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This thesis is concerned with spatial homology truncation for path connected CW-
complexes and the following question: Which continuous maps between two compact
pseudomanifolds with isolated singularities induce continuous maps between the cor-
responding intersection spaces, and when is this assignment functorial? Chapter 1
deals with the construction of a spatial homology truncation functor for path connected
CW-complexes, which extends existing results for simply connected CW-complexes. In
Chapter 2 we partially use the results of the first chapter to present different approaches
to the problem of inducing maps between intersection spaces. Finally, the induced maps
between reduced homology groups of intersection spaces and the induced maps between
intersection homology groups will be assembled in a morphism of reflective diagrams.

Die vorliegende Arbeit befasst sich mit der rdumlichen Abschneidung der Homologie
fiir wegzusammenhingende CW-Komplexe und mit der folgenden Frage: Welche stetigen
Abbildungen zwischen zwei kompakten Pseudomannigfaltigkeiten mit isolierten Singu-
laritdten induzieren stetige Abbildungen zwischen den zugehorigen Schnittrdumen, und
wann verhélt sich diese Zuordnung wie ein Funktor? Kapitel 1 beschéftigt sich mit der
Konstruktion eines Funktors zur rdumlichen Abschneidung der Homologie fiir wegzusam-
menhidngende CW-Komplexe, was bereits bestehende Ergebnisse fiir einfach zusammen-
hingende CW-Komplexe erweitert. In Kapitel 2 werden die Ergebnisse des ersten Kapi-
tels teilweise verwendet, um unterschiedliche Zugénge zu der Aufgabe, Abbildungen zwis-
chen Schnittrdumen zu induzieren, vorzustellen. Zum Abschluss werden die induzierten
Abbildungen zwischen den reduzierten Homologiegruppen der Schnittrdume und die in-
duzierten Abbildungen zwischen den Schnitthomologiegruppen in einem Morphismus von
reflektiven Diagrammen zusammengefiigt.
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Notation

Let Top be the category of topological spaces and continuous maps. By a map between
topological spaces, we always mean a continuous map (unless otherwise stated). Let
HoTop be the homotopy category of topological spaces (i.e. the category of topological
spaces and homotopy classes of continuous maps).

A 3-diagram T of spaces (see |5, page 3f]) is a diagram in Top of the form
xdLasy.
Its realization |I'| is defined by the pushout of f and g, namely
| = (X|_|Y)/(f(a) ~ g(a), for all a € A).

If f: A— X is an inclusion, then we will also write |I'| =Y U, X. A morphism I' — I
of 3-diagrams of spaces is a commutative diagram in Top of the form

X A Y
Xl Ty

By the universal property of the pushout, every morphism I' — I" of 3-diagrams induces
a map |['| — |I| between realizations (such that the obvious diagrams commute). If
f:A— Xisaninclusion, Z := X' = A’ =Y’ and f' = ¢’ = idy, then we will also write
nUg &Y U, X — Z for the induced map between realizations.

The unit interval [0,1] will be denoted by I. The cone of a topological space X is
defined by cone(X) = (X x I)/(X x {0}). Let f: X — Y be a morphism in Top. The
mapping cylinder cyl(f) of f is defined as the realization of

xx1&bx Ly

The mapping cone cone(f) of f: X — Y is defined as the realization of

cone(X) ALx Ly

In the following, CW denotes the category of CW-complexes and cellular maps. CW?
denotes the full subcategory of path connected CW-complexes and CW* denotes the full
subcategory of simply connected CW-complexes. Let HoOCW be the category of CW-
complexes and homotopy classes of cellular maps. Finally, let HoCW,, be the category
of CW-complexes and rel n-skeleton homotopy classes of cellular maps. If f: K — L is
a cellular map between CW-complexes, then its restriction to n-skeletons is denoted by
f™": K™ — L™ The basepoint of the n-sphere S™ will be denoted by so.



Introduction

This thesis is concerned with spatial homology truncation for path connected CW-
complexes and the following question: Which continuous maps between two compact
pseudomanifolds with isolated singularities induce continuous maps between the corres-
ponding intersection spaces, and when is this assignment functorial?

A spatial homology truncation (Moore approximation) of a given CW-complex K in
degree k > 0 is a cellular map e; : K, — K from a suitable CW-complex K_; to K,
such that ej induces an isomorphism on (cellular) homology groups in dimensions below
k and the homology groups of K. vanish in dimensions £ and higher. Chapter 1 focuses
on the construction of a spatial homology truncation functor (see |1, page viii]). This
is motivated by the necessity of spatial homology truncations for all links in the con-
struction of the intersection space of a given pseudomanifold and by the above question
concerning functorial properties of this construction (see Chapter 2). For this purpose,
let p : Top — HoTop denote the natural projection functor. (Thus, p is the identity on
objects and sends a continuous map to its homotopy class.) Moreover, let i : C — Top
be a functor from a category C to Top. (C is called a category of spaces; in practice,
C is a subcategory of Top and ¢ is the inclusion functor, or objects in C are spaces
equipped with some extra structure and ¢ is the forgetful functor.) A spatial homology
truncation functor is a covariant functor

t.r : C — HoTop

together with a natural transformation emby, : t., — pi, such that for all objects L in
C, emby(L) : t-x(L) — pi(L) is (the homotopy class of) a spatial homology trunca-
tion of pi(L) in degree k. (In our setting, L will be a CW-complex.) If ¢t is not a
functor but only a covariant assignment of objects and morphisms, then we will refer
to it as a spatial homology truncation assignment. In |1, Chapter 1|, the construction
of such an assignment is carried out for simply connected CW-complexes and k > 3.
(The assumption of simple connectivity allows the application of the Hurewicz and the
Whitehead theorem.) One might be tempted to choose C = CW' and i as the inclusion
functor. However, [1, Section 1.1.1, page 3ff] gives an example of simply connected CW-
complexes X and Y, such that for obvious choices for t.3X and t_3Y it is not possible
to choose embs(X) : t.3X — X and embs(Y) : t.3Y — Y in such a way that .3 can
be defined consistently on all cellular maps X — Y (such that embs becomes a natural
transformation). Note that these difficulties do not occur in the Eckmann-Hilton dual of
the problem, which involves Postnikov approximations instead of Moore approximations
(for more details, see [1, Section 1.1.1, page 3]). The “lack of functoriality” for Moore
approximations is solved by the introduction of the category CWy~g of k-boundary split
CW-complexes. Objects are pairs consisting of an object K in CW! and a direct sum
complement in Cy(K) of the group Z;(K) of k-cycles of K. Morphisms are cellular maps
which preserve the chosen sum complements. The choice C = CWy- (and ¢ the for-
getful functor) results in the construction of a spatial homology truncation assignment
ter : CWp59 — HoCW,._, which is a spatial homology truncation functor on suitable
subcategories of CWyy (see [1, Theorem 1.41, page 51]).

In Section 1.1, we show that spatial homology truncations e, : K. — K exist for any
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given CW-complex K and k > 0. Section 1.2 transfers the essential steps of the spatial
homology truncation machine presented in [1| to path connected CW-complexes. This
will result in the construction of a spatial homology truncation assignment

2, : CW)_, — HoCW,_,

which extends t. : CWy-9 — HoCW,_; and is a spatial homology truncation functor
on suitable subcategories of CW{., (see Theorem 1.20). For this purpose, the cat-
egory CW233 is introduced as a suitable extension of CW -5 to path connected spaces.
Objects in Cnga are objects in CW? equipped with some extra structure, which is
preserved by the morphisms. As a byproduct, it will be shown in Section 1.3 that every
path connected CW-complex is homotopy equivalent rel 2-skeleton to a CW-complex
which has a cell-basis for its group of n-cycles for all n > 3.

Given an integer n > 2 and a perversity p, the intersection space construction can be
applied to an n-dimensional compact topological pseudomanifold X with isolated singu-
larities after specification of a spatial homology truncation in dimension k = n—1—p(n)
for every link of X. If we take these pseudomanifolds equipped with the required ex-
tra structure as the objects of a category P (n,p) whose morphisms are continuous maps
(with some additional properties) between them, then the intersection space construction
can be seen as an assignment on the object level:

ObP (n,p) - ObHoTop.

Chapter 2 focuses on the problem to extend this assignment to a covariant functor
P. (n,p) — HoTop on suitable subcategories P, (n,p) of P (n, D). Section 2.1 deals with
the problem in cut-off degree k = 1. Section 2.2 uses canonical maps for an approach
to the problem in the case of pseudomanifolds X with a single isolated singularity. In
Section 2.3, we restrict our attention to pseudomanifolds in P (n,p), whose links are
equipped with a CW-structure, such that the group of k-cycles has a cell-basis. We
take advantage of the fact that in this case the required spatial homology truncation
in dimension £ can be taken to be an inclusion of a suitable subcomplex. We will see
in Section 2.4 that the independence of choices of the homotopy type of an intersection
space is connected with the existence of a functor P, (n,p) — HoTop with certain
properties. This viewpoint will be applied to pseudomanifolds with links in the interleaf
category. Section 2.5 uses the results on functoriality of spatial homology truncation for
CW-complexes (see Chapter 1) to construct induced maps between intersection spaces in
a functorial way. For this purpose, we will assume that all involved links are completed
to objects in a suitable subcategory of CWg;a and have vanishing (k + 1)st homotopy
group. Finally, Section 2.6 uses some of the constructed functors P, (n,p) — HoTop
to induce morphisms between k-reflective diagrams. This relates the homomorphisms
induced on reduced homology groups of intersection spaces to the homomorphisms that
can be induced on intersection homology groups.
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1 Spatial Homology Truncation for Path Connected CW-Complexes

Recall that according to [1, Proposition 1.6, page 12| every simply connected CW-
complex K can be completed to a homological n-truncation structure (K, K/n, hx, K-,)
for all integers n > 3 (see |1, Definition 1.4, page 11] and Definition 1.5). This proposi-
tion is central for the spatial homology truncation machine presented in [1, Chapter 1.1].
In the proof, the assumption of simple connectivity is used twice. Firstly, the Hurewicz
theorem is applied in order to identify , (L", L") and C,, (L) for simply connected
CW-complexes L and n > 3 via the Hurewicz map throughout the proof. Secondly, the
homological version of the Whitehead theorem is used to conclude that a certain cellular
map h' : K" — K/n constructed in the proof is a homotopy equivalence (hy is finally
taken to be a suitable homotopy inverse of h').

The result of Section 1.1 is the existence of a Moore approximation e, : K., — K
for any CW-complex K and any integer n > 0 (see Corollary 1.4). If K is path connec-
ted and n > 2, then it can be achieved that K_, is n-dimensional and e, restricts to
the identity map on (n — 1)-skeletons (compare Proposition 1.3). The proof will make
use of Proposition 1.1. This proposition states that every choice of basis in C, (K)
can be realized by an n-dimensional CW-complex L satisfying L"! = K"~ ! and a cel-
lular map h : L — K™ which restricts to the identity map on K" ! and induces an
isomorphism C, (L) — C,, (K) sending the cell-basis of C, (L) to the chosen basis of
C, (K). Modifying the proof of |1, Proposition 1.6, page 12|, the general form of the
Hurewicz theorem will be applied for n > 2 to conclude that the Hurewicz homomorph-
ism , (K", K" ') — C, (K) is surjective. However, Example 1.2 shows that the map
h : L — K™ constructed in the proof of Proposition 1.1 is in general not a homotopy
equivalence.
In Section 1.2, we introduce categories CW9_, for n > 3 (Definition 1.7), such that

e CW,; is a full subcategory of CW._, (see Example 1.8).

e every path connected CW-complex can be completed to an object in CW%w (see

Remark 1.9). (Objects (K,Yk) in CW?_, will be objects K in CW" equipped
with some extra structure X.)

In order to generalize [1, Theorem 1.41, page 51| to path connected spaces, we extend
ten : CW, 59 = HoOCW,,_; to a spatial homology truncation assignment

2, CW?_, — HoCW,,_,

(see Theorem 1.20). In particular, we construct a natural transformation emb? : t2 —
%, where t2__ : CW?_, — HoCW,,_, is the natural projection functor. (Define ¢2_

as the composition of the forgetful functor CWY_, — CW" and the natural projection
functor CW° — HoCW,,_;.) For every object (K, Xg) in CW0_,,

emb? (K, Yg) 1%, (K, Yk) = t° (K, Yg) = K

is a spatial homology truncation of K in degree n. If (K, X) = (K, Yk) is an object in
CW 59, then emb? (K, Yx) = emb, (K, Yx).

In Section 1.3, we will conclude from Proposition 1.13 and the Whitehead theorem
that every path connected CW-complex is homotopy equivalent rel 2-skeleton to a CW-
complex having a cell-basis for its group of n-cycles for all n > 3.
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1.1 Existence of Moore Approximations for Path Connected CW-Complexes

A spatial homology truncation (Moore approximation) of a given CW-complex K in
degree k > 0 is a pair (K., eg), where K is a CW-complex and e, : Ko — K
is a cellular map, which induces isomorphisms H, (K.,) — H, (K) for r < k and
such that H, (K.x) = 0 for r > k (compare |5, page 6]). The purpose of this section is
to show that Moore approximations exist for all CW-complexes K and all integers & > 0.

First, recall some basic facts about the Hurewicz map. Let n > 1 be an integer. Given
a pointed pair (X, A, z¢), the Hurewicz map is defined by

Hur: m, (X, A, z9) — H, (X, A), Hur([f]) = f.(v),

where f, : H, (D", 0D") — H, (X, A) is induced by f : (D",0D", sy) — (X, A, x)
and v is a fixed generator of H, (D",0D") = 7Z. The Hurewicz map is natural: If ¢ :
(X, A, x0) = (Y, B,yp) is a map of pointed pairs, then the following diagram commutes

(note that @, Hur([f]) = @.f.(v) = (¢ o f).(v) = Hur([¢ o f]) = Hur p.([f])):

Tp, (X,A,[IZ’[)) T, (YaBayO)
Hur Hur
H, (X, A) H,(Y,B).

The Hurewicz map is a group homomorphism for n > 2 by [2, Proposition 4.36, page
369]. If n > 2 and K is a CW-complex with basepoint kg € K™ !, then there is in
particular the Hurewicz homomorphism

Hur : m, (K", K" ' ko) — H, (K", K""), Hur([f]) = f. (v).
Let {ez} be the set of n-cells of K. The characteristic maps
x (e2) : (D", 0D") — (K", K"")
induce homomorphisms on homology groups:
x (e?), - Hy (D", 0D") — H, (K", K""") .

By [3, Lemma 10.1, page 201], a basis of the free abelian group H,, (K™, K™™1) is given
by {x (e2), (v)}. We make the following identification:

H, (K", K"™) EBZX () = Pzrer=0C,(K),

X (e’;)* (v) ey Y 7.

The following proposition shows that for a path connected CW-complex, every choice of
basis in the nth cellular chain group (n > 2) can be realized topologically.
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1.1 Proposition. Let n > 2 be an integer and let K be a path connected CW-complex.
Given a basis {0,} of C,, (K), there exist
e an n-dimensional CW-complex L satisfying L™~ = K" and
e a cellular map h : L — K™ which restricts to the identity map on K" ! and such
that h induces an isomorphism on the nth cellular chain groups:

h,:Cy (L) = C, (K™

which sends the cell-basis of C,, (L) to the given basis {0,} of C,, (K").
In particular, the cellular map h induces a chain isomorphism. Therefore, it induces an

(&)

isomorphism H, (L) = H, (K™) for all integers r.

Proof. Choose a basepoint o € K™ . The general form of the Hurewicz theorem
[2, Theorem 4.37, page 371] is applied to the pointed CW-pair (K™, K"~! x¢): Since
K™ — K™ has only cells of dimension n > n — 1, the pair (K™, K" ') is (n — 1)-
connected according to |2, Corollary 4.12, page 351]. Moreover, K"~ and K™ are path
connected, since n > 2. (Note that if X is a CW-complex and m > 1 is an integer, then
X is path connected if and only if X™ is path connected.) Therefore, by the general
form of the Hurewicz theorem, the following Hurewicz homomorphism is surjective:

Hur : m, (K", K", z9) - C,, (K) .
For every a choose a preimage [J,] € m, (K", K™™' x¢) of 6, € C, (K) represented by
Dy : (D”,S”’l,so) — (K”,K"’l,xo) ,  where Hur([¢,]) = 0,.
Using the restrictions a, := ¥4|gn-1 : S"! — K™~ and taking new n-cells w,, define

L:=K"1U Uwa, where [x (wa)] € T, (L, K", 20) .

Qo

Again, there is a corresponding surjective Hurewicz homomorphism
Hur : m, (L, K", 2) — Cy, (L), where Hur([x (wa)]) = x (wa), () = w.

Since x (wy) |sn-1 = Go = ¥4|gn-1, the morphism of 3-diagrams of spaces

Uaa inc
Kn—l I_la Sn—l 1 |_|a D
e e
KTL—l = Kn—l incl Kn

induces a map h: (L, K" xy) — (K", K", z4) with the following properties:
h(r)=x Vae K", hox(wy) =1, ¥V a.

The following diagram commutes by naturality of Hurewicz maps:

14



hx
T (L, K" 2g) ——— 7, (K™, K" 20)

Hur Hur

Cn (L) C, (K™).

All in all, every n-cell w, € C,, (L) satisfies
hi (we) = hy Hur([x (wo)]) = Hur 2. ([x (wa)]) = Hur([h o x (wa)]) = Hur([¢a]) = ba.

