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Verbesserung der Bestimmung von mikroskopisen Gewebseigensaen mittels
doppelt diffusionsgewiteter und flusskompensierter einzeln diffusionsgewiteter
Magnetresonanztomographie
Die diffusionsgewitete Magnetresonanztomographie (MRT) erlaubt es Rüslüsse auf
die Mikrostruktur des untersuten Gewebes zu ziehen, wele mit der begrenzten Au-
flösung des MRT-Bildes nit dargestellt werden. Für Diffusionsmessungen ist die Sal-
tung starker Gradientenpulse nötig, die zu Artefakten aufgrund von Wirbelströmen und
Maxwell-Feldern (concomitant fields) führen kann. Eine weitere elle von Artefakten
ist die geritete Bewegung, wie zum Beispiel Pulsation oder Blutfluss. Für die genauere
Bestimmung der mikroskopisen fraktionellen Anisotropie (µFA) wurde eine doppelt re-
fokussierte Spineo-Sequenz für die doppelt diffusionsgewitete MRT angepasst. Dur
diese Wirbelstromkompensation wurden die fälslierweise erhöhten µFA Werte in der
grauen Substanz (im Miel von 0.57±0.19 auf 0.50±0.19) und den Ventrikeln (im Miel
von 0.54± 0.19 auf 0.28± 0.27) von gesunden Probanden verringert.
Eine zweite Sequenz, mit einer Einzeldiffusionswitung, wurde entwielt um jeglie
Kombination der drei ellen von Artefakten (Fluss, Wirbelströme und Maxwell-Felder)
kompensieren zu können. In vivoMessungen zeigten, dass für vieleMessungen eine höhere
Wiederholbarkeit der Aufnahmen erreit wird, wenn Fluss und Maxwell-Felder kompen-
siert werden. Eine zusätzlie Wirbelstromkompensation führte, außer bei Kopf Messun-
gen, zu keiner weiteren Verbesserung. Die zweite Sequenz wurde verwendet um die Perfu-
sion miels Intravoxel Incoherent Motion (inkohärente Bewegung innerhalb eines Voxels)
Modells zu bestimmen. Diese Messungen wurden im Abdomen und in der Prostata von
gesunden Probanden durgeführt, wobei ein Untersied zwisen flusskompensierten
und nit flusskompensierten Messungen festgestellt wurde. Dies war jedo nit der Fall
bei Patienten mit Prostatakarzinom.





Improved Estimation of Microscopic Tissue Parameters by Double Diffusion Encod-
ing and Flow-Compensated Single Diffusion Encoding Magnetic Resonance Imaging
Diffusion weighted magnetic resonance imaging (MRI) can be used to gain information
on the microstructure of the examined tissue on length scales below the actual image res-
olution. e large gradient amplitudes required for diffusion measurements can lead to
artifacts due to eddy currents and concomitant fields. Another source of image artifacts, is
the presence of directed motion su as blood flow or pulsation. In a first MRI sequence,
a common approa for eddy current compensation, the twice-refocused spin eo was
adjusted for a double diffusion encoding (DDE) sequence. In measurements of healthy
volunteers, this approa reduced the falsely elevated microscopic fractional anisotropy
(µFA) in the gray maer on average from 0.57± 0.19 to 0.50± 0.19 and in the ventricles
on average from 0.54± 0.19 to 0.28± 0.27.
A second sequence, with a single diffusion encoding, was compensated for any combi-
nation of the three artifact sources flow, concomitant fields and eddy currents. For most
in vivo measurements, it proved to be sufficient to compensate for flow and concomitant
fields. An additional eddy current compensation led only in the brain measurements to a
higher reproducibility. e developed sequence was also used tomeasure the incoherent in-
travoxel motion (IVIM) effect in the abdomen as well as the prostate of healthy volunteers,
where a difference between flow-compensated and non-flow-compensated measurements
was observed. is difference could not be seen in patients with prostate carcinoma.
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1 Introduction

In magnetic resonance imaging (MRI), tomographic images are acquired without the use
of ionizing radiation, whi is an advantage over computed tomography (CT) and position
emission tomography (PET). MRI additionally offers a large variety of contrast meanisms
that allow not only anatomic imaging with a high so tissue contrast, but also functional
imaging. MRI has, for example, been used to assess tissue perfusion with contrast agent
[SB13] or to examineemical exangewithemical exange saturation transfer (CEST)
[vZY11] as well as particle exange over membranes [QBD+03]. e many different con-
trast meanisms, the high so tissue contrast and the absence of ionizing radiation have
made MRI a wide spread tool in diagnostics and resear, despite its mostly lower resolu-
tion than CT.
e self-diffusion of water is another parameter used in MRI. e influence of diffusion

on the magnetic resonance signal has been described already in 1950 [Hah50]. Since then, it
has been used to gain information about tissue structures smaller than the image resolution.
is is possible because the diffusive motion during a typical MRI sequence is on the length
scale of cell sizes. e measurements rely on the application of gradient pulses to make
the signal sensitive to diffusive motion [ST65]. e main application of diffusion weighted
imaging (DWI) is in the brain. It has, for example, been proven useful in detecting isemic
areas in strokes [MCM+90].
It was also shown that it is possible to assess the anisotropy of coherent white mat-

ter fibers [CBP90, MKAN91] by the use of the diffusion tensor [BML94a, BML94b]. is
anisotropy is lost if the fibers inside a voxel are not coherently ordered, as, for example, is
the case for fiber crossings, or if there is a loss of fibers. e reasons for a lower anisotropy
cannot be distinguished with the diffusion tensor alone. In 1995, an approa to determine
the anisotropy of the diffusion compartments directly was proposed [Mit95]. It was shown
that the application of two individual diffusion encodings can overcome the need for a
coherent ordering to determine the anisotropy of the actual diffusion compartments. e
feasibility of this approa was demonstrated in humans [LF13]. As a measure of the com-
partment anisotropy, the microscopic fractional anisotropy µFA was proposed [JLSD13].
Besides the applications in the brain, diffusion measurements were also used in other

body parts. e apparent diffusion coefficient (ADC) was shown to be a useful marker in
the detection of prostate cancer and is included in guidelines for prostate imaging [WBC+16].
In 1986, LeBihan et al. proposed a model to determine the fraction of the signal that is
aributed to the tissue perfusion [LBL+86, LBL+88]. is model is called intravoxel inco-
herent motion (IVIM) model and assumes that the blood flow in tissue can be modeled as
a pseudo-diffusion for long diffusion encoding times owing to the random orientation of
small blood vessels. e model parameters allow for a differentiation between normal and
cirrhotic liver [LVC+08] and between pancreatitis and pancreatic carcinoma [KLG+11].



2 1 Introduction

Despite these results, it was shown that the assumption of long diffusion encoding times
is not met in many experiments [WSL15]. is was aieved by using a flow compensated
diffusion encoding. If the long time limit would be valid, there should have been no differ-
ence between the flow-compensated and non-flow-compensated diffusion measurement.
All these diffusionmeasurements require the application of strong gradient pulses, whi

can lead to image artifacts. ere are especially two kinds of artifacts that were consid-
ered in this work, eddy currents and concomitant fields. Eddy currents are caused by the
switing of gradient amplitudes [VVB90, JWS90] and lead to image distortions. In the
case of many diffusion encoding directions or strengths, the image distortions can lead to
misregistrations and thus to false parameter estimations. Concomitant fields are caused by
the fact that the Maxwell equations do not allow linear gradient fields in MRI. is leads
to an additional spatially varying field, whi can cause signal voids or wrong diffusion
coefficients [MZFP08].
e aim of this work was to reduce these artifacts and thus allowing for a more accurate

determination of microscopic tissue parameters. erefore, two sequences were developed,
an eddy-current-compensated double diffusion encoding (DDE) sequence for the determi-
nation of µFA and a single diffusion encoding (SDE) sequence with flow, concomitant field
and eddy current compensation for the measurement of IVIM parameters. Both sequences
were tested in phantom experiments as well as in vivo.



2 Basics: Principles of Nuclear Magnetic
Resonance

In this apter, a short introduction to nuclear magnetic resonance (NMR) is given and
the basic principles needed for imaging are reviewed. For a more detailed look at these
subjects, there are several books [Abr11, HBTV99, BKZ04] available. Here, the main focus
is on the nuclei of hydrogen atoms, that is protons, as they were used for imaging. ere
are several other nuclei that can be used for magnetic resonance imaging (MRI), but they
were not considered in this work.

2.1 Nuclear Spin and Magnetic Moment
e nucleus of a hydrogen atom consists in most cases of one proton, whi in turn leads
to a nuclear spin Î = (Îx, Îy, Îz). In quantum meanics, a spin is treated as an angular
momentum with the known commutator relations:

[Îi, Îj] = i~ϵijkÎk (2.1)

[Î2, Îi] = 0 (2.2)

and eigenvalue equations:

Î2|I,m⟩ = I(I + 1)~2|I,m⟩ (2.3)

Îz|I,m⟩ = ~m|I,m⟩, (2.4)

where ϵijk stands for the Levi-Civita symbol, i,j and k can be x, y or z, and the z-direction is
osen as the axis of quantization. e commutator relations show that there is a complete
set of eigenfunctions of Î2 and Îz . e corresponding eigenvalues are given by equations 2.3
and 2.4. In general, the value I can take positive integer or half-integer values. For a proton,
it is 1/2. e value m can take the values −I , −I + 1, … , I and therefore the possible
values form are −1/2 and 1/2 for I = 1/2.
e spin is connected to a magnetic moment µ̂ by the gyromagnetic ratio γ:

µ̂ = γÎ. (2.5)

e value of γ dependents on the nucleus. In MRI, oen γ
2π

is used, whi takes the value
42.576MHz/T for protons.
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2.2 Static External Magnetic Fields
e interaction of a spin with an external magnetic field is described by the Hamiltonian
Ĥ :

Ĥ = −µ̂ ·B. (2.6)

For a static magnetic field B0 in z-direction, the Hamiltonian is simplified to

Ĥ = −γB0Îz. (2.7)

e convention that the main magnetic fieldB0 is parallel to z-direction is used for the rest
of this text. Equation 2.7 shows that eigenfunctions of Îz and Î2 are also eigenfunctions of
Ĥ and thus

Ĥ|I,m⟩ = Em|I,m⟩ (2.8)

can be used to determine the energy Em of the eigenstates. By inserting equation 2.4 in
equation 2.8, the energies can be calculated to Em = −γ~mB0. e energy difference
between neighboring states is thus

∆E = Em − Em±1 = γ~B0. (2.9)

is split in the formerly degenerate energy states is known as Zeeman effect. For the
excitation of spins in this system, a photon with the energy ~ω0 is needed, with

ω0 = γB0, (2.10)

whi is known as the Larmor frequency. To induce transitions between the two states of
a hydrogen nucleus in a magnetic field with B0 = 3 T, electromagnetic waves with the
frequency ν0 = ω0

2π
= 127.8MHz are needed.

2.3 Macroscopic Magnetization
InMRI, themeasurement involves a large spin ensemble so that the observed quantity is not
the single spin but rather a magnetization. e magnitude of this magnetization is given
by the difference in the population of the two energy states. e population probability pm
of the state with Em in thermal equilibrium at absolute temperature T is described by the
Boltzmann distribution:

pm =
exp (−Em/kBT )∑I

m=−I exp (−Em/kbT )
=

exp(γ~mB0/kBT )

exp(−γ~B0/2kBT ) + exp(γ~B0/2kBT )
, (2.11)

where kB is the Boltzmann constant. For the last step, I = 1/2 was used explicitly. e
population ratio of the two states is given by

p−1/2

p1/2
=

exp(−γ~B0/2kBT )

exp(γ~B0/2kBT )
= exp(−γ~B0/kBT ) (2.12)
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and the difference in occupation∆N for a total of N particles by

∆N = N(p−1/2 − p+1/2) = N tanh
(
γ~B0

2kBT

)
. (2.13)

For a body temperature of T = 310 K and a magnetic field of B0 = 3 T, the relative dif-
ference ∆N

N
is 9.89 · 10−6, whi means there is only a very small excess of spins with

m = −1/2. is ratio has to be compared to the number of particles in a typical imaging
volume of a few mm3, whi is in the order of 1019 or higher, leading to a measurable
signal.
e macroscopic magnetization M is given by the sum of the expected values of the

magnetic moments:

M =
1

V

∑
i

⟨µ̂i⟩ =
γ

V

∑
i

⟨Î⟩. (2.14)

e eigenstates for Îx and Îy are degenerate, meaning their expectation values vanish and
thus leading to a magnetization parallel to the external magnetic field with a magnitude
M0:

M0 =
γ

V

∑
i

⟨Îz⟩ =
N

V
γ~

I∑
m=−I

mpm. (2.15)

Because of the high temperature compared to the magnetic energy (γ~B0 ≪ kBT ), the
exponentials from equation 2.11 can be expanded in their Taylor series up to the first order
exp(−γ~B0/2kBT ) ≈ 1− γ~B0/2kBT . With this approximation,M0 is given by

M0 ≈
N

V

γ2~2I(I + 1)B0

3kBT
=

N

V

γ2~2B0

4kBT
, (2.16)

whi is known as Curie’s law. e equal sign holds for I = 1/2. Equation 2.16 shows
that the magnetization is proportional to the spin density N

V
and the magnetic fieldB0, and

inverse proportional to the temperature T .

2.4 Radio Frequency Pulses
To understand the effect of radio frequency (RF) pulses, first, the time evolution of M in
a magnetic field is needed. It can be derived by applying the Ehrenfest theorem to the
magnetic moments:

d⟨µ̂⟩
dt

=
i

~
⟨[Ĥ , µ̂]⟩ = ⟨µ̂⟩ × γB(t). (2.17)

To get the equation for the magnetization, this has to be summed over all magnetic mo-
ments, whi results in:

dM(t)

dt
= M(t)× γB(t). (2.18)
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Equation 2.18 describes a circular motion of M (t) about B(t) if M (t) and B(t) are not
parallel. is kind of motion is known as precession. e angular frequency is given by
γB whi for a constant field with B0 results in the Larmor frequency ω0.
If additionally to the static fieldB0, a time dependent fieldB1(t) of the form

B1(t) = B1 (cos(ω1t),− sin(ω1t), 0) (2.19)

is applied, the magnetization precesses around the effective field B0 + B1(t). is time
evolution can be described more easily in a reference frame that is rotating with B1(t).
In the rotating frame of reference, the equation of motion for the magnetizationM ′(t) is
given by

dM ′(t)

dt
= M ′(t)× γB′

eff = M ′(t)× γ

(
B1, 0, B0 −

ω1

γ

)
(2.20)

and describes a precession about B′
eff with the angular frequency ω′

eff = γ||B′
eff||. In

the case of ω1 = ω0, the z′-term vanishes and the magnetization precesses about the x′-
direction. Usually, su an on-resonant field is applied for a time tp, leading to an angle α
between the initial and final direction of the magnetization:

α =

∫ tp

0

ωeff dt = γB1tp. (2.21)

e flip angle α can, according to equation 2.21, be anged by the amplitude of the
pulse B1 and its duration tp. In this work, two flip angles were used, one with α = 90◦ for
excitation and one with α = 180◦ for refocusing. A magnetization that is initially parallel
to the z-direction precesses aer a 90◦ pulse in the xy-plane. e idea behind a refocusing
pulse is explained in section 2.6.

2.5 Relaxation and Blo Equations
e lowest energy is aieved for a magnetizationM that is parallel to the magnetic field
B0. If the system is disturbed, for example, by a RF pulse, it relaxes ba in the ground
state. is relaxation can be described by two separate parts that are associated with the
different components of the magnetization. M can be separated in a component parallel to
the magnetic field, called longitudinal magnetizationM∥, and a component perpendicular
to the magnetic field, called transversal magnetizationM⊥:

M = M∥ +M⊥. (2.22)

e transversal magnetization is the source of the MRI signal. It precesses about the main
magnetic field and induces a current in the receive coils. For the description of the signal, it
is helpful to write the transversal magnetization as a complex numberMxy = Mx+iMy =
M⊥eiΦ. e longitudinal magnetization is denoted asMz .
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2.5.1 Longitudinal Relaxation

ForMz to return to its equilibrium stateM0, an energy exange is needed. is is aieved
by the thermal coupling to the surrounding material. e time constant of this process
is called T1 and the process itself is called T1- or longitudinal relaxation. In a quantum
meanical picture, the longitudinal relaxation rate R1 = 1/T1 can be understood as a
measure of the transition probability between the two Zeeman states. ese are induced
by the fluctuating magnetic field caused by the thermal motion of the particles.

2.5.2 Transversal Relaxation

Aer an excitation pulse, the transversal magnetization is formed by a coherent superpo-
sition of the spin states. is coherence is lost over time, due to dipole-dipole interactions
whi lead to fluctuations in the local magnetic field and therefore in the local Larmor fre-
quency. In many cases, this can be described reasonably well with a single time constant
T2. e dipole-dipole interactions lead to an irreversible coherence loss.
Additionally, there exists a reversible relaxation. is is caused by inhomogeneities in

the magnetic field, for example, due to tenical limitations or local susceptibility differ-
ences. ese effects are described by a time constant T ′

2. e total dephasing is determined
by T ⋆

2 :

1

T ⋆
2

=
1

T2

+
1

T ′
2

. (2.23)

e coherence loss because of magnetic field inhomogeneities is reversible by the spin eo
tenique (section 2.6).

2.5.3 Blo Equations

In equation 2.18, the relaxation processes are not included. is was done phenomenolog-
ically by Blo [Blo46]:

dMx

dt
= (γM ×B)x −

Mx

T ⋆
2

(2.24a)

dMy

dt
= (γM ×B)y −

My

T ⋆
2

(2.24b)

dMz

dt
= (γM ×B)z −

Mz −M0

T1

(2.24c)

For a constant magnetic field in z-direction, these equations can be solved. e results
for the perpendicular field componentMxy and for the longitudinal oneMz are

Mxy(t) = Mxy(0)e−iω0te
− t

T⋆
2 (2.25)

Mz(t) = M0 − (M0 −Mz(0))e
− t

T1 . (2.26)
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is solution describes the so-called free induction decay (FID), whi, for example, appears
aer a 90◦-pulse. As mentioned above, the measured signal is determined byMxy, whi
precesses around the z-axis while its magnitude undergoes an exponential decay.

2.6 Eo Formation
In equations 2.24a and 2.24b, the time constant is T ⋆

2 , whi includes reversible and irre-
versible effects. One way to reverse the dephasing induced by local magnetic field inhomo-
geneities∆Bloc(r) is the spin eo. For this method, a 180◦ pulse, the so called refocusing
pulse, is applied at t = τ aer the 90◦ pulse. is leads to an eo formation at the eo
time (TE) TE = 2τ . For the explanation, the RF pulses are assumed to be applied instanta-
neously.
e magnetization is flipped in the transversal plane by the excitation pulse. Due to

∆Bloc(r), the magnetization gathers a spatially dependent relative phase ∆Φ(r, t) =
γ∆Bloc(r, t), whi leads to a signal decay. e phase is inverted by the 180◦ pulse
∆Φ(r, τ) = −γ∆Blocτ , while for stationary particles the precession frequency stays con-
stant leading to a relative phase aer the 180◦ pulse of ∆Φ(r, τ + t) = γ∆Bloc(t − τ).
e relative phase becomes zero at t + τ = 2τ and gives rise to a signal reformation, the
so-called spin eo. A representation of this process is shown in figure 2.1. e amplitude
of the eo is determined by T2.

Si
gn
al

time

180◦

∝ e−
t
T2

∝ e
− t

T⋆
2

TE

Figure 2.1: Signal evolution for a
spin eo sequence. e signal de-
cays initially with the time con-
stant T ⋆

2 (red lines). Aer the
time TE/2, a refocusing pulse is ap-
plied (vertical line), whi leads to
a spin eo at TE, whose amplitude
is determined by T2 (green lines).
Above the signal evolution, a pic-
torial explanation of the spin eo
formation is shown (without T2-
relaxation). e three magnetiza-
tion vectors dephase due to mag-
netic field inhomogeneities. e
phase is inverted by the 180◦ pulse,
whi leads to a rephasing at t =
TE.

Another way an eo can be created is to use spatially dependent magnetic fields, called
magnetic field gradients (section 3.1) that are applied deliberately. First, a gradient is used
to induce a dephasing, whi is rephased by the application of an opposite gradient. is
is called a gradient eo.



3 Basics: Principles of NMR Imaging

us far, the processes in NMR have been described without considering how to obtain
spatial information. For acquiring an image, a spatial dependence is created by the appli-
cation of magnetic field gradients. e teniques used for image encoding are outlined in
this apters. e relaxation processes are not considered explicitly.

3.1 Magnetic Field Gradients
Normally, a MRI maine has three sets of gradient coils to create three orthogonal, mostly
linear gradient fields (Gx,Gy andGz). ey slightlyange theB0 field, leading to different
Larmor frequency. e gradientG can be wrien as

G = (Gx, Gy, Gz) =

(
∂Bz

∂x
,
∂Bz

∂y
,
∂Bz

∂z

)
. (3.1)

If su a gradient is applied, the Larmor frequency becomes

ω(r, t) = γ(B0 + r ·G(t)) = ω0 + ωG(r, t), (3.2)

with ωG(r, t) = γr · G(t) as the frequency ange due to the gradient. In clinical MRI
maines, the typical maximal gradient amplitude lies between 40mT/m and 80mT/m. A
gradient can be swited to the maximal amplitude in under 1ms. e switing of the
gradient amplitude is called ramp and the minimal ramp time is determined by the slew
rate, whi is in clinical MRI around 100-200 T/m/s.
Gradient pulses are oen described by their temporal profile. A common profile used

is the trapezoidal gradient pulse, with a maximal amplitude g, total duration TG and a
starting time t0 (see figure 3.1):

G(t) =


g
p
(t− t0) if t0 < t ≤ t0 + p

g if t0 + p < t ≤ t0 + δ

g(1− 1
p
(t− t0 − δ)) if t0 + δ < t ≤ t0 + TG

(3.3)

e definition of the timing parameters is shown in figure 3.1.

