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Summary 

 

Adult neurogenesis adds an entirely new level of plasticity to the brain and raises 

hope to use stem cell therapy to repair damaged nervous tissue. To understand the role 

of neurogenesis in the adult brain and to harness its potential it is of utmost importance 

to understand the regulation of the stem cell niches. Our group previously showed that 

the endozepine DBI is expressed in neuronal progenitors in the SVZ and that it reduces 

GABA signalling in these cells. Via this mechanism, DBI promotes the proliferation of 

fast dividing progenitors which leads to a strong increase in neurogenesis. Here I 

investigated the presence of DBI in other neurogenic niches and its role in regulating 

postnatal and adult neurogenesis. I found that DBI is strongly expressed in the SGZ and 

in the walls of the 3
rd

 ventricle both postnatally and in adult mice. Furthermore, I 

showed that DBI is present in RG cells during embryonic development. I found that 

DBI is expressed not only in all mouse postnatal and adult neurogenic niches but also 

across species in the SGZ of the Rhesus monkey and in humans. High expression levels 

of DBI were detected in all stem cells and in the early population of amplifying 

progenitors, suggesting that this protein could be considered as an indicator for 

stemness in the nervous tissue. Focusing on the SGZ, I showed that DBI negatively 

modulates the activity of the GABAA receptor in stem cells, thereby increasing their 

proliferation, self-renewal and astrocyte production. In summary, DBI together with 

GABA regulate the balance between preserving the stem cell pool and neuronal 

production.  

External factors such as environmental enrichment and physical exercise strongly 

enhance neurogenesis. I found in this study that DBI is essential for the pro-

proliferative and pro-neurogenic effects of enriched environment and exercise. 

Therefore, DBI and GABA regulate SGZ neurogenesis in a close partnership enabling 

multiple levels of control which makes the niche dynamic and capable of reacting 

promptly to changes in the environment. 
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Zusammenfassung 
 
 

Adulte Neurogenese trägt zu einem völlig neuen Niveau an Plastizität des 

Gehirns bei und weckt die Hoffnung, Stammzelltherapie zur Reparatur von 

beschädigtem Nervengewebe zu verwenden. Um die Rolle von Neurogenese im 

adulten Gehirn zu verstehen und sich ihr Potenzial zunutze zu machen, ist es von 

höchster Wichtigkeit, die Regulierung der Stammzellnischen zu verstehen. Unsere 

Forschungsgruppe hat zuvor gezeigt, dass das endozepine DBI in neuronalen 

Progenitoren in der Subventrikulären Zone exprimiert wird und dass es die GABA-

Signalisierung in diesen Zellen reduziert. Durch diesen Mechanismus fördert DBI die 

Vermehrung von sich schnell teilenden Progenitoren, was zu einem starken Anstieg 

von Neurogenese führt. Hier habe ich die Anwesenheit von DBI in anderen neurogenen 

Nischen und seine Rolle bei der Regulierung der postnatalen und adulten Neurogenese 

erforscht. Ich habe herausgefunden, dass DBI sowohl in neugeborenen als auch in 

adulten Mäusen in der Subgranulare Zone und in den Wänden des dritten Ventrikels 

stark exprimiert wird. Außerdem habe ich aufgezeigt, dass DBI in RG-Zellen während 

der Embryo-Entwicklung vorhanden ist. Ich habe herausgefunden, dass DBI bei 

Mäusen nicht nur in allen postnatalen und adulten neurogenen Nischen exprimiert wird, 

sondern auch artübergreifend in der SGZ der Rhesusaffen und in Menschen. Große 

Mengen an DBI wurden in allen Stammzellen und in der frühen Population von 

wechselnden Progenitoren gefunden, was andeutet, dass dieses Protein als Indikator für 

Stammzellpotenzial im Gehirn angesehen werden könnte. Bei genauerer Betrachtung 

der SGZ konnte ich aufzeigen, dass DBI die Aktivität des GABAA-Rezeptors in 

Stammzellen negativ beeinflusst und dabei deren Ausbreitung, Selbsterneuerung und 

Astrozyten-Produktion anhebt. Zusammenfassend bedeutet dies, dass DBI zusammen 

mit GABA das Gleichgewicht zwischen der Erhaltung des Stammzellpools und der 

neuronalen Produktion reguliert.  

Externe Faktoren wie eine angereicherte Umgebung und körperliche Aktivität 

fördern die Neurogenese stark. Ich habe durch diese Studie herausgefunden, dass DBI 

essenziell ist für die Förderung von Neurogenese in angereicherter Umgebung. Somit 
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regulieren DBI und GABA die SGZ Neurogenese in enger Zusammenarbeit durch die 

Aktivierung mehrerer Kontrollebenen, was die Nische dynamisch macht und befähigt, 

schnell auf Änderungen in der Umgebung zu reagieren. 
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1. Introduction  

 

At the beginning of the 20
th

 century when the base of neuroscience were laid, 

researchers believed that after birth the number of neurons in the human brain would 

not change, or if so, only slightly. The complex structure of the brain, the large number 

of neurons, the intricate connections between them and the lack of improvement after 

neurodegeneration or injury supported this hypothesis. Using 
3
H-thymidine 

experiments, Altman and Das provided the first proofs that new neurons are produced 

postnatally in the rat brain, opening a new research field (Altman and Das, 1965). 

Altman also showed the presence of labeled cells in the subventricular zone (SVZ) of 

the lateral ventricles and the migration of these cells towards the olfactory bulbs (OB) 

via a structure he termed the rostral migratory stream (RMS) (Altman, 1969). These 

findings raised the hope to harness neurogenesis in the adult for repair following 

damage of nervous tissue. Furthermore, neurogenesis in the adult represents yet another 

mode of plasticity in the mammalian brain, which was thought to subside during/after 

development. In the course of the next fifty years, great advances were made regarding 

molecular and cellular characteristics of neural stem cells, composition of the 

neurogenic niches, regulation and functions of adult neurogenesis (Bond et al., 2015). 

In vitro experiments showed the presence of putative stem cells with self-renewal and 

multipotency capacities in the adult rodent brain (Reynolds and Weiss, 1992). Using 

the synthetic thymidine analogue bromodeoxiuridine (BrdU) in vivo, the group of Fred 

Gage showed that neurons are born in the adult rat dentate gyrus (DG) (Kuhn et al., 

1996). Final proofs that the new-born neurons integrate in mature circuits of the brain 

were brought by Dayer and colleagues With the help of label retention studies they 

showed that some of the new-born neurons remain in the brain throughout the life of 

the animal (Dayer et al., 2003). Furthermore, Carlen and colleagues, showed that 

newborn neurons integrate functionally in brain circuits and contribute to their function 

(Carlen et al., 2002). These early papers were followed by a vast literature investigating 

the behavior of neural progenitors and the factors regulating them (Bond et al., 2015). 

The first indication of adult neurogenesis in the human brain was brought by Eriksson 
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and colleagues, who showed the presence of BrdU positive neurons in the hippocampus 

of cancer patients that received the thymidine analogue for diagnostic purposes 

(Eriksson et al., 1998). The group of Arturo Alvarez-Buylla also found the presence of 

neurogenic activity in the SVZ of human infants. However, this activity seems to 

decrease steeply during childhood and has virtually subsided in adults (Sanai et al., 

2011). Furthermore, the authors showed the presence of postnatally generated neurons 

in the RMS and in a migratory pathway towards the prefrontal cortex and the frontal 

latter migratory route was described for the first time in humans and may correspond to 

the pathway identified by Inta and colleagues in the mouse (Inta et al., 2008; Paredes et 

al., 2016). Based on C
14

 dating, the lab of Jonas Frisén demonstrated that adult 

neurogenesis takes place in the human SVZ, hippocampus and striatum. However, in 

contrast to what had been reported in studies with rodents, the authors found almost no 

new neurons that integrated in the olfactory bulb in humans, pointing towards species 

differences (Bergmann et al., 2015; Ernst et al., 2014; Ernst and Frisen, 2015; Spalding 

et al., 2013).  

 

 

 

Figure 1.1. The main postnatal and adult neurogenic niches present in the mouse and 

human brain. Adapted after Magnsson and Frisén (Magnusson and Frisen, 2016).  
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1.1 Adult neurogenesis 

 

Many reports described the two most important adult neurogenic niches in the 

rodent brain: the SVZ and the subgranular zone (SGZ) of DG (Bond et al., 2015). 

Recent studies also indicate neurogenic activity at the walls of the 3
rd

 ventricle 

(Dietrich and Horvath, 2012; Lee et al., 2012). Furthermore, there are studies indicating 

the potential of other brain regions, non-neurogenic in normal conditions, which get 

activated and produce glial cells and neurons in certain circumstances. For example the 

striatal astrocytes were shown to have a latent stem cell potential and get activated after 

stroke leading to production of both glial cells and neurons (Magnusson et al., 2014). 

   

1.1.1 Adult neurogenesis in the SVZ 

 

The walls of the lateral ventricles in rodents are populated with several 

thousands of neural stem cells (NSC), also known as B1 cells (Fuentealba et al., 2015; 

Furutachi et al., 2015; Lim and Alvarez-Buylla, 2016). SVZ NSCs share many 

properties with astrocytes, for instance expression of the markers glial-fibrillary acidic 

protein (GFAP), glutamate aspartate transporter (GLAST), brain lipid-binding protein 

(BLBP) and sex determining region Y-box 2 protein (SOX2), but not of the astrocytic 

marker S100β (Doetsch et al., 1997; Lim and Alvarez-Buylla, 2016). However, they 

also express Nestin, a marker associated with neural stem cells (Doetsch et al., 1997). 

SVZ NSCs come in direct contact with the ventricle and are surrounded by ependymal 

cells forming a so-called ‘pinwheel structure’. NSCs extend an apical process that 

contacts the ventricle and a long basal process, which, similar to gray matter astrocytes, 

wraps around blood vessels (Lim and Alvarez-Buylla, 2016; Mirzadeh et al., 2008). 

SVZ NSCs are mostly quiescent, but can be activated by several factors, upon which 

they divide asymmetrically to self-renew and produce transit amplifying cells (TAC), 

also termed type C cells, which express mammalian achaete scute homolog-1 (Mash1) 

(Lim and Alvarez-Buylla, 2016). After about three symmetric divisions, TACs develop 

into neuroblasts (type A cells), which in turn divide one or two times in the RMS on 
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their migratory route towards the OB (Ponti et al., 2013a; Ponti et al., 2013b). 

Neuroblasts express doublecortin (DCX) and polysialylated neural-cell-adhesion 

molecule (PSA-NCAM) (Lim and Alvarez-Buylla, 2016). Ensheathed by astrocytes 

forming a network of interconnected paths in the RMS, they migrate in chains towards 

the OB (Doetsch et al., 1997; Lois et al., 1996). After reaching the OB, neuroblasts 

migrate radially to their final position where they differentiate into interneurons (Lim 

and Alvarez-Buylla, 2016).  

 

 

Figure 1.2. Main adult neurogenic regions in the mouse brain, i.e. the SVZ and the 

SGZ. (A) The SVZ and SGZ in coronal and sagittal sections in the mouse brain. (B) 

Neural progenitors and balance between the indicated cell types in the SVZ and SGZ. 

Adapted after Bond, Ming and Song (Bond et al., 2015). 

SVZ NSCs were shown in vitro to produce cells belonging to both the neuronal 

and glial lineage thereby generating neurons, oligodendrocytes and astrocytes. 
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Furthermore, when co-cultured on support astrocyte monolayer, single stem cells 

formed colonies that comprised both neurons and glia, indicating that SVZ NSCs are 

multipotent (Menn et al., 2006). However, in vitro time-lapse experiments showed that 

acutely isolated SVZ progenitors produce either neurons or oligodendrocytes, but not 

both, and no astrocyte production was found (Ortega et al., 2013). In vivo clonal 

analysis from individual stem cells in SVZ showed only the generation of cells 

belonging to neuronal lineages. Furthermore, SVZ NSCs were shown to be short-lived 

and to get exhausted after several asymmetric divisions, indicating that the life-long 

generation of OB neurons is achieved at a population level, while individual SVZ 

NSCs have limited self-renewal capacity (Calzolari et al., 2015). Thus, single cell data 

both in vivo and in vitro indicate that the SVZ has a mosaic organization comprising a 

heterogeneous pool of stem cells that exhibit certain stem cell properties such as self-

renewal and multipotency only at the population level (Chaker et al., 2016).      

 

1.1.2 Adult neurogenesis in the SGZ 

 

The SGZ is a thin layer of cells located between the granule cell layer of the DG 

and the hilus, and harbors a special and complex microenvironment that supports 

neurogenesis in the adult mammalian brain. NSCs populating this niche were thought 

to originate from the dentate neuroepithelium. According to this hypothesis, 

descendants of these progenitors, which produce granule cells during development, 

relocate to the SGZ and continue to produce granule cells also postnatally and in the 

adult (Goncalves et al., 2016b). However, a recent study showed that SGZ NSCs 

originate from a population of progenitors in the ventral hippocampus, and relocate to 

the dorsal hippocampus during late gestation (Li et al., 2013). SGZ NSCs (Type 1 

progenitors) have a radial glia-like (RG-like) morphology, with the cell body residing 

in the SGZ and a long radial process extending through the granular cell layer into the 

molecular layer of the DG where it branches out extensively and forms a bushy tuft-

like termination (Bond et al., 2015). Similarly to SVZ NSCs, SGZ NSCs express the 

glial markers GFAP, GLAST, BLBP, SOX2 and the stem cell marker Nestin, but do 
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not the astrocytic marker S100β (Kempermann et al., 2015). Furthermore, they extend 

end-feet processes to the elaborate vasculature in the niche and are strongly regulated 

by factors in the blood (Filippov et al., 2003; Kempermann et al., 2015). SGZ stem 

cells are mostly quiescent accounting for less than 5% of all proliferation in the SGZ, 

but can get activated and proliferate asymmetrically to self-renew and produce TACs 

(Type 2 progenitors) (Kempermann et al., 2004). Whether SGZ NSCs are capable of 

symmetric division, thereby expanding the stem cell pool, still is a matter of debate in 

the field.  

 

Figure 1.3. SGZ adult neurogenesis. The scheme presents SGZ neural progenitors and 

the most important markers used to identify them. Figure adapted after Overall and 

colleagues. (Overall et al., 2016).  

 

According to Encinas and colleagues, upon activation stem cells rapidly 

undergo asymmetric division (on average three divisions) leading to self-renewal and 

TAC production. Apparently, a proportion of the activated, stem cells transform into 

astrocytes after several rounds of asymmetric division, and would thus account for the 

ensuing depletion of stem cells. The data of Encinas and colleagues indicate that SGZ 
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NSCs cannot undergo symmetric division, which would explain the decrease in the 

stem cell pool and in neurogenesis with age (Encinas et al., 2011). However, 

Dranovsky and colleagues used in vivo lineage tracing in the SGZ starting from the 

GFAP positive stem cells and found that certain cell lineages persist for long time in 

the DG and at the same time found an expansion of the stem cell pool, which would 

contradict the previous proposed model. Most interestingly these authors found that the 

ratio between stem cells and neurons is experience-dependent and the change is more 

pronounced in the dorsal versus the ventral blade of the DG (Dranovsky et al., 2011). 

Bonaguidi and colleagues used long term in vivo lineage tracing that allowed them to 

follow the progeny derived from single Nestin-positive RG-like NSCs. The authors 

found that SGZ NSCs undergo both asymmetric and symmetric self-renewal and are 

able to expand the stem cell pool. Furthermore, they found multiple clones comprising 

both neurons and astrocytes, but no oligodendrocytes (Bonaguidi et al., 2011). In the 

same study, the authors provide evidence that SGZ NSCs exhibit the two fundamental 

properties of stem cells, namely self-renewal and multipotency. Different experimental 

approaches and genetically modified mouse lines might account for the divergent 

conclusions and the derived models. Alternatively, in the studies mentioned above, 

different stem cell populations might have been targeted/studied (Bonaguidi et al., 

2012). Indeed, similarly to the SVZ, different populations of NSCs co-exist in the SGZ. 

They might exhibit different regulatory mechanisms and functions (Gebara et al., 2016; 

Lugert et al., 2010). 

A common characteristic of the presented models is that upon activation SGZ 

NSCs most often divide asymmetrically to produce a new stem cell and a TAC. TACs 

express SOX2, Mash1, T-box transcription factor Eomes (Tbr2) and are highly 

proliferative, leading to an expansion of the progenitor pool. They present different 

levels of specification and have been accordingly classified into Type 2a-1, Type 2a-2 

(or Type 2ab) and Type 2b (or Type 3). Type 2a-1 cells are the most undifferentiated 

type, and like stem cells they express Nestin, SOX2, BLBP and GFAP (at early stages). 

They lack a radial process and present plump short process which are oriented 

horizontally (Kempermann et al., 2004). Type 2a-2 progenitors are BLBP- and GFAP-

negative and continue to express SOX2 and low levels of Nestin. In addition, Type 2a-
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2 progenitors express cell markers for immature cells such as Mash1 and Tbr2, which, 

by decreasing SOX2 expression, are essential for the transition from the stem cell 

towards the TAC stage. Furthermore, Type 2a-2 progenitors start to express NeuroD 

and Prox1, i.e. factors that are important in delineating the neuronal lineage and that are 

essential for the subsequent maturation of the cell. Type 2b cells are the most 

differentiated TACs. They begin to express DCX and PSA-NCAM, which are markers 

for young neurons, and exhibit noticeable processes (Kempermann et al., 2015). The 

transition between stem cells and TACS as well as between the different stages of TAC 

development, is not well-defined, as the down-regulation of some markers and the 

increasing expression of others overlap. Thus, there is a gradual transition from one 

stage to the other, and marker expression does not allow a clear-cut delineation of the 

different stages.  

Early TACs are highly proliferative and are positive for the proliferation 

markers Ki67 and minichromosome maintenance complex component 2 (MCM2). 

They divide symmetrically to produce two other TACs, thus expanding the progenitor 

pool, or neuroblasts (Kempermann et al., 2015; Ming and Song, 2011). Three to four 

days after stem cell division, late Type b progenitors begin to differentiate into DCX-

expressing neuroblasts. Neuroblasts express also calretinin, PSA-NCAM, NeuroD, 

Prox1, and at a later stage they begin to express the mature neuron marker NeuN. 

Neuroblasts can still divide but to a lesser extent than TACs. They have reached the last 

stage in the development of a progenitor on the way to a granule cell, bearing dendrites 

and an axon projecting to the CA3 region (Kempermann et al., 2015; Song et al., 2016).  

 

1.1.2.1 Survival  

 

Similarly to neurogenesis during development, many cells generated in the 

adult SGZ do not survive. Depending on the context, 30% to 70% progenitors survive 

two weeks after their generation (Ryu et al., 2016). Most SVZ-derived, postnatally-

generated neurons die by apoptosis and are removed via phagocytosis by resident 

microglia (Sierra et al., 2010). This process is strongly regulated and has most likely 
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the role to assure that the right number of cells is integrated in the network. There are 

two important selection steps. Most cells die one to four days after birth, at the TAC 

stage or the transition stage between TAC and neuroblast (Ryu et al., 2016; Sierra et 

al., 2010). A second selection step takes place between two and four weeks after birth 

when the cells compete for synaptic input. The cells that manage to get integrated in the 

network survive while the ones that do not make enough connections die via apoptosis. 

