2.17)

If we assume that the errors on the data measurements are Gaussianly distributed
(where then we can write the likelihood as L = e−χ

2/2) then we can also think of
the Fisher matrix as a Taylor expansion of the log-likelihood around its maximum
θ̂, or equivalently where the χ2 has a minimum:

L(θ) = L(θ̂) + (θ − θ̂)∂L
∂θ

+
1

2
(θ − θ̂)2∂

2L
∂θ2

(2.18)

The linear derivative term in the above equation vanishes, since we are expanding
around the maximum and we are considering here for simplicity just one parameter
θ, but the generalization to more parameters is straightforward. The fact that the
Fisher matrix is related to the curvature of the log-likelihood around its maximum,
tells us that the Fisher matrix is an indication of how fast the likelihood changes
around the peak [110]. If the curvature is high, then the likelihood changes fast
and the experiment is very constraining, allowing for just small changes of the
parameters, before the likelihood becomes too small. If the curvature is low, then
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the likelihood is very flat and the experiment is not very constraining in parameter
space 1.

2.3.1 The Fisher matrix for a galaxy power spectrum

In order to understand better the following sections where we will talk about the
Fisher matrix of the galaxy clustering and weak lensing observables, let us specify
the Fisher matrix defined in eq. (2.17) in a more concrete way. In this section we
follow closely the argumentations of [110] and [17].

We are interested in finding the distribution of matter in the Universe, and as
we have seen before, for sufficiently large scales, the overdensity of matter at a
specific scale k is given by δ(k). For a galaxy survey, covering a volume V (z + ∆z)
in three-dimensional space and providing m Fourier modes ki in a redshift bin ∆z,
we can compute that the data covariance matrix between mode ki and mode kj is
given by:

〈δkiδ∗kj 〉 = Ckikj = δij

(
P (ki, z) +

1

n̄(z + ∆z)

)
(2.19)

The reader can find the full details of the calculation in [110]. The data covariance
Ckikj is always a sum of the signal covariance and the noise covariance, which
in this case is simply given by the Poisson noise of a discrete random distribution,
where n̄ is the average number density of galaxies. Again, let us emphasize that we
are at relatively large scales, where then we can take our data covariance matrix as
being diagonal. If we now assume that the galaxy distribution is well approximated
by a Gaussian distribution (and we know it has to be since we are at linear and
homogeneous scales), then we can write the likelihood function as:

L =
1

(2π)m/2 det(Ckikj )
exp

[
−1

2

m∑
i

δ2
ki

Ckikj

]
(2.20)

Then the log-likelihood can be written in the following way

L = − lnL =
m

2
ln(2π) +

m∑
i

ln(Ckiki) +
m∑
i

δ2
ki

2Ckiki
(2.21)

where we have used the matrix identity: ln detC = tr lnC, which in this case is
anyway trivial since C is a diagonal matrix. Now, using definition 2.17, we can
evaluate the expectation value of the curvature of the log-likelihood (in model-
parameter space θα):

Fαβ =
m∑
i

[
∂2ln(Ckiki)

∂θα∂θβ
+
〈
δ2
ki

〉 ∂

∂θα∂θβ

(
1

2Ckiki

)]
(2.22)

The expectation value operator only affects the data δ2
ki

, because the data covari-
ance matrix C is already itself formed by expectation values. On the other hand,
the data δ2

ki
cannot be affected by derivations with respect to the model parameters,

1The relation between information matrices and geometry is not only qualitative, it is a formal
field of study called Information Geometry [28]
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because pure measurements should be by definition model independent. Then sub-
stituting

〈
δ2
ki

〉
= Ckiki and doing some algebra, we find:

Fαβ =
m∑
i

[
− 1

(Ckiki)
2

∂Ckiki
∂θα

∂Ckiki
∂θβ

+
3

(Ckiki)
2

∂Ckiki
∂θα

∂Ckiki
∂θβ

]
. (2.23)

Now we can use the data covariance of eq. (2.19) to write the Fisher matrix in terms
of the matter power spectrum:

Fαβ =
1

2

m∑
i

∂lnP (ki)

∂θα

∂lnP (ki)

∂θβ

(
n̄P (ki)

1 + n̄P (ki)

)2

, (2.24)

where we have assumed that the noise does not depend on the cosmological pa-
rameters and we have dropped the redshift dependence for simplicity. We must
remember that for a tomographic redshift survey, this Fisher matrix has to be com-
puted at each redshift bin.

Having done this example explicitly we can also write down the more general
expression for Gaussian likelihoods, such as the one specified in eq. (2.16), in which
the likelihood contains covariance matrices C which are not diagonal and the av-
erage of the data measurements µ is not zero. (see [263] among other works, for
more details). In this case the Fisher matrix can be written as:

Fαβ =
1

2
Tr
[
C−1C,αC

−1C,β +C−1〈D,αβ〉
]

(2.25)

This last term, the expected value of the derivatives of the data matrix D, is usu-
ally zero in cosmology, since we study quantities which are fluctuations around
the mean and their mean is therefore identically vanishing. In the following sec-
tions we will write down the more specific and exact expressions for the Galaxy
Clustering and Weak Lensing analysis.

2.4 Fisher Matrix forecasts

The Fisher matrix formalism, which was mainly developed for cosmological obser-
vations by [264] and [243] is one of the most popular tools to forecast the outcome
of an experiment, because of its speed and its versatility when the likelihood is
approximately Gaussian. The Fisher matrix method is used now ubiquitously in
the cosmology literature, with about 200 papers published so far 2, ranging from
CMB observations, to Redshift Space Distortions, Supernovae, Lyman-α observa-
tions and many more.

We will present in the following sections, the specific formulas for Galaxy Clus-
tering and Weak Lensing, under some simplifying assumptions (Gaussian likeli-
hood, diagonal data covariance matrices, no redshift-bin correlations). In a paper
by [240] the Gaussian approximation has been dropped and higher order “Fisher
tensors“ are used to approximate the true underlying likelihood [240]. Also re-
cently, there has been some work in extending the simplifying assumptions of di-
agonal covariance, redshift-bin correlations and k-space correlations [33, 70].

In [151] the authors also compared directly the Fisher matrix formalism with a
direct MCMC approach and have encountered considerable differences in the case

2According to a full-text search at https://www.arxiv.org
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of CMB experiments, especially when departing from the standard cosmological
model.

2.4.1 Fisher matrix for Galaxy Clustering

Using the previously found equation 2.24 for the Fisher matrix of the power spec-
trum, we can write that expression in a more compact form, where we express the
sum over the k-modes as an integral and take into account the number of observed
modes into the volume. We end up with the following formula: form [244]:

Fij =
1

8π2

ˆ +1

−1
dµ
ˆ kmax

kmin

dk k2∂ lnPobs(k, µ, z)

∂θi

∂ lnPobs(k, µ, z)

∂θj
Veff(k, µ, z) ,

(2.26)
where the effective volume Veff is given by

Veff = Vsurvey

[
n(z)Pobs(k, µ, z)

n(z)Pobs(k, µ, z) + 1

]2

. (2.27)

Here Vsurvey is the volume covered by the survey and contained in a redshift slice
∆z, while n(z) is the galaxy number density as a function of redshift. The galaxy
number density has to be taken from specifications for each survey, which are ob-
tained by direct measurements in the sky and end-to-end simulations [167]. Pobs(k, µ, z)
is the observed galaxy power spectrum as a function of redshift z, the wavenum-
ber k and of µ ≡ cosα, where α is the angle between the line of sight and the
3D-wavevector ~k. The derivatives in eq. (2.26) are taken with respect to a vector
of cosmological parameters, θi that can contain redshift-independent parameters
such as h and Ωm or redshift-dependent parameters such as the growth rate func-
tion f(z) or the Hubble function H(z). The details of the observed power spectrum
will be treated in the next section 2.4.2.

The minimum and maximum values for the k-integral also depend on the sur-
vey specifications and on how much we can trust our model of the power spectrum
at non-linear scales. Throughout this work we will use for the smallest wavenum-
ber a value of approximately kmin = 0.008h/Mpc, while the maximum wavenum-
ber will depend on the specific application and methods used to study the non-
linear regime. In general, kmax = 0.10− 0.15h/Mpc for linear forecasts and for
non-linear forecasts the smallest scales will lie at about kmax = 0.5− 1.0h/Mpc.

2.4.2 The observed galaxy power spectrum

The distribution of galaxies in space is not perfectly uniform. Instead it follows, up
to a bias, the underlying matter power spectrum so that the observed power spec-
trum Pobs is closely linked to the dark matter power spectrum P (k). The observed
power spectrum is the Fourier transform of the real-space two point correlation
function (see eq. (2.7)) of the galaxy number overdensity.

The observed power spectrum is then built from the theoretical matter power
spectrum P (k, z) (which in turn depends on the fundamental cosmological param-
eters θi) together by the following contributions which modify its signal:

1. The geometrical factor coming from the change of the Baryon Acoustic Peak
(BAO) peak
marked orange in eq. (2.28). It can be shown [230] that the shift of the BAO
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peak due to geometrical distortions when considering a different cosmology
as the reference one is proportional to H(z)/D2

A(z).

2. The galaxy bias b(z) marked brown in the formula below. This term has to
be estimated from observations and simulations for different types of galaxy
populations. In this case, we take into account just a linear local bias which
means that we assume that the galaxy overdensity δg differs from the un-
derlying matter overdensity by a function which just depends on redshift:
δg = b(z)δm. This assumption breaks at very large and very small scales [108].

3. The contribution from Redshift Space Distortions (RSD)
marked green in eq. (2.28), where β(z) = f(z)/b(z), where b(z) is the galaxy
bias and f(z) the logarithmic growth rate of perturbations f(z) = d ln(D+)/d ln(a)/.
This term is related to distortions in redshift space caused by peculiar velocity
divergences. This term was derived first in [148] and it is commonly known
as the Kaiser formula. It represents the distortion caused by peculiar veloci-
ties when going from redshift to coordinate space.

4. The geometrical effect of the change of cosmological parameters on the deter-
mination of the angles µ and the scale k, which is called the Alcock-Paczynski
effect [8, 44, 115] and it is marked red in eq. (2.28). In section 2.5.5 we will de-
tail the corresponding formulas.

5. The damping due to spectroscopic redshift errors σz and the non-linear pair-
wise peculiar velocity dispersion σv(z), which corresponds to a first order
correction term to the Kaiser formula and it is also known as the "Fingers
of God" effect. These terms damp the power spectrum at small scales, where
due to these redshift uncertainties the signal cannot be reproduced accurately.
These terms are shown in magenta in eq. (2.28).

6. Extra shot noise due to observational effects which cannot be removed. These
can be included in general with the term Ps(z). It is marked blue in the for-
mula below.

Pobs (z, k, µ; θ) = Ps(z)+
D2
A(z)refH(z)

D2
A(z)H(z)ref

b2(z)
(
1 + β(z)µ2

)2
P (k, z)e−k

2µ2(σ2
z/H(z)+σ2

v(z))

(2.28)
In the previous formula we have neglected relativistic contributions and further
non-linear effects. For more details on those topics see [259, 237, 71]. In general for
the forecasts presented in this work, we will marginalize over the bias b(z), which
we will take as a different nuisance parameter at each redshift. We usually fix the
spectroscopic redshift error to a value given by the specifications of the instrument,
and it is in general a very small number σz = 0.001. We also marginalize over σv(z),
since we don’t have a proper way of computing it for each model and relating it
to fundamental cosmological parameters. We will take as a fiducial value σv =
300km/s, compatible with the estimates by [265].

Despite the apparent simplicity of eq. (2.26) and eq. (2.28) there are several de-
tails that need to be considered when dealing with forecasts in practical applica-
tions. One of the main results of this work is the production of a Fisher Matrix code
capable of performing forecasts for Galaxy Clustering and Weak Lensing with dif-
ferent options for methods and assumptions. In section 2.5 we will explain more in
detail the equations and the structure of the code used to perform the forecasts in
this work.
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2.4.3 Weak Gravitational Lensing

Light propagating through the universe is deflected by variations in the Weyl po-
tential ΦWeyl = Φ + Ψ, leading to distortions in the images of galaxies. The main
idea behind weak gravitational lensing is to measure the ellipticity of galaxies in a
wide field sky survey and correlate the ellipticities to find a statistical effect caused
by the evolution of the lensing potential in the Universe.

The transformation of a light bundle in the case of small angles and small grav-
itational potentials can be described by a distortion tensor which contains a con-
vergence component κ (appearing only in its diagonal) and a shear component γi
(appearing both in the diagonal as in the off-diagonal elements). For more details
and derivations, see the comprehensive review by [46]. What we observe when
we measure the correlation among galaxy ellipticities is the shear power spectrum
Pγγ . However, it can be shown in linear theory, that the shear power spectrum is
proportional to the convergence power spectrum Pκκ (see [17, 143]), and it can be
linked directly to a combination of the matter power spectrum and the background
cosmological quantities. Therefore, by measuring something conceptually simple,
such as galaxy shapes, we gain access to the parameters of the cosmological model
governing the evolutions of structure in the Universe.

In the linear regime we can write the power spectrum of the convergence field
as

Cij(`) =
9

4

ˆ ∞
0

dz
Wi(z)Wj(z)H

3(z)Ω2
m(z)

(1 + z)4
Σ2(`/r(z), z)Pm(`/r(z)) , (2.29)

where the indices i, j stand for each of the Nbin redshift bins. In this expression
we are already considering extensions of Einstein’s GR, where we have used Eqn.
(1.60) to parametrize the changes induced in the Weyl potential. Furthermore we
use the Limber approximation to write down the conversion k = `/r(z), where r(z)
is the comoving distance given by

r(z) = c

ˆ z

0

dz̃

H(z̃)
. (2.30)

The indices i, j stand for each of the Nbin redshift bins, such that Cij is a matrix of
dimensions Nbin ×Nbin. The window functions Wi are given by

W (z) =

ˆ ∞
z

dz̃
(

1− r(z)

r(z̃)

)
n(z̃) (2.31)

where the normalized galaxy distribution function (in the case of a survey like Eu-
clid 2.1) is

n(z) ∝ z2 exp
(
−(z/z0)3/2

)
. (2.32)

Here the median redshift zmed and z0 are related by zmed =
√

2z0. We integrate this
quantity in our redshift range to find the total amount of galaxies and create the
redshift bins, such that each of them contains the same number of galaxies. These
bins are then called equi-populated bins. The Weak Lensing Fisher matrix is then
given by a sum over all possible correlations at different redshift bins [264],

Fαβ = fsky

`max∑
`

∑
i,j,k,l

(2`+ 1)∆`

2

∂Cij(`)

∂θα
Cov−1

jk

∂Ckl(`)

∂θβ
Cov−1

li . (2.33)
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The prefactor fsky is the fraction of the sky covered by the survey. The upper limit
of the sum, `max, is a high-multipole cutoff due to our ignorance of clustering and
baryon physics on small scales, similar to the role of kmax in Galaxy Clustering.
Typical choices are `max = 1000 for the linear forecasts and `max = 5000 for the
non-linear forecasts (this cutoff is not necessarily reached at all redshifts, as what
matters is the minimum scale between `max and the kmax which is the maximum
k at which we trust the power spectrum; see also [83]). In eq. (2.33), Covij is the
corresponding covariance matrix of the convergence power spectrum, which is the
sum of the signal and the noise covariance matrix and it has the following form:

Covij(`) = Cij(`) + δijγ
2
intn

−1
i +Kij(`) (2.34)

where γint is the intrinsic galaxy ellipticity. In Table 2.1 we cite some typical num-
bers for different surveys. The shot noise term n−1

i is expressed as

ni = 3600

(
180

π

)2

nθ/Nbin (2.35)

with nθ the total number of galaxies per arcmin2 and the index i standing for each
redshift bin. Since we have equi-populated redshift bins, the shot noise term is
equal for each bin. The matrix Kij(`) is a diagonal “cutoff” matrix, discussed in
[83] whose entries increase to very high values at the scale where the power spec-
trum P (k) has to be cut, in order to avoid the inclusion of uncertain or unresolved
non-linear scales. We choose to add this matrix to have further control on the inclu-
sion of non-linearities. Without this matrix, due to the redshift-dependent relation
between k and `, a very high `max would correspond at low redshifts, to a very
high kmax where we do not longer trust the accuracy of the non-linear power spec-
trum. Therefore, the sum in Eqn. (2.33) is limited by the minimum scale imposed
either by `max or by kmax, which is the maximum wavenumber considered in the
matter power spectrum P (k, z). As we did for Galaxy Clustering, we use for linear
forecasts kmax = 0.15 and for non-linear forecasts kmax = 0.5.

2.4.4 Future large scale galaxy redshift surveys

In this work we choose to present results on some of the future galaxy redshift
surveys, which are planned to be started and analyzed within the next decade.
Our baseline survey will be the Euclid satellite [15, 167].

Euclid3 is a European Space Agency medium-class mission scheduled for launch
in 2020. Its main goal is to explore the expansion history of the Universe and the
evolution of large scale cosmic structures by measuring shapes and redshifts of
galaxies, covering 15000deg2 of the sky, up to redshifts of about z ∼ 2. It will be
able to measure up to 100 million spectroscopic redshifts which can be used for
Galaxy Clustering measurements and 2 billion photometric galaxy images, which
can be used for Weak Lensing observations (for more details, see [15, 167]). We will
use in this work the Euclid Redbook specifications for Galaxy Clustering and Weak
Lensing forecasts [167], some of which are listed in table 2.2 and table 2.1 and the
rest can be found in the above cited references.

Another important future survey will be the Square Kilometer Array (SKA)4,
which is planned to become the world’s largest radio-telescope. It will be built

3http://www.euclid-ec.org/
4https://www.skatelescope.org/
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Parameter Euclid SKA1 SKA2 Description

fsky 0.364 0.121 0.75 Fraction of the sky covered
σz 0.05 0.05 0.05 Photometric redshift error
nθ 30 10 2.7 Number of galaxies per arcmin
γint 0.22 0.3 0.3 Intrinsic galaxy ellipticity
z0 0.9 1.0 1.6 Median redshift over

√
2

Nbin 12 12 12 Total number of tomographic redshift bins

TABLE 2.1: Specifications for the Weak Lensing surveys Euclid, SKA1 and
SKA2 used in this work. Other needed quantities can be found in the ref-
erences cited in section 2.4.4. For all WL surveys we use a redshift range
between z = 0.5 and z = 3.0, using 6 equi-populated redshift bins.

in two phases, phase 1 split into SKA1-SUR in Australia and SKA1-MID in South
Africa and SKA2 which will be at least 10 times as sensitive. The first stage is due
to finish observations around the year 2023 and the second phase is scheduled for
2030 (for more details, see [290, 232, 224, 77]). The first phase SKA1, will be able
to measure in an area of 5000deg2 of the sky and a redshift of up to z ∼ 0.8 an
estimated number of about 5 × 106 galaxies; SKA2 is expected to cover a much
larger fraction of the sky (∼30000deg2), will yield much deeper redshifts (up to
z ∼ 2.5) and is expected to detect about 109 galaxies with spectroscopic redshifts
[232]. SKA1 and SKA2 will also be capable of performing radio Weak Lensing ex-
periments, which are very promising, since they are expected to be less sensitive
to systematic effects in the instruments, related to residual point spread function
(PSF) anisotropies [131]. In this work we will use for our forecasts of SKA1 and
SKA2, the specifications computed by [232] for GC and by [131] for WL. The nu-
merical survey parameters are listed in Tables 2.2 and 2.1, while the galaxy bias b(z)
and the number density of galaxies n(z), can be found in the references mentioned
above.

We will also forecast the results from DESI5, a stage IV, ground-based dark en-
ergy experiment, that will study large scale structure formation in the Universe
through baryon acoustic oscillations (BAO) and redshift space distortions (RSD),
using redshifts and positions from galaxies and quasars [106, 107, 172]. It is sched-
uled to start in 2018 and will cover an estimated area in the sky of about 14000deg2.
It will measure spectroscopic redshifts for four different classes of objects, lumi-
nous red galaxies (LRGs) up to a redshift of z = 1.0, bright [O II] emission line
galaxies (ELGs) up to z = 1.7, quasars (QSOs) up to z ∼ 3.5 and at low redshifts
(z ∼ 0.2) magnitude-limited bright galaxies (BLGs). In total, DESI will be able to
measure more than 30 million spectroscopic redshifts. In this thesis we will use
for our forecasts only the specifications for the ELGs, as found in [106], since this
observation provides the largest number density of galaxies in the redshift range of
our interest. We cite the geometry and redshift binning specifications in Table 2.2,
while the galaxy number density and bias can be found in [106].

2.4.5 Covariance and correlation matrix and the Figure of Merit

Previously we have defined the data covariance matrix in eq. (2.5), now let us define
in more generality the parameter covariance matrix for a d-dimensional vector p of

5http://desi.lbl.gov/
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Parameter Euclid DESI-ELG SKA1-SUR SKA2 Description

Asurvey 15000 deg2 14000 deg2 5000 deg2 30000 deg2 Survey area
σz 0.001 0.001 0.0001 0.0001 Spectroscopic error

zmin,max {0.65, 2.05} {0.65, 1.65} {0.05, 0.85} {0.15, 2.05} Min. and max. z
∆z 0.1 0.1 0.1 0.1 ∆z in bin

TABLE 2.2: Specifications for the spectroscopic galaxy redshift surveys used
in this work. The number density of tracers n(z) and the galaxy bias b(z), can
be found for SKA in [232] and for DESI in reference [106].

model parameters as
C = 〈∆p∆pT 〉 (2.36)

with ∆p = p − 〈p〉 and the angular brackets 〈 〉 representing an expectation value.
For our Fisher matrix analysis we will assume that 〈p〉 is the value of the parameter
p that maximizes the likelihood. The matrix C, with all its off-diagonal elements
set to zero, is called the variance matrix V and contains the square of the errors σi
for each parameter pi

V ≡ diag(σ2
1, ..., σ

2
d) . (2.37)

The Fisher matrix F is the inverse of the parameter covariance matrix

F = C−1 . (2.38)

The covariance matrix tells us not only the errors on each of the parameters pi, but
also how the errors are correlated among each other. This is more clearly seen by
defining the correlation matrix P, which is obtained from the covariance matrix C,
in the following way

Pij =
Cij√
CiiCjj

. (2.39)

If the covariance matrix is non-diagonal, then there are correlations among some
elements of p. We can observe this also by plotting the ellipsoidal contours corre-
sponding to the confidence regions. The orientation of the ellipses can tell us if two
variables pi and pj are correlated (Pij > 0), corresponding to ellipses with 45 degree
orientation to the right of the vertical line or if they are anti-correlated (Pij < 0),
corresponding to ellipses oriented 45 degrees to the left of the vertical line.

To summarize the information contained in the Fisher/covariance matrices we
can define a Figure of Merit (FoM). The square-root

√
det(C) of the determinant of

the covariance matrix is proportional to the volume of the error ellipsoid. We can
see this if we rotate our coordinate system so that the covariance matrix is diago-
nal, C = diag(σ2

1, σ
2
2, . . . σ

2
d), then det(C) =

∏
i σ

2
i and (1/2) ln(det(C)) = ln

∏
i σi

would indeed represent the logarithm of an error volume. Thus, the smaller the de-
terminant (and therefore also ln(det(C))), the smaller is the ellipse and the stronger
are the constraints on the parameters. We define

FoM = −1

2
ln(det(C)) , (2.40)

with a negative sign in front such that stronger constraints lead to a higher Figure of
Merit. The FoM allows us to compare not only the constraining power of different
probes but also of the different experiments. As the absolute value depends on the
details of the setup, we can define the relative figure of merit between probe a and
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probe b: FoMa,b = −1/2 ln(det(Ca)/ det(Cb)) = FoMa − FoMb. The FoM has units
of ‘nits’, since we are using the natural logarithm. These are similar to ‘bits’, but
‘nits’ are counted in base e instead of base 2.

An analogous construction allows us to study quantitatively the strength of the
correlations encoded by the correlation matrix P. We define the ‘Figure of Correla-
tion’ (FoC) as:

FoC = −1

2
ln(det(P)) . (2.41)

If the parameters are independent, i.e. fully decorrelated, then P is just the unit
matrix and ln(det(P)) = 0. Off-diagonal correlations will decrease the logarithm
of the determinant, therefore making the FoC larger. From a geometrical point of
view, the determinant expresses a volume spanned by the vector of (normalized)
variables. If these variables are independent, the volume would be maximal and
equal to one, while if they are strongly linearly dependent, the volume would be
squeezed and in the limit where all variables are effectively the same, the volume
would be reduced to zero. Hence, a more positive FoC indicates a stronger correla-
tion of the parameters.

2.4.6 The Kullback-Leibler divergence

In the previous section 2.4.5 we exploited the determinant of the covariance matrix
C as a Figure of Merit for our forecasts. Here we summarize a possible alterna-
tive to measure the constraining power of a specific forecast, namely the Kullback-
Leibler divergence [162], also called relative entropy or information gain. It has
been used in the field of cosmology for model selection, experiment design and
forecasting, see among others [163, 227, 238, 270, 294]. The KL-divergenceD(p2||p1)
measures for a continuous, d-dimensional random variable θ, the relative entropy
between two probability density functions p1(θ) and p2(θ) and it is given by

D(p2||p1) ≡
ˆ
p2(θ) ln

(
p2(θ)

p1(θ)

)
dθ. (2.42)

Although it is not symmetric in p1 and p2 it can be interpreted as a distance between
the two distributions and measures the information gain since it is non-negative
(D(p2||p1) ≥ 0), non-degenerate (D(p2||p1) = 0 if and only if p1 = p2) and it is
invariant under re-parameterizations of the distributions as p1(θ)dθ = p1(θ̃)dθ̃. In
the form given here the information gain is measured in nits as in section 2.4.5, to
convert nits to bits it is enough to divide the result by ln(2).

For the special case of p1(θ) and p2(θ) being multivariate Gaussian distribu-
tions, with the same mean values and covariance matrices A and B respectively,
we obtain

D(p2||p1) = −1

2

[
ln

(
det(A)

det(B)

)
+ Tr

[
1− B−1A

]]
. (2.43)

We can then define a Kullback-Leibler matrix K, introduced in ([84] appendix F)
composed of the KL-divergence measure among our observables, defined as:

Kij = D(pj ||pi). (2.44)

where pi and pj represent our observables. By looking at the rows of this matrix
(one row for each observable) and plotting them in a corresponding matrix plot,
one can see graphically which combination of observables yield more information
gain. In section 3.5.1 we will show the visual representation of the KL-matrix for an
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explicit parameterization of modified gravity and for different Galaxy Clustering
and Weak Lensing combinations of observables. This will give an intuitive idea
of which observable contains more information gain than the other, compared to a
reference observable.

2.4.7 Systematic bias on cosmological parameters

As we have seen in previous sections, our forecasts for future observations depend
strongly on the knowledge of the theoretical matter power spectrum. For linear
scales, this can be calculated with great precision, but for non-linear scales, we
have to rely on N-body simulations, semi-analytic methods or perturbation theo-
ries. Each of these methods only have a certain range of validity and introduce
many numerical and theoretical errors into the calculations. We will see more de-
tails on this topic in chapter 5.

In this section we will quantify the effect of the systematic errors on our fore-
casted statistical error estimations due to the uncertainties on the non-linear power
spectrum. We will show how big this systematic bias would be, if we used for our
forecasts a power spectrum which is not the “correct” one. The following discus-
sion was introduced in [83] in reference to forecasts using non-linear power spectra
from N-body simulations and is based mostly on the expressions derived in Ap-
pendix B of [262].

The linear bias on a cosmological parameter δθi due to the bias δψi in a param-
eter of the model which we assume fixed and cannot be measured is given by:

δθi = −
[
F θθ

]−1

ik
F θψkj δψj (2.45)

In our case we will have only one systematic parameter ψ, which controls the dif-
ference between the “true” power spectrum Ptrue and and our simulated power
spectrum Pnum:

Pψ = ψPnum + (1− ψ)Ptrue . (2.46)

ψ can vary continuously so that for ψ = 1 we recover Pnum, while for ψ = 0 we
obtain Ptrue. We can define the relative difference between Ptrue and Pnum as:

σp(k, z) ≡
Pnum(k, z)− Ptrue(k, z)

Ptrue(k, z)
. (2.47)

The F θθ in eqn.2.45 above is simply the usual Fisher matrix:

F θθ =
1

2
tr
(
C−1∂θi CC

−1∂θjC
)

, (2.48)

while the pseudo-Fisher matrix between measured and assumed parameters F θψ

is:
F θψij =

1

2
tr
(
C−1∂θi CC

−1∂ψj C
)

, (2.49)

which for one systematic parameter only, is just a column vector.
In the case of galaxy clustering we will compute F θψ in the following way, using

the fact that for ψ = 1, C = Pnum(k, z) + n−1(z) and Pψ|ψ=1 = Pnum:

F θψi ∝
ˆ

dk k2

(
neff (z)Pnum(k, z)

neff (z)Pnum(k, z) + 1

)2( 1

Pnum(k, z)

)2 ∂Pψ
∂ψ

∣∣∣∣
ψ=1

∂Pnum
∂θi

(2.50)
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in this step we have assumed that we have no systematic parameters affecting the
galaxy number density n(z) and therefore, its derivative w.r.t ψ vanishes. Also, for
notational simplicity we left out the integral over µ and the complete form of the
observed power spectrum.

In section 4.5.0.2 we will show a concrete example of the application of these
formulas and we will see that in the non-linear regime, where the uncertainty in
the theoretical power spectrum is of about 10-20%, the systematic errors can be of
the same order or larger than the forecasted statistical errors for a future survey like
Euclid.

2.5 The equations and structure of the FISHERTOOLS code

In this section we will explain a bit more in detail the implementation of the FISH-
ERTOOLS code, which has been used in the projects explained throughout this
work. This code was created by the author and consists on a set of packages for
the Mathematica Wolfram language.

2.5.1 The structure of FISHERTOOLS

The code contains of 4 basic modules:

1. CosmologyTools: A package defining many background quantities in cos-
mology, such as the Hubble function H(z), distances, volumes, density frac-
tions Ω(z), the growth and growth rate functions D+ and f(z), conversions
between different units and time conventions (scale factor, redshift, e-fold
time, conformal time) and functions related to observational effects, like RSD
and the AP effect (see section 2.4.2), among others. This package also interacts
with the package COSMOMATHICA (see section 2.5.2 below), which serves as
an interface and a wrapper to many other useful codes in the community,
especially Boltzmann codes.

2. FisherTools: A package containing all functions needed to perform and ana-
lyze a Fisher forecast. Many of them are too technical to be included here and
belong to a comprehensive manual, but in the next subsection we will specify
some of them. The most important ones are the routines for derivation and
integration, together with routines for matrix operations and visualization.

3. WeakLensingTools: Some special functions related to Weak Lensing analysis,
like window functions, multipoles, computation of bins and bin correlations.

4. UsefulTools: Auxiliary tools used in the code that are not provided by
Mathematica, such as file exporting and importing, string parsing and ma-
trix operations.

2.5.2 The interface COSMOMATHICA

The COSMOMATHICA code was created originally by Dr. Adrian Vollmer and used
for several projects in the field of Fisher matrix forecasts and perturbation theory
[19]. It is now maintained by the author of this work and it can be found and copied
from its repository under the URL: https://github.com/santiagocasas/
cosmomathica.

https://github.com/santiagocasas/cosmomathica
https://github.com/santiagocasas/cosmomathica


48 Chapter 2. Statistics in Cosmology

Its main function is to interface many codes and routines used in the cosmology
community to a simple Mathematica notebook or package. The supported codes
are the Boltzmann codes: CAMB [177] and CLASS [170, 169]. The fitting functions
from Eisenstein & Hu [112], Halofit [249] and the Cosmic Emulator [133, 132];
and a code that calculates higher order perturbation theory for large scale structure,
called COPTER [268].

This interface (which uses the MathLink technology from the Wolfram lan-
guage) allows a very efficient and fast communication between the notebooks, the
packages and the codes. Therefore, there is no need to create large quantities of
files that have to be read and written in order to deal with cosmological quantities
like the power spectrum or the transfer functions.

2.5.3 Derivatives of the observed power spectrum

The main calculation done in this code for galaxy clustering is based on eq. (2.26),
which involves derivatives of the observed power spectrum and an integral over
wavevectors k and angles µ. For each redshift bin n, the derivatives are evaluated
at the center of each bin z̄n and at the fiducial values of the parameters. The total
number of redshift bins is Nb.

Let us first consider the derivatives of the observed power spectrum, eq. (2.28),
with respect to a number Np of redshift-independent parameters, which we will
denote θi, where the index i runs from 1 to Np. These are parameters of the model
which are fixed numbers like ns, or are defined at redshift z = 0, like Ωm. In this
case there are two possible options in terms of code implementation.

1. Full Numerical Derivative method:

d lnPobs (z̄n, k, µ; θi)

dθi

∣∣∣∣
fid

=
Pobs

(
z̄n, k, µ; θ+

i

)
− Pobs

(
z̄n, k, µ; θ−i

)
2εθfidi × Pobs

(
z̄n, k, µ; θfidi

) (2.51)

where θ+
i , θ−i represent the parameter θi evaluated at ±ε around the fiducial value

θfidi :
θ±i = θfidi (1± ε) (2.52)

Almost all functions inside Pobs(z̄, k, µ; θi) can be evaluated at θ±i , except for the
bias function b(z), which we cannot relate to the cosmological parameters. There-
fore, we need to consider for each redshift bin, an independent parameter bn =
b(z̄n). This can be considered a redshift-dependent parameter.

2. Chain Rule method:
The observed power spectrum eq. (2.28) depends on 5 functions of the redshift,

which we can call redshift-dependent variables. However, just three of them, H(z),
DA(z) and f(z) depend on the cosmological parameters θi. Then, with the help of
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the chain rule one can write:

d lnPobs (z̄n, k, µ; θi)

dθi

∣∣∣∣
fid

=
∂ lnPobs (z̄n, k, µ; θi)

∂ ln f(z̄n)

∂ ln f(z̄n)

∂θi
(2.53)

+
∂ lnPobs (z̄n, k, µ; θi)

∂ lnH(z̄n)

∂ lnH(z̄n)

∂θi

+
∂ lnPobs (z̄n, k, µ; θi)

∂ lnDA(z̄n)

∂ lnDA(z̄n)

∂θi

+
∂ lnPobs (z̄n, k, µ; θi)

∂ lnP (k, z̄n)

∂ lnP (k, z̄n)

∂θi

+
∂ lnPobs (z̄n, k, µ; θi)

∂k

∂k

∂θi

+
∂ lnPobs (z̄n, k, µ; θi)

∂µ

∂µ

∂θi

The last two terms, which consider derivatives of k and µ with respect to θi are
non-vanishing if one takes the Alcock-Paczynski effect into account for k and µ,
since they are affected by geometrical terms, we will detail their expressions in
section 2.5.5 below. The redshift dependent functions b(z) and Ps(z) are not known
as a function of the fundamental cosmological parameters, and their functional
form as a function of redshift is also generally unknown. Therefore, the best we can
do is to discretize them in redshift bins and assign some fiducial values for them.
We have to assume that each value at each bin is independent of the other. We we
will therefore have 2 × Nb unknown parameters in the observed power spectrum,
namely bn = b(z̄n) and Ps,n = Ps(z̄n), the values of the bias and the extra shot noise
at z̄n. In order to simplify the resulting equations, we will use the natural logarithm
of these quantities. Then, these derivatives are:

d lnPobs (z̄n, k, µ; θi)

dPs(z̄n)

∣∣∣∣
fid

=
∂ lnPobs (z̄n, k, µ; θi)

∂ lnPs,n

=
1

Pobs (z̄n, k, µ; θi)
(2.54)

where we have assumed the fiducial extra shot noise value to be Ps,n = 0 at all bins,
and

d lnPobs (z̄n, k, µ; θi)

d ln b(z̄n)

∣∣∣∣
fid

=
∂ lnPobs (z̄n, k, µ; θi)

∂ ln bn

=
2

1 + β(z̄n)µ2
(2.55)

Therefore, our set of parameters extends from θi to Θi = {θi, ln bn, lnPs,n}. The
Fisher matrix eq. (2.26) will depend now on all the combinations of the first deriva-
tives of the power spectrum with respect to Θ and will be of the dimensions (Np +
2Nb) × (Np + 2Nb), since we have 2 redshift-dependent parameters at Nb redshift
bins and Np cosmological redshift-independent parameters.

The intermediate derivatives of lnPobs(z, k, µ; θi) with respect to DA(z), H(z)
and f(z) can be calculated analytically from eq. (2.28). We use the logarithm of
these quantities, because it simplifies considerably the formulas. As usual, the
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derivatives are calculated at the fiducial value of the cosmological parameters.

∂ lnPobs (z̄, k, µ; θi)

∂ ln f(z̄)
=

2β(z̄)µ2

1 + β(z̄)µ2
(2.56a)

∂ lnPobs (z̄, k, µ; θi)

∂ lnH(z̄)
= 1 + APH (2.56b)

∂ lnPobs (z̄, k, µ; θi)

∂ lnDA(z̄)
= −2 + APD (2.56c)

∂ lnPobs (z̄, k, µ; θi)

∂ lnP (k, z̄)
= 1 (2.56d)

Here, the APH and APD represent the extra terms appearing from the Alcock-
Paczynski effect, where the observed k and µ are corrected by geometrical terms.
These formulas will be specified in section 2.5.5 below.

3. The BAO method:
The third option would be to consider first the redshift-dependent functions

to be independent of the cosmological parameters θi and constrain them indepen-
dently of the cosmological model. This is the preferred option for observational
cosmologists, since it is more connected to the actual observations and it is more
model independent. In this method, one simply calculates eq. (2.53) ignoring the
derivatives of the redshift-dependent functions with respect to θi. Using these three
redshift-dependent variables, together with the other two mentioned previously,
b(z) and Ps(z), the space of parameters grows to

Θj = {θi, ln bn, lnPs,n, Hn, DA,n, fn} , (2.57)

where the subscript n, corresponds to the function evaluated at z̄n, the center of the
redshift bin. In this case the Fisher matrix would be much bigger, with (Np+5Nb)×
(Np + 5Nb) elements, with Nb the number of redshift bins and Np the number of
redshift-independent parameters. If one wishes to project the redshift-dependent
parameters into the fundamental cosmological parameters, one simply calculates
a Jacobian of the "old" variables with respect to the new variables, where the new
fundamental cosmological parameters θ̃i can differ from the "old" variables and
leaves open the opportunity of changing the model parameter basis:

Jab =
∂Θa

∂θ̃b
. (2.58)

Notice that if θ̃i = θi, the first (Np) × (Np) elements of the Jacobian matrix will be
a unit matrix. This Jacobian is a non-square matrix since Θa contains (Np + 5Nb)
components and θ̃b contains just (Np) components, therefore it cannot be inverted.
The new Fisher matrix would change accordingly to F̃ and it would be given by:

F̃ = JT F J (2.59)

This method is called the "BAO" method [244], since in BAO observations the
redshift independent functions DA(z), H(z) and f(z) are the main observables
and one obtains cosmological parameter constraints from them by first constrain-
ing their values and then projecting these constraints onto a cosmological model.
However, since the bias (which also enters β(z)) is degenerate with the overall am-
plitude of the power spectrum as a function of redshift, σ8(z), observers prefer to
define an observed power spectrum which depends on fσ8(z) and bσ8(z), so that
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instead of eq. (2.28), the observed power spectrum would be expressed as (ignoring
the exponential damping term for simplicity, which remains unaltered anyway):

Pobs (z, k, µ; θ) = Ps(z) +
D2
A(z)refH(z)

D2
A(z)H(z)ref

(
bσ8(z) + fσ8(z)µ2

)2(P (k, z)

σ2
8(z)

)
. (2.60)

2.5.4 Equations for the power spectrum

Let us review here some of the formulas related to the power spectrum, in the way
they are implemented in the FISHERTOOLS code.

The normalization σR of the power spectrum at z = 0 (which is equivalent to
the variance smoothed over a scale R) is given by:

σ2
R =

1

2π2

ˆ kmax

kmin

k2P (k, z = 0)W 2
R(kR) . (2.61)

The window function smooths P (k, z) over the scale R and has the form: W (x) =
3(sin(x)− x cos(x))/x3, where x is a dimensionless variable. This term comes from
assuming spherical symmetry and performing the angle integration of the 3-D
power spectrum P (~k). If one chooses R = 8h−1Mpc and [k] = h/Mpc, then we
can define the parameter

σ2
8 ≡ σ2

R (R = 8Mpc/h) . (2.62)

The quantity σ8 is a parameter defined always at z = 0 and only in linear theory,
which means that in eq. (2.61) either P (k, z = 0) is the linear power spectrum or
the integration limits are chosen in such a way that only linear scales are taken into
account, therefore one should take kmax ≈ 0.1.