Compared to the proof of the original proposition, see [1, Proposition 1.6, page 12|,
the proof of Proposition 1.1 is different in the following way. The homotopy extension
property is used in the original proof to construct a map b’ : K" — K/n (£ L),
which turns out to be a homotopy equivalence by application of the homological version
of the Whitehead theorem, and h is taken to be its homotopy inverse. The present
proof, however, yields a direct construction of A with the desired properties, which
does not make use of the homotopy extension property and the homological version of
the Whitehead theorem. The map A obtained in the proof of Proposition 1.1 is not
a homotopy equivalence in general, as the following example shows. (Nonetheless, the
proof of Proposition 1.13 shows that if A is constructed more carefully, then it can be
achieved that h is a homotopy equivalence.) The following example serves as the leading
example for Chapter 1.

Example. 1.2 Let n > 2 and consider the n-dimensional path connected CW-complex
K := Stv S Tt consists of a single O-cell 2o, which is taken as a basepoint for K,
a single 1-cell and a single n-cell §. Thus, {#} forms a basis of C,, (K). Following the
construction in the proof of Proposition 1.1, we will construct a space L and a map
h: L — K with the desired properties, such that i is not a homotopy equivalence.

Consider the universal cover K 25 K of K. By [2, Example 4.27, page 364] K consists
of the real line R with a copy S}’ of the n-sphere attached at every integer point k£ € R
and p is the obvious covering map, which maps all integers to xo and which restricts to
identity maps S;' = S™. Let ej be the n-cell of the CW-complex K corresponding to the
n-sphere S}.

By naturality of Hurewicz maps, the map p : ([?,]R, 0) — (K, S, zg) of pointed pairs
induces the commutative diagram

~

P+ =

(K, R,0) T (K, S, 20)
Co(K) ———— Cy (K) (%).
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Let us look at the marked isomorphisms. The left Hurewicz map is an isomorphism by
the Hurewicz theorem |2, Theorem 4.37, page 371], since R is simply connected. Next,
we show that p, : Wn(f?, R,0) — 7, (K, S, z0) is an isomorphism. This follows from the
following commutative diagram with exact rows, which is obtained by naturality of the
long exact sequence of homotopy groups:

~

(K, 0) (K, R,0)

T (SY, 20) —— 7 (K, 70) —— 7 (K, SY, 20) —— 01 (ST, 0) -

T (R, 0) -1 (R,0)

1R

The marked isomorphisms can be explained as follows. The covering map p : (f( ,0) —
(K, xo) induces an isomorphism p, : Wn([N(, 0) =N (K, x0) by [2, Proposition 4.1, page
342]. As R is contractible, the map Wn(}N(,O) — Wn([N(, R,0) is an isomorphism by
exactness of the first row. By exactness of the second row, the map m, (K, o) —
7n (K, S, 20) is an isomorphism for n > 3, since the higher homotopy groups of S*
vanish. In the case n = 2 it suffices to show that m (K, S, zg) — m (S', z0) is the
zero map. This is true by exactness of the following portion of the long exact homotopy
sequence of the pair (K, S, zg),

o (K, Sl,xo) — M (SI,I()) i T (K,Io),

where the inclusion S! < K = S!'V S? induces an isomorphism on fundamental groups
by the Seifert-Van Kampen theorem.

The element T := 2ey — e; € C,(K) satisfies p, (T) = 20 — 0 = 0 € C, (K). Fol-
lowing the isomorphisms in diagram (x), T' corresponds to a homotopy class

9] :=p.Hu " (T) € m, (K, S",z9), where Hur([]) = p.(T) = 90.
Therefore, [)] is a preimage of § under the Hurewicz homomorphism
Hur : 7, (K, Sl,:po) —- C, (K) =Z8.

We may assume that J|gn—1 is the constant map mapping all points to xy, because the
representative 9 : (D™, S s5) — (K, S x0) is homotopic to such a map through
maps (D", 5" 1 sy) — (K,S' zp). The reason is that for n > 3, the restriction
I]gn-1 1 (S", s0) — (S, x0) is nullhomotopic rel sq, since 7, 1 (S, zo) vanishes in
this case. For n = 2, 9|1 is also nullhomotopic rel s, since it was shown above that the
restriction map my (K, S*, x9) — 1 (S, z0) is the zero map.

The choice of ¥ can be used in the proof of Proposition 1.1 to construct the desired
cellular map h : L — K. For the n-dimensional CW-complex L we get back the original
CW-complex K by choice of 9. The cellular map h : K — K is the unique map which
restricts to the identity map on S! and satisfies h oy (6) = 9.
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By the lifting criterion |2, Proposition 1.33, page 61], the _composition hop: (I?, 0) —
(K, x) can be lifted under p : (K,0) — (K, xo) to a map h : (K,0) — (K,0):

(K,0) (K,0)

(K, 20) —— (K, x0).

Note that h restricts to the identity map on R C K. (This can be seen as follows: Take
any = € R and choose a path v : I — R < K between v (0) = 0 and ~ (1) = 2. By the
path lifting property 2, page 60], 7 is the unique lift of po~y : I — S' < K which sends
0elto0€ K. But pohoy=~hopory=pon~ (hrestricts to the identity map on S?).

Thus, ho 7 is also a lift of p o~ sending 0 to 0. By uniqueness, ho v = . Evaluation at
1 € I yields h (z) = #.) In particular, h is cellular, and we claim that

he : Co(K) = Co(K), hy(ex) =2er—ep1 VEEZ (%)

Let us prove (xx) for &k = 0 first. Consider the following commutative diagram, which
results from poh = hop and the naturality of Hurewicz maps (the marked isomorphisms
have already been explained):

o (K, S, ) < m.(K, R, 0)

(

o (K, S, ) ~——— (K, R, 0)

The element [x (0)] € 7, (K, S, zo) satisfies h, [x (0)] = [hox (0)] = [J]. We show that
the elements [y (8)] and [J] in 7, (K, S, zo) correspond to ey and T in C,(K) under
the isomorphism Hurop;!. The second corresopondence is clear by definition of [9]. To
see the first correspondence, note that the element [y (ep)] € (K, R,0) is mapped by
Hur to e € C,,(K) and by p, to [x (8)] € m, (K, S, z0). Allin all, h, (eg) = T = 2e9—e.

To prove (xx) for arbitrary k € Z, consider the cellular deck transformation 7, : K — K,
which is given by the shift x — x + k for x € R C K and restricts to identity maps
Sy = Sp .. for all m. Hence, 7 0 x () = X (émx) for all m. Thus, 75 induces the
automorphism on Cn(f? ), which is given by the shift e,, — e,,. for all m. Note that
(xx) follows from hot, = 7 oh. This is clear on R C K, where h restricts to the identity
map. It remains to show that ko 75, 0y (em) = 75 0 h o X (em) for all m. In fact, both
sides of the equation are lifts of hopo x (ex) : S™ — K under p : K — K which send So
to k. Thus, they must agree by the unique lifting property [2, Proposition 1.34, page 62|.
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Finally, we use (*x) to show that h is not a homotopy equivalence. Otherwise, by
|2, Exercise 2, page 358|, h induces an isomorphism on 7, (K, zg). The covering map
p induces an isomorphism p, : m,(K,0) = 7, (K,zy) (n > 2). Therefore, h induces
an isomorphism on m,(K,0). This homotopy group can be identified with H,(K) via
the Hurewicz isomorphism, because K is (n — 1)-connected. Consequently, 1 induces an

isomorphism on H, (K) = C,(K) (note that ker a,(fQ =C, <[?> and im 87(5)1 =0). But

hy : Co(K) = Cp(K) cannot be surjective, since the cell eg are not in the image of h,.
Otherwise, for suitable integers a < b, ¢ and dj (without loss of generality, ¢, # 0),

b b b+1
eo = h, (Z ckek> ) Z ok (2er — exr1) = 2Cq64 + Z dep.
k=a k=a k=a+1

Since {ey},c, forms a basis of C,(K), it follows from ¢, # 0 that a = 0 and dj, = 0 for
all k. Hence, 2¢o = 1, which is impossible, since ¢j is an integer.

The following proposition shows the existence of Moore approximations for any path
connected CW-complex and any integer > 2.

1.3 Proposition. Let K be a path connected CW-complex. Given an integer n > 2,
there exists an n-dimensional CW-complex K_, such that (K<n)"71 = K" ! and a
cellular map e, : K., — K which restricts to idg»-1 and such that e, induces an

isomorphism e, : H, (K_,) = H,(K) forr <nand H, (K.,) =0 for r > n.

Proof. Since im 0,, (C C,,—; (K)) is free abelian, one can choose a splitting
s:imd, — C, (K)
of 0, : Cp, (K) — im 0,,. Writing Z,, (K) = kerd,, and Y = im s, we have
Cn(K) = Z, (K) @Y.

Choose bases {(s} of Z, (K) and {n,} of Y. This yields a basis {(s} U {n.} of C, (K).
Application of Proposition 1.1 to K and to this basis of C, (K) yields
e an n-dimensional CW-complex L with (n — 1)-skeleton K"~! and
e a cellular map h : L — K™ which restricts to the identity map on K" ! and which
induces an isomorphism

hy: Cp (L) — C, (K™)

sending the cell-basis of C), (L) to the given basis {5} U {n.} of C,, (K™).
Since h : L — K™ is cellular, it induces the commutative diagram

C, (L) —=— C, (K™)
Cror (L) —2 s Oy (K™).
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The map h, in the first line is an isomorphism. Since h : L — K™ restricts to the
identity map on the common (n — 1)-skeleton K™~1, the map h, in the second line is
given by the identity map on C,,_; (L) = C,,_1 (K™). Thus, commutativity implies that
the isomorphism h, : C, (L) — C,, (K™) restricts to an isomorphism

hl: Zo (L) — Z, (K"™).

The inverse map h,|™! = h7Y| : Z, (K™) — Z, (L) sends the basis {Cs} of Z, (K") to a
basis {h;! ((s)} of Z, (L). This basis consists of n-cells of L by construction of h. Thus,
the n-dimensional CW-complex L has a basis of cells for its group of n-cycles.

By [1, Lemma 1.2, page 6], L is n-segmented (see |1, Definition 1.1, page 6]). By [1,
Proposition 1.3, page 7|, there is a unique subcomplex K_,, C L satisfying the properties
(1.1) and (1.2) of [1, Definition 1.1, page 6] and such that (K_,)" ' = K" (K_, is
obtained from L by taking away the n-cycle cells.) The cellular map

en: Koy s LM Ky K

has the required properties, where ¢ : K., — L and j : K™ — K are the inclusions:
For r > n one has H, (K.,) = 0 by property (1.1) of |1, Definition 1.1, page 6].
For r < n the induced map e, : H, (K.,) — H, (K) factorizes as

ens t Hy (K<) 2 H, (L) 225 H, (K™) -2 H, (K),

where i, is an isomorphism by property (1.2) of [1, Definition 1.1, page 6] and j, is an
isomorphism, since cells of dimension > n have no influence on H,(K) for r < n. Finally,
h, is an isomorphism, since h induces a chain isomorphism. n

1.4 Corollary. Given a CW-complex K and an integer n > 0, there exists a Moore
approximation e, : K., — K.

Proof. If K is path connected and n > 2, then the claim follows from Proposition 1.3.
If K is path connected and n = 1, then one can take e; to be the inclusion of a 0-cell
K. = kg — K. In the general case, write K as the disjoint union of its connected
components K@, Then, K(® is a connected CW-complex for every a and in particular
path connected. For every «, take a Moore approximation e,(f‘) : K(<O,2) — K@ _ Then,
L], el L, K9 L], K@ = K is a valid Moore approximation of K by the additivity
axiom for homology (see |3, Definition 6.1, page 183]). m
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1.2 Spatial Homology Truncation for Path Connected CW-Complexes

Let n > 3 be an integer. The following definition extends the concept of a homological
n-truncation structure (see |1, Definition 1.4, page 11]) to path connected spaces:

Definition. 1.5 A (homological) n-truncation structure is a quadruple (K, K/n, hx, K.,),

where

1. K is a path connected CW-complex.

2. K/nis an n-dimensional CW-complex with (K/n)"~" = K"' and such that Z, (K/n)
has a cell-basis.

3. hg : K/n — K™ is a cellular map which restricts to the identity map on K"~ and
which is a homotopy equivalence rel K"~ 1.

4. K., C K/n is the uniquely determined subcomplex with properties (1.1) and (1.2)
of [1, Definition 1.1, page 6] and such that (K_,)" " = K",

Next, we define the rel (n — 1)-skeleton homotopy category HOCW? _  which contains

HoCW-_,, (see [1, page 26f]) as a full subcategory:

Definition. 1.6 The category HOCW% <n, consists of the following objects and morph-
isms:
e Objects in HOCWY _ are n-truncation structures as in Definition 1.5.

e A morphism F : (K, K/n,hx,K,) — (L,L/n,hy, L.,) in HOCW?_ is a quad-
ruple F' = ([f], [fa], [f/n], [f<n]) represented by a diagram

K<n ixg = incl K/n hi Kn Jjx = incl %
L<n i7, = incl L/n hr, In jr = incl L7

such that all squares commute up to homotopy rel K"~!. (This agrees with the
definition of morphisms in HoOCW-_,,. Note that f,, # f™ in general.)

The main step in the proof of [1, Theorem 1.41, page 51| is the construction of a covariant
assignment 7, : CW, 55 - HoCW-_,, of objects and morphisms (see |1, page 29ff]).
In order to generalize this theorem to path connected CW-complexes (see Theorem
1.20), we extend the category CW,,~5 of n-boundary-split CW-complexes (compare [1,
Definition 1.22, page 28]) to the category CW'_, (see Definition 1.7 and Example 1.8).
Objects in CW?Da will be objects in CW? equipped with some extra structure, such
that every object in CW? can be completed to an object in CW._, (see Remark 1.9).
Afterwards, we will extend 7_,, to a covariant assignment

72, CWo_, — HoCW? _,
of objects and morphisms (see Corollary 1.19). The definition of 72, on objects will make
use of Proposition 1.13, which generalizes |1, Proposition 1.6, page 12|. Its definition
on morphisms will make use of Proposition 1.14, which is a generalized version of the
compression theorem [1, Theorem 1.32, page 35|.
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First, recall some facts about covering spaces of CW-complexes.
Every CW-complex is Hausdorff by |2, Proposition A.3, page 522| and locally contractible
by [2, Proposition A.4, page 523|. In particular, every CW-complex is locally path
connected and semilocally 1-connected (see |3, Definition 8.3, page 155]).
Let p : X — Y be a covering map (see [3, Definition 3.1, page 139]). If Y is a CW-
complex, then we will assume in the following that X is the CW-complex obtained by
taking as characteristic maps all possible lifts of all characteristic maps of Y (compare [3,
Theorem 8.10, page 198]). Note that p becomes a cellular map satisfying p~! (Y™) = X™
for all m > 0. The restriction p™ : X™ — Y™ to m-skeletons is again a covering map
for all m > 1 (X™ and Y™ are path connected for m > 1).
Now let p : X — Y and p’ : X’ — Y’ be covering maps, where Y and Y’ are CW-
complexes. Assume that X is simply connected. If f :Y — Y’ is a cellular map, then
the composition f o p has a lift f under p’, which is unique after specifying the image of
one point by |3, Corollary 4.2, page 144|:

f

X —X
p|

f
Y

In other words, if x € X and 2’ € X' are points such that f (p(z)) = p’ (¢’), then there is
aunique map f : X — X’ which sends x to 2’ and makes the previous diagram commute.
Note that f is cellular, because for all m > 0 we have

/

p

Y’

FX™ C (™ op o HIX™) =@ "o fop)(X™) Cpt (Y™) = X"

If g : X™ — X'™ is a lift of f™ o p™ under the covering map p™ for some m > 1, then
there exists a unique lift fof fopunder p’ which restricts to g on m-skeletons. (Choose
x € X™ and let fv: X — X’ be the unique lift of f o p under p’ which sends x to g (z).
Its restriction fm : X™ — X' to m-skeletons is a lift of f op™ under p'™, which agrees
with g at x. Hence, fm = g by uniqueness.)

Finally, note that every path connected CW-complex K has a universal cover pg : K —
K by [3, Theorem 8.4, page 155].

