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Abstract The concept of symmetry is without doubt the most significant cen-
terpiece of modern science. Our current understanding of the visible universe
is phrased into a basic set of equations describing what we call ’gauge theories’.
The laws governing the dynamics of nature have been derived studying the sym-
metry properties of these equations, that is their invariance or non-invariance
under certain symmetry ’transformations’. Because of their grand success and
while seeming omnipotent, it came as a sensational surprise, that nature mys-
teriously does not obey some of the above symmetry principles by mechanisms
that are elusive: Quantum Anomalies. The intriguing feature of the anoma-
lous violation of symmetries is that it cannot be understood by the defining set
of equations that were postulated to comprise the physical content of nature,
but rather from the structures of quantum theories itself. Quantum anomalies
emerge from the transition from the classical to the quantum level of nature,
and researchers have realized that the properties of the physical vacuum (that
is the quantum equivalent of ’nothing’) are very non-trivial.

Symmetries are the cornerstones of gauge theories and the fundamental
forces they describe. The vast majority of visible matter is governed by the
strong interactions, formulated through the theory of Quantum Chromodynam-
ics (QCD). In this context, symmetry principles also dictate the existence of an-
other mysterious concept: topology. Topology is the principle used to describe
the fundamental structure of an object, invariant under a certain transforma-
tion. In physics it describes the invariance of the aforementioned basic set of
equations under continuous and hence structure-preserving manipulations. It is
very suggestive that quantum anomalies and the concept of topology should be
intimately related and in fact this assertion is most famously confirmed by the
so-called axial anomaly.

The physics of quantum anomalies and topology is intriguing and often mys-
terious, yet central to many of the fundamental mechanisms of nature. As the
anomalous violation of classical symmetries in the earliest stages of the universe
is conjectured to be responsible for the dominance of matter over anti-matter,
researchers attempt to recreate the dynamics of matter under extreme condi-
tions at heavy ion collider experiments and thus understand these challenging



mechanisms. In the early universe as well as in present day experiments the
emergence of quantum anomalies is tied to out-of-equilibrium systems.

In this thesis we focus on a comprehensive attempt at establishing the the-
oretical foundations of the non-equilibrium description of anomalous and topo-
logical dynamics. To this end we present a selection of different techniques and
approximation schemes, which are motivated by the properties of the space-
time evolution of QCD matter in ultra-relativistic heavy ion collisions. Most
importantly we aim to illustrate that the techniques, which are presented here,
are applicable to a number of systems in nature, starting from strong-field laser
physics to cosmology. The nature of topological effects is much richer in out-
of-equilibrium systems and in accord with present progress in the experimental
study of anomalous effects, we hope to contribute to the establishment of a novel
view on anomalies and topology beyond the previous equilibrium paradigm.



Zusammenfassung Die Erkenntnis der fundamentalen Bedeutung von Sym-
metrien ist prägend für die Entwicklung der modernen Physik. In diesem
Zusammenhang kann unser momentanes Verständnis des sichtbaren Universums
durch einige grundlegende Gleichungen, welche mittels so genannten ’Eichthe-
orien’ ausgdrückt werden, beschrieben werden. Die Gesetzmässigkeiten der
Physik können dann von den Symmetrieeigenschaften eben dieser Gleichun-
gen abgeleitet werden. Beginnend in der Mitte des 19. Jahrhundert hat sich
diese Sichtweise als extrem erfolgreich und doch nicht allmächtig erwiesen. In
der letzten Hälfte des 20. Jahrhunderts haben Forscher symmetrieverletzende
Phänomene entdeckt, die sich nicht durch oben genannte Gleichungen beschrei-
ben lassen: Quantenanomalien. Die mysteriöse Eigenschaft dieser anomalen
Verletzungen von Symmetrien ist, dass deren Ursprung im Übergang von klas-
sischen hin zu quantenmechanischen Beschreibungen zu finden ist. Mit diesem
Übergang verbunden ist die Erkenntnis, dass die Struktur des Vakuums (also
des ’Nichts’) auf der Quantenebene nicht trivial ist.

Symmetrien sind die den Eichtheorien zugrundeliegenden Bausteine und
beschreiben somit die uns umgebende Materie und deren fundamentale Wech-
selwirkungen. Dabei kann der größte Teil des sichtbaren Universums mittels
der Theorie der Quantenchromodynamik verstanden werden, welche auf nicht-
Abelschen kontinuuierlichen Symmetriegruppen basiert. In diesem Zusammen-
hang bestimmen Symmetrien auch die Eigenschaften eines weiteren wichtigen
Konzepts: der Topologie. Topologie ist das Prinzip, welches den Zusammenhang
zwischen der Struktur des ’Raumes’ der Objekte, der durch obige Gleichungen
beschrieben wird, mit den Eigenschaften der Lösungen der eben dieser Grund-
gleichungen verknüpft. In der Tat sind Quantenanomalien und Topologie eng
verwandt.

Die Physik der Quantenanomalien und der Topologie ist faszinierend und
oft rätselhaft, gleichzeitig sind diese Konzepte von entscheidender Bedeutung
für einige der fundamentalsten Aspekte der Natur. Die anomale Verletzung von
klassischen Symmetrien im frühen Universum ist vermutlich verantwortlich für
die heutige Existenz der Materie und des Verhältnis von Materie zu Antimaterie.
Aus diesem Grund ist es ein wichtiges Bestreben aktueller Forschung die Mech-
anismen von Materie unter extremen Bedingungen, wie diese im frühesten Uni-
versum herrschten, im Experiment zu erzeugen und zu verstehen. Dabei ist zu
bemerken, dass die Dynamik der Quantenanomalien im frühen Universum, wie
in modernen Schwerionenexperimenten, mit dem Verhalten der Materie fernab
des thermischen Gleichgewichts zusammen hängt. Aus diesem Grund ist ein zen-
traler Aspekt dieses Dissertationsvorhabens die Grundlagen von theoretischen
Beschreibungen der Nicht-Gleichgewichts-Dynamik von anomalen und topolo-
gischen Effekten zu etablieren. In dieser Arbeit präsentieren wir eine umfassende
Auswahl von Methoden und Techniken, welche durch die Herausforderungen
der quantitativen Beschreibung einer Schwerionenkollision motiviert sind, deren
Anwendungen aber wesentlich universeller ist. Die Methoden, die in dieser
Thesis angewandt werden, sind auf eine Reihe von physikalischen Systemen
übertragbar – beginnend mit zukünftigen Starkfeld-Laserexperimenten bis hin
zu kosmologischen und astrophysikalischen Fragestellungen. Dabei ist es ein zen-
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trales Resultat dieser Arbeit, dass die Dynamik von topologischen Effekten in
Nicht-Gleichgewichtssituationen wesentlich umfassender und vielseitiger ist, als
dies mittels gegenwärtigen Gleichgewichtstechniken hätte vorhergesehen werden
können. Diese Einsicht ist im Einklang mit den spektakulären Fortschritten in
experimentellen Studien von anomalen Effekten an Schwerionenexperimenten
wie RHIC und LHC und daher hoffen wir, dass die vorliegende Arbeit einen
wichtigen Beitrag zum modernen Verständnis von Anomalien und Topologie
leisten kann.
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Chapter 1

Introduction

1.1 Goal of this thesis

This thesis is an attempt to elucidate the importance of a thorough under-
standing for the non-equilibrium dynamics of topological and anomalous effects
in relativistic gauge theories. The connection between topological gauge field
configurations [1–5] and the anomalous violation of symmetries associated with
fermionic currents has long been known [6, 7]. While the subject has received
considerable attention in the context of equilibrium or vacuum physics, such
as in S-matrix scattering experiments [8], the non-equilibrium dynamics of the
aforementioned effects have remained elusive. A striking example of the im-
portance of the non-equilibrium dynamics of anomalous effects is electroweak-
baryogenesis [9–12]: under sufficient out-of-equilibrium conditions the observed
matter/anti-matter asymmetry of the present-day universe is conjectured to
be caused by the combination of anomalous baryon- plus lepton-number and C
(charge conjugation) and CP (charge and parity conjugation) non-conservation.
Moreover quantum anomalies are also understood to play an important role in
the electronic properties of strongly correlated condensed matter systems [13].

Recently the possibility of direct experimental access to the non-equilibrium
dynamics of anomalous effects has been conjectured. By means of the Chiral
Magnetic Effect (CME) [14–16] local P− and CP− odd fluctuations in Quan-
tum Chromodynamics (QCD) manifest themselves via experimentally observ-
able correlations of electric charges. The CME in practice converts fluctuations
of axial charge imbalances in the strongly correlated quark-gluon plasma (QGP)
into electric currents along the direction of the Abelian magnetic fields that are
created by the spectators in an off-central collision of heavy nuclei [17, 18].

While the CME has been observed in condensed matter systems [19], its
experimental realization in the context of heavy ion collisions is still unclear [20].
It is generally agreed upon that there exist significant background contributions
to the CME signal, such as for example from local charge conservation [21–
27], that generate correlations between charged particles mimicking the effects
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6 CHAPTER 1. INTRODUCTION

of the CME. Unfortunately there is neither an understanding of the relative
magnitude between CME signal and its background nor of their systematics, for
example such as the dependence of these signatures on the centrality or

√
s of a

collision. While early on intriguing hints of the CME have been seen at RHIC
and LHC [28–30], recent experimental searches at the CME experiment [27]
have come up with controversial results: by comparing correlations of charged
particles in both Proton-Nucleus as well as Nucleus-Nucleus collisions it was
found that centrality dependence of these correlations in nearly identical for
both systems1. While this finding put pressure on the CME interpretation
of charge correlations in heavy ion collisions, these current studies have fairly
limited evidential value as they have only been performed for a restricted choice
of oberservables. In comparison some recent results of the RHIC experiments
are discussed in [31, 32].

The latest controversy puts a heavy burden on theorists: While researchers
have proposed the existence of a variety of novel transport phenomena, the un-
derstanding of experimental manifestations of these effects is very limited. This
is mainly due to the fact that the most important contributions to anomalous
transport originate in the earliest moments of a heavy ion collision, since the life-
time of the external Abelian magnetic fields in non-central heavy ion collisions
is extremely short and is expected to decay well before t = 1fm/c [17, 18]. The
dynamics of a heavy ion collision during these early times represents a chal-
lenging far-from-equilibrium situation and calls for very advanced theoretical
descriptions. Weak-coupling frameworks applicable at high energies indicate
that, at these early times, the strongly correlated quark and gluon matter is
far off-equilibrium in a highly overoccupied plasma state [33–35], which subse-
quently evolves to a QGP state of matter. The question of thermalization in
this context is still unresolved [36].

Classical-statistical simulations, that have been used to study the initial state
particle production [37–40] and to investigate aspects of thermalization [41–44],
have proven to be a very suitable ab-initio approach that allows quantitative
understanding of the non-equilibrium dynamics of a heavy ion collision at early
time. They have been very successfully employed to study the dynamics of
highly occupied non-Abelian plasmas in expanding geometries and most fa-
mously have identified the so called ’Bottom-up’ scenario [45] as the relevant
effective description of weak-coupling thermalization [46].

In this thesis we present first attempts at including the dynamics of fermions
into these powerful simulation techniques [47–52]. The far-from equilibrium
dynamics of fermions in ultra-relativistic heavy ion collisions is of crucial im-
portance for the understanding of anomalous chiral transport. Fermions are
the carriers of the electromagnetic properties of QCD matter and as such are
responsible for the polarization dynamics of the CME in peripheral heavy ion
collisions. Apart from the physics of strong magnetic fields, electro-magnetic
probes, such as photons, are of great importance for the comprehension of the
spacetime evolution of heavy ion collisions [53–58]. This is because of the fact

1We note that the magnetic fields created in p− Pb are either zero or at least very small.
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that their mean free path is much larger than typical system sizes [59] and they
leave the medium essentially unscathed. Photons provide excellent probes for
the dynamics of the space-time evolution of the fireball created, as they are
produced throughout every stage of the collision.

Somewhat surprisingly the production of electromagnetic probes during a
heavy ion collision is not yet well-understood, as there is still significant discrep-
ancy between theoretical predictions and experimental results [60–62]. Specifi-
cally when contrasted with theoretical predictions, direct photon spectra exhibit
a substantial excess at low p⊥ , while also showing greater azimuthal anisotropy
than predicted by thermal production models [63]. These two effects comprise
the so-called direct photon puzzle. While in this study no computations of non-
equilibrium photon production are presented, the techniques developed and pre-
sented here serve as the basis for future studies [64].

The interplay of the axial anomaly and Abelian magnetic fields, leading to
the emergence of anomaluous vector and axial-currents, is by no means unique to
heavy ion collisions. In section 3 we propose to study the Chiral Magnetic Effect
and anomalous transport using high intensity laser beam experiments [65, 66].
The creation of electromagnetic fields beyond the famous Schwinger limit [67–
69] is within reach of experiments that are expected to be available within the
next two decades [70–75] and the non-linear regime of Quantum Electrody-
namics (QED) offers a prime opportunity to investigate the non-equilibrium
dynamics of anomalous effects. In this thesis we will show that the Abelian
equivalent of the chiral magnetic effect leads to novel polarization effects, which
we call ’dynamical anomalous refringence’ and which have not been considered
before [76]. In this context we find interesting tracking behavior of electromag-
netic fields, which are due to non-linear effects and the creation of anomalous
electric currents. Unlike ultra-relativistic heavy ion collisions, future laser beam
experiments provide an almost background-free test ground for the investigation
of the aforementioned effects.

Moreover the effects of the Abelian anomaly in far-from equilibrium situa-
tions is conjectured to be important in an astrophysical context [77–80]: the
transfer between fermionic chirality and magnetic helicity exhibits non-trivial
dynamics in out-of-equilibrium situations, by possibly leading to chiral instabili-
ties. In this context the role of the fermion mass is conjectured to be responsible
for the reduction of chirality and thus might dampen the aforementioned insta-
bilities [81, 82]. Therefore in this thesis we will investigate the role of the fermion
mass in the anomalous dynamics of both Abelian and non-Abelian gauge theo-
ries quantitatively.

We note that the non-equilibrium dynamics of anomalous and topological
effects in Abelian and non-Abelian gauge theories is ideally suited to be studies
using analogue quantum simulators [83–85]. Systems of ultra-cold atoms might
be used to perform quantum simulations of gauge theories and experiments non-
equilibrium dynamics of Quantum-Electrodynamics in lower dimensions have
been proposed [86]. Remarkably these experiments could contribute to the
understanding of gauge theories and matter beyond the approximations that are
employed in this thesis and consequently might give insights into the mechanisms
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of thermalization in gauge theories. While ultra-relativistic heavy ion collisions,
strong-field QED and ultra-cold quantum gases represent very different physical
systems on vastly different scales, these fields share many common features [87]
and might be addressed from a more ’universal’ perspective.

Moreover in this thesis we hope to convince the reader that topological and
anomalous effects far-from-equilibrium comprise a very rich field of research and
the techniques that we outline here, might open new perspectives – beyond the
conventional mindset about anomalous effects, that is by now well established.

1.2 Outline of this work

The following manuscript is organized as follows: in subsection 1.3 we give a gen-
eral introduction into the physics questions that are addressed in this work. To
provide some context we give a rough overview over the current understanding
of the dynamics of a heavy ion collision and we point out important shortcom-
ings of current theoretical descriptions and associated challenges for researchers
in section 1.3.1. Further in section 1.3.2 we will outline the physics behind the
Chiral Magnetic Effect and anomalous and topological phenomena in heavy ion
collisions and other fields.

An introduction into the technical and conceptual basics that are employed
in this thesis is given in section 2. There we will first outline the ideas and con-
cepts between the path integral formalization of non-equilibrium many body
systems, via the Schwinger-Keldysh closed time path and its equivalent Hamil-
tonian formulation. Furthermore we will give an introduction into the lattice
formulation of quantum field theories with a special emphasize on Abelian and
non-Abelian gauge theories in section 2.2. Based on this we will proceed to
discuss the classical-statistical approximation, as it is used in many subsequent
chapters of this thesis to address various problems in different fields of physics,
starting with strong field laser experiments and continuing with the physics of
the Chiral Magnetic Effect in ultra-relativistic heavy ion collisions.

Based on the introductory chapters we will then proceed to present the
various aspects of the research that we have performed during my doctoral
studies. The common ’theme’ of the subsequent chapters is the non-equilibrium
dynamics of anomalous and topological effects. In chapter 3, we will investigate
the non-linear regime of QED beyond the Schwinger limit, which can be reached
with next generation laser beam experiments. These systems are expected to
represent challenging non-equilibrium systems, which provide intriguing novel
effects: as such the Abelian axial anomaly has been rarely discussed in this
context. In section 3 we show explicitly that future experiments might provide
an unique chance to study novel experimental realizations of the Abelian axial
anomaly, and thus give an insight into many other fields. Subsequently in
section 4, we will present a study of anomalous fermion production from non-
Abelian gauge field configurations, which are typical for the early time regime
of a heavy ion collision. This chapter provides an interesting perspective on the
investigation of the far-from-equilibrium dynamics of the axial anomaly using
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real-time lattice techniques.
In section 5 we will present the most advanced ab-initio study to this day

of the CME in the earliest time regimes of a heavy ion collision. By imple-
menting the dynamics of Abelian and non-Abelian gauge fields and simulating
non-equilibrium fermion production during topological transitions, we can in-
vestigate anomalous transport quantitatively. The results that are presented in
this chapter have only become possible because of advanced algorithmic tech-
niques that we have developed.

Section 6 is not only an attempt to put the results of our real-time lattice sim-
ulations into the bigger context of the space-time history of an ultra-relativistic
heavy ion collisions, it furthermore provides new insights into the structure of
quantum anomalies and how they arise from quantum field theory. In this sec-
tion we develop a Lorentz-covariant and consistent chiral kinetic theory using
the string-inspired world-line framework. Our results put pressure on recent
attempts at relating the topology of quantum anomalies with that of Berry’s
phase.

Section 7 completes the work presented in this thesis. Here we present results
that have been obtained studying chiral symmetry breaking in the presence of
strong magnetic fields in the strongly coupled regime of QCD. To this end we re-
solve the previous discrepancy between various model and lattice computations
regarding the dynamics of inverse magnetic catalysis.
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1.3 Anomalous Effects and far-from equilibrium
dynamics

In this section we provide an overview of the current status of the searches for
anomalous and topological phenomena in ultra-relativistic heavy ion collisions.
In order to be able to put the results presented in this thesis into perspective with
the enormous challenges associated with current experimental and theoretical
efforts, in section 1.3.1 we begin by giving a short introduction of the status
of understanding of the dynamics of a heavy ion collision. Subsequently we
will focus on the physics of the Chiral Magnetic Effect and we will present
the basics of anomalous transport phenomena in Quantum Chromodynamics
(QCD) in section 1.3.2.

1.3.1 Current challenges in heavy ion physics

Ultra-relativistic heavy ion collisions are a prime testing ground for the ques-
tions associated with many properties of QCD matter. By colliding heavy nuclei
at collision energies of a few hundreds of GeV to several TeV per nucleon, ex-
periments at both Brookhaven National Lab and CERN provide thereby direct
experimental access to novel states of matter. Most intriguing are two specific
states of matter, created under these extreme conditions, that are of impor-
tance for the investigations presented in this manuscript and which we shall
discuss in more detail therefore. These are the Quark Gluon Plasma and the
Color Glas Condensate [33–35], which we illustrate by roughly following the
approach of [88, 89]. After having clarified the relevant concepts that are re-
quired to understand the properties of these intriguing states of matter, we will
proceed to illustrate how these states of matter arise in the spacetime evolution
of ultra-relativistic heavy ion collisions.

Nuclear matter under normal conditions consist of protons and neutrons,
while the more fundamental constituents – quarks and gluons – are confined
and not directly accessible by experiment. Nuclear systems at very high energy
densities however look fundamentally different: in this case protons and neu-
trons overlap and their fundamental constituents can move freely. This process,
called deconfinement, is a necessary condition for matter to exist in the form of
what is called a quark-gluon plasma. An important feature of QCD matter at
high energies is the weak coupling due to asymptotic freedom, which as we shall
show below, allows perturbative approaches in certain kinematic regimes – and
classical methods in others. We note that typical energy densities that are suffi-
cient to produce a quark-gluon plasma, are of the order of 1 GeV/(fm)3. Often
the physics of the quark gluon plasma is described in thermal equilibrium, but
recent investigations suggest that the plasma created in ultra-relativistic heavy
ion collisions might not be in equilibrium at any time [36].

The Color Glass Condensate The initial condition of a hadron in the high
energy limit can be understood from the weakly-coupled regime of QCD. The ini-
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Figure 1.1: Saturation of gluons – the consituents that are probed as the kine-
matic variable x decreases. Figure taken from [88].

tial condition is tied to the many-body wave-function of a heavy ion in the high
energy limit of QCD and receives contributions from gluons and (anti-)quarks
on all scales and for every value of the momentum fraction x = Econstit/Ehad.
Kinematical variables are usually defined in the infinite-momentum frame of a
Lorentz contracted hadron. Another important kinematic variable is the reso-
lution scale Q2 of the probe (the four-momentum transfer).

In the context of Deep Inelastic Scattering (DIS) [90, 91] the evolution of
the distribution of the constituents comprising the wave function of a hadron as
a function of x and Q2 is well understood from perturbative QCD. The DGLAP
(Dokshitzer-Gribov-Lipatov-Altaralli-Parisi) [92–94] evolution equations realize
the Q2 evolution of fermion and gluon distribution functions by resumming
leading logarithms of αs logQ2, where αs is the perturbative QCD coupling,
while the evolution in x is considered sub-leading. Similarly the evolution in
x is understood via the BFKL (Balitsky-Fadin-Kuraev-Lipatov) equations [95–
97] (c.f. Fig. (1.2)). In the regime of extremely small x this perturbative
understanding however is challenged, as we shall show below. To understand
the Q2 and x evolution of the participants of a heavy ion, we note that, in units
of the rapidity y, the density of small x partons (which are mostly gluons) is
given by

dN

dy
= xG(x,Q2) , (1.1)

Here y is the momentum space rapidity. The gluon distribution G(x,Q2 in
Eq.(1.1)2 has been measured for protons at HERA [98] with high precision and
was shown to rise for small x and fixed Q2 (see Fig. (1.2)). A similar behavior
is predicted from the aforementioned evolution equations.

As the density of low-momentum gluons grows, a rapidly rising cross-section
could violate unitarity and thus the naive evolution must break down at some

2A parton distribution function is defined as the probability of testing a parton with given
momentum fraction x and at four momentum transfer Q2.
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Figure 1.2: Left: The x-evolution of gluon and quark distributions for Q2 = 10
GeV measured at HERA. Right: A pictographic representation of the evolution
of the gluon distribution in x and Q2. Figure taken from [35].

point. The conventional BFKL evolution assumes a linear superposition of
gluons, however as one goes to very small x QCD becomes very dense and
gluons start to overlap, as is sketched in Fig. (1.1). Thus at some point the
linear DGLAP and BFKL evolution equations must break down and the non-
linear evolution of the parton distributions must be taken into account. The
aforementioned overlap marks the onset of the so-called saturation regime, where
the gluon phase space density ρ ∝ 1/πR2 dN/d2pT becomes of order 1/αs [89,
99].

This special state of matter is called a Color Glass Condensate (CGC).
The term ’glass’ is used because of the typical evolution time scale of those
constituents. This time scale is inherited from the constituents with higher
momentum fraction and is considerably longer than one naturally expects. The
non-linear saturation effects are characterized by a typical saturation scale Qs =
Qs(x), where for momenta with Q < Qs gluon saturation dominates (see the op
left corner of the plot on the right of Fig. (1.2)). The saturation scale typically
is Q2

s ∝ αsNc dN/dy/πR2. Typical values for Qs are of the order of a few GeV
for present day experiments at RHIC and LHC [89, 99]. Below we will find
that the physics of saturation in ultra-relativistic heavy ion collisions can be
efficiently described by the use of classical fields.

Heavy Ion Collisions While the physics of the Color Glass Condensate gives
a very good picture of the initial conditions for an ultra-relativistic heavy ion
collision, the space-time evolution of the latter is more complicated and not
yet understood entirely. From the CGC perspective heavy ion collisions can be
imagined by the collision of two two-dimensional3 sheets of colored glass. As

3We note that at ultra-relativistic energies heavy ions are Lorentz contracted in the longi-
tudinal direction and might be treated sheet-like. Upon closer inspection this is equivalent to
the the kinematic limit utilized in the saturation picture, which is essentially two-dimensional
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these sheets smash into each other, they trail behind ’melted glass’ from which
quark and gluons are produced. Below we attempt to illustrate this somewhat
prosaic picture explicitly. To this end we introduce appropriate kinematic vari-
ables in light-cone coordinates and using light-cone gauge A+ ≡ A0 +A3 = 0

P± =
E ± pz√

2
, (1.2)

X± =
t± z√

2
. (1.3)

Furthermore we make use of the position space rapidity and proper time vari-
ables

η ≡ tanh−1 z

t
=

1

2
ln

(
X−

X+

)
, τ ≡

√
t2 − z2 , (1.4)

as well as the momentum space rapidity

y =
1

2
ln

(
P−

P+

)
. (1.5)

Fig. (1.3) gives an illustration over these kinematic variables. As the heavy
ions travel approximately on the light cone, we have P+ 6= 0 and P− = 0 for
the rightmoving hadron and vice versa for the leftmoving one. Particles which
carry only a fraction of the respective projectiles, and the particles produced
from the medium, are confined inside the causal light cone region. Consequently
the rapidity range of any particle produced in experiment is restricted by the
hadron rapidities.

An important feature of the parton distribution functions is that the valence
and gluon degrees of freedom are well separated in x, as is evident from Fig.
(1.2). Thus at small x we aim to describe a theory of gluons only, which we
shall call ’wee’ gluons due to the small momentum fraction they are carrying.
The valence partons act as static sources for the wee gluons, as can be seen from
simple estimates of the characteristic time scales (hence the name ’glass’, c.f.
[99]). The interactions between valence and wee partons can be described using
an effective action4, which was first established in [89, 99] (here for one of the
two nuclei)

Z[j] =

∫
[dρ]WΛ+ [ρ]



∫ Λ+

[dA] δ(A+) exp
(
iS[A, ρ]−

∫
j ·A

)
∫ Λ+

[dA] δ(A+) exp (iS[A, ρ])


 , (1.6)

where Λ+ is a typical longitudinal momentum scale, separating sources and
fields and the small x effective action is given as

S[A, ρ] =
1

4

∫

x

F aµνF
µν,a +

i

Nc

∫
d2X⊥dX

− δ(X−)Tr
(
ρU∞,−∞[A−]

)
) (1.7)

4We note that this form of effective action looks suspiciously similar to something we will
discover in section 6 in a very different context.
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Figure 1.3: Left: Lightcone diagram of a heavy ion collision as an illustration
of the kinematic variables used. Right: Schematic view of a heavy ion collision
through two Lorentz-contracted sheets of Color Glass. The constituents that
carry a large momentum fraction of the projectile suffer only small momentum
losses and essentially continue as part of the colliding ’discs’. Behind them they
trail the ’wee’ partons at smaller momentum space rapidity y, which later make
up the medium, from which more particles are produced. Figures taken from
[88].

with

U∞,−∞ ≡ P exp

(
ig

∫
dX+A−,ata

)
, (1.8)

where ta are the generators of SU(3). Eq.(1.7) can be understood as a the action
of ’classical’ soft gauge fields, interacting with random color sources at larger x.
The weight W [ρ] in Eq.(1.6), which represents the distribution of color sources,
might be described by a Gaussian distribution, but does not reproduce many im-
portant features in this case. In order to include generic quantum fluctuations,
W [ρ] must necessarily be a non-Gaussian distribution. To this end the JIMWLK
(Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner) [100–106] evo-
lution framework allows to systematically incorporate quantum fluctuations into
the source functionals by means of a Wilson renormalization group evolution.

In practice, solving the dynamics of the wee partons described by the effective
action Eq.(1.6) for a fixed configuration of sources is equivalent to solving

[DµF
µν ]a = δν+δ(X−)ρa(X+) . (1.9)

Moreover from the CGC-effective action observables can be calculated as

〈O〉Y =

∫
[dρ1][dρ2]Wx1 [ρ1]Wx2 [ρ2]O[ρ1, ρ2] , (1.10)

where Y ≡ log 1/xF , xF = x1 − x2 is the difference of the parton fractions of
each nuclei. Explicit solutions of Eq.(1.9) are discussed in great detail in [99],
but we note that typical solutions to Eq.(1.9) for fixed source terms are given
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Figure 1.4: Schematic representation of typical solutions for the ’wee’ gluon
fields from the CGC framework. This picture should be understood in η − τ
coordinates, with the longitudinal direction being η. Figure taken from [35]

by longitudinal color-electric and color-magnetic fields, which are screened on
typical transverse scales of 1/Qs, where Qs is the gluon saturation scale. These
field configurations are called color flux-tubes and should not be confused with a
similar notion in the context QCD-strings and confinement. A sketch of these so-
called ’glasma flux tubes’ is given in Fig. (1.4). Characteristic field amplitudes
in the flux-tube regime are of order A ∝ 1/g [107–110].

The emergence of these characteristic configurations of large coherent fields
is central to the understanding of many properties of a heavy ion collision and
justifies the use of classical-statistical simulations. Upon closer inspection, it is
found that the flux-tubes are roughly boost-invariant (that is independent of
η) and generate long range rapidity correlations [111] between created particles
that can be measured in experiment.

The significance of these initial conditions for the effects discussed in this
section is drastic: Flux tubes carry non-zero ’topological’ density Ea ·Ba, which
however is not related to the vacuum structure of QCD as we will shown in
section 45. Naturally flux-tube initial conditions lead to significant anomalous
fermion production as we shall explicitly compute.

The spacetime evolution of a heavy ion collision Starting from the
CGC/Glasma effective framework, we proceed to illustrate the subsequent stages
of a heavy ion collision. Due to instabilities induce by fluctuations, the initial
fields decohere on typical time scales 1/Qs, and form a boost invariant state
with large occupancies along the transverse directions. This Glasma is charac-
terized by a large anisotropy and thus exhibits Weibel instabilities [112–115]. In
turn this leads to an exponential growth of quantum fluctuations and a quick
break-up of boost invariance [116–118]. Eventually energy conservation causes
a saturation of the instabilities, producing a state, which is best described as
an overoccupied non-Abelian plasma.

5We emphasize that the flux tube contributions are clearly distinct from ’purely’ topological
contributions such as sphalerons, that are investigated in section 5. We point out that the
relevance of this distinction between vacuum contributions and effects of the initial conditions
is only transparent in out-of-equilibrium situations.
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Figure 1.5: Schematic view of the space time evolution of a heavy ion collision:
(a) CGC picture of the initial condition in the high energy saturation regime.
(b) & (c) Flux tube and glasma regime. (d) Kinetic regime. (e) Hydrodynamic
regime. This figure is courtesy of Soeren Schlichting, Univ. of Washington and
used with his generous permission.

While instabilities lead to an isotropization of the system, the longitudi-
nal expansion of the fireball still dominates its evolution and as a result the
(momentum-)anisotropy increases slowly. Ultimately the dynamics becomes
independent of the initial conditions and approaches an universal attractor
solution [46, 119, 120]6. This solution is in concord with the BMSS (Baier-
Mueller-Schiff-Son) ’bottom-up’ scenario [45]. The latter agreement is rather
unexpected because of the absence of late-time plasma instabilities that should
be present in weak-coupling kinetic formulations. The most convincing interpre-
tation of this ’unreasonable’ agreement is that the BMSS scenario reproduces
the correct ’universal’ features of the theory, while the details of the microscopic
formulation do not seem to matter for many observables out-of-equilibrium. At
time Qsτ ∝ α−3/2 the characteristic occupancy of the plasma drops to 1 and
classical-statistical simulations break down. In this regime the system is be-
lieved to be still weakly coupled and kinetic descriptions have been put forward.
In the BMSS scenario inelastic processes are suggested to lead to thermalization.
This picture however is highly controversial: eventually the system must become
strongly coupled and transition to a hydrodynamic stage. Hydrodynamics is a
macroscopic formulation of the late time stages of a collision and has predicted
many observables such as particle rates and azimuthal asymmetries with great
accuracy. Nevertheless despite encouraging agreement between different theo-
retical approaches the question of thermalization even in central A+A collisions
is controversial and the success of hydrodynamics is under debate [36]. We note
that hydrodynamics neither needs thermalization [113] nor isotropization [36]
to work. We further point out that thermalization has been addressed by com-
paring weak coupling scenarios and AdS/CFT computations [121] with good
agreement. The apparent puzzle of thermalization and the success of hydrody-
namics is a prime motivation to study more detailed aspects of the dynamics
of ultra-relativistic heavy ion collisions: as already discussed in the introduc-
tion, photons are produced at all stages of a heavy ion collision and given the
fact that experimental and theoretical descriptions of both photon rates and
flow do not match, more work has to be done. The chiral magnetic effect and
anomalous hydrodynamics are yet another important test of the hydrodynamic

6We emphasize that this famous insight is due to classical-statistical simulations.
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paradigm: while hydrodynamics so far has been ignorant about spin dynamics,
CME physics requires a precise understanding of the latter far from equilibrium.
It is thus an interesting question, whether hydrodynamics will continue to suc-
cessfully predict spin-related observables. In the following section 1.3.2 we will
give a detailed introduction into the physics of the Chiral Magnetic Effect and
we will highlight the challenges that it poses for theory. We note that, due to
its importance in present day research, many contributions from various per-
spectives can be found in the literature and the introduction presented here is
by no means exhaustive. In this thesis we will omit discussion of the hadronic
and freezeout stage of a collision. More details can be found in [14–16, 20]

1.3.2 Anomalous Effects

The combination of quantum anomalies with magnetic fields and vorticity has
been speculated to result in a new class of transport phenomena [14–16] observ-
able in heavy ion experiments. The important difference of the phenomena that
we will introduce in this section, when compared to ’conventional’ transport
mechanisms is that their origin is (in part) topological and thus non-dissipative.
The deconfied quark-gluon plasma has been identified as a prime candidate for
supporting chiral/anomalous transport phenomena due to the appearance of
near-chiral fermions. In this section we give an introduction into anomalous
effects in QCD and we will discuss their importance during various stages of a
heavy ion collision.

Central to our work are the fermionic vector- and axial current densities

jµ = 〈ψ̄γµψ〉, jµ5 = 〈ψ̄γµγ5ψ〉 , (1.11)

which can be separated in currents of left and right handed particles, that in
a theory with chiral fermions are separately conserved. While axial currents
are hard to probe in experiment, vector currents are typically related to global
quantities, such as electric charge. Therefore they can be tested by studying
the electromagnetic properties of the medium. The emergence of anomalous
vector currents can be understood as follows: conventionally an electrically
conducting medium supports ohmic currents relating P -odd electric fields with
P -odd currents

j = σE . (1.12)

Eq.(1.12) is obtained when assuming that the carriers of electric charge are
point-like (scalars, electric charge density being P-even), i.e. not taking into
account the spin of particles. Particles with spin however can support of types
of vector-currents by means of Eq.(1.11). As we will show below, the Chiral
Magnetic Effect predicts the generation of a vector in the form

j = σ5B , (1.13)

and as is fixed by discrete symmetries σ5 must be CP -odd. From Eq.(1.11) one
identifies the zeroth component of the axial current, which is the axial density
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as having the correct parity to provide the origin of the anomalous conductivity
σ5 ∝ j0

5 [14–16].

The axial anomaly In quantum field theory the source of axial charge cre-
ation is the axial anomaly, which relates topological non-trivial gauge field con-
figurations with the creation of a chiral imbalance. While the axial current
defined in Eq.(1.11) is naively conserved in a classical theory, quantum fluctua-
tions lead to its non-conservation upon quantization. The later is expressed in
the famous local non-conservation equation

∂µj
µ
5 = 2m〈ψ̄iγ5ψ〉 −

g2

16π2
F aµν F̃

µν,a . (1.14)

Here the first term on the r.h.s is the pseudoscalar condensate, which is a clas-
sical contribution due to the finite fermion mass. The term ∝ FF̃ is the contri-
bution of the anomaly. It can be understood from the inability of regularizing
the theory while maintaining chiral symmetry at the same time [6, 7]. The
derivation of Eq.(1.14) can be found in many textbooks, mostly following the
path integral formulation of Fujikawa [122, 123], which nicely illustrates that
it is the fermionic measure that is responsible for the non-conservation, or by
using Hamiltonian techniques [124].

Eq.(1.14) describes the local violation of the axial current (density) and in
order to perform it into an equation containing global quantities, it might be
integrated over space and time with suitable boundary conditions. Neglecting
the fermion mass and performing the integral of the spatial volume with trivial
boundary conditions at infinity, followed by the integration over time yields

∆J0
R −∆J0

L = 2Qw , (1.15)

Here ∆ denotes the difference of a quantity between the final and initial time,
∆X ≡ X(tf )−X(ti), and

J0
R − J0

L =

∫
d3x j0

5 . (1.16)

The space-time integral over the anomaly term gives Qw =
∫
V

∆K0, which is
the Chern-Simmons topological charge. It is obtained by writing the anomaly
term as the divergence of a four-current FF̃ ∝ ∂µKµ. The Chern-Simmons four
current can be identified as

Kµ = 2εµναβtr

(
AνFαβ +

2

3
ihAνAαAβ

)
(1.17)

which is related to the topological charge as

Qw =
g2

32π2

∫
d4x ∂µK

µ . (1.18)
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For vacuum boundary conditions (or for periodic conditions), which is the case
when we integrate over all space-time, Qw is integer valued and of topological
nature. Moreover it is related to the non-trivial vacuum structure of SU(Nc)
gauge theories. In this case Eq.(1.15) is an example of a so-called index theorem,
relating the analytical index of the Dirac operator (which is the difference of
eigenvalues with left/right chirality) to the topological index of the gauge sector.
This perspective, which evolves around the structure of the QCD vacuum, is
widely assumed; unfortunately it is not very relevant for heavy ion collisions:
as in ultra-relativistic heavy ion collisions the space and time resolved (local)
dynamics of fundamental matter is tested, as opposed to the vacuum-to-vacuum
nature of S-matrix scattering. Therefore the local version of the anomaly equa-
tion Eq.(1.14) is of relevance for experiment and the topological content given
in Eq.(1.15) must be extracted.

Topological transitions play a role for the physics of the axial anomaly in
heavy ion collisions. Real-time transitions between field configurations with
different topological invariant are called sphalerons. It has been found that
sphaleron transitions occur far more frequently in the non-equilibrium glasma
[125], than in thermal situations [126] and thus it is an interesting challenge
for future studies to investigate the relative importance of non-topological field
configurations and manifest topological transitions for the physics of the CME.
Interestingly however, generic initial conditions for heavy ion collisions obtained
from the CGC picture provide FF̃ ∝ E · B, that is parallel color-electric and
magnetic field configurations – which are not topological. Therefore the CGC
naturally results in an important contribution to the axial anomaly of non-
topological origin. Yet again this fact is easily overlooked, when treating the
problem using equilibrium techniques, and it highlights the rich phenomemnol-
ogy related to out-of-equilibrium situations.

The Chiral Magnetic Effect It has been found that sphaleron transitions
occur far more frequently in the non-equilibrium glasma [125], than in ther-
mal situations [126] and thus it is an interesting challenge for future studies to
investigate the relative importance of non-topological field configurations and
manifest topological transitions for the physics of the CME. To explicitly under-
stand the mechanism behind the CME, let us assume a system of chiral fermions
in a background magnetic field. For chiral fermions the momentum direction
of a particle and its spin are necessarily identified. Provided the magnetic field
is strong enough, the particles tend to align their spin with or opposite to the
external field lines as is shown in the left side of Fig. (1.6). Due to the identifica-
tion of spin and momentum for chiral fermions positively charged right-handed
fermions will move along the field lines, while negatively charged right-handed
particles move in the opposite direction. Thus a current is generated along this
direction, which however is exactly canceled by the inverse mechanism of left-
handed particles. However if there exists an imbalance between left and right
handed particles, as it is created through the axial anomaly, the currents of left
and right handed particles do not cancel exactly and a net current survives.
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Figure 1.6: Schematic representation of the Chiral Magnetic Effect. Left: in the
presence of an equal number of left and right handed fermions no net polariza-
tion current is induced by magnetic fields. Center and right: Due to the axial
anomaly an imbalance of axial charge can be generated, which in turn yields an
electromagnetic current along B. Figure taken from [16]

In the hot medium created during an ultra-relativistic heavy ion collision,
local domains of non-zero FF̃ will exist. Consequently these domains will re-
sult in local violation of axial symmetry and axial charge is produced. As QCD
conserves P- and CP-globally the effect of these local domains is on average
zero: no net axial charge is produced and thus no net electromagnetic current
can be created via the CME. Nevertheless the Chiral Magnetic Effect will result
in a non-trivial behavior of correlations of electric charges as a function of the
magnetic field, since non-trivial correlations of FF̃ are induced. As the result-
ing electric charge correlations dependent on the strength of the background
magnetic field, they can be tested studying the centrality dependence of the
correlations of charged particles on an event-by-event basis.

Anomalous Transport While the Chiral Magnetic Effect is the perhaps best
known of a series of effects that related anomalous dynamics with the existence
of magnetic fields or vorticity it is not exceptional: the inverse of the CME is
the Chiral Separation Effect (CSE), which describes the creation of an axial
current in the presence of a non-zero vector density

J5 = σvB , (1.19)

and we note that similar dynamics is induced by the so called Chiral Vortical
Effect (CVE), which couples a vorticity ω = ∇×v/2, where v is the flow velocity
field. In the latter case, analogous to the Chiral Magnetic Effect, a current is
generated along a given vorticity ω in the presence of an axial density. The
chiral vortical effect is the exact equivalent of the CME with the magnetic field
replaced by ω.

The interplay between the CME and the CSE can be easily understood to
create new types of collective excitations. While for our previous discussion
we have made use of a single particle picture, the emergent anomalous trans-
port phenomena are best described by continuous currents and densities. The
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Figure 1.7: Pictographic representation of the Chiral Magnetic Wave, which
is actually a chiral density wave. In analogy with the nature of Maxwell’s
equation, an interplay of the CME and CSE in connection with anomalous
conductivities leads to the emergence of a (hydrodynamic) gap-less mode, which
is non-dissipative. Figure taken from [16]

physics of the Chiral Magnetic Wave (and the Chiral Vortical Wave) has first
been discussed within the framework of anomalous hydrodynamics: by plugging
the constituent relations of vector and axial currents, which contain anomalous
conductivities, into the (non-conservation) equations of vector and axial cur-
rents, one obtains a system of coupled equations for vector and axial charge
densities. Then it can be shown that the system contains propagating modes
(whereas in the absence of the anomalous conductivities only dissipative modes
can exist). Moreover the collective excitations are found to be gap-less in the
idealized limit of large magnetic fields and simple estimates predict a linear
dispersion relation of these chiral density waves. Analogous the Chiral Vortical
Wave is a similar excitation with the role of the magnetic field provided by
a fluid vorticity. A schematic representation of the mechanisms behind chiral
density waves is given in Fig. (1.7)

Experimental Status The current experimental status of the Chiral Mag-
netic and related effects in QCD is controversial (see [20]). The history of CME
searches began in 2009 with the STAR collaboration presenting first results
of the observation of azimuthal correlation between charged particles[28, 127].
As the CME is conjectured to induce charge separation along magnetic fields,
which are usually perpendicular to the reaction plane of the collision ΨRP , the
azimuthal distribution of particles (all particles, charged or identified) is written
in the most general form as [20]

dN

dφ
∝ 1 + 2v1 cos (φ−ΨRP ) + 2v2 cos 2(φ−ΨRP ) + · · ·+ 2a± sin(φ−ΨRP ) .

(1.20)

Here φ is the angle in the azimuthal plane and ΨRP is the angle of the reaction
plane in the lab frame. Further the vn are the conventional flow coefficients
and a+ = −a− ∝ µ5B account for the effects of anomalous transport. Obvi-
ously Eq.(1.20) is a somewhat naive expression and needs further discussion.
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As discussed above, QCD does not violate CP and P globally and thus the
event average 〈a±〉 = 0, which is in agreement with experimental results. The
signature of local CP− and P− violation in turn is a non-vanishing of the cor-
relations of the azimuthal coefficients, 〈a±a±〉 6= 0. However since 〈aaab〉 can
only be measured with difficulties, equivalent observables have been proposed

γ ≡ 〈cos (φa + φb − 2ΨRP )〉 = 〈cos ∆φa cos ∆φb〉 − 〈sin ∆φa sin ∆φb〉
= (〈v1,av1,b〉 − 〈aaab〉) +Bin −Bout ≈ −〈aaab〉+Bin −Bout , (1.21)

where Bin,out represents P−even in- and out-of-plane background contributions
and ∆φ = φ − ΨRP . The Chiral Magnetic Effect predicts the observable γ to
scale with the magnetic field, rising for more off-central collisions and moreover
it is expected to be greater than zero for both same and opposite charge corre-
lations. The effect was initially studied using Au+ Au and Cu+ Cu collisions
at 62.4 GeV and 200 GeV. While the opposite charge correlations were shown
to agree with qualitative expectations, the same charge correlations were found
to even be negative for certain energies, which was later confirmed by LHC
experiments [128].

It should be noted however that there is no prediction yet of the absolute
magnitude of the γ correlator or similar observables and their respective back-
grounds. A major source of uncertainty is background from elliptic flow from
’conventional’ two-particle correlations. Accordingly, an improved correlation
observable has been proposed, where reaction plane independent correlations
are subtracted [129]. Recently the comparison of the γ correlator in p+Pb and
Pb+Pb from the CMS experiment has put pressure on the CME interpretation,
as the centrality/number of participants dependence of γ has been shown to be
nearly identical in both systems, despite the fact the magnetic fields in p+ Pb
are much smaller.

Apart from defining appropriate observables, which necessarily are P- and
CP-even to understand phenomena with P- and CP-odd origins, large uncer-
tainties arise from the incomplete understanding of the space-time evolution
of heavy ion collisions. Fig. (1.8) serves as an illustration of the challenges
associated with the quantitative understanding of the CME, as it puts anoma-
lous and topological transport phenomena in context with the temporal stages
of a heavy ion collision which we had outlined in section 1.3.1. Here the dif-
ferent regimes are illustrated, starting from the CGC/glasma initial conditions
(a)-(b), continuing with the regime of instabilities and turbulence in a highly
occupied plasma (c) towards the kinetic (d) and finally hydrodynamic regime
(e). Classical statistical simulations [41–44, 46] are by now a widely used tool
in quantum many-body systems far from equilibrium. As such they fit well to
yield an accurate description of the early time regimes (a)-(c) depicted in Fig.
(1.8): While the gluonic dynamics is dominated by coherent and highly occu-
pied fields, the fermionic contribution to the initial state is negligible. However
as field amplitudes are of order 1/g, every process producing fermions is para-
metrically order one [52]. Thus fermion production is large and important at
early times. Nevertheless, due to the Pauli principle, fermions are at most unit-
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Figure 1.8: Schematic representation of the different stages of a heavy ion colli-
sion and the relevant regimes for the Chiral Magnetic Effect. Part of this figure
is courtesy of Soeren Schlichting, Univ. of Washington and used with generous
permission.

occupied and the gluons dominate the energy density at these stages. Quark
production from large coherent color field configurations is studied in section
4. While flux tubes naturally provide large contributions to the anomaly via
longitudinal field configurations ∝ Ea · Ba, it should be noted that topologi-
cal transitions, such as sphalerons, exceed thermal rates by far for comparable
energy densities in the far-from equilibrium glasma. Thus, the effects of the
axial anomaly are extremely relevant at early times and the medium supporting
anomalous transport is formed very quickly.

