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Abstract in deutscher Übersetzung

Mit einer e�ektiven Feldtheorie können die Signaturen neuer Physik im Higgs-Sektor ohne
starke �eorieannahmen parametrisiert werden. In dieser Arbeit untersuchen wir zwei Aspekte
dieses Ansatzes, die für Messungen der Eigenscha�en des Higgs-Bosons während Run 2 des
LHC relevant sind.
Aufgrund der beschränkten Präzision dieser Messungen kann neue Physik im Higgs-Sektor

nur dann entdeckt werden, wenn deren typische Energieskala nah am experimentellen Im-
pulsübertrag liegt. Die Näherungen der e�ektiven�eorie sind daher möglicherweise ungültig.
Im ersten Teil dieser Arbeit vergleichen wir die Signaturen mehrerer Modelle von Physik jen-
seits des Standardmodells mit den entsprechenden Beschreibungen in der e�ektiven �eorie,
untersuchen die Nützlichkeit des e�ektiven Modells und zeigen, wie dessen Gültigkeitsbereich
vergrößert werden kann.
Im zweiten Teil verwenden wirMethoden aus der Informationsgeometrie, umMessungen von

Higgs-Eigenscha�en zu optimieren. Unser Ansatz basiert auf der Fisher-Information, die die
maximale Präzision angibt, mit der Parameter in einem Experiment gemessen werden können.
Wir entwickeln Methoden zur Berechnung der Fisher-Information in der Teilchenphysik und
wenden sie auf verschiedenen Higgs-Prozesse an. Dabei zeigen wir, wie mit Informationsgeome-
trie Selektionsschnitte optimiert, die wichtigsten kinematischen Observablen de�niert und das
Potential vonmodernenmultivariatenMethodenmit dem von Histogramm-basierten Analysen
verglichen werden kann.
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Abstract

An e�ective �eld theory provides a model-independent and phenomenologically powerful
parametrisation of new physics in the Higgs sector. We analyse two aspects of this framework
that are relevant for measurements of the Higgs properties during Run 2 of the LHC.
First, the limited precision of the LHC analyses cannot guarantee a clear hierarchy between

the experimental momentum transfer and the probed new physics scales, casting doubt on the
validity of the e�ectivemodel. By comparing a range of new physics scenarios to their dimension-
six approximation, we analyse if an e�ective description of the Higgs sector is useful, where it
breaks down, and how its validity can be improved.
Second, we use information geometry to understand and optimise Higgs measurements at

the LHC. Our novel approach is based on the Fisher information, which encodes the maximum
precision with which theory parameters can be measured in an experiment. We develop an
algorithm to calculate the Fisher information in LHC processes and compute the information
on dimension-six operators in di�erent Higgs signatures. We demonstrate how information geo-
metry lets us improve event selections, determine the most powerful observables, and compare
the power of modern multivariate techniques to that of traditional histogram-based analyses.
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Chapter
Introduction

The Higgs boson [9–13] is the cornerstone of the Standard Model of particle physics
(SM) [14–16]. Its experimental discovery in 2012 [17, 18] is a triumph for a decades-old
model, but it also de�nes a way forward: the Higgs provides us with an unprecedented

chance to understand some of the biggest unsolved mysteries of physics.
As the only known fundamental scalar, it su�ers from the famous electroweak hierarchy

problem: why is its mass scale (and therefore the electroweak scale) so much smaller than the
Planck scale, while there is no sign of a symmetry protecting it against quantum corrections?
In addition, the Higgs sector is intimately tied to the stability of the electroweak vacuum and
to the unexplained large hierarchy between the fermion masses. It might also be related to the
open questions of the baryon asymmetry, of the nature of dark matter, and of in
ation.
Many models of physics beyond the Standard Model have been proposed to explain at least

some of these aspects. O�en they predict Higgs coupling patterns di�erent from the SM. A
precise measurement of the Higgs properties thus provides a crucial probe of such models, and
might be one of the most important goals for present and future runs of the Large Hadron
Collider (LHC).
�is prospect poses two immediate phenomenological questions:

1. Which framework should be used to parametrise the Higgs properties?
2. How can these parameters be measured e�ciently at the LHC?

�e research presented in this thesis consists of two major parts, each driven by one of these
questions.

All Higgs measurements should ideally use the same universal language to parametrise their
results, allowing for their e�cient comparison, combination, and interpretation. Such a frame-
work should be general enough to describe the e�ects of many interesting new physics (NP)
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1 Introduction

scenarios without strong model assumptions. On the other hand, practical considerations such
as computational resources limit the number of parameters.
A simple example for such a universal parametrisation that was widely used during Run 1 of

the LHC is the κ framework. It is based on the SM Lagrangian, but promotes all Higgs couplings
to free parameters. �e main limitation of this approach is that it can only describe structures
that are already present in the SM. While a measurement based on the κ framework can be
useful for total rates, it is not able to utilise information in kinematic distributions.
Instead, we parametrise new physics signatures with an e�ective �eld theory (EFT) [19–21].

Based only on the assumption that new physics has a typical energy scale signi�cantly larger than
the experimental energies, all new physics e�ects are captured by a tower of higher-dimensional
operators. �e leading e�ects for Higgs physics should come from a handful of operators with
mass dimension six [22–24]. �ese operators describe both coupling rescalings as well as novel
kinematic structures not present in the SM, allowing us to access information in distributions
in addition to total rates [25, 26]. E�ective operators also let us combine Higgs measurements
with constraints from other processes, including electroweak precision data or gauge boson
production at the LHC [27].
However, due to their limited precision LHC Higgs measurements are only sensitive to sig-

natures from models that are either strongly coupled or relatively light. In the latter case, the
characteristic energy scale of new physics is not clearly separated from the momentum transfer
in the experiments, casting doubt on the validity of the EFT approach.
We analyse the usefulness of higher-dimensional operators at the LHC by comparing the

predictions of speci�c scenarios of new physics to their dimension-six approximations [1]. Our
analysis covers additional scalar singlets, a two-Higgs-doublet model, scalar top partners, and
heavy vector bosons, focusing on parameter ranges that the LHC will be sensitive to. We
take into account rates and distributions in the most important Higgs production modes and
representative decay channels as well as in Higgs pair production. For this array of models,
benchmark points, and observables, we ask if and where the e�ective description of new physics
breaks down, and how it can be improved.
As it turns out, the performance of the e�ective model strongly depends on the matching

procedure that links the coe�cients of the dimension-six operators to the full theory. We analyse
how electroweak symmetry breaking a�ects the validity of the e�ective theory, and discuss how
the standard matching procedure can be adapted to situations where these e�ects are large.
In addition, we discuss whether squared amplitudes from dimension-six operators should be
included in calculations, and which observables provide the best probes of the momentum
transfer in Higgs production in weak boson fusion [2].

Having chosen a parametrisation of the Higgs properties, the second part of this thesis focuses
on the question of how its parameters can be measured optimally. Higgs processes are sensitive
to many e�ective operators. Each of them a�ects di�erent couplings, typically introducing non-
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trivial kinematic structures. �is leads to a complicated relation between the high-dimensional
model parameter space and the o�en also high-dimensional phase space.
Conventional analyses based on selection cuts and histograms of kinematic observables are in

many cases not sensitive to such subtle signatures. At the other end of the spectrum, experiments
resort more and more to high-level statistical tools, including machine learning techniques [28–
49] ormatrix-element-basedmethods [50–65]. While thesemultivariate techniques are powerful,
it is o�en not transparent which physical properties they probe. It is therefore increasingly
important to be able to characterise the information contained in LHC signatures.
We use information geometry [66–68] to understand and optimise the measurement of Higgs

properties at the LHC [4]. �e central building block of our approach is the Fisher information
matrix, which according to the Cramér-Rao bound [69, 70] encodes the maximal knowledge
on theory parameters we can derive from an experiment. We show that the properties of the
Fisher information make it especially well-suited to continuous, high-dimensional parameter
spaces, and in particular to e�ective �eld theories.
We develop an algorithm to calculate the Fisher information in particle physics processes

based on Monte-Carlo methods. It allows us to calculate the maximum precision with which
continuous parameters can be measured in a process. We also analyse how the di�erential
information is distributed over phase space and how much information is carried by individual
kinematic distributions. �is de�nes the most powerful phase-space regions and observables for
an analysis. It also allows us to compare how much we can learn from a simple �t to histograms
compared to fully multivariate methods.
�ese new instruments are applied to Higgs measurements in three di�erent channels. We

calculate the information on dimension-six operators in Higgs production in weak boson fusion
with decays into tau pairs and four leptons, and in Higgs production in association with a single
top quark. Finally, we show how our approach can be extended to include systematic and theory
uncertainties, and compare it to the likelihood ratio.

�is thesis begins with a synopsis of essential aspects of Higgs physics and e�ective �eld theories
in Chapter 2. In Chapter 3, we discuss the validity of the e�ective �eld theory for LHC Higgs
measurements and thematching between full models and e�ective operators. Chapter 4 presents
our work on information geometry and e�cient measurements of Higgs properties. Both these
chapters contain separate, detailed introductions and conclusions. We summarise our results in
Chapter 5. In a set of appendices we list our conventions, explain technical details, and provide
additional examples.

3



4



Chapter
An effective theory for Higgs physics

In this chapter we review some of the essential concepts that underlie the research presen-
ted in this thesis. First, we brie
y summarise the role of the Higgs boson in the Standard
Model (SM) and its phenomenology at the LHC. Section 2.2 then presents a pedagogical in-

troduction to e�ective �eld theories (EFTs). In Section 2.3 we combine these ideas and construct
an e�ective �eld theory for the Higgs sector.
Our introduction to Higgs physics is super�cial, and the EFT part eschews mathematical

rigour in favour of a broad picture of the central ideas. For a more thorough introduction
to Higgs physics, see for instance Reference [71]. For an extensive introduction to EFTs, see
References [72, 73]. Note that Section 2.2 is largely identical to Reference [5]. Some of the
examples are taken from References [72, 73].

. The Higgs boson at the LHC

.. The Standard Model Higgs sector

In the Standard Model, the Higgs boson is part of a scalar SU(2)L doublet ϕ. �e relevant terms
in the Lagrangian are

LSM ⊃ (Dµϕ)†(Dµϕ) − µ2 ϕ†ϕ − λ (ϕ†ϕ)2

− ∑
generations

(yu (
u
d)L

ϕ̃ uR + yd (
u
d)L

ϕ dR + yℓ (
ν
ℓ−)L

ϕ ℓR + h. c.) . (2.1)

Here u, d, and ℓ are the up-type quarks, down-type quarks, and leptons of the three generations,
all appearing in a le�-handed and right-handed version marked by the subscripts L and R. �e
Higgs potential is de�ned by the real parameters µ2 and λ, while the Yukawa couplings yi are

5



2 An e�ective theory for Higgs physics

complex-valued matrices in 
avour space. �e covariant derivatives are de�ned as

Dµϕ = (∂µ − ig
σ a

2
Wa

µ − i
g′

2
Bµ) ϕ (2.2)

with SU(2)L gauge bosonsWa
µ and U(1)Y gauge boson Bµ. �e corresponding coupling con-

stants are g and g′, and σi denote the Pauli matrices. Finally,

ϕ̃ ≡ iσ2ϕ∗ . (2.3)

�e Lagrangian in Equation (2.1) shows the SM in the unbroken phase of the electroweak
symmetry. For a detailed account including all de�nitions and conventions, see Appendix A.1.
For µ2 < 0, the Higgs doublet develops a non-zero vacuum expectation value (VEV)

υ2 ≡ 2 ∣⟨ϕ⟩∣2 = − µ
2

λ
, (2.4)

spontaneously breaking the electroweak symmetry. Using some of the gauge freedom, we can
rotate the scalar doublet such that

ϕ = 1
√
2
(
−w2 − iw1

υ + h + iw3) . (2.5)

Here wa are the would-be Goldstone bosons resulting from the spontaneous breaking of the
electroweak symmetry. �ey combine with the gauge bosonsWa and B to the mass eigenstates
γ,W±, and Z. �e remaining degree of freedom, the scalar �eld h, is the physical Higgs boson.
Plugging Equation (2.5) into Equation (2.1), we �nd its mass

m2
h = −2µ

2
= 2λυ2 . (2.6)

In this broken phase of the electroweak symmetry, the fermions and the vector bosonsW± and
Z also acquire mass terms proportional to υ, as well as couplings to the Higgs boson h. Since
both terms stem from the same coupling to ϕ ∼ υ + h, the Higgs couplings to other particles x
are always proportional to ghxx ∼ mx/υ. Finally, there are h3 and h4 self-couplings.
�e SM Higgs sector is very predictive. Weak interactions �x the VEV to υ = 246 GeV. With

the measurement of the Higgs mass mh = 125 GeV [17, 18, 74], there are no free parameters in
the SM le� and all couplings are �xed.

.. Production and decay

At the LHC, most Higgs bosons are produced in gluon fusion (ggF) as shown in the le� panel
of Figure 2.1. Due to its large Yukawa coupling, the top plays the dominant role in the loop, with
small contributions from the bottom. �e total cross section for this process in proton-proton

6



2.1 The Higgs boson at the LHC

t

g

g

h
W , Z

W , Z

q

q

q

h

q

W , Z

q

q

W , Z

h

Figure 2.1: Feynman diagrams for the most important Higgs production modes considered in
this thesis. Le�: gluon fusion. Middle: weak boson fusion. Right: Higgs-strahlung.

collisions at
√
s = 13 TeV is approximately 49 pb [3], a large part of which comes from loop

corrections at next-to-leading order (NLO) or next-to-next-to-leading order (NNLO) in αs.
�is sizeable rate comes at the price of a lack of discerning kinematic features that could help to
separate the Higgs signal from QCD backgrounds.
�is is certainly di�erent for Higgs production inweak boson fusion (WBF)1, as shown in the

middle panel of Figure 2.1. �e production rate for this quark-initiated process is only 3.8 pb [3],
but the Higgs is accompanied by two highly energetic jets that point nearly back-to-back into the
two forward regions of the detector. �is translates to a large invariant mass m j j between them
as well as a large separation in pseudorapidity2 ∆η j j. A second important property is provided
by the colour structure of the process: at leading order, there is no colour exchange between the
two quark lines, which leads to little QCD radiation in this process [71]. Both of these features
set theWBF process apart fromQCD backgrounds, which typically have many central jets. Such
backgrounds can therefore be reduced signi�cantly by requiring two so-called ‘tagging jets’ with
large ∆η j j and large m j j, and vetoing any additional central jets [75–81].
But the tagging jets are not only useful to discriminate Higgs production from non-Higgs

backgrounds. Since they recoil against the intermediate vector bosons that couple to the Higgs,
they provide access to the momentum 
ow through the Higgs production vertex. �eir proper-
ties, in particular their transverse momenta and the angular correlations between them, thus
provide probes of the Higgs-gauge coupling [82–88]. We revisit this important feature from
di�erent perspectives in this thesis.
�e right panel of Figure 2.1 shows Higgs production in association with a vector boson, or

Higgs-strahlung. �e rate is 1.4 pb for a Wh �nal state plus 0.9 pb for Zh. Similarly to the
tagging jets inWBF, the �nal-state gauge boson both helps to discriminate the Higgs signal from
backgrounds and provides a handle on the momentum 
ow through the virtual intermediate

1�is channel is also known as Vector Boson Fusion or VBF. But this is slightly misleading since the gluon also has
spin 1.

2See Appendix A.2 for a glossary of phenomenology lingo, in particular for de�nitions of common kinematic
quantities and of typical units.
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2 An e�ective theory for Higgs physics

vector boson.
Higgs production in association with a tt pair is another production mode relevant for the

LHC, but we do not discuss it in this thesis. Instead, we brie
y analyseHiggs production with a
single top quark. �is process exists as an s-channel and a t-channel version with very di�erent
kinematic features. It can be calculated either in the four-
avour scheme (with a gluon in the
partonic initial state) or in the �ve-
avour scheme (with a b quark in the partonic initial state,
described by a bottom parton density function). We focus on the dominant t-channel process
and calculate it in the �ve-
avour scheme, as shown in Figure 2.2. Diagrams where the Higgs
is radiated o� a top quark interfere destructively with amplitudes in which the Higgs couples
to aW . �e SM rate is small at 74 fb [3], but this interference pattern makes it very sensitive to
modi�ed Higgs couplings. In fact, this process is the only direct probe of the sign or complex
phase of the top Yukawa coupling [89] (tth production is only sensitive to the absolute value of
the top Yukawa, while the total rate in gluon fusion can be in
uenced by many e�ects such as
new particles in the loop).
Our �nal channel isHiggs pair production, shown in Figure 2.3, which allows us to directly

measure the cubic Higgs self-coupling [90, 91]. It provides another example of destructive
interference between di�erent amplitudes: diagrams in which the two Higgs bosons couple to
a top box loop interfere with those in which a single Higgs is produced in gluon fusion and
then splits into two Higgs bosons through the self-coupling. Close to threshold, these two
contributions approximately cancel in the SM [90, 92], and the total rate is very small at 33 fb.
But modi�ed Higgs sectors can spoil this cancellation and drastically increase the rate, as we
demonstrate in the next chapter.

�e Higgs boson interacts with all massive particles of the SM, leading to a wide variety of decay
modes. Since it couples to all particles proportional to their mass, it prefers to decay into the
heaviest particles allowed by phase space. �e dominant decay mode with a branching ratio of
58% [3] is therefore h → bb. �is signature is clearly useless for Higgs bosons produced in gluon
fusion because of the overwhelming QCD g g → bb background. WBF and Vh production
provide handles to tame these backgrounds, but the �nal state is still challenging. A decay
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tb

q
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Figure 2.2: Feynman diagrams for Higgs production with a single top quark.
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Figure 2.3: Feynman diagrams for Higgs pair production.

mode that is easier to detect is h → τ+τ− with a branching ratio of 6.3%. �e semi-leptonic
and purely leptonic decays of tau pairs involve neutrinos. But when the taus are boosted and
not exactly back-to-back, their momenta can be reconstructed for instance using a collinear
approximation [71].
�e decays throughW+W− or ZZ pairs into four-lepton �nal states are particularly important

due to their clean signatures and because they provide access to the Higgs-gauge couplings. Since
the Higgs mass is below theW+W− and ZZ thresholds, one of the vectors has to be o�-shell.3
�e channel h →W+W− → (ℓ+ν)(ℓ−ν) with ℓ = e , µ has a respectable branching fraction of
1.1% [3], but comes with two neutrinos in the �nal state. Still, it is one of the most important
modes for WBF Higgs production. �e decay h → ZZ → 4ℓ with ℓ = e , µ provides an extremely
clean signal. Despite its small branching ratio of 1.3 ⋅ 10−4, it was one of the most important
channels for the discovery of the Higgs boson [17, 74]. From a post-discovery perspective, its
four leptons provide a rich spectrum of angular correlations and other observables that allow us
to measure the Higgs behaviour in detail. We discuss this feature in more detail in Chapter 4.
Finally, the small couplings of the Higgs to light fermions mean that the loop-induced decay

into photon pairs can compete with the tree-level decay channels. �e dominant contribution
to the h → γγ amplitude comes from aW loop, which interferes destructively with a top loop,
resulting in a branching ratio of 0.23% [3]. �is large signal on top of a smooth background
made the di-photon mode the second crucial channel for the experimental discovery [17, 74].

.. To new physics through Higgs measurements

�ere are several facets that set the Higgs boson apart from the other SM particles. From an
experimental point of view, the properties of this shiny new thing in particle physics are still
relatively unknown. Its couplings to vector bosons and heavy fermions are constrained at the
O (10%) level, while for the couplings to light fermions, invisible decays, and the total decay
width of the Higgs there are only weak upper bounds [26, 74]. Many of these limits also rely on

3�is also means that the branching ratios for h → ZZ and h →WW are not well-de�ned. What is o�en quoted is
in fact a term like BR(h → 4ℓ)/(BR(Z → ℓ+ℓ−))2 .
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2 An e�ective theory for Higgs physics

speci�c model assumptions. �e top Yukawa coupling, for instance, can be tightly constrained
from the total Higgs production rate under the assumption that no new physics plays a role in
the gluon-fusion loop. Allowing for such new physics e�ects in a �t signi�cantly relaxes the
bounds on yt , and information from tth production and the h → γγ decay is needed to break
this degeneracy [26]. Similarly, the total Higgs width can be constrained indirectly from the
contribution of g g → h → ZZ → 4ℓ in the o�-shell Higgs region, again relying on strong model
assumptions. All in all, the Higgs is still the least well measured elementary particle (in some
sense with the exception of neutrinos), leaving plenty of room for physics beyond the Standard
Model.

From a theory perspective, there are several reasons to expect manifestations of new physics
(NP) in the Higgs sector. On rather general grounds, the Higgs doublet is the key component
of electroweak symmetry breaking (EWSB), the centrepiece of the SM. A test of the Higgs
properties therefore provides a test of the fundamental structure of Nature.
�e Higgs boson is the only fundamental scalar discovered so far. �is is interesting in its

own right, but also leads to the famous electroweak hierarchy problem: in the absence of any
protective symmetry, the mass of a scalar �eld should receive quantum corrections of the order
of the largest scale in the theory. If the SM is valid all the way up to the Planck scale, severe
�ne-tuning between the bare parameter and these quantum corrections is necessary to keep
the electroweak mass scale at the observed value. Note that this argument interchangeably
applies to the mass parameter of the Higgs doublet µ2, the physical Higgs mass mh, or the
electroweak VEV υ. Since the strength of the weak force is suppressed by powers of mW ∼

υ, and the gravitational force by the Planck scale, the hierarchy problem is o�en phrased in
terms of the surprising weakness of gravity compared to the weak force. �is naturalness
problem is of a purely aesthetic nature, but similar aesthetic problems have in the past led to
new insights. For instance, the surprising smallness of the electron mass compared to its large
self-energy in classical electrodynamics pointed to ‘new physics’ close to 511 keV, and was
�nally resolved with the introduction of positrons in quantum electrodynamics [93]. Many
models have been proposed to solve the electroweak hierarchy problem by introducing a new
symmetry that protects the Higgs mass against quantum corrections.4, 5 Famous examples are
4An entirely di�erent and somewhat metaphysical argument is based on the (weak) anthropic principle that
observations of the universe are conditional upon its laws of physics allowing conscious life [94, 95]. First,
this explanation requires some mechanism that generates many di�erent vacua with di�erent values of the
physics parameters, including the Higgs mass. Most of these vacua have ‘natural’ parameters in which the weak
and gravitational scales are comparable. String theory is hypothesised to provide such a sampling mechanism
(the ‘multiverse’). Second, there has to be a reason why larger (and thus more abundant) values of the weak scale
would not allow any type of intelligent life to form and make observations. �is question is di�cult to answer,
and the jury is still out [96–102]. Given the speculative nature of the two questions, anthropic reasoning is being
criticised as unveri�able or as based on arguments from lack of imagination.

5�e smallness of the Higgs VEV can also be explained with a modi�ed cosmological evolution. Relaxion mod-
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supersymmetry [105–107], composite Higgs models in which the Higgs is o�en the pseudo-
Goldstone boson of some broken symmetry [108–112], conformal symmetries [113], or extra
dimensions [114–117]. To reduce tuning to an acceptable level, such new physics should reside
at energy scales not too far from the electroweak scale. �ese models usually modify the Higgs
sector in a way that translates into Higgs couplings di�erent from their SM values.
Another hierarchy unexplained in the SM is the large di�erence between the fermionmasses.

�ere are more than �ve orders of magnitude between the top and the electron mass, and
neutrinos are even lighter. Since the fermion masses are generated by the Yukawa couplings of
the Higgs doublet, models that explain the fermion masses o�en also shi� the Higgs-fermion
coupling patterns [118].
�e question of vacuum stability is still being discussed. If, a�er including quantum cor-

rections, the potential for the Higgs doublet ϕ has another minimum at a di�erent �eld value
than the electroweak VEV υ = 246 GeV with lower energy, the known vacuum is unstable and
can tunnel into this lower-energy state. �e renormalisation group (RG) allows us to link the
potential at large values of ϕ to the running of the quartic coupling λ to higher energies. Current
results [119] indicate that in the SM indeed such a lower vacuum exists. Fortunately for us, the
tunnelling probability is very small, and ‘our’ vacuum seems to be metastable with a lifetime
longer than the age of the universe. While this means that there is no pressing need for physics
below the Planck scale to save the electroweak vacuum from a horrible fate, this result crucially
depends on the measured top and Higgs masses, higher-order corrections to the beta functions,
and higher-dimensional operators stemming from ultra-violet (UV) physics [120].
In addition to these theoretical and to some degree aesthetic arguments, there is solid ex-

perimental evidence for physics beyond the SM that might be linked to the Higgs sector. First,
the nature of dark matter [121] is still unclear. It is experimentally established that this form
of matter is electromagnetically neutral, is stable over cosmological timescales, clumps (i. e. is
now non-relativistic), and makes up roughly a fourth of the energy density of the universe. In
many models dark matter is in thermal equilibrium with ordinary matter in the early universe.
Interestingly, the observed dark matter density is in good agreement with electroweak-scale
masses and weak couplings. �is ‘WIMP miracle’ is one main reason behind the popularity
of weakly interacting massive particles (WIMPs) as dark matter candidates. In this scenario,
good candidates for the mediator between dark matter and the SM are the Higgs boson or other
(pseudo-)scalars in an extended Higgs sector [122]. Such ‘Higgs portal’ scenarios o�en predict

els [103] introduce a new scalar �eld with a vacuum expectation value that changes during the cosmological
history. Since it couples to the Higgs, this e�ectively corresponds to a scan over values of the mass parameter
µ2. Once this term turns negative and the electroweak symmetry is broken, a feedback mechanism freezes the
evolution of the scalar, and the electroweak scale remains at a seemingly unnatural value. Nnaturalness [sic] [104]
postulates that there are many di�erent copies of the SM with di�erent values of the electroweak scale, a few of
which will naturally have a small Higgs mass. �e model is set up such that during reheating most of the energy
ends up in the copy with the smallest negative value of µ2 .
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signatures in Higgs physics such as modi�ed couplings or invisible Higgs decays.
Another mystery is the baryon asymmetry of the universe. Assuming that the cosmos was

initially perfectly balanced between matter and antimatter, the observed excess of matter can
be generated dynamically if the three Sakharov conditions are satis�ed: there have to be pro-
cesses with baryon-number violation as well as C and CP violation, which take place out of
thermal equilibrium [123]. In the SM, these e�ects are too small to account for the observed
asymmetry [124–127]. Models that accommodate larger e�ects o�en a�ect the Higgs sector. In
particular, extended Higgs sectors allow for electroweak symmetry breaking to be a strong �rst-
order phase transition, providing the required out-of-equilibrium dynamics [128–130]. Again,
such scenarios predict signatures in Higgs measurements.
Finally, the Higgs could play another role in the cosmological evolution of the universe. �e

origin of the large-scale structure of the cosmos, the surprising isotropy of the cosmicmicrowave
background (CMB), and the 
atness of the Universe are all explained by an epoch of exponential
expansion of space in the early universe called in
ation. �is process is o�en thought to be
caused by a scalar �eld, the in
aton, slowly rolling down a potential of a certain shape. In
a particularly economical model, the Higgs boson is the in
aton [131], and no new particles
beyond the Standard Model are required. However, large couplings of the Higgs to the Ricci
scalar are essential for this scenario of Higgs in
ation; the model consequently su�ers from
unitarity problems and requires a ultraviolet (UV) completion.

�e null results of the LHC searches for new particles have led to some disappointment among
particle physicists. But through the discovery of the Higgs boson, the LHC might not only have
completed the Standard Model, but rather opened the door to the unknown. �e Higgs boson
is not just another SM particle. Some of the big open questions of fundamental physics are
deeply rooted in the Higgs sector, and many other ideas can at least be linked to the Higgs sector
under some assumptions. At the same time, the current experimental precision leaves quite
some room for signatures of new physics in Higgs observables. A precise determination of the
Higgs properties might be one of the most exciting measurements at the LHC and may improve
our understanding of Nature signi�cantly. Hopefully, the Higgs boson is not just the last puzzle
piece of the Standard Model, but the �rst sign of what lies beyond.

. The effective field theory idea

�is plethora of possible BSM scenarios means that a model-independent description is invalu-
able for TeV signatures of new physics. We consider such an approach based on the e�ective
�eld theory (EFT) paradigm. Before discussing the speci�c realisation for Higgs physics in the
next section, we here introduce the EFT idea in general.
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.. Different physics at different scales

Our world behaves very di�erently depending on which energy and length scales we look at. At
extremely high energies (or short distances), Nature might be described by a quantum theory of
gravity. At energies of a few hundred GeV, the Standard Model is (disappointingly) in agreement
with all measurements. Going to lower energies (or larger distances), we do not have to worry
about the Higgs or W bosons anymore: electromagnetic interactions are described by QED,
weak interactions by Fermi theory, strong physics by QCD. Below a GeV, quarks and gluons
are replaced by pions and nucleons as the relevant degrees of freedom. �en by nuclei, atoms,
molecules. At this point most physicists give up and let chemists (and ultimately biologists and
sociologists) analyse the emergent systems.
�e important point here is that the observables at one scale are not directly sensitive to the

physics at signi�cantly di�erent scales. �is is nothing new: for molecules to stick together, the
details of the Higgs sector are not relevant, just as we can calculate how an apple falls from a
tree without knowing about quantum gravity. To do physics at one scale, we do not have to (and
o�en cannot) take into account the physics from all other scales. Instead, we isolate only those
features that play a role at the scale of interest.
An e�ective �eld theory is a physics model that includes all e�ects relevant at a given scale, but

not those that only play a role at signi�cantly di�erent scales. In particular, EFTs ignore spatial
substructures much smaller than the lengths of interest, or e�ects at much higher energies than
the energy scale considered.
We o�en use examples with one full or underlying theory and one e�ective theory. For

simplicity, we pretend that the full theory describes physics correctly at all scales. �e EFT is a
simpler model than the full theory and neglects some phenomena (such as heavy particles) at
an energy scale Λ. However, it correctly describes the physics as long as the observables probe
energy scales

E ≪ Λ , (2.7)

within some �nite precision. �is scale hierarchy between the energy of interest and the scale
of high-energy physics not included in the EFT is the basic requirement for the EFT idea. A
validity range (2.7) is an intrinsic property of e�ective theories. In this simple scenario we ignore
that the full theory will also typically break down at even higher energies, and that at some very
small energy the e�ective model should be replaced with another e�ective theory designed for
those energy scales.

Fermi theory

�e textbook example for an EFT in particle physics is Fermi theory, which describes the charged
current interactions between quarks (or hadrons), leptons and neutrinos at low energies. �e
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underlying model here is the SM, in which this weak interaction is mediated by the exchange of
virtualW bosons with mass mW and coupling constant g:

Mfull ∼

p

W

f2

f1

f4

f3

g g ∼
g2

p2 −m2
W
. (2.8)

In Fermi theory, there are noW bosons, just a direct interaction between four fermions with
coupling constant GF ∝ g2/m2

W :

MEFT ∼

f2

f1

f4

f3

GF ∼ GF ∝
g2

m2
W
. (2.9)

So the EFT turns theW propagator into a contact interaction between the fermions, shrinking
the distance bridged by the virtualW to zero. Clearly, the two amplitudes agree as long as the
momentum transfer through the vertex is small, E2 = p2 ≪ Λ2 = m2

W .
One process described by this interaction is muon decay. Its typical energy scale E ≈ mµ

is well separated from Λ = mW , and Fermi theory describes the process quite accurately. �e
relative EFT error, i. e. the inaccuracy of an calculation with the EFT rather than with the full
model, should be of order ∆EFT = ΓEFT/Γfull ∼ E2/Λ2 ∼ m2

µ/m2
W ≈ 10−6.

In proton collisions at the LHC the same interaction takes place, but at potentially much larger
momentum transfer E ≲ 13 TeV. �e EFT error increases with E. For E ≳ mW , the full model
allows on-shellW production, a feature entirely missing in the EFT. Here the two descriptions
obviously diverge and Fermi theory is no longer a valid approximation of the weak interaction.

Down and up the theory ladder

In reality there are of course more than two theories, and the notion of underlying and e�ective
model becomes relative. �e SM itself is not valid up to arbitrary large energies: it does not
explain dark matter, the matter-antimatter asymmetry, or gravity. It is probably also internally
inconsistent since at some very large energy the quartic coupling λ and the coupling constant g′
hit Landau poles. So the SM is an e�ective theory with validity range E ≪ Λ ≤ MPl and has to
be replaced by some other description at larger energies. On the other hand, going to energies
lower than a few GeV, the relevant physics changes again and we should switch to a new e�ective
theory. In this way, all theories can be thought of as a series of EFTs, where the model valid at
one scale is the underlying model for the e�ective theory at the next lower scale.
If you think you know a theory that describes our world at su�ciently large energies, then in

principle there is no need to use e�ective theories: you can calculate every single observable in
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your full model (at least if the full model is perturbative at these energies or other approximations
such as lattice calculations are available). �is however makes complex calculations necessary
even for the simplest low-energy processes. One can save a lot of computational e�ort and
focus on the relevant physics by dividing the phase space into regions with di�erent appropriate
e�ective descriptions. If the underlying theory becomes non-perturbative at small energies, or
the number of its degrees of freedom too large, constructing an e�ective theory becomes a bare
necessity.
Starting from a high energy scale where the parameters of the fundamental theory are de�ned,

these parameters are run to lower energies until the physics changes substantially or some degrees
of freedom become irrelevant. At this matching scale an e�ective theory is constructed from
the full model, and its coe�cients are determined from, or matched to, the underlying model.
�en the coe�cients of this EFT are run down to the next matching scale, where a new EFT is
de�ned and its parameters are calculated, and so on. �is is the top-down view of EFTs. For
instance, we can start from the SM and construct Fermi theory as a simpler model valid at low
energies. While we can certainly use the SM to calculate the muon lifetime, it is not necessary,
and a calculation in Fermi theory is quite accurate and shorter.
Yet o�en we do not know the underlying theory. As mentioned above, there has to be physics

beyond the SM, and there is still hope it will appear around a few TeV. If we want to parametrise
the e�ects of such new physics on electroweak-scale observables, as we do in this thesis, we do
not know what the full model looks like. But even without knowing the underlying model, we
can still construct an e�ective �eld theory based on a few general assumptions. We go through
these ingredients in the next section. For this bottom-up approach, an e�ective theory is not
only useful, but actually the only way we can discuss new physics without choosing a particular
model of BSM physics.
High-energy physics can be seen as the �eld of working ourselves up a chain of theories to

ever higher energies. �e EFT framework provides us with the tools to do this in an organised
way.

.. EFT construction and the bottom-up approach

EFTs are especially useful in the framework of quantum �eld theory (QFT). Before showing how
to construct the e�ective operators of such a theory in a bottom-up approach, let us recapitulate
how QFTs are organised. �e basic object describing perturbative QFTs in d = 4 
at space-time
dimensions is the action

S = ∫d4x L(x) , (2.10)

where the Lagrangian L(x) consists of a sum of couplings times local operators. A key property
of each coupling or operator is its canonical dimension or mass dimension. In simple terms
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this can be phrased as the following question: if you assign a value to a quantity, which power of
a mass unit such as GeV would this value carry? Since we work in units with ħ = c = 1, length
and distance dimensions are just the inverse of mass dimensions. We denote the mass dimension
of any object with squared brackets, where [O] = D means that O is of dimension massD, or
mass dimension D.
Since in the partition function the action appears as eiS , it must be dimensionless, [S] = 0.

�e space-time integral in Equation (2.10) then implies [L] = d = 4, so every term in the
Lagrangian has to be of mass dimension 4. Applying this to the kinetic terms, we can calculate
the mass dimension of all �elds. �is then allows us to calculate the dimension of all operators
and couplings in the theory.
�e canonical dimension of an operator has two important consequences. First, the renormal-

isation group 
ow of a theory, i. e. the running of the couplings between di�erent energy scales,
largely depends on the mass dimensions of the operators. Operators with mass dimension D < d
(‘relevant’ operators) receive substantial quantum corrections when going from high to low
energies. �is is a key argument for many �ne-tuning problems such as the hierarchy problem
or the cosmological constant problem. On the other hand, operators with D > d (‘irrelevant’
ones) are typically suppressed when going to lower energies. Operators with D = d are called
‘marginal’. �e second consequence of the mass dimension a�ects the renormalisability of a
theory. �eories with operators with D > d are non-renormalisable:6 particles in loops with
energies E →∞ lead to in�nities in observables, too many to be hidden in a renormalisation of
the parameters.

Effective operators

From now on we only consider EFTs realised as a local QFT in 4 space-time dimensions, an
approach that has proven very successful in high-energy physics so far. EFTs are then de�ned as
a sum of operatorsOi , each with a speci�c canonical dimension Di . We can split the coupling
in front of each operator into a dimensionless constant, theWilson coe�cient fi , and some
powers of a mass scale, for which we use the scale of heavy physics Λ:

LEFT = (kinetic and mass terms) +∑
i

fi
ΛD i−d

Oi . (2.11)

Why do we force Λ to appear in front of the operators like this? If we do not know anything
about the underlying model at scale Λ, our best guess (which can be motivated with arguments
based on the renormalisation group 
ow) is that it consists of dimensionless couplings g, roughly
of up toO (1) for weakly interacting underlying physics, and mass scalesM ∼ O (Λ). Indirect
e�ects mediated by the high-energy physics should therefore be proportional to a combination
6�e opposite is not true: some theories contain only operators with D ≤ d, but are still not renormalisable.
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of these factors, as given in Equation (2.11) with Wilson coe�cients fi of a size dictated by the
underlying couplings g. �is is certainly true in Fermi theory, where the e�ective four-fermion
interaction is suppressed by GF ∝ 1/m2

W = 1/Λ2.

Ingredients

What the operators Oi look like may be clear in a top-down situation where we know the
underlying theory. In a bottom-up approach, however, we need a recipe to construct a list of
operators in a model-independent way. It turns out that this is surprisingly straightforward, and
the list of operators we need to include in the EFT is de�ned by three ingredients: the particle
content, the symmetries, and a counting scheme that decides which operators are relevant at the
scale of interest. We go through them one by one.

1. Particle content: one has to de�ne the �elds that are the dynamical degrees of freedom
in the EFT, i. e. that can form either external legs or internal propagators in Feynman
diagrams. At least all particles with masses m ≪ Λ should be included. �e operators are
then combinations of these �elds and derivatives.

2. Symmetries: some symmetry properties of the world have been measured with high
precision, and we can expect that a violation of these symmetries has to be extremely
small or happens at very high energies. �ese can be gauge symmetries (such as the
SU(3) × SU(2) ×U(1) of the SM), space-time symmetries (such as Lorentz symmetry),
or other global symmetries (such as 
avour symmetries). Requiring that the e�ective
operators do not violate these symmetries is well motivated and can reduce the complexity
of the theory signi�cantly.

3. Counting scheme: with a set of particles and some symmetry requirements we can con-
struct an in�nite tower of di�erent operators. We therefore need some rule to decide
which of the operators we can neglect. We mostly use a counting scheme based on the
canonical dimension of the operators. As argued above, we expect an operator with mass
dimension D > d to be suppressed by a factor of roughly 1/ΛD−d . Operators of higher
mass dimension are therefore more strongly suppressed. Setting a maximal operator di-
mension is thus a way of limiting the EFT to a �nite number of operators that should
include the leading e�ects at energies E ≪ Λ.

One property that is o�en required of theories is missing in this list: an EFT (with its intrinsic
UV cuto� Λ) does not have to be renormalisable in the traditional sense. In fact, most EFTs
include operators with mass dimension D > d and are thus non-renormalisable. However, EFTs
are still renormalisable order by order in the counting scheme: at a given order in the EFT
expansion, for instance in 1/Λ, only a �nite number of divergences appears and can be absorbed
in a renormalisation of the parameters [132]. In this way, loop e�ects can be calculated without
any fundamental issues.
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Basis choices

Usually not all operators that can be constructed in this way are independent. �is can be seen
from a �eld rede�nition of the form

ϕ(x)→ ϕ′(x) = ϕ(x) + ε f (x) (2.12)

where ε is some small parameter and f (x) can contain any combination of �elds evaluated at x.
�e action in terms of the new �eld is (a�er integration by parts)

∫d4x L[ϕ]→ ∫d4x L[ϕ′] = ∫d4x (L[ϕ] + ε [δL
δϕ

− ∂µ
δL
δ∂µϕ

] f +O (ε2)) . (2.13)

We demonstrate this in a concrete example in Appendix A.3.1. Such a transformation does not
change the physics, i. e. the S-matrix elements, so we can equivalently use the new action instead
of the original one [133–136]. In this way, each equation of motion provides us with a degree
of freedom to swap operators for a combination of other operators. Similarly, Fierz identities
and integration by parts can be used to manipulate the form of operators. Together these tools
reduce the number of operators and coe�cients necessary in an EFT basis, and lead to some
freedom to choose which operators to work with.

Why is the sky blue?

Following Reference [73], we demonstrate this bottom-up approach by deriving the colour of
the sky. In other words, we answer the question why blue light coming from the sun is scattered
more strongly by particles in the atmosphere than red light. A full derivation of this takes some
time and requires knowledge of the underlying electrodynamic interactions. Instead, we write
down an e�ective �eld theory for this process of Rayleigh scattering. �e only thing we have
to know are the basic scales of the process: photons with energy Eγ scatter o� basically static
nuclei characterised by an excitation energy ∆E, massM and radius a0. �ese scales are clearly
separated:

Eγ ≪ ∆E , a−10 ≪ M . (2.14)

�is is good news, since such a scale hierarchy is the basic requirement for an EFT. We are
interested in elastic scattering, so we set the cuto� of the EFT as7

Λ ∼ ∆E , a−10 . (2.15)

With this we can put together the building blocks for our EFT as discussed above:
7In reality there are two orders of magnitude between ∆E and a−10 , but this does not a�ect the line of argument at
all and we choose to ignore this fact.
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1. As �elds we need photons and atoms, where we can approximate the latter as in�nitely
heavy.

2. �e relevant symmetries are the U(1)em and Lorentz invariance. At these energies atoms
can neither be created nor destroyed, which can be seen as another symmetry requirement
on the e�ective Lagrangian.

