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SUMMARY 

It is well established that elevated plasma cholesterol is a major risk factor for 

atherosclerosis, the cause of cardiovascular disease (CVD), which is most often 

manifested as coronary artery disease (CAD) and myocardial infarction (MI). The 

identification through GWAS of genes associated with lipids and CVD has only to a 

minor extent explained the genetic architecture of CVD and dyslipidemias. In an 

effort to identify genes affecting cholesterol regulation, an RNAi-based functional 

profiling of GWAS-derived loci, which were associated with lipid traits, CAD and/or 

MI was previously performed in our lab (Blattmann et al. 2013). This study resulted 

in the identification of 55 genes that had an effect on LDL internalization and/ or 

cellular cholesterol levels.  However, most of the screen hits did not have a strong 

effect, suggesting that the combinatorial -rather than the individual- function of 

these genes might regulate cholesterol homeostasis and subsequently CVD. This 

reasoning is supported by the fact that CVD is a complex disease, which is assumed 

to arise from the synergistic effect of genes. 

In the present study, a combinatorial RNAi screen was performed in order to identify 

interactions between genes identified in the aforementioned study, after 

juxtaposing them with the results of an Exome Chip of more than 70,000 individuals, 

genotyped for lipid traits (LDL, HDL, TG, TC) (Peloso et al. 2014). For this purpose, the 

effect on LDL uptake of all pairwise combinations between 30 candidate genes was 

tested, and 21 pairs were confirmed as genetic interactors. A gene interaction model 

network was constructed, based on the results of the screen, connecting known 

cholesterol regulators, as well as genes without a previously reported lipid-

regulatory function. Secondary screens were performed to measure the effect of the 

gene interactions on LDLR mRNA and protein, as well as on SREBF1 and SREBF2 

mRNA levels. The results from secondary experiments provided further valuable 

information for the mechanistic interpretation of the interactions. The one occurring 

between LDLR, which encodes for the receptor of LDL and HAVCR1, which encodes 

for a membrane receptor for hepatitis A virus was followed up. Furthermore, 

hypotheses were generated for the sub-network of LDLR-MLXIPL-HAVCR1 on the 

mechanism of interaction influencing cholesterol homeostasis. Hypotheses were 
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made also for a few other interesting interactions, which correlated with cellular 

LDLR mRNA and/or protein levels, as well as with SREBF mRNA levels. For HAVCR1, 

mutation screening was performed, whereby the overexpression of 18 out of 19 

mutations had a significant inhibitory effect on LDL uptake, further supporting a so 

far undescribed role for HAVCR1 in cholesterol endocytosis. In parallel, in 

collaboration with Heiko Runz (Merck Research Laboratories), all lead SNPs of the 

genes tested with co-RNAi were examined for co-occurrence and SNP-SNP 

interactions in a cohort of more than 4000 individuals (Muntendam et al. 2010). 

With this analysis, an additive effect was demonstrated for three pairs of SNPs that 

corresponded to gene interactions identified with the co-RNAi screen (LPL+CELSR2, 

APOB+HMGCR, LDLR+NCAN).  

In summary, the study in hand identified combinatorial effects of genes on 

cholesterol homeostasis, through systematic identification of genetic interactions 

between GWAS-derived genes. Altogether, this research demonstrates the potential 

of the scalable strategy employed using quantitative cell-based assays, to uncover 

the genetic networks underlying common disorders and diseases. Further 

characterization of these networks would lead to a better understanding of CVD 

inheritance and provide valuable insight for the generation of novel treatments.  
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ZUSAMMENFASSUNG 

Es ist gut bekannt, dass erhöhte Plasma-Cholesterinspiegel ein wichtiger Risikofaktor 

für Atherosklerose sind, die Ursache für Herz-Kreislauf (HKL)-Erkrankungen, die sich 

am häufigsten als koronare Herzkrankheit (KHK) und Myokardinfarkt (MI) 

manifestieren. Die Identifizierung durch genomweite Assoziationstudien (GWAS) von 

Genen, die mit Lipiden und HKL assoziert sind, hat nur in geringem Masse die 

genetische Architektur von gemeinsamen Erkrankungen wie HKL und Dyslipidämien 

erklärt. In einer Bemühung, Gene zu identifizieren, die die Cholesterin Regulation 

beeinflüssen, wurde zuvor in unserem Labor eine RNA-Interferenz-basierte 

funktionelle Profilerstellung von GWAS-abgeleiteten Genorten, die verbunden mit 

Lipidmerkmalen, KHK und/ oder MI geworden sind, durchgeführt (Blattmann et al. 

2013). Diese Studie führte zur Identifizierung von 55 Genen, die einem Einfluss auf 

die LDL-Cholesterin Internalisierung und/ oder den zellulären Cholesterinspiegel 

hatten. Allerdings hatte für die Mehrheit der RNAi-Screen Treffer eine 

Unterdrückung ihrer Expression keinen starken Einfluss auf die Endozytose von LDL, 

was darauf hindeutet, dass die kombinatorischen -und nicht die individuelle 

Wirkung- dieser Genen die Cholesterin-Homöostase und infolgedessen KHK 

regulieren könnte. Diese Argumentation wird durch die Tatsache unterstützt, dass 

HKL eine komplexe Erkrankung ist, die aus Wechselwirkungen zwischen Genen 

entsteht.  

In der vorliegenden Studie wurde ein kombinatorischer RNAi-Screen durchgeführt, 

um die genetischen Wechselwirkungen zwischen den in der obigen Studie 

identifizierten Genen aufzudecken, nachdem sie mit den Ergebnissen eines Exome-

Chips von mehr als 70,000 Individuen (Peloso et al. 2014), die für Lipidmerkmalen 

(LDL, HDL, TG, Gesamtcholesterin) genotypisiert waren, verglichen wurden. Zu 

diesem Zweck wurde die Wirkung auf die LDL-Cholesterin Aufnahme aller gepaarten 

Kombinationen zwischen 30 Kandidatengenen getestet, und 21 Paaren als 

͞Interaktoren͟ wurden bestätigt. Es wurde ein Gen-Interaktionsmodell Netzwerk auf 

der Basis der gefundenen genetischen Wechselwirkungen aufgebaut, wobei sowohl 

bekannte Cholesterolregler als auch Gene ohne eine zuvor berichtete 

Lipidregulationsfunktion verknüpft wurden. Folgeuntersuchungen wurden 
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durchgeführt, um die Wirkung der ko-RNAi-Screen Treffer auf LDLR mRNA und 

Protein Niveaus sowie auf SREBF1 und SREBF2 mRNA Niveaus zu messen. Die 

Ergebnisse aus diesen Folgeuntersuchungen lieferten weitere wertvolle 

Informationen für die mechanistische Interpretation der Wechselwirkungen. Die 

Interaktion zwischen LDLR, das für den Rezeptor von LDL kodiert, und HAVCR1, das 

für einen Membranrezeptor für Hepatitis-A-Virus kodiert, wurde mehr im Detail 

untersucht. Ausserdem wurden Hypothesen für das Subnetz von LDLR-MLXIPL-

HAVCR1 auf dem Mechanismus der Interaktion, die Cholesterin-Homöostase 

beeinflussen, erzeugt. Hypothesen wurden auch für einige andere interessante 

Interaktionen aufgestellt, die in Wechselbeziehung mit zellulären LDLR mRNA und 

/oder Protein Niveaus, oder mit SREBF mRNA Niveaus waren. Für das Gen HAVCR1, 

konnte bei der Überexpression von 18 aus 19 Mutationen, die in Patienten 

vorkommen, eine signifikante Hemmwirkung auf die LDL-Aufnahme beweist werden, 

was die wichtige Rolle des HAVCR1 Gens bei der Cholesterol-Endozytose weiter 

zeigte. Parallel dazu wurden in Zusammenarbeit mit Heiko Runz (Merck Forschung 

Labore, Boston USA) alle führenden SNPs der bei ko-RNAi getesteten Genen auf 

gemeinsames Auftreten und SNP-SNP-Wechselwirkungen in einer Kohorte von mehr 

als 4000 Personen (Muntendam et al. 2010) getestet. Unter Verwendung dieser 

Analyse konnte ein additive Effekt bei drei Paaren von SNPs nachgewiesen werden, 

die den Gen-Wechselwirkungen, die beim ko-RNAi Screening identifiziert wurden, 

entsprachen (LPL + CELSR2, APOB + HMGCR, LDLR + NCAN). 

Zusammenfassend hat die vorliegende Studie funktionellen Verbindungen zwischen 

bisher nicht verwandten Genen erstellt, die eine kombinatorische Wirkung auf die 

Cholesterin Homöostase nachweisen. Insgesamt zeigt die Studie das Potenzial dieser 

erweiterbaren Strategie zur systematischen Identifizierung von genetischen 

Wechselwirkungen zwischen GWAS-abgeleiteten Genen mit quantitativen 

zellbasierten Assays, um die genetischen Netzwerke, die Häufige Erkrankungen und 

Krankheiten zugrunde liegen, aufzudecken. Eine weitere Characterisierung dieser 

Netzwerke würde zu einem besseren Verständnis der HKL-Vererbung führen und 

einem wertvollen Einblick in die Entstehung neuartigen Behandlungen liefern. 
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 1 

1 INTRODUCTION 

 

The present PhD Thesis endeavors to shed light on the genetic interactions that 

regulate cholesterol homeostasis in human, and are thus causally associated with 

the development of cardiovascular diseases (CVDs). With an aim to demonstrating 

the role of genes and their variants in CVD, this introduction starts with a general 

overview of disease genetics (1.1), which is followed by a more focused description 

of the genetics and pathophysiology of CVD (1.2). The causative link between 

cholesterol and CVD is explained (1.2.2) and the mechanisms of cholesterol 

regulation are illustrated thereafter (1.3). Given that the study in hand focuses on 

the role of genetic interactions in CVD, which is a complex disease, the association 

between genetic interactions and complex diseases is analyzed (1.4). In the last 

section of the introduction, the theoretical framework is provided for the 

approaches utilized in this study in order to screen for gene-gene interactions, 

through combinatorial perturbations of gene function with RNAi (1.5).  

 

1.1 INVESTIGATING DISEASE GENETICS 

As the potential to control infectious and nutritional diseases in developed countries 

increases, it becomes evident that genetic diseases are a major cause of disability, 

mortality and morbidity. Understanding the genetic basis of hereditary diseases is 

challenging, due to the diversity of the human genome, as well as the multiple 

genetic causative elements that might contribute to disease risk. The sequencing of 

the complete human genome (International Human Genome Sequencing 

Consortium 2004), together with a comprehensive description of common human 

genetic variation (The 1000 Genomes Project Consortium 2015) provided us with a 

plethora of genetic information, that is critical for the identification of disease-

causing genes. 

 

1.1.1 INHERITANCE OF DISEASE GENETICS 

Genetic disorders arise from the malfunction of genes, most often caused by 

mutations. Genetic diseases caused by mutations in a single gene or locus are 
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described as ͞monogenic͟ or ͞Mendelian͟. Examples of such single-gene diseases 

are Huntington’s disease and cystic fibrosis. However, a plethora of genetic disorders 

are caused by mutations in more than one gene and their inheritance cannot be 

explained by simple Mendelian theory; therefore, they are described as ͞non-

Mendelian͟ or ͞polygenic͟. The concept of ͞polygenic͟ inheritance was introduced 

as early as 1918 by R. Fisher, who analyzed the causes of human variability using 

mathematics to combine Mendelian genetics with natural selection. Fisher 

demonstrated that the individual phenotype of quantitative traits can be produced 

by the combined action of many different genes (Fisher 1918). Many diseases have 

been shown to have a complex, polygenic inheritance pattern. Common diseases, 

such as Alzheimer’s and Parkinson’s (Singleton and Hardy 2016), schizophrenia 

(Sawa and Snyder 2002), type 2 diabetes (Flannick and Florez 2016) and 

cardiovascular disease (Kathiresan and Srivastava 2012) are named ͞common 

complex diseases͟, because they can be caused by interplay between many genes as 

well as between genes and environment. In order to investigate the causality of 

genetic diseases, one needs to delve into the genetic variation and acquire a 

thorough understanding of its contribution to the observed phenotype.  

 

1.1.2 GENETIC VARIATION 

The human genome is unique; this means that any two persons share 99.5% identity 

in their genomic sequences. Nonetheless, there are millions of differences among 

the 3.2 billion base pairs, which create the variation among individuals and may 

account for susceptibility to disease. Remarkably, the 1000 Genomes Project, in 

which 2,504 individuals from 26 human populations were sequenced, demonstrated 

that "a typical genome differs from the reference human genome at 4.1 million to 

5.0 million sites … affeĐting 20 million bases of sequence" (The 1000 Genomes 

Project Consortium 2015). The vast majority of the variants are single-nucleotide 

polymorphisms (SNPs), namely substitutions of a single nucleotide at a particular site 

in the DNA sequence. The bulk of SNPs (~ 90%) are common SNPs, namely they have 

a minor allele frequency, MAF (MAF; the frequency at which the less frequent allele 

appears in a population) of ш5%. Throughout the twenty-three chromosome pairs 
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there are roughly 11 million common SNPs. The remaining (~10%) SNPs are rare 

SNPs, namely they have a MAF less than 1%.  

Common SNPs tend to be older than rare SNPs, which are recently derived alleles in 

the human population (Kruglyak and Nickerson 2001). In principle, these sequence 

variations have arisen from single historical mutation events, and are therefore 

associated with neighboring variants that were present in the ancestral chromosome 

on which the mutation occurred (Kruglyak and Nickerson 2001). Hence, a specific 

group of SNP alleles are found on a single chromosome that commonly segregate 

together, forming the so-called ͞haplotype blocks͟ or ͞haploblocks͟. The closest the 

distance between two SNPs on a chromosome, the higher the chance that they are 

inherited together, due to decreased recombination likelihood between them; this is 

described as ͞linkage disequilibrium͟ (LD). Within each haploblock, a SNP in high LD 

with the other alleles, termed ͞tag SNP͟ represents the region and can be used to 

identify the whole haplotype. It has been proved that genotyping a set of carefully 

selected ͞tag SNPs͟ is sufficient to uncover most of the genetic variation (The 

International HapMap Consortium 2003). This was confirmed by the International 

HapMap Project, which genotyped 3.1 million SNPs, in an effort to create a 

haplotype map of the human genome (The International HapMap Consortium 2007). 

Sequence data collected by the project demonstrated that SNPs are typically 

perfectly correlated with flanking SNPs and haplotypes; SNPs that show a strong 

correlation with other SNPs are termed ͞proxies͟ (The International HapMap 

Consortium 2005). Thus, when two SNPs are perfectly correlated (r2=1.0, r2; 

correlation coefficient), testing one of the two SNPs is sufficient to extract 

information for the effect of the other one.   

 

1.1.3 DISCOVERING DISEASE-ASSOCIATED VARIANTS 

The pinpointing of causal genes and variants in order to uncover the genetic 

architecture of hereditary traits and diseases is done with genetic mapping 

(Altshuler, Daly, and Lander 2009). Genetic mapping is a powerful approach through 

which the relative position of causal genes on a chromosome can be determined, 

based on their inheritance pattern. In order to produce a genetic map, DNA has to 

be isolated from tissue or blood samples collected from patients, often members of 
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the same family in which a certain disease ͞runs͟. Characteristic DNA patterns that 

are observed uniquely in affected individuals, called ͞markers͟ are useful to locate 

and identify the causal gene(s), based on LD.    

 

1.1.3.1 LINKAGE STUDIES FOR MENDELIAN DISORDERS 

The simplest form of genetic mapping, described as ͞genome-wide linkage analysis͟, 

or simply ͞linkage analysis͟ was proposed in 1980, and represented the first 

approach to connect DNA sequence polymorphisms with Mendelian traits (Botstein 

et al. 1980). Linkage analysis has been used to investigate the inheritance of rare 

Mendelian diseases within families with many affected individuals, as the 

segregation of the disease phenotype is a prerequisite for linkage mapping (Botstein 

and Risch 2003). In linkage studies, a disease-associated chromosomal region (locus) 

is identified, by discovering the alleles- ͞markers͟ that segregate (are linked) with 

the disease, and are therefore assumed to neighbor with the disease-causing gene(s) 

(Mayeux 2005). Once the candidate locus is defined, the likelihood that the genetic 

marker and the disease gene are linked is statistically estimated, based on the 

genetic recombination frequencies generated by meiotic cross-over. In order to 

further narrow down the genomic region, where the disease gene must reside, LD is 

often used in a method termed ͞linkage disequilibrium mapping͟ or ͞LD mapping͟ 

(Botstein and Risch 2003). Thereafter, a strategy referred to as ͞positional cloning͟ is 

used to identify the causal mutation(s) and define its functional role in the 

pathogenesis of the disease (Puliti et al. 2007).     

Classical linkage analysis and positional cloning have been successful in the 

identification of rare genetic mutations causing Mendelian traits and diseases, as 

well as Mendelian subtypes of common diseases. These methods failed, however, to 

unveil the causal genes in common forms of complex diseases.  

 

1.1.3.2 GENOME-WIDE ASSOCIATION STUDIES FOR COMPLEX DISEASES 

An alternative to family-based linkage study for the genetic mapping of complex 

diseases is the population-based ͞genetic association study͟. The basic idea behind 

genetic association studies is to correlate genetic variants with a trait or disease, by 

comparing SNP frequencies between a sample of cases and a sample of control 
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individuals. The measure of association between each individual SNP and the disease 

is given by the odds ratio (OR), which reflects the probability of disease occurrence 

divided by the probability of non-occurrence, compared between cases and controls. 

In a ͞genome-wide association study͟ (GWAS), also known as ͞whole-genome 

association study͟ (WGAS), a genome-wide set of SNPs is examined in a large 

population (hundreds or thousands) of both affected and non-affected individuals, 

to detect any existing association(s) with a trait or disease (see Fig. 1). Owing to LD, 

which is widespread in the genome, a set of tag SNPs is sufficient to be genotyped, 

as it can capture most of the allelic variation in their region.  

GWA studies of common variants (with a MAFш5%), also known as ͞common-variant 

association studies͟, CVAS, were based on the common disease-common variant 

(CDCV) hypothesis. The CDCV hypothesis postulates that susceptibility to common 

diseases is often attributable to a small number of common polymorphisms with low 

penetrance, namely at each disease-associated locus there is only one or a few 

predisposing alleles (Reich and Lander 2001; Schork et al. 2010) (see Fig. 2). Because 

of strong associations among SNPs, only a set of the best tag SNPs need to be 

genotyped in a GWAS to predict the remaining associated SNPs (see 1.1.2). The 

selection of SNPs is done based on LD patterns among them, making use of the 

HapMap that was built for this purpose; to facilitate the identification of common 

causal variants (The International HapMap Consortium 2005). 

The first GWAS was published in 2005 and investigated age-related macular 

degeneration (Haines et al. 2005). Up to this point (03/2017), 2785 GWA studies 

have been published and 32284 unique SNP-trait associations have been identified 

(http://www.ebi.ac.uk/gwas/). GWA studies have been quite successful in identifying 

associations between common SNPs and disease traits. However, the majority of 

SNPs identified have a low effect size (strength of association) on the traits with 

which they are associated (Manolio 2009; Wang et al. 2005). To date, GWA studies 

have identified hundreds of genetic variants associated with complex human 

diseases, but most variants identified confer relatively small effects in risk (odds ratio 

(OR); 1.2-1.5), and explain only a small proportion of the population variance in 

liability to disease (typically 0.2-0.5%) (see Tbl. 1). Even in aggregate, all the risk SNPs 

identified so far for any complex disease explain 5-10% of variance, when the overall 
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heritability of these diseases is 40-80% (Manolio 2009; Zeggini and Morris 2010). 

Thus, there is a large proportion of the heritable component of complex diseases 

that remains unidentified, which is described as ͞missing heritability͟ (Maher 2008; 

Manolio 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Genome-Wide Association Study (GWAS) 

In a typical GWA study, individuals genotyped for SNPs are divided in cases and controls. The strength 

of association between each SNP and disease is calculated based on the prevalence of the SNP in the 

two populations. In the example shown here, SNP1 is associated with the disease with P value of 

1x10
-12

. The plot shows the P values for all the SNPs genotyped, located in different chromosomes.   

(Reproduced with permission from Manolio NEJM 2010, Copyright Massachusetts Medical Society) 
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1.1.3.3 THE ISSUE OF MISSING HERITABILITY 

The issue of missing heritability has been heavily discussed and many explanations 

for this have been suggested. One possible explanation is that only a small portion of 

the causal common variants have been identified so far, and the missing heritability 

is hidden within the ones that still need to be found -as many as 30% of existing 

common variants might remain undetected (Manolio 2009; Wang et al. 2005). A 

second explanation takes into account the rare variants (MAF<5%), which are 

assumed to have a larger effect than the common ones, but fail to be detected by 

GWASs due to their poor representation in genotyping arrays (Pritchard 2001) (see 

Fig. 2). Moreover, a probable cause for the small effect sizes observed so far is that 

the potential causal variants within each gene have been incompletely examined. 

That is to say, genes identified as having common associated variants could as well 

harbor rare variants with larger effects. This is implied by the identification of high-

frequency lipid-associated variants in genes such as LDLR and PCSK9 that also carry 

low-frequency variants causing Mendelian dyslipidemias (Cohen et al. 2005; 

Kathiresan et al. 2008; Manolio 2009). Structural variants have also been suggested 

to account for missing heritability, as a special case of rare variants, based on 

findings for schizophrenia, autism, epilepsy and mental retardation (Cirulli and 

Goldstein 2010). Epigenetic effects such as genomic imprinting and parent-of-origin 

effects, that is sex-specific associations between variants in parents and risks in 

offspring, have also been implicated (Eichler 2010). Last but not least, gene-gene and 

gene-environment interactions, which cannot be captured by GWA studies, are 

believed to be the explanation for the missing inherited risk (Manolio 2009; 

McCarthy and Hirschhorn 2008).  
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Figure 2. Feasibility of identifying genetic variants by risk allele frequency and strength of genetic 

effect (odds ratio) 

Variants of low minor allele frequency (MAF), roughly 0.5%чMAFчϱ%, oƌ ƌaƌe ;MAF<Ϭ.ϱ%Ϳ aƌe Ŷot 
frequent enough to be captured by GWA genotyping arrays, and usually do not carry large effect sizes 

to be detected by linkage analysis. Low frequency variants could however have considerable effect 

sizes (increasing disease risk two-to threefold) and could considerably contribute to missing 

heritability. 

(Reprinted by permission from Macmillan Publishers Ltd: Nature, Manolio et al., copyright 2009)  

 

 

 

 

 

 

 

 

 

 

 

Table 1. Estimates of heritability and number of loci for several complex traits 

For very few common diseases, such as age-related macular degeneration, a small number of 

common variants of large effect explain a substantial proportion of heritability. For most common 

diseases however, the proportion of heritability explained is minor, despite a much larger number of 

identified variants. 

(Reprinted by permission from Macmillan Publishers Ltd: Nature, Manolio et al., copyright 2009)  
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1.1.3.4 EXOME SEQUENCING STUDIES FOR COMPLEX DISEASES 

The extreme alternative to CDCV is the ͞heterogeneity hypothesis͟, also known as 

the ͞multiple rare-variant hypothesis͟ or ͞common disease, rare variant (CDRV) 

hypothesis͟. The CDRV hypothesis postulates that disease risk is attributed to 

multiple low-frequency variations (MAF<5%) at different loci, each with relatively 

high penetrance (Pritchard 2001; Schork et al. 2010; Smith and Lusis 2002). The 

argument for an important role of rare variants is that purifying selection purges 

deleterious alleles strongly predisposing to disease, which are thus kept at low 

frequencies (Goldstein et al. 2013; Pritchard 2001; Zuk et al. 2014). In order to 

sufficiently test the CDRV hypothesis against the CDCV hypothesis for any disease, 

the first step is to identify rare variations among affected individuals. This can be 

only achieved through DNA sequencing, and consitutes the target of ͞rare-variant 

association studies͟, often called ͞exome sequencing͟ studies.  

Rare-variant association studies (RVAS), relative to common-variant association 

studies, test for association of rare variants with a trait or disease. RVAS, like GWAS 

require very large sample sizes. Unlike GWAS, wherein all individuals are genotyped, 

RVAS involve sequencing of all individuals, which may or may not be followed by 

genotyping. A key difference between RVAS and CVAS is that most RVAS have 

focused on the coding part of the genome -the exome, which constitutes only about 

1.5% of the genome. This way the sequencing cost can be lowered for a large sample 

of patients, because less sequencing is required per individual. Another difference is 

that because the MAF of rare variants does not allow for association tests, RVAS test 

combined sets of rare variants instead of individual variants, in order to reach 

sufficient statistical power (Kiezun et al. 2013). In RVA studies, variants identified by 

aligning sequence reads to the reference genome, are annotated using probabilistic 

tools for their predicted functional effects (Do, Kathiresan, and Abecasis 2012).  

Exome sequencing has been so far useful in studies of Mendelian disorders and is 

very promising for the study of complex traits. Ideally, exome sequencing can be 

employed to design association studies that will study both common and rare 

variants, as the genetic etiology of complex diseases is believed to involve both 

components. Noteworthy, the prevailing view for the allelic architecture of complex 

diseases falls between the two extreme theories that were aforedescribed -the CDCV 
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and the CDRV (Hall, Moore, and Ritchie 2016; Wang et al. 2005). Namely, there is 

evidence that both low- and high-frequency alleles account for disease risk.   

 

1.1.3.5 EQTL STUDIES FOR COMPLEX DISEASES 

GWASs together with exome sequencing studies have brought to light a vast 

collection of genomic loci and variants -both common and rare- associated with 

common complex diseases. The challenge however is to acquire a mechanistic 

understanding of how these loci and variants affect diseases. Interestingly, it has 

been observed that most variants identified by GWASs reside in non-coding genomic 

regions, which suggests that they might exert their effect rather indirectly, through 

regulation of gene expression (Albert and Kruglyak 2015). A particular class of 

variants, named ͞expression quantitative trait loci (eQTLs)͟, includes genomic 

regions harboring variants that influence gene expression. Mapping of eQTLs is 

based on association analyses comparing the expression levels of genes between 

two sets of individuals, who have been grouped based on which allele of the variant 

under study they carry. eQTLs may exert their effect to a gene located either in a 

close distance (in-cis eQTLs) or far away (in-trans eQTLs) from them. Notably, it has 

been demonstrated that heritable gene expression regulation is at large due to 

variants functioning from a distance (Grundberg et al. 2012). This means that a SNP 

discovered within the defined region of a specific gene might have a functional role 

for a different gene, instead for the gene to which it territorially belongs. eQTL 

studies have been proven valuable in providing insight into the function and the 

causality of variants associated to complex traits and diseases.  

A notable example is a SNP (rs12740374) at the 1p13 locus, which (locus) was 

reported by GWASs as associated with serum low-density lipoprotein cholesterol 

(LDL-c) and myocardial infarction (Samani et al. 2007). This SNP, which resides at the 

3’ untranslated region (3’ UTR) of CELSR2 gene, was shown to be part of a binding 

site for a transcription factor named C/EBP which regulates the transcription of 

SORT1 gene (Linsel-Nitschke, Samani, and Schunkert 2010; Musunuru et al. 2011). 

Binding of C/EBP at the site of that SNP results to elevated expression of sortilin 1, 

which in turn leads to reduced LDL-c levels and subsequently to a lower risk for 
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myocardial infarction (MI), which is a cardiovascular event (see 1.2.2) (Kathiresan et 

al. 2009; Strong et al. 2012).  

 

1.2 CARDIOVASCULAR DISEASE 

Cardiovascular disease (CVD) is a leading health problem in the developed countries 

of the world, as well as many of the developing countries. CVD has been the leading 

cause of mortality since 1921, according to data from the Centers for Disease Control 

and Prevention  (CDC) (https://www.cdc.gov/nchs/fastats/heart-disease.htm). 

According to CDC, an estimated 17.5 million people deceased from CVD in 2012, 

representing 31% of global deaths. Moreover, in the United States alone more than 

80 million individuals are affected by the disease.  

Cardiovascular disease comprises a number of conditions, ranging from myocardial 

infarction (MI) to congenital heart disease, most of which are heritable (Kathiresan 

and Srivastava 2012).  

  

1.2.1 GENETIC ARCHITECTURE OF CARDIOVASCULAR DISEASE  

Some forms of CVD, such as familial hypercholesterolemia (FH) follow a Mendelian 

inheritance pattern, in which case a single causal gene has a large effect on the 

observed phenotype. In such subtypes of the disease, direct sequencing and family-

based linkage analysis have proved successful in the identification of the causal 

genes. In the example of familial hypercholesterolemia, M. Lehrman from the 

laboratory of M. Brown and J. Goldstein identified the causative deletion in the gene 

of low-density lipoprotein receptor (LDLR) by directly sequencing the gene in an FH 

patient (Lehrman 1985).  

However, most forms of CVD, such as MI or plasma lipid concentrations exhibit 

complex inheritance, suggesting the combined contribution of multiple genes and 

non-genetic factors to the disease. Complex forms of CVD are investigated with 

genetic association studies, which have focused until recently on common variants. 

The combination of GWAS with re-sequencing of selected genes has led to the 

conclusion that the genetic architecture of complex CVD traits is a mosaic of 

common variants with a small effect, rare variants with a large effect and 

environmental factors (Kathiresan and Srivastava 2012). A mosaic model hypothesis 



 

 12 

for cardiovascular traits is reinforced by the strong overlap between genes identified 

with GWAS and those identified earlier by familial linkage analysis (Kathiresan and 

Srivastava 2012). In addition, it is believed that interactions among genetic and non-

genetic factors shape the complex, multifactorial CVDs (Farhan and Hegele 2013).  

In particular, complex CVDs are assumed to result from multiple inherited DNA 

variants, each of which has a small effect on disease risk, but which cumulatively 

could play a substantial role (Farhan and Hegele 2013; Lanktree and Hegele 2009). In 

the case of CAD, rare variants in at least nine genes have been identified by 

sequencing studies, which contribute to disease risk (Khera and Kathiresan 2017) 

(see Tbl. 2). In addition, GWA studies have identified 202 independent variants in 

109 loci as associated with disease risk. All the identified variants together explain 

28% of the total estimated heritability of CAD, leaving the remaining, so-called 

͞missing heritability͟ unexplained (McPherson and Tybjaerg-Hansen 2016). As was 

already mentioned (see 1.1.3.2.1), one explanation for the ͞missing heritability͟ of 

CVD and other complex diseases is believed to lie within interactions among 

causative genes and their polymorphisms (Lanktree and Hegele 2009). That is to say, 

the genetic architecture of CAD is assumed to result from the combined action of 

alleles in many genes (Badano and Katsanis 2002). The reason why the studies 

conducted so far have not been able to address the matter of ͞missing heritability͟ 

of CVD is because they examined the effect of genetic factors in isolation, not 

allowing for potential interactions with other genetic factors (Cordell 2009). 

 

1.2.2 PATHOGENESIS OF CARDIOVASCULAR DISEASE 

The most commonly observed form of CVD is coronary artery disease (CAD), which 

affects the coronary arteries of the heart. The process underlying CAD, known as 

atherosclerosis, starts with the accumulation of lipoproteins in the inner walls of 

blood arteries, as a consequence of elevated LDL-cholesterol (LDL-c) levels in the 

bloodstream (Lusis 2012). Large arteries are bound on their luminal side by an 

endothelium, which insulates the vessel wall from the blood. The accumulation of 

plasma lipoproteins -particularly low-density lipoprotein (LDL)- at the sub-

endothelial region results to an inflammatory response, which involves the 

recruitment of monocyte-derived macrophages and lymphocytes. The macrophages 
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take up lipoproteins to form the cholesterol-engorged ͞foam cells͟, some of which 

eventually die resulting to a lipid-rich necrotic core. The accumulation of cholesterol, 

cellular debris and smooth muscle cells that migrate to the region results in the 

formation of an atherosclerotic plaque, which decreases the blood flow to the heart 

(see Fig. 3). This condition is described as CAD, with its most common manifestation 

being myocardial infarction (MI), which results from the rapture of the plaque, and 

leads to the formation of a thrombus that blocks the blood flow to the heart (Lusis 

2012). Respectively, when a cerebral artery becomes occluded by a thrombus, the 

blood flow to the brain is inhibited and this causes an ischemic stroke.  

Many genetic risk factors have been identified by epidemiological studies for 

atherosclerosis development, including elevated levels of low-density (LDL) and very-

low-density lipoprotein (VLDL), low levels of high-density lipoprotein (HDL), high 

levels of lipoprotein a, family history, obesity, hypertension and diabetes. 

Environmental factors such as smoking, high-fat diet and lack of exercise may also 

contribute to the disease. However, elevated serum cholesterol levels are probably 

the only risk factor that is sufficient to cause atherosclerosis (Glass and Witztum 

2001).  

Blood cholesterol levels, particularly those of LDL-c, have long been associated with 

a risk for CAD (D’Agostino et al. 2008; Keys 1966), and the work of Brown and 

Goldstein established a causal relationship between them (Brown and Goldstein 

1974, 1986; Goldstein and Brown 1977). The effect of a class of cholesterol-lowering 

drugs named ͞statins͟ on cardiovascular mortality reduction in patients with 

hypercholesterolemia is a confirmation that high cholesterol is causally related to 

CVD (Gould et al. 1998).  

 

 

 

 

 

 

 



 

 14 

 

 

 

 

 

 

 

 

 

 

Table 2. Summary of results from gene sequencing studies for CAD 

Damaging mutations in at least nine genes have been robustly associated with risk of coronary artery 

disease; in each case, identified genes disrupt pathways related to low-density lipoprotein (LDL) 

cholesterol, triglyceride-rich lipoproteins or lipoprotein (a) metabolism. Pharmacological therapies are 

in current use or development to mimic the protective variants for five of the six genes in which 

inhibition of the related protein would be predicted to reduce risk. 

(Adapted by permission from Macmillan Publishers Ltd: Nature Rev. Genet., Genetics of coronary artery disease: discovery, 

biology and clinical translation, Khera and Kathiresan, copyright 2017) 

 

 

Figure 3. The process of atherosclerotic plaque development 

Low-density lipoprotein (LDL) enters the arterial endothelium and induces an inflammatory reaction, 

which attracts monocytes and macrophages. Foam cells (lipid-loaded macrophages) accumulate and 

smooth muscle cells proliferate, which results to the plaque formation. Many foam cells and muscle 

cells die through apoptosis, making the plaque vulnerable. Plaque rupture causes formation of a 

thrombus, which can occlude the vessel.   

(Adapted by permission from Macmillan Publishers Ltd: Nature Watkins and Farrall, copyright 2006 and reprinted from Trends 

Genet. 28 (6): 267-275, Genetics of atherosclerosis, Lusis, copyright 2012, with permission from Elsevier.) 
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1.3 CHOLESTEROL HOMEOSTASIS 

Cholesterol is an essential component of mammalian cells, as it imparts special 

biophysical properties to their membranes, which can thus maintain their stability 

and durability. Furthermore, cholesterol partakes in the compartmentalization of 

cells, as it contributes to the creation of a semi-permeable barrier between 

specialized functional spaces (Ikonen 2008). Moreover, it participates in intracellular 

transport, cell signaling and -specifically in neurons- nerve conduction. Additionally, 

cholesterol is a precursor molecule for the biosynthesis of steroid and sex hormones, 

as well as vitamin D (Harvey and Ferrier 2011). Both dietary intake and biosynthesis 

constitute cholesterol sources for the body and tissues. In order to maintain 

cholesterol in the blood at the right level, and avoid atherosclerosis and CVD, the 

biosynthesis and metabolism of cholesterol are tightly regulated both in the body 

and in the cells. 

 

1.3.1 REGULATION OF CHOLESTEROL IN THE BODY 

Because cholesterol is not soluble, it is carried by several lipoprotein particles, which 

are classified according to their density into five groups. These classes from least 

dense to most dense are chylomicrons, very low-density- (VLDL), intermediate-

density- (IDL), low-density- (LDL) and high-density- (HDL) lipoproteins, with LDL being 

the most prevalent. The role of lipoproteins is to transfer lipids through the 

extracellular fluid and serum to the different tissues of the body. Liver plays a central 

role in cholesterol metabolism in human, by maintaining cholesterol balance in the 

body and keeping LDL cholesterol levels steady in the plasma. To begin with, dietary 

cholesterol, which is initially absorbed by enterocytes of the small intestine, is 

subsequently delivered to the liver within chylomicrons, which consist of cholesterol 

and triglycerides. Moreover, the liver itself synthesizes cholesterol, which it then 

secretes in the form of VLDL. As much as 70% of VLDL that is produced by the liver is 

reabsorbed by it, while the remaining 30% is converted to LDL and cleared by 

extrahepatic tissues. Additionally, the liver absorbs cholesterol that is produced by 

the extrahepatic tissues in the form of HDL (see Fig. 4). It has been demonstrated 

that under normal dietary conditions the extrahepatic tissues are responsible for 

>80% of total sterol synthesis (Dietschy, Turley, and Spady 1993).  
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Whereas in a fetus or a child, there needs to be a net accumulation of cholesterol 

required for growth, in adults the amount of cholesterol that is both synthesized and 

absorbed must equal the amount of cholesterol that is excreted (plus minor 

quantities used for the skin or hormone synthesis) (Dietschy et al. 1993). The hepatic 

parenchyma cells have a key role in cholesterol excretion, by secreting sterols into 

the bile, in the form of bile acid, which is then disposed of with the feces (Dietschy et 

al. 1993). 

Cells of hepatic and peripheral tissues have a central role in regulating the circulating 

cholesterol levels, by taking up LDL. The mechanism of LDL uptake from cells via 

binding to its receptor on the plasma membrane, LDL receptor (LDLR), significantly 

contributes to the clearance of LDL-cholesterol from the bloodstream (Brown and 

Goldstein 1986). This is evidenced by the fact that in absence of functional LDL 

receptors, LDL is massively accumulated, as was demonstrated in patients with the 

homozygous form of FH (Goldstein and Brown 1977). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Cholesterol metabolism in the body. 

Dietary cholesterol is initially absorbed by intestine, and subsequently delivered to the liver within 

chylomicrons. The liver synthesizes cholesterol, which it then secretes in the form of VLDL. 30% of 

VLDL that is produced by the liver is converted to LDL and cleared by extrahepatic tissues. 

Additionally, the liver absorbs cholesterol that is produced by the extrahepatic tissues in the form of 

HDL. 

(Adapted by permission from Macmillan Publishers Ltd: Nature Calkin and Tontonoz, copyright 2012.) 
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1.3.2 REGULATION OF CHOLESTEROL INSIDE THE CELL 

Within the cell, cholesterol is distributed unevenly among membranes, with a higher 

concentration being that of the plasma membrane, where it consists 20-25% of total 

lipids. In addition, cholesterol is ample in the endocytic recycling compartment and 

the Golgi complex (Ikonen 2008).  Cholesterol sources for the cell consist of the 

following three major pathways; cholesterol synthesis from acetyl-coenzyme A 

(acetyl-coA), receptor-mediated LDL-cholesterol uptake, as well as hydrolysis of 

cholesterol esters stored inside lipid droplets and fatty acids.  

 

1.3.2.1 CHOLESTEROL BIOSYNTHESIS 

Cholesterol biosynthesis is adaptable to the changing needs of the body for tissue 

growth and membrane remodeling. Moreover, de novo cholesterol biosynthesis is 

decreased when cholesterol intake increases. Importantly, the total sterol 

requirements of the body can be met by biosynthesis alone, even in total absence of 

dietary cholesterol (Dietschy et al. 1993).  

All nucleated cells can synthesize cholesterol through the mevalonate pathway. The 

initial steps in the pathway result to the conversion of acetyl CoA to 3-hydroxy-3-

methylglutaryl-coA (HMG-CoA), which is then converted to mevalonate by HMG-CoA 

reductase (HMG-CoAR or HMGCR) (Russell 1992) (see Fig. 5).  

 

 

 

 

 

Figure 5. Cholesterol biosynthetic pathway 

Shown are the basic steps in the cholesterol 

biosynthetic pathway from acetyl-coA and 

acetoacetyl-coA. 

(Adapted by permission from Macmillan Publishers Ltd: 

Nature Rev. Karasinska and Hayden, copyright 2011) 
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HMGCR is regulated through a negative feedback loop mediated by sterols and other 

mevalonate metabolites and is considered to be the rate-limiting enzyme in the 

cholesterol biosynthetic pathway (Brown and Goldstein 1980). Importantly, HMGCR 

constitutes the target of statins, a class of cholesterol-lowering drugs that inhibit the 

enzyme by binding to its catalytic domain and thus blocking access of the natural 

substrate HMGCoA (Gelissen and McLachlan 2014).  

Cholesterol synthesis is primarily controlled at the level of HMGCR, both 

transcriptionally and post-transcriptionally. The transcription of HMGCR is regulated 

by a class of transcription factors named ͞sterol regulatory element-binding 

proteins͟ (SREBPs) (Ikonen 2008). An additional level of regulation is achieved with 

the degradation of HMGCR, which is mediated by lanosterol, a cholesterol precursor. 

Lanosterol post-transcriptionally regulates HMGCR, by mediating its binding to INSIG 

(insulin-induced gene protein) in the ER, which triggers its ubiquitination and 

subsequently its degradation (Song, Javitt, and DeBose-Boyd 2005). 

 

1.3.2.2 THE SCAP-SREBP AND THE LXR PATHWAY 

The transcriptional regulation of cholesterol homeostasis is mediated by two main 

nuclear receptor systems; the first system comprises the aforementioned sterol 

regulatory element-binding proteins (SREBPs) while the second one consists of the 

liver X receptors (LXRs). The SREBP system induces the transcription of genes related 

to cholesterol synthesis (Goldstein, DeBose-Boyd, and Brown 2006), whereas the LXR 

system suppresses LDL-cholesterol uptake and promotes reverse cholesterol 

transport, namely cholesterol clearance from peripheral cells and excretion of bile 

acid (Zelcer 2009).  

The regulation of cholesterol homeostasis by SREBP was elucidated by Brown and 

Goldstein and has been since extensively studied. Under conditions of ample sterol 

in the cytosol, SREBP is bound with high affinity to the chaperone SREBP cleavage-

activating protein (SCAP), and the SCAP/SREBP complex is retained in the 

endoplasmic reticulum (ER) by the ER-anchor-protein; INSIG. Conversely, a decrease 

in cellular cholesterol level induces conformational changes to SCAP, which is then 

released from INSIG, thus allowing the SCAP/SREBP complex to be transported 

within COPII-coated vesicles to the Golgi, where SREBP undergoes proteolytic 



 

 19 

processing (Goldstein et al. 2006). The cleavage product is a soluble fragment of 

SREBP, which enters the nucleus and binds to promoters containing the sterol 

regulatory element 1 (SRE-1) sequence, whereby it acts as mature transcription 

factor. SRE-1 is contained in genes involved in lipid biosynthesis and uptake, such as 

HMGCR and LDLR, and binding of SREBP to it leads to the upregulation of their 

expression and subsequently to increased cholesterol biosynthesis (Brown and 

Goldstein 1997; Ikonen 2008) (see Fig. 6).  

In humans, the SREBP family consists of three members; SREBP1 has two isoforms, 

SREBP-1a and SREBP-1c, which are encoded from a single gene with alternative 

splicing, whereas SREBP2 is encoded by a separate gene.  SREBP-1a promotes the 

synthesis of cholesterol and fatty acids, while SREBP2 activates the LDLR gene and 

enzymes of cholesterol biosynthesis (Goldstein and Brown 2015). SREBP-1c activates 

the synthesis of fatty acids, therefore its role in cholesterol regulation is not so 

relevant (Shimano et al. 1997).  

 

 

Figure 6. The SCAP-SREBP system 

When cholesterol levels are high, SREBP is bound to SCAP, and the SREBP/SCAP complex is retained in 

the ER by INSIG. A decrease in cholesterol levels induces the release SCAP/SREBP from INSIG, allowing 

the complex to be transported to the Golgi, where SREBP undergoes proteolytic processing. The 

cleavage product is a soluble fragment of SREBP, which enters the nucleus and binds to promoters 

containing the sterol regulatory element 1 (SRE-1), whereby it acts as transcription factor for 

cholesterol regulating genes such as HMGCR and LDLR, and increases cholesterol biosynthesis. 

(Adapted by permission from Macmillan Publishers Ltd: Nature Rev. Karasinska and Hayden, copyright 2011.) 
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Upon increase of intracellular cholesterol levels, the LXR pathway is also activated. 

This results to transcriptional induction of IDOL (Inducible degrader of LDLR)/MYLIP, 

an E3-ubiquitin ligase, that causes ubiquitylation of LDLR, which is thus targeted for 

lysosomal degradation (Nelson et al. 2015; Zelcer 2009). Subsequently, the amount 

of LDLRs on the membrane is reduced and the LDL uptake is inhibited. Therefore, the 

LXR/IDOL/LDLR axis serves as a complementary pathway to the INSIG/SCAP/SREBP 

pathway for regulation of cholesterol uptake. 

 

1.3.2.3 CHOLESTEROL UPTAKE 

Cholesterol is taken up by cells in the form of LDL, via a receptor-mediated pathway. 

LDL receptors (LDLRs) reside at clathrin-coated pits on the cell membrane, where 

they are anchored with their transmembrane domain (Brown, Herz, and Goldstein 

1997; Goldstein et al. 1985). LDLRs bind particles that contain APOB or APOE 

apoproteins, such as chylomicrons, VLDL and LDL. When LDLRs bind to their ligand, 

LDL, the coated pits invaginate into the cell and pinch off the membrane to form 

clathrin-coated vesicles. After discarding their clathrin coats, the vesicles typically 

fuse to an early endosome, wherein LDL is released from its receptor. Subsequently, 

LDL is carried to lysosomes, where cholesterol esters are hydrolysed by acid lipase to 

release free cholesterol, while LDLR recycles back to the membrane (Lagor and Millar 

2010) (see Fig. 7).  

The cholesterol that is released from the endolysosomal system undergoes 

trafficking to other compartments, such as the plasma membrane, ER, recycling 

endosomes and mitochondria. Release of cholesterol from the late endosomes and 

lysosomes is strongly dependent on the NPC (Niemann-Pick type C) proteins; NPC1 

and NPC2. Loss-of-function mutations in either of the two proteins results in a 

severe childhood lysosomal storage disease, named Niemann Pick type C (NPC). This 

disease is characterized by the accumulation of unesterified cholesterol and 

glycosphingolipids in the late endosomes and lysosomes (Blanchette-Mackie 2000; 

Ribeiro et al. 2001). 

The LDLR which is released from the late endolysosomal compartment can 

alternatively be bound by PCSK9 (proprotein convertase subtilisin/kexin type 9), a 

protease that targets the receptor for degradation in the lysosomes. The function of 
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PCSK9 inhibits the recycling of LDLR from endosomes to the cell surface, leading to 

reduction of the amount of LDLRs available to internalize LDL, which causes an 

increase of LDL-cholesterol in the circulation (Lagor and Millar 2010). For this reason, 

PCSK9 has been the target of new cholesterol-lowering therapies that are based on 

its inhibition. Importantly, clinical trials with monoclonal antibodies against PCSK9 

have demonstrated that PCSK9 inhibition can lower LDL-cholesterol levels by 60%-

70% when administered either as monotherapy, or in combination with statins 

(Lepor and Kereiakes 2015). In accordance with its role in cholesterol metabolism, 

PCSK9 expression is also regulated by SREBP, through an SRE binding site on the 

promoter of PCSK9 gene (Lagor and Millar 2010). 

Efficient internalization of LDLR in the liver requires the protein ARH (autosomal 

recessive hypercholesterolemia), also known as LDLRAP1 (LDLR adaptor protein 1), 

that binds to the cytoplasmic tail of LDLR (Lagor and Millar 2010). ARH was initially 

discovered in patients with homozygous ARH deficiency, which show a markedly 

decrease in LDL clearance from plasma (Lagor and Millar 2010). Last but not least, 

another adaptor protein, important for LDLR internalization is DAB2 (disabled 

homolog 2), which catalyzes the efficient clustering of LDLR into coated pits. DAB2, 

like LDLRAP1, mediates its effect via binding to the cytoplasmic tail of LDLR. In the 

absence of DAB2, LDLRAP1 can mediate the endocytosis of LDLR, only when AP-2 

(Adaptor Protein complex 2) is present. DAB2 on the other hand can function 

independently of ARH and AP-2 (Maurer and Cooper 2006). 
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Figure 7. Cholesterol uptake 

LDL-cholesterol is taken up from LDLR on clathrin-coated pits, which pinch off the membrane to form 

clathrin-coated vesicles. LDL is discharged from its receptor, LDLR, in endosomes, and cholesterol 

esters are hydrolyzed in lysosomes to release free cholesterol. LDLR is recycled from endosomes back 

to the plasma membrane. 
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1.3.2.4 CHOLESTEROL STORAGE 

When intracellular cholesterol levels exceed the capacity of cellular membrane to 

incorporate sterols, cholesterol is either released from the cells or stored for future 

use. Excess free cholesterol in the cytosol is esterified by the enzyme acyl-coA: 

cholesterol acyltransferase-1 (ACAT-1), and cholesterol esters are stored within lipid 

droplets in the cytoplasm (Glass and Witztum 2001). Respectively, in peripheral cells 

excess cholesterol is converted to cholesterol esters by lecithin-cholesterol 

acyltransferase (LCAT). If needed, cholesterol esters within lipid droplets can in turn 

be hydrolyzed by hormone-sensitive lipase, to release free cholesterol (Glass and 

Witztum 2001). Cells rich in lipid droplets are mature adipocytes, as well as foam 

cells; the macrophages that engorge massive amounts of LDL-cholesterol during the 

atherosclerotic plaque development.  

 

1.3.2.5 CHOLESTEROL REMOVAL 

Cholesterol removal from macrophages is crucial for the prevention of 

atherosclerosis development. Macrophages secrete cholesterol in the form of HDL, 

which returns to the liver through reverse cholesterol transport and can from there 

be secreted to the bile. Essential regulators of cholesterol efflux are the ABC 

transporters. In particular, ABC transporter A1 (ABCA1) is the key regulator of HDL 

particle formation and secretion, and thus of maintenance of plasma HDL levels 

(Favari et al. 2015). ABCA1 binds the apoprotein APOA1 of HDL and facilitates 

cholesterol removal from late endosomes, in cooperation with the second ABC 

transporter, ABC transporter G1, (ABCG1). Hepatocytes internalize HDL through 

binding to the scavenger receptor SR-BI (Favari et al. 2015).  

In enterocytes the main cholesterol transporter is ABCG5/G8, which mediates 

cholesterol efflux from the cells to the gut lumen. Hepatocytes on the other side 

secrete cholesterol and triglycerides in VLDL, the assembly of which is mediated by 

MTP (microsomal triglyceride transfer protein). The VLDL particles are carried within 

COPII-coated vesicles from the ER to the Golgi, where they are further lipidated 

before secretion (Ikonen 2008). 

Endosomal cholesterol trafficking is additionally regulated by several Rab GTPases, 

including Rab8, Rab11, Rab7 and Rab9. Rab7 and Rab9 are involved in the removal of 
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cholesterol from late endosomes and lysosomes, whereas Rab8 and Rab11 function 

in recycling endosomes, and promote cholesterol efflux (Ikonen 2008). 

 

1.3.3 GENETICS OF CHOLESTEROL REGULATION 

So far, a large number of genes have been involved in cholesterol homeostasis and 

disorders in lipoprotein metabolism, which lead to the development of various 

diseases that are highly heritable. Numerous monogenic, mendelian disorders have 

been described which are caused by mutations in one of the genes regulating 

cholesterol synthesis, uptake, or efflux. The prototypic example is the 

aforementioned familial hypercholesterolemia (FH), also known as autosomal 

dominant hypercholesterolemia, which is mostly due to mutations in LDLR (Brown 

and Goldstein 1986). Additionally, mutations in two more genes - PCSK9 and APOB - 

were shown to be causally related with FH (Abifadel et al. 2003; Soria et al. 1989). 

The case of autosomal recessive hypercholesterolemia (ARH), which is caused by 

mutations in the LDLRAP1/ARH gene was also previously described (Garcia 2001). 

Furthermore, autosomal recessive Niemann-Pick type C disease is caused by 

mutations in NPC genes, as was already mentioned. Mutations in ABCG5 or ABCG8 

cause sitosterolemia, a disorder whereby there is excessive accumulation of plant 

sterols (phytosterols) in tendons and arteries (Patel et al. 1998). Some additional 

examples of monogenic lipid disorders are shown in Table 3. 

Despite the fact that various Mendelian lipoprotein disorders have been elucidated 

for each of the three lipoprotein traits -LDL, HDL and triglycerides- only a small 

proportion of the overall heritability of serum lipoprotein and lipid concentrations 

can be explained by them. Since the levels of plasma lipids follow a normal 

distribution in the general population, their inheritance pattern is believed to follow 

a rather polygenic model (Pirucello and Kathiresan 2010).  
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Gene Protein Locus Associated traits Lipid disorder 

ABCA1 ATP-binding cassette 

transporter (ABC) A1 

9q31.1 Low HDL-C  Tangier disease 

ABCG5 ATP-binding cassette 

transporters (ABC) G5 

2p21 High LDL-C Sitosterolemia 

ABCG8 ATP-binding cassette 

transporters (ABC) G8 

2p21 High LDL-C Sitosterolemia 

APOA1 Apolipoprotein A1 11q23 Low HDL-C ApoA-I deficiency 

APOA5 Apolipoprotein A5 11q23 High VLDL, 

high chylomicrons 

ApoA-V deficiency 

APOB Apolipoprotein B 2p24 Low LDL-C 

High LDL-C 

Familial hypobetalipoproteinemia 

Familial defective ApoB-100 

APOC2 Apolipoprotein C2 19q13 High chylomicrons Familial ApoC-II deficiency 

APOE Apolipoprotein E 19q13 High VLDL, 

high chylomicrons 

Familial dysbetalipoproteinemia 

CETP Cholesterol ester 

transfer protein 

16q13 High HDL-C Cholesteryl ester transfer protein 

deficiency 

LCAT Lecithin:cholesterol 

transfer protein 

16q22 Low HDL-C Lecithin-cholesterol acyltransferase 

deficiency 

(fish-eye disease) 

LDLR LDL receptor 19p13 High LDL-C Familial hypercholesterolemia 

LDLRAP1/ 

ARH 

LDL receptor associated 

protein 1 

1p36 High LDL-C Autosomal recessive 

hypercholesterolemia 

LIPA Lysosomal acid lipase 10q23.31 Normal lipid levels Wolman syndrome, cholesteryl 

ester storage disease 

LIPC Hepatic lipase 15q22 High VLDL 

remnants 

Familial hepatic lipase deficiency 

LMF1 Lipase maturation 

factor 1 

16p13 High triglycerides Combined lipase deficiency 

LPL Lipoprotein lipase 8p21 High chylomicrons Lipoprotein lipase deficiency 

MTTP Microsomal triglyceride 

transfer protein 

4q24 Low LDL-C 

 

Abetalipoproteinemia 

PCSK9 Proprotein 

subtilisin/kexin 9 

1p32 Low LDL-C 

High LDL-C 

PCSK9 deficiency 

Autosomal-dominant 

hypercholesterolemia 

SAR1B Saccharomyces 

cerevisiae homolog 1B 

5q31.1 Low chylomicrons Chylomicron retention disease 

 

Table 3. Genes implicated in monogenic lipid disorders 

Shown are the single gene causes for some primary dyslipidemias and their lipid phenotypes. 

(Adapted from Teslovich 2010 and Kuivenhoven and Hegele 2014.) 
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1.4 GENETIC INTERACTIONS IN COMPLEX DISEASES 

The identification through GWASs of genes associated with lipid traits and lipid-

based disorders, has solved only a small part of the inheritance puzzle of such 

disorders, like dyslipidemia and CAD. The complete picture of the genetic 

architecture of these complex diseases still remains to be uncovered. Considering 

that complex diseases such as CAD are assumed to result from the combined action 

of alleles in many genes, interactions between the multiple identified genes should 

be examined (Badano and Katsanis 2002; Farhan and Hegele 2013; Lanktree and 

Hegele 2009). It is anticipated that detecting interactions between loci will both 

elucidate the biological and biochemical pathways that underlie complex traits and 

diseases, and contribute to a better understanding of the ͞missing heritability͟ (see 

1.1.3.2.1).  

Interestingly, it has been suggested that most of the genetic variants that contribute 

to the heritable phenotypic variation of complex diseases might have already been 

discovered, however the heritability explained by them was underestimated by not 

accounting for interactions among them. This hypothesis is evidenced by the 

example of Crohn’s disease; the risk loci that have been identified so far by GWASs 

explain only 21.5% of the estimated heritability of the disease. However, if potential 

genetic interactions between the identified variants are accounted for, that is if non-

additivity of effects is also considered, the explained heritability reaches 84% 

(Baryshnikova et al. 2013; Zuk et al. 2012). 

 

1.4.1 GENETIC INTERACTIONS IN CORONARY ARTERY DISEASE 

Regarding CAD, the total of 202 variants that have been so far identified with GWASs 

explain only 28% of the total estimated heritability, while the remaining ͞missing 

heritability͟ is believed to be lurking within interactions among polymorphisms of 

causative genes (Badano and Katsanis 2002; Lanktree and Hegele 2009; McPherson 

and Tybjaerg-Hansen 2016), as was aforementioned (see 1.1.3.2.1).  

It is worth mentioning the following two examples of replicated gene-gene 

interactions in CAD, which were identified in candidate gene studies of common 

SNPs. The first example is the interaction between polymorphisms in the renin-

angiotensin system and CAD. More specifically, an interaction between a variant in 
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the ACE (angiotensin I converting enzyme) gene and a variant in the AGTR1 

(angiotensin II type 1 receptor) gene was detected, that increases the risk for 

myocardial infarction (Kardia et al. 2006; Tsai et al. 2007). The second example is the 

interaction between LPL (lipoprotein lipase) gene and the εϰ allele of APOE 

(apolipoprotein E) gene that significantly increased the risk for a combined 

hypertriglyceridemia and hyperapobetalipoproteinemia ͞hyperTG/hyperapoB͟ 

phenotype, which is associated with elevated CAD risk (Perron et al. 2007). These 

two genes had also been demonstrated earlier to interact in HDL concentration 

levels (Corella et al. 2002). The above examples strongly support that genetic 

interactions should be taken into account when assessing the CAD risk. 

 

1.4.2 THE CONCEPT OF STATISTICAL INTERACTION  

The interaction between genes is termed ͞epistasis͟. The concept of epistasis was 

first invented by W. Bateson in 1909, to describe the deviations between the 

segregation ratios that were predicted based on a mendelian, single-gene 

inheritance model and the observed phenotypic outcomes (Phillips 1998). R. Fisher 

introduced ͞statistical epistasis͟ in 1918, in which the effect on a quantitative 

phenotype of two alleles at different loci deviates from additivity in a statistical 

model (Cordell 2002; Fisher 1918). In the case of complex quantitative traits, 

statistical epistasis refers to interaction between two or more loci resulting in a 

phenotype that cannot be predicted by simply adding the single-locus effects 

(Carlborg and Haley 2004) (see Fig. 8). Although epistasis was originally described by 

Fisher as a divergence from an additive model of gene action, population geneticists 

later on used a multiplicative model instead. Depending on the nature of the trait 

under investigation, either of two models -additive or multiplicative- is used 

nowadays to measure epistasis.  

Most commonly, statistical interaction is described as departure from a linear 

(regression) model that describes the relationship between two (or more) predictor 

variables and a phenotypic outcome variable (Cordell 2009). Linear regression is a 

statistical approach based on the least squares method, commonly used for 

modeling quantitative traits, as well as for detecting gene-gene interactions in such 

traits. In particular, a linear model relating two non-interacting predictor variables 
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(X1, X2) to an outcome variable (Y) would look like Y=β0+β1Χ1+β2Χ2+ε, where β0 is the 

iŶteƌĐept, β1 aŶd β2 are the slope or ƌegƌessioŶ ĐoeffiĐieŶts, aŶd ε is the unexplained 

error of the model. On the other hand, if the two predictor variables (X1, X2) were 

interacting, the interaction term β3Χ1Χ2 would be added to the linear model, which in 

this case would look like Y=β0+β1Χ1+β2Χ2+β3Χ1Χ2+ε. Thus, the inclusion of the product 

term β3Χ1Χ2 to the linear model is used to measure deviations from additivity 

(Gilbert-Diamond and Moore 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Graphical representation of genetic interaction inference from a measurable phenotype 

The wild-type phenotype is defined as 1.0. The phenotypes of two mutants are 0.7 (single mutant A) 

and 0.5 (single mutant B). The expected phenotype of the AB double mutant based on an additive 

model would therefore be 1.2. Deviations from expectation are considered as interactions (synergistic 

phenotype).   

