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Abstract 

 

Abstract 

Multipulse optical technique is an essential tool on the direct observation of electron-nuclear 

motions responsible for various molecular properties. For example, light-energy harvesting or anti-

oxidation, which flora and fauna have achieved along the course of evolution, are initiated by the 

molecular dynamics in conjugated hydrocarbons such as conjugated polyenes or porphyrin rings. In the 

case of the conjugated systems in photosynthetic pigments, a part of the dynamics has been revealed as 

an electronic-state dynamics. However, it is required to disentangle the remaining part of the molecular 

dynamics mainly consisting of the vibronic interactions induced by nuclear motions. In the scope of this 

thesis, the vibronic interactions between the electronic states having Bu or Ag symmetries in conjugated 

polyenes were detected by use of pump-probe and pump-degenerate four-wave mixing (DFWM) 

experiments. In addition, as an example of multimodal time-resolved spectroscopies, the combination 

of the two optical experiments was demonstrated to overcome analytical problems related to precision 

and accuracy of functional analysis for pump-probe spectra. 

The significant influences of the vibronic interactions between the electronic states with Ag-Ag 

or Bu-Bu symmetries were observed by pump-DFWM experiments for a series of the conjugated 

polyenes having four different conjugated double bond length N = 9, 10, 11 and 13. The frequency shifts 

of C–C (1100 cm–1) and C=C (1500 cm–1 for Bu state, 1800 cm–1 for Ag states) stretching modes indicated 

the features and some difference of the two couplings. The coupling between Ag
– states appeared for all 

polyenes under the existence of the excited state with Ag symmetry. On the other hand, the coupling 

between Bu states only appeared for the polyenes with N = 9 and 10, in which strong degeneracy of two 

Bu states can exist. In addition, solvent polarizability changed the coupling strength which was examined 

for lutein (N = 9.5) in three different solvents (hexane, THF and benzene). While the coupling appeared 

in hexane and in THF, it was absent in benzene since the degeneracy of the ionic Bu
+ state and covalent 

Bu
– state were very sensitive to solvent polarizability. The observation could be connected to 

environmental effects on the photosynthetic polyenes surrounded by proteins and lipids in 

photosynthetic apparatus. 

In addition, an example of multimodal approach, which combines two different optical 

experiments, was demonstrated by the simultaneous analysis of a pair of data sets recorded by pump-

probe and pump-DFWM experiments. This approach overcame conventional analytical problems of 

rotation ambiguity and local minimum in global target fitting. While the characterization of the 

relaxation model for rhodamine 6G was not uniquely done by global target fitting, the multimodal 

approach uniquely determined the appropriate kinetic model by the evaluation of four error functions. 

Moreover, the interpretation of the spectral and temporal elements were based on the response functions 

of pump-probe and pump-DFWM experiments. 

The direct detection of vibronic coupling and the methodological development to disentangle 

the ultrafast molecular dynamics contributes to the investigation of nonadiabatic processes which is 

crucial to understand molecular properties. 

 

 

 



 
 

Kurzzusammenfassung 

 

Kurzzusammenfassung 

Die Technik mit mehreren optischen Pulsen ist ein wesentliches Instrument zur direkten 

Beobachtung von Elektronen-Kern-Bewegungen, die für verschiedene molekulare Eigenschaften 

verantwortlich sind. Beispielsweise werden Licht Energy Harvesting oder Antioxidation, die Flora und 

Fauna im Laufe der Evolution erreichten, durch die Molekulardynamik in konjugierten 

Kohlenwasserstoffen wie konjugierten Polyenen oder Porphyrinringen initiiert. Im Falle konjugierter 

Systeme in photosynthetischen Pigmenten wurde ein Teil der Dynamik elektronischen Zuständen 

zugeordnet. Es ist jedoch erforderlich, den verbleibenden Teil molekularer Dynamik zu enthüllen, der 

hauptsächlich auf durch Kernbewegungen hervorgerufenen vibronischen Wechselwirkungen 

zurückzuführen ist. Im Rahmen dieser Arbeit wurden die vibronischen Wechselwirkungen zwischen 

elektronischen Zuständen mit Bu oder Ag Symmetrien in konjugierten Polyenen unter Verwendung von 

Pump-Probe und Pump-Degenerate Four-Wave Mixing (DFWM) Experimenten untersucht. Darüber 

hinaus wurde als Beispiel für multimodale zeitaufgelöste Spektroskopie die Kombination der beiden 

optischen Experimente gezeigt, um analytische Probleme im Zusammenhang mit Präzision und 

Genauigkeit der Funktionsanalyse für Pump-Probe-Spektren zu überwinden. 

Die signifikanten Einflüsse der vibronischen Wechselwirkungen zwischen den elektronischen 

Zuständen mit Ag–Ag oder Bu–Bu Symmetrien wurden durch Pump-DFWM-Experimente für eine Reihe 

der konjugierten Polyene mit vier verschiedenen konjugierten Doppelbindungslängen N = 9, 10, 11 und 

13 beobachtet. Die Frequenzverschiebungen von C-C (1100 cm–1) und C = C (1500 cm–1 für den Bu
 

Zustand, 1800 cm–1 für den Ag Zustand) Streckschwingungen zeigten die Merkmale und einen 

Unterschied der beiden Kupplungen an. Die Kopplung zwischen Ag Zuständen erschien für alle Polyene 

unter der Existenz des angeregten Zustands mit Ag Symmetrie. Auf der anderen Seite erschien die 

Kopplung zwischen Bu Zuständen nur für Polyene mit N = 9 und 10, in denen starke Degeneration 

zwischen zwei Bu Zuständen existieren kann. Darüber hinaus änderte die Lösungsmittelpolarisierbarkeit 

die in drei verschiedenen Lösungsmitteln (Hexan, THF und Benzol) untersuchte Kopplungsstärke für 

Lutein (N = 9,5). Während die Kopplung in Hexan und THF auftrat, fehlte sie in Benzol, da die 

Degeneration des ionischen Bu
+ Zustandes und des kovalenten Bu

– Zustands sehr empfindlich gegenüber 

Lösungsmittelpolarisierbarkeit waren. Die Beobachtung könnte mit Umweltauswirkungen auf die 

photosynthetischen Polyene verbunden sein, die von Proteinen und Lipiden in photosynthetischen 

Apparaten umgeben sind. 

Darüber hinaus wurde ein Beispiel eines multimodalen Ansatzes, der zwei verschiedene 

optische Experimente kombiniert, durch die gleichzeitige Analyse eines Paares von Datensätzen, die 

durch Pump-Probe und Pump-DFWM Experimente gemessen wurden, gezeigt. Dieser Ansatz überwand 

die konventionellen analytischen Probleme der Rotations-Ambiguität und des lokalen Minimums in der 

globalen Anpassung. Während die Charakterisierung des Relaxationsmodells für Rhodamin 6G durch 

eine globale Anpassung nicht eindeutig erfolgt, bestimmte der multimodale Ansatz durch die 

Auswertung von vier Fehlerfunktionen eindeutig das entsprechende kinetische Modell. Darüber hinaus 

basiert die Interpretation der spektralen und zeitlichen Elemente auf den Reaktionsfunktionen von 

Pump-Probe und Pump-DFWM Experimenten. 

Die direkte Beobachtung der vibronischen Kopplung und die methodische Entwicklung, um 

ultraschnelle Molekulardynamik aufzudecken, trägt zur Untersuchung von nichtadiabatischen Prozessen 

bei, die für das Verständnis molekularen Eigenschaften entscheidend sind. 
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Chapter 1 

Introduction 
Many kinds of molecular properties and reactions are initiated by the structural changes induced 

by the excitation of molecules. Such ultrafast nuclear motions occur even within a picosecond 

timescale.1-5 Hence, a thorough understanding of the ultrafast molecular dynamics is indispensable for 

describing the mechanisms behind molecular properties. In order to probe ultrafast electron-nuclear 

motion, many kinds of optical techniques and theoretical frameworks have been developed in the last 

century. Especially, evolution from pure steady state methods to time-resolved methods was achieved 

by the introduction of pulsed light sources, typically pulsed lasers with Q-switching or mode locking.6-

8 Moreover, the development of pulsed laser sources that can produce optical pulses from ~100’s ps, e.g. 

from pulsed laser diodes, to as short as ~50 as using high harmonic generation has permitted the direct 

observation of electronic and vibrational state interactions.9-12 In general, many molecular dynamics 

studies have been utilized such femtosecond methodologies, based on titanium-sapphire technologies.13 

From the data obtained, the observed behavior has been usually explained in the framework of 

adiabatic approximation14,15, in which electron-nuclear motion is described by dynamically separated 

vibrational and electronic states while the interactions between electronic states induced by nuclear 

motion are ignored. However, in order to reveal the electron-nuclear motions accurately, such 

interactions have a significant importance especially for electronic-state dynamics, which readily occur 

on a femtosecond timescale or at a conical intersection.16-19 Since the effects induced by nuclear motion 

are ignored in adiabatic approximation, adiabatic energy levels, a product of an electronic and a nuclear 

wavefunction, are not enough to describe the interactions evoked by nuclear motion.* As a result, the 

effects are usually called vibronic (vibrational + electronic) effects. Many ideas to describe such 

nonadiabatic processes have been suggested during the last 40 years for various kinds of the quantum 

systems. For example, the significant nonadiabatic effects appearing on the stationary absorption 

spectrum were explained for the butatriene by use of the comparison between the observation and the 

calculations with/without the nonadiabatic effects.16 On the other hand, in the case of the polyenes 

having the number of the conjugated double bonds N > 4, the nonadiabatic effects have been partially 

revealed between an excited state and the ground state.20-23 For example, polyenes that contain 

conjugation lengths of N > 5, where N is the number of conjugated double bonds, electronic states with 

Ag
− symmetry may undergo strong coupling due to the C=C (Ag) stretching modes.22-24 Such vibronic 

effects lead to the modification not only of the potential energies but also of the vibrational frequencies. 

However, it is still difficult to examine the interactions between short-lived excited states (< 1 ps), while 

such dynamics could be crucial for molecular properties and reactions. As a result, the unrevealed 

dynamics on the short-lived excited states in polyenes has caused a huge argue about the existence of 

some optically-dark electronic states.25-28 Since every kind of reaction usually occurs with a nuclear 

rearrangement, disentanglement of nonadiabatic effects, usually performed by time-resolved optical 

experiments, is required to reveal accurate molecular mechanisms. 

 

* Recently, some literature introduced a new framework to describe the exact molecular wavefunctions 

as a product of an electronic and a nuclear wavefunction.29,30 In this work, we employed the theoretical 

framework based on the conventional adiabatic approximations discussed in Appendix F to define the 

meanings of the words. 
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Figure 1.1: Ultrafast phenomena with relevant timescale.2 As an improvement of the 

time resolution of experimental techniques, ultrafast phenomena occurring below 100 

fs have been intensively investigated for some molecular dynamics such as 

photosynthetic mechanisms.31-34 

 

When dealing with studies involving time-resolved spectroscopy in the femtosecond timescale 

there are various issues, but two of particular relevance that we shall highlight: (i) breakdown of the 

adiabatic approximation17,18 and (ii) strong overlap between the signals that contribute to the measured 

data. The first point we have already mentioned in the previous paragraph. To reiterate, the adiabatic 

approximation is the basic idea that allows us to consider the electron and nuclear wavefunctions 

separately.35 Much of the research performed in the picosecond timescale employs the adiabatic 

approximation to interpret molecular dynamics, as the picosecond timescale mainly consists of 

electronic and vibrational energy relaxations (Figure 1.1).36-38 On the other hand, the femtosecond 

dynamics contain many additional phenomena, one of which is the nuclear motions that couple to the 

molecular orbital dynamics. While their time evolutions can be ignored at the picosecond level their 

contribution becomes too significant at the femtosecond level. Regarding the second point mentioned, 

decomposition of the overlapping signals, this is more challenging at the femtosecond regime due to the 

existence of additional physical phenomena such as solute-solvent or intramolecular interactions.39,40 

The serious mathematical complexity in the data obtained using simpler time-resolved methods has led 

to the development of more sophisticated analytical tools, and also the introduction of more complicated 

experimental techniques that look to produce cleaner, less convoluted data. For example, many kinds of 

multi-dimensional vibrational spectroscopies have been developed to show specific features in 

femtosecond molecular dynamics, although they inherently introduce some disadvantages at the same 

time. 

In regards to the problems outlined previously, many approaches to disentangle nonadiabatic 

effects and to control them by use of optical experiments have been introduced. Much of these 

techniques are grouped into 3rd-order or 5th-order nonlinear time-resolved spectroscopies.41-45 For 

example, the pump-probe experiment, which is a kind of the 3rd-oder nonlinear optical spectroscopies 

(four-wave mixing), can basically observe population dynamics of excited states in addition to the 

nuclear motions appearing as wavepacket motion.46 The optical technique can effectively record 

molecular dynamics as a series of absorption and emission spectra as a function of pump-probe pulse 

delay time. Note that the pump-probe delay time is variable and is equivalent to the timescale of 

(photo)reaction progression (Figure 1.2) while it is convoluted with an instrumental response function. 

The acquired spectra contains a variety of information, including but not limited to the transient dipole 

of the relevant energy levels. In addition, the spectral analysis is often based on functional analysis in 

which the spectra are decomposed and reconstituted with the simultaneous fittings of possible kinetic 

models (Figure 1.2). Consequently, it is a technique often used to evaluate population dynamics 

described by the adiabatic energy levels. On the other hand, pump-degenerate four-wave mixing 
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(DFWM) experiment, which is a kind of the 5th-order nonlinear optical experiment (six-wave mixing), 

can disentangle the wavepacket motion in more detail by the direct observation of vibrational and 

vibronic coherences during the population relaxation.42,47,48 Especially in the femtosecond timescale, the 

time evolution of the vibrational frequencies could contains the coupling effects between some short-

lived electronic states. Therefore, the vibrational spectroscopy is a sophisticated tool to disentangle the 

nonadiabatic effects. In general, such advantages of the optical spectroscopies are always accompanied 

with some disadvantages compared with the other techniques. Due to there being no “one best method”, 

we suggest a combination of two complementary time-resolved spectroscopies to disentangle ultrafast 

dynamics. The two that we choose to focus on are the pump-probe methodology and pump-DFWM. The 

experimental results obtained in both optical techniques can be examined by the use of functional 

analyses. 

 

 

Figure 1.2: Framework of the research to reveal ultrafast molecular dynamics by use 

of time-resolved spectroscopy. Molecular dynamics such as (a) the color changing of 

molecule is observed by some spectroscopies as (b) a series of transient spectra. The 

interpretation of the spectral data is determined by the comparison between theoretical 

model and decomposed spectral data usually through functional analysis. 

 

The work within this thesis is centered on the use of pump-probe and pump-DFWM experiments, 

to detect the ultrafast molecular dynamics of photosynthetic polyenes. In particular, we focused on the 

vibronic coupling and the experimental issues originated from the interaction between the polyene 

electronic states. Since the two optical techniques can observe molecular dynamics from different 

aspects, it is possible to improve conventional analytical method by use of the advantages of the two 

experiments. An example of the new approach, which we refer to as multimodal time-resolved 

spectroscopy, has led to a new means to decompose and  reconstitute a pair of spectral data sets observed 

by both pump-probe and pump-DFWM experiments. Chapter 2 introduces the background material 

needed to understand the polyenes, also known as carotenoids, used in the experiments. Additionally, a 

thorough account of the theoretical description behind the high order processes involved in pump-probe 

and pump-DWFM is also given. The final part of chapter 2 is an in depth explanation of what functional 

analysis is, and how it is used in the analysis of the time-resolved data. The principles behind the 

multimodal time-resolved spectroscopy that was developed are explained in brief in chapter 2. Moving 

to the results of the thesis, chapter 3 evaluates the ultrafast relaxation of quasi-degenerated coupled 

potential surfaces in a series of carotenoids by use of pump-DFWM. We show that by changing solvent 

polarizabilities, one can change the degeneracy of the potential surfaces, which leads to modification of 
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the coupling effects that only appear at very early times (< 100 fs). In chapter 5, we demonstrate the 

power of combining pump-probe and pump-DFWM experiments by functional analysis. The new 

approach we have designed decomposes the signals observed in two complementary time-resolved 

spectroscopies simultaneously. The combination of 3rd-order and 5th-order nonlinear spectroscopies with 

simultaneous data analysis allows one to acquire a less ambiguous solution with the spectral elements 

described by the light-matter interactions commonly observed in the two optical experiments. Finally, 

chapter 6 concludes the research which was undertaken and explores future work and outlooks. 
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Chapter 2 

Materials and Experimental Methods 
In this thesis, ultrafast photochemical reactions occurring in degenerate energy levels is 

investigated by pump-probe and pump-Degenerate Four-Wave Mixing (DFWM) experiments.47 A 

series of carotenoids having unique degenerate excited states28,49 was employed in order to detect 

vibronic couplings between the electronic states of Bu
+, Bu

– or Ag
– symmetries. In addition, rhodamine 

6G, having a well-known two-state system in the visible wavelengths,50-52 was used as an example to 

examine the appearance of vibrational and vibronic coherence in each optical technique and functional 

analysis. The spectral data were analyzed by functional analysis53-58 which decompose and reconstitute 

spectra based on some appropriate theoretical model. Regarding the background and experimental 

methods, this chapter has three sections for Carotenoids 2.1, Nonlinear Time-resolved Spectroscopies 

2.2 and Functional Analysis 2.3. 

 

2.1 Carotenoids 

2.1.1 Functions of Carotenoids 

Carotenoids are naturally occurring polyenes having two essential roles in photosynthesis: light 

energy harvesting and photoprotection.34,59 In the early stage of photosynthesis, light absorption through 

chlorophylls is accompanied by light absorption through carotenoids. In many plants and bacteria, 

carotenoids serve as accessory light-harvesting pigments in the visible region where chlorophylls cannot 

effectively work. The energy absorbed by carotenoids are transferred to chlorophylls in the form of 

electronic singlet excitations.60,61 On the other hand, carotenoids can be a main light absorber in some 

case such as the pigment-protein complex extracted from Amphidinium carterae (a species of 

dinoflagellate)62. Thus, the carotenoids are indispensable elements in the light energy harvesting. In the 

photoprotection, they prevent photodestruction in photosynthetic apparatus via quenching of chlorophyll 

triplet states, singlet oxygen scavenging or excess energy dissipation through the singlet internal 

conversion processes.63-66 In addition, they are beneficial for living organisms as antioxidants67 or as a 

source of vitamins derived from carotenoids with a β-ring. Due to the important features of carotenoids, 

P. Karrer and R. Kuhn received Nobel Prize in 1937 and 1938, respectively. P. Karrer determined the 

correct constitutional formula for β-carotene, and it was the first time that the structure of a vitamin or 

provitamin had been established. The chromophores possess low-lying ππ* electronic transitions whose 

energies and oscillator strengths are sensitive to substituents and to interactions with proteins. In spite 

of the intense research, their electronic structure and nuclear dynamics still remain uncertain. 

 

2.1.2 Structural and Spectroscopic Features 

 The diverse functions of carotenoids derive from their molecular structure and electronic 

properties. They have a conjugated π-system of C=C double bonds in all-trans configuration as shown 

in Figure 2.1. The conjugated π-electron system is responsible for most of the spectroscopic properties 

of carotenoids. For example, the highly delocalized electrons in carotenoids lead to its strong yellow-

red colors of the pigments. The longer the conjugation of double bonds of the polyene backbone, or in 
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other words the more delocalized the electrons are, the longer the wavelength at which light is absorbed. 

Figure 2.2 shows the absorption spectra of carotenoids and the bathochromic shift induced by the 

delocalization of π-electron on the conjugated chain. Carotenoids can absorb radiation in the visible 

region where chlorophyll is not an efficient absorber. Therefore, the shorter-chain carotenoids are 

selectively bound to LH2 antenna complexes for the light-harvesting function. On the other hand, the 

delocalized electrons in longer-chain carotenoids make them quite suitable for photoprotection by 

physically quenching singlet oxygen or even by chemical reactions59,68. In addition, depending on the 

degree of substitution, the terminal rings can also strongly influence the overall properties of the 

carotenoids as previously seen in Amphidinium carterae (the pigment-protein complex of the 

dinoflagellate contains peridinin which have a significantly high efficiency of energy transfer due to 

their end group)62. 

 

 

Figure 2.1: Molecular structures of carotenoids with the conjugation length N = 9 – 13. 

The parameter, β, refers to the conjugation extended to a terminal ring. 

 

 

Figure 2.2: Absorption spectra of carotenoids for N = 9 – 13. The higher the 

conjugation length N becomes, the more the spectra shift to the red. 
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The vibronic structure of absorption or emission spectra is usually governed by progressions of 

totally symmetric vibrations (Franck-Condon progressions16).69 In the series of carotenoids shown in 

Figure 2.2, the vibronic structure is formed by two totally symmetric modes, the prominent C=C stretch 

(~1500 cm–1) and a slightly less active C–C stretch (~1100 cm–1).70,71 Their activity results from changes 

in carbon-carbon bond lengths upon electronic excitation. Raman spectroscopies are often use to observe 

structural rearrangements in carotenoids since the two modes are strongly active in the Raman 

spectra.72,73 

 

2.1.3 Geometrical Symmetries and Energy Levels 

 The electronic states of all-trans carotenoids are usually described by the geometrical features 

of the π-electron conjugated systems with C2h symmetry. The molecular orbitals of polyenes follow the 

four symmetry rules (E, C2, i and σh) of C2h symmetrical point group. Taking trans-2-butene as an 

example of a simple polyene with C2h symmetry, they have molecular orbitals with the symmetrical 

labels as shown in Figure 2.3. Depending on the combination of the symmetry elements, the molecular 

orbitals are described by the four irreducible representations of Ag, Au, Bg and Bu (Appendix A contains 

more detailed information). The capital letter used, ‘A’ or ’B’, distinguishes symmetric or antisymmetric 

response of the orbital with respect to a C2 operation. Moreover, the subscripts of ‘g’ (gerade) and ‘u’ 

(ungerade) refer to symmetric and antisymmetric response to an inversion operation. The symmetry 

labels adequately describe wavefunctions of double occupancy (two electron present) for trans-2-butene 

as shown in Figure 2.3b. 

 

 

Figure 2.3: (a) The C2h point group contains four symmetry elements: the identity 

operator (E), twofold symmetry axis (C2), center of inversion (i) and a horizontal mirror 

plane (σh). (b) The molecular orbitals of trans-2-butene (C2h) are labeled according to 

the symmetry properties as belonging to one of the four irreducible representation (Ag, 

Au, Bg, Bu) of the C2h point group. 
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Figure 2.4: Energy diagram for polyenes with N = 9 – 13. Dependence of the energies 

of carotenoid excited states on conjugation length are shown. The energies of the S1 and 

Sx states were firstly expected by the calculation74 and later experimentally proved by 

resonance-Raman excitation profiles75. The energies of the S2 state are obtained from 

absorption spectra of each carotenoid in THF solution. 

