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Strong correlations in few-fermion systems:

In this thesis, I report on the deterministic preparation and the observation of
strongly correlated few-fermion systems in single and double-well potentials.
In a first experiment, we studied a system of one impurity interacting with
a number of majority atoms which we prepared in a single potential well in
the one-dimensional limit. With increasing number of majority particles, we
observed a decrease in the quasi-particle residue which is in agreement with
expectations from the Anderson orthogonality catastrophe. In a second exper-
iment, we prepared two fermions in a double-well potential which represents
the fundamental building block of the Fermi-Hubbard model. By increasing
the repulsion between the two fermions, we observed the crossover into the
antiferromagnetic Mott-insulator regime. Furthermore, I describe a new imag-
ing technique, which allows spin-resolved single-atom detection both in in-situ
and in time-of-flight. We use this technique to investigate the emergence of
momentum correlations of two repulsive fermions in the ground state of the
double well. With the methods developed in this thesis, we have established a
framework for quantum simulation of strongly correlated many-body systems
in tunable potentials.

Starke Korrelationen in Systemen mit wenigen Fermionen:

Diese Arbeit beschreibt die deterministische Präparation von stark korrelierten
Wenig-Teilchen Systemen und deren Untersuchung. Zunächst wurde ein System
mit einem Minoritätsteilchen und einer variierenden Anzahl an Majorität-
steilchen im eindimensionalen Grenzfall präpariert. Mit steigender Anzahl
an Majoritätsteilchen beobachteten wir eine Verringerung des Quasiteilchen-
Residuums in Übereinstimmung mit den Erwartungen der Anderson Orthogonal-
itätskatastrophe. In einem zweiten Experiment präparierten wir zwei Fermionen
in einem Doppelmuldenpotential. Dieses System repräsentiert den fundamen-
talen Baustein des fermionischen Hubbardmodells. Durch Vergrößerung der
repulsiven Wechselwirkung zwischen den beiden Teilchen konnten wir den Über-
gang in den antiferromagnetischen Mott-Isolator-Bereich beobachten. Weiter-
hin wird eine neue Abbildungsmethode vorgestellt, die es ermöglicht einzelnen
Atome spinaufgelöst sowohl in-situ als auch nach einer Flugzeit zu detektieren.
Wir benutzen diese Methode um die Entstehung von Impulskorrelationen
zwischen zwei repulsiven Teilchen im Grundzustand eines Doppeltopfes zu
untersuchen. Die in dieser Arbeit entwichelten Methoden legen den Grund-
stein für die Quantensimulation von stark korrelierten Vielteilchensystemen in
einstellbaren optischen Potentialen.
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Chapter 1

Introduction
In Newtonian physics, particles are characterized by a trajectory in phase space
that precisely determines the position and momentum of each particle. In quantum
mechanics, this deterministic description is replaced by the framework of wave
functions. As a consequence assigning trajectories to particles and distinguishing
them from each other becomes meaningless. Instead a system which contains
many particles has to be described in terms of a many-body wave function.
From the indistinguishability follows two kinds of particles that show different

quantum statistics. A system of identical bosons is described by a total wave
function that is symmetric under exchange of two particles and consequently
a quantum state can be occupied by an arbitrary number of bosons. Identical
fermions, however, cannot occupy the same quantum mechanical state – known as
Pauli’s exclusion principle – as their total wave function is anti-symmetric. Two
identical (spinless) particles, for instance, are described by the following wave
function

Ψ(r1, r2) = 1√
2

(ψ(r1)φ(r2)± ψ(r2)φ(r1)) (1.1)

where the upper sign (lower sign) describes bosonic (fermionic) particles and ψ(r)
and φ(r) denote orthogonal single-particle wave functions. In experiments the
different exchange symmetries of bosons and fermions result in different correlation
function, as first demonstrated by Hanbury Brown and Twiss in 1956 [Han56].
Since then several key discoveries, such as the Bell inequality [Bel64], the Hong-Ou
Mandel experiment [Hon87] or the observation of antibunching in single-photon
sources [Kim77] and identical fermions [Oli99], have established that correlations
lie at the heart of quantum physics.

Despite the required symmetrization of the total wave function, quantum many-
body systems without interactions can be described in a simple way. In a metal,
for example, where 1026 electrons in two different spin states move in a periodic
potential formed by the ionic cores, most of the bulk properties can be computed
using a single-particle description.
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Figure 1.1: Valence-bond state as a building block of solid state sys-
tems. a The valence-bond state is a paradigmatic example for a correlated
state. Due to its spatially symmetric state, it is energetically favorable
compared to a spin triplet. In our experiment, we realize it with two fermions
in a double-well potential. b It represents the fundamental building block of
a dimerized lattice system. By increasing the coupling between the double
wells the system crosses the phase transition into an anti-ferromagnetically
ordered ground state [Sac08].

When electrons with different spins interact with each other, a description in
terms of a single-particle basis is no longer possible as these interactions in addition
to the quantum statistics may lead to correlations that are hard to describe. If the
wave functions of the particles are overlapping, the correlations become physically
relevant, i. e. they alter the energy of the quantum state. A simple system, where
these concepts become immediately apparent, is the hydrogen molecule [Hei27]. It
consists of two protons that create a double-well potential in which two electrons
are confined. The electrons can be described by a two-particle wave function
where spin wave function and spatial wave function factorize. This leads to two
possible quantum states. If the two electrons arrange in a spin wave function
that is symmetric under particle exchange, the spatial part of the wave function
is anti-symmetric. If they form a spin singlet where the spin wave function is
anti-symmetric, the spatial wave function is symmetric. When calculating the
energy of the two possible states, one finds that the spin singlet state has a lower
energy which is why the hydrogen molecule is stable.

This so-called valence-bond state is not only relevant to the hydrogen molecule,
but also plays a major role in understanding complex phenomena in chemistry and
solid state systems [Sac08]. For example, in a system of interacting electrons in a
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lattice, valence-bond states are energetically favored. Consequently the ground
state of the system is one where the electron spins anti-align which is the essence
of quantum magnetism.
The understanding of many-body states in terms of strong correlations is an

outstanding problem in these fields [Qui09]. General insight into this complexity
can be gained by formulating toy models that contain the essential aspects of
the underlying physical processes. For electrons in a lattice, the Hubbard model
[Hub63] is a paradigmatic example of such a toy model. It describes fermions
moving and interacting in a periodic potential and so it reduces the physics to
a competition between the kinetic energy of the fermions and their interaction
energy. Despite its simplicity, the Hubbard model exhibits a rich phase diagram
and the large complexity makes it hard to solve.

Apart from lattice systems, also bulk materials can exhibit strong correlations.
A key example is a system with a single impurity interacting with a surrounding
Fermi sea. For weak interaction, this system can be described in terms a quasi-
particle that consists of the impurity dressed with the Fermi sea, commonly know
as the Fermi polaron. For a spin-imbalanced system with strong interaction, this
picture can break down. The system of one impurity in a Fermi sea represents the
conceptually simplest realization of a strongly-interacting quantum many-body
system.

Solving systems with strong correlations is in general a difficult task. The reason
is that their complexity increases exponentially with the number of particles and
exceeds the capabilities of classical computers. Instead of simulating the quantum
many-body system with a classical computer, one can, as Feynman pointed out
[Fey82], approach the problem by building a quantum mechanical system that
realizes the Hamiltonian of interest.

Ultracold quantum gases are promissing candidates to perform analog quantum
simulation. As they use bosonic or fermionic neutral atoms the quantum statistics
is inherent in these systems. In addition, they offer excellent control on the
interparticle interaction [Chi10] and the trapping potential [Gri00] and many
observables can be accessed in the lab even on the single-particle level [Bak09,
She10, Omr15, Par15, Che15, Edg15, Hal15, Mir15].

To study interesting phases, for instance in the Hubbard model, low temperatures
have to be reached as the relevant mechanisms in these phases have extremely
small energy scales. The conventional approach to this problem is to start with
a large number of atoms and cool them down using different techniques such
as evaporative or sympathetic cooling. However, the temperatures obtained so
far have not been low enough to enter the interesting temperature regime and
therefore cooling the system to sufficiently low temperatures remains to be a major
challenge [McK11].
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In our experiment, we take a different approach. Instead of using the complete
ensemble, we select a small subset of the system, that has extremely low entropy.
From this low-entropy systems we engineer fundamental building blocks of the
Hamiltonian of interest. By then merging several building blocks adiabatically, we
want to assemble larger systems while maintaining full control on the quantum
state.

In this thesis, I will present major steps in this bottom-up approach of preparing
fundamental building blocks as well as developing detection methods that can
fully characterize all possible correlations in the system.
All our experiments start with the preparation of a well-defined number of

particles in a single potential well. Achieving this preparation of fermions in the
absolute ground state with a fidelity above 90% delivers quantum systems with
extremely low entropy [Ser11b]. In this way we obtain two fermions in the ground
state of the potential well forming a spin singlet.
In a first experiment [Mur15b], we realized the fundamental building block of

the Hubbard model by adding a second potential well to the system and preparing
two fermions in its ground state. By tuning the tunnel coupling and the on-site
interaction in the system, we could explore the properties of the ground state in
different regimes of the Hubbard model.

In a second experiment, we prepare spin-imbalanced one-dimensional systems of
one impurity and a variable number of fermions in a different spin state. In this
system, the interaction between the impurity and the majority particles can be
described by correlations which lead to the Anderson orthogonality catastrophe
in the limit of infinitely many majority particles. We study the emergence of the
orthogonality as a function of particle number by measuring the wave function
overlap between the interacting and the non-interacting state.

Finally, we developed a new imaging technique to detect the position of individual
atoms and resolve their hyperfine state. We combine this new method with an
expansion in time-of-flight which allows us to measure the momentum wave
function with single-atom resolution. We apply this new imaging technique to
a system of two fermions in a double well and extract the full momentum wave
function which reveals strong correlations present in the two-site Hubbard model.

In the future we want to prepare several building blocks next to each other and
adiabatically assemble larger quantum states. By using the new imaging technique
which is easily scalable to larger particle numbers, we aim to study higher-order
correlation functions in complex systems and explore the emergence of quantum
phases.
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Outline
In this thesis, we report on the preparation and detection of strongly correlated
systems consisting of few fermionic atoms in one or two potential wells.

• In Chapter 2 we give a theoretical background on correlations functions and
introduce the Hubbard model. Furthermore, we explain how interactions
can be tuned in systems of ultracold gases and present the influence of a
confinement on the interaction energy of few particles.

• In Chapter 3 we explain the basic experimental steps in the preparation,
manipulation and detection of few-fermion systems. After that, we give an
overview on the apparatus and the optical setup to create multiple potential
wells.

• In Chapter 4 we report on a novel imaging technique, which allows us to
detect single atoms and resolve their hyperfine state. By combining it with
an expansion in time-of-flight we can measure the momentum wave function
of a prepared quantum state. We use the technique in Chapter 7 to reveal
correlations in two-fermion systems.

• In Chapter 5 we present two experimental results on few fermions in a single
well using radio-frequency spectroscopy. In the first measurement, we show
that two fermions prepared in the ground state of the microtrap form a
spin singlet. In the second set of experiments, we prepare spin-imbalanced
systems consisting of one impurity and an increasing number of majority
particles and study the emergence of the orthogonality catastrophe in a
one-dimensional system.

• In Chapter 6 we realize the fundamental building block of the Hubbard model,
that is two fermions in a tunable double-well potential. We characterize the
system parameters and prepare the two fermions in overall ground state. We
measure the super exchange energy gap and demonstrate our control on the
quantum states by driving transitions between the spin singlet and the spin
triplet state.

• In Chapter 7 we use our imaging technique to investigate correlations between
two fermions in the double well. We detect generic correlations between
identical fermions and watch the emergence of strong correlations between
distinguishable fermions while increasing the interparticle interactions.
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• Finally, we summarize the experimental findings and give an outlook on the
new possibilities that are available due to the achievements presented in this
thesis.

6



Chapter 2

Strongly correlated fermions in
optical potentials
Quantum statistics has a major influence on the physics of many-body systems.
Due to the restrictions in the total wave function, bosons behave differently
than fermions. The description of these systems is hampered when interparticle
interactions lead to additional correlations. The stronger these correlations are,
the more intractable the problem becomes.
The simplest model which includes strong correlations is the Hubbard model.

Due to its generic nature, it serves as a toy model in many fields from solid-state
physics to quantum chromodynamics. It can be realized with ultracold quantum
gases in optical lattices, where interparticle interactions can be tuned at will. The
unprecedented possibilities of probing quantum gas can help to gain a deeper
understanding in correlations and the complex phases that emerge in low-entropy
systems.
In Section 2.1 we will first introduce bosons and fermions by explaining the

symmetry restrictions on their total wave functions on the example of two particles.
In Section 2.2, we present the concept of quantum correlations along the lines of
their discovery by Hanbury-Brown and Twiss. These correlations play a major role
for the emergence of magnetic phases. In Section 2.3, we introduce the Hubbard
model being the paradigmatic model to capture electron-electron correlations. In
ultracold quantum gases, these correlated systems are experimentally realized in
optical potentials. The technique which allows the introduction of interparticle
interaction between neutral particles is presented in Section 2.4.

2.1 Quantum statistics of bosons and fermions
Until the end of the 19th century, massive particles were considered as point-like
objects that are localized at a position x and move with a momentum p. Light,
in contrast, was considered as an electromagnetic wave described by Maxwell’s
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Chapter 2 Strongly correlated fermions in optical potentials

equations. At the beginning of the 20th century, it was realized that light also
has particle-like properties. The discovery of the particle-wave duality for light
inspired deBroglie in 1924 to postulate the same concept for massive particles. He
suggested that the momentum of the particle p is connected with its wavelength λ
by the Planck constant λ = h/p.
Two years later, Schrödinger published an equation [Sch26] that describes the

behavior of the postulated matter wave. In that way, a particle can be described
in terms of a wave function Ψ(r, t) by

HΨ(r, t) = i~
∂

∂t
Ψ(r, t) (2.1)

where H is the Hamiltonian of the system. The eigenstates of the system solve
this equation.

Equivalent to the superposition principle for electromagnetic waves, the matter
wave can also be in a linear superposition of allowed quantum states

Ψ = c1Ψ1 + c2Ψ2 + . . . (2.2)

where {Ψi} form an orthonormal basis and the coefficients ci are complex numbers.
The wave nature of massive particles can be demonstrated in a double-slit

experiment. A single particle is then traveling through the two slits at the same
time which leads to an interference of the two paths. On the screen, particles are
detected at distinct positions but the measured distribution of many events reveals
the interference pattern. In that way, the wave-nature of massive particles has
been demonstrated in many beautiful experiments from electrons (e. g.[Ton89]) to
large molecules (e. g. [Arn99]).

Exchange symmetry in many-body states

A quantum state Ψ can also describe systems containing more than one particle.
If their single-particle wave functions overlap, one cannot distinguish the particles
them anymore. This indistinguishability has important consequences on the
quantum statistics of the system.

If the particles are considered as indistinguishable, an exchange of two particles
shall not change the outcome of a measurement which depends on the absolut
square of the wave function. Therefore the only thing that can change is the sign
of the wave function. From this follows two different kinds of particles.

For Bosons, which carry an integer spin, the total wave function Ψ is symmetric
under exchange of two particles

ΨB(..., xm, ..., xn, ...) = +ΨB(..., xn, ..., xm, ...) . (2.3)

8



2.1 Quantum statistics of bosons and fermions

Figure 2.1: Quantum statistics of bosons and fermions. Based on the
exchange symmetry of the total wave function one distinguishes two kinds of
particles with different quantum statistics. Bosons (left) have a symmetic
total wave function and can therefore all occupy the same quantum state in
the system. For fermions (right) the Pauli principle applies, which states
that a quantum state can never be occupied by more than one fermion.

As a consequence, several bosons can occupy the same mode. At low enough
temperatures, a macroscopic occupation of the same mode leads to the formation
of a Bose-Einstein condensate.
Particles with half-integer spin are called Fermions. Their total wave function

is anti-symmetric under particle exchange

ΨF (..., xm, ..., xn, ...) = −ΨF (..., xn, ..., xm, ...) . (2.4)

This anti-symmetry of the total wave function is the origin of the Pauli exclusion
principle where one mode can be at most occupied by one fermion. The total wave
function for N identical fermions that occupy N different single-particle modes ψi
can be constructed using the Slater determinant1. For instance, the total wave
function of two identical fermions can be written as

ΨF (1, 2) = 1√
2

(ψ(1)φ(2)− ψ(2)φ(1)) (2.5)

where ψ and φ describe two orthogonal single-particle wave functions. They can
for example describe spatial wave functions of single particles. Calculating the
probability density of the two-fermion state reveals that the probability to find
the fermions at the same position vanishes.

1Based on the total anti-symmetry of the many-body wave function of fermions, Dirac and
Fermi independently derived the Fermi-Dirac distribution that describes the occupation
of energy modes at low temperatures. We will utilize it to prepare few-fermion systems,
presented in Chapter 3

9



Chapter 2 Strongly correlated fermions in optical potentials

Spatial wave function Φ Spin wave function χ
|φ1φ1〉

Φ(S) 1√
2 (|φ1φ2〉+ |φ2φ1〉) 1√

2 (|↑↓〉 − |↓↑〉) χ(A)

|φ2φ2〉

|↑↑〉
Φ(A) 1√

2 (|φ1φ2〉 − |φ2φ1〉) 1√
2 (|↑↓〉+ |↓↑〉) χ(S)

|↓↓〉

Table 2.1: Possible combinations of spatial and spin wave function
for two non-interacting fermions. For two particles the spatial and the
spin wave function can be symmetric (S) or anti-symmetric (A). For two
fermions with two possible spin degrees of freedom |↑〉 and |↓〉 as well as two
different spatial modes φ1,2 the following six combinations are possible. The
first row corresponds to a spin singlet and the second row describes a spin
triplet configuration. Taken from [Foo11]

Spatial and spin degree of freedom

A quantum state can have several degrees of freedom that are described by a
set of quantum numbers. Examples for this are the spatial modes or the spin
degree of freedom. As the exchange symmetry applies to all quantum numbers, the
introduction of a certain symmetry in one degree of freedom also has an influence
on the symmetry in another degree of freedom.

Electrons, for example, can be described by a spatial wave functions and have a
spin of s = 1/2. The spin can take two different projections ms = ±1/2 which we
denote as |↑〉 and |↓〉. In absence of a coupling between spin and spatial degree of
freedom, we can write the total wave function of two particles as a product of the
spatial Φ and the spin wave function χ

Ψ = Φ(x1,x2)χ1,2 (2.6)

As electrons are fermions, their total wave function has to be anti-symmetric.
This can be achieved in two different ways. Either a symmetric spatial wave
function is combined with an anti-symmetric spin wave function Φ(S)χ(A), or an
anti-symmetric spatial wave function with a symmetric spin wave function Φ(A)χ(S).
Table 2.1 shows the possible combinations of spatial and spin wave function for
two fermions. Similarly, for two bosons the spatial and spin wave function have to
be either both symmetric or anti-symmetric.

In our experiment, we can prepare all of these combinations. We use fermionic
neutral atoms in two different hyperfine states which correspond to two different
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2.2 Correlations in quantum systems

spin states. The two particles can then occupy the two different wells in a
double-well potential.

2.2 Correlations in quantum systems
The consequence of quantum statistics can be observed in many systems. The best
example, where the Pauli exclusion principle governs the system, is the occupations
of electronic shells in an atom2. Only much later, the quantum statistics of photons
was directly observed in an experiment by Hanbury Brown and Twiss which led
to the birth of a the field of quantum optics. Their observation of two-particle
correlations is nowadays used in various fields [Bay98].

2.2.1 Hanbury-Brown Twiss effect for photons
The interference of light was known since the experiments of Young [You02].
Already at the end of the 19th century, it was for example used to measure the size
of stars [Fox06]. In a so-called Michelson stellar interferometer light of a bright
star is captured with two mirrors that have a large distance to each other and is
then directed towards two slits. If the light is spatially coherent, one observes an
interference pattern on a screen. By studying the visibility of this interference
pattern as a function of the distance between the two mirrors one can infer the
angular spread of the light source.

The resolution of this method is proportional to the distance of the two mirrors.
To observe the interference pattern, the phase difference has to be very stable.
Mechanical instabilities therefore limit the resolution of the interferometer. To
circumvent this problem, Hanbury Brown and Twiss developed a new scheme to
measure the coherence of light.
Instead of comparing the amplitudes at different points by interference, they

measured the light intensity at both detectors and correlated the electronic signal.
In this way, they observed the star Sirius with two spatially separated parabolic
mirrors that focused the light of Sirius onto two photomultipliers [Han56] and
measured the normalized correlation for several different distances. They could
observe that the correlation decreased when increasing the distance and could
conclude that the decrease of the correlations was consistent with the known size
of Sirius.

2It was actually this observation, based on spectroscopic data, that inspired Pauli to suggest
what was later called the Pauli exclusion principle. Only later, it was shown, that it has a
physical basis.
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Figure 2.2: Setup of the Hanbury Brown-Twiss experiment.Two elec-
tromagnetic waves travel from two points a and b towards two detectors D1
and D2 where they incident. By calculating the correlation between the two
detected intensities one obtains an oscillating normalized correlation function
C(d).

Hanbury Brown and Twiss observation is expected for a classical description of
light. As shown e. g. in [Bay98] one can simply assume that two electromagnetic
waves are traveling from two points a and b towards two detectors D1 and D2, as
shown in Figure 2.2 where the amplitudes of the waves can be described as spherical
wave. Originating from point a follows the expression αeik|r−ra|+iφa/|r− ra| and
from point b the wave propagates like βeik|r−rb|+iφb/|r− rb|, where φa and φb are
random phases of the thermal source. On each detector, both waves are incident.
The resulting intensity on detector D1 can be written as

I1 = 1
L2

(
|α|2 + |β|2 + α∗βei(k(r1b−r1a)+φb−φa) + αβ∗e−i(k(r1b−r1a)+φb−φa)

)
(2.7)

where r1a describes distance from the source a to the detector D1. The intensity
for the detector D2 can be written similarly. When we average the signal over
time, the randomly fluctuating phases vanish and we are left with the simple
expression for the intensity on detector D1 which is not varying with the distance
between the detectors

〈I1〉 = 1
L2 〈(|α|

2 + |β|2)〉 . (2.8)

The correlation between the two signals can be calculated by 〈I1I2〉. Performing
the averaging over time after the multiplication leads to an additional term such
that the normalized correlation function can be written as

C(d) = 〈I1I2〉
〈I1〉 〈I2〉

= 1 + 2 〈|α|2〉 〈|β|2〉
(〈|α|2〉+ 〈|β|2〉)2 cos(k(r1a − r2a − r1b + r2b)). (2.9)

We can simplify the expression above by assuming that the distance between the
light source and the detector L is much larger than the distance between the two
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2.2 Correlations in quantum systems

observed points of the star R and obtain k(r1a − r2a − r1b + r2b)→ R(k2 − k1).
The wave vector of the light incident on the detector Di is denoted by ki.

Consequently, the normalized correlation function depends on the distance be-
tween the two detectors and for very small distances, it can reach a maximum value
of 2. To model the correlation function of a star, one rather assumes a distribution
of light sources [Bay98]. The resulting correlation function for this distribution
turns out to be the Fourier transform of the source distribution. Consequently,
for distances of the two detectors, that are larger than the coherence length, the
correlation function decreases towards 1, which is equivalent to uncorrelated light.

2.2.2 Quantum theory of correlation functions
When Hanbury Brown and Twiss published their findings, the community was
puzzled because their observation seemed to not be compatible with the existence of
individual photons. After an explanation following a semiclassical picture [Pur56],
Glauber developped a formalism based on the language of quantum field theory that
described the photon field in terms of propagation modes [Gla62, Gla63a, Gla63b]
and could explain the observation of Hanbury Brown and Twiss. But more than
that, it led to the development of quantum optics. In the following, we present
quantum field theoretical formalism to describe correlation functions following the
notation of [CT11].

In quantum field theory, many-particle states are described in the so-called Fock
space where {|φα〉} is an orthonormal single-particle basis. The Fock basis can
then be written as |. . . nα . . . nβ . . .〉 where nα defines the occupation number of
the single-particle state |φα〉. For bosons the Fock state consists of non-negative
integer occupations. For fermions, at most one particle occupying the state is
allowed, i. e. nα = 0 or nα = 1.

One then introduces creation and annihilation operators â†α and âα that act on
the single-particle state φα. To account for the bosonic and fermionic quantum
statistics of the state, one defines the commutation relations[

âα , â†β
]
∓

= δαβ, and
[
âα , âβ

]
∓

=
[
â†α, â

†
β

]
∓

= 0 (2.10)

where [Â, B̂]∓ = ÂB̂ ∓ B̂Â denotes the commutation and anti-commutation
relations for bosons and fermions respectively.
Combining the single-particle basis states and the annihilation and creation

operators, one can introduce field operators Ψ̂†(r) and Ψ̂(r) that play the role of
creation and annihilation operators for particles at position r

Ψ̂†(r) =
∑
α

φ∗α(r) â†α and Ψ̂(r) =
∑
α

φα(r) âα (2.11)
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Chapter 2 Strongly correlated fermions in optical potentials

with φ∗α = 〈φα|r〉. It is straight forward to show that the field operators satisfy
the commutation relations presented before.

From the field operators one can directly construct the spatial density operator
n(r0) = Ψ̂†(r0) Ψ̂(r0) and its average value, as well as the average spatial density
correlator 〈n(r, r′)〉 which is the first-order spatial correlation function

G(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉 (2.12)

To calculate the probability to find one particle at position r and the second
one at position r′, one uses the second-order spatial correlations function

G(2)(r, r′) = 〈Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r)〉 (2.13)

The normalized versions of the density-density correlation functions are defined
like

g(2)(r, r′) = 〈Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r)〉
〈Ψ̂†(r)Ψ̂(r)〉 〈Ψ̂†(r′)Ψ̂(r′)〉

(2.14)

In a similar way, higher correlation functions have been defined. They are used to
characterize the correlations between more than two particles.
To understand why Hanbury Brown and Twiss detected intensity correlations,

one can consider two identical photons at positions a and b, similar to Figure 2.2.
In the Fock basis, the state can be written as â†bâ†a |0〉. The propagation along
L which is much larger than their distance R corresponds to a fourier transform
of the spatial state such that in the detection plane, the photons are described
by their initial momentum distribution and the probability distributions of the
photons overlap.
To calculate the two-point correlation function, we use the annihilation and

creation operators in momentum space

b̂i =
∑
j

eikixj âj (2.15)

where âj (â†j) denotes the annihilation (creation) operator in real space. Inserting
this into 2.13 results in a sum with exponential terms and a combination of
annihilation and creation operators which can be rewritten [Rom09] using the
commutation relation

〈â†j â
†
kâlâm〉 = δjmδkl 〈nj〉 〈nk〉+ δjlδkm 〈nj〉 〈nk〉 − {〈nj〉 (δjkδjlδjm + δjkδjlδjm)}.

(2.16)
The first and the second term describe the direct detection and the exchanged
detection of the two photons in the two detectors. In Figure 2.2 the two terms are
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2.3 From correlations to quantum magnetism

shown as the blue and green paths. As a consequence, the second term carries the
information about the exchange symmetry of the two particles. The third term
will be neglected as it only adds an offset.

Inserting this result into equation 2.14 and considering only the relative distances
d = r− r′ results in an expression that is very similar to equation 2.9. For two
photons with 〈na〉 = 〈nb〉 = 1, we obtain a one-dimensional correlation function of

C(d) = 1 +
[1
2 + 1

2 cos(∆k d)
]
. (2.17)

The observation of photon bunching in the Hanbury Brown-Twiss experiment
can be understood as a result of the symmetric spatial wave function of the photons.
In case of two identical fermions, the term in brackets in equation 2.17 would be
negative. As a consequence, one expects anti-bunching for identical fermions.
Fermionic antibunching was first observed in the form of current fluctuations

in an electron system [Oli99] and later shown for free electrons in an experiment
similar to the setup that Hanbury Brown and Twiss used [Kie02]. With the
creation of ultracold quantum gases, correlation functions became an important
experimental tool in quantum many-body physics. The demonstration of bosonic
bunching and fermionic antibunching was revisited in free space [Sch05, Jel07]
and noise correlation analysis allowed to extract two-point correlation functions
from cold bosonic and fermionic atoms in periodic potentials [Fö05, Rom06].
The last experiments were based on the motivation that the analysis of cor-

relation functions allows to describe quantum many-body states. These states,
consisting of a number of particles become extremely challenging to describe, if
the particles do not only obey the quantum statistics but also interact with each
other. A full description of the quantum many-body function of such a complex
state requires an exponentially large amount of information. Alternatively, one
can, similar to the work of Glauber, use the language of quantum field theory
and express the quantum state in terms of all possible multi-particle correlation
functions [Hod11, Fan16, Hod17, Sch17] to characterize the strongly correlated
many-body state.

2.3 From correlations to quantum magnetism
In many systems the physical behavior can be captured by a single-particle
description. For example, if electrons are moving in a shallow periodic potential
created by the ions in a crystal, their mean free path is large. So the electrons can
be considered as non-interacting and every electron moves independently through
the lattice. However, if the periodic potential created by the ions is deep, as it is
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Chapter 2 Strongly correlated fermions in optical potentials

the case in transition metals, the Coulomb repulsion between the electrons has to
be taken into account and a many-body description is required.
The description of a solid-state system is simplified by using models that only

contain the basic ingredients. The simplest model that describes interacting
electrons which move in a periodic potential, is the Hubbard model [Hub63]. The
motion of the electrons is discretized and described by a hopping term and the
particles are only interacting if they occupy the same site. The interplay between
the kinetic energy and interaction energy leads to strong correlations which are of
non-local nature. The correlations are the reason why the Hubbard model is still
not completely solved.
The Hubbard model is of high interest in condensed matter physics. At low

enough temperatures and half filling (one electron per ion) it exhibits an anti-
ferromagnetic phase [Aue98]. Away from half filling, it is still an open question
whether the model can capture d-wave superconductivity. To answer this quesion,
one wants to use quantum simulation.
In the following, we will first introduce the Hubbard model for fermions and

explain the mechanism that is responsible for quantum magnetism before we come
to the approach of using analog quantum simulators to solve the Hubbard model.

2.3.1 The Hubbard model
The Hubbard model is the simplest model to describe strongly-correlated systems.
It was suggested in 1963 [Hub63] in the context of condensed matter physics to
describe the properties of transition metals where the valence electrons occupy
the d and f orbitals. Electrons in these orbitals feel a deep periodic potential
from the ionic cores. This gives rise to narrow energy bands. As a consequence,
the Coulomb interaction between electrons is not negligible anymore and causes
electron correlations.
Due to is paradigmatic role, the Hubbard model plays a central role in the

theoretical description of many-body system in different fields [Qui09] and thus
a lot of literature is available on this subject. Here, we introduce the simplest
version of the Hubbard model following [Aue98].

The system of valence electrons that move in a periodic potential and interaction
with each other can be described by the following Hamiltonian which consists of
two parts

H = Hcrystal +Hint (2.18)
The first termHcrystal denotes the single-particle Hamiltonian containing the kinetic
energy term and the periodic potential due to the ionic crystal3. The second term

3Hcrystal = − ~2

2m∇
2 + V ion(x)
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J U

Figure 2.3: Schematic of the Hubbard Model.The description of fermions
in two different spin states, indicated in blue and green, moving in a periodic
potential is reduced to two parameters, the tunnel coupling J and the on-site
interaction U . The interplay between these two processes leads to strong
correlations and a rich phase diagram.