3. We include the lowest-dimensional operators that describe photon-atom scattering.
�e kinetic part of such an EFT reads

Lkin = ϕ†υ iυα ∂αϕυ −
1
4
FµνFµν , (2.16)

where ϕυ is the �eld operator representing an in�nitely heavy atom at constant velocity υµ, and
Fµν is the photon �eld strength tensor. Boosting into the atom’s rest frame, υµ = (1, 0, 0, 0) and
the �rst term becomes the Lagrangian of the Schrödinger equation.
�e usual power counting based on [L] = 4 gives the mass dimensions

[∂µ] = 1 , [υµ] = 0 , [ϕ] = 3
2
, and [Fµν] = 2 . (2.17)

�e interaction operators must be Lorentz-invariant combinations of ϕ†ϕ, Fµν, υµ, and ∂µ.
Note that operators directly involving Aµ instead of Fµν are forbidden by gauge invariance, and
single instances of ϕ correspond to the creation or annihilation of atoms, which is not possible
at these energies. �e �rst such operators appear at mass dimension 7:

Lint =
f1
Λ3 ϕ

†
υϕυ FµνFµν +

f2
Λ3 ϕ

†
υϕυ υαFαµ υβFβµ +O (1/Λ4) , (2.18)

with Wilson coe�cients f1 and f2. �ese two operators should capture the dominant e�ects of
Rayleigh scattering at energies Eγ ≪ Λ.
�e scattering amplitude of light o� the atmospheric atoms should therefore scale asM ∼

1/Λ3, which means that the cross section scales with σ ∼ 1/Λ6. Since the cross section has the
dimension of an area, [σ] = −2, and since the only other mass scale in this low-energy process
is the photon energy Eγ, we know that the e�ective cross section must be proportional to

σ ∝
E4γ
Λ6 (1 +O (Eγ/Λ)) . (2.19)

In other words, blue light is much more strongly scattered than red light. Our e�ective theory,
built just from a few simple assumptions, explains the colour of the sky.
Finally, we should check the validity range of our EFT. We expect it to work as long as

Eγ ≪ Λ ∼ ∆E ∼ O (eV) , (2.20)

equivalent to wavelengths above O (100 nm). Our approximation is probably safe for visible
light. In the near ultraviolet we expect deviations from the E4γ proportionality and the EFT to
lose its validity.
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.. Top-down approach andmatching

In the top-down approach to e�ective �eld theories, we start from a knownmodel of UV physics
and calculate the corresponding e�ective operators and Wilson coe�cients in the EFT. �e
de�ning criterion of thismatching procedure is that at low energies the e�ective and underlying
descriptions agree, at least up to a given order in the loop expansion (e. g. in αs) and up to a
given order in the EFT expansion in 1/Λ.
�is can be achieved either by functional methods or with Feynman diagrams. Here we sketch

the conceptual foundation involving functional methods, before arriving at a simple diagram-
matic method. Note that the matching cannot be reversed: one cannot uniquely reconstruct
a full theory only based on the EFT. Details of the matching procedure play a crucial role in
Chapter 3.

The effective action

�e central object that allows us to systematically analyse the low-energy e�ects of heavy physics
is the e�ective action Se�. Following References [137, 138], we now outline its calculation at the
one-loop level. Note that this is just a conceptual sketch and not mathematically rigorous, and
that we omit higher-order terms irrelevant for this thesis as well as certain cases of mixed loops
with light and heavy particles [139]. For amore thorough derivation see the quantum �eld theory
textbook of your choice, e. g. References [140, 141].
For simplicity, let us assume that our theory S[ϕ, Φ] consists of light particles ϕ and a heavy

scalar Φ that we want to remove as a dynamical degree of freedom in the e�ective theory. �e
e�ective action is calculated by integrating out the heavy particles from the partition function,

eiSeff[ϕ] = ∫ DΦ eiS[ϕ,Φ] . (2.21)

While the path integral over the heavy �elds is computed, the light �elds are kept �xed as
‘background �elds’.
�e e�ective action can be calculated with a saddle-point approximation. For this we expand

Φ around its classical value Φc :

Φ(x) = Φc(x) + η(x) . (2.22)

Φc is de�ned by the classical equation of motion

δS[ϕ, Φ]

δΦ
∣
Φ=Φc

= 0 , (2.23)

so expanding the action around this extremum leads to

S[ϕ, Φc + η] = S[ϕ, Φc] +
1
2
δ2S[ϕ, Φ]

δΦ2 ∣
Φ=Φc

η2 +O (η3) . (2.24)
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2.2 The e�ective �eld theory idea

Plugging this into Equation (2.21), we �nd

eiSeff[ϕ] ≈ eiS[ϕ,Φc] ∫ Dη exp⎛⎝
1
2
δ2S[ϕ, Φ]

δΦ2 ∣
Φ=Φc

η2
⎞

⎠
. (2.25)

�e last term is a Gaussian integral with a known solution,

eiSeff[ϕ] ≈ eiS[ϕ,Φc]
⎡
⎢
⎢
⎢
⎢
⎣

det
⎛

⎝
−
δ2S
δΦ2 ∣

Φ=Φc

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

−1/2

(2.26)

and �nally

Se�[ϕ] ≈ S[ϕ, Φc] +
i
2
tr log

⎛

⎝
−
δ2S
δΦ2 ∣

Φ=Φc

⎞

⎠
, (2.27)

where the functional trace is de�ned as an integral over momentum space k together with a sum
over internal states i such as spin or 
avour,

tr x ≡∑
i
∫ d4k
(2π)4

⟨k, i∣x∣k, i⟩ . (2.28)

�is result can be directly evaluated with functional methods, see Appendix A.3.2 for an
explicit example. �e �rst term in Equation (2.27) can be easily calculated by solving the classical
equations of motion in Equation (2.23). Computing the functional trace is more involved, but
can be simpli�ed with a procedure called covariant derivative expansion [137, 142, 143]. Universal
results that can be adapted to many scenarios are available in the literature [138, 139, 144].
�e e�ective action is in general non-local, visible as (covariant) derivatives D appearing in

the denominator (formally de�ned as Green’s functions). We expand these terms schematically
as

ϕ† 1
D2 −M2 ϕ = −ϕ

† 1
M2 [1 + D2

M2 ] ϕ +O (1/M6) , (2.29)

so that only a rest term of higher order in 1/Λ = 1/M remains non-local [139]. In a last step, we
truncate the resulting tower of operators at some order in the counting scheme, in this case in
the expansion in 1/Λ. �e resulting e�ective theory consists of a �nite set of local operators up
to some order in a counting scheme, compatible with our de�nition of e�ective theories in the
previous section. Unlike in the bottom-up approach, not all operators have to appear, and we
can calculate the Wilson coe�cients based on the parameters of the underlying theory.
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2 An e�ective theory for Higgs physics

Diagrammatic matching

�e e�ective action in Equation (2.27) can be calculated in an intuitive diagrammatic way. Since
the light �elds are kept �xed in Equation (2.21), the e�ective action is given by all connected
Feynman diagrams with only ϕ as external legs and only Φ �elds as internal propagators. A
more rigorous derivation than the one in the previous section in fact reveals that also certain
connected loop diagrams with only ϕ as external legs and both Φ and ϕ �elds as internal
propagators contribute if they cannot be disconnected by cutting a single internal ϕ line [139].
�e �rst term in Equation (2.27) corresponds to all such tree-level diagrams, the second term
describes one-loop pieces. Higher-loop corrections, which play no role in this thesis, are le�
out.
In practice, the e�ective operators and their Wilson coe�cients can be calculated without the

need for any functional methods as follows:
1. Start with the particle content of the full model. Choose the cuto� Λ and divide the
particles of the full model into light and heavy �elds. Light �elds, which should include
at least those with masses below Λ, make up the particle content of the e�ective theory.
Heavy �elds are integrated out, i. e. removed as dynamical degrees of freedom in the EFT.

2. Based on the particles and interactions of the full model, draw all connected Feynman
diagrams that satisfy two conditions:

● all external legs are light �elds; and
● the diagram cannot be disconnected by cutting a single internal light-�eld line. For
tree-level diagrams this is equivalent to requiring that only heavy �elds appear as
internal lines.

Using the Feynman rules of the full model, calculate the expressions for these diagrams.
Do not treat the external legs as incoming or outgoing particles, but keep the �eld operator
expressions.

3. Express quantities of the full model in terms of Λ. Truncate this in�nite series of diagrams
at some order in 1/Λ, corresponding to the dimension of the operators we want to keep.
Together with kinetic and mass terms for the light �elds, these form the Lagrangian of the
EFT.

Fermi theory again

Let us apply this top-down procedure to our standard example of Fermi theory. For simplicity,
we do not take the full SM, but just the interactions between massiveW bosons and fermions as
the underlying theory.

1. Our full model consists of quarks and leptons and theW boson. We want to analyse weak
interactions below theW mass, so we set Λ = mW . �e light particles of the EFT thus
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2.2 The e�ective �eld theory idea

consist of the quarks and leptons except for the top, while theW boson and the top quark
are heavy and are integrated out.

2. �e only diagram with the requested features that has only one heavy propagator has the
form

p

W

f i

f j

f k

f l

(2.30)

Double lines denote a heavy �eld. �ere are additional diagrams withW self-interactions
orW loops, but they involve at least twoW propagators, which means that all contribu-
tions from them are of orderO (1/Λ4), which we neglect.
Applying the SM Feynman rules, this diagram evaluates to

( f i
ig
√
2
1 − γ5
2

γµ f j)
−gµν

p2 −m2
W

( f k
ig
√
2
1 − γ5
2

γν fl)

=
g2 ( f i(1 − γ5)γµ f j) ( f k(1 − γ5)γµ fl)

8(p2 −m2
W)

. (2.31)

3. �e only dimensionful parameter is mW = Λ, and for the EFT to be valid we assume
p2 ≪ Λ2. We can then expand this expression as

g2

8m2
W

( f i(1 − γ5)γµ f j) ( f k(1 − γ5)γµ fl) +O (1/Λ4) . (2.32)

With this, we rediscover the dimension-six EFT matched to the weak interactions of the
SM:

L = i f iγµ∂µ fi −mi f i fi +
c
Λ2 ( f i(1 − γ5)γµ f j) ( f k(1 − γ5)γµ fl) , (2.33)

with heavy scale Λ = mW and Wilson coe�cient c = g2/8. Replacing c/Λ2 by GF/
√
2 =

g2/(8m2
W) restores the historic form of Fermi theory.

Operator mixing

So far we neglected that— like all parameters in a QFT— the value of the Wilson coe�cients
depends on the energy scale. Running the model from one energy to a di�erent one leads to
operator mixing: loop e�ects from one operator a�ect the coe�cients of other operators. If the
Wilson coe�cients are given at the matching scale Λ (we use this symbol since the matching
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scale is usually chosen only slightly below the EFT cuto�), at the scale of interest E they take on
values of the form

fi(E) ∼ fi(Λ) ±∑
j

g2

16π2
log(Λ

2

E2
) f j(Λ) , (2.34)

where g are the typical couplings in the loops.
If the matching scale is not too far away from the energy scale of interest and if all Wilson

coe�cients are already sizeable at the matching scale, this is o�en negligible. One exception
arises when operators are generated through strong interactions. �eir Wilson coe�cients will
depend on αs and pick up the large scale dependence of the strong coupling. Another important
consequence is that even if an operator is zero at the matching scale, operator mixing will o�en
give it a small but non-zero value at lower energies. So regardless of what the underlying model
is, it can be expected that eventually all e�ective operators allowed by the symmetries receive
contributions from it.

. Dimension-six operators for Higgs physics

We now apply these general ideas to electroweak and in particular Higgs physics at the TeV scale
and construct the Standard Model e�ective �eld theory (interchangeably called linear Higgs
e�ective �eld theory) up to dimension six [22–24, 145]. �is is the framework we use throughout
this thesis. We �rst argue in Section 2.3.1 why such an e�ective theory is very useful, and then
construct its e�ective operators in Section 2.3.2 following the recipe laid out in Section 2.2.2.
Section 2.3.3 takes a closer look at the phenomenology of these operators. Finally, in Section 2.3.4
we brie
y discuss a few alternative parametrisations of Higgs properties.

.. Motivation

As argued in Section 2.1.3, there are many reasons to expect new physics signatures in the Higgs
sector. Some of these arguments, such as the hierarchy problem or the WIMP miracle of dark
matter, point towards BSM physics close to the electroweak scale or, depending on the level of
acceptable �ne-tuning, up to a few TeV. Unfortunately these (purely aesthetic) arguments do not
tell us what exactly such physics should look like.
�is leaves us with a question highly relevant for upcoming ATLAS and CMS analyses: what is

the best language to discuss indirect signs of new physics at the electroweak scale, in particular in
the Higgs sector? Which parametrisation of Higgs properties provides a good interface between
di�erent experiments, and between experiment and theory?
Directly interpreting measurements in complete models of new physics is impractical: for

nc ≫ 1 experimental channels and nm ≫ 1models this requires ncnm limits to be derived. Also,
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2.3 Dimension-six operators for Higgs physics

the parameter space of such models (think of the relatively simple MSSM) can be huge, and
many of their features do not matter at the electroweak scale at all. It makes more sense to de�ne
an intermediate framework that can be linked both to measurements and to full theories, so
that only nc sets of limits plus nm translation rules from complete theories to the intermediate
language have to be calculated. Such a framework should include all necessary physics, but no
phenomena irrelevant at this scale. �is is exactly the de�ning feature of an e�ective �eld theory.

.. Operators

Building blocks

Since we do not know what physics lays beyond the SM, we have to construct our EFT from a
bottom-up perspective. As discussed above, thismeanswe have towrite down all operators based
on a set of particles that are compatible with certain symmetries and are important according to
some counting scheme:

1. As degrees of freedom we use the SM �elds. In particular, we assume that the Higgs boson
h and the Goldstone bosons wa are combined in an SU(2)L doublet ϕ as in the SM, see
Equation (2.5). �is is the case in many well-studied models of new physics and consistent
with data. We discuss an alternative construction in which the physical scalar h and the
Goldstones wa are independent in Section 2.3.4.

2. All operators have to be invariant under proper orthochronous Poincaré transformations
and under the SM gauge group SU(3)C × SU(2)L ×U(1)Y , and have to conserve lepton
and baryon number.

3. We arrange the operators by their mass dimension and thus their suppression in powers
of 1/Λ. We keep those up to mass dimension 6, i. e.O (1/Λ2).

Simple dimensional analysis of the kinetic terms of the SM �elds tells us the mass dimensions
of all building blocks:

[ f ] = 3
2
, [Vµ] = 1 , [Vµν] = 2 , [ϕ] = 1 , [∂µ] = 1 and [Dµ] = 1 , (2.35)

�eonly dimension-�ve operator that can be built from the SM�elds is the ‘Weinberg operator’
(LLϕ̃∗)(ϕ̃†LL). It generates a Majorana mass term for the neutrinos, violates lepton number,
and is entirely irrelevant for Higgs physics. �ere the leading e�ects are expected to come from
dimension-six operators:

LEFT = LSM +∑
i

fi
Λ2 Oi +O (1/Λ4) (2.36)

with the unknown cuto� scale Λ and Wilson coe�cients fi . �e convergence of this series in
1/Λ is a central topic of Chapter 3. For convenience, from now on we drop the higher-order
terms.
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Oϕ,1 = (Dµϕ)†ϕ ϕ†Dµϕ OGG = (ϕ†ϕ) Ga
µν Gµν a

Oϕ,2 =
1
2
∂µ(ϕ†ϕ) ∂µ(ϕ†ϕ) OBB = −

g′2

4
(ϕ†ϕ) Bµν Bµν

Oϕ,3 =
1
3
(ϕ†ϕ)3 OWW = −

g2

4
(ϕ†ϕ) Wa

µνW µν a

Oϕ,4 = (ϕ†ϕ) (Dµϕ)† Dµϕ OBW = −
g g′

4
(ϕ†σ aϕ) BµνW µν a

OB =
ig′

2
(Dµϕ)† Dνϕ Bµν

OW =
ig
2

(Dµϕ)† σ a Dνϕ Wa
µν

Table 2.1: Bosonic CP-conserving dimension-six operators relevant for Higgs physics.

As discussed in Section 2.2.2, �eld rede�nitions (or, relatedly, equations of motion), Fierz
identities and integration by parts provide equivalence relations between certain operators and
give us some freedom to de�ne a basis of operators. Taking these into account, there are 59
independent types of dimension-six operators, not counting 
avour structures and Hermitian
conjugation [146]. Counting all possible 
avour structures, there are 2499 distinct operators.
Fortunately, in practice only a small subset of these are relevant: �rst, the strong constraints on

avour-changing neutral currents motivate the assumption of 
avour-diagonal or even 
avour-
universal Wilson coe�cients. Second, only a small number of these operators directly a�ect
Higgs physics. At higher orders in the EFT expansion, the number of operators increases rapidly,
explaining why we stick to the leading e�ects at dimension six: not counting 
avour structures,
there areO (103) operators at dimension eight andO (104) dimension-ten operators [147].
�ree di�erent conventions have become popular: the complete ‘Warsaw’ basis [146], the

‘Strongly Interacting Light Higgs’ convention (SILH) [148, 149] and the Hagiwara-Ishihara-
Szalapski-Zeppenfeld basis (HISZ) [150]. All three maximise the use of bosonic operators
to describe Higgs and electroweak observables. For a comparison of and conversion between
di�erent bases see Appendix A.4 and References [1, 151]. �roughout this thesis we use the basis
developed in References [25, 152, 153], which is virtually identical to the HISZ basis and now
widely used in global �ts [26, 27, 154, 155].

Operator basis

Finally, we list the dimension-six operators of the SM e�ective �eld theory relevant for this
thesis. We include some redundancies in this list before using the equations of motion to de�ne
a basis. �e operators are classi�ed based on their �eld content and on their behaviour under
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Oℓ = (ϕ†ϕ) LLϕ ℓR O
(1)
ϕL = i(ϕ†←→D µϕ)(LLγµLL) O

(3)
ϕL = i(ϕ†←→D a

µϕ)(LLγµσaLL)

Ou = (ϕ†ϕ)QLϕ̃ uR O
(1)
ϕQ = i(ϕ†←→D µϕ)(QLγµQL) O

(3)
ϕQ = i(ϕ†←→D a

µϕ)(QLγµσaQL)

Od = (ϕ†ϕ)QLϕ dR O
(1)
ϕℓ = i(ϕ†←→D µϕ)(ℓRγµℓR)

O
(1)
ϕu = i(ϕ†←→D µϕ)(uRγµuR)

O
(1)
ϕd = i(ϕ†←→D µϕ)(dRγµdR)

O
(1)
ϕud = i(ϕ

†←→D µϕ)(uRγµdR)

Table 2.2: CP-conserving dimension-six operators relevant for the Higgs-fermion couplings. All
operators contain an implicit Hermitian conjugation. For readability, 
avour indices
are omitted.

CP transformations. �is combined charge conjugation and parity inversion is an approximate
symmetry of the SM that is only violated by the complex phase of the CKMmatrix. In addition,
there are rather tight bounds on CP violation in many processes. �is motivates many analyses
to restrict their set of operators to the CP-conserving ones. On the other hand, new sources of
CP violation are needed to explain the matter-antimatter asymmetry in the universe, and their
e�ects at low energies might be visible as CP-violating e�ective operators.
We begin with the CP-conserving dimension-six operators relevant for Higgs physics, fol-

lowing References [25, 152, 153]. In Table 2.1 we list the bosonic ones, Table 2.2 gives the Higgs-
fermion operators, and the ‘dipole operators’ made of Higgs �elds, gauge bosons, and fermions
are listed in Table 2.3. We use the convention for the sign in the covariant derivative given in
Equation (2.2). Ta are the SU(3) generators, and we de�ne

ϕ†←→D µϕ ≡ ϕ†Dµϕ − (Dµϕ)†ϕ and ϕ†←→D a
µϕ ≡ ϕ†σ aDµϕ − (Dµϕ)†σ aϕ . (2.37)

All other symbols appearing in these operators are de�ned in Appendix A.1.
In addition to these CP-conserving structures, there are a number of CP-violating operators.

We only list the bosonic ones relevant for Higgs physics [84, 156] in Table 2.4. �ey involve the
dual �eld strength tensors

Ṽµν =
1
2
εµνρσV µν , V = B,W ,G . (2.38)

Finally, there are a few CP-even and CP-odd pure gauge operators made from �eld strength
tensors and (covariant) derivatives, and a large number of four-fermion operators similar to the

27



2 An e�ective theory for Higgs physics

OuW = (QLσ µνuR)σ a ϕ̃Wa
µν OuB = (QLσ µνuR)ϕ̃Bµν OuG = (QLσ µνTauR)ϕ̃Ga

µν

OdW = (QLσ µνdR)σ aϕWa
µν OdB = (QLσ µνdR)ϕBµν OdG = (QLσ µνTadR)ϕGa

µν

OℓW = (LLσ µνℓR)σ aϕWa
µν OℓB = (LLσ µνℓR)ϕBµν

Table 2.3: Dipole operators a�ecting the Higgs-gauge-fermion couplings. All operators contain
an implicit Hermitian conjugation. For readability, 
avour indices are omitted.

one in Equation (2.33), which are not important in this thesis. See Reference [146] for a complete
basis of dimension-six operators.
As argued above, not all of these operators are independent. �e equations of motion for the

Higgs �eld and the electroweak gauge bosons read [146]

D2ϕ = −µ2ϕ − 2λ(ϕ†ϕ)ϕ −∑
f
y f f R fL +O (1/Λ2) , (2.39)

∂ρBρµ = −
ig′

2
ϕ†←→D µϕ −∑

f
g′Yf f γµ f +O (1/Λ2) , and (2.40)

(DρWρµ)
a
= −

ig
2
ϕ†←→D a

µϕ −
g
2 ∑f

f Lγµσ a fL +O (1/Λ2) , (2.41)

whereYf are theweak hypercharges of the fermions. FollowingEquation (2.13) andAppendixA.3.1,
this provides us with three equivalence relations between dimension-six operators [25, 152, 153]:

2Oϕ,2 + 2Oϕ,4 − 2µ2(ϕ†ϕ)2 − 12λOϕ,3 ≃∑
f
y fO f +O (1/Λ2) (2.42)

OBB +OBW − 2OB + g′2 (Oϕ,1 −
1
2
Oϕ,2) ≃ −

g′2

2 ∑f
YfO

(1)
ϕ f +O (1/Λ2) (2.43)

OWW +OBW − 2OW + g2 (Oϕ,4 −
1
2
Oϕ,2) ≃ −

g2

4 ∑
F=L,Q

O
(3)
ϕF +O (1/Λ2) . (2.44)

Here the symbol ≃ means ‘physically equivalent’ in the sense that exchanging operators with
these relations does not a�ect any S-matrix elements. �is allows us to eliminate three of the
operators listed in Tables 2.1 to 2.4.
�ere are di�erent strategies for picking the operators to keep. In a top-down approach, one

may choose operators based on the underlying physics. In a bottom-up approach, calculations
can be simpli�ed if the operators are chosen based on their contributions to physical observables,
for instance to avoid non-trivial blind directions. Following Reference [25], we choose to discard
O

(1)
ϕL ,O

(3)
ϕL , andOϕ,4.
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OGG̃ = (ϕ†ϕ)Ga
µν G̃µν a OB̃ =

ig
2
(Dµϕ†)(Dνϕ) B̃µν

OBB̃ = −
g′2

4
(ϕ†ϕ)Bµν B̃µν OBW̃ = −

g g′

4
(ϕ†σ aϕ)Bµν W̃ µν a

OWW̃ = −
g2

4
(ϕ†ϕ)Wa

µν W̃ µν a

Table 2.4: Bosonic CP-violating dimension-six operators relevant for Higgs physics. �e dual
�eld strengths Ṽµν with V = G , B,W are de�ned in Equation (2.38).

Constraints

Some of the remaining operators are tightly constrained from experimental data. Electroweak
precision measurements limit the Wilson coe�cients of Oϕ,1, OBW , OBW̃ , OB̃, O

(3)
ϕL , and the

remainingO(1)
ϕ f to a level where their e�ects in Higgs physics are small. Measurements of electric

dipole moments put tight constraints on the dipole operators. We therefore mostly ignore these
operators in this thesis.8

Limits on 
avour-changing neutral currents constrain o�-diagonal fermion-Higgs couplings.
Moreover, 
avour-diagonalO f involving fermions of the �rst and second generations are irrel-
evant for many signatures considered in this thesis. We therefore only keep the Higgs-fermion
operatorsO f of the third generation.
�is leaves us with a list of thirteen operators relevant for LHC Higgs physics: ten CP-even

operators,

Oϕ,2 , Oϕ,3 , OGG , OBB , OWW , OB , OW , Oτ , Ot , and Ob ; (2.45)

and three CP-odd ones,

OGG̃ , OBB̃ , and OWW̃ . (2.46)

Renormalisation group evolution

�eWilson coe�cients of these operators depend on the energy scale. During the last years, the
contributions of all dimension-six operators on the running of the SM parameters, as well as the
whole 59 × 59 anomalous dimension matrix of dimension-six operators, have been calculated at
8�is simple argument is suitable for our rather conceptual work. In a thorough global �t, however, it should be
checked carefully whether these constraints are actually strong enough to make these operators irrelevant for
Higgs physics in all cases. Such a check should include RG e�ects when comparing constraints from di�erent
scales. �e increasing precision in Higgs observables means that many of these operators will become relevant
again in the future.
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one-loop level [157–159]. �is provides all necessary tools to run the EFT parameters from the
matching scale Λ to the experimental scale E. Following Equation (2.34), this shi�s the Wilson
coe�cients by a term proportional to a loop factor times logΛ2/E2.
As we discuss at some length in Chapter 3, the LHC Higgs measurements are only sensitive to

newphysics scales between the electroweak scale and theTeV scale. �e corresponding logarithm
typically cannot compensate for the loop factor, and the RG e�ects on Wilson coe�cients that
are already non-zero at the matching scale and that do not explicitly depend on αs are small.
�is means that for our analyses we can o�en neglect the RG running of the Wilson coe�cients.

.. Phenomenology

Having picked a set of operators, the next question is how they a�ect Higgs observables. We
�rst discuss two examples,Oϕ,2 andOW , in detail, before listing the e�ects of all operators in
Equations (2.45) and (2.46).

Oϕ,2: rescaled Higgs couplings

Our �rst example is the operatorOϕ,2. Ignoring the Goldstones, it consists only of derivatives
and Higgs �elds ϕ†ϕ = (υ2 + 2υh̃ + h̃2)/2, where we use a tilde on h because this �eld is not yet
a mass eigenstate. Its contribution to the Lagrangian reads

LEFT ⊃
fϕ,2
2Λ2 ∂µ(ϕ

†ϕ) ∂µ(ϕ†ϕ)

=
fϕ,2υ2

2Λ2 ∂µ h̃ ∂µ h̃ +
fϕ,2 υ
Λ2 h̃ ∂µ h̃ ∂µ h̃ +

fϕ,2 υ
2Λ2 h̃2 ∂µ h̃ ∂µ h̃ . (2.47)

�e �rst term rescales the kinetic term of the Higgs boson:

LEFT ⊃ (1 +
fϕ,2υ2

Λ2 )
1
2
∂µ h̃ ∂µ h̃ . (2.48)

To restore the canonical form of the kinetic term, we have to rescale the Higgs boson h̃ to

h =

√

1 +
fϕ,2υ2

Λ2 h̃ . (2.49)

�is universally shi�s all Higgs couplings to other particles as

ghxx =
1

√

1 + fϕ ,2υ2
Λ2

gSMhxx . (2.50)
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�ere is an additional, more involved e�ect on the Higgs self-coupling. �e rescaling in Equa-
tion (2.49) also a�ects the Higgs mass term given in Equation (2.6). For �xed υ and mh, this
amounts to shi�ing the Higgs self-coupling λ to

λ =
m2
h

2υ2
(1 +

fϕ,2υ2

Λ2 ) . (2.51)

Moreover, the second term in Equation (2.47) introduces a new Lorentz structure into the cubic
Higgs self-interaction that depends on the Higgs momenta. A non-zero Wilson coe�cient fϕ,2
therefore has a strong impact on Higgs pair production, changing not only the total rate, but
also kinematic shapes.

OW : new Higgs-gauge structures

Our second example is OW , which contracts covariant derivatives acting on Higgs doublets,
de�ned in Equation (2.2), with a �eld strength tensor Wk

µν = ∂µWk
ν − ∂νWk

µ + gεkmnWm
µ Wn

ν .
ExpandingOW and only keeping the pieces that a�ect the hWW coupling, we �nd

LEFT ⊃
fW
Λ2

ig
2

(Dµϕ)†σ k(Dνϕ)Wk
µν

=
ig fW
2Λ2 (∂µϕ† + ig

2
Wm µϕ†σm + ig′

2
Bµϕ†) σ k (∂νϕ − ig

2
σnWn νϕ − ig′

2
Bνϕ)Wk

µν

⊃
ig fW
2Λ2

⎧⎪⎪
⎨
⎪⎪⎩

∂µh
√
2

[σ kσn]22
−ig
2

Wn ν υ
√
2
+
ig
2
Wm ν υ

√
2

[σmσ k]22
∂µh
√
2

⎫⎪⎪
⎬
⎪⎪⎭

Wk
µν

=
fW
Λ2

g2υ
8

[σ k , σn]22 (∂µh)Wn νWk
µν

=
fW
Λ2

ig2υ
4

εnk3 (∂µh)Wn νWk
µν . (2.52)

With mW = gυ/2 andW±
µ = (W1

µ ∓ iW2
µ )/

√
2 this �nally yields

LEFT ⊃
fW
Λ2

igmW
2

(∂µh) (W+ νW−
µν +W− νW+

µν) . (2.53)

�is is another contribution to the hWW vertex. But unlike the SM-like coupling

LSM ⊃ gmW hW+ µW−
µ , (2.54)
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Figure 2.4: Distribution of the Zh invariant mass in the Higgs-strahlung process pp → Zh at
LHC conditions at

√
s = 13 TeV. We compare the SM contributions to the squared

amplitude from the operatorOW and to their interference. Depending on the sign of
the Wilson coe�cient fW , the latter can be constructive (le�) or destructive (right).

theOW term includes derivatives. �is means that the interaction gains a momentum depend-
ence:

H

W−
ν

W+
µ

= igmW [gµν +
fW
2Λ2 p

2
H gµν +

fW
2Λ2 (pHµ p+ν + p−µ pHν )] , (2.55)

where p±µ and pHµ are the incoming momenta of theW± and the H, respectively.
�is operator illustrates two key features of the EFT approach. First,OW does not only a�ect

the hWW vertex, but also hZZ interactions and triple-gauge couplings such asWWZ. �is
means that the dimension-six operator language allows us to combine di�erent measurements
in a global �t.
Second,OW changes the shape of distributions, for instance in Higgs-strahlung at the LHC,

pp → Zh . (2.56)

In this process, the intermediate Z can carry arbitrarily large energy and momentum, which we
can measure for instance as the invariant mass of the �nal Zh system. From Equation (2.55) we
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expect the e�ect fromOW to grow with mZh. In Figure 2.4 we demonstrate this by comparing
the distribution of mZh based on the SM diagrams alone with the squared amplitudes from the
dimension-six operatorOW and the interference between the two components. Indeed we see
thatOW contributes mostly in the high-energy tail of the distribution.

All those couplings

A�er these two worked-out examples, we now give the complete list of single-Higgs couplings
induced by the dimension-six operators of Equations (2.45) and (2.46) [25, 152, 153].9

�ese interactions read

LEFT ⊃ g(1)hgg hG
a
µνGa µν

+ g(2)hgg εµνρσhG
a µνGa ρσ

+ ghγγ hAµνAµν

+ g(1)hZγ AµνZµ∂νh + g(2)hZγ hAµνZµν

+ g(1)hZZ ZµνZ
µ∂νh + g(2)hZZ hZµνZ

µν
+ g(3)hZZ hZµZ

µ
+ g(4)hZZ hεµνρσZ

µνZρσ

+ g(1)hWW (W+
µνW− µ∂νh + h. c.) + g(2)hWW hW+

µνW− µν
+ g(3)hWW hW+

µ W− µ

+ g(4)hWW hεµνρσW+ µνW− ρσ
+ ∑

f=τ,t,b
(gh f f h f L fR + h. c.) (2.57)

with couplings

g(1)hgg =
fGGυ
Λ2 (1 +

υ2 fϕ,2
Λ2 )

−1/2

,

g(2)hgg =
fGG̃υ
2Λ2 (1 +

υ2 fϕ,2
Λ2 )

−1/2

,

ghγγ = −
g2υs2W( fWW + fBB)

4Λ2 (1 +
υ2 fϕ,2
Λ2 )

−1/2

,

g(1)hZγ = −
g2υsW( fW − fB)

4cWΛ2 (1 +
υ2 fϕ,2
Λ2 )

−1/2

,

g(2)hZγ =
g2υsW(2s2W fBB − 2c2W fWW)

4cWΛ2 (1 +
υ2 fϕ,2
Λ2 )

−1/2

,

g(1)hZZ = −
g2υ(c2W fW + s2W fB)

4c2WΛ2 (1 +
υ2 fϕ,2
Λ2 )

−1/2

,

g(2)hZZ = −
g2υ(s4W fBB + c4W fWW)

4c2WΛ2 (1 +
υ2 fϕ,2
Λ2 )

−1/2

,

9When comparing with References [25, 152, 153], note the di�erent sign conventions in the covariant derivative.
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g(3)hZZ =
g2υ
4c2W

(1 +
υ2 fϕ,2
Λ2 )

−1/2

,

g(4)hZZ = −
g2υ(s4W fBB̃ + c

4
W fWW̃)

8c2WΛ2 (1 +
υ2 fϕ,2
Λ2 )

−1/2

,

g(1)hWW = −
g2υ fW
4Λ2 (1 +

υ2 fϕ,2
Λ2 )

−1/2

,

g(2)hWW = −
g2υ fWW
2Λ2 (1 +

υ2 fϕ,2
Λ2 )

−1/2

,

g(3)hWW =
g2υ
2

(1 +
υ2 fϕ,2
Λ2 )

−1/2

,

g(4)hWW = −
g2υ fWW̃
4Λ2 (1 +

υ2 fϕ,2
Λ2 )

−1/2

, and

gh f f = −
m f

υ
(1 +

υ2 fϕ,2
Λ2 )

−1/2

+
υ2 f f
√
2Λ2

. (2.58)

Here sW = g′/
√
g2 + g′2 and cW = g/

√
g2 + g′2 are the sine and cosine of the weakmixing angle,

and Vµν = ∂µVν − ∂νVµ for V = A,W±, Z.
Note that the clear majority of the couplings in Equation (2.57) does not exist in the SM and

contains derivatives. Dimension-six operators predict a variety of novel kinematic features in
Higgs interactions, making their measurement at the LHC both exciting and challenging.

.. Alternative frameworks

�e linear Higgs EFT discussed above is not the only useful parametrisation of Higgs properties.
We brie
y go through some of the alternative frameworks and explain their main properties,
before concluding this chapter with a comparison between the di�erent approaches.

Non-linear Higgs effective field theory

In the SM EFT (or linear Higgs EFT), constructed in Section 2.3.2, the Higgs boson h and
the Goldstone bosons wa form an SU(2)L doublet ϕ as given in Equation (2.5). But in some
models of new physics the Higgs10 is not part of an elementary doublet. Typical examples are
composite Higgs models in which the Higgs boson is a pseudo-Goldstone from some strongly
interacting dynamics [108–112]. Non-linear Higgs EFT, sometimes simply called ‘Higgs EFT’, is
10In many scenarios of new physics the observed scalar at 125 GeV is, of course, not the Higgs boson of the Standard
Model. We nevertheless refer to it as ‘Higgs boson’.
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an e�ective theory designed for these scenarios [156, 160–169]. �is model is also o�en referred
to as ‘chiral Lagrangian’, and indeed its structure is similar to that of chiral perturbation theory,
for an introduction see for instance References [170, 171]. Again, we begin by going through the
ingredients to the e�ective theory before constructing the Lagrangian.
�e particle content of the non-linear Higgs EFT constitutes the main di�erence to the linear

Lagrangian: the physical scalar h is separated from the Goldstones wa, both are included as
independent degrees of freedom rather than as part of the doublet ϕ. �e Higgs boson h is
now a singlet under the SM gauge symmetry. �e Goldstone bosons wa are organised in the
exponential form

U = eiσ
awa/υ , (2.59)

where σ a are the Pauli matrices. �eGoldstones transform non-linearly under the (approximate)
global custodial symmetry SU(2)L × SU(2)R, giving the EFT its name.
�e symmetries are the same as in the linear case. We require invariance under Lorentz

transformations as well as under the SM gauge group SU(3)C × SU(2)L ×U(1)Y and baryon
and lepton number conservation. For simplicity, we also focus our brief discussion on CP-even
operators that conserve lepton 
avour.
Choosing the counting scheme is a little more complex. To account for strongly interacting

scenarios, we now have to distinguish three di�erent scales [166]:
● the electroweak scale υ = 246 GeV, which de�nes theW and Z mass, but is not necessarily
the Higgs VEV;

● the scale f associated to the Goldstone bosons wa and the Higgs boson h due to some
breaking of the underlying dynamics11, in analogy to the pion decay constant fπ ; and

● the cut-o� Λ of the theory. For weakly coupled physics its value is arbitrary. But it can
be calculated that the low-energy e�ective theories from spontaneously broken strongly
coupled dynamics break down around Λ ≈ 4π f [170]. A cut-o� of this size guarantees
that the EFT is renormalisable order by order.

�e existence of three scales means there are two dimensionless parameters, so in general the
EFT terms are organised in a double expansion [166]. �e �rst is

ξ ≡ υ2

f 2
. (2.60)

�e value of ξ de�nes the non-linearity of the model: the limit ξ → 0 restores the linear Lag-
rangian. An expansion in ξ exactly corresponds to the power-counting scheme of the linear EFT,
i. e. it orders operators by their canonical dimension.
11In general, the scales associated with wa and h, fw and fh , can be di�erent, making the power-counting even more
complicated.
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�e second dimensionless parameter is

f 2

Λ2 ≈
1

16π2
(2.61)

for strongly coupled scenarios. Since this is of the same size as a loop factor, expanding in f 2/Λ2

corresponds to a loop expansion, similar to that in chiral perturbation theory. Equivalently, one
can de�ne a chiral dimension χ = [O]c for each operatorO with the assignments [166]

[ f ]c = 1 , [Aµ]c = 0 , [Fµν]c = 1 , [U]c = 0 , [h]c = 0 ,
[∂µ]c = 1 , [Dµ]c = 1 , [g]c = 1 , [y f ]c = 1 , (2.62)

where we use Aµ and Fµν to denote any vector boson, since the symbol Vµ is conventionally
used for a di�erent purpose in this context. �e loop order L of an operator is equivalent to the
chiral dimension χ = 2L + 2. �is chiral counting can also be linked to an expansion in ħ [172].
�e correct expansion scheme depends on the value of ξ. For ξ ≫ 1/16π2 or f ≪ 3 TeV, the

chiral expansion is more appropriate. For ξ ≪ 1/16π2 or f ≫ 3 TeV, the canonical expansion
is correct. In the intermediate region, a combined expansion gives the best results. Since LHC
Higgs physics is mostly sensitive to new physics scenarios with f ≪ 3 TeV, the chiral expansion
can be considered phenomenologically more relevant. For a more thorough discussion of power
counting in this framework, see Reference [173].

At the leading chiral order χ = 2 or L = 0, the Higgs sector of the Lagrangian is given by [164]12

Lnon-linear EFT ⊃
1
2
∂µh ∂µh (1 + cH ξFH(h)) − V(h)

−
υ2

4
tr[VµV µ

]FC(h) + cT ξ
υ2

4
tr[TV µ

] tr[TVµ]FT(h)

−
υ

√
2

⎡
⎢
⎢
⎢
⎢
⎣

∑
f
f LU y f F

f
Y(h) Pf fR + h. c.

⎤
⎥
⎥
⎥
⎥
⎦

(2.63)

with Vµ ≡ (DµU)U†, T ≡ Uσ3U† and projectors Pu = (1 + σ3)/2, Pd = Pℓ = (1 − σ3)/2. �e
functions FC(h), V(h), FT(h), FT(h), Fu

Y(h), F
d
Y(h), and F

ℓ
Y(h) encode the coupling of

the Higgs h and are arbitrary functions. �ey can be expanded as a power series in h/ f , or to
simplify the expressions in h/υ, for instance

FC(h) = 1 + 2aC
h
υ
+ bC (

h
υ
)

2
+ . . . . (2.64)

12Two comments on this Lagrangian are in order. First, in principle there could be further functions of h coupling
to the kinetic terms of the gauge bosons. Such interactions arise in typical strongly coupled theories at one-loop
level with a coe�cient ∼ 1/(16π2

) and are therefore usually classi�ed as NLO operators [164, 165]. Second, the
functionFC(h) (and a corresponding one for the fermion kinetic terms) can be removed with �eld rede�nitions,
shi�ing its e�ects into the other couplings [165, 169].
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At next-to-leading order in the chiral expansion, many more terms relevant for Higgs physics
appear. We do not list them here and refer the interested reader for example to Reference [167].

Finally, the relationship between the linear and non-linear e�ective theories deserves some
discussion. �e two approaches in principle provide di�erent parametrisations of the same
physics, as can be seen by expanding the non-linear Lagrangian in ξ rather than χ. �e di�erence
is the ordering of the operators in the EFT expansion and, equivalently, the expected size of
di�erent e�ects. Operators that appear at one order in the 1/Λ expansion of the linear EFT may
appear at a very di�erent order in the chiral expansion of the non-linear EFT.
Since the symmetry requirements on the non-linear setup are smaller, we expect it to be more

general than the linear Lagrangian at a comparable order in the expansions. �is is exactly what
is found when comparing the linear dimension-six operators to the NLO chiral Lagrangian:
the dimension-six operators predict certain correlations, while the non-linear description has
more operators that can break these correlations [167]. A straightforward example is the relation
between hxx and hhxx couplings. For dimension-six operators of the form ϕ†ϕxx, this ratio is
�xed to 2υ, since ϕ†ϕ ∼ (υ2 + 2υh + h2)/2. In the chiral approach, these couplings are always
independent, as can be seen in Equation (2.63).
�e current experimental limits leave room for both strongly or weakly coupled new physics,

for ξ smaller or larger than 1/(16π2), for scenarios in which the linear or non-linear e�ective
theories work better. Only a precise measurement of the Higgs properties and a global analysis
of correlations will tell us which approach is correct. As a general rule, more SM-like results
favour the linear approach that we follow throughout this thesis [173]. On the other hand, certain
deviations that do not follow the correlations predicted by dimension-six operators point towards
non-linear physics [167].

