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Abstract

Background: The genetic etiology of human lipid quantitative traits is not fully
elucidated, and interactions between variants may play a role. We performed a
gene-centric interaction study for four different lipid traits: low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol
(TC), and triglycerides (TG).

Results: Our analysis consisted of a discovery phase using a merged dataset of five
different cohorts (n = 12,853 to n = 16,849 depending on lipid phenotype) and a
replication phase with ten independent cohorts totaling up to 36,938 additional
samples. Filters are often applied before interaction testing to correct for the burden
of testing all pairwise interactions. We used two different filters: 1. A filter that tested
only single nucleotide polymorphisms (SNPs) with a main effect of p < 0.001 in a
previous association study. 2. A filter that only tested interactions identified by
Biofilter 2.0. Pairwise models that reached an interaction significance level of
p < 0.001 in the discovery dataset were tested for replication. We identified
thirteen SNP-SNP models that were significant in more than one replication
cohort after accounting for multiple testing.

Conclusions: These results may reveal novel insights into the genetic etiology of
lipid levels. Furthermore, we developed a pipeline to perform a computationally
efficient interaction analysis with multi-cohort replication.

Keywords: Genetics, Lipids, Interactions, Computational genetics, Genetic
epidemiology
© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-017-0145-5&domain=pdf
mailto:emily.holzinger@nih.gov
mailto:bkeating@mail.med.upenn.edu
mailto:mdritchie@geisinger.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Holzinger et al. BioData Mining  (2017) 10:25 Page 2 of 20
Background
For this study, we perform several analyses to identify and validate genetic interactions

associated with circulating lipid levels. Our motivation for studying the contribution of

interactions to lipid levels is three-fold. First, dyslipidemia have a large impact on

human health. Circulating lipid levels, such as high-density lipoprotein cholesterol

(HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and

triglycerides (TG), are associated with risk for various common disease traits includ-

ing cardiovascular disease [1]. Cardiovascular disease is the leading cause of death

for individuals in developed countries [2]. Secondly, the estimated genetic compo-

nent for lipid levels is relatively large and highly variable. While age, sex, body mass

index (BMI), diet, exercise and smoking status have been shown to have an effect on

lipid levels, it is estimated that genetic factors contribute between 40 and 60% overall

to variation in lipid levels [3, 4]. A more thorough understanding of the genetics

underlying individual variation in lipid levels will result in greater insight into the

biological processes underpinning dyslipidemia, and may inform more effective ther-

apies to ultimately lower risk for cardiovascular disease. Lastly, a large portion of the

estimated genetic component has not been identified by main effects alone. For the

past decade or so, large efforts have been undertaken to tease apart the genetic eti-

ology of common, complex traits, such as circulating lipid level and CVD; however a

large proportion of the estimated heritability of these traits that remains unexplained

[5, 6]. Sources of missing heritability are likely to be caused by rare variants, epigen-

etics, structural variation, gene-gene interactions, gene-environment interactions,

and/or the accuracy of the heritability models [7, 8]. Notably, calculating the total

heritability and measuring the exact contribution of these specific findings to herit-

ability remains a controversial and complex issue [9–12]. However, the consistently

small proportion explained by common variants identified by GWAS across all com-

plex traits suggests that we still have a lot to learn about the genetic architecture of

these traits. This study addresses the contribution of interactions to the genetic

architecture of lipid traits by examining SNP-SNP interactions in four quantitative

lipid traits – HDL-C, LDL-C, TC, and TG.

Here we are trying to identify genetic interactions by searching for statistical interac-

tions. For interpretation purposes, it is important to understand how we define an

interaction. Biologically, we are trying to identify genetic variants that alter the pheno-

type in a manner that is dependent on genotypes at two different loci. For example, an

individual may have variants in two different regions of a metabolic enzyme protein

that cause triglyceride levels to increase even more than the combined additive effects

of the variants. Statistically, we use a likelihood ratio test to assess the significance of

including a multiplicative interaction term along with the two main effect terms in a

linear regression model. While there has been some debate about the relationship be-

tween statistical and biological interactions, there is substantial evidence that this

method is robust to the non-linear or interaction effects we are interested in [13].One

of the main considerations for a genome-wide interaction study (GWIS) is the compu-

tational and statistical burden of exhaustive interaction testing, which inherently results

in a massive increase in the number of tests (e.g. 1000 SNPs = 499,500 two-way inter-

actions and 166,167,000 three-way interactions, etc.). While our analysis is not a GWIS

per se, as most individuals were genotyped using a cardiovascular gene-centric array
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and we filtered before interaction testing, the considerations about interaction do still

apply [14]. One approach to address this issue is to filter on main effect significance

(i.e. the p-value from the main effect term in a regression model) using bona fide index

lipid signals derived from existing GWAS. A limitation to the main effect filter ap-

proach is that SNPs involved in true interactions with little or no main effects will likely

be filtered out. Another approach is to select SNP-SNP models based on knowledge-

driven biologically plausible genes/loci, such as selecting SNP pairs in genes shown to

physically interact in previous biological experiments (Biofilter) [15].