Definition. 1.7 The category CW._, consists of the following objects and morphisms:
e Objects in Cnga are quadruples (K, Yi, K, qK), where
1. K is a path connected CW-complex.
2. Yx C C, (K) is a subgroup which arises as the image of some splitting of the
boundary map 0, : C, (K) — im 9, (C C,—1 (K)).
3. K is an n-dimensional CW-complex, such that
(i) 'K and K C K", where pr : K — K is the universal cover
of K. (Hence, pi' : K"! — K" !is the universal cover of K"! and
D K™ — K™ is the universal cover of K™, since n > 3.)
(ii) pkojrox (5’;) =X (ef;) for all ~, \ivvhere {ez} are the n-cells of K, {Ez}
are the n-cells of K and jx : K — K" denotes the inclusion.
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4. qg = p o jx : K — K". (Thus, qx is uniquely determined by K.)
Since K" ' = K™ !, the restriction of gx to (n — 1)-skeletons is pet s Kl Kl
By 3 (i7), we have gk o x (ég) =X (e’;) for all 4. Thus, gx induces the isomorphism

Gres - Cp (F) =, (K), €} = €. We define the composition

—1

uk : G (K) 25 €, (R) 255 €, (K™).

e Morphisms (K, Yk, K,qx) — (L, Yz, L,q.) in CW._, are pairs (f, f), which con-
sist of a cellular map f : K — L and a lift f : K™ — L™ of f" o p} under

prs
- -
K" L"
P | P
f’n
Kn L,

such that the induced homomorphism f, : C,(K™) — C,(L") maps ux (Yx)
into ur, (Yz). The composition with a second morphism (g,9) : (L,YL, L,qL) —

(P,Yp, P,qp) is defined by (g,9) o (f.f) = (g0 f. G0 f).
0

Let us motivate the definition of objects and morphisms in CW, ,.
If (K, Yk) is an object in CW,,55, then the identification 7, (K™, K" ') = C,(K) via the
Hurewicz isomorphism allows us to think of any element of C,,(K') as (the homotopy class
of) a map (D", S""1) — (K", K"'). This observation plays a central role in the proof
of |1, Proposition 1.6, page 12|. If (K, Yi, K, qK) is an object in CW,_,, then K can be
seen as the topological realization of a chosen splitting of the (now surjective) Hurewicz
map Hur : 7,(K", K" kg) — C,(K) (where ky € K" ! is a fixed basepoint). Via
this splitting we can still identify elements of C,(K) with elements of 7, (K™, K™™' ko).
(This was already done in the proof of Proposition 1.1.) The splitting which corresponds
to K is explicitly given by ug : Cp(K) — Co(K™) after the identifications

O (K B = o (R Kby 2 S o (K KL k).
Given kg, the second identification is only well-defined after the choice of a lift %0 c K1
of ko under px. Any two choices differ by an automorphism of 7,(K", K" !, ko) which
comes from the free action of (K", ky) on 7, (K™, K™™', ko). (In fact, m, (K", K", ko)
is a free m (K", ky)-module with basis the homotopy classes of the characteristic maps
of the n-cells of K after application of change-of-basepoint isomorphisms, see |2, Lemma
4.38, page 371|.) In the following, however, we will prefer the approach given in Defin-
ition 1.7. The reason is that in the proof of Proposition 1.13 (the counterpart of [1,
Proposition 1.6, page 12|) we will apply the Whitehead theorem to the simply connected
spacesNF to construct the desired homotopy equivalence.
If (f, f) : (K, Yi, K, qK) — (L,YL,Z, qL) is a morphism in CWY_,, then the condi-
tion foux(Yx) C ur(YL) corresponds to the statement that f* : m, (K™ K™ ko) —
(L™, L") f(ko)) maps ug (Yx) into ur(Yz). This is exactly the condition on relative
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homotopy groups that is needed to generalize the compression theorem [1, Theorem 1.32,
page 35| (see Proposition 1.14). Again, the splittings ux and uy are only well-defined
after the choice of lifts of the basepoints. This corresponds to the fact that f" can be
lifted to f in several ways.

Example. 1.8 Note that CW,,55 is a full subcategory of CW._,. In fact, if (K, Yx)
is an object in CW,,55, then K"~ ! and K™ are simply connected. Therefore, p?{l =
idanl, prf( = jK = (g = idKn and U = 1an(K) ThUS, (K,YK,Kn,ldKn) is the
unique completion of (K, Yx) to an object in CWY_,. Moreover, if (K, Yx) and (L, Y7)
are objects in CW,,5y, then all morphisms (K, Yy, K" idgn) — (L,Yy, L™, idz») in
CW._, are of the form (f, f"), where f : K — L is a cellular map such that the
induced homomorphism f, = f, : Cp(K) — C,(L) satisfies f, (Yx) C Yz. Thus, (f, f™)
corresponds to the morphism f: (K, Yg) — (L,Yr) in CW,,.

Remark. 1.9 Every path connected CW-complex K can be completed to an object
(K, Yi, K, qK) in CW%DB by choosing Yx and K with the required properties. The
choice of Yy as the image of a splitting of the boundary map 9, : C,, (K) — im 9, (C C,,_; (K))
is always possible, since im 9, is free abelian. In order to construct the desired K, note
that the characteristic maps of the n-cells of K are all possible lifts under pj : K" — K"
of the characteristic maps of the n-cells {6:} of K. For every =, choose one lift of y (eg)
under p% and denote the corresponding n-cell of K" by €7. Then K can be taken to be

the subcomplex K"! U U, & of K™

Example. 1.10 For n > 3 and K := S' v S", we have introduced the universal cover
P K — K in Example 1.2. Choose any integer k and set K := RV S and qr : K —
K % K. Then, (K,0,K, qx) is an object in CW®_,. (Note that Z, (K) = C, (K) = Z#,
where 6 is the single n-cell of K, and we have to choose Yx = 0.) Recall that in Example
1.2 we have constructed a cellular map » : K — K and a lift h:K — Kof ho P
under p. Since Yx = 0, this yields a morphism (A, h) : (K,O,K,qK) (K,O,K,qK)
in CW__,. The homomorphism jg, : C, (K) — C’n([? ) induced by the inclusion
jK K = K is expllcltly given by Zey — @,,c; Zen. The induced homomorphism
he : Co(K) = C, n (K K) does not map the image of jx. into the image of jx., because it
was shown that h, (xs (1)) = ha (ex) = 2ex — epy1 & Zey for the single n-cell e, of K.
Equivalently, i, does not map the image of ug : C,, (K) = C,,(K) into the image of u-.
The following proposition deals with the question of when this property holds.

1.11 Proposition. Let (K Yi, K, qK) and (L Y., L, qL) be objects in CVVO Let

(f, f) be a pair, which consists of a cellular map f : K — L and a lift f : K™ — L™ of
f" o p} under p}. The following statements are equivalent:

(i) There is an extension f : K — L of f*~': K"=* — "~ such that the following
diagram commutes up to homotopy rel K™ !:
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K L
fn
K" L.

fe

Co(L™).

(iii) The induced homomorphism f, : C,(K™) — C,(L") maps the image of uy :
C, (K) — C,(K™) into the image of ur, : C, (L) — C,,(L").

(iv) The composition K I g I T s homotopic rel K" to a map into L C L,

Moreover, if these statements hold, then it follows from (ii) that the pair (f, f) is a
morphism (K, Yk, K, qK) — (L,YL,E, qL) in CVV?DB if and only if the induced map
fe 1 Co (K) — C, (L) satisfies f. (Yx) C Yr. (This is exactly the condition required for

morphisms in CW,,~y.)

Proof. (i) = (ii). Take a basepoint ky € K™ and set ko = pg(ko), lo = (f o px) (ko)
and ly = f(ko). Consider the following commutative diagram, where the equality signs
are identifications via Hurewicz isomorphisms (K"~! and L™ ! are simply connected):

'3 ~~

qL« Pr. =

T (L7, L1 1)

To(L™, L 1) = C (L™

The map pl, (analogously, p},) in the diagram is an isomorphism. (Apply the 5-lemma
to the ladder of commutative squares between long exact homotopy sequences, which
is induced by p% : (K", K" ' ko) — (L™, L" 1 ly). Use that covering maps induce
isomorphisms on higher homotopy groups.) The first line equals the inclusion ug :
C, (K) < C,(K") (analogously, the second line is uy, : C (L) < C,,(L™)). This follows

from the following commutative diagram:

qr+« =

C, (K) Co(K) = m,(K, K" ko) (I, K™Y ko)

UK JK 9K *

(7 ~

Co(R™) «—— Co(K™) = 1o (K™, K1 hp) ——— (K™, K™ o)
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(¢) = (éii). This is clear by commutativity.
(iii) = (iv). The composition f o j restricts to f2~!: K"' — L"(C L) on (n — 1)-
skeletons. It suffices to show that the composition

x(e% ) f

(en,0en) X5 (7, Ry 25 (Re, Bty L (20, )

is homotopic rel Je’} to a map into L for all 7. Proceeding analogously as in the proof of
|1, Theorem 1.32, page 35ff], these homotopies can then be used to construct the desired
rel K1 homotopy between f o jk and a map into L. Consulting the following part of
the exact homotopy sequence of the triple (L" L, L b,

(T, LY 22 7 (D, DY) — (L7, T,

it is sufficient to show that [fojxoy(e 0] € T (L™, L") lies in the image of j, for all 7.
(Then, the composition foyKox( ') represents zero in 7rn(L L lg) and is thus homotopic
rel de} to a map into L.) Identify the relative homotopy groups Wn(K,K” 1) and
’/TZ(K n K™1) with the corresponding cellular chain groups via Hurewicz isomorphisms
(K"" is simply connected) and do the same for L. Then the element [f o jx o x(e!)] €
T (L™, L") corresponds to the image of € € C, (K) under

Co (K) 25 Cu(B™) L5 0, (T,

By (#i1), ﬁ maps the image of uy into the image of ur. Note that the image of ug
equals the image of K Ch (K) — C,(K™) and the image of u; equals the image of
jre: Co (L) <= C, (L™). Thus, f,(jx-(e ")) lies in the image of jr, : Cp(L) = Ch, (L™).
(1v) = (3). By assumption, foyK is homotopic rel K" ! toamap f : K — L. Therefore,
T restricts to f21: K»=* — L™ ! on (n — 1)-skeletons. Now,

grof=piojrof~piofojx=fropgojx=[f"oqx rel K"

1.12 Lemma. Let qx : K — K and q;, : L — L be cellular maps between n-dimensional
CW-complexes. Assume that qi o x (€,) = X (€4) for all o, where {e,} are the n-cells of
K and {e,} are the n-cells of K.

(i) If fr~1: K"t — L"t and g : K — L are cellular maps such that

n—1

1
n—ll | n—1
)74 qr,
fn—l
Kn—l Ln—l

commutes, then f" ! extends to a map f : K — L such that f oqx = qr 0 g.
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(ii) Let f; : K — L, i = 1,2, be extensions of a cellular map f*': K"! — L"! and
let g; : K — L, i=1,2, be extensions of a cellular map ¢" " : P E"’l, such
that the following diagram commutes up to homotopy rel K" fori= 1,2:

K
Ifgy~ gy rel K' ', then f, ~ f2 rel K”_l.
(iii) Assume that K"' = L' and K" =L"" " and that q, o y (€5) = x () for all

B, where {eﬁ} are the n-cells of L and {EZB} are the n-cells of L. Let f : K — L
be an extension of idgn-1 and let g : K — L be an extension of idzn-1, such that

ol

qL

the following diagram commutes up to homotopy rel I
g

K L
K L

If g is a homotopy equivalence rel fnfl, then f is a homotopy equivalence rel K" *.

Proof. (1). Consider the following morphism of 3-diagrams of spaces:

P2 ) den = LU, e, 1 |, v
incl o fn—1 incl o f7=1| o | |x(ea)l qr o g o [ Ix(ea)
L — L — L
The right square Commutes since q;, o g : K — L restricts to qr = frlo q}‘{l :

—n—1

K" — L™ and ¢ ox(€a)| = x(ea)] for all a. The reahzatlon of the first line is
just K. Thus, the morphism of 3-diagrams of spaces induces a map f : K — L. By
construction, f extends f"~! and is thus cellular. In order to show f o qx = g1 o g, it
remains to show that for every « and every x € int (D™) the following equality holds:

(42 © 9) (x (€a) () = (f © qx) (x (a) (x)) -

The left hand side is just the definition of f (x (e,) (x)). This equals the right hand side,

because g (x (€a) () = x (€a) (2).
(7). For every a and for i = 1,2, observe that

fiox(ea) = fioqxox(€a) 2 qrog;ox(€y) relde, = 0e,.

The assumption g; ~ g, rel ® yields g, 0 g1 0 x (€a) >~ qr, © g2 © X (€4) rel Je,. Thus,
for every a, we can fix a homotopy

H® e, x I — L rel de,
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between HY = fiox (e,) and HY = fyox (en). Now let H : K x [ — L be the homotopy
that is induced by the following morphism of 3-diagrams of spaces:

x(ea)|xid;

L, ea x1 incl L, 0eq x [—— K" ' x I

| H> L He| incl o f*~1 o proj;

L — L — L

Then, H is a rel K"~! homotopy between Hy = f; and H; = fs.
(#7i). Choose a homotopy inverse ¢’ : L — K of g which extends idz»-1 and such that

gog =~ idy rel K" and g og ~ idy rel K", By (i), there exists an extension
f': L — K of idgn-1 such that f' oq; = qx o ¢g. (Use that g% = ¢}~', which follows
from q; 0 g ~ f o qi rel K" after restriction to (n — 1)-skeletons.) By (ii), we have
fof ~idy rel K" ! and f o f ~idg rel K" 1. ]

In order to define 72, on objects, one needs a counterpart of [1, Proposition 1.6, page
12| for path connected CW-complexes K:

1.13 Proposition. Given an object (K, Yy, K,qx) in CW'_, there exists a commut-
ative diagram of n-dimensional CW-complexes and cellular maps

Kew ——TK/n K

9Ky, | | 4K /n | qK

1K hK

Kep —5 K/n ——> K"

such that the following properties are satisfied:
o (K,K/n,hx, Kopn) is an n-truncation structure and Yi = hycix.Cp (K<p).
e ix and hy restrict to the identity map idz,_1 on (n — 1)-skeletons.

e The following are morphisms in CW, - 5:

(ZKJK) (K<n70 (K<n> F<n:QK<n) (K/n ZK* (K<n) 7/naqK/n)a
(hKahK) (K/’I’L ZK* (K<n) F/”vQK/n) — (Ka YK7K’qK)7

where iy is the unique lift of 4 K © P, under pg, and hK is the unique lift of

hk o pr/n under pi such that 7, ix and hK restrict to idz,_, on (n — 1)-skeletons.
Proof. We start with the construction of the desired diagram. Choose bases {(z} of
Z, (K) and {n,} of Yk, which yields a basis {(s} U {n.} of C,, (K). It corresponds to
a basis {3} U {7,} of C,(K) under the isomorphism g, : C\(K) =5 C, (K). Now

apply Proposit_ion 1.1 to the path_ connected (even iimply connected) n-dimensional
CW-complex K and to the basis {(5} U {7,} of C, (K) to obtain

e an n-dimensional CW-complex K /n with (n — 1)-skeleton K™
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e a cellular map hgx : K/n — K which restricts to the identity map on K" and
which induces an isomorphism %, : C,,(K /n) = C, (K) sending the cell basis of
Cy(K /n) to the basis {Cz} U{7,} of C, (K).

Consequently, iy induces an isomorphism H, (K /n) = H, (K) for all integers r. Since

K1 is simply connected (n > 3), K and K /n are also simply connected. Therefore,
hx is a homotopy equivalence by the homological version of the Whitehead theorem. By
|2, Proposition 0.19, page 16/, hx is a homotopy equivalence rel K",

Let {f;} be the n-cells of K /n. For every 4§ set

dy = v o x(FD)|: 7 K7
Taking new n-cells {f{*}, define the n-dimensional CW-complex

K/n:=EK""ulJf
ds

The morphism of 3-diagrams of spaces

~ Ux(75)l

n—

—n incl —n
|_|58f'7 - |_|5 [s

T

_ Llds n incl n
Kt ngafa —’l_l(sfa

induces a cellular map gx, : K /n — K/n such that gg/, 0 x(f5) = x (f§) for all §. Note
that both ¢x and gk, restrict to p;‘(_l and hj restricts to idz,-1 on (n — 1)-skeletons.
Thus, by Lemma 1.12 (i), there exists a cellular map hg : K/n — K™ which extends the
identity map on K"~ ! and fits into the commutative diagram

_ h _

QK/nI IQK

h
K/n —— K"

Moreover, hg is a homotopy equivalence rel K"~ by Lemma 1.12 (4i4), since hg is a
homotopy equivalence rel K"~!. The previous diagram induces a commutative diagram

[~=3

hge =

< (K Jn) C. (K) > {Guma
QK/MNI IQK*N
{m c Cyy (K /n) —= C,, (K) S5 {GHU{n)
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The diagram also shows the bases which correspond to each other under the marked
isomorphisms. All in all, hg, is an isomorphism sending the cell-basis { f§*} of C,, (K/n)
to the basis {(s} U {na} of C, (K). The isomorphism hg, : C, (K/n) = C, (K) re-
stricts to an isomorphism hg.| : Z, (K/n) —> Z, (K) (this is shown as in the proof of
Proposition 1.3, using that hg restricts to the identity map on K" !). Thus, the basis
{Cs} of Z, (K) corresponds under the inverse of hg, to a basis {(}} of Z, (K/n) which
is a subset of {f§’} and the basis {n,} of Yk corresponds to the remaining n-cells {7}
in {f§'}. This shows that /K /n has a basis of cells for its n-cycle group.

As always, define ix : K., < K/n as the inclusion of the subcomplex which is obtained
from K/n by taking away the n-cells {Q’B} Analogously, let ix : K., < K/n be the
inclusion of the subcomplex which is obtained from K /n by taking away the n-cells that
correspond to {CB} via qg/ns. Then gk, restricts to a map qx_, : K., = K.,. This
finishes the contruction of the desired diagram.

It remains to check the three stated properties. By construction, (K, K/n, hy, K.,) is an
n-truncation structure (see Definition 1.5). The equation hy.ix.Cp (K<) = Yk follows,
since the isomorphism hg., : C, (K/n) — C,, (K") restricts to an isomorphism between
the subgroup ix.Cy, (K<) of Cy, (K/n) spanned by the n-cells {n, } and Y. The second
property is clear by construction of ix and hg. Concerning the third property, all in-
volved quadruples are objects in CWY_, (see Definition 1.7). The pairs (if,7x) and
(hr, hK) satisfy property (i) of Proposition 1.11. Thus, they are morphisms in CW,_,
by the conclusion of the proposition. B

Now we can proceed to define 72, on objects (see Corollary 1.19). Given an object

(K,Yk, K, qx) in CW?_,, we use Proposition 1.13 to choose a completion to a commut-
ative diagram with the stated properties, and set

T2 (K, Yk, K, qx) = (K, K/n, hi, K<) .