 

Interestingly, the order of the electronic states has a strong dependence on the polyene chain 

length. Usually, they are aligned in a specific order of alternating parity (even, odd, even, odd…) with 

increasing energy and nodes. However, due to strong electronic correlation in the π-electron conjugated 

systems, polyenes with N > 5 have ‘reverse’ ordering of the excited states, which is a central feature of 

naturally occurring carotenoids76,77. 

The first example of the unusual structure of electronic states was revealed in 1972.20,78 Theory 

and experiment indicated that the 2Ag
− state lies below the 1Bu+ state for α,ω-diphenyloctatetraene. 

Later, Tavan and Schulten theoretically indicated the presence of 1Bu
+, 3Ag

−, 1Bu
− and 2Ag

− states and 

their energies as linear function of 1/(2N+1) for the polyene with N = 5 − 874,76. For the carotenoids with 

N = 9 – 13, the energies of the singlet excited states are determined by measurement of resonance-Raman 

excitation profiles as shown in Figure 2.475. 

In Figure 2.4, all of the carotenoids with N = 9 – 13 have a high-lying optically-allowed S2 

(1Bu
+) state, a low-lying optically-forbidden S1 (2Ag

−), and Sx (1Bu
− and 3Ag

−) states with respect to the 

transitions from/to the ground S0 (1Ag
−) state79,80. Here, each states carry ‘+’ and ‘−’ superscripits which 

denotes the pseudoparity character (even “+” or odd “–” against inversion operation) of the electronic 

configuration79. The number in front of the symmetry symbols indicates the order of the each type of 

electronic states from the lowest to the higher energies. Here, to avoid ambiguity and confusion in the 

assignment, the traditional state designations S2(1Bu
+), S1(2Ag

−), S0(1Ag
−) and Sx(1Bu

− and 3Ag
−) will be 

used for singlet excited states. 
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2.1.4 Excited-state Dynamics and Energy Transfer 

 

Figure 2.5: (a) The electronic states of carotenoids for N ≥ 9. (b) Typical transient 

spectra of the S2, Sx and S1 states of lycopene observed by pump-probe experiment. 

 

In order to increase our understanding of the function of carotenoids in photosynthesis, it is of 

prime interest to study the kinetic behavior of their excited states. The deactivation following 

photoexcitation of carotenoids for N = 9 – 13 always go through the singlet internal-conversion process 

of S2 → S1 → S0 as shown in Figure 2.5. 81-83 Since the relaxation to S1 (2Ag
−) after photo excitation to 

the S2 (1Bu
+) state occurs in a very short timescale (< 700 fs), there is still huge argue about the detail 

mechanism between S2 and S1 states. The S1 state is observed as an absorption signal of S1 � SN 

transition (Figure 2.5b) in pump-probe experiment in the visible wavelength region84. The S1 (2Ag
−) state 

deactivates back to ground state as the excited-state absorption disappears. The lifetime of the excited 

states of carotenoids have strong dependence on their conjugation length; the longer the conjugation 

length becomes, the faster the relaxation occurs.3 Such feature of the electronic states in carotenoids are 

often related to their functions. 

In light harvesting complexes, the radiationless decay of the S1 state is a primary process which 

competes with the singlet energy transfer to Qy state of chlorophyll as shown in Figure 2.6. The lifetime 

of the S1 state (donor) determines the transfer efficiency; the faster the relaxation on S1 state occurs, the 

lower the energy transfer efficiency becomes.3 In addition, the energy transfer rates have a quadratically 

dependence on the electronic coupling and linearly on the spectral overlap between the relevant states 

of carotenoids and chlorophylls.32 The overall transfer efficiencies for Car → Chl transfer have been 

measured by fluorescence excitation spectroscopy, showing a variability between different species and 

light-harvesting complexes. According to the literature3, the transfer efficiency is 88 % in Rhodobacter 

sphaeroides G1C (neurosporene, N = 9), 84 % in Rhodobacter Sphaeroides 2.4.1 (spheroidene, N = 10) 

and ~50 % for Rhodospirillum molischianum (lycopene and rhodopsin, N = 11) and Rhodopseudomonas 

acidophila (Rhodopin glucoside, N = 11). The energy transfer efficiency drastically decreases for the 

polyenes with N = 11 (η ~ 50 %) compared with shorter-chain polyene N = 10 (η ~ 90 %), which cannot 

be explained only by the kinetic behavior of S1 state. 
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Figure 2.6: Energy transfer efficiency (η) from carotenoids to (bacterio)chlorophyll in 

LH2 antenna complex. In literature3, the singlet excitation energy transfer through two 

pathways (S2 � Qx and S1 � Qy) were shown. 

 

As alluded to earlier in Figure 2.4, it has been proposed that the spectroscopic properties and 

relaxation dynamics of carotenoids are affected by the presence of additional low-lying excited states 

(Sx) residing between S1 (2Ag
−) and S2 (1Bu

+) states. While there is still huge argue about the kinetic 

behavior of the Sx (1Bu
− and 3Ag

−) states, it is suggested that the 1Bu
− state for the polyene with N = 9 

and 10 stays energetically above the Qx state of chlorophylls.36,38,74 Therefore, how Sx states evolve in 

time and how they participate as a donor in the energy transfer process are central to understanding the 

molecular properties. To reveal such ultrafast phenomena, nonlinear time-resolved spectroscopies are 

usually employed. 
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2.2 Nonlinear Time-resolved Spectroscopies 

The time-dependent photophysical and photochemical properties of molecules are usually 

tracked by multi-pulse optical experiments typically called nonlinear spectroscopy. Each optical 

technique has different features originated from the geometrical design of the specific pulse sequence. 

Some techniques can effectively and accurately determine molecular dynamics within adiabatic 

approximation, but other technique is suitable to detect the interaction between electronic states 

(nonadiabatic process). In fs timescale, while it is possible to detect nuclear motion directly, the 

population dynamics is often accompanied with vibronic interaction induced by nuclear motion. Thus, 

in nonlinear time-resolved spectroscopies, characterization of optical signals has been intensively 

investigated till achieving the theoretical description for the optical experiments.41 In this section, two 

nonlinear spectroscopic signals, pump-probe and pump-DFWM experiments, are introduced as a tool to 

disentangle adiabatic and nonadiabatic processes. 

 

2.2.1 Pump-probe and Pump-DFWM Experiments 

The pump-probe and pump-DFWM experiments are well-known as a kind of four-wave mixing 

or six-wave mixing spectroscopies, respectively. The major part of the signal in each technique is 

described by unified principles described in literature41,46,85. The two techniques have pulse sequences 

shown in Figure 2.7. It is important to note that the number of the pulses in the experiments and the 

number of the light-matter interactions to generate signals are not exactly the same in some case. When 

we carefully see the momentum conservation in pump-probe experiment, there must be two interactions 

of the pump pulse and one interaction of a probe pulse to gain the signal collinear with probe pulse. 

Thus, the 3rd-order nonlinear optical susceptibility is mainly observed in pump-probe experiment 

(although there can be 5th-, 7th- or much higher-order nonlinear responses as minor contributions). On 

the other hand, five interactions are required in the momentum conservation of pump-DFWM 

experiment. Thus, pump-DFWM experiment is a kind of 5th-order nonlinear spectroscopy. The geometry 

of the pulses has significant importance in time-resolved spectroscopies. 

 

Figure 2.7: Pulse sequence for (a) pump-probe and (b) pump-DFWM experiments. The 

geometry of the pulses is expressed by the vectors for each electric field. 
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The coherence is induced by the synchronization of coherent oscillations in quantum states with 

external electric field. In pump-probe and pump-DFWM experiments, dephasing of the coherence, often 

referred as free induction decay (FID) as shown in Figure 2.7, is detected at the femtosecond level. The 

coherent emission usually decays exponentially at the dephasing rate in pure dephasing process. 

However, since dephasing is often accompanied with nuclear rearrangement, FID observed in ultrafast 

time-resolved spectroscopies contains much information not only about population dynamics but also 

about the interactions between electronic states. Obviously, the interaction becomes stronger when 

nuclear rearrangement changes rapidly at the crossing point of two electronic states. Thus, it is often 

challenging to determine ultrafast dynamics having many electronic states.  

 

2.2.2 Phase Matching Condition 

The experimental beam geometry and pulse sequence, often referred as phase matching 

condition, play a central role in time-resolved spectroscopies. By carefully designing of the phase 

matching in a given experiment, one can select specific signals. Many kinds of geometries were already 

carried out and reported in literature41. For example, pump-probe and pump-DFWM experiments have 

phasing matching condition with �� � �� � �� � �� and �� � �� � �� � �� � �	 � �
 , respectively, 

as shown in Figure 2.8. The observed signal (��) always appears at the certain direction which is 

determined by the compensation of the relevant vectors as shown in the bottom panels. In other words, 

the signal observed at the position is only generated by the combination of the interactions of electric 

fields. The series of interactions of each electric field are often used for the interpretation of the spectral 

data as shown in 2.2.3. 

 

 

Figure 2.8: Phase matching conditions of (a) pump-probe and (b) pump-DFWM 

experiments. The pump-DFWM experiment has a BOXCARS geometry in the four-

wave mixing sequence (��, �	 and �
). 
 

The intensity of optical signals is also determined by phase matching condition and detection 

method. For example, in pump-probe experiments, the 3rd-order nonlinear signals appear in the same 

direction with probe pulse. Thus, the signals are overlapped and detected together with the intensity of 

the probe pulse by self-heterodyne detection. Therefore, the intensity of the signal is enhanced as ��
�� � �����. On the other hand, in pump-DFWM experiment, the signal is observed by background-

free homodyne detection which gives rise to the signal intensity of ��

���.47 
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2.2.3 Response Functions for Pump-probe and Pump-DFWM 

Experiments 

The observables in optical experiments are often expressed as a set of response functions which 

contains the patterns of the interactions between the density matrix and dipole operators. A 

comprehensive discussion on the different terms and details can be found in literature41. In this section, 

the response functions appearing in pump-probe and pump-DFWM experiments are selected for 

consideration.  

In general, light-matter interaction is approximately described by optical polarizations41. The 

3rd-order polarization, �
��
�, �� , created by the electric fields, �
��
�, �, ��, ��, ��� , in pump-probe 

experiment has a set of 3rd-order response functions, �
��
��, ��, ���, as shown in Eq. (1)-(4). Detailed 

information and intermediate equations are written in Appendix B. The time interval, ��, between the 

relevant electric fields are defined as shown in Figure B.1 in Appendix B. As shown in Eq. (4), there are 

four response functions with their complex conjugates.  

 �
��
�, �� � � ����
� � ����

� � ����
� �
��
��, ��, ����
��
�, �, ��, ��, ��� , (1) 

where 

 �
��
��, ��, ��� � ��ℏ�
� �
����
����
��� !��
�� � ��
��∗#	

�$�
 , (2) 

 ��
�, �, ��, ��, ��� � �
�, � � ����
�, � � �� � ����
�, � � �� � �� � ��� , (3) 

 

��
��
��, ��, ��� � Tr'()�
���()�
���()�
���(*+)�,
���)�,
���)�,
���- 
��
��
��, ��, ��� � Tr'()�
���)�
���)�
���(*+)�,
���()�,
���()�,
���- 
��
��
��, ��, ��� � Tr'()�
���)�
���()�
���*+()�,
���)�,
���()�,
���- 
�	
��
��, ��, ��� � Tr'()�
���()�
���)�
���*+()�,
���()�,
���)�,
���- ./

/0
//
1
. (4) 

 

where �
�� is the Heaviside step function,	(̂ is the dipole operator, )5
�, ��� is the time evolution 

operator, *+	 the density matrix, the Hermitian conjugate is defined as |78, � 97|. The sum of the trace 

elements given by four response functions ��
�� ~ �	
�� with their complex conjugates and the electric 

fields constitute the 3rd-order polarization. Each term contains a different sequence of the dipole 

interactions as seen in Eq. (4). For example, the dipole interactions induced by the external electric field, 

k1, k2, and k3, in ��
�� have the sequence: ket interaction (k1) → time evolution t1 → ket interaction (k2) 

→ time evolution t2 → ket interaction (k3) → time evolution t3 → signal. The signal decays with the 

dephasing processes containing population and vibrational contributions. The dephasings observed in 

each response function are created by the sequence of the dipole interactions to the density matrix. To 

visualize the observable coherence, dipole interactions and time evolutions applied to the density matrix 

are typically described by the double-sided Feynman diagram (Figure B.2 in Appendix B). Each term 

in the diagram is equivalent with the term shown in Eq. (4). It is very convenient to use the diagram to 

determine the observable signals for each experimental condition. 
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The observable coherence are determined by experimental condition and the interaction 

sequences shown in Eq. (4). For example, in pump-probe experiment where �:; � �� � �� and the 

signal is observed at �� � �� � �� � �� (or �� � ��� � �� � ��), there are contributions from excited-

state absorption (ESA) pathway, excited-state emission (ESE) pathway, and ground-state bleaching 

(GSB) pathway. The coherence observed in pump-probe experiment is the superposition of the 

contributions. More detail information about the evaluation of the response functions is given in 

literature41,85 and Appendix B.4. 

 

 

Figure 2.9: Diagrammatic representation of the selected categories from 3rd-order 

response functions in the pump-probe experiment.85 The solid line and the broken lines 

are corresponding to the ket interaction or the bra interaction, respectively. The wavy 

line is corresponding to the energy of the emission. The color code is comparable with 

Figure 2.8a. Each signal survives with the lifetimes of the relevant dephasing processes. 

Each pathway contains the processes in which the electric fields prepare stationary or 

nonstationary states on the relevant potential surfaces. The emission signals contain 

vibronic frequencies of ωaa’ or ωbb’ generated by GSB pathway or ESA/ESE pathway, 

respectively. ESA – excited-state absorption, ESE – excited-state emission and GSB – 

ground-state bleaching. 

 

As shonw in Figure 2.9, ESA, ESE and GSB can be observed in pump-probe experiment. In ��
��, ��
��, �<
�� and �=
��, the first pulse (�:; � �� � ��) prepares a nonstationary vibrational state on 

an excited electronic potential surface. The dephasing dynamics is scanned by the probe pulse through 

excited-state absorption (ESA in Figure 2.9 �<
�� and �=
��) or stimulated emission (ESE in Figure 2.9 ��
�� and ��
��). In addition, the dephasing on the ground state is observed through the vibrational state 

on the ground state expressed as GSB pathways (��
��  and �	
��). The intensity of each term has a 

dependence on the transition dipoles between the energy levels. Since the intensity of the probe pulse is 

also observed in pump-probe experiment, the time evolution of the frequency-domain transition dipoles 

of populated states (population relaxation) is efficiently observed as increasing or decreasing of the 

intensity of probe pulse. In addition, pure or ensemble dephasings appear as a fluctuation of the signal 

intensity on time axis. The oscillatory signals are induced by wavepacket motion on the ground state 

(��
�� and �	
��) or the excited state (��
��, ��
��, �<
�� and 	�=
��). As a results, the populations and the 

decoherences are observed in pump-probe experiment. 



15 
 

On the other hand, the pump-DFWM experiment, a kind of six-wave mixing, can effectively 

observe wavepacket motions as background-free signal. The 5th-order nonlinear response functions 

contain 16 terms and their complex conjugates as shown in Eq. (D5-4) of Appendix D. In pump-DFWM 

experiment, there are nine sequences of dipole interactions as shown in Eq. (B19) in Appendix B due to 

the degeneracy of the electric fields. Through the detail consideration shown in Appendix B.5, the 

interaction sequences of the observable signal are categorized into seven terms as expressed in Figure 

2.10. 

 

 

Figure 2.10: Diagrammatic representation of 5th-order response functions observed in 

pump-DFWM experiment. The solid line and the broken lines are corresponding to the 

ket interaction or the bra interaction, respectively. The wavy line is corresponding to 

the energy of the emission. The color code is comparable with Figure 2.8b. Each 

pathway contains the processes in which the electric fields prepare stationary or 

nonstationary states on the relevant potential surfaces. The emission signals contain 

vibronic frequencies of ωaa’, ωbb’ or ωcc’ generated by GSB pathway, ESE pathway or 

ESA pathway. ESA – excited-state absorption, ESE – excited-state emission and GSB 

– ground-state bleaching. 
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The optical signals generated by 5th-order nonlinear spectroscopy contain ESE, ESA and GSB 

with the coherence of each state as shown in Figure 2.10. Stimulated Emission Pumping (SEP) pathways, 

which are ESE pathways of the �	

>�, �


>� and �<

>�  in Figure 2.10, present a well-known process 

having a strong contribution to the total signal.86-90 In pump-DFWM experiment, compared with pump-

probe experiment, it is possible to disentangle population dynamics and coherence in more detail by the 

τ axis. However, increasing the number of measurement axis often detracts the resolution of other axis. 

Since each scan on τ axis must be done for each T step in pump-DFWM experiment, the time resolution 

on T axis is sensitive to the experimental conditions, like noise or the drifting of laser intensity. Due to 

the differences on their signal generation mechanisms, the two techniques have some advantages and 

disadvantages. In short, pump-probe spectroscopy mainly contains 3rd-order nonlinear signals consisted 

of population dynamics with high temporal resolution. On the other hand, pump-DFWM contains 5th-

order nonlinear contributions generated through highly characterized signal generation mechanisms. In 

the multimodal approach (Chapter 4), we combine two experiments to exploit the complementary 

features of the techniques. 
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2.3 Functional Analysis for Time-resolved Spectra 

In general, spectral data is recorded as a multidimensional function having energy and time axes. 

The signal contains more than one contribution as indicated by the response functions in the previous 

section. Thus, many researchers employ functional analysis, usually called global target fitting or SVD 

analysis, to decompose and reconstruct spectral data based on some theoretical model.53-58,91 However, 

less attention has been paid for the reliability and accuracy of the analysis for time-resolved spectra. In 

addition, it is usually challenging to distinguish the correct model for the dynamics on the femtosecond 

timescale, compared with the picosecond timescale, due to the existence of many more phenomena. 

Since the transparency of analytical processes is strongly required due to such background, this section 

introduces the analytical process applied on time-resolved data sets in this work. 

 

2.3.1 Decomposition of Spectral Data 

Functional analysis is a strong tool to evaluate spectroscopic data. Since a raw data set often 

contains many different contributions, dynamical and spectral separations of each contributions are 

necessary for the unique interpretation of experimental results. If we assume a matrix ? (@ A B) which 

contains spectral information measured on the wavelength (λ-axis) axis for each time step (T-axis), the 

matrix can be expressed as a sum of the components as shown in Figure 2.11. While there are many 

ways to decompose the original signal, it is possible to obtain a set of the components having physical 

meanings by use of the simultaneous fitting with kinetic models or some simulations such as Franck-

Condon Factor simulation92. 

 

Figure 2.11: Functional analysis decomposes spectral data into several components 

which are the products of spectral and temporal elements. 

 

The decomposition shown in Figure 2.11 is expressed as  

 ?
@, B� 	� C′
@, ��E>F
�, B� � G′ � HI> 
@�JI>F
B�I � G> , (5) 

 

where the matrix ? (@A B) contains spectral data with a time axis K
@� and a wavelength axis L
B�, 
the matrix C′ (@A �) contains the temporal elements and the matrix E>F (� A B) contains the spectral 

elements of k components, the matrix G> (@ A B) contains the residual signal. The product of the k-th 

vectors, HI>  andJI>F, gives the k-th component shown in Figure 2.11.  
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2.3.2 Coefficient Matrix (C-matrix) 

The analytical process shown in Figure 2.11 or in Eq. (5) consists of two steps: Singular Value 

Decomposition (SVD) and linear transformation. The SVD has been widely used for the systematic 

analyses of time-resolved spectra53,56,57. The SVD operation on the matrix A yields 

 ? � HIMIJIFI
 , (6) 

 

where MI is the singular value obtained from diagonal elements, JI is the spectral element and HI is the 

temporal evolution of the k-th SVD component. NJIO and NHIO are both normalized and orthogonal sets 

of eigenvectors. For each eigenvectors, the following transformation is performed by use of a Coefficient 

matrix (C-matrix), C (� A �), 
 ? � HPMPJPFP

� MPHPQQRSJPFP
� TU √MPWPXHPP

YU √MPWXPR�JPFP
YZ

X
� HX[\JX[]FX

 , (7) 

 

where the rotated vectors HX[  and JX[  contain the time-dependent concentration profiles and the 

characteristic spectra of the j-th component. In Eq. (7) the C-matrix performs a rotation of the orthogonal 

vectors NJIO and NHIO. Figure 2.12 illustrates the analytical processes described in Eq. (7). 

 

 

Figure 2.12: Decomposition and transformation for the spectral data matrix, ?. 
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The reconstituted data matrix, ?′, is calculated by the selected k’ elements 
�′ ≤ ��. Then, the 

matrix ?′ is expressed as 

 ?′ � HX>\JX>]FI_
X$�

 . (8) 

 

The difference between the original spectra, ?, and the reconstituted spectra ?′ must be the same with 

the sum of the components left out before the rotation operation. Thus, the reconstituted spectra shown 

in Eq. (8) cannot be used to evaluate the reliability of the analysis. For the proper decomposition of the 

spectral data, it is necessary to perform simultaneous fitting with all possible theoretical kinetic models 

accompanied with the rotation of the vectors. 



20 
 

2.3.3 Rate Equations 

The kinetic model, N`P
K, a, b�, ⋯ , bI>�O, is simply given by the convolution of rate equations 

and instrumental response function, IRF
K, a�. The kinetic model and Instrumental Response Function 

(IRF) have the axes of the delay time, T, Full Width at Half Maximum (FWHM) of IRF, σ, and lifetime 

τn. For example, the kinetic elements N`PO of sequential model with 3 elements 
�> � 3� are given by, 

 A��→B��→C��→ … ,  

with the three profiles given by 

 jk
K� � lAm�nRIop ∗ IRF   

 jt
K� � u ���� � �� lAm�
nRIop � nRIvp�w ∗ IRF  (9) 

 jx
K� � y ����
�� � ���
�� � ���
�� � ��� lAm�N
�� � ���nRIop � 
�� � ���nRIvp � 
�� � ���nRIzpO{ ∗ IRF   

 

where the exponential decay time constants are given by �� � �|}. Figure 2.13 illustrates an example of 

the rate equations. Figure 2.13 (a) shows that the first component having b� � 40	fs loses 63 % of the 

population by 40 fs. It is very important that 37% of the population is still remaining at T = 40 fs. There 

is a typical misunderstanding that all of the population disappears within the lifetime. In addition, the 

appearance of actual kinetic model used in the analysis is convoluted with IRF as shown in panel (c). 