Hint denotes the screened Coulomb interaction involving two electrons4.
First, we take a look at the solution of the Hamiltonian without the interaction

term. Due to the periodicity of the underlying potential, we choose periodic
functions φαk(x) as a basis. The periodic potential leads to a band structure
where α indexes the individual bands. As the potential depth is large, the bands
are narrow in energy. For this reason, the particles are localized to the positions
of the ions. We can therefore describe the localized electrons using the orthogonal
Wannier basis

φαi(x) = 1√
N
∑

k
e−ikxiφαk(x) (2.19)

where N denotes the number of lattice sites, α is band index, i index of lattice site.
In a deep lattice, one can use the tight-binding approximation and the Wannier
states can be approximated by a set of states localized at the position of one
ion φi(x) = φα(x− xi). These approximated Wannier states are not orthogonal
anymore. However, they simplify the calculations. Additionally, we restrict the
Hubbard model to the lowest band α = 0. This is justified as long as the Fermi
energy lies within this single band.
From the Wannier function and the creation and annihilation operators, one

constructs the field operators

ψ̂†σ(x) =
∑
i

φ∗i (x) â†iσ (2.20)

where a†iσ and aiσ obey the anti-commutation rules for fermions (see Section 2.2.2)
and σ denotes the spin degree of freedom. Using the field operators we can write

4Hint denotes an interaction term. In general this can be Coulomb interaction or also short-range
interaction.
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the Hubbard Hamiltonian

H = −J
∑
σ,〈i,j〉

a†iσajσ + U
∑
j

nj↓nj↑ (2.21)

where 〈〉 denotes the summation over adjacent sites and njσ = a†jσajσ is the
occupation number operator. The first term of the Hamiltonian HJ describes
a particle hopping from site j to the neighboring site i and the second term
HU describes the interaction energy, if two particles occupy the same site. The
Hubbard parameter J and U can be calculated by

J =
∫
φ∗i (x)Hcrystal φj(x) dx (2.22)

U =
∫∫
|φi(x1)|2Hint |φi(x2)|2 dx1dx2 (2.23)

The competition between the kinetic and the interaction term dictates the
quantum phases in the Hubbard model. In the limit of no interaction between
the fermions, the metallic phase of a free-electron gas is recovered. For increasing
interaction and half filling (in average one fermion per lattice site) the interaction
energy suppresses the occupation of one lattice site by more than one particle. If
U � J this leads to an insulating phase where each site is occupied by exactly one
fermion which is known as the Mott insulator. We will see in the next section that
for low temperature kBT < J2/U , the system shows anti-ferromagnetic ordering.
In the limit of large interaction strength U � J , the Hubbard model at half

filling can be reduced to the Heisenberg model with the spin-spin coupling driven
by the super exchange. Away from half filling, the so-called t-J-model describes
the physics5. Currently, it is subject of intense investigation in the context of
high-tc super conductivity.

2.3.2 Superexchange driving magnetic correlations
Magnetism is characterized by the collective ordering of the magnetic moments
of many electrons in a material. The mechanism behind this ordering cannot be
explained by the dipole-dipole interaction as it is much too weak. Instead it is a
mechanism called exchange that can give rise to magnetic phases.

To understand this mechanism [Blu01], we consider two electrons pinned at two
different points in space x1 and x2. As already mentioned in Section 2.1, the total

5The name originated in the condensed-matter community, where t is used for the tunnel
coupling and J denotes the spin-spin coupling in the Heisenberg model. In the community of
ultracold quantum gases, however, t is used for the time.
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wave function of the two fermions has to be anti-symmetric which leads to two
different possibilities

ΨS = 1√
2

(ψa(r1)ψb(r2) + ψa(r2)ψb(r1))χS (2.24)

ΨT = 1√
2

(ψa(r1)ψb(r2)− ψa(r2)ψb(r1))χT (2.25)

where ψ(r) describes the orbital single-particle wave function. χT describes the
spin wave function of aligned spins with the total spin S = 1 (triplet) and χS
describes the anti-aligned singlet spin wave function with S = 0.
We calculate the energy expectation value of the two states ES and ET using

the Hamiltonian given in equation 2.18. As the Hamiltonian is not acting on the
spin wave function, the difference in the energies is only dependent on the spatial
wave functions. The exchange integral can be written as

ES − ET = 2
∫∫

ψ∗a(r1)ψ∗b (r2)Hψa(r2)ψb(r1) dr1dr2 . (2.26)

Depending on the specific situation either the singlet or the triplet state has the
lower energy. For two electrons at separate locations one finds that the symmetric
spatial wave function is lower in energy as it lowers the kinetic energy in the
system. Consequently, the spins of two fermions are anti-aligned6 and the ground
state favors anti-ferromagnetic coupling. This behavior has first been described
for the H2-molecule by Heitler and London [Hei27].
We can express the alignment of the magnetic moments with an effective spin

Hamiltonian [Aue98] where the energy difference ES − ET due to the exchange
plays the role of the spin coupling Jex. A generalization for this model to more
then two particles leads to the Heisenberg model.

H = −
∑
i,j

Jexij Si · Sj (2.27)

where i and j are describing the location of the spins and Jexij is the coupling
between the ith and the jth spin.
We want to use the Hubbard model to calculate the spin coupling constant

that favors the anti-ferromagnetic alignment of the spins. The Heisenberg model
becomes the effective model for large on-site interaction. If the interaction term HU

is much larger than the kinetic termHJ in the Hamiltonian, we can use second order
perturbation theory to calculate the size of the spin-spin coupling. To simplify the

6For two bosons, the parallel alignment of the two spins in a triplet spin wave function is
favored.
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J J
U

Figure 2.4: Super exchange mechanism in a two-site Hubbard model.
Strong interparticle interaction leads to single occupancy of the individual
sites in the lattice, as tunneling to the neighboring site is off-resonant by the
interaction energy U . Atoms in a spin singlet have lower the kinetic energy,
as they can virtually populate the doubly occupied states to change position.
This exchange process lowers the energy by 4J2/U .

calculation we again use the minimal example of two fermions with si = {|↑〉 , |↓〉}
located at two different positions i = 1, 2. The manifold of single occupation
S = {|↑, ↑〉 , |↑, ↓〉 , |↓, ↑〉 , |↓, ↓〉} is degenerate in energy and states where two
particles with different spin occupy the same position D = {|↓↑, ·〉 , |·, ↓↑〉} have
additional on-site energy U .
We calculate [Aue98] the energy shift of the spatially symmetric state |ΨS〉 =

1√
2(|↑, ↓〉+ |↓, ↑〉) in second order perturbation theory by

∆ES = −
∑
d∈D

〈ΨS|HJ |d〉 〈d|HJ |ΨS〉
〈d|HU |d〉

(2.28)

where the sum goes over all possible states d of the submanifold D. Figure 2.4
shows one possible exchange path for the example of two fermions in a double-well
potential with lowers the energy by J2/U . From equation 2.28, we obtain eight
such paths. Four of them actually exchange the two particles so that one obtains
a energy reduction of ∆ES = −4J2/U . Due to the Pauli principle, fermions in
the triplet configuration cannot occupy the same mode and consequently their
energy is not lowered. Consequently, the exchange integral lowers the energy
of the antiferromagnetic configuration by Jex = −4J2/U with respect to the
ferromagnetic configuration.

This exchange mechanism was originally suggested by Kramers [Kra34] in order
to explain the anti-ferromagnetic alignment of magnetic moments of electrons on
the Mn2+-ions in MnO. In the antiferromagnetic ground state, the electrons of the
oxygen orbitals can virtually occupy the singly occupied state of the Mn2+-ions and
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decrease the kinetic energy. For this reason, the mechanism is called superexchange.
Later, it was further developed by Anderson [And50] and is nowadays of great
relevance in copper-oxide antiferromagnets.

2.3.3 Simulating the Hubbard model with ultracold gases
Although the Hubbard model substantially simplifies the description of a strongly-
correlated system by reducing it to only two competing processes, it has not
been solved completely. Especially, whether away from half filling, it can describe
d-wave superconductivity is still an open question. Instead of solving this complex
system with classical computers, one can use analog quantum simulation with an
experimental system.
Ultracold quantum gases represent a promissing candidate to study strongly

correlated quantum many-body systems. Along this idea, Jaksch and coworkers
[Jak98] proposed the simulation of the Bose-Hubbard model using cold neutral
bosons. With a combination of retroreflected far-detuned laser beams of wavelength
λ one can create conservative potential given by Vlatt(x) = V0 sin2(2πx/λ) in which
atoms are trapped. These periodic potentials mimic the periodic crystal of ions that
valence electrons in a transition metal experience [Blo05]. In addition, interactions
between the neutral atoms can be introduced and controlled using s-wave scattering
(see Section 2.4.1).

In that way, many experimental parameters can be controlled to a high precision.
The potential landscape seen by the neutral atoms can be tuned with laser optics
and the interparticle interaction can be changed over a wide range. Therefore,
these systems offer a sophisticated playground [Jak05] for quantum simulation.
Since then, the predicted Mott-insulator has been observed first with bosons

[Gre02] and later also with fermionic atoms [Jör08, Sch08]. High-resolution imaging
allowed a little later to observe the quantum phase on a single-particle level [Bak09,
She10, Gre16]. The experiments using quantum gases even allowed to observe the
super exchange in double-well potentials [Föl07, Tro08]. However, achieving low
enough temperatures to realizing the anti-ferromagnetic phase remained challenging
[McK11]. After observing short-range correlations in several experiments [Gre11,
Har15, Bol16] the recent observation of long-range antiferromagnetic correlations
over more than 10 sites [Maz16] represents a major breakthrough.

2.4 Interactions in ultracold gases
Correlations in model systems are often created by strong interactions between
the particles. The non-linear term in the Hamiltonian leads to a coupling between
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the two particles and makes the system difficult to solve. In contrast to solid-
state systems, where electrons interact via Coulomb repulsion, experiments with
ultracold gases use neutral atoms. Nevertheless, there are possibilities to make
the atoms strongly interacting. Additionally, these interactions can be tuned and
controlled to a very high level, with makes the systems well suited for quantum
simulations.
In ultracold quantum gases, interactions are tunable by magnetic Feshbach

resonances. This technique is well extablished and details can be found in
[Dal99, Ket08, Chi10]. In the following, we introduce the scattering mechanism
between neutral particles that leads to interparticle interaction and explain how
the interaction strength can be changed in the system. After that, we describe
the influence of a confining potential on the interaction energy.

2.4.1 Scattering of two particles
In general, scattering in a particle sample is a very complex process as it is
influenced by many parameters like the number of involved particles, the energy
of the collisions, etc. In ultracold gases, the description of a scattering process
simplifies substantially.

Ultracold samples are usually very dilute. With densities of 1 to 1000 particles
per µm3 the scattering can be considered as a two-body process [Chi10]. The
interaction potential of two colliding particles is described by a central potential
Vint(r). At large distances it follows a van der Waals potential ∝ −C6/r

6 whereas
at distances of a few Bohr radii, the potential is strongly repulsive [Ket08]. The
typical size of the potential is about r0 ≈ 50a0 = 2.5nm, where a0 denotes the
Bohr radius. Consequently, the probability to find more than two particles within
the typical volume is negligible.
The scattering process of two particles can be described in the center-of-mass

frame where r = r1 − r2 denotes the relative coordinate where the Schrödinger
equation is given by (

p2

2mr

+ Vint(r)
)

Ψk(r) = EkΨk(r). (2.29)

Here, mr denotes the reduced mass, Vint describes the interaction potential and
Ek is the collision energy. As for temperatures lower than T < 1mK the de
Broglie wavelength is much larger than the microscopic scattering potential. At
large distances, one can therefore asymptotically describe the wave funcion by an
incoming plane wave with momentum k and an outgoing scattered wave function

Ψk(r) ∝ eikr + f(k′,k)e
ikr

r
. (2.30)
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The prefactor f(k′,k) describes the scattering amplitude and as we consider elastic
collisions, the energy in the scattering process is conserved (k = k′).

As our problem is spherically symmetric, we can use an expansion into partial
waves Ψl(r) = Rl(r)Ylm(θ, φ) where Ylm are the spherical harmonics and Rl(r)
denotes the radial wave function with different angular momenta l. This has
two interesting consequences. First of all, the exchange symmetry of the wave
function depends on the angular momentum state l. For even angular momenta,
the symmetry is positive and particles with a symmetric spatial wave function,
like identical bosons or fermions in a spin singlet, can scatter with l = 0, 2, . . .
(e. g. s-wave, d-wave etc.). In contrast to that, particles with an antisymmetric
spatial wave function, like identical fermions, can only scatter with l = 1, 3, . . .
(e. g. p-wave, etc.).

Secondly, as the angular momentum is conserved, only the radial part of the
equation has to be solved. Its solution has an additional term proportional
to ~2l(l + 1)/r2. For l > 0, the interatomic potential therefore features an
additional centrifugal barrier. This barrier is higher than the typical temperatures
in ultracold gases and consequently, only s-wave scattering can occur7 between
particles with symmetric spatial wave function. Identical fermions cannot scatter at
all. Additionally, the scattering amplitude has no angular momentum dependency
and reduces to

f(k′,k) ≈ fs = 1
k cot δs(k) + ik

(2.31)

where fs denotes the scattering amplitude and δs is a phase shift, which is the
only change that the asymptotic wave function can experience for low momenta
k at angular momentum l = 0. Therefore, this phase shift describes the entire
collision process. By expanding k cot δs(k) in a power series of k2 which can be
truncated for k � 1/r0, we see that the collision process can be described by the
so-called scattering length

asc = −limk�1/r0

tan δs
k

. (2.32)

If the scattering process did not cause a phase shift, the scattering length is zero.
However, it becomes infinitely large for δs → ±π/2. Its exact value is determined
by the microscopic details of the scattering potential and very difficult to predict ab
initio but whenever, the potential reaches a depth where it just supports another
bound state, the phase shift of the outgoing wave function approaches π/2 and
the scattering length diverges.
During the scattering process the internal structure of the potential is not

probed as the de Broglie wave length is much larger than the potential range.
7p-wave collisions can only happen when they are resonantely enhanced.
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Therefore, an exact knowledge of the potential is not necessary to describe the
interaction between two particles. Instead, the actual potential can be replaced
by the pseudo-potential

Vint(r) = g3Dδ(r)reg = 2π~2a3D

mr

δ(r)reg. (2.33)

The delta potential has to be regularized in three dimensional systems to avoid a
divergence8 [Ket08]. With the help of the pseudo-potential the scattering of two
particles can be described.

From the formula one can see, that the contact interaction can be represented by
a repulsive potential or an attractive potential, only depending on the scattering
length. For a positive scattering length, the potential becomes repulsive, whereas
for a negative scattering length, the interaction between two particles is attractive.

2.4.2 Tuning the interaction using Feshbach resonances
The strength and sign of the scattering between two particles is determined by
the microscopic details of the potential. To change the scattering length, one has
to tune the depth of the potential to shift or create a bound state close to the
continuum. For ultracold gases, this is not possible. Despite this, the scattering
length can be changed in systems with ultracold atoms by using a magnetic
Feshbach resonance. This phenomenon is described in detail in [Chi10]. So, we
only give a short explanation of the mechanism.
In the scattering process that we just discussed, a large phase shift of the

out-going wave function causes strong interaction. Such a phase shift can not only
be accumulated by a bound state close to the continuum but also by one in a
energetically higher molecular potential. This situation is shown in Figure 2.5.
Two particles with a small energy E enter the open channel. A molecular potential
of a different spin configuration is not accessible energetically and thereby denoted
as a closed channel. If a bound state in the closed channel Ec is resonant to the
energy of the colliding particles and if the two states couple weakly, the state can
virtually occupy the bound state in the closed channel for a finite time and the
out going wave function accumulates a phase shift.
In ultracold atoms, the different channels are molecular potentials of different

spin configurations with different magnetic moments µo and µc. By applying a
magnetic offset field, the energy difference between the two potentials can be
tuned ∆E = (µo − µe)B and the resonance can be engineered.

8δ(r)reg · · · = δ(r) ∂∂r r . . .

24



2.4 Interactions in ultracold gases

3

0

V
c
(R)

E

entrance channel or
open channel 

E
ne

rg
y

closed channel
E

C

0 Atomic separation R

V
bg

(R)

FIG. 1 Basic two-channel model for a Feshbach resonance.
The phenomenon occurs when two atoms colliding at energy
E in the entrance channel resonantly couple to a molecular
bound state with energy Ec supported by the closed channel
potential. In the ultracold domain, collisions take place near
zero-energy, E → 0. Resonant coupling is then conveniently
realized by magnetically tuning Ec near 0, if the magnetic
moments of the closed and open channel differ.

achieved by optical methods, leading to optical Feshbach
resonances with many conceptual similarities to the mag-
netically tuned case; see Sec. VI.A. Such resonances
are promising for cases where magnetically tunable reso-
nances are absent.

A magnetically tuned Feshbach resonance can be
described by a simple expression2, introduced by
(Moerdijk et al., 1995), for the s-wave scattering length
a as a function of the magnetic field B,

a(B) = abg

(
1 − ∆

B −B0

)
. (1)

Figure 2(a) illustrates this resonance expression. The
background scattering length abg, which is the scatter-
ing length associated with Vbg(R), represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vbg(R). The parameter
B0 denotes the resonance position, where the scattering
length diverges (a → ±∞), and the parameter ∆ is the
resonance width. Note that both abg and ∆ can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach res-
onance; it occurs at a magnetic field B = B0 + ∆. Note
also that we will use G as the magnetic field unit in this
Review, because of its near-universal usage among groups
working in this field; 1 G = 10−4 T.

The energy of the weakly bound molecular state near
the resonance position B0 is shown in Fig. 2(b), relative

2 This simple expression applies to resonances without inelastic
two-body channels. Some Feshbach resonances, especially the
optical ones, feature two-body decay. A more general discussion
including inelastic decay is given in Sec. II.A.3
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FIG. 2 Scattering length a (Panel (a)) and molecular state en-
ergy E (Panel (b)) near a magnetically tuned Feshbach reso-
nance. The binding energy is defined to be positive, Eb = −E.
The inset shows the universal regime near the point of reso-
nance where a is very large and positive.

to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at E = 0 on the
side of the resonance where a is large and positive. Away
from resonance, the energy varies linearly with B with a
slope given by δµ, the difference in magnetic moments of
the open and closed channels. Near resonance the cou-
pling between the two channels mixes in entrance-channel
contributions and strongly bends the molecular state.

In the vicinity of the resonance position at B0, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

Eb =
h̄2

2µa2
, (2)

where µ is the reduced mass of the atom pair. In this limit
Eb depends quadratically on the magnetic detuning B −
B0 and results in the bend seen in the inset to Fig. 2. This
region is of particular interest because of its universal
properties; here the state can be described in terms of
a single effective molecular potential having scattering
length a. In this case, the wavefunction for the relative
atomic motion is a quantum halo state which extends to
a very large size on the order of a; the molecule is then
called a halo dimer; see Sec. V.B.2.

A very useful distinction can be made between reso-
nances that exist in various systems; see Sec. II.B.2. For
narrow resonances with a width ∆ typically well below
1 G (see Appendix) the universal range persist only for
a very small fraction of the width. In contrast, broad
resonances with a width typically much larger than 1 G
tend to have a large universal range extending over a

Figure 2.5: Schematic of a Feshbach resonance. The open channel de-
scribes the accessible scattering potential of two particles. If the collision
energy E is in resonance with a bound state in a higher lying closed-channel
potential, a phase shift can be accumulated by a virtual occupation of the
resonant state. This leads to a change of the scattering length. In ultracold
gases, the energy difference between the two particles can be tuned via a
magnetic offset field. Taken from [Chi10]

The diverging scattering length as a function of the magnetic offset field B can
be described by the empirical formula [Chi10]

asc(B) = abg

(
1− ∆B

B −B0

)
(2.34)

where abg describes the background scattering length, B0 is the magnetic field,
where the resonance occurs and ∆B describes the width of the resonance.

Feshbach resonances in 6Li

In our experiment, we work 6Li atoms in the three lowest hyperfine states |1〉, |2〉
and |3〉. Between all three states, 6Li exhibits Feshbach resonances with widths
on the order of 100G. Figure 2.6 shows the scattering lengths as a function of
the magnetic offset field for all three combinations. The resonances are around
830G and 690G and at fields around 550G, all three combinations have zero
crossings which allow us to create non-interacting two-component Fermi gases.
The resonance positions where corrected and determined with higher precision in
[Zü13]. In our experiment, we use the Feshbach resonances to tune the interaction
strength in a two-component Fermi-gas.
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Figure 2.6: Feshbach resonances of 6Li . All combinations of the three

lowest hyperfine states exhibit a broad Feshbach resonance around 700 -
850G. The interactions strength can be tuned to zero below the Feshbach
resonances. Taken from [Ber13].

2.4.3 Interaction in a trapping potential
In presence of a trapping potential, the scattering process between two particles
can significantly change. The description of asymptotic ingoing and outgoing waves
becomes meaningless and the confinement results in a discrete energy spectrum.
In several papers, the influence of an underlying potential of different kinds has
been studied [Bus98, Ols98, Ber03, Idz06]. The results are of high importance
for the calculation of the interaction strength in one or several microtraps. In
the following, we give a short introduction along these publications. We will first
present a full three-dimensional solution of the scattering problem in a cigar-shaped
potential and then reduce the description to one dimension.

Two interacting particles in a cigar shaped harmonic potential

In our experiment, we trap particles in optical tweezers formed by Gaussian beams.
These trapping potentials can be approximated by three-dimensional harmonic
oscillators. Due to their creation from focusing a Gaussian beam, the tweezers are
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2.4 Interactions in ultracold gases

axially elongated. We can describe the trapping potential by

Vt(r) = 1
2m

(
ω2
⊥ρ

2 + ω2
zz

2
)

(2.35)

where ω⊥ and ωz denote the radial and axial trapping frequencies. From this, one
can define the aspect ratio η = ω⊥/ωz to characterize the shape of the potential.
For weak interactions, the wave function of the atoms in a microtrap can be

approximated by Wannier functions but as soon as we approach the Feshbach
resonance, this description is not valid anymore. Under certain approximations,
the interaction energy between two particles in such a trapping potential can be
calculated analytically at any scattering length [Idz06]. Here we only show the
most important steps in this calcuation. For details, we refer to [Idz06] and to
[Zü12a, Mur15a].
The two-particle Hamiltonian of the system is given by

H = − ~2

2m∇1
2 − ~2

2m∇2
2 + Vt(r1) + Vt(r2) + Vint(r1 − r2) (2.36)

where r1 and r2 denote the position of the two particles, m is the mass of a particle
and the interaction potential Vint(r) is described according to equation 2.33. For
a harmonic potential Vt(r), we can decouple the center-of-mass motion and the
relative motion. We introduce the center-of-mass coordinate R = (r1 + r2)/2 and
the relative motion coordinate r = r1 − r2 of the two particles and obtain

HCOM = − ~2

2M∇R
2 + M

m
Vt(R) (2.37)

HREL = − ~2

2mr

∇r
2 + mr

m
Vt(r) + Vint(r) . (2.38)

As a consequence of the separation, the interaction potential is only present in
the equation for the relative motion with mr describing the relative mass. The
center-of-mass Hamiltonian HCOM describes a simple harmonic oscillator with
twice the mass M = 2m and its eigenfunctions are the usual harmonic oscillator
wave functions. In order to describe the eigenfunctions of the relative motion, we
chose the basis of two-dimensional harmonic oscillator wave functions in polar
coordinates Φn,m with n is the radial and m the angular quantum number and
the one-dimensional harmonic oscillator wave function Θk(z) with the quantum
number k. The eigenfunctions can then be written as a superposition of the basis
states

Ψ(r) =
∑
n,k

cn,kΦn,0(ρ, φ)Θk(z) (2.39)
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Chapter 2 Strongly correlated fermions in optical potentials

where only the summation over the angular quantum states m = 0 is necessary.
Solving for the coefficients cn,k and inserting it into the Schrödinger equation
results in an implicit formula for the eigenenergy

−
√
π

asc
= F(−E/2). (2.40)

Here, asc is expressed in units of the harmonic oscillator length az =
√
~/(mrωz)

and E = E − E0 describes the energy of the system in units of the harmonic
oscillator energy ~ωz on top of the ground state energy E0 = 1/2 + η.
If the harmonic trapping potential is cigar shaped, i. e. the aspect ratio η > 1,
F(x) can be calculated for E < 0 and analytically continued to E > 0. The energy
shift in a cylindrically symmetric trap is described by the exact formula

F(x) = −2
√
π

Γ(x)
Γ(x− 1/2) +

√
π

Γ(x)
Γ(x+ 1/2)

n−1∑
m=1

F (1, x;x+ 1/2; ei 2πm
n ) (2.41)

where F (a, b; c;x) is the hypergeometric function 2F1, Γ(x) denotes the Euler
gamma function. Equation 2.41 can be simplified9 for aspect ratios much larger
than one η � 1. This makes it interesting to compare the result with the true
one-dimensional model solved in [Bus98].

One-dimensional solution and confinement-induced resonance

For the one-dimensional system, the interaction pseudo-potential can be written
as Vint,1D(r) = g1Dδ(r). The Schrödinger equation can then be solved by again
separating the center of mass motion from the relative motion. After another
lengthy calculation one obtains an implicit formula for the eigenenergy

− 1
g1D

= mr

2~2
Γ(−E/2)

Γ(−E/2 + 1/2) . (2.42)

By comparing this with the solution for the three-dimensional cigar shaped
potential with large aspect ratio, we find the relation between the one-dimensional
coupling strength and the scattering length, that was deduced in [Ols98]

g1D = 2~2asc
mra2

⊥

1
1− Casc/(a⊥) (2.43)

9 Equation 2.41 can be simplified to F(x) ≈ √πηζH
(

1
2 , 1 + x

η

)
+η
√
π Γ(x)

Γ(x+1/2) , where ζH(s, a) =∑∞
k=0(k + a)−s denotes the Hurwitz zeta function [Idz06].
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2.4 Interactions in ultracold gases

Figure 2.7: Energy spectrum for a three-dimensional cigar-shaped
trap and the one-dimensional solution. Plotted is the additional energy,
that two particles can gain by interacting in a one-dimensional system (blue)
or in a three-dimensional cigar-shaped potential with an aspect ratio of η = 7
(red).

where C ≈ 1.46035 and a⊥ =
√
~/(mrω⊥). One observes that the one-dimensional

coupling strength g1D diverges when the scattering length has the same scale than
the harmonic oscillator length in the direction of the confinement C asc = a⊥.

Figure 2.7 shows a comparison of the eigenenergies for two particles in a cigar-
shaped trap and the true one-dimensional solution. Differences in the eigenenergies
are only noticable in the strong-coupling regime of −1 < −1/g1D < 1. In the
attractive branch the deviations increase with the coupling strength as the one-
dimensional model only exhibits a molecular state on the attractive side, in contrast
to the three-dimensional system. In the lowest repulsive branch, the two solutions
deviate only by 2% from each other. Only for higher excitations the eigenenergy
gets significantly influenced by the dimensionality and the deviations increase.
This means that especially in the repulsive branch and for large aspect ratios our
system can be described in a one-dimensional framework.

Fermionization of two distinguishable Fermions

In the repulsive branch of the one-dimensional model, the energy of two particles
increases with increasing interaction strength (see Figure 2.8 b). At the point where
the one-dimensional coupling strength g1D diverges, the energy of the relative
motion is exactly ~ωz. This means that the energy of the two interacting particles
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Chapter 2 Strongly correlated fermions in optical potentials

Figure 2.8: Fermionization of two distinguishable fermions. a) The
relative wave function of two interacting particles is plotted over the inter-
action strength of a contact interaction. In the non-interacting case, it is
described by a simple Gaussian wave function, but as soon as the repulsion
is increased the particles tend to avoid being at the same position, which is
visible as a cusp in the wave function. The extreme case is reached when
the one-dimensional coupling strength g1D diverges. Then the relative wave
function looks like the one of inpenetrable particles and the modulo square
is identical to the modulo square of two identical fermions. This point is
named fermionization and allows for a mapping of the system on identical
fermions. b) Consequently also the energy of the two systems is the same.
The state of the interacting fermions continues to exist at the attractive side
where it becomes an excited state. At weak attraction, its energy eventually
reaches 2~ωz. Taken from [Wen13b]
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with a spin wave function of χ = 1√
2(|↑↓〉 − |↓↑〉) coincides with the energy of two

identical fermions with a spin wave function |↑↑〉.
This phenomenon, which holds in one dimension for a delta-like interaction

potential, is known as fermionization. Originally, it was formulated for interacting
bosons [Gir60]. However, also two interacting fermions can be fermionized [Gir10]
as was shown in[Zü12b]. The fermionization can be easily understood by comparing
the relative wave functions of two identical fermions and two distinguishable
interacting fermions (see Figure 2.8 a). The spatial relative wave function of two
identical fermions is antisymmetric and the two particles are inpenetrable. For
two interacting particles the same situation can be generated with repulsive short-
range interaction. At z = 0, the repulsion generates a cusp in the relative wave
function as the particles avoid each other. This cusp increases with the interaction
strength until it eventually goes to zero Ψ(z = 0) = 0 and the two particles become
completely impenetrable. At the fermionization point, the modulo square of the
wave function is identical to the one of two identical fermions.

The repulsive branch continues at the attractive side as an excited state. Looking
at the wave function, the cusp continues in the relative wave function becomes
negative at the origin Ψ(z = 0) < 0. Following this branch the attractive
interaction decreases until it reaches the g1D = 0 where the relative wave function
is identical to the second excited harmonic oscillator wave function and the system
has gained another ~ωz.
On the interaction resonance, the particles are inpenetrable. Around the

interaction resonance, the system is in the strong coupling regime and the system
is highly correlated [FA03]. In [Deu14] it was shown that this regime can be
described by a spin chain model. In the special case of a two-component Fermi
system, it can be described by the Heisenberg model with a spin coupling term
J ∝ 1/g1D. This holds for even more than two particles and was demonstrated
experimentally by Murmann et al. [Mur15c].

Solutions for more than two fermions

For a homogeneous system, the thermodynamic limit of infinitely many identical
fermions interacting with one impurity was already analytically solved by McGuire
[McG65]. A few years later, the one-dimensional problem of a two-component
Fermi gas was exactly solved [Yan67].

We just saw that there exists an analytic solution for two harmonically trapped
interacting particles in a one-dimensional system [Bus98], but for larger parti-
cle numbers, only numerical methods are available. They can still predict the
energy spectrum up to 8 particles with a high precision [Gha12, Bro13, Gha13,
Sow13, Gha14, Gha15] but solving larger systems is very hard. Quasi-analytical
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approaches, which are not limited in particle number, can describe the system
only in the strong-coupling region [Gua09, Lev14, Vol14].
In our experimental setup, we prepare few-fermion systems in one or several

elongated microtraps with high control on the prepared atom number. In addition,
we can tune the interaction strength at will. This allows us to study quasi-one
dimensional system and systems with few sites in the crossover from few to many
particles. The necessary tools and the experimental preparation will be the subject
of the next chapter.
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Preparing few-particle systems
with high fidelity
After the first experimental demonstration [Ser11b], the deterministic preparation
of few-particle systems became central for all our experiments. Preparing small
quantum systems in a distinct quantum state with unprecedented fidelity enables
us to study systems with low entropy at a high level of control.

