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Ischemic stroke is fundamentally a multiscale phenomenon [1]. Occlu-
sion of blood vessels in the brain triggers a cascade of changes includ-
ing: 1. synaptic glutamate release, related to excitotoxicity; 2. elevated 
extracellular potassium, leading to spreading depression; 3. cell swell-
ing, reducing the extracellular volume and diffusion; 4. production of 
reactive oxygen species, which give rise to inflammation. These cas-
cades occur over multiple time-scales, with the initial rapid changes 
in cell metabolism and ionic concentrations trigging several dam-
aging agents that may ultimately leads to cell death. Tissue affected 
by ischemic stroke is divided into three regions; 1. a core where cells 
suffer irreparable damage and death, 2. a penumbra where cells may 
recover with reperfusion, 3. a further region of edema where sponta-
neous recovery is expected. Multiscale modeling and multiphysics 
modeling is essential to capture this cascade. Such modeling requires 
coupling complex intracellular molecular alterations with electrophys-
iology, and consideration of network properties in the context of bulk 
tissue alterations mediated by extracellular diffusion.
Spreading depression is a wave of depolarization that propagates 
through tissue and causes cells in the penumbra to expend energy 
by repolarization, increasing their vulnerability to cell death. We mod-
eled the spreading depression seen in ischemic stroke by coupling a 
detailed biophysical model of cortical pyramidal neurons equipped 
with  Na+/K+-ATPase pumps with reaction-diffusion of ions in the 
extracellular space (ECS). A macroscopic view of the ECS is character-
ised by its tortuosity (a reduction in the diffusion coefficient due to 
obstructions) and its free volume fraction (typically ~20%). The addi-
tion of reactions allows the ECS be modeled as an active medium glial 
buffering of  K+. Ischemia impedes ATP production which results in a 
failure of the  Na+/K+-ATPase pump and a rise in extracellular  K+. Once 
extracellular  K+ exceeds a threshold it will cause neurons to depolar-
ize, further increasing extracellular  K+.
NEURON’s reaction-diffusion module NRxD [2] provides a platform 
where detailed neurons models can be embedded in a macroscopic 
model of tissue. This is demonstrated with a multiscale biophysical 
model of ischemic stroke where the rapid intracellular changes are 
coupled with the slower diffusive signaling.
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A neuron’s electrical activity is governed not just by presynaptic activ-
ity, but also by its internal state. This state is a function of history 
including prior synaptic input (e.g. cytosolic calcium concentration, 
protein expression in SCN neurons), cellular health, and routine biolog-
ical processes. The NEURON simulator [1], like much of computational 
neuroscience, has traditionally focused on electrophysiology. NEURON 
has included NRxD to give standardized support for reaction-diffusion 
(i.e. intracellular) modeling for the past 5 years [2], facilitating studies 
into the role of electrical-chemical interactions. The original reaction-
diffusion support was written in vectorized Python, which offered lim-
ited performance, but ongoing improvements have now significantly 
reduced run-times, making larger-scale studies more practical.
New accelerated reaction-diffusion methods are being developed 
as part of a separate NEURON module, crxd. This new module will 
ultimately be a fully compatible replacement for the existing NRxD 
module (rxd). Developing it as a separate module allows us to make it 
available to the community before it supports the full functionality of 
NRxD. The interface code for crxd remains in Python, but it now trans-
fers model structure to C code via ctypes, which performs all run-time 
calculations; Python is no longer invoked during simulation. Dynamic 
code generation allows arbitrary reaction schemes to run at full com-
piled speed. Thread-based parallelization accelerates extracellular 
reaction-diffusion simulations.
Preliminary tests suggest an approximately 10x reduction in 1D run-
time using crxd instead of the Python-based rxd. Like rxd, crxd uses 
the Hines method [3] for O(n) 1D reaction-diffusion simulations. Using 
4 cores for extracellular diffusion currently reduces the runtime by a 
factor of 2.3. Additionally, using the crxd module simplifies 
setup relative to rxd-based simulations since it does not require install-
ing scipy.
Once crxd supports the entire documented NRxD interface and 
has been thoroughly tested, it will replace the rxd module and thus 
become NEURON’s default module for specifying reaction-diffusion 
kinetics.
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Background oscillations, reflecting the excitability of neurons, are 
ubiquitous in the brain. Some studies have conjectured that when 
spikes sent by one population reach the other population in the peaks 
of excitability, then information transmission between two oscillating 
neuronal groups is more effective [1]. In this context, the phase rela-
tionship between oscillating neuronal populations may have implica-
tions in neuronal communication between brain areas [2, 3]. The Phase 
Response Curve (PRC) of a neural oscillator measures the phase-shift 
resulting from perturbing the oscillator at different phases of the cycle. 
It provides useful information to understand how phase-locking rela-
tionships between neural oscillators emerge but only when perturba-
tions are weak and amplitude is not taken into account.
In this work, we consider a population rate model [4] and perturb it 
with a time-dependent input. In order to study the phase-locking 
relationships that emerge, we use the stroboscopic map to perform a 
bifurcation analysis as a function of the amplitude and frequency of 
the perturbation. We observe the existence of bistable solutions for 
some regions of the parameters space, suggesting that, for a given 
input, populations may operate in different regimes. Furthermore, we 
apply powerful computational methods [5] to compute the invariant 
objects for the stroboscopic map, providing a framework that enlarges 
the PRC comprehension of the perturbative effects in the phase 
dynamics.
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Recent studies have demonstrated the capacity of hippocam-
pal sequences associated with theta oscillation, to encode 

spatio-temporal information. In particular, cells in CA1 become active 
sequentially in a stable unidirectional order during spontaneous run 
periods and under minimal external cues [1]. This sequential activity 
seems to integrate either the distance that the animal has run or the 
time that has elapsed, two related coding states that can be separated 
through the change in cellular dynamics with the animals’ speed. 
Other studies indicate that these cell sequences depend on theta 
oscillation from the medial septum and may reflect input from CA3 
[2–4].
Running speed of the animal has also shown to influence theta oscilla-
tion frequency and amplitude. This oscillation could thereby carry the 
spatio-temporal information input required to determine distance/
time coding. Inspired by [2], we modeled a circular recurrent network 
of excitatory cells with short-term synaptic plasticity [5] and global 
inhibition. By applying speed-dependent theta oscillation, we repro-
duced the dynamics of spatio-temporal coding observed in experi-
mental data and propose a mechanism of switching between the 
two coding states through a change in integration of theta input. In 
particular, our firing rate model reproduces the sequence properties 
(recurrence, unidirectionality, sparse activity, memory) based on the 
network characteristics of CA3 and allows exploring the dynamics of 
the sequential activity. Simulations with this model show a non-trivial 
relationship between sequence slope and the frequency/amplitude of 
the oscillatory input: depending on the amplitude range of the theta 
oscillation, sequence dynamics can either be independent of speed 
(time coding) or linearly dependent on speed (distance coding). There-
fore, the model proposes a network structure that could give rise to 
two basic and possibly default, self-referenced coding states observed 
in the hippocampus.
This model provides insights into how a recurrent network operates in 
the absence of spatially specific input, but still allows for such input to 
modulate sequential activity towards place field representation [2]. We 
will next explore further the mechanisms of sequence generation and 
coding correlates in both theoretical and experimental work.
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Neurodegenerative diseases such as Alzheimer and Schizophrenia 
are characterized by the progressive decline of cognitive functions 
such as memory, language and consciousness with take the form of 
memory loss, deficits in verbal and non-verbal communication and 
so on. Cognitive deficits are interpreted in terms of damage in the 
network of brain areas, instead of damage to specific brain areas [1]. 
Many studies combining network theory and neuroimaging data have 
shown that brain networks, known to have a small world structure [2], 
are disorganized in people with neurodegenerative diseases indicat-
ing that the connectivity between brain areas is altered by the disease 
[1]. The disorganization of brain networks can be a consequence of the 
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vulnerability of hub areas to diseases or from the abnormal connectiv-
ity between brain areas.
In this paper, we assess how the progressive degradation of connec-
tivity between brain areas affects the brain network structure. We pro-
pose an algorithm building on the idea that the connections between 
brain areas are weakened as the disease progress in time. We apply 
the algorithm on a functional connectivity matrix freely available for 
download from the Brain Connectivity Toolbox consisting of nodes 
representing brain areas and edges representing the functional links 
between two brain areas [3]. The network is weighted, with weights 
wij reflect the correlations between two brain areas Ai and Aj. At a 
given threshold t, the new weights are given by wij-t; with t indicates 
the progression of disease in time. The structure of the new network 
is analyzed using graph theoretical measures including clustering 
coefficient and path length. After damage, the functional brain net-
work shows the properties of high clustering and low path length 
indicting that the network presents a small world structure necessary 
for the proper cognitive functioning. The progressive degradation of 
links doesn’t change the network’s properties dramatically, clustering 
coefficient are slightly modified until t = 0.25 (see Figure 1 for cluster-
ing coefficient). At this stage, the functional network shifts from high 
organization to randomness.
In sum, cognitive deficits in neurodegenerative diseases can be under-
stood in the scope of the progressive degradation of the connectivity 
between brain areas within the network.
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Neuro computational models represent a powerful tool for bridg-
ing the gap between functions of the neural circuits and observable 
behaviors [1]. Once the model has been built, its output is compared 
with the observations either to validate the model itself or to pro-
pose new hypotheses. This approach has led to building a multi-scale 
model of the sensorimotor system from muscles, proprioceptors to 
skeletal joints, spinal regulating centers and central control circuits 
[2–6].
In this framework, we propose a neural network architecture to 
simulate the selection of actions performed by the motor cortex in 
response to a sensory input during a reward-based movement learn-
ing. The network has as many input nodes as the number of different 
stimuli, each node being a combination of the sensory inputs, and as 
many output nodes as the number of different actions that can be 
performed, each node being a combination of the motor commands. 
The network is fully connected, so that each stimulus concurs to the 
selection of each action and each action is selected concurrently by 
all the stimuli. The weights are updated by taking into account both 
the expected reward and the actual reward, as suggested in [7]. By 
adopting this architecture, the percept is represented by a combina-
tion of sensory inputs, while the action is represented by a combina-
tion of motor commands. Thus, it reproduces faithfully the condition 
of experiments of motor learning when a set of sensory inputs, such 
as semantically neutral visual stimuli, are presented to the subject 
whose response is merely a motor action, such as pushing a button. 
Under such conditions, it then becomes possible to fit the data pro-
vided by the experiments with the model to both estimate the valid-
ity of the model and to infer the role of the parameter on behavioral 
traits.
The simulations were compared to the behaviors of human subjects 
while learning which out of two buttons to press in response to a col-
lection of visual stimuli containing edges and geometric shapes in a 
reward based setting. The results showed that the behavior of the 
complete system is the one expected under the hypothesis that the 
reward acts by modulating the action selection triggered by the input 
stimuli during motor learning. Moreover, differently from most litera-
ture models, the learning rate varies with the complexity of the task, 
i.e. the number of input stimuli. It can be argued that the decrease in 
learning rate seen in humans learning large set of stimuli could be due 
to an attenuation of memory traces in real synapses over time. In our 
future investigations, we will work to improve the model by adding 
such an effect in our network.
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Figure  1. The average clustering coefficient of the network 
decreases following the progressive degradation of the connectiv-
ity between brain areas
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Different forms of synaptic plasticity have been revealed within the cerebel-
lum (CB), and many hypothesis about their role have been proposed [1]. 
We used a model-based analysis for investigating the role of these forms 
of plasticity in three behaviors: phase reversal of the vestibule-ocular reflex, 
acquisition of conditioned responses and learning a novel limb movement. 
We investigated these behaviors since they involve different forms of learn-
ing: phase reversal requires to modify a preexistent stimulus-response (S-R) 
association according to the feedback signal provided by climbing fibers 
(CFs); conditioning involves learning a new S-R association according to a 
preexistent one between the stimulus coming from the CFs and a motor 
response; learning novel motor behaviors corresponds to create new S-R 
associations according to the CF feedback. The analysis was carried through 
a CB model that incorporates plasticity mechanisms at different stages 
of the CB processing, both in cortex and nuclei [2]. Synaptic plasticity has 
been simulated in both granular (Gr) and Purkinje (PC) network: granule 
cells show intrinsic plasticity depending on mossy fibers (MFs) activity, and 
MF-Gr synapses undergo both Long Term Depression (LTD) and Long Term 
Potentiation (LTP)[3]; PF-PC synapses undergo both LTD and LTP, depending 
on PF and CF activity [4]. The model also includes synaptic plasticity involv-
ing the molecular interneurons (MLI) at PF-MLI synapses [5] and Rebound 
potentiation at MLI-PC synapses [6]. Within the CB nuclei, LTD occurs in 
MF-NC synapses during inhibition from PCs, whereas LTP occurs during 
release from inhibition [7]. Our results suggest that the main contribution to 
CB learning is provided by the synaptic plasticity at PF-PC and MF-NC syn-
apses. Indeed, excluding the plasticity at PF–PC site caused strong impair-
ment in learning all the considered behaviors, while excluding the plasticity 
at MF–NC site induced mild impairment in acquiring conditioned responses 
and novel limb movements, and strong impairment was observed in phase 
reversal and motor adaptation. Removal of other forms of synaptic plastic-
ity only induced slower learning. Our results also suggest that LTP at PF-PC 
underlies the extinction phenomenon observed in conditioning, and that 
saving phenomenon could be ascribed to a residual plasticity within the CB 
cortex rather than within the CB nucleus, since saving was observed even 
after removal of MF-NC plasticity before reconditioning. Finally, model 
simulations support the view that learned associations are transferred 
from the CB cortex to the CB nuclei, due to the combined effect of plastic-
ity at PF-PC synapses in early stage of learning, and MF-NC synapses in late 
learning. Indeed, lesions at PCs layer or removal of PF-PC synaptic plastic-
ity in late learning stage did not induced any impairment in the behavior 
of the model, whereas removal of PF-PC synaptic plasticity in early learning 
impaired learning capabilities of the model.
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Dynamical models implemented on the large-scale architecture of the 
human brain may shed light on how function arises from the underly-
ing structure. This is the case notably for simple abstract models, such 
as the Ising one. We compare the spin correlations of the Ising model 
and the empirical functional brain correlations, both at the single link 
level and at the modular level, and show that the prediction is better 
in anesthesia than in wakefulness, in agreement with recent experi-
ments. We show that conserving the magnetization in the Ising model 
dynamics (Kawasaki dynamics) leads to an improved prediction of the 
empirical correlations in anesthetised brains, see Figure  1. Moreover, 
we show that at the peak of the specific heat (the critical state) the spin 
correlations are minimally shaped by the underlying structural net-
work, explaining how the best match between structure and function is 
obtained at the onset of criticality, as previously observed.
These findings could open the way to novel perspectives when the 
conserved magnetization is interpreted in terms of a homeostatic 
principle imposed to neural activity.

Figure  1. A. Mean Squared Error in Wakefulness and Anesthe-
sia between the empirical connectivity and the one simulated by 
Glauber and Kawasaki dynamics. B. Mutual Information between 
the modular partitions of the empirical and modelled functional 
networks. These quantities are depicted as a function of the 
inverse temperature β

Conclusions: In agreement with recent theoretical frameworks [1], our 
results suggest that a wide range of temperatures correspond to criti-
cality of the dynamical Ising system on the connectome, rather than 
a narrow interval centered in a critical state. In such conditions, the 
correlational pattern is minimally shaped by the underlying structural 
network. It follows that, assuming that the human brain operates close 
to a critical regime [2], there is an intrinsic limitation in the relation-
ship between structure and function that can be observed in data. We 
show that empirical correlations among brain areas are better repro-
duced at the modular level using a model which conserves the global 
magnetization. The most suitable way to compare functional and 
structural patterns is to contrast them at the network level, using, e.g., 
the mutual information between partitions like in the present work.
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Great attention has been devoted in the last years to the identification 
of information flows in human brains. Since interactions occur across 
multiple temporal scales, it is likely that information flow will exhibit a 
multiscale structure: high-frequency activity, reflecting local domains 
of cortical processing, and low-frequency activity dynamically spread 
across the brain regions by both external sensory input and inter-
nal cognitive events. In order to detect information flow at multiple 
scale the decomposition of the signals in the wavelet space has been 
proposed in [1]; an analytical frame for linear multivariate stochastic 
processes explored at different time scales has been proposed in [2]. 
However, the computation of multiscale measures of information 
dynamics may be complicated by theoretical and practical issues 
such as filtering and undersampling: to overcome this problems, we 
propose here another wavelet-based approach for multiscale causal-
ity analysis, which is characterized by the following properties: (i) only 
the candidate driver variable is wavelet transformed (ii) the decom-
position is performed using the à trous wavelet transform with cubic 
B-spline filter [3]. The use of the à trous transform is suggested by its 
interesting properties, indeed it satisfies the shift invariance, and its 
coefficients at time t are a linear combination of the time series values; 
no decimation of the time series, as in the discrete wavelet transform, 
is done. Granger causality examines how much the predictability of 
the target from its past improves when the driver variables’ past values 
are included in the regression, where m is the order of the model. We 
propose here to measure the causality at scale s by including w(t-1,s), 
w(t-2,s),…,w(t-m,s) in the regression model of the target, where w(t,s) 
are the à trous wavelet coefficients of the driver. In figure 1 we depict 
the multiscale causality evaluated by the proposed approach on a sim-
ulated two-dimensional linear system unidirectionally coupled with 
lag equal to 8 and strength a: it increases with the strength and peaks 
in correspondence of the lag. We have applied the proposed algo-
rithm to scalp EEG signals [4], and we found that the global amount 
of causality among signals is significantly decreasing as the scale s is 
increased. Furthermore, comparing signals corresponding to rest-
ing conditions with closed eyes and with open eyes, we found that at 
large scales the effective connectivity, in terms of the proposed meas-
ure, is significantly lower with eyes open.

3. Renaud O, Starck, J-L, Murtagh, F: Wavelet-Based Combined Signal Filtering 
and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B: 
Cybernetics. 2005, vol. 35, no. 6, p. 1241–1251

4. http://www.physionet.org/pn4/eegmmidb
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Effective connectivity within resting state networks has been esti-
mated using spectral dynamic causal modeling (spDCM) [1]. Since 
its initial release, spDCM has been updated to improve performance 
and to render it applicable to larger networks. The objective of the 
present study is to assess the impact of these changes on param-
eter estimates and stability. We therefore compared performance 
between an early version of DCM (v6303) and a newer version of 
DCM (v6801) in combination with the parametric empirical Bayes-
ian (PEB) framework [2]. Both were compared regarding (1) abil-
ity to explain observed cross spectral densities (CSD), (2) estimated 
network structure, and (3) stability of parameter estimates. An 
extensive single-subject longitudinal dataset, including 101 resting 
state fMRI sessions, was analyzed (myconnectome.org/wp) [3]. Eight 
resting state sessions were chosen for our analyses: occipital and 
lateral visual, auditory, somatomotor, left and right frontoparietal, 
default mode, and executive control network. Results showed that 
the newer spDCM-PEB combination explained the data (i.e., CSDs) 
far better than the older spDCM (95.31% versus 68.31% explained 
variance, respectively). Furthermore, the older version often failed 
to yield proper estimates (i.e., because of low proportion explained 
variance or estimated connection strengths near zero) in networks 
consisting of two- or three regions, while the newer version showed 
less such problems. Concerning average network structure across 
sessions, the newer spDCM-PEB combination detected asymmetric 
influences within networks consisting of two regions (see Figure 1). 
Furthermore, regions located in the medial part of the brain showed 
larger in- versus out-connectivity. For the default mode network, 
consisting of four regions in the present study, both versions yielded 
largely similar network structures (i.e., reciprocal influences between 
bilateral parietal cortices, and larger in- versus out-connectivity for 
medial areas). However, the older version of spDCM showed a posi-
tive influence (0.21 Hz) from precuneus to medial prefrontal cortex, 
which was much smaller (0.05  Hz) for the newer DCM-PEB combi-
nation. Stability depended profoundly on the size of the network: 
parameter estimates showed higher stability in two-region networks 
than in larger networks for both versions.

Figure 1. A. Granger causality in an unidirectionally coupled sys-
tem is depicted as a function of the scale for several values of the 
coupling. B. GC values for eyes open and closed conditions from 
regular time series. C. GC values in the same conditions from wave-
let coefficients (scale 4)
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Figure 1. Comparison of posterior parameter estimates within the 
auditory network. A. median posterior parameter estimates for the 
older version (shown in red) and the newer spDCM-PEB combina-
tion (shown in black). B and C. distribution of these parameter 
estimates over sessions, together with the bootstrapped high den-
sity intervals, for both the older and newer scheme
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The main goal of this study was to investigate changes in effective 
connectivity associated with reward and punishment. More specifi-
cally, changes in connectivity between the ventral striatum (VS), ante-
rior insula (aI), anterior cingulate cortex (ACC) and occipital cortex 
(OCC) that are related to win- and loss- feedback were studied.
Here, fMRI data from the human connectome project [1] was used 
for our study purposes. Data from 369 unrelated subjects perform-
ing a gambling task was analyzed. In short, participants played a 
card game where they had to guess whether the upcoming card 
would be higher or less than 5 (range was between 1 and 9). After 
the gamble, feedback was provided indicating a reward, punish-
ment or neutral trial. The minimally preprocessed data was used 
and extra spatially smoothed with a 5-mm FWHM Gaussian kernel. 
The images were then entered in a first level general linear model 
(GLM) and summary statistic images of the first level GLM were 
entered in a second level GLM. The following two contrasts were 
used to identify the relevant brain regions at the group level: [Win 
- Neut] AND [Loss-Neut] (i.e. conjunction), and [Win-neut]. Based 
on the group level results, time-series of VS, aI, ACC and OCC were 
extracted for every subject and used in further dynamic causal 
modeling (DCM, [2]) analysis. We specified a fully connected model 
(i.e. all nodes are reciprocally connected) where the win and loss 
events were allowed to modulate all connections. The driving input 
consisted of all feedback events (win, loss and neutral events) and 
entered the DCM’s via OCC. The fully connected model was esti-
mated for every subject and then used in the recently proposed 
parametric empirical Bayesian (PEB, [3]) framework for estimat-
ing DCM parameters at the group level. Finally, we used Bayesian 
model reduction to obtain the best 255 nested models. Since there 
was no clear winning model, Bayesian model averaging (BMA) of 
the 256 model (full  +  255 nested models) parameters was per-
formed. Figure  1. shows the group level BMA modulatory param-
eters with a posterior probability >.95.
Conclusion: Overall, both win- and loss- feedback have a gen-
eral increasing effect on effective connectivity. The main difference 
between win and loss can be observed for the connection from aI and 
OCC with loss-feedback having a decreased effect. In addition, only 
win-feedback increases the connection from VS to aI. Overall, the VS 
appears as a key region in conveying loss and win information across 
the network.

Figure  1. BMA modulatory parameters at the group level are 
shown for A. loss feedback; B. win feedback
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Increasingly, computational models of brain activity are applied to 
investigate the relation between structure and function. In addition, 
biologically interpretable dynamical models may be used as unique 
predictive tools to investigate the impact of structural connectivity 
damage on brain dynamics. That is, individually modeled biophysical 
parameters could inform on alterations in patients’ local and large-
scale brain dynamics, which are invisible to brain-imaging devices. 
In this study, we compared global biophysical model parameters 
between brain tumor patients and healthy controls. To this end, we 
used The Virtual Brain (TVB; [1]), a neuroinformatics platform that uti-
lizes empirical structural connectivity data to create dynamic models 
of an individual’s brain.
Ten glioma patients (WHO grade II and III, mean age 41.1yo, 4 females; 
5 from open access dataset [2]), 13 meningioma patients (mean age 
60.23y, 11 females), three pseudo-meningioma patients (subtento-
rial brain tumors, mean age 58yo, 2 females) and 11 healthy partners 
(mean age 58.6y, 4 females) were included in this study. From all par-
ticipants, diffusion MRI, resting-state fMRI and T1-weighted MRI data 
were acquired. Data were preprocessed and converted to a subject-
specific structural and functional connectivity matrix using a modified 
version of the TVB preprocessing pipeline [3].
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In order to simulate brain dynamics, the reduced Wong-Wang model 
[4] was used. This is a dynamical mean field model that consistently 
summarizes the realistic dynamics of a detailed spiking and conduct-
ance-based synaptic large-scale network. A subject-specific parameter 
space exploration was conducted to obtain an optimal correspond-
ence between the individual’s simulated and empirical functional 
connectivity matrix. To this end, values of the global scaling factor G 
and the local feedback inhibitory synaptic coupling Ji were varied. Val-
ues of G and Ji yielding optimal correspondence were then compared 
between the brain tumor patient groups and healthy controls.
The distribution of optimal values for G and Ji per group is depicted 
in Figure 1. Visually, no clear group differences are apparent. In future 
studies, larger sample sizes will be utilized, as data collection is still 
ongoing and more efforts to data sharing across labs are undertaken. 
In addition, local model parameter alterations in the vicinity of the 
lesion will be examined, since global model parameters might not be 
sufficiently sensitive to capture local lesion effects.

Figure 1. Topological morphology descriptor. A. The neuronal tree 
is mapped into a barcode. B. Each bar represents the lifetime of a 
branch; its start and end distance from the soma

Figure  1. Distribution of optimal model parameter values per 
group: control subjects (CON), pseudo control subjects with sub-
tentorial brain tumor (pCON), meningioma patients (MEN), and 
glioma WHO grade II and III patients (GLI). A. Global scaling factor 
(G); B. Local feedback inhibitory synaptic coupling (Ji)
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The shape of neuronal arborizations defines amongst other aspects 
their physical connectivity and functionality. Yet an efficient method 
for quantitatively analyzing the spatial structure of such trees has been 
difficult to establish. The wide diversity of neuronal morphologies in 
the brain, even for cells identified by experts as of the same type, ren-
ders an objective classification scheme a challenging task.
We propose a Topological Morphology Descriptor [1], inspired by 
Topological Data Analysis, to quantitatively analyze the branching 
shapes of neurons, which overcomes the limitations of existing tech-
niques. The TMD algorithm maps the branches of a tree (Fig 1A) into a 
“barcode” (Fig 1B). The TMD encodes the morphology of the tree into 
a simplified topological representation that preserves sufficient infor-
mation to be useful for the comparison and the distinction of different 
branching patterns.

This method is applicable to any tree-like structure, and we demon-
strate its generality by applying it to groups of mathematical random 
trees and neuronal morphologies. We identify the structural differ-
ences between known morphological types [2-3] as well as subtypes 
for human temporal cortex L2/3 pyramidal cells [4]. Our results show 
that the TMD of tree shapes reliably and efficiently distinguishes dif-
ferent shapes of trees and neurons. Therefore, the TMD provides an 
objective benchmark test of the quality of any grouping of branching 
trees into discrete morphological classes. Our results demonstrate that 
the TMD can enhance our understanding of the anatomy of neuronal 
morphologies.
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Heterogeneity of neural attributes is recognized as a crucial feature 
in neural processing. Thus, we have developed theoretical methods 
(based on [1]) to characterize the firing rate distribution of spiking 
neural networks with intrinsic and network heterogeneity [2], both 
of which have been widely reported in experiments. This relationship 
(intrinsic and network) can lead to various levels of firing rate hetero-
geneity, depending on regime.
Next we adapt our theory to a delayed feedforward spiking network 
model of the electrosensory system of the weakly electric fish. Experi-
mental recordings indicate that feedforward network input can medi-
ate response heterogeneity of pyramidal cells [3]. We demonstrate 
that structured connectivity rules, derived from our theory, can lead 
to qualitatively similar statistics as the experimental data. Thus, the 
model demonstrates that intrinsic and network attributes do not inter-
act in a linear manner but rather in a complex stimulus-dependent 
fashion to increase or decrease neural heterogeneity and thus shape 
population codes.
As evidence for heterogeneity shaping population codes, we also pre-
sent some preliminary work using recordings from electric fish subject 
to noisy stimuli. We use a GLM model for each neuron, fit the param-
eters to the data using standard maximum likelihood methods, and 
perform Bayesian estimation of the stimuli. We find that firing rate het-
erogeneity is a signature of optimal (Bayesian) stimulus estimation of 
noisy stimuli. Interestingly, the firing rate correlation is not an indicator 
of decoding performance for a given population of neurons.
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KnowledgeSpace [1] is a community encyclopedia platform currently 
under development where neuroscience data and knowledge are syn-
thesized. KnowledgeSpace aims to provide a global interface between 
current brain research concepts and the data, models and literature 
about them. It is an open project that welcomes participation and con-
tributions from members of the global research community.
KnowledgeSpace version 1.0 was launched at Neuroscience 2016 in 
San Diego, November 12-16, with three modes of search - keyword, 
category and atlas-based (so far only for mouse brain). During the 
pre-launch phase, work focused on linking concepts to data, mod-
els, and literature from existing community resources. Current data 
sources include NeuroLex, Allen Institute for Brain Sciences, The Blue 

Brain Project, NeuroMorpho, NeuroElectro, Cell Image Library, NIF Inte-
grated Connectivity, Ion Channel Genealogy, ModelDB, Open Source 
Brain, GenSat, BrainMaps, NeuronDB, The Human Brain Atlas, and Pub-
Med. Initial content included in KnowledgeSpace covers ion channels, 
neuron types, and microcircuitry. For each content type, physiology, 
gene expression, anatomy, models, and morphology data sources are 
available.
Going forward we will enhance atlas representations of the mouse 
brain linking concepts to data, models, and literature, and an atlas 
representation of the human brain that links to available data, mod-
els, and literature will be implemented. Links to analysis tools will also 
be integrated into the KnowledgeSpace data section. The project 
will also develop protocols, standards, and mechanisms that allow 
the community to add data, analysis tools, and model content to 
KnowledgeSpace.
The initial development of KnowledgeSpace has been driven and 
supported by the International Neuroinformatics Coordinating Facil-
ity (INCF; incf.org), the Neuroscience Information Framework (NIF; 
neuinfo.org) and the Blue Brain Project (BBP; bluebrain.epfl.ch). The 
KnowledgeSpace also represents an important component of the 
Neuroinformatics Platform being deployed in the Human Brain Pro-
ject web portal. KnowledgeSpace is currently transitioning to a shared 
governance model, with a Governing Board composed of members of 
the neuroscience community who are currently funded to generate or 
share data and/or code as part of a lab, project or organization, and 
who will rotate off the board when their project ends.
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The cerebellum plays an essential role in tasks ranging from motor 
control to higher cognitive functions (such as language processing) 
and receives input from many brain areas. A general framework for 
understanding cerebellar function is to view it as an adaptive-filter 
[1]. Within this framework, understanding, from computational and 
experimental studies, how the cerebellum processes information and 
what kind of computations it performs is a complex task, yet to be 
fully accomplished. In the case of computational studies, this reflects 
a need for new systematic methods to characterize the computational 
capacities of cerebellum models. In the present work, to fulfill this 
need, we apply a method borrowed from the field of machine learn-
ing to evaluate the computational capacity of a prototypical model of 
the cerebellum cortical network. Using this method, we find that the 
model can perform both linear operations on input signals –which is 
expected from previous work-, and –more surprisingly- highly nonlin-
ear operations on input signals.
The model that we study is a simple rate model of the cerebellar 
granular layer in which granule cells inhibit each other via a single-
exponential synaptic connection. The resulting recurrent inhibition is 
an abstraction of the inhibitory feedback circuit composed of granule 
and Golgi cells. Purkinje cells are modelled as linear trainable readout 
neurons. The model was originally introduced in [2, 3] to demonstrate 
that models of the cerebellum that include recurrence in the granular 
layer are suited for timing-related tasks. Further studies carried out in 
[4] showed how the recurrent dynamics of the network can provide 
the basis for constructing temporal filters.
The method, described in detail in [5], and developed in the context 
of the artificial intelligence algorithm known as reservoir comput-
ing [6], consists in feeding the network model with a random time 
dependent input signal and then quantifying how well a complete 
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set of functions (each function representing a different type of com-
putation) of the input signal can be reconstructed by taking a linear 
combination of the neuronal activations. The result is a quantitative 
estimate of the number of different computations that can be car-
ried out by the model. We conducted simulations with 1000 granule 
cells. Our results show that the cerebellum prototypical model has 
the capability to compute both linear and highly nonlinear functions 
of its input. Specifically, the model is able to reconstruct Legendre 
polynomial functions up to the 10th degree. Moreover, the model can 
internally maintain a delayed representation of the input with delays 
of up to 100 ms, and perform operations on that delayed representa-
tion. Despite their abstract nature, these two properties are essential 
to perform typical cerebellar functions, such as learning the timing of 
conditioned reflexes or fine-tuning nonlinear motor control tasks or, 
we believe, even higher cognitive functions.
In future work, we hope to confirm these abstract results by applying 
our cerebellum model to typical cerebellar tasks. Additionally, we will 
compare our results with a very recent work which studied how a model 
of the cerebellum could solve several machine learning tasks [7].
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Large-scale in vitro cortical networks spontaneously exhibit recurrent 
events of propagating spiking and bursting activity, usually termed as 
neuronal avalanches, since their size (and lifetime) distribution can be 
approximated by a power law, as in critical sand pile models [1, 2] (Fig-
ure 1). However, neuronal avalanches in cultures of dissociated corti-
cal neurons can distribute according to three different dynamic states, 
namely sub-critical, critical, or super-critical, depending on several 
factors like developmental stage, excitation/inhibition balance, cell 
density, etc. [3]. In this work, we investigated the role of connectivity 
in driving spontaneous activity towards critical, sub-critical or super-
critical regimes, by combining both experimental and computational 
investigations.
Our experimental model consists of mature networks (third week 
of in  vitro development) of cortical dissociated neurons coupled to 
High-Density Micro-Electrode Arrays (HD-MEAs) (3Brain, Waden-
swill, Switzerland). These devices, containing 4’096 microelectrodes, 
81  µm-spaced, allow to follow the emergence and propagation of 
neuronal avalanches with high spatio-temporal resolution. We esti-
mated the functional connectivity of cortical networks by using cross-
correlation based methods, collected in the software ToolConnect [4]. 
In particular, our cross-correlation algorithm is able to reliably and 

accurately infer functional and effective excitatory and inhibitory links 
in ex vivo neuronal networks, while guaranteeing high computational 
performances necessary to process large-scale population recordings. 
To support our experimental investigations, we also developed a com-
putational model of neuronal network, made up of Izhikevich neurons 
[5] structurally connected by following well defined topologies of con-
nectivity (e.g., random, scale-free, small-world).
Simulations of the model demonstrated that the presence of hubs, the 
physiological balance between excitation and inhibition, and the con-
current presence of scale-free and small-world features are necessary 
to induce critical dynamics. We then confirmed the predictions of the 
model by analyzing medium/high density cortical cultures coupled to 
HD-MEAs, finding that networks featuring both scale-free and small-
world properties (as computed from functional connectivity graphs) 
display critical behavior.

Figure 1. Example of electrophysiological activity of a cortical net-
work coupled to a High-Density Micro-Electrode Arrays (HD-MEAs)
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Slow rhythms of activity (~1  Hz) and slow-wave activity [1, 2] are a 
remarkably reproducible dynamical activity pattern with a low degree 
of complexity which opens a window on the brain multiscale organiza-
tion, on top of which cognitive functions emerge during wakefulness. 
Understanding how such transition takes place might shade light on 
the emergence of the rich repertoire of neuronal dynamics underlying 
brain computation. Sleep-wake transition is a widely-studied phenom-
enon ranging in experimental, computational and theoretical frame-
works [3–5], however it is still debated how brain state changes occur. 
In our previous work [6] we showed from intracortical recordings in 
anesthetized rats, that sleep-like rhythms fade out when wakefulness 



Page 104 of 176  BMC Neurosci 2017, 18(Suppl 1):60

is approached giving rise to an alternation between slow Up/Down 
oscillations and awake-like (AL) activity periods. We also shown how 
this phase of activity pattern bistability is captured by a mean-field 
rate-based model of a cortical column. Guided by this mean-field 
model, spiking neuron networks are devised to reproduce the electro-
physiological changes displayed during the transition. Also, the model 
gave us hints on the mechanistic and dynamical nature of the patterns 
of activity observed, suggesting that the AL periods appearance is due 
to a Hopf-like transition from a limit cycle to a stable fixed point at a 
high level of activity, and that AL-SO alternation is related to the pres-
ence of a slow oscillating (∼ 0.2 Hz) level of excitation probably due to 
populations of neurons in deeper regions of the brain.
We extended our previous findings by performing a stability analy-
sis of the competing attractors, observing a modulation of their sta-
bility, that affect the dynamics of the Down-to-AL transition and the 
residence dynamics within the AL state. Moreover, we found that 
the mean-field model remarkably matches the stability modulation 
observed in experiments. This match between theory and experi-
ments further strengthens our claim that cortical assemblies of neu-
rons display a Hopf bifurcation when anesthesia fades out.
Such observation gives important information on intrinsic dynami-
cal properties of the system, suggesting that it does not respond in a 
passive way but rather it is a strongly nonlinear component, capable 
to drastically change its dynamics under small changes of relevant 
parameters. This can provide a computational advantage in terms of 
the capability of producing a rich repertoire of network states during 
wakefulness.
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Numerous studies, across different sensory modalities, suggest that 
the neural code employed in early stages of the cortical hierarchy can 
be explained in terms of Efficient Coding. This principle states that 
information is represented in a neural population so as to minimize 
redundancy. This is achieved when the features to which neurons 

are tuned occur in a statistically independent fashion in the sensory 
environment. The “statistically independent features” can be rigor-
ously identified through methods of statistical inference, and can be 
associated with a cell’s receptive field (RF). Several studies using these 
methods have shown a qualitative similarity between predicted RFs 
and those found in primary visual cortex, for simple and complex cells 
(with linear and non-linear RF structures, respectively).
Recent methods allow direct experimental estimation of RFs. Using 
these methods, we report on the first quantitative evaluation of the 
Efficient Coding Hypothesis at the level of RF structures, including 
both simple and complex cells.
Experimental RF structures were estimated from recordings of single-
units in the primary visual cortex of anaesthetized cats in response 
to presentation of Gaussian white noise. RFs were estimated from 
recordings assuming a General Quadratic Model for spike rate and 
performing maximum likelihood estimation on the response given the 
stimulus. Theoretical Efficient Coding RF structures were inferred by 
performing unsupervised learning on a set of natural images, under 
the assumption of Efficient Coding that evoked spike rates were statis-
tically independent and sparsely distributed, and using the same Gen-
eral Quadratic Model as for the experimental RFs.
We recovered spatial RF structures from 94 well isolated single-units in 
3 cats, of which 26 were classified as simple cells, 38 as complex cells 
and 30 as a mixed cell class.
The results confirmed the qualitatively similarity of theoretical RF struc-
tures from Efficient Coding with those estimated experimentally. How-
ever, quantitatively a number of discrepancies were observed as well 
as similarities. (1) RF orientation tuning was wider experimentally than 
theoretically (bandwidth was most frequently between 60° and 90° 
experimentally, while theoretically, it was mostly between 30° and 60°). 
(2) Spatial frequency tuning was wider experimentally than theoreti-
cally (bandwidth was most frequently 2 ± 0.5 octaves experimentally, 
but only 1 ± 0.5 octaves theoretically). (3) For cells with more than one 
sub-RF it was possible to compare the tuning to orientation and spa-
tial frequency between different sub-RFs. The difference in orientation 
tuning between sub-RFs showed that experimentally around 60% cells 
had precisely matched orientation preferences (<15°), while in the the-
oretical population this proportion dropped to around 40%. (4) Experi-
mentally, the spatial frequency preference of sub-RFs in the same cell 
were also tightly matched for the majority of cells (<0.5 octaves), with a 
similar result in the theoretical population (<0.5 octaves). (5) Finally, the 
spatial phase relationships of sub-RFs were compared: experimentally a 
large majority (80%) of cells that had two quadratic sub-RFs that were 
90° ± 15° out of phase. In the theoretical population, this spatial phase 
relationship was common but less prevalent (50%).
The quantitative discrepancies we found were robust to changes in 
meta-parameters, such as the degree of image compression in pre-
processing or the source of natural images. The results suggest that 
the experimental RFs are sub-optimal in terms of coding efficiency. 
However, it is important to note that we used a deterministic model of 
spike rate in response to an image stimulus: a stochastic model is more 
realistic and may limit the coding efficiency of the theoretical result, 
bringing it in closer quantitative agreement with experiment.

Acknowledgements
AA acknowledges a Melbourne University Postgraduate Research 
Award. HM and MI acknowledge support from the Australian Research 
Council Centre of Excellence for Integrative Brain function.

P175 
Cholinergic Modulation of DG‑CA3microcircuit dynamics 
and function
Luke Y.  Prince1, Krasimira Tsaneva-Atanasova2,3, Jack R.  Mellor1

1Centre for Synaptic Plasticity, School of Physiology, Pharmacology, 
and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK; 2Department 
of Mathematic, College of Engineering, Mathematics and Physical 
Sciences, University of Exeter, Exeter, UK, EX4 4QF; 3EPRSC Centre 
for Predictive Modelling in Healthcare, University of Exeter, Exeter, UK, EX4 
4QJ
Correspondence: Luke Y. Prince (l.y.prince@bristol.ac.uk)  
BMC Neuroscience 2017, 18 (Suppl 1):P175

http://dx.doi.org/10.1038/srep39611


Page 105 of 176  BMC Neurosci 2017, 18(Suppl 1):60

Dentate gyrus granule cells provide powerful feedforward excita-
tory drive onto a local circuit of CA3 pyramidal cells and inhibi-
tory interneurons, and is believed to selectively activate subsets of 
pyramidal cells in the CA3 recurrent network for encoding and recall 
of memories. Cholinergic receptors provide a key means to modulate 
this circuit, increasing cellular excitability and altering synaptic release, 
but the combined action of these changes on information processing 
between the dentate gyrus and CA3 remains unknown. We recorded 
evoked monosynaptic EPSCs and disynaptic IPSCs in CA3 pyramidal 
cells in response to a range of frequencies and stimulation patterns 
and in the presence and absence of the cholinergic receptor agonist 
carbachol (5  μM). We found that carbachol strongly reduced IPSC 
amplitudes but only mildly reduced EPSC amplitudes. The short-term 
plasticity dynamics of these responses were used to constrain a com-
putational model of mossy fibre driven transmission across a range 
of stimulation patterns. This model was then used to analyse how 
aceytlcholine influences encoding and recall in a spiking neural net-
work model of CA3 to study encoding and recall of neuronal ensem-
bles driven by mossy fibre input. We found that acetylcholine lowers 
the requirements for encoding neuronal ensembles and increases 
memory storage in CA3.
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Dopamine replacement therapy for the treatment for Parkinson 
Disease (PD) has been related to an increased risk of occurrence of 
Impulse Control Disorders (ICD), such as Gambling Disorder (GD) [1]. 
Previous experimental and modeling studies [2] have shown a link 
between ICD and specific activity of the subthalamic nucleus (STN), a 
standard target for Deep Brain Stimulation (DBS) therapy for advanced 
PD. Several brain areas involved in decision making, impulsivity and 
reward valuation, such as the prefrontal cortex and striatum, are inter-
connected to the STN, and activity in these areas might be modulated 
by STN DBS. Understanding the relationship between STN functioning 
and ICD would help developing better therapies for PD while shed-
ding light on the mechanisms of human decision making.
To study how STN activity is modulated by gambling, we analyzed 
low-frequency ([1–12] Hz) fluctuations of STN LFP recorded by DBS 
electrodes from PD patients during an economic decision making 
task. All patients were under dopamine replacement therapy, and 
half of them were affected by GD. In the task patients were asked to 
decide between a high risk (HR) and low risk (LR) option, the first being 
associated to a negative expected value, but to a high reward in case 
of win. Reaction times were strongly affected by trial type, with GD 
patients and non-GD patients quicker in taking HR and LR decisions 
respectively, suggesting that decision is actually determined before 
options presentation. Analyzing low frequency STN LFP we found that 
amplitude of fluctuations, recorded during specific intervals preced-
ing option presentation, carried significant information about future 
choices on single trials in patients affected by GD but not in those not 
affected.