 

 

Figure 2.13: Kinetic elements N`P
K�O  for a sequential model with �> � 3 . The 

lifetimes of the three species are b� � 40	fs (blue), b� � 40	fs (green) and b� � 500	fs 
(red) are shown. (a) The component with the lifetime of b� � 40	fs decays 63 % of the 

population in 40 fs. (b) Raw kinetic equations. (c) The convoluted kinetic equations 

shown in Eq. (9). 

 

The temporal overlap in kinetic models leads to the difficulties to determine the adequate C-

matrix due to the existence of some solutions having no physical meaning. In addition, the increasing of 

the overlap, in other words the increasing of the inner products in kinetic models, obviously lose the 

orthogonality of the resultants during the rotation operation. Since the C-matrix is often evaluated by 

the integrated errors among the whole signals or kinetic models, there can be several patterns of the C-

matrix belonging to the same error values. Thus, there is often some ambiguity to determine the best C-

matrix in the analysis. Since the ambiguity occurs on the rotation process, it is called rotation ambiguity. 
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The rotation ambiguity has a strong influence on the precision and accuracy of the analysis (detailed 

information is written in Chapter 4). Figure 2.14 shows the definitions of accuracy and precision in this 

kind of analyses.  

 

 

Figure 2.14: The typical relationship between the accuracy and precision of the analysis 

using rotation operation for simultaneous fitting with a theoretical model.  

 

2.3.4 Error Functions 

As shown in Figure 2.12, the determination of the C-matrix is the ultimate goal of the analysis. 

In order to optimize the C-matrix elements which can reconstitute signals based on a kinetic mode, the 

following error functions are introduced. In general, the error function has the axes of the elements in 

C-matrix and kinetic equation. The rotation of the vectors and simultaneous fitting with kinetic model 

are performed for all possible models to find minimum error value57,93. The rotation of orthogonal 

vectors based on the kinetic model is often called global target fitting. This method is frequently used 

to analyze time-resolved transient absorption spectra. Then, the error matrices G�  for time-resolved 

spectra, ?F�, and G� for kinetic model are given by 

 G�\�>, WPX , a, b�,⋯ , bI>] � ?F� � `X \JX>]FX  , (10) 

 G�\�>, WPX , a, b�,⋯ , bI_] � \HX> � `X ]�X  . (11) 

 

The error matrices G�	\�>, WPX, a, b�, ⋯ , bI>]  and G�\�>, WPX , a, b�,⋯ , bI_]  are evaluated in an 

evolutionary algorithm (detail evaluation of the error functions are shown in 2.3.5 Rotation Ambiguity 

and Precision). 

 

2.3.5 Relationship between Rotation Ambiguity and Precision 

The relationship between rotation ambiguity and precision have a significant importance on the 

reliability of the analysis. In general, using many components decreases error value and increases 

ambiguity of rotation operation (which is often referred as “local minimum” or “rotation ambiguity”). 

Thus, it is strongly recommend to use a minimum number of k’ which sums up to 90 % of the original 

signals to avoid strong overlap between the species. The singular values are useful references to choose 
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proper vectors for rotation operation. In addition, rotational ambiguity and precision also strongly 

depend on the nature of the molecules. While the population relaxation on two energy levels having a 

significant degeneracy often occur simultaneously, the separation of the two components often requires 

good separation of the components in the other axes. However, such degenerated energy levels often 

appear on some similar energies. Many of nonadiabatic processes or ultrafast dynamics on the 

femtosecond timescale often contain such molecular dynamics. Therefore, the precision and accuracy 

of the constants obtained in the analysis depends on the instrumental response function (IRF), rotation 

ambiguity and inherent degeneration of the molecular systems. In our research we take into account all 

of them by standard windowing and additional reference analysis92. 

For our data analysis, the rotation and fitting are repeated till the error functions converge. To 

evaluate rotation ambiguity and precision of the analysis, we define the two quality functions �� and �� 
as 

 ��\�>, WPX , a, b�,⋯ , bI>] � �∑\
?F��PX]�∑\
G��PX]�  , (12) 

 ��\�>, WPX , a, b�, ⋯ , bI_] � � ∑\`X ]�∑\
G��PX]� . (13) 

Where the ��  and ��  describe the distribution of the error values G�  and G� , respectively. The 

distribution of the error values are useful to evaluation the precision of the analysis. By use of Eq. (12) 

and (13), the precisions of each constant are determined by the Gaussian fitting as shown in Figure 2.15. 

 

 

Figure 2.15: The precision of global target fitting for lutein in THF (Chapter 3.3.6). 

The precision of each constants are evaluated by the quality of fitting given by Eq. (13). 

The circles are the relative fitting qualities for an analysis of a sample data with b� �38 � 3	fs and b� � 32 � 3	fs. A Gaussian fit (solid line) gives precision of each fitting 

parameter. 

 

Regarding the functional analysis for time-resolved data in fs timescale, several ambiguities, such as 

local minimum or rotation ambiguity (see Chapter 4.3.3), detract the precisions of the resultants. 

Especially in the molecular system having quasi-degenerated states or conical intersection, the 

ambiguities tend to be strong due to the inherent features of the molecules. Therefore, a reliable principle 
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for the functional analysis for the time-resolved data in fs timescale is required to obtain unique and 

interpretation. In the next section 2.3.6, we suggest a new approach, Multimodal Time-resolved 

Spectroscopies (TRS), corresponding to the problem in ultrafast TRS. 

 

2.3.6 Multimodal Approach 

Multimodal TRS is a combination of two or more time-resolved spectroscopies to obtain the 

appropriate kinetic model for all experimental data sets. In the work, we demonstrate an example by use 

of the pump-probe and pump-DFWM experiments. The experimental data sets were decomposed 

simultaneously and evaluated by the error functions as shown in Figure 2.16. As a result, while all 

possible kinetic models are evaluated in both data sets, many wrong kinetic models are removed in the 

analysis. In addition, the analytical results have much evidences given by the two optical techniques. 

For example, the comparison of the 3rd-order and 5th order response functions indicates the signal 

generation pathways described by the interactions of electric fields for each components, since the 

analysis separates the signals generated through some of the pathways. Therefore, the multimodal 

approach has a totally different principle to separate the components compared with conventional SVD 

analyses. 

 

Figure 2.16: In Multimodal TRS, (c) the kinetic model is evaluated in (a) pump-probe 

and (b) pump-DFWM signals. The error functions are generated in both data sets. The 

adequate model is determined by the evaluation of the error values. 

 

In pump-DFWM signal, the set of data is contained in a matrix ?�� similar to the pump-probe 

data. However, due to the different generation mechanisms of the signals, the evaluation of kinetic 

models in pump-DFWM signals is performed by the components calculated by numerical simulations 
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instead of the singularvectors in the global target fitting. The definition of the error functions, similar to 

the error functions in global target fitting, are given by 

 G��\�>, a, b�,⋯ , bI_ , 7PX, �PX, �PX] � ?�� � `P

� �JP

��FP  . (14) 

In order to reduce the number of the calculations, Eq. (14) is evaluated in frequency domain, expressed 

as 

 G��F\�>, a, b�,⋯ , bI_ , 7PX , �PX] � FFT
?��� � FFTU `P

� �JP

��FP
Y . (15) 

In Eq. (14) and Eq. (15) the following definition has been used: 

 JP

�\K, b, 7PX , �PX, �PX] � �
b�X 7PX cos\2��PXb � �PX] , (16) 

where 7PX is the amplitude, �PX is the frequency, �PX is the phase of the i-th mode in the j-th component 

and �
b� is a step function. We perform numerical fitting of the pump-DFWM signals by use of the 

superposition of the orthogonal basis. The kinetic model, �`P

�
K, b, a, b�, ⋯ , bI>��, has an additional 

time axis, b, and is a squared quantity due to homodyne detection (Chapter 2.2.2). Concerning with the 

quality of the numerical calculation for pump-DFWM signals, the following definition has been used: 

 ���\�>, a, b�,⋯ , bI_ , 7PX , �PX, �PX] � �∑\
?���PX]�∑\
G���PX]�  , (17) 

 ���F\�>, a, b�, ⋯ , bI_ , 7PX , �PX] � �∑\
?����PX]�∑\
G��F�PX]� . (18) 

 

As a result, the multimodal approach contains four error functions shown in Eq. (10), (11), (14) and 

(15): oscillatory signal error (G��), frequency domain error (G��F), 3rd-order signal error (G�) and kinetic 

model error (G�). For the simultaneous evaluation for each error function, we performed a loop of the 

calculations with stepwise changes by use of evolutionary algorithm having three steps: 

(I) Kinetic model fitting for TA and pump-DFWM (��, ��� and ��) 
(II) Fitting of Fourier transformed pump-DFWM transients (���F and ��) 
(III) Phase fitting of pump-DFWM transients (��� and ��) 

All three steps are repeated till the q-functions of Eq. (12), (13), (17) and (18) converge. The multimodal 

TRS has a smaller rotation ambiguity compared with global target analysis for pump-probe signal, due 

to the additional axes and many restrictions induced by pump-DFWM signal observing molecular 

dynamics from different aspect. Chapter 4 contains the application and results of multimodal TRS. 
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Chapter 3 

Detecting Vibronic Coupling by Pump-

probe and Pump-DFWM Experiments 

3.1 Introduction 

The formation of coupling on the excited-state manifold is an important factor in molecular 

dynamics. Many parameters in photochemical reaction, such as the relaxation pathway, lifetime, 

vibrational frequencies and transition dipole moments, which are strong affected by vibronic coupling, 

induced by electron-nuclear motion.17,94 For example, the transition dipole moment of a coupled state 

can be enhanced by intensity borrowing from the other states.16,94,95 Moreover, the presence of the 

conical intersection in close-lying and strongly coupled electronic states may lead to some strong 

nonadiabatic effects.16 Many theoretical and experimental research have proved that the interactions 

between energy levels are essential to describe molecular dynamics.5,16,24 

The vibronic coupling has a unique dependence on the symmetries and degeneracy of energy 

levels. Theoretical description and experimental detection of the coupling dependence on the structure 

of excited-state manifold are a major topic in physical chemistry. In addition, vibronic coupling is very 

sensitive to the molecular environment. Environmental factors, such as solvent polarizability, 

temperature or other external interactions, are able to modify the energy levels and coupling strength. 

In fact, the pigments for light-energy harvesting are stored in a photosynthetic apparatus as a pigment-

protein complex which gives rise to a unique absorption spectrum. For example, the retinal in rhodopsin 

has a unique bond selectivity, efficiency and dynamics which are strongly influenced by its 

surrounding.4,5,96 Therefore, the coupling can be a key feature to modify molecular properties in natural 

systems. In general, coupling is particularly important the larger the molecule becomes, due to the 

increased number of degree-of-freedom and close-lying electronic states. 

In this work, vibronic coupling was experimentally evaluated in photosynthetic polyenes 

(carotenoids) as model molecules in which approximate C2h symmetry gives rise to a set of low-lying 

singlet states with Ag or Bu symmetries. For example, the two low-lying electronic states (S0 and S1) 

having the same geometry, Ag, lead to a strong vibronic coupling through the Ag C=C stretching 

mode.22,23 The coupling between the 1Ag
– (S0) and 2Ag

– (S1) states in carotenoids increases the 

vibrational frequency of the C=C in S1 by 100 – 150 cm–1.23 On the other hand, the early dynamics of 

the couplings occurring on the S2 (1Bu
+) with Sx (1Bu

– or 3Ag
–) states are still not clear. Interestingly, the 

degeneracy between S2 and Sx states in the polyene is modified by the number of conjugated double 

bonds as shown in Figure 2.4 in Chapter 2. Thus, it is expected to observe some difference on the 

coupling strengths for each polyene in time-resolved optical experiments. 

The interaction of electronic states induced by nuclear motion is effectively observed by pump-

probe and pump-DFWM experiments with high time resolution. However, it is often difficult to 

distinguish the coupling dynamics out of population dynamics in pump-probe experiment. On the other 

hand, direct observation of wavepacket motion in pump-DFWM experiment leads to detail information 

about the vibronic interaction. The appearance of vibronic coupling and ultrafast molecular dynamics 

on the two optical experiments are compared in the work. 
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In this work, we demonstrate pump-probe and pump-DFWM experiments for a series of 

carotenoids with N = 9, 10, 11 and 13 having a set of energy levels with Bu
+, Bu

– and Ag
– symmetries. 

The relaxation dynamics after the excitation of S0 � S2 usually containsS2 (1Bu
+), Sx (3Ag

– or/and 1Bu
–), 

S1 (2Ag
–) and S0 (1Ag

–). The dependence of vibronic effects on the conjugation length and solvent 

polarization are carefully examined. Depending on the number of conjugated double bonds, we will 

show that the shift of the C=C and C–C frequencies in the first 200 fs can be explained by the vibronic 

coupling between the 1Bu
– and 1Bu

+ states. Moreover, by carefully changing the solvent, the strength of 

this coupling can be fine-tuned and, therefore, the vibrational dynamics can be modified. 
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3.2 Experimental Methods 

3.2.1 Extraction and Purification of Carotenoids 

All-trans-carotenoids named neurosporene (N = 9), spheroidene (N = 10), lycopene (N = 11), 

spirilloxanthin (N = 13) and lutein (N = 9, β = 1) were used in the research. Lycopene and lutein were 

extracted from tomato and spinach and purified in our laboratory. Neurosporene, spheroidene and 

spirilloxanthin were extracted from Rhodobacter sphaeroides G1C, Rhodobacter sphaeroides 2.4.1 and 

Rhodosprillum rubrum S1 and purified in Prof. Dr. Richard J. Cogdell group (University of Glasgow, 

United Kingdom), respectively. This section contains the experimental methods to prepare samples for 

the measurements. 

The extraction and purification of lycopene (N = 11) and lutein (N = 9, β = 1) from tomato and 

spinach were carried out at room temperature under weak light condition to prevent isomerization of the 

pigments. In the extraction process, tomato for lycopene (spinach for lutein) were powdered after freeze 

drying. Pigment mixture was extracted from 100 g of the powdered sample with 200 ml of acetone. The 

mixture was percolated to obtain the solvent part. The extraction processes were repeated three times. 

After extraction, the solution part was evaporated by rotary evaporator to replace the solvent with 

acetone/hexane (1/1, v/v). 

 

 

Figure 3.1: (a) Column chromatography (aluminium oxide) separates polyenes into the 

fractions having different (b) absorption spectra. 

 

The purification of carotenoids was performed by two kinds of column chromatographies. The 

first column chromatography with Silica-gel (Merck, silica gel 60) was performed to remove 

chlorophylls roughly. The pigment mixture was dried up by rotary evaporator. The crude carotenoids 

were purified by a pair of alumina column chromatography (Merck, aluminium oxide 90 standardized) 

and the silica gel column chromatography. 30 – 60 % acetone in hexane was used as a stepwise gradient 

developer. The fractions containing pure carotenoid were selected by absorption spectra as shown in 

Figure 3.1. The set of column chromatographies was performed twice. Pure carotenoid was dissolved 

into hexane with a small amount of tetrahydrofuran (THF) and recrystallized under −25 °C. The crystals 

were washed by hexane before dissolving in the solvent for the measurements. 

Carotenoids were diluted in the solution (methanol, hexane, THF, or benzene) to be OD = 2.0 

in 1 mm path at the 0-0 transition peak. All solutions were filtered through a syringe filter (KY61.1, 

Rotilabo) before measurement. During the measurement, the sample was exchanged continuously via a 
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flow cell with the thickness of 500 µm. The stability of the sample was checked by measuring the 

absorption spectrum before and after measurement. 

 

3.2.2 Pump-probe and Pump-DFWM Experiments 

 The time-resolved pump-probe and pump-DFWM experiments were carried out by using the 

same experimental setup27,97,98 shown in Figure 3.2 under the comparative conditions. All pulses were 

generated using non-collinear optical parametric amplifiers (NOPA) which were pumped by the output 

of Ti:Sapphire-based amplifier with integrated oscillator and pump lasers (100 fs, 1kHz, λcent = 795 nm, 

1.8 W). The initial pump (IP) pulse (18 fs) was sent to a delay line (T-delay) and a chopper to implement 

time-resolved experiment, while two DFWM pulses (13 fs) were further delayed via the piezo stages. 

Pump and Stokes pulses were adjusted to be τ12 = 0 to obtain the maximum intensity of nonlinear signals 

at phase matching position. DFWM beams were arranged in a folded BOXCARS geometry42 producing 

a spatially separate background-free signal. In pump-DFWM experiment, the signal appearing at �� ���� � ��� � ��� was observed by a pair of photomultipliers at selected wavelengths by narrow-band 

pass filter. The pump-probe spectroscopy is carried out with the chopped IP pulse and white-light 

continuum as the probe pulse detected by silicon photo-diode array. 

 

Figure 3.2: (a) Experimental setup, (b) pulse sequence and (c) phase matching 

condition for pump-probe (IP and Pr) and pump-DFWM experiments. The three pulses 

of four-wave mixing sequence, Pu, St and Pr, were aligned to construct a BOXCARS 

geometry42 at the focusing point. NOPA – Non-collinear Optical Parametric Amplifier, 

CPA – Chirped Pulse Amplifier, PDA – Photo-Diode Array, PMT – Photo-Multiplier 

Tube, IP – Initial Pump pulse, Pu – Pump pulse, St – Stokes pulse, Pr – Probe pulse, Ch 

– Chopper. 
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Figure 3.3: Interaction scheme of pump-probe and pump-DFWM experiments. The IP 

(green) and DFWM (red) excitation spectra of the time-resolved spectroscopies for 

lycopene as an example of the carotenoids are shown. The IP pulse is resonant with the 

excitation from the ground state to the lowest optically-active state. The DFWM pulses 

are resonant with the stimulated emission from the excited states. The resonant 

interaction of DFWM pulses with the excited state absorption (S1–SN) of the carotenoids 

leads to the enhancement of the coherence on the electronic states. 

 

Figure 3.3 shows the excitation spectra and absorption spectra of lycopene in THF as an example 

of the carotenoids. The spectrum of DFWM pulses defines which optical transitions are probed after the 

initial excitation by the initial pump pulse.47 In addition, the pump-DFWM signals were observed at 

selected wavelengths by use of 10 nm bandpass filter in front of PMT. The experimental condition 

allows one to observe the relaxation dynamics from the lowest optically-active excited states (1Bu
+) in 

pump-probe and pump-DFWM experiments. 

 

 

Figure 3.4: (a) pump-probe and (b) pump-DFWM transients collected for lycopene in 

THF. The detection wavelength of pump-DFWM transients is 630 nm. 

 

Typical pump-probe and pump-DFWM transient signals are shown in Figure 3.4. In the early T 

delay, emission signals of S2 (1Bu
+) → S0 (1Ag

–) appears in pump-probe spectra. The transition between 

S2 to S0 states is observed in pump-DFWM experiment as six-wave mixing signals appearing in the early 

T delay. The oscillatory contributions along the τ delay are induced by the wavepacket motions on S2 

and S0 states. At later T delay, there is strong absorption signals of S1 (2Ag
–) → SN transition in pump-

probe spectra. The pump-DFWM signals for the transition only appears in the early τ delay due to the 

lifetime of the relevant states. 
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3.3 Results and Discussion 

3.3.1 Pump-DFWM Transients at Four Detection Wavelengths 

The pump-DFWM signals are generated by six-wave mixing mechanisms described in Chapter 

2.2 and Appendix B. In the consideration and characterization of observing response functions, the order 

of the pulses and detection wavelength are important information. In pump-DFWM experiment for 

carotenoids, the following contributions can be seen as shown in Figure 3.5. 

I) Short-lived S2 and Sx contributions. 

II) Stimulated emission pumping between S2 and S0 states. 

III) Contribution from the S1–SN and S1–S0 transitions. 

 

 

Figure 3.5: Scheme of the main contributions observed in pump-DFWM experiment 

for carotenoids. I – Short-lived pump-DFWM signal generated close to the Franck-

Condon region. II – Stimulated emission pumping between the optically active excited 

state and ground state. III – Contributions from the S1-SN transitions. 

 

The pump-DFWM transients of the carotenoids consist of three contributions as shown in Figure 

3.5; (I) the signal appearing at T = τ = 0, (II) the signal appearing at T = 0 in later τ delay and (III) the 

signal appearing at τ = 0 in later T delay. The two contributions (I and II) appear immediately generated 

after the excitation of S0 (1Ag
–) � S2 (1Bu

+) by the initial pump pulse. Since all of the pulses are 

temporally overlapped at T = τ = 0, there is a strong emission signal at all detection wavelengths. In the 

region (I), ground-state bleaching and excited-state emission between S0 and S2 states give rise to the 

strong signal. In addition, there can be a short-lived contribution which stems from a contribution of an 

electronic dark state (Sx) directly after the S2 state relaxation.98 On the other hand, in the region (II), the 

rising of an emission signal is observed around τ > 100 fs. The emission signal is amplified by nuclear 

rearrangement from the Franck-Condon region on the S2 state. In other word, the rising of hot-ground 

state created by excited-state configuration appears in region (II). The mechanism of the stimulated 

emission enhanced by pu/St sequence in ��

>�  and �


>�  is known as stimulated emission pumping 

(SEP) which has been observed in retinoids as well as other molecular systems with strong fluorescence 
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emission transitions.90,99-101 In general, the SEP mechanism gives rise to the strong signal with dephasing 

on the excited state or ground state. In the region (III), the population dynamics of S1 electronic states 

is observed. The signal is also influenced by vibrational coherence on the excited-states. 

 

 

Figure 3.6: The observable sequences selected from the response functions in the 

pump-DFWM experiment (Figure 2.10 in Chapter 2.2.3). The energies are taken from 

lycopene. The dipole interactions induced by external electric fields to the density 

matrix are described by solid and broken lines for bra and ket interactions, respectively. 

Wavy lines indicate emission signals observed at �� � �:; � �:; � ��� � ��p � ��[. 
The sequences are categorized into three pathways determined by IP and pr pulses. In 

each diagram, the two interactions induced by pump/Stokes in DFWM sequence 

prepare coherence on some electric potential energy surface. ESA, ESE or GSB 

pathways. IP – Initial Pump pulse, pu – pump pulse, St – Stokes pulse, pr – probe pulse, 

sig – signal, ESA – excited-state absorption, ESE – excited-state emission and GSB – 

ground-state bleaching. 