We create samples containing few fermions by starting with an ultracold degen-
erate Fermi gas of several thousand particles. This serves as a reservoir for filling
a small but deep potential well with a few atoms. The high quantum degeneracy
leads to a large occupation probability in the lowest levels. We then deterministi-
cally spill all but the lowest-lying states and thereby obtain few-fermion system in
the overall ground state of the system.
This chapter describes the experimental methods to realize and probe few-

particle systems. First, the experimental sequence to prepare few-particle systems
and our methods of manipulate and detect the quantum states will be explained.
After that, a short overview on the experimental setup to reach a quantum
degenerate Fermi gas is given, followed by a detailed description about the tools
to create and control one or several microtraps.

3.1 Preparing, manipulating and probing few
fermions

The preparation of few-fermion system is routinely done in our group. Due to the
small particle number a lot of repetitions are necessary to gain enough statistics.
Therefore, the experimental challenge is to provide a reliable experimental setup
that has a short cycle time. As postselection of the data is often not possible,
the preparation and detection of the quantum state have to be robust and the
parameters have to be stable in order to guarantee the preparation of systems
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with low entropy.
The experimental sequence is completely automatized. We use an experimental

control (ADwin Pro II, Jäger Messtechnik) that provides a time resolution of
several microseconds for the digital and analog channels. One cycle of the sequence
takes 10 to 12 seconds and consists of four basic parts: The preparation of an
atom reservoir, the preparation of the few-particle system, its manipulation and
detection.

3.1.1 Preparation of an atom reservoir
The preparation of a reservoir containing a degenerate Fermi gas is achieved in
several experimental steps and takes about 8 seconds of every experimental cycle.
We start with an atomic beam of Lithium atoms exiting an oven. In a first step,
we slow the atoms down using a Zeeman slower. After this, they are captured and
laser cooled in a magneto-optical trap (MOT). After about 2 seconds of loading
time we end up with about 1 × 108 atoms at a temperature of around 400µK
and a phase space density of 10−6 [Ser11a]. To increase the phase space density
further, we directly transfer the atoms into a crossed-beam optical dipole trap
with a transfer efficiency of around 1%. By applying a long high-power radio
frequency pulse between the two lowest hyperfine levels we create a balanced
two-component sample. This allows us to perform evaporative cooling with a
single-species Fermi gas. We first evaporate at a magnetic offset field close to the
Feshbach resonance where the scattering length between the two hyperfine spin
states is several thousand Bohr radii. In that way we maximize the thermalization
rate. As soon as the temperature of the ensembles is on the order of the binding
energy of dimers, we change the magnetic field to 300G to allow the preparation
of a weakly interacting Fermi gas. There, the scattering is not more than 1000
a0 and negative. After 6s of evaporation time we end up with 6× 104 atoms per
spin state at a temperature of 250 nK. This corresponds to a degeneracy of about
T/TF ≈ 0.5 [Ser11a].

3.1.2 Preparation of a few-fermion system
For systems with identical fermions, the Pauli principle holds and each quantum
state can be at most occupied by one fermion. If the atom sample has a low
temperature, the atoms occupy the bound states of the potential according to the
Fermi-Dirac distribution where the lowest states have the highest probabilities to
be occupied. We exploit this to prepare few-fermion systems. A more detailed
description of the preparation technique can be found in [Ser11a, Ser11b, Zü12a].
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Figure 3.1: The dimple trick. We prepare a Fermi gas in a large optical
dipole trap with a temperature of 250 nK and a degeneracy of T/TF ≈ 0.5.
By overlapping a tightly focused microtrap with a depth much larger than the
depth of the reservoir trap, the Fermi energy is locally significantly increased.
As the microtrap only contains a small fraction of the total atom number,
the temperature of the combined system does not change. In that way, the
degeneracy of the Fermi gas can be increased to T/TF ≈ 0.05 which leads to
a occupation probability of the lowest state of P (E0) >99.99%. Figure taken
from [Ser11a] and adapted.

The degenerate Fermi gas in the crossed beam dipole trap serves as a reservoir
for this step. In order to increase the degeneracy of the system, we make use of
the dimple trick [SK98] and superimpose a tighly focused optical dipole trap with
the reservoir trap (see Figure 3.1). Due to its waist size of roughly 1µm we call it
microtrap.

To avoid heating up the Fermi gas, we slowly ramp on the microtrap and let the
system thermalize. As the microtrap only contains a fraction of the atoms in the
reservoir, the overall temperature of the system is determined by the temperature
of the reservoir. However, the presence of the microtrap leads to a local increase of
the Fermi energy EF . In this way, the occupation probability of the lowest state
E0 can be increased to

P (E0) = 1
exp(E0−µ

kBT
) + 1

≈ 1
exp(E0/kB−TF

TODT
) + 1

(3.1)

where the energy of the lowest state is E0 and the chemical potential µ ≈ kBTF .
The Fermi temperature in the combined system is TF = TF,res + TF,MT ≈ 7µK.
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Figure 3.2: The spilling scheme. a Using the dimple trick, the microtrap
is filled with several hundred fermions in two hyperfine states at a degeneracy
of T/TF ≈ 0.05. b To prepare a few-particle systems in a deterministic way,
we apply a magnetic field gradient of about 30G/cm and thereby deform
the trapping potential that the atoms experience. Additionally, we tune
the barrier height to a precision higher than the level spacing to control
the number of bound states in the potential. c After a typical spill time of
25ms, we decrease the magnetic field gradient again. In this way, we achieve
a well-defined number of atoms in the ground state of the system with a
fidelity above 90%.

This results in an occupation probability of P (E0) >99.99% of the lowest state in
the microtrap.

After the thermalization, we can switch off the reservoir trap and are left with a
few hundred particles in the microtrap. They occupy the tight trapping potential
according to the Pauli principle. As our initial sample contained fermions in two
different hyperfine states, each quantum state is filled with two particles. This is
schematically shown in Figure 3.2 a.

To initialize a few-fermion system, we deterministically remove atoms from the
higher lying states by deforming the trapping potential. As schematically shown
in Figure 3.2 b, we do this by applying a magnetic field gradient B′ on the order
of 30G/cm along one direction of the trapping potential. Due to the interaction
with the magnetic moment µ this leads to a tilt of the overall potential

V (z) = V0

(
1 +

(
z

zR

)2
)

+ µB′ (3.2)

where V0 denotes the depth of the potential, which is created by a focused Gaussian
laser beam with a Rayleigh length denoted by zR. The tilt of the trap results in
a reduction of bound states in the trap. As a consequence, the atoms above the
barrier leave the trap.
We prepare few-fermion systems with distinct atom numbers by tuning the

barrier height and thus chosing the number of bound states in the potential. For
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a precise control, the large level spacing in the microtrap in combination with a
small heating rate during the spilling process is crucial.

We perform this spilling technique at a magnetic offset field where the fermions in
the two different hyperfine states are non-interacting and thus behave independently
from each other. In addition their magnetic moments are similar and consequently
they experience the same tilt1. In this way, we prepare even atom numbers of up
to 10 particles with fidelities above 90% with full control over the motional state.

3.1.3 Manipulation of the few-fermion system
After the initialization of few fermions in the overall ground state of a microtrap, we
manipulate the few-fermion system. We can control the scattering length between
all the three lowest hyperfine states |1〉, |2〉 and |3〉 by means of a broad Feshbach
resonance, described in Section 2.4. For this, we change the magnetic offset field
in the system using the Feshbach coils and thereby tune the interaction strength
in the system. In this way, we could study few strongly repulsive distinguishable
fermions [Zü12b, Mur15c] and weakly attractive fermions [Zür13].

In addition, we can change the hyperfine state of an atom by applying a radio-
frequency field. The transition between two hyperfine states is well-described
by a two-level system. This allows us to drive coherent Rabi oscillations and
perform precise measurements of the interaction energy. For 6Liatoms the necessary
transition frequencies are around 80MHz for magnetic fields higher than 100G.
In the past, we used RF-spectroscopy to study systems with increasing particle
number at various interaction regimes [Wen13b]. Furthermore, it was used to
perform a high-precision measurement of the scattering length around the Feshbach
resonance. In Chapter 5 we use coherent Rabi oscillations to measure the total
spin state of a few-fermion system and study a one-dimensional system of one
impurity immersed in a Fermi sea of few majority particles.
After an upgrade in 2013, our setup also allows us to change the trapping

potential by adding one or even more optical tweezers to the system [Kli12, Ber13].
To do this, we use an acousto-optic deflector that allows to create more potential
wells and change their distance and relative depths at will. The techniqual
requirements to do this will be explained in detail in Section 3.3.2. In [Mur15b]
we demonstrated the experimental control over the individual wells by preparing
the atoms in the ground state of a coupled double well and thereby realized the
fundamental building block of the Fermi-Hubbard model. A description of the
experiments is given in Section 6.

1By performing the spilling at a magnetic offset field of around 27G, we can prepare spin-
polarized samples of atoms in state |2〉. At these offset fields their magnetic moment is zero
and consequently they are not spilled from the trap.
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Figure 3.3: Fluorescence signal from single atoms. To image the atoms
in the microtrap, we recapture them in the MOT and detect the fluorescence
of single atoms with a CCD camera. To achieve the single-atom sensitivity,
we decrease the size of the MOT by applying a MOT gradient of 250m/s
and detuning of the MOT beams of only −2Γ. We integrate the fluorescence
signal in a region-of-interest for 0.5 seconds (inset). The histogram of the
fluorescence signal shows peaks that correspond to integer atom numbers.
For 2 atoms (6 atoms) we detect a signal width of σ = 0.11 (σ = 0.16), which
results in a separation of 9σ (6σ) from the neighboring peak and corresponds
to a detection fidelity larger than 99%. Figure taken and adapted from
[Mur15a].

3.1.4 Readout with single-atom sensitivity
For the experiments presented in this thesis, two different imaging techniques
were used. Our traditional way of measuring few atoms is to recapture them in
the MOT where we detect their fluorescence [Hu94, Ser11a, Hum13]. For this we
apply a magnetic field gradient of 250G/cm and a detuning of the MOT beams
of −2Γ. We collect about 0.8% of the emitted fluorescence during 0.5 seconds
and image it on a CCD camera [Ser11a]. From the recorded signal, we can then
deduce the exact atom number with a fidelity better than 98% for more than 10
atoms (see Figure 3.3).
However we lose information about the occupation number per site, the spin

state and the energy level the atoms were in. In order to gather this information
we have to perform selective spillings before the detection in the MOT. For
experiments with several optical tweezers this means that we have to uncouple
the wells and switch off all but one well to measure quantities like the occupation
number site selectively. This is very time consuming especially for system with
more than two wells.
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Figure 3.4: Vacuum chamber. The vacuum chamber of the table-top ex-
periment has a length of about 1.5m. Two ion pumps and two titanium
sublimators create ultrahigh vacuum conditions. The atoms are heated up in
the oven section and travel towards the octagon. To slow down the atoms, we
use a Zeeman slower. We trap the atoms in the octagon, where the cooling,
preparation, manipulation and detection takes place. Figure taken from
[Ser07].

In order to overcome this limitation, we developped a novel imaging technique
that allows single-atom detection with spatial and spin resolution. It is based on
fluorescence imaging and not restricted to the localization of the atoms in one
potential well. Chapter 4 reports on this new technique that allows us to resolve
the momenta of individual atoms. This paves the way to measuring momentum
correlations of complex many-body states.

3.2 Experimental steps towards a degenerate
Fermi gas of 6Li-atoms

The starting point for the preparation of few fermions is a degenerate Fermi gas.
Its production is routinely done in our group and described already in several
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theses [Lom11, Ser11a] as well as in the general literature [Ket08]. The details on
the production of the degenerate Fermi gas do not influence the steps thereafter
and so this section will only provide an overview on the experimental setup.

3.2.1 Vacuum chamber and oven
Experiments with ultracold quantum gases are inherently decoupled from the sur-
rounding environment. Reaching temperatures in the range of hundred nanokelvin
requires ultrahigh vacuum conditions. A sketch of our vacuum chamber is shown in
Fig.3.4. Two ion getter pumps l2 in combination with two titanium sublimatorsl1 are necessary to reach pressures on the order of 10−12mbar which are crucial
for the preparation of few-fermion systems.
In the oven section l3 a few grams of solid Lithium are heated up to 350 ◦C

to form a hot gas of lithium atoms. They travel along a 30-cm long drift tube,
that serves as a differential pumping stage towards the science chamber. To
provide optical access the science chamber consists of an octagon l5 with 6 small
viewports at the sides. Two reentrant viewports at the top and bottom allow for
optical access of NA=0.65.

3.2.2 MOT and Zeeman slower
The atoms leaving the oven have an average speed of 1000m/s. To decelerate them
in the drift tube, a resonant laser beam is counterpropagating the atom beam. The
light force of several thousand absorption and re-emission events, each changing
the momentum of the atoms by ~k, can slow them down to a few m/s. During this
slow-down the Doppler effect leads to a change of the resonance frequency of the
atoms ∆ω = kv as a function of their velocity v. To compensate for the frequency
change, we use a so-called Zeeman slower [Met99]. It provides a spatially varying
magnetic field designed such that the resulting Zeeman effect compensates the
changing resonance frequency along the deceleration. After passing the Zeeman
slower the atoms enter the science chamber with a velocity lower than 50m/s
where they can be captured by the Magneto-optical trap [Met99]. It consists of
three pairs of counterpropagating red-detuned laser beams that cause a frictional
force on the atoms in combination with an additional spatially dependent magnetic
field provided by the MOT coils that makes the light force spatially dependent
and confines the atoms in the magnetic field zero.

We load the MOT for 2 seconds and end up with 1× 108 atoms. The ensemble
has a temperature of 400µK which is limited by the Doppler temperature and
reaches a phase space density of 10−6 [Ser07].

40



3.2 Experimental steps towards a degenerate Fermi gas of 6Li-atoms

3.2.3 Optical-dipole trap
Quantum degeneracy sets in at a phase space density on the order of 1. In order
to reach this regime, we have to confine the atoms in a trapping potential that
does not involve resonant photon scattering. There are two different approaches
to provide a conservative potential for neutral atoms: One method uses the fact
that a magnetic field gradient can create a force acting on the atoms due to its
coupling to the magnetic moment of the particles2. By creating a magnetic field
with a minimum, one can thus trap low-field seeking atoms around this minimum.
The second way, the method we are using, is the creation of a trapping potential
by a far-detuned laser beam.
In an optical dipole trap [Gri00], a force acting on neutral atoms is created by

the oscillating electric part of the laser field E(r, t). This field induces an electric
dipole moment p on the atom, which interacts with the electric field and creates a
potential of the form Vdipole = −1

2(Ep). Similar to a driven harmonic oscillator,
the induced dipole moment p will oscillate in phase with the electric field if the
driving frequency ω is lower that the resonance frequency of the atom ω0. This
results in an attractive dipole potential. For driving frequencies higher than the
resonance frequency, the potential becomes repulsive. The potential created by
the far-red detuned laser beam is described by

Vdipole(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+ Γ
ω0 + ω

)
I(r) (3.3)

where c is the speed of light and Γ denotes the transition linewidth. The intensity
distribution of the laser field I(r) thus fully determines the shape of the trapping
potential. The potential depth scales with (ω0 − ω)−1, but small detunings from
the resonance frequency lead to a significant rate of photon scattering. At the
expense of lower potential depths one therefore choses large detunings where the
photon scattering rate Γsc scales with (ω0 − ω)−2.
Our optical dipole trap is detuned 400nm from the 6Li resonance. In order to

provide sufficient depth and spatial overlap to directly transfer the atoms from
the MOT, we use a Ytterbium-doped fiber laser (YLR-200-LP, IPG Photonics)
with about 200 Watt power3. The trap is formed by two laser beams (see Figure
3.5) with a waist of w0 = 50µm which intersect in an angle of 14◦. This results
in an aspect ratio of about 1:8 and a gaussian profile along the intersection of
σz = 200µm.

2Note that we use this for spilling our microtrap, see section 3.1.2.
3In the course of this thesis, we had to replace the laser and found out that 100 Watt is sufficient
for the efficient transfer and evaporation of the atoms. Note also that the dimensions for the
beams slighly changed after this exchange due to a different fiber laser collimator.
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Figure 3.5: Optical dipole trap filled with atoms. The optical dipole
trap is created by two far-red detuned laser beams crossing at an angle of 14◦.
The absorption image of a hot atomic sample from the top shall visualize
the shape of the optical dipole trap. Figure taken from [Lom11].

For evaporative cooling, we decrease the laser power by the analog control
of the laser itself and two AOMs that are placed in the beam path. The laser
power is monitored by focusing light, that is transmitted through a mirror, on two
photodiodes with different gain. This allows us to feed-back on the power and
vary it over a large range. A detailed description of the entire optical dipole trap
setup can be found in [Lom11].

3.2.4 Feshbach coils
A pair of coils in almost Helmholtz configuration provides the homogeneous
magnetic offset field to tune the scattering length of the atoms. The coils are
mounted around the reentrant viewports of the science chamber (see Figure 3.4)
and can provide fields up to 1400G. They allows us tune the interaction strength
from repulsive, across the broad Feshbach resonances (see Sec.2.4) around 800G
to the attractive side.

Both coils consist each of 15 windings of flat copper wire with a cross-section of
1× 5mm2, that are wound up in a spiral and then lathe faced on one side. The
bare side of the coils are then thermally contacted to a water-cooled copper heat
sink with a diamond-filled epoxy glue. Details on the coil design as well as the
exact form of the magnetic field can be found in [Lom08, Zür09].

Each coil is connected to one power supply (SM15-400, Delta Elektronika) that
can deliver 400A and is voltage-controlled by the experimental control system
(ADwin). For active feedback we measure the sum and the difference of the

42



3.3 The microtrap setup

two currents with two current transducers (Danfysik 866 and LEM IT1000).
This allows us to independently set the magnetic field and a magnetic field
gradient [Zür09, Ber13]. Furthermore we can switch the coils to an anti-Helmholtz
configuration and create magnetic field gradients of up to 250G /cm for the
detection of single atoms in the MOT.

3.3 The microtrap setup
The microtrap setup is the center part of all our experiments. It allows us to prepare
few fermions in the ground state of one or several potential wells [Ser11a, Mur15b].
The microtrap is generated by a far-red detuned, tightly focused optical dipole
trap. A first version is described in [Zür09] with a waist of 1.8µm. With that
setup, the deterministic preparation of few-fermion systems was demonstrated
[Ser11b].
In an upgrade [Ber13], we added a custom-designed high-resolution objective

[Ser11a, Ber13] to create even smaller beam waists together with an acousto-optic
deflector (AOD) [Kli12] to allow for the creation of several microtraps next to
each other [Zim11]. Details on the optical setup after the upgrade can be found
in [Kli12, Ber13]. This section will explain the necessary experimental steps to
create and control one or two microtrap potentials.

3.3.1 Generating the microtrap potential
Our microtrap consists of a single-beam optical dipole trap [Gri00]. We use
coherent light from a Mephisto laser at a wavelength of 1064 nm which we focus
down to a micrometer-size. The shape of the resulting potential V (r) = V0 I(r)
is fully determined by the intensity distribution of the focused beam and the
potential depth V0 can be calculated according to equation 3.3. The ideal intensity
distribution of the focused Gaussian beam can be described by

I(r) = 2P
w(z)2 exp

(
−2 x

2 + y2

w(z)2

)
(3.4)

with the total power light power P . The 1/e2-beam waist spreads along the
propagation direction like

w(z) = w0

√
1 + (z/zR)2 (3.5)

with the beam focus situated at z = 0 and the Rayleigh length zR = w2
0π/λ. As

a consequence of the small focus, a beam power of only 0.4mW already leads
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wavelength λ = 1064 nm λ = 671 nm
focal length 20.3mm 20.3mm
image distance ∞ ∞
diameter field of view 200 µm 200 µm
max. diffraction limited NA 0.6 0.6
entrance aperture diameter at max. NA 24.4mm 24.4mm
resolution 1.08 µm 0.68 µm
waist of focus 0.72 µm 0.45 µm

Table 3.1: The nominal design parameters of the high-resolution objective.
Taken from [Ser11a].

to trap depths of several µK and trap frequencies around few kHz. The trap
frequencies can be calculated by a harmonic approximation around the minimum
of the potential [Gri00]. We obtain ω⊥ = (4V0/mw

2
0)1/2 and ωz = (2V0/mz

2
R)1/2.

This results in an aspect ratio of η = ω⊥/ωz =
√

2w0π/λ.

High-resolution objective

To achieve large trap frequencies and a small aspect ratio, we focus the 1064-nm
trapping beam with a high-resolution objective of NA=0.55. Reaching a beam
waist on the order of the wavelength requires a performance of the objective at the
diffraction limit. As, the intensity distribution of the focus fully determines the
shape of the trapping potential, great care was put into the design of the objective.
It was custom designed by F. Serwane and is described in detail in [Ser11a].

The high-resolution objective consists of five lenses and sits outside the vacuum
with a distance of 2mm to the 6-mm thick vacuum window of the re-entrant
viewport. Its focal length of 20.3mm allows the trapping of atoms in the center
of the vacuum chamber. The nominal design parameters are listed in Table 3.1.
They are expected for a perfect alignment of the five lenses in the mount, as well
as a good alignment of the lens system to the vacuum window.
In the course of the Master Theses [Kli12, Ber13] the objective was tested

and then implemented in the experimental setup and we achieved a beam waist
of ≈ 1.6µm. At that time, we were aware of an imperfect alignment procedure.
Therefore, when we had to remove the objective due to problems with the Feshbach
coils, we re-investigated the alignment between objective and vacuum window.
In a test setup, we found the optimal tilt between the objective and the vacuum
window by optimizing the resolution of a point source with a size of 650 nm.
With the optimal angle, we reached a resolution of ≈ 0.9ţm at a wavelength of
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671 nm. The smallest foci that we could create with a 1064-nm laser beam with a
beam diameter of 19.9mm where about 1.1µm [Deh16]. However, we observed an
astigmatism on the beam which may be caused by the objective.

After that, we implemented the objective with the optimal angle to the vacuum
window using an interferometer (see Figure 3.7). The better alignment decreased
the waist of the microtrap significantly. When imaging single atoms via their
fluorescence signal with the objective, we could also observe an astigmatism for
the imaging light.

Creating a small focus

Apart from the numerical aperture and the optical performance of the objective,
the focus size of the microtrap is influenced by the quality of the trapping beam.
To monitor this, we used a shear plate interferometer and observed wave front
errors smaller than λ/4 [Ber13].
Additionally the focus waist is dependent on the size of the incidenting beam.

A larger beam leads to a more uniform illumination and thus to a smaller focus.
We chose a beam diameter of 19.9mm [Kli12] which is truncated by the entrance
aperture of the objective. The truncation ratio T = w0/rap therefore corresponds
to T = 0.8 and leads to a lower limit of the focus waist of 0.84µm. In reality, we
do not achieve such small values.

The aspect ratio of the trap influences the effective dimensionality of the system.
Wit the nominal values, we expect an aspect ratio of η ≈ 3.5. This means that
for atoms in the lowest quantum states, the radial degree of freedom is frozen out
and they behave according to a one-dimensional system. If the filling of the trap
becames larger than the aspect ratio, also radial degrees of freedom are occupied
and the system can be considered as three-dimensional. To perform experiments
with larger atom number in the one-dimensional regime, we have to increase the
aspect ratio of the trap again. In [Deh16], we investigated how we can increase the
aspect ratio of the microtrap by truncating the trapping beam with an additional
motorized aperture.

Determining the trap parameters

To characterize the trapping potential experienced by the atoms, we measure the
trap frequencies by parametric heating of two atoms in the ground state at a fixed
power. To do this, we prepare two fermions in the ground state of the trapping
potential. Then we sinusoidally modulate the potential depth with an amplitude
much smaller than the trap depth. If the modulation frequency corresponds
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to twice the trap frequency the second excited trap level gets populated4. By
measuring the ground state population at different modulation frequencies, we
can determine the trap frequencies in axial and radial direction. Details can be
found in [Ser11a, Zü12a, Ber13]. Based on these measurements and the overall
light power5, we can calculate the aspect ratio and also deduce the size of the
focus. The trap parameters used in this thesis can be found in B.

3.3.2 Creation and control of multiwell potentials
Together with the high-resolution objective, we also implemented a new optical
setup to create multiwell potentials. This setup allows us to prepare two atoms in
the ground state of a double-well potential [Mur15b]. In the following, we will give
a short overview over the setup. More details can be found in [Kli12, Mur15a].

AOD and optical setup

We create multiple potential wells with an Acousto-optic deflector (AOD, IntraAc-
tion) which is driven by a radio-frequency signal. For this, we send the trapping
beam through the AOD where a fraction of the beam gets deflected by an angle
proportional to the frequency of the input signal. The intensity of the deflected
beam is dependent on the amplitude of the radio-frequency signal. We block the
undeflected part of the beam and use only the deflected light.

By applying a signal consisting of several different frequencies, similar to [Zim11],
we can create several beams propagating with different angles. Each of these
beams is then expanded to a diameter of 19.9mm using a telescope. After that,
the beams are focused by the objective and their different angles of incidence are
mapped to different positions in the focal plane.

Our AOD works in a frequency range between 25MHz and 55MHz. This range
allows us to vary the microtrap positions within 10µm. To perform tunneling
experiments as presented in Section 6 the distance d between the wells is on the
order of d = 1.25w0. Consequently, up to 6 potential wells can be created next
to each other in the setup. Additionally, the AOD can deflect a beam in two
perpendicular directions which allows in principle to create arrays of 6× 6 wells
next to each other. However, we are only using one axis of the AOD.
The detailed optical setup is shown in Figure 3.7. A laser beam with 1.3mm

diameter exits a fiber collimator. After cleaning the polarization, the beam enters
the AOD where it gets deflected. The deflected part is then expanded in a

4If we modulate the position of the microtrap, we can drive transitions into the first excited
trap level.

5The objective transmits 95% of the trap light.
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Figure 3.6: A microtrap setup to create multiple wells. The trapping
beam passes through an Acousto-optic deflector (AOD) where it gets deflected
by an angle proportional to the driving frequency. By controling the signal
amplitude, we can change the light power in the deflected beam. By applying
two signals with different frequencies, we create two beams. They get
expanded by a telescope and focused into the science chamber, where the
different angles result in different positions of the two foci. In this way, we
create a double-well potential with controllable relative depth. Figure taken
from [Mur15a].

telescope and sent to the objective. For aligning the objective, the setup contains a
Michelson interferometer. Furthermore, the setup contains the stabilization of the
light power to control the depth of the microtraps. For this purpose, we extract
half of the power with a non-polarizing beam splitter and focus one half of it onto
a photodiode with removed window. The measured power is fed back on an AOM
(not shown in this setup) to regulate the total power. The other part of the power
is focused onto a CMOS camera (PointGrey, Grasshopper GS3-U3-23S6M-C) for
diagnosis and an eventual stabilization.

Creating a double-well potential for tunneling experiments

As a first step towards a finite-size lattice, we created a double-well potential.
For performing tunneling experiments in this double well, a high control of the
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Figure 3.7: Optical mictrotrap setup. The trapping beam passes an AOD,
where it gets deflected. After that, the beam gets expanded in a telescope.
A small part of the light power is split off with a beam splitter for alignment
purposes. A non-polarizing beam splitter devides the rest of the light power
equally. One part of the beam is then used for power stabilization on
a photodiode whereas the other half gets focused with a high-resolution
objective and serves as a microtrap.

potential shape and stability of the wells is crucial. Especially the relative depth
between the two wells has to be stable enough to allow the observation of tunnel
oscillations (see Section 6)

To create a double-well potential, we apply a radio-frequency signal with two
frequencies f1 and f2 to the AOD. The generation of the signal is shown in Figure
3.8. We start with two signals from two outputs of a function generator (Rigol
DG4062). These output signals are permanently kept at the same power. We
mix each signal with a DC-voltage generated by an analog output channel of
the experimental control to tune the amplitudes A1 and A2 of the two signals
separately. Then, the two signals pass two switches that enable us to turn off
the beams separately from each other. After that, the two signals are combined,
amplified and applied to the AOD.

The radio-frequency signal generates two deflected beams that are focused by
the objective to two partly-overlapping potential wells. The resulting trapping
potential is determined by the intensity distribution of the far-red detuned laser
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Figure 3.8: Radio frequency setup to create multiple potential wells.
We use a function generator to create two radio-frequency signals with
different frequencies f1 and f2. We control the power of each signal Pi by
mixing it with a DC-voltage Vi controlled by the experimental control AdWin.
Two switches controlled by TTL signals allow to separately switch off the
signals. After that, we combined the signals with a splitter used in reverse
mode. After an amplification we apply the signal to the AOD.

light

V (r) = V0

[
2P1

w(z)2 exp
(
−2 (x− d/2)2 + y2

w(z)2

)
+ 2P2

w(z)2 exp
(
−2 (x+ d/2)2 + y2

w(z)2

)]
.

(3.6)

We control the relative depth of the wells by tuning the amplitudes A1 and A2
of the two signals. To observe tunneling in the setup, the relative stability has
to be on the order of 10−4. During all experiments presented in this thesis, the
relative depth of the two wells was not actively stabilized. Work on an active
stabilization using a camera with fast read-out is ongoing.

Generating the two frequencies with a function generator provides a high
frequency stability, in contrast to e. g. using voltage-controlled oscillators. This
stability turned out to be important as we observed a varying deflection efficiency
of the AOD as a function of the input frequency. On top of a slow variation
over several MHz, it shows sinusoidal fringes with a periodicity of 100 kHz and an
amplitude on the order of 1%. The fringes probabily stem from the cubic shape
of the AOD crystal that results in a reflection of the density modulation in the
crystal which leads to a standing wave. We did not observe a temporal variation
of the fringes. Nevertheless, the fringes can lead to instabilities if the frequency is
varying.
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Summary

All in all, our deterministic preparation allows us to investigate few-fermion
systems at various interaction strengths. Since an upgrade we can not only extend
our investigations into multi-well potential systems but also profit from the new
high-resolution objective. With its help, we achieved smaller foci of the microtrap.
In addition, the objective can also be used to image the atoms with high resolution.
In the next section, we will make use of this to achieve fluorescence imaging with
single-atom resolution.
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Single-atom resolved imaging
For several years, we measured the prepared few-fermion systems by recapturing the
atoms in the microtrap back in the magneto-optical trap (MOT) and counted them
as described in Section 3.1.4. Extending the setup to multiple wells vastly increases
the required measurement time that is needed to reconstruct the occupation
statistics on each individual site. We therefore aimed for a versatile but simple
imaging scheme that allows to detect single atoms with single-site resolution.
In this chapter, we report on a newly developped imaging scheme that offers

single-atom detection with spin and position resolution. In order to achieve this,
we collect fluorescence photons from the atoms which allows to identify individual
atoms and determine their positions as well as their hyperfine spin state. By letting
them expand before imaging, we gain access to the momentum distribution on a
single-particle level. Providing information on a single-particle level, our method
paves the way to detecting N-point correlation functions in complex many-body
states.
The first section will give an overview on different single-particle detection

schemes present in the literature and then introduces our approach of detecting
single atoms via fluorescence. Then, we take a closer look on the resonant excitation
of the atoms and the emission and detection of few fluorescence photons. After
that, we give an overview on the image processing which allows to identify and
localize individual atoms and resolve their hyperfine spin state. In the last part,
we apply our imaging method after time-of-flight to measure the momenta of the
individual particles.