3.2 Slice Selection
One way to gain spatial information is to excite only a slice of a thiness ∆z. Here,
the convention of z as slice direction is used without loss of generality. A slice selective
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tt0

p p

δ

TG

t0 + p t0 + δ t0 + TG

g

Figure 3.1: Temporal profile of a trapezoidal gradient pulse with definition of timing pa-
rameters.

excitation is aieved by applying a RF pulse at the same time as a gradientG = (0, 0, Gz)
is applied. If a RF pulse is applied with the central frequency ωc and a bandwidth∆ω, only
the range∆z is excited. To determine∆z, the Blo equations need to be considered for fo
this case. e Blo equations can be solved in the small flip angle approximation, whi
assumesMz(t) ≈ M0. e result for the transversal magnetization is given by [BKZ04]:

Mxy(tp, z) ≈ iγM0e−iγzGztp

∫ tp

0

B1(t)eiγzGzt dt, (3.4)

with a pulse duration tp. is solution shows that the slice profile is given by the Fourier
transform of the envelope of the B1 field.
In most applications, the goal is to excite a homogeneous slice, whi is described by a

box function. at means the excitation pulse would ideally be an infinitely long sinc pulse
B1(t) =

sin∆ωt
∆ωt

. With su a pulse, the slice thiness is given by

∆z =
∆ω

γGz
. (3.5)

Equation 3.5 presents two ways to adjust the slice thiness, the bandwidth of the envelope
ofB1(t) and the gradient amplitudeGz (illustrated in figure 3.2). In reality, the pulse dura-
tion is limited, whi leads to a different slice profile. ese deviations can be compensated
in part by anging the pulse profile.
Another result from equation 3.4 is that the magnetization is acquiring a z-dependent

phase due to the gradient. is phase is determined by the isodelay point, the time point
aer whi the gradient effectively dephases the magnetization. For the pulses and slice
selection gradients used here, the isodelay point lies in the middle of the gradient. To
rephase the magnetization, a second gradient pulse is applied in the opposite direction.
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z

ω
g1

g2

∆ω

∆z1 ∆z2

Figure 3.2: Connection of bandwidth and slice thiness. e z-dependent Larmor fre-
quency is shown for two gradient amplitudes (g1 and g2). e RF pulse band-
width (∆ω) together with the gradient amplitude define the slice thiness∆z.
e slice thiness is larger for a lower gradient amplitude.

3.3 Spatial Encoding and k-Space

3.3.1 Basic Principle of Spatial Encoding

For the generation of an image, additional gradients are used for spatial encoding. ese
gradients lead to a relative phase ΦG(r, t):

ΦG(r, t) = γ

∫ t

0

ωG(r, t
′) dt′ = γ

∫ t

0

r ·G(t′) dt′ = r · k(t), (3.6)

where the wave vector k(t) was defined as

k(t) = γ

∫ t

0

G(t′)dt′. (3.7)

us, neglecting relaxation, the time and spatially dependent transversal magnetization
Mxy(r, t) can be wrien in the rotating coordinate system as

Mxy(r, t) = Mxy(r, 0)e−ik(t)·r. (3.8)

e signal S, whi is measured in MRI, is proportional to the integral over the whole
volume and thus

S(k(t)) ∝
∫
V

Mxy(r, t)dr =

∫
V

Mxy(r, 0)e−ik(t)·rdr. (3.9)

is equation describes formally a Fourier transform. us, the distribution of the magne-
tization can be calculated by applying the inverse Fourier transform to the signal measured
in k-space:

Mxy(r, 0) ∝
∫

S(k(t))eik(t)·r. (3.10)

e wave vector can be manipulated freely by the gradients so that the whole k-space can,
theoretically, be acquired . Two common ways for the manipulation of k are described
shortly in the following sections.
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3.3.2 Frequency Encoding

For frequency encoding, a gradient pulse is applied during the signal acquisition, the so-
called readout. is leads to k anging along a line and therefore this k-space line is
acquired. Although, it is possible to start the readout in the k-space center without any
preceding gradients, a more common approa is to apply a readout dephaser gradient
before the readout. In this case, the k-space line is acquired from one edge to the other.
For of a spin eo sequence, the gradient pulses are adjusted in su a way that the k-space
center is acquired exactly at the time of the spin eo.

3.3.3 Phase Encoding

Phase encoding is aieved by applying a gradient before the actual readout. is leads to a
phase dispersion that is conserved during readout. With this tenique, single points in k-
space can be acquired. In many applications, phase and frequency encoding are combined
for encoding in perpendicular directions.

3.3.4 Discrete k-Space

In reality, the k-space can only be acquired at a discrete number of points, whi leads to
a few limitations. e sampling of the signal at distinct points, with a distance of∆k, can
be described by multiplying the continuous signal with a sampling function, given by a
sum of delta functions. e continuous magnetization is given by the Fourier transform
of the continuous signal (equation 3.10). In this case, the convolution theorem states that
the measured magnetization is given by the convolution of the continuous signal with the
sampling function. e convolution leads to periodical repetition of the magnetization
distribution. In one dimension, these are centered around xj = 2πj

∆k
, with j ∈ Z, and

define the field of view (FOV):

FOVx =
2π

∆kx
(3.11)

e limited FOV can lead to an image overlap if parts of the measurement object are outside
of the FOV. is kind of artifact is called aliasing. To avoid image overlap, the Nyquist
theorem needs to be fulfilled:

xmin = − π

∆k
≤ x ≤ π

∆k
= xmin. (3.12)

e finite sampling width of the k-space withN points results in a maximal k-value kmax =
N∆k
2

. is value determines the resolution in the image space:

∆x =
FOV
N

=
π

kmax
. (3.13)

us, to resolve small objects, the k-space needs to be sampled far away from the center,
while the main contribution to the image contrast stems from there.
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3.3.5 Eo Planar Readout

A special method to read out the k-space is the eo planar imaging (EPI) tenique, whi
was proposed already in 1977 [Man77]. It could only be realized over a decade later, once
the gradient systems were able to handle the high demands. e idea is to acquire the
whole k-space aer a single excitation. e readout seme with a spin eo preparation
and corresponding k-space trajectory is shown in figure 3.3.

(a)

GS

GR

GP

Acq

rf

90◦ 180◦ (b)
ky

kx

Figure 3.3: Spin eo with EPI readout and k-space trajectory. e dephaser gradients
(blue) in the sequence seme (a) move the acquisition (Acq) to a corner of the
k-space (b). e effects of the individual readout (frequency encoding) gradients
(red) and the phase blips (green) are shown as arrows in the k-space diagram.

To aieve k-space acquisition with a single excitation, at first, a phase encoding and
a readout dephase gradient pulse are applied to rea one corner of the k-space. Aer-
wards, a k-space line is acquired by the use of frequency encoding. Once this is finished,
a short gradient in phase direction, called blip, is applied to move to the next k-space line,
whi is acquired with another frequency encoding in the opposite direction. Aer this is
completed, another phase blip is used, followed by a frequency encoding and so on until
the whole k-space is acquired. If an EPI acquisition is used with a spin eo, the timing is
adjusted in su a way that the k-space center is acquired at TE.
Due to the fast image acquisition, the EPI readout is used in several MRI teniques, al-

though, it is prone to different kinds of artifacts. Many of these artifacts are caused by the
low frequency difference between neighboring pixels (bandwidth per pixel) in the phase
encoding direction. e bandwidth is determined by the time needed to induce the phase
difference between neighboring pixels. In the readout direction, it is the inverse of the du-
ration of a single frequency encoding gradient pulse and in the order of 2000-3000Hz/pixel.
In the phase encoding direction, the bandwidth is mainly determined by the time between
two blips as this is the time needed to induce the phase difference between two pixels. In
the phase encoding direction, the bandwidth is about 100 times lower than in the frequency
encoding direction.
If a magnetic field inhomogeneity is present that creates a frequency difference in the

order of the pixel bandwidth or higher, it leads to a displacement in the image. For example,
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kx

ky

Figure 3.4: Comparison of assumed and actual k-space points. In the presence of an ad-
ditional gradient, the actually acquired k-space points (shown as crosses) and
the assumed ones (shown as dots) are not identical. In the case of a gradient in
readout direction (here kx, red crosses), there is a mismat in readout direction
whi anges in the phase encoding direction. is leads to an image shear-
ing. If there is a gradient in phase encoding direction, the mismat is in that
direction (here ky, blue crosses) and leads to an image resizing. Designed aer
[JBP98].

the difference in the Larmor frequency of water and fat (emical shi) at 3 T is about
440Hz. With a pixel bandwidth of 40Hz, this leads to a shi of 11 pixels, while in the
readout direction, with a bandwidth of about 2000Hz, the shi is below one pixel. An
additional gradient during the whole EPI readout leads to image distortions for the same
reason. e effects of a gradient along the readout or phase direction is shown in figure 3.4.
In readout direction, an additional gradient leads to a sheared image, in the phase encoding
direction to a different scaling and in the slice direction to a shi. A common reason for
su residual gradients are eddy currents (section 3.4).
Since no spin eo is applied during the readout train, the main limitation for its duration

is the t⋆2-relaxation. is signal decay leads to a blurred image and shows that it can be
advantageous to shorten the readout.

3.3.6 Partial Fourier Acquisition

e magnetization distribution Mxy(r, 0) (equation 3.8) is a real quantity, so its Fourier
transform, that is the k-space signal, is hermitian:

S(−k) = S∗(k), (3.14)



3.4 Eddy Currents 15

where ∗ denotes the complex conjugate. Equation 3.14 shows that theoretically only half of
the k-space needs to be acquired, but in reality, due to imperfections in the actual measure-
ment, it is necessary to sample more. Su imperfections result from scanner vibrations,
eddy currents, motion of the subject or random noise. e fraction of the k-space that is
sampled is given by the partial Fourier factor. e advantage of partial Fourier encoding
is the shortening of the EPI readout train and the therefore potentially shorter TE.

3.3.7 Parallel imaging

e basic idea of parallel imaging is to use several receive coils at different position to
shorten the data acquisition. is is aieved by increasing the distance between neigh-
boring k-space lines. According to equation 3.11, this reduces the FOV and can therefore
lead to aliasing. e sensitivity profiles of the coils can be used to avoid or remove this
aliasing. One approa for aieving this is called GRAPPA (generalized autocalibrating
partially parallel acquisition) [GJH+02]. For GRAPPA, the sensitivity profiles of the in-
dividual coils are used to estimate the missing k-space information. e factor used for
spreading the k-space line gives the acceleration that is aieved and is called GRAPPA
factor in this work.

3.4 Eddy Currents
e use of time dependent magnetic fieldsB(t) leads to the induction of electric fields (E),
whi is described by Faraday’s induction law:

−∂B(t)

∂t
= ∇×E. (3.15)

ese electric fields cause eddy currents in conducting materials, whi cause a magnetic
field that is opposed to the original magnetic field ange, indicated by the minus sign
(Lenz’s law). ese eddy currents can be induced in different parts of the scanner like
gradient coils and the temperature shielding. e main source of eddy currents in MRI are
the gradient pulses.
If not compensated for, eddy currents have different effects. First, the gradient that is

actually applied is not identical to the nominal one, due to additional eddy currents in
the gradient coils. is can be solved by pre-emphasis [JBDN87, VVB90, BGM91], where
the currents through the coils are adjusted so that the resulting gradient pulse follows the
intended time development. Second, eddy currents can induce additional magnetic fields
in other conducting parts. ese can be reduced by careful coil design [BM91] and the use
of active shielding [MC86a, MC86b, MC87]. For active shielding, a set of additional coils
is used, whi is specifically designed to reduce the fringe fields of the primary gradient
coils.
With these methods, the effect of eddy currents on MR images can be reduced, but when

fast switing gradients with high amplitudes are used, eddy currents can still have sig-
nificant effects. ese residual eddy currents can be modeled by a number of inductively
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coupled inductive- resistive (L-R-) circuits [VVB90, JWS90], whi leads to eddy currents
I(t) that can be described by [BKZ04]

I(t) ∝
∑
i

wi
dG
dt

∗ e−t/τi . (3.16)

Equation 3.16 describes a convolution (∗) of the time derivative of the gradient field with a
multi-exponential decay. Ea L-R-circuit in the model is weighted by wi and is described
by a decay constant τi.
e eddy currents can be calculated for trapezoidal gradient pulses G(t) (equation 3.3),

save for the proportionality factor. In this case, dGdt is only non zero during the ramp times
of duration r. Under the assumption of a gradient starting time t0 = 0, the resultant eddy
current is given by

I(T ) ∝
∑
i

(
wi

∫ T

0

dG(t)

dt
e−(T−t)/τi dt

)
(3.17)

=
∑
i

(
wi

∫ r

0

g

r
e−(T−t)/τi dt−

∫ δ+r

δ

g

r
e−(T−t)/τi dt

)
. (3.18)

ese integrals can be solved and the eddy current for a time T aer the gradient pulse
is given by

I(T ) ∝
∑
i

wi
gτi
r

(er/τi − 1) e−T/τi (eδ/τi − 1). (3.19)

e proportionality factor and the individual weighting factors are system dependent.
In many applications, only one decay time is assumed [RHWW03, Fin09]. Normally, these
considerations are used to null or to at least minimize eddy currents, therefore the pro-
portionality factor is not needed. e eddy currents for a gradient pulse with a different
starting time t0 can easily be calculated by multiplying ea summand in equation 3.19
with the respective factor et0/τi .

3.5 Concomitant Fields
So far, linear gradient fields were assumed, whi is not actually true. is can be seen by
looking at Maxwell’s equations for a magnetic fieldB:

∇ ·B = 0 (3.20)

∇×B = µ0J + µ0ϵ0
∂E

∂t
, (3.21)

with the electric field E, the current density J , the vacuum permeability µ0 and permit-
tivity ϵ0. In MRI, the current density and the displacement current density µ0ϵ0

∂E
∂t

can
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usually be neglected in the imaging volume and are therefore set to zero. With the wanted
gradient fieldG = ∇Bz , Maxwell’s equations (3.20 and 3.21) can be wrien as

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0 (3.22a)

G⊥ =
∂Bx

∂y
=

∂By

∂x
(3.22b)

∂By

∂z
=

∂Bz

∂y
(3.22c)

∂Bz

∂x
=

∂Bx

∂z
(3.22d)

Gx =
∂Bz

∂x
(3.22e)

Gy =
∂Bz

∂y
(3.22f)

Gz =
∂Bz

∂z
, (3.22g)

where in equation 3.22b the transverse gradient G⊥ was defined. ere are nine partial
derivatives in equations 3.22a-3.22g but only seven equations, leading to two more free
parameters that are osen as

α = − 1

Gz

(
∂Bx

∂x

)
(3.23)

1− α = − 1

Gz

(
∂By

∂y

)
. (3.24)

If all these parameters are considered, and without considering higher order terms, the
magnetic field is given by Bx

By

Bz −B0

 =

 −αGz G⊥ Gx

G⊥ (α− 1)Gz Gy

Gx Gy Gz

 x
y
z

 . (3.25)

is equation shows that even ifB0 and the gradients are all applied along the z-direction,
the magnetic field components in x- and y-direction are non-zero, whi has two implica-
tions: first, the magnetic field is not aligned with the z-direction anymore and second, the
amplitude must be calculated according to

B(x, y, z) =
√

B2
x +B2

y +B2
z . (3.26)

In common cylindrical gradient coils it can be assumed thatG⊥ ≈ 0 and α ≈ 0.5 [BKZ04].
e Taylor expansion of equation 3.26 can be used to find the additional magnetic fieldBc,
called concomitant field:

B(x, y, z) = B0 + xGx + yGy + zGz +Bc (3.27)

Bc ≈
1

2B0

((
zGx −

xGz

2

)2

+

(
zGy −

yGz

2

)2
)
, (3.28)
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whi is given here with terms up to the second order. e sign of Bc in the second order
is independent of the actual gradient direction, meaning its effects cannot be reversed by
just applying a gradient in opposite direction. e concomitant field amplitude rises with
distance from the gradient center, whi is located in the center of the MRI maine, thus
Bc gets the more important the larger the FOV is. It introduces a spatially dependent phase
in the image, whi can only be compensated if at least one refocusing RF pulse is used.
If the phase is not properly refocused and long gradient pulses with high amplitudes are
used, it can lead to signal voids.
e signal is influenced by the additional phase Φc caused by the concomitant field of a

gradient pulse, whi is given by

Φc(r, t) = γ

∫ t

0

Bc(r, t
′)dt′. (3.29)

As an example, it is assumed that a gradient pulse is applied in z-direction. e phase is
then proportional to:

Φc(t) ∝
∫ t

0

Gz(t
′)2(x+ y)2dt′ = (x+ y)2

∫ t

0

Gz(t
′)2dt′, (3.30)

where the equal sign holds for stationary particle. is integral can be solved for a trape-
zoidal gradient pulse (equation 3.3), resulting in:

Φc = (δ − p

3
)g2(x+ y)2. (3.31)

3.6 Imaging Sequence and Contrast
e combination of RF pulses and gradient pulses determines the image contrast in MRI
and is called a sequence. It also defines the k-space acquisition seme. Sequences can be
aracterized by these properties. For example, if a refocusing RF pulse is used, it is called
a spin eo sequence or if a EPI readout is used, it is a EPI sequence.
To visualize a sequence, the sequence diagram can be used, whi shows the RF and

gradient pulses. An example for a spin eo EPI sequence can be seen in figure 3.3. For the
rest of this work, RF pulses are indicated by a straight vertical line at the isodelay point,
whi is given by the center of the corresponding slice selection gradient pulse and most
imaging gradients are omied.
Another way to classify sequences is by the image contrast they produce. e basic

image contrasts in MRI are based on the spin density ρ and the relaxation times T1, T2

and T ⋆
2 . e spin density always influences the image contrast, while the weighting of the

relaxation times can be regulated by the sequence timing.
A T1-weighting is aieved, for example, if the repetition time (TR), that is the time

between two successive excitations, is in the order of T1. In this case, the longitudinal
magnetization is only partly regained before a new excitation. e regained part is larger
for shorter T1 values and they appear brighter. To minimize the T1 weighting long TR need
to be osen.
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For a T2-weighted image, a spin eo sequence is needed, otherwise it can only be a T ⋆
2 -

weighting. If TE is in the order of T2, tissues with different T2 show a different degree of
transversal relaxation and hence a different signal intensity. Areas with a longer T2 appear
brighter in those images. is effect is minimal for short TE.
It follows that images with long TR and short TE show a contrast mainly determined by

ρ.
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In this apter, the basic principles of diffusion weighted MRI (diffusion weighted imaging
(DWI)) are looked at. At first, a few general properties of the diffusion process are con-
sidered before the measurements with MRI are described. For a more detailed look, there
are several books available, for example [Jon11, Mor07, BKZ04]. e last sections in this
apter deal with some special concepts and models of DWI.

4.1 e Diffusion Process

4.1.1 Free Diffusion

e name diffusion is used for the random Brownian motion that is observed for small
particles. In many applications, this random motion is considered for transport processes
along a concentration gradient ∇n(r, t), leading to a particle flux j. is was described
by Fi [Fic55]:

j(r, t) = −D∇n(r, t). (4.1)

Equation 4.1 shows that the particle flux is in the direction opposite to the concentration
gradient. e proportionality constant D is called diffusion coefficient, whi is a scalar
in case of an isotropic medium. Fi’s first law (equation 4.1) together with the continuity
equation:

∂n(r)

∂t
= −∇ · j(r, t) (4.2)

leads to Fi’s second law:

∂n(r, t)

∂t
= ∇D∇n(r, t). (4.3)

ese equations were developed to describe a motion with a non-constant concentration
of particles in solution. Einstein showed that the same laws govern self-diffusion [Ein05],
without any concentration gradient and without the need of a solvent. Equation 4.3 is
known as the diffusion equation and in the presented form also valid for a spatially varying
diffusion coefficient.
e solution of the diffusion equation for the initial condition of all particles at the initial

position r0 = r(t0) (that is n(r, 0) = δG(r−r0 with the Dirac function δG), no boundary
conditions and a constant diffusion coefficient is given by:

n(r, t) =
1

√
4πDt

d
e−

(r−r0)2

4Dt , (4.4)
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where d gives the dimensions of the diffusive motion looked at. is solution describes the
fact that the particles spread out over time. e spreading is described by a Gaussian bell
curve. Its width is given by the standard deviation σ, whi widens with time. It can be
identified with the mean squared displacement ⟨r2⟩ and is given by the Einstein equation
whi in one dimension reads:

σx(t) = ⟨x2⟩ = 2Dt. (4.5)

For free diffusion, that is without any boundaries, of water at body temperature, the dif-
fusion coefficient is found to beDfree water ≈ 3µm2/ms. is leads to a mean displacement
length

√
⟨x2⟩ in 50ms of about 17µm. It is on the length scale of human cells, why it is

possible to use diffusion measurements to infer information on the tissue microstructure.

4.1.2 Diffusion with Boundaries

e solution for the diffusion equation given in equation 4.4 is valid for free diffusion.
In tissue, the diffusion is not free, as there are, for example, cell membranes or macro-
molecules. ese boundaries restrict the particle path, therefore reducing ⟨x2⟩ and making
the diffusion non-Gaussian. Due to the boundaries, the displacement steps of a particle
are no longer uncorrelated. e particles that experience this effect are mostly those in a
distance of

√
2DTD of a boundary, where TD describes the duration of the diffusion ex-

periment. For short diffusion times this is only a small fraction of the particles, while most
exhibit Gaussian diffusion so that it is a good approximation.
For long diffusion times in open geometries, the correlation is lost and the central limit

theorem can be applied, leading again to a Gaussian diffusion with reduced diffusion co-
efficient. Su an open geometry is, for example, the extracellular space. e diffusion in
different time limits is illustrated in figure 4.1.
If the boundaries are additionally ordered, as, for example, cell membranes in coherent

nerve fibers in the brain, they induce a directional dependence on the diffusion coefficient.
is can be described by introducing the diffusion tensorD. In the case of Gaussian diffu-
sion, equation 4.5 can be used to define the tensor elements Dij as:

Dij =
⟨Ri(TD)Rj(TD)⟩

2TD

. (4.6)

Here, R(TD) was introduced whi is given by the displacement R(TD) = r(TD)− r0
and its components are denoted as Ri,j with i and j can be 1, 2 or 3. e diffusion tensor
can be wrien as a symmetric 3 × 3 matrix, as can be seen from equation 4.6, leading to
the conclusion that it has six independent parameters, three for the direction and three for
the strength.
If the limits of Gaussian diffusion are not met, equation 4.6 is still used, but D(TD)

becomes time dependent.
One case where the diffusion is not Gaussian are closed pores. A pore is considered to

be filled with diffusing, NMR-visible medium, without any NMR-visible medium on the
outside. e diffusion and its measurement in su geometries are described in detail, for
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Figure 4.1: Diffusion for different time scales. For short diffusion times (blue), only few
particles collide with the walls. At longer times (green), the particles collide
several times with the walls. For very long diffusion times (orange), the overall
motion is less influenced by the local geometry. In red the diffusion inside a
pore is demonstrated.

example, in [Gre07]. In human tissue su pores do not exist, although intracellular space
is sometimes considered as su. ere is always extracellular space and exange with
the intracellular compartment, effectively leading to an open geometry. e assumption
of a closed pore can nevertheless be a good approximation if the mean abode times are
long compared to the diffusion time TD. e time constants for exange processes in the
human brain can go up to over a second [NLvW+13], while typical diffusion times are
around 50ms.