 

The appearance of the signals have some differences due to the detection wavelengths. Figure 

3.6 shows observable sequences and relevant electronic energy levels (S2, Sx, SN, S1 and S0) for lycoepen 

(N = 11) as an example. The energy of the emission signal depends on the energy difference between 

the energy levels. In addition, the energy difference between the blue wing (570 nm = 17540 cm–1) and 

the red wing (660 nm = 15150 cm–1) of the DFWM probe spectrum for lycopene nearly matches the 

energy of two vibrational levels of 2300 – 2600 cm–1.92 Thus, some of the sequences in Figure 3.6 

becomes very weak in the red wing. For example, the ESE pathways between Sx and S0 states only 

appear in the red wing due to the energy. In addition, GSB (��

>� and �	

>�) and ESE (�


>� and �<

>�) 
pathways between S2 and S0 states have strong amplitude in the blue wing. In the red wing, the signals 
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of the two pathways are generated through hot-S0 state instead of S0 state. At later delay times, the 

signals of ESE or ESA pathways between SN–S1 states appear in both detection wavelengths. However, 

the amplitude in blue wing is much weaker than the amplitude in red wing due to the energy difference 

of the two states. Therefore, the signal appearing at red detection wavelength is appropriate to investigate 

decoherence and relaxation of excited states in carotenoids. In the experiments, the spectral width needs 

to be broad enough to be able to observe higher frequency mode till 1800 cm–1. 

 

 

Figure 3.7: Pump-DFWM transients collected for lycopene. (a)-(d) Data was detected 

at λdet = 550, 560, 620 and 630 nm, respectively. The normalized intensity of the signal 

increases from cold color (blue) to hot color (red). 

 

Figure 3.7 shows pump-DFWM transients for lycopene detected at 570, 600, 630 and 660 nm. 

The pump-DFWM transients contain oscillatory and non-oscillatory contributions generated by some 

of the response functions shown in Figure 3.6. As explained in the previous sections, the relative 

amplitudes of each contributions (I, II and III) are different at each detection wavelengths. In the blue 

detection wavelength (570 and 600 nm), there is relatively strong contributions of II and some 

contributions between I and III generated through S2 (or Sx) – S0 states as shown in the higher energy 

side of Figure 3.6. On the other hand, in the red detection wavelengths (630 and 660 nm), the major 

contributions, generated by S1 – S0 or S1 – SN transitions, appear in the later T delay (in the case of the 

detection at 660 nm, the strongest contribution appears in T > 500 fs).  
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3.3.2 Ultrafast Molecular Dynamics in the Carotenoids (N = 9, 10, 

11 and 13) 

Very early dynamics of the carotenoids with N = 9, 10, 11 and 13 is examined by pump-DFWM 

experiment. The spectrum of DFWM sequence is carefully selected to spectrally overlap with S1–SN 

transition and not to overlap with S0–S2 transition. Thus, the interaction of DFWM sequence, which is 

determined by the probe spectrum, is well-separated from any interaction with the S2 – S0 transitions. In 

fact, there was no signal except coherent artifact without the interaction of IP pulse. No signal appears 

before T = 0. In general, pump-DFWM transient contains oscillatory and non-oscillatory contributions 

in which time evolutions of dephasing and population relaxation are stored. Figure 3.8 shows pump-

DFWM signals detected at the red wing of the four carotenoids. There are oscillatory contributions along 

τ delay in addition to the non-oscillatory signal in all carotenoids. The Fourier transformation of the 

oscillatory contribution gives rise to the vibrational spectra at each T delay as shown in the bottom panels 

in the Figure. The four contributions appearing in the vibrational spectra are assigned as 1150 – 1200 

cm–1 (C–C stretching mode), 1500 – 1600 cm–1 (C=C stretching mode), 915 cm–1 (THF solvent mode)102 

and 1800 cm–1 (C=C stretching mode specific to the 2Ag
– state)23. 

 

 

Figure 3.8: (a)-(d) Pump-DFWM signal collected for carotenoids with N = 9, 10, 11 

and 13, respectively. Data was detected at red wing λdet = 570, 600, 630 and 660 nm for 

N = 9, 10, 11 and 13, respectively. The intensity of the signal increases from cold color 

(blue) to hot color (red). (e)-(h) The Fourier spectra calculated from transients measured 

at T = 25 fs (black solid line) and T = 700 fs (red broken line) which is multiplied by 

about a factor 70 for comparison. 

 

At the early T delay, dephasing and relaxation of the S2 state and the dark Sx state are observed 

with contributions from vibrational coherence of C–C and C=C stretching modes. Especially from T = 

0 to 100 fs, dynamical nuclear motion after the excitation can be examined by the two vibronic modes 

(detail information is available in 3.3.3). Obviously, the nuclear coordinate of the excited state changes 

from the S2 state to the S1 state (S2 → Sx → S1 or S2 → S1) in this time region. Spheroidene (N = 10), 

and in some extent also neurosporene (N = 9), show non-oscillatory contributions from the optically-

dark Sx state at very early T-delay, which is, however, extremely short lived along the τ delay.98 The 
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long-lived signal of later τ delay is due to a contribution from the hot-S0 state which is observed for all 

carotenoids slightly after T = 0. This fact indicates that the hot-S0 configuration is effectively formed by 

the S2-state configuration. Since the S2 state has ionic character leading to the delocalization of π electron 

of conjugated double bonds, the relative amplitude of C–C stretching mode is very strong around T = 

25 in comparison with the vibrational spectrum at T = 700 fs.  

In later T delay (T > 200 fs), the rising of the S1 state is observed as the appearing of strong non-

oscillatory contribution. In longer chain carotenoids, the rising of the non-oscillatory S1-state signal 

occurs in the earlier T delay due to the fast and effective relaxation of S2 state. In vibrational spectra, 

two kinds of C=C stretching modes around 1500 cm–1 and 1800 cm–1 are observed. The detail 

mechanism of the phenomenon is well-known as vibronic coupling.23 The vibronic coupling between 

the two states with Ag symmetry leads to the result that the frequency of the C=C stretch mode in the 

upper state is increased, while that in the lower state is decreased. In the carotenoids, S1 state (2Ag
–) and 

S0 state (1Ag
–) are coupled. Therefore, the frequency for C=C stretching mode of 2A g

− is higher than 

the that of 1A g
−, although in general the electron density in the double bonds is expected to decrease 

upon excitation, causing a decrease in bond order, and hence in vibrational frequency.22,24 
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3.3.3 Time Evolution of Vibrational Frequencies 

Ultrafast deactivation processes of S2 state take place within a few hundred fs. Hence, the 

dynamics are accompanied by nuclear motion which induces nonadiabatic effects on the excited energy 

levels. In the following experiment, the electron-nuclear motion on the excited states is examined by C–

C and C=C stretching modes appearing around 1100 cm–1, 1500 cm–1 and 1800 cm–1. 

Figure 3.9 shows the time evolution of C–C and C=C stretching modes observed by pump-

DFWM experiment. The change of vibronic frequencies of the initial 100 fs indicates a down-shift for 

the carotenoids with a smaller number of conjugated double bonds (N = 9 and 10) while it shows an up-

shift for the carotenoids with N = 11 and 13. For example, neurosporene (N = 9) shows a down-shift of 

the C=C stretching mode from about 1580 to 1510 cm–1. Contrasting to that, spirilloxanthin (N = 13) 

shows an up-shift from about 1510 to 1530 cm–1. 

 

 

Figure 3.9: Initial dynamics of the frequency of the (a)-(d) C=C and (e)-(h) C–C 

stretching modes for carotenoids with N = 9 (1st column), 10 (2nd column), 11 (3rd 

column) and 13 (4th column). Spectra was obtained Fourier transformation of transients 

between τ = 100 and 550 fs. 

 

The C=C stretching mode of the S1 (2Ag
–) state appearing at 1800 cm–1 arises after the relaxation 

of the S2 state. Figure 3.10 shows the time evolution of frequency and amplitude of the mode. In general, 

the longer the carotenoid, the faster is its rise dynamics: The amplitude of this mode in spirilloxanthin 

(N = 13) increases with a time constant faster than 200 fs, while the rise time is much slower (> 500 fs) 

for spheroidene (N = 10). The central frequency of this mode also changes in time, but all carotenoids 

showed a comparable upshift of the frequency during the evolution over the initial 800 fs. The dynamics 

of this mode in neurosporene (N = 9) was not possible to resolve due to its low amplitude, and, therefore, 

a fitting was not conclusive. 
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Figure 3.10: Initial dynamics of (a)-(c) frequency and of the (a)-(c) amplitude of the 

C=C specific to S1 state for carotenoids with N = 10 (1st column), 11 (2nd column) and 

13 (3rd column). Spectra were obtained by Fourier transformation of transients between 

τ = 100 and 550 fs. 

 

Table 3.1 shows vibrational frequencies of C–C and C=C stretching modes observed from the 

S1 state (T = 700 fs), S2 state (T = 25 fs) and ground-state (from literature by other techniques). In 

addition, the vibronic frequencies of the S2 state are separated into two categories: One has strong 

contribution from the S2 state (T = 25 fs, τ = 100–450 fs) and the other has a strong contribution from 

hot-S0 state (T = 25 fs, τ = 200–550 fs). Interestingly, both stretching modes have higher frequencies on 

the S1 state (T = 700 fs) or the S2 state (T = 25 fs, τ = 100 – 450 fs) compared to the frequencies observed 

in literature of Table 3.1. Moreover, the gap of the frequencies observed on S2 state and S0 state becomes 

bigger as the polyene becomes shorter. In general, the excited-state should have lower frequencies due 

to decreasing electron density in the double bonds, but the results contradict the feature due to vibronic 

effects referred in Chapter 3.3.5. 

 

Table 3.1: Vibrational wavenumbers of C–C and C=C modes for several open- and 

closed-chain carotenoids with N = 9, 10, 11 and 13. All units in cm–1. 

Open Chain  This work Literature 
 T=700fs T=25fs – τ=100-450 T=25fs – τ=200-550  
 C-C C=C C=C 

S1 
C-C C=C C=C 

S1 
C-C C=C C=C 

S1 
C-C C=C C=C S1 

Neurosporene 
(N=9) 

1163 1537 1803 1181 1551 - 1156 1539 - 1151 (S0)A 1515 (S0)A 1780A 

Spheroidene 
(N=10) 

1173 1545 1813 1178 1542 - 1166 1534 - 1150 (S0) B 1516 (S0)B 1794B 

Lycopene 
(N=11) 

1180 1564 1803 1158 1516 - 1150 1519 - 1143 (S0) B 

1140 (S1) E 
1501 (S0)B 

1513 (hot-S0) E 

1530 (S1) E 

1783B 

Spirilloxanthin 
(N=13) 

1150 1534 1802 1147 1506 - 1147 1508 - 1148 (S0)C 1505 (S0)C 1770C 
 

Closed 
Chain 

            

Lutein 

(N = 9, β = 1) 

1135 1535 1783 1153 1524 - 1153 1522 -    

β-Carotene 

(N = 9, β = 2) 

1140 
F 

1528 F 1765 F 1160 F 1535 F - - - - 1160 (S0) D 
1145(hot-S0) D 

1190 (S1) D 

1526 (S0) D 
1515 (hot-S0) D 

1540 (S1) D 

1785 (S1)D 

A Resonant Raman in benzol103, B Resonant Raman in benzol104, C Resonant Raman in n-hexane105, 
D Pump-DFWM and -IVS in THF106, E Pump-DFWM in THF97, F Pump-DFWM in THF27. 
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3.3.4 Effect of Overlapping Contributions on the Evolution of 

Frequencies 

It is important to discuss the role of temporally overlapping contributions on the experimentally 

detected frequencies, since population relaxation and dephasing are simultaneously observed in pump-

DFWM experiment. The evolution of the frequencies after the S0–S2 excitation with initial pump mainly 

consists of three contributions shown in Figure 3.5. Around T = 0, transitions between the excited 

electronic states near the Frank-Condon region and hot-S0 play a major role as expected by response 

functions in Figure 3.6. Thus, decoherence on S2 state was simultaneously observed with the 

contribution of hot-S0 state. During very early T delay, processes involving the S2-hot-S0 transition are 

suppressed, and transitions resonant with excited-state absorption of dark states, such as the 3Ag
– and 

1Bu
–, contribute to the signal. At much later T delay, the transition involving S1 state will be the major 

signal source as the S1 state is eventually populated (Figure 3.6). The dynamics of these contributions is 

usually overlapping along the T delay time because they are continuous processes. Therefore, it is very 

challenging to disentangle such contributions in one-dimensional techniques like pump-probe 

experiment, because all of the overlapping dephasings are integrated at each T delay. On the other hand, 

multidimensional time-resolved spectroscopies like pump-DFWM or pump-IVS, provide multiple time 

axes recording raw information of the potentially overlapping dephasings. In other words, the 

overlapping molecular dynamics at each T delay can be disentangled in a pump-DFWM experiment. 

This can be done, for example, by applying a sliding window Fourier transformation at specific time 

windows (Figure 3.11). 

 

 

Figure 3.11: Disentangling overlapping contributions in multidimensional time-

resolved vibrational spectroscopy by using sliding window Fourier transformation at 

specific T delay. 

 

In Figure 3.11, overlapping molecular vibrational modes at T < 30 fs from hot-S0 and electronic 

excited states are separated on the additional probe-axis τ of the DFWM sequence: While the coherent 

signal of long-lived hot-S0 state survives at the timescale of ground-state processes (over a few 

picoseconds), vibrational coherence which originate from short-lived excited-states must dephase as fast 

as the population relaxation. Thus, around T = 25 fs, Fourier transformations of early τ delays lead to 

vibrational coharences from hot-S0 state as well as from short-lived electronic states, while Fourier 

transformations of later τ delays give rise to exclusively hot-S0 vibrational modes since short-lived 

excited-state contributions have already dephased. Note that the values obtained at early τ delays will 

be interpreted as an average of the vibrational frequencies of the S2 state and of the hot-S0.  
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3.3.5 Vibronic Effects on Degenerate Energy Levels 

The experimental observation shown in section 3.3.3 can be summarized as (i) the frequency 

changes of the C-C and C=C stretching modes depend on the carotenoid conjugation length and (ii) the 

C=C S1 (1800 cm–1) stretching mode does not follow that dependence. In general, the vibrational 

frequency shows an up-shift of the frequency as the system relaxes within an anharmonic potential. 

However, we also observed a down-shift of the frequencies for shorter-chain carotenoids (neurosporene 

and spheroidene). The unusual observation can be explained by vibronic coupling having a unique 

dependence on the symmetries of the nuclear coordinate of the relevant energy levels. Since the effect 

is theoretically explained by the terms ignored in adiabatic approximation, the definition of the 

approximation is important to understand the physical meaning of the coupling. 

Born-Huang (BH) approximation, Born-Oppenheimer (BO) approximation and Condon 

approximation are widely accepted approximations to calculate potential energy surfaces. Although 

there are some differences on the terminology and definition of the approximations in literature, many 

physical phenomena observed in optical experiments can be explained as shown in Figure 3.12. For 

example, intensity borrowing can be described by the terms between BO and Condon approximations. 

In other words, intensity borrowing originates from the nuclear coordinate of the excited-state as 

indicated by the difference of the approximations. On the other hand, the adiabatic (diagonal) correction 

term is equivalent to the energy between BH and BO approximations as shown in Appendix F. This is 

experimentally examined for some simple molecules (so-called “Born-Oppenheimer diagonal 

correction”).107 The important term in nonadiabatic processes observed in our experiments is described 

by derivative coupling. The derivative coupling is the term containing the most part of the effects 

induced by nuclear motion. It has a significant importance for the ultrafast molecular dynamics on 

degenerate energy levels such as conical intersection. 

 

 

Figure 3.12: The relationship between the approximations and physical phenomena. 

Each part of Hamiltonian can be extracted by the wavefunctions calculated under each 

approximation. The definitions and mathematical formulations of the approximations 

are shown in Appendix F. 
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Derivative coupling KPX>  (detailed information is written in Appendix G) is expressed as a very 

simple formula consisting of electronic wavefunctions with fixed nuclear coordinates �P
 ; ¢�, where   and ¢ are the electronic and nuclear coordinates, 

 KPX> � £�X� ¤¤¢ |�P8 .   

Since the derivative coupling obeys to the following Hellman-Feynman-type formula108, it can be 

transformed as 

 £�X
 ; ¢�| ¤¤¢ |�P
 ; ¢�8 �
£�X
 ; ¢�| ¤¥5¦§
 ; ¢�¤¢ |�P
 ; ¢�8

P̈P
¢� � ẌX
¢�  
,  

with 

 P̈X � £�X�¥5¦§|�P8 ,  

Obviously, the derivative coupling tends to diverge for small energy gaps between electronic states (so-

called “breakdown of Born-Oppenheimer approximation”). Due to this fact, adiabatic approximation 

cannot explain molecular dynamics around conical intersection. In other words, electronic and 

vibrational motions are not dynamically separated for the molecular dynamics through degenerate 

energy levels. Since nuclear motion is dominating dynamics on a femtosecond timescale, it is necessary 

to take into account of the derivative coupling in ultrafast molecular dynamics observed in this work. 

The modification of adiabatic potential energy surfaces induced by derivative coupling appears 

as increasing and decreasing of the energy and vibrational frequencies in optical experiments. Such 

vibronic effect is theoretically calculated by use of diabatic basis which vanishes derivative couplings 

and has a weak dependence on nuclear coordinates. Since vibronic wavefunctions composed by diabatic 

basis, obviously, have some dependence on nuclear coordinates, it is possible to calculate the energies 

and vibrational frequencies by preparing a complete set of diabatic basis. In the calculation, vibronic 

coupling leads to an increase of the vibrational frequencies of an excited state coupled with a lower 

energy level while the frequencies of the lower state decrease. In the case of the carotenoids, the coupling 

between the two energy levels with Ag
– symmetry, optically-dark S1 state and ground S0 state, give rise 

to the C=C stretching mode having 1800 cm–1 which is higher than the normal C=C stretching mode 

(~1500 cm–1). Although the coupling between the S1 and S0 state is observed in all carotenoids, the 

coupling of S2 state is very selective due to the fact that optically-dark states around S2 state for shorter-

chain carotenoids exhibit a Bu
– symmetry while they were Ag

– symmetry in longer-chain carotenoids 

(Figure 2.4). Therefore, the dependence of the coupling on the length of the polyenes originate from the 

selection rule of the coupling. 

On the other hand, in general, it is absent between two diabatic states with different symmetries 

such as 1Bu
+ and 3Ag

– states, because the coupling strength and probability have a unique dependence 

on the symmetry and energies of the quantum states. For polyenes with a planar configuration, there is 

no vibronic coupling between two electronic states with different particle-hole symmetry or Pariser’s ± 

labels109,110. However, when it is excited to the 1Bu
+ state, there is good chance for the conjugated chain 

to take a non-planar configuration due to a decrease in the C=C bond order. Then, the perfect C2h and 

particle-hole symmetries break down. As a result, the vibronic coupling between the excited states must 

have appreciable non-zero value. Especially between the quasi-degenerated states, the derivative 

coupling between the excited states becomes too large for adiabatic description to be adequate. In 

addition to the Pariser’s selection rule, the symmetrical coupling between two vibronic states exist due 

to the coupling induced by a Q-dependent interaction24,110. Therefore, the vibronic coupling between 

1Bu
+ and 1Bu

– states has importance in the early dynamics. 
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In the pump-DFWM experiment, we observed two pairs of coupled states in shorter-chain 

caortenoids; 2Ag
– + 1Ag

– and 1Bu
+ + 1Bu

–. The vibronic effect between 2Ag
– + 1Ag

– leads to the C=C 

stretching mode around 1800 cm–1 as shown in Figure 3.10. Since this vibronic frequency is only 

observable for the S1 state (2Ag
–), the time evolution of the central frequency of the vibronic mode 

indicates anharmonicity of the electronic energy potential. Thus, the frequency always increase in time 

for all pigments. On the other hand, the existence of the coupling between 1Bu
+ + 1Bu

– gives rise to high 

frequencies of C-C and C=C stretching modes in the very early time delay for neurosporene and 

spheroidene as shown in Figure 3.9 and Figure 3.13(a). Due to the coupling, the vibronic frequencies of 

the two carotenoids decrease in time. On the other hand, they increase for longer-chain carotenoids by 

the anharmonicity of the potential energy surface (Figure 3.9 and Figure 3.13(b)). In both cases, the 

vibronic frequencies of C-C, C=C stretching modes increase in later time delay by the anharmonic 

potential energy surface. In summary, the coupling between the Bu states is a critical factor possibly 

having significant importance on their dependence on environmental factors or lifetimes of quantum 

states in the early molecular dynamics. 

 

 

Figure 3.13: Evolution of the vibrational frequency of the C=C and C–C stretching 

modes for (a) neurosporene (N = 9) (1st column) and (b) lycopene (N = 11) (2nd 

column) between T = 0 and 800 fs. Spectra was obtained by Fourier transformation of 

transients between τ = 100 and 550 fs. 
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3.3.6 Vibronic Coupling Enhanced via Solvation 

The relationship between the coupling strength and degeneracy of the energy levels is 

established for a series of carotenoids having N = 9 – 13 in 3.3.5. The degeneracy of the Bu states has 

significant importance as expected by the derivative coupling. As a result, the vibronic coupling is 

controlled by the conjugation length which changes the overlap of the energy levels. An additional way 

of changing the relative energy of the Bu states is by using their different interaction with the solvent 

polarizability. The one-electron symmetry properties of polyenes, first used by Pariser79 and further 

investigated by Pople and others,74 distinguish electronic states as so-called plus and minus ones. While 

plus states are ionic states, minus states show a very strong covalent character. The existence of 1Bu
+ 

state and 1Bu
– state leads to the modification of degeneracy between the energy levels by solvent 

polarizability. 

Solvents with large polarizability tend to stabilize the ionic S2 (1Bu
+) state and decrease its 

energy while the covalent states, such as the 1Ag
–, 2Ag

–, 3Ag
– and 1Bu

– states are barely affected in their 

energetic position.111 The energy shift of ionic states in respect to covalent states can be clearly seen in 

the steady state absorption spectrum (1Ag
– → 1Bu

+ transition) as well as in the excited state absorption 

of the S1 state (2Ag– → nBu
+ transition).34 In the polyene with N = 9 – 10, where the S2 and Sx states 

with Bu symmetry are nearly degenerate, the energy shift induced by solvent polarizability give rise to 

the modification of vibronic coupling.  

The evolution of vibronic coupling around a conical intersection between the 1Bu
+ and 1Bu

– 

states was detected in pump-DFWM experiment for lutein (N ~ 10) with three different solvents (hexane, 

THF and benzene). The measurements showed the modification of the vibronic coupling induced by 

solvent effects in the polyene (Figure 3.14). Lutein in hexane shows a frequency down-shift for both 

stretching modes similar to the one observed for similar open-chain carotenoids (spheroidene and 

neurosporene). On the other hand, lutein in benzene, a solvent with a much higher polarizability, showed 

a frequency up-shift similar to the observation in section 3.3.3 for longer carotenoids like lycopene and 

spirilloxanthin. 