(Adapted from Dixon et al., Annu. Rev. Genet. 2009) 

 

1.4.3 CLASSIFICATION OF GENETIC INTERACTIONS  

Based on the definition of epistasis, a genetic interaction is measured as the degree 

to which the resulting phenotype deviates from the additive (or multiplicative, 

depending on the trait under study) expectation. Namely, an additive phenotype is 

considered as a sign of absence of genetic interaction. Along these lines, genetic 

interactions can be classified as positive or alleviating, when the resulting phenotype 

is less severe than expected, and as negative or aggravating, when it is stronger than 

expected (Baryshnikova et al. 2013). Both positive and negative genetic interactions 

are considered synergistic, that is when the phenotype resulting from the 

combination of two variants differs from the expected phenotype of the individual 

variants (Phillips 2008).  
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When studying genetic interactions in double mutants (or double knockouts/ 

knockdowns), the aforedescribed classification into epistatic, suppressive or 

synergistic can be adopted. Specifically, a double mutant phenotype is considered 

epistatic when it resembles one of the single mutants, while the suppressive 

phenotype resembles the wild-type condition rather than any of the single mutants. 

Furthermore, a phenotype is described as synergistic, when the joint effect of two 

mutations is either stronger or milder than their individual effects (Pérez-Pérez, 

Candela, and Micol 2009).  

Classifying genetic interactions into categories can yield important information 

concerning the biological pathways in which the genes are taking part.  In particular, 

assumptions can be made concerning whether the interacting genes function in the 

same pathway or in parallel and convergent pathways. In addition, the pathway 

order may be defined in the case the interacting genes function in the same 

pathway, that is if one gene operates upstream or downstream of the other gene. 

More specifically, considering two single mutants (A and B) and their combined 

double mutant (AB), an epistatic interaction resembling one mutant (A) could 

suggest that gene A operates upstream of gene B within a pathway. Similarly, a 

synergistic interaction resulting to a phenotype stronger or milder than that of the 

double mutant (AB) would suggest that the two genes (A and B) operate either in 

successive steps of the same pathway, or in parallel pathways that converge at the 

same node of a network (Markowetz and Boutros 2015; Pérez-Pérez et al. 2009) (see 

Fig. 9).  

 

Figure 9. Models for synergistic genetic interactions. 

The use of hypomorphic alleles for studying genetic interactions can yield synergistic phenotypes 

when the two genes (A, B) act in a linear pathway or in two parallel and convergent pathways. 

(Reprinted from Trends Genet. 25 (8): 368-76, Pérez-Pérez et al., Copyright 2009, with permission from Elsevier) 



 

 30 

 

1.4.4 THE RELATIONSHIP BETWEEN GENETIC AND PHYSICAL INTERACTIONS  

The presence of statistical interaction between two genes does not necessarily 

reflect a direct physical interaction between the two gene products. In fact, only 

0.9% of genetic interactions connect proteins that also physically interact, whereas 

only 10%-20% of interacting protein pairs are encoded by genes that genetically 

interact (Baryshnikova et al. 2013; Costanzo et al. 2010). This low overlap between 

genetic and physical interactions is in agreement with the notion that genetic 

interactions represent a broad spectrum of functional relationships between genes. 

More often than encoding for physically interacting products, interacting genes may 

encode proteins that participate in the same regulatory -signaling, transcription 

factor, metabolic, developmental or epigenetic- network.  

 

1.4.5 SNP-SNP INTERACTIONS 

With a view to shedding light upon the genetic component of complex diseases, the 

combined effect of SNPs needs to be taken into account, rather than the individual 

effects of SNPs. For this purpose, interactions occurring between SNPs can be tested 

on GWAS data, applying more complex statistical analysis, such as logic or logistic 

regression models. 

Interestingly, SNP-SNP interactions have been shown to explain the genetics of some 

forms of cancer and Crohn’s disease (Dinu et al. 2012; Lin et al. 2013; Onay et al. 

2006). Moreover, multiple independent SNPs within a single locus were shown to be 

associated with lipid traits (HDL, LDL, TG, TC) or CAD, doubling the heritability 

proportion explained for lipid traits (Tada et al. 2014). 

In order to discover strongly interacting SNPs, the whole range of potential SNP-SNP 

interactions need to be tested. Again in this case, the complexity of analysis of 

higher order interactions limits the search for SNP interactions to pairwise testing for 

the time being. However, epistasis effects are difficult to detect for complex 

diseases, even with pairwise testing of interactions between genetic variants.  This is 

because large sample sizes are required in order to gain sufficient statistical power 

to detect complex and potentially subtle epistatic effects (Lucas et al. 2012; 

Musameh et al. 2015). Despite the limitations inherent in SNP interaction testing, 
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studying the co-occurrence of SNPs in patients versus control individuals is 

considered promising for predicting susceptibility to diseases. 

 

1.4.6 INDIVIDUALIZED MEDICINE: FROM PERSONAL GENOMES TO INTERACTOMES 

The complete set of interactions between genes and their products is called the 

͞interactome͟, as an analogy to the genome, proteome and metabolome 

terminology (Cusick et al. 2005). Following the completion of the human genome 

sequencing, efforts are currently being made towards the construction of a map of 

the human interactome network (Human Interactome Project) (Rolland et al. 2014; 

Rual, Venkatesan, and Hao 2005). Based on the fact that every individual carries a 

distinct set of genetic variants, which shape its personal genome, transcriptome, 

proteome and metabolome, it is expected that individual interactomes will be 

present as well (Zhang, Kuivenhoven, and Groen 2015).  

Interactome mapping can be a great benefit for the field of pharmacogenomics, 

which studies the role of genome in drug response. In cardiovascular disease, 

currently prescribed medication such as statins has been demonstrated to exert 

differential effects in patients, depending on the genetic variants they carry 

(Musunuru 2015). Interactions between these genetic variants are believed to have 

a substantial impact on the response to medication. Therefore they need to be 

elucidated, in order to identify the correct dosage for best efficacy, as well as to 

prevent adverse effects. Thus the current challenge for personalized medicine is the 

understanding of human interactome, in order to determine the optimal therapy for 

the disease for each individual patient.  

 

1.5 MAPPING GENETIC INTERACTIONS 

Identification of genetic interactions by genetic interaction mapping involves the 

simultaneous perturbation of two -or more- genes, and assessment of the resulting 

phenotype in comparison to the one resulting from single perturbation. Genetic 

interaction mapping methods, which attempt to understand gene function starting 

with genes of interest and examining the phenotypic consequences of an induced 

genetic change -mutation, knockout or knockdown- are defined as ͞reverse 

genetics͟. These methods constitute the opposite of ͞forward genetics͟ methods, 
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whereby gene function is studied starting from the phenotypes of interest and 

subsequently identifying mutants that are responsible for this phenotype (Beltrao, 

Cagney, and Krogan 2010; Nijman 2011).  

Mapping genetic interactions underlying quantitative traits has been performed 

using different model systems, from unicellular organisms such as yeast 

(Saccharomyces) and bacteria (Escherichia coli), to multicellular ones such as worm 

(Caenorhabditis elegans) and fly (Drosophila). More recently, genetic interaction 

studies were carried out using mammalian cells (e.g. mouse and human).  

Drosophila has been employed as a model organism to study epistasis since the 

1960s by Dobzhansky, Rendel and others. Dobzhansky observed that the 

combination of certain chromosomes led to synthetic semilethality, that is a slight 

reduction of viability, which is due to epistatic interactions among genetic variants 

(Dobzhansky 1965; Spassky, Dobzhansky, and Anderson 1965). The existence of 

genome-wide deletion libraries in yeast since 2001 (Giaever et al. 2002) made S. 

cerevisiae a convenient model system to study genetic interactions, mainly focusing 

on synthetic lethality or synthetic sickness (Boone, Bussey, and Andrews 2007). 

Synthetic lethality and synthetic sickness, in which the joint effect of mutations in 

two genes is cell death or reduced fitness, respectively, are particularly informative 

phenotypes, as they can uncover members of the same essential biological pathways 

(Nijman 2011). These fitness readouts were used in S. cerevisiae to perform a global 

mapping of its interaction network by applying synthetic genetic array (SGA) 

analysis, an approach to systematically generate and isolate double mutant strains 

(Tong 2004).  

Whereas in yeast comprehensive deletion libraries have made it possible to screen 

for genetic interactions in a systematic, high-throughput way, by completely 

discarding the product of the genes under study (͞knockout͟), such approaches are 

not feasible for more complex organisms. The reason for this is mainly a scaling 

issue; whilst in S. cerevisiae there are approximately 6,000 genes, D. melanogaster 

genome contains around 17,000 genes and both C. elegans and human have around 

21,000 genes, which would lead to a huge number of combinations. Therefore, an 

approach that takes advantage of RNA interference (RNAi) has been used in 
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multicellular organisms, examining the effect of the reduction of gene products 

(knockdowns rather than knockouts). 

 

1.5.1  RNA INTERFERENCE 

The mechanism of RNAi is based on the enzymatic cleavage of long double-stranded 

RNAs into short 21-nucleotide long RNAs, named ͞short interfering RNAs͟ (siRNAs). 

Following the ͞dicing͟, the siRNA triggers the destruction of the homologous mRNA, 

which results in the so-called ͞silencing͟ of the gene, namely the inhibition of its 

expression. Thus, the function of a gene can be studied by observing the phenotype 

resulting from its RNAi-induced silencing.   

In contrast to gene knockouts, as in the case of deletion libraries in yeast, whereby a 

gene product is completely abolished, RNAi-mediated gene knockdowns frequently 

reduce protein levels only up to a certain extent. The incomplete knockdown of a 

gene, which is termed DAmP (Decreased Abundance by mRNA Perturbation), 

generates a partial phenotype (hypomorph) that would not be observed upon gene 

knockout. Importantly, partial gene product depletion generated by RNAi can be 

informative for genetic interactions. This is suggested by studies performed in yeast, 

in which the use of hypomorphic (DAmP) alleles revealed biologically meaningful 

genetic interactions (Roguev et al. 2013; Schuldiner et al. 2005). Moreover, 

phenotypes generated by RNAi-induced incomplete gene knockdowns very closely 

resemble those in patients carrying partial loss-of-function (hypomorphic) 

mutations.  

The construction of siRNA libraries for model organisms such as Drosophila and C. 

elegans, as well as for mammalian cells, in combination with a recent advance in 

high-throughput screening technologies has enabled the appliance of RNAi for 

genetic interaction mapping.  

 

1.5.2 HIGH-THROUGHPUT SCREENING USING RNAI 

Importantly, a microscopy platform was established at the European Molecular 

Biology Laboratory (EMBL) for high-throughput RNAi screens using fluorescence-

based imaging assays in cells (Pepperkok and Ellenberg 2006). This platform was 

based on the development of an RNAi-based reverse transfection protocol on pre-
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spotted microarrays of 384 samples, using mammalian tissue culture cells (Erfle et al. 

2007, 2008). The aforementioned platform has already been used in genome-wide 

RNAi screens studying cell division (Neumann et al. 2011), signal transduction 

(Ritzerfeld et al. 2011) and secretion (Simpson et al. 2012). In addition, the above 

platform has been used in targeted RNAi screens studying cholesterol regulation 

(Bartz et al. 2009; Blattmann et al. 2013). 

 
1.5.3 HIGH-CONTENT GENETIC INTERACTION SCREENING USING CO-RNAI 

To identify genetic interactions using RNAi, multiple genes are targeted by siRNAs 

simultaneously, in an approach described as ͞combinatorial RNAi͟ (co-RNAi). 

Combinatorial RNAi was first used to study genetic interactions in C. elegans (Lehner, 

Tischler, and Fraser 2006; Tischler et al. 2006) and Drosophila (Billmann et al. 2016; 

Horn et al. 2011), while more recently it was employed for genetic interaction 

mapping in human cells (Laufer et al. 2013). Over the last decade, the technology of 

combinatorial RNAi has been employed for mapping genetic interactions in 

mammalian cells in a systematic, automated, large-scale manner (Barr and Bakal 

2015; Bassik et al. 2013; Kampmann, Bassik, and Weissman 2013; Laufer et al. 2013; 

Roguev et al. 2013; Wang et al. 2014). High-throughput gene-gene interaction 

screens are performed using 96- or 384-well plates and microarrays, robotics, as well 

as automated imaging and image analysis.  

For the time being, gene-gene interaction testing has been limited to pairwise, due 

to the complexity of statistical analysis required for higher-order interactions, 

although interactions among a number of genes may account for an observed 

phenotype. Specifically, pairwise RNAi-mediated perturbations of gene function 

(͞double knockdowns͟) have been employed in studies of genetic interactions (GIs) 

(Barr and Bakal 2015; Bassik et al. 2013; Billmann et al. 2016; Horn et al. 2011; Laufer 

et al. 2013; Roguev et al. 2013; Wang et al. 2014). Such reports have demonstrated 

the potential of this approach to reveal novel genetic interactions, discover protein 

complexes, functional modules and pathways, and to infer gene function.   

 



 

 35 

1.5.4 MAPPING GIS IN CHOLESTEROL HOMEOSTASIS WITH CO-RNAI 

In our laboratory, an RNAi-based functional profiling of GWAS-derived loci, 

associated with lipid traits, CAD and/or MI was previously performed. This work was 

aimed towards gaining a mechanistic understanding of how the loci identified affect 

cholesterol regulation (Blattmann et al. 2013). The study resulted in the 

identification of 55 genes that had an effect on LDL internalization and/ or cellular 

cholesterol levels.  

However, most of the screen ͞hits͟ did not have a strong effect on cholesterol 

regulation. This suggests that the combinatorial -rather than the individual- function 

of genes might regulate cholesterol homeostasis. The complexity of cholesterol 

regulation is in agreement with the complexity of CVD, for which dysregulated 

cholesterol is a major risk factor. Keeping all the above in mind, we decided to 

perform a co-RNAi-based interaction screen, in order to explore possible interactions 

between the genes identified in the aforementioned study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 36 

2 AIMS OF THE STUDY 

The pathogenesis of coronary artery disease (CAD), the most common form of 

cardiovascular disease (CVD), results from elevated levels of LDL-cholesterol in the 

bloodstream, a consequence of defective cholesterol-regulatory mechanism in the 

cells. CAD is a complex disease, believed to result from multiple combinations of 

gene-gene interactions. Therefore, multiple inherited DNA variants are assumed to 

contribute to CAD risk, each of which has a small individual effect on disease risk. 

The study of Blattmann et al. identified a number of disease-regulated genes with an 

effect on cholesterol regulation, most of which however did not have a strong 

individual effect. The question that arises therefrom is if and how these cholesterol-

regulating genes interact with each other, in order to collectively control cholesterol 

homeostasis. Furthermore, it is interesting to discover how these genetic 

interactions may contribute to disease risk. 

 

To address these questions, the aims of the present study were the following: 

i. to screen for and identify gene-gene interactions among cholesterol 

regulators 

ii. to reveal how these gene-gene interactions contribute to cellular 

cholesterol homeostasis and  

iii. to define how these gene-gene interactions are linked to CVD. 
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3 RESULTS 
 

The work described here is divided into three parts. In the first part (3.1), the 

combinatorial RNA interference (co-RNAi) approach is described that was used to 

identify gene-gene interactions with an effect on LDL endocytosis. After establishing 

the high-throughput microscopy-based approach (3.1.1) and determining the 

optimal siRNA concentrations (3.1.2), candidate genes were selected (3.1.3), as well 

as the corresponding siRNAs (3.1.4) for the screen. The results of the co-RNAi screen 

are described (3.1.5) and the gene interactions identified are shown (3.1.6). With a 

number of secondary experiments (3.1.7) the identified gene interactions were 

validated (3.1.8). The validated gene interactions were clustered and finally used to 

construct a model network (3.1.9). Some of these interactions were followed up 

(3.1.10). In the second part, the effect of mutations of one prominent screen 

interactor on LDL uptake was studied (3.2). In the third and last part, the co-

occurrence of SNPs of the candidate genes tested in the co-RNAi screen was 

examined in a cohort of >4,000 individuals (3.3).    

3.1 COMBINATORIAL RNAI SCREEN  

3.1.1 ESTABLISHMENT OF A HIGH-THROUGHPUT MICROSCOPY-BASED APPROACH TO 

SYSTEMATICALLY IDENTIFY GENE INTERACTIONS AFFECTING CHOLESTEROL 

HOMEOSTASIS 

 
With a view to defining gene networks underlying cellular cholesterol homeostasis, I 

performed pairwise double knockdowns in vitro between 30 disease-associated 

genes, by reverse transfecting HeLa Kyoto cells on siRNA-spotted arrays (LabTeks), as 

described (see 7.1.2.2.1) (Erfle et al. 2007, 2008). For the analysis of knockdown 

effects, I used a cell-based assay, previously established in the lab to measure the 

effect of the gene knockdowns on cholesterol regulation (Bartz et al. 2009). This is a 

quantitative LDL-uptake assay, which measures the ability of tissue culture cells to 

endocytose fluorescently (DiI) labeled LDL (see 7.1.5.1). Uptake of fluorescently 

labeled LDL from the siRNA-transfected cells was determined using high-content 

automated microscopy (see 7.4.1.2.1) (Bartz et al. 2009; Erfle et al. 2007). The 

experimental workflow is illustrated in Figure 10. 
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Figure 10. The experimental workflow followed in the high-throughput screening for cholesterol 

interactors 
a. For the co-RNAi interaction screen, cell microarrays (LabTeks) were printed with 2 siRNAs per spot, 

and afterwards HeLa Kyoto cells were seeded on the spotted LabTeks. After a 48-hour knockdown, 

the LDL-uptake assay was performed in the LabTeks, and images of the transfected cells were 

acquired in a widefield microscope in a high-throughput manner. Finally, the images were analysed 

using image analysis softwares (FiJi-ImageJ and CellProfiler). b. Shown are representative images of 

LDL-uptake assay: cells transfected with negative control siRNA show a normal uptake of fluorescently 

labeled LDL (top image), whereas cells transfected with siRNA targeting the LDL receptor show a 

significant decrease in fluorescence signal of endocytosed LDL (bottom image) (scalebar=10 μm). 
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3.1.2 DETERMINING THE OPTIMAL SIRNA CONCENTRATION FOR THE DOUBLE KNOCKDOWNS 

In order to determine the optimal siRNA concentration for the double knockdowns 

on LabTeks, two conditions were examined in a pilot experiment. For this purpose, 

single knockdowns as well as double knockdown of LDLR and DAB2 were performed 

on spotted LabTeks, using either 30pmol or 15pmol total siRNA (per well of a 384-

low-volume-plate used for the spotting of the LabTek, see (Erfle et al. 2007)). NEG9 

was used as negative control siRNA and INCENP as transfection control siRNA (see 

also section 7.1.2.2.1.1). The selection of the two target genes, LDLR and DAB2, was 

based on the inclusion of one gene with strong knockdown effect and one with mild 

knockdown effect. LDLR is the key regulator of LDL internalization, therefore its 

knockdown leads to drastic impairment of LDL endocytosis, whereas DAB2 has an 

auxiliary role in LDL internalization (Chetrit, Ziv, and Ehrlich 2009; Maurer and 

Cooper 2006; Mishra et al. 2002), thus its individual knockdown has no significant 

effect on LDL internalization (Eden et al. 2007; Wei, Hemani, and Haley 2014). The 

transfection control siRNA targets INCENP; Inner Centromere Protein, which is 

necessary for chromosome segregation during mitosis, and therefore its knockdown 

results in multi-nucleated cells and it has been previously used in siRNA screens 

(Erfle et al. 2007). 

The knockdown effect on LDL internalization was evaluated using the LDL-uptake 

assay (for details see 7.1.6.1). The transfection efficiency in the two conditions was 

also evaluated by quantifying the number of cells showing the characteristic INCENP 

phenotype, upon knockdown with INCENP. 

Although there was not significant difference between the two conditions on LDL 

uptake (see Fig. 11), the INCENP phenotype (see Fig. 12) was more penetrant with 

the higher siRNA concentration: 16% of the cells showed the phenotype with 15pmol 

siRNA versus 59% with 30pmol. Therefore, the higher siRNA concentration (30 pmol) 

was selected for the co-RNAi screen, in order to achieve robust knockdowns.  
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Figure 11. Results of the experiment for siRNA concentration optimization for double knockdowns 

Shown in this graph are the effects of knockdowns on LDL uptake, using either 15pmol (3+3uM) or 30 

pmol (6+6uM) total siRNA. The mean fluorescent intensities of endocytosed DiI-LDL are normalized to 

the negative control siRNA; NEG9. Error bars represent the standard deviation (n=8). 

 

 

 

 

 

 

Figure 12. Cells showing the characteristic INCENP phenotype 

Shown are cells transfected with either 30 pmol (A) or 15 pmol (B) siRNA targeting the Inner 

Centromere Protein (INCENP) gene. Knockdowns of this gene results in mitotic arrest, strange nuclear 

shape, binuclear cells or polylobed nuclei, due to spindle assembly defects (Neumann et al. 2011).  
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3.1.3 CANDIDATE GENE SELECTION STRATEGY AND RATIONALE 

Thirty candidate genes were selected for combinatorial RNAi screening (Figure 3.2); 

all of them were identified by GWAS as associated with blood lipid levels, coronary 

artery disease (CAD), and/or myocardial infarction (MI) (Tbl. S3). Of these, 28 genes 

were previously shown to affect low-density lipoprotein (LDL) internalization and/or 

cellular levels of free cholesterol in Blattmann et al. (Blattmann et al. 2013). It should 

be noted that the genes tested in the aforementioned study originate from GWA 

studies, which are only powered to detect common variants-SNPs with a minor allele 

frequency (MAF)>5%. In order to more efficiently address the missing heritability 

problem that was described previously (see also section 1.1.3.2.1), genes with rare 

variants associated to lipid traits were also included in the screen. Besides, the 

inclusion of the total of 55 ͞hits͟ of the Blattmann et al. study in the combinatorial 

RNAi screen would end up in 3025 (55x55) combinations, without taking into 

account the controls. Therefore, a filtering of these hits had to be done. For these 

reasons, the results of the Blattmann et al. study were filtered by comparing them 

with those of an Exome Chip for lipid traits (Peloso et al. 2014) (see Tbls. S1 and S2). 

This approach narrowed down the candidate gene number to 30 and the pairwise 

combinations to 900. A relatively small gene combination set was preferable in order 

to perform the experiments in many replicates, which led to more reliable data.  

The Blattmann et al. study utilized RNAi in an effort to complement GWAS data with 

functional information. Until 2009 when the aforementioned study started, 22 

GWAS had been published analyzing association with serum lipid traits or 

cardiovascular disease. For the Blattmann et al. study, 56 from the 64 identified loci 

were selected, and 133 genes that represented these 56 loci were analyzed for a role 

in cholesterol regulation. This study led to the identification of 55 genes with a 

functional effect on LDL uptake and/ or cellular free cholesterol levels.  

In the second study that was utilized for the candidate gene selection, a total of 

approximately 70,000 individuals were genotyped for LDL, HDL, triglycerides (TG) 

and total cholesterol (TC) traits. The genotyping was performed with an Illumina 

HumanExome genotyping array (͞the Exome Array͟ or ͞Exome Chip͟) built with 

variants discovered upon exome-sequencing of ~12,000 individuals  (Tbl. S1, Single-

variant-based analyses performed by Anirruddh Patel and other, Kathiresan lab, 
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Massachusetts General Hospital, Boston). This study revealed 165 ͞hits͟-genes with 

variants significantly associated with lipid traits. A large part of this study has been 

subsequently published (Peloso et al. 2014).  

The ͞hits͟ from the two aforementioned studies were juxtaposed (Tbl. S2), and the 

21 overlapping genes were selected (APOB, APOE, BAZ1B, BCAM, BCL7B, CBLC, 

CELSR2, HAVCR1, HMGCR, LDLR, LPL, MLXIPL, MYBPHL, NCAN, PCSK9, PVRL2, SIK3, 

TM6SF2, TMEM57, TOMM40 and ZNF259). Additionally, to the candidate gene set a 

few genes were added that did not overlap between the two studies, as they were 

considered significant. First, seven genes from the hits of Blattmann et al., that did 

not overlap with the Exome Chip hits were selected, for the reasons listed below. 

Five of these genes -CXCL12, SORT1, FAM174A, WDR12 and SEZ6L- were the 

strongest hits in Blattmann et al. (Blattmann et al. 2013). LDLRAP1/ARH gene was 

included as it has a well-described role in LDLR endocytosis, and its mutations are 

responsible for autosomal recessive hypercholesterolemia. 

 

Figure 13. Final selection of 30 candidate genes for the interaction screen. 

In total, 30 genes were selected to be tested for gene-gene interactions with co-RNAi. Of those 30 

genes, 21 overlapped between the Blattmann et al. study and the Exome chip (green), seven were 

additionally selected from the Blattmann et al. (blue), and two were selected from the Exome Chip 

(yellow). 
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PAFAH1B1 was selected as it may have a significant role in cholesterol regulation, 

based on a number of unpublished experiments by Blattmann et al. Secondly, two 

genes that were hits in the Exome Chip but were not analyzed in Blattmann et al. 

were selected; of these, MYLIP/IDOL has a well-described role in endocytosis and 

degradation of LDLR (Zelcer 2009), and PAFAH1B2 encodes a subunit of the 

PAFAH1B complex that is formed together with PAFAH1B1, which was shown to 

affect LDL internalization and/or cellular levels of free cholesterol (Blattmann et al. 

2013). So, the final selection consisted of 30 candidate genes (see Fig. 13 and Tbl. 

S4). The reported function of the candidate genes, as well as their link -if existing- to 

cholesterol regulation or lipid homeostasis are shown in Tbl. S5. 

 

3.1.4 SIRNA SELECTION 

The combinatorial RNAi screen contained 30 siRNAs each targeting the one of the 

selected genes, as well as two negative control siRNAs, one positive control siRNA 

for Filipin assay and one transfection control siRNA. 

In my screen, gene knockdowns were performed using only one Silencer Select 

siRNA per gene. For the 28 genes that were previously analyzed in Blattmann et al. 

(Blattmann et al. 2013), siRNAs were selected from this study. In Blattmann et al., 

three-five independent siRNAs were tested per gene. For my screen, I chose the 

siRNA that had the strongest effect on either of the two assays performed (LDL-

uptake assay preferred over Filipin assay). For the two genes that were not analyzed 

in Blattmann et al. (MYLIP, PAFAH1B1), the Silencer Select siRNAs that targeted most 

gene transcripts were selected. The siRNAs used and the selection criteria are shown 

in detail in Tbl. S6.  

All siRNA sequences were mapped to the human reference genome GRCh37 

(Ensembl 75) using the in-house software tool Bluegecko (J.K. Hériché, unpublished). 

With this tool the number of targeted protein-coding transcripts was evaluated and 

unspecific siRNAs that target other human mRNAs were identified. Moreover, the 

siRNAs were evaluated for mismatches to the reference sequence of the respective 

target gene or for targeting transcripts not anymore considered as protein coding. 
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3.1.5 RESULTS OF THE COMBINATORIAL RNAI SCREEN 

Using the selected siRNAs, the double knockdowns were performed on HeLa Kyoto 

cells for all the combinations between the 30 candidate genes on spotted LabTeks, 

as described (for details see 7.1.2.2.1.2). The LDL-uptake assay was performed to 

measure the effect of the combined knockdowns on LDL internalization and the fixed 

cells were imaged using a widefield Olympus Scan^R microscope (see also 7.1.5.1 

and 7.1.4.2). Internalized DiI-LDL intensity was measured in at least 6 biological 

replicas (after excluding those which did not pass quality control) per spotted array, 

acquiring one image per spot.   

All images from the screen were analyzed performing automated image analysis 

with a Cellprofiler pipeline, in which DiI-LDL fluorescence signal was quantified 

within intracellular areas-͞dots͟ (for details see 7.4.1.2.1). From each cell, the 

following parameters were measured: 

(i) total intensity above local background within all dots in one cell (͞integrated 

intensity͟),  

(ii) mean intensity above local background within these dots per cell (͞mean 

intensity͟),  

(iii) number of dots per cell and 

(iv) mean area covered by dots per cell. 

The total intensity corresponded to the total uptake of LDL, while the mean intensity 

was assumed to correspond to LDL concentration within the segmented structures.  

 

3.1.5.1 PRIMARY ANALYSIS; CONTROL-BASED NORMALIZATION 

The readout chosen for quantifying the knockdown effect and afterwards for 

defining the interactions was the mean total fluorescence intensity of internalized 

DiI-LDL per cell, per image. A robust Z score was calculated by normalizing the total 

intensity of a treatment to the controls of the identical plate;  ݎ𝑜ܾݐݏݑ𝑍ܿݏ𝑜ݎ𝑒 = ௧௥௘𝑎௧௘ௗ−௠௘ௗ𝑖𝑎௡ሺ𝐶௧௥௟௦ሻ௠𝑎ௗሺ𝐶௧௥௟௦ሻ   

(Birmingham et al. 2009; Malo et al. 2006). Thus, a positive robust Z-score meant 

enhancement of LDL uptake, whereas negative meant inhibition. The robust Z-score 

was calculated using a self-written R-script (for details see 7.4.2.1). Within this R-
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script, a median robust z score per treatment was calculated for each treatment, by 

taking the median of robust z scores of same treatments across different biological 

replicates.  

The analysis of the screen resulted to both predicted, as well as unpredicted 

outcomes. For instance, LDLR knockdown had a negative effect on LDL uptake in 

combination with most other genes, which was expected considering that in absence 

of LDL receptors on the plasma membrane LDL uptake is significantly hindered. 

Interestingly, however, LDLR double knockdown with HMGCR or PVRL2 did not have 

a strong effect on LDL uptake. In these two cases, the effect of LDLR knockdown on 

LDL uptake seemed to be counteracted by the co-knockdown of the second gene. A 

heatmap representation of the screen results can be seen in Figure 14. 

 

Figure 14. Heatmap matrix representation of the combined effects of double knockdowns on DiI-

LDL uptake. The colours represent effect size on the linear scale:  positive effects are in magenta and 

negative in green. The readout is the median robust Z score of internalized DiI-LDL intensity per 

treatment; robust Z score=(treated-median(controls))/mad(controls). Numeric data are shown in Tbl. 

S19. 
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3.1.5.2 ALTERNATIVE ANALYSIS; SAMPLE-BASED NORMALIZATION 

In an alternative analysis the robust Z score was calculated by normalizing the total 

intensity of a treatment to all the treatments of the identical plate (Birmingham et 

al. 2009; Malo et al. 2006). The transfection controls (Incenp) and the positive 

controls (Npc1, Ldlr) were excluded from the normalization.  ݎ𝑜ܾݐݏݑ𝑍ܿݏ𝑜ݎ𝑒 = ௧௥௘𝑎௧௘ௗ−௠௘ௗ𝑖𝑎௡ሺ𝑎௟௟ሻ௠𝑎ௗሺ𝑎௟௟ሻ .  

The robust Z score was calculated using a self-written R-script (for details see 

7.4.2.2). Within this R-script, a median robust z score per treatment was calculated 

for each treatment, by taking the median of robust z scores of same treatments 

across different biological replicates. 

This analysis approach is based on the assumption that most of the treatments do 

not display biological effect in the analyzed assay. A heatmap representation of the 

screen results can be seen in Figure 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Heatmap matrix representation of the combined effects of double knockdowns on DiI-

LDL uptake, calculated with the alternative approach. The colours represent effect size on the linear 

scale:  positive effects are in magenta and negative in green. The readout is the median robust Z score 

of internalized DiI-LDL intensity per treatment; robust Z score=(treated-median(all))/mad(all). 
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3.1.6 DEFINING GENE-GENE INTERACTIONS AMONG THE RESULTS OF THE SCREEN 

3.1.6.1 PRIMARY APPROACH; CONTROL-BASED ANALYSIS 

To test for gene-gene interactions among the results of the combinatorial RNAi 

screen, the effect on LDL uptake of the combined transfection with two siRNAs 

targeting two different genes A and B was compared to the additive effect of the 

two single transfections. In single transfections the respective siRNAs were co-

transfected together with the negative control siRNA. For this, a multiple linear 

regression model was applied to analyze the screen data using an R-script that was 

written with the help of Bernd Klaus from the Huber Group at EMBL (for details see 

7.4.3). Thereby, the additive effect of two single knockdowns A and B 

{(GeneA+control)+(GeneB+control)} was compared to the respective double 

knockdown effect (GeneA+GeneB). Thus, a double knockdown phenotype was 

considered indicative of a genetic interaction when it deviated from the additive 

effect of the individual knockdowns. 

This analysis was based on Fisher’s definition of gene interaction -termed ͞epistasis͟; 

͞Epistasis is a deviation from the additivity in the effect of alleles at different genetic 

loci with respect to their contribution to a quantitative phenotype͟ (Fisher 1918) 

(see also section 1.4.2). In the regression model used, the interaction effect of two 

genes was calculated from the difference between the additive effect of the two 

single knockdowns and that of the double knockdown (Axelsson et al. 2011; Horn et 

al. 2011). Finally, a p-value was calculated from the t-value of the regression model 

and the p-value was adjusted for multiple comparisons using the false discovery rate 

(fdr) method (Benjamini and Hochberg 1995). The significance threshold for gene 

interactions was set at pValuefdr<10-2.  

With this analysis, 35 gene interactions were identified. The identified interactions 

and their interaction effect and significance (p-value) are shown in Tbl. 4 and Fig. 16.  
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Gene1 Gene2 robustZscore Interaction Value pVal (fdr) 

1 PAFAH1B1 TOMM40 0.89 2.29 6.54E-05 
2 APOB HMGCR 2.80 2.18 4.05E-03 

3 SORT1 TOMM40 0.77 1.84 3.90E-03 

4 PAFAH1B1 SIK3 1.62 1.79 2.52E-03 

5 PCSK9 TMEM57 1.46 1.76 2.37E-03 

6 MYLIP SEZ6L 2.18 1.75 2.22E-03 

7 HMGCR PAFAH1B1 1.45 1.74 6.59E-03 

8 CELSR2 SIK3 2.30 1.60 8.09E-03 

9 MYBPHL SIK3 2.17 1.59 6.59E-03 

10 PVRL2 SORT1 1.36 1.54 5.88E-03 

11 LDLR PVRL2 0.08 1.48 4.23E-03 

12 LDLR NCAN -1.86 -1.28 7.64E-03 

13 APOE MLXIPL 0.35 -1.40 7.25E-03 

14 HAVCR1 MYLIP -0.13 -1.40 5.60E-03 

15 CELSR2 LPL -1.40 -1.43 7.53E-03 

16 LDLR MLXIPL -2.03 -1.49 2.97E-03 

17 BCAM HAVCR1 -0.51 -1.56 2.97E-03 

18 NCAN TOMM40 -1.40 -1.56 7.17E-03 

19 NCAN SEZ6L -0.59 -1.60 5.54E-03 

20 HAVCR1 ZNF259 -1.01 -1.62 3.23E-03 

21 LDLRAP1 SORT1 -1.11 -1.65 2.57E-03 

22 LDLRAP1 LPL -0.81 -1.68 3.69E-04 

23 HAVCR1 LPL -1.65 -1.75 4.01E-04 

24 CXCL12 PAFAH1B1 -2.17 -1.78 3.69E-04 

25 HAVCR1 TMEM57 -0.96 -1.82 4.62E-04 

26 BCAM LDLRAP1 -0.40 -1.83 3.58E-04 

27 LDLR LDLRAP1 -2.44 -1.86 9.34E-05 

28 HAVCR1 SEZ6L -1.19 -1.91 3.39E-04 

29 HAVCR1 LDLRAP1 -0.56 -2.16 1.03E-05 

30 HAVCR1 NCAN -0.51 -2.19 2.18E-05 

31 LDLRAP1 SEZ6L -1.46 -2.20 1.60E-05 

32 HAVCR1 SORT1 -2.09 -2.24 9.34E-05 

33 HAVCR1 MLXIPL -0.63 -2.31 1.03E-05 

34 MLXIPL SEZ6L -0.91 -2.40 2.18E-05 

35 MLXIPL TOMM40 -2.14 -2.67 1.03E-05 

 
Table 4. Hits of the combinatorial RNAi screen 

The 35 gene pairs that were identified as interacting in the combinatorial RNAi screen. The statistical 

significance threshold was set at p-value (fdr)<10^-2. Shown are the median robustZscores, the 

interaction effects calculated with the linear regression model, as well as the p-values after fdr 

correction for each gene pair. 
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Figure 16. Hits of the combinatorial RNAi screen 

The 35 gene pairs that were identified as interacting from the combinatorial RNAi screen. The 

statistical significance threshold was set at p-value (fdr)<10^-2. The Y axis shows the estimated 

interaction effect of the robust linear model. 
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3.1.6.2 ALTERNATIVE APPROACH; SAMPLE-BASED ANALYSIS 

In an alternative statistical analysis to test for gene-gene interactions among the 

results of the combinatorial RNAi screen, the double knockdown effect 

(GeneA+GeneB) was compared to the additive effect of two single knockdowns A and 

B {(GeneA+any)+(GeneB+any)}, in which case as single knockdown I considered the 

combination of the respective gene with any other gene.  

This analysis was based on the observation that the knockdown effect of an siRNA 

was sometimes milder when it was co-transfected with a second siRNA, as 

compared to when transfected alone or with negative control siRNA. Therefore, it 

was considered as more ͞fair͟ to compare double knockdowns (GeneA+GeneB) with 

double knockdowns (GeneA+any) or (GeneB+any), instead of comparing with ͞single͟ 

knockdowns (GeneA+control) or (GeneB+control), assuming that the control siRNA 

has no effect. 

With this analysis, seven gene-gene interactions were identified at pValuefdr<5x10-2; 

(MYLIP+SEZ6L), (PAFAH1B1+TOMM40), (SORT1+TOMM40), (LDLR+PVRL2), 

(APOE+CXCL12), (CXCL12+PAFAH1B1), (MLXIPL+TOMM40), and only two at 

pValuefdr<10-2; (MYLIP+SEZ6L), (PAFAH1B1+TOMM40). 

The identified interactions and the interaction effect and significance of the 

interaction (p-value) are shown in Figure 17. 

 

 Gene1 Gene2 Interaction Value pVal (fdr) 

1 APOE CXCL12 1.01 3.90E-02 
2 CXCL12 PAFAH1B1 -1.13 1.84E-02 

3 LDLR PVRL2 1.10 2.27E-02 

4 MLXIPL TOMM40 -1.25 2.80E-02 

5 MYLIP SEZ6L 1.83 8.09E-05 

6 PAFAH1B1 TOMM40 1.40 6.63E-03 

7 SORT1 TOMM40 1.36 2.27E-02 

 

 

 

 

 

 

Figure 17. The seven gene pairs were identified as interacting in the combinatorial RNAi screen 

(alternative analysis).  

The statistical significance threshold was set at p-value (fdr)<10
-2

. Shown in the table are the 

interaction effects calculated with the linear regression model, as well as the p-values after fdr 

correction for each gene interaction. The Y axis of the figure shows the estimated interaction effect of 

the robust linear model. 
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3.1.6.3 OVERLAP OF HITS BETWEEN TWO ANALYSES 

At pValue(fdr)< 10-2 , the hits that were identified in the two analysis overlapped 

100%. At pValue(fdr)< 5x10-2, seven hits were identified with the second analysis, 

that also overlapped 100% with the (99) hits that were identified at the same 

threshold with the first analysis (not shown here). 

 

3.1.7 SECONDARY EXPERIMENTS 

3.1.7.1 REPLICATION AND VALIDATION OF SCREEN RESULTS 

In order to perform a number of secondary experiments that could not be done with 

the microarrays, the 35 double knockdowns that emerged as screen hits (primary 

analysis) were repeated in a larger format using liquid-phase forward transfection 

(for details see section 7.1.2.1). The purpose of doing this was to measure the 

knockdown efficiency of the siRNAs used, as well as to determine if these double 

knockdowns had an effect on LDLR mRNA and/or protein levels, and most 

importantly to validate the hits with a different method. To this end, the single 

knockdowns (GeneA+control) for each interacting gene as well as the double 

knockdowns (GeneA+GeneB) were performed, and the same analysis was conducted 

as for the screen (for details see sections 3.1.4 and 3.1.5). 

Liquid phase transfections resulted in more penetrant and stronger phenotypes. 

Thus adjustment of the siRNA concentrations was necessary to mimic the 

experimental setup of the screen (see Fig. S1).  

Of the 32 screen hits, 20 were validated with liquid-phase transfection. These 20 hits 

had a statistically significant interaction effect, which was similarly up- or down- 

regulating as in the screen. One more interaction (LDLR+HAVCR1) that had not 

reached statistical significance in the screen, but seemed interesting to us (see 

section 3.3) was independently confirmed. The 21 interactions that were confirmed 

with liquid-phase transfection are shown in Tbl. 5 and Fig. 18 (see also Fig. S2). The 

siRNA amounts and knockdown efficiencies for the single and double knockdowns 

are shown in Tbls. S7 and S8, respectively, and the siRNA amounts used for double 

knockdowns in the validation experiments are shown in Tbl. S9. The results of the 

validation experiments are shown on Tbl. S20. 
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Table 5. Validated gene interactions. 

21 gene interactions were validated with liquid-phase transfection. Shown are the interaction effects 

of the forward transfection experiments, as well as the fdr-corrected p-values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Validated gene interactions. 

21 gene interactions were validated with liquid-phase transfection. The y-axis represents the 

interaction effects of the forward transfection experiments. 

  Treatment Robust Z score Interaction value  pVal (fdr) 

1 LDLR+ NCAN -1.23 -2.22 2.20E-11 

2 CXCL12+ PAFAH1B1  1.32 -1.92 9.84 E-13 

3 NCAN + SEZ6L -0.08 -1.56 7.94 E-12 

4 NCAN + TOMM40  -1.49 -1.34 1.75E-08 

5 HAVCR1 + MLXIPL -0.12 -1.20 2.06 E-05 

6 LDLRAP1 + SORT1 -1.09 -1.04 6.78E-09 

7 LDLR + LDLRAP1 -2.49 -0.92 2.36E-10 

8 CELSR2 + LPL  -0.11 -0.86 8.7 E-05 

9 MLXIPL + TOMM40  -1.94 -0.85 3.82 E-08 

10 LDLR + MLXIPL -2.26 -0.78 4.19E-11 

11 HAVCR1+ SEZ6L -0.67 -0.77 2.9 E-04 

12 HAVCR1 + LDLRAP1 0.39 -0.73 5.40E-03 

13 BCAM + LDLRAP1 -0.05 -0.70 5.20E-03 

14 HAVCR1 + SORT1 -0.63 -0.58 1.98E-03 

15 BCAM + HAVCR1  -0.51 -0.54 6.23E-02 

16 MYBPHL + SIK3 2.30 0.96 7.91E-03 

17 APOB + HMGCR 3.33 0.97 1.53E-03 

18 SORT1 + TOMM40  -2.48 1.77 0.00E00 

19 PAFAH1B1+ SIK3 3.30 2.44 8.37E-12 

20 PCSK9 + TMEM57  3.21 2.44 3.74E-11 

21 HAVCR1+LDLR -2.24 -1.24 
 

1.81E-10 
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3.1.7.2 RELATING PHENOTYPIC EFFECT TO GENE EXPRESSION 

3.1.7.2.1 EVALUATING GENE EXPRESSION  

The use of a primary-tumor derived cell line, such as HeLa Kyoto, for RNAi screening 

raises the concern if the genes targeted are expressed and if their expression levels 

are reduced through RNAi. To address this question, HeLa Kyoto transcriptome RNA-

sequencing data from the Simpson et al. secretion screen (Landry et al. 2013; 

Simpson et al. 2012) were explored, to assess if the genes tested with the co-RNAi 

screen are expressed in HeLa Kyoto cells. Moreover, qRT-PCR experiments were 

performed for 22 of the 30 genes screened with co-RNAi, and CT values from qRT-

PCR were juxtaposed to RNA-Seq coverage values, considering that both 

measurements reflect the mRNA level. The correlation between the two methods 

was strong (R=-0.63, p-value= 0.008354) (see Fig. 19). 

 

  

 

Figure 19. Correlation of RNA-Seq with qRT-PCR gene expression experiments 

Both qRT-PCR and RNA-Seq experiments were utilized to quantify the mRNA levels of genes in HeLa 

Kyoto cells, by measuring the threshold cycle (Ct) or the coverage (cov), respectively. For 17 of 23 

genes, for which Ct of qRT-PCR was below 29, RNA-Seq detected the mRNA and the knockdown could 

be measured with qRT-PCR. The correlation between the two methods was strong (Pearson’s 

correlation coefficient R= -0.63, p-value: 0.008354) (n.d.: not detected). 

 

 

 

R² = 0.8569 

1

10

100

1000

10000

12 17 22 27 32

R
N

A
-s

e
q

 (
c

o
v

) 

(l
o

g
-t

r
a

n
s

fo
r

m
e

d
) 

qRT-PCR (Ct) 

Gene  RNA-seq  

(cov) 

qRT-PCR  

(CT) 

knockdown 

detectable 

GAPDH 2627.17 14.0 + 

TOMM40 142.26 19.0 + 

BCL7B 52.53 21.2 + 

PAFAH1B1 39.47 20.2 + 

PCSK9 34.98 19.5 + 

LDLR 32.38 20.5 + 

CELSR2 30.49 22.3 + 

PVRL2 21.55 21.4 + 

LDLRAP1 18.33 23.1 + 

SIK3 16.34 23.9 + 

LPL 15.78 21.4 + 

TMEM57 15.16 22.1 + 

HMGCR 12.18 20.3 + 

SORT1 10.31 22.5 + 

MLXIPL 5.85 24.8 + 

BCAM 3.57 27.3 + 

APOE 1.16 28.9 - 

APOB n.d. 36.0 - 

CXCL12 n.d. 36.2 - 

HAVCR1 n.d. 33.2 - 

MYBPHL n.d. 32.9 - 

NCAN n.d. 33.2 - 

SEZ6L n.d. 33.1 - 
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In agreement with the RNA-Seq data, gene knockdown could only be measured with 

qRT-PCR in genes with CT <29 and that were detected with RNA-Seq. Out of 30 genes 

tested in the co-RNAi screen, 22 (73%) were detectable with RNA-Seq in the 

transcriptome of HeLa Kyoto cells. However, some of the genes that scored as 

interactors in the co-RNAi screen were neither detected by RNA-seq, nor by qRT-

PCR.  

With a view to investigating if the protein expression of such genes, that were not  

detectable at mRNA level, could be observed, the Confetti online resource of HeLa  

proteome (https://proteomics.swmed.edu/confetti/) was employed. This is a map of 

the HeLa proteome that was generated by digesting the HeLa lysate with a 

multiprotease approach, and subsequently analyzing the lysate digest with mass 

spectrometry (Guo et al. 2014). This approach led to the identification of more than 

7,500 proteins. 

Out of the 30 genes tested in the co-RNAi screen, 21 (70%) were detected in the 

proteome, according to the Confetti map. Noteworthy one gene that was not 

detected by RNA-seq and its knockdown could not be detected with qRT-PCR 

(APOB), as well as one gene that was detected by RNA-Seq, but its knockdown could 

not be detected (APOE), were detected in the proteome. Moreover, one gene that 

was detected with RNA-Seq and its knockdown could be measured, was not 

detected at the proteome level (MLXIPL). The correlation between the protein levels 

from Confetti and the mRNA levels from RNA-Seq was strong (R=0.72, p-value= 

0.001055), but the correlation between the protein levels and the mRNA levels from 

qRT-PCR was weak (R= 0.327208) (see Fig. 20).  

Both the transcriptome and the proteome resources were useful to provide a priori 

knowledge concerning gene expression levels at the mRNA and protein level in HeLa 

cells. However, neither of them was utilized with the aim to preclude genes from the 

co-RNAi screen. As was explained before, the expression of genes undetected by 

RNA-seq or proteomics might be lower than the detection threshold of these 

techniques. 
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Figure 20. Correlation of RNA-Seq and qRT-PCR gene expression experiments with protein 

expression 

For 17 out of 23 genes, for which the Ct of qRT-PCR was below 29, the protein was detected with the 

Confetti approach. Noteworthy one gene (MLXIPL) with Ct below 29 (Ct=24.8) the protein was not 

detected. The correlation between RNA-Seq and protein measurements was strong (Pearson’s 

correlation coefficient R=0.72, p-value=0.001055), but the correlation between qRT-PCR and protein 

values was weak (Pearson’s correlation coefficient R=0.327208). 

 

 

 

 

 

 

 

 

 

 

 

Gene  RNA-seq (cov) qRT-PCR (CT) Confetti (cov) 

GAPDH 2627.17 14 99.7 

TOMM40 142.26 19 96.12 

BCL7B 52.53 21.2 38.12 

PAFAH1B1 39.47 20.2 75.12 

PCSK9 34.98 19.5 20.52 

LDLR 32.38 20.5 19.42 

CELSR2 30.49 22.3 1.03 

PVRL2 21.55 21.4 39.22 

LDLRAP1 18.33 23.1 26.62 

SIK3 16.34 23.9 11.01 

LPL 15.78 21.4 28.21 

TMEM57 15.16 22.1 14.46 

HMGCR 12.18 20.3 2.48 

SORT1 10.31 22.5 39.71 

MLXIPL 5.85 24.8 n.d. 

BCAM 3.57 27.3 40.92 

APOE 1.16 28.9 9.15 

APOB n.d. 36 5.28 

CXCL12 n.d. 36.2 n.d. 

HAVCR1 n.d. 33.2 n.d. 

MYBPHL n.d. 32.9 n.d. 

NCAN n.d. 33.2 n.d. 

SEZ6L n.d. 33.1 n.d. 
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3.1.7.2.2 ASSESSING KNOCKDOWN EFFICIENCY 

In an attempt to correlate the observed effect in the cellular assay with the RNAi-

mediated knockdown efficiency, RT-qPCR was utilized to quantify the mRNA levels in 

the cell lysate of the cells transfected with siRNA targeting the genes under study. In 

detail, knockdowns for all the 19 validated interactors of the screen were performed. 

For six (APOB, CXCL12, HAVCR1, MYBPHL, NCAN, SEZ6L) of the 19 genes tested, 

mRNA levels were too low to be detected and therefore knockdown could not be 

assessed. For the remaining 13 genes, the average knockdown was 80%. For 11 of 

the 13 genes, the knockdown ranged between 67% and 97%, while for the other 2 

genes (MLXIPL, TMEM57) the knockdown ranged between 35% and 45% (see Tbl. 6).  

The anti-correlation of the knockdown levels with the functional effects observed 

was moderate (Pearson’s correlation coefficient R= -0.42). For instance, strong 

phenotypic effects were observed for genes with a mild knockdown (<45%), such as 

MLXIPL and TMEM57. Similarly, very mild phenotypic effects were observed for 

genes with a strong knockdown (>95%), such as PAFAH1B1 and BCAM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 6. Correlation of the gene knockdown with the functional effects on LDL uptake  

The gene knockdown efficiencies are calculated after normalization to the GAPDH. The effect on LDL 

uptake shown is the median robust Z score of endocytosed DiI-LDL. The correlation of the gene 

knockdown levels with the functional effects was moderate (Pearson’s correlation coefficient R= -

0.42). 

 

 

 

 

siRNA treatment % gene kd effect on LDL uptake 

BCAM + control 95.7 -0.16 

CELSR2 + control 85.0 0.84 

HMGCR + control 67.4 1.70 

LDLR + control 76.8 -1.43 

LDLRAP1 + control 92.9 1.11 

LPL + control 96.7 -0.67 

MLXIPL + control 35.6 0.89 

PAFAH1B1 + control 95.3 0.37 

PCSK9 + control 85.1 0.70 

SIK3 + control 78.9 0.39 

SORT1 + control 93.9 -0.56 

TMEM57 + control 44.8 1.01 

TOMM40 + control 88.6 -1.51 
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3.1.7.3 EFFECT OF GENE INTERACTIONS ON LDLR MRNA AND PROTEIN LEVEL 

Next, I asked whether the effects of the identified gene interactions on LDL-uptake 

are due to alterations of the LDLR expression at the transcriptional and/ or post-

transcriptional level. Given the fact that LDLR is the key regulator of LDL endocytosis, 

an increase in LDLR expression should lead to increased LDL uptake and vice versa. In 

order to address this question, LDLR mRNA and protein levels upon knockdowns 

were assessed for the validated hits of the screen. Altogether, 20 double 

knockdowns for the interacting gene pairs as well as the corresponding single 

knockdowns were performed, and their effect on LDLR mRNA and protein levels was 

measured using qRT-PCR and Western blotting, respectively (Figures 21 and 23).  

 

Figure 21. Effect of gene interactions on LDLR mRNA levels  

Shown are mRNA levels of LDLR in HeLa Kyoto cells after 48 h knockdown of the identified interacting 

genes, transfected alone (siRNAA+control siRNA) or in combination (siRNAA+siRNAB), after 

normalization to the control siRNA. The LDLR levels were normalized to the housekeeping gene 

GAPDH. The error bars represent the standard error of the mean (n=4, statistical significance 

compared to the control in two-sided Student´s t-test is indicated; *P<0.1; **P<0.01; ***P<0.001).  

(A-D) The siRNA concentrations used are shown in Tbl. S10 and numeric data in Tbl. S13. 
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A significant decrease in LDLR mRNA levels was observed upon the single knockdown 

of LDLR (at different siRNA concentrations), as well as for the double knockdowns 

LDLR+HAVCR1, LDLR+MLXIPL, LDLR+NCAN and NCAN+TOMM40. 

 

In order to identify which of the 20 validated gene interactions are reflected on LDLR 

mRNA level, the additive effect of two single knockdowns was compared to the 

combined knockdown effect, by fitting a linear regression model (see section 7.4.7), 

as was done in the analysis of the co-RNAi screen. The interaction effect was 

calculated, and the threshold for the p-value was set at pVal<10-1. With this analysis, 

five gene pairs (HAVCR1+LDLR, LDLR+MLXIPL, HAVCR1+SEZ6L, NCAN+TOMM40, 

LDLR+NCAN) were identified as interacting at the level of LDLR mRNA expression 

(see Fig. 22). The results of the linear regression analysis are shown in Tbl. S16. 

 

 

Figure 22. Gene interactions affecting LDLR mRNA levels. 

Shown are the 5 gene pairs that were identified as interacting at the level of LDLR mRNA, by 

comparing the additive effect of the two single knockdowns to the effect of the double knockdown, 

using a linear regression model. For each gene pair, the mean (log2-transformed) fold change of 

mRNA of the control, the two single knockdowns as well as the double knockdown are shown. The 

LDLR levels were normalized to the housekeeping gene GAPDH. The error bars represent the standard 

error of the mean (n=4). The siRNA concentrations used are shown in Tbl. S10 and numeric data in 

Tbl. S11. 
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Figure 23. Effect of gene interactions on LDLR protein level. 

LDLR protein levels in HeLa Kyoto cells were measured by Western blot upon 48 h knockdown 

following starvation of the cells (see section 7.1.6). The identified interacting genes were either 

transfected alone (siRNAA+control siRNA) or in combination (siRNAA+siRNAB). LDLR was normalized to 

the housekeeping gene a-tubulin, after normalization of both to the control siRNA. Shown are results 

from three biological replicates. Arrows denote siRNAs that significantly (*<0.01; **<0.001, 

***<0.0001) altered LDLR protein levels. Bands from lysates wherefrom no reliable results could be 

obtained were crossed out and excluded from the analysis. The siRNA concentrations used are shown 

in Tbl. S10 and numeric data in Tbl. S13. 
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A significant decrease in LDLR protein levels was observed upon single knockdown of 

LDLR, TOMM40, SEZ6L, SORT1 and BCAM, as well as for the double knockdowns 

LDLRAP1+BCAM, LDLRAP1+SORT1, HAVCR1+SORT1, HAVCR1+SEZ6L, SORT1+ 

TOMM40, MLXIPL+TOMM40, LDLR+LDLRAP1, LDLR+MLXIPL, CXCL12+PAFAH1B1, 

NCAN+LDLR, NCAN+TOMM40. 

In order to identify which of the 20 validated gene interactions are reflected on LDLR 

protein level, the additive effect of two single knockdowns was compared to the 

combined knockdown effect, by fitting a linear regression model, as before (see 

section 7.4.7). The interaction effect was calculated, and the threshold for the p-

value was set at pVal<10-1. With this analysis, five gene pairs (LDLR+LDLRAP1, 

MLXIPL+TOMM40, BCAM+LDLRAP1, HAVCR1+LDLR, and CXCL12+PAFAH1B1,) were 

identified as interacting at the level of LDLR protein expression (see Fig. 24). The 

results of the linear regression analysis are shown in Tbl. S16. 

 

 

 

Figure 24. Gene interactions affecting LDLR protein levels. 

Shown are the five gene pairs that were identified as interacting at the level of LDLR protein, by 

comparing the additive effect of the two single knockdowns to that of the double knockdown, using a 

linear regression model. For each gene pair, the median LDLR after normalization to a-tubulin is 

shown for the control siRNA, the two single knockdowns and the double knockdown. The error bars 

represent the standard error of the mean (SEM). The siRNA concentrations used are shown in Tbl. S10 

and numeric data in Tbl. S12. 
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3.1.7.4 EFFECT OF KNOCKDOWNS ON SREBF MRNA LEVEL 

As was described (see section 1.3.2.2), LDLR expression is regulated by the SREBF 

transcription factors, in particular SREBF-1a and SREBF-2. In order to determine if the 

effect of the identified gene interactions on LDL uptake was due to an effect on the 

expression of SREBF-1a and/or SREBF-2, the mRNA levels of both genes upon 

knockdowns were assessed for the validated hits of the screen. Namely, 20 double 

knockdowns for the interacting gene pairs as well as the corresponding single 

knockdowns were performed, and their potential effect on SREBF mRNA levels was 

measured using qRT-PCR. 

A significant decrease in SREBF1 levels was observed upon single knockdown of 

BCAM, as well as double knockdowns MYBPHL+SIK3 and PAFAH1B1+SIK3 (Fig. 25). 

Regarding SREBF2, a significant decrease in mRNA levels was observed upon single 

knockdown of BCAM, as well as double knockdowns SORT1+TOMM40, 

NCAN+TOMM40, MYBPHL+SIK3, PAFAH1B1+SIK3, HAVCR1+MLXIPL, 

HAVCR1+LDLRAP1 and BCAM+LDLRAP1 (see Fig. 25). 

In order to identify which of the 20 validated gene interactions are reflected on the 

SREBF1 and/or SREBF2 mRNA level, the additive effect of two single knockdowns 

was compared to the combined knockdown effect, by fitting a linear regression 

model (see section 7.4.7). The interaction effect was calculated, and the threshold 

for the p-value was set at pVal<10-1. With this analysis, four gene pairs were 

identified to interact at the SREBF1 mRNA level; SORT1+LDLRAP1, PCSK9+TMEM57, 

HAVCR1+SORT1 and CELSR2+LPL (see Fig. 26, for numerical data see Tbl. S17). At the 

mRNA level of SREBF2, eight interactions were identified; PCSK9+TMEM57, 

LDLRAP1+SORT1, NCAN+TOMM40, LDLR+NCAN, LDLR+LDLRAP1, SORT1+TOMM40, 

MYBPHL+SIK3 and LDLR+MLXIPL (see Fig. 27, Tbl. S17).  

 

Figure 25. Effect of gene interactions on SREBF1 and SREBF2 levels 

Shown are mRNA levels of SREBF1 (blue) and SREBF2 (red) in HeLa Kyoto cells after 48 h knockdown 

of the identified interacting genes, transfected alone (siRNAA+control siRNA) or in combination 

(siRNAA+siRNAB), after normalization to the control siRNA. The LDLR levels were normalized to the 

housekeeping gene GAPDH. The error bars represent the SEM (n=3, statistical significance compared 

to control in two-sided Student´s t-test is indicated; *P<0.1; **P<0.01; ***P<0.001).  (A-D) The siRNA 

concentrations used are shown in Tbl. S10 and numeric data in Tbl. S15. 
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Figure 26. Gene interactions affecting SREBF1 mRNA levels. 