However, the number of cells that perish during this second selection step is much 

lower than the large number of cells selected out at the stage of TAC (Kempermann et 

al., 2015; Sierra et al., 2010). Programmed cell death is a fundamental mechanism 

regulating the number of adult-born neurons, and thereby assuring that the ‘right’ cells 

that can contribute to the activity of the network survive and get integrated 

(Kempermann et al., 2015; Ryu et al., 2016).   

 

 

Figure 1.4. Regulation of SGZ adult neurogenesis. The scheme presents SGZ neural 

progenitors and the most important factors regulating their activity. Figure adapted 

after Gonçalves and colleagues. (Goncalves et al., 2016b).  
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1.1.2.2 Differentiation 

 

The first signs of neuronal fate become apparent already at three/four days after 

cell birth, i.e. the time point of transition from Type 2b progenitor to neuroblast. One 

week after birth, cells begin to express DCX and the calcium binding protein calretinin, 

and exhibit non-oriented dendritic processes (Goncalves et al., 2016b; Kempermann et 

al., 2015). Furthermore, at this stage, before full development of neurites, neuroblasts 

receive onto their soma the first input, which is GABAergic, and at this point in 

development excitatory in nature (Aguilar-Arredondo et al., 2015; Esposito et al., 2005; 

Zhao et al., 2006). As soon as four to ten days after cell birth, the axon extends through 

the hilus towards the CA3, and most fibers reach the CA3 region ten to eleven days 

after birth (Aguilar-Arredondo et al., 2015; Hastings and Gould, 1999; Zhao et al., 

2006). After one and a half weeks, young neurons present prominent apical dendrites 

which extend in the molecular layer of the DG, and at two weeks they already show 

developed, however, still aspiny dendritic arborization and extensive GABAergic input 

(Esposito et al., 2005; Zhao et al., 2006). At this time, the chloride gradient is about to 

change. Thus,  the decrease in expression of the Na
+
-K

+
-2Cl

-
 transporter NKCC1 and 

the concomitant increase in expression of the K
+
-coupled Cl

-
 transporter KCC2 

determine that GABA receptor-mediated currents become hyperpolarizing and 

therefore inhibitory (Ge et al., 2006). At about two and a half weeks after birth, the first 

dendritic spines appear at a time when first glutamatergic/excitatory input from the 

medial entorhinal cortex (MEC) becomes evident. This step is also associated with the 

switch in the expression of calretinin to calbindin, a calcium binding protein specific 

for mature granule cells (Aguilar-Arredondo et al., 2015; Esposito et al., 2005; 

Kempermann et al., 2015).  

Physiologically, one to seven days old cells are still silent and do not present 

postsynaptic responses even after stimulation. Starting with day eight after cell birth, 

the young developing neurons commence to have immature electrophysiological 

properties, generating only few action potentials upon current injection (Aguilar-

Arredondo et al., 2015; Esposito et al., 2005). One month after birth the cells exhibit 
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both GABA receptor- and glutamatergic receptor-mediated responses and receive 

abundant glutamatergic afferents. Furthermore, they acquire an action potential 

threshold of -43mV and present spontaneous spiking activity with increasing frequency 

after stimulation of the local network or the perforant path (Aguilar-Arredondo et al., 

2015; Esposito et al., 2005; Mongiat et al., 2009; van Praag et al., 2002). Between two 

and six weeks after birth, adult born neurons have distinct electrophysiological 

properties with a more depolarized resting membrane potential than mature granule 

cells and low input resistance. Furthermore, they have a lower LTP threshold indicating 

a high degree of plasticity. The enhanced plasticity of newborn neurons has been at 

least partially attributed to their transiently increased expression of the NR2B 

containing N-methyl-D-aspartate (NMDA) receptors. NR2B subunits are expressed 

more than NR2A subunits in the early postnatal brain. However, later in development, 

NR2A expression increases causing a switch in the NR2B-NR2A ratio in many brain 

regions, including the hippocampus (Ge et al., 2007; Monyer et al., 1994). NR2B 

subunits were shown to determine a longer opening of the NMDA channel. which 

plays an important role in controlling plasticity-associated changes (Fox et al., 2006; 

Matta et al., 2011; Zhuo, 2009).  
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Figure 1.5. Morphological and physiological developmental stages in postnatal SGZ 

neurogenesis. The scheme presents the morphological and physiological changes 

undertaken by SGZ progenitors on their way to DG granule neurons. The progenitors 

first receive GABAergic input (blue) followed by the glutamatergic input (pink). Figure 

adapted after Gonçalves et al. (Goncalves et al., 2016b).  

 

By eight weeks after birth, new-born neurons are completely integrated in the 

network and have reached a maturation level at which the morphological and 

electrophysiological properties are indistinguishable from the ones of granule cells 

generated during development (Aguilar-Arredondo et al., 2015; Esposito et al., 2005; 

van Praag et al., 2002). The developmental stages of adult-born neurons appear to be 

akin to those of granule cells that are generated perinatally, indicating that they follow 

a cell-autonomous program rather than being influenced by local or external cues 

(Esposito et al., 2005). However, the speed of differentiation is slower in adult 

neurogenesis, and it seems to further decrease with age, indicating that the 

differentiation of adult born neurons is influenced by the environment and not the 

activity of the local network (Rao et al., 2005; Riddle and Lichtenwalner, 2007).     

 

1.1.3 Adult neurogenesis in the 3rd ventricle 

 

While neurogenesis in the adult SVZ and SGZ has been well characterized, adult 

neurogenesis in other brain regions has remained controversial. Several recent studies 

reported the presence of adult neurogenesis in the walls of the 3rd ventricle (Lee et al., 

2012; Xu et al., 2005). Lining the walls of the 3rd ventricle there is a population of 

cells called tanycytes (‘cells with drawn out process’) that have a similar morphology 

to radial glia (Goodman and Hajihosseini, 2015). They are present in the ventral 

hypothalamic ventricular region and have long radial processes, some of which extend 

to the hypothalamic nuclei regulating appetite and energy metabolism. Like SVZ 

NSCs, tanycytes have contact with the cerebrospinal fluid in the ventricle and have 

access to the factors in the blood through fenestrated local capillaries. Furthermore, 
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they express stem cell markers like Nestin and SOX2 (Goodman and Hajihosseini, 

2015; Lee et al., 2012). Based on of BrdU incorporation and viral infection studies, 

tanycytes were shown to proliferate and produce progenitors that migrate in the median 

eminence and generate local neurons, which in turn integrate in the local network and 

become functional (Lee et al., 2012; Xu et al., 2005). The data obtained by Lee and 

colleagues (2012), indicates that overfeeding in adult mice induces an increase in 

neurogenesis in the median eminence. Furthermore, the authors showed that following 

a high fat diet, new-born neurons contribute to a reduction in baseline energy 

consumption and in energy storage in form of fatty acids and glycerides (Kokoeva et 

al., 2005; Lee et al., 2012). The discovery of adult neurogenesis in the hypothalamus 

revealed not only a new neurogenic niche, but also a new function for adult 

neurogenesis, raising the question as to the presence of yet other neurogenic areas in 

the adult brain which have been overlooked because of the low number of newly 

generated neurons (Magnusson and Frisen, 2016; Magnusson et al., 2014).    

          

1.2 External factors influencing adult neurogenesis 

 

Among the most important functions of the mammalian brain is its ability to adapt 

quickly to external circumstances to assure survival and reproduction of the organism. 

Indeed, the mammalian brain is extremely plastic and supports adaption (Lledo et al., 

2006). A most remarkable feature of the mammalian brain is its plasticity, i.e. the 

ability to adapt quickly to changes in the environment. As a result of a previous 

experience, new synapses are formed and existing ones are modified, which will affect 

the way new information is processed (Green and Bavelier, 2008). Adult neurogenesis 

represents a whole new level of plasticity in the adult brain offering the possibility to 

change the pre-established neuronal networks by the addition of new cells that are more 

plastic, at least initially, compared to neurons generated during embryogenesis 

(Goncalves et al., 2016b; Lledo et al., 2006). The increased plasticity of adult-born 

neurons and the ease with which they can be recruited makes them highly suitable to 

change preexisting DG neuronal networks. 
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1.2.1 Adult hippocampal neurogenesis after enriched environment 

and voluntary physical exercise  

 

Adult neurogenesis is not only a source of plasticity but is itself modulated by 

external factors. The dynamics of neurogenesis in both SVZ and SGZ are under the 

influence of the environment and were proposed to adapt the number of neurons to the 

necessities of the local network (Lledo et al., 2006). Adult SVZ neurogenesis plays an 

important role in olfactory discrimination and in olfactory memory formation. 

Olfactory enrichment was shown to increase the number of adult-born neurons in the 

OB by increasing cell survival (Lledo et al., 2006). Adult hippocampal neurogenesis 

supports several hippocampus-dependent functions such as the balance between pattern 

separation and pattern integration to avoid memory interference, temporal encoding of 

memories, cognitive flexibility for learning new tasks and context-dependent memory 

formation (Goncalves et al., 2016b). In adult DG, the dynamics of neurogenesis and the 

fate specification of progenitor cells were shown to be regulated by the environment 

(Dranovsky et al., 2011). The best described external factors found to regulate adult 

neurogenesis are environmental enrichment (EE) and physical exercise (Vivar et al., 

2013). Both voluntary as well as forced running were shown to improve spatial 

memory in tasks like the Morris water maze, the T-maze, the Y-maze and the radial 

arm maze. Furthermore, running was also shown to improve the performance in tasks 

that do not require spatial navigation like novel object recognition, passive avoidance, 

and contextual fear conditioning (Vivar et al., 2013). First evidence that EE and 

physical activity influence adult neurogenesis was brought by Kempermann and 

colleagues (1997). They found that housing mice in an EE with free access to running 

wheels had a pro-proliferative effect, leading to an increase in the number of adult-born 

neurons in the SGZ, which subsequently enhanced the performance of the mice in the 

Morris water maze (Kempermann et al., 1997). Later studies separated EE from 

running and found that both have a pro-neurogenic effect but influence neurogenesis at 

different levels. Most of the increase in neuron production was found to be induced by 

physical exercise. Housing mice or rats with free access to running wheels leads to a 
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two to threefold increase in SGZ cell proliferation, which is the strongest pro-

proliferative effect at the level of TACs (Kronenberg et al., 2003; van Praag et al., 

1999). Furthermore, physical exercise also enhances the activation and proliferation of 

SGZ NSCs (Dranovsky et al., 2011; Gebara et al., 2016). The higher number of adult-

born neurons produced following physical exercise is associated with an increase in 

synaptic plasticity in DG and a better performance in spatial memory tasks such as the 

Morris water maze. Experiments testing the effect of EE devoid of running wheels 

showed that environmental enrichment also has a pro-neurogenic effect. However, this 

setting does not influence the proliferation of progenitors (Olson et al., 2006; van Praag 

et al., 2000), but enhances the survival and the development of TACs and neuroblasts. 

Furthermore, DG adult-born neurons in mice housed in EE showed increased dendritic 

complexity and higher synaptic plasticity. Therefore, adult DG neurogenesis is 

responsive to both physical exercise and to EE (Goncalves et al., 2016b; van Praag et 

al., 2000). Furthermore, enriched odor exposure resulted in an increase in adult SVZ 

neurogenesis and ultimately in more neurons that integrated in the OB (Rochefort et al., 

2002; Vivar et al., 2013). Together, these changes in the environment lead to a strong 

increase in neuron production both neurogenic niches and to an increase in the 

complexity and connectivity of the new neurons adapting local neuronal networks to 

new challenges of the environment (Goncalves et al., 2016a; Lledo et al., 2006). An 

enriched environment would mean more space to be explored but also to be 

remembered. As indicated above, increased neurogenesis would support better pattern 

integration in the hippocampus or smell discrimination and memory in the OB. 

enabling mice to remember more details of their environment and differentiate better 

similar situations, rendering them maybe more successful in the search of food or in the 

avoidance of predators. 
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1.2.2 Factors proposed to support stimulus-induced adult 

neurogenesis  

 

One of the most important questions in the field of adult neurogenesis concerns 

the mechanisms that regulate the stem cell niches. In spite of the vast literature 

regarding the effect of EE and physical exercise on adult neurogenesis, very little is 

known about the mechanisms mediating these effects. A first possible mechanisms 

pertains to factors provided by the vasculature in the niche (Vivar et al., 2013). It has 

been shown that running caused an increase in the DG microvasculature. Furthermore, 

both SGZ and SVZ stem cells are strongly associated with blood vessels and are 

regulated by circulating factors (Fabel et al., 2003; Palmer et al., 2000). However, in 

old mice voluntary exercise still led to an increase in adult SGZ neurogenesis which 

was not mirrored by an increase in the DG vasculature indicating that this mechanism 

alone cannot account for the pro-neurogenic effect of physical exercise (van Praag et 

al., 2007; Vivar et al., 2013). It was also observed that running was associated with an 

increase in circulating neurotrophic factors, which were produced most likely by the 

musculature (Overall et al., 2016; Vivar et al., 2013). Furthermore, for many 

neurotrophic factors increased expression was observed also in the adult neurogenic 

niches. Among the best documented and most important are brain derived neurotrophic 

factor (BDNF), fibroblast growth factor 2 (FGF-2), nerve growth factor (NGF), 

vascular endothelial growth factor (VEGF) and insulin growth factor (IGF) (Vivar et 

al., 2013). Running increased the expression of these factors in the hippocampus, the 

most pronounced being BDNF, which was expressed specifically in the DG, but not in 

the CA1 region (Berchtold et al., 2005; Berchtold et al., 2002; Farmer et al., 2004). 

Infusion of these factors augmented SGZ neurogenesis by increasing proliferation, 

survival and maturation of adult-born neurons (Vivar et al., 2013). This effect is 

especially prominent for BDNF. Its overexpression (OE) in the DG mimicked the 

effect of running, leading to an increase in neurogenesis, synaptic plasticity and an 

improvement in the Morris water maze (Scharfman et al., 2005). Knocking down (KD) 

or blocking neurotrophic factors had the opposite effect (Taliaz et al., 2010). 
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Furthermore, blocking BDNF and VEGF signaling prevented the increase in 

proliferation induced by running, indicating that these factors mediated this effect at 

least in part (Clark et al., 2009; Li et al., 2008). However, these factors have a 

multitude of cellular functions and so far there is no causal effect linking them to 

neurogenesis (Vivar et al., 2013). 

There is good evidence that GABA signaling is an important determinant 

supporting stimulus-induced neurogenesis in the niche is. GABA is present in both 

neurogenic niches and plays important roles in regulating neurogenesis at multiple 

levels. Both in the SVZ and SGZ, GABA regulates the activation and proliferation of 

stem cells (Liu et al., 2005; Song et al., 2014; Song et al., 2016). At the level of the 

SGZ, GABA regulates also the survival and development of TACs and neuroblasts 

(Song et al., 2013). The source of GABA are local PV-positive interneurons. These 

cells are connected to DG granule cells and are modulated by the physical activity of 

the animal (Hu et al., 2014). GABA released from PV-positive interneurons could 

provide information to the stem cell niche regarding the degree of local network 

activity, that in turn reflects the animal’s activity (Song et al., 2014; Song et al., 2016). 

Notably, optogenetic inhibition of PV-positive interneurons canceled the EE-mediated 

survival effect (Song et al., 2013). Thus, GABA signaling is a strong candidate for 

mediating external changes to the neurogenic niches. However, a large body of 

literature shows that the regulation of the neurogenic niches is complex. There are most 

likely several mechanisms and many players, some of which may be redundant, that 

regulate neurogenesis in defined situations.  

  

1.3 GABA and adult neurogenesis 

 

1.3.1 GABA and GABAergic receptors 

 

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in 

the mammalian brain. GABA is present in a large and heterogeneous population of 
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neurons, many of which project locally (interneurons). GABAergic neurotransmission 

is essential in modulating and synchronizing neuronal networks (Mann and Paulsen, 

2007). GABA is produced by glutamic-acid decarboxylase mediated decarboxylation 

of glutamate (Awapara et al., 1950; DeFelipe et al., 2013; Feldblum et al., 1993). 

GABA is generated in the cytoplasm of GABAergic neurons and is taken up into 

vesicles at the axon terminals (Farrukh et al., 1998; McIntire et al., 1997; Roth and 

Draguhn, 2012). Action potentials reaching the axon terminals induce Ca
2+ 

influx 

which triggers the release of GABA into the synaptic cleft (Levy et al., 1973; Suudhof, 

2008). GABA can bind to synaptic receptors thus exerting a phasic action, but it can 

also diffuse rapidly from the synaptic cleft and activate extrasynaptic receptors thereby 

exerting a tonic action. Excess GABA is taken up by surrounding astrocytes (Minelli et 

al., 1995; Minelli et al., 1996; Stell and Mody, 2002). The effect of GABA depends on 

the type of receptor it binds to and on the intracellular Cl
-
 concentration. There are two 

classes of GABA receptors, namely ionotropic GABAA receptors, which are ligand-

gated ion channels, and metabotropic GABAB receptors, which are G protein-coupled 

receptors (Nicoll and Alger, 1979). GABAA receptors are heteropentameric proteins 

that can have in their composition 19 potential subunits: α1-6, β1-3, γ1-3, δ, ε, θ, π and 

ρ1-3 (Cutting et al., 1991; Davies et al., 1997; Hadingham et al., 1993; Hedblom and 

Kirkness, 1997; Jin et al., 2004; Moragues et al., 2000; Olsen and Sieghart, 2009; 

Schofield et al., 1987; Schofield et al., 1989; Sibbe and Kulik, 2016; Whiting et al., 

1997; Yang et al., 1995; Ymer et al., 1989a; Ymer et al., 1989b; Ymer et al., 1989c). 

The subunit composition of the receptor determines the subcellular localization, 

conductance, kinetics and pharmacology (Sibbe and Kulik, 2016). GABAA receptors 

are ion channels permeable both for Cl
-
 and HCO3

-
 (bicarbonate) ions. GABA has an 

equilibrium potential of approximately -70mV, close to the membrane resting potential 

in neurons (Olsen and Sieghart, 2009). Mature neurons express the K
+
-coupled Cl

-

 transporter KCC2, which exports Cl
- 
ions from the cell, leading to a lower intracellular 

Cl
-
 concentration. Binding of GABA to the receptor determines an influx of Cl

-
 into the 

cell, which leads to a hyperpolarization of the cell membrane. Thus, in mature neurons 

GABA acts as an inhibitory neurotransmitter. Neural progenitors and young neurons 

express the Na
+
-K

+
-2Cl

-
 transporter NKCC1, and have a higher Cl

-
 intracellular 
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concentration compared to the extracellular space (Ge et al., 2006). Hence GABA is 

depolarizing when binding to the GABAA receptor in immature neurons. During 

neuronal maturation the expression of NKCC1 decreases while KCC2 starts being 

expressed, leading to a reversion of the chloride gradient and as a consequence to a 

switch from a depolarizing, activatory GABA action to a hyperpolarizing, inhibitory 

action (Ge et al., 2006; Kaila et al., 2014). GABAA receptors are localized both 

synaptically and extrasynaptically. The former are activated by high GABA 

concentrations released into the synaptic cleft and generate fast inhibitory postsynaptic 

currents (IPSCs), thus governing phasic GABA inhibition (Brickley et al., 1999; 

Kullmann et al., 2005). Extrasynaptic GABAA receptors are present peri- and 

extrasynaptically. These receptors are activated by GABA spilled over from nearby 

synapses and they mediate tonic inhibition. Phasic and tonic GABAergic inhibition 

support different functions in the course of neurogenesis. For example, tonic inhibition 

in stem cells has an anti-proliferative effect, while phasic inhibition in TACs promotes 

survival (Song et al., 2002; Song et al., 2013). GABA receptors containing α1, α2 and 

γ2 subunits are often present at the synapse and mediate phasic inhibition, while 

receptors containing α5 and δ are often extrasynaptically localized and mediate tonic 

inhibition (Charara et al., 2005; Farrant and Nusser, 2005; Passlick et al., 2013).  