 

 

Figure 3.14: Evolution of the vibrational frequency for the C=C and C–C stretching 

mode for lutein in three different solvents measured with pump-DFWM. From left to 

the right: (a) hexane, (b) THF and (c) benzene. The arrows are a guide for the eye. 
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The vibrational frequency shifts of C–C and C=C stretching modes reveal two important aspects 

of the vibronic coupling in lutein. Firstly, the vibrational frequency shifts in THF indicate the coupling 

effect is much weaker in lutein than in the open-chain carotenoids with N = 9 – 10. The fact illustrates 

two influences induced by a β-ring of lutein (Figure 2.1); the C2h symmetry is broken and the effective 

conjugated double bond length is longer than of open-chain carotenoids. The end group has significant 

importance in the optical character of the carotenoids. The second aspect is the requirement for the 

vibronic coupling between 1Bu
+ and 1Bu

– states. It is indicated in the theory that a degeneracy of the 

vibronic levels is required for strong derivative coupling. In the case of lutein, the ionic 1Bu
+ state is 

strongly stabilized in benzene which has a higher polarizability. This energy shift can be approximated 

by the shift of the steady state absorption spectrum, which shows for lutein that the energy of the 1Bu
+ 

state decreases almost 400 cm–1 in comparison to the 1Ag
– when the solvent is shifted from hexane to 

benzene. Due to the stabilization effect induced by the solvent with high polarizability, the degeneracy 

of two vibronic levels of 1Bu
+ and 1Bu

– states is broken in the carotenoids with N = 9 and 10.49,92 As a 

result, the disappearance of the frequency down-shift is observed when benzene is used as a solvent.  

In addition to the pump-DFWM analysis, it is interesting to have a close look on simple pump-

probe measurements. The pump-probe spectra for lutein in three different solvents also surprisingly 

indicate the strong influence of vibronic coupling. Especially, the presence of a stronger coupling for 

non-polarizable solvents has an effect on the initial population dynamics as shown in Figure 3.15. A 

global target fitting with a three-state sequential model of data obtained with transient absorption shows 

an acceleration of the dynamics with the solvent polarizability. While lutein in hexane shows initial time 

constants of τ1 = 43 ± 5 fs and τ2 = 35 ± 2 fs, benzene, a much more polarizable solvent, shows a much 

faster dynamics with τ1 = 35 ± 5 fs and τ2 = 23 ± 5 fs (in THF, τ1 = 38 ± 3 fs and τ2 = 32 ± 3 fs). By 

comparing these results with the frequency shift show in Figure 3.14, it can be clearly seen that the 

presence of vibronic coupling between 1Bu
– and 1Bu

+ states as found for e.g. lutein in hexane leads to 

slower population dynamics. This is not surprising since a vibronic coupling between states means a 

loss of pure Bu
+/– symmetry property and may lead to complicated electronic potential surfaces and 

slower internal relaxations. These results raise though very interesting questions for future experiments 

about the role of vibronic coupling between electronic states of carotenoids embedded on natural light 

harvesting complexes. 

 

 

Figure 3.15: Population evolution determined by global target fitting of transient 

absorption of lutein using a three state sequential model in the same solvents of Figure 

3.14: (a) Hexane, (b) THF and (c) Benzene. 
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3.4 Conclusions 

The existence and non-existence of vibronic coupling are distinguished as a frequency down-

shift or up-shift of C–C and C=C stretching modes as shown in Figure 3.16 in pump-DFWM experiment 

for a series of carotenoids with N = 9, 10, 11 and 13. The multidimensional time-resolved vibrational 

spectroscopy directly records wavepacket motion on the excited states with vibronic effects induced by 

derivative coupling. These vibronic couplings become stronger in degenerate energy levels around 

conical intersection. Three aspects of vibronic coupling in photosynthetic polyenes are revealed in the 

experiments. 

 

Figure 3.16: (a) Vibronic coupling and (b) potential anharmonicity were observed in 

pump-DFWM experiment as a frequency shift.  

 

Firstly, vibronic coupling in the series of carotenoids (Figure 3.16a) is strongly influenced by 

the selection rule determined by the symmetry of exicted states. The degeneracy between the 1Bu
+ and 

1Bu
– states in shorter-chain carotenoids leads to strong vibronic coupling, while only population 

relaxation in anharmonic potential-energy surfaces (Figure 3.16b) was observed in longer-chain 

carotenoids. The observation of the effect of the coupling between Bu states on the vibrational dynamics 

here agrees with previous state-of-the-art experimental work in the group of Cerullo on the interplay of 

population dynamics and solvation effects.112 In addition, the vibrational frequencies of the excited state 

(1Bu
+) and ground state (1Ag

–) are reasonable compared with literature under careful analysis (Table 

3.1). The existence of vibronic coupling between 1Bu
+ and 1Bu

– states in shorter-chain carotenoids might 

be one of the reasons why the energy gap law has not been established between 1Bu
+, 1Bu

–, 3Ag
– and 

2Ag
– states. 

Secondly, the frequency up-shift around 1800 cm–1, which is the C=C stretching mode of the 

2Ag
– state strongly coupled to the ground state (1Ag

–), is observed in all carotenoids after the relaxation 

of S2 (1Bu
+) and Sx (1Bu

– and 3Ag
–) states. The anharmonicity of the potential energy-surface of the 2Ag

– 
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state is clearly described by the frequency up-shift in pump-DFWM experiment. Obviously, the vibronic 

coupling between 2Ag
– and 1Ag

– states is a robust feature of the photosynthetic polyenes. 

Thirdly, the influences of an end-group (a β-ring in lutein) and solvent polarizability give rise 

to further information about vibronic coupling in photosynthetic polyenes. In the experiment, the 

vibronic coupling between the 1Bu
+ and 1Bu

– states has a clear dependence on the solvent polarizability. 

The vibrational frequency shift in THF proved that a β-ring in lutein reduces the coupling strength 

compared with the end group of open-chain carotenoids. This is not surprising since the increasing of 

the number of β-ring in the polyene with N = 9 usually gives rise to a red-shift in the stationary absorption 

spectrum as well as the spectra of longer-chain carotenoids having less vibronic effects between the two 

states. Concerning the solvent effect for the coupling, vibronic coupling between the Bu states disappears 

in benzene having higher polarizability. Since previous studies indicate the breakdown of the degeneracy 

between two vibronic levels of the Bu states in the solvent with higher polarizability, the observation is 

clearly understood as a vibronic effect induced by derivative coupling.  

In addition, the existence of vibronic coupling on pump-probe experiment clearly indicated 

some conventional issues in the analysis and characterization of pump-probe spectra. The vibronic 

coupling extends the lifetime of the coupled states by creating complicated potential-energy surfaces. 

While this nature is very important for the functions of carotenoids, it often results in the spectral and 

temporal overlaps in pump-probe experiment. 

In conclusion, the vibronic coupling takes place at very early times of the photoexcitation in the 

photosynthetic samples. The features of the couplings were proved for the pairs of electronic states of 

Bu
+–Bu

– and Ag
––Ag

– not only by use of a series of carotenoids having different conjugation length but 

also in the different solvents. 
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Chapter 4 

Combination of Pump-probe and Pump-

DFWM Experiments by Functional 

Analysis 

4.1 Introduction 

Functional analysis (chapter 2.3) and time-resolved spectroscopies used in the investigation of 

molecular dynamics is usually challenging, especially on the fs timescale, since nuclear motion induces 

many additional phenomena which are ignored in conventional research. In fact, some analytical errors 

and ambiguities due to the effects induced by nuclear motion were reported112,113. While the optical 

techniques to reveal molecular dynamics have been improved during a last few decades, the analytical 

techniques applied on time-resolved spectra were often based on the Singular Value Decomposition 

(SVD) analysis.36,38,56,113 As a result, some typical residuals and ambiguities induced by the analysis 

have caused a long-time discussion about the existence of some electronic states, such as the optically-

dark excited-states of carotenoids (chapter 3).38,93,97 Although various aspects of molecular dynamics 

have been revealed by multiple-pulse optical technique, there are still some analytical issues on the 

investigations with the techniques on the fs timescale. 

The functional analysis is important especially to analyze time-resolved spectra. In general, 

molecular dynamics is recorded as a multidimensional function on the optical experiments. Since it is 

often hard to explain the experimental data without any mathematics, functional analysis has been used 

to decompose the multidimensional functions. For example, Fourier transformation is one of the most 

frequently used mathematics. Vibrational frequencies instead of the oscillatory contributions recorded 

in spectroscopies can be directly seen by use of the analysis.27,114,115 Furthermore, the SVD analysis is 

an excellent technique to decompose multidimensional functions in time-resolved spectroscopies.56 The 

electron-nuclear motion observed in ultrafast time-resolved spectroscopies is often explained by a sum 

of the components revealed by global target fitting (chapter 2.3). In the fitting, the orthogonal elements 

obtained by the SVD analysis are transformed with the simultaneous fitting of rate equations.3,116 The 

evaluation of the residuals and errors in the analysis usually determines the best kinetic model to explain 

the observation. Thus, the development of the analytical mathematics is important to obtain the correct 

interpretation of the data. 

However, the functional analysis based on SVD, especially in ultrafast dynamics, contains three 

inevitable issues: (i) vibrational relaxation is often neglected, (ii) temporal and energetic overlap makes 

it difficult to distinguish the correct model and (iii) the interactions between electronic states (derivative 

coupling in Appendix F) lead to strong ambiguities and, therefore, to wrong results. The issue (i) 

depends on the singular values of the vibrational relaxation against the other phenomena. Since the 

singular values for vibrational dynamics are usually smaller compared to the electronic dynamics, the 

spectral broadening or some modification of vibronic structures are often neglected in the analysis. The 

terms of (ii) and (iii) are called rotation ambiguity or local minimum, which will appear in Chapter 4.3.3. 

To clarify and to solve the issues induced by the analytic ambiguities, we propose a new 

approach, multimodal TRS, which is a combination of different time-resolved spectroscopic techniques. 

Here we demonstrate an example of multimodal TRS by use of the pump-probe and pump-DFWM 
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experiments. We combined the data sets obtained by the two experiments for rhodamine 6G in ethanol. 

The pump-probe spectroscopy is a well-known technique having high temporal and spectral resolutions. 

In pump-probe spectroscopy combined with functional analysis, the molecular dynamics is often 

described by a set of electronic states. On the other hand, pump-DFWM can selectively observe 

wavepacket motions on a potential energy surface by controlling resonance conditions and phase 

matching geometry. In the multimodal approach, the complementary use of the two multi-pulse 

techniques in one experimental setup allows one to decompose the signals with less ambiguity. 
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4.2 Experimental Methods 

4.2.1 Pump-probe and Pump-DFWM Experiments 

The time-resolved pump-probe and pump-DFWM experiments were carried out by using the 

experimental setup27,97,98 shown in Figure 3.2 in chapter 3.2.2. The IP pulse (18 fs) was sent to a delay 

line (T-delay) and a chopper to initiate the time-resolved experiment, while two DFWM pulses (13 fs) 

were further delayed via the piezo stages. Pump and Stokes pulses were degenerate to obtain the 

maximum intensity of nonlinear signals at phase matching position. DFWM beams were arranged in a 

folded BOXCARS geometry42,117 producing a spatially separate background-free signal. In the pump-

DFWM experiment, the signal appearing at �� � ��� � ��� � ���  was observed by a pair of 

photomultipliers at selected wavelengths (narrow-band pass filter). The pump-probe spectroscopy is 

carried out with the chopped IP pulse and probe pulse detected by silicon photo-diode array. 

 

 

Figure 4.1: Interaction scheme of pump-probe and pump-DFWM experiments. The IP 

(green) and DFWM (red) excitation spectra of the time-resolved spectroscopies for (a) 

carotenoids and (b) Rhodamine 6G are shown. The IP pulse is resonant with the 

excitation from the ground state to the lowest optically-active state. The DFWM pulses 

are resonant with the stimulated emission from the excited states. The resonant 

interaction of DFWM pulses with the excited state absorption (S1–SN) of the carotenoids 

leads to a signal order that is magnitudes larger than the non-resonant signal. 

 

Figure 4.1 shows the excitation spectra and absorption spectra of rhodamine 6G. This pigment 

is famous for the excellent fluorescence quantum yield (0.95).118 The electronic states of rhodamine 6G 

in the visible regions are the well-known S0 and S1 singlet states as described in the literature.50,51,118 

Thus, the experimental condition allows one to observe the relaxation dynamics from the lowest 

optically-active excited states (S1) in pump-probe and pump-DFWM experiments. 

 

4.2.2 Data Analysis 

The data analysis for the data sets recorded in pump-probe and pump-DFWM experiments were 

performed by global target fitting and multimodal TRS explained in chapter 2.3. In both analyses, the 

most appropriate theoretical model was found by evaluating the error functions obtained during the 

analyses. The analysis of the spectral data sets were performed by applying self-coded programs based 

on the equations shown in chapter 2.3. All of the analyses were implemented into a MATLAB code 

(Mathworks). 
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4.3 Results and Discussion 

4.3.1 TA spectra and Pump-DFWM signals of Rhodamine 6G 

Pump probe spectra and pump-DFWM data were acquired for rhodamine 6G in ethanol. Figure 

4.2 shows the time-resolved (a) transient absorption (TA) spectra and (b) vibrational spectra observed 

by pump-probe and pump-DFWM experiments, respectively. In the TA spectra, strong stimulated 

emission signals (S1 → S0) and the ground-state bleaching were observed. The signal generation 

mechanisms and relevant response functions of the excited-state emission and the ground-state 

bleaching are described in Figure 2.9 (Chapter 2.2.3). At later T-delay, the stimulated-emission peaks 

became broader. On the other hand, in pump-DFWM experiment, the DFWM spectrum was carefully 

selected to spectrally overlap with the stimulated emission of the S1–S0 transition (see Figure 4.1 and 

Figure 4.2a), i.e. it was electronically non-resonant with the S0–S1 transition. Therefore, ground-state 

contribution under the experimental condition was orders of magnitude smaller than the electronically 

resonant DFWM signal generated from the electronically excited states. In Figure 4.2(b) vibrational 

spectra, there are three vibrational modes assigned to the C-C-C ring in-plane bend mode (~614 cm–1)119, 

C-H out-of-plane bend mode (780 cm–1)119 and solvent mode (~881 cm–1 which is assigned to C-C-O 

symmetric stretch mode of ethanol120). The detection of a solvent mode, which only appears under the 

existence of the excited chromophores in Raman-based experiments, has been explained by molecular-

near-field effect, which is based on the solute-solvent dipole-dipole and dipole-quadrupole interactions39. 

 

 

Figure 4.2: Two sets of time-resolved spectra measured for Rhodamine 6G. (a) Time-

resolved transient absorption (TA) spectra observed by pump-probe spectroscopy. (b) 

Vibrational spectra calculated from the non-oscillatory signal of pump-DFWM 

transients measured at λdet = 560 (17860 cm–1). 

 

The Pump-DFWM signal contains a non-oscillatory and an oscillatory contribution114. The 

oscillatory signal are converted in frequency domain by Fourier transform as shown in Figure 4.2b. 

Compared with pump-probe experiment, this technique follows the molecular dynamics from a different 

aspect. The pump-DFWM signals contains vibrational frequencies of wavepacket motion on the 

potential surfaces at each delay time. Furthermore, the vibrational dephasing at each delay time is 

recorded in the additional time axis. Thus the technique can effectively capture the coherence which is 

usually ignored in conventional analysis for pump-probe experiments. The detailed features of pump-

DFWM signals have been described in the literature27,47,97 and chapter 3.3.1. 
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It is important to note that the IP interactions are the same in both experimental methods while 

the ratio of observed coherence and population terms are not the same due to the difference of probing. 

While pump-DFWM experiment can resolve the dynamics in much detail by multipulse probing as 

explained by use of the response functions in chapter 2.2.3, pump-probe experiment captures population 

dynamics with high temporal resolution by less amount of electronic field interaction. In other words, 

the two optical technique evaluate the molecular dynamics from different aspects, and this feature is 

necessary in multimodal approach to achieve unique minimum of error functions. 

 

4.3.2 Singular Value Decomposition (SVD) 

 The Singular Value Decomposition (SVD) of TA spectra is a mathematical procedure which is 

typically used as a preliminary analysis giving important information for the conventional analysis and 

the multimodal TRS. The analysis for the pump-probe spectra determines the maximum number (�′ in 

Eq. (8) in chapter 2.3.2) of the components in the analysis to keep the analytic ambiguity as small as 

possible (see Chapter 4.3.3). In more detail, the number �′ is determined by the evaluation of singular 

values and relevant orthogonal elements. The rest of the components are excluded as a noise part to 

reduce the ambiguity of rotation operation in Eq. (7). The analysis is expressed as, 

 ? � HPMPJPFI
P � HPMPJPFI_

P � G � HX>\JX>]FI_
X � G , (20) 

where the matrix ? (@A B) contains spectral data with a time axis K
@� and a wavelength axis L
B�, NJIO and NHIO are both normalized and orthogonal sets of eigenvectors, and the matrix G (@A B ) 

contains the residual signal. In later part of the analysis, the pump-DFWM signals are also evaluated by 

all possible kinetic models consisted of �′ elements. 

 

 

Figure 4.3: Singular value decomposition for the TA spectra within the delay time from 

–5 ps to 150 ps (1552 spectra) and in the spectral range 500 nm – 650 nm (120 channels). 

The decomposition gives (a) singular values, (b) spectral elements and (c) time 

evolutions of the orthogonal elements. The 1st and 2nd components are colored with blue 

and green, respectively. 

 

The Figure 4.3 shows SVD for the transient absorption data set of rhodamine 6G shown in 

Figure 4.2 (a). The singular values and relevant orthogonal vectors indicate the existence of two 

components representing most of the dynamical changes in the spectra. Figure 4.3b and c show the main 

spectral and temporal elements of the spectra, respectively. Although the original spectra can be 

reconstituted with all components of the orthogonal bases, we used only two main contributions to avoid 

rotation ambiguity (Chapter 2.3.5). Since the singular values of two components account up to 93.6 % 

of all of the singular values, most of the dynamical evolution and spectroscopic features are conserved 
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in the analysis. The rest of the signals are discarded as a noise before rotation operation. Therefore, the 

analysis is performed for two kinetic models, (a) two-state parallel model and (b) the two-state sequential 

model a s shown in Figure 4.4. The kinetic elements N`PO of the parallel model with two elements, S1 

and S2, are given by the convolution between the rate equation and Instrumental Response Function 

(IRF) expressed as, 

 p�
K� �  lS�m�n�	Kb1 ∗ IRF , (21) 

 p�
K� � 
1�  �lS�m0n�	 Kb2 ∗ IRF , (22) 

 

where b� is the lifetime, IRF is the instrumental response function and   determines the ratio of the 

components. The kinetic elements for sequential model are given by 

 p�
K� � lS�m�nRIo¬ ∗ IRF , (23) 

 p�
K� � u ���� � �� lS�m�
nRIo¬ � nRIv¬�w ∗ IRF . (24) 

 

where �� � 1/b� (exponential decay time constant). A detailed explanation about the kinetic models is 

available in Chapter 2.3 and Appendix E. 

 

 

Figure 4.4: (a) Two-state parallel and (b) two-state sequential model for global target 

fitting. 
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4.3.3 Functional Analysis and Ambiguities 

In global target fitting, all possible kinetic models are evaluated by use of the two error functions �I and ��. The kinetic model error (�I) describes the residuals between the time profiles of the Species-

Associated Difference Spectra (SADS) and a theoretical kinetic model (Chapter 2.3.4, Eq. 11). The 3rd-

order signal error (��) contains the residuals between the raw spectra and reconstituted spectra (Chapter 

2.3.4, Eq. 10). There are two important relationships between the two error functions and the accuracy 

and precision of global target fitting. For example, if a kinetic model used in global target fitting gives 

a temporal behavior which diverse from the correct dynamics as shown in Figure 4.5a, in other words 

when the value of the �I is huge, the time constant determined by the fitting would be away from the 

correct value. Moreover, if the huge residuals for the reconstituted spectra are allowed, in other words 

when the error value of the �� is huge, there are many kinetic models which can fit the original data 

with the same amounts of the residuals as shown in Figure 4.5b. As a result, the precision of global 

target fitting often becomes worse under the existence of the huge residuals evaluated by the error 

function��. In addition ,such tendencies of the error functions evoke some weakness in the analysis. In 

this section, the two issues of global target fitting, which are rotation ambiguity and local minimum, are 

described by comparing three fitting results obtained for the two-state parallel model, the two-state 

sequential model and the three-state model. 

 

 

Figure 4.5: The relationship between the error functions and analytical resultants. (a) G� is directly connected to the accuracy of the analysis. (b) There are various patterns 

of the analytical results belonging to the same value of G�. 
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Figure 4.6: Global target fitting with (a)-(c) two-state parallel model or (d)-(f) two-

state sequential model. (a), (d) Both kinetic models have two states, S1 (blue) and S2 

(green). (b), (e) The concentration profiles of the two states. The experimental data are 

shown in circles. (c), (f) Species-Associated Difference Spectra (SADS) of each 

component. 

 

Figure 4.6 shows the global target fitting results with the SADS and their time evolutions for 

each model. The error values of each analysis were �I � 2.31 A 10R� and �� � 3.64 A 10R� for the 

parallel model and �I � 6.67 A 10R�  and �� � 2.87 A 10R�  for the sequential model as shown in 

Table 4.1. In both cases, the reconstituted spectra contain more than 96 % of the spectral intensities of 

the original spectra. Although the 3rd-order error, �� , is smaller in the sequential model than in the 

parallel model, the parallel model has a smaller kinetic model error, �I, than the sequential model. Thus, 

the analysis cannot exclusively conclude which model is the correct one. 

 

Table 4.1: The error values of the two error functions (�I and ��) calculated in global 

target fitting for two-state parallel, two-state sequential and three-state models used in 

Figure 4.6 and 4.7. 

 �I 	
A 10R�� ��	
A 10R�� �I � ��	
A 10R�� 
Two-state parallel model 2.31 3.64 5.95 

Two-state sequential model 6.67 2.87 9.54 

Three-state model 2.53 2.53 5.06 

 

Although in this kind of analysis it is possible to reduce the error values by adding a new 

component in the model, this approach always induces a strong rotation ambiguity (detailed explanation 

is written in the next paragraph for Figure 4.8) which detracts the analytic precisions significantly. For 

example, the combination of the two-state parallel and the two-state sequential model leads to the three-

state model shown in Figure 4.7. The combination of the two-state models, resulting in a three-state 
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model, significantly reduced the error values to �I � 2.53 A 10R� and �� � 2.53 A 10R�. As shown in 

Table 4.1, both error values are smaller than the values in the other two-state models shown in Figure 

4.6. In addition, it might be possible to determine the correct model from the total error given by �I ���. However, it is dangerous to determine the correct model only with the error values because the 

precision and accuracy of the analysis are also important as well as the error values. In other words, 

there can be some analytical results having the same or very similar error values in the analysis. In fact, 

there are several resultants having similar error values in the analysis with the three-state model due to 

rotation ambiguity and local minimum. 