Shown are the four gene pairs that were identified as interacting at the level of SREBF1 mRNA, by 

comparing the additive effect of the two single knockdowns to the effect of the double knockdown, 

using a linear regression model. For each gene pair, the mean (log2-transformed) fold change of 

mRNA of the control, the two single knockdowns as well as the double knockdown are shown. The 

SREBF1 levels were normalized to the housekeeping gene GAPDH. The error bars represent the 

standard error of the mean (n=4). The siRNA concentrations used are shown in Tbl. S10 and numeric 

data in Tbl. S.14 
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Figure 27. Gene interactions affecting SREBF2 mRNA levels. 

Shown are the eight gene pairs that were identified as interacting at the level of SREBF2 mRNA, by 

comparing the additive effect of the two single knockdowns to the effect of the double knockdown, 

using a linear regression model. For each gene pair, the mean (log2-transformed) fold change of 

mRNA of the control, the two single knockdowns as well as the double knockdown are shown. The 

SREBF1 levels were normalized to the housekeeping gene GAPDH. The error bars represent the 

standard error of the mean (n=4). The siRNA concentrations used are shown in Tbl. S10 and numeric 

data in Tbl. S.14. 
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For 21 gene pairs in total, quantitative data for LDL uptake, LDLR mRNA and protein 

levels, as well as SREBF1 and SREBF2 mRNA levels are available. The most interesting 

gene pairs from this analysis are provided in Tbl. 7 (all results are available in Tbl. 

S18). The findings of these experiments were more complicated as it would have 

been expected. For example, PCSK9+TMEM57 double knockdown resulted in 

increased SREBF1 mRNA but decreased SREBF2 mRNA. Another unexpected example 

is LDLR+NCAN, which decreased LDL uptake and LDLR mRNA levels, but also 

decreased SREBF2 mRNA, while the contrary would be expected. The same was true 

for NCAN+TOMM40.  
 

 

Table 7. Combined results from secondary experiments and co-RNAi for 10 selected gene pairs. 

Shown is the effect on LDL uptake, LDLR mRNA and protein, as well as SREBF1 and SREBF2 mRNA, upon double knockdowns of 
the genes which were identified by the screen as interacting. Interaction effects are highlighted with pink (increased) or green 

(decreased). 
 
  

  
LDL 

uptake 

LDLR mRNA LDLR protein SREBF1 

mRNA 

SREBF2 

mRNA 
  

  

Treatment Robust Z 

score 

log2 (fold 

change) 

log2(LDLR/a-

tubulin) 

log2 (fold 

change) 

log2 (fold 

change) 

correlation anti-correlation 

1 LDLR+ NCAN -1.23 -1.88 -3.91 -0.63 -0.25 LDL-LDLR mRNA-SREBF2 mRNA   

2 NCAN + TOMM40  -1.49 -1.27 -1.10 -0.88 -1.10 LDL-LDLR mRNA-SREBF2 mRNA   

3 LDLRAP1 + SORT1 -1.09 -0.06 -1.45 -0.89 -0.20 LDL-SREBF1 mRNA -SREBF2 mRNA   

4 LDLR + LDLRAP1 -2.49 -2.04 -3.91 -0.55 0.43 LDL-LDLR protein LDL-SREBF2 mRNA 

5 MLXIPL + TOMM40  -1.94 -0.81 -1.45 -1.69 -1.57 LDL-LDLR protein   

6 LDLR + MLXIPL -2.26 -2.60 -2.32 -0.42 0.21 LDL-LDLR mRNA LDL-SREBF2 mRNA 

7 MYBPHL + SIK3 2.30 0.59 -0.10 -0.51 -1.01   LDL-SREBF2 mRNA 

8 SORT1 + TOMM40  -2.48 -1.21 -2.10 -0.89 -0.61 LDL-SREBF2 mRNA   

9 PCSK9 + TMEM57  3.21 0.24 -0.15 0.21 -0.28 LDL-SREBF1 mRNA LDL-SREBF2 mRNA 

10 HAVCR1+LDLR -2.24 -1.29 -3.91 -0.08 -0.42 LDL-LDLR mRNA-LDLR protein   
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3.1.8 CLUSTERING OF INTERACTIONS 

In an effort to allocate the genes identified as interactors from the co-RNAi screen onto 

genetic pathways and networks controlling LDL-cholesterol regulation, the 21 validated 

GIs from the RNAi screen were classified into 3 gene-gene interaction categories; 

suppression, epistasis and synergy. The classification was done according to the 

definitions for these classes, which are quoted here from Perez et al. (Pérez-Pérez et al. 

2009):  

(i) Suppression; ͞when the double knockdown is closer to the wild-type condition than 

either of the single knockdowns͟ 

(ii) Epistasis; ͞when the double knockdown resembles the phenotype of one of the 

singles, but not the other͟ 

(iii) Synergy; ͞when the joint contribution to the phenotype made by both knockdowns 

is greater than the sum of their individual effects͟. The three interaction classes are 

shown in Fig. 28. 

Out of 21 GIs, 10 were classified as ͞synergistic͟, 8 as ͞epistatic͟ and 3 as ͞suppressive͟ 

(see Tbl. 8).  

 
 

 

 

 

 

 

 

 

 

 

 

Table 8. Classification of gene interactions.  

Shown is the classification into the 3 described genetic interaction classes, of the 21 gene-gene 

interactions identified from the RNAi screen that were validated. 

Suppression Epistasis Synergy 

HAVCR1 + MLXIPL NCAN + SEZ6L CXCL12+ PAFAH1B1  

CELSR2 + LPL  NCAN + TOMM40  HAVCR1 + LDLRAP1 

BCAM + LDLRAP1 LDLRAP1 + SORT1 HAVCR1 + SORT1 

  LDLR + LDLRAP1 BCAM + HAVCR1  

  MLXIPL + TOMM40  LDLR+ NCAN 

  LDLR + MLXIPL MYBPHL + SIK3 

  HAVCR1+ SEZ6L PAFAH1B1+ SIK3 

  SORT1 + TOMM40  PCSK9 + TMEM57  

  HAVCR1+LDLR 

    BCAM + HAVCR1  
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Figure 28. The three gene interaction classes identified in the co-RNAi screen. 

Shown are representative examples of two interacting genes, for each of three identified classes of 

gene-gene interactions. The boxplots show the median intensity of internalized DiI-LDL, normalized to 

the control, for the two single knockdowns (transfected together with the control siRNA), as well as 

for the double knockdown, for each pair of genes. 
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3.1.9 GENE-GENE INTERACTION MODEL NETWORK CONSTRUCTION  

With an aim to reveal potential functional relationships among the interacting genes 

identified with co-RNAi, a gene interaction network was constructed based on the 21 

validated gene interactions identified. These interactions were overlapped with 

known interactions from the STRING, among all 30 genes tested in the co-RNAi 

screen (see Fig. 29). Out of the 30 genes tested, 24 genes were taking part in 

interactions, while six did not interact with any other gene. Out of the 24 interacting 

genes, 17 genes were connected into a main network  (APOB, APOE, BCAM, CELSR2, 

HAVCR1, HMGCR, LDLR, LDLRAP1, LPL, MLXIPL, MYLIP, NCAN, PCSK9, SEZ6L, SORT1, 

TMEM57 and TOMM40), five other genes were connected into a smaller network 

(CXCL12, MYBPHL, PAFAH1B1, PAFAH1B2 and SIK3), and two other genes were only 

connected with each other (WDR12 and ZNF259).   

 

  

Figure 29. Model network of gene-gene interactions affecting LDL uptake. 

In this network that was constructed using STRING, all the 30 genes tested in the co-RNAi screen are 

shown. All pairwise measurements between the 30 depicted genes have been tested, and interacting 

genes are depicted as connected with a dark blue line. The light blue and pink lines represent known 

interactions, whereas the black lines represent gene co-expression.  
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3.1.10 NETWORK ANALYSIS 

In order to investigate the genetic interaction network that was constructed based 

on data from co-RNAi experiments, the large network was sub-divided into smaller 

sub-networks, such as the ͞triangles͟, that can be observed, which can then be 

further investigated. One such triangle is the network of LDLR, HAVCR1 and MLXIPL 

(see Fig. 30). Within this sub-network, each gene interacts with the two other genes.  

 

 

 

 

 

 

 

Figure 30. A sub-network of the GI model network.  

LDLR, MLXIPL and HAVCR1 were shown to interact with each other in regulating LDL-uptake, 

therefore form a gene-interaction network that can be further investigated.  

 

In this network, the knockdown of both MLXIPL and HAVCR1 are potentiating the 

negative effect of LDLR knockdown on LDL uptake, upon co-depletion. On the other 

hand, the co-depletion of HAVCR1 and MLXIPL is reversing the positive effects of the 

two single knockdowns, leading to a down-regulation of LDL uptake. With these 

results in mind, I turned into the literature in order to construct hypotheses on how 

these 3 genes might interact in order to regulate the endocytosis of LDL. LDLR is a 

well-described gene that encodes for the receptor of LDL, and is responsible for its 

endocytosis, as was already described (see section 1.3.2.3). HAVCR1 encodes a 

phosphatidylserine (PtdSer) receptor, which binds with its extracellular 

immunoglobulin variable domain (IgV domain) to PtdSer on the viral envelope of 

Hepatitis A virus and other viruses (s.a. EBOV), mediating their internalization. 

Moreover, it was shown that HAVCR1 can bind and internalize both oxidized and 

native LDL (Ichimura et al. 2008). Based on the above, I hypothesized that HAVCR1 

might act as an alternative receptor for LDL, with lower affinity for LDL than LDLR, or 

alternatively might act as a chaperone for LDLR, thus promoting LDL uptake. MLXIPL, 

also known as CHREBP (Carbohydrate Response Element Binding Protein), encodes a 



 

 70 

glucose-sensitive transcription factor that has been involved in lipogenesis (Cha and 

Repa 2007; Stoeckman, Ma, and Towle 2004). I hypothesized that MLXIPL might be 

involved in the transcriptional regulation of LDLR and/ or HAVCR1. 

With a view to investigating these hypotheses, I performed some follow-up 

experiments for LDLR and HAVCR1. 

 

3.2 CELL-BIOLOGICAL CHARACTERIZATION OF SELECTED SCREEN HITS 

3.2.1 HAVCR1 KNOCKDOWN DOES NOT DECREASE LDL BINDING 

First, in order to investigate the hypothesis that HAVCR1 might act as an alternative 

receptor for LDL, I asked if the depletion of HAVCR1 had an effect on the binding of 

LDL on the plasma membrane, and if its combined knockdown together with LDLR 

could potentiate the down-regulating effect of LDLR knockdown on LDL binding. To 

answer these questions, I depleted HAVCR1 and LDLR alone and in combination, 

using RNAi, and performed the LDL-binding assay (for details see section 7.1.5.2). 

The knockdown of HAVCR1 alone resulted to a significant increase on LDL binding, as 

compared to the control siRNA (TTEST; p=0.004199), whereas the combined 

knockdown of LDLR and HAVCR1 had no significant difference from the single 

knockdown of LDLR on LDL binding (see Fig. 31). 

 

3.2.2 HAVCR1 OVEREXPRESSION DOES NOT RESCUE THE EFFECT OF LDLR KNOCKDOWN ON 

LDL UPTAKE 

Next, I asked if HAVCR1 could function as a receptor for LDL upon depletion of LDLR. 

To test if HAVCR1 could rescue the effect of LDLR knockdown, LDLR was depleted 

using RNAi, and GFP-tagged HAVCR1 was overexpressed and the effect on LDL 

uptake was measured. The overexpression of HAVCR1 in cells that had been 

depleted of LDLR could not rescue the effect of LDLR knockdown (see Fig. 32). 
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Figure 31. The effect of single and double knockdowns of LDLR and HAVCR1 on LDL binding and 

quantification. 

LDLR knockdown significantly decreased LDL binding, whereas HAVCR1 slightly increased LDL binding. 

The combined knockdown of LDLR and HAVCR1 did not potentiate the effect of LDLR knockdown on 

LDL binding (scalebar=10 μm). 
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Figure 32. Rescue of LDLR knockdown with HAVCR1 overexpression. 

HeLa Kyoto cells transfected with control siRNA or siRNA targeting LDLR, and with either GFP-GFP 

plasmid or HAVCR1-GFP. The LDL-uptake assay was performed to assess the ability of HAVCR1 to 

rescue the effect of LDLR knockdown on LDL uptake. (a) Representative cells for LDL-uptake assay (b) 

Quantification of the mean membrane-bound DiI-LDL, normalized to the control cells (scalebar=10 

μm).  
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3.3 HAVCR1-RARE VARIANTS OVEREXPRESSION EFFECT ON LDL UPTAKE 

3.3.1 VARIANT SELECTION 

As a first step in investigating the role of rare variants of our interacting genes in 

CVD, I turned to one of the most prominent interactors of the screen, HAVCR1. As I 

hypothesize that HAVCR1 may play an important role in lipid regulation, I 

investigated the effect of a number of mutations of this gene on LDL uptake. For this 

purpose, 19 variants were extracted from the Exome Variant Server 

(http://evs.gs.washington.edu/EVS/), from the NHLBI Exome Sequencing Project 

(ESP). Of those 19 variants, 15 were rare (MAF<5%). 

In general, ESP samples were selected to contain controls, the extremes of specific 

traits (LDL and blood pressure), and specific diseases (s.a. early onset MI and early 

onset stroke). The group includes some of the largest well-phenotyped populations 

in the United States, representing more than 200,000 individuals altogether from 

studies, such as the Framingham Heart Study (FHS), the Atherosclerosis Risk in 

Communities (ARIC), and the Multi-Ethnic Study of Atherosclerosis (MESA).  

14 of these 19 variants were predicted to have a possibly damaging or probably 

damaging effect on protein function, 4 were predicted benign, and 1 had unknown 

effect, according to PolyPhen-2 (Polymorphism Phenotyping v2) 

(http://genetics.bwh.harvard.edu/pph2/) (see Tbl. 9). 

The 19 variants were cloned into GFP expressing vector and expressed in HeLa Kyoto 

cells for 24 hours. The effect of the variants’ overexpression on LDL uptake was 

measured. 
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Table 9. The 19 HAVCR1 variants extracted from the Exome Variant Server.  

The rs (reference SNP cluster ID) number, the aminoacid substitution, the coded allele and the 

PolyPhen-2 prediction for each variant are shown. 

 

 

 

3.4 RESULTS OF LDL UPTAKE ASSAY UPON OVEREXPRESSION OF HAVCR1 MUTATIONS  

18 out of 19 variants had a significant inhibitory effect on LDL uptake upon 

overexpression (see Fig. 33 and Fig. 34). Interestingly, 4 variants that were predicted 

as benign by Polyphen-2 (188, 190, 191 and 230) had a significant inhibitory effect as 

well, while a variant that was predicted as probably damaging (186) had no 

significant effect. 

 

 

 

 

 

rs ID AA change Alleles MAF PolyPhen2 Prediction 

rs368474218 W47R t139c 0.0244 probably damaging 

rs373839023 V69I g205a 0.0081 probably damaging 

rs370454823 V69G t206g 0.0081 probably damaging 

rs56084311 D99H g295c 0.8518 probably damaging 

rs199849162 S100G a298g 0.0241 possibly damaging 

rs370980439 R110C c328t 0.0081 probably damaging 

rs377678930 N114S a341g 0.0082 probably damaging 

rs373938216 V138I g412a 0.0078 possibly damaging 

rs199816459 T149A a445g 0.0078 possibly damaging 

rs200642665 V156I g446a 0.4005 benign 

rs61734035 T174M c521t 1.3038 probably damaging 

rs1553316 L179P t536c 14.6004 benign 

rs12522248 T207A a619g 24.6885 benign 

rs369956191 E223stop g667t 0.0081 unknown 

rs200392856 D264N g790a 0.0084 possibly damaging 

rs376460912 Y297C a890g 0.0083 probably damaging 

rs370221161 K317E a949g 0.0082 probably damaging 

rs373996191 A343E c1028a 0.0084 possibly damaging 

rs141023871 M158T t473c 42.7464 benign 
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Figure 33. Effect of overexpression of GFP-tagged HAVCR1 variants in HeLa Kyoto cells.  

The y-axis shows the fluorescence DiI-LDL intensity normalized to GFP vector-transfected cells. Blue: 

extracellular, pink: transmembrane, yellow: cytoplasmic (n.s.: not significant, * p<0.05, ** p<0.01, *** 

p<0.001, **** p<0.0001). 

 
Figure 34. The effect of overexpression of wtHAVCR1-GFP and one tagged mutant on LDL uptake. 

The first row shows cells transfected with GFP-vector without the protein. The second row shows cells 

transfected with the wild type HAVCR1 protein, and the third row shows cells transfected with one of 

the variants (K317E) that had a strong downregulating effect on LDL uptake. 
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3.5 SNP CO-OCCURRENCE DETECTION 

For each of the genes in the GI network there have been found in GWA studies a 

number of SNPs associated with lipid traits and CVD. An interesting question that 

would give further insight into the molecular basis of CVD is: do SNPs of interacting 

genes co-occur? More precisely, can we detect SNPs from two or more interacting 

genes occuring in the same patient? Clinical data pointing to this direction will 

further support the in vitro results. 

In order to address this question, the lead SNPs for each of the 30 genes that were 

tested in the co-RNAi screen were extracted from the PhenoScanner of the 

University of Cambridge (http://www.phenoscanner.medschl.cam.ac.uk/ 

phenoscanner); a database holding publicly available results from large-scale genetic 

association studies. I noticed that the most significant lipid SNPs for the genes tested 

in the co-RNAi screen came from the Global Lipids Genomics consortium (Willer et 

al. 2013), the largest meta-GWAS study published to date. For comparisons, I 

decided to extract p-values from the same source. Therefore for lipid traits (LDL, 

HDL, TG, Tc) p-values for SNPs were only extracted from the above study, whereas 

for CAD, CHD and MI p-values were extracted from other studies in the 

PhenoScanner. 

The total 144 lead SNPs extracted (Tbl. S21) are located on 14 genomic loci, where 

28 of the 30 genes that were screened in this work here are mapped (APOB, APOE, 

BAZ1B, BCAM, BCL7B, CBLC, CELSR2, HAVCR1, HMGCR, LDLR, LDLRAP1, LPL, MLXIPL, 

MYBPHL, MYLIP, NCAN, PCSK9, PVRL2, SIK3, SORT1, TM6SF2, TMEM57, TOMM40, 

ZNF259). For two genes (PAFAH1B2, SEZ6L), SNPs have not yet reached statistical 

significance in GWAS.  

The identified SNPs were tested for SNP-SNP interactions in a cohort of 4893 

individuals from the Bioimage study, in collaboration with Heiko Runz (Merck 

Research Laboratories, US).  

The Bioimage study is a multi-ethnic, observational study of the characteristics of 

subclinical atherosclerosis and cardiovascular disease, in a population of 7,300 US 

adults (55-80 years at baseline) at risk for, but without clinical cardiovascular disease 

(Muntendam et al. 2010). This study used measurements from imaging methods 

(including MRI for carotid and aortic plaques, coronary CT angiography, and PET/CT 
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for carotid and aortic inflammation), circulating biomarkers (s.a. blood lipids) and 

risk factors that predict progression to CVD (Natarajan et al. 2015). 

Of the 144 SNPs that were extracted from the PhenoScanner, 70 were present on 

the Illumina Exome Array that was used for the genotyping in the Bioimage study 

(Muntendam et al. 2010), while 47 were not present on the Exome Chip but had 

proxies that were present on it, and 27 were neither present nor had proxies on the 

Exome Chip. 

For the (70) SNPs that were present on the exome chip, as well as for the proxies of 

those not present (7 after removal of the identical ones), single-variant LDL 

association test was performed by Gulum Kosova, based on the allele-frequency of 

the LDL-raising allele in the Bioimage study. In order to test for pairwise SNP-SNP 

interactions, the following 4 models were tested against the null hypothesis model; 

model 1: ͞snp1 only͟:  Y = β0 + β1*snp1 

model 2: ͞snp2 only͟ : Y = β0 + β2*snp2 

model 3: ͞additive͟ : Y = β0 + β1*snp1 + β2*snp2 

model 4: ͞interaction͟: Y = β0 + β1*snp1 + β2*snp2 +β3*snp1*snp2, 

to determine which model best explains the LDL phenotype. 

The individual lipid phenotypes were provided in residuals, that is blood lipid 

phenotypes (LDL, HDL, TG), adjusted for covariates (s.a. age, BMI, alcohol intake, 

smoking, lipid-lowering treatment status) using linear regression models. Based on 

the individual lipid phenotypes, the number of individuals, as well as the mean 

residual LDL value was calculated for individuals carrying 0, 1, 2, 3 or 4 LDL-raising 

alleles (sum of snp1 and snp2 LDL-raising alleles).  

With this analysis, none of the SNP pairs reached statistical significance for the 

͞interaction͟ model. However, 36 SNP pairs reached statistical significance for the 

͞additive͟ model (see Tbl. S22). Moreover, for these 36 pairs of SNPs it was shown 

that the LDL residuals increased with the number of LDL-increasing alleles. Namely, if 

one carries 3 or 4 risk alleles, one has higher chance of having high LDL blood levels, 

and as a consequence, higher risk for cardiovascular disease. 

Interestingly, 3 pairs of SNPs (LPL + CELSR2, APOB + HMGCR, LDLR+NCAN) that were 

identified with this analysis to fit in the ͞additive͟ model correspond to genes that 

were identified as interactors for LDL-uptake in my co-RNAi screen (see Fig. 35). 
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Figure 35. SNP co-occurrence effect on lipid levels for the 3 SNP pairs from Bioimage cohort that 

correspond to gene interactions from my co-RNAi screen 

(A) The lipid levels (HDL, LDL, TG) in individuals where both SNPs are present (2 SNPs) versus 

individuals carrying 1 of the two SNPs (1 SNP) or no SNP for the three SNP pairs that were identified 

as having an additive effect in the Bioimage cohort and were interactors in my co-RNAi screen. (B) The 

lipid levels (residuals) for HDL, LDL and TG (y axis) are plotted against the total number of LDL-

increasing alleles (x axis), in cases of SNP co-occurence (2, 3 or 4 risk alleles) and non co-occurence (0 

or 1 risk alleles), for the three SNP pairs that correspond to genes that interacted on LDL uptake in my 

co-RNAi screen. The gene mapped closest to each SNP is shown above the SNP ID. 
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For these three SNP pairs, I extracted from the Bioimage cohort data the lipid levels 

for the individuals for which a pair of SNPs co-occurred, and compared the average 

to that of the individuals for which they did not co-occur (Figure A). For all three 

pairs, LDL levels increased in the case of co-occurrence. In addition, for CELSR2+LPL 

also HDL and TG increased. Furthermore, I checked the relationship between the 

total number of risk alleles and the lipid levels (Figure B), in individuals with 2, 3 or 4 

risk alleles (SNP co-occurence), and with 0 or 1 risk alleles (no SNP co-occurrence). 

For 2 out of 3 SNP pairs, the LDL levels increased proportionally to the number of risk 

alleles, whereas for 1 pair (APOB+HMGCR) LDL increased only in the case of 4 risk 

alleles. For CELSR2+LPL, also the TG increased proportionally to the risk alleles.  

 

I then performed the same analysis for those interactors of my co-RNAi screen, 

which are mapped close to SNPs that were present on the Exome Chip, or had 

proxies that were present on it (PCSK9+TMEM57, LDLR+MLXIPL, LDLR+HAVCR1, 

MLXIPL+HAVCR1), as well as for the triplet LDLR+MLXIPL+HAVCR1. For the three 

pairs LDLR+MLXIPL, LDLR+HAVCR1, MLXIPL+HAVCR1, as well as for the triplet 

LDLR+MLXIPL+HAVCR1, the LDL levels increased proportionally to the number of risk 

alleles. Specifically for LDLR+HAVCR1, LDL levels rised from negative residual values 

to zero. In the case of MLXIPL+HAVCR1, this was also true for TG levels. Interestingly, 

for PCSK9+TMEM57 the LDL levels significantly increased when one allele of each 

SNP was present, but decreased when there was homozygosity for at least one of 

two SNPs (3 or 4 risk alleles) (see Fig. 36). 

 

 
Figure 36. SNP co-occurrence effect on lipid levels for the 4 gene pairs and 1 triplet from the gene 

interactions of my co-RNAi screen that are mapped close to SNPs on the Exome Chip used for the 

Bioimage cohort  
(A) The lipid levels (HDL, LDL, TG) in individuals where both SNPs are present (2 SNPs) (or 3 SNPs for 

LDLR_MLXIPL_HAVCR1) versus individuals carrying 1 of the two SNPs (1 SNP) or no SNP, for the four 

gene pairs and one triplet that were interactors in my co-RNAi screen and are mapped close to SNPs 

of the Exome Chip used for genotyping in the Bioimage study.  (B) The lipid levels (residuals) for HDL, 

LDL and TG (y axis) are plotted against the total number of LDL-increasing alleles (x axis), in cases of 

SNP co-occurence (2, 3 or 4 risk alleles)) and non co-occurence (0 or 1 risk alleles), for the same gene 

pairs. For the triplet LDLR_MLXIPL_HAVCR1, SNP co-occurrence: 3, 4, 5 or 6 risk alleles, while non co-

occurrence: 2 risk alleles. The gene mapped closest to each SNP is shown above the SNP ID. 
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4 DISCUSSION 

In the present study, a combinatorial RNAi screening approach was used to explore 

gene interaction networks underlying human cholesterol regulation, with respect to 

CVD. The identification through GWA studies of genes associated with lipids and CVD 

has only to a minor extent explained the genetic architecture of common disorders 

such as dyslipidemias and CVD. A probable reason for this is that common disorders 

are assumed to arise from a complex interplay between many genes (Farhan and 

Hegele 2013); therefore genes need to be studied in combination, rather than in 

isolation. Considering that a deregulation in cholesterol homeostasis, is a well 

established major risk factor for CVD (Brown and Goldstein 1974, 1986), I envisaged 

that by studying the genetic networks behind cholesterol regulation I could shed 

more light on the genetic architecture of CVD.  

With a view to investigating the underlying network connectivity of genes associated 

with the disease, I tested for interactions those genes that had been associated in 

GWA studies with lipid traits, CAD and/ or MI. Additionally, the genes that were 

selected to be tested were already shown to have a functional effect on cholesterol 

regulation (Blattmann et al. 2013). Interestingly however, most of the effector genes 

identified by Blattmann et al. only showed moderate effects on LDL uptake upon 

their depletion via RNAi. This finding further supports the notion that the combined 

action of two -or more- genes, rather than that of individual genes could account for 

the regulation of the complex cholesterol homeostasis (Pirucello and Kathiresan 

2010).  

With an aim to enrich the query set with genes carrying low-frequency and rare 

variants, that are poorly captured by GWA studies, the gene selection was made 

from a juxtaposition of the functional profiling data (Blattmann et al. 2013) with 

genotyping data from a recent Exome Chip of 75k individuals (Peloso et al. 2014), 

which were tested for associations with blood lipid traits.  

With respect to reducing the gene combinations, I followed a focused screening 

design with a set of 30 genes, which were tested for pairwise interactions. Solid-

phase reverse transfection in siRNA-spotted microarrays was employed together 

with a cell-based functional assay to test the effect of combinatorial gene depletion 
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on the uptake of LDL-cholesterol from cells. Using high-content automated 

microscopy and computational analysis, 35 gene-gene interactions were identified 

(at FDR of 1%) out of 435 pairwise gene combinations (excluding reciprocals).  

Following up the identified gene interactions, a number of secondary experiments 

were performed. First, correlation of the gene knockdown level with the functional 

effect was investigated. Secondly, the effect of the double knockdowns of 

interacting gene pairs on LDLR mRNA and protein levels, as well as on SREBF1a and 

SREBF2 mRNA levels was assessed. Moreover, a gene-gene interaction model 

network was constructed based on results obtained, by overlapping them with 

available information from STRING database. 

The sub-network of the three genes; HAVCR1-LDLR-MLXIPL was prioritized for more 

detailed studies. Preliminary results with these candidates suggest a previously not 

described function for HAVCR1 and MLXIPL in LDL uptake and a collaborative role of 

these two genes with LDLR in cholesterol homeostasis.  

In parallel, 19 variants of a prominent interactor identified by the co-RNAi screen, 

HAVCR1 were tested for their effect on LDL uptake upon overexpression of their 

GFP-tagged constructs. 15 of those variants were rare (MAF<5%). This was done with 

two aims; (1) to show the significance of rare variants in complex traits and (2) to 

further evidence a key role of HAVCR1 in cholesterol homeostasis, suggested from 

the findings of the co-RNAi screen. 

Finally, in an effort to place the identified genetic interactions in a disease context, a 

cohort of >4,000 individuals in high risk for CVD (Bioimage study (Muntendam et al. 

2010)) was tested for SNP-SNP interactions, among the lead SNPs of the genes 

investigated with the co-RNAi screen. This was performed in collaboration with 

Heiko Runz (Merck Research Laboratories, US) and the analysis was done by Gulum 

Kosova.  

In this section discussed in detail are: the model system (4.1) and the functional 

assays (4.2) used in the present study, as well as the candidate gene selection 

strategy (4.3). Moreover, the screening approach (4.4) and the gene interaction 

analysis (4.5) are discussed. In addition, the results of the co-RNAi screen are 

evaluated (4.6), and hypotheses for mechanistic interpretation of the selected sub-

network LDLR-MLXIPL-HAVCR1 are provided (4.7). Next, the effect of overexpression 
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of HAVCR1 mutations is discussed (4.8), and finally, the co-occurrence of SNPs of the 

tested candidate genes is examined (4.9). 

 

4.1 THE USE OF HELA CELL LINE AS A MODEL FOR CHOLESTEROL HOMEOSTASIS 

Using a cell line to model human disease can be considered as reductionism. An in 

vitro disease model system allows studying the tissue of interest in isolation from the 

rest of the body, thus removing effects resulting from the organic, systemic or 

organismal level. Therefore, the effect on cholesterol regulation that is observed 

upon the depletion of a gene product in a cell line might not be the same in an 

animal model, where the cholesterol regulating system of the whole organism is 

present. Furthermore, the identification of genes that affect cholesterol homeostasis 

in vitro does not necessarily guarantee that these genes will explain the disease risk 

in humans. However, the co-RNAi screen that was performed in this study was 

different from other in vitro RNAi screens, because it had the advantage of testing 

genes, which had already been associated with the disease in GWA and genotyping 

studies. For this reason, the chances that genetic interactions identified with this 

screen will be causally related to the disease, are much higher than for other 

completely unbiased RNAi screens. Furthermore, the study of Blattmann et al. 

(Blattmann et al. 2013) has already demonstrated the potential of the in vitro 

approach to identify cholesterol-regulating genes within GWAS loci.  

In this study, HeLa Kyoto cells were used, an epithelial cell line which derived from 

cervical cancer. HeLa cells have been widely and successfully used in research of 

many diseases unrelated to cancer, such as AIDS and poliomyelitis etc. These cells 

have many characteristics that make them the cell line of choice; they are easy to 

culture, their doubling time is less than that of other cancer cells, they grow in 

monolayers and they are adherent. HeLa Kyoto is a strongly adherent version of this 

cell line. These features make them very suitable for high-throughput microscopy.  

Furthermore, these cells are very well characterized, as they have been recently 

sequenced (Landry et al. 2013). 

Nonetheless, the suitability of HeLa cells for the study of cholesterol regulation, 

instead of a liver cell line, can be viewed as controversial by some researchers. 

Importantly however, it has been demonstrated that although the liver plays a 
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central role in cholesterol metabolism, the extrahepatic tissues are responsible for 

more than 80% of the total sterol synthesis (Dietschy et al. 1993). Moreover, 

extrahepatic tissues are responsible for the clearance of about 30% of the LDL 

cholesterol. For these reasons, HeLa cells are considered to be a satisfactory model 

system for cholesterol homeostasis modeling. What is more, LDLR expression levels 

in Hela Kyoto cells are comparable to other liver-derived cell lines, such as Huh7 and 

HepG2 (not shown here), which are generally used to study cholesterol homeostasis. 

In addition, most hepatic cell lines are not suitable for automated high-throughput 

microscopy experiments, due to reasons such as aggregate formation and variable 

cell morphology. Besides, non-hepatic cell lines (such as fibroblasts, aortic 

endothelial, or alveolar epithelial cells) have been extensively used in cholesterol 

studies and our current knowledge of cellular cholesterol trafficking derives mainly 

from such studies (Ikonen 2008). 

One possible downside of the use of HeLa cells for the co-RNAi screen is that out of 

the 30 genes tested, seven genes were not detected in the transciptome, six out of 

those were neither detected in the proteome. However, five of the respective 

proteins (HAVCR1, NCAN, SEZ6L, CXCL12, MYBPHL) were not detected in neither of 

ten other cell lines (including the liver-derived cell line HepG2) tested in a 

comparative proteomic analysis (Geiger et al. 2012). An off-target effect for these 

genes is ruled out, since more than one siRNA targeting each of those showed an 

effect in Blattmann et al. (Blattmann et al. 2013). Hence, it is likely that these five 

genes are expressed under detection levels in tissue culture cells.  

 

4.2 ASSESSING FUNCTIONAL ASSAYS 

In order to identify genetic interactions, a phenotypic trait has to be evaluated. 

Binary phenotypic readouts were assessed in early genetic interaction studies, such 

as cellular fitness. However, analysis of quantitative phenotypes is much more 

informative, as it allows the detection of more subtle interactions and furthermore 

their classification into positive and negative ones.  

In the present study, the uptake of fluorescently labeled LDL (DiI-LDL) from cells was 

used as phenotypic readout, which can be quantified. The phenotypic readout was 

obtained through performance of the LDL-uptake assay, a well established cellular 
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assay (Gilbert et al. 2009; Pitas et al. 1981), that has been previously applied in high-

throughput screens by our group (Bartz et al. 2009; Blattmann et al. 2013). Thus, the 

LDL-uptake assay was suitable for high-throughput screening as well as for 

systematic functional analysis of perturbed human cells. 

The aforementioned assay measures the ability of cells to endocytose LDL 

cholesterol, thus clearing it from the bloodstream. Therefore, LDL uptake is a key 

process to achieve balanced cholesterol levels in the circulation, and subsequently 

avoid atherosclerosis and CAD. Hence, the LDL-uptake assay closely reflects the role 

of the cells in regulating extracellular lipid levels and this is why it was selected in the 

present study. 

 

4.3 EVALUATION OF CANDIDATE GENE SELECTION STRATEGY 

The approach followed for candidate gene selection for the co-RNAi screen turned 

out to be very efficient resulting in many hits. The gene set was carefully selected to 

contain both known cholesterol regulators as well as genes not previously 

functionally related to cholesterol homeostasis, and completely uncharacterized 

genes. Specifically, of the 30 candidate genes, 8 were already linked to cholesterol 

regulation (LDLR, LDLRAP1, PCSK9, MYLIP, HMGCR, LPL, APOB, APOE), and 2 

additional (MLXIPL, PAFAH1B1) were linked to lipid homeostasis by GO (Gene 

Ontology) annotation. The remaining 20 genes had not been previously linked to 

lipid homeostasis. Moreover, for 5 of those (CELSR2, FAM174A, MYBPHL, SIK3, 

TMEM57) no functional information was available in the literature (see Tbl. S5).  

Interestingly, genes with a well-defined cholesterol regulatory function, such as 

SREBP, SCAP, INSIG and LXR were entirely absent from GWAS, and therefore from 

the co-RNAi screen as well. The lack of GWAS-identified disease-associated SNPs in 

these genes might be either due to the highly detrimental effect of those SNPs, 

which are therefore removed by purifying selection, or due to their low frequency 

that renders them unlikely to be detected by GWAS. On the other hand, genes 

regulating cholesterol removal (such as ABCA1, ABCG5, ABCG8) or storage (such as 

LCAT) were reported in GWAS but did not show a significant effect on LDL uptake or 

cholesterol levels upon depletion (Blattmann et al. 2013), therefore were not 

included in the co-RNAi screen. 
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It has commonly been assumed that strong epistatic interactions are detected 

between genes with small main effects (Phillips 2008), although contrasting theories 

support that interactions are more likely to occur between alleles with more severe 

effects (Crow 1990). With this consideration in mind, I selected for the interaction 

screen both genes with a small individual effect (such as CELSR2) and genes with a 

stronger effect (such as LDLR) on LDL uptake and/or total cholesterol levels 

(Blattmann et al. 2013).  

Nonetheless, not all genes with a single phenotypic effect in Blattmann et al. were 

selected for the co-RNAi screen. Ideally, one could select all the 55 genes that were 

effectors in the aforementioned study. This would though result in 3025 pairwise 

combinations to be tested, as compared to 900 that correspond to 30 candidate 

genes. However, it needs to be pointed out that the current gene selection was not 

meant to be exhaustive for the gene interactions that affect cholesterol regulation, 

but rather highly enriched in gene interactions that could be then followed up by 

more experiments. 

Moreover, it should be noted that the candidate genes from Blattmann et al. 

originate from GWA studies, which are only powered to detect common variants. 

With an aim to more efficiently address the missing heritability problem (see section 

1.1.3.2.1), genes with rare variants associated to lipid traits were also included in the 

screen. Therefore, the results of the Blattmann et al. were juxtaposed to those of a 

genotyping study for lipid traits (Peloso et al. 2014). In this study, a cohort of 

>70,000 individuals was genotyped for LDL-c, HDL-c and TG (Peloso et al. 2014). 

Specifically, the genotyping was performed with the Illumina HumanExome array, 

which was built to contain coding sequence variants discovered from the exome 

sequencing of ~12,000 individuals. In this way, low-frequency and rare variants were 

associated with lipid traits.  

All 30 candidate genes selected for the interaction screen contain or are located 

adjacent to SNPs identified by GWAS to be associated with blood lipid levels (LDL, 

HDL, TG, TC), CAD and/ or MI (Blattmann et al. 2013). Namely, these genes are 

residing in loci associated with cardiovascular disease risk, either directly or 

indirectly -through association with causal risk factors for the disease. As a 
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consequence, interactions detected among these genes would be immediately 

associated with cardiovascular disease risk.  

What is more, 23 of these genes (see Tbl. S2) contain rare variants which showed a 

significant association with lipid traits in the aforedescribed genotyping study 

(Peloso et al. 2014). The analyzed cohort consisted at large of participants of 

cardiovascular disease studies, in which affected individuals presented with 

atherosclerosis, MI and/or CAD. Hence, the genes investigated in the co-RNAi screen 

performed in the present study have a direct relation with CVD. 

 

4.4 EVALUATION OF THE CO-RNAI APPROACH 

The concept of studying gene-gene interactions via the systematic co-depletion of 

genes and the analysis of a quantitative phenotype has already been implemented 

on metazoan cells, including C. elegans (Lehner et al. 2006; Tischler et al. 2006), 

Drosophila cells (Billmann et al. 2016; Horn et al. 2011), mouse (Roguev et al. 2013) 

and human cell lines (Barr and Bakal 2015; Laufer et al. 2013; Wang et al. 2014). 

Using co-RNAi, multiple genes can be targeted for depletion at the same time, thus 

enabling the observation of phenotypic outcomes that arise from the combined 

contribution of functionally connected genes. This is a powerful approach to reveal 

functional relationships between previously unrelated genes, as well as to yield 

important information concerning the biological pathways in which the genes take 

part. Moreover, by constructing the genetic interaction profile of a gene, that is the 

total of genetic interactions in which it participates, the function of a previously 

uncharacterized gene can be inferred. 

One aspect of the co-RNAi approach that needs to be taken into account is that we 

frequently obtain only partial depletion, rather than complete abolishment of the 

gene product through RNAi-mediated knockdowns. The inhibition of gene 

expression induced by RNAi depends on the knockdown efficiency of the siRNA used, 

the stability of the gene product, as well as regulation of gene expression by 

feedback mechanisms. Intermediate gene expression levels lead to the emersion of 

partial phenotypes (hypomorphs) that would not be observed otherwise. This has 

both drawbacks and benefits; one drawback is that the outcome of the simultaneous 

complete depletion of the two gene products cannot be observed. This would show 
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the effect of the complete absence of function of both genes. On the other hand, 

however, the incomplete knockdowns result in substantially reduced gene 

expression levels but sufficient for their viability, which is crucial in the case of 

essential genes. In addition, partial phenotypes have been shown to frequently yield 

biologically meaningful genetic interactions (Schuldiner et al. 2005). Moreover, the 

intermediate expression levels achieved through RNAi result in phenotypes very 

closely resembling those of patients carrying partial loss-of-function mutations in the 

respective genes. Thus, the RNAi-mediated reduction of gene expression, which can 

be tuned, can lead to different levels of residual gene activity, which is 

physiologically relevant and therefore its effects can be very informative.   

 

4.5 EVALUATION OF THE GENETIC INTERACTION ANALYSIS 

The statistical analysis of genetic interactions is challenging in the aspects of their 

definition, detection and interpretation. A genetic interaction is considered as an 

unpredictable phenotype that emerges from the combination of two or more alleles. 

However, different mathematical definitions have been provided, as it is not 

straightforward to predict in which way individual alleles combine to produce a 

phenotype (Mani et al. 2008).  

In this study, one of the most commonly used approaches was used, deviation from 

additivity. This approach is based on the original definition of statistical epistasis by 

Fisher in 1918, in which the effect on a quantitative phenotype of two alleles at 

different loci deviates from additivity in a statistical model (Cordell 2002; Fisher 

1918). Under an additive model, each allele is assumed to have an additive 

contribution to the phenotype, in such a way that the phenotype of the double 

mutant equals the sum of the two mutants, in the case of no genetic interaction. In 

this context, in order to detect genetic interactions in the present study, the 

observed double knockdown phenotype was compared to the expected one, which 

would equal the sum of the two single ones.  

Different statistical models and computational methods have been employed for the 

detection of genetic interactions. For the modeling of quantitative traits, a popular 

choice is linear regression (Gilbert-Diamond and Moore 2011). Here, I applied linear 

regression to model the ability of cells to endocytose cholesterol, which is a 
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quantitative phenotype. In linear regression analysis, the relationship between a 

continuous dependent (͞outcome͟) variable (Y) and one (simple linear regression) or 

more (multiple linear regression) continuous independent (͞predictor͟) variables (X1, 

X2, etc.) is modeled. Here, multiple linear regression was used to model the amount 

of fluorescently-labeled cholesterol uptake (Y), as a function of two single 

knockdown phenotypes (X1, X2). In this model, which corresponds to an additive 

model, the expected outcome phenotype for a pair of non-interacting genes is the 

sum of the two single-gene effects (main effects).  

In the current combinatorial RNAi screen two different approaches were followed to 

estimate the main effects of single siRNAs. In the first one, the main effect of a query 

siRNA was estimated from the combinations of the siRNA with the nontargeting 

control partner siRNA (NEG9), whereas in the second approach the main effects 

were estimated from all double RNAi measurements that included the query siRNA. 

The first approach is used when among the investigated gene siRNAs there are many 

with measurable knockdown effects, whereas the second one is used when the 

majority of them show negligible effects (Horn et al. 2011; Laufer et al. 2014). Since 

most of the siRNAs did not have a strong phenotypic effect, both approaches were 

applicable in this case.  

Genetic interactions can be easily modeled with linear regression, using a standard 

desktop computer and a statistical package, such as the package MASS  of the R 

software environment, which was used here. Moreover, the mathematical theory 

behind linear regression analysis of interactions is very well characterized.   

Once a model for genetic interactions has been established, the fitted model, as well 

as the detected interactions, need to be interpreted. That is to say, etiological 

inferences need to be made from the computational model, in order to deduce what 

is the biological relevance of the interactions detected. More specifically, it should 

be clarified how two genes combine to associate with a trait or a disease. At this 

point, it is critical to stress that the genetic interactions tested for with this analysis 

are statistical interactions and not physical interactions (Cordell 2009; Phillips 1998, 

2008). In other words, the fact that two genes have an unexpected combinatorial 

effect on an observed phenotype does not necessarily mean that the corresponding 
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gene products physically interact. The exact nature of the interactions has to be 

further investigated.   

 

4.6 RESULTS OF THE CO-RNAI SCREEN 

The simultaneous co-depletion of two different gene products with RNAi showed 

both expected as well as unexpected results. For instance, the majority of siRNAs 

had a down-regulating effect on LDL uptake when co-transfected with LDLR siRNA, 

which was similar to the effect of LDLR single knockdown, demonstrating that the 

effect of LDLR was dominant over the other gene (see Fig. 14). This result is in 

accordance with the essential role of LDLR on LDL-uptake, since in absence of 

functional LDL receptors at the plasma membrane, LDL cannot be efficiently 

endocytosed (Goldstein et al. 1985). Only in two cases the co-knockdown of LDLR 

with a second gene did not result in a decreased LDL uptake; that of HMGCR and 

PVRL2.  

HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase) encodes for the rate-limiting 

enzyme in cholesterol biosynthesis pathway. Therefore, a knockdown of HMGCR 

would decrease cellular cholesterol synthesis and promote the uptake of cholesterol 

from the cell to compensate for low cellular cholesterol levels. This is in agreement 

with the results of my screen, where knockdown of HMGCR together with the 

negative control siRNA, or in combination with most other genes upregulated LDL 

uptake. The upregulating effect of HMGCR knockdown is counteracted by the 

downregulating effect of LDLR knockdown, and this results to a neutral effect, as 

expected. 

PVRL2 (Poliovirus receptor-Related protein 2), on the other hand, encodes for a 

membrane glycoprotein, which serves as a plasma membrane component of 

adherence junctions and has no described connection to cholesterol homeostasis. Its 

single knockdown had no significant effect on LDL uptake, but neither did however 

the co-knockdown with LDLR. This gene pair was identified as a positive interaction, 

as it alleviated the inhibitory effect of LDLR depletion on LDL uptake. As the function 

of this gene is at large uncharacterized, I cannot generate hypothesis to explain this 

unpredictable result.  
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Unexpectedly, the depletion of LDLRAP1 resulted to up-regulation of LDL uptake, 

which is in agreement with the previous study (Blattmann et al. 2013) but in contrast 

to existing literature on LDLRAP1. LDLRAP1 (alias; ARH) encodes for a known adaptor 

protein for LDLR, which promotes the internalization of the LDLR-LDL complex in 

hepatocytes, via clustering LDLRs to clathrin-coated pits (Garuti et al. 2005; He et al. 

2002; Sirinian et al. 2005). In addition, it has been shown that mutations in this gene 

lead to autosomal recessive hypercholesterolemia (ARH) (see section 1.3.2.3) due to 

defective internalization of the receptor-ligand complex (Cohen et al. 2003; Garcia 

2001). Therefore, it is expected that LDLRAP1 depletion would lead to down-

regulation of LDL uptake. One possibly explanation for the unexpected result might 

be that LDLR endocytosis in HeLa cells might be regulated differently. For example, it 

has been shown that in hepatocytes LDLRs are dispersed on the plasma membrane, 

whereas in fibroblasts they are clustered in coated pits (He et al. 2002). Moreover, 

DAB2, the alternative adaptor protein for LDLR, is expression at higher levels in HeLa 

cells than in hepatocytes (Maurer and Cooper 2006). Therefore, DAB2 could be 

substituting LDLRAP1 in the absence of the latter, and a co-depletion of both 

LDLRAP1 and DAB2 is probably required to give an effect on LDL uptake in non-

hepatic cells (Eden et al. 2007). 

The co-depletion of MYLIP with most other genes resulted to an up-regulation of LDL 

uptake, as expected. MYLIP (alias; IDOL: Inducible Degrader of the LDLR) encodes for 

an E3 ubiquitin ligase that promotes LDLR degradation, via its ubiquitination (Zelcer 

2009; Zhang et al. 2011). Therefore, depletion of MYLIP would lead to decrease LDLR 

degradation, therefore increased LDLR concentration at the plasma membrane and 

consequently increased LDL uptake. The up-regulating effect is reversed upon co-

depletion with LDLR, as expected, showing the dominance of LDLR effect over 

MYLIP.  

Unexpectedly, the knockdown of PCSK9 does not have an upregulating effect on LDL 

uptake, and its combinatorial knockdown with the other 29 genes has both 

upregulating and downregulating effect. PCSK9 (Proprotein Convertase 

Subtilisin/Kexin type 9) encodes for a protease which promotes the degradation of 

LDLR in lysosomes, after its internalization (Zhang et al. 2007). Consequently, 

depletion of PCSK9 would be expected to result in decreased LDLR degradation, and 
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subsequently increased LDL uptake. A possible reason for this contradiction to the 

literature results might be the use of a non-hepatic cell-line. PCSK9 has been shown 

to promote LDLR degradation in hepatocytes, however the role of the gene in our 

model system had not been studied so far.    

4.6.1 IDENTIFIED GENE-GENE INTERACTIONS  

The reliability of the screening approach and the appropriateness of the statistical 

model applied for the analysis of the co-RNAi screen data were corroborated by the 

identification of a well-known interaction pair; LDLR+LDLRAP1, which indicates that 

biologically meaningful interactions can be derived with this approach. The 

interaction between LDLR and LDLRAP1 (LDL Receptor Adaptor Protein) represents a 

well established genetic and physical interaction, as LDLRAP1 is known to interact 

with LDLR to achieve efficient endocytosis of LDLR (Garcia 2001; He et al. 2002) (see 

section 1.3.2.3).  

The primary analysis approach (control-based) of the interaction screen revealed 35 

interactions among 24 (APOB, APOE, BCAM, CELSR2, CXCL12, HAVCR1, HMGCR, 

LDLR, LDLRAP1, LPL, MLXIPL, MYBPHL, MYLIP, NCAN, PAFAH1B1, PCSK9, PVRL2, 

SEZ6L, SIK3, SORT1, TMEM57, TOMM40 and ZNF259) of the 30 genes tested, at p-

value<10-2. Seven of the candidate genes tested (BAZ1B, BCL7B, CBLC, FAM174A, 

PAFAH1B2, TM6SF2 and WDR12) did not participate in any interaction. Among the 

24 ͞interactors͟ (genes participating in interactions), were all 9 genes that had been 

previously linked to cholesterol regulation (see Table S5). The remaining 15 genes 

had no previously described cholesterol-regulatory function, except for the 

Blattmann et al. study, which showed ane effect of their depletion on LDL uptake 

and/or cholesterol levels (Blattmann et al. 2013). 

Of the 35 identified interactions, approximately one-third (11) resulted in an 

upregulation of LDL uptake (positive interaction effect), and two-thirds (24) 

downregulated LDL uptake (negative interaction effect) (see Tbl. 4). This finding is 

interesting, considering that the candidate gene set was equally enriched in genes 

with an individual positive (8 genes) or negative (8 genes) effect on LDL-uptake assay 

in Blattmann et al. (see Table S1). The prevalence of negative interactions among the 

screen hits is easily explained, taking into account the fact that these genes derive 
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from GWA studies and are associated to disease either directly (CAD/MI) or 

indirectly (lipid traits). It is therefore expected that depletion of the function of these 

genes would lead to decreased uptake of LDL-cholesterol from the cells, which 

results in increased circulating LDL levels, a risk factor for CAD/MI.   

The alternative analysis approach (sample-based) revealed significantly fewer 

interactions; only 2 gene-gene interactions were identified at the same threshold 

with the primary analysis (p-value<10-2), and 7 at a lower threshold (p-value<5x10-2). 

There was a 100% overlap between the hits of the two methods, at the same 

thresholds (see 3.1.7). However, the LDLR+LDLRAP1 interaction, as well as many 

other interactions that were later confirmed with secondary experiments were 

missed out with this analysis. Therefore, the first analysis approach was considered 

as more appropriate for the existing dataset.  

 

4.6.2 GENE INTERACTION VALIDATION 

In order to correlate the phenotypic effects with the knockdown efficiency, as well as 

to assess the effect of the detected interactions on the expression levels of LDLR and 

SREBP, the 32 double knockdowns that were identified as gene-gene interactions, 

along with the respective single knockdowns, were repeated with forward, liquid-

phase transfection, in a multiwell-plate format that allowed for these experiments. 

Surprisingly, for many genes (13 out of 23 taking part in interactions) more 

penetrant gene knockdowns were observed than in the screen. As in many cases the 

single knockdown phenotypes were stronger upon forward transfection, the double 

knockdowns were not able to further potentiate the effect of the singles, and 

therefore the interaction could not be detected (see Fig. S1a). 

For this reason, the siRNA concentrations had to be adjusted for those genes 

showing a more penetrant knockdown in forward transfection, in order to achieve 

the same single knockdown phenotypes as in the screen, and consequently replicate 

the initially detected interactions (see Fig. S1b).  

There might be various reasons why siRNA-mediated knockdowns were shown to be 

more penetrant in forward, liquid-phase than in reverse, solid-phase transfection. 

First, a key difference between forward and reverse transfection is the condition of 

cells at the time of transfection. In solid phase transfection, the cells are transfected 
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at the moment that they are plated, as opposed to liquid-phase transfection, 

whereby the cells are transfected one day after they are plated. Consequently, in the 

two approaches the cells are in different condition at the time of the transfection. In 

addition, in reverse transfection the cells share the same growth medium in a 

spotted array, therefore secreted signals from cells on one spot might affect the 

phenotype of cells at a different spot.  

After adjusting the siRNA concentrations, 20 out of 35 gene interactions were 

reproduced with liquid-phase transfection (see Tbl. 4 and Fig. 17). These 20 hits had 

a statistically significant interaction effect, which had the same direction as in the 

screen (up- or down-regulating of LDL uptake). Of the 20 replicated interactions, 

nearly one-third (6) had a positive effect on LDL update (positive robust Z score), 

while nearly two-thirds (14) had a negative effect on LDL update (negative robust Z 

score). Of those 20 interactions, one-quarter (5) were positive (positive interaction 

effect), while three-quarters (15) were negative (negative interaction effect) (see 

Tbl. 4 and Fig. 17). In addition, one more interaction that did not initially score as 

statistically significant, but seemed interesting to us (see section 3.3) was 

independently confirmed (LDLR+HAVCR1). Among the replicated gene interactions, 

the prevalence of negative interactions was obvious. As was aforementioned, this 

finding is rather expected due to the association of the tested genes with disease, a 

risk factor for which is the decreased clearance of circulating LDL by the cells.  

 

4.6.3 CORRELATION OF KNOCKDOWN EFFICIENCY WITH PHENOTYPIC EFFECT 

The model system that was utilized here for the study of genetic interactions is very 

complex and dynamic, as evidenced by several observations. First, the effect of many 

siRNAs that demonstrated higher knockdown efficiency (such as BCAM, PAFAH1B1, 

SIK3 in Tbl. 5) was milder than that of siRNAs resulting to lower knockdown (such as 

MLXIPL, TMEM57 and HMGCR in Tbl. 5). Taking into account that all siRNAs were 

transfected for 48 hours, different kinetics of gene expression and transcript 

processing might be causing this effect. Namely, the products of the genes tested 

could have dissimilar half-lives, and the period required for the attainment of new 

mRNA levels after siRNA-mediated degradation is related to those. Within a high-

throughput RNAi screen it is not feasible to achieve knockdowns at different time 
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points, because the functional assay is performed at the same time for a microarray 

spotted with many different siRNAs. However, for some genes longer knockdown 

periods might be required to achieve product depletion, which exceed that 

preceding the phenotypic readout. Therefore, measurements at different intervals 

might be needed in order to properly evaluate the efficiency of the siRNAs.  

Secondly, it was noticed that reduced amount of siRNA resulted in substantial 

increase/decrease of the effect for some genes (see Fig. S1b), while for others the 

phenotype remain at large unaffected. Moreover, the phenotypic effect of some 

siRNAs differed between the screen and the liquid-phase transfections (e.g. 

CXCL12+PAFAH1B1 in Tbl. 4 and Tbl. 5). These findings demonstrate that the 

cholesterol-regulating model system is sensitive and adapts to perturbations in order 

to achieve balance. 

The latter can be understood if we consider that multiple intertwined feedback 

mechanisms control cholesterol homeostasis in the cell. An outstanding example of 

feedback process is the aforedescribed INSIG-SCAP-SREBP system (see 1.3.2.2). 

Decreased cholesterol levels results in activation of the system, which turns on the 

cholesterol biosynthetic pathway (Brown and Goldstein 1997). The same system 

increases the expression of LDLR, leading to increased cholesterol uptake from the 

cell. Once enough cholesterol has been synthesized, it functions to shut down the 

INSIG-SCAP-SREBP system, thus closing the feedback loop (Brown and Goldstein 

2009). This paradigm demonstrates the potential of the cellular cholesterol-

regulatory machinery to efficiently respond to external stimuli through complicated 

processes.  

 

4.6.4 DOUBLE KNOCKDOWNS DEMONSTRATE THE IRREPLACEABLE ROLE OF LDLR  

Importantly, it was observed that in most cases the combinatorial depletion of LDLR 

with a second gene could not further potentiate the down-regulating effect of LDLR 

single knockdown on either LDL uptake or LDLR expression levels. As was already 

mentioned (section 4.6), the majority of siRNAs had a similar effect on LDL uptake to 

that of LDLR single knockdown when co-transfected with LDLR siRNA (see Fig. 14). 

This was also true for two of the four interactions of LDLR that were identified by the 

co-RNA screen: LDLR+LDLRAP1 (Fig. S2.7) and LDLR+MLXIPL (Fig. S2.10). Only in two 
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cases LDL-uptake was more inhibited upon double knockdown: LDLR+NCAN (Fig. 

S2.1) and LDLR+HAVCR1 (Fig. S2.21). However, the co-knockdown of LDLR with 

HAVCR1 could not further decrease LDLR mRNA (Figs. 21 and 22) or protein levels 

(Figs. 23 and 24). Neither could the co-knockdown with LDLRAP1 (see Figs. 21, 23, 

24). Nonetheless, co-depletion of LDLR with NCAN or MLXIPL resulted in lower LDLR 

transcript levels (Fig. 22). 

These findings demonstrate that the effect of LDLR on LDL uptake is dominant over 

most of the other genes tested. Upon LDLR depletion by siRNA, the amount of LDL 

receptors on the plasma membrane exceeds the lower threshold, and cannot be 

decreased more by co-knockdown with an siRNA targeting a second gene. This 

rationale is in accordance with the essential role of LDLR on LDL-uptake, since in 

absence of functional LDLRs at the plasma membrane, LDL cannot be efficiently 

endocytosed (Goldstein et al. 1985). Furthermore, the results from LDLR protein 

expression experiments again illustrate the epistatic effect of LDLR itself on its post-

transcriptional regulation. Hence, the unexpected effect of LDLR co-depletion with 

NCAN or MLXIPL on the transcriptional regulation of LDLR (Fig. 22) is considered very 

interesting and are discussed later (see sections 4.6.6 and 4.6.7). 

 

4.6.5 CONSTRUCTION OF A MODEL GENE INTERACTION NETWORK 

Aiming to uncover potential functional relationships among the identified interactors 

of the co-RNAi screen, a model gene-gene interaction network was constructed 

among all 30 genes tested in the screen, by overlapping the 21 validated gene 

interactions with known interactions from the STRING database. The overlap of the 

validated LDLR+LDLRAP1 gene interaction with an experimentally determined 

interaction from STRING showed that the screening approach employed can indeed 

identify interactions between cholesterol regulating genes (see section 4.6.1). The 

fact that only one out of eight experimentally determined interactions (pink lines in 

Fig. 29) from STRING was identified with the co-RNAi screen, could be due to the use 

of a single phenotypic readout for the identification of gene-gene interactions. 

Namely, only the effect on LDL uptake of combinatorial gene depletion was 

assessed, which means that any interactions implicated in cholesterol regulation but 

not implicitly in the endocytosis of LDL, would be probably missed out. Furthermore, 
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the interactions shown in STRING are not related to cholesterol metabolism, but to 

different cellular functions or processes. That is to say that the reported interactions 

were mapped under completely different experimental conditions and phenotypic 

readouts, and most likely concern other aspects of the cellular function. Moreover, 

false results from earlier work should also not be excluded. Therefore, an overlap is 

not necessarily expected. 