4.2 Measurement of Diffusion with MRI

4.2.1 Blo-Torrey Equations

e basic Blo equations (2.24a-2.24b) can be extended with a term describing the dif-
fusion, whi is given by the diffusion equation 4.3. is was done by Torrey [Tor56],
yielding the Blo-Torrey equations:

∂M

∂t
= γM ×B −

 Mx/T2

My/T2

(Mz −M0)/T1

+∇(D∇M). (4.7)
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For the complex transversal magnetization Mxy = Mx + iMy during the application of a
gradientG(t), the equation yields

∂Mxy

∂t
= −iγMxy(B0 + r ·G(t))− Mxy

T2

+∇(D∇Mxy). (4.8)

is equation can be solved for free diffusion. e precession with the Larmor frequency
ω0 = γB0 and the T2-relaxation can be removedmxy(r, t) = Mxy(r, t)eiγB0+t/T2 :

∂mxy

∂t
= −iγmxyr ·G(t) +∇(D∇mxy). (4.9)

Magnitude and phase of mxy can be separated by using the substitution mxy(r, t) =
M(t)e−ir·k(t), wherek(t) follows the same definition as thewave vectork(t) (equation 3.7),
that is k(t) = γ

∫ t

0
G(t′)dt′. e signal is proportional to the magnitudeM(t), whose time

derivative can be calculated with the help of equation 4.9:

∂M(t)

∂t
=

(
∂mxy(t)

∂t
+mxyir · ∂k(t)

∂t

)
eir·k(t) (4.10a)

=

(
∂mxy(t)

∂t
+mxyiγr ·G(t)

)
eir·k(t) (4.10b)

=
(
∇(D∇mxy)

)
eir·k(t) =

(
∇(D∇M(t)e−ir·k(t))

)
eir·k(t) (4.10c)

= −M(t)kT (t)Dk(t). (4.10d)

e solution of this differential equation can be calculated by integration, if no boundary
conditions are assumed.

M(TE) = M(0) exp
(
−
∫ TE

0

k(t′)TDk(t′)dt′
)
. (4.11)

For a scalar diffusion coefficient, the definition of the b-value is straightforward

b =

∫ TE

0

k(t)Tk(t)dt =
∫ TE

0

k(t)2dt =
∫ TE

0

γ2

(∫ t

0

G(t′)dt′
)2

dt. (4.12)

e b-value describes the strength of the diffusion encoding. e signal aenuation due to
this diffusion encoding is given by

S(TE, b) =
M(TE, b)
M(0)

= e−bD, (4.13)

where the normalized signal was used. For a diffusion tensor, equation 4.11 needs to be
considered. In this case, the b-value definition can be kept with a few anges. A gradient
with a constant direction but varying amplitude can be wrien as G(t) = G(t)u, where
G(t) describes the temporal profile of the gradient amplitude and u is the normalized
direction (∥u∥ = 1). is gives a b-value as in the last term in equation 4.12, only with
G(t) instead ofG(t). e signal reduction is then given by S(TE, b) = exp(−buTDu).
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Figure 4.2: Stejskal-Tanner sequence. (a) e sequence seme that was introduced by Ste-
jskal and Tanner to measure the diffusion coefficient. (b) e effective gradient
seme of the Stejskal-Tanner sequences.

4.2.2 Diffusion Sequences

Stejskal-Tanner Sequence

Stejskal and Tanner proposed a sequence to measure the diffusion by using two gradient
pulses of limited duration together with a spin eo sequence [ST65]. e diffusion encod-
ing is shown in figure 4.2a. For calculating the b-value, the refocusing RF pulse needs to be
considered. is can be done by introducing the effective gradient Geff, whi is shown in
figure 4.2b. e effective gradient seme is determined by flipping the gradient amplitude
once for ea refocusing pulse before it. Mathematically this can be done by multiplying
the gradient amplitude with a factor of s(t) = ±1 whi anges the sign for every refo-
cusing pulse. With this definition and equation 4.12, the b-value for trapezoidal gradients
(equation 3.3) can be calculated to:

b = γ2g2
(
δ2
(
∆− δ

3

)
− δ2p

6
+

p3

30

)
(4.14)

e first diffusion encoding gradient in the Stejskal-Tanner sequence induces a spatially
dependent phase, whi is refocused by the second gradient for stationary particles. ere-
fore, the first gradient is also called the dephaser and the second one the rephaser. If the
particles are moving, the rephasing is not perfect.

Narrow Pulse Approximation

In the Stejskal-Tanner sequence, the gradients exhibit a finite duration. Oen, the q-vector
is used to describe the signal. It is defined as

q = γ

∫ TG

t0

G(t)udt, (4.15)
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whi for trapezoidal gradients is q = γgδ. e usefulness of this definition can be under-
stood when considering that the normalized signal for diffusion can be considered as the
average over all random paths in the time TD, indicated by ⟨·⟩, with the acquired phase:

S = ⟨e−iΦ⟩ = ⟨e−iγ
∫ T
0 G(t)·r(t)dt⟩. (4.16)

If infinitesimal short gradients with constant q are assumed at the times 0 and TD, the
signal aenuation is only determined by the particle positions at those two times:

S = ⟨e−iΦ⟩ =
⟨
e−iq·(r(T )−r(0)

⟩
=
⟨
e−iq·R⟩ . (4.17)

where the definition R from section 4.1.2 was used. is approximation is used in the q-
space imaging for a wide variety of applications [CG90, CCM+91, Tuc04] and is also known
as narrow pulse approximation.
Equation 4.17 can be generalized to gradients with finite gradient lengths [MH95, Jes12]

by the use of the center of the generalized mass rδ
cm(t0) of a random walk between r(t0)

and r(t0 + δ):

rδ
cm(t0) =

1

δ

∫ t0+δ

t0

r(t)w(t)dt. (4.18)

Here a weighting w(t) is defined, whi is given by the relative amplitude of the gradient
profileG(t). w(t)must fulfill

∫ TG

0
w(t) = 1. e signal (equation 4.16) can then be wrien

as

S =
⟨
e−iq·( 1

δ

∫ δ
0 r(t)w(t)dt− 1

δ

∫∆+δ
∆ r(t)w(t)dt)

⟩
=
⟨
e−iq·(rδ

cm(∆)−rδ
cm(0)

⟩
=
⟨
e−iq·R0,∆

cm

⟩
(4.19)

where R0,∆
cm = rδ

cm(∆) − rδ
cm(0) was introduced. is equation has the same form as

equation 4.17 and the derivations can be done with both in the same way.

4.2.3 Diffusion Tensor in MRI

Measurement

e diffusion tensor has six independent parameters, as mentioned in section 4.1.2. is
shows that at least six measurements with non-collinear gradient directions ui are needed
for the measurement of the whole tensor. In ea of the measurements, an apparent diffu-
sion coefficient (ADC) is determined, whi is given by

ADCi = uT
i Dui. (4.20)

and leads to the signal

Si(b) = S(0)e−bADCi (4.21)

For the determination of ADCi two measurements are needed, with two different b-values.
In many cases, one is done without diffusion weighting (b = 0). In total, seven measure-
ments are needed to determine the diffusion tensor.
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For the calculationwithmore than the sevenmeasurements, a pseudo-inversematrix can
be used to minimize the quadratic error [Kin06]. To show this, the independent parameters
are reorganized in a vector d:

d = (Dxx, Dyy, Dzz, Dxy, Dxz, Dyz)
T (4.22)

and the gradient direction is rewrien as U :

U = (u2
x, u

2
y, u

2
z, uxuy, uxuz, uyuz)

T . (4.23)

e result of a single measurement with bi and Ui is then given by

logSi = logS0 − biUi · d. (4.24)

If n measurements are done, they can be combined in the form: logS1
...

logSn

 =

 logS(0)
...

logS(0)

−

 b1U
T
1

...
bnU

T
n

 · d = B · d. (4.25)

e determination of d and thus D requires only the determination of the pseudo-inverse
of B.
Since thismeasurement ofD is based onGaussian diffusion and therefore on equation 4.6

it gets time-dependent in the presence of boundaries.

Rotationally Invariant Parameters

ere are several rotationally invariant parameters that can be derived from the diffusion
tensor. Some of the most common ones are the mean diffusivity (MD) and the fractional
anisotropy (FA). e MD is given by the trace of D:

MD =
tr(D)

3
=

Dxx +Dyy +Dzz

3
= λi, (4.26)

where the overbar indicates the mean and the λi are the three eigenvalues ofD. e FA is
given by

FA =

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

2(λ2
1 + λ2

2 + λ2
3)

=

√
3

2

√
var(λi)

λ2
i

, (4.27)

where var(λi) is the variance of the eigenvalues. e FA can take values between 0 and 1
and is a measure of the diffusion anisotropy. If all eigenvalues are equal, that is the diffusion
is isotropic, the FA is 0. If only one eigenvalue is non-zero, that is diffusion is only possible
in one direction, the FA becomes 1.
e eigenvector associated with the largest eigenvalue determines the main diffusion

direction and is used to visualize nerve fibers in the brain. is is done by encoding its
direction in the colors red (le-right), green (up-down) and blue (through plane) and the
brightness by the FA. e color oices are given for a transversal plane.
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4.2.4 Cumulant Expansion

Equation 4.11 was derived without boundary conditions. To examine the diffusion signal
in more complicated geometries, for example in vivo, an expansion of the signal is helpful:

S =
⟨
e−iq·R⟩ = ⟨e−iΦ

⟩
=

∞∑
n=0

(−i)n

n!
⟨Φn⟩ , (4.28)

with Φ = q ·R in the case of short gradients. is equation is the same for finite gradient
durations with the correspondingRcm, but, for simplicity, the subscripts are dropped here.
Φ is a random variable and follows a probability density function and can be described by
these terms [vK08, JC10]. e term ⟨Φn⟩ is known as the n-th moment of the distribution.
e zeroth moment is 1 and the first moment is the mean value. e second moment
depends on the variance and the mean value, whi is not an ideal way to describe the
width of a distribution. A beer way to represent the signal is by the cumulant expansion:

logS = log
⟨
e−iΦ

⟩
=

∞∑
n=0

(−i)n

n!
⟨Φn⟩C , (4.29)

where ⟨·⟩C denotes the cumulant. ey can be calculated from the moments by subtracting
the trivial contributions. e first cumulant is by definition the same as the mean and the
second one is given by the variance ⟨Φ2⟩C = σ = ⟨Φ2⟩ − ⟨Φ⟩2. e fourth order cumulant
is in terms of moments given by ⟨Φ4⟩C = ⟨Φ4⟩ − 4 ⟨Φ3⟩ ⟨Φ⟩ − 3 ⟨Φ2⟩2 + 12 ⟨Φ2⟩ ⟨Φ⟩2 −
6 ⟨Φ⟩4.
In DWI the odd cumulants are oen taken to be zero, whi is the case without directed

flow and for the gradient profiles usually employed for NMR diffusion measurements. is
leaves the even cumulants. For many applications, it is enough to consider the first few
terms of the expansion, whi is given in Stejskal-Tanner-like sequences by

logS ≈ −1

2

⟨
Φ2
⟩
C
+

1

24

⟨
Φ4
⟩
C
= −1

2
qiqj ⟨RiRj⟩C+

1

24
qiqjqkql ⟨RiRjRkRl⟩C . (4.30)

e Einstein summing convention has been applied here, where there is a summation over
ea pair of identical indices in a product. e second order cumulant can be identified
with the diffusion tensor (equation 4.6) if one keeps in mind that here ⟨Φ⟩ = 0 and thus
⟨RiRj⟩C = ⟨RiRj⟩ = 2Dij(TD)TD. e forth order term is given by the kurtosis K =
⟨Φ4⟩C
⟨Φ2⟩2C

= ⟨Φ4⟩
⟨Φ2⟩2 − 3. With these observations the signal is, for isotropic diffusion, given by

logS ≈ −q2TDD(TD) +
1

6
q4T 2

DD(TD)
2K(TD). (4.31)

For a gaussian distribution, the kurtosis is zero. is shows that for low diffusion encoding
strengths, the diffusion can be approximated by gaussian diffusion in DWI.



4.3 Double Diffusion Encoding 29

(a) (b) (c)

Figure 4.3: Comparison ofmicroscopic andmacroscopic anisotropy. It is assumed that there
are only NMR-visible particles inside the pores. Standard diffusion tensor mea-
surements in a volume containing all pores would lead to no anisotropy in cases
(a) and (c), even though (c) does show single pore anisotropy (called microscopic
anisotropy). In the case of coherently ordered, microscopically anisotropic pores
(b) the FA is non-zero.

4.3 Double Diffusion Encoding

4.3.1 General Considerations

emeasured diffusion tensor for one pixel in MRI depends on the underlying microstruc-
ture. It can therefore be a powerful tool for determining parameters thereof. Nevertheless,
it also has a few drawbas, as it is, for example, averaged over the whole volume ele-
ment (voxel). One su drawba is the anisotropy measure. To illustrate this, simple
two-dimensional example geometries are considered in figure 4.3. If the microstructure is
ordered, the FA represents the underlying anisotropy well, but if the order is not given,
the FA goes to zero, although the single diffusion compartments are still anisotropic. One
prominent case in vivo where this happens is two crossing nerve fibers in the brain. With
the diffusion tensor, it can not be decided if a loss of FA is due to a loss of coherent ordering
or due to a loss of fibers and thus a larger a amount of particles diffusing isotropically.
is problem can be solved by the application of multiple diffusion encodings (figure 4.4),

whi was already suggested in 1995 [Mit95]. e derivation is only strictly true for closed
pores, but, as mentioned in section 4.1.2, can be applied in vivo for reasonable timing pa-
rameters.
Two separate diffusion encodings can be used to make the signal dependent on the ac-

tual microscopic anisotropy. Su sequences are called double diffusion encoding (DDE)
sequences. e derivation of the properties follows mostly [Jes12, JLSD13] and uses the
narrow pulse approximation (section 4.2.2), but can be generalized to finite gradient dura-
tions by the center of mass approa. e two diffusion encodings are aracterized by q1
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90◦

readout

∆1 ∆2

tm

q1 q2

Figure 4.4: Effective gradient seme for double diffusion encoding. e diffusion encod-
ings shown here are defined to be parallel.

and q2. It is assumed that both encodings have the same separation of the gradient pulses
∆ and are a time tm apart, called the mixing time (figure 4.4). e corresponding displace-
ment vectors are denoted with R1 = r(∆)− r(0) and R2 = r(2∆ + tm)− r(∆ + tm).
e signal is given by an equation similar to equation 4.17:

S(q1, q2) =
⟨
e−i(q1·R1+q2·R2)

⟩
, (4.32)

where the effective gradient directions (including refocusing pulses), where used (figure 4.4)
and thus q1 and q2 are

G1(t) =
q1

γδ
(−δG(t) + δG(t−∆)) (4.33a)

G2(t) =
q2

γδ
(−δG(t− 2∆) + δG(t− 2∆− tm)), (4.33b)

with the Dirac function δG(t). e signal can be expanded in cumulants:

logS(q1, q2) ≈− 1

2
(q1iq1j − q2iq2j) ⟨R1iR1j⟩C − q1iq2j ⟨R1iR2j⟩C

+
1

24
(q1iq1jq1kq1l + q2iq2jq2kq2l) ⟨R1iR1jR1kR1l⟩C

+
1

4
(q1iq1jq2kq2l) ⟨R1iR1jR2kR2l⟩C

+
1

6
(q1iq1jq1kq2l + q2iq2jq2kq1l) ⟨R1iR1jR1kR2l⟩C ,

(4.34)

where again the Einstein summing convention was used. To derive this equation, it was
assumed that there is no net flow whi gives ⟨R1iR2j⟩ = ⟨R2iR1j⟩ and that diffusion is a
stationary process, whi leads to ⟨R1iR1j⟩ = ⟨R2iR2j⟩ and similar results for the fourth
order terms. e single cumulants can be used to define several tensors, whi, given in
the moments, are

Qij = −⟨R1iR2j⟩ (4.35a)

Kijkl = ⟨R1iR1jR1kR1l⟩ − ⟨R1iR1j⟩ ⟨R1kR1l⟩ − ⟨R1iR1k⟩ ⟨R1jR1l⟩ − ⟨R1iR1l⟩ ⟨R1jR1k⟩
(4.35b)

Sijkl = −⟨R1iR1jR1kR2l⟩+ ⟨R1iR1j⟩ ⟨R1kR2l⟩+ ⟨R1iR1k⟩ ⟨R1jR2l⟩+ ⟨R1jR1k⟩ ⟨R1iR2l⟩
(4.35c)

Zijkl = ⟨R1iR1jR2kR2l⟩ − ⟨R1iR1j⟩ ⟨R2kR2l⟩ − ⟨R1iR2k⟩ ⟨R1jR2l⟩ − ⟨R1iR2l⟩ ⟨R1jR2k⟩ .
(4.35d)
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K is the kurtosis tensor, the generalization of the kurtosis (section 4.2.4), and clearly acces-
sible from measurements with only a single diffusion encoding (SDE), as it only contains
terms with R1. us no closer analysis of it is presented here.

Q is named correlation tensor [JB11]. e name stems from the fact that it is non-zero in
the case that the displacements in both encodings are correlated. For long mixing times this
correlation is lost and the correlation tensor vanishes. us, it is a good indicator if the long
mixing time limit is reaed. It can be derived from the time dependent diffusion tensor and
carries no additional information on themicrostructure compared toD(t) [Jes12]. In actual
measurements, it might nevertheless be more accurate to useQ instead of determining the
time dependent diffusion tensor.
e tensors S and Z contain information that cannot be gathered with SDE, as they

contain positions of at least three time points in one moment. Here, the long tm limit is
assumed, whi leads to Sijkl → 0. As can be seen in equation 4.35c, ea term of Sijkl

contains only one displacement from the second encoding, whi becomes independents
of the three others and therefore vanishes. In this limit Z becomes

Zijkl = ⟨R1iR1jR2kR2l⟩ − ⟨R1iR1j⟩ ⟨R2kR2l⟩ , (4.36)

whi is zero in Gaussian systems.

4.3.2 Macroscopically Isotropic Systems

To derive a microscopically anisotropy measure, it is assumed that the single pores are ran-
domly oriented so that there is no macroscopic anisotropy. In this case, Z is also isotropic
and because of the minor (Zijkl = Zjikl = Zijlk) and major (Zijkl = Zklij) symmetry
(equation 4.35d), it is given by [Moa08, Jes12]

Z iso
ijkl = Z iso

zzxxδijδkl +
1

2
(Z iso

zzzz − Z iso
zzxx)(δikδjl + δilδjk). (4.37)

e superscript iso is used to indicate that this is derived in an macroscopically isotropic
system. is was derived by using the fact that ea isotropic rank four tensor with minor
and major symmetry is fully determined by two parameters [Moa08]. e validity of the
oice is simply proven by calculating the right hand side of equation 4.37 for zzxx and
zzzz. It leads to the signal:

logS iso(q1, q2) = −2q1q2MD∆+
1

12
(q1q2)

2K iso
zzzz+

1

4
(q1q2)

2(cos2 θ(Z iso
zzzz−Z iso

zzxx)+Z iso
zzxx),

(4.38)

where MD was used for the isotropic diffusion coefficien.t Equation 4.38 was derived for a
macroscopically isotropic system but no not for a special coordinate system.
In macroscopically isotropic systems, the signal does not depend on the actual direction

of the q-vectors, but only on the angle θ between them, and their amplitude, whi are
combined in the dot product q1 · q2 = q1q2 cos θ. e cos2 θ dependence in equation 4.38
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shows that the largest signal difference can be found between parallel and perpendicular
diffusion encodings. It is given by the compartment eccentricity ϵ [JLSD13]:

ϵ =
Z iso

zzzz − Z iso
zzxx

4
. (4.39)

To show that ϵ depends on the pore anisotropy, the averaging over all random paths of
particles in an individual pore is denoted by ⟨·⟩p and the averaging over the pore ensemble
by an overbar. is notation is used to disentangle the averaging processes. In a single
pore, the displacements in ea encoding become independent at long mixing times so that
equation 4.36 becomes

Z iso
ijkl = ⟨R1iR1jR2kR2l⟩p

iso
− ⟨R1iR1j⟩p

iso
⟨R2kR2l⟩p

iso
(4.40a)

= ⟨R1iR1j⟩p⟨R2kR2l⟩p
iso

− ⟨R1iR1j⟩p
iso

⟨R2kR2l⟩p
iso

(4.40b)

=
(
⟨R1iR1j⟩p − ⟨R1iR1j⟩p

iso
)(

⟨R1kR1l⟩p − ⟨R1kR1l⟩p
iso
)iso

(4.40c)

In the last line, it was used that the diffusion is a stationary process. e subscripts 1 and 2
can be dropped from here on out. Equation 4.40c is identical for isotropic and anisotropic
macroscopic ordering, except for the superscript. e term ⟨RiRj⟩p is proportional to the
diffusion tensor of a single pore Dp

ij and so Z depends on the single pore anisotropy.
In the long diffusion time limit, the initial and final position of the particles become

uncorrelated and the displacement can be replaced by the positions using ⟨RiRj⟩p →
2⟨rirj⟩p:

Z iso
ijkl = 4

(
⟨rirj⟩p − ⟨rirj⟩p

iso
)(

⟨rkrl⟩p − ⟨rkrl⟩p
iso
)iso

(4.41)

is shows that Zijkl is given by the variation of the radius of the gyration tensor of the
single pore ⟨rirj⟩p. For isotropic pore shapes the gyration tensor is given by ⟨rirj⟩ = r2δij ,
whi would lead to a vanishing Z iso

zzzz − Z iso
zzxx. is shows that ϵ depends on the pore

anisotropy and the pore size. For a pure anisotropy measure a normalization is needed,
whi can be aieved for example by MD.

