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Zusammenfassung

Um vollkommen autonom navigieren zu kdnnen, miissen mobile Roboter in der Lage
sein ihre aktuelle Position aus Sensordaten zu ermitteln. Positionsgebende Sensoren
wie GPS liefern direkt eine globale Position, die aber fiir viele Anwendungen zu un-
prézise ist. Insbesondere in Innenrdumen kann GPS nicht eingesetzt werden, da dort
tiberhaupt kein Signal empfangen werden kann. Kameras hingegen liefern reichhal-
tige Informationen und kommen bereits in zahlreichen Systemen zum Einsatz, z.B.
tiir Objektdetektion und -erkennung. Die vorliegende Arbeit untersucht daher die
Moglichkeit, Kameras auch zur Lokalisierung zu verwenden. Der aktuelle Stand der
Forschung verwendet dazu vorrangig Methoden, die auf Punktbeobachtungen basie-
ren. Da menschengemachte Umgebungen aber vorwiegend aus ebenen und linearen
Strukturen bestehen, die als Linien im Bild erkennbar sind, liegt der Fokus dieser
Arbeit auf der Verwendung von Linien zur Bestimmung der Kameratrajektorie.

Um dieses Ziel zu erreichen, miissen Algorithmen zur linienbasierten Posen- und
Strukturbestimmung entwickelt werden. Voraussetzung ist, dass Korrespondenzen
zwischen Linienbeobachtungen derselben raumlichen Linien in mehreren Bildern ge-
funden werden kénnen. Diese Arbeit stellt daher zunéchst ein neues Linienmatching-
Verfahren vor, das Linienbeobachtungen unter geringem Kameraversatz in Korre-
spondenz bringt. Das Verfahren berticksichtigt direkt, dass das Matching nicht ein-
deutig sein darf, da die Segmentierung der Linien zwischen den Bildern unterschied-
lich ausfallen kann. Im Unterschied zu anderen Linienmatching-Methoden braucht
jedoch kein Liniendeskriptor aufwendig berechnet zu werden, da optischer Fluss be-

nutzt wird, um Linienkorrespondenzen herzustellen.

In der vorliegenden Arbeit wird ein Algorithmus zur Bestimmung der relativen Pose
zwischen zwei Kamerapositionen vorgestellt, der die raumlichen Linienrichtungen
durch ein Clustering paralleler Linien ermittelt und zur Berechnung der relativen
Rotation verwendet. Anstelle der “Manhattan Welt”-Annahme, die dem Stand der
Technik zugrunde liegt, kommt eine weniger restriktive Annahme zum Einsatz, die

nur Linien unterschiedlicher Richtung fordert, wobei aber der Winkel zwischen den



Richtungen unerheblich ist. Die vorgeschlagene Methode ist des Weiteren um ein

Vielfaches schneller zu berechnen.

Um die Geometrie der Szene aus den Bildern abzuleiten, wird ein neues Verfahren
zur Triangulierung von Linien vorgestellt. Der Ansatz basiert auf der raumlichen
Transformation von Pliicker-Linien und erlaubt das Einbeziehen von Vorwissen iiber
die zu triangulierende Linie, wie z.B. ihre vorher berechnete Richtung aus dem Clus-
tering paralleler Linien. Aus der Analyse des Problems von degenerierten Konfigu-
rationen wird eine Losung abgeleitet, die die Informationen vom optischen Fluss des
Linienmatching-Verfahrens mit einschliefst, indem aus den Flussvektoren raumliche

Punkte berechnet werden.

Abschliefiend werden alle vorgestellten Verfahren zu einem visuellen Odometrie-
System fiir monokulare Kameras kombiniert. Das System berechnet die Bild-zu-Bild-
Bewegung der Kamera und bildet daraus die Kameratrajektorie. Eine Skalenanpas-
sung ist notwendig, um die konsistente Skalierung der Trajektorie sicherzustellen.
Die dazu entwickelte Methode basiert auf dem Trifokaltensor. Um die Robustheit
zusétzlich zu erhohen, kommt ein Sliding-Window-Biindelblockausgleich zum Ein-

satz.

Alle eingefiihrten Komponenten und das visuelle Odometrie-System werden anhand
echter Daten aus Innenrdumen und Auflenszenen evaluiert und mit dem Stand der
Technik verglichen. Die Auswertung zeigt, dass linienbasierte visuelle Lokalisierung
das Lokalisierungsproblem ldsen kann.



Abstract

Mobile robots must be able to derive their current location from sensor measure-
ments in order to navigate fully autonomously. Positioning sensors like GPS output
a global position but their precision is not sufficient for many applications; and in-
doors no GPS signal is received at all. Cameras provide information-rich data and are
already used in many systems, e.g. for object detection and recognition. Therefore,
this thesis investigates the possibility of additionally using cameras for localization.
State-of-the-art methods are based on point observations but as man-made environ-
ments mostly consist of planar and linear structures which are perceived as lines, the

focus in this thesis is on the use of image lines to derive the camera trajectory.

To achieve this goal, multiple view geometry algorithms for line-based pose and
structure estimation have to be developed. A prerequisite for these algorithms is
that correspondences between line observations in multiple images which originate
from the same spatial line are established. This thesis proposes a novel line matching
algorithm for matching under small baseline motion which is designed with one-to-
many matching in mind to tackle the issue of varying line segmentation. In contrast
to other line matching solutions, the algorithm proposed leverages optical flow cal-

culation and hence obviates the need for an expensive descriptor calculation.

A two-view relative pose estimation algorithm is introduced which extracts the spa-
tial line directions using parallel line clustering on the image lines in order to cal-
culate the relative rotation. In lieu of the “Manhattan world” assumption, which is
required by state-of-the-art methods, the approach proposed is less restrictive as it
needs only lines of different directions; the angle between the directions is not rel-
evant. In addition, the method proposed is in the order of one magnitude faster to

compute.

A novel line triangulation method is proposed to derive the scene structure from the
images. The method is derived from the spatial transformation of Pliicker lines and
allows prior knowledge of the spatial line, like the precalculated directions from the

parallel line clustering, to be integrated. The problem of degenerate configurations



is analyzed, too, and a solution is developed which incorporates the optical flow

vectors from the matching step as spatial points into the estimation.

Lastly, all components are combined to a visual odometry pipeline for monocular
cameras. The pipeline uses image-to-image motion estimation to calculate the cam-
era trajectory. A scale adjustment based on the trifocal tensor is introduced which
ensures the consistent scale of the trajectory. To increase the robustness, a sliding-
window bundle adjustment is employed.

All components and the visual odometry pipeline proposed are evaluated and com-
pared to state-of-the-art methods on real world data of indoor and outdoor scenes.
The evaluation shows that line-based visual localization is suitable to solve the local-

ization task.
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1. Introduction

1.1. Motivation

We live in a time when mobile robots are playing a bigger and bigger part in our daily
lives. Fully automated cars will be available which free us up to make use of the time
spent commuting. Robot assistants will support us in our daily housekeeping. They
will clean the house, mow the lawn and keep our home safe while we are out. In
industry, robots will collaborate and work side by side with humans. They will take
over tasks which we do not like to do and empower us to focus on the tasks we are

really good at. Robots will have countless applications.

To fulfill its task, such a robot needs to sense its surroundings, interpret the signals
measured and act according to the insights it gained. In the example of navigation
where the robot should go from A to B, it needs to acquire information about the dis-
tance to nearby obstacles and structures. The measurements are then used to derive
the current location of the robot and to assess if obstacles are blocking the way to its
target location. A path to the target position is planned by taking all this information
into account. This path is then translated into velocity and steering commands which
let the robot move along the path. This “sense-think-act” cycle is then repeated until

the goal is reached.

This thesis is embedded in the “think” phase and focuses on the interpretation of
visual cues to derive the robot’s location. Localization using image data is called
visual localization.

1.2. Visual Localization

Two types of visual localization are commonly distinguished: Global methods com-
parable to GPS which aim to find the robot’s position “in the world” and relative
approaches which reconstruct the robot’s trajectory. This work focuses on the second

class which is commonly known as visual odometry (VO). To solve this localization
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task, several questions have to be answered: What kind of information should be
extracted from the images? How can extracted information be related between con-
secutive frames? And lastly, how can spatial information like the relative displace-
ment between two camera poses be derived from the 2-dimensional image cues? This
thesis endeavors to answer all these questions. Since the outcome of the first ques-
tion greatly influences the way the other questions are approached, it will now be

answered for the targeted field of application.

This thesis aims to localize in urban indoor and outdoor scenarios, hence it is as-
sumed that the observed scene is structured and mostly follows simple geometry,
like the “Manhattan world”, for example, in which the planar and linear structures
of the scene are orthogonal to each other (cf. Figure 1.1).

Figure 1.1.: “Manhattan world”. Photo credits: Malinda Rathnayake!

In such structured scenes, it is reasonable to rely on image edges, since according to
Lindeberg “a discontinuity in image brightness can be assumed to correspond to a
discontinuity in either depth, surface orientation, reflectance or illumination. In this
respect, edges in the image domain constitute a strong link to physical properties of
the world.” [76]. To make this structural information usable for the high-level task
of localization, the edges are abstracted to lines (or more precisely line segments).
Unfortunately, most of the research so far has focused on point-based methods. One
reason for this is that lines do not constrain the epipolar geometry between two im-

ages, making the relative motion estimation a more tedious task. Another reason is

1h’c’cps: / /www.flickr.com/photos/malindaratz /17154124607 /


https://www.flickr.com/photos/malindaratz/17154124607/

1.2. Visual Localization

that parametrization of spatial lines is not as straightforward as for points since there
is no global minimal parametrization. Additionally, the matching of interest points
has reached a mature state, which makes the image association more robust and sim-
plifies the localization problem. Despite this, it is strongly believed that the use of
lines is reasonable and should be considered.

1.2.1. Why Lines?

There are several arguments which speak in favor of lines. First of all, lines can
provide inherently more structural information compared to points. To emphasize
this, the extraction results of an interest point detector and a line detector are shown
side by side in Figure 1.2.

‘\J\jnm‘lm l\ w“f‘ e

uJ: ﬁﬁ\ i NJJ h ‘

\m LI«I U, ol A AT

nu ‘HJ t‘:ﬂl, Mm‘ﬂ 'n }u.l “‘ ;
seaee
4 ﬂ :

¥ B gra
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Figure 1.2.: Interest point detection (a) and line detection (b) on the image in Figure
1.1.

It is observed that the scene captured is much easier to understand from the extracted
lines than from the extracted points, e.g. the windows are easily recognizable from
the lines. On the other hand, almost no lines are detected on the street, whereas many
points are found here, which indicates that points and lines highlight different as-
pects and are complementary. More precisely, points are found in corners and highly
textured parts whereas lines reside on edges which separate uniformly colored and
therefore less textured areas.

Another advantage is that image lines belonging to real structures are more robust
against lighting variations since their structure will always be captured as an edge
in the image according to the aforementioned relation between edge and physical
property. In addition, lines can still provide information when they are partially oc-
cluded, which is not possible for points. This valuable property also has a downside:
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When lines are partially occluded they can be split up into multiple segments and
this needs to be modeled into the algorithms, e.g. when lines are matched between
images.

Regarding the reconstruction of spatial lines, it is possible to impose geometrical con-
straints on the line, for example restricting the direction to values which concur with

the scene geometry. This is not possible with points.

To conclude, lines provide very valuable information about the scene geometry, and
the desire is to exploit this. Hence, the answer to the first question concerning the im-
age information which should be extracted for the localization task is simply “lines”.
Since research on line-based visual odometry has mostly been neglected so far, this
thesis wants to address this challenging field and proposes solutions for line-based
monocular visual odometry. The solutions proposed here will answer the two re-
maining questions: How to relate extracted lines between consecutive images and

how to then derive the spatial information like camera pose and spatial geometry?

The following outline provides more details.

1.3. Outline of Dissertation

After this introduction, a general overview on common visual localization compo-
nents and systems is given in Chapter 2. Besides the presentation of recent develop-
ments in visual odometry systems and their components, the important work in the
related technologies “visual simultaneous localization and mapping” (vSLAM) and
“structure from motion” (SfM) is briefly highlighted.

Chapter 3 explains important basic concepts which are required throughout the the-
sis. First, the Pliicker representation of spatial lines is introduced. A detailed ex-
planation of how rigid transformations are applied to Pliicker lines is given and, the
projective properties of lines are derived using the knowledge of projective geometry
of points.

The subsequent chapters are divided into two parts: First, components for line-based
visual localization are presented. A component is a basic algorithm required for vis-
ual localization. A localization system is then built through a meaningful combination
of multiple components. The second part focuses on such systems.

The components are presented in the order in which they appear in the localization
system.



1.3. Outline of Dissertation

In Chapter 4, a new line matching algorithm for matching under small baseline mo-
tion is presented. The matches from the first image to the second image are estab-
lished utilizing optical flow vectors which are calculated along the line segments.
The optical flow vectors are first filtered so that only vectors which satisfy “appear-
ance” and “consistent motion” constraints are retained. A simple histogram-based
algorithm is then used to assign the flow vectors to lines in the second image. The
matches are then extracted from this histogram. In extensive tests, the algorithm is
tirst tuned to best performance and then compared to state-of-the-art line matching
algorithms. It is demonstrated that the method proposed performs better with simi-

lar execution times.

In Chapter 5, the relative pose estimation problem using lines is tackled. Generally,
the relative pose cannot be recovered from line observations in two views. But since
this work operates in structured scenes, this prior knowledge can be incorporated
into the estimation and the relative pose problem can be solved under the constraints
imposed. Methods previously presented used the “Manhattan world” assumption in
which the lines observed must be orthogonal in space. The method proposed here
softens this strict assumption since it is only assumed that spatial lines with differ-
ent directions are observed. The angle between the directions is not relevant. The
direction information is extracted through a clustering step of parallel lines and then
used to retrieve the relative rotation component between the two views. Knowing
the rotation, the translational component is calculated from intersection points. The
method proposed here is then compared to state-of-the-art methods using points and
lines. Although the pose estimated here is slightly less precise than the estimate from
the state-of-the-art line-based method, the method used in this work is of the order

of one magnitude faster and hence better suited for localization tasks.

In Chapter 6, a new linear triangulation method is derived from the Pliicker line
representation and its projective properties. This approach allows prior knowledge
about the spatial line direction to be incorporate into the triangulation process, which
is very useful for structured scenes. A new method to triangulate lines which are in
degenerate configuration is also presented. Here, the optical flow points are incor-
porated into the triangulation process, thus making it possible to retrieve a spatial
line. Finally, a triangulation framework is presented which combines the different
aspects presented. This framework is then evaluated and compared to standard line

triangulation.

In Chapter 7, the components previously discussed are combined to form a visual

odometry system for monocular cameras. First, line matches are found using the line
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matching method presented. Then, the frame-to-frame motion is estimated using
the relative pose algorithm presented. To maintain a consistent trajectory, the scale
between the consecutive relative displacements needs to be adjusted. A new scale
adjustment scheme is introduced which is based on the trifocal tensor. In a last step,
sliding-window bundle adjustment is applied to optimize the calculated trajectory.

This pipeline is then tested and compared to a state-of-the-art pipeline.

The thesis concludes in Chapter 8, which summarizes the results and gives an out-
look on possible future work.

1.4. Contributions

The scientific contributions of this thesis are in the domain of visual localization using

lines. The thesis proposes:

¢ anovel line matching algorithm for small baseline motion based on optical flow
which inherently handles one-to-many matches to deal with different line seg-
mentation (Chapter 4).

* arelative pose estimation framework which extracts the spatial line directions
from the image data using parallel line clustering and which allows a very effi-
cient relative rotation calculation (Chapter 5).

¢ anew triangulation framework which can incorporate prior spatial line direc-

tion information and handles degenerate configurations (Chapter 6).

¢ a line-based visual odometry pipeline for monocular cameras which is based
upon the components developed and which leverages their by-products to cre-
ate synergies, for example by reusing the estimated line directions from the
relative pose estimation as prior line triangulation information (Chapter 7).

Large parts of Chapter 4 and 5 have been previously published in

¢ N.von Schmude, P. Lothe, and B. Jadhne. Relative Pose Estimation from Straight
Lines using Parallel Line Clustering and its Application to Monocular Visual
Odometry. In International Conference on Computer Vision Theory and Applica-
tions, pages 421-431, 2016. doi:10.5220/0005661404210431. [111]

¢ N. von Schmude, P. Lothe, J. Witt, and B. Jdhne. Relative Pose Estimation
from Straight Lines Using Optical Flow-based Line Matching and Parallel Line


http://dx.doi.org/10.5220/0005661404210431

1.4. Contributions

Clustering. In Computer Vision, Imaging and Computer Graphics Theory and Appli-
cations, Communications in Computer and Information Science. Springer, to be
published. [112]

Lastly, all algorithms developed are fully integrated into the internal research frame-
work for visual localization of Robert Bosch GmbH and are ready to be used for

future research and product development.



2. Related Work

This chapter aims to give a brief overview of visual localization and mapping tech-

niques in general and more specifically of approaches which use lines.

Visual localization and mapping systems like visual odometry, visual SLAM or struc-
ture from motion share a common set of image processing and multiple view geom-
etry (MVG) algorithms. Besides the different targets, the difference between these
pipelines lies in the combination and selection of the common algorithms. As the
naming convention and meaning of the various methods is rather fuzzy, this thesis

defines visual odometry, visual SLAM and SfM as follows:

Visual Odometry VO is a dead reckoning system which updates the pose of a mov-
ing camera with respect to the previously calculated pose on the fly. As a dead
reckoning system, VO is susceptible to drift accumulation. VO is not interested

in a reconstruction of the scene, only the camera pose is relevant.

Visual SLAM vSLAM estimates the pose of a moving camera on the fly, as does VO.
But it is not a dead reckoning system and therefore does not suffer from drift
accumulation as a consistent global map is maintained (e.g. through detection
and closing of loops and global bundle adjustment). Thus, vSLAM is under-
stood as an extension of VO.

Structure from Motion Whereas VO and vSLAM focus on the generation of the cam-
era’s trajectory, SfM focuses on the reconstruction of the scene structure. StM
is an offline process in which all images are available from the beginning. In
addition, it is not necessary that the images are ordered or originate from the

same camera.

2.1. Components

In the following, the different image processing and multiple view geometry algo-

rithms are briefly introduced.
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2.1.1. Image Processing

Normally, the image processing algorithms are executed first and serve to extract in-
formation (e.g. point features and feature matches) from the image data which is then
used to recover motion or structure information from the scene observed. Recently,
the distinction between image processing and multiple view geometry has become
more and more unclear as direct methods omit the feature extraction step and derive
geometry directly from pixel intensities, e.g. [25, 26, 36, 57].

Image Features and Matching

The feature extraction starts with the detection of salient image regions. These could
be edges, corners or blobs. These detected regions and their local neighborhood are
then used to generate a descriptive feature vector which serves to uniquely describe
the image region and to allow matching between multiple images. The image region

together with the descriptor form the feature.

For point features, corners or blobs are usually used. Popular examples for corner de-
tectors are the Harris corner detector [43], Shi and Tomasis’ “Good features to track”
[100] or FAST corners [95]. Well known blob detectors are MSER [83] and the detec-
tor parts of SIFT [79] and SUREF [6] features. The corners or blobs extracted are then
augmented with a descriptor. A distinction can be made between scalar valued de-
scriptors and the more recent binary descriptors, which use the Hamming distance
to achieve much faster matching. SIFT [79] and SUREF [6] are well-known features
which use scalar valued descriptors, whereas BRIEF [12], BRISK [75] and ORB [96]
use binary descriptors. SIFT is still one of the best performing features with respect to
matching but is computationally quite expensive, which often makes it unsuitable for
online systems, where the binary features are then preferred. Point feature matching
is usually performed by comparing the different descriptors and selecting the feature
which is most similar. To robustify the matching further, methods like threshold-
ing the descriptor distance or comparing the distance ratio between the two closest
candidates [79] are used.

Regarding line features, the detection of lines is based on edges (e.g. the Canny edge
detector [13] or structure tensor [70]). Lines (or line segments) are then extracted
from the edges using a Hough transform [21] or the Douglas-Peucker algorithm [20],
for example. Frequently used line segment detectors are LSD [110] and EDLines
[2]. Several line descriptors like MSLD [115], LEHF [52] or LBD [122, 123] exist but
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line descriptors alone do not perform very well at matching as the local neighbor-
hood of a line is normally not very distinct. Several methods have been proposed
which augment line matching with other constraints to increase the matching per-
formance. Proposed matching constraints are geometric constraints (e.g. epipolar
geometry [98]), topological constraints [5, 123, 114] or point features [30, 31, 61, 62].
A more detailed introduction to existing line features and line matching algorithms is
given in Chapter 4 alongside an introduction to the optical flow-based line matching

scheme proposed in this work.

All the features presented so far were designed manually. Owing to recent progress
in machine learning (e.g. deep learing) and the availability of high-performance com-
putational resources (e.g. GPUs), automatic feature learning is now becoming feasible
[72,121].

Other Image Processing Algorithms

Other image processing algorithms related to localization and mapping are optical
flow and stereo algorithms.

An optical flow algorithm estimates the pixel motion between consecutive images.
There are sparse methods which estimate the flow vector for certain features (e.g. the
well-known Lucas-Kanade method [80, 11]), and dense methods which calculate a
flow vector for every pixel in the image (e.g. Farnebdck’s method [32] or TV-L1 flow
[120]).

Stereo algorithms try to estimate the disparity of each pixel in a stereo camera setup

to recover the pixel depth. A widely used stereo algorithm is SGM [53].

In recent years, combinations of optical flow and stereo algorithms have been pub-
lished to recover both dense geometry and motion (e.g. 3D scene flow [109]).

Optical flow is used in Chapter 4 but is otherwise outside the scope of this thesis.
Stereo algorithms are also not covered further as the focus lies on monocular cam-

eras.

