
‘Shall I compare thee to a network?’
Visualizing the Topological Structure of Shakespeare’s Plays
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Fig. 1. An illustration of different co-occurrence networks for Shakespeare’s plays. The networks appear to exhibit different structural
properties. Assessing their differences is not easy, however. Using persistent homology, we derive a set of structural descriptors (shown
as scatterplots in the figure) that permit us to quantify the differences objectively.

Abstract—Many of the plays of William Shakespeare are almost universally known and continue to be played even 400 years after
his death. Although the plots of the plays are in general very different, scholars are still discussing similarities in their language, their
structure, and many other aspects. In this paper, we demonstrate that visualization approaches may support such an analysis. The
presence of machine-readable annotations for each of the plays permits us to construct a set of weighted networks. Every network
describes co-occurrence relations between individual characters of a play; its weights may be used to indicate the importance of a
connection between two characters, for instance. We subject the networks to a topology-based analysis that permits us to assess their
structural similarity. Moreover, we use the dissimilarity values to obtain a topology-based embedding of all the plays. We then proceed
to show how features in the dramatic structure of the play manifest themselves in the embedding. This paper is thus a first step towards
a more in-depth analysis of the plays, demonstrating the benefits of topology-based visualizations for the digital humanities.

Index Terms—Shakespeare, social network analysis, topology, persistent homology, visualization.

1 INTRODUCTION

Even 400 years after his death, Shakespeare remains one of the most
prominent and eminent authors. He had a lasting influence on the de-
velopment of the English language, coining new words such (‘eyeball’,
‘hot-blooded’) or even idioms (‘a foregone conclusion’, ‘heart of gold’).
His works thus continue to be of interest to linguists and anglicists.
In particular, researchers are interested in finding structural similari-
ties and differences in plays. This can be done by traditional close
reading—the careful interpretation of single text passages, accounting
for all nuances and contexts—or the newly-emerging distant reading
paradigm that has been pioneered by Moretti [13].

In distant reading, texts are compared among each other using dif-
ferent methods that focus on their relations or structures, for example.
This paradigm has aroused a great amount of interest in the visual-
ization community and led to many fruitful collaborations; see e.g.
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Jänicke [10] for a recent in-depth survey. But what is the appeal of
distant reading? In the introduction of his book, Moretti states that
“distance is however not an obstacle, but a specific form of knowledge:
fewer elements, hence a sharper sense of their overall interconnection.
Shapes, relations, structures. Forms. Models.” It is in this spirit that
our paper aims to provide a new set of methods for comparing, quan-
tifying, and visualizing structural differences in Shakespeare’s plays.
Our method works by extracting co-occurrence networks—graphs with
edge weights, in which each node represents a particular character in a
play—from a tagged corpus of Shakespeare’s plays. We then subject
these networks to a novel form of structural analysis by calculating
their persistent homology. Using persistent homology, we are able to
describe a network in terms of its structural features, such as connected
components and cycles. Furthermore, we can compare different net-
works with each other. We demonstrate that this approach can be used
effectively to visualize structural differences in plays.

2 RELATED WORK

The analysis of social networks is a very established technique in many
application disciplines [17]. Typically, these networks are created
from real-world networks, such as citation networks or collaboration
networks [14]. Our data is somewhat different because we require a
separate extraction step.

Many papers concentrate on providing specific visualization strate-



(a) ε = 0.0,β0 = 4, β1 = 0 (b) ε = 0.1,β0 = 3, β1 = 0 (c) ε = 0.5,β0 = 1, β1 = 0 (d) ε = 0.9,β0 = 1, β1 = 1 (e) ε = 1.0,β0 = 1, β1 = 0

Fig. 2. An illustration of the persistent homology of a graph filtration. We denote the number of connected components by β0 and the number of
cycles by β1. Since graphs in the filtration need to be nested, we assign every vertex a weight of 0. New edges and triangles are highlighted in red.
The scale parameter ε determines for how long structural features persist in the graph. Fig. 4 depicts the corresponding persistence diagram D.

gies and graphical user interfaces. The network is either shown di-
rectly [8] or in parts [18]. Recent work focuses on visualizing ad-
ditional attributes in the network that go beyond the co-occurrence
relationship [2].