 

 

Figure 4.7: Global target analysis with three state model. (a) The kinetic model has 

sequentially aligned two states, S1 (blue) and S2 (red) with an individual state, S3 (red). 

(b) The concentration profiles of three states. The experimental data are shown in circles. 

(c) The spectral elements for the states. 

 

The rotation ambiguity and local minimum are main sources which detract the precision of each 

parameter in this kind of multi-component analyses. Both of them are inevitable and intrinsic features 

of the analysis. Firstly, the rotation ambiguity is induced by the spectral and temporal overlap between 

the components in the analysis. Since the S1 (blue) and S3 (green) components are almost perfectly 

overlapped both on the time and energy axes in the three-state model (Figure 4.7), the analysis with the 

three-state model is a good example to visualize the rotation ambiguity. Under the existence of a strong 

overlap between the components, there are possibilities of a certain result which can be created by a 

different C-matrix. The C-matrix performs the rotation operation for the orthogonal elements (Figure 

4.3b,c) extracted by the SVD analysis of the original signals to reconstitute the spectra (detailed 

explanation is written in chapter 2.3.2 and Figure 2.12). Figure 4.8(a) shows the kinetic model error 

values (�I) for the C-matrix elements (c11 and c32). The quality of a fit model can be judged by looking 

at all the parameters of each error function. In the ideal case one would like to have a unique minimum 

on every axis. However, the error values don’t change on the c32 axis although the values have a 

minimum on the c11 axis. It is important to note that four parameters, c12, c13, c32 and c33, mainly create 

the S1 and S3 components. Since the small change induced by c32 on the S1 or S3 components can be 

compensated by the other parameters (c12, c13 and c33), the error values on the c32 axis don’t change so 

much. The components generated by such optimization often don’t have any physical meaning, and they 

are, most likely, just some artificial components. Since the dimension of the C-matrix with n components 

analysis is n2, increasing the number of the components can easily occur the rotation ambiguity. Thus, 

as mentioned in the Chapter 2.3, the analysis should be performed with a minimum number of 

components. Of course, the precision of the analysis is significantly detracted by the rotation ambiguity. 

On the other hand, the global target fitting for degenerate energy levels tends to have a bad precision 

and a strong rotation ambiguity due to the strong overlap of the components. Therefore, the analytic 

result with the three-state model is not reliable even though it has the smallest error values. 
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Figure 4.8: The rotation ambiguity and local minimum observed in the functional 

analysis with three-state model (Figure 4.7). The error values increase from cold color 

(blue) to hot color (red). The center, c11 = c32 = 0, is the convergence point. The matrix 

elements of c11 and c32 present two of the parameters to create S1 and S3 states. (a) 

Rotation ambiguity appears in the axis of c32. The error value are the same in any value 

of c32 in this region. (b) There are two spots having small error values around the 

convergence point. 

 

Secondly, the other ambiguity, local minimum, has a strong influence on the accuracy of the 

analysis. In Figure 4.8 (b), the local minimum is shown on the error function �� for the c11 and c32 

coordinates. There are two spots which can converge the error function. In general, there can be many 

local minimums in the analysis. Especially, using a kinetic model with many components tends to 

generate many local minimums because the calculations having high degree-of-freedom can fit the data 

by many different combinations of the parameters. In other words, many patterns of the fitting results 

could have the same error values due to the rotation ambiguity and local minimum as described in Figure 

4.8. 

The ambiguities appearing on the C-matrix elements have a strong influence on the 

determination of the kinetic time constants (τn). While in the ideal case the kinetic time constants τn 

should be uniquely determined for a kinetic model, the time constants are often not uniquely determined 

due to the ambiguities as shown in Figure 4.8. In Figure 4.9, the error values of ��, �I and �� � �I were 

calculated on the c11 and τ1 axes for the three types of kinetic models which are (a) two-state parallel, 

(b) two-state sequential and (c) three-state models. The two parameters c11 and τ1 have a major impact 

on the determination of the time constant and SADS of the first component (the component S1 in Figure 

4.6 and 4.7).  

 



55 
 

 

Figure 4.9: The error distributions in global target fitting. The two error functions �� 
and �I in (a) two-state parallel model, (b) two-state sequential model or (c) three-state 

model are shown on the c11 and k1 axis. The error values increase from cold color (blue) 

to hot color (red). 

 

As shown in Figure 4.9, the error functions ��, �I and �� � �I have a region where the error 

value is much smaller than in other regions. It is important to note that the position of the minimum error 

value on the c11 axis is strongly influenced by the other C-matrix elements due to the local minimum as 

shown in Figure 4.8(b). In other words, the value of c11 having small error values can be shifted by the 

other cij values. On the other hand, the kinetic time constant τ1 can be determined by the �I with some 

precision of 4 ~ 10 ps which are roughly estimated by the width of the region giving the minimum error 

value on the τ1 axis in Figure 4.9. However, in the total error function �� � �I (Figure 4.9 bottom panels), 

the region giving small error values on the τ1 axis becomes broader. Although it is possible to determine 

the kinetic time constants only with the �I, this approach often increases the value of the ��. Since many 

kinds of kinetic models can be fitted with the raw spectra with a large spectral residuals (��), too much 

weighting on the �I leads to the bad precision in the analysis as explained in Figure 4.5(b). In addition, 

since the ambiguities appearing on the cij are a part of the inherent features of the analysis, it is 

impossible to improve the error function �� in SVD analysis. Therefore, it is required to evaluate the 

kinetic models in the other spectral data sets recorded under the comparable experimental condition. 
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4.3.4 Error Functions in Multimodal TRS 

 

Figure 4.10: The four error functions, �I, ��, �°� and �±±¬,are evaluated in the pump-

probe spectra and in the pump-DFWM transients. The kinetic time constants in global 

target fitting are evaluated only in the pump-probe spectra while they are also optimized 

for the pump-DFWM transients in multimodal TRS. The C-matrix elements (cij) only 

appear in the global target fitting. 

 

Multimodal TRS, consisting of pump-probe and pump-DFWM experiments, can overcome the 

ambiguities by use of the two additional error functions (�°� and �±±¬) calculated by the fitting of 

pump-DFWM signals. Figure 4.10 shows the error functions in global target fitting and in multimodal 

TRS. While global target fitting is carried out with the two error functions (�I and ��) which were 

briefly explained in Chapter 4.3.3 and defined in Chapter 2.3.4 Eq. (10)-(11), there are two additional 

error functions (�°� and �±±¬) in multimodal TRS. 

 

 

Figure 4.11: The pump-DFWM transient (black, at T = 0) on the τ axis is fitted by the 

simulated signal (red) in multimodal TRS. The residuals (blue) are mainly originated 

from the vibrational frequencies < 500 cm–1 or > 1000 cm–1.. 

 

The two error functions (�°� and �±±¬) for pump-DFWM signals evaluate kinetic models by 

the simulation of vibrational spectra recorded by pump-DFWM experiment. Figure 4.11 shows the 

fitting of the pump-DFWM signal observed at T = 0. The error function �°� contains the residuals 

(Figure 4.11a, blue) which are calculated by taking differences between the raw signal (black) and the 

simulated signals (red). On the other hand, the error function �±±¬ contains the residuals of (Figure 

4.11b, blue) of the Fourier transformed spectrum of the oscillatory signal. As shown in Figure 4.11b, 

the residuals of the oscillatory signal (Figure 4.11a, blue) barely contains the vibrational modes used in 

the simulation. Since vibrational spectra are strongly influenced by molecular dynamics, the �±±¬ is 
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sensitive to the time constants for each components appearing in the dynamics. On the other hand, the �°� has an importance to remove wrong kinetic models by evaluating the simulated signals on the τ axis. 

Regarding the later T delay, the three vibrational modes are effectively extracted by the fitting 

curves as shown in Figure 4.12. The residuals on the oscillatory signals don’t contains the vibrational 

frequencies of rhodamine 6G as shown in Figure 4.12b,d,f. 

 

Figure 4.12: The pump-DFWM transient (black, at T = 0) on the τ axis is fitted to obtain �°�  and �±±¬ . The residuals (blue) are mainly originated from the vibrational 

frequencies < 500 cm–1 or > 1000 cm–1.. 
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By the combination of the four error functions (�I, ��, �°� and �±±¬), it is possible to evaluate 

kinetic models not only by pump-probe signals but also by pump-DFWM signals. Figure 4.13 shows 

the error values of the �°�, �±±¬ and �°� � �±±¬ on the c11 and τ1 axes for (a) two-state parallel and (b) 

two-state sequential models. The �� � �I  shown in Figure 4.13 are calculated by exactly the same 

functions used in global target fitting while there is a slight difference due to the parameters used in the 

analysis. Since �°� and �±±¬ don’t have any C-matrix elements, they have always the same value on 

the cij axis. In the comparison between �� � �I and �°� � �±±¬, the �� � �I in global target fitting have 

a broad bandwidth for the small error values on the τ1 axis. However, the two error functions �°� � �±±¬ 
are very sensitive to kinetic time constant τ1. In addition, it is important to note that the �� � �I and �°� � �±±¬ are connected through the evaluation of kinetic time constants as shown in Figure 2.16 in 

chapter 2.3.6. 

 

Figure 4.13: The error distributions in multimodal TRS. The two error functions ��, �I, �°� and �±±¬ in (a) two-state parallel model or (b) two-state sequential model are 

shown on the c11 and k1 axis. The error values increase from cold color (blue) to hot 

color (red). The weights of the error functions, �� � �I and �°� � �±±¬, are setted as 

10:1 which is based on the changing of the error values in each axis. 

 

In both kinetic models, the time constant τ1 observed in pump-DFWM experiment is clearly 

indicated by the unique minimums of the �°� � �±±¬ on the τ1 axis. As a result, multimodal TRS can 

combine the two experimental results by the evaluation of kinetic models. In other words, each kinetic 
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model gives rise to some error values calculated by the error functions which fit pump-probe and pump-

DFWM signals. Since the appearance of the �� � �I can vary due to the local minimum and the 

rotational ambiguity, the error values of the �°� � �±±¬  have an important index to determine the 

appropriate kinetic model. The importance of the evaluation of kinetic models in the two different 

experimental results is discussed in the next section. 

 

4.3.5 Multimodal TRS for Rhodamine 6G 

 

Figure 4.14: Multimodal TRS for rhodamine 6G with (a)-(c) two-state parallel model 

and (d)-(f) two-state sequential model. Stimulated emission spectra in pump-probe 

spectroscopy were decomposed into (a), (d) temporal elements and (b), (e) spectral 

elements. (c), (f) The short-lived 1st component (blue, ~ 5 ps) and long-lived 2nd 

component (green, > 2 ns) are separated by the simultaneous fitting with kinetic models 

(black broken line in (a) and (d)). The vibrational spectra (black solid line) were 

simulated for each model as shown in red lines. 
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As described in the previous sections, the multimodal TRS can determine the molecular 

dynamics by use of the four error functions (��, �I, �°� and �±±¬) which combines pump-probe and 

pump-DFWM signals. The evaluation of kinetic models in the two different optical signals, at least, 

leads to the common parts of molecular dynamics observed in the two experiments. Thus, it is possible 

to exclude wrong kinetic models much easier compared with the conventional global target fitting. 

Figure 4.14 shows analytical results of multimodal TRS for the pump-probe and pump-DFWM 

signals of rhodamine 6G (Figure 4.2) by use of (a)-(c) two-state parallel model and (d)-(f) two-state 

sequential model. The error values of pump-probe part (�� � �I) and pump-DFWM part (�°� � �±±¬) 
are summarized on Table 4.2. In the results, there are clear differences on the SADS and their time 

profiles. While the oscillatory contribution only appears on the short-lived component in the parallel 

model (Figure 4.14a, blue), the oscillatory signal appears on both components in the sequential model 

(Figure 4.14d). In addition, the SADS of the short-lived component in the parallel model (Figure 4.14b, 

blue) is totally different compared with the other SADS. 

 

Table 4.2: The error values of �� � �I  and �°� � �±±¬  in multimodal TRS in 

comparison with the error values of classic global target fitting. Two-state parallel and 

two-state sequential models are evaluated in the analysis. GTF – global target fitting, 

MTRS – multimodal TRS. 

 Two-state models 
Pump-probe Pump-DFWM �I ��	 �I � ��	 �°� � �±±¬	 

GTF 
Parallel 2.31 3.64 5.95 --- 

Sequential 6.67 2.87 9.54 --- 

MTRS 
Parallel 2.56 3.91 6.47 105.4 

Sequential 7.51 2.81 10.31 120.39 

 

In the fitting of the vibrational spectra (Figure 4.14c,f), there are less residuals in the parallel 

model compared with the sequential model especially around T = 4 ps. The difference clearly appeared 

on the amplitudes of the three modes (614, 780 and 881 cm–1) in the population time axis as shown in 

Figure 4.15 and the number of the error values of �°� � �±±¬ as shown in Table 4.2. Thus, the sequential 

model is not suitable to explain the pump-DFWM signals. In fact, the error values of �°� � �±±¬ for 

pump-DFWM signals with parallel model is by 10 – 15 % better than with the sequential model as 

shown in Table 4.2. Since the pump-DFWM signals contain strong low-frequency contributions which 

are not simulated, the error values of �°� � �±±¬ is much bigger than the values of �� � �I. However, 

it is possible to evaluate each kinetic models by the four error functions. 

It is important to note that there are some difficulties to achieve a unique solution in the 

conventional global target fitting (GTF). The error values for GTF shown in Table 4.2 indicated that the 

parallel model gives rise to better values of �I  and the total error value �� � �I . However, the �� 
indicates the sequential model fits the pump-probe spectra better than the parallel model. As explained 

in Figure 4.5b, the �� is sensitive to the precision of the fitting. Thus, it is difficult to conclude which 

model fits better in global target fitting. On the other hand, in multimodal TRS, the additional error 

functions �°� � �±±¬, which evaluate the pump-DFWM signals, clearly indicates that the parallel model 

is suitable for the signals. Therefore, evaluating by the two experimental data sets, which were measured 

by pump-probe and pump-DFWM experiments, the analytical result with the parallel model (Figure 

4.14a-c) is the adequate solution in the analysis. 
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Figure 4.15: The amplitudes of C-C-C ring in-plain bending ~ 614 cm–1, C-H out-of-

plain bend mode ~ 780 cm–1 and C-C-O symmetric stretching mode of ethanol ~ 881 

cm–1. The simulated curves (red) for (a) parallel model and (b) sequential model fit the 

amplitudes of pump-DFWM signals for each peak. 

 

The kinetic elements and the SADS (Figure 4.14a and b) obtained by multimodal TRS show 

some interesting features. The oscillatory contribution only appears in the short-lived component while 

the long-lived component only contains nonoscillatory contribution. The lifetimes of each component 

is 5 ps for the short-lived component and > 2 ns for the long-lived component.  

 

 

Figure 4.16: The two components obtained by multimodal TRS with the relevant 

response functions. The short-lived component (SADS 1, blue) appears at 17000 and 

18450 cm–1, while the long-lived component is the emission spectrum from S1 state. 

The stationary absorption spectrum is also shown as a reference. GSB – ground-state 

bleaching, ESE – excited-state emission. 

 

Furthermore, the two components obtained by multimodal TRS can be explained by the 

common terms of the response functions of the 3rd-order and 5th-order nonlinear spectroscopies (the 

response functions are described in Figure 2.9 and 2.10). Figure 4.16 shows the SADS calculated by the 

analysis. For example, the corresponding SADS for the short-lived component (Figure 4.16, SADS 1) 

contains the emissions with a narrow spectral band appearing at 17000 cm–1 (1 ← 0) and 18450 cm–1 (0 

← 0) where the coherence can be observed through the four-wave mixing sequences. On the other hand, 
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the stimulated emission and ground-state bleaching are stored in the long-lived component. The SADS 

2 clearly contains the vibronic structure with the Stokes shift ~ 700 cm–1. The stationary absorption 

spectrum have a vibronic structure of 18900 cm–1 (0 → 0) and 20200 cm–1 (0 → 1). Thus, the energy 

separation of the vibrational levels on the stationary absorption spectrum is ~ 1300 cm–1 while it is ~ 

1450 cm–1 in the emission signal. 

 

 

Figure 4.17: Interpretation of the result obtained by multimodal TRS for Rhodamine 

6G. The interaction of the initial pump pulse from bra side (solid line) and ket side 

(broken line) are shown. (a) Long-lived component having a typical stimulated 

emission spectrum is the population term of the S1 state. The oscillatory shape in the 

time evolution of stimulated emission having a spectrum with narrow shape indicates 

the preparation of coherence on (b) excited-state or (c) ground-state. 

 

By combining pump-probe and pump-DFWM experiments, which have different probing 

mechanisms while the initial pump interactions are the same, multimodal TRS determined the kinetic 

model commonly observed in the two optical experiments as summarized in Figure 4.17. The 

observation and the interpretation of the results are reasonable in comparison of the literature50,51.  

 

4.4 Conclusions 
The multimodal approach by use of pump-probe and pump-DFWM experiments indicated that 

the coherence can be separated by the functional analysis based on the response functions and the 

resonance conditions. In this work, we demonstrated the separation of the population term and the 

coherent term of the TA spectra. The evolutionary calculations for the two data sets clearly identified 

the correct model which was not possible applying only a single set of spectra. In conclusion, the new 

method has effectively overcome the issues originated from the rotation ambiguity and local minimum. 

Furthermore, in multimodal TRS the error functions have minimum error values to determine 

the adequate model. Since two optical techniques share some response functions restricted by resonance 

conditions, multimodal TRS can overcome many local minimums and rotation ambiguities appearing in 

the conventional analysis. In addition, the principle of the analysis in multimodal TRS gives rise to the 

signal of the pure population term. In general, the oscillatory and non-oscillatory signals are mixed in 

the species obtained by the conventional analysis for TA data. In the multimodal TRS, the two terms are 

separated based on the response functions which are commonly observed in the two optical experiments. 
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Chapter 5 

Summary and Outlook 

5.1 Summary 

5.1.1 Time-resolved Spectroscopies on the Femtosecond Timescale 

The pump-probe and pump-DFWM experiments on biological polyenes and rhodamine 6G 

elucidated the ultrafast molecular dynamics on a fs timescale. The nonstationary states prepared by the 

initial pump interactions gave rise to the strong coherences containing the information of the nuclear 

rearrangement. The coherence observed in the optical experiments showed the vibronic interactions 

between the electronic states in the carotenoids. For example, the coupling between Bu states were 

observed for shorter chain polyenes (N = 9 and 10) in addition to the well-known 1Ag
– – 2Ag

– coupling 

(detail information appears in 5.1.2). Moreover, the coupling caused modifications of the early dynamics 

in the pump-probe experiment. Since such modifications are ignored in the conventional SVD analyses, 

we suggested a new approach to solve the two issues (rotation ambiguity and local minimum) in the 

conventional pump-probe experiment on the fs timescale. 

The combination of the pump-probe and pump-DFWM experiments by functional analysis gave 

rise to a new principle to decompose the time-resolved spectra. Since the response functions of the two 

optical experiments share a part of signal generation pathways, it is possible to separate the signals based 

on the interactions of the initial-pump pulse. For example, the wavepacket dynamics and population 

dynamics were separated in the time-resolved spectra of rhodamine 6G (detail information appears in 

5.1.3). In addition, the influences of the rotation ambiguity and local minimum in the conventional SVD 

analysis are now much weaker in the new approach due to the evaluations of the kinetic models in the 

two data sets measured by pump-probe and pump-DFWM experiments. In multimodal approach, the 

resultant components are explained by the response functions appearing in pump-probe and pump-

DFWM experiments. This approach indicates the possibility of the separation of the optical signals 

based on the response functions by the combination of the optical experiments. 

 

5.1.2 Vibronic Effects in the Polyenes with N = 9, 10, 11 and 13 

The couplings in the photosynthetic polyenes were observed as an increase and a decrease of 

the vibrational frequencies of the C–C and C=C stretching modes. Two pairs of the electronic states, 

with the symmetries of 1Bu
+ and 1Bu

– or 1Ag
– and 2Ag

– respectively, were strongly coupled as expected 

in the theory.18,24 The couplings have different dependences on the conjugation length and solvent 

polarization. Firstly, the coupling between the 1Ag
– and 2Ag

– states was observed for the carotenoids 

with N = 9 – 13. This coupling increased the vibrational frequency of the 2Ag
– C=C stretching mode 

which appeared at 1800 cm–1. Secondly, the vibrational relaxation on a distinct anharmonic potential 

surface was observed as an increase of the vibrational frequencies during the relaxation. On the other 

hand, the vibronic coupling between the 1Bu
+ and 1Bu

– states, which appeared during the early dynamics 

for the short polyenes with N = 9 and 10, have strong dependences on the conjugation length and the 

solvent polarizability. Interestingly, controlling the energetic degeneration between the ionic and 

cationic states by solvent polarizability changed the coupling strength between 1Bu
+ and 1Bu

– states for 
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lutein (N = 9, β = 1) as expected by the derivative coupling. Obviously, the couplings modified the 

appearance of the early dynamics on the pump-probe experiment. Thus, the solute-solvent interaction 

had a significant contribution on the lifetime and the population dynamics observed in the pump-probe 

experiment. 

In addition, care was taken to follow a clear definition of Born-Huang, Born-Oppenheimer and 

crude adiabatic approximation, which will help to understand the physical meaning of vibronic 

interactions induced by derivative coupling. Since the meaning of the words are often obscure in 

literature 35, the definitions of the work would help the transparency of the research. Especially regarding 

the derivative coupling, the theoretical expectation explains our experimental observation very well. 

 

5.1.3 Multimodal Approach for Ultrafast Molecular Dynamics 

The analytical problems in an ultrafast pump-probe experiment were effectively solved by the 

multimodal TRS. We demonstrated an example of the multimodal approach by combining two multi-

pulse optical techniques, pump-probe and pump-DFWM experiments, implemented under the same 

conditions. The functional analysis for the two data sets overcome the rotation ambiguity as well as the 

local minimum. The multimodal approach decomposed the signals into the components based on the 

patterns of the initial pump interactions commonly observed in the two optical experiments. This new 

principle of the decomposition led to a unique interpretation of the results.  