Theoretical approaches The lifetime of the magnetic field is typically very
short [130–134] and while it has been speculated that, due to an anomalous
conductivity induced quickly in the plasma, the duration of the magnetic field
might be sustained longer [135–140], it is more likely that the magnetic field dies
quickly and well before t ≈ 1 fm/c. Thus the early time regime, well captured
by classical-statistical simulations, is the most crucial one for the phenomena of
anomalous and topological transport effects.

As occupancies fall and the mean free path of quasi-particle excitations be-
comes large, the system enters a kinetic phase. Over the past years, kinetic
descriptions of fermions have been developed, drawing a connection between
the geometry of Berry phases [141], tied to the adiabatic approximation, and
that of the anomaly [142–154]. These descriptions are so far only available
for non-relativistic systems and the applicability to heavy ion collisions is under
debate. In the kinetic regime the magnetic field has most likely fallen off. Never-
theless the axial- and vector- currents that were anomalously produced at earlier
stages undergo transport and dissipation through the medium. As such they
are exposed to local domains of topological charge of typical size Q−1

s and – in
the massive case – they undergo chirality changing scatterings with each other.
This regime is subject to section 6, where we systematically develop a Lorentz
covariant chiral kinetic theory. Moreover, we point out some shortcomings of
previous approaches.
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The perhaps most studied regime of the space-time evolution of a heavy
ion collision is the strongly correlated stage in which hydrodynamics becomes
applicable. Anomalous hydrodynamics [137, 155–159] is a very efficient tool
to study the transport of axial and vector charges through the medium, but
owing to its macroscopic nature, it requires input from the underlying micro-
scopic theory. Utilizing transport coefficients as input from lattice computa-
tions, ’conventional’ hydrodynamics has proven very successful in describing
many observables such as flow. In regards to anomalous and topological prop-
erties this might prove difficult: as we hope to illustrate in this manuscript, the
nature of anomalous transport out-of-equilibrium differ drastically from ther-
mal predictions. Moreover, due to its topological nature, anomalous transport
is dissipation-free and thus signatures produced at early times might survive
the subsequent transport through the medium. Therefore it is of utmost impor-
tance to understand the initial conditions that go into anomalous hydrodynamic
simulations from the far-from-equilibrium early time perspective.



Chapter 2

Basics

2.1 Non-equilibrium Quantum Field Theory

Time evolution in the context of modern quantum field theory can be understood
by a two-fold approach – via the Hamiltonian operator formalism and by the
formulation through the Schwinger-Keldysh contour. Not surprisingly both are
fundamentally related. In this section we will give an introduction into real-time
evolution in a quantum many-body context. The basics of this field have been
long established [160–163] and can be found in many excellent textbooks [164–
167]. This compact introduction is based on the book by Kamenev [166] and
lecture notes by Berges [164, 165].

The perhaps more fundamental approach to time evolution is via Hamil-
tonian dynamics: Given a quantum many-body Hamiltonian operator Ĥ and
a set of quantization rules, elevating the classical structure of phase space to
the quantum equivalent of a many-body Hilbert space. The dynamics of an
operator is then encoded in the Heisenberg equation of motion

∂tO = i[Ĥ,O]. (2.1)

As is evident from Eq.(2.1), and given Ĥ is defined from some quantum many-
body theory, we see that for many cases time evolution in quantum field theory
is analogous to what is already familiar from quantum mechanics – the difference
being the many (most likely infinitely many) degrees of freedom. Nevertheless
Eq.(2.1) is of little use in many situations: In the Hamiltonian approach (both
in the Heisenberg and the Schrödinger picture) the dynamics of a system is
encoded in terms of abstract operators and their corresponding Hilbert-space
structures. Only in a very restricted set of situations an explicit representation
of the latter two can be found (usually only for systems with very few degrees
of freedom). An alternative approach to Eq.(2.1) is thus desirable and is given
in terms of the Schwinger-Keldysh formulation of real-time path integrals.

To illustrate the latter approach we let the system of interest be specified
by a time-dependent Hamiltonian and a density matrix (operator) ρ̂ defined in

25
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the infinite past. The density operator obeys the von-Neumann equation and
its time dependence is given by

ρ̂(t) = Ût,−∞ρ̂(−∞)Û−∞,t, (2.2)

where Ût,t′ = T exp−i
∫ t
t′
dt Ĥ is the time-ordered time evolution operator.

Accordingly the expectation value of some operator at given time is

〈O〉(t) =
Tr(Oρ̂(t))

Tr(ρ̂(t))
=

Tr(Û−∞,tO Ût,−∞ρ̂(−∞))

Tr(ρ̂(t))
. (2.3)

The rightmost trace, when read from right to left, can be understood in a
pictorial way as comprising a two-way contour, which begins with ρ̂ at t = −∞
and is the continued to the insertion of O at finite time t and then winding
back to −∞, as is shown in Fig. (2.1). In the second equality of Eq.(2.3) we
have used the cyclicity of the trace. We note that without loss of generality the

Figure 2.1: Pictographic representation of the trace of the density matrix in
terms of the Schwinger-Keldysh contour. Figure taken from [166].

contour might start at finite time t0; it furthermore can be extended to the future
arbitrarily as forward and backward contours cancel if there is no insertion of
an operator. The whole idea behind the Schwinger-Keldysh approach is to find
a path integral representation of this contour.

Before we will proceed with the construction of the latter, we will try and
connect the picture encoded in Fig. (2.1) to the ’usual’ vacuum-to-vacuum’ (in-
out) approach to time-independent problems in quantum field theory. In such a
case the initial density matrix describes either a thermal or a vacuum state and
the time dependence is trivial. If ρ̂ = |0〉〈0| and the initial vacuum is stable (i.e.
evolves unitarily), the above closed time contour can be extended to t = +∞
and the backward might be dropped. This can be understood as in this case
the in-vacuum and the out-vacuum are simply related

|0〉in = eiθ|0〉out, (2.4)

with θ being some phase that can be eliminated by proper normalization. We
will now proceed with the more interesting case of an explicit time-dependent
problem. From Eq.(2.3) such can be understood by finding a representation for

Tr
(
ÛC ρ̂0

)
, (2.5)

where we now have written ρ̂0 for the initial state density matrix at t0 and
ÛC is the evolution operator on the closed time contour. We illustrate this
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construction using the simplest example of a scalar field theory, specified by the
Hamiltonian (the exact form of this Hamiltonian matters only at the very end)

Ĥ =
π̂2

2
+

(∇φ̂)2

2
+
m2

2
φ̂2, (2.6)

and Ĥ ≡
∫
x
Ĥ. The trace in Eq.(2.5) can be represented by a complete set of

states |φ±〉 with eigenvalues φ± of the field operator acting on eigenstates at
time t0,

Tr
(
ÛC ρ̂0

)
=

∫
[dφ−]〈φ−|ÛC ρ̂0|φ−〉 =

∫
[dφ−][dφ+]〈φ−|ÛC |φ+〉〈φ+|ρ̂0|φ−〉 ,

(2.7)

where [dφ±] =
∏
x
dφ±(x). This expression contains two parts: while 〈φ+|ρ̂0|φ−〉

is a matrix representation of the initial state, 〈φ−|ÛC |φ+〉 is the forward and
backward evolution of the system on the Schwinger-Keldysh contour. With
some hindsight in notation we can write

〈φ−|ÛC |φ+〉 = 〈φ−|e−i
∫ ti
tf
Ĥdt

e−i
∫ tf
ti

Ĥdt|φ+〉

=

∫
[dφN ][dφN+1]〈φ−|e−i

∫ ti
tf
Ĥdt|φN+1〉〈φN+1|1|φN 〉〈φN |e−i

∫ tf
ti

Ĥdt|φ+〉 .
(2.8)

Eq.(2.8) illustrates that the Schwinger-Keldysh construction actually comprises
two path integrals, whose boundary conditions are identified at tf and whose
initial conditions are distributed according to the density matrix specified in
Eq.(2.7). For both legs of the contour the path integral can be constructed us-
ing standard techniques: by discretization t→ tk, δtk ≡ (tk−tk−1)/N (N →∞)
and by insertion of conjugate momentum eigenstates 1 =

∫
[dπk,k−1] |πk,k−1〉〈πk,k−1|,

the following expression is found

〈φ−|ÛC |φ+〉 =

∫ ( 2N−1∏

k=1

[dφk]
)( 2N∏

k=1
k 6=N+1

[dπk,k−1]
)
δ[φN+1 − φN+1]

× exp i

2N∑

k=2

δk

∫

x

(
πk,k−1
µ

[
φk,µ − φk−1,µ

]

δk
−H(πk,k−1, φk)

)
,

(2.9)

where it is understood that φ0 = φ− and φ2N = φ+. As π appears at most
quadratic in this expression, it might be integrated out. Taking the continuum
limit we can then write

Tr
(
ÛC ρ̂0

)
=

∫
[dφ−][dφ+]ρ[φ−, φ+]

φ+∫

φ−

Dφ exp


i
∫

C

d4xL


, (2.10)
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We have accounted for the orientation of the time integration by using the
compact notation

∫
C d

4x =
∫
C d

0x
∫
d3x, the C indicating contour integration as

in Fig. (2.1). Here

∫

C

=

tf∫

t0

dt−
t0∫

tf

dt . (2.11)

Eq.(2.10) is the central result of this section. While using a double time-contour
might have seemed odd before going through the above construction, its inter-
pretation is clear: The structure of the closed time contour accounts for time or-
dering which is equivalent with operator ordering in the Hamiltonian approach.
With this interpretation in mind, Eq.(2.10) can be made more transparent. Pro-
vided we use the notation φ(t)→ φ(t)±, with φ+ (φ−) having support only on
the upper (lower) contour, we find that four combinations of two-point functions
can be constructed, 〈φ±(x), φ±(y)〉, the propagator thus having a 2× 2 matrix
structure. By going to the Keldysh basis, we find an illustrative interpretation
of the field components and their related propagators

φ̃ = φ+ − φ− (2.12)

φ̄ =
φ+ + φ−

2
. (2.13)

Setting φ̃ = 0 in Eq.(2.10) corresponds to a saddle-point of the action, thus
φ̄ is denoted the classical and φ̃ the quantum field. This identification is the
basis for the classical-statistical approximation discussed in section 2.3. In the
Schwinger-Keldysh basis the matrix propagator is

G(x, y) =

(
F (x, y) −iGR(x, y)
−iGA 0

)
, (2.14)

where F is the statistical propagator and GA/R are the advanced/retarded
two-point functions. The spectral function is defined as ρ(x, y) = GR(x, y) −
GA(x, y). The explict expressions for the latter objects is

F (x, y) =
1

2
〈{φ̂(x), φ̂(y)}〉 − 〈φ̂(x)〉〈φ̂(y)〉 (2.15)

ρ(x, y) = i〈[φ̂(x), φ̂(y)]〉 (2.16)

GR(x, y) = i〈[φ̂(x), φ̂(y)]〉θ(x0 − y0) (2.17)

GA(x, y) = −i〈[φ̂(x), φ̂(y)]〉θ(y0 − x0) , (2.18)

and in the last two lines the theta function is understood in ’physical’ time
and not on the Schwinger-Keldysh contour. The technical details of specify-
ing fields and correlation functions on the Schwinger-Keldysh contour is not
the goal of this work and thus we refer the reader to [164, 165] for a very
comprehensive overview. In the following section 2.3 we will make use of the
closed path construction for gauge theories with fermions and we will derive
what is known as the classical-statistical or truncated-Wigner approximation to
the non-equilibrium path integral.
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2.2 Lattice Gauge Theory

Quantum field theory has proven to be extremely successful in describing many-
body systems, but comes with many caveats in its continuum formulation: reg-
ularization and renormalization are necessary but often tedious ingredients in
tackling the emerging divergences in continuum quantum field theory. Many de-
scriptions of how to regularize these divergences have been put forward, which
have shown to be successful mostly in the context of perturbation theory. Most
of these techniques follow the approach to regularize the theory by explicitly
removing divergences from single diagrammatic computations – instead of reg-
ularizing the theory itself on the basis of the path integral. One such – more
universal – approach to renormalization is the renormalization group [168] and
more specifically the function renormalization group framework (FRG) [169–
171]. This very powerful technique has shown to be highly successful and accu-
rate in describing quantum many-body systems at arbitrary coupling.

In this thesis we will be concerned with the dynamics of gauge theories,
so that any regularization procedure that we will employ must respect the de-
mands of gauge symmetry. Any regularization must obey the Ward-identities
related to the gauge symmetry under consideration. A very powerful and nat-
ural regularization description that is applicable for gauge theories are lattice
gauge theories [172–175]. As the center of this work is on real-time dynamics,
we will in the following focus on the Hamiltonian formulation of lattice gauge
theory [176], which we will outline below in detail and we will connect to the
Schwinger-Keldsyh path integral formalism as well .

The basic idea behind the Hamiltonian formulation of lattice gauge theory
in 3+1 dimensions is to discretize space on a hyper-cubic lattice of Ni lattice
sites for each dimension i = x, y, z

x = (x1, x2, x3)→ (n1a1, n
2a2, n

3a3), ni ∈ 0, . . . , Ni − 1, (2.19)

while time is left continuous (but can be discretized as well for the closed time
contour construction). The inverse distance a−1

i plays the role of a UV cutoff
of the theory, as excitations with a shorter wave length obviously cannot be
described. In the following we assume temporal-axial gauge A0 = 0, which is
beneficial in our case. Matter field are accordingly defined on the sites of the
lattice φ(x)→ φ(n) with spatial derivatives discretized accordingly

∇iφ(n) ≡ φ(n + î)− φ(n− î)

2 ai
. (2.20)

Gauge theories The lattice now allows for a very illustrative understanding
of what a gauge theory is [177]: We note that in the continuum the gauge
covariant derivative is given by

Dµφ = ∂µφ+ igAφ, (2.21)

where A can be Lie-group valued. Now let P be a finite path going from one
space point x0 to another x1. Let us require that the covariant derivative of
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the scalar field vanishes along that path (parallel transport), parametrized by
s ∈ [0, 1]

dxµ

ds
Dµφ = 0 ≡ dφ

ds
= −ig dx

µ

ds
Aφ (2.22)

The solution of this equation is given by

φ(x1) = g(P )φ(x0), g(P ) ≡ P exp

(
−ig

∫ 1

0

ds
dxi

ds
Ai

)
. (2.23)

Now imagine that the path P would start at one lattice site n0 and ends at
another n1: if we assume ai to be small, then Ai is approximately constant on
every path. Thus knowing g(P ) for every connection between two lattice sites
is equivalent to knowledge of Ai everywhere on the lattice. Thus we define the
fundamental object describing gauge fields on a lattice, which we call a gauge
link as

Ui,n ≡ exp (igaiAi(n)). (2.24)

Formulating gauge theories on a lattice using Eq.(2.24) results in defining a
regularized theory that maintains gauge co-/invariance. Accordingly we can
formulate the Hamiltonian of a SU(Nc) gauge theory on the lattice (in temporal-
axial gauge)

H =
a3

2

∑

n,i,a

Eai,nE
a
i,n +

2Nc
g2a

∑

n,i<j

(
1− 1

2Nc
tr[Uij,n + h.c.]

)
. (2.25)

Here we have defined the gauge covariant plaquette variable

Uij,n ≡ Ui,nUj,n+̂iU
†
i,n+ĵ

U†i,n , (2.26)

which in the limit of small lattice spacing a is related to the field strength tensor
Fn,ij = F an,ijt

a, where ta are the generators of SU(Nc) in the fundamental
representation,

Uij,n ≈ 1 + igaiajFn,ij +O(a4F 2) . (2.27)

Further we have introduced the conjugate momentum variable Ea
n (the electric

field). Using Eq.(2.27) and the (unimproved) definition of the magnetic field
Bi,n = Bai,nt

a

Bai,n = −1

2
εijkF jkn ≈

i

gajak
εijkTr taUjk,n (2.28)

it can be shown that in the continuum limit a → 0, a3
∑
n →

∫
d3x the well-

known result for the Hamiltonian is recovered

H =
1

2

∫
d3xTr

(
E2 + B2

)
. (2.29)
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Similarly the Hamiltonian definition of lattice gauge theory can be extended
to an action formalism. To this end, we introduce discretized time t → tk =
ntkat, where at � ai is the lattice spacing in the time direction. We emphasize
however that in practice there is no need to treat the time direction via a lattice
description; when solving time evolution equations on a computer we necessarily
need to discretize time. This is a technical requirement and should not be seen
as a fundamental property of our description. The lattice action is given as

S =
2Nc
g2

∑

n




∑

i

ai
at

(1− Tr[U0i,n + h.c.])−
∑

i<j

at
ai

(
1− 1

2Nc
Tr[Uij,n + h.c.]

)


(2.30)

where the electric field can be related to the temporal plaquette

Eai,n = − i

2gaiat
Tr taU0i,n. (2.31)

We note that while we have written all fields with spatial subscript n, in the
continuous time formulation they are to be understood as functions of t, whereas
the electric field in the case of a discretized temporal direction is defined at the
center between two time steps (tk + tk+1)/2. Similarly spatial links Ui,n are

defined at n + î/2. Magnetic fields are defined at the center of the plaquette
from which they are defined (see Eq.(2.28)). We note that the definition of the
gauge Hamiltonian Eq.(2.25) and the corresponding electric and magnetic fields
is the simplest possible. Accordingly improved gauge Hamiltonians are possible,
but shall not be discussed in this thesis for the gauge sector [178].

Lattice Fermions We now proceed to the definition of a fermion Hamiltonian
on the lattice, which is a complicated issue when compared to the gauge sector.
The naive discretization of the well known Dirac-Hamiltonian introduces spuri-
ous artificial degrees of freedom on the lattice: fermion doublers. The emergence
of so-called fermion doublers can be understood from the lattice-dispersion rela-
tion of fermions and, while it might seem as a defect of our formulation, fermion
doublers are related to profound mechanisms. In this section we give an in-
troduction into the simplest formulation of lattice fermions using both massive
Wilson fermions as well as massless lattice fermions by means of the overlap
discretization description. The following two subsections contain material that
might also be found in various textbooks [173–175]. In section 5 we present
for the first time how operator improvements for Wilson fermions can be intro-
duced in the context of real-time evolution and moreover we present the (to our
knowledge) first ever real-time simulation of chiral lattice fermions.

The appearance of lattice doublers, when defining fermions on the lattice
can be understood as follows: The naive lattice Hamiltonian (in the absence of
gauge fields) is given by

Hnaive =
a3

2

∑

x

[ψ̂†x, γ
0
(
−i /D +m

)
ψ̂x], (2.32)
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where
∑

x ≡ a3
∑

n the discretized Dirac operator is given as follows

−i /Dψ̂x =
−i
2a

∑

i

(
γi[ψ̂x+î − ψ̂x−î]

)
(2.33)

The eigenvectors and eigenfunctions to Eq.(2.32) can be easily found. As in
the continuum formulation, particle and anti-particle solutions are found which
read

φuλ,p̃(x) = up,λe
−ip·x+iωp̃ ,

φvλ,p̃(x) = vp,λe
+ip·x−iωp̃ , (2.34)

where u/v are (anti-)particle spinors that we shall leave unspecified for now.
In our notation λ = ± denotes different chirality/helicity- components. The
eigenfunctions of the Hamiltonian Eq.(2.32) are specified on the conjugate lattice
Λ̃ with

Λ̃ = {q|qi ∈ −Ni/2, . . . , Ni/2− 1}, pi ≡
2π

Ni ai
qi . (2.35)

The corresponding momentum eigenvalue to a point on the conjugate lattice is
given as

p̃ ≡ (p̃1, p̃2, p̃3), p̃i =
1

ai
sin

(
2π

qi
Ni

)
=

1

ai
sin (piai) (2.36)

which is found by plugging Eq.(2.34) into Eq.(2.32) and is depicted in Fig. (2.2).
The corresponding energy eigenvalue is

ω =

√
m2 +

∑

i

p̃2
i . (2.37)

The continuum limit of Eq.(2.36) is found for a→ 0. As can be seen from Fig.
(2.2) this limit is obtained not only at pi = 0, but also at pi = ±π/ai, the latter
being nonphysical: the naive discretization of the Dirac Hamiltonian produces
2d − 1 unphysical degrees of freedom called doublers (where d is the spatial
dimension)1 Lattice doublers have been found in earliest attempts at discretizing
fermionic actions and to this end many possible approaches have been proposed.
In the following section we follow an idea due to Wilson [172] to remove fermion
doubler from the spectrum. We will modify the dispersion relation of lattice
fermions by introduction of irrelevant operators into the Hamiltonian Eq.(2.32).
These will cause the fermion doublers to be very massive, so that they cannot
be excited. This modification comes at the price of being unable to define chiral
lattice fermions. This ’trade-off’ has been understood as being part of a very
general theorem due to [179–181]. In lattice simulation of fermions one can only
achieve two off the following properties, but never all three at the same time:

1We note that in principle temporal doublers might be excited as well, if time is discretized
in order to solve the dynamics of a system specified by Eq.(2.32) numerically. In practice this
problem is of no relevance, provided the time-discretization is fine enough.
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1. chiral symmetry

2. anomalies

3. locality

The appearance of the anomaly in this list is very intriguing and a crucial
component of this thesis, which discuss in more detail in section 5. The above
list can understood as follows: Lattice regularization is regularization on the
basis of the path integral and not on the basis a-posteriori regularization of
emerging diagrams and n-point functions, thus it is a ’perfect’ regularization in
the sense that it cannot have anomalies. We know however that anomalies are
physical and hence in a naive lattice discretization anomalies must be canceled
by additional degrees of freedom. This role is played by the doublers as has
been proven by [179, 182]. Wilson fermions break chirality explicitly and the
axial anomaly is recovered from the regulator terms in the continuum limit. We
will discuss them in the following section 2.2.1. A further, perhaps more exotic
approach, is to give up locality. In this case we can have a chiral theory with
anomalies, but the theory becomes non-local. In section 2.2.2 we will discuss
the concept of so-called overlap-fermions as an example of such a non-local
formulation of lattice fermions.

Figure 2.2: Plot of the fermion dispersion relation versus the Brioullin zone.
Figure taken from [173].

2.2.1 Wilson Fermions

Wilson fermions [172] are as simple attempt to overcome the fermion doubling
problem. The Wilson-Dirac Hamiltonian, including interactions with gauge
fields, is given by

HW =
a3

2

∑

x

[ψ̂†x, γ
0
(
−i /DW +m

)
ψ̂x] , (2.38)



34 CHAPTER 2. BASICS

where the action of the Wilson-Dirac operator simply is

−i /DW ψ̂x =
1

2

∑

i

[(
−iγi − rW

)
Ux,iψ̂x+î + 2rwψ̂x +

(
iγi − rW

)
Ux,−iψ̂x−î

]

(2.39)

where Ux,−i ≡ U†x−î,i. The fermion operators obey the usual anti-commutation
relations

{ψ̂x,a, ψ̂
†
y,b} = V δx,yδa,b , (2.40)

where a, b stand for both spinor and any other internal degrees of freedom and
V =

∏
iNiai is the lattice volume. Here Ux,i stand for the link operators defined

above. The dispersion relation of Wilson fermions is now given as

ω =

√
m̃2

q +
∑

i

p̃2
i , (2.41)

where p̃i is given in Eq.(2.36) and

m̃2
q = m2 + rw

∑

i

2

ai
sin2

(
π
qi
Ni

)
. (2.42)

As can be understood from Fig. (2.2) the degeneracy between the contin-
uum modes and the doublers is lifted by the momentum dependent mass term
Eq.(2.42). The fermion doublers are supressed from the spectrum of the theory.
In section 4 we discuss the role of Wilson fermions in the realization of the axial
anomaly explicitly. In section 5 we introduce operator improvements to system-
atically remove lattice discretization errors and to improve their convergence
towards the continuum limit.

2.2.2 Overlap Fermions

In this section we give a short introduction into the concept of overlap fermions
[183–185] in a Hamiltonian formulation [186]. This has been worked out in detail
in [187], which is presented in section 5 of this thesis. Overlap fermions are
an explicit realization of domain-wall fermions, which have been introduced by
Kaplan [188]. The idea behind domain-wall fermions is to introduce an artificial
fifth dimension with a background potential (a mass term) for the fermions that
is given by a domain wall at the origin of that dimension. Rather than discussing
the details of this idea, which are nicely illustrated in [189], we here focus on
the explicit realization on the lattice. The Hamiltonian operator for massless
overlap fermions is

Hov =
1

2

∑

x

[ψ̂†x, γ
0(−i /Dov)ψ̂x] , (2.43)
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where the 3D spatial Dirac operator is now given as

−i /Dov = M

(
I +

γ0HW (M)√
H2
W (M)

)
(2.44)

where HW (M) is the original Wilson Hamiltonian operator kernel defined in
section 2.2.1, but with the mass m being replaced by the negative of the param-
eter M , which represents the domain wall height that localizes chiral fermions
on 4D Euclidean spacetime, starting from a 5D domain-wall formalism [188].

HW = γ0(−i /DW −M) (2.45)

For all practical purposes we can treat M as a free parameter, for which we
need to find an optimal value to guarantee best convergence to the continuum.
The domain wall height takes values M ∈ (0, 2] in units of the inverse lattice
spacing. The overlap Dirac operator for massless quarks in three spatial dimen-
sions fulfill the lattice chirality condition, which is given by the Ginsparg-Wilson
relation [190],

{ /Dov, γ5} = −i /Dovγ5 /Dov . (2.46)

In addition the overlap Dirac operator is γ0-Hermitian and thus satisfies

{ /Dov, γ0} = −i /Dovγ0 /Dov . (2.47)

Accordingly, we define the axial charge operator as

Q5 =
1

2

∑

x

[
ψ̂†x, γ5

(
1− −i /Dov

2

)
ψ̂

]
, (2.48)

and it can be shown (see [187] and references therein) that [H,Q5] = 0. There-
fore we can write

dQ5

dt
=
∂Q5

∂t
. (2.49)

The time dependence of the axial density operator Q5 is thus solely due to
the explicit time evolution of the field operators contained in Eq.(2.48). In the
overlap formulation axial charge is generated in exactly the same way as in the
continuum. More general, in the overlap formulation we can define axial- and
vector-currents by the use of chiral projectors. Left- and right-handed fermion
fields can be defined in terms of the lattice projection operators P̂± as

ψ̂R/L =
1

2
(I± γ̂5)ψ̂ ≡ P̂±ψ̂ , γ̂5 = γ5(1 + i /Dov) . (2.50)

In contrast, projection operators for the conjugate fields are defined as

ψ̂†R/L = ψ̂†
1

2
(1± γ5) ≡ ψ̂†P± (2.51)
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Currents might be defined from the variation of the Hamiltonian, or in analogy
to the continuum by constructing these quantities in terms of the physical left
and right-handed fermion modes [191, 192]. Based on this approach, the vector
current for overlap fermions in real-time is constructed as

jµv =
1

2
〈[ψ̂†R, γ0γ

µψ̂R]〉+
1

2
〈[ψ̂†L, γ0γ

µψ̂L]〉

=
1

2
〈[ψ̂†, γ0γ

µ
(
1− −i /D

s
ov

2

)
ψ̂]〉; (2.52)

similarly the axial current is

jµa =
1

2
〈[ψ̂†R, γ0γ

µψ̂R]〉 − 1

2
〈[ψ̂†L, γ0γ

µψ̂L]〉

=
1

2
〈[ψ̂†, γ0γ

µγ5

(
1− −i /D

s
ov

2

)
ψ̂]〉 . (2.53)

We note that the Hamiltonian formulation of overlap fermions in Minkowskian
metric is non-trivial and therefore we present some details in appendix B.3.
Furthermore we give an illustration of the numerical implementation of overlap
fermions there. We remark that our results for the Hamiltonian formulation
agree with [186]. As part of section 5 we will extend our discussion of Wilson
and overlap fermions by including operator improvements.

2.3 The classical statistical approximation

In this section we introduce the classcial-statistical approximation [48, 51, 52,
119, 193–197] used in far-from-equilibrium situations of various quantum many-
body systems. The motivation for this approach is the following: often quantum-
many-body systems behave quasi-classical if systems are highly occupied or
dominated by large coherent fields, such that the correspondence principle be-
comes applicable. In concert with our general dual approach to non-equilibrium
physics via both the Hamiltonian and the Schwinger-Keldysh construction, we
will here give a short but hopefully instructive introduction into the subject and
refer the reader to [196] for more details.

The Schwinger-Keldysh constructions allows to formulate the classical-statis-
tical limit explicitly by means of a saddle-point expansion of the quantum fields
around the classical fields defined in Eq.(2.12). To begin with the generating
functional of non-equilibrium correlation functions is given as

Z =

∫
DA

∫
Dψ̄Dψ ρ(t0) exp (iSG + iSF ) , (2.54)

where the field space measure is defined on the Schwinger-Keldysh contour as
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outlined in section 2.1. The different parts of the action are given by

SG = −1

4

∫

C

d4xFµν(x)Fµν(x)

SF =

∫

C

d4x ψ̄(x) (iγµ∂µ − eγµAµ −m)ψ(x) (2.55)

and for simplicity we have restricted ourselves to Abelian gauge fields. We make
the assumption that the initial density matrix ρ is separable into a fermionic and
bosonic part and is at most quadratic in the fermion fields. The corresponding
expression then reads

ρ(t0) = exp

(
−
∫
d3xd3y ψ̄(x)κ−1(x,y)ψ(y)

)
ρ(A(t0)) , (2.56)

where the kernel κ−1 specifies the initial Gaussian state of the fermions. For all
practical purposes we need not to specify what κ−1 is since, as we shall show,
we will find a much simpler and more intuitive form for the fermion real time
evolution and instead of defining the initial density matrix, we will set-up initial
conditions for the fermionic one- and two-point correlations. In the following
we will omit writing κ−1 explicitly therefore. We will now proceed to derive
the classical statistical limit and to this end, we express the action defined in
Eq.(2.55) in the Keldysh-basis for the gauge fields

A+
µ (x) = Āµ(x) +

Ãµ(x)

2

A−µ (x) = Āµ(x)− Ãµ(x)

2
(2.57)

In this basis the gauge part of the action can be written as

SG =

∫

C+

d4x Ãν(x)∂µF
µν [Ā(x)], (2.58)

which is linear in Ã. In the case of non-Abelian gauge theories three- (∝ ÃĀĀ,
∝ ÃÃÃ) and four-point vertices (∝ ÃĀĀĀ, ∝ ÃÃÃĀ) will arise as well (c.f.
[196]). The fermionic part of the action is treated as follows: by performing the
Grassmanian integration the one-loop fermionic action is obtained

∫
Dψ̄Dψ exp


i
∫

C

d4x ψ̄[iγµ∂µ − eγµAµ −m]ψ


 = det i∆−1 , (2.59)

where ∆−1 ≡ iγµ∂µ − eγµAµ −m. From this the fermionic effective action is
defined as

det i∆−1 = exp tr log (i∆−1). (2.60)
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By means of the classical-statistical the effective action defined by Eq.(2.59) is
expanded to linear order in the quantum field Ã. To this end we define

∆>(x, y) = 〈ψ(x)ψ̄(y)〉Ā
∆<(x, y) = −〈ψ̄(y)ψ(x)〉Ā (2.61)

and 〈. . . 〉Ā denotes the operator expectation value in the background of the
classical field Ā. Thus the fermionic effective action in the classical statistical
limit is written as

tr log (i∆) = −i
∫

C+

d4x
[
∆>(x, x) + ∆<(x, x)

] /̃A
2
≡ −i

∫

C+

d4x j̄µÃµ. (2.62)

From this expression we can identify the fermionic current and define it in terms
of the statistical propagator F

j̄µ(x) = e tr (γµF (x, x)) , F (x, y) ≡= 〈[ψ(x), ψ̄(y)]〉Ā (2.63)

The resulting Schwinger-Keldysh path integral is given as

Z =

∫
DĀDÃ ρ(A) exp i

∫

C+

d4x Ãν(x)
(
∂µF

µν [Ā(x)]− j̄µ(x)
)
, (2.64)

and we note that the path integral integration can be split into a part at t = t0,
which comprises the initial conditions, and a part for t > t0: DÃ = DÃ0DÃ′.
We further write the initial density matrix as a Wigner transform, where E0 is
the conjugate field at t0 (c.f. [196]) and ρW (Ā0,Π0) is the initial phase space
density

ρ(A) =

∫
dΠ0 ρW (Ā0, E0) exp

(
i

∫
d3xEµ0 (x)A0,µ(x)

)
. (2.65)

The integral over DÃ0 then extracts ρW and the integral over DÃ′ results in a
functional delta function

Z =

∫
DĀ0DĀ′

∫
DE0 ρW (Ā0, E0) δ

(
∂µF

µν [Ā′]− j̄ν
)

(2.66)

Eq.(2.66) is the central result of this section, it illustrates the meaning of the
classical-statistical approximation nicely: The approximation amounts to solv-
ing the classical equations of motions for the c-number fields Ā, whose initial
conditions are sampled from an arbitrary phase-space distribution ρW . Ob-
servables are then calculated as ensemble averages with respect to these initial
conditions. We further note that the current specified in Eq.(2.63) is obtained
by inverting ∆−1. This is equivalent to solving

(
i/∂ − e /A−m

)
F (x, y) = 0 . (2.67)
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The path integral formulation of gauge theories requires a careful treatment of
gauge symmetry. Aiming at describing time dependent problems, we fix the
axial-temporal gauge A0 = 0. Variation of the gauge action Eq.(2.55) wrt. A0

yields the well known (Abelian) Gauss constraint

∂iE
i = −j̄0 , (2.68)

where j̄0 is the charge density and E = ∂tA is the electric field. Eq.(2.68) must
be imposed on the initial conditions, specified by the initial density matrix and is
guaranteed to be satisfied at any later time, as the equations of motion conserve
the constraint.

We further note that the same limit could have been obtained in the Hamil-
tonian perspective by simply replacing the operators in the Heisenberg equation
of motion by their expectation values. For comparison we will outline this ap-
proach as well – this time however in lattice formulation and for SU(Nc) gauge
fields for completeness. The Hamiltonian is defined as H = Hf + HG, with
HG defined in Eq.(2.25) and Hf defined in Eq.(2.38), that is we outline the
procedure for fermions using Wilson discretization. Furthermore we have the
commutator rules for the field operators

[Eaj,n, A
b
i,m] = iδijδnmδ

ab 1

a1a2a3
,

[Eaj,n, E
b
i,m] = [Aaj,n, A

b
i,m] = 0

[Eaj,n, Ui,m] = − gai
a1a2a3

δijδnmt
aUi,m

[Eaj,n, U
†
i,m] =

gai
a1a2a3

δijδnmU
†
i,mt

a (2.69)

Operator time evolution is then due to the Heisenberg equations Eq.(2.1), the
result of which is

dEai,n
dt

=
2

ga3

∑

j 6=i

Im tr (ta[Uij,n +Wij,n]) +
g

2
Re tr

(
[ψn+1, ψ̄n](γi − ir)ta

)

(2.70)

where Wij,n = Ui,nU
†
j,n−ĵ+îU

†
n−ĵUj,n−ĵ and Uij,n is the plaquette defined in

Eq.(2.26). The time evolution of the links is given by

dUi,n
dt

= igait
aUi,nE

a
i,n . (2.71)

In accordance with the path integral approach outlined above, the Gauss law
must be imposed for the initial conditions of the lattice gauge field evolution.
In the Hamiltonian formulation there is no variational principle that might give
the equivalent of Eq.(2.68). The Gauss constraint should rather be understood
as an operator valued identity projecting out the physical part of the Hilbert



40 CHAPTER 2. BASICS

space. In lattice formulation the non-Abelian Gauss constraint reads

∑

i

[
tr ((taU0i,n)− tr

(
taU†

i,n−îU0j,n−îUi,n−î

)]
= −g

2
Re tr

(
[ψ̂n,

ˆ̄ψn]γ0ta
)

(2.72)

Eq.(2.72) commutes with the Hamiltonian and is thus conserved.
It should be noted that Eq.(2.70) and Eq.(2.71) are operator valued evo-

lution equations. The classical statistical approximation now consists of the
assumption that the gauge field operators can be replaced by their expectation
value. In a slight abuse of notation we will use the same symbol for both the
expectation value as well as the operator itself, as the difference should always
be clear from the context. Time evolution in the fermion sector is obtained in
a similar fashion. The canonical anti-commutation relations are given by

{ψ†,an , ψbm} =
1

ad
δnmδabI , (2.73)

where I is a unit matrix in spinor space. Therefore the time evolution of the
fermion field operator is given by

dψan
dt

= −i
(
m+ r

∑

i

1

ai

)
γ0ψan + i

∑

i,b

γ0

2ai

(
[iγi + r]Uabi,nψ

b − [iγi − r]Uab−i,nψb
)
.

(2.74)

A crucial difference to the treatment of the gauge degrees of freedom is that a
classical limit of Eq.(2.74) does not exist. Fermions are always ’quantum’ and
no correspondence principle can ever applied. Nevertheless despite being an
operator equation, Eq.(2.74) can be solved on a computer by means of a mode
function decomposition. Owing to the fact that the fermion action is quadratic,
the Dirac equation is linear. In that case we can decompose

ψn(t) =
1

V

∑

q,λ

(
bq,λφ

u
q,λ(x, t) + d†q,λφ

v
q,λ(x, t)

)
(2.75)

and by plugging Eq.(2.75) into Eq.(2.74) we see that we actually need to evolve
the c-numbered modefunctions φu/v in time. The creation and annihilation
operators b and d are time independent and their one and two-point functions
might be specified at initial time

〈b†q,λbq′,λ′〉 = V nuq,λ δq,q′δλ,λ′

〈d†q,λdq′,λ′〉 = V nvq,λ δq,q′δλ,λ′ , (2.76)

where nu,v are the occupation numbers for particles/antiparticles. Using the
canonical anti-commutation relations, that are specified in Eq.(2.73), any fermionic
observable can be constructed. Further details and an explicit choice of initial
conditions for the modefunctions are found in the latter section, too.



Chapter 3

Anomaly-induced
dynamical refringence in
strong-field QED

The following section is based on the manuscript ’Anomaly-induced dynamical
refringence in strong-field QED ’ (N.M., F. Hebenstreit, J. Berges), published in
Phys. Rev. Lett. 117 (2016) no.6, 061601 [76].

In this section we investigate the possible effects of the Abelian axial anomaly,
which might arise in future strong-field laser beam experiments beyond the
Schwinger limit. At first sight the research direction presented in this section
does not seem to match the general focus of this work, but closer examination
highlights the fact that the dynamics of QED beyond the Schwinger limit and
ultra-relativistic heavy ion collisions are directly related: both systems repre-
sent extreme far-from-equilibrium systems, which are described by Abelian and
non-Abelian gauge theories. Moreover the early time dynamics of heavy ion
collisions is dominated by large coherent gauge fields and over-occupied non-
Abelian plasmas, as are QED laser fields.

The most important connection between the two research areas however is
the fact that strong-field laser experiments offer the unique possibility to study
the real-time dynamics of the chiral anomaly directly. Thereby the experimental
background is negligible. In this section we will discuss the basics of the real-time
dynamics of anomalous effects in QED and and we will show that the conven-
tional view on Abelian anomalies from vacuum and equilibrium perspectives
must be drastically changed in far-from-equilibrium situations: More specifi-
cally we will outline how anomalous effects in the non-linear, out-of-equilibrium
regime of QED manifests itself in novel and directly observable effects in laser
experiments.

41
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Figure 3.1: An overview on the current status of strong field laser physics.
Left: Strong field laser experiments probe a yet unexplored regime of QED,
opening new perspectives onto particle physics. Right: The time-line of the
developement of laser technology. Provided previous groth rates hold, the non-
linear regime of QED is reached in the near future. Figures taken from [65, 198].

3.1 Introduction

The quantum nature of the interactions of light with matter, described by the
theory of Quantum Electrodynamics (QED) plays an important role in the
regime of ultra-high intensity laser experiments. One of the most important
processes, which has been predicted a long time ago, is electron-positron pair
production from the QED vacuum in the presence of very strong electric fields
beyond the famous Schwinger limit of roughly 1016 V/cm [67–69]. While particle
particle pair production has been observed in the high energy regime of QED,
tested at particle colliders, the non-linear regime of QED at high intensity is
uncharted territory so far. Nevertheless the remarkable progress that has been
achieved in the second half of the last century in laser-technology brings the
realization of such non-perturbative dynamical phenomena into reach [65, 66,
198, 199]. Research facilties that are presently being constructed, such as ELI
[200], as well as future projects allow for the possibility of performing particle
physics using laser beams in the near future, as is compactly summarized in
Fig. (3.1). This has triggered significant interest [70–75].

Remarkably, one of the centerpiecs of the intriguing transition from classical
to quantum physics –the breaking of classical symmetries by radiative quantum
corrections or so-called quantum anomalies – has not been in the focus of laser
physics research yet. This is mainly due to two reasons: first, most of our under-
standing of the Abelian chiral anomaly originates from thermal equilibrium or
vacuum physics, where no net anomalous effects can occur because of the triv-
ial vacuum structure of Abelian gauge theories. Morevover the computational
effort to investigate the real-time dynamics of anomalies in QED is tremendous.
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In QED, the Adler-Bell-Jackiw axial anomaly [6, 7] involves the presence of a
magnetic field and the relevant evolution of the quantum many-body system re-
quires a full 3+1 dimensional treatment. Out of equilibrium conditions however
can have dramatic consequences on the dynamics of the axial anomaly. Under
suitable initial conditions net effects of the axial anomaly can be observed by
measuring the polarization of electromagnetic fields in colliding laser-beams.

In this section we demonstrate that for large-electromagnetic fields the in-
terplay between the Schwinger pair production and the Abelian anomaly yields
a highly absorbtive medium, whose anomalous refrective properties are dynam-
ically induced by the produced particles. By studing the non-linear interactions
of the dynamically produced particles with the electromagnetic fields, we are
able to predict macroscopically observable consequences, such as plasma oscil-
lations and an anomalous rotation of the direction of the electric fields, which
can be directly connected to the underlying quantum phenomema. We will
show that these effects are caused by the Abelian version of the Chiral Mag-
netic Effect (CME), which relates the creation of anomalous electric currents
and electric transport phenomena with anomalous particle production via the
anomaly. Contrary to previous discussions of dispersive phenomena in QED,
such as vacuum birefringence [201, 202], we emphasize that the effects discussed
here are fundamentally different. Using classical-statistical lattice simulation
techniques, our results are obtained from an ab-initio approach. In this non-
perturbative ansatz the quantum nature of fermions is taken into account, while
the bosonic gauge dynamics is accurately mapped onto the evolution of a sta-
tistical ensemble by making use of the correspondence principle.

Anomalies cause certain symmetries and related charges that have been con-
served on the level of the classical theory to be no longer conserved, when
quantum effects are being taken into account. In QED, the effects of the axial
anomaly are the non-conservation of the axial-vector current jµ5 = 〈ψ̄γµγ5ψ〉 in-
volving the different chiral components of the Dirac gamma matrices γµ, where
µ = 0, . . . , 3 and a fifth matrix γ5 = iγ0γ1γ2γ3, which anti-commutes with all
other matrices and whose existence is specific to even dimensions. In QED the
four-divergence of the axial-vector current is given by

∂µj
µ
5 = 2m〈 ¯ψiγ5ψ〉 −

e2

8π2
Fµν F̃

µν , (3.1)

which consist of two parts: the contribution proportial to the fermion mass m
can be understood from the mixing of different chiral components, as chirality
for a massive particle is a Lorentz-frame dependent quantity and not neces-
sarily conserved. The corresponding axial charge is given as Q5 ≡

∫
d3x j0

5 =∫
d3x 〈ψ̄γ0γ5ψ〉. We note however that – in the ficticious absence of the anomaly

– and for suitable initial conditions chirality might be conserved in a given
frame, even for a massive particle (but not in every frame)1. The second term

1This is equivalent to the pseudoscalar density being zero. We have tested such con-
figurations explicitly: in a frame where electric and magnetic fields are homogenous and
perpendicular, no axial charge is created at later time when one starts with the fermionic
vaccum.
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in Eq.(3.1) is the anomalous contribution to the axial non-conservation, which is
given in terms of the electromagnetic field strength tensor Fµν = ∂µAν − ∂νAµ
and its dual F̃µν ≡ 1

2ε
µνρσFρσ. By introducing the Chern-Simmons current

Kµ = 4εµνρσAν∂ρAσ, the anomalous term in Eq.(3.1) can be written as a total
divergence

∂µK
µ = Fµν F̃

µν = 4 E ·B . (3.2)

This fact emphasizes the importance of boundary conditions in the understand-
ing of anomalies and their relation to the topology of gauge fields. As QED
is topologically trivial, the space-time integral of Eq.(3.2) with boundaries at
space-time infinity is zero2 – unlike the case of non-Abelian theories (compare
to Eq.(1.15)). In contrast, far-from-equilibrium situations in QED can have
dramatic consequences for the effects of the anomaly. More specifically we
demonstrate that Schwinger pair production in strong-field QED leads to non-
equilibrium states for which the axial anomaly results in a very significant axial
charge density with intriguing obersvable consequences. This is in accordance
with our observations in section 2.1: the conventional ’in-out’ picture of quan-
tum field theory and its conventional path integral construction, employed for
example in S-matrix experiments, breaks down in far-from-equilibrium situa-
tions: Schwinger pair production is a prime example of a situation requiring
generalization on the Schwinger-Keldysh contour, as the intial vacuum is not
necessarily stable against particle production and time-evolution must be seen
from the ’in-in’ perspective.

3.2 Non-equilibrium strong-field QED

Electron-positron pair production is a challenging non-perturbative and non-
equilibrium phenomenon, which is induced by large coherent electric fields present
at initial time. In this section we consider uniform electric and magnetic fields,
as this is the most realistic situation on length scales relevant in laser-physics
experiments. We will work in g = diag(+,−,−,−)-metric. By means of the
Schwinger-effect, matter is dynamically produced from the large coherent elec-
tric fields. Once produced, it will backreact on the applied fields, such that
the total energy is conserved. Such a situation is not time translation invari-
ant as eventually energy is transferred from the gauge sector to the fermion
sector. The net axial charge produced at some later time tf > ti is given by
Q(tf )−Q(ti), where typically neither ti or tf might be taken to the remote past
or infinite future. This situation can be accurately simulated using the classical-
statistical approximation and the Schwinger-Keldysh path integral formulation
of quantum many body physics.

For our studies we choose initial conditions, which correspond to the fermionic
vacuum, i.e. vanishing axial- and vector-currents, in the presence of a uniform

2This is understood as the finiteness of energy (the action) requires the field strength to
be zero at spatial (space-time) infinity
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magnetic field in the z-direction B0 = B0ez. To this end we diagonalize the
fermionic Hamiltonian in this background at intial time ti = 0. We can ne-
glect initial-state fluctuations in the gauge field sector, as previous studies have
shown that they play a minor role for the dynamics of the system3 Rather than
starting with a constant electric field E0 = E0eφ, where eφ is a unit vector in
the y-z plane with angle φ = (ez, eφ), the initial condition for the electric field
is given by an initial pulse E0 = E0(t)eφ, where the time profile is given by

E0(t) = E0sech2(ω(t− t0)) . (3.3)

This shape of initial condition is not drastically different to the case of a con-
stant electric field, but allows comparision to earlier numerical studies without
magnetic fields [19,37]. Furthermore the pulse Eq.(3.3) leads to very fast parti-
cle production, which reduces the numerical cost of our simulations and renders
our numerical simulations possible. In order to resolve low momentum fermion
and axial charge production, a large lattice volume V =

∏3
i1
aiNi is required in

general. On the other hand the ultraviolet properties are probed during the time
evolution, as the produced particle-anti-particle pairs are quickly accelerated.
To this end we require a small lattice spacings ai. Both those requirements
present a serious challenge which we in practice could only overcome by the
use of UV-improved operator definitions on moderatley sized lattices. As these
techniques were developed in the context of the work presented in section 5, we
will omit a detailed discussion at present and refer to the corresponding chapter.
We perform our simulations on a 20×20×40 grid with lattice spacings in units
of the particle mass max = may = 0.08, maz = 0.06, which we have optimzed
to suit the initial anisotropy of the system and to minimize lattice artifacts.
As the system stays translation invariant in the z−direction at all times, we
perform a Fourier transformation with respect to this coordinate to reduce the
cost. The presented results are for initial conditions with E0 = 20Ec, ω = 1.2m
and mt0 = 2.5 with an initial angle φ(0) = 25◦ in the presence of a magnetic
field B0 = 4.9Bc, where

Ec =
m2

e
≈ 1.3× 1016 V/m,

Bc =
m2

e
≈ 4.4× 1013 G, (3.4)

and we followed particle physics convetions by setting ~ = c = 1. The coupling
e is chosen to approximately match the electromagnetic coupling αEM . Typical
field configuration at initial times are depicted in Fig. (3.2). As has been argued
in [203] these kind of configurations with non-parallel electric and magnetic fields
cause the Abelian version of the Chiral Magnetic Effect.