These results complement previous studies about the role of inhibit-
ing impulsive behavior displayed by the STN activity. Beta-range STN 
fluctuations were found to be modulated by the level of conflict in 
decisions [3], while our results suggest that the lower frequencies, 
which are functionally correlated with different cortical areas [4], play 
instead a role to prevent pathological risk attraction.
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We present and discuss data-driven models of biophysically detailed 
hippocampal CA1 pyramidal cells and interneurons of a rat. The results 
have been obtained by using the Brain Simulation Platform (BSP) of 
the Human Brain Project and two open-source packages, the Electro-
phys Feature Extraction Library (eFEL, https://github.com/BlueBrain/
eFEL) and the Blue Brain Python Optimization Library (BluePyOpt) 
[1]. They have been integrated into the BSP in an intuitive graphi-
cal user interface guiding the user through all steps, from selecting 
experimental data to constrain the model, to run the optimization 
generating a model template and, finally, to explore the model with 
in silico experiments. Electrophysiological features were extracted 
from somatic traces obtained from intracellular paired recordings 
performed using sharp electrodes on CA1 principal cells and interneu-
rons with classical accommodating (cAC), bursting accommodating 
(bAC) and classical non-accommodating (cNAC) firing patterns. The 
extracted features, together with user selections for realistic morpho-
logical reconstructions and ion channel kinetics, were then used to 
automatically configure and run the BluePyOpt on the Neuroscience 
Gateway and/or on one of the HPC systems supporting the BSP opera-
tions, such as CINECA (Bologna, Italy) and JSC (Jülich, Germany) in this 
case. The resulting optimized ensembles of peak conductances for the 
ionic currents, were used to explore and validate the model behavior 
during interactive in silico experiments carried out within the HBP 
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Collaboratory. Such a modelling effort has been undertaken in the 
context of the Human Brain Project and constitutes one of the major 
steps in the workflow that is being used to build a cellular level model 
of a rodent hippocampus.
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It is widely accepted that the cerebellum and basal ganglia (BG) and 
play key roles in motor adaptation (in error based and non-error based 
one, respectively) [1]. However, despite considerable number of stud-
ies, the interactions between BG and cerebellum are not completely 
understood [1]. In particular, in the experiments it is difficult to dis-
sociate the adaptation performed by cerebellum and by BG. To do so, 
some studies [2] introduced perception perturbations that were sug-
gested to impair cerebellum’s ability to adapt to errors, and, thus, pro-
moted the BG-based mechanisms. To our knowledge no mathematical 
model exists that explains the conditions in which visual perturbations 
make reinforcement learning in the BG the main mechanism of motor 
adaptation.
We have developed a model that integrates a phenomenological 
representation of the cerebellum and a previously published firing 
rate-based description of BG network [3], and mimics the trial-to-
trial motor adaptation in 2D reaching arm movements. Cerebellum is 
implemented as an artificial neural network performing corrections of 
the motor program, descending from motor cortex to spinal cord, via 
supervised learning.
Figure 1 below shows the model architecture. Stimulus signal comes 
from prefrontal cortex (PFC) and is sent to direct and indirect path-
ways of BG. The strength of PFC →  BG connections changes due to 
reinforcement learning mediated by substantia nigra pars compacta 
(SNc) dopaminergic input, whose activity is defined by the reward 
prediction error (RPE) signal. Direct and indirect pathways converge 
at globus pallidus internus (GPi)/substantia nigra pars reticulata (SNr), 
which together project to premotor cortex (PMC)/Thalamus to per-
form action selection. There are also direct PFC →  PMC connections 
representing habitual cue-action associations. The PMC/Thalamus 
then project to the motor cortex (MC) and to the cerebellum. Cerebel-
lum output represents a correction, which adds to the motor com-
mand descending from the MC to the spinal cord. This correction 
is calculated as a linear transformation of the motor command. The 
transformation matrix is updated by the supervised learning algo-
rithm, accounting for the vector error provided by the visual feedback. 
The corrected signal goes to the spinal cord neuron network that con-
trols a two-joint arm to perform center-out reaching movements. The 
perceived movement endpoint of the is used to compute the vector 
error and/or the reward.

Figure 1. Model architecture

Our model simulations suggest that when the perception of the vector 
error provided to the cerebellum is significantly perturbed, the faulty 
cerebellar corrections adversely affect or even completely destroy 
motor adaptation. We speculate and show via simulations that error-
based learning in cerebellum has an adaptive critic component which 
effectively suppresses error-based mechanisms to enable reinforce-
ment-based motor adaptation.
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Bridging descriptions of brain activity across different scales is a 
major challenge for theoretical neuroscience. Numerous experimen-
tal techniques are available to measure brain activity, ranging from 
single cells recordings to population measurements of the average 
activity of large ensembles of neurons. It is often in these population-
level recordings (e.g. EEG, MEG…), that important phenomena are 
observed. A particularly relevant example are gamma oscillations, a 
temporal coherent activity with frequency between 30 and 100  Hz. 
A large body of experimental and computational works indicates 
that the interplay between synaptic processing and recurrent inhibi-
tion is the key ingredient to generate such oscillations, in a mecha-
nism commonly referred to as Interneuronal Gamma oscillations 
(ING) [1, 2]. Here, we analyse the dynamics of a network of quadratic 
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integrate-and-fire neurons with time-delayed synaptic interactions, 
both in their excitable and self-oscillatory regime. Time delays have 
been indeed shown to approximate the effect of synaptic kinet-
ics [3]. Using the so-called Lorentzian ansatz [4, 5], we derive a set of 
two delayed firing rate equations (FREs). Due to their analytical trac-
tability, the FREs allow us to find exact boundaries of stability for the 
parameters regions of oscillatory (collective synchrony-CS) and asyn-
chronous dynamics. Moreover, for inhibitory coupling, we observe a 
more complex oscillatory state, the so-called quasiperiodic partially 
synchronized state (QPS). Here, neurons are quasiperiodic, and have a 
mean frequency different from the global frequency of the entire pop-
ulation, which corresponds to fast brain oscillations (f ~ 80 Hz). Inter-
estingly, macroscopically this state strongly resembles the sparsely 
synchronized state observed in networks of leaky integrate-and-fire 
neurons subjected to strong recurrent inhibition and noise [6]. How-
ever, microscopically, these two states have qualitatively different 
dynamics, suggesting a dichotomy between microscopic and macro-
scopic dynamics. For a certain region of parameters, the QPS coexists 
also with the CS. Moreover, sufficiently increasing inhibition, the QPS 
undergoes a series of period doubling bifurcation that eventually 
leads to chaos. Notably, only the collective dynamics is chaotic, while 
microscopically neurons are non-chaotic. Finally, we find that while 
excitation always leads to collective synchronous oscillations, inhibi-
tion fails to synchronize neural activity when a precise degree of het-
erogeneity is exceeded, consistently with previous numerical studies 
of heterogeneous, inhibitory spiking neural networks [7].
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Anterior cingulate cortex (ACC) plays regulatory and cognitive roles. 
Its functions are associated with conflict and performance monitor-
ing, regulation of strategy and response selection, all of which depend 
on reward monitoring and its anticipation [1]. It has been shown 
previously that in the condition when the reward was certain and 
its proximity was cued, animal’s error rate decreases together with 

the number of trial remaining to the reward [2]. Concurrently, the fir-
ing rate of ACC neurons gradually increased or decreased along with 
reward expectancy. It happened when the reward was certain and cor-
rect decisions could only bring animal closer to the reward. However, 
when certainty about outcome was removed and no notion of reward 
proximity was provided the progressive modulation of behavior and 
ACC activity disappeared.
Here we tested whether such motivation signal can be also found in 
the circumstances when the reward is no longer certain and the animal 
choices brings reward closer or further away but the information about 
reward closeness reminds - the situation more common in the economic 
decisions of everyday life. We recorded single unit activity from dorsal 
ACC while monkey performed token gambling task. On each trial, mon-
keys gambled to gain certain number of tokens, but they could also lose 
tokens. The collection of six tokens resulted in a jackpot reward deliv-
ery. The number of collected tokens was displayed on the monitor and 
was known to the animal. The animal learnt the task and exhibited risk 
seeking behavior as previously reported [3]. The analysis of behavioral 
data revealed that animal performance (percent of correct responses) 
depended on the number of previously collected tokens. The relation 
was not monotonic with the drop of performance after reward admin-
istration. At the same time, the significant fraction of recorded neurons 
exhibited tuning towards the number of previously collected tokens.
Our preliminary results suggest that ACC monitors rewards in risky 
conditions, and that neuronal signals could be directly related to the 
motivation of the animal.
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Bipolar disorder (BPD) is characterized by oscillations alternating 
between manic and depressive episodes causing swings in moods. 
The length of an episode in a patient’s mood cycle (time period) can 
vary from hours to years. Some medications popularly used for stabiliz-
ing mood include selective serotonin reuptake inhibitors and lithium 
therapy. This computational study focuses on the serotonergic system 
dysfunction, and particularly, understanding their contribution to cor-
tico-basal ganglia network (CGBN) dynamics for stability and recurrence 
of moods. To this end, we try to model the disorder in a decision-making 
framework that tries to choose between actions of positive or negative 
affects. We propose a computational model that explores the effects of 
impaired serotonergic neuromodulation on the dynamics of CBGN and 
relate this impairment to the manic and depressive episodes of BPD. The 
proposed model of BPD is derived from an earlier model, that describes 
the roles of dopamine and serotonin in the action selection dynamics of 
CBGN. In that model, rewarding actions are selected based on the Utility 
function, which combines Value and Risk functions as follows (eqn. 1).
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where U, Q and h represent Utility, Value and Risk respectively, for a 
given state, s, and action, a, at time, t. The parameter α, which repre-
sents risk preference, is associated with serotonin action in CBGN. 
Value and Risk are trained by Reinforcement Learning using the Tem-
poral Difference (TD) error, which represents dopamine in CBGN. The 
lumped model was later extended to a detailed network model of BG. 
In those models, α was a constant, whereas in the current model it var-
ies as per the following dynamics:

The variable r-bar tracks the average rewards ‘r’ gained through time, 
and α-dot defines serotonin dynamics with αk constant (eqns.  2, 3) 
indicating basal risk sensitivity levels. The parameter Ar denotes the 
amplitude of reward sensitivity, and thus the reward history is pro-
posed to modulate α dynamics. When the model is run in a simple two 
arm bandit task - one rewarding (+ve reward) and the other punitive 
(-ve reward) with probability 0.5, under normal conditions the network 
shows high preference for rewarding actions. But for certain ranges of 
reward sensitivity (Ar) and basal risk sensitivity (αk) the model exhib-
its oscillations reminiscent of BPD mood oscillations (Fig.  1). There 
exists clinical and experimental evidence supporting abnormality 
in serotonin levels and reward sensitivity in case of BPD. Specifically, 
high reward sensitivity with medium levels of risk sensitivity (seroto-
nin activity correlate, as tonic/basal levels or that induced by medica-
tion), can trigger bipolar mood oscillations. This preliminary model can 
be extended to a detailed network model. Future work will include 
expanding CBGN with neural models of limbic system, and predicting 
plausible treatment strategies for effectively dealing with the onset 
and progression of BPD symptoms.

(1)Ut(st , at) = Qt(st , at)− α sign(Qt(st , at))
√

ht(st , at)

(2)α̇ = τα(−α + Arr̄ + αk)

(3)˙̄r = τr(r − r̄)

Activity of posterior parietal cortex (PPC) neurons exhibits self-motion 
tuning to both ongoing and impeding movements, which may reflect 
behavioral planning [1]. A major input to PPC originates from the frontal 
medial agranular cortex (AGm), which is believed to be involved in com-
plex motor planning. In the monkey, Pesaran and colleagues [2] showed 
that fronto-parietal coherence is stronger in free-choice tasks than in 
instructed trials, probably activating different decision-related circuits 
in these areas. Therefore, we hypothesize that in the rat the interaction 
between AGm and PPC may be instrumental in coordinating decision 
making and motor planning. Here, we are investigating the coupling 
strength between PPC and AGm in the theta/alpha frequency band by 
computing pairwise spectral coherence and phase delays across the two 
areas (see Figure  1) during goal-directed spatial navigation in rats. Two 
tasks were implemented: an instructed or “known” task where the rat had 
to run straight to a fixed well named “Home”; an “exploratory” task where 
the rat had to search for reward delivered in “Target” wells located ran-
domly across the arena and then run back to the Home well.
Results: As the rat stopped running and started licking at the target 
well, there was an increase in theta coupling strength accompanied 
by a gradual decrease in frequency (Figure 1A). Using the phase infor-
mation, we computed the delay of PPC relative to AGm. The delay 
decreased sharply from ~5.5 to ~2.5 ms when the rat arrived at the tar-
get location (see Figure 1B), and it was gradually resetting in the last 
5 s that the rat spent at that location (see Figure 1D). As suggested by 
anatomical evidence, AGm was leading PPC indicating a causal inter-
action where AGm coordinates the activity in PPC.
Conclusions: Our results indicate a complex regulation of oscillatory 
behavior in PPC and AGm during free behavior in rats. In particular, a 
pronounced ongoing oscillation in the theta/alpha band is expressed 
throughout the task and seems to be coordinated across the two areas. 
AGm leads PPC and both the frequency of the oscillation and the time 
delay between the two areas change as a function of behavioral events.

Figure  1. Action (positive or negative affect) selection in CBGN 
model: Yellow: rewarding (+ve) action selection as in healthy con-
trols; Green: Oscillations between +ve and –ve actions as in BPD; 
Blue: -ve action selection as in depression

Figure 1. A and C. Time-resolved spectral coherence between PPC 
and AGm in the 6-10 Hz frequency band, aligned to the initiation 
(A) and cessation (C) of licking at the target well. B and D. phase 
delays in ms between PPC and AGm aligned to the initiation (B) 
and cessation (D) of licking at the target well
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Schizophrenia has long been described as a syndrome of disordered 
connectivity in the brain. While originally based on clinical symptoma-
tology, neurophysiological evidence for this concept has been found 
in imaging studies in humans with schizophrenia. It has also been 
found that cortical pyramidal neurons have a reduced density of the 
synaptic spines necessary for cellular communication in postmortem 
brain tissue recovered from people with schizophrenia. However, 
functional evidence for disconnectivity at the level of local neuronal 
circuits is limited. To address this question, we characterized neuronal 
dynamics between groups of simultaneously recorded cortical neu-
rons in data obtained from both primate and mouse models of schizo-
phrenia. Neural data were obtained from multielectrode recording 
arrays inserted into the parietal and prefrontal cortices of macaque 
monkeys while the animals performed a cognitive control task that 
measures a specific cognitive impairment in human patients with 
schizophrenia. Phencyclidine, an NMDA receptor (NMDAR) antagonist 
that has long been used as a pharmacological model of psychosis, was 
administered systemically on alternating days with injections of saline. 
In the mouse experiments, analogous data were obtained from medial 
prefrontal cortex in awake head-fixed mice during locomotion. Data 
from Nestin-promoted  Dgcr8+/− mutant mice (DiGeorge syndrome crit-
ical region 8; a gene strongly associated with schizophrenia in humans 
and shown to produce schizophrenia-like symptomatology in mice) is 
compared with that obtained from wildtype littermate controls.
Cross-correlation analysis was performed on spike trains from pairs of 
simultaneously recorded neurons to characterize changes in synchrony 
between conditions. In the primate neural data, cross correlations fre-
quently displayed a prominent “zero-lag” peak representing a large num-
ber of coincident action potentials between cells in the control condition 
that could be a result of common input. In the phencyclidine condition, 
there was a reduction in synchronous firing between pairs of cells. A similar 
rate-independent reduction in precise synchrony was also found in medial 
prefrontal cortical neuronal ensemble recordings obtained from Dgcr8 
mice as compared to controls, suggesting that this is may be a consistent 
finding related to the root pathophysiology of schizophrenic processes.
To characterize deficits in synaptic communication between neurons 
in the disease state, we employed higher-order transfer entropy (TE) 
metrics to identify pairs of cells that exhibited effective connectivity 
(Ito et al, 2011, PLOS One). Consistent with the disconnection hypoth-
esis of schizophrenia, we found that acute administration of PCP 
resulted in a reduction in the percent of cell pairs identified as signifi-
cantly functionally connected by TE analysis, as well as a reduction in 
the overall distribution of population shared information. This result 
suggests a cellular basis for the reduced information-processing capa-
bilities seen in schizophrenics performing prefrontal cortex-depend-
ent tasks, as well as synaptic disconnection. Furthermore, this result is 
supported by a similar reduction in both number of functionally con-
nected cell pairs and overall shared information in prefrontal cortex in 
the  Dgcr8+/− mouse genetic model of schizophrenia.
In summary, these results display a reduction in both zero-lag synchrony 
and cellular-level functional connectivity in two very distinct animal 
models of schizophrenia. It is well known that coincident firing of action 
potentials facilitates connectivity between neurons, and asynchrony 
results in disconnection. Thus, the results presented here support the 

notion that alterations in precise spike timing may be an underlying 
driving factor towards reduced functional connectivity in schizophrenia, 
providing a new mechanistic model for disease pathophysiology.
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Current neuromodulation techniques for seizure suppression, such as 
vagus nerve or deep brain stimulation, have shown some clinical effi-
cacy. Yet their application is complicated by the large parameter space 
of electrical stimulation settings inherent to these systems. A physician 
must skillfully choose stimulation parameters such as frequency, ampli-
tude, and pulse width for each individual patient in order to effectively 
reduce their incidence of seizures. We demonstrate an algorithm capa-
ble of automatically generating a continuous stimulation waveform to 
suppress neural activity and minimize total stimulation energy.
We treat the suppression of neural activity as a linear-quadratic-Gauss-
ian (LQG) control problem. The resulting optimal controller consists 
of a Kalman filter and a linear-quadratic regulator (LQR). The effec-
tiveness of the LQG controller in suppressing seizure biomarkers was 
first verified in a computational model of epilepsy called Epileptor [1], 
which simulates local field potential (LFP) recordings within a seizure 
focus. We built a model of the generated LFPs using the Ho-Kalman 
algorithm [2] for subspace system identification. The Kalman filter esti-
mated the state of the system and a feedback control signal provided 
by the LQR successfully prevented seizures during stimulation, even 
while varying the Epileptor model parameters.
We then implemented the LQG controller in an in  vivo rodent model. 
We stimulated the ventral hippocampal commissure while recording 
in the hippocampus. The Ho-Kalman algorithm was again used to build 
a dynamical systems model of the LFP activity based on the evoked 
response to Gaussian white noise stimulation. We used a three-phase 
experiment to test the LQG controller: 2 min of baseline activity; 2 min 
of closed-loop neural stimulation; and 2 min post-stimulation to check 
if LFPs return to baseline levels. This same stimulation waveform was 
then replayed in “open-loop,” without state estimation from the Kalman 
filter. The LFP power from 1-100 Hz was used to measure performance. 
Our results show a significant decrease in LFP power during closed-loop 
stimulation. Open-loop stimulation produced negligible change in LFP 
power. The LQG controller was confirmed to be an effective tool for min-
imizing LFP activity within a selected frequency band. The mathemati-
cal models of neural dynamics it uses are subject specific and determine 
stimulation waveforms based on state to suppress neural activity.
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Deep brain stimulation (DBS) is an effective therapy for motor symptoms 
of PD, and is often used as a complement to medication in patients who 
have progressed to severe stages of PD. However, programming these 
devices is difficult and time consuming, and DBS therapy is limited by 
side effects and partial efficacy [1]. Furthermore, traditional continuous 
DBS (cDBS) does not account for fluctuations in motor symptoms caused 
by factors such as sleep, attention, stress, cognitive and motor load, and 
current drug therapy [2], and as the patient’s state changes, so does the 
need for stimulation. Current cDBS strategies are incapable of adapting 
to the needs of patients: once the clinician sets the parameters, they do 
not change until the next programming visit. In this study, we have cre-
ated a reinforcement learning (RL) algorithm capable of learning online 
how best to stimulate to reduce pathological oscillations in silico. We have 
developed the reinforcement learning DBS (RL-DBS) algorithm for tuning 
DBS parameters, and have tested it on a biophysically realistic mean-field 
model of the basal ganglia-thalamocortical system (BGTCs) [3], simulat-
ing parkinsonian neural activity. The RL-DBS algorithm decides when to 
deliver stimulus pulses based upon the real-time amplitude and phase 
of the pathological oscillation in order to reduce the amplitude of that 
oscillation. The algorithm learns which actions lead to the highest cumula-
tive reward (i.e. reduction of oscillation amplitude). After training on the 
model, the RL-DBS algorithm is able to learn both phase and amplitude 
selectivity to optimally reduce the pathological oscillation. The algorithm 
learns the expected reward for both actions (not stimulating and stimu-
lating) as a function of the phase/amplitude of the oscillation (Figure. 1A, 
Figure.  1B). The algorithm then decides which action to execute based 
upon the action difference (Figure. 1C). Additionally, the algorithm learns 
to deliver bursts of stimulation phase-locked to the oscillation.
We created an adaptive RL-DBS algorithm capable of learning on-line 
how to reduce the power of a pathological oscillation in a computation 
model of PD. The algorithm has the potential to deliver individualized, 
adaptive DBS therapy that can improve the quality of life for PD patients.
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Detecting delayed coupling in dynamical systems remains a challenging 
frontier in Neuroscience. Frequently used tools such as cross-correlation 
have been shown to be robust against measurement noise but fail to 
identify coupling direction. [1] More recently developed tools such as 
multivariate granger causality and various forms of transfer entropy pro-
vide methods of detecting direction of coupling but may be less resilient 
to measurement noise and require more substantial quantities of data 
depending on the signal to noise ratio. With widespread use of these tools, 
it is important to have a complete understanding of the limitations of each 
metric and the circumstances of optimal use in experimental design.
To test these metrics over a salient parameter space, a linear, delayed vec-
tor autoregressive model was created with probabilistic and complex 
coupling over probabilistic time delays. The model was run with various 
measurement noise strengths, numbers of nodes, and number of available 
data points. Correlation, cross-correlation, mutual information, multivariate 
granger causality (MVGC), and transfer entropy (TE) were computed and 
compared to true coupling adjacency matrices using an L-2 metric.
Significant differences were found between reconstruction results 
between metrics. MVGC was found to outperform all other metrics 
when the signal to noise ratio exceeded 0.23. Transfer entropy and cor-
relation fared worse than maximum cross-correlation and mutual infor-
mation, as summarized in Figure 1. Reconstruction error was found to 
be minimally affected by number of nodes for metrics other than MVGC 
and TE, where MVGC outperformed all others. Similarly, MVGC and TE 
required a minimum number of samples to converge, and the required 
number of points was found to be a function of the number of nodes.

Figure.  1. Learned reward maps A, B and action difference C as 
a function of the phase and amplitude of the oscillation. A and 
B show the learned reward for no stimulation and stimulation 
respectively, while C shows the action difference. The algorithm 
selects the action that with the highest expected reward. The 
action difference reveals that the algorithm learns both phase- and 
amplitude-selective stimulation

Figure 1. Reconstruction error of time-lagged coupling as a func-
tion of measurement noise with standard deviations
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Conclusions: Based on this work, significant disparity exists between 
the performance of existing methods to detect delayed coupling. 
Many common tools fail to detect delayed coupling. However, even 
with a minimal density of time points to number of nodes, MVGC effi-
ciently recovers complex and delayed coupling. Careful consideration 
should be given to metrics used in experiments where coupling may 
be delayed or spread out over time. Measurement noise and data sam-
ple density requirements may affect experimental design.
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A common property of developing neuronal systems is their intrin-
sic ability to generate spatiotemporally propagating spiking activity 
involving a large number of highly synchronously firing neurons. Pri-
mary neuronal cultures are among the experimental preparations that 
allow the investigation of the principles underlying the generation 
of such spontaneous coordinated spiking activity: cell cultures self-
organize during development up to the stage where they elicit stereo-
typed network-wide spiking activity, called network bursts. The high 
spatial resolution of the high-density CMOS multi-electrode arrays 
revealed that network bursts correspond to a coordinated propaga-
tion of action potentials throughout the network [1]. Specifically, these 
propagations could be well clustered into few groups differing for 
their ignition sites (i.e. the starting point) and propagation paths (i.e. 
the mean trajectory followed by the spiking activity) [2]. This finding 
suggests the presence of regions in charge of triggering such sponta-
neous events. Following this direction, we investigated what were the 
main determinants underlying the generation of network bursts in cell 
cultures at the mature stage. To this end, we implemented a network 
model made of principal cells (excitatory) and fast spiking (inhibitory) 
neurons endowed with the proper synaptic currents (AMPA, NMDA, 
GABA). With minimal topological constraints on the coupling between 
neuronal pairs (i.e. a network structure based on the reciprocal dis-
tance among neurons), the model expressed realistic spontaneous 
activities that mimicked the experimental findings.
The results obtained in this study, by combining experimental datasets 
with our neural network computational model, shows that while the 
synaptic contribution is mainly involved in shaping the network burst, 
the key player in the generation of network bursts could be found in 
the local properties of the neuronal network.
Specifically, with functional connectivity analysis, we found and 
detected, both in simulation and in experiments, a few and specific 
‘hot spots’ of the networks that matched with the ignition sites of 
the propagations. In particular, in the model, the neurons of to the 
hot spots were much more responsive than any other region to mild 
stimulations delivered to these regions. Although the connectivity was 

truly uniform by design we found that the ‘hot spots’ were character-
ized by local graph properties (i.e. higher clustering, lower path length 
respect to the remaining network) that favor the amplification of asyn-
chronous firing and determine the onset of a network event. Our mod-
eling study suggests that the ‘hot spots’ might naturally result from the 
simple constraints on the network topology and the sparseness of the 
network.
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Over the last decade graphics processing units (GPUs) have evolved into 
powerful, massively parallel co-processors that are increasingly used for 
scientific computing and machine learning. But it has also become quite 
clear that writing efficient code for GPU accelerators is difficult even 
with APIs designed for general purpose computing, such as CUDA and 
OpenCL. As a consequence, frameworks are being developed for mak-
ing GPU acceleration available for specific applications without complex 
parallel code design. Examples include Matlab GPU extensions [1], Ten-
sorFlow GPU support [2], Theano GPU extensions [3] and so on. Here we 
present the first public release of Brian2GeNN [4], a software package 
that connects the popular Brian 2 simulator [5] to the GPU enhanced 
neuronal networks (GeNN) framework [6] to provide effortless GPU sup-
port for computational Neuroscience investigations to Brian 2 users.
Brian2GeNN was first announced at CNS*2014 and has undergone a long 
phase of maturation and development until its first public release this 
year. It is a Python based package that allows users to deploy their Brian 
2 models to a device named “genn”, using the simple command “set_
device(‘genn’)”. This triggers the use of Brian2GeNN, which generates 
code that can be executed on GPUs using GeNN. Brian2GeNN supports 
all common features of Brian 2 with few exceptions such as multi-com-
partment models, multiple networks or heterogeneous delays.
On this poster, we present the basic principles of how Brian2GeNN 
works and benchmark examples of its performance with a number of 
different benchmark models and using a number of diverse GPU accel-
erators. We can demonstrate that depending on the model and the 
accelerator, achieved speedups can vary considerably. Brian2genn is 
Open Source and freely available on GitHub under GPL v2.
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In visual discrimination tasks, the subject collects information about 
sensory stimuli and makes behavioral decisions accordingly. In this 
study, we are searching for coding strategies in visual cortices of the 
macaque (macaca mulatta) that relate to both stimuli and behav-
ior. Multi-units within a single cortical column are recorded in V1 and 
V4 areas simultaneously while the subject is performing a change 
detection task with matching and non-matching stimuli. We assess 
systematic differences in distribution of spike counts for matching vs. 
non-matching stimuli (detection probability) and for correct vs. incor-
rect behavioral performance (choice probability, [1]) on the single cell 
and on the population level. In addition, we estimate pair-wise cor-
relations of spike counts. The spiking signal is weakly but significantly 
predictive on the type of stimulus (matching vs. non-matching stimuli 
with correct behavioral responses) as well as on different behavioral 
choices with correct and incorrect behavioral performance (correct vs. 
incorrect behavioral responses on non-matching stimuli). In both areas, 
the effect is limited to the superficial layers of the cortical column. 
Detection and choice probability are consistent, the behavioral choice 
“match” being characterized by higher spike counts in both cases. In 
V1, but not in V4, the signal corresponding to the choice”match” is even 
statistically invariant with changes in both the type of the stimulus and 
the behavioral performance. In incorrect trials, neural activity in V1 is in 
addition characterized by a systematic bias in spike counts already at 
the beginning of the trial. The bias is consistent with the future behav-
ioral choice and is only present in the deep cortical layers. Comparing 
the distribution of correlation coefficients across pairs of neurons with 
matching and non-matching stimuli, distribution of coefficients in V4 
is less variable with matching stimuli, in particular for short (0-0.5 mm) 
and middle-range (0.5-1 mm) inter-neuron distances. This effect could 
be interpreted as a fast adaptation of neural responses to two con-
secutive presentations of the same stimuli [2]. A change in long-range 
(>1 mm) correlations in V4 is observed when comparing trials with cor-
rect and incorrect behavioral performance, correlations in incorrect tri-
als showing higher variability. In V1, we did not observe any systematic 
changes in spike-count correlations with different stimuli. However, 
correlations are significantly more variable in trials with incorrect com-
pared to correct behavioral performance. This effect is once again lim-
ited to deep cortical layers. Higher variability of correlations in V1 might 
be a signature of spontaneously generated network state that is more 
likely leading to incorrect behavioral performance. Finally, we test the 
interactions between choice probabilities and spike-count correlations. 
Choice probabilities and correlations do not interact in V1, but weakly 
interact in the V4 area, where cells with similar choice probabilities tend 
to be more strongly correlated. In summary, we observe various differ-
ences in the first and second order statistics of spike counts in both V1 
and V4 areas. The first order statistics is related to coding of both stimuli 
and behavioral choices while correlations would rather modulate the 
efficacy of encoded signals.
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The interplay between structural connectivity (SC) and neural dynamics 
is still not yet fully understood. Applying topological analysis, the con-
nectome approach links this anatomical network to brain function. Here 
we adopt a computational approach to find topology features related 
to the stability on global neural dynamics. A previous study of a mean 
field model based on the human cortex network, shows at least 2 global 
neural states, with either a low or high firing rate pattern [1, 3]. These 2 
possible states, or bistability, emerge in the model within a range of the 
global coupling parameter G, limited by critical values G- and G+[1, 3]. 
Also, at this bistable range, this model achieves the highest correlations 
with empirical resting state fMRI data. How the network connectivity pat-
tern shapes the critical G values has not been yet investigated. Our aim is 
to identify local or global topology features related to the critical G val-
ues. We studied 4 different SC networks: a cortical parcellation of human 
brain [2], a human binary equivalent, a Random Network (RN) having 
the same degree distribution as human SC, and an equivalent Watts & 
Strogatz Small World (SW) network. For each of the analyzed networks, 
values in their critical G points have small or null variability. Then, we 
selectively prune the edges of the networks and calculate their critical G 
values to show the effect of structure pattern in maintaining the bistable 
dynamics. The edges were pruned selectively based on either the degree 
or the k core decomposition measure; interpreted as a local or global 
topology feature, respectively. Also, the pruning procedure is applied 
to the edges on one of 3 specific ways: i) high degree/k core nodes, ii) 
random cuts, and iii) low degree/no k core nodes. The highest shifts in 
critical G values are achieved when the edges of high degree or k core 
nodes are pruned. In contrast, when we prune those edges belong to low 
degree or no k core nodes, the shifts in the critical G points are irrelevant. 
We interpret this as that the model can use either local or global connec-
tivity pattern in order to stabilize the critical G points. Furthermore, our 
study show that shifts in the critical G points are statistically equivalent 
when the degree distribution (but not k core structure) is shared, such as 
in the binary human SC compared to the RN. Therefore, in our simulation 
the degree distribution, interpreted as a local connectivity feature, deter-
mines the critical G points for bistability, capturing the essential struc-
tural pattern of the network. We also show that it is possible to obtain 
bistability in other types of networks, suggesting that structure dynamic 
relationships may obey a topological principle.
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Chaotic dynamics of neural oscillations has been shown at the single 
neuron and network levels, both in experimental data and numerical 
simulations. Theoretical works suggest that chaotic dynamics enrich 
the behavior of neural systems, by providing multiple attractors in a 
system. However, the contribution of chaotic neural oscillators to rel-
evant network behavior has not been systematically studied yet. We 
investigated the synchronization of neural networks composed of con-
ductance-based neural models that display subthreshold oscillations 
with regular and burst firing [1]. In this model, oscillations are driven 
by a combination of persistent Sodium current, a hyperpolarization-
activated current (Ih) and a calcium-activated potassium current, 
very common currents in the CNS. By small changes in conductance 
densities, the model can be turned into either chaotic or non-chaotic 
modes [2]. We study synchronization of heterogeneous networks 
where conductance densities are drawn from either chaotic or non-
chaotic regions of the parameter space. Measuring mean phase syn-
chronization in a small-world network with electrical synapses, we 
characterize the transition from unsynchronized to synchronized state 
as the connectivity strength is increased. First, we draw densities from 
fixed-size regions of the parameter space and find the transition to 
synchronized oscillations is always smooth for chaotic oscillators but 
not always smooth for the nonchaotic ones. However, non-smooth 
transitions were found to be associated to a change in firing pattern 
from tonic to bursting. Nevertheless, we noticed that chaotic oscilla-
tors display a wider distribution of firing frequencies than non-chaotic 
oscillators, thus making more heterogeneous networks. Next, we draw 
the conductance densities from the parameter space in a way that 
maintained the same distribution of firing frequencies (hence the 
heterogeneity of the network) for both chaotic and non-chaotic. In 
this case, synchronization curves are very similar, being second order 
phase transition for both cases. However, we cannot discard that non-
chaotic oscillators become chaotic (or vice versa) when in a network, 
because of the extra parameter associated to the electrical synapse. 
Finally, when the chaos-inducing Ih current is removed, the transition 
to synchrony occurs at a lower value of connectivity strength but with 
a similar slope.
Our results suggest that the chaotic nature of the individual oscillators 
may be of minor importance to the synchronization behavior of the 
network. Ongoing work is being conducted to measure the chaotic 
nature of the whole network, and how it is related to the synchrony 
behavior.
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Stochastic spatial molecular reaction-diffusion simulators, such as 
STEPS (STochastic Engine for Pathway Simulation) [1], often face great 
challenges when simulating large scale complex neuronal pathways, 
due to the massive computation required by the models. This issue 
becomes even more critical when combining with cellular electro-
physiological simulation, one of the main focuses in computational 
neuroscience research. One example is our previous research on sto-
chastic calcium dynamics in Purkinje cells [2], where a biophysical cal-
cium burst model was simulated on approximate ¼ of a Purkinje cell 
dendritic tree morphology using the serial implementation of spatial 
Gillespie SSA and electric field (EField) solver in STEPS 2.0. Even with 
a state-of-the-art desktop computer, it still took months to finish the 
simulation, significantly slowing down research progress.
One possible, yet not trivial approach to speedup such simulation 
is parallelization. In CNS2016 we reported our early parallel imple-
mentation of an Operator-Splitting solution for reaction-diffusion 
systems, which achieved super-linear speedup in simulation of the 
buffer components of the above published model on full Purkinje 
cell morphology. While the performance of our parallel implementa-
tion was promising, the test model had no calcium presented in the 
system and only buffers were simulated. Since buffers were uniformly 
distributed in the geometry, the loading of each computing process 
was relatively balanced, resulting in a close to ideal scenario for par-
allel computation. The membrane potential computation, as well as 
voltage-dependent reactions in the published model, were omitted 
due to the lack of a parallel EField solver at the time. In a recent pub-
lication [3], we further extended the model by applying a dynamically 
updated calcium influx profile extracted from the published calcium 
burst simulation. Our result shown that in a realistic scenario with 
dynamic calcium influx, data recording, and without special load bal-
ancing, our parallel reaction-diffusion solution can still achieve more 
than 500 times of speedup with 1000 computing processes comparing 
to the conventional serial SSA solution.
STEPS 3 is the first public release out of the collaboration between the 
CNS Unit of OIST and the Blue Brain Project of EPFL. The ongoing collab-
oration aims to deliver a scalable parallel solution for future integrated 
stochastic molecular and electrophysiological neuron modelling. Com-
bining the parallel TetOpSplit molecular solver developed by OIST and 
EPFL’s parallel EField solver based upon the PETSc library, our new 
release addresses the limitations of above test cases, and allows full 
scale parallel simulation of the complete Purkinje cell calcium burst 
model. It also contains new changes that are essential to parallel STEPS 
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modelling and simulation pipeline, such as the improved python bind-
ing using Cython technology. In this poster, we will use this model as 
an example to showcase the general procedure of converting a serial 
STEPS simulation to its parallel counterpart using these new changes. 
We will also analyze the performance and scalability of our integrated 
solution, and discuss the direction of future STEPS development.
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The cortex of the cerebellum is one of the most well-characterized 
regions of the brain, comprising three distinct layers whose connectiv-
ity is well understood. Numerical simulations of parts of the cerebellar 
cortex, including the granular layer and Purkinje cell layer, have been 
instrumental in revealing the computational properties of the cerebel-
lum. However, one important part of the cortex - the molecular layer 
- has yet to be modeled in detail.
The molecular layer is comprised of many thousands of parallel fibers 
(the long unmyelinated axons of granule cells), Purkinje cell dendrites 
and a network of inhibitory interneurons termed stellate cells and bas-
ket cells. The inhibitory interneurons were originally classified accord-
ing to their morphology, although modern molecular techniques have 
indicated that they are likely to belong to a single class of neuron, 
the molecular layer interneuron (MLI). As well as forming excitatory 
connections onto Purkinje cells, parallel fibers make disynaptic con-
nections via MLIs. Furthermore, MLIs form chemical and electrical con-
nections with each other via GABAergic synapses and gap junctions. 
Thus, the MLIs form a sophisticated inhibitory network whose proper-
ties are important in shaping the output of the cerebellum itself.
We develop a detailed conductance-based model of an MLI, and pre-
sent the results of a simulation of a small MLI network. The neuron 
model, developed using NEURON simulation software, comprises 
somatic and dendritic compartments containing distinct voltage- and 
calcium-dependent ion channels. Two types of synapse are simulated, 
representing chemical synapses and gap junctions. The connectivity 
and cellular geometry of the network model conforms with morpho-
logical reconstructions, and the model parameters were tuned in order 
to reproduce known electrophysiological properties of MLIs, including 
spontaneous spiking activity, modest spike frequency adaptation and 
the presence of a slow depolarization wave.
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The expression of postsynaptic long-term depression (LTD) and 
long-term potentiation (LTP) in cerebellar Purkinje cells results from 
the internalisation or insertion, respectively, of postsynaptic AMPA 
receptors (AMPAR) [1]. LTD is induced by concurrent parallel fiber 

and climbing fiber stimulation of Purkinje cells, and is regulated by a 
complex intracellular signaling network that suppresses phosphatase 
activity leading to activation of a positive feedback loop that maintains 
PKC activity for at least 30  min [2]. LTP is dependent on nitric oxide 
[3], produced during parallel fiber stimulation [4], which nitrosylates 
N-ethylmaleimide-sensitive factor (NSF) and promotes exocytosis of 
AMPARs by actively disrupting the interaction between AMPAR-GluR2 
and protein interacting with C-kinase 1 (PICK-1) [5, 6].
We report the largest and most sophisticated model of bidirectional 
synaptic plasticity to date at the PF-PC synapse. Our unified molecular 
model replicates both PF-PC LTD and NO/NSF-dependent LTP, as well as 
the sharp calcium threshold separating them. The importance of the pos-
itive feedback loop in LTD expression is now well-established. However, 
the control of feedback loop activation and deactivation has, until now, 
remained obscure. Model simulations reveal that the feedback loop is 
activated by an ultrasensitive ‘on-switch’ controlled by CaMKII activation. 
Furthermore, as predicted by experiments showing that the feedback 
loop is not required once the early phase of LTD induction is complete 
[2, 7], our model reveals a rapid and automatic ‘switch-off’ mechanism 
controlled by phosphatase activity. We are also able to replicate several 
experimental observations that have so far remained unexplained. These 
include reconciling conflicting data regarding the importance of nitric 
oxide in LTD induction: nitric oxide supports loop activation by augment-
ing phosphatase inhibition, but is not required when the calcium signal 
is high or sustained [4]. In addition, experiment has shown that selective 
inhibition of the cytosolic phosphatase, PP2A, elicits robust LTD, whereas 
inhibition of other phosphatases does not [8]. We show that only PP2A 
inhibition causes CaMKII-independent activation of the feedback loop 
and thus LTD induction, revealing the importance of PP2A in suppressing 
spontaneous loop activation under basal conditions.
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STEPS is a stochastic reaction-diffusion simulator. Its emphasis is on 
accurately simulating signaling pathways [1].
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The Human Brain Project (HBP) is a European Project set out to gain 
long-sought insights into our brain and the processes that fundamen-
tally make us human. A parallelised version of STEPS will be part of the 
Brain Simulation Platform of the Human Brain Project by efficiently 
simulating reaction-diffusion models in realistic morphologies [2]. 
The HPB will model the brain at unprecedented detail. It is becoming 
apparent that such large scale and computationally expensive models 
are required to either capture more realistic morphologies or to simu-
late more complex systems [3].
Hardware accelerators such as NVidia’s graphics processing units (GPU) 
or Intel’s Xeon Phi are one approach to mitigate the high computa-
tional cost of such models. They are, in general, massively parallel mul-
ticore co-processors and have become a cornerstone of modern high 
performance computing [4].
The hardware architecture of these two accelerator families differ sig-
nificantly and thus require different software approaches. While both 
are programmable via the common programming interface OpenCL, 
important features such as unified memory or remote direct memory 
access (RDMA) are often only supported in the native hardware archi-
tecture specific programming frameworks [5, 6]. These not only need 
to be integrated into an overall parallel software system performing 
a coherent spatial simulation but also need to scale well over several 
accelerators and compute nodes.
Previous research has shown that we can exploit the computational 
power of accelerators to improve spatially homogenous stochastic 
simulations by two orders of magnitude while avoiding the limita-
tion imposed to the size of the reaction system to be simulated by the 
small fast memory space [7].
STEPS implements a spatial version of Gillespie’s stochastic simulation 
algorithm computing reaction-diffusion systems on a mesh of tetrahe-
dral sub-volumes [1, 8]. Operator splitting techniques allow to sepa-
rate the reaction of molecules within a sub-volume from the diffusion 
of molecules between them.
We develop a layered hybrid software architecture using classic central 
processing units as well as multiple accelerators, integrated into STEPS. 
Multiple sub-volumes are assigned to an accelerator. To accommodate 
the different hardware characteristics, NVidia GPUs are applied within 
a sub-volume and the Intel Xeon Phi at the level of the operator split-
tings. Furthermore, due to differences in the performance character-
istics of the accelerators the use of load balancing at the tetrahedral 
mesh level will be important.
Our architecture will be a plug-in solution to STEPS not requiring any 
changes to the interfaces towards the user or other software systems 
of STEPS itself.
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Cerebellar Long Term Depression (LTD) is a form of synaptic plas-
ticity involved in motor learning. The LTD signaling network 
includes a PKC-ERK-cPLA2 positive feedback loop and mechanisms 
of AMPAR receptor trafficking. Experimental studies suggest that 
 Ca2+/calmodulin-dependent protein kinase II (CaMKII) is required 
for the LTD induction [1]. Additionally, theoretical and experimen-
tal work has shown that CaMKII is sensitive to the frequency of 
 Ca2+ oscillations [2, 3]. The activation and autophosphorylation 
of CaMKII by  Ca2+ and calmodulin (CaM) are thought to influence 
its ability to decode  Ca2+ oscillations. However, the molecular 
mechanism by which this sensitivity contributes to LTD is not fully 
understood.
The CaMKII enzyme is a multimeric complex conformed by 12 subu-
nits, each of which contains a catalytic domain, a regulatory domain, 
and a carboxyl-terminal association domain. Due to the combina-
torial complexity of activation of this enzyme, we chose to model 
four-subunits. We propose a model for the activation of CaMKII by 
 Ca2+ in LTD signaling network. These reactions include: activation 
of the enzyme by  Ca2+/CaM binding, intersubunit autophospho-
rylation at threonine residue Thr286,  Ca2+-independent activation 
state through autophosphorylation and secondary intersubunit 
autophosphorylation at threonine residue Thr305/306. Noise in the 
signaling networks plays an important role in cellular processes. 
CaMKII models including its activation have been developed [3], 
but they have not included the intrinsic stochasticity of molecular 
interactions.
Our lab recently developed a stochastic model of the LTD signaling 
network including a PKC-ERK-cPLA2 feedback loop, Raf-RKIP-MEK 
interactions and AMPAR trafficking [4]. We have extended this model 
by adding the molecular network regulating CaMKII activity and its 
activation. This new model was solved stochastically by STEPS (STo-
chastic Engine for Pathway Simulation) [5] to simulate the influence of 
noise on the LTD signaling network.
Through stochastic modeling we observed that CaMKII can decode 
the frequency of  Ca2+ spikes into different amounts of kinase activity 
during LTD induction. This result is congruent with previous studies of 
CaMKII sensitivity to  Ca2+ oscillations [2]. Furthermore, we observed 
that PKC activity is highly sensitive to the frequency, amplitude, dura-
tion and the number of  Ca2+ oscillations and consequently has an 
important effect on LTD activation. The LTD signaling network involves 
phosphatases and phosphodiesterases related with CaMKII activity, 
such as PP2A and PDE1. Our stochastic model may be useful in under-
standing the role of these enzymes in the CaMKII sensitivity to the fre-
quency of  Ca2+ oscillations.
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Purkinje neurons receive powerful climbing fiber (CF) input from 
Inferior Olive (IO) neurons to provide an instructive signal for cerebel-
lar learning. The initial observation that CF input causes all or none 
responses has been questioned in recent years. However, the mecha-
nisms of initiation and propagation of dendritic calcium spikes evoked 
by CF input are still poorly understood. Here, we build a new Purkinje 
cell model based on available experimental data to explore dendritic 
and somatic responses to CF input in the Purkinje cell under different 
conditions. All the ionic current models are well constrained according 
to the experimental data.
Model ionic currents regulate the electrophysiological properties 
of the Purkinje cell consistent with experimental observations. Our 
model reproduces a plethora of experimental observations, proper-
ties that are critical for the model to be able to predict responses to 
excitatory and inhibitory inputs. Both simple spike and complex spikes 
initiate first in the axonal initial segment (AIS). The first derivative and 
second derivative of the somatic simple spike are in agreement with 
experimental data.
Using this model, we can explain the discrepancies between experi-
mental observations from different groups about the spatial propaga-
tion range of dendritic calcium spikes. Dendritic spikelets can initiate 
and propagate in a branch-specific manner and depolarization of den-
drites can cause secondary spikelets. We find that the timing of occur-
rence of a spikelet is critical to determine whether it can affect somatic 
firing or not. The branch-specific dendritic spikelets can combine with 
contaminant excitatory input and inhibitory inputs to affect somatic 
firing output more efficiently. Our results indicate that voltage-
dependent and branch specific spikelets may enrich CF instructive sig-
nals for cerebellar learning.
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The relationship between the structure, or topology, of a neural net-
work and its dynamics remains largely unexplored. This relationship 
may be particularly significant for the place cell network in region 
CA3 of the hippocampus. Place cells are believed to encode position 
by firing when the animal is in a specific spatial location [1]. Multiple 
“charts” mapping place cells to locations for several different environ-
ments may be stored simultaneously in the network [2]. Given hip-
pocampal neurogenesis and synaptic plasticity, the place cell network 
should be robust to small perturbations in its topology: it shouldn’t 
“forget” charts if the pattern of synaptic connections changes slightly. 
Conversely, if Alzheimer’s or another neurodegenerative disease 
attacks the place cell network, declines in the chart capacity could 
provide clues about the presence and progression of the disease. 
Using a computational model based on a place cell network model 
published by Azizi et al. [3], we investigated the effects that random 
removal of synapses in the network had on chart capacity. When 
small numbers of synapses were removed, the chart capacity was not 
measurably affected, but larger numbers removed caused the chart 
capacity to decline (see the Figure  1). Moreover, the decline in the 
chart capacity depended on how the synapses were selected. If they 
were selected with uniform probability, the chart capacity remained 
unaffected out to about 10% removed and then fell sharply. But if 
neurons, rather than synapses, were first selected with uniform prob-
ability, and then synapses randomly removed from the selected neu-
rons, the chart capacity began to fall linearly at about 5% removed. 
These results suggest that the place cell network chart capacity is 
indeed stable to small perturbations in its topology, and that the 
effects of larger disruptions depend on the underlying mechanisms, 
i.e., whether it is the synapses or the cells themselves that are tar-
geted by a disease.