4.3.3 Macroscopically Anisotropic Systems

In the presence of a macroscopic anisotropy, equation 4.38 does not hold anymore because
the signal depends additionally on the actual direction of the diffusion encodings. is
problem can be solved by acquiring many diffusion directions and averaging the signal
before taking the logarithm. is so called powder average has the same effect as taking
the sample and making a powder out of it, leading to a macroscopic anisotropy.
For a truly isotropic signal, an infinite amount of directions would be needed, but it

was shown that 60 measurements with perpendicular q-vectors and 12 measurements with
parallel q-vectors are accurate up to the fih order [GP09, JLSD13]. is seme applies 12
directions for the first encoding to accurately sample a sphere in q-space and 5 directions for
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the second encoding to sample the circle perpendicular to the first encoding. erefore only
12 measurements are needed, for the parallel encodings. e signal can then be calculated
by the average for ea of the two sets of measurements (parallel and perpendicular).
is isotropic signal can be wrien for q = q1 = q2 as

logS iso(q1, q2) = −2q2Diso∆+
1

12
q4K iso

zzzz+
1

4
q4(cos2 θ(Z iso

zzzz−Z iso
zzxx)+Z iso

zzxx). (4.42)

An important point is that Z iso is defined over logS iso and not by averaging Z directly.
Z iso can be calculated from the anisotropic Z due to the fact that it can be wrien as
aδijδkl + b(δikδjl + δilδjk) and that the inner product (⟨·, ·⟩) is rotationally invariant. So a
and b can be determined by using

⟨Z iso, δijδkl⟩ = ⟨Z, δijδkl⟩ (4.43a)

⟨Z iso, δikδjl + δilδjk⟩ = ⟨Z, δikδjl + δilδjk⟩, (4.43b)

leading to

Z iso
ijkl =

1

5

(
2⟨R1iR1iR1jR1j⟩ − ⟨R1iR1jR2iR2j⟩ −

5

9
⟨R1iR1i⟩⟨R2jR2j⟩

)
δijδkl

+
1

30
(3⟨R1iR1jR2iR2j⟩ − ⟨R1iR1iR2jR2j⟩) (δikδjl + δilδjk)

(4.44)

e result can be used to determine the eccentricity to:

ϵ =
1

60

(
3⟨RiRj⟩⟨RiRj⟩ − ⟨RiRi⟩⟨RjRj⟩

)
(4.45)

=
∆2

15
(3Dp

ijD
p
ij −Dp

iiD
p
jj) (4.46)

=
3∆2

5
var(λp

i ), (4.47)

whi again shows the dependence on the pore diffusion tensor. In the last line, the eigen-
values λp

i of Dp were introduced together with their variance. e connection of ϵ to
var(λp

i ) suggests a similar normalization as for the FA (equation 4.27), resulting in the mi-
croscopic fractional anisotropy (µFA) [JLSD13, JLSD14b]:

µFA2 =
3

2

ϵ

ϵ+ (3∆2/5)(MD2)
, (4.48)

where (λp
i )

2 = var(λp
i ) + λp

i

2
, whi can be derived from the second order cumulant, and

λp
i = MD were used.
e µFA gives the same value as the FA for parallel pores but is not reduced if the

macroscopic order is lost while preserving the microsopic pore anisotropy.
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4.4 Gradient Moment Nulling and Flow
us far, all derivations for MRI assumed no net motion of particles. For in vivo measure-
ments, this is not always the case, as there is, for example, blood flow or pulsation. Since
diffusion measurements are very sensitive to motion, these effects can have a considerable
influence on the resulting parameters.
To see how bulk motion can compensated for, the Taylor expansion of the particle tra-

jectory is used. e derivation is done for one dimension, but it can easily be expanded to
three dimensions as they are independent:

x(t) = x0 + v0t+
1

2
a0t

2 + . . . , (4.49)

with the initial position x0, the initial velocity v0 and the initial acceleration a0. For the
accumulated phase, this gives

Φ(t) = γ

∫ t

0

G(t′)x(t′)dt′ = γ

∫ t

0

G(t′)(x0 + v0t
′ +

1

2
a0t

′2 + . . . )dt, (4.50)

whi can be used to define the n-th gradient momentmn(t):

mn(t) =

∫ t

0

G(t′)t′ndt′. (4.51)

is definition leads to the phase:

Φ(t) = γm0(t)x0 + γm1(t)v0 +
γ

2
m2(t)a0 + . . . (4.52)

Equation 4.52 shows that in order to negate the effect of motion of order n, the nth
gradient moment needs to be zero. e process of designing gradient profiles withmoments
set to zero is called gradient moment nulling. Diffusion encodings are designed to null the
zeroth gradient moment, therefore they have no effect on resting particles. A nulled zeroth
moment is also called gradient reversal. A nulled first moment leads to a refocusing of
particles with constant velocity and is known as flow compensation.
To aieve gradient reversal (and perform a diffusion encoding), at least two gradient

pulses with opposite effective polarity are needed. For ea higher moment that should be
nulled additionally, an extra gradient pulse with anging polarity is needed. is leads
to a lower b-value or a longer TE. erefore, only few applications null higher orders than
the first one.
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Here, as a lile example, the first moment caused by a trapezoidal gradient pulse starting
at t0 (equation 3.3) is calculated:

m1(t0 + TG) =

∫ TG

t0

G(t)tdt (4.53a)

=

∫ t0+p

t0

(
g

p
(t− t0)

)
tdt+

∫ t0+δ

t0+r

gtdt+
∫ t0+δ+p

t0+δ

g

(
1− 1

p
(t− t0 − δ)

)
tdt

(4.53b)

=

(
r2

3
+

1

2
pt0 +

(δ − p)2

2
+ (δ − p)(t0 + p) +

p2

6
+

1

2
p(t0 + δ)

)
g (4.53c)

= δg

(
1

2
(p+ δ) + t0

)
. (4.53d)

is solution shows that the value of m1 depends on the definition of t = 0, therefore it
is useful to examine what happens in the case of a time translation. Let the gradient pulse
G̃(t) be the time translated semeG0(t), whi starts at t = 0, that is G̃(t) = G0(t−∆t).
e first moment is given by

m̃1 =

∫ ∆t+TG

∆t

G̃(t)tdt (4.54a)

=

∫ ∆t+TG

∆t

G0(t−∆t)tdt (4.54b)

=

∫ TG

0

G0(w)(w +∆t)dw (4.54c)

=

∫ TG

0

G0(w)wdw +

∫ TG

0

G0(w)∆tdw (4.54d)

= m1 +m0∆t. (4.54e)

e solution demonstrates that for a gradient seme with m0 = 0, the first moment is
time invariant and does not depend on the oice of t = 0.

4.5 Intravoxel Incoherent Motion
e influence of blood flow in small vessels on the diffusion signal can be modeled by the
intravoxel incoherent motion model [LBL+86, LBL+88]. It assumes a randomly oriented
capillary bed in whi blood flows with a constant velocity. Aer a aracteristic time τB ,
the blood anges the direction. It is further assumed that the velocities before and aer
the direction ange are uncorrelated.
For long diffusion times TD, this model leads to a biexponential diffusion weighted sig-

nal:

S(b) = S(0)
(
fe−bD⋆

+ (1− f)e−bD
)
. (4.55)
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e factor f is known as the perfusion fraction. It is the fraction of the signal aenuation
that can be aributed to the perfusion of the tissue. In the case of long TD compared to τB ,
the blood flow anges the direction so oen that it can be considered as a diffusion-like
motion with a pseudo-diffusion coefficient D⋆, whi is larger than the actual diffusion
coefficient D.
LeBihan stated that TD

τB
& 7 would be needed for the long diffusion time limit to be

valid [LBL+88]. In this limit the use of a flow-compensated sequence should not ange
the signal aenuation, as the flow anges directions oen during the experiment. It was
shown that this limit, although oen applied, does not hold for typically used diffusion
times, as a difference between flow-compensated and uncompensated diffusion encodings
was observed [WSL15].
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In the course of this work, two different kinds of sequences were implemented that both
aimed at reducing artifacts in special applications of DWI. One sequence was a DDE se-
quence, whi was compensated for eddy currents, the other one was a SDE sequence,
whi could be compensated for any combination of flow, concomitant fields and eddy
currents. In this apter the models used to compensate for the artifacts are recapped (sec-
tion 5.1). e DDE sequence used an analytical solution for the eddy currents, while the
SDE sequence was optimized numerically (section 5.2). Details on the sequence imple-
mentations used for the actual measurements are described in section 5.3. e rest of the
apter details other experimental parameters as well as the so- and hardware used.

5.1 Artifact Models
e compensation of different artifacts requires a description of the source of the artifacts
and its strength. Different models can be used for this. In this section the models used here
are specified. For all measurements the assumption of rectangular, whi means negligible
ramp times, gradient pulses with constant gradient amplitudes g that might only differ in
sign. e index i refers always to the i-th gradient. e duration of a gradient is denoted
with δi, its starting time with ti and the time between gradients with Ti. us, the starting
time of the (i+ 1)th gradient is given by ti+1 = ti + δi + Ti.

5.1.1 Eddy Currents

Eddy currents are induced by anging gradient amplitudes G(t). It was assumed that
these eddy currents decay exponentially with only one time constant τ . e resulting eddy
current of a single gradient with starting time ti can then be calculated from equation 3.19
by using L’Hôpital’s rule to find the limit for the ramp time going to zero:

I(T ) ∝ ge−T/τ (eδi/τ − 1) eti/τ , (5.1)

where T > ti + δi.
For a series of gradients, the eddy currents for ea gradient must be summed up so that

the condition for eddy current compensation becomes:∑
i

si e−T/τ (eδi/τ − 1) eti/τ = 0, (5.2)

where si is the sign of the gradient. e gradient amplitude could be dropped in equation 5.2
as it is a constant over the whole gradient train. Additionally, it was assumed that there
are no cross effects between the different spatial directions so that the timing could be
optimized without paying aention to the actual gradient direction.
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5.1.2 Concomitant Fields

As shown in section 3.5, truly linear magnetic gradient fields are not aievable and there
are always higher order field gradients present. ese can lead to an incomplete refocusing
of the magnetic resonance (MR) signal. To compensate for this, the accumulated phase
(equation 3.29) has to be zero, whi leads in the second order term to∫ T

0

s(t)′′ G(t)2dt = 0. (5.3)

In the case considered here (rectangular gradients), this simplifies to:∑
i

s′′i δi = 0, (5.4)

where s(t)′′ and s′′i were used for considering the number of refocusing pulses before the
gradients:

s(t)′′ or s′′i =

{
+1 if number of preceding RF pulses is even or 0

−1 if number of preceding RF pulses is odd
(5.5)

Higher order terms were not considered in this work. Since the acquired phase is quadratic
in the gradient amplitude, at least one refocusing pulse is needed to compensate for con-
comitant fields. Since the applied gradient amplitude is constant, its value is not needed
for nulling the acquired phase.

5.1.3 Flow

For the Stejskal-Tanner sequence, the diffusion encoded signal drops faster in the presence
of flow than in the absence thereof. is can be compensated by the tenique of gradient
moment nulling, as described in section 4.4. In the case of constant flow velocities, the first
gradient momentm1 has to be nulled for flow compensation:

m1(T ) =

∫ T

0

s(t)′G(t) t dt = 0, (5.6)

with s(t)′ taking care of the refocusing RF pulses, whi means it swites sign for ea RF
pulse and has an absolute value of 1. For rectangular gradients with constant amplitude
this can be simplified:∑

i

s′i (
δ2i
2

+ δi ti) = 0. (5.7)

s′i is the discrete version of s(t)
′. Since g is constant in this implementation, it does not need

to be considered for flow compensation. To aieve flow compensation while the gradient
reversal condition is fulfilled, at least three gradient pulses with switing effective signs
are needed [BKZ04].
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5.2 Optimization Setup
For the optimization of the SDE sequence, rectangular gradients were assumed. e max-
imal number of gradient pulses and the number of refocusing RF pulses were predefined.
To distinguish the different sequences, a short hand notation is used. Ea gradient is de-
noted with either + or −, depending on its direction and a RF pulse is indicated by |. So,
for example, the sequence in figure 5.1a would be + − | − +. To compare the ability to

(a)

90 180

Tp

eo

Taδ1 T1 δ2 T2 T3 T4δ3 δ4

(b)

90 180

Tp

eo

Ta

180

δ1 T1 δ2 T3 T4 T5δ3 δ4T2

(c)

90 180

Tp

eo

Ta

180

T1 T2 T3 T4 T5δ1 δ2 δ3 δ4

Figure 5.1: Example sequences considered in numerical optimization. In the shorthand no-
tation the sequences are + − | − + (a), +| + −|− (b) and +| − +|− (c). Ad-
ditionally, the names of the timing parameters are shown. Ea time between
gradients with a RF pulse is described by two timing parameters, one before and
one aer the RF pulse. Tp is the time needed for the excitation and Ta the time
needed for the readout train before the formation of the spin eo.

produce a high diffusion encoding while compensating for different kinds of artifacts, se-
quences with a maximal number of gradient pulses of 2-5 were considered. e number
of RF pulses was 1 or 2. e number of sequences was reduced by a few limitations. First,
neighboring gradients had to differ in their sign if no RF pulse was in between them. So
for example +| + −|− (figure 5.1b) was considered, while +| − −|+ was not. Second,
sequences that only differ in an overall sign ange (for example,+|+−|− and−|−+|+)
were considered identical. With these restrictions 60 sequences remained.
To further decrease the number, only sequences that allowed for simultaneous gradient

reversal and concomitant field compensation (equation 5.4) were taken into account. With
the notation in section 5.1, the condition for gradient reversal can be wrien generally as∑

i

s′iδi = 0. (5.8)
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e possibility to fulfill both conditions is easily eed for a sequence. For example,
for the standard Stejsakl-Tanner sequence (+|+) the gradient reversal gives the condition
−δ1 + δ2 = 0, whi is the same (except for an overall − sign) for concomitant field
compensation so that this sequence is intrinsically compensated for concomitant fields.
For the sequence+| −+|− (figure 5.1c), the gradient reversal δ1+ δ2− δ3− δ4 = 0 and

the concomitant field compensation δ1− δ2− δ3+ δ4 = 0 can be fulfilled at the same time
for δ1 = δ3 and δ2 = δ4.
e sequence+−|− has to fulfill the conditions for gradient reversal−δ1+δ2−δ3 = 0

and for concomitant field compensation δ1 + δ2 − δ3 = 0. ese two conditions lead to
δ1 = 0. is means the sequence would reduce to −|−, whi is considered identical to
+|+. erefore, su sequences were not included in the optimization.
e actual optimization was set up to maximize the b-value by varying the gradient

durations and the time between gradients (Ti). e total duration of the diffusion encoding
(
∑

i δi + Ti) had to stay within TE− Tp− Ta, where Tp was the time for the excitation
and Ta the time for the readout until the eo formation. To ensure the right timing of the
RF pulses, the time slot in whi they appeared was split in two independent parameters
(see figure 5.1 for examples), one before and one aer the RF pulse. Gradient reversal was
ensured by fixing the first gradient durations δ1 according to equation 5.8.
In the cases with two refocusing RF pulses, these had to be separated by TE/2. is

allowed for fixing another timing parameter, whi was osen to be T3. Additionally, the
exact position of the RF pulses does not ange TE as long as their distance remains the
same. is fact was used to set the total diffusion time TD to the maximum value and use
it to fix δ2. For the sequences with only one refocusing pulse, T3 and δ2 could not be fixed
and timing constraints were used to ensure that the RF pulse is played out at the right time.
e optimization was then performed with different sets of conditions, whi could in-

clude flow (equation 5.7), concomitant field (equation 5.4) and eddy current (equation 5.2)
compensation. is led to eight different optimization conditions for 20 sequences:

1. no additional conditions

2. flow compensation

3. concomitant field compensation

4. eddy current compensation

5. flow+concomitant field compensation

6. flow+eddy current compensation

7. concomitant field+eddy current compensation

8. flow+concomitant field+eddy current compensation

During the optimization procedure, a gradient duration of 0 was allowed. e time for a
refocusing RF pulses was set to 5ms, Tp = 5ms and Ta = 10ms were osen. e eddy
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current decay time was determined in phantom measurements (section 6.1.2), resulting in
τ = 70ms.
e optimization was set up in Matlab’s Global Optimization Toolbox (Version 2016a,

e Mathworks Inc., Nati, MA) using the global sear algorithm [ULP+07]. is algo-
rithm uses multiple start points and and a local optimizer to find a global optimum. e
start points are created with a scaer sear algorithm [Glo98], whi is initialized with
valid (for no additional conditions) gradient times. As local optimizer fmincon with the in-
terior point algorithm was used, whi is a gradient based optimization algorithm [BHN99,
BGN00, WMNO06].

5.3 Sequence Design

5.3.1 Sequence Programming

e different diffusion sequences were implemented with the IDEA environment, provided
by Siemens. e used versions were D13D for the DDE sequence and E11C for the SDE
sequence. e IDEA environment is based on C++ and allows the implementation of in-
house developed sequences.

5.3.2 Twice-Refocused Spin Eo

A common way to compensate eddy current distortions in DWI is the use of the twice-
refocused spin eo (TRSE) [RHWW03, Hei00]. is sequence employs two refocusing RF
pulses and four gradient pulses. In the short hand notation, this is +| − +|− and can be
seen in figure 5.1c. Normally, the Ti are osen as small as possible, whi means in this
case T3 = 0 and T1+T2 = T4+T5 = u, where u is the time needed for the slice selection.
With the conditions of gradient reversal

δ1 + δ2 = δ3 + δ4, (5.9)

the TE constraint

TE
2

= δ2 + δ3 + u, (5.10)

and the limit for TD

TD = δ1 + δ2 + δ3 + δ4 + 2u, (5.11)
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there exists an analytical solution for the eddy current equation 3.19:

δ1 = τ log
(

(1 + exp(TD/2τ))

(1 + exp(u/τ)) (1 + exp(TE/2τ))

)
, (5.12a)

δ2 =
TD

2
− δ1 − u, (5.12b)

δ3 =
TE− TD

2
+ δ1, (5.12c)

δ4 = TD − TE
2

− δ1 − u. (5.12d)

5.3.3 Eddy-Current-Compensated Double Diffusion Encoding

For the DDE sequence, all combinations of eddy-current-compensated (c) and uncompen-
sated (u) diffusion encodings were implemented. e corresponding sequence semes are
shown in figure 5.2. A short hand notation is used to distinguish the different combina-
tions, where the oice for the first and second encoding are noted with one leer ea,
separated by a /. For example, the sequence with the first encoding compensated and the
second uncompensated is noted as c/u (figure 5.2c). e total diffusion time of ea encod-
ing i (TDi) and the mixing time tm, whi is defined as the time between the end of the
first and the beginning of the second encoding, could be osen as sequence parameters.
For ea compensated diffusion encoding, the gradient durations were calculated following
equations 5.12(a)-(d). e value for TE had to be replaced by an effective eo time TEeff for
ea compensated diffusion encoding. TEeff is defined as twice the distance between the
RF pulses of that encoding. With that replacement the equations 5.12 can be used directly.
In the case of the u/c and c/u sequences, TEeff could be osen as an additional sequence
parameter. For the sequence c/c, the TEeff for ea encoding have to add up to the actual TE
and they were osen equally, leading to identical gradient durations for both encodings.
For the uncompensated sequences, the gradients were placed symmetrically around the RF
pulse and had the maximal duration. With the definition of TD1, TD2 and tm, the actual
TE is fixed for the u/u sequence in this implementation.

5.3.4 Single Diffusion Encoding with Possible Artifact Reduction

e sequence that was used for the measurements consisted of a maximum of five gradient
pulses and one refocusing RF pulse (+ − +| − +, see also figure 5.3). For different com-
pensations, the number of gradients can ange, as the gradient durations could become
zero.

5.3.5 Crusher Gradients

Since the refocusing RF pulses are not perfect, additional gradient pulses are needed to
dephase any signal newly created by these pulses. Oneway is to add a gradient pair directly
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(a)

δ δ δ δ
readout

90 180 180

∆ TDtm

(b)

readout
δ1

δ2

δ3

δ4

90 180 180 180 180δ1

δ2

δ3

δ4

TD ∆tm

(c)

readout

90 180180180

(d)

readout

90 180 180 180

Figure 5.2: DDE sequence semes. Here, the sequence semes for all combinations of
compensated and uncompensated diffusion encodings are shown. For the u/u
(a) and c/c (b) sequence, the definitions of ∆, TD and tm are shown. ese are
skipped for the c/u (c) and u/c (d) sequences.
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(a)
90 180

readout

(b)
90 180

readout

(c)
90 180

readout

(d)
90 180

readout

Figure 5.3: Sequence semes used for compensating different artifacts. (a): Seme for
compensating flow and eddy currents simultaneously. is can be run with or
without concomitant field compensation. (b): Sequence without any compen-
sation. (c): compensated only for concomitant fields. is is the sameseme as
for the Stejskal-Tanner sequence. (d): Sequence seme for only flow or only
eddy current compensation. For additional concomitant field compensation, the
insertion of delay times between the gradients might be necessary, depending
on the actual timing.
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around the RF pulse [BW84], where both gradients have the same zeroth moment. e
second gradient dephases the magnetization that is unintentionally excited by the RF pulse.
For the intended signal pathway, the gradient pair generates a small additional diffusion
encoding. e gradient moment was osen to ensure a phase difference of at least 8π over
a single voxel.
e effect of the crusher gradients on the actual diffusion encoding is minimized by

oosing the directions orthogonal to ea other [NTW14]. In the case of an eddy-current-
compensated encoding in the DDE sequence, meaning two refocusing RF pulses, the cor-
responding crusher gradients were also orthogonal to ea other. If crusher gradients be-
tween the first and second encoding were parallel, the ones belonging to the second en-
coding were rotated by 45◦. In the case of SDE with artifact reduction, there was only one
gradient pair, whi was osen orthogonal to the diffusion encoding.

5.4 Directionally Independent µFA Measurements
For a measurement of the µFA that is independent of the macroscopic orientation of the
diffusion compartments, the directional seme proposed by Jespersen et al. [GP09, JLSD13,
JLSD14b] was used. is is comprised of 72 individual DDE measurements, 12 with par-
allel and 60 with orthogonal diffusion encodings. In the case of identical q-values in both
encodings, this allows for a simple calculation of the µFA:

µFA =

√
3

2

ϵ

ϵ+ (3/5)∆2MD2 (5.13)

ϵ =
1

q4

(
log
(

1

12

∑
S∥

)
− log

(
1

60

∑
S⊥

))
, (5.14)

where∆ describes the classical diffusion time, defined by the time from the start of the first
dephasing to the beginning of the first rephasing gradient.

∑
S∥/
∑

S⊥ is the sum over all
measurements with parallel/perpendicular diffusion encodings. e MD is determined by
fiing

log
S(q1, q2)

S(0, 0)
= −1

2
qT
1 Dq1 −

1

2
qT
2 Dq2 + qT

1 Qq2 (5.15)

to the same 72 measurements and an additional measurement with q1 = q2 = 0. e MD
is defined as 1

3
tr(D). e correlation tensor Q was included in the fit as tm was not long

enough for both encodings to be completely independent, as was experimentally verified
in this work (section 6.3).