The linear power spectrum can be obtained either from CAMB, CLASS or from
the transfer functions of Eisenstein & Hu. In the latter case, we can express the
power spectrum P (k, z) in terms of the primordial amplitudeAs, the linear growth
G(z) (equivalent to D+(a) in alternative notations) and the transfer functions T (k):

P (k, z) = G2(z)T 2(k)knsAs . (2.63)

Since the parameters σ2
8 and As are fully degenerate in linear theory, one has to

be careful to include only one of them into the set of cosmological parameters.
The quantity σ8(z) ≡ σ2

8G
2(z) can be defined accordingly and can be used as an

independent and redshift-dependent cosmological parameter, as it was the case
in eq. (2.60). We have to emphasize again that these quantities and expressions
are only formally valid in the linear regime and in standard Einstein GR; in the
deeply non-linear regime or under the effect of modified gravity forces, the growth
function might acquire some scale-dependence.

2.5.5 The Alcock-Paczynski Effect

The Alcock-Paczynski effect (AP, see [8]) relies on the fact that the scales k and the
angle cosines µ are changed by geometrical factors of distance, when the cosmolog-
ical parameters are changed. This means that k and µ depend on H(z) and DA(z)
and therefore are also indirectly functions of the cosmological parameters θi. The
AP formulas relating the fiducial values of kfid and µfid to their transformed values
are:
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kAP = RAP (µ; θ)kfid (2.64)

µAP =
H(z; θ)

H(z; θfid)

µfid

RAP (µ; θ)
(2.65)

where the geometrical function RAP is defined as:

RAP (µ; θ) =

√
[DA(z; θ)H(z; θ)µfid]2 − [(DA(z; θfid)H(z; θfid)]2(µfid − 1)

[DA(z; θ)H(z; θfid)]2
. (2.66)

The last two terms of eq. (2.53) come from the fact that now k = k(H(z; θ), DA(z; θ))
and µ = k(H(z; θ), DA(z; θ)), so that one has to use the chain rule for the derivative
of Pobs(k, µ, z; θ):

∂ lnPobs (z̄n, k, µ;H(z); θi)

∂ lnH(z)
=
∂ lnPobs (z̄n, k, µ; θi)

∂ lnH(z)
(2.67)

+
∂ lnPobs (z̄n, k, µ; θi)

∂µ

∂µ

∂ lnH(z)

+
∂ lnPobs (z̄n, k, µ; θi)

∂k

∂k

∂ lnH(z)
,

and similarly for the dependence on DA(z).
Now we can write down explicitly the intermediate derivatives (evaluated at

the fiducial value as usual):

∂ lnPobs (z̄n, k, µ; θi)

∂k
=
∂ lnP (z̄n, k; θi)

∂k
(2.68)

∂ lnPobs (z̄n, k, µ; θi)

∂µ
=

4β(z)µ

1 + β(z)µ2
(2.69)

and the derivatives of k and µ with respect to lnDA and lnH are:

∂µ

∂ lnDA(z)
= −µ(µ2 − 1) (2.70a)

∂µ

∂ lnH(z)
= −µ(µ2 − 1) (2.70b)

∂k

∂ lnDA(z)
= k(µ2 − 1) (2.70c)

∂k

∂ lnH(z)
= kµ2 (2.70d)

The interesting thing about eq. (2.70) is that one can see that when evaluating
the derivative of Pobs w.r.t a cosmological parameter, the scales k and the direction
cosine angles µ get mixed, giving a very powerful probe of cosmology.

2.5.6 Fisher matrix operations

Another important part of the code is the handling of the Fisher matrix itself for
post-analysis. We are interested in the constraints on the model parameters and
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therefore we need to calculate the covariance matrix C = F−1, whose diagonal
contains the square of the fully marginalized 1σ errors of the model parameters
and its off-diagonal entries encode the level of correlation among parameters.

Maximization: If we have a Fisher matrix corresponding to an N number of
parameters, and we want to maximize over the parameter θm, i.e. we want to obtain
the errors on all other parameters, when the parameter θm is fixed, then we just
need to remove from the Fisher matrix, the rows and the columns corresponding
to that parameter at position m:

F̃(N−1)×(N−1) = MT
(N−1)×NFN×NMN×(N−1) (2.71)

where the matrix M can be defined in terms of the Kronecker delta δi,j as:

Mij = δf(i),j , (2.72)

where:

f(i) ≡


i, i < m

N, i = m

i− 1, i > m

, (2.73)

and the indices run as i = {1, . . . , N} and j = {1, . . . , (N − 1)}. The new Fisher
matrix F̃ will be then of dimensions (N − 1)× (N − 1).

Marginalization: If we want to marginalize over the parameter m, then we
have to invert the matrix F to obtain the parameter covariance matrix C = F−1

and remove from C the columns and rows corresponding to the index m:

C̃(N−1)×(N−1) = MT
(N−1)×NCN×NMN×(N−1) , (2.74)

where M is given by eq. (2.72) and eq. (2.73). The operation of multiplying by ma-
trixM and its transpose can be done more efficiently for a large number of parame-
ters to be removed, by using appropriate functions in the Wolfram Mathematica
language.

Combination: If we want to combine the Fisher matrix from an observation (or
experiment) A with another Fisher matrix from experiment B, where both FA and
FB have the same fiducial parameters and the same ordering, we just need to add
the Fisher matrices together: FA+B = FA + FB and from FA+B we can obtain the
combined contours and errors. However, there is a caveat: this can only be done if
the experiments A and B are statistically independent from each other. Otherwise,
we have to take into account cross-correlations [195].

Changing of parameter basis: If our Fisher matrix F was performed in the
parameter basisXi and we want to change to a different parameter basis Y i; for ex-
ample in ΛCDM when we want to go from {Ωm,Ωb, h, σ8} to {ωc, ωb, h, ln(1010As)},
we can use a simple Jacobian operation. This can be done since, as we already men-
tioned, the Fisher matrix is composed of derivatives of the likelihood, which in turn
are in our case first derivatives of the data covariance matrix C:

Fαβ ∝
∂C

∂Xα

∂C

∂Xβ
(2.75)
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Therefore we can write the transformed Fisher matrix F̃ in the new basis as:

F̃µν ∝
∂Xα

∂Y µ

∂C

∂Xα

∂C

∂Xβ

∂Xβ

∂Y ν

F̃µν = JTFJ (2.76)

with Jαν = ∂Xα/∂Y ν . In some cases, if the "old" parameter basis Xi cannot be
solved in terms of the "new" parameter basis Y i, then one can use the identity:

J−1
ab =

∂Y a

∂Xb
. (2.77)

Ellipsoidal confidence contour regions: Since we are assuming a Gaussian
likelihood at the maximum, the confidence contours for a 2-dimensional slice of
the likelihood will be ellipsoidal, simply from the fact that the exponent of the two-
dimensional Gaussian probability distribution for a set of two parameters Xi =
{x1, x2} and a symmetric covariance matrix Cij ≡ cij = cji contains the term:

XiC
−1
ij Xj =

(
c22x

2
1

detC
+
c11x

2
2

detC
− 2c12x1x2

detC

)
. (2.78)

Then the ellipse will be oriented along the eigenvectors of Cij with an anlge α with
respect to the coordinate axes:

tan(2α) =
2c12

c2
11 − c2

22

(2.79)

By integrating a bi-variate Gaussian eq. (2.16) with the exponent eq. (2.78) to find
the confidence regions as in eq. (2.15), we obtain that the 1, 2 and 3σ confidence
regions with major semi-axes a and minor semi-axes b are given by:

1σ : a = 1.51
√
λ1; b = 1.51

√
λ2

2σ : a = 2.49
√
λ1; b = 2.49

√
λ2

3σ : a = 3.44
√
λ1; b = 3.44

√
λ2 ,

where λ1, λ2 are the largest and the smallest eigenvalues, respectively. The 2 × 2
matrix from where this ellipses can be visualized can be either obtained by marginal-
izing or maximizing over all the other (N − 2) parameters. The FISHERTOOLS code
contains these options and many other tools for plotting and visualization.

2.5.7 Extensions of the Fisher matrix approach

The Fisher matrix approach for forecasting the error on the parameters is based
on the Gaussian approximation, although the concept of the Fisher matrix is more
general than that, being defined as simply the curvature (or the Hessian) of the
log-likelihood eq. (2.17).

In order to go beyond the Gaussian approximation, several approaches have
been taken recently in the literature (see [240]), for example the DALI code [239],
which allows to find confidence contours for the model parameters, when the like-
lihood departs from an underlying Gaussian form.

In the FISHERTOOLS code some of the terms used in these extensions of the
Fisher formalism have been implemented. One of its main applications is to study
the effect of changing the fiducial value of the parameters on the forecasted errors
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on these parameters. Recently [228] have studied the same effect, by looking at
the corresponding matrix transformations that change under the influence of the
fiducial. In our approach, which is still a work in progress, we take a different
route, where we make a Taylor expansion of the Fisher matrix defined in eq. (2.25)
around the fiducial parameters pγ with data mean µ:

∂Fαβ
∂pγ

=
1

2
C,αγC

−1C,βC
−1 − C,αC−1C,βC

−1C,γC
−1

+
1

2
C,αC

−1C,βγC
−1 (2.80)

− C−1C,γC
−1µ,αµ,β + C−1(µ,αγµ,β + µ,αµ,βγ)

In the case of power spectra, however, both for Galaxy Clustering and Weak Lens-
ing, µ = 0. In the above equations, a trace over the free indices is implied and we
use the notation: x,α ≡ ∂x

∂pα
.

For galaxy clustering as defined in eq. (2.24), the trace terms in the equation
above correspond to the following:

Fαβ =
1

2
tr
[
C,αC

−1C,βC
−1
]

=
1

2

[
n(z)

n(z)P (k, µ) + 1

]2 [
(P (k, µ)),α

(P (k, µ)),β

]
(2.81)

Jαβγ = tr
[
C,αC

−1C,βC
−1C,γC

−1
]

=

[
n(z)

n(z)P (k, µ) + 1

]3 [
(P (k, µ)),α

(P (k, µ)),β (P (k, µ)),γ

]
(2.82)

Sαβγ =
3

2
tr
[
C,αC

−1C,βγC
−1
]

=
3

2

[
n(z)

n(z)P (k, µ) + 1

]2 [
(P (k, µ)),α

(P (k, µ)),βγ

]
(2.83)

Qαβγδ =
3

2
tr
[
C,αβC

−1C,γδC
−1
]

=
3

2

[
n(z)

n(z)P (k, µ) + 1

]2 [
(P (k, µ)),αβ

(P (k, µ)),γδ

]
(2.84)

Where C = P + n−1 and C−1 = n
Pn+1 and we have included the derivatives of

n(z), which depends on cosmological parameters, through the comoving volume
that changes in each redshift shell.

If we also include the derivatives of the survey volume Vs, which effectively
gives the number of modes available over which the trace has to be taken, we end
up with an expression (where implicit trace is now replaced by implicit integration
over k) such as:
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∂Fαβ
∂pγ

=
Vs
2

[
n(z)

n(z)P (k, µ) + 1

]2 [
(P (k, µ)),αγ (P (k, µ)),β

]
(2.85)

− Vs
[

n(z)

n(z)P (k, µ) + 1

]3 [
(P (k, µ)),α (P (k, µ)),β (P (k, µ)),γ

]
+
Vs
2

[
n(z)

n(z)P (k, µ) + 1

]2 [
(P (k, µ)),α (P (k, µ)),βγ

]
+

1

2

∂Vs
∂pγ

[
n(z)

n(z)P (k, µ) + 1

]2 [
(P (k, µ)),α (P (k, µ)),β

]
In terms of the general Fisher tensors and C̄ = C−1(k, z) this takes a compact

form:

∂Fαβ
∂pγ

=
Vs
3
C̄2Sβαγ (2.86)

− VsC̄3Jαβγ

+
Vs
3
C̄2Sαβγ

+
∂ lnVs
∂pγ

C̄2Fαβ

Using eq. (2.86) we can investigate how the changing of the assumed fiducial
cosmology affects the forecasted errors on the parameters, in other words, the er-
rors on the errors by assuming a "wrong" fiducial. This will be the subject of a
future publication.
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Chapter 3

Linear and non-linear Modified
Gravity forecasts

3.1 Introduction
1 Future large scale structure surveys will be able to measure with percent precision
the parameters governing the evolution of matter On the theoretical side, while
many Modified Gravity models are still allowed by type Ia supernova (SNIa) and
Cosmic Microwave Background (CMB) data [218]; structure formation can help us
to distinguish among them and the standard scenario, thanks to their signatures on
the matter power spectrum, in the linear and mildly non-linear regimes (for some
examples of recent MG forecasts, see [15, 83, 63]).

In section 1.5.4 we have defined µ and η and have shown how to parameterize
them in three different ways. Section 3.2 discusses our treatment for the linear and
mildly non-linear regime. Linear spectra are obtained from a modified Boltzmann
code [136]; the mild non-linear regime (up to k ∼ 0.5 h/Mpc) compares two meth-
ods to emulate the non-linear power spectrum: the commonly used Halofit [249,
257], and a semi-analytic prescription to model the screening mechanisms present
in Modified Gravity models [141]. Section 3.3 discusses the results obtained for the
redshift binned parameterization both for Galaxy Clustering and for Weak Lensing
in the linear and non-linear cases. We describe our method to decorrelate the er-
rors in section 3.4. The results for the other two time parameterizations are instead
discussed in sections 3.6.1 and 3.6.2, both for Weak Lensing and Galaxy Clustering
in the linear and mildly non-linear regimes. To test the effect of our non-linear pre-
scription, we show in section 3.8 the impact of different choices of the non-linear
prescription parameters on the cosmological parameter estimation.

We will consider forecasts for the planned surveys Euclid, SKA1 and SKA2 and
a subset of DESI, DESI-ELG, using as priors the constraints from recent Planck data
(see also [10, 137, 34, 76, 124] for previous works that address forecasts in Modified
Gravity.

In [76, 124, 10] the authors used a similar time parameterization in which the
Modified Gravity parameters depend on the time evolution of the dark energy frac-
tion. In [76] an extra parameter accounts for a scale-dependent µ: their treatment
keeps η (called γ in their paper) fixed and equal to 1; it uses linear power spectra
up to kmax(z) with kmax(z = 0) = 0.14/Mpc ≈ 0.2 h/Mpc. In [124] the authors also
use a combination of Galaxy Clustering, Weak Lensing and ISW cross-correlation
to constrain Modified Gravity in the Effective Field Theory formalism [127]. In [55]

1This chapter is based on a publication by the author in: Casas, S., Kunz, M., Martinelli, M.
and Pettorino, V.; Linear and non-linear Modified Gravity forecasts with future surveys. ; Preprint:
arXiv:1703.01271 [astro-ph, physics:gr-qc] (2017).; Submitted to the Journal: Physics of the Dark Uni-
verse, Elsevier.
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and [10] a similar parameterization was used to constrain the Horndeski functions
[54] with present data and future forecasts respectively, in the linear regime.

For the late-time parameterization, the set of free parameters we consider is:
θ = {Ωm,Ωb, h, ln 1010As, ns, E11, E22}, where E11 and E22 determine the ampli-
tude of the variation with respect to ΛCDM. As fiducial cosmology we use the
values shown in Table 3.1, columns 1 and 2, i.e. the marginalized parameter values
obtained fitting these models with recent Planck data; notice that these results differ
slightly from the Planck analysis in [220] for the same parameterization, because we
don’t consider here the effect of massive neutrinos.

For the early time parameterization we have E11 and E21 which determine the
amplitude of the deviation from GR at present time (a = 0) and 2 additional pa-
rameters (E12, E22), which determine the time dependence of the µ(a) and η(a)
functions for earlier times. The fiducial values for this model, obtained from the
Planck+BSH best fit is given in columns 3 and 4 of Table 3.1.

Late time Early time Redshift Binned
Parameter Fiducial Parameter Fiducial Parameter Fiducial

Ωc 0.254 Ωc 0.256 Ωc 0.254
Ωb 0.048 Ωb 0.048 Ωb 0.048
ns 0.969 ns 0.969 ns 0.969

ln 1010As 3.063 ln 1010As 3.091 ln 1010As 3.057
h 0.682 h 0.682 h 0.682
E11 0.100 E11 −0.098 µ1 1.108
E22 0.829 E12 0.096 µ2 1.027

E21 0.940 µ3 0.973
E22 −0.894 µ4 0.952

µ5 0.962
η1 1.135
η2 1.160
η3 1.219
η4 1.226
η5 1.164

TABLE 3.1: Fiducial values for the Modified Gravity parameterizations
and the redshift-binned model of µ and η used in this work. The DE re-
lated parameterization contains two extra parameters E11 and E22 with re-
spect to GR; the early-time parametrization depends on 4 extra parameters
E11, E12, E22 and E21 with respect to GR; the redshift-binned model con-
tains 10 extra parameters, corresponding to the amplitudes µi and ηi in five
redshift bins. In this work we will use alternatively and for simplicity the
notation `As ≡ ln(1010As). The fiducial values are obtained performing a
Monte Carlo analysis of Planck+BAO+SNe+H0 (BSH) data [218].

A second and more model-independent approach is to specify the time evolu-
tion of the functions µ and η without any parameterization. To this purpose we
divide the redshift range 0 ≤ z ≤ 3 in 6 redshift bins and we consider the values
µ(zi) and η(zi) at the right limiting redshift zi of each bin as free parameters, thus
with the i index spanning the values {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The form of the
binning function and the precise assumptions we make, have been specified in sec-
tion 1.5.4.2. We set the first five amplitudes of µi and ηi as free parameters, thus the
set we consider is: θ = {Ωm,Ωb, h, ln 1010As, ns, {µi}, {ηi}}, with i an index going
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FIGURE 3.1: The Modified Gravity functions µ and η as a function of redshift
z for each of the models considered in this work, evaluated at the fiducials
specified in table 3.1. In light long-dashed blue lines, the ‘redshift binned
model’ (eqs. (1.66) to (1.68)). In short-dashed red lines the late-time param-
eterization (eqs. (1.62) to (1.63)) and in green solid lines the early-time pa-
rameterization (eqs. (1.64) to (1.65)). Finally the medium-dashed orange line
represents the standard ΛCDM model (GR) for reference.

from 1 to 5. We take as fiducial cosmology the values shown in Tab. 3.1 columns 5
and 6.

We only modify the evolution of perturbations and assume that the background
expansion is well described by the standard ΛCDM expansion law for a flat uni-
verse with given values of Ωm, Ωb and h.

3.2 The power spectrum in Modified Gravity

3.2.1 The linear power spectrum

In this work we will use linear power spectra calculated with MGCAMB [293, 136],
a modified version of the Boltzmann code CAMB [177]. We do so, as MGCAMB of-
fers the possibility to input directly any parameterization of µ and η without requir-
ing further assumptions: MGCAMB uses eq. (1.58) and eq. (1.59) in the Einstein-
Boltzmann system of equations, providing the modified evolution of matter per-
turbations, corresponding to our choice of the gravitational potential functions.
Non-relativistic particles like cold dark matter are accelerated by the gradient of
Ψ, so that especially the redshift space distortions are sensitive to the modification
given by µ(a, k). For relativistic particles like photons and neutrinos on the other
hand, the combination of Φ + Ψ (and therefore Σ) enters the equations of motion.
The impact on the matter power spectrum is more complicated, as the dark matter
density contrast is linked via the relativistic Poisson equation to Φ. In addition, an
early-time modification of Φ and Ψ can also affect the baryon distribution through
their coupling to radiation during that period. As already mentioned above, we
will not consider the k−dependence of µ and η in this work and our modifications
with respect to standard GR will be only functions of the scale factor a.

3.2.2 Non-linear power spectra

Computing the non-linear power spectrum in standard GR is still an open question,
and even more so when the Poisson equations are modified, as it is in the case in
Modified Gravity theories. A solution to this problem is to calculate the evolution
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of matter perturbations in an N-body simulation [252, 116, 257, 168, 132], however,
this procedure is time-consuming and computationally expensive.

Because of these issues, several previous analyses have been done with a con-
servative removal of the information at small scales (see for example the Planck
Dark Energy paper [218], several CFHTLenS analysis [135, 154] or the previous
PCA analysis by [137]). However, future surveys will probe an extended range of
scales, therefore removing non-linear scales from the analysis would strongly re-
duce the constraining power of these surveys. Moreover, at small scales we also
expect to find means of discriminating between different Modified Gravity mod-
els, such as the onset of screening mechanisms needed to recover GR at small scales
where experiments strongly constrain deviations from it. For these reasons it is cru-
cial to find methods which will allow us to investigate, at least approximately, the
non-linear power spectrum.

Attempts to model the non-linear power spectrum semi-analytically in Modi-
fied Gravity have been investigated for f(R) theories in [291, 260], for coupled dark
energy in [83, 233, 273] and for growing neutrino models in [74]. Typically they rely
on non-linear expansions of the perturbations using resummation techniques based
on [216, 258] or on fitting formulae based on N-Body simulations [83, 257, 64]. A
similar analysis is not available for the model-independent approach considered
in this chapter. In order to give at least a qualitative estimate of what the impor-
tance of non-linearities would be for constraining these Modified Gravity models,
we will adopt in the rest of the chapter a method which interpolates between the
standard approach to non linear scales in GR and the same applied to MG theories.

3.2.2.1 Halofit

We describe here the effect of applying the standard approach to non linearities to
MG theories. This is done using the revised Halofit [257], based on [249], which
is a fitting function of tens of numerical parameters that reproduces the output of
a certain set of ΛCDM N-body simulations in a specific range in parameter space
as a function of the linear power spectrum. This fitting function is reliable with
an accuracy of better than 10% at scales larger than k . 1h/Mpc and redshifts in
between 0 ≤ z ≤ 10 (see [257] for more details). This fitting function can be used
within Boltzmann codes to estimate the non-linear contribution which corrects the
linear power spectrum as a function of scale and time. We will use the Halofit
fitting function as a way of approximating the non-linear power spectrum in our
models even though it is really only valid for ΛCDM. In Fig. 3.2, the left panel
shows a comparison between the linear and non-linear power spectra calculated by
MGCAMB in two different models, our fiducial late-time model (as from Table 3.1)
and GR, both sharing the same ΛCDM parameters. At small length scales (large
k), the non-linear deviation is clearly visible at scales k & 0.3 h/Mpc and both
MG and GR seem to overlap due to the logarithmic scale used. In the right panel,
we can see the ratio between MG and GR for both linear and non-linear power
spectra, using the same 5 ΛCDM parameters {Ωm,Ωb, h, As, ns}. We can see clearly
that MG in the non-linear regime, using the standard Halofit, shows a distinctive
feature at scales in between 0.2 . k . 2. This feature however, does not come
from higher order perturbations induced by the modified Poisson equations (1.58,
1.60), because Halofit, as explained above, is calibrated with simulations within the
ΛCDM model and does not contain any information from Modified Gravity. The
feature seen here is caused by the different growth rate of perturbations in Modified
Gravity, that yields then a different evolution of non-linear structures.
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FIGURE 3.2: Left: matter power spectra computed with MGCAMB (linear)
and MGCAMB+Halofit (non-linear), illustrating the impact of non-linearities
at different scales. As an illustrative example, MG in this plot corresponds
to the fiducial model in the late-time parametrization defined in Eq. (1.62).
All curves are computed at z = 0. The green solid line is the GR fiducial
in the non-linear case, the blue long-dashed line is also GR but in the linear
case. The short-dashed red line is the MG fiducial in the non-linear case and
the medium-dashed brown line the MG fiducial in the linear case. Right: in
order to have a closer look at small scales, we plot here the ratio of the MG
power spectrum to the GR power spectrum for the linear (blue solid) and
non-linear (red short-dashed) cases separately. The blue solid line compared
to the horizontal grey dashed line, shows the effect of Modified Gravity when
taking only linear spectra into account. While the red dashed line, which
represents the non-linear case, shows that the ratio to GR presents clearly a
bump that peaks around k ≈ 1.0 h/Mpc, meaning that the power spectrum in
MG differs at most 4% from the non-linear power spectrum in GR. We will see
later that we are able to discriminate between these two models using future
surveys, especially when non-linear scales (k & 0.1 h/Mpc) are included.

3.2.2.2 Prescription for mildly non-linear scales including screening

As discussed above, modifications to the Φ and Ψ potentials make the use of Halofit
to compute the evolution at non linear scales unreliable. In order to take into ac-
count the non-linear contribution to the power spectrum in Modified Gravity, we
investigate here a different method, which starts from the consideration that when-
ever we modify µ and η with respect to GR, we modify the strength of gravita-
tional attraction in a way universal to all species: this means that, similarly to the
case of scalar-tensor or f(R) theories, we need to assume the existence of a non-
perturbative screening mechanism, acting at small scales, that guarantees agree-
ment with solar system experiments. In other words, it is reasonable to think that
the non-linear power spectrum will have to match GR at sufficiently small scales,
while at large scales it is modified. Of course, without having a specific model in
mind, it remains arbitrary how the interpolation between the small scale regime
and the large scale regime is done. In this chapter, we adopt the Hu & Sawicki (HS)
Parametrized Post-Friedmann prescription proposed in [141], which was used for
the case of f(R) theories previously by [291]. Given a MG model, this prescription
interpolates between the non-linear power spectrum in Modified Gravity (which
is in our case just the linear MG power spectrum corrected with standard Halofit,
PHMG) and the non-linear power spectrum in GR calculated with Halofit (PHGR).
The resulting power spectrum will be denoted as PnlHS

PnlHS(k, z) =
PHMG(k, z) + cnlS

2
L(k, z)PHGR(k, z)

1 + cnlS
2
L(k, z)

, (3.1)
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with

S2
L(k, z) =

[
k3

2π2
PLMG(k, z)

]s
. (3.2)

The weighting function SL used in the interpolation quantifies the onset of non-
linear clustering and it is constructed using the linear power spectrum in Modified
Gravity (PLMG). The constant cnl and the constant exponent s are free parameters.
In Figure 3.3 we show the ratio PnlHS/PHGR, which illustrates the relative difference
between the non-linear HS prescription in MG and the Halofit non-linear power
spectrum in GR, for different values of cnl (left panel) and different values of s (right
panel). The parameter cnl controls at which scale there is a transition into a non-
linear regime in which standard GR is valid (this can be the case when a screening
mechanism is activated); s controls the smoothness of the transition and is in prin-
ciple a model and redshift dependent quantity. When cnl = 0 we recover the Mod-
ified Gravity power spectrum with Halofit PHMG; when cnl → ∞ we recover the
non-linear power spectrum in GR calculated with Halofit PHGR. In [291, 292, 159],
the cnl and s constants were obtained fitting expression (3.1) to N-Body simulations
or to a semi-analytic perturbative approach. In the case of f(R), s = 1/3 seems to
match very well the result from simulations up to a scale of k = 0.5h/Mpc [159]. A
relatively good agreement up to such small scales is enough for our purposes. In
the absence of N-Body simulations or semi-analytic methods available for the mod-
els investigated in this work, we will assume unity for both parameters, which is a
natural choice, and we will test in Section 3.8 how our results vary for different val-
ues of these parameters, namely cnl = {0.1, 0.5, 1, 3} and s = {0, 1/3, 2/3, 1}. This
will give a qualitative estimate of the impact of non-linearities on the determination
of cosmological parameters.

3.2.3 CMB Planck priors

Alongside the information brought by LSS probes, we also include CMB priors on
the parameterizations considered. In order to obtain these, we analyze the binned
and parameterized approaches described in section 1.5.4 with the Planck+BSH com-
bination of CMB and background (BAO+SN-Ia+H0) datasets discussed in the Planck
Dark Energy and Modified Gravity paper [218]. We use a Markov Chain Monte
Carlo (MCMC) approach, using the publicly available code COSMOMC [175, 173],
interfaced with our modified version of MGCAMB. The MCMC chains sample the
parameter vector Θ which contains the standard cosmological parameters {ωb ≡
Ωbh

2, ωc ≡ Ωch
2, θMC, τ, ns, ln 1010As} to which we add the Eij parameters when

we parameterize the time evolution of µ and η with continuous functions of the
scale factor, and the µi, ηi parameters in the binned case. On top of these, also the
17 nuisance parameters of the Planck analysis are included. From the MCMC analy-
sis of the Planck likelihood we obtain a covariance matrix in terms of the parameters
Θ. We marginalize over the nuisance parameters and over the optical depth τ since
this parameter does not enter into the physics of large scale structure formation.

θ is usually the ratio of sound horizon to the angular diameter distance at
the time of decoupling. Since calculating the decoupling time zCMB is relatively
time consuming, as it involves the minimization of the optical transfer function,
COSMOMC uses instead an approximate quantity θMC based on the following fitting
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FIGURE 3.3: The ratio of the Modified Gravity non-linear power spectrum
using the HS prescription by [141] (PnlHS) with respect to the GR+Halofit
fiducial non-linear power spectrum PHGR, for different values of cnl (left
panel) and s (right panel), illustrated in eq. (3.1) and eq. (3.2). The value
cnl = 0 (green solid line) corresponds to MG+Halofit PHMG. All curves are
calculated at z = 0. Left: We show the ratio for cnl = {0.5, 1.0, 10, 108},
plotted as short-dashed red, medium-dashed blue, short-dashed brown and
medium-dashed purple lines respectively. When cnl → ∞, eq. (3.1) corre-
sponds to the limit of PHGR and therefore the ratio is just 1. The effect of the
HS prescription is to grasp some of the features of the non-linear power spec-
trum at mildly non-linear scales induced by Modified Gravity, taking into
account that at very small scales, a screening mechanism might yield again
just a purely GR non-linear power spectrum. The parameter cnl interpolates
between these two cases. Right: in this panel we show the effect of the pa-
rameter s, for s = {0, 0.33, 0.66, 1} (short-dashed red, medium-dashed blue,
short-dashed brown and long-dashed purple, respectively). Both parameters
need to be fitted with simulations in order to yield a reliable match with the
shape of the non-linear power spectrum in Modified Gravity, as it was done
in [292] and references therein. The grey dashed line marks the constant value
of 1.

formula from [142]

zCMB = 1048× (1 + 0.00124ω−0.738
b )

×
(
1 + 0.0783ω−0.238

b /(1 + 39.5ω0.763
b )

× (ωd + ωb)
0.560/(1+21.1ω1.81

b )
)

(3.3)

where ωd ≡ (Ωc + Ων)h2. The sound horizon is defined as

rs(zCMB) = cH−1
0

ˆ ∞
zCMB

dz
cs
E(z)

(3.4)

where the sound speed is cs = 1/
√

3(1 +Rba)with the baryon-radiation ratio being
Rba = 3ρb/4ργ . Rb = 31500Ωbh

2(TCMB/2.7K)−4. However, CAMB approximates it
as Rba = 30000aΩbh

2.
Therefore we first marginalize the covariance matrix over the nuisance parame-

ters and the parameter τ , which cannot be constrained by LSS observations. Then,
we invert the resulting matrix, to obtain a Planck prior Fisher matrix and then use a
Jacobian to convert between the MCMC parameter basis Θi and the GC-WL param-
eter basis θi. We use the formulas above for the sound horizon rs and the angular
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diameter distance dA to calculate the derivatives of θMC with respect to the param-
eters of interest. Our Jacobian is then simply

Jij =
∂Θi

∂θj
. (3.5)

3.2.4 Jacobian for the late time parameterization

Our main observables are parameterized in terms of the primary variables E11 and
E22 from Equation 1.64; we are however interested in forecasting the constraints on
the pair of secondary variables {µ, η} or on the pair {µ, Σ}.

Therefore we need to transform the variables using a Jacobian Jij = ∂θi/∂θ̃j ,
where θi is the set of primary variables and θ̃i is the vector of secondary variables.
Eqns. (1.61,1.62,1.63) allow us to express the θ̃i as a function of the variables θi
and to obtain the non-vanishing derivatives of µ and η w.r.t to all cosmological
parameters:

∂µ

∂Ωc
= −E11,

∂η

∂Ωc
= −E22 (3.6)

∂µ

∂Ωb
= −E11,

∂η

∂Ωb
= −E22 (3.7)

∂µ

∂E11
= 1− Ωb − Ωc − Ων ,

∂η

∂E22
= 1− Ωb − Ωc − Ων . (3.8)

With these derivatives we can construct the inverse of the Jacobian J−1
ij = ∂θ̃j/∂θi.

The Fisher matrix in the secondary variables F̃ ij is then given by

F̃ = JTF J (3.9)

For the parameter set containing θ̃i = {µ,Σ}we obtain the following non-vanishing
derivatives

∂µ

∂Ωc
=− E11,

∂µ

∂Ωb
= −E11,

∂µ

∂E11
= 1− Ωb − Ωc − Ων (3.10)

∂Σ

∂Ωc
=− 1

2
E22(1 + E11(1− Ωb − Ωc − Ων)) (3.11)

− 1

2
E11(2 + E22(1− Ωb − Ωc − Ων))

∂Σ

∂Ωb
=
∂Σ

∂Ωc
(3.12)

∂Σ

∂E11
=

1

2
(2 + E22(1− Ωb − Ωc − Ων))(1− Ωb − Ωc − Ων) (3.13)

∂Σ

∂E22
=

1

2
(1 + E11(1− Ωb − Ωc − Ων))(1− Ωb − Ωc − Ων) (3.14)

3.2.5 Jacobian for the early time parameterization

In the early time case, we have two parameters for each µ(a) and η(a) function as in
Eq. (1.64). If we are interested in the parameters µ, η and Σ today (a = 1), then the
parametersE12 andE21 are not important anymore and we can simply marginalize
over them in our Fisher matrix. Then the relation between µ and η is very simple
{µ, η} = 1 + {E11, E22}. The corresponding Jacobian is simply a 7 × 7 identity
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matrix and we can apply it to the Fisher matrix after we marginalize over the two
unimportant parameters.

For the transformation to the pair µ-Σ we use the definition of Σ of Eq. (1.61)
and then find the derivatives with respect to Eij . We obtain

∂Σ

∂E11
=

1

2
(2 + E22) (3.15)

∂Σ

∂E22
=

1

2
(2 + E11) , (3.16)

while all other derivatives remain the same.

3.3 Results: Euclid forecasts for redshift binned parameters

In this section we analyze the Modified Gravity functions µ(a) and η(a), described
in Section 1.5.4, when they are allowed to vary freely in five redshift bins.

For this purpose, we calculate a Fisher matrix of fifteen parameters: five for
the standard ΛCDM parameters {Ωm,Ωb, h, ln 1010As, ns}, five for µ (one for each
bin amplitude µi) and five for η (one for each bin amplitude ηi), corresponding to
the 5 redshift bins z={0-0.5, 0.5-1.0, 1.0-1.5, 1.5-2.0, 2.0-2.5}. The fiducial values for
all fifteen parameters were calculated running a Markov-Chain-Monte-Carlo with
Planck likelihood data and can be found in Table 3.1.

We first show the constraints on our 15 parameters for Galaxy Clustering (GC)
forecasts in subsection 3.3.1, while in subsection 3.3.2 we report results for Weak
Lensing (WL). In subsection 3.3.3, we comment on the combination of forecasts
for GC+WL together with Planck data. All forecasts are performed using Euclid
Redbook specifications. Other surveys will be considered for the other two time
parameterizations in section 3.6.1.5 and 3.6.2.2. For each case, we show the correla-
tion matrix obtained from the covariance matrix and argue that the redshift-binned
parameters show a strong correlation, therefore we illustrate the decorrelation pro-
cedure for the covariance matrix in section 3.4 where we also include combined
GC+WL and GC+WL+Planck cases.

3.3.1 Euclid Galaxy Clustering Survey

For the Galaxy Clustering survey, we give results for two cases, one using only
linear power spectra up to a maximum wavevector of kmax = 0.15 h/Mpc and
another one using non-linear power spectra up to kmax = 0.5 h/Mpc, as obtained
by using the HS parameterization of Eqn. (3.1). For the redshift-binned case, we
will report forecasts only for a Euclid survey, using Euclid Redbook specifications
which are detailed in section 2.4.1.

We calculate the Fisher matrix for the 15 parameters
θ = {Ωm,Ωb, h, ln 1010As, ns, µi, ηi} where ηi and µi represent ten independent pa-
rameters, one for each function at each of the 5 redshift bins corresponding to
the redshifts z={0-0.5, 0.5-1.0, 1.0-1.5, 1.5-2.0, 2.0-2.5}. As a standard procedure,
we marginalize over the unknown bias parameters. From the covariance matrix,
defined previously in eq. (2.36), we obtain the correlation matrix Pij defined in
eq. (2.39) for the set of parameters θi. In figure 3.4 we show the matrix Pij in the lin-
ear (left panel) and non-linear-HS (right panel) cases. Redder (bluer) colors signal
stronger correlations (anti-correlations).
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FIGURE 3.4: Correlation matrix P defined in (2.39) obtained from the covari-
ance matrix in the MG-binning case, for a Galaxy Clustering Fisher forecast
using Euclid Redbook specifications. Left panel: Linear forecasts. Here there
are strong positive correlations among the µi and ηi parameters and anti-
correlations between ln 1010As and the µi parameters, as well as between µi
and ηi. The FoC in this case is ≈ 65. (see Eqn. (2.41) for its definition). Right
panel: Non-linear forecasts using the HS prescription. Interestingly, the anti-
correlations between ln 1010As and µi have disappeared, as well as the corre-
lations among the µi parameters. The FoC is in this case ≈ 32, meaning that
the variables are much less correlated than in the linear case. This is due to
the fact that taking into account non-linear structure formation breaks degen-
eracies between the primordial amplitude parameter and the modifications
to the Poisson equation.

A covariance matrix that contains strong correlations among parameter A and
B, means that the experimental or observational setting has difficulties distinguish-
ing between A and B for the assumed theoretical model, i.e. this represents a pa-
rameter degeneracy. Therefore if for example parameter A is poorly constrained,
then parameter B will be badly constrained as well. The appearance of correlations
among parameters is linked to the non-diagonal elements of the covariance matrix.
Subsequently, this means that the fully marginalized errors on a single parameter,
will be larger if there are strong correlations and will be smaller (closer to the value
of the fully maximized errors) if the correlations are negligible.

In the linear case, µi and ηi parameters show correlations among each other,
while the primordial amplitude parameter ln 1010As exhibits a strong anti-correlation
with all the µi. This can be explained considering that a larger growth of structures
in linear theory can also be mimicked with a larger initial amplitude of density
fluctuations.

Interestingly, including non-linear scales in the analysis (right panel of Fig. 3.4)
leads to a strong suppression of the correlations among the µi. Also the correlation
between these and ln 1010As is suppressed as a change in the initial amplitude of the
power spectrum is not able to compensate for a modified Poisson equation when
non-linear evolution is considered.

As discussed in Section 2.4.5, we can also express the difference between the
correlation matrix of the linear forecast and the non-linear forecast in a more quanti-
tative way, by computing the determinant of the correlation matrix, or equivalently
the FoC (2.41). If the correlations were negligible, this determinant would be equal
to one (and therefore its FoC would be 0), while if the correlations were strong,
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the determinant would be closer to zero with a corresponding large positive value
of the FoC. For the linear forecast, the FoC is about 62, while for the non-linear
forecast, it is much smaller at approximately 35. In Table 3.2 we show the 1σ con-
straints obtained on ln (1010As) and on the µi and ηi parameters, both in the linear
and non-linear cases for a Euclid Redbook GC survey (top rows). While linear GC
alone (kmax = 0.15 h/Mpc) is not very constraining in any bin, the inclusion of non-
linear scales (kmax= 0.5 h/Mpc) drastically reduces errors on the µi parameters: the
first three bins in µi (0. < z < 1.5 ) are the best constrained, to less than 10%, with the
corresponding ηi constrained at 20% by non-linear GC alone. This is also visible in
the FoM which increases by 19 nits (‘natural units’, similar to bits but using base
e instead of base 2), nearly 4 nits per redshift bin on average, when including the
non-linear scales. The fact that the error on ln 1010As improves from 90% to 0.68%
shows that the decorrelation induced by the non-linearities breaks the degeneracy
with the amplitude and therefore improves considerably the determination of cos-
mological parameters. This shows that it is important to include non-linear scales
in GC surveys (and not only in Weak Lensing ones, which is usually more expected
and will be shown in the next subsection).