In the special case that K is simply connected, the above completion just means to
complete (K, Yx) to an n-truncation structure, so in this case we are free to choose

Tgn(Ka YK7Fa QK) = T<n(K, YK)

In the special case that K has a basis of cells for its group of n-cycles and Y is generated
by those n-cells of K which are not cycles, one can choose K/n = K", K/n = K and
hg = idgn, hg = ids, di/n = gk (the remaining spaces K., and K, in the diagram
are then uniquely determined and all properties in Proposition 1.13 are satisfied by the
resulting diagram). As in the definition of 7, on objects in [1, page 29|, we will assume
in this case that

0 (K, Y, K, qx) = (K, K" idgn, K.,) .
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The following version of the compression theorem [1, Theorem 1.32, page 35| enables
us to define the assignment 72, on morphisms:

1.14 Proposition. Let (f, f) : (K, Yi, K, qK) — (L,YL,E, qL) be a morphism in
CW?_,. If the involved objects are completed to commutative diagrams

_ 3 _ h _ _ h _ 3 _
Kew ——K/n—K L~——TI/n——T1.,
| IK <p, | 4K /n | aK qr | qr/n | dLcp,
i h ik h i
Kep —5 K/n ——> K" L' ~—"— L/n «—*— L.,

with the properties of Proposition 1.13, then there exist cellular maps f/n : K/n — L/n
and f., : K., — L, such that:
e The following diagram commutes up to homotopy rel K" 1:

i h inc
Kew —2 0 Kp —5 s gn 29,
| f<n | f/n m !
i h inc
Lw —5 s L —2 s pr —20 )

Thus, f/n and f., extend f"~' and the following is a morphism in HoCW"

([f] ) [fn] ) [f/n] ) [f<n]> : (K7 K/n>hK>K<n) - (L’ L/na hLaL<n)'

e The following are morphisms in CW°_,

(f/n’ ]’[:/TL) : (K/TL, LK (Cn <K<n)) 7K/n7 qK/n) — (L/n’ UL (On (L<n)) 7Z/n7 QL/n) )
(fens fen) (K<n7 Cn (K<) K <, QK<n) — (L<n7 Cn (Le<n) , Len, QL<n) )

where f/n is the unique lift of f/n O P/n L under pr, and f<n is the unique lift of
f<nopk., under py_, , such that f/n and f<n restrict to f" Yon (n — 1)-skeletons.

Proof. 1t suffices to construct cellular maps f/n : K/n — L/n and fo, : Ko, — Loy,
with the following properties (where f/n and f-, are defined as above):

(1) ffohg ~hgo f/nrel K"

(2) f/noix 22£0f<n rel K7L !

(3) (f/n) ; (K/n) — C, (L/n) maps Uk /nir« (Crn (Kop)) into ur min. (Cn (Ley)).
(4) (fen)e : Cu(Kn) = Co(Lan) maps ugc_,, (C (K<p)) into ur_, (Co (Len))-

Choose a cellular homotopy inverse 1/, for hy, which restricts to the identity map on L™}

and such that hph} ~idp» rel L""! and W hy ~idy, rel L. If we define
f/n:="h}oflohg:K/n— L/n,

then hp o f/n="hpohl o frohy ~ f"ohg rel K" which is (1). Thus, if we choose
ko € K" ' and set ly := f (ko) € L', then the followmg diagram commutes (the map
f<n will be constructed later; the dashed arrow does not yet exist):
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iL*

T (Ln’ Ln—l’ lO) (*)

Recall that zK is the unique hft of zK °© pr., under pg/, and hK is the unique lift of
hK o pi/n under pf, such that ix and hK restrict to idz,_, on (n — 1)-skeletons (zL and
hy, are defined analogously). Let f/n be the umque lift of f/n o pg/, under py,,, which
restricts to f" Lon (n — 1)-skeletons. Let ko € K" be a lift of ky under P and set
lo := f(ko) € L"". Under the inverses of the isomorphisms

o

Pxx - Wn()z:7 f(/n_laf]%/O) — Ty, (Xu Kn_17 kO) ’
pye (VL D) = m (Y, L7 Do)
where X € {K_,,, K/n, K"} and Y € {L_.,, L/n, L™}, the previous diagram corresponds

to the following commutative diagram (the map f_, will be constructed later; the dashed
arrow does not yet exist):

~ ~ ~ TR«

- ~ ~  his = ~ o~ ~
Wn(K/n, anlj ko) K—, 7-[-n([(n’ anl’ k[))

} (fn)s (f/n)« F

(L0, L") (L7, L1, Do) ()

If we identify the relative homotopy groups in this diagram with the corresponding
cellular chain groups via Hurewicz isomorphisms (K™~! and L"! are simply connected),
then this diagram fits into the following commutative diagram (the commutativity of the
four remaining squares follows from property (ii) of Proposition 1.11):

iK* hK* =
Co (Ken) —s €, (K /n) —= €, (K™)

IUK<n UK /n UK
Co(Kp) — Cp(K /n) Co(K™)
} (fn)s (f/n)s i
i/ IL* ~ EL* = ~
Cp(Ly) Co(L/n) C, (L")
UL UL/n ur
O (Lan) —2 €, (L)) C, (L") (5 % )
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By assumption, f, maps ug (Vi) = uxhisigs (Cp (Kn)) = ?LK*UK/niK* (Cn (Ky,)) into

ur, (Y) = uphrsip. (Cy, <L<’L)) = hpupmice (Cp (Ley)). Thus, (f/n). :~(hL*)_1f*hK*
maps Ug /nirs (Cn (Kan)) = ixatig., (Cn (K<p)) into ugnipe (Cn (Ley)) = ipcur_, (Cn (Len)),
which shows (3). If {y,} are the n-cells of K_,, and {7,} are the corresponding n-cells

of K., C [?@, then we see in particular that (f/n)*ZK*uK<n (Ya) = (f/n)*ZK* (7,,) lies

in the image of iz, for all . Setting ko := x (ya) (so), this corresponds to the statement

that in diagram (x) the element

(f/m)sircn [X (ya)] € 7o (L/n, L™ Do)

lies in the image of iz, : m, (L<yn, LY 1) — m, (L/n, L™, 1) for all a. Following the
proof of the original compression theorem, one can conclude that f/n o i is homotopic
rel K" to a cellular map f., into L.,, C L/n, which finishes the construction of f.,
and shows (2). Consequently, the commutative diagram (*) can now be extended by the
dashed arrow induced by f.,. Let ]?<n be the unique lift of f.,, opx_, under p;_,, which
restricts to f"~! on (n — 1)-skeletons. The commutative diagrams (+*) and (% * *) can
now be extended by the dashed arrows induced by f<n. By (3), we know that (f/n)* maps
uK/nZK* (Cn <K<n>) = iK*uK<n (Cn <K<n)) into UL/niL* (Cn (L<n)) = iL*UL<n (Cn (L<n))
By commutativity of (x % %), one concludes that

(f/n)siretrc., (Co (K<n)) = ine( fen)itire, (Co (K<p)) Cigsur, (Co (Lan)) -

Since iy, is the inclusion Z<n — Z/n, the induced map T Cn(z@) — C’n(Z/n) is
injective, so (4) holds. N
Given a morphism (f, f) ; (K, Yk, K, qK) — (L,YL,E, qL) in CW._,, we follow [1, page

48| to define 72, (f, f). If (f, f) is the identity morphism, then we define
Tgn(f’ f) = idq—gn(K,YK,F,qx) :

Otherwise, we apply Proposition 1.14 to the completions of (K, Yk, K, qK) and (L, Y, L, qL)
to diagrams with the properties of Proposition 1.13, which were chosen in the definition of

72, on objects. Thus, we obtain cellular maps fo, : Ko, = Lo, and f/n: K/n— L/n
with the stated properties (by construction, f/n = h’, o f" o hx, where h/; is a homotopy

inverse rel L"~! for hy) and define

Tgn(faf):([f]7[fn]7[f/n]7[f<n])

In the special case that K and L are simply connected, we are free to choose

Tgn(ﬁf) :7_<n(f)'

All in all, we have defined a covariant assignment 72, : CWY_, — HoCW?_, of
objects and morphisms, which extends 7., : CW,~5 — HoCW-_, (see Corollary
1.19). Although the definition 72, on objects depends on the choice of a completion of
an object (K, Y, K, qx) to a diagram with the properties of Proposition 1.13, the fourth
component K, constructed like this is well defined up to rel (n — 1)-skeleton homotopy

equivalence (compare |1, Scholium 1.26, page 33|):
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1.15 Corollary. If we choose two completions of an object (K, Y, K,qx) in CW>_,
to commutative diagrams

= N i =/
iK hk (37—

Ko, —— K/n K K/n' K_,
| IK <y | aK/n | ax | Ty | Tx
iK hK hIK / l/K /
K., —— K/n K" K/n K.,

with the properties of Proposition 1.13, then K., and K, are homotopy equivalent rel
(n — 1)-skeleton.

Proof. Application of Proposition 1.14 to the identity morphism
(idKu 1df{n) : (K7 YK7F7 QK> - <K7 YK7?7 QK)

in CWY_, yields cellular maps f/n: K/n — K/n' and f-, : K., — K, such that the
diagram

hk

Kew —% + K/n K"

& R

K., —— K/n/ —"— K"

commutes up to homotopy rel K"~! and a morphism
~ J— —/
(f<n7 f<n) : (K<n: Cn (K<n) ) K<n7 QK<n) — (K/<na Cn (K,<n) ’ K<n7 QK’<")

in CW?Da, where f<n is the unique lift of fo, opr_, under p , such that f<n restricts
to idz,_, on (n — 1)-skeletons. We claim that f., induces an isomorphism

J<ns 1 Cp (K<n) — Gy (K/<n> :
Consider the commutative diagram

TR+

Co (K on) —s €, (K /0) — 25 €, (K™)

|f<n* |(f/n)* |:
7;/ h/ ~

Cp (KL,) — C, (K/n') ——— C,, (K™)

Injectivity of f.,. follows from the injectivity of ix, and hg,. For the surjectivity of
fanny use hicige, (G (Kan)) = Yie = M, i, (Co (KL,,)) and (f/n), = (i)' o hi. to

write

Z./K*f<n*(0n (K<n)) = (f/n)* LK (On (K<n)) = Z/K* (Cn (K/<n)) .
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By injectivity of i, we obtain f.,.(C, (K<,)) = C, (K.,).

Being a morphism in CWY_,. the pair (f<,, fen) satisfies f<n*uK<n (Cn (K<n)) Cugr, (Cn (KZ,))-
This is property (iiz) of Proposition 1.11. Thus, by property (i) of the same proposi-

tion, t}iere exists an extension fon t Koy — ?L@ of (fen)” ' = idg._y, such that

qxr, © fen = fan o qx_, rel K™ ', We claim that f_, induces isomorphisms

Fane 1 Cu(Kan) = Cu(K_,) ¥Vm > 0.
For m # n this is clear, because K ., and 7/@ are n-dimensional and f_,, restricts to
idz,-1 on (n — 1)-skeletons. For m = n this follows from commutativity of the following
diagram:

—_— ?<n* e
Cu(K <) Cu(K-,)
|qK<n* = |ql[(<n* =

~

f<n* =

Cn (K<n) — O, (K/<n)

Thus, f <n iInduces isomorphisms on all homology groups. Since K., and 7,@ are simply
connected, f_, is a homotopy equivalence by the homological version of the Whitehead
theorem. By [2, Proposition 0.19, page 16], f_,, is a homotopy equivalence rel K1, By
Lemma 1.12 (44i), one can conclude from ggs o fon ™ fenoqk., rel K"~! that fen 18
a homotopy equivalence rel K™, m

For morphisms in HoOCW - _,,, n-compression rigidity is defined in terms of eigenhomo-
topies, compare [1, Definition 1.33, page 40|, which involves the concept of virtual cell
groups, compare |1, Definition 1.10, page 18]. Although one could try to adapt these
definitions to arbitrary path connected CW-complexes, the interpretation of virtual cell
groups as sitting between two actual cellular chain groups gets lost, because it relies on
Hurewicz isomorphisms, which are only available for simply connected spaces. For our
purpose, n-compression rigidity for morphisms in HoCW% <n 1s defined in the following
way, which is equivalent to the original definition for morphisms in HoCW-_,, by [1,
Proposition 1.34, page 40|:

Definition. 1.16 A morphism ([f], [fu] , [f/n], [f<n]) : (5, K/n, hic, K<) = (L, L/m, he, Loy)
in HoCW%<n is called n-compression rigid if any two cellular maps g1, g2 : Ko, = L,
such that the diagram

Kew —" + K/n

-k

Loy —=—~1L/n
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homotopy commutes rel K*~! for i = 1,2 are homotopic rel K" 1.
A subcategory C C Cnga is called n-compression rigid, if every morphism in C has
an n-compression rigid image under 72, .

The following lemma is a variation of [1, Lemma 1.43, page 53|.

1.17 Lemma. Let X, Y and Y’ be CW-complexes, where X is k-dimensional, k > 1,
and Y, Y’ are path connected. Assume that g;,g, : X — Y are two maps that agree
on X*Yand f : Y — Y’ is a map such that the induced map f, : 7 (Y) — m. (Y')
is injective (i.e. f. @ 7 (Y,90) — m (Y, f (v0)) is injective for one and hence for all
Yo €Y). If fogy =~ fogsrel Xk then g, ~ gy rel X*7 1.

Proof. The (k 4 1)-dimensional CW-complex Z = X x I has k-skeleton Z% = (X x I)" =
(X x0I)U (X”“_1 X [). Since g1|xr-1 = ga|xx-1, one can define the map

g= (g1 x {0} Uga x {1} U (g1|xr—1 xidj) : ZF = V.

By assumption, there is a rel X*~! homotopy X x I = Z — Y’ between fo g, and f o go.
This homotopy restricts on Z* to fog: Z*¥ — Y. In other words, for every (k -+ 1)-cell
et of Z, the composition
. X(ek+1)|
S —

can be extended over D**! and is thus nullhomotopic rel sy € S*. Therefore,

[fogox () [] =0em (Y, f(w)),

where g, denotes the image of the basepoint sy € S* under goy (ek“) |. By injectivity of
fo:m (Yoyo) = i (Y, f (y0)), one can conclude that [g o x (e¥™) |] is zero in mx (Y, o).
Therefore, the composition
(ek+1)|
s

sk = AR
is nullhomotopic rel sy for all (k + 1)-cells ¢! of Z and can thus be extended over D*'.

As a consequence, g can be extended to a rel X*~! homotopy Z x I — Y between ¢,
and go. ]

Zk 1%y

We record the following sufficient conditions for a morphism in HoCWY__ to be n-

compression rigid (see [1, Corollary 1.45, page 55| and [1, Corollary 1.49, page 58| for
morphisms in HOCW-_,,).

1.18 Proposition. A morphism ([f],[f.],[f/n],[f<n]) : (K, K/n,hyg, K<) — (L, L/n,hy, Loy)
in HOCW% <n 18 n-compression rigid if one of the following holds:

o i, m, (Loy) — m, (L/n) is injective.

o 0,:C,(K)— C,_1 (K) is the zero map.

e 0,:C, (L) — C,_1 (L) is injective.

Proof. Assume that g1, go : Ko, — L., are two cellular maps such that i;og; ~ f/noix
rel K" for i =1,2. Thus, i;, 0 g, ~ iy 0 g, rel K" 1. In particular, i; o g; and iy, o go
agree on K™ !, Since iy, : L., = L/n is an inclusion, one can conclude that g; and g,
agree on K" ' = (K_,)"" .
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e For the first statement, the claim that ¢; ~ go rel K"~ ! follows from Lemma 1.17.
e The second statement follows from the observation that K_,, = K"~ (since 9, = 0,
all n-cells are cycle cells and Yx = 0 is unique) and that g; and g, agree on K" !
as shown above.
e For the proof of the third statement, note that L/n = L., (Z, (L) = 0 has a cell
basis and Y7, = C,, (L) is unique) and thus iy, = idy /.
|

The results of the present section can be summed up in the following

1.19 Corollary. Let n > 3 be an integer. There is a covariant assignment

72, CWY_, — HoCW"

o<n

of objects and morphisms, which restricts to 7o, on CW,,55. Moreover, 72, is a functor
on n-compression rigid subcategories C C CW,gDa (the proof is analogous to the proof

of [1, Corollary 1.40, page 50]).

Now, we proceed analogous to [1, page 50f]. Let P} : HOCWY_, — HoCW,_; be
the functor given by projection to the fourth component. By composition with 72, we

define the covariant assignment of objects and morphisms
ten=Plorl, :CW) , — HoCW,_,.

If (K, Yi, K, qK) is an object in CW0._,, then 72, (K, Yi, K, qK) = (K,K/n,hg, K<)
is an n-truncation structure. We define the natural transformation emb) : 2, — %
on (K, Yi, K, qK) by the rel K1 homotopy class K., — K of the composition

Kep s K/n 2 K" K.
Finally, one arrives at the following counterpart of [1, Theorem 1.41, page 51|

1.20 THEOREM. Let n > 3 be an integer. There is a spatial homology truncation
assignment 2, : CW°_, — HoCW,,_, with natural transformation emb? : t% — t%__
which extend t., and emb,,. Moreover, t%  is a spatial homology truncation functor on

all n-compression rigid subcategories C C CWo_ .

Remark. 1.21 (dependence on choices) Let K be a path connected CW-complex. Let
(K,Yk,K,qx) and (K, Yl’of/, ¢y ) be two completions to objects in CWY_,. What can
be said about the connection between their images under 72,7 If K is simply connected,
then |1, Proposition 1.25, page 30| characterizes algebraically when K., and K’ are
homotopy equivalent rel K"~'. In general, K., and K, are not homotopy equivalent
(even if K is simply connected, see Example 2.17). Now assume that Yx = Y/. If
(idg,idgz.) @ (K, Yk, K, qx) — (K, YK,F/,Q}() happens to be a morphism in CW?_,
then one can apply the proof of Corollary 1.15 to this morphism. In conclusion, K_,
and K, are homotopy equivalent rel K1,
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1.3 Path Connected CW-Complexes and Normality

Following |6, Definition 8.1, page 53|, a simply connected CW-complex K is called nor-
mal, if K has a filtration K, C ... ¢ K,, C ... C U,K,, = K into simply connected
subcomplexes such that (using the inclusions i, : K, — K)

H, (K,) =0, forr>mn,
irs  Hy (KG) = H, (K), forr <n.