For this analysis, we used both of the aforementioned filter methods to test for inter-

actions. After applying these filters, we identified potential SNP-SNP interactions for

each of the lipid traits in a discovery analysis, which consisted of five cohorts merged

into one dataset (n = 12,853 to n = 16,849 depending on lipid phenotype): Atheroscler-

osis Risk In Communities (ARIC); Coronary Artery Risk Development in Young Adults

(CARDIA); Cardiovascular Health Study (CHS); Framingham Heart Study (FHS); and

Multi-Ethnic Study of Atherosclerosis (MESA); from the NHLBI Candidate gene Asso-

ciation Resource (CARe). Models were selected for replication testing based on statis-

tical significance from the discovery set. There were ten replication sets in total with

sample sizes between n = 1568 and n = 7504 totaling 36,938 for the replication dataset.

We identified models with the most evidence for significant associations with the lipid

traits according multiple-testing corrected likelihood ratio test p-value thresholds from

linear regression models. We also assessed the number of cohorts in which the models

replicated. This study highlights an analysis strategy to explore genetic interactions for

complex traits and suggests several replicating interactions for lipid traits.
Methods
Discovery: Cohort descriptions

The discovery dataset for each of the traits had n ~ 14,000, with each of the cohorts

having the following contributions: ARIC (n = 11,906), CARDIA (n = 2319), CHS

(n = 4490), FHS (n = 1467), and MESA (n = 5598). Individuals were genotyped using

the gene-centric ITMAT-Broad-CARe (IBC) array [16], which was previously used in a

meta-analysis of 32 studies (66,240 individuals), identifying and replicating many known

and novel lipid signals [17]. All of the individuals in our analysis were self-reported

European ancestry, subsequently verified using principal component analyses by

selecting individuals that clustered with the CEU panel from HapMap, and ≥21 years

of age. HDL-C, LDL-C, TC, and TG levels were measured from baseline or first

measurement blood samples. All lipid measurements were converted to mmol/L.

LDL-C was calculated according to Friedewald’s formula L ~ C – H - kT where C is total

cholesterol, H is HDL, L is LDL, T are triglycerides, and k is 0.45 for mmol/L (or 0.20 if

measured in mg/dl). If TG values were >4.51 mmol/L (>400 mg/dL), then LDL was

treated as a missing value. More details for the five merged discovery cohorts are shown

in Table 1.
Discovery: Quality control and statistical analyses

Individuals were genotyped on the ITMAT-Broad-CARe (IBC) array. This array con-

sists of ~50,000 SNPs across ~2100 loci. Selection criteria for SNPs to be included on



Table 1 Details for the five cohorts that were merged to create the discovery dataset and the 10
cohorts used for replication

Study (One
letter label)

Recruitment design Year of
collection

N
totala

Data
Level

Study Ref (PMID)

Discovery
(IBC)

ARIC Community-based 1985–2006 9588 Individual 20400780

CARDIA Community-based 1985–2003 1443 Individual 20400780

CHS Community-based 1988–2005 3952 Individual 20400780

FHS Community-based 1948-present 7556 Individual 20,400,780

MESA Community-based 1999–2009 2298 Individual 20400780

Replication
(IBC)

