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Zusammenfassung

In dieser Arbeit werden die kompressiblen Navier-Stokes-Gleichungen, welche die Dynamik in
einer trockenen Atmosphäre beschreiben, hergeleitet. Basierend auf einer Skalenanalyse für Strö-
mungen bei kleiner Mach-Zahl wird die Low-Mach-Approximation der kompressiblen Navier-
Stokes-Gleichungen hergeleitet, indem der hydrodynamische Anteil des Druckes, der im Vergleich
zu den hydrostatischen und thermodynamischen Anteilen klein ist, im Gesetz für ideale Gase ver-
nachlässigt wird. Beide Modelle werden mit Finiten Elementen im Raum und Finiten Differenzen
in der Zeit diskretisiert, wobei alle gemeinsamen Diskretisierungsparameter identisch gewählt
werden, um Einflüsse auf die diskreten Lösungen durch die jeweilige Diskretisierung zu minimie-
ren. Für beide Modelle wird ein Lösungsansatz basierend auf einem inexakten Newton-Verfahren
vorgestellt, wobei die linearen Löser und ihre Vorkonditionierer an das jeweilige Modell angepasst
sind. Im Falle des Low-Mach-Modells wird eine Vorkonditionierungstechnik vorgeschlagen, die
auf geschachtelten Schur-Komplementen basiert. Als Benchmark-Problem wird ein Szenario zwei-
er interagierender tropischer Wirbelstürme beschrieben, anhand dessen die Lösungen der beiden
Modelle hinsichtlich numerischer und physikalischer Aspekte verglichen werden. Die gewonnenen
numerischen Ergebnisse zeigen die Skalierbarkeit und Robustheit des Lösungsansatzes. Für das
betrachtete Szenario zeigen die vorhergesagten Sturmtrajektorien des Low-Mach-Modells eine
sehr gute Übereinstimmung mit denen des kompressiblen Navier-Stokes-Modells, bei signifikant
geringeren Kosten bezüglich der Rechenzeit, so dass die Low-Mach-Approximation für diesen
Fall als gültig angesehen werden kann.
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Abstract

In this work, the compressible Navier-Stokes equations describing the dynamics of a dry at-
mosphere are derived. Based on a scale analysis for Low-Mach number flows, the Low-Mach
approximation is derived from the compressible Navier-Stokes equations by neglecting the hy-
drodynamic part of pressure, which is small compared to the hydrostatic and thermodynamic
parts, in the ideal gas law. Both models are discretised by finite elements in space and finite
differences in time, where all common parameters of the discretisations are chosen identically in
order to minimise influences on the discrete solutions due to differences in the respective discreti-
sation. A solution strategy for both models based on an inexact Newton method is presented,
where the linear solvers and preconditioners are adapted to the respective model. In case of the
Low-Mach model, a preconditioning technique based on nested Schur complement iterations is
proposed. A scenario of two interacting tropical cyclones is presented as benchmark problem
in order to compare the solutions of the two models in terms of numerical as well as physical
properties. The obtained numerical results show the scalability and robustness of the solution ap-
proach. For the considered scenario, the predicted tracks of the cyclones, which are computed by
the Low-Mach model, show very good coincidence with those of the Compressible Navier-Stokes
model at significantly smaller computational costs, such that the Low-Mach approximation can
be regarded as valid in this case.
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1

1. Introduction

The formation of clouds and precipitation processes occupy a central role in current research
about climate change. Compared to the temporal and spatial scales of global climatic phenomena,
e.g., the gulf stream – several thousand kilometres in space and months in time –, these processes
often occur on small scales, i.e., a few hundred meters in space and some minutes or hours in
time. Among these processes shower or weak tornadoes are typical examples. Another example,
where local weather forecasts with high precision in space and time are needed, are severe storms
like tropical cyclones. Based on precise and fast numerical forecasts, emergency management
has the chance to evacuate precisely affected regions in time for saving human lives.

In order to fulfil these demands in a computer-aided forecast, extremely fine scales with respect
to both space and time are needed compared to the current state of the art [24]. The cells in
the discrete spatial grid have to be small enough such that single clouds are covered by at
least one whole cell, for example, see Figure 1.1. The increase in spatial resolution leads to a
proportional rise in the demands of compute power. Consequently, the usage of supercomputers
becomes inevitable. To exploit the provided compute power optimally, appropriate parallel
algorithms have to be developed. Recent studies [10] show, that with an increasing number of
used processor cores in a supercomputer the main part of the overall consumed computing time
is spend in communication between the nodes of the cluster, whereas the local computations on
each node consume less time with an increasing number of processor cores and new generations
of processors. Therefore, the solution process for atmospheric dynamics needs to be based on
methods, which provide the solution with a minimum effort in terms of communication, while
featuring excellent mathematical properties in terms of robustness and rate of convergence, for
example.

Furthermore, it has to be noticed, that the applied algorithms and solution schemes are highly
demanding with respect to the spatial and temporal resolutions themselves in order to provide
accurate results in a stable and robust way. Stable in the context of this thesis means, that
the solution remains bounded for bounded given data, i.e., initial and boundary data as well as
parameters. These demands arise due to the mathematical properties of the underlying physical
model. Especially, the spatial and temporal resolutions are coupled in the sense, that the size
of the discrete time-step may not exceed a certain value, which decreases with increasing wind-
speed and decreasing size of the spatial cells. Therefore, high-resolution simulations, as for the
scenarios mentioned above, lead to a significant increase of the required number of time-steps,
while simultaneously the computational costs per time-step grow notably, too. The precise value
and the strength the described coupling depends strongly on the applied time-stepping scheme.

In current models for numerical weather and climate prediction a main source for restrictions
on the time-step size is the fact, that the underlying simulation of the fluid dynamics is based
on the compressible Navier-Stokes equations [24, 25]. These equations are valid for all Mach
numbers and they consider all sources of compressibility, i.e., changes in density due to both
temperature and pressure variations. Therefore, these equations do not only resolve the velocity
field of interest, but also the sound of wind, which is caused by density variations on very small
temporal and spatial scales. These variations are mainly caused by changes in the pressure. But
for many relevant atmospheric fluid flows, only the velocity field at Mach numbers much smaller
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Figure 1.1.: Resolving a cloud in a numerical simulation by sufficiently refining the computa-
tional grid.

than one is of interest and not the acoustic modes of the fluid flow. A scale analysis for flows at
Mach numbers smaller than one shows, that density variations are mainly due to temperature
differences and that certain parts of the pressure are negligible in the equation for the density.
This leads to the so called Low-Mach number approximation. Equations of these type have been
studied since the 1980s [3, 4, 13, 40, 52].

Considering the above demands and the induced problems, the objective of this thesis is defined
as follows. Based on the fully compressible Navier-Stokes equations for the dry atmosphere, a
Low-Mach model based on the Low-Mach number approximation is derived. Both models for
flows in a dry atmosphere are discretised by finite elements in space and a finite difference scheme
in time, which is a mixture of the implicit Euler and Crank-Nicolson time-stepping schemes. The
spatial finite element discretisations as well as the weights in the time-stepping scheme are chosen
identically in order to minimise differences between the respective solutions due to the spatial
and temporal discretisations. Both models are compared for the case of two interacting tropical
cyclones on a domain with a horizontal extent of several thousand kilometres. The key question
is, how many times larger the time-step size for the Low-Mach model can be chosen compared
to the fully Compressible Navier-Stokes model and, consequently, which factor in the number
of time-steps can be saved in order to simulate a certain period of time. Of course, the time
to compute one time-step of the Low-Mach model needs to be at least less than the time for
one time-step of the fully Compressible Navier-Stokes model times the factor in the time-step
sizes in order to provide the desired solution in less overall simulation time. The respective
solutions are then analysed in terms of numerical aspects, i.e., the needed computational costs,
as well as physical aspects, i.e. the predicted storm tracks. Ideally, the Low-Mach model is by
factors faster than the fully Compressible Navier-Stokes model and would, therefore, allow either
finer resolutions at the same computational costs or yield the result of a simulation for a fixed
problem size in a shorter time span, by simultaneously providing a very good approximation
without significant differences in the predicted solutions.

A similar comparison for a moist atmosphere was recently published in [26], but for different
scenarios and on smaller spatial scales. To the best of the knowledge of the author, this thesis
provides the first comparison of these specific models for a scenario of two interacting tropical
cyclones on a large domain with a size of several thousand kilometres in the horizontal. Further-
more, in contrast to [26], the spatial discretisation is based on finite elements (finite volumes in
[26]) and a fully implicit time-stepping scheme (predictor-corrector scheme in [26]) is applied.
Typically, implicit schemes allow larger time-steps than explicit or semi-implicit methods, but
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robust and efficient non-linear as well as linear solvers are needed to resolve the implicit de-
scription of the solution at the next time-step. The resulting non-linear algebraic equations
describing the dynamics from one time-step to the next one are solved by a Newton method. To
solve the arising linear systems in each Newton iteration, a preconditioned (Flexible) Generalized
Minimum Residual ((F)GMRES) method is used, where in the case of the Low-Mach model a
preconditioning technique based on nested Schur complements is proposed. This preconditioner
– to the best of the knowledge of the author – has not been reported in the context of Low-Mach
number approximations so far in the literature. The proposed preconditioners are combined of
components where the necessary scaling properties, see the above discussion, have been reported
in the literature, namely parallel algebraic multigrid techniques [30, 32, 33, 55, 77, 78], which
ideally provide convergence rates independently of the spatial resolution. Therefore, the pre-
sented solvers promise to be scalable solution approaches, if the configurations of all components
are optimized properly.

The remainder of this thesis is organised as follows: In Chapter 2, the fully compressible
Navier-Stokes equations for dry atmospheric dynamics are derived from basic conservation prin-
ciples and their discretisation based on finite elements in space and finite differences in time
is described. Subsequently, the Low-Mach approximation is applied to the fully compressible
Navier-Stokes equations in Chapter 3, yielding the Low-Mach equations of dry atmospheric dy-
namics. Furthermore, the discretisation of the Low-Mach model is described. The solution
methodology for both models is presented in Chapter 4. Chapter 5 contains the description of
the considered benchmark scenario, namely the interaction of two tropical cyclones. Then, the
obtained numerical results are discussed and analysed in Chapter 6. Finally, the findings of this
thesis are summarized in Chapter 7 and an outlook on possible further research, that evolves
from this thesis, is given.
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2. Compressible Navier-Stokes equations
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The dynamics of atmospheric flows of air are described by the fully compressible Navier-Stokes
equations in most current state-of-the-art numerical models for weather forecasting and climate
prediction [24, 25]. Based on the conservation of momentum and mass, the thermodynamic
energy equation and the ideal gas law, these equations model the dynamic evolution of wind ve-
locity as well as density, temperature and pressure of air. Due to the ideal gas law, variations of
density are coupled to variations in both temperature and pressure. Especially, these equations
are valid for all Mach numbers. Therefore, also fast acoustic modes, which are physically irrele-
vant in many meteorological scenarios of interest, are resolved. As a consequence, the maximum
discrete time-step size in a numerical solver is limited, because the stability conditions of the
applied time-stepping scheme have to be met under the constraint, that fast acoustic modes may
appear in a flow at hand. This fact motivates the Low-Mach number approximation, which is
described in the next Chapter.



6 Chapter 2: Compressible Navier-Stokes equations

As there is no assumption made on the considered wind speeds – i.e., in contrast to the Low-
Mach models the derivation of the fully compressible Navier-Stokes equations is valid for all wind
speeds –, the solutions of the fully compressible Navier-Stokes equations will serve as reference
solutions against which those of the Low-Mach model have to compete. Furthermore, the equa-
tions, as they are introduced here, provide an idealised description of atmospheric dynamics,
because they are only valid for dry processes, i.e., moist processes, heating due to radiation as
well as chemical reactions, for example, are neglected. On the one hand, this allows a clearer
presentation and, on the other hand, minimises influences on the fluid dynamics due to external
effects. Therefore, the characteristic property of the equations – the presence of acoustic modes
– is preserved and differences between the models are purely due to the underlying model for the
fluid dynamics.

In Section 2.1, the fully compressible Navier-Stokes equations are derived from the aforemen-
tioned basic physical principles. Subsequently, these equations are put to a weak setting in
Section 2.2. On this basis, a discretisation based on finite elements in space and finite differences
in time is introduced in Section 2.3.

2.1. Derivation

In this section, the system of compressible Navier-Stokes equations is derived on the basis of the
textbook [46]. [46] provides excellent descriptions of the underlying physical processes and quan-
tities. Therefore, the precise physical descriptions given there are adopted here. The derivation
is restricted to the case of dry atmosphere. For further details, see [46]. The derivation of the
material derivative is based on [27], and the derivation of the continuity equation on [51].