It turns out that every simply connected CW-complex is homotopy equivalent to a nor-
mal CW-complex (see |6, Theorem 8.2, page 53|). The result of this section is that
every path connected CW-complex K is homotopy equivalent rel 2-skeleton to a CW-
complex L whose group of n-cycles has a cell-basis for all n > 3 (see Proposition 1.24).
In consequence, L has a filtration L, C ... C L, C ... C U,L, = L into path connec-
ted subcomplexes with the above properties for homology groups (one obtains L,, for
n > 2 by removing the (n + 1)-cycle cells of L") see |1, Lemma 1.2, page 6]). The
result is obtained by adapting the proof of |6, Theorem 8.2, page 53| to the case of path
connected CW-complexes K. Roughly speaking, the n-truncation structures which can
be constructed separately for every dimension n > 3 by Proposition 1.13 are now put
together in a single space L. Under certain conditions involving fundamental groups, a
given path connected CW-complex is even homotopy equivalent to a CW-complex whose
group of n-cycles has a cell-basis for all n > 2 (see Remark 1.25).

The following lemma is a direct consequence of |6, Proposition 6.8, page 41|.

1.22 Lemma. Let f: X — Y be a homotopy equivalence between n-dimensional C'W-
complexes, n > 0. If X is the n-skeleton of an (n + 1)-dimensional CW-complex X', then
there exists an (n + 1)-dimensional CW-complex Y with n-skeleton Y and an extension
f': X" =Y’ of f such that f' is a homotopy equivalence.

The following lemma follows from Whitehead’s theorem.

1.23 Lemma. Let f : X — Y be a cellular map between path connected CW-complexes.
If for all integers n > 0 there exists an integer m > mn such that the restriction
™ X™ — Y™ to m-skeletons is a homotopy equivalence, then f is a homotopy equi-
valence.

Proof. Choose a point g € X and let yo := f(x9) € Y. It suffices to show that f
induces isomorphisms f, : m, (X, z9) = m, (Y, o) for all n > 0. Then the lemma follows
from Whitehead’s theorem |2, Theorem 4.5, page 346|.

For n = 0 this is true, because my (X, z¢) and m (Y, yo) vanish for path connected X
and Y. For n > 0 choose an integer m > n such that the restriction f™ : X™ — Y™
to m-skeletons is a homotopy equivalence. The map of pointed pairs f : (X, X™ x9) —
(Y, Y™ yo) induces the following commutative diagram by naturality of the long exact
sequence of homotopy groups (i : X™ < X and j: Y™ < Y are the inclusions):
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st (X, X, 20) —2s 700 (X, 20) — 71 (X, 20) —s 7 (X, X™, 20)

")

Jx incl,
T (Y™, 90) T (Y, 90)

Tn+1 (Y, Ym, yo) Tn <Y7 Ym7 yO)

As the pair (X, X™) is m-connected, 7,1 (X, X™, zo) and 7, (X, X™, z¢) vanish because
ofm>mn+1>mn>0. Thus, i, is an isomorphism by exactness of the first row. Ana-
logously, j. is an isomorphism. Moreover, the homotopy equivalence f™ : X™ — Y™
induces an isomorphism fJ"* : m, (X™, x9) — 7, (Y™, o) by [2, Exercise 2, page 358|.
Consequently, f, : m, (X,z0) — 7, (Y,yo) is also an isomorphism by commutativity.

|

1.24 Proposition. Given a path connected CW-complex K, there exist
e a CW-complex L with L? = K? and such that Z, (L) has a cell-basis for all n > 3.
e a homotopy equivalence q : K — L rel K? such that q is cellular and the restriction
q" : K™ — L" to n-skeletons is the identity map for n = 2 and a homotopy
equivalence for n > 2.

Proof. In a first step, we construct inductively a sequence of CW-complexes

h h<n
K=K 3Ky — ... — K, =3 K, — ...

with the following properties for all n > 2:

o (K,)" = (K,:1)" and the group of (n + 1)-cycles of K, has a cell-basis.

o hoyyr: K, — K, 11 is a cellular map such that the restriction (he,1)™ : (K,)" —
(K,41)™ to m-skeletons is the identity map for m = n and a homotopy equivalence
for m > n.

Assume that the sequence has already been constructed up to K, (for n = 2, take Ky =
K). We wish to construct K, 1 and he,iq @ K, — K,y with the desired properties.
By Remark 1.9, K,, can be completed to an object in CW2+138. By Proposition 1.13,
there exist

e an (n + 1)-dimensional CW-complex K,,/n+1 with (K, /n+ 1)" = (K,,)" and such
that its group of (n + 1)-cycles has a cell-basis.

e a cellular map i’ : (K,)"™" — K, /n+ 1 which restricts to the identity map on the
common n-skeleton (K,)" and which is a homotopy equivalence rel (K,)".

Using Lemma 1.22, we expand A’ inductively over the skeletons of K, and obtain

e a CW-complex K,y with (K,1)""™" = K,/n+ 1.

e a cellular map ho,y1 : K,, — K, 11 such that the restriction (hep1)™ : (K,)" —
(Knt1)™ to m-skeletons is k' for m = n + 1 and a homotopy equivalence for
m>n+1.

One can check that K, and h.,; satisfy the desired properties:

o (Kop1)" = (K,/n+1)"=(K,)" and Z,.1 (Kpy1) = Zpy1 (K,/n+ 1) has a cell-

basis.
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o hepy1 @ K, — K,y is cellular, (he,.1)" = (R')" is the identity map on (K,)",
(h<n+1)"+1 = I’ is a homotopy equivalence and (h,,1)™ is a homotopy equivalence
form >n+1.

In a second step, we construct L and ¢ : K — L with the desired properties. Since
(K,)" = (Kp1)" C (Kpy1)™™ for all n > 2, there exists a unique CW-complex L
with L = (K,)" for all n > 2. In particular, L2 = (K,)> = K2. By construction,
Zni1 (L) = Zpiy (L") = Z,4y ((Kn+1)n+1) has a cell-basis for all n > 2. A homotopy
equivalence ¢ : K — L rel K% can be constructed as follows. For all n > 2, the
composition

n+1 n+1
Qi Kn—i—l — (K2>n+1 (h<3_)> (K3>n+1 SN (Kn>n+1 (h<ﬂ (Kn+1)n+1 _ Ln+1

is a homotopy equivalence satistying

n hen, nOQnZQn fOI'TL>2,
(Qn+1> — {( < +1)

idg2 forn = 2.

Now define the cellular map q : K — L by ¢"*! = ¢, for alln > 2. Thus, ¢" : K" — L"
is a homotopy equivalence for n > 2 and ¢> = idg2. ¢ is a homotopy equivalence by
Lemma 1.23. (Note that L is path connected, because L? = K? is path connected.) ¢ is
a homotopy equivalence rel K2 by [2, Proposition 0.19, page 16]. n

Remark. 1.25 We state conditions under which a path connected CW-complex K is
homotopy equivalent to a CW-complex L such that Z,, (L) has a cell-basis for all n > 2.
Assume that K? is homotopy equivalent to a two-dimensional CW-complex P? such
that Z, (P?) has a cell-basis. Then, by Lemma 1.22 and Lemma 1.23, K is homotopy
equivalent to a CW-complex P with 2-skeleton P? (thus, Z, (P) has a cell-basis). Finally,
by Proposition 1.24, P is homotopy equivalent to the desired CW-complex L (note that
P? =12
e If the inclusion K' < K? induces an isomorphism m; (K ko) = m (K2, ko) on
fundamental groups (for one and hence for all basepoints ky € K'), then Z, (K?) =
Cy (K?) (thus, Z, (K?) has a cell-basis). To show this, let {€2} be the 2-cells of K
and consider the following portion of the exact homotopy sequence of the pointed

pair (K2, K1 k) (ko := x (€2) (s0)):

o (K2, K ko) =5 (K k) — m (K2 k)

Thus, 9 ([x (e2)]) = [x(¢2)|] = 0 in 7, (K, k,) for all a. The connecting homo-
morphism § : Cy (K) = Hy (K% K') — H; (K') satisfies

) (ei) = ¢ Hur ([X (ei)}) = Huro ([X (ei)}) = 0.

Therefore, €2 is in the kernel of 9, : Cy (K) — Cy (K) for all a.
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o If K? is finite and 7, (K?) (= = (K)) is finite abelian, one can write m; (K) =
Z/my X ... x Z/m,, with m;|m;,; and m; > 1. By |7, page 123], K? is homotopy
equivalent to a CW-complex

P’ =K. v\/ S,
where 7 is relatively prime to m; and K, is the model of a twisted presentation
P, = (a1, ....a.lal", ...,apm, [a], as] , [ai, a;] fori < j,(i,7) # (1,2))

of m (K) (see [7, page 108]). By definition, K, is obtained from a bouquet of
1-spheres, where each 1-sphere corresponds to a generator of P,, by attaching for
every relation in P, a 2-sphere via the attaching map given by the relation. It is
clear that the 2-cells corresponding to the commutator relations of P, form a cell-
basis of Zy(K,). (Note that every non-trivial linear combination of 2-cells, which
correspond to relations of the form a;", has non-trivial image in C4(K,) under the
boundary operator.) Thus, Z, (P?) has a cell-basis.

e If K? is compact and 7 (K) is free, then K? is homotopy equivalent to a finite
bouquet P? of one- and two-dimensional spheres by |7, Theorem 3.9, page 120].
Thus, Z, (P?) = Cy (P?) has a cell-basis.

Remark. 1.26 The fact that every simply connected CW-complex is homotopy equival-
ent to a normal CW-complex leads to the construction of a homology decomposition for
a given homotopy type (compare [6, page 55ff]). The required k-invariants are obtained
from [6, Theorem 7.1°, page 47|, where simple connectivity is assumed. The question
whether a homology decomposition including k-invariants can also be obtained for path
connected CW-complexes is not answered by the previous discussion.
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2 Induced Maps in the Isolated Singularities Case

Let n > 2 be an integer and let p be a perversity. Then the cut-off degree k = n—1—p (n)
is an integer satisfying 1 < k <n — 1.

Definition. 2.1 The category P (n,p) consists of the following objects and morphisms:
e Objects are triples (X, >, A), where

1. X is an n-dimensional compact topological pseudomanifold with only isolated
singularities. Let o C X be the (finite) set of singular points of X and let A be
the set of corresponding links. This yields a bijection 0 = X\, z — L,.
We assume that all links L € A\ are path connected.

2. ¥ is a set of pairs (z,cone(L,)), such that every singularity z € o has been
equipped (in one way) with a small cone neighbourhood in X,

x € int(cone(L,)) C cone(L,)=(L,x1I)/(L,x{0}) C X,

and such that the neighbourhoods cone (L,) C X are pairwise disjoint.
We use the notation M := X —| |, ., int(cone (L)) and OM = | |, ., L.

3. Ais a set of triples (L, L.y, fr), such that every link L € A has been equipped
(in one way) with a CW-structure and with a spatial homology truncation fy, :
L., — L in degree k (see Section 1.1).
Ifk=1orif k=2and L € \issimply connected, then we assume that f;, is the
inclusion of a 0-cell L. — L. This yields a valid spatial homology truncation
of L in degree k (compare [1, Section 1.1.5, page 24]).

e Morphisms (X, X, A) — (X', A’) are continuous maps F' : X — X’ such that
F (M) C M’ and for every L € X there is an L}, € X with F' (L) C L.

The definition of P (n,p) is motivated as follows. Let (X, A) be an object in P (n,p).
Let j : OM — M be the inclusion. The fixed CW-structures and spatial homology
truncations fr, : Loy — L for all links L € X\ can be used to define the following map,
which is a spatial homology truncation of M in degree k:

foo (M) =] | Lk | |Z=0M

LeX Lel

LILE)\ fr

The intersection space construction yields the following assignment on the object level:
I : ObP(n,p) — ObHoTop, I[(X,%,A) =cone(jof).

The goal of the following sections is to define subcategories P, (n,p) of P (n,p) and
functors I, : P, (n,p) — HoTop, which agree with I on objects. (In Section 2.5, objects
and morphisms in P, (n,p) will be equipped with some extra structure. In this case,
P. (n,p) — P (n,p) denotes the forgetful functor instead of the inclusion functor.)

Remark. 2.2 The CW-structures of L and L., are not used in the definition of I on
objects. They will be needed in the definition of some of the categories P, (n,p) (see
Sections 2.3, 2.4 and 2.5). Once a link L has been equipped with a CW-structure (which
is not always known to exist for a closed topological manifold, see [1, Remark 2.9, page
112]), L can be completed to a triple (L, L., f1) by Corollary 1.4.
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2.1 Induced Maps in Low Dimensions

This section treats the case of cut-off degree k = 1. Recall the construction of I (X, ¥, A)
for an object (X,3,A) in P (n,p). For every link L € X\ we take a copy I of the
unit interval [0,1]. We identify in M| |, ., I all endpoints 0 € I, to a single point
x and for every L € A the point 1 € I with the chosen O-cell L.y € L C M. In
the following, we present two subcategories P, (n,p) of P (n,p) together with functors
L. : P, (n,p) - HoTop, which are defined by (X, >, A) — I (X, >, A) on objects.
e Let P, (n,p) be the subcategory of P (n,p) with the same objects as in P (n,Dp)
and whose morphisms F' : (X, X, A) — (X', X', A’) preserve the chosen 0-cells of
the links, that is F' (L) = (L})_, for all L € X (recall that F'(L) C L7}). A
continuous map F : (X, %, A) — I (X', %, ') is obtained by setting
x| for = =%,
F (z) = r(€1y), for € (0,1)C I,
F(x) (e M), for ze M.

Setting I,(F) = F obviously defines a functor I, : P, (n,p) — Top.

e Let Py (n,p) be the full subcategory of P (n,p), whose objects (X,3,A) have
the property that all links I € X are simply connected. Given a morphism
F: (X,2,A) —» (X,¥,A) in Py (n,p), choose for every L € X\ a path ¢ :
[0,1] = L7, between ¢, (0) = (L7})_, and ¢ (1) = F (L) (€ L}). A continuous
map F : 1(X,%,A) = I(X', X', A') is obtained by setting

' for = = x,

F2) _ 2z (€ I ), for € (0,1/2) C I,
oL 2z —1) (e L), for ze€[l/2,1)C I,
F(x) (e M), for x e M.

The class m in HoTop does not depend on the choice of the paths ¢p. (If

' is any other path for some L € A, then the paths [1/2,1] — L) given by
x — ¢ (2x —1) and = — ¢} (2 — 1) are homotopic rel endpoints, since L/ is
simply connected.) Sending F to the induced morphism m in HoTop defines a
functor I; : Py (n,p) - HoTop. (If H := G o I is the composition with a second
morphism G : (X', %/, A') — (X", %" A”), then GoF and H agree on M and map *
to *”. For every L € ), the restrictions of G o F and H to [0,1] = I, C I(X, %, A)
yield two paths in L} V Ips C I(X", X", A") between " and G(F(L<;)). They
are homotopic rel endpoints, since Ly V Iy ~ L7 is simply connected. Given
the identity morphism F on (X, X, A), choose ¢y, = consty_, for all L € A\. The
resulting map F is homotopic to the identity map on I (X, 3, A).)

Remark. 2.3 The approach of Section 2.1 also applies to the case £ = 2 and objects
(X,3,A) in P (n,p) with simply connected links, since Lo are 0-cells of L for all L € .
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2.2 Induced Maps for Spaces with Exactly One Isolated Singularity

Let us consider objects in P (n,p) with exactly one isolated singularity.

Definition. 2.4 The subcategory P, (n,7) of P (n,p) consists of the following objects
and morphisms:
e Objects (X, X, A) are objects in P (n,p), such that X has exactly one singularity.
(We use the notation o = {x} and A = {L}.)
e Morphisms F': (X, %, A) — (X', ¥/, A’) are morphisms in P (n,p), which are either
identity morphisms or satisfy F' (X) C X' — 2.

Let us check that P, (n,p) is closed under composition G o F' of morphisms F' :
(X,2,A) — (X', ¥ N) and G« (X)X N) — (X", 2"/ A"). This is clear if G is an
identity morphism. Otherwise, (G o F)(X) C G(X') C X" —2".

In the following, we construct a functor

Ione : Pone (na]_?> — HOTOp,

which agrees with I on objects. In order to define I,,. on morphisms, we will use the
following maps for a given object (X, %, A) in Py, (0, D):
e Let q: X —x — M be the projection map, which restricts to the identity map on
M and is given on L x (0,1) C X — z by ¢(a,t) = (a,1) € L x {1} C M. Let
1: M — X and [ : X — 2z < X be the inclusions. Note that the composition i o ¢
is homotopic to [.
e The canonical maps

b: M — I(X,2A), c¢:I(X,5A) = X (=X/o=X),

are defined as follows (compare [1, page 157]|). b is just the inclusion M <
I[(X,%,A) = cone(j o fr). (Note that f = fr.) ¢: I(X,X,A) = cone(jo fr) —
cone(j) = X is induced by the following 3-diagram of spaces:

cone(Ly) « S RN
cone(fr) | fr | =
cone(L) 2 M

Note that the canonical maps fit into the commutative diagram

M—2 5 1(X, 5, A)

c

X.