2.1.2. Multiple View Geometry
Once features are extracted and matched, the different multiple view geometry al-

gorithms are applied to recover the motion and structure information of the scene

observed. Three classes of MVG algorithms can be distinguished: 2D-2D algorithms
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which rely on image information from different views only (e.g. homography estima-
tion), 2D-3D algorithms which combine already recovered 3-dimensional structure or
pose information with image data (e.g. perspective-n-point problem), and 3D-3D al-
gorithms which are based solely on already recovered spatial data (e.g. alignment of

point clouds).

2D-2D Algorithms

The epipolar geometry, which describes the projective relation between two images,
is recovered from corresponding feature points. Common approaches to calculating
the fundamental (or essential) matrix are the 8-point algorithm [78, 46] and the 5-
point algorithm [91]. If the feature points in both images originate from coplanar
spatial points, the homography which maps the points from one image to the other
can be derived using a direct linear transform (DLT) [48]. The relative pose between
the two cameras is then extracted from the essential matrix or homography. Note
that it is not possible to calculate the relative pose between two views from lines
alone unless further constraints are imposed [116]. Under the “Manhattan world”
assumption, Elqursh and Elgammal [24] derive a line-based relative pose algorithm.
More details on relative pose estimation with lines are given in Chapter 5.

If point or line features correspond across three views, the trifocal tensor is utilized.
The trifocal tensor is an extension of the fundamental matrix to three views and en-

codes the projective relation between three cameras [45, 48].

2D-3D Algorithms

Triangulation methods estimate the 3-dimensional structure from corresponding im-
age features and given camera poses. Feature correspondences must be given for at
least two views. Different closed-form or iterative algorithms for points and lines
exist. The standard linear approach for points is given in [44] and the “mid-point”
approach in [8]. Optimal solutions for points are presented by Hartley and Sturm
[47] and Josephson and Kahl [60]. Josephson’s method finds the optimal solution it-
eratively and works for lines and conics, too. Hartley and Zisserman [48] present a
linear triangulation method for lines. Bartoli and Sturm [4] name several linear and
iterative line triangulation methods based on Pliicker lines. A more detailed over-

view of line triangulation is given in Chapter 6.
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When the spatial structure is known or already estimated, observations of the struc-
ture are used to derive the camera pose with respect to the scene. When using points,
this task is called the “perspective-n-point” (PnP) problem [34] where n defines the
number of point correspondences used. In photogrammetry, this problem is also
known as “camera resection”. At least three correspondences are required to obtain
a pose estimate, therefore this problem using the minimum required 3 points is also
known as P3P. Recent progress on PnP is reported by Ferraz et al. [33], for example.
An efficient solution for P3P is given by Kneip et al. [66]. The first pose estimation
algorithm for lines was presented by Liu et al [77]. They introduce a linear and a
non-linear method where the linear approach requires eight 2D-3D correspondences
whereas the non-linear method needs three. As for points, at least three line corre-
spondences are necessary to solve the pose. In analogy with PnP, this class of algo-
rithms is named the “perspective-n-line” problem (PnL). Recent work on PnL and
P3L algorithms is presented in [125, 119]. Line-based pose estimation is not covered
by this thesis.

So far, algorithms using multiple observations from the same spatial entity (triangu-
lation) and methods using multiple spatial entities and their observation in one image
(pose estimation) have been covered. Next, an algorithm which operates on multiple
camera poses, multiple spatial entities and their observations in the images is intro-
duced: Bundle adjustment. Bundle adjustment is a nonlinear method which aims to
optimize given structure and camera poses simultaneously using the observations in
the images. Bundle adjustment is well known in the photogrammetry community.
An overview of bundle adjustment in the computer vision context is given by Triggs
et al. [107]. A suitable line parametrization for the update step for line-based bundle
adjustment — called the orthonormal representation —is given in [4]. A representation
based on the Cayley transform is presented in [124]. Bundle adjustment with lines is
covered in Chapter 7.

3D-3D Algorithms

Alignment or registration methods try to find the transform which maps one set of
spatial entities to another. It is used for pose estimation from stereo or RGB-D data,
for example, where point clouds from different camera views need to be aligned. A
classic linear least squares approach is Horn’s method [58] which requires known
correspondences between the points. If no correspondences are given, iterative clos-
est points (ICP) must be used [10, 14]. Recent progress on ICP is presented in [9]. For
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lines, Witt and Weltin develop the ICML algorithm [118] as the counterpart to ICP.
Alignment of spatial entities is also outside the scope of this thesis.

2.2. Systems

As the basic building blocks for localization and mapping have now been introduced,
different systems can be realized by combining these components. An overview of
visual odometry, vSLAM and structure from motion pipelines is given in the follow-

ing.

2.2.1. Visual Odometry

First research on camera motion estimation using image input was done in the con-
text of the Mars rover robots [87, 84, 94] which resulted in VO being actively used
on the two rovers Spirit and Opportunity [81]. This early work focused on stereo
systems where the motion was estimated using 3D-3D alignment methods, as pre-
sented above. Nister et al. [92] present the first monocular visual odometry system
which relies on solving the P3P problem between consecutive frames. A popular
open source visual odometry pipeline for both monocular and stereo cameras is LIB-
VISO2' [63, 39].

In recent years, direct methods which estimate the pose by minimizing the photomet-
ric error between consecutive frames have become more and more popular. Forster
et al. [36] present a semi-direct monocular VO system called “SVO” and Engel et al.
[25, 28] purely direct methods.

A line-based visual odometry pipeline for stereo cameras is presented by Witt and
Weltin [118, 117]. Recently, Holzmann et al. [57] presented a semi-direct VO system
based on lines which is inspired by SVO. A more in-depth discussion and the intro-
duction of the line-based visual odometry method for monocular cameras proposed

in this thesis are given in Chapter 7.

2.2.2. Visual SLAM

SLAM is a widely known problem from the robotics community [106]. Typical so-
lutions involve probabilistic filters like the Kalman filter and its variants (EKE, UKF)

1 http:/ /www.cvlibs.net/software/libviso/

13


http://www.cvlibs.net/software/libviso/

2. Related Work

or particle filters. The first monocular vSLAM systems adapted these filter-based
methods to the computer vision context, e.g. the well-known MonoSLAM [16, 17] by
Davison et al. which is based on EKF, or the FastSLAM-based method (particle filter)
of Eade and Drummand [23].

A different approach to tackling the vSLAM problem comes from the structure from
motion community where, instead of filtering methods, optimization techniques like
bundle adjustment are used to fuse together information from several images. To
reduce the memory consumption required for storing images and landmarks, key-
frames are normally selected from the input image stream. One of the first keyframe-
based bundle adjustment vSLAM system was PTAM [64].

Strasdat et al. [103] compare both filtering and keyframe-based bundle adjustment
methods and conclude that bundle adjustment is favorable as it gives “the most ac-
curacy per unit of computation time”. This is why filter-based methods are no longer
used nowadays. A modern vSLAM pipeline is ORB-SLAM from Mur-Artal et al.
[90, 89] which can be used with monocular, stereo and RGB-D cameras. A modern
direct vSLAM pipeline is LSD-SLAM by Engel et al. [26, 27].

The first steps towards line-based vSLAM were taken by Eade and Drummand [22]
as they introduced “edgelets” — small line segments — to filter-based vSLAM. The
concept of edgelets was later also used in PTAM to improve the stability under fast
motion [65]. EKF-based vSLAM systems are extended by line segments and Pliicker
lines in [101, 74]. Hirose et al. present another vSLAM system [52] which employs
line feature matching for 2D-3D line association. Lee et al. [73] present a line-based
place recognition for loop closure detection. vSLAM is not further covered by this
thesis.

2.2.3. Structure from Motion

In the last decade, research on structure from motion was mainly driven by the avail-
ability of vast photo collections in the internet e.g. Flickr. Snavely et al. [102] proposed
a first StM pipeline which was able to reconstruct popular sites from several thousand
images. This work was later extended by Agarwal et al. [1] to reconstruct whole cities
from over a hundred thousand images, and by Heinly et al. [49] to recover the whole
world from millions of images. Interestingly, the approach of Agarwal et al. runs on
several machines in the cloud whereas for the approach of Heinly et al., one powerful

PC is sufficient despite the much higher image input. One major task in SfM is the
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detection of image overlap in unordered datasets. Schonberger et al. [99] systemati-
cally analyze the different methods and developed a novel learning-based method to

retrieve matching images from the insights gained.

A point-based SfM pipeline can be extended to reconstruct lines as well. A common
approach is to derive the camera poses from a point-based SfM pipeline and to use
the knowledge of the camera poses to reconstruct lines. Jain et al. [59] follow this
idea and propose a line sweeping algorithm to find the spatial line which fits best
to line observations in nearby cameras without explicit line matching. Hofer et al.
[54, 55, 56] continue this work and propose the use of epipolar geometry to produce
possible match hypotheses which are then triangulated and verified by projection in

neighboring views.

Micusik and Wildenauer [85] present a purely line-based SfM pipeline which boot-
straps the reconstruction by exploiting the trifocal tensor and pre-computed rotations
from vanishing points. A new image is added to the reconstruction without explicit
descriptor matching of the lines. Instead, they use the pre-calculated rotation to sam-
ple possible poses and compare the virtual image of the sample pose to the real one.
The virtual view with the best fit is then used to derive the matches from which
the absolute pose is estimated. Zhang and Koch [124] also use the trifocal tensor
to initialize the reconstruction, but they use line-matching and employ PnL directly
to estimate the camera’s pose. Structure from motion is outside of the scope of this
thesis and will not be covered further.
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This chapter introduces the basic concepts and notations of this thesis. The focus is on
the projective geometric properties of lines. First, Section 3.2 introduces Pliicker lines
as the spatial line representation on which every derivation is based. Then, the rigid
transformation of lines is described (Section 3.3), and projection and back-projection,
which relate lines in 3-space to line observations in the image plane, are explained

(Section 3.4). In Section 3.5, common distance and error functions are presented.

3.1. Notation

The mathematical nomenclature used throughout this thesis is summarized in Table

3.1.
Table 3.1.: Mathematical nomenclature
Entity | Symbol
Scalars italic:a, b, ¢c, ...
Vectors bold italic: a, b, c, ...

Vector components
Matrices
Transpose of vector / matrix

point p = (px, py,pz)’
bold, upper case: A, B, C, ...

ﬂT, AT

Spatial line
Spatial entity defined in coordinate frame f
Rigid transform in R® from frame s to ¢

L
Preceding superscript, e.g. /p
for points T, for lines /,T,

Camera calibration matrix
Projection matrix
Entity in image

K
for points P, for lines P,
With subscript i, e.g. point p; or line /;

Index of entity

Cross product in matrix notation

Superscript in brackets, e.g. }; pi(f)

0 —Pz Py
pxq=Ipl,qa=|pr: 0 —px|q
—Py Px 0
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3.2. Spatial Line Representation

In the following, there is a brief introduction to the Pliicker line representation, which
is used throughout the thesis. A more thorough introduction is given by Hartley and
Zisserman [48], Heuel [50] and Bartoli and Sturm [4]. The Pliicker representation is
complete and allows lines at infinity to be represented. Additionally, it is homoge-

neous which means that multiplication with a scalar describes the same line:

£ =AL with A € R\ {0} (3.1)

A distinction is made between two forms of Pliicker representations: The Pliicker co-
ordinate and the Pliicker matrix. Both define the line £ by means of two 3-vectors: The
line’s momentum m and its direction d. The momentum has a geometrical interpre-
tation: It is the normal vector of the plane spanned by the origin of the coordinate
system and the line itself. It follows that momentum and direction must be orthogo-
nal, which is called the “Pliicker constraint” (cf. Figure 3.1):

md=0 (3.2)
A line with d = 0 is at infinity whereas a line with m = 0 contains the origin.

The Pliicker coordinate is simply the 6-vector formed by stacking momentum and

direction vectors:

m
- (1) o

And the Pliicker matrix is defined as

- _[m]x —d
() o

The coordinate representation has the advantage that rigid transformation and pro-
jection onto an image can be defined as linear functions. Using Pliicker matrices, the
transformation and projection become quadratic but allow the reuse of the expres-
sion for the transformation and projection of points, which will be discussed in the
following sections.

A line is uniquely defined by two 3-dimensional points p and g, where momentum
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and direction are calculated as follows:

m=pxq (3.5)
d—q-p (3.6)

The Pliicker matrix can alternatively be calculated from p and q as
_ [P (T _ (1 T
L= <1> (4" 1) <1> (" 1) (3.7)

Since Pliicker coordinate and Pliicker matrix are homogeneous representations, a
normalization function v(£) can be defined which maps all Pliicker coordinates or

matrices representing the same spatial line to a single coordinate or matrix:

wcyzfn (3.8)

The line £ and its components are visualized in Figure 3.1.

Figure 3.1.: Visualization of the Pliicker line and its components.

3.3. Rigid Transformation of Points and Lines in R®

A spatial point °p defined in the source reference frame s is transformed to another

coordinate system — the target frame t — by applying a Euclidean transformation
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where ;R € SO(3) is a rotation matrix and ‘¢, € IR® a translation vector:
‘p="Rp+'t 39
p="Rp+i (3.9)

Extending the expression to homogeneous point coordinates yields a transformation
matrix {,T € SE(3):

(tf ) T (sf ) (3.10)
AN S S AN (3.11)
1) \ois 1 1 '

The point transformation matrix ;T is used to transform lines in Pliicker matrix no-

tation:

e =trectT! (3.12)

s T
— [tm] « —td _ tSR tts - [sm] x d tsR tts (313)
‘a0 03 1 dt 0 ) \oe 1

For the transformation of Pliicker coordinates from the source reference frame to the

target reference frame it is necessary to define the transformation matrix /T :

'L ="1'T,°C (3.14)

tm B tsR [tts} y tsR Sm
()= (" L) () 615

As mentioned before, this expression is now linear whereas the equation for Pliicker

matrices is quadratic.

The transformation equations for Pliicker matrices and Pliicker coordinates are de-
rived in Appendix A.

3.4. Projection of Spatial Points and Lines

This section presents a summary of the representation of points and lines in the image

and how spatial points and lines are projected onto images.
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3.4.1. Representation of Points and Lines in the Image

Image points and lines are represented as homogeneous vectors in IP2. The image
point p; = (Pix Piy Pic )" encodes the pixel coordinates in the image. The pixel loca-
tion is calculated by normalizing the point to its unambiguous representation, i.e.

dividing it by the last vector component:

Pi
v(p;) ni (3.16)

The vector I; = (i 1y L )T defines a line in the image plane if and only if every image
point p; on the line fulfills

As in 3-dimensional space, an image line is uniquely defined by two points p; and g;.
The line which contains these points is formed by the cross product of p; and g;:

li=p;, xq, (3.18)
Similarly, the intersection point p; of two lines I; and m; is calculated as

Pi = li X m; . (319)

As is the case with the homogeneous representations introduced previously, a nor-
malization can be defined which maps every homogeneous line vector representing
the same line to a unique representation:

o(ly) = — (3.20)

B+ l?y

3.4.2. Pinhole Camera Model

A camera captures a 3-dimensional scene on a 2-dimensional image. The process
of mapping spatial structure to the image plane is called camera projection. The
simplest model for projection is the pinhole camera model. It assumes that all light
rays meet at one point: The camera center. The image p; of a spatial point “p is
then located at the intersection of the image plane and the light ray. The focal length
defines the distance of the image plane to the camera center. The intersection point of
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the z-axis (also called principal axis) and the image plane is called the principal point

¢;. The pinhole camera projection is visualized in Figure 3.2.

g4

Figure 3.2.: Visualization of the pinhole camera model. The spatial point “p and any
other point on the ray is projected to the point p; on the image plane. c;
is the principal point, this is the intersection of the z-axis of the camera-
centered coordinate frame (“camera center”) and the image plane. The fo-
cal length f defines the distance between camera center and image plane.

The pinhole camera projection is mathematically described with a camera calibration

matrix K, which is defined by focal length and principal point (cf. [48]):

fx 0 sz
K={0 f ¢ (3.21)
0 0 1

If the camera center coincides with the origin of the world coordinate system, the
projection from a spatial point to the image is then defined by means of (cf. [48])

p. =K (3.22)

This model has its limitations of cause. The pinhole camera does not consider lens
distortions or other effects from the imaging process. These effects could also be mod-
eled, with distortion coefficients, for example [41]. When the distortion parameters
are known (e.g. through a camera calibration), the image is corrected to remove the
distortion effects. The pinhole camera model then holds. In this thesis, it is assumed

that the images are distortion free and that the pinhole camera model is applicable.
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3.4.3. Projection of Spatial Points

As the representation of image lines and points and the pinhole camera have now

been introduced, the projection of spatial entities to the image is now explained.

The projective mapping P of a spatial point “p to its image p; on the image plane
with camera frame at pose /T is given by (cf. [48])

p. =P (wl” ) (3.23)

w

pi =K (CwR th) ( f ) (3.24)

with K the camera calibration matrix. This expression is rewritten using the previ-

ously defined transformation matrix ¢, T:

p, =P (w” ) (3.25)
1
=K (R “t,) ( 1”) (3.26)
o CwR th wp
_ (K om) <le3 | ) ( | ) (3.27)
— Kp¢, T (w’” ) (3.28)

First, the spatial point is transformed from the world coordinate system w to the local
coordinate system of the camera c. Then, this resulting point ‘p is projected on the

image plane using the calibration matrix Kp.

3.4.4. Projection of Spatial Lines

The projection of a line “£L onto the image plane is now introduced.

For lines in Pliicker matrix representation, the projection is based — in analogy with

the transformation of lines in Pliicker matrix form — on the projection of points.

(1], =PYLP? (3.29)
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This is a quadratic expression. For a linear expression, Pliicker coordinates must be
used. The same schematic as for points is followed and the projection matrix P for
Pliicker coordinates is decomposed into the camera calibration matrix part and the

transformation part:

I, =P,"“L (3.30)
=K, T%L (3.31)

c R [ct ] c R wm
= (det(K)K-T 0 v wix w 3.32
( et(K) 3><3) (03X3 ‘ R ) (”’d) (3.32)

First, the line “L is transformed to the local coordinate system of the camera ¢ and

then projected on the image plane.

Taking a closer look at this equation, it becomes evident that only the momentum of

the line °L in the camera frame determines the projection:

i = (det(K)K™T 03.5) (;;“RS [thc] XRC“’R> (;’;’) (3.33)
= (det(K)K*T 03X3) <CZZ> (3.34)
= det(K)K Tm (3.35)

Again, the correctness of this expression is proven in Appendix B.

3.4.5. Back-Projection of Image Points and Lines

The projection of points and lines from 3-space to an image has now been explained.
The reverse process is now considered: The “back-projection”. The back-projection
(sometimes also called the “pre-image”) describes all spatial points which give rise to
the same image. For an image point, the back-projection consists of all points along
the ray formed by the camera center and the spatial point observed. For an image
line, the pre-image is the plane spanned by the spatial line observed and the camera

center. The back-projection of image points and lines is visualized in Figure 3.3.

How is the back-projection computed from the observation in the image? The direc-
tion “u of the ray in camera coordinates for image point p; is given as (cf. [48])

u—K'p. (3.36)
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Figure 3.3.: Visualization of the back-projection of an image line I; and an image point
p;. °r is the back-projected plane of I; with normal vector ‘n. The ob-
served spatial line °£ has line direction “d. The back-projected ray “r has
direction “u.

The complete ray °r is then

r =031+ AU . (3.37)

This translates to the ray “r in world coordinates

Yr="c+ A% (3.38)
= <R +A° R (3.39)

Here, “c is the camera center expressed in the world coordinate frame.

The back-projected plane “7t of an image line /; is calculated using the projection
matrix P of points (cf. [48]):

Y =Py, (3.40)

Here, “7t is the parameter expression of the plane. In analogy with the expression of
image lines, its interpretation is that “7r defines a plane if and only if every point “p
on the plane fulfills:

Wy T (Zvl” ) —0 (3.41)

The first three entries of “7t encode the normal vector “n of the plane. It follows that
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the normal “n of the back-projected plane ‘7t is

‘n =K' (3.42)

3.5. Distances and Error Functions
Throughout the thesis, several distance measures and error functions are used which
will now be presented.

Given two vectors v and w, the signed angular distance ¢ (v, w) € [0; 7t] between

these vectors is defined as

T
0 (v, w) = arccos (vw) (3.43)
[[o[[[[z]]

In the same way, it is possible to define the unsigned angular distance ¢, (v, w) €
[0; 7] which ignores the orientation of the vectors:

va
6y (v, w) = arccos (‘ — D (3.44)
«(0,) Tollll

The minimal perpendicular distance from an image point p; to an image line ; is

defined as

d(l,p) = |v (1) (py)] - (345)
The distance of a spatial line £ in Pliicker representation to the origin is

do (L) = L] (3.46)

In fact, for homogeneous entities e like points, lines or planes, the distance to the
origin is always the norm of the Euclidean part e, divided by the norm of the homo-
geneous part ey, (cf. [50]):

_ el
d, (e) = lenl (3.47)

The minimal distance between two spatial lines £ and L) is defined as the mini-
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mal distance between any two points along the lines:

d (ﬁ(i),ﬁ(j)> = min{”p(i) - p(f)H with p € £0 and pU) ¢ /l(j)} (3.48)

3.5.1. Reprojection Error

The reprojection error ¢ is defined as the error between the measured observation in
the image and the projected spatial entity onto the image.

For points, the simplest way to calculate the reprojection error is to use the Euclidean
distance between observed point p; and projected point P“p:

¢(pi, P, p) = |v(p;) —v (PP (3.49)

For lines, the point-line distance between the endpoints of the observed line segment
and the projected spatial line is used as the error function. As the line segment has
two endpoints p; and g;, the point-line distance to both points is calculated and the
sum of the squared distances is used as the reprojection error:

0(p;yq;,Pe, L) =d (PcYL,p,)* +d (P L, q,)° (3.50)
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4. Line Matching

4.1. Introduction

Matching aims to bring image regions in different images from the same scene into
correspondence. Being able to find matches is a prerequisite for many computer vi-
sion algorithms, e.g. for disparity estimation of stereo cameras, for object recognition,

and of course for localization and reconstruction tasks.