2.1.1. Momentum equation

The momentum equation is derived from Newton’s second law of motion

F = ma,

where F is a force ([N ]) acting on a body with mass m ([kg]) and a is the acceleration (
[
m
s2

]
) of

the body. When applying it to the atmosphere and fixing a parcel of air, Newton’s second law
of motion can be written in vector valued form as

ai =
1

ma

∑
F, (2.1)

where ai is the total or inertial acceleration, ma is the mass of the parcel of air, and
∑

F is
the sum of the forces exerted on the fixed parcel. Inertial acceleration describes the rate of
change of velocity of a parcel of air relative to a coordinate system fixed in space (outside the
Earth-atmosphere system), i.e., in Eulerian coordinates.

The mathematical definition of inertial acceleration is

ai :=
dvA

dt
+Ω× vA, (2.2)

where vA denotes the absolute velocity of a body near the Earth’s surface and is given by

vA = v +Ω×Re, (2.3)
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where v := (u, v, w)⊤ is the local velocity of a body relative to the surface of the Earth, Ω is the
angular velocity vector for Earth, Re is the radius vector for the Earth, and Ω×Re is the rate
of change in position of the body due to the Earth’s rotation.
Ω is independent of time and the total derivative of Re is

dRe

dt
= Re

dkr

dt
≈ v, (2.4)

where Re is the Earth’s radius (m) and kr is the corresponding unit vector.

Remark 2.1 (Time derivatives of unit vectors)
The conversions between the increments of horizontal distance in Cartesian coordinates and
increments of horizontal distance in spherical coordinates are given as follows (cf. [46]). The
conversion in west-east direction is given by

dx = (Re cosφ) dλe (2.5)

and the conversion in south-north direction by

dy = Redφ, (2.6)

respectively. dλe denotes the west-east longitude increment in radians, dφ denotes the south-
north latitude increment in radians, and Re cosφ is the distance from the Earth’s axis of rotation
to the surface of the Earth at latitude φ. Furthermore, the following derivatives of the unit vectors
in spherical coordinates can be derived (cf. [46]):

∂iλ
∂λe

= jφ sinφ− kr cosφ,
∂iλ
∂φ

= 0,
∂iλ
∂z

= 0,

∂jφ
∂λe

= −iλ sinφ,
∂jφ
∂φ

= −kr,
∂jφ
∂z

= 0, (2.7)

∂kr

∂λe
= iλ cosφ,

∂kr

∂φ
= jφ,

∂kr

∂z
= 0.

Substituting (2.5) into (2.19) gives the total or material derivative in spherical-altitude coordi-
nates:

d

dt
= ∂t +

u

Re cosφ
∂λe +

v

Re
∂φ + w∂z. (2.8)

Applying (2.8) to iλ gives

d

dt
iλ = ∂tiλ +

u

Re cosφ
∂λeiλ +

v

Re
∂φiλ + w∂ziλ. (2.9)

It holds ∂tiλ = 0, because iλ does not change in time at any location. Substituting this observa-
tion as well as terms from (2.7) into (2.9) and into like expressions for d

dt jφ and d
dtkr, respectively,

yields

d

dt
iλ = jφ

u tanφ

Re
− kr

u

Re
,

d

dt
jφ = −iλ

u tanφ

Re
− kr

v

Re
, (2.10)

d

dt
kr = iλ

u

Re
+ jφ

v

Re
.

The last equality in (2.10) yields the approximative equality in (2.4).
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Thus, substituting (2.3) into (2.2) yields

ai =
dv

dt
+ 2Ω× v +Ω× (Ω×Re) = al + ac + ar, (2.11)

where
al :=

dv

dt
, ac := 2Ω× v, ar := Ω× (Ω×Re) (2.12)

are local , Coriolis and Earth’s centripetal accelerations, respectively.
Local acceleration is the rate of change of velocity of a parcel of air in motion relative to a

coordinate system fixed on earth. Coriolis acceleration is the rate of change of velocity of a parcel
due to the rotation of a spherical Earth underneath the parcel. Earth’s centripetal acceleration
is the inward-directed rate of change of velocity of a parcel due to its motion around the Earth’s
axis.

The terms on the right hand side of (2.1) are so called real forces. The local acceleration of
a parcel of air is affected by the gravitational force (true gravitational force), the force arising
from local differences in the pressure of air (pressure-gradient force) and the force arising from
air molecules exchanging momentum with each other (viscous force). Substituting (2.11) into
(2.1) and expanding the right hand side yields

al + ac + ar =
1

ma

(
F∗
g + Fp + Fv

)
, (2.13)

where F∗
g represents true gravitational force, Fp is the pressure gradient force, and Fv denotes the

viscous force. Atmospheric models are usually based on expressions for local acceleration, because
local acceleration can be expressed directly by the time-derivative of the velocity field. Therefore,
the momentum equation is written in a reference frame fixed on the surface of the Earth instead
of a coordinate system fixed outside the Earth-atmosphere system. Consequently, only local
acceleration is treated as an acceleration, whereas the Coriolis acceleration and centripetal forces
are considered as apparent forces, i.e., these only appear like forces due to the choice of the
coordinate system. Thus, the Coriolis acceleration is regarded as Coriolis force per unit mass
(ac = Fc

ma
), and the Earth’s centripetal acceleration is considered as centrifugal (i.e. negative

centripetal) force per unit mass (ar = − Fr
ma

). Substituting these terms into (2.13) yields the
momentum equation from a reference frame fixed on Earth’s surface

al =
1

ma

(
Fr − Fc + F∗

g + Fp + Fv

)
. (2.14)

2.1.1.1. Material derivative

A point of material can be described by its position X in a reference configuration Ω ⊂ Rd.
Assume, that Ω is open and connected. The course of a point X ∈ Ω in time is described by the
mapping

t ↦→ x(t,X), (2.15)

where t is the variable of time and x is the position of X at time t. Let the mapping x fulfil the
following reasonable assumption:

1. x(0, X) = X, i.e., the point is identified by its position at the time t = 0.

2. The mapping (t,X) ↦→ x(t,X) is continuously differentiable.
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3. For every t ≥ 0 the mapping Ω ∋ X ↦→ x(t,X) can be inverted.

4. The determinant of the Jacobian matrix

J(t,X) = det

(
∂xj
∂Xk

(t,X)

)d

j,k=1

is positive for all t ≥ 0, X ∈ Ω.

X is called Lagrangian or material coordinate and x is called Eulerian coordinate.
Let Φ(t,X) denote some variable in Lagrangian coordinates and φ(t, x) denote the same vari-

able in Eulerian coordinates. Then the following relationship holds:

φ (t, x(t,X)) = Φ(t,X). (2.16)

From (2.16) it follows with the chain rule that

∂tΦ(t,X) = ∂tφ (t, x(t,X)) +∇xφ (t, x(t,X)) · ∂tx(t,X). (2.17)

Denote by
V(t,X) = ∂tx(t,X), v(t, x) = V (t, x(t,X)) , (2.18)

the velocity of a point of material X in Lagrangian and Eulerian coordinates, respectively.

Definition 2.2 (Material derivative)
The expression

d

dt
φ(t, x) = ∂tφ(t, x) + v(t, x) · ∇φ(t, x) (2.19)

is called material derivative of φ with respect to t.

Remark 2.3
The material derivative is often written in the form

d

dt
φ = ∂tφ+ (v · ∇)φ

and the associated operator as
d

dt
= ∂t + (v · ∇) .

In the case of vector valued variables, the material derivative is applied per coordinate.

2.1.1.2. Local acceleration

The local acceleration, i.e., the total or material derivative of velocity, expands with (2.19) to

al =
dv

dt
= ∂tv + (v · ∇)v, (2.20)

i.e., the local acceleration along the motion of a parcel equals the local acceleration at a fixed
point plus changes in local acceleration because of fluxes of velocity gradients.
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2.1.1.3. Coriolis force

The Coriolis term in (2.14) expands in spherical-altitude coordinates to

Fc

ma
= 2Ω× v = iλ2Ω (w cosφ− v sinφ) + jφ2Ωu sinφ− kr2Ωu cosφ, (2.21)

where iλ denotes the unit vector with respect to spherical coordinates in west-east direction, jφ
the unit vector in south-north direction, and kr the vertical unit vector.

Because the vertical velocity component w is by orders of magnitude smaller than the horizontal
velocity components u and v, i.e., |w| ≪ |u| , |v|, the term iλ2Ωw cosφ may be neglected in
(2.21). Similarly, the vertical component of the Coriolis force is smaller by orders of magnitude
than other terms in the vertical momentum equation (gravity and pressure-gradient-terms, for
example). Thus, the term kr2Ωu cosφ may also be neglected. Consequently, the Coriolis force
vector per unit mass in spherical-altitude coordinates reduces to

Fc

ma
= 2Ω× v ≈ −iλ2Ωv sinφ+ jφ2Ωu sinφ. (2.22)

Let
f := 2Ω sinφ (2.23)

denote the Coriolis parameter , where

Ω ≈ 7.2921 · 10−5. (2.24)

Then, the term describing the Coriolis force can be written equivalently as

Fc

ma
= 2Ω× v ≈ −iλfv + jφfu = fkr × vhor, (2.25)

where vhor := (u, v, 0)⊤ denotes the horizontal velocity components.
In the case, that the curved surface of the earth is approximated by a plane, the following

approximation of the Coriolis term is used. Coordinates on the plane are given in Cartesian (x, y)
coordinates, where x denotes the position in west-east direction and y the position in south-north
direction. First, the radial unit vector kr reduces to the third Cartesian unit vector

e3 := (0, 0, 1)⊤, (2.26)

which is orthogonal to the approximating plane. Second, if large-scale phenomena at the mid-
latitudes are investigated, the Coriolis parameter f is often approximated based on a Taylor
series about a reference latitude Φ0:

f(y) ≈ f (Φ0) + βy, β :=
2Ω cos (Φ0)

Re
, (2.27)

where
Re ≈ 6.371 · 106m (2.28)

denotes the radius of the earth. This approximation is usually known as the mid-latitude β-plane
approximation:

Fc

ma
≈ fe3 × v = (−fv, fu, 0)⊤ . (2.29)
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2.1.1.4. Gravitational and centrifugal force

Gravity is one of the real forces that act on a parcel of air. The gravity that is experienced by an
observer on the earth is in fact a combination of true gravitational force and the Earth’s apparent
centrifugal force. True gravitational force acts towards the centre of the Earth, whereas the
Earth’s apparent centrifugal force, which acts away from the axis of rotation of Earth, alters the
direction and magnitude of the true gravitational force marginally. Adding the true gravitational
and apparent centrifugal force vectors yields the effective gravitational force vector .

The true gravitational force vector per unit mass is given by

F∗
g

ma
= −k∗

rg
∗, (2.30)

where g∗ is the true gravitational acceleration. The vectors i∗λ, j
∗
φ,k

∗
r denote the unit vectors in

spherical coordinates on a true sphere, whereas the vectors iλ, jφ,kr denote the unit vectors in
spherical coordinates on the Earth, which is an oblate spheroid; see also above.

Assuming a true sphere, the apparent centrifugal force per unit mass can be expressed as

Fr

ma
= −ar = −Ω× (Ω×Re) = −j∗φReΩ

2 cosφ sinφ+ k∗
rReΩ

2 cos2 φ, (2.31)

where
Ω = j∗φΩcosφ+ k∗

rΩsinφ, Re = k∗
rRe,

denote the angular velocity vector and the radius vector of the Earth.
Adding (2.31) to (2.30) gives the effective gravitational force vector per unit mass on the Earth

as
Fg

ma
=

F∗
g

ma
+

Fr

ma
= −krg, (2.32)

where kr is the unit vector normal to the oblate spheroid surface of the Earth, and

g =
[(
ReΩ

2 cosφ sinφ
)2

+
(
g∗ −ReΩ

2 cos2 φ
)2] 1

2
, (2.33)

is the magnitude of the gravitational force per unit mass, or effective gravitational acceleration
(effective gravity). The value of g at sea level varies slightly from g = 9.799m

s2
at the Equator and

g = 9.833m
s2

at the poles. In the context of the idealised setting within this thesis, g is assumed
to be constant and is fixed to the value

g = 9.80665
m

s2
. (2.34)

In the case of a β-plane approximation (cf. (2.29)), (2.32) reduces to

Fg

ma
= −e3g. (2.35)

2.1.1.5. Pressure-gradient force

The pressure-gradient force, which results from pressure differences in space, is a real force, which
induces air to move from regions of high pressure to regions of low pressure.