Let F': (X,%,A) = (X',3,A) be a morphism in P, (n,7).
If F is the identity morphism on (X, 3>, A), then we set

Ione (F) = [idi(x,5,4)] € HoTop.
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Otherwise, if F' is not an identity morphism, then it restricts to a map F|: X — X' —z'.
Define I,y (F') to be the homotopy class in HoTop of the composition

[(X,5,A) -5 X 2L x' — o v P 1(X SN

In order to check functoriality, let G : (X', ¥/, A’) — (X", %" A”) be a second morphism
in Pyye (n,7). One has to show that Iy (G o F) = Ione (G) 0 Ippe (F'). This is clear if at
least one of the morphisms F' and G is an identity morphism. Otherwise, one has

lone (G) © Lone (F) = [ 0 ¢" 0 Gl o (¢ o H) 0 ' 0 F| o ]
= [ oq"oCGlo (i og)o Flod

— (" oq" o (Glol o Fl)od

— [ oq" o (GoF)|od

e (Go F).

Let J : Poye (n,p) — Top be the forgetful functor. (J maps objects to the underlying
spaces and morphisms to the underlying continuous maps.) Let p : Top — HoTop be
the natural projection functor. We construct a natural transformation

Ione —po J.

We map a given object (X, %, A) in Py, (n,p) to the homotopy class of the canonical
map [c] : I(X,%,A) - X in HoTop. It remains to show that for every morphism
F: (X, 2 A) = (X', %, A) in Py (n,P), the following diagram commutes in HoTop:

Ionc(F)

1(X,%,A) 1(X',%,N)

[d] ']

[F]
X X'

This is clear, if F'is an identity morphism. Otherwise, the diagram factorizes as

g [F] @] ]
1(X,%,A) X X' - M 1(X', %, N)

[d] | lidx] | (' | [¢']
lidx] [F] fidx] [idx/]
X X' X'

']

Xl
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2.3 Induced Maps for Links Having a Basis of Cells for Their k-Cycle Group

In the present section, we will restrict our attention to objects in P (n,p), such that every
link is equipped with a CW-structure, whose group of k-cycles has a basis of cells. In this
case, the spatial homology truncations f; : L. — L of the links L can be taken to be
inclusions. The definition of the appropriate subcategory Pcyi (n, D) of P (n,p) is based
on a category Cyl (k). The latter is supposed to model the morphisms in Pcy (n,p)
near the isolated singularities of the pseudomanifolds:

Definition. 2.5 The category Cyl (k) consists of the following objects and morphisms:
e Objects in Cyl (k) are path connected CW-complexes P, such that the group
Zy, (P) of k-cycles of P has a basis of k-cells. Let ep : Poy — P be the inclusion
of the CW-complex P_;, obtained from P* by removing all k-cycle cells.
e Morphisms F': P — @ in Cyl (k) are maps of triples

F:(PxI,Px{0},Px{l}) = (QxI,Qx{0},Q x{1}),
which satisfy F (P! x I) € Q"' x I and F (P x {0}) C Q«j, x {0}.

Example. 2.6 (objects in Cyl(k)) A CW-complex K certainly has a basis of cells for
its group of k-cycles, if the boundary map 0y : Cy (K) — Ci_1 (K) is either injective
or the zero map, since then the kernel of 0y is either 0 or Cy (K). In particular, this
is the case if K has at most one k-cell e*. (If the image of ¢* under Jy is not zero,
then 0y, is injective, as Cy_;1 (K) is free abelian.) Moreover, the product complex of
two CW-complexes, whose boundary maps in the cellular chain complex are all zero,
has again this property. The following oriented closed path connected manifolds admit
CW-structures with at most one cell in every dimension:

e m-spheres for m > 1: S™ = e Ue™.

e lens spaces L, for p>2: L, =€’ Ue' U, e* Ue?.

e real projective spaces of odd dimension m > 1: RP™ = U ... U e™.

e complex projective spaces of dimension 2m, m > 1: CP™ =’ Ue? U ... U e*™.

Example. 2.7 (morphisms in Cyl (k)) Let k > 3 and let P and @ be objects in Cyl (k).
Choose completions (P, Yp, P, qP) and (Q, Yo, @, qQ) to objects in CW%w (see Defini-
tion 1.7), such that Yr C Cy (P) and Yy C C (Q) are generated by those k-cells, which

are not cycle cells. We show that every morphism (f, f) : (P, Yp, P, qP) — (Q, Yo, Q, qQ)
in CWY_, induces a morphism F : P — @ in Cyl(k), such that the restriction
F|: P=Px{l} - Q x {1} = Q is equal to f. By Section 1.2, there is a cellu-
lar map fo : P<p — @<k, such that the following diagram commutes up to homotopy
rel (k — 1)-skeleton:

F<k f
€Q
Qe — Q.
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(emb} : t%, — % is a natural transformation by Theorem 1.20. By construction of

79,, we have emb}) (P, Yp, P, qP) = [ep] and emb} (Q,YQ,@, qQ) = [eg]|. Thus, one can

take f.j as a representative of t2,(f, f).) Choose a rel P*~! homotopy H : Py x I — Q

between Hy = eg o for and H; = f o ep. By the homotopy extension property of the
CW-pair (P, P-j), the map

Px{1yuP,x12% ¢

can be extended to amap F’ : P x I — (). The following map has all desired properties:
F:PxI—=QxI, F(pt)=(F(pt),t).

Definition. 2.8 The subcategory Pcy (n,p) of P (n,D) consists of the following objects
and morphisms:

e Objects in P¢y (n,p) are objects (X, X, A) in P (n,p), such that every link L € X
is an object in Cyl (k) and the chosen spatial homology truncations f; are the
inclusions ey, : Lo, — L, which were introduced in Definition 2.5.

e Morphisms in Pcy (n,p) are morphisms F' : (X, X, A) — (X', X, A') in P (n,D),
which satisfy the following property: For every L € A there is a morphism FF, :
L — L) in Cyl(k), such that F' restricts for every L to the map F}, : cone (L) —
cone (L), which is induced from Fy, by collapsing the ends of the cylinders at 0 to
points. (By continuity, the maps E determine the maps Fj, uniquely.)

In order to define a functor Icy : Py (n,p) — HoTop, which agrees with I on objects,
we need some definitions. Given ep : P, — P, let mp denote the projection

7p: P | (Pay x T) = (P|_| (P % z)) /(ep (x) ~ (2,1) Vo € Py) = cyl (ep).
Define the following subspaces of cyl (ep):

Ap = 7Tp(P<k X {O}),
Bp = WP(P),
Cp:=7p (Pk_1 X I).

Note that mp restricts to a homeomorphism
op: P = Bp.
The restriction of mp to P, x I will be denoted by
pp: (Pax X I, Py x {0}, Py x {1}) <= (cyl(ep) , Ap, Bp) .

Note that the following diagram commutes:

Py,

Poy x {1}

ep ppl

op

P

Bp.
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2.9 Lemma. For every object P in Cyl(k), the inclusion Ep : cyl(ep) — P x I is a
homotopy equivalence.

Proof. The inclusions i : P 7% Bp < cyl(ep) and Epoi: P = P x {1} < P x I are
homotopy equivalences. Homotopy inverses are given by the projection ¢ : P x [ — P
to the first component for Epoi and go Ep : cyl(ep) — P for i. Thus, Ep is a homotopy
equivalence with homotopy inverse i o q. ]

For the following discussion, we introduce some appropriate categories. The category
HoCyl models “cylinders” as spaces with two fixed disjoint subspaces, which represent
the two ends of the cylinder. Morphisms in HoCyl are homotopy classes of maps which
preserve the ends of the cylinders and are rel the second subspace. This enables us to
glue larger spaces to the second subspaces in a functorial way, which is implemented
by the category HoGlue and the functor glue : HoGlue — HoCyl, 4. The category
HoCyl, 4 will be used in Section 2.6 to construct maps between reflective diagrams.
Let F: (X,X,A) = (X’,¥',\’) be a morphism in P¢y (n,p). The above categories are
needed to explain how a collection of suitable maps {L x I — L7 x I},_, in HoCyl,
which will be assigned to F, induces a continuous map [(X, X, A) — I(X', 3" A). (First,
the functor glue : HoGlue — HoCyl g is used to glue the manifolds M and M’ along
their boundaries to the second subspaces of the cylinders {L x I}, _, and {L' x I}, ;..
Afterwards, the upper subspaces of the cylinders are collapsed to a point by using a
collapsing functor coll : HoCyl 4 — HoTop.) This will reduce the construction of a
functor Icy @ Peyi (n,p) = HoTop, which agrees with I on objects, to the problem of
constructing a functor Ty : Cyl (k) — HoCyl with suitable properties (see Proposition
2.14).

Definition. 2.10 The category HoCyl consists of the following objects and morphisms:
Objects are triples (X, A, B) of topological spaces, where A and B are disjoint (possibly
empty) subspaces of X. Morphisms (X, A, B) — (X', A’, B') are rel B homotopy classes
[F] of maps F : (X, A, B) — (X', A", B') (i.e. F and F are equivalent if and only if there
exists a homotopy rel B between F' and F which maps A into A’ at all times). The
composition of two morphisms [F] : (X, A, B) — (X', A',B’) and [F'] : (X',A",B') —
(X", A", B") is given by [F'| o [F] := [F' o F].

Definition. 2.11 The category HoCyl 4 consists of the following objects and morph-
isms: Objects are quadruples (X, A, B, C) of topological spaces, where A, B and C are
subspaces of X, such that B C A. Morphisms (X, A, B,C) — (X', A", B',C") are rel C
homotopy classes [F] of maps F': (X, A, B,C) — (X', A", B',C").

Definition. 2.12 The category HoGlue consists of the following objects and morph-
isms: Objects are quadruples (X, A, By, B), where (X, A, By) is an object in HoCyl
and By C B is a subspace. Morphisms ([Fy,p) : (Xo, A, By, B) — (X}, A", By, B')
consist of a morphism [Fy| : (Xo, A, By) — (X{, 4", B}) in HoCyl and a morphism
p : B — B’ in Top, which restricts to p| = Fy| : By — Bj. The composition
with a second morphism ([F{],p) : (X{, A", By, B") — (X{,A”,B{,B") is given by
(F), ) o (1R, ) i= (F] o [Fe] .1/ o )
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Now, define the functor glue : HoGlue — HoCyl, 4
e on objects by glue (X, A, By, B) = (X, Xy, A, B), where X denotes the realization
of the 3-diagram X, <= By — B of spaces.
e on morphisms ([Fy], p) : (Xo, A, By, B) — (X{, A, B, B") by glue ([F0], p) = [F],
where F': (X, Xy, A, B) — (X', X{, A, B) is induced by

XO incl BO incl B
|F0 |F0| P
X, incl B, incl B/
0 0 :
Assume that there is a covariant functor
T, : Cyl(k) — HoCyl,

such that the following two properties are satisfied:
e For every object P in Cyl (k) one has Ty (P) = (cyl (ep), Ap, Bp).
e For every morphism F : P — @ in Cyl (k), the following diagram commutes:

Px{ly=pP-""=. B,
F|| Tu(F)
oQ =~
Qx{l} =@ Bq.

Given a morphism F': (X, X, A) — (X', ¥, A') in P¢y (n, D), one has
Tk (L) = (Cyl (GL) y L<k, L) VL € )\,
Ty (L) = (cyl(er), L, L") VL € X.

The following diagram commutes in Top:

incl

M

| !
incl

|—|L’E)\’ L/ — 8M/ —_— M,.

Lpex L = 0M

U Te(Fr)l=1 Fi|

All in all, F' gives rise to a morphism

<|_| Ty (F1) ,F|> eyl (), (OM)_,,,OM, M) — (cyl(f'), (OM")_, ,0M', M")

LeX

in HoGlue, where f = | |, ,er and (OM)_, = [, o\ Lk x {0} (C cyl(f)).
Since T}, is a functor, this yields a functor

Tk : PCyl (n, ]_?) — HoGlue,

which is given

48



e on objects (X, X, A) in Pey (n,D) by Ty (X, 5, A) = (cyl(f), (OM)_, ,0M, M).
e on morphisms F : (X, 3, A) — (X', %, \') in Pcyi (n,P) by Te (F) = (Uper Te (FL) . F).
The composition of functors

TCyl(k) = glueoTy : Pgy(n,p) — HoCyl, 4
is given on objects by
Topa (X, 5,A) = (eyl(jo f) eyl (f), (M) ., M),
where j : OM — M is the inclusion. Define the collapsing functor
col : HoCyl,s; — HoTop

e on objects (X, A, B,C) in HoCyl, 4 by coll(X, A, B,C) = X/B.
e on morphisms [¢] : (X, A4, B,C) — (X', A", B',C") in HoCyl, 4 by coll([¢]) = [@],
where @ : X/B — X'/B’ is induced by ¢ after passing to quotient spaces.
Finally, define the covariant functor

ICyl = coll OTCyl(k) : PCyl (n, ]_?) — HOTOp.

Note that Icy; agrees with I on objects.

In the following, we will construct such a functor Ty with the desired properties. By the
first property, T} is already given on objects. We go on to define Ty on morphisms in
Cyl (k). For every object P in Cyl(k), one has the inclusions

APUBPUCPCCYI(GP)&)PXI.

Note that every morphism F': P — @) in Cyl (k) satisfies F' (Ap) C Ag, F (Bp) C Bg
and F (Cp) C Cq. Consequently, F'(Ap U BpUCp) C Ag U Bg U Cq (C cyl(egq)).
Given a morphism F': P — @ in Cyl(k), we will construct a map

F<:cyl(ep) = cyl(eq),
such that the diagram

Ep=incl

cyl (ep) PxI

. | |F
Eg= incl

cyl (eg) Qx1

commutes up to homotopy rel ApUBpUCp. Note that this implies that F'< agrees with
Fon ApUBpUCp. (Ep and Eg are inclusions.) Thus, F'< (Ap) C Ag, F<(Bp) C By,
F<(Cp) C Cg and F<(ApUBpUCp) C Ag U By U CCg. In particular, F< induces a
morphism [F'<] : (cyl(ep),Ap, Bp) — (cyl(eq) ., Ag, Bg) in HoCyl. This will be used
as the definition of T} on morphisms. First, we use the compression lemma to construct
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a map F'< as above. In Proposition 2.13 we show that [F'<] is a well-defined morphism
in HoCyl. Finally, we will show in Proposition 2.14 that this defines a covariant functor
Ty : Cyl (k) — HoCyl with the desired properties.

In order to construct F'<, we apply the compression lemma [2, Lemma 4.6, page 346]:
Consider the map

FoEp:(cyl(ep), ApUBpUCp) = (Q x I,cyl(eq))
between CW-pairs, where cyl (e) # 0 is path connected. The complement
Cy1(6p) —APUBPUCP = (P<k X I) — (P<k X [)k

has only cells of dimension (k4 1). Since the inclusion Eg : cyl(eg) — @ x I is a
homotopy equivalence by Lemma 2.9, it follows from the long exact homotopy sequence
of the pair (Q x I,cyl(eqg)) that mpq (Q X I,cyl(eg)) = 0. Thus, there is a map

F< :cyl(ep) — cyl(eq),

such that F' o Ep is homotopic rel Ap U Bp U Cp to Eg o F<. The map F'< induces a
well-defined morphism in HoCyl:

2.13 Proposition. Let F' : P — @ be a morphism in Cyl (k). Suppose that F< :
cyl(ep) — cyl(eq) is a continuous map such that the following diagram commutes up
to homotopy rel Ap U Bp U Cp C cyl(ep):

= incl
cyl (ep) e p g

Eq= incl
cyl (eg) QxI

If G< is a second map with the same property, then [F'<| = [G<| in HoCyl. (Here, we
take the homotopy classes of the maps F'<,G< : (cyl (ep) , Ap, Bp) — (cyl(eq) , Ag, Bg).)

Proof. By assumption, the compositions
EqgoF<, EqgoG=:cyl(ep) = Q x I

are homotopic rel ApUBpUCp, since they are both homotopic to FoEp rel ApUBpUCp.
Thus, Eg o F'< and Eg o G< agree on Ap U Bp U Cp. Since E is injective, it follows
that F'< and G< agree on Ap U Bp U Cp. Using that F' : P — @ is a morphism in
Cyl (k), we showed above that F'< (Ap) C Ag, F'< (Bp) C Bg and F< (Cp) C Cg (and
analogous for G<). In particular, it follows from F'< (Bp),G< (Bp) C By, that F'< and
G< restrict to the same map

D:Bp — BQ.

Next, we apply Lemma 1.17 to the following setting. Define X := P_; x I, Y := cyl(eg)
and Y’ := @ x I. X is an (k + 1)-dimensional CW-complex and the CW-complexes Y’
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and Y’ are path connected. By composition with the inclusion pp : P x [ < cyl(ep),
define the maps
g1:=F<opp, gog:=Gopp : X = Y.

Note that pp (X*) € Ap U Bp U Cp. (This follows from X* = P, x {0,1} U P*! x I
and pp (P<j, x {0}) = Ap, pp (P<x x {1}) C Bp and pp (P*' x I) = Cp.) Since F<
and G< agree on Ap U BpUCp, one can conclude that ¢g; and g, agree on X*. The map
f = Eg:Y — Y’ induces an isomorphism f, : w41 (Y) = mpp1 (Y'), because Eg is a
homotopy equivalence (see Lemma 2.9). Composition with f yields the maps

fogb fOQZ:X_>Y/>

which are homotopic rel X*, because Fg o F< is homotopic to EgoG< rel ApUBpUCp
and pp (Xk) C ApUBpUCp. Therefore, by Lemma 1.17, gy = F<opp and go = G<opp
are homotopic via a rel X* homotopy. On P, x {1} C X*, the maps g; and g, restrict

to the same map
PP

P<k X {1} — Bp 2) BQ.
Hence, the homotopy rel X* between g, and g, can be extended to a homotopy rel
X*®U Bp C cyl(ep) between g; U D : cyl(ep) — cyl(eg) and go U D : cyl(ep) — cyl(eg).
(If J: X x I — Y denotes the rel X* homotopy between g; and g, then the desired
homotopy rel X* U Bp between ¢g; UD and g, U D is at t € I induced by the morphism

incl PPl

P, x I Poy, x {1} Bp

Jt | Dopp| D
incl =

cyl(eq) Bq Bq

of 3-diagrams.) Since gy UD = F<, goUD = G< and X*U Bp = Ap U Bp U Cp, we can
conclude that F'<,G< : (cyl(ep),Ap,Bp) — (cyl(eq),Ag, Bg) are equal in HoCyl.
]

Let us now construct the desired functor T} : Cyl (k) — HoCyl. Given an object P in
Cyl (k), the first property requires the definition

Tk (P) = (Cyl <€p) ,Ap, Bp) .