What is normally done in the localization context is that interest points are detected
and augmented by a descriptor vector to form a feature. The descriptor vector is
generated from the image patch around the interest point and encodes the peculiarity
of this region. For matching, the descriptors are then compared (e.g. by calculating
the L?-norm or the Hemming distance) and the most similar descriptor is accepted
as the match.

Different features are employed depending on the application: SIFT [79], which is
invariant to scaling and rotation, is often used in structure from motion, where cor-
respondences in unordered images are needed and the computation time is not of
high priority [102, 1]. In applications which require real-time performance, e.g. vis-
ual SLAM, more lightweight features like ORB [96] are employed [90, 89].

Regarding the matching of lines, many of the algorithms proposed imitate the point-
based feature approaches. They try to describe the local neighborhood of a line seg-
ment and to match the resulting descriptors [115, 52, 123]. All these methods share
the problem that they are limited to minor image changes, e.g. variations resulting
from small camera displacements (“small baseline motion”), as lines are found at the
border of two homogeneous regions and hence the neighborhood of a line segment
is inherently not discriminative. This fundamental characteristic is visualized in Fig-
ure 4.1. To circumvent this, methods that include other constraints like topology or

geometry were proposed [98, 5, 114].

Another peculiarity of lines is that their segmentation may vary between images, e.g.

due to occlusion. This property must be taken into account during matching but this
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Figure 4.1.: Line segments separate homogeneous image regions. The surrounding
neighborhoods are hence similar looking and the extracted descriptors
not discriminative.

is rarely done in the literature. This thesis therefore proposes a new line matching
strategy for matching under small viewpoint changes which explicitly allows one-to-
many matches to compensate for differences in line segmentation. As this method
is based on optical flow, no further descriptor calculation is needed, making this ap-
proach lightweight and fast to compute.

The contributions of this work are:

¢ a lightweight optical flow-based line matching method for small baseline mo-
tion
¢ explicit one-to-many matching to take the variation in line segmentation into

account

* extensive evaluation and comparison to descriptor-based line matching meth-

ods
Large parts of this chapter have been published previously in [112].

The chapter is structured as follows: First, related work is presented in Section 4.2.
In Section 4.3, the proposed optical flow-based line matching method is described in
detail. The method presented here is compared to other state-of-the-art descriptor-
based approaches and its performance is evaluated in Section 4.4. The chapter con-

cludes with Section 4.5.
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4.2. Related Work

The problem of finding the same spatial line in multiple images has been studied
for decades in the computer vision community. The matching algorithms proposed
can be separated into two groups: The first group contains algorithms which use
local appearances only, and the second group consists of matching approaches which

additionally employ further constraints.

4.2.1. Matching with Local Appearance

Prominent examples for matching using local appearance are “Mean Standard Devi-
ation Line Descriptor” (MSLD) [115], “Line-based Eight-directional Histogram Fea-
ture” (LEHF) [52] and “Line Band Descriptor” (LBD) [122, 123]. These approaches
follow the idea of describing the local neighborhood of a line segment by analyzing
its gradients and condensing their information into a descriptor vector. In the match-
ing process, the descriptors are compared and the most similar descriptor decides
the match. Often, techniques like thresholding the descriptor distance, “Left/Right
Checking” (LRC) or “Nearest Neighbor Distance Ratio” (NNDR) are employed to
robustify the matching. LRC ensures that the matching is symmetrical by only ac-
cepting matches where matching from “left” image to “right” image gives the same
result as matching from “right” to “left”. LRC therefore handles occlusions. NNDR
is known from SIFT feature matching [79] and follows the idea that the descriptor
distance for a correct match should be significantly smaller than the distance to the
closest incorrect match.

As local neighborhoods of different lines are often not distinguishable (cf. Figure 4.1),
the resulting descriptors are similar and therefore not suitable for matching under
extreme viewpoint changes. Explicitly designed for the tracking of lines in image
sequences are the approaches proposed by Deriche and Faugeras [19] and Chiba and
Kanade [15]. Deriche and Faugeras propose a Kalman filter for predicting the geom-
etry of the line segment in the next image, whereas Chiba and Kanade use optical
flow for the prediction. Both approaches define a similarity function using only the
geometry of the image line to associate the prediction with an observation. They ar-
gue that geometry is sufficient for the matching as the changes between consecutive

image frames are small.
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4.2.2. Matching with Local Appearance and Other Constraints

Another group of matching techniques includes additional constraints to overcome
the problem of the indistinctiveness of the local appearance of lines and hence the

restriction to small baseline matching.

Schmid and Zisserman [98] propose the use of epipolar geometry to reduce the search
space to the “epipolar beam” of the line segment and to guide the computation of a
cross-correlation score. A drawback of this method is that the epipolar geometry has
to be known beforehand.

Bay et al. [5] introduce a matching scheme which does not suffer from the need
for epipolar geometry. The matching consists of multiple stages: First all possible
matches from an appearance-based matching are generated and then filtered using
a topological constraint. With line pairs and triplets, this “sidedness constraint” de-
scribes how they are arranged spatially. In the last step, further matches are added if

they agree with the current topological structure.

Zhang and Koch [122, 123] follow a similar idea. First, LBD descriptor matching
is employed to generate candidate matches. Second, a relational graph is created
to capture the global consistency of the matches. The graph contains all candidate
matches as vertices and the edges linking the vertices are weighted with a consis-
tency score computed from the pairwise geometric and appearance similarities of the
corresponding matches. A spectral technique is applied to finally extract the cluster

of matches that maximizes the total consistency score.

The approach used by Wang et al. [114] focuses on matching groups of lines, so called
“line signatures”. A line signature consists of k neighboring lines which are described
by their pairwise relationships (spatial relations and appearance). These relations are
combined to form a similarity function of line signatures. Finally, a codebook is used

to resolve the matching of lines inside the matched line signatures.

Yet another approach is proposed by Fan et al. [30, 31]: The authors use point feature
matches in the neighborhood of the lines to leverage the line matching. They intro-
duce an affine and a projective invariant between two points and a line, and four
points and a line, respectively, which are used as a similarity measure for the match-

ing. A drawback of this method lies in its dependence on point feature matching.

Kim and Lee [61, 62] propose a different kind of point feature for line matching:
They describe pairs of intersecting lines located close to one another by so called

“Line Intersection Context Features” (LICF). The LICF characterizes the image patch
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centered at the intersection point and is used to generate candidate matches by com-
paring LICFs using “normalized cross-correlation” (NCC). As the intersection point
of coplanar lines is invariant to projective transformation, the fundamental matrix is
estimated from the matching intersection points in a RANSAC scheme. The resulting
inliers define the final LICF matches. The estimated fundamental matrix is then used

to resolve the ambiguity in the matching of the lines belonging to the LICFs.

The methods proposed by Fan et al., Wang et al. and Bay et al. are computationally
very expensive and have runtimes up to several seconds per image pair, which makes
them unsuitable for the targeted visual odometry system. Appearance-only-based
approaches like MSLD, LEHF or LBD require less computational resources but have
the problem of indistinct descriptors, which restricts them to matching under small

baseline motion.

In the following, a novel matching technique based on optical flow is proposed.
There is no need to calculate line descriptors as the optical flow vectors serve to asso-
ciate line segments in the images, which saves valuable execution time. Furthermore,
this method explicitly allows one-to-many matching to take into account the problem

of differences in line segmentation.

4.3. Optical Flow-based Matching

The matching algorithm proposed here is explicitly designed for the matching of
lines under small viewpoint changes such as consecutive frames in image sequences.
It follows the idea of Chiba and Kanade [15] in so far as the optical flow calculation
is exploited to generate the matches. The difference between the approaches is that
Chiba and Kanade use optical flow to predict the position of the line segments and
then link the predicted line segment to the observed one. The association is hereby
based on comparing geometric properties of the line segments (e.g. line direction).
The approach proposed in this thesis makes direct use of the optical flow point cor-
respondences to link the observed line segments. This is achieved through an intel-
ligent selection of input points for optical flow calculation and an effective filtering
step in which wrong flow vectors are discarded.

The algorithm consists of three main stages: First, the optical flow is calculated for
points along the line segments. Second, the flow vectors originating from the same

line are checked for consistency. In the third step, the flow vectors are used in a
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histogram-based approach to generate the matches. Every step is discussed in detail

in the following sections.

4.3.1. Optical Flow Calculation

In the first step, the optical flow is calculated. The optical flow describes velocities
in the image space caused by motion of the camera or in the scene observed. The
point in the original image is termed p; and the point in the image after the motion
is p} = p, + v; where v; is the optical flow vector. Mathematically, the optical flow is
characterized by means of a differential equation on the assumption that the intensity
I(p; t) of a pixel p; stays constant over time ¢:

ol

[- v+ — = 4.1
\V4 vit o 0 (4.1)

This “brightness constancy constraint” is not sufficient to calculate the flow as v; has
two unknowns but the equation just solves one. This phenomenon is called the aper-
ture problem of optical flow. An optical flow algorithm needs to introduce further
constraints to circumvent this problem. The method proposed by Lucas and Kanade
[80], who restrict the optical flow so it remains constant in the local neighborhood of
a pixel, is used in the following.

In contrast to the matching procedure of Chiba and Kanade [15], the method pro-
posed does not calculate the optical flow over a static grid on the whole image, but
considers only the image regions which are of interest for the matching of lines: The
pixels belonging to the extracted line segments. The question is now whether all
pixels belonging to line segments should be used or whether certain pixels are more

appropriate for optical flow calculation than others?

Shi and Tomasi [100] tackled this question and analyzed which image regions are well
suited for the Lucas-Kanade optical flow method. They found that the eigenvalues
of the gradient matrix G of a pixel p; are good indicators for the eligibility with

2

8" &8 8x i i

G = ( zy ) and g= ( > the gradient at point p,. (4.2)
8x8y 8y 8y

If both eigenvalues are small, the pixel belongs to a uniform region which is unsuit-
able for a flow calculation. If one eigenvalue is small and the other large, the image
region contains an edge. Edges are prone to the aperture problem so they are also

unsuitable for flow estimation. Unfortunately, this is the most common case in the
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scenario described here as the lines are extracted from such image regions. It is best
when both eigenvalues are large. Here, the image region is structured (e.g. contains
a corner) and is therefore good for flow calculation. Shi and Tomasi propose that
the minimal eigenvalue be thresholded to detect these suitable regions. This idea is
followed here and the minimal eigenvalue for pixels belonging to lines is calculated.
For each line, non-maximum suppression is applied to the minimal eigenvalues to
keep only pixels which are local maxima. These pixels are then sorted according to
their eigenvalue and only the best 50% per line are kept. Section 4.4.2 details an eval-
uation of the best ratio of pixels to keep with regard to matching performance and
runtime. Figure 4.2b shows which “corner-like” points are selected for the optical
flow calculation, and Figure 4.2c visualizes the result of the optical flow estimation
on these points.

Figure 4.2.: (a) Image with extracted lines. (b) “Corner-like” points on the line seg-
ments from (a) for which the optical flow is estimated. (c) Resulting opti-
cal flow vectors, colored according to their orientation.

4.3.2. Consistency Check

The optical flow calculation is not error-free due to occlusion, noise etc. (cf. Figure
4.2¢c). To mitigate the influence of these errors on the matching result, a filtering step
is introduced where flow vectors which violate the “consistency” are discarded.

The consistency is defined in two ways: First, the appearance of a point before and
after the motion must stay the same - this is called the “appearance consistency”.
Second, the “consistent motion constraint” is introduced which states that points be-

longing to the same line must move in a consistent way.
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The L!-norm between the image patch around the original point p; in image I and the
patch around the moved point p; in image I’ is calculated and this value is used as a
measure for the “appearance consistency”. The 5% of flow vectors with the highest
norm are discarded. For the second rule, a check is carried out to see if the points
p’ originating from the same line I; also form a line. A line-fitting algorithm in the
RANSAC scheme [34] is used to calculate the line which agrees best with the points
pi. Then, all points are discarded which do not fit to this line. A point fits to this
line if its point-line distance (cf. Equation (3.45)) is less than or equal to 1px. This

consistent motion constraint is visualized in Figure 4.3.

Figure 4.3.: Visualization of the “consistent motion constraint”. The purple optical
flow vector is discarded because its endpoint p! is not an inlier of the
RANSAC process. Only the green flow vectors with endpoints between
the dashed lines are considered to be inliers of the fitted line.

Figure 4.4 depicts which flow vectors are discarded because of “appearance consis-
tency” and the “consistent motion constraint” and which are used for further pro-

cessing.

Figure 4.4.: Flow vectors in purple are discarded because of “appearance consis-
tency”, flow vectors in yellow because they violate the “consistent mo-
tion constraint”. Only the flow vectors drawn in green are considered for
further processing.
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4.3.3. Histogram-based Line Matching using Optical Flow Vectors

After the optical flow result is filtered, the lines of images I and I’ are finally asso-
ciated. Owing to noise and differences in line segmentation, the endpoints p/ of the
flow vectors will not lie directly on the lines in image I’. To associate the endpoints
p! with lines I} and then the lines I; with lines /; from image I, a histogram-based ap-
proach is designed where every optical flow endpoint p/ votes for its nearby lines I;.
The votes are then accumulated over all points originating from the same line /;. The
line I; with the most votes is then the match of I;. This procedure explicitly allows
one-to-many matches since several lines in image I could match to the same line in
image I'. Differences in line segmentation are thus taken into account. Algorithm 4.1

illustrates this histogram-based matching process in detail.

Algorithm 4.1 Histogram-based line matching using optical flow vectors.

Input: £ < lines in image [ with |.Z| =n

Input: ¢’ < lines in image I' with |.Z’| = m

Input: & < “corner-like” points for optical flow estimation on the lines &

Input: &’ < endpoint of flow vectors, there is a one-to-one correspondence between
points in & and &'

for all lines I; € . do
h(I7) = 0 set histogram entry for all lines I; € ¢’ to 0.
2, < all points {p; with p;, € & and p, lies on line [;}
for all points p; € &), do
p} + corresponding point to p;
‘Z’;; < all lines {I; with I; € " and I} in distance d < dy;, to p/}
for all lines I} € .2}:,_ do
h(17) = h(I}) + } with d distance of p/ to [
end for
end for
Save match (I;, I}) with I} = argmax, h(¥)
end for

The only adjustable parameter in this histogram-based matching process is d, which
defines the search region for nearby lines around point p}. In Section 4.4.2, the in-
fluence of dy; on the matching performance is evaluated and it is found that 2 px is a
good value.

Figure 4.5 shows the resulting line matches.
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Figure 4.5.: Line matches generated with the optical flow line matching algorithm.
Matching lines have the same color.

4.4. Experiments and Evaluation

In the following, the matching performance of the matching algorithm proposed is
analyzed and compared to other state-of-the-art line matching approaches. Before
starting with the evaluation, a matching test set is defined in Section 4.4.1. This test
set is then used to tune the algorithms in Section 4.4.2, and to evaluate the matching
performance compared to the state-of-the-art in Section 4.4.3.

4.4.1. Matching Test Set

The test set consists of 14 image pairs showing different indoor and outdoor scenes.
For each image in the test set, line segments are detected using the LSD algorithm!
[110]. Corresponding lines in the image pairs are then manually labeled and saved
as ground truth matches. Note that a line segment can correspond to multiple line
segments in the other image as the line segmentation may vary. Example images are
shown in Figure 4.6, the whole image database is presented in Appendix C.

A subset of 6 image pairs is used to find the best parameter configuration for the
algorithm. In detail, this configuration set consists of the image pairs “Demoarea01”,
“HCI01”, “KITTI01”, “Modelhouse01”, “Office01” and “Oxford01”. The remaining 8
image pairs are used for the evaluation of the algorithms.

Two common measures known from binary classification tasks are used to evaluate
the matching performance: Precision and recall. The precision is defined as the ratio

The implementation in OpenCV 3.0.0 with default parameters is used here.
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(a) “HCI01” (b) “KITTIO1” (c) “Warehouse01”

(d) “Facade01” (e) “Oxford01” (f) “Office01”

Figure 4.6.: Examples for image pairs of the test set.
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of the correctly identified matches to all retrieved matches. The group of retrieved
matches contains correctly identified matches (“true positive matches”) and those
falsely classified as matches (“false positive matches”). The recall states how many
of all the labeled matches are successfully retrieved and is defined as the ratio of all
correct matches to all labeled matches. A perfect matching algorithm would have
precision and recall values of 1 because all matches would be found (recall = 1) and
every match would be correct (precision = 1). The harmonic mean of precision and

recall - the F-score - is used in addition.

correct matches

precision = all retrieved matches (4.3)
correct matches

Il = 44

reca all labeled matches (44)

F-score — 2 - precision - recall 45)

precision + recall

The execution time of the algorithms is also measured. All experiments are con-
ducted on a desktop PC with Intel® Xeon™ CPU with 3.2 GHz and 32 GB RAM.

4.4.2. Configuration of the Optical Flow-based Matching

As the test setup has now been introduced, the next step is tuning the internal pa-

rameters of the algorithm to suitable values.

The optical flow-based matching algorithm has two parameters: The first parameter
encodes how many “corner-like” points should be used for the optical flow calcula-
tion (cf. Section 4.3.1). The second parameter d;;, defines the size of the neighborhood

in which an endpoint of a flow vector is associated with a line (cf. Section 4.3.3).

It is expected that varying the proportion of “corner-like” points has a big impact on
the runtime since the more points that are used, the more optical flow vectors need to
be calculated. On the other hand, if this parameter is set so as to be too small, matches

are missed because the consistency check could discard all points of a line.

Concerning the parameter d,, it is expected that an increase will lower the precision
as more lines lie in the neighborhood of a point, thus increasing the risk of voting for a
false one. On the other hand, if dyj, is too small, correct lines could be missed because
they are outside of the neighborhood. This means that expanding the neighborhood
is predicted to lead to a higher recall.
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The proportion of “corner-like” points is varied between 0.1 and 1.0, and dy, is varied
between 0 and 10 pixels, and the matching algorithm is evaluated for the configura-
tion set by measuring the mean F-score and the mean runtime. The F-score is chosen
as it combines precision and recall and enables an easy evaluation. The results are
plotted in Figures 4.7 and 4.8.

As expected, the execution takes more time as more and more points are used for the
optical flow calculation. The question now is whether using more points is beneficial
to the performance of the algorithm in terms of the F-score to the extent that this
would justify a higher runtime. The answer is clearly no, as it is observed that the
F-score stays almost constant when the proportion of “corner-like” points used is 0.3
and higher. Between 0.1 and 0.2 an increase in the F-score by 15% from 0.75 to 0.90 is
observed. This shows that matches are indeed missed because too few optical flow

points remain for association.

Analyzing the effect of the parameter dy,, it is observed that the F-score varies as
expected. With dy, = 0px, the algorithm described here finds no matches at all. From
dy, = 1px to dy, = 2px, the F-score increases about 1%, the maximum is reached at
dy, = 2px and dy, = 3 px. Using higher values, the F-score decreases again since the
search regions become too big and too many lines fall into them, which favors false

matches.

The maximum F-score of 0.932 is achieved using dy, = 2px and a proportion of
“corner-like” points of 0.6. Since decreasing the proportion of “corner-like” points
has only a marginal impact on the F-score, the value chosen for it here is 0.5, so as to
benefit from the better runtime (here the mean F-score is 0.928).

It is thus recommended that the proportion of “corner-like” points be set to 0.5 and

dy, to 2 px.

4.4.3. Comparison with the State-of-the-Art

Now that the optical flow-based matching algorithm has been tuned, it is compared
to other state-of-the-art approaches. Appearance-only methods are chosen for com-
parison since algorithms which use additional constraints are computationally very
expensive and therefore unsuitable for the targeted localization system, which re-
quires real-time performance. In addition, the focus here is on the processing of

image sequences, which generally means that the change between two successive
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0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
0.757 0907 0917 0916 0914 0917 0918 0916 0918 00916
0767 0921 0931 0931 0928 0932 0931 0930 0931 0.929
0768 0920 0930 0929 0926 0930 0928 0927 0.928 0.928
0.765 0912 0921 0920 0918 0922 0920 0919 0.923 0.923
0.764 0909 0919 0917 0915 0919 0917 0916 0918 0.917
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0762 0903 0913 0911 0909 0913 0912 0910 0911 0.910
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0.759 0.897 0908 0.905 0902 0906 0906 0.903 0904 0.903
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Figure 4.7.: Impact of the proportion of “corner-like” points and the maximum al-
lowed distance d;;, on the matching performance. The values represent
the mean F-score over the configuration set.
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Figure 4.8.: Impact of the proportion of “corner-like” points and the maximum al-
lowed distance dy;, on the execution time of the matching. Timings are
given as the mean value over the configuration set.
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images is small, so appearance-only approaches are still suitable. In detail, the ap-
proaches used are LEHF? from Hirose et al. [52], MSLD? from Wang et al. [115] and
LBD* from Zhang and Koch [122, 123]. Note that, for LBD, only the descriptor is
used; the spectral matching technique is not employed. All three methods are com-
bined with the LRC matching strategy and a global threshold on the descriptor dis-
tance. Although LRC enforces one-to-one matching, it has been proven to achieve
better results under rotation and viewpoint change (cf. [115]) and is therefore used
here. The threshold for LEHF and MSLD is set to 0.6 whereas LBD has a threshold of
52. All the thresholds were tuned to the configuration dataset.

Figure 4.9 shows the matching precision and recall of the different matching algo-
rithms for the evaluation data.