Noteworthy, in the constructed genetic interaction network most genes interact 

with only one or two genes, whereas a small number of genes have many 

interactions, such as HAVCR1, which interacted with 6 other genes, or LDLR and 

LDLRAP1 with 4 other genes each. This finding is consistent with the non-uniform 

topology of most cellular networks, where most of the nodes are sparsely connected 

having one or two links, whereas a few nodes are highly connected, having a very 

large number of links, and therefore serve as network ͞hubs͟ (Barabasi and Oltvai 

2004). Thus, the genes HAVCR1, LDLR and LDLRAP1 can be considered as ͞hubs͟ in 

the present network, which probably means that their role in the cholesterol-

regulatory pathways is quite central. Although the majority of genetically interacting 

genes belong to the same pathway or biological process, network ͞hubs͟ usually 

interact with many functionally diverse genes and tend to be pleiotropic (Costanzo 

et al. 2010). This means that each of these three aforementioned ͞hub͟- genes is 

likely to take part in a number of distinct pathways/ processes affecting LDL 

endocytosis. 

Noteworthy, the genetic interaction profile of a gene, namely the total of genetic 

interactions in which a gene participates, can give important information for the 

function of the gene, since genes taking part in the same pathway usually have 

similar interaction profiles (Costanzo et al. 2011). For example, I could hypothesize 

that HAVCR1 might take part in the same pathway as LDLRAP1, since their 

interaction profiles are similar -they both interact with BCAM, LDLR and SORT1, as 

well as with each other. 

 

4.6.6 HYPOTHESES FOR MECHANISMS OF GENETIC INTERACTIONS 

With regards to building hypotheses on the mechanisms of the identified gene 

interactions, a number of secondary experiments were performed. Asking if the 
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interacting genes exert their effects via modulation of LDLR transcription and/or 

translation, the effect of the 21 validated interactions on LDLR mRNA and protein 

levels was measured. In addition, to determine whether the gene interactions 

regulate cholesterol homeostasis through the INSIG-SCAP-SREBP system via affecting 

SREBF transcription, the effect of the 21 gene-gene interactions on SREBF mRNA was 

also tested. 

The INSIG-SCAP-SREBP system, which regulates cholesterol homeostasis at a 

transcriptional level, has already been described (see section 1.3.2.2). The SREBF 

family in human consists of SREBF-1a, SREBF-1c and SREBF2, of which SREBF-1a and 

SREBF2 upregulate cholesterol synthesis (Goldstein and Brown 2015). Therefore, the 

effect on both SREBF1 and SREBF2 mRNA levels was measured.  

In the following part a few interesting interactions are discussed in detail. First I 

discuss three interactions (LDLR+LDLRAP1, LDLR+NCAN and SORT1+LDLRAP1) of the 

͞hub͟ genes of the identified network; LDLR and LDLRAP1.  

The pivotal role of LDLR and the accessory role of LDLRAP1 in cholesterol uptake 

were already described (section 1.3.2.3). Co-depletion of LDLR with LDLRAP1 

resulted in reduced LDL-uptake, at levels similar to those of single LDLR knockdown 

(Fig. S2.7). Hence, the interaction identified between the two genes is epistatic, and 

was reflected also at the post-transcriptional level of LDLR expression (Fig. 24). 

Moreover, the double knockdown increased SREBF2 mRNA levels (Fig. 25 and 27). 

This finding is expected taking into account that decreased endocytosis of LDL 

caused by the co-depletion of LDLR and LDLRAP1 results in reduced cellular 

cholesterol levels, which would need to be compensated for. An activation of the 

SCAP/SREBP system would increase LDLR expression as well as cholesterol synthesis, 

thus restoring LDL endocytosis and replenishing the cholesterol pool (Goldstein et al. 

2006). Normally, the SCAP/SREBP pathway could be turned on by simply 

transporting the available SCAP/SREBP complexes from the ER to the Golgi and 

cleaving SREBPs. However, upon high demand for cholesterol, an increase in SREBF2 

synthesis would be required, as observed here. 

NCAN (Neurocan) is located on 19p13.11 locus, which is associated with Tc levels. 

The co-depletion of NCAN with LDLR further potentiated the inhibitory effect of LDLR 

depletion on LDL uptake (Fig. S2.1). Additionally, the combinatorial knockdown of 
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the two genes further reduced LDLR mRNA levels (Fig. 22). Moreover, it alleviated 

the diminishing effect of the two single knockdowns on SREBF2 mRNA (Fig. 27). 

These findings suggest that the interaction of NCAN with LDLR might down-regulate 

LDLR transcription, via inhibition of SREBF2 transcription, thus leading to reduced 

LDL uptake. NCAN encodes for a surface proteoglycan, which may be involved in 

neuronal adhesion and neurite growth during development, via binding to neural cell 

adhesion molecules (Rauch, Feng, and Zhou 2001). Hence, one could alternatively 

hypothesize that NCAN depletion might interfere with the adhesion of the cells, thus 

indirectly affecting various other unrelated processes, including LDL endocytosis.   

SORT1 resides at the genomic locus 1p13, which has the strongest association to 

LDL-cholesterol, and is associated with CVD as well. Here, the co-depletion of SORT1 

and LDLRAP1 further potentiated the inhibitory effect of SORT1 depletion on LDL 

uptake (Fig. S2.6). SORT1 encodes for a transmembrane receptor of many ligands, 

including lipoprotein lipase (LPL), a triglyceride hydrolase (Nielsen et al. 1999). The 

main function of sortilin is the binding of ligands in the Golgi or at the plasma 

membrane and their trafficking to the lysosome. Loss-of-function studies in LDLR-/- 

mice demonstrated that sortilin binds LDL at the cell surface, contributing to the 

non-LDLR-mediated uptake of LDL, and mediates its lysosomal degradation (Strong 

et al. 2012).  

Taking the above into account, the combined effect of SORT1 and LDLRAP1 on LDL 

endocytosis can be explained, since SORT1 takes part in non-LDLR-mediated uptake 

of LDL (Patel et al. 2015), whereas LDLRAP1 is involved in LDLR-mediated uptake of 

LDL (Garuti et al. 2005; Maurer and Cooper 2006), which are two parallel and 

convergent pathways (see Fig. 9). In addition, the co-knockdown of SORT1 and 

LDLRAP1 resulted in the reduction of both SREBF1 (Fig. 26) and SREBF2 mRNA (Fig. 

27). This suggests that co-depletion of the two gene products might downregulate 

LDL uptake by inhibiting LDLR synthesis, via reduction of SREBF1 and SREBF2 

transcription.  

Sortilin has been also implicated in atherosclerosis, though existing reports are quite 

contradictory (Mortensen et al. 2014; Patel et al. 2015). Hence, SORT1 appears to 

have a key role in LDL metabolism and CAD (Tall and Ai 2011), and the clarification of 

its synergistic contribution with LDLRAP1 to both of them is needed. 
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Secondly, two more interesting interactions are now discussed; PCSK9+TMEM57, 

NCAN+TOMM40. PCSK9 resides at the locus 1p36.11, whereas TMEM57 at 1p32.3. 

PCSK9 (proprotein convertase subtilisin/kexin type 9) encodes for a degrader of 

LDLR, while it also decreases the recycling of LDLR to the plasma membrane (see 

section 1.3.2.3). TMEM57 is a largely uncharacterized gene. The combinatorial 

knockdown of PCSK9 with TMEM57 strongly upregulated LDL uptake, inverting the 

effects of both single depletions (Fig. S2.20). This finding suggests that TMEM57 

might also affect the recycling of LDLR. Furthermore, the double knockdown of the 

two gene products reversed the inhibitory effect of both single knockdowns on 

SREBF1 transcription (Fig. 26), while it also alleviated the diminishing effect of both 

singles on SREBF2 mRNA (Fig. 27). Based on these results, I could hypothesize that 

the interaction between PCSK9 and TMEM57 might increase LDL uptake by affecting 

SCAP/SREBF-mediated LDLR synthesis.  

TOMM40 resides at the locus 19q13.32 and NCAN at the locus 19p13.11. NCAN was 

previously described. TOMM40 (Translocase Of Outer Mitochondrial Membrane 40) 

encodes for the channel-forming subunit of the translocase of the mitochondrial 

outer membrane (TOM) complex, which imports protein precursors into 

mitochondria. The combined depletion of NCAN and TOMM40 decreased LDL uptake 

(see Fig. S2.4) as well as LDLR mRNA levels (Fig. 22). In addition, it decreased SREBF2 

mRNA levels, having a similar effect to that of both single knockdowns (Fig. 27). 

These results suggest that the interaction of the two genes might reduce LDL uptake 

through down-regulation of LDLR transcription, induced via inhibition of SREBF2 

transcription. Based on the function of TOMM40, I could hypothesize that its 

interaction with NCAN might affect the trafficking of LDLR through mitochondria, 

subsequently disturbing its recycling back to the plasma membrane.  

The correlation of LDL-uptake with LDLR mRNA and protein as well as SREBF1 and 

SREBF2 mRNA levels for all 21 validated gene interactions is shown in Tbl. S18. For 

those that are not discussed here, the results were complicated and inconclusive. 

Therefore, further investigations are required for the elucidation of the underlying 

mechanisms. 
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4.6.7 THE GENE INTERACTION SUB-NETWORK: LDLR-MLXIPL-HAVCR1 

A very interesting sub-network of the gene interaction model network, which was 

selected for follow up, is that of LDLR-MLXIPL-HAVCR1. In this network, each gene 

has a combinatorial effect with the other two on LDL internalization. Specifically, the 

combinatorial knockdown of LDLR with MLXIPL (Fig. S2.10) or with HAVCR1 (Fig. 

S2.21) is potentiating the negative effect of LDLR knockdown on LDL uptake. 

Conversely, the combinatorial knockdown of HAVCR1 with MLXIPL (Fig. S2.5) is 

reversing the positive effects of the two single knockdowns, leading to a down-

regulation of LDL uptake. In order to construct hypotheses on the mechanistic 

interpretation of these interactions, one needs to take into account what has already 

been reported concerning the function of these genes.  

LDLR is a well-described gene that encodes for the receptor of LDL, and is 

responsible for its endocytosis, as was already described (see section 1.3.2.3). 

MLXIPL (MLX Interacting Protein Like) resides on locus 7q11.23, which is strongly 

associated with plasma triglycerides. MLXIPL, (also known as ChREBP: Carbohydrate 

Responsive Element Binding Protein) encodes for a transcription factor that converts 

excess hepatic carbohydrates to lipids (Cha and Repa 2007; Stoeckman et al. 2004). 

The mechanism of action of MLXIPL is similar to that of SREBP, the main difference 

being that MLXIPL is sensitive to glucose, whereas SREBP is sensitive to cholesterol. 

Specifically, upon increase of glucose levels MLXIPL upregulates the transcription of 

genes associated with glycolysis, lipogenesis and fatty acid synthesis (Park et al. 

2014). Noteworthy, the depletion of MLXIPL alone resulted in a 0.25 fold decrease in 

SREBF2 mRNA, whereas the combinatorial depletion with LDLR resulted in a slight 

increase of SREBF2 mRNA (Fig. 27 and 25). Taking the above into account, I 

hypothesize that MLXIPL might function as a activator of SREBF2 transcription in the 

presence of LDLR, while this effect is abolished upon LDLR depletion. Namely, when 

there is sufficient amount of LDL receptors on the plasma membrane, and 

subsequently adequate LDL-c is internalized, MLXIPL might function as an ͞on͟ 

switch for the SCAP-SREBP system. On the contrary, upon depletion of LDLR, MLXIPL 

might block SREBF2 transcription, thus allowing for the deactivation of SCAP-SREBP.  

MLXIPL was shown here to exert a combinatorial effect with LDLR on LDLR mRNA, 

further decreasing its levels (Fig. 22). However, MLXIPL depletion resulted in 
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increased LDL uptake (Fig. S2.10), which correlated with higher LDLR protein levels 

(Fig. 23). To explain these apparently contrasting results one has to take into account 

that mRNA and protein levels do not necessarily correlate. Various factors, including 

post-transcriptional modifications and protein half-lives could account for 

discrepancies between the two. The above findings could lead to the hypothesis that 

MLXIPL might function as a transcription factor of LDLR. Together with the 

aforedescribed results on SREBF2 mRNA, I could hypothesize that MLXIPL might 

participate in the regulation of LDLR transcription via controlling the SREBF2 

component of the SCAP-SREBF pathway. 

The genetic interaction identified by the screen between LDLR and MLXIPL, together 

with the secondary findings is very interesting, because MLXIPL has been 

demonstrated to protect against atherosclerosis (Sarrazy et al. 2015). In particular, it 

was shown that MLXIPL deletion in LDLR-/- mice resulted in faster atherosclerosis 

progression (Sarrazy et al. 2015).  

HAVCR1 (Hepatitis A Virus Cellular Receptor) -also known as TIM1 (T-Cell 

Immunoglobulin Mucin Receptor 1) or KIM1 (Kidney Injury Molecule 1)- resides at 

locus 5q33.3, which is strongly associated with plasma LDL and Tc levels. HAVCR1 

encodes for a receptor for hepatitis A virus and other viruses (s.a. Ebola virus), as 

well as for T-cells. Interestingly, it has been demonstrated that HAVCR1 can bind and 

internalize oxidized -and possibly also native- LDL, though the molecular mechanism 

has not been clarified (Ichimura et al. 2008). Hence, the synergistic effect of HAVCR1 

with LDLR on LDL uptake identified by co-RNAi (Fig. S2.21) could lead to the 

hypothesis that HAVCR1 might act as an alternative receptor for LDL, with lower 

affinity for LDL than LDLR.  

With a view to investigating this hypothesis, I performed some follow-up 

experiments for LDLR and HAVCR1. In order to examine if HAVCR1 could function as 

an alternative receptor for LDL, the effect of co-depletion of HAVCR1 and LDLR on 

LDL binding was compared to that of single depletion of HAVCR1. No significant 

difference was observed (Fig. 31). Furthermore, the effect of overexpression of GFP-

tagged wtHAVCR1 on LDL uptake in LDLR-depleted cells was compared to its effect in 

control cells. However, the overexpression of wtHAVCR1 could not rescue the effect 

of LDLR depletion on LDL uptake (Fig. 32). These findings contradict the initial 
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hypothesis that HAVCR1 might act as an alternative receptor for LDL, in the absence 

of LDLR. HAVCR1 might rather act as a chaperone for LDLR, thus promoting LDL 

uptake, as its combinatorial depletion with LDLR further inhibited LDL uptake (Fig. 

S2.21). 

Besides, HAVCR1 has also signaling functions, which are mediated via the tyrosine 

kinase phosphorylation motif located on its cytoplasmic tail (Fig. 37) (Tietjen et al. 

2014).   Therefore, an alternative hypothesis could be that HAVCR1 functions as a 

signaling factor in the LDL internalization pathway.  

Moeover, HAVCR1 demonstrated a synergistic effect with LDLR on LDLR mRNA (Fig. 

22) and protein (Fig. 24), which could suggest that HAVCR1 might affect the 

transcriptional and translational regulation of LDLR.  

Furthermore, HAVCR1 was reported to co-localize and interact in endosomes and 

lysosomes with NPC1 (Kuroda et al. 2015), the role of which in transporting 

cholesterol from late-endosomes and lysosomes has already been described (see 

section 1.3.2.3). Hence, HAVCR1 could take part in the endolysosomal trafficking of 

LDLR. Specifically, the mechanism of action of HAVCR1 might rather involve later 

steps of the LDL endocytosis pathway, occurring for example in the endo-lysosomal 

compartment.  

Elucidation of the role of HAVCR1 in LDL endocytosis and/or trafficking through 

testing the above hypotheses could moreover give insight into the contribution of 

this gene to atherosclerosis development, since HAVCR1 has been reported to 

attenuate atherosclerosis (Hosseini et al. 2015). 

 

 

 

 

 

 

 

Figure 37. Schematic representation of HAVCR1 protein structure.  

Glycosylation sites were predicted using NetOglyc and NetNglyc. 

(Adapted by permission from Macmillan Publishers Ltd: Nature Rev. Immun. Kuchroo et 

al., copyright 2003) 
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4.7 HAVCR1 RARE VARIANTS 

HAVCR1 was considered as a very interesting interactor in my co-RNAis screen, since 

its co-depletion with LDLR potentiated the effect of LDLR depletion on LDL uptake, 

and it also interacted with a number of other genes. Therefore, its role in LDL 

endocytosis was further examined, by testing the effect of variants of the protein. In 

particular, 19 variants were extracted from the Exome Variant Server 

(http://evs.gs.washington.edu/EVS/), which contains data from patients with 

extreme lipid traits and/ or atherosclerosis, as well as healthy individuals. Of the 19 

variants, 15 are rare (MAF<5%) and four are common (MAF>5%). Surprisingly, 

overexpression of 18 out of 19 tested variants of HAVCR1 in HeLa Kyoto cells had a 

significant inhibitory effect on LDL uptake (Fig. 33, 34). Of those variants, most are 

localized in the coding sequence of the extracellular domain of the protein; 

therefore they could affect PtdSer binding. Two variants (K317E, A343E) are localized 

in the cytoplasmic part, and could affect signal transduction. One variant (Y297C) is 

localized on the transmembrane part of the protein.  

Interestingly, four variants that were predicted as benign by Polyphen-2 (V156I, 

L179P, T207A and M158T) had a significant inhibitory effect as well, while on the 

other hand, a variant that was predicted as probably damaging (V138I) had no 

significant effect.  

The finding that almost all tested variants had an effect on LDL uptake could be due 

to factors not directly related to the uptake of LDL. Noteworthy, five of the variants 

that significantly decreased LDL uptake (V69G, D99H, N114S, A343E, S100G) had a 

toxic effect on the cells overall, decreasing the total cell number more than 50%, as 

compared to cells treated with the wild-type protein. Hence, these variants might 

interfere with more basic cell functions, such as cell growth, division or survival. 

However, the remaining ten variants with a significant effect on LDL uptake were not 

toxic for the cells. Therefore, the inhibition of LDL uptake caused by these variants is 

probably not attributed to decreased cell viability but rather directly related to 

endocytosis. These findings strongly suggest a role for HAVCR1 in LDL uptake, which 

is disturbed by these mutations. 

Nonetheless, it should be determined if the effect of HAVCR1 variants is specific to 

the endocytosis of LDL or is a rather general effect on clathrin-mediated endocytosis. 



 

 105 

For this, their effect should be further tested on the internalization of other ligands, 

such as transferrin or EGFR (epidermal growth factor receptor).   

 

4.8 SNP CO-OCCURENCE 

The genes that were tested in the co-RNAi screen are located in close proximity to 

lead SNPs of loci identified in GWA studies as associated with lipid traits and/ or 

CAD/MI. The identification of interactions among these genes implies the existence 

of synergistic combinations among the SNPs, nearby which the genes under study 

are mapped. Moreover, as many studies have shown that the co-occurrence of SNPs 

can predict the risk of getting diseases, a question that arises is whether the co-

occurrence of SNPs in genes identified to interact will be associated with increased 

CVD risk. 

In order to investigate SNP-SNP interactions and co-occurence, the total 144 lead 

SNPs for each of the 30 genes that were tested in the co-RNAi screen were tested for 

pairwise interactions in a cohort of 4893 individuals with subclinical atherosclerosis 

(Bioimage study) (Muntendam et al. 2010), in collaboration with Heiko Runz (Merck 

Research Laboratories, US). For the (70) SNPs that were present on the exome chip 

used for genotyping in the Bioimage study, as well as for the proxies of those not 

present, single-variant LDL association test was performed by Gulum Kosova, based 

on the allele-frequency of the LDL-raising allele.  

None of the SNP pairs tested showed a statistically significant interaction; one 

reason for this might be the relatively low size of the study sample. Specifically, the 

detection of epistatic effects requires measurements taken from very large 

population sizes, in order to obtain sufficient statistical power (Carlborg and Haley 

2004; Phillips 2008). Therefore, in order to bring non-significant detected SNP 

interactions to statistical significance, larger sample sizes probably need to be 

tested. 

Nonetheless, 36 SNP pairs showed a significant additive effect (see Tbl. S13). 

Namely, for these 36 pairs it was shown that plasma LDL increased proportionally to 

the number of LDL-increasing alleles. Interestingly, 3 SNP pairs (LPL + CELSR2, APOB 

+ HMGCR, LDLR+NCAN) that showed an additive effect, corresponded to genes that 

were identified as interactors for LDL-uptake in the co-RNAi screen (see Fig. 35). 
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These findings corroborate a synergistic effect for these genes in cholesterol 

regulation. 

Next, SNP co-occurrence was investigated for those interactors of the co-RNAi 

screen, which were mapped close to SNPs that were present on the Exome Chip, or 

that had proxies that were present on it (PCSK9+TMEM57, LDLR+MLXIPL, 

LDLR+HAVCR1, MLXIPL+HAVCR1), as well as for the triplet LDLR+MLXIPL+HAVCR1. In 

individuals showing co-occurrence of the corresponding SNPs, the LDL levels 

increased proportionally to the number of risk alleles. In the case of 

MLXIPL+HAVCR1, this was also true for TG levels. Interestingly, for PCSK9+TMEM57 

the LDL levels were significantly higher in the case of heterozygosity for both risk 

alleles (2 risk alleles), as compared to homozygosity for at least one of two risk 

alleles (3 or 4 risk alleles) (see Fig. 36).  

Overall, the SNP interaction/ co-occurence analysis demonstrated that lipid levels, 

and especially those of LDL strongly correlate with the total number of risk alleles 

present. Given the fact that elevated LDL levels increase the risk for CVD, the amount 

of lipid-increasing alleles also correlates with the disease risk.  
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5 IMPLICATIONS FOR FURTHER RESEARCH 

This study investigated genetic interactions underlying cholesterol homeostasis in 

human, and specifically LDL-cholesterol endocytosis. This was done in an effort to 

uncover gene networks that control complex polygenic diseases that arise from a 

deregulation in lipid metabolism, most importantly cardiovascular disease. With this 

study, genetic interactions were identified between previously unrelated genes, 

including also genes without a previously described role in cholesterol metabolism. 

For many of the identified interactions, hypotheses were constructed for the 

mechanistic interpretation of the synergistic effect of the genes on LDL endocytosis, 

based on corroborating effects on LDLR expression, as well as on the transcription of 

SREBF, the transcription factor of LDLR.  

However, the exact mechanisms of genetic interactions still need to be elucidated. 

Further experiments are needed to define if any physical interactions exist between 

the products of interacting genes, or between transcription factors and promoter 

sites. For instance, a potential protein-protein interaction between LDLR and 

HAVCR1 needs to be examined, in order to test the hypothesis of an assisting role for 

HAVCR1 in LDLR-mediated endocytosis. Moreover, potential interaction between 

MLXIPL transcription factor and LDLR or HAVCR1 should be examined, to test the 

hypothesis of a role for MLXIPL in the expression of the two genes. Furthermore, the 

effect of the detected gene interactions on different steps in the pathway of LDL 

endocytosis could be explored, such as the transport of LDLR back to the plasma 

membrane and the glycosylation of LDLR, which is required for its stable expression 

at the cell surface. In addition, the effect of gene interactions on the efficiency of the 

cell transport machinery, from the membrane to the endocytic compartments and 

from those back to the plasma membrane could be tested. Specifically, effects on 

COPII-mediated vesicle formation and its components -such as Sec23, Sec24 and 

Sar1- as well as on recycling endosomes and their components -such Rab11- could 

be tested.  

In parallel to the in vitro experiments, this study attempted to uncover SNP-SNP 

interactions in patients, between SNPs within or in close proximity to genes that 

were identified to interact. For this, a cohort of nearly 5000 individuals with 



 

 108 

subclinical atherosclerosis was genotyped and single-variant association analysis was 

performed for lipid traits. Statistically significant additive effects were detected 

between SNPs, but none of the SNP-SNP interactions reached statistical significance. 

To bring these interactions to statistical significance, two possible approaches could 

be considered; one is to repeat the analysis in a much larger sample that would 

increase the chances for epistasis detection. The second approach includes the 

correlation of the clinical findings with in vitro experiments, whereby two 

supposedly interacting SNPs could be simultaneously introduced, and their 

synergistic effect on cholesterol homeostasis could be monitored. In the future, in 

vivo experiments in animal models could be also considered, to model the effect of 

SNP-SNP interactions on cholesterol regulation and atherosclerosis development.    

All the approaches and experiments outlined above will increase the data to be 

assessed for the elucidation of genetic interaction mechanisms. The results of the 

present study lay the basis for more advanced investigations. A potential approach 

to a better understanding of the system could be integration of the generated data 

into a testable and predictive model. In this way, a better understanding of the 

complex nature of lipid traits and cardiovascular disease could be achieved. 
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6 MATERIALS 

6.1 EUKARYOTIC CELL LINES 

Cell line Tissue Supplier 

HeLa Kyoto Human cervical carcinoma S. Narumiya, Kyoto  

University, Japan (gift to  

J. Ellenberg, EMBL HD) 

HuH7   Human hepatocellular 

carcinoma 

Japanese Collection of Research 

Bioresources JCRB (#JCRB0403) 

(Nakabayashi et al., 1982) 

HEK293 Human embryonic kidney ATCC: CRL-1573  

Kai Simons, Dresden 

Sk-Hep1 Human ascites/ Liver 

adenocarcinoma 

ATCC: HTB-52 

Martin Beck Lab, EMBL 

HLE Human hepatoma Martin Beck Lab, EMBL 

HLF Human lung fibroblasts Martin Beck Lab, EMBL 

6.2 CELL CULTURE MEDIA 

Medium  Composition Supplier 

Fetal bovine serum (FBS)   PAA #A15-101 

L-glutamin  Sigma Aldrich #G7513 

Penicillin 10,000U-Streptomycin 10 

mg/mL (Pen-Strep) 

 Sigma #P0781 

DMEM (Dulbecco’s Modified Eagle 

Medium)  

With: Low Glucose (1g/L), L-

Glutamine, Sodium Pyruvate,  

Phenol Red  

GIBCO #31885-023 

Supplemented medium DMEM 1g/L glucose 

10% (v/v) FCS 

1% (v/v) L-glutamin 

Self produced 

Supplemented medium, with 

antibiotics 

DMEM 1g/L glucose 

10% (v/v) FCS 

1% (v/v) L-glutamin 

1% (v/v) P/S 

Self produced 

Starving medium DMEM 1g/L glucose 

1% (v/v) L-glutamin 

0.2% (v/v) BSA  

Self produced 

OptiMEM |Reduced Serum 

Medium 

 GIBCO #31985070 

0.05% Trypsin-EDTA   GIBCO #25300054 

Freezing medium DMEM 1g/L glucose 

1% (v/v) L-glutamin 

20% (v/v) FCS 

10% (v/v) DMSO 

Self produced 

Imaging Medium 30 mM Hepes 

115 mM NaCl 

1.2 mM CaCl2 

1.2 mM MgCl2 

1.2 mM K2HPO4 

2 g/l D-glucose 

Medium was adjusted to pH 7.4 

EMBL media kitchen 
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6.3 BUFFERS AND SOLUTIONS 

Buffer Composition Supplier 

1M HEPES (4-(2-hydroxyethyl-)piperazin-

1-ethansultonic acid) 

23.8% (w/v) HEPES (Biomol 

#05288.100) in ddH2O 

adjusted to pH 7.25, 

autoclaved 

Media kitchen 

MgCl2 0.5M MgCl2 in ddH2O Self produced 

MOPS (1x) running buffer NuPAGE® MOPS SDS running buffer 

(20x) 

Diluted to 1x in ddH2O  

Self produced 

PFA 3% fixation buffer 3% (v/v) PFA in PBS Pepperkok lab 

PBS (Phosphate buffer saline) 137 mM NaCl 

2.7 mM KCl 

1.4 mM KH2PO4 

4.8 mM NA2HPO4/Na2CO3 

Adjusted to pH 7.4, autoclaved 

Media kitchen 

Quenching buffer 30 mM glycine Pepperkok lab 

Methanol/Acetone permeabilization 

buffer 

50% Methanol 

50% Ethanol 

stored at -20
o
 C 

Self produced 

Saponin permeabilization buffer 0.1% (v/v) saponin in PBS Self produced 

Triton X-100 permeabilization buffer 0.1% (v/v) Triton X-100 in PBS Self produced 

Western blot blocking buffer 0.1% (v/v) Tween-20 

5% (w/v) milk powder  

in PBS 

Self produced 

Tris-HCl 0.5M  Trizma-base 6.06g 

Adjusted to pH 6.8 with HCl 

ddH2O to 100 ml 

Self produced 

Western blot sample buffer: SDS-loading 

buffer (2x) 

80 mM Tris-HCl 

10% Glycerol 

4.5% SDS 

130 mM DTT 

0.005% Bromoph. Blue 

Diluted in ddH2O to 10 ml 

Self produced 

Western blot (mild) stripping buffer for 

reprobing 

15 g glycine 

1 g SDS 

10 ml Tween20 

Add ddH2O to 1L 

Adjust pH to 2.2 

Bring volume up to 1 L with 

ultrapure water 

Self produced 

Western blot (harsh) stripping buffer for 

reprobing 

20 ml SDS 10% 

12.5 ml Tris HCl 0.5M pH 6.8  

67.5 ml ultra pure water 

0.8 ml ß-mercaptoethanol  

Self produced 

Western blot transfer buffer 25mM Trizma Base 

190mM Glycine  

20% MeOH  

for proteins > 80kDa add 0.5% SDS  

Dilute in ddH2O to 1 L 

Self produced 

Western blot wash buffer (PBS-T) 1% (v/v) Tween-20 in PBS 

 

Self produced 
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6.4 REAGENTS 

 

 
 

Reagent Manufacturer 

Ampicillin  Applichem #A0839.0025 

Benzonase nuclease, purity >90% Novagen Ϯϱ U /μl #70746 

Bovine serum albumin (BSA) Sigma #A7979 

Bromphenol blue Sodium Salt Applichem #A1120 

DiI-LDL Invitrogen #L3482 

Dimethylsulfoxide (DMSO) Merck Milipore #102952 

DRAQ5 Biostatus #DR50200 

Drying pearls orange Aldrich #94098 

1.4 Dithiothreitol (DTT) Sigma Aldrich #D0632-1G 

Ethanol Merck Millipore #100983 

Filipin III Sigma #F4767 

Gelatine Sigma #69391 

Gelatine from pig skin, Oregon Green®  488 

conjugate 

Molecular Probes #G13186 

Glycerol 85% pro analysis Merck #104094 

Glycerol 99.0-101.0% Sigma #15523-1L-R 

Glycine: GR for analysis Merck Millipore #56-40-6 

Hoechst, 1mg/ml Molecular Probes #H33342 

(2-Hydroxypropyl)-β-cyclodextrin  (HPCD) powder Sigma #C0926 

Hydrochloric acid  Merck Millipore #100317 

Lipofectamine 2000 Invitrogen #11668-019 

Magnesium chloride hexahydrate  Merck #1058331000 

β-mercaptoethanol  Sigma #M1511 

Methanol  Merck Millipore #106009 

Milk powder Reform, Granovita GmbH 

NuPAGE® MOPS SDS Running Buffer (20x)  Novex #NP0001 

Mowiol® 4-88  Calbiochem #475904 

Nonidet® P40 ( NP-40) Applichem #A1694 

Oligofectamine Invitrogen #12252011 

PageRuler Plus Prestained Protein Ladder Thermoscientific #26619 

Paraformaldehyde (PFA) 16% Solution EM Grade Electron Microscopy Science #15710 

Paraformaldehyde (PFA) powder EM grade Polysciences #00380-250 

Poly-L-lysine hydrobromide  Sigma #P6282  

Ponceau S  Applichem #A1405 

RNAse H 120U (2U/ml) Invitrogen #18021-071 

Saponin  Sigma Aldrich #47036 

Sodium Dodecyl Sulfate (SDS) 20% (w/v)  BioRad #161-0418 

Sodium hydroxide Merck Millipore #109137 

Sucrose  Affymetrix, USB # 21938 

SYBR Green  Applied Biosystems #4309155 

Triton-X-100  Sigma #T9284 

Trizma-base Sigma #T1503  

Tween-20  Sigma #P7949 

Water HPLC grade Sigma Aldrich #V270733 

Western Blotting Substrate, Pierce®  ECL Plus Thermo Scientific #32132 
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6.5 PLASMIDS AND OLIGONUCLEOTIDES 

6.5.1 PLASMIDS  

Plasmid ORF Tag ORF [bp] Total [bp] Supplier 

EX-EGFP-M03 eGFP C-eGFP  7033 GeneCopoieia 

EX-A0821-M03 LDLR C-eGFP 2583 8931 GeneCopoieia 

EX-Z7459-M03 SORT1 C-eGFP 2496 8844 GeneCopoieia 

EX-Z7374-M03 DAB2 C-eGFP 2313 8673 GeneCopoieia 

EX-H9327-M03 SEZ6L C-eGFP   GeneCopoieia 

EX-Z9616-M03 CXCL12 C-eGFP 423 6783 GeneCopoieia 

EX-Z0263-M03 HAVCR1 C-eGFP 1095 7443 GeneCopoieia 

EX-Z0263-M03 HAVCR1-W47R C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-V69I C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-V69G C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-D99H C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-S100G C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-R110C C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-N114S C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-V138I C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-T149A C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-V156I C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-T174M C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-L179P C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-T207A C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-E223stop C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-D264N C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-Y297C C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-K317E C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-A343E C-eGFP 1095 7443 Heiko Runz lab. 

EX-Z0263-M03 HAVCR1-M158T C-eGFP 1095 7443 Heiko Runz lab. 

6.5.2 PRIMER OLIGONUCLEOTIDES 

Gene Fwd primer 5΄->3΄ Rev pƌiŵeƌ 5΄->3΄ 
ACTB CCACGAAACTACCTTCAACTCC CTCGTCATACTCCTGCTTGCT 

BCAM GTGCGCTTGTCTGTACCC ATATAATGGTCGTGGGTTCC 

BCL7B CCCGAGAACCTAATGGCTTT CGGAACTCTGGTTGCTGTTT 

CELSR2 ATGACACGCTCATCTGGAGT AGGACCTTTCTTCTCAAAGCCC 

GAPDH CATGAGAAGTATGACAACAGCCT AGTCCTTCCACGATACCAAAGT 

HMGCR CCATCCCTGGGAAGTCATAG AGGATGGCTATGCATCGTG 

HRPT1 TGAGGATTTGGAAAGGGTGTT CAGAGGGCTACAATGTGATGG 

HSPC3 ATGGAAGAGAGCAAGGCAAA AATGCAGCAAGGTGAAGACA 

LDLR CGATGAAGTTGGCTGCGTTA GTTGCAGACTTTGTCCAGGG 

LDLRAP1 GTCGCCACGGGGAATTAT TTGTCGTGCATCTTGTCTG 

LPL GTGGCTACCTGTCATTTCAA GCACCCAACTCTCATACATTC 

MLXIPL CAGCAACAAGACCGAGAACC GCACTGAGTGTGCTCACGA 

PAFAH1B1 GTGTCTGCCTCAAGGGATAA ACGTACCCATTCTCTGTGTC 

PCSK9 GTGAAGATGAGTGGCGACC GTAATCCGCTCCAGGTTCCA 

PVRL2 CCTGATACCTGTGACCCTCT CCGAGGTACCAGTTGTCATC 

RPS18 TGTGGTGTTGAGGAAAGCA CTTCAGTCGCTCCAGGTCTT 

SDHA TGGTGCTGGTTGTCTCATTA ACCTTTCGCCTTGACTGTT 

SIK3 GGAGCAGGCAGGTACTGCTAT CTTCACCCTCATCACTGTCCAA 

SORT1 ATGGCTATTGGTCCTGAGAA TTCTTCGCAAAATCTGATGA 

SREBF1 CAGCATAGGGTGGGTCAAAT GAGCCGTGCGATCTGGA 
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6.5.3 SIRNA OLIGONUCLEOTIDES 

Gene 

Symbol 

siRNA ID Sense siRNA Sequence 5΄->3΄ AŶtiseŶse siRNA SeƋueŶce 5΄->3΄ 

APOB s1476 GCAAGUACCUGAGAACGGAtt UCCGUUCUCAGGUACUUGCtg 

APOE s1496 CUAGUUUAAUAAAGAUUCAtt UGAAUCUUUAUUAAACUAGgg 

BAZ1B s17209 CCUUCGUAGUGAUCUCAUUtt AAUGAGAUCACUACGAAGGaa 

BCAM s8338 CGACCAUUAUAUGCUGGAAtt UUCCAGCAUAUAAUGGUCGtg 

BCL7B s228480 AGACAUUGGAGGGAAGGGAtt UCCCUUCCCUCCAAUGUCUct 

CBLC s24223 GGGAGGCCGUGAGUAUCUAtt UAGAUACUCACGGCCUCCCag 

CELSR2 s4526 GACCCAGACUGCAACAAGAtt UCUUGUUGCAGUCUGGGUCaa 

CXCL12 s445518 CCAUGGAGGCACUAACAAAtt UUUGUUAGUGCCUCCAUGGca 

FAM174A s445532 CCGCGCCUAUGGUCCCUCUtt AGAGGGACCAUAGGCGCGGug 

HAVCR1 s230290 CGACUGUUCUGACGACAAUtt AUUGUCGUCAGAACAGUCGtt 

HMGCR s143 GGUUCGCAGUGAUAAAGGAtt UCCUUUAUCACUGCGAACCct 

LDLR s224006 CAGCGAAGAUGCGAAGAUAtt UAUCUUCGCAUCUUCGCUGgg 

LDLRAP1 s25120 CCAACCAGCUCAUUGAGAAtt UUCUCAAUGAGCUGGUUGGtg 

LPL s702 GCAACAAUCUGGGCUAUGAtt UCAUAGCCCAGAUUGUUGCag 

MLXIPL s27387 GCAAGCUGGUGUCUCCCAAtt UUGGGAGACACCAGCUUGCca 

MYBPHL s50998 UGAACCUACUAAUCCCAUUtt AAUGGGAUUAGUAGGUUCAct 

MYLIP s26522 GACUUUAGCCCAAUUAAUAtt UAUUAAUUGGGCUAAAGUCat 

NCAN s3648 GGCCUUCUGUAAACAGGAAtt UUCCUGUUUACAGAAGGCCat 

PAFAH1B1 s445574 GGAGGGACAUACCACUAUAtt UAUAGUGGUAUGUCCCUCCUU 

PAFAH1B2 s10001 GGAACAAAUAACCACGAAAtt UUUCGUGGUUAUUUGUUCCta 

PCSK9 s48694 GGAACAAAUAACCACGAAAtt atCCUUGUUUAUUGGUGCUUU  

PVRL2 s445582 GCAUUUCACCAUUCAAACAtt UGUUUGAAUGGUGAAAUGCcc 

SEZ6L s24052 GGCUAGAGCGCAGCGGGAAtt UUCCCGCUGCGCUCUAGCCuc 

SIK3 s445595 GCCUGAAAAUGGAUACCAAtt UUGGUAUCCAUUUUCAGGCag 

SORT1 s224557 GAAUGGUCGAGACUAUGUUtt AACAUAGUCUCGACCAUUCtg 

TM6SF2 s28703 GCUUCUUCGUGUGCAAUCUtt AGAUUGCACACGAAGAAGCag 

TMEM57 s30473 GCUUCGGAAAUAUAAGGAAtt UUCCUUAUAUUUCCGAAGCtc 

TOMM40 s20449 CACGCAACAUACUACCACAtt UGUGGUAGUAUGUUGCGUGca 

WDR12 s31441 GACUGGAUCAGUUCAAUUAtt UAAUUGAACUGAUCCAGUCat 

ZNF259 s445636 GCUCUUUCUGUAGGUUAUUtt AAUAACCUACAGAAAGAGCag 

INCENP s7424 AGUCCUUUAUUAAGCGCAAtt UUGCGCUUAAUAAAGGACUtc 

NPC1 s237198 CCAAUUGUGAUAGCAAUAUtt AUAUUGCUAUCACAAUUGGtc 

neg9 s444246 UACGACCGGUCUAUCGUAGtt CUACGAUAGACCGGUCGUAtt 

neg1 s813 UAACGACGCGACGACGUAAtt UUACGUCGUCGCGUCGUUAtt 

6.6 ANTIBODIES 

6.6.1 WESTERN BLOT ANTIBODIES 

6.6.1.1 PRIMARY WESTERN BLOT ANTIBODIES 

 
 

SREBF2 ATGGGCAGCAGAGTTCCTTC CGACAGTAGCAGGTCACAGG 

TMEM57 GAGGGATCCGCTCAGAAATGG GGCTTCCTGCTCAGCTTTTAG 

TOMM40 ATTCAGATGGAGGGTGTCAAG ATTGTGCTGAGGGCTACTGT 

Protein Host Supplier Cat. No. Clone Dilution 

a-Tubulin mouse Neomarkers  #MS581 monoclonal 1:10000 

LDLR rabbit BioVision 3839-100 polyclonal 1:1000 

LDLRAP1/ARH rabbit ProteinTech 13213-1-AP polyclonal 1:1000 
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6.6.1.2 SECONDARY WESTERN BLOT ANTIBODIES 

 
6.6.1.3 PRIMARY IMMUNOFLUORESCENCE ANTIBODIES 

 
6.6.1.4 SECONDARY IMMUNOFLUORESCENCE ANTIBODIES 

6.7 KITS 

6.8 EQUIPMENT 

6.8.1 MICROSCOPES 

 

6.8.2 OTHER LABORATORY EQUIPMENT 

Protein/Label Host Supplier Cat. No. Clone Dilution 

HRP-anti-rabbit goat Sigma A0545 polyclonal 1:16000 

HRP-anti-mouse rabbit Sigma A9044 polyclonal 1:8000 

HRP-anti-goat mouse Sigma A9452 monoclonal 1:10000 

Protein/Label Host Supplier Cat. No. Clone IF Fixation Dilution 
BCAM mouse R n D systems MAB148-SP monoclonal  1:500 
BCAM rabbit Sigma HPA005654 polyclonal  1:50 
CXCL12 mouse R n D systems MAB350-SP monoclonal  1:250 
HAVCR1/TIM1 goat R n D systems MAB1750 monoclonal PFA/MeOH 1:250 
LDLR rabbit Fitzerald 20R-LR002 polyclonal PFA 1:100 

LDLRAP1/ARH rabbit ProteinTech 13213-1-AP polyclonal  1:1000 
MLXIPL/CHREBP goat SantaCruz (P-13): sc-

21189 
polyclonal  1:200 

PAFAH1B1/LIS1 mouse Sigma Aldrich L7391 monoclonal  1:5000 
SORT1/NTR3 rabbit Sigma HPA006889 polyclonal  1:100 
TOMM40 rabbit Sigma HPA036232 polyclonal  1:50 

Protein/Label Host Supplier Cat. No. Clone Dilution 
AlexaFluor 488-mouse goat Molecular Probes #A11001 polyclonal 1:200 

AlexaFluor 488-rabbit goat Molecular Probes #A11008 polyclonal 1:400 

AlexaFluor 488-goat donkey Molecular Probes #A11055 polyclonal 1:400 

Kit Supplier Cat.No. 

Western blot   

Invitrap Spin Universal RNA Mini Kit Stratec Molecular #1060100300 

Superscript III, First-Strand Synthesis Supermix for RT-qPCR Invitrogen #11752-050 

Microscope Manufacturer 

Automated widefield microscope Scan^R Olympus 

Axiovert 200 widefield microscope Zeiss 

  

Device/Model Manufacturer 

VersArray ChipWriter Pro System BioRad 

Liquidator 96 manual pipetting system 360 Rainin Mettler-Toledo 

MiVac Quattro concentrator, GeneVac SPScientific 
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6.8.3 EQUIPMENT FOR CELL CULTURE AND MICROSCOPY 

 
Equipment Supplier/ Cat. No. 
Cell counting chamber Superior Marienfeld #0610610 
Cell culture dish 10 cm Nunc #150350 
6-well cell culture plate  Nunc #140675 
12-well cell culture plate  Falcon #353225 
24-well cell culture plate  Falcon #353226 
96-well glass bottom plate Zellkontakt #21315241 
96-well black bottom plate Nunc #137101 
96-well deep well plate Greiner #780270 
96-well conical bottom microwell plate Nunc #277143 
384-well glass bottom plate BD Falcon #353962 
384-well low volume plate Nunc #264360 
384-well deep well plate Eppendorf #0030 521.145 
Cell freezing container Nalgene #5100-0001 
Cell scrapers Corning

®
 #3010 

Chemiluminescent films Amersham Hyperfim
TM

 ECL #28906835 
Chemiluminescent films Kodak 
Coverslips 11 mm diameter Menzel-Gläser #CB00110RA1 
Coverslips 15 mm diameter Menzel-Gläser #CB00150RA1 
Cryotubes Nunc #363401 
Immobilon

®
 PVDF membrane Merck Millipore #ISEQ00010 

LabTek 1 well Nunc #155361 
MicroAmp

®
 Fast Optical 96-well Reaction Plate 

with Barcode 
Applied Biosystems #4346906 

MicroAmp
®
 Optical 384-well Reaction Plate with 

Barcode 
Applied Biosystems #4326270 

MicroAmp
®
 Optical Adhesive Film MicroAmp #4311971 

NuPAGE
®
 4-12% Bis-Tris Gel 1.0mm x10 well NOVEX #NP0321BOX  

NuPAGE
®
 4-12% Bis-Tris Gel 1.0mm x12 well NOVEX #NP0322BOX 

Cell culture incubator Binder 

Centrifuge 5417R eppendorf 

Centrifuge 5804R eppendorf 

Kodak RP X-OMAT Processor M6B Kodak  

Large bench centrifuge Multifuge 3s Heraeus 

Magnetic stirring hotplate MR3001 K Heidolph 

Mastercycler gradient eppendorf 

Microcentrifuge 5417R eppendorf 

Mini-PROTEAN
® 

II Cell Gel System Bio-Rad #1599 

Nanodrop 8000 Spectrophotometer PeqLab 

pH Meter #MP225 Mettler-Toledo 

PowerPac Power Supply BioRad 

QuaŶtStudio™ 6 Flex Real-Time PCR System Applied Biosystems 

Scale SBA 51 Scaltec 

Scale TE124S-OCE Sartorius 

Scanner Perfection V750 Pro Epson 

Sonificator Hielscher Ultrasound 

Technology 

StepOne
TM 

Real-Time PCR System #4376357 Applied Biosystems  

Thermomixer C eppendorf 

Tube shaker eppendorf 

Vortex Genie2 Scientific Industries 

Water bath GFLR 



 

 116 

NuPAGE
®
 4-12% Bis-Tris Gel 1.0mm x15 well NOVEX #NP0323BOX 

Object Slides frosted end Menzel-Gläser #ISO 8037/I 
Parafilm

® BEMIS
®
 #PM996 

Sterile filter 0.45 μm Millipore Stericup Durapore
TM

 #SCHVU05RE 
Tips for Liquidator Steinbrenner #SL-LT-L200 
Whatmann Paper Whatman

®
 #3030917 

Water reservoir Thermo Fisher #370906 
X-Ray cassette KISKER #IEC 60406 
Combitips advanced eppendorf #0030089774 

6.9 SOFTWARE 

Software Developer 

Adobe Acrobat X Pro Adobe systems Inc., San Jose, USA 

Adobe Acrobat Reader DC Adobe systems Inc., San Jose, USA 

Adobe Illustrator CS6 Adobe systems Inc., San Jose, USA 

Adobe Photoshop CS6 Adobe systems Inc., San Jose, USA 

ApE 2-A plasmid Editor M. Wayne Davis, biologylabs, Utah 

AxioVision Carl Zeiss 

CellProfiler Broad Institute, Cambridge, USA 

EndNote X6 Thomson Reuters, New York, USA 

FiJi Schindelin J. et al. 

HTM (High Throughput Microscopy) Explorer  Tischer C., ALMF, EMBL 

ImageJ 1.46r Rasband W., NIH, Bethesda, USA 

Mendeley Desktop 1.16.1 Elsevier 

Microsoft Office 2011 Microsoft Corporation, Redmond, USA 

QuantStudio
TM

 Real-Time PCR Software Applied Biosystems, USA 

R 3.2.2 GUI 1.66 The R Foundation for Statistical Computing, 

Vienna, Austria 

RStudio RStudio Team (2015) 

Scan^R Olympus, Hamburg, Germany 

StepOne Software v2.3 Applied Biosystems, USA 

  

6.10 WEBTOOLS AND RESOURCES 

Tool Usage Website 

BLAST/BLAT Align sequence to genome/ 

oligonucleotide design 

http://www.ensembl.org/Multi/Tools/Blast 

Bluegecko Information on siRNAs and 

genome-wide screens 

https://bluegecko.embl.de (EMBL intranet only) 

BLOCK-iT RNAi 

Designer 

siRNA design https://rnaidesigner.thermofisher.com/rnaiexpr

ess 

Confetti; a multi-

enzyme map of the 

HeLa proteome 

Information on protein 

expression in HeLa cell line 

https://proteomics.swmed.edu/confetti/ 

Exome Variant 

Server 

Rare variant database http://evs.gs.washington.edu/EVS/ 

GeneOntology Information on gene 

function/ classification 

http://www.geneontology.org/ 

Life Technologies 

Fluorescence 

Spectra Viewer 

Fluorescence Spectra 

Viewer 

https://www.thermofisher.com/de/de/home/lif

e-science/cell-analysis/labeling-

chemistry/fluorescence-spectraviewer.html 

PhenoScanner SNPs database-

Cardiovascular 

Epidemiology 

http://www.phenoscanner.medschl.cam.ac.uk/

phenoscanner 
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Primer-BLAST NCBI PCR primers design https://www.ncbi.nlm.nih.gov/tools/primer-

blast/ 

Primer 3 PCR primers design http://bioinfo.ut.ee/primer3-0.4.0/primer3/ 

PrimerBank PCR primer database https://pga.mgh.harvard.edu/primerbank/ 

qPrimerDepot PCR primer database https://primerdepot.nci.nih.gov/ 

Reverse 

Complement 

Oligonuclotide sequence 

transformation 

http://www.bioinformatics.org/sms/rev_comp.

html 

Sigma Aldrich 

OligoEvaluator 

Sequence Analysis Tool http://www.oligoevaluator.com/OligoCalcServle

t 

SNPcheck PCR primers design https://secure.ngrl.org.uk/SNPCheck/snpcheck.

htm 

STRING Functional proteins 

associations network 

http://string-db.org/ 

UCSC In-silico PCR PCR primers design http://rohsdb.cmb.usc.edu/GBshape/cgi-

bin/hgPcr 
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7 METHODS 

7.1 CELL BIOLOGY 

7.1.1 CELL CULTURE 

HeLa Kyoto cells were cultured in 10 cm petri dishes (Nunc) with supplemented, low 

glucose  (1g/L) DMEM growth medium (GIBCO) at 37°C, 5% CO2 and saturated 

humidity. The cells were passaged every two or three days, once they reached 

approximately 80% confluence, until passage 24, after which the cells were 

discarded and fresh cells were thawed (see 7.1.1.2). For passaging, the cells were 

first washed once with trypsin-EDTA (GIBCO) and then incubated shortly at 37°C with 

1 mL trypsin to detach from the plastic dish. Once detached, the cells were 

suspended in 9 mL supplemented DMEM medium and part of the cell suspension 

was transferred to a new dish and complemented with medium. For transfection 

experiments, cells were diluted [1:2] one day prior to plating (see 7.1.2). For the co-

RNAi screen, penicillin 100μg/ml- streptomycin/0.2% (w/v) (Sigma) was added to the 

medium throughout all the experiments.        

7.1.1.1 PLATING CELLS 

Depending on the type and the duration of the experiment, a certain amount of cells 

was plated on LabTeks or multi-well plates (see Tbl. 10), after counting with a 

Hemocytometer (Superior Marienfeld). For experiments performed using multi-well 

plates in which the cells would be finally imaged, cells were plated on top of glass 

coverslips placed inside the plate wells.  

 

Table 10. Amounts of cells used in different cell culture plates and times of transfection 

 

 

 

 

Dish format DMEM volume 

per well 

Cell No  Transfection duration 

(siRNA/ cDNA) 

Total experimental time 

from plating to end point 

1-well LabTek 1.5 mL 6x10
4
 48 h 48 h 

6-well plate 2 mL 3x10
4 

48 h 72 h 

12-well plate 1 mL 1.5x10
4 

48 h 72 h 

12-well plate 1 mL 4x10
4 

24 h 48 h 
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7.1.1.2 FREEZING AND THAWING CELLS 

The cells were frozen and stored in liquid nitrogen to keep stocks for future use, 

after being tested for mycoplasma. For this purpose, cells were diluted [1:2]  (see 

7.1.1) in a 10 cm dish one day prior to freezing, to reach about 80% confluency. The 

cells were trypsinised (see 7.1.1) and suspended in supplemented medium, and the 

suspension was centrifuged for 5 minutes at 1,000 rpm. After sedimentation of the 

cells, the medium was removed, and the cells were suspended in 2 mL freezing 

medium. Aliquots of 1 mL cell suspension were transferred into labeled cryotubes 

(Nunc) and stored at -80°C in a freezing container which allowed for slow freezing of 

the cells. Within the next days, the cells were transferred to the liquid nitrogen tank.  

To thaw cells, cryotubes were removed from the liquid nitrogen and quickly thawed 

by holding shortly (1-2 minutes) in the 37°C waterbath. After thawing, the cells were 

transferred into a Falcon tube, where they were suspended in supplemented DMEM, 

before centrifuging for 5 minutes at 1,000 rpm. The supernatant was aspirated, and 

the sedimented cells were suspended in supplemented DMEM and transferred into a 

10 cm dish. 

7.1.2 TRANSFECTION 

In order to increase or inhibit the expression of a gene of interest, nucleic acids were 

introduced into cells by transfecting them with cDNA or siRNA, respectively. Two 

different transfection protocols were used, described as forward or liquid-phase 

transfection and reverse or solid-phase transfection.  

7.1.2.1  FORWARD (LIQUID-PHASE) TRANSFECTION  

The conventional transfection protocol employed is referred to as ͞forward 

transfection͟, whereby cells are seeded one day prior to transfection. For both cDNA 

and siRNA transfection experiments, two different mixtures were first prepared. The 

first mixture contained the nucleic acid -cDNA or siRNA- diluted in OptiMEM 

(GIBCO), whereas the second mixture contained the transfection reagent diluted in 

OptiMEM. The two mixtures were mixed after incubation at room temperature (RT) 

for 5 minutes, and incubated for another 20 minutes to allow for the formation of 

the transfection complexes. The transfection mixture was then added drop-wise to 

the cells. For cDNA transfection, the transfection mixture was added to cells grown 
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in supplemented DMEM medium. For siRNA transfection, the cell medium was 

aspirated, the cells were washed once with serum-free growth medium, and then 

serum-free DMEM medium was added to the cells before the addition of the 

transfection mixture. The medium of siRNA-transfected cells was replaced after 4 h 

incubation with supplemented DMEM medium. The amounts of transfection reagent 

and nucleic acid differed depending on the method and format used. Typically used 

amounts are shown in Tables 11 and 12, however these amounts were subject to 

changes if transfection efficiency was not satisfactory. 

 

Table 11. Typical amounts of siRNA and transfection reagents used 

Format Experiment siRNA mix (1) Transfection 

reagent mix (2) 

Final Mix (1+2) 

6-well plate 48h siRNA 

knockdown 

ϯϬ pŵol ;ϭ μL of 30 μMͿ 
siRNA iŶ ϮϬϬ μL OptiMEM 

Ϯ μL Lipofectamine 

in 200 μL OptiMEM 

ϰϬϯ μL into 800 μL 

serum-free DMEM 

12-well plate 48h siRNA 

knockdown 

ϭϱ pŵol ;Ϭ.ϱ μL of 30 μMͿ 
siRNA iŶ ϭϬϬ μL OptiMEM 

ϭ μL Lipofectamine 

in 100μL OptiMEM 

ϮϬϭ.ϱ μL into 400 μL 

serum-free DMEM 

 

 

 

Table 12. Typical amounts of cDNA and transfection reagents used 

Format Experiment cDNA mix (1) Transfection  

reagent mix (2) 

Final Mix (1+2) 

12-well plate 48h siRNA 

knockdown 

ϭ.Ϯϱμg cDNA in 

125μL OptiMEM 

ϯμL LipofeĐtaŵiŶe   
iŶ ϭϮϱμL OptiMEM 

ϮϱϯμL iŶto ϭŵL  
supplemented DMEM 

 

7.1.2.2 REVERSE (SOLID-PHASE) TRANSFECTION  

For high-throughput knockdown experiments, reverse transfection was used, 

whereby freshly passaged cells -passaged 24 h before- were added to transfection 

complexes in pre-spotted microarrays; ͞LabTeks͟ (see Tbl. 10).  

7.1.2.2.1 LABTEK SPOTTING 

For reverse transfection experiments, glass-bottomed chambered cell culture slides 

(1-well LabTeks) coated with siRNAs for solid phase reverse-transfection of cells 

were produced as described (Erfle et al. 2007, 2008). In detail, the transfection 

mixtures were prepared as follows.  

First, 0.2 g gelatin (Sigma) was dissolved in 100 ml ddH2O at 56°C for 20 minutes in a 

prewarmed waterbath. The gelatin solution was sterilized by filtration with a 0.45 

μm pore filter after cooling down. Besides the normal gelatin solution, a 0.2% 

Oregon Green gelatin solution (Molecular Probes) was prepared by dissolving 5 mg 
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Oregon Green gelatin in 2.5 mL ddH2O as previously described. At the same time, 

1.37 g sucrose (Affymetrix) was dissolved in 10 mL OptiMEM.  

Second, four numbered 96-well conical bottom plates containing 15 pmol Silencer 

Select siRNA (ThermoFisher) (5 μL of a 3μM solutioŶ) per well were prepared and 

centrifuged at 500 rpm for 1 minute. Additionally, the transfection mix was prepared 

by mixing 1.662 mL of the sucrose /OptiMEM solution with 0.969 mL ddH2O and 

0.969 mL Lipofectamine (Invitrogen). The transfection mix and the gelatin solution 

were distributed into two 96-well conical bottom plates, by transferring 32 μL and 50 

μL per well, respectively, and the two plates were centrifuged. The gelatin solution 

was then distributed into four numbered 96-well plates, by transferring 10 μL per 

well and the plates were centrifuged. The normal gelatin was replaced with Oregon 

Green gelatin in those wells of the four gelatin plates that would be used for the 

transfection control siRNA spotting.  

Third, 7 μL from the transfection mix plate were transferred to each of the four 

siRNA plates with the Liquidator and mixed by pipetting. The plates were then 

incubated at RT for 20 minutes to allow for the formation of the transfection 

complexes. Afterwards, 7 μL of the four gelatin plates were transferred to the 

corresponding siRNA/transfection-mix-containing plates with the Liquidator and 

mixed by pipetting and the plates were centrifuged shortly.  

Fourth, 16 μL from the four siRNA transfection cocktail-containing plates were 

transferred to a low-volume 384-well plate with the Liquidator, and the plate was 

centrifuged shortly. For better spotting results, LabTeks were washed before 

spotting with ddH2O, then ethanol and then again ddH2O. Finally, the 384-well plate 

was used to spot LabTeks using a ChipWriter Compact Robot (Bio-Rad) with solid 

pins (Point Technologies) resulting in a spot volume of ~4 nL (containing ~5 ng siRNA) 

and a spot diameter of ~400 μm and a spot-to-spot distance of 900 μm, mirroring 

one 384-well plate per chamber. siRNA arrays were printed in 12 replicates and 

dried for 10 minutes in a SpeedVac pre-warmed to 37°C. The LabTeks were then 

stored in sealed plastic boxes containing drying pearls (Aldrich).  
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7.1.2.2.1.1 DETERMINING THE OPTIMAL SIRNA CONCENTRATION FOR THE DOUBLE 

KNOCKDOWNS 

In order to determine the optimal siRNA concentration to be used for the double 

knockdowns, two conditions were examined in a pilot experiment. For this purpose, 

siRNAs targeting two genes with a known role in cholesterol uptake were used 

(LDLR, DAB2), as well as a negative control siRNA (NEG9) and a transfection control 

siRNA (INCENP).  