Given a morphism F': P — @ in Cyl (k), the above construction of F'< and Proposition
2.13 yield a well-defined morphism in HoCyl:

The second property is also satisfied, because ['< agrees with F' on Bp.

2.14 Proposition. Ty is a covariant functor with the desired properties.
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Proof. If F': P — P is an identity morphism, then F'< can also be chosen to be the
identity map on cyl(ep). Thus, Ty (F') = [F'<] is also an identity morphism.

It remains to show that for any two morphisms F': P — @ and G : Q — R in Cyl (k)
with composition H := G o F', one has

By construction of Ty, the morphisms Ty (F), Ty (G) and Ty (H) in HoCyl can be
represented by maps

F= ¢ (cylep), Ap, Bp) — (cyl(eq), Aq, Bo),

G (cyl(eq), Ag, Bq) — (cyl(er), Ar, Br),

H< : (cyl(ep), Ap, Bp) — (cyl(er), Ar, Br),

such that there are homotopies

a : EgoF<~FoFEp rel Ap U Bp U Cp,
f : EroG<~GokEy rel Ag U Bg U Cy,
v : EroHS~HoEp rel Ap UBpUCp.

We have to show that [H<] = [G< o F<] in HoCyl. The first two homotopies a and /3
imply that Er o G< o F'< is homotopic to H o Ep rel Ap U Bp U Cp. Such a homotopy
can be constructed as follows. First, we use 8 to obtain a rel Ap U Bp U C'p homotopy
(EroG<)o F< ~ (Go Eg)o F<. (Note that F'< (Ap U BpUCp) C Ag U Bg U Cq and
g is rel Ag U Bg U Cg.) Second, we use « to obtain a rel Ap U Bp U Cp homotopy
Go(EgoF<)~Go(FokEp). Using v, we find that both Ero H< and Egro G< o F'<
are homotopic to H o Ep rel Ap U BpUCp. Thus, the claim follows from the application
of Proposition 2.13 to H< and G< o F'<. n

Remark. 2.15 Our construction of the functor Icy @ Py (n,p) — HoTop does not
directly use that all links of objects in Pcy (n,p) have a basis of cells for their k-cycle
groups. We only use that L¥=1 C L., C L* for all links L € X of objects (X, %, A) in
Py (n,p) (and choose the spatial homology truncations fi, : Lo, — L to be inclusions.)
The existence of such an L_;, is equivalent to the existence of a direct sum complement
Y of Zy(L) in Cx(L), such that Y has a basis of k-cells. This is more general than to
require that L has a basis of k-cells for its k-cycle group. (Then, the remaining k-cells
form a basis of a direct sum complement of Z;(L).) However, in general there is no
canonical choice for the subcomplex L., C L. But if we require that the k-cycle group
of L has a cell-basis, then L*~! C L_;, C LF is unique by [1, Proposition 1.3, page 7]. If
we worked with the weaker assumptions, then we would have to give up this uniqueness.
Thus, we would have to record the choice of L.y in the definition of objects in Cyl(k).
(The definition of morphisms in Cyl(k) uses the spaces Ly.)
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2.4 Dependence on Choices

Assume that X = (X, X, A) and X’ = (X, 3, A’) are two objects in P (n,p). We have
L, = L/ for all z € o, because ¥ fixes the same cone neighbourhoods for both objects.
(Note that the objects can only differ in the chosen CW-structures and spatial homology
truncations for the links of X.) Thus, idy : X — &” and idx : X" — & are isomorphisms
in P (n,p), which are inverse to each other. Assume that X and X’ belong to the objects
of a subcategory P, (n,p) of P (n,p), such that there is a functor

L, : P, (n,p) — HoTop,

which agrees on objects with the assignment I. If idy : X — X’ and idx : X' — X
happen to be morphisms in P, (n,p), then X and X’ are isomorphic objects in P, (n,p).
Thus, I, (X) and I, (X’) are isomorphic objects in HoTop. This means that the choices
of (CW-structures and) spatial homology truncations for the links of X, which complete
(X, X, \) to the objects X and X’ in P, (n,p), result in homotopy equivalent intersection
spaces of X. If all completions of (X, ¥, \) to objects in P (n, p) were objects in P, (n,p)
and if we knew that for all completions X and X’ of (X, ¥, \) to objects in P (n,p),
idy : X - X" and idy : X’ — X were morphisms in P, (n,p), then the homotopy type
of the intersection space of X would be independent of all choices.

Example. 2.16 Recall that the interleaf category ICW is the full subcategory of CW*,
whose objects have finitely generated even-dimensional homology and vanishing odd-
dimensional homology for any coefficient group (see |1, Definition 1.62, page 71]). Let
Picw (n,P) be the subcategory of P (n,p), which consists of the following objects and
morphisms:
e Objects (X,X,A) are objects in P (n,p), such that all links L € A are objects
in ICW and all truncated spaces L, are simply connected. (Hence, the maps
fr : Leg — L satisfy the properties (T1)-(T3) of [1, page 132|. By [1, Lemma 2.25,
page 132], the spaces L are also objects in ICW.)
e The set of morphisms from an object (X, %, A) to an object (X', ¥, A") consists of
idy,if X =X ¥ =% and L, = L in ICW for all z € o, and is else empty.
Using the proof of [1, Theorem 2.26, page 132], one can define a functor

Iicw : Picw (n,p) — HoTop,

which agrees on objects with the assignment I : ObP (n,p) — ObHoTop. For every
object (X, X, A) in Picw (n,p), the proof of the theorem yields a reference model
Lot (X, 32, A) for the perversity p intersection space of X. The construction of I . (X, X, \)
uses that all links of X are in the interleaf category, but it does not make use of the fixed
spatial homology truncations of the links. Moreover, the proof yields a homotopy equi-
valence T (X, 3, A) — L (X, X, \), using that all homology truncations fr : Loy — L
satisfy the properties (T1)-(T3) of [1, page 132]. Now we proceed as follows. For all ob-
jects (X, X, A) in Picw (n, ), we fix a homotopy equivalence h (X, %, A) : T(X,3,A) —
Let (X, X, )) and a homotopy inverse h (X, %, A). If F =idx : (X,%,A) = (X, %, A) is
a morphism in Picw (n,p), then the following definition yields the desired functor:

Iiew (F) = [A(X,Z,A) o h (X, 5,A)] : I(X,2,A) = [(X,3,A).
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Example. 2.17 The proof of [1, Theorem 2.26, page 132| shows that for an object
L in the interleaf category and an integer k£ > 0, any two simply connected spatial
homology truncations of L in degree k are homotopy equivalent. (More precisely, the
proof uses a homotopy equivalence ¢ : L — E(L) to a finite CW-complex E (L) with
only even-dimensional cells. It is then shown that if a map f : L., — L satisfies
properties (T1)-(T3) of [1, page 132| with respect to k and L, then there is a homotopy
equivalence € : L.y, — F (L)kil.) However, the following example shows that in general
the homotopy type of a spatial homology truncation ¢, (K,Y’) of a simply connected
CW-complex K (m > 3) does depend on the completion of K to an object (K,Y) in
CW,,59. Define the 5-dimensional simply connected CW-complex

K= (5*VS") Use, Ugep,
where the attaching maps are defined by the compositions

042862:543>S4<—>S3\/S4,
B:oed = 5% 5 5ty 5t 12 g3y g4

where c collapses the equator S* C S* to a point and the homotopy class of v : S* — 53 is
the generator of 7y (S%) = Z/2. Obviously, Ose2 = dsej = 2e* and Zs (K) =Z (e2 — ¢€}) C
Cs (K) = Ze? & Zej. Two possible choices for direct sum complements are given by
Y, = Ze? and Y}, = Ze}. This yields two completions of K to objects (K,Y,) and (K, Y;)
in CWj~5. Following the construction of the 5-truncations t_5 (K,Y,) and t.5 (K,Y})
(see the proof of [1, Proposition 1.6, page 12|), we are free to choose the cell-bases
{n@} = {e2} for Y, and {n®} = {e}} for Y, and obtain

K =t (K,Y,) = (S°V %) Uy el = 5%V (S* Uz ),
KY =1.5(K,Y,) = (5% Vv S*) Us e

We claim that K (<a5) and K(fg are not homotopy equivalent. The attaching maps « and
yield the same boundary maps in the cellular chain complexes, so the homotopy types of
K (<a5) and K (<b§ cannot be kept apart by comparing homology groups. Since K (<a5) and K (<b5)
have the same 4-skeleton, they have identical homotopy groups in dimensions < 3. We
consider their homotopy groups in dimension 4. Using the list of elementary complexes
in [4, page 129] and the table of their homotopy groups |4, page 133],

e STUy el is of type 8 with n =3 and ¢ =1, so my (S* Uy €2) = Z /2.

o (S3V S%) Ug el is of type 10 with n =3 and ¢/ = 1, so m4(K%) = Z/4.
Application of [4, Theorem 4.2, page 131] with » =2, n =3 and s = 4 to K(;) = S* and

K9 = S*U, €} (note that K(<“5) = Kq)V K@ and 1 < s < 2n — 1) finally yields

mi(K)) =7y () @ my (S* U €l) = Z/2@ Z/2 # L)1 = my(KD)).
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2.5 Induced Maps for Links in a Compression Rigid Category

We assume k > 3 for the cut-off degree. For every object (P, Yp, P, qP) in Cnga (see
Definition 1.16) we fix a representative

€p : P<k:tgk (RYPaFaQP) — t0<oo (P7YP7F7QP) =P
of the homotopy class emb) (P,Yp, P,qp) in HOCWj_;. (emb) : t%, — ¢ is the
natural transformation between the covariant assignment 2, : CW}_, — HoCW,_,
and the natural projection functor t2_ : CW}_, — HoCW),_;, see Theorem 1.20.)
We fix a k-compression rigid subcategory C C szja, such that all objects (P, Yp, P, qP)

in C satisfy 7,41 (P) = 0. Based on the choice of C, we will define a category Pc (n,D)
(see Definition 2.19) together with a forgetful functor

Fc :Pc(n,p) = P (n,p).

Objects (X, X, Ac) in P¢ (n,p) come from suitable objects (X, %, A) in P (n,p) by com-
pletion of all links of X to objects in C. Morphisms in P (n,p) are morphisms in
P (n,p) which preserve these completions of the links. We will then use the covariant
functor t%, : C — HoCW,,_; (C is k-compression rigid!) to construct a functor

Ic : Pc (n,p) - HoTop,

such that I (Fc (X, 2, Ac)) = Ic (X, X, Ac) for all objects in P¢ (n,p). By an analogous
argument as in Section 2.3, it suffices to construct a covariant functor

T¢ : C — HoCyl,

such that the following conditions are satisfied:
e For every object (P, Yp, P, qp) in C, one has T¢ (P, Yp, P, qP) = (cyl(ep), Ap, Bp).
e For every morphism (f, f) : (P, Yp, P, qp) — (Q,YQ,@, qQ) in C, the following
diagram commutes:

[~23

op =

P Bp
oQ =
0 Bo.

The first condition already defines T on objects. The assumptions made for the sub-
category C C Cnga are used in the construction of T on morphisms as follows. T
will be well-defined on morphisms, because 71 (P) = 0 for all objects (P, Yp, P, qp) in
C. To show that T¢ is a functor, we will finally use that ¢2, is a functor on C.

Example. 2.18 The following are closed orientable aspherical topological manifolds,
which have a CW-structure, such that all boundary maps vanish:

e the one-sphere S' = e® Uel.

o the closed oriented surface of genus g > 1: X, =’ Ue, Ue, U...Ue, Uey Ue.
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Finite products of these spaces are again closed orientable aspherical topological man-
ifolds, which have a CW-structure, such that all boundary maps vanish. If we choose
C as a subcategory of ngja, such that for all objects (P, Yp, P, qp) of C the CW-
complex P is of this type, then C is a k-compression rigid category by Proposition 1.18.
Moreover, for all objects (P, Yp, P, qp) in C we have 71 (P) = 0, since P is aspherical.

Definition. 2.19 The category P¢ (n,p) consists of the following objects and morph-
isms:

e Objects in P¢ (n,p) are triples (X, X, Ac) with the following property: There exist
an object (X,%,A) in P (n,p) and for every L € A a completion (L,YL,I, qL) to
an object in C, such that Ac is the set of these completions and f; is the fixed
representative e; : L., — L of the class embg (L,YL,E, qL) for all L € A. In
particular, (X, X, A) is uniquely determined by (X, 3, Ac) and will be denoted by
Fc (X, X, Ac). This yields an assignment on the object level:

Fc : ObPc (n,]_o) — ObP (n,]_))

e Morphisms (X, %, Ac) — (X',¥,Ag) in Pc (n,p) are pairs (F,®), where F :
Fo (X, 2, Ac) = Fe (X', Y, Ag) is a morphism in P (n,p) and @ is a set of com-
pletions _ o

(fr, fo): (L,YL,Z, QL) — (LIL,YL'L>L/L,QL'L)
of the restrictions f; := F|: L — L, to morphisms in C. The composition with
a second morphism (F', @) : (X', 3 Ag) — (X", X" AL) is given by (F' o F, "),
where ®” is the set of all compositions (f’L,L o fr, ﬁ,L o f;) in C. The projection to
the first component F¢ (F, ®) = F yields a forgetful functor

Fc :Pc(n,p) = P (n,p).

Let (f, f) : (P, Yp, P, qP) — (Q, Yo, Q, qQ) be a morphism in C. Choose a representative

f<k : Pej = Q<y, of the rel (k — 1)-skeleton homotopy class 2, (f, f). As emb? : 9, —
2 . is a natural transformation, the following diagram commutes up to homotopy rel
(k — 1)-skeleton:

P ———p
f<k f
€Q
Qi — Q.

Since ep and eq restrict to idps-1 and idge-1 on (k — 1)-skeletons, f.; agrees with the
cellular map f*~! on P*~1. Hence, fo; is cellular. (The CW-complexes Py and Qy
are k-dimensional.) Let H : P, x [1/2,1] — @ be a rel P*~! homotopy between
Hi/y =ego fopand Hy = foep. Let

F=: (eyl(ep) , Ap, Bp) = (cyl(eq) , Aq, Bo)

be the map that is induced by the following morphism of 3-diagrams of spaces:
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at 1/2 at 1/2

|f<k><(t’—>2t) f<k |fU5pH
at 1 €Q
Qar x I 22— Quy Q

(Here the space P U,, P- x [1/2,1] is the realization of Py x [1/2,1] &L P 5 P)

Now define the following morphism in HoCyl:

To(f, f) = [F].

2.20 Proposition. The construction of Tc(f, f) is independent of all choices (namely

the choice of the representative fo, of t2,.(f, f) and the choice of the homotopy H).
Moreover, T¢ : C — HoClyl is a functor.

Proof. Given a morphism (f, f) : (P, Yp, P, qP) — (Q,YQ,@, qQ) in C, we show first

that Tc(f, f) does not depend on the choices of fo, and H. Suppose that f., is a
second representative of the rel (k — 1)-skeleton homotopy class ¢, (f, f) and that H' :
P x[1/2,1] = @ is arel P*~! homotopy between Hi,, =eqgof,and H = foep = H;.
Then the construction above yields a map F<' : (cyl(ep), Ap, Bp) — (cyl (eq) , Ag, Bo)
and one has to show that [F<] = [F<'] in HoCyl.

As [far] = t%.(f, f) = [fL4] in HOCW_4, there exists a rel (k — 1)-skeleton homotopy
E: P x[0,1/2] = Q<. between Eq = fL, and Ey/» = f;. The rel P*~! homotopies
eQo E: Py x [0,1/2] = Q and H : Py, x [1/2,1] = Q satisty (eg o E), , = eqo fa =
H, /5. Therefore, one can fix a homotopy

L:(Ppx[1/2,1]) x I — Q

between Ly = H and the “concatenation” L; = (eq o E)* H. (L, is a rel P*~! homotopy
between (L1), , = (eq o E), = eq o fL; and (L1), = Hi = f oep.) Explicitly, we set

Lo (at) (egoE)y 1 s(x), for 1/2<t<s/441/2,
T | Haes (2), for s/44+1/2<t <1,

Let M : cyl(ep) x I — cyl(eg) be the homotopy which is given for every s € I by the
map that is induced by the following morphism of 3-diagrams of spaces:

t1/2 t1/2
P<k><[071/2] o Py, w PUEPP<]€X[1/2’1]
|E125 X (t—2t) Eis |fuePLS
t1 eqQ
Qe x 1 . <k Q

The map f U., Ly is well-defined, because (Ls), = H; = f oep. The right square
commutes, because (L), , = (eg 0 E)1_s =eq© Ei_.. The homotopy M is rel Bp and
2
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satisfies M, (Ap) C Ag and M, (Bp) C Bg for every s € I. Therefore, [F<] = [My] =
[M;] in HoCyl. (Note that My = F'<, because Ly = H and E; /5 = f<y.)