Figure 1. The chart capacity (M) as a function of the fraction of the 
synapses removed from the network (p), using two different syn-
apse-removal algorithms. For the blue curve, synapses are selected 
and removed with equal probability. For the red curve, neurons 
are selected with equal probability, and then a random synapse is 
removed from the selected neuron. The dashed line is a linear fit to 
the random-neuron (red) curve, with slope -0.27
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The brain organization is optimized to drive adaptive behavior. A key 
role in the control loop is played by the cerebellum, which implements 
prediction, timing and learning of motor commands, through complex 
plasticity mechanisms [1]. However, how plasticity is engaged during 
the behavior is still unclear. Cerebellar properties emerge in sensorimo-
tor paradigms, such as the Eye Blink Classical Conditioning (EBCC). In 
silico simulations based on computational models are fundamental to 
investigate the physiological mechanisms. We developed a cerebellar 
network running on NEST. NEST is a simulator for spiking neural network 
models [2], focused on the dynamics, size and structure of neural sys-
tems by the generation of networks of single-point neurons. We built 
a network tailored on the mouse cerebellum. The network is made of 
71,440 neurons: 250 Mossy Fibers (MF), 5’000 Glomeruli (Glom), 65’600 
Granular Cells (GR), 100 Golgi Cells (GO), 400 Purkinje Cells (PC), 40 Infe-
rior Olive cells (IO), 50 Deep Cerebellar Nuclei (DCN). The connectivity 
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ratios used for the 11 types of synaptic connections are reported in 
Table  1. Three of these synaptic types could undergo specific plastic 
modifications, in particular Long Term Potentiation and Depression on 
different time scales. The numbers of the cells and the connectivity were 
taken from the neurophysiological literature. The model was tested with 
a simple closed-loop simulation of the EBCC, to check the functionalities 
of the network in a learning task [3]. In the EBCC, a Conditioned Stimulus 
(CS) precedes an Unconditioned Stimulus (US) by a fixed time interval. 
The cerebellum is able, after repeated presentations of CS and US paired 
during the acquisition phase, to anticipate the US onset, this action is 
called Conditioned Response (CR). During the extinction phase, only 
the CS is provided. The network, thanks to the distributed plasticity, was 
able to learn the CS-US temporal association during the acquisition tri-
als, with a fast acquisition towards 80% values, and to rapidly unlearn 
the association during the extinction trials (Figure 1). We will extend this 
model to a large-scale reproduction of the mouse cerebellum, testing 
more complex paradigms.

Table  1. Connectivity between  the neural groups (Convergence 
and Divergence). In italics the plastic sites

Presyn Postsyn Type Conv Div # Synapses

MF Glom Excitatory 1 20 5,000

Glom GR Excitatory 4 53 262,400

Glom GO Excitatory 40 0.77 4,000

GO GR Inhibitory 3.23 2120 212,000

GR GO Excitatory 2000 3 200,000

GR PC Excitatory 65600 400 26,240,000

IO PC Teaching 1 10 400

PC DCN Inhibitory 40 5 2,000

DCN (30%) IO Inhibitory 0.34 1 14

IO DCN Excitatory 1 1,41 50

MF DCN Excitatory 12 2.4 600

Total Number of Synapses 26,926,464
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It has long been hypothesized that the trial-to-trial variability in neu-
ral activity patterns plays an important role in neural information pro-
cessing. A steadily increasing body of evidence suggests that the brain 
performs probabilistic inference to interpret and respond to sensory 
input [1, 2, 3]. The neural sampling hypothesis [4] interprets stochastic 
neural activity as sampling from an underlying probability distribu-
tion and has been shown to be compatible with biologically observed 
dynamical regimes of spiking neurons [5]. In these studies, high-
frequency Poisson spike trains were used as a source of stochasticity, 
which is a common way of representing diffuse synaptic input. How-
ever, this discounts the fact that cortical neurons may share a signifi-
cant portion of their presynaptic partners, which can have a profound 
impact on the computation these neurons are required to perform. 
This is not only relevant in biology, but also for artificial implementa-
tions of neural networks [6], where bandwidth constraints limit the 
amount of available independent noise channels.
In neural sampling, the firing activity of a network of N Leaky Inte-
grate-and-Fire (LIF) neurons is represented by a vector of binary ran-
dom variables (RVs) z ∊ {0, 1}N. In such a network, synaptic weights can 
be adjusted such that the network samples from a Boltzmann distribu-
tion p(z) [5]. In particular, the weights Wij control the pairwise correla-
tions rij between RVs. When receiving correlated noise, the correlations 
rij are changed in a way that cannot be directly countered by changes 
in Wij. We show, however, that this is contingent on the chosen cod-
ing: when changing the state space from {0, 1}N to {−1, 1}N, correlated 
noise has the exact same effect as changes in W. Unfortunately, the 
{−1,  1}-coding is incompatible with neuronal dynamics, because it 
would require neurons to influence each other while they are silent.
However, the translation of the problem to the {−1, 1}N space allows 
the formulation of a two-step compensation procedure. We show 
how, by chaining a bijective map from noise correlations to interac-
tion strengths Wij

’ in {−1, 1}N with a second bijective map from (Wij
’, bij

’) in 
{−1, 1}N to (Wij, bij) in {0, 1}N it is possible to find a synaptic weight con-
figuration that compensates for correlations induced by shared noise 
sources. For an artificial embedding of sampling networks, this allows 
a straightforward transfer between platforms with different architec-
ture and bandwidth constraints.
Furthermore, the existence of the above mapping provides an important 
insight for learning. Since in the {−1, 1}-coding the correlated noise can 
be compensated by parameter changes and because the {−1, 1}-coding 
can be transformed into a {0, 1}-coding while keeping the state probabili-
ties invariant, a learning rule for Boltzmann machines will also find that 
distribution in the {0, 1}-coding, which we demonstrate in software simu-
lations. In other words, spiking networks performing neural sampling are 
impervious to noise correlations when appropriately trained. This means 
that, if such computation happens in cortex, network plasticity does not 
need to take particular account of shared noise inputs.
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Figure  1. Behavioral outcome during the EBCC protocol, with 80 
trials of Acquisition and 20 trials of Extinction. 10 simulations were 
performed. Solid line: the median outcome; grey area: the inter-
quartile intervals
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The information transfer from neuron to neuron through chemi-
cal synapses undergoes two stages. In the presynaptic neuron, the 
(analog) membrane potential is encoded into a (digital) spike while in 
the postsynaptic neuron, this digital information is turned back into an 
(analog) depolarisation. It has been argued that for a given inhomo-
geneous Poisson encoder, the optimal decoder has dynamics that is 
consistent with short-term plasticity [1]. However, the optimal encoder 
is not known. Here, by studying the rate-distortion performance, we 
explore how presynaptic refractoriness influences the performance of 
the optimal postsynaptic decoder. First, we generalize the results of 
[2] and [3] by expressing the mutual information as a function of the 
mean natural estimation loss, in the presence of refractoriness. This 
expression provides a numerically stable and fast method of comput-
ing mutual information between two high-dimensional random vari-
ables. Next, we show with numerical simulations that for a fixed firing 
rate ranging from 20-120 Hz, there is an optimal level of refractoriness 
that minimizes the distortion, i.e. the mean squared error of the opti-
mal postsynaptic decoder. To test our theory, we compare this optimal 
level of refractoriness with an HVC neuron in Zebra Finch to which the 
model has been fitted [4].
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Understanding how assemblies of neurons encode information 
requires recording of large populations of cells in the brain. In recent 
years, multi-electrode arrays and large silicon probes have been devel-
oped to record simultaneously from thousands of electrodes packed 
with a high density. To tackle the fact that these new devices chal-
lenge the classical way to perform spike sorting, we recently devel-
oped a fast and accurate spike sorting algorithm (available as an open 

source software, called SpyKING CIRCUS), validated both with in vivo 
and in  vitro ground truth experiments [1]. The software, performing 
a smart clustering of the spike waveforms followed by a greedy tem-
plate-matching reconstruction of the signal, is able to scale to up to 
4225 channels in parallel, solving the problem of temporally overlap-
ping spikes. It thus appears as a general solution to sort, offline, spikes 
from large-scale extracellular recordings.
In this work, we aim at implementing this algorithm in an “online” 
mode, sorting spikes in real time while the data are acquired, to allow 
closed-loop experiments for high density electrophysiology. To achieve 
such a goal, we built a robust architecture for distributed asynchronous 
computations and we propose a modified algorithm that is composed 
of two concurrent processes running continuously: 1) “a template-
finding” process to extract the cell templates (i.e. the pattern of activity 
evoked over many electrodes when one neuron fires an action poten-
tial) over the recent time course; 2) a “template-matching” process 
where the templates are matched onto the raw data to identify the 
spikes. The main challenge is to have a continuous update of the set 
of templates, with hundreds of electrodes and possible drifts over the 
time course of the experiment. A key advantage of our implementation 
is to be parallelized over a computing cluster to use optimally the com-
puting resources: all the different processing steps of the algorithms 
(whitening, filtering, spike detection, template identification and fit) 
can be distributed according to the computational needs. During the 
clustering, the most computationally demanding step, templates are 
detected and tracked over time using a modified version of the den-
sity based clustering algorithm [2] able to handle data streams. Our 
software is therefore a promising solution for future closed-loop experi-
ments involving recordings with hundreds of electrodes.
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Pyramidal neurons receive inputs in two anatomically and functional 
distinct domains [1], the apical and the basal tree. Inputs to the basal 
tree, due to their proximity to the soma, greatly influence neuronal 
output, whereas the more remote apical tree has less potential to 
influence somatic activity. How these inputs co-operate to form the 
functional output of the neurons is currently unknown. In this work, 
we focused on how inputs to the apical and basal trees shape orien-
tation tuning in L2/3 V1 neurons. In particular, we investigated how 
dendritic integration of orientation tuned inputs to the apical versus 
basal trees allows for the emergence of stable neuronal orientation 
preference. Towards this goal, a model L2/3 V1 pyramidal neuron was 
implemented in the NEURON simulation environment. The passive 
and active properties of the model neuron were extensively validated 
against experimental data. Synaptic properties, number and distribu-
tion were also constrained according to available data (Figure  1A). 
Using this model neuron, we investigated a) the differences in the 
mean orientation preferences of the two trees and b) the distribu-
tion of orientation preferences to individual synapses that allow for 
the emergence of orientation tuning (Figure 1B). Given the parameter 
combinations that allow for the emergence of orientation tuning (Fig-
ure  1C), we found that neuronal orientation tuning follows in large 
part the orientation tuning of the basal tree. In addition, we have fur-
ther identified how apical versus basal dendritic tree ablation would 
affect neuronal tuning in the different conditions implemented. Model 



Page 119 of 176  BMC Neurosci 2017, 18(Suppl 1):60

results provide insights regarding the ‘tolerance’ to different input 
properties at the apical and basal tree in order to achieve stable orien-
tation preference.

and IC recording sites, the temporal precision of evoked spiking, and 
the neuronal selectivity to vocalization stimuli, using statistical and 
information-theoretic tools.
Results: We found that stimulating the CN with light caused evoked 
activity in the IC when the two recording sites had matched frequency 
tuning, suggesting that tonotopic organization reliably predicts func-
tional connectivity between the sites. Despite matching frequency 
tuning, IC neurons exhibited greater selectivity to a common set of 
vocalization stimuli compared to the dorsal CN (DCN). Overall, CN 
responses had higher rates of evoked spiking, while IC responses were 
more transient and had enhanced spike timing, suggesting a shift 
toward the extraction of temporal information contained in vocaliza-
tions at the level of the midbrain (Figure 1).

Figure  1. A. Top: From the pool of synapses, 25% were stimulus 
driven (black dots). Bottom: Indicative trace showing fluctuations 
of the membrane potential in the presence of background synap-
tic activity. Spikes are truncated for visualization purposes. B. Each 
tree was characterized by a μ ± σ orientation preference that was 
determined by the preferences of the individual synapses. Here it 
is shown the portion of synapses with same/different orientation 
preferences from the μtree, for σtree = 3, 15, 30, 45 and 60°. Group-
ing to the reported value (x-axis) includes ± 10° differences. C. Ori-
entation tuning curve of the model neuron (mean ff ± sem). Right: 
Indicative voltage traces of the neuronal responses for different 
bar orientations (0°, 30°, 60° and 90°)
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Background: A normal functioning auditory system must rely on 
fast and precise neuronal responses in order to accurately represent 
temporal information in complex sounds. Impairments in temporal 
processing contribute to a variety of listening disorders, yet our under-
standing of mechanisms that govern these processes remains limited. 
We examined how enhanced spike timing at the level of the inferior 
colliculus (IC) in the midbrain might underlie efficient encoding of 
vocalizations compared to the cochlear nucleus (CN), an earlier site in 
the ascending auditory pathway.
Methods: We recorded neuronal responses to conspecific vocaliza-
tions in the IC and CN of awake, normal-hearing mice that expressed 
Channelrhodopsin in VGlut2-positive neurons. We used an optrode 
that combined the recording of single unit activity with light deliv-
ery to the CN. Once a recording was established in the CN, a second 
electrode was placed in the IC and dual recordings were established 
at locations with matching frequency tuning. The CN was stimulated 
with light in the absence of sound to measure effects in the IC and 
then responses to sound stimuli were simultaneously recorded at each 
site. We assessed the extent of functional connectivity between CN 

Figure 1. Relationship between information content and response 
consistency in mouse DCN and IC

Conclusion: Neurons in the CN often contributed to activity recorded 
in the IC. Dual recordings conducted under the same experimental 
conditions that have a degree of functional connectivity provide a 
strong paradigm for comparing processing at different stages of the 
auditory pathway. Enhanced selectivity to vocalizations and tempo-
ral precision of responses in the IC suggests that this region may be 
important for encoding biologically important sounds. When auditory 
processing is impaired, the IC may be a subcortical site for the genera-
tion of auditory disorders typically thought to arise in the cortex.
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Amputation and temporary restraint of legs are widely used and accepted 
methods of the study of the locomotor systems of insects. The animal 
is studied during free walking, and its walking behaviour is compared 
before and after the amputation. Using the results, conclusions are drawn 
with regard to the organization of the locomotor system of the animal in 
question. In the stick insect, such investigations were carried out by [1] 
and more recently by [2]. In the latter study, it was even observed that 
the front legs could reversibly be decoupled by the animal itself and used 
to carry out search movements. Nevertheless, the hind and middle legs 
continued their coordinated walking. From these and other experimental 
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observations detailed in [1] and [2], the question naturally arising is: what 
mechanisms underlie the changes found in the experiments. The underly-
ing mechanisms obviously belong to the part of the nervous system that 
controls and coordinates locomotion. One promising way to study them is 
by using appropriate mathematical models. We used an existing model of 
coordinated stepping of the three ipsilateral legs of the stick insect [3] to 
mimic the various decoupling situations in the stick insect described in [1] 
and [2]. In the model, the levator-depressor neuro-muscular control net-
works (LD systems) of the individual legs play a pivotal role in producing 
coordinated stepping of the legs. We identified three main possibilities of 
decoupling a single leg: i) disrupting the inter-leg coordination between 
the legs’ LD systems; ii) blocking the normal function of the central pattern 
generator of the LD system of the leg to be decoupled; and iii) changing 
the activity of the levator and depressor motoneurones via their associ-
ated pre-motor inhibitory interneurones. Decoupling of the front leg in 
the model worked with any of the methods i)-iii). It was easily reversible, 
in accordance with the observations that such reversible decoupling hap-
pens in natural conditions when the animal uses its front legs for search-
ing. The hind and middle leg continued their coordinated stepping, like 
in the experiments [1, 2]. Decoupling of the hind leg was most effective 
when method iii) was used. In this case, the middle and the front leg con-
tinued performing coordinated stepping irrespective of the decoupling 
method, in agreement with the experimental findings. In the model, the 
middle leg took over automatically the role of the hind leg as the origin 
of the coordinated stepping. Decoupling the middle leg yielded mixed 
results: in some cases, depending on the phase within a stepping period, 
the coordinated stepping of the front and hind leg was abolished, in oth-
ers, it was not but its quantitative properties were changed. Both types of 
results were also found in the experiments [1, 2].
In conclusion, we suggest that, depending on the leg, various mech-
anisms are possible to decouple it from the system of inter-leg coor-
dination. In all cases, method iii) worked most reliably and efficiently. 
However, the other mechanisms (methods) may represent redun-
dance and can be activated, if necessary, to bring about decoupling 
of the leg.
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Growth cones, guided by environmental cues, are necessary for proper 
neural functioning. The cues are detected by membrane-bound recep-
tors, which in turn activate a plethora of signaling pathways. A major-
ity of these pathways is governed by calcium, flowing into the growth 
cone through the plasmalemma or from the calcium stores. Both the 
magnitude of calcium increase and identity of calcium source seem 
to determine neural growth and retraction [1]. Calcium exerts its con-
trol through a variety of signaling molecules that interact non-linearly. 
This picture is further complicated by recent findings showing that the 

ionotropic alpha7 nicotinic receptor (a7nAChR) also has a metabotropic 
function and couples to heteromeric Gq proteins. A7nAChR action via 
the Gq pathway results in calcium release from the endoplasmic reticu-
lum (ER) modulating cytoskeletal motility and structural growth [2–4].
Experimental evidence shows that both low and high cytosolic cal-
cium results in growth cone repulsion, and medium cytosolic calcium 
results in attraction. It also shows that calcium influx through the plas-
malemma results in repulsion and calcium influx from the internal 
stores results in growth. To investigate and unify these seemingly con-
tradictory observations experimental observations, we developed a 
stochastic reaction-diffusion model of calcium, cAMP and Gq activated 
pathways. The model allows for evaluating the role of the transient 
calcium influx through the channel pore (the ionotropic contribution) 
compared to the role of calcium release caused by activation of the 
Gq subtype of GTP binding protein. Using the model, we investigated 
whether combined metabotropic and ionotropic action of a7nAChR, 
resulting in prolonged increase of cytosolic calcium, is responsible for 
experimentally observed growth attenuation.
To test whether we can predict neurite outgrowth and retraction in 
response to various environmental stimuli and to elucidate contribu-
tion of molecular gradients we looked at combined action of key sign-
aling molecules. We show that combined activation of calcium and 
cAMP activated targets such as PP2B and PP1, CaMKII, PKA and cal-
pain can explain the non-monotonic dependence of structural growth 
on calcium levels. Elucidating the mechanisms underlying synaptic 
growth will allow for better understanding of mechanisms of neural 
development and regeneration
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Transcranial magnetic stimulation (TMS) is a technique that allows 
noninvasive manipulation of neural activity and is used extensively in 
both clinical and basic research settings [1]. The effect of TMS on motor 
cortex is often measured by electromyography (EMG) recordings from 
a small hand muscle, such as the first dorsal interosseous (FDI). How-
ever, the details of how TMS generates responses measured with EMG 
are not completely understood. Here, we aim to develop a biophysi-
cally detailed computational model to study the potential mechanisms 
underlying the generation of EMG signals in response to TMS.
Our model comprises a feed-forward network of cortical layer 2/3 cells, 
which drive morphologically detailed layer 5 corticomotoneuronal 
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cells based on [2]. The cortical layer 5 cells in turn project to a pool of 
motoneurons and eventually the muscle. The EMG signal is the sum of 
motor unit action potentials. Model parameters are tuned to match 
results from EMG recordings from the FDI muscle performed in four 
human subjects.
The model successfully reproduces several properties of the experi-
mental data. The simulated EMG signals match experimental EMG 
recordings in shape and size, and vary with stimulus and contraction 
intensities as in experimental data. They exhibit cortical silent peri-
ods that are close to the biological values, and reveal an interesting 
dependence on inhibitory synaptic transmission characteristics. Our 
model predicts neural firing patterns along the entire pathway from 
cortical layer 2/3 cells down to spinal motoneurons. In conclusion, our 
model successfully reproduces major features of EMG recordings and 
should be considered as a viable tool for analyzing and explaining 
EMG signals following TMS.
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Classic theories of cerebellar learning suggest that parallel fibre (PF) 
activity patterns in cerebellar cortex can be stored and recalled based 
on long-term depression (LTD) of PF - Purkinje cell synapses [1, 2]. As in 
other theories of learning in neural systems, it is commonly assumed 
that the weight changes are limited to activated synapses. However, 
it has been shown that a non-specific form of PF LTD can spread to 
neighbouring synapses that are inactive during learning [3]. Moreover, 
long-term potentiation (LTP) of PF synapses has also been found to 
contribute to cerebellar learning [4].
We have previously studied the effect of non-specific LTD (nsLTD) on 
pattern recognition and have shown that nsLTD can provide robust-
ness against local spatial noise in the input patterns [5]. Here we 
extend our previous work by studying the functional role of LTP, and 
we investigate other determinants of the pattern recognition per-
formance such as the sparsity and number of patterns and different 
types of pattern noise. We compare results from numerical simula-
tions of a morphologically realistic conductance based Purkinje cell 
model (as in [2]) with those of a simple linear artificial neural network 
(ANN) unit. Further, to better understand the results of the numeri-
cal simulations, we perform a mathematical analysis of the pattern 
recognition performance of the ANN unit. As in previous work, we 
quantify the pattern recognition performance by calculating a signal-
to-noise (s/n) ratio [2, 5].
The simulations and analysis of the ANN unit predict that adding LTP 
to the learning rule does not affect the pattern recognition perfor-
mance, given that the mean and variance of responses, which appear 
in the enumerator and denominator of the s/n ratio, respectively, are 
equally affected by LTP. In contrast, however, the pattern recognition 
performance of the Purkinje cell model was sensitive to the average 
synaptic weight, which determined both the spontaneous spike rate 
and the response to pattern presentation. Adding LTP in the Purkinje 
cell model made nsLTD equivalent or superior to LTD at all noise lev-
els. Moreover, the LTP based normalisation of weights prevented the 
Purkinje cell responses from becoming too weak and increased the 
number of patterns that could be stored for a given s/n ratio by a 

factor of 4. Finally, we show that our previous conclusions hold over a 
large range of pattern loadings and sparsities, and that local additive 
pattern noise can further increase the beneficial effect of nsLTD.
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Previous studies indicated that brain areas including prefrontal cortex 
(e.g., medial prefrontal cortex, mPFC), posterior cingulate cortex (PCC) 
and insula involved in smoking addiction [1]. However, functional con-
nectivity among these regions only shows the correlative relationship 
but does not reveal the causal relationship such as the changes in 
information flow in these distributed brain areas involved in smoking. 
In prior studies [2-3], we applied a newly developed spectral dynamic 
causal modeling (spDCM) to resting state fMRI to demonstrate the 
causal relationships among the core regions in smoking addiction. Our 
results suggested that compared to nonsmokers, smokers had reduced 
effective connectivity from PCC to mPFC and from right inferior parietal 
lobule (R-IPL) to mPFC, a higher self-inhibition within PCC and a reduc-
tion in the amplitude of endogenous neuronal fluctuations driving the 
mPFC [2]. Given that Granger causality (GC) and DCM are two main cau-
sality methods and have distinct but complementary ambitions that 
are usefully considered in relation to the  detection  of functional con-
nectivity and the identification of models of effective connectivity [4-5], 
therefore it’s important to use a same dataset to compare two models.
We used the dataset of college students previously reported in our 
study [2]. All fMRI data were collected using a 3-Telsa Siemens Skyra 
scanner and processed using the Data Processing Assistant for Rest-
ing-State fMRI, which is based on SPM and Resting-State fMRI Data 
Analysis Toolkit [2-3]. For fMRI analyses, we conducted the standard 
procedures included slice timing, motion correction, regression of 
WM/CSF signals and spatial normalization [3]. A standard GC analysis 
was also applied to test the causality among key regions involved in 
smoking [5-6]. Based on previous literature, in this study we specified 
four regions of interest within default mode network (DMN) - medial 
prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and bilat-
eral inferior parietal lobule (Left IPL and Right IPL), same coordinates 
as in previous spDCM studies [2]. Our results showed the similar causal 
relationship among these brain areas.
Conclusions: GC and DCM are complementary: both are concerned 
with directed causal interactions. GC models dependency among 
observed responses, while DCM models coupling among the hidden 
states generating observations. Despite this fundamental difference, 
the two approaches may be converging.
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We propose two-compartment model of calcium dynamics in astro-
cyte network, basing on Ullah model [1]. In order to count the specific 
features of different parts of astrocyte network we mark out three 
types of modelling space: astrocyte soma with thick branches, thin 
branches, and extracellular space. We have developed two variants 
of equation set which are different in relative contribution of specific 
ionic currents. We suppose that activation of astrocyte calcium dynam-
ics is mediated by the extracellular space, specifically, via diffusion of 
synaptic glutamate released due to the neuronal activity, which we 
describe as some random signal incorporating noise effects.
We have performed a number of simulation runs at different parameter 
sets for individual astrocyte and multi-cell network. One of simulation 
examples within the computational multi-cell template is given in Fig-
ure 1. The global wave emerging in one of the points passes through 
the wide region of astrocyte network. The formation of the wave has a 
high degree of regularity and periodicity. There are also local regimes 
where excitation waves damp passing through a small number of cells.

Conclusions: We have suggested the advanced model of astrocyte 
network dynamics, which fits well the recent experimental findings [2]. 
Specifically, we have suggested the development of model equations 
for intra-astrocyte calcium dynamics, which takes into account its spe-
cific topological features. We have tested the suggested approach for 
both individual cell image and multi-cellular structure. The obtained 
results confirm that our model is able to reproduce the evolution of 
spatio-temporal dynamics under neuronal activity represented by 
spatially uncorrelated and randomized in time process of glutamate 
injection. In multicellular system, a persistent self-organized rhythmic-
ity of calcium activity in groups was found which can be explained by 
some interplay between the refractory time of calcium excitability and 
noise-triggered processes.
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Characterization of ion channel kinetics from voltage-clamp experi-
ments is inherently biased by the non-linear voltage error introduced 
by the resistance of the recording pipette in series with the mem-
brane resistance (series resistance, Rs) [1]. Modern patch-clamp ampli-
fiers provide built-in circuits for on-line Rs compensation. However, 
because of the nature of these circuits, it is theoretically impossible to 
achieve 100% Rs compensation without losing stability of the record-
ing. Moreover, fast ionic voltage-dependent currents, like sodium 
 (Na+) currents, require a high band-width operation of the Rs com-
pensation circuit, which in turn might result in sudden oscillations of 
the cell membrane voltage (Vm). Consequently, Rs compensation is 
currently a trade-off between a commonly accepted error tolerance 
and the crucial need for preventing oscillations. Here, we build a novel 
“simulation method” as a new component to a previously developed 
computational framework [2] to overcome these limitations. In con-
trast to the amplifier’s strategy to force a flat voltage waveform, which 
is required for generating conventional current-voltage plots of peak 
ionic currents, we allow arbitrary voltage waveforms by simulating 
voltage-clamp in a computational neuron model and then curve fit-
ting its output to match recordings to directly estimate Hodgkin-
Huxley model parameters of the channel. The kinetics parameters 
so obtained are used to reconstruct the unbiased current trace. We 
demonstrate our method using voltage-clamp recordings of  Na+ 
currents from ‘giant’ layer V pyramidal cells of the rat primary soma-
tosensory cortex in the presence of uncompensated, significantly high 
(10-20 MΩ) Rs along with the low input resistance (~40 MΩ) typical of 
these cells, so as to maximize the compound voltage clamp errors. As 
shown in Figure  1, the model computes non-linear artifact currents 
and predicted actual Vm values. When Rs compensation is a major 
concern for the reliability voltage-clamp data, our approach is capable 
of overcoming the limitations posed by currently available hardware- 
and software-based Rs compensation methods, thus allowing to fully 
reconstructing the actual current kinetics.

Figure  1. Calcium global wave in multi-cell ensemble. A. The 
representative snapshots of spatial patterns. Numbers from 1 to 
8 indicate the cells according to its involvement in firing pattern. 
B, C. The time courses of cytosolic  Ca2+ and  IP3 concentrations, 
respectively
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Figure  1. Offline subtraction of estimated amplifier-unaccounted 
passive currents. A. Raw recordings of  Na+ currents contaminated 
by uncompensated artifacts (top) recorded during the correspond-
ing voltage steps (bottom trace). B. Passive artifacts subtracted 
from the current traces (top) and actual Vm (bottom) estimated 
using the model simulation method. Note how the actual Vm dif-
fers significantly from the desired holding voltage-steps (see panel 
A)

and computational efficiency also make them adequate for real-time 
implementations in the proposed applications.
Overall, we stress the need to interpret brain imaging experiments 
in the context of theoretical studies that describe information flows 
corresponding to sequential cognitive processes. The coarse-grained 
information of current imaging techniques can be matched to the 
variables represented in the proposed network models. The results 
of such analyses can lead to novel insights linking networks graphs 
to cognitive dynamics, and the development of novel technology for 
rehabilitation purposes and artificial cognition.
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Across the animal kingdom, the generation and modulation of motor 
behaviour is attributed to Central Pattern Generators (CPGs) or neu-
ral circuits that endogenously produce oscillations. The ubiquity of 
CPGs prompts the use of coupled oscillator models to describe neu-
ral activity and the generation of behaviour. However, CPGs have 
not been identified in the forward locomotion system of the small 
roundworm Caenorhabditis elegans. In this case, a proprioceptive 
mechanism, in which motor-neurons respond to local body stretch, 
is thought to drive sustained body undulations. Since the wavelength 
and frequency of oscillations has been shown to depend on the visco-
elasticity of the surrounding medium [1], it is important to include 
environmental effects in such locomotion models [1, 2]. This requires 
the integration of the nervous system and body mechanics in a contin-
uous feedback loop which is able to adapt in response to environmen-
tal changes. Here, a biologically grounded model describing neural 
activity (adapted from [1]) is integrated into a novel continuum soft-
body model [2]. We present a dynamical systems description of the 
local pattern generation mechanism with fictive proprioceptive feed-
back and compare this with the actual feedback in whole body simu-
lations. The closed loop neuro-mechanical model is demonstrated to 
produce realistic travelling waves down the body in silico. The effect of 
the material properties of the body is investigated.
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Cognition as observed by imaging experiments involves sequential 
activations of different brain regions [1]. The sequential nature of most 
aspects of cognition is also reflected in the progression of successive 
components of decision-making and behavior. In this work, we pre-
sent a family of models that describe hierarchical relationships among 
cognitive processes represented with robust sequential dynamics. 
These models build heteroclinic networks based on the winnerless 
competition principle where asymmetric inhibition shapes key prop-
erties for sequential information processing. The robustness of the 
sequential dynamics in these networks relies on stable heteroclinic 
channels, sequences of metastable states and their vicinity connected 
by separatrices that link them in a chain.
The models described in this work are implemented with general-
ized Lotka-Volterra equations whose variables can represent informa-
tion perception items and also cognitive resources such as attention, 
working-memory and emotion [2–5]. Their hierarchical interactions 
give rise to binding and chunking processes. We discuss applications 
of these models in three different contexts: (i) the characterization 
of decision-making in terms of the sequential evolution of incoming 
information and the hierarchical organization of cognitive resources 
in time; (ii) the use of these models to build joint robot-human inter-
actions which result in an increased joint creativity of such team; (iii) 
the use of these models to drive closed-loop stimulation in novel 
experiments to reveal healthy and pathological dynamics of cognitive 
processes in normal subjects and in subjects with cognitive impair-
ments. The considered dissipative models are in general structurally 
stable and suitable for bifurcation analysis, which helps their inter-
pretation in relationship with experimental data. Their robustness 
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Understanding the spatial relationship between the synaptic vesi-
cles and the voltage-gated  Ca2+ channels (VGCCs) is critical for 
deciphering the determinants of synaptic strength, time course, 
and plasticity. Furthermore, synaptic strength, within a homoge-
neous population of synapses, is highly heterogeneous, but the 
underlying mechanisms are poorly understood. We hypothesize 
that variations in the nanoscale organization of VGCCs and synaptic 
vesicles contribute to the diversity of synaptic function observed 
throughout the brain [1]. Because VGCCs and synaptic vesicles can 
be as close as 10-20  nm, direct experimental observation of the 
spatio-temporal dynamics driving synaptic vesicle fusion is still 
challenging. We have taken a computational approach to simulate 
the spatio-temporal dynamics of  Ca2+ -triggered vesicle fusion to 
examine channel-vesicle topologies that is consistent with experi-
mental findings.
To understand the influence of topography on synaptic diversity, we 
performed Monte Carlo (MC) simulations designed to predict the 
different functional behavior of inhibitory and excitatory terminals 
within the cerebellar cortex. Model parameters were constrained to 
experimental data (such as single channel open probability,  Ca2+ 
buffers kinetics, etc.) leaving only topographical arrangements of 
VGCCs and location of the release sensor as variables. In addition, we 
have analyzed replicas in which the VGCC subunit Cav2.1 was labeled. 
Using Ripley’s analysis and mean nearest neighbor distances (NND) 
calculations we concluded that the distribution of the Cav2.1 subunit 
was significantly different from complete spatial randomness in both 
excitatory and inhibitory axon terminals. Then using cluster analy-
sis, we determined that inhibitory terminals exhibited small clusters, 
while the labeling on excitatory boutons seemed more amorphous. 
We therefore considered an arrangement based on a few simple rules: 
VGCCs and vesicles were placed randomly within the AZ, but with 
a minimal separation, we called this the exclusion zone (EZ) model. 
The EZ model produced channel NND distributions that were consist-
ent with the electron microscopy data. We then performed reaction 
diffusion MC simulations, considering perimeter coupled model for 
inhibitory terminals and the exclusion topology for excitatory termi-
nals. Our simulations predicted well the experimental data of  Ca2+ 
chelator inhibition of synaptic release (EGTA inhibition) and release 
probability.
Our results suggest that inhibitory terminals use small clusters 
of VGCC to drive the fusion of vesicles located in their periphery 
(perimeter release model) as described previously at the excitatory 
calyx of Held synapses [2]. In contrast, excitatory synapses made by 
cerebellar parallel fibers require a more random placement of up 
to 3 times more VGCCs within the AZ, as well as random placement 
of vesicles with an exclusion zone of >40 nm. We therefore suggest 
that nanoscale distribution of VGCCs and synaptic vesicles differs 
among synapses and is a key factor underlying functional synaptic 
diversity.
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Research on cross-cultural differences of visual attention has identified 
that cultural membership influence performance in object perception 
[1, 2]. Participants with collectivist background focus more on the back-
ground (distractors) and omit the target relevant information while par-
ticipants from the individualists’ background tend to attend the target 
and omit the background information. Previous modelling work from our 
lab [3] predicted that in Visual Search task cultural memberships influ-
ences the performance of the tasks. The results showed that simulated 
efficiency of participants from the individualist group is significantly 
higher than simulated efficiency from participants from the collectivists 
group when the task is to identify a target amongst distractors in a classi-
cal easy visual search. Work in our lab then confirmed these predictions. 
Preliminary behavioral data supports the idea that the effect remains 
even if the target is more salient than the distractors. This difference is 
simulated and explored further by investigating the changes in the effect 
for different levels of saliency using the binding Search over Time and 
Space (bsSoTS) computational model [4, 5] as predictor of behavior.
bsSoTS is based on integrate-and-fire neurons that are tighter con-
nected when they encode a specific characteristic of an item pre-
sented in one position on the Visual Field and loosely connected when 
they present the same characteristics but items presented in different 
positions on the visual field. Moreover, the model incorporates a num-
ber of synaptic currents and processes that allowed us to successfully 
simulate the Visual Search experiment [4, 5]. In research, cultural mem-
bership is usually investigated between collectivists (Asian cultures) 
and individualists’ groups (Western Europeans cultures) [1, 2]. The 
experiments that bsSoTS simulated so far are based on individualists’ 
groups [4, 5]. To simulate therefore the difference in behavior between 
collectivists and individualists, we need to simulate the difference 
observed in collectivists cultures. To do that we tested the coupling 
between the neurons that encode a specific item presented in one 
position on the Visual Field as a saliency parameter. The same param-
eter was used in preliminary modelling work in our lab [3].
The results showed that the saliency parameter successfully simulates 
the behavioral results. Additionally, further behavioral work is pro-
posed by investigating the relationship between the different saliency 
levels and the observed effect.
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NeuroNLP, a key application on the Fruit Fly Brain Observatory [1] plat-
form (FFBO, http://fruitflybrain.org), provides a modern web-based 
portal for navigating fruit fly brain circuit data. Increases in the avail-
ability and scale of fly connectome data demand new, scalable and 
accessible methods to facilitate investigation into the functions of 
the complex circuits being uncovered. Combining data from multi-
ple sources into a single database, with a common data model, Neu-
roNLP facilitates access to data from various sources simultaneously. 
It is built on top of the NeuroArch database [2] which codifies fly con-
nectome data from both the FlyCircuit database [3] and the Janelia 
Fly Medulla data [4]. The former hosts meso-scale connectome data 
on the whole-brain level and the latter contains detailed, micro-scale 
synaptic information about the Medulla neuropil. NeuroNLP allows 
users to probe biological circuits in the NeuroArch database with plain 
English queries, such as “show glutamatergic local neurons in the left 
antennal lobe” and “show neurons with dendrites in the left mush-
room and axons in the fan-shaped body”, replacing the cumbersome 
menus prevalent in today’s neurobiological databases. This enables 
in-depth exploration and investigation of the structure of brain cir-
cuits, using intuitive natural language queries that are capable of 
revealing latent structure and information. Equipped with powerful 
3D visualization, NeuroNLP standardizes tools and methods for graphi-
cal rendering, representation, and manipulation of brain circuits, while 
integrating with existing databases such as the FlyCircuit. It currently 
supports queries to show, add, filter and remove neurons based on 1) 
the parent neuropil, 2) neuron type (local or projection), 3) dendritic/
axonal arborization, 4) neurotransmitter and 5) related postsynaptic 
or presynaptic neurons. The graphical user interface complements the 
natural language queries with additional controls for exploring neural 
circuits. Designed with an open-source, modular structure, it is highly 
scalable and extensible to additional databases and languages. Acces-
sible through a laptop or smartphone (Figure  1) at https://neuronlp.
fruitflybrain.org, NeuroNLP significantly increases the accessibility of 
fruit fly brain data, streamlining the way we explore and interrogate 
distal data sources to open new avenues of research, and enrich neu-
roscience education.
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Paired continuous theta burst stimulation (cTBS) is a non-invasive 
brain stimulation technique that can induce neuroplastic change in 
the primary motor cortex [1]. The response shows high intersubject 
variability and having a marker that might predict response would 
be useful in many situations. Our hypothesis is that a more strongly 
connected cortical network is associated with a greater plasticity 
response. To test this hypothesis, we quantify the correlation between 
graph theoretical measures of EEG connectivity data and the plastic-
ity response to paired cTBS. We use state of the art methodologies in 
order to provide biological markers of response to paired cTBS to be 
used in their prediction.
We tested eighteen healthy adults (8 male, 1left handed) with a mean 
age of 24.2 (SD 6.0). Three minutes of continuous resting state EEG 
with open eyes was acquired. Baseline MEPs (n  =  ?) were recorded 
and then paired cTBS was applied to the left primary motor cortex, 
followed by three blocks of 20 TMS pulses. Surface EMG was used to 
record the motor evoked potential from the right first dorsal interos-
seous (FDI) muscle. We preprocessed EEG data and removed artefacts.
Graph theory provides a method to characterize the brain as a set of 
nodes interconnected by a set of edges [2]. It is suggested that an 
intracortical electrical source approach in graph theoretical analysis 
of EEG data is superior to the analysis at the surface level. Debiased 
weighted phase lag index is used as a measure of functional connec-
tivity in the source space among the regions of interest. The connec-
tivity matrix is thresholded and a graph is constructed. Several graph 
theoretical measures including degree, density, distance, clustering 
coefficient and characteristic path length are computed. Each partici-
pant’s plasticity response to paired cTBS is correlated with that partici-
pant’s graph theoretical measures (at each region of interest).
Preliminary analysis shows that the distance from the site of stimula-
tion associates with the response to paired cTBS, while degree, den-
sity, clustering coefficient and characteristic path length do not. These 
findings suggest that graph theoretical measures of network connec-
tivity may have some utility in predicting the neuroplasticity response 
to paired cTBS.