Metabotropic GABAB receptors are coupled to guanosin triphosphate (GTP)-

binding proteins (G proteins) and are responsible for mediating slow effects. GABA 

binding leads to a conformational change of the receptor, which is transmitted to the Gα 

subunit of the G protein, leading to the exchange of GDP for GTP (Bettler et al., 2004; 

Ulrich and Bettler, 2007). The GTP bound Gα subunit then dissociates from the other 

two subunits of the G protein, the β and γ subunit. Gα subunit can activate 

phospholipase C or inhibit the enzyme adenylyl cyclase, which reduces the levels of 

secondary messenger cyclic adenosine monophosphate (cAMP), this in turn leads to the 

inactivation of the cAMP dependent protein kinase A (PKA). The two pathways 

activated by Gα are some of the most important cellular signalling hubs and can 

regulate different processes like protein expression vesicle priming, modulation of the 

activity of different ion channels, etc. (Franek et al., 1999; Rosenbaum et al., 2009). 

Furthermore, the Gβγ subunit can itself regulate ion channel gating and several other 
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cellular processes. GABAB receptors are heteromultimeric receptors associated with 

auxiliary proteins that regulate the subcellular localization, the kinetics and 

pharmacology of GABAB receptors. They can be present both pre- and the 

postsynaptically. Presynaptic GABAB receptors inhibit neurotransmitter release by 

negatively modulating voltage-activated Ca
2+

 channels, while postsynaptic receptors 

lead to formation of slow IPSPs. GABAB receptors are essential for many important 

brain processes such as learning, cognition, anxiety and have been shown to modulate 

adult neurogenesis (Fritschy et al., 1999; Jones et al., 1998; Rosenbaum et al., 2009).   

 

1.3.2 GABAA receptors and benzodiazepines 

 

GABA binds to the GABAA receptor at the GABA binding site situated 

extracellularly at the interface between the α and the β subunit. Most GABAA receptors 

comprise two α and two β subunits and have two GABA binding sites (Krall et al., 

2015; Sieghart, 2015). Biding of GABA to one site can open the channel, however, 

occupation of both binding sites enhances greatly the opening probability (Baumann et 

al., 2003). Furthermore, the effect of GABA after binding to the site has been shown to 

be influenced by the flanking subunits present in the composition of the channel. 

Besides the well characterized binding site of the GABA between the α and the β 

subunits there are data indicating the presence of another GABA binding site at the 

interface of the δ subunit in the receptors containing it (Sieghart, 2015).  

GABAA receptors present several other binding sites and can be modulated by 

numerous ligands which leads to a very complex pharmacology (Sieghart, 2015). Many 

binding sites are present at the interface between two subunits of the pentameric 

receptor, and the subunit composition determines whether a ligand can bind and exert 

its action or not (Krall et al., 2015; Sieghart, 2015). Among the best characterized 

molecules that modulate the activity of GABAA receptors are barbiturates, 

benzodiazepines, steroids, anaesthetics, alcohol, cannabinoids and picrotoxin, which all 

act as allosteric modulators of the channel (Sieghart, 2015). Benzodiazepines, among 

the best known is diazepam, were first introduced in clinics in the 1960s and are used 
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mostly for their sedative, anxiolytic and anticonvulsant effects (Farzampour et al., 

2015; Sieghart, 2015). Based on the crystal structure of the GABAA receptor with 

bound diazepam, the benzodiazepine binding site has been mapped to the extracellular 

part of the receptor at the interface between the α and the γ subunit (Buhr and Sigel, 

1997). Binding of benzodiazepines modulates the receptor allosterically and causes an 

increase in GABA binding affinity and in channel opening frequency, which leads to a 

change in GABAA receptor mediated currents (Baur and Sigel, 2005; Bianchi, 2010; 

Bianchi et al., 2009; Buhr et al., 1997; Macdonald and Barker, 1978). GABAA 

receptors comprising the subunits α1, α2, α3 and α5 are sensitive to benzodiazepines, 

while the receptors containing the subunits α4 and α6 are insensitive (Rudolph and 

Mohler, 1999). Subunits α1, α2, α3 and α5 contain a conserved histidine residue at 

position 101, 101, 126, and 105, respectively, which are essential for benzodiazepine 

binding. In contrast, receptors containing the α4 and α6 subunits that are insensitive to 

benzodiazepines as they have an arginine residue at the corresponding position 

(Rudolph and Mohler, 1999). Furthermore, mutations of histidine 101 in α1, renders 

the respective GABAA receptors insensitive to benzodiazepines (Rudolph et al., 1999; 

Wieland et al., 1992). Using chimeric α1 and γ2 subunits, two domains of the γ2 subunit 

were identified which are necessary and sufficient for the high affinity binding at the 

benzodiazepine binding site, namely Lys 41 - Trp 82 and Arg 114 – Asp161 (Kucken et 

al., 2000; Sieghart, 2015). An aminoacid residue which was shown to be important for 

binding at the benzodiazepine binding site is phenylalanine 77 on the γ2 subunit (γ2 

F77). Mutations at this site (F77I γ2) leads to a drastic decrease or even abolishment in 

binding of most benzodiazepines (Buhr et al., 1997; Buhr and Sigel, 1997). 

The before mentioned site is the most important for high affinity 

benzodiazepine binding at the GABAA receptor. However, other binding sites were 

also described. Diazepam was shown to bind also to a lower affinity site, which is 

responsible for its anaesthetic properties (Krall et al., 2015; Sieghart, 2015). Diazepam 

and some benzodiazepines bind furthermore to a third site located extracellularly at the 

interface between the α and the β subunit in the position homologous to the classical 

high affinity benzodiazepine binding site (Sieghart, 2015). Furthermore, crystal 

structures of the GABAA receptor with bound benzodiazepines indicated the presence 
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of yet other binding sites. Binding to these sites has, in most cases, similar effects as 

binding to the classical site, namely allosteric modulation of the GABAA receptor 

(Baur et al., 2008; Ramerstorfer et al., 2010; Sieghart, 2015; Spurny et al., 2012; 

Walters et al., 2000). Crystallographic studies using GABAA receptors and various 

benzodiazepines showed that the binding sites of benzodiazepines and their action on 

these sites depends strongly on the structural characteristics of the individual subunits 

and therefore on the subunit composition of the channel (Sieghart, 2015).  

 

1.3.3  The regulatory role of GABA in adult neurogenesis  

 

Adult neurogenesis is regulated by multiple factors, of which GABA plays a 

major role. In both the SVZ and SGZ neural stem cells express GABAA receptors (Liu 

et al., 2005; Song et al., 2012). In the SVZ, GABA produced by neuroblasts and 

released by terminals of striatal neurons bind to GABAA receptors on the surface of 

stem cells and reduce their proliferation (Liu et al., 2005; Young et al., 2014). Also in 

the SGZ, stem cells bearing GABAA receptors are responsive to GABA (Song et al., 

2012). GABAA receptors in SGZ stem cells were shown to express predominantly the 

subunits α5, β3 and γ2. SGZ NSCs show no spontaneous or evoked synaptic currents in 

response to field stimulation of the DG (Song et al., 2012). However, Song and 

colleagues showed the presence of GABA responses in SGZ NSCs and the currents 

were enhanced by inactivating the GABA reuptake transporter GAT1, indicating 

GABA spill-over from nearby synapses. The GABA currents recorded from SGZ 

NSCs are potentiated by diazepam indicating the presence of γ2 subunits in the GABAA 

receptors (Song et al., 2012). Diazepam administration reduced significantly the 

proliferation of SGZ NSCs promoting their quiescence. Conditional knockout of the γ2 

subunit in stem cells reduced their responsiveness to activation and increased the 

production of stem cells and glial cells. This phenotype was not rescued by diazepam 

administration, indicating a direct involvement of the γ2 subunit in GABAA receptor 

regulating quiescence and fate choice of SGZ NSCs (Song et al., 2012). The authors 

identified parvalbumin-positive local interneurons as the source of GABA. They found 
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close associations between SGZ NSCs and PV-positive neurons. Optogenetic 

activation of PV-positive interneurons led to GABA receptor-mediated responses in 

stem cells and to a decrease in stem cell proliferation, similar to the effects found 

subsequent to diazepam treatment (Crowther and Song, 2014; Song et al., 2012). 

Four days after SGZ retroviral injection, the labelled progenitors include TACs 

and DCX-positive neuroblasts. Whole cell recording in acute slice showed that 95% of 

the four days old SGZ progenitors are responsive to GABA. At this age SGZ 

progenitors have postsynaptic currents after 5 Hertz but not after 0.1 Hertz field 

stimulation, suggesting the presence of immature synapses (Song et al., 2013). 

Immuno-electron microscopy revealed symmetric synaptic contacts between PV-

positive axon terminals and new-born progeny, suggesting the PV-positive neurons as a 

possible source of GABA for SGZ progenitors. Optogenetic activation of DG PV-

positive neurons led to the appearance of GABAergic postsynaptic currents in the new-

born cells and to an increase in their survival and development (Song et al., 2013). Four 

days old SGZ progenitors, namely TACs and neuroblasts, express at high levels the Cl
- 

transporter NKCC1 (in contrast to mature cells which express at high levels the Cl
-

 transporter KCC2). High NKCC1 expression levels determine a high intracellular Cl
-
 

concentration in the young progenitors compared to mature granule cells. Thus, GABA 

has a depolarizing effect in the four days old progenitors and enhances their survival. 

At approximately two weeks after birth the progenitors decrease NKCC1 expression 

and start to express KCC2, which leads to a reversal in the Cl
-
 gradient. Thereafter, 

GABA has a hyperpolarizing effect and is inhibitory (Ge et al., 2006). 

Thus, GABA provides at the level of the SGZ a ‘diametric regulation’ of stem 

cell proliferation and of TAC and neuroblast survival which could serve several roles 

(Song et al., 2016). One can envisage a situation when the activity of the DG is high. 

Consequently the activity of PV-positive interneurons will also be high leading to an 

increased survival of TACS and neuroblasts, and eventually and enhanced number of 

neurons in the network. At the same time, the increase in PV-positive interneuron 

activity would keep stem cells quiescent and preserve them for later usage. In contrast, 

when DG activity is low, GABA release from PV-positive interneurons would also be 

low and the short-term effect would be decreased cell survival. At the same time, 
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reduced GABA release would lead to an increase in the activation of stem cells and 

hence future activity in the DG would occur in a network with an increased stem cell 

pool (Song et al., 2014; Song et al., 2016).  

 

 

Figure 1.6. Diametric regulation of stem cell proliferation and of TAC and neuroblast 

survival. (A) Decreased network activity leads to reduced GABA release from the PV-

positive neurons which determines an increase in stem cell activation and proliferation 

but a decrease in the survival of Type 2b TACs and neuroblasts. (B) Increased network 

activity leads to enhanced GABA release from the PV-positive neurons which 

determines a decrease in stem cell activation and proliferation but an increase in the 

survival of the Type 2b TACs and neuroblasts. (C) Experience leads to modifications in 

the activity of the DG network which are translated in differences in GABA release. 

GABA regulates SGZ neurogenesis at multiple levels and has been proposed to 

mediate the effects of external experience on the dynamics of the stem cell niche. 

Figure adapted after Song et al., 2014 (Song et al., 2013; Song et al., 2012).  

 

The regulation provided by GABA in the SGZ might be well suited to ‘time-

stamp’ adult-born neurons. DG postnatal neurons were proposed to play a role in 

temporally linking events that take place in close time proximity. As young neurons go 

through a window of enhanced plasticity, they will very likely respond even to low DG 

stimulation. However, as they become less plastic, and responsive with time, they 
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would exhibit sparse coding akin to adult granule cells. Hence adult-born neurons 

might serve to link events that take place close in time by participating in the memory 

engrams of these events. The regulation of the niche by GABA could determine an 

increase in the number of neurons produced at a given time point, and at the same time 

would inhibit or decrease the production of adult-born neurons immediately after that 

event, which would lead to a better temporal coding of the event (Song et al., 2014; 

Song et al., 2016). DG PV-positive interneurons receive direct excitatory input from 

granule cells and their activity is thus an indicator of the activity in the local DG 

network. Moreover, GABA regulates neurogenesis at multiple levels. Thus, GABA 

was proposed to couple the activity of the local network to the dynamics of the stem 

cells niche thereby affecting SGZ neurogenesis in response to changes in the 

environment (Song et al., 2014; Song et al., 2016). EE has a strong impact on SGZ 

neurogenesis leading to an increase in survival and in the development of TACs and 

neuroblasts. Silencing the activity of PV-positive interneurons while the animals are 

subjected to EE practically abolishes the increase in survival normally found after 

environmental enrichment (Song et al., 2013). This indicates that GABA released from 

PV-positive interneurons are likely to link environmental enrichment, local activity of 

the DG network and survival of adult-born neurons (Song et al., 2014).
 

 

1.4 Diazepam binding inhibitor (DBI) 

 

1.4.1 DBI and its cleavage products 

 

After the discovery of the benzodiazepine binding site on the GABAA receptor, 

an intensive search started for the presence of endogenous benzodiezepines, i.e. 

endozepines. The best known example so far is diazepam binding inhibitor (DBI). DBI 

is a 87 aminoacid, 10 kDa protein discovered in the rat brain which was found to 

displace radioactive diazepam from whole brain membrane preparates (Costa and 

Guidotti, 1991; Farzampour et al., 2015; Guidotti et al., 1983). In humans 10 low-
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abundance DBI isoforms were identified and were shown to have a tissue-specific 

distribution (Ludewig et al., 2011a; Ludewig et al., 2011b; Nitz et al., 2011). In 

mammals, DBI is expressed at low levels in most cell types in the body (Sandberg et 

al., 2005). Higher expression was found in the brain and in tissues with intense 

metabolic activity such as kidney, heart, skeletal muscle, and liver (Bovolin et al., 

1990). High DBI expression was also found in tissues important for the production of 

steroid compounds, such as testes and ovaries (Bovolin et al., 1990). In the nervous 

system, DBI is expressed at intermediate levels in astrocytes, in Bergmann glia, in 

ependymal cells and also in a restricted population of neurons in the thalamus 

(Christian et al., 2013). The highest expression level of DBI is in the DG, RMS, SVZ, 

in the ependymal layer lining the walls of the third ventricle, in area postrema, in the 

cerebellar cortex, in hypothalamus, in amygdala and in certain regions of the thalamus 

and of the cerebral cortex. Intermediate DBI levels were found in OB, in pontine 

nuclei, in inferior colliculi, in the arcuate nucleus and in the pineal gland (Alfonso et 

al., 2012; Alho et al., 1989; Alho et al., 1985; Alho et al., 1991; Alho et al., 1995). DBI 

expression is regulated by multiple factors. The DBI promoter presents binding sites 

for several transcription factors with different functions: Activator protein-1 and 2 (AP-

1/2), specificity protein 1 (SP1), EGFR-specific transcription factor (ETF), Y-box 

binding protein; nuclear factor 1 (NF1), CCAAT/enhancer binding protein (C/EBP), 

hepatocyte nuclear factor 3 (HNF3), peroxisome proliferator response element 

(PPREs), and others (Elholm et al., 1996; Farzampour et al., 2015). The DBI promoter 

also comprises the glucocorticoid response element GRE and the steroid response 

element SRE (Sandberg et al., 2005; Swinnen et al., 1998). A survey of these factors 

and their functions prompts a putative function for DBI in cell proliferation and cell 

metabolism (Farzampour et al., 2015).  

DBI was found not only in mammals, but in all eukaryotes tested from yeast to 

mammals and it is highly conserved across species (Gray et al., 1986; Lihrmann et al., 

1994; Mocchetti et al., 1986; Owens et al., 1985, 1986). Using yeast genetics, the DBI 

orthologue Acb1 was found to be secreted via an unconventional mechanism mediated 

by autophagosomes, namely exophagy (Duran et al., 2010). Further studies showed that 

rat brain astrocytes secrete DBI through a non-conventional secretory pathway, an 
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autophagy activated mechanism similar to the one described in yeast (Loomis et al, 

2010). DBI secretion from cultured astrocytes is controlled by various factors, 

indicating multiple regulatory mechanisms. Steroid hormones, elevated K
+ 

concentrations, PAC1-R ligands, urotensin-II and β-amyloid increase DBI secretion 

while activation of GABAB receptors and somatostatin (SOM) have an opposite effect 

(Ferrarese et al., 1987; Jarry et al., 2010; Loomis et al., 2010; Masmoudi et al., 2003; 

Masmoudi et al., 2005; Qian et al., 2008; Tokay et al., 2008).  

Together with DBI several cleavage products were isolated and characterized: 

triakontatetraneuropeptide (TTN, DBI 17-50), octadecaneuropeptide (ODN, DBI 33-

50) and octapeptide (OP, DBI 43-50). TTN is 34 aminoacids long, ODN 18 and OP 8 

(Ferrero et al., 1986). There are no in depth studies addressing the question whether 

DBI is cleaved intra- or extracellularly. Also the identity of the enzymes responsible for 

DBI cleavage has remained elusive. DBI itself comprises several putative endoprotease 

sites and might be capable of self-cleavage and self-activation (Farzampour et al., 

2015). Both DBI and all its cleavage fragments have the ability to displace 

benzodiazepines from the benzodiazepine binding site and are therefore considered 

endozepines. However, only DBI and ODN bind with high affinity to the GABAA 

receptor (Ki=4µM measured via displacement of 3H-diazepam) (Bormann, 1991; Costa 

and Guidotti, 1991; Mohler, 2014). DBI was found to displace radioactivily marked 

benzodiazepines and it was therefore inferred that it occupies the same site on the 

GABAA receptor. Experiments in mouse embryonic spinal cord neurons showed that 

DBI alone does not induce GABA receptor-mediated currents or any other type of 

currents. However, micromolar concentrations of the protein reduced GABA receptor-

mediated Cl
-
 currents measured by whole cell path clamp recordings. This effect was 

dose dependent at concentrations between 1 and 10 µM DBI and was inhibited by 

Flumazenil, a synthetic benzodiazepine (Bormann, 1991). Further studies clearly 

showed that DBI and its cleavage products ODN bind to the benzodiazepine binding 

site of the GABAA channel. Their binding not only displaces other benzodiazepines, 

but also induces allosteric modifications of the receptor that leads to a reduction in 

GABA-receptor induced currents (Costa and Guidotti, 1991; Farzampour et al., 2015). 

Thus, DBI and ODN have an opposite effect compared to benzodiazepines. 
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Furthermore, administration of DBI or ODN in rodents showed a pro-conflict action, 

which antagonized the well characterized anti-conflict effect of the synthetic 

bendoziazepines (Corda et al., 1984; De Mateos-Verchere et al., 1998). ODN 

administration also has an anxiogenic effect, which is antagonized by co-administration 

of benzodiazepines (Ferrero et al., 1986). Notably, although a large body of literature 

showed that DBI and ODN act as negative allosteric modulators of the GABAA 

receptor, it was recently found that DBI can also enhance GABA currents. Christian 

and colleagues demonstrated a potentiation of GABAergic synaptic transmission in the 

reticular thalamic nucleus. The potentiation was absent in mice DBI knockout mice and 

in mice with a mutation that abolishes the binding of benzodiazepines at the 

benzodiazepine binding site in the α3 subunit (Christian et al., 2013). Based on these 

data it can be inferred that in the nRT DBI acts as a positive modulator of GABAA 

receptors by binding to the benzodiazepine binding site, in contrast to its previous well 

described role as negative modulator of the GABA receptor-induced currents. 