In section 1.3.2 we have discussed the dynamics of the chiral magnetic effects
in QCD. Similarly in QED electromagnetic field configuration with E ·B create

3This is very much unlike in the case of QCD, where gauge field fluctuations are known
to trigger instabilities. This assumption however must be carefully studied in future work,
as the transfer between fermionic and magnetic helicity via the anomaly might trigger novel
types of instable behaviour far from equilibrium.
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Figure 3.2: Typical initial condition leading to the Abelian version of the Chiral
Magnetic Effect [203]. In practice we choose our coordinate systems such that
the magnetic field points along the z-axis, while the electric field is rotated in
the y − z-plane.

non-zero axial charge densities. At the same time the magnetic field induces
a polarization in the produced fermionic matter and thus a contribution to
the electric current. In the lowest-Landau-level approximation, wherer B is
strong enough such that the dynamically produced matter is fully polarized the
emergent current equals (c.f. [203])

J = |e|N5
B

|B| = −2|e|Q B

|B| , (3.5)

where Q is the time integral of the total helicity of the gauge fields Q ∝∫
d4xE ·B. From Eq.(3.5) we directly see the anomalous transport coefficients

(the conductivity) that comprise the response of the electric current to an ex-
ternal magnetic field. We note that for the case of QCD this conductivity is
unknown and the relation between axial charge generation (which in this case is
due to non-Abelian gauge fields) and the resulting anomalous currents is more
complicated. QED offers a very simple testing ground for the study of the Chiral
Magnetic Effect. In practice we utilize the non-equilibrium evolution equations,
that have been outlined in section 2.3. Implementing constant Abelian magnetic
fields on the lattice however requires some additional effort, as we will illustrate
in the following section, before presenting the results of our simulations.

3.3 Abelian magnetic fields on the lattice

We have chosen to implement a homogenous magnetic field ~B = Bẑ along the z-
direction of the lattice. Since on a periodic lattice the magnetic flux qa2

sBNxNy
is quantized in units of 2π [204], a spatially homogenous magnetic field cannot
be varied continuously. Nevertheless our gauge fields will be fully dynamical in
the following. We work in temporal-axial gauge, U=1 and we choose the U(1)
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components of the gauge links according to [205],

U
U(1)
n,1 =

{
eia

2
sqBN1n2 , n1 = N1 − 1

1 , otherwise
(3.6)

U
U(1)
n,2 = e−ia

2
sqBn1 (3.7)

with Un,3 = 1 and a2
sqB = 2πmB

N1N2
we can then realize different magnetic field

strength by varying the magnetic flux quantum number mB .
The implementation of magnetic fields on the lattice via Eq.(5.36) seems

confusing at first sight and therefore we will outline the construction this ex-
pression in detail. Naively, the gauge potential describing a magnetic field along
the z-direction might be chosen

Aµ = (0, 0,−B0x, 0) , . (3.8)

but in fact will prove more complicated. This can be understood as follows:
imagine a testparticle traveling the x1 − x2 plane from the origin (0, 0) to the
opposite corner (L1, L2) = (N1a1, N2a2) of the lattice on two different paths

C1 : (0, 0) → (L1, 0) → (L1, L2) (3.9)

C2 : (0, 0) → (0, L2) → (L1, L2). (3.10)

The phases picked up along these curves are given by the corresponding Wilson
lines

Φ(C) = exp


ie

∫

C

Aµ(x) dxµ


, (3.11)

from which it follows that the difference in phase along these two lines is

∆Φ = exp(ieB0L1L2). (3.12)

As the wavefunction must be single valued, the vanishing of the phase difference
Eq.(3.12) yields a quantization condition for the magnetic field:

eB0 =
2πmB

L1L2
mB ∈ Z.. (3.13)

The magnetic flux is quantized due to the non-trivial boundary conditions of
the torus. We define the unit flux through per plaquette as φ = eB0a

2
s =

2πmB/N1N2. Consequently a naive generalization of Eq.(3.8) would be

Un,2 = exp(ia2
seB0n1) (3.14)

Un,1 = Un,3 = 1, (3.15)

with eB0 quantized as in Eq.(3.13). We note that mB is periodic with period
[0, N1N2]. In the limit of small lattice spacings we recover the continuum result,
provided mB is much smaller than N1N2.

Un,2 → 1 + i2π
n1mB

N1N2
+ . . . . (3.16)
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In this limit with n1 ≤ N1 the next term in the series is of order 1/N2 and
vanishes as N →∞. In [205] an upper bound was given by mB ∈ [0, N1N2/4],
which restricts the range of magnetic fields that can be simulated.
Remebering the discussion about boundary conditions on the lattice, which is
homotopic to a torus, we encounter a contradiction, as the gauge links defined
in Eq.(3.15) do not fullfill the required periodicty,

Un+N11̂,2
= exp(ia2

seB0N1)Un,2. (3.17)

This nontrivial phase, picked up winding once around the torus in the 1−direction
can be easily compensated by a corresponding transition function at the overlap
of two coordinate sets (i.e. between two lattice copies). Using the gauge free-
dom we require a transformation for all gauge fields living on the next lattice
copy in the 1-direction, which has the following effect:

Un,2 → U ′n,2 = Un,2 exp(−ia2
seB0N1). (3.18)

As can be easily seen, this is accomplished by

Un+N12̂,2
→ U ′n,2 = GnUn+N12̂,2

G−1

n+2̂
(3.19)

with G(x) = exp(ia2
seB0N1n2). This gauge transformation has a nontrivial

consequence for the gauge links in the 1-direction as well. We note that the
links on the very last slice at n1 = N1 − 1 transform as

Un,1
∣∣
n1=N1−1

→ exp(−ia2
seB0N1n2) (3.20)

It is straightforward to check that the links with twisted boundary conditions de-
fined here, reproduce the correct periodicity. Our findings result in the Abelian
gauge links specified as in Eq.(5.36).

3.4 Anomaly induced dynamical refringence

Starting from the initial conditions specified in section 3.2, we perform real-time
lattice simulations according to the description given in section 2 for QED. As
the field strength that we are simulating, exceeds the critical field strength Ec,
virtual electron-positron pairs are separated and become on-shell particles [67–
69]. Although magnetic fields cannot create particles directly, they do have an
important influence on the dispersion relation of fermions, as they introduce
discrete energy levels (Landau-quantization), as has already been pointed out
for collinear electric and magnetic fields with φ = ∠(E,B) = 0 [206–209]. Due
to the chiral magnetic effect, an anomalous electric current is produced along
the magnetic field. The latter is a polarization current and, as explained in the
introduction, is due to spin orientation. The case of parallel fields is special since
the induced current from produced particles always parallels the applied electric
field, as is the case also for E and B perpendicular to each other (cf. Fig. 3.3). In
the latter case this is due to the fact that no anomalous current is produced. As
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Figure 3.3: Schematic current generation for different values of the angle ϕ
between the magnetic and electric field directions. (a) For ϕ = π/2, only a
regular current jreg is generated parallel to the electric field. (b) For ϕ = 0, an
anomalous current janom is induced in addition to jreg. Both of them point in
the same direction. (c) For arbitrary values of the angle, jreg and janom point
in different directions. Accordingly, the total current jtot is not parallel to the
electric field direction. Figure taken from [76].

can be seen from Fig. (3.3), any other value of ϕ than parallel or perpendicular
produces a net vector current that is not (anti-)parallel to the electric field,
leads, since in addition to a regular current jreg parallel to E, to the generation
of an anomalous current component janom parallel to B is induced by the chiral
magnetic effect. However if the axial anomaly did not exist, the induced current
and the electric field would be also be collinear for any other values of the angle
between E and B. Consequently, for general ϕ = ](E,B) the presence of
the quantum anomaly manifests itself in a distinctive macroscopic property of
the total induced current. As our simulations include the backcoupling of the
created currents on the dynamical electromagnetic fields, we can investigate the
properties of the Abelian chiral magnetic effect in the non-linear regime of QED.

In Fig. 3.4 and 3.5 , we show the time dependence of the y– and z–components
of the electric currents ji = e〈ψ̄γiψ〉 as well as the corresponding electric field
components as a function of time. Since ∇ × E(t) = 0, the magnetic field of
the system remains constant. Similar to a purely electric configuration, the
interplay between particle production and subsequent screening of the electric
field results in plasma oscillations [48, 196, 210]. By comparing Fig. 3.4 and 3.5,
the zero crossings of each current component are seen to occur around the same
time as the extremum of the respective electric field component and vice versa.
However, in contrast to the Schwinger effect in a purely electric configuration,
for which the electric current is always anti-parallel to the electric field so that
all field components oscillate with the same plasma frequency, we now observe
that the oscillations of the y– and z–components are out of phase. The in-
triguing behaviour is caused by the anomalous electric current produced via the
chiral magnetic effect. [14, 15]: In magnetic fields the spin of particles aligns
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Figure 3.4: Time-evolution of the non-vanishing electric current which results
from a regular and an anomalous contribution. Accordingly, the y– and z–
components oscillate out of phase. Figure taken from [76].

with the external field and thus results in a correlation between electric charge,
chirality and momentum. Positively charged, right-handed particles move along
the magnetic field lines while negatively charged right-handed particles move in
the opposite direction. This effect is usually cancelled by the inverse behavior
of the left-handed particles. In the presence of an anomaly E ·B 6= 0, however,
an imbalance between right- and left-handed particles is produced such that an
anomalous electric current along the magnetic field direction is generated,

~janom = σ5(q5(t)) ~B, (3.21)

where σ5(q5(t)) ∝ q5 ∝ E ·B is the dynamical anomalous conductivity. Unlike
in simplified set-ups, such as discussed in [14, 15], σ5 is a dynamical quantity
and the chiral medium is time-dependent. Thus static calculations, where σ5

is treated as a fixed transport coefficent, are insufficient to describe anomalous
effects beyond the Schwinger limit. In Fig. 3.6 the time evolution of the angle
between the magnetic and electric field is displayed. Remarkably, a rotation of
the electric field relative to the magnetic field is observed, which is a direct im-
portant consequence of the anomaly. It stems from the non-alignment of electric
field and currents and the field components being out-of-phase as a result. Only
for the specific initial values ϕ(0) = 0, π (parallel) and ϕ(0) = ±π/2 (perpendic-
ular) no anomalous rotation occurs (cf. Fig. 3.3). Most remarkably, we find that
for general initial configurations the evolution of the angle ϕ is not monotonic,
instead it exhibits a tracking behavior: Irrespective of the initial condition de-
tails, the system spends longest times near collinear field configurations with
maximum quantum current, while disfavoring orthogonal fields with no anoma-
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Figure 3.5: Time-evolution of the non-vanishing electric field components. Sim-
ilar to the current, the y– and z–components of the electric field are also out
of phase. As a consequence, E rotates relative to B, cf. Fig. 3.6. Shown is
also the initial pulse whose amplitude is rescaled by a factor of five for better
visualization. Figure taken from [76].

lous current generation. In fact, ϕ = ±π/2 turn out to be unstable stationary
points (u), where even arbitrarily small deviations lead to the generation of axial
charges and, accordingly, to an anomalous rotation of the electric field direction.
The collinear tracking solutions (s) represent an important self-focusing mecha-
nism, which makes our phenomenon of anomaly-induced dynamical refringence
very robust and different from conventional dispersive phenomena described in
terms of material constants. This intriguing dynamics points to the possibilty
of using the axial anomaly as a focussing device for beyond the Schwinger-limit
optics. Moreover this dynamics highlights the role of the fermion mass for the
dynamics of the chiral magnetic and chiral separation effect: the explict viola-
tion of axial symmetry via the pseudoscalar condensate might be understood as
kind of a damping term in the anomalous axial-non-conservation equations; it
acts to reduce the amount of axial charge produced and thus ultimately dampens
the chiral plasma oscillations observed here.

3.5 Axial charge production

Using our simulations we can check the realization of the Abelian anomaly equa-
tion (3.1) out of equilibrium explicitly. To this end we compute the different
components of the Abelian anomaly equation (3.1). This allows us to judge the
precision of our lattice simulations. Furthermore by investigating the anomaly
budget, we can study the mass-dependence of the non-linear anomalous dynam-
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Figure 3.6: Anomalous rotation of the dynamical electric field as described by
the time-dependent angle ϕ(t) = ](E(t),B). The evolution exhibits tracking
behavior, where the system spends longest times near collinear field configura-
tions with maximum quantum current. Figure taken from [76].

ics. Here we study the time-integrated and volume-averaged anomaly equation:

q5(t) = 2im

∫ t

0

〈ψ̄γ5ψ〉dt′ −
e2

2π2

∫ t

0

E ·B dt′ . (3.22)

This equation consists of several contributions and we first compute the axial
charge density q5(t) directly. The solid (blue) line of Fig. 3.7 clearly demon-
strates that there is a non-zero generation of axial charge density, as electromag-
netic helicity is transered to chirality via the anomaly equation. Subsequently
we observe the nonequilibrium time evolution of the interplay between helic-
ity and chirality. Moreover we display the individual contributions appearing
on the r.h.s. of (3.22) with the time-integrated pseudoscalar condensate (first
term/dotted orange curve) and anomaly term (second term/dashed-dotted red
curve). The dashed (black) curve represents their sum and the agreement with
q5 within numerical errors reflects the underlying quantum anomaly and the
ability of our methods to capture the intriguing phenomena associated with it.
In fact, the exact reproduction of the anomaly equation is only expected in
the continuum limit [179, 211]. While lattice artifacts from the Wilson term
are negligible, the dominant error in our numerical results is due to the finite
system size V and lattice spacings ai. Based on restricted variations thereof,
we estimate the total numerical error for the quantities considered to be of the
order of a few percent, in overall agreement with the above consistency check of
the anomaly equation. The dynamics that is depicted in Fig. (3.7) shows chi-
ral plasma oscillations for several periods. We note while there is a continuous
transfer of chirality between the gauge and fermion sectors, this transfer will
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Figure 3.7: Generation of the axial charge density q5 as a function of time. In
addition, the different contributions on the r.h.s. of the space-time integrated
anomaly equation (3.22) are shown. We note that in supercritical fields (as
present in this case, cf. Fig.3.5) the recreation of axial charge via particle pro-
duction dominates over the damping due to the finite fermion mass[81, 82],
which is marked by the presence of the pseudoscalar condensate. Figure taken
from [76].

ultimately be damped away, as the explicit violation of chiral symmetry via the
finite quark mass tends to reduce the overall difference between left- and right
handed particles. For early times the axial charge recreation via super-critical
electromagnetic fields however dominates over damping processes. This rela-
tion might be very different in situations where the electromagnetic fields are
considerably smaller than the Schwinger limit, as is of relevance in many astro-
physical systems [81, 82]. We note that the realization of the non-equilibrium
axial anomaly has been investigated for non-Abelian theories in Refs. [52, 212]
and is subject to section 5.

3.6 Outlook and experimental applications

The simulations of strong-field QED beyond the Schwinger limit have shown
that the Adler-Bell-Jackiw anomaly, which does not contribute to vacuum-to-
vacuum transitions in QED, has dramatic consequences out of equilibrium. By
using real-time lattice simulation of QED in the classical-statistical limit, we
have shown that net axial charge is produced under suitable initial conditions
in the presence of an unstable QED vacuum. The later situation is realized in
the regime of electromagnetic fields exceeding the Schwinger limit. We have
investigated the non-linear transfer of chirality/helicity from the gauge to the



54 CHAPTER 3. ANOMALY-INDUCED REFRINGENCE

Figure 3.8: A schematic representation of a possible experimental set-up, that
allows to create electromagnetic laser fields with large electric and magnetic
fields in the focal region at an arbitrary initial angle. A minimum of four lasers
is required as otherwise the Lorentz-invariant E · B cannot be generated. (a)
3-dimensional view. (b) The laser beams are collided at an angle of π/4 in the
x− y-plane. (c) resulting electric and magnetic fields. This figure is courtesy of
Florian Hebenstreit, Univ. Bern and is used with his generous permission.

fermion sector. To this end we have found that the Abelian version of the Chiral
Magnetic Effects causes the emergence of anomalous electric currents for gen-
eral electromagnetic field configurations. For non-parallel electric and magnetic
fields with E · B 6= 0 we find that the CME induces dynamical polarization
effects and we find that the systems exhibits an intriguing tracking behaviour
that tries to maximize the effects of the anomaly.

The existence of this very non-trivial medium has important consequences
for future experiments: it could be tested directly by simple setups, e.g. by
utilizing two counter-propagating optical laser pulses, producing a slowly vary-
ing standing-wave magnetic field which is superimposed by a single attosecond
pulse in the focal region [213]. We depict such a possible experimental situation
in Fig. (3.8). The intriguing dynamics of Fig. 3.5 leads to an anomalous rota-
tion of the fermionic current and of the electric field, which can be observed by
spectrometric measurements.

The study presented here is naturally extended to similar systems in a dif-
ferent context: the Abelian version of the Chiral Magnetic Effect has already
been oberserved experimentally in Dirac semimetals [19, 214]. As the quantum-
simulation of QED is becoming reality, using ultracold quantum gases [86], the
dynamics of the axial anomaly in QED might be investigated further. Moreover
the dynamics of the anomaly in an astro-physical context has received consid-
erable attention in recent years: most importantly the role of the fermion mass
in this context is poorly understood. As many of these systems involve the
chiral dynamics of very light degrees of freedom, such as neutrinos, it is of ut-
most importance to being able to simulate systems with a wide range of quark
masses.



Chapter 4

Transient anomalous charge
production in strong-field
QCD

This section is based on the publication ’Transient anomalous charge production
in strong-field QCD’ (N. Tanji, N.M. J. Berges), which is published in Phys. Rev
D93 (2016) no.7, 074507 [arXiv:1603.03331] [52]. In the following we investigate
the anomalous axial production from coherent color gauge fields. We compute
the real-time evolution, starting with spatially homogeneous strong gauge fields,
while the fermions are in vacuum. The idealized class of initial conditions is
motivated by Glasma flux tubes in the context of heavy-ion collisions. We
focus on axial charge production at early times, where important aspects of
the anomalous dynamics can be derived analytically. This is compared to real-
time lattice simulations. Quark production at early times leading to anomalous
charge generation is investigated using Wilson fermions. Our results indicate
that coherent gauge fields can transiently produce significant amounts of axial
charge density, while part of the induced charges persist to be present even well
beyond characteristic decoherence times. The comparisons to analytic results
provide stringent tests of real-time representations of the axial anomaly on the
lattice.

4.1 Transient anomalous charge production: gauge
sector

4.1.1 Analytic discussion

We consider a non-Abelian gauge theory with SU(2) color gauge group. Tak-
ing two colors simplifies the analysis as compared to the SU(3) gauge group
of QCD, while for our aims the difference is of minor relevance. We do not
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consider longitudinally expanding systems, such as addressed in Ref. [215]. We
concentrate on the nonequilibrium dynamics, starting from an initial state char-
acterized by macroscopic color-electric fields of order 〈E(0)〉 ∼ Q2/g in the weak
gauge coupling g � 1 relevant at a sufficiently high energy scale Q. All other
gauge field modes, as well as the fermion sector, are taken to be in (free) vacuum
initially. The early-time behavior for this problem can be solved analytically
in an expansion in powers of the gauge coupling g following along the lines of
Ref. [216], where simpler initial conditions have been considered in the absence
of anomalous corrections. In particular, at leading order in g there is no back-
reaction of the fermion sector on the gauge field dynamics at early times (see
e.g. [196]).

In this section, we investigate transient anomalous effects in quantum chro-
modynamics (QCD) with two colors. The aim is to gain (semi-)analytical in-
sights into axial charge generation due to the Adler–Bell– Jackiw anomaly equa-
tion [6, 7]

∂µj
µ
5 = 2mψiγ5ψ +

g2

4π2
Ea ·Ba (4.1)

out of equilibrium. It relates the four-divergence of the axial current jµ5 =
ψγµγ5ψ (µ = 0, 1, 2, 3 with Dirac matrices γµ and γ5 = iγ0γ1γ2γ3) to the
mixing of the different chiral components of the fermion fields ψ of mass m,
and to the anomaly term ∼ Ea · Ba involving the color electric fields Ea and
magnetic fields Ba (a = 1, 2, 3).

To this end, we consider the real-time evolution starting with spatially ho-
mogeneous gauge fields. The field configuration is motivated by the Glasma
flux-tube scenario, where the gluonic gauge fields in the immediate aftermath of
a heavy-ion collision are dominated by coherent longitudinal color-electric and
magnetic fields [217]. For a sufficiently energetic collision, the relevant gauge
coupling g is weak and we consider g � 1.

More precisely, we investigate an idealized class of initial conditions, where
the expectation values at time t = 0 for color-electric fields Eai (0) and magnetic
fields Bai (0) with spatial components i = x, y, z in temporal gauge are given by

〈E1
x(0)〉 = 〈E2

y(0)〉 = 〈E3
z (0)〉 ∼ Q2

g
,

〈B1
x(0)〉 = 〈B2

y(0)〉 = 〈B3
z (0)〉 = 0, (4.2)

corresponding to an energy density ∼ Q4/g2 parametrized in terms of the char-
acteristic scale Q. All other modes, as well as the fermion sector, are taken to be
in (free) vacuum initially. While we start with zero macroscopic color-magnetic
field such that the anomalous contribution vanishes initially, it is generated
during subsequent times. The nonequilibrium classical time evolution of the
Yang–Mills fields can be solved analytically [218–220]. By taking into account
quantum fluctuations, one observes that the solution represents the leading con-
tribution for the corresponding quantum dynamics on a time scale shorter than
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tΘ ∼ Q−1 ln g−2. This allows us to derive a closed-form expression for the
early-time behavior of axial charge generation from the anomaly equation.

The times beyond tΘ, after which fluctuations cause decoherence of the ini-
tially uniform fields, are no longer described by our analytical treatment lin-
earizing in fluctuations. Using real-time lattice simulation techniques, we verify
that the early-time lattice dynamics indeed accurately reproduces our analyti-
cal results. Furthermore we find that transient homogeneous fields can lead to
nonzero axial charge density even beyond the characteristic decoherence time.

While in general the investigation of more realistic field configurations and
later times cannot be based on analytic solutions and requires non-perturbative
real-time lattice simulation techniques [48–50, 193, 194, 196], our analytical ex-
pressions provide a stringent precision test for the numerical approaches. On a
lattice, the axial anomaly is deeply connected to the fermion doubling problem
and its regularization, which is well understood in Euclidean or ‘imaginary-time’
lattice field theory [179–181]. In particular, for Euclidean Wilson fermions all
doublers can be regularized using a spatiotemporal Wilson term. In contrast,
real-time simulations typically employ a combination of a spatial Wilson term
together with a suppression of possible temporal doublers using suitable ini-
tial conditions [195, 212]. Employing real-time lattice simulations for two-color
QCD, we analyze in detail the validity of the axial anomaly equation on the lat-
tice by explicitly computing the nonequilibrium axial charge density from the
underlying fermion current.

The chapter is organized as follows. In section 4.1, we investigate the real-
time evolution of the gauge field sector. We derive an analytic expression for the
production of the axial charge and compare it to real-time lattice simulations
in pure gauge theory. In section 4.2, we investigate the fermion sector and
perform real-time lattice simulations with Wilson fermions. We analyze the axial
anomaly out of equilibrium and demonstrate that it can be accurately computed
using a spatial Wilson term. Section 5.4 is devoted to concluding remarks. In
an appendix, we show an alternative verification of the chiral anomaly with a
cutoff regularization method.

It is convenient to formulate the gauge field dynamics in terms of gauge
potentials Aaµ(x) with x = (x0,x) in temporal gauge, where Aa0(x) = 0, and to

split the field into a time-dependent expectation value 〈Aai (x)〉 = Āai (x0)/g and
a quantum fluctuation according to

Aai (x) = g−1Āai (x0) + δAai (x) . (4.3)

Introducing the rescaled macroscopic field Ā simplifies the power-counting in
g. Starting from the spatially homogeneous macroscopic field configuration, we
may linearize the dynamics in δA for sufficiently early times. The range of
times, for which the linearized description is valid, is determined below.

At zeroth order in the fluctuations, we obtain the field equation for the
macroscopic field (

Dµ[Ā]Fµν [Ā]
)a

= 0 , (4.4)
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which corresponds to the classical Yang–Mills equation with field strength tensor

F aµν [Ā] = ∂µĀ
a
ν − ∂νĀaµ − εabcĀbµĀcν (4.5)

and covariant derivative

Dab
µ [Ā] = ∂µδ

ab − εacbĀcµ . (4.6)

One observes that the classical equation (4.4) for the rescaled macroscopic field
Ā does not depend on the coupling g. Moreover, all spatial derivatives of Ā
actually vanish. The next order corresponds to the linearized equation for the
fluctuations [221],

(
Dµ[Ā]Dµ[Ā]δAν

)a −
(
Dµ[Ā]Dν [Ā]δAµ

)a − εabcδAbµF cµν [Ā] = 0 . (4.7)

Equations (4.4) and (4.7) describe the gauge dynamics up to corrections of order
(δA)2 in the fluctuations and to leading order in the coupling g.

Writing t ≡ x0, we consider the time-dependent field configuration [218, 219]

Āai (t) = A(t)
(
δa1δix + δa2δiy + δa3δiz

)
. (4.8)

The corresponding chromo-electric and magnetic field components are

〈E1
x〉(t) = 〈E2

y〉(t) = 〈E3
z 〉(t) = g−1∂tA(t) , (4.9)

〈B1
x〉(t) = 〈B2

y〉(t) = 〈B3
z 〉(t) = g−1A2(t) , (4.10)

from which we recover the initial conditions (4.2) by choosing

A(0) = 0 , ∂tA(0) =
Q2

√
3
. (4.11)

With the employed normalization the energy density is given by Q4/2g2.
For the configuration (4.8), the macroscopic field equation (4.4) reads

∂2
tA(t) + 2A3(t) = 0 . (4.12)

With the initial conditions (4.11), the solutions of this equation can be expressed
in terms of Jacobi elliptic functions as

A(t) =
Q

31/4
cn

(√
2√
3
Qt−K(1/2),

1

2

)
, (4.13)

where K(1/2) denotes the complete elliptic integral of the first kind [222]. The
nonzero components of the color-electromagnetic fields then read

〈Eai 〉(t) = −
√

2

3

Q2

g
sn

(√
2√
3
Qt−K(1/2),

1

2

)

×dn

(√
2√
3
Qt−K(1/2),

1

2

)
, (4.14)

〈Bai 〉(t) =
1√
3

Q2

g
cn2

(√
2√
3
Qt−K(1/2),

1

2

)
. (4.15)
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Figure 4.1: Evolution of the rescaled nonzero components of the color-electric
field (solid line) and magnetic field (dashed line) in the linear regime, where
they are described by the analytic solutions (4.14) and (4.15). Figure taken
from [52].

In Fig. 4.1, these fields are plotted as a function of time. They oscillate in time
with a characteristic frequency ∼ Q. By multiplying with g/Q2, the quantities
become dimensionless and independent of the value of g.

Starting from the configuration with a strong color-electric field and van-
ishing magnetic field, one observes that the latter is subsequently generated.
The build-up of the chromo-magnetic fields is possible because of the non-linear
gauge dynamics, which is uniquely due to the non-Abelian nature of the theory.
In general, one can write

Ea ·Ba = −εµνρσ∂µ tr

(
Aν∂ρAσ +

2

3
igAνAρAσ

)
. (4.16)

Therefore, a nonzero Ea ·Ba may be obtained even for spatially homogeneous
gauge potentials in a non-Abelian theory.

The anomaly equation (4.1) relates Ea · Ba to the four-divergence of the
axial fermion current jµ5 . For the homogeneous system, the spatial divergence
drops out for the evaluation of the expectation value of this current. The axial
charge density n5(t) = 〈j0

5(x)〉 is then obtained by integrating over time:

n5(t) = 2m

∫ t

0

dt′ 〈ψiγ5ψ〉(t′) +
g2

4π2

∫ t

0

dt′ 〈Ea ·Ba〉(t′) (4.17)

for zero initial axial charge. The first term on the right hand side arises from
the mixing of the different chiral field components in the presence of a mass.
Therefore, in a massless theory the axial charge density is entirely determined
by the anomalous second term. In particular, to lowest order in the fluctuations
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Figure 4.2: Time-dependence of the anomalous contribution ∼ 〈Ea ·Ba〉 in the
linear regime. Figure taken from [52].

we have 〈Ea ·Ba〉 = 〈Ea〉 · 〈Ba〉, and the time evolution of this term is plotted
in Fig. 4.2. Therefore, in this approximation our solutions (4.14) and (4.15)
determine the dynamics of the axial charge generation, and in the massless
limit we find from integration:

n5(t) =
Q3

33/44π2
cn3

(√
2√
3
Qt−K(1/2),

1

2

)
, (4.18)

as plotted in Fig. 4.3. We further find that only the second term ∼ A3 on the
right hand side of (4.16) contributes to the anomaly for the initial conditions
considered, such that (4.18) can also be written as

n5(t) =
1

4π2
A3(t) . (4.19)

Equation (4.18) is the central result of this section, which will be further
discussed and used in section 4.2 to verify implementations of the axial anomaly
in real-time lattice simulations. However, before doing so we have to establish
the solution’s range of validity in time. In the quantum theory, the fluctuations
δAai (x) cannot be neglected in general: While the expectation value 〈δAai (x)〉 ≡
0 by definition, the correlation 〈δAai (x)δAbj(y)〉 cannot vanish identically because
of the uncertainty relation. Starting with large macroscopic fields and all other
modes in vacuum, where Q2/g2 ∼ 〈Aai (x)〉〈Abj(x)〉 � 〈δAai (x)δAbj(y)〉 ∼ Q2 at

initial times x0 = y0 = 0, we have to investigate on which time scale fluctuations
grow to become large enough such that they modify our result (4.18).

The initial growth of fluctuations is described by (4.7), evaluated for the
macroscopic field configuration (4.8). Again carrying over the analysis of Ref. [216]
to our problem, we consider a Fourier expansion of the fluctuations and analyze
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Figure 4.3: Time-dependence of the axial charge density in the massless limit,
as described by the analytic result (4.18). Figure taken from [52].

which momentum modes dominate the growth of fluctuations. For the employed
temporal gauge, the fluctuation equation can be written as a matrix equation
of the form

∂2
t (δA) = −Ω2[Ā] · (δA) . (4.20)

In fact, there are negative eigenvalues for Ω2 related to Nielsen–Olsen type
instabilities [223, 224]. In addition, there are parametric resonance instabilities
arising from the oscillatory behavior of the macroscopic field Ā(t), which are
expected to be sub-leading according to Ref. [216]. Therefore, we proceed by
computing the most negative eigenvalues of Ω2 for constant Ā ∼ Q to determine
the characteristic exponential growth rates for fluctuations.

From the three color times three spatial directions, Ω2[Ā] has a 9 × 9 ma-
trix structure. In the spatial momentum space, its nine eigenvalues depend on
momentum p only through its modulus p = |p|, and they read:

ω2
1/2 = p2 ± 2|A| p , (4.21)

ω2
3/4/5/6 = A2 +

1

2
p2 ± 1

2

√
(2A2 + p2)2 ± 8|A|3p , (4.22)

while ω2
7/8/9 are given by the roots of

0 = −4A4p2 + (12A4 + 4A2p2 + p4) x

−(8A2 + 2p2) x2 + x3 , (4.23)

which are always non-negative. We find that (4.21) has negative eigenvalues
for 0 < p < 2|A|, with the largest negative eigenvalue for p? = |A| given by
−A2. Similarly (4.22) yields negative eigenvalues, with the largest for p? =



62 CHAPTER 4. TRANSIENT ANOMALOUS CHARGE PRODUCTION

(1 +
√

5)|A|/2 given by −(
√

5 − 1)A2/2. Since A ∼ Q, we conclude that the
characteristic growth of fluctuations with momentum p? ∼ Q is described by an
exponential behavior with rate γ? ∼ Q. In spatial Fourier space, we therefore
find for the fastest growing linear combination of fields the parametric behavior

〈δAδA〉(t, p?) ∼ Q−1 eγ?t . (4.24)

Next-to-leading order quantum corrections to the leading weak-coupling be-
havior of the fluctuation equation (4.7), both from gauge-field and fermion fluc-
tuations, are proportional to g2 (see e.g. [196]). Parametrically, these quantum
corrections are expected to become relevant once they have grown enough such
that they can compensate for the small factor of g2. Stated differently, they
become relevant at the time tΘ at which the dimensionless product

g2Q 〈δAδA〉(t, p?) ∼ g2 eγ?t (4.25)

is of order unity, i.e. at the time

tΘ ∼ Q−1 log(g−2) . (4.26)

Before that time, the analytic estimate (4.18) for the anomalous charge gener-
ation dynamics may also be used to test real-time lattice simulation techniques
that can be applied to more general out-of-equilibrium situations.

4.1.2 Real-time lattice gauge theory simulations

In this section, we go beyond the linear analysis by conducting classical-statistical
lattice simulations for the pure gauge theory using standard procedures [41, 43,
44, 118, 225]. The system is defined by the lattice Hamiltonian for gauge fields

Hg =
a3

2

∑

x,i

Eai (x)Eai (x)

+
2Nc
g2a

∑

x,i<j

(
1− 1

Nc
Re Tr Uij(x)

)
, (4.27)

where a denotes the spacing of the isotropic spatial lattice, and Uij(x) is the
spatial plaquette defined by

Uij(x) = Ui(x)Uj(x+ î)U†i (x+ ĵ)U†j (x). (4.28)

Here Ui(x) = exp {igaAi(x)} is the link variable describing the gauge degrees of
freedom on the lattice. While we discretize the space coordinates, time is treated
as a continuum variable in this formulation. We define the lattice magnetic field
as

Bai (x) = −εijk
ga2

ImTr [T aUjk(x)] . (4.29)
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Figure 4.4: Time-dependence of 〈Ea ·Ba〉 from classical-statistical lattice sim-
ulations. Comparison to Fig. 4.2 shows very good agreement with the linear
analysis at early times, while the growing fluctuations become relevant around
tΘ leading to the significant changes observed. Figure taken from [52].

This definition reduces to the continuum result Bi = − 1
2εijkFjk as a→ 0.

To simulate the instability beyond the linear analysis, the following initial
fluctuations are added to the coherent field initial conditions (4.11):

δAai (0,x) =
∑

λ=1,2

1

V

∑

k

1√
2|k|

[
ε
(λ)
i,k c

a
λ,ke

ik·x + c.c
]
, (4.30)

δEai (0,x) = −i
∑

λ=1,2

1

V

∑

k

√
|k|
2

[
ε
(λ)
i,k c

a
λ,ke

ik·x − c.c
]
, (4.31)

where ε
(λ)
i,k is the transverse polarization vector1. The ensemble average over

random numbers caλ,k is taken according to the variance

〈caλ,kcbλ′,k′〉 = δλ,λ′δ
a,bV δk,k′ . (4.32)

The non-perturbative lattice simulations take into account classical-statistical
fluctuations up to arbitrary powers in δAai (t,x). As such, we expect agreement
with the above analytic results for the linear approximation at early times, while
deviations should occur around tΘ, when higher powers of δAai (t,x) become rel-
evant. In Fig. 4.4, we plot the time-dependence of 〈Ea ·Ba〉, which is averaged
over space-coordinates as well as random initial configurations. At early times,
the effects of the small fluctuations are invisible and the result are in very good
agreement with the analytical solution that is plotted in Fig. 4.2. At later times

1We restore the Gauss law in this construction following Ref. [226].
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around tΘ, however, the exponentially growing fluctuations cause decoherence
of the uniform fields, and thus the ensemble average of Ea · Ba is diminished
significantly and approaches zero quickly afterwards as expected. The number
of random initial configurations used in this computation is Nconf = 128, where
we have checked that sufficient convergence is obtained. The other parameters
used for this computation are g = 10−3, Nlatt = 643 and Qa = 0.312 for lattice
spacing a.

When computing Ea ·Ba, one can use higher-order definitions of the electric
field and the magnetic field with respect to lattice spacing; e.g. the forward-
backward averaged definition of the electric field and the clover-averaged defini-
tion of the magnetic field [178]. We have numerically checked that for the config-
urations investigated in this work naive and higher order definitions of magnetic
and electric fields agree, however we expect that for more inhomogeneous con-
figurations higher order definitions are crucial for a thorough investigation of
topology.

Figure 4.5 shows the axial charge density for the massless case, which is
obtained by integrating the space and ensemble average of Ea · Ba over time.
Again, the early time behavior agrees well with the analytical result (4.18). Al-
though the macroscopic color-electric and magnetic fields approach zero quickly
after a time around tΘ, a non-vanishing axial charge density is seen to persist for
a much longer time after tΘ. This is possible because the axial charge density is
determined by the integrated time history of 〈Ea ·Ba〉. This observation indi-
cates that coherent gauge fields very efficiently produce an axial charge density
at early times, while part of the induced density persist to be present even well
beyond characteristic decoherence times.

4.2 Transient anomalous charge production: fermion
sector

4.2.1 Axial anomaly with real-time Wilson fermions

In this section, we investigate axial charge generation by using real-time lattice
simulations with Wilson fermions [48, 50, 51, 193–197, 212]. This approach al-
lows us to directly compute quark production and anomalous charge generation
at leading order in the small coupling g � 1 for strong gauge fields A ∼ Q/g.
Consequently, we can use the lattice results to test the anomaly equation (4.1)
in this far-from-equilibrium situation by separately computing the fermion and
gauge field terms on its left and right hand side.

Starting from a homogeneous field configuration according to (4.2), for early
times before tΘ the gauge fields obey the classical Yang–Mills equations with
vanishing color current, while the fermion field is determined through the Dirac
equation in the background SU(2) field:

(
iγ0∂0 + iγiDi −m

)
ψ(x) = 0 , (4.33)
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Figure 4.5: Lattice simulation results for the evolution of the axial charge density
in the massless limit. The early-time behavior agrees well with the analytic
result (4.18) drawn in Fig. 4.3. A nonzero charge density is seen to persists
even well beyond the decoherence time of the macroscopic gauge fields. Figure
taken from [52].

in temporal gauge with Aa0 = 0. Here we denote the spatial components of the
covariant derivative by

Diψ = (∂i + igAai T
a)ψ , (4.34)

with the SU(2) generators T a.
We can expand the field operator in terms of mode functions

ψ(x) =
∑

s,c

∫
d3p

(2π)3

[
ψ+
p,s,c(x)ap,s,c + ψ−p,s,c(x)b†p,s,c

]
, (4.35)

with s being the spin and c denoting the color label. Here ap,s,c and bp,s,c are
annihilation operators for particles and antiparticles, respectively. Because the
Dirac equation is linear, the mode functions obey the same Dirac equation as
the field operator:

(
iγ0∂0 + iγiDi −m

)
ψ±p,s,c(x) = 0 . (4.36)

We consider for the initial state a perturbative vacuum, so that the initial con-
dition for the mode functions at t = 0 reads

ψ+
p,s,c(0,x) = u(p, s)χc

e−ip·x√
2ωp

, (4.37)

ψ−p,s,c(0,x) = v(p, s)χc
e+ip·x
√

2ωp
, (4.38)
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2r
∫ t

0
dt′Re〈ψiγ5Wψ〉/Q3 and the anomaly term g2

∫ t
0
dt′〈Ea · Ba〉/(4π2Q3) for

three different values of the lattice spacing a with fixed Wilson parameter
r = 1. Figure taken from [52].

with χc being a unit vector in color space. Once we obtain the mode functions
by solving the equation (4.36), we can compute any observables expressed in
terms of the field operator ψ.

For the actual computations, we resort to a lattice discretization of the
matter and gauge fields. We add the following lattice Hamiltonian for the quark
field to the Hamiltonian for the gauge field (4.27):

Hf = a3
∑

x

{
mψ̄(x)γ0ψ(x)

− 1

2a

∑

i

ψ̄(x)iγiUi(x)ψ(x+ î)

+
1

2a

∑

i

ψ̄(x)iγiU†i (x− î)ψ(x− î)
}
. (4.39)

The fermion doubling problem is regularized by adding a spatial Wilson term,
which we will specify later.

The expectation value of both the axial charge density and the pseudo-scalar
condensate are expressed in terms of the mode functions as

n5(t) =
1

V

∑

s,c

∑

p

ψ−†p,s,c(x)γ5ψ
−
p,s,c(x) , (4.40)

and

〈ψ(x)iγ5ψ(x)〉 =
1

V

∑

s,c

∑

p

ψ−†p,s,c(x)iγ0γ5ψ
−
p,s,c(x) , (4.41)
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Figure 4.7: Time evolution of the same quantities as in Fig. 4.6, however, now
the Wilson term contribution is shown for three different values of the Wilson
parameter r with fixed lattice spacing Qa = 0.208. Figure taken from [52].

respectively.
The realization of the axial anomaly on a lattice is non-trivial. In fact, it

is closely related to the lattice fermion doubling problem and the anomaly is
recovered by introducing a regulator term, removing the doubler fermions. As
is well known, from the lattice Dirac equation (4.33) one can easily compute
the four-divergence of the axial current and obtain an anomaly-free equation.
Correspondingly, if we numerically solve the Dirac equation (4.36) with the
naive lattice fermions, both 〈∂µjµ5 〉 and 2m〈ψ(x)iγ5ψ(x)〉 are zero, and thus the
anomalous contributions cancel out. In contrast, if one breaks the chiral symme-
try explicitly by introducing a Wilson term, the axial anomaly is recovered by
the continuum limit of this regulator, as has been studied in detail in Euclidean
field theory [179–181, 211, 227].

In order to recover the anomaly in real-time simulations, typically a combina-
tion of a spatial Wilson term together with a suppression of possible temporal
doublers using suitable initial conditions are employed [195, 212]. The Dirac
equation with the spatial Wilson term reads

(
iγ0∂0 + iγiDi −m

)
ψ(x) + rWψ(x) = 0 , (4.42)

where r is a positive constant and we have introduced an abbreviated notation

Wψ(x) =
1

2a

3∑

i=1

[
Ui(x)ψ(x+ î)− 2ψ(x)

+U†i (x− î)ψ(x− î)
]
. (4.43)
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For the specific case of a homogeneous background gauge field, one could in
principle directly restrict the Brillouin zone to remove doublers as well, as long
as this is done for the covariant (kinetic) momentum and hence in a gauge
invariant way.2 We comment on this possibility in the appendix.

Analyzing the anomaly on the lattice, it is helpful to point out that the
relation (4.17) between the axial charge density, the time-integral of the pseudo-
scalar condensate and of the anomaly term ∼ 〈Ea · Ba〉 is not realized unless
one takes the continuum limit. However, there exists a modified equation that
is exactly satisfied on the lattice:

n5(t) = 2m

∫ t

0

dt′ 〈ψiγ5ψ〉+ 2r

∫ t

0

dt′Re〈ψiγ5Wψ〉(t′), (4.44)

which can be derived from (4.42). Comparing (4.17) and (4.44), one concludes
that for r 6= 0 the Wilson term contribution is responsible for the anomaly term:

2rRe〈ψiγ5Wψ〉 ' g2

4π2
〈Ea ·Ba〉 , (4.45)

which is expected to be accurate only in the continuum limit.
Fig. 4.6 compares simulation results for the time-integrated left and right

hand sides of (4.45) employing different values for the lattice spacing a. One
observes that the relation (4.45) emerges for sufficiently small lattice spacing.
The employed volume V for these computations is Q3V = 203, and we have
employed r = 1 for m/Q = 0.1. In fact, in the continuum limit this result is
insensitive to the precise value of r 6= 0 although r apparently appears in (4.45)
as an overall factor. In Fig. 4.7, we show the same Wilson term contribution for
different values of the Wilson parameter r and fixed lattice spacing Qa = 0.208,
for m/Q = 0.1 and Nlatt = 963. For the employed finite lattice spacing, small

dependencies on r and deviations from the anomaly term ∼
∫ t

0
dt′〈Ea ·Ba〉 are

still visible, which will also reflect the level of accuracy for the anomaly on the
lattice in our calculations.

After this preparatory analysis, we are now in a position to check the
anomaly equation (4.17) by separately computing each of its terms. Since the
results will depend on the explicit mixing of the different chiral components in
the presence of a mass m 6= 0, we show in Fig. 4.8 the evolution of the axial
charge density, of the time-integral of the pseudo-scalar condensate and of the
anomaly term for two different masses m/Q = 0.1 and m/Q = 0.5. The sum

of 2m
∫ t

0
dt′ 〈ψiγ5ψ〉 and of the anomaly term g2

∫ t
0
dt′〈Ea · Ba〉/(4π2) is also

shown, since it has to agree to n5 if the anomaly is accurately represented. The
parameters used for these computations are Nlatt = 963, r = 1 and Qa = 0.208
for m/Q = 0.1, and Qa = 0.0625 for m/Q = 0.5.

For m/Q = 0.1, one observes from Fig. 4.8 that the anomaly term clearly
dominates compared to the contributions from the pseudo-scalar condensate,

2In this case, specific non-chiral observables, like the energy-momentum tensor and the
charge current, can also be computed with a cutoff to the canonical momentum [49].
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while for m/Q = 0.5 the pseudo-scalar term gives a larger contribution. In
both cases, we find that the anomaly equation (4.17) is satisfied up to the
expected accuracy for the employed lattice spacings. This provides an important
consistency check for the employed real-time regularization with a spatial Wilson
term.

A further verification can be obtained from the comparison of the numerical
lattice results for the axial charge density with the analytic solution (4.18).
Since the latter is only applicable to the massless case, we perform different
lattice simulations with decreasing but nonzero fermion masses in order to be
able to study numerically the approach to the massless limit. Fig. 4.9 displays
the analytic m = 0 curve along with lattice simulation results for three different
values of the fermion mass: m/Q = 0.2, 0.1 and 0.01. One observes that with
lighter fermion masses the numerical results gets closer to the analytic curve
(4.18). In fact, Fig. 4.9 exhibits a remarkably good agreement of the massless
limit and the massive lattice results already for m/Q = 0.01. This comparison
represents a powerful demonstration that the axial anomaly is described by our
real-time lattice simulations to very good accuracy.

4.3 Conclusions

In this work we have investigated the out-of-equilibrium dynamics of anomalous
quark production in two-color QCD. We have shown that the generation of a
nonzero axial charge density can be described analytically for a class of ini-
tial conditions characterized by large coherent gauge fields motivated from the
Glasma picture. Employing real-time lattice simulations, we find that a tran-
sient anomalous charge density persists in this case even for times significantly
exceeding the decoherence time of the macroscopic color-electric and magnetic
fields. These findings can be very interesting for nonequilibrium phenomena
such as the chiral magnetic effect during the very early stages of a relativistic
heavy-ion collision, where finite-time effects may play a decisive role.