Now, we apply [1, Lemma 1.43, page 53| to the maps Ly, H : P, x [1/2,1] — Q. The
CW-complex P, x [1/2,1] is of dimension (k + 1). The CW-complex @ is (k + 1)-simple
because of the condition 7,1 (@) = 0. Moreover, L; and H' agree on the k-skeleton
(Pek x [1/2,1])" = PF1 5 [1/2,1]U Py x {1/2} U Py, x {1}, because Hj ,, = eqo fL, =
(L1),/, and H] = Hy = (L1), and for every ¢ € [1/2,1] one has H|pr—1 = H{|pr1 =
(L1), |pr—1r = (L1),|ps—1 (the homotopies H' and L, are rel P*~1). The obstruction
cocycle

w (L, H) € C*2 ((Poy x [1/2,1]) x I; 1y (Q))

vanishes, as 741 (Q) = 0. Consequently, there exists a rel (P, x [1/2,1])* homotopy
NZ(P<;€X[1/2,1])XI—>Q7 N0:L17 leH/-

Let M'" : cyl(ep) x I — cyl(eg) be the homotopy which is given for each s € I by the
map that is induced by the following morphism of 3-diagrams of spaces:

t1/2 t1/2
P [0,1/2 <2 p M pu, Py x [1/2,1]
|f’<k><(t»—>2t) Lk IfUEPNS
1 €Q
Qur x [ —"— Qu Q

The map f U, N, is well-defined, because N is rel P.; x {1} C (P x [1/2,1])" and
thus Ny|p_,«(13 = Nolpyxiy = (L1); = foep for every s € I. The right square
commutes, because N is rel Py, x {1/2} C (P, x [1/2,1])" and hence Nylp_xq1/2y =
Nolp_pxq1/2y = (L1)1/2 =ego fL, for every s € I. Note that My = M; and M| = F<,
Moreover, M (Ap) C Ag and M. (Bp) C B for every s € I and M’ is rel Bp. There-
fore, [F<] = [M;] = [M{] = [M]] = [F<'] in HoCyL

It remains to show that Tc is a functor. For an identity morphism id py, 5,y =
(idp,idp:) in C, one has t2,(idp,idp.) = [idp.,] by definition of 72, on identity morph-
isms. Thus, one can choose idp_, as a representative of t2, (idp,idp,) and H = ep x id;.
The resulting map F'< : cyl(ep) — cyl(ep) is homotopic rel Ap U Bp to ideyi(ep). Thus,
Tc(idp,idpk) = [id(eyi(ep),ap,Bp)] in HoCyl. Now suppose that (f, f) : (P, Yp, P, qP) —
(Q,YQ,@, qQ) and (g,9) : (Q,YQ,@, qQ) — (R,YR,}_%, qR) are morphisms in C with
composition (h,ﬁ) =(go f,go f) : (P, Yp, P, qP) — (R, Yr, R, qR). We choose repres-
entatives f;, and g of the homotopy classes 2, (f, /) and 2, (9,9) in HOCW,_;. By
Theorem 1.20, the assignment t2, : CW)_, — HoCW,_, restricts to a functor on the
compression rigid subcategory C. Therefore,

tik<h7ﬁ) = tgk(g of,go J?) = tik(g,’g“) o tgk(ﬂ J?) = [g9<k] o [f<i] = [g<k © f<i]

in HoOCW,,_;. This shows that g-; o f<x represents the rel (k — 1)-skeleton homotopy
class t%,(h, h). If we choose a rel P*~! homotopy eg o for ~ foep and a rel QF!
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homotopy er © g« = g o e, then the construction above yields maps F'< : cyl(ep) —
cyl (eg) and G=< : cyl(eq) — cyl(er). We define the composition

D : Pox[41 % cylep) X5 cyl(er).

The map « is given by the composition

Py x[1/4,1] = P| |PauxI 5 PuU,., Py xT=cyl(ep).
In fact, we have defined a map D : P x [1/4,1] — R (C cyl(er)), because
(GSoFS)(PUg, P x [1/4,1]) C GS(QU., Qepx[1/2,1]) C R (Ccyl(er)).

We observe that D : P, x [1/4,1] — R is a homotopy rel P*~! between D;, =
ero(ger o f<r) and Dy = go foep = hoep. (To see that D is rel P*=1 we use that ep
restricts to idps-1 on (k—1)-skeletons. Thus, we have P*~! x I C cyl(ep) (and analogous
for Q). Since (f<x)*' = f*1, the map F< : cyl(ep) — cyl(eq) restricts to

(f(z),2t), for0<t<1/2,

o1 k-1
P x I —Q x 1, (x’t)'_){(f(x),l), for1/2<t<1

(and analogous for G<). Thus, D(z,t) = (go f)(z) for (x,t) € P*! x [1/4,1].)
Let K : cyl(ep) x I — cyl(eq) be the homotopy which is given for each s € I by the
map that is induced by the following morphism of 3-diagrams of spaces:

s+1 at s+1

Peg x [0, 53] «—— Py ——— P U, Py x [#14,1]
(9<rof<i)x (=5 t) | 9<kOf<k hUe p (Dofs)
R<k « I at 1 R<k €R R.

Here, the map 3, : Poy x 23, 1] — Po x [1/4,1] is defined by f,(z,t) = (z,3=2).
The map h U, (D o f) is well-defined, because (D o s); = D; = hoep. The right
square commutes, because D;/4 = e o (g<k © f<k). We have constructed a rel Ap U Bp
homotopy K : cyl(ep) x I — cyl(eq) between Ky = G< o F'< and H< := K;. Note that

Tc(h, h) = [H<] by construction of Tg. Therefore, in HoCyl, we get

To(h,h) = [H] £ [G* 0 F<] = [G"] o [F<] = Ta(g,) o To(f, f)-

Remark. 2.21 The part of the previous proof that shows the independence of T¢ of
all choices does not make use of the assumption that C is a compression-rigid category.
Therefore, the only condition that is needed to show that I is well-defined on morphisms
is the condition that 7, of the links vanishes. In this case, one still gets covariant
assignments T¢ and Ic.

29



2.6 Induced Morphisms between Reflective Diagrams

Let FF : (X,X,A) — (X',¥',A’) be a morphism in P(n,p). On the one hand, we
have seen in the previous sections that if F' lies in a suitable subcategory P.(n,p) of
P(n,p), then we can induce a well-defined homotopy class of continuous maps I.(F) :
IPX — IPX'in HoTop. This class will furthermore induce homomorphisms H, (I7X) —
H +(I?PX") between reduced integral homology groups. On the other hand, the intersection
homology of the n-dimensional compact topological pseudomanifold X with only isolated
singularities is given by (see Remark 2.23)

H,.(M), r <k,
IHP(X) = im(a), r=k,
H,(M,0M), >k,

where « : Hp(M) — Hp(M,0M) is induced by the inclusion M «— (M,0M). Since
F : X — X’ is a continuous map which satisfies F(M) C M’ and F(OM) C OM’,
F induces homomorphisms [HP(X) — IHP(X') for all . (If r = k, then we can
restrict the induced homomorphism Hy(M,0M) — Hi(M',0M’) to a homomorphism
im(a) — im(a’).) What can be said about the relation between the induced homomorph-
isms on reduced homology groups of intersection spaces and on intersection homology
groups?

Following the proof of [1, Theorem 2.12, page 114ff|, we assign to every object (X, %, A)
in P(n,p) a k-reflective diagram (see [1, Definition 2.1, page 107f]) written as a braid

0
/\/\/\/\/‘\/‘\/‘\

Hypy1 (IPX) IH,fH(X) H(OM) Hy_1(0M) IHﬁ (X)) Hy,_1(IPX)
\/\/\/\/\/\/\/
Hy11(0M) Hy i1 (IPX) Hy(0OM) H,(IPX) Hy_1(0M) H 1(IPX) Hy_2(0M)
7N SN NS N SN N
THY ,(X) Hpy1(OM) Hy, (M) Hy, (M,0M) Hy,_o(OM) IHY ,(X)
\/ \_/ \_/a,\ Ja+ \_/ \_/ v
TH?(X)

O/ \0

The thick arrows indicate the k-reflective diagram in its original form. The intersec-
tion homology groups IHP(X) are calculated as above. We will show that (under a
certain factorization condition for L, : P,(n,p) — HoTop) morphisms in P.(n,p) in-
duce morphisms (see [1, Definition 2.2, page 109]) between the associated k-reflective
diagrams. The latter morphisms will then assemble the induced homomorphisms of our
interest (see Proposition 2.22). In the proof, we will start with an induced morphism
between braid diagrams. Among the induced homomorphisms between corresponding
homology groups we will analyze those which are required to obtain a morphism between
k-reflective diagrams.
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Some of the functors I, of Chapter 2 factorize over HoCyl, g4 (see Definition 2.11):

P.(n,p) HoTop
L. /
HoCyl, 4 ().

Here, I, : P,(n,p) — HoCyl 4 is a covariant functor, such that

o L(X,%,A) = (cyl(j o f),cyl(f), (M) <, M) for all objects (X, ¥, A) in P,(n,p).

e L(F)|y = F|y for all morphisms F : (X, %,A) = (X', %/, A') in P,(n, 7).
Moreover, coll : HoCyl, 4 — HoTop is the covariant functor defined in Section 2.3:

e coll(X, A, B,C) = X/B for all objects (X, A, B,C) in HoCyl, 4.

e coll([¢]) = [X/B % X'/B’] for all morphisms [¢] : (X, A, B,C) — (X', A, B',C").
The factorization () applies to the functors I, and I; of Section 2.1, to the functor I¢y
of Section 2.3 and to the functors I¢ of Section 2.5 (use F¢ in the notation).

2.22 Proposition. Let I, : P.(n,p) — HoTop be a functor, which factorizes as in (x).
Then every morphism F : (X, %, A) — (X', ¥, \') in P,(n,p) induces a morphism from
the k-reflective diagram associated to (X, X, A) to the k-reflective diagram associated to
(X', ¥, '), such that the homomorphisms
o H,(IPX)— H,(IPX') are induced by I(F) : IPX — IPX’.
e [HP(X) — IHP(X') are induced by F : X — X' (as explained above).
H.(OM) — H.(OM'"), Hp(M)— Hp(M'), Hp(M,0M)— Hg(M' OM')
are induced by the following restrictions of F':
oM —oM', M — M, (M,0M)— (M, oM.
This assignment is obviously functorial.

Proof. Let F: (X,3,A) — (X', ¥, A’) be a morphism in P,(n,p). We have

T*(X> E>A) = (Cyl(j © f)v Cyl(f)’ (8M)<k7 M)>
L(X' X, A) = (eyl(f o '), eyl(f'), (OM") <, M').

The braid diagram of a triple (A, B, C') of spaces with C' C B C A is given by

N N N N

Hy11(C) Hy11(A) Hy11(A,B) Hy(B,0) Hi_1(C) Hy_1(A) Hy_1(A,B)  Hp_2(B,C)
NSNS NS NS N S S NS
Hy11(B) Hyp11(AC) Hy(B) Hy(A,C) Hy_1(B) Hy_1(AC) Hy_2(B)
SO N S N N N SN N

Hy2(A,B) Hy11(B,C) H(O) Hy(A) Hy(A,B) Hy_1(B,C) Hy_2(C) Hy_2(A)

NN T NS T N N~
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(The thick arrows already indicate the construction of the above k-reflective diagram.)
Following the first half of the proof of |1, Theorem 2.12, page 114|, the k-reflective
diagrams associated to (X, ¥, A) and (X', ¥’/ A’) are constructed from the braids of

(A, B,C) = (ceyl(j o f), cyl(f), (OM) <),
(A", B',C") = (eyl(j" o f), cyl(f"), (OM") <)
In fact, these braids agree with the braids which are considered in the original proof:
e H.(f)=H.(B,C)and H.(jo f) = H.(A,C) by definition.
o H,.((0M)<x) = H,(C) remains unchanged.
e The following identifications are induced by inclusions:

H,(M) = H,(A), H(OM)=H,(B), and (H,(j)=)H,(M,0M) = H,(A, B).

(These inclusions are homotopy equivalences, whose homotopy inverses are the
obvious projections.)
We choose a representative of the homotopy class I.(F') in HoCyl, g:

F: (A B,C,M) — (A, B,C' M).

The map F (A,B,C) — (A", B',C") of triples induces a well-defined morphism
between braid diagrams. (This is a consequence of naturality of long exact homology
sequences for pairs and triples). We investigate the induced homomorphisms between
objects of the thick subdiagrams:
e H.(B)— H.(B') and H,(A) — H,.(A):
By assumption, we have the following commutative diagrams:

F|=F| F|=F|
oM —— oM’ M —— M
incl incl | incl | incl
F| F
B B’ and A A

All vertical inclusions are homotopy equivalences. Thus, they induce isomorphisms
on homology groups. Under their inverses, the induced maps

F|,:H(B) = H.(B') and  F,:H.(A) — H,(A)
correspond to
F|.: H.(0M) = H.(0M')  and  F|,: H.(M) — H,.(M).

e H. (A B)— H.(A,B'):
By assumption, we have the following commutative diagram:
F|=F|

(M, 0M) ——> (M’,0M")

| incl

(4, B)

incl

(A, B).
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By the 5-lemma and the previous item, the vertical inclusions of pairs induce
isomorphisms on homology groups. Under their inverses, the induced map

F|,: H.(A B) — H.(A, B
corresponds to
Fl.: H.(M,0M) — H.(M',oM").

H.(A,C) — H.(A,C"): (Take note of the identification H,(A,C) = H,(A) for
r>kand H.(A,C) = H,(A, B) for r < k!
We have the following commutative diagram in HoTop:

(4,C) —— ()
o] froil
1,5, A), ) <2 qxr s A, ),

The vertical quotient maps induce isomorphisms on homology groups (see |2, Pro-
position 2.22, page 124|). Under these isomorphisms, the induced map

F,: H(A,C) = H. (A, C")
corresponds to

coll([F]). = coll(L(F)). & (L(F)). : H,(I"X) — H,(IPX").

Finally, in dimension k, the commutative diagram

H, (M) H, (M, 0M)

H (M) —%— Hy(M',0M")

(67

factorizes as

al . incl

Hy(M) —— im(«)

Hi(M, M)

Bl (F Bl

o incl

Hy(M') —— im(a/) ——— Hp(M',0M’),

where im(a) = TH}(X) and im(a’) = THP(X').

Remark. 2.23 (intersection homology and placid maps) Let (X, 3, A) be an object in
P(n,p). We assume that X is equipped with the stratification

X:XnDXn_l:...:X():O'DX_lzw,
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where 0 C X denotes the (finite) set of singular points of X. (Thus, the strata of X are
given by X — ¢ and the points of 0.) In [8, Proposition 4.4.1, page 55|, it is deduced
from the definition of intersection homology that

H.(X —o0), r<k,
[HP(X) = < im(B), r=k,
H,(X), r >k,

where 3 : Hi(X — o) — H(X) is induced by the inclusion X — o — X.

In [8, Definition 4.8.1, page 61|, a continuous map F' : X — X' between topologically
stratified spaces is called placid, if for every stratum T of X’ the preimage F~1(T) is a
union of strata of X, and codim F~(T) > codim T

If (X,%,A) and (X',>, A’) are objects in P(n,p), then a continuous map F: X — X’
is placid if and only if F~1(¢’) C 0. (If F is placid, then we have codim F~!(z') >
codim 2’ = n for all 2’ € ¢’. Thus, F~!(2’) must be a union of strata of X with codimen-
sion > n. These are points in 0. Conversely, assume that F'~'(¢’) C 0. Then, the claim
is clear for all 2/ € ¢’. Since codim(X’ — ¢’) = 0, it remains to show that F'~}(X’' — ¢”)
is a union of strata of X. This follows from X —c C X — F~'(¢’) = F~}(X'—¢’).) The
condition F~!(¢’) C o is equivalent to F(X — o) C X' — o’

Now, let us assume that F' : X — X' is placid, i.e. F(X —o0) C X' —¢’. Then, F
induces homomorphisms IHP(X) — [HP(X') for all . (If » = k, then we can restrict
the induced homomorphism Hy(X) — Hg(X’) to a homomorphism im(3) — im(5’).)
How is this related to the intersection homology groups which were used in the considera-
tions above? Using excision and homotopy invariance, one can show that we have in fact
used the same intersection homology groups in Proposition 2.22 (see |8, Remark 4.4.2,
page 56| and compare to the diagram below). Now, we will show that all identifications
are compatible with the homomorphisms induced by F' between intersection homology
groups, if we assume that F'(C) C C', where C':=| |, ., cone(L) C X.

Let F': (X,X,A) — (X',¥,A") be a morphism in P(n,p), such that F is placid and
satisfies F/(C') C C'. Thus, the continuous map F': X — X' satisfies:

F(M)c M', F@OM)coM', FC)cC, FX-o)CcX —d.

All claimed compatibilities will result from the following commutative diagram:

R
IR

1 P2 = py

Hr<M) — HT‘<X - U) - HT'<X> HT‘(X7 C)

| Fl. | Fl. | F. | F.
~ / ! ~ / ~ /

= %1 P2 = ¥3 = ¥4

H (M) — = H.(X' — ¢') —2> H(X') — > H,(X',C") ——— H,(M',0M").

©3

H,(M,0M)

Fl.

All horizontal maps are induced by inclusions. ¢; is an isomorphism by homotopy
invariance. (3 is an isomorphism for > 0. (The homology groups of C' in the long exact
homology sequence of the pair (X, C') vanish in positive degrees.) ¢, is an isomorphism
by excision and homotopy invariance. (Excise open cone neighbourhoods of the singular
points.) If r = k, then @9 = 5 and the composition of the first line is a.
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