BOSS/EHLS/BDES Population-based
cohort

1988-present 1568 Summary 21339392, 9801018,
1923372

BWHHS (B) Population-based
cohort

1999–2001 3411 Summary 16045529

CLEAR Case-control 2005 1591 Summary 16474172

EPIC-NL Nested case-control 1993–1997 5194 Summary 19483199

GIRaFH Cohort 1999 1694 Summary 15554949

KORA Population-based
cohort

1984–2005 1849 Summary 16032513, 1603251

LURIC (L) Case-control 1997–2002 2813 Summary 11258203

PROCARDIS (P) Case-control 1998-present 6432 Summary 20032323

Whitehall II (W) Population-based
cohort

1985–1989 4882 Summary 15576467

Rep. (GWAS) eMERGE Consortium 7504 Summary 23743551

Discovery cohorts: Atherosclerosis Risk In Communities (ARIC); Coronary Artery Risk Development in Young Adults
(CARDIA); Cardiovascular Health Study (CHS); Framingham Heart Study (FHS); Multi-Ethnic Study of Atherosclerosis (MESA)
Replication cohorts: BOSS beaver dam offspring study, EHLS epidemiology of hearing loss study, BDES beaver dam eye
study, AIBIII Allied Irish Bank Workers Study III, AMC-PAS Academic Medical Center Amsterdam Premature Atherosclerosis
Study, ASCOT anglo-scandinavian cardiac outcomes trial, BHS bogalusa heart study, BRIGHT, British genetics of hypertension,
BWHHS British women’s heart and health study, CLEAR carotid lesion epidemiology and risk, EPIC-NL European Prospective
Investigation into Cancer and Nutrition in the Netherlands, GIRaFH genetic identification of risk factors in familial
hypercholesterolemia, KORA Kooperative Gesundheitsforschung in der Region Augsburg, LURIC Ludwigshafen Risk
and Cardiovascular Health Study, PROCARDIS precocious coronary artery disease study, WHII Whitehall II study,
GWAS eMERGE
aNumbers varied for each lipid trait. The number shown is the maximum number of non-missing individuals for all traits
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the IBC array have been described in detail previously [16]. Quality control filters were

applied after the cohorts were merged into the full discovery dataset. A summary of the

full quality control and analysis pipeline is shown in Fig. 1. All quality control proce-

dures were implemented with the PLINK software package [18] unless otherwise speci-

fied. SNPs with a genotype missing rate > 95% or that were not in Hardy-Weinberg

equilibrium (p < 1.0 x < 10−7) were removed from the analysis. After SNP genotyping

quality control, 44,750 markers remained. Individuals with SNP genotype missing rates

>90% were excluded from the analysis. For cohorts that contained known trios, non-

founders (i.e. offspring) were removed. To address unknown or cryptic relatedness,

identity-by-descent (IBD) estimates were calculated, and one individual from each pair

with pi-hat >0.3 was removed. The TG values were log transformed to improve normal-

ity. Four new datasets were created for each of the quantitative lipid traits: HDL-C

(n = 13,030), LDL-C (n = 12,853), TC (n = 16,849), and TG (n = 13,031).

Additional quality control metrics were applied to the individual lipid datasets for

each of the statistical analyses. For both the main effect filter and Biofilter analyses,

SNPs with missing phenotypes were removed along with variants with minor allele fre-

quency (MAF) < 0.05 or missing genotype rate > 5%. For the main effect filter analysis,



Fig. 1 Flowchart of the quality control and analysis steps for the discovery and replication phases
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SNPs were pruned to remove high levels of SNP correlation, or LD from the data. No

LD pruning was done for the Biofilter interaction analyses, as these models are specific-

ally generated using SNPs that are in different genes. This was performed by removing

one SNP from all pairs of SNPs with an r2 > 0.6 using PLINK. SNPs with a main effect

p < 0.001 based on a previous GWAS regression analysis were selected for interaction

testing [17]. We had two specific motivations for selecting this threshold for our study:

1. to allow for interactions that may be present in the absence of large, genome-wide

significant main effects, and 2. to reduce the SNP set to a size that allowed for a man-

ageable exhaustive SNP-SNP interaction analysis. SNP-SNP models were generated by

creating an exhaustive list of all SNP pairs. Importantly, we did not LD prune for the

Biofilter analysis due to the method used to generate SNP-SNP models. Biofilter 2.0 is

a software package that identifies SNP-SNP models based on probable gene-gene inter-

actions identified in various online sources including Gene Ontology GO and KEGG.

The Biofilter method has previously been described in greater detail [15, 19]. Briefly,

SNPs are mapped to genes using a 50 kb upstream or downstream inclusion criterion.

Gene pairs that may be more likely to interact are then identified in various curated

biological knowledge databases. A score is given based on the number of sources that

indicate a possible interaction. For this analysis, models were included if at least five

knowledge sources identified the gene-gene interaction model. The SNPs are then

mapped back to the genes to create the SNP-SNP models for statistical testing.