Our combination of analytical and numerical results provides stringent tests
of real-time representations of the axial anomaly in lattice QCD. We have in-
vestigated in detail the regularization of the fermion doubling problem using
a spatial Wilson term. To this end, we considered first a modified anomaly
equation that is exactly fulfilled on the lattice, and discussed the impact of a
finite lattice spacing for computations of anomalous contributions in the con-
tinuum limit. This allowed us to check the anomaly equation by separately
computing the different nonequilibrium fermion and gauge correlation functions
entering that equation. In particular, we have confirmed the insensitivity of the
real-time results to the specific choice of the Wilson parameter approaching the
continuum limit.

The present work provides an important basis for more realistic simula-
tions of anomalous nonequilibrium or transport processes in QCD related to
heavy-ion collisions. Following along these lines, a wide range of dynamical
phenomena can be addressed with ab initio calculations, from the intriguing in-
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terplay of non-Abelian and Abelian gauge fields underlying the chiral magnetic
effect to possible chiral plasma instabilities [78, 228] followed into the far-from-
equilibrium regime.
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Figure 4.8: Time evolution of the various terms appearing in the anomaly equa-
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well. Its agreement to n5 within the expected accuracy for the employed lattice
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Chapter 5

Non-equilibrium study of
the Chiral Magnetic Effect
from real-time simulations
with dynamical fermions

The following section is based on the manuscript ’Chiral magnetic effect and
anomalous transport from real-time lattice simulations’ (N.M., S. Schlichting,
S. Sharma), which is published in Phys.Rev.Lett. 117 (2016) no.14, 142301
[arXiv:1606.00342] [229] and ’Non-equilibrium study of the Chiral Magnetic
Effect from real-time simulations with dynamical fermions’ (M. Mace, N.M.,
S. Schlichting, S. Sharma), which is published in Phys.Rev. D95 (2017) no.3,
036023 [arXiv:1612.02477] [187]. The results presented here represent the first-
ever real-time study of the chiral magnetic effect in the very early time regime
of a heavy ion collision using classical-statistical simulations. While our study
comprises an ab-initio approach, we note that the set-up that is simulated here,
corresponds to a simplified situtations and thus motivates further work.

5.1 Classical-statistical lattice gauge theory with
dynamical fermions

We first describe our setup to perform classical-statistical real-time lattice gauge
theory simulations with dynamical fermions coupled simultaneously to non-
Abelian SU(Nc) and Abelian U(1) gauge fields. Even though we will only con-
sider the SU(2)×U(1) case in our simulations, the discussion is kept general in
anticipation of future applications to the SU(3)×U(1) case relevant to heavy-ion
physics. Our simulations are performed in 3 + 1 dimensional Minkowski space-
time (gµν = diag(1,−1,−1,−1)), and we will denote the spacetime coordinate

73
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xµ as (t, x, y, z).
We employ temporal axial (At = 0) gauge and work in the Hamiltonian

formalism of lattice gauge theory, first formulated by Kogut and Susskind [176],
where time t remains a continuous coordinate while the spatial coordinates x =
(x, y, z) are discretized on a lattice of size Nx×Ny×Nz with periodic boundary
conditions and lattice spacing as along each of the three dimensions. We choose
a compact U(1) gauge group, such that both the non-Abelian and Abelian
gauge fields are represented in terms of the usual lattice gauge link variables
Ux,i ∈ SU(N)×U(1), where x ∈ {0, . . . , Nx−1}×{0, . . . , Ny−1}×{0, . . . , Nz−1}
denotes the spatial position and i = x, y, z the spatial Lorentz index.

Since the classical-statistical lattice formulation for gauge fields has been ex-
tensively discussed in the literature (see e.g. [42]), we will focus on the practical
realization of the fermion dynamics, noting that the foundations of the formal-
ism have been laid out in [193, 196]. Since there are various complications with
respect to the realization of continuum symmetries of fermions on the lattice, we
have implemented two different discretization schemes for fermions in this work.
We will first discuss the real-time lattice formulation with Wilson fermions and
subsequently describe the real-time lattice formulation with overlap fermions.

5.1.1 Wilson Fermions in real time

Our starting point for the real-time lattice formulation with dynamical Wilson
fermions is the lattice Hamiltonian operator, which takes the general form1 [230]

ĤW =
1

2

∑

x

[ψ̂†x, γ
0
(
− i /Ds

W +m
)
ψ̂x]. (5.1)

Here the fermion fields obey the usual anti-commutation relations

{ψ̂†x,a, ψ̂y,b} = δx,yδa,b , (5.2)

where a, b collectively stand for spin and color indices and −i /Ds
W denotes the

tree-level improved Wilson Dirac operator

−i /Ds
W ψ̂x =

1

2

∑

n,i

Cn

[(
− iγi − nrw

)
Ux,+niψ̂x+ni (5.3)

+ 2nrwψ̂x −
(
− iγi + nrw

)
Ux,−niψ̂x−ni

]
.

By rw we denote the Wilson coefficient and we introduced the following short
hand notation for the connecting gauge links

Ux,+ni =

n−1∏

k=0

Ux+ki,i , Ux,−ni =

n∏

k=1

U†x−ki,i. (5.4)

1We omit explicit factors of the lattice spacing. Hence all definition are given in dimen-
sionless lattice units.
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Based on an appropriate choice of the coefficients up to Cn it is possible to ex-
plicitly cancel lattice artifacts O(a2n−1) in the lattice Hamiltonian. By choosing
only C1 = 1 and all other coefficients to vanish, one recovers the usual (unim-
proved) Wilson Hamiltonian, which is only accurate to O(a). With the first two
terms C1 = 4/3 and C2 = −1/6 we can achieve an O(a3) (tree level) improve-
ment, and by including also the third term C1 = 3/2 , C2 = −3/10 , C3 = 1/30
we get an O(a5) (tree level) improvement.2

Operator decomposition and real-time evolution

While the gauge links Ux,i are treated as classical variables, it is important
to keep track of the quantum mechanical operator nature of the fermion fields.
Evolution equations for the fermion operators are derived from the lattice Hamil-
tonian, as

iγ0∂tψ̂x = (−i /Ds
W +m)ψ̂x , (5.5)

which can be solved on the operator level by performing a mode function ex-
pansion [193, 196]. Considering for definiteness an expansion in terms of the
eigenstates of the Hamiltonian at initial time (t = 0) the mode function decom-
position takes the form

ψ̂x(t) =
1√
V

∑

λ

(
b̂λ(0)φuλ(t,x) + d̂†λ(0)φvλ(t,x)

)
, (5.6)

where λ = 1, · · · , 2NcNxNyNz labels the energy eigenstates and b̂(0)/d̂†(0) cor-
respond to the (anti) fermion (creation) annihilation operators acting on the ini-
tial state (t = 0) [193, 196]. By construction the time dependence of the fermion

field operator ψ̂ is then inherent to the wave-functions φ
u/v
λ (t,x), whereas the

operator nature of ψ̂ only appears through the operators b̂(0), d̂†(0) acting in
the initial state.

Since for a classical gauge field configuration the Dirac equation (5.5) is
linear in the fermion operator, it follows from the decomposition in Eq.(5.6)

that the wave-functions φ
u/v
λ (t,x) satisfy the same equation. One can then

immediately compute the time evolution of fermion field operator by solving
the Dirac equation for each of the 4NcNxNyNz wave functions. We obtain
the numerical solutions using a leap-frog discretization scheme with time step
at = 0.02as.

In practice performing the decomposition in Eq.(5.5) amounts to the diago-
nalization of the matrix

γ0
(
− i /Ds

W +m
)
φ
u/v
λ (0,x) = ±ελφu/vλ (0,x) , (5.7)

at initial time, where ελ ≥ m denotes the energy of single particle states. In the
simplest case, where the gauge fields vanish at initial time, the eigenfunctions

2Note that our improvement procedure parallels that of Ref. [231]. Alternatively one could
follow the procedure detailed in Ref. [232], leading to the appearance of the familiar Clover
term.
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φuλ correspond to plane wave solutions and can be determined analytically as
discussed in App. B.1. However, if we introduce a non-vanishing magnetic field
B at initial time (c.f. Sec. 5.1.3), this is no longer the case and we instead deter-
mine the eigenfunctions φuλ numerically using standard matrix diagonalization
techniques.3

Initial conditions and operator expectation values

When computing any physical observable, one has to evaluate the operator
expectation values with respect to the initial state density matrix. We will
consider for simplicity an initial vacuum state, characterized by a vanishing

single particle occupancy of fermions and anti-fermions n
u/v
λ = 0 yielding the

following operator expectation values

〈[b̂†λ, b̂λ′ ]〉 = +2(nuλ − 1/2)δλ,λ′ (5.8)

〈[d̂λ, d̂†λ′ ]〉 = −2(nvλ − 1/2)δλ,λ′ (5.9)

whereas all other combinations of commutators vanish identically. Specifically
for this choice of the initial state, the expectation values of a local operator
Ô(t,x) involving a commutator of two fermion fields can be expressed according
to

Ô(t,x) =
∑

y

Oabxy
1

2
[ψ̂†x,a(t), ψ̂y,b(t)] (5.10)

The expectation value of this bilinear form can be expressed according to

〈Ô(t,x)〉 =
1

V

∑

λ,y

[
φu†λ,a(t,x)Oabxyφ

u
λ,b(t,y)(nuλ − 1/2)

−φv†λ,a(t,x)Oabxyφ
v
λ,b(t,y)(nvλ − 1/2)

]
. (5.11)

as a weighted sum over the matrix elements of all wave-functions.

Vector and axial currents

We will consider vector jµv and axial currents jµa as our basic observables in this
study. Since time remains continuous in the Hamiltonian formalism, vector and
axial densities are defined in analogy to the continuum as

j0
v(x) =

1

2
〈[ψ̂†x, ψ̂x]〉 , j0

a(x) =
1

2
〈[ψ̂†x, γ5ψ̂x]〉 . (5.12)

and no extra terms occur for the time-like components. However, this is different
for the spatial components of the currents, where additional terms arise in the

3Despite the fact that well known analytic solutions exist in the continuum in the case of
a constant homogenous magnetic field, we are not aware of an equivalent analytic solution to
Eq.(5.7) on the lattice.
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lattice definition. By performing the variation of the Hamiltonian with respect
to the Abelian gauge field, we obtain the spatial components of the vector
currents according to

jiv(x) = (5.13)
n−1∑

n,k=0

Cn
4

〈
[ψ̂†x−ki, γ

0
(
γi − inrw

)
Ux−ki,ni ψ̂x+(n−k)i]

+ [ψ̂†x+(n−k)i, γ
0
(
γi + inrw

)
Ux+(n−k)i,−ni ψ̂x−ki]

〉
.

Since the currents are derived from the improved Hamiltonian, these are by
construction improved which is important for reducing discretization effects as
we will discuss in more detail in the upcoming section.

Defining the axial currents requires a more careful analysis to recover the
correct anomaly relations in the continuum limit. In order to fully appreciate
this point, let us first recall that for a naive discretization of the fermion action
(obtained e.g. by setting rw = 0) an unphysical cancellation of the anomaly
takes place, which can be understood as a consequence of the doubling of fermion
modes [179]. Hence the correct realization of the axial anomaly for Wilson
fermions relies on lifting the degeneracy between doublers by introducing the
Wilson term (rw 6= 0), and achieving an effective decoupling of the fermion
doublers in the continuum limit [179]. Defining the spatial components of the
axial current as

jia(x) =

n−1∑

n,k=0

Cn
4

〈
[ψ̂†x−ki, γ

0γiγ5 Ux−ki,ni ψ̂x+(n−k)i]

+ [ψ̂†x+(n−k)i, γ
0γiγ5 Ux+(n−k)i,−ni ψ̂x−ki]

〉
. (5.14)

it can easily be shown that the axial current for lattice Wilson fermions satisfies
the exact relation

∂µj
µ
a (x) = 2mηa(x) + rwW (x), (5.15)

where ∂ij
i
a(x) = jia(x)− jia(x− i) and ηa(x) denotes the pseudoscalar density

ηa(x) =
1

2
〈[ψ̂†x, iγ0γ5ψ̂x]〉 (5.16)

and W (x) is the explicit contribution from the Wilson term

W (x) =
∑

n,i

n · Cn
4

〈
[ψ̂†x, iγ5γ0

(
Ux,+niψ̂x+ni − 2ψ̂x

+ U†x−ni,+niψ̂x−ni
)
] + h.c.

〉
(5.17)

Even though the lattice anomaly relation in Eq.(5.15) may appear unfamiliar at
first sight, it has been shown in the context of Euclidean lattice gauge theory,
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that the usual form is recovered in the continuum limit, where the Wilson term
gives rise to a non-trivial contribution

rwW (x)→ − g2

8π2
TrFµν(x)F̃µν(x), (5.18)

Fµν being the field strength tensor and F̃µν = 1
2ε
µνρσFρσ is it’s dual. It can

also be shown that the first deviations from the continuum limit appear as an
odd function of rw and improved convergence can be achieved by averaging of
positive and negative values of the Wilson parameter [233, 234]. Even though
the generalization of these proofs to the non-equilibrium case is non-trivial,
explicit numerical verification has been reported in [52] and we will confirm this
behavior in Sec. 5.2 based on our own simulations.

5.1.2 Overlap fermions in real time

Constructing the Overlap Hamiltonian

Wilson fermions break the chiral and anomalous UA(1) symmetries explicitly
on the lattice. Explicit chiral symmetry is recovered only in the continuum
limit for massless Wilson fermions4. With the improvement procedures for the
Wilson fermions one can reduce the lattice artifacts responsible for chiral sym-
metry breaking, however it is still desirable to compare our results with a lattice
fermion discretization where the chiral and continuum limits are clearly disen-
tangled. Overlap fermions [183, 185] have exact chiral and flavor symmetries on
the lattice and the anomalous UA(1) symmetry can be realized even for a finite
lattice spacing, analogous to the way it happens in the continuum. Even though
we will demonstrate that within our simple setup one can obtain comparable
results with improved Wilson and Overlap fermions, we point out that the real-
time overlap formulation may be important for future real-time simulations that
either go beyond classical background fields or involve truly chiral fermions.

We will now employ overlap fermions for real-time simulations of the anomaly
induced transport phenomena. As we did for the Wilson fermions, we consider
a Hamiltonian formulation which for massless overlap quarks,

Ĥov =
1

2

∑

x

[ψ̂†x, γ0

(
− i /Ds

ov

)
ψ̂x] (5.19)

Here −i /Ds
ov is the 3D spatial overlap Dirac operator given by

−i /Ds
ov = M

(
1 +

γ0HW (M)√
HW (M)2

)
(5.20)

4Note that mass renormalization effects can render this issue problematic, as a carful tuning
of the Wilson bare mass is required in taking the correct continuum limit. However, since we
will only consider the dynamics of fermions in a classical background field, such problems are
absent in the simulations present in this work.
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and HW (M) is the original Wilson Hamiltonian kernel, defined in Eq.(5.1) but
with Cn = 0 for n ≥ 2, and with the fermion mass m being replaced by the
negative of the domain wall height M , namely,

HW (M) = γ0(−i /Ds
W −M). (5.21)

The domain wall height takes values M ∈ (0, 2]. In Appendix B.3 we derive
the Hamiltonian for the first time in the overlap formalism. We note that it
is assuring that this construction is in exact agreement with the ansatz for
the overlap Hamiltonian for vector-like gauge theories first discussed in [186].
Furthermore simulating massive overlap quarks is straightforward within this
setup, which can be implemented by simply replacing

−i /Ds
ov → −i /D

s
ov

(
1− m

2M

)
+m, (5.22)

where m is the quark mass we want to simulate.

The overlap Dirac matrix for massless quarks in three spatial dimensions,
/D
s
ov satisfies the Ginsparg-Wilson relation [190],

{ /Ds
ov, γ5} = −i /Ds

ovγ5 /D
s
ov . (5.23)

Additionally the overlap Dirac operator is γ0-hermitian, and satisfies a variant
of Eq.(5.23),

{ /Ds
ov, γ0} = −i /Ds

ovγ0 /D
s
ov . (5.24)

As a consequence, it was shown in [186] that the Hamiltonian commutes with
the operator

Q̂5 =
1

2

∑

x

[
ψ†x, γ5

(
1− −i /D

s
ov

2

)
ψx

]
. (5.25)

This allows one to define Q̂5 as the axial charge within the Hamiltonian formal-
ism, whose time evolution is given by the equation,

dQ̂5

dt
= i[Ĥov, Q̂5] +

∂Q̂5

∂t
. (5.26)

Since the first term in the right hand side of Eq.(5.26) is identically zero by
construction, the time dependence of the axial charge density operator arises
from the explicit real-time evolution of the matter fields in the definition of
Q̂5. Hence in the real-time overlap formulation, the axial charge is generated
exactly in the same way as in the continuum. While in [186] the definition of
the axial charge operator, Q̂5, is motivated from the symmetries of the overlap
Hamiltonian, we show below how this definition arises naturally from the spatial
integral of the time component of the axial current.
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Vector and axial currents in the overlap formalism

Since the overlap operator has exact chiral symmetry on the lattice one can
define chiral projectors which project onto fermion states with definite handed-
ness. The left and the right-handed fermion fields can be defined in terms of
lattice projection operators P̌± as

ψR/L =
1

2
(1± γ̌5)ψ ≡ P̌±ψ, (5.27)

where γ̌5 ≡ γ5(1 + i /D
s
ov). In order to satisfy the Ginsparg-Wilson relation, the

chiral projectors for the conjugate fields are then

ψ†R/L = ψ†
1

2
(1± γ5) ≡ ψ†P±. (5.28)

Instead of following the approach to define currents from the variation of the
Hamiltonian, we can define vector currents in analogy to the continuum by
constructing these quantities in terms of the physical left and right-handed
fermion modes [191, 192]. Based on this approach, the vector current for overlap
fermions in real-time are constructed as

jµv =
1

2
〈[ψ̂†R, γ0γ

µψ̂R]〉+
1

2
〈[ψ̂†L, γ0γ

µψ̂L]〉

=
1

2
〈[ψ̂†, γ0γ

µ
(
1− −i /D

s
ov

2

)
ψ̂]〉; (5.29)

similarly the axial current are

jµa =
1

2
〈[ψ̂†R, γ0γ

µψ̂R]〉 − 1

2
〈[ψ̂†L, γ0γ

µψ̂L]〉

=
1

2
〈[ψ̂†, γ0γ

µγ5

(
1− −i /D

s
ov

2

)
ψ̂]〉 . (5.30)

Numerical Implementation of the overlap operator

The overlap Hamiltonian consists of a matrix sign function ofHW (M), defined in
Eq.(5.20). The inverse square root of HW (M)2 can be expressed as a Zolotarev
rational function [235–238],

1√
HW (M)2

=

NO∑

l=1

bl
dl +HW (M)2

. (5.31)

To compute Eq.(B.23), first we compute the coefficients bl and dl from the small-
est and largest eigenvalues of HW (M)2 [237]. Once the Zolotarev expansion co-
efficients dl are determined, we implement a multi-shift conjugate gradient solver
to calculate the inverse of dl+HW (M)2. The lowest and the highest eigenvalues
for HW (M)2 are calculated using the Kalkreuter-Simma Ritz algorithm [239]
with 20 restarts and a convergence criterion of 10−20. We find that taking
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NO = 20 terms in the Zolotarev polynomial results in |sign(HW )2 − 1| < 10−9.
We note that the lowest and highest eigenvalues of HW (M)2 are sensitive to the
choice of the domain wall height M . We have chosen M such that we obtain the
best approximation to the sign function as well as the Ginsparg-Wilson relation.
For the sphaleron configuration we studied in this work the optimal choice was
M ∈ [1.4, 1.6) (see App. B.2 for more details).

For the multi-shift conjugate gradient, the convergence of the conjugate gra-
dient is determined by the smallest dl, and the convergence criterion is set to
|HW (M)2| − 1 < 10−16. For the largest lattice volumes that we consider in this
study and for the single SU(2) sphaleron gauge configuration to be introduced
in Sec. 5.1.3, the conjugate gradient algorithm reaches the convergence criterion
before the maximum number of steps, which we choose to be 2000. We have also
checked that the resultant overlap Dirac operator satisfies the Ginsparg-Wilson
relation, and found this is satisfied to a precision of O(10−9). We have also
carefully studied the M -dependent cut-off effects for the vector and axial-vector
currents which we would illustrate in the subsequent sections as well as in the
Appendix B.2. We find that the cut-off effects in the current operators are fairly
independent of the choice of M for M ∈ [1.4, 1.6).

Additionally, we have also implemented the overlap Hamiltonian in the pres-
ence an additional static U(1) magnetic field to be introduced in Sec. 5.1.3. For
this, we include the U(1) fields in the Wilson Hamiltonian in Eq.(5.20). We find
that the sign function is implemented to a precision of 10−9 and the overlap
Dirac operator in this case satisfies the Ginsparg-Wilson relation to a precision
of 10−8.

5.1.3 Non-Abelian and Abelian gauge links

Within the classical-statistical approach, the dynamics of non-Abelian and Abelian
fields is usually determined self-consistently by the solution to the classical Yang-
Mills and Maxwell equations. In particular, the presence of the fermionic cur-
rents in the equations of motion for the gauge fields leads to a back-reaction of
fermions, which is naturally included in the approach [193, 240]. Even though
it will be desirable to investigate such effects in the long run, in the present
study we will limit ourselves to a simpler set-up. Instead of a self-consistent
determination of the non-Abelian and Abelian gauge fields, we will treat both
of them as classical background fields whose dynamics is a priori prescribed.

SU(2) gauge links

Concerning the SU(2) gauge links, the dynamics is chosen to mimic that of
a sphaleron transition by constructing a dynamical transition between topo-
logically distinct classical vacua. Starting from the trivial vacuum solution

U
SU(2)
x,i = 1 at initial time t = 0, we construct a smooth transition to a topolog-

ically non-trivial vacuum U
SU(2),G
x,i at time t ≥ tsph through a constant chromo-
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electric field, corresponding to the shortest path in configuration space,

Eax,i =

{
i

gastsph
logSU(2)

(
U

SU(2),G
x,i

)
, 0 < t < tsph

0 , t > tsph

(5.32)

during which the gauge links are constructed according to

U
SU(2)
x,i (t) =

{
e−igastE

a
x,i

σa

2 U
SU(2)
x,i (0) , 0 < t < tsph

U
SU(2),G
x,i , t > tsph

(5.33)

Since the different classical vacua are related to each other by a gauge transfor-
mation, we can easily construct a topologically non-trivial vacuum solution

U
SU(2),G
x,i = GxG

†
x+i. (5.34)

by specifying a gauge transformation Gx with a non-zero winding number.
Based on the usual parametrization of the SU(2) gauge group,

Gx = α0(x)1 + iαa(x)σa , (5.35)

the coordinates αa(x) of the gauge transformation on the group manifold are
obtained by a distorted stereographic projection of the lattice coordinates x =
(x, y, z), which has a non-zero Brouwer degree. By virtue of our construction
detailed in App. ??, the sphaleron transition profile (i.e all points that map
away from the trivial point Gx = 1) is localized on a scale rsph, which we will
refer to as the characteristic size scale of the sphaleron.

U(1) gauge links

With regard to the Abelian gauge links we have chosen to implement a homoge-
nous magnetic field ~B = Bẑ along the z-direction. Since on a periodic lattice
the magnetic flux qa2

sBNxNy is quantized in units of 2π [204], a spatially ho-
mogenous magnetic field cannot be varied continuously and we have chosen to
keep the magnetic field constant as function of time. By choosing the U(1)
components of the gauge links according to [205],

UU(1)
x,x =

{
eia

2
sqBNxy , x = Nx − 1

1 , otherwise
(5.36)

UU(1)
x,y = e−ia

2
sqBnx (5.37)

with Ux,z = 1 and a2
sqB = 2πnB

NxNy
we can then realize different magnetic field

strength by varying the magnetic flux quantum number nB .
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5.2 Sphaleron transition & real-time dynamics
of axial charge production in SU(N)

We now turn to the results of our simulations and first study the dynamics of
axial charges during a sphaleron transition in the absence of electro-magnetic
fields (B = 0). Since the realization of the axial anomaly on the lattice is non-
trivial a first important cross-check is to verify that the continuum version of
the anomaly relation

∂µj
µ
a (x) = 2mηa(x)− 2∂µK

µ(x) , (5.38)

where ∂µK
µ(x) = g2

16π2 trFµν F̃
µν denotes the divergence of the Chern-Simons

current, is correctly reproduced in our simulations. If we focus on the volume
integrated quantities

J0
a(t) =

∫
d3x j0

a(t,x) (5.39)

the net axial charge J0
a can be directly related to the Chern-Simons number

difference, according to

∆J0
a(t) = −2∆NCS(t) , (5.40)

which changes by an integer amount over the course of the sphaleron transition.
Specifically, for the topological transition constructed in Sec. 5.1.3, ∆NCS(t ≥
tsph) = −1 and one expects ∆J0

a(t) = 2 units of axial charge to be created
during the transition.

Simulation results for the real-time evolution of the net axial charge J0
a(t)

are compactly summarized in Fig.5.1, where we compare results obtained for
massless overlap fermions on a 163 spatial lattice with the results obtained
for light Wilson fermions (mrsph = 1.9 · 10−2). Since the typical size scale of
the sphaleron rsph and duration of the sphaleron transition tsph are the only
dimensionful parameters in this case, in the following all spatial and temporal
coordinates will be normalized in units of rsph and tsph respectively; if not stated
otherwise we employ tsph/rsph = 3/2.

Since we employ a fermionic vacuum as our initial condition, the axial charge
is zero initially, as there are no fermions present. As the sphaleron transition
takes place fermions are dynamically produced and an axial imbalance is created.
By comparing the evolution of J0

a(t) with that of the Chern-Simons number,
extracted independently from the evolution of the gauge fields5, it can be clearly
seen that the global version of the anomaly relation in Eq.(5.40), is satisfied to
good accuracy.

Concerning the comparison of different fermion discretizations, we find that
the results for improved Wilson fermions (next to leading order) agree nicely
with the ones obtained in the overlap formulation. However, we strongly empha-
size that the operator improvements for Wilson fermions are essential to achieve

5We use an an O(a2) improved lattice definition described in detail in [125, 178].
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Figure 5.1: A comparison of the net axial charge generated during a sphaleron
transition for improved Wilson (NLO) fermions with mrsph = 1.9 · 10−2 versus
massless overlap fermions on a 163 lattice. Top: The net axial charge for both
discretizations accurately tracks ∆NCS due to the sphaleron transition. Bottom:
Deviations from Eq.(5.40) are shown. Figure taken from [187].

this level of agreement on the relatively small 163 lattices. If in contrast one
was to consider unimproved Wilson fermions, much finer lattices are needed to
correctly reproduce the continuum anomaly and we refer to App. B.2 for further
performance and convergence studies.

Even though our present results are obtained for a single smooth gauge field
configuration, an important lesson can be inferred for upcoming studies on more
realistic gauge fields. Since the computational cost of the simulations scales as
∝ N2

xN
2
yN

2
z , simulations on fine lattices are often prohibitively expensive and

it is therefore of utmost importance to employ improved fermionic operators in
real-time lattice simulations with dynamical fermions.

Based on the excellent agreement obtained between different lattice and
continuum results for volume integrated quantities, we can now proceed to
study the microscopic dynamics of axial charge production in more detail.
In Fig. 5.2 we present a breakup of the different contributions, ∂tj

0
a, ∂ij

i
a and

−2∂µK
µ, to the local anomaly budget (c.f. Eq.(5.38)) evaluated at the center

(x, y, z) = (Nx/2, Ny/2, Nz/2) of the sphaleron transition profile. We have kept
the volume fixed in units of rsph and to compare quantities between different
lattice spacings and different fermion discretizations we have scaled the observ-
ables by appropriate powers of rsph. Besides the rate of increase of the axial
charge density ∂tj

0
a, a significant fraction of the anomaly budget is compensated

by the divergence of the axial current ∂ij
i
a, signaling the outflow of axial charge

from the center to the edges of the transition region. Hence, even though an
axial charge imbalance is dominantly produced in the center of a sphaleron,
axial charge redistributes as a function of time and the axial imbalance at the
center again decreases towards later times.
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Figure 5.2: The local anomaly budget at the center of the sphaleron transition
using improved Wilson (NLO) and overlap fermions. The solid, dash-dotted,
and dotted lines represent data for improved Wilson (NLO) on a 163 lattice,
323 lattice, and overlap fermions on a 163 lattice respectively. The gray line
represent the local derivative of the Chern Simons current, −2∂µK

µ. Figure
taken from [187].

As discussed in Sec. 5.1.1, the lattice anomaly relation for Wilson fermions
is realized through the non-trivial continuum limit of the Wilson term W (x)
also depicted in Fig. 5.2. Indeed, the evolution of the Wilson term W (x) follows
that of the evolution of divergence of the Chern-Simons current −2∂µK

µ, albeit
superseded by fast oscillations. However, the oscillations average out in both
space and time yielding a faster convergence for time and/or volume averaged
quantities. It also re-assuring that the comparison of the results for almost mass-
less Wilson and chiral overlap fermions shows good overall agreement, although
minor deviations remain on the presently available lattice sizes.

5.2.1 Quark mass dependence

So far we have analyzed the non-equilibrium dynamics of axial charge production
for (almost) chiral fermions. We will now vary the quark mass to investigate
the effects of explicit chiral symmetry breaking on axial charge production.
Before we turn to our physical results a technical remark is in order. Since
we find that for Wilson fermions cut-off effects are more pronounced for larger
values of the quark mass, we performed rw averaging of our results, i.e. we
performed real-time evolutions with Wilson parameters rw = ±1 respectively
and calculated observables by averaging the results over each value of rw. Based
on this procedure, a compact summary of our results for massive fermions is
compiled in Fig. 5.3, showing freeze-frame profiles of the local anomaly budget
for different values of the quark mass. Different panels show profiles of the (four)
divergence of the Chern-Simons current −2∂µK

µ, the pseudoscalar density η,
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Figure 5.3: One dimensional profiles of the contributions to the anomaly equa-
tion for different masses in units of r−1

sph. As can be seen, the rate of axial
charge density production at the center of the sphaleron is reduced due to axial
currents carrying charge away and, in the case of a finite quark mass, by the
pseudoscalar density, signaling chirality changing fermion-fermion interactions.
Figure taken from [187].
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(center) and vector current Jzv (right) for different values of the fermion mass
mrsph = 3 · 10−3, 0.25, 0.5, 0.75, 1.0. Comparison with the gray lines in the
left panel demonstrates that the axial anomaly relation is satisfied in all cases.
Figure taken from [229]

the divergence of the axial current ∂ij
i
a and the time derivative of the local axial

charge density ∂tj
0
a, along one of the spatial directions according to

∂µK
µ(z, t) =

g2

8π2

∫
d2x⊥ E

a
i (x)Bai (x) , (5.41)

and similarly for the other components at three different times t/tsph = 1/3, 2/3, 1
of the sphaleron transition. Different curves in each panel correspond to the
results obtained for different values of the fermion mass ranging from almost
massless quarks mrsph = 1.9 · 10−2 to intermediate values of mrsph = 1.

Starting with the dynamics at early times (t/tsph = 1/3), the time derivative
of the axial charge density shows a clear peak at the center corresponding to the
creation of a local imbalance due to the sphaleron transition. While for almost
massless quarks mrsph = 1.9 · 10−2, the rate of axial charge production ∂tj

0
a is

approximately equal to the divergence of the Chern-Simons current −2∂µK
µ,

for heavier quark masses a significant fraction of the local anomaly budget is
balanced by the contribution of the pseudoscalar density 2mη resulting in a
smaller rate of axial charge production, both locally as well as globally.

Once a local imbalance of axial charge is created at the center, axial currents
jia with a negative (positive) divergence ∂ij

i
a at the center (edges) develop and

contribute an outflow of the axial charge density away from the center. Even
though the divergence of the Chern-Simons current −2∂µK

µ remains positive
at times t/tsph = 2/3, its contribution to the axial charge production rate j0

a

at the center is largely compensated by the outward flow of axial currents ∂ij
i.

In particular, for massive quarks (mrsph > 1/2), the combined effects of ax-
ial charge dissipation due to a large pseudoscalar density 2mη and outflowing
currents ∂ij

i lead to a depletion of axial charge at the center (∂tj
0
a < 0) even

though the sphaleron transition is still in progress.
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Figure 5.5: Profiles of the axial and vector densities and currents at different
times of the real-time evolution for fermions with mrsph = 1.9 · 10−2 for strong
magnetic fields qBr−2

sph = 7.0 at times t/tsph = 0.6, 0.9, 1.1, 1.3, 1.6. Figure taken
from [187].

Subsequently at even later times, axial charge continues to spread across the
entire volume leading to a depletion of axial charge at the center and an increase
towards the edges. In the case of massive quarks, the pseudoscalar density
contributes towards the dissipation of axial charges, and the global imbalance
J0
a decreases significantly as a function of time. Our simulations clearly point to

the importance of including such dissipative effects due to a finite quark masses,
and we will further elaborate on their influence on the dynamics of axial and
vector charges in Sec. 5.3.2.

5.3 Chiral magnetic effect & Chiral magnetic
wave in SU(N)× U(1)

We now turn to investigate the real-time dynamics of fermions during a sphaleron
transition in the presence of a strong (Abelian) magnetic field. Simulations are
performed on larger 24 × 24 × 64 lattices with improved Wilson fermions. We
consider a homogenous magnetic field B in the z direction (c.f. Sec. 5.1.3) and
prepare the initial conditions as a fermionic vacuum in the presence of the mag-
netic field. Since the Abelian magnetic field introduces a non-trivial coupling
between the dynamics of vector and axial charges due to the Chiral Magnetic
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Effect (CME) and Chiral Separation Effect (CSE) [241], the SU(N) × U(1)
system exhibits interesting dynamics. Below we expand upon the quark mass
and magnetic field dependence of the dynamics. Before we address these points
in more detail, we will briefly illustrate the general features of the dynamics of
vector and axial charges based on simulations for light quarks mrsph = 1.9 ·10−2

in a strong magnetic field qBr−2
sph = 7.0.

The basic features of the dynamics of vector and axial charges are compactly
summarized in Fig. 5.5, showing three dimensional profiles of the axial and
vector charge (j0

a/v) and current (jza/v) densities at different times (t/tsph =

0.6, 0.9, 1.1, 1.3, 1.6) during and after a sphaleron transition. As discussed in
the previous section, the SU(N) sphaleron transition leads to the creation of an
axial imbalance observed at early times in the top panel of Fig. 5.5. However,
in the presence of the U(1) magnetic field, the generation of an axial charge
imbalance is now accompanied by the creation of a vector current along the
magnetic field direction (CME), which can be observed in the bottom panel of
Fig. 5.5. Clearly the spatial profile of the vector current follows that of the axial
charge distribution as expected from the constitutive relation jzv ∝ j0

aB
z for the

Chiral Magnetic Effect.

As seen in the second panel of Fig. 5.5 the vector current leads to a separation
of vector charges along the direction of the magnetic field at early times. Over
the timescale of the sphaleron transition, positive (red) and negative (blue)
charges accumulate at the opposites edges of the sphaleron transition region
and give rise to a dipole-like structure of the vector charge distribution. Due
to the Chiral Separation Effect (CSE), the presence of a local vector charge
imbalance at the edges in turn induces an axial current which is depicted in
the third panel of Fig. 5.5 and leads to a separation of axial charge along the
direction of the magnetic field. Ultimately the interplay of CME and CSE lead
to formation of a Chiral Magnetic Wave, associated with the coupled transport
of vector and axial charges along the direction of the magnetic field which can
be observed at later times in Fig. 5.5.

Specifically for light fermions in the presence of a strong magnetic field, the
emerging wave packets of axial charge and vector current are strongly localized
and closely reflect the spacetime profile of the sphaleron. However, as we will
see shortly this is no longer necessarily the case for heavier fermions or weaker
magnetic fields. We also note that in our present setup, the dynamics at late
times is somewhat trivial as the outgoing shock-waves are effectively propagating
into the vacuum. While in a more realistic scenario the number of sphaleron
transitions at early times is presumably still ofO(1) [125], the chiral shock-waves
are created from and move through a hot plasma and it will be interesting to
observe how the subsequents dynamics is altered by further interactions with
the constituents of the plasma.

Before we analyze the anomalous transport dynamics in more detail, we
briefly comment on the comparison of Wilson and Overlap discretizations in
the SU(2) × U(1) case. In order to perform a quantitative comparison of our
results with different fermion discretizations, we will focus on the longitudinal
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Figure 5.6: Comparison of longitudinal profiles of the vector (left) and ax-
ial (right) charge densities for improved Wilson (NLO) fermions and over-
lap fermions with masses mrsph = 1.9 · 10−2 in an external magnetic field
qB = 3.5r−2

sph at times t/tsph = 0.34, 1, 1.67 (top to bottom). Figure taken
from [187].

profiles of vector and axial charge densities defined as

j0
a/v(t, z) =

∫
d2x⊥ j

0
a/v(t,x⊥, z). (5.42)

Our results for somewhat smaller magnetic field strength qB = 3.5r−2
sph are

compared in Fig. 5.6, showing freeze-frame profiles of the longitudinal vector
and axial charge distribution at three different times t/tsph = 0.34, 1, 1.67. We
observe a striking level of agreement between Wilson and Overlap results. Only
at late times minor deviations between different discretizations become visible.
However, at this point finite volume effects also start to become significant on
the smaller 16× 16× 32 lattices employed for this comparison.

5.3.1 Magnetic field dependence & comparison to anoma-
lous hydrodynamics

We will now investigate in more detail the magnetic field strength dependence
of these anomalous transport phenomena. Even though the basic features of
the dynamics of vector and axial charges observed in Fig. 5.5 in the strong field
limit remain the same for all values of the magnetic field considered in our study,
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Figure 5.7: Longitudinal profiles of the vector (left) and axial (right) charge
density for different magnetic fields qB in units of r−2

sph and for mrsph = 1.9·10−2

at times t/tsph = 0.67, 1.67, 2.67 (top to bottom). Figure taken from [187].

some interesting changes occur when the magnitude of the magnetic field, qB,
becomes comparable to the size of the inverse sphaleron radius squared, r−2

sph,
which is the other physical scale in our simulations.

Before we turn to the discussion of our simulation results, it is useful to first
discuss how the magnetic field dependence enters in a macroscopic description
in anomalous hydrodynamics [155]. In anomalous hydrodynamics the dynamics
of vector and axial currents (in the chiral limit) is uniquely determined by the
(anomalous) conservation of the (axial) vector currents

∂µj
µ
v = 0 , ∂µj

µ
a = −2∂µK

µ , (5.43)

once the constitutive relations for the currents are enforced. In the ideal limit
the constitutive relations take the form [155]

jµv,a = nv,au
µ + σBv,aB

µ , (5.44)

and the magnetic field dependence enters only via the explicit B dependence
of the transport coefficient σBv/a. In the weak field regime (qB � r−2

sph) the

conductivity is typically independent of the magnetic field and the CME/CSE
currents are linearly proportional to the magnetic field B. In contrast in the
strong field limit (qB � r−2

sph), the conductivity of a free fermi gas becomes

σBv/a = na/v/B [15] for a unit charge and the late time dynamics of vector and
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axial currents admits a simple analytic solution [229]

j0
v,a(t > tsph, z) =

1

2

∫ tsph

0

dt′
[
S
(
t′, z − c(t− t′)

)
∓ S

(
t′, z + c(t− t′)

)]
(5.45)

where S(t, z) = − g2

8π2

∫
d2x⊥Tr Fµν F̃µν reflects the spacetime profile of the

sphaleron transition. Most remarkably, the solution in Eq.(5.45) shows explicitly
that the anomalous transport dynamics becomes independent of the strength of
the magnetic field B in the strong field limit. However, this asymptotic scenario
is unlikely to be realized in real-world experiments and it is hence important
to understand the real-time dynamics of vector and axial charges beyond such
simple asymptotic solutions.

Our simulation results for different magnetic field strength qBr2
sph = 0.8, 1.6,

3.5, 7.0 are presented in Fig. 5.7, which shows the longitudinal profile of vec-
tor and axial charges densities j0

a/v(z, t) defined in Eq.(5.42) for various times
during and after the sphaleron transition. Even though the production of ax-
ial charge j0

a(z, t) during the transition (t < tsph) is not altered significantly,
the subsequent propagation of the chiral shock-waves is clearly affected by the
strength of the magnetic field. While for the largest value of qBr2

sph = 7.0,
the magnetic field can be interpreted as dominating over all other scales and
the late time dynamics is accurately described by the asymptotic solution to
anomalous hydrodynamics in Eq.(5.45), significant deviations from the asymp-
totic behavior occur for smaller values of qBr2

sph = 0.8, 1.6, 3.5. Specifically,
one observes from Fig. 5.7 that a smaller CME current is induced for smaller
values of the magnetic field, resulting in a reduced height of the vector charge
peaks; in contrast the propagation velocities and profiles of the vector charge
distribution are unaffected within this range of parameters.

Since a smaller amount of vector charge imbalance in turn leads to a reduc-
tion of the induced axial currents related to the CSE, clear differences emerge
for the distribution of axial charges at later times. While for strong magnetic
fields essentially all of the axial charge is subject to anomalous transport away
from the center, a significant fraction of axial charge remains at the center for
weaker magnetic field. Considering for instance the curves for qBr2

sph = 1.6, the
axial charge distribution at later times can be thought of as a superposition of
the free (B = 0) distribution and the Chiral Magnetic Wave contributing clearly
visible peaks at the edges.

One can further quantify the magnetic field dependence by extracting the
amount of vector charge separation achieved for different magnetic field strength.
More precisely, we compute

∆J0
v (t) =

∫

z≥0

dz j0
v(t, z) , (5.46)

corresponding to integrated the amount of vector charge contained in one of the
oppositely charged wave-packets in Fig. 5.7. Simulation results for the magnetic
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field dependence of the charge separation signal are presented in Fig. (5.8),
where different symbols correspond to the value of ∆J0

v (t) at t = 3/2tsph and
respectively the maximum value of ∆J0

v (t) observed over the entire simulation
time. In accordance with the expectation that the CME current is linearly
proportional to the magnetic field strength in the weak field regime, one observes
an approximately linear rise of the charge separation signal at smaller values
of the magnetic field strength qB . 4/r2

sph. In contrast for larger magnetic
fields, the amount of vector charge separation begins to saturate, asymptotically
approaching unity in the strong field limit.

Within our microscopic real-time description we can also attempt to verify
directly to what extent the constitutive relations in Eq.(5.44) – assumed in a
macroscopic description in anomalous hydrodynamics – are satisfied throughout
the dynamical evolution of the system. In order to perform such a comparison,
we extract the vector and axial charge ∆J0

a/v(t) as well as the corresponding

current densities ∆Jza/v(t) for the left- and right moving wave packets, and
investigate the following ratios of net currents to net charges

CCME(t) =
∆Jzv (t)

∆J0
a(t)

, CCSE(t) =
∆Jza (t)

∆J0
v (t)

. (5.47)

If one assumes the validity of the constitutive relations in Eq.(5.44), one can
immediately verify that both CCME and CCSE tend towards unity in the strong
field limit [15]. In contrast, the weak field regime constitutive relations take
the form ∆Jzv/a ∝ (∆J0

a/v)
1/3qB at low temperatures and ∆Jzv/a ∝ (∆J0

a/v)qB
at high temperatures. Even though the ratios CCME and CCSE are no longer
time independent constants in this limit, their numerical values are significantly
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smaller than unity and decrease as a function of axial/vector charge density
[15].

Our results for these ratios are presented in Fig. 5.9, where we show the
time evolution of Ceff

CME and Ceff
CSE for four different values of the magnetic

field strength. Irrespective of the strength of the magnetic field one observes
the same characteristic behavior of Ceff

CME characterized by a rapid rise towards
an approximately constant behavior at later times. In contrast for Ceff

CSE, the
axial current Jza also receives a contribution from the outflow of axial charge
that is independent of the vector charge density J0

v . Since the vector charge
imbalance J0

v is initially small, this contribution dominates over the anomalous
transport contribution at early times. Hence the current ratio Ceff

CSE approaches
its asymptotic value from above and can also exhibit asymptotic values larger
than unity for small field strength.

Quantitatively the values observed for Ceff
CME (Ceff

CSE) at later times are close
to the strong field limit for qB = 3.5, 7 and slightly smaller (larger) for qB =
0.8, 1.6 and it is also important to point out that the initial build up of the
CME and CSE currents occurs on a shorter time scale for larger magnetic field
strength. Oscillations around the constant value are also clearly visible at late
times and the oscillation frequency again depends strongly on the strength of
the magnetic field. However we can presently not exclude the possibility that
the oscillations at late times are due to residual finite volume effects in our
simulations and we will therefore not comment further on this behavior.

While the results in Fig. 5.9 nicely confirm the approximate validity of con-
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stitutive relations at late times, it is also striking to observe that vector (CME)
and axial (CSE) currents are not created instantaneously from the local imbal-
ance of axial or vector charges. Conversely the results in Fig. 5.9 serve as a
clear illustration of the retarded response and strongly suggest that, in order to
describe the dynamics on shorter time scales, macroscopic descriptions should
be modified to account for a finite relaxation time of anomalous currents. In
the context of anomalous hydrodynamics, a natural way to include such effects
is to follow the example of Israel and Stewart [242] by promoting the anomalous
contribution to the currents to a dynamical variable ξµv/a that relaxes to the con-

stitutive value σBv/aB
µ on a characteristic time scale τv/a. Since in high-energy

heavy-ion collisions the lifetime of the magnetic field is presumably very short,
it appears that the introduction of a finite relaxation time could indeed have
quite dramatic effects. Hence it would also be important to understand more
precisely which elementary processes determine the relevant time scale for the
anomalous relaxation times. However, this question is beyond the scope of the
present work.

5.3.2 Effects of finite Quark Masses

We discussed in Sec. 5.2.1 how explicit chiral symmetry breaking due to finite
quark masses can significantly alter the production of an axial charge imbalance.
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We will now investigate in more detail the effects of explicit chiral symmetry
breaking on the subsequent dynamics, characterized by the anomalous trans-
port of axial and vector charges in the presence of a background magnetic field.
Our results for different fermion masses are compactly summarized in Fig. 5.10,
where we show again the longitudinal profiles of vector and axial charge den-
sities at different times during and after the sphaleron transition. While the
simulations are performed with improved Wilson fermions for a relatively large
magnetic field strength, qBr2

sph = 7.0, we vary the masses from almost chiral
fermions to fermions with large masses of the order of the inverse sphaleron
size, mrsph = 1, where dissipative effects clearly become important on the time
scales of interest.

In accordance with the discussion in Sec. 5.2.1 one observes from Fig. 5.10
that for heavier fermions (mrsph = 0.5, 1) the production of an axial charge
imbalance at early times (t/tsph = 0.67) is suppressed compared to the almost
massless case mrsph = 1.9·10−2. Since the anomalous vector currents are locally
proportional to the axial charge imbalance, a similar suppression of the vector
charge density of heavier fermions (mrsph = 0.5, 1) can also be observed at early
times (t/tsph = 0.67). Over the course of the evolution, drastic differences in
the distribution of vector and axial charges emerge between light and heavy
fermions. One clearly observes from Fig. 5.10, how at times t/tsph = 1.67, 2.67
the overall amount of axial and vector charge separation is strongly suppressed
for larger values of the fermion mass (mrsph = 0.5, 1). Moreover, as one would
naturally expect for massive charge carriers, it is also evident from Fig. 5.10
that the propagation velocity of the chiral magnetic shock-waves decreases for
larger values of the quark mass.

In order to further quantify the quark mass dependence of the anomalous
transport effects, we follow the same procedure outlined in Sec. 5.2.1 and ex-
tract the vector and axial charge separation. Our results for the amount of
vector/axial charge separation ∆J0

v/a are presented in Fig. 5.11 as a function of

the quark mass. Different symbols in Fig. 5.11 correspond to the vector/axial
charge separation observed at a fixed time t/tsph = 1.5 and respectively the max-
imum value throughout the simulation (0 ≤ t/tsph ≤ 3). Most strikingly, one
observes from Fig. 5.11 that clear deviations from the (almost) massless case
emerge already for rather modest values of the quark mass. One finds that,
for example for mrsph = 0.25, the observed vector charge separation signal is
readily reduced by approximately 30%. Considering even heavier quarks up to
mrsph = 1, the vector charge separation signal almost disappears completely as
dissipative effects dominate the dynamics.