A very common approach for the analysis of networks uses different
centrality measures [12] to assess the relevance of individual nodes.
The distributions of these measures may then be compared to gauge
the similarity of networks. We refrain from this approach here because
the choice of centrality measure is known to affect the results of the
analysis—different measures consider different vertices to be important.
Moreover, the accuracy of centrality indices depends on the topology
of the graph [4], resulting in biased calculations. We instead focus on
describing and summarizing the structural information of a network. To
this end, we employ persistent homology, a method from computational
topology [7]. We already demonstrated in previous work that persistent
homology is an effective tool for analysing multivariate data sets under
multiple aspects [16]. Furthermore, Carstens and Horadam [5] showed
that topological features of collaboration networks may be used to
distinguish them from e.g. random networks. Their analysis only uses
coarse summary statistics, however, whereas our analysis incorporates
topological dissimilarity information and topology-based embeddings.

3 DATA

For the analysis in this paper, we use a freely-available tagged corpus1

of Shakespeare’s plays. The corpus uses a simple data format that
resembles a markup language. Fig. 3 depicts a small example. We
parse the play line by line and extract speakers, text, and relevant stage
directions, such as a character exiting from stage. Our implementation
considers a scene to be the smallest unit of cohesion in the play. When-
ever two speakers appear in the same scene, we connect them by an
edge. If the edge already exists, we update its weight. We take care
to detect speakers that exit from the scene before it is finished, as they
contribute less to a scene than a character that remains on stage for the
duration of the whole scene.

We use two different weight schemes for the resulting networks:
speech-based weights and time-based weights. Let u and v be two
different speakers that co-occur in the same scene. Furthermore, let
wu and wv be the amount of words used by each speaker and W be the
total number of words used in the scene so far. For the speech-based
weights, we set the weight of edge (u,v) to

ws(u,v) :=
wu +wv

2W
, (1)

which ensures that a speaker that only uses a few lines is considered
less important than a speaker that has more lines. At the same time, this
weight scheme accounts for the fact that speakers that occur in scenes
with many lines are generally more important than speakers that occur
in scenes with few lines. For example, in the short exchange shown in
Fig. 3, the edge between MASTER and BOATSWAIN has ws(u,v) = 1.0
because when the MASTER leaves the scene, he participated in the
complete dialog of the scene. The edges connecting the BOATSWAIN
to the other characters have larger weights because the BOATSWAIN

1http://lexically.net/wordsmith/support/shakespeare.html

<ACT 1>

<SCENE 1>

<On a Ship at Sea. A tempestuous noise of thunder &

↪→ lightning heard.>

<STAGE DIR>

<Enter a Shipmaster and a Boatswain severally.>

</STAGE DIR>

<MASTER> <1%>

Boatswain!

</MASTER>

<BOATSWAIN> <1%>

Here, master: what cheer?

</BOATSWAIN>

<MASTER> <1%>

Good, speak to the mariners: fall to’t yarely, or

we run ourselves aground: bestir, bestir.

<STAGE DIR>

<Exit.>

</STAGE DIR>

</MASTER>

Fig. 3. An example of the tagged corpus we use to create networks. We
detect speakers, their text, and relevant stage directions.

talks to more characters during the play. This is illustrated in the
corresponding network in Fig. 1, right.

We also use a second time-based weighting scheme. Here, we use
the amount of total time that has elapsed in the play so far. In the
tagged corpus, this is encoded as a percentage for every speaker; see
Fig. 3. Following the notation introduced above, we set the weight of
edge (u,v) to

wt(u,v) := max(tu, tv), (2)

where tu and tv denote the time at which characters u and v appeared
for the first time in the play. For example, the edge between MASTER
and BOATSWAIN has a weight of 1, because both characters co-occur
when about 1% of the play has elapsed. This weight scheme is more
coarse but it permits us to compare the temporal evolution of different
plays with each other, i.e. whether characters co-occur at similar times.

Visualization & post-processing. We use the open-source tool
Gephi [1] and the FORCEATLAS2 [9] algorithm for visualizing the
graphs. Fig. 1 shows some example graphs in which the thickness
of an edge denotes its weight. These visualizations show that our
weight schemes are capable of displaying structural differences between
different networks. We use them also for manually correcting the
resulting networks because our parser implementation fails to create
edges between minor characters in some of the plays. To encourage
further research and critique, we make the original and the corrected
networks as well as the parser code freely available2.

2https://github.com/Submanifold/Shakespeare

http://lexically.net/wordsmith/support/shakespeare.html
https://github.com/Submanifold/Shakespeare
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Fig. 4. A persistence diagram D. The structural features, i.e. connected
components and cycles , obtained during the graph filtration depicted
in Fig. 2 are summarized here. Persistence diagrams afford robust
distance metrics that quantify topological similarity between two graphs.