The determination of the correct theoretical model only based on the pump-probe spectra of 

rhodamine 6G was not successful by global target fitting due to the rotation ambiguity and local iminium 

in the SVD analysis. Three different theoretical models, which are the two-state parallel, the two-state 

sequential or the three-state sequential+parallel model, generated error values which did not allow to 

identify the best solution. In addition, the three-state sequential+parallel model has a significant 

influence from the rotational ambiguity and local minimum. In multimodal TRS, the problem has been 

solved by the evaluation of the kinetic models combining the analysis of data from the two sets of 

measurements in one analytical routine. As a result, the coherence and population terms were separated 

for the time-resolved spectra of rhodamine 6G. This idea of the analysis could be widely applied for 

other optical experiments. 
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5.2 Outlook 

5.2.1 Functions of Vibronic Coupling in Photosynthetic Polyenes 

The vibronic couplings in the carotenoids indicated that the interactions between the 

chromophores and the solvent molecules changed the coupling strengths. Obviously, the influences of 

the surrounded environment of the pigment molecules have significant influences for the application of 

the molecules. In the case of photosynthetic polyenes, the carotenoids are covered by proteins and lipids 

in a pigment-protein complex. However, the effects of the unique environment on the early dynamics 

of the polyenes are still not revealed. As a result, the light-energy conversion efficiencies of solar cells 

using the same sets of the pigments are not as efficient as the natural ones. The unique features of the 

vibronic couplings could be a key process to reveal the mechanism of the high light-energy conversion 

efficiency of the photosynthetic apparatus. 

For example, the mixture of the carotenoids and chlorophylls used in dye-sensitized solar cell 

showed unique features of intermolecular interactions. Especially, the enhancement of the efficiency by 

the alignment of the molecules has significant importance because the localized excitations of the 

molecules are necessary to prevent singlet-triplet annihilation reaction and to keep the number of the 

excited-state dye molecules as much as possible.121 The further detail mechanism is still unrevealed due 

to the difficulties to describe such intermolecular interactions in theory. However, some research 

indicates possible interpretation of such interactions.39 Thus, the interaction between the carotenoids and 

other molecules can be the next step of the application of the pump-DFWM experiment. 

On the other hand, regarding the characterization of vibronic coupling appearing on C–C and 

C=C stretching modes, their vibrational frequencies should be strictly determined by calculations and 

measurements. This requires a complete series of the polyenes having different lengths of conjugated 

double bonds (N) or different end-groups such as the β ring. In addition, the conformers of the polyenes 

could have a totally different coupling dynamics due to their structural symmetries. Since most of them 

don’t belong to the C2h point group, the conformers should have different features on the excited-state 

dynamics. In this work, we determined a part of them. A complete set of the data will be a great reference 

for future investigations. 
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5.2.2 Multimodal Approach 

In this work the idea and an example of multimodal TRS were demonstrated. Since it is still a 

kind of SVD analysis, the technique requires further improvements especially for the three points as 

below. 

Firstly, the maximum precision determined by the inner products of the components in kinetic 

models should be carefully evaluated to remove some kinetic models having a low maximum precision. 

In Chapter 4, the temporal and spectral overlaps between the components lead to the rotation ambiguity 

and local minimum. As a result, there are many results which give rise to the same value of the error 

functions. In other word, the strong overlap between the components in kinetic models, or a huge inner 

products, detracts the precision of the analysis for pump-probe data.Therefore, it would be necessary to 

remove some theoretical kinetic models which have low maximum precision. In this work, we removed 

three-state sequential+parallel model due to this reason, although the model gave rise to much smaller 

error values compared with the two-state models. However, it is better to create a certain criteria which 

can remove some kinetic models based on the evaluation of kinetic models. 

Secondly, an accurate pulse characterization, especially about the chirp of the pulses, is desirable. 

In pump-DFWM experiment, the significant influences induced by the chirp and pulse durations are 

reported.98 In addition, the accurate experimental determination of the analytical parameters related to 

the instrumental response function (IRF) can reduce the number of the calculations in multimodal TRS. 

In addition, the concept of multimodal approach can be extended for other spectroscopies having 

some similarity in the response functions observed in the optical experiments. An example could be the 

determination of the correlation function ²
��. The correlation function describes the fluctuation of the 

transition-energy gap by the solute-solvent interaction. There is a good approximation to determine the 

correlation function ²
�� as a sum of the faster part ²�
�� and the slower part ²�
��.122 Since the ²�
�� and ²�
�� can be observed by the echo-peak shift, time-gated echo, absorption and emission 

spectra, it is possible to determine the correlation function by the numerical simulation of the 

experimental data.123 

 

Figure 5.1: The correlation function ²
�� can be determined as a sum of the faster part ²�
��  and the slower part ²�
��  which can be observed in different optical 

experiments. 

 

In conclusion, the multimodal approach is suitable to combine the optical experiments having 

the same part of the response functions and observables. 
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Appendix A 

Symmetrical Operators and Symmetry of Molecular 

Orbitals 

Operation around x, y, z axis are described by the transformation matrix between the original coordinate 

(x,y,z) and the new coordinate (x’,y’,z’). 

 

E: identity 

T1 0 00 1 00 0 1Z ³µ́¶· � T
´′µ′¶′Z 

σ: reflection (σv: vertical, σh: horizontal, σd: dihedral, σxy: xy plane) 

T1 0 00 1 00 0 �1Z ³µ́¶· � T
´′µ′¶′Z 

Cn: rotation around an axis (for example, around z axis) 

T cos
2� B⁄ � sin
2� B⁄ � 0� sin
2� B⁄ � cos
2� B⁄ � 00 0 1Z ³µ́¶· � T
´′µ′¶′Z 

i: inversion 

T�1 0 00 �1 00 0 �1Z ³µ́¶· � T
´′µ′¶′Z 

The molecular orbitals of the molecules with C2h point group are labeled according to the symmetry 

properties as belonging to one of the four irreducible representation (Ag, Au, Bg, Bu) with different 

combination of operators. 

 

Table A1: Character table for the C2h point group. A value of 1 represents no change between original 

coordinate (x,y,z) and new coordinate (x’,y’,z’) and −1 refers to the opposite change. 

 

C2h E C2 i σh 

Ag 1 1 1 1 

Bg 1 −1 1 −1 

Au 1 1 −1 −1 

Bu 1 −1 −1 1 
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Appendix B 

Theoretical Description of Pump-probe and Pump-

DFWM Experiments 

Optical spectroscopies read a set of physical quantities through light-matter interaction. Since 

physical quantities of molecules are stored in the Hamiltonian as the eigenvalues of the relevant 

eigenvectors, spectroscopic signals are originated from the Hamiltonian. In general, light-matter 

interaction is approximately described by optical polarizations41. In the description, the expectation 

value of the polarization is calculated by the density matrix (Appendix C) which is an alternative 

representation of the molecular wavefunctions. In addition, the polarization can be simplified by 

experimental condition, such as pulse degeneration, phase matching condition or energetic resonance. 

This Appendix shows theoretical descriptions for pump-probe (3rd-order nonlinearity) and pump-

DFWM experiments (5th-order nonlinearity). 

 

B.1 Light-matter Interaction 

With nonlinear spectroscopies, one can obtain plenty of information from the molecular 

Hamiltonian through the light-matter interaction. The total Hamiltonian ¥F of the system, including a 

time-dependent light-matter interaction, is given by 

 ¥F � ¥ � ¨
�� . (B1) 

It is divided into a time-independent part ¥ and a time-dependent interaction Hamiltonian ¨
��, which 

represents the light-matter interaction. 

In general, the theoretical description of the light-matter interaction contains many parameters 

representing the experimental conditions. In other words, the experimental conditions determine the 

appearance of the Hamiltonian. The feature of the light-matter interaction is described by the optical 

polarization �
», ��  which is a physical quantity. Furthermore, dielectric media have a very small 

magnetic permeability compared with their electronic susceptibility. Thus, the effects of an optical 

magnetic field are negligible so that a nonlinear medium interacting with electric fields can be 

considered by the dipole interaction. It is given by 

 ¨
», �� � ���»�
», ���
», �� , (B2) 

where �
», �� is the classical transverse electric field. The calculation of the integral in Eq. (B2) is 

difficult due to the complex spatial excitation profile created in the matter by the electric fields. Thus, it 

is simplified to the optical responses of a single particle whose size is much smaller than the wavelength 

where it is valid to use the dipole approximation. Hence, Eq. (B2) can be approximated to 

 ¨
�� � �(̂�
», �� , (B3) 

where (̂ is the dipole operator of an absorber. The incoming electric fields induce a time-dependent 

polarization �
», ��, which is given by the expectation value (see Eq. (C4) in Appendix C) 

 �
», �� � Trl(̂*+
�
», b�, ��m . (B4) *+
�
», b�, �� is a time-dependent density operator of the system that depends on the external electric 

field �
», b�. 
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B.2 Perturbation Theory 

The perturbation theory is an important idea to describe a weak interaction with a function. The 

idea is based on the fact that a weak interaction only gives rise to a small change of the function. In 

nonlinear spectroscopy, the polarization arising from the interactions with multiple electric fields can be 

calculated by perturbation theory. If we assume the fields only act to drive transitions between quantum 

states of the system and the interaction with the fields to be sufficiently weak, the problem can be treated 

with the perturbation theory. In Eq. (B4) the time-dependent density operator is a function of the electric 

field �
», b� and can be expanded in powers of the electric field, i.e., 

 *+
�� � *+
��
1� � *+
��
�� � *+
��
��� � *+
��
���� �⋯ , (B5) 

where *+
�� is the nth-order expansion of the density matrix. For the polarization, the expansion yields 

 �
», �� � �
�� � �
�� � �
�� �⋯ � ¼�'½
��� � ½
���� � ½
����� �⋯- . (B6) �
�� refers to the polarization arising from n incident light fields. �
�� and higher terms referred to as 

the nonlinear terms. From Eq. (B5) and (B6) we calculate the polarization from the density matrix as 

the sum of the expectation values 

 �
», �� � Trl(̂
��, *+
�, b�m � Tr\(̂, *+
��] � Tr\(̂, *+
��] � Tr\(̂, *+
��] � ⋯ . (B7) 

The dipole operator is given by (Heisenberg picture in Appendix C.2 Eq. (C21)) 

 (̂
�� � eP¿Àp(eRP¿Àp � )�,
��()�
�� . (B8) 

 

From Eq. (B7), nth-order perturbation theory will be used to describe the nonlinear signal derived from 

interacting with n electric fields. The time evolution of the density matrix is given by the Liouville-Von 

Neumann equation (Eq. (C24) in Appendix C.3) as 

 
∂∂� *
�� � � �ℏ l¥, *
��m . (B9) 

Time integration of the interaction Hamiltonian in Eq. (B9) gives 

 *
�� � *
0� � �ℏ��� l¨, *
��m . (B10) 

 

Here, the time evolution of the dipole matrix contains the function itself. The expansion of Eq. (B10) in 

powers of the electric field gives 

 *
�� � *
0� � �� �ℏ�
��

�$�
� ���p
R� � ���R�p}

R� ⋯� ���pv
R� ³ �̈
���, Â �̈R�
��R��, !⋯ , ' �̈
���, Ã¦Ä-#Å· . (B11) 

Ã¦Ä describes the equilibrium density matrix before the interaction with the light field. The nth-order 

expansion of the density matrix is given by 

 Ã
�� � Ã¦Ä , (B12) 

 Ã
�� � � �ℏ� �b�
p
R� ' �̈
b��, Ã¦Ä- , (B13) 

 Ã
�� � �� �ℏ�
�� �b�p
R� � �b�|v

R� ! �̈
b��, ' �̈
b��, Ã¦Ä-# , (B14) 

 Ã
�� � �� �ℏ�
�� �b�p
R� � �b�R�|}

R� ⋯� �b�|v
R� ³ �̈
b��, Â �̈R�
b�R��, !⋯ , ' �̈
b��, Ã¦Ä-#Å· . (B15) 
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B.3 Polarization 

 The perturbation theory for the polarization and the density operator lead to the expansion of 

the polarization in powers of electric fields. As a result, the nonlinear responses are described by 

repeated linear interactions of electric fields as shown in Eq. (B12)-(B15). Each term of the polarization 

can be further simplified by changing the variables as shown below. From Eq. (B7) and (B15), the nth-

order polarization is given by 

 
�
��
�� � ��ℏ�

�� ����
� ⋯� ����

� �
� � ���⋯�
� � �� �⋯
� ���Tr Â!'l(̂
�� �⋯� ���, (̂
��R� �⋯� ���m,⋯ -,⋯ (̂
0�# , Ã¦ÄÅ . (B16) 

 

In the equation, absolute times are substituted by time intervals to yield a more intuitive description 

shown in Figure B.1. 

 

b� � � � ��b�R� � � � �� � ��R�⋮b� � � � �� �⋯� ��  
.  

 

 

Figure B.1: Multi-pulse sequence for nth-order polarization. The pulse sequence is 

described by the delay times b� and the time intervals ��. The pulses are labeled by the 

vector kn corresponding to the interaction V(τn) in the equations. 

 

Within this time picture, the nth-order polarization can be expressed using the identity 'Ç, l	È, Ém- �'l	Ç, Èm, É- as 

 �
��
», �� � � ����
� � ���R��

� ⋯� ����
� �
��
��, ��R�, ⋯ , ����
��
», �, ��, ��R�, ⋯ , ��� , (B17-1) 

where 

 

�
��
��, ��R�, ⋯ , ���� ����� �
����
���⋯�
���Tr �Â!'l(̂
�� � �� �⋯� ���, (̂
�� � �� �⋯� ��R��m, (̂
�� � ���-, (̂
���# , (̂
0�Å *+
�∞�� , (B17-2) 

 �
��
», �, ��, ��R�, ⋯ , ��� � ��
», � � �� � ��R�⋯� ���⋯��R�
», � � �� � ��R����
», � � ��� . (B17-3) 

 �
��  is the Heaviside step function. Here, the light-matter interactions are expressed in term of a 

sequence of consecutive time intervals, ��⋯�� , prior to observing the system. For delta-function 

interactions the polarization and the response functions are directly proportional. 
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B.4 3rd-order Response Functions in Pump-probe Experiment 

The response function used in nth-order polarization has significant convenience to estimate 

observable signals under some experimental condition. Thus, response function often becomes an 

evidence of the connection between experimental condition and interpretation of the signals. Appendix 

B.4 introduces observable signals in pump-probe experiment. 

The Eq. (B17) for 3rd-order polarization can be transformed as (all intermediate equations are 

shown in Appendix D) 

 �
��
�, �� � � ����
� � ����

� � ����
� �
��
��, ��, ����
��
�, �, ��, ��, ��� , (B18-1) 

where 

 �
��
��, ��, ��� � ��ℏ�
� �
����
����
��� !��
�� � ��
��∗#	

�$�
 , (B18-2) 

 ��
�, �, ��, ��, ��� � �
�, � � ����
�, � � �� � ����
�, � � �� � �� � ��� , (B18-3) 

 

��
��
��, ��, ��� � Tr'()�
���()�
���()�
���(*+)�,
���)�,
���)�,
���- 
��
��
��, ��, ��� � Tr'()�
���)�
���)�
���(*+)�,
���()�,
���()�,
���- 
��
��
��, ��, ��� � Tr'()�
���)�
���()�
���*+()�,
���)�,
���()�,
���- 
�	
��
��, ��, ��� � Tr'()�
���()�
���)�
���*+()�,
���()�,
���)�,
���- 

. (B18-4) 

 

In the Eq. (B18-1) and (B18-2), the 3rd-order polarization is expressed as a linear combination of four 

response functions ��
�� ~ �	
�� and their complex conjugates. In Eq. (B18-4), each response function 

contains a different sequence of the dipole interactions. For example, the density matrix, *+, in ��
�� has 

the sequence: ket interaction (k1) → time evolution t1 → ket interaction (k2) → time evolution t2 → ket 

interaction (k3) → time evolution t3 → the signal. Such dipole interaction and time evolution are usually 

summarized by the double-sided Feynman diagram as shown in Figure B.2. 
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Figure B.2: Double-sided Feynman diagram for 3rd-order nonlinear response functions 

shown in Eq. (B18-4). The center columns are density matrix with the time evolution 

from the bottom to the top. The electric fields are shown as the vectors interacting with 

the density matrix from left-hand side (the ket side) and right-hand side (the bra side) 

at each delay time. 

 

The observable signals in pump-probe experiment can be estimate by use of the double-sided 

Feynman diagram in Figure B.2 and experimental condition. In pump-probe experiment, �� and �� are 

identical (�:; � �� � ��) and the signal is observed at �� � �� � �� � �� (�� � ��� � �� � ��). The 

information determines the direction of dipole interactions and observable signals as shown in Figure 

B.3. 

 

 

Figure B.3: Double-sided Feynman diagram for the observable signals in pump-probe 

experiment. ESA = excited-state absorption, ESE = excited-state emission and GSB = 

ground-state bleaching. The incoming arrows to the density matrix are equivalent with 

the creation operators while the outgoing arrows stand for the annihilation operators. 

 

The observable phenomena in pump-probe experiment have four sequences; the excited-state 

absorption (ESA) from �<
�� and �=
��, excited-state emission (ESE) from ��
�� and ��
�� and ground-
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state bleaching (GSB1 from �	
�� and GSB2 from ��
��), respectively. In addition, there are the signals 

arising from the wavepacket motion with the frequencies of ωaa’ in GSB and ωbb’ in ESE. 

 

B.5 5th-order Response Functions in Pump-DFWM Experiment 

As seen in previous section, the double-sided Feynman diagrams for response functions contain 

crucial information to estimate observable signals. In addition, the number of the response functions can 

be reduced by taking account of the experimental condition. This section introduces the observable 

signals in pump-DFWM experiment from the 5th-order nonlinear response functions. 

The 5th-order nonlinear response functions have 16 terms with their complex conjugates. In 

pump-DFWM experiment, �� and �� are identical (�:; � �� � ��), ��
� ���� and �	
� ��p� 
interact at the same delay time and the signal is observed at �� � �� � �� � �� � �	 � �
. Then, the 

number of the terms are reduced till the nine functions with their complex conjugates as shown in Eq. 

(B19) (detail information and intermediate equations are shown in Appendix D). 

 

 

��

>� � Tr'()�
�
�()�
�	�(()�
���((*+)�,
���)�,
�	�)�,
�
�- ��

>� � Tr'()�
�
�)�
�	�()�
���((*+)�,
���()�,
�	�()�,
�
�- ��

>� � Tr'()�
�
�()�
�	�)�
���((*+)�,
���(()�,
�	�)�,
�
�- �	

>� � Tr'()�
�
�()�
�	�()�
���(*+()�,
���()�,
�	�)�,
�
�- �


>� � Tr'()�
�
�)�
�	�(()�
���(*+()�,
���)�,
�	�()�,
�
�- �<

>� � 	Tr'()�
�
�)�
�	�)�
���(*+()�,
���(()�,
�	�()�,
�
�- �=

>� � Tr'()�
�
�()�
�	�(()�
���*+(()�,
���)�,
�	�)�,
�
�- �Ë

>� � Tr'()�
�
�)�
�	�()�
���*+(()�,
���()�,
�	�()�,
�
�- �Ì

>� � Tr'()�
�
�()�
�	�)�
���*+(()�,
���(()�,
�	�)�,
�
�- 

. (B19) 

 

The colors indicate a pair of dipole interactions from the ket side (red), both sides (green) or the bra side 

(blue) at each delay time. The response functions corresponding to the Eq. (B19) are represented by the 

double-sided Feynman diagrams as shown in Figure B.4. 
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Figure B.4: Double-sided Feynman diagrams for 5th-order nonlinear response functions 

in pump-DFWM experiment given by Eq. (B19). The color codes of Eq. (B19) indicates 

the dipole interactions of a pair of electric fields (k1-k2 and k3-k4) from the ket side (red), 

both sides (green) or the bra side (blue) at each delay time. The interaction from both 

sides (green) can flip the directions for both vectors due to degeneracy of the pulses. 

 

In addition, the spectral resonance in the experimental condition for carotenoids gives additional 

restriction in the appearance of the response functions. The three pulses (��, �	 and �
 for pump, Stocks 

and probe pulses) are not resonant with the (a → b) transition. Thus,��

>�,	��

>�,	�=

>�,	�Ë

>�,	�Ì

>�,	���

>� 
and	��=

>� are obviously not observable in the research. However, a pair of interactions of the initial pump 

in ��

>� can create resonant condition for the following four-wave mixing sequence. The rest of the 

response functions are resonant in the experimental condition. 