In view of the significant mass dependence observed in our simulations it
would be interesting to compare our microscopic simulation results at finite
quark mass to a macroscopic description of anomalous transport. However, we
are presently not a aware of a macroscopic formulation that properly includes the
effects of explicit chiral symmetry breaking. Even though mass effects might be
small for phenomenological applications [158, 159, 243] in the light (u, d) quark
sector, they appear to be highly relevant with regard to the phenomenological
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description of the CME in the strange quark sector. Based on our results in
Fig. 5.11, we expect a significant reduction of the possible CME signals for
strange quarks, such that overall the situation may be closer to a two-flavor
scenario [244].

5.4 Conclusions & Outlook

We presented a real-time lattice approach to study non-equilibrium dynamics of
axial and vector charges in the presence of non-Abelian and Abelian fields. Even
though the approach itself is by now well known and established in the litera-
ture, we pointed out several improvements related to the choice of the fermion
discretization which are important to achieve a reliable description of the dy-
namics of axial charges in particular. Specifically, we pointed out that the use
of tree-level improvements and r-averaging for the Wilson operator are essen-
tial to accelerate the convergence to the continuum limit and produce physical
results on available lattice sizes. We also discussed the advantages and disad-
vantages of using overlap fermions in real-time lattice simulations and, to the
best of our knowledge, performed the first real-time 3+1D lattice simulations
with dynamical fermions with exact chiral symmetry.

Based on our real-time non-equilibrium formulation, we studied the dynam-
ics of axial charge production during an isolated sphaleron transition in SU(2)
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Yang-Mills theory and explicitly verified that the axial anomaly recovered is sat-
isfied to good accuracy at finite lattice spacing for both improved Wilson and
overlap fermions. Beyond the dynamics for light fermions, we also investigated
dissipative effects due to finite quark mass and reported how the emergence of
a pseudoscalar density leads to a significant reduction of the axial charge im-
balance created. Even though at present the sphaleron transition in the back-
ground gauge field configuration was constructed by hand and does not satisfy
the equations of motion for the non-Abelian gauge fields, we emphasize that
approximations of this kind made within our exploratory study can be relaxed
in the future without any drawbacks on the applicability of our real-time lattice
approach.

By introducing a constant magnetic field, we subsequently expand our sim-
ulations to a SU(2)×U(1) setup to study the real-time dynamics of anomalous
transport processes such as the Chiral Magnetic and Chiral Separation Effect.
We showed how the interplay of CME and CSE lead to the formation of a chiral
magnetic shock-wave and demonstrated explicitly the dynamical separation of
vector charges along the magnetic field direction. We also investigated in detail
the quark mass and magnetic field dependence of these anomalous transport
effects. Most importantly, we showed that the amount of vector charge sepa-
ration created during this process is linearly proportional to the magnetic field
strength (at small qB) and decreases rapidly as a function of the quark mass.
Even though for light (u, d) flavors, such quark mass effects are most likely
negligible over the typical time scales of a heavy-ion collision, the situation is
different with regard to strange quarks, where it appears necessary to take these
effects into account in a phenomenological description. Since in contrast to the
vector current the axial current is not conserved, it would be extremely im-
portant to investigate how creation and dissipation of axial charges, which are
accurately described within our microscopic framework, can be accounted for
within a macroscopic description. On a similar note, we also studied the onset
of the CME and CSE currents and reported first evidence for a finite relaxation
time of vector and axial currents. Even though a finite relaxation time may
have important phenomenological consequences, given the short lifetime of the
magnetic field in high-energy heavy-ion collisions, it is presently unclear which
microscopic processes determine the relevant time scale and we intend to return
to this issue in a future publication. Our simulations were performed for an
isolated sphaleron transition (c.f. Sec. II C 1), allowing us to clearly observe
non-perturbative generation and transport of axial charges in a topologically
non- trivial background. However, the results presented in this paper can only
serve as a qualitative benchmark of the real-time dynamics of anomalous trans-
port effects. In a more realistic scenario one expects the quantitative behavior
of anomalous transport to be modified through further interactions with the
constituents of the plasma, and it will be in- teresting to explore these effects
in more detail in the future by performing analogous studies on more realistic
gauge field ensembles.

Despite the fact that our present simulations of anomalous transport phe-
nomena were performed in a drastically simplified setup, our work provides
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an important step towards a more quantitative theoretical understanding of
the CME and associated phenomena in high-energy heavy-ion collisions. Since
the life time of the magnetic field in heavy-ion collisions is short, it is impor-
tant to understand the dynamics of anomalous transport during the early time
non-equilibrium phase. However, as we pointed out, the theoretical techniques
developed in this work can be used to the address open questions in this context
within a fully microscopic description of the early time dynamics. In the fu-
ture it will be important to extend these studies to include more realistic gauge
configurations and a spacetime dependent magnetic field in order to address
important phenomenological issues. Besides the applications to high-energy
nuclear physics, the theoretical approach advocated in this chapter has a large
variety applications e.g. in the study of cold electroweak baryogenesis [195, 212],
strong field QED [76], or cold atomic gases [86]. In this context, the technical
developments achieved in this work should also be valuable and we are looking
forward to explore further applications of our ideas.
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Chapter 6

World-line construction of a
covariant chiral kinetic
theory

This chapter is based on ”The chiral anomaly, Berry’s phase and chiral kinetic
theory, from world-lines in quantum field theory” (N.M., R. Venugopalan),
arXiv:1701.03331 (submitted to Physical Review Letters) [245] and ”World-
line construction of a covariant chiral kinetic theory” (N.M., R. Venugopalan),
arXiv:1702.01233 (submitted to Physical Review D) [246]. In this chapter we
discuss a novel world-line framework for computations of the Chiral Magnetic
Effect (CME) in ultrarelativistic heavy-ion collisions. Starting from the fermion
determinant in the QCD effective action, we show explicitly how its real part
can be expressed as a supersymmetric world-line action of spinning, colored,
Grassmanian particles in background fields. Restricting ourselves for simplicity
to spinning particles, we demonstrate how their constrained Hamiltonian dy-
namics arises for both massless and massive particles. In a semi-classical limit,
this gives rise to the covariant generalization of the Bargmann-Michel-Telegdi
equation; the derivation of the corresponding Wong equations for colored parti-
cles is straightforward. We outline how Berry’s phase arises in a non-relativistic
adiabatic limit for massive particles. We extend the discussion here to systems
with a finite chemical potential. We discuss a path integral formulation of the
relative phase in the fermion determinant that places it on the same footing as
the real part. We construct the corresponding anomalous world-line axial vector
current and show in detail how the chiral anomaly appears. Our work provides
a systematic framework for a relativistic kinetic theory of chiral fermions in
the fluctuating topological backgrounds that generate the CME in a deconfined
quark-gluon plasma. We outline some further applications of this framework in
many-body systems.

101
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6.1 Introduction

The CME has already been observed in condensed matter experiments [19].
Observing its effects in heavy-ion collisions however poses a significant chal-
lenge [16, 20]. It requires an understanding of the earliest times in the heavy-
ion collision, as the Abelian magnetic fields generated by “spectator” nucleons
decrease very rapidly in time [17, 18]. Weak coupling frameworks applicable at
high energies indicate that, at these early times, the strongly correlated quark
and gluon matter is far off-equilibrium in a highly overoccupied “Glasma” state,
which subsequently thermalizes to a quark-gluon plasma (QGP). Recent studies
suggest that sphaleron transitions are far more frequent in the Glasma [125],
than in the QGP [126]. Classical-statistical real-time simulations that include
the dynamics of chiral fermions [52] clearly demonstrate the emergence of the
CME in background magnetic fields [187, 229].

However this real-time description of the Glasma breaks down when, due
to the spacetime expansion of the Glasma, typical occupation numbers become
of order unity. In this dilute regime of the Glasma, classical-statistical meth-
ods must be matched to kinetic descriptions that describe the dynamics of the
system as a weakly interacting gas of quasi-particles. Real-time simulations
studying the thermalization process in the Glasma [41] show that the classical-
statistical description matches smoothly on to an effective kinetic theory [247],
which in turn can be matched to relativistic viscous hydrodynamics at later
times. This description, when extrapolated to realistic values of coupling, gives
values for thermalization times that are compatible with hydrodynamic descrip-
tions of heavy-ion data. Phenomenological studies in such a hybrid framework
have now been extended to photon production, whose yields are sensitive to all
spacetime stages of a heavy-ion collision [248].

Similar considerations apply to the classical-statistical description of the
spacetime evolution of the chiral magnetic current through the Glasma. The de-
velopment of a chiral kinetic theory that interpolates between classical-statistical
Glasma dynamics of axial charges at early times and hydrodynamic descriptions
of such dynamics in the QGP [137, 155, 157–159] at late times is therefore essen-
tial for systematic phenomenological analysis of the CME in heavy-ion collisions.
There has been a significant amount of work in developing such a chiral kinetic
theory both in the context of condensed matter systems and for a deconfined
QGP [142–154]. In several of the treatments, systems with large chemical po-
tential are considered. The dynamics includes a Berry term corresponding to
the Berry phase [141] that arises in such systems in an adiabatic limit, valid
for excitations near the Fermi surface. While such treatments may be appro-
priate for systems containing large chemical potentials, they are problematic
in relativistic contexts such as heavy-ion collisions where the assumptions of
adiabaticity may not apply and where chemical potentials are not a priori large.

A further concern with chiral kinetic treatments is the possible conflation of
topological effects due to the chiral anomaly and those arising from geometric
phases in adiabatic and non-relativistic limits. Unlike the latter, the topolog-
ical effects due to anomalies are generic and independent of kinematic limits.
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The connection between anomalies and Berry’s phase, which has been made fre-
quently in the literature [124, 249, 250] (see [251] for a review), is the subject of
a critical series of papers by Fujikawa and collaborators [252–254], where they
point to distinctions between the topology of Berry’s phase and those of the
anomaly [255, 256]).

In this work, we will develop a novel framework towards constructing a con-
sistent Lorentz-covariant chiral kinetic theory that is general valid in relativistic
contexts and makes no requirement that the dynamics be adiabatic. To achieve
this goal, we will adopt the world-line approach1 to quantum field theory [258–
265]. This world-line framework is closely connected to the Polakov path integral
in string theory [266]. These connections were very effectively exploited in the
work of Bern, Dixon, Dunbar and Kosower [267, 268] relating string amplitudes
to multi-leg Feynman diagrams in QCD. More to point, it is employed in the
seminal work on quantum anomalies by Alvarez-Gaume and Witten [269, 270]
where it is shown how anomalies arise in the framework from the phase of the
fermion determinant – as anticipated in the work of Fujikawa [122, 123].

The principal value of the D’Hoker-Gagné world-line construction is in its
treatment of the relative phase in the fermion determinant which, as noted, is
responsible for the chiral anomaly. By an ingenious trick, this phase can be
rewritten as a path integral, with a point particle “action”. This action has an
identical structure to the action arising from the real part of the fermion deter-
minant, with the only (and critically important) change being that the gauge
fields are multiplied by a regulating parameter which breaks chiral symmetry
explicitly. In the letter, we briefly outlined how the chiral anomaly arises in the
D’Hoker-Gagné construction.

We will here develop many of the ideas outlined in [245] and provide an ex-
plicit derivation, adapted to our QED/QCD framework, of the D’Hoker-Gagné
formalism. For the real part of the effective action, we explicitly write down the
point particle action, and demonstrate that the equations of motion for QED
are the covariant generalization of the Bargmann-Michel-Telegdi [271] equa-
tions for spinning particles in external fields. (For colored particles in QCD,
the counterparts are the Wong [272] equations.) In particular, we will discuss
the constrained Hamiltonian dynamics of spinning particles [273–277] in the
world-line approach. This discussion is of considerable importance in deriving
the non-relativistic limit for spinning particles.

Another novel feature of this manuscript is an explicit derivation of the
chiral anomaly in the D’Hoker-Gagné world-line construction. In their work,
they used a perturbative expansion to show how a Wess-Zumino-Witten term
arises [255, 256] from the relative phase in the fermion determinant. In our work,
in addition to clarifying some subtle points in the D’Hoker-Gagné construction,
we will instead employ a non-perturbative variational method to derive the
anomaly equation explicitly as the scalar product of electric and magnetic fields.
The corresponding world-line anomalous axial current has a structure we will

1The original ideas can be traced all the way back to seminal works by Feynman [257] and
Schwinger [69].
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find useful in constructing a chiral kinetic theory.

This observation provides the segue to note that world-line treatment of
the real and imaginary terms in the effective action for the fermion determinant
both provide essential ingredients in a kinetic description of relativistic fermions
in the background of Abelian or non-Abelian gauge fields. The quasi-particle
limit of the theory, and furthermore the Liouville description of phase space, is
contained entirely in the real part of the fermion effective action (continued to
Minkowskian metric), independently of the anomaly. The Hamilton evolution
of the corresponding equations of motion, formulated in proper time τ , allow
for a Lorentz-covariant kinetic theory. Spin effects related to the definition of a
Lorentz frame, such as recently proposed “side-jumps” are natural outcomes of
a covariant description of spinning particles [146]. We showed in our letter [245]
that for a non-relativistic limit corresponding to massive particles, adiabaticity
conditions on the Larmor interaction energy, generate a Berry phase. Since this
derivation only involves the real part of the fermion determinant, and the chiral
anomaly arises from its imaginary piece, our work is an explicit demonstra-
tion of the prior observation by Fujikawa and collaborators [122, 123] regarding
the distinction between the topological effects arising from each. For massless
relativistic particles, and for situations where the Larmor energy is large, the
topology of the anomaly alone is relevant.

An exception is the case of systems with large chemical potential, the original
focus of the kinetic theory construction in [142, 144]. We will extend our discus-
sion of non-relativistic limits in [245] to this case. We will show explicitly how
the adiabaticity condition for the Larmor energy arises in this case. However
even though there is a Berry phase in such situations, it is still distinct from the
effects from the anomaly. Our work provides a first principles framework to ad-
dress the fascinating interplay of these distinct effects. In work in progress2, the
formalism discussed here will be employed to derive the analogous “anomalous”
Bödeker theory [279]. The resulting generalization of chiral kinetic theory can
then be matched to results from classical-statistical simulations at early times
and to anomalous hydrodynamics at late times.

The outline of this manuscript is as follows: In section 6.2, we begin by giving
an introduction to the world-line method and we work out its formulation for a
Dirac fermion coupled to both vector and axial-vector gauge fields. In particular,
we introduce a 16 dimensional matrix formulation of the fermion effective action.
As we shall discuss, this formulation is convenient for implementing a coherent
state formalism for spinning and colored fields. We will show how the real part
of the effective action is expressed in terms of a Grassmanian path integral
over a supersymmetric point particle action for such fields. We next discuss
the D’Hoker-Gagné path integral construction for the imaginary phase in the
fermion determinant and show that it has a similar structure to the path integral
formulation of the real part of the effective action. We use this construction
to derive expressions for the vector and anomalous axial vector current which
fullfil the (anomalous) Ward-identities known from second quantization. We

2For another attempt, we refer the reader to [278].
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pay particular attention to the anomaly equation, which has novel features, and
provide a detailed derivation to expose these features. In section 6.3 we perform
a saddle point expansion to obtain the pseudo-classical dynamics of spinning
particles. These were studied extensively previously in the literature and we
connect our results to this body of work [273–277] in sec. 6.3.1. We note some
parallels between our work and those of Stone and collaborators [147, 148, 150]
though the derivations are different and employ different techniques.

The pseudo-classical limit of the world-line effective action leads to a Lorentz
covariant form of the “anomalous” equations of motions put forward by [142–
146, 152], when taking the non-relativistic and adiabatic limit in section 6.3.2.
A kinetic theory can be constructed from the world-line framework for half-
integer particles; as noted, the equations of motion obtained from the stationar-
ity condition of the world-line path integral constitute characteristic equations
for Liouville evolution of the phase space density. We investigate the case of
massless particles in the presence of large chemical potential and discuss the
corresponding non-relativistic adiabatic limit.

Our findings are supplemented by several appendices: In appendix C.1, we
provide details of a derivation that is not discussed in the main text. In appendix
C.2, we discuss the symmetry properties of the world-line action for spin-1/2
particles, corresponding to an N = 1 supersymmetric quantum mechanics. As
our derivations generalize to arbitrary internal symmetry groups, we given an
introduction in appendix C.3 to how color degrees of freedom can be treated
semi-classically using Grassmanian variables. In appendix C.4, we discuss the
difference between covariant and consistent anomalies. Finally in appendix C.5,
we discuss in detail the meaning of the pseudo-classical limit in the world-line
framework, which is tied to a hidden gauge symmetry and to constraints, which
arise upon quantization.

6.2 The world-line framework

6.2.1 Introduction

In this section, we shall derive in the world-line formalism, the one-loop effec-
tive action for a Dirac fermion coupling to vector and axial-vector gauge fields.
We will show that in Euclidean metric the axial anomaly can be understood as
arising from the imaginary part of the effective action [269, 270]. This result is
transparently related to the violation of chiral symmetry. We begin by intro-
ducing the main ideas of the relevant world-line framework. Some parts of our
derivation parallel the work of D’Hoker and Gagné [280, 281]. We will however
place special emphasis on some of the details in the definition of single particle
path integrals. The careful treatment of these is relevant for the realization of
the axial anomaly. The expression for the fermionic part of the action in the
background of vector (A) and axial-vector (B) fields is

S[A,B] =

∫
d4x ψ̄

(
i/∂ + /A+ γ5 /B

)
ψ , (6.1)
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where we allow the fermion fields to carry any internal (gauge) symmetry. We
introduced here an auxilliary Abelian axial-vector field B because we are in-
terested in the color singlet axial anomaly. We will treat B as a variational
parameter which we will set to zero eventually. In the following, we have ab-
sorbed all couplings into the definition of the fields for convenience and they
can be easily restored when necessary.

The fermionic part of the full path integral containing the action in Eq.(6.1)
is a Grassmanian Gaussian integral and can be performed. This gives the de-
terminant of the bilinear operator, det(i/∂ + /A+ γ5 /B), from which the fermion
effective action can be defined,

−W [A,B] = log det(θ), θ ≡ i/∂ + /A+ γ5 /B . (6.2)

We can now split Eq.(6.2) in a real and imaginary part,

W [A,B] = WR[A,B] + iWI[A,B], (6.3)

which we discuss in detail below. We will continue with massless quarks; the
extension to massive particles is straightforward and for the problems of inter-
est will be discussed explicitly later. Since the imaginary piece above may be
unfamiliar to some, we mention for future reference that, albeit in the physical
case one has W [A,B = 0]I = 0, the variation δW [A,B]I/δBµ is non-zero even
if B = 0. This variation defines the anomalous axial-vector current. For the
sake of illustration, our final results will be given for the QED anomaly, but
we will discuss how our findings can be generalized to non-Abelian theories as
well. In Appendix C.1 we provide supplementary material and elaborate on
some intermediate steps in the calculation.

6.2.2 Real Part

In this section, we will derive an expression for the real part of the fermion
determinant, defined in Eq.(6.2) and Eq.(6.3). The real part is related to the
modulus of the operator θ and can be expressed as

WR = −1

2
log det

(
θ†θ
)

= −1

2
Tr log

(
θ†θ
)
. (6.4)

The main idea behind the world-line technique is to find an integral represen-
tation for the logarithm of the positive definite operator θ†θ. As we will shown
below, this is equivalent to defining a quantum mechanical path integral for a
relativistic particle on a closed loop, which is the world-line. We will require
a basis of states for the trace in Eq.(6.4), which is over an infinite-dimensional
space and contains both spacetime as well as internal indices. For spinors, this
basis is related to the Clifford algebra of fermions, but the basis can include
possible further internal symmetry groups such as color.

The spacetime trace can be turned into a quantum mechanical path integral
for the bosonic coordinates of a point particle, as was shown in [258]. The
trace over the Dirac matrix structure of spinors leads to path integrals using
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a Grassmanian coherent state formalism. Such a coherent state formalism is
discussed in [280, 281] and requires an artificial enlargment of the dimension
of the space, in which the Dirac matrix structure is embedded, from 4 × 4 to
8× 8. Interpreting θ†θ as an eight dimensional matrix and making a similarity
transformation as outlined in detail in [281], the fermionic effective action can
be written as

WR = −1

8
log det(Σ̃2) = −1

8
Tr log(Σ̃2), (6.5)

where Σ̃2 is given by

Σ̃2 = (p−A)2 I8 +
i

2
ΓµΓνFµν [A], . (6.6)

Here we have artificially enlarged the representation space of the gauge field to
include the left and right handed chiral fields,

A =

(
A+B 0

0 A−B

)
, (6.7)

whereby Σ̃2 is a sixteen dimensional (8× 2) matrix. The six 8× 8 dimensional
gamma matrices Γa are defined as

Γµ =

(
0 γµ
γµ 0

)
, Γ5 =

(
0 γ5

γ5 0

)
, Γ6 =

(
0 iI4
−iI4 0

)
, (6.8)

with an additional matrix Γ7, anti-commuting with all other elements of the
algebra,

Γ7 = −i
6∏

A=1

ΓA =

(
I4 0
0 −I4

)
, {Γ7,ΓA} = 0. (6.9)

Here γµ and γ5 are the usual Dirac matrices.
This artificial enlargemment of both the dimensions of the Dirac matrices

as well as the representation of gauge fields may seem unmotivated. Indeed the
splitting of Eq.(6.7) is strictly speaking not necessary at all, but simplifies our
calculations significantly. The dimensional extension of the Dirac matrices, on
the other hand, as defined in Eq.(6.8) is a necessity. The elementary idea behind
the world-line approach is to express traces, such as those given in Eq.(6.5), in
terms of quantum mechanical single particle states. As observed in [280, 282],
this is not possible for four-dimensional Dirac matrices; a set of coherent fermion
states, representing the corresponding Clifford algebra, exists however for the
extension given in Eq.(6.8).

With this path integral formulation in mind, we will adopt Schwinger’s in-
tegral representation to write Eq.(6.5) as

WR =
1

8

∞∫

0

dT

T
Tr16 e

− E2 T Σ̃2

, (6.10)
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where, by means of the T−integral, we have introduced what is commonly
known as a closed world-line of length T . While Eq.(6.10) can be taken as the
definition of the world-line, its structure will be discussed in more detail be-
low. We introduced here an arbitrary positive real number E called the einbein.
As is well known, and as we shall discuss explicitly in section 6.3 and in ap-
pendix C.2, E is not a physical quantity but rather a gauge parameter related
to reparametrization invariance on the world-line.

The trace in Eq.(6.10) includes the internal (Dirac-)space and it can be
evaulated using a coherent state basis that realizes the Clifford algebra of Dirac
fermions. More specifically, the spin part of the trace in Eq.(6.10) is turned
into a path integral over Grassman variables [280, 281], employing the methods
developed first by Berezin and Marinov [273]. Towards this end, we introduce
the fermion creation and annihilation operators (a±r , r = 1, 2, 3),

a±r =
1

2
(Γr ± iΓr+3), {a+

r , a
−
s } = δrs, {a+

r , a
+
s } = {a−r , a−s } = 0.

(6.11)

These operators a±r span the space of the Clifford algebra satisfied by the Γ
matrices. They define the coherent states |θ〉, |θ̄〉 which satisfy

〈θ|a−r = 〈θ|θr a−r |θ〉 = θr|θ〉 〈θ̄|a+
r = 〈θ̄|θ̄r a+

r |θ̄〉 = θ̄r|θ̄〉 , (6.12)

with the matrix elements between coherent states defined to be

〈θ|θ̄〉 = eθr θ̄r , 〈θ̄|θ〉 = eθ̄rθr . (6.13)

These satisfy the completeness relations
∫
|θ〉〈θ| d3θ =

∫
d3θ̄ |θ̄〉〈θ̄| = I . (6.14)

Note that while θr, θ̄r, dθr, dθ̄r anticommute with 〈θ|, |θ̄〉, they commute with |θ〉,
〈θ̄|. All states and variables commute with the vacuum. With these definitions,
traces in the coherent state basis can be defined.

The trace over a generic operator has the form

Tr(O) =

∫
d3θ〈−θ|O|θ〉 . (6.15)

This expression for the trace is discussed at length in [283]. The negative sign in
Eq.(6.15) arises from transforming the coherent state basis to a Fock state basis.
As this includes anti-commuting variables, the minus sign in Eq.(6.15) can be
interpreted as enforcing anti-periodic boundary conditions for the Grassmann
variables on the closed world-line. We can therefore write the trace in Eq.(6.10)
as

Tr16 e
− E2 T Σ̃2

= tr

∫
d4z d3θ 〈z,−θ|e− E2 T Σ̃2 |z.θ〉 . (6.16)
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The remaining trace (tr) on the r.h.s now contains only the trace over the
representation space Eq.(6.7) and other internal symmetries such as color. If
we proceed with Abelian gauge fields alone, tr is only over the two dimensional
representation space Eq.(6.7) and is in fact trivial – it amounts to a simple sum
over the two chiral configurations, as we will see below. Non-Abelian gauge fields
can be included straigthforwardly. as we show in Appendix C.3. For simplicity,
we will discuss only Abelian gauge fields for the rest of the manuscript; the
extension to QCD will be discussed in follow-up papers.

We will now express the matrix element on the r.h.s of Eq.(6.16) as a path
integral3, with T playing the role of “time” and the “Hamiltonian” represented
by EΣ̃2/2 [280, 281]. Our derivation, for this real part of the effective action, uses
the conventional time-slicing procedure to construct the path integral. Splitting
the time interval into N discrete steps of length ∆ ≡ T/N (the continuum limit
defined as N → ∞ and ∆ → 0), we define the average position between two
time-slices

x̄kµ =
xkµ + xk−1

µ

2
, (6.17)

and for later use combine the three complex Grassman variables θ, θ̄ into six
real ones,

ψka =
1√
2

(θka + θ̄ka) a = 1, 2, 3

ψka =
i√
2

(θka−3 − θ̄ka−3) a = 4, 5, 6 . (6.18)

Further, with these definitions, matrix elements containing Gamma-matrices Γ
are evaluated by making use of Eq.(6.11) and Eq.(6.12) to read

〈θk|ΓaΓb|θk−1〉 = −
∫
dθ̄k〈θk|θ̄k〉〈θ̄k|θk−1〉 2(ψkaψ

k−1
b )

= −
∫
dθ̄keθ

k
r θ̄
k
r+θ̄kr θ

k−1
r 2(ψkaψ

k−1
b ). (6.19)

Eq.(6.19) can be generalized to higher matrix products using the simple mnemonic
Γa →

√
2ψa. After these preliminaries, inserting complete sets of coherent

3This strategy highlights the fact that in the world-line approach, contrary to the conven-
tional approaches in quantum field theory, spin is not accounted for by means of a multidi-
mensional wave function (as it is done for fermion spinors) but instead as an independent
degree of freedom in the path integral.
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states, we obtain,

Tr
{
e−
E
2 T Σ̃2

}
= −tr

∫ (N−1∏

l=0

d4xl

)(
N∏

l=1

d4pl
(2π)4

)(
N−1∏

l=0

d3θl

)(
N∏

l=1

d3θ̄l

)

× exp
{
−∆

N∑

k=1

[
− ipkµ

(xkµ − xk−1
µ )

∆
+
E
2

(
pkµ −Aµ[x̄k]

)2

− (θkr − θk−1
r )

∆
θ̄kr +

iE
2
ψkµFµν [x̄k]ψk−1

ν

]}

= −tr

∫ (N−1∏

l=0

d4xl

)(
N∏

l=1

d4pl
(2π)4

)(
N−1∏

l=0

d3θl

)(
N∏

l=1

d3θ̄l

)

× exp
{
−∆

N∑

k=1

[
− ipkµ

(xkµ − xk−1
µ )

∆
+
E
2

(
pkµ −Aµ[x̄k]

)2

+
1

2
ψka

(ψka − ψk−1
a )

∆
+
iE
2
ψkµFµν [x̄k]ψk−1

ν

]}

≡ N
∫

P

Dx
∫

AP

Dψ tr exp
{
−
∫ T

0

dτ L(τ)
}
. (6.20)

In obtaining the second equality, we symmetrized the “kinetic term” with re-
spect to the variables θ, θ̄ in order to replace the complex variables θ with ψka ,
using Eq.(6.18), before taking the continuum limit of the path integral [280, 281].
Further, in the last step, we completed the squares and shifted the p integra-
tion4. Periodic boundary conditions P for bosonic variables and anti-periodic
boundary conditions AP for fermion observables are imposed respectively by
identifying x0 = xN and ψ0 = −ψN . Expressing the Grasssmanian integra-
tion measure by the six-dimensional variables Dψ = DψµDψ5Dψ6, generates a
trivial Jacobian, which can be absorbed in the normalization.

The real part of the effective action can thus be expressed in path integral
form as

WR =
1

8

∞∫

0

dT

T
N
∫

P

Dx
∫

AP

Dψ tr exp
{
−

T∫

0

dτ L(τ)
}
. (6.21)

with the point particle “quantum mechanical” world-line Lagrangian

L(τ) =
ẋ2

2E +
1

2
ψaψ̇a − iẋµAµ +

iE
2
ψµFµν [A]ψν , (6.22)

where

L(τ) =

(
LL 0
0 LR

)
,

LL/R(τ) =
ẋ2

2E +
1

2
ψaψ̇a − iẋµ(A±B)µ +

iE
2
ψµFµν [A±B]ψν , (6.23)

4This standard trick replaces pkµ → pkµ −Aµ[x̄k]− i(xkµ − x
k−1
µ )/E∆.
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carries the two-dimensional matrix structure of the helicity representation of
the gauge fields Eq.(6.7) and can be trivially split into separate Lagrangians
for both chiralities/helicities. The path integral can further be written more
explicitly as

WR =
1

8

∞∫

0

dT

T
N
∫

P

Dx
∫

AP

Dψ


exp

{
−

T∫

0

dτ LL(τ)

}
+ exp

{
−

T∫

0

dτ LR(τ)

}
 .

(6.24)

For a vector gauge theory, where B = 0, LL = LR, as both left and right handed
massless particles couple to vector fields identically. In this case, the the trace in
Eq.(6.21) just gives an overall factor of two. For the reasons outlined previously,
we will keep B 6= 0. The normalization in Eq.(6.21) is

N ≡ N (T ) =

∫
Dp e

− E2
T∫
0

dτ p2(τ)
. (6.25)

With this path integral definition of the real part of fermion effective action,
one can begin to define currents (and products thereof). One obtains for instance
the vector current 〈jVµ (y)〉 to be5

〈jVµ (y)〉 =
δΓR

δAµ(y)
= − i

8

∞∫

0

dT

T
N
∫

P

Dx
∫

AP

Dψ jV,clµ


e
−
T∫
0

dτ LL(τ)
+ e
−
T∫
0

dτ LR(τ)


 ,

(6.26)

jV,clµ ≡
T∫

0

dτ [Eψνψµ∂ν − ẋµ]δ4 (x(τ)− y) . (6.27)

It can be easily shown that

∂µ〈jVµ 〉 = 0 ⇔ ∂µj
V,cl
µ = 0. (6.28)

In proving these relations, we first used the definition of the total derivative for
the divergence of the first term of Eq.(6.27), employed our knowledge of the
boundary terms and used that

T∫

0

dτ ẋµ
∂

∂yµ
δ4(x(τ)− y) = −

T∫

0

dτ
d

dτ
δ4(x(τ)− y) = 0. (6.29)

The second term in the four divergence of Eq.(6.27) vanishes by the anti-
symmetry of the Grassmann variables, when interchanging the y and x(τ)
derivatives. We note further that the world-line description provides us with
a natural regularization as discussed in [284], whereby T → 0 represents the
ultraviolet limit of the effective action and T → ∞ is related to the infrared
limit.

5Note that this expression is still written in an Euclidean formulation. The continuation
of this and like expressions to real-time is straightforward as we will show in section 6.3.
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6.2.3 Imaginary Part

World-line representation of the phase of the fermion determinant

In this section, we will derive a path integral representation of the imaginary
part of the fermion effective action, as defined in Eq.(6.3). As noted in [269], the
absolute value of the phase of the fermion determinant is not well defined (for
fermions in a complex representation). On the other hand, variations or relative
phases (variation writh regards to an external parameter), are unambiguous.
In the world-line framework, the fact that the absolute value of the phase in
the fermion determinant is ill-defined is reflected by the lack of a heat kernel
regularization for the imaginary part of the effective action – the latter is only
possible when the action breaks axial symmetry explicitly.

We proceed with our discussion by expressing the relation between the phase
of the fermion determinant and the corresponding imaginary part of the result-
ing effective action as

WI = − arg det[θ] , (6.30)

where θ is defined in Eq.(6.2). Again, extending the dimensionality of θ, we can
write the above as

WI = −1

2
arg det[Ω], Ω =

(
0 θ
θ 0

)
, (6.31)

where Ω, which is an 8× 8 dimensional matrix which reads

Ω = Γµ(pµ −Aµ)− iΓ7ΓµΓ5Γ6Bµ . (6.32)

The Gamma matrices are those defined previously in Eq.(6.8) and Eq.(6.9). A
lengthy derivation, that includes a further doubling of dimensions – discussed
in [280, 281] in full detail – results in the expression

−iWI =
1

4
Tr log Ω̃− 1

4
Tr log Ω̃† , (6.33)

where Ω̃ is given as

Ω̃ =
1

2
(Σ̃− Σ̃c)iΓ6Γ7 +

i

2
Γ5Γ6Γ7χ(Σ̃− Σ̃c)iΓ6Γ7 , (6.34)

with

Σ̃ = Γµ(pµ −Aµ), χ =

(
1 0
0 −1

)
. (6.35)

We note that Σ̃c is the chiral conjugate of Σ̃, by setting B → −B. This expres-
sion allows one to represent the phase of the fermion determinant as the trace
of logarithms, as previously. The crucial difference to the real part however
is that Eq.(6.34) does not permit a path integral representation analogous to
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Eq.(6.10). This is principally because the operator Ω̃ does not have a positive-
definite spectrum, respectively heat kernel expression.

Nevertheless this obstacle is overcome by a trick due to D’Hoker and Gagné [280,
281]. Inserting an auxilliary parameter α, Eq.(6.33) can be written as

−iWI =
1

4

1∫

−1

dα
∂

∂α

(
Tr log

[
1

2
(Ω̃ + Ω̃†) +

α

2
(Ω̃− Ω̃†)

])

=
1

4

1∫

−1

dα Tr

{
Ω̃− Ω̃†

(Ω̃ + Ω̃†) + α(Ω̃− Ω̃†)

}
. (6.36)

Symmetrizing this expression with respect to α gives

1

4

1∫

−1

dα Tr

{
Ω̃2 − Ω̃†2

(Ω̃ + Ω̃†)2 + 2α[Ω̃, Ω̃†]− α2(Ω̃2 − Ω̃†2)

}
. (6.37)

There is an identity that ensures that the denominator of this expression is
positive-definite and admits a heat kernel regularization [280]. Keeping the
numerator however separate and defining it as

M̂ ≡ Ω̃2 − Ω̃†2 , (6.38)

in analogy to section 6.2.2, the imaginary part of the effective action can be
expressed as

WI =
iE
64

1∫

−1

dα

∞∫

0

dT Tr
{
M̂e−

E
2 T Σ̃2

(α)

}
. (6.39)

Remarkably the matrix Σ̃2
(α) coincides with Σ̃2 that enters Eq.(6.10), albeit

with the replacement of the axial-vector field therein by B → αB. This result
permits us to properly interpret α as the parameter regulating chiral symmetry
breaking in the effective action. The values α = ±1 correspond to the coupling
of gauge fields to left- (right-) handed particles. Since Eq.(6.39) contains an
continuous integral over α, chiral symmetry is necessarily broken for α 6= ±1.
There is a trace insertion Eq.(6.38), in Eq.(6.39) that is absent in the real part
of the effective action6. This can be split into two contributions,

M̂ = Γ7Λ, Λ = Λ(1) + Λ(2), (6.40)

which are given as

Λ(1) ≡ 2Γ5Γ6[∂µ, Bµ] I2,

Λ(2) ≡ [Γµ,Γν ]{∂µ, Bν}Γ5Γ6 I2 . (6.41)

6This contribution is analogous to the γ5 insertion in “textbook” discussions of the
anomaly [266].



114 CHAPTER 6. CHIRAL KINETIC THEORY

Both contributions are linear in the axial-vector field B and further are diagonal
in the (two-dimensional) field representation space introduced in Eq.(6.7). Just
as in the case for the real part of the effective action, the coherent state basis
Eq.(6.11) can be used to present the trace in Eq.(6.39) as follows

Tr
{
M̂e−

E
2 T Σ̃2

(α)

}
=

∫
d4z d3θ 〈z,−θ|M̂e−

E
2 T Σ̃2

(α) |z, θ〉. (6.42)

Here the (trivial) sub-trace over the two-dimensional field representation space
is implicit. From Eq.(6.42), a path integral representation can be found; however
the insertion of the operator M̂ in the trace requires care in the discretization
of the world-line, more so than for the real case discussed in section 6.2.2.

6.2.4 The axial-vector current

Our goal is to derive an expression for the global axial-vector current, defined
as

〈j5
µ(y)〉 ≡ iδWI[A,B]

δBµ(y)

∣∣∣
B=0

. (6.43)

We will subsequently derive the famous anomaly equation in our approach
demonstrating that this current is not conserved. Eq.(6.43) can be written
as

〈j5
µ(y)〉 ≡ iδWI

δBµ(y)

∣∣∣
B=0

= − E
64

1∫

0

dα

∞∫

0

dT Tr

{
δM̂

δBµ(y)
e−
E
2 T Σ̃2

(α)

}

B=0

= − E
32

∞∫

0

dT Tr

{
δM̂

δBµ(y)
e−
E
2 T Σ̃2

}

B=0

. (6.44)

Note that the variation of the exponential with respect to Bµ does not contribute
when Bµ is set to zero. The surviving expression above contains both terms in
Eq.(6.40). We will discuss both separately. The trace in Eq.(6.44) is written as

Tr

{
δM̂

δBµ(y)
e−
E
2 T Σ̃2

}

B=0

= tr

∫
d4x0 d3θ0 〈x0,−θ0| δM̂

δBµ(y)
e−
E
2 T Σ̃2 |x0, θ0〉

= tr

∫
d4x0 d3θ 〈x0, θ0| δΛ

δBµ(y)
e−
E
2 T Σ̃2 |x0, θ0〉

(6.45)

Here, in going from the first line to the second, we made use of 〈−θ|Γ7 = 〈θ|.
In particular, Γ7 can be shown to be the equivalent of (−1)F , where F is the
fermion number operator defined from the coherent states in Eq.(6.11) (c.f.
[280]).

This has important consequences: due to this world-line insertion, the path
integral representation of the imaginary part of the fermion effective action will
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contain an integration over Grassmannian variables with periodic boundary con-
ditions. Consequently, fermionic zero modes arise, which would not be present
otherwise. By insertion of complete sets of states, Eq.(6.44) can be written as

〈j5
µ(y)〉 = − E

32

∞∫

0

dT tr

∫
d4x0d3θ0d4xNd3θN

×〈x0, θ0| δΛ

δBµ(y)
|xN , θN 〉〈xN , θN | e− E2 T Σ̃2 |x0, θ0〉. (6.46)

Both matrix elements in the r.h.s of this expression can be treated separately.
We begin with the matrix element containing the exponential. In analogy with
previous derivations, we get

〈xN , θN | e− E2 T Σ̃2 |x0, θ0〉 = −
∫ (N−1∏

k=1

d4xk

)(
N∏

k=1

d4pk
(2π)4

)(
N−1∏

k=1

d3θk

)(
N∏

k=1

d3θ̄k

)

× exp
{
−∆

N∑

k=1

[
− ipkµ

(xkµ − xk−1
µ )

∆
+
E
2

(
pkµ −Aµ[x̄k]

)2

− (θkr − θk−1
r )

∆
θ̄kr +

iE
2
ψkµFµν [x̄k]ψk−1

ν

]}
. (6.47)

We now proceed to evaluate the matrix element in Eq.(6.46) that contains the
world-line insertion. From Eq.(6.40), the latter can be split into separate parts.
We begin our discussion with Λ(1), which gives

〈x0, θ0| δΛ
(1)

δBµ(y)
|xN , θN 〉 = 2

(
∂

∂x0
µ

δ(x0 − y)

)
δ(x0 − xN )〈θ0|Γ5Γ6|θN 〉 . (6.48)

The second world-line insertion ∝ Λ(2) is similarly

〈x0, θ0| δΛ
(2)

δBµ(y)
|xN , θN 〉 =

{( ∂

∂x0
ν

δ(x0 − y)

)
δ(x0 − xN )

+ 2

(
∂

∂x0
ν

δ(x0 − xN )

)
δ(x̄0 − y)

}
〈θ0|[Γν ,Γµ]Γ5Γ6|θN 〉 .

(6.49)

Adding together Eq.(6.48) and Eq.(6.49), multiplying it with the matrix element
in Eq.(6.47), and inserting this expression in the r.h.s of Eq.(6.46), gives us the
complete world-line expression for the anomalous axial vector current.

Derivation of the axial anomaly

To determine the anomaly equation, we need to compute ∂µ(δiWI/Bµ(y))B=0.
We should mention here at the outset that only Eq.(6.48) contributes to the



116 CHAPTER 6. CHIRAL KINETIC THEORY

anomalous non-conservation of the axial-vector current, while Eq.(6.49) does
not; this statement is illustrated in appendix C.1. One thus obtains

∂µ〈j5
µ(y)〉 = ∂µ

iδWI

δBµ(y)

∣∣∣
B=0

= − E
32

∞∫

0

dT ∂µTr

(
Γ7

δΛ(1)

δBµ(y)
e−
E
2 T Σ̃2

)
(6.50)

where the trace is now written as

∂µTr

(
Γ7

δΛ(1)

δBµ(y)
e−
E
2 T Σ̃2

)
= −8

∫ (N−1∏

l=0

d4xl

)(
N∏

i=1

d4pi

(2π)4

)


N∏

j=0

d3θjd3θ̄j




(
∂2

∂yµ∂x0
µ

δ(x0 − y)

)
ψ0

5ψ
N
6 exp

{
−∆

N∑

k=1

[
− ipkα

(xkα − xk−1
α )

∆
− (θkr − θk−1

r )

∆

+
E
2

(
pkα −Aα(x̄k)

)2
+
iE
2
ψkαψ

k−1
β Fαβ(x̄k)

]
+ (θ0

r − θNr )θ̄0
r

}
.

(6.51)

We have made use of Eq.(6.18) to write this expression in a compact form. We
can now follow the same procedure as for the real part and complete the squares
for the pk (k = 1, . . . , N) integration7

pkα → pkα −Aα[x̄k]− i (x
k
α − xk−1

α )

∆E . (6.52)

We then find

∂µTr

(
Γ7

δΛ(1)

δBµ(y)
e−
E
2 T Σ̃2

)
= −8





∫ N∏

l=1

d4pl

(2π)4
e
−∆

N∑
k=1

E
2 (pk)2





∫ (N−1∏

i=0

d4xi

)




N∏

j=0

d3θjd3θ̄j



(

∂2

∂yµ∂x0
µ

δ(x0 − y)

)
ψ0

5ψ
N
6 exp

{
−∆

N∑

k=1

Lk
}
.

(6.53)

The exponential factor in the latter expression is

exp

{
−∆

N∑

k=1

Lk
}
≡ exp

{
−∆

N∑

k=1

[ 1

2E
(xkα − xk−1

α )2

∆2
− (θkr − θk−1

r )

∆

−i (x
k
α − xk−1

α )

∆
Aα(x̄k) +

iE
2
ψkαψ

k−1
β Fαβ(x̄k)

]
+ (θ0

r − θNr )θ̄0
r

}
. (6.54)

7This of course does not effect the integration variables in the representation of the world-
line insertion. We emphasize this point, because in the compact notation in [280], this proce-
dure is unclear and may cause confusion.
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By means of partial integration ∂2

∂yµ∂x0
µ
δ(x0 − y) = −δ(x0 − y) ∂2

∂x0
µ∂x

0
µ

, we get

∂2

∂x0
µ∂x

0
µ

exp

{
−∆

N∑

k=1

Lk
}

=
[
− 8

E∆
− 2i

(
∂

∂x0
µ

Aµ(x̄1)− ∂

∂x0
µ

Aµ(x̄0)

)

−i(x1
α − x0

α)
∂2

∂x0
µ∂x

0
µ

Aα(x̄1)− i(x0
α − xNα )

∂2

∂x0
µ∂x

0
µ

Aα(x̄0) +O(∆)
]
e
−∆

N∑
k=1

Lk

−→ − 8

E∆
exp

{
−∆

N∑

k=1

Lk
}
,

(6.55)

where the leading terms in the limit of k → τ , ∆→ 0 are kept. In the continuum
limit and setting B = 0 we have

∂µ
iδWI

δBµ(y)
= 2

∞∫

0

dTN (T )

∫

P

Dx

∫

P

Dψ (ψ5ψ6)(0)δ(x(0)− y)

× exp



−

T∫

0

dτ
1

2E ẋ
2 − iẋαAα(x)− 1

2
ψaψ̇a +

iE
2
ψµFµνψν



 ,

(6.56)

where (ψ5ψ6)(0) is an insertion of the respective Grassman variables at world-
line “time” τ = 0.

We will now find an analytic solution for Eq.(6.56). To this end, we remark
that, as illustrated above, both anti-commuting as well as commuting world-
line variables are defined with periodic boundary conditions. We can therefore
write both respectively as a sum of a zero mode and a proper time dependent
contribution

xµ(τ) = x̄µ + x′µ(τ) , (6.57)

ψa(τ) = ψ̄a + ψ′a(τ) , (6.58)

where the zero modes are defined to be

x̄µ ≡
T∫

0

dτ xµ(τ) x̄µ = xµ(0) = xµ(T ) (6.59)

ψ̄a ≡
T∫

0

dτ ψa(τ) ψ̄a = ψa(0) = ψa(T ) (6.60)

and similarly for ψ5, ψ6. The latter two fields can be trivially integrated in
Eq.(6.56). The result is

∫

P

dψ ψ e
− 1

2

T∫
0

dτ ψψ̇
=

∫
dψ0dψ′ (ψ0 + ψ′) e

− 1
2

T∫
0

dτ ψ′ψ̇′

= 1 , (6.61)
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where ψ stands for either ψ5, ψ6. We will henceforth define the remaining in-
tegral measure as Dψ ≡ ∏4

µ=1Dψµ. The result can be compactly summarized
as

∂µ
iδWI

δBµ(y)

∣∣∣
B=0

= 2

∞∫

0

dT N (T )

∫
Dx̄Dx′

∫
Dψ̄Dψ′ δ(x̄− y)

× exp



−

T∫

0

dτ
1

2E ẋ
′2 − iẋ′αAα(x)− 1

2
ψ′µψ̇

′
µ +

iE
2
ψ′µFµνψ

′
ν +

iE
2
ψ̄µFµνψ̄ν



 ,

(6.62)

where the normalization N is as in Eq.(6.25). Because this normalization has a
strong power law dependence on 1/T [266], the path integral receives its largest
contributions from T → 0. As the non-zero modes in Eq.(6.57) can be expanded
in terms of eigenmodes with frequencies T−1, higher modes do not contribute
to the T → 0 limit. It is therefore sufficient to expand the integrand around the
zero modes, keeping non-zero modes only up to quadratic order. To evaluate
this, it is convenient to use Fock-Schwinger gauge8, centered around x̄, which is
defined by

x′µ(τ)Aµ(x̄+ x′(τ)) = 0. (6.63)

This expression can be formally solved for A, which results in

Aµ(x̄+ x′) = x′ν

1∫

0

dη η Fνµ(x̄+ ηx′) = x′ν

1∫

0

dη η exp (η x′α∂α)Fνµ(x̄) (6.64)

As we are expanding around the zero modes, it is sufficient to expand

Aµ(x̄+ x′) =
1

2
x′νFνµ(x̄) +

1

3
x′νx

′
ρ∂νFρν(x̄) + . . . . (6.65)

In fact, we only need to keep

Aµ(x) ≈ 1

2
Fµν(x̄)x′ν . (6.66)

Exploiting Fock-Schwinger gauge thusly, Eq.(6.62) can be brought into the ap-

8This procedure was discussed in detail in [269, 270].
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pealing form9,

∂µ
iδWI

δBµ(y)

∣∣∣
B=0

= 2

∞∫

0

dTN (T )

∫
Dx̄Dx′

∫
Dψ̄Dψ′ δ(x̄− y)

× exp



−

T∫

0

dτ
1

2E ẋ
′2 − i

2
x′µFµν ẋ

′
ν −

1

2
ψ′µψ̇

′
µ +

iE
2
ψ′µFµν(x̄)ψ′ν +

iE
2
ψ̄µFµν(x̄)ψ̄ν



 .