In detail, LabTeks were spotted with the following combinations of siRNAs; 

Neg9+Neg9, LDLR+LDLR, DAB2+DAB2, LDLR+NEG9, DAB2+NEG9, LDLR+DAB2, 

INCENP+INCENP using either 15pmol of each siRNA (30pmol siRNA in total) or 

7.5pmol of each siRNA (15pmol siRNA in total) per LabTek spot. The LDL uptake was 

performed on the spotted LabTeks as described (see 7.1.6.1) and the knockdown 

effect of different siRNA concentrations on LDL uptake was evaluated. The 

experimental settings are shown schematically in Table 13.  

 

Table 13. siRNA amount used in the pilot experiment to determine optimal concentrations for 

double knockdowns 

 

7.1.2.2.1.2 SPOTTING OF LABTEKS FOR THE COMBINATORIAL RNAI SCREEN 

For the combinatorial RNAi screen, LabTeks coated with siRNAs were produced as 

described previously (see 7.1.2.2.1). For the spotting of two siRNAs per LabTek spot, 

the four 96-well conical bottom plates contained 15 pmol of each of the two Silencer 

Select siRNAs (2 x 2.5 μL of a 6μM solutioŶ=30 pmol total siRNA) per well. 

Previously validated siRNAs against three genes were selected as controls: INCENP, 

siRNA combination Amount of each siRNA Total siRNA amount 

Neg9+Neg9 15pmol (2.5μL of 6μΜ) 30pmol (5 μL of 3μM) 

LDLR+LDLR 15pmol (2.5μL of 6μΜ) 30pmol (5 μL of 3μM) 

LDLR+LDLR 7.5pmol (2.5μL of 3μΜ) 15pmol (5 μL of 1.5μM) 

DAB2+DAB2 15pmol (2.5μL of 6μΜ) 30pmol (5 μL of 3μM) 

DAB2+DAB2 7.5pmol (2.5μL of 3μΜ) 15pmol (5 μL of 1.5μM) 

LDLR+NEG9 15pmol (2.5μL of 6μΜ) 30pmol (5 μL of 3μM) 

LDLR+NEG9 7.5pmol (2.5μL of 3μΜ) 15pmol (5 μL of 1.5μM) 

DAB2+NEG9 15pmol (2.5μL of 6μΜ) 30pmol (5 μL of 3μM) 

DAB2+NEG9 7.5pmol (2.5μL of 3μΜ) 15pmol (5 μL of 1.5μM) 

LDLR+DAB2 15pmol (2.5μL of 6μΜ) 30pmol (5 μL of 3μM) 

LDLR+DAB2 7.5pmol (2.5μL of 3μΜ) 15pmol (5 μL of 1.5μM) 

INCENP+INCENP 15pmol (2.5μL of 6μΜ) 30pmol (5 μL of 3μM) 

INCENP+INCENP 7.5pmol (2.5μL of 3μΜ) 15pmol (5 μL of 1.5μM) 
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inducing multinucleated arrested cells that served to monitor siRNA transfection 

efficiency (Neumann et al. 2006); LDLR, reducing DiI-LDL uptake to ~25% and 

perinuclear Filipin signal to ~60%; NPC1, increasing perinuclear Filipin signal to 

~150% (Bartz et al. 2009).  

The total 30x30 (900 including the reciprocal interactions) pairwise combinations to 

be tested in the combinatorial RNAi screen including all the controls were printed on 

5 different LabTeks. On each LabTek, the single knockdowns (siRNA(X)+Neg9) were 

spotted 2 times-with the exception of LDLR+Neg9, that was spotted 10 times, while 

the double knockdowns (siRNA(X)+siRNA(Y)) were spotted 1 time. Of the 384 spots 

printed on the LabTeks, 56 spots contained control siRNAs; 8 spots contained 

INCENP-siRNA (s7424) to control for transfection efficiency, 8 spots contained the 

non-silencing control siRNA; Neg1 (s229174), 8 spots contained the non-silencing 

control siRNA; Neg9 (s444246), 8 spots contained siRNA targeting LDLR (s224006) as 

a positive control for LDL-uptake, 8 spots contained siRNA targeting NPC1 (s237198) 

as a positive control for free cholesterol (FC), 8 spots contained both Neg9 and LDLR 

siRNA, as a positive control for the double knockdowns in LDL-uptake assay and 8 

spots contained both Neg9 and NPC1 siRNA, as a positive control for the double 

knockdowns in FC. 

 

7.1.3 IMMUNOSTAINING 

For immunofluorescence experiments, cells were seeded at a concentration of 1x104 

cells/mL in 12-well dishes containing a glass coverslip in each well. After washing 

once with PBS, cells were fixed with either paraformaldehyde (PFA) or methanol, 

depending on the protein and the antibody. For PFA fixation, cells were incubated 

for 20 minutes at RT in 3% PFA and then for 5 minutes with quenching buffer. For 

methanol fixation, cells were incubated with methanol at -20°C for 4 minutes. 

Following fixation, cells were washed three times for 3 minutes with PBS at RT. For 

intracellular protein labeling, cells needed to be permeabilized with either Triton-X-

100 buffer for 5 minutes at RT, or saponin permeabilization buffer for 10 minutes at 

RT. Cells were then washed three times with PBS. For the staining, the antibody was 

diluted in PBS or in saponin buffer in case of cells permeabilized with saponin. The 

cells were incubated with the primary antibody, then washed three times with PBS 
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and then incubated with the secondary antibody. Subsequently, cells were washed 

with PBS and their nuclei were stained with Hoechst (diluted 1:5,000) for 5 minutes 

at RT. After washing once more with PBS, coverslips were mounted on glass slides 

using Mowiol. The glass slides were dried overnight at RT or at 37° C for at least 30 

minutes prior imaging.  

   

7.1.4 MICROSCOPY-DETECTION OF FLUORESCENT MOLECULES IN THE CELL 

7.1.4.1 WIDE-FIELD MICROSCOPY 

Immunostained cells were imaged with a Zeiss Axiovert 200, inverted, wide-field 

microscope. The light source was an HBO lamp and the fluorescence filters used 

were the following; Dapi/Hoechst (Excitation(Ex): 365/12, Emission (Em): LP397), 

FITC (Ex: 450-490, Em: 515-565), Cy3 (Ex: 545/25, Em: 605/70). The images were 

acquired with a Zeiss EC Plan-NEO FLUOAR 40x/NA 1.3 Oil or a Zeiss Plan-

APOCHROMAT 63x/NA 1.4 Oil objective, using the AxioVision software.  

 

7.1.4.2 HIGH-THROUGHPUT MICROSCOPY 

For high-throughput microscopy the automated wide-field Olympus Scan^R 

microscope was used. The light source was a MT20 Xenon lamp and typically an 

Olympus UPlanSApo 20x/ NA 0.75 objective was used. The fluorescence filters used 

were the following; Dapi/Hoechst (Ex: 350/50, Em: 447/60), Cy3 (Ex: 545/25, Em: 

605/70), Cy5 (Ex: 640/30, Em: 690/50) and GFP (Ex: 470/40, Em: 525/50). A software 

autofocus was based on the nuclear (Dapi/Hoechst) staining. It consisted of a coarse 

autofocus (± 13μm, 18 steps) and a fine autofocus (± 2 μm, 15 steps). The starting 

position of each coverslip/ LabTek, as well as the spot distance (for LabTeks) was set, 

and the imaging was then performed in an automated manner. In order to find the 

first spot on a LabTek, the fluorescence signal from the Oregon Green gelatin was 

used (see 7.1.2.2.1), which was only contained in spots with the transfection control 

siRNA -including the upper left (A1) spot of the LabTek. Usually 100 images were 

obtained per coverslip, or 1 image per spot of a LabTek. The imaging settings were 

stored in an experiment descriptor .xml file, which could be re-used in the following 

imaging set. 
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7.1.5 ENDOCYTOSIS ASSAYS 

7.1.5.1 LDL UPTAKE ASSAY 

To analyse the ability of cells to endocytose low-density lipoprotein (LDL), the LDL-

uptake assay was employed (Bartz et al. 2009; Gilbert et al. 2009; Pitas et al. 1981). 

Cells were seeded in appropriate format and usually transfected with siRNAs for 48 h 

before performing the assay. Cells were depleted from sterols in two sequential 

steps, before the assay (see section 7.1.6). They were subsequently washed with ice-

cold imaging medium (IM)/0.2% BSA for 2 minutes and then labeled with 1.25μg/mL 

DiI-LDL (Invitrogen) for 30 minutes at 4 °C. The endocytosis of DiI-LDL was then 

stimulated for 20 minutes at 37 °C and then cells were washed with IM/0.2% BSA for 

2 minutes at 4 °C. To remove membrane-bound DiI-LDL, cells were washed for 

exactly 1 minute with IM at pH 3.5, and then again with IM/0.2% BSA for 2 minutes 

at 4 °C. Fixation of cells in 3% PFA for 20 minutes followed and after washing with 

PBS, cells were counterstained for cytoplasm and nucleus with DRAQ5 and Hoechst, 

for 5 minutes at RT, respectively. Finally, cells were washed with PBS and either 

imaged directly in the case of LabTeks, or mounted with Mowiol onto glass slides, in 

the case of coverslips. 

 

7.1.5.2 LDL BINDING ASSAY 

To test for the ability of siRNA-treated versus non-treated cells to bind LDL, a similar 

cellular assay to the LDL-uptake assay was performed. The difference in the LDL-

binding assay was that the cells were only let to bind LDL for 30 minutes at 4° C, with 

no LDL-internalization step following. Immediately after the binding step, cells were 

washed 3 times with IM-BSA and then fixed with PFA. 

 

7.1.6 STEROL-DEPLETION PROTOCOLS 

Cells were depleted from sterols prior to the LDL-uptake (or LDL-binding) assay, in 

two steps. For this purpose, 28 h after the transfection (20 h before the assay) the 

cells were washed once with serum-free DMEM medium and then serum-free 

DMEM medium containing 0.2% BSA was added to the cells. Additionally, 45 minutes 

before the assay, 1% (w/v) HPCD was given to the cells to extract cholesterol for the 

medium. 
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7.2 MOLECULAR BIOLOGY 

7.2.1 RNA EXTRACTION AND REVERSE TRANSCRIPTION 

In order to measure gene expression on mRNA level, total RNA needs to be 

extracted from cultured cells. For this purpose, 30000 HeLa Kyoto cells/ well were 

seeded in 6-well plates three days before the extraction. 24 hours after seeding, cells 

were transfected with siRNAs and 48 hours after the transfection RNA was extracted 

using the Invitrap Spin Universal RNA Mini Kit (Stratec), according to manufacturer’s 

instructions. The concentration of the extracted RNA was quantified by measuring its 

absorbance at 260 nm using the Nanodrop 8000 Spectrophotometer. Samples were 

either directly used for reverse transcription or stored at -20° C until usage. Similarly, 

the RNA purity was assessed by measuring the absorbance ratio A260/A280 nm. 

Total extracted RNA was then reverse-tƌaŶsĐƌiďed iŶto ĐDNA usiŶg the SupeƌSĐƌipt™ 

III First-Strand Synthesis SuperMix for RT-qPCR (Invitrogen). According to 

manufacturer’s instructions, 500 ng RNA were used as template for a 10 μl total 

volume reaction. cDNA samples were wither directly used for quantitative real-time 

polymerase chain reaction (RT-qPCR) or stored at -20° C until usage. Before usage, 

cDNA samples were diluted 1:10 with RNAse-free water. 

 

7.2.2 QUANTITATIVE REAL-TIME POLYMERASE CHAIN REACTION (QRT-PCR) 

RT-qPCR was performed using SYBR Green fluorescent dye (Applied Biosystems). The 

-relative or absolute- quantity of the amplified DNA is thereby calculated by 

measuring the SYBR Green fluorescence at the end of each amplification cycle. In 

each well of a MicroAmp® optical 96-well reaction plate (Applied Biosystems), 2 μl of 

the previously synthesized cDNA were added, as well as 18 μl of a mix consisting of 

11 μl SYBR Green, 1.1 μl forward and 1.1 μl reverse primer (10 μΜ) and 6.6 μl 

ddH2O, to a total volume of 20 μl. For each gene target, different mixes were 

prepared. All reactions were performed in triplicates within the same plate. The 

plate was sealed with a MicroAmp® Optical Adhesive Film and centrifuged at 1000 

rpm for 2 minutes. 

RT-qPCR experiments were performed at the GeneCore Facility at EMBL using the 

StepOneTM Real-Time PCR System (Applied Biosystems). The experimental setup 

used was as follows: experiment type ͞Quantitation-Comparative CT (ΔΔCT)͟, reagent 
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type ͞SYBR® Green Reagents͟, ramp speed ͞Standard (~2 hours to complete a run)͟ 

and the following program was run: (1) hot start polymerase activation at 95 °C for 

10 minutes, (2) 40 cycles of dissociation at 95 °C for 15 seconds and elongation at 60 

°C for 1 minute, (3) primer melt curve at 95 °C for 15 seconds, 60 °C for 1 minute, a 

gradient of  +0.3 °C to 95 °C and finally 95 °C for 15 seconds. Upon completion of the 

run, RT-qPCR data were analyzed with the StepOne Software v2.3 (Applied 

Biosystems) using the comparative CT method. 

 

7.2.3 HIGH-THROUGHPUT QRT-PCR 

For measuring the expression of multiple genes in multiple samples simultaneously 

on the same plate, MicroAmp® Optical 384-well Reaction Plates (Applied Biosystems) 

were used and the RT-ƋPCR ǁas ƌuŶ oŶ a QuaŶtStudio™ ϲ Flex Real-Time PCR 

System (Applied Biosystems). For the generation of the 384-well plates, four 

MicroAmp® Optical 96-well reaction plates were produced and combined with a 

Liquidator into one MicroAmp® Optical 384-well Reaction Plate. In each of the four 

96-well plates, 2 μl of the synthesized cDNA were pipetted, as well as 8 μl of a mix 

consisting of SYBR Green, forward (10 μΜ) and reverse primer (10 μΜ) and ddH2O. 

For one well mix, 2.2 μl ddH2O, 0.55 μl FW primer (10μM), 0.55 μl RV primer (10μM) 

and 5.5 μl Sybr Green 1 were combined, and different mixes were prepared for each 

gene target. Thus, the total reaction volume per well was 10 μl. The four 96-well 

plates were combined onto the 384-well plate using a Liquidator. The 384-well plate 

was then centrifuged, and the RT-qPCR reaction was run using the same settings as 

in the StepOneTM Real-Time PCR System. The RT-qPCR was analyzed using the 

QuantStudio® Real-Time PCR Software v1.3. 

 

7.2.4 PRIMER VALIDATION FOR QRT-PCR 

Primer pair oligonucleotides were custom designed for the qRT-PCR experiments 

(see section 7.4.5.2). Before use, primer pairs were evaluated for their binding to the 

target gene, using cDNA synthesized from total RNA extracted from untreated cells. 

Four serial dilutions of cDNA were prepared by diluting with a serial factor {1:10}; 

1:1, 1:10, 1:100, 1:1000, which were used as standards to construct a standard 

curve, in order to estimate the PCR amplification efficiency of each primer. Thus, the 
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concentration of the ͞standards͟ was indicated as 1, 0.1, 0.01 and 0.001. Aside the 

͞standards͟, two ͞negatives͟ were used; a no template control (NTC) which omits 

the cDNA and serves as a control for extraneous nucleic acid contamination, and a 

no reverse transcriptase control (NRT), which serves as a control for DNA 

contamination in the RNA preparation. All standards and negatives were used in 

duplicate wells, to assess variation in Cq (quantitation cycle). The slope of the 

standard curve and the binding efficiency were evaluated, and primers were rejected 

when they didn’t give efficient results; slope range between -3.58 and -3.10 and 

efficiency between 90% and 110% were considered acceptable. 

 

7.2.5 SELECTION OF REFERENCE GENE FOR QRT-PCR EXPERIMENTS 

In order to compare mRNA transcription through qRT-PCR in different samples or 

tissues, the appropriate reference gene (aka ͞housekeeping gene͟) needs to be 

selected, for normalization purposes. Five candidate reference genes were tested; 

GAPDH (Glyceraldehyde 3-Phosphate Dehydrogenase), HRPT1 (Hypoxanthine 

Phosphoribosyltransferase 1), RPS18 (Ribosomal Protein S18), SDHA (Succinate 

Dehydrogenase Complex Flavoprotein Subunit A) and HSPC3 (Small Heat-Shock 

Protein 3) for their expression stability under different experimental settings, which 

was evaluated using qRT-PCR.  

For this purpose, total RNA was extracted from HeLa Kyoto cells, untransfected or 

transfected and cDNA was synthesized from the extracted RNA. Primer sequences 

for HRPT1, RPS18, SDHA and HSPC3 were taken from Krainova et al. (Krainova et al. 

2013). All primer sequences are shown in section 6.5.2.  

 

7.2.6 NUCLEID ACIDS HANDLING 

Small interfering RNAs (siRNAs) were delivered lyophilized in tubes or plates in a 

concentration of 5nM, and were reconstituted by resuspending in nuclease-free H2O 

to a final concentration of 30μM. siRNAs were then used at this concentration in 

liquid-phase transfections, or were further diluted in nuclease-free H2O to 3μM for 

the reverse transfections. Plates and tubes with siRNAs were stored at -20 °C. 

Lyophilized oligonucleotide primers were reconstituted by resuspending in ddH2O to 
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100 μM stock solutions, which were stored at -20 °C. For qRT-PCR primer 100 μM 

stock solutions were diluted to 10 μM working solutions with ddH2O. 

 

7.3 BIOCHEMISTRY 

7.3.1 SODIUM DODECYL SULFATE POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) 

To assess the amount of a protein of interest in cells, cells were grown in 6-well 

plates and after washing once with PBS they were lysed in 200μL sample buffer on 

ice. After transferring to a 1.5 mL eppendorf tube, cell lysates were boiled at 95 °C 

for 5 minutes. After brief spinning and cooling down of the samples, 1% (v/v) 

benzonase as well as 1% (v/v) MgCl2 were added to the each tube and let to degrade 

DNA at RT for 10-20 minutes. Afterwards, samples were boiled for 5 minutes at 95 °C 

to ensure complete protein denaturation, and either stored at -20 °C or were used 

directly after cooling down. For SDS-PAGE, 18 μL of the samples were loaded on 

precast 12-well 4%-12% NuPAGE Bis-Tris gels (Invitrogen), and run using MOPS 

buffer at 100-140 V. To determine the molecular weight of the proteins, 4 μL protein 

ladder was loaded onto the first well of the gel. 

 

7.3.2 WESTERN BLOT 

After separating with SDS-PAGE, proteins were transferred to a PVDF membrane, 

where they would later be detected using specific antibodies. Initially, a PVDF 

membrane piece was activated in methanol for 10 minutes. Whatmann papers and 

Western blot sponges were also soaked in cold transfer buffer. The cassette was 

assembled using in the following order from the white to the black back of the 

cassette; sponge, two Whatmann papers, SDS-PAGE gel, PVDF membrane, two 

Whatmann papers, sponge. The cassette was then placed in the blotting chamber, 

which was filled with cold transfer buffer and an ice pack and a magnetic stirrer. The 

transfer of the proteins from the gel to the PVDF membrane was then performed in 

the cold-room for 1 h at 400mA.  

After the transfer, the PVDF membrane was immersed into blocking buffer and 

placed on a shaker for at least 1 h at RT. The membrane was then incubated with the 

primary antibody in blocking buffer shaking overnight in the cold room. Next day, 

the membrane was washed with PBS-T for 1-2 h at RT, before incubation with the 
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secondary antibody diluted in blocking buffer, which was performed at RT for 1 h on 

a shaker. After washing three times for 10 minutes with PBS-T, a chemiluminescence 

reaction was performed to detect the protein signal, using the Pierce® ECL Plus 

Western Blotting Substrate. For this, Substrate A and Substrate B were mixed at a 

40:1 ratio and incubated on a membrane for 5 minutes at RT. After the 

chemiluminescence reaction, the blot was placed between two plastic foils inside of 

a developing X-ray cassette and the signal was detected in the darkroom by exposing 

the membrane to a photographic film (Kodak). The films were developed in a Kodak 

developing machine and scanned using an Epson scanner, in order to be quantified 

with ImageJ. 

 

7.3.3 STRIPPING OF WESTERN BLOT MEMBRANES 

In order to reprobe a membrane with a different antibody, the blotted PVDF 

membrane was stripped to remove the bound antibodies, with a mild stripping 

buffer made according to Abcam protocol. The membrane was washed 3 times for 

10 minutes in fresh stripping buffer, then 2 times for 10 minutes in PBS, and finally 2 

times for 5 minutes in PBS-T. After placing in blocking buffer for at least 1 h, 

membrane was ready for incubation with the primary antibody. 

 

7.4  COMPUTATIONAL BIOLOGY 

7.4.1 IMAGE ANALYSIS 

7.4.1.1 IMAGEJ 

Images acquired with the Axiovert microscope were imported in ImageJ and 

inspected visually for fluorescence intensity. 

Images acquired with the Scan^R widefield microscope from Olympus were initially 

visually inspected using ImageJ, in order to exclude from the analysis any out-of-

focus images or otherwise non-analyzable.  

 

7.4.1.2 CELLPROFILER 

7.4.1.2.1 LDL-UPTAKE ASSAY ANALYSIS 

To quantify images from the LDL-uptake assay, images were analyzed with 

CellProfiler v2.1.1, using a pipeline developed with the help of Volker Hilsenstein at 
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ALMF, EMBL Heidelberg. For this purpose, the images were first converted from 12-

bit images to 16-bit, using the TransferTool (V. Hilsenstein). In the CellProfiler 

pipeline (see Tbl. 14), image sets that consisted of three channels (Dapi for Hoechst, 

Cy3 for DiI-LDL and Cy5 for DRAQ5) were first loaded  (LoadImages) and pixel 

intensity values were rescaled between 0 and 0.0624856 (Rescale Intensity). The 

intensity rescaling was done to convert 12-bit images saved in 16-bit format to the 

correct range; the value of 0.0624856 is equivalent to 212divided by 216. Then, image 

quality was measured using the Cy3 channel that reflected the DiI-LDL signal 

(MeasureImageQuality). Here, the image blur was measured and blur metrics were 

calculated with special algorithms (eg. PowerLogLogSlope). Afterwards, the image 

intensity of the DiI-LDL channel was measured (MeasureImageIntensity), by 

measuring pixel intensity. In the next step, the nuclei of the cells were identified, 

using the Dapi/Hoechst signal (IdentifyPrimaryObjects), after setting a threshold 

range for the fluorescence intensity, as well the diameter range of the nuclei. Then, 

the whole cell area as well as the cell boundaries were identified using the DRAQ5 

fluorescence signal, by digitally expanding the nuclei identified with the previous 

module, after setting a threshold and a threshold correction factor 

(IdentifySecondaryObjects). The cytoplasm was expanded by 15 pixels in the next 

module, in order to perform the background subtraction (ExpandOrShrinkObjects). In 

the next module, a mask is created from the DiI-LDL channel, by inverting the mask 

found in the previous module from the cytoplasm, in order to measure the image 

background intensity (MaskImage), which is measured in the next module 

(MeasureImageIntensity). Afterwards, the background fluorescence intensity is 

subtracted from the DiI-LDL intensity (ImageMath). Then, cells touching the image 

borders are discarded (IdentifySecondaryObjects). In the next two steps, a threshold 

is applied to find saturated pixels in the image, and a binary imaged is generated 

(ApplyThreshold) and the intensity of saturated pixels in the binary image is 

measured, to define the number of saturated pixels per cell 

(MeasureObjectIntensity). Next, cells with more than a specified number of 

saturated pixels (typically 10) in the DiI-LDL channel are discarded (FilterObjects). 

The DiI-LDL signal is afterwards enhanced over the cellular background signal 

(EnhanceOrSuppressFeatures), and the fluorescence signal parameters of identified 
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DiI-LDL dots are measured (MeasuredObjectIntensity). Then, DiI-LDL dots outside of 

cells are excluded (Crop) and dots within cells are finally identified 

(IdentifyPrimaryObjects), after setting a threshold. Next, a mask is created that 

consists of the dots that were previously identified (MaskImage), and the size and 

shape features of the identified dots are measured (MeasureObjectSizeShape), as 

well as the fluorescence intensity of the dots within whole cells from the background 

corrected DiI-LDL image and the enhanced signal image (MeasureObjectIntensity). In 

the following two modules, a binary image is generated out of the identified DiI-LDL 

dots (ConvertObjectsToImage) and dots are assigned to the cells which they belong 

to (RelateObjects). In the next three modules, the mean total intensity of DiI-LDL for 

one cell (CalculateMath), the total area of DiI-LDL dots in one cell (CalculateMath) 

and the ratio of the DiI-LDL dots intensity to the total intensity (CalculateMath) are 

calculated. In the following 16 modules, images are generated which visualize the 

outlines of the segmented objects on a black image and the fluorescence intensity 

data are shown on the objects and the images are saved as .tif files (OverlayOutlines, 

DisplayDataOnImage, SaveImages). Finally, the results are exported and saved as 

.csv files (ExportToSpreadSheet). 

 

Table 14. LDL-uptake assay pipeline 

1. LoadImages 

2. Rescale Intensity 

3. Rescale Intensity 

4. MeasureImageQuality 

5. MeasureImageIntensity 

6. IdentifyPrimaryObjects 

7. IdentifySecondaryObjects 

8. ExpandOrShrinkObjects 

9. MaskImage 

10. MeasureImageIntensity 

11. ImageMath 

12. IdentifySecondaryObjects 

13. ApplyThreshold 

14. MeasureObjectIntensity 

15. FilterObjects 

16. EnhanceOrSuppressFeatures 

17. MeasureObjectIntensity 

18. Crop 

19. IdentifyPrimaryObjects 

20. MaskImage 

21. MeasureObjectSizeShape 

22. MeasureObjectIntensity 

23. ConvertObjectsToImage 

24. RelateObjects 

25. CalculateMath 

26. CalculateMath 

27. CalculateMath 

28. OverlayOutlines 

29. OverlayOutlines 

30. OverlayOutlines 

31. OverlayOutlines 

32. DisplayDataOnImage 

33. DisplayDataOnImage 

34. DisplayDataOnImage 

35. DisplayDataOnImage 

36. DisplayDataOnImage 

37. SaveImages 

38. SaveImages 

39. SaveImages 

40. SaveImages 

41. SaveImages 

42. SaveImages 

43. SaveImages 

44. ExportToSpreadSheet 
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Figure 38. Cellprofiler pipeline for quantitative image analysis of LDL-uptake assay. 

Shown are representative images from the LDL-uptake assay (left column) acquired 

with the Scan^R software of the Olympus widefield microscope with the 20x 

objective and the segmentation of cellular structures (right column) performed 

through a Cellprofiler pipeline.  
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7.4.1.2.2 GFP-TAGGED VARIANT OVEREXPRESSION ANALYSIS 

In order to quantify the effect on LDL uptake of the overexpression of GFP-tagged 

HAVCR1 variants, two CellProfiler pipelines were sequentially used, after the initial 

visual inspection and filtering of images with ImageJ. In the first pipeline, the GFP 

threshold for transfected cells was determined, that would be used in the second 

pipeline, which calculated the effect of the cDNA transfection on LDL uptake.  

In the first pipeline (Tbl. 15), only the images from untransfected cells were loaded 

(LoadImages), and the fluorescence intensity was rescaled in the Cytoplasm, DAPI 

and GFP channels (RescaleIntensity). The image quality on the DAPI channel was 

measured (MeasureImageQuality) and the cell nuclei (IdentifyPrimaryObjects) and 

cytoplasm (IdentifySecondaryObjects) were identified as described previously (see 

7.4.1.2.1). Then, the cells were digitally expanded by 15 pixels 

(ExpandOrShrinkObjects) and the expanded cytoplasms were identified 

(IdentifySecondaryObjects). A mask was created by applying on the GFP image the 

inverted signal of the cell cytoplasm (MaskImage) and the GFP intensity of the cells 

was measured (MeasureImageIntensity). Afterwards, the GFP signal of the cells was 

normalized to the backround of the GFP image (ImageMath) and the cell GFP 

intensity was measured (MeasureObjectIntensity). Finally, the results were exported 

on a .csv spreadsheet (ExportToSpreadSheet). The pipeline modules are shown 

below. 

Table 15. Pipeline for the identification of the GFP threshold 

1. LoadImages  

2. RescaleIntensity  

3. RescaleIntensity  

4. RescaleIntensity  

5. MeasureImageQuality  

6. IdentifyPrimaryObjects  

7. IdentifySecondaryObjects  

8. ExpandOrShrinkObjects  

9. IdentifySecondaryObjects  

10. MaskImage  

11. MeasureImageIntensity  

12. ImageMath  

13. MeasureObjectIntensity  

14. ExportToSpreadSheet 

 
After exporting the results, the GFP intensity of the 95th percentile of the 

untransfected cells was calculated with Excel; 4*PERCENTILE(array,0.97) using the 

measurement; Mean_UnfilteredCytoplasm_Intensity_MeanIntensity_GFPbgCorr. 

This number was then used in the second pipeline.  

In the second pipeline (Tbl. 16), all the other images -excluding the ones from 

untransfected cells- were loaded as described previously, and the intensities in all 
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four channels (DAPI, cytoplasm, DiI-LDL, GFP) were rescaled. Then, steps 5-11 were 

performed as described before, and the dimensions of the enlarged cytoplasms were 

measured (MeasureObjectSizeShape). In the next step, the cells were filtered based 

on their size (FilterObjects), to exclude very small cells that could be apoptotic. 

Subsequently, a mask was created on the LDL channel and the GFP channel to 

measure the fluorescence background (MaskImage), and the background intensities 

were measured (MeasureImageIntensity). Next, the LDL background and GFP 

background were subtracted from the corresponding images (ImageMath). 

Afterwards, a threshold was applied to find saturated pixels in the LDL image 

(ApplyThreshold) and the number of saturated pixels was measured 

(MeasureObjectIntensity). In the following step, the cells with more that 10 

saturated pixels in LDL channel were filtered out, and the GFP threshold from the 

previous pipeline was applied to filter transfected cells (FilterObjects). The DiI-LDL 

signal was afterwards enhanced over the cellular background signal 

(EnhanceOrSuppressFeatures), and the fluorescence signal parameters of identified 

DiI-LDL dots are measured (MeasuredObjectIntensity). Then, DiI-LDL dots outside of 

cells are excluded (Crop) and dots within cells are finally identified, after setting a 

threshold (IdentifyPrimaryObjects). Next, a mask is created that consists of the dots 

that were previously identified (MaskImage), and the size and shape features of the 

identified dots are measured (ObjectSizeShape), as well as the fluorescence intensity 

of the dots within whole cells from the background corrected DiI-LDL image and the 

enhanced signal image (MeasureObjectIntensity). In the following two modules, a 

binary image is generated out of the identified DiI-LDL dots (ConvertObjectsToImage) 

and dots are assigned to the cells which they belong to (RelateObjects). In the next 

three modules, the mean total intensity of DiI-LDL for one cell (CalculateMath), the 

total area of DiI-LDL dots in one cell (CalculateMath) and the ratio of the DiI-LDL dots 

intensity to the total intensity (CalculateMath) are calculated. In the following 16 

modules, images are generated which visualize the outlines of the segmented 

objects on a black image and the fluorescence intensity data are shown on the 

objects and the images are saved as .tif files (OverlayOutlines, DisplayDataOnImage, 

SaveImages). Finally, the results are exported and saved as .csv files 

(ExportToSpreadSheet). 
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Table 16. Pipeline for the analysis of Variant Overexpression effect on LDL uptake 

1. LoadImages 

2. RescaleIntensity  

3. RescaleIntensity  

4. RescaleIntensity  

5. RescaleIntensity  

6. MeasureImageQuality  

7. MeasureImageIntensity 

8. IdentifyPrimaryObjects 

9. IdentifySecondaryObjects 

10. ExpandOrShrinkObjects 

11. IdentifySecondaryObjects 

12. MeasureObjectSizeShape 

13. FilterObjects 

14. MaskImage 

15. MaskImage 

16. MeasureImageIntensity 

17. ImageMath 

18. ImageMath  

19. ApplyThreshold 

20. MeasureObjectIntensity 

21. FilterObjects 

22. OverlayOutlines 

23. EnhanceOrSuppressFeatures 

24. MeasureObjectIntensity 

25. Crop 

26. IdentifyPrimaryObjects 

27. MaskImage 

28. MeasureObjectSizeShape 

29. MeasureObjectIntensity 

30. ConvertObjectsToImage 

31. RelateObjects 

32. CalculateMath 

33. CalculateMath 

34. CalculateMath  

35. OverlayOutlines 

36. OverlayOutlines  

37. GrayToColor 

38. OverlayOutlines  

39. OverlayOutlines  

40. OverlayOutlines  

41. DisplayDataOnImage  

42. DisplayDataOnImage  

43. DisplayDataOnImage  

44. DisplayDataOnImage  

45. DisplayDataOnImage  

46. SaveImages  

47. SaveImages  

48. SaveImages  

49. SaveImages  

50. SaveImages  

51. SaveImages  

52. SaveImages  

53. SaveImages  

54. SaveImages  

55. ExportToSpreadSheet 

 

7.4.1.3 HTM (HIGH-THROUGHPUT-MICROSCOPY) TOOL 

The image data generated from CellProfiler software were imported into HTM 

Explorer, an R-based software developed by C. Tischer from EMBL Heidelberg, for 

visual inspection, quality control and statistical analysis. Thresholds were set for the 

cell number range (5 to 150 cells per image), as well as for the quality (using the 

PowerLogLogSlope measurement from CellProfiler) and for the background of the 

DiI-LDL image. Finally, the data were normalized to the negative control and the 

measurements are saved. 

 

7.4.2 ANALYSIS OF SCREENING RESULTS 

Screening results were analysed using R Studio, R version 3.2.2. In the R code 

created by the author of this manuscript, the HTM output files of all the LabTeks 

analyzed in the screen were read one after the other, and the intensities were 

normalized to the negative control (Neg9). To achieve this, for each plate, the mean 
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robust z score per image, as well as the mean median absolute deviation, MAD of 

the image were calculated. In detail, the robust z score of an image was calculated 

by subtracting from the fluorescence signal (mean intensity of DiI-LDL dots per cell) 

from an siRNA treatment (͞treated͟), the median fluorescence signal of all the 

negative control siRNAs across the same plate (͞median(controls)͟) and dividing by 

the MAD of these controls (͞mad(controls)͟);  

𝑒ݎ𝑜ܿݏ𝑍ݐݏݑ𝑜ܾݎ  = ௧௥௘𝑎௧௘ௗ−௠௘ௗ𝑖𝑎௡ሺ𝐶௧௥௟௦ሻ௠𝑎ௗሺ𝐶௧௥௟௦ሻ  .  

 

Then, a median robust z score per treatment was calculated for each treatment, by 

taking the median of robust z scores of same treatments across different biological 

replicates. The R script is shown below with some basic descriptions of the code.  

 

####### 

# Scipt written by Anthi Trasta 

#Combinatorial RNAi screen with LDL-uptake assay 

# Calculation of robust Z scores for each treatment, by normalizing to controls 

 
# Preparations 

rm(list=ls()) ### clear R-memory 

library(xlsx) ### load xlsx package  

setwd( /Volumes/t2pepperkok/Anthi/ScreenAnalysis/HTM_ImageTables )  

### set data path for MacOSX  

flnms<-list.files(path= . ) 

flNr<-length(flNms) 

Tblall<-data.frame 

 

# Import data and make calculations 

for (i in 1:flNr){  

Tbl<-read.csv(flNms[i]) ###read table and save into vector named Tbl  

trueTbl<-subset(Tbl,Tbl$HTM_qcImages==TRUE)&(Tbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean!= NA ))  

### select rows that correspond to images which passed the quality control and where the  

### measurement to be analyzed is not NA  

trueTbl<-subset(trueTbl,select=c( Metadata_gene_sorted , Mean_Cytoplasm_Math_DiITotalIntensityDotsbyMean )) 

###select columns to be analyzed  

trueTbl$Metadata_gene_sorted<-as.factor(trueTbl$Metadata_gene_sorted) ###set treatment as factor  

trueTbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean<-

as.numeric(trueTbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean) ###set measurement as numeric  

medianTbl<-

aggregate(trueTbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean,by=list(trueTbl$Metadata_gene_sorted), 

FUN= median ,na.rm=TRUE) ###calculate median of each treatment and save in a table named medianTbl 

names(medianTbl)<-c( treatment , medianDiIintensity ) ###name columns of medianTbl 

medianCtrl<-medianTbl$medianDiIintensity[medianTbl$treatment== XWNeg9__NA ] 

###calculate median of controls of the plate  

MADTbl<-

aggregate(trueTbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean,by=list(trueTbl$Metadata_gene_sorted), 

FUN= mad ,na.rm=TRUE) )  

###calculate median absolute deviation of each treatment and save in a table named MADTbl 

names(MADTbl)<-c( treatment , MADofDiIintensity ) ###name columns of MADTbl 

MADctrl<-MADtbl$MADofDiIintensity[MADtbl$treatment== XWNeg9__NA ] ###calculate MAD of controls of the plate  

trueTbl$robustZscore=(trueTbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean-medianCtrl)/MADctrl  

###calculate robust z score per treatment  

Tblall<-rbind(Tblall,trueTbl) ###each time this for-loop is run, the table generated is merged with a combined table, which 

###in the end consists of all the rows of all the tables generated 
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}  

robustZscoreTbl<-aggregate(Tblall$robustZscore,by=list(Tblall$Metadata_gene_sorted),FUN= median ,na.rm=TRUE) 

###calculate robust Z score per treatment  

names(robustZscoreTbl)<-c("treatment","robustZscore") ###name columns of robustZscoreTbl 

madRobZscoreTbl<- aggregate(Tblall$robustZscore,by=list(Tblall$Metadata_gene_sorted), FUN= mad ,na.rm=TRUE) 

###calculate mad of each robust Z score  

names(madRobZscoreTbl)<-c("treatment","madRobZscore")  ###name columns of madRobZscoreTbl 

robustZscoreTbl<-merge(robustZscoreTbl,madRobZscoreTbl,by=c("treatment")) ###merge the two tables  

names(robustZscoreTbl)<-c( treatment ,  robustZscore ,  madRobZscore ) 

 

#Save Results 

wb<-createWorkbook() ###create new workbook 

Sheet1<-createSheet(wb,sheetName= Tblall ) ###create new sheet in the workbook 

addDataFrame(x=Tblall,sheet=Sheet1,row.names=F) ###save Tblall in Sheet1  

Sheet2<-createSheet(wb,sheetName= robustZscoreTbl ) ###create new sheet in the workbook  

addDataFrame(x=robustZscoreTbl,sheet=Sheet2,row.names=F) ###save robustZscoreTbl in Sheet2 

saveWorkbook(wb, /Volumes/t2pepperkok/Anthi/ScreenAnalysis/Tblall.xlsx ) ###save workbook as excel file  

write.csv(Tblall, /Volumes/t2pepperkok/Anthi/ScreenAnalysis/Tblall.csv ,row.names=T)  

### save Tblall as .csv file to be used in next script  

write.csv(robustZscoreTbl, /Volumes/t2pepperkok/Anthi/ScreenAnalysis/robustZscoreTbl.csv ,row.names=T)  

###save robustZscoreTbl as .csv file to be used in next script  

 

In an alternative approach, the robust Z scores were calculated by subtracting from 

the fluorescence signal (mean intensity of DiI-LDL dots per cell) of an siRNA 

treatment (͞treated͟), the median fluorescence signal of all treatments (after 

excluding the transfection controls; Incenp, and the positive controls; Ldlr and Npc1) 

across the same plate (͞median(All)͟) and dividing by the MAD of all treatments 

(͞mad(All)͟); 

 

𝑒ݎ𝑜ܿݏ𝑍ݐݏݑ𝑜ܾݎ  = ௧௥௘𝑎௧௘ௗ−௠௘ௗ𝑖𝑎௡ሺ𝐴௟௟ሻ௠𝑎ௗሺ𝐴௟௟ሻ    (Birmingham et al. 2009; Malo et al. 2006).  

 

Then, a median robust Z score per treatment was calculated for each treatment, by 

taking the median of robust Z scores of same treatments across different biological 

replicates. The R scipt is shown below with some basic descriptions of the code. 

 

####### 

# Scipt written by Anthi Trasta 

#Combinatorial RNAi screen with LDL-uptake assay 

# Calculation of robust Z scores for each treatment, by normalizing to all treatments 

 
# The preparations are same as in previous script 

 

# Import data and make calculations 

for(i in 1:flNr){  

      Tbl<-read.csv(flNms[i]) ### read file and save to vector Tbl 

      trueTbl<-subset(Tbl,(Tbl$HTM_qcImages==TRUE) &(Tbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean!="NA"))  

      ### select rows that correspond to images which passed the quality control and where the  

      ### measurement to be analyzed is not NA  

      trueTbl<-subset(trueTbl,select=c("Metadata_gene_sorted","Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean", 

     "Mean_Cytoplasm_Math_Area_Endos_Mean","Mean_Dots_Intensity_IntegratedIntensity_MaskedLDLTopHat")) 

      ###select columns to be analyzed 

      trueTbl$Metadata_gene_sorted<-as.factor(trueTbl$Metadata_gene_sorted) ###set treatment as factor  

      trueTbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean<-   
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      as.numeric(trueTbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean) ###set measurement as numeric 

      ###########  calculate medians  ######### 

      medianTbl<-trueTbl 

      medianTbl<-subset(medianTbl,(medianTbl$Metadata_gene_sorted!="INCENP__NA")&     

      (medianTbl$Metadata_gene_sorted!="LDLR__NA")&(medianTbl$Metadata_gene_sorted!="LDLR__NEG9")& 

      (medianTbl$Metadata_gene_sorted!="NPC1__NA")&(medianTbl$Metadata_gene_sorted!="NEG9__NPC1")) 

      medianTbl$Metadata_gene_sorted<-"any" ###remove treatment names, for calculation of median 

      medianAll<-aggregate(medianTbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean, 

      by=list(medianTbl$Metadata_gene_sorted),FUN="mean",na.rm=TRUE) ###calculated medians of treatments 

      medianAll<-medianAll$x ###calculate median of all treatments 

      ###########  calculate mad  ######### 

      MADTbl<-trueTbl 

      MADTbl<-subset(MADTbl,(MADTbl$Metadata_gene_sorted!="INCENP__NA")& 

     (MADTbl$Metadata_gene_sorted!="LDLR__NA")&(MADTbl$Metadata_gene_sorted!="LDLR__NEG9")& 

     (MADTbl$Metadata_gene_sorted!="NPC1__NA")&(MADTbl$Metadata_gene_sorted!="NEG9__NPC1")) 

  MADTbl$Metadata_gene_sorted<-"any" ###remove names of treatments 

   MADAll<-aggregate(MADTbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean,      

   by=list(MADTbl$Metadata_gene_sorted),FUN="mad",na.rm=TRUE) ###calculate medians of treatments 

  MADAll<-MADAll$x ###calculated mad of all treatments 

  #########  calculate Z score  ####### 

  trueTbl$minusMedianAll=(trueTbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean-medianAll) 

 trueTbl$robustZscore=(trueTbl$Mean_Cytoplasm_Math_DiITotalIntensityDots_byMean-medianAll)/MADAll 

 write.csv(trueTbl, file = paste("/Users/anthi/ PhD/Experiments/2016/ScreenAnalysis /",flNms[i]),row.names=FALSE) 

 Tblall<-rbind(Tblall,trueTbl)  ### merge each file (Tbl) to a new one (Tblall)  

 } 

 robustZscoreTbl<-aggregate(Tblall$robustZscore,by=list(Tblall$Metadata_gene_sorted),FUN= median ,na.rm=TRUE)  

###calculate robust Z score per treatment  

 names(robustZscoreTbl)<-c("treatment","robustZscore") ###name columns of robustZscoreTbl 

 madRobZscoreTbl<- aggregate(Tblall$robustZscore,by=list(Tblall$Metadata_gene_sorted), FUN= mad ,na.rm=TRUE) 

 ###calculate mad of each robust Z score  

 names(madRobZscoreTbl)<-c("treatment","madRobZscore")  ###name columns of madRobZscoreTbl 

 robustZscoreTbl<-merge(robustZscoreTbl,madRobZscoreTbl,by=c("treatment")) ###merge the two tables  

 names(robustZscoreTbl)<-c( treatment ,  robustZscore ,  madRobZscore ) 

 

### Save Results; this part is same as in previous script 

 

7.4.3 INTERACTION ANALYSIS 

7.4.3.1 PRIMARY APPROACH; CONTROL-BASED NORMALIZATION 

To test for gene-gene interactions among the results of the combinatorial RNAi 

screen, the effect on LDL uptake of the combined transfection with two siRNAs 

targeting two different genes A and B was compared to the additive effect of the 

two single transfections. In single transfections the respective siRNAs were co-

transfected together with the negative control siRNA. For this, a robust linear model 

was fitted using R, where the additive effect of two single knockdowns A and B 

{(GeneA+control)+(GeneB+control)} was regressed to the respective double 

knockdown effect (GeneA+GeneB), assuming the negative control as an intercept, to 

derive a common effect estimate for each combination (Cordell 2002). Thus, the 

interaction effect wAB between two genes A and B was calculated from the 

difference between the main effects mA and mB of the two single knockdowns and 

the effect of the double knockdown yAB (wAB= mA+mB-yAB-y0), with y0 being the 

baseline value, which is given from the negative control siRNA effect. A p-value was 
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then calculated from the t-value of the linear regression model using the following 

equation; pVal=2-2*pnorm(abs(tVal)). To correct for multiple comparison, the p-value 

was adjusted using the false discovery rate (fdr) method (Benjamini and Hochberg 

1995), and the significance threshold for gene interactions was set at pValuefdr<10-2. 

The R script for the interaction calling is shown below, with descriptions of the steps. 

 

####### 

# Script written by Anthi Trasta with the help of Bernd Klaus from Huber group 

#Combinatorial RNAi screen with LDL-uptake assay  

#Interaction calling  

 

#Preparations  

rm(list=ls()) ### clear R-memory 

library(xlsx) ### load xlsx package  

library(MASS) ### load MASS package for rlm function  

library(dplyr) ###load dplyr package  

setwd( /Volumes/t2pepperkok/Anthi/ScreenAnalysis ) ### set data path for MacOSX  

 

#Import data 

Tblall<-read.csv ### read Tblall.csv file generated from previous R-script  

robustZscoreTbl<-read.csv ### read robustZscoreTbl generated from previous R-script  

 

#Split treatments into two gene names 

for (i in 1:nrow(robustZscoreTbl){  

geneName<-unlist(strsplit(as.character(robustZscoreTbl$treatment[i], __ ))  

robustZscoreTbl$Gene1[i]=geneName[1] ###create new column with gene1 name 

 robustZscoreTbl$Gene2[i]=geneName[2] ###create new column with gene2 name  

}  

 

#Prepare for rlm fitting 

robustZscoreTbl$treatment<-as.character(robustZscoreTbl$treatment) 

robustZscoreTbl$treatment[robustZscoreTbl$Gene1=="XWNeg9"]<-"NEG9__NEG9" 

#rename treatment XWNeg9__NA into NEG9__NEG9 

robustZscoreTbl$Gene1[robustZscoreTbl$treatment=="NEG9__NEG9"]<-"NEG9" 

robustZscoreTbl$Gene2[robustZscoreTbl$treatment=="NEG9__NEG9"]<-"NEG9" 

robustZscoreTbl<-subset(robustZscoreTbl,(robustZscoreTbl$Gene2!="NA"))  

### exclude all controls; INCENP, NPC1, NEG1, LDLR, etc  

geneTbl<-read.csv( /Volumes/t2pepperkok/Anthi/ScreenAnalysis/geneNames.csv ) ###read table with names of 30 genes  

geneTbl2<-read.csv( /Volumes/t2pepperkok/Anthi/ScreenAnalysis/geneNamesPlusNEG.csv ) 

###read table containing the names of the 30 genes plus NEG9  

for (i in 1:nrow(Tblall)){ 

geneName<-unlist(strsplit(as.character(Tblall$Metadata_gene_sorted[i]),"__"))  #Separate gene names in table Tblall 

Tblall$Gene1[i]=geneName[1] ### create new col in Tblall with gene1 

Tblall$Gene2[i]=geneName[2] ### create new col in Tblall with gene2 

Tblall$treatment[i]<-paste(Tblall$Gene1[i],"__",Tblall$Gene2[i]) 

} 

 

#Fit robust  linear model  

rlmTbl<-data.frame() 

for(i in 1:nrow(geneTbl)) { 

testGene1<-geneTbl$gene[i] 

for(j in 1:nrow(geneTbl)){ 

testGene2<-geneTbl$gene[j]  

if (testGene1!=testGene2){ 

### create new data frame, with only those combinations from "Tblall" that contain the two testGenes; 

###Gene1__NEG9,Gene2__NEG9, Gene1__Gene2 and XWNeg9_NA 

### the "testTbl" is overwritten in each run of the loop 

testTbl<subset(Tblall,(Gene1=="XWNeg9")|((Gene1==testGene1)&(Gene2=="NEG9"))| 

((Gene1==testGene2)&(Gene2=="NEG9"))| 

((Gene1==testGene1)&(Gene2==testGene2))| 

((Gene1=="NEG9")&(Gene2==testGene1))| 

((Gene1=="NEG9")&(Gene2==testGene2))| 

((Gene1==testGene2)&(Gene2==testGene1)))   

for(k in 1:nrow(testTbl)){ 
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if (testTbl$Gene1[k]=="NEG9"){ 

          testTbl$Gene1[k]<-testTbl$Gene2[k] 

testTbl$Gene2[k]<-"NEG9" 

        } 

      }  

      combi<-(((testTbl$Gene1==testGene1)&(testTbl$Gene2==testGene2))| 

  ((testTbl$Gene1==testGene2)&(testTbl$Gene2==testGene1)))  

              ### combi: testGene1_testGene2, testGene2_testGene1 

              single1<-((testTbl$Gene1==testGene1)&(testTbl$Gene2=="NEG9")|combi) 

              ### single1: testGene1_NEG9, testGene1_testGene2, testGene2_testGene1 

      single2<-((testTbl$Gene1==testGene2)&(testTbl$Gene2=="NEG9")|combi) 

              ### single2: testGene2_NEG9, testGene1_testGene2, testGene2_testGene1 

      rlmfit<-rlm(robustZscore~single1+single2+combi,data=testTbl)  

      rs <- summary(rlmfit)$sigma  

      rlmfit.df<-as.data.frame(coef(summary(rlmfit))) 

      rlmfit.df$Gene1<-paste(testGene1) 

      rlmfit.df$Gene2<-paste(testGene2) 

      rlmTbl<-rbind(rlmTbl,rlmfit.df) 

}  

} 

} 

names(rlmfit.df)[2]<-"Std.Error" 

names(rlmTbl)[3]<-"tvalue" ###name the 2
nd

 and 3
rd

 column of table rlmTbl 

wb<-createWorkbook() ###create new workbook to save results 

rlmsheet<-createSheet(wb, sheetName="rlm") ###create new sheet in the workbook 

addDataFrame(x=rlmTbl,sheet=rlmsheet, row.names=F) ###add results of robust linear model to new sheet 

rlmTbl$coefficient=rownames(rlmTbl) ###create new column in rlmTbl, "coefficient", copying the column "rownames" 

rlmTblcombi<-subset(rlmTbl,grepl("combiTRUE",rlmTbl$coefficient)) 

### create new Table: "rlmTblcombi", with only those rows from rlm Tblall that contain "combiTRUE" which corresponds to the 

###value of the combined treatment 

rlmTblcombi<-within(rlmTblcombi, rm("coefficient")) ### remove column "coefficient" from rlmTblcombi 

for (i in 1:nrow(rlmTblcombi)){ 

  for (j in 2:nrow(rlmTblcombi)){ 

    if (rlmTblcombi$Gene1[i]==rlmTblcombi$Gene2[j]){ 

      if (rlmTblcombi$Gene2[i]==rlmTblcombi$Gene1[j]){ 

        rlmTblcombi$Gene1[j]<-rlmTblcombi$Gene1[i] 

        rlmTblcombi$Gene2[j]<-rlmTblcombi$Gene2[i] 

      } 

    } 

  } ### rename Gene2_Gene1 to Gene1_Gene2 

  rlmTblcombi$treatment[i]<-paste(rlmTblcombi$Gene1[i],"__",rlmTblcombi$Gene2[i])  

  ### create new column "treatment" with Gene1__Gene2 

} 

rlmTblcombi<-rlmTblcombi[!duplicated(rlmTblcombi$treatment), ] ###remove duplicated rows from table rlmTblcombi 

rlmTblcombi$pvalue<-(2-2*pnorm(abs(rlmTblcombi$tvalue))) ###calculate p-values 

rlmTblcombi$pVal_fdr<-p.adjust(rlmTblcombi$pvalue,method="fdr") ###apply fdr correction to p-values 

rlmTblcombi$pVal_fdr<-as.numeric(rlmTblcombi$pVal_fdr) 

 

#Calculate hits of robust linear model  

 

#Preparations 

CombiTbl<-data.frame(treatment=character())  #Create new data frame with all the gene combinations 

CombiTblall<-data.frame(treatment=character()) 

for (i in 1:nrow(geneTbl2)){ 

for (j in 1:nrow(geneTbl2)){ 

CombiTbl<-data.frame(paste(geneTbl2$gene[i],"__",geneTbl2$gene[j])) 

CombiTblall<-rbind(CombiTblall,CombiTbl) 

} 

} 

names(CombiTblall)<-c("treatment") 

for (i in 1:nrow(CombiTblall)){ 

geneName<-unlist(strsplit(as.character(CombiTblall$treatment[i])," __ "))  #Separate gene names in table CombiTblall 

CombiTblall$Gene1[i]=geneName[1] ### create new col in Tblall with gene1 

CombiTblall$Gene2[i]=geneName[2] ### create new col in Tblall with gene2 

CombiTblall$treatment[i]<-paste(CombiTblall$Gene1[i],"__",CombiTblall$Gene2[i]) 

}  

 

#Calculation of hits 

rlmTblfdrsign1star<-subset(rlmTblcombi,rlmTblcombi$pVal_fdr<0.05) 

rlmTblfdrsign2stars<-subset(rlmTblcombi,rlmTblcombi$pVal_fdr<0.01) 

rlmTblfdrsign3stars<-subset(rlmTblcombi,rlmTblcombi$pVal_fdr<0.001) 
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rlmTblfdrsign4stars<-subset(rlmTblcombi,rlmTblcombi$pVal_fdr<0.0001) ###Create four new tables that contain the hits  

###Define significance as follows: * =pValfdr<0.05, **= pValfdr<0.01, *** =pValfdr<0.001, ###****=pValfdr<0.0001  

rlmTblfdrsign1star[,"robustZscore"] <- NA 

rlmTblfdrsign1star[,"madRobZscore"] <- NA 

for (l in 1:nrow(rlmTblfdrsign1star)){ 

  for (k in 1:nrow(CombiTblall)){ 

    if ((CombiTblall$treatment[k]==rlmTblfdrsign1star$treatment[l])){ 

      rlmTblfdrsign1star$robustZscore[l]<-CombiTblall$robustZscore[k] 

      rlmTblfdrsign1star$madRobZscore[l]<-CombiTblall$madRobZscore[k] 

    }   

  } 

} 

###add robustZscore and madRobZscore values to hits table, from CombiTblall rlmTblfdrsign2stars[,"robustZscore"] <- NA 

rlmTblfdrsign2stars[,"madRobZscore"] <- NA 

for (l in 1:nrow(rlmTblfdrsign2stars)){ 

  for (k in 1:nrow(CombiTblall)){ 

    if ((CombiTblall$treatment[k]==rlmTblfdrsign2stars$treatment[l])){ 

      rlmTblfdrsign2stars$robustZscore[l]<-CombiTblall$robustZscore[k] 

      rlmTblfdrsign2stars$madRobZscore[l]<-CombiTblall$madRobZscore[k] 

    }   

  } 

} 

rlmTblfdrsign3stars[,"robustZscore"] <- NA 

rlmTblfdrsign3stars[,"madRobZscore"] <- NA 

for (l in 1:nrow(rlmTblfdrsign3stars)){ 

  for (k in 1:nrow(CombiTblall)){ 

    if ((CombiTblall$treatment[k]==rlmTblfdrsign3stars$treatment[l])){ 

      rlmTblfdrsign3stars$robustZscore[l]<-CombiTblall$robustZscore[k] 

      rlmTblfdrsign3stars$madRobZscore[l]<-CombiTblall$madRobZscore[k] 

    }   

  } 

} 

 

rlmTblfdrsign4stars[,"robustZscore"] <- NA 

rlmTblfdrsign4stars[,"madRobZscore"] <- NA 

for (l in 1:nrow(rlmTblfdrsign4stars)){ 

  for (k in 1:nrow(CombiTblall)){ 

    if ((CombiTblall$treatment[k]==rlmTblfdrsign4stars$treatment[l])){ 

      rlmTblfdrsign4stars$robustZscore[l]<-CombiTblall$robustZscore[k] 

      rlmTblfdrsign4stars$madRobZscore[l]<-CombiTblall$madRobZscore[k] 

    }   

  } 

} 

 

#Save results 

rsignfdrsheet1<-createSheet(wb, sheetName="rsignfdrTbl1star") 

addDataFrame(x=rlmTblfdrsign1star,sheet=rsignfdrsheet1, row.names=F) 

rsignfdrsheet2<-createSheet(wb, sheetName="rsignfdrTbl2stars") 

addDataFrame(x=rlmTblfdrsign2stars,sheet=rsignfdrsheet2, row.names=F) 

rsignfdrsheet3<-createSheet(wb, sheetName="rsignfdrTbl3stars") 

addDataFrame(x=rlmTblfdrsign3stars,sheet=rsignfdrsheet3, row.names=F) 

rsignfdrsheet4<-createSheet(wb, sheetName="rsignfdrTbl4stars") 

addDataFrame(x=rlmTblfdrsign4stars,sheet=rsignfdrsheet4, row.names=F) 

saveWorkbook(wb, /Volumes/t2pepperkok/Anthi/ScreenAnalysis/Interactions.xlsx") 

 

 

 

7.4.3.2 ALTERNATIVE APPROACH; SAMPLE-BASED NORMALIZATION 

An alternative statistical method was used, to analyze the co-RNAi screen data for 

genetic interactions. In this approach, the effect on LDL uptake of the combined 

transfection with two siRNAs targeting two different genes A and B was compared to 

the additive effect of the two single transfections, which were considered the 

combination of the respective siRNA with any other siRNA. For this, a robust linear 
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model was fitted using R, where the additive effect of two single knockdowns A and 

B {(GeneA+any)+(GeneB+any)} was regressed to the respective double knockdown 

effect (GeneA+GeneB), assuming the negative control as an intercept, to derive a 

common effect estimate for each combination (Cordell 2002). Thus, the interaction 

effect wAB between two genes A and B was calculated from the difference between 

the main effects mA and mB of the two single knockdowns and the effect of the 

double knockdown yAB (wAB= mA+mB-yAB-y0), with y0 being the baseline value, which 

is given from the median effect of any other treatment. A p-value was then 

calculated and adjusted using the false discovery rate (fdr) method, as before. The R 

script for the interaction calling is shown below, with descriptions of the steps. 