First of all, it is observed that the matching algorithm proposed in this thesis gives
poor results on the “Facade01” and “Facade(2” image pairs. These two image pairs
clearly mark the limit of this approach as the images change considerably due to
the huge variation in viewpoint (“Facade01”) or camera rotation (“Facade02”). As a
consequence, the optical flow method does not succeed in calculating a correct flow,
which explains the low precision and recall values. Besides this, the matching preci-
sion of the algorithm proposed is comparable to that of the other approaches; in the
case of the “Office03” image pair it is even 5% better than the next best one (1.000
compared to 0.949 for MSLD). The recall increases in most cases between 4% for the
“Warehouse(01” image pair (from 0.925 for LEHF to 0.963) and 19% for the “Office03”
image pair (from 0.804 for LEHF to 0.957). One reason is that the method described
here allows one-to-many matching in order to handle differences in line segmenta-
tion, whereas the other methods are restricted to one-to-one matching. The conclu-
sion drawn here is that this method is preferable to the other methods under small
baseline motion as it has succeeded in retrieving more correct matches with the same

precision.

In Figure 4.10 the mean time spent on matching over 50 iterations of the different
algorithms is plotted. As LEHF, MSLD, and LBD need a descriptor for matching, the
construction time of the descriptors in both images has also been visualized.

It is observed that the matching process of MSLD and LEHF is very fast compared
to this optical flow-based method. But the descriptor calculation consumes most

of the time. The MSLD descriptor in particular is expensive to compute, resulting

2Many thanks to the authors for the courtesy of providing their code.
3Implementation from https://github.com/bverhagen/SMSLD/ tree/master/MSLD/MSLD/MSLD
4Implementation from OpenCV 3.0.0
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Precision
Sequence | LEHF | MSLD | LBD | This method

FacadeO1 0.9412 | 0.9577 | 0.9602 0.4233
Facade02 0.9552 | 0.8972 | 0.8692 0.6779
HCI02 0.9917 | 0.9912 | 0.9744 0.9917
KITTIO2 0.9520 | 0.9037 | 0.9562 0.9441
WarehouseO1 | 0.9900 | 0.9655 | 0.9703 0.9717
Office02 1.0000 | 0.9877 | 0.9877 0.9878
Office03 0.9024 | 0.9487 | 0.8947 1.0000
Oxford02 0.9765 | 0.9630 | 0.9643 0.9688

Recall
Sequence LEHF | MSLD | LBD | This method

FacadeO1 0.8205 | 0.7735 | 0.8248 0.2949
Facade02 0.7442 | 0.5581 | 0.6570 0.5872
HCI02 0.9520 | 0.8960 | 0.9120 0.9600
KITTIO2 0.6800 | 0.6971 | 0.7486 0.8686
WarehouseO1 | 0.9252 | 0.7850 | 0.9159 0.9626
Office02 0.9651 | 0.9302 | 0.9302 0.9419
Office03 0.8043 | 0.8043 | 0.7391 0.9565
Oxford02 0.8218 | 0.7723 | 0.8020 0.9208

Figure 4.9.: Comparison of the precision and recall of different matching approaches
for the evaluation test set.
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Runtime (in ms)
LEHF MSLD LBD This
Sequence M| D | Y| M| D | ¢ M | D | ¢

Facade01 226 | 37.1 | 59.7 | 13.1 | 288.8 | 3019 | 855 | 544 | 1399 | 79.1
Facade02 11.3 | 245 | 35.8 | 6.5 | 1871 | 193.6 | 62.1 | 479 | 1099 | 489
HCI02 58 | 18.7 | 245 | 43 | 1060.1 | 1064.4 | 359 | 75.1 | 111.0 | 30.2
KITTI02 111 | 244 | 355 | 105 | 2378 | 2483 | 522 | 33.6 | 85.8 | 234
Warehouse01 | 4.7 | 165 | 211 | 2.7 | 1693 | 1719 | 275 | 17.8 | 453 | 13.9
Office02 24 | 119|143 | 16 | 3373 | 3388 | 179 | 220 | 399 | 164
Office03 09 | 77 | 85 | 06 | 318.0 | 3187 | 94 | 16.6 | 259 | 12.8
Oxford02 37 | 148 | 185 | 2.2 | 1409 | 143.1 | 264 | 225 | 490 | 144

Figure 4.10.: Comparison of the execution time of different matching approaches for
the evaluation test set. The values plotted are the mean over 50 execu-
tions. The time for the descriptor calculation is additionally visualized
for the descriptor-based approaches LEHF, MSLD and LBD.
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in an accumulated matching and description time of between 143 ms and 1, 064 ms.
The LEHF descriptor is much more efficient and has accumulated runtimes of be-
tween 9 ms and 59 ms, making it comparable to the runtime of the optical flow-based
matching described here with runtimes of between 13 ms and 79 ms. The matching
time of LBD is comparable to the algorithm presented here but with the descriptor
calculation, the runtime increases and results in overall runtimes of between 26 ms
and 140 ms.

From the evaluation of matching performance and runtime, the conclusion is that
the optical flow-based matching technique proposed here outperforms the state-of-
the-art methods in matching under small baseline motion. The same precision as
the state-of-the-art is achieved while a higher recall is attained. The runtime is on a
par with the fastest state-of-the-art approach (LEHF) and clearly better than the other
methods evaluated.

4.5. Conclusion

This chapter has presented a novel line matching method for application under small
baseline motion. The matching is based on optical flow computations along the line
segments where, in a first step, unreliable flow vectors are discarded and the remain-
ing ones are associated with lines in the second image. A histogram is calculated
which counts the associations from flow vectors to lines, and the line with the most
votes is chosen for the match. The algorithm is explicitly designed to allow one-
to-many matches, which helps to compensate for differences in line segmentation

between the images.

It has been demonstrated on different test images that the approach used here is suit-
able for line matching under small baseline motion and its performance has been
compared to other state-of-the-art approaches. It has been found that the algorithm
used here achieves the same precision as the state-of-the-art while attaining higher re-
call. In addition, the method described here saves valuable execution time compared
to the state-of-the-art methods as no descriptor needs to be calculated.

Furthermore, the optical flow point correspondences provide the means to recon-
struct spatial lines from degenerate configurations (e.g. when the direction of the

spatial line is parallel to the camera translation), which is discussed in Chapter 6.
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5.1. Introduction

Relative pose estimation is the problem of calculating the relative motion between
two or more images. It is a fundamental component of many computer vision al-
gorithms as used in visual odometry, visual SLAM or structure from motion, for
example. In robotics, these computer vision algorithms are heavily used for visual

navigation.

The classical approach to estimating the relative pose between two images combines
point feature matches (e.g. SIFT [79]) and a robust (e.g. RANSAC [34]) version of the
5-point-algorithm [91].

For lines, it is in general not possible to calculate the relative pose from two images
alone [116] unless further knowledge of the scene geometry is assumed. This is done
by Elqursh and Elgammal [24] which base their solution on the “Manhattan World”

assumption.

In this chapter, a novel relative pose estimation scheme for lines is presented which
takes its inspiration from the work of Elqursh and Elgammal [24]. It is proposed that
the relative pose estimation process is started with a new spatial line direction esti-
mation step which allows to replace the restricting “Manhattan world” assumption
with a less stricter form in which different spatial directions of arbitrary orientation
are allowed. Moreover, it is proposed that this direction information is used through-
out all steps of the processing, thus enabling the computation time of the relative

pose estimation to be drastically improved.
The contributions of this work are:

¢ animproved line clustering algorithm to estimate the spatial line directions per

image with a novel clustering initialization

* a new spatial line direction matching scheme in which corresponding line di-

rections of two different views are found
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* a robust and fast framework combining all necessary steps for using lines in
relative pose estimation which enables to replace the restricting “Manhattan

world” assumption by a less stricter variant
Large parts of this chapter have been published previously in [111, 112].

The chapter is structured as follows: First, related work is highlighted in Section 5.2.
The following sections describe the methods by which the relative pose is estimated.
First, spatial line directions are found through clustering and used for estimating
the rotational part of the relative pose (Section 5.3). Once the rotation between the
two views is estimated, the translational component is calculated from line intersec-
tions (Section 5.4). Section 5.5 presents the robust relative pose estimation framework
which combines the rotation and translation estimation. The method proposed here
is evaluated in Section 5.6 and compared to the state-of-the-art. The chapter con-

cludes with Section 5.7.

5.2. Related Work

The trifocal tensor is the standard method for relative pose estimation using lines.
The trifocal tensor calculation requires at least 13 line correspondences across three
views [45, 48]. For two views, it is generally not possible to estimate camera motion
from lines, as demonstrated by Weng et al. [116], unless further knowledge of the
lines observed is taken into account. For instance, if different pairs of parallel or
perpendicular lines are available, as is always the case in the “Manhattan world”, the

number of views required can be reduced to two.

When using two views, only five degrees of freedom need to be estimated (three
for the rotational displacement and two for the translation up to scale) compared
to 26 for the trifocal tensor. Problems with fewer degrees of freedom are ideal for
robust estimation methods like RANSAC as less data is needed to generate a solution

hypothesis and hence the number of iterations required is lower (cf. [34]).

In the work of Elqursh and Elgammal [24], the “Manhattan world” is assumed and
employed to find “triplets” of lines, where a triplet consists of three lines of which
two are parallel and the third is perpendicular to the others. The pose estimation
process is divided into two steps: First, the vanishing point information inherent to
a triplet is used to calculate the relative rotation. Then, the relative translation is es-
timated from line intersections using the rotation already calculated. The detection

of valid triplets for rotation estimation is left to a “brute force” approach in which
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5.3. Rotation Estimation from Spatial Line Directions

all possible triplet combinations are tested by means of RANSAC. As the number of
possible triplets is of O(n®) for n line matches, this computation is very expensive.
In contrast, the rotation estimation method proposed here is more computationally
efficient as it is calculated from corresponding spatial line directions, and the number
m of different spatial line directions is much smaller than the number of line matches
(in this case m < 10 whereas n > 100). In addition, there is no need for the restricting
“Manhattan world” assumption, which would require orthogonal, dominant direc-

tions, but a less stricter form where arbitrary directions are allowed.

Similar approaches have been presented by Wang et al. [113] and Bazin et al. [7]. In
both works, the pose estimation is split into rotation and translation estimation as
well, where the rotation calculation relies on parallel lines. Bazin et al. estimate the
translation from SIFT feature point matches. Their approach is also optimized for
omnidirectional cameras. The method used in this thesis requires only lines and no
additional point feature detection as the translation is calculated from intersection

points.

5.3. Rotation Estimation from Spatial Line Directions

The relative rotation estimation is based on the fact that the rigid transformation
of 3-dimensional line directions depends only on the rotational part (cf. Equation
(3.15)):

2d = 2 _R%d (5.1)

Given m corresponding (and possible noisy) directions, the aim is to find the rotation

CzclR between two cameras ¢; and ¢, which minimizes
2 — 1 2 _R<
oR = arglr{nm |“D — RD|| (5.2)

where “D and “D are 3 x m matrices that contain the corresponding directions in
each column. This problem is an example of the “Orthogonal Procrustes Problem”
[42]. The solution employed in this work is the one presented by Umeyama [108],
which is based on singular value decomposition (SVD) and returns a valid rotation

matrix as its result by enforcing det(“.,R) = 1:

“ R =USV' (5.3)
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with
'UDVT:svd(”D“DT> (5.4)
10 0
s=|o0 1 0 (5.5)
0 0 sgn(det(U)det(V))

At least two non-collinear directions are required to calculate a solution.

At this point, the challenging task is extracting 3-dimensional line directions from
line observations in the two images and bringing these extracted directions into cor-
respondence. Here, the direction estimation is solved using a parallel line clustering
approach which is explained in Section 5.3.1. In Section 5.3.2, the matching of spatial
line directions is described.

5.3.1. Spatial Line Direction Estimation by Parallel Line Clustering

The goal of this phase is to cluster lines of an image that are parallel in the real world
and to extract the shared spatial line direction for each cluster. This problem is closely
related to the vanishing point detection, as the vanishing point v; of parallel lines is
the projection of the spatial line direction “d [48]:

v; = Kd (5.6)

This thesis suggests working directly with spatial line directions ‘d and not with the
vanishing points in the image space. Working in 3-space is advantageous because it
does not depend on the actual camera (perspective, fisheye, etc.) and allows for an
intuitive initialization of the clustering. Equation (5.6) introduces how the vanish-
ing point and the spatial line direction are related. At this point, the line I; has to
be transferred into its corresponding 3-dimensional expression — its back-projection.
The back-projection of an image line is the plane ‘7t whose plane normal vector is

given by (cf. Section 3.4.5):

‘n =K', (5.7)
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5.3. Rotation Estimation from Spatial Line Directions

Expectation-Maximization Clustering

Many of the vanishing point detection algorithms employ the Expectation-Maximiza-
tion (EM) clustering method [18] to group image lines with the same vanishing point
[3, 69]. This research was inspired by the work of Koseckd and Zhang [69] and their
algorithm is adapted so that it directly uses spatial line directions instead of vanishing
points. This enables a new and much simpler cluster initialization to be introduced

in which initial directions are derived directly from the target environment.

The EM algorithm iterates the expectation and the maximization steps. In the expec-
tation phase, the posterior probabilities p(‘d (k) |‘n (f)) are calculated. The posterior
mirrors the likelihood that a line ;) (with back-projected plane normal ‘n (1) be-

(k)

longs to a certain cluster k represented by direction ‘d"". Bayes’ theorem is applied

to calculate the posterior:

i) e q(k) c 1(k)
vy

The likelihood is defined as

_ <c,,,<j>Tcd<k>)2

2
20’k

(5.9)

p(c,,<j>|cd<k>): L e

\/27a?

The likelihood reflects the fact that a spatial line in the camera frame (and its direction
cqU )) lies in “7r/) and is therefore perpendicular to the plane normal ‘n 0. 1f cn) and
‘d® are replaced with Equations (5.6) and (5.7), the same likelihood term in image
space is obtained as proposed in the work of Ko$ecka and Zhang [69].

In the maximization step, the probabilities from the expectation step remain fixed. In

this phase, the direction vectors are re-estimated by maximizing the objective func-

tion:
arir(%axl:[p (Cn(j)> = arirzf;ax ;logp (Cn (]')) (5.10)
with
p (Cn(j)> — Zp (Cd(k)> p (Cn(j)‘cd(k)> (5.11)
k

As pointed out in [69], in the case of a Gaussian log-likelihood term, which is the
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case here, maximizing the objective function is equivalent to solving a weighted least

(b,

squares problem for each °d
X . T 2
g = argmin ) _p (Cn(])|cd) (Cn(]) Cd) (5.12)
d ]

After each EM iteration, clusters with less than two assignments are deleted to gain

robustness.

The EM process is stopped when the assignment from the lines to clusters no longer

changes.

Cluster Initialization

For initialization, a set of 3-dimensional directions is defined which are derived from
the targeted environment as follows: The method proposed here is applied in indoor
and urban outdoor scenes, hence it is expected that the three dominant directions of
the “Manhattan world” will be present. In addition, the camera is mounted pointing
forward with no notable tilt or rotation against the scene, therefore the three main
directions (100)", (010)7, (001)" are used for initialization. For robustness, all
possible diagonals like (110)", (1 —10)",...,(111)" are added (e.g. to capture the
staircase in Figure 5.1b), resulting in 13 line directions overall. All line directions are
normalized to unit length and initially have the same probability. The variance of
each cluster is initially set to o7 = sin?(1.5°), which reflects the fact that the plane
normal and the direction vector should be perpendicular with a deviation of up to
1.5°.

Note that this derivation of the initial directions can be easily adapted to other scenes
or camera mountings. If, for example, the camera is mounted so as to be rotated, the
directions can simply be rotated accordingly. If such a derivation is not possible, it is
suggested that the initialization technique proposed in [69] be used, where the initial
vanishing points are calculated directly from the lines in the image.

If an image sequence is processed, it is proposed that the directions estimated from
the previous image be used in addition in the initialization as “direction priors”. In
this case, these priors are assigned a higher probability. It is argued that the change
between two consecutive images is rather small so the directions estimated from the
previous image seem to be a valid initial assumption. This assumption is proven to

be correct in the experiments in Section 5.6.2.
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5.3. Rotation Estimation from Spatial Line Directions

Results from the clustering step are visualized in Figure 5.1.

(a) (b)

Figure 5.1.: Results of the parallel line clustering. Lines with the same color belong
to the same cluster and are parallel in the real world. Each cluster has a
3-dimensional direction vector “d assigned to it which represents the line
direction as seen in this image.

5.3.2. Spatial Line Direction Matching

Correspondences between the spatial line directions (the clusters) of the two images
need to be established in order to calculate the relative rotation. This is done using
RANSAC [34].

The mathematical basis for the algorithm is that — as stated above — the transforma-
tion of a direction “'d from the first camera to the direction “2d in the second camera

depends only on the rotation . R:
2d =2 R (5.13)

This equation does not hold in the presence of noise, so the signed angular distance
5 (d, *,,R“d) between the directions (cf. Equation (3.43)) is used.

The RANSAC process tries to hypothesize a rotation that has a low angular distance
over a maximized subset of all possible correspondences. A rotation is hypothesized
from two randomly selected direction correspondences as described above and then
tested against all other correspondences. The idea behind this procedure is that only
the correct set of correspondences yields a rotation matrix with small angular dis-
tances. Hence, the correct rotation matrix selects only the correct correspondences
into the consensus set.
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5. Relative Pose Estimation from Lines

This method has one drawback: It turns out that different rotation hypotheses with
different sets of correspondences result in the same angular distance. This happens
especially in a “Manhattan world” environment. This ambiguity is illustrated in Fig-

ure 5.2.

R

B

277?

S—

R;

_

Figure 5.2.: Ambiguity in the direction matching. Which is the correct correspon-
dence assignment for the directions from the left to the right? The rotation
could either be 45° clockwise in the plane (R;) or 45° counter-clockwise
and then about the green direction vector (Ry). In this setting, the angular
distances for R; and R; are the same.

As no other sensors are present in the system used here to resolve these ambiguities,
it is assumed there are small displacements between the images and therefore the
permissible rotation is restricted to less than 45°. As the target application is visual
odometry, this is a valid assumption. Alternatively, if an inertial measurement unit
(IMU) is present, for example, its input could also be used.

5.4. Translation Estimation from Intersection Points

The translation is estimated in the same way as proposed by Elqursh and Elgam-
mal [24]. Intersection points of coplanar spatial lines are invariant under projective
transformation and therefore fulfill the epipolar constraint [48]:

Tyc—T -1
pi, K [?t,], 2 RK'p; =0 (5.14)
If intersection point correspondences and the relative rotation are given, a linear
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equation system is formed from the epipolar constraint to solve “#,:

p, KT [*t,] 2 RK'p, =0 (5.15)
(P, KT |~ 2 RK Tp, | ) (2t,) =0 (5.16)
AVt =0 (5.17)

Every intersection point correspondence yields one linear equation. These equations

are stacked to form the overall system
Acztcl — 0 . (518)

This linear equation system is solvable up to scale in least squares sense using singu-

lar value decomposition if at least two intersection point correspondences exist.

As no knowledge is available about which intersection points from all @ possi-

bilities (with n the number of line correspondences) belong to coplanar lines, the idea
from [24] is followed and RANSAC used to select the correct correspondences from
all possible combinations while minimizing the Sampson distance defined in [48].
In contrast to [24], the number of initial correspondence candidates can be reduced
as the clusters are taken into account and only intersection points between lines of

different clusters are calculated.

5.5. Robust Relative Pose Estimation Framework

In this section, the algorithms explained are combined to a robust framework for
relative pose estimation. The overall structure of the framework is depicted in Figure
5.3.

At first, the parallel line clustering is executed to estimate the spatial directions of
the lines observed in both images. Each spatial line direction “d is associated with
a probability p(°d) which reflects the size of the corresponding cluster. The more
lines share the same direction, the higher the probability. This probability is used
to guide the direction matching process: At the start, only line directions from both
images whose probability exceeds 0.1 are selected and their direction matching is
computed using the RANSAC procedure as described. If the RANSAC process fails,
the probability threshold is halved so more directions are selected and the RANSAC
process is started again. This procedure is continued until a match is found or all

spatial line directions are selected and still no solution is obtained. In this case, the
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Figure 5.3.: The relative pose estimation framework. Solid lines link the different pro-
cessing steps. Dashed lines mark relevant data exchange between the
modules. Failure cases are not shown.
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whole relative pose estimation process stops with an error. If successful, the matched
spatial directions and the corresponding rotation matrix are returned. This rotation
matrix is the rotation . R between the two cameras.

Once the rotation is estimated, the translation is calculated from intersection points
as described above. Translation “t., and rotation ;R combined form the overall
transformation ., T between the two cameras. As errors in the rotation directly affect
the translation estimation, the inlier intersection points from the RANSAC step are
used for a nonlinear optimization of the overall pose.

The optimized pose still has an ambiguity in the orientation of the translation vector
which needs to be resolved. All line matches are triangulated with respect to c;. For
every triangulated line “£ with endpoints “p; and “p,, the parallax p between the
two observations (this is the angle between the two back-projected planes “7r and
7t which intersect in the triangulated line) is measured and a check is made as to
whether the triangulation result is in front of the camera by calculating the visibility

score v:

v = sgn (Clrchlpl) +sgn <51r2T51p2> (5.19)

where “1r; denote the back-projected rays of the endpoints of the line segment seen
in ¢ (cf. Equation (3.36)). This value is weighted by the parallax angle and summed
over all triangulated lines to form the ambiguity score 4. To mitigate the effect of

large parallax angles, p is cut off if it becomes bigger than a certain threshold py,:

if p <
0o = P ULOS P (5.20)

P, otherwise

The overall ambiguity score a is then

a= chv . (5.21)
ar

If a < O, the sign of the translation vector is changed, otherwise the translation stays

as it is.
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5.6. Experiments and Evaluation

5.6.1. Datasets

The experiments conducted in this thesis use synthetic and real image sequences. As
synthetic data, a typical indoor scene is represented by a 3-dimensional wireframe
model and images generated from it by projecting the line segments from the model
into a virtual pinhole camera. The sequence generated consists of 843 images. Exam-

ple images are shown in Figure 5.4.