(6.67)

We proceed by performing the (quadratic) non-zero mode integration in Eq.(6.67).
The results of performing these integrals are [262]

∫
Dx′ exp

{
−
∞∫

0

( ẋ′2

4
− i

2
x′µFµν ẋ

′
ν

)}
= Det′ −

1
2

(
− d2

dτ2
+ 2iF

d

dτ

)

=
1

(4πT )2
Det′ −

1
2

(
1− 2iF

(
d

dτ

)−1
)

=
1

(4πT )2
det−

1
2

(
sin(FT )

FT

)

(6.68)

and

∫
Dψ′ exp

{
−

T∫

0

(1

2
ψ′µψ̇

′
µ + iψ′µFµνψ

′
ν

)}
= det

1
2

(
sin(FT )

FT

)
. (6.69)

Here Det′ indicates the determinant acting on the space of variables sans the
zero modes, while det is defined on the reduced space on which the gauge field
tensor F is defined. Due to the N=1 supersymmetry of Eq.(6.67), the fermionic
and bosonic integrals Eq.(6.68) and Eq.(6.69) cancel,

∫
Dx′Dψ′ exp

{
−

τ∫

0

dτ
ẋ′2

4
+

1

2
ψ′µψ̇

′
µ −

i

2
x′µFµν(x̄)ẋ′ν + iψ′µFµν(x̄)ψ′ν

}

=
1

4π2

1

4T 2
.

(6.70)

leaving us with the zero mode integration alone:

∫
Dψ̄ exp

{
−
∞∫

0

dτ iψ̄µFµν(x̄)ψ̄ν

}
=

∫
d4ψ̄ exp

{
− iT ψ̄µFµν(x̄)ψ̄ν

}

= −T
2

2
εµνρσFµνFρσ . (6.71)

9As will become clear from our derivation below, Eq.(6.67) carries in fact an N = 1
supersymmetry, turning bosonic into fermionic variables and vice-versa. Details are given in
appendix C.2.
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We therefore obtain

∂µ
iδWI

δBµ(y)

∣∣∣
B=0

= − 1

16π2

∞∫

0

dTN (T )

∫
Dx̄ δ(x̄− y)εµνρσFµν(x̄)Fρσ(x̄)

= − 1

16π2



∞∫

0

dTN (T )


 εµνρσFµν(y)Fρσ(y) . (6.72)

The normalization can be set to unity giving us the well known result

∂µ〈j5
µ(y)〉 ≡ ∂µ

iδWI

δBµ(y)

∣∣∣
B=0

= − 1

16π2
εµνρσFµν(y)Fρσ(y). (6.73)

This is the central result of this section10. It nicely illustrates that the axial
anomaly can be understood as arising from the phase of the fermionic deter-
minant. Unlike many derivations in the literature, we employed a a variational
technique for the imaginary part of the effective action in an Euclidean formal-
ism. This also confirms that our result for the axial-vector current in Eq.(6.44)
is robust. The analytic continuation to Minkowskian metric will be straight-
forward, albeit the imaginary part of the effective action will have a different
interpretation.

In the upcoming section 6.3 we will continue our world-line path integral
formulation to real-time and we will make contact with the results of [142–146]
containing a Berry connection. Our very general approach allows one to study
the origin and role of any geometric phases which arise under certain approx-
imations, such as those corresponding to adiabatic variations in interactions
with external fields. We then give an outlook on how a chiral kinetic theory
should be constructed, which is equivalent to a saddle point approximation of
our world-line path integral. In this context, we argue that Eq.(6.44) in the
pseudo-classical limit provides a consistent definition of the axial vector current
and can be used in the construction of chiral kinetic extensions of Bödecker’s
effective theory [287, 288].

For completeness, we note that the corresponding definition of the axial-
vector current in the continuum formulation of the world-line path integral is
given as

〈jµ5 (y)〉 =
1

4

∞∫

0

dT N
∫

P

DxDψ δ(4)(x(0)− y)
{

[ẋµ + ẋνψµψν ]ψ5ψ6

}∣∣∣
τ=0

× exp


−

∞∫

0

dτ L


, (6.74)

where with B = 0 the Lagrangian L = LL = LR is given in Eq.(6.23).

10We note that commonly in the literature a distinction is being made between covariant
and consistent anomalies [285, 286]. In our situation both definitions agree, as is argued in
appendix C.4. However this distinction is of crucial importance, when deriving non-singlet
anomalies or anomalies with both physical vector- and axial-vector-background fields present.
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6.3 Chiral Kinetic Theory

6.3.1 Pseudo-classical description of spinning particles

The world-line framework provides a consistent Lorentz covariant description
of quantum field theory using the language of first quantization. It is therefore
well suited for a pseudo-classical kinetic description of quantum many-body
systems. We will begin our discussion here with the world-line Lagrangian
Eq.(6.22) continued to Minkowskian metric (g = diag[−,+,+,+]). Henceforth
we will consider the coupling of fermions to vector gauge fields and set the
auxilliary field B = 0. We have

L =
ẋ2

2E +
i

2
ψµψ̇µ +

i

2
ψ5ψ̇5 +

i

2
ψ6ψ̇6 + ẋµA

µ(x)− iE
2
ψµFµνψ

ν , (6.75)

and the corresponding world-line effective action, obtained by the continuation
of WR from Eq.(6.24), is given by

W =

∞∫

0

dT

T

∫

P

Dx
∫

AP

Dψ exp
{
i

T∫

0

dτ L
}
. (6.76)

The discussion in section 6.2.3 translates into the Minkowskian formulation
directly. The emergence of the anomaly is understood in the Minkowskian
formulation as arising from the fact that the path integral measure over the
Grassmanian variables in Eq.(6.76) does not contain zero modes.

The path integral is acompanied by an integration over a world-line of length
T , which is directly related to the reparametrization invariance of the world-
line parameter τ → τ ′ = f(τ). In fact, Eq.(6.76) closely resembles Schwinger’s
proper time method, albeit in this case the world-line manifold is now an interval
in proper time rather than a closed loop. Consequently the world-line lenght T
and the einbein E , which is the square root of the determinant of the world-line
metric, can also be understood to emerge from a BRST construction (see [284]).
While reparametrization invariance is a gauge symmetry (a redundancy in our
description), it is not related to any symmetry group in the usual sense.

For particles with spin, yet another physicality condition arises, which is
not immediately obvious from Eq.(6.76): longitudinal spin components should
not be dynamical. This restricts the integral measure Dψ to a specific physical
hypersurface. In practice, this helicity constraint can be implemented by means
of introducing a Lagrange multiplier χ in the Lagrangian,

L → L− i ẋµψ
µ

2E χ . (6.77)

To illustrate its role, we will proceed to the Hamiltonian formulation by defining
the conjugate momenta (from Eq.(6.75))

pµ ≡ ∂L
∂ẋµ

= πµ +Aµ , with πµ ≡ ẋµ

E − i
ψµ

2E χ . (6.78)
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The corresponding world line action, equivalent to Eq.(6.75), can be written as

S =

T∫

0

dτ
{
pµẋ

µ +
i

2
[ψµψ̇

µ + ψ5ψ̇5 + ψ6ψ̇6]− E
2
π2 +

i

2
(πµψ

µ)χ− iE
2
ψµFµνψ

ν
}
.

(6.79)

The role of E as a Lagrange multiplier is transparent in the above expres-
sion. The constraints that are encoded in Eq.(6.79) can be easily understood
from their quantized counterparts. Promoting the Grassmanian variables to
operators in a Hilbert space,

ψµ →
√

~
2
γ5γµ, ψ5 →

√
~
2
γ5 , (6.80)

the mass shell condition and the helicity constraint in Eq.(6.79) correspond
to the Klein-Gordon and Dirac operator equations respectively, defining the
physical subspace |Φ〉 of the theory,

π2 + iψµFµνψ
ν = 0 ⇔

(
π̂2 + iσµνFµν

)
|Φ〉 = 0 (mass-shell constraint),

πµψ
µ = 0 ⇔ γ5γµπ̂

µ|Φ〉 = 0 (helicity constraint).
(6.81)

The generalization of Eq.(6.81) to the massive case is straightforward, as one
simply replaces

π2 + iψµFµνψ
ν +m2 = 0 ⇔ (π̂2 + iσµνFµν +m2)|Φ〉 = 0 , (6.82)

πµψ
µ +mψ5 = 0 ⇔ γ5(γµπ̂

µ +m)|Φ〉 = 0 , (6.83)

as these then reproduce the massive Klein-Gordon and Dirac equations.
Eq.(6.82) and Eq.(6.83) are not independent. On the operator level, Eq.(6.82)

is the (operator-) squared of Eq.(6.83), whereas, on the level of the world-line
phase space variables pµ, xµ, ψµ, ψ5, the constraints are part of an N = 1 SUSY
algebra, with the supercharge given by Eq.(6.83). This is discussed further in
appendix C.2. In the latter case, both constraints are related by the algebra
of Poisson brackets. The action for a spinning massive particle, including both
mass-shell and helicity constraints, is then given by

S =

T∫

0

dτ
{
pµẋ

µ +
i

2

[
ψµψ̇

µ + ψ5ψ̇5 + ψ6ψ̇6

]
− E

2
(π2 +m2)

− i

2
(πµψ

µ +mψ5)χ− iE
2
ψµFµνψ

ν
}

≡
T∫

0

dτ
{
pµẋ

µ +
i

2

[
ψµψ̇

µ + ψ5ψ̇5 + ψ6ψ̇6

]
−H

}
, (6.84)
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where the Hamiltonian, being merely a sum of constraints, is

H =
E
2

(π2 +m2 + iψµFµνψ
ν) +

i

2
(πµψ

µ +mψ5)χ . (6.85)

Since H does not depend on ψ6, the dynamics of the latter is trivial, ψ6 =
const and we will drop it from our discussion henceforth. Eq.(6.84) serves
as our starting point for the determination of the Hamiltonian dynamics of
the world-line theory and ultimately leads to the equations of motion in the
pseudo-classical (kinetic) limit of the theory.

The classical limit is not immediately apparent in Eq.(6.76) as the T integra-
tion obscures its usual interpretation as the saddle point of a path integral with
the variables x, ψ. However, as described above, the T -integration is related
to the gauge freedom of the einbein parameter E . We will illustrate how this
can be dealt with in practice and refer the reader to appendix C.5 for further
detailed discussion.

One approach is to perform the T integral in Eq.(6.76) explictly. In this
case, the world-line path integral can be shown to be independent of the value
of the einbein parameter E and the latter can thus can be fixed to any value.
The result of the T -integration is a modified single particle action, different
from Eq.(6.75). The resulting pseudo-classical dynamics can be derived from
this modified action, which now permits [284] only physical degrees of freedom
(those satisfying constraint relations) to evolve via the equations of motion.
An alternative approach is as follows: instead of performing the T -integral,
Eq.(6.75) might be taken as defining the the single-particle action directly, albeit
explicitly keeping the T integral in Eq.(6.76). In this case, E cannot be fixed
and must be treated as a variational parameter.

We will here illustrate both approaches, starting with the first. Fixing E = 2
and defining the dimensionless proper time as u ≡ τ/T , Eq.(6.76) can be written
as

W =

∫ ∞

0

dT ′

T ′
e−iT

′
∫
DxDψ exp

{ im̄2

T ′

1∫

0

du
ẋ2

4
+ i

1∫

0

du
[ i
2

(
ψµψ̇

µ + ψ5ψ̇5

)

+ ẋµA
µ − i

2

(
ẋµψ

µ

2
+mψ5

)
χ
]}
, (6.86)

where we further defined m̄2 ≡ m2 + i
∫ 1

0
duψµFµνψ

ν . Provided the kinetic
term is large compared to the interactions, the T ′ integral can be performed by

the stationary phase method around the stationary point T ′0 = m̄
√
−
∫ 1

0
du ẋ2.

The result is

W =

∫
DxDψ Ñ exp iS (6.87)
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where Ñ ≡
√
iπ/2m̄

(
−
∫ 1

0
du ẋ2

) 1
4

, and the corresponding world-line action is

S = −m̄
√
−
∫ 1

0

du ẋ2 + i

1∫

0

du
( i

2

[
ψµψ̇

µ + ψ5ψ̇5 + ψ6ψ̇6

]

+ ẋµA
µ − i

2

[ ẋµψµ
2

+mψ5

]
χ
)
. (6.88)

Using the abbreviation Y ≡
√
−
∫ 1

0
du ẋ2, the equations of motion are obtained

by varying this (non-local) action,

−m̄ẍ
µ

Y
+
iY

2m̄
ψα∂µFαβψ

β + Fµν ẋν +
i

4
ψ̇µχ = 0 , (6.89)

ψ̇µ − Y

m̄
Fµνψ

ν − ẋµ
4
χ = 0 , (6.90)

ψ̇5 −
mχ

2
= 0 , (6.91)

while, as noted previously, the dynamics of ψ6 is trivial. These equations of mo-
tion, for appropriate choice of χ (as we shall shortly discuss), provide the covari-
ant generalization of the well known Bargmann-Michel-Telegdi equations [271]
for spinning particles in external gauge fields. The extension of these equations
of motion to include colored degrees of freedom, generalizing thereby the Wong
equations [272], was already discussed a long time ago in [289].

As we show in appendix C.5, identical dynamics is obtained in the other
approach when E is treated as a variational parameter and thereby eliminated
from the action. This approach will be particularly beneficial when we take
the non-relativistic limit of the action. In this variational approach, the Euler-
Lagrange equations applied to E , using Eq.(6.75), give the consistency relation

E = m−1
R

(
z − i ẋµψ

µ

2 z
χ

)
, (6.92)

where z ≡
√
−ẋ2 and

m2
R = m2 + iψµFµνψ

ν . (6.93)

This consistency relation allows us to eliminate E by inserting the relation
into Eq.(6.75). The resulting equation of motions agree with the dynamics
in Eqs. (6.89)-(6.91), provided the constraints are fulfilled.

Therefore a saddle point expansion of Eq.(6.76) – under the proviso that all
constraints are respected – provides the correct pseudo-classical limit with the
corresponding action given as

S =

T∫

0

dτ L, (6.94)
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where the Lagrangian in Eq.(6.75) can now be expressed as

L ≡− mRz

2

(
1 +

m2

m2
R

)
+
i

2

(
ψµψ̇

µ + ψ5ψ̇5

)

− imR

2

(
ẋµψ

µ

z

[
1− m2

2m2
R

]
+

m

mR
ψ5

)
χ+ ẋµA

µ(x)− i

2mR
zψµFµνψ

ν .

(6.95)

This Lagrangian, explictly implementing the mass-shell constraint, will serve
as the starting point for the discussion of the non-relativistic limit in section
6.3.2. We can now use Eq.(6.95) to define the conjugate four-momenta of the
constrained phase space; these are

pµ ≡ ∂L
∂ẋµ

, (6.96)

where

πµ ≡ pµ −Aµ = mRu
µ − imR

2z

(
1− m2

2m2
R

)
[ψµ + uνψ

νuµ]χ, (6.97)

with the four-velocity is defined as

uµ ≡ ẋµ

z
. (6.98)

Eq.(6.96) is easily inverted and gives

ẋµ =
z

mR
πµ +

i

2

(
1− m2

2m2
R

)[
ψµ +

πνψ
νπµ

m2
R

]
χ (6.99)

The equations of motion in this setup, respecting all constraints, are completely
equivalent to Eqs. (6.89)-(6.91). This point is illustrated with a specific example
in appendix C.5. We note a few additional points: the Lagrange multiplier χ is
an anti-commuting Lorentz scalar, which means that the structure of expressions
that can be assigned to it are very restricted [273]. A vanishing χ = 0 is
trivially consistent with this requirement; it turns out the only further choice11

is χ ∝ εµνλσπµψνψλψσ [273].
Our considerations here are essential ingredients in deriving a consistent rel-

ativistic chiral kinetic theory. The explicit derivation of this kinetic framework
is fairly involved and will be left to forthcoming work [279]. In the following
subsection, we will discuss the role of χ in more detail and we shall fix it ex-
plicitly. Our focus in 6.3.2 will however be on the non-relativistic reduction
of Eq.(6.95)–with the helicity constraint imposed. We will comment on some
interesting features of the corresponding kinetic theory that are complementary
to those discussed in our recent letter [245].

11Note that χ cannot be linear in ψ, as this cannot be combined to form a Lorentz invariant.
Even powers in ψ result in χ being a commuting variable, rather than an anti-commuting one.
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6.3.2 The non-relativistic limit

In this subsection, we shall derive the non-relativistic limit of the single particle
action defined by Eq.(6.95). We will carefully discuss the role of the mass-shell
and helicity constraints and their related Lagrange-multipliers. Based on an adi-
abatic approximation of our result, we make contact with the geometric action
put forward by [142, 143]. As in those works, we showed in our accompanying
letter [245] how a Berry term arises in the massive non-relativistic and adiabatic
limit. However in [245], we only considered a massive system with a small or
vanishing chemical potential. We will extend the discussion here to a system
with a large chemical potential.

We will begin by writing Eq.(6.95) with all factors of c specified:

L =− mRc z

2

(
1 +

m2

m2
R

)
+
i

2

(
ψµψ̇

µ + ψ5ψ̇5

)

− imR c

2

(
ẋµψ

µ

z

[
1− m2

2m2
R

]
+

m

mR
ψ5

)
χ+

ẋµA
µ(x)

c
− i

2mRc
zψµFµνψ

ν .

(6.100)

The non-relativistic limit can be derived systematically in an expansion of the
particle’s velocity over the speed of light. The adiabatic limit corresponds to
taking the interaction energy of the particle with the external electromagnetic
fields to be small relative to its rest energy. To proceed further in deriving these
limits from the relativistic Lagrangian, we choose, without loss of generality,
χ = 0. It follows thence from Eq.(6.91) that ψ̇5 = 0 and hence ψ5 = const.

We will next use the supersymmetric properties of the world-line action
(discussed in appendix C.2)

ψµ → ψµ +
ẋµ√
−ẋ2

η ; ψ5 → ψ5 + η ; xµ → xµ + i
ψµη

m
, (6.101)

where η is an anticommuting parameter generating a N = 1 supersymmetric
transformation. Since ψ5 = const, we can perform a time-independent transfor-
mation such that ψ5 = 0. Thereby eliminating ψ5 from the dynamics entirely,
the Lagrangian can be written as

L = −mRc z

2

(
1 +

m2

m2
R

)
+
i

2

(
ψψ̇ − ψ0ψ̇0

)
+
ẋµA

µ(x)

c

− i

mRc
z ψ0F0iψ

i − i

2mRc
z ψiFijψ

j , (6.102)

This expression does not contain any approximations yet.
To take the non-relativistic limit, we identify the world line proper time τ

of a “particle”, with the physical time t as

τ =
ct

γ
= ct

√
1− (dx/dt)2, x0 = ct , (6.103)
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where v is the non-relativistic velocity, v ≡ dx/dt. From the spatial components
of the Grassmanian variables, the conventional spin vector is defined as Si ≡
− i

2ε
ijkψjψk. Using Bi = 1

2ε
ijkF jk and Ei = F 0i, we can therefore express

−iψ0F0iψ
i =

S · (π ×E)

cπ0
, (6.104)

− i
2
ψiFijψ

j = S ·B . (6.105)

Furthermore, in the non-relativistic limit, the electromagnetic “Larmor” energy
is small compared to the mass- we can therefore approximate12

mR =
√
m2 + iψµFµνψν ≈ m

(
1 +

i

2

ψµFµνψ
ν

m2c2

)
≡ m(1 +X), (6.106)

where we introduced the abreviation

X ≡ −S · (π ×E)/(cπ0) + S ·B
2m2 c2

(6.107)

The Lagrangian, which is defined by

S =

∫
dt L′, (6.108)

can be written as

L′ = −mRc
2

2γ

(
1 +

m2

m2
R

)
+
i

2

(
ψψ̇ − ψ0ψ̇0

)
−A0 +

v

c
·A

+
1

mRγ

(
S · (π ×E)

cπ0
+ S ·B

)

= −mc
2

2γ

(
1 +X +

1

1 +X

)
+
i

2

(
ψψ̇ − ψ0ψ̇0

)
−A0 +

v

c
·A− 2mc2

γ

X

1 +X
.

(6.109)

The non-relativistic limit is found when x ∝ (v/c)2 is small. Thus we expand
the expression in terms of X and v/c and keep only terms at most quadratic in
the latter. This gives

L′ ≈ −mc2 +
1

2
mv2 +

i

2

(
ψψ̇ − ψ0ψ̇0

)
+A0 − v

c
·A+

S · (π ×E)

mcπ0
+
S ·B
m

.

(6.110)

12We note that due the Grassman nature of X there is only one further non-zero term
in this expansion ∝ X2. Due to the nilpotency of the Grassmanian variables this term is
antisymmetric in four Lorentz indices and thus reminicent of the discussion in section 6.2.3. We
note however that in section 6.2.3, the emergence of the anomaly was tied to the existence of
Grassmannian zero modes and thereby resulted in the well known anomaly relation Eq.(6.73).
The order X2 term here corresponds to a field configuration ∝ E ·B; however it is not a sign
of the presence of the anomaly and not related to the non-conservation of the axial current.
See also [276], where such a term is seen in the equations of motion.



128 CHAPTER 6. CHIRAL KINETIC THEORY

Since in this limit

π0 → p0 − A0

c
, and π → p− A

c
, (6.111)

we obtain our final form for the non-relativistic Lagrangian to be

LNR = −mc2 +
1

2
mv2 +

i

2

(
ψψ̇ − ψ0ψ̇0

)
−A0 +

v

c
·A

+
S · (

[
v/c−A/(mc2)

]
×E)

mc
+
S ·B
m

. (6.112)

Here ψi, i = 1, 2, 3 are the dynamical spin degrees of freedom. Since ψ0 is
not dynamical, we shall drop it from now on. To obtain the corresponding
non-relativistic Hamiltonian, we proceed just as we had done in the Lorentz
covariant case, by introducing a non-relativistic conjugate momentum

pi =
∂LNR
∂ẋi

= mẋi +
Ai

c
+
εijkEjSk

mc2
. (6.113)

We can then compactly express the non-relativistic action as

S =

∫
dt

(
p · ẋ+

i

2
ψ · ψ̇ −H

)
, (6.114)

where the non-relativistic Hamiltonian (in SI units) is

H ≡ mc2 +

(
p− A

c

)2

2m
+A0(x)− S · (

[
v/c−A/(mc2)

]
×E)

2mc
− B · S

m
.

(6.115)

This expression is of course the well known expression for the Hamiltonian for a
fermion in an external electromagnetic field [290]: the penultimate term is the
spin-orbit interaction energy from Thomas precession, while the last term is the
Larmor interaction energy.

In the accompanying letter [245], we showed in some detail that in an adia-
batic approximation the system described by Eq.(6.114) and Eq.(6.115) contains
a Berry phase with monopole form, also postulated in [142–145].

6.3.3 The emergence of Berry’s phase

In the following, we will show how the system described by Eq.(6.115) contains,
in an adiabatic approximation, a Berry phase; in this limit, it has the monopole
form postulated in [142–145]. To recover the expressions in [142, 143] we re-
quantize the spin, by promoting the spin (phase-space) variables ψ to the Hilbert

space operators ψi →
√

~
2σi ≡ ψ̂i and Si → ~

2σi ≡ Ŝk, where σ are the Pauli

matrices and hats indicate operators. Further, to describe the finite phase space
of Grasmannian variables ψ, we define the two dimensional Hilbert space for a
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spin-1/2 particle at every point in phase space (p,x) by the eigenstates |ψ±〉 =
|ψ±(p)〉. Defining n = p

|p| ≡ (sin θ cosφ, sin θ sinφ, cos θ), one has two choices

|ψ(1)
+ (p)〉 =

N

2
(1 + n · σ)

(
1
0

)
=

(
cos θ2

eiφ sin θ
2

)
(6.116)

|ψ(2)
+ (p)〉 =

N

2
(1 + n · σ)

(
0
1

)
=

(
e−iφ cos θ2

sin θ
2

)
, (6.117)

for the “spin up” + basis vectors (where N is a normalization factor) and
similarly for the “spin down” basis vectors (see also [249]). The two choices of
basis vectors are not defined globally for all p with Eq.(6.116) (Eq.(6.117)) ill
defined for the south (north) pole for θ = π (0). One set can however be used
for the northern hemisphere and the other for the southern one, and are related

as |ψ(1)
+ (p)〉 = eiφ|ψ(2)

+ (p)〉 [249].
These basis states allow us to derive a path integral formulation in the adia-

batic limit of the theory defined by Eq.(6.115). The transition amplitude for the
Hamiltonian operator corresponding to Eq.(6.115) from an initial state |ψ+(pi)〉
at time ti to the state with momentum pf at finite time tf is

T (pf ,pi,+) ≡ 〈pf , ψ+(pf )|e−iĤ(tf−ti)|pi, ψ+(pi)〉 . (6.118)

The construction of the path integral for this amplitude requires insertions of
complete sets of intermediate states satisfying

I =

∫
d3xk |xk〉〈xk| =

∫
d3pk |pk〉〈pk|, (6.119)

as well as one for the two dimensional spin-Hilbert space: I2 = |ψ+〉〈ψ+|
+|ψ−〉〈ψ−|. The adiabatic approximation corresponds to B·S

2m ≈ 0. There-
fore in this limit we can neglect the second term |ψ−〉〈ψ−|, thereby constraining
the dynamical spin degrees of freedom.

The transition matrix element can thus be written as

T (pf ,pi,+) =

∫ (N−1∏

k=1

d3pk

)(
N∏

l=1

d3xl

)

×
N∏

j=1

1

(2π)3
e−ixj ·(pj−pj−1)−iHj∆〈ψ+(pj)|ψ+(pj−1)〉 , (6.120)

where ∆ ≡ (tf − ti)/N and Hj is Eq.(6.115) evaluated at (xj ,pj). Taylor
expanding |ψ+(pj−1)〉 = {1 + [pj − pj−1] ·∇p} |ψ+(pj)〉 + · · · , it is straight-
forward to show in the continuum limit that one obtains Berry’s phase,

N∏

j=1

〈ψ+(pj)|ψ+(pj−1)〉 → exp
(
i

∫
dt ṗ ·A(p)

)
. (6.121)
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where A(p) ≡ −i〈ψ+(p)|∇p|ψ+(p)〉 is the Berry connection. The final expres-
sion for the path integral is

T (pf ,pi,+) =

∫
DxDp exp

(
i

∫
dt
[
ẋ · p− H̃

])
, (6.122)

with H̃ = mc2 + (p−A/c)2
2m +A0(x)− ṗ ·A(p).

Eq.(6.122) is closely related to a similar formulation in [142–145].

6.3.4 Chemical Potential

The limit that we derived in Eq.(6.115) is different from the one in [142, 143], as
the latter contains an effective description for (massless) particles near the Fermi
surface, which is well defined for large µ. We will here explore how this limit
appears in the world-line framework. As suggested by Eq.(6.81), a chemical
potential can be introduced by adding a term to the Dirac operator equation

γ5γ
νπν |Φ〉 = 0 → γ5(γνπν + µγ0)|Φ〉 = 0, (6.123)

The corresponding world-line expression is

πνψ
ν = 0 → πνψ

ν + µψ0 = 0. (6.124)

The mass-shell constraint is modified by the introduction of a chemical potential
to read:

π2 + iψαFαβψ
β + µ2 = 0. (6.125)

The world-line Lagrangian for massless fermions in the presence of a chemical
potential is then13

L(µ) =
ẋ2

2E −
E
2
µ2 +

i

2
ψαψ̇

α + ẋαA
α − iE

2
ψαFαβψ

β − i

2

(
ẋαψ

α

E + µψ0

)
χ ,

(6.126)

which we emphasize is a relativistic expression. The path integral we have to
evaluate is

W (µ) =

∫
dT

T

∫
Dx
∫
Dψ exp

{
i

T∫

0

dτ L(µ)
}
. (6.127)

As previously for Eq.(6.92), a consistency relation can be derived here as well.
In this case, we will proceed by performing the T integration in Eq.(6.127)

13For simplicity, we have omitted the kinetic terms for ψ5 and ψ6.
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directly. The integral in Eq.(6.127) can be performed by the stationary phase
method. Fixing E = 2, we obtain

L(µ) =

1∫

0

du
{ ẋ2

4T
− µ2

(
1 +

i

µ2
ψαFαβψ

β
)
T + ẋαA

α

+
i

2
ψαψ̇

α − i

2

(
ẋαψ

α

2
+ µψ0

)
χ
}
. (6.128)

We further rescale T →
∫ 1

0
duµ2(1 + i

µ2ψ
µFµνψ

ν)T ≡ m2
effT to obtain

W (µ) =

∫
dT

T
e−iT

∫
Dx
∫
Dψ exp

{
i
m2

eff

T

1∫

0

du
ẋ2

4

+ i

1∫

0

du
{
ẋµA

µ +
i

2
ψµψ̇

µ − i

2

( ẋαψα
2

+ µψ0
)
χ
}}
. (6.129)

For large chemical potential the intergral is dominated by the first term in the
exponent. Therefore, using the stationary phase method, the T integral can be

performed around the stationary point T0 = meff

√
−
∫ 1

0
du ẋ2

4 . The result is

W (µ) ≈
∫
Dx
∫
Dψ

√
iπ

2meff

(
−
∫ 1

0

du ẋ2
)− 1

4 exp
{
− imeff

√
−
∫ 1

0

du ẋ2

+ i

1∫

0

du
(
ẋαA

α +
i

2
ψαψ̇

α − i

2

[
ẋαψ

α

2
+ µψ0

]
χ
)}
. (6.130)

For a large chemical potential, we can Taylor expand

meff ≈ µ
(

1 +
i

2µ2

∫ 1

0

duψαFαβψ
β

)
, (6.131)

so that we finally have–using the abreviation N̄ ≡
√

iπ
2meff

(
−
∫ 1

0
du ẋ2

)− 1
4

,

W (µ) ≈
∫
Dx
∫
Dψ N̄ exp

{
− iµ

√
−
∫ 1

0

du ẋ2

+ i

1∫

0

du

(−i
2µ
ψαFαβψ

β + ẋαA
α +

i

2
ψαψ̇

α

)}
.

(6.132)

This effective action describes excitations near the fermion surface for a massless
theory with a large chemical potential. In obtaining this form for the action, in
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analogy with the previous section, we chose χ = 0. Eq.(6.132) can be directly
compared with the result in section 6.3.2: as might have been anticipated, the
role of the mass parameter is effectively taken over by the chemical potential.
The non-relativistic limit is thus identical upon this identification, as is the
adiabatic limit in [245]. It was shown there how a Berry monopole is found
when level crossings between spin states are suppressed.

A closer look at the individual terms in the action of W (µ) illustrates these
points nicely. While the first square root term is the conventional kinetic term
for a particle with effective mass µ, the second term is a Larmor-interaction
energy, with the effective mass µ. For large chemical potentials, excitations
around the Fermi surface behave non-relativistically. Further, the adiabatic
limit corresponds to ψαFαβψ

β/µ ≈ 0. The effective description of [142, 143]
is thus straightforwardly understood by taking the appropriate limits in the
world-line framework.

The aforementioned non-relativistic and the adiabatic approximation may
not be applicable to ultra-relativistic heavy-ion collisions. Instead, the general
Lorentz-covariant world-line framework, which we have established in Eqs. (6.89-
6.91) is ideally suited for the description of the anomalous transport of axial
charges in the hot fireball created in a heavy-ion collision.

6.4 Conclusions

In this chapter we developed a world line framework in quantum field theory
to construct a Lorentz-covariant chiral kinetic theory for fermions. In the first
part of the paper, we obtained a world-line path integral representation of the
(Euclidean) fermion determinant in the background of vector and axial-vector
gauge fields. This was achieved by using a heat-kernel representation of the
(infinite-dimensional) operator logarithm. We exploited a fermionic coherent
state formalism whereby spin is not treated as part of a wave function but
rather as an independent degree of freedom in the path integral. This powerful
construction can be extended to include other internal degrees of freedom such
as color.

We then investigated how the axial anomaly arises in world line quantization.
As is well known [269], the axial anomaly is related to the phase of the fermion
determinant, which is ill-defined for fermions in a complex representation. The
fermion effective action is thus understood to contain both a real as well as
an imaginary part, the latter being related to the violation of chiral symmetry.
Using a path integral construction due to D’Hoker and Gagné [280, 281], we
obtained a representation of the real part of the effective action in terms of a
Grassmanian path integral over spinning variables. Remarkably, there is a very
similar path integral representation for the imaginary part, wherein an integral
over a regulating parameter represents the loss of chiral symmetry. This path
integral representation includes an operator insertion, which in this framework is
responsible for the fermion zero modes in the spectrum of the theory. Following
the discussion by Alvarez-Gaume and Witten [269], we demonstrated in our
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framework how these modes are responsible for the axial anomaly. In particular,
we employed a variational method to obtain a non-perturbative expression for
the axial-vector current in first-quantization and thence derived the anomaly
equation. The emergence of the axial anomaly in first quantization crucially
depends on a hidden supersymmetry between bosonic and fermionic degrees of
freedom induced by periodic boundary conditions for the fermion variables on
the closed world-line.

Motivated by our findings in section 6.3, we derived the pseudo-classical ki-
netic limit of the world-line effective action. Continuing our prior discussion
from Euclidean to Minkowski metric, we established that the Liouville dynam-
ics of spinning particles arises from the real part (in the original Euclidean
formulation) of the fermion determinant alone. This contribution to the kinetic
dynamics is independent of those arising from the piece in the path integral
containing the fermionic zero modes that are responsible for the anomaly. How-
ever in a chiral kinetic theory, anomalous contributions to the dynamics, in a
covariant formulation, will be manifest through the axial vector current.

A part of the impetus of our work was to understand the origins of the
Berry term in kinetic descriptions from first principles in quantum field theory
and to establish thereby its relation, if any, to the chiral anomaly. In our
accompanying letter [245], we showed how such a term arises from the world-
line action for massive spinning particles in external background gauge fields.
We demonstrated explicitly that we needed to take the non-relativistic limit of
large masses, as well as an adiabatic limit wherein the Larmor interaction energy
of the spinning particles was much smaller than the rest energy. In this paper,
we addressed the problem in the case where the spinning particles are massless
but the system possesses a large chemical potential. This is the case for quasi-
particle excitations near the Fermi surface in a number of condensed matter
systems. We showed explicitly in the world-line framework that the chemical
potential replaces the role of the mass and the rest energy in a manner that is
exactly the same as was the case for massive spinning particles. An anaologous
non-relativistic and adiabatic limit for these excitations can therefore be taken,
and it can be similarly be demonstrated how the Berry term arises upon taking
these limits.

This exercise also suggests that away from the adiabatic non-relativistic
limit, the Berry phase is not robust and its effects are implicit in the relativistic
dynamics of spinning particles. As such, we have arrived at the same conclusion
as the previous observation by Fujikawa and collaborators [252–254]. In con-
trast to the Berry phase, the effects of the anomaly are robust and manifest in a
relativistic kinetic description. More generally, the semi-classical world-line con-
struction we obtained here can be incorporated in a real-time Schwinger-Keldysh
framework to describe the evolution of a chiral current in a gauge field back-
ground. A similar such construction was performed in [261] for spinless colored
particles. It was shown in that case how one recovers in the world-line framework
the non-Abelian Boltzmann Langevin “Bödeker kinetic theory” [287, 288, 291] of
hot QCD. This framework can be extended to construct an “anomalous Bödeker
theory” which can then be matched to classical-statistical simulations at early
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times in heavy-ion collisions and to anomalous hydrodynamics at late times.
This work is in progress [279]. We note that there has been a recent discussion
of the anomalous Bödeker kinetic theory in the literature [228, 278] in a different
approach and it will be useful in future to compare and contrast results in the
two approaches.

The framework presented here is not only applicable in the QCD framework
of heavy-ion collisions but is potentially applicable to a number of many-body
contexts where topology is important and the dynamics is relativistic. One
such example is that of the transport of chiral fermions in an astrophysical situ-
ations [77, 78, 78–80]. In this context, our framework provides a first principles
perspective that can be used to address situations where masses and chemical
potentials are not large and non-relativistic and adiabatic assumptions are no
longer valid. Another intriguing possibility is to apply this framework to helicity
evolution in QCD at small x [292]. In QCD at small x, semi-classical concepts
provide fertile ground[33, 34]; a semi-classical world-line description was previ-
ously employed [293] to derive the well known BFKL equation for unpolarized
parton distributions [97, 294]. The world-line construction developed here for
spinning particles therefore shows great promise for a wide of many-body prob-
lems and will be pursued in future work.



Chapter 7

Magnetic catalysis and
inverse magnetic catalysis
in QCD

This section is based on the publication ”Magnetic catalysis and inverse mag-
netic catalysis in QCD” (N.M. J. Pawlowski), published in Phys.Rev. D91
(2015) no.11, 116010 (arXiv:1502.08011) [295] and represents a somewhat differ-
ent aspect of matter under extreme conditions as was presented in the previous
chapters. In this section we will focus on the strongly-coupled regime of QCD
and moreover we will describe an equilibrium situation here. As such the work
that we will present here aims at extending our knowledge of the QCD phase di-
agram and thus the later stages in a heavy ion collision, which are described by
hydrodynamics. Apart from this experimental application, the study presented
here can be understood as an important attempt of extending our knowledge of
Quantum-Chromodynamics at finite temperature, chemical potential and mag-
netic fields. The motivation for this study was a fundamental tension between
lattice and model studies in the understanding of the QCD phase diagram in
the T −B plane, as we shall outline below.

We investigate the effects of strong magnetic fields on the QCD phase struc-
ture at vanishing density by solving the gluon and quark gap equations, and
by studying the dynamics of the quark scattering with the four-fermi coupling.
The chiral crossover temperature as well as the chiral condensate are computed.
For asymptotically large magnetic fields we find magnetic catalysis, while we
find inverse magnetic catalysis for intermediate magnetic fields. Moreover, for
large magnetic fields the chiral phase transition for massless quarks turns into
a crossover.

The underlying mechanisms are then investigated analytically within a few
simplifications of the full numerical analysis. We find that a combination of
gluon screening effects and the weakening of the strong coupling is responsible
for the phenomenon of inverse catalysis. In turn, the magnetic catalysis at large
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magnetic field is already indicated by simple arguments based on dimensionality.

7.1 Introduction

In recent years there has been a growing interest in the QCD phase structure in
the presence of strong magnetic fields, see e.g. [296–301]. Such fields may play
an important role for the physics of the early universe, in compact stars, and in
non-central heavy ion collisions [300, 302, 303].

Despite the rich phenomenology, theoretical predictions are challenging. Start-
ing from QED, e.g. [304–307] the influence of magnetic fields onto QCD was
investigated in both model calculations, e.g. [308–322], such as quark-meson,
Nambu-Jona-Lasinio models and AdS/QCD, e.g. [323–329], with functional
renormalisation group methods, e.g. [330–336], Dyson-Schwinger equations, e.g.
[299, 337–339] and in lattice calculations, e.g. [205, 340–345].

The importance of magnetic fields for chiral symmetry breaking has been
pointed out in [304]. It has been argued that chiral symmetry breaking is
enhanced due to an effective dimensional reduction, the magnetic catalysis. This
effect has been linked to an increase of the chiral condensate as well as that of
the critical temperature Tc in model studies. Recent lattice results, [205, 340,
341, 345], have shown that while the chiral condensate indeed is increased, the
critical temperature is decreasing with an increasing magnetic field, at least
for small enough magnetic field strength. This effect has been called inverse
magnetic catalysis or magnetic inhibition, [346].

Continuum studies have mainly been performed in low energy fermionic mod-
els, such as the (Polyakov loop enhanced) quark-meson– or NJL–model. Hence
the reason for the discrepancy has to relate to the full dynamics of QCD, and
in particular the back-reaction of the matter sector to the gluonic fluctuations.
There have been a number of improvements to these model studies to include
QCD dynamics [317–321, 347, 348]. Input parameters of low energy effective
models, such as the four-fermi coupling, should be determined from the QCD
dynamics at larger scales. At these scales they are sensitive to sufficiently large
external parameters such as temperature, density, or magnetic fields. This has
been emphasized and used in functional renormalisation group (FRG) studies,
see [349–352]. The dependence of the four-fermi coupling on temperature and
magnetic field effects including gluon screening has been investigated in the re-
cent FRG-work [336] of QCD in strong magnetic fields, where inverse magnetic
catalysis at small magnetic fields and a delayed magnetic catalysis at large fields
was found, see also [329] for an AdS/QCD computation.

In the present work we investigate (inverse) magnetic catalysis by solving
the coupled quark and gluon gap equations within the Dyson-Schwinger (DSE)
approach to QCD, and within a FRG study of the four-fermi coupling based on
QCD flows and low energy effective models. We find magnetic catalysis at large
magnetic fields, while inverse magnetic catalysis takes place at small magnetic
fields.

The present work is organized as follows: The gap equations for quark and
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Figure 7.1: Quark Dyson-Schwinger equation. Lines with blobs stand for fully
dressed propagators, vertices with large blobs stand for fully dressed vertices.
Lines without blobs stand for classical propagators, vertices with small blobs
stand for classical vertices. Figure taken from [295]

gluon propagators at finite temperature and magnetic field in two flavor QCD
are discussed in Section 7.2. We discuss the dependence of the chiral transition
temperature Tc on the magnetic field as well as the magnetic field dependence
of the chiral condensate. In Section 7.3 the mechanisms behind the phenomena
of magnetic and inverse magnetic catalysis are evaluated within analytically
accessible approximations to the gap equations as well as to the dynamics of
the four-fermi coupling. In this set-up we are also able to reproduce the lattice
results at eB < 1 GeV2. In summary this provides a complete picture of chiral
symmetry breaking in the presence of magnetic fields in QCD.

7.2 Chiral symmetry breaking in large magnetic
fields

We investigate chiral symmetry breaking in the presence of large magnetic fields
within a functional continuum approach. To this end we calculate the chiral
condensate for the two lightest quark flavors and obtain the critical temperature
Tc at finite magnetic field. This is done by solving the gap equations for the
quark and gluon propagator in the presence of a magnetic field using the Ritus
method [353–359]. The computations are performed in the Landau gauge.

7.2.1 Quark and gluon gap equations

The gap equation for the quark propagator, see Fig. (7.1), depends on the gluon
propagator and the quark-gluon vertex. The former is expanded about the
quenched propagator. This expansion has been successfully used at vanishing
temperature, e.g. [360, 361], and at finite temperature in e.g. [362–365], the
reliability of this expansion has been discussed in [366]. The quark-gluon vertex
is estimated with the help of Slavnov-Taylor identities (STIs) from the quark
and gluon propagators. The systematic error of the latter estimate gives rise
to the dominating systematic error, at vanishing temperature this has been
investigated in [367], a related upgrade of the vertex will be used in a subsequent
work.
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Figure 7.2: Gluon Dyson-Schwinger equation. The gluon line with the yellow
dot represents the pure glue loops. Figure taken from [295]

The inverse quark and gluon propagators, Gq(q) and GA(q) respectively, read
in a tensor decomposition at finite eB and T

G−1
q (q) = Zq(q) (iγ3q3 + iγ0q0Z0 + iγ⊥q⊥Z⊥ +M) ,

G−1µν
A (q) =

(
Z‖ P

µν
‖ + Z⊥ P

µν
⊥

)
q2 +

1

ξ

qµqν

q2
, (7.1)

with Pµν‖ = (gµν‖ − p
µ
‖p
ν
‖/p

2
‖) and P⊥ = P − P‖, where Pµν is the transverse

projector. The projection operator gµν‖ has the property gµν‖ pµ‖ = pν‖ . The Ritus

representation Eq. (7.1) for the quark propagator is equivalent to the Schwinger
proper time method, see e.g. [368]. In the following we will denote ZA ≡ Z‖ and
concentrate on the Landau gauge, ξ = 0. The STIs-induced parametrisation of
the quark-gluon vertex is introduced as

Γµ(q, p) = γµzDSE
q̄Aq (q, p) , (7.2)

with zDSE
q̄Aq (q, p) discussed in Appendix D.1. The quark gap equation can be

written in a compact notation as

G−1
q (p) = G−1

q,0(p) + Cf
∑∫

q

(gγµ)Gq(q)Γ
ν(q, p)GµνA (q′) , (7.3)

with q′ = q− p and Gq,0 as the bare propagator. The integration
∑∫
q

stands for
an integration over momenta, as well as sums over Matsubara frequencies and
Landau levels. The gluon propagator can be expanded about its pure glue part,

G−1µν
A (p) = G−1µν

glue (p) + Πµν
f (p) , (7.4)

where we have written the fermionic part of the gluon self energy explicitly,
while the gluon and ghost loop contributions are contained in Gglue. The corre-
sponding DSE for the gluon propagator within this expansion is depicted Fig.
(7.2). In the following we consider the back-reaction of the vacuum polarisation
on the pure glue part as small, and approximate

G−1µν
glue (p) ≈ G−1µν

YM (p) . (7.5)

At vanishing temperature this has been shown to hold quantitatively for mo-
menta q & 4 GeV, while for smaller momenta this approximation still holds
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Figure 7.3: Relation of the quark DSE interaction kernel to a 1PI skeleton
expansion, which in effect induces an effective momentum dependent four-fermi
vertex. Figure taken from [295]

qualitatively with an error of less than 20%, see Fig. 6 in [366]. Note that for
momenta q & 4 GeV the dominant effect of the unquenching is the modification
of the scales (ΛYM → ΛQCD) and the momentum dependence induced by the
different β-functions. This is well-captured with the above procedure. In turn,
at lower momentum scale the non-perturbative mass-gap related to confinement
comes into play. The magnetic field leads to a shift in the momentum depen-
dence such as that of the running coupling, as well as (additional) mass-gaps in
propagators. For both asymptotic regimes (eB → 0 and eB →∞) these effects
are well-captured semi-perturbatively and we expect that the approximation
(7.5) holds well. For the intermediate regime we rely on the error estimate at
zero temperature of about 20% deduced from [366].

The fermionic vacuum polarisation part Πµν
f (P ) reads

Πµν
f (p) =

1

2
tr
∑∫

q

(gγµ)Gq(q)Γ
ν(q, p)Gq(q

′) , (7.6)

where the trace includes a sum over the quark flavors. Details of this expansion
can be found in [299]. Here we proceed in the lowest Landau level approxi-
mation, where we write down the most general tensor decomposition for gluon
and quark propagators. Projecting onto different tensor compositions, we ob-
tain a coupled set of equations for the dressing functions of the different tensor
components. In the next section we will comment on the relation of the Dyson-
Schwinger equations to other functional expansions and discuss the numerical
solutions to these equations.