κ framework

E�ective �eld theories are of course not the only way to describe the Higgs sector. During Run 1
of the LHC, the most widely used parametrisation was the κ framework [174] or the closely
related ∆ framework [175]. Its construction is remarkably simple: starting from the SM Higgs
sector, all Higgs couplings are dressed with form factors,

ghxx = κx g
SM
hxx ≡ (1 + ∆x) g

SM
hxx , (2.65)

such that κx = 1 or ∆x = 0 corresponds to the SM couplings. Some care has to be taken to
treat the Higgs-gluon and Higgs-photon couplings consistently, where indirect e�ects of shi�ed
Higgs-top or Higgs-W couplings compete with direct e�ects from new physics [175].
From a theoretical point of view, the κ framework is not gauge-invariant and does not present

a consistent quantum �eld theory. In particular, calculating electroweak loop e�ects in the κ
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framework can introduce divergences that cannot be renormalised [176]. �is problem can be
solved by embedding the κ framework in a UV completion [177].
From a more phenomenological point of view, this approach is well suited to parametrise

measurements of total rates. Simple shi�s of SM-like Higgs coupling structures are expected in
some scenarios of new physics, for instance in many scalar extensions of the Higgs sector [177].
But many other models predict new kinematic features, visible as changed kinematic shapes,
and the κ framework is unable to describe these. For better or worse, it is also agnostic about cor-
relations between di�erent Higgs couplings, and about correlations between Higgs observables
and triple gauge vertices or electroweak precision measurements.
�e strength of the κ framework is clearly not its theoretical foundation. Its allure comes

from its simplicity and the fact that it is designed around the simple question of measuring
the couplings of the (SM-like) Higgs boson. �is parametrisation made sense as a common
denominator for the �rst Higgs measurements with limited statistics of Run 1 of the LHC. But
the increased amount of data and crucial kinematic information collected during Run 2 require
a di�erent, more sophisticated language.

Pseudo-Observables

Higgs pseudo-observables (POs) [178–180] are designed as a generalisation of the κ framework
to include BSM kinematic features. In a very broad sense, this term encompasses any quantity
that is �eld theoretically de�ned and can be experimentally accessed [173]. Signal strengths,
cross sections, partial widths, total widths, and individual form factors or couplings all fall under
this umbrella term. Here we follow the more narrow de�nition of e�ective-coupling POs [3].
�ey are de�ned process by process by writing down all contributing amplitudes under some
broad assumptions on new physics. �ese expressions are then decomposed in a pole expansion,
and the resulting residues are identi�ed as pseudo-observables. �is procedure also requires an
expansion in the inverse of the newphysics scaleΛ. Just as the EFT approach, pseudo-observables
thus rely on new physics being heavy, E ≪ Λ. So far, this framework has been developed for
Higgs production in WBF and Higgs-strahlung, as well as for all phenomenologically relevant
Higgs decays.
Phenomenologically, pseudo-observables can describe shi�s in SM couplings as well as kin-

ematic shapes. Like the EFT approach, their construction requires certain minimal assumptions
on the symmetries of new physics as well as an expansion in 1/Λ. In fact, at tree level pseudo-
observables can be mapped directly to the Wilson coe�cients of an EFT constructed with the
same ingredients (which is the non-linear Higgs EFT discussed above).
�e main di�erence between pseudo-observables and the EFT approach is a conceptual one.

Pseudo-observables are designed from the perspective of a given process: they describe the
coe�cients of the di�erent contributing amplitudes. �ey are not parameters of a Lagrangian
and do not de�ne a consistent quantum �eld theory. In particular, the values of POs measured
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in one process have no meaning for other processes. E�ective operators on the other hand are a
proper, gauge-invariant quantum �eld theory that universally describes any physics below the
cuto� scale, and the same Wilson coe�cients predict the behaviour of very di�erent processes.
Proponents of the PO approach favour a multi-layer interpretation of LHC data, where the

data is �rst presented in terms of pseudo-observables, and can then be interpreted in terms of
EFTs or speci�c models of UV physics. �ey argue that this approach provides a clear separation
between measurement and interpretation [3]. On the other hand, proponents of the ‘direct EFT
approach’ argue that there is no need for such an intermediate layer, and suggest to directly �t
e�ective operators. �e debate about which approach is better is still ongoing [3]. Ultimately,
both e�ective operators and POs are well-de�ned frameworks that can describe all relevant
kinematic e�ects, and thus present a suitable interface between experiment and theory.

Simplifiedmodels

�e parametrisations discussed so far have in common that they assume the absence of new
light particles. Simpli�ed models are designed to close this gap and to describe kinematic e�ects
from new light resonances. In addition to resonance peaks, these include threshold e�ects in
loops and Higgs decays into (invisible) new light degrees of freedom. Simpli�ed models thus
allow to combine information from direct searches with indirect measurements. Except for
the key element of adding new light propagating degrees of freedom to the SM, the term is not
particularly well-de�ned, and there is a lot of freedom to construct such models.
�e simplest version of a simpli�ed model consists of the SM supplemented with another

particle, with ad-hoc coupling structures based on phenomenological requirements [2]. Such a
setup might even be not gauge-invariant and thus inconsistent beyond tree level. At the other
end of the spectrum, simpli�ed models can be consistently de�ned quantum �eld theories,
potentially involving higher-dimensional operators. �e only di�erence to the linear and non-
linear EFT approaches discussed above is the extended particle content. �e additional 
exibility,
of course, comes at the price of an increased number of parameters.
Examples of such models for Higgs physics include an extended Higgs sector with an addi-

tional singlet and a doublet, which o�ers great 
exibility to tune theHiggs couplings [177]. �e au-
thors of Reference [181] develop amodel with an additional singlet and vector-like quarks. Finally,
References [155, 182] discuss additional scalar singlets supplemented with higher-dimensional
operators.

Comparison

All of these approaches de�ne parametrisations of the Higgs properties that can be used as
interfaces between di�erent measurements and between experiment and theory. In Table 2.5 we
summarise and compare their di�erent properties.
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κ framework POs Non-linear EFT Linear EFT Simpli�ed
models

Motivation experiment:
simplest Higgs
parametrisation

experiment:
amplitude
decomposition
for a given
process

theory:
complete
low-energy
e�ects of NP
with singlet h

theory:
complete
low-energy
e�ects of NP
with doublet ϕ

exp. / theory:
new light
particles

Input SM Higgs
couplings

process
amplitudes,
pole expansion,
NP expansion
(1/Λ)

SM particles
(h),
symmetries,
counting
scheme (loops)

SM particles
(ϕ),
symmetries,
counting
scheme (1/Λ)

new particles
(masses,
charges,
interactions)

Parameters coe�cients of
SM amplitude

coe�cients of
SM & NP
amplitudes

Lagrangian
parameters of
consistent QFT

Lagrangian
parameters of
consistent QFT

depends

Validity
conditions

SM-like NP NP heavy,
symmetries

NP heavy,
symmetries

NP heavy,
symmetries

single light new
particles, other
NP decouples

Shi�ed SM
couplings

yes yes yes yes depends

Kinematic
e�ects

no yes yes yes depends

New
resonances,
loop thresholds,
invisible decays

no no no no yes

Correlations no no some many depends

Table 2.5: Comparison between di�erent parametrisations of Higgs properties. �e upper part
of the table focuses on the theoretical foundation, the lower on the phenomenology.
Since ‘simpli�ed models’ describe a rather general idea, many details depend on the
speci�c realisation.

40



2.3 Dimension-six operators for Higgs physics

�e di�erent frameworks can be classi�ed into consistent quantum �eld theories, which
include the EFTs, and process-based parametrisations of amplitudes through form factors, such
as the κ framework and pseudo-observables. Simpli�ed models can fall into either category.
Only the QFT formalism allows to link di�erent processes and to incorporate any loop e�ects.
More important for practical purposes is the range of phenomena that can be described. �e

κ framework is limited to rescalings of the SM Higgs couplings and is not able to incorporate
kinematic information. Pseudo-observables and the two EFT approaches are muchmore 
exible
and can describe a large number of kinematic features. However, they rely on new physics
being substantially heavier than the experimentally probed energies around the weak scale.
Features from light new particles, for instance resonances or loop thresholds, are only covered
by appropriate simpli�ed models. �e dimension-six operators of linear Higgs EFT, and to a
lesser extent the leading operators of the chiral EFT, also predict certain correlations between
di�erent couplings and measurements, whereas by de�nition the pseudo-observables are only
valid for a given process.
To summarise, in the absence of new light particles, Higgs properties can be adequately

parametrised by pseudo-observables, non-linear Higgs EFT, and linear Higgs EFT. �e linear
EFT approach is theoretically consistent, well-motivated, and phenomenologically powerful,
and we focus on this framework during this thesis.
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Chapter
Higgs effective theory at its limits

A hierarchy of scales between the experimental momentum transfer and the new
physics scale is the key premise behind the e�ective �eld theory paradigm described
in the previous chapter. However, the limited precision of the LHC means that Higgs

measurements are o�en only sensitive to models characterised by mass scales just above the
electroweak scale. In this chapter we discuss if and when the EFT approach is nevertheless useful
for Higgs physics, and how its validity can be improved.
In Section 3.1 we estimate the new physics scales probed by LHC Higgs measurements and

formulate our strategy to test the dimension-six approach. �e validity of the e�ective approach
at the LHC depends on details of the matching procedure, which we discuss in Section 3.2.
Section 3.3 contains the bulk of our results: the comparison of full models to their EFT approx-
imations for a variety of scenarios. We go into more detail and analyse some practical questions
in Section 3.4, and give our conclusions in Section 3.5.
Most of the work presented in this chapter was previously published in Reference [1], while

the content of Section 3.4 was published in Reference [2]. A part of the content of this chapter
was also included in Reference [3]. Nearly all of the results and most of their presentation in this
chapter— including most plots and tables as well as a signi�cant part of the text— are identical
to that in these three publications.

. Introduction

�ere is no doubt that e�ective �eld theories work extraordinarily well as long as there is a
large separation between the experimentally probed energy and the new physics scale, E ≪ Λ.
On the other hand, one expects the EFT expansion to break down at E ≥ Λ, where an in�nite
number of operators contribute at the same size and the e�ective model is neither predictive nor
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3 Higgs e�ective theory at its limits

renormalisable. �e validity of the EFT in the intermediate region, E ≲ Λ, is less obvious and
will depend on the speci�c underlying model as well as on the observable studied.
In which of these categories do the LHC Higgs measurements fall? �ere is no immediately

obvious answer, since Higgs production does not probe only a single experimental energy scale.
While the momentum transfer is bounded from below by the Higgs mass mh, selection criteria
necessary to separate the signal from the QCD backgrounds o�en require a higher momentum
transfer E > mh. More importantly, most of the information on operators with derivatives
comes from high-energy tails, as demonstrated in Section 2.3.3. During Run 1, signi�cant event
numbers have been recorded approximately within the range [26]

mh ≤ E ≲ O (400 GeV) , (3.1)

depending on the process, observable, amount of data collected, and analysis methods.
�is has to be compared to the new physics scale Λ that LHC Higgs measurements are able

to probe. Assuming a 10% precision on total Higgs rate measurements and no loop suppression
of new physics e�ects, such a signature lies within the experimental reach of the LHC if

∣
σ × BR

(σ × BR)SM
− 1∣ ≈

g2m2
h

Λ2 ≳ 10% ⇔ Λ ≲
g mh
√
10%

≈ g ⋅ 400 GeV . (3.2)

Here g is a typical coupling of the underlying theory and σ × BR the Higgs production cross
section times branching ratio.
�is simple estimate shows that the scale separation E/Λ is limited by the experimental

precision and crucially depends on the size of the couplings of the underlying physics. For very
weakly coupled theories, g2 ≪ 1, only new physics models with new particles at or below the
electroweak scale can leave measurable signatures in Higgs observables, and the EFT approach
is not justi�ed. For truly strongly coupled theories, 1 < g ≲ 4π, new physics scenarios up to
Λ ≲ 5 TeV are relevant, and the EFT expansion converges 
awlessly. In fact, the EFT approach
to Higgs observables has largely been motivated by the desire to describe models based on a
strongly interacting electroweak symmetry breaking [148]. For moderately weakly to moderately
strongly coupled theories, 1/2 ≲ g2 ≲ 2, the LHC Higgs programme is sensitive to scales

280 GeV ≲ Λ ≲ 560 GeV . (3.3)

�is corresponds exactly to the intermediate region E ≲ Λ discussed at the beginning of this
chapter. In this simple argument we ignored that new physics might also change distributions
and especially a�ect the high-energy tails or o�-shell regions.
A thorough global �t of Higgs results including kinematic information con�rms the rough

estimate given in Equation (3.3) [26]. Related to this is our work in Chapter 4, where we develop
methods that let us calculate the maximum new physics scale that can be probed in a given
process.
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3.1 Introduction

For moderately weakly coupled scenarios of new physics, the limited precision of LHC Higgs
measurements therefore cannot guarantee a clear scale hierarchy, and the EFT expansion in
1/Λ does not converge fast. But this does not mean that an analysis of LHC data in terms
of a truncated dimension-six Lagrangian cannot be useful. Instead, the applicability of the
dimension-six model now depends on the nature of the underlying physics as well as on the
process and observable, and has to be carefully checked for each situation.
From a practical perspective, the dimension-six operators work 
awlessly as a framework to �t

Higgs data including kinematic distributions [26]. Even if the LHC constraints do not induce a
hierarchy of scales, and the EFT expansion does not converge, there appears to be no problem in
using the truncated dimension-six Lagrangian as a phenomenological model. Translating limits
on the dimension-six model to speci�c new-physics scenarios then induces model-dependent
and process-dependent theory uncertainties [183].

In this chapter we analyse the usefulness of the dimension-six description of the Higgs sector
with a comprehensive comparison between full models and their e�ective approximations. We
select four speci�cmodels of new physics, map them onto dimension-six operators, and compare
the predictions of the full and the e�ective model for a range of Higgs observables. In this way we
analyse the convergence of the EFT expansion in 1/Λ by comparing the dimension-six operators
not just to the dimension-eight terms, but to the in�nite number of operators corresponding to
the full model.
Our benchmark cases are moderately weakly interacting extensions of the Higgs sector of the

Standard Model by a scalar singlet, a scalar doublet, coloured scalar top partners, and a massive
vector triplet. For each of these models, we de�ne a number of parameter points designed to
highlight phenomenological features of the model and to be within the experimental reach of
the LHC Higgs programme.
�e corresponding EFT descriptions are constructed by integrating out the heavy �elds and

expanding the e�ective action to O (1/Λ2). In other words, we match the theories to the
dimension-six operators of the linear Higgs EFT introduced in Section 2.3.2. In the situation
where the new physics scale is relatively close to the electroweak VEV, electroweak symmetry
breaking can de�ne additional scales and lead to ambiguities in the matching procedure. �ese
subtleties can be crucial for Higgs signatures and will be discussed in detail in the next section.
For all of these scenarios, we calculate the Higgs couplings, and in a next step rates and

distributions for selected Higgs production modes and decay channels. �e key questions we
aim to address are:

● Which observables are correctly described by the dimension-six model?
● Where does the EFT description break down, and does this pose a problem for LHC
analyses?

● Can we improve the EFT performance with a re�ned matching procedure?
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3 Higgs e�ective theory at its limits

In this way, we analyse what problems the lack of a clear hierarchy of scales leads to in practice,
and discuss how these might a�ect global �ts. Turning the argument around, we ask whether
and when the analysis of a UV-complete model o�ers an advantage compared to the e�ective
theory.
A�er this broad survey of the applicability of dimension-six operators, we focus on the vector

triplet scenario and Higgs production in weak boson fusion to discuss some practical aspects.
First, we analyse which kinematic observables are particularly useful to characterise the validity
of the EFT approach in WBF Higgs production. We then discuss whether the square of amp-
litudes from dimension-six operators should be included in calculations while dimension-eight
operators are neglected. Both contribute to cross sections atO (1/Λ4). Finally, we show how
the EFT validity and its breakdown a�ect the limit-setting procedure when the EFT is used as
an intermediate parametrisation.

In addition and partly simultaneously to ourwork, published in References [1, 2], the applicability
of EFTs to Higgs physics at the LHC was studied in a range of di�erent situations [3, 184–196].
�e di�erences to our work lie in the considered new physics scenarios and observables. A great
deal of attention has been focused on Higgs production in weak boson fusion and its sensitivity
to UV physics [85, 86, 88, 197]. Similar points were discussed for Higgs-strahlung [184], for the
production of (potentially o�-shell) Higgs bosons in gluon fusion [189, 193, 198–200], and for
electroweak precision observables as well as Higgs decays to photons [196]. With the notable
exception of Reference [196], these other studies generally do not discuss ambiguities in the
matching procedure, a central aspect of the research presented here.
Validity issues from a lacking scale hierarchy are not unique to the EFT approach. As discussed

at the end of Section 2.3.4, pseudo-observables rely on the same expansion in 1/Λ, and the
breakdown of this expansion has been studied in Reference [180].
Finally, similar concerns have fuelled an intense investigation in the context of dark matter

searches [201–206]. In that �eld, EFT-based predictions are usually robust for early-universe and
late-time annihilation rates and for dark matter-nucleon scattering, but the required hierarchy
of scales o�en breaks down for dark matter signals at colliders.

. Matching intricacies

.. Ambiguities

Before discussing the individual models and presenting our results, we have to de�ne how we
construct the e�ective theories. Matching the dimension-six Lagrangian to a full model is a
three-step procedure. Its starting point is the de�nition of a heavy mass scale Λ. Second, we
integrate out the degrees of freedom above Λ as described in Section 2.2.3, which leads to an
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3.2 Matching intricacies

in�nite tower of higher-dimensional operators. Finally, this e�ective action is truncated so that
only the dimension-six terms, suppressed by 1/Λ2, remain.
�e matching is not unambiguous: on the one hand, Λ is usually not uniquely de�ned. Con-

sider a new physics scenario with only one heavy mass scaleM in the Lagrangian, but also some
mixing terms of the new �elds with the SM Higgs doublet. In the unbroken electroweak phase
the only new physics scale is then

Λ1 = M . (3.4)

But a�er electroweak symmetry breaking, the electroweakVEV υ contributes through themixing
term to the actual physical masses m of the new particles. �is de�nes additional scales of the
form

Λ2
2 = m2

= M2
± gυ2 , (3.5)

where g is a combination of couplings or mixing angles. Of course there can be many such
scales.
Further ambiguities arise in the third step since we can choose which parameters to keep

constant while expanding in 1/Λ. For instance we can choose to express the Wilson coe�cients
in terms of Lagrangian couplings or in terms ofmixing angles. Again, the �rst choice corresponds
to the natural choice in the unbroken phase of the electroweak symmetry, while the latter is
o�en only de�ned in the broken phase.
For both the cuto� scale and the Wilson coe�cients, switching from one choice to another

is equivalent to including additional contributions suppressed by more powers of υ2/Λ2 to the
Wilson coe�cients of the dimension-six operators. In the �rst example,

fi
m2 Ox =

fi
M2 ± gυ2

Oi = (
fi
M2 ∓

fi gυ2

M4 )Oi +O (1/M6) . (3.6)

It should be stressed that these choices a�ect observables atO (1/Λ4), the same order in the
EFT expansion as the leading e�ects from dimension-eight operators, which we always neglect.
From a purely theoretical point of view these terms are subleading, and indeed in the obvious
validity regime of the EFT they are irrelevant. However, as we discussed in the previous section,
this is not the situation we �nd at the LHC. Here υ2/Λ2 is not very small and these formally
suppressed terms may be important in practice.
�ese ambiguities in the matching procedure therefore raise the question if we can improve

the agreement between full model and dimension-six Lagrangian by incorporating e�ects of
the non-zero electroweak VEV in the matching. To answer this question we now de�ne two
di�erent matching prescriptions.
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3 Higgs e�ective theory at its limits

.. Default vs. υ-improvedmatching

Our default matching follows a purely theoretical motivation and represents the conventional
approach for the linear Higgs EFT. �e dimension-six operators are formulated in terms of the
doublet ϕ and based on the assumption Λ≫ υ, so the EFT should be matched to the full theory
in the unbroken phase of the electroweak symmetry. An obvious choice for the matching scale
is then the mass scale of new particles in the limit of υ → 0, which, as in our simple example
above, we denote

Λdefault = M . (3.7)

For simplicity we assume there is only one such scale, i. e. that all new particles are mass-
degenerate in the unbroken electroweak phase. Otherwise the new particles would have to
be integrated out consecutively at di�erent scales Mi . We then expand the e�ective action,
expressed in parameters of the Lagrangian, and drop all terms ofO (1/Λ4).
Alternatively, we de�ne a υ-improvedmatching procedure that accounts for additional terms

suppressed by υ2/Λ2 in the Wilson coe�cients of the dimension-six Lagrangian. �is corres-
ponds to matching the linear EFT in the broken electroweak phase. In the �rst matching step, we
de�ne Λ as the physical massm of the new particles in the broken phase including contributions
from υ,

Λυ-improved = m . (3.8)

Again, multiple particles with substantial mass splittings will require a multi-step matching
procedure. �e Wilson coe�cients are expressed in terms of phenomenologically relevant
quantities such as mixing angles and physical masses, again de�ned in the broken phase. �is
is a somewhat subjective criterion that depends on the model and process— the υ-improved
matching procedure is not uniquely de�ned, but rather a general guideline.

.. Making sense of υ-improvement

Let us try to understand υ-improved matching from a di�erent perspective. Integrating out
heavy particles generates an in�nite number of operators with di�erent mass dimensions. Some
of the operators of dimension eight or higher are of the form

O
(d=6+2n)
i = (ϕ†ϕ)nO(6)

i , (3.9)
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where O(6)
i is a dimension-six operator. �e tower of higher-dimensional operators can be

re-organised as

LEFT ≡ LSM +∑
i

f (6)i
Λ2 O

(6)
i +

∞
∑
d=8
∑
j

f (d)j

Λd−4 O
(d)
j

= LSM +∑
i

f (6)i
Λ2 O

(6)
i +∑

i

∞
∑
n=1

f (6+2n)i
Λ2+2n (ϕ†ϕ)n O(6)

i +
∞
∑
d=8
∑
k

f (d)k
Λd−4 O

(d)
k , (3.10)

whereO(d)
k are the dimension-eight and higher operators of a di�erent form than Equation (3.9).

A υ-improved matching corresponds to replacing ϕ†ϕ → υ2/2 in (part of) the second sum1:

Lυ-improved dim-6 = LSM +∑
i

⎡
⎢
⎢
⎢
⎢
⎣

f (6)i
Λ2 +

∞
∑
n=1

f (6+2n)i
Λ2+2n (

υ2

2
)

n⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

( f (6)i /Λ2
)υ-improved

O
(6)
i . (3.11)

So from the perspective of the unbroken phase of the electroweak symmetry, υ-improvement cor-
responds to a partial resummation of dimension-eight and higher operators into the Wilson
coe�cients of the dimension-six operators. �e remaining parts of the operators in Equa-
tion (3.9) (the terms from ϕ†ϕ → υh + h2/2) and the higher-order operators of an entirely
di�erent type cannot be absorbed into the dimension-six Lagrangian in this way.
Let us illustrate this with the example of Section 3.2.1, where a heavy particle with mass scale

M in the unbroken electroweak phase has a coupling g to Higgs doublets. Matching the theory
in the unbroken phase, we �nd dimension-six operators of the form

M → =
f (6)i
M2 O

(6)
i . (3.12)

�e e�ect of the coupling g to the Higgs doublet only appears at dimension eight and higher, for
instance as

ϕ ϕ

→ =
g f (6)i
M4 ϕ†ϕ O(6)

i . (3.13)

1�e argument is slightly more complicated if additional powers of ϕ appear inO(6)i . One can then also take into
account terms where instances of ϕ inO(6)i are replaced by the VEV and �elds in the prefactor are le� alone. �is
e�ectively adds a combinatorial factor to the de�nition of the υ-improved Wilson coe�cient in Equation (3.11).
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�e υ-improved matching replacesM → m as the suppression scale of the dimension-six oper-
ator,

= +

υ υ

+ . . .

f (6)i
m2 O

(6)
i =

f (6)i
M2 O

(6)
i +

g f (6)i
M4

υ2

2
O

(6)
i + . . . , (3.14)

equivalent to a partial absorption of the dimension-eight and higher operators with the replace-
ment ϕ†ϕ → υ2/2.

But such musings are not required to apply a υ-improved matching in practice. In fact, from an
experimental point of view (or in the broken electroweak phase), physical masses and mixing
angles are simply a natural choice of parameters to describe a model. We thus expect that the
υ-improved matching procedure can improve the validity of the dimension-six model. To be
precise, we have to distinguish between an expansion in υ/Λ and E/Λ. We expect the υ-improved
matching prescription to lead to a better agreement with the full models in situations where the
expansion in υ/Λ is relevant, while it cannot help with the expansion in E/Λ, corresponding to
genuine new dimension-eight operators not of the form in Equation (3.9). We come back to this
di�erence in Section 3.3.5.
Again, the truncation of the EFT Lagrangian is formally justi�ed as long as υ≪ Λ and we only

probe energies E ≪ Λ. In this limit the dimension-eight operators as well as the Λ-suppressed
terms in the Wilson coe�cients are negligible; our two matching procedures then give identical
results. In the absence of a large enough scale separation, we can test if the υ-improved matching
enhances the validity of the dimension-six Lagrangian.

. Full models vs. effective theory

�emain aim of this chapter is to compare a comprehensive set of LHC predictions from speci�c
new physics models to their corresponding e�ective �eld theory predictions. In this way we
test the applicability of the dimension-six model for four di�erent, more or less UV-complete,
scenarios of underlying physics:

1. a scalar singlet extension, where the new scalar mixes with the SM-like Higgs;
2. a two-Higgs doublet model, adding a variable Yukawa structure;
3. scalar top partners, contributing to Higgs couplings at one loop; and

50



3.3 Full models vs. e�ective theory

4. a vector triplet with gauge boson mixing.
�is ensemble of models covers a wide range of CP-even new physics signatures in the Higgs
sector.
A�er describing our technical setup, we analyse these four scenarios one by one. For each

model we �rst de�ne the theory and introduce the main phenomenological features at the LHC.
We discuss the decoupling in the Higgs sector and derive the dimension-six setup. Finally, we
de�ne a number of benchmark points and give a detailed account of the full and dimension-six
phenomenology at the LHC.
E�ects in SM-like Higgs couplings will be parametrised with the relative shi�s from the SM

values

∆x ≡
ghxx
gSMhxx

− 1 , (3.15)

as de�ned in Equation (2.65). Unlike in the published version [1], we express the e�ective
Lagrangian in the HISZ basis with the ten dimension-six operators of Equation (2.45).

.. Setup

Our comparison covers the most relevant observables for LHC Higgs physics. Acceptance and
background rejection cuts are kept to a minimum to be able to test the e�ective �eld theory
approach over as much of the phase space as possible.
In the case of Higgs production through gluon fusion, we analyse the production process on

its own and with a Higgs decay to four leptons or to photons,

g g → h → 4ℓ ,
g g → h → γγ . (3.16)

For the photons we do not apply any cuts, while for ℓ = e , µ we require2

m4ℓ > 100 GeV and msame 
avourℓ+ℓ− > 10 GeV (3.17)

to avoid large contributions from the Z peak and from bremsstrahlung.
For Higgs production in weak boson fusion (WBF), we �rst evaluate the pure production

process

ud → h ud , (3.18)

which is the dominant partonic contribution at the LHC, without any cuts. We also consider
WBF production with a decay

ud →W+W− ud → (ℓ+ν) (ℓ−ν)ud , (3.19)
2For a de�nition of all kinematic quantities, see Appendix A.2.
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where we require typical WBF cuts

pT , j > 20 GeV , ∆η j j > 3.6 , m j j > 500 GeV ,
pT ,ℓ > 10 GeV , EmissT > 10 GeV . (3.20)

�eWBF kinematics can introduce new scales and a dependence on the UV structure of the
model. �is has been widely discussed in the context of perturbative unitarity [207–213]. Devi-
ations from the SMHiggs-gauge couplings in the EFTmay lead to an increasing rate at very large
energies [214], well outside the EFT validity range E/Λ≪ 1. We demonstrate this signature in
the high-energy tail of the distribution of the transverse mass

m2
T = (ET ,ℓℓ + ET ,νν)2 − (pT ,ℓℓ + pmissT )

2 (3.21)

with

ET ,ℓℓ =
√

p2T ,ℓℓ +m
2
ℓℓ and ET ,νν =

√

EmissT
2
+m2

ℓℓ . (3.22)

As the last production mode of single Higgs bosons, we evaluate Higgs-strahlung,

qq → Vh (3.23)

with V =W±, Z. We do not simulate the Higgs and gauge boson decays, assuming that we can
always reconstruct for example the full Zh → ℓ+ℓ− bb �nal state. No cuts are applied.
Finally, Higgs pair production,

g g → hh , (3.24)

is well known to be problematic when it comes to the e�ective theory description [91, 215, 216].
Again, neither Higgs decays nor kinematic cuts are expected to a�ect the questions we analyse,
hence we leave them out.

We test all these channels for the singlet and doublet Higgs sector extensions. For the top partner
and vector triplet models we focus on the WBF and Higgs-strahlung modes.
In the EFT simulations we always include the square of the dimension-six operator contri-

butions. We discuss and justify this choice in Section 3.4.2. We restrict our analysis to the
leading order in αs and αew, which is su�cient given the size of new physics e�ects that the
LHC is sensitive to. We always take into account interference terms between Higgs and gauge
amplitudes.
For tree-level processes we generate event samples with MadGraph 5 [217], using our own

model implementations in FeynRules [218, 219]. For the dimension-six predictions we resort to
a modi�ed version of the HEL model �le [220].
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3.3 Full models vs. e�ective theory

�e Higgs-gluon and Higgs-photon couplings are evaluated with the full one-loop form fac-
tors [221], including top, bottom, andW loops, as well as new particles present in the respective
models. For Higgs pair production, we use a modi�ed version of Reference [222], see also
Reference [223].
Other loop e�ects are analysed using reweighting: we generate event samples using appropriate

tree-level couplings. Next, we compute the one-loop matrix element for each phase space point
and reweight the events with the ratio of the renormalised one-loop matrix element squared to
the tree-level model. For the one-loop matrix elements we utilise FeynArts and FormCalc [224]
with our own model �les that include the necessary counterterms. �e loop form factors are
handled with dimensional regularisation in the ’t Hoo�-Veltman scheme, and written in terms
of standard loop integrals. �ese are further reduced via Passarino-Veltman decomposition and
evaluated with the help of LoopTools [225].
Generally we create event samples of at least 105 events per benchmark point and process for

pp collisions at
√
s = 13 TeV. We use the CTEQ6L parton density function [226] and the default

dynamical choices of the factorisation and renormalisation scale implemented in MadGraph 5.
For this broad survey of EFT validity we limit ourselves to parton level and do not apply a
detector simulation. �e mass of the SM-like Higgs is �xed to mh = 125 GeV [227], for the top
mass we takemt = 173.2 GeV [228, 229]. �eHiggs width in eachmodel is based on calculations
with HDECAY [230], which we rescale with the appropriate coupling modi�ers and complement
with additional decay channels where applicable. Since we consider new physics scales close to
the experimental energies, e�ects from the RG running of the Wilson coe�cients are small, and
we neglect them in line with the discussion in Section 2.3.2.

.. Singlet extension

Model setup

�e simplest extension of the minimal Higgs sector of the Standard Model adds a real scalar
singlet S [122, 231–236]. For the sake of simplicity we consider a minimal version of the singlet
model, in which a discrete Z2 parity forbids additional terms in the potential. �e theory is then
given by

Lsinglet ⊃ (Dµϕ)† (Dµϕ) + 1
2
∂µS ∂µS − V(ϕ, S) , (3.25)

where the scalar potential has the form

V(ϕ, S) = µ21 ϕ†ϕ + λ1 (ϕ†ϕ)
2
+ µ22 S2 + λ2 S4 + λ3 (ϕ†ϕ) S2 (3.26)
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and the µi and λi are real parameters. �e new scalar S can mix with the SM doublet ϕ if the
singlet develops a VEV,

⟨S⟩ = υs
√
2
, (3.27)

leading to a mixing angle of

tan(2α) = λ3υυs
λ2υ2s − λ1υ2

. (3.28)

Details on the parametrisation and Higgs mass spectrum are given in Appendix A.5.1.

Signatures and decoupling patterns

�e additional scalar singlet a�ects Higgs physics in three ways. First, it mixes with the Higgs
via the mixing angle α, which leads to a universal rescaling of all Higgs couplings to fermions
and vectors. Second, it modi�es the Higgs self-coupling. Finally, it introduces a new, heavy
resonance H coupled to the Standard Model through mixing.
�e key parameter is the portal interaction between the doublet and the singlet λ3(ϕ†ϕ)S2,

which is responsible for the mixed mass eigenstates. �e mixing reduces the couplings of the
SM-like Higgs h to all other Standard Model particles universally,

∆x = cos α − 1 (3.29)

where x = W , Z , t, b, τ, g , γ, . . . includes all SM fermions and vectors. It also a�ects the self-
coupling of the light Higgs, which takes on the form

ghhh = 6 cos3α λ1υ − 3 cos2α sin α λ3υs + 3 cos α sin2α λ3υ − 6 sin3α λ2υs . (3.30)

�e parameter sin α quanti�es the departure from the SM limit α → 0. �is limit can be
attained in two ways: �rst, a small mixing angle can be caused by a weak portal interaction,

∣tan(2α)∣ = ∣
λ3 υ υs

λ2υ2s − λ1υ2
∣ ≪ 1 if λ3 ≪ 1 . (3.31)

�eHiggs couplings to SM particles approach their SM values, but there is no large mass scale
associated with this limit. In the extreme case of λ2, λ3 ≪ λ1 we �nd a small ∣α∣ ≈ ∣λ3/λ1∣ υs/(2υ)
even for υs ≲ υ. �is situation mirrors the ‘alignment without decoupling’ scenario in the Two-
Higgs-doublet model (2HDM) [237, 238] or the Minimal Supersymmetric Standard Model
(MSSM) [239, 240]. It relies on a weak portal coupling and a small scale separation, which
cannot be properly described by an e�ective �eld theory.
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3.3 Full models vs. e�ective theory

As a second possibility, the additional singlet can introduce a large mass scale υs ≫ υ, giving
us

tan α ≈ λ3
2λ2

υ
υs

≪ 1 if υ≪ υs , (3.32)

where λ3/(2λ2) is an e�ective coupling of up to order one. In this limit the heavy Higgs mass is
given by

mH ≈
√
2λ2 υs . (3.33)

In terms of mH , the Higgs couplings scale as

∆x = −
α2

2
+O (α3) ≈ −

λ23
4λ2

(
υ
mH

)
2
. (3.34)

�is shi� is suppressed by two powers of a heavy mass scale, corresponding to the e�ect of
a dimension-six operator. If we require e�ects large enough to be measurable at the LHC,
∣∆x ∣ ≳ 10%, this implies

mH ≲
λ3

2λ2
√
10%

υ = λ3
λ2

⋅ 390 GeV . (3.35)

If we assume that the two quartic couplings are perturbative and their ratio is around λ3/λ2 ∼ 1,
the LHC reach in theHiggs coupling analysis translates into heavyHiggsmasses of up to 400GeV,
con�rming our estimate in Equation (3.2).

Dimension-six description

In the EFT approach the singlet model only generates Oϕ,2 at dimension six [191]. Before
electroweak symmetry breaking, the only mass scale in the Lagrangian that describes the new
physics is µ22 < 0. De�ning the Wilson coe�cients suppressed by this new physics scale gives
clearly wrong results, as we show in the analogous case for the two-Higgs-doublet model in the
next section. Instead we identify the leading contribution to the heavy Higgs mass as the new
physics scale in our default matching, in agreement with the logic in Section 3.2. Following the
discussion of decoupling patterns above this means

Λdefault =
√
2λ2 υs ≈ mH . (3.36)

�e corresponding Wilson coe�cient, expressed in terms of Lagrangian parameters, is

f defaultϕ,2 =
λ23
2λ2

. (3.37)
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Singlet Default EFT υ-improved EFT

mH sin α υs/υ ∆x Λ fϕ,2 ∆x Λ fϕ,2 ∆x
S1 500 0.2 10 −0.020 491 0.14 −0.018 500 0.15 −0.020
S2 350 0.3 10 −0.046 336 0.14 −0.037 350 0.16 −0.046
S3 200 0.4 10 −0.083 190 0.04 −0.031 200 0.06 −0.083
S4 1000 0.4 10 −0.083 918 2.60 −0.092 1000 3.13 −0.083
S5 500 0.6 10 −0.200 407 1.26 −0.231 500 1.24 −0.200

Table 3.1: Benchmarks for the singlet extension. In the le� columns we show the model para-
meters and the universal coupling modi�cation ∆x for the complete model. We also
give the cuto� scales Λ, the Wilson coe�cients fϕ,2, and the universal coupling shi�
in the corresponding EFT descriptions based on the default and on the υ-improved
matching schemes. All mass scales are given in GeV.

For the υ-improved matching, we instead use the actual physical mass

Λυ-improved = mH . (3.38)

In the broken phase the Higgs couplings are fully expressed through the mixing angle α as given
in Equation (3.29). We de�ne

f υ-improvedϕ,2 = 2(1 − cos α)
m2
H
υ2

, (3.39)

which ensures that the Higgs couplings agree exactly between the full model and the υ-improved
dimension-six description.

Benchmark points

We start our numerical analysis by de�ning �ve singlet benchmark points in Table 3.1, with
heavy Higgses ranging from 200 to 1000 GeV. �e �rst three scenarios are in agreement with all
experimental and theoretical constraints at the time of publication of Reference [1]. �is includes
direct mass bounds from heavy Higgs searches at colliders, Higgs coupling measurements,
electroweak precision observables, perturbative unitarity and vacuum stability [233–235]. Note
that for S4 and S5 the combination of large heavy Higgs masses together with large mixing
angles is incompatible with perturbative unitarity, and electroweak precision constraints. We
nevertheless keep these benchmarks for illustration purposes.
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3.3 Full models vs. e�ective theory

Higgs couplings and total production rates

Table 3.1 also shows the universal shi� ∆x of the light Higgs couplings, both for the full singlet
model and its dimension-six approximations. For the default matching, we �nd reasonable
agreement with the full model for the scenarios with a heavy additional Higgs, while large
discrepancies appear when the new physics is lighter. In particular, note the di�erence between
S3 and S4. Both describe the same coupling shi� ∆x = −0.083. But while S3 realises this with a
weakly coupled light scalar, which the default EFT cannot describe, S4 features a heavier and
more strongly coupled new particle, and the EFT description works better. In all cases, the
υ-improved EFT by construction predicts the Higgs couplings correctly.
In Table 3.2 we show how well the e�ective models describe the total Higgs production cross

sections in gluon fusion, WBF and Higgs-strahlung. �ese numbers con�rm what we expect
from the coupling modi�cations: while the default dimension-six model predicts qualitatively
similar shi�s in the total rates, there are rate deviations of up to 10%. In the υ-improved EFT we
�nd that the Higgs couplings and total rates agree exactly with the full model predictions. �e
dimension-six operators are su�cient to capture the coupling shi�s, even though a signi�cant
part of their coe�cients are formally ofO (υ4/Λ4).

Distributions

�e most obvious source of discrepancy between the full model and the EFT is the heavy
resonance H. It can for example be produced in gluon fusion and then observed as a peak in
the m4ℓ distribution. By construction, it will not be captured by the dimension-six model. We
illustrate this in the upper le� panel of Figure 3.1. For Higgs-strahlung production (Figure 3.1,
upper right panel), where the novel H resonance does not appear in an intermediate Born-

σdefault EFT/σsinglet συ-improved EFT/σsinglet
ggF WBF Vh ggF WBF Vh

S1 1.006 1.006 1.004 1.001 1.001 1.000
S2 1.019 1.021 1.019 1.000 1.001 1.000
S3 1.119 1.118 1.118 1.000 0.999 1.000
S4 0.982 0.982 0.982 0.999 0.999 1.000
S5 0.925 0.925 0.925 0.999 0.999 1.000

Table 3.2: Cross-section ratios of the dimension-six approximations to the full singlet model at
the LHC. We show the leading Higgs production channels for all singlet benchmark
points. �e statistical uncertainties on these ratios are below 0.4%.
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Figure 3.1: Selected kinematic distributions in the singlet model. �e di�erent curves show the
SM, the full singlet model, and the dimension-six approximation with the default
matching. In the bottom panels we give the relative EFT error, additionally including
the υ-improved dimension-six model. Top le�: m4ℓ distribution in the g g → h → 4ℓ
channel for S2. Top right: mVh distribution in Vh production for S1. Bottom le�:
mT distribution in the WBF h → ℓ+ℓ− EmissT channel for S5. Bottom right: mhh
distribution in Higgs pair production for S4. In themhh plot we separate the di�erent
contributions in the full theory and the dimension-six approach. �e shaded error
bands give the statistical uncertainties.
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3.3 Full models vs. e�ective theory

level propagator and hence has no impact, we instead �nd excellent agreement between both
descriptions over the entire phase space.
�e secondHiggs has an additional, more subtle e�ect. In the full model, both Higgs exchange

diagrams are needed to unitariseWW scattering. Correspondingly, the EFT description breaks
perturbative unitarity roughly at the scale [214]

m2
WW ∼

16π
fϕ ,2
Λ2 (1 − fϕ ,2υ2/Λ2

4(1+ fϕ ,2υ2/Λ2))
≈ (

1.7 TeV
sin α

)
2
. (3.40)

In our benchmark point S5, this is around 2.8 TeV. �e incomplete cancellation between Higgs
and gauge amplitudes means that the dimension-six model tends to have a larger rate at energies
already below this scale. �is can be seen in the lower le� panel of Figure 3.1, where we show the
distribution of the transverse mass de�ned in Equation (3.21) in the process ud →W+W− ud →
(ℓ+ν) (ℓ−ν)ud, to which WBF production of both h and H contributes. We observe that the
dimension-six model predicts a slightly higher rate at large mT than both the full singlet model
and the SM. Given the very mild signal, which results from the fast decrease in the parton
densities and the small mixing angle for realistic scenarios, such an e�ect is likely of no relevance
for LHC physics.
A more interesting channel to study in the singlet model is Higgs pair production. �e Higgs

self-coupling is the only Higgs coupling which gains amomentum dependence at tree level in the
EFT.�e approximate cancellation between the two leading SM amplitudes at threshold [90, 92]
induces a second relevant scale and with it a sensitivity to small deviations in the Higgs couplings.
In the bottom right panel of Figure 3.1 we give the mhh distribution in the full and dimension-

six models. In addition, we show how the distributions would look in the full model without aH
state, and in the EFT without the momentum-dependent (derivative) terms fromOϕ,2. Already
at threshold and far away from the H resonance, the interference of the SM-like terms with the
H diagrams makes up a signi�cant part of the amplitude. In the EFT the derivative terms are
similarly relevant already at low energies. Close to threshold, the (υ-improved) dimension-six
model approximates the full theory well. But this agreement deteriorates already at moderately
larger energies, with no signi�cant di�erence between default and υ-improved matching, and
clearly breaks down towards the H pole.