3.3.2 Euclid Weak Lensing Survey

In the case of Weak Lensing, the linear forecast is performed with linear power
spectra up to a maximum multipole `max = 1000, while the non-linear forecast is
performed with non-linear spectra up to a maximum multipole of `max = 5000, as
explained in section 2.4.3. Since we limit our power spectrum to a maximum in
k-space, these multipole values are not reached at every redshift. Like for GC, also
for WL it is very important to include information from the non-linear power spec-
trum, since in that range will lie most of the constraining power of next-generation
surveys like Euclid. In figure fig. 3.5 we show the correlation matrices for the lin-
ear (left panel) and non-linear (right panel) Fisher Matrix forecasts. In this case, as
opposed to the GC correlation matrices, it is not visually clear which case is more
correlated than the other. At a closer look, in the linear case we can observe strong
anti-correlations between the µj and ηj parameters for j = 2, 3, 4, 5 and an anti-
correlation between η1 and the primordial amplitude ln 1010As. In the non-linear
case, the primordial amplitude parameter is effectively decorrelated from the Mod-
ified Gravity parameters, and the anti correlation between µj and the ηj affects
the first three bins (effectively increasing degeneracies in the first bin). The anti-
correlation between these two sets of parameters is expected, since WL is sensitive
to Σ, which is a product of η and µ, c.f. eq. (1.61). The decrease of correlation when
going from the linear to the non-linear case is confirmed, also quantitatively, by the
FoC: the one for the linear case is of≈ 69, larger than the one for the non-linear case
≈ 32. Once again, the inclusion of non-linear scales breaks degeneracies, especially
among the linear amplitude of the power spectrum and the MG parameters.

Table 3.2 shows the corresponding 1σ marginalized errors on ln (1010As) and
on the µi and ηi, both in the linear and non-linear cases for a Euclid Redbook WL
survey. As in the case of GC, linear WL cannot constrain alone any of the ampli-
tudes of the Modified Gravity parameters µi and ηi for any redshift bin. Being able
to include non-linear scales improves constraints on the amplitude ln(1010As) by a
factor 100. The 1σ errors on µi and ηi improve up to one order of magnitude, with
the FoM increasing by 17 nits, although remaining quite unconstraining for Modi-
fied Gravity parameters in all redshift bins. Notice, however, that the 1σ error on µ1

from WL in the linear case is slightly smaller than in the non-linear case. This can
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FIGURE 3.5: Correlation matrix obtained from the covariance matrix in the
MG-binning case, for a Weak Lensing Fisher Matrix forecast using Euclid
Redbook specifications. Left panel: linear forecasts. Strong anti-correlations
are present between the µi and the ηi parameters for the same value of i in
2,3,4,5. The amplitude ln(1010As) parameter is mostly uncorrelated except
with η1. The FoC (2.41) in this case is approximately 69. Right panel: non-
linear forecasts using the HS prescription. Here the same trend as in the lin-
ear case is present, with just subtle changes. The FoC in this case is about 32,
meaning that the variables are indeed less correlated than in the linear case.
The parameter ln(1010As) is effectively not correlated to other parameters,
and the anti-correlation of µi and the ηi for the same value of the index i is
present in the first three bins. The anti-correlation between these two sets of
parameters is expected, since WL is sensitive to the Weyl potential Σ, which
is a product of µ and η.

be attributed to the fact that in the linear case, µ1 is uncorrelated to any other pa-
rameter, as shown in figure 3.5 and on that specific bin (0 < z < 0.5) non-linearities
don’t seem to improve the constraints on this parameter.

3.3.3 Combining Euclid Galaxy Clustering and Weak Lensing, with Planck
data

The combination of Galaxy Clustering and Weak Lensing is expected to be very
powerful for Modified Gravity parameters as they measure two different combi-
nations of µ and η, thus breaking their degeneracy as illustrated in fig. 3.17. This
is shown in table 3.2, where the sensitivity drastically increases with respect to the
two separate probes, especially in the low redshifts bins (0. < z < 1.5), where
the lensing signal is dominant. Adding non-linearities further doubles the FoM.
The Planck data constrains mostly the standard ΛCDM parameters and has only
a limited ability to constrain the MG sector. However, the additional information
breaks parameter degeneracies and in this way significantly decreases the uncer-
tainties on all parameters, so that the linear GC+WL+Planck is comparable to the
non-linear GC+WL. Also, quantitatively, the correlation among parameters is re-
duced by combining GC+WL with Planck data. The FoC in this case is of ≈ 22.
We also see in Table 3.2 that the differences between the non-linear prescription
adopted here (nl-HS) and a straightforward application of Halofit to the MG case
(nl-Halofit) is not very large. We will investigate further the impact of the parame-
ters used in the non-linear prescription in section 3.8.
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3.4 Decorrelation of covariance matrices and the Zero-phase
Component Analysis

In the previous subsections we highlighted how the MG parameters and the ampli-
tude of the primordial power spectrum exhibit significant correlations and showed
how including non-linearities helps to decorrelate them. Even without including
non-linearities, however, it is interesting to investigate how we can completely
decorrelate the parameters, identifying in this way those parameter combinations
which are best constrained by data.

Given again a d-dimensional vector p of random variables (our originally corre-
lated parameters), we can calculate its covariance matrix C defined in Eqn. (2.36).
The process of decorrelation is the process of making the matrix C a diagonal ma-
trix.

Let us define some important identities. The covariance matrix can be decom-
posed in its eigenvalues (the elements of a diagonal matrix Λ) and eigenvectors (the
rows of an orthogonal matrix U ).

C = UΛUT ⇔ F = UΛ−1UT , (3.17)

where F is the Fisher Matrix.
It is possible to show that applying a transformation matrix W to the p param-

eter vector, thus obtaining a new vector of variables q = Wp, the covariance matrix
of the transformed vector q is whitened (i.e. it is the identity matrix, and whiten-
ing is defined as the process of converting the covariance matrix into an identity
matrix)

C̃ = W 〈∆p̂∆p̂T 〉W T = 〈∆q̂∆q̂T 〉 (3.18)
= 1 .

This means that the transformed q parameters are decorrelated, since their correla-
tion matrix is diagonal. The choice of W is not unique as several possibilities exist;
we focus on a particular choice in the rest of the chapter referred to as Zero-phase
Component Analysis (ZCA, first introduced by [52] in the context of image pro-
cessing), but we show two other possible choices and their effect on the analysis in
Appendix 3.5.

Zero-phase Component Analysis (sometimes also called Mahalanobis trans-
formation [150]) is a specific choice of decorrelation method that minimizes the
squared norm of the difference between the qi and the pi vector ‖~p− ~q‖, under the
constraint that the vector ~q should be uncorrelated [150]. In this way the uncor-
related variables q will be as close as possible to the original variables p in a least
squares sense. This is achieved by using the W matrix:

W ≡ F 1/2 . (3.19)

Then in this case, the covariance matrix is whitened, by following Eqn. (3.18):

C̃ = F 1/2F−1F 1/2 = 1 . (3.20)

In our case, since we do not want to whiten, but just decorrelate the covariance
matrix, we renormalize the W matrix by multiplying with a diagonal matrix Njj ≡∑

j(W
−2
ij ), such that the sum of the square of the elements on each row of the new
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weighting matrix W̃ ≡ NW , is equal to unity; therefore the final transformed co-
variance is still diagonal but is not the identity matrix:

C̃ = W̃CW̃ = N2
1 (3.21)

and at the same time we ensure that the vector of new variables qi will have the
same norm as the old vector of variables pi.

3.4.1 ZCA for Galaxy Clustering

From Fig. 3.4 we can see that the correlations are present in sub-blocks, one for
the standard ΛCDM parameters and another one for the Modified Gravity param-
eters. The exception lies in the linear case where `As ≡ ln (1010As) is strongly
anti-correlated with all the µi and positively correlated with the ηi. To use a more
objective criterion, we choose the 10 × 10 block of MG parameters µi and ηi with
parameter indices 6 to 15, and only add to this block a ΛCDM parameter with index
a if the following condition is satisfied:

i=15∑
i=6

(Pai)
2 ≥ 1

where the index a corresponds to one of the first five standard parameters. For
Galaxy Clustering, the only index satisfying this condition is a = 4 in the linear
case, corresponding to `As ≡ ln (1010As): i.e. the standard parameter correspond-
ing to the amplitude is, as said, degenerate with Modified Gravity parameters µi
and ηi. In the non-linear case no parameter satisfies this condition (because, as we
have seen, non-linearities are able to eliminate correlation with the amplitude), but
for consistency we will use the same vector of 11 parameters pi = {`As, µi, ηi} for
our decorrelation procedure. Therefore we will also have 11 transformed uncorre-
lated qi parameters, function of the original pi parameters, in all the cases presented
below.

Figure 3.6 shows the coefficients that relate the qi parameters to the original pi
ones, in the linear (left panel) and the non-linear (right panel) cases. The explicit
coefficients are shown in Appendix D of the publication [84]. We plot in figure 3.7
a comparison between the 1σ errors on the primary parameters pi (represented by
circles connected with dark green dashed lines) and the decorrelated parameters qi
(represented by squares connected with orange solid lines). In the linear case (left
panel), we can see that the errors on the qi parameters are 2 orders of magnitude
better than the errors on the pi parameters. In the non-linear case (right panel) the
improvement is of at most 1 order of magnitude and that for a completely decorre-
lated parameter like `As, the error on its corresponding qi is exactly the same. This
shows that a decorrelation procedure is still worth to do, even when including the
non-linear regime, even if the degeneracy with the amplitude is already completely
broken thanks to the non-linear prescription. The fact that the curve of 1σ errors
for the qi follows the same pattern as the curve for the pi errors, is due to the fact
that we have used a ZCA decomposition (see section 3.4) and therefore the qi are
as similar as possible to the pi.

We are interested in finding the best combination of primary parameters pi giv-
ing rise to the best constrained uncorrelated parameters qi. In order to find the
errors on the parameters qi, we need to look at the diagonal of the decorrelated
covariance matrix C̃ expressed in eq. (3.21) and identify the qi parameters with
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FIGURE 3.6: Entries of the matrix W that relates the qi parameters to the
original pi ones, after applying the ZCA decorrelation of the covariance ma-
trix in the linear and non-linear GC cases. This matrix shows for each new
variable qi on the vertical axis, the coefficients of the linear combination of
parameters µi, ηi and As that give rise to that variable qi. The red (blue)
colors, indicate a large (small) contribution of the respective variable on the
horizontal axis. Left panel: linear forecast for Euclid Redbook specifications.
Right panel: non-linear forecast for Euclid Redbook specifications, using the
HS prescription. In both cases one can observe that most qi parameters have
only small or negligible contributions from µ5 and η5, which are found to be
the less constrained bins.
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FIGURE 3.7: Results for a Euclid Redbook GC survey, with redshift-binned
parameters, before and after applying the ZCA decorrelation. Each panel
shows the 1σ fully marginalized errors on the primary parameters pi (green
dashed lines), and the 1σ errors on the decorrelated parameters qi (orange
solid lines). Left: linear forecasts, performed using linear power spectra
up to a maximum wavenumber kmax = 0.15h/Mpc. Right: non-linear fore-
casts using non-linear spectra with the HS prescription up to a maximum
wavenumber kmax = 0.5h/Mpc. In the linear case, the errors on the decor-
related qi parameters are about 2 orders of magnitude smaller than for the
primary parameters, while in the non-linear HS case, the improvement in the
errors is of one order of magnitude. This means that applying a decorrela-
tion procedure is worth even when non-linearities are considered. In both
cases for GC, the least constrained parameters are µ5 and η5, corresponding
to 2.0 < z < 2.5.
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FIGURE 3.8: Best constrained modes for a Euclid Redbook GC survey, with
µ and η binned in redshift, after transforming into uncorrelated q parame-
ters via ZCA. Each of the four best constrained parameters qi, shown in the
panels, is a linear combination of the primary parameters pi. The qi in the
legends are ordered from left to right, from the best constrained to the least
constrained.

the smallest relative errors (σqi/qi): we find than in the linear GC case, the best
constrained combinations of primary parameters (ordered from most to least con-
strained) are given approximately by:

q1 = +0.9`As + 0.32µ4

q3 = +0.75µ2 − 0.29η1 + 0.50η2

q4 = −0.25µ2 + 0.74µ3 − 0.32η2 + 0.49η3

q2 = +0.70µ1 − 0.30µ2 + 0.52η1 − 0.36η2 .

(3.22)

In contrast, for the non-linear GC case, the parameter `As ≡ ln (1010As) is not
correlated to any other, and therefore it is well constrained on its own. The best 4
constrained parameters (ordered from most to least constrained) in the non-linear
case, are:

q1 = +0.99`As
q4 = −0.28µ2 + 0.76µ3 − 0.33η2 + 0.47η3

q3 = +0.73µ2 − 0.32η1 + 0.49η2

q2 = +0.68µ1 − 0.35µ2 + 0.52η1 − 0.37η2 .

(3.23)

The best constrained decorrelated parameters qi for a Euclid GC survey, expressed
in the set of Equations (3.22) (linear) and (3.23) (non-linear HS), can be seen graph-
ically in Fig. 3.8 for the linear (left panel) and non-linear HS (right panel) cases
respectively. From these combinations we see that a survey like Euclid, using GC
only, will be sensitive to Modified Gravity parameters µ and η mainly in the first
three redshift bins, corresponding to a range 0. < z < 1.5. The complete matrix W
of coefficients relating the qi to the pi parameters, can be found in Appendix D of
the publication [84].

3.4.2 ZCA for Weak Lensing

We apply the same decorrelation procedure to the WL case, obtaining the q vectors
shown in the weight matrix of figure 3.9.

In figure 3.10 we show the comparison between the errors on the primary pa-
rameters pi and the de-correlated ones qi. As for the GC case, the errors in the linear
case improve by 2 orders of magnitude after applying the decorrelation procedure



3.4. Decorrelation of covariance matrices and the Zero-phase Component
Analysis

73

As μ1 μ2 μ3 μ4 μ5 η1 η2 η3 η4 η5

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

0

0.2

0.4

0.6

0.8

1.0

(linear) WL: Weight matrix

As μ1 μ2 μ3 μ4 μ5 η1 η2 η3 η4 η5

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

0

0.2

0.4

0.6

0.8

1.0

(non-linear) WL: Weight matrix

FIGURE 3.9: Entries of the matrixW that relates the qi parameters to the orig-
inal pi ones, after applying the ZCA decorrelation of the covariance matrix in
the linear and non-linear WL cases. This matrix shows for each new variable
qi on the vertical axis, the coefficients of the linear combination of parameters
µi, ηi and As that give rise to that variable qi. The red (blue) colors, indicate
a large (small) contribution of the respective variable on the horizontal axis.
Left panel: linear forecast for Weak Lensing Euclid Redbook specifications.
Right panel: non-linear forecast for Weak Lensing Euclid Redbook specifi-
cations, using the HS prescription. As for GC, most qi parameters have only
small or negligible contributions from µ5 and η5, which are found to be the
less constrained bins.

(left panel). In the non-linear case (right panel) the improvement is smaller, but still
worth to do, especially to constrain q2, q3, q7, q8.

More generally, as we did for the GC case in the previous section, we look for
the qi parameters with the smallest relative errors (σqi/qi) and find in the linear
WL case, that the best constrained combinations (ordered from most to least con-
strained) of primary parameters are given approximately by:

q1 = +0.76`As + 0.48µ2 + 0.33η2

q3 = −0.59µ1 + 0.67µ2 − 0.30η1 + 0.32η2

q7 = +0.65µ1 − 0.60µ2 + 0.36η1 − 0.28η2

q2 = +0.67µ1 − 0.59µ2 + 0.33η1 − 0.29η2 .

(3.24)

This means that WL in the linear case will only be able to constrain combinations of
the first two redshift bins in µ and η (corresponding to 0. < z < 1.0). This can also
be observed graphically in the left panel of Figure 3.11. For the non-linear WL case,
the combinations remain practically the same, except for q1, which will depend
much more strongly on the parameter `As. The best 4 constrained parameters in
this case, are (ordered from most to least constrained):

q3 = −0.55µ1 + 0.71µ2 +−0.27η1 + 0.34η2

q1 = +0.93`As − 0.32µ2

q2 = +0.67µ1 − 0.60µ2 + 0.33η1 − 0.29η2

q4 = −0.46µ1 + 0.29µ2 + 0.73µ3 + 0.31η3 .

(3.25)

These combinations can also be visualized in the right panel of figure 3.11. The
complete matrix W of coefficients relating the qi to the pi parameters, can be found



74 Chapter 3. Linear and non-linear Modified Gravity forecasts

●

●

●
●

●
●

● ●

●

● ●

■

■ ■

■

■
■

■ ■

■

■

■

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

0.01

0.10

1

10

100

1000

As μ1 μ2 μ3 μ4 μ5 η1 η2 η3 η4 η5

σ
i

(linear) WL

●

● ●
●

● ●
●

●
●

● ●

■

■ ■

■

■
■

■ ■

■

■

■

● primary variables pi

■ decorrelated variables qi

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11

0.01

0.10

1

10

100

1000
As μ1 μ2 μ3 μ4 μ5 η1 η2 η3 η4 η5

σ
i

(non-linear) WL

FIGURE 3.10: Results for a Euclid Redbook WL survey, with redshift-binned
parameters, before and after applying the ZCA decorrelation. Each panel
shows the 1σ fully marginalized errors on the primary parameters pi (green
dashed lines), and the 1σ errors on the decorrelated parameters qi (orange
solid lines). Left: Linear forecasts, performed with an `max = 1000 and lin-
ear matter power spectra. Right: Non-linear forecasts using the non-linear
spectra with the HS prescription, up to an `max = 5000. The errors in the
non-linear HS case, are about 1 order of magnitude smaller than in the linear
case. For the best constrained qi parameters, the decorrelated errors are up
to 2 orders of magnitude smaller than the corresponding fully marginalized
parameters on the parameters pi.

in Appendix D of the publication [84].

q1 q3 q7 q2

As μ1 μ2 μ3 μ4 μ5 η1 η2 η3 η4 η5

-1.0

-0.5

0.0

0.5

1.0

c
o
e
ff
ic

ie
n
ts

o
f
q

i

(linear) WL: best constrained modes

q3 q1 q2 q4

As μ1 μ2 μ3 μ4 μ5 η1 η2 η3 η4 η5

-1.0

-0.5

0.0

0.5

1.0

c
o
e
ff
ic

ie
n
ts

o
f
q

i
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FIGURE 3.11: Best constrained modes for a Euclid Redbook WL survey, with
µ and η binned in redshift, after transforming into uncorrelated q parameters
via ZCA. Each of the four best constrained parameters qi, shown in the pan-
els, is a linear combination of the primary parameters pi. qi in the label are
ordered from the best constrained to the least constrained.

3.4.3 ZCA for Weak Lensing + Galaxy Clustering + CMB Planck priors

As mentioned earlier, Galaxy Clustering and Weak Lensing are particularly impor-
tant, combined together, to constrain Modified Gravity parameters, as they probe
two independent combinations of the gravitational potentials. We now show re-
sults for their combination, using for both the non-linear HS prescription, together
with a Planck prior (which was obtained by performing an MCMC analysis on
Planck+BSH background data, as specified in Section 3.2.3). Notice that we ne-
glect here any information coming from the cross correlation of the two probes; we
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therefore assume that these two observables are independent of each other and we
simply add the GC and WL Fisher matrices to obtain our combined results; this
appears to be a conservative (pessimistic) choice [166]. In Table 3.2, we can see
that the inclusion of the Planck prior improves considerably certain parameters, es-
pecially the less constrained ones by GC+WL, namely µ4,5 and η4,5. In terms of
correlations, we can observe in the left panel of Fig. 3.12, that the structure of the
correlation matrix resembles the one of the linear WL case (Fig. 3.5), except that
the block of standard ΛCDM parameters is much less correlated and that the anti-
correlation among µi and ηi is much stronger now. On the other hand, applying the
decorrelation procedure (section 3.4), the weight matrixW (right panel of Fig. 3.12),
resembles the W matrix observed in the non-linear GC case, illustrated in Figure
3.6). Notice that now the variables qi depend quite strongly on only one of the µi
for i = {1, 2, 3, 4}, while the qi for i = {6, 7, 8, 9, 10} depend on a balanced sum of
µi and ηi for i = {6, 7, 8, 9, 10}.
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(non-linear) GC+WL+Planck: Correlation Matrix
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FIGURE 3.12: Results for the combined forecasts of Euclid Redbook GC+WL
using the non-linear HS prescription together with the addition of Planck
CMB priors. Left panel: correlation matrix obtained from the covariance
matrix in the MG-binning case. Red (purple blue) colors represent strong
positive (negative) correlations. The structure of this matrix is consider-
ably diagonal, except for the strong anti-correlations of the pair (µi, ηi) for
i = {1, 2, 3, 4, 5}, which resembles the correlations found for the WL case
alone (see Figure 3.5). However, the sub-block of standard cosmological pa-
rameters is now much more diagonal and shows less correlations than in the
GC (Fig. 3.4) or WL cases. The natural FoC (defined in 2.41) in this case is
≈ 22, showing that the variables are much less correlated than in the two pre-
vious cases. Right panel: entries of the matrix W for the ZCA decorrelation
of the covariance matrix. This matrix shows for each new variable qi on the
vertical axis, the coefficients of the linear combination of parameters µi and ηi
that give rise to that variable qi. The red (blue) colors, indicate a large (small)
contribution of the respective variable on the horizontal axis.

Finally, in this combined case the best constrained qi variables, are q1, q2, q3, ,
q4 approximately given by:

q1 = +0.93`As
q2 = +0.84µ1 + 0.48η1

q3 = +0.80µ2 − 0.26η1 + 0.45η2

q4 = +0.28`As + 0.79µ3 − 0.29η2 + 0.39η3 .

(3.26)
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These combinations of primary parameters are illustrated in the right panel of Fig-
ure 3.13. The combination q2 is similar to the combination 2µ + η that was also
identified in [218] as being well-constrained. The best constrained modes q2, q3 and
q4 all contain terms of the form aµi + bηi for i = {1, 2, 3}, with positive coefficients
a and b, where a ≈ 2b.

All errors are shown in the left panel of Figure 3.13. Notice how in this case, the
improvement on the errors of the qi variables is less than an order of magnitude,
thus smaller than what found in GC and WL separately; this is due to combination
of GC and WL which, together with the inclusion of the CMB prior, lead to smaller
correlations among the parameters. When combining GC+WL in the non-linear HS
case, the FoC (defined in 2.41) is≈ 31, showing that there is not much gain in decor-
relation, compared to GC or WL alone, where this quantity was approximately 32.
However, combining GC+WL (non-linear HS) with Planck priors yields FoC ≈ 22,
showing that correlations among parameters are drastically reduced. The fact that
the curve of 1σ errors for the qi (orange line, marked with circles) follows the same
pattern as the curve for the pi errors (green dashed line, marled with circles), is due
to the fact that we have used a ZCA decomposition and therefore the qi are as close
as possible to the pi.
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FIGURE 3.13: Left: the 1σ fully marginalized errors on the primary pa-
rameters pi (green dashed lines), and the 1σ errors on the decorrelated de-
rived parameters qi (yellow solid lines). As opposed to the GC or WL cases
(figs.3.7,3.10), here the decorrelated errors are much more similar to the stan-
dard errors. This is due to the fact that in the GC+WL+Planck combination,
the cosmological parameters are not so strongly correlated. Right: best con-
strained modes for a Euclid Redbook GC+WL case using the non-linear HS
prescription and adding a CMB Planck prior. Each panel shows the four best
constrained parameters qi. Each of them is a linear combination of the pri-
mary parameters pi. The best constrained modes are sums aµi + bηi for
i = {1, 2, 3} and positive values a and b.

3.5 Other Decorrelation Methods

In section 3.4 we have worked with a special decorrelation method, ZCA (Zero-
phase component analysis, first introduced by [52] in the context of image process-
ing), which allows us to find a new vector of decorrelated variables q that is as sim-
ilar as possible to the original vector of variables p. Other decorrelation methods
do not share this property, so in this section we want to illustrate their difference
with respect to ZCA. In the next subsections we show for the Principal Component
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Analysis and Cholesky decomposition methods, a subset of our previous results,
namely the Galaxy Clustering non-linear case, using the HS prescription for a Eu-
clid survey with Redbook specifications.

3.5.0.1 Principal Component Analysis

Principal Component Analysis (PCA) [118] is a well known method, which rotates
the vector of variables p into a new basis, using the eigenmatrix of the covariance
matrix C. At the same time, it is the method that maximizes the compression of all
components of p into the components of q using as measure the cross-covariance
between q and p (see [150] for more details and references). This method is useful
for dimensional reduction or data compression, since the information is stored in
as few components as possible. This is achieved by using the W matrix

W = Λ−1/2UT (3.27)

where Λ and U represent the eigensystem of C (defined in Eqn. 3.17).
Then, it follows that the transformed covariance matrix C̃ is whitened:

C̃ = Λ−1/2UTCΛ−1/2UT (3.28)

= Λ−1/2UTUΛUTΛ−1/2UT (3.29)
= 1 (3.30)

As done previously, we renormalize W in such a way that the sum of the square
of the elements of each row sum up to unity. In Figure 3.14 we show in the left
panel the weight matrix W and in the right panel the 1σ errors for the original and
decorrelated variables. We see that the most constrained q variables are the last
components q8-q11, where most of the information has been compressed into. These
4 variables are complicated linear combinations of As, µ1,2,3 and η1,2,3. This is the
same we found for ZCA (cf. Fig. 3.8 and Eqns. (3.8)). However, the interpretation in
terms of the old variables p is not so simple anymore. We can see from the weight
matrix and the 1σ errors, that the most unconstrained parameter is q1, which is
basically equivalent to η5. This means that this parameter can be eliminated from
the analysis if one wants to do dimensional reduction.

3.5.0.2 Cholesky decomposition

Cholesky decomposition of the Fisher matrix F = LLT , allows us to define a decor-
relation method that compresses all components of p into an upper triangular ma-
trix of components of q. This is achieved by using the W matrix:

W = LT (3.31)

Then the covariance matrix will be whitened:

C̃ = LT (LLT )−1L (3.32)

= LT (LT )−1L−1L (3.33)
= 1 (3.34)

As done previously, we renormalize W in such a way that the sum of the square of
the elements of each row sum up to unity. In Cholesky decomposition, since we are
constructing it via an upper triangular matrix (see left panel of Fig. 3.15), the new
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FIGURE 3.14: Left: weight matrix W for PCA. Right: 1σ fully maximized
errors on the primary parameters p (blue lines) and the errors on the uncor-
related derived parameters q (orange lines). Notice how all the important
information is constrained in as few variables as possible, namely the last
elements of qi.

parameter q11 will be identical to the parameter η5, which is, as we have seen before
(section 3.4.1), the less constrained parameter. This decorrelation method is useful
if one wants to have an ordering of the variables (see [150] and references therein).
On the other hand q1 is almost identical toAs, since as we have seen in section 3.4.1,
it becomes decorrelated from the MG parameters in the non-linear case.
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FIGURE 3.15: Left: weight matrix W for the Cholesky decorrelation. Right:
1σ fully maximized errors on the primary parameters p (blue lines) and the
errors on the uncorrelated derived parameters q (orange lines). Notice how
in this case, because of the upper triangular construction, the new variables
q9,10,11 are equivalent to η3,4,5. The parameter As is decorrelated in the non-
linear HS case for GC, therefore it is almost equivalent to q1 as was also the
case in ZCA (compare with Fig. 3.6)

3.5.1 Kullback-Leibler divergence measure

In section 2.4.6 we introduced the Kullback-Leibler divergence (see eq. (2.43)) as
another way of measuring the constraining power of a survey and we defined the
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Kullback-Leibler matrices (eq. (2.44)) (first introduced in [84]) as a way of visual-
izing the information gain between different probes. Here we will visualize the
KL-matrix for the probes: GC(lin), GC(nl-HS), WL(lin), WL(nl-HS), GC+WL(lin)
and GC+WL(nl-HS) in the redshift binned parameterization of section 3.3. In this
way we can quantitatively see how much information is gained when going from
one probe like Galaxy Clustering to another probe like Weak Lensing. In Figure
3.16 we plot in the left panel the KL matrix Kij when no Planck priors are added
and in the right panel the KL matrix when Planck priors are added to all probes.
For visualization purposes, we plot the logarithm of the KL matrix: log10Kij . Blue
(red) colours represent small (large) information gain, while black represents no
information gain at all, which is by construction the case on the diagonal, Kii = 0.
The rows of the matrix represent the reference observable of p1 and the columns, the
new observable p2. The information gain when going from a linear WL observable
to a non-linear GC observable or to a combined GC+WL (linear and non-linear) ob-
servable is considerably high at about ≈ 106-107. However, when adding a Planck
prior, this gets reduced by at least 2 orders of magnitude, since the prior is strong
and then there is not as much new information gained in the new observables.
On the opposite case, we can see that the row corresponding to GC+WL(nl-HS) is
mostly blue, meaning that there is little gain of information when going to one of
the other observables.

Gli Gnl Wli Wnl GWli GWnl

Gli
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GWnl
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log10 KL matrix (with Planck priors)

FIGURE 3.16: Kullback-Leibler divergence matrices Kij . This matrix repre-
sents graphically the information gain between all possible observables in the
redshift binned parameterization of section 3.3. We have plotted here the log-
arithm of the KL-divergence matrix, for illustrative purposes. Therefore the
diagonal is −∞ and it is represented by a black color. Left: KL matrix with-
out Planck priors. The maximum gain is about 107 when going from WL(lin)
to GC+WL(non-linear) and we can observe that GC+WL does not gain ex-
tra information when complemented with the other observables, which is
expected. Right: In this case we compare the observables, when a Planck
prior is added beforehand. The overall information gain is now smaller, with
a maximum of about 106. The maximum gain comes when comparing WL
(linear and non-linear) to GC and GC+WL (non-linear).
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3.6 Modified gravity with simple smooth functions of the
scale factor

As discussed in section 1.5.4, µ and η (or an equivalent pair of functions of the grav-
itational potentials) depend in general on time and space. We will now investigate
the time dependence further, starting from the two parameterizations proposed in
[220] and recalled in eqns. (1.62-1.65) in this work. We extend the analysis of the
Planck paper [220] by testing different prescriptions for the non-linear regime in
Modified Gravity (as illustrated in Section 3.2) and further investigate forecasts for
future experiments like Euclid, SKA, DESI. In the following subsections we first
give results for the late-time parameterization of Eqns. (1.62,1.63) and then for the
early time parameterization of Eqns. (1.64,1.65). In both cases we consider Galaxy
Clustering and Weak Lensing, neglecting, as in Section 3.3 any information coming
from the cross correlation of the two probes.

3.6.1 Modified Gravity in the late-time parameterization

The late-time parameterization is defined in eqs. (1.62) to (1.63). We now calculate
forecasts for Galaxy Clustering and Weak Lensing, with future surveys, in the linear
and mildly non-linear regimes. We also include prior information obtained from
the analysis of the Planck+BSH datasets (where we recall that BSH stands for BAO
+ SNe + H0 prior), as discussed in Section 3.2.3.

3.6.1.1 Galaxy Clustering in the linear and mildly non-linear regime

In Table 3.3 we show forecasts for the Euclid survey [167] for Galaxy Clustering
(top part of the table) and three different cases: using only linear scales with a
cutoff at kmax = 0.15h/Mpc, labeled GC(lin); extending forecasts in the mildly
non-linear regime, obtained using the prescription described in Sec. 3.2.2.2, with a
cutoff at kmax = 0.5 h/Mpc, labeled GC(nl-HS); combining the mildly non-linear
case with Planck priors, as described in Sec. 3.2.3. We take into account the BAO
features, redshift space distortions and the full shape of the power spectrum, as
well as the survey specifications of the Euclid Redbook, recalled in Section 2.4.1 for
convenience. The columns correspond to the marginalized errors on five standard
cosmological parameters {Ωc,Ωb, ns, ln(1010As), h} and three combinations of the
gravitational potentials {µ, η,Σ}: the latter are reconstructed in time, according
to the late-time parameterization, as defined in Eqns. (1.62,1.63). We recall that
only two of these three functions are independent and fully determine cosmological
linear perturbations.

In the late-time scenario, for a Galaxy Clustering survey, neither η nor Σ are
actually constrained by a linear forecast, while µ is mildly constrained. Adding the
non-linear regime improves constraints on µ, while the other parameters remain
unconstrained, unless we also include Planck priors, which yields an improvement
in the FoM of 6.3 nits. In general the observable power spectrum may depend
on both µ (explicitely appearing in the last term of the equation for the density
perturbation (cf. eq. (3.41)) and on η (implicitly contained in the derivatives of the
gravitational potential in the same equation). The contribution of the derivative of
the potentials is larger in the early-time parameterization, with respect to the late-
time one by construction. This is due to the fact that in the late-time case deviations
from GR go to zero at large redshifts. In this sense, in the specific case of the late
time parameterization, the observed power spectrum mainly depends on µ only,
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which explains why this is the only quantity (mildly) constrained by GC alone. In
the early-time parameterization, though, modifications can appear also at earlier
times, so that both η and µ effectively affect the power spectrum, which explains
why they can both be constrained with a smaller uncertainty, as we will discuss in
Section 3.6.2.

In section 3.6.1.4 we review the equation governing the evolution of cold dark
matter density fluctuations, as a function of the Modified Gravity functions µ(a)
and η(a) as they are implemented in the code MGCAMB [136]. The inability of
GC to constrain η in this parametrization, is also visible in Fig. 3.17 which shows
that the GC constraints are degenerate along the η or Σ directions. Therefore, we
show how with this parameterization choice Euclid GC will be extremely sensitive
to modifications of the Poisson equation for Ψ, while it would require additional
information to constrain departures from the standard Weyl potential.

Euclid (Redbook) Ωc Ωb ns `As h µ η Σ MG FoM

Fiducial 0.254 0.048 0.969 3.060 0.682 1.042 1.719 1.416 relative

GC(lin) 1.9% 6.4% 3% 2.8% 4.5% 17.1% 1030% 641% 0

GC(nl-HS) 0.9% 2.5% 1.3% 0.8% 1.7% 1.7% 475% 291% 2.9

GC(nl-HS)+Planck 0.7% 0.6% 0.3% 0.2% 0.3% 1.7% 16.8% 10.3% 6.3

WL(lin) 7.8% 25.7% 9.9% 10.3% 19.1% 58.2% 106% 9.3% 3.2

WL(nl-HS) 6.3% 20.7% 4.6% 5.8% 13.8% 23.3% 40.9% 4.6% 4.5

WL(nl-HS)+Planck 2.1% 1.1% 0.4% 0.7% 0.7% 11.8% 21.8% 2.8% 5.7

GC+WL(lin) 1.8% 5.9% 2.8% 2.3% 4.2% 7.1% 10.6% 2% 6.6

GC+WL(lin)+Planck 1.0% 0.7% 0.4% 0.4% 0.4% 6.2% 9.8% 1.5% 7.0

GC+WL(nl-HS) 0.8% 2.2% 0.8% 0.7% 1.5% 1.6% 2.4% 1.0% 8.8

GC+WL(nl-HS)+Planck 0.7% 0.6% 0.2% 0.2% 0.3% 1.6% 2.4% 0.9% 8.9

GC+WL(nl-Halofit)+Planck 0.6% 0.5% 0.2% 0.2% 0.2% 0.8% 1.7% 0.8% 9.6

TABLE 3.3: 1σ fully marginalized errors on the cosmological parameters in
the late-time parameterization of Modified Gravity for a Euclid Galaxy Clus-
tering forecast (top), a Weak Lensing forecast (middle) and the combination
of both probes (bottom): Modified Gravity is encoded in two of the three
functions µ, η, Σ, which are reconstructed in the late-time parameterization
defined in Eqns. (1.62,1.63). For each case, we also list the forecasted errors us-
ing a Planck+BSH prior. Linear forecasts are labeled by “lin”, and correspond
to a cutoff kmax = 0.15h/Mpc for GC and `max = 5000 for WL; non-linear
forecasts use the prescription described in sec. 3.2.2.2, are labeled by “nl-HS”
and correspond to a cutoff of kmax = 0.5h/Mpc for GC and `max = 5000 for
WL. in both cases, power spectra have been computed using the MGCAMB
Boltzmann code. For completeness, we also show the GC+WL+Planck case
using the non-linear power spectra computed using Halofit only (nl-Halofit).
In the last column, we show for each observation the Figure of Merit (FoM)
relative to our base observable in this parametrization, which is GC(linear).
GC(linear) has an absolute FoM of -0.94 in ‘nits’. We can see that in both GC
and WL there is a considerable gain when including non-linear scales and
Planck priors. The difference in the FoM between the non-linear HS prescrip-
tion and the standard Halofit approach is quite small.
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Euclid (Redbook) Ωc Ωb ns `As h µ η Σ MG FoM

Fiducial 0.256 0.048 0.969 3.091 0.682 0.902 1.939 1.326 relative

GC(lin) 3.7% 19.2% 9.1% 16.6% 16.5% 16.7% 758% 489% 0

GC(nl-HS) 1.1% 2.3% 1.3% 0.7% 1.6% 1.8% 7.9% 4.8% 6.6

GC(nl-HS)+Planck 0.8% 0.7% 0.3% 0.3% 0.3% 1.7% 7.6% 4.6% 6.7

WL(lin) 12.1% 28.9% 11.3% 13.3% 24% 6.8% 11.1% 11.9% 4.9

WL(nl-HS) 6.5% 21.9% 6.6% 5.9% 15.8% 2.8% 8.0% 3.4% 6.6

WL(nl-HS)+Planck 2.1% 1.3% 0.5% 0.9% 0.7% 2.2% 7.2% 2.9% 7.2

GC+WL(lin) 1.8% 6.6% 3.4% 5.6% 5.2% 3.0% 6.8% 3.4% 6.4

GC+WL(lin)+Planck 1.2% 0.9% 0.6% 2.3% 0.4% 2.4% 6.5% 2.8% 6.9

GC+WL(nl-HS) 1.0% 2.2% 1.2% 0.7% 1.6% 1.3% 4.4% 1.9% 8.0

GC+WL(nl-HS)+Planck 0.8% 0.7% 0.3% 0.3% 0.3% 1.3% 4.4% 1.9% 8.2

GC+WL(nl-Halofit)+Planck 0.7% 0.7% 0.3% 1.3% 0.3% 0.9% 2.3% 1% 8.9

TABLE 3.4: Same as Table (3.3) but for the early-time parameterization. Note
that the last column (MG FoM) cannot be compared to the one for a different
parameterization (Table 3.3) since the reference value is different (GC(lin))
and the two parameterizations have a different number of primary parame-
ters). In this case the absolute MG FoM of GC(lin) is ≈ −0.47 nits.

3.6.1.2 Weak Lensing in the linear and mildly non-linear regime

Using the Euclid Weak Lensing specifications described in Section sub:Fisher-Weak-
Lensing, we obtain the results displayed in the middle panel of Table 3.3. Also in
this case, we use the late-time parameterization, in three different cases: the first
uses only linear quantities, with a maximum multipole of `max = 1000; the second
case uses the non-linear HS prescription of section 3.2.2.2 up to a maximum multi-
pole of `max = 5000; the third case combines Weak Lensing with Planck priors, as
described in 3.2.3.