Assume a parcel of air with cubic form, which has the volume ∆x∆y∆z. Furthermore, assume
that the air pressure only changes in x direction. Then, the air pressures, that are exerted on



12 Chapter 2: Compressible Navier-Stokes equations

the right and left sides of the parcel from outside, are given approximately by a Taylor series
expansion of first order as

Fp,r = −
(
pc +

∆x

2
∂xp

)
∆y∆z, Fp,l =

(
pc −

∆x

2
∂xp

)
∆y∆z, (2.36)

where pc denotes the pressure at the centre of the cell. Adding these forces, dividing the result
by the mass ma = ρa∆x∆y∆z of the parcel and taking the limit ∆x,∆y,∆z → 0 yields the
pressure-gradient force per unit mass in the direction of the x coordinate

Fp,x

ma
= − 1

ρa
∂xpa, (2.37)

where ρa denotes the density of air.
Generalizing this derivation to three space dimensions yields the vector valued pressure-

gradient force
Fp

ma
= − 1

ρa
∇pa. (2.38)

2.1.1.6. Viscous force

Molecular viscosity is a measure for the viscidity of a fluid. An increase in its viscosity makes
a fluid more resistant to motion. This resistance is caused by other reasons in liquids than in
gases.

In liquids, viscosity arises when molecules of the fluid approach each other and stick shortly
together, e.g., by van der Waals forces. To break the bond between the molecules, kinetic energy
needs to be converted, which slows the motion of the liquid down. Therefore, viscosity is an
internal friction.

In gases, momentum is transferred between molecules when they collide. This transfer is
viscosity in gases. In general, molecules of gases do not bond to each other, which results in a
little net loss of energy due to a collision. When a molecule moving at a higher speed bumps
into one moving at a lower speed, the faster molecule is slowed down, whereas the motion of the
slower one is sped up. During this process, both molecules change their direction of motion.

As a consequence of these different reasons of viscosity, increasing the temperature leads to a
decrease of viscosity in liquids, whereas an increase in temperature increases the viscosity of a
gas.

A measure to quantify the molecular viscosity of air is the dynamic viscosity of air

ηa =
5

16Ad2a

√
MaR∗T

π

[
kg

ms

]
. (2.39)

This expression is based on gas kinetic theory and can be extended to any gas, where Ma denotes
the molecular weight of air (28.966 g

mol ), R
∗ is the universal gas constant (8314.51 g

m2s2K mol
), T

denotes the absolute temperature ([K]), A is Avogadro’s number (molecules per mol), and da is
the average diameter of an air molecule ([m]).

A related parameter is the kinematic viscosity of air

νa =
ηa
ρa

[
m2

s

]
, (2.40)

which is a molecular diffusion coefficient for air.
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The viscous force is caused by viscous interactions between the different air molecules when
they slide over each other. Wind shear denotes the change of velocity with altitude, i.e., ∂zu.
Because different layers of air slip over each other at different velocities because of wind shear,
each layer exerts a viscous or shearing stress, which can be interpreted as a force per unit area,
on the others. Consider a cubic parcel of air. This parcel experiences viscous stress in x-direction
at its top and bottom due to shearing stress caused by the velocity component u, which denotes
the velocity in x-direction. Therefore, if a force is exerted in x-direction per unit area of the
x− y-plane by wind shear in the z-direction, the caused shearing stress is given by

τzx = ηa∂zu

[
N

m2

]
. (2.41)

In this case, the net viscous force on the cubic parcel of air equals the difference of shearing stress
on the top of the parcel and the shearing stress on the bottom times the area on which the stress
acts. Analogously to the derivation of the pressure gradient force, if τzx denotes the shearing
stress in the middle of the parcel of air and ∂zτzx is the derivative of shearing stress with respect
to the vertical coordinate z, a first order Taylor series expansion yields the approximate shearing
stresses at the top and bottom of the parcel:

τzx,top = τzx +
∆z

2
∂zτzx, τzx,bot = τzx −

∆z

2
∂zτzx. (2.42)

Computing the net viscous force with these approximations and dividing by the mass ma =
ρa∆x∆y∆z of the parcel and taking the limit ∆x,∆y,∆z → 0 yields the net viscous force per
unit mass

Fv,zx

ma
=

1

ρa
∂zτzx. (2.43)

Substituting (2.41) into (2.43) and assuming that ηa is invariant with altitude gives

Fv,zx

ma
=
ηa
ρa
∂2zu. (2.44)

Generalizing (2.44) to all three coordinate directions and all three velocity components finally
yields the viscous force vector per unit mass

Fv

ma
=
ηa
ρa

∆v = νa∆v. (2.45)

In the context of the idealised setting within this thesis, νa is assumed to be constant and is
fixed to the value

νa = 1.47 · 10−5m
2

s
. (2.46)

2.1.1.7. The complete momentum equation

Substituting (2.20), (2.25), (2.32), (2.38) and (2.45) into (2.14) yields

∂tv + (v · ∇)v +
1

ρa
∇pa − νa∆v + fk× vhor + gk = 0. (2.47)

Table 2.1 lists the terms in the momentum equation and their typical horizontal and vertical
scales.

aLow value for large-scale motions, high value for small-motions (< 3km)
bLow value for free atmosphere, high value for air adjacent to the surface
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Term Acceleration or
force/mass ex-
pression

Horizontal ac-
celeration

(
m
s2

) Vertical accel-
eration

(
m
s2

)

Local acceleration ∂tv + (v · ∇)v 10−4 a10−7 − 1

Coriolis force per
unit mass

Fc
ma

= fk× v 10−3 0

Effective gravita-
tional force per
unit mass

Fg

ma
= −krg 0 10

Pressure-gradient
force per unit
mass

Fp

ma
= − 1

ρa
∇pa 10−3 10

Viscous force per
unit mass

Fv
ma

= νa∆v b10−12 − 10−3 b10−15 − 10−5

Table 2.1.: Vertical and horizontal scales of terms in the momentum equation

2.1.2. Equation of state

The equation of state describes, how pressure, volume and absolute temperature are related in a
real gas. The ideal gas law is the equation of state for an ideal gas. A gas is called an ideal gas,
if the product of the pressure and volume is proportional to the absolute temperature. Under
typical atmospheric temperature and pressure conditions, the ideal gas law gives approximately
an expanded equation of state with a relative error of less than 0.2 percent for dry air. Therefore,
the ideal gas law is a reasonable approximation of the equation of state in the case of atmospheric
scenarios.

The ideal gas law is expressed as a combination of Boyle’s law

p ∝
1

V
at constant temperature, (2.48)

Charles’ law
V ∝ T at constant pressure, (2.49)

and Avogadro’s law

V ∝ n at constant pressure and temperature. (2.50)

p is the pressure exerted on the gas ([hPa]), V is the volume enclosed by the gas ([m3]), T is
the (absolute) temperature of the gas ([K]) and n denotes the number of gas moles. The symbol
∝ states proportionality between the expressions on its left and right hand sides, i.e., doubling
the volume V in (2.48) reduces the pressure p by one-half. All gases exhibit the same number of
molecules per mole. This constant number is given by Avogadro’s number

A = 6.0221367 · 1023molec.
mol

. (2.51)

Combining Boyle’s, Charles’ and Avogadro’s laws yields the ideal gas law or simplified equation
of state

p =
nR∗T

V
= NkBT, (2.52)
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where

R∗ = 0.0831451
m3 hPa

K mol
(2.53)

is the universal gas constant ,

N =
nA

V
(2.54)

is the number concentration of gas molecules and

kB =
R∗

A
= 1.380658 · 10−25 m

3 hPa

K molec.
(2.55)

is Boltzmann’s constant .
For dry air, (2.52) can be stated in the form

pd = ρdR
′T, (2.56)

where

ρd =
ndMd

V
, R′ =

R∗

Md
= 2.8704

m3 hPa

K kg
, (2.57)

are the dry-air mass density and dry-air gas constant, respectively,

Md = 28.966
g

mol
(2.58)

is the standard value for the molecular weight of dry air and pd ([hPa]) is dry-air partial pressure.

2.1.3. Continuity equation

The continuity equation describes the conservation of mass. Let V denote some volume of air,
then the rate of change of mass in the volume V must equal the net mass flux across ∂V

d

dt

∫

V
ρdx = −

∫

∂V
(ρv) · ndσ, (2.59)

where n denotes the outward pointing normal unit vector to ∂V . The integration theorem by
Gauß A.1Integration theorysatz.A.1 thus implies

∫

V
(∂tρ+ div (ρv)) dx = 0. (2.60)

If all the variables are continuous, shrinking V to a point gives

∂tρ+ div (ρv) = 0, (2.61)

the continuity equation of air.

2.1.4. Thermodynamic energy equation

Air temperature changes due to the transfer of energy and work. To derive an equation, which
describes energy changes in the atmosphere, the first law of thermodynamics and the continuity
equation for air are combined.



16 Chapter 2: Compressible Navier-Stokes equations

2.1.4.1. Potential and potential virtual temperature

First, an expression for specific humidity (kilograms of water vapour per kilogram of moist air)
is given by

qv =
ρv
ρa
, (2.62)

where ρa = ρd + ρv (
[
kg
m3

]
) denotes the mass density of moist air, ρd ( kg

m3 ) the mass density of

dry air, and ρv ( kg
m3 ) is the mass density of water vapour. In the case of dry air, it holds

qv = 0. (2.63)

Furthermore, virtual temperature ([K]) is defined as

Tv = T (1 + 0.608qv) , (2.64)

where T ([K]) denotes the absolute temperature of air, and potential virtual temperature ([K])
is defined as

θv = T (1 + 0.608qv)

(
1000 hPa

pa

)κ

= Tv

(
1000 hPa

pa

)κ

, (2.65)

where

κ =
R′

cp,d
= 0.286, cp,d = 1004.67

m2

s2K
, (2.66)

cp,d denotes the specific heat of dry air at constant pressure, and pa = pd + pv ([hPa]) is
the pressure of air and pv ([hPa]) the partial pressure exerted by water vapour. The value of
1000 hPa is the reference value for the pressure of air at the Earth’s surface.

In the case of dry air, it holds

Tv = T, θv = T

(
1000 hPa

pd

)κ

. (2.67)

2.1.4.2. First law of thermodynamics

Applying the first law of thermodynamics to the atmosphere yields

dQ∗ = dU∗ + dW ∗, (2.68)

where dQ∗ denotes the diabetic heating term, which is the energy ([J ]) transferred between an
air parcel and its environment, dU∗ is the change in internal energy of the parcel, and dW ∗ is
the work ([J ]) done by or on the parcel. Norming all three terms to ma, i.e. the mass of a parcel
of air ([kg]) consisting of dry air mass md and water vapour mass mv,

dQ =
dQ∗

ma
, dU =

dU∗

ma
, dW =

dW ∗

ma
, (2.69)

yields the first law of thermodynamics in terms of energy per unit mass of air (
[

J
kg

]
) as

dQ = dU + dW. (2.70)

In the case of a dry atmosphere, i.e. mv = 0, the terms occurring in (2.70) can be expanded to

dW = pddαd, αd =
1

ρd
, (2.71)
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where αd denotes the specific volume of dry air ,

dU = cv,ddT, cv,d = 717.63
J

kg K
, (2.72)

cv,d the specific heat of dry air at constant volume. Substituting (2.72) and (2.71) into (2.70)
yields the first law of thermodynamics for the dry atmosphere

dQ = cv,ddT + pddαd. (2.73)

Dividing (2.56) by ρd gives pdαd = R′T , which can be differentiated and yields

d(pdαd) = αddpd + pddαd = R′dT = d(R′T ). (2.74)

Substitution of (2.74) into (2.73) gives

dQ = (cv,d +R′)dT − αddpd = cp,ddT − αddpd. (2.75)

2.1.4.3. Thermodynamic energy equation

(2.75) is equivalent to

dT =
dQ

cp,d
+

1

ρdcp,d
dpd (2.76)

and differentiating (2.76) with respect to time yields

dT

dt
=

1

cp,d

dQ

dt
+

1

ρdcp,d

dpd
dt

. (2.77)

Differentiating (2.65) with respect to time and using (2.56), (2.66) and (2.77) gives

dθv
dt

=
d

dt

(
T

(
1000 hPa

pd

)k
)

=

(
1000 hPa

pd

)k dT

dt
+ κT

(
1000 hPa

pd

)k−1(
−1000 hPa

p2d

)
dpd
dt

=
θv
T

dT

dt
− κθv

pd

dpd
dt

=
θv
Tcp,d

dQ

dt
+

θv
Tρdcp,d

dpd
dt
− R′θv
cp,dpd

dpd
dt

=
θv
Tcp,d

dQ

dt
+

(
R′θv
cp,dpd

− R′θv
cp,dpd

)
dpd
dt

=
θv
Tcp,d

dQ

dt
.