Summary

If we limit ourselves to Higgs properties relevant for single Higgs production at the LHC, the
modi�cations from a singlet extension are very simple: all Standard Model couplings acquire
a common scaling factor, and no relevant new Lorentz structures appear at tree-level. �e
dimension-six setup reproduces this e�ect correctly: the reduced couplings to all SM �elds
alone do not require a large hierarchy of scales. A standard matching procedure that expands
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3 Higgs e�ective theory at its limits

the coe�cients to leading order in υ2/Λ2 may lead to sizeable deviations from the full model.
However, a υ-improved EFT construction that takes into account higher orders in υ2/Λ2 yields
perfect agreement with the full theory. In other words, all dimension-eight and higher operators
relevant for single Higgs production that are generated from the singlet model are of the form
(ϕ†ϕ)nO(6)

i . A�er EWSB they can be resummed into the Wilson coe�cients of the dimension-
six operators as given by Equation (3.11).
Higgs pair production is di�erent. �ere is a large contribution from o�-shell H, while in the

EFT the h self-coupling involves a derivative. �ese di�erent structures lead to discrepancies
between full and e�ective description that increase with momentum transfer, even for the υ-
improved matching.

.. Two-Higgs-doublet model

Model setup

�e two-Higgs-doublet model (2HDM) [241, 242] adds a second scalar SU(2)L doublet ϕ2 to
the SM Higgs sector. �e combined potential reads

V(ϕ1, ϕ2) = m2
11 ϕ†1ϕ1 +m

2
22 ϕ†2ϕ2 +

λ1
2

(ϕ†1ϕ1)
2
+
λ2
2

(ϕ†2ϕ2)
2
+ λ3 (ϕ†1ϕ1) (ϕ

†
2ϕ2)

+ λ4 ∣ϕ†1 ϕ2∣
2
+ [−m2

12 ϕ†1ϕ2 +
λ5
2

(ϕ†1ϕ2)
2
+ h. c.] . (3.41)

�emass terms m2
i j and the dimensionless self-couplings λi are real parameters. �e doublet

VEVs ⟨ϕ0j ⟩ = υ j/
√
2 are parametrised by their ratio tan β = υ2/υ1. For the Yukawa coup-

lings, there are four possible scenarios that avoid tree-level 
avour-changing neutral currents
(FCNCs) [243]:

● type I, where all fermions couple to just one Higgs doublet ϕ2;

● type II, where up-type (down-type) fermions couple exclusively to ϕ2 (ϕ1);

● lepton-speci�c, with a type-I quark sector and a type-II lepton sector; and

● 
ipped, with a type-II quark sector and a type-I lepton sector.

In all four cases, the absence of tree-level FCNCs is protected by a global Z2 discrete symmetry
ϕi → (−1)i ϕi (for i = 1, 2). �is symmetry is so�ly broken by the mixed mass term m12. For
simplicity, we restrict our discussion to type I and type II.
�e physical degrees of freedom are two neutral CP-even scalars h0, H0, one neutral CP-

odd scalar A0, and a set of charged scalars H±, parametrised by the mixing angle between the
CP-even scalars α. For a detailed account of the model setup, see Appendix A.5.2.
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3.3 Full models vs. e�ective theory

Signatures and decoupling patterns

�e 2HDM predicts two types of LHC signatures: �rst, scalar and VEV mixing lead to modi�ed
light Higgs couplings. Unlike in the singlet extension, these coupling modi�cations are not
universal, re
ecting the more 
exible 
avour structure of the model. Second, there are three new
heavy resonancesH0, A0, andH±, which should have near-degenerate masses to avoid custodial
symmetry breaking.
�e couplings of the light Higgs to weak bosons V =W , Z scale with the mixing angles α and

β as

∆V = sin(β − α) − 1 = −cos
2(β − α)
2

+O (cos4(β − α)) . (3.42)

We can insert the leading contribution of a mass-degenerate heavy Higgs sector and �nd [177]

∆V ≈
sin2(2β)

8
(

υ
mA0

)

4

. (3.43)

While in the singlet model the light Higgs coupling to gauge bosons is shi�ed atO (υ2/m2
H), see

Equation (3.34), the same coupling is now a�ected atO (υ4/m4
A0), corresponding to a dimension-

eight e�ect.
�e couplings to the fermions on the other hand are modi�ed at O (υ2/m2

A0
) [177]. For

up-type quarks, we �nd

1 + ∆t =
cos α
sin β

. (3.44)

�e couplings to down-type quarks and leptons are

1 + ∆b = 1 + ∆τ =
cos α
sin β

(3.45)

in a type-I model and

1 + ∆b = 1 + ∆τ = −
sin α
cos β

(3.46)

in a type-II 2HDM.
Finally, a H± loop contributes to the Higgs-photon coupling. �e expression for this coupling

shi� is given in Equation (A.62) in Appendix A.5.2.

Two aspects complicate the decoupling in the 2HDM: �rst, ‘delayed decoupling’ e�ects appear
a�er electroweak symmetry breaking [244]. For example, in type-II models we �nd [177]

∆b ≈ − tan β
sin(2β)

2
(

υ
mA0

)

2

. (3.47)
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�is correction to the bottom Yukawa coupling corresponds to a dimension-six e�ect, but can
be enhanced by large values of tan β, thus delaying the decoupling of the heavy 2HDM states in
the Yukawa sector.
Second, unlike in theMSSM, theHiggs self-couplings λi andm12 are not bounded from above.

Terms of the form λiυ2, potentially enhanced with factors of tan β, contribute to the masses of
the heavy Higgs bosons and to the interactions of the SM-like Higgs state, e�ectively inducing
new energy scales.
Such additional mass scales driven by υ lead to problems with any EFT derived from and

matched to the full theory assuming only one new physics scale. While this should not be viewed
as a problem of the EFT approach in general, it will require a υ-improved matching procedure.

Dimension-six description

We�rst followour default procedure andmatch the e�ective theory to the 2HDMin the unbroken
electroweak phase. To this end, we �rst rotate ϕ1 and ϕ2 into the so-called Higgs basis, where
only one Higgs doublet obtains a vacuum expectation value, ⟨ϕl⟩ = υ/

√
2, ⟨ϕh⟩ = 0 [243, 245].

�is doublet ϕl is then identi�ed with the SM-like Higgs doublet, while the other doublet ϕh is
integrated out. Its decoupling is described by the mass scale

Λ2
default = m

2
11 sin

2β +m2
22 cos

2β +m2
12 sin(2β) . (3.48)

At tree level, the 2HDM generates a number of dimension-six operators, whose Wilson
coe�cients depend on the 
avour structure. While the up-type Yukawa coupling is always
modi�ed in the same way, the down-type and lepton couplings are di�erent for type-I and
type-II. With the de�nition

λ ≡ sin(2β)
2

[
λ1
2
−
λ2
2
+ (

λ1
2
+
λ2
2
− λ3 − λ4 − λ5) cos(2β)] (3.49)

we �nd

ft = −
λyt
tan β

,

fb =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−
λyb
tan β

type I ,

λyb tan β type II ,

fτ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−
λyτ
tan β

type I ,

λyτ tan β type II .
(3.50)

Here yt , yb, yτ refer to the SM values of the respective Yukawa couplings, y f =
√
2m f /υ.
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�e contribution of the H± loop to the Higgs-photon coupling is mapped ontoOBB with a
Wilson coe�cient

fBB =
(tan β + cot β)

3072 π2

⎡
⎢
⎢
⎢
⎢
⎣

(λ1 + λ2 − 2λ3 + 6λ4 + 6λ5 − 8
m2
h0

υ2
) sin(2β)

+ 2(λ1 − λ2) sin(4β) + (λ1 + λ2 − 2λ3 − 2λ4 − 2λ5) sin(6β)
⎤
⎥
⎥
⎥
⎥
⎦

. (3.51)

In the e�ective Lagrangian there are no non-decoupling terms ofO (Λ0), because the charged
Higgs loop decouples in the limit mA0 →∞ with �nite λi . If instead we keep m12 �xed and let
one of the couplings λi grow with mA0 , the charged Higgs does not decouple. We derive these
results in Appendix A.5.2.
Upon electroweak symmetry breaking, the physical heavy Higgs masses mH0 , mA0 , and mH±

acquire contributions ∼ λiυ2 from the electroweak VEV in addition to the heavy scale Λdefault
de�ned above. We therefore again consider an alternative υ-improved matching where the
matching scale is

Λυ-improved = mA0 . (3.52)

In this setup, theWilson coe�cients in Equations (3.50) and (3.51) remain unchanged.3�e two
matching schemes can exhibit signi�cant di�erences in the 2HDM since the pseudoscalar mass
m2
A0 = m2

12/(sin β cos β)− λ5 υ2 does not coincide with Λdefault over large parts of the parameter
space.

Benchmark points

In Table 3.3 we de�ne four benchmark points for the 2HDM.�ey are in agreement with all con-
straints at the time of publication of Reference [1], implemented with the help of 2HDMC [246],
HiggsBounds [247, 248], SuperIso [249], and HiggsSignals [250]. To better illustrate certain
model features, in some scenarios we tolerate deviations between 1σ and 2σ in the Higgs coup-
lings measurements.
�e key physics properties of the di�erent 2HDM scenarios can be summarised as follows:
D1 Moderate decoupling: emphasises large Higgs coupling shi�s, with up to 2σ deviations
from the LHC constraints. Additional Higgs masses around 250 . . . 350 GeV can leave
visible imprints.

3An alternative de�nition of the υ-improved Wilson coe�cients could be based on the physical mixing angles α
and β. Similar to the singlet model, in this way we could ensure that the tree-level Higgs-fermion couplings agree
exactly between the full and the e�ective model. Here we refrain from such a �ne-tuned matching prescription
to demonstrate how a simple rede�nition of Λ can improve the performance of the dimension-six model.
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2HDM

Type tan β α/π m12 mH0 mA0 mH±

D1 I 1.5 −0.086 45 230 300 350
D2 II 15.0 −0.023 116 449 450 457
D3 II 10.0 0.032 157 500 500 500
D4 I 20.0 0.000 45 200 500 500

Table 3.3: Benchmarks for the 2HDM. All masses are given in GeV.

Default EFT

∣Λ∣ [GeV] ft fb fτ fBB
D1 100 0.12 0.003 0.001 0.009
D2 448 0.00 −0.006 −0.002 −0.001
D3 99 −0.07 0.206 0.077 −0.016
D4 142 0.00 0.000 0.000 −0.023

Table 3.4: Matching scales andWilson coe�cients for the e�ective theory matched to the 2HDM,
based on the default matching in the unbroken electroweak phase.

υ-improved EFT

Λ [GeV] ft fb fτ fBB
D1 300 −0.12 −0.003 −0.001 −0.009
D2 450 0.00 −0.006 −0.002 −0.001
D3 500 −0.07 0.206 0.077 −0.016
D4 500 0.00 0.000 0.000 −0.023

Table 3.5: Matching scales andWilson coe�cients for the e�ective theory matched to the 2HDM,
based on the υ-improved matching with Λ = mA0 .
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∆V ∆t ∆b = ∆τ
2HDM EFT 2HDM dEFT υEFT 2HDM dEFT υEFT

D1 −0.05 0.00 0.16 −0.74 0.08 0.16 −0.74 0.08
D2 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.07
D3 −0.02 0.00 0.00 0.46 0.02 −2.02 −46.5 −1.84
D4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.6: Tree-level coupling shi�s of the light Higgs in our 2HDM benchmarks. We compare
the full 2HDMmodel to the EFT based on the default matching (‘dEFT’) and to the
EFT based on υ-improved matching (‘υEFT’).

D2 Supersymmetric: reproduces the characteristic mass splittings and Higgs self-couplings
of the MSSM with light stops [251].

D3 Sign-
ipped bottomYukawa: this is possible in type-II models at large tan β, as shown in
Equation (3.47) [252]. �is can be viewed as a manifestation of a delayed decoupling [244].

D4 Fermiophobic heavy Higgs: possible only in type-I models for sin α = 0. �e heavy
Higgs H0 is relatively light, but essentially impossible to observe at the LHC [223].

In Tables 3.4 and 3.5 we show the heavy scales Λ and the Wilson coe�cients for the EFT
in the two matching schemes. With the exception of benchmark D2, the suppression scales
are drastically di�erent. �e matching in the unbroken phase is particularly pathological in
benchmark D1, where Λ2

default is negative and the signs of the Wilson coe�cients are switched
compared to the υ-improved matching.

Higgs couplings and total production rates

Table 3.6 shows the tree-level coupling shi�s of the light Higgs in the three models. �e results
con�rm that the defaultmatching de�ned in the unbroken phase does not reproduce the coupling
patterns of the full model. We conclude that an EFT matched to the 2HDM in the unbroken
electroweak phase is essentially useless, and we have to rely on υ-improved matching. For
simplicity, we will from now on leave out the results based on the default matching, which only
con�rm these initial results.
�e υ-improved matching captures most of the coupling shi�s. It still fails to describe shi�s

in the couplings to weak bosons, which correspond to a dimension-eight operator as discussed
above.4 Unlike in the singlet model, the υ-improved EFT also struggles with scenarios of very

4Note that the operatorOBB does contribute to the h0VV coupling, representing the e�ect of a charged Higgs loop.
But as our results show, this e�ect is negligible.
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∆g ∆γ ∆directγ

2HDM υEFT 2HDM υEFT 2HDM υEFT

D1 0.16 + 0.00 i 0.08 −0.16 −0.10 −0.05 −0.07
D2 0.00 + 0.00 i 0.00 0.00 0.00 0.00 0.00
D3 0.07 − 0.09 i 0.02 −0.08 −0.05 −0.05 −0.05
D4 0.00 + 0.00 i 0.00 −0.05 −0.05 −0.05 −0.05

Table 3.7: Coupling shi�s of the light Higgs to gluons and photons in the 2HDM benchmarks
and in the corresponding υ-improved EFT (‘υEFT’). In the full model, the bottom
loop leads to small imaginary parts of ∆g and ∆γ. For the Higgs-photon coupling,
these imaginary parts are always smaller than 1% of the real part of the amplitude and
neglected here. �e coupling shi� ∆directγ in the last two columns ignores the indirect
e�ects from modi�ed Higgs-fermion couplings, allowing us to analyse separately how
well the H± loop is captured byOBB.

light new physics such as D1. Still, all in all it performs well in situations with a modest scale
hierarchy such as benchmark D2.
A particularly interesting scenario is described by benchmark D3. In the full model, the

bottom Yukawa is exactly sign-
ipped, a signature hardly visible at the LHC. Generating such
a signature from higher-dimensional operators requires their contributions at O (υ2/Λ2) to
be twice as large as the SM Yukawa coupling. �e EFT fails to capture this coupling shi� fully,
leading to a signi�cantly di�erent prediction for the Higgs decay into bottom quarks.
In Table 3.7 we repeat this analysis for the loop-induced couplings of an on-shell Higgs to

gluons and photons. A large part of these coupling shi�s stems from the modi�ed Higgs-top
and Higgs-W couplings. �is means that in scenarios where the e�ective theory describes these
tree-level couplings accurately, we also �nd good agreement between full and e�ective model
for the loop-induced couplings. Separating the H± contribution to the Higgs-photon coupling
from these indirect e�ects, we �nd thatOBB captures its e�ect very well.
Table 3.8 compares total production rates at the LHC. Depending on the benchmark, the

dimension-six truncation leads to up to 10% deviations, in agreement with the results for the
coupling shi�s.

Distributions

As for the singlet model, the indirect signatures from the 2HDM are mostly re
ected in the
coupling patterns discussed above, and new kinematic e�ects do not play a signi�cant role. In
the le� panel of Figure 3.2 we illustrate the coupling deviations in gluon-fusion Higgs production
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3.3 Full models vs. e�ective theory

with a decay h → τ+τ−, showing how the full 2HDMand the (υ-improved) EFT give substantially
di�erent predictions for the size of the Higgs signal.
While on-shell Higgs decays to photons are generally well described by the EFT, this changes

for o�-shell Higgs production. At mγγ ≳ 2mH± , the H± in the loop can resolve the charged
Higgs, enhancing the size of its contribution signi�cantly. �is e�ect is not captured by the
e�ective operator and leads to a di�erent behaviour of the amplitude g g → h0 → γγ between
the full and the e�ective model, as shown in the right panel of Figure 3.2. However, the tiny rate
and the large combinatorial background mean that this discrepancy will be irrelevant for LHC
phenomenology. Similar threshold e�ects have been computed for the top-induced Higgs-gluon
coupling and appear to be similarly irrelevant in practice [253].
�e situation in Higgs pair production resembles the observations in the singlet model [223,

254, 255]. �e agreement can be even worse already at threshold if Higgs-top coupling shi�s are
not correctly captured by the e�ective model.

Summary

�e 2HDM discussion leads us to a similar conclusion as the singlet model: as long as the
mixing is small and Higgs-gauge coupling shi�s are negligible, all that the LHC probes in single
Higgs production is a set of three coupling modi�cations ∆t , ∆b, ∆τ , and the charged Higgs
loop contribution to the Higgs-photon coupling. �ese aspects of Higgs phenomenology are
generally well captured by an appropriately de�ned EFT. Problems arise in scenarios with very
light new Higgs bosons, when the Higgs-W and Higgs-Z couplings are modi�ed, and in the
special case of Higgs pair production.
A naive construction of the EFT by matching the e�ective dimension-six Lagrangian to the

2HDM in the gauge-symmetric phase clearly fails to describe themodi�edHiggs boson dynamics
in typical 2HDM scenarios; a υ-improved matching procedure is more suitable.

συ-improved EFT/σ2HDM
ggF WBF Vh

D1 0.872 1.109 1.108
D2 1.001 1.000 1.000
D3 1.022 1.042 1.042
D4 1.001 1.001 1.003

Table 3.8: Cross-section ratios of the υ-improved dimension-six approximation to the full 2HDM
at the LHC. �e statistical uncertainties on these ratios are below 0.4%.
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Figure 3.2: Selected kinematic distributions in 2HDM benchmark D1, comparing the full model
to the EFT based on υ-improved matching. Le�: mττ distribution in the g g → τ+τ−
channel. Right: o�-shell behaviour of the process g g → h0 → γγ, only taking into
account theHiggs diagrams. Atmγγ ≳ 2mH± = 700GeV, the chargedHiggs threshold
is visible. �e shaded error bands give the statistical uncertainties.

.. Scalar top partners

Model setup

New coloured scalar particles are, strictly speaking, not an extension of the SM Higgs sector,
but they can lead to interesting modi�cations of the LHC observables. We consider a scalar top
partner sector mimicking the stop and sbottom sector of the MSSM. Its Lagrangian has the form

Ltop partners ⊃ (DµQ̃)
†DµQ̃ + (Dµ t̃R)∗Dµ t̃R −M2 Q̃†Q̃ −M2 t̃∗R t̃R

− κLL (ϕ ⋅ Q̃)
†
(ϕ ⋅ Q̃) − κRR (t̃∗R t̃R) (ϕ† ϕ)

− [κLRM t̃∗R (ϕ ⋅ Q̃) + h. c.] . (3.53)

Here, Q̃ and t̃R are the additional isospin doublet and singlet in the fundamental representation
of SU(3)C . �eir mass terms can be di�erent, but for the sake of simplicity we unify them to a
single heavy mass scaleM. �e singlet state b̃R is assumed to be heavier and integrated out.
�is leaves us with three physical degrees of freedom, the scalars t̃1, t̃2 and b̃2 = b̃L. �e
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eigenvalues of the stop mass matrix

Mt̃ =

⎛
⎜
⎜
⎜
⎝

M2 + κLL
υ2

2
κLR

Mυ
√
2

κLR
Mυ
√
2

M2 + κRR
υ2

2

⎞
⎟
⎟
⎟
⎠

(3.54)

de�ne two masses m t̃1 < m t̃2 and a mixing angle θ t̃ . We provide a detailed description of the
model setup in Appendix A.5.3.

Signatures and decoupling patterns

�emain new physics e�ects in the Higgs sector are loop-induced modi�cations of the Higgs
interactions, most notably to ∆g , ∆γ, ∆W , and ∆Z , possibly including new Lorentz structures.
�e Yukawa couplings do not change at one-loop level because we do not include gauge boson
partners. As a side remark, the 2HDM described in Section 3.3.3 combined with the scalar top
partners given here corresponds to an e�ective description of the MSSM in the limit of in�nitely
heavy gauginos, sleptons, and light-
avour squarks.
In the limit of small θ t̃ , the leading correction to the hVV coupling scales as

∆V ≈
κ2LL
16π2

(
υ
m t̃1

)

2

. (3.55)

�is shi� can be sizeable only for relatively low stop and sbottom masses combined with large
couplings κi j to the Higgs sector.
As already noted for the 2HDM, the decoupling of the heavy scalars becomes non-trivial in

the presence of a Higgs VEV. Following Equation (3.54), the masses of the heavy scalarsm t̃1 ,m t̃2
are not only controlled by themass scale in the symmetric phase of the electroweak symmetryM,
but they receive additional contributions of the type κLR υM, κLLυ2, or κRRυ2 a�er electroweak
symmetry breaking. �is leads to a mass splitting of order υ between masses of orderM, which
is increased by large values of the couplings κi .

Dimension-six description

�is motivates us to again de�ne two di�erent matching schemes. First, we stick to our default
prescription and carry out the matching of the linear EFT Lagrangian to the full model in the
unbroken phase. �e matching scale is then dictated by the intrinsic mass scale of the heavy
�elds,

Λdefault = M , (3.56)
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Scalar top partner model

M κLL κRR κLR m t̃1 m t̃2 θ t̃
P1 500 −1.16 2.85 0.147 500 580 −0.15
P2 350 −3.16 −2.82 0.017 173 200 −0.10
P3 500 −7.51 −7.17 0.012 173 200 −0.10

Table 3.9: Benchmarks for the scalar top partner scenario. We show Lagrangian parameters (le�)
and physical parameters (right). All masses are given in GeV.

Default EFT υ-improved EFT

Λ fϕ,2 fWW fW Λ fϕ,2 fWW fW
P1 500 0.026 0.000 0.000 500 0.026 0.000 0.000
P2 350 0.023 0.005 0.000 173 0.023 0.005 0.000
P3 500 0.152 0.115 −0.207 173 0.152 0.115 −0.207

Table 3.10: Matching scales (in GeV) and selected Wilson coe�cients for the top partner bench-
marks, both for default and υ-improved matching.

and is completely oblivious to contributions to the masses from the electroweak VEV. �e
suppression scale of loop e�ects in the complete model and this matching scale in the EFT only
agree in the limitM −m t̃1 ∼ υ≪ M.
�e stop loops generate a number of operators [138, 144, 193],

fϕ,1 = −
1

2(4π)2
[κ2LL −

κLL κ2LR
2

+
κ4LR
10

] ,

fϕ,2 =
1

4(4π)2
[2κ2RR − κRRκ2LR +

κ4LR
5

] ,

fGG =
g2s

24 (4π)2
[κLL + κRR − κ2LR] ,

fBB = −
1

36 (4π)2
[κLL + 16κRR −

67
10
κ2LR] ,

fWW = −
1

4 (4π)2
[κLL −

3
10
κ2LR] ,

fBW =
1

12 (4π)2
[2κLL −

11
5
κ2LR] ,

fB =
1

20 (4π)2
κ2LR , and
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fW =
1

20 (4π)2
κ2LR . (3.57)

Unlike the tree-level e�ects in the previous twomodels, the top partner loops do not only induce
modi�cations to the SM Higgs couplings, but induce new Lorentz structures. Note that some of
these operators are tightly constrained from electroweak precision data, see Section 2.3.2. We
will ignore these constraints for our discussion of Higgs physics.
In addition, we de�ne a υ-improved matching. As in the 2HDM, we pick the matching scale

as a physical mass in the broken phase,

Λ = m t̃1 . (3.58)

�eWilson coe�cients fi are the same as in Equation (3.57).

Benchmark points

As Equation (3.55) suggests, sizeable loop corrections to the hVV coupling require light top
partners with unrealistically strong couplings to the Higgs sector [256]. In Table 3.9 we de�ne a
set of benchmark points with this aim in mind. �e corresponding Wilson coe�cients in our
two matching schemes are given in Table 3.10.

Higgs production rates and distributions

�e contributions from scalar top partners to Higgs production in gluon fusion are well known
[257–261] and the validity of the EFT approach for this process has been thoroughly scrutin-
ised [189, 193]. We therefore focus on corrections to the hVV coupling in WBF and Higgs-
strahlung.
�e total Higgs production rates in these channels are given in Table 3.11. In benchmark P1

the WBF cross section is reduced by about 0.6% compared to the Standard Model, with good

σdEFT/σtop partners συEFT/σtop partners
WBF Vh WBF Vh

P1 1.000 0.999 1.000 0.999
P2 1.095 1.100 1.074 1.049
P3 2.081 1.904 1.749 1.363

Table 3.11: Cross-section ratios of the dimension-six approximation to the full top partner model
at the LHC. We give the results both for the default matching scheme with matching
scale Λ = M (‘dEFT’) as well as for the υ-improved matching with Λ = m t̃1 (‘νEFT’).
�e statistical uncertainties on these ratios are below 0.4%.
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Figure 3.3: Kinematic distributions for the top partner model in benchmark P2. Le�: tagging jet
properties in WBF Higgs production. Right: mVh distribution in Higgs-strahlung.
�e shaded error bands give the statistical uncertainties.

agreement between e�ective and full description. Clearly, such a scenario is not relevant for
LHC measurements in the foreseeable future. In more extreme corners of the parameter space,
the loop e�ects in the full model grow, higher-dimensional terms in the EFT become larger,
the validity of the dimension-six model worsens, and discrepancies between both increase. In
benchmarks P2 and P3 the WBF rate is reduced by 9.1% and 43.5% with respect to the Standard
Model. By construction, the EFT based on the default matching captures only the formally
leading term atO (υ2/Λ2), leading to a reduction of only 0.5% and 2.0%. �e corresponding
di�erence is, again, independent of kinematic variables, for example of the tagging jet’s transverse
momentum. With the υ-improved matching, the cross section is reduced by 2.4% and 17.7%,
still far from the result of the full model.
�e results for Higgs-strahlung look similar: in the moderate benchmark P1 the predictions

of the full model and the dimension-six Lagrangian agree within 0.1%, but in this scenario the
overall deviation from the Standard Model is negligible. In scenarios with larger loop e�ects,
the dimension-six prediction fails to capture most of the full top partner loops, with numerical
results similar to those given for WBF Higgs production. Again switching to the υ-improved
matching does not improve the EFT approximation signi�cantly.
In Figure 3.3 we �nally show that these changes in the total rates do not have a dramatic

e�ect on the kinematic distributions. �is is not surprising, since the largest Wilson coe�cient
generated in our benchmark points is consistently that ofOϕ,2, which corresponds to a universal
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rescaling of the SM Higgs couplings.

Summary

Scalar top partners generate a large set of dimension-six operators through electroweak loops.
However, in realistic scenarios with a large scale separation, the loop corrections for instance to
the hVV vertex are tiny. Pushing for loop e�ects that are large enough to leave a visible imprint
inWBF and Higgs-strahlung requires breaking the scale separation between the observed Higgs
scalar and the top partners dramatically. In that case the EFT fails already for the total rates,
kinematic distributions hardly add to this discrepancy.

.. Vector triplet

Model setup

Heavy vector bosons appear in many new physics scenarios, for instance when a larger gauge
group is spontaneously broken down to the SM gauge group at higher energies. Such particles
are o�en connected to the gauge-Higgs sector of the SM, predicting signatures in Higgs measure-
ments [184, 262, 263]. As an example, we study a massive vector �eld5 V a

µ which is a triplet under
SU(2)L and uncharged under SU(3)c and U(1)Y . �is allow it to mix with theW bosons of
the Standard Model and to couple to Higgs and fermion currents [184, 263]. For simplicity, we
assume CP invariance and a 
avour-universal coupling to the fermion current. Following the
conventions of Reference [263], the Lagrangian then reads

Lvector triplet ⊃ −
1
4
V a
µνV µν a

+
M2

V
2

V a
µ V µ a

+ i gV
2
cH V a

µ [ϕ†σ a←→D µϕ] +
g2W
2gV

V a
µ ∑

f
cF f Lγµσ a fL

+ g2V cVVHH V a
µ V µ aϕ†ϕ

+
gV
2
cVVV εabc V a

µ V b
ν D[µV ν]c

−
gW
2
cVVW εabcW µνV b

µ V c
ν (3.59)

with the �eld strength V a
µν = DµV a

ν − DνV a
µ and where DµV a

ν = ∂µV a
ν + gV εabcV b

µ V c
ν .

�e coupling gV characterises the interactions of the heavy vector, while gW is the SU(2)L
coupling constant. A�er mixing, the original �elds V a andWa combine to the mass eigenstates
W±, ξ±, and ξ0, while a combination of the couplings gW and gV becomes the observed weak
gauge coupling g. �e parameters cVVW and cVVV are irrelevant for Higgs phenomenology at
the LHC. For more details, see Appendix A.5.4.
5Note that such a model is not UV-complete: theories with massive vector bosons are not renormalisable [140].
However, such a mass can easily be generated from a consistent gauge theory with a Higgs mechanism at a higher
scale [263]. �e details of such an embedding do not matter here.
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3 Higgs e�ective theory at its limits

Signatures and decoupling patterns

In addition to the new heavy resonances ξ0 and ξ±, the signature feature of the vector triplet
is that the mixing of the new states with the W and Z bosons a�ects the properties of the
electroweak gauge bosons at tree level. In particular, the shi� from the Lagrangian parameter
gW to the observable weak coupling g combined with the direct heavy vector coupling to the
Higgs doublet modi�es the Higgs couplings as

∆V ≈
g2cFcH
4

(
υ
MV

)
2
−
3g2V c2H
8

(
υ
MV

)
2
,

∆ f ≈
g2cFcH
4

(
υ
MV

)
2
−
g2V c2H
8

(
υ
MV

)
2
. (3.60)

In addition, contributions from virtual heavy states ξmodify the phase-space behaviour of Higgs
signals in many ways.
Just as for the 2HDM and the top partners, the mass matrix for the massive vectors contains

both the intrinsic mass scale MV and terms proportional to some power of υ multiplied by a
combination of couplings. �e new vector states have degenerate masses

m2
ξ ≈ M

2
V (1 + g2V cVVHH

υ2

M2
V
+
g2V c2H
4

υ2

M2
V
+O (

υ4

M4
V
)) . (3.61)

Even if there appears to be a clear scale separation MV ≫ υ, large values of gV , cVVHH , or cH
can change mξ signi�cantly and thus induce a second mass scale.

Dimension-six description

�e obvious choice of the matching scale in the unbroken electroweak phase is the heavy mass
scale in the Lagrangian

Λdefault = MV , (3.62)

which we use for our default matching scheme.
Integrating out the heavy vector triplet at tree level generates a number of operators with

Wilson coe�cients

fWW = cF cH , fϕ,2 =
3
4
cH (cH g2V − 2 cF g2) ,

fBB = cF cH , fϕ,3 = −3 λ cH (cH g2V − 2 cF g2) ,

fBW = cF cH , f f = −
1
4
y f cH (cH g2V − 2 cF g2) ,

fW = −2 cF cH . (3.63)
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Triplet model

MV gV cH cF cVVHH mξ

T1 591 3.0 −0.47 −5.0 2.00 1200
T2 946 3.0 −0.47 −5.0 1.00 1200
T3 941 3.0 −0.28 3.0 1.00 1200
T4 1246 3.0 −0.50 3.0 −0.20 1200
T5 846 1.0 −0.56 −1.32 0.08 849

Table 3.12: Benchmark points for the vector triplet model. �e masses are given in GeV.

Additional four-fermion contributions are irrelevant for Higgs physics. Loop-induced contribu-
tions are further suppressed and we neglect them here.
Once again, we compare this default matching to an alternative υ-improved matching, where

as a cuto� we now use the physical mass

Λυ-improved = mξ . (3.64)

�e coe�cients in Equation (3.63) remain unchanged.6

Unlike the previous models, the vector triplet generates OW , OWW , and OBB at tree level.
As discussed in Section 2.3.3, these induce new kinematic structures in the hWW and hZZ
couplings.

Benchmark points

We study a set of benchmark points de�ned in Table 3.12 and Table 3.13. Unlike additional scalars,
light new vector triplets with masses just above the electroweak scale are unrealistic given the
constraints from electroweak precisionmeasurements and direct searches. We therefore focus on
new vector bosons around the TeV scale. �e di�erent setups are motivated phenomenologically,
from experimental constraints, or based on speci�c UV completions:
T1-2 Higgs-gauge dynamics: designed for large momentum-dependent e�ects in the hVV

couplings. OW and OWW receive large Wilson coe�cients, while Oϕ,2, Oϕ,3, and O f
vanish along the line

cH
cF

= 2 g
2

g2V
. (3.65)

�e large couplings also imply a large di�erence betweenMV and mξ.
6In the spirit of υ-improvement we could alternatively parametrise the Wilson coe�cients with the physical mixing
angles between theW , Z and V bosons, but this does not signi�cantly change the results.
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Default EFT υ-improved EFT

Λ fϕ,2 fWW fW ft Λ fϕ,2 fWW fW ft
T1 591 0.00 2.45 −4.90 0.00 1200 0.00 2.45 −4.90 0.00
T2 946 0.00 2.35 −4.71 0.00 1200 0.00 2.35 −4.71 0.00
T3 941 1.09 −0.82 1.64 −0.36 1200 1.09 −0.82 1.64 −0.36
T4 1246 2.64 −1.56 3.12 −0.87 1200 2.64 −1.56 3.12 −0.87
T5 846 −0.24 0.78 −1.55 0.08 849 −0.24 0.78 −1.55 0.08

Table 3.13: Matching scales (in GeV) and selected Wilson coe�cients for the e�ective theory
matched to the vector triplet model. We give these results for both the default EFT
matching in the unbroken phase and for a υ-improved matching with Λ = mξ.

T3 Interference patterns: the sign of cW and of theWilson coe�cients are 
ipped compared
to T1 and T2. �is allows us to compare constructive and destructive interference patterns
between SM amplitudes and new physics contributions.

T4 Realistic: the vector triplet couplings and masses satisfy the leading constraints from
direct collider searches at the time of publication of Reference [1]. �e most stringent
bounds come from di-lepton and di-boson channels [263, 264].

T5 UV completion: typical coupling patterns from a weakly coupled UV completion based
on the extended gauge group SU(3) × SU(2) × SU(2) × U(1) [265]. Such a scenario
could for instance arise from deconstructed extra dimensions [266]. �e vector triplet
phenomenology is e�ectively described by the parameter α = gV/

√
g2V − g2W together

with the symmetry breaking scale f [263], with the couplings

M2
V = α2g2V f 2 , cH = −α

g2W
g2V

, cVVHH = α2 [
g4W
4g4V

] ,

cF = −α , cVVW = 1 , cVVV = −
α3

gV
[1 −

3g2W
g2V

+
2g2W
g4V

] . (3.66)

�e benchmarks T1 to T3 are meant to emphasise the phenomenological possibilities of the
vector triplet model and ignore experimental constraints or parameter correlations from an
underlying UV completion.

Higgs production rates and distributions

As shown in Figure 3.4, virtual heavy vector bosons contribute as intermediate t-channel medi-
ators to WBF Higgs production and in the s-channel to Higgs-strahlung, promising non-trivial
kinematic features in these production modes. In the EFT these e�ects are mapped onto large
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Wilson coe�cients forOW andOWW , adding a momentum dependence to the hVV couplings.
�erefore our analysis focuses on these electroweak Higgs production modes.
Table 3.14 shows the agreement between EFT and full model for the total Higgs production

rates inWBFHiggs production and Higgs-strahlung. �e default dimension-six model matched
in the unbroken phase, oblivious to the di�erence between the Lagrangian mass termMV and
the actual physical mass mξ, struggles with the �rst three benchmark points, in which this
splitting is large. �e discrepancies to the full model are particularly evident in Vh production.
�e υ-improved EFT, on the other hand, performs better and describes the rate accurately

in most of the scenarios. Only in Higgs-strahlung in the extreme scenarios T1 and T2 we �nd
signi�cant deviations.
To better understand these di�erences, we have to look at kinematic distributions. Figure 3.5

shows di�erent properties of the tagging jets inWBFHiggs production. In addition to the predic-
tions of the full vector triplet model and the default and υ-improved EFT, we show distributions
of the vector triplet model where we have arti�cially removed all contributions from virtual ξ
propagators.
We �nd that the vector triplet signi�cantly modi�es theWBF rate with respect to the Standard

Model. Its e�ect increases with momentum transfer, measured as transverse jet momentum.
�is modi�cation can be traced to contributions from ξ fusion and mixedW-ξ fusion diagrams
as given in Figure 3.4. �ese contributions from ξ propagators can become relevant already
at energy scales well below mξ, and increase further with the energy 
ow. In addition to the
high-energy tails of the transverse momenta, large e�ects are visible in the azimuthal angle
between the tagging jets, as shown in the bottom le� panel of Figure 3.5. �is angular correlation
is well known to be sensitive to the modi�ed Lorentz structure of the hWW vertex [82–88].
�e EFT approach qualitatively captures these features of the full model, now parametrised by

momentum-dependent operators such asOW andOWW . �e signs of the Wilson coe�cients in
benchmarks T1 and T2 yield a non-linear increase of the cross section with energy. Conversely,
the switched signs in T3 reduce the rate with energy, eventually driving the combined amplitude
through zero.
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Figure 3.4: Example Feynman diagrams showing contributions from virtual heavy vector bosons
ξ to Higgs production in weak boson fusion (le�, middle) or Higgs-strahlung (right).
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Comparing full and e�ective model for the more realistic benchmark points T4 and T5, we
�nd good agreement in the bulk of the distribution. �e deviations from the Standard Model
are entirely captured by the dimension-six operators, including the momentum dependence
coming from the ξ diagrams. Only at very large momentum transfer, most likely beyond the
sensitivity of the LHC, the validity of the EFT breaks down.
In the more strongly coupled benchmark points T1 to T3, the full model predicts shi�s in the

jet distributions that are large enough to be relevant for the upcoming LHC run. We �nd good
agreement between the full model and the default EFT only at low momentum transfer, where
the e�ects of new physics are small. �is naive dimension-six model fails to reproduce the full
model results already at energy scales pT , j ≳ 80 GeV, a phase space region highly relevant for
constraints on new physics [26]. Perhaps counter-intuitively, this discrepancy does not signal a
breakdown of the E/Λ expansion, but is linked to the di�erence between the physical mass mξ,
which suppresses the ξ fusion diagrams, and the matching scale Λdefault = MV , which suppresses
the dimension-six operators. �is can be seen by comparing the results to those based on υ-
improved matching, where the EFT cuto� scale matches the physical mass. Here the agreement
is signi�cantly better, and the dimension-six description successfully describes the momentum
dependence up to large momentum transfer. Only at very high energies, pT , j1 ≳ 300 GeV, even
the υ-improved EFT breaks down.
�e situation is similar in Higgs-strahlung. As shown in Figure 3.6, the dominant new physics

e�ect is the interference with ξ-mediated diagrams rather than the modi�ed hWW interaction.
Not only does this lead to a signi�cant change of the rate, it also introduces a strong dependence
on themomentum transfer, probed by either the invariant mass of the gauge-Higgs system or the
transverse momentum of the �nal vector boson. �e relative sign of the interference between ξ
amplitudes and SM-like diagrams is opposite to that in WBF: in T3 and T4 we �nd a non-linear

σdefault EFT/σtriplet συ-improved EFT/σtriplet
WBF Vh WBF Vh

T1 1.299 0.299 0.977 0.794
T2 1.045 0.737 0.992 0.907
T3 0.921 1.066 0.966 1.024
T4 1.026 0.970 1.012 0.978
T5 1.001 1.043 1.002 1.043

Table 3.14: Cross-section ratios of the dimension-six approximation to the full vector triplet
model at the LHC. To avoid large contributions from the ξ resonance in the Vh chan-
nel, we only take into account the regionmVh < 600GeV.�e statistical uncertainties
on these ratios are below 0.4%.
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Figure 3.5: Tagging jet distributions in WBF Higgs production in the vector triplet model. Top:
pT , j1 distribution in benchmark T1, focusing on the low (le�) and high (right)
transverse momentum regions. Bottom le�: ∆ϕ j j distribution above a certain pT , j1
threshold for T1. Bottom right: pT , j1 distribution for scenario T5. �e shaded error
bands give the statistical uncertainties.
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Figure 3.6: Higgs-strahlung distributions in the vector triplet model. Top: mVh distribution for
benchmark T2, focusing on the low (le�) and high (right) invariant mass regions. Bot-
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increase of the cross section with the energy scale. �e other benchmarks predict a decrease of
the amplitude with energy, eventually including a sign 
ip when the amplitude is driven through
zero.
In the more weakly coupled benchmarks T4 and T5, the full and e�ective models agree well

over most of the phase space, and the dimension-six operators successfully capture how the
ξ contributions a�ect the Higgs-strahlung kinematics. At larger momentum transfer, higher-
order terms in the EFT expansion become important, and dimension-six operators alone can no
longer describe the kinematics accurately. Ultimately, the ξ resonance in the full model marks
the obvious failure of the e�ective theory.
For benchmarks T1 to T3, the default EFT has a more limited validity range. �e large

couplings lead to a failure of this dimension-six model already at low energies mVh ≳ 220 GeV,
even though the actual ξ resonances only appear at mξ = 1.2 TeV. �e EFT approximation
can again be signi�cantly improved by switching to the υ-improved matching. But even then,
there is a pronounced mismatch between full and e�ective model. �is EFT error is larger in
Higgs-strahlung than in WBF, showing how ξ contributions play a larger role in this s-channel
process than in the t-channel WBF diagrams.