To test for SNP-SNP interactions, we used an R script that automatically tests the

models according to user input parameters [20]. We tested for significant interactions

using a linear regression framework. We adjusted for age, sex, smoking status, type 2

diabetes status, BMI, medication use (use or no use of lipid lowering drugs), and potential

population substructure (top 10 principal components) by including these as covariate
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terms in the linear regression models for each of the four lipid traits. We included these

covariates to control for any factors outside of genetics that may have an effect on lipid

levels and to remain consistent with the previous GWAS from which the SNPs for the

main effect filter analysis were chosen. In the previous study that used the same lipid mea-

surements for a gene-centric meta-analysis of main effects [17], an additional adjustment

for medication was done by multiplying a constant percentage to account for lipid lower-

ing medication. The two adjustment methods (covariate and multiplication) gave similar

results; therefore, we only included the covariate adjustment results in this manuscript.

We chose to include the top 10 principal components to remain consistent with the previ-

ous GWAS and to control for any residual variation as we were performing these analyses

in a combined cohort that included individuals from various parts of the country. Models

were selected for replication testing with likelihood ratio test p -values <0.001 (comparing

the full and reduced linear regression models (Eqs. 1 and 2)). We adjusted the threshold

using a Bonferroni correction based on the total number of number of models that were

tested for each filtering methods. We estimated these models to be independent due to

the LD-pruning in the main effect filter analysis and the SNPs being in different genes for

the Biofilter analysis (Fig 1).

reduced : y ¼ αþ β1 SNP1ð Þ þ β2 SNP2ð Þ þ β3 ageð Þ þ β4 BMIð Þ þ β5 med:ð Þ
þ β6 T2Dð Þ þ β7 smokingð Þ þ β8 sexð Þ þ β9−18 PC1−PC10ð Þ

ð1Þ

full : y ¼ αþ β1 SNP1ð Þ þ β2 SNP2ð Þ þ β3 ageð Þ þ β4 BMIð Þ þ β5 med:ð Þ
þ β6 T2Dð Þ þ β7 smokingð Þ þ β8 sexð Þ þ β9−18 PC1−PC10ð Þ
þβ19 SNP1�SNP2ð Þ

ð2Þ

The full model consisted of the same SNP and covariate terms as the reduced model,

but with an additional multiplicative interaction term for the SNP-SNP model. We gen-

erated “proxy” models by identifying SNPs in high linkage disequilibrium (LD)

(r2 > 0.8) with model SNPs based on the HapMap European CEPH (CEU) population

in 1000 Genomes Project Pilot 1 data (2010 release) using SNAP [21]. We generated a

list of proxy SNP-SNP models using the SNPs in high LD with the original model SNPs

to represent the original model from the discovery set. The purpose of these models

was to capture signals in the replication data that may have been missed due to allele

frequency differences between the discovery and replication cohorts. The original and

proxy models from the discovery analysis were tested in each of the replication cohorts.

Replication: Cohort descriptions

The top original and proxy models from the main effect filter and Biofilter analyses

were tested in ten independent replication cohorts – BOSS/EHLS/BDES, CLEAR,

eMERGE, EPIC, GIRaFH, KORA, LURIC, PROCARDIS, Whitehall II, and BWHHS.

All of the replication cohorts, except the eMERGE datasets, were genotyped using the

IBC array; therefore, many of the proxy models were not tested because many of the

proxy SNPs are not on the IBC array.
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The eMERGE network is a consortium of institutions with DNA from biorepositories

linked to data from patient electronic medical records (EMR) [22]. The eMERGE set

was genotyped with the Illumina660W GWAS platform and further imputed using

1000 Genomes project data, as described here [23]. The replication set consisted of

data from the Marshfield Clinic, Northwestern University, Group Health Cooperative,

Mayo Clinic, and Vanderbilt University. After quality control, the final eMERGE sample

size was n = 7502 for all lipid traits. Details on quality control and phenotype extrac-

tions from the EMR can be found here [24].

The minimum variant and sample call rate threshold for all replication cohorts was

0.95 and 0.90, respectively. A Hardy-Weingberg equilibrium test p-value threshold of at

least p < 1 × 10−6 was applied by each group. In each of the replication cohorts, popu-

lation stratification and relatedness were assessed and adjusted for accordingly. All of

the individuals in the replication cohorts were of European-American descent. The full

details for the QC procedures can be found in the references provided for each replica-

tion cohort in Table 1.
Replication: Quality control and statistical analyses

Replication analyses were performed in nine independent cohorts genotyped previously

on the IBC array for a range of phenotypes including lipid levels [17] and the eMERGE

cohort, which contained GWAS genotype data (Fig 1). For each of the ten cohorts, all of

the models from the discovery analysis with LRT p < 0.001 and all of the corresponding

proxy models were tested using the same statistical approach as for the discovery analysis