5.5 Monte Carlo Simulations
Monte Carlo simulations were set up to further test the dependence of the DDE parame-
ters on the timing. erefore, two dimensional random walks for 500 000 particles were
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simulated and the position of ea particle was saved for every millisecond (ri). e total
simulated diffusion time was 100ms. is approa allows to evaluate several timings and
diffusion encoding directions with just one Monte Carlo dataset. e diffusion coefficient
was set to D = 2µm2/ms, with a time for one random step of∆t = 1.7µs.
Diffusion in two different geometries was simulated. One, with an anisotropy, was diffu-

sion between two parallel plates in a distance of 10µm. e other one, without anisotropy,
was diffusion inside a circle with a radius of 10µm.
From the random walks, the normalized DDE signal was calculated for optimal condi-

tions, meaning infinitely short gradients and no relaxation, for different TD and tm:

S = |
⟨
e(−i(q1(r(t2)−r(t1))+q2(r(t4)−r(t3)))

⟩
|. (5.16)

Here, TD is defined as t2 − t1 = t4 − t3 and tm = t3 − t2, q1 and q2 were the diffusion
encoding strengths and directions for the first and second encoding. e ⟨·⟩ indicates the
average and | · | the absolute value. In total twenty directions were calculated. e first
direction was perpendicular to the plates and was then rotated in five steps in the plane,
with ea step rotating q1 by 72◦. For ea first direction, four second directions were sim-
ulated: parallel, antiparallel and the two orthogonal directions. ese signals were used to
fit a two dimensional diffusion and correlation tensor according to equation 5.15. Addi-
tionally, the difference between the mean signal of the parallel and antiparallel directions
and the mean of the signals of the perpendicular directions was used to determine µFA2

with adjusted equations 5.13 and 5.14.

5.6 IVIM Model
For fiing the intravoxel incoherent motion (IVIM) model to the in vivo measurements the
equation [LBL+86]

S(b)

S(0)
= (1− f)e−bD + f e−bD⋆

(5.17)

was used. e diffusion weighted images were normalized by the image with b = 0 and
the perfusion fraction f , the diffusion coefficientD and the pseudo-diffusion coefficientD⋆

were used as fiing parameters. e fiing was performed in Matlab with the provided
trust region algorithm. Ea of the three parameters was forced to be larger or equal to
zero.

5.7 Phantoms
everification of the sequences was done bymeasuring different kinds of phantoms. eir
design and how they are used for their respective purpose is described in this section.
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Figure 5.4: MR image of the grid phantom. e image was taken with a fast gradient eo
sequence. e plastic rods can be seen as small dark squares.

5.7.1 Grid Phantom

To evaluate the image distortions due to eddy currents, a phantomwas used that consists of
plastic rods on a regular quadradtic grid. is grid is immersed in water. e outer shape
is octagonal with a height and width of 330mm. e distance of the rods is 20mm. e
setup can be seen in a MR image in figure 5.4. e plastic rods lead to signal voids in the
image.
In the presence of different image distortions, as, for example, caused by eddy currents,

the grid points fall on different pixels in the image. is leads to higher signal variations in
su pixels. To quantify this, the coefficient of variation (CV) was used, whi is defined as
the variance normalized by the mean value. A higher CV can then be aributed to larger
artifacts due to eddy currents. emeasurements for determining the efficiency of the eddy
current compensation, thus, consisted of several diffusion measurements with different
directions, fromwhi the CV of the signal was calculated. For an additional quantification,
regions of interest (ROIs) were drawn and the mean value inside was determined.

5.7.2 String Phantom

To test the dependence of the µFA on different experimental parameters, a diffusion ten-
sor phantom was used. is phantom is made of polyamide fibers, that were wound on
a spindle [LHS09]. e fibers were wet while they were wound so that water diffuses
between them. is phantom was placed in agarose gel. It shows an area with high dif-
fusion anisotropy, on a microscopic and a macroscopic scale, in the fiber area and with no
anisotropy in the agarose gel.
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Figure 5.5: MR image of the string phantom. e blue ROI marks the fibers, the red one
marks the agarose gel.

5.7.3 Flow Phantom

To verify the flow compensation, a tube with water flowing through it was used. e exper-
imental setup is shown in figure 5.6. In the upper part, the tube can be seen. Additionally,
a water bole was used for the coil filling.

Figure 5.6: Experimental setup for the measurements with flow. Water was flowing
through the tube in the upper part of the image. e flow direction was in-
plane horizontally. e water bole was used for filling the coil.

e flow was generated using a peristaltic pump (Watson Marlow 505Du, Watson Mar-
low Fluid Tenology Group, Wilmington, MA, USA), with low rotational speed (10 and
20 rotations per minute), so the flow had a pulsatile part and was not completely con-
stant. For the determination of the mean flow velocity vflow, the time t was measured,
during whi a volume V passed through the system. Together with the tube diameter of
d = (1.31± 0.02) cm, this gives:

vflow =
V /t

π(d/2)2
. (5.18)

e used velocities were vflow,1 = (0.85± 0.08) cm/s and vflow,2 = (1.71± 0.11) cm/s.
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5.8 In Vivo Measurements

5.8.1 Prostate Anatomy and Prostate Cancer

is section gives a short introduction to the anatomy of the prostate and to prostate cancer,
following the books [DW14, SSS09]. e prostate is comprised of glandular and muscular
tissue. It can be divided into different zones. e urethra is passing through the prostate and
is surrounded by the narrow periutheral zone. In front of the urethra lies the anterior zone,
whi does not include glandular tissue. e central zone surrounds the ejaculatory ducts.
Between the laer two zones is the transitional zone. e largest amount of glandular
tissue is located in the peripheral zone. In this work, all zones, except for the peripheral
zone, were considered one area called the central gland.
e prostate carcinoma is the most common cancer in human males. It most oen orig-

inates in the peripheral zone. e screening for prostate cancer can be done by a digital,
rectal examination, the determination of the prostate-specific antigen (PSA) and/or a MRI
examination, including DWI. e findings are confirmed by a biopsy whi is also used
for grading. e grading is done by the Gleason grading system [EAJAE05]. e Glea-
son grade is determined by the cell structure and can take values from 1 to 5, where 1 is
given for well differentiated and 5 for very poorly differentiated cells. e differentiation
of cells describes how specialized they are. For tumors, it means how similar the tumor
cells are to the cells they originated from. Well differentiated cells resemble the original
cells closely and indicate a less progressed tumor. e Gleason score is determined by the
different Gleason grades found in a histological sample. e Gleason score is reported by
two numbers, where the first one is the most common grade. e second number is the
highest grade if that is higher than the first one, otherwise it is the second most common
grade. If only one grade is found, it is doubled for the Gleason score.
Prostate cancer needs to be differentiated frombenign prostatic hyperplasia (BPH), whi

is a benign hyperplasia originating mostly in the transitional zone.

5.8.2 Volunteers and Patients

For the in vivo verification of both sequences, healthy volunteers were measured. DDE
images were acquired for six volunteers (3 female, 3 male) in the age of 21-36 years.
For the SDE experiments, three healthy volunteers were measured, the brain of a 22-year

old female, the abdomen of a 24-year old female and the prostate of a 27-year old male
volunteer. Additionally three male prostate cancer patients were imaged before biopsy (65,
66 and 69 years old). e biopsy confirmed the presence of prostate cancer with Gleason
scores of 3 + 3, 3 + 4, and 3 + 5.

5.9 MR-Scanner
All measurements were performed on a 3 T MRI maine (Prismafit, Siemens Healthcare,
Erlangen). is Scanner allows nominal a maximal gradient amplitude of 80mT/m and a
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maximal slew rate of 200 T/m/s. ese values had to be reduced to actually be able to run
the sequence for all oblique slice orientations used and stay in the limits for peripheral nerve
stimulation. e actually used maximal amplitude was 79mT/m and the maximal slew
rate was 100 T/m/s, whi gives a maximal ramp time of r = 0.79ms. is is shorter than
the usual gradient duration of at least several milliseconds. For head measurements, a 64-
annel head coil was used, while the abdomen and pelvis measurements were performed
with a 18-annel flex coil and a spinal array (all provided by Siemens). For the phantom
experiments with the grid phantom, the built-in body coil was used, while the diffusion
phantom was measured in the 64-anel head coil.

5.10 Evaluation Soware
e determination of the different diffusion parameters, like the diffusion tensor, and the
CV, for rating the strength of the eddy currents, was done with Matlab (Versions R2014a
and R2016a, e Mathworks Inc., Nati, MA, USA). e evaluation was performed on the
magnitude images from the MRI. e determination of the ADC and the diffusion tensor
were done with the mldivide function of Matlab. If not mentioned explicitly, no filtering
or interpolation was performed.
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In this apter, the results for the µFA measurements are shown. e developed eddy-
current-compensated DDE sequence was tested in phantoms as well as in vivo. e eddy
current decay time, whi is needed for a proper compensation, was determined in phan-
tom experiments. Aerwards, the sequence was tested with phantoms to demonstrate the
accurate determination of the µFA and the effectiveness of the eddy current compensation
(section 6.1). Monte Carlo simulations were used to verify some of the results concerning
the µFA (section 6.2). e final section describes the effects of the eddy current compensa-
tion on the determination of the µFA in vivo.

6.1 Phantom Experiments

6.1.1 Grid Phantom Measurements

To evaluate the degree of eddy current artifacts in the grid phantom, the DDE measure-
ments were performed with 36 different direction combinations. is is the number of
possible combinations if ea diffusion encoding is in either plus or minus read, phase or
slice direction, whi coincided with the x, y and z-axis of the scanner.
e actual eddy current decay time of the used MRI maine was estimated by vary-

ing the assumed eddy current decay time τ with both encodings supposedly eddy current
compensated. e images were taken with a FOV of 380×380mm2, a nominal resolution
of 3.8×3.8mm2, a partial Fourier factor of 6/8 and a slice thiness of 5mm for ten slices.
e timing parameters TE = 96ms, TR = 3000ms, TD1 = TD2 = 38ms and tm = 0ms
were osen with a readout bandwidth of 2780Hz/pixel. e durations of the diffusion
gradient pulses were adjusted to null the eddy currents with the assumed τ , according to
equations 5.12 (a)-(d). e b-values for both encodings were b1 = b2 = 0.5ms/µm2.
e resulting mean CV over the whole volume can be seen in figure 6.1.ere is a plateau

where the CV is minimal, with its center roughly at τ = 70ms. is value was osen for
τ in all further measurements.
For the purpose of investigating the effectiveness of the eddy current compensation, all

combinations of compensated and uncompensated encodings (u/u, c/u, u/c and c/c) were
examined. Most imaging parameters were the same as for the estimation of τ . e timing
had to be slightly adjusted for the different combinations of compensated and uncompen-
sated encoding. In the case of uncompensated encodings, the total diffusion time TD was
27ms, the gradient duration δ was 9.44ms and the amplitude g = 77.4mT/m. For com-
pensated encodings TD was 38ms, the gradient durations were 3.14, 7.73, 8.14 and 2.73ms
and g = 78.7mT/m. e TE for the four different combinations were 94, 105, 85 and 96ms
for u/u, c/u, u/c and c/c respectively, with tm-values of 20, 10, 0 and 0ms.
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Figure 6.1: CV for different assumed eddy current decay times τ . e CV was determined
as the mean value over the whole imaging volume. is figure was previously
published in [MWKL17], copyright 2015 by Wiley Periodicals, Inc.

e corresponding CV maps are shown in figure 6.2. e grid points are visibly blurred
in the phase encoding direction, whi was downwards in all measurements. e blurring
gets worse towards the outer parts of the image. At the upper edge of the phantom, there
are distortions due to the susceptibility differences between the water and an air bubble.
is heightens the effect of the eddy-current-induced distortions, whi can be seen by the
large areas with high CV.e blurring as well as the edge artifacts are reduced when using
the eddy current compensation. ereby, it can be seen that the second diffusion encoding
plays a larger role in the overall effect than the first one, as the u/c measurements show a
lower CV than the c/u measurements. In the case c/c (figure 6.2d), a bright spot above the
ROI can be seen, whi stems from concomitant field artifacts.
emean CV over the white ROI in figure 6.2 is depicted in figure 6.3 for all four compen-

sation combinations and the baseline measurement. e ROI has been osen to exclude
the major concomitant field artifacts in the c/c measurements. e CV without compensa-
tion is CVu/u = (4.37 ± 0.09)% (mean ± standard deviation over the slices). It is reduced
to CVc/c = (3.62±0.10)% for the full compensation, with only one compensated encoding
it is CVc/u = (4.44±1.3)% and CVu/c = (3.73±0.10)%. CVc/u is slightly larger than CVu/u.
us, the c/u seme, shows worse results in the ROI analysis than the u/u seme. e
ROI covers only a small part in the central area of the phantom, where the effects of eddy
current distortions are small. Over the whole image, c/u gives beer results as can be seen,
for example, at the upper edge of the phantom. e CV cannot be reduced to the baseline
value of CVbaseline = (2.9± 0.09)% in any of the compensation combinations.
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Figure 6.2: CVmaps for an exemplary slice of the grid phantom in DDEmeasurements. e
grid points are blurred along the phase encoding direction (up–down) because
of eddy current artifacts. Additionally, a high CV appears at the edge of the
phantom. ese artifacts are most abundant for the u/u (a) measurement. ey
decrease for c/u (b) and u/c (c). e best results are aieved in the case of c/c
(d). e white square was used for ROI analysis. e area with a higher CV
above the ROI in the c/c measurements can be aributed to concomitant field
artifacts. is figure was previously published in [MWKL17], copyright 2015 by
Wiley Periodicals, Inc.
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Figure 6.3: CV for different compensation combinations in DDE. e values were obtained
as mean value over the ROI shown in figure 6.2 as white rectangle. e ROI size
was 412 pixels. is figure was previously published in [MWKL17], copyright
2015 by Wiley Periodicals, Inc.
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6.1.2 String Phantom Measurements

e measurements of the string phantom were performed with a TD = 39ms for ea
encoding and TE = 110ms, the repetition time was TR = 2000ms. Both encodings were
compensated for eddy current, whi lead to the same gradient durations in both encodings
of 1.47, 9.82, 9.74 and 1.82ms. e nominal in-plane resolution was 3× 3mm2 with a FOV
of 126×300mm2 and a slice thiness of 5mm. A partial Fourier factor of 6/8 was used and
the readout bandwidth was 3125Hz/pixel. e maximal gradient amplitude was limited to
79.5mT/m. For the measurement of the q-dependence, tm = 20ms was used, while for the
tm-dependence the q-value was 0.25 µm−1. For the relation of FA to µFA, q = 0.25 µm−1

and tm = 20mswere used. eµFA, FA and correlation tensorQwere calculated pixelwise
and for the dependence measurements, the mean was calculated aerwards for a ROI over
the fiber as well as for one over the agarose gel surrounding it (figure 5.5).
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Figure 6.4: Scaer plot of µFA2 against FA2 in the string phantom. e values are spread
around the line of identity (yellow line). In the agarose gel, where no diffusion
anisotropy is present, the values cluster around zero. Since one measures µFA2,
its values can become negative due to noise, while the definition of FA allows
only for positive values. e bla dots belong to the pixels between the two
ROIs in figure 5.5. e green line shows a linear fit.

Figure 6.4 shows a scaer plot of FA2 against µFA2. e squared values were osen
because the measured µFA2 can become negative for small µFA-values due to noise. e
pixels aributed to the fiber (shown in blue) show similar values for µFA2 and FA2 with
mean and standard deviation µFA2 = 0.76± 0.05 and FA2 = 0.84± 0.02. e agarose gel
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pixels exhibit very small FA2-values with a slightly positive mean value FA2 = 0.07±0.03,
while µFA2 = −0.01± 0.05 can be considered zero.
e dependency of the µFA on tm and q can be seen in figure 6.5. In the fiber (figure 6.5a

and 6.5b), there is only a small dependence on tm. e reduction is about 0.02 over the total
tm range of 20ms. e FA and µFA show nearly identical values in all measurements with
q > 0.15 µm−1. For small q-values, the µFA is overestimated for high anisotropies.
In the case of no diffusion anisotropy, as is given in agarose gel (figure 6.5c and 6.5d),

there is no tm dependence, while for low q-values the µFA2 varies strongly around 0.
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Figure 6.5: Dependencies of the µFA on tm and q. e µFA depends only slightly
on tm in the fiber (a), while no dependence is seen in agarose gel (c).
For small q-values, the µFA becomes very noisy ((b) and (d)) and is
overestimated in the fiber (b). In agarose gel pixels (d), the noise is
so large that the standard deviation (std) is not shown completely for
q = 0.05 µm−1 (std = 10.0) and q = 0.1 µm−1 (std = 1.3). For the
agarose gel ((c) and (d)), µFA2 and FA2 are shown instead of µFA and
FA. As µFA2 is the measured quantity, negative values can appear due
to noise. e FA shows no dependence on the q-value or on tm.



6.2 Monte Carlo Simulations 57

(a)

0 5 10 15 20

−1

0

1

tm in ms

tr
(Q

)
in

µ
m

2

fiber
agar

(b)

0.05 0.1 0.15 0.2 0.25

−1

0

1

q in 1/µm

tr
(Q

)
in

µ
m

2

fiber
agar

Figure 6.6: Dependencies of tr(Q) on tm and q. In agarose gel, tr(Q) is zero. In the fiber, it is
larger than zero and decreases with increasing tm. ere is no clear dependence
on q. e standard deviation of themeasurementswith q = 0.05 µm−1 is 3.0µm2

for the fiber and 1.5µm2 for the agarose gel.

In addition to the µFA ,Qwas calculated and in figure 6.6 the mean values ofQ = tr(Q)

over the two ROIs are shown. It can be seen that Q decreases with increasing tm in the
fiber, fromQ = (0.48± 0.33)µm2 for tm = 0ms toQ = (0.31± 0.33)µm2 for tm = 20ms.
In the agarose gel, the value is basically zero for all tm.
For the q-dependence no clear trends were found. For q = 0.05 µm−1 the measurements

were very noisy so that not the whole standard deviation is shown in figure 6.6b. is is
the only measurement showing a Q in agarose gel similar to the one in the fiber. For all
other q-values Q in agarose gel is close to zero, while in the fiber it is larger than zero.

6.2 Monte Carlo Simulations
e connections of µFA and Q with the experimental parameters tm and TD were also
tested in Monte Carlo simulations for two simple two-dimensional geometries. One con-
sisted of two parallel plates, whi shows a diffusion anisotropy, the other one was a circle
with no anisotropy. e results are shown in figure 6.7 for the plates and in figure 6.8 for
the circle. In both cases, tr(Q) clearly decreases with larger tm. e dependence on TD

is smaller and only present if the long tm limit is not reaed. In the long tm limit, Q is
zero independent of the diffusion time. If the limit is not reaed, Q raises with TD until
its maximum, whi is determined by tm.
e µFA shows no dependence on tm for the parallel plates, but it rises with TD. For the

circle the µFA shows a similar behavior as Q, but decreases faster than Q for increasing
tm. If the long tm limit is reaed the µFA is zero independent of TD.
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Figure 6.7: Monte Carlo results for two parallel plates. e plate distance was 10µm and
q was 0.1µm−1. e signal was calculated for 20 direction combinations. e
bla line in (c) shows the FA2 from simulations of a SDE sequence with varying
TD.
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Figure 6.8: Monte Carlo results for a circle. e radius was 10µm and q was 0.1µm−1. e
signal was calculated for 20 direction combinations. e bla line in (c) shows
the FA2 from simulations of a SDE sequence with varying TD.
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6.3 In Vivo Experiments
For the in vivo measurements of the µFA, the heads of six healthy volunteers were scanned
with the u/u and c/c seme. In five cases, an additional standard diffusion sequence was
acquired to automatically segment gray and white maer and ventricles. In the sixth case
(volunteer number 4), the DDE measurement itself was used. Voxels with a FA higher than
0.35 and a MD between 0.35 and 1 µm2/ms were classified as white maer. Voxels with a
FA between 0.02 and 0.15 and a MD between 0.5 and 1.3 µm2/ms were classified as gray
maer [NLvW+13, MWKL17]. Voxels with a MD higher than 1.5 µm2/ms were marked as
ventricles.
e nominal in plane resolution was 3× 3mm2. 20 slices, with a slice thiness of 3mm,

were acquired with TR = 4000ms. e FOVwas 300×270mm2. A partial Fourier factor of
6/8 was used and additionally a GRAPPA factor of 2. e b-value in ea diffusion encoding
was 0.5ms/µm2. In the uncompensated TD = 27ms, with δ = 9.26ms and a gradient
amplitude of 78.3mT/m was used for ea encoding and tm = 16ms and TE = 86ms
were osen. In the compensated measurements, the timing parameters were TD = 31ms
(δ1−4 = 2.34, 8.67, 8.84and2.17ms), tm = 10ms and TE = 104ms. e gradient amplitude
was 79mT/m. Additionally an image without diffusion encoding was acquired for both
DDE semes.
e standard diffusion imaging was performed with the same resolution, slices and FOV.

e b-values were 0 and 1.0ms/µm2, 20 diffusion directions were acquired, with a TE =
62ms.
In figure 6.9, FA and µFA maps of a representative slice of ea volunteer are shown.