4.1 Stategies on single-atom detection
Absorption imaging [Ket99] is widely used for imaging large clouds of ultracold
atoms. To study microscopic physics, however, it is convenient to have single-atom
sensitivity as it usually comes together with new observables that one can access.
The prerequisites for single-atom detection depend on the specific experimental
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setup and led to a varity of solutions to overcome the technical challenges. An
overview on the current progress can be found in [Ott16]. In the following section,
a few examples for single-atom detection will be presented, that are closely related
to our approach.

Quantum gas microscopes
The creation of standing wave optical dipole traps and the successful preparation
of ultracold atoms in low-temperature states opened a new branch in the field.
Now, one could study the physics of solids by quantum simulation in a periodic
potential. In this way, it was possible to observe the transition from a superfluid
to a Mott-insulator in bosonic [Gre02]. To directly observe occupation statistics
and spatial correlations in the quantum state, however, single-site resolution is
needed.

This drove the development of quantum gas microscopes [Bak09, She10, Omr15,
Par15, Che15, Edg15, Hal15, Mir15]. Achieving the optical resolution is however
challenging as for most experiments lattice spacings are on the order of 500 nm.
To image the sample with single-site resolution, one thus needs a high-resolution
objective and clever ways of image analysis to resolve individual sites [She10, Alb16].
For the image process, the atoms have to scatter several thousand photons which
leads to heating. To keep the atoms from tunneling to neighboring sites, the
optical lattice potential has to be increased to several hundred recoil energies
and sophisticated cooling schemes have to be implemented. In addition, the
presence of resonant light together with the deep lattice potentials lead to light-
assisted collisions which cause the loss of pairs of atoms on the same lattice
site. Consequently, without circumventing this problem [Pre15, Bol16], the atom
number per site is parity projected.

Despite these complications, quantum gas microscopes are nowadays one of the
work horses in optical lattice experiments. They allowed the observation of the
superfluid to Mott insulator transition with single-site resolution [She10, Gre16]
or the detection of two-point correlations (e.g. [Che12]).

Direct atom detection and fluorescence imaging in
time-of-flight
Experiments with metastable Helium achieve single-atom resolution by direct
particle detection. After the preparation of the sample the atoms are dropped
on a multi-channel plate (MCP). Due to their internal energy of about 20 eV the
Helium atoms release electrons at the place where they hit the surface. These
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electrons are then multiplied by the channels of the MCP and the signal can
be read out with spatial and temporal resolution [Sch05]. This allowed to study
higher-order correlations in Bose-Einstein condensates with single-atom detection
in time-of-flight [Hod11, Fan16, Hod17]

In a similar way, one can detect alkali atoms in time-of-flight experiments with
single-atom sensitivity as shown with Rubidium atoms in [Büc09]. Instead of an
MCP, they use a thin sheet of resonant probe light that the atoms pass through
during their free fall. An objective focused to the light sheet then collects the
photons from the fluorescing atoms onto an electron-multiplying CCD (EMCCD)
camera where several photons impinge on single pixels. By using dilute clouds
one can then distinguish the individual atoms [Büc09, Per12].

4.1.1 Spin-resolved single-atom imaging in free space
Our single-atom imaging technique works similar to [Büc09]. We excite the atoms
with resonant light and collect the fluorescence of the atoms with an objective.
To keep our scheme as simple as possible, we do not use a cooling technique and
image the atoms in free space.

In contrast to Rubidium [Büc09], imaging 6Li-atoms is much more challenging
due to their small mass. As a consequence, scattering a single photon corresponds
to a recoil energy of 3.5µK and a velocity change of 10 cm/s. Scattering thousand
photons in order to obtain a sufficient signal-to-noise ratio on the camera leads to
a significant increase of the momentum of the atom and the initial position of the
atom cannot be determined.

We developped a simple detection scheme that achieves single-atom resolution
because of some compromises we could make:

Reduction of photon scattering We use a camera that can detect single
photons. To identify an atom, we therefore only need to detect about 10 to
20 photons. A high-resolution objective enables us to collect about 10% of the
scattered photons on the camera and thereby reduce the necessary scattering
events to about 300. As a consequence, the typical size of the random walk of the
atoms is only several µm in free space and makes a cooling scheme unnecessary.

Spin resolution We perform the imaging at magnetic fields above 500G where
the optical transitions for the used hyperfine states are almost closed. This prevents
the atoms from scattering into a dark state. As a consequence we do not need an
additional repumping laser beam and we can selectively address different hyperfine
spin states.
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Chapter 4 Single-atom resolved imaging

Increase of well separation Our trapping potentials are generated by an
array of optical tweezers of typical waists of 1.2µm with distances around 1.5µm.
Our setup (described in Section 3.3.2) allows to increase the distance between
the tweezers dynamically up to 10µm. Resolving individual sites is thus less
challenging in our case.

Imaging in free space After the preparation of few particles in multiple wells,
we can also perform an expansion in the 200µm-large harmonic potential created by
the optical dipole trap. With an expansion time of T/4 we access the momentum
distribution [Mur14] where the typical distance of the atoms is much larger than
the typical size of the random walk. This allows us to achieve single-atom resolution
in momentum space, similar to [Büc09].

Our imaging setup is shown in Fig.4.1. The atoms are trapped in optical tweezers
created by focused far-red detuned laser beams. We apply a magnetic field larger
than 500G in vertical direction and probe the atoms with two counterpropagating
resonant beams with horizontal polarization. They stem from a diode laser
(Toptica DL100) with fast current feedback that is stabilized by a beat-offset
lock [Ste16]. In order to avoid a standing wave between the two laser beams, we
interleave pulses of 200 ns length. The scattered photons are then collected by the
high-resolution objective and separated from the trapping beams by a dichroic
mirror. With a six-fold magnification we image the signal onto an EMCCD camera
(ANDOR iXon DV887, back illuminated) with 16µm pixel size. The magnification
is chosen such that an atoms causes a signal spread on several pixels with no more
than one photon per pixel. To identify the photon events, we binarize the signal
on the EMCCD and apply an image processing algorithm to identify and localize
individual atoms. The next sections will explain each of these experimental steps
in detail.

4.2 Fluorescence of a single atom

Our single-atom detection technique is based on fluorescence imaging. For exciting
the atoms we use the D2 line going from the 22S1/2- to the 22P3/2-manifold.
The natural lifetime of the excited state is about 27 ns which leads to a natural
linewidth of γ = 2π× 5.87MHz.
Assuming a two-level system and a coupling due to the electric component of

the laser field, we can estimate the photon number that the atoms scatter as a
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Figure 4.1: Imaging setup. We probe atoms trapped in the multiwell po-
tential by resonant light with horizonal linear polarization. As the atoms
experience a magnetic field in the vertical direction, the probe light can excite
the σ-transitions in the atom. To avoid a standing wave, we pulse the two
beams alternatingly with 2.5MHz. We collect about 11.4% of the emitted
photons with a high-resolution objective (NA= 0.55) and image them with a
sixfold magnification onto an EMCCD camera.

function of exposure time. The total photon scattering rate is

Γsc = γ

2
s

1 + s+ (2δ/γ)2) (4.1)

where γ denotes the natural linewidth and δ quantifies the detuning from the
resonance. The saturation parameter s = I/Isat quantifies the light intensity I
by normalizing it with the saturation intensity Isat =2.54mW/cm2. Equation 4.1
describes the scattering resonance with a width depending on the saturation γ′ =
γ
√

1 + s. For strong driving, the scattering rate reaches γ/2 = 18.4 photons/µs
and the width γ′ gets infinitely large. For subsequently adressing two different
hyperfine levels, it is not advantageous to choose such high intensities. Therefore
we decided to use a saturation of s = 8.5 which results in a rate of 16.5 photons/µs.
For a probe pulse of 20µs this results in about 300 scattering events.
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Figure 4.2: Level scheme of the hyperfine states of 6Li . a) A sketch of
the hyperfine states of 6Li . For imaging single atoms we use the D2-line. The
nuclear magnetic moment of I = 1 causes the depicted hyperfine splitting.
Already at relatively low fields 6Li enters the Paschen-Back regime and the
levels regroup according to mJ . b) We work with the three lowest hyperfine
states |1〉, |2〉 and |3〉 and drive a σ−-transition to the three lowest states in
the excited state manifold. From there the atoms decay back to the initial
states. With probabilities on the order of 10−3 they can also decay to |4〉
and |5〉, where they are lost for the imaging process.

4.2.1 The hyperfine level structure of 6Li

In order to efficiently detect a single atom, it is crucial that the atom does not get
dark to the probe light during this scattering process. Even a small probability
ploss to lose the atoms into a state not adressed by the probe light can significantly
reduce the signal because the probability to find the atom in the initial state after
N scattering events is PN = (1− ploss)N . For this reason we have to understand
the complex level structure of 6Li to chose the most suited parameters.

6Li has a nuclear magnetic moment of I = 1. Its coupling to the electron
angular momentum J leads to the hyperfine structure depicted in Fig.4.2. The
quantum number of the total angular momentum F can take integral numbers
from |J−I| ≤ F ≤ (J+I). So, the ground state manifold splits into two manifolds
F = {1/2, 3/2} and the excited state into three manifolds F ′ = {1/2, 3/2, 5/2}. Each
of these manifolds consists of degenerate magnetic sublevels mF . The presence of
a magnetic field lifts this degeneracy.
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4.2 Fluorescence of a single atom

For low magnetic fields B the hyperfine coupling F = J + I is dominant and
|F,mF 〉 are good quantum numbers. In this regime the level spacing tunes
proportional to mF and B. As soon as the magnetic field gets on the order of the
hyperfine coupling strength I and J start to decouple. Consequently F ceases to
be a good description and the levels start to bend and group according to |mJ ,mI〉
(see Fig.4.2). In 6Li the decoupling of I and J already happens at very low fields.
For the ground state manifold the internal and the external magnetic fields have
similar strength at around 30G. For the excited state 22P3/2, this happens even
below 1G.
At high magnetic fields, where we image the atoms, it is convenient to chose

the basis vectors |mJ ,mI〉. To obtain the eigenstates, we diagonalize of the
Hamiltonian which contains the hyperfine coupling as well as the coupling to the
external field. For the ground state manifold, the eigenstates can be expressed
analytically [Geh03]

|1〉 = A+ |1/2 , 0〉 −B+ |−1/2 , 1〉
|2〉 = A− |1/2 ,−1〉 −B− |−1/2 , 0〉
|3〉 = |−1/2 ,−1〉
|4〉 = B − |1/2 ,−1〉 − A+ |−1/2 , 0〉
|5〉 = B+ |1/2 , 0〉 − A− |−1/2 , 1〉
|6〉 = |1/2 , 1〉 (4.2)

The coefficients A± and B± can be understood as mixing angles that depend on
the magnetic field1. For increasing magnetic fields A± decreases and eventually
converges to zero.The states |3〉 and |6〉 do not have an admixture of a second
|mJ ,mI〉-component.

For the excited-state manifold, the Hamiltonian can be diagonalized numerically.
As in the 22P3/2-manifold, the nuclear and the electron angular momentum decouple
around a magnetic field of 1G, the mixing coefficients of the excited states can be
neglected at magnetic fields around 500G.

4.2.2 Optical dipole transitions
Starting in the three lowest hyperfine states |1〉, |2〉 and |3〉 we find nearly closed
transitions by using σ−-polarisation that drives the atoms from the mJ = −1/2

1The coefficients are described by A± = 1/
√

1 + (Z± +R±)2/2 and B± =
√

1−A± where
the parameter Z± = B (µn + 2µe)/A22S1/2 + 1/2 is dependent on the magnetic field and
R± =

√
(Z±)2 + 2. Furthermore, µn denotes the nuclear magnetic moment, µe is the electron

magnetic moment and A22S1/2 = 152.14MHz is the magnetic dipole constant.
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to the m′J = −3/2 manifold. From there the atoms can only decay back to the
mJ = −1/2. In the following, we will denote the three adressed excited states
with |1′〉, |2′〉 and |3′〉, where

|1′〉 = |−3/2,−1〉
|2′〉 → |−3/2, 0〉
|3′〉 → |−3/2, 1〉

In the experiment we can drive σ−-transitions by using two resonant beams that
are probing the atoms from the side (see Fig.4.1). We chose a linear polarization
perpendicular to the direction of the magnetic field. Consequently the atoms can
scatter photons with σ+ and σ− polarization. However, the two transitions have a
frequency difference on the order of 1.8GHz at 500G which allows us to selectively
scatter σ−-photons.
The absorption of σ−-polarized photons change ∆mF = −1 of the atom and

mI is left unchanged. Atoms in state |3〉 = |−1/2,−1〉 are then only transferred
to |1′〉 = |−3/2,−1〉 from where they decay back only into |3〉 (see Fig.4.2 b).
Consequently the probability to loose the atom into another state ploss,3 = 0.

For atoms in the hyperfine states |1〉 and |2〉, photonic excitations to mJ = −1/2

are in principle possible due to the small contribution of |1/2,mI〉. However,
the transition is detuned by about 900MHz at 500G and therefore additionally
suppressed by at least 10−4. Consequently, we can assume that atoms in the three
lowest hyperfine state are excited into |1′〉, |2′〉 and |3′〉 without loss into other
states.

Atoms in the states |2′〉 and |3′〉 can however also decay into the hyperfine states
|4〉 and |5〉 where they cease to scatter the probe light. The loss probabilities for
these decays are ploss,1 = |A+|2 and ploss,2 = |A−|2 and are on the order of 10−3.
Fig. 4.3 a shows the loss probabilities of atoms initially in the hyperfine states |1〉
and |2〉 as a function of the magnetic offset field.
The finite loss probability into dark states has an influence on the signal from

the atoms. Every scattering event exponentially increases the probability that
an atom in state |1〉 or |2〉 is lost into a dark state. Consequently, the average
signal from an atom saturates after a certain exposure time. As a function of the
exposure time, one expects a number of scattered photons of

Nscatter = Γsc(s, δ)
∫ texp

0
(1− ploss)Γsc(s,δ)t′dt′ (4.3)

= (1− ploss)Γsc(s,δ)t′ − 1
(1− ploss)

To illustrate the influence of the signal loss, Figure 4.3 shows the number of
scattered photons for an atom in state |3〉 and an atom in state |1〉 for two different
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4.2 Fluorescence of a single atom

Figure 4.3: Loss probabilities. a) Probabilities to loose the atoms during
the decay from the excited states back to |1〉 and |2〉 as a function of the
magnetic field. The probabilites can be calculated analytically with eq. 4.2.
Increasing the field from about 500G to 900G decreases the loss by more
than a factor of two. The effect can be seen in b). Depicted is the evolution
of the mean scattered photon number as a function of the exposure time
for state |3〉 (straight yellow line), and state |1〉 for 500G (blue) and 900G
(green).

magnetic fields. The magnetic field has a large effect on the signal from atoms
that are not in state |3〉. To maximize the signal strength for these states, we
perform the single-atom imaging at 900G.

4.2.3 Collecting photons from a single atom
We can only collect a fraction of the scattered photons using a high-resolution
objective. It has a numerical aperture of NA=0.55 and therefore covers a solid
angle of about 1 sr, or 8.2% of the full sphere. When decaying from the mJ = −3/2

states into the mJ = −1/2, the atoms emit σ+ polarized light. The normalized
dipole radiation pattern has an angular dependency on the azimuthal angle θ
[DeM10]

I(θ) = 3
16π

(1 + cos2θ)
2 . (4.4)

This leads to an enhanced radiation along the direction of the magnetic field (for
details we refer to [Bec16]). Consequently, we can collect 11.4% of the scattered
photons with the objective. The photons are imaged with a lens onto an EMCCD
camera. To block infrared light from the microtrap beam and the optical dipole
trap laser, we cover the camera with a bandpass filter (Semrock, FF01-675/67-25).
We estimate that the optics including the objective coating and the filter reduce
the number of photons by 10%. The photons that arrive on the CCD-chip are
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Figure 4.4: Number of detected photons. a) Histogram of the detected
photons from one atom in state |1〉 (blue bars) and signal from a control
region of the same size (green bars). The signal was detected in a ROI of
13×13 pixel. The loss probability of the atom is visible in the photon number
distribution that is enhanced for lower photon numbers. b) Signal from
one atom in state |3〉 (blue bars) and a control region (green bars). The
probability for low photon numbers is smaller as atoms in state |3〉 are not lost
into dark states during the scattering. The width of the photon distribution
is slightly larger due to a finite probability of off-resonant scattering during
the first pulse.

then detected with a quantum efficiency of about 85% (for details, see [Bec16]).
In total, the average fraction of detectable photons is about 8.7%.

For an exposure time of 20µs we expect to detect in average about 28 photons
from one atom in state |3〉. To measure the photon number per atom we prepare
an atom in state |3〉 in the ground state of the microtrap and probe it with a
resonant laser beam at a magnetic offset field of 900G. The emitted photons
impinge on the camera within a region of a few pixels and from the signal, we can
infer the number of photons. Due to the statistic nature of the emission process,
we expect a Poisson-like photon number distribution.

Figure 4.4 b shows a histogram of 1000 repetitions of the detected signal from
one prepared atom in state |3〉. The inset shows the mean spatial distribution of
the detected photons. To obtain the signal in units of the photon number, we
correct the raw image for a present bias, then integrate over a region of interest
(ROI) of 13× 13 pixels and devided that value through the photoelectron gain of
the camera (for details see Section 4.3.1). To show the influence of background
signal on the data, we show the signal of an empty region on the camera with the
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4.2 Fluorescence of a single atom

same size in green. The photon distribution from the atom in state |3〉 has a mean
photon number of Np ≈ 23 and a width of ≈

√
2Np. The factor

√
2 is caused by

the stochastic nature of the photoelectron detection. The exact distribution can
be deduced by stochastic modeling of the EMCCD camera [Hir13].
Figure 4.4 a shows the corresponding histogram for an atom in state |1〉. Due

to the finite loss probability into dark states the mean photon number is slightly
reduced compared to the signal from state |3〉. Additionally, we detect more events
with lower photon number as an atom that entered the dark state at some point,
will not scatter any more photons. However, in both cases the signal from the
atom can be clearly distinguished from the background.

4.2.4 Diffusive motion
For an atom that emits photons from a fixed position, the width of the photon
signal is governed by the optical resolution of the microscope objective. This is not
the case for a free atom that scatters photons. With every scattering event, the
momentum of the atom is changed in a random direction and the atom performs a
three-dimensional random walk during the imaging process similar to a diffusion.
For a symmetric random walk, the mean of the atom’s position distribution

coincides with the initial position but the variance grows with time. The spread
of the variance depends on the transferred momentum at each scattering event
as well as the time between the individual scattering events, which is determined
by the scattering rate. In the experiment, we measure the spread of the photon
signal integrated over the full exposure time. We are only interested in a typical
width of the integrated signal. To extract this, we average the spatial distribution
of the photon signal from one atom and fit it with a Gaussian distribution. For
an exposure time of 20µs, we find a width of (2.1± 0.3) pixel, which corresponds
to (5.7± 0.8)µm.
A jitter of the initial atom position from shot to shot leads to an additional

increase of the width of the measured averaged signal. To estimate the influence
of this process, we compare the typical width of the distribution on individual
images σind with the size of the averaged distribution σmean. To obtain a measure
for the width of the individual distribution independent of their center-of-mass
position, we apply an autocorrelation on each individual image. We compare it
with the width of the autocorrelated averaged distribution to quantify the jitter
of the initial atom position. We fit the two distribution with a Gaussian and
find σmean/σind = (1.12± 0.02). This excludes a significant jitter of the microtrap
position with respect to the objective.

With a Gaussian width of 5.7µm, the photon signal is too large for a site-resolved
detection of two atoms in a double-well potential. Even when we increase the
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well spacing to 10µm, it may be challenging to achieve high fidelities for the
site-resolution. Therefore, we want to decrease the diffusion of the atom during
the imaging process. For this, we have to trap the atom at its initial position while
it scatters photons by increasing the depth of the microtrap to values much higher
than the recoil energy. As the microtrap potential is attractive for the ground
state and the 2P3/2 excited state of the atom [Saf12, För15], the atom sees an
average attractive potential (Ug + Ue)/2 ≈ 0.8Ug and stays confined for a number
of scattering events before it has gained enough energy to leave the microtrap
potential.
We measure the reduction of the diffusion by imaging the atom in a single

microtrap ramped to depths of several recoil energies. Figure 4.5 shows the signal
for different trap depths after an exposure of 15µs. During this time, about 260
photons have been scattered. We observe that for trap depths larger than 100ER
the signal is confined to few pixel. In Fig. 4.5 b the evolution of the fitted gaussian
width of the signal is plotted as a function of the exposure time for two different
depths. Their difference amounts to almost a factor of 2 and the width for the
deep trap stays around 1µm.
This is promising for insitu measurements with dynamically separated wells.

However, in our current double-well configuration we cannot increase the potential
depth to sufficiently high values. In the following, we will establish a single-atom
resolved imaging in free space.

4.3 Identification, localization and spin
resolution of single atoms

In the last section we showed that we expect a stochastic signal of in average
20 photons per atom that is spread over several pixels. Based on this signal, we
want to identify single atoms and determine their position. To do this, we use
our EMCCD camera as single-photon detector and apply a binarization threshold
to the raw data to identify pixels that detected a single photon. After this
binarization, the image contains stochastically distributed events that are caused
by camera noise together with clusters of events caused by fluorescing atoms. To
identify the clusters of events as signals from a single atom, we apply a Gaussian
low-pass filter and chose a width that corresponds to the width of the photon
signal. The filtered image shows local maxima at positions were several events
clustered. We extract the amplitudes of the local maxima as they serve as a
measure for the cluster size. A histogram of the amplitudes shows a bimodal
distribution which allows us to identify signals from single atoms. At the same
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Figure 4.5: Fluorescence signal from atoms imaged in a microtrap.
a Mean fluorescence distribution of one atom in units of photon number
for different trap depths after an exposure time of 15µs. For configurations
deeper than 100ER the signal is stronger confined to few pixels. b Gaussian
width of the signal as a function of exposure time for two different depths.
In contrast to the shallow trap, the signal from the deep trap stays confined
to about 1µm.

time, the filtered image allows us to determine the position of the atom signal.
The following section reports on the image processing to identify single atoms and
determine their position.

4.3.1 Detection of single photons
When photons impinge on a semi-conductor based camera, they cause photoelec-
trons that can be measured with an electronic circuit. Electronic circuits have
read noise on the order of 2 to 10 electrons which makes the detection of a single
photoelectron impossible. To circumvent this limitation, an EMCCD camera
features an additional electron-multiplication register, where single photoelectrons
on the individual pixels are multiplied before they are read out by the electronics.
In this way, an EMCCD camera achieves single-photon sensitivity.
The multiplication process however is stochastic and the distribution of sec-

ondary electrons caused by the multiplication of one photoelectron is distributed
exponentially. For an initial number of photoelectrons n, the number of secondary
electrons x is described by the Erlang distribution [Har12, Lan08]

Pn(x) = xn−1e−x/g
gn(n− 1)!θ(x) (4.5)

where θ(x) is the Heaviside function and g denotes the gain of the multiplication and
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Figure 4.6: Histogram of the EMCCD signal. a) Schematic of the read
noise (blue) and distribution of secondary electrons (green) created from a
single photoelectron. A convolution leads to the distribution R(x) which
describes the distribution of the signal in the ideal case. b) Real signal
distribution of an dark image. The red dashed line shows a Gaussian fit to
the main peak to extract the read noise. The orange dashed line is a fit to
the CIC to extract the gain.

corresponds to the 1/e-width of the exponentially decaying number of secondary
electrons for a single photoelectron. Figure 4.6 a shows a schematic of this
distribution for a single photoelectron.

Although the detector does not allow exact counting of primary electrons, their
signal can be clearly distinguished from read noise. The expected signal from
the detector with p0 pixels containing no photoelectron and p1 pixels with one
photoelectron is described by

R(x) = (G(σread) ∗ [p0δ + p1P1])(x− b) (4.6)

where G(σread) describes the Gaussian distributed read noise with a width of σread
which is convolved with the distribution of secondary electrons (see Figure 4.6 a).

For the identification of photoelectron events from the raw image, a threshold
value has to be determined above which the signal is identified with a detected
photoelectron (see Figure 4.6 a). The optimal threshold σth minimizes both the
probability to identify read noise as a photon event P (0 → 1) as well as the
probability to not count an actual photon event P (1 → 0). The probability of
wrongly identifying photon event P (0 → 1) can calculated by integrating the
Gaussian distribution G(σread) from σth to ∞. Setting e. g. σth = 3σread results in
0.135% wrongly identified events.
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In the limit of a gain much larger than the read noise, the probability of missing
a photon event can be calculated by

P (1→ 0) =
∫ σth

0

e−x/g
g

θ(x) dx = 1− e−σth/g . (4.7)

This shows that a high gain and at the same time a low σread are essential for a
high detection fidelity of a single photon. For g/σread = 90, the optimal threshold
is about σth = 2σread with a resulting detection fidelity for one photoelectron of
97.5% and 2.5% of wrongly identified events.
In addition to the read noise, spurious charges are causing noise on the image.

As they are multiplied in the same way as photoelectrons, their signal has the
same distribution and consequently they cannot be distinguished from real events.

Spurious charges can be generated by photons from background light, thermal
excitations or by the shifting process during the camera readout. The former two
can be avoided by sufficiently shielding the experiment from stray light and using
a bandpass filter on the camera and by cooling the camera chip2. The so-called
clock-induced charges (CICs) caused by the shift process of the pixel rows are
inherent to the readout of the camera3.

We determine the noise from clock-induced charges by analysing a dark image.
Figure 4.6 b shows a histogram of the signals from individual pixels. Although
there is no stray light on the chip, we identify a distribution caused by multiplied
electrons. By fitting an exponential function to the histogram, we determine
about 2% of noise from the parallel transfer across the chip for our camera
[Bec16, Bom17].
However, we observe that the fraction of pixels above the optimal threshold

exceeds 2% and in the histogram, a significant part of the distribution lies above
the fitted exponential function. These events can be attributed to CiCs that are
generated in the serial multiplication register [Lan08]. Therefore, their distribution4
differs from the one of a photo-electron. For serial CICs the effective gain is much
lower and so their influence on the noise can be decreased by chosing a higher
threshold. For all our evaluations we chose a threshold of σthr = 8σread which
results in about 3% of pixels above threshold on a dark picture. This choice
reduces the photoelectron detection efficiency to 88.2%.

2For all data, presented here, we cooled the chip to -75◦ C.
3The amount of CICs depends on the wave form chosen for the shifting process. Optimizing
this wave form the number of CICs can be significantly reduced [Dai10].

4These CICs can be generated at each cell of the register. The distribution is therefore a
sum over all register cells m given by p(x) =

∑m
l=1

ps exp(−x/pm−l
c )

pm−l
c

where pc describes the
duplication of one electron in each cell of the multiplication register.
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Figure 4.7: Number of bright pixels. Histogram of pixels above threshold
for one atom in state |3〉 (blue bars). The signal was detected in a ROI of
13 × 13 pixel and we chose a threshold of σthr = 8σread. The signal from
a control region of the same size (green bars) is in agreement with a CIC
probablity of 3%. This results in 13 additional number of bright pixels from
the fluorescence of one atom.

4.3.2 Identification of single atoms
After the binarization, the signal from one atom results in average in 13 bright
pixels (see Figure 4.7) and spreads over a region with a Gaussian width of 2.5 pixel.
Due to the photon shot noise from the fluorescence, the number of bright pixel
varies from shot to shot and can also be significantly lower than 13. In order to
achieve a high fidelity for the identification of single atoms, we apply an imaging
processing that is sensitive to clusters of bright pixel.
Our strategy for the image processing of binarized pictures is show in Figure

4.8. We use the fact that the signal of an atom results in a cluster of bright pixels
whereas the noise from the CICs is stochastically distributed over the image. To
discriminate between the two, we apply a low-pass filter to the binarized data with
a spatial frequency that corresponds to the typical cluster size. We use a Gaussian
low-pass filter with a size of 3 pixel. After that, we search for all local maxima in
the filtered picture. A histogram of the values of the local maxima found in 1000
pictures is shown in Figure 4.9. It shows a bimodial distribution where the right
peak stems from maxima caused by the presence of an atom and the left peak is
caused by maxima from spurious charges. The left peak increases with the size of
the region that is evaluated. Based on the histogram, we chose a threshold value
above which we count a local maximum as an event that was caused by an atom.
The fidelity of the atom identification is determined by the overlap of the two
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1. Binarization

2. Low-pass filter

3. Identification & Localization

Figure 4.8: Identification of single atoms from raw pictures. We detect
fluorescence photons of single atoms in the form of clusters of photo-electrons
on the EMCCD camera. For the identification of single photo-electrons we
set a threshold of 8σread to the camera signal. We then apply a Gaussian
low-pass filter on the binarized image with a width of 3 pixel and search for
local maxima. Based on the histogram of Figure 4.9, we chose a threshold
above which we identify a local maximum as an atom. Finally, we read out
the central pixel of the maximum to localize the particle.

distributions. The more they overlap, the larger becomes the number of wrongly
identified spurious charge events as well as the number of not identified atoms and
the fidelity decreases. We can determine the latter by assuming that the atom
peak has a Gaussian distribution and compare its width with the chosen threshold.
For the data shown in Figure 4.8 we chose the threshold to be at minimum value
between the two distributions which is about 2.3σ below the maximum of the
atom distribution. This corresponds to a probability to miss a true event of about
1%. The probability of wrongly identifying spurious charge is in the same range
for the chosen size of the evaluated region. Consequently we detect an atom with
a fidelity of 98%.
As an alternative approach to the low-pass filter is to use a likelihood method

for the identification analysis. Details on the realization can be found in [Bom17].
The basic concept is to use all the available information in combination with
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Figure 4.9: Identification of single atoms from raw picture. After the
binarization and the application of the low-pass filter, we select a region
of 150 × 25 pixel. In this region, we search for local maxima. We plot a
histogram of their amplitudes for about 1000 pictures. The two distinct peaks
represent the signal from spurious charges (left) and the signal from a single
atom (right). Based on this, we set a threshold for the atom identification
and obtain a detection fidelity of about 98%.

a hypothesis test. Instead of assuming a Gaussian distribution of the detected
photons with the typical width, we measure the distribution of bright pixels
caused by one atom in an insitu image. From this distribution, we identify a
spatially dependent probability distribution for bright pixels P1(xi, yi) caused by an
atom. In contrast, the probability distribution of spurious charges is homogeneous
P0(xi, yi) = pCIC. For a given event k we then calculate the probability that it
was caused by an atom P (k|H1) or no atom P (k|H0) using the two hypothetical
distributions P0 and P1(xi, yi). As we have not prior knowledge about how often
we expect the hypotheses H1 and H0 to be true, the calculated probabilities are
estimates.

To give a quantitative estimate, we use the logarithmic likelihood ratio lnR =
P (k|H1)/P (k|H0). We calculate it for every position of the hypothetic probability
distribution on a large region. We then generate a histogram from these values Rij

which also shows a bimodal distribution, where one peak corresponds to signals
from an atom and the other represents the signal from the spurious charges. In
the same way than explained before we chose a threshold to identify the events
cause by an atom. This method achieved higher detection fidelities also for large
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regions-of-interest. However, in day-to-day use this method turned out to be
unstable and often also led to much worse performances than the low-pass filter.
Therefore, we used the low-pass method for all the data presented in this thesis.

4.3.3 Position determination of single atoms
Together with the atom identification we can also perform a position determination
of the detected atom. For this we use the filtered images and extract the position
of the local maximum as the coordinate of the detected atom.