(Eqs. 1 and 2). The same statistical approach was applied in the replication analysis as for

the discovery analysis. We compiled the results to assess which SNP-SNP model signals

replicated across respective cohorts. Significance of replication was assessed by correcting

the likelihood ratio test p-value for the number of original (i.e. non-proxy) models tested

and for the 10 replication cohorts. We also assessed how many of the 10 cohorts had

significant replication for each of the models. These results were visualized using the

program SynthesisView [25].
Results
Discovery and replication

Full results from the discovery analysis for all original models selected for replication

testing can be found in Additional file 1: Table S1 and S2. The counts for the number

of significant models that were identified and then tested in the replication cohort can

be found in Fig. 1.

Significance in the replication cohort was estimated by using the number of original

models tested in each study design (i.e. not counting the proxy models) and the num-

ber of replication cohorts (further divide by 10) to perform a Bonferroni-like correction

equivalent to p = 0.05. For the MEF analyses, the number of original (non-proxy)

models selected for testing are shown as: lipid trait (model count, corrected p-value) -

HDL-C (156, p = 0.00003); LDL-C (160, p = 0.00003); TC (180, p = 0.00003); and TG

(187, p = 0.00003). The respective counts for the Biofilter analysis were: HDL-C (22,

p = 0.0002); LDL-C (22, p = 0.0002); TC (21, p = 0.0002); and TG (49, p = 0.0001). We

then calculated the number of model signals that passed the respective thresholds in
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each cohort (i.e. if the original and proxy SNP-SNP models replicated for one LD signal

then only one model signal was counted) (Fig. 1).

The models that passed the main effect filter and Biofilter replication significance

threshold are shown in Tables 1 and 2, respectively. Results are shown for models with

the same direction of effect as the discovery datasets and/or the lowest p-value, where

replication was observed in more than one cohort. For the main effect filter analyses,

more models passed the selected replication threshold. Also, a number of models showed

similar results in more than one cohort. For HDL-C, 17 total models replicated with seven

models observed to replicate in at least two cohorts. For LDL-C, two models replicated,

both in at least two cohorts. For TC, replication occurred for one model in one cohort.
Table 2 Discovery and replication results for models passing replication thresholds for each lipid
trait for main effect filter analysis