e µFA exhibits larger areas of high anisotropies than the standard FA, calculated from
the compensated measurements. e uncompensated µFA maps show elevated values in
the ventricles and the gray maer, while the white maer shows similar values. is is
also represented in the mean values over these three types of brain maer, as can be seen
in table ⁇. ere is a largely increased µFA in the ventricles and slightly higher values in
gray maer for the u/u measurements. In white maer no clear trend can be seen.
An enlarged image of a fiber crossing is shown in figure 6.10. In figure 6.10a, the whole

brain slice is depicted in a color encoded FAmap, where ea color represents themain fiber
direction in the voxel, red for right-le, blue for up-down and green for perpendicular to
the shown slice. e fiber crossing shows a reduction in FA (0.35± 0.03) compared to the
coherent fiber (0.64± 0.04) (green arrow in 6.10e), whi is not present in the µFA maps.
ey have similar values for the fiber crossing of 0.86± 0.02 and 0.87± 0.03 for the u/u
(6.10d) and c/c (6.10e) sequence respectively In the fiber the µFA is 0.89 ± 0.02 (u/u) and
0.88 ± 0.02 (c/c). e reported values were obtained as mean ± standard deviation over
the ROIs shown in figure 6.10b.
e red arrows in figure 6.10d and 6.10e point inside a ventricle, where the uncompen-

sated measurement shows an increased µFA, whi is reduced in the compensated mea-
surements.
In figure 6.11, scaer plots of µFA against FA are shown for the gray and white maer

masks of ea volunteer. For beer visibility, the identity line is ploed in green. e
µFA values lie mostly above this line, so µFA is larger than FA. As mentioned above, the
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Figure 6.9: FA and µFA maps of the brains of six healthy volunteers. For ea volunteer,
an exemplary slice is shown. e FA map was calculated from the compensated
measurement. e µFA shows larger areas of high values. e red arrows point
to regions in the ventricle where the µFA is increased in the uncompensated
measurements. ese values are largely reduced in the compensated measure-
ments. is is, to a lesser extent, the case in gray maer, while white maer
remains unanged. is figure was previously published in [MWKL17], copy-
right 2015 by Wiley Periodicals, Inc.
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Figure 6.10: FA and µFA
in fiber and fiber cross-
ing. (a): Color FA map
of the brain in a coronal
slice. e white rectan-
gular shows whi area
is enlarged in (b)-(e). (b):
Detail of color FA map
for ROI placement inside
a fiber crossing with low
FA (upper ROI) and in-
side a fiber (lower ROI).
e FA (c) shows a drop
in the crossing (green ar-
row), whi does not ex-
ist in the µFA((d) and
(e)). e uncompen-
sated µFA measurements
(d) show an increased
value in the ventricle
(red arrow), whi can-
not be seen in compen-
sated measurements (e).
All images shown here
were tricubically inter-
polated to a threefold
resolution. is figure
was previously published
in [MWKL17], copyright
2015 by Wiley Periodi-
cals, Inc.
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Table 6.1: Mean µFA± standard deviation in different brain regions. is table was previ-
ously published in [MWKL17], copyright 2015 by Wiley Periodicals, Inc.

white maer gray maer ventricles
volunteer u/u c/c u/u c/c u/u c/c

1 0.79 ± 0.13 0.75 ± 0.16 0.54 ± 0.17 0.51 ± 0.19 0.47 ± 0.15 0.18 ± 0.23
2 0.78 ± 0.14 0.79 ± 0.14 0.57 ± 0.17 0.49 ± 0.19 0.36 ± 0.15 0.14 ± 0.21
3 0.79 ± 0.13 0.77 ± 0.14 0.52 ± 0.18 0.45 ± 0.21 0.53 ± 0.23 0.33 ± 0.34
4 0.74 ± 0.16 0.75 ± 0.16 0.57 ± 0.20 0.53 ± 0.18 0.61 ± 0.20 0.18 ± 0.23
5 0.76 ± 0.16 0.76 ± 0.15 0.63 ± 0.19 0.51 ± 0.20 0.59 ± 0.23 0.29 ± 0.28
6 0.72 ± 0.17 0.65 ± 0.21 0.60 ± 0.20 0.53 ± 0.21 0.68 ± 0.18 0.58 ± 0.31

Table 6.2: Pearson’s r for tr(Q) and µFA

volunteer 1 2 3 4 5 6
gray maer 0.67 0.60 0.60 0.83 0.51 0.48
white maer 0.66 0.55 0.54 0.75 0.53 0.58

segmentation for volunteer 4 was not done on additional images, but on the DDE measure-
ment itself. Since FA boundaries were used, a vertical white stripe without any data points
can be seen in figure 6.11d. e gray maer µFA-values are distributed over the whole
range of allowed values, while in most cases only few values lie above 0.8. White maer
voxels tend to higher µFA-values and only few lie below 0.4. In the FA-value white and
gray maer are separated well in all volunteers, except number 6 where a strong overlap
is present.
Figure 6.12 depicts theQ = tr(Q) ploed against the µFA. It can be seen thatQ increases

with increasing µFA and is clearly non-zero. e Pearson’s r correlation coefficient for gray
and white maer for all six volunteers is given in table 6.2. e non-zero Q indicates that
the two diffusion encodings were not independent and therefore that the long tm limit was
not aieved.
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Figure 6.11: Scaer plots of µFA against FA for gray and white maer. For most pixels, the
values lie above the identity line (green). For volunteer 4 (d), no independent
diffusionmeasurement was available so that themaskingwas done on the DDE
images, whi leads to the white band.
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Figure 6.12: Scaer plots of Q against µFA for gray and white maer. ere is a simi-
lar correlation between µFA and Q for all volunteers and for gray and white
maer.
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e different kinds of artifacts, like flow, eddy currents, and concomitant fields, in diffusion
MRI have, so far, mainly been treated individually. In this apter, results are shown that
demonstrate the possibility to compensate for these artifacts simultaneously by sequence
design. First, numerical optimizations were done to maximize the b-value, while compen-
sating for different artifacts with different sequence semes (section 7.1). e sequence
with the highest possible b-values was used for phantom experiments (section 7.2). In the
final section, in vivo results are presented, whi used the compensation combinations with
the least artifacts in the phantom measurements.

7.1 Sequence Optimization
e maximal b-values, yielded by the optimization, are listed in tables 7.1-7.3 for ea of
the 20 sequences examined. Ea table shows the results for a specific TE.
For many of the compensation combinations, different sequences show the same b-value.

is is caused by the optimization setup, whi allowed a gradient pulse duration of zero.
For example, if concomitant field compensation is used alone, all sequences with a single
refocusing RF pulse produce the same b-value. In su cases, the one with the lowest
number of gradient pulses (or one with even less) is the best oice and all others can
be traced ba to it. As example, the case of no compensation is considered. All sequences
with one refocusing pulse, except +|+, show the same b-value. e optimal sequence in
that case and for this timing is actually +− |+. us, in the sequence +− |+− the last
gradient pulse has a duration of 0 or in + − +| − + the third and fih gradient pulses
become zero.
e use of flow compensation alone reduces the maximal b-value to approximately

20-25 % of the value aievable with the Stejskal-Tanner sequence +|+, the exact frac-
tion depends slightly on TE. For longer TE, the fraction gets higher. is paern is the
same for all compensation combinations. For some of the compensation semes with the
intermediate and long TE, the use of two refocusing RF pulses allows for higher b-values
than the use of only one.
e use of eddy current compensation reduces the possible b-value less than flow com-

pensation. e best results are aieved by the sequence +| − +|−, whi is the TRSE
sequence. However, it is not possible to compensate for flow with this sequence. e se-
quences with one pulse yield lower b-values for eddy current compensation than those with
two. For only one RF pulse, the differences between flow compensation alone and eddy
current compensation alone are only minor
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Table 7.1: b-values in ms/µm2 for TE = 55ms and g = 40mT/m

none flow conco eddy
flow
conco

flow
eddy

conco
eddy

flow
conco
eddy

+|+ 0.515 - 0.515 - - - - -
+|+ |+ 0.161 0.048 0.161 - 0.039 - - -
+− |+− 0.538 0.105 0.515 0.116 0.094 0.053 0.103 0.051
+− | −+ 0.538 0.071 0.515 0.111 0.062 - 0.098 -
+| −+|− 0.290 - 0.161 0.274 - - 0.145 -
+|+−|− 0.161 0.085 0.161 0.096 - 0.060 0.056 -
+− |+−+ 0.538 0.105 0.515 0.116 0.094 0.053 0.103 0.051
+−+| −+ 0.538 0.105 0.515 0.116 0.094 0.062 0.103 0.059
+− | −+− 0.538 0.105 0.515 0.116 0.094 0.053 0.103 0.051
+−+|+− 0.538 0.105 0.515 0.116 0.094 0.059 0.103 0.056
+| −+| −+ 0.290 0.093 0.161 0.274 0.048 0.007 0.145 0.007
+− |+−|+ 0.290 0.093 0.161 0.274 0.048 0.011 0.145 0.011
+− | −+|− 0.290 0.093 0.161 0.274 0.048 - 0.145 -
+| −+|+− 0.290 0.093 0.161 0.274 0.048 - 0.145 -
+|+−| −+ 0.290 0.093 0.161 0.124 0.048 0.060 0.056 0.013
+− | −+|+ 0.290 0.093 0.161 0.099 0.048 0.060 0.056 0.013
+− |+−|− 0.290 0.093 0.161 0.100 0.048 0.060 0.056 0.018
+|+−|+− 0.290 0.093 0.161 0.125 0.048 0.060 0.056 0.015
+| −+− |− 0.290 0.085 0.161 0.274 - 0.060 0.145 -
+|+−+ |− 0.290 0.085 0.161 0.274 - 0.060 0.145 -
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Table 7.2: b-values in ms/µm2 for TE = 85ms and g = 40mT/m

none flow conco eddy
flow
conco

flow
eddy

conco
eddy

flow
conco
eddy

+|+ 3.092 - 3.092 - - - - -
+|+ |+ 2.029 0.580 1.817 - 0.325 - - -
+− |+− 3.136 0.658 3.092 0.732 0.637 0.371 0.706 0.327
+− | −+ 3.136 0.390 3.092 0.642 0.373 - 0.618 -
+| −+|− 2.351 - 2.029 2.207 - - 1.886 -
+|+−|− 2.029 0.426 2.029 1.005 - 0.342 0.736 -
+− |+−+ 3.136 0.658 3.092 0.732 0.637 0.371 0.706 0.327
+−+| −+ 3.136 0.658 3.092 0.732 0.637 0.416 0.706 0.410
+− | −+− 3.136 0.658 3.092 0.732 0.637 0.371 0.706 0.327
+−+|+− 3.136 0.658 3.092 0.732 0.637 0.382 0.706 0.377
+| −+| −+ 2.351 0.674 2.029 2.207 0.580 0.167 1.886 -
+− |+−|+ 2.351 0.674 2.029 2.207 0.580 0.368 1.886 0.339
+− | −+|− 2.351 0.674 2.029 2.207 0.580 - 1.886 -
+| −+|+− 2.351 0.674 2.029 2.207 0.580 - 1.886 -
+|+−| −+ 2.351 0.674 2.029 1.005 0.580 0.342 0.736 0.163
+− | −+|+ 2.351 0.674 2.029 1.005 0.580 0.342 0.736 0.165
+− |+−|− 2.351 0.674 2.029 1.005 0.580 0.463 0.736 0.354
+|+−|+− 2.351 0.674 2.029 1.005 0.580 0.342 0.736 0.227
+| −+− |− 2.351 0.426 2.029 2.207 - 0.342 1.886 -
+|+−+ |− 2.351 0.426 2.029 2.207 - 0.342 1.886 -
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Table 7.3: b-values in ms/µm2 for TE = 115ms and g = 40mT/m

none flow conco eddy
flow
conco

flow
eddy

conco
eddy

flow
conco
eddy

+|+ 9.275 - 9.275 - - - - -
+|+ |+ 7.246 2.013 7.246 - 1.950 - - -
+− |+− 9.341 2.048 9.275 2.358 2.016 1.098 2.318 0.852
+− | −+ 9.341 1.147 9.275 1.811 1.123 0.077 1.776 -
+| −+|− 7.762 - 7.246 7.369 - - 6.855 -
+|+−|− 7.246 1.196 7.246 4.066 - 1.078 2.820 -
+− |+−+ 9.341 2.048 9.275 2.358 2.016 1.098 2.318 0.852
+−+| −+ 9.341 2.048 9.275 2.358 2.016 1.260 2.318 1.251
+− | −+− 9.341 2.048 9.275 2.358 2.016 1.098 2.318 -
+−+|+− 9.341 2.048 9.275 2.358 2.016 1.105 2.318 1.098
+| −+| −+ 7.762 2.156 7.246 7.369 2.013 0.678 6.855 0.564
+− |+−|+ 7.762 2.156 7.246 7.369 2.013 1.771 6.855 1.534
+− | −+|− 7.762 2.156 7.246 7.369 2.013 0.012 6.855 -
+| −+|+− 7.762 2.156 7.246 7.369 2.013 - 6.855 -
+|+−| −+ 7.762 2.156 7.246 4.066 2.013 1.078 2.820 0.594
+− | −+|+ 7.762 2.156 7.246 4.066 2.013 1.078 2.820 0.616
+− |+−|− 7.762 2.156 7.246 4.066 2.013 1.633 2.820 1.169
+|+−|+− 7.762 2.156 7.246 4.066 2.013 0.977 2.820 0.846
+| −+− |− 7.762 1.196 7.246 7.369 - 1.078 6.855 -
+|+−+ |− 7.762 1.196 7.246 7.369 - 1.078 6.855 -
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For the concomitant field compensation, the highest b-values can be aieved with the
Stejskal-Tanner sequence, whi can also be aieved by any sequence with one RF pulse.
e sequences with two refocusing pulses generally show lower maximal b-values.
If flow and eddy current compensation are used at the same time, the possible b-value is

lower than for ea compensation individually and only gives about 10–20 % of the Stejskal-
Tanner b-value. e use of flow and concomitant field compensation yields higher b-values
for only one RF pulse than for two. e difference decreases for longer TE. is is the other
way round for concomitant field and eddy current compensation, where two RF pulses are
more efficient than one and the effect increases with longer TE.
In the case of short and intermediate TE, the best results for the full compensation are

aieved by sequences with only one refocusing pulse. For long TE the highest b-values
are aieved with two RF pulses. Since shorter TE are favorable in most cases, as they
yield higher signal-to-noise ratio (SNR), the sequence +−+| −+ has been osen for the
measurements.

7.2 Phantom Measurements

7.2.1 Flow Compensation

e images used for validating the flow compensation, were acquired with a FOV of 252×
420mm2, a nominal in-plane resolution of 4.2×4.2mm2, a slice thiness of 4.5mm, TE =
90ms, TR = 4000ms, a partial Fourier factor of 6/8 and a readout bandwidth of 1785Hz/pixel.
Ten b-values between 0 and 0.8ms/µm2 were acquired without flow and for the mean flow
velocities vflow,1 = (0.85 ± 0.08) cm/s and vflow,2 = (1.71 ± 0.11) cm/s. e diffusion en-
coding direction was osen to be mainly in flow direction.
For the analysis, the signal was averaged over a ROI in one slice. e results of all

compensation combinations for vflow,1 and vflow,2 are shown in figure 7.1. For the sequences
that are not compensated at all or only for concomitant fields, the signal shows a steep
initial drop until it decreases to the noise level. e sequences that are flow compensated
show a similar signal decay to the measurements without flow. In the measurements with
the higher flow velocity, there is a slight difference and the signal with flow decays a lile
bit faster. For both eddy-current-compensated sequences without flow compensation the
signal curve lies between the other two groups, meaning it decreases faster than the flow-
compensated sequences, but slower than the other non-flow-compensated ones.

7.2.2 Eddy Current Compensation

To validate the eddy current compensation, the grid phantom was used and images with
64 different diffusion directions were acquired with a b-value of 1.0ms/µm2. For the mea-
surements, TE = 90ms, TR = 4000ms were osen. e FOV was 432 × 450mm2 with
a nominal resolution of 4.5 × 4.5mm2 and a slice thiness of 5mm for all ten slices. e
readout bandwidth was 2940Hz/pixel and a partial Fourier factor of 6/8 was used.
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Figure 7.1: Diffusion measurements under flow. e measurements were performed for
all compensation combinations of flow (f), concomitant fields (c) and eddy cur-
rents (e) with two flow velocities, a slower one (a) and one approximately twice
as fast (b). Additionally, a measurement without flow was made. All flow-
compensated measurements show a similar decrease in signal, whi deviates
only slightly from the measurement without flow.
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e CV of the signal over the 64 directions was calculated on a pixel-by-pixel basis.
e resulting maps are shown for one slice and all eight compensation combinations in
figure 7.2. A difference between the maps is mainly visible on the outer areas of the grid
and at the upper edge of the phantom.
e grid points are smeared out over several pixels in phase encoding direction, whi

was downwards in these measurements. In principal, the same holds true for the upper
edge of the phantom, where, however, the smearing appears over larger areas and the CV
shows larger values.
To quantify the eddy current compensation efficiency further, a ROI analysis was per-

formed for three different ROIs: the square and the octagon shown in figure 7.2, as well
as the whole image. e CV was averaged over the ROI and all slices simultaneously.
e results are shown in figure 7.3. e overall highest CV of all ROIs can be seen for
the concomitant-field-compensated and the uncompensated sequences. In the two small
ROIs, all other sequences show similar CVs. is is different for the average over the whole
imaging volume, where the eddy-current-compensated sequences, with and without flow
compensation, show the lowest CVs. Flow and concomitant field compensation is slightly
worse and an additional eddy current compensation does not improve this.
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Figure 7.2: CV maps for one slice of the grid phantom for SDE measurements. e ROIs
were used for comparing the mean CV for all compensation combinations. e
use of eddy current compensation (eddy) reduces the CV, no maer whi com-
bination of flow and concomitant field (conco) compensation was used.
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Figure 7.3: Coefficient of
variation for all compen-
sation combinations over
different ROIs. e mean
value over the rectan-
gular (a) and octagonal
(b) ROIs in figure 7.2
show similar trends
with only marginal
differences among most
compensation combina-
tions. is is different
when the whole image is
considered (c).
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7.3 In Vivo Experiments
e effects of different compensation combinations were also examined in different regions
of the human body. Diffusion weighted images of the brain, the abdomen and the prostate
of healthy volunteers were acquired. Additionally, IVIM measurements of patients with
prostate carcinoma were performed.

7.3.1 Brain

Two measurement series were performed in the brain. To show the improved stability
of repeated measurements, an experiment with three b-values (0, 0.5 and 1.0ms/µm2),
three orthogonal diffusion directions (x-, y- and z-direction) and ten repetitions was per-
formed. e compensation combinations that were looked at were concomitant fields, flow,
flow+concomitant fields, and flow+concomitant fields+eddy currents. e images were
acquired with TE = 80ms, TR = 5500ms, a nominal in-plane resolution of 2.8× 2.8mm2

for 23 slices with a slice thiness of 5mm and a FOV of 218× 280mm2. A partial Fourier
factor of 6/8 and a bandwidth of 2780Hz/pixel were used. e diffusion coefficient was
calculated for the different directions individually as well as for the trace weighted images.
To distinguish between diffusion coefficients determined from only one direction and those
from the trace weighted images, the name ADC is used for the diffusion coefficient of a
single direction and MD for the diffusion coefficient of the trace weighted images. e
calculations were done for ea repetition independently so that a CV could be calculated.
e CV for the MD is presented for all four compensation combinations in figure 7.4 for

one exemplary slice. For beer orientation, an image with b = 0 and a MD map for one
repetition are also shown. It is visible that the CV is highest in the only concomitant-field-
compensated case (figure 7.4c). It was reduced by using flow compensation (figure 7.4d).
A further improvement was aieved by combining both compensation (figure 7.4e). An-
other slight improvement of the MD stability was seen when an additional eddy current
compensation was used (figure 7.4f).
e differences between the compensation semes look different in the slice in fig-

ure 7.5, whi is 30mm higher than the one in figure 7.4. e dependence of the ADC
on the encoding direction can be seen in the first line. e other images show the CV
of the ADC for the different directions and compensation combinations. In contrast to
the slice in figure 7.4, a clear difference is seen between the full compensation and the
flow+concomitant field compensation. e observed differences between the other com-
pensation combinations remain unanged from the slice in figure 7.4, although the overall
CV seems slightly higher. ere were no systematical differences between the CV maps
for the different diffusion directions.
In the two presented slices, the median CV over the brain was determined by manually

segmenting the whole brain based on a b = 0 image. e values are listed in tables 7.4 and
7.5. ey show the same trends already described for the images. e median was osen,
as there were single pixels with very large CV-values, whi would dominate the mean
value. e CV of the ADC is higher than the corresponding CV of the MD for both slices
and all compensation compensations
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Figure 7.4: B = 0 image, MD and CV of MD in the brain for SDE measurements. e
b = 0 image (a) in arbitrary units and the MD map (b) in µm2/ms are shown to
provide anatomical information. (c)-(f) show the CV of the MD over 10 repeti-
tions for different compensation semes ((c): concomitant field, (d): flow, (e):
flow+concomitant field, (f): flow+ concomitant field+eddy currents).

Table 7.4: Median CV corresponding to the slice shown in figure 7.4

compensation MD up–down le–right through plane
conco 0.063 0.075 0.077 0.081
flow 0.048 0.060 0.059 0.060

flow+conco 0.043 0.053 0.055 0.052
flow+conco+eddy 0.039 0.050 0.052 0.048
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Figure 7.5: CV of the diffusion coefficient for different directions in the brain. e diffusion
coefficient (first row, in µm2/ms) shows a directional dependence, whi is not
translated directly to the CV maps.
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Table 7.5: Median CV corresponding to the slice shown in figure 7.5

compensation MD up–down le–right through plane
conco 0.055 0.065 0.066 0.063
flow 0.046 0.056 0.057 0.055

flow+conco 0.038 0.047 0.049 0.044
flow+conco+eddy 0.029 0.035 0.037 0.033

In a second experiment, six different diffusion directions were acquired to determine the
diffusion tensor D and from this the FA. e b-values used were 0, 0.5 and 1.0ms/µm2

for no compensation, flow compensation, flow+concomitant field compensation and full
compensation.
e images were acquired with TE = 75ms (for the full compensation this had to be

extended to TE = 80ms), TR = 4000ms and a single repetition. e other parameters
were identical to the first brain measurement series. e slice in figure 7.6 is the same as
in figure 7.4.
e arrows point towards areas where differences between the compensation combina-

tions can be seen. A visual inspection shows mostly minor differences between the dif-
ferent compensation semes. e largest ones can be seen between no compensation and
the other three measurements. Without any compensation, a non-zero FA can be detected
in areas where there is no anisotropy su as the ventricles. Additionally the FA-values at
the brain edges are reduced visibly if a beer compensation seme is used. e largest
improvement can, again, be seen between no compensation and the other three measure-
ments.