In the linear case, WL forecast yields constraints on the standard ΛCDM pa-
rameters at around 10% of accuracy, with the exception of Ωb which is poorly con-
strained at around 26%, and the expansion rate h (19%). This is likely due to the
fact that WL is only directly sensitive to the total matter distribution in the Uni-
verse and cannot differentiate baryons from dark matter. All constraints improve
when adding non-linear information, with Ωb and h still constrained only at the
level of about 20%. When the Planck priors are included, though, constraints shrink
down to about 1% for all cosmological parameters. The Modified Gravity param-
eters show the expected trend; in the linear case, only Σ is constrained, at 11%, as
this parameter is directly defined in terms of the lensing potential Φ + Ψ; a Weak
Lensing probe is however not directly sensitive to µ and η separately, as can be
seen in Fig. 3.17. The linear FoM is only slightly weaker than the one from GC
for this parameterization, probably because both probes have an effectively uncon-
strained degeneracy direction. When adding non-linear information, errors on µ
and η improve, though still remaining in a poorly constrained interval (25%-44%).
Already on its own, however, Weak Lensing could rule out many models of Mod-
ified Gravity that change Σ at more than 5% (or even 2.9%, if we include Planck
priors). The combination GC+Planck and WL+Planck has a comparable overall con-
straining power, with GC+Planck being about 1 nit stronger and providing smaller
errors on µ.
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Ωc Ωb ns `As h µ η Σ MG FoM

Fiducial 0.254 0.048 0.969 3.060 0.682 1.042 1.719 1.416 relative

GC(nl-HS)
Euclid 0.9% 2.5% 1.3% 0.8% 1.7% 1.7% 475% 291% 2.9
SKA1-SUR 5% 15.3% 8.7% 3.8% 10.8% 18.1% 165% 108% 1.7
SKA2 0.5% 1.3% 0.4% 0.4% 0.8% 0.7% 86.8% 53.2% 5.5
DESI-ELG 1.6% 4.1% 2.3% 1.3% 2.9% 3.3% 899% 552% 1.8

WL(nl-HS)
Euclid 6.3% 20.7% 4.6% 5.8% 13.8% 23.3% 40.9% 4.6% 4.5
SKA1 30.8% 109% 35% 36.5% 77.6% 220% 405% 36.8% 0.5
SKA2 6% 22.5% 5.9% 6.8% 15.9% 19% 33.2% 3.7% 4.9

GC+WL(lin)
Euclid 1.8% 5.9% 2.8% 2.3% 4.2% 7.1% 10.6% 2% 6.6
SKA1 10.1% 47.6% 25.4% 21.7% 40.4% 26.4% 28.8% 13.6% 3.7
SKA2 1.2% 4.5% 2.2% 1.9% 3.3% 4.1% 5.5% 1.6% 7.5

GC+WL(lin)+Planck
Euclid 1.0% 0.7% 0.4% 0.4% 0.4% 6.2% 9.8% 1.5% 6.9
SKA1 2.4% 1.2% 0.4% 1.2% 0.7% 12% 19.8% 3.8% 5.3
SKA2 0.7% 0.6% 0.3% 0.4% 0.3% 3.6% 5.2% 1.2% 7.8

GC+WL(nl-HS)
Euclid 0.8% 2.2% 0.8% 0.7% 1.5% 1.6% 2.4% 1.0% 8.7
SKA1 4.7% 14.3% 6.2% 3.6% 9.6% 12.8% 11% 7.3% 5.5
SKA2 0.4% 1.3% 0.3% 0.4% 0.8% 0.7% 0.9% 0.6% 10.3

GC+WL(nl-HS)+Planck
Euclid 0.7% 0.6% 0.2% 0.2% 0.3% 1.6% 2.4% 0.9% 8.9
SKA1 2.0% 1.0% 0.4% 0.8% 0.6% 3.5% 6% 2.7% 6.9
SKA2 0.4% 0.5% 0.2% 0.1% 0.2% 0.6% 0.9% 0.5% 10.3

TABLE 3.5: 1σ fully marginalized errors on the cosmological parameters
{Ωm,Ωb, h, `As, ns, µ, η,Σ} in the late-time parameterization comparing dif-
ferent surveys in the linear and non-linear case. In the last column, we show
for each observation the Modified Gravity Figure of Merit (MG FoM) relative
to our base observable, which is the Euclid Redbook GC(linear), see Table 3.3.
We can see that in general terms, SKA2 is the most powerful survey, followed
by Euclid and SKA1. In the case of GC alone, DESI-ELG is more constrain-
ing than SKA1-SUR. Notice that in this parameterization, a GC survey would
only constrain µ with a high accuracy, while a WL survey would constrain Σ
with a very good accuracy. The combination of both is much more powerful
than the single probes. Adding Planck priors (last row) improves consider-
ably the constraints on the ΛCDM parameters but has an almost negligible
effect on the MG parameters (MG FoM remain almost constant when adding
Planck priors to the GC+WL (non-linear HS) case. The marginalized contours
for the µ-η plane , comparing these surveys, can be seen in the left panel of
fig. 3.21.

3.6.1.3 Combining Weak Lensing and Galaxy Clustering

After using the two primary probes from Euclid separately, we discuss here the
constraints obtained combining Weak Lensing and Galaxy Clustering. The com-
bination between GC and WL can be seen in the bottom panel of Table 3.3. In
the late-time parameterization, in the linear case, Weak Lensing combined with a
galaxy clustering for a Euclid survey (Redbook specifications) constrains the stan-
dard ΛCDM parameters in the range 2% − 6%, and below 1% when Planck priors
are included. Modified Gravity parameters µ and η are now also constrained below
10%, reaching 1% when adding non-linear scales. The remarkable improvement
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Ωc Ωb ns `As h µ η Σ MG FoM

Fiducial 0.256 0.0485 0.969 3.091 0.682 0.902 1.939 1.326 relative

GC(nl-HS)
Euclid 1.1% 2.3% 1.3% 0.7% 1.6% 1.8% 7.9% 4.8% 6.6
SKA1-SUR 7.9% 14.2% 13.4% 4.2% 11% 12.6% 82.7% 52.6% 2.2
SKA2 0.6% 1.3% 0.7% 0.4% 0.9% 0.9% 3.4% 1.8% 8.3
DESI-ELG 2.0% 4.3% 2.7% 1.4% 3.0% 8.2% 32% 28.6% 4.3

WL(nl-HS)
Euclid 6.5% 21.9% 6.6% 5.9% 15.8% 2.8% 8.0% 3.4% 6.6
SKA1 32% 106% 37.2% 33% 79.3% 13.1% 37.1% 16.4% 3.4
SKA2 5.9% 22.1% 6.7% 6.1% 16.1% 2.4% 7.0% 2.9% 6.9

GC+WL(lin)
Euclid 1.8% 6.6% 3.4% 5.6% 5.2% 3.0% 6.8% 3.4% 6.4
SKA1 10.3% 46.4% 24.2% 33.6% 40.2% 14.4% 29.6% 15.5% 3.3
SKA2 1.3% 4.9% 2.5% 4.2% 3.9% 2.5% 5.7% 2.7% 6.8

GC+WL(lin)+Planck
Euclid 1.2% 0.9% 0.6% 2.3% 0.4% 2.4% 6.5% 2.8% 6.8
SKA1 2.5% 1.5% 0.8% 2.9% 0.8% 8.8% 22.2% 8.5% 4.5
SKA2 0.9% 0.7% 0.6% 2.1% 0.3% 2.1% 5.4% 2.3% 7.2

GC+WL(nl-HS)
Euclid 1.0% 2.2% 1.2% 0.7% 1.6% 1.3% 4.4% 1.9% 8.1
SKA1 7.1% 13.4% 10.7% 4% 10% 8.2% 24.4% 10.5% 4.4
SKA2 0.6% 1.3% 0.7% 0.4% 0.9% 0.8% 2.7% 1.3% 8.8

GC+WL(nl-HS)+Planck
Euclid 0.8% 0.7% 0.3% 0.3% 0.3% 1.3% 4.4% 1.9% 8.1
SKA1 2.1% 1.3% 0.5% 0.9% 0.7% 7% 20.8% 8.2% 4.9
SKA2 0.5% 0.5% 0.3% 0.2% 0.2% 0.8% 2.7% 1.3% 8.8

TABLE 3.6: Same as Table 3.5 but for the early-time parameterization. The
last 4 columns correspond to the projection of the errors on E11 and E22 onto
µ, η and Σ, respectively. We have marginalized over E12 and E21 since at
z = 0 they don’t contribute to the Modified Gravity parameters. Notice that
in this parameterization, a GC survey alone is able to constrain both µ and
Σ to a good level for all surveys, better than with the late time parameteriza-
tion, more often used in literature. The combination of GC+WL is however
less constraining in the early time parametrization than in late time parame-
terization one. The reference case for the MG FoM is the Euclid (Redbook) GC
linear forecast (Table 3.4). The non-linear forecast for GC+WL+Planck would
yield, for Euclid and SKA2, contraints at the 1-2% accuracy on µ, Σ, while
for SKA1 the contraints would be at the 8% level. The marginalized contours
for the µ-η plane , comparing these surveys, can be seen in the right panel
ofFig.3.21.

can be attributed to the fact that the combination of GC and WL Fisher matrices
breaks many degeneracies in the parameter space. This is shown in Figure 3.17,
where it is possible to notice how the two probes are almost orthogonal both in
the µ-η- and µ-Σ-plane. Weak Lensing measures the changes in the Weyl potential,
parametrized by Σ, while µ is related to the Poisson equation, and therefore to the
potential Ψ, modified by peculiar velocities and sensitive to Galaxy Clustering; η
can also be written as a combination of µ and Σ (see Eqn. 1.61).

Further improvement is brought by the sensitivity of Galaxy Clustering to stan-
dard ΛCDM parameters; even though GC constraints on Σ and η are not as good
as the ones for Weak Lensing, the better measurement of standard parameters pro-
vided by Galaxy Clustering breaks degeneracies in the Modified Gravity sector of
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FIGURE 3.17: Fisher Matrix marginalized contours (1, 2 σ) for the Eu-
clid space mission in the late-time parameterization using mildly non-linear
scales and the HS prescription. Green lines represent constraints from a
Galaxy Clustering survey, pink lines stand for the Weak Lensing observables,
and orange lines represent the GC+WL+Planck combined confidence regions.
Upper Left: contours for the fully marginalized errors on η and µ. Upper
Right: contours for the fully marginalized errors on Σ and µ. Lower Left:
contours for the fully marginalized errors on µ and Ωb. Lower Right: con-
tours for the fully marginalized errors on Σ and ln(1010As). The fact that
the combination of GC, WL and Planck breaks many degeneracies in the 7-
dimensional parameter space, explains why the combined contours (yellow)
have a much smaller area. Notice that in this parametrization, GC measures
mostly µ and WL constrains mostly just Σ.

the parameter space, leading to narrower bounds for η and Σ with respect to both
probes taken separately. WL is instead not sensitive to modifications of the Poisson
equation for matter and this explains why constraints on µ are not improved by
the combination of the two probes, but are rather dominated by GC. The correla-
tion among parameters can also help us explain the observed results. The Figure of
Correlation, defined in Eq. (2.41), for GC (non-linear HS) alone is 4.9, while for WL
(non-linear HS) the correlation is higher, with FoC = 16.9. When combining both
probes (GC+WL (non-linear HS)) the FoC goes to an intermediate point of 7.6.

Given the constraining power of the GC+WL combination on MG functions,
adding the Planck priors does not lead to significant improvements on the dark
energy related parameters. On the other hand, standard parameters significantly
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benefit from the inclusion of CMB and background priors and we can expect this
to be a relevant factor for MG models with degeneracies with ΛCDM parameters,
e.g. models affecting also the expansion history of the universe. An overview of
the constraints on Modified Gravity described in this section is shown in Fig.3.17,
with Euclid GC, Euclid WL and Euclid GC+WL combined with Planck priors.

3.6.1.4 Derivatives of the Power Spectrum with respect to µ and η

In this section we investigate the derivatives of the power spectrum with respect
to the MG parameters. Using the Jacobians from section 3.2.4, we can convert our
fundamental derivatives ∂P (k, z)/∂Eij to derivatives of ∂P (k, z)/∂(µ, η) evaluated
at z = 0.
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FIGURE 3.18: Derivatives of the matter power spectrum P (k, z) w.r.t. the MG
parameters µ and η in the late-time parametrization.
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FIGURE 3.19: Derivatives of the matter power spectrum P (k, z) w.r.t. the MG
parameters µ and η in the early-time parametrization.

We can see from the previous figures that in the early-time parametrization the
derivative of the power spectrum with respect to η has a similar shape as the deriva-
tive with respect to µ, making η detectable by a Galaxy Clustering survey. To ex-
plain this, we derive the equation governing the evolution of density fluctuations
for a cold dark matter (CDM) species, based on the equations implemented on the
code MGCAMB presented in [136], expressed here in the conformal Newtonian
gauge. In the following, a dot represents derivative with respect to conformal time
τ :

δ̇ = −(1 + w)(θ − 3Φ̇)− 3H(
δP

δρ
− w)δ (3.35)

θ̇ = −H(1− 3w)θ − ẇ

1 + w
θ +

δP/δρ

1 + w
k2δ − k2σ + k2Ψ (3.36)
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For CDM we have σ = w = c2
s = δP/δρ = 0, then:

δ̇ = −(θ − 3Φ̇) (3.37)

θ̇ = −Hθ + k2Ψ (3.38)

We have parameterized the solution to Ψ as:

k2Ψ = −4πGa2µ(τ)ρ(τ)δ(τ) , (3.39)

and since we are also requiring gravitational slip η = Φ/Ψ, we then have the Pois-
son equation for Φ:

k2Φ = −4πGa2µ(τ)η(τ)ρ(τ)δ(τ) (3.40)

Taking the time derivative of (3.37) and using (3.38) and (3.37) to replace θ̇ and
θ, and substituting Ψ from (3.39), we obtain:

δ̈ +Hδ̇ = 3HΦ̇ + 3Φ̈ + 4πGa2µρδ (3.41)

In general, derivatives of Φ appearing on the right hand side will depend on
both µ and η. Their contribution is larger in the early-time parameterization with
respect to the late-time one.

3.6.1.5 Forecasts in Modified Gravity for SKA1, SKA2 and DESI

For the SKA1 and SKA2 surveys (whose specifications are explained in detail in sec-
tion 2.4.4) previous work on forecasting cosmological parameters has been done,
among others, by [34] and [76]. In the latter work, the author parameterizes the
evolution of µ(a) using the late-time parameterization, but also adds an extra pa-
rameter allowing for a scale dependence in µ(a) and including a Planck prior. For a
fixed scale, the 1σ errors on the amplitude of µ lie between 0.045 and 0.095, depend-
ing on the details of the SKA1 specifications, while for SKA2, this error is of about
0.017. This setting would correspond to our GC+WL(linear) + Planck case (see Ta-
ble 3.5) where we find for SKA1 a 1σ error on µ of 0.12 and for SKA2 the forecasted
error is 0.036. Our errors are somewhat larger, but we also have extended our anal-
ysis to let the gravitational slip η be different from 1 at present time, our departure
from µ = 1 at present time is larger by a factor 4 and our linear forecast is conserva-
tive in the sense that it includes less wavenumbers k at higher redshifts, compared
to theirs.

In Figure 3.20 we show the 1σ fully marginalized forecasted errors on the pa-
rameters {Ωm,Ωb, h, `As, ns, µ,Σ} for different Weak Lensing (left panel) and Galaxy
Clustering (right panel) surveys in the late-time parameterization. In the GC case,
the surveys considered are DESI-ELG (yellow), SKA2 (green), SKA1-SUR (orange)
and Euclid (blue). For the WL forecast, we considered Euclid (blue), SKA1 (orange)
and SKA2 (green). These constraints correspond to the ones listed in table 3.5. The
marginalized confidence contours for the µ-η plane , comparing all these surveys,
can be seen in the left panel of fig. 3.21. The 1σ fully marginalized constraints on
the parameters are weaker for WL than for GC, which may be a consequence of
the higher correlation among variables for the Weak Lensing observable, described
in the previous section 3.6.1.3. Comparing the different surveys, the general trend
is that Euclid and SKA2 perform at a similar level for WL at both linear and non-
linear level; for GC and when combining both probes, SKA2 gives the strongest
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FIGURE 3.20: 1σ fully marginalized errors on the parameters
{Ωm,Ωb, h, `As, ns, µ, η,Σ} for the late-time parameterization of MG
obtained by forecasts on Galaxy Clustering (non-linear HS) (top left panel),
Weak Lensing (non-linear HS) (top right panel), the combinations GC+WL
(linear) (middle left) and GC+WL+Planck (linear) (middle right) and the
combinations GC+WL (non-linear HS) (bottom left) and GC+WL+Planck
(non-linear) (bottom right). In the GC case, the surveys considered are SKA2
(blue), SKA1-SUR (green), Euclid Redbook (purple) and DESI-ELG (orange).
For forecasts including WL, only Euclid, SKA1 and SKA2 are included.
Although the 1σ constraints on the standard parameters are overall weaker
for WL than for GC, Weak Lensing surveys perform better on Modified
Gravity parameters. Comparing the different surveys, Euclid and SKA2
perform similarly well for the WL observable alone, if non-linearities are
included. Notice that SKA1-SUR performs better than Euclid on the η and
Σ parameters, because it can measure better at lower redshifts. Including
the Planck prior, the GC+WL combination for Euclid and SKA2 constrains all
parameters at much better than percent accuracy. Detailed specifications of
the different surveys are explained in the text.
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constraints, followed by Euclid, SKA1 and DESI (for GC). Notice that in this pa-
rameterization, a SKA1-SUR GC survey constrains the Σ parameter alone better
than a Euclid Galaxy Clustering survey (although Euclid is overall much stronger
as can be seen with the FoM). This is due to the fact that SKA1-SUR probes much
lower redshifts (from z = 0.05 − 0.85) than Euclid and is therefore suitable to bet-
ter constrain those parameterizations in which the effect of the Modified Gravity
parameters is stronger at lower redshifts; this is the case of the late-time param-
eterization, which is proportional to the dark energy density, dominating at low
redshifts only. This result is reversed in the early time parameterization, in which
Modified Gravity can play a role also at earlier redshifts.
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FIGURE 3.21: 1σ and 2σ fully marginalized confidence contours on the pa-
rameters µ and η, for 3 different surveys combining Galaxy Clustering (GC)
and Weak Lensing (WL): Euclid, SKA1-SUR and SKA2 and for GC only:
DESI-ELG, all in the late-time (left panel) and early-time (right panel) pa-
rameterizations of sections 3.6.1 and 3.6.2, respectively. As explained in the
main text, the constraints are parameterization-dependent, especially on η,
where in the late-time scenario GC alone is not able to constrain it, while in
the early-time scenario GC can constrain both µ and η.

3.6.2 Modified Gravity in the early-time parameterization

3.6.2.1 Galaxy Clustering, Weak Lensing and its combination

We extend our analysis now to an alternative choice, the early time parameteriza-
tion specified in Eqns. (1.64) and (1.65). As before, we use Euclid Redbook specifi-
cations for WL and GC and the cut in scales discussed previously for the two ob-
servables, i.e. a maximum wavelength cutoff at kmax = 0.15 for GC and a maximum
multipole of `max = 1000 for WL in the linear case, and a cutoff kmax = 0.5h/Mpc
and a maximum multipole of `max = 5000 for WL in the non-linear regime, which
is analyzed using the prescription described in Sec. 3.2.2.2. We use the two observ-
ables both separately and in combination, without accounting for cross correlation
of the two (as discussed in section 3.3 this seems to correspond to a conservative
choice), with and without Planck priors.

Results are shown in Table 3.4 and Figure 3.22. The general behaviour of the
constraints is similar to the one in the late-time parameterization, with the combi-
nation of GC and WL able to break the degeneracies with standard cosmological
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parameters, leading to a significant improvement of the constraints on MG param-
eters, constraining µ and Σ at the 1-2% level. There are some other interesting
differences with the late-time scenario. First, the addition of Planck priors does not
really improve much the constraints obtained by GC or WL alone, which was not
the case in the late-time parametrization. This is related to the fact that in the early-
time parameterization, GC and WL (non-linear) on their own are already good at
constraining both µ (at 2-3 %) and η (at around 8%), with consequently small errors
on Σ (≈ 3%). In section 3.6.1.4 we show the derivatives of the matter power spec-
trum with respect to the MG parameters µ and η in both parameterizations. We
can observe that in the early-time scenario, the derivative dP (k)/dη is larger than
in the late-time parameterization, leading therefore to better constraints. Another
difference lies in the correlation among parameters, which for WL and GC+WL is
considerably smaller than in the late-time scenario. The Figure of Correlation (de-
fined in eq. (2.41)) for GC (non-linear HS) alone is 4.7, while for WL (non-linear HS)
the correlation is somewhat higher, with FoC = 7.3. When combining both probes
(GC+WL (non-linear HS)) the FoC goes to an intermediate point of 5.2.

3.6.2.2 Other Surveys: DESI-ELG, SKA1 and SKA2

Also in the early time parameterization we obtain the 1-σ fully marginalized errors
for Galaxy Clustering (top left panel of Figure 3.23) considering DESI-ELG (yellow),
SKA2 (green), SKA1-SUR (orange) and Euclid (blue), and for Weak Lensing (top
right panel of Figure 3.23) using Euclid (blue), SKA1 (orange) and SKA2 (green).
We also report the results in Table 3.6, where it is possible to notice how the con-
clusions drawn on the hierarchy of the considered experiments do not change with
respect to the late-time parameterization. The main difference is that in this case the
full SKA1-SUR GC survey does not constrain the Σ parameter better than the Eu-
clid survey; this is due to the fact that in the early time parametrization, deviations
from ΛCDM are present also at high redshift, therefore we do expect the informa-
tion present at small redshift to be as relevant as the one coming from higher z,
where Euclid performs significantly better than SKA1-SUR. The marginalized con-
tours for the µ-η plane, comparing all these surveys, can be seen in the right panel
of Fig.3.21.

3.7 Modified Gravity in the Effective Field Theory formal-
ism

2 In this section we show some forecasts for the constraints that can be obtained
on the parameters of a simple model within the Effective Field Theory (EFT) for-
malism. We simulate a Galaxy Clustering Euclid survey and test the difference
between applying linear and non-linear power spectra.

The EFT action was presented in section 1.5.3, where we described the 6 free
functions of time that characterize this formalism, which is able to recover all the-
ories of a scalar field plus GR at the linear perturbation level. Following the exam-
ple of the Planckpaper [220], as we have done in the previous two parameteriza-
tions, we will reduce considerably the freedom contained in the EFT Lagrangian.
From the 6 free functions available in eq. (1.57), we will demand that M̄2

3 = M̄2
2 ,

which implies that αT = 0, so that gravitational waves propagate with the speed
of light. In order to remain within the “Horndeski“ class of models, we further

2This section is not contained in the publication [84], but will be the subject of a future work.



92 Chapter 3. Linear and non-linear Modified Gravity forecasts

Euclid

0.84 0.86 0.88 0.90 0.92 0.94 0.96

1.6

1.8

2.0

2.2

2.4

μ

η

GC

WL

GC+WL+Planck

0.84 0.86 0.88 0.90 0.92 0.94 0.96

1.20

1.25

1.30

1.35

1.40

1.45

μ

Σ

0.040 0.045 0.050 0.055
0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ωb

μ

3.02 3.04 3.06 3.08 3.10 3.12 3.14 3.16

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

ln(10
10

As)

Σ

FIGURE 3.22: Fisher Matrix marginalized forecasted contours (1σ, 2σ) for
the Euclid Redbook satellite in the early-time parameterization using mildly
non-linear scales and the HS prescription. Green lines represent constraints
from the Galaxy Clustering survey, pink lines stand for the Weak Lensing
observables, and orange lines represent the GC+WL+Planck combined con-
fidence regions. Upper left: contours for the fully marginalized errors on η
and µ. Upper right: contours for the fully marginalized errors on Σ and µ.
Lower left: contours for the fully marginalized errors on µ and Ωb. Lower
right: contours for the fully marginalized errors on Σ and ln 1010As. Notice
that in this parameterization, GC and WL are able to constrain both µ and η
or Σ on their own.

impose αH = 0. Furthermore, to simplify our model, we will set M̄1
3 = M̄4

2 = 0,
which in terms of the α functions, implies: αM = −αB . Therefore, we will con-
sider a very limited model, which basically reduces to a non-minimally coupled
k-essence model (see [17], for a review). Nevertheless, this model offers an inter-
esting phenomenology that modifies the gravitational potentials at large and small
scales.

In addition to the standard cosmological parameters, we have now just a free
function αM , which can be linked to the operator Ω(a) in eq. (1.57), through:

αM (a) =
a

Ω(a) + 1

dΩ(a)

da
(3.42)

In order to reduce this function in a parametric form, we use a scaling ansatz and
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FIGURE 3.23: Same as Fig.3.20 but for the early-time parameterization (Eqns.
1.64,1.65) The 1σ fully marginalized constraints on the parameters are weaker
for WL than for GC, which is a consequence of the higher correlation among
variables for the Weak Lensing observable.

set αM = αM0a
β , where the subscript 0 indicates the value today. For β > 0 the

modification of gravity decreases in the past. Integrating equation 3.42, one obtains:

Ω(a) = exp

(
αM0

β
aβ
)
− 1. (3.43)

Therefore the free parameters in this case are θi = {Ωm,Ωb, ln(1010As), ns, h, αM0, β}
and as fiducial cosmology we assume the marginalized values obtained through
the analysis of Planck CMB data.

In fig. 3.24, we show the marginalized confidence contours for the our EFT
model, using a Galaxy Clustering Euclid survey, with Redbook specifications. We
can see in fig. 3.24 that the constraints on the β and αm parameters are quite poor if
one uses only linear scales to perform the forecast. Using non-linear scales together
with the non-linear HS prescription, yields constraints which are more than one
order of magnitude better. We see again, as in previous sections, that this effect is
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EFT

Parameter Fiducial

Ωc 0.254
Ωb 0.048
ns 0.969

log(1010As) 3.06
h 0.682
αM 0.01
β 1

TABLE 3.7: Fiducial model used for the EFT parametrization. The parameters
are those allowed by the analysis in the Planck paper [220].

FIGURE 3.24: Fisher Matrix marginalized forecasted contours (1σ, 2σ, 3σ) for
the Euclid Redbook satellite in the EFT model using mildly non-linear scales
and the HS prescription (labeled as nonlin-Zh in the figure). Green lines rep-
resent linear constraints, while blue lines stand for the non-linear forecasts.
Upper left: contours for the fully marginalized errors on αm and β. Upper
right: contours for the fully marginalized errors on αm and h. Lower left:
contours for the fully marginalized errors on αm and Ωb. Lower right: con-
tours for the fully marginalized errors on h and Ωb. It can be seen quite clearly
from these plots that the inclusion of non-linear scales improves radically the
constraints on the model parameters.
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much bigger for Modified Gravity parameters than for standard cosmological pa-
rameters. For example in the case of the combination h-Ωb in the bottom left panel
of fig. 3.24, we see that the improvement when adding non-linear scales is of just
a factor ∼ 2 − 3. The constraints on β and αm are relatively good for a non-linear
forecast, but we have to take into account that we are imposing a very particular
parameterization in eq. (3.43).

We leave for a future work the study of a redshift-binned parameterization
within the EFT formalism.

3.8 Effect of the Hu-Sawicki non-linear prescription on the
forecasts

In this section we show the effect of changing the parameters cnl and s used in
the HS prescription (specified in Eq. 3.1) for the mildly non-linear matter power
spectrum. As mentioned already in Section 3.2.2.2, previous works (see [291, 292,
159]), have fitted the values of cnl and s to match N-body simulations in specific
Modified Gravity models. In all these cases the HS parameters cnl and s have been
found to be of order unity, with cnl ranging usually from 0.1 to 3 and s from about
1/3 to a value of around 2. In the absence of N-body simulations for our models,
we selected our benchmark HS parameters to be cnl = 1 and s = 1, as discussed
in Section 3.2.2.2, which we used for all the analysis presented above. However,
in order to test the effect of a change of cnl and s non-linear parameters on our
estimation of errors on the cosmological parameters, we perform our GC and WL
forecasts on the MG late-time model (Section 3.6.1) also changing one at a time
the values of both HS parameters. We use the following values for our test: cnl =
{0.1, 0.5, 1, 3} and s = {0, 1/3, 2/3, 1}.
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FIGURE 3.25: Effect of the cnl and s parameters on the 1σ marginalized error
of the µ (left panel) and the η (right panel) parameters in the MG late-time
parametrization for a Euclid Galaxy Clustering forecast with Redbook spec-
ifications. The colored contours show the percentage discrepancy when de-
parting from the benchmark case cnl = 1 and s = 1 (marked with a black
arrow) to all other points in the cnl-s space. The red (blue) contours signal the
regions of maximum positive (negative) discrepancy. For example in the left
panel, choosing cnl and s in the red region, will yield a 1σ marginalized error
on µ which is 90% larger than in the benchmark case (see Table 3.3 for the
benchmark forecast). For the standard ΛCDM cosmological parameters (not
shown here) the discrepancy is smaller than 4% for all choices of cnl and s.

In Figure 3.25 we show the percentage discrepancy between the 1σ marginal-
ized error obtained on parameters in the GC non-linear HS benchmark case (see
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FIGURE 3.26: Same as Fig.3.25 but for a Weak Lensing Euclid forecast using
Redbook specifications. In the left panel, choosing cnl and s in the red re-
gion, will yield a 1σ marginalized error on µ which is 60% larger than in the
benchmark case (see Table 3.3 for the benchmark forecast). In the right panel
we see that for the MG parameter Σ the maximum positive and negative dis-
crepancy is only of about 6%. The maximum and minimun discrepancy for
the MG parameter η is of -15% and 50%. This means that the parameter Σ
(defined as the lensing Weyl potential, and therefore directly constrained by
Weak Lensing) is much less sensitive to changes in the non-linear prescription
parameters.

Table 3.3 for the exact values) and the corresponding error obtained by performing
the same forecast with a different value of the cnl-s parameters. In general terms we
see that for the MG parameter µ (left panel of Figure 3.25) the relative difference in
the estimation of the 1σ forecasted errors can lie between 90% (at cnl = 3, s = 0.33)
and -30% for cnl = 0.1 and s = 1.0. The behavior of the contour lines shows us that
for a fixed value of cnl, the forecasted error on the parameter µ remains unaffected.
For η (right panel) the relative discrepancy lies between 40% and -2%. Here, to get
the same 1σ errors on η, one would have to vary both cnl and s. We also tested the
effect on the standard ΛCDM parameters and found it to be smaller than 4% for all
choices of cnl and s. In the case of WL forecasts, we perform the same tests, which
are shown in Figure 3.26. We can observe that the relative discrepancies in the case
of the µ parameter lie between ∼60% and ∼-15%, while for Σ the discrepancy is
considerably smaller. The 1σ error on Σ varies only between ±6%. This is however
a particular effect of choosing Σ, which is the true WL observable. If we perform
this test on η using WL, we will find a stronger discrepancy, that lies in between
∼50% and ∼-15%, similar to the one found for µ.

We can also test the effect of adding these two HS parameters as extra nuisance
parameters to our model of the non-linear power spectrum; therefore, by taking
derivatives of the observed power spectrum with respect to these parameters, we
can forecast what would be the estimated error on cnl and s. Then, marginalizing
over cnl and s would yield more realistic constraints on our cosmological param-
eters, and take into account our ignorance on the correct parameters of the HS
prescription. In Table 3.8 we list the 1σ marginalized constraints on cnl and s for
our benchmark fiducial ( cnl = 1, s = 1) and using the standard fiducial for the
cosmological parameters used previously for the MG late time parametrization.

Taking these HS parameters into account in our Fisher forecast, will automati-
cally change the constraints on the other parameters. For our method to be consis-
tent, we would like this effect to remain as small as possible. In Table 3.8, we list
the same constraints reported in Table 3.3, but obtained marginalizing over cnl and
s at the benchmark fiducial cnl = 1, s = 1. Comparing the two tables, we can see



3.9. Conclusions 97

that for GC the errors on the cosmological parameters remain quite stable, except
for η and Σ; this is understandable since those parameters are not well constrained
by GC alone. For WL, we see a difference of 4 to 7 percent points in the errors on h,
ns and Ωb, while all other errors remain stable, with Σ varying less than 2 percent
points. Remarkably, the combined constraints from GC+WL are even less affected
by the two nuisance parameters. Comparing the Modified Gravity FoM between
the two tables, shows the expected behavior, the MG FoM is reduced when adding
two extra parameters, but the change is very small, of just 0.3-0.5 nits.

Euclid (Redbook) Ωc Ωb ns `As h µ η Σ cnl s MG FoM

Fiducial 0.254 0.048 0.969 3.060 0.682 1.042 1.719 1.416 1 1 relative

GC(nl-HS) 1.0% 2.8% 1.3% 1.1% 2.0% 1.7% 784% 480% 372% 236% 2.4

WL(nl-HS) 6.5% 25% 8.3% 9.1% 19% 25% 46% 6.0% 1680% 899% 4.2

GC+WL(nl-HS) 1% 2.8% 1.2% 1% 1.9% 1.6% 2.6% 1.2% 333% 166% 8.5

TABLE 3.8: 1σ fully marginalized errors on the cosmological parameters and
the two HS parameters cnl and s for a Euclid Galaxy Clustering forecast, a
Weak Lensing forecast and the combination of both in the late-time param-
eterization of Modified Gravity using non-linear scales and the HS prescrip-
tion. In contrast to Table 3.3 (where cnl and s had been fixed to the bench-
mark value) here we include cnl and s as free parameters and marginalize
over them. The MG FoM is computed relative to the same Euclid Redbook
GC linear case, used previously. The errors and the MG FoM show the ex-
pected behavior of adding two nuisance parameters, and remain quite sta-
ble. All other naming conventions are the same as for Table 3.3. Remarkably,
the combination of GC and WL is still able to constrain all Modified Grav-
ity parameters at the level of 1-2 % after marginalizing over the non-linear
parameters.

3.9 Conclusions

We study in this chapter the constraining power of upcoming large scale surveys
on Modified Gravity theories, choosing a phenomenological approach that does not
require to specify any particular model. To this purpose we consider the two func-
tions µ and η that encode general modifications to the Poisson equation and the
anisotropic stress. We study three different approaches to MG: redshift-binning,
where we discretize the functions µ(z) and η(z) in 5 redshift bins and let the val-
ues of µ and η in each of the bins vary independently with respect to the others;
an early-time parameterization, where µ and η are allowed to vary at early times
and their amplitude can be different from unity today; a late-time parameterization
where µ and η are linked to the energy density of dark energy and therefore they
are very close to unity in the past, but they can vary considerably at small redshifts.

We use the predictions of linear perturbation theory to compute the linear power
spectrum in Modified Gravity and then use a prescription to add the non-linearities,
by interpolating between Halofit non-linear corrections computed for the linear
power spectrum for the MG model and for the corresponding GR model (η = µ =
1). We find that the non-linear power spectrum is sensitive to changes in µ and η;
limiting the analysis to linear scales significantly reduces the constraining power
on the anisotropic stress. Using this prescription, we perform Fisher forecasts for
Galaxy Clustering and Weak Lensing, taking into account linear and non-linear
scales. We use the specifications for Euclid (using Redbook specifications), SKA1
& SKA2 and DESI (only ELG). In addition to these surveys we also include Planck
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priors obtained by performing an MCMC analysis with Planck data for the MG
parametrizations considered here.

In the redshift-binned case, we find that in the linear case the µi and ηi pa-
rameters are strongly correlated, while including the information coming from non
linear scales reduces this correlation. We compute a figure of merit (FoM), given by
the determinant of the µ-η part of the Fisher matrix, for the cases examined, finding
that the combination of Galaxy Clustering and Weak Lensing is able to break the de-
generacies among Modified Gravity parameters; as an example the error obtained
with the non-linear prescription on µ (η) in the first redshift bin changes from 7%
(20%) for Galaxy Clustering to 2.2% (3.6%) when this is combined with Weak Lens-
ing, even if Weak Lensing alone is not very constraining for the same parameters.
Overall, constraints are stronger at low redshifts, with the first two bins (0 < z < 1)
being constrained at better than 5% for both µ and η if non-linearities are included
(while the constraints are half as good, < 10%, if we only consider linear scales).

Given the significant correlation between the µi and ηi parameters, we apply the
ZCA decorrelation method, in order to find a set of uncorrelated variables, which
gives us information on which redshift dependence of µ and η will be best con-
strained by future surveys. If one combines GC+WL (Euclid Redbook)+Planck, the
best constrained combinations of parameters (effectively 2µ + η in the lowest red-
shift bin) will be measured with a precision of better than 1%. In the linear case, the
errors on the decorrelated qi parameters are about 2 orders of magnitude smaller
than for the primary parameters, while in the non-linear HS case, the improvement
in the errors is of one order of magnitude. This also shows that applying a decorre-
lation procedure is worth even when non-linearities are considered.

In addition to binning Modified Gravity functions in redshift, we also forecast
the constraining power of the same probes in the case where we assume a specific
time evolution for the µ and η functions. We choose two different and complemen-
tary time evolutions, used in [218] and to which we refer as late-time and early-time
evolution. We investigate also in this case the impact of the non-linear prescription
interpolating between Halofit and the MG power spectrum. For these parameter-
izations we extract constraints on the present reconstructed value of µ, η and Σ,
where the latter is the parameter actually measured directly by Weak Lensing. In
the late time parameterization, in the linear case, µ is mainly constrained by GC
(although poorly, at the level of 17%) while WL constrains directly Σ, the modifi-
cation of the lensing potential, at the level of 9%. Adding non-linear scales allows
to significantly improve constraints down to less than 2% for GC (on µ) and to less
than 5% on Σ for those two probes. Combining probes allows to reach 1 − 2% on
all Modified Gravity values of the µ, η and Σ functions at z = 0.

In the early-time parameterization, we find that including non-linearities allows
to constrain also the η and Σ functions with GC alone at the level of 8% and 5%,
respectively. This is related to the early time deviations from GR allowed by this
parameterization, which are not present in the late time case: a variation in η can
yield a variation of the amplitude of the power spectrum, which can then be mea-
sured in the mildly non-linear regime. Overall, also in this case the combination
of Weak Lensing and Galaxy Clustering leads to errors of the order of 1% on the
values of these functions at present.

Finally, we test the impact on the forecasts given by uncertainties appearing
in the non linear HS prescription, related in particular to the parameters cnl and
s. We find that the errors on the parameters µ and η can vary by up to 90% for
the Galaxy Clustering case and up to 65% for Weak Lensing when we change the
fiducial values of the HS parameters in a region between 0 and 3 for cnl and 0
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and 1 for s. The effect on Σ is quite small, with a discrepancy of ±6% compared
to the benchmark case. Interestingly, when we include these two parameters as
extra nuisance parameters in our forecast formalism and marginalize over them,
the effect is very small and the errors found previously remain stable both for GC,
WL and their combination.

It is clear that limiting the analysis to linear scales discards important infor-
mation encoded in structure formation. On the other hand, a realistic analysis of
non-linear scales would have to include several further effects (baryonic effects,
higher order RSD’s, damping of BAO peaks, corrections to peculiar velocity per-
turbations, higher order perturbation theory in Modified Gravity, just to name a
few), which make our non-linear case an optimistic limit. Therefore, the quantitive
true constraints given by a survey like Euclid will probably lie in between these
two limiting cases.
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Chapter 4

Forecasts for coupled dark energy
in the non-linear regime

4.1 Introduction
1 In section 1.6.1 we introduced the Coupled Dark Energy model, which involves an
extra degree of freedom, associated to a scalar field that provides acceleration and
mediates a fifth force, in addition to gravity, which is felt by dark matter particles
only [284, 11, 13, 213].

In this chapter, we will use N-Body simulations to find fitting functions for a
class of models beyond ΛCDM usually refered to as coupled Dark Energy (CDE).
Semi-analytical non-linear analysis [286, 234] and cosmological N-body simula-
tions within coupled Dark Energy have been performed by many different groups
[41, 178, 185, 80, 37, 207] and their effects on large scale structure formation have
been identified and characterised. The power spectrum, halo mass functions and
concentration, halo spin and sphericity, voids and amount of substructures show
noticeable differences compared to a simple ΛCDM model (see for example [187,
186, 35, 97, 39, 254] and the review article [36]). For a constant coupling, constraints
have been found for a variety of probes [214, 212, 16, 289], with the latest ones dis-
cussed by the Planck collaboration in [88]. Recently there have been attempts to
constrain more general couplings between dark matter (DM) and dark energy (DE)
using large-scale structure [91], CMB [196] or laboratory experiments [130]. Fore-
casts on coupled dark energy using galaxy clustering (GC) and weak lensing (WL)
measurements for future surveys like Euclid have been discussed in [22], but have
been performed using only linear power spectra for the CDE models. The TRG
method has been extended to coupled Dark Energy [233] and to massive neutri-
nos [171]. However the TRG method does not produce a reliable estimation of the
power spectrum for scales larger than k ≈ 0.3h/Mpc, which makes them less suit-
able for forecasts which attempt to extract information on highly non-linear scales.

The CoDECS (Coupled Dark Energy Cosmological Simulations) set of N-body
simulations [37] has shown that CDE models have characteristic and measurable
features in the morphology and history of non-linear structures, such as halos, sub-
halos and voids, and therefore in the non-linear power spectrum.