7.2.2 Skeleton expansion

Before proceeding to the numerical analysis, we discuss the standard approxima-
tion schemes for the quark-gluon vertex used in the Dyson-Schwinger framework
from a more general point of view. This allows us to connect the present ansätze
to the approximations used in gap equations derived within other functional ap-
proaches, such as functional renormalisation group (FRG) or nPI-approaches.

DSE studies have made extensively use of the specific input for the quark-
gluon vertex and the YM-gluon propagator in (D.2) and (D.4) and similar trun-
cations with great success. Since the quark and gluon self energy diagrams,
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depicted in Fig. (7.1) and Fig. (7.2), contain one bare vertex, the correct renor-
malisation group behavior and momentum dependence of the equations must
be discussed carefully. The truncations to the gap equations (7.3) and (7.4) can
actually be very well motivated from a skeleton expansion of the 1PI effective
action, which would yield similar diagrams as in Fig. (7.1) and Fig. (7.2), but
with both vertices dressed. Fig. (7.3) serves to strengthen this motivation as
it becomes clear that all approximations should encode the correct behavior of
the four-fermi interaction, which is at the heart of chiral symmetry breaking.
This allows to consistently reshuffle functional dependencies in the interaction
kernels of the above equations.

In turn, the FRG-approach (or nPI effective action) can be used to systemat-
ically derive gap equations in terms of full propagators and vertices respectively,
see e.g. [171]. Here, we simply note that the 1PI effective action can be written
as

Γ[φ] =
1

2
Tr ln Γ[φ] +

∫

t

∂tΓk[φ]− terms , (7.7)

where φ encodes all species of fields, the trace in (7.7) sums over momenta, in-
ternal indices and all species of fields including relative minus signs for fermions
(ψ and ψ† are counted separately), and a logarithmic RG-scale t = ln k. The
RG-scale in (7.7) is an infrared scale. Momenta p2 . k2 are suppressed in
Γk[φ], and Γ[φ] = Γk=0[φ]. The second term on the right hand side of (7.7) is a
RG-improvement term which only contains diagrams with two loops and more
in full propagators and vertices. To see this we discuss the gap equation de-
rived from (7.7). It follows by taking the second derivative of (7.7) w.r.t. to the
fields. The first term of the right hand side gives the diagrams as in Fig. (7.1)
and Fig. (7.2) with only full vertices (and additional tadpole diagrams). These
diagrams can be iteratively re-inserted into the RG-improvement term, system-
atically leading to higher loop diagrams in full propagators and vertices. Due
to its sole dependence on dressed correlation functions such a diagrammatics
naturally encodes the momentum- as well as the RG-running on an equal foot-
ing. This also facilitates the consistent renormalisation. Note however that it
comes at the price of an infinite series of loops diagrams which can be computed
systematically. Here we take the simplest non-trivial approximation which boils
down to Fig. (7.1) and Fig. (7.2) with only full vertices. In terms of the original
gap equation this leads to the relation

zDSE
q̄Aq ≈

(
z1PI
q̄Aq

)2
, (7.8)

where z1PI
q̄Aq is the dressing function of the 1PI-quark gluon vertex. This immedi-

ately leads to the standard DSE-dressing in (D.2). Moreover, in our numerical
study the vertices are evaluated at their symmetric momentum point.

Note that, while the ansatz for zDSE
q̄gq is indeed consistent when used in the

quark and gluon gap equations, it cannot be used in functional equations for
higher vertices such as the four-fermi vertex. It is already clear from the discus-
sion above that a consistent evaluation of renormalisation group running and
momentum dependence must be considered separately for each vertex equation.
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Figure 7.4: Comparison of the chiral condensate (scenario 1) for up (continuous
lines) and down quark (dashed lines) at eB = 12 GeV2 and eB = 24 GeV2.
Figure taken from [295].

7.2.3 Results

We numerically solve the coupled system of quark and gluon functional equa-
tions in the lowest Landau level approximation at finite temperature. This ap-
proximation is valid in the presence of a clear scale hierarchy with eB � ΛQCD.
We use an ansatz for Γµ similar to that used in Dyson-Schwinger studies, e.g.
[299, 369], discussed in appendix D.1, but adapted for temperature and magnetic
field effects.

While at large momentum the influence of temperature and magnetic fields
is very small, at large temperatures and magnetic fields the system is effectively
dimensionally reduced and hence the momentum dependencies corresponding
to the absent dimensions vanish. This can be accounted for if we replace Q2

⊥ by
2|eB| once Q2

⊥ < 2|eB| and Q0 by 2πT for Q0 < 2πT as the relevant scale in the
quark gluon vertex, which is consistent with renormalisation group arguments.
Within this parametrisation we are still left to decide what exact momentum
scale to choose, at which the influence of the external scales T and eB is small
already. We investigate this question in detail in section 7.3.1.

The gluon propagator deserves some additional attention. It is decomposed
in different polarisation components in the presence of an external magnetic
field, see e.g. [299]. Apart from the splitting into longitudinal and transverse
components with respect to the heat bath, there is an additional splitting trans-
verse and longitudinal to the magnetic field. In the lowest Landau level approxi-
mation only the polarisation subspace projected onto by Pµν‖ = (gµν‖ −p

µ
‖p
ν
‖/p

2
‖)
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receives contributions from the quark loop in the self energy, see [299]. Note
that in analogy to temperature effects, also the other gluon components must
receive contributions from the interaction with the magnetic field, as gluon and
ghost loops mix different polarisation components. This is an important dif-
ference between QCD and QED. From dimensionality these contributions are
linear in eB at least for asymptotically large magnetic fields, leaving aside im-
plicit B-dependencies via the vertices. Their full computation is beyond the
scope of the present work. Here we investigate the following two limiting cases.

1. Scenario 1 We simply neglect the screening effect of the magnetic field
onto those polarisation components that feel magnetic effects only through
the Yang-Mills sector in a QED-type approximation. This leads to under-
estimating the effects leading to inverse magnetic catalysis and hence an
upper limit for Tc.

2. Scenario 2 For the large magnetic fields discussed here, the gluon and
ghost loops contributions to the self energy must have a similar dependence
on eB as the fermionic part. Since this sector does not directly contain
charged particles, the effect of the magnetic field onto the YM-sector is
suppressed by powers of the involved couplings. Hence, most likely the
B-dependence is much smaller than that from the fermionic sector. As a
limiting case we will assume the same magnitude of the self energy for all
gluon components, which is given by the fermionic contributions. With
that we overestimate the gluon screening effect and obtain a lower limit
for Tc.

Both scenarios give consistent limiting cases for the truncation used here.

As an order parameter for chiral symmetry breaking we calculate the chiral
condensate as a function of temperature and magnetic field in two flavor QCD
in the limit of vanishing bare quark masses mu ≈ md ≈ 0. The Ritus method
is not reliable for rather small values of qfeB, with qf + 2/3 and −1/3 for up
and down quark respectively. We expect the lowest Landau level approximation
to be a good estimate once eB & 4 GeV2 (see [299]) which is also the regime
where the approximation (7.5) works well for vanishing temperature.

The numerical computation is very demanding in the vicinity of the phase
transition due to the diverging correlation length. This translates into a numeri-
cal error in the critical temperature indicated by the error bars in the plots. Fig.
(7.4) and Fig. (7.5) show the up- and down-quark condensate for different values
of eB. The inverse magnetic catalysis effect described in [340, 341] is evident.
While the chiral condensate still rises with the external field in the low temper-
ature limit, the transition between chiral broken and symmetric phase drops.
This signals inverse magnetic catalysis as observed on the lattice, [205, 340].
Furthermore the phase transition, which is second order at zero magnetic field
turns into a crossover with growing eB, even for vanishing bare quark masses.
This can be understood as magnetic screening: the magnetic field effectively
serves as an infrared cutoff, which inhibits an infinite correlation length.
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Figure 7.5: Comparison of the chiral condensate for scenario 2 at eB = 12 GeV2

and eB = 24 GeV2. Figure taken from [295].

In the present computation in two-flavor QCD, an even more intricate effect
is observed. Up and down quarks come with different electric charges, therefore
the presence of a strong electromagnetic field breaks isospin explicitly. This
results in a non-degenerate chiral phase transition for the two flavors. Because
gluons travel through a medium filled with both virtual up and down quarks,
isospin breaking effects the self interactions of the quarks, which leads to inter-
ference between the chiral transitions of the two flavors as seen in Fig. (7.4)
and Fig. (7.5).

This interference can be interpreted as follows. Virtual quark fluctuations
contributing to the gluon screening are suppressed in the chiral broken phase
by the quark mass. Since the down quark undergoes the chiral phase transi-
tion already at lower scales, its fluctuations are suddenly enhanced due to the
vanishing mass in the symmetric phase. The up quark, while still in its chirally
broken phase, is drastically effected by these enhanced fluctuations, which lead
to reduction of the up quark condensate even below the real phase transition.

It can be seen from Fig. (7.4) and Fig. (7.5) that this effect is more promi-
nent in scenario 2, which should come as no surprise, as the coupling of the
magnetic field to the gauge sector is probably overestimated here. Nevertheless
the isospin induced chiral transition substructure is observable in the limiting
scenario 1 as well, which is a strong indication of its validity. Therefore this
important physical effect might be observable in lattice calculations, as well.
In [340, 341] the averaged chiral condensate was investigated at finite quark
mass. However when we investigate the chiral transition at a bare quark mass
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Figure 7.6: Comparison of the chiral condensate at zero bare mass and at a
finite bare quark mass of mu = md = 10 MeV at eB = 4 GeV2 in scenario 1.
Figure taken from [295].

of 10 MeV we find that the interference effect is completely masked by the
crossover behavior as can be seen in Fig. (7.6). Note that here the unregu-
larized condensate at finite bare mass is plotted, hence the offset between the
curves.

In analogy with lattice calculation we define Tc at the inflection points of
the curves shown. In Fig. (7.7) and Fig. (7.8) the obtained values for Tc for
the limiting cases described by scenario 1 and 2 are shown. The two curves
give lower and upper limits for Tc, as discussed before. The chiral transition
temperature is decreasing for a large range in eB before it seems to saturate for
intermediate values in both scenarios. At very large fields it rises again.

In accordance with our previous discussions we see that the up and down
quark chiral transitions do not coincide. The transition temperature from the
flavor averaged quark condensate is given in Fig. (7.7) and Fig. (7.8) as well.
As can be seen from Fig. (7.4) and Fig. (7.5) the transition temperature of the
flavor averaged condensate is essentially determined by the up quark.

Both scenarios give estimates for the chiral transition temperature, which
differ only quantitatively. Scenario 1, which underestimates the magnetic field
effects in the gluon sector extrapolates to a critical temperature at eB = 0
between 170 − 210 MeV with a turning point between catalysis and inverse
catalysis of about eB ≈ 30 GeV2. On the other hand scenario 2 gives Tc at
zero magnetic field of about 140−165 MeV with a turning point slightly higher
than in scenario 1. This is in accordance with the fact that scenario 2 overes-
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Figure 7.7: Critical temperature obtained from scenario 1 for up quark, down
quark and from the flavor averaged condensate. Figure taken from [295].

timates the gluonic sector, which is the source of the inverse catalysis effects.
At B = 0 the chiral phase transitions for up and down quark coincide. While
the continuous lines in Fig. (7.7) and Fig. (7.8) are obtained from a fit with
a simple quadratic polynomial, reflecting the turnover behavior at large fields,
these should not be mistaken as extrapolations towards zero. Furthermore the
computations have been performed in the lowest landau level approximation.
This leads to an uncertainty of about 10% for B smaller than 10 GeV2, while
the qualitative behavior is not effected, as discussed in [299, 301]. In the follow-
ing section we will see that the behavior of Tc at small B is steeper than just
quadratic.

It is well known that within approximation schemes such as the one discussed
here, relative fluctuation scales are usually well accounted for, whereas absolute
scales have to be fixed. The position of Tc at eB = 0 gives us the possibility of
identifying absolute scales and allows to adjust our truncation. We will not be
concerned about matching the exact scale of Tc at zero magnetic field with the
lattice, moreover we will investigate the mechanisms behind the B − T phase
structure in greater detail. We will discuss the issue of scales in the following
sections.

7.3 Analytic approaches

In the present Section we are specifically interested in the mechanisms at work in
magnetic and inverse magnetic catalysis. To that end we discuss approximations
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Figure 7.8: Critical temperature obtained from scenario 2. Figure taken
from [295].

to the quark gap equation in Section 7.3.1, as well as to the dynamics of the
four-fermi coupling or quark scattering kernel in Section 7.3.2, that allow for an
analytic approach to chiral symmetry breaking. While the quark gap equation
can be straightforwardly reduced to an analytic form from that used for the
numerical study, the four-fermi coupling is studied in a renormalisation group
approach to QCD, that reduces to an NJL-type model for low momentum scales.

7.3.1 Quark gap equation

The mechanisms behind the phenomena observed in our numerical study can
be analyzed within approximations detailed below, that allow for an analytic
access. These approximations to the gap equation have been introduced in [306]
for QED, and can be extended to QCD at finite temperature. The self-consistent
Dyson-Schwinger equation for the mass functions reads in lowest Landau level
approximation with zero bare mass

M(p‖) = 4πCF

∫∑

q‖

M(q‖)Tr(∆(sgn(eB))γµ‖ γ
ν
‖ )

M2(q‖) + q2
‖

∫

k⊥

αs exp

(
− k2

⊥
2|eB|

)
Pµν(k)

k2 + Π(k2)
. (7.9)
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Here
∑∫

= T
∑
n

∫
dq‖/(2π)3 and ∆(s) = (1 + sσ3)/2. The quark gap equation

(7.9) is obtained from a skeleton expansion of the effective action, e.g. [370], and
is nothing but a manifestly renormalisation group invariant approximation of the
above Dyson-Schwinger equations, see the discussion in Section 7.2.2. It includes
only dressed vertices. In appendix D.1 we discuss how the interaction kernels
can be related in both pictures. The 1PI quark-gluon vertex is parametrized as

Γµq̄Aq(q
2) = Z

1/2
A (q2)

√
4παs(q2)γµ‖ , (7.10)

The gluon propagator is transversal due to the Landau gauge, and we allow for
a gluonic mass via thermal and magnetic effects. M(p‖) is a function that is
approximately constant in the IR but falls of rapidly for p2

‖ ≥ 2|eB|. Hence,

if we are interested in M(0) = MIR we can write, dividing the equation by its
trivial solution,

1− 4π2CFT

∫2eB∑

q‖

1

M2
IR + q2

‖,f

×
∫

dx
αs exp (−x/2|eB|)
q2
‖,b + x+ Π(x, q‖,b)

(
2−

q2
‖,b

q2
‖,b + x

)
= 0 . (7.11)

In (7.11) we have introduced q‖,b ≡ (q3, 2nπT ) and q‖,f ≡ (q3, 2πT (n + 1/2)).
Chiral symmetry breaking is realized once a solution M2

IR > 0 exists. Due to
the shape of M(q) and the exponential factor in (7.11), the integrand only has
support for x . 2|eB|. In the following we carefully investigate the ingredients to
this self consistent equation and the physical mechanisms, which are responsible
for the intriguing behavior seen in the previous section.

Due to the finite support of the integrand, the momenta running through the
vertices are comparable or smaller than the relevant dimensionful quantities eB
and T 2. Note that in our numerical study we have used an ansatz for the quark
gluon vertex, that includes generic eB and T dependencies. Here we utilize the
fact that the running of αs is dominated by the temperature and magnetic field
scales. We resort to a simple ansatz for αs(Q

2/Λ2
QCD) based on the analytic

coupling αs,HQ suggested in [371, 372], see [373] for an investigation within the
present context. This coupling yields a linear potential such as seen in the heavy
quark limit.

αs(z) = αs,HQ(z) rIR(z) , (7.12)

where

αs,HQ(z) =
1

β0

z2 − 1

z2 log(z2)
, (7.13)

with β0 = (33− 2Nf )/12π and

z2 =
λB2eB + λT (2πT )2

Λ2
QCD

, (7.14)
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with coefficients λT , λB , which are of order one. These coefficients determine the
point at which eB or T dominate momentum scales. For the relevant magnetic
fields and temperatures the running of the coupling with temperature is very
small compared to the running with eB. We use an ansatz for the infrared
behavior of the vertex, which is parametrized in rIR. Here we use

rIR(z2) =
z4

(z2 + b2)2

(
1 +

c2

z2 + b2

)
, (7.15)

which scales with ∝ z4 for z → 0, and approaches unity in the perturbative
regime. Eq. (7.12) reproduces the correct behavior of the full quark gluon
vertex in (7.10). We leave b and c as parameters which allow us to model the
infrared behavior of the quark gluon vertex. Our ansatz for (7.15) is motivated
from the quantitative renormalisation group study of quenched QCD in [367],
which we use to determine b and c. We get

b = 1.50 , c = 7.68 , (7.16)

from the fit to Fig. 4 in [367].
Furthermore we discuss the gluon self energy in the presence of magnetic

fields at finite temperature in this simplified setup. It is important to notice that
we can facilitate our calculations by the following argument. The function on the
right hand side of (7.11) is a continuous real function of MIR and approaches +1
as MIR →∞. Hence it is sufficient to check whether the expression is negative
for MIR = 0, because then it had to pass through zero at some point, which
means that a solution exists.

The gluon self energy receives two important contributions. The first is
through the appearance of fermion loops, which are also present in an abelian
calculation. The fermionic self energy part in lowest Landau level approximation
with MIR = 0 factorizes

Πµν
f (p) = αeB exp

(
−p2
⊥/2eB

)
Πµν(p‖, T ) . (7.17)

Contracting with Pµν in the Landau gauge, we can write the second term as

Πf (p‖, T ) = −8π2
[
3− 2(1− p2

‖/p
2)
] 1

τ2

×
1∫

0

dx

∫∑

q̃‖

x(x− 1)

(q̃2
3 + (2π)2(n+ 1/2)2 + x(1− x)/τ2)

2 , (7.18)

where we defined τ2 ≡ T 2/p2
‖. The function can be evaluated numerically and

is very well described by the simple function

Πf (p‖, T ) = (1/2π)
[
3− 2(1− p2

‖/p
2)
] 1

1 + (4π2/3)τ2
. (7.19)
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Figure 7.9: Analytic calculation of the critical temperature for the chiral phase
transition. The bands indicated correspond to λT = 1 and λT = 0. Arrows
indicate the direction from λT = 1 to λT = 0. Figure taken from [295].

Eq. (7.17) and Eq. (7.19) state that the relevant contributions to the self energy
stem from p2

⊥ ≈ 2eB and p2
‖ ≈ T 2. Similar as before, the influence of the

magnetic field onto the Yang-Mills sector is not easily accounted for. Here we
focus on the abelian-like part of the gluon self energy. As we have investigated
before numerically, this is qualitatively correct and we will use Eq. (7.14) to
account for the correct scales. It is well known from Dyson-Schwinger studies
[374], that approximations similar to this semi-bare vertex ansatz underestimate
the strength of chiral symmetry breaking, due to the negligience of important
tensor structures in the vertex, especially those structures that break chiral
symmetry explicitly [367]. In order to compensate the overall weakness of the
interaction, we allow for a phenomenological parameter κ in front of the integral
in Eq. (7.11).

Using our simple ansatz we can investigate chiral symmetry. In Fig. (7.9)
a family of solutions to Eq. (7.11) is shown for various values of λB and λT ,
using the ansatz described above with κ = 1.2 for the two upper curves and
κ = 1.4 for the lower curves. The choice of κ is for better visualisation only, as
the curves can be shifted up and down using this parameter.

The observed behavior agrees with that in our numerical study. It can be
seen from Fig. (7.9), that for small eB inverse magnetic catalysis is present,
while at large eB the the critical temperature rises again with the magnetic
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Figure 7.10: Comparison of the critical temperature obtained with our full
numerical procedure to the simple analytic estimate for λB = 1.1, λT = 1 and
κ = 1.19. Figure taken from [295].

field, with

Tc(B/Λ
2
QCD →∞) ∝

√
eB , (7.20)

as one would anticipate from dimensional considerations. This behavior is uni-
versal for all λB and λT . We see that the choice of λB effects the position of
the turning point of the chiral phase boundary.

With the present analytical considerations the numerical results in Fig. (7.7)
and Fig. (7.8) are readily explained: they roughly correspond to λB ≈ 1, which
explains the relatively large value of eB at the turning point. We see that
already small changes in λB have a huge effect on this quantity, see Fig. (7.9).

In Fig. (7.10) we have plotted the analytic result with λB = 1.1, λT = 1
and κ = 1.19, which agrees well with the numerical results from scenario 2.
Based on the present work we estimate that λB ≈ 2 − 3 is a realistic choice
for the B-dependence of the running coupling, as in our numerical study quark
and gluon propagator turn into their corresponding B = 0-propagators at this
momentum scale.

The present analysis reveals the following mechanism: The gauge sector
acquires a B-dependence through the feedback of the fermionic sector. This
dependence is responsible for the phenomena called inverse magnetic catalysis,
as has been also observed recently in a FRG-study within QCD, [336]. This also
explains why it cannot be seen in model calculation without explicit QCD input.
From Eq. (7.11), Eq. (7.12) and Eq. (7.19) we see that the gluon screening and
the running of the strong coupling (both by thermal and magnetic effects) are
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Figure 7.11: Diagrams contributing to the renormalisation group flow of the
four-fermi coupling. Figure taken from [295].

competing with the generic fermionic enhancement of chiral symmetry break-
ing in a dimensionally reduced system. We see from Fig. (7.9) that at small
magnetic field screening effects dominate the behavior of the fermionic self en-
ergy, while at asymptotically large fields, thermal fluctuations are negligible and
hence eB, as the dominating scale, drives the phase transition towards higher
Tc (magnetic catalysis).

7.3.2 Four-fermi coupling

For a further analytical grip we also resort to a low energy effective theory
point of view: integrating-out the gapped gluons leads to an effective four-fermi
theory, that is initialized at about the decoupling scale of the glue sector of
Λ ≈ 1 GeV. Previously there have been phenomenological approaches in low
energy effective models to include QCD dynamics as the source of the inverse
magnetic catalysis effect [317, 318, 347]. From the point of view of the FRG
for QCD this can be seen as follows [352, 362, 366, 367, 375–377]: At a large
momentum scale k QCD is perturbative, and the 1PI effective action Γk in
(7.7) is well-described perturbatively. A four-fermi coupling is generated from
the one-loop diagrams (in full propagators and vertices) encoded in (7.7), the
related diagrams are depicted in Fig. (7.11). In the present discussion we have
dropped diagrams that depend on the qq̄ − AA vertex, qqq̄q̄ − AA-vertex and
the qqqq̄q̄q̄-vertex. Furthermore we assume a classical tensor structure for the
q̄Aq-vertex with a coupling

√
4παs,k, and only consider the scalar–pseudo-scalar

four-fermi vertex

Γfour-fermi[q, q̄, B] =
1

2
q̄aαi qbαj Γabcdk,ijlm q̄cβl q

dβ
m , (7.21)

with the scalar–pseudo-scalar tensor structure

Γabcdk,ijlm = λk
[
δijδlmδ

abδcd + (iγ5)ij(iγ5)lm(τn)ab(τn)cd
]
. (7.22)

The four-fermi term in (7.21) can be viewed as the interaction term of a NJL-
type model. Within the approximation to QCD outlined above the flow of the
four-fermi coupling, ∂tλk, has the form

∂tλk =− k2λ2
kFλ(Gq)− λkαs,kFλαs(Gq, GA)

−
α2
s,k

k2
Fα2

s
(Gq, GA) , (7.23)
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Figure 7.12: Scalar–pseudo-scalar four-fermi coupling in the vacuum, T = 0,
B = 0, computed with quantitatively reliable QCD-flows in quenched QCD,
[367], and with qualitative full QCD flows, [366]. Figure taken from [295].

with positive coefficients Fλ, Fλαs , Fαs . The respective diagrams are depicted
in Fig. (7.11). The different classes of diagrams in Fig. (7.11) depend on
combinations of gluon and quark propagators, GA and Gq respectively.

The four-fermi coupling λk in two-flavor QCD at T = 0 has been quan-
titatively computed (including its momentum-dependence) in quenched QCD
with the FRG in [367], and in a more qualitative approximation (without its
momentum-dependence) in fully dynamical QCD in [366]. The respective re-
sults are depicted in Fig. (7.12). As expected, the couplings have a similar
dependence and maximal strength. However, the slope of the coupling in the
qualitative computation in the peak regime relevant for chiral symmetry break-
ing is bigger for the qualitative computation. This can be traced back to the
missing momentum-dependencies, whose lack artificially increases the locality
in momentum space and in the cutoff scale. Hence, guided by the experience
gained in the DSE-computations we expect the slope to play a large rôle and
we shall use the quantitative quenched results for λk and αs in our present
computations. We shall further comment on the differences in the next Section.

For large cutoff scales k the propagators approach the classical propagators.
The current quark mass at these scales is negligible and only the cutoff scale is
present, if temperature and magnetic field are considered small relative to the
cutoff scale. Then the dimensionless Fs are simple combinatorial factors. For
optimized regulators, [378], they are given as

Fλ = 4Nc , Fλαs = 12
N2
c − 1

2Nc
, Fα2

s
=

3

16

9N2
c − 24

Nc
, (7.24)
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in the vacuum, see e.g. [366, 367, 377] for more details. For small enough cutoff
scales k the gluonic diagrams decouple due to the QCD mass gap. In the Landau
gauge this can be directly seen with the gapping of the gluon propagator. For
T = 0, B = 0 this entails

p2GA(p2 . Λ2) ∝ p2/m2
gap . (7.25)

with Λ ≈ 1 GeV. We emphasize that (7.25) only reflects the mass gap present in
the Landau gauge gluon propagator, the gluon propagator is not that of a mas-
sive particle, see e.g. [379]. For momentum scales p2 . Λ2 this approximately
leaves us with an NJL-type model with the action

ΓNJL[q, q̄, B] =

∫

x

q̄ i/∂q + Γfour-fermi[q, q̄, B] , (7.26)

with the scalar–pseudo-scalar four-fermi interaction defined in (7.21). In the
presence of a magnetic field this model including fermionic fluctuations has been
investigated in [331] within the FRG. Here we shall use the respective results
within the lowest Landau level approximation. Then Tc shows an exponential
dependence on the dimensionful parameter eB

Tc = 0.42Λ exp


− 2π2

NcλΛ

∑
f

|qfeB|


. (7.27)

The well-known exponential dependence of Tc on the four-fermi coupling λΛ

already explains the large sensitivity of the scales of magnetic calatysis and
inverse magnetic catalysis to details of the computation. Eq. (7.27) is valid for
large magnetic field and for Λ� m2

gap, that is deep in the decoupling regime of
the gluons. An estimate that also interpolates to small magnetic fields is given
by

Tc = 0.42Λ exp

(
− 1

cΛλΛ

)
, (7.28)

with

ck(B) =
Nc
2π2


∑

f

|qfeB|+ c1 k
2


 , with c1 = 3 , (7.29)

where c1 has been adjusted to reproduce Tc(B = 0) ≈ 158 MeV. While Eq. (7.29)
resembles a lowest Landau level approximation, it is actually an expansion in
B. Using this ansatz we can describe the behavior of the phase transition on
scales below 1 GeV2 qualitatively, while the B = 0 limit is fixed.

It is also well-known that for k � mgap the flow of the four-fermi coupling
is driven by the gluonic diagrams summed-up in Fαs : for large scales we can
set λk�mgap

≈ 0. The gauge coupling is small, αs,k�mgap
� 1 and the flow
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Figure 7.13: Scalar–pseudo-scalar four-fermi coupling at T = 0, B = 0 com-
puted with quantitatively reliable QCD-flows in quenched QCD, [367], in com-
parison to λglue computed from (7.31). Figure taken from [295].

gives λk ∝ α2
s. This entails that the diagrams with four-fermi couplings are

suppressed by additional powers of αs, and the four-fermi coupling obeys

∂tλglue,k = −
α2
s,k

k2
Fαs(Gq, GA) , (7.30)

where the subscript ’glue’ indicates that the flow is driven by glue fluctuations.
As discussed before, for k � mgap we have classical dispersions for quark and
gluon, and the diagrammatic factor Fαs is a constant, see (7.24). The strong
coupling αs,k has the form (7.12) with z ∝ k. Integrating (7.30) with (7.12)
gives

λglue,k ∝
α2
s,k

2k2
Fαs(Gq, GA) . (7.31)

where an estimate for the B-dependence of the gluonic diagram in Fαs is given
in Appendix D.2.

At vanishing magnetic field λglue,k agrees well with the full result for the four-
fermi coupling in [367] for k & 2 GeV, see Fig. (7.13). Below k ≈ 2 GeV, λglue,k

is increasingly smaller than the full scalar–pseudo-scalar four-fermi coupling in
quenched QCD. In this intermediate range, where all diagrams contribute, we
write the resulting coupling within a resummed form that captures already the
fermionic diagram proportional to Fλ,

λk =
λ̄k

1− c̄kλ̄k
, with c̄k =

∫ Λ

k

dk′ k′Fλ(Gq) . (7.32)



7.3. ANALYTIC APPROACHES 155

The resummed form in (7.32) already reflects the matter part of the flow in
(7.23) which is the term proportional to ∂tλk. The other terms add up to

∂tλ̄k = −(1− c̄kλ̄k)2

(
λkαs,kFλαs +

α2
s,k

k2

)
. (7.33)

For c̄kλ̄k � 1 the flow of λ̄k boils down to (7.30). For c̄kλ̄→ 1 the flow in (7.33)
tends towards zero. In this regime the four-fermi coupling grows large and the
matter flow dominates. Hence, for the present qualitative analysis we simply
identify λ̄ with the glue λglue, (7.31), up to a prefactor,

λ̄k = Zλλglue,k . (7.34)

The prefactor Zλ accounts for the fact that we have used results of quantitative
QCD-flows [367] for the strong coupling which also includes wave function renor-
malisations for the quarks. In the current model considerations without wave
function renormalisation and further simplifications this has to be accounted
for. For the same reason the normalisation 0.42 Λ related to a four-fermi flow
with an optimised regulator has to be generalised. Moreover, the prefactor
c̄λ,k is the integrated four-fermi flow already present in (7.28) up to an overall
normalisation accounting for the model simplifications. We choose

c̄k(B) = c3 ck(B) , and 0.42 Λ→ 0.42 Λ exp (c2 − c3) , (7.35)

and arrive at

Tc = 0.42Λ exp

(
− 1

cΛλ̄Λ
+ c2

)
, (7.36)

with cΛ as given in (7.29) and λ̄ in (7.34) and (7.31). Note that the parameter c3
has dropped out. Its value can be adjusted to achieve a quantitative agreement
of (7.31) with the QCD result in [367] with

c3 =
1

2Zλ
, (7.37)

where the factor 1/Zλ simply removes the mapping factor adjusting for the
missing wave function renormalisations in the model computation. This quan-
titative agreement strongly supports the reliability of the approximate solution
to the flow equation given by (7.32) in the intermediate momentum regime that
is of importance for the current considerations. The remaining parameters are
fixed as follows,

Zλ = 2.2 , c1 = 3 , c2 = 1.4 . (7.38)

The parameter c1 has already been adjusted to meet Tc(B = 0) ≈ 158 MeV,
see (7.28) and (7.29). The parameter c2 re-adjusts the overall scale 0.42 Λ →
0.42 Λ exp c2 = 1.7Λ. As already discussed above, it depends on the regulator
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and the approximation at hand. It reflects the dependence on the renormalisa-
tion group scheme. Similarly to c1 it is fixed with Tc(B = 0) ≈ 158 MeV, and
is a function of the overall normalisation of the four-fermi coupling Zλ. The
latter is the only free parameter left. In (7.38) we use the value that reproduces
the lattice results, see Fig. (7.14). We emphasise that no other parameter is
present that allows to shift the minimum in Tc, the latter being a prediction.

Obviously, the effect seen in our numerical and analytic DSE-study, is also
present in the analytic approach to the dynamics of the four-fermi coupling,
including a direct grip on the underlying mechanisms. We see that the non-
monotonous behavior, i.e. the delayed magnetic catalysis, [336, 344], is already
present at smaller scales compared to Fig. (7.7) and Fig. (7.8), while the lattice
results are reproduced.

In turn, for asymptotically large magnetic field, the critical temperature runs
logarithmically with B,

Tc(B/Λ
2
QCD →∞) ∝ lnB/ΛQCD , (7.39)

related to a double-log–dependence on B of the exponent. Due to the qualitative
nature of the approximation of the B-dependence of the gluon propagator it
cannot be trusted for asymptotically large B. Indeed, (7.39) has to be compared
to (7.20) within the analytic DSE-approach predicting a square root dependence.
Note that in the latter computation the quark vaccum polarisation is included
selfconsistently at large B even though the backreaction on the pure glue loops
in Fig. (7.2) is neglected. Still this indicates the validity of the square root
dependence, even though a definite answer to this question requires more work.

7.3.3 Discussion of scales & mechanisms

With the findings of the last two sections we have achieved an analytic under-
standing of the mechanisms at work. The decrease of Tc for small magnetic
fields, the increase of Tc for larger fields, as well as the related magnetic field
regimes can now be understood. In particular this concerns the magnetic field
Bmin, where Tc(Bmin) is at its minimum. This is the turning point between
increasing and decreasing Tc(B).

Magnetic catalysis relates to the dimensional reduction due to the magnetic
field in diagrams with quark correlation functions leading to an increase of
the condensate. At finite temperature the catalysis due to the dimensional
reduction is accompanied by a thermal gapping of the quarks that counteracts
against the magnetic catalysis effects. In total this leads to a rise of both, the
chiral condensate and the critical temperature, if the magnetic field dependence
of the involved couplings is sufficiently small. As the magnetic field also sets a
momentum scale of the physics involved, this scenario holds true for sufficiently
large magnetic field strength eB/Λ2

QCD � 1, where the B-dependence of the
couplings can be computed (semi-)-perturbatively. This explains the regime of
delayed magnetic catalysis.
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Figure 7.14: Comparison of the chiral transition temperature obtained within
the simple mean field NJL estimate Eq. (7.14) to the lattice results of [205] (see
their Fig. 10). Figure taken from [295].

The above discussion of the standard scenario already entails that rapidly
changing couplings are required for a decreasing Tc. The couplings involved
are the scalar–pseudo-scalar four-fermi coupling λk and the strong coupling
αs,k, where k sets the momentum scale. Both are rising rapidly towards the
infrared for momentum scales k . 4 − 10 GeV, for λk see Fig. (7.13). In this
regime chiral symmetry breaking and confinement is triggered and takes place
in QCD at vanishing magnetic field. Switching on the magnetic field increases
the relevant momentum scale k2 ∝ eB and hence decreases λ and αs. The
condensate still grows with B as the B-enhancement in the broken phase is still
present, only Tc decreases.

Our results from the analytic approach to the quark gap equation, presented
in Fig. (7.9), support these findings. The position of the turning point Bmin

in both the full numerical as well as the analytic analysis of the gap equation
depends crucially on the magnetic field and temperature dependence of the
quark gluon vertex, see Fig. (7.9). When contrasted with the quantitative FRG
results of αs in [367], the strong coupling in (D.2) decays considerably slower
towards the UV. In turn, the couplings in the qualitative FRG study for full
QCD, [366] have a steeper decay, for the four-fermi coupling see Fig. (7.13).
Seemingly, this already explains the large value of Bmin in the current DSE-
study as well as the small value of Bmin in [336], which uses approximations
similar to [366]. Note however, that we have used the quenched quantitative αs
in the analytic DSE-study which agrees well with the numerical DSE result for
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λB ≈ 1.
In summary we have identified the physics mechanisms behind the T − B

phase diagram from our full QCD calculations. Moreover, Fig. (7.14) suggests a
turning point for eBmin ≈ 1.5−10 GeV2, the large regime for eBmin being related
to the exponential dependence on the couplings. Evidently, the effects observed
depend on a sensitive balance of different scales and parameters. Hence, further
studies are required to fully uncover the intricate underlying dynamics. Very re-
cent findings in AdS/QCD models, [329], indicate an inverse magnetic catalysis
behavior up to eB ≈ 4 GeV2, which supports our findings.

7.4 Conclusions

We have investigated the chiral phase structure of QCD at finite temperature
in the presence of an external magnetic field. Our study resolves the discrep-
ancy between recent lattice and continuum calculations at magnetic fields below
1 GeV2, see also [336]. We confirm the inverse magnetic catalysis effect seen in
lattice studies at small B. At larger B we see that magnetic catalysis is restored,
with Tc ∝

√
eB. Indications for the turnover behavior have already been found

in [336], and in [344] within two-color lattice-QCD. We hope that further lattice
calculations in full QCD at the scales discussed here will become feasible soon.

The reason for this non-monotonous behavior are screening effects of the
gauge sector, i.e. modifications of the gluon self energy, as well as the strong
coupling αs in the presence of magnetic fields. Moreover we have investigated
the nature of the chiral transition at finite magnetic field.

Apart from the B-dependence of the critical temperature, we observe that
the phase transition in the chiral limit turns smoothly into a crossover with rising
B. Notably, we find a non-degeneracy in the phase transition which is due to
the explicit isospin breaking caused by the different electric charges of up and
down quark. This non-degeneracy might lead to phenomenological consequences
in experimental studies of the QCD phase diagram with non-central heavy-ion
collisions, as there might be a mixed phase between the up and down quark
transitions. Recent lattice calculations [380] support the possibility of a non-
degenerate chiral phase transition.

In addition, our calculations show that, due to this isospin breaking, there
is a step-like behavior in the up quark condensate triggered by the chiral tran-
sition of the down quark. While this is an significant effect in the chiral limit
it smoothens out rapidly with increasing current quark mass. Physical current
quark masses are in the transition regime, and this effect might have phenomeno-
logical consequences. To our knowledge, this is a novel effect in the QCD phase
diagram and it certainly deserves further investigation.

We have used analytic studies of the quark gap equation and the dynamics
of the four-fermi coupling for an investigation of the physics mechanisms be-
hind (inverse) magnetic catalysis. The results are discussed at length in the
previous Section 7.3.3, leading to a rough prediction of the turning point at
eBmin ≈ 1.5− 10 GeV. Our investigations highlight the rich phenomenology of
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QCD matter in external magnetic fields, which motivates further studies, e.g.
at finite chemical potential, towards more realistic descriptions of matter under
extreme conditions. Recent studies [381] have suggested even richer QCD phase
structures in the presence of magnetic fields.
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Chapter 8

Summary and outlook

In this chapter we summarize our main results and provide an outlook onto
future research directions. The main motive of this manuscript has been the
out-of-equilibrium nature of anomalous and topological effects in both Abelian
as well as non-Abelian gauge theories, which comprise a central aspect of current
experimental efforts in high-energy QCD.

Given the many challenges and limitations that are still hindering theoretical
interpretation of experimental studies (see our detailed account in chapter 1.3),
we were strongly persuaded to find simpler and cleaner experimental set-ups for
the study of the Chiral Magnetic and other related effects, whose understanding
are the main objectives of this work. To this end, we have devoted our efforts
to the field of high-intensity laser physics, an fascinating and rapidly progress-
ing field, which in the near future will provide novel perspectives onto particle
physics: as the famous Schwinger intensity limit is within striking distance of
planned experimental facilities, the non-linear regime of QED and Schwinger
pair production is becoming an almost imminent reality.

This exciting new research field has only been addressed with rather con-
ventional techniques and the intriguing consequences of the out-of-equilibrium
and quantum field theoretical nature of the non-linear regime of QED has not
been appreciated fully. Consequently by applying advanced real-time simula-
tion techniques, which have been developed originally in the context of high
energy QCD and cosmology, we were able to uncover some of the fascinating
consequences of the Chiral Magnetic Effect in QED and we have predicted novel
and compelling phenomena that result directly from the axial anomaly. More-
over, we have outlined how these effects can be measured in experiment: by
studying non-trivial gauge field configurations E ·B beyond the Schwinger in-
tensity limit, we have observed that the combination of the anomaly and the
presence of magnetic fields lead to the creation of anomalous electric currents
j ∝ σ5B. A consequence of this dynamics is the phenomenon of anomaly induced
dynamical refringence: we found fermionic backcoupling to be responsible for
an anomalous rotation of the polarization of the electric field, observable using
spectroscopic measurements. We studied the emergence of chiral plasma oscil-
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lations and found an intriguing tracking behavior in the non-linear interplay of
fermions and gauge fields, which tends to maximize the effects of the anomaly.
In this context we have explicitly verified the anomaly realization in the con-
tinuum limit of real-time lattice QED and we have investigated the effects of
the fermion mass. We found that the explicit violation due to the finite fermion
mass counteracts the creation of axial charge and we have estimated that it
will ultimately dampen the dynamical transfer between fermionic chirality and
magnetic helicity. Our results are presented in chapter 3.

Our findings in chapter 3 have clarified the role of the axial anomaly in
out-of-equilibrium situations and have unambiguously shown that its relevance
in experiment is beyond its topological content, contrary to thermal or vac-
uum situations. Consequently the out-of-equilibrium nature of anomalous and
topological dynamics is of crucial importance in high energy QCD experiments
and should be investigated carefully. Accordingly in chapter 4 we have stud-
ied the effect of typical out-of-equilibrium gauge field configurations, which can
be understood from the Color-Glass-Condensate/Glasma high energy limit of
QCD at small parton momentum fraction x and anomalous fermion produc-
tion. Starting from typical ’flux-tube’ initial conditions, which do not carry any
non-trivial topology, we observed that net axial charge is produced for a given
configuration. We subsequently found that fluctuations are responsible for the
break-up of these coherent field configurations on time scales of the order of the
inverse saturation scale Q−1

s . Accordingly we studied the dependence of the ax-
ial charge generation in the regime of instabilities and we observed that net axial
charge might survive until much later times. This highlights the significance of
glasma initial conditions for hydrodynamic simulations. From a technical point
of view we have carefully studied the realization of the axial anomaly using
Wilson lattice fermions and found that the anomaly term is recovered from the
continuum limit of the Wilson regulator.

Chapter 5 is devoted to the study of the Chiral Magnetic Effect in the
early stage of an ultra-relativistic heavy ion collision using classical-statistical
real-time lattice simulations. In a simplified set-up we have investigated the
dynamics of anomalous fermion production during an isolated sphaleron tran-
sition. We have studied the dynamics of anomalous transport, and investigated
the fermion mass and magnetic field dependence of the Chiral Magnetic and the
Chiral Separation Effect. Moreover we observed the emergence of chiral density
waves (Chiral Magnetic Wave) and our study is the first ever field-theoretical
ab-initio approach to do so. Our most important observation are significant de-
viations from the idealized topological ”dissipation-less” transport of axial and
vector charges that was predicted in the literature. Our microscopic approach
has enabled us to study anomalous transport properties that are crucial input
for hydrodynamic simulations. Our studies revealed a finite relaxation time for
both the CME and CSE, which must be taken into account in future studies.
This might be accomplished by promoting the static transport coefficients used
in hydrodynamic set-ups to dynamical variables, that relax to their asymptotic
value on a characteristic time scale, which can be estimated from our stud-
ies. We also observed that for weak and intermediate magnetic fields the ratios
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between vector (axial) densities and axial (vector) currents differ clearly from
unity. Dissipation effects play an important role for massive fermions and by
studying the quark mass dependence we can rule out contributions to the CME
from heavy quark flavors.

While our study was performed in a simplified and not yet realistic sit-
uation, we have shown that classical-statistical simulations allow to address
the two largest uncertainties hindering experimental observations of the Chiral
Magnetic Effect. First, our simulations enable us to determine axial and vector
charge distributions at earliest times, that provide the initial conditions for hy-
drodynamics and our work has shown that the dynamics of these microscopic
quantities differs significantly from simple estimates. Moreover our microscopic
approach enables us to study the electromagnetic response of the medium cre-
ated in ultra-relativistic heavy ion collisions. While the lifetime of the external
magnetic field is presumably very short, the medium might sustain magnetic
fields on much longer timescales and we can address this aspect quantitatively
by including fermionic backcoupling, as we had done in chapter 3.

Our ab-initio study represents significant progress in the understanding of
real-time fermion dynamics: in our study we have for the first time demonstrated
the use of algorithmic improvements such as operator improvements and rW -
averaging in real-time for lattice Wilson fermions. Moreover we have presented
the first-ever real-time simulation of chiral (overlap) lattice fermions in 3+1D.

The understanding of chiral transport is tied to the dynamics of chiral
fermions in topological non-trivial backgrounds. While real-time lattice sim-
ulations prove powerful when occupation numbers are large and the dynamics
is quasi-classical, the classical-statistical approximations breaks down when the
occupancies of the gauge fields become of order one. The fire-ball expands typ-
ically on time scales of only a few fm/c and the dynamics becomes that of a
dilute plasma – well described using kinetic approximations. Only very recently
has the question of chirality transport and anomalous fermionic dynamics been
approached using kinetic approximations. In the framework of Chiral Kinetic
Theory it is conjectured that the anomaly-related dynamics of fermions is re-
alized by a Berry monopole, which arises in the non-relativistic and adiabatic
limit of the theory. This proposal has raised our doubts and motivated us to
pursue a closer examination. Inspired by observations of Fujikawa, we identified
a number of weak points in the construction of chiral kinetic theory: First, the
connection between the topology of the anomaly and that of Berry’s phase is
unclear – most importantly because the latter is shown to arise only in a very
specific limit, while the presence of the anomaly is generic and should not de-
pend on approximations. Moreover present approaches rely on the existence of
a large chemical potential (and thus implicitly on the non-relativistic limit) and
clearly such approximations are unjustified in the context of heavy ion collisions.
The absence of Lorentz covariance in current proposals has been counteracted
by including relativistic corrections – the results however not being very con-
vincing.

Using the string-inspired framework of world-lines we show in chapter 6
that the emergence of a Berry monopole and the axial anomaly are in fact
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unrelated. In a quasi-particle description of particles with spin, Berry’s phase
merely accounts for the effects of spin transport (in the adiabatic limit). In
the absence of approximations, Berry’s phase is not robust (not geometric) and
spin transport is part of the relativistic formulation of the dynamics of the
system. On the contrary, the emergence of the anomaly is related to the phase
of the fermion determinant. By means of the world-line method, this phase
can be expressed in single-particle language: in an euclidean formulation the
effects of the anomaly are tied to the emergence of fermionic zero modes in the
heat-kernel representation of the imaginary part of the fermion effective action.
A kinetic theory can be derived from the real part. The framework that we
have put forward, thus allows for a Lorentz-covariant description of the quasi-
particle description of spinning and colored particles. Our framework permits
to derive a covariant kinetic theory, with scattering terms being motivated from
a microscopic origin.

As a next step we aim to systematically derive the anomalous equivalent of
Bodecker’s theory and we aim to provide an ab-initio derivation of anomalous
hydrodynamics from quantum field theory. Our findings have wide applications,
such as the anomalous transport of chiral fermions in astrophysical systems or
helicity evolution in QCD of partons at small momentum fraction x.

Our last chapter 7 provides a complimentary view on the effects of large
Abelian magnetic fields onto QCD. In this chapter we studied the strong cou-
pling regime of QCD matter and the aspect of spontanous chiral symmetry
breaking, including the generation of large constituent masses for the light quark
flavors in the presence of magnetic fields. Our study is an important contribu-
tion to the understanding of the QCD phase diagram at finite temperature and
magnetic field. In chapter 7 we investigated the recent discrepancy between
model and lattice computation in regards to magnetic catalysis: while lattice
computations suggest that the critical temperature for the chiral phase transi-
tion is reduced with increasing magnetic field strength (inverse catalysis), model
studies predict the opposite effect. In our study we found that the intriguing
interplay between magnetic catalysis and inverse magnetic catalysis is due to
screening effects in the gauge sector that have not been included in model stud-
ies. To this end, we observed that, while at small and intermediate (in units
of the temperature) magnetic fields inverse magnetic catalysis is prevalent, at
asymptotically large magnetic fields magnetic catalysis is restored. We gave a
first prediction of the critical magnetic field necessary for this intriguing turn-
over behavior, however we found large systematic uncertainties. Moreover, we
observed that the (iso-spin-)degeneracy of the chiral phase transition of up and
down quarks is lifted for large magnetic fields and we we studied the emergence
of a semi-chiral phase, where only the down-quark is chiral. Additionally, the
nature of the phase transition becomes crossover-like even for massless bare
quarks in the presence of magnetic fields.