The uncertainty of the position determination of the atom is influenced by the
statistical fluctuation of the emitted photons. In addition, the atom performs
a random walk during the photon scattering and the initial position does not
necessarily correspond to the center of mass of the photon distribution.
In order to quantify the uncertainty in the position determination, we analyse

images where the atom started its random walk at the position of the single
microtrap. We apply our image analysis to each image and extract the position of
the local maximum. From a histogram of 1000 realization, we can determine a
spread of the local maxima with a Gaussian width of (1.36± 0.01) pixel which
corresponds to 3.6µm. If the position of the microtrap is stable and therefore the
initial position of the atom does not vary from shot to shot, the spread quantifies
the uncertainty due to the stochastic detection process. In Section 4.2.4, we
observed a jitter on the microtrap position that is at most 12% of the signal
spread.

4.3.4 Hyperfine spin resolution
In addition to the identification of single atoms and the determination of their
position, we can measure their hyperfine spin state. This is possible because
we image the atoms at high magnetic fields, where optical transitions for each
hyperfine state are almost closed (see Section 4.2) and the resonance frequencies
differ by about 80MHz.
Using a probe beam with moderate power, we probe first one hyperfine state

and collect the fluorescence signal for 20µs on the EMCCD. Then we shift the
acquired photoelectrons vertically using the fast kinetic mode by 40 rows and
simultaneously change the resonance frequency of the probe laser by 80MHz
or 160MHz. 50µs after the first probe pulse, we probe the system again, now
being resonant to the other spin state. In this way we can probe atoms in two or
all three lowest hyperfine states of one realization. Figure 4.10 shows a typical
hyperfine-resolved image of two atoms in state |1〉 and |3〉.
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state 1
t=0µs

state 3
t=50µs
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Figure 4.10: Hyperfine-resolved image of two atoms in different hy-
perfine state. We resolve the hyperfine state of individual atoms by probing
them subsequently. After a first probe pulse of 20µs length, we shift the
signal accumulated on the EMCCD camera vertically by 40 rows and change
the frequency of the probe laser. 50µs later, we probe the second hyperfine
state.

To change the frequency of the probe laser within 12µs by 160MHz is technically
challenging. To achieve the fast frequency change, we change the current of the
laser using the current modulation input. We stabilize the probe laser (DL100,
Toptica) using a beat offset lock in combination with a RedPitaya that allows
for simultaneous current and piezo feed-back. Details on the lock scheme can be
found in [Tho16]. The local oscillator frequency of the beat offset lock is generated
by a Direct Digital Synthesizer (DDS, Analog Devices AD9914) and changed by
programming it with the help of an Arduino Due microcontroller. Details on the
DDS control are presented in [Kra15, Ste16].
We chose moderate power of the probe beam to reduce the impact on the

off-resonant spin state during the imaging. The number of off-resonantly scattered
photons can be deduced from equation 4.1. The relative scattering rate is then

Prel, scatt = 1 + s

1 + s+ (2δ/γ)2)
(2δ/γ)2�s−−−−−−→ 1 + s

(2δ/γ)2 . (4.8)

For a detuning of 160MHz, an exposure time of 20µs and a probe beam intensity
of s = 8.5 Isat, the off-resonant hyperfine state scatters in average 1.4 photons.
After a scattering event, the offresonant atom moves with the velocity received
from the photon recoil until it is imaged resonantely. The average distance it
travels within 25µs until it gets imaged is about 5µm. This is on the same scale
than the uncertainty in the position detection.
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4.4 Single-atom imaging in time-of-flight
In the last sections, we demonstrated that we can spin-selectively image single
atoms in free space and achieve a position incertainty of about 1.4 pixel. This
makes our technique perfectly suited for single-atom imaging after an expansion
in time-of-flight. In that way, we gain access to the momentum distribution of the
system on a single-atom level and can reconstruct the many-body wave function
in momentum space.

4.4.1 Expansion into momentum space
For time-of-flight imaging, a trapped atom at x0 is released and travels according
to its initial momentum p0. Its position as a function of time after the release can
be described by

x(t) = x0 + p0

m
t. (4.9)

After a sufficiently long expansion time p0/m t� x0 and the position of the atom
is dominated by its initial momentum p0.
If an atom is confined in the ground state of a three-dimensional harmonic

potential its quantum state is described by a three-dimensional Gaussian wave
function. According to Heisenbergs uncertainty principle, momentum wave func-
tion of the atom is also Gaussian with a width inversely proportional to the spatial
confinement. In case of a release, the wave function of the atom expands in all
three dimensions. For long exposure times, its size can exceed the depth of focus
of the objective and the signal gets detoriated. This makes the identification of
single atoms impossible.
We circumvent this problem by performing the expansion in a large confining

harmonic potential. After an expansion time of a quarter of the oscillation period
in this potential, the initial momentum wave function of the atom will be mapped
to the spatial wave function. One can view this as a focusing of a matter-wave to
access the fourier plane represented by the momentum distribution [Mur14].
Our high-resolution objective has a field of view with a diameter of 200µm

and a focal depth of about 3µm. We avoid an expansion in the direction of
imaging by confining the atoms in the crossed-beam optical dipole trap, shown
schematically in Figure 4.11. In first approximation, this trapping potential is
cigar-shaped. So the expansion times to reach the mapping of the momentum
to space will depend on the direction. In addition to the automatic integration
along the imaging direction, we also integrate over the other radial direction of
the optical dipole trap. By chosing an expansion time of t = Tax/4 we access the
momentum distribution along the axial direction of the dipole trap.
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Figure 4.11: Expansion of a single particle in the optical dipole trap.
a) Distribution of the atoms for 800 realizations starting from one microtrap.
We prepared two non-interacting atoms in the ground state of the microtrap
released them. After an expansion time of 3.5ms in the optical dipole trap,
we image them spin-selectively. b) Histogram of the axial position of a single
atom in 750 realizations. The distribution of the atom is governed by the
inital momentum distribution and consistent with a Gaussian distribution.

The intensity distribution of the optical dipole trap has a width of σrad = 25µm
and σax = 200µm. We perform the expansion at a trap depth of 20µK which
results in trap frequencies of ωax,ODT = 2π× 73Hz and ωrad,ODT ≈ 2π× 300Hz. To
reach the momentum distribution along the axial direction of the optical dipole
trap, we chose an expansion time of 3.5ms.

We demonstrate single-atom imaging in momentum space by preparing a single
atom in the ground state of the microtrap. Its spatial wave function has a radial
harmonic oscillator length of aho =

√
~

mωrad,MT
= 305nm expands to a Gaussian

wavepacket with a width of σODT = 53.3µm according to

σexp,ODT =

√
~mωrad,MT(1/2 + n)

mωax,ODT
(4.10)

where m is the mass of the 6Li atom and n is the principle quantum number. We
measure this expansion by multiple repetitions of the preparation and detection of
a single atom after time-of-flight. The result is shown in Figure 4.11 as a histogram
of the detected positions in the axial direction, where we integrated over the two
radial directions of the optical dipole trap. Fitting a Gaussian distribution results
in a width of (17.4± 0.4)pixel which corresponds to (47.2± 1.1)µm. We observe a
discrepancy to the expectation that may be due to an overestimated magnification.
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4.4.2 Impact of interaction
Until now, we considered the expansion of a single particle in the optical dipole
trap. Imaging the momentum distribution of an interacting few-particle system is
only possible if the interaction does not influence the expansion.

To estimate the impact of the interaction, we first calculate the density evolution
of a single particle during the expansion. Using the equations from [Mur14], we
obtain a rapid decrease of the density within the first microseconds after the
release. After a time of τ = 1/frad,MT = 300µs, the density is reduced by more
than a factor of thousand. However, the cigar shape of the optical potential and
the expansion time of 3.5ms lead to several reconfinement of the wave function in
the radial direction of the large dipole trap. The density achieved in these revivals
stays a factor of 100 lower than the initial density. Consequently, only the first
microseconds after the release may alter the expansion.
During the release, the interaction energy is converted to additional kinetic

energy of the system. To estimate the maximum impact of this process, we
compare both energy scales. The interaction energy of two interacting particles in
the ground state of a single cigar-shaped microtrap has been described in Section
2.4.3. In this limit, the contact interaction between the two particles increases the
energy in the axial direction. For infinite repulsion the system can gain at most
an energy of ~ωz. During the release of the system, the expansion of the state
occurs mainly in radial direction with a kinetic energy of Ekin = ~ω⊥. As a result,
in the case of infinitely strong repulsion, Ekin = ηEint where η denotes the aspect
ratio of the microtrap.
For two particles in the ground state of a double-well potential, the energy of

the system due to interaction can at most increase by 2J where J is the tunnel
coupling. As J � ~ωz, the effect of the interaction strength on the expansion is
negligible.

Summary

In this chapter, we introduced a new imaging technique to measure a quantum
state on a single-particle level, with spin and position resolution. We demonstrated
single-atom imaging by collecting about 20 fluorescence photons from each atom
and detecting the photons with a single-photon sensitive (EMCCD) camera. We
achieved a single-atom detection fidelity of 98% and a position determination with
an uncertainty of 1.4 pixels. Unlike other single-atom imaging techniques, like for
instance quantum gas microscopes which require complex cooling schemes, our
imaging technique works with atoms in free space. By combining this method
with matter-wave focusing techniques, we can measure the momentum space
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distributions of quantum systems. This is the prerequisite for the measurement of
two-point correlation functions presented in Chapter 7.
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Chapter 5

Few atoms in a quasi-one
dimensional potential

In our experiment, we are able to deterministically prepare few-fermion quantum
systems in a single potential well with full control on the atom number. For
instance, we can prepare two fermions in different spin states in the ground state
of the microtrap and ramp them adiabatically into a double-well potential. The
fact that the two fermions form a spin singlet is crucial to make the double-well
system a fundamental building block of the Fermi-Hubbard model. Therefore,
we want to probe the spin wave function of the two atoms. Additionally, we
can prepare spin-imbalanced systems of one impurity immersed in a number of
majority particles. Using a bottom-up approach and increasing the number of
majority atoms one atom at a time, we can study impurity physics in the transition
from few- to many-body physics. In particular, we are interested in the question
how many particles are necessary to observe the expected many-body properties.

In this chapter, we use radio-frequency transitions to study two particles in a
single microtrap as well as spin-imbalanced systems with a variable number of
majority particles. In the first Section, we introduce radio-frequency spectrospopy
and explain what quantities we can probe with this method. Then we present
our measurements on the spin wave function of systems containing two fermions.
After that, we report on first experiments to study the Anderson orthogonality in
one dimension by measuring the quasi-particle residue. We present data for up to
three majority particles at two different interaction strengths. In the future, we
aim for probing systems with a larger number of majority atoms. To guarantee
the applicability of the one-dimensional description, we have to increase the aspect
ratio of the trapping potential. We brievly present experimental ideas to achieve
this.
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5.1 Radio-frequency spectroscopy
Radio-frequency (RF) spectroscopy is an important tool in atomic and molecular
physics. It uses the possibility of changing the internal spin state of an atom to a
different Zeeman sublevel to perform precision measurements on external fields or
study the interaction energy in a system. In the field of ultracold atoms it was
used for example to measure molecular binding and pairing gap in many-body
systems or probe polaronic properties of systems with impurities [Sch09, Koh12].
In few-body systems, it allowed a precise measurement of 6Li Feshbach resonance
[Zü13]. In [Wen13b], the increase in interaction energy of a system consisting of
one impurity and a varied number of majority atoms could be determined.
In our 6Li -experiment, we drive RF-transitions between the three lowest hy-

perfine states |1〉, |2〉 and |3〉 at frequencies around 80MHz (see Figure A.2). To
change the hyperfine state of the atom, we apply a magnetic oscillatory field . For
this, we use a single-copper-loop antenna mounted outside of the vacuum chamber
together with a matching circuit [Lom11]. A maximum power of 100W applied
to the copper loop can lead to Rabi couplings of up to Ω23 = 2π × 7kHz. One
can change the hyperfine state of an atom by either applying a fixed frequency to
drive Rabi-oscillations in the system or use a Landau-Zehner passage to transfer
atoms from one to another hyperfine state with a high probability.
In the following, we will give a brief introduction to the method of RF-

spectroscopy using the notation of [Chi05]. In the experiments presented thereafter,
we only used fixed driving frequencies to change the hyperfine state of the atoms.
With this, we determined the total spin wave function of prepared few-particle
states. Measuring Rabi oscillations further enabled the investigation of impurity
physics in a few-body system.

5.1.1 Energy spectroscopy
For a single particle, the transition frequency between different hyperfine states
is described by the Breit-Rabi formula. Transitions between adjacent states in
the lowest three hyperfine states require frequencies around 80MHz for magnetic
offset fields above 100G and depend on the magnetic offset field as well as the
specific transition. We denote the transition frequency of a single atom as the
bare transition frequency fbare.

In a sample of atoms with two different hyperfine states, the atoms are usually
interacting. Driving the atoms in one internal state to a third hyperfine state
leads to a shift of the bare RF-transition frequency because the RF-photon has to
additionally supply the energy difference between the initial state Ψi and the final
state Ψf caused by the difference in interaction strength. The transition frequency
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fbare
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Ω < Ωbare
Ωbare Ω2 << Ω

fbare+Eint/h fbare+Eint/h+2ftrap

Figure 5.1: Radio-frequency spectroscopy and Rabi transitions. a)
We change the hyperfine spin state of one atom by applying an oscillatory
magnetic field to the system. For only one atom present in the system, the
transition frequency corresponds to the energy difference of the different
hyperfine states, and depending on the power, we can drive Rabi oscillations
with a frequency of Ωbare. b) In the presence of another atom, the transition
frequency is shifted by the difference in interaction energy between the two
systems and the Rabi oscillation Ω decreases. c) By increasing the transition
frequency by multiple trap frequencies, one can drive the system into an
excited state. As the overlap into this state is much smaller, also the Rabi
oscillation Ω2 is much lower. Figure adapted from [Wen13a].

can be calculated by
fRF = fbare + ∆Eint,fi/h+ (∆Ekin,fi) (5.1)

where ∆Eint,fi describes the difference in interaction energy between the initial
and the final state. The last term accounts for an additional change of the kinetic
energy for example by transferring the system into a higher trap level. In the
following, this term will not be relevant.

5.1.2 Rabi oscillations
The transition between the initial state Ψi with a final state Ψf is well-described
by a two-level system. We describe it using the operator M̂RF = ~Ω̂/2 with the
corresponding Rabi frequency Ω. Using Fermi’s golden rule [Chi05], one obtains a
transition rate of

Γfi = 2π
~

∣∣∣〈Ψf |M̂RF|Ψi〉
∣∣∣2 . (5.2)

The states Ψ consist of a spatial state described by the spatial wave function φ and
an internal state being the hyperfine state |hf〉. As the energy of the RF-photon is
on the order of 80MHz, one can neglect the momentum change of atom when it
absorbes a RF-photon. Consequently, the spatial wave function φ is not influenced
by the RF-transition and one can rewrite the Rabi frequency

Ωfi ∝ 〈Ψf |MRF|Ψi〉 = 〈hff |MRF|hfi〉 〈φf |φi〉 . (5.3)
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The Rabi frequency of the transition is influenced by two terms. It depends on
the coupling between the initial and the final hyperfine state and it is influenced
by the overlap between the two spatial wave functions. If the transition is driven
in a non-interacting system, ∆Eint,fi = 0 and the spatial wave functions of initial
and final state are identical. Consequently, the spatial overlap is one and the Rabi
frequency only depends on the coupling strength between the two hyperfine states.

5.2 Determination of the total spin wave
function

In the following, we will use resonant Rabi oscillations to study the total spin wave
function of a few-fermion system. For this, we use systems with few atoms in two
hyperfine states |1〉 and |2〉 and select a regime, where interparticle interaction is
negligible. Then we drive transitions between state |1〉 and |2〉 for various times
and measuring the probability to find zero, one or two particles in the spin state
|2〉.

We start with a single particle in state |2〉 prepared in the ground state of a single
well. By applying a resonant RF-coupling field we initiate coherent oscillations
between the hyperfine states |2〉 and |1〉. After a quarter of the oscillation period,
the system is in a superposition of state |2〉 and state |1〉. The exact states after a
π/2-pulse are given by

|2〉 π/2−−→ 1√
2

(|2〉+ |1〉) (5.4)

|1〉 π/2−−→ 1√
2

(|1〉 − |2〉) (5.5)

and consequently the probability to detect one atom in state |2〉 after a π/2-pulse
is P1,|2〉 = 0.5.
In that way, we observe coherent Rabi oscillations of a single atom, shown

in Figure 5.3. We drive the transition between state |2〉 and state |1〉 with a
Rabi frequency of ≈1.6 kHz. We probe the system after the applied RF-pulse by
removing all atoms that are not in hyperfine state |2〉 with a spin-selective spilling
procedure1 . After that, we count the remaining atoms in the MOT. We repeat
the measurement for several different pulse duration, and extract the probability
to find zero P0, one P1 or two atoms P2 in hyperfine state |2〉. As a function of the

1To do this, we apply a magnetic offset field of 30G to the atoms. At this magnetic offset field,
atoms in state |2〉 have no magnetic moment and consequently only atoms in hyperfine states
|1〉 and |3〉 experience tilting the potential of the spilling.
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Figure 5.2: Rabi-oscillations for one fermion. We initialize one fermion
in state |2〉 and drive resonant Rabi-oscillations between the two hyperfine
spin states |2〉 and |1〉. After a variable duration of the RF-pulse, we measure
the probability to detect one (blue), zero (green) or two (yellow) atoms in
hyperfine state |2〉. The solid lines are guides to the eye not taking a finite
preparation fidelity into account.

pulse duration, we observe that the probabilities P0 and P1 oscillates sinusoidally,
where the oscillation amplitude is limited by our preparation fidelity of about 97%.

In the next step, we want to determine the total spin wave function of two
particles. We prepare two fermions with different internal states |1〉 and |2〉 in the
ground state of the microtrap and repeat the measurement. Again, we extract the
probability P0, P1 and P2 to detect zero, one or two particle in state |2〉.
As shown in Figure 5.3 a, we do not observe oscillations in the population for

two atoms prepared in the ground state of the microtrap. A naive ansatz for the
spin wave function of |1〉 |2〉 does not explain this observation as after a π/2-pulse
the spin wave function would be

|1〉1 |2〉2
π/2−−→ 1

2(|1〉+ |2〉)1(|2〉 − |1〉)2 (5.6)

= 1
2(|1〉1 |2〉2 − |2〉1 |2〉2 − |1〉1 |1〉2 + |2〉1 |2〉2) (5.7)

and consequently, one expects to observe probabilities of P0 = 0.25, P1 = 0.5 and
P2 = 0.25.

In order to explain the observed data, we have to account for the anti-symmetry
of the fermionic wave function and therefore assume a singlet spin wave function.
Calculating the influence of a π/2-pulse shows no change in the probabilities

1√
2

(|1〉1 |2〉2 − |2〉1 |1〉2) π/2−−→ 1√
2

(|1〉1 |2〉2 − |2〉1 |1〉2) (5.8)
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Figure 5.3: Rabi-oscillations for two fermions in a single well. a)
Evolution of the spin wave function of a prepared singlet. We prepare two
fermions in hyperfine states |1〉 and |2〉 in the ground state of the microtrap.
Then, we drive Rabi oscillations between the two states for various pulse
durations. To probe the system, we measure the probability to detect one
(blue), zero (green) or two (yellow) atoms in hyperfine state |2〉. We do not
observe oscillations, which is in agreement with a prepared spin singlet state.
The vertical dashed line indicates the time corresponding to a π/2-rotation.
b) Spin evolution of two identical fermions. We prepare two identical fermions
in hyperfine state |2〉 in the overall ground state of the system. After an
RF-pulse we observe oscillations in the probability to detect one (blue), zero
(green) or two (yellow) atoms in hyperfine state |2〉. This is consistent with
the expectations from a spin triplet |S = 1,mS = ±1〉

Calculating the time evolution of the singlet state for a full Rabi oscillation shows
no oscillation as a function of a RF-pulse of various length. Our measurement
agrees with this expectation and shows, that the two-particle state prepared in
the ground state of the single potential well, has a spin spinglet wave function.
For comparison, we also prepare two identical fermions occupying the single-

particle ground state and the first excited state of the microtrap. After applying
an RF-pulse for various different durations, we detect oscillating probabilities to
find zero, one or two atoms in state |2〉. This is in agreement with the expectations
from a triplet spin wave function |↑↑〉.

These simple measurements demonstrate in a clear way, that two fermions which
we prepare in the ground state of a single microtrap form a spin singlet state.
This measurement can also be applied to larger systems. In [Maz16], it was for
example used to demonstrate the SU(2)-symmetry of the of a prepared long-range
antiferromagnetic state. The finding of a total spin of S = 0 encourages us to use
this system as a fundamental building block to generate small anti-ferromagnetic
states that are expected to have S = 0. Additionally, this technique can also help
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to detect deviations from S = 0 for prepared systems.

5.3 Emergence of the Anderson orthogonality
Studying Rabi oscillations in a system does not only give insight on the spin
wave function but also allows to observe properties of the spatial wave function
of the system. In particular, it delivers information of the wave function overlap
between the two systems coupled with the RF-signal. Therefore, it is well suited
for studying the Anderson orthogonality catastrophe, which can be observed in
strongly-interacting impurity systems.

In this section, we investigate the orthogonality catastrophe which predicts the
decrease of the wave function overlap between a system of many identical fermions
and one impurity and the wave function of the system without the impurity. In
our experiment we perform a bottom-up approach and study systems with one
impurity and a variable number of majority atoms that gradually form a Fermi sea.
In particular, we drive Rabi oscillations and measure their frequencies with high
precision. In this way, we can quantify the influence of the number of majority
atoms and the interaction strength on the few-body wave function.

5.3.1 The orthogonality catastrophe
In a seminal paper [And67], P.W. Anderson studied the quantum states of a
system with N fermions confined in a spherical box in the presence of a finite-
range scattering potential. He could prove that the perturbation due to this
hard-core potential causes the ground state of the system to be orthogonal to the
ground state of the unperturbed system if N →∞. This observation is known as
the orthogonality catastrophe and occurs already when the Fermi sea experience
only an infinitesimally small interaction with an impurity that is fixed in space.
This demonstrates the large the impact of one impurity on a quantum many-body
system and offers the possibilities to turn this fact into a possibility of control
[Goo11].
A widely used quantity in impurity problems it the so-called quasi-particle

residue Z. It quantifies the overlap between the wave function of the Fermi sea
and the wave function of the perturbed system

Z = | 〈ΨFS|Ψ〉 |2. (5.9)

This quantity has been used to study the properties of Fermi polarons [Sch09]
and its coherence and stabililty [Koh12]. Anderson found that for a Fermi sea
containing infinitely many particles, Z → 0 if the impurity is static. It is thus
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natural to ask, how fast this transition occurs and how the quasi-particle residue
Z depends on the interaction strength between the fermions and the impurity.

Anderson showed the orthogonality catastrophe in a three-dimensional system
with a static impurity. Interestingly, the orthogonality catastrophe also occurs
in a one-dimensional harmonically trapped system with a mobile impurity which
has the same mass than the surrounding majority particles. Especially from an
experimental point of view, harmonically trapped one-dimensional systems are
interesting. However, in contrast to the homogeneous one-dimensional system
[McG65], there exists no analytic solution for many particles [Gua13]. For two
interacting atoms an analytic solution was found [Bus98], but apart from this
only numerical solutions are available that can describe systems of up to N ≈ 10
particles. In the regime of strong interaction (Tonks-Giradeau limit) one can
however write down an ansatz for the wave function that reproduces the numerical
calculations and is not limited small particle numbers [Lev14]. Experiments are in
a perfect position to benchmark the theoretical predictions beyond the capability
of numerical simulations.

A sensitive probe of the results from theory is to compare not only the calculated
energies with measurements, but also experimentally study the wave functions.
Based on their ansatz, Levinsen et al. predicted [Lev14] the decrease of the quasi-
particle residue Z as a function of the number of majority particles N interacting
infinitely strong with a single impurity. Figure 5.4 shows their result for infinite
interaction strength of one impurity with N majority atoms. ψNI denotes the non-
interacting wave function and ψN describes the wave function obtained from their
ansatz. For N = 1, they recover the analytic solution of Z = 2/π. Furthermore,
their theory suggests a scaling of Z proportional to 1/

√
N + 1.

More importantly, the Anderson orthogonality catastrophe represents a true
many-body phenomenon driven by correlations in the system. As a consequence,
one expects to detect entanglement in such systems [Oss14, Cam14]. In this
context also the investigation of the system’s dynamics after a quench can give
crucial insight into the problem [Cam14].

Measuring Z in our system

In our setup, we want to study the emergence of the orthogonality catastrophe
in a one-dimensional system as a function of the number of majority atoms. We
use the deterministic preparation scheme to prepare spin-imbalanced few-fermion
systems in a single microtrap [Ser11b]. Similar to the configurations in [Wen13b],
we prepare one impurity in the ground state of the microtrap and different numbers
of majority atoms that fill up the trap and form a Fermi sea.
In the experiments, presented here, our trap had an aspect ratio of η ≈ 7.
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5.3 Emergence of the Anderson orthogonality

Figure 5.4: Quasi-particle residue calculated with a strong-coupling
ansatz. The wave function from the strong-coupling ansatz ψN is compared
with the wave function of the non-interacting system ψNI . The quasi-particle
residue Z is plotted as a function of the number of majority atoms N . The
ansatz recovers the analytic result of Z = 2/π for N = 1 and predicts a
decrease of Z proportional to 1/

√
N + 1 (dashed line). Figure taken from

[Lev14].

In a situation where all relevant energy scales of the system are lower than the
radial energy ~ω⊥, the system can be considered as one-dimensional. This can be
guaranteed by restricting the Fermi energy EF = N~ωz to be much smaller than
~ω⊥.

To measure the quasi-particle residue, we prepare a non-interacting system and
then drive the impurity atom into a third hyperfine state. In that configuration,
the majority atoms interact with the impurity which influences the spatial wave
function. By driving resonant Rabi oscillations we can measure the spatial overlap
and infer the quasi-particle residue. We will perform this measurement for different
numbers of majority particles N and different interaction strenghts g1D.

5.3.2 Determining the interaction energy
Before we can measure the frequency of the Rabi oscillations of the impurity, we
have to determine the resonant frequency of the RF-transition. For the single
impurity, the resonance frequency is given by the bare transition frequency fbare,
which only depends of the magnetic field. Adding, one or more majority atoms
shifts the transition frequency, as we already explained in Section 5.1.1. We
measure the interaction shifts with high resolution by driving the transition at
low RF-power.
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Chapter 5 Few atoms in a quasi-one dimensional potential

Figure 5.5: RF-spectroscopy with one impurity surrounded by N ma-
jority atoms. We drive an impurity from state |1〉 to state |2〉 by a RF-pulse
and measure the mean number of atoms in state |2〉. We find the resonant
transition frequency for N = 1 and N = 2 majority atoms in the sys-
tem shifted by 1.23 kHz and 2.21 kHz, respectively, due to the difference in
interaction energy between the inital and the final state.

Figure 5.5 shows a measurement of the transition frequency for different numbers
of majority particles. To find the bare transition between hyperfine states |1〉 and
|2〉, we prepared about four atoms in state |1〉 and applied a RF-pulse for 100ms
to the atom. Then we measured the population in state |2〉 as a function of the
RF-frequency. To measure the shift due to the interaction energy, we added one or
two atoms in state |3〉 to the impurity in state |1〉. The presence of the majority
atoms resulted in interaction shifts of on the order of a few kHz for a magnetic
offset field of 634.8G and an axial trap frequency of 2.5 kHz.

We calculate the expected one-dimensional interaction strength g1D using equa-
tion 2.43 in units of ~ωaxaax where aax =

√
~/(ωaxmr). Figure 5.6 shows a plot

of g1D as a function of the magnetic offset field for all three combinations of spin
states. From this, we see that at a magnetic field of 634.8G, the initial and the
final state are both interacting. To measure the quasi-particle residue, however,
we want to drive Rabi oscillations between a non-interacting and an interacting
system. For this reason, we additionally measure the Rabi frequency also at a
magnetic offset field of 589.8G.

5.3.3 Measuring the quasi-particle residue
After having determined the resonance shift due to the interaction energy ∆Eint,fi,
we can measure the frequency of the Rabi transition Ωf i between two states with
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5.3 Emergence of the Anderson orthogonality

Figure 5.6: The one-dimensional interaction strength for two parti-
cles. We use equation 2.43 and the scattering lengths in three dimension
to calculate the one-dimensional interaction strength g1D for all three spin
state combinations.

different interaction strengths and deduce the quasi-particle residue Z. To do this,
we will compare the Rabi frequencies of different system configuration. Therefore
it is crucial to understand all the parameters that have an impact on Ωfi.
The Rabi frequency Ωfi is set by several properties. As the transition can be

described by a two-level system, the frequency of the Rabi oscillation changes
with a detuning ∆ of the driving frequency from the resonance. The effective
frequency is described by Ωfi =

√
Ω2 + ∆2. For a precise measurement it is

important to keep ∆ as small as possible. The resonant Rabi frequency Ω depends
on the coupling between the hyperfine states of the two systems 〈hff |M̂RF|hfi〉. In
particular, it is set by the coupling between the hyperfine states of the impurity
as the majority particles are only spectators. The strength of this coupling is
not expected to change significantly within a frequency change on the order of a
few kHz. Additionally, the Rabi frequency Ω can be increased by increasing the
power of the RF-field driving the transition. And most importantly, Ω depends
on the overlap of the two spatial wave function 〈φf |φi〉, which is the quantity we
are actually interested in.

In order to perform a precise measurement of the quasi-particle residue by com-
paring Rabi frequencies Ω(PRF,∆, Z), we have to take care that the measurements
we want to compare were taken under the same conditions, which is the same the
RF-power PRF and detuning ∆. This is especially challenging as the few-fermion
systems themselves have different resonance frequencies.
Figure 5.7 shows a measurement of the Rabi frequency of the bare impurity

(gray) and the Rabi oscillations of the impurity in the presence of a majority
atoms (blue). We observed a significant change in the Rabi frequency due to
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Chapter 5 Few atoms in a quasi-one dimensional potential

Figure 5.7: Driving Rabi oscillations in systems with different parti-
cle numbers. We measure the Rabi oscillation of a bare impurity atom
by driving it between the hyperfine states |1〉 and |2〉 (gray data points).
We compare it with the Rabi oscillations of the impurity in the presence
of one majority atom in state |3〉 (blue) and observe a clear decrease in
the Rabi oscillation. This reduction is caused by a reduced overlap of the
spatial wave function between the two quantum states Ψ|1〉|3〉 and Ψ|2〉|3〉.
The measurement of the Rabi oscillation therefore allows to extract the
wavefunction overlap and infer the quasi-particle residue Z = | 〈φi|φf 〉 |2.

the interaction energy that changes the spatial overlap of the initial and final
wave function. For this measurement, we chose a magnetic field of 634.8G. As
we already pointed out, we do not expect to obtain the quasi-particle residue in
that measurement. To measure the overlap between a non-interacting and an
interacting wave function, we perform measurements at 589.8G. As the interaction
in the final state is very weak, the change in the Rabi oscillation will be very
small. This requires a frequency measurement with a precision in the range of a
few percent.

To perform such a high precision measurement, all additional effects on the Rabi
frequency have to be much smaller than the desired level of precision. For instance,
it is crucial that the power of the RF-frequency does not change as a function
of the frequency. Our RF-frequency source is an RF-Signal generator (E4432B,
Agilent Technologies) with programable power. The signal is then amplified by
an amplifier (ZHL-100W-52, Minicircuits). Over a range of 5 kHz the amplified
power changes by less then 10−4 with results in a change in the Rabi frequency of
less than 5× 10−5. The frequency response of the RF-signal line is therefore not
limiting the precision.