Summary

Heavy vector bosons can induce large kinematic e�ects in Higgs-gauge interactions, providing
a perfect test case for the EFT approach. For realistic scenarios, the EFT works up to large mo-
mentum transfer. Operators such asOW andOWW successfully capture the e�ects from virtual
ξ contributions to WBF Higgs production, including non-trivial momentum dependencies. In
Higgs-strahlung, s-channel ξ contributions prove more renitent to be mapped onto e�ective
operators, but we still �nd good agreement for most of the phase space for realistic parameter
choices.
Again, this remarkable performance of the dimension-six model requires particular care in

the matching to the full theory. When the mixing with the SM gauge bosons is large, a naive
matching procedure de�ned in the unbroken electroweak phase can lead to substantial errors
already in the bulk of theWBF distributions. A υ-improved dimension-six description, however,
improves the EFT accuracy such that large deviations only occur in the high-energy tails of
distributions.

. Practical questions

We now focus on the example of WBF Higgs production in the vector triplet model to discuss
some practical aspects. �e �rst is the question which observables are most sensitive to the
momentum transfer in this production mode, and therefore provide a handle on the validity
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regions of the EFT. In Section 3.4.2 we then discuss the role of squared dimension-six terms
in the di�erential cross section. Finally, Section 3.4.3 illustrates how constraints on the vector
triplet model can be determined directly in the full model or indirectly via EFT measurements,
and how this is a�ected by the breakdown of the EFT description.
In the previous sectionwe established that a υ-improvedmatching, de�ned in Equations (3.63)

and (3.64), improves the agreement between e�ective model and full theory, hence from now
on we use it exclusively.

.. Weak boson fusion observables

We have repeatedly argued that the validity of the e�ective �eld theory depends on the energy
scale or momentum 
ow in a process. In a 2 → 2 process where all �nal-state particles can
be measured precisely, the momentum transfer can easily be calculated, for instance with the
Mandelstam variables s, t, and u. For WBF Higgs production, both the de�nition and the
measurement of the momentum transfer are more involved. We have to take into account that
this is a 2→ 3 process even without adding a Higgs decay, and that the charges of the initial and
�nal partons cannot be determined experimentally.
To de�ne the momentum transfer in weak boson fusion, we �rst note thatW-mediated and

Z-mediated diagrams contribute to this process. Quark-vector splittings are more likely to
happen in the collinear direction [71], and the direction of the �nal-state quarks is typically
only slightly de
ected from that of the corresponding initial partons. �eW-mediated and Z-
mediated diagrams thus dominate in very di�erent regions of phase space and their interference
is negligible. �is allows us to distinguish ‘W-like’ and ‘Z-like’ phase-space regions and to
assign four-momenta pV1 and pV2 to the intermediate vector bosons [180]. For the dominant
amplitude ud → u′d′ h, we de�ne

pV1 = pu′ − pd , pV2 = pd′ − pu forW-like phase-space points ,
pV1 = pu′ − pu , pV2 = pd′ − pd for Z-like phase-space points . (3.67)

�e validity of the EFT is limited by the largest momentum 
ow in the process. We therefore
de�ne the relevant momentum transfer q as the maximum virtuality of the intermediate bosons,

q =
√

max (p2V1, p2V2) . (3.68)

Experimentally we can neither distinguish between the jets from up-type and down-type
quarks, nor can we determine the charges of the initial-state partons. �e true momentum
transfer q therefore cannot be calculated and we have to resort to an experimentally accessible
proxy. �e transverse momenta of the two tagging jets, pT , j1 and pT , j2, are two good candidates.
As can be seen from the Feynman diagram in Figure 2.1, these two jets directly recoil against
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Figure 3.7: Correlations between the WBF momentum transfer q, de�ned in Equation (3.68),
and the observable transverse momenta pT , j1 (le�) and pT ,h (right). �e shaded error
bands give the statistical uncertainties.

the intermediate vector bosons, so pT , j i = pT ,V i . We order them such that pT , j1 > pT , j2. As an
alternative to the two jets, we can consider the transverse momentum of the Higgs, pT ,h, which
can be reconstructed even if the Higgs decay involves neutrinos.
Figure 3.7 shows the correlations of the virtuality q with the transverse momentum of the

leading tagging jet and with the transverse momentum of the Higgs boson. Both observables
are visibly correlated with the momentum transfer, but the correspondence is particularly clear
for the jet pT .

From the previous section we know that an EFT analysis of kinematic distributions faces a
trade-o�: on the one hand, new physics signatures o�en grow with the energy scale. On the
other hand, the validity of the e�ective �eld theory is on a more secure footing at lower energy
scales. However, we have never de�ned the ‘energy scale’ in these statements quantitatively. We
now discuss this choice for WBF Higgs production. More precisely, we ask which observable x

1. can isolate phase-space regions with interesting NP signatures with a cut x > xmin, and
simultaneously

2. ensures the EFT validity with a cut x < xmax.

We compare the observables

x ∈ {q, pT , j1, pT , j2, pT ,h} . (3.69)
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Figure 3.8: Trade-o� between sensitivity to new physics signatures and EFT validity in di�erent
WBF distributions. We plot the signi�cance of expected vector triplet signals (le�:
S/B, right: S/

√
B) against the theoretical uncertainty ∆theo representing the EFT

error. Each point corresponds to a selection window xmin < x < xmax in one of the
four momentum observables x ∈ {q, pT , j1 , pT , j2 , pT ,h}. �e lines guide the eye to
the best-performing cut windows on these variables.

As discussed above, they all provide probes of the momentum transfer through the intermediate
vector bosons.
For each observable x we scan over values of xmin and xmax. For each window (xmin, xmax)we

calculate the predictions for the parton-level WBF process de�ned in Equation (3.18) for the SM,
the vector triplet benchmark point T1, and the corresponding υ-improved EFT description. We
reject windows that only leave a signal cross section of less than 20  before Higgs decays. We
then estimate the signi�cance of the vector triplet signal over the SM background, disregarding
non-Higgs backgrounds or detector e�ects for our toy study. In a measurement limited by
systematic uncertainties, the relevant quantity is

S
B
(xmin, xmax) = ∣

σvector triplet − σSM
σSM

∣ , (3.70)

while for a statistics-limited analysis we have to consider

S
√
B
(xmin, xmax) =

√
L ∣

σvector triplet − σSM
√σSM

∣ . (3.71)

For our simple illustration we pick an integrated luminosity times Higgs branching ratio times
e�ciencies of L × BR×ε = 30 fb−1. For each window (xmin, xmax) we also calculate the theory
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uncertainty that quanti�es the EFT error in this kinematic region as

∆theo(xmin, xmax) = ∣
σEFT − σvector triplet

σvector triplet
∣ . (3.72)

�e question is for which observable x we expect signi�cant new physics signatures, i. e. large
values of S/B and S/

√
B, while keeping the EFT error ∆theo small. We show the results of our

scan in Figure 3.8. �e momentum transfer q as well as the leading tagging jet’s pT de�ne
kinematic regions with the highest signi�cance for a given theoretical uncertainty ∆theo. �is
indicates that as long as q is not directly accessible, the transverse momentum of the leading
tagging jet indeed provides the best probe of the momentum 
ow through the WBF process,
and justi�es our choice of observables in the previous section.

.. To square or not to square

Di�erential cross sections are proportional to the squared matrix element. In our EFT approach,
we have

∣MEFT∣
2
= ∣M4∣

2

´¹¹¸¹¹¹¶

O (1)

+ 2 ReM∗
4M6

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

O (1/Λ2)

+ ∣M6∣
2
+ 2 ReM∗

4M8
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

O (1/Λ4)

+O (1/Λ6) , (3.73)

where the subscripts inMd denote the dimension of the operators in the amplitude, i. e.M4
is the SM amplitude andM6 contains one dimension-six interaction. �e squared amplitudes
from dimension-six operators contribute at the same order in the EFT expansion in 1/Λ as
the leading contributions from dimension-eight operators. �is raises the question whether
these squared terms should be included in calculations when dimension-eight operators are
ignored [180, 183, 194, 195, 267–269].
In a top-down perspective, i. e. when the underlying physics is known, the answer depends

on the typical coupling strengths of the underlying physics. At least for tree-level e�ects, the
Wilson coe�cients of both dimension-six and dimension-eight operators will generally contain
two couplings of the heavy �eld, fi ∼ g2UV, and we have to compare the terms

∣M6∣
2
∼
g4UV
Λ4 vs. 2 ReM∗

4M8 ∼
g2SM g2UV
Λ4 , (3.74)

where gSM denotes a typical SM coupling. In strongly coupled scenarios with gUV > gSM,
we therefore expect the squared dimension-six terms to dominate over the dimension-eight
contributions; it is then perfectly justi�ed to include the squared dimension-six term, but no
dimension-eight operators. In more weakly coupled models with gUV ∼ gSM, the two should
approximately contribute equally. �e size of the squared dimension-six terms can then be seen
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Figure 3.9: WBF distributions with (‘D62’) and without (‘D6’) the squared amplitudes from
dimension-six operators in benchmarks T1 (le�) and T4 (right). �e right panel
zooms in on the region where leaving out the squared dimension-six terms leads to
a negative cross section. �e shaded error bands give the statistical uncertainties.

as an estimate for the size of the missing higher orders in the EFT expansion, and therefore as
an indicator for the validity of the EFT approach [194].
Of course, in practice we do not know the coupling strength of UV physics. Generally dis-

carding the squared dimension-six terms will degrade the EFT performance at least for strongly
coupled scenarios. Similarly, using the size of the squared dimension-six amplitude as a universal
theory error in global �ts introduces an unnecessary theory dependence in the results.
Note also that the argument around Equation (3.74) relies on the assumption that— except

for the typical couplings and the suppression scale Λ—all amplitudes have approximately the
same size. But in phase-space regions where the dimension-four contribution is suppressed, the
dimension-six squared term can easily be larger than the interference between the SM and the
dimension-eight amplitude, even if the EFT expansion in υ/Λ holds and higher-dimensional
operators are negligible. One example is Higgs pair production with its accidental cancella-
tion between the two SM contributions, as discussed in Section 2.1.2 and demonstrated in
Section 3.3.2.
If we consider the dimension-six Lagrangian not as the leading term of a consistent e�ective

�eld theory, but rather as a phenomenological parametrisation describing a vast range of LHC
Higgs signatures, the counting argument becomes irrelevant and the square of dimension-six
terms should always be included.
Finally, from a technical perspective the squared dimension-six terms are necessary to guaran-
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tee positive cross sections. Without them, the expected rate can become negative in high-energy
tails or in other regions of the phase space where the SM predictions are small.
Figure 3.9 demonstrates these considerations, again with the example of WBF Higgs produc-

tion in the vector triplet model. �e squared dimension-six terms improve the agreement with
the full model, and can be necessary to avoid negative rates at high jet pT .
To conclude, a simple expansion in 1/Λ suggests that the square of dimension-six amplitudes

should not be taken into account in calculations within the dimension-six framework. But this
argument is only valid if the underlying physics is weakly coupled and in phase-space regions
with sizeable contributions from the SM. In these situations no harm is done by including the
squared dimension-six terms. Since their inclusion can improve the EFT validity in many other
scenarios and is necessary to guarantee positive cross sections, we recommend to include these
terms in most situations.

.. Limit setting

An important purpose of the dimension-six Lagrangian is to act as an intermediate parametrisa-
tion in the process of using Higgs measurements to set exclusion limits on the parameter space
of speci�c models. We now test explicitly if limits derived in this way agree with constraints
directly calculated in the full model.
We follow a simpli�ed limit setting procedure. Expected exclusion limits on the vector triplet

in the absence of a signal are calculated, either directly based on the full model, or �rst on
the dimension-six Wilson coe�cients and then translated onto the full model. Motivated by
the discussion in the previous section, we also calculate limits on the dimension-six Wilson
coe�cients without taking into account the squared dimension-six contributions, and again
translate the results to the vector triplet parameters. As a process we consider WBF Higgs
production as given in Equation (3.18) and multiply the total Higgs production cross sections
with a branching ratio BR(h → 2ℓ2ν) ≈ 0.01. We disregard non-Higgs backgrounds as well as
parton-shower or detector e�ects. Our limits are based on expected event counts in two high-
energy bins of the pT , j1 distributions. We de�ne a parameter point as excluded if S/

√
S + B > 2.

While this statistical analysis is not designed to be realistic, it illustrates how the validity of our
dimension-six approach a�ects possible limits.
We consider a two-dimensional plane in the parameter space of the vector triplet model. It is

spanned by the mass mξ and a universal coupling rescaling c, and we choose the couplings as

gV = 1 , cH = c , cF =
g2V
2g2

c , and cHHVV = c2 , (3.75)

such that the Wilson coe�cients fϕ,2, fϕ,3, and ft vanish,

fWW = fBW =
c2

2g2
, and fW = −

c2

g2
. (3.76)
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Figure 3.10: Toy limits on the two-dimensional slice of the vector triplet parameter space de�ned
in Equation (3.75). We show the analysis based on the event numbers in 150 GeV <

pT , j1 < 300 GeV (le�) and based on the tail pT , j1 > 300 GeV (right).

In this parameter plane, all amplitudes from dimension-six operators scale with c2/m2
ξ. Our

perturbative calculation does not make sense for very strongly interacting systems, so we limit
our analysis to Γξ/mξ < 1/4.
�e resulting toy limits are shown in Figure 3.10. Based on event numbers in the range

150 GeV < pT , j1 < 300 GeV, constraints calculated directly in the full model and EFT limits
translated to the vector triplet agree very well. �e inclusion of the dimension-six squared terms,
however, can be important for this agreement. With more statistics, the di�erences between
the various procedures become smaller, and ultimately the question of whether the squared
dimension-six amplitudes should be taken into account is rendered irrelevant.
Larger di�erences appear when we use the information from the high-energy tail pT , j1 >

300 GeV to constrain vector bosons with masses down to mξ ≳ 500 GeV. �is lack of a scale
hierarchy does not improve with more statistics. �e high-energy tail is also more sensitive to
the square of dimension-six terms.

. Conclusions

�e dimension-six operators of linear Higgs e�ective �eld theory provide a theoretically well-
de�ned, largely model-independent, and phenomenologically powerful framework to paramet-
rise deviations from the Standard Model. However, the validity of the EFT approach relies on a
gap between the experimental momentum transfer and the mass scales of the probed models of
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new physics. �e limited precision of the LHC Higgs measurements can guarantee such a clear
scale hierarchy only under the additional assumption that the underlying physics is strongly
coupled. For moderately weakly to moderately strongly coupled models, these analyses are
sensitive to new physics scales ranging from the electroweak scale to approximately one TeV,
casting doubt on the validity of the EFT approximation.
In this chapter we have studied the usefulness of the e�ective theory for LHC Higgs measure-

ments by comparing di�erent complete models of new physics to their descriptions in terms of
dimension-six operators. Our comparison included a singlet extension of the Higgs sector, a
two-Higgs doublet model, scalar top partners, and a heavy vector triplet, focusing on parameter
ranges relevant for the LHC.We analysed Higgs couplings, total production rates, and kinematic
distributions for the main Higgs production modes and representative decay channels.
A naive construction of the dimension-six model, where the e�ective theory is matched to

the full model in the unbroken phase of the electroweak symmetry, con�rms the concerns based
on an estimate of the energy scales: such a dimension-six approximation does not describe the
phenomenology of many models adequately. In Higgs couplings and total production rates, the
discrepancies between the full model and its e�ective counterpart are of the order of υ2/Λ2,
where Λ is the new physics scale. In the high-energy tails of distributions, the EFT error even
scales with E2/Λ2. For many weakly coupled scenarios relevant for LHC Higgs measurements,
this implies an unacceptably large error.
But this is not the end of the story. As we discussed at length in Section 3.2, matching the

dimension-sixmodel to the full theory is not unambiguous. First, instead of setting thematching
scale Λ to the intrinsic new physics scale in the Lagrangian, we can use the actual physical
masses a�er electroweak symmetry breaking, including contributions from the electroweak
VEV. Second, we can express the Wilson coe�cients of the dimension-six operators in terms of
physical quantities such as mixing angles instead of Lagrangian parameters. �ese alternative
choices, which we collectively call ‘υ-improved matching’, amount to matching the EFT in the
broken phase of the electroweak symmetry.
While a υ-improved EFT construction may be unconventional from a purely theoretical

perspective, expressing quantities in physical masses and mixing angles is a natural choice from
a practical point of view. It can be interpreted as a partial absorption of the dimension-eight and
higher operators of the form (ϕ†ϕ)nOi into the Wilson coe�cients of dimension-six operators
with the replacement ϕ†ϕ → υ2/2. In this way, it can improve the e�ective description where the
expansion in υ/Λ converges slowly for the default matching; it cannot help in high-energy tails
where E/Λ becomes large. Note that υ-improvement does not change the form of the e�ective
operators, nor does it a�ect their phenomenology, or the way that experimental collaborations
should set limits on operators. It purely a�ects the interpretation of Wilson coe�cients in terms
of model parameters.
We �nd that with a υ-improved matching procedure the dimension-six operators provide an
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Model Process EFT failure

rates kinematics matching

singlet on-shell ggF, WBF, Vh ×

o�-shell WBF (×) ×

hh × × ×

2HDM on-shell ggF, WBF, Vh (×) ×

o�-shell h → γγ (×) ×

hh × × ×

top partners WBF, Vh (×) (×)
vector triplet WBF (×) ×

Vh (×) ×

Table 3.15: Possible sources of failure of the dimension-six Lagrangian in Higgs observables. In
addition, new light resonances contributing to the same �nal states present an obvious
breakdown of the e�ective description. We use parentheses where deviations appear,
but are unlikely to be observed in realistic scenarios.

adequate description in almost all scenarios. �e exceptions that con�rm the rule are summar-
ised in Table 3.15. �e singlet and doublet extensions of the Higgs sector lead to simple shi�s
of the SM Higgs couplings, e�ects mostly well captured by the corresponding dimension-six
operators. �e e�ective description struggles with shi�s of the Higgs-gauge couplings in the
2HDM, which only appear at dimension eight in the EFT. A more dramatic breakdown occurs
in Higgs pair production, where two types of SM diagrams approximately cancel and o�-shell
contributions from new resonances have a large impact. With the scalar top partners, we illus-
trate that loop e�ects in Higgs-gauge couplings are either too small to be relevant for the LHC,
or require light new particles and large couplings, in which case the e�ective description clearly
breaks down. �e vector triplet model generates interesting kinematic e�ects in Vh and WBF
Higgs production at tree level. A υ-improved dimension-six model can describe these e�ects
over a large part of the phase space for realistic scenarios, breaking down only in the high-energy
tails of certain kinematic distributions. Finally, the e�ective theory fails to describe new light
resonances. Such a signature at the LHC would be an obvious signal to switch to an appropriate
simpli�ed model.
Focusing onHiggs production in weak boson fusion in the vector triplet model, we proceeded

with a set of practical questions. First, we studied how the momentum transfer in weak boson
fusion can be de�ned and measured, con�rming the established notion that the transverse
momenta of the tagging jets provide the most useful probe of the energy 
ow. We discussed
the role of squared dimension-six amplitudes, which contribute to cross sections at the same
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order in the EFT expansion as the leading e�ects from the neglected dimension-eight operators.
Nevertheless, these squared terms can improve the performance of the dimension-six model in
many cases and should in general be included in calculations from a bottom-up perspective.
We concluded our discussion of the vector triplet model with a brief demonstration of how the

validity of the dimension-sixmodel a�ects the setting of exclusion limits in practice. �e e�ective
theory is less reliable when very high-energy events are taken into account. �is suggests that
experiments should constrain Wilson coe�cients not only with the full event samples, but also
with additional upper bounds on the momentum transfer; alternatively, momentum-dependent
theory uncertainties can be assigned to the events [270].

With the limited precision of the LHC, the EFT approach is not guaranteed to describe all
potential signatures of new physics in Higgs measurements accurately. Nevertheless, we have
demonstrated that the dimension-six model works remarkably well for a wide range of models,
parameter choices, and observables in single Higgs production. Key to this good performance is
a suitable matching procedure which takes into account subleading contributions from theHiggs
VEV. �is does not present a complication for an experimental �t of dimension-six operators to
LHC Higgs data, it is purely a theoretical aspect for the interpretation of the results.
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Chapter
Better Higgs measurements through
information geometry

With the results of the last chapter, we rest assured that many potential signa-
tures of new physics in Higgs observables can be parametrised by dimension-six
operators. �e next question is how the corresponding Wilson coe�cients can be

measured as precisely as possible. In this chapter we develop statistical tools based on informa-
tion geometry that can help to optimise such measurements.
A�er an introduction in Section 4.1, in Section 4.2 we summarise the statistics of the measure-

ment process, de�ne the Fisher information, and discuss what constitutes an optimal measure-
ment. In Section 4.3 we apply these general ideas to LHC physics and develop an algorithm to
calculate the Fisher information in particle physics processes. We also discuss some aspects of
information geometry particular to e�ective �eld theories. In Section 4.4 we use our formalism
to understand how dimension-six operators can be optimally measured in a range of Higgs chan-
nels. We demonstrate how our approach can be extended to describe systematic uncertainties
and link it to other statistical tools in Section 4.5. Finally, we give our conclusions in Section 4.6.
�e majority of the research presented in this chapter was previously published in Refer-

ence [4]. Most of the results and their presentation, including many plots and tables as well as
part of the text, are identical to the content of that article. �ey are supplemented with a few
unpublished results.

. Introduction

Having established that the dimension-six operators of the linear Higgs e�ective theory cap-
ture the indirect signatures of many scenarios of new physics, we now analyse how the Higgs
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4 Better Higgs measurements through information geometry

properties (in the EFT the Wilson coe�cients fi/Λ2) can be measured most e�ciently at the
LHC. �is is a highly non-trivial problem for two reasons: �rst, the Higgs properties form a
high-dimensional parameter space. In Section 2.3.2 we showed that, even a�er removing re-
dundant operators and generously neglecting those with tight limits from electroweak precision
measurements or 
avour constraints, we are le� with 13 dimension-six operators relevant for
Higgs physics. �e Higgs-gauge interactions, for instance, are a�ected by seven of these operat-
ors, equivalent to a range of di�erent kinematic structures or forms of momentum dependence.
�e second challenge is due to the complicated kinematics of some of the Higgs production
channels and decay modes. For example, Higgs production in weak boson fusion with a decay
h →W+W− → (ℓ+ν)(ℓ−ν) is a 2→ 6 process even at parton level, made evenmore complicated
by additional QCD radiation. Such a high-dimensional phase space de�nes a large number of
kinematic observables, and it is o�en not obvious which of them carry information on the theory
parameters of interest. �e relation between the high-dimensional parameter space and the po-
tentially high-dimensional phase space is (at parton level) encoded in the scattering amplitudes
or Feynman diagrams, of which there can easily be hundreds for a given process.

Analyses of collider signatures with traditionalmethods typically begin with simple selection
cuts on standard kinematic observables such as energies, momenta, angles, or invariant masses.
Background contributions are estimated with simulational or data-driven methods. �e �nal
statistical analysis o�en relies on total event counts or on histograms of kinematic observables.
�ese techniques are motivated by physical arguments, all their steps are transparent, and they
are relatively easy to reproduce, even for theorists. �ey work well for simple signatures, such
as a resonance peak on top of a smooth background, as in the discovery of the g g → h → γγ
signal [17, 18]. �is approach requires a careful tailoring to each problem, and does not scale
well with the complexity of the theory questions or of the kinematics of the processes.

At the other end of the spectrum, the LHC collaborations increasingly rely on measurement
strategies based on high-level statistical tools [271]. Some of them are based on the structure
of the matrix elements contributing to the process. In the matrix element method [50–59],
the di�erential cross section expected from a given model hypothesis at a speci�c phase-space
point, or the ratio of two such expected rates, is directly used as an observable. �e detector
response is estimated by convoluting this expression with suitable transfer functions. Shower
deconstruction [60, 61] and event deconstruction [62] extend this concept to the parton shower
to take into account the information encoded in the jet substructure. �e method of optimal
observables [63–65] applies the same idea to themeasurement of a small theory parameter. All of
these tools intrinsically make full use of the information encoded in the underlying �eld theories,
but rely on an approximate description of the detector systems. Large �nal-state multiplicities
require integrating over a high-dimensional phase space and are computationally expensive.
Finally, matrix-element-based tools generally either rely on the comparison of two discrete
hypotheses or are designed for the measurement of one direction in theory space. Applying
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these methods to high-dimensional theory spaces, such as Higgs e�ective �eld theory, o�en
requires a discretisation of the theory space, which can be computationally expensive. In addition,
care has to be taken to avoid dependencies on EFT basis choices.
A second class of complex statistical tools belongs to the category of likelihood-free in-

ference [271]. �ese techniques are mostly based on (supervised) machine learning: 
exible
nonlinear functions, for example boosted decision trees or deep neural networks, are ‘trained’
to describe patterns in a set of training samples. �is approach is agnostic about the amplitudes
describing a process. �e methods with which the input samples are generated are irrelevant.
Unlike simple likelihood-based methods, these samples can be based on data or on full-
edged
Monte-Carlo simulations with a parton shower and a detailed detector simulation. New ideas
are developed at an impressive pace [28–32]. �ese tools are applied to problems at all steps of
the analysis process, ranging from tracking [33, 272] to the analysis of jet substructure [34–42],
to the discrimination between signal and background hypotheses [43–46], and �nally to the
statistical testing of model hypotheses [47–49]. For complicated problems, multivariate tools
o�en outperform traditional approaches. However, their inner structure is o�en convoluted and
not necessarily intuitive, and it is not always clear which physical structures these ‘black boxes’
are sensitive to.

With these wide range capabilities, it is increasingly important that we can understand and
characterise the information contained in particle physics processes. An e�cient estimation of
the sensitivity of measurements to new physics signatures that does not require a full simulation
of the analysis chain can help plan experiments. Moreover, the design of event selections and
analysis strategies requires clearly de�ned guidelines.
We present a novel approach to tackle these problems based on information geometry [66–

68]. It is intrinsically designed for continuous parameter spaces of arbitrary dimensionality,
independent of basis choices, andwithout the need for any discretisation of themodel hypothesis.
�ese properties are particularly convenient for measurements of Higgs properties in terms of a
large number of e�ective operators.
�e central object in our approach is theFisher informationmatrix. According to the Cramér-

Rao bound [69, 70], it quanti�es the maximum knowledge on theory parameters that we can
derive in ameasurement, independent of the analysis strategy. �is allows us to calculate the best
possible precision with which theory parameters can be measured with any multivariate black-
box analysis. Also, the Fisher information de�nes ametric in the space of theory parameters. �is
provides an intuitive geometric interpretation for the discrimination power of an experiment.
From a practical perspective, it gives us a handle on the linearisation of observables in terms of
new physics parameters, as we demonstrate in the next section.
Two objects are particularly interesting for LHC physics. First, the distribution of the di�er-

ential information over phase space de�nes the relevance of di�erent phase-space regions for
an analysis and should motivate the design of event selections. Second, we can calculate the
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information contained in individual kinematic observables and compare it to the full Fisher
information. �is determines the most important observables and allows us to compare the
power of traditional histogram-based analyses to that of modern multivariate tools.
We develop an algorithm, MadFisher, that can calculate the Fisher information for arbitrary

perturbative particle physics processes based on Monte-Carlo methods. We can calculate the
quantities outlined above, and use them to answer practical questions:

● What is the maximum precision with which continuous model parameters can be meas-
ured in a process?

● How is the information on model parameters distributed over phase space?

● How well can we measure model parameters based on individual kinematic observables,
rather than on the information in the full high-dimensional phase space?

● Which role do non-linear e�ects in the theory parameters play?

As a �rst application, we calculate the information on CP-even dimension-six operators in
WBF Higgs production with a decay into tau pairs, focusing on the kinematic structures de�ned
by the tagging jets and their sensitivity to the Higgs-gauge coupling structure. We then examine
WBF Higgs production in the four-lepton mode to see how much additional information is
contained in the decay kinematics. �e last channel we analyse is Higgs production in associ-
ation with a single top. Finally, we demonstrate how systematic uncertainties can be treated
in our approach, and compare the Fisher information to other statistical tools, including the
log-likelihood ratio.

�e Fisher information has been commonly used in the �eld of gravitational wave detection [273],
but only rarely in particle physics [274]. To the best of our knowledge, most of the tools presented
in Reference [4] and in this chapter are innovative at least for this �eld. A�er the publication of
Reference [4], these and similar ideas have received more attention [275, 276].

. Essential statistics

.. Fisher information and Cramér-Rao bound

Any measurement uses experimental data x to calculate an estimator θ̂(x) of the unknown true
value of some parameters θ. �e outcome of the experiment is described by the probability
distribution f (x∣θ0) that depends on the true value θ0, and thus the outcome of the estimator
also follows a probability distribution

f (θ̂∣θ0) = ∫dx f (x∣θ0) δ (θ̂ − θ̂(x)) . (4.1)
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4.2 Essential statistics

Two key properties of this distribution characterise the measurement. First, the bias of an
estimator is given by the di�erence between the expectation value

θ ≡ E [θ̂∣θ0] ≡ ∫dθ̂ θ̂ f (θ̂∣θ0) (4.2)

and the true value θ0. An estimator is unbiased if the expectation value is always equal to the
true value,

θ = θ0 . (4.3)

Second, the variance

var [θ̂∣θ0] ≡ E [(θ̂ − θ)2∣θ0] , (4.4)

or for more than one parameter the covariance matrix

cov [θ̂∣θ0]i j ≡ E [(θ̂ i − θ i)(θ̂ j − θ j)∣θ0] , (4.5)

provides a measure of the precision.
But how good can an estimator be? Clearly, any given experiment does not allow the measure-

ment of parameters with arbitrary precision. We can make this statement more quantitatively. If
the parameters θ i are continuous, f (x∣θ) is twice di�erentiable in them, and if we can exchange
this di�erentiation with the integration over x, we can calculate the Fisher information

Ii j(θ) = E [
∂ log f (x∣θ)

∂θ i
∂ log f (x∣θ)

∂θ j
∣θ] = −E [

∂2 log f (x∣θ)
∂θ i ∂θ j

∣θ] . (4.6)

�e Cramér-Rao bound [69, 70] then states that the covariance matrix of any estimator θ̂ is
bounded from below by the inverse Fisher information1:

cov [θ̂∣θ0]ab ≥
∂θa
∂θ i

(θ0) I −1i j(θ0)
∂θb
∂θ j

(θ0) , (4.7)

where we implicitly sum over repeated indices i, j. For an unbiased estimator, i. e. for θ = θ0,
the Cramér-Rao bound takes on the simple form

cov [θ̂∣θ0]i j ≥ I
−1
i j(θ0) . (4.8)

In the one-dimensional case, this corresponds to a typical measurement error of

∆θ ≡
√

var[θ̂∣θ0] ≥ 1/
√
I(θ0) . (4.9)

1A�er removing blind directions, i. e. eigenvectors of the Fisher information with eigenvalue zero, the Fisher
information is positive de�nite and therefore invertible.
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We sketch the proof for the Cramér-Rao bound in Appendix A.6.1.
An unbiased estimator is called ‘e�cient’ if it reaches the lower bound given by Equation (4.8)

for any value of θ0; that is, if its covariance matrix is equal to the inverse Fisher information.
�is is what we de�ne as an optimal measurement. �e Fisher information matrix Ii j hence
encodes the maximal precision with which parameters can be measured at an experiment. Large
entries in this matrix correspond to directions that can be measured particularly precisely. On
the other hand, an eigenvector of the information matrix with corresponding eigenvalue zero is
a blind direction that can never be probed by the experiment.
�ere is a subtlety to this statement. For some problems no e�cient estimators exist. �e

textbook example is the estimation of the variance parameter of the normal distribution: here
the sample variance is an unbiased estimator with minimum variance, but it does not reach the
lower bound given by Equation (4.8). Even if an e�cient estimator exists, just from the Fisher
information we do not know how to construct its form θ̂(x). However, it can be shown that
under certain regularity assumptions2, themaximum-likelihood estimator de�ned by

θ̂MLE(x) = argmax
θ

f (x∣θ) (4.10)

is asymptotically unbiased and e�cient, i. e. in the limit of large sample size it leads to the
minimum covariance matrix de�ned by the inverse Fisher information [277]. Such an estimator
always exists for the problems discussed in the following, hence the upper bound on the precision
de�ned by the Fisher information is achievable at least in the asymptotic limit. We therefore
expect that the best achievable precision in a measurement can only be signi�cantly worse than
given by the Fisher information for problems with small event numbers.

�e Fisher information has several useful properties. Unlike many other statistical tools, it
summarises the sensitivity to all directions in theory space in one matrix, making it particularly
useful for high-dimensional parameter spaces. It is additive between di�erent measurements or
between di�erent phase-space regions in the same experiment. Furthermore, a description of
experiments in terms of the Fisher information does not depend on arbitrary basis choices: it is
independent of the parametrisation of the observables x, and transforms covariantly under a
reparametrisation of the theory parameters θ → Θ(θ),

Iab(Θ) =
∂θ i
∂Θa

Ii j(θ)
∂θ j
∂Θb

. (4.11)

2One condition for this statement is the identi�ability of the model: two di�erent model parameters θa ≠ θb must
always correspond to two distinct probability distribution f (x∣θa) ≠ f (x∣θb). �is means that blind directions
and physically identical parameter choices have to be removed before the maximum-likelihood estimator is
guaranteed to saturate the Cramér-Rao bound. �is can for instance become important when new physics e�ects
can 
ip the sign of couplings, leading to the same predictions for cross sections as the SM. But these considerations
are irrelevant for the analysis of small deformations from the SM with e�ective operators in this thesis.
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In Appendix A.6.2 we explicitly show how the Fisher information can be calculated in a simple
example, and how the results can be interpreted.

.. Information geometry

As a symmetric and positive de�nite rank-two tensor, the Fisher information de�nes a Rieman-
nian metric3 on the manifold given by the theory space. �is is the underpinning of information
geometry [66–68]. In this �eld, methods from di�erential geometry are used to analyse the struc-
ture of the probability distributions, or the relation between experiment andmodels. Interpreted
as a metric, the Fisher information de�nes in�nitesimal distances

ds2 = Ii j(θ)dθ i dθ j . (4.12)

Di�erent from the conventions in di�erential geometry, we use lower indices for vectors and
sum over repeated lower indices.
First, the metric de�nes a local distance in the tangent space at some point θa. We usually

consider the distance between θa itself and some other point θb in this tangent space,

dlocal(θb; θa) ≡
√

Ii j(θa)(θb − θa)i(θb − θa) j . (4.13)

Contours of local distances dlocal(θb; θa) = d are directly related to the optimal error contours
of a measurement according to the Cramér-Rao bound. Since these distances are based on the
Fisher information at θa, they describe how unlikely it is to measure θ̂ = θb if θ0 = θa is the
true value. More precisely, if an unbiased estimator θ̂ with minimal variance (i. e. an optimal
measurement) is distributed according to a Gaussian, dlocal(θb; θa) expresses how unlikely it is
to measure θ̂ = θb if the true value is θ0 = θa, expressed in standard deviations or ‘sigmas’. In
other words, in this Gaussian approximation the distance measure is equivalent to the maximal
expected signi�cance with which θa can be excluded if θb is true.
Going beyond the tangent space, global distances between two points on the model manifold

can be de�ned along geodesics,

d(θa , θb) = min
θ(s) ∫ sb

sa
ds

√

Ii j(θ(s))
dθ i(s)
ds

dθ j(s)
ds

(4.14)

with θ(sa) = θa and θ(sb) = θb. �e shortest path θ(s) satis�es the geodesic equation

d2θ i

ds2
= −Γijk

dθ j

ds
dθk

ds
(4.15)

3�is is only true a�er removing blind directions. Otherwise, the information matrix is positive semide�nite and
de�nes a pseudometric.
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where we, for once, distinguish upper and lower indices; indices are raised and lowered with the
metric Ii j. Dots denote derivatives θ̇ ≡ dθ(s)/ds and the Christo�el symbols are de�ned as

Γi jk ≡
1
2
[
∂Ii j
∂θk

+
∂Iik
∂θ j

−
∂I jk
∂θ i

] . (4.16)

�is distance measure is symmetric, d(θa , θb) = d(θb , θa), and provides a more general notion
of discrimination power between two parameter points that does not require choosing one of
them to evaluate the Fisher information. Unlike local distances, global distances are sensitive to
how the Fisher information changes over model space, i. e. they take into account the curvature
of the geometry. From a practical perspective, this makes global distances a useful tool to track
the e�ect of higher powers in the theory parameters, as we show in Section 4.3.6.

. Tools for the LHC

�e key method with which we analyse LHC channels is the calculation of the Fisher inform-
ation with Monte-Carlo methods. We compare three di�erent types of measurements: total
cross sections, individual distributions of kinematic observables, and the full high-dimensional
kinematics of a process. A�er deriving the information content in these measurements, we
introduce the di�erential Fisher information and the information matrix pro�led over nuisance
parameters, sketch the structure of our algorithms, and discuss the application to e�ective �eld
theories.

.. Information in total rates

�e simplest LHC measurement is an event count in some �ducial region described by Poisson
statistics. As explicitly calculated in Appendix A.6.2, the Fisher information for themeasurement
of theory parameters θ in such an experiment reads

Ixseci j (θ) = L ∂σ(θ)
∂θ i

1
σ(θ)

∂σ(θ)
∂θ j

. (4.17)

Here L is the integrated luminosity and σ(θ) the total cross section as a function of the theory
parameters.

.. Information in distributions

�emost straightforward way to add kinematic features is to measure a di�erential cross section
or histogram of a kinematic observable υ, for instance a transverse momentum, energy, invariant
mass, or angle. Leaving aside systematic uncertainties, such a histogram is just a set of statistically
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independent counting experiments, each with a di�erent Poisson mean that depends on the
theory parameters in some way. �e Fisher information is hence given by

Idistributioni j (θ) = L ∑
bins b

∂σb(θ)
∂θ i

1
σb(θ)

∂σb(θ)
∂θ j

. (4.18)

Each bin b corresponds to a set of cuts υmin ≤ υ < υmax. In the limit of many small bins that
span the entire kinematically allowed range for υ, we call Equation (4.18) the information in the
distribution of υ.
�is can be trivially extended from a one-dimensional histogram of a single observable υ to a

multi-dimensional histogram of many observables v. Equation (4.18) still applies, with the bins
now spanning a multi-dimensional space of observables.
Instead of correlating two observables in a two-dimensional histogram, we can also combine

the information in two one-dimensional histograms. Assuming that the distributions of the
two observables are independent except for the total rate, we can simply calculate the combined
information as

Icombinedi j (θ) = Idistribution 1i j (θ) + Idistribution 2i j (θ) − Ixseci j (θ) . (4.19)

�is can be trivially extended to more than two histograms. For correlated observables, for
instance the transverse momenta of two di�erent particles that recoil against each other, such
a straightforward combination is not possible. In reality, most pairs of observables have some
degree of correlation, and this naive combination procedure is of limited use.
Comparing the information in di�erent distributions to each other de�nes which kinematic

observables provide probes of which directions in theory space. In practice, this can be used as
a guideline for which distributions to measure and publish.

.. Information in full kinematics

To describe the full high-dimensional kinematics of LHC processes including all correlations
and without relying on a choice of observables or binning, we use an extended likelihood ansatz,
also known asmarked Poisson process. �e observables in LHC physics consist of a total number
of events n, each of which has some high-dimensional kinematic properties xi . �e probability
distribution is given by

f (x∣θ) = Pois(n∣Lσ(θ))
n
∏
i=1

f (1)(xi ∣θ) , (4.20)

where f (1)(xi ∣θ) is the probability distribution function for a single event.
Calculating the Fisher information for this ansatz, we �nd

Ifulli j (θ) = L ∂σ(θ)
∂θ i

1
σ(θ)

∂σ(θ)
∂θ j

+ L σ(θ) E [
∂ log f (1)(x∣θ)

∂θ i
∂ log f (1)(x∣θ)

∂θ j
∣θ] , (4.21)
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adding a distribution term to the Poisson part. Typically, the single-event likelihood functions
f (1)(x∣θ) are complex expressions given by a sum of intricate amplitudes. Instead of calculating
their derivatives analytically, we rely on aMonte-Carlo approach, approximating the phase-space
integral with a sum over events:4

∫ dx f (1)(x)→ ∑
events k

∆σk
σ

. (4.22)

�is turns the Fisher information into the familiar form of a sum of Poisson terms for the
individual events,

Ifulli j (θ) = L ∑
events k

∂∆σk(θ)
∂θ i

1
∆σk(θ)

∂∆σk(θ)
∂θ j

. (4.23)

Calculating the Fisher information thus only requires the event weights and their derivatives with
respect to the theory parameters as input, and can be implemented with standard Monte-Carlo
tools as we explain in Section 4.3.7.
�e total Fisher information in Equation (4.23) de�nes the maximum precision with which

theory parameters can be constrained— independent of the analysis strategy. By comparing this
matrix to the Fisher information in kinematic distributions as de�ned in 4.3.2, we can calculate
how much discrimination power is lost in a traditional histogram-based analysis compared to a
hypothetical ideal multivariate analysis.

.. Distribution of differential information

FromEquation (4.23) it is obvious that the Fisher information is additive between di�erent phase-
space regions. By restricting the sum to those events passing a certain selection requirement,
we can calculate the Fisher information a�er di�erent cuts. In particular, we can calculate the
Fisher information contained in di�erent bins of a kinematic observable υ. In the limit of many
small bins this de�nes the di�erential Fisher information dIfulli j /dυ. Here Ifulli j uses the full, high-
dimensional kinematics of the event, but we are able to study how it is distributed with respect
to υ. Integrating this di�erential information over υ, or summing over the bins, restores the total
Fisher information de�ned in Equation (4.23).
�e distribution of the di�erential information de�nes the important phase-space region

for measurements and should drive the design of event selections: it allows us to calculate the
information loss from kinematic cuts, and to quantify the trade-o� between signal purity and
maximal information.
4In its simplest form, this step implicitly assumes that we can experimentally distinguish between all phase-space
points. Resolution e�ects and undetected particles can be taken into account with suitable transfer functions [278–
280] or with a simple smearing as discussed in Section 4.3.7.
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Note the di�erence between the information in a kinematic distribution discussed in Sec-
tion 4.3.2, and the distribution of the full information over phase space discussed here. �e
former answers the question of how well we can constrain theory parameters by measuring
the distribution of one kinematic variable instead of the full kinematics. �e latter describes
how well we can constrain theory parameters using the full, high-dimensional kinematics of the
event, but only taking into account the events in a certain slice of the phase space.