Figure 1. Smartphone screenshot of NeuroNLP showing 16 lobula 
plate tangential cells. Each neuron can be cross-linked to the Fly-
Circuit Database (left panel)
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There has been much research into complex neurological diseases 
such as, for example, epilepsy and Alzheimer’s disease, however 
much remains unknown. It has become clear that such diseases are 
associated with abnormal brain network function including hyperex-
citability. Brain network models used to study excitability, are often 
characterized by different dynamic regimes, such as alternating rest 
and excited states. The transient dynamics responsible for transitions 
between dynamic states are often discounted or overlooked in favour 
of the long term asymptotic behaviour. However, analysis of these 
transitions is instrumental in understanding, for example, the onset 
and evolution of epileptic seizures.
We consider a model of seizure initiation represented by a network of 
diffusively coupled bi-stable neurones driven by noise. Nodes in the 
network can switch between the quiescent attractor and active attrac-
tor due to noise fluctuations. We focus on the case of sequential escapes 
of nodes and the associated escape times. Understanding the factors 
controlling sequential transitions between stable/unstable attractors 
is important as they have been implicated in a diverse range of brain 
functions associated with neuronal timing, coding, integration as well 
as coordination and coherence [1, 2]. Network properties such as the 
coupling and excitability of nodes in such systems can promote (or sup-
press) escape of others on the network. We aim to quantify and char-
acterise the escape times in terms of the coupling and excitability of 
nodes.
We apply our theoretical framework to investigate escape times to the 
propagation of epileptiform activity in parasagittal brain slices con-
taining mouse medial entorhinal cortex (mEC). We observe sequential 
recruitment of electrodes to the ictal-like state and can determine the 
escape time, that is the equivalently average burst start time of each 
electrode. The sequential recruitment of electrodes to the ictal-like 
state could be seen as sequential escapes to an excited state in the 
underlying functional brain networks. We explore differences in intrin-
sic (node) excitability across the mEC by incorporating an excitability 
gradient into our prototypical bi-stable model. Figure 1 shows prelimi-
nary findings comparing the average burst start time observed in 
experiments (grey) and computed with the bi-stable model (black). In 
this presentation, I will address the question how a network’s structure 
and its properties influence sequential recruitment/escape of nodes in 
a network.

Figure 1. The average start time of ictal activity relative to ventral-
most channel recorded from along the dorso-ventral axis of the 
mEC in  vitro using a 16-shank silicon probe array (grey) with the 
average start time for each channel computed using 1000 simula-
tions of a unidirectionally coupled 16 node bi-stable system with a 
linear excitability gradient (black)
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During periods of behavioral quiescence such as NREM sleep, quiet 
wakefulness, and under anesthesia, neocortical populations can show 
‘synchronized dynamics’ [1]: low-frequency alternations between low-
rate spiking (UP states) and population-wide inactivity (DOWN states). 
Previous work has indicated that these dynamics are mediated by 
the interaction of recurrent excitation and neuronal adaptation [1–3]. 
Using a Wilson-Cowan model (Figure 1A), we show that synchronized 
regimes are seen during low levels of drive to a recurrent adapting 
neural population. Due to the possibility for both noise-induced and 
adaptation-induced transitions, this type of oscillation can show a 
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range of spectral properties and UP/DOWN state dwell time statistics, 
which fit into 4 broad classes of synchronized regimes (Figure  1B). 
Using a nonparametric distribution-matching method, we find that 
this idealized model is able to reproduce the dwell time statistics 
of UP/DOWN states from multiple behavioral contexts in vivo.
During NREM sleep [4], DOWN states are coincident with large deflec-
tions in the LFP/EEG in a stereotyped pattern termed the ‘slow oscil-
lation’.  Unlike synchronized dynamics in other behavioral states (e.g. 
[5]), we find that the NREM slow oscillation is best represented by an 
‘ExcitableUP’ regime, in which noise or perturbation of a stable UP state 
can induce brief DOWN states (Figure 1C). Our model reveals a mech-
anistic basis for multiple features of NREM sleep that are thought to 
be related to mnemonic and homeostatic functions [6]: impulse-initi-
ated slow waves and sequential activity at the DOWN->UP transition 
accompanied by gamma-band activity.

In daily life, the auditory system sorts the mixture of sounds from dif-
ferent sources into specific acoustic information by grouping acoustic 
events over time and forming internal representations of sound streams. 
A particular set of stimuli that have been used intensively to study that 
phenomenon consists of sequences of alternating high (A) and low (B) 
pure tones presented as repeated triplets, ABA_ABA_….Depending on 
the frequency separation (df) between the two tones, subjects report 
either of two percepts: “integration” (a single, coherent stream of high and 
low tones, like a galloping rhythm) or “segregation” (two parallel distinct 
streams). In our lab, the psychophysical experiment was conducted on 
15 human subjects of normal hearing. They were prompted to listen to 
repeating sequences of ABA_ triplets at df = 3, 5, 7 semitones difference, 
with a total of 675 trials per df condition. Each sequence was comprised 
of sixty 500 ms-long triplets, resulting in a 30 s-long presentation. Subjects 
were asked to press and hold different buttons on a keypad when they 
perceived integration and segregation, respectively. Data analysis revealed 
time course and statistical distribution of perceptual switching. After the 
stimulus onset, it takes several seconds for the trial-averaged probability of 
stream segregation to build up, and the first percept is typically integration. 
Also, subjects report spontaneous alternations between the two percepts, 
and the percept durations are gamma-distributed. Furthermore, a previ-
ous study reveals that there are similarities between build-up functions 
of stream segregation from psychophysical experiments (psychometric 
functions) and those from multi-unit recordings from monkeys’ primary 
auditory cortex (area A1) (neurometric functions) [1]. In this presentation, 
we first demonstrate that a signal-detection model introduced in [1] to 
compute neurometric functions, is not sufficient to produce realistic per-
cept durations as reported experimentally. In particular, mean spike counts 
extracted from cortical recordings [1] were used to generate neuronal 
responses, which were used as inputs to a signal-detection model. We 
showed that this model produces percept durations whose distribution is 
exponential (not gamma) and whose means are significantly smaller than 
those reported experimentally. We propose an extension to this model in 
the form of a multi-stage feedforward auditory network with components: 
i) area “A1” whose local outputs (mean spike counts) are subject to thresh-
old-based binary classifiers (binary neurons); ii) An ensemble of binary neu-
rons (BN) receiving local input from “A1”; and iii) Two competing units (“the 
accumulators”) whose activities depend on accumulated evidence from 
neuronal ensemble BN for each of the two percepts, integration and seg-
regation. The suppressed neuronal unit accumulates evidence against the 
current percept while the dominant unit gradually reduces its activity. Both 
are drifting towards their given thresholds.
Conclusion: The proposed evidence accumulation model is able to repro-
duce qualitatively and quantitatively switching behavior between integra-
tion and segregation in auditory streaming. At each df the model produced 
percept durations whose distribution is gamma-like and whose means are 
comparable to those obtained in our psychophysical experiment.
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Figure  1. Synchronized dynamics in an adapting Wilson-Cowan 
model. A. Model schematic and equations. B. Synchronized 
regimes available to the model. (Left) Phase plane. (Right) Simu-
lated time courses and dwell time distributions. C. State diagram in 
I-W reveals parameter domain for each synchronized regime. Color 
indicates similarity to NREM sleep. Solid/dashed line: saddle-node/
Hopf bifurcations
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One of the important functions of sleep is believed to be the regula-
tion of synaptic weights in the brain. Mounting experimental evidence 
has found that on average, synapses that are upscaled during wake-
fulness are downscaled during sleep, providing a possible mecha-
nism through which synaptic stability is maintained in the brain. This 
is often referred to as the synaptic homeostasis hypothesis (SHH) [1]. 
However, the questions of how and why sleep is necessary to fulfill 
this function remain unanswered. Neural field theory (NFT) has shown 
that synaptic plasticity dynamics depend strongly on network level 
effects, such as the overall system frequency response, with especially 
enhanced plasticity at resonances [2]. NFT is used to study the system-
level effects of plasticity in the corticothalamic system, where arousal 
states are represented parametrically by the connection strengths of 
the system, among other physiologically based parameters (Fig.  1). 
Here it is found that the plasticity dynamics have no fixed points or 
closed cycles in the parameter space of the connection strengths; but 
parameter subregions exist where flows have opposite signs. Remark-
ably, these subregions coincide with previously identified regions 
corresponding to wake and slow-wave sleep, thus demonstrating the 
role of state-dependent activity on the sign of synaptic modification. 
We then show that a closed cycle in the parameter space is possible 
by coupling the plasticity dynamics to that of the ascending arousal 
system (AAS), which moves the brain back and forth between sleep 
and wake, and thus between the opposite-flow subregions to form a 
closed loop. In this picture, both wake and sleep are necessary to sta-
bilize connection weights in the brain, because each modifies synaptic 
strengths in an opposite direction relative to the other.
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A neural field model of the corticothalamic system has multistable regions 
of five steady-state solutions, up to three of which are linearly stable [1]; 
and, up to two of which lie within firing rate levels that are considered 
moderate, yet normal, in adult human physiology [2]. This confirms the 
existence of additional arousal states beyond the traditional steady states 
which have been identified with either normal or seizure-like activity [2]. 
The signature of these additional states, which we call H-mode states, is 
an overall increased level of activity up to 35 s−1 [blue dots in Figs 1(a) and 
1(b)] with respect to the canonical waking states, or L-mode states (black 
dots). More specifically, compared to the L-states (illustrated as black 
dots), the H-states exhibit enhanced thalamic activity. In Fig. 1(c) mean fir-
ing rates are arranged in parallel coordinates where the coordinates cor-
respond to cortical (φe), reticular (φr), and relay nuclei (φs) firing rates. This 
type of plot allows for the identification of trends within a group, and for 
the comparison with another group. Here, we observe that the qualita-
tive behavior of the H-states (blue lines) is similar to the one of the L-states 
(black lines): φe < φr and φs < φr. However, in the H-states, despite the large 
dispersion of relay activity, cortical activity remains relatively constant. In 
Fig. 1(d), we show the power spectra for both L- and H-states (illustrated in 
black and blue lines, respectively). The H-states (i) have higher power den-
sity than the L-states over all the frequency range (0 < f < 45 Hz); and (ii) 
have a 5-order of magnitude increase in the power in the high-beta and 
gamma bands (20-35 Hz) with respect to the baseline spectra of waking 
states. This last result is consistent with focused and hyperarousal states 
found in the literature [3]. In hyperarousal increased thalamic activity is 
linked to high levels of attention and gamma enhancements expected 
due to increased activity in the relay nuclei of the thalamus.

Figure  1. Evolution of connection strengths around a wake-
sleep cycle forming a closed loop in arousal state space. The blue 
line represents plastic effects during wakefulness that result an 
increase of the corticothalamic and corticocortical loop gains in 
the corticothalamic system, with red lines corresponding to the 
opposite effect observed during slow-wave sleep. Thin lines indi-
cate the action of the AAS in switching between wake and sleep 
states
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Figure  1. Comparison of L-mode states and H-mode states from 
multistable regions of the corticothalamic system. Black dots and 
lines correspond to properties of L-states  (fa  <  20  s−1), while blue 
dots and lines are those of the H-states  (fa around 30 s−1). Panels A 
and B are the steady states in φe-φr and φe-φs space, respectively. 
Panel C shows a parallel coordinate plot of the corticothalamic firing 
rates. Panel D shows the spectral signature the L-states and H-states
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Closed-loop stimulation is a promising technique for neuroscience 
studies, especially in behavioral experiments [1, 2]. Weakly electric fish 
discharge short electric pulses or waves through an electric organ and 
detect small changes in the electric field using electroreceptors [1, 3]. 
These fish live in turbid waters and use electrical sensing as an addi-
tional sense to increase visual details. In addition, their electric pulses 
are also used to communicate by changing their inter pulse intervals 
depending on the behavioral context [3]. Recently, attention has been 
paid to the visual system [4]. However, most experiments assessing 
vision were conducted with periodic flashlights lasting just a few sec-
onds and moreover, in restrained animals.
We developed the first closed-loop setup that uses temporally struc-
tured light as a stimulus for long periods in freely swimming fish. In 
these closed-loop protocols, the light pulses are triggered based on 
the real time monitored electrical activity, resulting in stimulus with 
similar complex temporal structure as the electrical signaling of the 
fish. The setup can be easily adapted to different stimulus modalities 
such as mechanical, acoustic and electrical stimulation allowing stud-
ies of multisensory integration.
Our validation protocol consisted of 15  min control session followed 
by 15  min light pulse stimulation in Gnathonemus petersii. The light 
stimuli were either triggered by the fish’s own electrical activity and 
therefore with complex temporal structure or periodic. It is important 
to emphasize that the main differences between these two stimuli is 
the temporal structure, the closed-loop share similar complex tempo-
ral structure as the electrical signaling and the periodic does not, no 
temporal structure is encoded in the light stimulus. We show that, for 
long light stimulation periods, fish decreased the discharge rate. The 
decrease in discharge was more accentuated when light stimuli were 
triggered by the fish’s electrical activity as opposed to periodic stim-
uli, meaning that probably the information encoded in the temporal 
structure was somehow meaningful for the fish and that the brain pro-
cessed it distinctly from a simple periodic structure.
To the best of our knowledge, this is the first study on how light can 
influence the fish electrical system for long periods of time. The results 
give rise to important questions on the influence of light in electro-
communication and the processing of multisensory information, 
which can be addressed using the proposed methodology.
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Biological systems can encode information in a sequential manner, and 
temporal encoding gives rise to complex temporal patterns of activ-
ity. Thus, information processing in those systems can be analyzed 
studying the temporal structure of event trains. This is the approach 
followed by a recently defined real time stimulation methodology, tem-
poral code-driven stimulation (TCDS) [1]. TCDS is a closed-loop stimu-
lation protocol that first digitizes and binarizes a biological signal and 
then delivers the stimulus when a predefined code is detected. This 
code represents the sequential activity in the signal whose meaning 
is the goal of the system study. The methodology can use the study 
of changes in the information processing of a given biological system 
among different sessions: code-driven stimulation sessions, control ses-
sions without stimulation and open-loop stimulation sessions.
In order to test this methodology, an implementation of TCDS using 
hard real time has been applied to electroreception using the weakly 
electric fish Gnathonemus Petersii. The electromotor neurons of this 
animal generate electrical signal pulses which can be measured in a 
water tank using appropriate hardware [2, 3]. These signals follow 
a temporal coding scheme [4] where information is encoded in the 
inter-pulse interval (IPI) [5]. Thus, it constitutes a convenient animal 
model to test closed-loop stimulation methods in an alive and freely-
behaving biological system. The TCDS protocol binary digitizes the 
signal of the fish detecting the presence or absence of a pulse event 
during the binarization period and uses this codification to stimulate 
after detecting a preselected code from the fish’ activity. Analysis of 
information processing in weakly electric fish is done in previous stud-
ies in terms of IPIs distribution [1].
We complement the analysis of the TCDS protocol with a measure 
based on information theory: Transitions between codes. As a proof 
of concept, we used 4-bit codes and selected as the trigger a code 
with mean probability of occurrence during control sessions. Codes 
were grouped by the number of pulses in them, defining three sets: 
low, medium and high number of pulses. Preliminary results applying 
TCDS to electroreception in weakly electric fish indicates that it dis-
tinctly conditions the response of the system when stimulating after 
a predetermined code. This conclusion is also drawn by analyzing the 
probability of transitions between codes, as an increase in low-low 
transition probability is detected when the system is stimulated with 
the code 0101.

http://dx.doi.org/10.1371/journal.pone.0141007
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Many animals depend on odor information for living. Although differ-
ent levels of concentration produce variation in the activation patterns 
observed in olfactory receptor neurons, most animals can correctly 
recognize the identity of odors regardless of their concentration. It 
is not clear yet what mechanisms olfactory systems employ to rec-
ognize the same stimulus regardless of their concentrations. Experi-
ments suggest that in insects this concentration invariance appears in 
the Antennal Lobe, where the activity of Projection Neurons remains 
nearly constant, even though the concentration changes [1]. One 
hypothesis is that the Local Neurons are responsible to down regulate 
the levels of activity (also known as gain control) by laterally inhibiting 
the Projection Neurons [2]. We examine the impact of this gain control 
mechanism on pattern recognition by designing a biologically plau-
sible model based on the interactions between Local and Projection 
Neurons. For this purpose, we used a computational model that repre-
sents the olfactory system of insects by a single hidden layer network 
[3, 4, 5]. We consider three layers: Antennal Lobe, Kenyon cells and 
Mushroom Body Output Neurons. In order to simulate the activation 
patterns of Antennal Lobe for different concentration levels, we used 
Gaussian functions with a variable height and width, where their cent-
ers encode the identity of the odor. We used datasets of 3000 patterns 
divided into 10 pattern classes and 3 concentration levels. To model 
the intrinsic variations observed in real olfactory systems, we added 
a multiplicative white noise to these Gaussians with 3 different levels 
(small, medium, large). The performance of a network with this gain 
control mechanism presented significantly lower classification error 
rate than a network without gain control, with an improvement of 
~45%. A network with this gain control achieved a classification error 
of ~0% for sets of patterns with small and medium noise and <5% for 
large noise. These results suggest that gain control mechanism does 
not only suppress outbursts of activity from input layers but also 
greatly improves learning in Mushroom Bodies. Finally, because this 
mechanism does not depend on any synaptic plasticity, in agreement 
with the biological literature, it can also be applied to chemical sensors 
in electronic devices for controlling changes in environmental condi-
tions [6, 7].
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Adaptive Brain Computer Interfaces (BCI) are an important research 
topic in the last years. However, a critical and pending problem is their 
variable performance even within subjects. In event-related potentials 
(ERP)-based BCIs the variability of amplitude and latency impair the 
detection of the ERP components. In order to overcome those prob-
lems, target and non-target stimuli are repeated several times (trials). 
Repetitions can cause fatigue and a decrease in task performance. 
Therefore, achieving high accuracy with a few stimuli is a challenge. 
We propose a methodology that contributes to the management of 
variability in ERP-based BCIs through the characterization of the maxi-
mum relative voltage area  (maxRAUC) in the region of the EEG signal 
where a ERP component can be located. We call  maxRAUC relative 
since it is a maximum value within each trial, not the maximum value 
of all trials. This method calculates  maxRAUC incrementally in time for 
each stimulus. The one with the highest value is considered a target 
stimulus. In this way, the differences between a target and a non-tar-
get stimulus are maximized. Electrodes having the highest  maxRAUC 
in the ERP region of the signal are potentially likely to have better char-
acteristics for detecting ERP effectively. Our method was tested with 
a linear classifier (LDA) based on the Krusienski method (KM) [1] and 
the dataset_IIb of the BCI competition (http://www.bbci.de/competi-
tion/ii/). This dataset contains the data of one user, divided into three 
sessions: two training sessions (called 10 and 11) and one session to 
test the classifier. Users were stimulated through P300 Speller Para-
digm described in the competition. The electrodes with the largest 
 maxRAUC were found in the central and frontal lobes. We checked the 
influence of these electrodes on the system’s adaptability and evalu-
ated the classifier with two configurations: the first, with 8 electrodes 
used in KM; and the second, by replacing Fz and Cz by the electrodes 
among those with the higher  maxRAUC of each session. With this elec-
trode selection, the accuracy of the classifier improved and reached 
100% success with a low number of trials, see Table  1. We also vali-
dated the robustness of our method by combining data from training 
sessions 10 and 11.
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Table  1. Trials needed to  achieve 100% success in  each session. 
Common Electrodes (CE): Pz, P3, P4, PO7, PO8, Oz. We emphasize 
the best results with italic font

Session 10 Session 11 Session 10 + 11

Electrode 
configura‑
tion

Elect. Trials Elect. Trials Elect. Trials

KM  
electrodes

Cz + Fz +  
CE

4 Cz + Fz + CE 12 Cz + Fz + CE 9

CE + 2 
 maxRAUC 
electrode

C1 + FPz + 
 CE

3 C1 + FC1 + CE 6 C3 + F1 + CE 4

CE + 1 
 maxRAUC 
electrode

C3 + CE 3 F1 + CE 9 F1 + CE 5

In summary, here we propose a new methodology to extract addi-
tional information from EEG electrodes that contributes to manage 
the adaptability of ERP-based BCIs. This method adapts to the vari-
ability of each session and helps to decrease the number of electrodes 
and trials necessary to achieve a 100% success. The  maxRAUC contrib-
utes to early detection of ERP and further adaptation. This method can 
also be applied to other ERP components (N200, N100, etc.) which are 
considered for future work.
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Experimental evidence suggest that neurons are inherently stochastic 
systems displaying trial-to-trial response variability [1]. This stochas-
ticity may have functional consequences on network behavior, so it 
is important to construct stochastic single-neuron models to be used 
in network simulations. There are basically two ways of constructing 
a stochastic neuron model [2, 3]. One is to consider a deterministic 
model, e.g. the leaky integrate-and-fire (LIF), Izhikevich or AdEx model 
[2], and add stochastic terms to the inputs received by the neuron. 
The other is to model a spike as an intrinsically stochastic event. The 
second way can be implemented in two different but equivalent man-
ners: by a randomly varying spike threshold as in the escape noise 
model [4], or by a spike probability function Φ(V), which depends on 
the membrane potential V as in the simplified version of the Galves-
Löcherbach (GL) discrete-time model [5] recently proposed by Bro-
chini et al. [3].
Here we have considered the Brochini et al. [3] version of the GL model 
(from here onwards simply called GL model) and empirically deter-
mined the probability function Φ(V) so that the model can describe 
stochastic firing behaviors of the two most import cortical cell types, 
namely regular (RS) and fast (FS) spiking neurons [6]. To determine 
Φ(V) for these two cell types, biophysically detailed models of RS and 
FS neurons were chosen from the neuron database ModelDB (http://
senselab.med.yale.edu/modeldb/) and submitted to realistic patterns 
of synaptic input. The detailed neuron model simulations were done 

in NEURON [7]. These simulations generated time series of membrane 
potential values Vt for the detailed RS and FS neuron models. From 
these time series, we determined action potential onset values Vth 
from the dV/dt versus V phase space using so-called Method II of [8]. 
For each action potential, the voltage values above threshold were dis-
carded and with the remaining ones we constructed two distribution 
histograms, one for all voltage values (including Vth) and the other for 
threshold values only. The histograms were superposed as in Figure 12 
of [9] to allow an estimate of the probability of firing for each discre-
tization bin.
The resulting probability functions display nonlinear exponential 
behavior. Based on them we constructed stochastic GL models for RS 
and FS neurons and submitted them to simulated input currents to 
obtain frequency-current (FI) curves. These stochastic neuron models 
can be used in large-scale simulations of cortical network models.
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New techniques now make it possible to modify messenger RNA 
and thereby modify specific proteins in vivo. Experimentally, we have 
edited RNA using adenosine deamination to modify the mammalian 
fast sodium (Naf ) channel (NaV1.4) by converting a key lysine residue 
to arginine in the selectivity region that is part of the aspartate-glu-
tamate-lysine-alanine motif (DEKA to DERA). This change allows the 
channel to be permeable to both Na and K, effectively changing the 
reversal potential associated with this conductance to a value inter-
mediate between the Nernst potentials of those two ions. The degree 
of alteration in the Naf channel can be manipulated, producing a 
mixed population of native and mutated channels. We modeled the 
effects of this manipulation on the classical Hodgkin-Huxley model 
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of action potential propagation in the squid axon, as well as in other 
axonal models closer to mammalian morphology and temperature. As 
expected, action potential amplitude was reduced at higher percent-
ages of the modified Naf channel, reaching a point where an action 
potential could no longer be maintained at the maximal conductance 
provided. Action potential conduction velocity was fast (approxi-
mately 10  mm/ms) when using a high-impedance axon termination, 
and showed little fall off with increased percent of modified channel. 
Conduction velocity was much slower (approximately 2 mm/ms) when 
using a low impedance termination, and showed a 20% falloff with 
increase in percent of the modified channel. These results were seen 
both at squid axon temperature and Ra (6.3o C and 34.5  O-cm) and 
at mammalian values  (37o C and 250  O-cm). Action potentials were 
formed at lower sodium channel density and conducted at greater 
velocity at the low temperature, where the more prolonged activation 
due to the slower kinetics provided increased effect at neighboring 
locations.
RNA editing is being used experimentally to erase the mutations that 
introduce the premature termination codons that lead to cystic fibro-
sis. This manipulation has potential for clinical use in patients with this 
deadly genetic disease. Similarly, clinical manipulation of the RNA for 
the sodium channel has potential for use in intractable epilepsies such 
as Lennox-Gastaux syndrome, where neither surgical nor pharmaco-
logical intervention is generally effective.
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The wealth of data showing that human motor performance is 
affected by normal ageing is contrasted by the dearth of data on age-
ing effects on the neural processes underlying action. For example, it 
remains to be elucidated how the different phases of an action (i.e., 
preparation, initiation and execution) are expressed in neural oscil-
lations and how these are affected by normal ageing. The interest in 
ageing-related changes of motor performance and the neural basis 
thereof are governed by the quest for more detailed insights into the 
possible reorganization of the key phases of an action. For this reason, 
it is apt and timely to study ageing-dependent effects on the neural 
organization of motor performance in more detail. The crucial point of 
such investigations is the study of synchronization, a key mechanism 
underlying the coordination of distinct neural populations in shaping 
complex motor tasks.
In an earlier EEG-study [1] on young adults, we found that when gen-
erating unilateral index-finger movements, local oscillations in the 
δ-θ frequency band over the centroparietal, central and frontocentral 
regions (corresponding to the primary motor area (M1), the supple-
mentary motor area (SMA) and the pre-motor area (PM), respectively) 
exhibited robust phase locking both prior to and during the move-
ment. The local oscillations were most pronounced in the hemisphere 
contralateral to the moving hand in both externally and internally trig-
gered actions. A subsequent study [2] using an identical experimental 
paradigm with a population of older adults found that the local phase 
locking in the δ-θ frequency band was also present during the motor 
acts of the older participants.
To investigate the neural processes underlying ageing-related 
dependence of the motor performance in more detail, we employed 

inter-regional phase-locking analysis by calculating the phase-locking 
values (PLVs) from the EEG records of the two data sets mentioned 
above. PLV measures the extent of instantaneous synchronization 
between two distinct brain regions.
Our analysis revealed significant PLV in both age groups in the δ-θ 
frequencies around movement onset. Invariant sub-networks were 
established by strong PLV between brain areas involved in the motor 
act, which were different in older and younger subjects. More intra- 
and inter-hemispheric PLVs occurred in older than in younger sub-
jects. Furthermore, data suggest that older subjects compensate for 
the diminished connectivity observed between contralateral M1 and 
SMA, and ipsilateral PM and SMA during movement preparation and 
execution by establishing additional intra- and inter- hemispheric 
connections.
Based on the above findings on local and inter-regional phase locking, 
we built a mathematical model consisting of phase oscillators repre-
senting two main regions of the motor network, i.e. SMA and M1. This 
simple model is capable of reproducing the effects of increased PLI 
and, independently of this, the effect of increased PLV between both 
regions. After extending the network model to all core motor regions 
and fitting the model parameters to the experimental data it will serve 
as a tool to make predictions on disturbed networks dynamics, e.g. 
decoupling of nodes.
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In this work, we present a low cost embedded system to simulate 
Spiking Neural Networks through PyNN [1]. PyNN is a Python library 
widely used in the neuroscience community to simulate at software 
and hardware level several existent simulators (NEURON, NEST, PCSIM 
and BRIAN) by acting as an interface to unify the different instruc-
tions and neuron model definitions. At hardware level, serves as a 
high-level interface to directly map spiking neuron models on the 
SpiNNaker neuromorphic system [2]. Albeit, SpiNNaker and other 
systems such as TrueNorth have demonstrated tremendous capabili-
ties to process information such as the brain does, these systems are 
still unreachable for the large community who wants to implement 
or validate simplest models on a hardware platform. In this regard, 
we developed ePyNN, which is the PyNN simulator embedded on a 
Raspberry Pi 3 board, which has a 1.2  GHz 64-bit quad-core ARMv8 
CPU. Here, we have been able to implement a neural network with 
the ≪ if_curr_exp ≫ model, which is a leaky integrate-and-fire model 
with fixed threshold and exponentially-decaying post-synaptic con-
ductance to generate real time locomotion patterns expressed as 
spike trains for a hexapod robot [3, 4]. Specifically, we designed a net-
work of 12 neurons, where each of them controls one of the degrees 
of freedom (servomotors) of the robot with a specific topology, which 
was offline performed by an evolutionary approach. Finally, the 
ePyNN has been successfully validated on a real hexapod robot (Fig-
ure  1C) for three different locomotion gaits (walk, jog and run) run-
ning in real time (Figure 1 A, B).
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Figure  1 A. Biological Patterns B. Generated patterns C. 
Robot + ePyNN platform

coherence intervals is evaluated with surrogate analysis, using “natu-
ral” surrogates (the hand acceleration recorded from other subjects), 
as well as artificially constructed surrogates that have randomized 
Fourier phases but match the power spectrum and value distribution 
of the recorded time series [6]. We analyze separately the bilateral cou-
pling of tremor amplitude, and evaluate its contribution to the bilat-
eral coherence of tremor as assessed by spectral/wavelet coherence.
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Transient periods with reduced neuronal discharge - called ‘pauses’ 
- have recently gained increasing attention. In dopamine neurons, 
pauses are considered important teaching signals, encoding negative 
reward prediction errors. Particularly simultaneous pauses are likely to 
have increased impact on information processing. Available methods 
for detecting joint pausing analyze temporal overlap of pauses across 
spike trains. Such techniques are threshold dependent and can fail to 
identify joint pauses that are easily detectable by eye, particularly in 
spike trains with different firing rates.
We introduce a new statistic called ‘pausiness’ that measures the degree of 
synchronous pausing in spike train pairs and avoids threshold-dependent 
identification of specific pauses. A new graphic termed the ‘cross-pauseo-
gram’ compares the joint pausiness of two spike trains with its time shifted 
analogue, such that a (pausiness) peak indicates joint pausing. When 
assessing significance of pausiness peaks, we use a stochastic model with 
synchronous spikes to disentangle joint pausiness arising from synchro-
nous spikes from additional ‘Joint Excess Pausiness’ (JEP). Parameter esti-
mates are obtained from auto- and cross-correlograms, and statistical 
significance is assessed by comparison to simulated cross-pauseograms.
Our new method was applied to dopamine neuron pairs recorded in 
the ventral tegmental area of awake behaving mice. Significant JEP 
was detected in about 20% of the pairs. Given the neurophysiologi-
cal importance of pauses and the fact that neurons integrate multiple 
inputs, our findings suggest that the analysis of JEP can reveal interest-
ing aspects in the activity of simultaneously recorded neurons.
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Pathological hand tremor is associated with a number of neurological 
diseases and may significantly impede motor functions in the patient. 
The most common pathological type is essential tremor (ET), found in 
4.6% of the population aged over 65  years [1]. The neurophysiologi-
cal basis of ET is still under debate, and recent literature suggests that 
patients with the ET diagnosis may in fact fall into several categories 
with distinct disease origins [2]. Detailed quantitative analysis of the 
features of the tremor may help in further classification and in clarify-
ing the underlying neurophysiological mechanisms.
Depending on the underlying mechanism, the tremors in the left hand 
and right hand may be coupled or independent. In the previous litera-
ture on tremors, this bilateral coupling was assessed using stationary 
spectral coherence analysis, both on the level of hand kinematics and 
of muscle activity. Highly prevalent bilateral coherence was found for 
orthostatic [3] and psychogenic [4] tremors, while for other tremor 
types including ET, such coupling was only rarely reported. In our 
recent study [5], we used nonstationary, wavelet-based coherence 
analysis of kinematic recordings to show that the oscillations of the 
two hands are intermittently coupled in ET. We found that intervals of 
strong bilateral coherence, lasting for up to a dozen seconds, alternate 
with time intervals of insignificant coherence. We also observed inter-
mittent bilateral coherence for physiological tremor (a normal hand 
oscillation of low amplitude) recorded in healthy subjects.
Here we further extend the analysis of Ref. [5], based on the same 
dataset of accelerometric recordings obtained from 34 ET patients 
and 42 healthy subjects. We analyze the distribution of durations of 
the bilaterally coherent time intervals extracted from wavelet analy-
sis, and examine its dependence on the tremor type (physiological vs. 
essential) and on the hand position. The statistical significance of the 
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Viewing of ambiguous stimuli can lead to bistable perception alternating 
between the possible percepts. The respective response patterns show 
differences between schizophrenic patients and healthy controls [1, 2]. 
At the same time, these patterns show similarities with spiking patterns 
of dopaminergic cells  [3]  that may be related to schizophrenia spec-
trum disorders. Specifically, oscillatory  behavior [4] with single percept 
changes occurs during continuous viewing of ambiguous stimuli, and 
stable more or less regular periods followed by bursts of percept changes 
are observed during intermittent viewing of ambiguous stimuli.
Therefore, we propose a stochastic model that provides a link between the 
observed response patterns and potential underlying neuronal processes. 
To that end, we first develop a Hidden Markov Model that captures the 
observed group differences by describing  switches between stable and 
unstable states in the intermittent presentation and using only one state 
in continuous presentation. Second, the model is embedded into a hierar-
chical model that describes potential underlying neuronal activity as dif-
ference between two competing neuronal populations similar to [5]. This 
differential activity is assumed here to generate switching between (i) the 
two conflicting percepts and between (ii) stable and unstable states with 
comparable mechanisms on different neuronal levels. Using only a small 
number of parameters, the model can be fitted to a large data set of per-
ceptual responses of schizophrenic patients and healthy controls under 
continuous and intermittent stimulation. The model can closely reproduce 
a wide variety of response patterns and is able to capture and to provide 
potential neuronal mechanisms for group differences between healthy 
controls and schizophrenic patients such as the weaker tendency to sta-
bilized perception in the patient group under intermittent stimulation [2].
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Neural morphology and membrane properties vary greatly between 
cell types in the nervous  system. While the function of neurons is 

thought to be the key constraint for their biophysical properties, addi-
tional constraints may further shape neuronal design and explain 
observed properties. Here, we focus on principal neurons in the MSO 
nucleus of the auditory brainstem and show that a tradeoff between 
a functionally relevant computation and energy consumption predicts 
optimal ranges of biophysical parameters.
Biophysical properties of MSO cells as well as their function are well 
characterized: MSO cells encode the direction of sound in the horizon-
tal plane. Inputs to MSO cells are phase-locked to sound wave stimuli 
to each ear and the interaural time difference (ITD) of sound waves is 
used to compute source location. To achieve sensitivity to ITDs in the 
range of tens of μs, MSO cells have specialized membrane properties, 
including a very fast membrane time constant (~1  ms) and a  low-
threshold potassium  current  (IKLT), both contributing to a very short 
input integration window [1]. Furthermore, MSO cell function is sup-
ported by their bipolar morphology, with inputs from the two ears 
segregated to the two main dendrites [2].
Next to function, energy use can be assumed to significantly constrain 
MSO cell properties.  Overall, the brain accounts for a disproportion-
ately large part (~20%) of the energy budget, with metabolic energy 
being mostly spent on synaptic input, action potentials, and rest-
ing potentials [3]. MSO cells, in particular, receive inputs at very high 
rates (hundreds of Hz),  generate action potentials at similarly high 
rates, and display a very leaky membrane.
Here, we quantify and contrast sensitivity of MSO cells to ITDs as well 
as the associated metabolic cost. We developed a simplified dendritic 
model of an MSO cell  that includes the KLT-current. We first fit the 
model to experimental data from [1] and then explored how varying 
the morphological and membrane parameters affects performance 
and energy consumption. We found that most experimentally con-
strained parameters were close to a functional optimum; if a wider 
range of functionally good values was available, the fitted parameters 
tended towards lower energy usage. Interestingly, we found that the 
KLT-current increases energy costs, but strongly improves coincidence 
detection, beyond passive capabilities. We next explored the full 
parameter space by considering 100,000 models with random com-
binations of parameters. The experimentally constrained model was 
among the top 13% regarding performance and top 12% regarding 
energy efficiency (i.e., sensitivity per energy). Exploration of the full 
parameter space highlighted that two model features explain most 
of their performance and energy consumption: 1) the level of satura-
tion of the driving force of the synaptic conductance inputs and 2) the 
width of the somatic compound EPSPs. We conclude that the neural 
design of MSO cells  is indeed compatible with both functional and 
energetic constraints, with a preference of function over cost.
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The Brain Simulation Platform (BSP) of the Human Brain Project (HBP) 
provides a large set of tools to build, reconstruct, simulate and analyze 
data-driven brain models in a collaborative manner (Figure  1). The 
available tools are organized by use cases, consisting of selected pro-
cedures illustrating specific practical examples on how to exploit the 
Platform capabilities to pursue scientific goals.
The platform is designed to target users with different background 
and expertize such as: a) “end-users”, interested in using the platform 
in a user-friendly manner, b) “power-users”, able to take advantage of 
the platform services while integrating their own High Performance 
Computing resources, c) “expert-users”, who can contribute to the 
development of the tools, and d) “co-design developers” who are early 
adopters of initial versions of the platform facilities.
In this poster, we will give an overview of the current BSP release, the 
services it provides and the collaborative approach underlying its 
design. To illustrate the potential of the platform, and how users with 
different background can take full advantage of its tools, we will demo 
a few use cases in which “end-users” and-or “expert-users” are guided 
through step-by-step python-based jupyter notebook and web appli-
cations graphical interfaces (Figure 1).

activity in a behaviour-dependent context: theta- (4–8  Hz) and 
gamma-band (30–100  Hz) frequency rhythms [3, 4]. In rodents and 
humans, gamma rhythms embedded into theta oscillations become 
prominent during memory functions, object exploration, and spatial 
navigation [1]. The consideration of the spiking patterns of the neu-
rons during oscillatory regimes is key to uncover the significance of 
hippocampal network oscillations in different processes. When the 
broad electrophysiological repertoire of CA3 pyramidal cells is consid-
ered, the computational description of the network requires a neural 
model. This model has to be simple enough to support a large hip-
pocampal network, but still rich enough to capture complex pyrami-
dal-cell dynamics. This is precisely what we propose here: a single-cell 
computational model for a CA3 pyramidal neuron that is used as the 
basic element to form a CA3 network model which will be able to 
reproduce key hippocampal oscillatory patterns. The spiking patterns 
of the offered single-cell model capture some essential features of 
well-known hippocampal spiking behaviour, such as: spike broaden-
ing at the end of a burst, rebound bursting, low-frequency bursts, and 
high-frequency tonic spiking (Figure  1). Moreover, the model for the 
CA3 population is also able to generate theta and gamma-band oscil-
lations, known to be present in the CA3 region.

Figure 1. The HBP Brain Simulation Platform web interface. A. BSP 
Overview web page. B and C. synaptic events Fitting and Electro-
physiological Feature Extraction GUIs, developed as a jupyter note-
book and a web app respectively
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Hippocampal subarea CA3 has long drawn attention for its major role 
in encoding spatial representations and episodic memories [1]. Due 
to the presence of rich recurrent feedback connections, CA3 has been 
considered to play a key role in long-term memory formation. Moreo-
ver, CA3 has long been proposed as an auto-associative network capa-
ble of pattern completion and path integration for the retrieval and 
storage of episodic/declarative memory traces [2]. A broad range of 
experimental studies have supported the idea that hippocampal oscil-
lations must be taken into consideration while investigating the region 
as a memory network. Empirically-validated studies on freely moving 
rats have identified two major oscillatory patterns of hippocampal 

Figure 1. A. Single-cell model results. Upper-left: Initial spike gen-
eration, upper-right: rebound bursting in response to hyperpolari-
sation, bottom: burst-to-tonic spike transition with increased input 
current. B. Population model spectrograms. Upper: gamma-band 
oscillations in the network, bottom: theta-band oscillations in the 
network
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It is well-known that there is a strong correlation between cortex and 
striatal activity especially during progression of action selection and 
goal directed behavior. This interaction between cortex and striatum 
project back to the cortex through direct and indirect pathways and 
over thalamus forming a closed loop [1]. Such structural associations 
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of the brain are called structural connectivity or connectome. Due to 
the development of measurement technologies as fMRI, more work 
has been carried to build up the association between the different 
areas of the brain and the cognitive processes, and such associations 
are called functional connectivity or functional connectome. Besides 
these, the processes carried out at neuronal level and/or the changes 
at synaptic connections which give rise to relations that are observed 
at frequency and/or phase levels is called dynome [2]. The structural 
connection between cortex and striatum is already known and their 
functional connectivity has been shown with experimental studies. In 
this work, based on the experimental results given in [3], a computa-
tional model is proposed based on the dynamical connection of neu-
rons and synapses showing the dynome relation between cortex and 
striatum.
During the experimental studies that have been explained in [3], LFP 
in prefrontal cortex and striatum are measured. Beta and gamma 
frequency bands have been observed and with PLV, the correlation 
between cortical and striatal activity has been shown [3, 4]. These 
experimental results have been recreated with the computational 
model proposed and it is shown that the results given in Figure 1 are 
similar to the experimental results. The simulations are carried out by 
considering the similar conditions considered in experiments. The 
stimuli are applied as in the experimental work and the role of differ-
ent reward quantities is investigated by changing the dopamine levels.