The central results of this work are the advanced non-equilibrium techniques
that allow to investigate the dynamics of anomalous and topological effects in
QCD. The ultimate goal of the efforts that we have presented in the preced-
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ing chapters is of course a more complete and quantitative understanding of the
space-time dynamics of an ultra-relativistic heavy ion collision. Despite the suc-
cess of the weak-coupling techniques presented in this thesis, a comprehensive
understanding of QCD out-of-equilibrium is a remarkably difficult challenge and
will require much more effort: the classical-statistical simulation techniques of
gauge field and fermion dynamics should be extended towards realistic initial
conditions and expanding space-time geometries, before concrete predictions
for experiments can be obtained. While we have outlined some of the necessary
tools for this goal, going beyond the set-ups that were presented here is com-
putationally very demanding. While the results that were illustrated here were
obtained through the collaboration of a handful of researchers and using rather
’modest’ computational resources of a few million CPU hours, future studies
will require substantially more effort. To this end, the development of novel
algorithmic techniques is of crucial importance and is currently investigated.

Building upon the significant progress that is illustrated in this thesis, a fu-
ture research objective should be the simulation of the early time dynamics of
the CME using realistic configurations of the initial state of a collision, described
by the Color-Glass Condensate. The methods that have been developed and pre-
sented here, make this goal achievable within the next one or two years, provided
the continued existence of sufficient computational resources. Typical compu-
tational demands are estimated to be in the tens of million core hour regime.
Moreover it should be a central goal to understand the electromagnetic response
of matter created in the high-energy regime of QCD out-of-equilibrium. As the
lifetime of the external magnetic field represents an important uncertainty for
CME predictions, the effect of fermionic back-reaction and the electromagnetic
properties of the out-of-equilibrium medium created in the earliest stages of a
heavy ion collision should be investigated using the techniques described herein.

Moreover the dynamics of the anomalous transport of axial and vector
charges must be understood more thoroughly and connected with hydrodynamic
descriptions. The subsequent evolution of axial and vector charges during the
expansion of the fire-ball created in a collision, can be systematically described
by the combination of real-time lattice simulation techniques and the string-
inspired fermionic transport framework, which was first introduced here. This
will allow a characterization of out-of-equilibrium anomalous transport; initial
conditions for hydrodynamic simulations can be derived and a precise prediction
of experimental outcome is possible.

Moreover, the presented simulation techniques are an excellent tool to study
non-thermal production of direct photons. Therefore they should be used to
investigate the origins of the photon puzzle, which is the discrepancy between
theoretical predictions and experiments with regard to the spectrum of photons
and their azimuthaml flow at small transverse energies both at RHIC and LHC
experiments. Using real-time lattice simulations we aim to calculate photon
production directly and substantial efforts are underway.

Apart from their striking relevance in high-energy QCD, the real-time lattice
simulation techniques of gauge field and fermion dynamics have a wide range
of applications across different fields: classical-statistical simulations have been
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employed in a cosmological context to investigate electroweak phase transitions.
A further objective of current studies are chiral instabilities, which are conjec-
tured to arise from the interplay between fermionic chirality and magnetic he-
licity on suitable out-of-equilibrium conditions. The instabilities are speculated
to play an important role in astrophysical situations such as neutron stars and
supernovae. Moreover, they could be responsible for large primordial magnetic
fields, observable in todays galactic background. The simulation techniques that
have been established here allow a precise examination of chiral instabilities and
the conditions under which they might arise. To this end, we will put special
attention to study of the effect of a finite fermion mass.

The string-inspired world-line framework is a powerful tool for the study of
the dynamics of the axial anomaly and will allow detailed predictions, when
applied in the kinetic regime of an ultra-relativistic heavy ion collision. Inspired
by the universality of the approach, we have identified yet another exciting
prospect of application: the spin structure of high-energy QCD. This interest is
motivated by the commitment of the US nuclear physics community to construct
an Electron-Ion Collider within the near future. This fascinating experimental
possibility allows the test of the helicity structure of QCD at small parton
momentum fraction x. The presented world-line framework allows to derive an
effective action formalism, which is a natural continuation of the Color-Glass-
Condensate description. First studies in this context are in progress.
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Appendix A

Chiral anomaly and cutoff
regularization

In this part of the appendix we willll illustrate the emergence of the lattice
anomaly from the issue of gauge invariance and regularization. The calculations
presented here are taken from [52]

For the specific case of fermion dynamics in the presence of homogeneous
background gauge fields considered in section 4.2, there is in principle an efficient
alternative procedure to implement the anomaly on the lattice by restricting
the Brillouin zone to remove doublers [382]. In this appendix, by using analytic
solutions of the Dirac equation for the example of quantum electrodynamics
(QED), we will demonstrate that it is crucial for such a procedure to implement
the corresponding momentum cutoff to preserve gauge invariance in order to
describe the anomaly correctly.

For QED in a uniform system with background electric field E and magnetic
field B, the anomaly equation reads

∂tn5(t) = 〈ψiγ5ψ〉+
e2

2π2
E ·B , (A.1)

where e denotes the electromagnetic coupling. In the following, we will verify
this equation by using analytic solutions of the Dirac equation in the presence
of a homogeneous background field that carries nonzero E ·B. As an example of
field configurations with nonzero E·B that are simple enough to access analytical
solutions of the Dirac equation, we consider a Sauter-type pulsed electric field
superposed by a constant magnetic field:

E(t) =
E

cosh2(t/τ)
ez, B = Bez, (A.2)

where E, B, and the characteristic pulse time τ are constant, with ez denoting a
unit vector in the z-direction. In the following, we assume eE > 0 and eB > 0.
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A.1 Analytic solutions of the Dirac equation

The electromagnetic fields (A.2) are described by the gauge potential

Aµ = (0,−By, 0,−Eτ [tanh(t/τ) + 1]) . (A.3)

Under this gauge field, the mode functions are labeled by momenta px and pz,
Landau level n (= 0, 1, 2, · · · ), and spin s (=↑, ↓) as well as labels + and −
that distinguish positive and negative energy solutions. We employ the Dirac
representation for the gamma matrices, and use the following basis to expand
spinors:

Γ1 =
1√
2




1
0
1
0


 , Γ2 =

1√
2




0
1
0
−1


 ,

Γ3 =
1√
2




1
0
−1
0


 , Γ4 =

1√
2




0
1
0
1


 .

(A.4)

The mode functions are conveniently described by the following dimensionless
parameters

ξ =
1

2
[1 + tanh(t/τ)] , (A.5)

η =

√
2

eB
(eBy + px) , (A.6)

λ = eEτ2, (A.7)

µ =
τ

2

√
m2 + eB(2n+ 1− s) + p2

z, (A.8)

ν =
τ

2

√
m2 + eB(2n+ 1− s) + (pz + 2eEτ)2, (A.9)

where s = 1 for spin-up and s = −1 for spin-down. The mode functions are
expressed in terms of these quantities as follows:

ψ+
px,pz,n,↑(x) =

(
eB

π

)1/4
√
L

n!

1√
4µ(2µ− pzτ)

ξ−iµ(1− ξ)−iν

×
[
2iϕ̃+(ξ)Dn(η)Γ3 −

√
2eBτϕ+(ξ)nDn−1(η)Γ2

+mτϕ+(ξ)Dn(η)Γ1

]
ei(pxx+pzz),

ψ+
px,pz,n,↓(x) =

(
eB

π

)1/4
√
L

n!

1√
4µ(2µ− pzτ)

ξ−iµ(1− ξ)−iν

×
[
2iϕ̃+(ξ)Dn(η)Γ4 +

√
2eBτϕ+(ξ)Dn+1(η)Γ1

+mτϕ+(ξ)Dn(η)Γ2

]
ei(pxx+pzz),
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ψ−px,pz,n,↑(x) =

(
eB

π

)1/4
√
L

n!

1√
4µ(2µ+ pzτ)

ξ+iµ(1− ξ)−iν

×
[
− 2iϕ̃−(ξ)Dn(η)Γ3 +

√
2eBτϕ−(ξ)nDn−1(η)Γ2

−mτϕ−(ξ)Dn(η)Γ1

]
ei(pxx+pzz),

ψ−px,pz,n,↓(x) =

(
eB

π

)1/4
√
L

n!

1√
4µ(2µ+ pzτ)

ξ+iµ(1− ξ)−iν

×
[
− 2iϕ̃−(ξ)Dn(η)Γ4 −

√
2eBτϕ−(ξ)Dn+1(η)Γ1

−mτϕ−(ξ)Dn(η)Γ2

]
ei(pxx+pzz),

where L is the linear size of the system with volume V = L3, and Dn(z) is the
parabolic cylinder function. The functions ϕ±(ξ) and ϕ̃±(ξ) are represented by
the hypergeometric function 2F1(a, b; c; z) as follows:

ϕ±(ξ) = 2F1(∓iµ− iν − iλ,∓iµ− iν + iλ+ 1; 1∓ 2iµ; ξ), (A.10)

ϕ̃±(ξ) = ξ±iµ(1− ξ)iν
[
ξ(1− ξ) d

dξ
+ iλξ +

i

2
pzτ

]

× ξ∓iµ(1− ξ)−iν2F1(∓iµ− iν − iλ,∓iµ− iν + iλ+ 1; 1∓ 2iµ; ξ)

= (1∓ iµ+ iν + iλ)2F1(∓iµ− iν − iλ− 1,∓iµ− iν + iλ+ 1; 1∓ 2iµ; ξ)

+

[
(1 + 2iλ) ξ −

(
1 + iν + iλ− i

2
pzτ

)]

× 2F1(∓iµ− iν − iλ,∓iµ− iν + iλ+ 1; 1∓ 2iµ; ξ).

We note that the limits t → −∞ and t → +∞ correspond to ξ → 0 and
ξ → 1, respectively. The mode functions ψ+

px,pz,n,s(x) and ψ−px,pz,n,s(x) satisfy
the boundary condition such that at t → −∞ they approach the positive and
negative energy solutions, respectively, in a constant magnetic field. The mode
functions are normalized by the inner product

(ψ1|ψ2) =

∫
d3xψ†1(t,x)ψ2(t,x), (A.11)

such that
(
ψ+
px,pz,n,s

∣∣ψ+
p′x,p

′
z,n
′,s′

)
= δs,s′Lδn,n′(2π)2δ(px − p′x)δ(pz − p′z), (A.12)

(
ψ−px,pz,n,s

∣∣ψ−p′x,p′z,n′,s′
)

= δs,s′Lδn,n′(2π)2δ(px − p′x)δ(pz − p′z), (A.13)
(
ψ+
px,pz,n,s

∣∣ψ−p′x,p′z,n′,s′
)

=
(
ψ−px,pz,n,s

∣∣ψ+
p′x,p

′
z,n
′,s′

)
= 0. (A.14)

In terms of the mode functions, the fermion field operator ψ is expanded as

ψ(x) =
∑

s

1

L

∞∑

n=0

∫
dpx
2π

∫
dpz
2π

[
ψ+
px,pz,n,s(x)apx,pz,n,s + ψ−px,pz,n,s(x)b†px,pz,n,s

]
.

(A.15)
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The creation and annihilation operators satisfy
{
apx,pz,n,s, a

†
p′x,p

′
z,n
′,s′

}
=
{
bpx,pz,n,s, b

†
p′x,p

′
z,n
′,s′

}

= δs,s′Lδn,n′(2π)2δ(px − p′x)δ(pz − p′z).

A.2 Verification of the anomaly equation

The vacuum expectation of the chiral charge density, n5(t), is expressed by the
mode functions as

n5(t) =
∑

s

1

L

∞∑

n=0

∫
dpx
2π

∫
dpz
2π

ψ−†px,pz,n,s(x)γ5ψ
−
px,pz,n,s(x). (A.16)

After substituting the explicit forms of the mode functions (A.10-A.10), we can
first execute the px-integral by using

∫ ∞

−∞
dx [Dn(x)]

2
=
√

2πn!. (A.17)

We note that the px-integration is finite without a cutoff. After the integration,
it turns out that the contribution of the mode with (n + 1, ↑) and that with
(n, ↓) cancel each other. As a consequence, only the lowest mode (n = 0, s =↑)
contributes to the chiral charge, and one obtains:

n5(t) =
eB

4π2

∫
dpz

1

2
√
m2 + p2

z(
√
m2 + p2

z + pz)

×
[
− 4

τ2

∣∣ϕ̃−(ξ)
∣∣2 +m2

∣∣ϕ−(ξ)
∣∣2
]

n=0,s=↑
. (A.18)

In a similar way, we can compute the pseudo-scalar condensate:

〈ψiγ5ψ〉 =
eB

4π2

∫
dpz

1

2
√
m2 + p2

z(
√
m2 + p2

z + pz)

× 4m

τ
Re
[
ϕ−∗(ξ)ϕ̃−(ξ)

]
n=0,s=↑ . (A.19)

The right hand side of (A.18) depends on time only through ξ. After some
algebra, one finds that

∂

∂t

∣∣ϕ−(ξ)
∣∣2 =

4

τ
Re
[
ϕ−∗(ξ)ϕ̃−(ξ)

]
, (A.20)

and
∂

∂t

∣∣ϕ̃−(ξ)
∣∣2 = −τm2Re

[
ϕ−∗(ξ)ϕ̃−(ξ)

]
. (A.21)

Collecting all these results, we finally arrive at

∂tn5 = 2m〈ψiγ5ψ〉 , (A.22)
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which so far does not contain the anomaly term.
In the diagrammatic derivation of the axial anomaly, it is crucial to regularize

a divergent integral in a gauge-invariant way. Also in our calculation, we need
to regularize the integral in (A.18) to obtain the anomaly term. In fact, the
integrand of (A.18) does not fall off at pz → ±∞. By using the asymptotic
expansion of the hypergeometric function 2F1(a, b; c; z) for large |c| [222], one
finds that

{integrand of (A.18)} ≈
{
−1 (pz → +∞)

+1 (pz → −∞).
(A.23)

To regularize this divergent integral, one may naively introduce a cutoff for pz
as ∫ +∞

−∞
dpz −→

∫ +Λ

−Λ

dpz (A.24)

to see that this does not alter the result (A.22). The reason why the anomaly
term is not obtained is that it introduces the cutoff for the canonical momentum.
The canonical momentum pcan is related to the kinetic momentum pkin as

pcan = pkin + eA . (A.25)

While here the kinetic momentum is a gauge-invariant quantity, the canon-
ical momentum is gauge-dependent. In a translational-invariant system, the
canonical momentum is a constant of motion, and thus it is associated with a
plane wave factor eip·x. Therefore, the momentum pz appearing in (A.18) is a
canonical momentum. Since the canonical momentum is not a gauge-invariant
quantity, putting a cutoff breaks gauge invariance. In order to regularize the
integral keeping the gauge invariance, we need to introduce a cutoff for the ki-
netic momentum. Because of the relation (A.25), putting a cutoff ±Λ to the
kinetic momentum amounts to putting a time-dependent cutoff ±Λ + eA3(t) to
the canonical momentum:

∫ +∞

−∞
dpz −→

∫ +Λ+eA3(t)

−Λ+eA3(t)

dpz . (A.26)

Thanks to this time-dependent cutoff, ∂tn5(t) acquires the anomaly term:

∂tn5 =
eB

4π2
∂t

∫ +Λ+eA3(t)

−Λ+eA3(t)

dpz

{
· · ·
}

= 2m〈ψiγ5ψ〉+
e2B

4π2

dA3

dt

[
· · ·
]pz=Λ+eA3(t)

pz=−Λ+eA3(t)

= 2m〈ψiγ5ψ〉+
e2

2π2
E ·B , (A.27)

where we have used Ez = −dA3/dt and (A.23).
In the massless case the gauge invariant regularization of (A.26) can also

be seen in context of spectral flow (see e.g. [383]). The use of the covariant
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momentum corresponds to a time dependent rearrangement of the eigenvalues
of the Hamiltonian. In the case of nonzero E ·B, the dispersion relation of the
fermions is altered in such a way, that the rearrangement is different for left and
right handed particles and thus a net chiral charge is generated.

We have demonstrated how the anomaly term appears from the gauge-
invariant cutoff regularization. However, such a computation applies only to
the specific case of an abelian and uniform background gauge field. For non-
abelian and/or inhomogeneous gauge fields, the relation between kinetic and
canonical momentum becomes ambiguous. In that case, the lattice regulariza-
tion with the Wilson term method provides a powerful way to describe the axial
anomaly, as discussed in the main text. Here we note that the derivative appear-
ing in the Wilson term is the covariant derivative, and the covariant derivative
corresponds to the kinetic momentum, Deipcan·x = ipkine

ipcan·x.



Appendix B

Real-time lattice
simulations with dynamical
Wilson and
overlap-fermions

This part of the appendix is based on the pubilcations ’Chiral magnetic effect
and anomalous transport from real-time lattice simulations’ (N.M., S. Schlicht-
ing, S. Sharma), which is published in Phys.Rev.Lett. 117 (2016) no.14, 142301
[arXiv:1606.00342] [229] and ’Non-equilibrium study of the Chiral Magnetic
Effect from real-time simulations with dynamical fermions’ (M. Mace, N.M.,
S. Schlichting, S. Sharma), which is published in Phys.Rev. D95 (2017) no.3,
036023 [arXiv:1612.02477] [187].

B.1 Eigenmodes of the Dirac Hamiltonian in the
helicity basis

In this appendix (c.f. [187]) we derive the eigenmodes for non-interacting
fermions in the helicity basis by diagonalizing the Dirac Hamiltonian for Wilson
and overlap fermions.

We begin by taking the gamma matrices in the Dirac representation. In the
absence of gauge fields (U = 1) the eigenfunctions of the Wilson and overlap
Dirac equation can be written in the plane wave basis. The spatial momenta
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and effective mass term for the improved Wilson fermions in this basis are

pwi =
∑

n

Cn
as

sin(nasqi)

mw
eff = m+

∑

n,i

2nCn
as

rwsin2(
naqi

2
) (B.1)

and similarly for massless overlap fermions1

povi = M
pwi
s

mov
eff = M

(
1 +

p5

s

)
(B.2)

where

qi =
2πni
Ni

, ni ∈ 1, ..., Ni − 1

p5 = −M +
∑

i

2

as
sin2(

aqi
2

)

s =

√∑

i

p2
i + p2

5. (B.3)

With this notation, the eigenvalue problem takes the same form for either dis-
cretization; we will we drop the superscript differentiating the two since every-
thing that follows applies equally to both cases. The Hamiltonian in this basis
is then

H =

(
meff12 ~σ · ~p
~σ · ~p −meff12

)
, (B.4)

which has eigenvalues E± = ±
√
m2

eff + ~p2, where the positive (negative) eigen-
values corresponds to (anti) particles. The corresponding eigenvectors are given
as

uh(p) =

√
2E+(E+ −meff)

p2

(
φ(h)(p)

h |E|−meff

|p| φ(h)(p)

)

vh(p) =

√
2E−(E− −meff)

p2

(
φ(h)(−p)

−h |E|+meff

|p| φ(h)(−p).

)
, (B.5)

Since the Hamiltonian, Eq.(B.4), commutes the helicity operator, the eigenvec-
tors of the Hamiltonian are simultaneously eigenvectors of the helicity operator.
We then choose φ to be normalized with respect to helicity ~p·~σ

|~p| , so the index

1For overlap, we always take rw = 1 and the Wilson improvement coefficients C1 = 1,Cn =
0 for n > 1
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h is the helicity and takes values h = ±1. Now we solve for the φ. First, if
(px, py) ∈ {0, Nx/2} × {0, Ny/2}, then

φ+(p) = (1, 0)T (B.6)

φ−(p) = (0, 1)T (B.7)

otherwise

φh(p) =
1√

1 + (pz−h|~p|)2
p2x+p2y

(
1

−pz−h
√
p2x+p2y+p2z

px−ipy

)
(B.8)

For the case (px, py, pz) ∈ {0, Nx/2} × {0, Ny/2} × {0, Nz/2}, where the linear
momentum term vanishes, for meff > 0

uh(p) =

(
φh(0)

0

)
, vh(p) =

(
0

φh(0)

)
, (B.9)

while for meff < 0 we have

uh(p) =

(
0

φh(0)

)
, vh(p) =

(
φh(0)

0

)
. (B.10)

While this is most obvious in the last case, the orthogonality conditions

u†q,λuq,λ′ = δλ,λ′ (B.11)

v†q,λvq,λ′ = δλ,λ′ (B.12)

u†q,λvq,λ′ = v†q,λuq,λ′ = 0. (B.13)

are held for all eigenvectors. We have now constructed the helicity eigenmodes
for the free Wilson and overlap Dirac Hamiltonian.

B.2 Convergence study of net axial charge for
Wilson and Overlap fermions

In this appendix (c.f. [187]) we will discuss finite size effects and convergence
of our Wilson (see Sec. 5.1.1) and overlap (see Sec. 5.1.2) lattice fermions, and
we will compare the properties of two fermion discretizations. In order to be
able to concentrate on the chiral properties of the fermions as a function of vol-
ume, improvement, and discretization, we will only consider the single sphaleron
transition introduced in Sec. 5.1.3. We keep rsph/a = 6 fixed for all simulations
and consider only isotropic lattices in this section, and will keep the Wilson
r-parameter fixed at rw = 1 for all comparisons. In this section we work in
the nearly massless limit for the Wilson fermions (mrsph = 1.9 · 10−2) and the
massless limit for overlap fermions, so the integrated anomaly equation reduces
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to Eq.(5.40). We have previously shown for Wilson fermions how both the un-
integrated (see Fig. 5.3) and integrated (Figure 3 in [229]) anomaly equation
are maintained as a function of mass. For the Wilson fermions, we first pick
a volume, N3 = 163, and study the total axial charge created as a function of
time for various levels of operator improvement, as was discussed in Sec. 5.1.1.
This is plotted in Fig. B.1. We can clearly see that at Leading Order (LO), the
standard unimproved Wilson fermion formulation, there is significant deviation,
at the 25% level, from the Chern Simons term −2∆NCS , which is quantified in
the lower panel of Fig. B.1. However, upon going to one level of improvement,
Next to Leading Order improvement (NLO), we see that this disagreement dis-
appears. At Next to Next to Leading Order (NNLO) improvement, we see no
noticeable difference from NLO, and thus see that our improvement scheme has
converged. In practice, we find that in all cases in our current study, NLO is
sufficient and nothing additional is gained by going to NNLO.

Now we need to understand how important finite volume effects are in our
study. This is shown in Fig. B.2. Here we look at the axial charge generated
by NLO improved Wilson fermions for three volumes. It is clear from the lower
panel of Fig. B.2 that for N = 12 = 2rsph/a, there are clear finite volume effects
that lead to large oscillations of the J0

a around the sphaleron transition from
Eq.(5.40). This is then subsequently improved by going to a volume N = 16 =
2.67rsph/a, where we can see noticeable improvement. To test this convergence,
we further look at N = 32 = 5.34rsph/a; here we see that there is no difference
in the average deviations from the Chern-Simons term as compared to the N =
16 = 2.67rsph/a.

However, we should note that this is only for resolving the creation of axial
charge from a single localized sphaleron transition. To look at charge trans-
port as a function of time, like we studied in Sec 5, we need even larger
volumes, especially in the magnetic field direction. Typically we choose a spa-
tially anisotropic lattice, where the transverse length is Ntrans ≥ 2rsph/a, while
along the direction of the magnetic field Nz � 2rsph/a (a typical choice is
N3 = 162 × 32 − 242 × 64). Moreover, the transverse size of the lattice has
to be large enough to accommodate the cyclotron orbits of charged particles.
In practice this constraint limits the available magnetic field strength to larger
magnetic flux quanta.

Next, for the overlap fermions, we proceed in the same manner. Instead
of improving the Wilson kernel, we vary the domain wall height M for a fixed
isotropic lattice N = 16. As we see in Fig. B.3, values in the range of M ∈
[1.4, 1.6) give the best results. They are the best results, really. Other results
are loosers [384]. We choose M = 1.5. We have verified that the volume
dependence of the currents for the overlap is similar to the Wilson fermions
with NLO improvement, which is evident from Fig. (5.1).

In summary, for Wilson fermions, NLO improvement is necessary and suffi-
cient to accurately reproduce the anomaly. At this level, we find that it gives
comparable results to the overlap fermions, which we find that for a well tuned
domain wall mass M we can reproduce the anomaly relation even on reasonably
small lattices. Additionally, we find that for spatial lattice sizes of N = 2 rsph/a,
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Figure B.1: A comparison of the net axial charge generated during a sphaleron
transition for a fixed volume of N = 16 using mrsph = 1.9·10−2 Wilson fermions
with different operator improvements. Top: Already at NLO we see that the net
axial charge tracks ∆NCS due to the sphaleron transition. Bottom: Deviations
from Eq.(5.40) are shown. Figure taken from [187].

finite volume effects are somewhat noticeable, but seem to be completely under
control for lattice size N > 2rsph/a. This will serve also as crucial input for
how fine to make one’s lattice for future studies with more realistic gauge field
configurations, where the size sphalerons is set by physical scales of the problem.

B.3 Details of the Hamiltonian overlap construc-
tion

In this appendix we illustrate the Hamiltonian formualtion of overlap fermions
in 3+1 dimensions with Minkowskian matric (see [187]). The spatial overlap
operator is

−i /Dov = M
(
1 + γ5

Q√
Q2

)
, (B.14)

where Q is the overlap kernel that can be chosen as follows

Q ≡ γ5 /DW (M), (B.15)

where −i /DW (M) is the massless Wilson Dirac operator. The parameter M ∈
[0, 2) the height of the defect that localizes the chiral fermions on 4D Euclidean
spacetime starting from a 5D domain wall formalism [188].
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Figure B.2: A comparison of the net axial charge generated during a sphaleron
transition using mrsph = 1.9·10−2 improved Wilson (NLO) fermions for different
lattice volumes. Top: At N=16 and beyond the net axial charge tracks ∆NCS
due to the sphaleron transition. Bottom: Deviations from Eq.(5.40) are shown.
Figure taken from [187].
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Figure B.3: A comparison of the net axial charge generated during a sphaleron
transition using massless overlap fermions for different domain wall heights M
at a fixed lattice volume N = 16. Top: For M ∈ [1.4, 1.6), the net axial
charge tracks ∆NCS due to the sphaleron transition. Bottom: Deviations from
Eq.(5.40) are shown. Figure taken from [187].
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Our aim is to utilize the Dirac equation −i /Dovψ = 0 to evolve the overlap
fermions, defined on a fixed time slice, forward in time,

−i /Dovψ = M
[
1 +

−i /DW (M)√
γ5(−i /DW (M))γ5(−i /DW (M))

]
ψ

(B.16)

In agreement with our procedure for Wilson fermions, we utilize axial-temporal
gauge and we assume the time direction to be contiuous in principle. In practice
we use a very fine temporal ’lattice’ spacing along temporal, finer than the other
relevant scales in the operator, such that at � M,as. In this case the overlap
operator is

−i /Dov = M
[
1 +

−i /Ds
W − iat /∂t −M√

/D
s
W /D

s†
W + a2

t∂
2
t +M2

]
. (B.17)

Since at is very small, we can proceed by expanding in this quantity, keeping
only terms which are leading order in at. Thus we get for Eq.(B.17)

M
[
1 +

−i /Ds
W −M√

/D
s
W /D

s†
W +M2

+
−iat /∂t√

/D
s
W /D

s†
W +M2

]
. (B.18)

The domain well height, which is in the denominator of the second term of
Eq.(B.18) scales as 1/as, whereas the spatial Wilson-Dirac operator scales as
linear power in as. Therefore the overlap operator in Eq.(B.18) simply reduces
to

−i /Dov = −iat /∂t +M
[
1 +

−i /Ds
W −M√

/D
s
W /D

s†
W +M2

]
(B.19)

This expression allows to express the overlap Dirac equation in very appealing
for suitable for evolution in time. We can rewrite Eq.(B.16) to give

iγ0∂tψ = −i /Ds
ovψ (B.20)

where −i /Ds
ov is the spatial overlap operator given by

−i /Ds
ov = M

[
1 +

−i /Ds
W (M)√

γ5(−i /Ds
W (M))γ5(−i /Ds

W (M))

]
.

(B.21)

Eq.(B.20) is the analogue of the corresponding evolution equation with Wilson
fermion discretization discussed in the main text. Using the γ5 and γ0 her-
miticity of −i /Ds

W , we can recast Eq.(B.20) as a Hamiltonian equation with the
overlap Hamiltonian in 3D Minkowski space for massless fermions defined as,

Hov = −iγ0 /D
s
ov = M

(
γ0 +

HW (M)√
HW (M)2

)
, (B.22)



184 APPENDIX B. OVERLAP CONSTRUCTION

where HW is the Wilson Hamiltonian defined in Eq.(5.1) but with Cn = 0 for
n ≥ 2 and the mass m being replaced by the negative of the domain wall height
M .

The numerical procedures treating the framework outlined here and in sec-
tion 2.2 is quite involved. The implementation of overlap fermions however is
by now a standard procedure. In the rest of this section we outline some of
the details of an explicit implementation. For all practical purposes we have
used algorithms and codes developed by the Bielefeld-BNL collaboration. We
note that the details of this numerical implementation have been worked out
by others. In our simulations we have made use of these advanced develop-
ments. The overlap Hamiltonian consists of a matrix sign function of HW (M),
defined in Eq.(5.20). The inverse square root of HW (M)2 might be expressed
as a Zolotarev rational function [235–238],

1√
HW (M)2

=

NO∑

l=1

bl
dl +HW (M)2

. (B.23)

To compute Eq.(B.23), the coefficients bl and dl have to be determined from
the smallest and largest eigenvalues of HW (M)2 [237]. Subsequently we em-
ploy a multi-shift conjugate gradient solver to calculate the inverse of dl +
HW (M)2. The lowest and the highest eigenvalues of HW (M)2 are found using
the Kalkreuter-Simma Ritz algorithm [239] with 20 restarts and a convergence
criterion of 10−20. Using NO = 20 terms in the Zolotarev polynomial results
in an error of |sign(HW )2 − 1| < 10−9. Our results here do dependent on the
choice of the domain wall height M and thus we have chosen M such that we ob-
tain the best approximation to the sign function as well as the Ginsparg-Wilson
relation. For the sphaleron configuration we studied in this work the optimal
choice was M ∈ [1.4, 1.6) (see App. B.2 for more details).

For the multi-shift conjugate gradient solver, the quality of convergence is
judged by the smallest dl, and the convergence criterion is set to |HW (M)2| −
1 < 10−16. For all studies presented in this work we have made sure that the
conjugate gradient algorithm reaches the convergence criterion with less than
2000 steps. An important crosscheck of our method is whether the resultant
overlap Dirac operator satisfies the Ginsparg-Wilson relation, which we have
found to be satisfied to a precision of O(10−9).



Appendix C

Details of the World-line
construction

This part of the appendix is based on the publication ”The chiral anomaly,
Berry’s phase and chiral kinetic theory, from world-lines in quantum field the-
ory” (N.M., R. Venugopalan), arXiv:1701.03331 (submitted to Physical Review
Letters) [245] and ”World-line construction of a covariant chiral kinetic the-
ory” (N.M., R. Venugopalan), arXiv:1702.01233 (submitted to Physical Review
D) [246].

C.1 Details of the calculation of the imaginary
part of the effective action

In this Appendix, as promised, we will show that the second term in the world-
line insertion, does not contribute to the non-conservation of the axial vector
current. Writing out the relevant expression,

∂µTr

(
Γ7

δΛ(2)

δBµ(y)
e−
E
2
T Σ̃2

)
= −

∫ ( N∏
l=0

d4xld3θld3θ̄l

)(
N∏
l=1

d4pl

(2π)2

)

〈θ0|[Γµ,Γν ]Γ5Γ6|θN 〉
[( ∂2

∂yµ∂x0
µ

δ(x0 − y)

)
δ(x0 − xN ) + 2

(
∂

∂xν
δ(x0 − xN )

)(
∂

∂yµ
δ(x̄0 − y)

)]

exp
{
−∆

N∑
k=1

[
− ipkα

(xkα − x
k−1
α )

∆
+
E
2

(
pkα −Aα(x̄k)

)2
−

(θkr − θ
k−1
r )

∆
θ̄kr +

iE
2
ψkαψ

k−1
β Fαβ(x̄k)

]}

= −
∫ (N−1∏

l=0

d4xl

)(
N∏
l=0

d3θld3θ̄l

)(
N∏
l=1

d4pl

(2π)2

)
〈θ0|[Γµ,Γν ]Γ5Γ6|θN 〉

[
−

∂2

∂x0
µ∂x

0
ν

]

× exp
{
−∆

N∑
k=1

[
− ipkα

(xkα − x
k−1
α )

∆
+
E
2

(
pkα −Aα(x̄k)

)2
−

(θkr − θ
k−1
r )

∆
θ̄kr +

iE
2
ψkαψ

k−1
β Fαβ(x̄k)

]}
(C.1)

In the final expression above, we observe that while the expression containing
the commutator of Gamma matrices is anti-symmetric under the exchange of µ
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and ν, the derivative of the exponent is clearly symmetric under this exchange.
Therefore

∂µTr

(
Γ7

δΛ(2)

δBµ(y)
e−
E
2 T Σ̃2

)
= 0 , (C.2)

which completes our proof of the statement following Eq.(6.40) in the main text
of the paper.

C.2 Supersymmetry and gauge freedom of the
relativistic spinning particle

The Lorentz-covariant formulation of the spinning particle action given by Eq.(6.75)
posses two important symmetries respected by the world-line path integral.
Firstly, the physical content of the theory is invariant under reparametrizations
of the world line parameter τ ,

τ → τ ′ = f(τ) (C.3)

This gauge symmetry corresponds to the mass-shell constraint or “charge”

H ≡ 1

2

(
πµπ

µ +m2 + iψµFµνψ
ν
)
, (C.4)

(with πµ defined as in Eq.(6.78)) which upon quantization is a constraint on
the physical states in the Hilbert space–equivalent to the Klein-Gordon equa-
tion. It is also closely connected to another invariance of the action in terms of
proper time dependent quantum mechanical supersymmetric transformations.
Assuming η(τ) to be an anti-commuting parameter, these supersymmetric trans-
formations are

ψµ → ψµ +
ẋµ√
−ẋ2

η ,

ψ5 → ψ5 + η ,

xµ → xµ + i
ψµη

m
. (C.5)

These transformations correspond to the supersymmetric charge,

Q ≡ πµψµ +mψ5 . (C.6)

This charge, along with the constraints Eq.(C.4) and Eq.(C.6), generates an
N = 1 SUSY algebra,

{Q,Q} = −2iH. (C.7)
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In generating this algebra, one employs the fundamental Possion brackets:

{xµ, pν} = δµν , (C.8)

{ψµ, ψν} = −iδµν , (C.9)

{ψ5, ψ5} = −i , (C.10)

{ψµ, ψ5} = 0 . (C.11)

We refer the reader to [269, 284] for more details on the use of SUSY models
in the context of path integrals and index theorems, as they are used, most
prominently, in gravity. A discussion of a covariant of a covariant fixing of
the gauge freedom (reparamentrization invariance under τ → τ ′) in terms of
a BRST construction can be found in [284] and gives a nice illustration of the
structure of the world-line path integral. These techniques will be particularly
helpful in implementing the phase space constraints satisfied by the relativistic
dynamics of spinning and colored particles.

C.3 Internal Symmetries

Internal symmetries, such as color, can be represented via Grassmaniann path
integrals in the same manner as we have done for the spin degrees of free-
dom. These were discussed in [273–277] and their path integral formulation
was worked out in [280, 281]. The essential elements are anti-commuting color
degrees of freedom that combine to give the color charges, which in classical
representations satisfy the Wong equations [272]. It was shown in [280, 281]
that path ordered exponentials of the form

tr Pe
−
T∫
0

dτ L(τ)
, (C.12)

where L(τ) is a N ×N Hermitian traceless matrix, can be written as

∫
Dλ†DλJ (λ†λ) exp

{
−
∫ T

0

dτ

(
ẋ2

2E +
1

2
ψaψ̇a + λ†λ̇− λ†Lintλ

)}
, (C.13)

where Lint is the interaction part of the Lagrangian and

J (λ†λ) = (
π

T
)N
∑

φ

exp[iφ(λ†λ+N/2− 1)] . (C.14)

If the matrix structure of L is that of fermions in the fundamental representation
of SU(Nc), then simply N = Nc. In a similar fashion, an insertion ω into the
trace gives

trP ω e
−
T∫
0

dτ L(τ)
=

∫
Dλ†Dλ J (λ†λ) {λ†ωλ} e

−
T∫
0

dτ
(
ẋ2

2E+ 1
2ψaψ̇a+λ†λ̇−λ†Lintλ

)
.

(C.15)
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It can be shown that defining the world-line path integral for colored, albeit
spinless, particles reproduces Wong’s equations in the pseudo-classicial limit
[261]. The equations of motion for spinning colored particles were already writ-
ten down 40 years ago in [289].

C.4 Consistent vs. Covariant Anomalies

It has long been known that the definition of axial-vector currents is ambiguous
in some cases, allowing for two anomaly types, termed consistent and covari-
ant respectively. It was pointed out [285] that this difference arises when one
derives the non-singlet anomaly either from the variation of an effective action
(which yields the consistent anomaly) or from Fujikawa’s method via variation
of the measure (which gives the covariant anomaly). The first type was called
the consistent anomaly, as it fullfils the Wess-Zumino consistency conditions
thereby predicting the correct anomalous physics of effective hadronic theories.
The second type is obtained from the first type by adding a local countert-
erm, which makes the non-singlet anomaly transform covariantly under group
transformations.

For the singlet anomaly, and in QED, this issue is much simpler, as in this
case one has manifestly gauge invariant expressions for both vector and axial-
vector currents. Therefore the possibility that a current is not covariant never
arises. However as was discussed by Bardeen [286], care has to be taken when
deriving currents, when there are both non-zero vector- as well as axial-vector
fields. In this case, there is an ambiguity whether the anomaly should be con-
tained in the vector- or the axial-vector-currents (or even both). Physics dic-
tates that the vector current is related to the baryon number and so it better
be conserved. Hence by the introduction of local Bardeen-counterterms this
physicality condition can be enforced. We note however that if there are no
physical axial-vector gauge fields present, as it is in our case, this ambiguity
does not exist. The vector current is conserved by construction and hence the
only possible form of the anomaly is given by Eq.(6.73).

C.5 Saddle Point Expansion in the World Line
framework and Gauge Invariance

We will discuss here two different appraoches to the fixing of the gauge symmetry
determining E . Our derivation is based on the fact that E is related to the
reparametrization invariance of the proper time

τ → τ ′ = f(τ), (C.16)

where f is an arbitrary continuous function. For the sake of simplicity, we will
neglect here spin dependent pieces of our action and write down the world-line
path integral for a scalar particle. We will then subsequently generalize the
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discussion to particles with spin. The world-line path integral for the spinless
case is

Wscalar =

∞∫

0

dT

T

∫
Dx exp

(
i

∫ T

0

dτ
[ ẋ2

2E + ẋµA
µ(x)− E

2
m2
])

=

∞∫

0

dT

T

∫
Dx exp

(
i

∫ 1

0

du
[ (dx/du)2

2ET +
dxµ
du

Aµ(x)− ET
2
m2
])
,

(C.17)

where in the second line we have replaced u = τ/T . From Eq.(C.17) it is clear
that T and E are not independent. Setting E to a constant value does not affect
the result of the T integration. Therefore we can simply set E = 2 and rescale
m2T → T . The path integral is then given as

Wscalar =

∞∫

0

dT

T

∫
Dx exp

(
i

∫ 1

0

du
[
m2 (dx/du)2

4T
+
dxµ
du

Aµ(x)− T
])
,

(C.18)

The T integration can now either be performed explicitly (see [385, 386]) or via
the method of stationary phase around the expansion point

T0 =
m

2

(
−
∫ 1

0

du

[
dxµ
du

]2
) 1

2

. (C.19)

We obtain

Wscalar ≈
√

iπ

2m

∫
Dx

(
−
∫ 1

0

du

[
dxµ
du

]2
)− 1

4

× exp i



m

(
−
∫ 1

0

du

[
dxµ
du

]2
) 1

2

+

∫ 1

0

du
dxµ
du

Aµ(x)



 .

(C.20)

We now derive the equations of motion from requiring the invariance of this
action under variation. The result is

(
−
∫ 1

0

du ẋ2

)− 1
2

mẍµ = ẋνF
µν . (C.21)

We can write this, defining z =
√
−ẋ2, as1

mẍµ
z

= ẋνF
µν . (C.22)

1Multiplying this equation through by ẋµ, one observes that ẋ2 = constant.
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One can alternately start from the Lagrangian in Eq.(C.17). Instead of fixing
E and leaving the T integral explicit, we can work with the single particle action

S =

∫ T

0

dτ
[ ẋ2

2E + ẋµA
µ(x)− E

2
m2
]

(C.23)

directly. Since E is kept explicit, there are two variations to perform – one for
E and one with respect to x. Variation with respect to E gives

ẋ2

E2
−m2 = 0 . (C.24)

Solving this equation for E , one obtains the consistency relation

E =

√
−ẋ2

m
=

z

m
. (C.25)

Note that Eq.(C.25) does not fix the gauge, as z has yet to be determined. It
rather is an equation that allows us to implement the constraint in the action
directly. Plugging Eq.(C.25) into Eq.(C.23) eliminates the dependence on the
einbein parameter and yields

S =

∫ T

0

dτ
[
mz + ẋµA

µ(x)
]
, (C.26)

from which the equations of motion follow directly. Not surprisingly, they coin-
cide with Eq.(C.22). This derivation shows that Eq.(C.23) can be interpreted as
a single-particle action, under the premise that all constraints are implemented
correctly and the consistency condition Eq.(C.25) is fulfilled. The latter is sat-
isfied if the einbein E is treated as a variational parameter. This equivalence
generalizes easily to the case of spinning particles as discussed in the main text.



Appendix D

Details of the functional
approaches

This part of the appendix contains details that are relevant to chapter 7, which
is based on ”Magnetic catalysis and inverse magnetic catalysis in QCD” (N.M.
J. Pawlowski), published in Phys.Rev. D91 (2015) no.11, 116010 (arXiv:1502.08011) [295].
Below we discuss the truncation scheme that is employed in the Dyson-Schwinger
approach in chapter 7 and we outline the emergence of magnetic catalysis and
inverse catalysis from a four-fermion perspective.

D.1 Gluon Propagator and Quark Gluon vertex
from Dyson Schwinger studies

Here we discuss the truncation scheme for the quark gap equation and the gluon
propagator, based on [363, 369]. The quark gluon vertex is taken as Γµ = zqgqγ

µ,
with

zqgq(Q
2) =

d1

d2 +Q2
(D.1)

+
Q2

Λ2 +Q2

(
β0α(µ) logQ2/Λ2 + 1

4π

)2δ

, (D.2)

containing the parameters

d1 = 7.9 GeV2 d2 = 0.5 GeV2 ,

δ = −18/88 , Λ = 1.4 GeV . (D.3)

Here the scales must be identified correctly in order to capture the correct
dependence with T and eB. We take Q to be the symmetric momentum
Q2 = (q2 + p2 + (q − p)2)/3 at the vertex with Q2 = Q2

3 + Q2
0 + Q2

⊥, where

191
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Q2
0 = (2πT )2 if Q2

0 < (2πT )2 and Q2
⊥ = 2|eB| if Q2

⊥ < 2|eB|. We note that this
roughly corresponds to an identification of scales as in section 7.3.1 with λB ≈ 1,
although the present vertex is clearly more sophisticated as it includes momen-
tum dependencies and thereby generic eB effects. For a current overview of
the quark gluon vertex in Dyson-Schwinger truncations see [387, 388]. Further-
more in order to be able to solve the gluon Dyson-Schwinger equation we rely
on lattice input for the Yang-Mills part, which we then ”dress” with magnetic
field effects, as described above. The reliability of this truncation was already
discussed in detail at finite temperature [363] and utilized in the presence of
magnetic fields before [299]. The lattice fit is given by

Z−1
YM(Q2) =

Q2Λ2

(Q2 + Λ2)2

[( c

Q2 + aΛ2

)b

+
Q2

Λ2

(
β0α(µ) logQ2/Λ2 + 1

4π

)γ ]
, (D.4)

with

Λ = 1.4 GeV , c = 11.5 GeV2 ,

β0 = 11Nc/3 , γ = −13/22 , (D.5)

where α(µ) = 0.3 and a and b are temperature dependent parameters, which can
be found in [369]. As discussed before the Dyson-Schwinger truncation scheme
can be related to the skeleton expansion done in our analytic estimate, which
was motivated by renormalisation group invariance

4παs(Q
2)rIR(Q2)

Pµν
Q′2 + Π

≡ Pµν
ZYMQ′2 + Πf

zqgq , (D.6)

where the sum over different polarisation tensor components is implied. The
right hand side actually serves as the input to our numerical study, while the
different components of Π are determined dynamically from solving the gluon
Dyson-Schwinger equation.

D.2 Magnetic field dependence of the four-fermi
coupling from QCD

As we have discussed in Section 7.3.2 the value of the NJL coupling λ at the
intrinsic cutoff scale of the model is determined by QCD dynamics. At large
scales the dynamics of λ is driven by the rightmost diagram shown in Fig.
(7.11). Within simplifications we will motivate the functional dependence of
this diagram on temperature and the magnetic field. In the lowest Landau
level approximation the quarks are constraint to the t-z plane denoted by (‖),
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whereas the gluons propagate in all four dimensions (‖,⊥). We write the gluon
box diagram in Fig. (7.11) at zero external momentum as

Fαs(eB ≥ 0.3 GeV) ' 4.5 eB

∫ ∞

0

dq‖
q‖

q2
‖ +m2

q + αseBcq

×
∫ ∞

0

dq⊥
q⊥

[q2
⊥ + q2

‖ +m2
A + eBαscA]2

,

(D.7)

where αs is given as Eq.(7.12).
For eB < 0.3 (D.7) is smoothly (quadratic fit) extrapolated to eB = 0

with minimising the eB-dependence. The flavor, color and Dirac tensor indices
have been contracted, and the comparison with the results for λ in quenched
QCD shown in Fig. (7.13) shows that the prefactor resulting from the tensor
contract is approximately 4.5. We have written the propagators in a semi-
perturbative form with medium dependent mass terms. Further we have taken
mA ≈ 1 GeV as the decoupling scale, mq ≈ 300 MeV in the chiral broken phase
and cA = cq = 1. Strictly speaking both masses are larger than 1 GeV as
we have to add the cutoff masses ∝ Λ2. We have chosen smaller masses in
order to also potentially have access to the infrared domain k → 0, where the
constituent quark mass is of the order 0.3 GeV and the gluonic mass gap is of
the order 1 GeV. Furthermore we have approximated the Matsubara sum by
an integration, due to the small level spacing compared to the magnetic field.
This approximation does not hold small eB, but (D.7) is only used for eB ≥ 0.3
GeV. Eq.(D.7) includes the correct dependence on αs as well and thus captures
eB and T effects qualitatively. The model parameters in Section 7.3.2 allow us
to reproduce the quantitative behavior of the chiral transition temperature and
a more elaborate version of Eq.(D.7) does not give much greater insight. Apart
from the agreement with the Tc results from lattice calculation, Fig. (7.13)
shows that quantitatively reliable results from QCD-flows in quenched QCD
[367] are reproduced.
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