Expanding the total time derivative of θv according to (2.19) yields the thermodynamic energy
equation

∂tθv + (v · ∇) θv =
θv
Tcp,d

dQ

dt
. (2.78)
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2.1.5. Reference states for thermodynamic variables

In absence of any wind, i.e., v ≡ 0 everywhere, the momentum, continuity, thermodynamic
energy and ideal gas law equations should be balanced and the equation systems should stay at
the current steady, i.e., there is no velocity induced by imbalances in the relations of density,
temperature or pressure.

In order to achieve this, density, pressure and temperature are each split into a given reference
state, which only depends on the vertical coordinate, and a perturbation of the reference state:

ρ = ρ0(z) + ρ∗, p = p0(z) + p∗, θv = θv,0(z) + θ∗v . (2.79)

The reference states ρ0, p0 and θv,0 shall form a stable atmosphere, i.e., in the absence of any
velocity field (v = 0) also all three perturbations ρ∗, p∗ and θ∗v shall equal zero.

To this end, assume that the following relations

∂zθv,0 = θz = const., ∂zp0 = −gρ0 (2.80)

as well as the equation of state (2.56) hold for the reference states. The first relation assumes a
linear vertical profile for potential virtual temperature

θv,0(z) = θ0 + θzz, (2.81)

where θ0 denotes the reference temperature at the Earth’s surface. The second relation is the
hydrostatic balance which assumes that the downward force of gravity per unit volume of air
(−gρ0) exactly balances an upward pressure gradient force per unit volume (∂zp0). The latter is
precisely the remainder of the momentum equation in the case v ≡ 0.
Remark 2.4 (Vertical profile of reference temperature)
The choice of (2.81) is meaningful, because it can be derived (cf. [46]), that the atmosphere is
stably stratified in vertical direction, if it holds

∂zθv > 0.

Therefore, if a value θz > 0 is prescribed, the reference state of the atmosphere, as it is introduced
here, fulfils this condition.

For the derivation of closed expressions for the reference states, substitution of (2.80) and
(2.56) into (2.65) yields

θv,0 = θ0 + θzz = T0

(
1000 hPa

p0

)κ

=
p0
R′ρ0

(
1000 hPa

p0

)κ

= − gp0
R′∂zp0

(
1000 hPa

p0

)κ

. (2.82)

Inverting (2.82)

1

θ0 + θzz
= − R′

gp0
∂zp0

( p0
1000 hPa

)κ
= − R′

g · 1000 hPa∂zp0
( p0
1000 hPa

)κ−1
(2.83)

and integrating from the Earth’s surface (z = 0) to some height z ≥ 0 gives (by applying the
substitution rule of integration)

∫ z

0

1

θ0 + θzz′
dz′ = − R′

g · 1000 hPa

∫ p0

1000 hPa

(
p′

1000 hPa

)κ−1

dp′

⇔
[
1

θz
ln
(
θ0 + θzz

′)
]z

0

= − R′

g (1000 hPa)κ

[
1

κ

(
p′
)κ
]p0

1000 hPa

⇔ 1

θz
ln

(
1 +

θzz

θ0

)
= − R′

gκ (1000 hPa)κ
(pκ0 − (1000 hPa)κ) .
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Parameter θ0 θz

Value 300 K 3 · 10−3K
m

Table 2.2.: Parameters of reference states of density, temperature and pressure for the numerical
results in Chapter 6.
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100

101
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Reference temperature θv,0 [K]

Reference pressure p0 [Pa]

Reference density ρ0

[
kg
m3

]

Figure 2.1.: Reference states of temperature, pressure and density

Solving the last equation for p0 yields

p0(z) = 1000 hPa

[
− gκ

R′θz
ln

(
1 +

θzz

θ0

)
+ 1

] 1
κ

. (2.84)

With (2.56) it follows that

ρ0(z) =
p0(z)

R′T (z)
=

1000 hPa

R′θv,0(z)

[
− gκ

R′θz
ln

(
1 +

θzz

θ0

)
+ 1

] 1
κ
−1

. (2.85)

For the scenario of interacting tropical cyclones in Chapter 5, the parameters of this subsection
are chosen according to Table 2.2. The resulting reference states for all three thermodynamic
variables are depicted in Figure 2.1.
Remark 2.5 (Vertical derivatives of reference states)
In the following, the derivatives of the reference states for the thermodynamic variables with
respect to the vertical coordinate z are needed extensively. Therefore, these derivatives are given
here for later reference.

1. Reference potential virtual temperature:

∂zθv,0(z) = θz. (2.86)
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2. Reference pressure:

∂zp0(z) = −
1000 hPa · g
R′θv,0(z)

[
− gκ

R′θz
ln

(
1 +

θzz

θ0

)
+ 1

] 1
κ
−1

. (2.87)

3. Reference density:

∂zρ0(z) = −
1000 hPa

R′ (θv,o(z))
2

[
− gκ

R′θz
ln

(
1 +

θzz

θ0

)
+ 1

] 1
κ
−2

·
[
θz

[
− gκ

R′θz
ln

(
1 +

θzz

θ0

)
+ 1

]
+
g(1− κ)
R′

]
.

(2.88)

2.1.6. The complete system of compressible Navier-Stokes equations

The complete system of compressible Navier-Stokes equations consists of (2.47), (2.61), (2.78)
and (2.56):

∂tv + (v · ∇)v +
1

ρd
∇pd − νa∆v + fk× v + gk = 0 (2.89)

∂tρd + div (ρdv) = 0 (2.90)

∂tθv + (v · ∇) θv =
θv
Tcp,d

dQ

dt
(2.91)

(
ρdR

′θv
) 1

1−κ (1000hPa)
−κ
1−κ = pd (2.92)

Equations (2.89)-(2.92) can be expressed in terms of the perturbation variables introduced in
Subsection 2.1.5. Furthermore, in the considered idealised setting dQ

dt = 0 is assumed as well as
a β-plane approximation (2.29), (2.35), i.e., the domain Ω is defined as

Ω := (xmin, xmax)× (ymin, ymax)× (zmin, zmax) ⊂ R3,

xmin < xmax, ymin < ymax, zmin < zmax,

Γ := {(x, y, z) ∈ ∂Ω : z ∈ {zmin, zmax}} ,
(2.94)

an axis-aligned rectangular cuboid and Γ denotes its top and bottom boundaries, respectively.
Then, with (2.79) and (2.80) the problem of solving the compressible Navier-Stokes equations
can be stated as follows:
Problem 2.6 (Compressible Navier-Stokes model)
Let Ω ⊂ R3 be as in (2.94) and T ≥ 0 a final point in time. Find a velocity field v := (u, v, w)⊤ :
[0, T ) × Ω → R3, a density perturbation ρ∗ : [0, T ) × Ω → R, a temperature perturbation
θ∗v : [0, T )× Ω→ R and a pressure perturbation p∗ : [0, T )× Ω→ R satisfying

∂tv + (v · ∇)v +
1

ρ
∇p∗ − νa∆v =

(
fv,−fu,−ρ

∗

ρ
g

)⊤
(2.95)

∂tρ
∗ + w∂zρ0 + v · ∇ρ∗ + ρdiv v = 0 (2.96)
∂tθ

∗
v + w∂zθv,0 + (v · ∇) θ∗v = 0 (2.97)

⎡
⎣

(
−gκ

θz
ln
(
1 + θzz

θ0

)
+R′

)
ρ∗ (θ∗v + θv,0)

p0
+ 1 +

θ∗v
θv,0

⎤
⎦

1
1−κ

p0 − p0 = p∗ (2.98)

w = 0 on [0, T ]× Γ (2.99)
v(0, x) = v0(x), ρ∗(0, x) = ρ∗0(x), θ∗v(0, x) = θ∗v,0(x), p∗(0, x) = p∗0(x) (2.100)
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as well as periodic boundary conditions in both horizontal directions for all variables v, ρ∗, θ∗v
and p∗, where the subscript d has been omitted for better readability,

p∗0 :=
(
(ρ∗0 + ρ0)R

′ (θ∗v,0 + θ0
)) 1

1−κ (1000hPa)
−κ
1−κ − p0

and

ρ := ρ∗ + ρ0.

Equations (2.95)-(2.98) are required to hold on (0, T ) × Ω and (2.100) is asked to hold on {t =
0} × Ω.

Remark 2.7 (Boundary conditions for thermodynamic variables)
Observe, that the thermodynamic quantities ρ∗, θ∗v and p∗ are not equipped with boundary
conditions. ρ∗ and θ∗v are governed by the pure transport (equations (2.96) and (2.97)) due
to the velocity field v and the initial conditions ρ∗0 and θ∗v,0, respectively, and are, therefore,
uniquely determined by these data. The pressure p∗ is computed via the purely algebraic relation
(2.98) and, therefore, inherits its values on the boundary due to this relation from density and
temperature.

Remark 2.8 (Problem 2.6)
In the absence of vacuum in the atmosphere as well as mass sinks, it holds ρ(x) > 0 for all x ∈ Ω.
Therefore, (2.95) is well defined if enough regularity of all functions is assumed, see Subsection
2.2 below.

Remark 2.9 (Stability of ideal gas law)
The numerical evaluation of (2.92) is numerically unstable for small perturbations ρ∗, θ∗v and p∗.
Especially, it does not hold p∗ = 0 if θ∗v = ρ∗ = 0. To stabilise the evaluation, (2.92) is rewritten
as follows: First, define

bp(z) :=

[
− gκ

R′θz
ln

(
1 +

θzz

θ0

)
+ 1

]
.

Then, it follows from (2.84), that

bp =
( p0
1000 hPa

)κ
. (2.101)

Consequently, (2.82) can be expressed as

θv,0 =
p0

R′ρ0bp
. (2.102)



22 Chapter 2: Compressible Navier-Stokes equations

Inserting (2.101) and (2.102) into (2.92) yields (2.98):

p∗ =
[
(ρ∗ + ρ0)R

′ (θ∗v + θv,0) (1000 hPa)
−κ
] 1
1−κ − p0

=

[(
ρ∗R′θ∗v + ρ∗R′θv,0 +

p0
R′θv,0bp

R′θ∗v +
p0

R′θv,0bp
R′θv,0

)
(1000 hPa)−κ

] 1
1−κ

− p0

=

[(
ρ∗R′θ∗v + ρ∗R′θv,0

)
(1000 hPa)−κ + p0

θ∗v + θv,0
θv,0bp

(1000 hPa)−κ

] 1
1−κ

− p0

=

[(
ρ∗R′θ∗v + ρ∗R′θv,0

)
p−κ
0 bp + p0

θ∗v + θv,0
θv,0bp

p−κ
0 bp

] 1
1−κ

− p0

=

[(
ρ∗R′θ∗v + ρ∗R′θv,0

) p1−κ
0

p0
bp +

θ∗v + θv,0
θv,0

p1−κ
0

] 1
1−κ

− p0

=

[
bpR

′ρ∗ (θ∗v + θv,0)

p0
+ 1 +

θ∗v
θv,0

] 1
1−κ

p0 − p0.

2.2. Weak formulation

In order to apply the finite element method (FEM) for the discretisation of the system of com-
pressible Navier-Stokes equations (Problem 2.6), a weak formulation is given in this Section. To
the best knowledge of the author, the question of existence and uniqueness of solutions for the full
compressible Navier-Stokes equations is still open in two and three space dimensions, especially,
when large initial data are considered. Results for special cases like the so called barotropic case
in which pressure depends on the density only and, therefore, the thermodynamic energy equa-
tion is decoupled from the remaining ones, can be found in [59, 60], for example. However, the
numerical results in Chapter 6, which are obtained by the discretisation described in Subsection
2.3, which itself is based on Problem 2.10, indicate that Problem 2.10 is well-posed for the flow
which is considered in the scenario of two interacting tropical cyclones, see Chapter 5. Therefore,
in the remainder of this thesis it is assumed that a unique weak solution to Problem 2.10 exists
and fulfils the demanded regularity assumptions for the considered flow.