P238 
A spiking neural network model of basal ganglia‑thalamocortical 
circuit with Brian2
Mustafa Yasir Özdemir, Neslihan Serap Şengör
Electronic-Communication Department, İstanbul Technical University, 
İstanbul, Turkey
Correspondence: Mustafa Yasir Özdemir (musyasoz@gmail.com) 
BMC Neuroscience 2017, 18 (Suppl 1):P238

Basal ganglia circuit which is located in the midbrain has an essential 
role in action selection, decision making and reward based learning 
processes. In this work, especially basal ganglia-thalamocortical cir-
cuit responsible for motor control giving rise to voluntary movement 
is considered.
The characteristics of neuronal activity and their functional abilities, 
properties of synaptic connections, effect of neurotransmitters as 
dopamine and the relation between different nuclei defined by path-
ways, all these are effective in realizing voluntary movement. It is long 
known that abnormalities in dopamine level influence basal ganglia 
operations negatively giving rise to neurological disorders like Parkin-
son’s Disease, Hungtinton’s chorea, hemiballismus, dystonia [1].
The equations written for neuronal activity are complicated and simu-
lations of computational models are especially versatile to predict the 
neuronal activity. Computational models reflect the consequences of 
various assumptions made in forming the models [2]. Most computa-
tional models of basal ganglia circuits consider a specific process and 
only partly reflect their nature and function. In this work, an attempt is 
made to obtain a holistic model of basal ganglia-thalamocortical cir-
cuit in Brian 2 environment to ease the further improvement and test-
ing of the model by the neuroscientist.
Here a spiking neural network model is realized to configure the entire 
properties of basal ganglia circuit. The characteristic neuronal activi-
ties of each substructure are obtained by modification of Izhikevich 
neuron model [3]. The proposed model of basal ganglia-thalamocor-
tical circuit is also capable of showing the dopamine effect on the pro-
cesses due to the modified striatum neurons. Medium spiny neurons 
which have different dopamine receptors are considered in the model 
separately. Also, direct, indirect and hyper-direct pathways exist in the 
model and effect of dopamine on these pathways can be observed 
in the simulations. Synaptic connections configured to realize learn-
ing and probability of connections are set according to the research 
presented in the literature. The model is formed with inspiration from 
another study [4] and realized on Brian2 simulator.
The simulation results of the model are given by raster plots, firing 
rates and time-frequency analysis. The stimulus activity in the cortex 
is projected to the thalamus in the simulations and the model reveals 
the role of direct, indirect and hyper-direct pathways on the formation 
of this projection separately.
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Figure  1. The correlation between the PFC and striatal activity: 
A. The activity in PFC B. The activity in striatum, C. The correlation 
between PFC and striatum. The activities in PFC and striatum are 
given with normalized firing rate values. The results show the there 
is a correlation between cortex and striatum
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Spatial navigation in primates is thought to be mediated by neural net-
works linking the dorsal visual pathway (including parietal and retros-
plenial cortices) and the medial temporal lobe [1]. Neurons along this 
pathway are sensitive to visual cues of varying complexity (from simple 
visual features to views of spatial scenes [2, 3]) and have been character-
ized to code environmental features in different reference frames (from 
egocentric eye- or head-centered representations early in the pathway 
to allocentric world-centered ones later in the pathway [3, 4]). However, 
neural mechanisms underlying the transformation between egocentric-
visual and allocentric-spatial representations remain poorly understood.
In this work, we present a spiking-neural-network model of visuo-
spatial coordinate transformation that receives input in the form of 
realistic head-centered visual input with limited view field. After pro-
cessing this input with V1-like orientation-sensitive neuronal filters, it 
is transformed to an allocentric directional frame using two mecha-
nisms, experimentally observed along the dorsal pathway. First, head 
direction signal, thought to be provided by the retrosplenial cortex, is 
used by the network to align egocentric input views with a world-cen-
tered directional frame [4]; Second, short-term visual working memory 
in the parietal network serves to link subsequent views during head 
rotation into scene-like representation of visual features. The output 
of the coordinate-transformation network serves as input to the hip-
pocampus, where location-sensitive neuronal responses are learned 
using spike-timing-dependent plasticity.
Neuronal activities in the model are shown to reproduce basic fea-
tures of dorsal-pathway neurons. In particular, in an experimental 
setup mimicking an animal sitting in front of a screen, visual receptive 
fields of model parietal/retrosplenial neurons code features in head- or 
world-centered reference frames, and firing activities in the transfor-
mation network exhibit gain fields with respect to head direction, as 
observed in classical experiments with monkeys. In a setup where the 
simulated animal explores an experimental environment, modeled 
hippocampal cells exhibit location-sensitive firing fields after learning. 
These purely visual place fields are influenced by changes in the visuo-
spatial environmental layout (e.g. its spatial geometry [5]), and are 
modulated by currently observed view [2]. Moreover, spike synchrony 
patterns in this model reflect environment topology [6]. This model 
links the processing of low-level visual features in the brain with high-
level cognitive processes implicated in spatial navigation.
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Various cognitive functions of our brain are realized by interactions 
among a large number of neurons. Traditionally, the selectivity of 

neuronal activity to individual cognitive tasks has been studied [1]. In 
order to understand the function of the brain more deeply, we need 
to investigate the micro-connectome, which is a comprehensive map 
of  connectivity or interactions  of neurons or synapses, beyond the 
basic statistical observations of its individual elements [2]. This study 
reports the interactions among neurons measured from the anterior 
lateral motor cortex (ALM) of mice using calcium fluorescence imag-
ing and focuses on selectivity for cognitive planning of directed lick-
ing behaviors [3]. We reconstructed the functional networks from 
the spiking activities of the neuron ensembles at resting periods and 
compared them with the motion-selectivity of individual neurons 
(Figure 1). The network structure was characterized using graph the-
ory [4]. Past studies [3] have declared that significant activities can be 
observed in layer 5 of the ALM. However, the contributions of differ-
ent layers were not reported. Our connectome analyses also consist-
ently showed that, in layer 5 of the ALM, a simple connection strength 
measure in motion-selective neurons was significantly stronger than 
in motion-nonselective cells. Surprisingly, in layer 2, a Centrality meas-
ure was significantly higher in selective cells, especially contralateral 
selective cells, than in non-selective cells. Centrality represents that the 
cell is in an important position within the network. It has been repeat-
edly reported that the effective connectivity, the estimated neuronal 
activities recorded using Ca Imaging technique in the resting period, 
reflects the underlining structural synaptic connectivity fairly well [5]. 
Therefore, our results suggest that the neurons involved in motor-
planning were located at highly central positions in the micro-con-
nectome from the structural design. Because of the position, they will 
be able to influence a large number of neuropiles within, and prob-
ably beyond, the ALM. If we observe the brain more widely, layer 5 
exists on the bottom-up information flow that originally came from 
the thalamus, and layer 2 exists on the top-down information flow 
relatively close to the output to the thalamus. Therefore, layer 2 in the 
micro-connectome may represent a different functional role of the 
motor-planning than the neuron group existing in layer 5. O u r 
findings and methodological schemes will contribute to a more accu-
rate understanding of cognitive functions, the effects of aging, and 
various neurodegenerative diseases.

Figure 1. The general concept of this study. A. Neuronal activities 
when rodents are taking rest (or just waiting a task) or when per-
forming licking tasks were recorded using Ca Imaging technique. 
B. is an example of effective/functional networks of neurons recon-
structed from the neuronal dynamics. The differences of markers 
show differences of responses of neurons. (Neurons responding 
selectively to contralateral lickings (△), to ipsilateral lickings (□), 
and neurons showing no responses to these licking behaviors (○))
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In the previous study (Choi et al., in revision), we observed two mice 
showing cooperative-like behavior in the competitive situation over 
rewards. We have also shown that this cooperative-like behavior 
enhanced mutual rewords and produced payoff equity between two 
competing mice. However, the origin of this behavior is not clear. Thus, 
the aim of this study is to address whether the cooperative-like behav-
ior could be explained by reinforcement learning or not. In the behav-
ior chamber for mice, two light cues which indicate two reward zones, 
respectively. If a mouse goes the left reward zone when the left light 
cue turns on, the mouse gets reward, and a mouse can get rewards 
if the mouse get in the right reward zone when the right light cue 
turns on. The reward is given by wireless brain stimulation from the 
electrode implanted in the Medial forebrain bundle (MFB), the pleas-
ure center in the mouse brain. When the mice learned the meaning of 
light cues, we performed the pair test in which the two mice released 
in one training chamber. In this experiment, 15 out of 19 pairs showed 
the tendency to separate and allocate their own reward zone by them-
selves. In other words, those mice had their own preferred sides and 
did not interfere opponent’s preferred side (we called this behavior as 
‘zone-allocation behavior’). We followed the ethical guidelines of the 
Institutional Animal Care and Use Committee in the KAIST. This behav-
ior could be considered as a heuristic rule of reciprocity and coop-
eration. To investigate if the reinforcement learning can explain this 
behavior in two competing mice, we developed computational model 
based on the Temporal difference (TD) learning model. In this com-
putational simulation, the environment is set up identically with the 
real training room. The model mouse makes decisions only based on a 
state-action value function which is updated by the TD rule. We found 
that the computational model successfully mimicked the zone allo-
cating behavior between two model mice. Two types of pairs in our 
model were observed. The first type is a pair dividing their own reward 
zone each other, which indicates each mouse obtained its own pre-
ferred side (Figure 1A). This can be thought as a case of zone allocating 
pair in actual experiment. The second type is that one mouse domi-
nates both side of reward zone (Figure 1B). From repetitive iterations, 
we obtained 75% of model mouse pairs showing the zone allocating 
behavior, which is quite consistent with the experimental results of the 
real zone-allocating pair ratio (69%). Moreover, we examined whether 
a mouse achieve this behavior when it uses model-based learning. We 
used Dyna-Q algorithm to implement this model mouse. Zone allocat-
ing behavior, however, could not be achieved. If it uses model-based 
learning, it updates its state-action value too often. Therefore, the 
mouse’s behavior did not converge.

Figure 1. A. State-action values (Q-value) of a pair of mice showing 
zone-allocation behavior. In  mouse1, Q-value for R(right) reward 
zone is larger than Q-value for L(left) reward zone. It means that 
 mouse1 prefer R reward zone. In the same way,  mouse2 prefer L 
reward zone. Moreover, Q-value of  mouse1 for L reward zone and 
Q-value of  mouse2 for R reward zone becomes less than 0.2. 
It means that each mouse didn’t interfere opponent’s preferred 
side. B. State-action values (Q-value) of a pair of mice not show-
ing zone-allocation behavior. Q-value of mouse2 for reward zone 
is converging to zero. It means that  mouse2 prefer not to move, so 
 mouse1 got all the reward

Conclusion: This computational result supports the hypothesis that 
the zone allocating rodent behavior can be explained from positive 
reinforcement learning (particularly model-free learning). Zone-alloca-
tion might be a strategy to maximize reward and to minimize cost in 
aspect of reinforcement learning in competitive situation. We suggest 
that, to investigate the social heuristic behavior, it might be crucial to 
remove convergent egoistic characteristic of animal behavior.
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Synaptic connectivity varies widely across cell types and brain regions 
and connections are formed and lost during development and learn-
ing. However, normal function cannot be maintained by simply add-
ing or subtracting excitatory synaptic inputs onto a neuron, since this 
will cause neurons to become hyper- or hypo-excitable, resulting in 
network instability and loss of function. How then do neurons scale 
their synaptic input to maintain function? Theoretical work suggests 
that the optimal way of scaling of synaptic weights (J) as the num-
ber of synaptic connections per neuron (degree, K) is J  ~  1/√K [1], a 
result that has recently been confirmed experimentally [2]. However, 
the mechanisms by which such optimal scaling arises are unknown. To 
address this question, we implemented Hebbian-like plasticity rules at 
excitatory (E) and inhibitory (I) synapses in large-scale balanced spik-
ing networks of primary visual cortex [3]. As K was increased in the 
networks we found that synaptic weight decreased with a depend-
ence of J  =  1/K0.6, close to the theoretically optimal scaling [1] and 
closely matching that found experimentally [2]. Interestingly, optimal 
synaptic scaling emerged when Hebbian plasticity was present at both 
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E and I synapses. In contrast, spiking networks relying solely on plastic-
ity of I → E synapses to balance excitation and inhibition [4] did not 
exhibit optimal scaling. A simplified mean-field analysis of network 
dynamics explained the dependence of J on K in networks with Heb-
bian-like plasticity of E and I synapses, while revealing why the optimal 
scaling does not always hold in networks with plasticity of only I → E 
synapses.
Irrespective of the initial weights and number of synaptic connec-
tions, spiking networks with Hebbian-like plasticity of E and I synapses 
robustly self-regulated themselves through recurrent inhibition and 
learning into a low activity regime where the activity of the E neuronal 
population exhibited a long tail of activity. Notably, this was accom-
panied by higher activity and lower selectivity of I neurons, consistent 
with experimental observations. Examination of the input-output rela-
tionship of individual current-based or conductance-based neurons 
revealed that optimal synaptic scaling robustly preserved neuronal 
gain as the number of synaptic inputs was altered. Moreover, contrast-
invariant input tuning curves translated to contrast-invariant output 
tuning curves only when the optimal (1/√K) scaling of weights was 
preserved. Our results thus suggest that Hebbian learning in both E 
and I connections is necessary for preserving cortical computation and 
function during changes in synaptic connectivity. These findings have 
important implications for cortical function during development, and 
cortical dysfunction during brain diseases.
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In the hippocampus, one of the most prevalent LFP rhythms is the 
3–12  Hz “theta” oscillation [1]. This LFP theta rhythm is tightly corre-
lated with spatial navigation, episodic memory and rapid eye move-
ment (REM) sleep [1]. Recent work by Goutagny and colleagues [4] 
showed that theta rhythms emerge in the CA1 region of an intact 
in  vitro hippocampus preparation due to local interactions between 
hippocampal interneurons and pyramidal (PYR) cells. Oriens-lacuno-
sum/moleculare (OLM) cells are a major class of GABAergic interneu-
rons in the hippocampus [5]. In addition to inhibiting distal dendrites 
of PYR cells in stratum LM, OLM cells disinhibit PYR cells in stratum 
radiatum, an inner to middle layer, by inhibiting interneurons that tar-
get PYR cells in that region [5].
Our goal is to examine the contributions of OLM cells to ongoing LFP 
theta rhythms in the context of the intact in  vitro preparation using 
computational modeling. We use network models of OLM cells, bis-
tratified cells (BiCs), and basket/axo-axonic cells (BC/AACs) that tar-
get PYR cells in specific layers [3], and assess the role of OLM cells as 

their interactions with BiCs and the PYR cell vary. We find that the LFP 
power is mostly affected by changes in the synaptic conductance from 
OLM cells to BiCs rather than by synaptic conductance changes from 
BiCs to OLM cells, indicating a more important role for the former. This 
observation suggests that progressive inhibition of OLM cells and thus 
progressive decrease of their synaptic inputs onto the PYR cell does 
not strongly alter LFP characteristics whereas progressive inhibition 
of BiCs does. Decomposition of the LFP signal reveals that fluctuations 
in power occur due to BiC and BC/AAC synaptic inputs onto the PYR 
cell rather than to OLM cell synaptic inputs onto the PYR cell. Selective 
removal of either OLM cells or BiCs/BCs/AACs reveal minimal contribu-
tion of the OLM cells to the total LFP power across the dendritic tree. 
Conversely, the BiCs/BCs/AACs generated LFP component comprises 
approximately 90% of the total signal. Furthermore, changes in synap-
tic weights from OLM cells to the PYR cell do not produce substantial 
changes in the LFP.
Brain rhythms can be considered as representations of brain function 
[1, 2]. Given that particular inhibitory cell populations and abnormali-
ties in theta rhythms are associated with disease states [2], it is impor-
tant to understand the cellular contributions to LFP theta rhythm 
modulations. Our results show that OLM cells prominently contribute 
to local LFP theta through their interactions with other local inhibitory 
cell types. Decomposition of the LFP reveals little contribution of syn-
aptic inputs from OLM cells onto the PYR cell. In CA1 PYR cells, distal 
and middle apical dendrites comprise two distinct dendritic domains 
with separate branching [6]. Since we find that maximum LFP power is 
recorded around the soma and the proximal dendrites, OLM cell con-
tributions to LFP theta can be understood in the context of the cyto-
architectonic separation of the of distal and proximal dendrites in PYR 
cells which prohibits distal inhibitory inputs from effectively propagat-
ing to the soma.
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The problem of controlling brain networks has been the focus of sev-
eral recent studies given its relationship to brain stimulation. In this 
work, we introduce the State-Dependent Ricatti Equation formal-
ism (SDRE) [1] for the computation of optimal control signals in non-
linear brain networks. Firstly, the optimal input for the abatement of 
epileptic-like activity in the model proposed in [2] was calculated (see 
Figure  1B). Additionally, we looked at higher dimensional systems 
consisting of coupled autonomous Duffing oscillators (see Figure  1, 
panels C-E). In the linear case our results are in agreement with those 
obtained in [3]. However, as the strength of the non-linearity increases, 
the fraction of the networks that can be controlled is generally lower 
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whereas the cost of controlling the systems grows. Thus, we find evi-
dence for supporting the use of realistic nonlinear modeling of elec-
trical neural activity in the design of optimal controllers for brain 
networks.

has been suggested that inhibition can be dynamically redistributed 
between the dendrites and somata of pyramidal cells (PCs) [3, 4]. Here, 
we argue that a different cortical sub-circuit consisting of SOM- and 
vasoactive intestinal peptide (VIP)-expressing interneurons is opti-
mized to control this redistribution by amplifying small top-down con-
trol signals.
To support this hypothesis, we performed a mathematical analysis and 
simulations of a network model comprising excitatory PCs and inhibi-
tory PV, SOM and VIP neurons. The connectivity in the circuit was cho-
sen according to experimental findings [4]. We show that the SOM-VIP 
circuit can serve as an amplifier that translates small top-down signals 
onto VIP cells [5, 6] into large changes in the somato-dendritic distri-
bution of inhibition onto PCs. Taken to the extreme, the circuit can 
generate winner-take-all (WTA) dynamics that implement a binary 
switch for somato-dendritic inhibition.
Furthermore, we interpret key properties of the SOM-VIP sub-circuit in 
the light of this hypothesis. We show that the striking lack of recurrent 
inhibition as well as the presence of short-term synaptic facilitation 
(STF) observed among VIP and SOM cells strengthens the amplifica-
tion properties of the network. Artificially including recurrent inhibi-
tory connections within the VIP or SOM populations not only weakens 
the amplification, but can also lead to pathological conditions in which 
almost all cells within each population are silenced. These pathological 
states are not observed when firing rate adaptation is included that is, 
indeed, a common feature of SOM and VIP neurons.
In summary, our analysis shows that the SOM-VIP sub-circuit is well 
suited to redistribute inhibition onto soma and dendrites of excitatory 
PC neurons by amplifying small changes in the input signal to VIP cells. 
The synaptic and neural properties, including lack of recurrence, pres-
ence of STF and firing rate adaptation, underpin this computation by 
strengthening the amplification properties and/or avoiding pathologi-
cal states.
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Grid cells are spatially tuned neurons in the entorhinal cortex, whose 
spatial firing fields tessellate the environment with a hexagonal lat-
tice. The mechanisms that underlie this highly symmetric firing pattern 
are currently subject to intense debate [1]. As an alternative to attrac-
tor and oscillatory interference models that perform path integration 
and assume a specific connectivity [1], we recently suggested that 
grid cells could be learned in a feedforward network by interacting 
excitatory and inhibitory plasticity on spatially modulated inputs [2]. 

Figure  1. SDRE-optimal control of the networks. A. General 
scheme. B. Controlling the model in [2]. As soon as the control 
signal (top right corner) is sent, the diseased solution –in red– is 
derived to normal background activity. C. Typical trajectory for a 
controlled network of autonomous Duffing oscillators coupled 
through a scale-free connectivity matrix. Stimuli are inputted 
over the nodes with lower degree –third part of the total number 
of nodes in the network. D. Expected cost for the control over 25 
scale-free networks (N  =  100, mean degree  ≈  6). The numbers 
over each of the error bars indicate the fraction of the realizations 
of the network in which control is achieved as the non-linearity 
(coefficient of the cubic term) is changed. For strengths past 125, 
none of the networks can be controlled. In this case, the costs are 
infinitely high in theory. They are represented as red asterisks at 
the top of the panel. E. Analogue to D for randomizations of the 
previously computed scale-free networks
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GABAergic interneurons constitute only a small fraction of neurons 
in the brain, but their importance for brain function is undeniable [1]. 
Moreover, they display a large diversity in their biophysical, physiologi-
cal and anatomical properties [2], suggesting a functional ‘division of 
labor’. However, the computational roles of the various interneuron 
types and how they are supported by their individual properties is 
largely unknown.
A striking difference between inhibitory cell types is that they form 
synapses onto different compartments of their postsynaptic targets. 
Parvalbumin- (PV) and somatostatin (SOM)-expressing interneurons, in 
particular, seem to predominantly target the perisomatic regions and 
the dendrites, respectively. As SOM and PV cells are also connected, it 
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A central prerequisite for the suggested mechanism is that inhibitory 
inputs have a broader spatial tuning than their excitatory counter-
parts. Given that recurrent inhibition is abundant in entorhinal cortex 
[3] and spatially tuned [4], we reasoned that this broadened inhibition 
could be the result of recurrent processing.
To corroborate this hypothesis, we analyzed a recurrent network 
model consisting of excitatory and inhibitory rate neurons. For the 
sake of the argument, only the excitatory neurons in the network 
receive external, spatially modulated excitatory input. All synapses in 
the network are plastic, with Hebbian plasticity on the excitatory syn-
apses and homeostatic plasticity on the inhibitory synapses [5]. When 
exposing the network to inputs that mimic the movement of an ani-
mal on a linear track, a large fraction of cells in the recurrent network 
rapidly develops a grid-like firing pattern. We find that the underlying 
mechanism is robust to details of the spatial input tuning and that 
the spatial scale of the resulting grids is primarily determined by the 
spatial autocorrelation length of inputs. Based on insights from earlier 
work on the interaction of excitatory and inhibitory synaptic plastic-
ity [6, 2], we identify key mechanisms in the circuit that are required 
for the formation of grid cells: 1) a smooth, saturating nonlinearity in 
the interneurons, which ensures that their spatial tuning is broader 
than the tuning of their excitatory drive, and 2) sufficiently many and 
diverse excitatory inputs to the inhibitory neurons.
Based on these findings, we suggest that grid cells could be boot-
strapped from a large variety of spatially modulated excitatory inputs 
to a recurrent network of excitatory and inhibitory neurons with syn-
aptic plasticity on all synapses.
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Roving is a random task-sequencing paradigm, in perceptual learn-
ing, whereby multiple tasks are learned in a randomly interleaved 
sequence. For certain experiments, such as bisection tasks, human 
subjects appear to be unable to learn the individual tasks under rov-
ing conditions [1]. In general, theoretical descriptions of perceptual 
learning experiments have resorted to approaches involving tuning 
of inputs, using either recurrence or suppression [2, 3]. However, these 
approaches have exhibited only partial success in tackling roving. In 
2012, Herzog et  al. [4] proposed a theoretically inspired explanation 
involving a constant drift in synaptic efficacies in the system (unsuper-
vised bias), due to an inability to maintain accurate task specific esti-
mates of performance. This leads to a failure to learn using feedback. 
We update this approach, adding additional features, which though 

adding realism tend to counteract the action of the unsupervised bias. 
We then use this model to examine whether the unsupervised bias is 
sufficient to explain roving or not.
The proof-of-concept model proposed in Herzog et  al. [4] does 
indeed lead to a failure to correctly learn during roving but, while it 
fails due to the mooted unsupervised bias in the learning rule, the 
implementation relies on unbounded weight growth, an unrealistic 
phenomenon. We introduce a simple weight normalisation term, to 
counteract the unbounded weight growth, and implement a cogni-
tive bias, often observed in human subjects, towards 50:50 presen-
tation ratios. We thus discover a more appropriate model of human 
perceptual learning performance. Our model (i) learns correctly on 
a single bisection or vernier task, (ii) fails to learn during roving of 
multiple tasks, (iii) exhibits the human tendency towards 50:50 ratios 
of choice, thus failing when a 75:25 ratio is used, and (iv) correctly 
learns when informed of the altered presentation ratio, similarly to 
human subjects (unpublished data). A further extension to the origi-
nal model, operating on a much slower timescale, allows the task 
critic system to learn over time to separately identify the tasks. This 
ultimately leads to learning of the initially unlearnable tasks, as seen 
in [5].
Our model can be seen as the distillation of the mechanism of fail-
ure to learn due to the unsupervised bias. Consistent with intuitions 
within the perceptual learning community, our model indicates that 
the degree of overlap in task representations, combined with the 
unsupervised bias, leads to the difference in outcomes between suc-
cessful transfer learning versus failure. Interestingly, a cognitive bias in 
the task presentation ratio appears to be quite helpful in a range of 
presentation paradigms, often counteracting the unsupervised bias 
and rescuing potential failures to learn correctly. Our work would com-
bine quite well with the more detailed work of Liu et al. [6] to provide a 
full model of perceptual learning in the visual system.
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Synaptic plasticity in recurrent neural networks is believed to under-
lie learning and memory in the brain. One practical problem of this 
hypothesis is that recurrent excitation forms a positive feedback loop 
that can easily be destabilized by synaptic plasticity. Numerous home-
ostatic mechanisms have been suggested to stabilize plastic recur-
rent networks [1], but recent computational work indicates that all 
these mechanisms share a major caveat: An effective rate stabilization 
requires a homeostatic process that operates on the order of seconds, 
while experimentally observed mechanisms such as synaptic scaling 
occur over much longer timescales [2].
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Here, we suggest presynaptic inhibition as an alternative homeostatic 
process, which does not suffer from this discrepancy in timescales. 
Experimental studies have revealed that excess network activity can 
trigger an inhibition of transmitter release at excitatory synapses 
through the activation of presynaptic  GABAB receptors, which effec-
tively weakens synaptic strength [3]. This attenuation of recurrent 
interactions has been observed to be fully reversible and acts on time-
scales of 100 s of milliseconds, thus constituting a candidate mecha-
nism for the rapid compensation of synaptic changes.
To highlight the beneficial properties of presynaptic inhibition in excit-
atory recurrent circuits, we analyzed a simple rate-based recurrent 
network model. Presynaptic inhibition is mimicked by multiplicatively 
scaling down recurrent excitatory weights in response to excess popu-
lation activity. Using analytical and numerical methods, we show that 
presynaptic inhibition ensures a gradual increase of firing rates with 
growing recurrent excitation, even for very strong recurrence (Fig. 1A). 
An in-depth mathematical analysis of the underlying dynamical sys-
tem further reveals that the stability of non-zero fixed points (Fig 1A, 
filled markers) is largely independent of model parameters. In contrast, 
classical subtractive postsynaptic inhibition is unable to control recur-
rent excitation once it has surpassed a critical value (Fig. 1B). Moreover, 
we investigate the conditions under which presynaptic inhibition can 
stabilize recurrent networks if Hebbian assemblies are imprinted.
In summary, the multiplicative character of presynaptic inhibition pro-
vides a powerful homeostatic mechanism to rapidly reduce effective 
recurrent interactions while retaining synaptic weights and hence con-
serving the underlying connectivity. It might therefore set the stage 
for stable learning without interfering with plasticity at the level of 
single synapses.

Subsequently, an autocorrelogram of the rate map is cropped, rotated 
and correlated with its unrotated copy. The final grid score is obtained 
from the resulting correlation-vs-angle function at selected angles. This 
procedure results in a global grid score for the firing pattern, whose exact 
value depends on the parameter choices required at each stage.
Here we suggest a new approach that computes a local grid score — 
and the local grid orientation — for each individual spike, directly from 
spike locations. We compare it to established grid scores and show that 
it is at least as reliable in quantifying the global grid score of the spike 
pattern and robust to noise on the spike locations. The score enables 
the plotting of spike locations, color coded with the local grid score or 
the local orientation of the grid and could thus simplify the visualiza-
tion of experimental data. More specifically, it could be used to quantify 
and highlight recent experimental findings, like boundary effects on 
the structure of grids in asymmetric enclosures [5], drifts in grid orienta-
tion along the arena [6] or the preferred alignment of grids to one of 
the boundaries [6]. The grid score is applicable to any n-fold symmetry.
We provide a public Python package (using SciPy and NumPy) that 
efficiently determines the grid score directly from spike locations.
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Neurons in the primary visual cortex (V1) predominantly respond to a 
patch of the visual input, their classical receptive field. These responses 
are modulated by the visual input in the surround [1]. This reflects the 
fact that features in natural scenes do not occur in isolation: lines, sur-
faces are generally continuous, and the surround provides context for 
the information in the classical receptive field. It is generally assumed 
that the information in the near surround is transmitted via lateral con-
nections, between neurons in the same area [1]. A series of large scale 
efforts have recently described the relation between the lateral connec-
tivity and visual evoked responses and found like-to-like connectivity 
between excitatory neurons [2, 3]. Additionally, specific cell type con-
nectivity for inhibitory neuron types has been described [4]. However 
current normative models of cortical function rely on sparsity [5], sali-
ency [6] predict functional inhibition between similarly tuned neurons. 
What computations are consistent with the observed structure of the 
lateral connections between the excitatory and diverse types of inhibi-
tory neurons? We combined natural scene statistics [7] and mouse V1 
neuron responses [8] to compute the lateral connections and computa-
tions of individual neurons which would optimally integrate informa-
tion from the classical receptive field with that from the surround. The 
direct implementation requires single neurons to make complex com-
putations on their inputs. While it is possible for such computations to 
be implemented by the dendritic trees, we show that an approxima-
tion can be achieved with relatively simple neurons. We show that this 

Figure  1. Steady state firing rates as a function of recurrent 
strength for different input intensities Iext. A. presynaptic inhibition 
B. postsynaptic inhibition
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The location-specific firing of cells in the entorhinal cortex is subject to 
extensive experimental and theoretical research. When classifying the 
tuning properties of entorhinal cells, researchers distinguish between 
grid cells, i.e., cells whose firing locations form a hexagonal grid, and cells 
that fire periodically but without hexagonal symmetry [1–3]. This classifi-
cation requires a measure for the symmetry of spatially modulated firing 
patterns — a grid score. The most established grid score is computed in 
multiple stages [e.g., 4]. Spike locations are transformed into a rate map. 
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network has “like-to-like” lateral connections between excitatory neu-
rons similar to the observed one [2, 3], distance dependence of con-
nections similar to the observed ones [9], and requires three classes of 
inhibitory neurons: one performing local normalization, one surround 
inhibition, and one gating the inhibition from the surround, similar to 
anatomical [4] and physiological studies. This method generates an 
entire connectivity matrix for lateral connections in a layer in a purely 
unsupervised fashion, such that it generates testable hypotheses for 
connectome studies. Additionally, when these lateral connections 
are implemented in a neuronal network the reconstruction of natural 
scenes is significantly improved. For images with different statistics, 
such as independent and identically distributed random patches, using 
a natural scene prior hurts reconstruction. However, an additional gat-
ing mechanism allows optimal reconstruction for this type of features 
as well. We hypothesize that this computation: optimal integration of 
contextual cues is a general property of cortical circuits, and the rules 
constructed for mouse V1 generalize to other areas and species.
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The electrophysiological activity of the brain emerges from interac-
tions between large-scale neuronal ensembles [1], and is regulated by 
different types of cross-frequency coupling [2–5]. The latter are usually 
characterised by their coupling strength and directionality [2–4]. How-
ever, it is also possible to investigate the functional mechanisms of the 
interaction [5]. We introduce dynamical Bayesian inference for estima-
tion of the coupling functions of neural oscillations in the presence of 
noise [6–8]. All of the possible phase-to-phase interactions between 
the oscillators of the network are inferred. Thus, the coupling can be 
decomposed into its partial functional contributions [8]. This allows one 

e.g. to isolate the estimated direct coupling between two nodes from 
the possible common coupling and self-coupling also involved in the 
interaction. As an illustrative example, the method is applied to charac-
terization of the phase-to-phase neural coupling functions in electro-
encephalographic (EEG) data from the Neurophysiological Biomarker 
Toolbox (NBT) dataset [9]. Comparisons are made between the resting 
states with the eyes open (EO) and eyes closed (EC). We constructed the 
network by investigating the couplings between delta and alpha waves 
extracted from any pair of probes within the 10–20 measuring system; 
and we used phase-shuffled surrogates to test the significance of the 
inferred direct coupling strength. In doing so, we confirmed the earlier 
observation that the direct coupling is stronger in the EC state [10]. 
By investigating the form of the coupling functions, we were able to 
evaluate both inter-subject and intra-subject variability. We also evalu-
ated the time variability of the form of the coupling. We showed that 
the coupling function is significantly less variable for the EC state. In a 
wider context, the method could in principle be applied to any pair of 
coupled oscillations in the same way as in the example shown here.
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Despite the growing experimental evidence about composition of the 
 K+ conductance in mammalian astroglia [1], the origin of its typical 
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linear whole cell I/V relation has not been addressed in detail with a 
computational model. We have used data of pharmacologically iso-
lated Kir4.1, K2P and Kv4 K+ currents in freshly isolated astrocytes from 
mouse hippocampus [2] to describe mathematically equilibrium I/V 
characteristics and activation kinetics where applicable, for each cur-
rent component separately. To account in more detail for the notable 
outward current in weakly rectifying Kir4.1 channels, we propose an 
extension of the Hagiwara model of dominant inwardly-rectifying 
Kir current, by adding a residual outward component. Allowing for a 
separate outward Kir current component, additive to the standard 
Boltzman equation we achieved a much better fit of the  Ba2+sensitive 
current (Fig.  1). Assuming a short-pore structure of Kir4.1 channels 
we describe the outward voltage- and concentration-dependence 
of Kir4.1 permeability using the transition-state theory of the Eyring 
reaction-rate formalism, considering that the  Mg2+block shapes the 
permeability of weak rectifier channels. Our extended model exposes 
several parameters whose ranges could be more precisely estimated 
by molecular dynamics simulation studies, or with single channel 
measurements in targeted point-mutation studies. In addition to 
describing the steady-state voltage dependence of K2P currents (rep-
resented in our case mostly by currents through TREK-1 and TREK-2 
channels) its activation kinetics has been estimated, which smoothed 
out the contribution of this current component in differential models 
of  K+ homeostasis or other dynamic phenomena. Inactivating 4-AP 
sensitive currents through Kv4 channels which are expressed at low 
density by astrocytes, have been modeled using standard Hodgkin-
Huxley model. Added up, all three modeled current components suc-
cessfully described the voltage-dependence of total experimental 
whole-cell  K+ currents. We exemplified the usefulness of our model 
by simulating astrocytic currents in elevated  K+ concentration in a 
single ECS pocket apposing the glial membrane. We believe that such 
a detailed model, which separately describes the individual current 
components, could be useful in describing the impact of channelopa-
thies underlying altered astrocytic electrophysiology.
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Chemical synapses are conduits for much of the brain’s information, 
but they are inherently unreliable, with unprovoked, spontaneous 
release of neurotransmitter alternating with intermittent unrespon-
siveness of the synapse to action potentials. A release of vesicle at a 
synapse depresses the probability of further releases in the short term. 
Given the stochastic nature of synapses, synaptic information efficacy 
has been used to quantify information transmission through synapses 
[1, 2]. Many theoretical approaches treat the synapse as a static, mono-
lithic communication device. Yet many synapses have multiple release 
sites, each subject to separate short-term dynamics. These multiple 
sites compensate for the unreliability of individual release sites. Here 
we seek to quantify how the number of release sites affects the infor-
mation efficacy of a synapse with short-term depression. In addition, 
we study the trade-off between the reliability of information transmis-
sion and energy consumption at the synapse.
To analyze the amount of information that a neuron can transfer 
through its release sites during short-term depression (Fig.  1A), we 
model each release site as a binary asymmetric channel whose state 
(release probability) is determined by its release history. A Markov 
chain of state transitions implements short-term depression followed 
by exponential recovery of the release site. It is assumed that the 
release sites are independent and the released vesicles are separable. 
We prove that the mutual information rate between the input spike 
process, X, and the release outcomes of the release sites, (Y1, Y2,…, YK), 
is equal to the statistical average over the information rates of an equiv-
alent communication channel for every possible state combination of 
the release sites. Using the derived expression, we show the compensa-
tory effect of having multiple release sites in Fig. 1B. The dashed black 
line connects the capacity values of the neuron for different number of 
release sites. For a neuron with larger number of release sites, capacity 
is achieved at higher input spike rates. We then normalize the informa-
tion rate by the energy consumed for the release and assess the com-
promise between the energy and the information rate of the neuron.

Figure  1. Total  Ba2+sensitive current through Kir4.1 channels in 
an isolated astrocyte (circles) has been initially fitted by the Hagi-
wara model to describe the inwardly-rectifying part (blue line, 
extending to -120 mV). Residual outward Kir current (red triangles) 
obtained after subtracting inward current from the control, has 
been fitted with a 1-site, 2-barrier reaction rate model (red line). 
Added together (black line) they represent the total fit of Kir4.1 
current. Both model components describe voltage- and concentra-
tion-dependence. External  K+ concentration has been elevated to 
 [K]o = 5 mM in all measurements, with  [K]i = 130 mM. Numerical fit 
has been limited to -120 mV due to distortions from external  Na+ 
block for very negative voltages, beyond the physiological voltage 
range.