Furthermore, the authors found that DBI reduces thalamo-cortical oscillations, which 

might be an endogenous mechanism to prevent seizures (Christian et al., 2013). Low 

doses of DBI efficaciously suppressed seizures, while high concentrations had a 

seizure-promoting effect. Therefore, the authors proposed low DBI concentrations 

enhance GABA induced currents, while high DBI concentrations would negatively 

modulate the activity of the receptor (Christian et al., 2013; Farzampour et al., 2015).  

In addition to modulating the activity of the GABAA receptor, the DBI cleavage 

product TTN was shown to have yet other functions. Thus, TTN that binds only with 

low affinity to the GABAA receptor, binds with high affinity to a receptor on the outer 

mitochondrial membrane called the peripheral benzodiazepine receptor (PBR) (Mohler, 

2014; Mukhin et al., 1989; Selvaraj et al., 2015). PBR interacts with the steroidogenic 

acute regulatory protein (StAR) thereby promoting the transport of cholesterol into 

mitochondria, facilitating the production of steroid compounds  (Bovolin et al., 1990). 

PBR is present in all cells and is especially enriched in the kidney (Braestrup and 

Squires, 1977).  

DBI also binds with high affinity to C(14)-C(22) acyl-CoA esters and acts as an 

intracellular acyl-CoA transporter and pool former (Frolov and Schroeder, 1998; 
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Rosendal et al., 1993). Thus, DBI also termed acyl-CoA binding protein (ACBP). The 

protein is able to desorb acyl-CoA esters from membranes, to transport and deliver 

them for the mitochondrial β-oxidation and stimulate the production of acyl-CoA esters 

by removing them from the acyl-CoA synthetase. Furthermore, by binding the acyl-

CoA esters and transporting them to other subcellular compartments, DBI was also 

shown to protect the acetyl-CoA carboxylase and the mitochondrial ADP/ATP 

translocase from acyl-CoA inhibition (Knudsen et al., 1993; Neess et al., 2015; 

Rosendal et al., 1993). Hence DBI plays an important role in lipid metabolism 

regulating cell growth and proliferation. Mice that lack DBI are viable, fertile and 

develop normally till weaning. However, at weaning they show a state of weakness and 

delayed growth. This state is caused by an impaired start in the liver lipogenic program, 

the lack of DBI interfering with the normal metabolic adaptation program to weaning 

(Bloksgaard et al., 2012; Knudsen et al., 1993).  

 

1.4.2 DBI and adult neurogenesis 

 

GABA was shown to regulate postnatal and adult SVZ neurogenesis. GABA 

spilled-over from synapses of local medium spiny neurons or produced by the 

neuroblasts reduced the proliferation of stem cells and of TACs and keeps stem cells 

quiescent (Alfonso et al., 2012; Liu et al., 2005; Young et al., 2014). DBI is enriched in 

cells lining the walls of the lateral ventricle. Careful immunohistological analysis 

performed in our lab showed that DBI is strongly expressed in the SVZ and the RMS 

indicating a possible role in regulating neurogenesis. In the postnatal SVZ DBI is 

present in NSCs and in 67% of TACs, while in adult mice the percentage of TACs 

expressing DBI drops to 32% (Alfonso et al., 2012). No DBI signal is detected in 

neuroblasts nor in mature neurons. With the help of in vivo viral gain and loss of 

function studies, our group found that DBI plays an important role in regulating 

postnatal and adult SVZ neurogenesis. Retroviral DBI KD led to a reduction in the 

proliferation of SVZ progenitors while DBI OE had the opposite effect. Manipulating 

DBI expression affected not only the pool of progenitors but also the number of adult 



   Introductionon 

 

30 

 

neurons produced (Alfonso et al., 2012). By enhancing the proliferation of TACs, DBI 

OE increased the number of neurons in the OB, while DBI KD had the opposite effect 

and reduced neurogenesis. In vivo cell cycle analysis showed that, in TACs, DBI does 

not influence the length of the cell cycle, but promotes re-entry into the cell cycle and 

thus increases the number of cell division (Alfonso et al., 2012). The pro-proliferative 

effect of DBI was blocked by flumazenil, a benzodiazepine binding to the GABAA 

receptor, but not by PK-11195, an inhibitor of the peripheral benzodiazepine receptor, 

indicating that DBI regulates adult neurogenesis via the GABAA receptor. The DBI 

cleavage product ODN, when overexpressed, reproduced the phenotype of DBI 

overexpression (OE). ODN is known to bind with high affinity to the central 

benzodiazepine receptor, but not to the peripheral one (Alfonso et al., 2012). 

Furthermore, electrophysiological recordings showed that ODN inhibits GABA 

receptor-mediated currents in TACs. Thus, DBI and ODN enhance postnatal and adult 

SVZ neurogenesis by negatively modulating the GABA induced currents (Alfonso et 

al., 2012). Unpublished data from our lab show that olfactory enrichment increases the 

percentage of TACs expressing DBI in the SVZ, suggesting that DBI might play a role 

in regulating the activity of the niche upon environmental stimulation. DBI is an 

important player in regulating SVZ neurogenesis and might have a special role in the 

plasticity of the niche and its response to external factors.   
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2.   Materials and Methods  

2.1 Materials  

2.1.1 Chemical reagents 

Chemical Reagent Company 

Agar  Fluka 

Bromo-2-deoxyuridine (BrdU) Sigma-Aldrich 

Citric acid Grüssing 

DAPI (Hoechst) Sigma-Aldrich 

EDTA PanReac Applichem 

Ethanol Sigma-Aldrich 

Hydrochloric acid (HCl) VWR 

Isoflurane Zoetis 

Ketavet (100mg/ml) Pfizer 

Mowiol Calbiochem 

Roti-Histofix, 4% Paraformaldehyde (PFA) solution Roth 

Rompun (2%) Bayer 

Sodium azide (NaN3) Roth 

Sodium chloride (NaCl) Sigma-Aldrich 

Sodium chloride 0.9% sterile (NaCl) Braun 

Sodium citrate  Riedel-de Haën 

Sodium dihydrogen phosphate monohydrate (NaH2PO4) Sigma-Aldrich 

Sodium hydroxide (NaOH) VWR 

Sodium phosphate dibasic heptahydrate (Na2HPO4 · 

7H2O) 

VWR 

Tamoxifen Sigma-Aldrich 

Tris base Applichem 

Triton X-100 Merck 
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Tween-20 Sigma-Aldrich 

Table 2.1. Chemical reagents 

 

2.1.2 Buffers 

 

PBS (1x) 

NaCl     8 g/L (137 mM) 

Na2HPO4    1.44 g/L (10 mM) 

KH2PO4   0.24 g/L (1.8 mM) 

KCl    0.2 g/L (2.7 mM) 

 Adjust the pH to 7.4 with 0.1M HCl.  

 Bring the finale volume of the solution to 1L with dH2O. 

1M Tris pH=8 buffer  

Tris                                       141.14 g/L 

 Adjust the pH to 8 with 1M HCl.  

 

Citric acid antigen retrieval Buffer A 

Citric acid                              19.21 g/L (0.1M) 

 

Citric acid antigen retrieval Buffer B 

Sodium citrate                        24.9 g/L (0.1M) 

 

Citric acid antigen retrieval Buffer 

9 mL Citric acid antigen retrieval Buffer A + 

41 mL Citric acid antigen retrieval Buffer B + 

450 mL distilled watter 
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2.2 Methods  

2.2.1 Animal experiments 

 

Animals 

During this study I used WT C57BL/6 mice (Charles River) and four transgenic 

mouse lines: Nestin-Cre described by Tronche et al. (1999), Nestin-CreERT2 described 

by Lagace et al. (2007), DBI-flox described by Neess et al. (2011) and gamma2F77I 

described by Cope et al. (2004). All mice were housed in standard housing conditions 

following the regulations of the German Cancer Research Center and of the University 

of Heidelberg at a twelve-hour dark/light cycle with free access to food and water. For 

some experiments the mice were housed in an enriched environment: an open plastic 

box 400x600x320 (length x width x height) with beading, colorful toys and free access 

to running wheels. The mice housed in the enriched environment cage had as well free 

access to food and water. All experiments were approved by the Regierungspräsidium 

Karlsruhe (G 215/14). Animal handling was performed by trained staff certified by the 

Federation of European Laboratory Animal Science Associations (FELASA).  

 

Monkey brain sample 

For the monkey DG staining I used a 1 year old Rhesus monkey brain obtained 

from EUPRIM-Net biobank (www.euprim-net.eu). The brain was fixed in 4% PFA for 

24 h and further cut into 0.5 cm slabs which were postfixed for 1 week in 4% PFA. The 

slabs were than cryoprotected in 30% sucrose for 72h and subsequently frozen on dry 

ice. For analysis the brain pieces were sectioned with a Leica VT1000S vibratome in 

50 m coronal sections which were analyzed according to the staining protocol 

described kept in PBS and 0.05% natrium azide at 4°C. 

 

Human brain sample 

Pieces of the hippocampus from two human male donors (17 and a 22 year old) 

were obtained from the NIH Neurobiobank. The experiments were approved by the 

ethics committee of the NIH and the sample donation was accepted by the Tissue 

https://dkfzowa0.dkfz-heidelberg.de/owa/redir.aspx?SURL=xFnlqWy9duX2-6QH-WEpm4edHADmtvAajZ6CuIwuTlwS_8s4UILTCGgAdAB0AHAAOgAvAC8AdwB3AHcALgBlAHUAcAByAGkAbQAtAG4AZQB0AC4AZQB1AA..&URL=http%3a%2f%2fwww.euprim-net.eu
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Access Committee of the NHI Neurobiobank (https://neurobiobank.nih.gov/; Request 

275). 

The brain pieces were dissected postmortem at the NIH and directly frozen at -

80°C. Further, they were defrosted, postfixed in 4% PFA for 5 days, cryoprotected in 

30% sucrose for 72h and then frozen on dry ice. The brain pieces were kept frozen until 

sectioning with a cryostat (Leica Biosystems, Germany) in 50 m coronal sections 

which were kept in PBS and 0,05% natrium azide at 4°C. The brain slices were used 

for immunohistochemistry using the following protocol: permeabilization and blocking 

overnight in 5%BSA, 1% Triton in PBS solution, 2 days incubation in primary 

antibody (in 5% BSA, 1% Triton in PBS), washing 3 times with PBS for 10 minutes, 

secondary antibody incubation overnight (in 5% BSA, 1% Triton), washing 3 times 

with PBS for 10 minutes followed by mounting with Mowiol.  

 

Histology and Immunofluorescence 

Mice were anesthetized with an intraperitoneal injection of ketamine-xylazine 

or Rompun (2% 1:6 diluted; Bayer) and Ketavet (100mg/ml; 1:15 diluted; Pfizer) in 

0.9% NaCl (Braun) and were transcardially perfused with ice-cold PBS for 5 minutes 

followed by perfusion with 4% PFA solution for 5-8 minutes. The brains were 

dissected out and postfixed overnight in 4% PFA solution buffered (pH 7). The tissue 

was further washed twice with PBS and stored at 5̊C in PBS with 0.05% sodium azide. 

For analysis the brains were cut with a Leica VT1000S vibratome in 50µm thick slices. 

Immunohistochemistry was performed following a free-floating staining protocol. The 

brain slices were first incubated for one hour at room temperature (RT) in a 3% BSA, 

0.2%-0.3% Triton PBS solution in order to achieve proper permeabilization and 

blocking. The tissue slices were further incubated overnight at 5̊C in a 3% BSA, 0.2% 

Triton in PBS solution containing the primary antibodies. On the next day the sections 

were washed 3 times for 10 minutes with PBS and incubated for 1.5-2h  at RT in a 3% 

BSA, 0.2% Triton PBS solution containing the secondary antibody. After the second 

incubation, the brain slices were washed 3 times for 10 minutes with PBS and mounted 

onto glass slides. The preparates were left for 20 minutes in a dark space for the tissue 
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slices to dry after which were mounted with Mowiol. In the case of the monkey brain, 

the slices were incubated in a 5% BSA, 1% Triton PBS solution overnight at 5̊C for 

permeabilization and blocking and were further incubated in a 5% BSA, 1% Triton 

PBS solution containing the primary antibody at RT between 2 and 5 days. The brain 

slices were than washed 3 times for 10 minutes with PBS and were incubated overnight 

in a 5% BSA, 1% Triton PBS solution containing the secondary antibody. For BrdU 

stainings, before starting the regular staining protocol, the brain slices were incubated 

in a 1M HCl solution for 30 minutes at 37°C in order to denature the DNA and were 

thereafter incubated for 15 minutes at RT in Tris buffer pH 8 to bring the tissue to a 

neutral pH. For stainings which included the detection of Tbr2 using the rabbit anti 

Tbr2 antibody from Abcam, I performed before the regular staining protocol a citric 

acid - citrate buffer antigen retrieval according to the protocol published by Houssaini 

et al., 2013. The sections were analyzed using a Zeiss LSM 700 confocal microscope. 

 

Primary antibodies 

Antibody Company Application Concentration 

Rabbit anti-DBI Santa Cruz IHC 1:100 

Rabbit anti-DBI Frontier Institute Japan IHC 1:1000 

Mouse anti-GFAP Sigma IHC 1:500 

Chicken anti-Nestin Novus IHC 1:200 

Goat anti-SOX2  Santa Cruz IHC 1:500 

Rabbit anti-Tbr2 Abcam IHC 1:200 

Mouse anti-Mash1  BD PharMingen IHC 1:500 

Goat anti-DCX  Santa Cruz IHC 1:500 

Mouse anti-NeuN  Chemicon IHC 1:1000 

Chicken anti-EGFP  Abcam IHC 1:1000 

Rabbit anti-DsRed  Clontech Living Colors IHC 1:1000 

Rabbit anti-Ki67 Abcam IHC 1:200 

Table 2.2. Primary antibodies  
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Secondary antibodies 

Antibody Company Application Concentration 

Donkey anti-rabbit Cy3 Jackson Immuno 

Research Laboratories 

IHC 1:1000 

Donkey anti-goat  

Alexa 647  

Invitrogen IHC 1:1000 

Donkey anti-chicken 

Alexa 488 

Invitrogen IHC 1:1000 

Donkey anti-chicken 

Alexa 488 

Jackson Immuno 

Research Laboratories 

IHC 1:1000 

Donkey anti-mouse 

Alexa 488 

Invitrogen IHC 1:1000 

Donkey anti-mouse 

Alexa 647 

Invitrogen IHC 1:1000 

Donkey anti-mouse 

DyLight 405  

Jackson Immuno 

Research Laboratories 

IHC 1:500 

Donkey anti-rabbit 

DyLight 405  

Jackson Immuno 

Research Laboratories 

IHC 1:500 

Donkey anti-chicken 

DyLight 405  

Jackson Immuno 

Research Laboratories 

IHC 1:500 

Donkey anti-rabbit  

Alexa 488 

Invitrogen IHC 1:1000 

Table 2.3. Secondary antibodies  

 

Viral vector construction  

For the present study I used several lentiviruses. To create the lentiviruses needed I 

modified by cloning the pCDH lentiviral backbone and generated the following 

plasmids:   

1) DBI KD: pCDH-EF1-H1-shRNADBIa-EGFP; 

2) DBI KD: pCDH-EF1-H1-shRNADBIb-EGFP; 
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3) Ctrl KD: pCDH-EF1-H1-shRNAscrambled-tdTomato;  

4) DBI OE: pCDH-EF1- DBI-T2A-tdTomato;  

5) Ctrl OE: pCDH-EF1-EGFP;  

6) GFAP-tdTomato virus: pCDH-GFAPpromoter-tdTomato; 

7) DBI KD:  pCDH-EF1-LoxP-H1-shRNADBIa-EGFP-(inverted)-LoxP; 

8) Ctrl KD: pCDH-EF1-LoxP-H1-shRNAscrambled-mCherry (inverted)-LoxP;  

9) DBI OE: pCDH-EF1-LoxP-DBI-T2A-tdTomato (inverted)-LoxP;  

10) Ctrl OE: pCDH-EF1-LoxP- EGFP (inverted)-LoxP;  

11) ODN OE: pCDH-EF1-LoxP-ODN-T2A-tdTomato-LoxP.  

For DBI KD I used two shRNA sequences described by Alfonso et al., 2012: DBIa: 

GCTGTTCATCTACAGTCACTT targeting the coding sequence of mouse DBI, and 

DBIb: CCTGTGAGGACATAATGC targeting the 3’UTR of mouse DBI. 

Viruses 1) and 2) were created by cloning the sequences for H1-shRNA DBIa (virus 1) 

and for H1-shRNA DBIb (virus 2) into a pCDH plasmid expressing EGFP after the 

EF1 promoter. Virus 3) was produced by cloning the sequence for H1-

shRNAscrambled into a pCDH plasmid expressing tdTomato after the EF1 promoter. 

Virus 4) was created by cloning the sequence for DBI in a pCDH vector in front of the 

sequence for T2A-tdTomato, in frame with the tdTomato sequence.  

The backbone of the Cre-dependent viruses was constructed by subcloning the 

LoxP sites and the protein mCherry situated between the two LoxP sites from a 

retroviral vector kindly provided by Prof. Oscar Marin (MRC Centre for 

Developmental Neurobiology, King’s College, London, UK) into the pCDH lentiviral 

backbone. For obtaining virus 7) I cloned the DBI KD sequence (a) together with the 

H1 promoter (H1-shRNAa into the new generated pCDH backbone and replaced the 

mCherry sequence with the inverted sequence of EGFP. For obtaining virus 8) I cloned 

a shRNAscrambled sequence together with the H1 promoter (H1- shRNAscrambled) 

into the new generated pCDH backbone. For creating DBI OE virus 9) and ODN OE 

virus 11) I replaced the mCherry sequence from the previously described pCDH 

backbone with the inverted sequence of DBI-T2A-tdTomato (for virus 5) and with the 

inverted sequence of ODN-T2A-tdTomato (for virus 11). Virus 10) was generated by 
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replacing the mCherry sequence with the inverted sequence of EGFP (Dumitru et al., 

2017). 

 

Virus production 

Viral production was achieved by transfecting the packaging cell line HEK293, 

using a calcium transfection protocol, with the viral backbone vector together with the 

VSVG and Δ-helper plasmids. Two days after the calcium transfection, the viral 

particles were purified and concentrated by ultracentrifugation, obtaining a final viral 

solution which was further titrated using a serial dilution method. The viral preparates 

used presented a viral titer in the range of 10
6
-10

8
 cfu/ml. 