7.3.2 Abdomen

To show that it is possible to also do flow-compensated IVIM with the proposed sequence,
one volunteer’s abdomen was scanned in free breathing. e motion artifacts were aver-
aged out by taking the mean value over 5 repetitions. e b-values 0, 0.025, 0.05, 0.1, 0.15,
0.2, 0.25, 0.5 and 0.8ms/µm2 were acquired for three diffusion directions to calculate the
trace weighted images. e compensation semes concomitant fields and flow+conco-
mitant fields were used. e other imaging parameters were TE = 65ms, TR = 4000ms,
FOV = 252 × 350mm2, nominal resolution = 3.5 × 3.5mm2, slice thiness = 5mm,
partial Fourier factor = 6/8, and bandwidth per pixel = 2380Hz/pixel.
In figure 7.7, a slice with b = 0 is shown on whi ROIs drawn. ose ROIs were used

to determine the IVIM parameters in different organs. e normalized signal values with
the fied IVIM model can be seen in figure 7.8. e values forD, f andD⋆ for the kidney,
liver, and spleen are presented in tables 7.6a, 7.6b, and 7.6c.
In all three organs, the use of flow compensation reduces the perfusion fraction. e

relative reduction is largest in the kidney, while it is similar in liver and spleen. e lowest
perfusion fraction was observed in the spleen. e diffusion coefficient remains mostly
constant for both compensation semes. In the liver, there is a slight increase in D for
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Figure 7.6: FA maps acquired with different compensation combinations. e arrows are
pointing to regions with differences among the different maps. e largest dif-
ferences can be seen between concomitant field compensation (a) and the oth-
ers. Among flow compensation (b), flow+concomitant field compensation (c)
and the full compensation (d), there are only small differences, whi are mainly
located at the brain edges.
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Figure 7.7: Slice osen for ROI evaluation of IVIMmodel in the abdomen. e ROIs placed
for fiing of the IVIMmodel in the kidney (red), the liver (green), and the spleen
(blue) are shown. e ROIs were drawn on the averaged b = 0 image of the
sequence with flow+concomitant field compensation.

Table 7.6: IVIM fit results (± 95% confidence interval) in the abdomen

(a) Kidney

compensation D/(µm2/ms) f D⋆/(µm2/ms)
conco 1.90 (0.54) 0.28 (0.18) 12 (9)

flow+conco 1.88 (0.18) 0.13 (0.07) 15 (10)
(b) Liver

compensation D/(µm2/ms) f D⋆/(µm2/ms)
conco 1.12 (0.25) 0.31 (0.05) 46 (26)

flow+conco 1.28 (0.10) 0.22 (0.02) 29 (8)
(c) Spleen

compensation D/(µm2/ms) f D⋆/(µm2/ms)
conco 0.78 (0.13) 0.12 (0.05) 19 (16)

flow+conco 0.76 (0.06) 0.08 (0.02) 27 (20)
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Figure 7.8: IVIM model fits for kidney, liver and spleen. For all organs ((a): kidney, (b):
liver, (c): spleen), a bi-exponential fit can be seen. In the kidney and liver, there
is a difference in the low b-value regime between flow compensation and no
flow compensation. For higher b-values, this difference is lost in the liver. In the
spleen, the difference appears at intermediate b-values.
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Figure 7.9: IVIM parametermaps of the abdomen. In the upper row, the diffusion coefficient
D is shown in µm2/ms for concomitant field compensation ((a) and (c)) and
flow+concomitant field compensation ((b) and (d)). e second row shows the
perfusion fraction f .

the flow-compensated measurement. is can be seen in the slower signal aenuation for
intermediate and large b-values.
It should be noted that in figure 7.8 the normalized signal is ploed, whi allows a

beer comparison between different organs but omits the absolute value. is is smallest
for the liver (see figure 7.7) and similar in the kidney and spleen. e values for D⋆ show
the largest uncertainties in all fits. D⋆ is roughly one order of magnitude larger thanD.
It is also possible to calculate f and D maps. An exemplary slice is shown in figure 7.9.

e parameter maps show the same trends, that were already observed in the ROI analysis.
e value of f is lower in the flow-compensated measurement. D remains constant in the
spleen and is slightly higher in the liver when flow compensation is used. In the le kidney
(on the right side of the image), the meanD-value anges only lile, but the distribution
seems more even in the flow-compensated measurement.

7.3.3 Prostate

In the prostate, two experiments where performed with one volunteer. e first mea-
surement series included five repetitions to examine the stability of the different gradient
semes. e images were acquired with four b-values (0, 0.25, 0.5 and 1.0ms/µm2) in
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Figure 7.10: CV of MD in the prostate prostate of a healthy volunteer. Different com-
pensation combinations were used ((a): concomitant field, (b): flow, (c):
flow+concomitant field, (d): flow+concomitant field+eddy current compen-
sation). e prostate was roughlymarked on a corresponding imagewith b = 0
and the outline is shown as a white line. e CV improves the most when flow
and concomitant field compensation are combined.

three directions, with TE = 85ms and TR = 3300ms. e FOV was 280× 218mm2, with a
nominal resolution of 2.8× 2.8mm2 and a slice thiness of 5mm. Other parameters used
were a pixel bandwidth of 2780Hz/pixel, a Grappa factor of 2 and a partial Fourier factor
of 6/8.
From the three directions, the trace-weighted image was calculated for ea b-value and

repetition. Aerwards, the MD was determined and the CV of the MD over all repetitions
was calculated pixelwise. ese maps can be seen in figure 7.10. ey show no major
difference between only concomitant field (figure 7.10a) and only flow (figure 7.10b) com-
pensation. e same holds true for the maps for flow+concomitant field (figure 7.10c) and
flow+concomitant field+eddy current compensation. An improvement can be seen when
going from the first to the second pair. is is confirmed by looking at the mean value ±
standard deviation over the ROIs shown in figure 7.10. In this analysis, the mean CV for
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Figure 7.11: Slice osen for ROI evaluation of the IVIM model in the prostate of a healthy
volunteer. e red ROI encompasses the central gland of the prostate, while
the green one was drawn around the peripheral zone. e green ROI does not
include the red one.

concomitant field compensation alone is with 0.21±0.45 smaller than for only flow com-
pensation 0.26±0.38, although the standard deviations are both rather large. e values for
the measurements with flow+concomitant field (0.14±0.08) and with flow+concomitant
field+eddy current (0.15±0.12) compensation are very close together.
e secondmeasurement series was used to determine IVIM parameters. erefore the b-

values 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.5 and 1.0ms/µm2were usedwith the four different
compensation combinations: no compensation, concomitant field, flow+concomitant field,
and flow+concomitant field+eddy currents so that two measurements were without and
two were with flow compensation. e other imaging parameters were the same as in the
other prostate measurement series.
For ROI analysis, two ROIs were osen (see figure 7.11), one covering the peripheral

zone and the other covering the central gland. e resulting normalized signal vs. b curves
are shown in figure 7.12. e different measurements can be distinguished more easily
in the graphs showing a zoom on low b-values. e fiing results (with 95% confidence
interval) are shown in table 7.7a for the central gland and in table 7.7b for the peripheral
zone.
In the central gland, the perfusion effect is rather small and the use of flow compensation

shows only minor effects. In the peripheral zone, this effect is considerably larger. Without
flow compensation, a steep signal drop can be observed in the peripheral zone for low
b-values. is is no longer present when flow compensation is used. e measurements
without any compensation and the one with only concomitant field compensation yield
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Figure 7.12: IVIMmodel fits for the prostate of a healthy volunteer. In the central gland ((a)
and (c)), the IVIM effect is small and only a slight effect of flow compensation
(noted with f) could be observed. In the peripheral zone ((b) and (d)), the effect
is noticeably higher. e second row allows a closer look at the low b-value
range. ere are only small anges if concomitant field (noted with c) or eddy
current (noted with e) compensation is used. (c) and (d) are close ups on small
b-values of (a) and (b) respectively.
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Table 7.7: IVIM fit results (± 95% confidence interval) in the prostate of a healthy volunteer.

(a) Central Gland

compensation D/(µm2/ms) f D⋆/(µm2/ms)
no comp 1.23 (0.08) 0.11 (0.03) 45 (21)
conco 1.25 (0.10) 0.08 (0.02) 120 (144)

flow+conco 1.15 (0.20) 0.11 (0.12) 10 (13)
flow+conco+eddy 1.33 (0.07) 0.05 (0.02) 87 (107)

(b) Peripheral Zone

compensation D/(µm2/ms) f D⋆/(µm2/ms)
no comp 1.77 (0.33) 0.20 (0.05) 114 (107)
conco 1.73 (0.24) 0.18 (0.04) 80 (61)

flow+conco 1.39 (0.49) 0.16 (0.29) 8 (12)
flow+conco+eddy 1.60 (0.12) 0.07 (0.04) 39 (46)

similar results forD and f in ea ROI. In the central gland, they ange only a lile when
using the full compensation. In the peripheral zone, both values are reduced, whereas the
reduction is relatively larger for the perfusion fraction. In the case of flow+concomitant
field compensation, the bi-exponential model does not seem to be suitable to describe the
data very well, as the uncertainty is larger than the value itself for f andD⋆ in both ROIs.
In addition to the ROI analysis, voxelwisemaps were calculated. e diffusion coefficient

D is shown in figure 7.13 and the perfusion fraction f in figure 7.13. For these images, the
parameters inside the union of the ROIs in figure 7.11 were superimposed in color on a
gray-scale magnitude image with b = 0.
e D maps show similar features to the ROI analysis su as a higher value in the pe-

ripheral zone. is is at least the case in the le and right part of the peripheral zone, whi
was marked in figure 7.11. In the posterior area, there is only a thin area with a largerD for
no compensation and only concomitant field compensation, whi is not seen in the other
two measurements. In those measurements, D has the same value as in the central gland.
Additionally,D seems to be smaller in the peripheral zone for the flow+concomitant field
and fully compensated sequences compared to the no and the concomitant field compen-
sation sequences.
In the f maps (figure 7.14),the distinction between peripheral zone and central gland is

not possible, although the areas with higher perfusion are mostly located in the peripheral
zone for both measurements without flow compensation. e other two measurements do
not show these areas.
In addition to the healthy volunteer, three prostate cancer patients were imaged with the

same protocol, except for slightly longer ramp times and the b-values (0.05, 0.15, 0.5 and
1.0µm2/ms). For the evaluation, ROIs were placed in suspicious lesions on the standard
MRI images (T2-weighted and diffusion images), that were aerwards biopsied and proven
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Figure 7.13: Diffusion coefficient (D) maps of the prostate of a healthy volunteer using
IVIM. In the central gland all maps look similar. In the peripheral zone D
is higher in the measurements without any (a) and with concomitant field
compensation alone (b) than for one with flow+concomitant field (c) and the
flow+concomitant field+ eddy curren -compensation. D is given in µm2/ms
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Figure 7.14: Perfusion fraction f maps of the prostate of a healthy volunteer using IVIM.
e measurements without any (a) and with only concomitant field (b) com-
pensation show relatively high f -values in the anterior part of the periph-
eral zone, whi are not present in the flow+concomitant field (c) and the
flow+concomitant field+eddy current (d) compensated measurements. e
laer two show more pixels with extremely high f , scaered noise-like over
the prostate.
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Table 7.8: IVIM fit results (± 95% confidence interval) in the prostate of a patient (Gl.3+3).

(a) Tumor

compensation D/(µm2/ms) f D⋆/(µm2/ms)
conco 0.78 (0.58) 0.24 (0.32) 10 (20)
flow 0.94 (0.46) 0.17 (0.28) 9 (18)

flow+conco 1.11 (0.26) 0.07 (0.11) 33 (154)
(b) Reference region

compensation D/(µm2/ms) f D⋆/(µm2/ms)
conco 1.17 (0.47) 0.31 (0.32) 5 (4)
flow 0.48 (0.69) 0.74 (0.69) 3 (1)

flow+conco 0.42 (6.13) 0.74 (2.18) 3 (6)

Table 7.9: IVIM fit results (± 95% confidence interval) in the prostate of a patient (Gl.3+4).

(a) Tumor

compensation D/(µm2/ms) f D⋆/(µm2/ms)
conco 0.86 (0.26) 0.21 (0.18) 5 (4)
flow 1.28 (0.30) 0.05 (0.26) 5 (20)

flow+conco 0.002 (4.40) 0.77 (1.51) 2 (3)
(b) Reference region

compensation D/(µm2/ms) f D⋆/(µm2/ms)
conco 1.68 (0.06) 0.11 (0.03) 18 (8)
flow 1.60 (0.07) 0.30 (0.07) 3.6 (0.3)

flow+conco 1.46 (1.68) 0.37 (1.29) 4 (7)

to be cancerous. For comparison, ROIs in tissue without proven cancer were used. e
ROIs were placed in the same slice.
Slices with MR visible lesions are shown in figures 7.15, 7.16 and 7.17. e results of the

IVIM fits are listed in tables 7.8, 7.9 and 7.10.
e lesions with a Gleason score 3+3 and 3+5were located in the central gland, while

the Gleason 3 + 4 lesion was located in the peripheral zone. e 3 + 3 and 3 + 4 lesions
showed a similar behavior in the IVIM curves when compared with the non cancerous
tissue. ere is in both cases a clear difference between the curves for healthy and cancerous
tissue. e curves differ for higher b-values, while they are very similar for the small b-
values. Differences among the compensation combinations could be observed in neither
of the ROIs examined for those two patients. is is in contrast to the healthy volunteer,
where an effect of flow compensation was observed in the peripheral zone. e 3+5 lesion
shows a smaller difference between the two ROIs.
Even though the curves are clearly separated, this cannot be said about the fiing results.

e values show large uncertainties, whi are in many cases larger than the values itself.
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Figure 7.15: Prostate cancer patient with Gleason score 3+3. (a) T2-weighted image from
clinical protocol. (b) ADC map calculated from clinical diffusion sequence. (c)
Image with b = 0, used for ROI placement. e red ROI was placed in the
tumor, the green one in tissue without proven cancer. (d) Image with b =
1.0ms/µm2. (e) IVIM curves for both ROIs. Reference and tumorous tissue
can be clearly separated, but there is no visual difference between flow and no
flow compensation.
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Figure 7.16: Prostate cancer patient with Gleason score 3+4. (a) T2-weighted image from
clinical protocol. (b) ADC map calculated from clinical diffusion sequence. (c)
Image with b = 0, used for ROI placement. e red ROI was placed in the
tumor, the green one in tissue without proven cancer. (d) Image with b =
1.0ms/µm2. (e) IVIM curves for both ROIs. Reference and tumorous tissue
can be clearly separated, but there is no visual difference between flow and no
flow compensation.
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Figure 7.17: Prostate cancer patient with Gleason score 3+5. (a) T2-weighted image from
clinical protocol. (b) ADC map calculated from clinical diffusion sequence. (c)
Image with b = 0, used for ROI placement. e red ROI was placed in the
tumor, the green one in tissue without proven cancer. (d) Image with b =
1.0ms/µm2. (e) IVIM curves for both ROIs. Reference and tumorous tissue are
slightly separated. ere is no systematic difference between flow and no flow
compensation in the tumor.
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Table 7.10: IVIM fit results (± 95% confidence interval) in the prostate of a patient (Gl.3+5).

(a) Tumor

compensation D/(µm2/ms) f D⋆/(µm2/ms)
conco 1.11 (0.17) 0.16 (0.07) 26 (29)
flow 0.97 (0.16) 0.17 (0.13) 5 (3)

flow+conco 0.05 (15.54) 0.80 (4.33) 2 (11)
(b) Reference Region

compensation D/(µm2/ms) f D⋆/(µm2/ms)
conco 0.00a 0.84 (0.12) 3 (1)
flow 1.63 (0.53) 0.08 (0.77) 3 (11)

flow+conco 0.47 (5.20) 0.76 (2.00) 2 (4)

ano confidence interval can be given, as the value was limited by the fiing constraints
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is work aimed at improving the determination of microscopic tissue parameters su as
µFA or tissue perfusion, by reducing artifacts in different diffusion weighted MRI te-
niques. erefore, two sequences were developed. e first one was a DDE sequence,
whi was modified to compensate for eddy current artifacts. e improvements were
demonstrated in phantom experiments and verified in vivo. e in vivo measurements of
the µFA mainly benefited from reduced falsely elevated values in areas with lile to no
anisotropy. e second one was a SDE sequence. In previous works, SDE sequences were
compensated for flow or eddy current artifacts individually. Here, it was shown that it is
also possible to aieve these compensations simultaneously while additionally compen-
sating for concomitant fields. is was shown in simulations and phantom experiments.
e use of these compensations allowed a more accurate determination of the FA in the
brain and more stable IVIM measurements in the abdomen and prostate.

8.1 Eddy-Current-Compensated Double Diffusion
Encoding

8.1.1 General Remarks

e eddy current compensation for the DDE sequence was aieved by using the TRSE
[Hei00, RHWW03] gradient seme for ea diffusion encoding individually. is re-
duced the need for post processing methods for eddy current compensation that require
the acquisition of additional images [BKKT04, LBF15] and/or an image registration [HM96,
MMK+10]. e acquisition of additional images requires more measurement time, whi
is not desired. Registration approaes suffer from the problem that they cannot reduce
image blurring from time dependent eddy currents and have to deal with the anging
image contrasts for different diffusion encoding strengths [Hor99]. Another problem with
the affine registration approaes is that they perform worse at correcting the eddy cur-
rent artifacts than the sequence design approaes [NDC+11]. For the best possible results,
it might be necessary to combine an eddy current compensated sequence design with an
appropriate post processing algorithm.
All eddy current compensation was performed under the assumption of a single decay

time. is time constant was osen to minimize the eddy current artifacts, although it
was not possible to compensate for eddy currents completely. is can be seen by the
difference between the fully compensated measurements and the baseline measurements
with only one diffusion direction. Oneway to improve this might be to use an approa that
compensates partly for two decay times [Fin10]. A drawba of this approa is the longer
TE needed. For in vivo measurements, the use of the proposed sequence already yielded an
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approximately 20ms longer TE. If this is prolonged even further, the measurements might
get unfeasible for reasonable b-values. With short tm, it might be more reasonable to use
the approa for two decay times.
It should be noted that the definition of tm used in this work differs from the definition

used in most publications. Here, it was defined as the time from the end of the first diffu-
sion encoding to the beginning of the second encoding, while it is normally the time from
the beginning of the rephasing gradient of the first encoding to the start of the dephas-
ing gradient of the second encoding [SJA+16]. Consequently, in the u/u sequence the tm
given here is shorter by one total gradient time than in the standard definition. e reason
for the different definition lies in the sequence semes of the other three compensation
combinations. e lowest aievable tm is limited because of the varying gradient pulse
durations and the RF pulses in between. Additionally, the diffusion times that were used
for comparison of different encoding semes (in DDE and SDE) were the total durations
of the individual encodings, labeled TD. ese definitions lead to the effect that the sum of
both TD and tm gives the total time needed for both diffusion encoding. e disadvantage
of the tm definition is that the theoretical zero mixing time limit, with overlapping gradient
pulses of the two encodings, is different than the tm = 0 used here.
Another definition, whi varies in the literature, is when q1 and q2 are considered to

be parallel and when they are seen as antiparallel. In many previous publications, it is not
clearly stated whi definition the authors used [JB11, SBS+12], but they mostly followed
[Mit95]. e authors who do mention it also followed this conventions [KF08, Fin11]. All
the aforementioned studies used the u/u sequence and considered q1 and q2 as parallel
if the two innermost gradients are parallel. In this case, parallel encodings are aieved
if the rephasing gradient of the first encoding and the dephasing gradient of the second
encoding are parallel. A recent consensus of nomenclature in DDE experiments [SJA+16]
stated that it is more helpful to define parallel encodings for the effective gradient seme,
whi is without RF pulses and adjusted gradient directions. In this case, two encodings
are considered parallel if the dephasing gradients of ea encoding are parallel. is is the
opposite definition of the commonly used one and the one used in this work. ese two
different definitions explain the opposite sign inQ = tr(Q)measured here and predicted in
[JB11]. ere, the theoretical considerations and simulations predicted a negative definite
Q, while here clearly positive values were measured. e definition for Q in the signal
equation 5.15 looks the same as in [JB11], but the additional minus that pops up by the
redefinition of parallel q-vectors is absorbed in the definition of Q.

8.1.2 Simulations and Phantom Experiments

e diffusion phantom experiments show a slight decrease in Q with longer tm for the
fiber area. is was more prominent in the Monte Carlo simulations. e decrease is in
accordance with expectation [KF09, Jes12] and measurements [SOBC09, SC11a]. In these
publications, the signal difference between parallel, antiparallel and orthogonal measure-
ments is used for estimations of pore size and anisotropy, without calculatingQ explicitly,
with the exception of [Jes12]. It was shown that Q and D bear all information on com-
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partment size that can be determined from fits with terms up to the order of q2 (that is
b) [JB11]. In the agarose gel, where the diffusion is mainly free [WS70], the correlation
tensor was basically zero, as expected [JB11]. e one value in agar gel close to the value
inside the fiber area can most likely be aributed to noise. e low diffusion encoding
(q = 0.05 µm−1) leads only to a small signal difference and thus to a high sensitivity to
noise.
e Monte Carlo simulations show a strong dependence of Q on tm for short mixing

times. Additionally the TD behavior shows differences between the two geometries. is
might be explained by the different times needed to rea the long time limit for both
geometries. is fact is best visible in the dependence on tm. For the plates, the long
mixing time limit(Q = 0) is reaed for tm & 15ms. For the circle, the long time limit
is not yet reaed for 30ms. In general, the simulations for Q done here show the same
trends as in [JB11] and [KF09].
An important result of the simulations for µFA is that a microscopic anisotropy can

be measured for the circle, although none is present, if the long mixing time limit is not
met. In this regime, there is still a cos θ dependence of the signal whi is due to the
restrictions [Mit95, KF08] and leads also to differences between parallel and perpendicular
encodings. In the limit of low q-values and long diffusion times, the use of parallel and
antiparallel diffusion encodings should eliminate the difference and thus the apparent µFA
[Mit95, KF08]. is was theoretically shown in descriptions of DDE parameters where the
assumption of long diffusion times has been loosened [ÖB08], but low q-values were still
assumed. In another work, higher q-values were considered in the zero and long mixing
time limit [Öza09] leading to the same result. In simulations where none of the conditions
were met, deviations were found for the angular dependence of the signal [KF09], whi
would reduce, but not eliminate, the false µFA. In the simulations performed here also
none of the assumptions were met, whi might explain the false µFA, although parallel
and antiparallel q-vectors were used.
For the parallel plates no tm dependence of the µFA was found. erefore, the diffusion

time dependence can be explained by the following considerations. For short diffusion
times only the particles close to the boundaries are effected by these while most diffuse
freely. e longer the diffusion time gets the more particles are affected by the boundaries
and therefore experience the anisotropy [MSSLD92, MSS93]. Since the total anisotropy is
derived from an average over all particles, it grows with longer diffusion times until the
particles probe the whole volume and the µFA reaes the maximal value. e simulations
showed that this process is slightly faster for the µFA than for the FA.
In the diffusion phantom, a small dependence of µFA on tm was measured. is differ-

ence to the simulations might be explained by the differences in the setup, as, for example,
the simulations assumed infinitely short gradient pulses. In the measurements, the gradient
pulse durations were effectively just a lile less than TD/2. e main point of the simula-
tions was to show that the existence of isotropic boundaries can lead to an apparent µFA
if the long mixing time limit is not met and that the correlation tensor is a good measure
to see if the long mixing time limit is reaed.
e overestimation of the µFA for small q-values in the phantom measurements is in ac-

cordance with [JLSD13] where simulations showed that the determination of ϵ and there-
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fore also µFA depends on many parameters su as the pore size and q-value. It can happen
that ϵ is overestimated for small q-values. For a very large ϵ, the µFA goes to 3/2, as can
easily seen from the normalization (equation 5.13).