Figure  1. A. Information transmission through multiple release 
sites of a neuron. B. Mutual information rate of the neuron’s release 
site(s) as a function of normalized input spike rate, for different 
numbers of release sites. The normalized spike rate is the probabil-
ity of having a spike in a time bin, and is equal to one when there is 
one spike per time bin
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The ability of neural networks to associate successive states of net-
work activity lies at the basis of various cognitive functions. In this 
study, we hypothesized that ubiquitous features of cortical network 
structure and dynamics develop as a result of continual memory stor-
age. To test this hypothesis, we consider recurrent McCulloch and Pitts 
networks in which neurons may belong to different classes defined by 
their excitatory or inhibitory nature, firing probability, and robustness 
to noise. Learning in the network is mediated by changes in connec-
tion weights in the presence of constraints on the l1-norms of presyn-
aptic weights of individual neurons.
To determine the memory storage capacity of the network we train 
the network on a set of random sequences of different lengths and 
subsequently test the retrieval of learned memories. The maximum 
(critical) capacity of the network is defined as the sequence length for 
which the success rate in memory retrieval equals 0.5. To retrieve a 
learned sequence, we initialize the network state at the beginning 
of the sequence and monitor memory playout. The sequence is con-
sidered to be retrieved successfully if the network states during the 
retrieval do not deviate substantially from the learned sequence. In 
practice, there is no need to precisely define the threshold amount 
of deviation. This is because for large networks, e.g. N > 100 neurons, 
the Hamming distance between the final states of the learned and 
retrieved sequences either remains within ~N0.5, or diverges to ~N. 
Memory retrieval in the former case is said to be successful, while in 
the latter case the memory could not be retrieved.
We performed numerical simulations for networks of N =  1000 neu-
rons and also solved the problem theoretically in the thermodynamic 
limit by using the replica theory [1–3]. The results show that criti-
cal networks have unique structural and dynamic properties which 
resemble those observed in many cortical systems from cerebellum 
to neocortex to hippocampus. First, we find that, consistent with the 
experimental data, probability of inhibitory connections in critical 
networks is greater than 0.5, whereas excitatory connectivity is sparse 
with connection probabilities less than 0.5. Second, we compare the 
distributions of connection weights in critical networks with the dis-
tributions of amplitudes of excitatory and inhibitory postsynaptic 
potentials. Due to the presence of very strong connections, the latter 
distributions typically have long, super-exponential tails. We show that 
in critical networks this feature can result from the heterogeneity of 
properties of individual neurons. Third, we find that with increasing 
robustness, critical networks exhibit a phase transition from networks 
with ordered dynamics quickly terminating in a frozen state, to net-
works with chaotic dynamics during which neurons exhibit irregular 
and correlated firing activity with average correlation coefficients 
in the 0.1–0.2 range. Finally, we show that the observed transition is 
accompanied with the emergence of neuron clusters, existence of 
which is suggested by recent experimental studies [4]. These results 
are consistent with the idea that cortical networks are operating in a 
critical state configured at the edge of order-to-chaos phase transition.
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Epilepsy is one of the most prevalent neurological diseases in humans, 
affecting people of all ages. One of the most common forms of epi-
lepsy in children is absence epilepsy [1]. Characteristic symptoms of 
absence epilepsy are sudden seizures that are accompanied by peri-
ods of behavioral arrest and impaired consciousness [1]. As in other 
forms of epilepsy, these seizures are electrophysiologically described 
by neuronal oscillations in thalamo-cortical networks and appear as 
generalized spike-and wave discharges (GSWDs) in the electroenceph-
alogram (EEG) [2]. Oscillatory activity in cerebral cortex and thalamus 
can be caused by excessive inhibition in thalamus or by excessive cor-
tical activity [2]. It has been suggested that the initiation of absence 
seizures can be triggered by events that switch neuronal activity in 
thalamo-cortical networks from normal asynchronous activity to syn-
chronised oscillations [2].
Previous experimental studies have shown that oscillatory activity in 
thalamo-cortical networks and the accompanying GSWDs can be dis-
rupted by stimulation of the thalamus [3]. Recently, it has been found 
that optogenetic activation of neurons in the cerebellar nuclei (CN) 
is a powerful tool to stop epileptic absence seizures using a closed-
loop system in two unrelated mouse models [4]. Due to their ana-
tomical bottleneck location, CN neurons can control the balance of 
excitation and inhibition in thalamus, resetting the oscillatory activity 
in thalamo-cortical loops. However, the mechanism underlying the 
disruption of thalamo-cortical oscillations and absence seizures by 
stimulation of the CN remains unknown.
Here we use computer simulations to investigate the mechanisms 
underlying the termination of absence seizures by optogenetic stim-
ulation of CN neurons. We simulate a thalamo-cortical network model 
of adaptive exponential integrate-and-fire neurons, displaying com-
plex intrinsic properties such as low-threshold spiking, regular spik-
ing, fast spiking and adaptation [5]. The network activity can exhibit 
oscillatory or asynchronous irregular (AI) dynamics, depending on 
the level of adaptation in cortical cells [5]. We use electrophysiologi-
cally recorded spike trains that result from optogenetic activation 
of CN neurons in mouse models of absence epilepsy as input to the 
network model to analyse the mechanism of reverting abnormal 
oscillatory activity to the normal AI state. Our results illustrate how 
input from the CN can control oscillatory activity in thalamo-cortical 
networks and therefore provide a mechanism to terminate epileptic 
absence seizures.
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The stability of neuronal networks that are continuously modified by 
various activity dependent processes and their robustness to lesions 
or deafferentation necessitate the co-existence of complementary 
homeostatic mechanisms [1]. Recent research has studied these 
homeostatic plasticity mechanisms using both experiments and com-
putational modelling.
In a computational study of homeostatic synaptic plasticity, Vogels 
and collaborators showed that inhibitory synaptic plasticity governed 
by a symmetric spike timing dependent plasticity rule successfully sta-
bilises a spiking neuronal network to an asynchronous irregular (AI) 
state, as is observed in the cortex [2]. The proposed model also permit-
ted the storage and recall of non-attractor Hebbian associative memo-
ries in the network.
Butz and van Ooyen recently presented a spiking neural network 
model of homeostatic structural plasticity [3]. In their study, neurons 
in the network attempt to maintain a fixed level of electrical activity by 
forming or breaking synaptic connections as required. The structural 
reorganisation of the network is also shown to replicate experimen-
tally observed aspects of the restructuring of the visual cortex follow-
ing deafferentation by focal retinal lesions [4, 5].
In the present study, we investigate the capacity of a cortical network 
model balanced by homeostatic inhibitory plasticity to store and recall 
non-attractor Hebbian associative memories. Extending our previous 
work [6], we investigate the functional effect of homeostatic structural 
plasticity on associative memory performance during network deaf-
ferentation and repair. We explore the interaction between the two 
homeostatic mechanisms, inhibitory spike-time dependent synaptic 
plasticity and structural plasticity, and investigate how the experi-
mentally observed AI state is affected by the coexistence of these two 
homeostatic mechanisms that operate on different time scales. Fur-
thermore, we discuss enhancements to the model of structural plas-
ticity aimed at increasing biological plausibility and study their effect 
on memory capacity. Finally, we report on the variation in associative 
memory performance during network deafferentation and repair, and 
discuss the parameters that affect it.
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Neurons are constantly bombarded with numerous synaptic signals, 
which are integrated in order to generate output spikes. A simple way 
to depict neuronal computations is to plot the relationship between the 
neuronal input rate and the corresponding output spike rate, that is, the 
Input - Output relationship (I-O, or transfer function) [1]. A change in the 
slope or gain of the I-O curve in the presence of different cellular and 
synaptic mechanisms, such as synaptic noise, shunting inhibition or syn-
aptic plasticity is an indicator of ongoing multiplicative operations [1–4]. 
Gain modulation is a brain-wide principle of neuronal computation, 
enabling nonlinear combinations of sensory and cognitive informa-
tion. An essential component of gain modulation is that a modulatory 
input alters the sensitivity of the neuron to the original (driving) input, 
without changing its selectivity [5]. Different nonlinearities in the rela-
tionships between input firing rate, excitatory synaptic conductance 
and output firing rate have been shown to underlie gain modulation [2, 
4]. In the present study, we investigate in two different types of neurons 
whether the dendritic location of excitatory input affects the arithmetic 
operation performed by different modulatory inhibitory inputs. We used 
two well described morphologically realistic conductance based mod-
els, a cerebellar nucleus (CN) neuron model [6] and a layer V pyramidal 
neuron model [7], and we explore various driving and modulatory input 
conditions. Modulatory input was provided either by distributed syn-
aptic inhibitory input or a tonic somatic inhibitory conductance. When 
the driving and modulatory input were both of synaptic nature, we 
observed a correlation between the distance of the excitatory driving 
input from the soma and the extent of the multiplicative gain change 
in both the CN and the layer V pyramidal neurons. In the CN neuron, 
we found that excitatory inputs underwent additive operations when 
delivered in somatic and perisomatic areas, and multiplications when 
delivered to distal dendritic areas. In contrast, in the layer V pyramidal 
neuron excitatory driving input was always multiplied, independent of 
the synapse location. In all cases where inputs underwent multiplica-
tive operations, the mapping between synaptic excitatory conductance 
and output firing rate revealed a nonlinearity, with more pronounced 
nonlinearities due to dendritic saturation in distal synaptic locations 
corresponding to larger multiplicative gain changes. To show that these 
non-linear mappings between input conductance and output rate were 
the basis of the multiplicative gain changes, we drove the two neu-
ronal types with excitatory current injections, at the soma or different 
dendritic locations, in the presence of modulatory tonic somatic inhi-
bition. In this case, the arithmetic operations performed in all distinct 
neuronal locations were additive shifts. Moreover, synaptic inhibition 
had a greater effect on neuronal output than somatic tonic inhibition. 
Our results indicate that the location and the nature of excitatory inputs 
affect in a systematic way whether the input undergoes a multiplicative 
or additive operation. The extent of these operations is also related to 
the nature of the inhibitory input. Furthermore, different neuronal types 
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might perform different operations when the inputs are received in 
their perisomatic areas.
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Research on psychiatric disorders has gradually shifted its focus from 
complex clinical phenotypes towards the identification of biomark-
ers and endophenotypic measures. Computational approaches have 
gained significantly more attention over the last years, and this has 
led to the emergence of ‘Computational Psychiatry’ as an independent 
discipline. Computational modelling of biomarkers promises to more 
readily shed light on the mechanisms underlying disorders and to 
facilitate the discovery of novel medications [1]. However, in order to 
develop a computational model, scientists need to have an in-depth 
understanding of the current, relevant experimental data, the current 
state of computational modeling and the state-of-the-art of statistical 
testing. Based on this knowledge, they have to choose the appropri-
ate criteria with which the model predictions and experimental obser-
vations will be compared [2]. In a field where both the number of 
experimental and computational studies grows rapidly, as is the case 
for psychiatry, this becomes more and more impracticable. Omar et al. 
therefore proposed a framework for automated validation of scientific 
models, SciUnit [3]. Here, we propose to adopt this framework for the 
computational psychiatry community and to collaboratively build 
common repositories of experimental observations, computational 
models, test suites and tools. As a case in point, we have implemented 
test suites for auditory steady-state response deficits in schizophrenic 
patients, which are based on observations from several experimental 
studies [4–6], and we demonstrate how existing computational mod-
els [6, 7] can be validated against these observations and compared 
against each other. We have included sets of observations from three 
experimental studies, which concur on most findings but also disagree 
on some. This allows us to demonstrate the usefulness of our approach 
in highlighting and clarifying existing, potentially conflicting, experi-
mental data. We have included computational models that not only 
comprise biophysically detailed as well as abstract models, but that 
also differ in implementation (native Python vs. Genesis vs NeuroML2), 
in order to demonstrate the flexibility of the approach. Furthermore, 

this additionally allows us to showcase the ability of the framework to 
compare models against each other based on a set of experimental 
observations. Furthermore, our approach enables us to assess the vari-
ability of the produced model output, and therefore the robustness of 
the findings, by generating a distribution of model instances where 
certain parameters, such as the precise timing of noise (however, not 
strength and type of noise) or the precise connectivity (however, not 
the distribution of connections) vary, which then are used to produce 
a distribution of model outputs. This can inform on the robustness of 
the findings and be compared against the variability of experimental 
observations.
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Information theoretic treatment of groups of correlated degrees of 
freedom can reveal their functional roles as memory structures or 
information processing units. Furthermore, by looking at the com-
mon amount of information shared in a group of variables we can 
tell whether they are mutually redundant or synergetic. The applica-
tion of these insights to identify functional connectivity structure is 
a promising line of research. Another topic of general interest is the 
understanding of couplings between dynamical systems and their 
parts. Transfer entropy and Granger causality are popular approaches 
used to distinguish effectively driving and responding elements and 
to detect asymmetry in the interaction of subsystems. These two 
methods can be unified under some conditions, opening new compu-
tational and methodological perspectives. Several techniques can evi-
dence sets of variables which provide information for the future state 
of the target. This information can be synergetic or redundant, with 
important implication on our understanding of the functioning of the 
dynamical system under analysis.
Importantly, not taking into account the joint dynamical influence of 
two or more variables can lead to bias and wrong estimations of links 
(false positive and false negatives).
In the field of information theory these concepts are often defined 
and studied by means of axioms. Here we will instead use an operative 
definition based on reduction in variance, using the unnormalized ver-
sion of Granger causality. We will present an application to simulated 
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datasets and neuroimaging data, such as the one depicted in Figure 1, 
where average redundant and synergetic contributions, computed on 
116 brain regions from 90 subjects from the Human Connectome Pro-
ject dataset are depicted.

Figure  1. Planning per Action, with (+) and without (-) learned 
options. This box plot shows how many time steps an agent 
requires to select its next action, averaged over 100 trials in each of 
four different environments: an open environment without obsta-
cles, a structured maze with four rooms, a big open environment 
with 4x as many states, and a big maze

Figure 1. Synergetic and redundant influences between 116 brain 
regions from the AAL template, averaged over 90 subjects from 
the HCP dataset. A: matrix of synergetic/redundant contributions 
(top) and dendrograms (bottom). B: Redundant and synergetic 
contributions for two representative regions, a cortical one (top) 
and a cerebellar one (bottom)

Reference
1. Stramaglia S, Angelini L, Wu G, Cortes J, Faes L, Marinazzo D: Synergetic 

and redundant information flow detected by unnormalized Granger 
causality: application to resting state fMRI. IEEE Trans. Biomed. Eng. 2016, 63 
(12):2518–2524.

P260 
Forming and Using Hierarchical Cognitive Maps: a Neural Network 
Model
Henry O. C. Jordan, Simon M. Stringer
OFTNAI, Dept. Experimental Psychology, University of Oxford, South Parks 
Road, OX1 3UD, Oxford, UK
Correspondence: Henry O. C. Jordan (hocjordan@live.co.uk) 
BMC Neuroscience 2017, 18 (Suppl 1):P260

Clear evidence exists that model-based planning using cognitive maps 
occurs in mice and humans [1] and such planning has been modelled 
by researchers such as Gaussier et  al.[2] and Ponulak & Hopfield [3] 
using a gradient or propagating-wave approach. It is also well-known 
that planning can be hierarchical [4]; such hierarchical planning has 
been explored by computer scientists [5, 6] but almost exclusively in 
model-free reinforcement learning tasks. We combine these strands of 
research to create an unsupervised neural network model of hierarchical 
planning using cognitive maps [1, 3] and policy-based option discov-
ery [6]. Our model:

  •  Receives sensory information from a simulated agent as it 
explores a grid environment.

  •  Stores the structure of that environment within recurrent neural 
connections as a cognitive map.

  •  Uses this internal map to reach goal states via a propagating wave 
front mechanism.

  •  Solves a set of planning tasks and identifies common elements 
(‘options’) within those solutions.

 •  Uses these common elements (‘options’) to speed up the planning 
process for further tasks.

Our model plans by causing a wave of neural activation to propagate 
from the goal state to the agent’s current state. Learned options act 
as shortcuts for this wave, allowing the agent to speed up navigation 
through well-travelled areas (Fig. 1). We also demonstrate that options 
provide more benefit in larger, more structured environments.
Conclusion: Previous work [5, 6] has shown that including options 
increases an agent’s ability to accumulate reward. In contrast, we show 
that learning and using options can instead increase the processing-
per-step efficiency of action selection when making decisions in a 
learned environment. Our model also demonstrates that such hierar-
chical learning and planning can be performed by an unsupervised 
neural network and therefore hints at a biological implementation.
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Steady State Evoked Potentials (SSEP) are EEG signal responses to 
periodically changing stimulus. SSEPs consist of a strong fundamental 
response and sometimes also its harmonic and subharmonic frequen-
cies. The SSEP can be observed in visual, auditory and somatosensory 
modalities. Despite multiple applications of SSEP in cognitive neuro-
science, clinical neuroscience and brain computer interfaces (BCI), 
some basic questions concerning this phenomenon still remain open: 
what is the physiological mechanism of generation of harmonic spec-
tra and what determines relative spectral power of SSEP at fundamen-
tal frequency and at the harmonics.
The aim of this study was to investigate the SSEP generation mecha-
nisms and its characteristic with a realistic computational model. The 
presented results are an extension from previously published version 
[1]. The model consists of single compartment excitatory and inhibi-
tory cells of the Hodgkin-Huxley type, arranged in multiple cortical 
columns. The network contains 8000 neurons and more than  106 syn-
apses, based on connectivity data from cat primary visual cortex. The 
sensory stimulus is modeled as 7 to 50 Hz square or sine modulated 
rate of Poisson process. The simulated EEG signal is as a sum of syn-
aptic currents of all pyramidal neurons. Additionally, for the square 
stimulus, we varied duty cycle: 50% (default), 33% and 66% in order 
to investigate whether SSEP spectral power depends on magnitude of 
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ON and OFF responses or on the overall energy of the stimulus. The 
magnitude of transient responses was determined by firing adapta-
tion strength of excitatory cells by modulating the conductivity of Ca-
dependent potassium current. We compare the simulation data with 
experimental EEG recordings obtained in somatosensory cortex dur-
ing vibrotactile stimulation as well as from visual cortex in response to 
flickering stimuli. The spectra of modeled SSEP exhibit fundamental 
and higher harmonic frequencies, similarly to experimental observa-
tions. The neurons firing rates are approximately constant and much 
lower than stimulus frequencies. The network oscillation emerges 
from irregular and sparse firing of individual neurons but in phase 
with the population fundamental rhythm. The harmonic frequencies 
cannot be directly related to firing of individual neurons but rather to 
EEG waveform resulting from overall network activity. Additionally, our 
modeling study shows that the SSEP power is dependent on both the 
stimulus duty cycle and degree of adaptation: in general, the largest 
spectral power of dominant frequency was observed for duty cycle 
50%, and medium adaptation strength. The signal energy increased 
for lower duty cycle (<66%) and low adaptation, or for higher duty 
cycle (>33%) and stronger neuronal adaptation.
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Introduction: Functional near-infrared spectroscopy (fNIRS) is an 
emerging optical imaging technique that can detect the neural acti-
vation/deactivation based on the optical absorption characteristics of 
both oxy-hemoglobin (oxy-Hb) and deoxy-hemoglobin (deoxy-Hb). 
The supply of oxygen to neural tissues can be affected not only by 
vasoconstriction or vasodilation, but also by the limited capacity of 
the system to supply more oxygen when demand exceeds the maxi-
mum oxygen availability. When this rate-limiting condition occurs, 
a decrease in oxygen availability is detected that can be erroneously 
interpreted as deactivation. Thus, absolute changes in oxy-/deoxy-
Hb concentrations do not always represent neural activation/deac-
tivation. It is therefore necessary to develop alternative measures to 
account for such a paradox, so that a decrease in Hb concentration is 
not misinterpreted as deactivation.
Methods: Rather than using absolute oxy-Hb and deoxy-Hb concen-
tration as the metric, we propose to normalize these measures by the 
total blood volume (oxy-Hb +  deoxy-Hb), so that they become oxy-
Hb/(oxy-Hb + deoxy-Hb) and deoxy-Hb/(oxy-Hb + deoxy-Hb), respec-
tively. We observed in previous studies [1–4] that the oxygen demand 
could exceed the oxygen supply in the cortex for such a motor task. 
To test the proposed measures of hemodynamic responses, 75 human 
subjects were recruited to perform arm movements in two orthogonal 
directions (front-back and left-right) while we recorded the hemody-
namic responses from the motor and prefrontal cortices.
Results: Using the proposed measures, we were able to detect the 
relative changes in oxy- and deoxy-Hb concentrations in relation to 
the blood supply (i.e., the total blood volume). In most circumstances, 
when deoxy-Hb (oxygen extraction) concentration increased, oxy-Hb 
(oxygen delivery) concentration decreased simultaneously. In cer-
tain phases of movement execution, oxygen extraction (deoxy-Hb) 

appeared to remain constant after it had increased, while oxygen 
delivery (oxy-Hb) continued to decrease. When oxygen availability was 
restricted, the ability to extract more oxygen was also limited, result-
ing in an apparent maxed-out response. The analysis showed that 
the paradoxical hemodynamic changes in deoxy-Hb could be com-
pensated by the normalized measures. This metric could indicate an 
increase in normalized deoxy-Hb response (oxygen demand), in spite 
of a detected decrease in both deoxy-Hb (oxygen extraction) and oxy-
Hb (oxygen delivery) concentrations.
Conclusions: The proposed normalized oxy- and deoxy-Hb measures 
can correctly detect relative changes in oxygen demand with respect 
to the available oxygen (oxy-Hb + deoxy-Hb), even when oxygen sup-
ply cannot meet demand. We have established an alternative measure 
to account for the erroneous interpretation of neural deactivation.
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Many studies have shown that mindfulness training improves atten-
tion control, emotion regulation and cognitive performance through 
changing brain activity and the efficiency of brain networks [1–4]. 
Graph theory analysis could reveal the role of specific functional areas 
that are particularly important for integrating information across the 
whole-brain networks, called hubs [5, 6]. However, what hubs involve 
in mindfulness training and support positive changes are not well 
understood. Here, we applied a novel graph theory analysis to resting-
state fMRI data to identify brain hubs induced by a brief mindfulness 
training - integrative body–mind training (IBMT), which was previously 
reported in our series of randomized studies [1–4].
Forty-two (21 ± 1.6 years old) healthy college students were recruited 
and randomly assigned to an IBMT group or a relaxation group (RT). 
The participants had no previous training experience and received 
4  weeks of IBMT or RT training with 30  min per session for 20 ses-
sions (~10 h training in total). All subjects gave written informed con-
sent in accordance with the Declaration of Helsinki. The protocol was 
approved by the local Institutional Review committee. Neuroimaging 
data was collected using a 3-Telsa Siemens Allegra scanner and pre-
processed following the standard procedures included slice timing, 
motion correction, regression of WM/CSF signals and spatial normali-
zation [4]. For network parcellation and construction, we used a well-
validated parcellation scheme consisting of 333 cortical parcels that 
are distributed across the brain and assigned to 13 different functional 
networks [5]. We applied network-based approach towards neuroim-
aging data and two network measures - global efficiency and partici-
pation coefficient were computed based on literature [6]. Compared 
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to RT, after 10 h training, IBMT induced significant reduction of global 
efficiency in the midline default mode network (DMN) and increased 
participation coefficient at ventral anterior cingulate cortex (vACC).
Conclusions: This study utilized a novel graph theory analysis of 
functional networks to assess the brain efficiency and participation 
of hubs following brief mental training. Consistent with our and other 
research, our results suggest that brief mindfulness training IBMT sig-
nificantly reorganizes DMN activity and network efficiency that may 
reallocate more resources for better self-control through the key hub 
in the vACC.
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Spike-timing-dependent plasticity (STDP) adjusts synaptic strengths 
according to the relative timing of pre- and postsynaptic spikes [1]. 
The classic STDP rule eliminates bidirectional connections between 
two coupled neurons and turns them into unidirectional connections 
[2, 3]. As shown recently, by taking into account dendritic and axonal 
propagation delays, the conventional pair-based additive STDP may 
lead to both unidirectional and bidirectional connections, or decou-
ple neurons by weakening reciprocal connections in both directions 
[4]. The triplet-based STDP, however, employs triplets of spikes that 
modify synaptic strengths [5]. Hence, the latter captures the effect of 
frequency of oscillations on the pre-post pairing. Here, we provide 
a general theoretical framework by assuming that the neurons are 
phase-locked with a phase lag which is determined by the temporary 
values of the synaptic strengths, propagation delays, frequency of 
oscillation, and the phase sensitivity of the neurons, and explore how 
the final configuration of the system can be predicted. In the absence 
of propagation delays, low-frequency oscillation leads to unidirec-
tional connection for both pair- and triplet-based STDP. However, for 
higher frequencies, the triplet-based model has a tendency to achieve 
bidirectional connections, but results for the pair-based are the same 
as in the low-frequency regime. We show that employing triplet-based 
STDP leads to diverse connectivity patterns of oscillatory neurons in 
the presence of propagation delays, which qualitatively differ from the 
results obtained by pair-based STDP. In particular, large axonal propa-
gation delay in the high-frequency regime is associated with a stable 
decoupling of both reciprocal synapses when the neurons are in a 
phase-locked state (see Figure 1F).
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Figure  1. Theoretical prediction of triplet-based synaptic plastic-
ity modification. A-C. Low-frequency regime. The colors show the 
phase lag of spiking of the neurons derived from the joint phase 
model and the vector field shows the direction of change in the 
joint synaptic strengths. The yellow curves denote the simulated 
synaptic strengths for a random initial value. D-F. High-frequency 
regime. Total time of simulations is 10 s. The dendritic delay is fixed 
at 0.2
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We explore the implications of a synaptic signalling pathway involv-
ing the plasticity-related gene 1 (PRG-1), a molecule which is located 
at the postsynaptic membrane and modulates glutamatergic trans-
mission, for the stability of the steady states of cortical circuit models. 
An accurate synaptic function is of crucial importance for learning 
and memory formation. Recently, the importance of this postsynap-
tic control element has been shown for synaptic signalling: Deletion 
of PRG-1 in mice leads to neuronal hyper excitability [1], and a single 
nucleotide polymorphism (SNP) in the PRG-1 gene affecting approx. 5 
million European and US citizens is linked to psychiatric disorders such 
as schizophrenia [2].
PRG-1 modulates glutamatergic transmission via its ability to take 
up lysophosphatidic acid (LPA), which is synthetized by autotaxin, 
from the synaptic cleft [1, 2]. Inhibition of LPA-uptake, as present in 
PRG-1 deficient mice, leads to elevated synaptic LPA levels which 
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via  LPA2-receptors lead to higher levels of presynaptic intracellular 
 Ca2+, higher vesicle release probabilities, and ultimately to neuronal 
hyperexcitability. This pathway was recently suggested to modulate 
synaptic short-term plasticity properties in the hippocampus [3]. Pre-
synaptically, the pathway is modulated by glutamate which stimulates 
autotaxin (ATX) activity and thereby LPA-synthesis.
Here, we present a synaptic model implementing this LPA-based sig-
nalling pathway as an extension of the classical Tsodyks-Markram 
model for short-term synaptic plasticity [4], and explore the implica-
tions at a single synapse level, depending on increasing pre- and 
postsynaptic firing rates. The former leads to higher levels of LPA pro-
duction via ATX, therefore increasing the LPA-concentration in the 
synaptic cleft, and elevating the presynaptic Calcium concentration, 
which leads to higher vesicle release probabilities. The latter modu-
lates the activity of LPA-uptake via PRG-1. Implications are explored for 
short-term facilitation and depression of synapses, both for wild-type, 
as well as PRG-1 deficient cases.
We propose an efficient network implementation and analyze how 
loss of PRG-1 function affects the steady states of cortical circuits mod-
els, characterized by large, sparsely connected spiking networks in an 
asynchronous balanced excitation-inhibition regime. Results for bista-
ble states of the network [5] are presented.
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As known from everyday life, humans are permanently exposed to a 
variety of sensory inputs from their environment. Thereby, the ongoing 
challenge, humans have to deal with, is to continuously and adaptively 
respond to these sensory stimulations. On the neuronal level, modifica-
tion of synapses (interface between two neurons) is a weighty mecha-
nism for adapting the response properties of neurons according to 
their external stimulation. Hereby, synaptic plasticity is the main mech-
anism underlying learning [1–4] and, in combination with a homeo-
static mechanism, yields the formation of strongly interconnected 
subgroups of neurons [5–7], so-called Hebbian cell assemblies (CAs) [1]. 
Such a CA represents the learned memory trace of the corresponding 
environmental stimulus [1]. Moreover, dependent on the details of the 
stimuli, humans exhibit the remarkable ability to organize memories 

(i.e. CAs), thus, to connect, generalize, and discriminate them, which 
supports the integration of novel stimuli and enables complex behav-
ior [8, 9]. How these memory organizations are realized on a neuronal 
level based on the idea of cell assemblies is still unknown.
Here, we analyze in a theoretical neuronal network model whether the 
interaction of synaptic plasticity with different formulations of synap-
tic scaling [10] fulfills basic requirements of single synapse dynamics, 
such as sensitivity to stimulations and stability in their weight dynam-
ics. Our analyses show that synaptic plasticity in combination with 
synaptic scaling dependent on the local (synapse specific) synaptic 
weight and the global (dendritic-branch specific) postsynaptic activ-
ity suffices the aforementioned characteristics of synapse dynamics. 
For simplicity, we abstract the neuronal dynamics of the network to 
its respective dynamics in a mean-field model of two interconnected, 
homogeneous populations of neurons. These populations serve as 
memory representations on the neuronal level (i.e. CAs; strong synap-
tic weights). Given different stimulation protocols, these two CAs can 
be dynamically connected with each other. Our analyses show that, 
dependent on the stimulation protocol, the CAs can be associated, 
discriminated, or can form a sequence. Remarkably, this rich repertoire 
of memory interactions is only present if the CAs themselves are in a 
matured state, in other words, if the timescale of the synaptic dynam-
ics within the cell assemblies are slower than between them. This indi-
cates that the interaction between memory items strongly depends 
on the internal state of the cell assemblies involved.
In summary, this work reveals a neuronal network model that is capa-
ble to exhibit with a local (Hebbian synaptic plasticity and synaptic 
weight-dependent scaling) and global (postsynaptic activity-depend-
ent scaling) acting learning rule different functional organizations of 
memories observed in human behavior.
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Long-term synaptic plasticity serves as the main process underlying 
learning and forming sustained memory representations in neuronal 
networks. In conjunction with homeostatic plasticity, long-term synaptic 
plasticity leads to the formation of strongly interconnected subgroups 
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of neurons [1, 2]. These subgroups are referred to as memory represen-
tations or Hebbian cell assemblies [3]. Experiments have identified two 
different types of long-term synaptic plasticity [4, 5, 6, 7]: On the one 
hand, early-phase plasticity acts on a time scale of a few hours, while, on 
the other hand, late-phase plasticity operates on a time scale of more 
than eight hours up to several days. The transition of a synapse from the 
early-phase to the late-phase state is called synaptic consolidation and 
requires protein synthesis in the soma of the postsynaptic neuron. These 
proteins are transported along the dendrite and lead to a state-switch of 
those synapses that have formed a tag beforehand (synaptic tagging and 
capture hypothesis [2]). Protein synthesis as well as the formation of tags 
depend on the ongoing neuronal activity and external stimuli. However, 
the impact of synaptic consolidation on the formation and maintenance 
of cell assemblies, thus on their stability, is still widely unknown.
Here, we investigate in a theoretical network model under which input 
conditions synaptic consolidation yields the stabilization of cell assem-
blies, transferring the corresponding synapses from the early-phase 
to the late-phase state. For this examination, we developed and ana-
lyzed a spiking network model based on a well-known single-synapse 
model of the processes of synaptic consolidation [8, 9, 10]. Interest-
ingly, our results show that the dynamics of synaptic consolidation are 
not homogeneous within a cell assembly: namely, the system shows 
a discrimination between the induction of late-phase plasticity and 
early-phase plasticity. In the ‘core’ of the cell assembly, synapses are 
in the long-living late-phase state, whereas in the surroundings of the 
core (‘halo’), synaptic changes do not overcome the early phase. Fur-
ther analysis indicates that this discrimination could imply functionally 
important principles. In summary, our work provides a further step in 
understanding the step-by-step consolidation of memory representa-
tions in biologically realistic neuronal networks.
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Working memory (WM) refers to the ability of humans and animals 
to store as well as to process the continuously incoming stream of 
stimuli and information on short time scales [1]. The neuronal dynam-
ics implementing these two core functions of WM, to store and to pro-
cess information, are still a matter of debate. In particular, it is unclear 
whether working memory relies on attractor dynamics [2] or whether 
it is realized by transient dynamics [3]. Several pieces of experimental 
evidence as well theoretical considerations provide support for both 
of these seemingly contradictory hypotheses.
Here, we approach this debate by considering the unreliability of 
the timing of the stimuli received by the WM. Quite obviously, when 
interacting with the environment, subjects cannot rely on precisely 
timed input stimuli. The consequence of unreliability of input stimuli 
on the operation of WM has been psychologically studied on subjects 
performing the N-back task. It has been found that, in this task, intro-
ducing unpredictability of the occurrence timing of the stimuli does 
not significantly influence the subject’s performance [4]. Based on this 
finding, we investigate which kind of neuronal dynamics enables a 
network to perform the N-back task with a comparable level of robust-
ness with respect to variances in the stimuli timing.
The most widely used network model of transient neuronal dynamics 
is the framework of reservoir networks [5, 6]. We test the performance 
of reservoir networks trained with different learning algorithms and 
with different feedback topologies on the N-back task. Interestingly, we 
find that introducing already small variations in the timing of the input 
stimuli reduces the performance of reservoir networks in the N-back 
task significantly. We show that the performance can be restored by 
explicitly training the network to represent past input stimuli via the 
activity states of feedback loops. As this, in turn, effectively introduces 
attractor states into the network, we conclude that only by exploiting 
the properties of both, attractor states as well as of transient dynam-
ics, a neuronal network is able to achieve a performance comparable to 
the one found in working memory experiments. Task-relevant informa-
tion is stored in attractor states and processing of information is accom-
plished by transient dynamics. As a consequence, we predict that in the 
N-back task, an explicit recall stimulus should avoid a drop in perfor-
mance resulting from introducing delays between the current stimulus 
and the execution of the respective action. Thus, we provide an experi-
mentally verifiable hypothesis about the underlying dynamics of WM 
ruling out pure transient reservoir networks as a plausible model.
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In neurosciences, it is assumed that neuronal information is mainly 
coded in the timing of spikes which is why spike trains are typically the 
data base for further analyzing procedures [1]. Synchrony is an impor-
tant parameter since it is related to basic brain functions [2, 3] as well 
as to pathological states [4]. In order to quantify synchrony between 
two or more spike trains, several methods have been established, 
being either time scale dependent or time scale independent.
The use of a new time scale independent and multivariate synchrony 
measure is proposed, called Spike-contrast, with the aim to apply it on 
spike train data sets recorded from cortical networks with a biochemi-
cally induced synchrony increase. The histogram based approach, cal-
culates a visual contrast of a raster plot across different time scales to 
quantify synchrony and is computational efficient when dealing with 
large number of parallel spike trains, which makes it suitable for the 
analysis of big data volumes recorded from high-density microelec-
trode arrays (MEA) Although its basic principal is different to existing 
time scale independent measures like SPIKE-distance [5], synchrony 
values of Spike-contrast and SPIKE-distance show a high correlation for 
test data from Poisson spike models and Izhikevich networks. How-
ever, their results diverge, when applied to spike train data containing 
synchronized bursts made of non-synchronized spikes: Whereas SPIKE-
distance considers all time scales equally important [6] (and therefore 
is also sensitive to non-synchronized spikes in bursts), Spike-Contrast 
considers such spike trains perfectly synchronized.
The reflection of larger time scales in the range of burst duration has 
been suggested before by [7, 8] to analyze bicuculline induced syn-
chrony modification. Here, the new algorithm Spike-contrast, prioritiz-
ing large time scales, shall be applied on experimental data recorded 
from cortical rat neurons grown on microelectrode arrays (MEA). Sig-
nals were recorded in a control situation and with bicuculline (10 µM), a 
well-known drug that blocks the inhibitory action of  GABAA receptors.
We find that Spike-contrast is able to significantly quantify the increase 
in synchrony induced by bicuculline. Statistical significance is higher 
than from other synchrony measures like SPIKE-distance, suggesting 
that the bicuculline mediated synchrony increase is more distinct in 
larger time scales and that Spike-contrast is an appropriate synchrony 
measure for spike trains taken from experimental data, e.g. in biosen-
sor applications [9].
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Spontaneous neuronal activity  in vitro is often characterized by net-
work bursts, whereby a large proportion of neurons are active in close 
temporal contiguity. How this network state affects the optimal lin-
ear readout of neuronal dynamics remains an unresolved question 
in neuroscience. Here, we recorded from dissociated cortical neurons 
using multi-electrode arrays (MEAs) and computed a ‘spike-triggered 
average’ of population activity for each electrode (N = 59), by measur-
ing the probability of co-occurrences between the spiking activity on 
the electrode of interest and that recorded on each of the other elec-
trodes, termed the ‘preferred network state’. Results show that despite 
fluctuations in spontaneous activity over time, population activity 
over all electrodes can be described by a low-dimensional attractor 
with N-1 parameters, substantially fewer than the number of param-
eters required for pairwise correlations (N2). To test whether activity 
across different networks could be accurately discriminated, preferred 
network states from the first half of recordings (10 min) were fed into 
a linear model trained with a Fisher criterion. Then, the model was 
tested by presenting it spiking activity from six networks sequentially. 
We found that this model was useful in successfully discriminating 
amongst different networks with less than 3% error rate (Figure  1A). 
Further, the linear model was robust to adjustments in the number of 
electrodes included for input to the LDA (Figure 1B), suggesting that 
fewer than N-1 parameters can be useful to accurately discriminate 
between networks. Using simulations of neural activity in a branching 
model, we show that network activity near a critical regime (but not 
necessarily at the exact critical point) is optimally discriminated by a 
linear readout.
Conclusion: Overall, our results point to a dynamical signature for 
representations of cortical activity whereby states near the critical 
point are most amenable to decoding by linear downstream struc-
tures. Computation in the brain may occur by distributed processing 
whereby several subnetworks are each responsible for contributing to 
dynamical neuronal representations.

http://arxiv.org/abs/1702.05394


Page 154 of 176  BMC Neurosci 2017, 18(Suppl 1):60

Figure 1. A. Preferred network states of several networks, denoted 
by colour. Top panel: ground truth data. Bottom panel: predictions 
based on the linear model. B. Correct rate of classification as a 
function of the number of electrodes used for input
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Neuronal reconstructions are essential building blocks for neuronal tissue 
simulation at subcellular resolution. Several databases with thousands of 
reconstructed morphologies exist, the largest being NeuroMorpho.Org 
[1]. In this database, the location of each neuron is described in terms of 
species and brain region. For a neuronal tissue builder like the one cre-
ated in the Human Brain Project (HBP), this information is too coarse. 
Only neurons that are registered into a spatial reference system can be 
used. Here we present a workflow and accompanying tools to do this, 
based on the manual annotation of a few points on the neuron.
Our use-case is the atlas registration of long-range projection neu-
rons in mouse, which is particularly challenging since the neurons run 
across many brain regions. The steps of the workflow are:

1. The experimental lab uses the widely used Neurolucida (MBF Bio-
Science) software to reconstruct the neuron. For a small set of 
points, the location is eye-balled in the Franklin-Paxinos mouse 
brain atlas [2], and added to the reconstruction as a marker point.

2. The Neurolucida file (choice of binary, asci, xml) is read by a 
newly written open-source parser (https://www.npmjs.com/
package/morphology_io), and converted to a newly developed 
SWC  +  format (https://github.com/HumanBrainProject/swc-
Plus), an extension of the widely used SWC format [3].

3. The markers with atlas coordinates are extracted from the 
SWC + file by a python script and used to estimate an affine trans-
formation that maps the local coordinate system to the reference 
space. The transformation parameters are saved to the SWC + file.

4. The Morphology Viewer [4], a new web-based morphology suite, 
recognizes the transformation parameters in the file, and displays the 
neuron along with sections from the atlas, see screenshot in Fig. 1.

In the use-case, 50 points were manually mapped to the atlas. To accel-
erate the procedure, this can be reduced to about 10 points. An alter-
native approach to this workflow is investigated in sub-project 5 of the 
HBP. It uses a set of tissue-sections from which the neuron was recon-
structed to semi-automatically find a similar location in the reference 
atlas using the AligNII tool (http://www.nesys.uio.no/AligNII/).

Figure  1. Registered neuron with soma and dendrites (red) in 
region LPLR and the main axonal arbor (blue) in area V1

◂

https://www.npmjs.com/package/morphology_io
https://www.npmjs.com/package/morphology_io
https://github.com/HumanBrainProject/swcPlus
https://github.com/HumanBrainProject/swcPlus
http://www.nesys.uio.no/AligNII/


Page 155 of 176  BMC Neurosci 2017, 18(Suppl 1):60

Acknowledgements
Supported by the European Union Seventh Framework Programme 
(FP7/2007-2013) under grant agreement numbers 604102 (HBP RUP) 
and 720270 (HBP SGA1).

References
1. Halavi M, Polavaram S, Donohue DE, et al.: NeuroMorpho.org implementa-

tion of digital neuroscience: dense coverage and integration with the NIF. 
Neuroinformatics 2008, 6(3):241–252. doi:10.1007/s12021-008-9030-1.2.

2. Paxinos G, Franklin K: the Mouse Brain in Stereotaxic Coordinates, 4th Edition. 
Academic Press; 2013.

3. Cannon RC, Turner DA, Pyapali GK, Wheal HV: An on-line archive of recon-
structed hippocampal neurons.

J Neurosci Methods 1998, 84(1–2):49–54. doi: 10.1016/S0165-0270(98)00091-0.
4. HBP Neuron Morphology Viewer [http://neuroinformatics.nl/HBP/

morphology-viewer/]

P272 
Simple models of closed‑loop cortical‑environment interactions
Christopher L.  Buckley1, Taro  Toyoizumi2
1Informatics, University of Sussex, Brighton, BN1 9RH, UK; 2Brain Science 
Institute, RIKEN, Wako, Saitama. 351-0106, Japan
Correspondence: Christopher L. Buckley (c.l.buckley@sussex.ac.uk) 
BMC Neuroscience 2017, 18 (Suppl 1):P272

Many investigations of the neural circuits underlying behaviour have 
commonly started from the assumption that the brain is an input/out-
put device. On this view, the brain operates in an open-loop, mapping 
sensory input caused by the environment (exafferent input) to appro-
priate motor output. However, during active behaviour (e.g., run-
ning, whisking, swimming) sensory input is directly shaped by motor 
actions and sensory perceptions inform future motor commands 
forming a closed-loop between the brain and environment, see Fig. 1.

The onset of active behaviours coincides with marked changes 
in cortical dynamics. Typically, synchronous fluctuations of neu-
ral activity are strongly modulated by [2–4]. Further active behav-
iours shape neuronal responses. For example, the onset of running 
sharpens response is visual cortex [4] but suppresses responses in 
auditory cortex [3]. In the barrel cortex responses to brief whisker 
perturbations are suppressed by whisking but responses to active 
touch events (when the whisker is actively driven into an object) are 
enhanced [5]. By analysing simple dynamical models, we examine to 
what extent these phenomena can be accounted for by the closed-
loop feedback circuits necessary for active behaviour, see Fig.  1. In 
particular, we argue that the onset of these feedback loops suggests 
a parsimonious account of the changes to synchronous neuronal 
fluctuations and sensory responses caused by the presence of active 
behaviour and can account for mismatch responses caused by the 
interruption of environmental feedback. Lastly we discuss the devel-
opment of an experimental setup to test these ideas that utilizes 
closed-loop interactions in larval zebrafish behaving in a closed-
loop virtual reality.
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Grid-cells found in entorhinal cortex form a representation of 
space through their receptive fields that pave space with triangu-
lar lattices. It has been proposed that the firing of grid-cells with 
similar grid spacing is supported by recurrent connectivity, such 
that network dynamic lies on a 2-D manifold of stable states [1]. 
Recent empirical evidence suggests that the grid-cell code is not 
limited to physical space encoding in entorhinal cortex, but could 
also subserve encoding of more abstract spaces in other cortical 
areas [2]. In order to assess the efficiency of neural networks in 
using a grid-cell code, the present study is focused on the prob-
lem of counting the number of grid-like manifolds that can be reli-
ably embedded in a neural network, this number being referred to 
as the storage capacity of the network. We consider a network of 
binary neurons in which each manifold is imprinted in the connec-
tivity matrix via a Hebbian component (neurons with similar recep-
tive fields in a manifold are connected). We compute the number 
of stable manifolds by extending replica calculations developed in 
[3] for a model of place cells. Such analytical calculations allow us 
to explore the performance of various grid-cell codes. We focus on 
two characteristics of such codes. First, we explore how the typical 
paving of space in a manifold impact network’s storage capacity 
(see Figure 1 A and B). Second we explore how the storage capac-
ity depends on the parameters of the Hebbian rule shaping the 
connectivity matrix. Overall, our study suggests that a grid-cell 
code can make an efficient use of neural resources since up to 200 
stable manifolds can be imprinted in the connectivity matrix of a 
network of 10,000 neurons (see Figure B), roughly the size of a cor-
tical column.