The detuning to the resonance frequency can have a large influence on the Rabi
frequency. To achieve a precision on the order of 10−3, the detuning has to be
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5.3 Emergence of the Anderson orthogonality

Figure 5.8: Rabi oscillations for weak interaction. We drive one impu-
rity in the presence of two majority atoms at weak interaction. Observing the
Rabi oscillation over more than 200 cycles, we can determine the oscillation
frequency with a precision of 0.25%. We also do not observe a reduction in
contrast over 200 cycles.

thousand times smaller than the Rabi frequency. As the precision of the detuning
is not only limited by measurement but also by the magnetic field stability of the
system, it is advantageous to chose a large Rabi frequency. In addition, we have
to measure several 10 cycles in order to determine the frequency precisely.

Figure 5.8 shows a Rabi oscillation of more than 200 cycles at weak interactions.
For this measurement, we prepared one impurity in the ground state of the single
well and two majority particles and probe them at a magnetic field of 589.8G.
We drive the system at a Rabi frequency of almost 4 kHz for a duration of 60ms.
This allows a frequency determination with an uncertainty of less than 4× 10−3.
To reduce the measurement time, we only measure the oscillation in intervals of
about 20ms for two to three cycles and fit a sinusoidal function to extract the
precise frequency. Interestingly, we do not observe a reduction of the coherence in
the driving of the Rabi oscillation.
We extract the overlap of the spatial wave functions between non-interacting

and interacting state by deviding the measured Rabi frequency for the few-body
system ΩN by the Rabi frequency of the impurity ΩN=0. Figure 5.9 shows the
result for different numbers of majority atoms. Our measurement precision is on
the order of 10−3. It allows us to observe a decrease of the frequency by 0.25% if
one majority atom is present. Adding more majority atoms increases the frequency
again.
When we increase the number of majority atoms, the density in the system

increases too. This influences the interaction strength in the system. In order
to compare systems with different densities, one uses a dimensionless interaction
parameter γ. However, in a one-dimensional system, in contrast to a three-
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Chapter 5 Few atoms in a quasi-one dimensional potential

Figure 5.9: Wave function overlap extracted from the Rabi fre-
quency. To compare the wave function overlaps for different numbers
of majority atoms N , the measured Rabi frequencies ΩN are normalized with
the bare Rabi frequency ΩN=0. After a decrease in overlap for N = 1, the
values increase again due to different densities in the systems.

dimensional system, the interaction strength decreases with increasing density like
γ1D ∝ g1D

kF
. In a harmonic system, the Fermi energy scales like EF = N~ωz and

so, the Fermi wave vector is proportional to
√
N . This leads to a dimensionless

interaction parameter2 of [Wen13b, Bro13]

γ = π√
2
g1D√
N
. (5.10)

This parameter is known as Lieb-Lininger parameter and allows us to compare the
experimental results to a homogeneous system. It also shows that with increasing
number of majority particles the interaction decreases, and the increasing overlap
for N > 1 is not unexpected.

We want to compare the measurement with the theoretical expectation. However,
we did not measure the quasi-particle residue at infinitely strong interaction and
can therefore not compare the data with the predictions of the strong-coupling
ansatz. However, for two atoms, the full solution of the wave function is available
[Bus98]. And for more majority particles, one can use a numerical solution.

In order to display the data in the weakly and strongly interacting regime where
g1D →∞, we plot the inverse interaction parameter 1/γ. In that way, the strong
coupling limit is at 1/γ = 0, whereas 1/γ → ∞ describes the non-interacting

2Note that for this definition g1D is not used in the units of the reduced mass and therefore the
values of are larger by

√
2.
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5.3 Emergence of the Anderson orthogonality

Figure 5.10: The measured quasi-particle residue. To compare our re-
sults with theory, we plot the measured quasi-particle residue as a function
of the dimensionless interaction strength 1/γ. The blue solid line shows the
analytic solution for two particles in a harmonic confinement. The green
and yellow lines are numerical solutions [Mas15]. At 1/γ = 0, the solutions
match with the calculations from [Lev14]. Our results are in good agreement
with the theoretical prediction (see inset) if we drive the system from a
non-interacting to an interacting state. They overestimate Z for the case of
an initial interacting state.

regime. Figure 5.10 shows the measured quasi-particle residue Z = | 〈ψN |ψNI〉 |2
as a function of the dimensionless interaction strength. The blue solid line is
the analytic solution from [Bus98] and the green and yellow lines are numerical
solutions from [Mas15].
The data for the weakly interaction are in good agreement with the theory.

The measurements at stronger interaction show a significant deviation from the
expected values for the quasi-particle residue. This deviation is expected as the
data was taken at a magnetic field of B = 634.8G where the initial state was also
repulsively interacting. Therefore, in this situation, one expects a spatial overlap
that is higher than the calculated quasi-particle residue.
As for 6Li all three combinations of hyperfine states exhibit broad Feshbach

resonances, there are only three magnetic offset fields where the initial state
can be non-interacting (see also Figure 5.6). This makes a measurement of the
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Chapter 5 Few atoms in a quasi-one dimensional potential

quasi-particle residue difficult. One possibility to obtain a relatively precise value
for the quasi-particle residue, is to chose a magnetic field, where the final state
is strongly interacting and the initial state is interacting much less. Due to
the large difference in interaction strength, the relative deviation from the true
Rabi oscillation between a non-interacting and a strongly interacting system may
becomes smaller. A second possibility would be to numerically calculate the
overlap between two interacting systems.

A third possibility to measure the quasi-particle residue, is to combine measure-
ments

〈ψN |ψNI〉 = 〈ψN |
∑
i

(|ψi〉 〈ψi|) |ψNI〉 =
∑
i

〈ψN |ψi〉 〈ψi|ψNI〉 (5.11)

where ψ describes an arbitrary orthogonal basis, e. g. the one of an interacting
system and i indexes the basis states where i = 0 denotes the ground state and
i > 0 the excited states in the system. By measuring all overlaps between the non-
interacting and the intermediate state 〈ψN |ψi〉 as well as between the intermediate
and the strongly interacting state 〈ψi|ψNI〉, one can reconstruct the quasi-particle
residue.

5.3.4 Increasing the aspect ratio of the potential
In the presented measurements, we only measured systems up to three majority
particles. In order to increase the number of majority particles further, we have to
ensure that the transversal degrees of freedom in the system are still not playing
a role. For this, we have to increase the aspect ratio of our microtrap. E. g. to
measure systems containing N = 10 particles, the aspect ratio has to be well
above η = 10.
One possibility to increase the aspect ratio of the microtrap is to decrease the

waist of the Gaussian beam, which is focused by the objective. This would result
in a larger waist w0 of the focus and the Rayleigh length, which describes the
length in the axial direction, would grow proportional to w2

0. To reach an aspect
ratio of η ≈ 20, the focus waist has to be about w0 ≈ 4.5µm. Decreasing the waist
of the Gaussian beam however requires a major change in the optical setup and
the preparation of few-fermion systems will probabily not work at all in such a
large microtrap [Ser11a].
Another possibility to increase the aspect ratio is to decrease the size of the

focused Gaussian beam using an aperture. This non-invasive method has the
additional advantage, that it might be possible, to perform this decrease in a
dynamic way in order to not harm the preparation. In [Deh16], we investigated the
influence of such a beam truncation on the intensity distribution of the mictrotrap
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beam. It turns out that the most favorable position of the truncating aperture
is at the position of the focusing lens, as it leads to a symmetric truncation of
the axial intensity distribution. If the aperture is positioned before the lens, the
intensity distribution along the propagation direction becomes assymetric. This
assymetry increases with increasing distance.

Summary and Outlook

We reported on the measurement of the quasi-particle residue in a one-dimensional
few-fermion system. Our preliminary results are in agreement with the expecta-
tions from the Anderson orthogonality catastrophe. As a next step, we plan to
increase the aspect ratio of the trapping potential to investigate one-dimensional
systems with larger numbers of majority particles and observe the vanishing
quasi-particle residue. The established methods may also allow us to measure
other properies of the impurity system, as e. g. the effective mass and perform
dynamical measurements [Cam14]. The unprecedented measurement precision
also puts us into a perfect position to measure polaron-polaron interactions.
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Chapter 6

Two fermions in a double well:
Realizing the fundamental
building block of the Hubbard
model

The Hubbard model is a paradigmatic model to describe interacting particles
that move in a periodic potential. The motion of the particles is described by
nearest-neighbor hopping and the particles only interact when they occupy the
same site. Despite the reduction to only two relevant parameters, the tunnel
coupling J and the on-site interaction U , the Hubbard model exhibits a rich
phase diagram. To gain understanding on such a complex system, it is often
helpful to first look at the smallest realization that incorporates all the important
physics which leads to specific phases in the large system. Having understood this
fundamental building block, one can gradually increase the size of the system and
watch how complex phases emerge.

We want to perform such a bottom-up approach experimentally. In this chapter,
we report on the first step in this approach which is the realization of the funda-
mental building block of the Fermi-Hubbard model. It consists of two fermions in
an isolated double-well potential.

The isolated double-well potential is created from two partly overlapping focused
laser beams. By changing the power in the individual beams, we can tune the
relative depth between the two well. We start by deterministically preparing two
particles in the ground state of one single optical tweezer and then add the second
potential well. By lowering the barrier between the two wells, the atoms can
tunnel between the wells. A Feshbach resonance allows us to tune the interaction
strength between the two fermions and we make use of the tunable relative depth
to deterministically prepare the two particles in the ground state of the double-well
potential.
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The tunability of the relative depth comes at a price: One has to ensure that
the tilt of the double-well potential does not change during days. We find that
the system is sufficiently stable to studying tunneling dynamics in the system. In
addition, it is sufficient to resolve the super-exchange energy which is responsible
for the anti-ferromagnetic ordering in the Hubbard model.
Achieving this level of control on the fundamental building block is the first

step in our bottom-up approach. Now, it will be possible to increase the size of
the system by adding more wells or particles and deterministically prepare the
quantum states of larger and more complex systems with low entropy.
This chapter reports on the realization of the fundamental building block in

our setup. We start with a theoretical description of two fermions a double-well
potential and explain the accessible eigenstates. Then, we explain our tunable
parameters and describe how we calibrate and control the Hubbard parameters.
This allows us to adiabatically prepare the two fermions in eigenstates of the
double-well system at different interaction strengths. We then explain our method
to measure the super exchange energy which is based on modulation spectroscopy.
Last but not least, we demonstrate our ability to change the symmetry of the spin
and spatial wave function by singlet-triplet oscillations.

Parts of this chapter have been published in [Mur15b]. Details can also be found
in [Mur15a].

6.1 The two-site Hubbard model of two
interacting fermions

Studying many-body systems in double-well potentials led to a lot of insight in the
field of quantum physics. One of the first was the observation of phase coherence
between two spatially separated Bose-Einstein condensates [And97]. Experiments
with few particles in a double well could beautifully demonstrate effects like the
two-particle interference of two bosons in a Hong-Ou Mandel type experiment
[Kau14]. Furthermore, the system allows to perform fundamental operations
for quantum computation [And07, Tro10, Foo11] and to observe second-order
tunneling [Föl07, Tro08] showing the connection to the field of condensed-matter
physics.

In our setup, we realize the fundamental building block of the Hubbard model
which consists of two neutral fermionic particles trapped in a double-well potential.
A system has to fulfill several approximations to be describable by the Hubbard
model. First of all, the tight-binding approximation has to be applicable. As
already discussed in Section 2.3.1, the particles are then describable by Wan-
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nier states localized on individual wells, with the occupation probability of the
neighboring site being negligible. For very deep periodic potentials, the localized
wavefunction can then be approximated by the eigenstates of the individual wells.

The motion of particles from one site to another can be described by a tunnel
coupling J . This energy scale depends on the overlap between wavefunctions on
neighboring sites. Due to the tight-binding approximation it is much smaller than
the energy to the single well excited state J � ~ω. Furthermore, we restrict
the model to the lowest band (single-band approximation). To fulfill this, our
double-well system is only half filled and the on-site interaction U is smaller than
the energy gap to the next higher band during all our experiments.
If these restrictions are fulfilled, the natural single-particle basis state of the

Hubbard model consists of the ground state Wannier function for each site. For
the two-site Hubbard model, we use the notation |L〉 and |R〉. In this basis, the
Hamiltonian of a single particle in a double-well potential can be written as

hsp =
(

+∆ −J
−J −∆

)
(6.1)

where J is the tunnel coupling and ∆ denotes the energy difference from the
symmetric configuration in case of a potential tilt. For the symmetric double well
(∆ = 0), the eigenstates of the system are the symmetric superposition and the
anti-symmetric superposition of the particle occupying the left or the right site.

|+〉 = 1√
2

(|L〉+ |R〉) (6.2)

|−〉 = 1√
2

(|L〉 − |R〉) (6.3)

For two decoupled wells (J = 0) the resulting eigenenergies are degenerate.
However, for finite coupling strength the two energies are E+ = −J and E− = +J
where the symmetric superposition is lower in energiy and represents the ground
state of the system. This can be easily understood as a particle in the symmetric
state is more delocalized and therefore minimizes its kinetic energy.
For two particles in a double well the basis can be constructed from the single

particle basis: {|LL〉 , |LR〉 , |RL〉 , |RR〉} where the first (second) entry denotes
the state of the first (second) particle. The two-particle Hamiltonian can then be
formulated as

H = hsp,1 ⊗ 12 + 11 ⊗ hsp,2 + Diag{U, 0, 0, U} (6.4)

We constructed it using the single-particle Hamiltonian hsp and inserted a term
that accounts for the on-site interaction U for all basis states that show double
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Figure 6.1: Energy spectrum of the two-site Hubbard model with
two interacting particles. The eigenenergies of the four eigenstates are
plotted for a symmetric double well ∆ = 0 as a function of the on-site
interaction strength U . The table shows the eigenstates written in the spatial
basis in the limiting cases of strong attractive U → −∞, zero U = 0 and
strong repulsive interaction U → +∞.

occupancy. This results in the two-site two-particle Hamiltonian written in the
basis of spatial wave functions

H =


U + 2∆ −J −J 0
−J 0 0 −J
−J 0 0 −J
0 −J −J U − 2∆

 (6.5)

Diagonalizing the Hamiltonian results in four eigenstates. As already explained
in Section 2.1, three of these states are spatially symmetric under particle ex-
change (|a〉, |b〉 and |c〉). State |d〉 has an anti-symmetric spatial wave function.
Consequently the two fermions do not interact with each other and therefore the
energy of the state does not change as a function of the on-site interaction strength
U . We assumed two fermions with different hyperfine spin. As a consequence of
the anti-symmetric total wave function of the fermions, the spin wave function
of the states |a〉, |b〉 and |c〉 is a spin singlet |S〉 = 1√

2(|↑↓〉 − |↓↑〉) with the total
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Figure 6.2: Eigenenergies of the two-site Hubbard model without in-
teraction. We plot the eigenenergies of the tilted non-interacting Hubbard
Hamiltonian. As U = 0, we recover the physics expected from single particles.
At a large tilt, the ground state shows large occupation probability in the
deeper well. For a finite tunnel coupling, the degeneracy at ∆ = 0 is lifted
and an adiabatic passage from ∆ � 0 to ∆ � 0 is possible. The energy
splitting around ∆ = 0 is 4J and corresponds to the expected width of a
band in for an electron gas in one dimension.

spin S = 0 whereas the spatially anti-symmetric state |d〉 has a triplet spin wave
function |T 〉 = 1√

2(|↑↓〉+ |↓↑〉) with a total spin of S = 1.
The energy spectrum of the two-site Hubbard model and the eigenstates are

depicted in Figure 6.1 for the symmetric configuration ∆ = 0 and in Figure 6.2 in
the limit of zero on-site interaction U = 0 in units of the tunnel coupling J .
The ground state is denoted with |a〉. For U = 0, it simply consists of two

independent particles occupying the symmetric ground state of the double well.
When U is increased to the repulsive side, doubly occupied sites become more and
more unfavorable. Eventually, the ground state reaches |a〉U→∞ = 1√

2(|LR〉+|RL〉)
in the limit of large on-site interaction and energetically approaches the state |d〉.
This energy splitting between |a〉 and |d〉 scales like −4 J2/U for large on-site
interaction and is caused by the super exchange (see Section 2.3.2). For attractive
on-site interaction U < 0, double occupancies are favored and the state approaches
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|a〉U→−∞ = 1√
2(|LL〉+ |RR〉) for infinite U . The ground state has a total spin of

S = 0 and is non-degenerate over the whole range of U . Therefore it does not
cross any other energy level at finite U . Lieb has shown [Lie93, Aue98] that this
is also the case for the more general situation of a bipartite lattice filled with as
many atoms as sites and N|↑〉 = N|↓〉 = 1/2Nsites.

At U = 0 , the highest excited state denoted with |c〉 consists of two independent
fermions each occupying the anti-symmetric state |−〉. For repulsive interactions,
the double occupancy is favored in contrast to the ground state. At attractive
interaction, the state tends to single occupation, which is also in contrast to the
behavior of the ground state. This similarity can be expressed by a particle-hole
mapping between the two states1 and explains the similarities in the energies. We
will use this fact later for the measurement of the super exchange energy.

At high interaction strength U � J , the four states regroup into two doublets.
If the spacing between the two doublets is much larger than the energy difference
between the two states in the doublet, the system can be described in terms of
the Heisenberg model [Kes10].

6.1.1 Experimental realization of the two-site Hubbard
model

We realize the double-well potential by generating two optical tweezers that are
partially overlapping. As explained in detail in Section 3.3.2, we create them by
focusing two far-red detuned laser beams that act as optical dipole traps to the
atoms. In the experiments presented in this chapter, the waist of each optical
tweezer was about 1.65µm.
Our experimental setup allows to set and tune all relevant parameters at will.

We can change the distance d between the two wells and thereby set the possible
parameter range for the tunnel coupling J . Here, we chose a distance of 2µm
between the two wells. Having individual control on each optical tweezer, we can
tune the relative depth ∆ between the two wells. This allows us for example to
prepare fermions in the eigenstate of the double well potential. The control on the
overall light power that generates the potential enables us to quickly switch and
set the barrier height between the two wells. This is crucial to initialize the system
in the uncoupled regime and then quench it to a well-determined tunnel coupling
J . To control the on-site interaction in the system U , we tune the scattering
length of the particles using a Feshbach resonance (for details see Section 2.4.2).

To fulfill the required tight-binding approximation, we choose a tunnel coupling
1In [Ho09], such a particle-hole mapping was suggested to map the repulsive onto the attractive
Hubbard model.
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Figure 6.3: Tunnel oscillations with and without interaction. a) Os-
cillations without interactions. We plot the mean number of atoms in the
right well after an initialization in |LL〉 and variable tunneling time. The
data points show the statistical average of 15 repetitions for each tunnel
time. We observe a sinusoidal oscillation (solid line) with a frequency of
2J/h = (134.6±1.0)Hz consistent with two independently tunneling fermions.
b) Tunneling with interaction. Due to the interaction, the two particles do
not tunnel independently anymore. A Fourier transfom of the recorded oscil-
lation reveals three different frequencies. The solid line shows a calculation
of the expected time evolution for the calibrated tunnel coupling and on-site
interaction.

on the order of J/h ≈ 100Hz which is much smaller than the distance to the
next higher band. The energy difference to the first excited states is on the order
of 1.2 kHz. In all our experiments we did not exceed an on-site interaction of
U ≈ 0.5~ωz. All parameters can be found in Appendix B.4.

6.2 Calibrating the Hubbard parameters
The shape of the double-well potential determines the Hubbard parameters of our
system. Changing the distance between the two wells or the overall light power
in the potential strongly influences the overlap between the Wannier functions
|L〉 and |R〉 and changes the tunnel coupling strength J . The tunneling of one
particle from one site to the other can be described in terms of a two-level system
described by equation 6.1. As a consequence, tunneling is only resonant if the tilt
∆ between the two wells is not larger than the tunnel coupling J .

To observe oscillations in our system, we have to know and control these
parameters. In addition, the shape of the potential has to be stable during the
measurement to actually observe the tunneling dynamics over several oscillations.
The experimental realization turned out to be challenging. Therefore, studying
the oscillations in the system did not only allow us to calibrate the Hubbard
parameters, but also gave hints to the limitations in the stability of the system.
For all tunneling measurements, we initialize the system by preparing two

99



Chapter 6 Two fermions in a double well: Realizing the fundamental building
block of the Hubbard model

0 20 40 60 80 100

0

1

2

Tunnel time (ms)

M
e
a
n
 a

to
m

 n
u
m

b
e
r

Figure 6.4: Decay of the tunneling oscillations of two non-interacting
particles. We observe a decay time of about 80ms. The amplitude does
not show a pure exponential decay. Assuming a small drift of the resonance
position by about 25Hz during the measurement time leads to a dephasing
of the oscillation that agrees with the observed shape.

non-interacting atoms in the ground state of a single potential well. After that,
we slowly ramp on a second well next to it and keep the tunnel coupling negligible.
In this way, we prepared the system in state |LL〉 which is not an eigenstate.

To start the dynamics, we suddenly switch on the tunnel coupling by decreasing
the total optical power and thereby lowering the height of the barrier in the
double-well potential. We do this at a time scale slow enough to not excite the
atoms into higher trap levels. Then, we let the system evolve for some time before
we stop the dynamics by switching off the tunnel coupling again. We measure
the occupation probability of the final state by switching off one well. We then
recapture the atoms in the remaining well into the MOT and count them.

6.2.1 Calibration of the tunnel coupling
For two non-interacting particles, we observe sinusoidal oscillations of the mean
atom number in the right well (see Figure 6.3(a)). We measured the frequency
of these oscillations for different depths of the coupled double well. Figure 6.5(a)
shows the measured tunnel frequency as a function of the overall light power
forming the potential. It decreases exponentially with increasing barrier height
as expected from the overlap between Wannier functions in the tight-binding
approximation. Based on this measurement, we chose the tunnel coupling strength
around J/h = 100Hz. At this potential depth we fulfill the required approximations
of the Hubbard model as the axial trap frequency is about ten times larger than
the tunnel coupling.
We can observe tunneling oscillations for several tens of milliseconds which

corresponds to more than 20 oscillations. Figure 6.5 shows such a long oscillation
where the damping time is (83± 9)ms. From the time-dependent amplitude we
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Figure 6.5: The influence of the barrier height and the tilt on the
tunnel frequency. a) Dependence on barrier height. We alter the effective
barrier height by changing the overall light power that creates the double-well
potential. As a function of the power we observe an exponential scaling of
the oscillation frequency. For all further measurements, we use settings of
the two lowest oscillation frequencies shown here. b) Influence of the tilt.
We perform tunneling sequences with different relative depth between the
two wells and measure the effective tunnel coupling J ′ =

√
J2 + ∆2 expected

from a two-level system. This allows us to calibrate the tilt and find the
configuration of the symmetric double well.

could conclude that the decay is not exponential. Instead, simulating a continuous
change of the tunnel resonance due to an instability in the relative depth leads
to slightly different tunnel coupling for every realization. A linear drift of the
resonance by 25Hz could explain the observed behavior. This shows that the
damping time of the tunnel oscillation is limited by the stability of the double-well
potential.

6.2.2 Calibration of the tilt
In order to calibrate the tilt ∆ of the double-well potential, we perform the
tunneling sequence for different relative depths of the two wells. To do this, we
change the relative power in the two focused laser beams using an acousto-optic
deflector (AOD). Details on the experimental method can be found in Section
3.3.2. We measure the oscillation frequency for various different tilts around the
resonance. The result is shown in Figure 6.5 b. and described by the single-particle
Hamiltonian in equation 6.4. By assuming a detuned two-level system, we can
deduce an effective tunnel coupling of J ′ =

√
J2 + ∆2. By fitting the effective

tunneling rate 2J ′(∆) to the observed oscillation frequency we calibrate the tilt
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axis and also extract the bare tunneling frequency. Within the range of chosen
tilts, we do not observe a deviation from the two-level assumption.

6.2.3 Stability of the tilt
To observe tunnel oscillations with high contrast over several periods, the stability
of the tilt ∆ has to be better than the tunnel coupling J/h ≈ 100Hz. We stabilize
the overall light power in the double well with an active feedback. In contrast to
this, the relative depth of the two wells is not actively stabilized. With a typical
potential depth of 30 kHz, corresponding to an overall light power of Ptot ≈ 200µW ,
we need a passive stability of the relative potential depth on the order of 10−4 to
observe coherent oscillations.
When we started the tunneling experiments in the double well, we observed

rather short coherence times. We then observed that the tilt at which we observed
the tunneling resonance changed as a function of time after switching on the
second potential well. We concluded that switching on the second potential well
leads to an additional heating of the acousto-optic deflector which generates both
beams. As a consequence, the diffraction efficiency in the device changes until it
has reached its new equilibrium temperature. In this process the relative depth
changes by more than J . This drift, however, turned out to be reproducable for
each cycle of the experiment and we compensate it by applying an exponential
ramp to the relative RF powers with a time constant of ≈ 400ms. In this way,
our setup is only limited by long-term drifts of the relative depths which is on the
order of 10Hz to 20Hz per day.
In the future, we aim for an active stabilization of the relative depths with

the help of a fast camera read-out. This will allow us not only to eliminate the
long-term drifts but it is also crucial for the extension of the potential beyond two
wells. First steps on that project are reported in [Lak15].

6.2.4 Calibration of the on-site interaction
For two interacting particles, the dynamics cannot be described by the single-
particle Hamiltonian anymore. As a consequence of the interaction, the two
particles tunnel in a correlated way and the observed oscillations are not describable
by a single sinusoidal function (see Figure 6.3 b). Knowing the experimental
parameters of the system, we can predict the time evolution. Figure 6.3 b shows
the prediction based on the parameters (solid line) which fully agrees with the
measurement.
To calibrate the on-site interaction we perform conditional tunneling similar

to [Tro08]. We prepare the two fermions in state |LL〉 and change the scattering
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Figure 6.6: Calibrating the on-site interaction by conditional tunnel-
ing. a) We measure the on-site interaction U by comparing the position
of pair and conditional single-particle tunneling. The data shows the time-
averaged probability to find two particles (blue) and a single particle (green)
in the second well as a function of the tilt ∆. b) We compare the results
for different scattering lengths and tunnel couplings with a calculation in a
single cigar-shaped trap and find good agreement.

length by means of a Feshbach resonance. Then, we switch on the tunnel coupling
as explained above. Due to the interaction the two particles can only tunnel as a
pair in case of a symmetric double-well potential. This tunneling will happen with
much lower frequency compared to the single-particle tunneling and the resonance
is more narrow. By tilting the potential we can compensate the on-site interaction
energy. Then single-particle tunneling between the two wells can be restored, in
case that the other particle stays in state |L〉. By scanning the tilt for different
magnetic fields and measuring the two-particle and the conditional single-particle
resonance, we can infer the on-site interaction strength U = −2∆.

An example of the conditional tunneling is shown in Figure 6.6. After scanning
the tilt and averaging over different tunneling times we observe two distinct
peaks that belong to pair tunneling or conditional single particle tunneling. To
distinguish the two processes, we plot the probabilities to find on (green data
points) or two particles (blue data points) in the right well of the potential. We
fit the two peaks and extract the distance between the two resonances. Using the
calibration of the tilt we can then deduce the on-site interaction energy U in units
of the tunnel coupling.

We performed the calibration for two different tunnel coupling strengths J/h =
(67.3± 0.5)Hz (blue data points) and J/h = (142.0± 0.5)Hz (green data points)
and all magnetic fields, that we will use later. The results are plotted in units of the
axial trap frequency. The measured values agree with a calculation (orange solid
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line) of the interaction strength expected in a cigar-shaped harmonic potential of
an aspect ratio of η = 7. To do this calculation, we use the theory developped in
[Idz05]. A detailed explanation on the calculation can be found in Section 2.4.3.
All in all, the investigation of dynamics in the double-well potential allows us

to calibrate the Hubbard parameters for further experiments. The observation of
coherent oscillations over several periods also demonstates a sufficient stability of
the potential. Both aspects are necessary prerequisites for the realization of the
fundamental building block of the Fermi-Hubbard model.

6.3 Preparing and probing of eigenstates in a
double-well potential

The interesting low-temperature phases of the Hubbard model are governed by the
ground state properties of the system [Aue98]. To realize the fundamental building
block of the Hubbard model, we have to be able to deterministically prepare two
interacting fermions in the ground state of the system. At repulsive interaction,
the ground state exhibits an increasing probability of singly occupied sites similar
to a Mott-insulating state (see Figure 6.8). At attractive interaction, the double
occupancy increases as expected for a charge-density wave. We successful prepare
eigenstates of the system and perform further investigations of the level structure
of the Hubbard model by measuring the super exchange energy. By using our
novel single-atom resolved imaging technique (Chapter 4) we later demonstrate
that the ground state exhibits strong correlations (see Section 7).

6.3.1 Adiabatic ramping into eigenstates
For the ground state preparation, we start our experiments with two non-interacting
fermions occupying the ground state of a single microtrap. Similar to the ground
state of the Hubbard model, this initial state has a total spin of S = 0 as
demonstrated in Section 5.2 and a symmetric spatial wave function.
Then, as depicted schematically in Figure 6.7 a, we add the second potential

well and introduce a large tilt. Consequently, the two atoms occupy the state |LL〉
in an uncoupled double well. We chose a tilt of ∆ = −1/2~ωax, such that the left
well is deeper than the right well. Then we turn on the tunnel coupling J . As
the tilt is much larger than the tunnel coupling J , this brings us directly into the
ground state of the coupled double well as the overlap of |LL〉 with the ground
state of the tilted double well is almost 1. After this, we can adiabatially ramp to
the relative depth of the two wells to zero.
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Figure 6.7: Adiabatic passage into the ground state. a Preparation of
two fermions the ground state of the double well. We start with two fermions
in the ground state of a single optical tweezer. We then add a second well
and introduce a finite tilt ∆ in the double-well potential. After that, we
couple the double well while staying in the ground state of the system as
the tilt is much larger than the tunnel coupling J . We can then ramp the
tilt to zero. To probe the system, we decouple the wells and switch off one
of them. Then we count the atoms in the remaining well. b Adiabaticity
of the ramp accross the resonance. We start with two atoms in state |LL〉
in a coupled double well of J/h = (142.0 ± 0.5)Hz. Then, we change the
relative depth with 2J/100ms and measure the mean atom number per well
at different tilt values. For large negative (positive) tilts, we find both atoms
in the left (right) well plotted as blue (green) data points. Each point is the
mean value of about 130 measurements. Within the error bars we do not
observe a reduction in the mean atom number after the ramp into the right
well. The solid lines show the expectation from the Hubbard model.