 

Intracranial virus injection  

All procedures were approved by the Regierungspräsidium Karlsruhe (G 

215/14) and were in agreement with the regulation of the German Cancer Research 

Center and of the University of Heidelberg. For intracranial injection the animal was 

first anesthetized via isoflurane inhalation. Following, the head of the mouse was fixed 

in a stereotactic device and the animal was kept under a constant flow of air mixed with 

isoflurane during the entire procedure. For injecting the viral mixes (Ctrl and KD or 

OE) in the hippocampus without great loss of nervous tissue, I made use of pulled glass 

capillary with sharp tips. After mounting the capillary tube to the arm of the 

stereotactic device the virus was loaded. To target the DG I used the following age 

dependent coordinates: P7 old mice (from Bregma) -1.5mm anteroposterior, +/-1.5mm 

mediolateral, -1.7mm dorsoventral; mice older that P15 (from Bregma) -2mm 

anteroposterior, +/-1.7mm mediolateral, -2mm dorsoventral. An electrical dentist drill 

was used for making a small hole through the skull at the right coordinates. After 

bringing the tip of the glass capillary to the right position, the viral mix was slowly 

injected in the brain and 3 to 10 minutes were given for the mix to diffuse within the 

tissue. Finally the tip of the pipette was carefully removed from the brain and the skin 

was stitched using sterile resorbing fibers.   
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Electrophysiology  

Whole-cell patch-clamp recordings were performed using 3-4 weeks old, males 

and females, wild-type C57Bl/6 (n = 4) and gamma2 mutant mice (n = 6). The mice 

were deeply anaesthetized by isoflurane inhalation and were perfused transcardially 

with 30 ml sucrose solution containing (in mM) 212 sucrose, 26 NaHCO3, 1.25 

NaH2PO4, 3 KCl, 7 MgCl2, 10 glucose and 0.2 CaCl2, cooled to 4 °C and oxygenated 

with carbogen gas (95% O2/ 5% CO2, pH 7.4). 250 µm thick acute horizontal sections 

were performed using a vibratome (Slicer HR2, Sigmann Elektronik, Germany). The 

tissue was further incubated at room temperature for 1 hour in oxygenated extracellular 

solution containing (in mM) 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 2 CaCl2, 

1 MgCl2 and 25 glucose. The individual slices were transferred into a submerged, 

superfused chamber (perfusion rate 3.0 ml/min with oxygenated extracellular solution 

heated up to 30-32°C). Epifluorescence and DIC optics were used to visualize the 

fluorescently labeled cells in the DG. The recording pipettes were pulled from 

borosilicate capillaries with the tip resistance of 6-8 MΩ, filled with a high Cl
-
 solution 

containing (in mM) 127.5 KCl, 11 EGTA, 10 Hepes, 1 CaCl2, 2 MgCl2 and 2 Mg-ATP 

(pH 7.3). During measurements was not correct for liquid junction potentials. 

Florescent cells with a RG-like morphology were identified in the SGZ. Into the cell 

soma individual current steps ranging from -100 to 100 pA (delta 20 pA) were injected 

in current-clamp mode and as tested for the presence of action potentials. Sequential 

local puffs of GABA (50 µM) or GABA/ODN (50 µM /20 µM) (each with a duration 

of 1 sec at 0.01 bar) were further applied onto the patched stem cells in voltage-clamp 

mode at a holding potential of -60 mV. The stimulus was delivered and the data 

acquisition was performed with the PatchMaster software (HEKA). The signal was 

filtered at 3 kHz and digitized at 20 kHz. The data was analyzed with the HEKA 

software FitMaster and the results were presented as mean ± SEM. Further statistical 

analysis was performed with SigmaPlot (Systat). The electrophysiological 

measurements were performed by Angela Neitz. 
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Quantification and statistical analysis 

For all quantifications presented pictures from at least 3 brain slices/mouse 

were analyzed. In the case of the conditional DBI KO using the NestinCre
ERT2

/DBI
lx/lx

 

mice, the density of the NSCs (RG-like Nestin
+
/SOX2

+
 cells) or dividing cells (Ki67

+
 

cells) present in the SGZ was determined by dividing the number of cells to the volume 

of the granular layer in which they were identified.  

For experiments involving Cre-dependent lentiviruses was chosen to express 

the data as cell percentage instead of absolute cell numbers to rule out effects resulting 

from in vivo titer differences between Ctrl and OE or KD viruses, between differences 

generated by the location of the infection site in the DG and by the density of the cell 

infected population. To reduce all the technical errors and biases the same animal was 

injected with both control and experiment virus. The percentage of NSCs (RG-like 

GFAP
+
/SOX2

+
/virus

+
 cells), TACs (GFAP

-
/SOX2

+
/virus

+
 cells), Astrocytes 

(GFAP
+
/virus

+
/astrocyte morphology), neuroblasts (DCX

+
/virus

+
 cells) and adult-born 

neurons (DCX
-
/virus

+
 neuron morphology) were quantified within the population of 

infected cells, separately for the KD or OE and control population. The percentages of 

the different progenitors were evaluated using two different stainings: GFAP, dsRed, 

EGFP, SOX2 was used to quantify the NSCs, ANPs and stem cells, while NeuN, 

dsRed, EGFP, DCX was used to identify the neuroblasts and the adult-born neurons. 

The overlap between the cell markers used as well as the technical differences between 

the two stainings and the averaging between animals can explain why the percentage 

summation for the different progenitors does not result to 100. Double infected cells 

with Ctrl and OE or KD viruses were considered to be OE or respectively KD. 

Although it cannot be excluded that some Nestin-negative infected cells express the 

shRNA but not the fluorescent marker, these cells do not constitute a confound because 

they were not included in our analysis which comprise labeled cells only. Most 

importantly, control-labeled cells (red) were Nestin+ at the time of the infection and, 

hence, cannot be shRNA DBI+ and not green. 

For experiments involving non-Cre dependent lentiviruses the percentage of 

SOX2
+
 progenitors was quantified within the virus infected population in DG, 

separately for Ctrl and KD or OE infected cells two weeks after the infection. The 
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quantification of neuroblasts or neurons in this type of experiment is not feasible as one 

cannot make a difference between the cells infected directly by the virus and the cells 

that were produced by virus infected stem cells. Because of the turnover of ANPs, the 

SOX2 progenitors quantified two weeks after infection include only infected stem cells 

and ANPs originating from the infected stem cells.     

To test the role of DBI in enriched environment and exercise, NestinCre mice 

were injected with Cre-dependent DBI KD virus (viruses 7 from viral vector 

construction part). The mice were kept for 3 weeks either in standard housing 

conditions or in an enriched environment with free access to running wheels. For this 

experiment, presented in figure 6, the non-infected part of the DG was considered 

control while the part of the DG infected with the KD virus was analyzed as DBI KD. 

To exclude the possibility that the procedure itself leads to the effects found the 

experiment was repeated by injecting the mice with control virus (viruses 8 from viral 

vector construction part), experiment presented in supplemental figure 3. For this 

experiment the areas of the DG infected with the control virus versus non-infected 

areas of the DG were compared. For both experiments the average density of 

neuroblasts (DCX
+
 cells) and of dividing cells (Ki67

+
 cells) was determined in the DG 

by dividing the number of cells counted to the volume of the granular layer in which 

they were counted. Within these experiments the percentage of proliferating NSCs was 

determined as percentage RG-like Nestin
+
/SOX2

+
/Ki67

+
 cells of all NSCs in the 

analyzed volume.  

The statistical analyses presented were performed using the SigmaPlot software 

(Systat). All data sets were first checked if they are normally distributed using the 

Shapiro-Wilk normality test. Parametric tests were used for normally distributed 

datasets and non-parametric tests for datasets that were not normally distributed. For all 

analyses where control and experiment values were obtained in the same mouse (for 

examples viral mix injections) paired comparison tests were used. 

 

The Materials and Methods chapter was adapted after Dumitru and colleagues (2017). 
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3. RESULTS 

3.1 DBI is expressed in the adult neurogenic niches in rodents 

and primates  

 

DBI is strongly expressed in the SVZ and RMS, specifically in NSCs and TACs 

(Alfonso et al., 2012). The important regulatory function DBI has in postnatal SVZ 

neurogenesis raised the pertinent question whether the protein plays a similar role in 

the other well-studied adult neurogenic niche, the SGZ. 

 

 

Figure 6.1. DBI mRNA is present in the SVZ, RMS and DG in postnatal and adult 

mice. The pictures presented depict in situ hybridizations for DBI in sagittal and 

coronal slices of the mouse brain at different ages. DBI (black signal) is clearly present 

in the DG and is especially localized to the SGZ. P7/P14: postnatal day 7/14. 2M/14M: 

2/14 months old Pictures adapted after Allen Mouse Brain Atlas.   

 

A d a p t e d  a f t e r A l l e n  M o u s e  B r a i n A t l a s
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Figure 6.2. DBI is expressed in NSCs and ANPs in the SGZ and Tanycytes in the third 

ventricle. 

(A) Overview of the DG in a coronal brain section of a 3-week-old mouse stained with 

antibodies against DBI (red), Nestin (green), and SOX2 (white). 

(B) RG-like stem cells positive for Nestin
+
 (green) and SOX2

+
 (blue) in the DG of a 2-

month old mouse express DBI (red). 

(C and D) DBI immunoreactivity (red) is detected in a subpopulation of ANPs labeled 

with Tbr2 (green in C) and Mash1 (green in D). 
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(E and F) DG brain section of a 3-week-old (E) and 2-month-old (F) mouse showing 

that DBI (red) does not co-localize with the neuroblast marker DCX (cyan). Arrows in 

(F) indicate two DCX-positive cells. 

(G) Scheme summarizing the expression pattern of DBI and other cell-type markers in 

the SGZ. 

(H) Overview of the third ventricle in a coronal brain section of a 2-month-old mouse 

stained with antibodies against DBI (red) and Nestin (green). 

(I) Magnification of boxed area in (H) showing tanycytes positive for DBI (red) and 

Nestin (green). 

Scale bars represent 100 mm in (A) and (H); 10 mm in (B), (C), (D), and (I); and 20 

mm in (E) and (F). Figure and figure legend were reproduced from Dumitru and 

colleagues (2017).  

 

A careful analysis of DBI in situ hybridization pictures from the Allen Mouse 

Brain Atlas (Figure 6.1) showed that DBI mRNA is specifically localized in the SGZ. I 

tested DBI expression by immunohistochemistry and found a strong DBI signal in the 

SGZ. DBI expression was localized to SGZ RG-like cells, positive for Nestin and 

SOX2, identified as NSCs (Figure 6.2 A and B). Almost all stem cells had a strong 

DBI signal (97.8 ± 0.38%; mean ± s.e.m.; n = 6 mice) present in the cell body as well 

as in the long radial process and in the bushy tuft-like end-process (Figure 6.2 B). DBI 

was also expressed in all SOX2
+ 

astrocytes but at lower levels compared to the SGZ 

NSCs (data not shown). DBI was expressed in 87.16 ± 1.01% of the Nestin
-
/Sox2

+
 

early TACs (Type 2a cells; mean ± s.e.m.; n = 6 mice) and in 31.07 ± 2.39% of the 

Tbr2
+
 or Mash1

+
 late TACs (Type 2b cells; mean ± s.e.m.; n = 6 mice; Figure 6.2 A-

D). Among DCX
+
 neuroblasts, only 10.73 ± 1.15% (mean ± s.e.m.; n = 6 mice) 

expressed DBI. However, these cells were most likely TACs that already started 

expressing DCX, as 96.28 ± 0.64% (mean ± s.e.m.; n = 6 mice) of the DBI positive 

cells also expressed SOX2 (Figure 6.2 A, B and E). I did not detect DBI expression in 

any of the granule cells (data not shown).  
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Figure 6.3. DBI is expressed in the RG cells during mouse brain development. 

(A) Overview of E13.5 developing mouse brain in a coronal brain section stained with 

antibodies against DBI (red), Nestin (green), and SOX2 (white).  

(B) Magnification of boxed area in (A) showing a part of the pallial cortex positive for  

DBI (red), Nestin (green), and SOX2 (white).  

(C) DBI in situ hybridizations in sagittal slices of the developing mouse brain at E13,5 

and E15,5. DBI (black) is present in the ventricular and subventricular zones of the 

pallium and the ganglionic eminences. Scale bars represent 500 µm in (A) and 50 µm 

in (B). Pictures adapted after Allen Mouse Brain Atlas.   

 

 

Figure 6.4. DBI is expressed in adult neural progenitors in Rhesus monkey DG. 

(A) Overview of the DG in a coronal section from a 1-year-old Rhesus monkey brain. 

DBI (red) in the SGZ exhibits a similar expression pattern as the NSCmarkers GFAP 

(green) and SOX2 (white). 
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(B) Higher magnification showing co-localization of GFAP
+
 (green), SOX2

+
 (white), 

and DBI (red). 

Scale bars represent 500 mm in (A) and 30 mm in (B). The picture of the coronal brain 

slice of Macaca mulatta has been taken from BrainMaps: An Interactive 

Multiresolution Brain Atlas; http://brainmaps.org. Figure and figure legend were 

reproduced from Dumitru and colleagues (2017).  

 

The strong DBI presence in both SVZ and SGZ and its specific localization to 

the stem cells raised the question whether DBI is also expressed in the other adult 

neurogenic niche in the mouse brain. The walls of the 3
rd

 host cells with RG-like 

morphology called Tanycytes. α-Tanycytes populating the ventral wall of the ventricle 

have stem cell properties producing neurons postnatally, which integrate in the adjacent 

parenchyma. All Tanycytes in the walls of the 3
rd

 ventricle presented a strong DBI 

expression which co-localized with the stem cell markers Nestin and SOX2 (Figure 6.2 

H and I). Thus, DBI is expressed in stem cells in all adult neurogenic niches of the 

mouse brain.  

Adult neurogenesis recapitulates embryonic neurogenesis sharing similar 

developmental stages and regulatory mechanisms. Therefore, I tested whether DBI is 

also expressed during development in the mouse brain. At E13.5 I found that DBI was 

present in the ventricular and subventricular zones of both pallium and subpallium (the 

ganglionic eminences). Careful analysis showed DBI to be strongly expressed in all 

Nestin
+
 SOX2

+
 RG cells both in the cell body and in the long radial process (Figure 

6.3 A and B). Furthermore, DBI in situ hybridization pictures from the Allen 

developing mouse brain atlas showed the presence of DBI mRNA in the ventricular 

and subventricular zones of both the pallium and the subpallium (Figure 6.3 C). 

Next, I tested the presence of DBI in the adult SGZ of the Rhesus monkey and 

in humans. In the Rhesus monkey, a careful immunohistological analysis revealed that 

DBI was specifically expressed in SGZ and was localized in RG-like, GFAP
+
 SOX2

+
 

putative stem cells and non-RG-like GFAP
-
 SOX2

+
 putative TACs (Figure 6.4 A and 

B). In the human DG, I found that DBI was specifically expressed in SGZ GFAP
+
 

cells; however, because of technical reasons, it was not possible to precisely identify 
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whether DBI was expressed in putative stem cells or in astrocytes (Figure 6.5 A and 

B). 

 

Figure 6.5. DBI is expressed in SGZ of human DG. 

(A) Overview of the DG in a coronal section from a 23-year-old human male. The post-

mortem human brain hippocampus was coronally sliced and stained with antibodies 

against DBI (red), GFAP (green), and SOX2 (white). 

(B) Higher magnification of the DG and SGZ showing co-localization of GFAP
+
 

(green) and DBI (red). 
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3.2 DBI conditional knockout in the SGZ leads to a reduction 

in the number of stem cells and in their proliferation 

 

 

To investigate the functional role of DBI in the SGZ I took recourse to 

genetically modified mice in which the expression of a tamoxifen-dependent Cre 

recombinase (Cre
ERT2

) is driven by a Nestin promoter. In this mouse model the 

sequence of DBI is flanked by loxP sites: NestinCre
ERT2

/DBI
lx/lx 

(Neess et al., 2011; 

Zhu et al., 2014). Tamoxifen administration to the before mentioned mice leads to the 

knockout (KO) of DBI in the Nestin expressing cells. Therefore, I administered 

tamoxifen for one week to two months old NestinCre
ERT2

/DBI
lx/lx 

mice to ensure DBI 

KO in SVZ and SGZ adult stem cells and in their progeny. I used as controls 

littermates that did not express the Cre recombinase (DBI
lx/lx

) which also received the 

tamoxifen treatment, and NestinCre
ERT2

/DBI
lx/lx 

mice to which I administered a saline 

solution instead of tamoxifen. Three weeks after the treatment, tamoxifen 

administration led to a partial deletion of DBI in the NestinCre
ERT2

/DBI
lx/lx 

mice in 

comparison to the DBI
lx/lx 

mice and to the mice treated with saline solution. As 

expected, DBI was only deleted in SGZ NSCs and TACs but not in astrocytes, as they 

do not express Nestin (Figure 6.6 A and B). I evaluated the number of SGZ NSCs and 

Ki67 positive (proliferating) SGZ NSCs and found no significant difference between 

the two control groups. However, DBI deletion led to a statistically significant decrease 

both in the number of SGZ NSCs and in the number of proliferating NSCs, indicating 

that DBI plays a role in regulating adult SGZ neurogenesis (Figure 6.6 C and D). 
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Figure 6.6. Conditional 

DBI KO reduces the 

number of DG NSCs 

and their proliferation. 

(A and B) Overview of 

the DG in a coronal 

brain section of a 2-

month-old 

NestinCreERT2(-

)/DBIlx/lx (A) and 

Nestin CreERT2(+) 

/DBIlx/lx (B) mouse. 

Small panels in (A) and 

(B) show higher 

magnifications of the 

boxed areas and depict 

stainings for DBI (red), 

GFAP (green), and 

SOX2 (white) 3 weeks 

after 1 week of 

tamoxifen treatment. 

Arrows indicate 

GFAP
+
/SOX2

+
 cells in 

the SGZ, demonstrating 

successful DBI ablation 

in (B). 

(C) Quantitative 

evaluation (mean ± 

SEM) of 

Nestin
+
/SOX2

+
 RG-like NSCs in the DG of control mice (NestinCreERT2 (+)/DBIlx/lx 

no tamoxifen, black bar, and NestinCreERT2(-)/DBIlx/lx tamoxifen treated, dark gray 
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bar) and DBI conditional KO mice (NestinCreERT2(+)/DBIlx/lx tamoxifen treated, 

light gray bar). Cre+ Tam-: 1,730 cells in 7 mice; Cre- Tam+: 1,589 cells in 7 mice, 

Cre+ Tam+: 1,407 cells in 7 mice; *p < 0.05, **p < 0.01, one-way ANOVA followed 

by Holm-Sidak method for all pairwise comparison. 

(D) Quantitative evaluation (mean ± SEM) of Ki67+ dividing cells in the DG of mice 

from the three groups as in (C). Cre+ Tam-: 757 cells in 7 mice; Cre- Tam+: 728 cells 

in 7 mice; Cre+ Tam+: 544 cells in 7 mice; *p < 0.05, **p < 0.01, one-way ANOVA 

followed by Holm-Sidak method for all pairwise comparison. 

Scale bars represent 100 mm in the overview and 10 mm in the magnified images. 

Figure and figure legend were reproduced from Dumitru and colleagues (2017).  