4 PERSISTENT HOMOLOGY

Persistent homology is a method from computational topology [7] that
is often used to detect topological features in high-dimensional data
sets. In the case of social networks, which are a special class of graphs,
these features are well-known and comprise connected components (di-
mension 0) and cycles (dimension 1). Connected components indicate
clusters of characters in a graph, while cycles indicate small cliques, i.e.
characters that often appear together with a similar importance. These
features are known to represent salient properties of a network [5]. The
basic idea of persistent homology is to assess a graph G at multiple
scales in order to increase the amount of structural information that is
used. To perform this multi-scale assessment, a scalar function on the
graph—such as a weight function—is required. In the following we
refer to a G(ε) as the subgraph of G in which an edge (u,v) is only
kept if w(u,v)≤ ε . We have a natural nesting relation between graphs
for increasing weights, i.e. G(ε)⊆G(ε ′) for ε ≤ ε ′. As a consequence,
given a series of thresholds ε0, . . . , εk, we obtain a sequence of nested
graphs,

/0⊆G(ε0)⊆G(ε1)⊆ ·· · ⊆G(εk−1)⊆G(εk)⊆G, (3)

which we refer to as a graph filtration. Notice that the two weight
schemes we defined above are valid graph filtrations in this sense. We
also add all triangles, i.e. 3-cliques, to the graph. Adding these triangles
has the effect of removing cycles from the graph. This permits us to
measure at which values of the weight parameter ε a cycle starts to
disappear again because it has been ‘filled in’. Fig. 2 depicts an example
of how to calculate persistent homology of a graph filtration. At every
value of the weight parameter ε , we analyse a different ‘snapshot’ in
the graph and count the number of connected components β0 as well as
the number of cycles β1. The number of structural features may change
between snapshots, as features may be ‘created’ or ‘destroyed’. For
example, the inclusion of an edge may destroy a connected component
because it merges with another connected component. We summarize
these changes of structural features in an auxiliary visualization, the
persistence diagram D. If a feature has been created in a snapshot
for ε = εi and destroyed at ε = ε j, we add the point (εi,ε j) to the
persistence diagram D. In the graph filtration shown in Fig. 2, for
example, all connected components are created at ε = 0. At ε = 0.1,
the inclusion of an edge merges two components, so we add the point
(0,0.1) to D. Fig. 4 shows the full persistence diagram for this example.

We refer to the quantity pers(εi,ε j) := |ε j− εi| as the persistence of
the corresponding feature. The persistence of a point is an indicator
of its relevance. Features that persist over a long range of the weight
parameter ε are considered to be important, while features that per-
sist only over a short range are often considered to be noise. In the
persistence diagram D, pers(·) is represented by the distance to the
diagonal. The closer a point is to the diagonal, the less important its
corresponding feature. Following Cohen-Steiner et al. [6], we add the
point (0,maxε) to our persistence diagrams to ensure that all connected
components are represented in the D.

Romeo & Juliet

Macbeth

Henry IV: Part I

All’s Well that Ends Well

Comedy
Tragedy
History

Fig. 5. An embedding of all plays according to the speech-based filtration.
Some plays are structurally extremely different from the remaining plays,
which results in them being treated as outliers. For layout reasons, we
do not show all labels.

Comparing persistence diagrams. The appeal of persistent ho-
mology is that there are robust distance metrics between persistence
diagrams that permit assessing the topological similarity of graphs. In
this paper, we use the Wasserstein distance W2. Given two persistence
diagrams X and Y, it is defined as

W2(X,Y) :=

(
inf

η : X→Y ∑
x∈X
‖x−η(x)‖2

∞

) 1
2

, (4)

where η : X→ Y denotes a bijection and ‖ · ‖∞ the maximum norm.
The Wasserstein distance thus measures the amount of transformations
required to transform one persistence diagram into another one. Since
the cardinality of both diagrams is different in most cases, we assume
that X and Y also contain the orthogonal projections of their points to
the diagonal. The bijection η may then send a point in one diagram
to its projection onto the diagonal, thereby indicating an unmatched
topological feature.

Implementation & performance Persistent homology for graphs
can be efficiently calculated, requiring only a single pass through the
graph. This has a complexity of O (n logn), where n refers to the
number of edges in the graph. The Wasserstein distance W2 requires
calculating maximum weighted matchings in bipartite graphs [7, pp.
229–236]. The complexity of this calculation is O

(
m3), where m

refers to the number of points in the persistence diagram. This is not
yet prohibitive for our persistence diagrams, but novel algorithms [11]
make the Wasserstein distance calculations applicable even for very
large persistence diagrams.