Problem 2.10 (Weak formulation of Problem 2.6)
Let Ω ⊂ R3 be as in (2.94) and T ≥ 0 a final point in time. Then the weak formulation of
Problem 2.6 is as follow: Find a tuple

(v, ρ∗, θ∗v , p
∗) : (0, T )× Ω→ R3 ×R×R×R, v := (u, v, w)⊤,

such that the following conditions are satisfied:

1. The variables satisfy

v ∈
(
L2
(
0, T ;H1 (Ω)

))3
, (2.103)

∂tv ∈
(
L2
(
0, T ;H−1 (Ω)

))3
, (2.104)

w = 0 on [0, T ]× Γ, (2.105)

ρ∗, θ∗v , p
∗ ∈ L2

(
0, T ;H1 (Ω)

)
, (2.106)

∂tρ
∗, ∂tθ

∗
v ∈ L2

(
0, T ;H−1 (Ω)

)
, (2.107)

as well as periodic boundary conditions in both horizontal directions.
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2. The integral identity

⟨∂tv, φv⟩+
(
(v · ∇)v +

1

ρ
∇p∗ +

(
−fv, fu, ρ

∗

ρ
g

)⊤
, φv

)
+ (νa∇v,∇φv) = 0, (2.108)

where
ρ := ρ∗ + ρ0,

(·, ·) denotes the inner product in L2(Ω) and ⟨·, ·⟩ the dual pairing between H−1(Ω) and
H1

0 (Ω), holds for all φv ∈
(
H1

0 (Ω)
)3 and almost every (a.e.) t ∈ [0, T ]. Furthermore, it

holds
(v(0)− v0, ψv) = 0 for all ψv ∈

(
H1(Ω)

)3
. (2.109)

3. The integral identity

⟨∂tρ∗, φρ⟩+ (w∂zρ0 + v · ∇ρ∗ + ρdiv v, φρ) = 0, (2.110)

where
ρ := ρ∗ + ρ0,

holds for all φρ ∈ H1
0 (Ω) and a.e. t ∈ [0, T ]. Furthermore, it holds

(ρ∗(0)− ρ∗0, ψρ) = 0 for all ψρ ∈ H1(Ω). (2.111)

4. The integral identity

⟨∂tθ∗v , φθ⟩+ (w∂zθv,0 + (v · ∇) θ∗v , φθ) = 0 (2.112)

holds for all φθ ∈ H1
0 (Ω) and a.e. t ∈ [0, T ]. Furthermore, it holds

(
θ∗v(0)− θ∗v,0, ψθ

)
= 0 for all ψθ ∈ H1(Ω). (2.113)

5. The integral identity

(p∗, φp) =

⎛
⎜⎝

⎡
⎣

(
−gκ

θz
ln
(
1 + θzz

θ0

)
+R′

)
ρ∗ (θ∗v + θv,0)

p0
+ 1 +

θ∗v
θv,0

⎤
⎦

1
1−κ

p0 − p0, φp

⎞
⎟⎠

(2.114)
holds for all φp ∈ H1

0 (Ω) and a.e. t ∈ [0, T ]. Furthermore, it holds

(p∗(0)− p∗0, ψp) = 0 for all ψp ∈ H1(Ω). (2.115)

2.3. Discretisation

In this section, the weak formulation (Problem 2.10) of the system of the compressible Navier-
Stokes equations (Problem 2.6) is discretised with finite elements in space and finite differences
in time. The discretisation is done by the method of lines, i.e., the finite element discretisation
in space is done first and the finite difference discretisation in time afterwards.

The presented scheme is formulated quite generally. The concrete choices of finite element
spaces and coefficients in the time-stepping scheme that are used for the numerical tests in
Chapter 6, are given in Section 4.1.
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2.3.1. Discretisation in space

The Finite Element Method (FEM) is based on the following idea: The space is discretised by
"elements" which allow a flexible approximation of the domain of interest. On each of these
elements, trial functions are defined and the approximate solution is intended to be a linear
combination of them. To get the corresponding coefficients for the linear combination, this
trial is put into the weak formulation of the PDE. As test functions appropriate functions from
a finite-dimensional test space are chosen and the integrals are evaluated exactly up to the
precision of the applied quadrature rule. Both test and trial functions form finite dimensional
spaces spanned by themselves. Due to the linear nature of these spaces it is sufficient to test
only with the basis functions of the test space in the weak formulation. Thus the quality of the
approximation is mainly influenced by the approximation of the infinite dimensional spaces by
the finite dimensional ones.

If the locally defined trial functions are extended to functions that are globally defined on the
whole domain, the FEM is a special variant of the Petrov-Galerkin approximation.

Let Ω be defined as in (2.94). Let T h ⊂ R3 be a triangulation of Ω with the properties

⋃

K∈T h

= Ω, K ̸= ∅ (∀K ∈ T h),
◦
Ki ∩

◦
Kj= ∅ (∀Ki,Kj ∈ T h, i ̸= j), (2.116)

where
◦
K denotes the interior of a subset K ⊂ R3.

Let Vh ⊂ H1(Ω) a finite dimensional subspace for the velocity components u, v, w, Xh ⊂ H1
0 (Ω)

a finite dimensional subspace for the test functions of velocity, Qh ⊂ H1(Ω) a finite dimensional
subspace for density ρ∗ and temperature θ∗v , Yh ⊂ H1

0 (Ω) a finite dimensional subspace for the test
functions of density and temperature, Ph ⊂ H1(Ω) a finite dimensional subspace for the pressure
p∗, as well as Zh ⊂ H1

0 (Ω) a finite dimensional subspace for the test functions of pressure, where
Vh, Qh, Ph, Xh, Yh, Zh are spaces of continuous and piecewise polynomial functions defined on
T h. Details are given in Subsection 4.1.

With the above notations, the semi-discrete, i.e., discrete in space and continuous in time,
problem to the Problem 2.10 reads:

Problem 2.11 (Semi-discrete problem of Problem 2.10)
Let Ω ⊂ R3 be as in (2.94), T h a triangulation of Ω as in (2.116) and T ≥ 0 a final point in
time. Find

vh ∈
(
C1 ([0, T ];Vh)

)3
, ρ∗h, θ

∗
v,h ∈ C1 ([0, T ];Qh) , p∗h ∈ C ([0, T ];Ph) , (2.117)

where
vh := (uh, vh, wh)

⊤ ,

such that the following conditions are satisfied:

1. The variables satisfy

wh = 0 on [0, T ]× Γ, (2.118)

as well as periodic boundary conditions in both horizontal directions.
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2. The integral identity

0 = (∂tvh, φv,h)

+

(
(vh · ∇)vh +

1

ρh
∇p∗h +

(
−fvh, fuh,

ρ∗h
ρh
g

)⊤
, φv,h

)
(2.119)

+ (νa∇vh,∇φv,h) ,

where
ρh := ρ∗h + ρ0,

holds for all φv,h ∈ (Xh)
3 and all t ∈ [0, T ]. Furthermore, it holds

(vh(0)− v0, ψv,h) = 0 ∀ψv,h ∈ (Vh)
3. (2.120)

3. The integral identity

(∂tρ
∗
h, φρ,h) + (wh∂zρ0 + vh · ∇ρ∗h + ρhdiv vh, φρ,h) = 0, (2.121)

where
ρh := ρ∗h + ρ0,

holds for all φρ,h ∈ Yh and all t ∈ [0, T ]. Furthermore, it holds

(ρ∗h(0)− ρ∗0, ψρ,h) = 0 ∀ψρ,h ∈ Qh. (2.122)

4. The integral identity
(
∂tθ

∗
v,h, φθ,h

)
+
(
wh∂zθv,0 + (v · ∇) θ∗v,h, φθ,h

)
= 0 (2.123)

holds for all φθ,h ∈ Yh and all t ∈ [0, T ]. Furthermore, it holds
(
θ∗v,h(0)− θ∗v,0, ψθ,h

)
= 0 ∀ψθ,h ∈ Qh. (2.124)

5. The integral identity

(p∗h, φp,h) =

⎛
⎜⎝

⎡
⎣

(
−gκ

θz
ln
(
1 + θzz

θ0

)
+R′

)
ρ∗h

(
θ∗v,h + θv,0

)

p0
+ 1 +

θ∗v,h
θv,0

⎤
⎦

1
1−κ

p0, φp,h

⎞
⎟⎠

− (p0, φp,h)
(2.125)

holds for all φp,h ∈ Zh and all t ∈ [0, T ]. Furthermore, it holds

(p∗h(0)− p∗0, ψp,h) = 0 ∀ψp,h ∈ Ph. (2.126)

Remark 2.12 (Semi-discrete problem of Problem 2.10)
Problem 2.11 forms a system of ordinary differential-algebraic equations, where the occurring
ordinary differential equations (2.119), (2.121) and (2.123) are of first order. The semi-discrete
ideal gas law (2.125) forms the algebraic constraint.
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2.3.2. Stabilisation

Finite element computations of flow phenomena comprise two main sources of potential numerical
instabilities which are linked to the Galerkin or Petrov-Galerkin formulation of the problem.
The first source is induced by the presence of advection terms in the PDE, which can result in
spurious node-to-node oscillations in the transported quantities [72]. These oscillations can be
observed especially in advection-dominated flows, where the Reynolds number is high, and in
flows with sharp layers or steep gradients in the solution. The second source of instability arises
in flows, which are governed by equation sets with saddle-point structure, where inappropriate
combinations of finite-element interpolations are used for the velocity and pressure components,
see Subsection 3.3.4.

In the case of compressible flows governed by the compressible Navier-Stokes equations (Prob-
lem 2.10), only the first source of instabilities is relevant [43, 74]. An overview about stabilisation
techniques for compressible flows is given in [43, 74] and for incompressible flows in [1, 16, 17, 72,
73], for example. In the following, only residual based stabilisation techniques are considered.
These methods are constructed by adding an appropriately weighted multiple of the residual
of the strong problem formulation (Problem 2.6), evaluated for the semi-discrete solution of
Problem 2.11, element-wise to the residual form of the semi-discrete solution of Problem 2.11.
These additional terms can be interpreted as an element-wise penalty term and, therefore, they
penalise the violation of the underlying conservation law on the element level. Consequently, the
conservation property is not only demanded globally over the whole domain, but also to a certain
extend per element. Thus, node-to-node oscillations are avoided effectively without introducing
excessive numerical dissipation and the resulting scheme is consistent, i.e., if the continuous
solution of Problem 2.6 or Problem 2.10, respectively, is inserted in the stabilised formulation,
the additional stabilisation terms vanish and, therefore, the continuous solution still solves the
stabilised problem.

Problem 2.13 (Stabilised semi-discrete problem of Problem 2.10)
Let Ω ⊂ R3 be as in (2.94), T h a triangulation of Ω as in (2.116) and T ≥ 0 a final point in
time. Furthermore, let the residual operators of the momentum, continuity and thermodynamic
energy equation, respectively, be defined as

R v (u, r, q) = ∂tu+ (u · ∇)u+
1

ρ0 + r
∇q − νa∆u−

(
fv,−fu,− r

ρ0 + r
g

)⊤
, (2.127)

R ρ (u, r) = ∂tr + w∂zρ0 + u · ∇r + (ρ0 + r) div u, (2.128)
R θ (u, s) = ∂ts+ w∂zθv,0 + (u · ∇) s, (2.129)

where
u := (u, v, w)⊤ .

Let v̄ ∈ (Vh)
3 be a reference velocity field. Find

vh ∈
(
C1 ([0, T ];Vh)

)3
, ρ∗h, θ

∗
v,h ∈ C1 ([0, T ];Qh) , p∗h ∈ C ([0, T ];Ph) , (2.130)

where
vh := (uh, vh, wh)

⊤ ,

such that the following conditions are satisfied:
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1. The variables satisfy

wh = 0 on [0, T ]× Γ, (2.131)

as well as periodic boundary conditions in both horizontal directions.

2. The integral identity

0 = (∂tvh, φv,h)

+

(
(vh · ∇)vh +

1

ρh
∇p∗h +

(
−fvh, fuh,

ρ∗h
ρh
g

)⊤
, φv,h

)

+ (νa∇vh,∇φv,h)

+
∑

K∈T h

τv,K (R v (vh, ρ
∗
h, p

∗
h), (v̄ · ∇)φv,h − νa∆φv,h)K ,

(2.132)

where
ρh := ρ∗h + ρ0,

holds with τv,K ≥ 0 for all φv,h ∈ (Xh)
3 and all t ∈ [0, T ], where

ρh := ρ∗h + ρ0.