The aim of this work is to create fitting functions which are valid in the observ-
able regime of non-linear perturbations at all interesting redshifts and reproduce
the subtle effects of coupled dark energy on the non-linear power spectrum while
allowing us to vary the different parameters of the model. We use this to perform
forecasts of cosmological parameters assuming coupled dark energy as the fiducial

1This chapter is based on a publication by the author in: Casas, S., Amendola, L., Baldi, M., Pet-
torino, V. and Vollmer, A.; Fitting and forecasting coupled dark energy in the non-linear regime.
JCAP, 2016, 045 (2016).
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Parameter Explanation Value Reference ΛCDM
A Potential normalization 0.0218 –
α Potential slope 0.08 –

φ(z = 0) Scalar field normalization 0 –
β Coupling parameter {0.05, 0.10, 0.15} –

wφ(z = 0) DE equation of state {−0.997, −0.995, −0.992} −1
σ8(z = 0) Power spectrum amplitude {0.825, 0.875, 0.967} 0.809

TABLE 4.1: The main parameters and normalizations of the three coupled DE
models of the Codecs suite considered in the present work. The last column
displays the corresponding valuem for the reference ΛCDM cosmology.

model, using galaxy clustering and weak lensing as observational tools, as expected
for future surveys like Euclid [167, 18]. We do a careful treatment of errors and sys-
tematics, so that we take into account all errors induced by our fitting functions,
the cosmic emulators and the extraction of the power spectrum from the N-body
simulation into the analysis, systematics related to non-linear effects that affect the
redshift space distortions and the lensing signals. In this way we obtain a conser-
vative estimate on how well a probe like Euclid, will be able to measure a DM-DE
coupling.

4.2 The CoDECS simulations

The CODECS2 suite includes simulated periodic volumes of the universe at dif-
ferent scales and with different physical ingredients (as e.g. simulations with and
without hydrodynamics) in the context of a series of coupled DE cosmologies char-
acterised by various choices of the self-interaction potential V (φ) and of the cou-
pling functions β(φ). The simulations have been performed with a suitably mod-
ified version (see [37] for more details on the numerical implementation) of the
widely-used TreePM N-body code GADGET [252]. Such modified version in-
cludes all the relevant effects that characterise coupled DE cosmologies, from the
modified background evolution to the CDM particle mass variation, the “fifth-
force“ and the velocity-dependent acceleration appearing in equation (1.76).

As already stated above, in this work we will consider – besides the reference
ΛCDM simulation – the subset of CODECS runs characterised by an exponential
potential and by a constant coupling function. This consists of three different cou-
pled DE models with the same potential slope α and with three values of the cou-
pling β = {0.05 , 0, 1 , 0.15}. The short names for these simulations are respectively
EXP001, EXP002 and EXP003. All the models have been built in order to have the
same cosmological parameters at z = 0 consistent with the WMAP7 results [157],
see Table 4.2, with the obvious exception of the value of the equation of state param-
eter w0, that changes from model to model due to the different dynamics of the DE
scalar field. The present observational constraints on the cosmological parameters
have only slightly changed with the latest updated release of Planck data [3] with
respect to the assumed WMAP7 values, and are still good enough for the purposes
of this work, being in good agreement with large scale structure observations. For
what concerns linear perturbations, all cosmologies have been normalised to have
the same statistics (i.e. the same power spectrum shape and amplitude) of density
fluctuations at the redshift of the Cosmic Microwave Background zCMB ≈ 1100. As

2see also the public CODECS database at www.marcobaldi.it/CoDECS/
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Parameter Value
H0 70.3 kms−1Mpc−1

ΩCDM 0.226
ΩDE 0.729
As 2.42× 10−9

Ωb 0.0451
ns 0.966

TABLE 4.2: The set of cosmological parameters used in all CoDECS simula-
tions, consistent with the WMAP7 results.

a consequence of this choice and of the different growth associated with the var-
ious coupling values, all the models will have a different normalisation σ8 of the
linear perturbations amplitude at z = 0. The main features of these models are
summarised in Table table 4.1. We refer to [37] for further details.

For the purposes of the present work, we will employ the matter power spectra
extracted from the CoDECS runs of these cosmologies at different redshifts in or-
der to find a fitting formula that captures with high accuracy the deviations of the
coupled DE nonlinear power spectra from the reference ΛCDM case.

4.3 Extracting the power spectrum at small scales

The power spectrum P (k), is defined as the ensemble average of the density con-
trast in Fourier space 〈δ(k)δ(k′)〉 ≡ (2π)3P (k)δD(k+k′). When trying to extract this
quantity from an N-body simulation, one has to take into account several technical-
ities related to sampling effects which appear as a consequence of treating a discrete
distribution of particles. For more details related to this problem and different so-
lution methods, see [98].

At large scales (or equivalently small k) the power spectrum suffers from un-
certainties due to the finite size of the simulation box, since there are only few
independent modes to sample the signal from. On the other hand, at high k, one is
limited by the resolution of the simulation, since one cannot sample wave modes
smaller than the typical grid size L/N where L is the length of one side of the simu-
lation box and N is the number of particles. This maximum frequency is called the
Nyquist frequency kNy ≡ 2πN/L and modes smaller than this cannot be reliably
measured (this corresponds to the so-called aliasing effect). For the CODECS sim-
ulations used in this work, the Nyquist frequency has the value kNy ≈ 2.2 h/Mpc
at present time.

The power spectrum computation embedded in GADGET-3 that was adopted
in the CODECS simulations employs the so-called folding method developed by
[89] – which is based on [145] – to calculate the matter power spectrum for smaller
scales than the Nyquist frequency. Following this method one ends up with two
separate power spectra, Ptop which is calculated using the simulation particle mesh
(PM) at k . kNy and Pfold which is the folded power valid for k & kNy. In or-
der to provide a single sampling of the power spectrum across kNy the CODECS
project employed a simple interpolation procedure around kNy by averaging the
two power spectra in the region of overlap. However, this might introduce some
spurious features that appear only when considering the ratio of two power spec-
tra P (k) at highly non-linear scales. Although such features are harmless for most
practical purposes, for the aims of the present work it is very important to have ac-
curate ratios of power spectra, since we want to calculate fitting functions that can
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FIGURE 4.1: Ratios of the non-linear matter power spectra of the CODECS
CDE models with an exponential potential, with respect to the CODECS
ΛCDM power spectra, normalized by their respective σ2

8 , evaluated at four
different redshifts and three different coupling constants β. Upper left panel:
z = 0, upper right panel: z = 0.55, lower left panel: z = 1.0, lower right
panel: z = 1.61. The blue line represents the model with strongest coupling
β = 0.15, the yellow line β = 0.10 and the red line the smallest available cou-
pling β = 0.05. In order to be able to observe the net effect of the β coupling
at non-linear scales we have divided each power spectrum by its respective
σ2
8 .

capture the effect of the dark energy - dark matter coupling compared to ΛCDM
and therefore we need to correct for these spurious effects.

We then developed a Python code that finds the optimal interpolation and
matching between the Ptop and Pfold power spectra. By evaluating the first and
second derivatives of the ratios and minimizing abrupt changes, it finds the opti-
mal number of points to be removed from Ptop due to the aliasing error and the
number of points to be removed from the Pfold due to the low sampling error; at
the same time it looks for the optimal linear interpolation weights between them.
Moreover, it cuts off the power spectrum when the shot noise error (Pshot = 1/N )
reaches 10% of the estimated power spectrum. This method improves consider-
ably the convergence of the fitting functions at non-linear scales, allowing us to
reach our accuracy goal of 1-2% (see section 4.4 on fitting functions). In figure (4.4),
the uncertainties on P (k) are plotted, and the shaded region represents the error on
the power spectrum due to the finite number of modes available. The clear jump
present in this shaded region occurs at the scale in which the folded and top level
power spectra have been matched together, which corresponds roughly to kNy.
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4.4 Fitting functions

4.4.1 The net effect of the DM-DE coupling at non-linear scales

We now model the net effect of a coupled DE model with an exponential potential
and a constant coupling on top of a fiducial ΛCDM non-linear power spectrum, by
evaluating the ratio of the non-linear power spectrum of the coupled DE model,
with respect to the one in the ΛCDM model, both extracted from the CoDECS sim-
ulations. In figure (4.1) we show the ratio R(k;β, z) ≡ PExp(k;β, z)/PLCDM (k;β, z)
as a function of the scale k, for four different redshifts z = {0, 0.55, 1.0, 1.61};
each panel contains the curves corresponding to the three available constant cou-
plings in the CoDECS simulations: β = {0.05, 0.10, 0.15}. Since all coupled DE
models have the same amplitude of perturbations at recombination, an increasing
coupling has the effect of inducing a higher linear normalization σ8 of the power
spectrum at z = 0 [37]. Therefore, in order to see the net effect of the coupling at
non-linear scales, each power spectrum ratio has been re-normalized by dividing
each model by its respective σ2

8 , so that at linear scales k . 0.1h/Mpc all the ratios
are unity. The net effect of the fifth force is a “bump” at non-linear scales, whose
amplitude increases with higher couplings and whose maximum is shifted into
higher wavenumbers k for higher redshifts. This extra information imprinted into
the non-linear power spectrum is what we want to use to improve the estimation
of parameters using future surveys. To achieve this, we will fit these curves which
are functions of redshift, physical scale and coupling, using the minimal number of
numerical parameters possible, while keeping the accuracy goal at the 1% level.

4.4.2 Generating the fitting functions

The fact that one can observe a clear trend that relates the amplitude of the signal to
an increase of the coupling, together with a shift of the peak towards larger length
scales when looking at smaller redshifts, is an indication that we should be able
to find a relatively simple fitting formula describing this behaviour, which will be
then a function of z, k and the coupling constant β only.

To perform the fit, we use a least-squares-minimizing technique, using the con-
jugate gradient method [280]. Taking into account the particular form in k-space of
the ratios R(k;β, z) ≡ PEXP (k;β, z)/PLCDM (k;β, z) that we need to fit, we use as
an Ansatz different sigmoid functions to reproduce the particular form of the peak.
For each fitting model, we keep the same functional form for the k-dependence of
R(k;β, z) at all redshifts and for all couplings. We tried 7 different sigmoid func-
tions as fitting models, but we only show the best two models M2 and M7 in table
4.3. All models contain 5 coefficients, which are dependent on the coupling β and
the redshift z: (ai = a0, a1, c, b, k0, with i = 0, ..., 5). The coefficients k0 and b deter-
mine qualitatively the form of the peak to be fitted, while the others control mostly
the shifting and the flattening of the peak.

Each coefficient ai is then fitted using a polynomial in β and z, up to a maxi-
mum of third order in powers of β and z. Polynomials of order 4 and 5 were also
examined, but the gain in goodness of fit was minimal compared to the increase in
the number of free parameters. Therefore, third order polynomials were the best
compromise between complexity and goodness of fit.

The best fitting models were chosen according to their coefficient of determina-
tion (also known as R2-value), which is a statistical measure for the goodness-of-fit
[279]. It can be simply defined as R2 = 1 − Sres/Stot, where Sres is the residual
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Model Name Functional form # of coeff. R2-value

M2 f(k) = 1 + a0 + a1 · k + c · k · arctan((k − k0) · b) 5 0.99996
M7 f(k) = 1 + a0 + a1 · k + c · k · b·(k−k0)√

1+b2·(k−k0)2
5 0.999989

TABLE 4.3: Fitting models M2 and M7 with their corresponding number of
fitting coefficients and their R2-value. Each coefficient a0, a1, c, b and k0 is
fitted as a polynomial in the coupling parameter β and the redshift z. The
R2-value is a measure of the goodness of fit: a value of 1 corresponds to a
perfect fit, while 0 means that the model does not fit the data.

sum of squares (the residual between the data points and the fitting function) and
Stot, which is the total sum of squares and is proportional to the variance of the
data. An R2-value of 1 corresponds to a perfect fit. The analytical expressions for
the best models M2 and M7 are shown in table 4.3, together with their R2-value.
We performed the whole Fisher analysis for both of the models and the results on
the parameter estimation are basically the same (less than half of a percent relative
difference in the estimated final errors).

4.4.3 Fitting functions and cosmological parameters

In order to use the fitting formulae obtained before to forecast cosmological pa-
rameters of the model, we need to assume that the shape of the non-linear coupled
DE signal does not change dramatically if the other cosmological parameters, apart
from β and σ8, are modified by small amounts. This is justified since in the deeply
non-linear regime, the evolution of perturbations is ruled by mode-mode coupling
between high k wavevectors (non-linear k modes are not independent of each other
anymore), which erases most of the information about initial conditions and makes
the shape of the non-linear power spectrum at large k practically independent of
cosmological background parameters, such as ns, Ωb and h. This has been shown
to be the case when calculating perturbatively non-linear corrections to the power
spectrum, see for example [94, 217], but also analyzing the covariance matrix of
non-linear power spectra using a large suite of N-body simulations as was inves-
tigated in [256]. Furthermore, the decoupling of virialized structures in the small
scale regime from the background dynamics of the universe, is one of the corner-
stones of the recently developed effective field theory of large-scale structure [49]
and was also shown to be approximately true using a coarse grained cosmologi-
cal perturbation approach [188]. Since β and σ8 are quantities that affect directly
the linear perturbations and the virialization dynamics and we are only looking
at a particular signal at very small scales, they should be the main parameters de-
termining the shape of the non-linear “bump”. An investigation of how robust
these fitting formulas are, with respect to a change of cosmological parameters,
would need either more high-resolution N-body simulation for coupled DE sce-
narios or the development of a consistent perturbation theory for modified gravity
and scalar-tensor theories that reaches highly non-linear scales.

4.5 Non-linear power spectrum and error estimation

The accuracy of the fitting functions when compared to the original N-body sim-
ulation power spectra is shown in figure 4.2, where the absolute value of the per-
centage error between fitting function and the original power spectra is plotted as a
function of redshift and scale. In this case we show that for the model M7 the error
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FIGURE 4.2: Error contour plot for the fitting functions of model M7 (left) and
M2 (right) applied compared directly to the N-body simulations. We show
that for the smallest coupling constant available in the simulations, β = 0.05,
the error remains below 1% for the scales and redshifts we are interested in.
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FIGURE 4.3: Relative error of the fitting functions Halofit (green) and Cos-
micEmulator (orange) (FrankenEmu) with respect to the CoDECS ΛCDM N-
body power spectra at two different redshifts (solid lines: z = 0, dashed lines:
z = 1.6). While the relative error with respect to the CosmicEmulator remains
below the 5% limit (horizontal red dashed line) for all interesting k-values, the
error compared to Halofit is already bigger than 10% for k & 0.5h/Mpc. Both
the error of our simulation with respect to Halofit and to the CosmicEmula-
tor increase as a function of redshift. The change of trend after the Nyquist
frequency (marked with the vertical grey line) can be attributed to the use of
the folding method for the CoDECS nonlinear power spectra.

remains well below 1% for a coupling constant of β = 0.05 and for the scales and
redshifts we are interested in. For higher couplings the error goes up to a maximum
of 1.5%. For the model M2 the same test gives similar results, yielding <1% error
in all interesting scales and redshifts. We can then expect that when applying these
fitting functions on top of ΛCDM power spectra, the intrinsic error is less than 1%
and the extra sources of error are all given by the N-body simulation spectra and
by the estimators of the non-linear ΛCDM power spectrum.



108 Chapter 4. Forecasts for coupled dark energy in the non-linear regime

Sample variance error z=0

Sample variance error z=1.6

Emulator error z=0

Emulator error z=1.6
Fitting error z=0
Fitting error z=1.6

0.1 0.2 0.5 1.0 2.0 5.0

10
-5

10
-4

0.001

0.01

0.1

k @h�MpcD

ÈRel
a
ti

v
e

E
rr

o
r

o
n

P
HkLÈ

kNykNy�2

5%

FIGURE 4.4: Different sources of error affecting the nonlinear power spec-
trum. Each source of error is shown at two different redshifts, z = 0 and
z = 1.6. The sample variance error (red solid line and blue solid line, to-
gether with their shaded regions) corresponds to the error induced by the
limited number of available k-modes when extracting the power spectrum;
it has a sharp increase at the Nyquist frequency, since there the folded mesh
has fewer modes available than the top level mesh, see section 4.3 for more
details. The fitting error (green and orange dashed lines) corresponds to the
intrinsic error of the fitting functions with respect to an N-body simulation us-
ing the same parameters, calculated in section 4.4. The emulator error (green
and purple thick lines) is the error of the Cosmic Emulator compared to a
ΛCDM N-body simulation from CoDECS (these two lines correspond to the
orange lines of figure 4.3). The relative error increases with redshift and scale
and reaches more than 15% at the Nyquist frequency for the highest redshift.
The vertical grey-dashed lines mark the scales kNy/2 and kNy .

Since the fitting functions shown in the previous section are useful when ap-
plied on top of a ΛCDM non-linear power spectrum, we need to choose an es-
timator for the non-linear ΛCDM P (k). Our tests show that FrankenEmu [132], an
improved version of the original Coyote Cosmic Emulator, performs better than the
revised version of Halofit by [257], which is included in recent versions of CAMB
[176]. While at z = 0 both estimators work similarly well with an accuracy at the
5% level in the BAO range, Halofit performs much worse with increasing redshift
and increasing k, as illustrated in figure 4.3. At z = 0 the Cosmic Emulator shows a
flat error curve for all scales up to the Nyquist frequency, below the error estimated
for Halofit. A comparison between power spectrum estimators and N-body simu-
lations has been performed also in [116], where they found similar results: Halofit
and the Cosmic Emulator perform similarly in the BAO range, but the errors intro-
duced by Halofit is above the 10% level at scales of around k ≈ 1Mpc/h and z & 1.
Therefore, we use the FrankenEmu as the preferred ΛCDM non-linear power spec-
trum estimator for our forecasting purposes. They claim to be accurate at the 1-3%
percent level around the scales of interest and they have performed very careful
resolution tests using hundreds of realizations.

Another source of error is the sample variance error of the power spectrum
when extracted from the N-body simulation. This depends on the number on the
number nmod of independent modes available at each wavevector bin in k and its

given by [115]: σP =
√

2
nmod

P (k). In figure 4.4 it can be seen as a blue shaded region
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marked by a red and blue solid line. For large scales this error is considerable, but
there one usually uses just linear power spectra computed by Boltzmann codes,
like CAMB or CLASS. At k = 0.1h/Mpc the binning error is at the percent level
and decreases rapidly to negligible values, but then it increases again quickly at
k ∼ 2h/Mpc since there the folded mesh for the power spectrum has again only
few modes to sample from, as explained in section 4.3.

The intrinsic error of the fitting function is shown in figure 4.4 as a dashed green
line and it remains well below the 1% level at all the scales of interest.

We include all errors discussed here in our Fisher forecast analysis. It turns out
that they do not affect considerably the results for a survey like Euclid, which will
measure such a high number of galaxies, that the sampling of the clustering signal
will be not affected by small sources of noise in the data.

4.5.0.1 Including sources of error in the Fisher formalism

In section 4.5 we discussed several sources of error affecting the non-linear power
spectrum, the intrinsic errors of the coupled DE fitting functions, mode-binning
errors in the N-body power spectrum and the estimation and interpolation error of
the ΛCDM non-linear power spectrum obtained from the CosmicEmulator. We will
take these sources of error into account in our Fisher forecast analysis by including
them as extra noise affecting the observed power spectrum. The term in square
brackets in eq. (2.26) corresponds to the inverse of the covariance C = P (k, z) +
n(z)−1. The “noise term” n(z)−1 is the number density of sampling points for the
matter power spectrum (galaxies in a survey), which gives us an estimate of the
signal-to-noise ratio we can expect from the forecast: for a higher number density,
the power spectrum is better sampled and more information can be extracted from
it. In order to take into account the theoretical and numerical errors on P (k, z), we
decrease n(z) by a factor that contains the relative errors on P (k, z). In eq. (2.26),
instead of n(z), we then have an “effective” number density:

neff (k, z) = n(z)/(1 + n(z)σ̃p(k, z)) (4.1)

The term σ̃p(k, z) is a scale- and redshift-dependent term which is the square root of
the sum of the relative errors squared. We take into account all error sources which
affect P (k, z) due to different reasons, as explained in section 4.5. One of them is
the difference between our power spectrum estimator and the N-body simulation:
σp(k, z) = (Pnumerical(k, z)−Ptrue(k, z))/Ptrue(k, z). If σ̃p(k, z) = 0 or it is negligible,
the effective number density will be the observed one neff (z) = n(z); otherwise,
neff (z) < n(z), the effective number of sampling points being reduced, together
with the amount of information one can extract from the power spectrum. As long
as n(z)P (k, z) � 1 for all z and k, the sampling will be always good enough to
extract cosmological information from the power spectrum even in the presence of
noise. For the specifications used in this work (see table 2.2 below), n(z)P (k, z) is
larger than 1 in all scales of interest and therefore the theoretical and numerical er-
ror on P (k, z) does not have such a considerable effect on the parameter estimation,
as one would expect naively. We test the inclusion of the effective number density
neff (z) on the Fisher forecast analysis and we find that the relative 1-σ marginalised
errors on each cosmological parameter are between 8% and 15% higher when using
the estimated uncertainties on the power spectrum.
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4.5.0.2 Systematic bias due to uncertainty in the power spectrum

In section 2.4.7 we have detailed the theory on how to calculate the systematic
error bias on our cosmological parameters, when taking into account theoretical
uncertainties on the determination of the non-linear power spectrum.

There we have seen in eq. (2.50) that the systematic-bias Fisher matrix is pro-
portional to the derivative of the power spectrum with respect to the systematic
parameter ψ. For our case, we have then:

∂ψPψ = −Ptrue + Pnum = Ptrueσp(k, z) (4.2)

and we just need to perform eqn. 2.50 with eqn. 2.45 in order to obtain the system-
atic biases on the cosmological parameters.

In the following table 4.4 we present the results on the systematic bias, for a
standard ΛCDM forecast, for different maximum k coverages, up to a maximum k
of 1.1h/Mpc. We will regard as a “true” power spectrum Ptrue, the one obtained by
the Cosmic (Franken) Emulator [132], since they have performed a careful analysis
of resolution effects using a large set of simulations and claim to be accurate for
k < 1.0 h/Mpc at the 1% percent level compared to state of the art N-body simula-
tions. On the other hand, the numerical “biased” power spectrum Pnum, is the one
obtained from the CoDECS ΛCDM run, which consists on only one realization. We
have left out the CDE coupling parameter β, since in that case we do not have any
other prediction in the non-linear regime to compare with.

Parameter h lnAs ns ωb ωc
fiducial 0.7036 2.42 0.966 0.04503 0.2256

kmax = kNy/2 = 1.1h/Mpc
syst. bias with δψ = 1 -0.0016 -0.15 0.061 0.0028 -0.0031
kmax = 0.35h/Mpc

syst. bias with δψ = 1 -0.0094 -0.11 0.045 0.0021 -0.0039
kmax = 0.15h/Mpc

syst. bias with δψ = 1 -0.0032 -0.04 0.018 0.00026 -0.0024

TABLE 4.4: Systematic bias on the ΛCDM cosmological parameters eval-
uated at our fiducial model. The systematic bias is higher when probing
smaller scales, where uncertainties in the non-linear power spectrum are
higher. This highlights the importance of modelling correctly the non-linear
power spectrum in order to analyze data. Using the wrong non-linear power
spectrum produces statistical errors which are larger or of the same order as
the statistical results.

The results of table 4.4 show how important it is to model accurately the non-
linear power spectrum in order to make forecasts and to analyze the upcoming
data of large scale structure surveys like Euclid [18]. The systematic errors on the
cosmological parameters can be bigger than the statistical errors (compare to table
4.6 and figure 4.5 in the results section below). This is the case if, as in our example
scenario, we would use a non-linear power spectrum that is inaccurate by about
10-15% in the non-linear regime at higher redshifts (which was shown in figure
4.3). Therefore, it is well justified to choose for our Fisher forecasts the Cosmic
Emulator as the “true” ΛCDM non-linear power spectrum estimator, since this is
the most accurate predictor up to date. It would still be interesting to know how
robust is the signal of the coupling parameter β with respect to changes in the other
parameters or in the ΛCDM non-linear prediction, but as long as we do not have
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better and faster semianalytic methods applicable to general models of dark energy,
the estimation of systematic biases of extra parameters is an impossible task.

4.5.0.3 Choice of the kmax integration limit in the Fisher formalism

There are at least three ways of setting the maximum k mode used in the Fisher
forecast integration (eqn. 2.26). One common choice is to set a hard cut in k at all
redshifts, and depending if one wants to include or not non-linear effects, this cut
can be taken at linear scales, smaller than k = 0.1h/Mpc, or at non-linear scales
k > 0.1h/Mpc. In the latter case if one is using a power spectrum calculated in lin-
ear theory, one needs to to use some Lagrangian damping correction, as introduced
originally in [245, 246], in order to take into account broadening effects on the BAO
peak induced by the non-linear evolution of densities and velocities. Another op-
tion to cut off the power spectrum is to demand that the variance σ8(z; k) stays
below a specified value at each redshift, therefore implicitly changing the cutoff in
k as a function of z. An usual choice for this is σ8(z; kcut) = 0.25, as was done previ-
ously in [23]. Since we are assuming to have a knowledge of the non-linear power
spectrum up to the Nyquist frequency, we implement for our forecasts a hard-cut
method, at kNy and at kNy/2, without the need of any Lagragian damping correc-
tion. However, to be conservative, we cite as our main results the ones in which
the cut is performed at kNy/2 in order to eliminate any possible unknown contri-
bution from the numerical high-frequency noise entering the estimation of P (k) at
the Nyquist frequency (see e.g. [89, 117] for similar prescriptions on where to cut
the non-linear power spectrum).

4.5.1 Adding non-linear corrections to the power spectrum

We are interested in a Fisher forecast that includes information from non-linearities.
In this case we cannot separate the power spectrum, into a power spectrum at red-
shift zero multiplied by the square of the normalized growth factor, but we need to
evaluate directly the non-linear power spectra P (k, z) at different redshifts. A full
non-linear correction for the redshift space distortions would be also desirable, but
since the modelling of that effect is yet to be understood in general cases, we use as
a first approximation an exponential damping of the form exp(−k2µ2σ2

v), where σv
is the pairwise peculiar velocity of galaxies induced by non-linearities in the matter
and velocity power spectrum. This is the first term of a set of corrections that can
be applied to the Kaiser formula [148] for the clustering in redshift space (see e.g.
[265], [237], [259],[275]). We use a value of σv = 300km/s which is an approximate
and conservative value based on the estimations by [265], in which the authors test
a variety of redshift-space distortion models.

As already mentioned, the damping term, introduced by [245], which should
correct the linear P (k), especially the position of the BAO peaks, for non-linearities,
is not included here, since we assume that we have a complete model of the non-
linear power spectrum and therefore all possible corrections are already included
in our fitting functions and power spectrum emulators.

In order to implement our model of coupled Dark Energy, we use for H(z)
and D(z) tables precomputed using a modified version of CAMB, that includes the
exponential and inverse-power law potentials for coupled dark energy [23, 212].
We calculate these tables for each of the parameters θi±ε, where ε = 0.03.We do the
same for the linear perturbation quantity G(z), whose logarithmic derivative with
respect to ln(a), known as the growth rate f(z) enters the redshift space distortion



112 Chapter 4. Forecasts for coupled dark energy in the non-linear regime

term in 2.28. The background quantities H(z) and D(z) are important in the Fisher
forecast for the Alcock-Paczynski geometrical term, which we take into account in
the observed power spectrum.

The full non-linear power spectrum we use in our method is then obtained as
follows.

• At linear scales k . 0.1h/Mpc the linear power spectrum is obtained from our
modified version of CAMB which includes the effect of the DM-DE coupling.

• At non-linear scales, k & 0.1h/Mpc, we use a combination of the power spec-
trum calculated with the cosmic emulator FrankenEmu and our fitting formu-
las for CDE that account for the non-linear dynamics in presence of a fifth
force.

• The matching at k ≈ 0.1h/Mpc is performed using different interpolation
methods, either averaging on both sides and smoothing out or allowing for a
small discontinuity. The matching point is left out of the Fisher integral and
we check for this effect, showing that the different methods have a negligible
effect (less than 2 percent) on the final absolute errors on the parameters.

• In order to be conservative in terms of numerical errors and noise, we cut
the power spectra at half of the Nyquist frequency (we also test and compare
with a cutoff at kNy) and we include all sources of errors specified in section
4.5.0.1 , as effective noise terms into our Fisher estimation.

4.6 Results

We now present results for galaxy clustering and weak lensing, using the specifi-
cations for a Euclid-like survey as described in tables 4.5, 4.7 and 2.1. We use the
Fisher formalism described in section 2.4 to forecast the errors in the cosmologi-
cal parameters, using information from the non-linear power spectrum for coupled
Dark Energy models, as obtained with the procedure described in section 4.3 to-
gether with the fitting functions obtained in section 4.4. To make our estimation
more realistic, we also take into account all sources of error and systematics for
the power spectrum which were discussed in section 4.5. As a way of testing our
improvement on the parameter estimation, we also perform two extra Fisher fore-
casts, first using only linear power spectra for the CDE model and then correcting
these linear P (k) with the latest version of Halofit [257], which was designed for
ΛCDM only.

The fiducial parameters are ωc = 0.1117, ωb = 0.0223, ns = 0.966, logAs =
−19.8395, h = 0.7036, β2 = 0.0025, which are consistent with WMAP7 results (see
table 4.2). The fiducial values for the galaxy bias b(z) used for the GC probe are
taken from the Euclid specifications (see [18, 167, 201]) For our final results, we
convert these parameters into the set pi = {β2, h, 109As, ns, Ωc, Ωb}marginalizing
over the bias b(z) (for the GC case) and using a Jacobian transformation to convert
into the new set of parameters, which is allowed by the Fisher matrix formalism.
We choose to forecast the error on the square of the coupling parameter β2, because
this is the quantity entering the modified gravitational Newton constant Geff in
the limit of linear perturbations (cf. eq. 1.76), therefore giving the strength of the
“fifth force”. The corresponding fiducial value for the coupling, β = 0.05, is still
compatible with recent limits set by analyzing the data from the Planck Satellite
(see [212, 88]).
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Parameter Value Description
Asurvey 15000 deg2 Survey area in the sky
σz 0.001 Photometric redshift error
σv 300 km/s Fiducial pairwise velocity dispersion
∆z 0.2 Redshift bin width

{zmin, zmax} {0.6, 2.0} Min. and max. limits for redshift bins

TABLE 4.5: Specifications for the Fisher Matrix of an Euclid-like galaxy clus-
tering survey.

Parameter β2 h 109As ns Ωb Ωc

fiducial 0.0025 0.7036 2.42 0.966 0.04503 0.2256
kmax = kNy/2

abs. error 0.000346 0.00160 0.01855 0.00267 0.00084 0.00088
relative error 14% 0.23% 0.77% 0.28% 1.9% 0.39%
kmax = kNy

abs. error 0.000305 0.00151 0.01808 0.00249 0.00081 0.00085
relative error 12% 0.22% 0.75% 0.26% 1.8% 0.38%

TABLE 4.6: 1-σ fully marginalized errors on the cosmological parameters of
the model for a galaxy clustering Fisher forecast. Two cases are presented, a
hard cutoff of the power spectrum at kmax = kNy/2, and a hard cut at kNy .

4.6.1 Galaxy clustering

Table 4.5 shows the specifications of a Euclid-like survey, which are used in our
Fisher forecast. While Euclid specifications use 14 redshift bins of a width ∆z = 0.1
(see [18], table 3 in that work), we use only 6 bins of a width of 0.2. We check in
the case of ΛCDM, that this re-binning (done using the specified number of galaxies
and the corresponding comoving volumes in our cosmology) has a very small effect
(of a few percent) on the estimation of the 1-σ errors on the parameters.

In table 4.6 we show the fully marginalized 1-σ errors on the final cosmological
parameters pi = {β2, h, 109As, ns, Ωc, Ωb}, performing the non-linear power spec-
trum cut-off at two different scales: kmax = kNy/2 and kmax = kNy. As explained
above, we take as a reference result the one corresponding to a cutoff at kNy/2. The
gain in constraining the β2 parameter when going from kNy/2 to kNy is of two per-
cent points in the relative errors, while for the other cosmological parameters the
improvement is negligible.

4.6.1.1 Variation of the kmax integration limit

We now test the gain in information obtained by including progressively more non-
linear wavemodes k into the Fisher integration. We perform the same Fisher fore-
cast, each time increasing the maximum mode kmax at which the integration is cut
off. In figure 4.5 we show how the 1-σ fully marginalized error on the cosmolog-
ical parameters pi changes with an increase of kmax. The error decreases steadily
with an increase of kmax, where the biggest gain is achieved when going from lin-
ear (k ≈ 0.1h/Mpc) to mildly non-linear (k ≈ 0.3h/Mpc) scales. For parameters
like h and Ωb, an approximate plateau is reached already before kmax ≈ 1.0, while
for β2 there is still a considerable gain in parameter constraints when going into
smaller scales, even beyond kNy/2 (consistent with table 4.6 above). This happens,
qualitatively, because at small scales we have a well-defined characteristic signal
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coming from non-linear interactions including the fifth force which itself involves
the β coupling, while the information on the backgorund cosmological parameters
gets washed out (c.f. section 4.4.3 above).

4.6.2 Weak lensing

Table 4.7 shows the specifications for a weak lensing probe in an Euclid-like survey.
The redshift bins are chosen in such a way that they contain an equal number of
galaxies (equipopulated bins). The bins are then given by:
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Parameter Value Description
N 6 Number of redshift bins
zpeak {0.59, 0.75, 0.90, 1.06, 1.28, 1.57} z-position of peak of the bin
wz {0.22, 0.23, 0.25, 0.27, 0.32, 0.51} full width at half maximum of the peak

`cut, k1 {1686, 2070, 2410, 2753, 3155, 4344} cutoff in multipole ` for kmax = kNy/2
`cut, k2 {3372, 4141, 4820, 5506, 6311, 8689} cutoff in multipole ` for kmax = kNy
zrange 0.5 ≤ z ≤ 3 Total range in redshift of each bin

TABLE 4.7: Redshift bins specifications for an Euclid-like weak lensing sur-
vey using equipopulated redshift bins in the range 0 ≤ z ≤ 3 and the corre-
sponding values for the cutoff applied in the multipoles ` at each redshift bin,
for two different cases: scales larger than k1 = kNy/2 and scales larger than
k2 = kNy .

Parameter β2 h 109As ns Ωb Ωc

fiducial 0.0025 0.7036 2.42 0.966 0.04503 0.2256
`cut,kNy/2

abs. error 0.000125 0.00835 0.112 0.0105 0.0032 0.0046
relative errror 5.0% 1.2% 4.6% 1.1% 7.1% 2.0%
`cut,kNy

abs. error 0.000097 0.0068 0.058 0.0085 0.0022 0.0032
relative error 3.9% 0.97% 2.4% 0.88% 4.9% 1.4%

TABLE 4.8: 1σ fully marginalized errors on the cosmological parameters of
the model for a weak lensing Fisher forecast. Two cases are presented, a
redshift-dependent cutoff `cut, kNy/2 and a cutoff `cut, kNy

, corresponding to
cutting off the non-linear power spectrum at the half and at the full Nyquist
frequency (analogously to the GC case) as explained in the main text. As op-
posed to the GC case, going into smaller scales in a WL survey does bring a
noticeable improvement.

ni(z) =
1

2
n(z)

[
Erf

(
z̃i+1 − z
σpz
√

2

)
− Erf

(
z̃i − z
σpz
√

2

)]
(4.3)

where z̃i are the values of the bin intervals in the range zrange = 0.5 ≤ z ≤ 3 chosen
such that for each interval the integral over the galaxy distribution function n(z)
(eqn. 2.32) is equal. The resulting peaks of the bins and their full width at half
maximum are specified in table 4.7.

Analogously to the galaxy clustering case, we show in table 4.8 the fully marginalised
1-σ errors on the parameters pi. The sum over multipoles ` in eq. (2.33) is per-
formed from `min = 5 up to a maximum of `max = 20000, but as explained in
section 3.3.2, we perform a cutoff at each redshift bin, so that no scales in the non-
linear power spectrum beyond the half of the Nyquist (for our reference case) or
beyond the Nyquist frequency (for our second case) contribute to the WL signal.
The values of these cutoffs, `cut for the two different cases k1 = kNy/2 and k2 = kNy
are listed in table 4.7. In contrast to the GC case, going from kNy/2 to kNy in a WL
survey does bring a noticeable improvement on the estimation of parameters.

The dependence of the 1-σ fully marginalized error on each parameter pi with
respect to `max is shown in figure 4.7. When using just linear power spectra in-
formation, the error on the parameters does not improve if one increases the scale
`max, while in the case where non-linear information is used, increasing the maxi-
mum multipole `max improves considerably the 1-σ error on the parameters, espe-
cially on the coupling β2 and on the initial amplitude of scalar fluctuations 109As.
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dashed grey lines mark the `cut at the peak of the first redshift bins for the
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.

This is due to the fact that the extra signal on the coupling coming from the non-
linear part of the power spectrum, the so called “bump”, greatly enhances the con-
straints on the parameter estimation. The double lines corresponding to each pa-
rameter in figure 4.7, show how the error estimation is changed if scales up to kNy
are included (lower line) compared to the upper line where only scales up to kNy/2
contribute. At small ` both lines are on top of each other and only start diverging at
around ` = 2000, when the extra amount of information contained in highly non-
linear scales starts becoming important. The most significant gains occur again on
the parameters β2 and 109As.

4.6.3 Combined results

In figure 4.8 we show the 1-, 2- and 3-σ confidence contours from the Fisher forecast
for WL and GC. These confidence regions for each pair of parameters are obtained
after marginalizing over all the other parameters. As it can be seen, some degenera-
cies are broken when combining the confidence ellipses from two different observa-
tions, for example in the case of the plane Ωb, β

2. Other parameter combinations,
as ns, β2, show the same orientation of the ellipses for WL and GC, so that the
combination of both probes does not help to disentangle the degeneracies. While
GC constraints much better the usual parameters {h, 109As, ns, Ωc, Ωb}, WL con-
strains the coupling parameter β2 much better which can be seen in the vertical
orientation of the ellipses that correspond to β2. Therefore combining the observa-
tions on GC and WL, as a future survey like Euclid will do, is a powerful way of
constraining degenerate parameters in cosmology.

In table 4.9, we cite the 1-σ fully-marginalised errors on the parameters pi for
three different cases: a) using only linear CDE power spectra computed from our
modified version of CAMB; b) applying a non-linear correction to these linear CDE
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Parameter β2 h 109As ns Ωb Ωc
fiducial 0.0025 0.7036 2.42 0.966 0.04503 0.2256

WL: 1-σ abs. error, using:
linear CDE 0.0189 0.040 0.221 0.0139 0.0062 0.0127

linear CDE+Halofit 0.0184 0.044 0.256 0.0109 0.0066 0.0079
non-linear CDE fitting functions 0.000125 0.00835 0.112 0.0105 0.0032 0.0046

GC: 1-σ abs. error, using:
linear CDE 0.0038 0.0097 0.117 0.0176 0.0021 0.0055

linear CDE+Halofit 0.0011 0.0029 0.024 0.0023 0.0007 0.0006
non-linear CDE fitting functions 0.00035 0.0016 0.018 0.0027 0.0008 0.0009
comb. WL+GC: 1-σ error, using:

non-linear CDE fitting functions (abs.) 0.000084 0.0010 0.0169 0.00251 0.00072 0.00080
non-linear CDE fitting functions (rel.) 3.4% 0.16% 0.7% 0.26% 1.6% 0.35%

TABLE 4.9: 1-σ fully marginalized errors on the cosmological parameters for
WL, GC and the combined Fisher matrix WL+GC, using three different power
spectra. Linear CDE: Using only information from the linear power spectrum
for the CDE model up to a scale of k = 0.1h/Mpc. Linear CDE+Halofit:
Using the linear power spectrum for CDE plus a non-linear correction using
the latest Halofit from [257]. Non-linear CDE fitting functions: Using the
fully non-linear power spectra for CDE obtained from the fitting functions
and the emulator as explained in 4.4, which we regard as the most reliable
description of the model in this range of scales. In all these cases we are using
our reference Fisher forecasts corresponding to the cutoff at kNy/2.

power spectra using the latest version of Halofit from [257], which was designed
for ΛCDM-only; c) using the full coupled DE non-linear power spectra computed
with our fitting functions following the procedure explained in section 4.5.1.

This shows the value of using the N-body-calibrated fitting functions on the
coupling β2. Using the proper β-dependent non-linear correction instead of the
standard Halofit correction, the constraints on β2 improve by more than an order
of magnitude for WL and by a factor of order three for GC. This makes very clear
the importance of applying non-linear corrections that depend on the parameter to
be tested.

4.7 Conclusions

The goal of this work is to exploit the cosmological information contained in the
non-linear regime in order to improve parameter estimation from future large-scale
observations. The main obstacle along this road is that we have accurate non-linear
corrections for the matter power spectrum only for ΛCDM and a few other rela-
tively simple variants, but not for the large variety of modifed gravity models that
have been proposed in recent years.