(a) (b)

Figure 5.4.: Synthetic images showing a typical indoor scenario.

To see how image noise affects the processing, Gaussian noise is added to the image
lines. Noise is not added at the endpoints of the line segments because this affects
segments of different length differently. Rather, the segments are rotated around their
center point, where ¢ is the standard deviation of the rotation in degrees.

For the experiments on real data, publicly available datasets with ground truth in-
formation on the camera poses are used. Both indoor and outdoor sequences from
the robotic context are selected to test the algorithm developed here in a variety of
environments. Robotic indoor scenes are represented by sequences from the “RGB-D
SLAM benchmark” from TU Munich [104] and by the “Corridor” sequence from Ox-
ford!. For outdoor scenes, sequences from the automotive sector are chosen and the
“HCI benchmark suite” [67, 68] and the “KITTI Vision Benchmark Suite” from KIT

[40] are used. The detailed overview of the sequences used is given in Table 5.1.

1http: / /www.robots.ox.ac.uk/~vgg/datal.html
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Table 5.1.: List of sequences

Number of Image Trajectory
Sequence images dimension length
Oxford Corridor 11 512 x 512 px 0.88m
TUM fr2/ pioneer_3602 1,185 640 x 480 px 17.98 m
TUM fr2/pioneer_slam3 2,861 640 x 480 px 4419m
TUM fr2/ pioneer_slam24 2,053 640 x 480 px 24.88m
TUM fr2/ pionee1‘_slam35 2,524 640 x 480 px 27.63m
HCI 0_0000° 101 2,560 x 1,080 px 417m
HCI 0_00777 600 2,560 x 1,080px  21.68m
KITTI Odometry Dataset 058 2,761 1,226 x 370px  2,205.58m

As the datasets are now defined, the performance of the relative pose estimation
proposed here is evaluated. First, the parallel line clustering step in Section 5.6.2 is
tested since the estimated spatial line directions are crucial for the further processing.
Second (Section 5.6.3), the accuracy of the resulting relative pose is evaluated and

compared to state-of-the-art algorithms using points or lines.

All experiments are conducted on a desktop PC with Intel® Xeon™ CPU with 3.2
GHz and 32 GB RAM.

5.6.2. Evaluation of Parallel Line Clustering

In this section, the accuracy of the spatial line direction estimation is evaluated using

the synthetic data with different noise levels.

The proposed initialization technique, where a set of directions for initialization is
predefined (cf. Section 5.3.1), is compared with the initialization approach proposed
by Kosecka and Zhang [69], in which the initial directions are estimated directly from
the line observations in the image. Both techniques are also combined with “direc-
tion priors” where the estimated directions from the previous image are used in ad-

dition.

2Starting from image 40.

3Starting from image 60.

“Starting from image 60.

SStarting from image 20.

6Images 4,500 to 4,600 from the left camera are used.
7Images 3,621 to 4,220 from the left camera are used.
8Tmages from the left camera are used.
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For each image, the parallel line clustering method is executed, and the line direc-
tions calculated are compared to the ground truth. The comparison is done by calcu-
lating the line direction error €4, which is the unsigned angular distance between the
ground truth d¢; and the estimated direction ds;. Since the number of estimated clus-
ters may differ from the actual number, each estimated direction vector is associated

with the ground truth direction which results in the smallest angular error.

€4 =10y (dgt/ dest) (5.22)

Circular statistics [35] are applied to calculate the mean and standard deviation of the
line direction error over each sequence. The mean angle & of n angle measurements

a(!) is defined as

1 h 1 ;
7 — l ina® = (i)
a = atan2 <n Zi:sm(x = Zi;cos o > (5.23)

. AT
where r, = (% Yy cosal) 1y,sin uc(’)> is the mean result vector. The circular stan-

dard deviation s, is calculated from r, as
S =/ —2In(||ra]]) - (5.24)

The results of this experiment are summarized in Figure 5.5.

As expected, the accuracy of the estimation drops as more and more noise is added
to the data. With this kind of data, it is clearly seen that using the initialization in-
troduced here gives better results than the method of KoSecka and Zhang. It can also
be seen that using direction priors is advantageous as the mean and standard devia-
tion of the angular error is reduced. The “direction prior” strategy with predefined
directions is therefore chosen for all subsequent experiments.

5.6.3. Evaluation of Relative Pose Estimation

In this experiment, the accuracy of the relative pose computation introduced here
is compared with the “Triplet” approach [24] - the state-of-the-art using lines — and
with the “5-point” algorithm [91] as the state-of-the-art representative for relative

pose estimation using points. As no reference implementation is available for the
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10 |-

Line direction error €; (in °)
=
I

|
0 0.5 1
Image noise ¢ (in °)

—e— Predefined directions = Predefined directions + priors
—— Koseckd and Zhang Koseckd and Zhang + priors

Line Direction Error (in °)
Predefined Dir. | Predefined Dir. | Koseckd / Zhang | KoSeckd / Zhang

+ priors + priors
o (ln O) 571 ‘ Sed 5 ‘ Sgd q ‘ Sed 5 ‘ Sed
0.0 0.0601 | 1.4354 | 0.0446 | 1.3339 | 6.1131 | 13.1916 | 0.0072 | 0.2824
0.5 1.4737 | 5.3881 | 0.9056 | 3.0344 | 8.8763 | 14.4582 | 1.3604 | 5.3859
1.0 4.3742 | 9.1884 | 2.1647 | 3.9196 | 9.6020 | 13.9660 | 8.6948 | 14.6973

Figure 5.5.: Evaluation of the parallel line clustering and the estimated line directions
for the synthetic data.
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Triplet approach, it was implemented by the author”.

The experimental setup is as follows: The line matching algorithm described in Chap-
ter 4 is executed for each pair of consecutive images. For the 5-point algorithm, SIFT
features [79] are detected and matched. The image lines (or points) detected along
with their correspondences define the input for the relative pose estimation. The
estimation algorithms are executed and the resulting relative poses compared to the
ground truth of the test sequences. For each tuple of ground truth pose and estimated
pose, the error in rotation and translation is computed, where the rotation error eg
is the angle of RstRg;" and the translation error €; is expressed as the signed angu-
lar distance (Equation (3.43)) between the ground truth translation vector t¢; and the

estimated translation ;.

T
Tr (Rgstht ) — 1) (525)

€R — arccos < 5

€t =06 (tgt/ test) (526)

Again, mean and standard deviation over all the sequences is calculated using circu-

lar statistics.

Additionally, the execution time of each relative pose estimation algorithm is mea-
sured.

The evaluation is started on the synthetic dataset using different noise levels ¢. Since
the synthetic datasets contains only lines, the method proposed in this thesis and
the Triplet algorithm are only compared. The accuracy of the algorithms in terms
of rotation and translation error is shown in Figure 5.6. The runtime behavior is

presented in Figure 5.7.

As expected, the accuracy of the relative pose estimation decreases as more and more
noise is added to the data. For the trial without noise, the algorithm proposed here
attains near perfect results whereas the Triplet approach has a slightly lower accu-
racy with a translation error around 3°. When adding noise, the Triplet approach
achieves better results, with a rotation error which is about 0.2° lower and a transla-
tion error around 4° lower. One explanation for the inferior behavior of the method
described here lies in the rotation estimation approach used: As the method estimates
the rotation using the directions from the parallel line clustering, the errors in the line

directions (cf. evaluation of line clustering in Figure 5.5) translate directly to errors in

?Owing to a bug in the implementation of the Triplet approach employed here, the results reported
previously were incorrect, resulting in the Triplet approach performing less well and favoring the
method used here. The results and discussions in this thesis correct this.
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Figure 5.6.: Accuracy of the relative pose computation for the synthetic sequence.
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Figure 5.7.: Runtime analysis of the relative pose computation for the synthetic se-
quence.
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rotation. This is not the case for the Triplet approach since the rotation is estimated
directly from triplets of line observations in the image. Here, RANSAC may even-
tually pick a line triplet less affected by noise and therefore achieve a better rotation
estimate overall. Both methods base the translation estimation on the calculated ro-
tation, which explains the higher translation error with the method proposed here

since the rotation used at the start is not as good.

The method used here has one advantage, however: It is much faster, which is impor-
tant for online systems like visual odometry. The execution time of the relative pose
algorithm depends on the number of input feature matches. There are 30.96 matches
per image pair on avarage for the synthetic dataset. Despite having the same input,
the algorithm proposed in this thesis is three times faster than the Triplet approach.
This is due to the fact that, in the Triplet approach, all possible O(n®) triplet combina-
tions (n is the number of line matches) are generated and then tested in a RANSAC
scheme to calculate the rotation, and this is very time consuming. In contrast, the ro-
tation estimation here is based on the line directions calculated in the clustering step.
With this sequence, only around 3 different line directions per image are extracted,
hence the rotation calculation is very fast. The number of intersection points gen-
erated in the translation estimation step is also lower as only intersection points for
lines with different spatial direction are calculated, which excludes vanishing points
and favors real intersections. Using fewer points in RANSAC speeds up the estima-

tion even more.

The algorithm developed here is now evaluated on real world image sequences and
its accuracy compared against the Triplet approach as before and additionally against
the 5-point approach. The accuracy on the real image datasets is visualized in Figure

5.8, the runtime performance is shown in Figure 5.9.

This experiment confirms the previous results. The Triplet approach achieves bet-
ter results than the method proposed in this work due to the reasons given above.
It also obtains better results than the 5-point algorithm on all TUM datasets, which
demonstrates the suitability of line-based methods for relative pose estimation espe-
cially in highly structured surroundings. Taking a closer look at the rotation errors,
it is seen that the Triplet method performs best except when used with the Oxford
Corridor and KITTI sequences, where the 5-point algorithm dominates. On the HCI
datasets, the method developed here achieves near perfect rotation estimates because
the scene fits very well to the design of the parallel line clustering. Very precise line
direction estimates are therefore obtained, which are the basis for the rotation esti-

mation. Focusing on the translation error, the 5-point algorithm clearly outperforms
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Rotation Error (in °)
Triplet 5-Point This method
Sequence ER | seg ER | seg ER | Seg
OxfordCorridor 1.2308 | 0.8537 | 1.1190 | 0.6380 | 1.5715 | 0.7427
TUMPioneer360 0.7318 | 1.3560 | 0.7559 | 0.8062 | 0.8426 | 1.7828
TUMPioneerSLAM1 | 0.6772 | 1.0627 | 0.7545 | 1.0503 | 0.9041 | 2.3037
TUMPioneerSLAM2 | 0.6704 | 2.4083 | 0.7984 | 3.5568 | 0.9185 | 3.2667
TUMPioneerSLAM3 | 0.4831 | 2.0582 | 0.5831 | 1.6085 | 0.5940 | 2.2269
HCI_0_0000 0.0322 | 0.0000 | 0.5994 | 8.7049 | 0.0352 | 0.0000
HCI_0_0077 0.0348 | 0.0000 | 0.1152 | 3.5373 | 0.0581 | 0.0810
KITTIO5 0.3399 | 0.3713 | 0.0744 | 0.0810 | 1.1061 | 2.7294
Translation Error (in °)
Triplet 5-Point This method
Sequence & | s & | se & | se
OxfordCorridor 21.6940 | 6.7712 51415 | 3.1110 | 19.2325 | 9.3958
TUMPioneer360 39.1231 | 51.4581 | 52.8364 | 45.1679 | 50.6351 | 46.9933
TUMPioneerSLAM1 | 32.2068 | 46.4367 | 45.2160 | 41.2233 | 46.8130 | 44.0135
TUMPioneerSLAM?2 | 35.4261 | 47.0001 | 51.4822 | 43.4052 | 49.6455 | 45.5643
TUMPioneerSLAMS3 | 45.0348 | 57.3606 | 58.8250 | 49.3617 | 58.3841 | 51.4185
HCI_0_0000 25.3052 | 18.8696 | 10.1912 | 12.4241 | 20.9745 | 11.0472
HCI_0_0077 24.1688 | 10.0092 | 12.0266 | 13.1472 | 26.9475 | 21.8788
KITTIO5 11.5395 | 20.8172 | 2.6801 | 11.9137 | 18.0136 | 23.5677

Figure 5.8.: Accuracy of the relative pose computation for the real sequences.
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Average Runtime (in ms)

Sequence Triplet | 5-Point | This method
OxfordCorridor 1787.59 1.19 38.64
TUMPioneer360 636.91 1.61 20.51
TUMPioneerSLAM1 | 563.39 1.59 22.33
TUMPioneerSLAM2 | 751.87 1.62 22.00
TUMPioneerSLAM3 | 989.13 1.44 25.50
HCI_0_0000 11212.11 7.09 57.13
HCI_0_0077 9391.83 5.93 76.81
KITTIOS 2667.42 2.18 44.56

Average Matches per Image

Sequence Triplet | 5-Point | This method
OxfordCorridor 84.18 | 180.27 84.18
TUMPioneer360 67.52 | 208.43 67.61
TUMPioneerSLAM1 | 65.15 | 188.67 65.15
TUMPioneerSLAM2 | 72.73 | 190.57 72.73
TUMPioneerSLAMS3 | 81.49 | 232.30 81.49
HCI_0_0000 195.84 | 2563.38 195.84
HCI_0_0077 193.73 | 2715.03 193.73
KITTIO5 109.26 | 434.99 109.26

Figure 5.9.: Runtime analysis of the relative pose computation for the real image se-
quences.
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the line-based methods on the outdoor sequences. This is expected as many point
features are detected due to the highly textured environment. This is not the case
for the indoor sequences, especially the TUM dataset, where white walls and room
structure dominate. Here, the translation error increases drastically for the 5-point

algorithm and achieves similar accuracy to the algorithm proposed in this thesis.

Regarding the execution time, it can be clearly seen that the greater the number of
matches which need to be processed, the slower the algorithms become. The Triplet
approach is of the order of one to two magnitudes slower than the approach pro-
posed (e.g. 38ms compared to 3,500 ms on average) which is due to its expensive
triplet calculation, as explained above. But the approach proposed is still around one
order of magnitudes slower than the 5-point algorithm, which requires less than 3 ms
on average. One reason is that the 5-point algorithm estimates rotation and transla-
tion in one step so only one RANSAC loop is executed. The Triplet algorithm and the
approach developed here require two: One for the rotation estimation and one for
the translation. Another important factor is the need for intersection points for trans-
lation estimation. The number of intersection points is of O(n?) for n matches. Even
though there are fewer line matches than point matches (around 100 line matches

compared to 200 point matches), the number of intersection points is much bigger.

Overall, this experiment shows that the algorithm presented in this thesis is feasi-
ble for relative pose estimation. Although the Triplet method attains better average
rotation and translation errors, the method described here has a huge advantage in
that it requires much less computation time, which is important for online systems
like visual odometry. In some scenarios, the method described can compete with
point-based approaches in terms of accuracy but the computation time is a limiting

factor.

5.7. Conclusion

In this chapter, a relative pose estimation scheme based on lines has been proposed.
This method can handle the two-view case as spatial lines with different directions
are assumed to be present in the scene. Based on this assumption, which is weaker
than the “Manhattan world” assumption often employed, the spatial line directions
are calculated by means of parallel line clustering. The line directions are exploited
to calculate the relative rotation. Line intersections are used in conjunction with the

relative rotation to estimate the translation. Besides the mathematical derivation of
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the solution, an explanation is provided as to how the different steps are combined

to give a robust relative pose estimation framework.

In several experiments, the framework is evaluated and compared to the state-of-the-
art. Overall, it is shown that lines are feasible for relative pose estimation, especially
in scenes with little texture as is often the case in indoor environments. Compared
to the state-of-the-art line-based method, the approach proposed sacrifices a little
precision (on average a 7° higher translation error and a 0.25° higher rotation error)
to gain an unrivaled execution time (an average reduction from 3,500 ms to below
40ms). This increase in computational performance alone enables line-based relative

pose estimation to be used in online systems like visual odometry.
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6. Triangulation of Lines

6.1. Introduction

Triangulation determines the position of an object in space using observations from
different viewpoints and the camera projections of all views. It is a well-known prob-
lem in photogrammetry and has many applications in computer vision systems, e.g.
3D object reconstruction, SfM and SLAM.

In the case of points, triangulation consists of calculating the intersection of the back-
projected rays. Owing to noise in the measurements, linear or non-linear least squares
methods have to be used as the back-projected rays are skew and do not intersect at

one point.

The triangulation concept is the same for lines: Here, the back-projected planes are
intersected to recover the spatial line. Several such linear and non-linear methods
were already presented [48, 4]. All these methods assume that no prior knowledge
about the spatial line is available. This is not the case in this work as the direction
of the line in known beforehand due to the parallel line clustering step (cf. Chapter
5). The aim here is therefore to extend line triangulation to allow the incorporation
of such additional constraints. In order to achieve this, a novel, linear least squares

triangulation scheme is derived from the Pliicker line transformation.

In addition, degenerate line configurations where the lines observed coincide or are
near to epipolar lines are handled. It is proposed that spatial points along the line,
which are reconstructed from optical flow (cf. Chapter 4), are included to overcome
the degenerate configuration. Furthermore, pre-conditioning of the input data is con-
sidered and all methods proposed are combined in a line triangulation framework.

The contributions of this work are:

* anovel, linear least squares triangulation scheme for lines based on the Pliicker

transformation
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¢ the incorporation of prior knowledge of the direction of the spatial line into the
triangulation process

¢ the handling of degenerate configurations by using spatial points from optical

flow
¢ aline triangulation framework which combines all methods proposed

The chapter is organized as follows: First, related work is presented in Section 6.2.
Then, in Section 6.3, a linear least squares method for line triangulation is derived
from the transformation of Pliicker lines. Based on this expression, Section 6.3.1 elab-
orates on how prior knowledge of the line direction can be included in the estima-
tion. In Section 6.3.2, triangulation under degenerate configurations is considered. In
Section 6.3.3, the pre-conditioning of the input data is dealt with. In Section 6.4, all
methods are combined into one triangulation framework which chooses the best tri-
angulation method depending on the line observation input. Finally, the framework
is evaluated in Section 6.5. The conclusion and final remarks are given in Section
6.6.

6.2. Related Work

A line in 3-space is uniquely defined by the intersection of two planes. The triangula-
tion explained by Hartley and Zisserman [48] uses the back-projected plane param-
eters 7t and 7’ of image lines I; and I} from two different views. The reconstructed

line £ is then simply given in the span representation as

7TT
e~ (7). o

This expression can easily be extended for more than two views: The back-projected
planes of the different views are stacked into one matrix. The two right-singular
vectors corresponding to the highest singular values of the matrix then define the
line £. Heuel and Forstner [51] also use the intersection of back-projected planes to

triangulate spatial lines but incorporate uncertainty into the estimation process.

Bartoli and Sturm [4] propose triangulation procedures based on the Pliicker coordi-
nate representation. A biased version of the reprojection error is used in a linear least

squares error function, where P/ is the projection matrix for Pliicker coordinates, £
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the line in Pliicker coordinate representation and p; and p;, are points on the image

line observed:

£ = argmin . <<Pi1 TR 0£) + (p, "R ﬁ)z) 62)
j

The problem with this method is that the solution calculated does not, in general,
satisfy the Pliicker constraint. Therefore, Bartoli and Sturm propose a “Pliicker cor-
rection” algorithm which finds the nearest Pliicker coordinate to a 6-vector. To over-
come the bias in the error function, they propose a quasi-linear algorithm in which
the linear method is iterated several times. After each iteration, the Pliicker correction
is employed and weight factors are computed to correct the bias. Instead of applying
the Pliicker correction, the Pliicker constraint could also be modeled directly in the
quasi-linear method, which gives better results. A drawback of their methods is that

at least 3 line observations from different views are required to estimate L.

Another iterative method is presented by Josephson and Kahl [60]. They develop
a common triangulation framework for points, lines and conics based on a statisti-
cally optimal cost function which is used to find the global optimal solution. They
directly include the Pliicker constraint in their solution by using different relaxation

techniques.

A drawback of all iterative methods is that they require an initial estimate. Nor-
mally, this initial estimate is found with a closed-form solution. In the following,
such a closed-form solution is presented. The triangulation method proposed here
is derived directly from the transformation equation of Pliicker lines. The method is
designed to take the Pliicker constraint into account so that no Pliicker correction is
necessary. Additionally, building upon the Pliicker transformation makes it possible
to directly introduce prior knowledge of the spatial line direction into the estimation

process.

A problem occurs if the line observations in the images coincide with epipolar lines.
In this case, the equations are under-determined and no solution can be found. Ok et
al. [93] tackle this problem and present a method to reconstruct such “near-epipolar”
lines. They introduce artificial spatial points into the reconstruction process of a line
which they estimate from intersection points of image lines located close to one an-
other. The case of “near-epipolar” lines is also handled in the triangulation method
used here. Additional spatial points are included which are generated from optical

flow points resulting from the matching described in Chapter 4.
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6.3. Line Triangulation from the Transformation of Pliicker

Lines

In the following, linear methods to reconstruct a line “L from at least two different
observations I;1/ by cameras at pose ¢, T () are derived. The solutions developed here
have the form A“L = b based on the transformation of Pliicker lines (cf. Equation
(3.15)):

C c w. C [ w
‘d < R

It is assumed that the Pliicker line “£L is normalized using Equation (3.8), which

results in “d and °d being unit vectors.

For ease of understanding, Figure 6.1 provides a visualization of the triangulation

from two views with all relevant parameters.

L

Figure 6.1.: Visualization of the triangulation of a spatial line “L from line observa-
tions ;Y and 1;?. 70 is the back-projected plane of 1,Y) with normal
vector “n{/). The reconstructed line has line direction “d.