 

3.3 In vivo manipulation of DBI expression levels influences 

postnatal and adult SGZ neurogenesis 

 

To specifically determine how DBI regulates the SGZ NSCs and TACs, I made 

use of viral strategies that allow the concomitant manipulation of DBI expression and 

labeling of the infected stem cells and of their progeny. For this purpose, I used 

lentiviruses containing the inverted sequences of a short hairpin RNA (shRNA) 

targeting DBI (DBI KD) and the reporter protein EGFP flanked by LoxP sites. EGFP 

expression is controlled by a general promoter (EF1) and can occur only upon 

inversion of the floxed cassette following recombination by a Cre enzyme. As control, I 

generated similar lentiviruses expressing a scrambled shRNA sequence and mCherry 

(Figure 6.7 A). To compare between DBI KD and control infected cells and overcome 

any technical variations generated by the injection site or the mice used, the viruses 

were injected as a mix of control and DBI KD in the same mouse. I injected a mix of 

the two viruses in the DG of postnatal 7 (P7) or three months old mice expressing Cre 

recombinase in the Nestin
+
 cells. In these mice, the floxed cassette containing the 

reporter proteins would be inverted only in the Nestin expressing stem cells. Two 

weeks after injection I found in the SGZ infected stem cells and progeny originating 

from these cells (Figure 6.7 B). I evaluated the efficiency of the DBI KD by 
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immunohistochemistry and found that cells infected with the KD virus did not present 

DBI expression. The regions of the SGZ infected with the KD virus showed in average 

a decrease of 62% in DBI signal indicating that the viral DBI KD was successful 

(Figure 6.8 A).  

 

 

Figure 6.7. DBI KD in stem cells in vivo reduces the progenitor pool and favors a 

neuronal fate. 

(A) Top: vector maps of the Cre-dependent DBI KD and the corresponding control 

lentivirus. Bottom: scheme depicting experimental procedure pertaining to injection of 

viral mixes of DBI KD and Ctrl lentiviruses into the DG of either P7 (juvenile) or 3-

month-old (adult) Nestin-Cre mice. 

(B) Examples of SGZ stem cells and their progeny 2 weeks after infection with Ctrl 

(upper panels, red signal) or DBI KD (lower panels, green signal) lentiviruses, co-

immunostained for GFAP (white), SOX2 (blue), DCX (white), or NeuN (white). 

Arrows point to processes of infected stem cells positive for GFAP, and arrowheads 

show infected ANPs positive for SOX2, but negative for GFAP. 
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(C) Graphs show the proportion of the different cell types in the niche quantified as a 

percentage of all infected cells and expressed as mean ± SEM following DBI KD 

experiments in juvenile (top) or adult (bottom) NestinCre mice. Juvenile: Ctrl: 776 

virus+ cells; DBI KD: 1,973 virus+ cells; n = 10 mice; **p < 0.01; ***p < 0.001; NSCs 

and astrocytes: Wilcoxon signed-rank test; ANPs, neuroblasts, and neurons: two-tailed 

paired t test. Adult: Ctrl: 695 virus+ cells; DBI KD: 916 virus+ cells; n = 5 mice; **p < 

0.01, two-tailed paired t test. Abbreviations: NSC, neural stem cells; ANP, amplifying 

neural progenitor; Nb, neuroblast. 

Scale bars represent 10 mm. Figure and figure legend were reproduced from Dumitru 

and colleagues (2017).  

 

I further tested whether the virus led to cytotoxicity or whether DBI KD 

increased cell death. For this purpose, I measured the number of cells positive for 

activated Caspase 3 in the DG area infected with KD virus and compared it to the 

uninfected area. The numbers of cells expressing activated Caspase 3 were not different 

between the two areas indicating that DBI KD does not increase cell death (Figure 6.8 

B).  

Two weeks after the viral mix injection I evaluated the proportion of labelled 

NSCs (GFAP
+
/SOX2

+
 RG-like morphology), TACs (GFAP

-
/SOX2

+
), neuroblasts 

(DCX
+
), young neurons (DCX

-
/NeuN

+
), and astrocytes (GFAP

+
, astrocyte morphology) 

within the red (control) and green (DBI KD) cell population. In both juvenile (P7) and 

adult mice, I found a decrease in the proportion of NSCs, TACs, astrocytes and 

neuroblasts and an increase in the number of adult-born neurons. These results indicate 

that DBI KD induces a drop in the early progenitor pool and favours a concomitant 

shift towards a more neurogenic fate (Figure 6.7 C). I found higher proportions of stem 

cells in the adult mice and the speed with which these cells produce neurons was 

noticeably lower (Figure 6.7 C). Therefore, the results obtained in mature mice 

reproduced the decrease with age in the stem cell pool and the lower speed with which 

neurogenesis takes place described in previous studies (Encinas et al., 2011; Rao et al., 

2005; Riddle and Lichtenwalner, 2007).  
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Figure 6.8. Reduced DBI expression does not affect cell survival. 

(A) DBI expression visualized as immunostaining (white) in the DG in a control mouse 

(left panel) and 2 weeks post DBI KD / EGFP lentivirus injection (right panel). The 

bottom image shows green (DBI KD infected cells) and blue (DAPI) channels from the 

upper picture providing evidence that the infected upper blade exhibits normal 

morphology. Quantification of DBI KD effect measured as DBI signal intensity (mean 

± SEM, n = 8 images per condition, **p<0.001, two-tailed paired t test). 

(B) Representative picture of a DG from a 1-month old NestinCre mouse injected with 

DBI KD lentivirus, 3 weeks post injection. EGFP expression (green) allows the 

visualization of lentivirus infected cells. The signal in white indicates ActiveCaspase3 

(Casp3) staining. Right: Quantification indicates that there is no difference in the 

number of apoptotic Casp3+ cells in control and DBI KD mice (mean ± SEM, n = 14 

brain sections from 5 mice, p = 0.26, two-tailed paired t test). 
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Scale bars represent 200 μm in (A) and (B). Figure and figure legend were reproduced 

from Dumitru and colleagues (2017).  

 

 

Figure 6.9. DBI KD regulates the production of neuronal progenitors in juvenile and 

adult mice. 

(A) Scheme depicting the experimental protocol. 

(B) Overview of the DG in a coronal brain section from a 6 weeks old wild-type mouse 

infected at 1 month of age with DBI KD (green cells) and Ctrl lentiviruses (red cells). 

(C) Example of a Ctrl infected SOX2
+
 (white) RG-like cell in the SGZ expressing 

tdTomato and a DBI KD infected SOX2
+
 (white) RG-like cell in the SGZ expressing 

EGFP
+
 (green). 



   Results M 

 

56 

 

(D) Left: Quantification of SOX2
+
 progenitors within the DG expressed as percentage 

(mean ± SEM) of virus infected red (Ctrl) and green (DBI KD) cells, from mice 

injected at P7 (Ctrl 3824 virus
+
 cells; DBI KD: 13066 virus

+
 cells; n = 12 mice, 

***p<0.001). Middle: Quantification of Ki67
+
 progenitors expressed as percentage 

(mean ± SEM) of virus infected red (Ctrl) and green (DBI KD) cells at 14 days post 

injection in P7 mice (Ctrl: 532 virus
+
 cells; DBI KD: 3695 virus

+
 cells; n = 4 mice; 

***p < 0.001; two-tailed paired t test). Right: A viral mix of KD DBIb lentivirus 

(expressing a shRNA sequence targeting the UTR of the DBI mRNA) and of DBI OE 

lentivirus (expressing only the coding region) was injected in the DG of P7 mice. The 

mice were sacrificed 2 weeks after surgery. The graph depicts the quantification of 

SOX2
+
 progenitors expressed as percentage (mean ± SEM) of infected cells with either 

DBI KD lentivirus or with DBI KD plus DBI OE lentivirus (Ctrl 174 virus
+
 cells; DBI 

KD 2781 virus
+
 cells; rescue 179 virus

+
 cells; n = 7 mice; **p < 0.01; two-tailed paired 

t test). 

(E) Quantification of SOX2+ neural progenitors in 1 month old mice injected with 

control and DBI KD lentiviruses: Ctrl 737 virus
+
 cells; DBI KD 6311 virus

+
 cells; n = 5 

mice; ***p < 0.001; two-tailed paired t test). 

Scale bars represent 200μm in (B), 20μm in (C). Figure and figure legend were 

reproduced from Dumitru and colleagues (2017).  

 

To confirm the previous findings and exclude any possible influence of the 

genetically modified mouse lines, the results were reproduced in a wild type (wt) 

background. For this purpose I used an alternative approach involving non-Cre-

dependent lentiviruses that enable co-expression of the shRNA against DBI and the 

reporter protein EGFP in all infected cells. As control, I designed a similar lentivirus 

expressing scrambled shRNA and tdTomato (Figure 6.9 A). These viruses have the 

advantage of infecting and labelling any cell independently of the Cre expression; 

however, after analysing the infection site, it is not possible to distinguish the cells 

produced by infected stem cells from the ones which were infected directly by the virus 

(Figure 6.9 B). Therefore, I took recourse to a different analysis strategy by 

quantifying the percentage of SOX2 progenitors (NSCs and TACs) within the KD and 
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control infected populations. DBI KD led to a decrease in the percentage of SOX2
+
 

progenitors similar to the results obtained with Cre dependent viruses. Furthermore, the 

absence of DBI also reduced proliferation within the DBI KD infected population, 

reproducing the results obtained after conditional DBI KO (Figure 6.9 D).  

To further test the specificity of the approach, I performed a rescue experiment 

for DBI KD by co-infecting the cells with a DBI overexpression lentivirus. To this 

purpose, I designed a lentivirus expressing a shRNA targeting the 5’ untranslated 

region (5’UTR) of the DBI mRNA and EGFP (shRNAb). For the OE I designed a 

lentivirus expressing DBI linked through the peptide T2A to tdTomato. The shRNAb 

expressed by the KD virus targeted the endogenous DBI but not the one expressed by 

the OE virus which does not contain a 5’UTR. By injecting a mix of DBI KD and DBI 

OE virus in juvenile wt mice I found that overexpressing DBI rescued the KD 

phenotype to almost control levels indicating the specificity of the performed 

manipulations (Figure 6.9 E). 

As a complementary approach to the loss of function experiments, I performed 

gain of function studies using a viral strategy that allows labelling the stem cells and 

their progeny and the specific overexpression of DBI in these cells. To this end I 

designed a lentivirus encoding the floxed and inverted sequence of DBI linked through 

T2A to tdTomato and controlled by the general promoter EF1. The expression of DBI 

and tdTomato occurs only after Cre-dependent recombination of the floxed cassette. As 

control I designed a lentivirus presenting the inverted sequence of EGFP flanked by 

loxP sites. I injected a mix of the Cre-dependent DBI OE and control lentiviruses in the 

DG of juvenile (P7) NestinCre mice and analysed the niche two weeks later (Figure 

6.7 A). I evaluated the proportion of labeled NSCs (GFAP
+
/SOX2

+
 RG-like 

morphology), ANPs (GFAP
-
/SOX2

+
), neuroblasts (DCX

+
), young neurons (DCX

-

/NeuN
+
), and astrocytes (GFAP

+
, astrocyte morphology) within the red (DBI OE) and 

green (control) cell populations. In contrast to the results of the KD experiment, DBI 

OE led to an increase in the proportion of NSCs, TACs and astrocytes and to a decrease 

in the proportion of adult-born neurons (Figure 6.10 A). Upon performing the 

experiment in adult mice (two months old) I found a similar expansion of the early 

progenitor population, especially of the stem cell pool and a decrease in the number of 
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adult-born neurons (Figure 6.10 B). To determine whether the expanded stem cell pool 

leads later on to an increase in neurogenesis I injected a mix of the OE and the control 

Cre-dependent lentiviruses in the DG of two months old mice and waited for three 

months to test the long term effects of DBI OE on the niche. After this longer time 

point I still found a significantly higher number of stem cells in the DBI OE cell 

population, showing that DBI produces an expansion of the stem cell pool also after 

long expression times and not only temporarily (Figure 6.10 B). There was no 

difference in the number of mature adult-born neurons between control and OE groups, 

indicating that the higher number of neuroblasts found two weeks after DBI OE 

developed into neurons. In addition, this result suggests that DBI OE does not lead to 

an increase in neurogenesis in the long run but rather expands the progenitor pool 

(Figure 6.10 B). Altogether the results of the gain and loss of function experiments 

show that DBI is important for regulating the balance between preserving the stem cell 

pool and neurogenesis in the SGZ. 

 

3.4 DBI and ODN regulate the activity of SGZ NSCs by 

negatively modulating GABA induced currents via the 

GABAA channel 

 

The previous results showed that DBI is important for regulating postnatal and 

adult SGZ neurogenesis. The next step in understanding the role DBI plays in the SGZ 

was to determine its action mechanism. DBI has multiple potential action mechanisms; 

the protein was shown to bind to the benzodiazepine binding site of the GABAA 

channel (the central benzodiazepine receptor) and to modulate its activity (Alfonso et 

al., 2012; Bormann, 1991; Hill et al., 2010). However, DBI also binds to the peripheral 

benzodiazepine receptor and acts as an acyl-CoA ester transporter (Knudsen et al., 

1993; Neess et al., 2015; Rosendal et al., 1993; Selvaraj et al., 2015; Vock et al., 2010). 

Our lab previously showed that DBI and its cleavage product ODN regulate the 

proliferation of SVZ TACs by binding to the GABAA receptor and negatively 

modulating the GABA currents. Similar to DBI, ODN binds with high affinity to the 
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GABAA receptor; however, it binds only with low affinity to the peripheral 

benzodiazepine receptor and it does not bind acyl-CoA esters. Thus, to determine 

whether DBI regulates SGZ neurogenesis by modulating the activity of the GABAA 

receptor I tested whether overexpressing ODN can reproduce the results obtained by 

overexpressing DBI. To this end I designed a Cre-dependent lentivirus similar to the 

one used to overexpress DBI, containing the inverted sequence of ODN in frame with 

T2A and tdTomato flanked by loxP sites. I used as control a lentivirus containing the 

inverted sequence of EGFP alone. For both viruses, expression is driven by the general 

promoter EF1, just as in the case of DBI OE and control virus. I injected a mix of the 

ODN OE and control lentivirus in the DG of juvenile mice and analyzed the niche two 

weeks later (Figure 6.10 C). After analyzing the different progenitors in the niche I 

found in the cell population overexpressing ODN considerable more stem cells than in 

the control infected cells and an increase in the population of TACs and neuroblasts, 

very similar to the results obtained after overexpressing DBI (Figure 6.10 C). 

Therefore, the results suggest that DBI regulates adult SGZ neurogenesis by 

modulating the GABAA receptor. 
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Figure 6.10. DBI/ODN OE in stem cells in vivo favors the expansion of the progenitor 

pool. 

(A) Top: vector maps of the Cre-dependent DBI OE and the corresponding control 

lentivirus. Bottom: scheme depicting experimental procedure pertaining to injection of 

viral mixes of DBI OE and Ctrl lentiviruses into the DG of P7 NestinCre mice. Right: 

graph shows the proportion of the indicated cell types in the niche quantified as 

percentage of all infected cells and expressed as mean ± SEM following DBI OE (Ctrl: 
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8,114 virus+ cells; DBI OE: 341 virus+ cells; n = 6 mice; *p < 0.05, **p < 0.01; two-

tailed paired t test). 

(B) Top: scheme depicting experimental procedure. Adult NestinCre mice were 

injected with viral mixes of DBI OE and Ctrl lentiviruses into the DG and analyzed 

either 2 weeks or 3 months post injection. Bottom: graphs show the proportion of the 

indicated cell types in the niche quantified as percentage of all infected cells and 

expressed as mean ± SEM following DBI OE at either 2 weeks post-injection (left) 

(Ctrl: 2,862 virus+ cells; DBI OE: 535 virus+ cells; n = 4 mice; *p < 0.05, **p < 0.01, 

***p < 0.001; two-tailed paired t test) or 3 months post-injection (right) (Ctrl: 4,096 

virus+ cells; DBI OE: 324 virus+ cells; n = 4 mice; *p < 0.05, **p < 0.01, ***p < 

0.001; two-tailed paired t test). 

(C) Left: vector maps of the Cre-dependent ODN OE with the corresponding control 

lentivirus and scheme depicting experimental procedure pertaining to injection of viral 

mixes of ODN OE and Ctrl lentiviruses into the DG of P7 NestinCre mice. Right: 

graph shows the proportion of the indicated cell types in the niche quantified as 

percentage of all infected cells and expressed as mean ± SEM following ODN OE 

(Ctrl: 4,226 virus+ cells; ODN OE: 1,074 virus+ cells; n = 8 mice; *p < 0.05, ***p < 

0.001; two-tailed paired t test).  

Abbreviations: NSC, neural stem cells; ANP, amplifying neural progenitor; Nb, 

neuroblast. Figure and figure legend were reproduced from Dumitru and colleagues 

(2017).  

 

To directly measure whether DBI influences the activity of the receptor in stem 

cells I generated a lentivirus expressing tdTomato driven by a GFAP promoter that 

allows the identification of the NSCs in acute brain slices (Figure 6.11 A). I injected 

this lentivirus in the DG of juvenile mice and one to two weeks later Angela Neitz 

patched cells in the SGZ expressing tdTomato and having a RG-like morphology.  
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Figure 6.11. DBI 

reduces GABAA-

induced currents in 

hippocampal NCSs, 

thereby affecting the 

progenitor pool. 

(A) Left: scheme 

depicting the lentiviral 

construct and the 

experimental procedure: 

a lentivirus expressing 

tdTomato from a GFAP 

promoter was injected in 

the DG of either wild-

type or gamma2 F77I 

mice at P7. Mice were 

sacrificed between 1 and 

2 weeks after injection, 

and patch clamp 

recordings were 

performed on tdTomato
+
 

cells. Right: 

representative image of 

an infected tdTomato
+
 

RG-like cell in the SGZ 

1 week after injection. 

(B) Left: a light 

microscope image of a 

patched stem cell. The 

cell is indicated by the 
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arrowhead, and the tip of the patch pipette is visible on the right side of the cell. Right: 

tdTomato expression in the same patched stem cell, indicated by the arrowhead. 

(C) Left top: recordings from a fluorescently labeled stem cell that does not exhibit 

action potentials following 20 pA current steps ranging from -100 pA to 100 pA 

injected into the cell soma. Left bottom: representative example showing inward 

currents obtained in response to local puff application of GABA (black trace) or GABA 

plus ODN (blue trace) in a wild-type stem cell. Right: quantification of current 

responses obtained by local puff application of GABA plus ODN in wild-type stem 

cells (black bar) and gamma2 F77I mutant stem cells (gray bar). Each bar represents 

the GABA current in the presence of ODN expressed as a percentage of the current in 

the absence of ODN (mean ± SEM; wild-type: 11 cells in 4 mice; gamma2 F77I: 11 

cells in 6 mice; **p < 0.01; two-tailed t test). 

(D) Top: scheme depicting the lentiviral constructs and the experimental procedure: a 

mix of DBI OE and control lentiviruses was injected in the DG of either wild-type or 

gamma2 F77I mice at P7. Mice were sacrificed 2 weeks after injection. Bottom: a 

representative picture of virally infected cells positive for SOX2 in a wild-type mouse 

and quantification of SOX2
+
 cells overexpressing DBI (quantified as the increase in the 

percentage of SOX2
+
 cells when comparing control-infected cells and DBI OE cells) in 

wild-type (black bar) or in gamma2 F77I mice (gray bar) (mean ± SEM; wild-type Ctrl 

3,132 virus
+
 cells; wild-type DBI OE: 372 virus+ cells; n = 9; gamma2 F77I Ctrl: 3,965 

virus
+
 cells; gamma2 F77I DBI OE: 1,582 virus

+
 cells; n = 8 mice; ***p < 0.001; 

Mann-Whitney rank-sum test).  

Scale bars in (A) and (B) represent 10 mm. Figure and figure legend were reproduced 

from Dumitru and colleagues (2017). All electrophysiological measurements were 

performed by Angela Neitz. 

 

The SGZ NSCs display particular electrophysiological characteristics, different 

from neurons: they have a high input resistance and do not fire after current injection. 