The first part of this chapter has then been devoted to the task of finding cor-
rections to the linear power spectrum in the range of k ≈ 0.1 − 1 h/Mpc for a se-
lected class of modified gravity models, namely coupled dark energy. This model
is indeed one of the simplest possible extensions of Einstein’s gravity and depends
entirely on a single parameter, the coupling constant β (in addition to the stan-
dard ones). Employing the CODECS suite of simulations [37] we build different
fitting function models, such that when multiplied by the ΛCDM non-linear power
spectrum (we use the estimator provided in ref. [132] ) they reproduce the N-body
results to an accuracy of 1%, for scales k between 0.1 and 5 h/Mpc and a range
in z, between 0 and 1.8. To achieve this accuracy in the fitting functions we need
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FIGURE 4.8: Marginalized confidence contour regions (1,2,3-σ) for all cos-
mological parameters considered in this model. The blue dashed lines cor-
respond to the WL Fisher forecast, while the green dashed lines correspond
to the GC Fisher forecast both in our reference case. The red solid lines cor-
respond to the combined Fisher matrix forecast. For combinations of the pa-
rameter β2, WL and GC have similar figures of merit, but different orienta-
tions, while for other combinations of cosmological parameters, the estima-
tion is dominated by the GC Fisher matrix estimation.

to perform a careful extraction and interpolation of the power spectrum from the
simulation mesh.

The accurate fitting functions have been then employed to extend the regime of
validity of the forecasts for future experiments. We focused on a Euclid-like survey
that includes weak lensing and redshift-space distortions (galaxy clustering) and
predicted the constraints in the cosmological parameters, with particular emphasis
on the dark matter-dark energy coupling β. We find that β is better constrained by
weak lensing than by galaxy clustering (contrary to all the other standard parame-
ters). We find that the extension into non-linear scales improves the constraints by
more than an order of magnitude compared to previous results using only linear
power spectra, but also by more than an order of magnitude in WL and a factor of
three in GC compared to using a wrong ΛCDM Halofit non-linear correction. We
also show that using the wrong non-linear power spectrum, can bias systematically
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the estimation of errors on the cosmological parameters, yielding systematic errors
of the same order of magnitude as the statistical ones. This makes very clear that
it is important to include the proper non-linear corrections to the parameter to be
tested, especially for models beyond ΛCDM in which the small-scale gravitational
dynamics are modified.

To make our forecast more realistic, we take into account all known sources of
error entering the estimation of the power spectra and the fitting functions in the
way of a reduced effective number density of galaxies and then perform a conser-
vative cut of the power spectrum at half of the simulation Nyquist frequency, to
avoid other sources of unknown numerical noise affecting the results. In the case
of GC we include also a first approximation to the correction to redshift space dis-
tortions, caused by peculiar pairwise velocities at non-linear scales. We find that a
space probe like Euclid will be able to constrain the coupling parameter β2 around
the fiducial value 0.0025 at 1-σ with a relative accuracy of 14% when using weak
lensing alone, 5% when using only galaxy clustering and at 3.4% when combining
both probes.

It is interesting to note that the most stringest constraint we obtain amounts to
∆β2 ≈ 8 · 10−5; this level of precision on the dark matter-dark energy coupling is
not far from the current best limits reached with Solar System observations on a
coupling to baryons [200], which can be translated in our notation as β2 ≤ 2 · 10−5

at 1-σ.
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Chapter 5

Non-linear power spectra:
resummation for Horndeski
models

As we have seen in previous chapters, non-linearities contain very valuable infor-
mation on the parameters of the model governing the evolution of structures in the
Universe. A proper understanding of the non-linear regime of structure formation
is of fundamental importance in order to be able to analyze future observations of
galaxy surveys and to discriminate between different cosmological scenarios.

Since this has become such an important issue in the last few years, there has
been substantial progress in the theoretical and numerical treatment of non-linearities
for cosmological structure formation. From very advanced N-body simulations
[271, 153, 40, 288, 2, 261], to comprehensive semi-analytical methods [249, 193, 132,
6] and complex resummation and renormalization techniques [93, 95, 66, 67, 217,
216, 206, 192, 26, 24, 241, 81, 260, 59]. There has also been a great advance in new
statistical tools for analyzing non-linear, non-Gaussian cosmic structures, for ex-
ample large deviation statistics [267], Minkowski functionals [199] and separate
Universe methods to extract the squeezed bispectrum [85].

Here we apply for the first time the Eikonal Renormalized Perturbation Theory
(eRPT) developed by [26, 24] and recently refined in [206] to the case of Horndeski
models which were treated in section 1.5.3. In order to do so, we will take some
simplifying assumptions like the quasistatic limit and some specific variations of
the µ and η functions, previously defined in eqs. (1.58) to (1.59).

1 The chapter is organized as follows: In section 5.2 we start from the Vlasov-
Poisson system and write down the fluid equations for a non-relativistic matter
component. Then we show, using the quasistatic limit, which modified gravity
functions we are going to take into account from Horndeski’s theory. In section 5.3
we write down the continuity, Euler and Poisson equations in a unified field no-
tation, which is the basis of our resummation method. Finally in section 5.4 and
section 5.5 we will detail the formalism of the eRPT method, computing the prop-
agator and the evolution equation for the power spectrum, but mostly focusing on
how it is modified in the Horndeski case. At the end of the chapter in section 5.9
we make a short excursion through computational techniques, like N-body simula-
tions and semi-analytical methods, which will be of importance for discussing this
and the next chapter.

1This chapter is based on a publication in preparation by: Casas, S., Pettorino, V. and Pietroni, M.;
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5.1 Growth of perturbations for a Dark Matter component

Before dealing with non-linear perturbation equations in modified gravity, let us
review the derivation of the evolution of the growth factor for a single Cold Dark
Matter (CDM) component in linear theory. This will help us introduce some quan-
tities and relations that we will make use of in the next sections. We will introduce
the quasistatic approximation and then we will find a simple analytic formula for
the growth factor D+(a) of CDM perturbations which will be useful later on. We
will make use of the linearized Einstein equations in the conformal Newtonian
gauge, introduced in chapter 1, where we follow the sign and naming conventions
of the seminal work by [182].

If we transform eq. (1.35) and eq. (1.36) to Fourier space, we obtain in the case
of CDM which has a very simple equation of state w = 0 and vanishing sound of
speed and anisotropic velocity dispersion c2

s = σ = 0:

δ̇(τ,k) = −θ(τ,k) + 3Φ̇(τ,k) , (5.1)

θ̇(τ,k) = −Hθ(τ,k) + k2Ψ(τ,k) , (5.2)

where τ is the conformal time dτ = dt /a and an overdot represents a derivative
with respect to τ .

Derivating the first of the above equations with respect to τ and eliminating θ̇
and θ using both equations, one obtains the second order differential equation for
the density contrast:

δ̈ +Hδ̇ = 3HΦ̇ + 3Φ̈− k2Ψ , (5.3)

for simplicity, we have dropped the arguments of the scale and time dependent
functions.

At this stage we introduce the quasistatic (QS) approximation. In this approx-
imation, the first and second derivatives of the gravitational potential Φ are taken
to be negligible compared to the spatial gradients of Ψ. This is justified since the
potentials vary only at cosmological time scales and we are focusing on evolutions
of the perturbations at subhorizon scales, where aH/k � 1. Now we apply the QS
limit and use the relativistic Poisson equation 1.37 to substitute the Laplacian of Ψ
with a source term that depends on δ:

δ̈ +Hδ̇ = 4πGa2ρ̄mδ . (5.4)

In order to solve this equation, it is easier if we first transform our time variable to
the scale factor a. To do so, we can define some transformations between conformal
time and the scale factor:

H =
ȧ

a
=

da

dt
= aH (5.5)

Ḣ =
ä

a
−H2 (5.6)

d

dτ
= a2H

d

da
, (5.7)

furthermore, from eq. (1.9) and eq. (1.16), we can find the relation:

4πG

H2(a)
ρm(a) =

3

2
Ωm(a) , (5.8)
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where,

Ωm(a) =
H2

0 Ωm,0a
−3

H2(a)
. (5.9)

Finally the transformed equation for δ has the form:

δ′′ +

(
3

a
+
H ′

H

)
δ′ =

3

2

Ωm(a)

a2
δ . (5.10)

This second order differential equation has two solutions: a decaying one, D−(a)
and a growing one D+(a). The decaying solution is δ ∝ H and it can be shown
easily by inspection in the matter dominated case where all the energy is non-
relativistic matter (see [110]). In that case,H ∝ a−3/2 and all terms scale as a−7/2, so
that passing all terms to the left hand side, the coefficients {15

4 ,−9
4 ,−3

2} indeed can-
cel out. It can be shown that this decaying solution is satisfied even if H contains
other energy components. This can be done with the following relation between
derivatives of H and the matter species density fraction:

H ′′(a)

H(a)
+
H ′(a) (aH ′(a) + 3H(a))

aH(a)2
=

3H2
0

(
Ωm,0 + (wDE + 1) (3wDE + 1) ΩDEa

−3wDE
)

2a5H2
,

(5.11)

where for generality, we have taken a wCDM cosmology, with Hubble function:

H2 = H2
0

(
Ωm,0a

−3 + ΩDEa
−3(wDE+1)

)
, (5.12)

and Dark Energy equation of state wDE. With wDE = −1, one can readily transform
the r.h.s. of eq. (5.10) and prove the validity of the decaying solution.

The growing mode of eq. (5.10) can be found by trying the Ansatz u = δ/H and
by using the relation above eq. (5.12), between matter density and derivatives ofH ,
we can find the evolution equation for u:

u′′ + 3

[
H ′

H
+

1

a

]
u′ = 0 . (5.13)

Since there are no terms proportional to u, this can be expressed as a first order
equation of v ≡ u′:

v′ = −3

[
H ′

H
+

1

a

]
v

ln v = −3 ln (aH)

v ∝ (aH)−3 . (5.14)

This can be further integrated to find the growing mode, D+(a) ≡ δ(a) = u(a)H(a)
as the integral:

D+(a) =
5Ωm,0

2aini

H(a)

H0

ˆ a

0

dã

(ãH(ã)/H0)3
, (5.15)

where the proportionality constant has been obtained by enforcing D+ = a at early
matter-dominated times, when H = H0Ω

1/2
m,0a

−3/2, see [110] and aini is the scale
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factor at which the initial condition Ωm(aini) = 1, has been set. In this way, eq. (5.15)
matches exactly the numerical solution of eq. (5.10).
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FIGURE 5.1: Top: growth rate function f(a), calculated by two different
methods. In orange, the Ωγ-approximation, with γ = 5/9, while in green
the exact analytical solution from eq. (5.18). Bottom: Ratio of each of the two
methods to the numerical solution of eq. (5.20), same coloring as before. The
exact and numerical solution agree exactly, while the γ-approximation is fine
at the per mille level.

Usually, this integral in this form can only be expressed analytically for an open
Universe without Dark Energy. However, by doing a further transformation into
e-folding time: N ≡ ln a, we can find a closed analytical expression for the late-
time ΛCDM scenario, with matter and a cosmological constant. In this variable, the
Hubble function looks like:

H(N) = H0

√
Ωm,0 exp (−3N) + ΩΛ,0 , (5.16)

while the integral of eq. (5.15) transforms to:

D+(N) =
5Ωm,0

2aini
H2

0H(a)

ˆ N

−∞

e−2ÑdÑ

H3(Ñ)
. (5.17)

It turns out that eq. (5.17) has a closed analytical solution in the case of a cosmo-
logical constant and a total matter component. It can be expressed in terms of
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Hypergeometric functions as:

D+(N) =
1

aini
eN 2F1

(
1

3
, 1;

11

6
;−e

3NΩΛ,0

Ωm,0

)
. (5.18)

The growth rate which is defined as:

f(a) =
d lnD+(a)

dln a
, (5.19)

and it is usually approximated as f(a) = Ωγ(a), with γ u 5/9, can also be expressed
in terms of Hypergeometric functions, as:

f(N) = 1−
6e3NΩΛ,0 2F1

(
4
3 , 2; 17

6 ;− e3NΩΛ,0

Ωm,0

)
11Ωm,0 2F1

(
1
3 , 1; 11

6 ;− e3NΩΛ,0

Ωm,0

) . (5.20)

It can be shown that f(N) satisfies exactly the growth rate equation, which can be
derived from eq. (5.10) and we express here in terms of the e-folding time N = ln a:

df

dN
+ f2 +

(
2 +

d lnH

dN

)
f =

3

2
Ωm . (5.21)

In fig. 5.1 we show the result for the formulae presented above. In the left panel, we
show f(a) for the γ approximation (orange solid line) compared to the exact f(a)
solution of eq. (5.20). The discrepancy is almost negligible. Notice how at early
times, when most of the energy of the Universe consisted on non-relativistic matter,
the growth rate is equal to unity and it decreases due to the later dominance of Dark
Energy. In the right panel of fig. 5.1, we plot the ratio between the γ-approximation
and the numerical solution of eq. (5.20) in orange solid lines, while in dashed green
we plot the ratio of the exact solution to the numerical one. The latter agrees exactly,
while the γ-approximation is accurate at the per mille level.

5.2 The non-linear fluid equations

In order to study large scale structure (LSS) formation we will treat the Dark Matter
distribution as a perfect fluid of collisionless particles coupled to gravity. These
particles, with positions x, mass m and momenta p, are described by the Vlasov
equation in phase-space, with the phase space density f(x,p, τ) :

df

dτ
=
∂f

∂τ
+

p

ma
∇f − am∇Ψ · ∂f

∂p
. (5.22)

This equation together with the Poisson equation eq. (1.39), form the Vlasov-Poisson
system (see [57]). Since we are interested in the evolution in time of the spatial dis-
tribution, we can take momentum moments of the Vlasov equation. This will yield
an infinite hierarchy of coupled differential equations, where the zeroth-moment
of the phase-space distribution (ρ) is coupled to the first-moment (u), the first-
moment to the second σij and so on (see [57]). For our purposes we will neglect the
anisotropic stress tensor σij , which describe velocity dispersion and anisotropic
pressure. This is the so-called single stream approximation and is one of the main
limitations of Eulerian perturbation theory, since the theory breaks down as soon
as shell crossing and multi-streaming start being important.
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From the first two momentum-moments of the Vlasov equation, giving rise to
the continuity and Euler equations, together with the Poisson equation, we can find
the fluid equations of the system, where we will add from the start two general
terms A(x, τ) and B(x, τ) in real space, which account for modifications of gravity
either in the Einstein or Jordan frames (see [216]):

δ̇(x, τ) +∇ · [(1 + δ(x, τ)) v(x, τ)] = 0 (5.23)

v̇(x, τ) +H (v(x, τ) + [A(x, τ)v(x, τ)])

+ (v(x, τ) · ∇) v(x, τ) = −∇Ψ(x, τ)
(5.24)

∇2Ψ(x, τ) =
3

2
H2(τ)Ωm(τ) (δ(x, τ) + [B(x, τ)δ(x, τ)]) (5.25)

Here, as usual in our notation, τ is the conformal time, and an overdot represents
a derivative with respect to τ . The symbols δc(x, τ) and v(x, τ) are respectively the
matter density contrast and the peculiar velocity. Ψ(x, τ) is the 00-gravitational po-
tential and the functionsA(x, τ) and B(x, τ) are general functions of space and time
that parameterize different cosmologies, for example when particles’ geodesics are
modified, or when there is an extra “fifth-force“ acting between Dark Matter parti-
cles. This can happen due to couplings with a scalar field or more general modifica-
tions of gravity, see chapter 1 for more details. However, in the Jordan frame, where
Horndeski’s theory is formulated, the Euler equation is not modified and there is
only a space-time dependent modification to the Poisson equation, which will be
connected to the scale-time dependent function µ(k, t), defined below and used
extensively in the previous chapter 3. Within this chapter, Ωm(τ) is the function
representing the cold dark matter (CDM) density of the Universe. For simplicity,
we will neglect baryonic matter and neutrinos.

In the following, we will stay within the quasi-static limit, i.e restrict to scales
much smaller than the cosmological horizon (k/aH � 1) and well inside the Jeans
length of the scalar field csk � 1, so that terms containing k dominate over terms
containing time derivatives. So that eq. (5.4) is the equation governing the evolu-
tion of matter perturbations.

For general modified gravity theories, the deviation of the gravitational poten-
tials from General Relativity, can be parameterized with two arbitrary functions
of scale and time: µ(k, a) and η(k, a), as was explained in chapter 1, section 1.5.4.
However, in the quasistatic limit for Horndeski theories, these two functions have
a specific form, given by [21, 53]:

µ(k, a) ≡ − 2k2Ψ

3Ωmδm
= h1

(
1 + (k/k∗)

2h5

1 + (k/k∗)2h3

)
(5.26)

where h1, h3, h5 are functions of time only. A similar expression, with different time
dependent coefficients h2, h4, holds for the gravitational slip η:

η(k, a) ≡ −Φ

Ψ
= h2

(
1 + (k/k∗)

2h4

1 + (k/k∗)2h5

)
. (5.27)

For the remainder of this chapter, we will consider all hi functions as constants in
order to simplify our computations and to show the main effects of MG, without
specifying a model. The scale k∗ is an arbitrary pivot scale, which can be chosen
accordingly. As it can be seen from eq. (5.26) and eq. (5.27), the functions h5 and h3

are degenerate as well as h4 and h5. The ΛCDM case is recovered when µ = η = 1,
which implies h5 = h4 = h3 and an amplitude h1 = h2 = 1.
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Since we are in the QS limit, the only MG function entering the perturbation
equations is µ(a, k). The function η(a, k) could enter the equations if we would
not neglect the derivatives of the gravitational potential Φ, as was shown in chap-
ter 3. In the following we will only consider the scale-dependence of µ, therefore
µ(k, a) = µ(k) (although perturbations require two functions of time and scale to
fully specify the model). In particular, we will test the following cases:

1. Scale independent µ with modified amplitude: h5 = h3 and h1 > 1 or h1 < 1.

2. Scale dependent µ with unity amplitude: h1 = 1 and h5 > h3 or h5 < h3.

3. Scale dependent µ with modified amplitude: h1 6= 1 and h5 > h3 or h5 < h3.

An example of these µ(k) functions is shown in fig. 5.2, where we show the function
µ(k) for three different cases. The solid blue line stands for case 1, in which only
the amplitude of µ changes, but there is no scale dependence. The orange dashed
line in this figure, stands for case 2, in which the amplitude is unity at large scales
and there is a k-dependence at smaller scales. Finally, in dot-dashed-green, we
show case 3 in which both the amplitude and the scale-dependence deviate from
standard GR.
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FIGURE 5.2: Function µ(k) for three different cases specified in the text. The
solid blue line stands for case 1, in which only the amplitude of µ changes,
but there is no scale dependence. The orange dashed line is case 2, in which
the amplitude is unity at large scales and there is a k-dependence at smaller
scales. In dot-dashed-green, we show case 3 in which both the amplitude and
the scale-dependence deviate from standard GR.

5.3 The field notation

We can express eqs. (5.23) to (5.25) in a compact form, known as the field nota-
tion, which was introduced in the literature of standard perturbation theory (SPT)
and renormalized perturbation theory (RPT) (see [57, 92, 216]). To do so, we will
transform eqs. (5.23) to (5.25) into Fourier space. In linear theory, this is a straight-
forward computation, since partial derivatives transform into ∂ → ik. However,
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if we take into account the non-linear terms, these become convolutions in Fourier
space. First we decompose the velocity such that:

v(k) = vθ(k) + vω(k) , (5.28)

where:

k · vω(k) = 0

k× vθ(k) = 0

According to linear theory the vorticity component vω(k) decays with the expan-
sion of the Universe as a−1, so if we assume non-vortical initial conditions, we can
neglect this term and look only at the velocity divergence θ = ik · v, which is now
a scalar function. Inverting this last relation to get: v = − ik

k2 θ, allows us to perform
the Fourier transforms explicitly:

FT {∇ · (δmv)} = +ik

ˆ
d3qd3pδD(p + q− k)

−ip
p2

δm(q, τ)θ(p, τ)

=

ˆ
d3qd3pδD(k− p− q)

(p + q) · p
p2︸ ︷︷ ︸

α(p,q)

δm(q, τ)θ(p, τ)

FT {∇ · [(v · ∇) · v]} = ik ·
ˆ

d3qd3pδD(q + p− k)

(−iq
q2
· ip
) −ip

p2
θ(q, τ)θ(p, τ)

= k ·
ˆ

d3qd3pδD(k− q− p)

(
p · q
p2q2

)
p θ(q, τ)θ(p, τ)

=

ˆ
d3qd3pδD(k− q− p)

(p · q)2p · q
2p2q2︸ ︷︷ ︸
β(q,p)

θ(q, τ)θ(p, τ)

where in the last step we used the symmetry between p and q. The terms marked
with an underbrace, are the ones responsible for the mode-mode coupling:

α(q,p) =
(p + q) · q

q2
= α(−q,−p); β(q,p) =

(p + q)2p · q
2p2q2

= β(−q,−p) (5.29)

Defining a field doublet ϕa, with index a as:

ϕa(k, η) = e−η
(

δm(k, η)
−θ(k, η)/H

)
, (5.30)

we obtain the Euler, continuity and Poisson equations in a compact form:

∂ηϕa(k, η) = −Ωab(k, η)ϕb(k, η) + eηγabc(k,−p,−q)ϕb(p, η)ϕc(q, η) . (5.31)

In the above equation we have defined a new time variable which will prove to be
very convenient for our calculations:

η ≡ ln
a

ain
. (5.32)
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The r.h.s. of eq. (5.31) contains two terms, the first one corresponds to the “linear“
evolution of perturbations, where the Ωab matrix encodes the cosmology depen-
dence:

Ωab(k, η) =

(
1 −1

−3
2Ωm(η)(1 + B(k, η)) 2 + H′

H +A(k, η)

)
, (5.33)

where here the functions B(k, η) andA(k, η) are the Fourier space transforms of the
same functions defined in the Vlasov-Poisson system and encode possible modifi-
cations of gravity. In Horndeski theories under the QS limit, we can identify:

(1 + B(k, η)) = µ(η, k) (5.34)
A(k, η) = 1 . (5.35)

On the r.h.s. of eq. (5.31), the second term represents all the nonlinearities in
real space and therefore non-localities in Fourier space. The γabc functions in this
formalism can be understood as interaction vertices and its non-vanishing compo-
nents are precisely given by the mode-mode coupling functions α and β, defined
in eq. (5.29) :

γ121(k,p,q) =
1

2
δD(k + p + q)α(p,q) γ121(k,q,p) = γ112(k,p,q) (5.36)

γ222(k,p,q) = δD(k + p + q)β(p,q)

In this notation and throughout this chapter, an integration over p,q is understood
and k is always the “external” momentum. The integral symbols will be added
only if they are needed due to possible confusions with the notation.

Equation 5.31 is the starting point for all renormalization and resummation
methods, like the ones introduced by [92, 58, 59, 269, 26, 24]. The linear part can
be easily solved and the function relating the initial primordial density perturba-
tions to the final one, is called the linear propagator and will be studied in section
5.4. The nonlinear part, cannot be solved analytically, nor with a simple numerical
integration. However, a perturbative approach using tools from Quantum Field
Theory can be used to regularize the UV (short wavelength, large k) modes, which
make the higher loop integrals diverge. The failure of standard perturbation theory
is also caused by the fact that the density perturbations (which is at the same time
the perturbation variable) grow with time and increasing wave vector. For this part
we will use the resummation technique of [26] and this will be explained in detail
in section 5.5.

Resumming and renormalizing perturbation theory can help in finding the evo-
lution of the nonlinear power spectrum at small scales and late times, but even if
we could calculate exactly its result at all loop orders, there are still intrinsic limi-
tations given by the starting equations 5.23-5.25. Apart from neglecting vorticity in
the later stages of evolution, the initial equations are derived in the single-stream-
approximation. This means that at a single point in space, the velocity field can
only have one value, therefore no two particles can cross their paths. This condition
clearly breaks down in the virialization regime and even before during late stages
of structure formation, when shell-crossing happens. Resummation methods can
be extended and improved by including these other sources of density power into
the equations in an effective way, see the discussion in [189, 217] and recent results
in the effective field theory of large scale structures [50, 203, 242, 81].

In the following sections, we will show how to solve the linear part of the fluid
equations for a general time and scale-dependent growth (see section 5.4) and then
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we will use these results in section 5.5 to solve the evolution equation of the matter
power spectrum, which will yield the non-linear evolution of the density perturba-
tions.

5.4 The linear propagator

As was explained above, in eqn. 5.31 the non-linearity of the Vlasov-Poisson sys-
tem of equations is fully encoded in the vertex γabc which represents the mode-
mode coupling. Without this term, we recover the linear equation:

∂ηϕa(k, η) = −Ωab(k, η)ϕb(k, η) (5.37)

which is valid for a fully scale and time dependent Ωab. The linear propagator is
the function that connects the initial density perturbations with the final ones, or
in other words solves the above equation (5.37) (see [237] and [26]). The linear
propagator gives the linear evolution of the field ϕa:

ϕa(k, η) = gab(k, η, η
′)ϕb(k, η) , (5.38)

and it has to fulfill following properties:

∂ηgab(k, η, η
′) = −Ωac(k, η) · gcb(k, η, η′)

lim
η′→η

gab(k, η, η
′) = 1ab

gab(k, η, η
′) · gbc(k, η′, η′′) = gac(k, η, η

′′)

5.4.1 The linear propagator in the general case

We can show that the linear propagator can be written in general for the scale and
time dependent decaying (−) and growing (+) modes of the growth rate f±(k, η)
as:

g(k, η, η′) = Θ(η − η′)
[
e
−
´ η
η′ (Ω11+Ω12f+)dx

(
1 0

0 f+(k,η)
f+(k,η′)

)
M+(k, η′)

+ e
−
´ η
η′ (Ω11+Ω12f−)dx

(
1 0

0 f−(k,η)
f−(k,η′)

)
M−(k, η′)

] , (5.39)

where M± are projection operators which we will specify in the following calcula-
tion (see [216] for more details).

If the linear equation eq. (5.37) has solutions of the form :

ϕsol(k, η) =

(
1

f(k, η)

)
ϕ(k, η) , (5.40)

then we can find an equation that describes the evolution of the growth of pertur-
bations. For the index a = 1:

∂ηϕ = −Ω11ϕ− Ω12fϕ = −(Ω11 + Ω12f)ϕ (5.41)



5.4. The linear propagator 131

For the index a = 2:

∂η(fϕ) = f∂ηϕ+ ϕ∂ηf = −Ω21ϕ− Ω22fϕ

⇒ ∂ηf = Ω12f
2 + (Ω11 − Ω22)f − Ω21 (5.42)

⇒ ∂ηf = Ω12(f − f̄+)(f − f̄−) (5.43)

Equation 5.42 is what we usually know as the growth rate equation for f = d lnD/d ln a,
being D the growth factor of density perturbations and in this general case it can
have a time and scale dependent solution. The zeros of eq. (5.43) are given by:

f̄±(k, η) =
(Ω22 − Ω11)∓

√
(Ω22 − Ω11)2 + 4Ω21Ω12

2Ω12
(5.44)

With these equations, we can find the solution of eq. (5.41) and eq. (5.43) as:

ϕ(η) = e
−
´ η
η′ (Ω11+Ω12f)dx

ϕ(η′)

f(η)ϕ(η) = e
−
´ η
η′ (Ω21+Ω22f)dx

f(η′)ϕ(η′)

= e
−
´ η
η′ (Ω11+Ω12f)dx

ϕ(η′)f(η′)
f(η)

f(η′)

One can identify the basis solutions by setting their initial conditions as:

f in± = f̄±(k, ηi) , (5.45)

where ηi is an initial time that can be set at high redshift where the Universe is
approximately Einstein-de Sitter (E-dS), therefore matter dominated.

For E-dS, Ωm = 1 we have very simple background quantities: H′\H = −1/2−
3weff/2 = −1/2, so that the Ωab from equation 5.33 is simply:

Ωab =

(
1 −1
−3

2
3
2

)
, (5.46)

which gives the following initial conditions for the growing u and decaying v
modes:

ua =

(
1
f in+

)
=

(
1
1

)
(5.47)

va =

(
1
f in−

)
=

(
1
−3

2

)
(5.48)

The growing mode will be the mode of interest that we will use in section 5.5, when
we want to calculate the evolution of the power spectrum.



132 Chapter 5. Non-linear power spectra: resummation for Horndeski models

The instantaneous projectors on the two basis solutions are defined as:

M+(k, η)

(
1

f+(k, η)

)
=

(
1

f+(k, η)

)
M+(k, η)

(
1

f−(k, η)

)
= 0

M−(k, η)

(
1

f−(k, η)

)
=

(
1

f−(k, η)

)
M−(k, η)

(
1

f+(k, η)

)
= 0

In this case, the growing projector can be written explicitly by subtracting the de-
caying projector from the unity matrix:

M+(k, η) = 1−M−(k, η) =
1

f− − f+

(
f− −1
f−f+ −f+

)
. (5.49)

For the Einstein-de Sitter case, the projectors do not evolve in time, since ua and va
are constant, and they are given by:

M+ =
1

5

(
3 2
3 2

)
M− =

1

5

(
2 −2
−3 3

)
In the E-dS case, since there is no k-dependence in any quantity and the growing
mode is constant, this would reduce to :

g(η, η′) = Θ(η − η′)
[

1

5

(
3 2
3 2

)
+

1

5

(
2 −2
−3 3

)
e−5/2(η−η′)

]
. (5.50)

5.4.2 The linear propagator in the Horndeski case

Using the same procedure as we employed for the general case, we will calculate
the linear propagator for the Horndeski case, in which the growth factor D is scale
and time dependent. Then the linear propagator can be used to calculate its fully
nonlinear renormalized version, which then is a crucial ingredient of the evolution
equation in section 5.5.

Using eq. (5.26) as the modification of the Poisson equation we can write the
general Ωab matrix as:

Ωab(k, η) =

(
1 −1

−3
2µ(k)Ωm(η) H′

H + 2

)
(5.51)

in this case, the initial conditions from eq. (5.44) are:

f in− = −1

2
(Σ + ω)

f in+ =
1

2
(Σ− ω)

(5.52)
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where ω = 1 + H′
H and Σ =

√
6Y Ωm + ω2 are quite general functions of scale and

time. Inserting this into eq. (5.39), one can find the most general form of the propa-
gator for the Horndeski theory.

For models which are close to ΛCDM, it is more convenient to change the time
variable from η = ln a

ain
to X = ln D(τ)

D(τ=τin) , where D(τ) is the growth function
usually written as the growing solution of the linear density perturbation equation
: δ(τ) = D+(τ)δin. The doublet 5.30 can be redefined as:

ϕ̃a =

(
ϕ̃1

ϕ̃2

)
=

(
e−X δc
−e−X θ

Hf

)
(5.53)

Substituting in the previous equations the derivatives δ′ = eX (ϕ′1 + ϕ1), θ′ =

−eX f(X )H
(
ϕ̃2

(
1 + f ′(X )

f(X ) + H′
H

)
+ ϕ̃′2

)
we get:

ϕ̃′1 + ϕ̃1 − ϕ̃2 − αeX ϕ̃1ϕ̃2 = 0 (5.54)

−ϕ̃′2 − ϕ̃2(1 +
f ′

f
+

1

f
+
H′
H ) + βeX ϕ̃2ϕ̃2 = −3

2
Ωmµ

ϕ̃1

f2

⇒ −ϕ̃′2 −
3

2

Ωmµ

f2
ϕ̃2 +

3

2

Ωmµ

f2
ϕ̃1 + βeX ϕ̃2ϕ̃2 = 0 (5.55)

where we have omitted for notational simplicity the momentum and time depen-
dence. In the last step we used the growth rate equation δ̈m + δ̇m

(
1 + Ḣ

H

)
=

3
2Ωmδmµ, where in this case an overdot represents a derivative with respect to
η = ln a

ain
, since the ′-symbol is now reserved for the X time variable.

Comparing eqs. (5.54) to (5.55) with 5.31, we get the following transformed Ω̃ab

matrix:

Ω̃ab(k,X ) =

(
1 −1

−3
2

Ωm(X )
f2
+(X )

µ(k) 3
2

Ωm(X )
f2
+(X )

µ(k)

)
(5.56)

First approximation: Assuming a constant µ 6= 1

Assuming a constant µ different from 1 and the approximation that Ωm(X )/f2
+(X ) =

1 at late times (which is exact only for E-dS but turns out to be a very good approx-
imation (much more accurately than 1%) for the ΛCDM evolution), we can follow
the steps given above in section 5.4 and obtain the initial growing and decaying
modes:

ua =

(
1
1

)
, (5.57)

va =
−2

3µ

(
1

−3µ
2

)
. (5.58)

Using these modes, we can find the projectors:

M+ =
1

2 + 3µ

(
3µ 2
3µ 2

)
M− =

1

2 + 3µ

(
2 −2
−3µ 3µ

)
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The linear propagator would then have the following form:

g(X ,X ′) = Θ(X − X ′)
[

1

2 + 3µ

(
3µ 2
3µ 2

)
+

1

2 + 3µ

(
2 −2
−3µ 3µ

)
e−

(2+3µ)
2

(X−X ′)
] (5.59)

As a first approximation, we will use eq. (5.59) as the linear propagator, even if we
are treating more general cases where µ(k) is an arbitrary function and Ωm/f

2 6= 1.
This approximation can be justified better in the next section, when we will see that
g(X ,X ′) only enters in the evolution equation of the power spectrum inside the
1-loop quantities, which should contribute only sub-dominantly to the final power
spectrum.

5.5 The Evolution Equation for the Power Spectrum
To do (??)

In this section we are interested in computing the non-linear matter power spec-
trum, which is defined as the two-point correlation function of the density-velocity
doublet eq. (5.30):

(2π)3δ(D)(k + k′)Pab(k; η, η′) ≡ 〈ϕa(k, η)ϕa(k
′, η′)〉 , (5.60)

where δ(D) is the Dirac delta and the power spectrum is a symmetric matrix, con-
taining in the (1, 1)-component, the correlation between density fluctuations, in the
(2, 2)-component the velocity-velocity correlation and the (1, 2)-component is natu-
rally the cross correlation between velocity and density fluctuations. The evolution
equation, which is a Schwinger-Dyson type equation [26, 25], governs the time evo-
lution and the coupling between the modes of the power spectrum Pab(k; η, η′) and
it is given in the eRPT framework as:

∂X P̃ab(k;X ) = −Ω̃ac(k;X )P̃cb(k;X )− Ω̃bc(k;X )P̃ac(k;X )

+Ha(k;X ,Xin)P̃ab(k;X ) +Hb(k;X ,Xin)P̃ab(k;X )

+

ˆ
ds
[
Φ̃ad(k;X , s)Geikbd (k;X , s) +Geikad (k;X , s)Φ̃db(k;X , s)

]
,

(5.61)

where X = ln(D(a)/D(ain)). Notice our different notation, since in the papers
by [26, 25], η is the time variable connected to the growth factor. The first line of
this equation corresponds to the linear evolution equation of the power spectrum
already discussed before. The second and third lines contain the 1PI (one-particle-
irreducible) functions: the so-called self-energy Σab and the mode-coupling term
Φ̃GABab accounting for the contributions at the large- and small-k limits of non-linear
structure formation.

If we transform this equation to η = ln a
ain

, using the variable transformation

∂X/∂η = d lnD(a)
d ln a = f(η), where f(η) ≡ f(N(η)) and the relation between N and η

is given by N = η + ln(ain), we have to transform also the power spectrum since
the field has been redefined (see eq. (5.53)):

P̃ab = e−2X (η)e2η(δa1 +
1

f(η)
δa2)(δb1 +

1

f(η)
δb2)Pab(η) (5.62)
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where we can call this transformation Ξab:

P̃ab = ΞabPab(η) , (5.63)

and its inverse would be:

Ξ−1
ab = e2X (η)e−2η(δa1 + f(η)δa2)(δb1 + f(η)δb2) . (5.64)

However, eq. (5.61) is only invariant under the transformation:

Υab(η) = f(η)Ξ−1
ab = f(η)e2X (η)e−2η(δa1 + f(η)δa2)(δb1 + f(η)δb2) (5.65)

since we also have to transform the derivatives and the Ωab matrix.
Inserting these transformations into eq. (5.61), and generalizing to the case where

the growth rate is k-dependent, f(η, k), we obtain:

∂ηPab(k; η) = −Ωac(k; η)Pcb(k; η)− Ωbc(k; η)Pac(k; η)

+ [Ha(k;X (η, k),X (ηin, k))f(η, k)Pab(k; η)

+Hb(k;X (η, k),X (ηin, k))f(η, k)Pab(k; η)]

+ Υab(η, k)×
ˆ

ds
[
Φ̃ad(k;X (η, k), s)Geikbd (k;X (η, k), s)

+Geikad (k;X (η, k), s)Φ̃db(k;X (η, k), s)
]

(5.66)

The evolution equation as it is written in eqn. 5.61 relies on three different assump-
tions: the power spectrum is well behaved for k → 0, which is in our cosmology
a good assumption, since it behaves just as a power law kn at very large and very
small scales; there is a clear separation of scales between “hard” and “soft” modes,
or in other words, the eikonal limit is fulfilled. This means that the modes k we are
interesting in are much bigger than the internal coupling modes p, q. The third as-
sumption is of course the single-stream approximation, which is used in all forms of
resummed and renormalized perturbation theories in cosmology as was explained
already in section 5.2.

The purpose of this work is to solve eq. (5.66) for the Horndeski models stated
above in section 5.2. We will proceed in three different steps of increasing complex-
ity.

• First approximation: include inside the Ωac(k; η) functions, the full scale de-
pendence of the parametrized Horndeski models. These terms will have a
dominant effect on the evolution of P (k). We will use the linear propagator
for a constant µ case and the 1-loop integrals will be calculated within the
standard ΛCDM model.

• Second approximation: Here, we will use the Ωac(k; η) functions in the Horn-
deski case, compute a linear propagator for a varying µ, but we will still keep
the 1-loop integrals within the standard ΛCDM model.

• Third approximation: In this case we will also include the modification given
by µ into the calculation of the 1-loop integrals, by taking into account a con-
stant µ 6= 1.



136 Chapter 5. Non-linear power spectra: resummation for Horndeski models

5.6 The 1-loop integrals in the Horndeski µ 6= 1 case

Now we give the general expression for for the 1PI functions Σ
(1)
ab (k;X ,X ′),Ha(k;X ,−∞)

and Φ
(1)
ab (k;X ,X ′), appearing in the evolution equation (5.66) and computed at

1-loop in eRPT for the Horndeski case. In this section we define the constant:
Y ≡ µconst 6= 1, to specify that we are just looking at constant values of µ, different
from unity.