Disc.
Rank

SNP 1 SNP 2 Locus 1 Locus 2 Beta LRT p Rep.
Beta

Rep. LRT p Rep.
Cohorta

HDL 1 rs12720918 rs4783961 CETP CETP −0.06 9.5 × 10−20 −0.07 3.0 × 10−12 P,W,L

2 rs12720918 rs158477 CETP CETP −0.06 6.3 × 10−16 −0.07 2.9 × 10−10 P,W,L

3 rs1864163 rs4783961 CETP CETP −0.06 4.5 × 10−15 −0.05 7.1 × 10−7 P,W,B

5 rs1864163 rs158477 CETP CETP −0.06 1.3 × 10−12 −0.05 2.3 × 10−8 P

6 rs12708967 rs820299 CETP CETP 0.06 1.0 × 10−11 0.06 1.6 × 10−6 P,W,L

7 rs1864163 rs4784744 CETP CETP 0.05 2.6 × 10−11 0.06 5.2 × 10−11 P,W

8 rs1800775 rs4783961 CETP CETP 0.04 6.3 × 10−11 −0.08 2.4 × 10−7 B

9 rs12708967 rs158477 CETP CETP −0.05 2.5 × 10−10 −0.06 1.1 × 10−6 P,W,L

10 rs9939224 rs4783961 CETP CETP −0.05 2.5 × 10−10 −0.04 2.4 × 10−7 W,B

12 rs1800775 rs158477 CETP CETP 0.04 1.8 × 10−8 0.07 2.5 × 10−6 B

13 rs9939224 rs478474 CETP CETP 0.04 5.4 × 10−7 0.07 2.4 × 10−10 P

17 rs1800775 rs4784744 CETP CETP −0.03 1.8 × 10−6 −0.05 9.7 × 10−7 W

18 rs9939224 rs12447924 CETP CETP 0.05 1.8 × 10−6 0.06 5.3 × 10−7 P

38 rs7013777 rs9644636 LPL LPL −0.03 8.0 × 10−5 −0.04 7.5 × 10−6 W

50 rs820299 rs8056954 CETP SLC12A3 0.03 1.8 × 10−4 0.06 1.5 × 10−5 W

66 rs12708967 rs4784744 CETP CETP 0.03 3.0 × 10−4 0.05 2.4 × 10−5 P

133 rs6586891 rs285 LPL LPL −0.02 7.9 × 10−4 −0.04 2.9 × 10−5 P

LDL 7 rs1531517 rs519113 BCL3 PVRL2 −0.16 7.9 × 10−6 −0.2 5.2 × 10−6 P,B

70 rs4803766 rs157580 PVRL2 TOMM40 −0.06 3.4 × 10−4 −0.11 4.8 × 10−7 P,B

TC 33 rs11216129 rs10750097 BUD13 APOA5 −0.12 1.3 × 10−4 −0.22 1.4 × 10−5 W

TG 1 rs4938303 rs180327 BUD13 BUD13 0.09 1.2 × 10−21 0.08 9.5 × 10−7 P,W

2 rs2075295 rs6589568 BUD13 APOA4 −0.10 4.4 × 10−19 −0.15 3.5 × 10−15 P,W

3 rs180327 rs10750097 BUD13 APOA5 0.08 3.1 × 10−14 0.31 6.8 × 10−9 W,B

4 rs180327 rs2075295 BUD13 BUD13 0.07 8.9 × 10−13 0.07 1.5 × 10−5 P

5 rs180327 rs6589568 BUD13 APOA4 0.07 2.7 × 10−10 0.08 5.6 × 10−6 W

6 rs11216129 rs10750097 BUD13 APOA5 −0.12 2.1 × 10−9 −0.12 2.6 × 10−7 W,P

13 rs180327 rs618923 BUD13 ZPR1 −0.08 3.7 × 10−7 −0.08 1.0 × 10−5 W

15 rs2075295 rs1263173 BUD13 APOA4 −0.08 2.1 × 10−7 −0.08 3.5 × 10−6 W

19 rs486394 rs4938303 BUD13 BUD13 0.07 2.1 × 10−6 0.07 2.9 × 10−5 P

49 rs2075295 rs10047459 BUD13 APOA1 −0.11 2.1 × 10−5 −0.11 6.9 × 10−8 W

153 rs2075295 rs10750097 BUD13 APOA5 −0.09 2.1 × 10−4 −0.09 2.9 × 10−6 W

LRT likelihood ratio test. aSee Table 1 for details on cohorts
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For TG, 11 total models replicated, with four models replicating in at least two cohorts

(Table 2). For the Biofilter analyses, results were replicated for the TG trait with two

models passing the significance threshold in a single cohort (Table 3).

Although we performed LD pruning prior to the interaction analyses, moderate LD

remained with r2 < 0.6. This resulted in residual correlation in the top replicating

models, and separate models may actually represent a single interaction signal. Addition-

ally, all of the replicating models contained two SNPs in the same gene/region. To assess

this, we looked at the pairwise r2values amongst all SNPs in the top replication models.

The goal was to identify independent replication signals and to ensure that the interaction

signals are not being inflated by LD between model SNPs. For the main effect filter ana-

lysis of HDL-C, we identified three sets of moderately correlated SNPs and two interaction

signals (Set 1 x Set 2 and Set 2 x Set 3), as shown in Fig. 2. No correlation (r2 > 0.1) was

observed in our data between SNPs in the same replication model.

For the main effect filter analyses of TG, the signals that replicated were in a similar

region on chromosome 11. This region includes several genes with strong main effects

on TG levels, including APOA4, APOA5, APOC3, SIK3, and BUD13. There are com-

plex patterns of moderate to strong LD in this region, and thus bona fide “independent”

signals are challenging to delineate. However, for the main effect filter analyses of TG,

one SNP (rs180327) appeared in two of the four models that replicated in more than

one cohort. Moderate correlation exists between most of the other SNPs except for

rs180327 (Fig. 3). This suggests a single signal representing an interaction between

rs180327 (or a correlated functional variant) and the other variants for the four models

that include this SNP. For the main effect filter analysis of LDL, two models replicated

in more than one cohort. While the SNPs from the two models are in a similar region

on chromosome 19 encompassing genes such as APOE, BCL3, PVRL2, and TOMM40,

these appear to consist of two separate interaction signals. No models replicated in

HDL-C, LDL-C, or TC for the Biofilter analyses.

To further summarize the replication analyses, we plotted the compiled results to view

all of the cohorts’ results simultaneously for each of the analyses with significant replication

(Figs. 4, 5, 6, 7 and 8). In these figures, we show the models that replicated at the

aforementioned thresholds. As some of the replications are in proxy models (not the ori-

ginal discovery model), we show the lead significant result for the each replicating model.