The stem cells also express GABAA receptors and present tonic GABA responses 

which are enhanced by the GABA agonist muscimol and by benzodiazepines like 

diazepam and are abolished by the GABA antagonist bicuculine (Shin et al., 2011; 
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Song et al., 2012). Therefore, we selected the cells that had electrophysiological 

characteristics of stem cells and measured GABA induced currents in voltage clamp 

mode at a holding potential of -60mV after applying puffs of either GABA or GABA 

and ODN (Figure 6.11 A-C). As expected, we found currents after GABA application. 

Furthermore, these currents were partially inhibited by co-application of ODN, 

indicating that DBI and respectively ODN can bind to the GABAA receptors on the 

stem cells and negatively modulate the activity of the channel (Figure 6.11 C).  

The next step was to determine whether DBI binding to the benzodiazepine 

binding site was mediating the phenotypes found after DBI KD and DBI OE. To 

answer this question we made use of mice carrying a phenylalanine (F) to isoleucine (I) 

substitution at position 77 in the N-terminal domain of the γ2 subunit (gamma2 F77I); 

mutation which reduces binding to the benzodiazepine binding site (Cope et al., 2004; 

Ogris et al., 2004). Patch clamp measurements in the gamma2 F77I mice showed that 

the ODN-mediated reduction in GABA currents was almost abolished in mutant NSCs, 

indicating that ODN negatively modulates the activity of the GABAA channel by 

binding to the benzodiazepine binding site (Figure 6.11 C).  

If DBI regulates the activity of the stem cells via this mechanism, the effects 

should be diminished in the gamma2 F77I mice. To test this hypothesis I injected in the 

DG of juvenile gamma2 F77I and wt mice a mix of DBI OE and control lentiviruses 

and evaluated the proportion of SOX2
+
 progenitors within the OE and control cell 

populations. The wt mice showed an increase in the proportion of SOX2
+
 progenitors 

as described before; however, I found a drastically mitigated effect in the gamma2 F77I 

mice (Figure 6.11 D). Altogether, the data presented indicate that DBI regulates the 

activity of the SGZ NSCs by binding to the GABAA receptor and negatively 

modulating the GABA induced currents.    
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3.5 DBI is required for the pro-proliferative effect of voluntary 

exercise and enriched environment 

 

 

Figure 6.12. DBI KD prevents the pro-neurogenic effect of EE. 

(A) Schematic drawing depicting the experimental protocol. 
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(B) Coronal brain sections showing a representative Ctrl (left) and DBI KD (right)-

infected DG  from mice kept in standard housing (SH). Upper panels show double 

labeling for DCX (white) and mCherry (red) or EGFP (green). Lower panels show 

DCX labeling only for better visualization of the signal. 

(C) Coronal brain sections showing DCX labelling (white) in a representative Ctrl (left) 

and a DBI KD (right) DG from mice kept in an enriched environment (EE). 

(D) Quantification of DCX+ neuroblasts per mm3 (mean ± SEM) in non-infected DGs 

(Ctrl) and in DBI KD-infected DGs from mice housed in SH or EE (Ctrl non-infected 

SH: 2,997 cells in 9 mice; Ctrl non-infected EE: 7,576 cells in 12 mice; infected with 

DBI KD virus SH: 3,269 cells in 7 mice; infected with DBI KD virus EE: 4,404 cells in 

9 mice; **p < 0.01; Mann-Whitney rank-sum test). 

(E) Quantification of Ki67+ cells per mm3 (mean ± SEM) in non-infected DGs (Ctrl) 

and in DBI KD DGs from mice housed in SH or EE (Ctrl non-infected SH: 307 cells in 

9 mice; Ctrl non-infected EE: 1,043 cells in 13 mice; infected with DBI KD virus SH: 

80 cells in 6 mice; infected with DBI KD virus EE: 175 cells in 9 mice; **p < 0.01; 

two-tailed t test). 

(F) Percentage of proliferating NSCs (mean ± SEM) in non-infected DGs (Ctrl) and in 

DBI KD-infected DGs from mice housed in SH or EE (Ctrl non-infected SH: 1,971 

RG-like Nestin
+
/SOX2

+
 cells in 10 mice; Ctrl non-infected EE: 2,111 RG-like 

Nestin
+
/SOX2

+
 cells in 12 mice; injected with DBI KD virus SH: 3,233 RG-like 

Nestin
+
/SOX2

+
 cells in 7 mice; injected with DBI KD virus EE: 1,625 RG-like 

Nestin
+
/SOX2

+
 cells in 8 mice; ***p < 0.001; two-tailed t test). 

Scale bars represent 100 mm. Figure and figure legend were reproduced from Dumitru 

and colleagues (2017).  

 

A natural question that follows in this study relates to the physiological function 

of DBI in the SGZ. I found that DBI is important for regulating the activity of the SGZ 

NSCs by modulating GABA signaling. GABA influences SGZ neurogenesis at 

multiple levels and was proposed to couple the electrical activity in the hippocampus to 

the dynamics of SGZ neurogenesis. Furthermore, optogenetic silencing of the DG PV-

positive interneurons abolished the survival increase found after EE. This finding 
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suggests that GABA signaling is responsible for mediating the pro-neurogenic effect of 

EE to the SGZ niche (Song et al., 2013). Therefore, I investigated whether DBI plays a 

role in regulating SGZ neurogenesis in special situations like EE and physical exercise. 

To test this hypothesis I injected in four weeks old Nestin-Cre mice Cre-dependent DBI 

KD lentivirus and used the non-infected DG as control. The mice were housed in EE 

with free access to running wheels for three weeks after which they were sacrificed 

(Figure 6.12 A). I analyzed the number of DCX
+
 neuroblasts present in the DG 

infected with KD virus and compared it to non-infected DGs. As expected, EE and 

voluntary running lead to a strong increase in the number of neuroblasts; however, DBI 

KD prevented this increase (Figure 6.12 B-D). Voluntary exercise was shown to 

enhance the activation of the NSCs and especially to increase the proliferation of NSCs 

and of TACs (Dranovsky et al., 2011; Gebara et al., 2016; Kempermann et al., 1997). 

Data presented in this study shows that DBI is important for progenitor proliferation. 

After analyzing the number of Ki67
+
 cells in the SGZ I found a strong increase in SGZ 

proliferation after EE and voluntary exercise, as described in previous studies 

(Kempermann et al., 1997). However, this effect was abolished by DBI KD (Figure 

6.12 B, C and E). DBI is strongly expressed in SGZ NSCs and I showed before that 

DBI is important for regulating their activity; therefore, I tested the proliferation rate of 

the SGZ NSCs in the KD and control DGs. As expected, EE and physical exercise lead 

to an increase in SGZ NSCs proliferation, increase which was abolished by the absence 

of DBI (Figure 6.12 B, C and F). Thus, the present data show that DBI is essential for 

the pro-neurogenic and especially for the pro-proliferative effect of enriched 

environment and physical exercise. 

To avoid any possibility that the effects found were caused by the viral 

manipulation I repeated the experiment by injecting 4 weeks old mice with control Cre-

dependent lentivirus and used as control the non-infected DGs. After housing the mice 

for 3 weeks in EE with free access to running wheels I found in both the control 

infected DGs and in the non-infected DGs a strong increase in the number of 

neuroblasts. Therefore, the abolished pro-neurogenic effect of EE found after DBI KD 

was caused by the absence of DBI and not by the viral manipulation (Figure 6.13 A).  
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Figure 6.13. DBI regulates the SGZ stem cell niche under EE. 

(A) Top: Scheme depicting the experimental setup. Bottom left: Coronal brain sections 

showing an overview of a non-infected (upper panel) and an infected DG with Ctrl 

virus (red for mCherry) (lower panel). The brain slices were stained for DCX (white). 

Bottom right: Quantification of the number of DCX+ neuroblasts per mm3 (mean ± 
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SEM) in non-infected DGs and Ctrl lentivirus infected DGs from mice kept either 

under SH (non-infected DGs: 1459 cells; DGs infected with Ctrl lentivirus expressing 

scrambled shRNA and mCherry: 2303 cells; n = 6 mice) or EE conditions (non-

infected DGs: 4039 cells; DGs infected with Ctrl lentivirus expressing scrambled 

shRNA and mCherry: 4412 cells; n = 5 mice, ***p<0.001, one-way ANOVA followed 

by Holm-Sidak method for all pairwise comparison). There is no significant differences 

between non-infected and Ctrl-infected DGs from mice kept under similar conditions. 

(B) Top: Schematic depicting the experimental setup. Bottom left: Quantification of 

BrdU+ cells (mean ± SEM) per DG slice in SH and EE housed mice (SH: n = 16 mice; 

EE: n = 15 mice; *p < 0.05; two-tailed t test). Bottom right: Quantification of SOX2
+
 

progenitors expressed as percentage (mean ± SEM) of infected cells in Ctrl virus
-
 and 

KD DBI virus-injected mice kept under SH or EE conditions (SH Ctrl: 1031 virus
+
 

cells in 16 mice; EE Ctrl 518 virus
+
 cells in 15 mice; SH KD DBI: 8756 virus

+
 cells in 

16 mice; EE KD DBI 5443 virus
+
 cells in 15 mice; ***p < 0.001; two-tailed paired t 

test). 

Abbreviations: SH – standard housing, EE – enriched environment. Scale bars 

represent 100μm. Figure and figure legend were reproduced from Dumitru and 

colleagues (2017).  

 

Similar results were obtained when DBI ablation was achieved by non-Cre-

dependent lentiviruses in wt mice (Figure 6.13 A). EE and Physical exercise increase 

the number of SOX2
+
 progenitors in SGZ because of the enhanced proliferation and 

survival of the neural progenitors (Fabel et al., 2009; Gebara et al., 2016; Kronenberg 

et al., 2003; Vivar et al., 2013). DBI KD inhibited almost completely the pronounced 

increase in SOX2
+
 progenitors in the DG of mice subjected to EE (Figure 6.13 B). 

These results are further proving that DBI is required to promote the pro-neurogenic 

and pro-proliferative effect of EE and exercise. 
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4. Discussion 

4.1 DBI is expressed in embryonic and adult neural stem cells  

 

DBI is highly expressed in certain areas of the adult brain such as the walls of the 

lateral and 3
rd

 ventricle, the RMS and the hippocampus (Alfonso et al., 2012; Alho et 

al., 1989; Alho et al., 1985; Alho et al., 1991; Alho et al., 1995). In the SVZ, DBI is 

strongly and specifically expressed in all NSCs and in a population of TACs (Alfonso 

et al., 2012). I investigated in this study the presence of DBI in the other postnatal and 

adult neurogenic niches. After a detailed immunohistological analysis I found that DBI 

is strongly expressed in the SGZ, both in juvenile and in adult mice and is specifically 

localized in stem cells and early progenitors. DBI expression levels decline along with 

the developmental stage of the SGZ neural progenitors, resembling its expression 

pattern in the SVZ. The early proliferative TACs still express high levels of the protein; 

however, the late and more committed Type 2b cells, show low DBI expression as 

reflected both by the number of DBI-positive cells and their expression levels. Finally, 

only few neuroblasts express DBI, albeit at very low levels, while in mature neurons 

DBI signal is not detectable.  

Multiple factors are expressed both in SVZ and SGZ neural progenitors. Well 

characterized stem cell markers like Nestin, SOX2 and GFAP, as well as factors 

important for the differentiation of neuronal progenitors including Mash1, Tbr2 and 

NeuroD are present in both niches (Kempermann et al., 2015). These proteins are often 

essential during basic processes in the biology of stem cells and early progenitors. 

Meanwhile, other proteins are found exclusively in one niche. These are often factors 

responsible for cell commitment to a certain fate (Kempermann et al., 2015; Lim and 

Alvarez-Buylla, 2016). Indeed, these factors drive SVZ-derived progenitors to produce 

GABAergic neurons or SGZ-derived progenitors to produces glutamatergic neurons. 

Such an example is Prox1 which is expressed only in SGZ progenitors and is essential 

for determining granule cell fate (Lavado et al., 2010). Olig2 is preferentially expressed 

in the SVZ and is responsible for generating oligodendrocytes, which are only 

produced in very small numbers in the SGZ (Kempermann et al., 2003; Steiner et al., 
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2004). The presence of DBI in stem cells and uncommitted TACs from both the SVZ 

and SGZ suggests that the function of this protein might be related to early cellular 

processes in neurogenesis, general to different neurogenic niches. Thus, it is likely that 

DBI is expressed in other neural stem cells regardless of the niche they are populating. 

I also explored the presence of DBI in the less described neurogenic niche localized 

close to the hypothalamus, namely the wall of the 3
rd

 ventricle. Using 

immunohistochemistry I found that DBI is strongly expressed in all Nestin
+
 SOX2

+
 

Tanycytes lining the walls of the 3
rd

 ventricle. The α-Tanycytes populating the ventral 

wall of the 3
rd

 ventricle were shown to act as stem cells and to postnatally produce 

neurons that integrate into the surrounding parenchyma and are important for 

regulating feeding behavior and fat metabolism (Dietrich and Horvath, 2012; Lee et al., 

2012). Interestingly, a previous study suggested that DBI is involved in regulating 

energy homeostasis (Compere et al., 2010).  

Adult neurogenesis recapitulates the stages of embryonic neurogenesis and shares 

many regulatory factors and mechanisms. Therefore, I investigated the presence of DBI 

during embryonic development and found that all Nestin
+
 SOX2

+
 RG cells strongly 

express DBI at E 13,5. DBI is present in the ventricular and subventricular zones of 

both the neocortex and the ganglionic eminences. Thus, DBI is not only expressed in 

all adult neural stem cells but also in RG cells during embryonic development. 

Embryonic RG cells and adult NSCs display both similarities and differences. During 

embryonic development RG cells must divide quickly to produce a high number of 

neurons and glial cells that compose the brain; therefore, they are highly proliferative 

(Arai et al., 2011; Gotz and Huttner, 2005). At early embryonic stages (E11.5 –E14.5) 

all RG cells produce neurons and already express high levels of neurogenic fate 

determinants. Thus, RG cells resemble more the TAPs found in adult neurogenesis 

(Gotz et al., 2016). Adult NSCs present several similarities to glial cells. However, they 

must present extra mechanisms to ensure the preservation of the stem cell pool and of 

multipotency over longer periods of time (Gotz et al., 2016). Adult NSCs divide less 

than RG cells, have a much longer cell cycle and present very low levels of neurogenic 

fate determinants (Arai et al., 2011; Beckervordersandforth et al., 2010; Bonaguidi et 

al., 2011; Gotz and Huttner, 2005; Gotz et al., 2016; Morshead et al., 1994). The 
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presence of DBI in both embryonic and adult neural stem cells suggests that DBI plays 

a role in regulating fundamental processes in the biology of the early neural 

progenitors. There are numerous examples of factors that regulate the activity of the 

stem cells and are present both during embryonic and adult neurogenesis such as wnt, 

notch, sonic hedgehog and bone morphogenetic protein (BMP) (Gotz et al., 2016; 

Urban and Guillemot, 2014). Some factors play similar roles while others produce 

completely different outcomes in RG cells and adult NSCs. A good example is BMP 

which keeps the stem cells proliferating in the embryo while it promotes quiescence of 

the stem cells in the adult brain (Caronia et al., 2010; Mira et al., 2010; Urban and 

Guillemot, 2014). Therefore, it will be interesting to determine in the future whether 

DBI plays similar roles in embryonic and adult neurogenesis and whether it acts via 

similar mechanisms. 

DBI is present in all eukaryotes and is highly conserved; therefore, I tested 

whether DBI is present also in adult neurogenic niches from other species. In the 

Rhesus monkey, an immunohistological analysis showed that DBI is strongly 

expressed in the SGZ and is present in all GFAP
+
 SOX2

+
 RG-like putative NSCs. DBI 

is also expressed in SOX2
+
 cells which do not display a RG-like morphology 

suggesting its presence also in TACs. In human tissue, I found that DBI is present in 

the SGZ, localized in GFAP+ cells. Unfortunately, there are few studies targeting the 

human SGZ and therefore also few tools available to study the niche. Many antibodies 

used to detect well-established markers for the identifications of adult neural 

progenitors do not provide good results in the human tissues. Furthermore, the 

suboptimal postmortem tissue preparation and fixation further decrease the quality of 

the immunostainings. Therefore, technical issues prevented a precise identification of 

the cell types expressing DBI. The protein co-localizes in the adult human SGZ with 

GFAP
+
; however, it was not possible to determine whether these GFAP

+
 cells were 

astrocytes or SGZ NSCs.  

DBI is thus expressed in all adult neurogenic niches in mice and across species in 

the adult SGZ in the rhesus monkey and in humans. Furthermore, DBI is strongly 

expressed during development in RG stem cells. The presence of the protein in all 

neurogenic niches indicates a strong connection between DBI and neurogenesis. 
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Moreover, the expression of DBI completely overlaps with the expression pattern of 

SOX2, which is a well-known stem cells marker and an essential factor for the 

induction and maintenance of self-renewal and pluripotency (Zhang and Cui, 2014). 

Furthermore, high DBI expression also overlaps with Nestin expression in the nervous 

system. Therefore, high DBI expression represents a potential marker for neural stem 

cells and a potential indicator for stemness in the nervous system.    

 

4.2 DBI is important for regulating the balance between 

preserving the progenitor pool and generating neurons  

 

DBI plays an important regulatory role in the SVZ. SGZ and SVZ present many 

similarities and share common regulatory mechanisms. Thus, I investigated the 

potential of DBI as a regulator of postnatal and adult SGZ neurogenesis. To this end I 

took recourse to three in vivo strategies to manipulate DBI expression levels in the 

SGZ NSCs: an inducible genetic system (NestinCre
ERT2

/DBI
lx/lx 

mouse line in which 

DBI can be deleted specifically in the Nestin expressing stem cells and in their progeny 

after tamoxifen administration); a combination of a genetic system (Nestin-Cre mouse 

line) and lentiviral injections in the DG which allows specific labeling and DBI KD or 

OE in stem cells and their progeny; and injections of lentiviruses that knockdown or 

overexpress DBI in the DG of wt mice. The NestinCre
ERT2

/DBI
lx/lx 

mice allowed me to 

determine the role DBI plays in the SGZ without the usage of any viral manipulation. 

However, DBI KO is only partial and one cannot determine with certainty which cells 

lack DBI. The combination of Nestin-Cre mice and Cre-dependent lentiviruses allowed 

the specific labeling of SGZ stem cells and their progeny and the manipulation of DBI 

expression levels in these cells. Using this strategy we could achieve almost complete 

DBI KD and strong DBI OE in the infected cells and determine the role DBI has in the 

SGZ NSCs. Furthermore, in this technique, one targets the SGZ without affecting the 

other postnatal neurogenic niches which also present Nestin expressing progenitors. 

Last but not least the lentiviral injection in wt mice allowed me to test the effects I 

found with the other methods in a wt background without any genetic modifications 
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that could influence the results. Thus, each strategy has advantages and disadvantages 

but together they constructed a clear image of the role DBI has in the SGZ and 

confirmed that the phenotypes found were caused by changes in DBI expression levels 

and not by technical artifacts.  