The general expression for Σ
(1)
ab (k;X ,X ′) is given by (see [26]):

Σ
(1)
ab (k;X ,X ′) =

4eX+X ′
[ˆ

d3q γacd(k,−q,q− k)uc

P 0(q)ueγfeb(k− q,q,−k)gdf (X ,X ′)
] (5.67)

Inserting for gab the linear propagator from 5.59 and the coupling vertices γabc
from 5.36 we have to perform an the angular integration of d3q, in order to get
the H1(k;X ,−∞), H2(k;X ,−∞) functions. These are the time integration of the
Σ

(1)
ab (k;X ,X ′) quantities in the internal time s from minus infinity to the external

time η:

H1(k;X ,−∞) =

ˆ η

−∞
dsΣ

(1)
1b (k;X ,X ′)ub (5.68)

H2(k;X ,−∞) =

ˆ η

−∞
dsΣ

(1)
2b (k;X ,X ′)ub (5.69)

We will name them with a subscript Y , denoting that these are the quantities com-
puted for Horndeski Y ≡ µconst 6= 1. They have the following form after perform-
ing the time integrations:

H1Y (k;X ,−∞) = − πk3e2X

3(3Y + 4)

ˆ
dr
[
16 + 3Y

(
3r4 − 8r2 + 1

)
− 9Y

2r

(
r2 − 1

)3
log

∣∣∣∣1 + r

1− r

∣∣∣∣ ]P 0(kr)

(5.70)

H2Y (k;X ,−∞) = − πk3e2X

3(3Y + 4)

ˆ
dr

[
−9Y

r2
+ 9r2µ+ 4(9Y + 4)

− 9Y

2r3

(
r2 − 1

)3
log

∣∣∣∣1 + r

1− r

∣∣∣∣ ]P 0(kr)

(5.71)

The third line of the evoution equation eq. (5.66) contains the mode-coupling func-
tion, which is obtained by integrating the counter-term 1-loop quantity (see [26]):

Φ̃
(1)
ad (k;X ,X ′) = 2eX+X ′

ˆ
d3qγacd(k,−q,p)ucP

0(q)ud

× ueP 0(p)ufγbef (k,−q,p) ,

(5.72)
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together with the renormalized propagator from Crocce-Scoccimarro (see [96]), namely
ḠLbd(k; η, s). This integral can be expressed as:

ˆ
ds
[
Φ̃ad(k;X , s)ḠLbd(k;X , s) +ḠLad(k;X , s)Φ̃db(k;X , s)

]
= Φ̃GAab(k;X ) + Φ̃GBab(k;X ) ,

(5.73)

where the B terms are (for any indices a and b):

Φ̃GBab(k;X ) = uauby
2

(√
π

2

(
2y2 + 1

)
Erf(y) +

(
e−y

2 − 2
)
y

)
P 0(k) (5.74)

This expression, Φ̃GBab(k; η), has to be switched off in the small k-limit since it con-
tains 2-loop expressions valid only at large k, therefore it has to be “filtered” by a
momentum-cutoff function:

Φ̃GAab(k; η) +
(k/k̄)4

1 + (k/k̄)4
Φ̃GBab(k; η) (5.75)

The k̄ quantity can be set to a reasonable scale at which the large scale expression
starts to be applicable, usually we can set here k̄ = 0.2h/Mpc. The A terms are not
the same for each component a, b, they read:

Φ̃GA11 = y(Φ
(1)
11 − Φ

(1)
11 )B(y2;W )

+

√
πErf(y)

W + 1
(Φ

(1)
11 W + Φ

(1)
12 ) ,

(5.76)

Φ̃GA12 =
yB12(y2;W )

(1 +W )2(2 +W )
(Φ

(1)
12 − Φ

(1)
22 −W (Φ

(1)
11 − Φ

(1)
12 ))

+

√
πErf(y)

2(W + 1)
(W (Φ

(1)
11 + Φ

(1)
12 ) + Φ

(1)
12 + Φ

(1)
22 ) ,

(5.77)

Φ̃GA22 =
yW

(W + 1)2
(Φ

(1)
22 − Φ

(1)
12 )B(y2;W )

+

√
π

(W + 1)
Erf(y)(Φ

(1)
12 W + Φ

(1)
22 ) .

(5.78)

Here we have introduced for simplicity a new variable W = 3
2Y and we have used

the combination of generalized Hypergeometric functions:

B(y2;W ) = 2F2

(
1

2
, 1;

W

2
+ 1,

W

2
+

3

2
;−y2

)
(5.79)

+
W + 1

W + 2
2F2

(
1

2
, 1;

W

2
+

3

2
,
W

2
+ 2;−y2

)
(5.80)

− 1

W + 2
2F2

(
1,

3

2
;
W

2
+

3

2
,
W

2
+ 2;−y2

)
(5.81)
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B12(y2;W ) = (2 +W ) 2F2

(
1

2
, 1;

W

2
+ 1,

W

2
+

3

2
;−y2

)
(5.82)

− 2F2

(
1,

3

2
;
W

2
+

3

2
,
W

2
+ 2;−y2

)
(5.83)

Assuming a general scale-dependent function µ(k) would turn out impossible
to find an analytic expression for the 1-loop quantities A numerical implementation
of this method would be too computationally expensive for the possible insight
gained. Therefore, using the fact that the µ function behaves as a step function
in ln k, having a well defined minimum and maximum value, we can use simply
a constant at both extreme scales and check its effect on the 1-loop corrections.
Besides, we will focus on viable alternatives to ΛCDM, in which µ can differ from
unity by about 15-20%.

5.7 Preliminary Results

Equation eq. (5.66) is the main equation we want to solve and it represents a cou-
pled differential equation in time of three independent components, for each exter-
nal momentum k that we want to compute. Therefore, if we want to calculate the
power spectrum on a grid with 100 points in k-space, we need to solve 100 times a
differential equation. For this reason, parallelizing the numerical implementation
plays an important role.

In our numerical implementation, we first compute the linear growth function
for a specific Horndeski model, using eq. (5.56) and the corresponding linear propa-
gator. With it we obtain the growth rate and the growth factor, which are then used
to calculate terms in the 1-loop integrals. The initial power spectrum at a high red-
shift (z ≈ 100) is obtained from CAMB (see [177]) and it is evaluated at 100 points
in k-space. Finally, we compute the 5.61 for each k mode in a parallel evaluation
in Wolfram Mathematica. The computing time to evaluate the power spectrum
up to z = 0, using 4 cores on a personal computer, is of about 30 seconds.

Now we will show preliminary results for a Horndeski model which we will
label as YB1, and has h1 = 1.0, h5 = 1.15 with a pivot scale k∗ = 0.9h/Mpc. See
eq. (5.26) for the definition of the coefficients entering µ.

In figure fig. 5.3 we show how the growth factor changes as a function of scale
k. In the Horndeski model chosen here, we see that for non-linear scales, k & 0.1,
the growth is suppressed at high redshifts z & 1. For the same model, we can
compare how the fσ8 curve would behave if we include linear or non-linear cal-
culations. This is shown in fig. 5.4, where we are using the data points from [183],
which consist on redshift space distortion (RSD) measurements of the cosmologi-
cal growth rate, f(z)σ8(z), using data from the 6dFGS, BOSS, LRG, WiggleZ, and
VIPERS galaxy redshift surveys. The solid red and blue lines, stand for a linear cal-
culation of fσ8 at k = 0.01h/Mpc and k = 0.2h/Mpc, respectively. The green line
with dots, is a non-linear calculation at k = 0.01h/Mpc. We see that the inclusion
of non-linearities can play an important role. This simplified Horndeski model,
would be still compatible with the data points shown in red.

Finally, we show in fig. 5.5, for the same Horndeski model YB1, its non-linear
power spectrum vs. the one in ΛCDM, with the same cosmological parameters. As
a reference, we also show the input linear power spectrum, extrapolated to z = 0,
using linear theory. We can see that the model YB1 (blue line), has a 1% higher
power spectrum at scales k ≈ 0.1, compared to ΛCDM, increasing up to 5% at k '
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FIGURE 5.3: Comparison between the growth factor D+(z, k) in a Horndeski
model at different scales k to the one in the ΛCDM case, with equal cosmo-
logical parameters. In this model, for non-linear scales k & 0.1, the growth is
suppressed at high redshifts z & 1.

FIGURE 5.4: For a simple Horndeski model YB1, we show the fσ8 in three
different cases. The solid red and blue lines, stand for a linear calculation of
fσ8 at k = 0.01h/Mpc and k = 0.2h/Mpc, respectively. The green line with
dots, is a non-linear calculation at k = 0.01h/Mpc. The red data points, are
taken from [183] and include data from the 6dFGS, BOSS, LRG, WiggleZ, and
VIPERS galaxy redshift surveys.

0.5. As we have seen in previous discussions in this dissertation (see chapter 3 and
chapter 4), this is an effect that can be measured by future galaxy redshift surveys.

5.8 Summary

In this chapter we have shown first of all how to obtain the linear and non-linear
equations governing the density perturbations of a Cold Dark Matter (and there-
fore, non-relativistic) component, under the influence of gravity.

For the linear theory, we have shown in section 5.1 that there are several ways
to tackle the problem and that the growth of perturbations can be even solved ana-
lytically, see eq. (5.18).
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FIGURE 5.5: For the simple model Horndeski model, YB1, we show its non-
linear power spectrum (blue lines) P (k), compared to the ΛCDM case (red
lines), with the same parameters. The green thick line is the linear input
power spectrum. The ratio to ΛCDM is shown in the inside box, where the
red line is ΛCDM and therefore equal to 1, while the blue line is the model
YB1. The maximum difference to ΛCDM is of the order of 5% at scales k ' 0.5.

For the non-linear theory, we have shown that the full set of fluid equations
complicates considerably. As we have seen, there has been a tremendous progress
in the treatment of these equations in the last 10 years and many different and
complimentary techniques have been developed.

Here we chose a specific resummation technique called eikonal Renormalized
Perturbation Theory (eRPT, see [26] and [206]) and we applied it for the first time
to Horndeski models of modified gravity within the quasistatic approximation. We
have been able to compute the linear propagator and the 1-loop integrals in a spe-
cific case and we have produced the first numerical results. As already stated in
the introduction, this is work in progress and the results still have to be confirmed
and checked against N-body simulations and other semi-analytic methods. In re-
cent years there has been substantial progress in this direction, with more N-body
simulations and semi-analytic methods capable of calculating structure formation
in modified gravity theories (see, [40, 288, 193]). Moreover, we will also profit
from the recent development of Boltzmann codes like EFTCAMB by [139] and HI-
CLASS by [296] that can provide us with a more exact initial power spectrum in
the models we are studying here.

5.9 Excursion into other computational techniques: N-body
simulations

As we have seen repeatedly in the previous chapters, non-linear structure forma-
tion is of extreme importance for the era of precision cosmology. In order to connect
our analytic and semi-analytic methods presented in chapter 3 and chapter 5 with
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a fully non-linear N-body treatment discussed in chapter 6 below, we will review
in this section some of the fundamental properties of N-body simulations.

The progress in this field has been impressive and nowadays N-body codes are
capable of simulating trillions of particles [272, 168, 225, 9], including not only grav-
itational physics, but also star formation, galactic and supernova feedback, mag-
netic fields and many more complicated astrophysical phenomena (see the simula-
tion in [272], among many others in this field).

2 To perform an exact evolution of the density fluctuations, beyond linear per-
turbations, the density field has to be represented by a set of fictitious discrete par-
ticles with a certain mass. These particles do not represent real galaxies or clusters
of galaxies, they just sample the underlying density field. For current cosmological
simulations, depending on the desired resolutions, the particle masses are around
mp ≈ 109 − 1012M� (M� = 1 solar mass = 1.99× 1030kg), see [161].

The equations of motion for each particle depend on solving for the gravita-
tional field due to all the other particles, finding the change in particle positions and
velocities over some small time step. Then, particle positions and velocities have to
be updated and the gravitational potentials have to be recalculated in order to start
a new iteration. For cosmological simulations, where we suppose the Universe to
be isotropic and homogeneous at large scales and described by a smooth FLRW
metric, we use the fact that at smaller scales the Universe must tend to locally in-
ertial frames where Newton’s laws are valid. Therefore we can just use Newtonian
dynamics and the expansion history of the Universe is taken into account by using
comoving coordinates, where the expansion rate a(t) is factored out (see [205, 105]).
As was mentioned in [87], standard cosmological simulations can be expressed by:
"Friedmann tells space how to curve and Newton tells matter how to move".

Nevertheless, in the past couple of years, there has been an increasing interest
in fully general-relativistic codes, either imposing an FLRW metric and treating
the equations perturbatively ([2]) or solving the full non-linear equations, without
imposing any background in a numerical-relativity framework (see [121]).

Writing down the equations of motion for collisionless particles, we obtain for
the comoving velocity u the following relation:

d

dt
~u = −2

ȧ

a
u− 1

a2
∇Ψ (5.84)

where Ψ is the Newtonian gravitational potential due to density perturbations. If
we change the time variable from t to a we obtain:

d

dln a
(a2~u) =

a

H
~g =

G

aH

∑
i

mi
~xi − ~x
|~xi − ~x|3

(5.85)

We see that in order to get the gravitational acceleration for one single particle,
we have to sum the contributions from all other particles, which leads to the exact
solution, but it is computationally prohibitive for a large number of particles, since
the number of needed computations grows as O(N2).

Since we have only finite resources for computation, we need to calculate the
particles in a finite box of size L and a finite number of particles N . In this case the
walls of the box would break our desired homogeneity and isotropy, therefore we
need to introduce periodic boundary conditions, such that the cubic box is actually

2Parts of the following text have appeared as part of papers by the author (see authorship decla-
ration) and as part of the author’s Master thesis, submitted at the University of Heidelberg, 2013.
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a 3-torus, where the walls on opposite sides are identified. Then the gravitational
potential can be described as (Dehnen and Read [105]):

Φ(x, t) = −G
∑
n

ˆ
dx′

ρ(x′ + nL, t)

|x− x′ − nL| (5.86)

where the sum is performed over n = (Nx, Ny, Nz) and accounts for all periodic
replica. Usually all the Ni are the same in all directions. Because of the fact, that
performing an infinite sum of replicas is in practice not possible, the sum is ap-
proximated using Ewald’s method (see [113]), which was originally developed for
periodic crystals in solid state physics and was first adapted to this field by [134].

The gravitational Newtonian force has a singularity when two particles ap-
proach too close to each other, that is why a so-called softening term has to be
added to the force equation in order to avoid unphysical accelerations during close
encounters. The force can be modified for small distances to something like (see
[266]):

~Fi = −
∑
j 6=i

Gmimj
~xi − ~xj(

|~xi − ~xj |2 + ε2
)3/2

(5.87)

where ε > 0 is the softening or smoothing length, which is a typical size below
which the gravitational interaction is suppressed. In current cosmological N-body
simulations, the softening length is found to be: 1.0h−1kpc ≤ ε ≤ 150h−1kpc. The
choice of gravitational softening length is a difficult one, since making it too small
increases computational effort (due to smaller time steps), but allows for more real-
istic gravitational potentials and on the other hand it introduces spurious two-body
relaxation effects that can cause artificial fragmentation of structure (see [161] and
references therein).

Many alternatives to direct summation of forces, have been developed in the
last 20 years, also using hybrid approaches. The most relevant ones for our pur-
poses are the following (see reviews by Trenti and Hut [266], Dehnen and Read
[105], and Kuhlen, Vogelsberger, and Angulo [161]):

• Particle Mesh PM: Since the problem is to solve Poisson’s equation, a faster
approach is to use Fourier methods for discretized systems, such as the Fast
Fourier Transform (FFT) and solve directly for Poisson’s equation in Fourier
space:

(∇Ψ)k = −iΨkk =
−i4πGa2ρ

k2
δkk (5.88)

Then we can eliminate the matter density in terms of Ωm and for a given
particle, the equation of motion would be:

d

dlna
(a2u) =

∑
Fkexp(−ik · x), Fk = −ikΩmHa

2

2k2
δk (5.89)

By interpolating the density field ρk over a finite grid, one can solve Poisson’s
equation and then use the FFT again to calculate the forces and velocities on
the particles. The complicated part of the algorithm is the assignement of
the mass of the particles onto the grid cells and then interpolating back the
evaluated force onto the particles, for consistency the same procedure has to
be used for both these steps. Particles do not interact with each other but only
through the mean field, which causes that the maximum force resolution to
be limited to about the size of the mesh. The computational advantage of this
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method is that the number of computations is now of the orderO(Ng ln(Ng)),
for Ng the number of grid cells.

• Particle-particle-particle-mesh P3M : Since PM codes are gravitationally
softened below the mesh size and the resolution is therefore low, this hybrid
method uses a coarse grid to calculate forces at larger scales between distant
cells and for particles in the same or neighbouring cell, a direct sumation be-
tween particles is performed, increasing the force resolution, but also in some
way the computational time, if there is a strong clustering of particles.

• Adaptive Mesh Refinement AMR: The dynamic range of particle-mesh codes
can be increased by using instead of a static grid, an adaptive one, which has
more concentrated grid elements in the high density regions, where the forces
are also more varying and stronger. This allows to truncate the error to the
desired precision level by refining the mesh at specific points. The compli-
cated part of this method is to match the solution at the grid interfaces, where
they might change drastically. Since the force softening can change along a
particle’s orbit, this method can lead to an unphysical violation of energy con-
servation. To accelerate the calculation of an AMR code, one can evolve the
particles asynchronously, leaving the particles in the coarse grid, while evolv-
ing with smaller time steps the ones in the finer grid and using the coarser
grid potential as a boundary condition.

• Tree Codes: If close encounters are not important and the force contribu-
tions from distant particles do not have to be calculated at high accuracy, this
method is well suited for cosmological simulations. The simulation box is
split into eight cubic cells, containing a determined number of particles, each
cubic cell containing fewer than nmax number of particles is split again into
eight cubic child cells of half their parent’s particle size. This results in a
tree-like binary (oct) hierarchy of cubic nodes, containing the root box (that
contains all N particles) at his bottom. For each cubic cell, the total mass and
center of mass is calculated and stored as an information on the node. Then at
the moment of calculating the force acting on a particle at position ~x, one just
adds the contributions from different cells with center of mass ~za, depending
on some opening angle: sin(θ) = |~x− ~za| /wa, where wa is the linear size of
the box (this is the easiest approximation, for a formal derivation of the tree
code, using taylor expansions and multipoles, see [105, 253]). If the open-
ing angle is bigger than wanted, one applies the algorithm to the daughter
cells. In this way one gets the contributions from all possible groups of parti-
cles. This method offers a computational time that scales like the depth of the
tree, therefore being of order O(N ln(N)), which is similar to the above men-
tioned methods. For nearby particles, a standard particle-particle interaction
is calculated. The complicated aspect of the tree method is, among others,
how to visit each cell only once, in a highly parallelizable way. Really effi-
cient methods have been developed, using Peano-Hilbert curves, such as in
the GADGET-2 code, which is a Tree-PM code (see [252]). A drawback of this
method is that each interaction is only one-sided, meaning that the force of a
single particle on the group of particles of a distant cell is not calculated and
therefore Newton’s third law is violated. This can lead to fluctuations in the
total energy of the N-body system, but it has been shows that these spurious
effects can be kept quite small (see [105]).
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Chapter 6

Dynamics of neutrino lumps in
Growing Neutrino Quintessence

In section 1.6.2 we introduced the Growing Neutrino Quintessence model, as a
viable alternative to the ΛCDM scenario, which can alleviate the “why-now“ prob-
lem (see section 1.2.3) by linking the onset of acceleration to the neutrinos becoming
non-relativistic at late times. The coupling of the neutrino mass to the scalar field
(β), produces a strong “fifth“ force among neutrinos that can lead to the formation
of large neutrino structures; the so-called “neutrino-lumps“.

Previous works by [31, 119] using specially designed N-body simulations, had
shown that in the case where the coupling is constant, the neutrinos become stable
and can induce important backreaction effects, yielding inviable cosmological evo-
lutions. In this chapter we will deal with the case of varying coupling (β = β(φ))
and we will show that the dynamics of neutrino lumps in this model is much richer
than expected.

In section 6.1 we will detail our implementation of the GNQ model which uses
Boltzmann codes to calculate initial conditions and the linear evolution and uses a
specialized non-Newtonian N-body simulation, that takes into account relativistic
velocities, anisotropic stress, backreaction effects and solves the evolution of the
inhomogeneous scalar field on a grid.

In section 6.2 we show the dynamics of neutrino lumps and discover that there
are two distinct regimes: one in which neutrino structures grow steadily and a
second one in which lumps form and dissolve several times over the evolution of
the Universe. We show in section 6.3 that this second regime possesses solutions
which are very close to ΛCDM at the background level.

In section 6.4 we show another interesting property of this model, which is the
heating of the neutrino fluid. We will see that this heating is produced by the strong
oscillations of the neutrino structures. Despite the large neutrino structures formed
in GNQ, we will see in section 6.5 that in the oscillating regime, the neutrinos do
not contribute significantly to the total gravitational potentials, making these lumps
hard to detect observationally.

6.1 Numerical treatment of growing neutrino cosmologies

6.1.1 Modified Boltzmann code
1 For the early stages of the evolution of the growing neutrino quintessence model,
neutrinos behave as standard relativistic particles and the coupling to the cosmon
field is suppressed. Therefore the Klein-Gordon equation can be linearized and

1This chapter is based on a publication by the author in: Casas, S., Pettorino, V. and Wetterich, C.;
Dynamics of neutrino lumps in growing neutrino quintessence. Phys. Rev. D 94, 103518 (2016).
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no important backreaction effects are present. The Einstein-Boltzmann system of
equations for the relativistic neutrinos and all other species has been solved using a
modified version of the code CAMB [177] (hereafter referred to as nuCAMB), used
and developed already in previous papers on mass-varying and growing neutrino
cosmologies. We refer the reader to previous publications [197, 215, 287, 73] for
details about its implementation. These equations are valid until neutrinos become
non-relativistic and as long as perturbations are still linear. The neutrinos can be
seen as a weakly-interacting gas of particles in thermal equilibrium with a phase
space distribution f(p) with p denoting the momentum. The statistical description
is in the case of neutrinos a Fermi-Dirac distribution, given by

fFD(p) =
1

e(E(p)−µ)/T + 1
, (6.1)

where µ is the chemical potential and E(p) =
√
m2 + p2 the particle energy. Then,

the number density of neutrinos, the energy density and the pressure are given
respectively by

nν =
2

(2π)3

ˆ
d3p fFD(p) , (6.2)

ρν =
2

(2π)3

ˆ
d3pE(p)fFD(p) , (6.3)

Pν =
2

(2π)3

ˆ
d3p

p2

E(p)
fFD(p) . (6.4)

The solution of the Boltzmann hierarchy of neutrinos coupled to the perturbed Ein-
stein system eqs. (1.30) to (1.34), together with the solution of the background Klein-
Gordon equation 1.82, form the basis of the modification of nuCAMB with respect
to the standard code CAMB, which handles dark matter, photons and baryons al-
together. We recall that for growing neutrino quintessence, the neutrino mass de-
pends on the cosmon field φ and therefore on the scale factor a.

The ratio of the initial mass of the neutrinos to their temperature (given in eV),
is calculated in nuCAMB as follows

r̂νeV ≡
(m
T

)
ν,camb

=
(7/8)(π4/15)

(3/2)ζ(3)
× ρcrΩν,input

ρν
. (6.5)

The first fraction comes from the relation mν ≈ ρν/nν = ((7
8
π4

15 )/3
2ζ(3))Tν , which

is valid in the non-relativistic limit of eqns.6.1-6.4; the critical density is defined as

usual: ρcr =
3H2

0,input

8πG . The second fraction is a re-scaling that corrects the neutrino
density in order to match the wanted Ων,input given as input value. The code per-
forms an iterative routine that varies initial conditions in such a way that the input
parameters are obtained at present time. Since this is not exact, the final values of
H0 and Ων might vary slightly with respect to the given input values. The ratio r̂νeV
depends on the input parameters H0,input (via the critical density) and on Ων,input

2.
Furthermore, the neutrino energy density ρν and the photon energy density ργ at
relativistic times are related as

ρν = Nν ×
7

8
×
(

4

11

)4/3

ργ (6.6)

2r̂νeV is also the conversion factor between the mass units in the N-Body code and units in eV.
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where Nν = 3 is the number of neutrino species. The use of these formulae is valid
if initial conditions are set when neutrinos are non-relativistic, where the linear
regime still applies. For initial conditions set at earlier time relativistic corrections
have to be taken into account. After solving the Einstein-Boltzmann system, real-
izations of the fields δν(k) and vpec,ν(k) at an early time are obtained from nuCAMB
and are then used as the initial conditions for the neutrino distribution in the grow-
ing neutrino quintessence N-body simulation. This will be explained more in detail
at the end of the following section.

6.1.2 N-body simulation

For N-body simulations, we use here the code developed in [30, 32, 31] and then
refined in [119] and in the present work, which uses a particle-mesh approach for
the neutrino and dark matter particle evolution and a multi-grid approach for solv-
ing the non-linear scalar field equations. In table 6.1 we describe the parameters of
the models discussed in this work. We consider 5 models with different neutrino
masses.

Our N-body simulation differs from standard Newtonian N-body codes in many
ways, the most important one being that we evolve the cosmon φ and the gravita-
tional potentials Φ and Ψ separately. While neutrinos, dark matter and the cosmon
are non-linear in the N-body simulations, we assume that the gravitational poten-
tials Φ and Ψ are small, which is valid in cosmological applications, even for large
deviations of standard ΛCDM and at small scales. The perturbation in the dark en-
ergy scalar field δρφ can be calculated from the perturbation of the energy density
of the cosmon field

δρφ =
φ̄′δφ

a2
+ V (φ̄)δφ . (6.7)

The evolution of the homogeneous potential of the cosmon field can be obtained
through its energy density and pressure in the following way

Vφ(a) =
1

2
(ρφ(a)− pφ(a)) , (6.8)

while the perturbations in the potential can be approximated by

δVφ(a) = −1

2
(δρφ(a) + 3δpφ(a)) . (6.9)

The cosmon field can cluster and therefore its spatial gradients are non-vanishing,
so that after averaging over the volume of the box the energy density of the cosmon
field is

ρ̄φ =
1

2
φ̇2 +

1

2a2
(1 + 2Φ)∂iφ∂jφδij + V (φ) , (6.10)

while its pressure reads

P̄φ =
1

2
φ̇2 − 1

6a2
(1 + 2Φ)∂iφ∂jφδij + V (φ) . (6.11)

We will use for the following a convention in which bars denote spatial averages,
while angular brackets denote time averaged quantities.

The evolution of the cosmon field is solved using a multigrid relaxation algo-
rithm, known as the Newton-Gauß-Seidel solver, which was originally developed
for f(R) modified gravity simulations [223] and has also been implemented into
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the growing neutrino N-body simulations in [32]. The bottom part of table 6.1 lists
the results of the six models computed using the N-body simulations.

In the case of neutrinos, the mass is a time-varying quantity following eq.1.85.
Neutrinos obey a modified geodesic equation

duµ

dτ
+ Γµνλu

νuλ = β(φ)∂µφ+ β(φ)uνuµ∂νφ , (6.12)

in which the right hand side gets a contribution from the coupling.
Simulations start at an initial value of ain = 0.02. Until a ≈ 0.30 the dark matter

particles, the cosmon field and the gravitational potentials are evolved on the grid.
For dark matter particles we take standard initial conditions from nuCAMB and
start the particle-mesh algorithm that solves the Poisson equation 1.37 at an initial
redshift of z = 49. This is not the most accurate way of setting initial conditions for
cosmological dark matter simulations (see for example recent N-body comparisons
by [236]), but since in this work we are not interested in detailed substructures of
dark matter halos or a percent-accurate power spectrum, we find that our approach
gives a correct description at the scales of interest. Neutrinos are first treated dif-
ferently from other particles, as a distribution of relativistic particles in thermal
equilibrium and no backreaction effects from neutrino structures are taken into ac-
count. Starting from a scale factor of approximately aini ≈ 0.30 (depending on the
exact parameters of each model), which is when neutrinos become non-relativistic,
neutrinos are also projected on the grid: their phase-space distribution is sampled
using effective particles. Since their equation of state is non-relativistic, we can
approximate the phase-space distribution by

fν(x,v) = n̄νfFD(|vν − vpec,ν(x)|)(1 + δv(x)) , (6.13)

where fFD is the Fermi-Dirac distribution (6.1). The thermal velocities of the neu-
trinos are the difference between their total velocities and their peculiar veloci-
ties vth,ν = vν − vpec,ν . We obtain δv(x) and vpec,ν(x) by Fourier transforming
the momentum-space realization of those fields obtained at the time aini from nu-
CAMB. Equation 6.13 is solved for vth,ν in order to obtain the correct thermal dis-
tribution of particles and we duplicate the number of neutrino particles in each
grid, assigning to each of them a thermal velocity which is equal in magnitude but
opposite in direction, to avoid a distortion of the distribution of peculiar velocities
at larger scales than a single grid cell size. For a large enough number of effective
neutrino particles (i.e. when there is much more than one particle per cell), the
distortion of the peculiar velocities by thermal velocities should be negligible. The
correct neutrino density one would obtain from the Fermi-Dirac distribution for a
non-relativistic particle reads

〈ρν(x)〉fν =

ˆ
d3v mνfν(x,v) = mν n̄ν(1 + δv(x)) . (6.14)

Since we need to enforce the right hand side of 6.14 at each grid cell of comoving
volume a3∆V , where the mass of the neutrinos is given by the scalar field, we have
a condition on the number of particles Npart, such that

Mν 〈Npart〉
a3∆V

= mν n̄ν(1 + δv(x)) , (6.15)
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is fulfilled (more details of these method can be found in [31]). When neutrinos en-
ter as particles into the N-body simulation and therefore backreaction effects from
neutrino structures start becoming important, the calculation of the fields and the
potentials becomes computationally demanding, due to the non-linearity of the
terms sourcing the continuity 1.81 and Klein-Gordon equations 1.82. Since these
equations cannot be linearized due to the large values of the coupling parameter
β(φ), the multigrid Newton-Gauß-Seidel solver is of crucial importance. For the
parallelization of the code, we use a simple OpenMP approach, which calculates in
parallel, for the available processing cores, the equations of motion of the particles
and the fast Fourier transforms. In table II of appendix A in the publication [82],
the reader can find all parameters related to the N-body simulations, including box
and grid size.

6.2 Lump dynamics and the low mass - high mass divide

We find two different regimes for the non-linear evolution of neutrino lumps, de-
pending on the average value of the neutrino mass. For light neutrino masses,
during the lump formation process, the neutrinos are accelerated to relativistic ve-
locities. Subsequently, the lumps dissolve and form again periodically, as described
in detail in ref. [32, 43]. We demonstrate this behavior in the left panel of fig. 6.1.
The repeated acceleration epochs heat the neutrino fluid to a huge effective temper-
ature, such that neutrinos have again an almost relativistic equation of state during
alternating periods of time.

In contrast, the behavior for large neutrino masses is qualitatively different. The
concentration of the lumps continues to grow after their first formation. Lumps
merge, and typically do not dissolve. The neutrino number density contrast reaches
high values at late times. This is demonstrated on the right panel in fig.6.1 for an
average value of the neutrino mass mν,av = 0.4eV in the range 0.4 < a < 0.6. This
behavior resembles the one found for a constant cosmon-neutrino coupling in [30,
31, 43].

Due to the increasing value of the concentration and the increasing cosmon-
neutrino coupling, the characteristic time scale becomes very short and gradients
very large. This exceeds the present numerical capability of our simulations, typi-
cally at a value of the scale factor somewhat larger than a = 0.6. In fig.6.2 we show
snapshots for two different values of neutrino masses shortly before the simulation
breaks down.

The transition between the “heating regime” for small neutrino masses and the
“concentration regime” for large neutrino masses occurs in the range 〈mν〉[0.4 :
0.6] ≈ 0.07eV − 0.14eV, where the time average is taken for 0.4 < a < 0.6. The
present value of the neutrino mass can be substantially larger due to oscillations
and the continued increase of the mass and the temperature. For example, the
phenomenologically viable model with 〈mν〉[0.4 : 0.6] = 0.07eV corresponds to a
present neutrino mass of around 0.08eV, but the time oscillations grow the neutrino
mass to values of up to 0.5eV for very short intervals in the scale factor a. (compare
with fig. 6.5 below).

In fig.6.1 we show the distribution of the number (over)density contrast δnν(~x) ≡
nν(~x)/n̄ν − 1 at four different times and for two different models considered here,
namely M2 (left panels) and M5 (right panels). For M2 as well as for models
with smaller masses (not shown here), the neutrino lumps form and dissolve very
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FIGURE 6.1: Snapshots of the number density contrast of neutrinos δnν(~x) ≡
nν(~x)/n̄ν − 1 at different times. Left: Model M2, at scale factors a =
0.45, 0.7, 0.75 and 0.95 from top to bottom. The overdensity oscillates be-
tween values close to 1 (represented as yellow tones) at early times, where
there are no lumps, to values close to 10 (dark blue and purple tones), where
several concentrated lumps form at intermediate times. At later times lumps
dissolve and the overdensity decreases back to values close to unity. Right:
Model M4, at scale factors: a = 0.35, 0.42, 0.53 and 0.64 from top to bottom.
The neutrino lumps start growing at early times and merge progressively into
larger and more concentrated structures. At the end, almost all neutrinos are
attracted to a single very massive lump.

quickly. The lumps are never stable and neutrinos accelerate to relativistic veloci-
ties when they fall into the gravitational potentials. The small lumps are also dis-
tributed homogeneously across the simulation box (see the third panel from above
on the right of fig.6.1). The lumps reach maximal number density contrasts of about
δnν ≈ 10. For M5 and for bigger masses, the neutrino lumps become stable, accret-
ing more and more particles with the passing of time and increasing their concen-
trations. This leads to strong backreaction effects, changing the background cosmo-
logical evolution. After some time all neutrinos are concentrated in very big lumps,
reaching very high values of δν ≈ 50 − 100, where δν ≡ ρν(~x)/ρ̄ν − 1, see fig.6.2.
After this point, the numerical framework for the growing neutrino quintessence
evolution breaks down and we can no longer solve reliably the coupled system of
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equations.

FIGURE 6.2: Snapshots of the neutrino overdensity field δν(~x) for models
M4 (top left) and M6 (bottom left) at scale factors of a = 0.64, and 0.62, re-
spectively. In these models, neutrino lumps cluster into large stable struc-
tures with a high concentration, starting from a bottom-up approach, as was
shown for model M4 in fig. 6.1. Neutrino structures occupy large parts of the
simulation box, corresponding to scales of ~50 Mpc. At these scale factors,
the forces introduced by the cosmon coupling are too strong to be resolved
by our numerical approach and our simulation breaks down.

6.3 Cosmological evolution in the light neutrino regime

As we have seen in the previous section, there is a qualitative difference between
the cosmological evolution of a model with a light or a heavy neutrino mass, the
boundary being a present neutrino mass value of roughly ≈ 0.5eV (calculated in
linear theory). In this section we explore more in detail the evolution of background
quantities in the light mass model M2 whose parameters are shown in detail in ta-
ble 6.1 for the linear calculation in nuCAMB (top panel) and for the N-body compu-
tation (bottom panel). We study in detail the differences appearing in the evolution
of background quantities, when non-linear physics and backreaction are taken into
account.

The standard definition for the homogeneous energy density fraction of the cos-
mon field φ is

Ωφ =
8πG

3H2
ρ̄φ , (6.16)

where ρ̄φ is the background energy density of a homogeneous scalar field ρ̄φ =
K(φ) + V (φ) and K(φ) its kinetic energy. In linear theory, the homogeneous term
would be the only term entering into Ωφ; on the contrary, within the N-body simu-
lation, the field is non-homogeneous and the combined energy density of the cou-
pled neutrino-cosmon fluid receives also a contribution from the perturbations δρφ
of the non-homogeneous cosmon field, given by eq.6.7. The important quantity
determining the evolution of a dynamical dark energy is not the energy density of
the cosmon alone, but the energy density of the combined cosmon-neutrino fluid,
given by

Ωφ+ν =
8πG

3H2
(ρ̄φ + ρ̄ν) . (6.17)

The average energy density of the neutrinos is not individually conserved and its
evolution is given by the continuity equation with a coupling term on the r.h.s. [31,
42]
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FIGURE 6.3: Evolution of Ωφ+ν (blue lines) and Ων (orange lines) for Model
M2, compared between the linear output from nuCAMB (dashed lines) and
the non-linear calculation of the N-body simulation (solid lines). The total
cosmon-neutrino fluid has the same background evolution in the simulation
as in the linear calculation. The neutrino energy density is somewhat larger
in the simulation and shows a phase-shift in its oscillations, as discussed in
the text.

ρν + 2Hρν = −β(φ)φ′ρν , (6.18)

where φ′ is the time derivative of the field with respect to conformal time τ . The
corresponding equation of state of the coupled fluid can then be defined as the sum
of the pressure components divided by the sum of the density components

wν+φ =
p̄φ + p̄ν
ρ̄φ + ρ̄ν

. (6.19)

In the literature [73, 99, 210, 209], there are several definitions of the effective equa-
tion of state or the observed equation of state in the case in which the scalar field is
coupled to other particles. We argue that eq. (6.19) is actually the equation of state
one would observe from the evolution of the Hubble function (i.e. with Supernovae
and standard candle methods of redshift distance measurements). In appendix B of
the publication [83], we comment further on this and show a comparison between
the “observed” and theoretical equation of state of dark energy.

In fig. 6.3 we plot for model M2 the background evolution of the neutrino en-
ergy density Ων (orange lines) and the combined cosmon+neutrino fluid energy
density Ων+φ (blue lines) as defined in eq. (6.17). The dashed lines correspond to
the linear computation in nuCAMB, while the solid lines correspond to the results
of the N-body simulation. One can see that the effect of non-linearities and backre-
action is quite small and it is mostly just visible as a phase shift in the oscillations
of Ων , which is due to the dynamics of the oscillating lumps, that alter the field-
dependent mass of the neutrinos as a function of time and space. The same trend
is observed in model M1 (not shown here). This behavior tells us that for small
neutrino masses, the effects of backreaction on the background evolution are prac-
tically negligible and a linear computation is enough to analyze those models fur-
ther, with a considerable simplification with respect to a joint linear and non-linear
analysis done in [215].
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FIGURE 6.4: Equation of state of the combined neutrino-cosmon fluid wφ+ν
(blue) and equation of state of neutrinos wν (orange). We compare the linear
output (dashed lines) to the non-linear one obtained from the N-body simu-
lation (solid lines) for model M2. This model has a time averaged RMS mass
〈mν〉(al) = 0.164, where al = 0.9 in the label denotes the center of the time
interval a = [0.8 − 1.0] used to take the average. For wν , the linear output
does not capture the oscillating equation of state of neutrinos due to the for-
mation of structures, while for wφ+ν , both codes agree relatively well. At
late times the equation of state predicted by the simulation has a somewhat
higher value and is phase-shifted due to the heating of the neutrino fluid.

We show in fig. 6.4 the neutrino equation of state wν (orange lines) as well as
the combined cosmon-neutrino fluid equation of state wν+φ as defined in equation
6.19 (blue lines), both for the case of the linear computation with nuCAMB (dashed
lines) and the non-linear computation (solid lines). In the linear analysis, the neutri-
nos are treated initially as relativistic particles: as the mass increases, they become
more and more non-relativistic, reaching a wν of exactly zero at late times. On the
contrary, the N-body simulation is able to follow the oscillations in the equation
of state of neutrinos, which are caused by the fact that neutrinos get accelerated to
relativistic velocities when they fall into deep gravitational and cosmon potentials.
Once they are in these lumps, and they have acquired high speeds, their pressure
increases and they tend to escape again from these lumps, causing the oscillating
neutrino structures. When they are far away from the cosmon potentials, their
velocities decrease and they become non-relativistic again. The fifth force acting
among neutrinos attracts them again to the cosmon potential wells and the whole
cycle repeats itself.

For the combined equation of state wν+φ, we find that the simulation predicts
a slightly higher value than the linear one; this can be explained by studying how
the neutrino fluid is heated due to the strong oscillations of the lumps. By falling
repeatedly in the cosmon potential wells and increasing their kinetic energy, the
neutrinos temperature increases and therefore neutrinos do not manage to become
again completely non-relativistic. This can be seen in the dashed orange lines of
plot 6.4, where the curve of wν does not touch the zero axis after a ≈ 0.5. We will
see in section 6.4 that neutrinos depart from their initial Fermi-Dirac distributions
and reach temperatures which are high compared to the photon background.

In fig. 6.5, we show the evolution of the spatial average of the neutrino mass in
the N-body simulation as a function of the scale factor a. One can see that the value
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FIGURE 6.5: Neutrino mass mν (average over simulation volume) in model
M2 (firebrick red line) and model M1 (dodger blue line), as a function of the
scale factor a, for the N-body simulation. The horizontal lines, show the time
averaged RMS value at a late time al = 0.9, denoting the center of the time
interval of [0.8 : 1.0] considered for taking the average. For model M2, the
time averaged neutrino mass is 〈mν〉(al) = 0.164 (blue dashed lines), while
for model M1 it is somewhat smaller 〈mν〉(al) = 0.120 (red dashed lines). One
can observe that the oscillation frequency is higher for the smaller 〈mν〉mass
and the peaks are higher for the larger 〈mν〉. The present neutrino masses of
the two models calculated in linear theory differ by an order of magnitude,
on the contrary the time averaged masses are very close to each other.

of m̄v varies along an order of magnitude, from approx.10−2 to 10−1, throughout
a cosmological time interval. Due to a phase shift in the oscillation pattern, which
sets in at around a ≈ 0.8, the present day value of the average neutrino mass can
be quite different to the one estimated with the linear analysis (and this change
depends on the precise parameters of the model), so that the best estimate for the
average cosmological neutrino mass today, is a time average of m̄v(φ) at late times,
between a = 0.8− 1.0. We can see that the big discrepancies between the masses of
model M1 and M2 calculated in linear theory (e.g. 6.1) are washed away when non-
linearities and backreaction effects are taken into account i.e. for small neutrino
masses. Even if the present neutrino masses for model M1 and M2 differ by an
order of magnitude in linear theory, we find a very similar time averaged value
between the two models in the N-body simulation: respectively 〈mν〉[0.8 : 1.0] =
0.120 and 〈mν〉[0.8 : 1.0] = 0.164. The oscillation pattern of the neutrino mass for
the more massive model (M2) contains higher peaks and has a smaller frequency
than compared to the oscillations in the less massive model M1. For other models,
this comparison can be seen in table 6.1.