.. Nuisance parameters and profiled information matrix

So far our approach was based on the assumption that event numbers are described by Poisson
statistics, where the mean as a function of the theory parameters is known exactly. We now
extend it to include systematic and theory uncertainties. �e parameter space then consists of
nuisance parameters νi in addition to the theory parameters θ i . For concreteness, we assume
that ν = 0 corresponds to the best estimate of the nuisance parameters. �e knowledge on the
nuisance parameters is encoded in constraint terms added to the likelihood, which subsequently
appear in the Fisher information. If, for instance, the kth parameter is a nuisance parameter
with a Gaussian constraint term with width σk , the additional term in the Fisher information
reads

Ii j(θ , ν) = ⋅ ⋅ ⋅ +
δikδ jk
σ2k

(4.24)

without sum over k. Local and global information distances now refer to the combined space of
theory and nuisance parameters (θ , ν).
In practice we are interested in the sensitivity of an experiment on some parameters of interest,

for instance the theory parameters, without explicit dependence on the nuisance parameters. In
a Bayesian approach, one can assign a prior probability distribution to the nuisance paramet-
ers and integrate (‘marginalise’) over them. Instead, we follow a conservative method that is
consistent with a frequentist de�nition of statistics and does not require the choice of a prior.
Loosely speaking, we calculate the minimum sensitivity to theory parameters for any value of
the nuisance parameters within their constraints (i. e. for nuisance parameters that are ‘allowed
to 
oat’). �is concept of ‘pro�ling’ over nuisance parameters is well established for instance for
hypothesis tests based on the likelihood ratio [281].
Applying this idea to the geometric picture, we de�ne a pro�led local distance between two

points θa and θb as

dpro�led(θb , θa) = minν dlocal((θb , ν); (θa , 0)) . (4.25)

�e contours of the local distance (θa , 0) de�ne an ellipsoid around this point. �e contours of
the pro�led distance are just the parallel projection of this ellipsoid onto the subspace spanned
by the theory parameters (but not the nuisance parameters).
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Since the parallel projection of an ellipsoid is again a (less-dimensional) ellipsoid, the pro�led
distances can be described by a metric in the physical subspace. Instead of minimising the
distance itself, we can therefore absorb the minimisation procedure into the metric and de�ne
a pro�led Fisher informationmatrix. For simplicity, we assume the last of n parameters to be
the only nuisance parameter. �e Fisher information including this nuisance parameter then
has the form

Ii j = (
Itheory m
mT s ) , (4.26)

where Itheory is the information matrix restricted to the n − 1 theory parameters, the vectorm
describes the e�ect of the nuisance parameters on the sensitivity to the theory parameters, and s
re
ects the constraints on the nuisance parameter.
To calculate the pro�led Fisher information, we start from the ellipsoid

θ i Ii jθ j = d . (4.27)

�e projection is described by a set of tangents

θ = (
θtheory

t
) , (4.28)

where θtheory de�nes the coordinates in the parameters of interest and t parametrises the tangent
along the nuisance direction. �e tangents on the ellipsoid have to satisfy Equation (4.27) with
exactly one solution for t (if there are two solutions, they intersect the ellipsoid; if there is none,
they never touch it). �is is the case if the discriminant describing this quadratic equation is
zero. A�er a brief calculation, this can be brought to the form

θtheorya (Itheoryab −
mamb
s

) θtheoryb = d . (4.29)

�e Fisher information in Equation (4.26) pro�led over the nuisance parameter is therefore
given by the (n − 1) × (n − 1)matrix

Ipro�ledab = Itheoryab −
mamb
s

. (4.30)

�is can be easily generalised to multiple nuisance parameters. For a Fisher information
matrix of the block form

Ii j = (
Itheory (Imix)T
Imix Inuisance) , (4.31)
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the pro�led Fisher information matrix reads [276]

Ipro�led = Itheory − (Imix)T (Inuisance)−1 Imix . (4.32)

In addition to the geometric explanation given above, this result can be understood from the
Cramér-Rao bound: the upper le� block of the inverse of Equation (4.31) is equal to the inverse
of Equation (4.32).
�emost obvious applications for this tool are systematic and theory uncertainties; we demon-

strate this in Section 4.5.1. �e pro�led Fisher information can also be used to quantify the sensit-
ivity on one parameter when other theory parameters are of no interest. It allows us for instance
to quantify how well genuine CP-violating e�ects [282, 283] can be measured by pro�ling over
all relevant sources of CP-even new physics.

.. Geometry of effective field theories

We calculate the Fisher information in terms of the dimension-six operators of linear Higgs
e�ective �eld theory. As theory parameters we pick a dimensionless rescaling of the Wilson
coe�cients,

θ i =
fi
Λ2 υ

2 , (4.33)

such that the SM corresponds to the origin θ = 0.
�rough the Cramér-Rao bound in Equation (4.9), the Fisher information in a given direction

in theory space I de�nes a maximal precision ∆θmin = 1/
√
I with which this direction can be

measured. For an EFT this can directly be translated into a new physics reach

Λ
√
f
=

υ
√
∆θmin

= υ I1/4 . (4.34)

�emaximal probed energy scale Λ depends on the size of theWilson coe�cients f and thus on
the typical couplings of the underlying theory, in agreement with the discussion in Section 3.1.

Local and global geometry have an interesting and useful interpretation when applied to EFTs.
Recall that squared amplitudes from dimension-six operators contribute to the cross section
at the same order as the leading e�ects from the neglected dimension-eight operators. In Sec-
tion 3.4.2 we argued that under the assumptions that the new physics couplings are of the same
size as the relevant SM couplings and that the dimension-four amplitudes are not accidentally
suppressed, the size of the dimension-six squared term can be used as an estimate for the error
of the EFT approximation. In general, the dimension-six squared terms can be larger than the
dimension-eight e�ects, and they are necessary from a technical point of view to guarantee
positive cross sections.
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4 Better Higgs measurements through information geometry

As can be seen from Equation (4.23), the Fisher information at the SM Ii j(0) only measures
the O (θ) terms in the di�erential cross sections and is insensitive to higher orders. In other
words, information distances in the tangent space at the SM only take into account the leading
dimension-six operator e�ects at O (1/Λ2). On the other hand, the dimension-six squared
contributions do appear in the Fisher information away from the SM and therefore in global
distances as given in Equation (4.14). �e di�erence between linearised distances based on the
SM Fisher information metric and global distances measured along geodesics, related to the
curvature of the theorymanifold, therefore provides an intuitive measure of the role ofO (1/Λ4)

contributions.

Di�erent bases for e�ective operators are physically equivalent, and the directions in theory
space de�ned by the basis operators Oi do not have a special meaning. Any statistical tool
that singles out individual directions or parameter points in the model space can introduce a
bias towards a speci�c operator base. In the worst case, it can be blind to e�ects on diagonal
directions, e. g. alongOi +O j. Our approach, based on a geometric description of the model
space, does not su�er from these problems.
In particular, the Fisher information transforms covariantly under basis transformations, see

Equation (4.11). Eigenvalues, traces, and determinants of the Fisher information are invariant
under basis rotationsOi → Ri jO j with R ∈ O(n). RescalingsOi → αOi change the eigenvalues
of individual informationmatrices. However, in our analysis we will usually compare the inform-
ation in di�erent approaches relative to each other, with ratios such as det I1/det I2 remaining
invariant even then.

.. The MadFisher algorithm

�e Fisher information matrices discussed above are calculated with a combination of existing
Monte-Carlo generators and our own algorithm, which we nameMadFisher. Our setup consists
of three steps:

1. Monte-Carlo tools are used to generate event samples, i. e. sets of phase-space points x
with the corresponding di�erential rates ∆σ(x∣θn), for a set of basis parameter points θn.

2. With a morphing technique [284] we calculate the di�erential rates ∆σ(θ) for arbitrary
parameter points θ.

3. We calculate the Fisher information matrices as derived in the previous sections.
First, for the event generation we use MadMax [285, 286]. �is add-on to MadGraph 5 [217]

allows us to simultaneously calculate the di�erential rates ∆σ(x∣θn) for di�erent parameter
points θn using the same phase-space grid.5

5An alternative tool for this step, which supports a variety of transfer functions to describe the detector response, is
MadWeight [278–280].
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We simulate the e�ective dimension-six model with our own FeynRules [218] model �le,
which does not truncate operator e�ects atO (1/Λ2). MadMax requires �xed renormalisation
and factorisation scales, which we set following Reference [3]. To keep the calculation times
manageable, we restrict some processes to the dominant sub-processes, for instance to initial-
state u and d quarks in theWBF case. We then normalise theHiggs rates to the recommendations
of the LHC Higgs Cross Section Working Group for the total cross sections [3], calculating the
e�ect of the di�erent acceptance regions with MadGraph 5. Background processes are simply
rescaled to MadGraph predictions.

For this �rst proof of concept, we restrict our simulation to the parton level. �e phenomeno-
logically most drastic e�ect of the detector response is the smearing of narrow resonance peaks
in invariant mass distributions. �is is taken into account with the procedure outlined in Ref-
erences [285, 287]: we replace the propagator of the corresponding s-channel particle with the
square root of a smearing function, for instance a Gaussian or double Gaussian with parameters
�tted to ATLAS and CMS results. Other detector e�ects are not included in the �rst studies
presented here. However, a more realistic description of the experimental resolution can easily
be achieved by including a complete set of transfer functions, similar to the usual approach for
the matrix element method [278–280].

�e second step is based on the fact that the di�erential cross section can be decomposed into a
�nite set of components, representing the di�erent squared amplitudes and interference terms:

∆σ(x∣θ)∝∑
p
∣∑
i
w̃p,i(θ)Mp, i∣

2

=∑
p
∑
i , j
w̃∗p,i(θ)w̃p, j(θ) (M

†
p, iMp, j) (x)

∝∑
c
wc(θ)∆σc(x) . (4.35)

Here p labels di�erent sub-processes (which do not interfere with each other), while i, j denote
the di�erent amplitudes contributing to a sub-process. In the last step we collect the various
terms into components c.

If the model parameters θ contribute additively and multiplicatively to vertices, as is o�en the
case for e�ective �eld theories as discussed in Section 2.3.3, the functions wc are polynomials
in the di�erent θ i . As a simple example, consider a process with just one vertex, with known
coupling g in the SMand newphysics amplitude proportional to the parameter θ. �e di�erential
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cross section is then proportional to

∆σ(x∣θ)∝ ∣gMSM + θMNP∣
2

= g2 ∣MSM∣
2
+ 2 g θ ReM†

SMMNP + θ
2
∣MNP∣

2

∝ g2
´¸¶
w1(θ)

∆σSM(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆σ1(x)

+ 2 g θ
´¸¶
w2(θ)

∆σinterference(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆σ2(x)

+ θ2
´¸¶
w3(θ)

∆σNP(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆σ3(x)

. (4.36)

In the EFT language, the di�erent contributions correspond to di�erent powers of the suppres-
sion factor 1/Λ. For more contributing couplings, or if more than one vertex is a�ected by
these couplings, the number of components increases as shown in Table 4.1. One noteworthy
exception to the polynomial form of wc is the dimension-six operator Oϕ,2. As discussed in
Section 2.3.3, it rescales all Higgs interactions non-linearly with 1/

√
1 + fϕ,2υ2/Λ2 and does not

respect the counting in terms of 1/Λ given in Table 4.1. In any case, the weightswc(θ) are known
analytical functions of the model parameters.
In Equation (4.35) the contributions from the di�erent components ∆σc(x) are still unknown.

To calculate them, note that for a set of basis parameter points θn one can read Equation (4.35)
as a matrix multiplication:

∆σn(x) =Wnc ∆σc(x) (4.37)

with ∆σn(x) ≡ ∆σ(x∣θn) and the matrix

Wnc ≡ wc(θn) . (4.38)

For a suitable choice of basis parameters, we can invert this equation to

∆σc(x) =W−1
cn ∆σn(x) . (4.39)

Vertices Components Components at EFT orders

O (Λ0) O (1/Λ2) O (1/Λ4) O (1/Λ6) O (1/Λ8)

1 (n + 1)(n + 2)
2

1 n n(n + 1)
2

2 (
n + 4
4 ) 1 n n(n + 1)

2
(
n + 2
3 ) (

n + 3
4 )

Table 4.1: Number of components contributing to di�erent processes, depending on the number
of model parameters n and on the number of modi�ed vertices. Two a�ected vertices
correspond, for instance, to a Higgs process where all n model parameters a�ect both
Higgs production and decay. We also give the number of components for each order
in 1/Λ in the EFT case.
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Plugging this into Equation (4.35), we have

∆σ(x∣θ) =∑
c,n
wc(θ)W−1

cn ∆σn(x) . (4.40)

So with the pre-calculated matrixW that depends on the basis parameter points, the analytically
known weight functions wc(θ), and the event samples for the basis parameters ∆σn(x), we can
exactly calculate the di�erential rates ∆σ(x∣θ) for arbitrary values of θ, without having to rerun
the Monte-Carlo simulation.
Derivatives with respect to the theory parameters can easily be calculated numerically,

∂∆σ(θ)
∂θ i

≈
∆σ(θ + εi) − ∆σ(θ − εi)

2∣εi ∣
(4.41)

with a small vector εi in i-direction.

WithEquations (4.40) and (4.41) it is straightforward to calculate the Fisher informationmatrices.
For the total Fisher information, we calculate the information in each event with Equation (4.23)
and then sum the results. For the information in total rates and in individual distributions, we
�rst sum the weights to get the total cross sections, and calculate the Fisher information with
Equations (4.17) and (4.18).
Finally, we calculate local and global distances in theory space as given in Equations (4.13) and

(4.14). �e latter are calculated in analogy to free fall in general relativity: a starting point and a
set of directions in parameter space de�ne the initial conditions, from which we numerically
calculate distances along curves de�ned by the geodesic equation.

To summarise, based on a single run of a Monte-Carlo simulation withMadMax, our MadFisher
algorithm can calculate the Fisher information matrices Ii j(θ) for arbitrary values of the theory
parameters θ. One can choose to determine the information in the total rate, in individual
kinematic distributions, or in the full process kinematics of arbitrary dimensionality. It can
be calculated based on the full phase space, a�er selection cuts, or di�erentially in kinematic
variables.

. Higgs measurements

We now apply these tools to calculate the information on dimension-six operators in Higgs
measurements. �ree processes are considered: Higgs production in weak boson fusion with a
decay into tau pairs or four leptons, and Higgs production with a single top.
For this �rst demonstration we neglect both systematic and theory uncertainties; we later

show how these can be added in Section 4.5.1. �e maximum precision on Wilson coe�cients
calculated in this section is therefore optimistic. Our main focus here is the relative comparison
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of the information in di�erent phase-space regions or in di�erent distributions. �ese are not
a�ected by systematic uncertainties that dominantly concern the overall rate.

.. Weak-boson-fusion Higgs to taus

�e �rst question we tackle with our information geometry approach is what can be learned
about higher-dimensional operators from the non-trivial kinematics of weak-boson-fusion
production. As a decay we include a simple fermionic two-body decay h → ττ [79, 288], see
Figure 4.1. For our proof of concept we stick to a parton-level analysis at leading order. �e
dominant irreducible backgrounds are QCD Z j j production and electroweak Z j j production,
both with the decay Z → ττ, and Higgs production in gluon fusion with h → ττ.
We do not simulate tau decays, but multiply the rates with the branching ratios for the semi-

leptonic di-tau mode ττ → (ℓνν)( j jν), and assume that the di-tau system can be reconstructed
with a reasonable resolution for mττ , for instance with the collinear approximation [71, 79, 288].
We take the experimental mass resolution into account by smearing the mττ distributions. �e
smearing functions and their parameters are estimated from Figure 1a of Reference [289] and
are described in Section A.6.3. Otherwise, no detector e�ects are included. We require only
loose acceptance cuts

pT , j > 20 GeV , ∣η j∣ < 5.0 , ∆η j j > 2.0 ,
pT ,τ > 10 GeV , ∣ητ ∣ < 2.5 , (4.42)

to include as much of the phase space as possible.
�e di�erent QCD radiation patterns of the Higgs signal and the electroweak and QCD

background processes are a key feature to separate the signal from the background [75–81]. We
take this into account through approximate central jet veto (CJV) survival probabilities taken

W , Z
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τ+

q
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W

Z

q

q

q
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g

Figure 4.1: Le�: Feynman diagram for WBF Higgs production in the ττ mode. �e red dot
shows the Higgs-gauge interactions a�ected by the dimension-six operators of our
analysis; in additionOϕ,2 also rescales the decay vertex. Middle and right: example
diagrams for the electroweak and QCD Z j j backgrounds.
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from Reference [79],

εCJVWBF H = 0.71 , εCJVEW Z = 0.48 , εCJVQCD Z = 0.14 , εCJVggF H = 0.14 , (4.43)

neglecting the dependence of the veto e�ciency on the phase space. All other particle iden-
ti�cation and trigger e�ciencies are absorbed into a single universal e�ciency factor ε. We
calculate the Fisher information for pp collisions at

√
s = 13 TeV for an integrated luminosity

times universal e�ciencies of

L ⋅ ε = 30 fb−1 . (4.44)

A�er the event selection given in Equation (4.42) and the CJV e�ciencies, the WBF Higgs
signal of 53  in the SM faces a dominant QCD Z background of 2.7 pb, corresponding to 1600
vs. 81 000 expected events.
Following the construction of the e�ective operators in Section 2.3.2, �ve CP-even dimension-

six operators in the HISZ basis a�ect Higgs production in weak boson fusion. OB,OW ,OBB, and
OWW introduce newLorentz structures intoHiggs-gauge interactions as given in Equation (2.57).
In addition,Oϕ,2 leads to a universal rescaling of all Higgs couplings. �e relevant model space
is therefore spanned by �ve dimensionless parameters

θ =
υ2

Λ2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

fϕ,2
fW
fWW
fB
fBB

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.45)

In our analysis we neglect the e�ects from OW and OB on the subleading electroweak Z j j
background, but take into account howOϕ,2 rescales the gluon-fusion Higgs contribution.
Our analysis focuses on the Fisher information around the SM point θ = 0 as well as on the

two-dimensional planes in parameter space where all but two operators are zero. All in all, we
calculate Fisher information matrices at approximately 6000 parameter points.

Total Fisher information

With the combination of MadGraph 5 [217], MadMax [285, 286], and our own MadFisher al-
gorithm described in Section 4.3.7, we �rst calculate the total Fisher information. At the SM
point we �nd

Ii j(0) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3202.1 −625.3 −7.2 −34.8 0.3
−625.3 451.0 −109.5 23.3 −1.5
−7.2 −109.5 243.7 −5.5 2.8
−34.8 23.3 −5.5 4.1 −0.3
0.3 −1.5 2.8 −0.3 0.1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.46)
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�e eigenvectors and eigenvalues of this matrix are

θ1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.98
−0.21
0.01
−0.01
0.00

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶ I1 = 3338 ↔
⎛

⎝

Λ
√
f
⎞

⎠
1

= 1870 GeV ,

θ2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.18
−0.79
0.58
−0.04
0.01

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶ I2 = 395 ↔
⎛

⎝

Λ
√
f
⎞

⎠
2

= 1097 GeV ,

θ3 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.12
0.57
0.81
0.03
0.01

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶ I3 = 165 ↔
⎛

⎝

Λ
√
f
⎞

⎠
3

= 881 GeV ,

θ4 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.00
−0.05
0.00
1.00
−0.07

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶ I4 = 2.9 ↔
⎛

⎝

Λ
√
f
⎞

⎠
4

= 321 GeV ,

θ5 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.00
0.00
−0.01
0.07
1.00

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶ I5 = 0.1 ↔
⎛

⎝

Λ
√
f
⎞

⎠
5

= 138 GeV . (4.47)

Here Λ/
√
f is the maximal new physics reach corresponding to the eigenvalue as de�ned in

Equation (4.34).
�ese results show that the WBF process has quite di�erent sensitivities to the �ve operators:
Oϕ,2, which is the only one that a�ects the decay vertex in addition to the production process,
can be most strongly constrained and is weakly correlated withOW . An ideal measurement can
probe this operator with a precision of ∆θ ≈ 0.02, translating into a maximal new physics reach
Λ/

√
fϕ,2 ≈ 1.9 TeV. �e sensitivity to the strongly correlatedOW-OWW plane is also quite large:

these directions can be probed at the ∆θ ≈ 0.05 or Λ/
√
fW/WW ≈ 1 TeV level. Finally,OB and

OBB only play a role in subleading Z-mediated production diagrams. �eir Wilson coe�cients
cannot be measured very well in this process, and do not a�ect the measurement of the other
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operators through correlations.
In Figure 4.2we visualise the sensitivity to the three operatorsOϕ,2,OW , andOWW as contours

of the local information distances from the SM as de�ned in Equation (4.13). Such an error
ellipsoid shows the maximum precision that can be attained in a measurement in this process
in the absence of new physics.
Moving away from the SM, the Fisher information and with it the sensitivity to the di�erent

operators changes. �e largest e�ects are visible towards large positive (large negative) values of
fϕ,2, where the expected cross section is much smaller (larger) and theory parameters can be
measured with smaller (larger) precision. Following Equation (4.14), we integrate in�nitesimal
distances along geodesics in theory space to de�ne global distances in themodel parameter space.
Unlike the local distances, these take into account the curvature of the manifold, i. e. how the
Fisher information changes with the theory parameters. Figure 4.3 shows the resulting distances
for a number of two-dimensional slices in parameter space, con�rming the large sensitivity to
Oϕ,2,OW , andOWW .
In Figure 4.4 we compare the global distances to the local distances de�ned in Equation (4.13).

�is provides some insight into the role of O (1/Λ4) e�ects, as discussed in Section 4.3.6. At
d = 1, 2 the di�erences are small, signalling that an optimal measurement will be dominated by
the linearised dimension-six amplitudes. On the other hand, analyses based on less luminosity
or requiring more stringent exclusion criteria (translating into larger distances) will only probe
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Figure 4.2: Error ellipsoid de�ned by the Fisher information in theWBF h → ττ channel through
the contour dlocal(θ;0) = 1. �e θ i not shown are set to zero. �e two panels show
di�erent views of the same ellipsoid.

113



4 Better Higgs measurements through information geometry

0.2 0.1 0.0 0.1 0.2
fB v

2/Λ2

0.2

0.1

0.0

0.1

0.2

f W
v

2
/Λ

2

0

1

2

3

4

5

d
(θ,0)

0.2 0.1 0.0 0.1 0.2
fB v

2/Λ2

0.2

0.1

0.0

0.1

0.2

f B
B
v

2
/Λ

2

0

1

2

3

4

5

d
(θ,0)

0.2 0.1 0.0 0.1 0.2
fW v

2/Λ2

0.2

0.1

0.0

0.1

0.2

f B
B
v

2
/Λ

2

0

1

2

3

4

5

d
(θ,0)

0.2 0.1 0.0 0.1 0.2
fB v

2/Λ2

0.2

0.1

0.0

0.1

0.2

f W
W
v

2
/Λ

2

0

1

2

3

4

5

d
(θ,0)

0.2 0.1 0.0 0.1 0.2
fW v

2/Λ2

0.2

0.1

0.0

0.1

0.2

f W
W
v

2
/Λ

2

0

1

2

3

4

5

d
(θ,0)

0.2 0.1 0.0 0.1 0.2
fBB v

2/Λ2

0.2

0.1

0.0

0.1

0.2

f W
W
v

2
/Λ

2

0

1

2

3

4

5

d
(θ,0)

0.2 0.1 0.0 0.1 0.2
fB v

2/Λ2

0.2

0.1

0.0

0.1

0.2

f φ
,2
v

2
/Λ

2

0

1

2

3

4

5

d
(θ,0)

0.2 0.1 0.0 0.1 0.2
fW v

2/Λ2

0.2

0.1

0.0

0.1

0.2

f φ
,2
v

2
/Λ

2

0

1

2

3

4

5

d
(θ,0)

0.2 0.1 0.0 0.1 0.2
fBB v

2/Λ2

0.2

0.1

0.0

0.1

0.2

f φ
,2
v

2
/Λ

2

0

1

2

3

4

5

d
(θ,0)

0.2 0.1 0.0 0.1 0.2
fWW v

2/Λ2

0.2

0.1

0.0

0.1

0.2

f φ
,2
v

2
/Λ

2

0

1

2

3

4

5

d
(θ,0)

Figure 4.3: Error ellipses de�ned by the Fisher information in the WBF h → ττ channel. We
show global distances from the SM d(θ , 0), where in each panel the θ i not shown
are set to zero. �e white contours show distances of d = 1, 2, 3, 4, 5.
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4.4 Higgs measurements

new physics scales closer to the electroweak scale, in which case the squared dimension-six
terms will have a larger e�ect.

Differential information

In a next step, we calculate the distribution of this information, evaluated at the SM point
θ = 0, over phase space. Following Section 4.3.4, we calculate the Fisher information in bins of
kinematic variables. �is set of information matrices can be condensed into a single real-valued
function of the phase-space variables by calculating the determinants. �e resulting distributions
of di�erential information over typical kinematic variables are shown in Figures 4.5 and 4.6 and
compared to the di�erential cross sections of the signal and the dominant background process.
Clearly, the signal-to-background ratio improves for large invariant masses of the tagging jets

and towards mττ values around the Higgs mass. �e information on all directions in model
space is larger in these phase-space regions. On the other hand, most of our dimension-six
operators include derivatives, leading to an amplitude increasing with the momentum transfer
through the gauge-Higgs vertex. �is momentum 
ow is not observable, but the transverse
momenta of the tagging jets and the Higgs boson are strongly correlated with it, as shown in
Section 3.4.1. Indeed most of the information on higher-dimensional operators comes from the
high-energy tail of the transverse momenta of the tagging jets or the ττ system, con�rming what
we demonstrated for speci�c model setups in the previous chapter.
In the rapidity di�erence between the tagging jets we can see a trade-o� between these two

e�ects: on the one hand, at larger rapidity distances the signal-to-background ratio clearly
improves [75–81]. On the other hand, the largest e�ects from dimension-six operators appear
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Figure 4.4: Error ellipses de�ned by the Fisher information in the WBF h → ττ channel. We
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(solid). �e coloured contours indicate distances of d = 1, 2, 3, 4, 5. In grey we show
example geodesics. �e θ i not shown are set to zero.
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Figure 4.5: Distribution of the di�erential Fisher information in the WBF h → ττ channel
(shaded red) with respect to the invariant mass of the ττ system (le�) and its trans-
verse momentum (right). We also show the normalised rates for the SM signal (solid
black) and the QCD Z j j background (dotted grey). �e dashed blue lines show the
e�ect of an exaggerated new physics benchmark fW υ2/Λ2 = 0.5 on the WBF signal.
�e last bin is an over
ow bin.

at smaller ∆η j j, again driven by the larger momentum transfer [2]. In the bottom le� panel of
Figure 4.6 we see that most of the information on these operators comes from ∆η j j = 3 . . . 7.
Tight cuts with the aim to remove backgrounds thus discard a sizeable fraction of the information
on dimension-six operators.

In practice, the distribution of the di�erential information can be a useful tool to guide the
design of event selections. As an example, we consider a class of typical WBF cuts

105GeV < mττ < 165GeV , pT , j1 > 50GeV , ∆η j j > ∆ηminj j , and m j j > mminj j . (4.48)

In Figure 4.7 we show how the signal purity and the Fisher information depend on the choice
of ∆ηminj j and mminj j . For a given signal-to-background ratio we can pick cuts that maximise
the Fisher information, or vice versa, as demonstrated in the le� panel of Figure 4.8. �is is
somewhat reminiscent of ‘receiver operating characteristic’ (ROC) curves that compare the
e�ciency for the SM Higgs signal to the background rejection rate, as shown in the right panel
of Figure 4.8. �e information-based analysis, however, takes into account the sensitivity of
signal events in di�erent phase-space regions to new physics e�ects, which the ROC curve is
blind to by design.

�e distribution of the di�erential Fisher information also provides us with another perspective
on the EFT validity discussed in the previous chapter. �ere we demonstrated that the e�ective

116



4.4 Higgs measurements

0 100 200 300 400 500 600
pT,j1 [GeV]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
o
rm

a
liz

e
d
 d

is
tr

ib
u
ti

o
n Information

SM

OW

Background

0.0

0.5

1.0

1.5

2.0

2.5

(d
et

I i
j)

1
/5

0 1000 2000 3000 4000
mjj [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

N
o
rm

a
liz

e
d
 d

is
tr

ib
u
ti

o
n

Information

SM

OW

Background

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(d
et

I i
j)

1
/5

2 3 4 5 6 7 8
∆ηjj

0.00

0.05

0.10

0.15

0.20

N
o
rm

a
liz

e
d
 d

is
tr

ib
u
ti

o
n

Information

SM

OW

Background

0

1

2

3

4

5

6

(d
et

I i
j)

1/
5

3 2 1 0 1 2 3
∆φjj

0.00

0.02

0.04

0.06

0.08

0.10

N
o
rm

a
liz

e
d
 d

is
tr

ib
u
ti

o
n

Information

SM

OWW

Background

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(d
et

I i
j)

1/
5

Figure 4.6: Distribution of the di�erential Fisher information in the WBF h → ττ channel
(shaded red) with respect to the transversemomentum of the leading jet (top le�), the
dijet mass (top right), the separation in pseudorapidity between the two jets (bottom
le�), and their di�erence in the azimuthal angle (bottom right). We also show the
normalised rates for the SM signal (solid black) and theQCD Z j j background (dotted
grey). �e dashed blue lines show the e�ect of fW υ2/Λ2 = 0.5 on the WBF signal,
except in the bottom right panel, where we show fWW υ2/Λ2 = 0.5. �e last bin is
an over
ow bin.
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Figure 4.7: SM signal-to-background ratio (le�) and determinant of the Fisher information
(right) in the WBF h → ττ channel as a function of the WBF cuts ∆η j j > ∆ηminj j and
m j j > mminj j .

model can break down in the high-energy tail of distributions, and concluded that an additional
analysis with cuts that impose a maximum momentum transfer can improve the applicability of
the EFT. For weak boson fusion, this means requiring

pT , j < p
max
T , j , (4.49)

as shown in Section 3.4.1.
Our tools let us calculate the Fisher information in the WBF h → ττ channel for di�erent

cuts of the form of Equation (4.49). For simplicity, we focus on the operators OW and OWW
and calculate the determinant of the Fisher information in this plane in model space. Following
Equation (4.34), we translate it into a typical new physics reach

Λ
√
f
= υ

√

det Ii j(0)
1/4

(4.50)

of an optimal measurement. For universal Wilson coe�cients fW = fWW ≡ f , we can calculate
the new physics reach Λ and compare it to the maximum momentum transfer pmaxT , j .
Figure 4.9 shows that for strongly coupled physics we can probe newphysics scales signi�cantly

above the experimental momentum transfer, at least in our simple setup that neglects systematic
and theory uncertainties. Such a scenario does not require any validity cuts for the EFT to work.
However, for smallerWilson coe�cients 0.25 ≲ f ≲ 1, the scale hierarchy is less clear, con�rming
the discussion in Section 3.1. Our results show that imposing a maximum momentum transfer
of a few hundred GeV can increase the separation between the experimental energy scale and
the probed new physics scales, and thus the usefulness of the e�ective theory.
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4.4 Higgs measurements

Information in distributions

While this total Fisher information based on the full kinematics provides us with optimal exper-
imental results, it remains to be shown that we can access it in practice. Matrix-element-based
methods [50–65] and recent proposals using machine learning for high-dimensional likelihood
�ts [28, 31] aim to tackle exactly this problem. Still, a relevant question is how much of this
maximum information is retained in simple one-dimensional or two-dimensional distributions
of standard kinematic observables v. On the one hand, this lets us assess the potential of tradi-
tional histogram-based analysis methods and compare it to the optimal results discussed before.
On the other hand, the information in kinematic distributions provides a ranking of the most
useful observables that experimentalists should measure and publish, for instance to be used in
recasted analyses or in global �ts by theorists [26, 27].

In the presence of backgrounds, a histogram-based analysis requires a stringent event selection,
either based on traditional kinematic cuts or on a multivariate classi�er. First, we choose the
WBF cuts

105 GeV < mττ < 165 GeV , pT , j1 > 50 GeV , m j j > 1 TeV , ∆η j j > 3.6 . (4.51)
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Figure 4.8: Trade-o� between signal purity and information in the WBF h → ττ channel
for di�erent WBF cuts. Le�: determinant of the Fisher information vs. signal-to-
background ratio. Right: signal e�ciency vs. background rejection, calculated a�er
the common cuts 105 GeV < mττ < 165 GeV and pT , j1 > 50 GeV. �e coloured dots
show three example selections.
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Figure 4.9: Maximal new physics reach of the WBF h → ττ channel in theOW-OWW plane as a
function of an upper cut of the transverse jet momenta pmaxT , j . �e green, blue, and
red curves show the new physics reach for di�erent values of the Wilson coe�cients
fW = fWW ≡ f , as de�ned in Equation (4.50). To roughly assess the EFT validity,
these should to be compared to the maximum jet pT in these events (dashed grey).

As shown in Figure 4.8, this improves the signal-to-background ratio to nearly unity, though at
the cost of losing discrimination power. An analysis would pro�t from an optimisation of these
cuts, but this goes beyond the scope of our demonstration. Based on this selection, we analyse
the distributions of the following standard observables:

● the transverse momentum of the leading τ, pT ,τ1 , with bin size 25 GeV up to 500 GeV
and an over
ow bin;

● the invariant mass of the ττ system, mττ , with bin size 5 GeV in the allowed range of
105 GeV < mττ < 165 GeV;

● the transverse momentum of the ττ system, pT ,ττ , with bin size 50 GeV up to 800 GeV
and an over
ow bin;

● the transverse momentum of the leading jet, pT , j1 , with bin size 50 GeV up to 800 GeV
and an over
ow bin;

● the invariant mass of the dijet system, m j j, with bin size 250 GeV up to 4 TeV and an
over
ow bin;

● the separation in pseudorapidity between the two jets, ∆η j j, with bin size 0.5 up to 8.0
and an over
ow bin;
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Figure 4.10: Information in distributions in the WBF h → ττ channel, shown as contours
dlocal(θ;0) = 1. We show the total information in the full kinematics (black), the
information in the distributions of pT , j1 (red) and ∆ϕ j j (blue), their naive combina-
tion assuming nomutual information (green), and their two-dimensional histogram
(yellow). �e θ i not shown are set to zero. Le�: based on the kinematic WBF cuts
in Equation (4.51). Right: based on the matrix-element-based selection in Equa-
tion (4.52).

● the separation in azimuthal angle between the two jets, now de�ned in a signed ver-
sion [290] ∆ϕ j j = ϕ jη<0 − ϕ jη>0 , with bin size 2π/20;

● the separation in pseudorapidity between the ττ system and the leading jet, ∆ηττ, j1, with
bin size 0.5 up to 8.0 and an over
ow bin; and

● the separation in azimuthal angle between the ττ system and the leading jet, ∆ϕττ, j1, with
bin size π/10.

In the le� panel of Figure 4.10, we compare the error ellipses expected from the analysis of a few
of these distributions. Measures of the momentum transfer such as the transverse momentum of
the leading tagging jetmostly constrainOW , while angular correlations between the jets aremore
sensitive toOWW . Stringent constraints on the full operator space can be achieved by combining
the information in these distributions. A fully correlated two-dimensional histogram carries
slightly more information than a combination of the one-dimensional histograms following
Equation (4.19).
Finally, we compare the information in all of the above distributions in Figure 4.11. �e top

panel shows the eigenvalues of the individual information matrices, and the colours indicate
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Figure 4.11: Fisher information in di�erent distributions in the WBF h → ττ channel, based
on a tight kinematic selection. We compare the total Fisher information based on
the full kinematics (‘full’), the Fisher information a�er the cuts in Equation (4.51)
(‘WBF cuts’), the rate-only information a�er these cuts (‘xsec’), and the information
in several one-dimensional and two-dimensional distributions a�er this selection.
�e top panel shows the eigenvalues of these information matrices, the colours
denote the composition of the corresponding eigenvectors. �e right axis translates
the eigenvalues into a new physics reach for the corresponding combination of
Wilson coe�cients. In the bottom panel we show the determinants of the three-
dimensional Fisher information restricted toOϕ,2,OW , andOWW , normalised to
the full information. Again, the right axis translates them into a new physics reach.

122



4.4 Higgs measurements

10-2

10-1

100

101

102

103

104

I i
j
 e

ig
e
n
v
a
lu

e
s

Eigenvector composition: OBOW OBBOWWOφ, 2

WBF, h→ττ, f(x|WBF)/f(x|backgrounds)> 1, L · ε= 30 fb−1

0.1

0.2

0.5

1.0

1.5
2.0

3.0

R
e
a
ch

 Λ
/√ f

 [
T
e
V

]

fu
ll

W
BF c

uts
xs

ec p T,
τ1 m ττ

p T,
ττ

p T,
j1 m jj

∆
η jj

∆
φ jj

∆
η ττ

, j
1

∆
φ ττ

, j
1

p T,
ττ
, p

T,
j1

p T,
ττ
, ∆
φ jj

p T,
ττ
, ∆
φ ττ

, j
1

p T,
j1
, p

T,
j2

p T,
j1
, ∆
φ jj

p T,
j1
, ∆
φ ττ

, j
1

0.0

0.2

0.4

0.6

0.8

1.0

(d
et
I i
j
/d

et
I

fu
ll

ij
)1/

3

Restricted to Oφ, 2, OW, OWW

0.5

0.8

0.9

1.0

1.1

1.2

R
e
a
ch

 Λ
/√ f

 [
T
e
V

]

Figure 4.12: Fisher information in di�erent distributions in the WBF h → ττ channel, based
on a matrix-element-based selection. We compare the total Fisher information
based on the full kinematics (‘full’), the Fisher information a�er the multivariate
event selection in Equation (4.52) (‘WBF cuts’), the rate-only information a�er
this selection (‘xsec’), and the information in several one-dimensional and two-
dimensional distributions a�er this selection. Except for the event selection, the plot
is analogous to Figure 4.11.

which operators the corresponding eigenvectors are composed of. �is allows us to see which
distributions measure which directions in theory space well, and where blind directions arise.
�e lower panel shows the determinants of the Fisher information matrices. We restrict

this analysis to the space spanned by the three operatorsOϕ,2,OW , andOWW to avoid results
that strongly depend on the other two operators, which cannot be measured reliably in this
process anyway. �ese determinants provide a straightforward measure of the information in
the distributions that is independent of EFT basis rotations, see Section 4.3.6.
In general, one-dimensional histograms of single observables probe individual directions in

phase space well, but always su�er from basically blind directions. To maximise the constraining
power on all operators, we need to combine measures of momentum transfer such as the jet
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4 Better Higgs measurements through information geometry

or ττ transverse momenta on the one hand with jet angular correlations on the other hand.
Even then there is a substantial di�erence to the maximum information in the process: the
combined analysis of jet transverse momenta and ∆ϕ j j has a new physics reach Λ/

√
f in the

Oϕ,2-OW-OWW space of 0.9 TeV, compared to 1.2 TeV for the full kinematics. Under our
simplistic assumptions this corresponds to roughly three times as much data. Half of this loss
in constraining power is due to information in background-rich regions discarded by the WBF
cuts, the other half is due to non-trivial kinematics not captured by the double di�erential
distributions.

In the light of the large loss of information due to the WBF cuts in Equation (4.51), we repeat
this comparison with an alternative matrix-element-based event selection. Instead of cutting on
standard kinematic observables, we select all events in ‘signal-like’ phase-space regions, de�ned
as those with a larger expected SMWBF rate than the combined expected background rates,

σSMWBF f (1)(x∣SMWBF)
σbackgrounds f (1)(x∣backgrounds)

=
∆σSMWBF(x)
∆σbackgrounds(x)

> 1 . (4.52)

We then calculate the information in the same distributions as before.
As shown in the right panel of Figure 4.10 and in Figure 4.12, the cut in Equation (4.52)

de�nes a sample with little background contamination without sacri�cing much discrimination
power. One-dimensional and two-dimensional distributions can extract information on the
operators more reliably than a�er the kinematic event selection in Equation (4.51). A combined
measurement of the jet transverse momenta and ∆ϕ j j is now able to probe new physics scales of
up to 1.1 TeV compared to 1.2 TeV for the fully multivariate approach, corresponding to 70%
more data.

.. Weak-boson-fusion Higgs to four leptons

With a thorough understanding of the WBF production process, we now ask how much inform-
ation a non-trivial decay mode h → ZZ∗ → 4ℓ with ℓ = e , µ adds. For this particularly clean
channel, shown in Figure 4.13, the backgrounds are not the limiting factor, so we omit them for
our toy study: a calculation with MadGraph 5 shows that in the relevant phase-space region
the cross section of the dominant irreducible ZZ∗ j j background is more than one order of
magnitude smaller than the SM Higgs signal. �is also allows us to avoid smearing the m4ℓ
distribution. Again, we restrict our initial study to the parton level and leading order.
Requiring only minimal acceptance cuts

pT , j > 20 GeV , ∣η j∣ < 5.0 , pT ,ℓ > 10 GeV , and ∣ηℓ∣ < 2.5 , (4.53)
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4.4 Higgs measurements

we calculate the Fisher information for pp collision at
√
s = 13 TeV. We now assume an increased

integrated luminosity of

L ⋅ ε = 100 fb−1 , (4.54)

where ε again refers to the combined particle identi�cation and trigger e�ciencies. �e SM
cross section a�er our selection cuts is 0.36  , corresponding to 36 expected events.
�e relevant dimension-six operators are the same as in the ττ channel, and we again para-

metrise the model space with Equation (4.45). All other details follow the setup in the previous
section.