Furthermore, it holds

(vh(0)− v0, ψv,h) = 0 ∀ψv,h ∈ (Vh)
3. (2.133)

3. The integral identity

0 = (∂tρ
∗
h, φρ,h) + (wh∂zρ0 + vh · ∇ρ∗h + ρhdiv vh, φρ,h)

+
∑

K∈T h

τρ,K (R ρ (vh, ρ
∗
h), v̄ · ∇φρ,h)K , (2.134)

where
ρh := ρ∗h + ρ0,

holds with τρ,K ≥ 0 for all φρ,h ∈ Yh and all t ∈ [0, T ], where

ρh := ρ∗h + ρ0.

Furthermore, it holds
(ρ∗h(0)− ρ∗0, ψρ,h) = 0 ∀ψρ,h ∈ Qh. (2.135)

4. The integral identity

0 =
(
∂tθ

∗
v,h, φθ,h

)
+
(
wh∂zθv,0 + (v · ∇) θ∗v,h, φθ,h

)

+
∑

K∈T h

τθ,K
(
R θ

(
vh, θ

∗
v,h

)
, v̄ · ∇φθ,h

)
K
, (2.136)

holds with τθ,K ≥ 0 for all φθ,h ∈ Yh and all t ∈ [0, T ]. Furthermore, it holds
(
θ∗v,h(0)− θ∗v,0, ψθ,h

)
= 0 ∀ψθ,h ∈ Qh. (2.137)
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5. The integral identity

(p∗h, φp,h) =

⎛
⎜⎝

⎡
⎣

(
−gκ

θz
ln
(
1 + θzz

θ0

)
+R′

)
ρ∗h

(
θ∗v,h + θv,0

)

p0
+ 1 +

θ∗v,h
θv,0

⎤
⎦

1
1−κ

p0, φp,h

⎞
⎟⎠

− (p0, φp,h)
(2.138)

holds for all φp,h ∈ Zh and all t ∈ [0, T ]. Furthermore, it holds

(p∗h(0)− p∗0, ψp,h) = 0 ∀ψp,h ∈ Ph. (2.139)

Remark 2.14 (Stabilised semi-discrete problem of Problem 2.10)
1. The choice of the reference velocity v̄ is made precise in the next subsection in the context

of the discretisation in time. Basically, the reference velocity shall be “close” to the actual
velocity field vh.

2. If the reference velocity and the gradient of the corresponding test function are perpen-
dicular to each other, then the scalar product of both is zero and, therefore, does not
contribute to the stabilisation. If the two vectors are parallel, the scalar product of both
takes its maximum value and the stabilisation is strongest. Consequently, this part of the
stabilisation only acts in the direction of the reference velocity field.

3. The stabilisation term of the momentum equation is additionally stabilised by the Laplace
of the test functions times the diffusion coefficient of air. Therefore, this term always adds
a certain amount of stabilisation independent of the reference velocity field.

4. The element-wise defined non-negative parameters τv,K , τρ,K and τθ,K are called stabilisa-
tion parameters and a precise definition of their values is given in the next subsection in
the context of the discretisation in time.

5. Remark 2.12 also holds true in the situation of Problem 2.13.

2.3.3. Discretisation in time

Let
0 =: t0 < t1 < t2 < . . . < tM := T (2.140)

be an equidistant discretisation of the interval [0, T ], i.e., all intervals Ii := (ti−1, ti), i = 1, . . . ,M ,
have the same length ∆t := ti − ti−1 = const.

Let θ ∈ [0, 1]. The time derivative of a quantity q ∈ C1(0, T ;R) is discretised by

q(tn+1)− q(tn)
∆t

= θ∂tq(tn+1) + (1− θ)∂tq(tn) +O

((
1

2
− θ
)
·∆t,∆t2

)
, (2.141)

This scheme is called the θ-family of time discretisation methods. For θ = 0 this scheme is called
explicit Euler method, for θ = 1

2 Crank-Nicolson method and for θ = 1 implicit Euler method,
respectively, see, e.g., [61].

According to Remark 2.14, Problem 2.13 forms a system of ordinary differential-algebraic
equations, where the differential part is of first order. Therefore, every discretisation scheme for
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a system of ordinary differential-algebraic equations of first order can be applied to Problem 2.13
like Runge-Kutta methods, multistep methods etc., see, e.g., [70].

Applying (2.141) to Problem 2.13 yields the following fully discrete formulation of Problem
2.6.

Problem 2.15 (Discrete problem of Problem 2.10)
Let Ω ⊂ R3 be as in (2.94), T h a triangulation of Ω as in (2.116) and T ≥ 0 a final point in
time. Furthermore, let ti, i = 0, . . . ,M be a an equidistant discretisation of the interval [0, T ] as
defined in (2.140). Let v̄ ∈ (Vh)

3 be a reference velocity field and θj ∈ [0, 1], j = 1, . . . , 12 such
that

θj + θj+6 = 1, j = 1, . . . , 6.

Find

v
(n)
h ∈ V 3

h , (ρ∗h)
(n) ,

(
θ∗v,h

)(n) ∈ Qh, (p∗h)
(n) ∈ Ph, ∀ n = 1, . . . ,M, (2.142)

where

v
(n)
h :=

(
u
(n)
h , v

(n)
h , w

(n)
h

)⊤
,

such that the following conditions are satisfied:

1. The variables satisfy

w
(n)
h = 0 on Γ, ∀ n = 0, . . . ,M, (2.143)

as well as periodic boundary conditions in both horizontal directions.
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2. The integral identity

0 =
((

v
(n+1)
h − v

(n)
h

)
+∆tθ1

(
v
(n)
h · ∇

)
v
(n)
h +∆tθ7

(
v
(n+1)
h · ∇

)
v
(n+1)
h , φv,h

)

+

⎛
⎝∆tθ2

1

ρ
(n)
h

∇(p∗h)(n) −∆tθ4

(
fv

(n)
h ,−fu(n)h ,−(ρ∗h)

(n)

ρ
(n)
h

g

)⊤

, φv,h

⎞
⎠

+

⎛
⎝∆tθ8

1

ρ
(n+1)
h

∇(p∗h)(n+1) −∆tθ10

(
fv

(n+1)
h ,−fu(n+1)

h ,−(ρ∗h)
(n+1)

ρ
(n+1)
h

g

)⊤

, φv,h

⎞
⎠

+
(
∆tθ3ν∇v(n)

h +∆tθ9ν∇v(n+1)
h ,∇φv,h

)

+
∑

K∈T h

τv,K
(
vn+1
h − vn

h , (v̄ · ∇)φv,h − νa∆φv,h

)
K

+
∑

K∈T h

τv,K

(
∆tθ1

(
v
(n)
h · ∇

)
v
(n)
h , (v̄ · ∇)φv,h − νa∆φv,h

)
K

+
∑

K∈T h

τv,K

(
∆tθ7

(
v
(n+1)
h · ∇

)
v
(n+1)
h , (v̄ · ∇)φv,h − νa∆φv,h

)
K

+
∑

K∈T h

τv,K

(
∆tθ2

1

ρ
(n)
h

∇(p∗h)n, (v̄ · ∇)φv,h − νa∆φv,h

)

K

−
∑

K∈T h

τv,K

⎛
⎝∆tθ4

(
fv

(n)
h ,−fu(n)h ,−(ρ∗h)

(n)

ρ
(n)
h

g

)⊤

, (v̄ · ∇)φv,h − νa∆φv,h

⎞
⎠

K

+
∑

K∈T h

τv,K

(
∆tθ8

1

ρ
(n+1)
h

∇(p∗h)(n+1), (v̄ · ∇)φv,h − νa∆φv,h

)

K

−
∑

K∈T h

τv,K

⎛
⎝∆tθ10

(
fv

(n+1)
h ,−fu(n+1)

h ,−(ρ∗h)
(n+1)

ρ
(n+1)
h

g

)⊤

, (v̄ · ∇)φv,h − νa∆φv,h

⎞
⎠

K

−
∑

K∈T h

τv,K

(
∆tθ3ν∆v

(n)
h , (v̄ · ∇)φv,h − νa∆φv,h

)
K

−
∑

K∈T h

τv,K

(
∆tθ9ν∆v

(n+1)
h , (v̄ · ∇)φv,h − νa∆φv,h

)
K

(2.144)
holds with τv,K ≥ 0 for all φv,h ∈ (Xh)

3 and all n = 0, . . . ,M − 1, where

ρ
(i)
h := (ρ∗h)

(i) + ρ0.

Furthermore, it holds

(
v
(0)
h − v0, ψv,h

)
= 0 ∀ψv,h ∈ (Vh)

3. (2.145)
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3. The integral identity

0 =
(
(ρ∗h)

(n+1) − (ρ∗h)
(n), φρ,h

)

+
(
∆tθ5

(
w

(n)
h ∂zρ0 + v

(n)
h · ∇(ρ∗h)(n) + ρ

(n)
h div v

(n)
h

)
, φρ,h

)

+
(
∆tθ11

(
w

(n+1)
h ∂zρ0 + v

(n+1)
h · ∇(ρ∗h)(n+1) + ρ

(n+1)
h div v

(n+1)
h

)
, φρ,h

)

+
∑

K∈T h

τρ,K

(
(ρ∗h)

(n+1) − (ρ∗h)
(n), v̄ · ∇φρ,h

)
K

+
∑

K∈T h

τρ,K

(
∆tθ5

(
w

(n)
h ∂zρ0 + v

(n)
h · ∇(ρ∗h)(n) + ρ

(n)
h div v

(n)
h

)
, v̄ · ∇φρ,h

)
K

+
∑

K∈T h

τρ,K

(
∆tθ11

(
w

(n+1)
h ∂zρ0 + v

(n+1)
h · ∇(ρ∗h)(n+1)

)
, v̄ · ∇φρ,h

)
K

+
∑

K∈T h

τρ,K

(
∆tθ11ρ

(n+1)
h div v

(n+1)
h , v̄ · ∇φρ,h

)
K

(2.146)

holds with τρ,K ≥ 0 for all φρ, ∈ Yh and all n = 0, . . . ,M − 1, where

ρ
(i)
h := (ρ∗h)

(i) + ρ0.

Furthermore, it holds
(
(ρ∗h)

(0) − ρ∗0, ψρ,h

)
= 0 ∀ψρ,h ∈ Qh. (2.147)

4. The integral identity

0 =
(
(θ∗v,h)

(n+1) − (θ∗v,h)
(n), φθ,h

)

+
(
∆tθ6

(
w

(n)
h ∂zθv,0 + v

(n)
h · ∇(θ∗v,h)(n)

)
, φθ,h

)

+
(
∆tθ12

(
w

(n+1)
h ∂zθv,0 + v

(n+1)
h · ∇(θ∗v,h)(n+1)

)
, φθ,h

)

+
∑

K∈T h

τθ,K

(
(θ∗v,h)

(n+1) − (θ∗v,h)
(n), v̄ · ∇φθ,h

)
K

+
∑

K∈T h

τθ,K

(
∆tθ6

(
w

(n)
h ∂zθv,0 + v

(n)
h · ∇(θ∗v,h)(n)

)
, v̄ · ∇φθ,h

)
K

+
∑

K∈T h

τθ,K

(
∆tθ12

(
w

(n+1)
h ∂zθv,0 + v

(n+1)
h · ∇(θ∗v,h)(n+1)

)
, v̄ · ∇φθ,h

)
K

(2.148)

holds with τθ,K ≥ 0 for all φθ ∈ Yh and all n = 0, . . . ,M − 1. Furthermore, it holds
((
θ∗v,h

)(0) − θ∗v,0, ψθ,h

)
= 0 ∀ψθ,h ∈ Qh. (2.149)

5. The integral identity

0 =
(
(p∗h)

(n+1) + p0, φp,h

)

−

⎛
⎜⎝

⎡
⎣

(
−gκ

θz
ln
(
1 + θzz

θ0

)
+R′

)
(ρ∗h)

(n+1)θ
(n+1)
v,h

p0
+ 1 +

(θ∗v,h)
(n+1)

θv,0

⎤
⎦

1
1−κ

p0, φp,h

⎞
⎟⎠

(2.150)
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holds for all φp,h ∈ Zh and all n = 0, . . . ,M − 1, where

θ
(n+1)
v,h := (θ∗v,h)

(n+1) + θv,0.

Furthermore, it holds
(
(p∗h)

(0) − p∗0, ψp,h

)
= 0 ∀ψp,h ∈ Ph. (2.151)

2.3.3.1. Choice of stabilisation parameters

With the notion of a time-discrete solution of Problem 2.15 and the corresponding notation of
the time discretisation, the precise choice of the stabilisation parameters τv,K , τρ,K and τθ,K is
stated next.