As seen in the appendix, the appearance of the response functions are regulated by experimental 

condition. The fact indicates the importance of the design of multi-pulse optical experiments. 
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Appendix C 

Density Matrix and Time Evolution Operator 

C.1 Density Matrix 

The density matrix (density operator) approach is often used to represent the eigenstates of a 

quantum system. Although describing a quantum system with the density matrix is equivalent to using 

the wavefunction, one can gain significant practical advantages for certain time-dependent problems, 

especially in nonlinear spectroscopy. The density matrix is defined as the outer product of the 

wavefunctions with its conjugate 

 *+
�� � jP|ÍP
��89ÍP
��|P
 . (C1) 

 

This implies that if you specify a state |Í�8, 9Í�|*+|Í�8 gives the probability of finding a particle in the 

state |Í�8. The density matrix is named after the observation that it plays the quantum role of a 

probability density. Due to this feature, the density matrix is useful to describe expectation values or 

observables of the operators. The wavefunction for the system is expanded as 

 |ÍP
��8 � WP
��|�8P
 , (C2) 

and the elements of the density matrix are given by 

 *+
�� � WP
��WX∗
��|�89Î|P,X
� *PX
��|�89Î|P,X

 . (C3) 

 

Then the expectation value of an operator ÇÏ is expressed as 

 〈ÇÏ
��〉 � £ÍX
���ÇÏ|ÍP
��8P,X
� WP
��WX∗
��9Î|ÇÏ|�8P,X

� jPXÇXPP,X
� Tr'ÇÏ*+
��- . (C4) 

 

Here we use the identity of trace elements 

 tr	?ÓF �  7PXÔPX�
X$�

�
P$�

 . (C5) 

 

The density matrix elements can be categorized into diagonal and off-diagonal elements based 

on their features. The diagonal elements (i = j) give the probability of occupying a quantum state:  

 *PP � WPWP∗ � jP ≥ 0 . (C6) 

 

For this reason, the diagonal elements are referred to as populations. On the other hand, the off-diagonal 

elements (i ≠ j) are complex and have a time-dependent phase factor which is given by 

 *PX � WP
��WX∗
�� � WPWX∗nRPÖ×Øp . (C7) 
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C.2 Time-evolution Operator 

The time evolution of the state of a quantum system is described by the time-dependent 

Schrödinger equation 

 �ℏ ¤¤� Í
», �� � ¥5
», ��Í
», �� , (C8) 

 
¤¤�Í
», �� � �¥5ℏ Í
», �� � 0 , (C9) 

 exp Ú�¥5�ℏ Û ¤¤�Í
», �� � expÚ�¥5�ℏ Û �¥5ℏ Í
», �� � 0 , (C10) 

 expÚ�¥5�ℏ Û ¤¤� Í
», �� � �¥5ℏ expÚ�¥5ℏ �ÛÍ
», �� � 0 , (C11) 

 expÚ�¥5�ℏ Û ¤¤� Í
», �� � ¤¤� expÚ�¥5ℏ �ÛÍ
», �� � 0 , (C12) 

 ¤¤� ³expÚ�¥5�ℏ ÛÍ
», ��· � 0 . (C13) 

 

Integrating t0 � t, we get 

 expÚ�¥5�ℏ ÛÍ
», �� � expÚ�¥5��ℏ ÛÍ
», ��� � 0 , (C14) 

 Í
», �� � )5
�, ���Í
», ��� . (C15) 

 

where the time evolution operator )5
�, ��� is given by 

 )5
�, ��� � expÚ��¥5
� � ���ℏ Û . (C16) 

 

In the Schrödinger picture, the time evolution of an expectation value is given by the interaction of the 

time evolution operator with the density matrix. Therefore, the density matrix is expressed as 

 *+
�� � )5
�, ���|Í
���89Í
���|)5,
�, ��� � )5*+
���)5, . (C17) 

 

The time evolution of the expectation value, in the Schrödinger picture, is given by 

 〈ÇÏ
��〉 � Tr'ÇÏ*+
��- � Tr'ÇÏ)5
��*+
0�)5,
��- . (C18) 

 

On the other hand, it is possible to describe the same phenomenon in a different way. In the Heisenberg 

picture, the time evolution operator interacts with an operator ÇÏ, 
 

〈ÇÏ〉Í
�� � 9Í
��|ÇÏ|Í
��8 � 9Í
���|)5,
�, ���ÇÏ)5
�, ���|Í
���8� 9Í
���|ÇÏ
��|Í
���8 . (C19) 

where 

 ÇÏ
�� � )5,
�, ���ÇÏ)5
�, ��� , (C20) 
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Then, in the Heisenberg picture, the expectation value is given by 

 〈ÇÏ
��〉 � Tr'ÇÏ
��*+- � Tr')5,
��ÇÏ)5
��*+- . (C21) 

 

By comparing the Schrödinger [Eq. (C18)] and Heisenberg picture [Eq. (C21)], the following 

relationship is obtained: 

 〈ÇÏ
��〉 � Tr'ÇÏ)5
��*+
0�)5,
��- � Tr')5,
��ÇÏ)5
��*+- . (C22) 

 

 

C.3 Time Evolution of Density Matrix 

The equation of motion for the density matrix follows naturally from the definition of * and the 

time-dependent Schrödinger equation. 

 

∂*∂� � ∂∂� l|Í89Í|m � Â ∂∂� |Í8Å 9Í| � ∂∂� |Í8 ∂∂� 9Í|
� � �ℏ¥F|Í89Í| � �ℏ |Í89Í|¥F � � �ℏ l¥F, *m 

. (C23) 

 �ℏ ∂*∂� � l¥, *m . (C24) 

 

Eq. (C24) is called Liouville-Von Neumann equation for the density matrix.  
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Appendix D 

Intermediate Equations for the Response Functions 

 

The nth-order polarization is given by (Eq. (B17) in Appendix B) 

 �
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where 
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For simplification, we define the operators as 
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Then, the third order response function is given by 
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The trace elements are expressed as 
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where 
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For 5th-order nonlinear responses, the response functions are obtained in the same way. The 5th-order 

polarization is given by 
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The 16 response functions can also be described in double-sided Feynman diagrams. However, the 

experimental conditions (k1, k2 pulses and k3, k4 pulses are temporally and energetically degenerate in 

pump-DFWM experiments) reduces the number of the functions. For pump-DFWM experiments, the 

set of response functions is 
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where the colors indicate the dipole interactions from the ket side (red), both sides (green) or the bra 

side (blue) at each delay time. Since some of the functions are the same, they are renamed as, 
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where 
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Appendix E 

Rate Equations 

 In our research we employ three types of basic kinetic models which are (1) sequential model, 

(2) branching model and (3) parallel model. Those models can be easily combined by using the 

following rate equations. 

 

(1) Sequential Model 

The four-state sequential model gives 

 A��→B��→C��→D�	→  ,  

 
dd� lAm = −��lAm ,  

 dd� lBm = −��lBm + ��lAm ,  

 dd� lCm = −��lCm + ��lBm ,  

 dd� lDm = −�	lDm + ��lCm ,  

 

By solving each differential equation, we obtain, 

 lAm = lAm�nRIop ,  

 lBm = ���� − �� lAm�nRIop − ���� − �� lAm�nRIvp = ���� − �� lAm�\nRIop − nRIvp] ,  

 lCm = ����(�� − ��)(�� − ��)(�� − ��) lAm�N(�� − ��)nRIop + (�� − ��)nRIvp+ (�� − ��)nRIzpO ,  

 lDm = ������(�� − ��)(�� − ��)(�� − ��) lAm� u�� − ���	 − �� lnRIop − nRIàpm+ �� − ���	 − �� lnRIvp − nRIàpm + �� − ���	 − �� lnRIzp − nRIàpmw 
.  
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(2) Branching Model 

The five-state branching model gives, 

 A
��→
��>→
B
B′
��→
��>→
C
C′
��→
��>→

 ,  

 
dd� lAm = −(�� + ��> )lAm ,  

 
dd� lBm = −��lBm + ��lAm ,  

 dd� lB′m = −��> lB>m + ��> lAm ,  

 dd� lCm = −��lCm + ��lBm ,  

 dd� lC′m = −��> lC>m + ��> lB′m .  

 

By solving each differential equation, we obtain, 

 lAm = lAm�nR\IoáIo_]p ,  

 lBm = ���� − (�� + ��> ) lAm�ÜnR\IoáIo_]p − nRIvpÝ ,  

 lB′m = ��>��> − (�� + ��> ) lAm�ÜnR\IoáIo_]p − nRIv_ pÝ ,  

 lCm = ����(�� − ��)l�� − (�� + ��> )ml(�� + ��> ) − ��m lAm�Ü(�� − ��)nR\IoáIo_]p+ l�� − (�� + ��>)mnRIvp + l(�� + ��> ) − ��mnRIzpÝ ,  

 lC′m = ��>��>(��> − ��> )l��> − (�� + ��> )ml(�� + ��> ) − ��> m lAm�Ü(��> − ��> )nR\IoáIo_]p+ l��> − (�� + ��> )mnRIv_ p + l(�� + ��> ) − ��> mnRIz_ pÝ .  
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(3) Parallel Model 

The six-state parallel model gives 

 
A
A′
��→
��>→
B
B′
��→
��>→
C
C′
��→
��>→

 ,  

 
dd� lAm = −��lAm ,  

 
dd� lA′m = −��> lAm ,  

 dd� lBm = −��lBm + ��lAm ,  

 dd� lB′m = −��> lB>m + ��> lA′m ,  

 dd� lCm = −��lCm + ��lBm ,  

 dd� lC′m = −��> lC>m + ��> lB′m .  

 

By solving each differential equation, we obtain, 

 lAm =  lAm�nRIop ,  

 lA′m = (1 −  )lAm�nRIo_ p ,  

 lBm = ���� − ��  lAm�\nRIop − nRIvp] ,  

 lB′m = ��>��> − ��> (1 −  )lAm�\nRIo_ p − nRIv_ p] ,  

 lCm = ����(�� − ��)(�� − ��)(�� − ��)  lAm�N(�� − ��)nRIop + (�� − ��)nRIvp+ (�� − ��)nRIzpO ,  

 lC′m = ��>��>(��> − ��> )(��> − ��> )(��> − ��> ) (1 −  )lAm�Ü(��> − ��> )nRIo_ p+ (��> − ��> )nRIv_ p + (��> − ��> )nRIz_ pÝ .  

 

The kinetic model N`PO is given by convolution of the concentration curves with instrumental response 

function. 

 jP(�) = l�m ∗ IRF .  
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Appendix F 

Adiabatic Approximation 

F.1 Separability of Molecular Hamiltonian 

The ultrafast electron-nuclear motion, observed in femtosecond time-resolved spectroscopies, 

is theoretically described by molecular wavefunctions. Since it is impossible to calculate perfect 

wavefunctions for many-body systems, the separation of electronic and vibrational motions is often used 

as an approximation in the calculation. This idea is well-known as adiabatic approximation which is 

achieved in a few ways in literature.14,15 However, the slight differences of the methods have led to 

significant ambiguities on the usage of the word, and they are sometimes used in wrong way.35,124 As a 

result, the theoretical description of ultrafast electron-nuclear motion and their physical meanings are 

often hard to understand for experimental researcher. Here, the definitions of Born-Huang 

approximation15,16 and Born-Oppenheimer approximation14 are introduced to describe some optical 

phenomena appearing in the time-resolved experiment.  

 

Figure F.1: The approximations often used to calculate molecular wavefuntions are 

depicted in the groups. The physical phenomena observed in optical experiments are 

equivalent with the differences between the approximations. 

 

The idea of adiabatic approximation, which is the separability of electronic and vibrational 

motions, is realized by Born-Huang approximation. Figure F.1 shows the relationship between the 

approximations. Each method contains certain region in nonadiabatic wavefuntions to calculate 

approximated wavefunctions. While the idea of adiabatic approximation is already realized in Born-

Huang approximation, the word of adiabatic approximation often means Born-Oppenheimer 

approximation due to chronological and practical reason. In the groups below Born-Huang 

approximation, the potential-energy surfaces consist of electronic states and vibrational states. Thus, 

each vibronic (vibrational + electronic) wavefunction in Born-Huang approximation can be described 

by a product of an electronic wavefuntion and a vibrational wavefunction. 

To understand the functions of natural pigments, it is important to prove the interactions between 

the electronic states. The most part of the interactions between the electronic states are equivalent with 

the derivative coupling which spreads beyond the Born-Huang approximation as shown in Figure 3.11. 

Interestingly, the effect induced by derivative coupling is expected to be stronger in degenerate energy 

levels around conical intersection which is often observed by ultrafast time-resolved spectroscopies. 

Thus, it is necessary to take account of the derivative coupling to reveal the nature of the potential-
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energy surfaces observed in experiments. Since derivative coupling contains the elements out of the 

adiabatic approximation, the potential-energy surface in such case consists of vibronic levels having 

vibronic coupling between the energy levels. 

In this appendix, the formulation of the approximations and the coupling are shown. 

 

F.2 Born-Huang Approximation 

In this section, it is shown that the idea of “adiabatic” is achieved by Born-Huang approximation. 

The general vibroelectronic Hamiltonian ¥5( , ¢) for a molecular system can be written as the sum of 

the electronic part of the Hamiltonian ¥5¦§ and the nuclear kinetic energy operator Kâã�, 
 ¥5( , ¢) = ¥5¦§( , ¢) + Kâã�(¢) = ¥5¦§( , ¢) + �â�2@ä , (F1) 

where   and ¢ are the electronic and nuclear coordinates, �â is the nuclear momentum operator, @ä is 

the reduced mass of the nuclear coordinate ¢ä (sum over all the nuclear coordinates å will be implicit 

throughout). The molecular wavefunctions Í can be expressed as sum of the products of the basis 

functions N��( ; ¢)O , which are the electronic wavefunctions with fixed nuclear coordinate, and 

expansion coefficients (nuclear equation) ½P(¢), 
 Í( , ¢) = �P( ; ¢)P ½P(¢) . (F2) 

Substituting this expression in the time-independent Schrödinger equation, we get 

 ¥5( , ¢) �P( ; ¢)P ½P(¢) = � �P( ; ¢)½P(¢)P  , (F3) 

 

12@ä '�P( ; ¢)�â�½P(¢) + 2�â�P( ; ¢)�â½P(¢) + ½P(¢)�â��P( ; ¢)-P
+ ¥5¦§( , ¢)�P( ; ¢)½P(¢)P = � �P( ; ¢)½P(¢)P  

. (F4) 

Multiplying to the left by �X∗( ; ¢) and integrating with respect to electronic coordinate  , we get 

 

Kâã�½X(¢) + ẌX½X(¢) + 12@ä '2£�X��â|�P8�â½P(¢)-PæX
+ 12@ä '½P(¢)£�X��â�|�P8-P = �½X(¢) , (F5) 

with 

 P̈X = £�X�¥5¦§|�P8 , (F6) 

  £�X��â|�P8P = u= 0	(� = Î)≠ 0	(� ≠ Î) . (F7) 

The separation of the diagonal elements of Eq.(F5) on the left-hand side and the off-diagonal elements 

on the right-hand side leads to 
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³Kâã� + ẌX + £�X��â���Xè2@ä − �· ½X(¢)
= − 12@ä '2£�X��â|�P8�â + £�X��â�|�P8-½P(¢)PæX  . (F8) 

Concerning Eq.(F8), it is important to note that the suffix of i and j distinguish electronic states. In the 

sense of “adiabatic”, which gives rise to the separation of electronic motion and nuclear motion, a 

function of ½X(¢) should be determined by a function of �X. As long as there are some connection 

between an electronic wavefunction �X and the other electronic wavefunctions �P, it is impossible to 

achieve the separability of electronic and vibrational motions.  

 

Thus, the Born-Huang approximation is given by neglecting all matrix elements connecting �X( , ¢) 
with other electronic states (the off-diagonal elements), the resulting nuclear equation takes the 

Schrödinger form, 

 ³Kâã� + ẌX + £�X��â���Xè2@ä · ½X(¢) = �½X(¢) . (F9) 

Now, the idea of “adiabatic” is achieved, and an expansion coefficients ½X(¢) is determined by an 

electronic wavefunction �X . In other words, the Eq.(F2) in adiabatic approximation can be simply 

expressed as 

 Í( , ¢) = �X( ; ¢)½X(¢) . (F10) 

It is important to note that there are many combinations of the eigenvalues and the wavefunctions which 

can satisfy the time-independent Schrödinger equation. By using suffix é  to distinguish each 

combination in Eq.(F10), we get 

 ÍXê( , ¢) = �X( ; ¢)½Xê(¢) . (F11) 

Now it is clear that the vibronic wavefunction ÍXê( , ¢) of the vibrational state é belongs to the j-th 

electronic state is given by the product of the electronic wavefunction of the j-the electronic state and 

the wavefunction ½Xê(¢) of the vibrational (nuclear motion) state é on the j-th electronic state. 

The Born-Huang adiabatic approximation is employed for accurate computations on small diatomic 

molecules for which very good electronic wavefunctions and energies are known. 
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F.3 Born-Oppenheimer Approximation 

The Born-Oppenheimer approximation is widely used in chemistry and in physics. In this 

approximation, derivative coupling is often defined as 

 KPX> = £�X� ¤¤¢ |�P8 (derivative coupling), (F12) 

 KPX>> = £�X� ¤�¤¢� |�P8 . (F13) 

By use of the definitions, the Eq.(F5) is expressed as 

 Kâã�½X(¢) + ẌX½X(¢) + −ℏ�2@ä Â2KPX> ¤¤¢ + KPX>>Å ½P(¢)P = �½X(¢) . (F14) 

For the comparison with Born-Huang approximation, the Eq. (F8) is expressed as 

 ³Kâã� + ẌX − ℏ�2@ä KXX>> − �·½X(¢) = ℏ�2@ä Â2KPX> ¤¤¢ + KPX>>Å ½P(¢)PæX  . (F15) 

In Born-Oppenheimer approximation, the terms K> and K>> in Eq.(14) and Eq. (15) are totally neglected. 

Thus, the Born-Oppenheimer approximation is expressed as 

 'Kâã� + ẌX-½X(¢) = �½X(¢) . (F16) 

The Eq.(F16) can be interpreted as the Schrödinger equation for the wavefunction of nuclear motion in 

the potential energy ẌX(¢). Each nuclear wavefunction is determined by one electronic wavefunction 

(adiabatic). Therefore, the Born-Oppenheimer wavefunctions are simply the product of an electronic 

wavefunction and a vibrational wavefunction. 
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Appendix G 

Nonadiabtic Process 

 

G.1 Derivative Coupling 

The derivative coupling is a part of the interactions left out in order to make the molecular 

Hamiltonian separable in adiabatic approximation. Therefore, the effects induced by the term is known 

and described as “non-adiabatic”. The definition of the term is shown in Eq.(F12) in Appendix F.3. The 

derivative coupling between two quantum states has unique dependence on their energy difference. 

Since the Eq.(F12) obeys to the Hellman-Feynman-type formula108 (Appendix H), we get 

 £�X( ; ¢)| ¤¤¢ |�P( ; ¢)8 = £�X( ; ¢)|
¤¥5¦§( ; ¢)¤¢ |�P( ; ¢)8
P̈P(¢) − ẌX(¢)  

. (G1) 

Obviously, the derivative coupling tends to diverge for a small or vanishing energy. In other words, the 

adiabatic approximations breaks down, or electronic and vibrational motions are dynamically not 

separated, in the process occurring o the quantum states with small energy gap. Therefore, an alternative 

approach for the separability of electron and nuclear motions is required. This is achieved by use a set 

of diabatic basis125, ��P(ë)�, for which derivative couplings vanish, 

 £�Pë( ; ¢)� ¤¤¢ä ��Xë( ; ¢)è = 0 . (G2) 

The diabatic basis can be obtained by the unitary transformation of the adiabatic Born-Oppenheimer 

basis18 although it is impossible to express a diabatic basis by use of a truncated set of adiabatic basis126. 

Due to such difficulty, recent theoretical researches often employ the definition of quasidiabatic bases 

that are not strictly diabatic, but have derivative couplings that are as small as possible. In addition, the Ü�PëÝ are no longer eigenfunctions of electronic Hamiltonian. Therefore, here, we discuss nonadiabatic 

process by use of vibronic states. 

 

 

G.2 Vibronic Effects in Carotenoids 

In literatures23,127, the effects of vibronic interactions on the frequencies of coupled states has 

been considered by the basic formulas describing the frequency change and the Duschinsky effect128 

associated to vibronic coupling. Here, the idea is applied for the photosynthetic polyenes. 

Now we consider two electronic states |ìP8 and �ìXè with a totally symmetric mode with the coordinate ¢ for polyenes. If we assume these states are eigenstates of the electronic Hamiltonian ¥5¦§ and P̈P 
becomes minimum at the reference geometry of ¢� 129, they have diabaticity125,130 and belong to the class 

of diabatic states.  
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In the following we consider a case of one vibrational mode (¢), where the diabatic basis exists in a 

strict sense (curl condition). We take íPX(¢) as follows: 

 î(¢) = Âí��(¢) í��(¢)í��(¢) í��(¢)Å = ï
12Ω�¢� ñPX¢
ñXP¢ 12Ω�¢� + È¢ + ΔXPó . (G3) 

where 

 íPX(¢) = £ìX�¥5¦§( , ¢)|ìP8 ,  Ω is the diabatic frequency taken to be the same in both states for simplicity, È denotes the displacement 

parameter between the two states and Δ�XP is the vertical energy gap. 

The transformation from the diabatic states |ìP8 to the adiabatic states |�P8 is given by 

 

�� = ì� cos Ú�(¢)2 Û + ì� sin Ú�(¢)2 Û 
�� = −ì� sin Ú�(¢)2 Û + ì� cos Ú�(¢)2 Û . (G4) 

Thus, we obtain 

 �̈�(¢) = −12 \í��(¢) −í��(¢)] sin\�(¢)] −í��(¢) cos\�(¢)] . (G5) 

 

From the definition ( �̈�(¢) = 0) and assuming that Δ ≫ 	È¢, ñ��¢, we can approximate �(¢) as 

 tan(�(¢)) = 2í��(¢)í��(¢) −í��(¢) ,  

 �(¢) = arctan( 2ñ��¢È¢ + Δ) ,  

 �(¢) = arctan(2ñ��¢Δ ) . (G6) 

 

In the approximation23 by use of small displacement parameter È, the two roots of this Hamiltonian are 

expressed as 

 ¼± = 12Ω�¢� + 12ΔXP ±öΔXP�4 + ñPX�¢� . (G7) 

The coupling affects the frequencies in the adiabatic representations expressed as131 

 ÷P = Ωö1 − 2ñPX�ΔXPΩ� ≈ ΩÚ1 − ñPX
�ΔXPΩ� Û , (G8) 

 ÷X = Ωö1 + 2ñPX�ΔXPΩ� ≈ ΩP Ú1 + ñPX
�ΔXPΩ� Û . (G9) 

 

In conclusion, the vibronic coupling in the diabatic picture decreases the vibrational frequencies in the 

lower state and increases the frequencies of the higher state. It is easily generalized to the case in which 

the state S0 is coupled by the totally symmetric mode to several electronic state S1.24 
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Appendix H 

Hellmann-Feynman Theorem for Electronic 

Hamiltonian 

 

The commutation relation is expressed as 

 

Â ¤¤¢ ,¥5¦§( ; ¢)Å = ¤¤¢¥5¦§( ; ¢) − ¥5¦§( ; ¢) ¤¤¢= ¤¥5¦§( ; ¢)¤¢ + ¥5¦§( ; ¢) ¤¤¢ − ¥5¦§( ; ¢) ¤¤¢ = ¤¥5¦§( ; ¢)¤¢  

. (H1) 

 

Thus, 

 
¤¤¢¥5¦§( ; ¢) − ¥5¦§( ; ¢) ¤¤¢ = ¤¥5¦§( ; ¢)¤¢  . (H2) 

 

Multiplying to the left by �X( ; ¢), to the right by �P( ; ¢) and integrating with respect to electronic 

coordinate  , we get 

 £�X| ¤¤¢¥5¦§|�P8 − £�X|¥5¦§ ¤¤¢ |�P8 = £�X| ¤¥5¦§¤¢ |�P8 . (H3) 

 

The Hermitian operator obeys following relationship, 

 ¥5¦§|�P8 = P̈P|�P8 †↔£�X|¥5¦§, = £�X|¥5¦§ = £�X| ẌX . (H4) 

 

Thus, 

 P̈P£�X| ¤¤¢ |�P8 − ẌX£�X| ¤¤¢ |�P8 = £�X| ¤¥5¦§¤¢ |�P8 , (H5) 

 £�X( ; ¢)| ¤¤¢ |�P( ; ¢)8 = £�X( ; ¢)|
¤¥5¦§( ; ¢)¤¢ |�P( ; ¢)8
P̈P(¢) − ẌX(¢)  

. (G1) 

 

where  

 P̈P(¢) = £�X( ; ¢)|¥5¦§( ; ¢)|�P( ; ¢)8 ,  

 ẌX(¢) = £�X( ; ¢)|¥5¦§( ; ¢)|�P( ; ¢)8 .  
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