Total Fisher information

�e full Fisher information at the SM for this process is

Ii j(0) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

144.3 −27.3 −11.5 −1.6 −0.7
−27.3 50.9 −9.1 6.7 −0.2
−11.5 −9.1 36.9 −1.2 1.0
−1.6 6.7 −1.2 1.9 −0.1
−0.7 −0.2 1.0 −0.1 0.1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.55)

with the eigenvectors, eigenvalues, and corresponding new physics reach

θ1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.96
−0.25
−0.08
−0.02
0.00

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶ I1 = 152.4 ↔
⎛

⎝

Λ
√
f
⎞

⎠
1

= 864 GeV ,

θ2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.16
−0.79
0.58
−0.11
0.02

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶ I2 = 52.8 ↔
⎛

⎝

Λ
√
f
⎞

⎠
2

= 663 GeV ,

θ3 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.21
0.54
0.81
0.09
0.02

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶ I3 = 27.8 ↔
⎛

⎝

Λ
√
f
⎞

⎠
3

= 565 GeV ,
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θ4 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.02
0.14
0.01
−0.99
0.04

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶ I4 = 1.0 ↔
⎛

⎝

Λ
√
f
⎞

⎠
4

= 246 GeV ,

θ5 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.00
0.00
−0.03
0.04
1.00

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∶ I5 = 0.0 ↔
⎛

⎝

Λ
√
f
⎞

⎠
5

= 114 GeV . (4.56)

�e Fisher information approach allows us to directly compare this outcome to the inform-
ation in the h → ττ channel in Equation (4.46), or to calculate the combined information in
these two channels by simply adding their Fisher information matrices a�er rescaling them
to the same luminosity. Clearly, the ττ channel contains signi�cantly more information on all
operators. �e decay h → 4ℓ does not even increase the sensitivity toOB orOBB, both are still
basically blind directions.

Again we calculate global distances between theory points along geodesics and show them
in Figure 4.14. Local and global distances are compared in Figure 4.15, with larger di�erences
than in the h → ττ channel. �is is because the tiny h → 4ℓ branching fraction decreases the
new physics reach and with it the hierarchy of scales in our e�ective Lagrangian, making the
squared dimension-six amplitudes numerically more relevant.

�e distribution of the di�erential information over phase space is essentially identical to the
results for the WBF h → ττ mode given in Figures 4.5 and 4.6, with the obvious replacement of
the reconstructed ττ system by the 4ℓ system.

W , Z

W , Z h Z

Z

q

q

q
ℓ−
ℓ+
ℓ−
ℓ+

q

Figure 4.13: Feynman diagram forWBFHiggs production in the 4ℓmode. �e red dots show the
Higgs-gauge interactions a�ected by the dimension-six operators of our analysis.
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Figure 4.14: Error ellipses de�ned by the Fisher information in the WBF h → 4ℓ channel. We
show global distances from the SM d(θ , 0), where in each panel the θ i not shown
are set to zero. �e white contours show distances of d = 1, 2, 3, 4, 5.
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Production vs. decay kinematics

�e key question for the WBF h → 4ℓ mode is how the rich decay kinematics can improve
the sensitivity to the dimension-six operators. In Figure 4.16, we separately study the e�ects
of the e�ective operators on the production vertex (�xing the decay vertex to the SM value)
and on the decay vertex (where the production is �xed to the SM structure). We �nd that only
the sensitivity to Oϕ,2 pro�ts from e�ects in the decay vertex. Since this operator rescales all
Higgs couplings in the same way, this also applies to any other Higgs decay mode. �e sensitivity
on the momentum-dependent operatorsOW ,OWW ,OB, andOBB, on the other hand, comes
almost entirely from e�ects on the Higgs production.
�is is not surprising: the momentum 
ow through the intermediate W or Z bosons can

be very large at the LHC, enhancing production-side e�ects by sizeable factors of E2/Λ2. �e
momentum 
ow through the decay vertices, on the other hand, is bounded by the Higgs mass
(neglecting o�-shell Higgs decays), and E2/Λ2 is small. Our results show that this is not com-
pensated by the complex h → 4ℓ kinematics.

To overcome this disadvantage, momentum-dependent signatures inHiggs decays require a large
production cross section. Gluon-fusion production with h → 4ℓ has a rate that is approximately
13 times larger than theWBF process [3]. Since the decay kinematics is the same as in the process
studied here and the Fisher information scales linearly with the number of events, we can provide
a rough estimate of the information in this process by scaling the decay-only Fisher information
with this factor 13. We �nd that even with the increased rate from production in gluon fusion, the
h → 4ℓ channel is not as sensitive to Higgs-gauge operators as the WBF production process. Of
course, this simple estimate ignores any di�erences in the backgrounds, e�ciencies, systematic
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Figure 4.15: Error ellipses de�ned by the Fisher information in the WBF h → 4ℓ channel. We
show contours of local distance dlocal(θ;0) (dashed) and global distance d(θ , 0)
(solid). �e coloured contours indicate distances of d = 1, 2, 3, 4, 5. In grey we show
example geodesics. �e θ i not shown are set to zero.
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Figure 4.16: Information in the WBF h → 4ℓ channel separated into production e�ects and
decay e�ects. We show the contours dlocal(θ;0) = 1 based on calculations where
dimension-six operators are taken into account only in the production vertex (red),
only in the decay vertex (blue), and in both vertices (black). �e θ i not shown are
set to zero.

or theory uncertainties, and Higgs kinematics between the two production processes.

Information in distributions

�e question of production and decay e�ects can also be tackled by comparing the information
in di�erent observables: the properties of the tagging jets are linked to the production process,
while the decay products of the Higgs are mostly sensitive to the decay vertex. We de�ne the jet
observables in complete analogy to the ττ channel in Section 4.4.1. �ese are complemented by
observables characterising the decay kinematics [86, 291]:

● the transverse momentum of the leading lepton, pT ,ℓ1 ;
● the transverse momentum of the four-lepton system, pT ,4ℓ, which is equal to the Higgs
pT ;

● the smaller invariant mass of the reconstructed ℓ+ℓ−, mZ2 ;
● the angle cos θ1 = p̂ℓ−1 ⋅ p̂Z2 ∣Z1

with spatial unit vectors p̂ de�ned in the Z1 system;
● analogously cos θ2; and
● the angle cosΦ = (p̂ℓ−1 × p̂ℓ+1 ) ⋅ (p̂ℓ−2 × p̂ℓ+2 )∣4ℓ, de�ned in the 4ℓ rest frame.

In all cases we use at least ten bins and include under
ow and over
ow bins where applicable.
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Figure 4.17: Fisher information in di�erent distributions in the WBF h → 4ℓ channel. We
compare the total Fisher information based on the full kinematics (‘full’), the in-
formation in the total rate (‘xsec’), and the information in several one-dimensional
and two-dimensional distributions. �e top panel shows the eigenvalues of these
information matrices, the colours denote the composition of the corresponding
eigenvectors. �e right axis translates the eigenvalues into a new physics reach for
the corresponding combination ofWilson coe�cients. In the bottom panel we show
the determinants of the three-dimensional Fisher information restricted to Oϕ,2,
OW , andOWW , normalised to the full information. Again, the right axis translates
them into a new physics reach.
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�e comparison in Figure 4.17 reveals similar patterns as the ττ mode. �e key observables
are again transverse momenta and jet angular correlations. Without the necessity of removing
backgrounds e�ciently, the combined analysis of these variables comes close to the maximum
information: a two-dimensional histogram of jet transverse momenta and ∆ϕ j j probes new
physics scales up to 650 GeV, while for a fully di�erential analysis the maximum probed new
physics scale is close to 700 GeV. �is di�erence roughly corresponds to 25% more data. �e
observables characterising the decay kinematics, in particular the angular correlations, carry very
little information, in agreement with our previous results. �is shows again how the sensitivity
of the decay vertices to dimension-six operators is limited by the restriction of the momentum

ow through the decay vertex to the Higgs mass.

.. Higgs plus single top

Our �nal example process is Higgs production with a single top in the t-channel. We focus
on the h → γγ mode and a hadronic top decay t → b j j. As shown in Figure 4.18, diagrams
where the Higgs is radiated o� a W boson interfere destructively with diagrams with a top-
Higgs coupling, making this channel a direct probe of the sign of the top Yukawa coupling [89].
Our analysis focuses on the question which of the phase-space distributions provide access to
this interesting amplitude structure. We stick to a parton-level analysis at leading order in the
�ve-
avour scheme. For our toy example we include only one of the dominant backgrounds,
single top production with two photons, and in particular ignore the multi-jet background.
�e subleading tt γγ background populates qualitatively di�erent phase-space regions from the
single-top signal and can be suppressed with an appropriate event selection [292].
To simulate the experimental mass resolution, we smear the mγγ distribution of the signal

process with the smearing function of Reference [286], described in Section A.6.3. We do not

W

t

WW

h

b

q

b
q
q

γ
γ

q

W

t t

h
W

b

q

b
q
q

γ
γ

q

Figure 4.18: Feynman diagrams for t-channel Higgs plus single top production with h → γγ and
a hadronic top decay. �e red dots show the Higgs interactions modi�ed by the
dimension-six operators considered in our analysis.

131



4 Better Higgs measurements through information geometry

include any other detector e�ects. Our basic event selection requires

pT , j > 20 GeV , ∣η j∣ < 5.0 , ∆R j j > 0.4 , 152 GeV < mb j j < 192 GeV ,
pT ,γ > 10 GeV , ∣ηγ ∣ < 2.5 , ∆Rγ j , ∆Rγγ > 0.4 , 120 GeV < mγγ < 130 GeV , (4.57)

a�er which the SM signal of 0.10 fb faces a background of 0.22 fb. We calculate the Fisher
information for pp collisions at

√
s = 13 TeV with a large amount of collected data,

L ⋅ ε = 300 fb−1 . (4.58)

Again, ε denotes the combined particle identi�cation and trigger e�ciencies. �is is equivalent
to 30 expected signal events and 66 expected background events.
Out of theCP-even dimension-six operators discussed in Section 2.3.2,OW andOWW modify

the Higgs-W coupling structure, while Ot changes the value of the Higgs-top coupling. Oϕ,2
rescales both contributions universally. While all these operators a�ect the h → γγ decay as well,
the largest e�ect is expected from OWW , which contributes to this coupling at tree level and
can easily compete with the loop-suppressed SM term. Since we are mainly interested in the
production kinematics, we neglect the subleading e�ects fromOW andOt on the Higgs-photon
coupling. Our model space is therefore parametrised by the dimensionless parameters

θ =
υ2

Λ2

⎛
⎜
⎜
⎜
⎜
⎝

fϕ,2
fW
fWW
ft

⎞
⎟
⎟
⎟
⎟
⎠

. (4.59)

As in the previous processes, we focus on the Fisher information in the vicinity of the SM,
θ = 0, and in the two-dimensional planes in the parameter space where all but two operators
are set to zero. Using the setup described in Section 4.3.7, we calculate the Fisher information
for approximately 2500 parameter points.

Total Fisher information

For the total Fisher information at the SM, we �nd

Ii j(0) =

⎛
⎜
⎜
⎜
⎜
⎝

80.1 −18.7 −957.0 13.2
−18.7 32.6 221.7 27.0
−957.0 221.7 11446.1 −146.0
13.2 27.0 −146.0 150.3

⎞
⎟
⎟
⎟
⎟
⎠

. (4.60)
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Figure 4.19: Error ellipses de�ned by the Fisher information in Higgs plus single top production.
We show global distances from the SM d(θ , 0), where in each panel the θ i not
shown are set to zero. �e white contours show distances of d = 1, 2, 3, 4, 5.
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Composing this into eigenvectors and eigenvalues (and the corresponding new physics reach,
see Equation (4.34)), we �nd

θ1 =

⎛
⎜
⎜
⎜
⎜
⎝

0.08
−0.02
−1.00
0.01

⎞
⎟
⎟
⎟
⎟
⎠

∶ I1 = 11532 ↔
⎛

⎝

Λ
√
f
⎞

⎠
1

= 2550 GeV ,

θ2 =

⎛
⎜
⎜
⎜
⎜
⎝

0.00
−0.23
−0.01
−0.97

⎞
⎟
⎟
⎟
⎟
⎠

∶ I2 = 155 ↔
⎛

⎝

Λ
√
f
⎞

⎠
2

= 868 GeV ,

θ3 =

⎛
⎜
⎜
⎜
⎜
⎝

−0.02
0.97
−0.02
−0.23

⎞
⎟
⎟
⎟
⎟
⎠

∶ I3 = 21.3 ↔
⎛

⎝

Λ
√
f
⎞

⎠
3

= 528 GeV ,

θ4 =

⎛
⎜
⎜
⎜
⎜
⎝

1.00
0.02
0.08
−0.01

⎞
⎟
⎟
⎟
⎟
⎠

∶ I4 = 0.1 ↔
⎛

⎝

Λ
√
f
⎞

⎠
4

= 138 GeV . (4.61)

�e large sensitivity to OWW comes from the large e�ect of this operator on the h → γγ
decay in addition to production e�ects, which will already be tightly constrained once a th
measurement is feasible. �e orthogonal direction in the Oϕ,2-OWW plane is for all practical
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Figure 4.20: Error ellipses de�ned by the Fisher information in Higgs plus single top production.
We show contours of local distance dlocal(θ;0) (dashed) and global distance d(θ , 0)
(solid). �e coloured contours indicate distances of d = 1, 2, 3, 4, 5. In grey we show
example geodesics. �e θ i not shown are set to zero.
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Figure 4.21: Distribution of the di�erential SM Fisher information in the Higgs plus single top
channel (shaded red) with respect to the mass (le�) and transverse momentum
(right) of the diphoton system. We also show the normalised rates for the SM signal
(solid black) and the single-top background (dotted grey). �e dashed blue lines
show the e�ect of ft υ2/Λ2 = 0.2 on the th signal. In the right panel, the last bin is
an over
ow bin.

purposes blind. Even with the large amount of integrated luminosity that this calculation is
based on, the sensitivity toOW andOt is limited, with some mixing between the two operators.

Going beyond the local information geometry, we calculate global information distances in
the model space and show them in Figure 4.19. �ese results con�rm the small sensitivity of this
process to all operators exceptOWW . Local and global distances are compared in Figure 4.20.
Large di�erences are visible at the d = 2 level, implying that a measurement of this channel will
always be sensitive to the squared dimension-six terms.

Differential information

In Figures 4.21 and 4.22 we show the distribution of this information over phase space. As
expected, the discrimination power is concentrated in the mγγ ∼ mH peak and in the high-
energy tails of the transverse momenta of jets or photons. Studying angular correlations between
the diphoton system and the top decay products, we �nd that the region ∆ηγγ,b j j ≲ 3 contains a
lot of information.
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Figure 4.22: Distribution of the di�erential SM Fisher information in the Higgs plus single top
channel (shaded red) with respect to the transverse momentum of the leading jet
(top le�), the invariant mass of the th system (top right), and the di�erences in
pseudorapidity and azimuthal angle between the diphoton system and the top decay
products (bottom). We also show the normalised rates for the SM signal (solid
black) and the single-top background (dotted grey). �e dashed blue lines show
the e�ect of ft υ2/Λ2 = 0.2 on the th signal. �e last bins are over
ow bins where
applicable.
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4.4 Higgs measurements

Information in distributions

�e next question is again how much of this maximal information is contained in various
kinematic distributions. A histogram-based analysis is only feasible with a reasonable signal-to-
background ratio, so we require

pT , j1 > 50 GeV , pT ,γ > 50, 30 GeV , and 122 GeV < mγγ < 128 GeV . (4.62)

�is reduces the single-top background to the level of the signal. Based on this selection, we
analyse the information in the following distributions:

● the transversemomentumof the leading photon, pT ,γ1 , with bin size 25GeVup to 400GeV
and an over
ow bin;

● the invariant mass of the diphoton system, mγγ, with bin size 1 GeV in the allowed range
of 123 ... 127 GeV;

● the transverse momentum of the diphoton system, pT ,γγ, with bin size 40 GeV up to
600 GeV and an over
ow bin;

● the separation in azimuthal angle between the two photons, ∆ϕγγ, with bin size π/10;
● the transverse momentum of the leading light (i. e. non-b) jet, pT , j1 , with bin size 40 GeV
up to 400 GeV and an over
ow bin;

● the transverse momentum of the b jet, pT ,b, with bin size 40 GeV up to 400 GeV and an
over
ow bin;

● the transverse momentum of the reconstructed tmomentum, pT ,b j j, with bin size 40 GeV
up to 600 GeV and an over
ow bin;

● the separation in azimuthal angle between the diphoton system and the b jet, ∆ϕγγ,b , with
bin size π/10;

● the separation in pseudorapidity between the diphoton system and the b jet, ∆ηγγ,b , with
bin size 0.5 up to 5.0 and an over
ow bin;

● the invariant mass of the full th system,mγγb j j, with bin size 100 GeV up to 1500 GeV and
an over
ow bin;

● the transverse momentum of the full th system, pT ,γγb j j with bin size 40 GeV up to
400 GeV and an over
ow bin;

● the separation in azimuthal angle between the diphoton system and the reconstructed t
momentum, ∆ϕγγ,b j j, with bin size π/10; and

● the separation in pseudorapidity between the diphoton system and the reconstructed t
momentum, ∆ηγγ,b j j, with bin size 0.5 up to 5.0 and an over
ow bin.
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Figure 4.23: Information in distributions in the Higgs plus single top channel, shown as con-
tours dlocal(θ;0) = 1. We show the total information in the full kinematics (black),
the information in the distributions of pT ,γγ (red) and ∆ηγγ,b j j (blue), their naive
combination assuming no mutual information (green), and their two-dimensional
histogram (yellow). �e θ i not shown are set to zero.

As in the WBF case, di�erent observables probe di�erent Wilson operators. In Figure 4.23
we demonstrate that the diphoton transverse momentum constrains mostly theOW direction,
while the rapidity separation between the Higgs and top systems is more sensitive toOt .

In Figure 4.24 we compare the eigenvalues, eigenvectors, and determinants of the information
matrices in all of the above distributions, in analogy to Figure 4.11. We con�rm that the photon
observables mostly probe changes in the Higgs-gauge coupling from OW , while a rescaled
top Yukawa will be visible in the properties of the top decay products. Distributions of the
properties of the b jet consistently contain signi�cantly less information than the corresponding
distributions for the reconstructed top system. �e rapidity di�erence between the γγ system
and the reconstructed top provides a particularly good probe of this operator. Combining this
variable with the transverse momentum of the γγ system, we can probe new physics scales
in the Oϕ,2-OW-Ot space of around Λ/

√
f ∼ 550 GeV, compared to 700 GeV based on the

full high-dimensional kinematics. �is corresponds to almost three times as much data. Of
course, the histogram-based analysis would pro�t from an optimisation of the selection cuts in
Equation (4.62), which goes beyond the scope of this demonstration.
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Figure 4.24: Fisher information in di�erent distributions for the Higgs plus single top channel.

We compare the total Fisher information based on the full kinematics (‘full’), the
Fisher information a�er the cuts in Equation (4.62) (‘th cuts’), the rate-only in-
formation a�er these cuts (‘xsec’), and the information in several one-dimensional
and two-dimensional distributions a�er this selection. �e top panel shows the
eigenvalues of these information matrices, the colours denote the composition of
the corresponding eigenvectors. �e right axis translates the eigenvalues into a new
physics reach for the corresponding combination of Wilson coe�cients. In the bot-
tom panel we show the determinants of the three-dimensional Fisher information
restricted toOϕ,2,OW , andOt , normalised to the full information. Again, the right
axis translates them into a new physics reach.

139



4 Better Higgs measurements through information geometry

. Extensions

�e applications of information geometry in the previous sections were based on a number of
simplifying assumptions. Most importantly, we only considered statistical sources of uncertainty
and neglected systematic and theory uncertainties on the signal and background predictions. In
Section 4.5.1 we demonstrate how such e�ects change our results. Section 4.5.2 �nally compares
the Fisher information to two other statistical tools, the well-known log-likelihood ratio and the
ambient information geometry.

.. Systematic uncertainties

�e precision of most Higgs measurements at the LHC are ultimately limited by systematic and
theory uncertainties [3, 74]. �e expected di�erential signal and background cross sections are
not exactly known, but depend on nuisance parameters ν. In Section 4.3.5 we showed how these
can be incorporated in our approach, and de�ned a pro�led Fisher information.
We now demonstrate this tool for the information on CP-even dimension-six operators in

WBF Higgs production with h → ττ. Our setup is the same as in Section 4.4.1, except that we
assign a 5% or 10% Gaussian uncertainty on the overall signal rate, representing for instance
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Figure 4.25: Error ellipses in the presence of nuisance parameters. We consider Gaussian uncer-
tainties of 5% and 10% on the total signal rate in the WBF h → ττ channel. Le�:
contour dlocal((θ , ν); (0, 1)) = 1 in the plane spanned by a physical parameter θ and
the nuisance parameter ν rescaling the signal rate. Right: contour dpro�led(θ;0) = 1
a�er pro�ling over this systematic uncertainty. �e θ i not shown are set to zero.
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4.5 Extensions

missing higher orders, parton density function uncertainties, or errors on the e�ciencies. Fig-
ure 4.25 demonstrates how pro�ling over these nuisance parameters signi�cantly reduces the
information onOϕ,2, which only rescales the total signal rate. �e other operators are mostly
constrained from kinematic shapes and much less sensitive to such a systematic uncertainty on
the overall normalisation.
In Figure 4.26 we show how the information in various distributions is a�ected by such a

systematic error, in complete analogy to Figure 4.11. �e new physics reach in theOϕ,2 direction
is reduced by 800 GeV.
�is treatment of systematic uncertainties on total rates can easily be extended to phase-space-

dependent e�ects, for instance representing how the accuracy of the parton shower or the size
of missing higher-order corrections depend on the energy scale. �is requires parametrised
smearing functions and an interpolation of the di�erential cross sections between di�erent
benchmark values of the nuisance parameters.

.. Comparison with other tools

Likelihood ratio

�ere is a certain ambiguity in what constitutes an optimal measurement. �e aim of our
approach is to minimise the covariance matrix of estimators, which the Cramér-Rao bound
links to the Fisher information. Alternatively one can maximise the power of hypothesis tests
at a given signi�cance level. According to the Neyman-Pearson lemma, the best test statistic is
the likelihood ratio between the two hypotheses. �ese two objects are designed for di�erent
questions: the likelihood ratio compares two discrete hypotheses, while the Fisher information
describes continuous parameter spaces of arbitrary dimensionality. Nevertheless, it is instructive
to compare these tools.
We consider the expected log likelihood ratio

q(θb; θa) ≡ −2 E [log f (x∣θb)
f (x∣θa)

∣θa] . (4.63)

For the extended likelihood ansatz of Equation (4.20), a brief calculation gives the likelihood
ratio as

q(θb; θa) = −2 σ(θa)L (1 − σ(θb)
σ(θa)

+ log σ(θb)
σ(θa)

)

− 2 σ(θa)L E [log f
(1)(x∣θb)
f (1)(x∣θa)

∣θa] . (4.64)
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Figure 4.26: Fisher information in di�erent distributions in the WBF h → ττ channel pro�led
over a 10% signal rate uncertainty. We compare the total Fisher information based
on the full kinematics (‘full’), the Fisher information a�er the cuts in Equation (4.51)
(‘WBF cuts’), the rate-only information a�er these cuts (‘xsec’), and the information
in several one-dimensional and two-dimensional distributions a�er this selection.
�e top panel shows the eigenvalues of these information matrices, the colours
denote the composition of the corresponding eigenvectors. �e right axis translates
the eigenvalues into a new physics reach for the corresponding combination of
Wilson coe�cients. In the bottom panel we show the determinants of the three-
dimensional Fisher information restricted toOϕ,2,OW , andOWW , normalised to
the full information. Again, the right axis translates them into a new physics reach.
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�is can be calculated with Monte-Carlo integration as given in Equation (4.22), �nally leading
to

q(θb; θa) = −2 L ∑
events

∆σ(θa) log ∆σ(θb)
∆σ(θa)

. (4.65)

With this result we can compare the log likelihood ratio to the distances de�ned by information
geometry. For WBF Higgs production in the ττ mode as described in Section 4.4.1, we sample
parameter points θ in theOW-OWW plane. For each of these points we calculate the local and
global distance from the SM point de�ned by the Fisher information, as well as the expected log
likelihood ratio to the SM.
As shown in Figure 4.27, the local and especially the global distances are almost exactly equal

to the square root of the expected likelihood ratio, with small di�erences only becoming visible
around the 3σ level. �is demonstrates that di�erent statistical tools probe the same physics
and can be chosen based on practical considerations. In particular, the conclusions from an
information-based analysis, utilising the convenient properties of the Fisher information for
high-dimensional theory spaces, also apply to exclusion limits based on the log likelihood ratio.

Ambient Fisher information

Information geometry, as introduced in Section 4.2, assigns a structure to the parameter space
of a theory. It is, interestingly, also possible to de�ne a distance measure in the space of all
distributions, without relying on any model structure. One such approach is the ambient Fisher
information [293, 294]. It de�nes the distance between two distributions fa(x) and fb(x) as

dambient( fa , fb) = arccos ∫dx √
fa(x) fb(x) . (4.66)

�is measure does not require an integration along model parameters. As long as the distri-
butions fa and fb are similar or the distances small, it approaches the usual global distance of
information geometry [294]:

2 dambient( f (x∣θa), f (x∣θb)) ∼ d(θa , θb) . (4.67)

For this reason, distances based on the ambient Fisher information have been suggested as a
computationally less expensive approximation for information distances [294].
In Figure 4.28 we compare this tool to our global distance measure. Again, we use the WBF

h → ττ channel as described in Section 4.4.1 and sample parameter points in the OW-OWW
plane. Equation (4.67) holds at distances up to d ≲ 2, beyond which the two measures diverge,
and the ambient distance is ultimately limited from above at π/2.
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Figure 4.27: Comparison of the local (le�) and global (right) distances de�ned by the Fisher

information with the expected log likelihood ratio de�ned in Equation (4.65). We
use WBF Higgs production in the h → ττ channel and sample parameter points in
theOW-OWW plane.
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Figure 4.28: Comparison of the usual global distance de�ned by the Fisher information with the
distance de�ned by the ambient Fisher information, see Equation (4.66). We use
WBF Higgs production in the h → ττ channel and sample parameter points in the
OW-OWW plane.
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. Conclusions

Information geometry can be used to optimise measurements of any set of continuous theory
parameters at the LHC. Following the Cramér-Rao bound, the Fisher informationmatrix de�nes
themaximumprecisionwithwhichmodel parameters can be estimated. �is object is well-suited
to high-dimensional parameter spaces since it requires no discretisation of the tested hypotheses,
does not depend on arbitrary basis choices, and can simultaneously encode the maximum
sensitivity to all directions in model space in a single matrix. �ese properties make information
geometry particularly useful for the analysis of e�ective �eld theories. Moreover, the Fisher
information is additive between di�erent measurements and between di�erent phase-space
regionswithin the same process, making it trivial to discuss the combination of di�erent channels.
Understood as a metric on the theory space, it provides an intuitive geometric interpretation of
discrimination power.
We developed an algorithm that can calculate the Fisher information in arbitrary high-energy

physics processes based on Monte-Carlo simulations. We can calculate the total information
based on the full high-dimensional phase space with all correlations. �is de�nes the maximal
precision with which the parameters can be probed; applied to e�ective �eld theories this gives
us the maximal new physics reach of any process.
�e Fisher information can also be calculated di�erentially to understand how the discrimin-

ating power is distributed over phase space, helping de�ne optimal event selection. Alternatively,
we can calculate the information in individual distributions of kinematic observables rather
than the full high-dimensional kinematics. �is de�nes the most powerful observables, and
lets us compare the power of simple histogram-based analyses to methods based on the matrix
elements or machine-learning techniques. All of these instruments can be useful to improve
measurement strategies.
An interesting feature of the geometric interpretation is that the curvature of the Riemannian

manifold de�ned by the Fisher information provides a handle on the square of dimension-six
contributions. As discussed in Section 3.4.2, under certain assumptions this lets us analyse the
convergence of the EFT expansion in 1/Λ.

With these novel tools we analysed how well e�ective dimension-six operators can be measured
in three di�erent Higgs channels. First, we studied the kinematics of Higgs production in weak
boson fusion with a decay into tau pairs. As expected, a large fraction of the constraining power
in this process comes from few events with large momentum transfer. Care has to be taken
with tight cuts on the rapidity separation of the tagging jets, which throw away a large amount
of discrimination power. Di�erent kinematic observables probe di�erent directions in theory
space: transverse momenta of the �nal-state particles, for instance the tagging jets, generally
probeOW , while the only standard observable with a large sensitivity toOWW is the azimuthal
angle between the tagging jets. To facilitate the most powerful and 
exible interpretation of their
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4 Better Higgs measurements through information geometry

results, the experimental collaborations should ideally measure and publish the fully correlated
two-dimensional histogram between these two quantities. Under idealised conditions, the
analysis of such a two-dimensional histogram can probe new physics scales around 1.1 TeV
in theOW-OWW-Oϕ,2 space in the early phase of Run 2. Fully multivariate analyses have the
potential to further enhance the sensitivity and probe new physics scales of up to 1.2 TeV.
Our next example process was Higgs production with a h → 4ℓ decay, a very clean signature

with rich kinematics. We used it to compare the sensitivity to dimension-six physics in the
decay and production vertices within the same process. Our results are unambiguous: the decay
kinematics is much less sensitive to momentum-dependent operators than the production-side
probes provided by the tagging jets. �is re
ects the E2/Λ2 dependency of such dimension-six
e�ects, which can be large in the production vertex, while the momentum 
ow through the
decay vertex is limited to the Higgs mass.
Higgs production in association with a single top has an interesting amplitude structure where

diagrams with Higgs-gauge interactions interfere destructively with diagrams depending on
the top Yukawa coupling. Small changes to these interactions can in principle change the total
production rate and the kinematics drastically. We showed that kinematic properties of the
Higgs decay products and observables related to the top system provide orthogonal information
on the theory space; in particular the diphoton transverse momentum as well as the rapidity
separation of the γγ and the b j j system provide useful information. Unfortunately, the tiny cross
section of this process strongly limits the constraining power on dimension-six operators. Even
with HL-LHC data and under idealised conditions, these distributions are only sensitive to new
physics scales around 550 GeV, while an optimal multivariate analysis may be able to probe
scales up to 700 GeV according to the Cramér-Rao bound.
�ese initial studies do not include systematic and theory uncertainties, and detector e�ects

are taken into account only with rudimentary smearing functions. Our results for the maximum
precision are therefore optimistic. We showed how our approach can be extended to include
systematic e�ects, and introduced a pro�ling procedure for the Fisher information. �ese tools
de�ne many directions for future research. First, the Higgs signatures discussed here can be re-
examined with a proper treatment of shower and detector e�ects as well as systematic and theory
uncertainties. Second, we can analyse the detection ofCP violation in theHiggs sector. Using the
pro�ling procedure for the Fisher information, we can pay particular attention to the question
which signatures of CP violation are genuine, i. e. cannot be caused by any CP-conserving
new physics. Finally, while we focused on Higgs physics in terms of e�ective �eld theories in
this thesis, these tools can be applied to any other measurement of continuous parameters in
perturbative LHC processes.
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Chapter
Conclusions

Measuring the properties of the Higgs boson is one of the most important missions
for Run 2 of the LHC and may help us understand some of the open questions of
fundamental physics. �e e�cient combination of di�erent experimental channels

and their interpretation in the many theories of physics beyond the Standard Model bene�t
from a universal parametrisation of these properties. �e dimension-six operators of linear
Higgs e�ective �eld theory provide such a framework that is theoretically well-motivated, largely
independent of model assumptions, and phenomenologically powerful.
In this thesis we discussed two aspects of this approach, both of immediate practical relevance:

we analysed whether these e�ective operators accurately capture the relevant signatures of
speci�c scenarios of new physics, and we developed statistical tools that can help to design
e�cient measurements of the Higgs properties.

In the �rst part we argued that the validity of the dimension-six model for LHC Higgs physics
is not at all obvious. �e e�ective �eld theory approach is based on the assumption that the
typical mass scale of new physics is signi�cantly larger than the experimentally probed energy
scale. But the limited precision of Higgs measurements at the LHC cannot guarantee such a
scale separation: signatures of weakly coupled new physics can only have a relevant size if the
new physics scale is close to the electroweak scale, and the e�ective theory may not be valid in
general.
We studied whether the dimension-six model is nevertheless useful for Higgs signatures by

comparing the phenomenology of di�erent scenarios of physics beyond the Standard Model
to the corresponding e�ective theories. For extended Higgs sectors with an additional scalar
singlet or doublet, scalar top partners, and heavy vector bosons, we analysed total rates and
kinematic distributions in the most important Higgs production and decay channels.
Our results show that the agreement between the full models and their dimension-six approx-
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imations crucially depends on the matching procedure, i. e. the construction of the e�ective
theory from a full model. Standard procedures for the matching, de�ned in the unbroken phase
of the electroweak symmetry, lead to large errors of the e�ective �eld theory description already
for total rates, which only deteriorate in kinematic distributions.
�is does not mean, though, that the dimension-six model is not useful for Higgs physics. We

introduced υ-improved matching, a procedure that improves the performance of the dimension-
six model by resumming certain terms that arise during electroweak symmetry breaking. While
formally of subleading order in the EFT expansion, these e�ects can be large under LHC con-
ditions. With such a matching, the dimension-six model provides a good description even in
many scenarios where the EFT validity is not self-evident, and typically only breaks down at
new resonances or in the far high-energy tails of certain distributions.
In addition, we discussed the role of squared amplitudes from dimension-six operators. Even

though they appear at the same order in the EFT expansion as the leading e�ects from the
neglected dimension-eight operators, we argued that it is o�en preferable to include them in
calculations. In a detailed study of Higgs production in weak boson fusion, we �nally showed
that the transverse momenta of the tagging jets provide the best measure of the unobservable
momentum transfer.
Our research was motivated by the question which parametrisation of Higgs properties to use

during Run 2 of the LHC.With these results we conclude that despite the unclear scale separation,
the dimension-six operators of linear Higgs e�ective �eld theory capture a wide range of new
physics signatures accurately. Subtleties in the matching procedure are not a problem for an
experimental �t of dimension-six operators at the LHC, but have to be taken into account when
interpreting the results in speci�c models.

Having established that Higgs EFTworks well as a largelymodel-independent language forHiggs
physics at the LHC, we turned to the question of how its parameters can be measured most
e�ciently. �e high-dimensional theory space de�ned by the Higgs properties and the intricate
kinematics of some Higgs channels present challenges for traditional analysis methods based on
cuts and kinematic distributions, while modern multivariate methods can be non-transparent
and di�cult to reproduce.
We showed that information geometry allows us to understand the information contained in

LHC signatures and can help optimise measurement strategies. �is formalism is based on the
Fisher information matrix, which according to the Cramér-Rao bound quanti�es the maximal
precision with which continuous model parameters can be measured in an experiment. It can
be interpreted geometrically, and its properties are well-suited to high-dimensional parameter
spaces such as that of Higgs e�ective �eld theory.
We developed a novel algorithm to calculate the Fisher information in LHC processes, taking

into account the full kinematics including all correlations. In addition to the total Fisher inform-
ation, we also showed how to calculate the distribution of the di�erential information over phase
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space, and the information in individual kinematic distributions. �ese tools de�ne the import-
ant phase-space regions and observables for an analysis and let us compare the discrimination
power of traditional histogram-based analyses to that of modern multivariate ones.
Applying these techniques to Higgs production in weak boson fusion with decays into tau

pairs or four leptons, we demonstrated that the kinematics of the tagging jets is signi�cantly
more sensitive to new physics in the form of dimension-six operators than observables that char-
acterise the Higgs decay. �e transverse momenta of these jets and their angular correlations
are particularly powerful observables. Still, a multivariate analysis with matrix-element-based
methods or machine-learning tools can potentially extract signi�cantly more information. Fi-
nally, we analysed the structure of Higgs production with a single top. Higgs decay products and
angular distributions between the Higgs and top daughters are sensitive to di�erent operators,
but overall the sensitivity of this process to dimension-six physics is limited.
While there is no shortage of statistical tools in the �eld, these new methods can help to plan

and optimise measurements of high-dimensional, continuous parameter spaces in an intuitive
way. We demonstrated this approach in di�erent Higgs channels for dimension-six operators,
showing how it aids e�cient measurements of the Higgs properties and thus contributes to the
second major question raised in the introduction. Our tools can easily be translated to other
processes and models.

To summarise, e�ective dimension-six operators provide a powerful framework to measure and
understand the properties of the Higgs boson. We analysed the validity of this approach at the
LHC and showed how it can be improved with a suitable matching procedure. In a next step,
we developed statistical tools based on information geometry to guide the design of e�cient
measurements. �ese new ideas can contribute to a better understanding of the nature of the
Higgs boson, which may ultimately point us to what lies beyond the Standard Model.
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Appendices

For completeness and reproducibility, we here collect our conventions, some technical details,
and additional examples. We begin in Appendix A.1 with our conventions for the Standard
Model. Appendix A.2 de�nes standard kinematic quantities and units. Section A.3 provides
explicit examples for the manipulation of e�ective Lagrangians with �eld rede�nitions and
for matching with functional methods. In Appendix A.4 we de�ne an alternative basis for
dimension-six operators and link it to the HISZ basis used in this thesis. Appendix A.5 contains
some additional details on the models considered in Chapter 3. Finally, in Appendix A.6 we
collect some auxiliary results related to Chapter 4.
Large parts of this appendix have been published previously, as part of the same articles that

contained much of the main body of this thesis. In particular, Appendices A.4 and A.5 were part
of References [1, 2], while Appendix A.6 contains material published in Reference [4].

A. Standard model conventions

We begin with our conventions for the Standard Model, which also apply to all models of new
physics. �e Standard Model is a renormalisable and local quantum �eld theory. It is invariant
under global proper orthochronous Poincaré transformations (which include translations, rota-
tions, and boosts), and a local SU(3)C × SU(2)L ×U(1)Y gauge group. Its Lagrangian is given
by

LSM = −
1
4
Ga
µνGa µν

−
1
4
Wa

µνWa µν
−
1
4
BµνBµν +

θQCD
32π2

Ga
µνG̃a µν

+∑
f
f i /D f

+ (Dµϕ)†(Dµϕ) − µ2ϕ†ϕ − λ(ϕ†ϕ)2

− ∑
generations

(yu(
u
d)L

ϕ̃ uR + yd(
u
d)L

ϕ dR + yℓ(
ν
ℓ−)L

ϕ ℓR + h. c.) . (A.1)
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Fermions Representation
SU(3)C SU(2)L U(1)Y

LH quarks (
u
d)L

(
c
s)L

(
t
b)L

3 2
1
6

RH up-type quarks uR cR tR 3 1
2
3

RH down-type quarks dR sR bR 3 1 −
1
3

LH leptons (
νe
e−)L

(
νµ
µ−)L

(
ντ
τ−)L

1 2 −
1
2

RH leptons e−R µ−R τ−R 1 1 −1

Table A.1: SM fermions and their charges under the SM gauge group.

As civilised high-energy physicists, we use natural units with

ħ = c = 1 , (A.2)

sum over repeated indices, and use the Minkowski metric

gµν = diag(1,−1,−1,−1) . (A.3)

�e �elds in this Lagrangian are a scalar ϕ transforming as the (1, 2, 1/2) representation of
the SM gauge group; the gauge bosons Ga

µ,Wa
µ , and Bµ; and the fermions given in Table A.1.

We usually leave out generation (
avour) indices and simply denote up-type quarks, down-
type quarks, charged leptons, and neutrinos with u, d, ℓ, ν, respectively, and the doublets of
le�-handed quarks and leptons with Q and L. Equation (A.1) includes the �eld strength tensors

Ga
µν = ∂µGa

ν − ∂νGa
µ + gs f abcGb

µGc
ν , (A.4)

Wa
µν = ∂µWa

ν − ∂νWa
µ + gεabcWb

µW c
ν , (A.5)

Bµν = ∂µBν − ∂νBµ (A.6)

and the dual �eld strength tensor

G̃a
µν =

1
2
εµνρσGa µν (A.7)

with the totally antisymmetric tensor εµνρσ . �e covariant derivatives are de�ned according to
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the gauge charges and with a conventional minus sign in front of the gauge term, for instance

Dµϕ = (∂µ − ig
σ a

2
Wa

µ − ig′
1
2
Bµ) ϕ ,

Dµ(
u
d)L

= (∂µ − igs
λa

2
Ga
µ − ig

σ a

2
Wa

µ − ig′
1
6
Bµ)(

u
d)L

. (A.8)

�ese expressions contain the structure constants f abc and εabc of SU(3) and SU(2), as well as
the Pauli matrices σ a and the Gell-Mann matrices λa.
�e Standard Model has 19 free parameters. In the form of Equation (A.1), they are:
● the coupling constants corresponding to the three components of its gauge group, gs, g,
and g′;

● the real parameter θQCD;
● the two real parameters µ2 and λ of the Higgs potential; and
● the Yukawa couplings y f . �ese are unitary, complex-valued matrices in 
avour space,
and their components correspond to 13 physical parameters.