Discussion
For this study, we used two different filtering pipelines to test for SNP-SNP interactions

that are associated with four plasma lipid level traits: LDL-C, HDL-C, TC, and TG plasma

levels. We tested these models in a large discovery cohort and then tested the top models

in ten replication sets. Models signals passed the replication threshold for each of the lipid

traits in the main effect filter analysis and for TG in the Biofilter analysis. As expected,

replication of the observed association was found to be dependent on the size of the
Table 3 Models that passed replications threshold for the TG trait for Biofilter analysis

Disc. Rank SNP 1 SNP 2 Locus 1 Locus 2 Beta LRT p Rep. Beta Rep. LRT p Rep.
Cohorta

TG 9 rs11216162 rs1263173 SIK3 APOA4 −0.05 5.5 × 10−5 −0.08 5.5 × 10−5 P

44 rs625145 rs1263173 SIK3 APOA4 −0.04 6.8 × 10−5 −0.07 6.8 × 10−5 P

No models passed replication for HDL-C, LDL-C, or TC, LRT likelihood ratio test. a See Table 1 for details on cohorts



Fig. 2 Pairwise r2 values for SNPs in top models for main effect filtering (MEF) analysis of HDL-C levels. The
numbers in the boxes are r2 values and darker shading indicates higher LD. The numbers below the SNPs
are an indicator of location in this region. Correlation patterns indicate three sets of SNPs and two interaction
signals based on replication results (Set 1 x Set 2 and Set 2 x Set 3)
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replication cohorts. Also, more models replicated in the main effect filter analysis, which

may indicate a statistical bias due to strong main effects. However, the interaction signals

appear robust, considering the number of models tested, indicating that this is unlikely

the sole driver of these significant interactions.

Genetic interactions are often described as gene-gene interactions, and are usually

studied by specifically looking for variants in different genes that could be indicating

novel pathways (e.g. protein-protein interactions that have not been previously identi-

fied using genetic data). However, intergenic interactions, such as those that we ob-

served in this study, should not be ignored, as they may contribute to a substantial

proportion of the genetic architecture. Our top replicating models for HDL-C consisted

of two SNPs in CETP. Many of these model replicated across cohorts with the top rep-

lication p-value for the likelihood ratio test being 3.0 × 10–12 (Table 2 and Additional

file 1: Table S1). LD patterns suggest that there are three independent sets of SNPs that

represent many of the top models for the CETP-HDL associations. Further, many of

these SNPs are in the promoter region of CETP. Most notably, a previous study identi-

fied a functional interaction between two of the SNPs in one of our top models (model

9: rs4783961 and rs1800775) that resulted in changes in CETP promoter activity [26].



Fig. 3 Pairwise r2 values for SNPs in top models for the main effect filtering (MEF) replication analysis of
plasma triglyceride (TG) levels. The numbers in the boxes are r2 values and darker shading indicates higher
LD. The numbers below the SNPs are an indicator of location in this region. Correlation patterns indicate a
single signal representing an interaction between rs180327 (or a correlated functional variant) and the other
variants for the four models that include this SNP
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As discussed in this study, this could be explained by shared transcription factors that

may result in non-linear changes in CETP and HDL-C levels when the variants occur

together. These results provide further support for studying intergenic non-linear

effects and that they could be important for both accurate phenotype prediction and

for understanding the function behind why specific variants in this gene have certain

effects on HDL-C levels.

Due to the complex nature of estimating heritability, we focus on how our results

contribute to understanding the genetic architecture and biological underpinnings of

lipid traits. First, the estimated heritability of lipid traits has a relatively wide range

(40–60%). There is also high variability in results that can come from methods that cal-

culate overall heritability. A recent study found that for certain models, the estimate is

extremely inflated and potentially not reliable [12]. Furthermore, because we are study-

ing genetic interactions, reliably calculating the overall contribution to trait variation

becomes even more complicated, and many methods are not designed to accurately

generate these estimates.