6.4 Heating of the neutrino fluid

The repeated acceleration of neutrinos to relativistic velocities during the periods of
lump formation and dissolution lead to an effective heating of the neutrino fluid.
While we do not expect a thermal equilibrium distribution of neutrino momenta
and energies it is interesting to investigate how close the distribution is to the
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Fermi-Dirac distribution of a free gas of massive neutrinos. This distribution de-
pends on only two parameters, the neutrino mass and the temperature. At a given
time we associate the neutrino mass to the space averaged neutrino mass. The
temperature can be associated to the mean value of the momentum.

The energy of a relativistic particle is given by

E(p,m) =
√
p2 +m2 , (6.20)

while its kinetic energy Ek = E(p,m) − m. Equivalently, the kinetic energy is
defined by

Ek =

ˆ
~v · d~p , (6.21)

which yieldsEk = m(γ−1) and reduces in the limit of very small velocities (v≪ c)
to the usual Ek = mv2/2. From there the Fermi-Dirac distribution as a function of
momentum p = |~p| can be obtained in the standard way. It depends on m and T .
For m� T it can be approximated by the relativistic distribution while for m� T
we recover the Maxwell-Boltzmann distribution. The distribution of particle mo-
menta is then given by

P(p)dp =
4πp2

(1 + e(E(p,m)−µ)/T )
dp (6.22)

where the factor 4π comes form the angular integration of the three-dimensional
momentum. In the ultra-relativistic limit we can analytically integrate the momen-
tum p over its distribution eq.6.22 and invert p̄(T ) to yield the mean temperature
as a function of the mean momentum

T̄ =
180ζ(3)

7π4
p̄ (6.23)

We neglect the chemical potential in eq. (6.22), because the exponential term in the
denominator is 2 or 3 orders of magnitude larger than unity. Since in our case, the
average momentum and mass of the neutrinos are of the same order, we cannot use
either a non-relativistic or an ultra-relativistic limit. We need to consider both the
mass and the momentum in the relativistic energy equation 6.20. Therefore for each
model and each time, we numerically find T̄ as a function of the mean momentum
p.

We extract for a = 1 the temperatures

T = 0.077eV (M1, m̄ν = 0.2404), T = 0.065eV (M2, m̄ν = 0.2327) . (6.24)

They are higher by a factor 327 (M1) or 276 (M2) as compared to the CMB photon
temperature 2.35 × 10−4eV. This demonstrates the unconventional heating of the
neutrino fluid due to the formation and dissolution of lumps. The high tempera-
tures are connected with the almost relativistic equation of state of the neutrinos
seen in fig. 6.4. Overall, the observed momentum distributions come rather close
to the thermal equilibrium distribution. This also holds for the distribution of ki-
netic energies. With the bulk quantities as momenta and kinetic energies roughly
distributed thermally this is an example of prethermalization [56].

In fig. 6.6 we fit the distribution of momenta of the neutrino particles on the
grid (shown with an histogram) with a Fermi Dirac distribution. The actual dis-
tribution of momenta fits the thermal equilibrium distribution very well. At later
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FIGURE 6.6: Distribution of the momenta of the neutrino particles in the
simulation, for two different times, a = 0.75 (purple shade) and a = 1.0 (or-
ange shade), compared against a Fermi-Dirac distribution with a temperature
given by the mean of the distribution (dashed lines). Left: For model M1 the
Fermi-Dirac fits very well for temperatures of T̄ = 0.018eV and T̄ = 0.077eV
for each scale factor respectively. Right: For model M2 the fit is also good,
the corresponding temperatures being T̄ = 0.018eV and T̄ = 0.065eV. The
CMB photon temperature is 2.35 × 10−4eV, this means that the non-linear
cosmon-neutrino interactions heat the neutrino background by more than a
factor 100.

times (orange shade), the fit is slightly less good: neutrinos might be accelerating
towards or away from lumps giving them an extra kick that shifts the peak of the
distribution of momenta.

When comparing the equation of state of neutrinos obtained from the N-body
simulation to a neutrino equation of state wν = pν/ρν , using our Fermi-Dirac fit to
the particle distribution and eqs. (6.3) to (6.4), we get a very good agreement, taking
into account that for the Fermi-Dirac fit, we are neglecting the spatial variation of
the neutrino mass mν(φ). For model M2 at the scale factor a = 0.75 we obtain
from the N-body simulation a neutrino equation of state of wν = 0.081 while using
the Fermi-Dirac fit to the distribution of particles with a mean temperature of T̄ =
0.018eV and an average neutrino mass m̄ν = 0.1835, the proper calculation yields
wν = 0.086. For a later time, at a = 1.0 the N-body simulation gives us a value of
wν = 0.207 while the Fermi-Dirac fit with a mean temperature of T̄ = 0.065eV and
an average neutrino mass m̄ν = 0.2327 amounts to a neutrino equation of state of
wν = 0.182.

To visualize the evolution of wν , we can observe from fig. 6.4 that neutrinos
in the N-body simulation start as non-relativistic particles and oscillate between
being almost relativistic and completely non-relativistic in the interval a = [0.3, 0.6].
However, at later times a & 0.7 the neutrino equation of state still oscillates but
never reaches a value of zero again. This is in agreement with our description
of the heating of the neutrino fluid. Since the mean temperature of the neutrino
fluid is increasing with time and therefore its mean kinetic energy and pressure,
the minimum of the oscillations of the neutrino equation of state increases also in
time and departs from zero, once neutrinos are heated to very high temperatures
due to the collapsing and dissolving of the neutrino-cosmon lumps.
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FIGURE 6.7: Power spectra of the total gravitational potential Φt (blue lines)
and of the neutrino contribution Φν (orange lines) for model M2 and model
M5 at the scale factors a = 0.40 (solid lines) and a = 0.65 (dashed lines),
as a function of scale. Model M2 has an RMS time averaged neutrino mass
〈mν〉(ae) = 0.07, where ae = 0.5 stands for the central time in the interval
a = [0.4 − 0.6] used to take the average. Model M5 has in the same interval
a higher RMS mass of 〈mν〉(ae) = 0.40. In the first model, Φt at large scales
is of the order of 10−5, while Φν is 3 to 4 orders of magnitude smaller at both
cosmological times. For model M5, in which neutrino lumps are stable and
growing, one sees that at large scales, the total Φt starts with a value of 10−5 at
a = 0.4, but reaches 10−4 at later times. At a = 0.65 the neutrino contribution
is dominant and neutrino structures have migrated from small scales to large
scales, as can be seen from the dip in Φν at modes between k = 0.2 − 1.0
h/Mpc.

6.5 Gravitational Potentials of Neutrino Lumps

The gravitational potential Φ is a good measure of the physics going on in struc-
ture formation. We know from observational constraints, that Φ is of the order
of 10−5 on cosmological scales [215, 74]. In ΛCDM, the gravitational potential is
sourced mainly by dark matter perturbations. In figures 6.7 and 6.8 we show that
for models with small neutrino masses, the neutrino contribution to Φ remains sev-
eral orders of magnitude smaller than the CDM contribution, at all scales and at
all times. Moreover, one can observe an oscillation in time of the neutrino gravita-
tional potential. For models with large neutrino masses, the neutrino contribution
grows monotonically with time. At large scales k . 0.3h/Mpc and at late times the
neutrino lump induced potential dominates over the cold dark matter gravitational
potential. This renders the total potential Φtot too big to be compatible with present
cosmological constraints.

We show the scale dependence of the total gravitational potential and the neu-
trino induced gravitational potential Φν at two different cosmic time scales a = 0.4
and a = 0.65 in fig.6.7. While for a = 0.4 (solid lines) the neutrino contribution is
still subdominant for both models M2 and M5, this changes at a = 0.65 for model
M5 (bottom panel). For model M2 the total gravitational potential decreases in
time, as it is expected due to the effect of dark energy, while Φν increases espe-
cially at large scales. For model M5, since the neutrino contribution dominates at
a = 0.65, the total gravitational potential is raised to values of 10−4 at large scales,
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time oscillations. In clear contrast, the neutrino contribution from model M5
for very large scales, reaches and dominates over the matter contribution for
a & 0.5 and pushes the total Φ to high values that would be ruled out by
observations, see also fig. 6.7. The RMS neutrino mass has been taken in the
same interval range as for fig.6.7, where ae = 0.5.
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±1.0 × 10−7. This is correlated to the neutrino density contrast (black lines)
and the number density contrast δnν = nν(~x)/n̄ν − 1 (orange dashed lines)
reaching values of up to 1.5. Right: Snapshot of the same simulation, show-
ing a equipotential contour of the gravitational potential, for Φν = +1.0×10−7

in yellow, and the small but dense neutrino lumps in blue, purple and red,
corresponding to density contrasts δnν of 1.5, 2.0 and 4.0 respectively.

while at small scales (k & 0.4) the neutrino contribution is still subdominant.
In fig. 6.8 we show the power spectra of the total gravitational potential Φ (blue

lines) and of the neutrino contribution to it (orange lines) at two different scales,
k = 0.016 (solid lines) and k = 0.116 (dashed lines) as a function of the scale factor
a. For model M2, corresponding to an average early time neutrino mass of 0.07 eV,



160 Chapter 6. Dynamics of neutrino lumps in Growing Neutrino Quintessence

the total gravitational potential Φ(k) is 10−5 at all times, while the neutrino con-
tribution is 2-3 orders of magnitude smaller and shows time oscillations. In clear
contrast, the neutrino contribution from model M5 (corresponding to an average
early time neutrino mass of 0.40 eV)) for very large scales reaches and dominates
over the matter contribution (at a & 0.5) and pushes the total Φ to high values that
would be ruled out by observations. This is due to the fact that neutrino lumps do
not dissolve, but rather grow with continuously growing concentration and higher
gravitational potential.

There is also anticorrelation between the neutrino structures and the neutrino
induced gravitational potential, as expected from the fact that neutrinos will tend
to fall into gravitational potential wells. In the left panel of fig. 6.9, we plot the
values of the neutrino number density contrast δnν = nν(~x)/n̄ν − 1 and the nega-
tive neutrino induced gravitational potential Φν , along a diagonal line through the
simulation box. The correlation of peaks and troughs (corresponding to an anticor-
relation of δnν and Φν) is very clear and it is valid for even small substructures of
the order of a few Mpc. By plotting the neutrino density contrast δν , we also show
that at this time a = 0.75, the neutrino number density and the energy density are
proportional, meaning that neither local mass variations or relativistic speeds are
having any effect in the neutrino total energy. In the right panel of fig. 6.9 we visu-
alize the neutrino induced gravitational potential as a yellow region marking the
equipotential surface Φν = +1.0×10−7 and the neutrino number overdensity struc-
tures colored blue, purple and red, corresponding to density contrasts δnν of 1.5,
2.0 and 4.0 respectively. For this model (M2) and at this specific time, the neutrino
structures are spread almost homogeneously throughout the simulated volume.

6.6 Conclusions

We have investigated the dynamics of neutrino lumps in GNQ and how it depends
on the mass of neutrinos. As a main result of this project we found a characteristic
divide in the qualitative behavior between small and large neutrino mass.

For light neutrino masses the combined effects of oscillations in the neutrino
masses and the cosmon-neutrino coupling lead to rapid formation and dissociation
of the neutrino lumps. The concentration in the neutrino structures never grows
to very large overdensities. As a consequence, backreaction effects remain small.
The effects of lump formation and dissociation lead to an effective heating of the
neutrino fluid to temperatures much higher than the photon temperature. Due
to this heating, the neutrino equation of state becomes again close to the one for
relativistic particles. For a small present average neutrino mass mν = 0.06eV it
has been found earlier [215] that the cosmology of growing neutrino quintessence
resembles very closely a cosmological constant, making differences to the ΛCDM
model difficult to detect. We extend this qualitative feature to a whole range of
light neutrino masses.

For large neutrino masses, one finds a qualitatively different behavior. Big neu-
trino lumps form, due to the strong cosmon-mediated fifth-force between neutri-
nos. These lumps are stable and keep growing in concentration and density. The
strong clumping of the cosmic neutrino background induces large backreaction ef-
fects on the overall cosmic evolution. As a result, the combined cosmon-neutrino
fluid does not act effectively as a cosmological constant anymore and compatibility
with observations is difficult to achieve. This situation is similar to the case of a
constant cosmon-neutrino coupling [119].
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The divide in the characteristic behavior reflects the competition between heat-
ing of the neutrino fluid and lump concentration. We have not yet established
a quantitatively accurate value of the parameter m̂ν where the divide is located,
since the numerics are rather time consuming. In principle, this divide will lead to
an upper bound on the present neutrino mass, as seen in terrestrial experiments.
For models in the vicinity of model M2, which seem compatible with observations
so far, spatial average neutrino masses as large as 0.5eV can occur at the peak of
oscillations, c.f. fig.6.5. We note that if we live inside a neutrino lump the neutrino
mass will be reduced as compared to the cosmological value.

We have further computed the strength of the neutrino-induced gravitational
potential. For light masses, this potential is found to be rather small, rendering
a detection of the neutrino lumps difficult. As neutrino masses increase towards
an intermediate mass region, before reaching the heavy mass range incompatible
with observation, the neutrino-induced gravitational potentials will get stronger.
By continuity we expect that in the intermediate mass region the clumped neutrino
background becomes observable.
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Conclusions

In this thesis we have investigated non-linear structure formation in models of
Dark Energy and Modified Gravity, which are popular extensions of the standard
ΛCDM scenario. We have focused on predicting the impact of non-linearities on
the parameter constraints and contrasting the difference between the linear and the
non-linear calculations on observable properties like Weak Lensing, Galaxy Clus-
tering and the evolution of background quantities.

Dark Energy and Modified Gravity

In chapter 1 we introduced the theoretical framework of cosmology, which is based
on Einstein’s General Relativity (GR) and then we proceeded to explain the con-
cordance ΛCDM model and its main properties. We have illustrated that despite
the actual data being well explained by the standard model, there are some un-
satisfactory properties with the Cosmological Constant, namely the so-called fine-
tuning and coincidence problems, that motivate the extension of General Relativity
by an extra dynamical degree of freedom. We have focused on theories of Dark
Energy (DE) and Modified Gravity (MG) in which this extra degree of freedom is
represented by a dynamical scalar field. The scalar field does not only modify the
background cosmological solutions, but in some cases it can also lead to the ap-
pearance of an extra "fifth-force" acting between test bodies. In the second half of
chapter 1 we have classified the DE and MG models into universally coupled and
non-universally coupled cosmologies. The former are those models in which all
matter and radiation species couple in the same way to the scalar field, while the
latter are models in which different species feel different couplings.

General Relativity has been thoroughly tested at laboratory and Solar System
scales. It has been found that the coupling to standard matter (baryons) is very well
constrained to be negligibly small. Therefore, universally coupled models have to
invoke a "screening" mechanism that recovers GR at small scales (see section 1.5).
On the other hand, non-universally coupled theories pass the stringent solar sys-
tem constraints by decoupling the baryons and allowing only for dark sector inter-
actions, involving the scalar field and either dark matter or neutrinos, as we discuss
in section 1.6.

For universally coupled theories, we focus on Effective Field Theory (EFT) mod-
els, Horndeski models and on parameterized Modified Gravity, which are very
general descriptions of theories of GR plus a scalar field. EFT includes in the ac-
tion all possible terms allowed by symmetries at first order in perturbation theory,
while Horndeski is the most general theory of GR plus a scalar field, which is sec-
ond order in the equations of motion and free of ghost instabilities. Both theories
can be mapped onto each other at linear order, by using the so-called α-functions.
We explained this more in detail in section 1.5.3. If we want to study general mod-
ifications of gravity affecting the gravitational potentials Ψ and Φ, but we do not
want to focus on a particular Lagrangian description, we can parameterize the de-
viations of GR in terms of two general functions of scale and time, namely µ(k, a)
and η(k, a) (or two alternative combinations of the gravitational potential). As we
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explain in section 1.5.4, µ expresses the deviations of the relativistic Poisson equa-
tion, while η expresses the gravitational anisotropic stress, or more precisely the
gravitational slip, which is the ratio Φ/Ψ. Both functions reduce to unity in the
standard GR case or if the DE model just modifies the background equations.

For non-universally coupled theories, we focused on two distinct scenarios. The
first one called Coupled Dark Energy (CDE) is a model in which there is a dark sec-
tor interaction between Dark Matter and the Dark Energy field, see section 1.6.1.
This leads to a fifth-force that modifies the growth and the clustering of DM par-
ticles and introduces a gravitational bias. We studied this model in the non-linear
regime, based on cosmological N-body simulations and we found noticeable dif-
ferences in the non-linear matter power spectrum depending on the strength of the
DM-DE coupling. This was a subject of chapter 4. The second non-universally cou-
pled model we study is Growing Neutrino Quintessence (GNQ) in which the mass
of the neutrinos is directly coupled to the scalar field (referred to as “cosmon“). In
this model Dark Matter and baryons follow standard gravity, but neutrinos feel an
extra force among them, which is very strong (of the order of 102 times the gravi-
tational force) and leads to the formation of large neutrino lumps. Depending on
the parameters of the model, these lumps are stable and grow with time or they
present very rapid oscillations, dissolving and forming again. To study the dy-
namics of these lumps and their backreaction effect on background quantities, we
perform specialized N-body simulations, as we detail in chapter 6.

Statistics and the Fisher Matrix formalism

In order to study the impact of non-linearities onto the determination of cosmolog-
ical parameters, we need to make use of Bayesian statistical tools, which we review
in chapter 2. In the first part we introduce the concepts of Gaussianity, linearity
and statistical homogeneity and we conclude that they are intrinsically connected
and that therefore non-linear structure formation introduces non-Gaussianities and
non-homogeneities into our statistical analysis. Using Bayes’ theorem we can de-
fine the likelihood as the probability of obtaining a particular model given the data,
therefore we can find which are the set of model parameters that maximize the like-
lihood function. We then illustrated the concept of Fisher Matrix, which is a way
of estimating the likelihood function at the maximum, assuming that around the
peak, the likelihood can be approximated as a Gaussian (see section 2.4). Since
the Fisher Matrix for the model parameters can be obtained without data, just by
knowing the data and noise covariance matrices, we are able to forecast the result
of future experiments in a theoretical way.

In the publications [83] and [84] we have dealt with the predictions for the fol-
lowing planned galaxy surveys: Euclid, SKA1, SKA2 and DESI (for more details see
section 2.4.4). These missions will observe approximately 107 ∼ 109 galaxy shapes
and positions (angles with spectroscopic plus photometric redshifts) at redshifts
of z ≈ 0 − 3, giving us valuable information in the linear as well as in the non-
linear regime of structure formation. With the galaxy positions and spectroscopic
redshifts one can measure what we call Galaxy Clustering (GC). This is a combi-
nation of the shape of the power spectrum (the Fourier transform of the galaxy
two-point correlation function), its amplitude as a function of time and its par-
ticular features like Baryon Acoustic Oscillations and Redshift Space Distortions.
What we call Weak Lensing (WL) is the process of using galaxy shapes and photo-
metric redshifts to obtain the cosmic shear power spectrum, which can be related
to the matter power spectrum integrated along the line of sight. This provides us
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with valuable information about the evolution of structures in the Universe. In sec-
tion 2.5 we developed the implementation of a Fisher Matrix code for GC and WL,
which contains different methods to forecast the errors on cosmological parameters
obtained by future surveys. This code, called FISHERTOOLS, integrates very well
with other commonly used codes in the community, like Boltzmann codes or emu-
lator codes and has been thoroughly tested within the Inter Science Taskforce and
the Theory Working Group of the Euclid collaboration.

Linear and non-linear forecasts for Modified Gravity with future surveys

In chapter 3 we have used the FISHERTOOLS code to forecast the sensitivity of fu-
ture surveys to general modifications of gravity given by µ (the deviation from
the GR Poisson equation) and η (the anisotropic stress) in the linear and in the
mildly non-linear regime of structure formation. This has been the subject of a re-
cent publication [84]. For the linear power spectrum we use a modified Boltzmann
code called MGCAMB [136] which is able to compute the linearized Einstein-
Boltzmann equations for general Modified Gravity parameterizations. For the non-
linear corrections we test two prescriptions: one based on a rough application of
the HALOFIT [249] [257] formalism on top of the linear spectra and a prescription
in which we interpolate from an MG non-linear power spectrum to a GR non-linear
spectrum at small scales, to emulate a screening mechanism. This is the so-called
"Hu-Sawicki" (HS) prescription [141]. In section 3.2.2 we give more details about
our implementation.

In this project, we have tested three different parameterizations of Modified
Gravity. In two of these settings, µ(a) and η(a) are smooth functions of the scale fac-
tor a and we have neglected possible scale dependence. In the third one, we have
not assumed any specific functional form for µ(a) and η(a), but we have binned
these functions in 5 redshift bins and we have assumed that µ(zi) and η(zi) are
free parameters at each redshift bin zi. To obtain the fiducial parameters for these
three cases, we have computed the best fit parameters obtained by performing a
Markov-Chain-Monte-Carlo calculation, that calculates the likelihood function ob-
tained with recent data from the Planck CMB satellite.

In the redshift-binned scenario, we find that the µ(zi) and η(zi) are significantly
correlated among each other and with the primordial amplitude of the power spec-
trum As. We determine that including non-linear power spectra and adding a
Planck covariance matrix as prior, reduces the correlations considerably (see fig. 3.4).
Particularly, in the non-linear case, the correlation with the primordial amplitude
disappears almost completely. We further conclude that the lower redshift bins are
the best constrained by observations. Using non-linear power spectra and Galaxy
Clustering only, the parameters in the first bin z1, from z = 0 to z = 0.5, are
constrained for µ at the 7% level and for η at the 20% level; combining GC with
Weak Lensing improves the constraints to 2.2% and 3.6%, respectively. If one con-
siders only linear scales in the analysis, the GC+WL combined errors on µ1 and
η1 are twice as large, while the individual GC and WL lensing errors are 10 to 20
times larger. This shows the importance of having a proper model of the non-linear
power spectrum if one wishes to extract information on the Modified Gravity pa-
rameters with future surveys.

Due to the significant correlation among the binned parameters that we found,
we apply a Zero-phase Component Analysis (ZCA) decorrelation, which in anal-
ogy to the commonly used Principal Component Analysis (PCA) gives us a set of
decorrelated variables, in which the new covariance matrix is diagonal. With these



166 Conclusions

new set of variables, we can find which are the combinations of MG parameters
that can be best constrained with future surveys. We find that for low redshifts, the
best constrained parameters are the combination 2µ+η, which will be measured at
a precision of better than 1%, if one combines GC+WL and Planck priors. The best
constraints on the decorrelated parameters are 2 orders of magnitude better for the
linear case and 1 order of magnitude better for the non-linear case, compared to the
original parameters.

For the case in which we parameterize µ(a) and η(a) with smooth functions of
time, we consider two possible behaviors. The first one, is the so-called late-time
parameterization in which the modifications of gravity are stronger at late times
and are proportional to the fraction of Dark Energy ΩDE in the Universe. The sec-
ond one is the so-called early-time parameterization, which consists of the zeroth
and first terms of a Taylor expansion of a general function of a, around a = 1. In
this parameterization, the modifications with respect to GR can be large at high
redshifts. In both cases we find that using non-linearities and combining GC plus
WL, we can constrain the modification to the Poisson equation µ and the modifica-
tion to the lensing potential Σ = (1 + η)µ/2 at around the 1% level, while if we use
only linear scales, the constraints are of the order of 7% and 2%, respectively. An
interesting difference between these two parameterizations is that in the late-time
parameterization, Galaxy Clustering is only able to constrain the µ function, while
WL is able to constrain Σ, which is what one expects naively from the subhorizon
perturbation equations. Nevertheless, in the early-time parameterization since η
and µ are not unity at high redshifts, the terms proportional to derivatives of the
gravitational potential, Φ̇ and Φ̈, appearing in the evolution equation for the den-
sity perturbations (eq. (3.41)), are not negligible. Therefore, one can observe the
effects of η both with the clustering of galaxies and with cosmic shear. Figure 3.20
and fig. 3.23 illustrates the constraining power of different surveys and on differ-
ent combination of observables for the late and the early time parameterization,
respectively.

We also tested the effect of our non-linear prescription onto the forecasted con-
straints in two different ways. The non-linear HS prescription depends on two
parameters cnl and s, which determine how fast and at which scales the MG power
spectrum goes back to the GR case. In principle these parameters have to be ad-
justed by comparing with N-body simulations. First we tested how much the con-
straints on µ, η and Σ changed when modifying the fiducial of cnl and s. We find
that for the most extreme variations of the HS parameters, the 1σ error on µ gets
affected by a factor σµ × (1±0.9

0.3), while the constraints on Σ vary around ±6% (see
fig. 3.25 and fig. 3.26). The second test performed, was the inclusion of the HS
parameters as nuisance parameters on the forecast. We found that after marginal-
izing over these nuisance parameters, the results on all cosmological parameters
are quite robust and the constraints are just slightly worse, as was expected by the
addition of two extra parameters. All the above mentioned constraints refer to the
Euclid probe, but we also performed the same forecasts for SKA2, SKA1 and DESI-
ELG (which measures GC only). These tables can be found in chapter 3. In order to
compare across experiments and across different cases (linear, non-linear, with and
without prior) we defined the Figure of Merit (FoM, eq. (2.40)) and the Figure of
Correlation (FoC, eq. (2.41)), which are good measures of the constraining power
of an experiment and the correlation among the parameters.
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Fitting and forecasting Coupled Dark Energy in the non-linear regime

In chapter 4, we study the Coupled Dark Energy model, which is a quintessence
model in which Dark Matter particles and the scalar field interchange energy and
momentum. We base the results of this chapter on the publication [83] in which
we used the publicly available CODECS N-body simulations [37] to find fitting
functions to the non-linear power spectrum. We applied them to improve previous
forecasts on this model for future galaxy redshift surveys, which had been done
taking into account linear scales only [22].

The fitting formulae we found are functions of the DM-DE coupling β and the
redshift z, and are very precise when compared to the full simulations. How-
ever, since they were calculated as the correction with respect to the ΛCDM case,
we still need to add on top of them a semi-analytic or numeric prescription for
the non-linear power spectrum, which can be varied with respect to the standard
cosmological parameters. Here we used the Halofit formula and the Coyote Cos-
mic Emulator as the “fiducial“ ΛCDM non-linear power spectrum. We found that
the CODECS ΛCDM simulation departs from Halofit at around 5% at scales k .
0.2h/Mpc and as much as 15% at scales of about k ≈ 1.0h/Mpc, for z = 0. The
Cosmic Emulator performs somehow better, matching the ΛCDM simulations at
present time (z = 0) at better than 5% for all scales of interest k . 2.0h/Mpc, see
fig. 4.3. For this reason, we used the Cosmic Emulator as the baseline ΛCDM non-
linear spectrum. We included the error on the fitting functions, the error with re-
spect to the Cosmic Emulator and the sample variance error of the simulation as a
source of error σp(k, z) into our analysis, see fig. 4.4.

We computed the systematic bias on the parameter constraints (cf. section 2.4.7)
and found that the systematic errors due to the ignorance on the correct non-linear
matter power spectrum can be as large as the statistical errors (see table 4.4), so
that for data analysis it is extremely important to have the correct matter power
spectrum under control.

We found that the including non-linear scales from a fit to simulations, im-
proves the previous constraints (which used only linear spectra) on the coupling
parameter β2 by more than an order of magnitude. We investigated how the con-
straints change as a function of the maximum wavenumber kmax included in the
GC and WL analysis. It is shown in fig. 4.6 and fig. 4.7 that the errors decrease
steadily with increasing kmax, but then after kmax & 1 the errors remain more or
less constant. We also show that using the wrong non-linear prescription, namely
applying Halofit directly on top of the CDE linear spectra, gives worse constraints
and wrong degeneracy directions of the confidence contours. This is expected,
since Halofit cannot account for the changes in structure formation at non-linear
scales given by the "fifth-force". Therefore, we show in this work, that to obtain the
correct constraints on a modified gravity parameter, like the DM-DE coupling, it is
necessary to calculate the correct non-linear power spectrum within the MG model.

The final constraint we obtain on β2, which is σβ2 ≈ 8× 10−5 (see [83]) is not far
from the current best limits reached with Solar System observations on a coupling
to baryons [200], which can be translated in our notation as β2 ≤ 2 · 10−5 at 1-σ.
Hence, we can expect that with future galaxy surveys and a correct modeling of
the non-linear power spectrum and its associated systematic errors, the dark sector
couplings will be constrained with the same level of precision as we constrain the
visible sector within the Solar System nowadays.
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Resummation methods for Horndeski theory

As we have discussed in previous chapters, the estimation of the correct non-linear
power spectrum when studying a Modified Gravity model is of uttermost impor-
tance. We can use approximated non-linear prescriptions based on the Halo model
as we did in chapter 3 to improve considerably the constraints obtained using just
linear theory, but we showed in chapter 4 that using the wrong prescription can
bias our results and that the more precise approach is to find fitting functions di-
rectly from N-body simulations computed specifically for the model in question.
However, this is prohibitively expensive, we cannot calculate for each DE and MG
model a set of N-body simulations covering the parameter space. Therefore, while
N-body simulations of Dark Energy and Modified Gravity provide the best esti-
mates of the non-linear power spectrum, we cannot use them realistically for a
large number of forecasts or future data analysis.

In chapter 5 we took a different approach. The idea here was to use a recently
developed resummation formalism in cosmological perturbation theory,
called eikonal Renormalized Perturbation Theory (eRPT), to calculate the non-linear
corrections to the matter power spectrum at mildly non-linear scales, for a set of
Horndeski models. Since these calculations are relatively complex, we focus on
Horndeski theory in the quasistatic limit, in which the modifications to the gravita-
tional potentials, which are given by µ and η, depend on 5 functions of time, while
the scale dependence is fixed, see eq. (5.26) and eq. (5.27).

Standard Perturbation Theory (SPT) in Large Scale Structure (LSS) suffers from
the problem that corrections at higher orders (higher loops), are not smaller the
more loops one includes in the calculations. Therefore, one has in principle to sum
contributions at all orders. Being a resummation method, eRPT does not suffer
from this problem, and we can compute the linear part plus 1-loop terms under
certain conditions, ensuring that higher orders will not spoil completely the result.
In this method we can derive an evolution equation for the non-linear power spec-
trum (see eq. (5.66)) which depends on the linear power spectrum and the linear
propagator (the solution of the differential equation for the growth). This method
has been compared to N-body simulations for ΛCDM by [26] and has been found
to be 1–3% accurate at mildly non-linear scales k . 0.4h/Mpc for redshifts up to
z = 0.

In this project (which corresponds to a publication in preparation) we have com-
puted the necessary terms for the evolution equation for Horndeski models in the
quasistatic limit. We have made several approximations on the way, which we
specify in section 5.5 and we relax them progressively, to obtain a more realistic
result.

Our preliminary results show that modifications of µ of around 15% at small
scales, compared to the GR case (µ = 1) can affect the power spectrum at around
5% at mildly non-linear scales (see fig. 5.5). As we have shown in previous chap-
ters, such an effect would be observable by future galaxy surveys. Since in these
models the growth of perturbations is scale-dependent, the correct calculation of
non-linearities can also affect the constraints coming from data on fσ8, as we show
in fig. 5.4.

This eRPT method for Horndeski models still has to be tested against recently
developed N-body simulations for Modified Gravity and we have to study more in
detail the effect of the approximations we have taken. The subject of this chapter is
part of a paper in preparation.
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Dynamics of lumps in Growing Neutrino Quintessence

In chapter 6 we studied a model in which the neutrino mass is coupled to the scalar
“cosmon“ field. This model presents very interesting phenomenology, as we have
shown on a recent paper [82]. We find corners of the parameter space in which
the background is very close to ΛCDM, but the neutrinos form highly non-linear
structures, with non-trivial dynamics. The specific action of this theory, can be
motivated from the breaking of scale invariance and by considering the neutrino
mass generation within the seesaw mechanism (see [283]).

The coupling between neutrinos and the scalar field β(φ) needs to be very high
in order to respect constraints on early Dark Energy and on the evolution of the
equation of state. This strong coupling leads to the formation of large neutrino
structures known as “neutrino lumps“, which have been observed using special-
ized non-Newtonian N-body simulations as in [31]. Previous studies had found
that for a constant coupling β, there is no way of obtaining a realistic cosmology
(see [119]), due to the strong backreaction effects caused by the large and stable
lumps.

In the publication by [82] we studied, using N-body simulations, the dynamics
of neutrino lumps for different masses of the neutrino at present time, mν,0. We
found that there are two regimes: for large masses, above mν,0 & 0.5eV , the neu-
trino lumps become stable and grow increasingly with time, forming larger and
larger structures; for small masses (below mν,0 . 0.5eV ) the neutrino lumps form
and dissolve in time, causing oscillations in the neutrino equation of state and in
smaller measure also in the energy fraction of Dark Energy, and the total equation
of state of wφ+ν due to the strong coupling (see fig. 6.3 and fig. 6.4). This mass-
divide of the phenomenology of lumps can be visualized clearly in fig. 6.1.

In the case of stable and growing lumps, the backreaction is strong and we
cannot obtain any realistic cosmological evolution. For very high neutrino masses
our N-body code is not able to resolve anymore the highly non-linear equations. In
these extreme cases all neutrinos cluster into one single structure in the simulation
box.

In the case of oscillating lumps, we find an interesting phenomenology. Neutri-
nos start as relativistic particles in the early Universe, but then due to the “cosmon“
coupling and the expanding Universe, their masses increase and they become non-
relativistic. This leads to an effective potential with a minimum, that stops the cos-
mon from rolling down its exponential potential, giving rise to the onset of Dark
Energy domination. This minimum causes oscillations in the perturbations of the
scalar field, which in turn causes oscillations in the perturbations of the neutrino
energy density. When neutrinos are non-relativistic, they tend to attract each other
and form large structures, however their acceleration towards the lumps and the
oscillations of the cosmon field, turn them again into relativistic particles, which
can escape from the newly formed structures. Figure 6.1 shows graphically how
these two regimes differ from each other.

Despite this non-linear interaction between the scalar field and the neutrinos,
we find in this regime of small masses a cosmology compatible with present obser-
vations. The total Dark Energy equation of state wφ+ν is very close to −1 and the
energy fractions of DE, DM and neutrinos, are compatible with recent observations
by the Planck satellite [3] and by lower limits on the neutrino mass given by labo-
ratory experiments [155]. We also find that the total gravitational potentials in the
small mν,0 mass regime are not significantly affected by the neutrino lumps. The



170 Summary and Outlook

neutrino contribution to the gravitational potential Φ is two to three orders of mag-
nitude smaller than the one coming from Cold Dark Matter particles. Therefore,
current constraints on modified gravity coming from the Integrated Sachs-Wolfe
effect [120], can still be respected.

Furthermore, we found a very interesting effect on the neutrino fluid. The ac-
celeration and deceleration towards the neutrino lumps, causes a net increase in the
neutrinos kinetic energy, which translates into a shift of the mean of their momen-
tum distribution. Since the neutrino distribution can be well fitted by a Fermi-Dirac
distribution, this amounts to an increasing of the neutrino temperature. This effect
can be well visualized in fig. 6.6. It could have interesting implications for ob-
servations in the far future which plan to put constraints on the Cosmic Neutrino
Background [179].

This is a good example of a Dark Energy model that cannot be solved using
linear theory. The Klein-Gordon equation for the scalar field (eq. (1.82)) is highly
non-linear and the rapid growth of δν cannot be approximated by linear perturba-
tions. Present Boltzmann codes that are able to solve the GNQ model, start failing
already at redshifts of about z ≈ 10, since they cannot follow anymore the oscilla-
tions of the neutrino equation of state and the large non-homogeneous values of δν .
A previous N-body simulation trying to solve this model (see [43]), based on New-
tonian codes, was also not capable of evolving the neutrino evolution until present
time. Therefore in this project we used an N-body code created in our research
group [32], which includes both gravitational potentials Φ and Ψ, allows for the
possibility of having relativistic velocities, takes into account backreaction effects
and solves for the “cosmon“ field φ on a grid, using a multigrid Newton-Gauß-
Seidel solver. All these effects come at the cost of a computationally demanding
implementation, which is very difficult to parallelize in an optimal way.

Summary and Outlook

In this thesis we have shown how important it is for future cosmological obser-
vations to take into account the effects of non-linear structure formation. This is
especially the case if one wishes to discriminate between competing cosmologi-
cal models in Dark Energy and Modified Gravity, which resemble very closely the
evolution of the standard ΛCDM scenario at the background level, but offer quite
distinctive features at the level of large scale structure formation.

We have tackled this issue from different angles: semi-analytic prescriptions
based on the Halo model (chapter 3), fitting formulae based on simulations (chap-
ter 4), resummation methods for higher-order cosmological perturbation theory
(chapter 5) and directly computing, computationally demanding, non-Newtonian
N-body simulations in chapter 6.

In all these cases we have seen that taking into account non-linearities yields ob-
servable effects that will be measured with high precision in future galaxy surveys.
Using only linear theory and limiting the analysis to linear scales, not only worsens
the forecasted constraints by more than one order of magnitude (see chapter 3), but
can also bias the result (see chapter 4). Even more dramatically, for certain models
of Modified Gravity, involving strong “fifth-forces“, the predictions of the model
cannot be calculated properly using linear theory, and one is forced to compute all
observables, even the background quantities, with the help of specialized N-body
simulations (see chapter 6).
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In chapter 2 we detail the Fisher matrix method and the code we created to
forecast the constraining power of future surveys, using Galaxy Clustering and
Weak Lensing observables. We concentrated on the missions: Euclid, SKA1, SKA2
and DESI. All of them will be started in the next 2 to 10 years. We also explained
how we introduce non-linearities into the Fisher matrix formalism and how we deal
with the unknown estimation of the power spectrum and the involved sources of
noise and errors.

The field of non-linear structure formation and its application to the analysis of
cosmological observations is a field which is advancing very rapidly, due to the ur-
gent necessity of understanding this problem in order to gain as much information
as possible from future data.

In the near future we would still need to explore several open questions in this
field. For example, how degenerate are the Modified Gravity predictions at non-
linear scales with other effects like the neutrino mass, baryonic feedback and the
unknown properties of bias and primordial non-Gaussianities. Especially the ef-
fect of baryonic physics at small scales, is of great concern, since it can affect and
wash away most cosmological information above a certain wavenumber. This is an
open issue that has to be resolved in such a way, that allows future observational
cosmologists to discard as little information as possible from small scales.

Another issue we need to solve is how to parameterize optimally the effects of
Modified Gravity models. As we have seen in chapter 3, the most parameterization
independent way of doing this, is to pixelize the evolution of µ(a) and η(a) in red-
shift bins. However, it is not clear how many bins need to be used, which priors can
be imposed on these binned parameters and if in general, parameterizing µ and η
as we have done in chapter 3, is still a valid approach once non-linear corrections
are taken consistently into account.

All this can only be investigated once a semi-analytic method (like the resum-
mation method of chapter 5) for computing non-linearities in Modified Gravity
theories is mature enough to yield consistent results for a large range of models
and parameters. Exploring the model and parameter space will not be feasible in
the near future by computing for each model a separate N-body simulation.

In terms of Fisher forecasts, we have shown at the end of chapter 2 how we
can go beyond the Gaussian approximation for the likelihood. However, for a
proper analysis of non-linear structure formation, we still would need to take into
account non-diagonal covariance matrices, cross-correlations among Galaxy Clus-
tering and Weak Lensing and small scale effects modifying our formulas for the
Baryon Acoustic Oscillations and Redshift Space Distortions. This will be the sub-
ject of future work on the FISHERTOOLS code.

In this thesis we have dealt almost exclusively with the non-linear matter power
spectrum. But we know that at highly non-linear scales, this statistical measure
cannot give us the full picture. The cosmic web, consisting of voids, sheets and
filaments, is not well described by the two-point correlation function. Going to the
three-point correlation function (called the bispectrum in Fourier space) can yield
already some extra information, although its calculation is quite demanding. For
future data, we will need to find some other statistical measures that can give us a
clear insight into the intricate dynamics of the smallest scales.

Definitely, the next decade in the precision era of cosmology, will be a time of
rapid technological advances, impressive developments in theoretical and statisti-
cal tools and, hopefully, many surprising discoveries.
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