The line observations 1 i(j ) have to be related to momentum “m ) and direction ‘d" in

order for the Pliicker transformation to be employed. This is achieved here by using

73



6. Triangulation of Lines

the line projection function from Equation (3.35), which defines

-T

1) — det <K<j>) K0 ey ) (6.4)

In combination with the back-projection of image lines (cf. Equation (3.42)), itis found

that the normal ‘n"/) of the back-projected plane coincides with the transformed mo-
mentum ‘m ") of the line (up to scale sy

) — det <K<f>) ) (6.5)

(e () — ¢y () (6.6)

Since sU) is an arbitrary scale factor, “n () is determined to have unit length. Substi-
tuting Equation (6.6) into the Pliicker transformation definition and rearranging the

equation allows sU) to be eliminated:
s ey () — CwR(f) Wiy 4 [th(f)] ) CwR(j)wd (6.7)

03,1 = [Cn(j)} ) ¢ RV Wy 4 [cn(j)} ) [th(j)} ) ¢ RUvg (6.8)

The vector triple product is transformed into a series of scalar products using triple

product extension:

s = [00] RO 1 [] [£,0] RO ©69)

+ ctw(j) (cn(j)TcwR(j)wd> _ cwR(f)wd <C1’l(j)TCi’w(j)> (6.10)

The term th(j ) ( tnl )TCwR Nwg ) vanishes as ‘n/) is perpendicular to CwR(j )®d, which

is easily derived from the Pliicker constraint:

0 = &) eg() (6.11)
_ cmu)TcwR(j) wg (6.12)
~ uile Ry O (6.13)
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Therefore, the following expression is obtained
. . . T .
031 = [00] < ROm — RO <cno> ctwm) 6.14)

from which a block of linear equations for line observation ;\/) is formed:

AVvL = pU) (6.15)

w.

({cnm} ) ¢ RV — (cn(nTctw(f)) cwR(n) (’Z) — 031 (6.16)

Given k line observations, the overall system of linear equations A“L = b is formed
by stacking the k blocks. The homogeneous system is solvable when at least two ob-
servations are available. The least-squares solution for “L is found by decomposing
A using SVD into

USVT =svd (A) . (6.17)

The solution “L is then the last column of matrix V. It must have unit norm. As the
Pliicker line is a homogeneous entity, it is by definition invariant to scaling.

The resulting line “L fulfills the Pliicker constraint as the constraint is incorporated
into the derivation of the equations.

6.3.1. Integration of Spatial Line Direction Priors

In the parallel line clustering step of the relative pose estimation (cf. Section 5.3.1),

the spatial line directions “d U)'in the current camera frame are calculated. This infor-

mation can be utilized to constrain the direction of the reconstructed line.

First, a spatial line direction prior is calculated using the direction information from
the clustering step. This direction prior is then incorporated as a constraint into the

triangulation.
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Line Direction Prior Estimation

Given the directions ‘d") in two or more views, the line direction prior wdp can be

calculated as

Ad(j)wdp = p,\) 6.18)
([Cd(j)} RO (M) = 05 (6.19)

This follows directly from the transformation of Pliicker lines (cf. Equation (3.15)).
This expression involving the cross product is chosen over the naive solution

e RV, — g0 (6.20)

w

since the signs of different °d ) may vary. Using the cross product removes this

unwanted degree of freedom. Again, this is solved using SVD.

This calculated direction prior is now used to constrain the system of linear equations

discussed above (cf. Equation (6.16)).

Linear Estimation with Constraints

Linear least squares problems of the form Ax = 0 can easily be extended so that
the solution sought x is additionally subjected to Cx = 0 (cf. [48]). As the problem
in Equation (6.16) has the required structure AYL = 0, the aim is to express the
constraints which the calculated direction prior “d,, inflict on the final Pliicker line in
the form of C*L = 0.

The first restriction is that the Pliicker constraint (Equation (3.2)) should be fulfilled:
wdewm -0 (6.21)

This constraint enforces the orthogonality between the momentum and the direction
prior. Second, the direction of the line can be restricted with respect to the prior

direction:

[“dp], “d = 031 (6.22)
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The two are combined to form the constraint matrix C used here:

CUL = 04,4 (6.23)
w T w.
dy :))1 x3 wm — Ouns 624
O3x3  [“dp], ) \ “d

The constraint is now incorporated into the estimation. First, it is ensured that C is
square by adding two rows of zeros. The orthogonal complement of the row space
C, of Cis calculated with singular value decomposition:

USV! = svd (Q) (6.25)

The orthogonal complement of the row space C, then consists of the last 6 — r col-
umns of V, where r is the rank of C. In this case, r = 3 and the last three columns are
used. The next step is to solve

ACy =0 (6.26)
using SVD. The final result is then calculated as

L =Coy (6.27)

6.3.2. Triangulation under Degenerate Configurations

When the line observations coincide with epipolar lines, the solution space for “L is
the whole epipolar plane: A degeneracy occurs. This problem is far more severe than
the degeneracy for point triangulation, where only points along the baseline cannot
be recovered. Here, every line which lies on an epipolar plane is not reconstructable.
This includes every line parallel to the direction of the camera motion. This is shown
in Figure 6.2.

To underline the severity of this problem, a typical automotive scene is considered
where the car follows a straight road. In this scenario, all lane markings are impos-
sible to triangulate from line observations since the car’s motion is aligned with the
lanes. This is visualized in Figure 6.3 by coloring the angular distance of the line ob-
servations to their corresponding epipolar lines. If a line coincides (or is near to) an

epipolar line, it suffers from degeneracy.
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epipolar plane

Figure 6.2.: In a degenerate configuration, the back-projected planes ¢t and ¢

coincide with the epipolar plane. The image line 1;Y) contains the epipole

)
e

i

and is therefore an epipolar line.

Figure 6.3.: Visualization of the angular distance from each line segment detected in
the image to its corresponding epipolar line. The color indicates the an-
gular distance, where yellow is “near” and green “far” from the epipolar
line. The blue point marks the epipole.
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6.3. Line Triangulation from the Transformation of Pliicker Lines

How can these degenerate configurations be avoided? This thesis uses the idea of
Ok et al. [93] and integrates point measurements into the estimation. But there is no
need to create artificial points from line pairs as Ok et al. do, since point matches are
calculated with optical flow during line matching (cf. Chapter 4). These optical flow
measurements are used to triangulate spatial points that are then employed in the

line triangulation process.

In the following, an explanation is given of how spatial points are incorporated into

the line triangulation process.

The linear estimation here is derived from the incidence relation between a spatial
point p and a line £. The point lies on the line if (cf. [50])

I(c) (’f) = 041 (6.28)

with T'(£) the dual Pliicker matrix of L:

T(L) = <_ [dT]X _"’> . (6.29)

The point-line incidence equation is rearranged to separate L:

_ wd o _w w
( u[,mT] 0m> ( 1’7 ) = 0451 (6.30)

(— [“d]. “p - w'ﬂ> 041 (6.31)

Wiy T “p
_I w w.
- 3¥3 pl wm = 04x1 (6.32)
14 01x3 d
Thus, one spatial point “p () contributes the following block of linear equations:

ADwp — pl) (6.33)

(jT [ } % wy | = 041 (6.34)
wpl 01x3

Stacking the blocks of different points results in the final matrix A. The line “£ can
be retrieved from the matrix using SVD when at least two points are available.
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In this case as well, it is of course possible to integrate a line direction prior. The first
step is to calculate the direction as explained in Section 6.3.1. The momentum is then

calculated from the point-line incidence relation as before:

A, 00 — p, 0) (6.35)

( Is@?T) (vm) = 0], "4 (6.36)

At least one point is required to solve “m when a direction prior is used.

Testing for Degenerate Configuration

To determine if line observations correspond to a degenerate configuration, the test
proposed by Ok et al. [93] is used. In this test, the angle between line observation
and corresponding epipolar line is calculated. If this angle is less than 10°, the line
segment is assumed to be near-epipolar and therefore classified to be in a degenerate

configuration for triangulation.

The angle 7 (1;, e;) between the line observation I; and the corresponding epipolar line
e is the unsigned angular distance (Equation (3.44)), where d;, is the 2-dimensional
direction vector of the line segment observed and d, the direction vector of the epipo-

lar line:

(i, er) = du (dlz-/ d.) (6.37)

The corresponding epipolar line of the line segment is composed of the epipole e; and
the endpoints of the line segment. For each endpoint, the epipolar line containing the
epipole and the endpoint is constructed. Then, the angles between the line segment
and the two epipolar lines are calculated using Equation (6.37). The epipolar line
with the smaller angle is then taken as the corresponding epipolar line for the line

segment. Line segment and corresponding epipolar line are visualized in Figure 6.4.

6.3.3. Pre-Conditioning

The normalization of the data is an important step to ensure the quality of the results

by enforcing a low condition number on the linear equation system. A high condition
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Figure 6.4.: Line segments 1;Y) with their endpoints are shown in black. The epipole
e; is indicated in blue. The dashed colored lines from the epipole to the
line segment endpoints define the epipolar lines. The epipolar line with

lower angle (1Y, e )) defines the corresponding epipolar line e; /).

number indicates very different orders of magnitude in the coefficients of the A ma-
trix of the equation system. Hartley and Zisserman [48] argue that a high condition
number on noisy data serves to amplify the divergence from the correct result. The
aim here is therefore to transform the input data so that the data coefficients are in a

similar range.

The pre-conditioning is demonstrated on the standard triangulation approach given
in Equation (6.16). As ‘n () is scaled to unit length, the term on the left [Cn Y )] <, RV

X
will only contain numbers in the range [—1; 1]. Since the translation ‘¢, () takes arbi-

trary values and is not bound like the normal vector or the rotation matrix, its max-

imum component defines the range of the term on the right — (Cn Y )T’:tw Y )> ‘R 0,

Assuming the maximum value of “t, 0) is 1,000, the term on the right would then
hold numbers in the order of magnitude of 103, while the term on the left would

contain values in the order of magnitude of 10°.

How can the input be transformed so that all values are in the same range? It can
be modified in such a way that the translation is in the same range as the rotation
and normal vector. This is achieved by first shifting the camera positions so that their
centroid is at the origin. In a second step, the camera positions are scaled so that the
average distance to the origin is 1. With the modified camera poses, the triangulation
method described is followed. Finally, the transformation on the triangulated line
must be reversed by rescaling the momentum and shifting the line back from the

origin to the centroid. The whole conditioning process is explained in Algorithm 6.1.
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Algorithm 6.1 Line triangulation using Pliicker transformation with conditioning of
input data.

Input: .7 + { [CwR(j), Ctzu(j)] camera pose of image I/) }, | 7| =n
Input: £ « {li(j ) observed line in image 10U )}

“cg < centroid of all camera positions “c 1) = —R Y )Tctw (7)
Sz <— average distance of all camera positions wel) to Ye s
for all camera poses [,R, ‘t,] € .7 do
we < —<, Rt the camera position
CCoond é (“c —"cy)
“tpeond < —“wR¥Cong the conditioned translation
Append [, R, “t,cond] to set of conditioned camera poses Z,4
end for

T
Calculate spatial line “L.o,y = <wmcondT wdcondT> by solving the linear equa-

tion (6.16) (or (6.27) when direction prior is available) using all normalized camera
poses in ;4 and the corresponding line observations in .Z.

Normalize “L,,,; using Equation (3.8)

Um < Sg"Meong + Ve X “deong reverse conditioning

w C w. w l T
< m cond >

The conditioning can be transferred to the triangulation in degenerate cases (Equa-
tion (6.34)). Here, the spatial points can take arbitrary values, which leads to an un-
bound condition number. The points are therefore transformed. A strategy similar
to the one already explained can be followed and all points are shifted so that their
centroid lies at the origin. All points are then scaled so that their average distance
to the origin becomes 1. The triangulation method is applied using the normalized
points and the normalization on the solution obtained reversed. The details are listed
in Algorithm 6.2.

6.4. Triangulation Framework

The triangulation framework combines the line triangulation methods explained and
chooses the best one according to the input. The framework is explicitly designed for
the triangulation of a spatial line from two observations. The pseudocode of the

framework is given in Algorithm 6.3.
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6.4. Triangulation Framework

Algorithm 6.2 Line triangulation method under degenerate configuration with con-
ditioning of input data.

Input: & < all spatial points “p ()

“p, < centroid of all points € &

sy <— average distance of all points “p 0 to “p

for all points “p € & do

wpcond = é (wp - wpﬁ)

Append “p_ . to set of conditioned points P4
end for .
Calculate spatial line “Ly,y = (wmcondT wdcondT) by solving the linear equation
(6.34) (or (6.19) and (6.36) when direction priors are given) using all normalized
points in Z;,4.
Normalize “L,,,; using Equation (3.8)
UM <— Sg"Meong + UPy X “deona reverse conditioning

T
w T w T
L < (wm Acond >

Algorithm 6.3 Line triangulation framework with two observations of a spatial line.

Input: 7 { [CwR(j), th(j)] camera pose of image /) }, |\7| =2

Input: £ + {li(j ) observed line in image 10 )}

e;/) + calculate corresponding epipolar line for all LV ey
if for atleast one y(I;),¢,0)) < 10° then
Degenerate configuration detected.
2,U) « optical flow points from line matching step (cf. Section 4.3) for I;/)
if |2,0)| =@ then
return without solution
end if
& < triangulate corresponding optical flow points in both cameras.
L < triangulate line using Algorithm 6.2 for degenerate configuration.
else
L < triangulate line using Algorithm 6.1.
end if
return £
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6. Triangulation of Lines

6.5. Experiments and Evaluation

The triangulation method proposed here is evaluated both qualitatively and quan-
titatively on the Oxford Corridor sequence and the HCI benchmark suite dataset
0_0000 (cf. Section 5.6.1) and compared to a simple plane intersection approach (e.g.
from Hartley [48]). These sequences are chosen as they come with ground truth in-
formation which allows the quantitative evaluation. The Oxford Corridor sequence
already comes with a set of spatial line segments and their observations in the im-
ages. For the HCI dataset, the spatial lines per image pair are generated on the basis
of the ground truth optical flow information provided. The ground truth information
is visualized in Figure 6.5.

(d)

Figure 6.5.: Visualization of the ground truth spatial lines for Oxford Corridor and
HCI 0_0000 datasets.
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6.5. Experiments and Evaluation

6.5.1. Qualitative Analysis

For the qualitative analysis, a visual comparison is done of the triangulation results
of the plane intersection triangulation approach and the full triangulation framework
presented including direction prior information and detection of degenerate config-

urations, as shown in Figures 6.6 and 6.7.

Figure 6.6.: Qualitative comparison of plane intersection-based triangulation (left)
and the triangulation framework presented (right) on the Oxford Cor-
ridor dataset in front view (top) and side view (bottom).

It is observed that the plane intersection approach has problems in reconstructing
lines in a degenerate configuration, e.g. the lines in the direction of the motion which
are marked with purple ellipses. The approach presented here successfully recon-
structs these lines, which is highlighted accordingly. Furthermore, the inconsistency
in the line directions (green ellipses) in the plane intersection method can be seen as
no prior direction is incorporated. This is clearly resolved with the algorithm pro-
posed here. This qualitative evaluation suggests that the method proposed here is
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6. Triangulation of Lines

Figure 6.7.: Qualitative comparison of plane intersection-based triangulation (left)
and the triangulation framework presented (right) on the HCI 0_0000
dataset in front view (top) and side view (bottom).
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6.5. Experiments and Evaluation

able to include line direction priors successfully and can also handle degenerate con-

figurations better.

6.5.2. Quantitative Analysis

The aim now is to evaluate the method developed here quantitatively and compare it
to the plane intersection method. Two measurands are considered: The line direction
error €4 and the line distance error €;. The line direction error is the unsigned angular
distance between ground truth line direction dg; and triangulated line direction d.s;.
The line distance error is the minimal distance between any two points of ground
truth L¢; and estimated line L, (cf. Equation (3.48)).

€1 =10y (dgt/ dest) (6.38)
€q=4d (ﬁgt/ Eest) (6.39)

The triangulation is executed on every consecutive pair of images of each sequence,
and the line direction and line distance errors are calculated. The circular mean €,
and standard deviation s, of the line direction error are reported as defined in Equa-
tions (5.23) and (5.24). The line distance error is displayed as the mean d, and stan-
dard deviation s;, of the relative error d,. The relative error relates the line distance
error and the distance of the ground truth line to the origin d, (ﬁgt) (cf. Equation
(3.46)):

€4

dy (ﬁgtr Eest) = m

(6.40)

The results for both methods are shown in Figure 6.8.

Comparing the line directions of the two methods, it is clearly shown that the inte-
gration of direction priors has a high impact. With the integration of direction priors,
the average line direction error is decreased from 26° to 12° on the Oxford Corridor
sequence and from over 52° to around 13° on the HCI dataset. Although the two se-
quences are very different (the Oxford sequence shows an indoor sequence with all
lines relatively close to the camera whereas in the outdoor scenario of the HCI dataset
the objects are rather distant), it can be seen that with the method described here the
line direction error stays at a comparable level. But the improvement in line direc-
tion error comes at a price — the method proposed here has a greater line distance.

The relative distance is increased from around 3 % to 16 % for the Oxford sequence
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40 10

20 8 B

Line Direction Error (€4 in °)

& \ & N
O'é Q- O&* Qs
& &> F &
o~ o~ <
G° b
Sequence Sequence

’ —e— Plane intersection —#— This framework ‘

Line Direction Error (in °)
Plane intersection | This framework

Sequence €4 Se, €4 Se,
OxfordCorridor | 26.1161 | 22.3266 | 12.0560 | 15.5077
HCI_0_0000 52.6888 | 25.8910 | 13.1684 | 22.0199

Line Distance Error
Plane intersection | This framework

Sequence dr ‘ 54, dy ‘ 54,
OxfordCorridor | 0.0335 0.0620 0.1630 | 0.5201
HCI_0_0000 0.0000 0.0001 0.2573 | 2.2172

Figure 6.8.: Accuracy of the triangulation.
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6.6. Conclusion

and from 0% to 25 % for the HCI dataset compared to the standard plane intersec-
tion approach. This increase can be explained by the linear estimation process itself.
As the direction is constrained to the direction prior calculated, the estimation is re-
stricted to finding a linear least squares solution for the momentum. The momentum
encodes the distance of the line to the origin (cf. Equation (3.46)) and therefore also

the distance between lines.

Finally, the numbers of degenerate configurations detected are presented: For the
HCI 0_0000 dataset there were 11, 813 triangulation attempts overall, of which 2,828
were detected as being in a degenerate configuration. This is around 24 %. For the
Oxford Corridor sequence, the triangulation process was called 545 times, of which
in a degenerate configuration was detected in 49 cases. This is around 9 % of all

attempts.

6.6. Conclusion

In this chapter, closed-form line triangulation methods based on the definition of Plii-
cker line transformation have been presented. Using the Pliicker line transformation
allowed the easy integration of the Pliicker constraint and prior knowledge of the di-
rection of the spatial line, which is derived from the estimated directions calculated

during parallel line clustering in relative pose estimation (cf. Chapter 5).

Furthermore, the problem of degenerate line configurations has been tackled and a
proposal made to leverage the optical flow point matches from the line matching step
(cf. Chapter 4) to generate spatial points along the line which are integrated into the

triangulation process.

To mitigate the influence of differently scaled data, it has been proposed that the
camera poses or spatial points be pre-conditioned. Lastly, all methods proposed have

been combined to a line triangulation framework for triangulation from two views.

The framework proposed has been evaluated qualitatively and quantitatively and
compare to standard plane intersection line triangulation. In the experiments, the
positive effects of using direction priors and handling degenerate configurations has

been shown.
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7. Visual Odometry with Lines

7.1. Introduction

The Oxford dictionaries define odometry as “Measurement by an odometer of dis-
tances travelled”. If this definition is transferred to the computer vision domain,
visual odometry aims to estimate the motion of a moving camera. Visual odometry is a
dead reckoning system as the displacements between consecutive camera views are
accumulated to build the trajectory. The ability to determine the camera motion is

very important for robotics and augmented reality applications, for example.

Visual odometry is heavily used in robotics because it is not affected by wheel slip
and other degenerating effects as is the case for wheel odometry. It has been shown
that VO is capable of providing more accurate trajectories than wheel odometry
[97].

Most of the VO systems proposed rely on point features. First, features are detected
and then matched between consecutive frames. In a typical monocular pipeline, the
relative pose is estimated using the first images to bootstrap the local map. Once a
local map is available, the camera pose with respect to the map is estimated using the
perspective-n-point problem. Finally, sliding-window bundle adjustment is used to
smooth map and trajectory locally.

Very little work has been done on line-based visual odometry, however. Approaches
using stereo camera systems have been proposed [118, 57], but monocular systems
have so far been ignored. This thesis aims to close this gap and investigates monocu-
lar line-based visual odometry. The solution presented here calculates the frame-to-
frame motion by using the novel line matching (cf. Chapter 4) and the relative pose
estimation proposed (cf. Chapter 5). As the relative pose is scale ambiguous, the scale
between different image pairs has to be adapted. The proposal made here is to derive
the scale adjustment from the trifocal tensor. Sliding-window bundle adjustment on
a local map is used to smooth the trajectory. The local map is constructed from spatial

lines which are triangulated using the framework presented (cf. Chapter 6).
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7. Visual Odometry with Lines

The contributions of this work are:
¢ anovel scale adjustment scheme for lines based on the trifocal tensor

¢ adaptation of sliding-window bundle adjustment for line-based visual odome-

try
¢ the first line-based visual odometry framework for monocular cameras

A preliminary version of the visual odometry pipeline has been published previously
in [111].

The chapter is structured as follows: Related work is summarized in Section 7.2. In
Section 7.3, the structure of the visual odometry system proposed here is explained. It
includes a description of the novel scale estimation scheme (Sections 7.3.1 and 7.3.2)
and of the sliding-window bundle adjustment strategy (Section 7.3.3). The frame-
work developed here is evaluated and compared to a state-of-the-art system in Sec-
tion 7.4. The chapter is concluded in Section 7.5.