Figure  1. A schematic of brain/body/environment interaction 
during active behaviour. Motor actions on the body/environment 
impact on sensory areas as reafferent input (black arrow) which is 
combined with exafferent input (brown arrows) to form the sen-
sory stream. Motor areas also send efferent signals, or corollary 
discharges, to sensory systems (magenta arrows). Further dur-
ing active behavior sensory input also informs motor output (red 
arrow). Thus, neuronal dynamics in sensory areas are affected by 
three forms of feedback: environmental feedback (yellow dashed), 
internal sensor/motor feedback (blue dashed) and endogenous 
recurrent feedback (cyan dashed)
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Figure 1. A. Example of the receptive field of a neuron that paves 
the 2-D flat space. We implement different kinds of paving, for 
instance a square lattice (left), or a hexagonal lattice (right) as 
those found in entorhinal cortex. B. Storage capacity of the net-
work as a function of the amount of thermal noise T in the net-
work’s dynamics. For a given T, the lines give the maximal number 
of stable manifolds the network can support, given the number of 
neurons it is composed of

storage load. This result holds both for a sparse activity model suitable 
for a plausible description of CA3 place cells, and for a toy model ver-
sion with periodic boundary condition on a two-dimensional torus.
Imposing now periodic hexagonal boundary condition on the connec-
tivity allows us to model grid cell like behavior, and to calculate the 
regime in which the system can retrieve and/or maintain a represen-
tation of position in one of the stored environments. Surprisingly, the 
storage capacity appears to be very much higher than in the “square” 
toy model, by several orders of magnitude.
In graded-response networks, however, mixed states of multiple 
attractors (corresponding to recall of multiple environments) are 
known to also exhibit stability, even though in a limited region of 
parameter space [2].
Also in our “hexagonal continuous attractor” network we find, in addi-
tion to the “classical” retrieval behavior, a regime in which external 
cues trigger retrieval in more than one map simultaneously, in a simi-
lar way as described in [3] for two 1D periodic manifolds.
Our study generalizes these results to 2-dimensional uncorrelated maps, 
and extends them to the case with a large number of stored maps.
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It has long been known that there is substantial turnover of excitatory 
synapses in cortex during both development and adult life [1]. Recent 
experiments using markers for GABAergic synapses have shown that 
inhibitory synapses are also highly dynamic [2–3]. Specifically, inhibi-
tory synapses exhibit approximately exponentially decreasing survival 
fractions and show reduced lifetimes when sensory input is decreased 
[3]. Here we show that such dynamics of excitatory and inhibitory syn-
apses result from a combination of structural plasticity, Spike-Timing 
Dependent Plasticity (STDP), and multiplicative normalisation in a 
Self-Organizing Recurrent Neural Network (SORN; [4]) of Leaky Inte-
grate-and-Fire neurons with membrane noise and external Poisson 
inputs. Both synapse types are grown from an initially unconnected 
network state by random synapse creation. Synapses whose effica-
cies fall below a threshold are pruned. We find that excitatory and 
inhibitory synaptic weights develop lognormal-like distributions as 
observed experimentally [2] and that the lifetimes of synapses follow 
a power law-like distribution. Furthermore, we find that the fraction 
of surviving inhibitory synapses decays approximately exponentially 
as observed experimentally ([3]; Figure  1A) and is modulated by the 
strength of potentiation (LTP) and depression (LTD) in the inhibitory 
STDP rule. Finally, depriving the network of external input decreases 
the survival fraction of inhibitory synapses as observed in  vivo ([3]; 
Figure 1A). To gain deeper insight into the underlying mechanisms we 
formulate a statistical model of the time evolution of synaptic effica-
cies and find that it well describes the power law-like lifetimes and 
exponential-like decreasing survival fractions (Figure 1B). We conclude 
that the experimentally observed turnover dynamics of inhibitory syn-
apses can be explained by local, biologically plausible plasticity mech-
anisms and are well described by a simple stochastic model.
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Attractor neural networks play an important role in modeling the 
mechanisms of spatial memory, allowing for analytical and compu-
tational analyses of the recurrent circuitry of hippocampal and corti-
cal networks known to be involved in the cognitive representation of 
space.
Here we study a recurrent network of threshold-linear neurons, and its 
capacity for storing multiple spatial maps as continuous attractors.
In this model, storage capacity can be analytically evaluated in the 
mean field approximation, as shown in [1].
The existence of a retrieval phase reduces to the existence of the solu-
tions of a single equation, which disappear at a critical value of the 
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Figure 1. A. Survival fractions of inhibitory synapses in the SORN 
are shown by the solid grey lines. Light grey, with external input 
to the network. Dark grey, without external input. The exponential 
fit is shown by the dotted line. B. Survival fractions of weights in 
a simple stochastic model are shown by the solid grey line. The 
exponential fit is shown by the dotted line. The time scale of plas-
ticity in the simulations in A and B is sped up compared to experi-
mental findings in order to save computation time

from Laplace’s equation. From this, we found that ganglion cells are 
excited by stimulating the OUReP photosensitive dye layer at ambient 
light levels.
The next step involves exploring the neural code behind ‘seeing’. A 
theory of sensory information processing has been in development for 
nearly 50 years [3] and provides, perhaps for the first time, an accurate 
model of the firing rate response in primary afferent neurons [4]. This 
approach is based on the entropy of the sensory signal and calculates 
the response due to uncertainty associated with the input. The theory 
has been shown to work well across different modalities as well as for 
different animal species. When applied to the retina, a single equation 
of 5 parameters together with a coupling equation provides a good 
estimate of the potential of retinal bipolar cells, and also the average 
spike rate response of retinal ganglion cells for both on-centre and 
off-centre cells. The population of retinal cells is diverse, and it is not 
likely that a simple model can encompass the entirety of the physi-
ological response. However, this is a first step in understanding the 
quantitative functioning of the retina. By combining the physiological 
response solved through the activating function, and comparing this 
with predictions from entropy theory, we can better estimate what 
a person will see, and thus provide a more objective assessment of 
implant function as well as guide future development.
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The association between cognitive functions in humans, the increase 
in glucose and oxygen utilization and the expression of energy 
metabolism genes is an active area of research [1]. The human 
brain accounts for at least 20% of the body’s energy consumption 
[2]. Much of the brain’s energy use goes on to re-establish electro-
chemical gradients following action potentials and synaptic cur-
rents [3, 4]. The high energy demand at the synapse implies that 
local mechanisms must exist to sense synaptic activity and provide 
the energy substrates necessary to sustain pre- and postsynaptic 
processes. Here, we investigate the relationship between ionic cur-
rents associated with neuronal activity at the synaptic site and the 
brain energy consumption using both experimental data and math-
ematical models. Using a bottom-up approach, we model a recurrent 
network of excitatory-inhibitory neurons, stimulated with realistic 
dynamic inputs, in order to determine the metabolic costs of neu-
ronal oscillations [5]. An important early finding from studies in rat 
was that energy use by neurons (oxidative glucose consumption) is 
linearly correlated to excitatory neuronal activity (glutamate release) 
[6]. As first step, we are investigating how the various ionic currents 
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A major concern with the design of any prosthetic device is the need 
for objective evaluation. Is there a way to better evaluate what the 
person senses without resorting to subjective testing after implanta-
tion? This study addresses a new approach to retinal prosthetic design, 
together with detailed modelling of retinal function to tackle the 
question of what is a person actually “sees”. Retinitis pigmentosa and 
age-related macular degeneration can lead to blindness due to loss 
of the photoreceptor layer. The Okayama University-type Retinal Pros-
thesis (OUReP) is a new approach to retinal implant design which does 
not involve stimulation via micro-electrode arrays [1]. Instead a thin 
film consisting of photosensitive dye molecules attached to a polyeth-
ylene layer is placed at back of the eye. The dye is designed to respond 
only in the visible wavelengths and generates an electric potential in 
response to incident light likely due to the formation of dipoles. Cur-
rently OUReP has been successfully tested in rats with a next step in 
rabbit implantation. A current problem is understanding how the dye 
works to facilitate vision.
We have been studying the effect of the potential on the visual path-
way by first modelling the physiological system as an electromagnetic 
boundary value problem. The potential was solved computationally 
in COMSOL to obtain the extracellular potential outside the retinal 
cells. This is what generates activity in the retinal cells and ultimately 
drives action potentials in the optic nerve. The neural activity was then 
solved using Hodgkin-Huxley equations and the cable model with the 
‘activating function’ [2] derived from the extracellular potential solved 
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measured at the excitatory synaptic site respond at different fre-
quency ranges of a square-pulsed input signal through a parameters 
space exploration study. A morphologically and functionally realistic 
pyramidal neuron is considered as postsynaptic compartment [7]. 
This new physiologically inspired conductance-based [4] neuron-
model can be the basis of a more complex network in order to moni-
tor metabolism at micro-circuit level. The result of the modelling will 
be linked to non-invasive neuroimaging modalities, such as fMRI and 
EEG [8, 9], which are related to either the local metabolic costs of 
neuronal activity or local synchronicity of the microcircuit. Studying 
the mechanisms of brain metabolism is of great interest in order to 
understand not only the fundamental physiological phenomena of 
brain functions, but also the significance of alterations in functional 
brain imaging signals detected in several neurodegenerative disor-
ders affecting cognitive processes.
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In the brain networks, strength of synaptic connections is adjusted 
according to relative spike timing of pre- and post- synaptic neu-
rons, known as spike-timing-dependent plasticity (STDP) [1]. The 
theoretical and simulational studies have shown different emer-
gent collective activity and patterns of connectivity when using 
different STDP profiles with different set of parameters. For exam-
ple, depending on the parameter set, STDP can either promote or 
oppose synchrony [2]. It also might lead to potentiation of bidirec-
tional connections or eliminate two-neuron loops by depressing 
one of the connections for every pair of reciprocally connected 
neurons [3].
Here, we have inspected how different biologically observed STDP 
profiles can result in different emergent dynamics. Based on Kuramoto 
model for description of the phase dynamics in neuronal ensembles 
[4, 5], we have designed classes of plasticity functions with symmet-
ric and anti-symmetric profiles, mimicking typical forms of STDP for 
excitatory and inhibitory connections (see Figure  1). Related sets of 
differential equations for evolution of the phases and the synapses are 
analytically solved to justify results of numerical simulations. The main 
observation is that while anti-symmetric profile promotes one struc-
tural cluster with almost synchronized dynamics, symmetric profiles 
lead to multi-cluster structure with various phase relations within and 
between the clusters.

Figure  1. Steady-state distribution of phase differences and con-
nection strengths which are emerged through the function of 3 
different sets of plasticity profiles. In the upper panels the plasticity 
profile, distribution of phase lags and effective plasticity function 
which is obtained by convolution of the phase lags and the plastic-
ity profile are shown. The final pattern of the phase lags and the 
synaptic weights between each pair of oscillators are shown in the 
bottom panels
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Extensive available axonal tracing data along with predictive con-
nectomics allows a novel quantitative description of the network 
structure of macaque cortex. Since the effects of connectivity on net-
work dynamics are influenced by the size of cortical populations, and 
since neuron density is predictive of connectivity [1, 2], it is relevant 
to also characterize numbers of neurons when deriving a connectiv-
ity map. In this study, we integrate data on cortical architecture and 
axonal tracing data into a multi-scale account of the network structure 
of macaque vision-related cortex. The resulting connectivity map pre-
dicts the connection probability between any two neurons based on 
their types, areas, and layers. Combining cell densities with published 
micrographs provides a quantification of the reduction of relative layer 
4 thickness with cell density from structurally differentiated to less 
differentiated areas. Similarly, total cortical thickness decays with cell 
density. Under the assumption of a relatively constant density of syn-
apses, this yields denser connectivity in structurally less differentiated 
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areas. Combined anterograde and retrograde tracing data reveal that 
synaptic target patterns of corticocortical connections depend on the 
laminar origin of the projection in a manner that complements earlier 
accounts of the association between source and target patterns [3, 4]. 
Statistically assigning synapses to target neurons based on dendritic 
length in anatomical reconstructions [5] suggests that layer 4 neurons 
receive non-negligible feedback. Our layer-specific connectivity map 
enables a novel characterization of direct and polysynaptic pathways 
through the network. It can be tested in simulations and experiments 
whether these directionally specific paths open up channels for tar-
geted corticocortical communication, akin to recently highlighted 
hierarchically differential oscillatory interactions [6, 7].
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The connectivity of cortical networks determines the way they pro-
cess information. Changes in the connectivity and, hence, in the infor-
mation processing in response to certain stimuli are associated with 
learning and memory formation [1, 2]. There are two classes of activ-
ity-dependent processes that change the connectivity of cortical net-
works: synaptic plasticity, which changes the transmission efficacies or 
weights of the synapses, and structural plasticity, which creates and 
removes synapses. These processes are strongly interacting, for exam-
ple, the lifetime of synapses depends on their synaptic weight and cor-
related quantities as the volume of the corresponding dendritic spine 
head [3, 4]. Hence, to understand how memories are stored in the con-
nectivity, we analyze the interaction of synaptic and structural plas-
ticity in recurrent networks. Moreover, we address the question how 
memories stored by the connectivity can be maintained on timescales 
of months and years, although the underlying synapses are removed 
or exchanged on the timescale of days [4, 5].
Using mean-field analysis and simulations, we show that the synapses 
in a population of recurrently connected neurons exhibit a collec-
tive dynamics which gives rise to two stable states: the population 
can be either weakly interconnected or strongly interconnected with 
synapses stabilizing each other. The population remains in its current 

state despite the creation or removal of individual synapses, such that 
information about the population state can be retained much longer 
than the lifetime of individual synapses. Moreover, the population can 
be brought to either state by changing the input stimulation. These 
results also extend to sub-populations of the network. For example, 
when providing a small subset of neurons in a network with a higher 
input current, this subset becomes highly interconnected, effectively 
forming a Hebbian cell assembly [6–8].
Interestingly, this collective dynamics can be implemented independ-
ent of the bistability of neuronal activities controlled by synaptic 
weights in recurrently connected populations, which has been pro-
posed as a model of observed persistent activity [9]. As a consequence, 
even at low activities, a (sub-)population can remain connected with 
many synapses with relatively small weights. This, in turn, allows for 
a rapid increase of these weights upon retrieval or relearning, which 
might be related to Ebbinghaus’ savings phenomenon.
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Hybrid circuits are networks built with living neurons and artificial 
model (electronic or software) neurons and connections [1]. These 
circuits allow characterizing neural network dynamics, probing circuit 
function and have been used to assess the role of individual cells and 
synapses in specific networks (e.g. see [2–6]).
The temporal scale and amplitude ranges of membrane voltage in 
living neurons are in general different from the characteristic time 
scales and amplitudes of the corresponding voltage variables in 
the models, and thus in most cases signals from/to the living neu-
ron and the model have to be scaled, and/or offset. Model integra-
tion time and real time deadlines to implement the hybrid circuit 
closed-loop are also part of the problem. The process to calibrate 
both amplitude and time domains is a main impairment in the con-
struction of hybrid circuits. Manual calibration is often difficult and 
entails a long time and damage risk, something critical due to the 
limited survival time of the biological preparations and their low 
resistance to current injection beyond unknown physiological lim-
its. Recording drift is also an issue that has to be addressed in hybrid 
configurations.
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In this work, we present a protocol to perform automatic calibration 
in hybrid circuits. The protocol is based on achieving a target syn-
chronization level through an artificial electrical connection between 
the living and the artificial neuron in a regime that guarantees active 
generation of action potentials. Based on the synchronization criteria, 
parameters of both temporal scale (model integration time and acqui-
sition/stimulation time constraints) and amplitude scale (voltage and 
current from/to the living neuron) are set automatically in just a few 
seconds.
We illustrate our protocol by building a hybrid circuit in the pyloric 
central pattern generator of Carcinus Maenas. The automatic calibra-
tion algorithm allows the construction of hybrid circuits in minutes. 
By reducing calibration time and the risk of damaging the prepara-
tion, it is possible to extend the experimental time for the goal given 
to the hybrid circuit, for instance the exploration of specific dynamical 
regimes. The automatic search of model parameters in hybrid circuits 
also allows tuning the best model configuration in the experiment. 
The proposed algorithm can be easily generalized for any electrophys-
iological preparation.
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Motor rhythmic patterns in many biological systems are produced 
by Central Pattern Generators. These networks are typically based 
on reciprocal inhibitory subcircuits responsible for the production of 
alternating spiking-bursting activity and the intrinsic dynamics of their 
constituent cells [1, 2]. In many modelling studies, neurons are consid-
ered identical and the reciprocal inhibition, a hallmark of CPG connec-
tivity, is frequently modeled as a symmetric interaction. In this study, 
we emphasize the importance of asymmetry in the generation and 
coordination of CPG rhythms from a computational and experimental 
point of view.
The conductance-based models used in our computational study are 
inspired by the crustacean pyloric CPG [3, 4]. In particular, the network 
considered in this work is built up with four Hodgkin-Huxley type neu-
rons and simplified versions of the known connection topologies of 
the pyloric CPG. The chosen neuron model displays a wide dynamical 
regime that includes irregular spiking-bursting modes similar to the 

observed behavior of CPG neurons in isolation. Using these models, 
we studied the role of asymmetric maximal synaptic conductances, 
time constants and gap-junction connectivity in the production of 
regular and irregular bursting activity. Our results show that large 
regions of both regular and irregular but coordinated rhythms exists 
as a function of the asymmetry in the circuit. Both asymmetric maxi-
mal conductances and inhibitory synaptic time scales contribute to 
the shaping of wide regimes of regular and irregular triphasic spiking-
bursting activity.
Our experimental results of irregular spiking-bursting activity in Car-
cinus maenas indicate the relevant role of asymmetry in producing a 
triphasic rhythm while maintaining an observed dynamical invari-
ant. Irregularity induced by ethanol [5] revealed the heterogeneity of 
neuron activity within the CPG circuit, and the resultant irregular pat-
tern could be explained by asymmetry of the synaptic connections. 
Our recordings of CPG activity at irregular regimes illustrate that the 
dynamics of neurons and their connections actively bound flexibility 
to produce a coordinated robust rhythm.
The distinct sources of asymmetry in the model, in particular maximal 
conductances and two different synaptic time scales, play a key role in 
producing triphasic rhythms similar to the pyloric’s CPG. Overall, our 
experimental and modeling results show that the study of asymmet-
ric circuit components and their dynamical interaction help to under-
stand how flexibility and robustness are balanced in central pattern 
generator circuits.
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Perceptual rivalry is the subjective experience of alternations between 
competing percepts when an individual is presented with an ambigu-
ous stimulus. Rivalry has been modeled extensively, and was recently 
proposed as a canonical neural computation [1]. Mutual inhibition, a 
network architecture where pools of neurons inhibit one another, has 
been the cornerstone of models of rivalry [2]. In such a network, inhibi-
tion dominates one pool, leading to sparse firing, while the opposing 
pool fires rigorously under net excitation. This difference in inputs is 
what drives rivalry, and yet it appears to conflict with balanced state 
theory, in which net excitation and inhibition approximately balance. 
Balanced state theory has been used to explain how neurons fire irreg-
ularly in response to stimuli, exhibiting Poisson-like inter-spike-interval 
histograms [3]. Therefore, we investigated rivalry with asynchronous 
irregular spiking in a ring of leaky integrate-and-fire neurons. We find 
that rivalry can exist in synchronous or asynchronous, as well as regu-
lar or irregular states, and we delineate parameter regimes for each.
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We theoretically and numerically investigate the interplay between 
the presence of a fraction of inhibitory neurons in a neural network 
and their hub character (their relative connectivity with respect of the 
rest of the network units) in synchronization and input processing of a 
neural network. The starting point comes from a recent paper by Boni-
fazi et al. [1], which has put into evidence that hub neurons are typi-
cally inhibitory, suggesting a unifying view of cooperation between 
inhibition and connectivity structure as a driving of synchronization 
properties in neural networks. In our model, we consider a leaky-inte-
grate-and-fire neural network composed by inhibitory and excitatory 
neurons with a short term synaptic plasticity mechanism. In order to 
emphasize the control role of highly connected neurons, both in input 
and in output direction, we build networks where input and output 
connectivities are the same for each neuron. Moreover, we apply a het-
erogeneous mean-field approach to the finite size network dynamics, 
that lets us speed up numerical computations and highlight the role of 
neuronal connections distributions. Then we can tune the fraction of 
inhibitory neurons fI and their connectivity level to study the coopera-
tion between hub character and inhibition.
We show how the interplay of these two ingredients gives rise to 
a wide range of dynamical regimes and different ability to process 
external inputs. Depending on fI, highly connected inhibitory nodes 
strongly drive the synchronization properties of the overall network 
through dynamical transitions from partially synchronous to asynchro-
nous regimes. Furthermore, a metastable regime with long-time mem-
ory of external inputs emerges for a specific fraction of hub inhibitory 
neurons, underlining the role of inhibition and connectivity also for 
input processing in neural networks.
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The fruit fly memorises previous experiences of different odours along 
with information on whether the odour was associated with reward or 
punishment in an area called the mushroom body. The pairing of an 
odour with reward or shock process leads to odour specific modification 

in the responses of motor biasing output neurons (MBONs). MBONs 
receive excitatory input from odour identity coding Kenyon Cells (KCs). 
The connection between KCs and MBONs is targeted by dopaminergic 
neurons (DAs) [1]. The KC-MBON synapses change their efficacies when 
learning occurs, with experimental evidence proposing that the Spike-
Timing-Dependent Plasticity synaptic change rule is present  [2]. STDP 
changes the strength of a connection between two neurons depending 
on the precise timing of their action potentials [3]. When an odour is pre-
sented alone the firing rate of MBONs has been shown to increase, while 
paired odour and reinforcement presentation has shown to decrease 
the activity of the same MBONs [4, 5]. Here, we introduce a reward mod-
ulated STDP learning rule, where the learning rate of STDP is controlled 
by the firing rate of dopaminergic neurons. To test this learning rule, we 
simulate simultaneous presentation of odour and reward in a spiking 
model of the olfactory circuit. We find that our learning rule can create 
a stable memory of the value (positive, negative or neutral) of an odour 
in the excitatory weights of the KC-MBON synapses.  Our model can 
reproduce experimentally observed bi-directional changes in the firing 
rates of MBONs after learning. Finally, we show that when we combined 
our learning rule with excitatory feedback from MBONs to DA neurons, 
dopamine modulated learning plasticity can provide a mechanism for 
learning the uncertainty of a reward. Building on this result, we make 
experimental predictions of which odour will be selected between two 
odours associated with uncertain reward. By proposing a simple mecha-
nistic model of dopamine mediated learning our work has improved the 
understanding of the role of dopamine in the fruit fly olfactory learning.
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Selective attention is a function of the brain that allocates its computa-
tional resource to the momentarily most important subsets of a visual 
scene. Saliency models were used to predict the locations of selec-
tive attention and gaze [1]. I propose the biologically plausible sali-
ency model based on the neural population for integrating activities 
in intermediate-level visual areas with neurons selective to the direc-
tion of figure (DOF). Russell et al. demonstrated that the DOF integra-
tion played an important role for computing saliency [2]. In addition, 
computational study hypothesized that a vast variety of surrounding 
organizations by connections from early- to intermediate-level visual 
areas were a basis for the neural selectivity of the DOF [3]. I extended 
the previous saliency model [2] by introducing a variety of spatial pat-
terns of synaptic connectivity for integrating the neural responses to 
the DOF. In this work, a population of model neurons underlay the 
determination of saliency magnitude. I tested hundreds of DOF organ-
izations, and found that my proposed saliency model not only repro-
duced the characteristics of perceptual organization but also captured 
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object locations in natural images (Figure 1A). Furthermore, the gaze 
prediction accuracy shown by my saliency mechanism was signifi-
cantly higher than that by previous models [1, 2] (Figure  1B). These 
results suggested a crucial role of various synaptic patterns in DOF 
integration and a neural population coding of saliency to determine 
selective attention and predict the locations of gaze.

 (glva) is indeed higher in OFF than ON cells, but our results (Figure 1) 
suggested further that  glva is the main contributor to the differences 
between ON and OFF cells. In addition, we found that the voltage-
gated sodium channel conductance may be very different in ON and 
OFF cells, as also suggested in [2]. In addition, our analysis (not shown 
here) also suggests that mainly the fast inactivating sodium current, 
not the persistent sodium current, play a significant role in generat-
ing distinct properties in ON and OFF GCs. Overall, our single neuron 
model with optimised ion channel parameters was able to demon-
strate a major dependence of ON and OFF cell specific intrinsic activity 
on the sodium and calcium currents.

Table  1. Optimized intrinsic parameters in  ON and  OFF GCs (% 
gap = 100*(((OFF value-ON value)/ON value))

Parameter ON OFF % gap

Leak reversal potential (mV),  VL −60.4 −58.1 4

Leak (S/cm2), ḡL 4E−05 3E−05 20

A-type potassium (S/cm2), ḡK ,A 0.035 0.036 5

Low-voltage-activated calcium (S/cm2), 
ḡlva

1E−04 8E−04 523

Persistent sodium (S/cm2),ḡNap 1E−07 3E−08 73

Calcium (S/cm2), ḡCa 0.008 0.009 11

Hyperpolarization-activated (S/cm2), ḡh 4E−06 3E−06 23

Potassium (S/cm2), ḡk 0.049 0.059 20

Ca-activated potassium (S/cm2), ḡk(Ca) 7E−05 9E−05 39

Fast inactivating sodium (S/cm2), ḡNa 0.025 0.077 207

Figure  1. Simulation results. A. Examples of images and saliency 
maps calculated using previous models [1, 2] and my proposed 
model. B. Results of gaze estimation. I drew receive operating char-
acteristics (ROC) curves with MIT data set (1003 images and fixa-
tion data) [4] for quantifying the responses of saliency models
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Experimental studies have demonstrated differences in the intrinsic 
physiological responses between ON and OFF retinal ganglion cells 
(RGCs). OFF cells exhibit intrinsic spontaneous activity, subthreshold 
membrane potential oscillations, rebound excitation and burst firing. 
ON cells display none of the aforementioned intrinsic phenomena. 
Previous modeling studies [1, 2] showed how special properties of 
low-voltage-activated (T-type) calcium currents can explain the physi-
ological differences between ON and OFF RGCs, while assuming that 
most of the other ion channel properties are similar. In our study, using 
a combination of computer simulations of single compartment, Hodg-
kin-Huxley type neurons and Bayesian optimisation, we optimised the 
leak reversal potential and all literature-reported ion channel conduct-
ance densities against experimental findings from mouse ON and OFF 
RGCs to estimate the potential contributions of other ion channels. 
Optimising the larger set of conductances suggested two distinct sets 
of parameters for ON and OFF cells (Table 1). In agreement with pre-
vious findings [1, 2], the low-voltage-activated calcium conductance 

Figure 1. Relative  % gap (round((%gap/total_gap) *100) between 
two optimised parameter sets in ON and OFF RGC

Conclusion: The optimised cell-specific ion channel parameters imply 
that ḡlva and ḡNa exhibited the most important role in explaining 
intrinsic behavioural differences in ON and OFF retinal ganglion cells.
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Three major non-overlapping classes of interneurons expressing par-
valbumin, somatostatin, or vasoactive intestinal peptide (henceforth 
denoted PV, SST and VIP respectively) show cell type specific con-
nectivity within themselves and with excitatory neurons leading to a 
canonical microcircuit across cortex [1, 2]. Dissecting the dynamics of 
this microcircuit is essential to our understanding of the mammalian 
cortex. However, experiments recording from this circuit often report 
counterintuitive and seemingly contradictory findings.
One particular example of complex behavior is the modulation of 
responses to visual stimuli during locomotion, when V1 activity sig-
nificantly increases with respect to immobility [3]. VIP interneurons 
are known to be involved in such modulation because artificially acti-
vating (damaging) them mimics (blocks) the effect of running on vis-
ual response [4]. Since VIP cells inhibit SST cells which in turn inhibit 
excitatory, PV and VIP cells, a natural explanation for this phenome-
non is disinhibition [5]: upon activation of VIP cells the SST population 
is inhibited and therefore neurons targeted by the SST population are 
disinhibited, raising the overall rate of the excitatory neurons. How-
ever recent experiments show that the network behavior might be 
more complex. In particular, in the absence of visual stimulation, the 
activation of VIP cells results in an average decrease of SST popula-
tion activity [4, 6] whereas in the presence of visual stimulation the 
response of SST cells is reversed and its rate increases during locomo-
tion [6, 7] which appears to challenge the disinhibition hypothesis. 
This observation suggests that the nature of the interaction between 
VIP and SST could be stimulus dependent.
We developed a general theoretical framework to explain such 
response reversal, and we showed how these complex dynamics can 
emerge in circuits that possess two key features: the presence of mul-
tiple interneuron populations and a non-linear dependence between 
the input and output of the populations. Furthermore, we built a corti-
cal circuit model and the comparison of our simulations with real data 
shows that our model reproduces the complex dynamics observed 
experimentally in mouse V1. Our explicit calculations allowed us to 
pinpoint the connections critical to response reversal, and to predict 
the existence of more types of complex dynamics that could be exper-
imentally tested.
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Huntington’s disease (HD) is a neurodegenerative disorder of the central 
nervous system characterized by movement, cognitive, and psychiatric 
disturbance. In HD, massive structural and functional neuropathology 
occurs in the striatum, particularly to spiny projection neurons (SPNs). 
SPNs are part of either direct or indirect pathways of the basal ganglia, 
and labeled either dSPNs or iSPNs respectively. The mechanisms under-
lying the vulnerability of SPNs in HD are unclear, and dSPNs and iSPNs 
are functionally distinct and differentially affected in HD [1]. A commonly 
employed transgenic mouse model of HD, Q175, exhibits changes of 
molecular phenotypes, specific neuronal dysfunction, and subtle but 
significant movement disorders [2]. Recent in  vitro experiments on 
12-month old animals showed that, compared to wildtype (WT), dSPNs 
in Q175 animals showed increased input resistance, reduced rheobase 
and reduced amplitude in action potentials. In addition, both dSPNs 
and iSPNs exhibited greater dendritic complexity and lower spine den-
sity, along with altered frequencies of spontaneous post-synaptic cur-
rents (reduced excitatory and increased inhibitory). This project models 
the SPNs of the striatum to further our understanding of these observed 
changes in Q175 vs. WT mice. First, we used morphoelectrotonic trans-
forms of reconstructed SPNs to predict that dendritic signal attenuation 
is greater in SPNs from Q175 animals. Then, we used our parameter opti-
mization method [3], implemented in NEURON (https://www.neuron.
yale.edu/neuron/) on a published 189-compartment conductance-
based model SPN [4], to acquire a set of parameters depicting the pas-
sive membrane properties and active channel gating (conductance and 
kinetics) of SPNs so that the difference of model output and empirical 
recording experimental data could be minimized. We found proper fits 
to the Q175 data only after increasing the branching complexity in the 
published morphology. Differences in reversal potential of the leak chan-
nel and inward-rectifying potassium channel (KIR) contributed to the 
increased excitability in Q175 dSPNs, consistent with empirical obser-
vations in mouse models of HD. Finally, we constructed a microcircuit 
network model of both dSPNs and iSPNs and fast spiking interneurons 
(FSIs) [5] that reflects the empirical findings and incorporates the opti-
mized parameters in our single neuron study. In the WT network, dSPNs 
and iSPNs fired in nearly equal proportion in response to input from FSIs 
and the cortex and thalamus, predicting a balanced condition for motor 
movements. Perturbing our model network consistent with the Q175 
experiments (e.g., altering the frequency of synaptic inputs received by 
SPNs) resulted in an imbalanced firing pattern among dSPNs and iSPNs, 
consistent with what is thought to occur in HD pathology. These mod-
els provide a novel way to explore how individual neuron and network 
properties contribute to functional pathology of the striatal microcircuit 
in Q175 mice, in order to better understand the deleterious effects of 
mutant Huntingtin in the human brain.
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Interictal epileptiform discharges (IEDs) are identified as one of the 
distinctive biomarkers of epilepsy. The clinical gold standard for IED 
detection is visual inspection by trained clinical neurophysiologists 
(CNs). Therefore, the diagnosis becomes a heavily expert-centered 
process. Automated or semi-automated IED detection systems could 
overcome this current problem. Convolutional neural networks (CNNs) 
are multilayer feed-forward deep neural networks that are widely 
applied for classification and prediction. In this study, we develop 
an efficient CNN-based IED detector and compare the performance 
with the traditional support vector machine (SVM)-based IED detec-
tor. A similar study has been performed in [1], but here we study the 
problem in greater depth and on a much larger dataset. We analyze 
30-minute EEG recordings of 93 patients with epilepsy. The data was 
recorded according to the standard 10-20 electrode placement sys-
tem at Massachusetts General Hospital (MGH), Boston. IEDs were 
independently annotated by two CNs. Each IED was extracted as a 
500-millisecond waveform. A total of 18,164 IEDs were extracted. The 
CNN was developed using Tensorflow-r0.12 [2] with a Tesla K40 GPU. 
We developed the CNN model with five layers: an input layer, convolu-
tional layer, pooling layer, fully connected layer, and output layer. Four 
convolutional filters, each of size (1 × 4), were applied in the convo-
lutional layer. The Rectified linear unit (ReLU) activation function was 
applied with 100 neurons in the hidden layer. Training was performed 
until 99.99% training accuracy was obtained. To prevent over-fitting, 
weights to the output layer were dropped with a probability of 50% 
in each training epoch. 5-fold cross-validation results are presented in 
Table 1. For diagnostic purposes, CNs are most concerned with identi-
fying the presence vs absence of IEDs in any given EEG recording, as 
opposed to detecting all instances of IEDs. False positives pose a major 
challenge, as there are typically many more background waveforms 
than IEDs (1000:1 imbalance). The CNN provides high sensitivity at 
very low false positive rates (see Figure 1), and thus is substantially less 
prone to false positives compared to the SVM.

Table  1. Cross-validation results for  CNN and  SVM-based IED 
detector systems

Performance indices CNN SVM

Sensitivity 99.09% 32.18%

Specificity 93.22% 98.95%

BAC 96.15% 65.57%

AUC 0.966 0.829

Figure 1. The ROC plots of CNN and SVM-based IED detector sys-
tems

Conclusions: The CNN-based IED detector outshines the traditional 
SVM-based system and methods proposed in the literature in terms of 
sensitivity and specificity. Moreover, this study considers a much larger 
data set than similar studies in the literature.
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Neuronal oscillations are crucial for various cognitive functions, includ-
ing learning. Among neuronal populations, patterns of synchroniza-
tion can drive connectivity changes, in turn modifying oscillations and 
synchronization. To study changes in oscillation patterns with learn-
ing, we modeled brain processing using a directed random network 
of phase-coupled oscillators interacting according to the Kuramoto 
model [1]. We incorporated two extensions into the Kuramoto model: 
spatial embedding through coupling delays, and synaptic plastic-
ity according to a Hebbian learning formulation containing learning 
associated parameters [2], i.e. learning rate (LR), which determines the 
speed of learning, and learning enhancement (LE), which limits the 
range of coupling weights. We investigated the structural and func-
tional changes in the network with learning using graph theory and 
synchronization evaluating tools, respectively. To study the structural 
changes, we calculated the small-worldliness (SW) [3] of the network 
throughout the simulated time. Our preliminary results show that with 
learning the network is reweighted into a new structure with relatively 
high levels of SW (Fig. 1A), but a fully connected pattern. To study the 
functional changes, we measured the degree of synchronization for 
each combination of learning parameters. We observed that specific 
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combinations of learning parameters led the network to show fea-
tures of either single cluster synchronization, or split oscillators into 
two anti-phase synchronized clusters. These two synchronization fea-
tures are evaluated by measuring global order parameters  R1 and  R2 
[2], respectively. The introduction of time delay affected the network 
dynamics and structure changes especially in early stages of learn-
ing (Fig. 1A, C), but the global behavior observed (Fig. 1B, C) doesn’t 
change. In summary, this enhanced Kuramoto model seems promis-
ing as this induces a SW network topology. However, as the network 
obtained after learning is almost fully connected (unlike the efficiency 
typical for brain networks), crucial next steps include the exploration 
of biologically plausible ways to prune the network in order to increase 
the wiring cost efficiency, prior to the application of the model to neu-
roscientific data.

recordings from 55 healthy controls. Source-space parcel timecourses 
were computed for the same brain regions as the model. Compared to 
previous work using coupled Kuramoto phase oscillators [4], we find 
the Wilson-Cowan model is even more sensitive to the network cou-
pling strength because the amplitude of oscillations in neural activity 
can vary. ISP successfully adjusts local inhibition to balance excitatory 
activity across the network (Fig.  1A), reducing this sensitivity. As a 
result, at intermediate delays the network exhibits metastable dynam-
ics and amplitude envelope functional connectivity that is well cor-
related with experimental data over a wide range of global coupling 
strengths (Fig. 1B-1D). Simple neural mass models are largely unable 
to predict frequency-specific connectivity, and we have focused pri-
marily on alpha connectivity here. Future work will investigate simul-
taneous prediction of the different patterns of connectivity seen in 
experimental data across frequency bands.

Figure 1. A. Small-worldliness changes over time for three combi-
nations of (LE, LR) in different states of synchronization. Differences 
 (R1 -  R2) averaged over the last 100 time steps (0.1 s) of simulation 
time (500 s) for cases of having (B) and not having (C) time delay
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Achieving realistic neural dynamics in biophysical models typically 
requires extremely fine tuning of parameters, whereas in the real brain 
dynamics are robust even to significant changes including sleep and 
wake. One possible explanation is that robust dynamics are facilitated 
by homeostatic mechanisms that are able to dynamically rebalance 
brain networks. In this study, we use one such mechanism, inhibitory 
synaptic plasticity (ISP), to achieve a local balance between excita-
tion and inhibition, and investigate the effect this has on resting brain 
states. We simulated neural activity in 68 cortical brain regions using 
the relatively simple Wilson-Cowan neural mass model. Each brain 
region consists of an excitatory and an inhibitory population of neu-
rons. Long-range white matter connections link excitatory popula-
tions with distance-dependent propagation delays, while inhibitory 
connections are purely local. Anatomical connectivity weights were 
estimated using pre-processed diffusion MRI data from the Human 
Connectome Project [1] using probabilistic tractography (40 subjects). 
ISP was incorporated in each brain region as a dynamic change in the 
local inhibitory connection depending on the difference between 
excitatory activity and a preselected target level of activity [2, 3]. 
For comparison to experimental data, we used resting state MEG 

Figure  1. A. Local inhibition balances long-range excitation. B. 
Correlation between data and model alpha band functional con-
nectivity (amplitude envelope correlation). Alpha band functional 
connectivity profiles C. in MEG data D. in the model
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Temporal pattern recognition is a common computational task that 
can be performed by neural networks. The networks investigated in 
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this work are evolved with a biologically inspired artificial life platform 
[1], and consist of up to five adaptive exponential integrate-and-fire 
neurons with parameters producing tonic spiking with constant input 
current [2]. The animat forages in a 2D open world where it receives 
signals—we will describe them as 3-letter words, but the letters can 
be also seen as flashes of light (with 3 different colors) or musical 
notes (with 3 different frequencies). These words are emitted from two 
sources: a target, which emits the word ABC, and a distractor, which 
emits all the other 26 words consisting of a, b and c. The words and 
letters never overlap (see Figure  1). Each word lasts for 25-ms, with 
2-ms intervals of silence between letters, and 20-ms intervals between 
words. When the animat touches an object (initially placed randomly), 
the object disappears, and another object of the same type reappears 
in another random position. The animat is equipped with 6 sensors; 2 
per letter, which provide the input to the network (one input for the 
difference of signal intensity on two sides of the animat, and the other 
input for the average of signal intensity). The animat has 2 actuators, 
whose activity is driven by the number of spikes produced by the 
output neurons during the previous 120-ms. When the activity of one 
actuator (say, left) is higher, the animat turns (here, right); when both 
activities are equal, the animat moves straight, when both activities 
equal 0, the animat stops.
We used a genetic algorithm to obtain several small networks which 
discriminate efficiently the target pattern from all the other 3-let-
ter words. Our results show that evolving in the presence of small 
amounts of noise on the duration of the letters results in a more 
efficient discriminator than evolution without such noise. The noisy 
pattern had letters with 5-, 7-, and 9-ms duration, with the dura-
tion ordered randomly, the pattern without noise had all letters with 
7-ms duration. Only the networks evolved with a noisy pattern were 
robust to even noisier patterns (for example, they recognized patterns 
in which letters had 1-, 7-, and 13-ms duration, with random order of 
duration). Both the networks evolved with and without noise on the 
length of the letters were robust also to the change in the actuator 
forces and on silence intervals between words (up to 200-ms); number 
of objects in the world (up to 2 objects of each type).
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Continuous attractor neural networks (CANNs) have been widely 
used as a canonical model for neural information representation [1]. 
They have been successfully applied to describe the encoding of a 
number of continuous features in neural systems, such as orienta-
tion, moving direction, head direction, and spatial location of objects 
[1]. It remains unclear, however, how a neural system acquires such a 
network structure in practice. Compared to the Hopfield network, the 
key property of a CANN is that it holds a continuous family of station-
ary states, which form an (approximately) flat subspace in the network 
states, rather than being isolated with each other with high-energy 
barriers. Hopfield network is learned by Hebbian learning from sta-
tistically independent memory patterns. It has been suggested that 
a CANN may be learned by Hebbian learning from correlated pat-
terns, and in the ideal situation, from continuously morphed patterns. 
The challenge for memorizing correlated patterns is that the classical 
Hebb rule merges correlated patterns into a single attractor, corre-
sponding to the pattern having the maximum overlap with others. To 
overcome this difficulty, two methods which modifies the Hebb rule 
were proposed. One considers the “popularity” of a neuron, i.e., the 
involvement of a neuron in all memory patterns [2]. If a neuron is very 
popular, then its contribution in Hebbian learning is decreased accord-
ingly. By this, the network can store some correlated patterns, but 
requires that within a pattern, neuronal activities are statistically inde-
pendent, a condition hardly satisfied in reality. The other approach 
considers the “novelty” of a newly presented memory pattern, meas-
ured by the Hamming distance between the new pattern and those 
already stored in the network [3]. If a new pattern is novel, then the 
pattern is learned by the Hebb rule; otherwise, the learning effect is 
diminished accordingly. This method works well in certain cases, but 
still has the shortcoming of that the learned result is rather sensitive 
to the presenting order of patterns. In this study, we propose a new 
method to learn a CANN from correlated patterns. The method applies 
the Hebb rule only after correlated patterns are orthogonalized by the 
Gram-Schmidt rule [4]. In effect, this method contains two operations, 
pattern separation and novelty detection, and these two operations 
appear to be biologically plausible and may happen in Dentate Gyrus 
and CA1, respectively. We apply this method to memorize continuous 
morphed patterns and learn a CANN successfully. The result is shown 
in Figure 1.

Figure  1. The champion environment and its highly noisy input 
vector (from left to right: ABC, aac, ABC, ABC, aba, cab). When 
a target is hit; it becomes a black circle. The green boxes are the 
actuator activities and the height of the bars corresponds to the 
sensory activity
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Figure 1. Learning a CANN from continuously morphed patterns. 
A. The morphed patterns. B. The learned network has an (approxi-
mately) flat subspace of low energy storing the morphed patterns, 
a key property of a CANN. C. The learned neuronal connection 
weights are translational invariant in space, a characteristic of a 
CANN
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Our eyes move constantly at a frequency of 3–5 times per second, 
called saccade. A saccade induces sweeping of visual images on the 
retina, yet we perceive the world to be stable. It has been suggested 
that the brain achieves this visual stability via predictive remapping of 
neuronal receptive field (RF), i.e., neurons respond to stimuli appear-
ing in their future receptive fields (FRFs) before the eye actually moves 
[1]. Recently, Wang et al. unveiled the detailed time course of neuronal 
peri-saccadic remapping in the lateral intraparietal area (LIP) [2]. They 
found that around a saccade, the neuronal RF expands along the sac-
cadic trajectory temporally, covering the current RF (CRF), the FRF, and 
the region the eye will sweep through during the saccade. A cortical 
wave (CW) model was also proposed, which attributes RF remapping 
as the consequence of neural activities propagated in LIP triggered 
by the joint effect of visual stimuli and the corollary discharge (CD) 
signal responsible for the saccade [2]. This CW model successfully 
reproduced the experimental data, however, its biological plausibil-
ity remains unresolved. In this study, we address this issue by building 
up a computational model to demonstrate that the CW model can be 
naturally learned from visual experiences at the developmental stage 
of the brain via the biologically plausible spiking-time-dependent-
plasticity (STDP).
We build a two-layer network, with one layer consisting of LIP neurons 
and the other Superior Colliculus (SC) neurons. Initially, neuronal con-
nections in LIP are bidirectional and weak, and the connections from 
SC to LIP are non-selective. An eye movement due to saccade causes a 
static visual image to “sweep” through the retina passively as if the visual 
stimulus is moving in the opposite direction of the saccade. This “mov-
ing” stimulus activates LIP neurons sequentially in the retinotopic map; 
meanwhile, SC neurons which convey the saccadic information also 
respond due to the CD signal. Suppose this process repeats many times, 
according to STDP, a connection path in the opposite direction of the 
saccade between LIP neurons will be learned, and a connection from SC 
to LIP matching the saccadic and remapping directions will be formed. 
Over many such visual experiences at different spatial locations and in 
different directions, a remapping network in LIP is completed. Conse-
quently, a visual stimulus at FRF, combined with the CD signal from SC, 
can elicit a cortical wave in LIP which propagates from FRF to CRF of the 
neuron along the opposite direction of the saccade, exhibiting the peri-
saccadic RF remapping phenomenon as observed in the experiment.
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Neurons display various branching tree structures, and generate diverse 
activity patterns [1–3]. Studying the influence of morphology on electri-
cal activity is of crucial importance for understanding brain functional-
ity [4]. We have investigated the connection between tree structure and 
electrical activity by studying signal propagation and information coding 
along two basic morphological building blocks: unbranched axonal seg-
ments, and axonal branching points. We did it by solving numerically the 
Hodgkin Huxley model, as well as an adapted model for cortical neurons 
[5], that enable usage of parameter values that reflect better the condi-
tions for the mammalian nervous system. In an unbranched axon, spike 
failures occur in high frequency trains. The effect on the propagated sig-
nal depends on the frequency of the spike train, axon diameter and axon 
length. In axonal branching points, signals are modified in a way that 
depends on the frequency of the spike train, and geometrical param-
eters of the branching point. Combined effects of these two elements can 
lead to asymmetric responses even between two sibling branches with 
identical diameters. These asymmetric conductions could be produced 
from geometrical properties alone. We have systematically characterized 
the firing patterns as a function of train frequency and morphometric 
parameters, revealing distinct patterns of activities such as trains, block-
age, intermitted trains, single or several spikes, and stuttering. Adding up 
responses from many of these simple elements yields a rich repertoire of 
non-trivial activities that can be used as encoding mechanism for compu-
tational tasks. In light of these new theoretical results, we have extended 
our study to analyze real whole neuron structures, using reconstructed 
data obtained from publically available large data repositories from Neu-
roMorpho.Org [6] and the Blue Brain Project [7, 8]. We have examined the 
morphological parameters in all neuron types, and interneurons in par-
ticular. We clustered interneurons by their geometrical parameters and 
divided them into groups according to the signal modulations that their 
geometry dictates. Our results may advance interneurons classification by 
axonal tree morphology, suggesting that different cells generate different 
activity patterns. This detailed morphometric description of cells, together 
with understanding how geometry determines information flow, opens 
the door for deducing functionality from anatomical data.
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The Neuroscience Gateway Portal [1] (NSG http://www.nsgportal.org) 
catalyzes computational neuroscience research that involves large 
scale simulations and/or data analysis by lowering or eliminating 
administrative and technical barriers to using High Performance Com-
puting (HPC) resources. It does this by
(1) providing free and open access to supercomputers using time that 
is acquired via the peer reviewed allocation process managed by the 
Extreme Science and Engineering Discovery Environment (XSEDE), 
the virtual organization that coordinates US academic supercomputer 
centers
(2) offering a simple web-based user interface for accessing HPC 
resources and
(3) more recently, adding a RESTful interface that enables program-
matic access to HPC resources.
NSG is enabling participation by the wider neuroscience community 
in research that would otherwise involve too great a computational 
burden, such as large scale and detailed models of cells and net-
works, parameter optimization, brain image processing, connectome 
pipelines etc. Since its inception in early 2013, it has provided about 
10,000,000 core hours of supercomputer time to neuroscientists, and 
has enabled more than 50 publications and posters. In addition, many 
developers of new network modeling tools, data driven parameter 
optimization pipelines (e.g. BluePyOpt from the Human Brain Project), 
and data analysis tools are using the NSG to disseminate their results 
to the neuroscience community.
NSG currently has about 450 registered users. Total core hour usage, 
per-user core hour consumption rate, and the number of users have 
all been growing at a rapid rate; annual usage is projected to exceed 
10,000,000 core hours in 2017.
Developing and operating the NSG has given us a unique opportunity 
to understand and analyze how a very diverse range of neuroscien-
tists are using an environment like the NSG, and examine their grow-
ing need for supercomputer power, as well as associated issues and 
needs for collaboration, data sharing/management and various forms 
of computing.
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The lithium-pilocarpine (LP) model of epilepsy belongs to a group 
of animal models that replicate the general progression of events as 
observed in humans [1]. We aimed to determine, whether LP-induced 
status epilepticus (SE) affects electrophysiological properties of neu-
rons and then, if does, what is the nature of the effect. Using whole-
cell patch-clamp we compared passive properties, single-spike and 
spike-pattern attributes of pyramidal neurons in entorhinal cor-
tex (ERC) slices of control (53 cells) and LP-treated rats (47 LP-cells, 
recorded in a day after SE), as well as in, presumably, less damaged 
prefrontal cortex (37 control vs 35 LP-neurons). LP-cells had reduced 
input resistance (Rin), time constant (τm), first instantaneous frequency 
(IF1) and amplitude of spikes (RA), and increased rheobase (Rb) and 
current inducing maximal firing rate (Imax). Apart from the decrease 
of spike amplitude, all the effects were stronger in ERC. Because the 
decrease of Rin can explain all the other effects, we then aimed to 

clarify whether Rin change is caused by the disturbances of synaptic, 
passive or active channels.
First, we compared electrophysiological properties before and after 
the blockade of synaptic currents by APV, DNQX and bicuculline. Anal-
ysis showed that all of the parameters changed by SE sustain after the 
blockade of synaptic currents. Thus, the main source of SE-induced 
changes is not synaptic.
Next, we used the dynamic-clamp which allowed us to simulate 
additional potassium and nonspecific currents [2]. We attempted to 
clarify which of the neuronal properties are affected by the leak cur-
rent (IL) and which ones are by the potassium current which induces 
spike adaptation (Iad). The effect of IL in control rats was similar to the 
effect of SE. Addition of the leak current led to statistically significant 
decreases of Rin, τm, Imax, IF1, RA, magnitude of sag, and increases Rb, 
stationary IF, and gain (only in ERC). We then mimicked Iad by using the 
approximation from [3]. Addition of Iad did not change Rin, increases 
IF1, and decreases firing rate, as well as time to the first spike.
Thus, the decrease of Rin after SE is more likely to be induced by IL as 
well as the decrease of τm, time to the first spike, RA, IF1 and increase 
of Rb. Overall, our results suggest that LP-induced SE mainly increases 
the leak conductance and keeps other factors intact.