In our study, we can see the difference in R2 for the full versus reduced model

(Diff|Rsq column in Additional file 1: Table S1 and S2) is usually about 0.001. Even

though this is much smaller than the R2 for the reduced model, which does not include

the interaction term, it would be inaccurate to conclude that the interaction term is

not contributing to the underlying genetic variation for a number of reasons. Firstly,

the reduced model includes the contribution of highly relevant clinical and environmental

variable (e.g. smoking status, medication, BMI, sex). Secondly, we are calculating this



Fig. 4 Results for the main effect filter (MEF) analysis of HDL-C. Showing results for the models that passed
the replication threshold of p < 3.0 × 10–5. Orig# and prox# designate models that were identified in the
discovery cohort and those identified via proxy (i.e. both SNPs in high LD with SNPs from orig. Models),
respectively. V1 and V2 are the two SNPs in the model; arrow in likelihood ratio test (LRT) row denotes
direction of effect
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estimate from a very specific interaction model that assumes the interaction is multi-

plicative and that the effect of minor alleles is additive. While this model is robust to

some interactions that don’t meet these assumptions [13], the estimates themselves

could be under-estimated (or over-estimated). As we are not the first group to look

for genetic interactions amongst lipid traits, it will be very important for a future

study to be done that takes into account all of the identified main and interaction ef-

fects to assess and compare the contribution of each to trait variability. However, this

is outside the scope of our current manuscript.

Many questions remain to be answered in regards to a gold-standard genome-wide

or candidate-loci interaction analysis protocol. For example, the overwhelming majority

of our replicating interaction models were in the same gene. This is most likely due to



Fig. 5 Results for the main effect filter (MEF) analysis of LDL-C. Showing results for the models that
passed the replication threshold of p < 3.0 × 10–5. Orig# and prox# designate models that were identified in
the discovery cohort and those identified via proxy (i.e. both SNPs in high LD with SNPs from orig. Models),
respectively. V1 and V2 are the two SNPs in the model; arrow in likelihood ratio test (LRT) row denotes
direction of effect
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Fig. 6 Results for the main effect filter (MEF) analysis of TC. Showing results for the models that passed
the replication threshold of p < 3.0 × 10–5. Orig# and prox# designate models that were identified in the
discovery cohort and those identified via proxy (i.e. both SNPs in high LD with SNPs from orig. Models),
respectively. V1 and V2 are the two SNPs in the model; arrow in likelihood ratio test (LRT) row denotes
direction of effect
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Fig. 7 Results for the main effect filter (MEF) analysis of TG. Showing results for the models that passed
the replication threshold of p < 3.0 × 10–5. Orig# and prox# designate models that were identified in the
discovery cohort and those identified via proxy (i.e. both SNPs in high LD with SNPs from orig. Models),
respectively. V1 and V2 are the two SNPs in the model; arrow in likelihood ratio test (LRT) row denotes
direction of effect

Holzinger et al. BioData Mining  (2017) 10:25 Page 15 of 20



Fig. 8 Results for the Biofilter analysis of TG. Showing results for the models that passed the replication
threshold of p < 3.0 × 10–5. Orig# and prox# designate models that were identified in the discovery cohort
and those identified via proxy (i.e. both SNPs in high LD with SNPs from orig. Models), respectively. V1 and
V2 are the two SNPs in the model; arrow in likelihood ratio test (LRT) row denotes direction of effect

Holzinger et al. BioData Mining  (2017) 10:25 Page 16 of 20
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the fact that our variants were genotyped using a gene-centric chip with genes that are

known to have effects on cardiovascular-related phenotypes, like the lipid levels we an-

alyzed in this study. A chip that had more extensive coverage outside of these genes

may have identified more interactions between functionally different parts of the gen-

ome. However, our focused analysis did allow us to efficiently test two unique filtering

pipelines for a more hypothesis-driven approach. These filtering approaches each have

their own strengths and weaknesses. The Biofilter 2.0 analysis, which created gene-gene

models based on current biological knowledge, allows for clearer interpretations as the

models make biological sense. However, it inhibits the discovery of interactions in

regions where biological knowledge is limited. The main effect filter analysis is more

robust to discovering interactions that deviate from regions of current biological focus

than the Biofilter pipeline in this particular dataset. However, if the main effects of the

true interaction model are non-existent (i.e. purely epistatic models where each of the

SNPs in the interaction model are not significant alone), the main effect filter pipeline

would not detect such effects. Also, as our results possibly indicate, strong main effects

may create inflated interaction signals. A more appropriate filtering pipeline may use a

main effect filter – Biofilter hybrid approach. Another possible filtering mechanism

may be one that ranks variables based on potential main and interaction effects simul-

taneously. Some machine learning methods, such as Random Forests (RF) and artificial

neural networks (ANN), are currently being tested for this approach [27].

Additional file

Additional file 1: Table S1. Discovery results for all models that passed replication thresholds for MEF analysis.
Column header definitions provided at the end. Table S2. Discovery results for all models that passed replication
thresholds for Biofilter analysis. Column header definitions provided at the end. (PDF 1649 kb)
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