7.2. Related Work

Although the term “visual odometry” was coined by Nister et al. [92] in 2004, re-
search on the topic began more than 20 years earlier. One of the first publications
is from Moravec [87] who describes a so-called “slider stereo” system (one camera
which can slide horizontally to mimic a stereo camera) mounted on a robot rover.
The robot stops every meter, takes 9 images with the slider stereo at this position,
extracts and matches features along the epipolar lines using normalized cross corre-
lation, and uses the disparity information derived to create spatial points. At the next
position, 9 new images are taken and correlation-based matching with the previous
image set is used to find the feature points again. Then, the spatial points are recalcu-
lated from the new position and the relative motion is calculated from the coordinate

transformation which relates the two point sets.

Moravec’s work has been extended in several ways, e.g. by Matthies and Shafer [84]
who incorporate a more accurate error model for triangulation, or by Olson et al. [94]
who use the Forstner corner detector to speed up the feature extraction. Addition-
ally, they include an absolute orientation sensor (e.g. compass) to increase the overall
accuracy. These early approaches led to visual odometry being applied to the Mars

rovers Spirit and Opportunity [81].
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Yet another feature selection scheme is presented by Lacroix et al. [71] who first cal-
culate a dense disparity map and, in a second step, select candidate points which
are good for tracking by calculating the similarity to neighboring pixels. Milella and
Siegwart [86] also use a dense stereo algorithm but select interest points with the
Shi-Tomasi feature detector [100]. Besides, ICP [10] is used to refine the motion esti-

mate.

All stereo methods presented so far have a common feature in that they estimate the
motion by aligning the spatial point clouds from two stereo pairs. Nister et al. [92]
propose instead that the perspective-n-point problem be used to do 2D-3D absolute
pose estimation, which gives more accurate results.

Another class of visual odometry algorithms uses monocular cameras. The main dif-
ference between stereo and monocular algorithms is that a monocular camera alone
cannot provide the absolute scale. Therefore, the distance between the first two im-

ages is usually set to 1.

Nister et al. [92] present a monocular visual odometry scheme in addition to their
stereo approach. Here, features are tracked at first over multiple images to estimate
the relative pose with a robust version (e.g. using RANSAC) of the 5-point algorithm
[91]. The features tracked are then triangulated and used for 2D-3D pose estimation
as in the stereo case.

To further increase the accuracy, sliding-window bundle adjustment could be used
as proposed by Zhang and Shan [126] and Mouragnon et al. [88].

Tardif et al. [105] decouple the estimation of rotation and translation in the 2D-3D
pose calculation. They argue that relative pose estimation should be taken into ac-
count as the number of image-to-image point correspondences is much higher than
the number of spatial points tracked. Additionally, points far away from the cam-
era tend to be inaccurate in position but their orientation information is still reliable.
They therefore calculate the rotation with the 5-point algorithm. The absolute trans-
lation is then estimated from the triangulated points while the rotation is kept con-

stant.

Monocular approaches suffer not only from drift in orientation and position, which is
natural in a dead reckoning system, but also from drift in scale. Numerous methods
have been proposed to reduce the scale drift. Fraundorfer et al. [38] introduce a
bundle adjustment scheme in which only the scale factors are optimized. Initially,
all scale factors are set to 1 and in each iteration all features tracked are triangulated

using the current scale estimates. From the triangulated points, the reprojection error
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is then calculated and minimized. Esteban et al. [29] calculate a least-squares scale

estimate for relative poses directly from known 2D-3D correspondences.

All methods discussed above rely on some kind of feature extraction and matching
technique from which the relative or absolute pose is estimated. Another class of al-
gorithms calculates the pose directly from the photometric information in the images
without the abstraction to features. This class is therefore called direct visual odome-
try. Prominent examples from this group are the methods of Engel et al. [25, 28] and
Forster et al. [36].

Engel et al. [25] retain a probabilistic estimate of the inverse depth for every edge
pixel in the image. This inverse depth is propagated to the next image by finding the
relative displacement which minimizes the photometric error. The inverse depth map
is constantly updated with new disparity values found by a 1-dimensional search
along the epipolar line. The disparity estimation allows the baseline to be adapted
on a per-pixel basis which enables accurate inverse depth estimation for distant and
adjacent regions.

Forster et al. [36] present a “semi-direct” method named “SVO” in which FAST cor-
ners [95] are detected to initialize new spatial points. But once the points are ini-
tialized, they rely on direct motion estimation and minimize the photometric error
between the image patches around the spatial points projected. The feature corre-
spondences are therefore given implicitly through the alignment process. Bundle
adjustment is performed as in normal feature-based approaches to refine pose and

structure.

Until now, only point-based visual odometry methods have been covered. But in
recent years, line-based methods have also been proposed, and will be discussed

now.

Witt and Weltin [118] present a line-based visual odometry algorithm using a stereo
camera. The relative motion between consecutive stereo pairs is estimated by a non-
linear optimization of the spatial line reconstruction similar to ICP, which they call
“ICML”. Holzmann et al. [57] propose another line-based visual odometry pipeline
for stereo cameras. They take their inspiration from direct methods and calculate
the displacement between two camera poses by minimizing the photometric error of

image patches around vertical lines.

A more detailed overview of visual odometry methods is given in the tutorials of

Scaramuzza and Fraundorfer [97, 37].

94



7.3. Structure of the Visual Odometry System

As far as the author is aware, the line-based visual odometry system for monocular
cameras proposed here is the first of its kind. The method is based on relative motion
estimation between consecutive frames. To calculate a consistent scale, a novel scale
adjustment based on the trifocal tensor is presented. Finally, sliding-window bundle

adjustment is integrated to optimize the estimates.

7.3. Structure of the Visual Odometry System

The structure of the visual odometry system proposed here is illustrated in Figure
7.1.

Camera

no, set first two images as scale reference images ~ ——

! I
' |
' |
' |
' |
' |
I Relative P |
| start Line Acquisition —O—yes—) Line Matching > clative Fose
| Estimation |
two or more has gcale ]
: images processed? r images? |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
J

\

no
L Sliding Window - _
End ©‘ yes—_< >— Bundle Adjustment| € Scale Estimation |[€—yes

last image?

Trajectory

Figure 7.1.: Processing pipeline of the visual odometry. Solid lines link the different
processing steps. Dashed lines mark relevant data exchange between the
modules. Failure cases are not shown here.

The processing starts with the detection of line segments in the current image of the
camera stream. The line extraction algorithm used is from Witt and Weltin! [118]
where edges are detected using the Canny detector [13] and then split into line seg-
ments using the Douglas-Peucker algorithm [20]. It is worth mentioning that any

IMany thanks to the authors for the courtesy of providing their code.
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other line detection algorithm would work, e.g. the LSD algorithm from von Gioi et
al. [110] or EDLines from Akinlar and Topal [2].

The line matching algorithm is executed for each pair of consecutive images, as dis-
cussed earlier in Chapter 4. Transitivity is used to link line matches over multiple

image pairs. These line observations over various images are called tracks.

Once the line matches are found, the relative pose estimation algorithm from Chapter
5 is executed to recover the relative motion between the consecutive frames. If the
relative pose estimation fails for some reason (e.g. not enough line matches found),

the relative pose estimated previously is used as constant velocity is assumed.

The relative pose has no meaningful scale, hence it has to be adjusted to reflect the
real distance traveled. The trifocal tensor is exploited to estimate the scale based
on previous measurements; this is described in the next Section 7.3.1. A scheme
for selecting previous measurements for the scale estimation — the so-called scale

reference images — is discussed thereafter in Section 7.3.2.

Until now, the camera pose has only been derived from a very small number of mea-
surements (e.g. from the neighboring frame for relative pose estimation). It is impor-
tant to take more measurements into account to gain robustness. A sliding-window
bundle adjustment is therefore employed to refine the estimated poses. The method
is described in Section 7.3.3.

7.3.1. Scale Estimation from Trifocal Tensor

The relative pose computation does not provide a scale, but in order to calculate
a consistent trajectory, the translation part has to be scaled in respect of previous
estimates. The proposal here is to use the trifocal tensor to link the current relative
pose estimate with the preceding poses of the trajectory. A short introduction to the

trifocal tensor is given before the proposed scale estimation scheme is explained.

The Trifocal Tensor

The trifocal tensor can be understood as an extension of the fundamental matrix
which describes relations between three views. As the fundamental matrix encodes
the relative displacement between two views, so the trifocal tensor encodes the dis-
placements between three views. What is useful for this work is that the trifocal

tensor preserves the relative scaling of the displacements between the views. This is
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7.3. Structure of the Visual Odometry System

exploited here. In the following derivations, the simplified tensor notation of Hartley

and Zisserman [48] is followed.

Three views c1, ¢ and c3 are defined where c; is the reference view and ¢, and c3 are

positioned relative to it with transformation matrices ., T and “,T as

Co R Czt

2 T=| 9 a (7.1)
013 1
C3 R C3t

6, T = a al. (7.2)
0153 1

The trifocal tensor is then described by three matrices I'") where rcj(i) is the i-th col-

o,
umn of ' R:

L0 — g oo, T_cap g 0T 7.3)

The incidence relation between the observations of a line “L in all three views with
back-projected plane normals “n, “?n and “#n is then given up to scale by

iy ~ 2 TGy (7.4)
where “; is the i-th entry of “in.

The notation <l"(i)> is introduced to denote the concatenation of the previous equa-
tion for all three indices to form the vector

cpTr)esy

Cln ~ CZnTr(z) C3n (75)
2 Tr@) ey

‘g~ 2T <l"(i)> “n . (7.6)

The vector cross product is applied to both sides to remove the scale ambiguity and

this then gives

0341 = “n x (CZnT <I’(i)> C3n> . (7.7)

A thorough discussion of the trifocal tensor is given by Hartley and Zisserman [48].
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Derivation of Linear Scale Estimation from Trifocal Tensor

As the trifocal tensor has now been introduced, a linear equation system will be de-
rived from the incidence relation (7.7) to find the unknown scale adjustment factor s
which scales “t., according to “t,,. First,

C3t
ty = — (7.8)
[t |
is defined so that
Cstcl =st3. (79)

Inserting the definition of the trifocal tensor (7.3) and (7.9) into the incidence relation
(7.7) results in

031 = ' X (CZnT <cm( IstsT — 2t 1o, )T> C3n) : (7.10)

This equation is rearranged to separate the unknown s:
0341 = “In % (CZnT <rc Mgty T — Cztclrc3(i)T> C3n> (7.11)
( > — opt <C2tclrc3(i)T> C3n> (7.12)
0341 = “In x (Czn <cm > C3n) — g x (CZnT <C2tclrc3(i)T> C3n> (7.13)
(o ({00 ) () = (e (" (e ow)

This yields a linear equation block for one line observation across three views:

0341 = “In x c2 T <rC2 st3

Al)s = pU) (7.15)

(Cln X (CZnT< ()t3 > C3n>) ( <C1n X (CZnT <Cztclr63(i)T> C3n)) (7.16)

A system of linear equations As = b is formed by stacking the AV) and b/ blocks of
different line observations. This system is solvable when at least one line observation
across three views and the transformations ., T and “,, T are known. A unique solu-
tion does not exist when the line observed coincides with an epipolar plane between

¢1 and ¢; or ¢1 and c3. In this case, either C2nTC2tC1 or t37%n is equal to 0.
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This scale estimation is applied in a RANSAC scheme. All lines which can be tracked
over all three views are used. One of the line observations is selected at random and
the scale factor is calculated using the method described. To test this scale factor, all
lines are triangulated using the observations in camera ¢ and c; and the reprojection
error in c3 is calculated where the pose of c3 is scaled using the estimated factor.

RANSAC then selects the scale estimate with the lowest reprojection error overall.

The RANSAC solution is refined in a last step using nonlinear optimization.

7.3.2. Reference Image Selection for Scale Estimation

This section describes the strategy to select the two reference images which serve as
c1 and c; in the scale estimation. This step is crucial to the overall performance of
the visual odometry as it has a strong influence on the scale drift which is inherent
in monocular visual odometry systems. Scale drift is understood as the error in the
calculated scale due to small errors in all estimations which are propagated through

the lifetime of the system.

The approach proposed takes its inspiration from the keyframe selection of ORB-
SLAM [90]. Although its keyframe selection method is used to determine whether a
frame should be added to the map of the SLAM system, the basic concept also applies
to the problem at issue here. The idea is to update the reference image once the vis-
ual difference between the last reference image and the current frame becomes “big
enough” while ensuring that enough lines are still trackable. As the scale estimation
here is based on the trifocal tensor, two reference frames 1 and r; are always retained.
To decide whether the older reference image r; needs to be updated when the new
frame f is processed, the number of line tracks between the current reference images
my, , are counted. This number is compared with the number of lines that can be
tracked from 1 up to the current frame f m,, ¢. This number has a maximum value
as high as m,, ,,. The interest now focuses on the ratio of trackable lines in the current
frame to the trackable lines between the reference images. If this ratio drops below a
certain threshold, r; is replaced by r, and frame f is set as the new reference image
1.

m
1L <, (7.17)

My r,

The reference image selection is visualized in Figure 7.2
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[/} I'/'

4] 72 f

Figure 7.2.: The two reference images r; and r, and the current frame f are shown
with the extracted lines in each image. The green connections mark which
lines are tracked over the different images. In this example m,, ,, = 4 and

m,, ¢ = 2. The ratio is therefore Zr’f/’rfz =2=05

The reference image selection is executed after each scale estimation. When the pipe-
line is started, the first two images are used as reference frames. The distance between

the first camera poses is fixed to 1.

7.3.3. Sliding-Window Bundle Adjustment

Until now, only one or two preceding images were taken into account for the pose
estimate of the current image (e.g. one in relative pose estimation or two for scale esti-
mation). This section proposes a local bundle adjustment scheme which incorporates
the measurements of more images to improve the overall accuracy of the estimated

poses.

Given initial estimates of camera poses ¢, T 0, spatial points “p () and their observa-
tions p,*) in the images (where the k-th spatial point is measured in the j-th image),
bundle adjustment simultaneously refines the camera poses and the spatial points by
minimizing the reprojection error (cf. Equation (3.49)):

4 , 2
argmin ) o (pi(]'k), P, wp(k)) (7.18)
¢, T0 wp®) jk

PU) is the projective mapping for camera j as defined in Section 3.4.3. In structure
from motion, it is also common to optimize the calibration matrices of each camera
as well. Since it is assumed in this thesis that the calibration is known beforehand and
stays constant over the runtime of the pipeline, it is not included in the optimization.
Overall, this is a nonlinear function which requires the use of nonlinear least squares
algorithms like Levenberg-Marquardt [82].

As lines are used, this objective function has to be reformulated. A naive way to

adapt it is by representing a spatial line VL (k) by two points “p, k), “p, ) and using
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7.3. Structure of the Visual Odometry System

the point-line distance defined in Equation (3.45) between the projected spatial point
and the line observed in the image [ iU as the error measure:

. . 2 . 2
argmin 2 <d (li(]’k), pY) wp (k)> +d (li(k)/P(/)wpz(k)) ) (7.19)
¢, T we® jk

A drawback of this method is that the spatial line representation is overparameter-
ized: 6 parameters are required to represent a line with two points but a line has
only 4 degrees of freedom. This overparameterization affects the update step of the
optimization as the updated points could still represent the same line as before, e.g.
when they just shift along it. This affects the speed and reliability of the optimization
greatly, which is why Triggs et al. [107] state that “the most suitable parametrizations
for optimization are as uniform, finite and well-behaved as possible near the current

state estimate”.

There exists no simple global parametrization for spatial lines as is the case for points.
All expressions have more parameters than the degree of freedom suggests and there-
fore require constraints which must be satisfied to form a valid line, e.g. the Pliicker

constraint. Different parametrizations are discussed in [4].

This resembles the difficulty in representing rotations in bundle adjustment, e.g. rota-
tion matrices consist of 9 parameters but have only 3 degrees of freedom. It is obvious
that not every 3 x 3 matrix represents a rotation, therefore internal constraints be-
tween the parameters must be fulfilled. To circumvent these difficulties, one tries to
find a local parameterization which is minimal and therefore free of constrains from
which the current estimate could be updated. For rotation matrices, it is common to
use local perturbations for the update like R <— RIR with 0R = I + [r|, whereris a
3-vector (cf. [107]).

Regarding lines, the literature provides different methods for a minimal 4-parameter
update of Pliicker lines. Bartoli and Sturm [4] develop an update scheme for Pliicker
lines using an “orthonormal representation”. These 4 parameters have geometrical
meaning and encode angles which are used to transform the line in space. Zhang
and Koch [124] propose another 4-parameter update for Pliicker lines based on the

Cayley transform.

The reprojection error (cf. Equation (3.50)) which is optimized is the same as previ-
ously defined in Equation (7.19) but with the terms measurement in the image and
spatial estimate meaning something different: Here, the measurements in the images

are points on the observed line segment pli(f'k) and p,. (7K) (usually the line segment
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7. Visual Odometry with Lines

endpoints) corresponding to camera j and spatial line estimate “L OF

argmin ) o (pli(j’k), P, Gk, p, 0, v (k)> (7.20)
ch(J'),wﬁ(k) jk

In the implementation employed here, Pliicker lines in orthonormal representation
from [4] are used with the 4-parameter update and the objective function is optimized
as given in Equation (7.20). The endpoints of the line segments detected are used as
image points. To increase the stability in respect of outliers, the Cauchy cost function
is used as the robust cost function in the optimization.

As bundle adjustment has now been introduced, the sliding-window strategy em-
ployed here is described next. Whenever the visual odometry process selects new
scale reference frames (cf. Section 7.3.2), a new local map is calculated which is con-
stantly optimized using bundle adjustment. This local map consists initially of the
camera poses of two scale reference images r; and r; and all spatial lines which are
reconstructed from the common line observations between these images using the
triangulation framework from Chapter 6. This local map is extended by adding the
camera poses of the last w processed images and the observations of the spatial lines.
w defines the window size in which the bundle adjustment takes place. Only camera
poses and spatial lines observed in this window are optimized. As this window is
shifted for every new image, the method is called “sliding-window bundle adjust-
ment”.

The “sliding-window” and the camera poses and spatial lines it contains are visual-
ized in the optimization graph in Figure 7.3.

L4 Lo L3

rl 1’2 i fe—w—2  ft-w-1

Figure 7.3.: The bundle adjustment problem is visualized as a bipartite graph. The
camera poses (drawn as circles) and the spatial lines (as squares) are the
nodes of the graph. The edges visualize the observation of the line £;
in camera view f;. Black circles denote the scale reference frames from
which the local map is built. Green circles mark the cameras which are
in the current sliding window. Only green nodes are optimized. Gray
circles denote cameras which are not included in the optimization.
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A screenshot showing the visual odometry pipeline which has been presented here

in action is given in Figure 7.4.

Line Visual Odometry demonstrator

Figure 7.4.: Visual odometry in action. On the left side, the two most recent images
are shown with the line segments detected. The different colors indicate
the matching. The center part visualizes the current reconstructed trajec-
tory. On the right, the local map is drawn with the scale reference frames
and the current camera poses of the sliding window.

7.4. Experiments and Evaluation

The aim now is to evaluate the visual odometry pipeline proposed here. It is tested
on real image sequences and compared to SVO from Forster et al. [36]. SVO is a semi-
direct visual odometry pipeline for monocular cameras which is freely available? and
is considered state-of-the-art. Note that SVO is designed for downwards-looking
cameras in drone applications and that the same performance cannot be expected for

front-looking cameras as are used here.

For all experiments, the same set of parameters is used which is listed in Table 7.1.

SVO is used in its default configuration.

All experiments are conducted on a desktop PC with Intel® Xeon™ CPU with 3.2
GHz and 32 GB RAM.

2Implementation available at https:/ /github.com/uzh-rpg/rpg_svo.
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Table 7.1.: Parameter settings for the visual odometry pipeline proposed in this thesis

Parameter Description | Value
- Proportion of “corner-like” points to keep in line 0.5
matching
d, Size of neighborhood to assign flow vector with line 2px
- Cluster initialization strategy Predef. dir. + priors
B Error threshold for rotation estimation RANSAC 3°
- Error threshold for translation estimation RANSAC 1073
- Minimum cluster probability in robust relative pose 0.1
framework
Oth Threshold for maximum parallax angle in robust 0.1°
relative pose framework
- Angle between image line and corresponding 10°
epipolar line in triangulation framework
m Ratio threshold for new scale reference frame 0.6
- Error threshold in scale estimation RANSAC 15 px
w Window size of sliding-window BA 5
- Value for Cauchy cost function in sliding-window 5px
bundle adjustment

The pipelines are evaluated on the Oxford Corridor sequence and the HCI bench-
mark suite datasets 0_0000 and 0_0077 as presented in Section 5.6.1.

The analysis is done as follows: First, both visual odometry pipelines are executed
on the sequences and the resulting trajectories are saved. Then, the trajectories are
aligned with the ground truth so that they are in the same coordinate frame, which
is a prerequisite for comparison. For alignment, the estimated trajectory has to be
scaled as monocular methods cannot recover a metric scale. This scale factor is cal-
culaed from the first two estimated camera poses: It is defined so that the distance
between these camera poses equals the distance between the corresponding ground
truth poses. Then, the estimated trajectory is shifted in such a way that the first esti-

mated pose corresponds to the ground truth pose.

As the trajectories are now aligned to the ground truth, several metrics can be defined
for evaluation. The well-known relative pose error (RPE) and absolute trajectory
error (ATE) are chosen, which are easily computable using the tools provided with
the RGB-D benchmark as described in [104].