8.1.3 In Vivo Measurements

e DDE brain measurements show clearly elevated µFA values in gray maer, whi are
reduced if the compensated sequence is used. is is visible in the calculated maps as well
as in the averages over the whole brain. For the white maer, however, no systematical
anges were observed. e µFA-values reported here for white maer lie below the ones
in [SLvW+15], although it must be considered that the laer used the q-vector magic-
angle spinning (qMAS) tenique. In qMAS, constantly anging diffusion gradients are
employed to determine the microscopic anisotropy [ELT13, LSE+14]. is method assumes
no exange between different pores, a time-independent diffusion tensor and a Gaussian
phase distribution in ea pore. If all assumptions are met, the isotropic DDE seme
and qMAS should give the same µFA-values [JLSD14a], but they report values for specific
white maer regions between 0.93± 0.01 and 1.02± 0.02, whi is considerably higher
than the 0.72-0.79 measured in this work. One explanation for the difference might be
the approximately three times longer diffusion time used in [SLvW+15]. is would allow
the particles to probe the anisotropy beer as was also seen as a result in the simulations.
Another difference is that in this study the values were averaged over the whole brain with
a rather simple white maer mask. is also included voxels that were affected by partial
volume effects and therefore reduced the average. e analysis of single ROIs yielded
higher anisotropies, whi were still smaller than in [SLvW+15].
Other studies measuring the anisotropy in the human brain with DDE [LBF15, LF15]

used a different directional seme yielding a different anisotropy parameter labeled mi-
croscopic anisotropy (MA) [LKF10]. e MA ranges from 0 to 1, but is not identical to
the µFA [LBF15]. Most white maer ROIs show MA values between 0.8 and 0.9, with the
lowest value 0.629± 0.046 and the highest 0.947± 0.017 [LBF15], so the reported values
have a similar range as the µFA measured here. In their gray maer ROIs the MA is be-
tween 0.464± 0.064 and 0.624± 0.079 whi is in the same range as the µFA measured
in section 6.3, whi was on average 0.53± 0.19.
e µFA values have to be interpreted carefully as was shown in the simulations. Mea-

surements whi do not rea the long time limit can lead to a falsely elevated µFA. With
the timing used here, the long time limit was not reaed, whi can be seen by the non-zero
correlation tensor. e falsely heightened µFA is maybe more pronounced in the in vivo
measurements than in the simulations or in [LBF15, LF15] because no antiparallel measure-
ments were included here, whi reduce the effects of a shorter tm [ÖB08, KF09, Öza09].
Additionally, it should be mentioned that in [LBF15, LF15] no cortical gray maer was
looked at. is was done recently in [LF16] where they observed a MA of 0.2± 0.1, while
in this work the whole brain gray maer was looked at.
In the MA studies, similar time parameters were used, but the applied q-values were

slightly lower with q ≈ 0.16 µm−1, compared to the 0.193 and 0.233 µm−1 used here. e
q-values were even higher in ex vivo studies, q = 0.28 µm−1 for fixed vervet monkey
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brain [JLSD13] and q = 0.314 µm−1 for fixed rat brain [SBS+12]. e values given here
are adjusted from the papers to fit the applied definitions. All q-values reported here are
reported for a single encoding. One assumption for the µFA measurements is that terms of
order q6 (that is b3) and higher in the signal expansion are negligible. e role of these terms
is difficult to assess because they are not known a priori. For typical diffusion and kurtosis
values in the human brain, it was estimated that b-values up to 2.0ms/µm2 should lead to
an accuracy within 20 % (for fits up to the order of b2) [JH10]. A similar approa could
be applied here showing that the b-values used here (2 · 0.5ms/µm2) should be reasonably
low.
In this work, the DDE measurements were only optimized for eddy current artifacts.

It might prove useful to consider other sources of artifacts as well, su as concomitant
fields or susceptibility differences. In the optimization for the SDE sequence, it was shown
here, that the TRSE sequence can additionally be compensated for concomitant fields. is
would have improved the measurements with the grid phantom but most likely not have
anged the in vivo results considerably as the magnitude brain images showed no su
artifacts. On the other hand, it would have increased TE and therefore worsened the SNR.
Another source of falsely heightened µFA-values, besides eddy currents, can be suscep-

tibility differences in the tissue [SC11b]. ese lead to internal gradients [Hur98, ZP07]
whi can induce an apparent anisotropy. One approa to minimize these artifacts in
SDE measurements is the use of a bipolar gradient seme and/or the use of additional re-
focusing RF pulses [CHSM89, ZP07]. Some of the proposed solutions were also included in
DDE measurements [KF08, SC11b] and can possibly be implemented for an eddy-current-
compensated sequence.
e proposed eddy current compensation could also be used for other DDE applications

than µFA measurements. It might prove not feasible for pore size estimations, as they are
ideally done in the zero mixing time limit [Mit95, ÖB08, SOBC09] leading to overlapping
gradients. is not aievable with the current approa because of the two dephasing and
two rephasing gradients for ea diffusion encoding. e different durations of the de-
phasing and rephasing gradient pulses and the resulting different position of the RF pulses
hinder a large gradient overlap. It is thus necessary to apply the diffusion encodings consec-
utively, without overlapping gradients. is would prolong the effective mixing time and
decrease the signal modulation [KF08]. For exange measurements with filter exange
imaging (FEXI) [LNL+11, NLvW+13], it might prove more fruitful to use the eddy current
compensated diffusion encoding. is method oen uses a stimulated eo sequence as
even longer tm are required. e eddy current compensated DDE sequence could easily be
modified to use a stimulated eo. As the gradient timings for ea encoding were calcu-
lated individually, the needed 90◦ RF pulses could be included between the two encodings.
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8.2 Artifact-Reduced Single Diffusion Encoding

8.2.1 Optimization

e main goal of the sequence optimization for the SDE sequence was to find a flow-
compensated one that also allowed for concomitant field and eddy current compensation,
but, for completeness, all combinations of compensations were looked at.
One limitation in the optimization is the assumption of rectangular gradient pulses with

constant amplitude. In other diffusion encoding sequences, these assumptions were not
met. In [WSL15], trapezoidal gradient pulses with different amplitudes were applied to get
a flow-compensated diffusion encodingwith additional concomitant field compensation. In
other works, oscillating gradients were used to probe the behavior for short diffusion times
[DPG03, PDG06], whereupon they can be osen to be flow compensated or not [GXC+10,
Wet13]. Although, these sequences have their applications, it was shown that for a given b-
value the shortest TE can be aievedwith trapezoidal gradient pulses withmostlymaximal
amplitude [AWE17]. is was aieved byminimizing TE for a given b-value. e gradient
amplitude for ea time point was optimized without any restriction on the gradient form,
aside from hardware constraints, namely the maximal gradient amplitude and slew rate.
Despite the difference in the optimization setup, finding minimal TE for given b-value
against finding maximal b-value for given TE and partially different constraints, it is a
good indication that trapezoidal gradients aieve the optimal result.
e use of rectangular gradients in the optimization simplifies the equations, without

anging the results, as the ramps only cause minor corrections as can be seen in the theory
sections (3.4, 3.5, 4.2 and 4.4).
In many studies where flow compensation is implemented, the used sequence is+−|+−

[DRTW02, GBK07, AKW+16]. In the simulations performed here, this is the sequence
with the highest b-value for flow-compensated diffusion MRI with additional concomitant
field compensation. In [AWE17], the best result shown for flow compensation is basically
+ − +|−. A reason for this difference can be seen in the longer time they allocated for
the readout with over 20ms compared to the 10ms used here. In the actual measurements,
this difference should not be present as the used sequence+−+|−+ also allows for both
other semes to be realized. If only flow is compensated for, the sequence with the highest
b-value can contain two RF pulses, whi was the case here for the intermediate and long
TE. e difference is only minor and might be canceled out by the higher sensitivity to
imperfections of the refocusing RF pulse.
For the measurements in [AWE17], an additional concomitant field correction is needed.

With the approa presented here, this is not necessary and the b-value is only reduced
marginally. e reduction could be slightly higher if longer readout times were used, but
the effect should not be too severe. In all measurements done in this work, the minimal
TE was extended by a maximum of 5ms when switing from flow to flow+concomitant
field compensation.
Another result of the optimization was that of all diffusion encoding semes consid-

ered, the most b-value efficient eddy-current-compensated one was the TRSE (+| − +|−)
sequence [RHWW03]. is is again due to the rather short readout time used in these
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simulations. In contrast, it was shown that a sequence with only one RF pulse during the
diffusion encoding, like + − |+ can yield shorter TE for higher resolutions and therefore
longer readout durations [Fin09]. Again, the laer sequence is a special case of the actually
implemented sequence.
e sequence with the highest possible b-value depends on the actual timing. Since nor-

mally the readout time is longer than the excitation time, it seems reasonable for sequences
with one refocusing pulse to use more gradient pulses before the RF pulse compared to af-
ter the RF pulse, whi is also reflected in the optimization. Besides the higher sensitivity
to RF pulse imperfections, the inclusion of a second RF pulse also leads to lower b-values,
especially for short TE. e main reason being that the time for the RF pulse cannot be
freely used for maximizing the b-value.
e optimization presented here nulls eddy currents for one decay time, but, as men-

tioned above, it can be beneficial to partly compensate two decay times [Fin10]. is could
be implemented in the optimization quite easily. e same holds true for the compensa-
tion of higher gradient moments, whi proved to be beneficial in cardiovascular diffusion
measurements [FSNL15, WDH15, SvDG+16]. Both adjustments require an additional con-
straint, whi could quite easily be included in the optimization.

8.2.2 Phantom Experiments

e phantom experiments served two purposes, one was to prove the flow compensation
and the other was to examine the capabilities of eddy current compensation.
To demonstrate the flow compensation, a simple phantom was used whi consisted of

a tube with water flowing through it. More advanced phantoms exist, whi also try to
mimic the microstructure in perfused tissue [MMJ91, CC01, CKJ+12], but they were not
needed here as only principal flow compensation should be shown. is was aieved for
all compensation combinations that included flow. ere was a minor deviation between
the flow compensated measurements and the measurements without flow. e reason for
this could be the pulsatile part of the flow produced by the peristaltic pump. e sequence
was only designed to compensate for constant flow, therefore the pulsatile part can lead
to an additional signal decay. e eddy-current-compensated versions of the proposed
sequence without explicit flow compensation exhibited a faster signal decay than the flow-
compensated ones, but a slower decay than the other non-flow-compensated sequences.
e reason for this partial flow compensation lies in the sequence design. For the eddy
current compensation the highest b-value is aieved for the seme + − | + −, whi is
the same as the one oen used for flow compensation [DRTW02, GBK07, AKW+16]. e
actual gradient durations are different, whi leads only to a partial flow compensation. e
same effect leads to a partial eddy current compensation in the flow-compensated sequence
as can be seen by the CV measured in the grid phantom.
e two small ROIs (see figure 7.2) can be regarded as representative if only smaller

structures are of interest, for example, in prostate imaging, while the whole image might
bemore representative for measurements with a larger FOV like the abdomen. is analogy
does not include image distortions due to susceptibility artifacts, whi can be important
in prostate diffusion imaging [MVN+13, DCY+14]. ese were most prominent at the
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upper edge of the phantom. Different image distortions at boundaries can lead to high CV-
values as it includes actual signal as well as noise. In diffusion tensor imaging (DTI), this
can lead to high anisotropy values [JC10]. In the grid phantom measurements, an eddy
current compensation always decreased the high CV values at the edge when added to any
combination of compensations.
e differences between the different combination semes are more pronounced in the

whole image analysis. For flow+concomitant field and flow+concomitant field+eddy cur-
rent compensation the results are nearly the same. is might be explained by the exper-
iment design. e measurements were performed with constant TE (and thus TD) and
b-value. is led to different gradient amplitudes. As eddy currents scale with the gradient
amplitude [VVB90, JWS90, JBP98], the advantage of a beer eddy current compensation
can be evened out by the higher gradient amplitude needed. is effect, however, cannot
explain the higher CV in concomitant field+eddy current compensation compared to only
eddy current compensation. In the optimization these two sequences showed only minor
b-value differences and therefore the gradient amplitude should not have varied mu.
e differences between most compensation combinations vanish when considering the

smaller ROIs. e only two semes standing out are the ones without any and with only
concomitant field compensation. ese mostly use two long gradient pulses with the same
polarity, whi leads to considerable artifacts already close to the isocenter of the MRI
maine where the CV is smallest. e totally uncompensated sequence additionally uses
a short gradient pulse with opposite polarity whi reduces the eddy currents a lile bit.

8.2.3 In Vivo Measurements

To verify the advantages of the proposed compensations for actual in vivo studies, three
different body parts were imaged: head, abdomen and prostate.
e stability of the brain measurements was tested by determining the diffusion coeffi-

cient for ea of the three acquired diffusion directions as well as for the trace weighted
image. is was done for ea repetition individually. To distinguish the two diffusion
coefficients, the ones for the individual directions are called ADC and the one for the trace
weighted image is named MD. at means ADC still includes the directional dependence,
while MD represents tr(D).
Diffusion in thewhitemaer in the brain is highly anisotropic [MCK+90, CBP90, JSWH99],

while the MD anges only lile over larger areas. is might lead to the conclusion that
the improvement in signal stability might have larger effects for the individual ADC maps
compared to the MD. is was not confirmed by the measurements as the CV anges are
approximately the same for all maps. One reason could be the fact that the images used
for the calculation of both diffusion metrics are still highly dependent on the diffusion en-
coding direction. Eddy current artifacts, whi are a main cause for misalignment, show
therefore similar effects for the parameter map stability.
Another source of artifacts in DWI is the pulsatile motion of the brain [BBG+99, SA01].

e source of the pulsations is the heart beat and the resulting blood flow and pressure
variations [WEM11]. e amplitude of the brain parenyma movement is normally be-
low 1mm [PWWC92, EP92] and therefore below the image resolution used here and thus
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should not lead to misalignments. e velocities of brain parenyma can go up to 2mm/s,
whi is in the same order of flow velocities in small blood vessels [KPS05, SKK16]. e
brain pulsation can therefore lead to severe artifacts, due to additional signal dephasing and
dropouts [GWF+92]. ese motion artifacts can be reduced by the use of a cardiac trigger
[HAM10, KDR+13] whi in turn leads to longer measurement times. It was previously
shown that the use of flow-compensated diffusion encodings can be beneficial for diffusion
measurements in the brain [PN91, BTW+95]. ese results were confirmed in this work,
although, it was not examined if the main source of improvement was the motion compen-
sation or the reduced eddy currents. e reduction in the CV-values in the phantom and in
the brain follows parallel trends. In the phantom the improvements cannot be aributed to
reduced flow artifacts as convectional flows cannot explain the reduced CV at the edge and
should produce larger paerns on the magnitude images inside the phantom whi would
have been visible in the CV maps
e improved image quality is translated to the diffusion tensor estimations where a it

can be seen in the artificially increased FA-values at the edge of the brain. When swit-
ing from only concomitant field compensation to the full compensation these are reduced
considerably. e advantages are also visible further away from the edges as all pixels are
possibly affected by eddy current and pulsation artifacts [JC10]. is higher stability in the
images could also improve model based estimations of brain microstructure, for example
with CHARMED [AFRB04, AB05], AxCaliber [ABKYB08], NODDI [ZSWKA12] or many
other model based approaes.
In contrast to the head, there was no improvement in image stability due to the use of

flow compensation in the prostate indicating that pulsation or bowel motion was not an
issue during these measurements. Nevertheless, they might have been present between
measurements as the prostate outline in the examined slice anged slightly once between
concurrent measurements during the stability tests. A major improvement in image sta-
bility is seen when concomitant field compensation is added to the flow compensation. An
additional eddy current compensation does not add to the image stability. In light of the
grid phantom measurements, this suggests that the improvement is caused by the reduc-
tion of eddy current artifacts. ese potential artifacts can lead to erroneous estimates in
prostate DWI [RT14].
For the abdomen measurements, the stability was not tested. Since the measurements

were performed in free breathing, the breathing motion would have dominated the signal
variations and the proposed compensation was not designed to correct for this. To compen-
sate for breathing motion, different approaes could be implemented su as a respiratory
trigger [NDH+10, TSS+09] or acquiring the images in breath-hold [CBMS03]. Both te-
niques have their drawbas as they, for example, require longer acquisition times. e
averaging over several repetitions leads in turn to image blurring. Two studies showed
that measurements under free breathing and with respiratory gating produce similar re-
sults [DGN+13, JOd+14].
Most IVIM measurements were performed without flow compensation, thus, these val-

ues should be compared to the only concomitant-field-compensated sequence. Here the
values lie in the area of previously reported ones. In the kidney the perfusion fraction
is slightly higher than the reported range, whi roughly is from 0.15 to 0.26 [LSSL11,
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JOd+14, NCM+15, BDFT16] (here: 0.28 ± 0.18), in contrast to the value for D whi is
in between the reported values, that are distributed between 1.4 and 2.4 µm2/ms [LSSL11,
JOd+14, NCM+15, BDFT16] (here: 1.9 ± 0.54 µm2/ms). For the liver, the reported f -
values vary a lot between 0.13 and 0.34 [LSSL11, DJK+14, JOd+14, BDFT16, WSL15] (here:
0.31 ± 0.05), while for D the values are between 0.8 and 1.2 µm2/ms [LSSL11, DJK+14,
JOd+14, BDFT16, WSL15] (here: 1.12 ± 0.25 µm2/ms). e values reported here lie in
these intervals. e same holds true for the spleen as the f -values in the literature are
between 0.05 and 0.15 (here: 0.12± 0.05) and results for D range from 0.6 to 0.9µm2/ms
[LSSL11, JOd+14, BDFT16] (here: 0.78± 0.13 µm2/ms).
In the prostate measurements, similar trends are true as the measured values for the

central gland and peripheral zone are comparable to previously reported ones. In the central
gland these were for f between 0.06 and 0.18 (here: 0.08 ± 0.02) and for D between 1.3
and 1.5µm2/ms [RHCEdS09, MMP+17] (here: 1.25 ± 0.10 µm2/ms). In the peripheral
zone the values for f were roughly between 0.03 and 0.23 (here: 0.18 ± 0.04) and for D
between 1.3 and 1.8µm2/ms [RHCEdS09, DLWS11, PTB+13, KRS+14, MMP+17, PPF+17]
(here: 1.73± 0.24).
e previously reported results for IVIM parameters show a large variation. is is due

to several reasons, as the results depend on the oice of b-values [PTB+13], the fiing
algorithm [KRS+14, MMP+17] and, of course, the individual who was measured. ere
are several ways to optimize the oice of b-values for individual organs and they lead to
different protocols [LSSL11, ZSR+12, DJK+14] for ea organ. Since the main target of the
measurements of healthy volunteers was to show the feasibility of IVIM measurements
with the proposed sequence, the b-values were adjusted from clinical protocols that are
used at this institution for standard diffusion imaging.
e results for D⋆ were not considered further as they show a very low reproducibility

[DJK+14, MMP+17].
For the flow-compensated and the non-flow-compensated IVIM measurements, the dif-

fusion coefficient D is roughly the same. is could be expected, since the biexponential
model was introduced to differentiate between actual diffusion and effects that only seem
like diffusion, namely perfusion [LBL+86, LBL+88]. e model assumes that the blood
flow in the capillaries anges the direction oen enough so that it can be treated as a fast
diffusive motion. e long diffusion times needed for this model are normally not aieved
[WSL15], therefore the use of a flow compensation makes a difference. is explains the
lower f -values in the flow-compensated measurements as the fast initial decrease is partly
compensated.
It should also be noted that the flow-compensated fits showed smaller confidence inter-

vals, indicating more stable measurements. e only exception was in the case of flow+
concomitant field compensation in the prostate. One reason could be the low value for f
whi means that there is mainly a monoexponential decay, leading to a higher sensitivity
to noise for the fit. Additionally, the images show a larger signal variation, meaning that
there maybe were small motion artifacts.
In themeasurements of prostate cancer, the diffusion curves showed a difference between

cancerous tissue and the reference regions. is is already used in clinical practice for
cancer detection with the monoexponential model [WBC+16]. ere were also studies that
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examined IVIM parameters for improved detection and staging [STS+12, KRS+14, PPF+17].
ey found significant differences between healthy and cancerous tissue, but they were not
able to differentiate between prostate cancer and BPH [PPF+17]. BPH was not examined
in this study but neither in the healthy volunteer nor in the patients a difference in the
central gland could be found by the use of flow compensation. is indicates that BPH
could not be identified any beer by flow-compensated IVIM. For a definite conclusion, a
more detailed study is needed.
For su a study, it would be beneficial to use more b-values because the fiing results

here showed large uncertainties. Nevertheless the use of a compensated sequence could
improve future studies, as the phantom measurements and the healthy volunteer showed a
clear improvement in image stability. e large uncertainties and nonsensical IVIM param-
eters could also be indicating that IVIM is no suitable model to describe the microstructure
in prostate cancer.

8.3 Summary
e aim of this work was to improve the determination of different tissue parameters by
non-invasive diffusion imaging. erefore, novel MRI sequences were developed. DWI is
a promising tool to probe the tissue microstructure as the range of the random motion is in
the same order as relevant cell sizes, whi is smaller than the image resolution. It thus al-
lows one to infer information that is otherwise not accessible or requires the use of contrast
agents. e diffusion measurements in turn can suffer from artifacts that are caused by the
high gradient amplitudes needed for the diffusion encoding. In this work, two sequences
were developed that allowed the compensation of the most severe artifacts. For the deter-
mination of the microscopic anisotropy, given by µFA, an eddy-current-compensated DDE
sequence was implemented. For the determination of the perfusion fraction f with the
intravoxel incoherent motion (IVIM) model, a single diffusion encoded sequence was used.
is sequence can be compensated for flow, concomitant fields and eddy currents individ-
ually and in any combination. For both teniques, clear improvements in the stability
could be shown in phantom experiments as well as in vivo.
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