To prove that the ramp of the tilt is adiabatic, we ramp the system across
the resonance to ∆ = +1/2~ωax. Figure 6.7 shows a plot of the population per
well across the tunneling resonance. We compare the ground state population in
the second well after the ramp with the ground state population in the first well
before the ramp. Within the error bars, we observe no reduction in ground state
populations for ramp speeds of 2J/100ms.
After the preparation of two non-interacting fermions in the ground state of

the symmetric double well, we adiabatically ramp the interaction strength to
the attractive side around 300G (asc = −288 a0) or to the repulsive side 740G
(asc = +2974 a0) within 60ms. To check for the adiabaticity of the field ramp,
we hold it at the respective fields for various different hold times and then ramp
the system back to U = 0 and ∆ = −1/2~ωax. We compared the ground state
population with and without the full ramp. We did not observe any heating, that is
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Figure 6.8: Occupation probability as a function of the interaction
strength. a) Occupation statistics of the ground state |a〉. The green
(blue) data points show the single (double) occupancy. Starting from equal
probabilities at U = 0, the probability of single occupancies rises (drops)
with increasing repulsion (attraction), exhibiting the two-particle analog of a
Mott-insulator (charge-density wave). b) Occupation statistics of state |c〉.
Here the double occupancy rises with increasing repulsion. Due to the finite
preparation fidelity in the system, the probabilities have been corrected in
both plots. The solid lines show the occupation probability calculated from
the Hubbard model.

caused by the magnetic field ramps. This means that our fidelity of preparing the
ground state of the double well with interaction is only limited by the preparation
fidelity in the single well, which is typically above 90%.
In a similar way, we could also prepare the excited state |c〉 of the two-site

Hubbard model. This can be understood by taking a look at Figure 6.1. For the
ground state preparation, we started with the two atoms occupying the deeper
well. To prepare the excited state |−〉 = 1/

√
2(|L〉 − |R〉), both atoms occupy the

well that is less deep. In an adiabatic ramp, one can then reach state |−〉 and
subsequently follow it adiabatically to higher interaction strengths. As our system
is well isolated from the environment and the optical potential does not heat the
system significantly, we do not observe a decay into lower-lying states. Note, that
for the excited state |c〉 the ramp to higher fields has to be slower to maintain
adiabaticity, as a coupling into state |b〉 is not forbidden by symmetry.

6.3.2 Measuring occupation probabilities
To probe the prepared state, we measure the site-resolved occupation probability
as a function of the interaction strength. We perform the measurement of the
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occupation number per well, as explained above (see Figure 6.7). For the presented
measurements, we repeated the experiment about N ≈ 300 times for each data
point and calculated the probabilities n′i = Ni/N to find i = 0, 1 or 2 atoms
in one well. The measured occupation probabilities are influenced by our finite
preparation and detection fidelity. In the symmetric double well, we cannot
distinguish these two processes. For this reason, we combine them to the fidelity
p, which we know from previous measurements. Using combinatorics, we can
calculate the ideal probabilities n0, n1 and n2:

n2 = n′2/p
2

n1 = n′1/p− 2(1− p)n′2/p2

n0 = n′0 − n′1(1− p)/p+ n′2(1− p)2/p2 . (6.6)

From this, we calculate the probability for single occupancy P1 = n1 and the
probability for double occupancy P2 = n0 + n2.
Figure 6.8 shows the resulting occupation probabilities as a function of the

interaction strength for state |a〉 and state |c〉. For the non-interacting system we
measure equal probabilies of finding single or double occupancy as both atoms
distribute equally on both sites. This is the same for both states |a〉 and |c〉 and
we can therefore not distinguish the two states at that point.

With increasing interaction strength the probability for single occupancy in
state |a〉 rises almost to unity. This can be seen as the two-particle analog of the
Mott-insulator state. For attractive interaction, however, the double occupancy
becomes more and more favorable leading to a charge-density-wave like state. The
excited state |c〉 shows exactly the opposite behavior. With increasing repulsion,
the double occupancy rises. Our measurements are in agreement with calculations
from the two-site Hubbard model. The solid lines show the calculated occupancies
where P1 = | 〈ψ|LR〉 |2 + | 〈ψ|RL〉 |2 and P2 = | 〈ψ|LL〉 |2 + | 〈ψ|RR〉 |2.

6.3.3 Resolving the super exchange energy
The emergence of quantum magnetism is based on collective ordering of spins in a
material. The underlying mechanism can be explained by the super exchange in a
double-well potential. The energy scale of the super exchange is 4J2

U
which is often

smaller than the scale of the temperature. This complicates its observation in form
of anti-ferromagnetic correlations in larger systems [Har15, Gre11]. In [Tro08]
the super exchange was observed in a superlattice of double wells by tunneling
measurements of bosons. We take a different route to measure the super exchange
using the deterministic preparation of eigenstates in the double well. By means of
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modulation transfer spectroscopy to the higher lying states we could measure the
super exchange energy for two fermions.

Naturally, the super exchange energy is defined as the energy difference between
the ground state |a〉 and the state |d〉. These two states have different spin wave
functions. Transitions between them are only possible if the spin and the spatial
degree of freedom couple. In our system, we work in a parameter regime where
state |a〉 and state |d〉 do not couple. Despite this fact, we can measure the super
exchange energy as it is also responsible for the energy splitting of the states |b〉
and |c〉.

Modulation transfer spectroscopy

We measure the energy difference between the states |c〉 and |b〉 by performing
modulation transfer spectroscopy. We prepare state |c〉 as explained in Section
6.3.1 with different interaction strengths reaching from U = −1.3 J to U = +10.1 J .
Then, we sinusoidally modulate the overall trap depth for 200ms with an amplitude
that varies the tunnel coupling by not more than 0.11 J . For the modulation,
we choose frequencies between 30Hz and 300Hz. If the modulation frequency
corresponds to the energy difference, ∆Eb,c, then a resonant transfer of population
into state |b〉 is possible and the population in state |c〉 decreases.

We probe the resonant transfer of the population by adiabatically ramping back
the interaction to U = 0 and the tilt to ∆ = −1

2~ωax. If the system is still in state
|c〉, both atoms end up in the left well. If the system was transfered into state |b〉
however, one atom will end up in the left well and one in the right well. We detect
the atom number in the right well as a function of the modulation frequency (see
inset of Figure 6.9) and extract the resonance frequency with a Gaussian fit.
The energy difference Eb,c does not only tune with the interaction energy U

but is also significantly changed when the tilt of the potential is on the order of
4J2/U . As the passive stability of the relative depth is limited to about 30Hz
which is on the same scale as the expected super exchange for U ≈ 10 J , we
perform the modulation transfer spectroscopy for different tilts around ∆ = 0.
By fitting a numerical calculation of the Hubbard model to the centered data
and using the calibrated on-site interaction, we obtain the dashed lines in Figure
6.9. The deviations can be explained by assuming a modified tunnel coupling
of Jmod = (70.7± 0.3)Hz= 1.06J which we obtain by a fit of the data at U = 0.
The solid lines show the expected energy differences using the modified tunnel
coupling. From this fit, we extract the energy differences at ∆ = 0.

108



6.3 Preparing and probing of eigenstates in a double-well potential

E
b
c
q(

H
z)

TiltqΔq(Hz)

0.0qJmod

1.0qJmod

2.0qJmod

3.6qJmod

5.9qJmod

9.3qJmod

-1.2qJmod

50 0 50
0

50

100

150

200

20 40 60 80 100 120 140 160 180

0.00

0.25

0.50

M
e

a
n

qa
to

m
qn

u
m

b
e

r

Modulationqfrequencyqfq(Hz)

Figure 6.9: Modulation transfer spectroscopy. Starting in state |c〉 we
modulate the overall trap depth by 0.11 J to drive resonant transitions to
state |b〉. Ramping the system back to U = 0 and ∆ � 0 and measuring
the average atom number in the right well, we can extract the resonance
frequency (Inset). We perform these measurements for different interaction
strengths (shown in different colors) and different tilts around ∆ = 0. Using
the calibrated on-site interaction energy, we fit the position of the balanced
trap and can extract the energy difference with a numerical calculation of
the Hubbard model (dashed lines). The deviation from the measurement
hint towards a modified coupling strength Jmod = 1.05 J = (70.7± 0.3)Hz
due to the periodic trap modulation (solid lines).

Measurement results for the super exchange

The modulation transfer spectroscopy allows us to observe the transition to second-
order tunneling. For the non-interacting system we find an energy difference
Eb,c ≈ 2J , which is agrees with the single-particle tunneling rate. As we increase
the interaction strength, the energy difference between the two states decreases as
single-particle processes are more and more suppressed. It eventually converges to
the expected super exchange scale 4J2/U which is described by a second-order
tunneling process. By measuring the energy difference between state |b〉 and state
|c〉 we could resolve the super exchange energy down to 30Hz at U ≈ 10J .

To compare our measurements with the expected energy spectrum of the two-site
Hubbard model, we add the energy of state |b〉 which increases linearly with U to
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Figure 6.10: Observing the transition from first-order to second-
order tunneling. We plot the measured energy difference between state |c〉
and state |b〉. To visualize the agreement with the theoretical prediction, we
add the energy E|b〉 = U to the measured values. The dashed line shows the
scaling of the super exchange energy derived from second-order perturbation
theory. An agreement with the exact solution is only expected at high U/J ,
where second-order perturbation theory is valid.

the results and plot U + Eb,c in Figure 6.10. The data is in good agreement with
the expected super exchange energy.

6.4 Singlet-triplet oscillations

For all our experiments presented so far, we started out with two atoms in a spin
singlet state S = 0. Adiabatic ramps into the ground state of the double well
potential did not act on the spin wave function and so we were restricted to that
subspace for the experiments presented above.
To drive a transition from the spin singlet state to the spin triplet state, the

symmetry of both the spatial and the spin wave function have to be changed
simultaneously. This is possible by coupling the spin and the spatial degree of
freedom in the system. This so-called spin-orbit coupling can be achieved by
applying a magnetic field gradient to the atoms with different magnetic moments
[Tro10]. In the following, we will show how we access the spin triplet by performing
singlet-triplet oscillations. Details can also be found in [Mur15a].
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6.4.1 Engineering oscillations between singlet and triplet
In the Mott-insulating regime (U � J), the Hubbard model can be approximated
by the Heisenberg model. The effective model assumes single occupation of each
site and a spin-coupling with a coupling constant given by the super exchange.
We want to drive transitions between the two lowest states, which are a spin
singlet and a spin triplet state. Choosing the basis {|↑, ↓〉 , |↓, ↑〉}, we can write
the Heisenberg Hamiltonian as

H = Jex

(
SL · SR −

1
4nLnR

)
= 1

2

(
−Jex Jex
Jex −Jex

)
(6.7)

If a magnetic field is added to the system, that spatially varies over the double
well, and additionally the atoms have different magnetic moments, an energy bias
is added between the two states |↑, ↓〉 and |↓, ↑〉. This energy offset is

2∆m = (µ↑,LBz
L + µ↓,RB

z
R)− (µ↓,LBz

L + µ↑,RB
z
R) = ∆Bz

L,R∆µ↑,↓ (6.8)

where µ↑,L denotes the magnetic moment of |↑〉 localized on the left site, and Bz
L is

the magnetic field in z-direction at site L. Including this term in the Hamiltonian
results in

H = 1
2

(
−Jex + ∆m Jex

Jex −Jex −∆m

)
(6.9)

If the magnetic field gradient is zero, we recover the spin singlet and the spin
triplet as the eigenstates of the system. In the limit of ∆m � Jex, the eigenstates
of the system are |↑, ↓〉 and |↓, ↑〉. As a consequence, by switching on the magnetic
field gradient diabatically, an initial singlet state is no longer an eigenstate and
the system will perform an oscillation between the singlet and the triplet state.

6.4.2 Measuring singlet-triplet oscillations
The frequency of this oscillation depends on the energy difference between the two
eigenstates fSTO = 2∆m/h. In order to observe the oscillation in the experiment,
its frequency has to be well above 1Hz. As shown in equation 6.8, it scales with
the difference in the magnetic moments of the two atoms. For all our experiments
presented so far, we worked at a magnetic offset field, where the two magnetic
moments differ by less than 1%. For the singlet-triplet oscillations, it is favorable
to perform our experiments at around 25G, where the magnetic moments have
opposite sign (see Figure A.2). Additionally, the oscillation frequency scales with
the difference in magnetic field between the two wells. Due to the small distance
between the two wells of about 2µm, a large B′ = dB/dx is required. Additionally,
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Figure 6.11: Singlet-triplet oscillation. We prepare two fermions with
opposite spin in the spin singlet state and quickly ramp the magnetic field
down to 25G and add a magnetic field gradient. As the singlet state is not
an eigenstate of the new Hamiltonian (eq. 6.9) the system oscillates to the
triplet state and back. We measure the oscillation by mapping the final
state to the occupation number of the left well. We plot the probability
to detect two fermions (blue, singlet state) and one fermion (green, triplet
state) as a function of the evolution time. We observe a frequency of
fSTO = (12.53 ± 0.03)Hz. From this we can calculate a magnetic field
gradient of (75.9± 0.2)mG/cm present during the oscillation. We observe
exponential damping with a timescale of about 2 s.

we can only apply a magnetic field gradient along the z-direction in our setup.
Only an imperfect alignment of the double well to the symmetry axis of the coils
leads to a small magnetic field gradient along the x-direction.
We perform the singlet-triplet oscillations by preparing two fermions in the

ground state of the double well and then ramp to an interaction of U ≈ 10J . After
that, we decouple the two wells by increasing the barrier height within 40ms to
Ptot ≈ 900µW. While doing this, we ensure that we do not excite the system into
higher trap levels. In that way, we initialized the system in state 1/

√
2(|LR〉+ |RL〉)

with pure single occupation. Within 12ms, we then ramp the magnetic offset field
from 740G to around 25G. At the same time, we apply a magnetic field gradient
and let the system perform singlet-triplet oscillations for some time. We stop the
oscillation by quickly ramping the magnetic offset field back to 740G and the
gradient to zero. In order to probe the final state, we couple the double well again
and ramp to U = 0 and ∆� 0. As a result, we observe two particles in the left
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6.4 Singlet-triplet oscillations

well, if the final state was a spin singlet. In case of a spin triplet state |d〉, we only
measure one particle in the left well.

Plotting the result for various evolution times results in oscillations as shown in
Figure 6.11. We observe an oscillation with a frequency of fSTO = (12.53±0.03)Hz.
We performed this measurement at a magnetic offset field of B = 25G. From the
data, we can deduce a magnetic field gradient of (75.9± 0.2)mG/cm along the
axis of the double-well potential. The damping time of the oscillation is much
longer than for the tunnel oscillation in Section 6.2. This is due to the fact that
the oscillation is insensitive to a drift of the potential bias ∆. The only mechanism
which leads to the decoherence of the oscillation is an instability in the magnetic
field.

As we usually perform all our experiments at high magnetic fields, the prepared
ground state |a〉 is insensitive to decoherence from a residual magnetic field gradient.
In the regime of large repulsion, the occupation statistics becomes more and more
insensitive to drifts of the tilt ∆. In the next chapter, we use the prepared ground
state to study strong correlations between the two interacting fermions.
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Chapter 7

Detecting correlations of two
atoms in a double-well potential

In the last chapter, we demonstrated the preparation of the fundamental building
block of the Fermi-Hubbard model, which consists of two fermions in a double-well
potential. Taking this as a starting point, we aim for assembling larger quantum
states by preparing several building blocks next to each other and merging them
in an adiabatic way. In this way, we will obtain mesoscopic quantum states with
strong correlations. We then want to characterize the mesoscopic states by measure
the full set of correlation functions.

Using our new imaging technique which provides single-atom and spin resolution
(see Chapter 4) we have a tool to characterize prepared quantum states on a single-
atom level. By directly detecting each atom after an expansion into momentum
space, we can extract the full set of correlation functions that characterizes the
state. In the following, we will demonstrate the detection of correlations and
benchmark our technique. For this, we study the correlations for the simplest
systems that already show interesting correlations: two fermions prepared in the
double well potential as presented in Chapter 6. As our technique is scalable, it
can be used to study strongly correlated systems with larger particle numbers.

In the first section, we introduce the measurement of correlations in momentum
space. We will test it by measuring the first order coherence of a single particle
prepared in the double-well potential. In the next step we add a second identical
fermion to the system and observe anti-bunching in the correlation function of the
two identical fermions. In this way, we can benchmark our correlation detection.
Finally we study two interacting fermions prepared in the ground state of the double
well. As we increase the interaction between the two distinguishable particles, we
observe the increase of correlations in the form of bunching in momentum space.
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Chapter 7 Detecting correlations of two atoms in a double-well potential

7.1 Spatial correlation function in real and
momentum space

The measurement of correlations allows the characterization of many-body quan-
tum states. Depending on the system, correlations can be present in different
observables. Here, we are interested in spatial correlations. In a quantum gas
microscope, one has access to the density distribution of the system with site-
resolution. By analysing density-density correlations one can for instance identify
the Mott-insulating phase or observe dynamics such as the light-cone like spreading
of correlations as a function of time after a quench of the system [Che12]. In
2004, Altman et al. proposed the measurement of second-order correlation in
momentum space by observing noise correlations in ultracold gases after an expan-
sion in time-of-flight [Alt04]. By measuring the sample with absorption imaging
and extracting two-point noise-correlations of each realization, it was possible to
measure pair correlations [Gre05]. Furthermore, one observed bunching of atoms
in a bosonic Mott-insolator [Fö05] as well as anti-bunching in the fermionic band
insulator [Rom06]. In experiments with ultracold fermionic and bosonic Helium
atoms, the single-atom resolution in momentum space allowed for the beautiful
demonstration of bosonic bunching and fermionic antibunching in Hanbury-Brown
Twiss experiments with massive particles [Sch05, Jel07] and the characterization
of thermal bosonic samples as well as quasi-BECs [Hod17, Fan16].
In the last chapter, we characterized our prepared states by measuring the

occupation statistics per well. With the additional knowledge of having two atoms
in the system in more than 95% of the cases, we could infer the site-resolved density
distribution of the state in real space |Ψ(x1, x2)|2. By changing the interaction
energy adiabatically and studying how the occupation statistics evolves, we could
identify the prepared state. However, as we measure the absolute square of the
wave function in an insitu experiment, we cannot distinguish between a symmetric
and an anti-symmetric spatial state at U � J .

In this chapter, we extract this information by measuring the density distribution
of the particles in momentum space |Ψ̃(k1, k2)|2. There, the difference between the
symmetric and the anti-symmetric spatial wave function becomes apparent because
of the interference of separated parts of the wave function which reveals their phase
difference. This works for a one-particle state as well as for a two-particle wave
function where the symmetry in the two-particle state influences the two-particle
interference pattern. Measuring in momentum space comes to the expense of
being insensitive to the sign of an eventual asymmetry in the density-distribution.
A combination of measuring the density distribution as well as the momentum
distribution of a prepared state, would allow to fully characterize the state.
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Figure 7.1: Measuring correlations in the double well. a) We start
with a prepared wave function in the double-well potential. At time t = 0, we
switch off the double well and let the system expand in the optical dipole trap
(ODT). After a quarter of the trap period T , the momentum distribution
of the initial state translated to a spatial distribution, which we image. b)
Optical setup. The high-resolution objective creates two partly overlapping
potential wells. The axis of this double-well potential coincides with the
axial direction of the cigar-shaped optical dipole trap, which we use for the
matter-wave expansion. To image the momentum distribution along the
double-well axis, we let the state expand for Tax/4 and integrate along the
other two directions.

7.1.1 Measuring the momentum distribution in a double
well

The momentum distribution can be accessed by performing a ballistic expansion
in free space for a long time, the momentum distribution of a quantum state (at
time t = 0) can be mapped to real-space. This mapping can also be achieved
by performing the expansion in a large harmonic trap where after a quarter of
the trap period the position of the particles correspond to the initial momentum
[Mur14]

〈n(q)〉t=0 ∝ 〈n(X)〉T/4 . (7.1)

where the exact proportionality depends on the system. An expansion in a
harmonic trap (see Section 4.4) has the advantage that the atoms remain trapped
at a fixed region and additionally it take a finite amount of time until the spatial
distribution corresponds to the initial momentum distribution.

In our setup, two momentum scales are relevant. The localization of the particles
on the individual wells is described by the Wannier function φ(x − xi). For a
deep lattice, it can be approximated by a Gaussian wave function with a width
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Chapter 7 Detecting correlations of two atoms in a double-well potential

of σx. This results in a momentum uncertainty of the particle of σp = ~/2σx. In
addition to this, the distance of the two wells d gives rise to a lattice momentum
~klatt = 2π~/d.

We will map these momentum scales to position space by an expansion for T/4
in a harmonic potential with a trap frequency of ω. The mapping from momentum
q to position X only depends on the curvature of the potential in which the
expansion takes place. From this follows the fringe spacing D ∝ klatt and the
width of the wave function σX ∝ σp after the expansion

D = h

dmωODT
and σX = ~

2σxmωODT
. (7.2)

In our experimental setup, we let the atoms expand in a cigar-shaped three-
dimensional harmonic potential which is created by the optical dipole trap. The
setup is shown schematically in Figure 7.1 b). The axis of the double well coincides
with the axial direction of the optical dipole trap. Due to the geometry of the
harmonic potential, the trapping frequencies are different along the axial and the
transversal direction. Therefore, we do not reach momentum space in all directions
simultaneously.

We are mainly interested in correlations along the direction of the double well.
Consequently, we perform the expansion for t = Tax/4 to reach momentum space
along the axial direction of the harmonic potential. During this expansion, the
atoms perform several oscillations in the y- and z-direction. After Tax/4 we image
the atoms from the top, as shown in Figure 7.1 b which integrates over the z-
direction. We perform an additional integration along the transversal direction of
the optical dipole trap and obtain

n(X, t = Tax/4) =
∫∫

n(X, t = Tax/4) dy dz . (7.3)

In that way, we obtain the density distribution in one dimension which is propor-
tional to the initial momentum distribution.

For all following measurements that are presented, we chose a trap frequency of
ωax,ODT = 2π × 73Hz. Consequently, a distance of d = 1.5µm results in a fringe
spacing is 96.6µm. For the total light power of about 210µW in the microtrap one
obtains a distribution with a width of σX = 50.4µm.

7.2 Single-particle interference in momentum
space

In a first set of experiments, we study single-particle interference of one particle
prepared in the spatially symmetric ground state of the double well. For this, we
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Figure 7.2: Single-particle interference of atoms and light. a) Young’s
double-slit experiment. Light with a flat wave front is illuminating a double
slit. After propagation into the far field, the intensity distribution is measured
on a screen. b) An atom prepared in the symmetric ground state of a double
well potential. The momentum distribution of the particle, detectable e.g.
after an expansion in time-of-flight is shown below. In both scenarios (a and
b), the fringe distance is determined by the distance of the two slits (Wannier
functions) and the envelope is determined by the shape of one single slit
(Wannier function).

use the preparation scheme presented in Section 6.3. After that, we let the wave
function expand and detect the atom position with our single-atom imaging.

7.2.1 A double-slit experiment with a single particle
The momentum distribution of a single particle in the ground state of a double-
well potential can be understood in analogy to Young’s double slit experiment
with light [You02]. A sketch of a double-slit experiment is shown in Figure 7.2 a.
Monochromatic light with a flat wave front falls on a double slit, where it gets
blocked everywhere apart from the positions of the two slits. This results in an
intensity distribution consisting of two rectangles and no phase difference between
the waves. The electromagnetic field then propagates into the far field where one
measures the intensity distribution on a screen. Young observed intensity fringes
at distances that changed inversely with the distance of the two slits. Furthermore,
the envelope of the intensity pattern is determined by the Fourier transform of
the intensity distribution through one single slit.
In a similar way, the initial wave function of the particle plays the role of the

initial electromagnetic field. As shown for a symmetric double well in Figure
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Chapter 7 Detecting correlations of two atoms in a double-well potential

7.2 b the particle is described by the symmetric superposition of being localized
in the left or right well |+〉 = 1/

√
2(|L〉 + |R)〉. After the expansion we detect

the position of the particle. Repeating the experiment several thousand times
reveals an interference pattern similar to the distribution of the light intensity
on the screen1. The interference pattern corresponds to the absolute square of
the Fourier transformed initial wave function. The Fourier transform of the two
parts of the wave function localized at x = −d/2 and x = +d/2 result in two
plane waves with different phases e±ikd/2. This causes the interference to emerge
where symmetric superposition of the two localized wave functions lead to the
constructive interference at the center.

7.2.2 Calculating the single-particle interference
We can describe the initally prepared wave function in a more quantitative way and
include eventual imperfections in the preparation or the expansion which change
the resulting atom density. We assume that we prepared the particle in a pure
state with no restrictions on the tilt of the potential ∆. Then the single-particle
wave function is described by [Gro99]

Ψ(x) = cLφ0(x− d/2) + eiϕ cRφ0(x+ d/2) (7.4)

where φ0(x) describes the Wannier function in the ground state of one well, cL and
cR are the probability amplitudes of the individual wells with c2

L + c2
R = 1 which

depend on the tilt of the potential. Furthermore, we assume a relative phase ϕ
between the two Wannier functions which can be present from the beginning or
accumulate during the expansion. For example, if ϕ = π, the wave function of the
single particle is anti-symmetric.
In the next step, we calculate the Fourier transform of this wave function

assuming that we can apply the tight-binding approximation and the Wannier
function can be described by a Gaussian wave function with the width of σX . The
absolute square is described by

|Ψ̃(X)|2 = N exp
(
−2

(
X

2σX

)2)(
1 + 2cL

√
1− c2

L cos (2πX/D + ϕ)
)
. (7.5)

In this expression, we find the two momentum scales, introduced above. The
Gaussian function describes the envelope of the interference pattern with a width
σX which is inversely proportional to the width of the Wannier function of the

1Performing the expansion of the wave function in the harmonic trap is equivalent to focusing
the propagating light with a lens in order to get the Fourier transform of the intensity
distribution.
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Figure 7.3: Momentum distribution of a single atom prepared in a
double well. We prepare a single atom in state |+〉 (a) and |−〉 (b). After
this, we switch off the trapping potential and let them expand in a large
harmonic trap for a quarter of the trap period. We image the atom, detect
their position and plot the normalized distribution. The solid lines are
fits to the data according to equation 7.5. We find an envelope width of
σX,|+〉 = (43.4± 0.5)µm and σX,|−〉 = (47.8± 0.5)µm, and fringe spacings of
D|+〉 = (102.1± 0.8)µm and D|−〉 = (96.1± 0.7)µm.

localized particle. The cosine function describes the actual interference with a
spacing caused by the lattice momentum. Additionally, a probability amplitude
of c2

L = 0.5 which corresponds to ∆ = 0 leads to full visibility of the interference
fringes and a finite value of ϕ causes the interference pattern to shift away from
the center. In the extreme case of ϕ = π, we observe destructive interference at
the center. N takes care of the normalization.

7.2.3 Preparation and quantitative analysis
In the experiment, we prepare two non-interacting particles in the ground state of
a single well and then ramp adiabatically into the ground state of the double well
with a depth of2.6µK, as explained in detail in Section 6.3. During the preparation
of the quantum state in the double well, we additionally ramp on the optical dipole
trap making sure that no heating occurs. After this, we switch off the double-well
potential and let the system expand in the optical dipole trap. After 3.5ms, we
image the atoms with single-atom resolved fluorescence imaging and extract their
position as well as their hyperfine spin.
As the atoms do not interact we can consider them as independent. Here, we
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Chapter 7 Detecting correlations of two atoms in a double-well potential

only analyse the data of one of the two atoms. Figure 7.3 a shows the normalized
distribution of the measured position of the atom in the symmetric ground state
of the double well in about 3000 realizations. The distribution shows constructive
interference in the center with a fitted visibility2 of V|+〉 = (89.8 ± 1.4)%. The
positions of the side maxima corresond to a momentum difference of one lattice
momentum. Figure 7.3 b shows the normalized position distributions for the
anti-symmetric state |−〉 ∝ (|L〉 − |R〉) with destructive interference in the center
of the distribution and a visibility of V|−〉 = (77.4± 1.4)%.
From the fits to the data according to equation 7.5, we extract information

about the momentum distribution in the double well. We find an envelope width
of σX, |+〉 = (43.4 ± 0.5)µm and σX, |−〉 = (47.8 ± 0.5)µm, that is in agreement
with the measured envelope width in Section 4.4. Furthermore, we determine
fringe spacings of the interference pattern. For the symmetric state, we obtain
D|+〉 = (102.1± 0.8)µm and the spacing of the anti-symmetric state amounts to
D|−〉 = (96.1± 0.7)µm. From the fit to the data, we can bound the eventual phase
evolution of the states during time-of-flight to be smaller than (0.003± 0.01)π.
If we assume the preparation of a pure state, we can deduce how much our

prepared state deviated from the symmetric ground state via the fringe visibility
V . From the fits, we deduce a residual tilt that is smaller than |∆+| ≈ 0.5 J and
|∆−| ≈ 0.85 J . As we are measuring the absolut square of the wave function, we
cannot determine the sign of the tilt.
However, the fringe visibility can also be reduced by the finite resolution of

the momentum measurement. With the calculated momentum uncertainty of
∆k/klatt ≈ 8%, the visibility would be reduced to at most 92%. Additionally, it can
be reduced by the preparation of a mixed state. With the available information,
however, we cannot distinguish between a visibility reduction due to a pure state
in a tilted potential or the preparation of a mixed state.

7.3 Correlations of two identical fermions
The observation of interference in the density distribution in momentum space
gave us insight into the coherence of a single atom prepared in a quantum state. In
a next step, we want to observe the quantum statistics of two identical fermions. In
order to observe the exchange statistics of the two particles, we study the two-point
correlation function in the momentum distribution. Similar to the momentum
density distribution, we can access the two-point correlation by an expansion of

2The visibility has been extracted from a fit with equation 7.5, where V = 2cL
√

1− c2L. This
is equivalent to the common definition V = Amax−Amin/Amax+Amin where Amax, min denotes
the maximum and minimum amplitude of the signal.
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Figure 7.4: Two-particle interference of two identical fermions. a)
We prepare two identical fermions in the double-well potential. Due to
the Pauli principle, they occupy different single-particle quantum states.
The indistinguishability leads to a destructive interference between the two
depicted paths (green and blue). After expansion we detect the positions
of the two particles X1 and X2. b) The single-particle density distribution
does not show interference fringes. c) The distribution of the measured
distances between two detected particles shows clear interference fringes with
a visibility of 69%.

the particles in the harmonic potential of the optical dipole trap and obtain

〈n̂(X)n̂(X ′)〉T/4 ∝ 〈n̂(q)n̂(q′)〉t=0 . (7.6)

The total wave function of identical fermions is anti-symmetric with respect to
particle exchange. Consider a system with two identical fermions in the overall
ground state. Then one fermion occupies the single-particle ground state φ0(x)
and the other particle occupies the single-particle first excited state φ1(x). The
indistinguishability leads to the following total wave function

Ψ(x1, x2) ∝ (φ0(x1)φ1(x2)− φ0(x2)φ1(x1)) |↑↑〉 . (7.7)

In a double-well potential, the ground state wave function φ0 ∝ φ+ and the first
excited state corresponds to φ1 ∝ φ−. In the limit of tight binding, one can write
the wave function in the Wannier basis φL,R

Ψ(x1, x2) ∝ (φL(x1)φR(x2)− φL(x2)φR(x1)) |↑↑〉 . (7.8)

We use the preparation scheme to initialize a state with two identical fermions
in the two lowest bound states of a single microtrap. After that, we add a second
potential well and use an adiabatic ramp to shift one of the particles into the
lowest state of the second well. The density distribution of the state is depicted in
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Chapter 7 Detecting correlations of two atoms in a double-well potential

Figure 7.4 a. After the preparation, we ramp the total power of the double-well
potential up to 1.3mW within 40ms before we switch off the double-well potential,
let the wave function expand in the optical dipole trap and image the atoms.