The RPE characterizes the transformation difference between two estimated cam-

era poses wCTgst(j), wCTest(k) and their corresponding ground truth poses wcht(j),
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X 0w g 0 0o ®)
Tree = ( “Tg Ty “Test? ¥ Teg (7.21)
To represent this difference in one value, the length of the translational component is
used:
RPE(j, k) = HTrans (TRPE(]"")> H (7.22)

Sturm et al. [104] argue that it is sufficient to take the translation into account as
“rotational errors show up as translational errors when the camera is moved”. The
RPE values are calculated for every pair of consecutive images of each sequence and
the mean, standard deviation and root mean squared error (RMSE) are reported. The
RMSE is calculated as

RMSE(RPE) = \/ 1 i RPE(i,i+1)2. (7.23)
i=1

It was decided to compare consecutive images as proposed in [104] since, in this

work, the visual odometry derives the pose from consecutive images.

The ATE gives the error between a ground truth pose and its corresponding esti-

mated pose directly:

-1

TATE(j) = ZUcht(j) wcTest(j) (7.24)

In analogy with the RPE, only the translational component is considered. Mean,

standard deviation and RMSE over the whole sequence are reported.

ATE(j) = HTrans (T ATE (D) H (7.25)

RMSE(ATE) = , /% Z ATE(i)? (7.26)
i=1

Several sets of statistics are also reported, e.g. the stage of the visual odometry pipe-
line over time. In addition, the execution time of the different steps of the pipeline

proposed here is measured.
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7. Visual Odometry with Lines

7.4.1. Qualitative Analysis

In the qualitative analysis, the trajectories resulting from the method proposed here
and SVO are plotted in comparison with the ground truth. Figure 7.5 shows the
estimated trajectories on the Oxford Corridor sequence. In Figures 7.6 and 7.7 the

results for the HCI datasets are shown.
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Figure 7.5.: Estimated trajectory of Oxford Corridor sequence
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Figure 7.6.: Estimated trajectory of HCI 0_0000 sequence

A visual comparison of the SVO trajectory and the ground truth shows that SVO
needs some time to initialize properly but then the trajectory seems reasonable. This
is expected as SVO starts to build an initial map when the features tracked show clear
displacement. A problem is that SVO easily gets lost. On the Oxford sequence, the
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Figure 7.7.: Estimated trajectory of HCI 0_0077 sequence

tracking is lost immediately after initialization, and on the HCI 0_0077 sequence in
the first half of the sequence. The failure on the Oxford sequence is expected since
SVO as a direct method is designed for small baseline motion, which is clearly not the
case here. In comparison, the pipeline described here generates a pose estimate for
every image. For the Oxford sequence, the overall length of the trajectory seems to be
comparable to the ground truth, which shows that the scale estimation works. On the
other hand, a drift in the position, especially in the upwards direction, is observed.
Focusing on the HCI sequences, it is seen there is a difference in the overall length
of the trajectories. This indicates scale drift. Also, the HCI 0_0000 trajectory drifts
to the left and upwards, whereas on the HCI 0_0077 sequence a drift to the right is
observed. This drift to left or right can be explained by the fact that the lines detected
are not uniformly distributed over the image. In fact, on the HCI 0_0000 sequence,
more lines are found on the left side of the image, whereas on the HCI 0_0077 dataset
more lines are detected in the right-hand part. This uneven distribution biases the

pose estimation. This is shown in Figure 7.8 on one image of the HCI 0_0077 dataset.

7.4.2. Quantitative Analysis

The actual numbers and statistics are now discussed. The stage of the visual odome-
try pipeline is plotted over time in Figure 7.9, where the stage defines whether a pose
can be recovered from the current image, whether the tracking is lost, or whether the

pipeline is still in initialization mode. It should be noted that the implementation of
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Figure 7.8.: Lines are not evenly distributed over this image of the HCI 0_0077 se-
quence. It is clear that more lines are detected on the right-hand side,
which biases the pose estimation.

SVO always discards the first image, which is why it is marked as “lost” in the plots.

These numbers support the previous findings. The initialization of SVO takes some
time (up to 71 images in the HCI 0_0000 dataset) whereas the method proposed here
is always fully initialized with the second image since it is based on the relative pose
estimate. In the plot, it becomes obvious that SVO has troubles on the HCI 0_0077
sequence before getting lost completely, something which is not observable from
the trajectory alone as the pipeline switches several times between lost and tracking
stage. This is probably due to the fact that, as mentioned before, SVO is not designed
for front-looking cameras. It is definitely not due to large baseline motion like in the
Oxford sequence since the HCI datasets are recorded with a very high frame rate of
200 Hz.

Figures 7.10 and 7.11 list RPE and ATE measurements.

The relative pose error cannot be calculated for SVO on the Oxford data since too few
poses are returned. SVO achieves the best performance on the HCI 0_0000 dataset
with an RMSE of around 5mm. On the same sequence, the method used in this the-
sis achieves an RMSE of around 20 mm. On the HCI 0_0077 dataset, SVO is notably
inferior compared to the result on HCI 0_0000 with an RMSE of just under 20 mm.
Here, the method presented is also slightly worse with an RMSE of 36 mm but the
result is still of the same order as on the HCI 0_0000 sequence. On the Oxford se-
quence, a comparable result of just under 36 mm is achieved. The conclusion is that

the method proposed exhibits similar behavior on the different datasets.
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Sequence #Lost #Init # Tracking | #Lost #Init # Tracking
OxfordCorridor 7 3 1 0 1 10
HCI 0_0000 1 71 29 0 1 100
HCI 0_0077 401 41 158 0 1 599

Figure 7.9.: Stage of the visual odometry pipeline for every image on the Oxford Cor-
ridor sequence (top), HCI 0_0000 (left) and HCI 0_0077 (right) dataset.
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Sequence RMSE | Mean | Std. | RMSE | Mean | Std.
OxfordCorridor n/a n/a n/a 0.0356 | 0.0324
HCI_0_0000 0.0054 | 0.0042 | 0.0033 | 0.0208 | 0.0185
HCI_0_0077 0.0197 | 0.0141 | 0.0137 | 0.0361 | 0.0271

Figure 7.10.: RPE Evaluation
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RMSE(ATE) (in % of GT trajectory length)

Sequence Sequence
—e—This method = SVO |
ATE (in m)
SVO This method
Sequence RMSE | Mean | Std. | RMSE | Mean | Std.
OxfordCorridor | 0.1987 | 0.1405 | 0.1405 | 0.0815 | 0.0744 | 0.0348
HCI_0_0000 0.1906 | 0.1868 | 0.0377 | 0.7270 | 0.6245 | 0.3741
HCI_0_0077 0.4859 | 0.4472 | 0.1902 | 4.0107 | 3.3153 | 2.2590
ATE (in m)
SVO This method
GT length | RMSE in % GT length | RMSE in %
Sequence RMSE | recon. traj. | oflength | RMSE | recon. traj. | of length
OxfordCorridor | 0.1987 n/a n/a 0.0815 0.8780 9.2813
HCI_0_0000 0.1906 1.1736 16.2403 0.7270 4.1721 17.4258
HCI_0_0077 0.4859 5.8016 8.3759 4.0107 21.6754 18.5036

Figure 7.11.: ATE Evaluation
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The absolute trajectory error shows the full extent of the scale drift. Whereas the
trajectory plots from SVO seemed correct, it is now seen that SVO is also affected by
scale drift. On the Oxford and HCI 0_0000 sequences, the RMSE is around 0.19m
and nearly 0.5m on the HCI 0_0077 sequence. For the method developed here, the
results on the HCI sequences look even worse: 0.72 m on HCI 0_0000 and over 4 m on
HCI 0_0077. The ATE has a comparably low value of 0.08 m on the Oxford sequence
only.

As SVO and this method reconstruct different parts of the trajectory, the RMSE is
additionally related to the ground truth length of the reconstructed trajectory and
the percentage of RMSE in relation to this length is reported. Here, it is seen that
both methods exhibit similar behavior on the HCI 0_0000 sequence as the RMSE per-
centage is 16.2 % for SVO and 17.4 % for the method presented here. The percentage
on the HCI 0_0077 dataset stays at a similar value for the method propsed (18.5 %)
but SVO is significantly better at 8.4 %. For the Oxford sequence, the value with the
method proposed is reported as 9.3 %. As SVO tracks just one frame, it is not possible

to calculate the reconstructed trajectory length.

Finally, the execution times of the method described are reported in Table 7.2.

Table 7.2.: Runtime evaluation of the visual odometry pipeline proposed in this thesis

Average Runtime (in ms)

Sequence Line Acq. | Match. | Rel. Pose | Scale | SWBA | ¥
OxfordCorridor 28.08 21.77 31.34 33.63 | 47.38 | 162.21

HCI_0_0000 297.33 66.45 4492 7948 | 40.30 | 528.48

HCI_0_0077 292.76 105.39 60.19 93.52 | 7230 | 624.16

On the HCI datasets, the line acquisition takes most of the time. This step is clearly
dependent on the image size as line acquisition on the Oxford sequences is signifi-
cantly faster (2,560 x 1,080 px versus 512 x 512 px). The runtime of the other process-
ing steps depends on the number of lines detected or the number of matches. On the
HCI 0_0000 and HCI 0_0077 sequences, around 220 lines are detected per image on
average of which around 190 are matched between consecutive frames. On the Ox-
ford dataset, 114 lines are detected on average and it is possible to match 84. Overall,
the pipeline needs on average 162 ms on the Oxford sequence, 528 ms on HCI 0_0000
and 624 ms on HCI 0_0077. This translates to frame rates of between 2 Hz and 6 Hz,
which is clearly inferior to the frame rate of state-of-the-art methods like SVO, which
achieve up to 300 Hz on the HCI 0_0077 dataset during tracking.
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7.5. Conclusion

In this chapter, what is believed to be the first ever monocular visual odometry sys-
tem based purely on lines has been introduced. This system combines the localization
components presented earlier —line matching (cf. Chapter 4), relative pose estimation
(cf. Chapter 5), and triangulation (cf. Chapter 6) —in a meaningful way. Lines are first
extracted and matched between consecutive images. Then, relative pose estimation
provides an unscaled initial pose estimate which is then adjusted in proportion to the
previous pose estimates using a scale adjustment scheme based on the trifocal tensor.
Lastly, sliding-window bundle adjustment incorporates more image measurements

and helps to refine the trajectory.

The evaluation demonstrates that line-based monocular visual odometry makes it
possible to solve the localization problem. It has been shown that the method de-
veloped here gives repeatable results in different indoor and outdoor scenarios. The
system is fully initialized with the second frame and provides poses whenever the
relative pose estimation is successful. In fact, the method here could process all test
sequences without getting lost.

Compared to SVO - a state-of-the-art monocular visual odometry pipeline — and to
ground truth, however, it is recognized that there is still room for many improve-
ments. Although SVO has a longer initialization phase and repeatably gets lost (due
to its focus on downwards-looking cameras and not on forward-facing ones which
are used here), its accuracy is higher: SVO reaches an RPE below 20 mm whereas the
method described here has an RPE between 20 mm and 36 mm. This is also shown
in the ATE as a percentage of the trajectory length. Here, SVO is between 1% and
10 % better then the method of this thesis. The performance of SVO must be seen in
the light that it is the result of decades of research on point-based visual odometry.
The line-based visual odometry presented here, however, is opening a new branch
of monocular visual odometry research where only little preliminary work has been

done.

Another drawback of this method is its computational complexity. Even on the small

images of the Oxford sequence, the pipeline can only run at around 6 Hz.
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This thesis has focused on components for line-based visual localization and com-
bined them to a monocular visual odometry system to solve the visual localization
problem. Lines were used since the target was localization in man-made indoor and

outdoor environments that are very structured and in which many lines are found.

The first steps in line-based visual localization are feature acquisition and matching.
A novel line matching scheme was proposed which targets the small baseline mo-
tion case and is based on optical flow, and which does not require the calculation of
additional descriptors and is hence lightweight and fast to compute. The matching
was designed to allow one-to-many matching to take differences in line segmentation
between consecutive views into account. It has been demonstrated that this method
outperforms current state-of-the-art line matching approaches in the scenarios tar-

geted.

Since the focus was on monocular cameras, relative pose estimation was required to
determine the camera displacement between successive views. Line-based relative
pose estimation from two views was therefore investigated and a solution developed
which separates rotation and translation estimation. The underlying assumption is
that spatial lines with different dominant directions are observed, which makes the
separation possible. The rotational part was calculated from these spatial line di-
rections, which were retrieved through a parallel line clustering step. The transla-
tion was estimated from line intersections and the relative rotation. Both steps were
combined in a robust relative pose framework. Compared to the state-of-the-art, it
has been possible to drastically improve the computational complexity and thus the
speed from several seconds to below 40 ms. The cost of this vast improvement was a
slight decrease in accuracy.

Line triangulation was the last component investigated. The research on triangula-
tion was motivated by two challenges: First, a desire to include spatial line directions,
which were generated in the relative pose estimation, into the reconstruction process.
Second, a desire to circumvent the problem of degenerate configurations since up to

24 % of the lines in the scenes targeted here suffer from degeneracy. To overcome
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the first challenge, a closed-form triangulation method was derived from the Pliicker
line transformation equation. This allowed the Pliicker constraint to be taken into ac-
count and line direction priors to be incorporated. Regarding the second challenge,
use was made of the optical flow point correspondences of the line matching method.
It was proposed that the flow points be triangulated and the resulting spatial points
taken into account. A triangulation framework was introduced which combines and
selects the most suitable methods according to the input.

Lastly, the first monocular line-based visual odometry system ever presented was de-
veloped. The VO integrates all previously discussed components. Consecutive im-
ages were matched and the relative pose was estimated. A scale adjustment scheme
to correct the unscaled relative displacement was proposed which is based on the
trifocal tensor. It was discussed which frames should be used in the tensor calcula-
tion and explained how sliding-window bundle adjustment is adopted to lines. It
was demonstrated that line-based visual odometry for monocular cameras is feasi-
ble. But there is still room for improvements in both computational requirements
and accuracy as the estimated trajectory drifts up to 18.5% of the overall ground
truth trajectory length while being able to process only between 2 and 6 frames per
second.

8.1. Future Work

Several ideas come to mind to improve the current components and systems. Re-
garding the accuracy, it is essential to enhance the relative pose estimation. One ma-
jor point is the parallel line clustering as the prerequisite for the rotation estimation.
Currently, the cluster initialization uses a predefined set of directions which limits the
method to certain scenes. It is future work to adapt the clustering for the general case
and also to improve the accuracy of the estimated directions. More accurate direc-
tions would result in better rotation estimates. As rotation and translation estimation
is separate, it would be possible to add a test for pure-rotational motion between ro-
tation and translation estimation stages. This would further robustify the estimate as
it makes it possible to recognize whether the camera was moved or not. Regarding
the computation time, a significant amount of time is spent in the translation estima-
tion and the nonlinear refinement which both require line intersections. The number
of intersection points is in O(n?) for n line matches but a number of points in O(n)
would be needed to make a difference. This could be solved by using corresponding

optical flow points with strong corner indication, but it is unclear if the position of
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the corresponding flow points is stable enough or if they shift too much along the
lines due to the aperture problem.

Line matching under large baseline motion is still an open research topic as the meth-
ods proposed are computationally very expensive. Until now, all line descriptors
and additional matching constraints which have been proposed have been designed
manually. One idea would be to investigate whether better descriptors or constraints
could be found with machine learning methods.

Regarding the visual odometry pipeline, a major part of the time is spent with line
extraction and matching. One idea would be to fix the number of lines and to guide
the line extraction so that the lines are evenly distributed over the whole image. A
uniform distribution of the lines would also prevent a biased pose estimate due to
line clusters. How to select a subset of the lines without losing too much information
is an open topic. Another open topic is the fusion of relative pose estimation and
scale adjustment. It is possible to directly use the trifocal tensor for pose estimation
and therefore to directly generate scaled poses which would make the scale adjust-
ment obsolete. To overcome the main drawback of the trifocal tensor, its high number
of degrees of freedom, the suggestion is made to combine the proposed rotation esti-
mation and the trifocal tensor. In that way, only the translational components of the

tensor must be estimated which are five degrees of freedom for three views.

Moving from a visual odometry to a visual SLAM system would also be a natural
step for future research. Here, problems like loop closure detection must be addi-
tionally addressed. As a global map is maintained, the usage of perspective-n-line
algorithms for pose estimation seems reasonable. An open topic is how the line di-
rection information could be integrated here, as was proposed in this work for the

relative pose.

Since points and lines are complementary; it is also advisable to build a system which
fuses both to be able to handle versatile scenes. This could either happen on the com-
ponent level (e.g. similar to how spatial points are leveraged for line triangulation
in degenerate cases in this thesis) or on the system level where the system decides

which component to use according to the input signals.
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Appendices



A. Derivation of the Transformation of
Pliicker Lines

The transformation for Pliicker coordinates is proven by replacing the definition of
momentum and direction of Pliicker lines in Equations (3.5) and (3.6) with the rigid

point transformation (Equation (3.9)):

‘d=("R°q+'t,) — ("Rp +'t,) (A1)
='R% — 'R (A2)
='R(°q —"°p) (A3)
=R (A.4)

‘m = ('R°p +'t;) x ('R°q +'t,) (A5)
=R x 'R + ' R°p x 't, +'t, x 'R (A.6)
=R (p x°q) —"t, x ' R%p + 't, x ' R (A7)
='R°m+"t, x ((;R°%q —'R°p) (A.8)
=!R°m +'t, x | ,R (°qg — °p) (A9)
= R°m + 't, x ' .R°d (A.10)

The deduced expressions for ‘m and ‘d equal the Pliicker coordinate transformation

matrix ' T,:

'L ="'T,°C (A.11)
‘m\ ('R ['t], RY [*m (A12)
‘d )] \0sxs 'R *d ’

t s t t S
_ (SR m+ %], R d) 0 (A13)
R
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Similar, the expansion of the Pliicker matrix transformation reaches the same re-

sult:
T
'L ="1T1LNT (A.14)
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B. Derivation of the Projection of Pliicker
Lines

The projection of Pliicker lines is derived from the image line construction from two
points (3.18) and the projection of points (3.27):

li=p, xq, (B.1)
e
(w38 )20 =062 )0

(B.3)
= (KCZUpr + KCtZU) X (KCwaq + KCtZU) (B'4)
= K, R¥p x K, R + K, R"p x K°t,, + K°t,, x K, R¥g (B.5)

In combination with the relation of cofactor matrix and cross product, the equation

becomes:
1; = det (K) K T,R (“p x “q) +det(K) KT (", R"p x ‘t,,) (B.6)
+det (K) KT (°t,, x ©,R%q) (B.7)
=det(K)K T (“,R (“p x “q) + (L.R"p x t,) + (‘t, x “,R™q)) (B.8)
= det (K)K™" (,R (“p x “q) — (t, x ,RUp) + (“t,, x ,R"q)) (B.9)
= det (K) KT (“,R (“p x “q) + “t,, x (%,R“q — ,Rp)) (B.10)
= det (K) KT (%R (“p x “q) + t, x ,R (“q — “p)) (B.11)

Replacing the definition of line momentum (3.5) and direction (3.6) in the equation

gives:

I; = det (K) KT (°,R%m + °t,, x °,R"d) (B.12)
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Finally, the transformation of the momentum of the line is applied (cf. Equation
(A.10)):

I; = det(K)K Tm (B.13)

This corresponds to the line projection definition:

I, =P, "L (B.14)
= (det(K)KT 03.5) (;31{3 [thc] RC”’R> (2’;’) (B.15)
= (det(K)KT 03.3) (i’;) (B.16)
= det(K)K Tm O (B.17)
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C. Matching Database

The matching database consists of 14 image pairs with labeled line segment matches.

Line segments are extracted with the LSD algorithm [110].

Table C.1.: Properties of the matching database

Number of Image
Image Pair Name | Ground Truth Matches = Dimension
“Demoarea0l1” 247 1024 x 768 px
“Facade(01” 234 800 x 600 px
“Facade02” 172 640 x 480 px
“HCI01” 186 2560 x 1080 px
“HCI02"” 125 2560 x 1080 px
“KITTI01” 110 1226 x 370 px
“KITTI02” 175 1226 x 370 px
“Warehouse01” 107 752 x 480 px
“Modelhouse01” 63 768 x 576 px
“Office01” 242 1024 x 768 px
“Office02” 86 1032 x 778 px
“Office31” 46 1032 x 778 px
“Oxford01” 109 512 x 512 px
“Oxford02” 101 512 x 512 px

The image pairs “Facade01” and “Facade(02” are taken from [122, 123]. “HCI01” and
“HCI02” are from the HCI benchmark suite [67, 68]. “KITTI0O1” and “KITTI02” are
image pairs from the KITTI odometry benchmark [40]. “Oxford01”, “Oxford02” and
“Modelhosue01” are from the Oxford multiview dataset!.

1h’c’cp: / /www.robots.ox.ac.uk/~vgg/datal.html
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(a) “Demoarea01” (b) “Facade01” (c) “Facade02”

(d) “HCI01” (e) “HCI02” (f) “KITTIO1”
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C. Matching Database

(g) “KITTI02” (h) “Warehouse01” (i) “Modelhouse01”

(j) “Office01” (k) “Office02” (1) “Office03”
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(m) “Oxford01” (n) “Oxford02”

Figure C.1.: The matching test set.
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Abbreviations

Abbreviation ‘ Meaning

ATE Absolute Trajectory Error

DLT Direct Linear Transform

EM Expectation-Maximization

ICP Iterative Closest Points

IMU Inertial Measurement Unit

LBD Line Band Descriptor

LEHF Line-based Eight-directional Histogram Feature
LICF Line Intersection Context Feature

LRC Left/Right Checking

MSLD Mean Standard Deviation Line Descriptor
MVG Multiple View Geometry

NCC Normalized Cross-Correlation

NNDR Nearest Neighbor Distance Ratio

PnL Perspecitve-n-Line problem

PnP Perspective-n-Point problem

RANSAC RANdom SAmple Consensus

RMSE Root Mean Squared Error

RPE Relative Pose Error

StM Structure from Motion

(v)SLAM (visual) Simultaneous Localization and Mapping
SVD Singular Value Decomposition

VO Visual Odometry
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