Acknowledgements
This work was supported by the Russian Science Foundation (project 
16-15-10202).

References
1. Furman M: Seizure Initiation and Propagation in the Pilocarpine Rat Model 

of Temporal Lobe Epilepsy. J Neurosci 2013, 33(42):16409 –16411.
2. Smirnova EY, Zaitsev AV, Kim KK, Chizhov AV: The domain of neuronal firing 

on a plane of input current and conductance. J Comput Neurosci 2015, 
39(2): 217–233.

3. Kopell N, Ermentrout GB, Whittington MA, Traub RD: Gamma rhythms and 
beta rhythms have different synchronization properties. Proc Nat Acad Sci 
USA 15 2000, 97(4):1867–1872.

P299 
Depolarizing GABA leads to interneuron‑based interictal 
discharges: experimental and mathematical models
Anton V.  Chizhov1,2, Dmitry V.  Amakhin2, Aleksey V.  Zaitsev2

1Ioffe Institute, St.-Petersburg, 194021, Russia; 2Sechenov Institute 
of Evolutionary Physiology and Biochemistry of RAS, St.-Petersburg, 
194223, Russia
Correspondence: Anton V. Chizhov (anton.chizhov@mail.ioffe.ru) 
BMC Neuroscience 2017, 18 (Suppl 1):P299

In in vitro experimental model of temporal lobe epilepsy, we observe 
the repeating sequences of interictal discharge (IID) regimes and sei-
zure-like events, where IID are initiated by interneurons. We used an 
extracellular medium with high potassium/low magnesium concentra-
tion with the addition of 4-AP in order to provoke epileptiform activ-
ity in combined hippocampus/entorhinal cortex slices of the rat brain 
[1]. Two types of IID were observed. For each type, AMPA, NMDA, and 
GABA-A synaptic components have been estimated by means of mul-
tiple recordings on different voltage levels in the voltage-clamp whole 
cell configuration. As found, IIDs of the first type (IID1) reflect synchro-
nization in the network of interneurons, thus they are characterized by 
a pure GABAergic current recorded in an excitatory neuron. IIDs of the 
second type (IID2) are composed of early GABAergic and later gluta-
matergic components.
We have reproduced the IIDs in our mathematical model, using the 
conductance-based refractory density approach [2] which provides 
both a biophysically detailed description of neuronal populations in 
terms of ionic channel conductances for one- or two-compartment 
neurons and good precision for statistically equilibrium and non-
equilibrium regimes of ensemble activity. Coupled excitatory and 
inhibitory neurons interact via glutamatergic and GABAergic plas-
tic synapses. IID1 s and IID2 s were well reproduced in the model. In 
simulations, the only parameter that controlled the regimes was the 
reversal potential of GABA-A current, VGABA. Switching from the con-
trol silent state to IID1 s and then to intermittent IID2 s and IID1 s, and 

http://www.nsgportal.org
http://ceur-ws.org/Vol-993/paper10.pdf


Page 169 of 176  BMC Neurosci 2017, 18(Suppl 1):60

finally, only IID2 s occurs with depolarization of VGABA. We hypothesize 
that in the experiments VGABA was depolarized because of depressed 
action of potassium-chloride cotransporters in the conditions with 
high extracellular potassium concentration. We have also found the 
synaptic depression to be a crucial factor, which provides ceasing of 
each of the discharges and determines their duration. Overall, our 
study reveals the mechanisms of pathological synchronization with 
the primary role of excitatory GABA receptors in the interneuronal 
network.
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In spatial navigation, there are certain tasks of choosing a route or 
correcting a route depending on external conditions. It is necessary 
to respond to changes in the visual environment, to compare the 
expected and observed landscape. Quick reaction is required in case 
of unexpected obstacles on the pathway. Perception is detailed as the 
target is approached. Orientation awareness is accompanied by vari-
ous types of neuronal activities. It can be observed in brain cells asso-
ciated with navigation (including place cells, grid cells, head-direction 
cells) [1], and in combinations of rhythms of neural ensembles [2]. 
Contributions of different band oscillations during route selection 
can be independent [3]. Observed brain activities are different in tasks 
with the specified position of the visual cue or with underspecified 
movement goal [4].
This work proposes a model to identify the characteristics of brain 
activity of flying pigeons with different modes of space perception. 
Pigeons fly home based on familiar landmarks and landscape fea-
tures [5], solar, stellar and magnetic cues, polarized light patterns [6], 
and other references to geographical location. Pigeons have color and 
ultraviolet vision, their eyes distinguish the 75 frames per second, field 
of view is 340 degrees. Comparison of EEG responses to visual land-
marks in flying pigeons was described [7].
The work considers pigeon flight on known route in three modes: 1. 
Stationary flight at an altitude of 100-300 meters, speed of 60  km/h. 
For flight in a given direction it is necessary to take into account the 
influence of wind (drift angle). 2. Response to danger or sudden 
changes. Pigeons are more sensitive to radial motion when there is an 
acceleration as opposed to a constant velocity [8]. 3. Descent and 
landing. Birds begin to fly in circles at an altitude of 30-50 meters.
In the computational model, it is assumed that each mode is accompa-
nied by a characteristic set of rhythms of neural ensembles (for quiet 
flight, for alarm and for approaching to visible goal). Representation 
of brain activity as sets of rhythms depends on the type of mode. In 
model, recognition of textures and borders in the mode “stationary 
flight” is additionally encoded by the phase of rhythms with lower fre-
quency. Interactions between cortical rhythms may generate a third 
frequency [9]. Route reference points are additionally encoded by the 
amplitude of rhythms in all modes. QGIS (http://www.qgis.org) allows 
to integrate data received from various sources simultaneously. In the 
work, GPS track of flights and landscape maps are performed in QGIS 
(similarly, QGIS was applied in [6]). In addition, the program allows to 
combine results of EEG data processing with the spatial characteristics 

of pigeon flight. In the spatial representation of the model takes into 
account the distances between the reference points on the ground.
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The receptive field structure ubiquitous in the visual system is believed 
to play a crucial role in encoding stimulus characteristics, such as 
contrast and spectral composition. However, receptive field architec-
ture may also result in unforeseen difficulties in processing particular 
classes of images. We explore the potential functional benefits and 
shortcomings of localization and center-surround paradigms in the 
context of an integrate-and-fire neuronal network model. Utilizing 
the sparsity of natural scenes, we derive a compressive-sensing based 
theoretical framework for network input reconstructions based on 
neuronal firing rate dynamics [1, 2]. This formalism underlines a poten-
tial mechanism for efficiently transmitting sparse stimulus informa-
tion, and further suggests sensory pathways may have evolved to take 
advantage of the sparsity of visual stimuli [3, 4]. Using this methodol-
ogy, we investigate how the accuracy of image encoding depends on 
the network architecture.
We demonstrate that the receptive field structure does indeed facili-
tate marked improvements in natural stimulus encoding at the price 
of yielding erroneous information about specific classes of stimuli. Rel-
ative to uniformly random sampling, we show that localized random 
sampling yields robust improvements in image reconstructions, which 
are most pronounced for natural stimuli containing a relatively large 
spread of dominant low frequency components. This suggests a novel 
direction for compressive sensing theory and sampling methodology 
in engineered devices. However, for images with specific gray-scale 
patterning, such as the Hermann grid depicted in Fig. 1, we show that 
localization in sampling produces systematic errors in image encod-
ing that may underlie several optical illusions. We expect that these 
connections between input characteristics, network topology, and 
neuronal dynamics will give new insights into the structure-function 
relationship of the visual system.
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Figure 1. A. The network-averaged firing rate dependence on the 
external-drive strength scaling, computed using model simulation 
and theoretical linear input-output mapping. B. Original image 
(left) and CS reconstruction (right) using localized random sam-
pling of the network dynamics. C. Hermann grid illusion. D. Recon-
structions of (C) for various choices of receptive field size scaling 
and excitatory center region radius
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Rhythmic activities of different frequency bands have been observed 
universally in the brain and are thought to play important roles in 
various cognitive processes [1]. However, the fundamental mecha-
nism of how these neural oscillations contribute to brain activities is 
still an open question. Recently, via both computational simulations 
and in  vivo experiments, we found that oscillations are essential for 
memory consolidation as they mediate network functional stabil-
ity. We have shown computationally, that various network properties 
such as firing rate, synchrony, mean phase coherence are enhanced 
in the presence of external oscillations around Excitatory-Inhibitory 
(E-I) balance, where E-I ratio is calculated based on the excitatory and 
inhibitory synaptic strength and neuronal firing frequency. We have 
investigated this effect for both type 1 (integrator) neurons as well as 
type 2 (resonator) cells. The networks composed of resonator neurons 
are more sensitive to the oscillatory drive than the networks composed 
of integrator neurons, however both show significant changes in firing 
patterns. We show that global oscillations causally organize firing pat-
terns between heterogeneous networks composed of dense neuronal 
clusters that are loosely connected with each other, facilitating com-
munication and information transfer between spatially distributed 
brain regions. Most importantly, near Excitatory-Inhibitory (E-I) balance, 
oscillations increase both functional connectivity between neurons 
and coherence between spikes and local field potential (LFP), as well as 
enhance network functional stability, thus leading to faster changes in 
network structural connectivity patterns thought to underlie learning 
and memory consolidation. These in silico observations are supported 
by our experimental data [2]. In summary, our results show that neural 
oscillations together with network state near E/I balance coordinate the 
network dynamics and contribute to memory consolidation.
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The diverse population of interneurons in the hippocampus is pivotal to 
the formation of oscillatory electrical activity that contributes to memory 
processing [1], while in the cortex such interneurons and rhythms are 
implicated in potential mechanisms underlying selective attention [2]. 
Computational research has shown that these rhythms can be generated 
in purely inhibitory networks or networks with both excitatory and inhib-
itory neurons (E-I networks). However, the dynamics and mechanisms 
generating them depend on properties of the inhibitory network.

References
1. Field DJ: What is the Goal of Sensory Coding? Neural Comput. 1994, 6: 

559–601.
2. Candes EJ, Romberg JK, Tao T: Stable Signal Recovery from Incomplete 

and Inaccurate Measurements. Commun Pur Appl Math. 2006, 59(8): 
1207–1223.

3. Barranca VJ, Kovacic G, Zhou D, Cai D: Sparsity and Compressed Coding in 
Sensory Systems. PLoS Comp Biol. 2014, 10(8):e1003793.

4. Barranca VJ, Kovacic G, Zhou D, Cai D: Improved Compressive Sensing of 
Natural Scenes using Localized Random Sampling. Sci Rep. 2016, 6:31976.

P302 
FuNS with E/I balance: critical dynamics maximize stability of neural 
networks
Quinton M.  Skilling1, Daniel  Maruyama2, Nicolette  Ognjanovski3, Sara J. 
 Aton3, and Michal  Zochowski1,2

1Biophysics Program, University of Michigan, Ann Arbor, MI 48109, 
United States; 2Department of Physics, University of Michigan, Ann 
Arbor, MI 48109, United States; 3Department of Cellular, Molecular, 
and Developmental Biology, Ann Arbor, MI 48109, United States
Correspondence: Quinton M. Skilling (qmskill@umich.edu) 
BMC Neuroscience 2017, 18 (Suppl 1):P302

The mammalian brain naturally balances excitation and inhibition. 
This results in complex dynamics vital for important cognitive func-
tions such as the formation of new memories. Excitatory/inhibitory 
(E/I) balance has been shown to result in scale-free distributions 
of population behavior known as neuronal avalanches, a hallmark 
of self-organized criticality in the brain. Recently, we have shown 
using models well-rooted in physics that new memories are stored 
only when the system dynamics reside near a critical point and are 
characterized by enhanced stability of spiking activity which we 
refer to as functional network stability (FuNS) [1]. Here, we expand 
on this work through direct modeling of neuronal networks where 
E/I balance is tightly controlled. Proximity to criticality at E/I bal-
ance is verified via calculation of neuronal avalanches as well as 
through calculating functional connectivity correlation between 
neurons for increasing separation distance between them. Intro-
ducing a region of increased coupling, such as the synaptic poten-
tiation involved in learning, increases FuNS in networks exhibiting 
E/I balance significantly over networks whose dynamics arise pri-
marily through excitatory or inhibitory inputs. Our results indicate 
that networks with balanced excitation and inhibition have an 
increased ability to store memories through increased functional 
network stability, a phenomenon due in part to critical dynamics in 
neural systems.
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Simulations of strictly inhibitory networks in our recently published 
work [3] demonstrate that the intrinsic cellular properties and connec-
tivity density alter the bursting properties exhibited in randomly con-
nected, heterogeneous inhibitory networks. We analyze networks with 
three types of model neurons that are classified into the classical Type 
I or Type II categories using their current-frequency relation (IF curve) 
and Phase Response Curve (PRC), while additionally investigating the 
role of an M-type adaptation current adaptation current. Across simu-
lations we vary the degree of cellular heterogeneity, the intrinsic firing 
frequency of neurons, and the time scale of decay of synaptic inhibi-
tion. The observed dynamics often differ from those predicted by the 
Interneuron Network Gamma (ING) mechanism [4], as well as from 
results in all-to-all connected networks. While the networks studied 
here synchronize into a single cluster of active neurons when said neu-
rons are Type I, analogous networks of Type II neurons without adapta-
tion segregate into two mutually exclusive clusters organized by the 
cells’ intrinsic firing frequencies. When the neurons are modeled as 
Type II with adaptation, we observe dynamics similar to those seen in 
networks of either Type I or Type II neurons depending upon network 
parameters, although the adaptation current does imbue these net-
works with additional unique behaviors. The mechanisms underlying 
this variety of dynamics is explained by changes in profiles of the PRCs 
across the different neuron types.
One additional property of Type I inhibitory networks is the different 
synchrony patterns exhibited when the inhibitory synapses are strong 
or weak. By expanding our research to E-I networks, we have shown 
that this property plays an important role in the dynamics of excitatory 
neurons in these larger networks. When inhibitory to inhibitory syn-
apses (I-I) in an E-I network are sufficiently strong, the dynamics match 
those predicted by the PING mechanism [5]. When these synapses are 
weakened, networks exhibit rhythmic bursting for weaker excitatory 
to inhibitory connectivity and can exhibit rhythms slower than the 
typical gamma frequency, two features that expand upon the types of 
dynamics typically described by PING theory. However, with weak I-I 
synapses, the dynamics of the excitatory cell bursts tend to become 
disorganized and aperiodic for stronger excitatory to inhibitory con-
nectivity, due to more variable activity patterns in the inhibitory net-
work. These results indicate that the strength of I-I connectivity plays a 
crucial role in dictating the type, strength and robustness of excitatory 
bursting patterns in an E-I network, analogously to how cell type dic-
tates the type of dynamics seen in strictly inhibitory networks.
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Human brain is a complex network including  1011 neurons connected 
by  1014 synapses. Information processing occurs in separate, function-
ally specialized regions, which also coordinate and integrate efficiently 

for the brain to function in a coherent way. To exhibit these features, 
brain networks are considered to have small-world and scale-free net-
work structure properties [1].
Neurons in the brain communicate with each other via connections 
called synapses in order to be able to synchronize and perform certain 
tasks. Thus, failures at these synaptic connections have detrimental 
effects such as loss of consciousness or neurodegenerative diseases. 
Our objective is understanding the effect of decreased synaptic trans-
mission on brain networks as a whole as well as on the formation of 
globally coherent states. The results may be applied to understand 
how anesthetics brings the loss of consciousness by changing brain 
dynamics and early diagnosis of some neurodegenerative diseases 
such as Alzheimer’s and ALS, in which cases synaptic failure is the earli-
est symptom [2, 3]. For this purpose, both small-world and scale-free 
networks, which are prevalent in brain, are modeled with integrate- 
and-fire excitatory neurons. Synaptic failure is introduced to the model 
by a parameter which randomly determines whether neurons get sig-
nals from the others they’re connected to or not. This parameter also 
depends on the spiking history of the neurons, i.e. synapses are more 
likely to fail if the presynaptic neuron is more recently fired.
After various simulations, quantitative measures are done with neu-
rons’ spike times in order to determine how synchronous and coherent 
the networks behave. As a result, we demonstrate that more local con-
nections favor more coherent and synchronous behavior with increas-
ing synaptic transmission. Moreover, we show that scale-free networks 
with different directionalities respond to synaptic failure in different 
ways. However, neurons with moderate degrees are more coherent 
than other neurons in all scale-free network structures. Also, when 
hubs in scale-free networks are disconnected, the effect is bigger than 
the disconnection of lower-degree neurons on the network. We also 
observed that the dependence on spiking history affects synchroniza-
tion and coherent state formation in different ways for different net-
work structures.
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We developed a detailed multiscale computational model of mouse 
primary motor cortex (M1) microcircuits, based on novel data pro-
vided by experimentalist collaborators. The model simulates at scale 
a cylindrical volume with a diameter of 300  μm and cortical depth 
1350  μm of M1. It includes over 10,000 cells distributed across corti-
cal layers based on measured cell densities, with more than 40 million 
synaptic connections. Neuron models were optimized to reproduce 
the current-clamp electrophysiological properties of major classes of 
M1 neurons, with a special emphasis on layer 5 corticospinal (SPI) and 
corticostriatal (STR) neurons. Cell ionic channel distributions were con-
strained by literature and optimized to reproduce with high precision 
in  vitro recordings for these two cell types, which used detailed cell 
morphologies with 700 +  compartments from morphological recon-
structions. The network was driven by the main long-range inputs to 
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M1: thalamus, primary and secondary somatosensory cortex (S1, S2), 
contralateral M1, secondary motor cortex (M2), and orbital cortex (OC). 
Local and long-range network connectivity was based on optogenetic 
circuit mapping studies which have demonstrated that connection 
strength cannot be fully defined by layer identification but depends 
strongly on cortical depth and on the subtype of pyramidal cell. There-
fore, highly specific synaptic input positional distribution along den-
dritic trees of these different types were incorporated. We hypothesize 
that these distinct patterns of dendritic innervation will have different 
effects that reflect roles in multiple co-existing neural coding patterns.
The model was developed using NetPyNE, a novel Python package 
that facilitates the development of biological neuronal networks in the 
NEURON simulator, and emphasizes the incorporation of multiscale 
anatomical and physiological data at varying levels of detail. Parallel 
simulations were executed on the XSEDE San Diego Supercomputer 
Center. Our M1 model incorporates quantitative experimental data 
from 14 publications, therefore accumulating previously isolated 
knowledge into a unified framework.
We studied the output of the 15 local M1 populations in response to 
increased input from each of the seven long-range inputs modeled. 
Sensory information from S1, S2 and sensory thalamus primarily mod-
ulated M1 superficial layers, which projected unidirectionally to layer 
5B corticospinal neurons. Secondary motor cortical areas, as well as 
basal ganglia-relaying thalamic direct inputs, also modulated the same 
layer 5B circuits. Firing rates, oscillations, and information transfer 
(measured using Granger causality and normalized transfer entropy) 
demonstrated differences in dynamics and information flow along the 
two parallel pathways is encoded, transformed and integrated. At the 
dendritic scale, the distinct innervation patterns in corticospinal neu-
rons facilitated the integration of information from distinct regions, 
and the modulatory role of HCN (H current) ion channels, which has 
been hypothesized to provide a mechanism to translate action plan-
ning into action execution.
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In the soma of neocortical neurons, near-threshold depolarizations 
have been shown to induce subthreshold membrane potential oscilla-
tions that contribute to network oscillations by enhancing or hindering 
neuronal responses to synaptic inputs in specific frequency bands [1]. 
The frequency of these subthreshold membrane potential oscillations 
coincides with the peak resonance of the neuronal membrane. While 
differential responses within the soma of neocortical neurons to inputs 
of varying frequency have been well studied, the dendritic contribution 
within these same neurons is less clear [2], [3]. In addition, the differen-
tial impact on neuronal response properties of afferent inputs to differ-
ent areas or “zones” of pyramidal neurons is not well understood.
We characterize resonance and membrane potential oscillation char-
acteristics of a biophysically-realistic compartmental model of a neo-
cortical layer 5 pyramidal neuron [4]. We simulated injected currents 
with varying temporal properties, including both step currents and 
sinusoidal currents with linearly increasing frequency (chirp currents), 
to determine the resonant properties of individual model compart-
ments that were parameterized to reflect known differences in the 
properties of functionally distinct zones. We computed changes in 
membrane potential under different conditions of input current, 
and calculated the input and transfer impedance in the soma, initial 

axon segment, and along the dendrites. In addition, we calculated 
resonance strength and phase relationship between input current and 
output membrane potential.
The model showed that preferred oscillation frequency depends 
critically on parameters defining the ionic conductance of neuronal 
compartments that are active in the subthreshold range, which drive 
currents that contribute to the total membrane potential. These ionic 
currents include: hyperpolarization-activated anomalous rectifier, low-
threshold inactivating calcium, persistent sodium, transient inactivat-
ing potassium, and muscarinic potassium (M current). For instance, 
resonance at low frequencies (1-4 Hz) can be produced by low-thresh-
old calcium at near-rest/hyperpolarized potentials, resonance at inter-
mediate frequencies (4-10 Hz) can be produced by anomalous rectifier 
at near-rest/hyperpolarized potentials, and resonance at intermediate 
and faster frequencies (4-30 Hz) is produced by M current from resting 
to more depolarized potentials.
The existence of perisomatic and distal dendritic zones whose intrin-
sic properties preferentially enhance or impede resonance in specific 
frequency ranges coincides with differential afferent connectivity [5]. 
Understanding the relationship between the intrinsic properties of 
these zones and the areas of the brain that target them could reveal 
additional insight about functional connectivity. Furthermore, the 
oscillatory behavior of the zones may modulate action potential initia-
tion at the soma/axon hillock of a neuron which results in variability in 
overall network activity.
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The ability to measure or manipulate network connectivity is the main 
challenge in the field of connectomics. Recently, a set of approaches 
has been developed that takes advantage of next generation DNA 
sequencing to scan connections between neurons into a set of DNA 
barcodes. Individual DNA sequences called markers represent single 
neurons, while pairs of markers, called barcodes contain information 
about connections. Here we propose a strategy for ‘copying’ or ‘clon-
ing’ connectivity contained in barcodes into a clean slate tabula rasa 
network. We show that a one marker one cell (OMOC) rule, which 
forces all markers with the same sequence to condense into the same 
neuron, leads to fast and reliable formation of desired connectivity 
in a new network. We show that OMOC rule yields convergence in a 
number of steps given by a power law function of the network size. We 
thus propose that copying network connectivity from one network to 
another is theoretically possible. Most current implementations of arti-
ficial neural networks are on digital computers and GPUs [1]. On these 
architectures, connections are stored explicitly and therefore straight-
forward to extract and copy into a new network. However, in biologi-
cal networks, there is no central repository for connections, so reading 
out the connections of a network and copying them into a new net-
work represents a difficult challenge.
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Introduction: A prominent feature of brain activity is the presence 
of oscillations in neuronal recordings. Interactions between brain 
rhythms have been demonstrated at different space and time scales, 
and are believed to play an important role in neuronal communica-
tion. One such interactions is the cross-frequency coupling (CFC) 
between the phase of the theta rhythm and the amplitude of gamma 
oscillations in the hippocampus. However, neither the cellular mecha-
nisms supporting this interaction, nor its behavioral correlates, are 
well understood. In the present work, we study the causal interac-
tions between both frequency bands and the features maximizing this 
interaction in the hippocampus of behaving animals.
Methods: Sprague-Dawley rats (n = 5) were used for multi-site, mul-
tichannel electrophysiological recordings in freely moving conditions. 
Local field potentials (LFP) were recorded across the CA1 and dentate 
gyrus (DG) regions of the dorsal hippocampus. We applied an inde-
pendent component analysis to dissect the local generators of the LFP 
signals. CFC between theta phase and gamma amplitude was com-
puted and the directionality of this modulation measured with phase 
transfer entropy (PhTE). Alterations on the level of coupling were esti-
mated as a function of the synchronization between the theta phases 
of the generators and in relation to the exploration of new vs. known 
environments (novelty test) or new vs. known object locations in a 
familiar environment (novel object location task or NOL).
Results: Phase differences between theta oscillations across hip-
pocampal subfields were patent, as expected from previous literature. 
PhTE analysis indicates a causal link between theta and gamma bands 
in each component, suggesting that theta phases modulate gamma 
amplitudes and no otherwise. We show that CFC in each LFP generator 
is predominantly found when theta phases are synchronized (locked 
phase-differences) across hippocampal subfields, at least during three 
consecutive cycles. However, maximal gamma amplitude is found 
from the first cycle in the triad. The transitions between synchroniza-
tion states were analyzed through Markov chains and found a signifi-
cantly higher probability of phase-locking in CA1 and CA3 previous to 
a global synchronization state. Importantly, quantification of the mod-
ulation index during behavior demonstrates maximal theta-gamma 
coupling when the subject is exposed to a novel environment or when 
the animal explores a new object location in the NOL task.
Conclusions: Our findings suggest that CFC is a communication 
mechanism in the hippocampus for encoding new information into 
memory. Efficient coupling requires precise and sustained synchroni-
zation across all subfields, suggesting global integration.
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The Purkinje cell (PC) is one of the most complex neurons of the 
brain and integrates more than 100000 synaptic inputs coming from 
granule cell (GrC) ascending axons (aa), parallel fibers (pf ), climbing 
fibers (cf ) and molecular layer interneurons (mli). The synapses are 
distributed, with zone specific limitations, on a large dendritic tree 
and exploit different neurotransmission mechanisms to modulate 
the PC discharge in way that remains largely unknown. Here we have 
explored this wide synaptic computational space using a detailed PC 
model built in Python - NEURON [1]. The GrC inputs generated the 
characteristic burst-pause in the simple spike (SS) responses that were 
accentuated by MLI inhibition [2]. The cf inputs elicited complex spikes 
(CS) followed by pauses in SS firing that inversely correlated with the 
number of spikes in cf bursts [3]. Ephaptic coupling between MLIs and 
PCs depressed SS firing, especially when associated to GABA-A recep-
tor-mediated synaptic inputs to the PC soma. The activation of GABA-B 
receptors and Kir channels generated a permanent downstate [4]. The 
PC discharge patterns depended on the excitatory/inhibitory balance, 

Figure 1. Network cloning as a way to copy connectivity from one 
network to another. The original network is read out into a set of 
barcodes carrying information about connections. Each half of the 
barcode (marker) represents one of the cells that are connected, 
while the link represents the direction of the connections. These 
barcodes are then introduced into a tabula rasa network that has 
no structure. Barcodes are capable to shape the tabula rasa net-
work to match the target connectivity

We have recently proposed a new way to read out neuronal connec-
tions using DNA barcodes [2, 3]. In this strategy, individual neurons 
produce distinguishable pseudo-random DNA identifiers called 
markers. Pairs of markers, called here barcodes, represent individual 
synaptic connections (Figure  1). Barcodes are read out using high-
throughput sequencing technology, either in  situ [4] or ex  vivo after 
individual neurons are disassociated. This strategy allows to convert 
connections between neurons into an ensemble of DNA barcodes 
that can be identified using sequencing methods. Here we formulate 
a different question: Given an ensemble of connections represented 
by barcodes, can we copy them into a new network? In other words, 
can original network be cloned? We explore a computational model 
that simulates the behavior of barcodes introduced into a tabula rasa 
network with unstructured connectivity and test its ability to recre-
ate target connectivity in such networks (Fig.  1). We require that the 
underlying mechanisms be purely local, i.e. the behavior of each cell 
and barcode is based on the information available in this cell or in its 
synapses only. The particular form of dynamics that we considered is 
described by one marker one cell rule (OMOC), which favors position-
ing of a single type of marker DNA sequence in a single neuron. We 
showed that OMOC dynamics leads to fast and reliable recreation of 
desired connectivity in the new network. The formation of new con-
nectivity is achieved in a number of steps given by a power law of the 
network size. Thus, copying connectivity from one neural network to 
another using DNA barcodes is theoretically possible.

References
1. LeCun, Y., Y. Bengio, and G. Hinton: Deep learning. Nature 2015, 521: 

436–44.
2. Kebschull, J.M., et al.: High-Throughput Mapping of Single-Neuron Projec-

tions by Sequencing of Barcoded RNA. Neuron 2016, 91: 975–87.
3. Zador, A.M., et al.: Sequencing the connectome. PLoS Biol 2012, 10: 

e1001411.
4. Lee, J.H., et al.: Fluorescent in situ sequencing (FISSEQ) of RNA for gene 

expression profiling in intact cells and tissues. Nat Protoc 2015, 10: 442–58.

P309 
Triads of synchronized theta cycles boost Cross‑Frequency Coupling 
during novelty exploration
Víctor J. López-Madrona1, Ernesto  Pereda2, Claudio R.  Mirasso3, 
and Santiago  Canals1

1Instituto de Neurociencias, Consejo Superior de Investigaciones 
Científicas, Universidad Miguel Hernández, Sant Joan d’Alacant 03550, 
Spain; 2Departamento de Ingeniería Industrial, Escuela Superior de 
Ingeniería y Tecnología, Universidad de La Laguna Avda. Astrofísico 
Fco. Sanchez, s/n, La Laguna, Tenerife 38205, Spain; 3Instituto de Física 
Interdisciplinar y Sistemas Complejos, CSIC-UIB, Campus Universitat de 
les Illes Balears E-07122, Palma de Mallorca, Spain
Correspondence: Víctor J. López-Madrona (v.lopez@umh.es) 
BMC Neuroscience 2017, 18 (Suppl 1):P309



Page 174 of 176  BMC Neurosci 2017, 18(Suppl 1):60

efficacy, dendritic location, Zebrin (Z +  vs. Z-) phenotype, and input 
patterns of the synapses in a way that matched a large set of experi-
mental observations [5]. The model thus anticipates how a large set of 
electroresponsive patterns could emerge from the complexity of PCs 
synaptic organization generating the specific outputs to be transmit-
ted to DCN [6].
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Our understanding of tactile information processing in humans made 
critical advancements in the recent years [1] These studies fruitfully 
interacted with those aiming at the development of neuromorphic 
devices [2]. Here we tackle this issue combining computational neu-
roscience and neuroengineering. We modelled tactile sensors and 
neurons from both the periphery and the cuneate nucleus taking 
advantage of the existing neurophysiology knowledge. We injected 
them with inputs coming from electronic hardware sensors presented 
with a variety of artificial and naturalistic textures. This approach offers 
rewards in making robots efficient [3], and contributing for better 
understanding of neural mechanisms of sensory processing [4].
First, we generated artificial mechanoreceptor-like output injecting the 
output of our biomimetic tactile sensor into an Izhikevich regular spik-
ing neuron. We injected the normalized output and its derivative to 
reproduce the dynamics of Slowly Adaptive and Fast Adaptive neurons 
respectively [1]. We mimicked the rich information content in primary 
afferent sensors by presenting 10 naturalistic textures (Glass, BioSkin, 
Textiles, etc.) to our tactile sensor, in a passive touch protocol. We have 
achieved accuracy as high as 97% in classifying these 10 textures using 
a kNN decoding based on Victor-Purpura distances [5]. As a second 
step, we have simulated a second layer of neurons receiving the output 
of mechanosensors with conduction delays mimicking the peripheral 
nerve fibers that transmit primary afferent signals onto the cuneate neu-
rons (CNs). The CNs are the second order neuron structure present in the 
brain stem [1, 2], that is responsible in segregating the PA information 
based on different tactile input features [6]. The conduction delays gen-
erated a structure of coincident inputs that could encode stimuli orien-
tation [7]. We modeled then the learning of stimuli segregation in CNs, 
based on recent neurophysiology studies [6, 8]. We developed a model 
of synaptic learning plasticity able to reproduce the sparseness of CNs 
encoding of information from primary afferent. We tested this model by 
presenting a broad spectrum of high & low frequency inputs (textures 
& shape stimuli, using sliding & indentation protocol respectively) in a 

pseudo random fashion to induce a realistic rearrangement of synaptic 
weights, studying the evolution of connectivity with stimulation history. 
We found that highly specialized CNs tended to pick up diverse features 
in the input spike patterns and hence in tactile stimuli. Our model pro-
vides a candidate mechanism for feature extraction in CNs and might 
pave the way to neuromorphic algorithms able to learn to segregate 
tactile inputs.
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There are two main ways of neural networks identification in human 
brain using fMRI: based on searching for dependency of voxel activ-
ity on the task performance and based on finding interdependency 
of voxel activity among each other (i.e., resting state) [1]. The disad-
vantage of the first method is that it is practically impossible to select 
an experimental task which only one cognitive process is involved in, 
and that is why it is difficult to talk about specificity of the obtained 
network to some particular function. Because of this item, it is neces-
sary to conduct a system of tasks. Brain activity which was obtained 
using the second way also connects not only with certain cognitive 
processes, but reflects primarily default state of the brain. Further-
more, another serious problem is artifacts and physiological noise [2]. 
A new method of system visualization of cognitive functioning for 
fMRI (Russian Federation #2016149614 patent pending) and corre-
sponding software (Fact-fMRI) for complex factor analysis for several 
individual datasets is presented (Fig. 1). Compared to the ICA method, 
the new method allows to estimate the number of functional systems 
by orthogonal factors which can be additionally rotated. This method 
allows to formalize identification of brain systems which are involved 
in executing of different cognitive tasks. A proposed method includes 
the following stages:
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1. Normalization of voxel activity in a given time slice in a specific 
task;

2. Obtaining a matrix of voxel activity in time slices in each of the 
tasks;

3. Calculating cross-correlation between different time slices within 
one task and among the others and the following factorization (Q 
factor analysis);

4. Dimensionality estimation of this matrix based on eigenvalues;
5. Obtaining the orthogonal system of factors (or factor loadings) as 

the result of different types of rotation;
6. Computing a corresponding matrix of factor scores.

The dimensionality of the obtained matrix is interpreted as an amount 
of functional systems involved in all conducted cognitive tasks. Factor 
loadings are interpreted as characteristic of dynamics of each system 
as a whole in different tasks. Factor scores reveal the localization of 
each brain system.

The local field potential (LFP) is a widely-used signal to monitor the 
activity of neural populations. It is usually considered to be generated 
by the synaptic currents triggered by pre-synaptic action potentials. 
Nevertheless, the magnitude and spatial distribution of LFP depends 
greatly on the anatomy of recorded region of the brain, including the 
neuron morphology, arrangement of different neuron types and the 
distribution of excitatory and inhibitory synapses.
In hippocampus, the pyramidal cells are aligned with somas placed 
in the stratum pyramidale (s.p), basal dendrites in stratum oriens (s.o) 
and apical dendrites stretching through stratum lucidum (s.l), stratum 
radiatum (s.r) and stratum lacunosum moleculare (s.lm). Distribution of 
synapses terminating on the pyramidal cells is also framed. Synapses of 
the basket cells terminate mostly on or near to the soma of pyramidal 
cells forming basket-like-looking dense axonal structures [1, 2]. Pyrami-
dal cells, on the other hand, stretch their axons much further from the 
cell body and terminate their synapses in the s.r and s.o. Extracellular 
recordings from the pyramidal cell layer, besides spiking activity, show 
very distinct inhibitory fields generated by single interneurons [3, 4].
In neocortex, on the other hand, neurons are positioned in parallel, 
they are shifted in the vertical axis. Although, inhibitory synapses are 
still placed on nearby somas, they generate effectively closed-field 
symmetry, which does not produce large far-field potentials. Recently, 
we have shown, however, that the electric field following a single 
interneuron spike dominates the on-going LFP. Excitatory neurons 
contribute to the LFP with longer latencies suggesting that their con-
tribution is di-synaptic, mediated by an intermediary interneuron [5].
In the present study, we are investigating this discrepancy using com-
putational modelling. We place pyramidal neurons according to their 
distribution in the hippocampus and neocortex and activate inhibitory 
or excitatory synapses on them. We follow the distributions of neurons 
and synapses found in the literature and realistic morphology down-
loaded from online databases (neuromorpho.org). The simulation of 
the model is performed in NEURON simulator through its Python inter-
face and the extracellular field is calculated using the NeuroEAP library 
[6]. We reproduce the findings of Bazelot et al. [4] in the hippocampus 
and Telenczuk et al. [5] in the neocortex and show that the difference in 
the field magnitude originate from the differences in the distribution 
of synaptic target of inhibitory and excitatory neurons. Importantly, we 
find that the magnitude of the LFP generated by the synapses and the 
relative contribution of excitatory vs. inhibitory pre-synaptic neurons 
depend on the cortical layer and the source of feedforward activation.
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Figure 1. A scheme of the Fact-fMRI method. N - a number of cog-
nitive tasks; m - a general number of scans within N tasks; n - a 
number of analyzing voxels in the brain; Z - a normalized matrix of 
initial data; K - a number of obtained factors, which interpreted as 
an amount of functional systems included in all cognitive tasks; A 
(rot) - a matrix of factor loadings after rotation, describing dynam-
ics of brain activity for each of functional systems; P - factor scores, 
revealing the localization of each brain system

Thus, the proposed method allows to combine data which show con-
ducting several cognitive tasks by a person in a single model. Further-
more, it allows to identify and characterize corresponding functional 
brain systems.
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In-vivo neural activity gives rise to transmembrane currents that 
can be recorded as an extracellular field potential. These potentials 
are often challenging to interpret due to thousands of contributing 
sources. We aim at revealing the neural sources of the “neurophonic”. 
The neurophonic is a frequency-following extracellular potential that 
can be recorded in the network formed by the nucleus magnocellu-
laris (NM) and the nucleus laminaris (NL) in the brainstem of the barn 
owl. NL anatomy is well understood, and putative generators of the 
neurophonic are the activity of afferent axons from NM, the synaptic 
activation onto NL neurons, and spikes of NL neurons.
We recorded the neurophonic in response to binaural high-frequency 
tones (3-7 kHz) close to the recording site’s best frequency, and we var-
ied the interaural time difference (ITD). The mean activity of the mon-
aural inputs to NL does not change with ITD. However, their relative 
phase does, causing cancellation or summation of input signals. The 
activity of the binaurally sensitive output of NL, i.e., firing rate of NL 
neurons, strongly depends on ITD. Our recordings contained both of 
these signals, and we analysed the broadband power spectrum of the 
response (0-18 kHz).

The low-frequency component (LFc, 200-700 Hz) of the neurophonic 
spectrum depended on ITD. The spectrum of extracellularly recorded 
NL neurons’ action potentials closely resembled this component. Thus, 
the LFc reflects the contribution of action potentials initiated in NL 
neurons. The spectral component at the stimulus frequency (SFc) was 
much stronger than the LFc. The SFc also depended on ITD, reflecting 
the activity of the inputs and their relative phase change with ITD. The 
power spectrum at other frequencies did not depend on ITD. We used 
the LFc as a proxy for NL neurons’ local population activity, and the SFc 
as a proxy for NM axons’ local population activity. We compared the 
ITD and frequency tunings of these proxies at each recording site. The 
best ITDs of the LFc and the SFc were independent. Also, the tuning 
to stimulus frequency was different: LFcs showed typically a 400  Hz 
lower best frequency than SFcs. Both findings indicate that the LFc 
might originate from NL neurons’ axons in the vicinity of the electrode. 
Related NL neurons can be located tens to hundreds of micrometers 
away. The findings are consistent with the known anatomy of NL. 
Our analysis thus reveals the small contribution of NL neurons to the 
neurophonic, improving our understanding of the extracellular field 
potential in the auditory brainstem.
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