The question how to choose the optimal stabilisation parameters in the context of compressible
and incompressible flows is, to the best of the knowledge of the author, open and an active field
of research. Many choices are proposed in the literature, see, e.g., [1, 16, 17, 43, 72–74] and the
references therein, which are often based on heuristic arguments and observations. The choice
given here can be found in, e.g., [13, 17, 40], and for a derivation of the parameters refer to these
references.

Let hK > 0 denote the diameter of the cell K ∈ T h, ∆t > 0 the time-step size and

∥u∥∞,K := max

{√
u(x)⊤u(x) : x ∈ K

}
,

i.e., the point-wise maximum of the vector field u on K in the Euclidean norm. The stabilisation
parameters in Problem 2.15 are chosen as follows:

τv,K = δ0

[
1

∆t
+
νa
h2K

+
∥v̄∥∞,K

hK

]−1

,

τρ,K = τθ,K = ∥v̄∥2∞,K · τv,K ,
δ0 = 0.2,

where
v̄ := v

(n)
h ,

i.e., in the time-step for the computation of the quantities at the next point in time tn+1, the
velocity field at the last time-step v

(n)
h is taken as reference velocity.
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A characteristic property of the fully Compressible Navier-Stokes model, which was derived
in the previous chapter, is the possible presence of acoustic waves. Whenever modes travelling
at the speed of sound arise in the dynamics of the considered application scenario, they are the
motion with the highest speed in the domain.

Considering a numerical discretisation of the governing equations, the maximum time-step
size, that can be chosen for a stable simulation of the dynamics in time, depends on the ratio
of the minimum grid spacing to the speed of the fastest motion in the domain. For explicit
schemes, the time-step size necessarily has to be smaller than this ratio, whereas in the case
implicit schemes the time-step size may be chosen larger, depending on the applied time-stepping
method. Therefore, the presence of acoustic waves limits the maximum possible stable choice
of the time-step size. Particularly, this issue arises for acoustic modes, which travel in vertical
direction, as the grid spacing in the vertical is usually considerably finer than in the horizontal
[46].

But for many relevant atmospheric fluid flows, only the velocity field at Mach numbers much
smaller than one is of interest and not the sound produced by the fluid flow. Therefore, filtering
out the acoustic waves as a solution to the governing equations, i.e., modifying these equations
on the modelling level, is a feasible approach in order to relax the demands on the time-stepping
method in terms of the maximum possible time-step size. As the described problem is in par-
ticular relevant in vertical direction, there are basically two well-known possibilities to remove
vertical acoustic modes [46]. One possibility is to remove the total derivative dw

dt from the vertical
momentum equation. The other possible approach is to remove the local derivative ∂tρ from the
continuity equation.

The first approach yields the so called hydrostatic approximation and the second one the so
called anelastic approximation. The popular Boussinesq approximation is a special case of the
anelastic approximation in the case of a shallow flow. Therefore, a model, which solves the full
vertical momentum equation, is called a non-hydrostatic model. Furthermore, a non-hydrostatic
model can be anelastic, i.e., the anelastic continuity equation is solved, or elastic, i.e., the full
continuity equation is solved. Therefore, the fully Compressible Navier-Stokes model presented
in Chapter 2 is an elastic non-hydrostatic model. Observe, that the incompressible Navier-Stokes
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equations are a special case of an anelastic model in this context. Both approximations, hydro-
static and anelastic, require further modifications or even new equations in order to obtain all
solution components, i.e., velocity, density, temperature and pressure, see, [42, 46], for example.
It has to be emphasized, that in both hydrostatic and anelastic models acoustic waves, which
propagate in horizontal directions, may still be present.

In this chapter, another approach to filter out acoustic waves from the solution of the governing
equations is considered. Based on a scale analysis of the pressure for flows at Low-Mach numbers
it can be derived, that certain parts of the total pressure are negligible small compared to the
others. Therefore, it is justifiable to neglect these parts in the ideal gas law and, therefore,
decouple density from these small parts of pressure. The result is the so called Low-Mach number
approximation. It turns out, that this leads to a removal of acoustic modes from the solution of
the governing system of equations in all spatial directions. Furthermore, the resulting model is
still both non-hydrostatic and elastic. Approximations of this type have been studied since the
1980s, see references [52, 56, 57], for example.

The remainder of this chapter is organised as follows: In Section 3.1, the Low-Mach number
approximation is applied to the fully compressible Navier-Stokes equations. The applied splitting
of the pressure introduces a new part of pressure, which needs an additional equation to determine
its evolution in time. The required equation is derived in Section 3.2. The discretisation of the
resulting governing system of equations by means of finite elements in space and finite differences
in time is described in Section 3.3.

3.1. Derivation

In order to filter out acoustic waves from the compressible Navier-Stokes equations by means of
the Low-Mach number approximation, the total pressure p is split in three parts [15],

p(x, t) := pth(t) + p0(x) + p∗(x, t), (3.1)

where pth denotes the thermodynamic pressure, which is constant in space, p0 is the hydrostatic
pressure and corresponds to the pressure reference state derived in (2.84), and p∗ is the hydro-
dynamic pressure. In the Low-Mach number flow regime, it holds [15, 56, 57]

|p∗(x, t)| ≪ |pth(t) + p0(x)|

and, therefore, the hydrodynamic part of the pressure may be neglected in the ideal gas law.
Consequently, density is decoupled from the hydrodynamic pressure part, which implies the
filtering of acoustic modes. A rigorous theoretical scale analysis is given in [57].

Remark 3.1 (Pressure splitting)
The scale analysis in [57] leads to a splitting

p(x, t) = pth(t) + p̃(x, t)

with
|p̃(·, t)| ≪ |pth(t)| .

In atmospheric dynamics, the pressure reference state p0(x) holds an important role for the
stability of the stratification of the atmosphere, see Subsection 2.1.5. Therefore, it is separately
considered and, as it is constant in time and does not account for acoustic modes, is treated in
the ideal gas law like the thermodynamic pressure part pth.
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Consequently, the ideal gas law becomes an equation for the density,

ρ =
(1000 hPa)κ (pth(t) + p0(x))

1−κ

Rθv
. (3.2)

Inserting (3.2) into (2.90) and using (2.97) yields

0 = ∂tρ+ div ρv

(3.2)
= ∂t

(
(1000 hPa)κ (pth + p0)

1−κ

Rθv

)
+ div

(
(1000 hPa)κ (pth + p0)

1−κ

Rθv
· v
)

=
(1000 hPa)κRθv(1− κ)∂tpth(pth + p0)

−κ − (1000 hPa)κ (pth + p0)
1−κR∂tθ

∗
v

R2θ2v

+

(
(1000 hPa)κ (pth + p0)

1−κ

Rθv

)
div v

+ v ·
(
Rθv (1000 hPa)

κ (1− κ)(pth + p0)
−κ

R2θ2v
∇p0 −

(1000 hPa)κ (pth + p0)
1−κR

R2θ2v
∇θv

)

=
(1000 hPa)κ (1− κ)(pth + p0)

−κ

Rθv
(∂tpth + v · ∇p0)

+

(
(1000 hPa)κ (pth + p0)

1−κ

Rθv

)
div v

− (1000 hPa)κ (pth + p0)
1−κR

R2θ2v
(∂tθ

∗
v + v · ∇θv)

(2.97)
=

(1000 hPa)κ (1− κ)(pth + p0)
−κ

Rθv
(∂tpth + v · ∇p0)

+

(
(1000 hPa)κ (pth + p0)

1−κ

Rθv

)
div v.

Multiplying both sides by
Rθv

(1000 hPa)κ (pth + p0)−κ(1− κ) (3.3)

finally yields the continuity equation

∂tpth + v · ∇p0 +
pth + p0
1− κ div v = 0 (3.4)

of the Low-Mach number approximation.
Remark 3.2
The multiplication by (3.3) is allowed since in the considered Low-Mach regime it holds

pth + p0 > 0 and θv > 0 for all x ∈ Ω, t ∈ [0, T ].

Observe, that p∗ is only determined up to an additive constant in the Low-Mach number
approximation because only its gradient occurs in the momentum equation and there is no
algebraic law or instationary partial differential equation that determines the pressure uniquely.
Therefore, the hydrodynamic part of the pressure p∗ is required to fulfil the condition

∫

Ω
p∗dx = 0. (3.5)
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at any time t ∈ [0, T ].
So the system of the Low-Mach number approximation reads in analogy to Problem 2.6:

Problem 3.3 (Low-Mach model, without pth)
Let Ω ⊂ R3 be as in (2.94) and T ≥ 0 a final point in time. Find a velocity field v := (u, v, w)⊤ :
[0, T ) × Ω → R3, a density perturbation ρ∗ : [0, T ) × Ω → R, a temperature perturbation
θ∗v : [0, T )×Ω→ R and a pressure perturbation p∗ : [0, T )×Ω→ R, which fulfils (3.5), satisfying

∂tv + (v · ∇)v +
1

ρ
∇p∗ − νa∆v +

(
−fv, fu, ρ

∗

ρ
g

)⊤
= 0 (3.6)

∂tpth + w∂zp0 +
pth + p0
1− κ div v = 0 (3.7)

∂tθ
∗
v + w∂zθv,0 + (v · ∇) θ∗v = 0 (3.8)

(
p0

pth+p0

)κ
pthθv,0 +

[(
p0

pth+p0

)κ
− 1
]
p0θv,0 − p0θ∗v(

− gκ
R′θz

ln
(
1 + θzz

θ0

)
+ 1
)
R′ (θv,0 + θ∗v) θv,0

= ρ∗ (3.9)

w = 0 on [0, T ]× Γ (3.10)
v(0, x) = v0(x), ρ∗(0, x) = ρ∗0(x), θ∗v(0, x) = θ∗v,0(x), p∗(0, x) = p∗0(x) (3.11)

as well as periodic boundary conditions in both horizontal directions for all variables v, ρ∗, θ∗v
and p∗,

ρ∗0 :=
(1000 hPa)κ (pth(t) + p0(x))

1−κ

R′
(
θ∗v,0 + θ0

) − ρ0

and
ρ := ρ∗ + ρ0.

Equations (3.6)-(3.9) are required to hold on (0, T )×Ω and (3.11) is asked to hold on {t = 0}×Ω.

Remark 3.4 (Stability of ideal gas law)
In analogy to Remark 2.9 the ideal gas law (3.2) is reformulated towards (3.9) in order to
increase the stability of its numerical evaluation for small perturbations and small thermodynamic
pressure as follows. As in Remark 2.9, (2.101) and (2.102) are inserted into (3.2)

ρ∗ =
(1000 hPa)κ(pth + p0)

1−κ

R′ (θ∗v + θv,0)
− ρ0

=
pκ0(pth + p0)

1−κ

bpR′ (θ∗v + θv,0)
− p0
R′θv,0bp

=

(
p0

pth+p0

)κ
(pth + p0)

bpR′ (θ∗v + θv,0)
− p0
R′θv,0bp

=

(
p0

pth+p0

)κ
(pth + p0)θv,0 − p0 (θ∗v + θv,0)

bpR′ (θ∗v + θv,0) θv,0

=

(
p0

pth+p0

)κ
pthθv,0 +

[(
p0

pth+p0

)κ
− 1
]
p0θv,0 − p0θ∗v

bpR′ (θ∗v + θv,0) θv,0
,

which is (3.9).
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3.2. Determination of the thermodynamic pressure

With the splitting of the pressure described above, the thermodynamic part of the pressure has
been introduced as additional unknown function of time and has to be determined independently
of (3.6)-(3.9).

The continuity equation (3.7) shall hold at any time t ∈ [0, T ) and at all points in Ω. Therefore,
the integral of (3.7) over Ω has to vanish at any time t:

∫

Ω

(
∂tpth + w∂zp0 +

pth + p0
1− κ div v

)
dx = 0. (3.12)

Since ∂tpth does not depend on the spatial location x, it can be extracted from the integral
expression (3.12) due to the linearity of integration. This yields the equation

∂tpth = −
∫
Ω ((1− κ)w∂zp0 + (pth + p0)div v) dx

(1− κ) |Ω| , (3.13)

where
|Ω| :=

∫

Ω
1dx

denotes the volume of the domain Ω.

Remark 3.5 (Role of thermodynamic pressure pth)
Since the dynamic behaviour of pth in time is derived from (3.7), the role of pth in the Low-
Mach model can be interpreted as the quantity, which balances thermodynamic effects in the
conservation of mass in the course of time. Therefore, at t = 0, where everything is balanced
and the dynamics of the system just start,

pth(0) = 0

can be chosen.