All three techniques showed that reducing or ablating DBI expression in stem 

cells leads to a reduction of the population of SGZ NSCs while DBI OE leads to an 

expansion of the stem cell pool, indicating the importance of DBI for regulating the 

activity of SGZ NSCs. Viral DBI KD infections analyzed after a short period of time (2 

weeks post injection) resulted also in a decrease in the number of TACs, astrocytes and 

neuroblasts and to an increase in the number of adult-born neurons. At the same time, 

DBI OE infections analyzed at similar time post injection had opposite effects leading 

not only to an expansion of the pool of SGZ NSCs but also of TACs, neuroblasts and 

astrocytes and to a decrease in the number of adult-born neurons. Long-term (3 months 

post injection) DBI OE treatment resulted in an expanded stem cell pool; however, the 

number of neuroblasts and adult-born neurons produced by the cells overexpressing 

DBI were comparable to controls. Thus, DBI ablation increases neuronal differentiation 

while DBI OE expands the pool of early progenitors. 

The most remarkable finding associated with manipulating DBI OE is the 

expansion of the SGZ stem cell pool. The most plausible scenario is that DBI keeps the 

stem cells into symmetric proliferation enhancing self-renewal. Three months after DBI 

OE, the expansion of the NSCs pool persisted in the SGZ, indicating that DBI is a 

potent regulator of self-renewal even after long periods of high expression levels. After 

longer DBI OE the number of neuroblasts and adult-born neurons was not different 

from the control population. In the SVZ DBI was shown to increase the number of cell-

divisions without affecting the cell cycle length (Alfonso et al., 2012). Therefore, DBI 

OE in the SGZ most likely enhances symmetrical division of the stem cells and 

increases the number of times the TACs reenter the cell cycle. In this case, the early 

progenitors would undergo more rounds of division which would delay their 

differentiation. Thus, one finds after short term DBI OE a higher number of early 

progenitors but a lower number of adult-born neurons. After a long period of DBI OE 

the progenitors overexpressing DBI would have enough time to exit cell cycle and 
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become adult-born neurons. This would explain why the difference between the 

number of neuroblasts produced in the OE and the control population disappears. 

However, three months of DBI OE did not lead to an increase in the number of adult-

born neurons. Therefore, DBI enhances the pool of stem cells but does not finally lead 

to an increase in neurogenesis under homeostatic conditions, even after longer time 

points. This indicates that DBI might be responsible for maintaining the SGZ stem cell 

pool rather than for neuron production. However, even though in homeostatic 

conditions the increased stem cell population does not lead to an increase in 

neurogenesis, the additional stem cells could be used to produce more neurons in 

specific situations.  

 

4.3 DBI regulates the activity of neural stems cell by 

negatively modulating GABA-mediated currents 

 

DBI plays an important role in regulating postnatal and adult SGZ neurogenesis. 

An important step in understanding the role of DBI as a neurogenic regulator is to 

determine its mechanism of action. DBI was shown before to act as a negative 

modulator of the GABAA receptor (the central benzodiazepine receptor) in cultured 

spinal cord neurons (Bormann et al., 1985; Costa and Guidotti, 1991). In addition, DBI 

binds to the TSPO receptor (the peripheral benzodiazepine receptor) and regulates the 

cholesterol flow into the mitochondria (Selvaraj et al., 2015; Vock et al., 2010). 

Moreover, DBI also binds acyl-CoA esters and acts as an acyl-CoA ester transporter 

and pool former playing an important role in lipid metabolism (Knudsen et al., 1993; 

Neess et al., 2015; Rosendal et al., 1993). Therefore, there are several potential 

molecular mechanisms via which DBI could influence SGZ neurogenesis. Our lab 

showed that in the SVZ, DBI negatively modulates the activity of the GABAA receptor 

in TACs and enhances their proliferation via this mechanism and not through its 

binding to the TSPO. Similar to its action in the SVZ, DBI increased the proliferation 

of SGZ NSCs and TACs via binding to the GABAA receptor. Electrophysiological 

recordings from SGZ stem cells during application of GABA or GABA plus ODN 
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showed that ODN significantly reduces GABA induced currents. The reduction in 

GABA currents induced by ODN was strongly diminished in gamma2 F77I mice, 

which present a mutation in the gamma2 subunit of the GABAA receptor that 

decreases binding to the benzodiazepine binding site. This confirms that ODN 

negatively modulates the activity of the GABAA receptor by binding to the 

benzodiazepine binding site. This mouse line constitutes an optimal system to test 

whether DBI modulates neurogenesis via the GABAA receptor. If DBI is regulating 

SGZ neurogenesis by modulating GABAA currents, DBI and ODN should have an 

ameliorated phenotype in the mice presenting the gamma2 F77I mutation. Indeed 

overexpressing DBI in the gamma2 F77I mutant mice prevented the phenotype found 

in wt mice; namely an expansion of the pool of SOX2
+
 early progenitors. This 

experiment constitutes a definitive proof to conclude that DBI regulates the activity of 

the SGZ stem cells and thereby SGZ neurogenesis by binding to the benzodiazepine 

binding site of the GABAA receptor. One cannot exclude the possibility of DBI acting 

also via TSPO or via its function as acyl-CoA esters reservoir; however, this is unlikely 

as ODN OE reproduced the effects found after DBI OE and ODN binds only with low 

affinity to TSPO and lacks the aminoacid residues necessary for binding acyl-CoA 

esters. Furthermore, inhibiting in vitro the activity of TSPO did not interfere with 

DBI’s pro-proliferative phenotype in SVZ progenitors while reducing its binding to the 

GABAA receptor by competitive inhibition almost abolished the phenotype. These 

results are further proof that DBI does not regulate neurogenesis via TSPO but via the 

GABAA receptor.  

The studies undertaken by Song et al. found a ‘diametric regulation’ of stem 

cell proliferation and of TAC and neuroblast survival in the SGZ niche. Tonic GABA, 

spilled-over from the synapses of PV-positive interneurons was shown to keep the stem 

cells quiescent and to reduce the proliferation of the activated stem cells (Song et al., 

2012). PV-positive interneurons make immature synapses with the newborn progeny, 

providing their first phasic input and supporting their survival and development (Song 

et al., 2013). Thus, GABA seems to keep the SGZ stem cells quiescent and at the same 

time to have a pro-survival effect in TACs and neuroblasts. I showed that DBI 

regulates SGZ neurogenesis by negatively modulating GABA signaling in NSCs and 
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TACs. Therefore, the results presented in this study fit very well with the data 

presented by the Song lab. DBI KD, which results in enhanced GABA signaling, leads 

to a reduction in the number of stem cells and TACs, similarly to the findings obtained 

by increasing GABA currents with either benzodiazepines or optogenetically. DBI OE 

has opposite effects to DBI KD and similar results to reduced GABA signaling, namely 

enhanced stem cell activation and enhanced proliferation. Furthermore, the effects 

found by the Song lab were dependent on the presence of the γ2 subunit of the GABAA 

receptor (Song et al., 2013). DBI binds to the benzodiazepine binding site of the 

receptor present on the extracellular side between the α and the γ2 subunits. Along the 

same lines, diazepam treatment increases GABA signaling and reduces stem cell 

proliferation in the SGZ (Song et al., 2013). Meanwhile, deletion of the γ2 subunit, 

which would correspond to reduced GABA currents, leads to similar results as DBI 

OE, namely increased stem cells activation, increased stem cell symmetrical division, 

and self-renewal (Lorez et al., 2000). Furthermore, deleting of the γ2 subunit leads to an 

increase in the astrocyte generation, phenotype which was also found after DBI OE 

(Song et al., 2013). The very similar effects obtained either by directly manipulating 

GABA signaling or by manipulating DBI expression levels provide further proof that 

DBI regulates adult SGZ neurogenesis by negatively modulating GABA signaling via 

the γ2 containing GABAA channel.  

Numerous reports show that DBI acts as a negative allosteric modulator of the 

GABA receptor both in cultured spinal cord neurons as well as in neural progenitors 

(Alfonso et al., 2012; Bormann et al., 1985; Costa and Guidotti, 1991). However, in 

neurons of the thalamic reticular nucleus, DBI was found to act as a positive modulator 

of the GABAA receptor (Christian et al., 2013; Farzampour et al., 2015). A possible 

explanation for the activity of DBI as a dual modulator can be found in the subunit 

composition of the GABAA channels present in the membrane of the stem cells and of 

the thalamic neurons. The GABAA receptor is a heteropentameric channel composed of 

2α, 2β and a γ or a δ subunit. There are six types of α subunits, three types of β subunits 

and 3 types of γ subunits (Sieghart, 2015; Sigel and Buhr, 1997). Different combination 

of the possible α,β and γ subunits of the GABAA channel could be responsible for the 

different actions of DBI. Thus, DBI could differently regulate the cells present in the 
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niche according to the types of GABAA receptors they express. The measurements 

undertaken in this study demonstrate that DBI negatively modulates the activity of the 

GABAA receptor present on SGZ NSCs. Whether DBI plays a different role in other 

cells in niche is to be tested in the future. However, this perspective is unlikely as DBI 

is only expressed in the SGZ NSCs and TACs and in a very small number of 

neuroblasts. Moreover, DBI was shown to negatively modulate GABA currents in SVZ 

TACs and neuroblasts and it is likely that it exerts a similar action in the SGZ. 

However, the mechanistic details which allow DBI to acts as both a positive and a 

negative modulator of the GABAA receptor and whether DBI could also act as a 

positive modulator in the SGZ remain to be elucidated in the future.  

It is still an open question whether the DBI produced by the stem cells acts in a 

solely autocrine fashion or it could also diffuse to surrounding neuroblasts and neurons. 

The results presented here render the possibility of a paracrine action unlikely as in the 

experiments using lentiviral strategies, cells overexpressing DBI were closely located 

to control cells. In spite of this proximity, large differences were found between the OE 

and control cells. This indicates that DBI acts in an autocrine fashion. However, the 

results presented here cannot exclude an influence of DBI on the neighboring cells. 

Furthermore, the results obtained for the control populations in the KD and in the OE 

experiments were not identical. This could be caused by technical differences between 

the viruses or by DBI diffusing from the OE infected cells to the control infected cells. 

Therefore, the possibility of DBI acting in a paracrine fashion cannot be completely 

excluded.     

DBI adds another regulatory component to the current models of adult 

neurogenesis. According to the model proposed by Encinas and colleagues, a quiescent 

RG-like stem cell divides about three times asymmetrically, giving rise to another stem 

cell and to an intermediate progenitor, and subsequently transforms into an astrocyte 

(Encinas et al., 2011). In this model, a depletion of stem cells would ensue over time, 

which would explain the age dependent decrease in neurogenesis. In the model 

proposed by Song and colleagues, RG-like quiescent stem cells are thought either to be 

activated and undergo asymmetric division producing ANPs and astrocytes, or to 

divide symmetrically, giving rise to two RG-like stem cells (Bonaguidi et al., 2011). In 
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this model, symmetric division of the NSCs supports the expansion of the stem cell 

pool. Further experiments will hopefully shed light on the validity of these models 

(Bonaguidi et al., 2012). However, in both scenarios, by modulating the proliferation of 

the SGZ stem cells, DBI regulates the balance between preserving the stem cell pool 

and neuron production. 

 

4.4 DBI is involved in mediating the pro-neurogenic effect of 

EE and physical exercise 

 

Adult neurogenesis is influenced by external factors: EE is known to lead to an 

increase in the survival of the adult-born neurons while physical exercise leads to an 

increase in proliferation of the stem cells and TACs (Kempermann et al., 1997; Vivar et 

al., 2013). Running was also shown to enhance the activity of local inhibitory neurons 

in the hippocampus, including the PV-positive cells (Schoenfeld et al., 2013). 

Moreover, PV-positive interneurons in the hippocampus receive excitatory input from 

the granule cells; thus, they qualify as an indicator for the activity of the local network 

(Hu et al., 2014; Song et al., 2016). Therefore, tonic and phasic GABA released from 

the PV-positive neurons were proposed to link the dynamics of neurogenesis to the 

activity of the DG network. Moreover, Song et al. showed that silencing the activity of 

the PV-positive interneurons practically abolishes the increase in survival induced by 

EE (Song et al., 2013). This indicates that GABA signalling is necessary for the pro-

neurogenic effect of EE. A similar manipulation of the SOM-positive interneurons had 

no effect on neurogenesis with or without EE indicating that GABA release from the 

PV-positive interneurons provides a specific link between environmental enrichment 

and the survival of the adult-born neurons.  

The diametric regulation of stem cell proliferation and TAC and neuroblast 

survival provided by GABA in the SGZ was proposed to provide flexibility to the 

niche and to serve the ‘time-stamping’ of the adult-born neurons, essential for 

remembering situations in the right temporal context and order (Aimone et al., 2009; 

Song et al., 2016). However, this type of regulation cannot explain the dynamics of the 
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niche in situations of EE and physical activity. GABA regulation can provide a 

mechanism for the pro-neurogenic effect of EE by enhancing the survival and 

development of TACs and neuroblasts; however, cannot account for the pro-

proliferative effect of voluntary physical exercise. Often in EE experiments, the 

animals are housed with free access to running wheels which leads to an increase in 

both the activation of stem cells and their proliferation as well as in survival and 

development of the TACs and neuroblasts. An increase in physical activity could lead 

to an increase in the activity of the PV-positive interneurons which could explain the 

enhanced survival found for the TACs and the neuroblasts. However, the increase in 

GABA released by the PV-positive interneurons should reduce the activation of the 

stem cells and their proliferation. I showed that DBI is expressed only in NSCs and 

TACs but not in neuroblasts. Moreover, DBI expression levels decrease along with the 

commitment and differentiation stages from one cell type to the other. This study also 

showed that DBI reduces GABA signalling on NSCs and early TACs, which express 

DBI at high levels. Via this mechanism DBI enhances the proliferation of the early 

progenitors and allows an activation of the stem cells and an expansion of the stem cell 

pool. Therefore, during EE and physical exercise, DBI could decrease GABA currents 

in NSCs and early TACs without interfering with the GABA signal in neuroblasts and 

adult-born neurons, as it is not expressed in these cells. Based on our data I cannot 

exclude a paracrine action of DBI on neuroblasts and neurons. However, this 

possibility is unlikely as large functional differences were found when comparing 

control cells and cells overexpressing DBI found in close apposition. Therefore, DBI is 

most likely acting in an autocrine fashion.   

Knocking down DBI in SGZ NSCs and their progeny blocked the increase in 

proliferation that normally occurs after EE and physical exercise. The lack of DBI not 

only affected proliferation but also impaired the increase in the number of DCX 

neuroblasts expected after EE. Most likely the lack of DBI combined with high GABA 

release induced by physical exercise led to a dramatic reduction in stem cells activation 

and TAC proliferation that in turn resulted in a low production of neuroblasts. The 

present study shows that DBI allows both the pro-proliferative and, most likely as a 

consequence of this, also the pro-neurogenic effect of EE and physical exercise. 
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Therefore, I hypothesize that the function of DBI in the SGZ is to maintain the 

progenitor pool, in particular, the stem cell pool, to be used when the conditions 

demand it. Furthermore, DBI could allow a specific regulation of the GABA signal in 

early and late progenitors as it is expressed in the NSCs and TACs but not in 

neuroblasts and adult-born neurons. This differential GABA regulation could lead to an 

increase in the proliferation of the stem cells and Type 2a TACs and a simultaneous 

increase in survival of Type 2b TACs and neuroblasts after EE and physical exercise. 

This regulation of the GABA signal by DBI would explain the simultaneous pro-

proliferative and pro-neurogenic effects of these environmental changes. Therefore, 

DBI and GABA regulate SGZ neurogenesis in a close partnership enabling multiple 

levels of control which makes the niche dynamic and ready to respond to the needs of 

the local network.     
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5. Conclusions 

 

This study shows the presence of DBI not only in the SGZ but in all postnatal and 

adult mouse neurogenic niches and across species in the rhesus monkey and in humans 

as well as during development. Moreover, given that the highest expression of DBI is 

found in neural stem cells, I propose DBI expression as an indicator of stemness 

potential in the brain. I clearly demonstrated that DBI binds to the benzodiazepine 

binding site of the GABAA receptor on SGZ NSCs and reduces GABA mediated 

currents. This, in turn, increases the proliferation of SGZ progenitors, SGZ stem cells 

self-renewal rate and astrocyte production. Via this mechanism DBI regulates the 

balance between preserving the stem cell pool and neuron generation. 

 

 

Figure 8.1. Scheme Summarizing DBI Function in SGZ Neuronal Progenitors. DBI 

reduces GABA signaling in neural stem cells. GABA activity promotes stem cell 

quiescence (Song et al., 2012) and differentiation to a neuronal fate, while DBI favors 

progenitor self-renewal and differentiation to astrocytes. A thus enlarged neuronal 
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progenitor pool would, under conditions of enriched environment, give rise to an 

increase in neuronal production. Figure and figure legend were reproduced from 

Dumitru and colleagues (2017).  

 

DBI controls both SVZ and SGZ neurogenesis in spite of the different output of 

the two niches: while the SVZ produces mostly GABAergic, inhibitory neurons, the 

SGZ produces glutamatergic, excitatory cells. Thus, DBI is a general regulator of 

postnatal and adult neurogenesis. Furthermore, this study shows that DBI is essential 

for the pro-proliferative and for the pro-neurogenic effect of EE and physical exercise. 

In summary, by negatively modulating the GABA signal, DBI provides a new 

regulatory mechanism in the SGZ niche which promotes the expansion and 

preservation of the stem cell pool and together with GABA controls and adapts the 

output of the niche to the needs of the local network.   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   Outlook M 

 

84 

 

6. Outlook 

 

The present study shows that DBI is strongly expressed in all adult neurogenic 

niches including the α-Tanycytes of the 3
rd

 ventricle and during development. 

However, the role DBI plays in the 3
rd

 ventricle and during development was not 

investigated. A future goal is to check whether DBI is also regulating the activity of the 

Tanycytes and, most importantly, to determine the function of DBI in regulating 

developmental neurogenesis. Considering the high expression of the protein in RG-

cells, it is likely that DBI has an important function in developmental neurogenesis.  

A question that remains open in this study is whether DBI acts in an autocrine 

or in a paracrine fashion. The viral OE experiments presented here show differences 

between DBI OE and control infected cell populations in spite of the close proximity 

between the cells. This indicates that DBI acts in an autocrine fashion. However, the 

results presented here cannot exclude an influence of DBI on the neighboring cells. 

Using high titers of DBI OE virus and comparing the results from different control/OE 

viral mix ratios could allow clearer interpretations.    

Another important open question relates to whether changes in the environment 

affect DBI expression or its action mechanism. This study demonstrates that DBI is 

necessary for the pro-neurogenic and pro-proliferative effect of EE and physical 

exercise. Therefore, it would be interesting to investigate whether DBI is in turn 

controlled by EE or physical exercise, for example by analyzing DBI expression levels 

under these conditions. Both in the SVZ and the SGZ, DBI is expressed in all the stem 

cells but only in a certain population of the TACs. It would be interesting to investigate 

whether the percentage of TACs expressing DBI is affected by changes in the 

environment.  

The interplay between GABA and DBI in regulating adult neurogenesis is 

complex and it is still not known in which conditions DBI could also act as a positive 

modulator of the channel. This most likely depends on the local concentration of DBI 

and on the subunit composition of the GABAA receptor. Further studies are needed to 
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elucidate these aspects especially as the potential of DBI to completely revert its action 

would have complex influences on regulating neurogenesis.   

Last but not least, it would be important to determine the signaling downstream 

of DBI. In this study, I bring convincing data showing that DBI acts by modulating 

GABA signaling. However, there is still very little known about the connection 

between GABA signaling and cell proliferation. In vitro and in vivo studies in which 

neural progenitors could be treated with GABA and/or DBI followed by microarrays or 

RNA sequencing could help to elucidate the downstream mechanisms followed by 

DBI/GABA activation.  
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