 

####### 

# Script written by Anthi Trasta with the help of Bernd Klaus from Huber group 

#Combinatorial RNAi screen with LDL-uptake assay  

#Interaction calling  

 

###The parts; Preparations, Import data, Split treatment names and Prepare for rlm fitting are the same as in previous code 

 

###Fit robust linear model 

rlmTbl<-data.frame() 
for(i in 1:nrow(geneTbl)) { 

testGene1<-geneTbl$gene[i] 
for(j in 1:nrow(geneTbl)){ 
      testGene2<-geneTbl$gene[j]  
      if (testGene1!=testGene2){ 
      ### create new data frame, with only those combinations from "Tblall" that contain the two testGenes   
      ### combinations: Gene1__any,Gene2__any, Gene1__Gene2 and [any treatment] as control  
      ### the "testTbl" is overwritten in each run of the loop 
      controlTbl<-subset(Tblall,((Tblall$Metadata_gene_sorted!="INCENP__NA")& 
      (Tblall$Metadata_gene_sorted!="NPC1__NA")&(Tblall$Metadata_gene_sorted!="NEG9__NPC1"))) 
      controlTbl$Metadata_gene_sorted<-"any" 
      controlTbl$Gene1<-"any" 
      controlTbl$Gene2<-"any" 
      single1Tbl<-subset(Tblall,((Gene1==testGene1)|(Gene2==testGene1))) 

              for(k in 1:nrow(single1Tbl)){ 
            single1Tbl$Gene2[k]<-"any" 
            single1Tbl$Gene1[k]<-testGene1 
            single1Tbl$Metadata_gene_sorted<-paste(single1Tbl$Gene1,"__",single1Tbl$Gene2) 
      }       
      single2Tbl<-subset(Tblall,((Gene1==testGene2)|(Gene2==testGene2))) 
      for(k in 1:nrow(single2Tbl)){ 
            single2Tbl$Gene2[k]<-"any" 
            single2Tbl$Gene1[k]<-testGene2 
            single2Tbl$Metadata_gene_sorted<-paste(single2Tbl$Gene1,"__",single2Tbl$Gene2) 
      }  
     doublesTbl<-subset(Tblall,((Gene1==testGene2)&(Gene2==testGene1))|((Gene1==testGene1)&(Gene2==testGene2))) 
     for(k in 1:nrow(doublesTbl)){ 
           doublesTbl$Gene1[k]<-testGene1 
           doublesTbl$Gene2[k]<-testGene2 
           doublesTbl$Metadata_gene_sorted<-paste(doublesTbl$Gene1,"__",doublesTbl$Gene2) 
     } 
    testTbl<-rbind(controlTbl,single1Tbl,single2Tbl,doublesTbl) 

combi<-((testTbl$Gene1==testGene1)&(testTbl$Gene2==testGene2)) ### combi: testGene1_testGene2 
single1<-((testTbl$Gene1==testGene1)&(testTbl$Gene2=="any")|combi) ### single1: testGene1_any 
single2<-((testTbl$Gene1==testGene2)&(testTbl$Gene2=="any")|combi) ### single2: testGene2_any 
rlmfit<-rlm(robustZscore~single1+single2+combi,data=testTbl)  
rs <- summary(rlmfit)$sigma  
rlmfit.df<-as.data.frame(coef(summary(rlmfit))) 
names(rlmfit.df)[2]<-"Std.Error" 
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rlmfit.df$Gene1<-paste(testGene1) 
rlmfit.df$Gene2<-paste(testGene2) 
fsheet<-createSheet(wb2, sheetName=paste(testGene1,"__",testGene2)) 
addDataFrame(x=rlmfit.df,sheet=fsheet, row.names=F) 
rlmTbl<-rbind(rlmTbl,rlmfit.df) 
}  

      } 
} 
names(rlmTbl)[3]<-"tvalue" ###name the 3rd column of rlm Tbl 
rlmTbl$coefficient=rownames(rlmTbl) ###create new column in lmTbl, "coefficient", copying the column "rownames"  
 
###The rest of the code is the same as in previous one 
 
 

7.4.4 PLOTTING OF SCREEN HITS 

7.4.4.1 BARPLOTS 

### This R-code chunk continues from the previous one 

rlmTblfdrsign2stars<-rlmTblfdrsign2stars[with(rlmTblfdrsign2stars, 

order(-rlmTblfdrsign2stars$Value,rlmTblfdrsign2stars$treatment)),] ###order hits according to interaction effect 

 

pdf("/Volumes/t2pepperkok/Anthi/ScreenAnalysis/barplot_interactions_2stars.pdf")   par(mar=c(8,7,2,2))   

bp<-barplot(height=rlmTblfdrsign4stars$Value,              

    space=c(0,1),              

    main="Gene Interactions pVal(fdr)<10^-4",              

    axes=F,              

    ylim=c(-4,4),              

   xpd=F )  

axis(side=2,       

         pos=1,       

         las=1,        

         at=c(-4,-3,-2,-1,0,1,2,3,4))  

axis(side=1,       

at=bp,       

labels=F)  

text(x=seq_along(rlmTblfdrsign4stars$treatment),       

par("usr")[3]-0.2,       

adj=c(0.9,2.4),       

srt=45,xpd=T,       

labels=rlmTblfdrsign4stars$treatment,       

cex=0.7)  

arrows(bp,rlmTblfdrsign4stars$Value+rlmTblfdrsign4stars$Std.Error,        bp,rlmTblfdrsign4stars$Value-

rlmTblfdrsign4stars$Std.Error,         

angle=90,         

code=3,         

length=0.05)   

abline(h=c(0))  

mtext("treatment",side=1,line=6) mtext("Estimated value of robust linear model",side=2,line=5)  
 

dev.off() 

 
 
7.4.4.2 CORRELATION HEATMAP 

### This R-code chunk continues from the previous one 

CombiTblalln<-data.frame(grep("NEG9",CombiTblall$treatment,value=T,invert=T)) 

CombiTblalln<-subset(CombiTblall,(CombiTblall$Gene1!="NEG9")&(CombiTblall$Gene2!="NEG9")) 

 

pdf("/Volumes/t2pepperkok/Anthi/ScreenAnalysis/CorrelationHeatmap.pdf")   

rgb.palette <- colorRampPalette(c("green", "white","magenta"), space = "rgb") 

par(mar=c(8,6,2,2)) 

 

#Build the horizontal and vertical axis information 

hor <- c(geneTbl$gene) 

ver <- c(geneTbl$gene) 

 

#Build the fake correlation matrix, see matrix{base} 

Nrow<-length(unique(as.factor(CombiTblalln$Gene1))) 

Ncol<-length(unique(as.factor(CombiTblalln$Gene2))) 
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CorHeatDat<-CombiTblalln$robustZscore 

cor <- matrix(data=CorHeatDat, nrow=Nrow, ncol=Ncol, dimnames = list(hor, ver)) 

 

#Build the plot 

levelplot(cor,  

          main="Candidate LDL-effector genes array correlation matrix",  

          xlab="Gene 1",  

          ylab="Gene 2",  

          scales=list(x=list(rot=90)), 

          col.regions=rgb.palette(150),  

          cuts=100,  

          at=seq(-max(abs(CombiTblalln$robustZscore)),max(abs(CombiTblalln$robustZscore)),0.1)) 

dev.off() 

 

7.4.5 QRT-PCR ANALYSIS 

qRT-PCR results were analyzed using the comparative CT method. For this, baseline 

fluorescence was set in the StepOne Software, to subtract the background signal 

owed to the reaction medium. This baseline threshold was set to 0.1 CT and was kept 

constant throughout all the qRT-PCR reactions performed, for comparison reasons. 

Next, the threshold cycle (CT) value was determined, which reflects the cycle number 

at which the fluorescence signal generated from a reaction crosses the threshold. 

The difference (ΔCT) between the CT value of a target gene and the CT value of a 

housekeeping gene (typically GAPDH) was calculated. Subsequently, the difference 

(ΔΔCT) between the ΔCT from a treated well and a non-treated well was calculated 

and the fold change corresponded to 2-ΔΔCT. The statistical significance of the 

treatment fold change compared to the untreated was calculated by using a two-

tailed Student’s t-test in Microsoft Excel (TTEST (array1, array2, 2, 3)). 

 

7.4.6 WESTERN BLOTTING ANALYSIS 

Scanned western blots were analyzed with ImageJ to quantify protein band 

intensities. For the quantifications, films were selected where bands were not 

saturated. As a first step in the protein quantification, the intensity of bands was 

normalized to background intensity, and then the intensity of protein bands of 

interest was normalized to that of a-tubulin bands on the same gel. 

 

7.4.7 PROTEIN/ MRNA INTERACTION ANALYSIS 

To test for interactions at the level of LDLR or SREBF1/2 mRNA, or LDLR protein, the 

results of qPCR or western blotting experiments, respectively were used. For qPCR, 

results derived from three to four biological replicas, and from three replicas for 
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western blots. The exact same experimental conditions (48h knockdown, cell 

starvation) were used, as before performing the LDL-uptake assay. Specifically, for 

ƋPCR expeƌiŵeŶts, the ΔCt ǀalues (see section 7.4.5) were used to fit a linear model, 

whereas for Western blot experiments, the ratio LDLR/a-tubulin (see 7.4.6), without 

normalization was used. The effect of the combined transfection with two siRNAs 

targeting two different genes A and B was compared to the additive effect of the 

two single transfections. In single transfections the respective siRNAs were co-

transfected together with the negative control siRNA. For this, a robust linear model 

was fitted using R, where the additive effect of two single knockdowns A and B 

{(GeneA+control)+(GeneB+control)} was regressed to the respective double 

knockdown effect (GeneA+GeneB), assuming the negative control as an intercept, to 

derive a common effect estimate for each combination (Cordell 2002). A p-value was 

then calculated from the t-value of the linear regression model using the following 

equation; pVal=2-2*pnorm(abs(tVal)). To correct for multiple comparison, the p-value 

was adjusted using the false discovery rate (fdr) method (Benjamini and Hochberg 

1995), and the significance threshold for gene interactions was set at pValuefdr<10-1. 

The R script for the interaction calling is shown below, with descriptions of the steps. 

 

####### 

# Script written by Anthi Trasta  

rm(list=ls())           ### clear R-memory 

 

#Preparations  

 

library(xlsx)           ### load xlsx package 

library(MASS)       ### load MASS package for rlm function 

setwd("/Users/anthi/Desktop/Interaction_calc")  

 

#Import data 

Tbl<-read.csv("Table.csv") ### read file and save to vector Tbl 

 

#Split treatments into two gene names 

for (i in 1:nrow(Tbl)){ 

  geneName<-unlist(strsplit(as.character(Tbl$treatment[i]),"__"))   

   

  Tbl$Gene1[i]=geneName[1] ### create new col in Tblall with gene1 

  Tbl$Gene2[i]=geneName[2] ### create new col in Tblall with gene2 

   

} 

 

#Prepare for rlm fitting 

###Change the two test genes every time this chunk is ran, to test for all gene pairs 

testGene1<-"HAVCR1" 

testGene2<-"LDLR" 

rlmTbl<-data.frame() 

testTbl<-subset(Tbl,(Gene1=="NEG9")|((Gene1==testGene1)&(Gene2=="NEG9"))|((Gene1==testGene2)&(Gene2=="NEG9"))| 

                  ((Gene1==testGene1)&(Gene2==testGene2))|((Gene1==testGene2)&(Gene2==testGene1)))   

combi<-

(((testTbl$Gene1==testGene1)&(testTbl$Gene2==testGene2))|((testTbl$Gene1==testGene2)&(testTbl$Gene2==testGene1)))  
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single1<-((testTbl$Gene1==testGene1)&(testTbl$Gene2=="NEG9")|combi) 

single2<-((testTbl$Gene1==testGene2)&(testTbl$Gene2=="NEG9")|combi) 

 

#Fit robust  linear model  

rlmfit<-rlm(DDCt~single1+single2+combi,data=testTbl)  

rs <- summary(rlmfit)$sigma  

rlmfit.df<-as.data.frame(coef(summary(rlmfit))) 

names(rlmfit.df)[2]<-"Std.Error" #name column 2 of generated table 

rlmfit.df$Gene1<-paste(testGene1) 

rlmfit.df$Gene2<-paste(testGene2) 

rlmTbl<-rbind(rlmTbl,rlmfit.df) 

names(rlmTbl)[3]<-"tvalue" #name column 3 of generated table 

rlmTbl$pvalue<-(2-2*pnorm(abs(rlmTbl$tvalue))) #calculate p-values 

 

#Save data 

wb<-createWorkbook() 

sheet1<-createSheet(wb, sheetName="HAVCR1_LDLR") 

addDataFrame(x=rlmTbl,sheet=sheet1, row.names=F) 

saveWorkbook(wb, "/Users/anthi/Desktop/qRT-PCR/LDLR_mRNA_interaction_calc/linear_model.xlsx") 

 

7.4.8 NUCLEIC ACID DESIGN 

7.4.8.1 QRT-PCR PRIMER DESIGN 

Primers for qRT-PCR were custom designed to target the genes studied and met 

certain requirements, according to which the parameters of the primer design tool 

(NCBI Primer-Blast) were set; First, the primers need to span an exon-exon junction 

to avoid amplification of genomic DNA. For this purpose, two neighboring exons 

were selected that were present in most protein coding transcripts of the gene, 

using the Ensembl genome browser. The sequences of the two exons were extracted 

from Ensembl and jointly pasted into NCBI Primer-Blast Tool. The range for the 

design of the forward primer was set within the sequence of the first exon, while the 

range for the design of the reverse primer was set within the sequence of the second 

exon. Second, the PCR product size was set between 60 and 150 bp for efficient 

amplification. Third, the primer melting temperature was set between 57°C and 

63°C, with the ideal Tm being 60°C, and the maximum Tm between the two primers 

targeting the same gene was set as 3°C. Fourth, the primer GC content was set 

around 50-60% to ensure maximum product stability. Last, the primer length was set 

between 18 and 23 nucleotides.  In order to examine the retrieved primers from 

NCBI Primer-Blast for specific targeting, the primers were mapped against the 

human reference genome (Human GRCh38) using the Ensembl BLAST/BLAT Tool. 

Specifically, each primer sequence was pasted into BLAST, and a search was 

performed against the DNA database, selecting the option ͞Genomic sequence͟, and 

with the search tool BLASTN, with sensitivity for Short sequences. Primers binding to 
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other genomic locations with high identity and statistical significance were not 

selected. Next, selected primers were evaluated for secondary structure formation 

and dimerization probability using the OligoEvaluator Tool from Sigma-Aldrich. 

Primers with high probability to form secondary structures were rejected. Finally, 

the selected primers that passed the aforementioned quality control criteria were 

ordered from Sigma Aldrich. 

 

7.4.8.2 SIRNA DESIGN 

7.4.8.2.1 MAPPING SIRNAS TO THE REFERENCE GENOME 

Most of the siRNAs used in this study were extracted from Blattmann et al. 

(Blattmann et al. 2013), and few were selected using Bluegecko Tool (J.K. Hériché). 

All siRNAs were initially mapped to the reference genome (Ensembl 66 release 

GRCh38) with Bluegecko. With this tool the number of targeted protein-coding 

transcripts was evaluated and unspecific siRNAs that target other human mRNAs 

were identified. Moreover, the siRNAs were evaluated for mismatches to the 

reference sequence of the respective target gene or for targeting transcripts not 

anymore considered as protein coding. 

 

7.4.8.2.2 CELLBASE 

All the plates and microscope images from the interaction screen performed in this 

study were uploaded and stored in Cellbase. Cellbase is an EMBL internal database, 

developed and maintained by S. Sauer. Thus, all the images from spotted positions 

across a LabTek could be easily explored and evaluated. 
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8 ABBREVIATIONS 

 

CAD   Coronary Artery Disease 

CDCV   Common Disease, Common Variant 

cDNA   complementary DNA 

CDRV   Common Disease, Rare Variant 

Co-RNAi  combinatorial RNA interference 

Cq   quantitation cycle 

Ct, CT   threshold cycle 

Ctrl   Control 

CVAS   Common Variant Association Study  

CVD   Cardiovascular Disease 

DAPI   4,6-Diamino-2-Phenylindole 

DiI   Di-alkyl-Indocarbocyanine dye 

DMEM   Dulbecco’s Modified Eagle Medium 

DMSO   Dimethylsulfoxide 

DRAQ5   Deep Red Anthraquinone 5 EDTA    

Em   Emission 

ESP   Exome Sequencing Project 

EVS   Exome Variant Server 

Ex   Excitation 

FC   Free Cholesterol 

FH   Familial Hypercholesterolemia 

FW   Forward 

GAPDH   Glyceraldehyde 3-Phosphate Dehydrogenase  

GFP   Green Fluorescent Protein 

GI   Genetic Interaction 

GWAS   Genome Wide Association Study 

HDL   High-Density Lipoprotein 

HDL-C   HDL-cholesterol 

HPCD   Hydroxypropylcyclodextrin 
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IM   Imaging Medium 

LD   Linkage Disequilibrium 

LDL   Low-Density Lipoprotein 

LDL-C   LDL-cholesterol 

LDLR   Low-Density Lipoprotein Receptor 

MAD   Median Absolute Deviation 

MAF   Minor Allele Frequency  

MI   Myocardial Infarction 

MOPS   (3-(N-morpholino) propanesulfonic acid 

mRNA   messenger RNA 

OR   Odds Ratio 

PBS   Phosphate Buffer Saline 

PBS-T   Phosphate Buffer Saline-Tween 

PCR   Polymerase Chain Reaction 

PFA   Paraformaldehyde 

PVDF   Polyvinylidene Fluoride 

RNAi   RNA-mediated interference 

RNA-Seq   RNA Sequencing 

RT   Room Temperature 

RT-qPCR  quantitative Real-Time Polymerase Chain Reaction 

RV   Reverse 

RVAS   Rare Variant Association Study 

SDS-PAGE  Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

siRNA   small interfering RNA 

SNP   Single Nucleotide Polymorphism 

TG   Triglycerides 

TC   Total Cholesterol 

ΔCT   threshold cycle difference  
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9 APPENDIX 

9.1 SUPPLEMENTARY TABLES 

 
Table S1. Exome-Chip results from 2/12/2013 (Peloso et al. 2014) 

Shown in this table are the number of individuals genotyped for each of four lipid traits (LDL, HDL, TG 

and TC), and the number of variants identified at a genome-wide significance level to be associated 

with these traits, as well as the number of the corresponding genes. Moreover, the number of genes 

that were also tested in Blattmann et al. (͞of these in GWAS-RNAi͟), and the percentage of overlap 

between genes identified in Exome Chip and the ones from Blattmann et al. (͞% overlap͟) are shown. 

 

 

  LDL HDL TG TC 

No. of individuals genotyped 73.652 75.995 75.273 76.948 

No. of variants with p<10-7 159 242 182 207 

No. genes with variants p<10-7  61 87 56 68 

 of these in GWAS-RNAi 28 28 25 35 

 % overlap 0,26 0,18 0,23 0,27 

No. genes with missense  p<10-7 33 55 29 37 

 of these in GWAS-RNAi 13 18 13 22 

 % overlap 0,28 0,23 0,33 0,44 
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Table S2. Exome-Chip results from 2/12/2013 (Peloso et al. 2014) and comparison of data to Blattmann et al., by Heiko Runz. 

Juxtaposition of the Exome Chip results with the Blattmann et al results. In the left part of the table are shown are the number of variants (total and missense) from the Exome Chip associated at a genome-wide 

significance level with each of four lipid traits (LDL, HDL, TG and TC). In the right part of the table are shown the number of siRNAs tested per gene in the Blattmann et al. study ( siRNAs ), and the number of siRNAs 

that had an effect on LDL uptake ( LDL ) or free cholesterol ( FC ). Moreover, it is shown if the gene was tested in a secondary assay ( sec.assay? ), y= tested, n=not tested, if the filipin assay results were validated 

in Huh7 cells ( FC val. ), or in if it had an effect on LDLR mRNA ( LDLR ), if the overexpression of GFP-tagged protein of the gene ( GFP- ), or of its cDNA had an effect ( cDNA ). SiRNAs that showed an effect below 

or above thresholds are indicated with blue (decreased) or red (increased). 

 

 Gene 

Exome Chip (2-12-13; 75K individuals) Blattmann et al., 2013 

LDL HDL TG TC RNAi effector? Secondary assay effector? cDNA effector? 

total  miss. total  miss. total  .miss. total  miss. siRNAs LDL 

uptake 

FC sec. assay? FC val. LDLR GFP-

cDNA? 

cDNA 

effect? APOE 2 1 2 1 2 1 2 1 5 1 3 y 2 NA NA NA 

BAZ1B 0 0 2 0 3 0 0 0 6 0 3 y 2 0 y 2 

BCAM 2 2 0 0 1 1 2 2 6 0 3 n NA NA NA NA 

BCL7B 0 0 1 0 1 0 0 0 5 1 4 y 0 -2 NA NA 

CBLC 1 1 0 0 0 0 1 1 4 2 2 y 0 NA NA NA 

CELSR2 4 1 2 0 0 0 4 1 6 0 1 n NA NA NA NA 

HAVCR1 0 0 0 0 0 0 1 1 6 0 4 y 2 NA y 2 

LDLR 3 0 0 0 0 0 3 0 7 -4 -2 y -2 -2 y 2 

LPL 0 0 8 3 8 3 0 0 6 -1 1 y NA 0 y 0 

MLXIPL 0 0 2 2 2 2 0 0 5 0 2 y 2 2 y 0 

MYBPHL 2 2 0 0 0 0 1 1 5 1 3 y 0 NA y 2 

NCAN 1 1 0 0 1 1 1 1 5 1 4 y 2 NA y 2 

PCSK9 3 3 0 0 0 0 3 3 3 0 3 n NA NA y NA 

PVRL2 1 0 0 0 0 0 1 0 4 1 1 n NA NA NA NA 

SIK3 0 0 1 0 3 0 2 0 5 0 1 y NA 0 y 2 

TM6SF2 1 1 0 0 1 1 1 1 5 -1 3 y 2 2 y 0 

TMEM57 1 0 0 0 0 0 1 0 5 1 3 y 2 0 y 2 

TOMM40 2 0 2 0 2 0 2 0 5 -1 3 y -2 NA y 0 

APOB 9 8 4 3 5 4 7 6 3 0 3 y 0   NA  NA  

HMGCR 3 0 0 0 0 0 3 0 3 0 1 y NA 0 NA NA 

ZNF259 1 0 3 1 3 1 3 1 4 0 1 n NA NA NA NA 

CXCL12 0 0 0 0 0 0 0 0 5 1 3 y 0 1 y -1 

SORT1 0 0 0 0 0 0 0 0 4 -1 -1 y -1 0 y 1 

FAM174A 0 0 0 0 0 0 0 0 5 -1 2 y 0 -2 y 2 

PAFAH1B1 0 0 0 0 0 0 0 0 5 -3 -2 y -2 -2 y 0 

WDR12 0 0 0 0 0 0 0 0 0 0 -2 y 0 -2 y 2 

SEZ6L 0 0 0 0 0 0 0 0 5 -1 -1 y -1 2 y 1 

LDLRAP1 0 0 0 0 0 0 0 0 5 0 3 y 1 4 NA NA 

MYLIP 1 1 0 0 0 0 0 0 NA NA NA NA NA NA y NA 

PAFAH1B2 0 0 1 1 3 2 2 1 NA NA NA NA NA NA NA NA 
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Table S3. Overview of genes analyzed and the GWAS that showed association to blood lipid levels 

and/or CAD/MI. 

 

  

Locus 1p13.3 1p32.3 1p36.11 2p24-p23 2q33 5q13.3-q14 5q21 5q23 6p22.3-23 7q11. 23 8p21.3 10q11.1 11q23.3 17q13.3 19p12 19p13. 2 19q13. 2 22q12.1 

Genes 

CELSR2/ 

MYBPHL/ 

SORT1 

PCSK9 
LDLRAP1/ 

TMEM57 
APOB WDR12 HMGCR FAM174A HAVCR1 MYLIP 

BAZ1B/ 

BCL7B/ 

MLXIPL 

LPL CXCL12 

SIK3/ 

ZNF259/ 

PAFAH1B2 

PAFAH1B1 
NCAN/ 

TM6SF2 
LDLR 

APOE/ 

BCAM/ 

CBLC/ 

PVRL2/ 

TOMM40 

SEZ6L 

Lead trait LDL LDL TC LDL/TG CAD/MI TC CAD/MI TC TG TG TG CAD/MI TG HDL TC LDL LDL/TG CAD/MI 

studies with association 28 21 6 29 4 13 2 8 5 28 37 9 28 4 8 24 41 4 

Allen 2016 
                                x   

Angelakopoulou 2012 
      x                         x x 

Asselberg et al. 2012 x x   x   x       x x   x   x x     

Aulchenko et al. 2009 x   x x   x       x x   x   x x x   

Barber et al. 2010   x     x           x       x         

Below 2016 x                   x   x   x       

Benn 2008           x                         

Braun et al. 2012 x                       x       x   

Brautbar et al. 2011                         x           

Burkhardt et al. 2008           x                     x   

C4D et al. 2012 x x   x x           x x       x     

Calandra et al. 2011 x     x   x     x                   

Chambers et al. 2011                   x     x           

Chasman et al. 2008       x                 x       x   

Chasman et al. 2009a                   x x               

Chasman et al. 2009b       x                             

Chasman et al. 2012   x             x             x x   

Comuzzie et al. 2012                         x           

Coram et al. 2013   x   x             x         x x   

Dichgans et al. 2013 x       x           x   x     x     

Elbers et al. 2012   x                           x x   

Willer GLGC 2013 x x x x   x     x x x   x x x x x   

Grallert et al. 2012                         x           

Guo et al. 2011                   x                 

Heid et al. 2008                     x               

Hopewell et al. 2013                                 x   

Johansen et al. 2011                     x   x           

Kamatani et al. 2010                   x x               

Kathiresan et al. 2008a x     x   x   x   x x   x   x x x   

Kathiresan et al. 2008b   x   x   x                     x   

Kathiresan et al. 2009 x x     x         x x x       x     

Katoh et al. 2004                         x           

Keller et al. 2013                     x               

Kettunen et al. 2012   x               x     x       x   

Kim et al. 2011                   x x   x       x   

Ko et al. 2014                     x   x           

Kooner et al. 2008                   x x   x           

Kraja et al. 2011                     x   x       x   

Kristiansson et al. 2012                   x             x   

Kurano 2016                     x   x       x   

Lee 2013                       x             

Lettre et al. 2011   x x   x   x   x     x x   x   x   x 

Lu et al. 2010                     x         x x   

Makela et al. 2014       x                             

Mehta et al. 2011                       x             

Middelberg et al. 2011       x             x   x     x x   

MIGC 2009   x                                 

Musunuru et al. 2010 x                                   

Musunuru et al. 2012 x x   x   x       x x   x     x x   

Nakayama et al. 2011 x                 x                 

Nikpay et al. 2015   x x   x               x       x x   

Pan et al. 2009                   x                 

Parihar 2014       x           x x               

Rasmussen et al. 2012                                 x   

Reilly et al. 2013 x                   x   x       x   

Reynolds et al. 2010                   x                 

Ridker et al. 2009                     x   x       x   

Ronald et al. 2009                                 x   

Sabatti ei al. 2009 x     x                   x   x x   

Saleheen et al. 2010                         x           

Samani et al. 2007 x           x       x x           x 

Sandhu et al. 2008 x     x                         x   

Saxena et al. 2007       x             x           x   

Schunkert et al. 2011 x x     x             x x     x     

Service et al. 2014                     x               

Seshadri et al. 2010                                 x   

Shen et al. 2010       x                             

Smith et al. 2010                                 x   

Surakka 2015   x x x       x x   x       x x x   

Song et al. 2013 x                                   

Talmud et al. 2009                   x     x           

Tan et al. 2012                     x   x           

Teslovich et al. 2010 x x x x   x   x x x x   x     x x   

Tukainen et al. 2012 x x x x   x         x         x x   

Uebi et al. 2012                         x           

Vrablik et al. 2008                   x                 

Wakil 2016                       x             

Wallace et al. 2008 x     x           x x   x     x x   

Wang et al. 2008                   x                 

Waterworth et al. 2010 x x x x   x   x x x x   x     x x   

Weissglas-Volkov et al. 2013                   x                 

Willer et al. 2008 x x   x       x   x x   x   x x x   

WTCC 2007             x                   x x 

Wu et al. 2013       x       x   x x           x   

Zhang et al. 2011               x         x           

Zhou et al. 2011                     x   x   x   x   
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Table S4. The 30 genes selected for the co-RNAi screen and rationale for selection 

Shown are the genes that were screened for gene-gene interactions in the co-RNAi screen, and the 

reason why they were selected. If the gene was a hit (+) in both studies, no other reason is provided. 

If the gene was a hit only in one of the two studies, the reason for selection is given in the column 

other .  

 

  Gene Ensemble ID 

Reason for selection 

Blattmann 

et al. hit 

Exome chip 

hit  
Other 

1 APOB ENSG00000084674 + + 

 2 APOE ENSG00000130203 + +   

3 BAZ1B ENSG00000009954 + +   

4 BCAM ENSG00000187244 + +   

5 BCL7B ENSG00000106635 + +   

6 CBLC ENSG00000142273 + +   

7 CELSR2 ENSG00000143126 + +   

8 CXCL12 ENSG00000107562 + - one of the strongest hits in Blattmann et al. 

9 FAM174A ENSG00000174132 +  -  

10 HAVCR1 ENSG00000113249 + +   

11 HMGCR ENSG00000113161 + +   

12 LDLR ENSG00000130164 + +   

13 LDLRAP1 ENSG00000157978 + - 

1) required for efficient endocytosis of LDLR 

2) mutations are responsible for autosomal 

recessive hypercholesterolemia 

14 LPL ENSG00000175445 + +   

15 MLXIPL ENSG00000009950 + +   

16 MYBPHL ENSG00000221986 + +   

17 MYLIP ENSG00000007944   + degrader of LDLR 

18 NCAN ENSG00000130287 + +  

19 PAFAH1B1 ENSG00000007168 + - 
potential significant role in cholesterol 

regulation, based on P. Blattmann results 

20 PAFAH1B2 ENSG00000168092 - + forms complex together with PAFAH1B1 

21 PCSK9 ENSG00000169174 + +  

22 PVRL2 ENSG00000130202 + +  

23 SEZ6L ENSG00000100095 + - one of the strongest hits in Blattmann et al. 

24 SIK3 ENSG00000160584 + + 
 

25 SORT1 ENSG00000134243 + - 
1)potential role in atherosclerosis  2)one of 

the strongest hits in Blattmann et al. 

26 TM6SF2 ENSG00000213996 + +  

27 TMEM57 ENSG00000204178 + +  

28 TOMM40 ENSG00000130204 + +  

29 WDR12 ENSG00000138442 + - one of the strongest hits in Blattmann et al. 

30 ZNF259 ENSG00000109917 + +   
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Table S5. Genes analyzed in the co-RNA screen and a priori knowledge on molecular function and association with cholesterol regulation and/or lipid homeostasis.  

Genes tested in the co-RNAi screen are listed with HGNC Symbol and Ensembl Gene ID. Previously link of the genes to lipid metabolism using GO annotation (cellular lipid metabolism, cellular response to cholesterol, 

cholesterol, lipid, lipoprotein, triglyceride, high-density, low-density, very-low-density), or to monogenic lipid disorders (Teslovich, Musunuru, and Smith 2010) was checked. Genefunction adapted from www.genecards.org 

is shown. 

 

  Gene Ensembl ID 
Linked to lipid 

homeostasis (GO) 

Linked to cholesterol 

regulation 
Described function 

1 APOB ENSG00000084674 + + apolipoprotein B, major constituent of chylomicrons, LDL and VLDL 

2 APOE ENSG00000130203 + + 
apolipoprotein E, mediates binding, internalization and catabolism of lipoprotein particles, ligand of LDLR, promotes 

reverse cholesterol transport 

3 BAZ1B ENSG00000009954 - - atypical protein kinase, transcription regulator 

4 BCAM ENSG00000187244 - - Lutheran blood group glycoprotein 

5 BCL7B ENSG00000106635 - - regulates positively apoptosis, role in Wnt signaling pathway 

6 CBLC ENSG00000142273 - - E3 ubiquitin ligase, regulator of EGFR signaling 

7 CELSR2 ENSG00000143126 - - cadherin 

8 CXCL12 ENSG00000107562 - - chemokine ligand, stimulates migration of monocytes and T-lymphocytes, protective role after MI 

9 FAM174A ENSG00000174132 - - nothing known 

10 HAVCR1 ENSG00000113249 - - membrane receptor for HAV and TIMD4, involved in allergy, kidney injury and repair 

11 HMGCR ENSG00000113161 + + rate-limiting enzyme for cholesterol synthesis 

12 LDLR ENSG00000130164 + + binds LDL and transports it into cells by endocytosis 

13 LDLRAP1 ENSG00000157978 + + clathrin-associated adapter protein required for efficient endocytosis of LDLR in polarized cells 

14 LPL ENSG00000175445 + + lipoprotein lipase, hydrolyses TGs of chylomicrons and VLDL 

15 MLXIPL ENSG00000009950 + - transcriptional repressor 

16 MYBPHL ENSG00000221986 - - nothing known 

17 MYLIP ENSG00000007944 + + E3 ubiquitin ligase, induces proteasomal degradation of LDLR, VLDLR, and LRP8 

18 NCAN ENSG00000130287 - - may regulate neuronal adhesion and neurite growth 

19 PAFAH1B1 ENSG00000007168 + - activates Rho GTPases, required for actin polymerization, may enhance dynein-mediated microtubule sliding  

20 PAFAH1B2 ENSG00000168092 - - Inactivates platelet-activating factor 

21 PCSK9 ENSG00000169174 + + binds to LDLR,VLDLR,LRP1 and LRP8 and promotes their degradation in lysosomes 

22 PVRL2 ENSG00000130202 - - receptor for herpes virus 

23 SEZ6L ENSG00000100095 - - may contribute to ER functions in neurons 

24 SIK3 ENSG00000160584 - - nothing known 

25 SORT1 ENSG00000134243 + + sorting receptor in Golgi, transports proteins from Golgi to lysosomes 

26 TM6SF2 ENSG00000213996 - - regulates liver fat metabolism, influencing TG secretion and hepatic lipid droplet content 

27 TMEM57 ENSG00000204178 - - nothing known 

28 TOMM40 ENSG00000130204 - - channel-forming protein essential for import of protein precursors into mitochondria 

29 WDR12 ENSG00000138442 - - component of the PeBoW complex, which is required for maturation of 28S and 5.8S rRNAs and formation of 60S ribosome 

30 ZNF259 ENSG00000109917 - - signaling molecule, induces neuron differentiation and stimulates axonal growth and formation of growth cone 
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Table S6. Selection of siRNAs for the co-RNAi screen (Adapted from Blattmann et al. 2013) 

Genes tested in the co-RNAi screen are listed with HGNC Symbol and Ensembl Gene ID. The siRNA ID, and the new siRNA ID, if it has 

been changed are shown, as well as Bluegecko ID and number of targeted transcripts. The effect on LDL uptake (͞DiI_TotInt͟) and Filipin 

assay (͞Fp_TotInt͟) in the two screens of Blattmann et al., and the total effect above threshold are shown. Rationale for siRNA selection 

is provided for the selected siRNA, which is in bold script.  

*siRNA shows one or two mismatch(es) against intended gene 

**siRNA targets multiple genes because of overlapping transcripts or homology and was exluded from further analysis 

***gene targeted is not an established protein-coding gene 

 

Gene information siRNA information 
first screen of 

Blattmann et al. 

(GWAS1) 

second screen of 

Blattmann et al. 

(GWAS2) 

effect 

above 

threshold 

Rationale for siRNA 

selection 

  

Gene 

Name ENSG 

siRNA 

ID 

new  

siRNA 

ID Bluegecko ID 

targeted  

transcripts DiI_TotInt Fp_TotInt DiI_TotInt Fp_TotInt DiI Fp   

1 APOB ENSG00000084674 

s1475   MCO_0062883  1/2 0.16 1.44     0 0   

s1476   MCO_0062852   1/2 0.18 3.36     0 1 strongest effect on Fp 

s1477   MCO_0062817     1/2 0.35 2.21     0 1   

2 APOE ENSG00000130203 

s1495   MCO_0062875 4/4 0.1 2.03 0.45 0.71 0 1   

s1496   MCO_0062909 1/4 0.65 2.23 1.07 1.58 1 1 effect on DiI 

s194291   MCO_0062832 1/4 0.17 0.16     0 0   

s445491   - ?     0.68 0.3 0 0   

s445492   MCO_0067615 1/4     0.58 0.6 0 0   

3 BAZ1B ENSG00000009954 

s17208   MCO_0060780 2/2 -0.42 -0.76     0 0   

s17209   MCO_0061566 2/2 0.13 3.15 0.65 0.52 0 1 strongest effect on Fp 

s17210   MCO_0063016 2/2 -0.2 0.88     0 0   

s445497   MCO_0067585 2/2     0.91 1.7 0 1   

s445498   MCO_0067546 2/2     0.69 0.16 0 0   

s445499   MCO_0067539 2/2     0.67 1.39 0 1   

4 BCAM ENSG00000187244 

s445500   MCO_0067670 1/3     0.06 0.54 0 0   

s445501   MCO_0067651 1/3     0.78 0.05 0 0   

s8336   MCO_0063049 3/3 0.03 0.19     0 0   

s8337   MCO_0063024 3/3 0.28 -0.88     0 0   

s8338   MCO_0062977 3/3 0.66 1.53 1 0.91 0 0 strongest score on Fp 

5 BCL7B ENSG00000106635 

s17733   MCO_0063008 2/2** 0.13 1.86 0.42 0.48 0 1   

s17734   MCO_0062911 2/2 0.56 0.18     0 0   

s228480   MCO_0063061 2/2 0.4 4.16 1.1 1.66 1 1 effect on DiI 

s445504   MCO_0067676 2/2     -0.24 -0.1 0 0   

s445505   MCO_0067579 2/2     0.3 1.89 0 1   

6 CBLC ENSG00000142273 

s24223   MCO_0061739 2/2     1.15 1.13 1 1 

strongest effect on DiI+ 

effect on Fp 

s24224   MCO_0061772 2/2     1.15 0.2 1 0   

s445508   MCO_0067516 2/2     0.28 2.65 0 1   

s445509   MCO_0067473 2/2     0.12 -0.38 0 0   

7 CELSR2 ENSG00000143126 

s445512   MCO_0067521 1/1     0.5 0.89 0 0   

s445513   MCO_0067513 1/1     0.12 -0.89 0 0   

s4525   MCO_0062967 1/1 0.41 -0.02     0 0   

s4526   MCO_0062980 1/1** 0.66 0.78 0.87 1.7 0 1 effect on Fp 

s4527   MCO_0062952 1/1 0.1 1.09 0.61 -0.24 0 0   

8 CXCL12 ENSG00000107562 

s12644   MCO_0063000 6/6 0.49 3.35 0.31 1.31 0 1   

s12645   MCO_0062869 5/6 -0.11 0.29     0 0   

s226988   MCO_0062979 5/6** 0.8 2.21 0.68 0.67 0 1   

s445518   MCO_0067610 2/6     1.34 0.64 1 0 effect on DiI 

s445519   MCO_0067544 2/6     -0.21 -1.98 0 -1   

9 FAM174A ENSG00000174132 

s226341   MCO_0062830 1/1 -0.12 1.5     0 0   

s226342   MCO_0062895 1/1 0.2 -1.6 0.71 -0.69 0 -1   

s445532   MCO_0067632 1/1     -1.69 1.57 -1 1  effect on DiI 

s445533   MCO_0067578 1/1     0.44 1.21 0 1   

s51157   MCO_0059172 1/1 0.59 1.5 0.57 0.21 0 0   

10 HAVCR1 ENSG00000113249 

s230290   MCO_0063002 6/6 0.37 3.7 0.33 3.49 0 1 strongest effect on Fp 

s230291   MCO_0062934 3/6 0.44 1.75 0.12 1.15 0 1   

s25632   MCO_0063054 6/6 0.26 -0.15     0 0   

s445544   MCO_0067639 5/6     0.41 1.04 0 0   

s445545   MCO_0067620 5/6     0.22 0.27 0 0   

11 HMGCR ENSG00000113161 

s141   MCO_0063040 5/7 0.62 0.86     0 0   

s142   MCO_0062915   3/7 0.40 0.81     0 0   

s143   MCO_0062814  3/7 0.67 1.93     0 1  effect on Fp 

12 LDLR ENSG00000130164 

s224006   MCO_0062803 8/9 -1.47 -4.11 -1.12 -1.34 -1 -1 strongest effect on DiI 

s224007   MCO_0067566 8/9     -1.13 -1.83 -1 -1   

s224008   MCO_0062858 8/9* 0.22 0.94     0 0   

s237197   MCO_0062790 9/9 -0.32 -0.1     0 0   

s445552 s445551 MCO_0067650 7/9     0.59 -0.51 0 0   

s445553 s445550 MCO_0067662 7/9     0.56 1.08 0 1   

s6   MCO_0062944 7/9 -0.81 -0.78     -1 0   

13 LDLRAP1 ENSG00000157978 

s25118   MCO_0063012 1/1 -0.15 0.77     0 0   

s25119   MCO_0062955 1/1 0.23 1.13 0.29 1.08 0 1   

s25120   MCO_0062881 1/1 0.36 2.57 0.49 0.53 0 1 strongest effect on Fp 

s445550 s445553 MCO_0067563 1/1     0.02 -0.28 0 0   

s445551 s445552 MCO_0067624 1/1     -0.11 -0.72 0 0   
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14 LPL ENSG00000175445 

s445556   MCO_0067630 3/4     0.42 0.08 0 0   

s445557   MCO_0067531 3/4     0.89 1.22 0 1   

s445558   MCO_0067471 1/4     1.01 0.13 0 0   

s701   MCO_0062983 4/4 0.08 -0.13     0 0   

s702   MCO_0062910 1/4 -0.86 -0.81 -0.09 0.33 -1 0  effect on DiI 

s703   MCO_0062882 2/4 0.17 1.02     0 0   

15 MLXIPL ENSG00000009950 

s27386   MCO_0062920 7/8** 0.43 2.8 0.89 0.5 0 1 rejected 

s27387   MCO_0062796 7/8 0.02 1.99 0.62 0.94 0 1 

second strongest effect on 

Fp 

s27388   MCO_0062931 6/8 -0.2 1.69     0 0   

s445563   MCO_0067533 6/8     0.11 -0.12 0 0   

s445564   MCO_0067505 6/8     0.99 0.17 0 0   

16 MYBPHL ENSG00000221986 

s445565   MCO_0067649 1/1     0.26 0.14 0 0   

s445566   MCO_0067638 1/1     0.91 0.92 0 0   

s50998   MCO_0062849 1/1 0.35 3.74 0.25 1.68 0 1   

s50999   MCO_0062788 1/1 0.46 3.13 1.06 0.55 1 1  effect on DiI 

s51000   MCO_0062878 1/1** 0.19 0.89     0 0   

17 NCAN ENSG00000130287 

s3648   MCO_0062916 2/4 0.64 3.15 1.09 1.08 1 1  effect on DiI 

s3649   MCO_0063025 2/4 0.15 0.93     0 0   

s3650   MCO_0062843 1/4 -0.35 4.74 0.28 0.27 0 1   

s445567 s445568 MCO_0067483 1/4     0.74 -1.1 0 -1   

s445568   -       -0.01 1.87 0 1   

18 PAFAH1B1 ENSG00000007168 

s445573   MCO_0067597 2/5     -0.44 0.86 0 0   

s445574   MCO_0067515 2/5     -1.2 -0.52 -1 0 strongest effect on DiI 

s9996   MCO_0054981 3/5 -0.2 -3.57 -0.26 0.05 0 -1   

s9997   MCO_0054982 4/5 -0.26 -1.35 0 -0.9 0 -1   

s9998   MCO_0061379 4/5 -0.61 -0.28 -0.59 0.22 -1 0   

19 PCSK9 ENSG00000169174 

s48694   MCO_0062856 1/3 0.16 2.74     0 1 strongest effect on Fp 

s48695   MCO_0062860 1/3 0.57 2.74     0 1   

s48696   MCO_0062996 3/3 -0.22 2.22     0 1   

20 PVRL2 ENSG00000130202 

s11606   MCO_0067547 3/5**     0.35 1.24 0 1   

s11607   MCO_0067518 3/5     0.26 0.49 0 0   

s445581   MCO_0067527 1/5     0.27 0.07 0 0   

s445582   MCO_0067511 1/5     1.17 -0.23 1 0  effect on DiI 

21 SEZ6L ENSG00000100095 

s225966   MCO_0062899 7/8 0.5 1.81 0.47 0.21 0 1   

s24051   MCO_0063022 7/8 0.41 1.44     0 0   

s24052   MCO_0062976 6/8 -0.49 -1.8 -1.03 -0.34 -1 -1  effect on DiI 

s445592   MCO_0067507 7/8     0.43 -1.57 0 -1   

s445593   MCO_0067506 8/8*     0.02 -0.72 0 0   

22 SIK3 ENSG00000160584 

s225956   MCO_0063064 4/5 0.43 0.97     0 0   

s225957   MCO_0063023 4/5 0.58 0.54 0.41 0.3 0 0   

s225958   MCO_0062890 5/5 0.7 1.08 0.79 -0.33 0 0   

s445594   MCO_0067596 5/5     0.52 0.99 0 0   

s445595   MCO_0067522 5/5     0.67 1.55 0 1  effect on Fp 

23 SORT1 ENSG00000134243 

s224557   MCO_0063053 2/2 -0.56 -2.81 -0.1 -0.38 -1 -1  effect on DiI 

s224558   MCO_0062806 2/2 0.29 1.37 0.49 0.67 0 0   

s445600   MCO_0067608 2/2     0.25 0.85 0 0   

s445601   MCO_0067591 1/2     0.52 0.5 0 0   

24 TM6SF2 ENSG00000213996 

s28703   MCO_0062906 1/1 -1.07 -1.23 -0.15 0.92 -1 -1 effect on DiI 

s28704   MCO_0062810 1/1 0.37 3.71 0.3 2.35 0 1   

s28705   MCO_0062958 1/1 -0.19 0.8     0 0   

s445610   MCO_0067588 1/1     0.13 0.63 0 0   

s445611   MCO_0067465 1/1     0.41 1.18 0 1   

25 TMEM57 ENSG00000204178 

s30473   MCO_0062918 3/3 0.81 2.6 0.4 1.19 1 1 effect on DiI 

s30474   MCO_0062877 1/3 0.35 0.27     0 0   

s30475   MCO_0062819 3/3 0.63 2.06 0.66 0.95 0 1   

s445612   MCO_0067625 3/3     -0.24 -3.03 0 -1   

s445613   MCO_0067508 3/3     0.46 0.81 0 0   

26 TOMM40 ENSG00000130204 

s20448   MCO_0062829 4/6 0.33 1.07     0 0   

s20449   MCO_0062926 4/6 -0.42 -1.63 -1.25 -2.16 -1 -1 effect on DiI 

s20450   MCO_0062835 4/6 0.62 2.51 0.77 2.17 0 1   

s445614   MCO_0067652 4/6     -0.15 1.66 0 1   

s445615   MCO_0067486 4/6     0.53 -0.15 0 0   

27 WDR12 ENSG00000138442 

s31440   MCO_0060407 1/1 -0.09 -1.08 0.18 0.17 0 0   

s31441   MCO_0060426 1/1 0.28 -1.65 0.5 -1.85 0 -1 effect on Fp 

s31442   MCO_0063042 1/1 0.74 -0.99     0 0   

s445627   MCO_0067592 1/1     0.42 0.24 0 0   

s445628   MCO_0067497 1/1     0.96 0.28 0 0   

28 ZNF259 ENSG00000109917 

s16972   MCO_0067555 3/3     0.16 0.35 0 0   

s16973   MCO_0067619 3/3**     0.44 -0.46 0 0   

s445635   MCO_0067478 3/3     0.17 0.8 0 0   

s445636   MCO_0067467 3/3     1.04 1.55 0 1 effect on Fp 

29 MYLIP ENSG00000007944 

s26522   MCO_0061841 2/2             targets all transcripts 

s26523   MCO_0061848 2/2               

s26521   MCO_0063512 1/2               

30 PAFAH1B2 ENSG00000168092 

s9999   MCO_0067567 4/5***               

s10001   MCO_0067590 5/5             targets all transcripts 

s10000   MCO_0067623 2/5               

sPafah1b2_1   MCO_0078010 2/5               

sPafah1b2_2   MCP_0078011 3/5               
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Table S7. Amounts of siRNA used for ͞single͟ knockdowns in the validation experiments and gene knockdown 

efficiency, measured with qRT-PCR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table S8. Amounts of siRNA used for ͞double͟ knockdowns in the validation experiments and gene knockdown efficiency, 

measured with qRT-PCR. 

 

 
siRNA treatment gene kd pmol of each siRNA  % kd efficiency 

HAVCR1 + LDLR HAVCR1 15 n.d. 

 LDLR 7.5 58.2 

HAVCR1 + LDLRAP1 HAVCR1 15 n.d. 

 LDLRAP1 30 91.7 

HAVCR1 + BCAM HAVCR1 15 n.d. 

 BCAM 30 94.7 

HAVCR1 + MLXIPL HAVCR1 15 n.d. 

 MLXIPL 7.5 18.7 

HAVCR1 + SEZ6L HAVCR1 30 n.d. 

 SEZ6L 30 n.d. 

HAVCR1 + SORT1 HAVCR1 30 n.d. 

 SORT1 30 93.2 

BCAM + LDLRAP1 BCAM 30 94.3 

 LDLRAP1 30 89.9 

LDLR + MLXIPL LDLR 30 83.4 

 MLXIPL 30 39.3 

LDLR + LDLRAP1 LDLR 30 75.6 

 LDLRAP1 30 87.2 

LDLRAP1 + SORT1 LDLRAP1 30 89.8 

 SORT1 30 91.9 

MLXIPL + TOMM40 MLXIPL 30 20.1 

 TOMM40 7.5 90.4 

CXCL12 + PAFAH1B1 CXCL12 30 n.d. 

 PAFAH1B1 7.5 90.2 

SORT1 + TOMM40 SORT1 7.5 52.7 

 TOMM40 7.5 90.8 

NCAN + TOMM40 NCAN 30 n.d. 

 TOMM40 7.5 91.7 

NCAN + SEZ6L NCAN 30 n.d. 

 SEZ6L 15 n.d. 

NCAN + LDLR NCAN 30 n.d. 

 LDLR 7.5 72.7 

PAFAH1B1 + SIK3 PAFAH1B1 7.5 77.1 

 SIK3 30 77.9 

MYBPHL + SIK3 MYBPHL 30 n.d. 

 SIK3 30 78.6 

PCSK9 + TMEM57 PCSK9 30 74.7 

 TMEM57 30 51.9 

CELSR2 + LPL CELSR2 30 86.7 

 LPL 30 92.5 

APOB + HMGCR APOB 30 n.d. 

 HMGCR 30 74.9 

 

 

 

 

 

 

siRNA treatment gene kd pmol of each siRNA  % kd efficiency 

HAVCR1 + control HAVCR1 30 n.d. 

  15 n.d. 

LDLR + control LDLR 30 76.8 

  7.5 58.6 

LDLRAP1 + control LDLRAP1 30 92.9 

MLXIPL + control MLXIPL 30 35.6 

  7.5 44.2 

BCAM + control BCAM 30 95.7 

SEZ6L + control SEZ6L 30 n.d. 

  15 n.d. 

SORT1 + control SORT1 30 93.9 

  7.5 91.7 

TOMM40 + control TOMM40 7.5 88.6 

CXCL12 + control CXCL12 30 n.d. 

PAFAH1B1 + control PAFAH1B1 7.5 95.3 

NCAN + control NCAN 30 n.d. 

SIK3 + control SIK3 30 78.9 

MYBPHL + control MYBPHL 30 n.d. 

PCSK9 + control PCSK9 15 85.1 

TMEM57 + control TMEM57 30 44.8 

CELSR2 + control CELSR2 30 85 

LPL + control LPL 30 96.7 

APOB + control APOB 30 n.d. 

HMGCR + control HMGCR 30 67.4 
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Table S9. siRNA quantities used for the validation of the co-RNAi screen hits 

Shown are the siRNA quantities used in the liquid-phase transfections in 6-well plates (for details see 7.1.1) for the validation of 

the screen hits. Because the forward transfections (in liquid-phase format) were more efficient than the reverse transfections 

(in the co-RNAi screen), the siRNA quantities needed to be adjusted, so that the same phenotypes could be achieved as the 

ones observed in the screen.  

 
  Treatment siRNAA siRNAA (pmol) siRNAB siRNAB (pmol) 

1 LDLR+ NCAN LDLR 7.5 NCAN 30 

2 CXCL12+ PAFAH1B1  CXCL12 30 PAFAH1B1 7.5 

3 NCAN + SEZ6L NCAN 30 SEZ6L 15 

4 NCAN + TOMM40  NCAN 30 TOMM40 7.5 

5 HAVCR1 + MLXIPL HAVCR1 15 MLXIPL 7.5 

6 LDLRAP1 + SORT1 LDLRAP1 30 SORT1 30 

7 LDLR + LDLRAP1 LDLR 30 LDLRAP1 30 

8 CELSR2 + LPL  CELSR2 15 LPL 15 

9 MLXIPL + TOMM40  MLXIPL 30 TOMM40 7.5 

10 LDLR + MLXIPL LDLR 30 MLXIPL 30 

11 HAVCR1+ SEZ6L HAVCR1 30 SEZ6L 30 

12 HAVCR1 + LDLRAP1 HAVCR1 15 LDLRAP1 30 

13 BCAM + LDLRAP1 BCAM 30 LDLRAP1 30 

14 HAVCR1 + SORT1 HAVCR1 30 SORT1 30 

15 BCAM + HAVCR1  BCAM 30 HAVCR1 15 

16 MYBPHL + SIK3 MYBPHL 30 SIK3 30 

17 APOB + HMGCR APOB 30 HMGCR 30 

18 SORT1 + TOMM40  SORT1 7.5 TOMM40 7.5 

19 PAFAH1B1+ SIK3 PAFAH1B1 7.5 SIK3 30 

20 PCSK9 + TMEM57  PCSK9 15 TMEM57 15 

21 HAVCR1+LDLR HAVCR1 15 LDLR 7.5 

 

 

Table  S10. siRNA quantities used for the evaluation of gene interactions at the LDLR mRNA level 

Shown are the quantities of siRNA used in the qRT-PCR experiments for the measurement of the effect on LDLR mRNA levels of 

the gene interactions identified in the screen. These quantities are essentially the exactly same quantities used in the validation 

experiments (see Tables S8, S9). (A-D) correspond to (A-D) of Figure 21. 

 

A        B 

       

 C        D 

 

 

Treatment siRNAA siRNAA  

(pmol) 

siRNAB siRNAB  

(pmol) 

mock - - - - 

control NEG9 30 - - 

HAVCR1 HAVCR1 15 NEG9 15 

LDLR LDLR 7.5 NEG9 7.5 

LDLRAP1 LDLRAP1 30 NEG9 30 

MLXIPL MLXIPL 7.5 NEG9 7.5 

BCAM BCAM 30 NEG9 30 

NCAN NCAN 30 NEG9 30 

HAVCR1+BCAM HAVCR1 15 BCAM 30 

HAVCR1+MLXIPL HAVCR1 15 MLXIPL 7.5 

HAVCR1+LDLRAP1 HAVCR1 15 LDLRAP1 30 

HAVCR1+LDLR HAVCR1 15 LDLR 7.5 

BCAM+LDLRAP1 BCAM 30 LDLRAP1 30 

LDLR+NCAN LDLR 7.5 NCAN 30 

Treatment siRNAA siRNAA  

(pmol) 

siRNAB siRNAB  

(pmol) 

mock - - - - 

control NEG9 30 - - 

SORT1 SORT1 30 NEG9 30 

SEZ6L SEZ6L 30 NEG9 30 

LDLRAP1 LDLRAP1 30 NEG9 30 

LDLR LDLR 30 NEG9 30 

HAVCR1 HAVCR1 30 NEG9 30 

MLXIPL MLXIPL 30 NEG9 30 

TOMM40 TOMM40 7.5 NEG9 7.5 

LDLR+MLXIPL LDLR 30 MLXIPL 30 

LDLR+LDLRAP1 LDLR 30 LDLRAP1 30 

HAVCR1+SEZ6L HAVCR1 30 SEZ6L 30 

HAVCR1+SORT1 HAVCR1 30 SORT1 30 

LDLRAP1+SORT1 LDLRAP1 30 SORT1 30 

MLXIPL+TOMM40 MLXIPL 30 TOMM40 7.5 

Treatment siRNAA siRNAA  

(pmol) 

siRNAB siRNAB  

(pmol) 

mock - - - - 

control NEG9 30 - - 

SEZ6L SEZ6L 15 NEG9 15 

NCAN NCAN 30 NEG9 30 

PCSK9 PCSK9 15 NEG9 15 

TMEM57 TMEM57 15 NEG9 15 

CELSR2 CELSR2 15 NEG9 15 

LPL LPL 15 NEG9 15 

APOB APOB 30 NEG9 30 

HMGCR HMGCR 30 NEG9 30 

NCAN+SEZ6L NCAN 30 SEZ6L 15 

PCSK9+TMEM57 PCSK9 15 TMEM57 15 

CELSR2+LPL CELSR2 15 LPL 15 

APOB+HMGCR APOB 30 HMGCR 30 

Treatment siRNAA siRNAA  

(pmol) 

siRNAB siRNAB  

(pmol) 

mock - - - - 

control NEG9 30 - - 

SORT1 SORT1 7.5 NEG9 7.5 

NCAN NCAN 30 NEG9 30 

TOMM40 TOMM40 7.5 NEG9 7.5 

CXCL12 CXCL12 30 NEG9 30 

PAFAH1B1 PAFAH1B1 7.5 NEG9 7.5 

SIK3 SIK3 30 NEG9 30 

MYBPHL MYBPHL 30 NEG9 30 

SORT1+TOMM40 SORT1 7.5 TOMM40 7.5 

NCAN+TOMM40 NCAN 30 TOMM40 7.5 

MYBPHL+SIK3 MYBPHL 30 SIK3 30 

PAFAH1B1+SIK3 PAFAH1B1 7.5 SIK3 30 

CXCL12+PAFAH1B1 CXCL12 30 PAFAH1B1 7.5 
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Table S11. Results of qRT-PCR experiments for LDLR mRNA expression used for interaction calling. 

Shoǁn are the ΔCt ǀalues of LDLR expression, where ΔCt=Ct(LDLR)-Ct(GAPDH), for four biological replicas. The four ΔCt values 

were used to fit a linear regression model, where the double knockdown was compared with the additive effect of the two 

single knockdowns, considering NEG9 as control. 