5 RESULTS

We now briefly discuss the results for the two filtrations we defined
earlier.

Speech-based filtration
First, we calculate persistent homology for the speech-based filtra-
tion to obtain the pairwise Wasserstein distances between the resulting
persistence diagrams. Using metric multidimensional scaling [3], we
obtain an embedding of all plays in R2 (Fig. 5). In this embedding,
spatial proximity indicates topological—i.e. structural—similarity. We
follow the classification into comedy , tragedy , and history as
mentioned in the First Folio of Shakespeare’s plays. In the embed-
ding, several plays are conspicuous and get our attention. The tragedy
ROMEO & JULIET, for instance, is surrounded by several comedies
and histories. This means that its structure resembles that of a comedy
more than it that of a tragedy. Some essays in literary criticism, e.g.
Snyder [19], already stated similar results. It is interesting to see that
content-based analysis can be supplemented by our quantifiable struc-
tural analysis of the ‘constellation of characters’ and the amount of their



Troilus & Cressida

Othello

Pericles
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Fig. 6. An embedding of all plays according to the time-based filtration.
There is a clearly-visible strand of ‘comedic’ plays, with some interesting
outliers. For layout reasons, we do not show all labels.

interaction in the play. Moreover, we observe that MACBETH, another
tragedy, is placed well apart from all other plays. This is because it
features more connected components, i.e. more ‘character clusters’,
with higher persistence values, as well as a larger amount of cycles of
high persistence—indicating that there are more subplots in MACBETH
than in other plays. Fig. 1 depicts two compressed persistence dia-
grams. We can see that in contrast to the diagram for A MIDSUMMER
NIGHT’S DREAM, the diagram for MACBETH contains data points that
are removed from the diagonal.

Similar observations apply to ALL’S WELL THAT ENDS WELL,
a comedy that is structurally different from the other plays—a fact
that has already been studied using close reading [21]. Furthermore,
HENRY IV: PART I is set apart from all other plays, in particular from
the remaining histories of the ‘Henriad’, due to its highly-complex
structure comprising numerous intertwined subplots and many smaller
figure constellations that result in a large amount of topological activity.
We did not find a comprehensive justification for this phenomenon.

Time-based filtration

Fig. 6 shows the embedding of all plays according to the time-based
filtration. We observe that most comedies are ‘lumped together’ in
a longer elongated structure. This implies that there is a relatively
typical order in which different characters are introduced in a comedic
play. The most notable outlier is the comedy PERICLES, PRINCE OF
TYRE, which appears to be rather atypical for the remaining comedies.
Interestingly, this is a play to which Shakespeare only contributed as a
co-author.

Furthermore, we can see that two tragedies, OTHELLO and TROILUS
& CRESSIDA are situated near the cluster of comedies. The internal
chronology of these plays is thus most similar to that of a typical com-
edy. Interestingly, this fact has already been noticed by Shakespeare
scholars, leading to the definition of a Shakespearean problem play.
A problem play is play with an ambiguous tone that cannot be easily
categorized. Tillyard [21], for instance, considers TROILUS & CRES-
SIDA to be the epitome of a problem play. Likewise, Teague [20] writes
about how OTHELLO features a ‘fundamentally comic structure’.

The time-based structural analysis of a play can give further weight
to these traditional text-based studies. It also serves to highlight the
difficulty in classifying a play by its internal chronological structure
alone—there are no well-separated clusters between the different gen-
res.

6 CONCLUSION

In this paper, we presented a novel method for quantifying structural
information in the plays of William Shakespeare. Our method uses
topological concepts to analyse weighted co-occurrence networks of a
play. Using two different strategies for calculating edge weights in the
networks, we were able to assess dissimilarities between plays from

two different viewpoints. We demonstrated that our method is capable
of visualizing interesting patterns with respect to the structure of a play.
Our analysis remained relatively superficial because our goal was to
demonstrate that topology-based techniques are capable of detecting
salient structures in these networks.

We hope that our paper stimulates further research in that regard, as
there are multiple aspects that may increase the expressive power. For
example, it would be interesting to obtain weights that are based on
the emotional content or setting of scene. This would tie in with recent
work by Reagan et al. [15] on emotional arcs in stories. Moreover, the
visualizations we showed here could be extended to depict the chronol-
ogy of Shakespeare’s own work. This could result in a visualization
that shows changes in structural style over time.
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