7.3.1 Density distribution of single particles
A distribution of the detected positions of the two atoms in the same hyperfine
state is shown in Figure 7.4 b. In contrast to the single-particle system, we do
not observe interference fringes in the density distribution of the particles. We
can fit the density distribution with a Gaussian distribution and extract a width
of (84.1± 1.5)µm. It corresponds to the expected width from the expansion of a
single atom.
We can explain the absence of the interference pattern by calculating the

expected density distribution of the prepared state. The fact that each of the
identical fermions occupies one well, can be expressed in the Fock basis

|1, 1〉 = â†Râ
†
L |0〉 (7.9)

where the creation and annihilation operators obey the fermionic anti-commutation
relations and â†i describes the creation of one particle at site i. Consequently, the
expectation value of the number operator 〈â†l âj〉 = δjlnl. We observe the quantum
statistics in the momentum distribution. To express this, we construct the creation
and annihilation operators in momentum space

b̂i =
∑
j

âjeikixj (7.10)

We can then calculate the density distribution in momentum space

〈n(q)〉 = 〈b̂†i b̂i〉 = |φ̃(q)|2
∑
j,l

ei(kixj−kixl) 〈â†l âj〉 (7.11)

where φ̃(q) describes the single-particle wave function in momentum space.
Applied to the state containing two localized identical fermions, the density

distribution is described by

〈n(q)〉 = |φ(q)|2
∑
j,k

eik(xi−xj)δkjnj (7.12)

= Ntot |φ(q)|2 (7.13)

where Ntot describes the number of particles contained in the quantum state. The
calculated density distribution only features the envelope of the single particle but
no interference pattern, as observed in the experiment.
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7.3.2 Two-point correlations between two particles
The single-particle density distribution does not show interference fringes. Nev-
ertheless, the two-particle wavefunction described in equation 7.8 contains corre-
lations. To extract the correlations, we determine the distance between the two
atoms ∆X = |X1 −X2| detected for each realization of our experiment and plot
their distribution. The distribution of distances for about 4000 shots is shown in
Figure 7.4 c. It shows an interference pattern with a large contrast. We observe
anti-bunching at integer lattice momenta because the identical fermions do not
occupy the same momentum modes due to the Pauli exclusion principle. Instead
we observe a high probability to find the two particles at distances to each other,
which correspond to half-integer lattice momenta.

For a quantitative analysis, we study the magnitude of the detected visibility.
In case of a perfect preparation, the quantum system would be in a pure state
for which one expects full anti-bunching. Our data shows a large contrast on the
order of 70%. At zero distance, we observe a very low probability of events in the
experiment. However, this is not only caused by anti-bunching of the identical
fermions but also an artifact of our imaging method: When two atoms have only
a small distance to each other, our the detection method cannot resolve them as
two distinct atoms which are close together. As the photon signals of the two
atoms overlap significantly, these events are instead counted as events containing
only one atom and rejected in the post selection process. The minimum distance
at which two atoms are identified correctly is determined by the typical size of
the photon distribution. We estimate this distance to roughly 6 pixel.
In a periodic potential, two identical fermions also show anti-bunching at the

integer multiples of the lattice momentum. Using this fact, we determine a visibility
of (68.8± 3.6)% in our experiment. This is to our knowledge the first time that
destructive two-particle interference at that scale is observed in an experiment with
identical fermions. We attribute the reduction from full contrast to imperfection in
the preparation which lead to excitations in the system. These excitations do not
destructively interfere and thus add up to the signal as a single-particle amplitude.
We fit an underlying Gaussian function to the fringes that has an amplitude of
≈ 30% of the full signal amplitude.

7.3.3 Extracting correlations from the momentum
distribution

We can calculate the expected wave function in momentum space by a fourier
transform of the quantum state given in real space in equation 7.8. In this way, a
particle on the left well is mapped to |L〉 → φ̃(kj) e−ikjd/2 and a particle on the right
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Figure 7.5: Two-particle interference of two identical fermions. a)
One-dimensional wave function of two identical fermions in real space. The
coordinate of the two particles x1 and x2 are plotted as the two axes. The
wave function only has finite values when one particle is localized on the
left well and the other is localized on the right well. The sign of the two
contributions |LR〉 and |RL〉 is opposite. b) Absolute square of the mo-
mentum distribution of two identical fermions in a double-well potential.
The momentum distribution is obtained by fourier transformation of the
real space wave function. Experimentally, we access it by an expansion in
time-of-flight where the particle momentum gets mapped to the detected
position ki ∝ Xi. The plot illustrates, that the fringes in the momentum
distribution originate from a two-particle interference. The shift of the fringe
pattern is caused by the different signs of the two contributions in real space.

well is mapped to |R〉 → φ̃(kj) eikjd/2, where φ̃ denotes the fourier transformed
Wannier function. Consequently, we obtain the momentum space wave function

Φ̃(k1, k2) ∝ φ̃(k1) φ̃(k2)
(
e−ik1d/2eik2d/2 − eik1d/2e−ik2d/2

)
(7.14)

∝ 1
i
φ̃(k1) φ̃(k2) sin((k2 − k1)d/2) (7.15)

with k1 and k2 denoting the momenta of the two identical fermions. The two-
particle wave function in real space Φ(x1, x2) and absolute square of the momentum
space wave function |Φ̃(k1, k2)|2 ∝ |Φ̃(X1, X2)|2 are sketched in Figure 7.5. The
sketch illustrates that the momentum distribution of the two-particle wave function
can be understood from a two-particle interference where the different signs of the
amplitudes in the real space wave function results in a phase shift of the fringes in
the density distribution in momentum space.

We compare this calculation with our data. For this we extracted the detected
positions X1 and X2 of the two atoms for each realization and plot the distribution
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7.3 Correlations of two identical fermions

c d

a bn(X1,X2)< < n(k1,k2)< <~ n(k1)< < n(k2)< <n(X1)< < n(X2)< <~

γ(k1,k2)γ(X1,X2)~ ~g2(k1,k2)g2(X1,X2)

Figure 7.6: Correlation function of two identical fermions. a) Nor-
malized distribution of positions where the identical particles are localized
〈n(X1, X2)〉. b) Outer product of the uncorrelated part of the distribution
〈n(X1)〉 〈n(X2)〉. c) Two-dimensional covariance matrix γ2(X1, X2) calcu-
lated from a) and b). Non-correlated regions and regions with low signal
have values around zero. Anti-bunching and bunching correspond to negative
and positive values, respectively. d) Two-dimensional normalized correlation
function g2(X1, X2). Values around 0.5 correspond to no correlation. Values
smaller than 0.5 correspond to anti-bunching whereas values larger than 0.5
correspond to bunching. The large variations in the outer part are due to
devision through a small signal.
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Chapter 7 Detecting correlations of two atoms in a double-well potential

of the extracted position pairs as data points (X1, X2) into a diagram. As the
fermions are indistinguishable, we mirror the distribution on the diagonal X1 = X2.
The resulting distribution shown in Figure 7.6 a corresponds to the absolute
square of the two-particle momentum distribution 〈n(k1, k2)〉. The data shown in
Figure 7.6 a is in qualitative agreement with our expectation from the momentum
distribution of the two-particle system and we observe interference fringes along
the diagonal. Additionally, we do not observe any momentum dependence on the
center-of-mass momentum of the particles X1 +X2 in the data.

To study the correlations between the two identical particles, we want to extract
only the correlated part of the data. To do this, we first calculated the uncorrelated
part of the single-particle density distribution by summing the data along X2 and
X1 separately. From this, we obtain two vectors 〈n(X1)〉 and 〈n(X2)〉 that consist
of two Gaussians caused by the single-particle wave functions. By constructing
the outer product of the two vectors, we obtain the two-dimensional distribution
shown in Figure 7.6 b. We can then subtract this outer product which represents
single-particle physics from the data. This is known as the covariant matrix and
defined as

γ2(X1, X2) = 〈n(X1, X2)〉 − 1
2 〈n(X1)〉 〈n(X2)〉 . (7.16)

In the case of totally uncorrelated atoms 〈n(X1, X2)〉 = (1− 1
N

) 〈n(X1)〉 〈n(X2)〉,
with N the number of particles in the quantum state and consequently, the
covariant matrix γ2(X1, X2) takes the value zero everywhere. In regions with few
data points, the resulting values for 〈n(X1, X2)〉 and 〈n(X1)〉 〈n(X2)〉 are both
small and so, the covariance matrix is not very sensitive to shot noise.
Figure 7.6 d shows the calculated covariant matrix for two identical fermions.

We observe clearly visible correlations along the diagonal which corresponds to
bunching for γ2(X1, X2) having positive values and shows anti-bunching where
γ2(X1, X2) has negative values. The amplitude of the values in the covariant
matrix cannot exceed the one of the initial data set and still shows remnants of
the single-particle wave function.
The covariance matrix gives us information about the presence of correlations

in the system. However, using a normalized function is more suited to quantify
the strength of the correlations. Therefore, we also calculate the two-particle
correlation function g2(X1, X2) of our data. It is defined as

g2(X1, X2) = 〈n(X1, X2)〉
〈n(X1)〉 〈n(X2)〉 . (7.17)

For uncorrelated states with N atoms, the correlation function g2(X1, X2) has a
value of 1 − 1

N
which is close to 1 for large N . Therefore, in the literature, the

two-point correlation function is often defined with an additional subtraction of 1.
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7.3 Correlations of two identical fermions

In our case, the subtraction of 1 does not make much sense. For two uncorrelated
particles, we expect a value of 1/2. Our experimental result is shown in Figure 7.6 c,
with clear oscillation between values of zero (anti-bunching) and one (bunching).
In the outer region of the distribution, however, shot noise leads to large variations
of the values and the division by 〈n(X1)〉 〈n(X2)〉 can be problematic. To avoid
a division by zero, we add a small positive value on the order of 10−5 to the
denominator and so the values in the outer region exceed 1 but stay finite.

7.3.4 Extracting the one-dimensional correlation function
The full correlation function g2(X1, X2) of two particles does not show any depen-
dency on the center-of-mass coordinate. Therefore, we do not lose information
when we integrate along the diagonal. In that way, we obtain a one-dimensional
quantitative observable of the quantum state, which is more comparable to ob-
servables used in [Fö05, Rom06]. We use equation 7.17 and integrate over the
center-of-mass position X ′ = X1 +X2. From this we obtain

C(∆X) =
∫
〈n̂(X ′ −∆X/2) n̂(X ′ + ∆X/2)〉 dX ′∫
〈n̂(X ′ −∆X/2)〉 〈n̂(X ′ + ∆X/2)〉 dX ′ (7.18)

Note that also here, we do not subtract unity from the calculated correlation
function, in contrast to the definition in [Föl14].
Figure 7.7 a shows the calculated result for our data. We observe oscillations

around a value of 1 − 1/N = 0.5 over the distance which corresponds to about
three lattice momenta. Values smaller than 0.5 indicate anti-bunching, whereas
bunching is observable if the correlation function is above 0.5. At large distances,
the noise on the data points increase. The reason for this is that these events are
very rare and have a large relative shot noise. Consequently, the full data as well
as the uncorrelated part of the data have large noise which is additionally increase
by normalization.
The integration along the center-of-mass coordinate offers the possibity to

quantitatively determine the correlations in our system. In case of a perfectly
prepared system of two identical fermions in a pure state, we expect the two-point
correlation function described by

C(∆X) = −0.5 cos (klatt∆X) + 0.5 , (7.19)

where the resulting function will oscillate between zero (anti-bunching) and 1
(bunching). In our experiment, we observe a visibility of about 70% of the
expected amplitude for a pure state. We attribute the reduction of the contrast
to the detection of a mixed state with state components that do not show an
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Figure 7.7: Distance correlation of two identical fermions. Normalized
correlation function of the detected distances between two identical fermions.
We observe oscillations over a distance that corresponds to three lattice
momenta. The data show anti-bunching (bunching) at (half integer) integer
lattice momenta where the correlation function has values below (above) 0.5.
Full bunching and antibunching is expected at C(∆X) = 1 and C(∆X) = 0.
The two-particle interference fringes reach a visibility of about 70% of the
possible amplitude.

interference pattern. All in all, the anti-bunching of two identical fermions is
clearly detected.

7.4 Emergence of correlations between two
interacting fermions

In the last section, we discussed that identical fermions show two-particle corre-
lations in the form of anti-bunching. A system of fermions in two different spin
states does not necessarily show correlations in the spatial degree of freedom. In a
non-interacting system, the two particles are independent in the spatial degree
of freedom and the Hilbert space can be separated into two subspaces which
correspond to the two spin states. Consequently, no correlations are present be-
tween the subspaces. Interactions between particles in different spin states couple
the Hilbert subspaces and introduce spatial correlations. The strength of these
correlations depends on the interaction strength in the system. These correlations
are responsible for interesting low-temperature phases [Sac08]. The emergence
of spatial correlations can already be observed in a system of two fermions with
different hyperfine spin state prepared in a double-well potential.
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7.4 Emergence of correlations between two interacting fermions

7.4.1 Uncorrelated fermions
The spatial wave function of two non-interacting fermions with different spins can
be described by a product state of the single-particle wave functions Φ(x1, x2) =
φ(x1)φ(x2). In this case, the expectation value of the density distribution can
be written as the product of the two subsystems 〈n(x1, x2)〉 = 1/2 〈n(x1)〉 〈n(x2)〉.
As a consequence, the two particles are not correlated and the covariance matrix
shows values of zero.
This can be seen for two non-interacting fermions that are simultaneously

prepared in the ground state of the double-well potential. Independently from
each other, the two fermions show a single-particle interference pattern, as already
explained in Section 7.2. Figure 7.8 a shows this single-particle interference in
the density distribution n(X1, X2) after the expansion of the prepared state into
momentum space. As expected, the covariance matrix γ(X1, X2) which measures
the two-particle correlation, has values around zero (see Figure 7.8 d) and the
correlation function of the distances C(∆X) does not feature oscillations but stays
constant around the value expected for an uncorrelated system C(∆X) = 1− 1

N
=

0.5.

7.4.2 Building up correlations
As soon as an interaction is present between the two fermions, the total wave
function cannot be written as a product of two single-particle states anymore and
the interaction leads to a build-up of correlations between the two particles. One
can already observe a qualitative difference looking at the density distribution
n(X1, X2) of the ground state in the double well. Figure 7.8 b and c shows two
realizations with different repulsive interaction strengths between the atoms where
we prepared the two fermions in the ground state of the double-well potential
according to the technique presented in Section 6. The data shows, that the
distribution is not symmetric around the X1,2 = 0 axes anymore. Instead stripes
along the diagonal form.
In contrast to the distribution of the identical fermions, we observe bunching

of the repulsively interacting particles in form of constructive interference for
integer multiples of the lattice momentum. Such a bunching effect is also expected
from identical interacting bosons. The reason for this is that the constructive
interference stems from the symmetry of the spatial wave function, which is
symmetric for identical bosons, as well as fermions that form a spin singlet.
To make the two-particle correlation visible, we plot the covariance matrix

γ(X1, X2) (Figure 7.8 d-f), where pure two-particle correlations are encoded by
deviations from zero. Similar to the system of identical fermions, the emergence of
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Figure 7.8: Emergence of strong correlations. We prepare two fermions
with different spins in the ground state of the double-well potential. We mea-
sure the momentum distribution of the system with single-atom resolution
as a function of the interparticle interaction. We plot the density distribu-
tion n(X1, X2) (a-c) after the expansion into momentum space for different
interaction strengths. d-f show the two-particle correlations γ(X1, X2) with
anti-bunching for negative and bunching for positive values. The distance
correlator C(∆X) is shown in (g-i). From left to right, we increase the
interaction strength in the system. The emergence of correlations manifests
itself in the increasing oscillation amplitude of the correlation function.
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7.4 Emergence of correlations between two interacting fermions

the correlations is visible as blue (anti-bunching) and red (bunching) areas, that
form longer and longer stripes for increasing repulsive interaction. Figure 7.8 g-i
shows the increase in correlations with the interaction strengths as increasing
contrast in the oscillations of the distance correlation function C(∆X). It shows
bunching at distances of zero and integers of the lattice momentum and anti-
bunching at half integers of D/2. For the largest interaction strength, we observe
a visibility of about 60%.

7.4.3 Comparison with the Hubbard model
With increasing interaction strength, we observed an increasing contrast of the
distance correlation function. In order to describe this emergence of correlation
in a quantitative way, we choose an appropriate spatial basis to analyse the
momentum distribution. The basis of Bell states [Nie04] is especially suited for the
description, because all its states show full correlation along the diagonal X1 = X2
or the anti-diagonal X1 = −X2. For infinitely strong on-site interaction, they are
eigenstates of the two-site Hubbard model

|S〉 = 1√
2

(|LR〉+ |RL〉) (7.20)

|T 〉 = 1√
2

(|LR〉 − |RL〉) (7.21)

|D+〉 = 1√
2

(|LL〉+ |RR〉) (7.22)

|D−〉 = 1√
2

(|LL〉 − |RR〉) (7.23)

Usually, they are used to describe two-qubit states and are often called EPR
pairs after the Gedankenexperiment of Einstein, Podolsky and Rosen. One of
their properties is, that although the measurement of the first qubit is randomly
distributed, the result of the second qubit is correlated to the first result. We
already observed this in the case of two identical fermions, which have a triplet
spatial wave function |T 〉.
In the following, we analyse the ground state of the two-site Hubbard model.

To do this, we write the state in the Bell basis

|gs〉 = cS(U) |S〉+ cD(U) |D+〉 (7.24)

with the prefactors cS(U) and cD(U) that depend on the on-site interaction U . For
U = 0, the singlet and the symmetric doublet state contribute equally to the state
as cS(U) = cD(U) and we do not expect a two-particle correlation. However, when
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Chapter 7 Detecting correlations of two atoms in a double-well potential

Figure 7.9: Visibility as a function of the on-site interaction. Mea-
sured visibilities for two fermions prepared in the ground state of a double-well
potential. The data shows measurements at magnetic fields between 568G
and 655G. From the data, we calculated the distance correlation function
and fitted a sinusoidal oscillation in the range between 0 and 1.5 klatt. The
fitted amplitudes are compared to the theoretical expectation for the ground
state (blue solid line). The green solid line takes into account a reduction of
the contrast by 5% due to the finite momentum resolution.

U > 0, then the contribution of the singlet increases (cS(U) > cD(U)), and the
distance correlation function shows an oscillation with increasing contrast V(U).
In the limit of U � J , the contribution of the singlet governes the momentum
distribution and the fringes reach full contrast. We can calculate the expected
correlation function C(∆X) of the ground state (eq. 7.24) and obtain

C(∆X) =
1
2(1 + cS(U)2 cos(2∆X))

(1 + 4cS(U)2cD(U)2 − 2cS(U)2cD(U)2 cos(2∆X)) . (7.25)

From this expression, we can deduce the expected visibility to be V(U).
We want to compare the expected contrast to the experimental observations.

For this, we extract the observed correlations for different interaction strengths
from the distance correlation function by fitting a sinusoidal oscillation. As the
oscillations are only visible in a range from 0 to 1.5klatt, we select this region
of the fit of the sinusoidal function. Figure 7.9 shows the fitted visibility as
a function of the interaction strength. We can clearly observe an increase of
contrast as a function of the interaction strength. To compare with a pure state,
we show the calculated visibility from the ground state of the Hubbard model.
Our measurements cannot completely reproduce the ideal contrast3. This can be

3The experiments presented here were performed at different parameters than the experiments
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explained by an admixture from other states in our prepared system. However,
the observed contrast has the same scale as the expectations and demonstrates
our sensitivity on strong correlations in the system. In the future, we aim for
developping an analysis which allows us to determine the density matrix which
describes the prepared system. It will allow us to infer the pureness of our
preparation technique and maybe quantify entanglement in the system.

Summary and outlook

In this Chapter, we presented measurements of single-particle interference and two-
particle correlation functions that showed almost full contrast. We could observe
anti-bunching of two fermions in the same hyperfine state which demonstrates
their indistinguishability. The observed two-particle interference has a visibility of
69% which is to our knowledge the largest contrast for anti-bunching of identical
fermions observed so far. The observation of such a high contrast was possible
because of a deterministic state preparation as well as a detection of the quantum
state on the single-particle level. For two fermions in different spin states, we could
observe the emergence of correlations as a function of the interparticle interaction
strength by measuring the contrast of the oscillations in the correlation function.
In the near future, we aim for quantifying the admixture of other states that

reduces the contrast in the correlations to obtain a bound on the pureness of
the system. To do this, we will use the density matrix formalism to reproduce
measured correlation pattern. With this, we obtain all entries of the density matrix
for every state, we prepare. This will deliver a new tool to characterize prepared
states with larger particle number. Last but not least, this may allow us to gain
information about entanglement present in a strongly correlated quantum state.

presented in Chapter 6. Therefore, the data are not in contraction with the data from the
occupation statistics in the double well.
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Chapter 8

Conclusion and Outlook

In this thesis, we investigated few-fermion systems with strong correlations. For two
different systems, we developed techniques to deterministically prepare interacting
few-fermion quantum states and measure their correlations. In the future, we want
to use them to assemble and study larger quantum states.

In a first set of experiments, we studied one impurity interacting with a number
of majority particles that gradually form a Fermi sea (Chapter 5.3). We prepared
the few-particle system in a cigar-shaped confinement in the one-dimensional limit.
To probe the impurity system, we measured the wave function overlap between
the interacting impurity system and the non-interacting state. We observed the
decrease of the overlap with increasing particle number, which manifests the
many-body properties of the system and is in agreement with the expectations
from the Anderson orthogonality catastrophe. It can be used to benchmark
theoretical predictions on one-dimensional systems and is the starting point for
further investigation of the impurity problem.
In a second set of experiments, we realized the two-site Hubbard system by

preparing two fermions in a double-well potential, that we generate by two partially
overlapping optical tweezers (Chapter 6). We show full control on the tunnel
coupling between the wells and the on-site interaction [Mur15b]. By controlling
the wells of the potential separately, we adiabatically ramp two fermions into
the ground state of the double-well potential with fidelities that exceed 90%.
We adiabatically increased the repulsive (attractive) interaction and observed a
decrease (increase) in double occupancies which is expected in a Mott-insulator
(charge-density wave) regime. Furthermore we resolved the super exchange energy
which causes a system to favor anti-ferromagnetic ordering. By preparing the
ground state of the two-site Hubbard model, we can create a state with non-local
correlations.
We could study these correlations using a novel imaging technique which was

developed in the course of this thesis. This technique allows us to detect single
atoms in free space and additionally resolve their hyperfine spin state (Ch. 4).
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We use fluorescence imaging and collect a fraction of the emitted photons with a
high-resolution objective. In that way, we detect about 20 photons per atom with
an EMCCD camera. By using image processing, we can identify single atoms with
fidelities of 98% and determine their position with an uncertainty of 1.4 pixel. We
can apply the new imaging method also after an expansion into momentum space.
For this, we let the atoms expand in a large cigar-shaped potential for a quarter
of the axial trap period. This expansion maps the initial momentum of the atoms
to their position. As this technique works for many atoms, we can obtain full
information about few-particle quantum states by measuring their momentum
distribution on a single-atom level with spin resolution.
With this imaging we observe correlations in prepared quantum states of the

double well (Chapter 7). After the expansion, we extract the position of the
atoms along the double-well axis for a few thousand realizations. In this way, we
obtain the full momentum distribution of the quantum state and can determine its
two-particle correlations. For two identical fermions prepared in the double-well
potential we observed anti-bunching with a contrast of 70%. Investigating the
ground state of the Hubbard model revealed two-particle correlations that emerge
when we increase the repulsion between the two fermions. In this way, we could
show the creation of a strongly-correlated two-particle state that is the building
block of many interesting magnetic phases [Sac08].

Assembling a many-body state

In the future, we want to assemble larger quantum many-body states in a bottom-
up approach and probe their correlations. A necessary requirement towards
achieving this goal is to create low-entropy systems with a high level of control
on the system’s parameters such as the external potential and the interaction
strength. Starting with several fundamental building blocks of the Hamiltonian
of interest, we want to adiabatically merge them to form a mesoscopic state. In
particular, we are interested in studying the crossover from few- to many-body
physics.
One of the most prominent Hamiltonians, which we want to explore, is the

Hubbard model. As Lieb pointed out [Lie89], the ground state of this model is
non-degenerate and has a total spin zero. Therefore, it can be constructed by
assembling pairs of fermions that form spin singlets. In [Mur15b] we demonstrated
the preparation of such a fundamental building block where the spin singlet is
spread over the two wells. By preparing several double-well potential containing
two spin singlet states with non-local correlation and slowly coupling the double-
well systems, we may be able to adiabatically ramp into the non-degenerate ground
state of a few-site Hubbard model [Mat01, Lub11].
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Another fascinating possibility using our bottom-up approch is to realize bi-
layered systems. For preparing the fundamental building block of such bilayered
systems, one would start with two optical tweezers that are both filled with two
atoms forming a spin singlet state. By increasing the interaction strength to
the limit, where the two particles fermionize and simulaneously coupling the two
wells, the coupling within the wells could be reduced below the inter-well coupling.
Consequently, the singlet correlation could be transferred to particles on different
wells. In a similar way as the Hubbard model, one could then prepare an array
of coupled wells filled with two fermions each and explore many-body phases of
strongly correlated bilayered systems.

Measuring correlations in the many-body state

To probe the deterministically prepared mesoscopic states, we will use the single-
atom imaging developed in this thesis. Its capability to detect many atoms with
spin resolution enables us to probe many-body systems on the single-atom level
and thus determine the full set of correlation functions that characterize the
quantum state.

The imaging technique is also suited to measure momentum correlation in two
dimensions. This can be achieved by allowing the quantum state to evolve in a
radially symmetric two-dimensional harmonic confinement. With this, we have a
tool to measure correlations for instance in states confined in finite 2D-arrays.

Due to its simplicity, one can implement the imaging scheme in any 6Li system
that features a high-resolution objective and EMCCD camera. Currently, we work
on its implementation in the second setup present in our group which soon also
offers the possibility to create arbitrary multi-well potentials with a spatial light
modulator [Hol14].
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Appendix A

Properties of Lithium-6

Figure A.1: Energy splitting of the 2S1/2 ground state manifold as a function
of the magnetic offset field. Around 50G the electron spin and the nuclear
spin I = 1 start to decouple. At fields of a few 100G, the energy differences
between the three lowest hyperfine states |1〉, |2〉 and |3〉 are around 80MHz.
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Figure A.2: Magnetic moments (top) and difference between the
magnetic moments (bottom) of the hyperfine state |1〉 and |2〉.
Note that state |3〉 is a stretched state. Therefore, its magnetic moment is
µ|3〉 = −1.4MHz/G and constant.
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Appendix B

Experimental parameters
In the course of this thesis, the high-resolution objective had been taken out of
the setup several times. For this reason, the trap parameters for the different
measurements vary. In the following, the measured and calculated parameters for
the different experiments are listed.

B.1 Microtrap parameters
The trap frequencies of the microtrap are measured by parametric heating. To
calculate the waist of the microtrap, we compare the measured frequencies with a
harmonic approximation of a Gaussian beam.

Microtrap parameters

Parameter microtrap
measured light power (393± 39)µW
axial frequency ωax ≈ 2π × 2.45 kHz
radial frequency ωrad ≈ 2π × 16.5 kHz
aspect ratio η ≈ 7
calculated trap depth V0 4.8µK
calculated waist w0 1.65µm

Table B.1: Microtrap parameters for the experiments presented in Chapter 5
and Chapter 6.

143



Appendix B Experimental parameters

B.2 Quasi-particle residue measurement
Data at weak interaction

Magnetic offset field B = 589.79G
Interaction strength g1D = 0.31355 ~ωzaz with az =

√
~/mωz

N ∆Eint (Hz) ΩN (Hz) Residue Z
N = 0 0± 11.21964 3675.00± 0.68 1± 5.23× 10−4

N = 1 305.64872± 13.28445 3666.12± 0.74 0.99517± 5.45× 10−4

N = 2 499.5927± 19.17654 3667.00± 0.38 0.99565± 4.22× 10−4

N = 3 669.54058± 20.04709 3669.60± 0.73 0.99706± 5.42× 10−4

Data at medium interaction

Magnetic offset field B = 634.84G
Interaction strength g1D = 2.43243 ~ωzaz
Interaction strength g1D = 0.29965 ~ωzaz

N ∆Eint (Hz) ΩN (Hz) Residue Z
N = 0 0± 6.22408 3456.57± 0.74 1± 6.06× 10−4

N = 1 1230.7315± 15.0017 3282.28± 0.4 0.9017± 4.44× 10−4

N = 2 2216.31667± 21.15275 3290.42± 0.62 0.90617± 5.17× 10−4
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B.3 Parameters for the realization of the
fundamental building block

Parameters of the tunnel coupling

Parameter Overall light power Overall light power
1.5V 1.0V

Overall light power (200± 20)µW (130± 13)µW
measured tunnel coupling J (67.3± 0.5)Hz (142.0± 0.5)Hz
calculated axial trap frequency 1.23kHz 1.0kHz
calculated axial trap frequency 18 J 7 J

Table B.2: Double well parameters for the experiments presented in Chapter
6. The two microtraps had a distance of d ≈ 2µm.

Measured on-site interaction

B(G) asc(|1〉 |2〉) −1/g1D U/J U/~ωax

300 -288.1a0 8.82± 0.23 −1.41± 0.25 −0.08± 0.01
560 131.8 a0 −18.35± 0.46 0.67± 0.18 0.04± 0.01
600 359.9 a0 −6.54± 0.16 1.37± 0.21 0.08± 0.01
640 699.9 a0 −3.22± 0.08 3.3± 0.12 0.18± 0.01
700 1637.1a0 −1.21± 0.03 6.32± 0.09 0.35± 0.01
740 2973.9 a0 −0.54± 0.01 10.26± 0.10 0.56± 0.01

Table B.3: On-site interaction for the total light power Ptot = 1.5V.

B(G) asc(|1〉 |2〉) −1/g1D U/J U/~ωax

300 -288.1a0 9.72± 0.24 −0.20± 0.22 −0.03± 0.03
620 512.0 a0 −5.01± 0.16 0.71± 0.33 0.10± 0.04
700 1637.1a0 −1.37± 0.03 2.31± 0.21 0.33± 0.03
740 2973.9 a0 −0.62± 0.01 3.46± 0.22 0.49± 0.03

Table B.4: On-site interaction for the total light power Ptot = 1.0V.
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B.4 Parameters for the correlation
measurements

Trap parameters of the microtrap

Parameter microtrap
measured light power (338± 34)µW
axial frequency ωax ≈ 2π × (6.09± 0.04) kHz
radial frequency ωrad,1 ≈ 2π × (29.9± 0.04) kHz
radial frequency ωrad,2 ≈ 2π × (30.44± 0.07) kHz
aspect ratio η 4.9
calculated trap depth V0 8.4µK
calculated waist w0 1.16µm

Parameters of the tunnel coupling

Parameter Overall light power Overall light power
0.8V 1.0V

Overall light power (208± 21)µW (260± 26)µW
depth of potential V0 ≈ 2.6µK ≈ 3.3µK
measured tunnel coupling J ≈ 250Hz ≈ 100Hz
calculated axial trap frequency 3.2kHz 3.7kHz
calculated axial trap frequency 13 J 37 J

Calculated on-site interaction

B(G) asc(|1〉 |3〉) −1/g1D U/J U/~ωax

600 584.1 a0 −3.03± 0.16 2.1± 0.21 0.164± 0.01
620 1233 a0 −1.26± 0.08 4.3± 0.43 0.334± 0.03
640 2414.3 a0 −0.48± 0.08 7.7± 0.77 0.594± 0.06
655 4203.2 a0 −0.13± 0.08 11.1± 1.1 0.857± 0.09

Table B.5: Calculated on-site interaction for the total light power Ptot = 0.8V.
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