 

TREATMENT siRNA quantities ŵRNA expressioŶ LDLR ΔCt 

Double knockdown siRNA1 pmol1 

siRNA1 

siRNA 2 pmol2 

siRNA2 

Exp. 1 Exp. 2 Exp. 3 Exp. 4 

NEG9[30] NEG9 30 NEG9 30 6.17 6.96 7.09 6.41 

HAVCR1[15]+NEG9 HAVCR1 15 NEG9 30 5.94 6.15 5.88 5.75 

LDLR[7.5]+NEG9 LDLR 7.5 NEG9 30 7.46 8.46 8.14 7.66 

LDLRAP1[30]+NEG9 LDLRAP1 30 NEG9 30 6.98 6.98 5.55 6.34 

MLXIPL[7.5]+NEG9 MLXIPL 7.5 NEG9 30 5.42 6.57 6.13 6.79 

BCAM[30]+NEG9 BCAM 30 NEG9 30 7.19 7.65 6.34 6.44 

HAVCR1[15]+LDLR[7.5] HAVCR1 15 LDLR 7.5 6.74 8.57 8.07 8.17 

HAVCR1[15]+LDLRAP1[30] HAVCR1 15 LDLRAP1 30 4.98 5.66 5.66 
 

HAVCR1[15]+BCAM[30] HAVCR1 15 BCAM 30 6.54 7.56 7.80 
 

HAVCR1[15]+MLXIPL[7.5] HAVCR1 15 MLXIPL 7.5 5.98 5.09 5.28 6.84 

BCAM[30]+LDLRAP1[30] BCAM 30 LDLRAP1 30 6.34 6.67 6.30 6.68 

SEZ6L[30]+NEG9 SEZ6L 30 NEG9 30 6.63 6.64 6.62 6.87 

SORT1[30]+NEG9 SORT1 30 NEG9 30 6.18 7.12 6.68 6.53 

LDLR[30]+NEG9 LDLR 30 NEG9 30 8.36 7.36 8.46 8.47 

HAVCR1[30]+NEG9 HAVCR1 30 NEG9 30 5.12 5.36 5.28 6.69 

MLXIPL[30]+NEG9 MLXIPL 30 NEG9 30 6.47 6.58 6.06 8.28 

LDLR[30]+MLXIPL[30] LDLR 30 MLXIPL 30 8.57 9.45 9.00 9.54 

LDLR[30]+LDLRAP1[30] LDLR 30 LDLRAP1 30 7.97 9.11 8.23 9.15 

HAVCR1[30]+SEZ6L[30] HAVCR1 30 SEZ6L 30 5.70 6.83 6.18 6.21 

HAVCR1[30]+SORT1[30] HAVCR1 30 SORT1 30 5.34 6.05 5.94 6.54 

LDLRAP1[30]+SORT1[30] LDLRAP1 30 SORT1 30 7.47 
 

6.36 5.94 

TOMM40[7.5]+NEG9 TOMM40 7.5 NEG9 30 6.45 8.15 7.05 6.46 

MLXIPL[30]+TOMM40[7.5] MLXIPL 30 TOMM40 7.5 5.58 8.90 7.18 7.02 

CXCL12[30]+NEG9 CXCL12 30 NEG9 30 6.11 
 

5.90 6.21 

PAFAH1B1[7.5]+NEG9 PAFAH1B1 7.5 NEG9 30 7.08 8.20 6.62 6.35 

SORT1[7.5]+NEG9 SORT1 7.5 NEG9 30 6.24 8.32 6.39 7.31 

NCAN[30]+NEG9 NCAN 30 NEG9 30 5.96 6.22 6.39 6.80 

CXCL12[30]+PAFAH1B1[7.5] CXCL12 30 PAFAH1B1 7.5 6.81 7.16 6.65 7.70 

SORT1[7.5]+TOMM40[7.5] SORT1 7.5 TOMM40 7.5 6.76 8.64 7.08 7.79 

NCAN[30]+TOMM40[7.5] NCAN 30 TOMM40 7.5 7.33 7.88 7.54 8.31 

SEZ6L[15]+NEG9 SEZ6L 15 NEG9 30 6.72 6.86 6.61 7.32 

NCAN[30]+SEZ6L[15] NCAN 30 SEZ6L 15 7.36 7.61 6.93 6.34 

LDLR[7.5]+NCAN[30] LDLR 7.5 NCAN 30 8.15 9.14 8.87 7.72 

SIK3[30]+NEG9 SIK3 30 NEG9 30 5.94 7.15 6.50 6.49 

PAFAH1B1[7.5]+SIK3[30] PAFAH1B1 7.5 SIK3 30 7.32 6.58 6.40 5.44 

MYBPHL[30]+NEG9 MYBPHL 30 NEG9 30 6.25 6.92 5.77 6.03 

MYBPHL[30]+SIK3[30] MYBPHL 30 SIK3 30 5.89 6.06 6.10 6.35 

PCSK9[15]+NEG9 PCSK9 15 NEG9 30 8.31 6.14 6.15 7.54 

TMEM57[15]+NEG9 TMEM57 15 NEG9 30 7.76 8.28 5.83 5.32 

PCSK9[15]+TMEM57[15] PCSK9 15 TMEM57 15 6.23 8.92 5.86 5.66 

CELSR2[15]+NEG9 CELSR2 30 NEG9 30 6.82 9.16 6.18 5.59 

LPL[15]+NEG9 LPL 30 NEG9 30 7.17 
 

6.62 6.10 

CELSR2[15]+LPL[15] CELSR2 30 LPL 30 6.41 
 

6.64 5.99 

APOB[30]+NEG9 APOB 30 NEG9 30 6.57 10.78 5.82 5.29 

HMGCR[30]+NEG9 HMGCR 30 NEG9 30 6.73 9.49 5.70 5.04 

APOB[30]+HMGCR[30] APOB 30 HMGCR 30 8.31 8.35 5.62 4.88 
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Table S12. Results of Western Blot experiments for LDLR protein used for interaction calling. 

Shown are the LDLR/a-tubulin protein values without normalization to negative control siRNA, from three biological replicates 

used to fit a linear regression model, where the double knockdown was compared with the additive effect of the two single 

knockdowns, considering NEG9 as control. 

 

 
blot#2 siRNA quantities LDLR/a-tubulin 

Treatment siRNA1 pmol1 siRNA2 pmol2 Exp.1 Exp.2 Exp.3 

NEG9[30] NEG9 30 NEG9 30 1.31 1.50 1.67 

HAVCR1[30] HAVCR1 30 NEG9 30  1.15 1.62 

SORT1[30] SORT1 30 NEG9 30 1.01 0.21 0.17 

SEZ6L[30] SEZ6L 30 NEG9 30 0.80 0.43 0.42 

LDLRAP1[30] LDLRAP1 30 NEG9 30 0.90 1.20 1.34 

BCAM[30] BCAM 30 NEG9 30 0.87 0.93 0.55 

LDLRAP1[30]+BCAM[30] LDLRAP1 30 BCAM 30 0.92 0.95 1.02 

LDLRAP1[30]+SORT1[30] LDLRAP1 30 SORT1 30 1.04 0.29 0.15 

HAVCR1[30]+SORT1[30] HAVCR1 30 SORT1 30 0.67 0.78 0.30 

HAVCR1[30]+SEZ6L[30] HAVCR1 30 SEZ6L 30 0.53 1.17 0.90 

 
blot#3 siRNA quantities LDLR/a-tubulin 

Treatment siRNA1 pmol1 siRNA2 pmol2 Exp.1 Exp.2 Exp.3 

NEG9[30] NEG9 30 NEG9 30 1.18 2.11 2.08 

LDLR[30] LDLR 30 NEG9 30 0.14 0.07 0.25 

MLXIPL[30] MLXIPL 30 NEG9 30 1.48 1.68 1.74 

LDLRAP1[30] LDLRAP1 30 NEG9 30 1.28 1.10 2.39 

TOMM40[7.5] TOMM40 7.5 NEG9 30 1.00 0.30 0.24 

SORT1[7.5] SORT1 7.5 NEG9 30 1.48 0.95 1.52 

SORT1[7.5]+TOMM40[7.5] SORT1 7.5 TOMM40 7.5 0.37 0.33 0.36 

MLXIPL[30]+TOMM40[7.5] MLXIPL 30 TOMM40 7.5 0.70 0.51 0.59 

LDLR[30]+LDLRAP1[30] LDLR 30 LDLRAP1 30 0.25 0.01 0.06 

LDLR[30]+MLXIPL[30] LDLR 30 MLXIPL 30 0.67 0.01 0.03 

  
blot#4 siRNA quantities LDLR/a-tubulin 

Treatment siRNA1 pmol1 siRNA2 pmol2 Exp.1 Exp.2 Exp.3 

NEG9[30] NEG9 30 NEG9 30 2.26 1.41 0.85 

CXCL12[30] CXCL12 30 NEG9 30 0.86 0.90 0.75 

PAFAH1B1[7.5] PAFAH1B1 7.5 NEG9 30 0.42 0.54 0.51 

SIK3[30] SIK3 30 NEG9 30 1.14 0.75 1.14 

MYBPHL[30] MYBPHL 30 NEG9 30 1.36 1.37 1.82 

MYBPHL[30]+SIK3[30] MYBPHL 30 SIK3 30 0.95 0.82 1.51 

PAFAH1B1[7.5]+SIK3[30] PAFAH1B1 7.5 SIK3 30 0.25 0.30 0.55 

CXCL12[30]+PAFAH1B1[7.5] CXCL12 30 PAFAH1B1 7.5 0.14 0.44 0.30 

blot#1 siRNA quantities LDLR/a-tubulin 

Treatment siRNA1 pmol1 siRNA2 pmol2 Exp.1 Exp.2 Exp.3 

NEG9[30] NEG9 30 NEG9 30 1.60 2.84 0.71 

HAVCR1[15] HAVCR1 15 NEG9 30 2.19 1.53 2.10 

LDLR[7.5] LDLR 7.5 NEG9 30 0.12 0.18 0.06 

LDLRAP1[30] LDLRAP1 30 NEG9 30 1.49 0.89 0.95 

MLXIPL[30] MLXIPL 30 NEG9 30 1.25 1.22 1.72 

BCAM[30] BCAM 30 NEG9 30 0.72 1.48 0.66 

HAVCR1[15]+BCAM[30] HAVCR1 15 BCAM 30 0.72 1.37 0.93 

HAVCR1[15]+MLXIPL[30] HAVCR1 15 MLXIPL 30 0.80 0.85 1.04 

HAVCR1[15]+LDLRAP1[30] HAVCR1 15 LDLRAP1 30 0.97 0.47 0.80 

HAVCR1[15]+LDLR[7.5] HAVCR1 15 LDLR 7.5 0.31 0.08 0.03 

blot#5 siRNA quantities LDLR/a-tubulin 

Treatment siRNA1 pmol1 siRNA2 pmol2 Exp.1 Exp.2 Exp.3 

NEG9[30] NEG9 30 NEG9 30 1.60 0.89 1.52 

NCAN[30] NCAN 30 NEG9 30 1.17 0.67 2.83 

TOMM40[7.5] TOMM40 7.5 NEG9 30 0.21 0.38 0.28 

LDLR[7.5] LDLR 7.5 NEG9 30 0.03 0.21 0.10 

SEZ6L[15] SEZ6L 15 NEG9 30 0.53 1.11 1.16 

NCAN[30]+SEZ6L[15] NCAN 30 SEZ6L 15 0.38 1.33 0.70 

NCAN[30]+LDLR[7.5] NCAN 30 LDLR 7.5 0.01 0.20 0.02 

NCAN[30]+TOMM40[7.5] NCAN 30 TOMM40 7.5 0.11 1.03 0.13 

blot#6 siRNA quantities LDLR/a-tubulin 

Treatment siRNA1 pmol1 siRNA2 pmol2 Exp.1 Exp.2 Exp.3 

NEG9[30] NEG9 30 NEG9 30 0.62 1.90 1.18 

CELSR2[15] CELSR2 15 NEG9 30 1.03 1.38 0.71 

LPL[15] LPL 15 NEG9 30 0.44 0.29 0.48 

APOB[30] APOB 30 NEG9 30 1.00 0.68 0.57 

HMGCR[30] HMGCR 30 NEG9 30 1.15 0.96 1.59 

TMEM57[15] TMEM57 15 NEG9 30 1.34 1.43 0.92 

PCSK9[15] PCSK9 15 NEG9 30 1.14 0.47 0.62 

PCSK9[15]+TMEM57[15] PCSK9 15 TMEM57 15 0.91 0.66 1.08 

APOB[30]+HMGCR[30] APOB 30 HMGCR 30 0.76 0.58 1.29 

CELSR2[15]+LPL[15] CELSR2 15 LPL 15 0.42 0.13 0.61 
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Table S13. Regulation of LDLR transcription and translation upon single and double knockdown of the genes that were 

identified by the screen as interacting. 

Significant effect calculated with Student’s t-test in Microsoft Excel (TTEST (array1, array2, 2, 3)) is shown in bold. *<0.05, 

**<0.01, ***<0.001 

 

 

Treatment mRNA protein 

 log2 (fold change)  LDLR/a-tubulin  

 Exp. 1 Exp. 2 Exp. 3 Exp. 4 median mRNA 

regulation 

Exp.1 Exp.2 Exp.3 mean protein 

regulation HAVCR1[15]+NEG9 0.23 0.81 1.22 0.66 0.74 * 1.40 0.50 2.90 1.60  

LDLR[7.5]+NEG9 -1.29 -1.50 -1.04 -1.25 -1.27 ** 0.10 0.10 0.10 0.10 * 

LDLRAP1[30]+NEG9 -0.81 -0.03 0.75 0.07 0.02  0.90 0.30 1.30 0.83  

MLXIPL[7.5]+NEG9 0.75 0.39 0.97 -0.38 0.57  0.80 0.40 2.40 1.20  

BCAM[30]+NEG9 -1.02 -0.69 0.75 -0.03 -0.36  0.50 0.50 0.90 0.63 * 

HAVCR1[15]+LDLR[7.5] -0.57 -1.62 -0.97 -1.76 -1.29 * 0.20 0.00 0.00 0.07  

HAVCR1[15]+LDLRAP1[30] 1.19 1.29 1.43  1.29 * 0.60 0.20 1.10 0.63  

HAVCR1[15]+BCAM[30] -0.37 -0.60 -0.71  -0.60  0.50 0.50 1.30 0.77  

HAVCR1[15]+MLXIPL[7.5] 0.19 1.87 1.81 -0.42 1.00  0.50 0.30 1.50 0.77  

BCAM[30]+LDLRAP1[30] -0.17 0.29 0.79 -0.26 0.06  0.70 0.60 0.60 0.63 * 

SEZ6L[30]+NEG9 -0.46 0.31 -0.32 -0.46 -0.39  0.60 0.30 0.30 0.40 ** 

SORT1[30]+NEG9 -0.01 -0.16 -0.38 -0.12 -0.14  0.80 0.10 0.10 0.33 * 

LDLR[30]+NEG9 -2.19 -0.40 -2.16 -2.06 -2.11 ** 0.10 0.00 0.10 0.07 * 

HAVCR1[30]+NEG9 1.05 1.60 1.02 -0.28 1.03   0.80 0.10 0.45  

MLXIPL[30]+NEG9 -0.30 0.38 0.24 -1.86 -0.03  1.30 0.80 0.80 0.97  

LDLR[30]+MLXIPL[30] -2.40 -2.49 -2.70 -3.13 -2.60 *** 0.60 0.00 0.00 0.20 * 

LDLR[30]+LDLRAP1[30] -1.80 -2.15 -1.93 -2.74 -2.04 ** 0.20 0.00 0.00 0.07 * 

HAVCR1[30]+SEZ6L[30] 0.47 0.13 0.12 0.21 0.17  0.40 0.80 0.50 0.57 * 

HAVCR1[30]+SORT1[30] 0.83 0.91 0.22 -0.13 0.52  0.50 0.50 0.20 0.40 ** 

LDLRAP1[30]+SORT1[30] -1.30  -0.06 0.47 -0.06  0.80 0.20 0.10 0.37 * 

TOMM40[7.5]+NEG9 -0.28 -1.19 -1.02 -0.04 -0.65  0.80 0.10 0.10 0.33 * 

MLXIPL[30]+TOMM40[7.5] 0.58 -1.94 -1.02 -0.61 -0.81  0.60 0.20 0.30 0.37 * 

CXCL12[30]+NEG9 0.06  1.19 0.21 0.21  0.40 0.60 0.90 0.63  

PAFAH1B1[7.5]+NEG9 -0.91 -1.24 0.47 0.06 -0.42  0.20 0.40 0.60 0.40  

SORT1[7.5]+NEG9 -0.07 -1.36 -0.36 -0.89 -0.63  1.20 0.40 0.70 0.77  

NCAN[30]+NEG9 0.21 0.74 -0.22 -0.38 -0.01  0.70 0.80 1.90 1.13  

CXCL12[30]+PAFAH1B1[7.5] -0.64 -0.20 0.44 -1.28 -0.42  0.10 0.30 0.40 0.27 * 

SORT1[7.5]+TOMM40[7.5] -0.59 -1.68 -1.05 -1.37 -1.21  0.30 0.20 0.20 0.23 * 

NCAN[30]+TOMM40[7.5] -1.16 -0.92 -1.38 -1.89 -1.27 * 0.10 1.20 0.10 0.47 * 

SEZ6L[15]+NEG9 -0.55 0.10 0.49 -0.91 -0.23  0.30 1.30 0.80 0.80  

NCAN[30]+SEZ6L[15] -1.19 -0.65 0.16 0.08 -0.29  0.20 1.50 0.50 0.73  

LDLR[7.5]+NCAN[30] -1.98 -2.18 -1.78 -1.31 -1.88 ** 0.00 0.20 0.00 0.07 * 

SIK3[30]+NEG9 0.23 -0.20 0.59 -0.08 0.08  0.50 0.50 1.30 0.77  

PAFAH1B1[7.5]+SIK3[30] -1.15 0.38 0.70 0.97 0.54  0.10 0.20 0.60 0.30  

MYBPHL[30]+NEG9 -0.08 0.03 1.33 0.38 0.21  0.60 1.00 2.10 1.23  

MYBPHL[30]+SIK3[30] 0.28 0.90 0.99 0.07 0.59  0.40 0.60 1.80 0.93  

PCSK9[15]+NEG9 -2.14 0.81 0.94 -1.12 -0.15  1.80 0.20 0.50 0.83  

TMEM57[15]+NEG9 -1.06 0.45 1.27 0.34 0.39  2.20 0.80 0.80 1.27  

PCSK9[15]+TMEM57[15] 0.47 -0.19 1.23 0.00 0.24  1.50 0.30 0.90 0.90  

CELSR2[15]+NEG9 -0.11 -0.43 0.91 0.07 -0.02  1.70 0.70 0.60 1.00  

LPL[15]+NEG9 -0.47  0.48 -0.44 -0.44  0.70 0.20 0.40 0.43  

CELSR2[15]+LPL[15] 0.29  0.46 -0.33 0.29  0.70 0.10 0.50 0.43  

APOB[30]+NEG9 0.14 -2.06 1.27 0.37 0.25  1.60 0.40 0.50 0.83  

HMGCR[30]+NEG9 -0.02 -0.76 1.40 0.62 0.30  1.80 0.50 1.30 1.20  

APOB[30]+HMGCR[30] -1.60 0.37 1.47 0.78 0.57  1.20 0.30 1.10 0.87  

 

 
Table S14. Results of qRT-PCR experiments for SREBF1 and SREBF2 mRNA expression used for interaction calling. 

Shoǁn are the ΔCt ǀalues of SREBF1 and SREBF2 expression, where ΔCt=Ct(SREBF)-Ct(GAPDH), for four biological replicas. The 

four ΔCt values were used to fit a linear regression model, where the double knockdown was compared with the additive effect 

of the two single knockdowns, considering NEG9 as control. 

 
     mRNA expression ΔCt 

     SREBF1 SREBF2 

Treatment siRNA1 pmol 

siRNA1 

siRNA2 pmol 

siRNA2 

Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3 

NEG9[30] NEG9 30 NEG9 30 7.81 6.79 6.81 5.82 5.72 5.73 

HAVCR1[15]+NEG9 HAVCR1 15 NEG9 30 7.83 6.61 6.76 7.04 6.56 5.78 

LDLR[7.5]+NEG9 LDLR 7.5 NEG9 30 7.81 6.69 7.43 6.25 5.61 6.52 

LDLRAP1[30]+NEG9 LDLRAP1 30 NEG9 30 7.39 6.91 6.53 6.08 5.92 5.40 

MLXIPL[7.5]+NEG9 MLXIPL 7.5 NEG9 30 7.25 7.16 7.57 5.62 5.53 5.82 

BCAM[30]+NEG9 BCAM 30 NEG9 30 8.15 9.11 7.85 6.40 6.94 6.30 

HAVCR1[15]+LDLR[7.5] HAVCR1 15 LDLR 7.5 8.05 6.12 7.05 7.20 5.50 6.08 

HAVCR1[15]+LDLRAP1[30] HAVCR1 15 LDLRAP1 30 8.05 6.26 7.06 6.75 6.14 6.26 

HAVCR1[15]+BCAM[30] HAVCR1 15 BCAM 30 8.07 7.62 8.12 6.56 7.14 7.14 

HAVCR1[15]+MLXIPL[7.5] HAVCR1 15 MLXIPL 7.5 6.19 7.52 6.52 6.49 6.40 6.47 

BCAM[30]+LDLRAP1[30] BCAM 30 LDLRAP1 30 7.33 7.17 7.77 6.06 6.59 7.00 

SEZ6L[30]+NEG9 SEZ6L 30 NEG9 30 8.46 6.54 0.74 7.07 5.75 0.86 

SORT1[30]+NEG9 SORT1 30 NEG9 30 4.70 7.04 1.11 3.23 5.57 0.98 

LDLR[30]+NEG9 LDLR 30 NEG9 30 7.37 6.95  4.91 5.79  

HAVCR1[30]+NEG9 HAVCR1 30 NEG9 30 6.41 7.27 6.49 6.60 7.66 5.75 
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MLXIPL[30]+NEG9 MLXIPL 30 NEG9 30 7.28 1.16 9.31 4.93 5.47 7.66 

LDLR[30]+MLXIPL[30] LDLR 30 MLXIPL 30 8.60 7.10 6.91 4.72 5.57 6.00 

LDLR[30]+LDLRAP1[30] LDLR 30 LDLRAP1 30 6.66 8.03 7.36 5.59 6.12 5.60 

HAVCR1[30]+SEZ6L[30] HAVCR1 30 SEZ6L 30 6.83 7.13 5.41 5.29 7.15 5.29 

HAVCR1[30]+SORT1[30] HAVCR1 30 SORT1 30 5.96 5.88 6.73 4.91 5.63 4.80 

LDLRAP1[30]+SORT1[30] LDLRAP1 30 SORT1 30 8.30  7.32 6.39 5.71 6.10 

TOMM40[7.5]+NEG9 TOMM40 7.5 NEG9 30 8.68 7.43 7.40 7.45 7.13 6.52 

MLXIPL[30]+TOMM40[7.5] MLXIPL 30 TOMM40 7.5 7.70 9.74 7.53 6.90 8.02 6.27 

CXCL12[30]+NEG9 CXCL12 30 NEG9 30 6.83 4.16 7.78 6.24 5.77 5.94 

PAFAH1B1[7.5]+NEG9 PAFAH1B1 7.5 NEG9 30 6.19 6.50 6.83 5.71 6.26 5.84 

SORT1[7.5]+NEG9 SORT1 7.5 NEG9 30 6.49 6.85 7.24 6.28 14.72 5.78 

NCAN[30]+NEG9 NCAN 30 NEG9 30 7.81 7.59 8.35 7.50 6.35 6.52 

CXCL12[30]+PAFAH1B1[7.5] CXCL12 30 PAFAH1B1 7.5 6.48 6.91 8.05 5.06 6.07 6.13 

SORT1[7.5]+TOMM40[7.5] SORT1 7.5 TOMM40 7.5 6.88 7.94 7.92 6.36 6.69 6.52 

NCAN[30]+TOMM40[7.5] NCAN 30 TOMM40 7.5 7.60 7.68 8.78 5.78 6.95 6.70 

SEZ6L[15]+NEG9 SEZ6L 15 NEG9 30 7.71 7.83 7.37 5.74 7.39 6.17 

NCAN[30]+SEZ6L[15] NCAN 30 SEZ6L 15 7.70 7.94 8.25 6.92 6.37 6.08 

LDLR[7.5]+NCAN[30] LDLR 7.5 NCAN 30 7.70 7.60 7.77 5.72 5.99 6.26 

SIK3[30]+NEG9 SIK3 30 NEG9 30 8.11 7.65 7.97 5.88 6.56 7.61 

PAFAH1B1[7.5]+SIK3[30] PAFAH1B1 7.5 SIK3 30 9.35 8.05 8.37 8.80 7.56 7.38 

MYBPHL[30]+NEG9 MYBPHL 30 NEG9 30 6.47 6.61 7.19 5.18 5.39 6.15 

MYBPHL[30]+SIK3[30] MYBPHL 30 SIK3 30 7.04 7.36 7.26 6.84 6.89 6.63 

PCSK9[15]+NEG9 PCSK9 15 NEG9 30  7.78 7.21 7.75 6.01 6.29 

TMEM57[15]+NEG9 TMEM57 15 NEG9 30 7.31 7.80 7.89 6.16 6.80 6.87 

PCSK9[15]+TMEM57[15] PCSK9 15 TMEM57 15 6.74 6.49 6.78 5.55 5.85 6.16 

CELSR2[15]+NEG9 CELSR2 30 NEG9 30 7.61 6.88 7.51 5.83 5.83 5.98 

LPL[15]+NEG9 LPL 30 NEG9 30 9.18 5.39 8.38 6.75  6.33 

CELSR2[15]+LPL[15] CELSR2 30 LPL 30 7.36 n.d. 7.67 6.29 8.95 6.78 

APOB[30]+NEG9 APOB 30 NEG9 30 5.98 8.31 6.23 4.62 8.33 5.85 

HMGCR[30]+NEG9[30] HMGCR 30 NEG9 30 7.81 7.51 7.40 4.73 6.43 6.72 

APOB[30]+HMGCR[30] APOB 30 HMGCR 30 7.13 8.66 7.36 4.31 6.56 5.90 

 

 
Table S15. Regulation of SREBF1 and SREBF2 transcription upon single and double knockdown of the genes that were 

identified by the screen as interacting. 

Significant effect calculated with Student’s t-test in Microsoft Excel (TTEST (array1, array2, 2, 3)) is shown in bold. *<0.1, 

**<0.01, ***<0.001. 

 

 SREBF1 

 

SREBF2 

  log2 (fold change) 

 

 log2 (fold change) 

 

 

Treatment Exp.1 Exp.2 Exp.3 mean mRNA 

regulation 

Exp.1 Exp.2 Exp.3 mean mRNA 

regulation HAVCR1[15]+NEG9 -0.02 0.18 0.05 0.07  -1.21 -0.84 -0.05 -0.70  

LDLR[7.5]+NEG9 0.00 0.11 -0.63 -0.17  -0.42 0.12 -0.79 -0.36  

LDLRAP1[30]+NEG9 0.42 -0.12 0.28 0.19  -0.25 -0.20 0.33 -0.04  

MLXIPL[7.5]+NEG9 0.58 -0.36 -0.77 -0.18    0.19 -0.09 0.05  

BCAM[30]+NEG9 -0.34 -2.31 -1.05 -1.23 * -0.16 -1.22 -0.57 -0.65 * 

HAVCR1[15]+LDLR[7.5] -0.66 0.68 -0.25 -0.08  -1.12 0.22 -0.35 -0.42  

HAVCR1[15]+LDLRAP1[30] -0.80 0.53 -0.26 -0.18  -1.13 -0.42 -0.53 -0.69 * 

HAVCR1[15]+BCAM[30] 0.08 -0.83 -1.32 -0.69  -0.16 -1.42 -1.41 -0.99 * 

HAVCR1[15]+MLXIPL[7.5]   -0.72 0.28 -0.22  0.71 -0.67 -0.74 -0.24 *** 

BCAM[30]+LDLRAP1[30] 0.72 -0.38 -0.96 -0.20  0.69 -0.86 -1.27 -0.48 * 

SEZ6L[30]+NEG9 -0.39 0.25 -0.43 -0.19  -0.51 -0.03 -0.22 -0.26  

SORT1[30]+NEG9   -0.24 0.15 -0.04    0.15 -0.03 0.06  

LDLR[30]+NEG9 -0.04 -0.16   -0.10    -0.07   -0.07  

HAVCR1[30]+NEG9   -0.48 0.66 0.09  0.47 -1.94 0.11 -0.45  

MLXIPL[30]+NEG9 -2.59   -2.17 -2.38  -1.70   -1.80 -1.75  

LDLR[30]+MLXIPL[30] -1.22 -0.30 0.27 -0.42  0.19 0.15 0.29 0.21  

LDLR[30]+LDLRAP1[30] -0.24 -1.23 -0.17 -0.55  1.00 -0.40 0.69 0.43  

HAVCR1[30]+SEZ6L[30] 0.45 -0.33   0.06  -0.35 -1.43 0.57 -0.40  

HAVCR1[30]+SORT1[30]   0.92 0.42 0.67  -0.19 0.09 1.06 0.32  

LDLRAP1[30]+SORT1[30] -1.65   -0.14 -0.89  -0.79 0.01 0.19 -0.20  

TOMM40[7.5]+NEG9 -1.85 -0.64 -0.25 -0.91  -2.16 -1.41 -0.66 -1.41 * 

MLXIPL[30]+TOMM40[7.5] -1.74 -2.95 -0.38 -1.69  -1.99 -2.30 -0.41 -1.57  

CXCL12[30]+NEG9     -0.98 -0.98  0.15 -0.05 -0.21 -0.04  

PAFAH1B1[7.5]+NEG9   0.30 -0.03 0.14    -0.54 -0.11 -0.33  

SORT1[7.5]+NEG9   -0.05 -0.43 -0.24  0.63   -0.05 0.29  

NCAN[30]+NEG9 -0.98 -0.79 -1.54 -1.10  -1.26 -0.63 -0.79 -0.89  

CXCL12[30]+PAFAH1B1[7.5] -0.28 -0.11 -1.24 -0.55  0.66 -0.35 -0.40 -0.03  

SORT1[7.5]+TOMM40[7.5] -0.39 -1.15 -1.12 -0.89  -0.09 -0.97 -0.79 -0.61 ** 

NCAN[30]+TOMM40[7.5] 0.22 -0.88 -1.97 -0.88    -1.23 -0.97 -1.10 * 

SEZ6L[15]+NEG9 -1.24 -1.03 -0.57 -0.95  -0.68 -1.67 -0.44 -0.93  

NCAN[30]+SEZ6L[15] -0.81 -1.15 -1.45 -1.14  -0.56 -0.65 -0.35 -0.52  

LDLR[7.5]+NCAN[30] -0.10 -0.81 -0.97 -0.63  0.05 -0.27 -0.53 -0.25  

SIK3[30]+NEG9 -0.40 -0.85 -1.17 -0.81  -0.14 -0.84 -1.88 -0.95  

PAFAH1B1[7.5]+SIK3[30] -1.66 -1.25 -1.56 -1.49 * -1.88 -1.84 -1.65 -1.79 * 

MYBPHL[30]+NEG9   0.19 -0.39 -0.10  0.54 0.33 -0.42 0.15  

MYBPHL[30]+SIK3[30]   -0.56 -0.46 -0.51 * -0.96 -1.17 -0.90 -1.01 ** 

PCSK9[15]+NEG9   -0.99 -0.40 -0.70    -0.29 -0.56 -0.43  

TMEM57[15]+NEG9 -0.83 -1.01 -1.08 -0.97  -0.97 -1.08 -1.14 -1.06 * 

PCSK9[15]+TMEM57[15] 0.31 0.31 0.03 0.21    -0.13 -0.43 -0.28  
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CELSR2[15]+NEG9   -0.09 -0.70 -0.39    -0.11 -0.25 -0.18  

LPL[15]+NEG9 -1.87   -1.58 -1.72  -0.60   -0.60 -0.60  

CELSR2[15]+LPL[15] -0.31   -0.86 -0.59  0.44   -1.05 -0.30  

APOB[30]+NEG9 1.07   0.57 0.82  0.61   -0.12 0.25  

HMGCR[30]+NEG9[30] -0.77 -1.12 -0.60 -0.83    -1.29 -0.99 -1.14  

APOB[30]+HMGCR[30] -0.09 -2.27 -0.55 -0.97  0.92 -1.42 -0.17 -0.22  

 

 

Table S16. Effect of the gene interactions on LDLR mRNA and protein levels. 

Interaction effects on LDLR mRNA and protein of the 21 validated gene interactions, calculated by fitting a linear model on the 

Dct values of 4 biological replicates and the LDLR/a-tubulin protein values of 3 biological replicates, whereby the effect of single 

knockdowns was compared to that of doubles. The standard error, as well as the p-value of the interaction are shown. The 

significant interactions (pVal<10
-1

) are highlighted in bold. 

 
  LDLR mRNA LDLR protein 

Gene1 Gene2 Interaction Effect Std.Error pvalue Interaction Effect Std.Error pvalue 

HAVCR

1 

LDLR 0.91 0.45 0.04 -0.44 0.24 0.07 

HAVCR1 LDLRAP

1 

-0.43 0.43 0.32 -0.70 0.54 0.19 

HAVCR1 BCAM -0.43 0.43 0.32 -0.29 0.66 0.66 

HAVCR1 MLXIPL 0.10 0.52 0.86 0.51 0.26 0.05 

BCAM LDLRAP

1 

-0.27 0.58 0.64 0.38 0.41 0.36 

LDLR MLXIPL 1.00 0.52 0.05 0.42 0.32 0.19 

LDLR LDLRAP

1 

0.65 0.57 0.26 0.30 0.38 0.43 

HAVCR

1 

SEZ6L 0.78 0.47 0.10 0.32 0.22 0.14 

HAVCR1 SORT1 0.53 0.48 0.27 0.67 0.22 0.00 

LDLRAP

1 

SORT1 0.15 0.65 0.82 0.59 0.23 0.01 

TOMM4

0 

MLXIPL 0.13 0.93 0.89 0.50 0.48 0.30 

CXCL12 PAFAH1

B1 

0.77 0.61 0.20 0.38 0.22 0.09 

SORT1 TOMM4

0 

0.23 0.94 0.81 0.27 0.31 0.38 

NCAN TOMM

40 

1.16 0.51 0.02 -0.03 0.56 0.96 

SEZ6L NCAN 0.55 0.43 0.20 0.25 0.58 0.66 

LDLR NCAN 0.86 0.49 0.08 0.27 0.24 0.26 

MYBPH

L 

SIK3 0.08 0.53 0.88 -0.05 0.62 0.94 

PAFAH1

B1 

SIK3 -0.31 0.70 0.66 0.13 0.46 0.78 

PCSK9 TMEM5

7 

-0.31 0.70 0.66 0.09 0.48 0.85 

CELSR2 LPL -0.13 0.66 0.85 0.08 0.56 0.89 

APOB HMGCR 0.45 1.62 0.78 -0.88 0.52 0.09 

 

 

Table S17. Effect of the gene interactions on SREBF1 and SREBF2 mRNA levels. 

Shown are the interaction effects of the 21 validated gene interactions on SREBF1 and SREBF2  mRNA, as calculated by fitting a 

linear model on the DCt values of 4 biological replicates, to compare the effect of the single knockdowns to that of the doubles. 

The standard error of the estimated interaction effect, as well as the p-value of the interaction are shown. The significant ones 

(pVal<10
-1

) are highlighted in bold. 

 
  SREBF1 mRNA SREBF2 mRNA 

Gene1 Gene2 Interaction Effect Std.Error pvalue Interaction Effect Std.Error pvalue 

HAVCR1 LDLR -0.18 0.92 0.85 -1.08 0.28 0.00 

HAVCR1 LDLRAP1 0.22 0.85 0.80 -0.85 0.85 0.32 

HAVCR1 BCAM -0.27 0.88 0.76 -0.35 0.42 0.40 

HAVCR1 MLXIPL -0.20 0.74 0.79 -0.15 0.22 0.51 

BCAM LDLRAP1 -0.73 0.65 0.26 -0.03 0.22 0.90 

LDLR MLXIPL -0.81 1.29 0.53 -0.01 0.39 0.99 

LDLR LDLRAP1 0.38 0.76 0.61 -0.76 0.45 0.09 

HAVCR1 SEZ6L 0.69 1.06 0.51 -0.32 0.16 0.05 

HAVCR1 SORT1 2.48 1.49 0.09 -1.19 0.48 0.01 

LDLRAP1 SORT1 3.93 1.32 0.00 1.00 1.25 0.42 

TOMM40 MLXIPL -0.71 1.35 0.60 2.75 0.65 0.00 

CXCL12 PAFAH1B1 -0.46 0.91 0.61 -0.57 1.28 0.66 

SORT1 TOMM40 -0.07 0.90 0.94 -0.39 0.37 0.29 

NCAN TOMM40 -0.57 0.76 0.46 -0.88 0.38 0.02 

SEZ6L NCAN -0.53 0.46 0.25 -1.11 0.38 0.00 

LDLR NCAN -0.42 0.57 0.46 -0.63 0.51 0.22 

MYBPHL SIK3 -0.45 0.50 0.37 -1.07 0.36 0.00 

PAFAH1B1 SIK3 0.83 0.52 0.11 0.60 0.29 0.04 

PCSK9 TMEM57 -1.47 0.45 0.00 0.84 0.63 0.19 

CELSR2 LPL -1.35 0.77 0.08 -0.15 0.50 0.76 

APOB HMGCR 0.71 0.44 0.10 -0.77 0.56 0.17 
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Table S18. Correlation of LDLR mRNA and protein, as well as SREBF1 and SREBF2 mRNA with functional effect on LDL uptake. 

Shown is the effect on LDL uptake, LDLR mRNA and protein, as well as SREBF1 and SREBF2 mRNA, upon double knockdowns of the genes which were identified by the screen as interacting. Interaction effects are 

highlighted with pink (increased) or green (decreased). 

 

  

    LDL uptake LDLR mRNA LDLR protein SREBF1 mRNA SREBF2 mRNA correlation anti-correlation 

  
Treatment Robust Z 

score 

log2 (fold 

change) 

log2(LDLR/a-

tubulin) 

log2 (fold 

change) 

log2 (fold 

change)     

1 LDLR+ NCAN -1.23 -1.88 -3.91 -0.63 -0.25 LDL-LDLR mRNA-SREBF2 mRNA   

2 CXCL12+ PAFAH1B1  1.32 -0.42 -1.91 -0.55 -0.03   LDL-LDLR protein 

3 NCAN + SEZ6L -0.08 -0.29 -0.45 -1.14 -0.52     

4 NCAN + TOMM40  -1.49 -1.27 -1.10 -0.88 -1.10 LDL-LDLR mRNA-SREBF2 mRNA   

5 HAVCR1 + MLXIPL -0.12 1.00 -0.38 -0.22 -0.24     

6 LDLRAP1 + SORT1 -1.09 -0.06 -1.45 -0.89 -0.20 LDL-SREBF1 mRNA-SREBF2 

mRNA 

  

7 LDLR + LDLRAP1 -2.49 -2.04 -3.91 -0.55 0.43 LDL-LDLR protein LDL-SREBF2 

mRNA 8 CELSR2 + LPL  -0.11 0.29 -1.21 -0.59 -1.28 LDL-SREBF1 mRNA   

9 MLXIPL + TOMM40  -1.94 -0.81 -1.45 -1.69 -1.57 LDL-LDLR protein   

10 LDLR + MLXIPL -2.26 -2.60 -2.32 -0.42 0.21 LDL-LDLR mRNA LDL-SREBF2 

mRNA 11 HAVCR1+ SEZ6L -0.67 0.17 -0.82 0.06 -0.40     

12 HAVCR1 + LDLRAP1 0.39 1.29 -0.66 -0.18 -0.69     

13 BCAM + LDLRAP1 -0.05 0.06 -0.66 -0.20 -0.48 LDL-LDLR protein   

14 HAVCR1 + SORT1 -0.63 0.52 -1.32 0.67 0.32   LDL-SREBF1 

mRNA 15 BCAM + HAVCR1  -0.51 -0.60 -0.38 -0.69 -0.99     

16 MYBPHL + SIK3 2.30 0.59 -0.10 -0.51 -1.01   LDL-SREBF2 

mRNA 17 APOB + HMGCR 3.33 0.57 -0.21 -0.97 0.25     

18 SORT1 + TOMM40  -2.48 -1.21 -2.10 -0.89 -0.61 LDL-SREBF2 mRNA   

19 PAFAH1B1+ SIK3 3.30 0.54 -1.74 -1.49 -1.79     

20 PCSK9 + TMEM57  3.21 0.24 -0.15 0.21 -0.28 LDL-SREBF1 mRNA LDL-SREBF2 

mRNA 
21 HAVCR1+LDLR -2.24 -1.29 -3.91 -0.08 -0.42 LDL-LDLR mRNA-LDLR protein   

 

 

 

 

 
Table S19. Results of the co-RNAi screen. 
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Treatment siRNA1 siRNA2 robustZscore mad 

APOB__APOB APOB APOB -0.84 0.49 
APOB__APOE APOB APOE 0.29 1.00 

APOB__BAZ1B APOB BAZ1B 0.41 0.78 

APOB__BCAM APOB BCAM -0.07 0.82 

APOB__BCL7B APOB BCL7B 0.10 0.82 

APOB__CBLC APOB CBLC -0.09 1.24 

APOB__CELSR2 APOB CELSR2 0.83 0.79 

APOB__CXCL12 APOB CXCL12 -0.05 2.02 

APOB__FAM174A APOB FAM174A -1.40 0.97 

APOB__HAVCR1 APOB HAVCR1 -0.04 1.08 

APOB__HMGCR APOB HMGCR 2.80 1.53 

APOB__LDLR APOB LDLR -1.68 0.96 

APOB__LDLRAP1 APOB LDLRAP1 0.30 0.86 

APOB__LPL APOB LPL -0.86 0.69 

APOB__MLXIPL APOB MLXIPL -0.46 0.68 

APOB__MYBPHL APOB MYBPHL 0.58 0.62 

APOB__MYLIP APOB MYLIP 0.38 1.23 

APOB__NCAN APOB NCAN -0.30 0.97 

APOB__NEG9 APOB NEG9 -0.10 1.10 

APOB__PAFAH1B1 APOB PAFAH1B1 -0.13 1.54 

APOB__PAFAH1B2 APOB PAFAH1B2 -0.27 0.94 

APOB__PCSK9 APOB PCSK9 -0.74 1.49 

APOB__PVRL2 APOB PVRL2 0.03 0.78 

APOB__SEZ6L APOB SEZ6L -0.61 0.50 

APOB__SIK3 APOB SIK3 2.16 1.31 

APOB__SORT1 APOB SORT1 -0.29 0.44 

APOB__TM6SF2 APOB TM6SF2 -0.32 1.33 

APOB__TMEM57 APOB TMEM57 -0.27 0.98 

APOB__TOMM40 APOB TOMM40 -1.26 0.74 

APOB__WDR12 APOB WDR12 0.10 1.78 

APOB__ZNF259 APOB ZNF259 0.01 0.78 

APOE__APOE APOE APOE -0.26 0.62 

APOE__BAZ1B APOE BAZ1B 0.99 1.43 

APOE__BCAM APOE BCAM 0.28 1.17 

APOE__BCL7B APOE BCL7B -0.14 0.78 

APOE__CBLC APOE CBLC 0.52 0.56 

APOE__CELSR2 APOE CELSR2 0.23 1.05 

APOE__CXCL12 APOE CXCL12 1.75 1.77 

APOE__FAM174A APOE FAM174A -0.20 0.67 

APOE__HAVCR1 APOE HAVCR1 -0.15 1.48 

APOE__HMGCR APOE HMGCR 0.96 0.71 

APOE__LDLR APOE LDLR -1.07 0.91 

APOE__LDLRAP1 APOE LDLRAP1 0.47 0.95 

APOE__LPL APOE LPL -0.10 1.02 

APOE__MLXIPL APOE MLXIPL 0.35 0.46 

APOE__MYBPHL APOE MYBPHL 0.55 1.77 

APOE__MYLIP APOE MYLIP 0.39 0.69 

APOE__NCAN APOE NCAN 1.57 1.72 

APOE__NEG9 APOE NEG9 0.40 1.29 

APOE__PAFAH1B1 APOE PAFAH1B1 -1.04 1.23 

APOE__PAFAH1B2 APOE PAFAH1B2 0.53 0.95 

APOE__PCSK9 APOE PCSK9 -0.09 1.58 

APOE__PVRL2 APOE PVRL2 1.10 0.89 

APOE__SEZ6L APOE SEZ6L -1.00 0.74 

APOE__SIK3 APOE SIK3 0.93 0.87 

APOE__SORT1 APOE SORT1 0.36 0.73 

APOE__TM6SF2 APOE TM6SF2 -0.04 0.72 

APOE__TMEM57 APOE TMEM57 0.23 0.72 

APOE__TOMM40 APOE TOMM40 -0.62 0.11 

APOE__WDR12 APOE WDR12 0.27 0.68 

APOE__ZNF259 APOE ZNF259 0.11 1.53 

BAZ1B__BAZ1B BAZ1B BAZ1B -0.98 1.31 

BAZ1B__BCAM BAZ1B BCAM -0.63 0.57 

BAZ1B__BCL7B BAZ1B BCL7B 0.47 1.40 

BAZ1B__CBLC BAZ1B CBLC 0.31 0.69 

BAZ1B__CELSR2 BAZ1B CELSR2 0.39 0.44 

BAZ1B__CXCL12 BAZ1B CXCL12 0.41 1.58 

BAZ1B__FAM174A BAZ1B FAM174A -0.59 1.22 

BAZ1B__HAVCR1 BAZ1B HAVCR1 0.30 0.63 

BAZ1B__HMGCR BAZ1B HMGCR 1.00 1.39 

BAZ1B__LDLR BAZ1B LDLR -1.65 1.02 

BAZ1B__LDLRAP1 BAZ1B LDLRAP1 0.52 0.88 

BAZ1B__LPL BAZ1B LPL -0.69 0.97 

BAZ1B__MLXIPL BAZ1B MLXIPL 0.53 0.82 

BAZ1B__MYBPHL BAZ1B MYBPHL 0.22 1.21 

BAZ1B__MYLIP BAZ1B MYLIP 0.77 1.01 

BAZ1B__NCAN BAZ1B NCAN 1.26 2.15 

BAZ1B__NEG9 BAZ1B NEG9 0.42 1.65 

BAZ1B__PAFAH1B1 BAZ1B PAFAH1B1 -1.08 1.60 

BAZ1B__PAFAH1B2 BAZ1B PAFAH1B2 -0.31 0.64 

BAZ1B__PCSK9 BAZ1B PCSK9 0.25 0.92 

BAZ1B__PVRL2 BAZ1B PVRL2 -0.30 1.94 

BAZ1B__SEZ6L BAZ1B SEZ6L -0.30 0.36 

BAZ1B__SIK3 BAZ1B SIK3 0.12 0.58 

BAZ1B__SORT1 BAZ1B SORT1 -0.57 0.36 

BAZ1B__TM6SF2 BAZ1B TM6SF2 -0.66 0.43 

BAZ1B__TMEM57 BAZ1B TMEM57 1.35 1.51 

BAZ1B__TOMM40 BAZ1B TOMM40 -1.32 0.22 

BAZ1B__WDR12 BAZ1B WDR12 0.32 0.97 

BAZ1B__ZNF259 BAZ1B ZNF259 -0.13 0.94 

BCAM__BCAM BCAM BCAM -0.37 0.45 

BCAM__BCL7B BCAM BCL7B -0.43 0.59 

BCAM__CBLC BCAM CBLC -0.26 0.87 

BCAM__CELSR2 BCAM CELSR2 0.69 1.03 

BCAM__CXCL12 BCAM CXCL12 0.17 0.67 

BCAM__FAM174A BCAM FAM174A -0.49 1.25 

BCAM__HAVCR1 BCAM HAVCR1 -0.51 1.03 
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BCAM__HMGCR BCAM HMGCR 1.27 1.19 

BCAM__LDLR BCAM LDLR -2.05 0.84 

BCAM__LDLRAP1 BCAM LDLRAP1 -0.40 0.88 

BCAM__LPL BCAM LPL -0.74 0.55 

BCAM__MLXIPL BCAM MLXIPL 0.44 0.66 

BCAM__MYBPHL BCAM MYBPHL -0.03 0.73 

BCAM__MYLIP BCAM MYLIP 0.63 0.72 

BCAM__NCAN BCAM NCAN 0.71 0.88 

BCAM__NEG9 BCAM NEG9 0.43 1.51 

BCAM__PAFAH1B1 BCAM PAFAH1B1 -0.34 0.94 

BCAM__PAFAH1B2 BCAM PAFAH1B2 -0.37 0.62 

BCAM__PCSK9 BCAM PCSK9 0.63 0.92 

BCAM__PVRL2 BCAM PVRL2 0.80 1.81 

BCAM__SEZ6L BCAM SEZ6L -0.41 1.44 

BCAM__SIK3 BCAM SIK3 -0.25 0.82 

BCAM__SORT1 BCAM SORT1 -0.44 0.84 

BCAM__TM6SF2 BCAM TM6SF2 -0.73 0.32 

BCAM__TMEM57 BCAM TMEM57 0.31 0.39 

BCAM__TOMM40 BCAM TOMM40 -0.78 0.16 

BCAM__WDR12 BCAM WDR12 -0.26 0.62 

BCAM__ZNF259 BCAM ZNF259 -0.07 0.61 

BCL7B__BCL7B BCL7B BCL7B 2.11 1.02 

BCL7B__CBLC BCL7B CBLC -0.64 0.56 

BCL7B__CELSR2 BCL7B CELSR2 1.41 1.59 

BCL7B__CXCL12 BCL7B CXCL12 0.04 0.69 

BCL7B__FAM174A BCL7B FAM174A -1.37 0.63 

BCL7B__HAVCR1 BCL7B HAVCR1 0.59 0.94 

BCL7B__HMGCR BCL7B HMGCR 0.94 0.45 

BCL7B__LDLR BCL7B LDLR -1.91 0.79 

BCL7B__LDLRAP1 BCL7B LDLRAP1 0.89 1.41 

BCL7B__LPL BCL7B LPL 0.23 1.08 

BCL7B__MLXIPL BCL7B MLXIPL -0.03 1.35 

BCL7B__MYBPHL BCL7B MYBPHL 0.46 1.05 

BCL7B__MYLIP BCL7B MYLIP 0.69 1.33 

BCL7B__NCAN BCL7B NCAN 0.20 0.85 

BCL7B__NEG9 BCL7B NEG9 0.29 1.23 

BCL7B__PAFAH1B1 BCL7B PAFAH1B1 0.02 0.66 

BCL7B__PAFAH1B2 BCL7B PAFAH1B2 0.57 1.33 

BCL7B__PCSK9 BCL7B PCSK9 -0.85 1.59 

BCL7B__PVRL2 BCL7B PVRL2 0.25 0.94 

BCL7B__SEZ6L BCL7B SEZ6L -0.87 0.66 

BCL7B__SIK3 BCL7B SIK3 1.53 1.72 

BCL7B__SORT1 BCL7B SORT1 -0.56 1.57 

BCL7B__TM6SF2 BCL7B TM6SF2 -0.55 0.75 

BCL7B__TMEM57 BCL7B TMEM57 0.26 1.45 

BCL7B__TOMM40 BCL7B TOMM40 -0.12 0.21 

BCL7B__WDR12 BCL7B WDR12 -0.47 0.71 

BCL7B__ZNF259 BCL7B ZNF259 -0.04 1.03 

CBLC__CBLC CBLC CBLC -0.13 0.79 

CBLC__CELSR2 CBLC CELSR2 0.67 1.70 

CBLC__CXCL12 CBLC CXCL12 0.36 0.58 

CBLC__FAM174A CBLC FAM174A -0.98 0.45 

CBLC__HAVCR1 CBLC HAVCR1 -0.14 0.74 

CBLC__HMGCR CBLC HMGCR 0.58 0.52 

CBLC__LDLR CBLC LDLR -1.60 1.21 

CBLC__LDLRAP1 CBLC LDLRAP1 0.57 1.12 

CBLC__LPL CBLC LPL -0.84 0.54 

CBLC__MLXIPL CBLC MLXIPL 0.41 0.58 

CBLC__MYBPHL CBLC MYBPHL 0.13 1.29 

CBLC__MYLIP CBLC MYLIP 0.69 1.73 

CBLC__NCAN CBLC NCAN 0.78 0.64 

CBLC__NEG9 CBLC NEG9 0.25 1.25 

CBLC__PAFAH1B1 CBLC PAFAH1B1 -0.57 1.34 

CBLC__PAFAH1B2 CBLC PAFAH1B2 0.70 1.05 

CBLC__PCSK9 CBLC PCSK9 -0.19 0.97 

CBLC__PVRL2 CBLC PVRL2 1.10 2.54 

CBLC__SEZ6L CBLC SEZ6L -0.97 0.65 

CBLC__SIK3 CBLC SIK3 1.04 0.99 

CBLC__SORT1 CBLC SORT1 -0.59 0.56 

CBLC__TM6SF2 CBLC TM6SF2 -0.07 1.06 

CBLC__TMEM57 CBLC TMEM57 -0.17 0.50 

CBLC__TOMM40 CBLC TOMM40 -0.54 0.73 

CBLC__WDR12 CBLC WDR12 0.63 1.13 

CBLC__ZNF259 CBLC ZNF259 -0.42 0.69 

CELSR2__CELSR2 CELSR2 CELSR2 -0.09 1.56 

CELSR2__CXCL12 CELSR2 CXCL12 0.86 0.73 

CELSR2__FAM174A CELSR2 FAM174A -1.11 1.46 

CELSR2__HAVCR1 CELSR2 HAVCR1 0.49 1.39 

CELSR2__HMGCR CELSR2 HMGCR 0.63 0.67 

CELSR2__LDLR CELSR2 LDLR -2.13 1.32 

CELSR2__LDLRAP1 CELSR2 LDLRAP1 1.04 1.22 

CELSR2__LPL CELSR2 LPL -1.40 0.58 

CELSR2__MLXIPL CELSR2 MLXIPL 0.49 0.99 

CELSR2__MYBPHL CELSR2 MYBPHL 1.28 1.89 

CELSR2__MYLIP CELSR2 MYLIP 0.49 0.31 

CELSR2__NCAN CELSR2 NCAN 0.89 1.28 

CELSR2__NEG9 CELSR2 NEG9 0.23 1.11 

CELSR2__PAFAH1B1 CELSR2 PAFAH1B1 0.29 1.18 

CELSR2__PAFAH1B2 CELSR2 PAFAH1B2 0.82 2.30 

CELSR2__PCSK9 CELSR2 PCSK9 -0.21 1.16 

CELSR2__PVRL2 CELSR2 PVRL2 1.50 1.10 

CELSR2__SEZ6L CELSR2 SEZ6L -0.97 0.69 

CELSR2__SIK3 CELSR2 SIK3 2.30 0.96 

CELSR2__SORT1 CELSR2 SORT1 -0.51 0.75 

CELSR2__TM6SF2 CELSR2 TM6SF2 -0.63 0.97 

CELSR2__TMEM57 CELSR2 TMEM57 0.42 1.16 

CELSR2__TOMM40 CELSR2 TOMM40 -0.05 0.74 

CELSR2__WDR12 CELSR2 WDR12 0.46 1.28 
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CELSR2__ZNF259 CELSR2 ZNF259 -0.61 1.39 

CXCL12__CXCL12 CXCL12 CXCL12 2.20 1.80 

CXCL12__FAM174A CXCL12 FAM174A -1.69 0.88 

CXCL12__HAVCR1 CXCL12 HAVCR1 -0.41 0.95 

CXCL12__HMGCR CXCL12 HMGCR 1.08 1.04 

CXCL12__LDLR CXCL12 LDLR -2.15 0.50 

CXCL12__LDLRAP1 CXCL12 LDLRAP1 1.37 1.46 

CXCL12__LPL CXCL12 LPL -1.01 1.16 

CXCL12__MLXIPL CXCL12 MLXIPL 0.71 1.55 

CXCL12__MYBPHL CXCL12 MYBPHL -0.41 0.64 

CXCL12__MYLIP CXCL12 MYLIP -0.06 0.74 

CXCL12__NCAN CXCL12 NCAN 1.83 1.14 

CXCL12__NEG9 CXCL12 NEG9 0.23 1.39 

CXCL12__PAFAH1B1 CXCL12 PAFAH1B1 -2.17 0.71 

CXCL12__PAFAH1B2 CXCL12 PAFAH1B2 -0.44 1.01 

CXCL12__PCSK9 CXCL12 PCSK9 0.82 1.40 

CXCL12__PVRL2 CXCL12 PVRL2 -0.20 1.28 

CXCL12__SEZ6L CXCL12 SEZ6L -0.78 1.46 

CXCL12__SIK3 CXCL12 SIK3 0.01 1.91 

CXCL12__SORT1 CXCL12 SORT1 -1.35 1.11 

CXCL12__TM6SF2 CXCL12 TM6SF2 -0.97 1.76 

CXCL12__TMEM57 CXCL12 TMEM57 0.86 2.16 

CXCL12__TOMM40 CXCL12 TOMM40 -1.54 0.80 

CXCL12__WDR12 CXCL12 WDR12 -0.04 0.98 

CXCL12__ZNF259 CXCL12 ZNF259 -0.69 0.85 

FAM174A__FAM174A FAM174A FAM174A -2.32 0.85 

FAM174A__HAVCR1 FAM174A HAVCR1 -1.04 1.26 

FAM174A__HMGCR FAM174A HMGCR 0.16 0.59 

FAM174A__LDLR FAM174A LDLR -2.17 0.41 

FAM174A__LDLRAP1 FAM174A LDLRAP1 -0.77 1.16 

FAM174A__LPL FAM174A LPL -1.87 0.74 

FAM174A__MLXIPL FAM174A MLXIPL 0.58 1.75 

FAM174A__MYBPHL FAM174A MYBPHL -0.91 1.51 

FAM174A__MYLIP FAM174A MYLIP -0.81 0.95 

FAM174A__NCAN FAM174A NCAN 0.08 1.43 

FAM174A__NEG9 FAM174A NEG9 -0.78 1.37 

FAM174A__PAFAH1B1 FAM174A PAFAH1B1 -0.60 1.39 

FAM174A__PAFAH1B2 FAM174A PAFAH1B2 -0.96 0.80 

FAM174A__PCSK9 FAM174A PCSK9 -0.53 1.00 

FAM174A__PVRL2 FAM174A PVRL2 -1.72 0.79 

FAM174A__SEZ6L FAM174A SEZ6L -0.63 1.55 

FAM174A__SIK3 FAM174A SIK3 0.19 0.99 

FAM174A__SORT1 FAM174A SORT1 -0.22 0.99 

FAM174A__TM6SF2 FAM174A TM6SF2 -1.20 1.08 

FAM174A__TMEM57 FAM174A TMEM57 -0.71 1.97 

FAM174A__TOMM40 FAM174A TOMM40 -1.23 1.41 

FAM174A__WDR12 FAM174A WDR12 -0.83 0.54 

FAM174A__ZNF259 FAM174A ZNF259 -0.96 1.05 

HAVCR1__HAVCR1 HAVCR1 HAVCR1 -0.67 1.52 

HAVCR1__HMGCR HAVCR1 HMGCR 0.28 1.38 

HAVCR1__LDLR HAVCR1 LDLR -2.18 0.49 

HAVCR1__LDLRAP1 HAVCR1 LDLRAP1 -0.56 0.84 

HAVCR1__LPL HAVCR1 LPL -1.65 0.59 

HAVCR1__MLXIPL HAVCR1 MLXIPL -0.63 1.35 

HAVCR1__MYBPHL HAVCR1 MYBPHL 0.59 1.31 

HAVCR1__MYLIP HAVCR1 MYLIP -0.13 0.65 

HAVCR1__NCAN HAVCR1 NCAN -0.51 1.07 

HAVCR1__NEG9 HAVCR1 NEG9 0.58 1.18 

HAVCR1__PAFAH1B1 HAVCR1 PAFAH1B1 -0.97 0.90 

HAVCR1__PAFAH1B2 HAVCR1 PAFAH1B2 0.13 0.30 

HAVCR1__PCSK9 HAVCR1 PCSK9 -0.67 1.93 

HAVCR1__PVRL2 HAVCR1 PVRL2 -0.70 1.75 

HAVCR1__SEZ6L HAVCR1 SEZ6L -1.19 0.86 

HAVCR1__SIK3 HAVCR1 SIK3 1.23 1.74 

HAVCR1__SORT1 HAVCR1 SORT1 -2.09 0.91 

HAVCR1__TM6SF2 HAVCR1 TM6SF2 -0.41 1.15 

HAVCR1__TMEM57 HAVCR1 TMEM57 -0.96 0.50 

HAVCR1__TOMM40 HAVCR1 TOMM40 -1.06 1.55 

HAVCR1__WDR12 HAVCR1 WDR12 -0.48 0.71 

HAVCR1__ZNF259 HAVCR1 ZNF259 -1.01 0.53 

HMGCR__HMGCR HMGCR HMGCR -0.63 0.80 

HMGCR__LDLR HMGCR LDLR -0.22 2.48 

HMGCR__LDLRAP1 HMGCR LDLRAP1 1.24 0.57 

HMGCR__LPL HMGCR LPL 0.11 0.43 

HMGCR__MLXIPL HMGCR MLXIPL 2.17 2.23 

HMGCR__MYBPHL HMGCR MYBPHL 1.74 0.51 

HMGCR__MYLIP HMGCR MYLIP -0.51 0.75 

HMGCR__NCAN HMGCR NCAN 1.38 1.22 

HMGCR__NEG9 HMGCR NEG9 0.71 1.11 

HMGCR__PAFAH1B1 HMGCR PAFAH1B1 1.45 1.74 

HMGCR__PAFAH1B2 HMGCR PAFAH1B2 0.00 0.90 

HMGCR__PCSK9 HMGCR PCSK9 0.44 0.80 

HMGCR__PVRL2 HMGCR PVRL2 1.24 1.14 

HMGCR__SEZ6L HMGCR SEZ6L 1.26 0.39 

HMGCR__SIK3 HMGCR SIK3 1.71 1.38 

HMGCR__SORT1 HMGCR SORT1 1.02 1.44 

HMGCR__TM6SF2 HMGCR TM6SF2 0.76 0.72 

HMGCR__TMEM57 HMGCR TMEM57 0.94 0.97 

HMGCR__TOMM40 HMGCR TOMM40 0.62 1.00 

HMGCR__WDR12 HMGCR WDR12 0.85 0.92 

HMGCR__ZNF259 HMGCR ZNF259 0.11 1.21 

LDLRAP1__LDLRAP1 LDLRAP1 LDLRAP1 0.86 0.98 

LDLRAP1__LPL LDLRAP1 LPL -0.81 0.96 

LDLRAP1__MLXIPL LDLRAP1 MLXIPL 1.50 1.94 

LDLRAP1__MYBPHL LDLRAP1 MYBPHL 0.90 2.03 

LDLRAP1__MYLIP LDLRAP1 MYLIP 0.68 1.88 

LDLRAP1__NCAN LDLRAP1 NCAN 1.85 2.37 

LDLRAP1__NEG9 LDLRAP1 NEG9 0.94 1.45 
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LDLRAP1__PAFAH1B1 LDLRAP1 PAFAH1B1 -0.73 0.94 