For µ2 < 0, the potential for ϕ has a minimum at the non-zero vacuum expectation value
(VEV)

υ2 ≡ 2 ∣⟨ϕ⟩∣2 = − µ
2

λ
. (A.9)

Using some of the gauge freedom, we can choose that the vacuum expectation value of ϕ points
into the lower component of the doublet. Expanding the four physical degrees of freedom wa

and h around this minimum, we have

ϕ = 1
√
2
(
−w2 − iw1

υ + h + iw3) . (A.10)

Plugging this into Equation (A.1), and diagonalising the mass matrices, one sees that the gauge
bosonsWa and B combine with the Goldstone bosons wa to the mass eigenstates

W±
µ =

1
√
2
((W1

µ −
1
gυ
∂µw1

) ± i(W2
µ −

1
gυ
∂µw2

)) , (A.11)

Zµ = cW (W3
µ −

1
gυ
∂µw3

) − sWBµ , (A.12)

Aµ = sWW3
µ + cWBµ (A.13)

with weak mixing angle (or Weinberg angle)

cW ≡ cos θW =
g

√
g2 + g′2

, sW ≡ sin θW =
g′

√
g2 + g′2

(A.14)
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and masses

mW =
gυ
2

and mZ =
gυ
2cW

. (A.15)

�e remaining degree of freedom from ϕ is the physical Higgs boson h with a mass

m2
h = −2µ

2
= 2λυ2 . (A.16)

Inserting Equation (2.5) into the Yukawa couplings also yields fermion masses

m f =
y f υ
√
2
. (A.17)

Since the Yukawa couplings are not 
avour-diagonal, thesemassmatrices have to be diagonalised
in 
avour space, ultimately leading to the CKM matrix. But this does not a�ect the Higgs
couplings, and in this thesis we can safely assume 
avour-diagonal Yukawa couplings.
With respect to the remaining gauge group U(1)Q with the gauge boson Aµ and the gauge

coupling

e = g g′
√
g2 + g′2

= gsW = g′cW , (A.18)

the fermions carry the electromagnetic charge

q = y + σ3
2
, (A.19)

where the second term is shorthand for its eigenvalue in the case of SU(2)L doublets and zero
for the singlets. More important for this thesis, the terms that lead to mass terms for the weak
gauge bosons and fermions also yield couplings between the Higgs boson and these particles.
Expressed in terms of the masses, these couplings read

gh f f = −
m f

υ
(A.20)

for the fermions and

ghW+W− =
2m2

W
υ

, ghZZ =
m2
Z
υ

(A.21)

for the vector bosons.
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A.2 Phenomenology glossary

A. Phenomenology glossary

Most of this thesis discusses interactions in proton-proton collisions at the LHC. Here we de�ne
kinematical quantities and units commonly used to describe such processes.
With the metric in Equation (A.3), the norm of any four-momentum pµ is the invariant mass

p2 = E2 − p2 (A.22)

with energy E = p0 and three-momentum p. We use the symbol m for invariant masses of
systems of two or more particles, for instancem2

i j ≡ (pi + p j)2. For a single particle i,mi instead
denotes the mass parameter, and p2i = m2

i only for on-shell particles.
We use a standard coordinate system where the component p3 (also called longitudinal

momentum pL) points into the direction of the proton beam. �e other two spatial components
make up the transverse momentum pT . O�en we use its magnitude

pT ≡
√
p2x + p2y . (A.23)

�emissing transverse momentum or missing transverse energy is given by

pmissT ≡ − ∑
visible

pT , EmissT ≡ ∣pmissT ∣ , (A.24)

where the sum goes over all particles that can be experimentally detected.
�e particle direction is usually characterised in a spherical coordinate system: ϕ is the

azimuthal angle in the transverse plane and θ the polar angle between the spatial momentum
and the beam axis. �e latter is conventionally expressed in the pseudo-rapidity

η ≡ − log(tan θ
2
) , (A.25)

such that η → ±∞ corresponds to the beam directions and η = 0 to the orthogonal plane.
Small values ∣η∣ ≲ 2.5 correspond to the central regions of typical general-purpose particle
detectors such as ATLAS and CMS, larger values 2.5 ≲ ∣η∣ ≲ 5 to the ‘forward regions’. We o�en
analyse angular correlations between particles, in particular the di�erence in pseudorapidity
∆ηi j ≡ ∣ηi − η j∣ and the di�erence in azimuthal angle ∆ϕi j ≡ ∣ϕi − ϕ j∣.
Energies, momenta, and masses are expressed in GeV or TeV, with

1 GeV = 1.60 ⋅ 10−10 J = 1.78 ⋅ 10−27 kg = 5.34 ⋅ 10−19 kgm/s . (A.26)

Cross sections are given in fb or pb, integrated luminosities in fb−1, where

1 fb = 10−43 m2
= 2.57 ⋅ 10−12 GeV−2 . (A.27)
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A. EFT fundamentals

A.. Nonlinear field redefinitions

In Section 2.2.2 we stated that non-linear �eld rede�nitions of the form given in Equation (2.12)
leave the S-matrix elements and thus all observable physics invariant, but change the form of
the Lagrangian. According to Equation (2.13), the leading term of the change of the Lagrangian
is given by the classical equations of motion. �is de�nes an equivalence relation between
some operators that can be used to remove redundant operators and de�ne a minimal basis, as
discussed in Section 2.3.2 for the Higgs EFT.
Here we illustrate this procedure by explicitly calculating the e�ect of such a non-linear

�eld rede�nition without truncating the Lagrangian at the leading order in the transformation
parameter. We start with the CP-even B-ϕ sector of the SM e�ective �eld theory, and add
e�ective operators up to mass dimension six. Ordering the terms by mass dimension, it reads

Lbefore = −µ2ϕ†ϕ

−
1
4
BµνBµν + (Dµϕ)†(Dµϕ) − λ (ϕ†ϕ)2

+
fϕ,1
Λ2 (Dµϕ)†ϕ ϕ†Dµϕ +

fϕ,2
Λ2

1
2
∂µ(ϕ†ϕ) ∂µ(ϕ†ϕ) +

fϕ,3
Λ2

1
3
(ϕ†ϕ)3

+
fϕ,4
Λ2 (ϕ†ϕ) (Dµϕ)† Dµϕ + fB

Λ2
ig′

2
(Dµϕ)† Dνϕ Bµν −

fBB
Λ2

g′2

4
(ϕ†ϕ) Bµν Bµν

+O (1/Λ4) . (A.28)

�e simplest non-linear �eld transformation is

ϕ → ϕ + ε
Λ2 (ϕ

†ϕ)ϕ . (A.29)

It transforms this Lagrangian into

La�er = Lbefore + δL4 + δL6 + δL8 + δL≥ 10 (A.30)

where the indices denote the mass dimension of the operators. �e SM dimension-two term
generates

δL4 = −2µ2
ε
Λ2 (ϕ†ϕ)2 . (A.31)

At the dimension-six level, we have

δL6 =
ε
Λ2 [∂µ(ϕ†ϕ) ∂µ(ϕ†ϕ) − 4λ (ϕ†ϕ)3 + 2 (ϕ†ϕ) (Dµϕ)† Dµϕ]−µ2 ε

2

Λ4 (ϕ†ϕ)3 . (A.32)
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�e e�ects at dimension eight read

δL8 =
ε
Λ4

⎡
⎢
⎢
⎢
⎢
⎣

ig′ fB
2

∂µ(ϕ†ϕ) (ϕ†
←→D νϕ)Bµν + fϕ,4 (ϕ†ϕ) ∂µ(ϕ†ϕ) ∂µ(ϕ†ϕ)

+ ig′ fB (ϕ†ϕ) (Dµϕ)†Dνϕ Bµν + 4 fϕ,1 ϕ†ϕ (Dµϕ)†ϕ ϕ†Dµϕ

+ fϕ,1 ϕ†ϕ ∂µ(ϕ†ϕ) ∂µ(ϕ†ϕ) + 4 fϕ,4 (ϕ†ϕ)2 (Dµϕ)† Dµϕ

−
1
2
g′2 fBB (ϕ†ϕ)2 Bµν Bµν + 2 fϕ,3(ϕ†ϕ)4

⎤
⎥
⎥
⎥
⎥
⎦

+
ε2

Λ4

⎡
⎢
⎢
⎢
⎢
⎣

+2 ϕ†ϕ ∂µ(ϕ†ϕ) ∂µ(ϕ†ϕ) − 6λ (ϕ†ϕ)4 + (ϕ†ϕ)2 (Dµϕ)† Dµϕ
⎤
⎥
⎥
⎥
⎥
⎦

, (A.33)

and so on for higher mass dimensions.
Setting the O (ε) terms in Equations (A.31) to (A.33) to zero corresponds exactly to the

classical equations of motion for ϕ, as discussed in Section 2.2.2 and applied to the SM EFT
in Equation (2.42). �e higher orders in ε are missing in the equations of motion, but their
inclusion does not a�ect our choice of redundant operators.
Similarly, a transformation

Bµ → Bµ +
ε
Λ2 ϕ

†ϕ Bµ (A.34)

corresponds to the classical equations of motion for Bµ plusO (ε2) corrections.

A.. Functional matching

In 2.2.3 we discussed the e�ective theory in a top-down approach, �nally arriving at the expres-
sion for the e�ective action at one-loop level given in Equation (2.27).
We now show a simple example of how this object can be calculated with functional methods.

We closely follow Reference [139], which contains a more detailed explanation of all symbols
and methods. Our toy theory consists of two real scalar �elds. �e light �eld ϕ has mass m, the
heavy �eld Φ with massM is being integrated out. �e underlying theory is given by

S[ϕ, Φ] = ∫d4x
⎡
⎢
⎢
⎢
⎢
⎣

1
2
∂µϕ∂µϕ −

m2

2
ϕ2 + 1

2
∂µΦ∂µΦ −

M2

2
Φ2

−
λ0
4!
ϕ4 − λ2

4
ϕ2Φ2

−
λ4
4!
Φ4

⎤
⎥
⎥
⎥
⎥
⎦

. (A.35)
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Odd interactions and a mixing term ϕΦ are forbidden with suitable Z2 symmetries.
�e classical equation of motion for Φ is

(∂2 +M2
+
λ2
2
ϕ2 + λ4

3!
Φ2
c)Φc = 0 (A.36)

with the trivial solution Φc = 0.
�e �rst term of the e�ective action in Equation (2.27) then just gives back ϕ4 theory for the

light �eld, without any new e�ective interactions:

S[ϕ, Φc] = ∫d4x [
1
2
∂µϕ∂µϕ −

m2

2
ϕ2 − λ0

4!
ϕ4] . (A.37)

�e second term is

i
2
tr log

⎛

⎝
−
δ2S
δΦ2 ∣

Φ=Φc

⎞

⎠
=
i
2
tr log(∂2 +M2

+
λ2
2
ϕ2)

=
i
2
tr log (∂2 +M2) +

i
2
tr log(1 + λ2

2
1

∂2 +M2 + iε
ϕ2) ,

(A.38)

where derivatives in the denominator are de�ned as Green’s functions. Since tr log (∂2 +M2) is
just a constant that can be calculated for instance in dimensional regularisation, the �rst part
does not give us any higher-dimensional operators of the light �elds ϕ. Expanding the logarithm
in the second term, we �nd

Se� ⊃
iλ2
4
tr 1
∂2 +M2 − iε

ϕ2 − iλ22
8
tr( 1

∂2 +M2 − iε
ϕ2)

2

+
iλ32
12

tr( 1
∂2 +M2 − iε

ϕ2)
3
+O (λ42) . (A.39)

�e �rst of these terms renormalises the ϕ mass term, and the second contributes to the ϕ4
interaction. �is is important for RG running, but does not create the kind of new e�ective
interactions we are interested in here. Instead, we focus on the last term and evaluate the
functional trace with Equation (2.28) (for a detailed description of the formalism see for instance
Reference [139]):

Se� ⊃
iλ32
12 ∫ d4k

(2π)4
⟨k∣ ( 1

∂2 +M2 − iε
ϕ2)

3
∣k⟩

⊃
iλ32
12 ∫d4x ∫d4y ∫d4z ∫ d4k

(2π)4 ∫
d4p

(2π)4 ∫
d4q

(2π)4
⟨k∣ 1

∂2 +M2 − iε
∣x⟩ ⟨x∣ϕ2∣p⟩

× ⟨p∣ 1
∂2 +M2 − iε

∣y⟩ ⟨y∣ϕ2∣q⟩ ⟨q∣ 1
∂2 +M2 − iε

∣z⟩ ⟨z∣ϕ2∣k⟩ . (A.40)
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Here we have used the de�nition of the functional trace in Equation (2.28) and inserted unity,
1 = ∫d4x ∣x⟩ ⟨x∣ = ∫d4p/(2π)4 ∣p⟩ ⟨p∣. �e states ∣k⟩, ∣p⟩, and ∣q⟩ are eigenstates of the derivative
operator ∂, i. e. ⟨k∣ i∂µ = ⟨k∣ kµ, while ∣x⟩, ∣y⟩, and ∣z⟩ denote the eigenstates of local operators,
⟨x∣ ϕ2 = ⟨x∣ ϕ2(x). �eir inner product is ⟨x∣k⟩ = e−ikx . Using these properties and shi�ing the
integration variables, we get

Se� ⊃
iλ32
12 ∫d4x ∫d4y ∫d4z ∫ d4k

(2π)4 ∫
d4p

(2π)4 ∫
d4q

(2π)4
1

−k2 +M2 − iε
eikxϕ(x)2e−ipx

×
1

−p2 +M2 − iε
eipyϕ(y)2e−iqy 1

−q2 +M2 − iε
eiqzϕ(z)2e−ikz

⊃ −
iλ32
12 ∫d4x ∫d4y ∫d4z ∫ d4k

(2π)4 ∫
d4p

(2π)4 ∫
d4q

(2π)4
ϕ(x)2ϕ(y)2ϕ(z)2

×
eip(z−x) eiq(z−y)

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + p + q)2 −M2 + iε)
. (A.41)

We can now perform the integral over the loop momentum k with Feynman parameters:

∫ d4k
(2π)4

1
(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + p + q)2 −M2 + iε)

= 2 ∫ 1

0
dx1 ∫ 1−x1

0
dx2 ∫ d4k

(2π)4
[x1(k2 −M2

+ iε) + x2((k + p)2 −M2
+ iε)

+ (1 − x1 − x2)((k + p + q)2 −M2
+ iε)]

−3

= 2 ∫ 1

0
dx1 ∫ 1−x1

0
dx2 ∫ d4k

(2π)4
1

[(k + a)2 − B + iε]3
(A.42)

with a = (1 − x1)p + (1 − x1 − x2)q and B = M2 − (1 − x1 − x2)(p + q)2 − x2p2 + a2. Shi�ing
the loop momentum as k → k + a, we �nally arrive at

T3(p, q) = 2 ∫ 1

0
dx1 ∫ 1−x1

0
dx2 ∫ d4k

(2π)4
1

[k2 − B + iε]3
. (A.43)

To evaluate this, we �rst Wick-rotate k0 = ik0E . Formally, this means shi�ing the integration
path in the complex plane of k0 from along the real axis to along the imaginary axis. �e Cauchy
theorem assures that this does not change the value of the integral as long as we choose the
contour such that the poles are not caught between the two contours. De�ning k2E = (k0E)2+k

2
=

−k2, we �nd

I0,3 ≡ ∫ d4k
(2π)4

1
[k2 − B + iε]3

= i ∫ d4kE
(2π)4

1
[−k2E − B]

3 , (A.44)
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where the +iε is no longer necessary. With k = ∣kE ∣ we can �nally calculate the integral:

I0,3 =
2π2

(2π)4 ∫dkk3 1

[k2 + B]
3 =

−i
32π2B

. (A.45)

Collecting all the pieces, we have

Se� ⊃ −
λ32

192π2 ∫d4x ∫d4y ∫d4z ϕ(x)2ϕ(y)2ϕ(z)2
× ∫ d4p

(2π)4 ∫
d4q

(2π)4
eip(z−x) eiq(z−y) ∫ 1

0
dx1 ∫ 1−x1

0
dx2

× [M2
− (1 − x1 − x2)(p + q)2 − x2p2 + ((1 − x1)p + (1 − x1 − x2)q)2]

−1 .
(A.46)

At �rst glance, this is disappointing: this e�ective action looks non-local and involves highly non-
trivial integrals. It turns out that these can in fact be calculated and give a �nite result [295, 296].
�e full expression is quite ugly, but fortunately, we do not need it. Instead, we expand the
integrand in powers of 1/M2. We only calculate the leading term atO (1/M2). Since it produces
a �nite result as well, the rest term at O (1/M4) also has to be �nite. In this way, we �nd the
much simpler result

Se� ⊃ −
λ32

192π2M2 ∫d4x ∫d4y ∫d4z ϕ(x)2ϕ(y)2ϕ(z)2
× ∫ d4p

(2π)4 ∫
d4q

(2π)4
eip(z−x)eiq(z−y) +O (1/M4)

⊃ −
λ32

192π2M2 ∫d4x ∫d4y ∫d4z ϕ(x)2ϕ(y)2ϕ(z)2 δ(z − x)δ(z − y)
⊃ −

λ32
192π2M2 ∫d4x ϕ(x)6 . (A.47)

A�er the expansion in 1/M, we have �nally arrived at a local theory.
What about the higher terms in Equation (A.39)? �eir calculation is analogous to that

presented here and leads to operators of the form ϕ8 and higher. �ey are suppressed at least
with 1/M4 and are thus irrelevant for our dimension-six e�ective theory.
Combining Equation (A.37) and Equation (A.47), up to one loop andO (1/M2) the e�ective

action is given by

Se�[ϕ] = ∫d4x [
1
2
∂µϕ∂µϕ −

m2

2
ϕ2 − λ0

4!
ϕ4 −

λ32
12(4π)2M2 ϕ

6
] . (A.48)

As expected, the dimension-six operator is suppressed by two powers of the heavy scale Λ ≡ M,
and the Wilson coe�cient consists of the couplings λ32 times a loop factor.
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A.4 SILH basis

OSILHH = ∂µ(ϕ†ϕ) ∂µ(ϕ†ϕ) OSILHHB = (Dµϕ)† Dνϕ Bµν

OSILHT = (ϕ†←→D µ ϕ) (ϕ†←→D µ ϕ) OSILHHW = (Dµϕ)† σ k Dν ϕ Wk
µν

OSILH6 = (ϕ†ϕ)3 OSILHB = (ϕ†←→D µ ϕ) (∂ν Bµν)

OSILHu = (ϕ†ϕ) (ϕ† ⋅ QL)uR + h. c. OSILHW = (ϕ† σ k←→D µϕ) (DνWk
µν)

OSILHd = (ϕ†ϕ) (ϕQL) dR + h. c. OSILHg = (ϕ†ϕ)Ga
µν Gµν a

OSILHℓ = (ϕ†ϕ) (ϕ LL) lR + h. c. OSILHγ = (ϕ†ϕ)Bµν Bµν

Table A.2: Dimension-six operators in the SILH basis relevant for Higgs physics.

A. SILH basis

For the dimension-six operators of linear Higgs e�ective �eld theory, we closely follow the
conventions of References [25, 152, 153], which are based on the Hagiwara-Ishihara-Szalapski-
Zeppenfeld basis (HISZ) [150]. Our framework is de�ned in Section 2.3.2. �e Lagrangian
is given in Equation (2.36), and the operators are listed in Tables 2.1 to 2.4. We discuss the
phenomenology of these operators in Section 2.3.3.
Another common basis for dimension-six operators was developed in References [148, 149]

and is usually named ‘Strongly Interacting Light Higgs’ or ‘SILH’ a�er the title of Reference [148].
It is based on the Lagrangian

LSILH = LSM +
cH
2υ2
O
SILH
H +

cT
2υ2
O
SILH
T −

c6λ
υ2
O
SILH
6

+
igcW
2m2

W
O
SILH
W +

ig′cB
2m2

W
O
SILH
B +

ig cHW
m2
W
O
SILH
HW +

ig′cHB
m2
W
O
SILH
HB

+
g′2cγ
m2
W
O
SILH
γ +

g2s cg
m2
W
O
SILH
g −∑

f

c f
υ2

y f OSILHf (A.49)

with the Wilson coe�cients ci , and the operators OSILHi de�ned in Table A.2. Note that this
Lagrangian is not of the formgiven inEquation (2.11): the dimension-six operators are suppressed
by conventional powers of mW or υ instead of the cuto� scale Λ.
�ese operators can be translated to our conventions (the HISZ basis) with the following

dictionary:

O
SILH
H = 2Oϕ2 , O

SILH
HB = −

2i
g′
OB ,
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O
SILH
T = 2Oϕ2 − 4Oϕ1 , O

SILH
HW = −

2i
g
OW ,

O
SILH
6 = 3Oϕ3 , O

SILH
B =

2i
g′

(OBB +OBW − 2OB) ,

O
SILH
u = Ou , O

SILH
g = OGG ,

O
SILH
d = Od , O

SILH
W =

2i
g
(OWW +OBW − 2OW) ,

O
SILH
ℓ = Oℓ , O

SILH
γ = −

4
g′2
OBB . (A.50)

For the Wilson coe�cients, we �nd

cH =
υ2

Λ2 (
1
2
fϕ1 + fϕ2) , cHB =

υ2

Λ2
g2

8
( fB + 2 fBW − 2 fWW) ,

cT = −
υ2

Λ2
1
2
fϕ1 , cHW =

υ2

Λ2
g2

8
( fW + 2 fWW) ,

c6 = −
υ2

Λ2
1
3λ

fϕ3 , cB =
υ2

Λ2
g2

4
( fWW − fBW) ,

cu = −
υ2

Λ2
1
yu

fu , cW = −
υ2

Λ2
g2

4
fWW ,

cd = −
υ2

Λ2
1
yd

fd , cg =
υ2

Λ2
g2

4g2s
fGG ,

cℓ = −
υ2

Λ2
1
yℓ

fℓ , cγ =
υ2

Λ2
g2

16
( fBW − fBB − fWW) . (A.51)

A. Model fine print

A.. Singlet extension

�e singlet model is de�ned in Equations (3.25) and (3.26) in Section 3.3.2. Ignoring the Gold-
stones, the scalar doublet and singlet �elds can be expanded into components as

ϕ = 1
√
2
(

1
υ + ϕ0) ,

S = 1
√
2
(υs + s0) , (A.52)

where υ ≡
√
2⟨ϕ⟩ = 246 GeV and υs ≡

√
2⟨S⟩ denote their respective VEVs. �e minimisation

condition for this potential can be used to eliminate the parameters µ1,2 in favour of υ and υs.
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�e components ϕ0 and s0 mix to form a light (h) and a heavy (H) mass eigenstate,

h = ϕ0 cos α − s0 sin α ,
H = ϕ0 sin α + s0 cos α , (A.53)

where

tan(2α) = λ3υυs
λ2υ2s − λ1υ2

. (A.54)

�eir masses are

m2
h,H = λ1 υ2 + λ2 υ2s ∓ ∣λ1 υ2 − λ2 υ2s ∣

√
1 + tan2(2α) (A.55)

with m2
H ≈ 2λ2υ2s ≫ m2

h in the limit υ
2 ≪ υ2s .

A.. Two-Higgs-doublet model

Model setup

We analyse the most general gauge invariant, CP-even theory for two scalar �elds with an addi-
tional Z2 symmetry, as de�ned in Equation (3.41) in Section 3.3.3. �e scalar mass eigenstates
follow from the set of rotations

(
H0

h0) = R(α) (
h01
h02

) , (
w0

A0) = R(β) (
a01
a02

) , (
w±
H±) = R(β) (

h±1
h±2

) , (A.56)

with

ϕk =
⎛
⎜
⎝

h+k
1

√
2
(υk + h0k + iak)

⎞
⎟
⎠

(A.57)

and

R(θ) = (
cos θ sin θ
− sin θ cos θ) . (A.58)

Since the two doublets contribute to giving masses to the weak gauge bosons, custodial
symmetry will impose tight constraints on the viable mass spectrum of the model [297–305].
Analytic relations linking the di�erent Higgs masses and mixing angles with the Lagrangian
parameters in Equation (3.41) can be found for example in Appendix A of Reference [177]. �e
conventions

0 < β < π/2 and 0 ≤ β − α < π (A.59)

guarantee that the Higgs coupling to vector bosons has the same sign in the 2HDM and in the
SM.
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Couplings

�e tree-level coupling shi�s of the light Higgs directly follow from the rotations in Equa-
tion (A.56) and are given in Equations (3.42) to (3.46). �e light Higgs coupling to a charged
Higgs pair reads

gh0H+H−
gSMhhh

=
1

3m2
h0

⎡
⎢
⎢
⎢
⎢
⎣

sin(β − α) (2m2
H± −m2

h0)

+
cos(α + β)
sin(2β)

(2m2
h0 −

2m2
12

sin β cos β
)

⎤
⎥
⎥
⎥
⎥
⎦

, (A.60)

with gSMhhh = −3m
2
h/υ.

�e loop-induced couplings are more involved, giving

1 + ∆g =
1
ASMg g

⎡
⎢
⎢
⎢
⎢
⎣

∑
f=t,b

(1 + ∆ f )A f (τ f )
⎤
⎥
⎥
⎥
⎥
⎦

, (A.61)

1 + ∆γ =
1
ASMγγ

⎡
⎢
⎢
⎢
⎢
⎣

∑
f=t,b

NC Q2
f (1 + ∆ f )A f (τ f ) + Q2

τ (1 + ∆τ)A f (ττ) + (1 + ∆W)Aυ(τW)

− gh0H+H−
mW sw
em2

H±
As(τH±)

⎤
⎥
⎥
⎥
⎥
⎦

, (A.62)

where ASMxx are the corresponding contributions in the SM.�e conventional loop form factors
read

As(τ) = −
τ
2

[1 − τ f (τ)] = 1/6 +O(τ−1) ,

A f (τ) = τ [1 + (1 − τ) f (τ)] = 2/3 +O(τ−1) ,

AV(τ) = −
1
2

[2 + 3τ + 3(2τ − τ2) f (τ)] = −7/2 +O(τ−1) , (A.63)

where

f (τ) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

− 1
4 [log

1+
√
1−τ

1−
√
1−τ − iπ]

2
for τ < 1

[arcsin 1√
τ ]

2
for τ ≥ 1 ,

(A.64)

and τx = 4m2
x/m2

h0 .
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Matching

�e e�ect of the second doublet on the phenomenology of the light Higgs consists purely of
shi�ed couplings ∆x . �is allows us to match the dimension-six model by equating the coupling
shi�s from the full model, given in Equations (3.42) to (3.46) and (A.62), to the corresponding
couplings in the dimension-six Lagrangian, see Equation (2.58).
In a second step we then expand in 1/Λ and keep terms up toO (1/Λ2). Λ is either de�ned

in the unbroken phase for the default matching, or as the physical mass mA0 in the υ-improved
matching, as described in Section 3.3.3.
�is de�nes the e�ective model in a straightforward way. For more details see Appendix A.3

of Reference [1].

A.. Scalar top partners

Model setup

�e potential for the simpli�ed scalar top partner model consists of three parts,

Ltop partners ⊃ (DµQ̃)
†DµQ̃ + (Dµ t̃R)∗Dµ t̃R −M2 Q̃†Q̃ −M2 t̃∗R t̃R

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Lmass

− κLL (ϕ ⋅ Q̃)
†
(ϕ ⋅ Q̃) − κRR (t̃∗R t̃R) (ϕ† ϕ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
LHiggs

− [κLRM t̃∗R (ϕ ⋅ Q̃) + h. c.]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Lmixing

. (A.65)

We use the customary notation for the SU(2)L invariant product ϕ ⋅ Q̃ ≡ єab ϕa Q̃b, with the
help of the antisymmetric pseudo-tensor єi j ≡ iσ2i j such that є12 = −є21 = 1.
�e term LHiggs gives rise to scalar partner masses proportional to the Higgs VEV, mirroring

the supersymmetric F-term contribution to the squark masses. By a similar token, the explicit
mass termsLmass are analogous to the squark so�-SUSY breaking mass terms. Lmixing is respons-
ible for the mixing between the gauge eigenstates, reminiscent of the MSSM A-terms. In the
absence of an underlying supersymmetry, the Lagrangian features no equivalent of the D-term
contributions.
Collecting all bilinear terms from Equation (A.65), we get

Ltop partners ⊃ (t̃∗L t̃∗R)Mt̃ (
t̃L
t̃R
) , (A.66)

with the mass matrixMt̃ given in Equation (3.54). Assuming all parameters in Equation (A.65)
to be real, it can be diagonalised through the usual orthogonal transformation R(θ t̃) given in
Equation (A.58). �is rotates the gauge eigenstates (t̃L , t̃R) into the mass basis (t̃1, t̃2),

(
t̃1
t̃2
) = R(θ t̃)(

t̃L
t̃R
) . (A.67)
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�e physical scalar partner masses and the mixing angle are then given by

m2
t̃1 = M

2
LL cos

2 θ t̃ +M2
RR sin

2 θ t̃ + 2M2
LR sin θ t̃ cos θ t̃ ,

m2
t̃2 = M

2
LL sin

2 θ t̃ +M2
RR cos

2 θ t̃ − 2M2
LR sin θ t̃ cos θ t̃ , (A.68)

tan(2θ t̃) =
2M2

LR
M2

LL −M2
RR

. (A.69)

As we assume the right-handed bottom partner b̃R to be heavy and thus decoupled, the sbottom-
like scalar eigenstate b̃L undergoes no mixing and can be directly identi�ed with the physical
eigenstate.

Matching

We compute the e�ective action at one loop with the help of the covariant derivative expan-
sion [138, 142], which is fully consistent with our mass degeneracy setup. Since the Lagrangian
Equation (A.65) lacks any linear terms in the heavy scalar �elds Ψ ≡ (Q̃ , t̃∗R), the tree-level
exchange of such heavy partners cannot generate any e�ective interaction at dimension six. Our
results are in agreement with References [138, 144, 193] and given in Equation (3.57).

A.. Vector triplet

Model setup

Our �nal example is the heavy vector triplet de�ned in Equation (3.59). �is Lagrangian includes
conventional factors of coupling constants, introduced for a convenient power counting in
certain UV embeddings [263]: insertions of V and ϕ are weighted by one factor of gV , while
SM gauge bosons come with a factor of gW . In addition, the coupling to fermions is weighted
with an additional factor of g2W/g2V . For simplicity, it is assumed that the fermion current in
Equation (3.59) is universal.
We can add an explicit kinetic V-W mixing term

L ⊃ cWV
gW
2gV

D[µ V
a
ν]W

µν a (A.70)

to the Lagrangian in Equation (3.59). As it turns out, this term is redundant and can be removed
with �eld rede�nitions, shi�ing its e�ects into the other model parameters [263, 306]. For more
details, see Appendix A.5 of Reference [1].
In this model, seven gauge eigenstatesWa, B, V a mix into mass eigenstates A,W±, Z, ξ±,

and ξ0. �e photon is as usual de�ned as the component that remains massless during EWSB,

Aµ = cw Bµ + swW3
µ , (A.71)
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where the Weinberg angle is linked to the gauge couplings through e = gW sw = g′ cw . For the
remaining �elds we have to diagonalise the neutral and charged mass matrices, giving the mass
eigenstates

Zµ = cos θN (−swBµ + cwW3
µ ) + sin θN V3

µ ,

ξ0µ = − sin θN (−swBµ + cwW3
µ ) + cos θN V3

µ ,

W±
µ = cos θC

W1
µ ∓W2

µ
√
2

+ sin θC
V1
µ ∓ V2

µ
√
2

,

ξ±µ = − sin θC
W1

µ ∓W2
µ

√
2

+ cos θC
V1
µ ∓ V2

µ
√
2

. (A.72)

�e corresponding mass eigenvalues read

m2
Z/ξ0 =

1
2
[m̂2

V + m̂2
Z ∓

√

(m̂2
Z − m̂

2
V)

2
+ c2H g2V m̂2

Z υ̂2 ]

=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

m̂2
Z (1 −

c2H g2V
4

υ̂2

m̂2
V
+O (υ̂4/m̂4

V))

m̂2
V (1 +

c2H g2V
4

υ̂2

m̂2
V
+O (υ̂4/m̂4

V)) ,
(A.73)

and

m2
W±/ξ± =

1
2
[m̂2

V + m̂2
W ∓

√

(m̂2
W − m̂2

V)
2
+ c2H g2V m̂2

W υ̂2 ]

=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

m̂2
W (1 −

c2H g2V
4

υ̂2

m̂2
V
+O (υ̂4/m̂4

V))

m̂2
V (1 +

c2H g2V
4

υ̂2

m̂2
V
+O (υ̂4/m̂4

V)) .
(A.74)

For the mixing angles, we �nd

tan(2θN) =
cH gV υ̂ m̂Z
m̂2
V − m̂2

Z
=
cH g gV
2 cw

υ̂2

m̂2
V
+O (υ̂4/m̂4

V) ,

tan(2θC) =
cH gV υ̂ m̂W
m̂2
V − m̂2

W
=
cH g gV

2
υ̂2

m̂2
V
+O (υ̂4/m̂4

V) , (A.75)

or

sin θC =
cH g gV

4
υ2

M2
V
+O (υ̂4/m̂4

V) . (A.76)
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Here we use the de�nitions

m̂Z =
gW υ̂
2 cw

, m̂W =
gW υ̂
2

, m̂2
V = M2

V + g2V cVVHH υ̂2 , (A.77)

where υ̂ is the actual VEV of ϕ, which does not necessarily have the SM value of υ = 2mW/g =
246 GeV.
�is mixing a�ects the weak current interactions: instead of being simply governed by the

SU(2)L coupling constant gW , the physicalW f f ′ couplings are now determined by

g = cos θC gW − sin θC cF
g2W
gV

= gW (1 −
cF cH g2W

4
υ2

M2
V
) +O (υ4/M4

V) . (A.78)

�e relation between υ̂ and υ can be read o� from Equation (A.74):

υ̂
υ
= 1 +

c2H g2V
8

υ2

M2
V
−
cF cH g2W

4
υ2

M2
V
+O (υ4/M4

V) . (A.79)

Finally, note that to ensure compatibility with electroweak precision measurements, the neut-
ral and charged states ξ0 and ξ± have to be nearly mass-degenerate,

mξ± ≈ mξ0 ≡ mξ . (A.80)

In practice, we set up our model in the mW-g scheme, i. e. based on the input parameters
g, mW , α, mh0 , αs, the vector triplet couplings gV and ci , as well as the physical mass mξ± .
�e remaining Lagrangian parameters, mixing angles, and couplings are calculated by solving
Equations (A.73) and (A.74) iteratively.

Couplings

�emismatch between g and gW as well as between υ and υ̂ leads to a shi� of theHiggs couplings
to fermions,

∆ f =
gW
g

υ
υ̂
− 1 = 1

cos θC − cF gW
gV sin θC

υ
υ̂
− 1

= c2H
g2Vυ2

8M2
V
+ cFcH

g2υ2

4M2
V
+O (M−4

V ) , (A.81)
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and to (on-shell)W bosons,

∆W =
1

gmW

⎛

⎝

cos2 θC g2 υ̂
2(cos θC − cF gWgV sin θC)

2 − cH
sin θC cos θC g gV υ̂
cos θC − cF gW

gV sin θC

+ 2 cVVHH sin2 θC g2V υ̂
⎞

⎠
− 1

= c2H
3g2Vυ2

8M2
V
+ cFcH

g2υ2

4M2
V
+O (M−4

V ) . (A.82)

Matching

Since we are only interested in tree-level e�ects, we can construct the e�ective theory in our
default matching procedure with the classical equation of motion for V a

µ , corresponding to the
�rst term in Equation (2.27). To simplify the notation, we de�ne currents

Jµ,aF ≡ f̄Lγµσ a fL , Jµ,aH ≡ ϕ†σ a←→D µϕ . (A.83)

�is Euler-Lagrange equation then reads

[∂µ∂ν − gµν ∂2 −M2
V ]V a

ν = gV cH Jµ,aH +
g2W
2gV

cF∑
F
Jµ,aF +O (V2) (A.84)

or

V µ,a
= −

1
M2

V
[gV cH Jµ,aH +

g2W
2gV

cF ∑
F
Jµ,aF ] +O (p2V/M̃4

V) +O (V2) , (A.85)

where we neglect higher powers of V that are irrelevant for our analysis.
Inserting this into the Lagrangian in Equation (3.59), we �nd the e�ective theory

LEFT ⊃ −
g4W c2F
8g2V M2

V
Jµ,aF JF aµ −

g2V c2H
2M2

V
Jµ,aH JH a

µ −
g2W cF cH
2M2

V
Jµ,aH JF aµ . (A.86)

Jµ,aF JF aµ only contains four-fermion operators irrelevant for our analysis. �e remaining current
products can be expressed in terms of dimension-six operators as

Jµ,aH JH a
µ = −

1
2
(Oϕ,2 − 2 ϕ†ϕ (Dµϕ)2)

= −
1
2

⎡
⎢
⎢
⎢
⎢
⎣

3Oϕ,2 − 12λOϕ,3 −∑
f
y fO f

⎤
⎥
⎥
⎥
⎥
⎦

, (A.87)

Jµ,aF JH a
µ =

1
2
O

(3)
ϕF

=
−2
g2W

[OWW +OBW − 2OW] + 3Oϕ,2 − 12λOϕ,3 −∑
f
y fO f . (A.88)
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Here we used the equations of motion in Equations (2.39) to (2.41) to bring the operators to our
HISZ basis.
Combining the pieces, we �nally arrive at

LEFT ⊃ (
g2V c2H
4M2

V
−
g2W cF cH
2M2

V
)

⎡
⎢
⎢
⎢
⎢
⎣

3Oϕ,2 − 12λOϕ,3 −∑
f
y fO f

⎤
⎥
⎥
⎥
⎥
⎦

+
cF cH
M2

V
[OWW +OBW − 2OW] , (A.89)

corresponding to the Wilson coe�cients given in Equation (3.63).

A. Information geometry

A.. Cramér-Rao bound

In Equation (4.7) in Section 4.2 we stated the Cramér-Rao bound [69, 70]: the covariance matrix
of any estimator is bounded from below by the inverse Fisher information. Here we show the
proof for one-dimensional unbiased estimators, closely following Reference [307].
An unbiased estimator θ̂(x) based on data x has an expectation value equal to the unknown

true value θ,

θ = E [θ̂∣θ] ≡ ∫dx θ̂ f (x∣θ) . (A.90)

Like any probability distribution function, f (x∣θ) is normalised to one,

1 = ∫dx f (x∣θ) . (A.91)

We assume that these two equations are di�erentiable with respect to θ, and that we can exchange
this derivative with the integral. Di�erentiating Equation (A.91) with respect to θ gives

0 = ∫dx ∂θ f (x∣θ)
= ∫dx ∂θ f (x∣θ)

f (x∣θ)
f (x∣θ)

= E [∂θ log f (x∣θ)∣θ] . (A.92)

For Equation (A.90) we �nd in the same way

1 = ∫dx θ̂∂θ f (x∣θ)
= E [θ̂ ∂θ log f (x∣θ)∣θ] . (A.93)
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We can phrase this in terms of the covariance

cov [X ,Y ∣θ] ≡ E [(X − E[X∣θ])(Y − E[Y ∣θ])∣θ]
= E [XY ∣θ] − E [X∣θ] E [Y ∣θ] (A.94)

(which is closely related, but not identical, to the covariance matrix de�ned in Equation (4.5)).
Using Equations (A.94) and (A.92), Equation (A.93) can be written as

1 = cov [θ̂ , ∂θ log f (x∣θ)∣θ] . (A.95)

We can square this equation and apply the Cauchy-Schwartz identity1

cov[X ,Y]
2
≤ var[X] var[Y] , (A.96)

leading to

1 ≤ var [θ̂∣θ] var [∂θ log f (x∣θ)∣θ] (A.97)

or

var [θ̂∣θ] ≥ 1
var [∂θ log f (x∣θ)∣θ]

. (A.98)

Invoking Equation (A.92) one more time, we �nally arrive at the Cramér-Rao bound

var [θ̂∣θ] ≥ 1
I(θ)

(A.99)

with the Fisher information

I(θ) = E [(∂θ log f (x∣θ))2∣θ] . (A.100)

A.. A simple example

In Section 4.2 we introduced the Fisher information as the mathematical object that quanti�es
the maximal precision with which continuous theory parameters can be measured. As a simple
example, we now calculate the Fisher information in a number of event counts nc in di�erent
channels c. We assume that the channels are independent and follow Poisson distributions with
mean values nc = νc :

f (n∣ν) =∏
c
Pois(nc ∣νc) =∏

c

νncc e−νc
nc!

. (A.101)

1�is inequality is well-known in the form of the bounds on the Pearson correlation coe�cient, −1 ≤ r ≡

cov[X ,Y]/

√

var[X] var[Y] ≤ 1.
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Following Equation (4.6), we can calculate the Fisher information in terms of the vector of
Poisson means ν. With

∂ log f
∂νc

=
∂
∂νc

[−νc + nc log νc − log(nc!)] =
nc
νc
− 1 (A.102)

and
∂2 log f
∂νc∂νc′

= −
δcc′ nc
ν2c

(A.103)

we �nd

Icc′(ν) ≡ −E [
∂2 log f
∂νc∂νc′

∣ν] =
δcc′
νc

. (A.104)

Equation (4.11) then allows us to calculate the Fisher information in terms of some theory
parameters θ i rather than the Poisson means νc :

Ii j(θ) =∑
c

∂νc
∂θ i

1
νc

∂νc
∂θ j

. (A.105)

At the LHC, the matrix ∂νc/∂θ i is determined by the luminosity, the relevant cross sections and
branching ratios, as well as acceptance and e�ciency factors. For instance, in the κ framework
for Higgs physics discussed in Section 2.3.4 it is trivial to calculate the matrix ∂νc/∂gi in closed
form. For each channel this matrix is singular, which means that it measures one direction in
parameter space and is blind to all orthogonal directions. At least asmany channels as parameters
are required to make the combined information in Equation (A.105) non-singular and to remove
all blind directions (assuming the channels do not provide degenerate information, i. e. linearly
dependent eigenvectors in the Fisher information).
For illustration, consider the case where we want to measure one coupling θ = g in one

channel with the expected number of events

ν = L (σS(g) + σB) = Lg2σ0 + LσB , (A.106)

where L, σS(g) = g2σ0, and σB stand for the integrated luminosity as well as the signal and
background cross sections.
�e Fisher information in terms of the coupling g is then

I(g) = 4L
g2σ20

g2σ0 + σB
=
4L
g2

σ2S
σS + σB

. (A.107)

�e Cramér-Rao bound in Equation (4.8) then states that any unbiased estimator has a standard
deviation of at least

∆ ĝ
g

≥
1

g
√
I
=
1
2

1
√
L

√σS + σB
σS

, (A.108)
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Figure A.1: Resolution e�ects in the invariant mass distribution in the WBF h → ττ channel for
the Higgs contributions (le�) and the Z j j backgrounds (right). We show the ATLAS
results from Figure 1a of Reference [289] (black), the �tted response function (blue),
and our �nal MadMax output including the smearing function.

independent of how the data are analysed. �e three terms show how the sensitivity to g pro�ts
from the square in the cross section, the square-root dependence on the statistics, and the
dependence on the signal-to-background ratio.

A.. Detector response

In Section 4.4 we described the calculation of the Fisher information in terms of dimension-six
operators for a range of LHC Higgs channels. We include an idealised treatment of the detector
response in which the invariant mass distributions from narrow resonance peaks are smeared
according to the experimental resolution, following the procedure developed in References [285,
287] and described in Section 4.3.7. Other detector e�ects are not included.
ForHiggs production in weak boson fusion with a decay into tau pairs, wemodel the smearing

of the signal and background processes according to Figure 1a of Reference [289]. For the
Higgs processes we use a Gaussian with width 17 GeV. For the Z backgrounds we rely on a
double Gaussian, in which the dominant component has a width of 13 GeV, and the second,
wider component ensures an accurate description of the high-mass tail of the Z peak around
mττ ∼ mH . �e ATLAS data, our �tted smearing function, and the �nal MadMax output are
shown in Figure A.1. We check that other distributions are not a�ected by the smearing.
In the 4ℓ channel, the backgrounds are negligible around m4ℓ ≈ mh , hence we do not have to

include a smearing to estimate the discrimination power. For Higgs production with a single
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top in the h → γγ mode, we follow Reference [286] and smear the mγγ distribution of the
signal process with a Gaussian of width 1.52 GeV. �is resolution is based on Figure 6b of
Reference [308].
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