LDLRAP1__PAFAH1B2 LDLRAP1 PAFAH1B2 0.57 1.24 

LDLRAP1__PCSK9 LDLRAP1 PCSK9 0.43 1.92 

LDLRAP1__PVRL2 LDLRAP1 PVRL2 0.72 1.81 

LDLRAP1__SEZ6L LDLRAP1 SEZ6L -1.46 1.36 

LDLRAP1__SIK3 LDLRAP1 SIK3 1.51 1.00 

LDLRAP1__SORT1 LDLRAP1 SORT1 -1.11 0.77 

LDLRAP1__TM6SF2 LDLRAP1 TM6SF2 -0.57 0.49 

LDLRAP1__TMEM57 LDLRAP1 TMEM57 0.16 1.36 

LDLRAP1__TOMM40 LDLRAP1 TOMM40 -0.96 2.20 

LDLRAP1__WDR12 LDLRAP1 WDR12 0.20 1.03 

LDLRAP1__ZNF259 LDLRAP1 ZNF259 0.11 1.39 

LDLR__LDLR LDLR LDLR -1.39 1.17 

LDLR__LDLRAP1 LDLR LDLRAP1 -2.44 0.65 

LDLR__LPL LDLR LPL -2.05 0.65 

LDLR__MLXIPL LDLR MLXIPL -2.03 0.98 

LDLR__MYBPHL LDLR MYBPHL -1.54 1.87 

LDLR__MYLIP LDLR MYLIP -1.73 1.16 

LDLR__NCAN LDLR NCAN -1.86 0.69 

LDLR__NEG9 LDLR NEG9 -1.50 1.17 

LDLR__PAFAH1B1 LDLR PAFAH1B1 -1.24 1.74 

LDLR__PAFAH1B2 LDLR PAFAH1B2 -1.44 1.52 

LDLR__PCSK9 LDLR PCSK9 -1.84 0.97 

LDLR__PVRL2 LDLR PVRL2 0.08 3.67 

LDLR__SEZ6L LDLR SEZ6L -1.96 0.64 

LDLR__SIK3 LDLR SIK3 -1.61 0.94 

LDLR__SORT1 LDLR SORT1 -0.91 0.53 

LDLR__TM6SF2 LDLR TM6SF2 -1.07 1.76 

LDLR__TMEM57 LDLR TMEM57 -1.98 0.69 

LDLR__TOMM40 LDLR TOMM40 -2.18 1.50 

LDLR__WDR12 LDLR WDR12 -1.69 1.01 

LDLR__ZNF259 LDLR ZNF259 -1.45 1.11 

LPL__LPL LPL LPL -1.41 0.88 

LPL__MLXIPL LPL MLXIPL 0.36 0.76 

LPL__MYBPHL LPL MYBPHL -0.35 0.85 

LPL__MYLIP LPL MYLIP 0.53 1.00 

LPL__NCAN LPL NCAN 0.66 0.79 

LPL__NEG9 LPL NEG9 -0.29 1.12 

LPL__PAFAH1B1 LPL PAFAH1B1 -1.35 1.44 

LPL__PAFAH1B2 LPL PAFAH1B2 -0.86 1.08 

LPL__PCSK9 LPL PCSK9 -1.23 0.83 

LPL__PVRL2 LPL PVRL2 -0.43 1.24 

LPL__SEZ6L LPL SEZ6L -0.79 1.27 

LPL__SIK3 LPL SIK3 0.20 1.03 

LPL__SORT1 LPL SORT1 -1.08 1.50 

LPL__TM6SF2 LPL TM6SF2 -0.82 1.31 

LPL__TMEM57 LPL TMEM57 -0.68 0.88 

LPL__TOMM40 LPL TOMM40 -2.23 0.82 

LPL__WDR12 LPL WDR12 -0.73 1.02 

LPL__ZNF259 LPL ZNF259 -0.71 1.25 

MLXIPL__MLXIPL MLXIPL MLXIPL 1.54 0.79 

MLXIPL__MYBPHL MLXIPL MYBPHL -0.06 1.69 

MLXIPL__MYLIP MLXIPL MYLIP 1.30 1.13 

MLXIPL__NCAN MLXIPL NCAN 1.68 0.71 

MLXIPL__NEG9 MLXIPL NEG9 1.21 1.75 

MLXIPL__PAFAH1B1 MLXIPL PAFAH1B1 -0.54 0.81 

MLXIPL__PAFAH1B2 MLXIPL PAFAH1B2 0.32 1.30 

MLXIPL__PCSK9 MLXIPL PCSK9 1.87 1.03 

MLXIPL__PVRL2 MLXIPL PVRL2 2.20 1.93 

MLXIPL__SEZ6L MLXIPL SEZ6L -0.91 2.15 

MLXIPL__SIK3 MLXIPL SIK3 0.70 1.05 

MLXIPL__SORT1 MLXIPL SORT1 -0.14 0.75 

MLXIPL__TM6SF2 MLXIPL TM6SF2 -0.60 1.51 

MLXIPL__TMEM57 MLXIPL TMEM57 2.17 0.76 

MLXIPL__TOMM40 MLXIPL TOMM40 -2.14 1.24 

MLXIPL__WDR12 MLXIPL WDR12 -0.23 1.78 

MLXIPL__ZNF259 MLXIPL ZNF259 -0.95 1.18 

MYBPHL__MYBPHL MYBPHL MYBPHL 0.98 0.24 

MYBPHL__MYLIP MYBPHL MYLIP 0.72 0.90 

MYBPHL__NCAN MYBPHL NCAN 1.10 1.58 

MYBPHL__NEG9 MYBPHL NEG9 0.06 1.56 

MYBPHL__PAFAH1B1 MYBPHL PAFAH1B1 0.66 1.92 

MYBPHL__PAFAH1B2 MYBPHL PAFAH1B2 -0.60 0.91 

MYBPHL__PCSK9 MYBPHL PCSK9 -0.31 0.80 

MYBPHL__PVRL2 MYBPHL PVRL2 0.62 1.42 

MYBPHL__SEZ6L MYBPHL SEZ6L 0.73 1.44 

MYBPHL__SIK3 MYBPHL SIK3 2.17 1.49 

MYBPHL__SORT1 MYBPHL SORT1 1.08 2.25 

MYBPHL__TM6SF2 MYBPHL TM6SF2 0.02 0.74 

MYBPHL__TMEM57 MYBPHL TMEM57 0.25 0.92 

MYBPHL__TOMM40 MYBPHL TOMM40 0.21 0.90 

MYBPHL__WDR12 MYBPHL WDR12 0.92 1.02 

MYBPHL__ZNF259 MYBPHL ZNF259 1.25 1.43 

MYLIP__MYLIP MYLIP MYLIP 0.54 1.15 

MYLIP__NCAN MYLIP NCAN 0.82 1.24 

MYLIP__NEG9 MYLIP NEG9 0.38 1.53 

MYLIP__PAFAH1B1 MYLIP PAFAH1B1 -0.10 1.36 

MYLIP__PAFAH1B2 MYLIP PAFAH1B2 -0.17 1.32 

MYLIP__PCSK9 MYLIP PCSK9 1.07 2.68 

MYLIP__PVRL2 MYLIP PVRL2 0.06 0.95 

MYLIP__SEZ6L MYLIP SEZ6L 2.18 0.97 

MYLIP__SIK3 MYLIP SIK3 0.53 0.76 

MYLIP__SORT1 MYLIP SORT1 0.34 1.19 

MYLIP__TM6SF2 MYLIP TM6SF2 0.94 0.53 

MYLIP__TMEM57 MYLIP TMEM57 1.22 0.66 

MYLIP__TOMM40 MYLIP TOMM40 0.71 1.68 

MYLIP__WDR12 MYLIP WDR12 -0.31 0.29 

MYLIP__ZNF259 MYLIP ZNF259 0.39 1.17 
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NCAN__NCAN NCAN NCAN 1.42 0.59 

NCAN__NEG9 NCAN NEG9 1.04 1.76 

NCAN__PAFAH1B1 NCAN PAFAH1B1 -0.36 0.70 

NCAN__PAFAH1B2 NCAN PAFAH1B2 1.68 1.17 

NCAN__PCSK9 NCAN PCSK9 1.62 2.54 

NCAN__PVRL2 NCAN PVRL2 2.35 1.79 

NCAN__SEZ6L NCAN SEZ6L -0.59 1.10 

NCAN__SIK3 NCAN SIK3 1.49 1.43 

NCAN__SORT1 NCAN SORT1 -0.51 0.98 

NCAN__TM6SF2 NCAN TM6SF2 -0.22 0.58 

NCAN__TMEM57 NCAN TMEM57 0.96 2.45 

NCAN__TOMM40 NCAN TOMM40 -1.40 1.58 

NCAN__WDR12 NCAN WDR12 0.35 1.80 

NCAN__ZNF259 NCAN ZNF259 0.01 0.39 

NEG9__NEG9 NEG9 NEG9 0.00 1.00 

NEG9__NPC1 NEG9 NPC1 0.02 1.14 

NEG9__PAFAH1B1 NEG9 PAFAH1B1 -0.55 1.72 

NEG9__PAFAH1B2 NEG9 PAFAH1B2 0.07 1.21 

NEG9__PCSK9 NEG9 PCSK9 -0.01 1.39 

NEG9__PVRL2 NEG9 PVRL2 0.21 0.94 

NEG9__SEZ6L NEG9 SEZ6L -0.23 1.32 

NEG9__SIK3 NEG9 SIK3 0.48 1.75 

NEG9__SORT1 NEG9 SORT1 -0.39 0.98 

NEG9__TM6SF2 NEG9 TM6SF2 -0.11 1.32 

NEG9__TMEM57 NEG9 TMEM57 0.02 1.23 

NEG9__TOMM40 NEG9 TOMM40 -0.63 1.73 

NEG9__WDR12 NEG9 WDR12 -0.38 1.08 

NEG9__ZNF259 NEG9 ZNF259 -0.30 1.22 

PAFAH1B1__PAFAH1B1 PAFAH1B1 PAFAH1B1 -1.57 0.82 

PAFAH1B1__PAFAH1B2 PAFAH1B1 PAFAH1B2 -0.69 1.14 

PAFAH1B1__PCSK9 PAFAH1B1 PCSK9 -1.76 1.79 

PAFAH1B1__PVRL2 PAFAH1B1 PVRL2 1.41 1.75 

PAFAH1B1__SEZ6L PAFAH1B1 SEZ6L 0.28 0.18 

PAFAH1B1__SIK3 PAFAH1B1 SIK3 1.62 0.48 

PAFAH1B1__SORT1 PAFAH1B1 SORT1 0.70 2.60 

PAFAH1B1__TM6SF2 PAFAH1B1 TM6SF2 0.08 0.80 

PAFAH1B1__TMEM57 PAFAH1B1 TMEM57 0.08 1.54 

PAFAH1B1__TOMM40 PAFAH1B1 TOMM40 0.89 0.90 

PAFAH1B1__WDR12 PAFAH1B1 WDR12 0.41 2.05 

PAFAH1B1__ZNF259 PAFAH1B1 ZNF259 0.53 1.35 

PAFAH1B2__PAFAH1B2 PAFAH1B2 PAFAH1B2 0.13 1.36 

PAFAH1B2__PCSK9 PAFAH1B2 PCSK9 -0.50 0.84 

PAFAH1B2__PVRL2 PAFAH1B2 PVRL2 -0.76 0.72 

PAFAH1B2__SEZ6L PAFAH1B2 SEZ6L -0.36 0.81 

PAFAH1B2__SIK3 PAFAH1B2 SIK3 -0.20 1.87 

PAFAH1B2__SORT1 PAFAH1B2 SORT1 0.91 1.65 

PAFAH1B2__TM6SF2 PAFAH1B2 TM6SF2 0.19 1.12 

PAFAH1B2__TMEM57 PAFAH1B2 TMEM57 -0.30 0.62 

PAFAH1B2__TOMM40 PAFAH1B2 TOMM40 -0.62 1.22 

PAFAH1B2__WDR12 PAFAH1B2 WDR12 -0.13 0.72 

PAFAH1B2__ZNF259 PAFAH1B2 ZNF259 0.37 0.69 

PCSK9__PCSK9 PCSK9 PCSK9 -0.64 0.61 

PCSK9__PVRL2 PCSK9 PVRL2 0.32 0.97 

PCSK9__SEZ6L PCSK9 SEZ6L -1.52 1.15 

PCSK9__SIK3 PCSK9 SIK3 -0.42 0.87 

PCSK9__SORT1 PCSK9 SORT1 0.09 0.60 

PCSK9__TM6SF2 PCSK9 TM6SF2 -0.68 1.62 

PCSK9__TMEM57 PCSK9 TMEM57 1.46 0.81 

PCSK9__TOMM40 PCSK9 TOMM40 -1.66 0.47 

PCSK9__WDR12 PCSK9 WDR12 -0.26 0.79 

PCSK9__ZNF259 PCSK9 ZNF259 0.12 0.64 

PVRL2__PVRL2 PVRL2 PVRL2 0.67 0.79 

PVRL2__SEZ6L PVRL2 SEZ6L 0.36 0.38 

PVRL2__SIK3 PVRL2 SIK3 0.29 1.10 

PVRL2__SORT1 PVRL2 SORT1 1.36 1.71 

PVRL2__TM6SF2 PVRL2 TM6SF2 -0.38 1.22 

PVRL2__TMEM57 PVRL2 TMEM57 1.55 1.38 

PVRL2__TOMM40 PVRL2 TOMM40 0.43 1.27 

PVRL2__WDR12 PVRL2 WDR12 0.71 1.33 

PVRL2__ZNF259 PVRL2 ZNF259 1.12 0.85 

SEZ6L__SEZ6L SEZ6L SEZ6L -1.54 0.65 

SEZ6L__SIK3 SEZ6L SIK3 -0.02 0.76 

SEZ6L__SORT1 SEZ6L SORT1 -0.75 0.83 

SEZ6L__TM6SF2 SEZ6L TM6SF2 0.42 0.67 

SEZ6L__TMEM57 SEZ6L TMEM57 0.20 1.87 

SEZ6L__TOMM40 SEZ6L TOMM40 -0.19 1.00 

SEZ6L__WDR12 SEZ6L WDR12 -1.53 0.82 

SEZ6L__ZNF259 SEZ6L ZNF259 0.36 0.63 

SIK3__SIK3 SIK3 SIK3 2.35 1.24 

SIK3__SORT1 SIK3 SORT1 1.00 1.27 

SIK3__TM6SF2 SIK3 TM6SF2 -0.85 1.92 

SIK3__TMEM57 SIK3 TMEM57 1.38 0.19 

SIK3__TOMM40 SIK3 TOMM40 1.41 0.23 

SIK3__WDR12 SIK3 WDR12 0.66 1.35 

SIK3__ZNF259 SIK3 ZNF259 1.11 2.85 

SORT1__SORT1 SORT1 SORT1 0.16 0.14 

SORT1__TM6SF2 SORT1 TM6SF2 0.81 0.47 

SORT1__TMEM57 SORT1 TMEM57 0.79 0.74 

SORT1__TOMM40 SORT1 TOMM40 0.77 1.04 

SORT1__WDR12 SORT1 WDR12 -0.32 0.46 

SORT1__ZNF259 SORT1 ZNF259 0.35 0.50 

TM6SF2__TM6SF2 TM6SF2 TM6SF2 -0.13 0.46 

TM6SF2__TMEM57 TM6SF2 TMEM57 1.11 0.41 

TM6SF2__TOMM40 TM6SF2 TOMM40 0.42 1.53 

TM6SF2__WDR12 TM6SF2 WDR12 -0.90 0.73 

TM6SF2__ZNF259 TM6SF2 ZNF259 0.63 0.84 

TMEM57__TMEM57 TMEM57 TMEM57 1.53 0.29 

TMEM57__TOMM40 TMEM57 TOMM40 -0.83 1.86 
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Table S20. Results of the validation experiments for LDL uptake. 

 

  Robust Z score 

  Treatment Exp.1 Exp.2 Exp.3 Exp.4 

1 BCAM __ LDLRAP1 -0.97 -2.18 -1.16   

2 CXCL12__ PAFAH1B1  0.29 -1.97 -3.21   

3 HAVCR1 __ LDLRAP1 -1.97 0.53 -1.2   

4 HAVCR1 __ LPL -1.77 0.81 -0.12   

5 HAVCR1 __ MLXIPL -2.88 2.12 -0.34   

6 HAVCR1 __ NCAN 1.01 0.71 -0.27   

7 HAVCR1__ SEZ6L -0.96 1.22 -0.04 -1.74 

8 HAVCR1 __ SORT1 -1.25 1.51 -0.45 -1.56 

9 HAVCR1 __ TMEM57 0.18 -0.53 0.98   

10 LDLR__ LDLRAP1 -1.05 -0.17 0.11 -3.37 

11 LDLRAP1 __ LPL  2.6 -0.34 -1.2   

12 LDLRAP1 __ SEZ6L -0.74 -0.01 1.04   

13 MLXIPL __ SEZ6L  0.75 -0.73 -0.46   

14 MLXIPL __ TOMM40  -1.91 0.75 -1.29 -2.07 

15 PAFAH1B1 __ TOMM40 -0.66 -0.57 -0.35   

16 APOB __ HMGCR -0.52 -2.7 6.27   

17 APOE __ MLXIPL  -2.37 2.95 0.58   

18 BCAM __ HAVCR1  -3.88 0.11 0.9   

19 CELSR2 __ LPL  -0.35 -1.09 -0.06   

20 CELSR2 __ SIK3 4.48 -0.57 1.5   

21 HAVCR1 __ MYLIP -0.47 0.72 3.03   

22 HAVCR1 __ ZNF259 -2.07 0.99 -0.26 0.73 

23 HMGCR __ PAFAH1B1  -2.03 -5.24 3.38   

24 LDLR __ NCAN -2.37 0.52 -1.21   

25 LDLR __ MLXIPL -1.42 0.1 -0.88   

26 LDLR __ PVRL2 -1.05 -1.47 -0.94   

27 LDLRAP1 __ SORT1 -0.43 2.56 -1.7 -1.35 

28 MYBPHL __ SIK3 0.33 1.68 0.36   

29 MYLIP __ SEZ6L  2.28 -0.28 -1.47   

30 NCAN __ SEZ6L -0.48 0.01 -1.55   

31 NCAN __ TOMM40  -0.88 -0.06 -3.12   

32 PAFAH1B1 __ SIK3 -4.04 4.45 3.55   

33 PCSK9  __ TMEM57  1.95 2.02 -0.19   

34 PVRL2 __ SORT1  1.85 0.67 0.8   

35 SORT1  __ TOMM40  3.28 0.68 0.87   

TMEM57__WDR12 TMEM57 WDR12 1.20 1.41 

TMEM57__ZNF259 TMEM57 ZNF259 0.32 0.68 

TOMM40__TOMM40 TOMM40 TOMM40 0.72 1.11 

TOMM40__WDR12 TOMM40 WDR12 -0.18 1.96 

TOMM40__ZNF259 TOMM40 ZNF259 0.46 0.31 

WDR12__WDR12 WDR12 WDR12 -0.86 0.16 

WDR12__ZNF259 WDR12 ZNF259 -0.14 0.80 

ZNF259__ZNF259 ZNF259 ZNF259 -0.27 0.23 
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Table S21. The 144 SNPs that were tested for SNP co-occurrence in data from the Bioimage study.  

SNPs that were tested for SNP co-occurrence in data from the Bioimage study are listed. The 133 SNPs were extracted from the 

PhenoScanner of the University of Cambridge, with lipid-trait associations from the study of Willer et al. 2013. Associations for 

other traits (CAD, CHD, MI) were extracted from other studies and are highlighted in green. Shown are the chromosomal locus 

where the SNP is located (Locus), the Reference SNP cluster ID (rs ID), the SNP position on the chromosome (Position), the risk 

(A1) and the ancestral (A2) allele, the SNP function -if known- (Function), the reported gene (Gene), the associated trait (Trait), 

the p-value for the association (p-value), the number of individuals tested (N), the reported odds ratio or beta-coefficient 

associated with the strongest SNP risk allele  (beta) and the standard error of the beta-coefficient (sebeta). 

 
Locus SNP Pos A1  A2 Function Gene Trait p-value N beta Sebeta Reference 

1p13.3 

rs629301 109818306 G T UTR-3' CELSR2 LDL 5E-241 NA -0.167 0 Willer et al. 2013 

            TC 2E-170 155873 0.134 0.0047 Willer et al. 2013 

rs599839 109822166 A G nearGene-3' PSRC1 LDL 2.70E-268 170167 0.1601 0.0044 Willer et al. 2013 

            TC 1.40E-186 184335 0.1281 0.0042 Willer et al. 2013 

rs12740374 109817590 G T UTR-3' CELSR2 LDL 2.4e-272 172820 0.161 0.0044 Willer et al. 2013 

            TC 7.70E-187 187071 0.1278 0.0043 Willer et al. 2013 

rs660240 109817838 T C UTR-3' CELSR2 LDL 9.00E-265 173022 -0.1607 0.0044 Willer et al. 2013 

            TC 7.00E-182 187288 -0.1276 0.0043 Willer et al. 2013 

rs646776 109818530 T C nearGene-3 CELSR2 LDL 1.60E-272 173021 0.1602 0.0044 Willer et al. 2013 

            TC 4.80E-187 187288 0.1272 0.0042 Willer et al. 2013 

rs7528419 109817192 A G UTR-3'   LDL 1.50E-165 114743 0.1547 0.0054 Willer et al. 2013 

            TC 5.60E-110 128033 0.1189 0.0051 Willer et al. 2013 

rs602633 109821511 T G   CELSR2 LDL 1.50E-261 171593 -0.1591 0.0044 Willer et al. 2013 

            TC 2.10E-180 185817 -0.1268 0.0043 Willer et al. 2013 

rs4970833 109804646 A G intron CELSR2 LDL 7.00E-55 160040 0.0637 0.0039 Willer et al. 2013 

            TC 9.70E-38 171955 0.0503 0.0038 Willer et al. 2013 

rs6689614 109807099 A G synonymous CELSR2 LDL 7.80E-61 172988 0.0646 0.0038 Willer et al. 2013 

            TC 2.80E-41 187253 0.0507 0.0036 Willer et al. 2013 

rs4970834 109814880 T C intron CELSR2 LDL 2.00E-208 172825 0.1503 0.0047 Willer et al. 2013 

            TC 9.60E-143 187081 0.1188 0.0045 Willer et al. 2013 

rs611917 109815252 G A intron CELSR2 LDL 1.90E-151 159987 -0.111 0.0041 Willer et al. 2013 

            TC 5.60E-104 171876 -0.0881 0.0039 Willer et al. 2013 

rs3902354 109819296 C A   CELSR2 CHD 2.1E-11 184305 
-

0.06963 
0.0104 Nikpay et al. 2015 

            MI 0.00000014 167181 
-

0.06024 
0.01143 Nikpay et al. 2015 

rs672569 109827253 A G nearGene-5' CELSR2 LDL 2.10E-64 89876 -0.1431 0.0082 Willer et al. 2013 

1p32.3 

rs2479409 55504650 G A nearGene-5' PCSK9 LDL 3E-50 172970 -0.0642 0.0041 Willer et al. 2013 

            TC 2E-39 187226 -0.054 0.004 Willer et al. 2013 

rs11206510 55496039 C T intergenic PCSK9 LDL 2.40E-53 172812 -0.0831 0.005 Willer et al. 2013 

            TC 1.10E-41 187066 -0.069 0.0048 Willer et al. 2013 

rs11591147 55505647 G T nearGene-5' PCSK9 LDL 8.60E-143 77417 0.497 0.018 Willer et al. 2013 

            TC 8.80E-86 85729 0.3341 0.0173 Willer et al. 2013 

rs499883 55519174 A G     CHD 0.007 184305 0.02872 0.01066 Nikpay et al. 2015 

    A G     MI 0.034 167181 0.02497 0.01181 Nikpay et al. 2015 

rs505151 55529187 A G ncRNA PCSK9 LDL 4.2e-17 151827 -0.0866 0.01 Willer et al. 2013 

            TC 3.8e-10 164218 -0.0619 0.0096 Willer et al. 2013 

1p36.11 
rs12027135 25449242 A T intron TMEM57 TC 5E-12 NA     Willer et al. 2013 

            LDL 2E-14 NA     Willer et al. 2013 

2p24.1 

rs1367117 21263900 A G missense APOB LDL 9.48E-183 173007 0.1186 0.004 Willer et al. 2013 

            TC 2.48E-139 187252 0.0995 0.0038 Willer et al. 2013 

rs10199768 21244000 G T intron APOB LDL 5.00E-139 170875 -0.0971 0.0037 Willer et al. 2013 

            TC 2.80E-108 185137 -0.083 0.0036 Willer et al. 2013 

            TG 5.70E-21 175642 -0.0353 0.0035 Willer et al. 2013 

rs693 21232195 G A cds-synon APOB LDL 1.20E-131 157125 -0.0954 0.0038 Willer et al. 2013 

            TC 5.20E-102 168987 -0.0816 0.0037 Willer et al. 2013 

            TG 2.20E-30 160959 -0.0415 0.0034 Willer et al. 2013 

rs1801701 21228827 T C missense APOB LDL 2.3e-21 173030 0.0638 0.0064 Willer et al. 2013 

            TC 8.3e-15 187293 0.0497 0.0062 Willer et al. 2013 

rs1042034 21225281 T C missense APOB TG 4.10E-66 177771 0.0704 0.0039 Willer et al. 2013 

            HDL 2.90E-54 187071 -0.0659 0.004 Willer et al. 2013 

            LDL 7.40E-39 173002 0.0586 0.0043 Willer et al. 2013 

            TC 2.50E-25 187265 0.0448 0.0042 Willer et al. 2013 

rs12713956 21241505 G A intron APOB LDL 1.3e-28 173010 -0.0719 0.0062 Willer et al. 2013 

            TC 2.9e-28 187270 -0.0688 0.006 Willer et al. 2013 

rs11902417 21198900 A G intergenic APOB TG 6.70E-67 173384 -0.0694 0.0039 Willer et al. 2013 

            HDL 1.20E-47 182623 0.0605 0.004 Willer et al. 2013 

            LDL 2.10E-46 168630 -0.0628 0.0043 Willer et al. 2013 

            TC 4.90E-33 182782 -0.0506 0.0041 Willer et al. 2013 

rs515135 21286057 T C intergenic APOB LDL 1.10E-178 173029 -0.1394 0.0048 Willer et al. 2013 

            TC 6.40E-151 187291 -0.1238 0.0046 Willer et al. 2013 

rs6544366 21204025 G T intergenic APOB TG 5.40E-66 174737 0.0685 0.0039 Willer et al. 2013 

            HDL 1.80E-48 184086 -0.0606 0.004 Willer et al. 2013 

            LDLc 9.30E-46 170058 0.062 0.0043 Willer et al. 2013 

            TC 8.70E-32 184227 0.0492 0.0041 Willer et al. 2013 

rs6754295 21206183 G T intergenic APOB TG 2.00E-62 177784 -0.0657 0.0038 Willer et al. 2013 

            HDL 1.20E-49 187085 0.0609 0.0039 Willer et al. 2013 

            LDL 1.60E-47 173013 -0.0628 0.0042 Willer et al. 2013 

            TC 2.90E-33 187280 -0.0501 0.0041 Willer et al. 2013 
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rs7557067 21208211 A G intergenic APOB Tg 2.00E-62 177772 0.0659 0.0038 Willer et al. 2013 

            HDL 2.20E-49 187078 -0.0608 0.0039 Willer et al. 2013 

            LDL 2.50E-46 173006 0.062 0.0042 Willer et al. 2013 

            TC 1.20E-32 187265 0.0495 0.0041 Willer et al. 2013 

rs676210 21231524 A G missense MYLIP Tg 3.30E-71 177782 -0.0733 0.0039 Willer et al. 2013 

            HDL 2.30E-54 187081 0.066 0.004 Willer et al. 2013 

rs934197 21267461 A G non-coding    LDL 1.60E-74 84950 0.1049 0.0054 Willer et al. 2013 

            HDL 3.30E-05 
3.30E-

05 
-0.0228 0.0051 Willer et al. 2013 

rs673548 21237544 A G intron APOB TG 2.00E-68 163871 -0.0742 0.0041 Willer et al. 2013 

            HDL 2.10E-53 172585 0.0678 0.0042 Willer et al. 2013 

            LDL 2.70E-38 159959 -0.0606 0.0045 Willer et al. 2013 

rs754523 21311691 G A intergenic APOB LDL 6.00E-122 160051 0.0981 0.004 Willer et al. 2013 

            TC 2.60E-91 171993 0.0819 0.0039 Willer et al. 2013 

rs1713222 21271323 G A intergenic APOB LDL 2.60E-130 160080 0.1327 0.0053 Willer et al. 2013 

            TC 1.70E-113 172022 0.121 0.0051 Willer et al. 2013 

rs4635554 21389659 G T   APOB LDL 1.20E-75 156927 0.0783 0.0041 Willer et al. 2013 

            TC 5.10E-63 169635 0.0691 0.004 Willer et al. 2013 

rs312985 21378805 G A   APOB LDL 1.40E-118 158796 0.1106 0.0046 Willer et al. 2013 

            TC 7.80E-102 170715 0.0988 0.0045 Willer et al. 2013 

rs506585 21397182 A G   APOB LDL 3.90E-119 160084 0.1099 0.0046 Willer et al. 2013 

            TC 7.80E-102 172027 0.0983 0.0045 Willer et al. 2013 

rs503662 21414142 T C   APOB LDL 3.80E-83 173020 -0.0836 0.0042 Willer et al. 2013 

            TC 2.60E-70 187287 -0.0739 0.0041 Willer et al. 2013 

rs531819 21263639 G T intron APOB LDL 4.00E-141 173033 0.1343 0.0052 Willer et al. 2013 

            TC 6.50E-123 187299 0.1222 0.005 Willer et al. 2013 

rs17398765 21270751 A G   APOB LDL 3.50E-32 168107 -0.0916 0.0076 Willer et al. 2013 

            TC 9.90E-24 182233 -0.0734 0.0073 Willer et al. 2013 

2q33.2 

rs7582720 202881162 T C intron WDR12 LDL 0.000025 170099 -0.0249 0.0055 Willer et al. 2013 

            CHD 7.5E-18 184305 0.13342 0.0155 Nikpay et al. 2015 

            MI 1.7E-13 167181 0.12394 0.01681 Nikpay et al. 2015 

rs6725887     C intron WDR12 CHD 9.5E-18 184305 0.13288 0.01549 Nikpay et al. 2015 

            MI 2.6E-12 167181 0.11885 0.01699 Nikpay et al. 2015 

5q13.3 

rs12916 75360714 T C UTR-3' HMGCR TC 5E-74 182530 0.0684 0.0036 Willer et al. 2013 

            LDL 8E-78 NA 0.073 0 Willer et al. 2013 

rs3846662 74651084 G A intron HMGCR LDL 2.20E-69 NA     Willer et al. 2013 

            TC 6.90E-66 NA     Willer et al. 2013 

rs3846663 74655726 C T intron HMGCR LDL 1.10E-75 170020 -0.0722 0.0037 Willer et al. 2013 

            TC 2.90E-70 184190 -0.0665 0.0036 Willer et al. 2013 

rs12654264 74648603 A T intron HMGCR   3.90E-70 172958 -0.0687 0.0037 Willer et al. 2013 

              7.80E-65 187215 -0.0632 0.0036 Willer et al. 2013 

rs7703051 74625487 A C intergenic HMGCR LDL 1.40E-77 173015 0.0727 0.0037 Willer et al. 2013 

            TC 3.10E-72 187283 0.0672 0.0036 Willer et al. 2013 

rs10045497 74636484 A C intron HMGCR TC 2.10E-46 94595 0.0768 0.0052 Willer et al. 2013 

            LDL 2.30E-44 89888 0.0766 0.0053 Willer et al. 2013 

5q21 rs383830       intergenic FAM174A CAD 1.3E-5       WTTC 2007 

5q33.3 

rs6882076 156390297 C T nearGene-5' TIMD4 TC 5.35E-41 187270 0.0508 0.0037 Willer et al. 2013 

            TG 1.51E-15 177778 0.0286 0.0035 Willer et al. 2013 

            LDL 3.31E-31 173006 0.0456 0.0038 Willer et al. 2013 

            HDL 0.6852 187080 0.0015 0.0035 Willer et al. 2013 

rs1501908 156398169 G C intergenic HAVCR1 TC 4.9E-39 187107 -0.0494 0.0037 Willer et al. 2013 

            LDL 1.1E-28 172869 -0.0436 0.0038 Willer et al. 2013 

            TG 8.3E-15 177635 -0.0278 0.0035 Willer et al. 2013 

6p22.3 
rs3757354 16127176 C T nearGene-5'   LDL 2E-17 172987 -0.0382 0.0044 Willer et al. 2013 

          MYLIP TC 2E-15 187247 -0.0348 0.0042 Willer et al. 2013 

7q11.23 

rs17145738 72982874 C T nearGene-3' TBL2 TG 9.42E-99 175664 0.1149 0.0053 Willer et al. 2013 

            HDL 4.95E-13 184970 0.0408 0.0053 Willer et al. 2013 

            LDL 0.5431 170891 0.0039 0.0057 Willer et al. 2013 

            TC 0.008813 185161 0.0136 0.0055 Willer et al. 2013 

rs17145750 73612048 C T intron MLXIPL HDL 5E-13 NA     Willer et al. 2013 

rs2074755 72877166 T C intron BAZ1B TG 1.4E-98 174001 0.1092 0.0051 Willer et al. 2013 

            HDL 3.7E-12 183352 -0.0393 0.0052 Willer et al. 2013 

rs2286276 72987354 T C intron TBL2 TG 3.7e-70 163993 -0.067 0.0038 Willer et al. 2013 

            HDL 1.3e-06 172719 0.0208 0.0039 Willer et al. 2013 

rs2240466 72856269 G A UTR-3' BAZ1B TG 5.30E-90 170671 0.1051 0.0052 Willer et al. 2013 

            HDL 1.00E-11 178896 -0.0394 0.0053 Willer et al. 2013 

rs1178979 72856430 T A UTR-3' BAZ1B TG 2.00E-97 177782 0.0895 0.0042 Willer et al. 2013 

rs714052 72864869 A T intron BAZ1B TG 2.00E-99 177802 -0.1084 0.005 Willer et al. 2013 

            HDL 2.20E-12 187107 0.0394 0.0052 Willer et al. 2013 

rs3812316 73020337 C G missense MLXIPL TG 1.30E-31 79868 0.0912 0.0074 Willer et al. 2013 

            HDL 1.50E-04 84783 -0.0317 0.0077 Willer et al. 2013 

rs17145750 73026378 C T intron MLXIPL TG 1.00E-99 177797 0.1015 0.0047 Willer et al. 2013 

            HDL 5.70E-12 187102 -0.0358 0.0049 Willer et al. 2013 

rs12056034 72878645 A G intron BAZ1B TG 9.30E-100 177044 0.109 0.0051 Willer et al. 2013 

            HDL 1.30E-12 186350 -0.0399 0.0052 Willer et al. 2013 

rs799160 73060006 T C intergenic MLXIPL TG 5.50E-30 162118 0.0398 0.0036 Willer et al. 2013 

            HDL 2.90E-04 171614 -0.0133 0.0037 Willer et al. 2013 

rs11974409 72989390 A G intron TBL2 TG 1.40E-100 177786 0.0899 0.0042 Willer et al. 2013 

8p21.3 

rs12678919 19844222 G A intergenic LPL TG 1.82E-199 177749 0.1702 0.0056 Willer et al. 2013 

            HDL 1.38E-149 187049 0.1554 0.0057 Willer et al. 2013 

            LDL 0.5045 172984 0.008 0.0061 Willer et al. 2013 

            TC 0.7352 187233 0.0003 0.0059 Willer et al. 2013 
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rs17411031 19852310 C G intergenic LPL TG 7.30E-180 177569 0.1075 0.0037 Willer et al. 2013 

            HDL 3.90E-150 186853 -0.1047 0.0038 Willer et al. 2013 

rs17482753 19832646 G T intergenic LPL TG 5.80E-193 177737 0.1654 0.0055 Willer et al. 2013 

            HDL 2.80E-149 187036 -0.1538 0.0056 Willer et al. 2013 

rs3289 19823192 C T UTR-3'   HDL 6.40E-46 178804 -0.1695 0.0113 Willer et al. 2013 

            TG 3.70E-33 169504 0.1447 0.0111 Willer et al. 2013 

rs326 19819439 A G intron LPL TG 1.00E-63 96966 0.0869 0.005 Willer et al. 2013 

            HDL 2.00E-58 102961 -0.0889 0.0051 Willer et al. 2013 

rs10503669 19847690 A C   LPL TG 7.70E-190 177722 -0.1676 0.0056 Willer et al. 2013 

            HDL 4.10E-144 187021 0.1534 0.0057 Willer et al. 2013 

rs13702 19824492 T C UTR-3' LPL TG 6.60E-187 177749 0.1069 0.0037 Willer et al. 2013 

            HDL 1.30E-160 187044 -0.1058 0.0038 Willer et al. 2013 

rs325 19819328 C T intron LPL TG 9.40E-195 177748 -0.1676 0.0055 Willer et al. 2013 

            HDL 2.10E-148 187045 0.1552 0.0057 Willer et al. 2013 

rs10105606 19827848 A C intergenic LPL TG 5.10E-133 177734 -0.0876 0.0035 Willer et al. 2013 

            HDL 2.70E-105 187034 0.0833 0.0036 Willer et al. 2013 

rs2083637 19865175 G A intergenic LPL TG 2.10E-175 163987 -0.1084 0.0038 Willer et al. 2013 

            HDL 3.80E-143 172714 0.1051 0.0039 Willer et al. 2013 

rs10096633 19830921 C T intergenic LPL TG 3.40E-182 177749 0.1471 0.005 Willer et al. 2013 

            HDL 1.70E-144 187049 -0.1384 0.0051 Willer et al. 2013 

rs328 19819724 C G 
coding-

STOP-GAIN 
LPL TG 2.00E-179 160341 0.167 0.0058 Willer et al. 2013 

            HDL 3.20E-135 169631 -0.1541 0.0059 Willer et al. 2013 

rs3916027 19824868 G A nearGene-3'   TG 1.20E-179 177708 0.1072 0.0037 Willer et al. 2013 

            HDL 2.30E-154 187006 -0.1061 0.0038 Willer et al. 2013 

rs327 19819536 G T intron LPL TG 5.70E-174 177713 -0.1045 0.0037 Willer et al. 2013 

            HDL 4.60E-145 187014 0.1024 0.0038 Willer et al. 2013 

rs1581675 19858499 A T   LPL TG 7.40E-163 169466 -0.1054 0.0039 Willer et al. 2013 

            HDL 2.20E-133 177687 0.1026 0.004 Willer et al. 2013 

rs6993414 19902918 A G   LPL TG 3.30E-187 176745 0.1661 0.0056 Willer et al. 2013 

            HDL 5.00E-140 186043 -0.1514 0.0057 Willer et al. 2013 

rs2197089 19826373 G A intergenic LPL TG 7.60E-73 173751 0.0608 0.0034 Willer et al. 2013 

            HDL 9.60E-66 182963 -0.0612 0.0035 Willer et al. 2013 

rs6586891 19914598 A C intergenic LPL TG 9.20E-66 146609 -0.0656 0.0038 Willer et al. 2013 

            HDL 4.10E-61 154466 0.0675 0.0039 Willer et al. 2013 

rs331 19820405 A G intron LPL TG 1.10E-174 172997 -0.1089 0.0039 Willer et al. 2013 

            HDL 3.90E-150 182314 0.1105 0.004 Willer et al. 2013 

rs17091905 19849757 G A   LPL TG 2.00E-174 177742 -0.1481 0.0051 Willer et al. 2013 

            HDL 1.60E-137 187041 0.1377 0.0052 Willer et al. 2013 

rs264 19813180 A G intron LPL CAD 3E-7       Dichgans et al. 2013 

            TG 2.30E-84 172989 -0.0933 0.0048 Willer et al. 2013 

            HDL 8.0e-77 182301 0.0976 0.005 Willer et al. 2013 

rs264 19813180 A G intron LPL HDL 8.0e-77 182301 0.0976 0.005 Willer et al. 2013 

            TG 2.30E-84 172989 -0.0933 0.0048 Willer et al. 2013 

rs7016880 19876746 C G     TG 1.10E-184 177670 -0.165 0.0056 Willer et al. 2013 

            HDL 8.10E-144 186956 0.1534 0.0057 Willer et al. 2013 

rs9644568 19928582 A G   LPL TG 2.30E-129 177760 -0.1299 0.0053 Willer et al. 2013 

            HDL 4.10E-110 187059 0.1266 0.0054 Willer et al. 2013 

rs1059611 19824563 C T UTR-3 LPL TG 1.10E-190 177751 -0.1614 0.0053 Willer et al. 2013 

            HDL 1.10E-144 187052 0.1485 0.0055 Willer et al. 2013 

rs79236614 19860460 C G   LPL TG 1.10E-79 80066 0.1601 0.0082 Willer et al. 2013 

            HDL 4.70E-56 84992 -0.1444 0.0085 Willer et al. 2013 

rs17410962 19848080 G A   LPL TG 2.30E-172 176101 -0.1478 0.0051 Willer et al. 2013 

            HDL 8.30E-137 185404 0.1379 0.0052 Willer et al. 2013 

9p21.3 

rs501120         CXCL12 CHD 1.40E-11 184305 0.07861 0.01163 Nikpay et al. 2015 

            MI 4.10E-08 167181 0.07086 0.01292 Nikpay et al. 2015 

rs1333049 22125503 G     CXCL12 CHD 3.90E-93 184305 0.19322 0.00944 CARDIoGRAMplusC4D 

            MI 6.8E-6       Samani 2007 

10q11.21 

rs1746048   C   intergenic CXCL12 CAD 3E-10       Schunkert 2011 

            MI 7E-9       Kathiresan et al. 2009 

            CHD 6.50E-11 184305 0.07651 0.01171 Nikpay et al. 2015 

10q11.2 rs266089       intron CXCL12 MI 5.2e-18       Yamada 2011 

11q23.3 

rs964184       intron-3'UTR ZNF259 TG 7e-224 NA 0.0069 90991 Willer et al. 2013 

rs12286037 116652207 C T intron ZNF259 TG 5.30E-193 174655 -0.2151 0.0069 Willer et al. 2013 

            HDL 2.80E-47 184011 0.1052 0.007 Willer et al. 2013 

rs3741298 116657561 T C intron ZNF259 TG 2.50E-124 96989 -0.1473 0.0056 Willer et al. 2013 

            TC 7.70E-30 102894 -0.067 0.0058 Willer et al. 2013 

rs651821 116662579 C T 5' UTR ZNF259 Tg 3.00E-153 116795 0.2358 0.0084 Willer et al. 2013 

            TC 5.30E-28 126140 0.0978 0.0089 Willer et al. 2013 

            HDL 7.70E-26 126213 -0.1041 0.0088 Willer et al. 2013 

rs2075290 116653296 C T intron APOB TG 4.80E-244 177775 0.2278 0.0065 Willer et al. 2013 

            TC 3.80E-51 187268 0.1056 0.0069 Willer et al. 2013 

            HDL 1.30E-39 187082 -0.0947 0.0066 Willer et al. 2013 

rs1558861 116607437 C T intergenic MLXIPL TG 3.10E-161 103079 0.2368 0.0083 Willer et al. 2013 

            TC 1.20E-28 107665 0.1011 0.0088 Willer et al. 2013 

            HDL 9.00E-28 109540 -0.0964 0.0083 Willer et al. 2013 

rs4938303 116584987 C T intergenic ZNF259 TG 3.40E-166 177681 0.1071 0.0037 Willer et al. 2013 

            HDL 1.90E-31 186981 -0.0462 0.0038 Willer et al. 2013 

            TC 5.60E-25 187160 0.0414 0.0039 Willer et al. 2013 

rs28927680 116619073 G C UTR-3' ZNF259 TG 5.50E-78 101632 0.1802 0.0087 Willer et al. 2013 

            HDL 2.80E-18 107501 -0.0808 0.0087 Willer et al. 2013 
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            TC 4.80E-20 107532 0.0883 0.0092 Willer et al. 2013 

            LDL 1.20E-09 97617 0.0626 0.0097 Willer et al. 2013 

rs662799 116663707 A G intergenic APOA5 TG 1.60E-241 172713 -0.2474 0.0071 Willer et al. 2013 

            TC 2.50E-49 182202 -0.1113 0.0075 Willer et al. 2013 

            HDL 4.20E-37 182018 0.1001 0.0072 Willer et al. 2013 

            LDL 1.70E-22 168088 -0.0801 0.0078 Willer et al. 2013 

rs12272004 116603724 A C intergenic BUD13 TG 1.60E-179 162406 0.2021 0.0067 Willer et al. 2013 

            HDL 1.20E-45 171089 -0.102 0.007 Willer et al. 2013 

            TC 1.80E-36 170075 0.0925 0.0072 Willer et al. 2013 

            LDL 8.20E-19 158514 0.0679 0.0075 Willer et al. 2013 

rs6589566 116652423 A G intron ZNF259 TG 1.00E-239 177777 -0.226 0.0065 Willer et al. 2013 

            HDL 2.70E-38 187084 0.0931 0.0066 Willer et al. 2013 

            TC 8.20E-50 187270 -0.1042 0.0069 Willer et al. 2013 

            LDL 1.70E-23 173011 -0.0754 0.0071 Willer et al. 2013 

rs2000571 116585533 G A intergenic ZNF259 TG 1.40E-69 177725 -0.0763 0.0041 Willer et al. 2013 

            HDL 1.50E-10 187033 0.0291 0.0042 Willer et al. 2013 

            TC 2.60E-08 187215 -0.0251 0.0043 Willer et al. 2013 

rs486394 116526322 A C intergenic ZNF259 TG 2.80E-60 177648 -0.0665 0.0038 Willer et al. 2013 

            TC 2.70E-14 187138 -0.0307 0.004 Willer et al. 2013 

            HDL 2.10E-10 186954 0.0266 0.0038 Willer et al. 2013 

            LDL 3.20E-06 172883 -0.0198 0.0042 Willer et al. 2013 

rs2075292 116732512 G T intron SIK3 TG 6.40E-86 177762 0.1026 0.005 Willer et al. 2013 

            TC 4.10E-23 187249 0.0534 0.0053 Willer et al. 2013 

rs7124741 116752219 A T intron SIK3 TG 1.30E-85 177760 0.1048 0.0051 Willer et al. 2013 

            TC 8.60E-21 187253 0.0521 0.0055 Willer et al. 2013 

            LDL 9.10E-06 172995 0.031 0.0057 Willer et al. 2013 

rs17120139 116774201 A G intron SIK3 TG 3.20E-44 91013 0.1045 0.0074 Willer et al. 2013 

            TC 2.90E-14 94595 0.0629 0.0082 Willer et al. 2013 

            LDL 2.10E-05 89888 0.0367 0.0083 Willer et al. 2013 

rs3135506 116662407 C G coding APOA5 TG 1.10E-68 86746 0.1837 0.0096 Willer et al. 2013 

rs618923 116654159 A G intron ZNF259 TG 9.60E-30 155942 0.0488 0.0041 Willer et al. 2013 

            HDL 2.70E-21 165188 -0.0412 0.0042 Willer et al. 2013 

rs139961185 116807343 A G intron SIK3 CHD 2.20E-01 184305 0.07254 0.05942 Nikpay et al. 2015 

rs11216230 116884789 A G intron SIK3 CHD 6.30E-01 184305 

-

0.01722 
0.03592 

Nikpay et al. 2015 

            MI 8.70E-01 167181 -0.0068 0.04189 Nikpay et al. 2015 

17p13.3 rs9891572       intergenic PAFAH1B1 CAD 2.3E-7       Lettre 2011 

19p13.11 

rs10401969 19407718 C T intron NCAN TC 4.13E-77 185666 0.1369 0.007 Willer et al. 2013 

            TG 9.70E-70 176172 0.121 0.0065 Willer et al. 2013 

            LDLc 2.65E-54 171476 0.1184 0.0072 Willer et al. 2013 

            HDL 0.1022 185513 0.0128 0.0068 Willer et al. 2013 

rs2304130 19789528 A G intron NCAN TC 1.40E-46 170535 0.1039 0.0069 Willer et al. 2013 

            TG 5.40E-39 162508 0.085 0.0064 Willer et al. 2013 

            LDL 2.20E-32 158662 0.0885 0.0072 Willer et al. 2013 

rs17216525 19662220 C T intergenic NCAN TC 6.70E-62 185680 0.1133 0.0065 Willer et al. 2013 

            TG 1.00E-60 176188 0.1035 0.0061 Willer et al. 2013 

            LDL 3.40E-43 171492 0.096 0.0067 Willer et al. 2013 

rs16996148 19658472 G T intergenic NCAN TC 1.50E-62 183979 0.114 0.0065 Willer et al. 2013 

            TG 3.20E-60 174491 0.1031 0.0061 Willer et al. 2013 

            LDL 2.00E-45 169813 0.0986 0.0067 Willer et al. 2013 

19p13.2 

rs6511720 11202306 G T intron LDLR LDL 3.85E-262 170607 0.2209 0.0061 Willer et al. 2013 

            TC 5.43E-202 184763 0.1851 0.0059 Willer et al. 2013 

            LDL 3.85E-262 170607 0.2209 0.0061 Willer et al. 2013 

            HDL 6.32E-05 184617 0.0249 0.0057 Willer et al. 2013 

            TG 0.1043 175280 0.0084 0.0056 Willer et al. 2013 

rs688 11227602 C T cds-syn APOE LDLc 1.00E-43 166792 -0.054 0.0037 Willer et al. 2013 

            TC 1.60E-28 180878 -0.0416 0.0036 Willer et al. 2013 

rs2738459 11238473 A C intron LDLR LDLc 2.30E-19 88433 0.0532 0.0058 Willer et al. 2013 

            TC 2.10E-11 93067 0.0387 0.0057 Willer et al. 2013 

rs2228671 11210912 C T cds-syn LDLR LDL 1.70E-171 170510 0.1768 0.006 Willer et al. 2013 

            TC 4.30E-132 184667 0.1475 0.0058 Willer et al. 2013 

rs1122608 11163601 G T intron LDLR LDL 8.50E-57 159918 0.074 0.0045 Willer et al. 2013 

            TC 6.80E-41 173300 0.0599 0.0043 Willer et al. 2013 

rs11668477 11195030 A G intergenic LDLR LDL 3.80E-143 158659 0.1389 0.0052 Willer et al. 2013 

            TC 1.40E-107 170530 0.1144 0.005 Willer et al. 2013 

rs2738446 11227326 C G intron LDLR LDL 3.30E-29 88417 -0.0621 0.0053 Willer et al. 2013 

            TC 3.60E-19 93051 -0.0488 0.0052 Willer et al. 2013 

19q13.32 

rs4420638 45422946 G A nearGene-3' APOC1 LDL 2E-178 93103 -0.2251 0.0077 Willer et al. 2013 

    G       TC 1E-149 NA -0.197 0 Willer et al. 2013 

    G       HDL 2E-21       Willer et al. 2013 

rs157580 45395266 A G intron TOMM40 LDL 9.20E-119 139565 0.1078 0.0045 Willer et al. 2013 

            TC 3.20E-104 151145 0.0969 0.0043 Willer et al. 2013 

rs7412 45412079 C T missense APOE LDL 0.00E+00 82533 0.5898 0.0101 Willer et al. 2013 

            TC 1.60E-283 92046 0.3736 0.0096 Willer et al. 2013 

rs519113 45376284 G C intron PVRL2 LDL 1.60E-49 88346 -0.0971 0.0066 Willer et al. 2013 

            TC 2.70E-32 92971 -0.0922 0.0066 Willer et al. 2013 

rs439401 45414451 C T intergenic APOE TG 1.40E-66 152584 0.0659 0.0038 Willer et al. 2013 

rs2075650 45395619 A G intron TOMM40 LDL 1.70E-214 161076 -0.1767 0.0055 Willer et al. 2013 

            TC 8.90E-158 175566 -0.1432 0.0052 Willer et al. 2013 

rs769449 45410002 A G intron APOE LDL 4.90E-161 83660 0.2141 0.0076 Willer et al. 2013 

            TC 6.80E-103 93260 0.1589 0.0072 Willer et al. 2013 
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Table S22. The 36 SNP pairs that were identified as having an additive effect on LDL. 

Shown are the IDs of the SNPs in the Exome Chip (SNP1 and SNP2), the genes mapped close to the SNPs (Gene1 and Gene2), 

the beta-coefficient (Beta) and the p-value for the additive model. The SNP pairs that were hit in my co-RNAi screen are 

highlighted. (Data analysis performed by Gulum Kosova, unpublished) 

 

 SNP1 Gene1 SNP2 Gene2 Beta P-value 

1 exm62588 PCSK9 exm.rs12740374 CELSR2 0.13 4.62E-07 

2 exm62588 PCSK9 exm176096 APOB 0.11 5.19E-06 

3 exm62588 PCSK9 exm.rs3846662 HMGCR 0.09 1.83E-05 

4 exm62588 PCSK9 exm686341 LPL 0.17 4.90E-07 

5 exm62588 PCSK9 exm.rs6511720 LDLR 0.17 8.64E-08 

6 exm62588 PCSK9 exm.rs17216525 NCAN 0.18 3.60E-06 

7 exm62588 PCSK9 exm1479366 APOE 0.44 2.12E-32 

8 exm62588 PCSK9 exm.rs4420638 APOE 0.16 1.47E-08 

9 exm.rs12740374 CELSR2 exm176096 APOB 0.1 1.04E-08 

10 exm.rs12740374 CELSR2 exm.rs3846662 HMGCR 0.09 5.73E-08 

11 exm.rs12740374 CELSR2 exm686341 LPL 0.12 4.86E-09 

12 exm.rs12740374 CELSR2 exm.rs6511720 LDLR 0.13 8.95E-10 

13 exm.rs12740374 CELSR2 exm.rs17216525 NCAN 0.12 4.22E-08 

14 exm.rs12740374 CELSR2 exm1479366 APOE 0.22 1.12E-22 

15 exm.rs12740374 CELSR2 exm.rs4420638 APOE 0.13 1.14E-10 

16 exm176096 APOB exm.rs3846662 HMGCR 0.09 1.22E-07 

17 exm176096 APOB exm686341 LPL 0.11 6.33E-08 

18 exm176096 APOB exm.rs6511720 LDLR 0.11 1.58E-08 

19 exm176096 APOB exm.rs17216525 NCAN 0.11 3.95E-07 

20 exm176096 APOB exm1479366 APOE 0.18 4.30E-19 

21 exm176096 APOB exm.rs4420638 APOE 0.11 2.30E-09 

22 exm.rs3846662 HMGCR exm686341 LPL 0.09 2.84E-07 

23 exm.rs3846662 HMGCR exm.rs6511720 LDLR 0.1 6.26E-08 

24 exm.rs3846662 HMGCR exm.rs17216525 NCAN 0.09 1.66E-06 

25 exm.rs3846662 HMGCR exm1479366 APOE 0.16 4.92E-17 

26 exm.rs3846662 HMGCR exm.rs4420638 APOE 0.1 8.16E-09 

27 exm686341 LPL exm.rs6511720 LDLR 0.14 2.61E-09 

28 exm686341 LPL exm.rs17216525 NCAN 0.14 7.85E-08 

29 exm686341 LPL exm.rs6511720 LDLR 0.14 2.61E-09 

30 exm686341 LPL exm.rs4420638 APOE 0.14 3.84E-10 

31 exm.rs6511720 LDLR exm.rs17216525 NCAN 0.15 1.57E-08 

32 exm.rs6511720 LDLR exm1479366 APOE 0.27 1.04E-25 

33 exm.rs6511720 LDLR exm.rs4420638 APOE 0.14 5.55E-11 

34 exm.rs17216525 NCAN exm1479366 APOE 0.3 2.75E-25 

35 exm.rs17216525 NCAN exm.rs4420638 APOE 0.15 1.56E-09 

36 exm1479366 APOE exm.rs4420638 APOE 0.22 2.16E-23 

 
 

 

 

 

 

 

rs445925 45415640 G A nearGene-5' APOE LDL 0.00E+00 105162 0.3634 0.0081 Willer et al. 2013 

            TC 2.20E-166 118293 0.2212 0.0077 Willer et al. 2013 

rs8106922 45401666 A G intron APOE LDL 3.00E-22 139174 -0.0407 0.0041 Willer et al. 2013 

rs405509 45408836 T G nearGene-3' APOE LDL 2.80E-84 139202 0.0813 0.004 Willer et al. 2013 

            TC 1.60E-31 152735 0.0461 0.0039 Willer et al. 2013 

rs769450 45410444 G A intron APOE LDL 2.40E-11 84849 0.0368 0.0051 Willer et al. 2013 

            TC 4.90E-07 94482 0.0267 0.0049 Willer et al. 2013 

rs12721109 45447221 G A intron APOE LDL 3.00E-122 99409 -0.4462 0.0183 Willer et al. 2013 

            TC 8.80E-67 110455 -0.3234 0.0179 Willer et al. 2013 

rs10402271 45329214     intergenic BCAM LDL 2.60E-118 171428 0.0927 0.0038 Willer et al. 2013 

            TC 8.90E-74 185609 0.0702 0.0037 Willer et al. 2013 

rs4803750 45247627 A G intergenic APOE LDL 1.70E-162 164086 0.2189 0.0078 Willer et al. 2013 

            TC 7.90E-84 178198 0.1485 0.0075 Willer et al. 2013 

rs4605275 45338493 C T intergenic APOE LDL 2.80E-33 89503 0.0722 0.0061 Willer et al. 2013 

            TC 2.60E-20 94142 0.0547 0.006 Willer et al. 2013 

rs16979595 45477381 A G intron APOE TC 5.40E-09 185650 0.0296 0.005 Willer et al. 2013 

            LDL 4.90E-05 171472 0.02 0.0052 Willer et al. 2013 

            HDL 1.80E-04 185508 0.0188 0.0048 Willer et al. 2013 

rs769449 45410002 A G intron APOE LDL 4.90E-161 83660 0.2141 0.0076 Willer et al. 2013 

            TC 6.80E-103 93260 0.1589 0.0072 Willer et al. 2013 
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9.2 SUPPLEMENTARY FIGURES 

 

Figure S1. Comparison of the knockdown effect on LDL uptake between the reverse transfection 

(screen) and the liquid-phase transfection 

Shown is an example of the effect of gene knockdowns on LDL uptake, using the same siRNA amounts 

as in the screen (no siRNA adjustments) or smaller amounts of siRNAs than in the screen (adjusted 

siRNA concentration) (A), as well as an example of titration of an siRNA to determine the suitable 

amount to be used, in order to achieve the desirable phenotype. 
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Figure S2. Boxplot representation of the 21 gene-gene interactions that were replicated with liquid-

phase transfection. 

Shown are the 21 gene-gene interactions that were validated with liquid-phase transfection. The 

boxplots show the median intensity of internalized DiI-LDL, normalized to the control, for the two 

single knockdowns (transfected together with the control siRNA), as well as for the double 

knockdown, for each pair of genes. (n=3-4)  
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