The integral in the numerator of (3.13) can be simplified as follows: The boundary conditions
of Problem 3.3, together with the definition of Ω and its boundary (2.94), yield the following
identity:

∫

Ω
((1− κ)w∂zp0 + (pth + p0)div v) dx =

∫

Ω

(
(1− κ)w∂zp0 +

3∑

i=1

(pth + p0)∂ivi

)
dx

=

∫

Ω

(
(1− κ)w∂zp0 −

3∑

i=1

∂i(pth + p0)vi

)
dx

+

∫

Γ
(pth + p0)nivids

  
=0

=

∫

Ω
((1− κ)w∂zp0 − w∂zp0) dx

= −
∫

Ω
κw∂zp0dx.

Consequently, the full system of the Low-Mach number approximation reads:
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Problem 3.6 (Low-Mach model)
Let Ω ⊂ R3 be as in (2.94) and T ≥ 0 a final point in time. Find a velocity field v := (u, v, w)⊤ :
[0, T ) × Ω → R3, a density perturbation ρ∗ : [0, T ) × Ω → R, a temperature perturbation
θ∗v : [0, T )×Ω→ R, a pressure perturbation p∗ : [0, T )×Ω→ R and a thermodynamic pressure
pth : [0, T )→ R, which fulfils (3.5), satisfying

∂tv + (v · ∇)v +
1

ρ
∇p∗ − νa∆v +

(
−fv, fu, ρ

∗

ρ
g

)⊤
= 0 (3.14)

∂tpth + w∂zp0 +
pth + p0
1− κ div v = 0 (3.15)

∂tθ
∗
v + w∂zθv,0 + (v · ∇) θ∗v = 0 (3.16)

(
p0

pth+p0

)κ
pthθv,0 +

[(
p0

pth+p0

)κ
− 1
]
p0θv,0 − p0θ∗v(

− gκ
R′θz

ln
(
1 + θzz

θ0

)
+ 1
)
R′ (θv,0 + θ∗v) θv,0

= ρ∗ (3.17)

∂tpth −
∫
Ω κw∂zp0dx

(1− κ) |Ω| = 0 (3.18)

w = 0 on [0, T ]× Γ (3.19)
v(0, x) = v0(x), ρ∗(0, x) = ρ∗0(x), θ∗v(0, x) = θ∗v,0(x), p∗(0, x) = p∗0(x), pth(0) = 0 (3.20)

as well as periodic boundary conditions in both horizontal directions for all variables v, ρ∗, θ∗v
and p∗,

ρ∗0 :=
(1000 hPa)κ (pth(t) + p0(x))

1−κ

R′
(
θ∗v,0 + θ0

) − ρ0

and
ρ := ρ∗ + ρ0.

Equations (3.14)-(3.17) are required to hold on (0, T ) × Ω and (3.20) is asked to hold on {t =
0} × Ω.

3.3. Discretisation

The discrete formulation of the Low-Mach model is derived in a different way than the one for the
Compressible Navier-Stokes model above, see Section 2.3. First, Problem 3.6 is semi-discretised
in time, which yields a sequence of systems of stationary partial differential equations (Subsec-
tion 3.3.1). The resulting sequence is formulated as a sequence of weak problems afterwards
(Subsection 3.3.2). Subsequently, a finite element discretisation is applied in space (Subsection
3.3.3) and, finally, stabilised (Subsection 3.3.4).

3.3.1. Discretisation in time

Problem 3.6 is discretised in time with the so called θ-scheme as above for the Compressible
Navier-Stokes model, see Subsection 2.3.3. With the temporal grid and the notations, that have
been introduced above, the semi-discrete formulation of Problem 3.6 reads as follows:

Problem 3.7 (Semi-discrete formulation of Problem 3.6)
Let Ω ⊂ R3 be as in (2.94) and T ≥ 0 a final point in time. Furthermore, let ti, i = 0, . . . ,M
be a an equidistant discretisation of the interval [0, T ] as defined in (2.140). Let θj ∈ [0, 1],
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j = 1, . . . , 12 be such that
θj + θj+6 = 1, j = 1, . . . , 6,

as well as θ13, θ14 ∈ [0, 1] such that
θ13 + θ14 = 1.

Find

v(n) ∈
(
C2(Ω)

)3
, (ρ∗)(n) , (θ∗v)

(n) ∈ C1(Ω), (p∗)(n) ∈ C1(Ω), p
(n)
th ∈ R ∀ n = 1, . . . ,M,

(3.21)
where

v(n) :=
(
u(n), v(n), w(n)

)⊤

and p∗ fulfils (3.5), such that the following conditions are satisfied:

1. The variables satisfy

w(n) = 0 on Γ, ∀ n = 0, . . . ,M, (3.22)

as well as periodic boundary conditions in both horizontal directions.

2. The partial differential equation

0 = v(n+1) − v(n) +∆tθ1(v
(n) · ∇)v(n) +∆tθ7(v

(n+1) · ∇)v(n+1)

+∆tθ2
1

ρ(n)
∇ (p∗)(n) +∆tθ8

1

ρ(n+1)
∇ (p∗)(n+1)

+∆tθ4

(
−fv(n), fu(n), (ρ

∗)(n)

ρ(n)
g

)⊤

+∆tθ10

(
−fv(n+1), fu(n+1),

(ρ∗)(n+1)

ρ(n+1)
g

)⊤

−∆tθ3νa∆v(n) −∆tθ9νa∆v(n)

(3.23)

holds in Ω for all n = 0, . . . ,M − 1. Furthermore, it holds

v(0) = v0 in Ω.

3. The partial differential equation

0 =
p
(n+1)
th − p(n)th

p
(n+1)
th + p0

+
∆tθ5

p
(n+1)
th + p0

(
w(n)∂zp0 +

p
(n)
th + p0
1− κ div v(n)

)

+
∆tθ11
1− κ div v(n+1) +

∆tθ11

p
(n+1)
th + p0

w(n+1)∂zp0

(3.24)

holds in Ω for all n = 0, . . . ,M − 1. Furthermore, it holds

(p∗)(0) = p∗0 in Ω.

4. The partial differential equation

0 = (θ∗v)
(n+1) − (θ∗v)

(n) +∆tθ6

(
w(n)∂zθv,0 +

(
v(n) · ∇

)
(θ∗v)

(n)
)

+∆tθ12

(
w(n+1)∂zθv,0 +

(
v(n+1) · ∇

)
(θ∗v)

(n+1)
) (3.25)

holds in Ω for all n = 0, . . . ,M − 1. Furthermore, it holds

(θ∗v)
(0) = θ∗v,0 in Ω.
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5. The identity
(

p0

p
(n+1)
th +p0

)κ

p
(n+1)
th θv,0 +

[(
p0

p
(n+1)
th +p0

)κ

− 1

]
p0θv,0 − p0 (θ∗v)(n+1)

(
− gκ

R′θz
ln
(
1 + θzz

θ0

)
+ 1
)
R′
(
θv,0 + (θ∗v)

(n+1)
)
θv,0

= (ρ∗)(n+1) (3.26)

holds in Ω for all n = 0, . . . ,M − 1. Furthermore, it holds

(ρ∗)(0) = ρ∗0 in Ω.

6. The identity

p
(n+1)
th − p(n)th −∆tθ13

∫
Ω κw

(n)∂zp0dx

(1− κ) |Ω| −∆tθ14

∫
Ω κw

(n+1)∂zp0dx

(1− κ) |Ω| = 0 (3.27)

holds for all n = 0, . . . ,M − 1. Furthermore, it holds

p
(0)
th = 0.

Remark 3.8 (Semi-discrete formulation of continuity equation)
The direct application of the θ-scheme to (3.15) leads to the semi-discrete equation

0 = p
(n+1)
th − p(n)th

+∆t

(
θ5

(
w(n)∂zp0 +

p
(n)
th + p0
1− κ div v(n)

)
+ θ11

(
w(n+1)∂zp0 +

p
(n+1)
th + p0
1− κ div v(n+1)

))
.

Dividing the whole equation by
(
p
(n+1)
th + p0

)
yields (3.24). This step is done in order to ensure

that the factors in front of div v(n+1) in (3.24) and 1
ρ(n+1)∇ (p∗)(n+1) in (3.23), respectively, have

the same order of magnitude. Otherwise, the condition number of the resulting Jacobian matrix
of the fully discrete system in Section 4.3 would be significantly increased and, consequently, the
convergence rate of the linear solver for the computation of the Newton step deteriorates, see
Chapter 4 for details about the solution process.

3.3.2. Weak formulation of semi-discrete problem

The weak formulation is quite similar to the compressible case, except, that the continuity
equation is tested with the test functions of the hydrodynamic pressure and the ideal gas law
with those of the density variable, see [13, 40, 52], for example. Therefore, it is even closer to
the case of the incompressible Navier-Stokes equations and, especially, inherits the saddle-point
structure of the weak formulation as it contains the Stokes system as a special case.

Problem 3.9 (Weak formulation of Problem 3.7)
Let Ω ⊂ R3 be as in (2.94) and T ≥ 0 a final point in time. Furthermore, let ti, i = 0, . . . ,M
be a an equidistant discretisation of the interval [0, T ] as defined in (2.140). Let θj ∈ [0, 1],
j = 1, . . . , 12 be such that

θj + θj+6 = 1, j = 1, . . . , 6,

as well as θ13, θ14 ∈ [0, 1] such that
θ13 + θ14 = 1.
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Find

v(n) ∈
(
H1(Ω)

)3
, (ρ∗)(n) , (θ∗v)

(n) , (p∗)(n) ∈ H1(Ω), p
(n)
th ∈ R ∀ n = 1, . . . ,M, (3.28)

where
v(n) :=

(
u(n), v(n), w(n)

)⊤

and p∗ fulfils (3.5), such that the following conditions are satisfied:

1. The variables satisfy

w(n) = 0 on Γ, ∀ n = 0, . . . ,M, (3.29)

as well as periodic boundary conditions in both horizontal directions.

2. The integral identity

0 =
(
v(n+1) − v(n) +∆tθ1(v

(n) · ∇)v(n) +∆tθ7(v
(n+1) · ∇)v(n+1), φv

)

+

(
∆tθ2

1

ρ(n)
∇ (p∗)(n) +∆tθ8

1

ρ(n+1)
∇ (p∗)(n+1), φv

)

+

⎛
⎝∆tθ4

(
−fv(n), fu(n), (ρ

∗)(n)

ρ(n)
g

)⊤

+∆tθ10

(
−fv(n+1), fu(n+1),

(ρ∗)(n+1)

ρ(n+1)
g

)⊤

, φv

⎞
⎠

+
(
∆tθ3νa∇v(n) +∆tθ9νa∇v(n),∇φv

)

(3.30)
holds for all φv ∈

(
H1

0 (Ω)
)3 and for all n = 0, . . . ,M − 1. Furthermore, it holds

(
v(0) − v0, ψv

)
= 0 for all ψv ∈

(
H1(Ω)

)3
.

3. The integral identity

0 =

(
p
(n+1)
th − p(n)th

p
(n+1)
th + p0

+
∆tθ5

p
(n+1)
th + p0

(
w(n)∂zp0 +

p
(n)
th + p0
1− κ div v(n)

)
, φp

)

+

(
∆tθ11
1− κ div v(n+1) +

∆tθ11

p
(n+1)
th + p0

w(n+1)∂zp0, φp

) (3.31)

holds for all φp ∈ H1
0 (Ω) and for all n = 0, . . . ,M − 1. Furthermore, it holds
(
(p∗)(0) − p∗0, ψp

)
= 0 for all ψp ∈ H1(Ω).

4. The integral identity

0 =
(
(θ∗v)

(n+1) − (θ∗v)
(n) +∆tθ6

(
w(n)∂zθv,0 +

(
v(n) · ∇

)
(θ∗v)

(n)
)
, φθ

)

+
(
∆tθ12

(
w(n+1)∂zθv,0 +

(
v(n+1) · ∇

)
(θ∗v)

(n+1)
)
, φθ

) (3.32)

holds for all φθ ∈ H1
0 (Ω) and for all n = 0, . . . ,M − 1. Furthermore, it holds
(
(θ∗v)

(0) − θ∗v,0, ψθ

)
= 0 for all ψθ ∈ H1(Ω).
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5. The integral identity

0 =
(
(ρ∗)(n+1), φρ

)

−

⎛
⎜⎜⎝

(
p0

p
(n+1)
th +p0

)κ

p
(n+1)
th θv,0 +

[(
p0

p
(n+1)
th +p0

)κ

− 1

]
p0θv,0 − p0 (θ∗v)(n+1)

(
− gκ

R′θz
ln
(
1 + θzz

θ0

)
+ 1
)
R′
(
θv,0 + (θ∗v)

(n+1)
)
θv,0

, φρ

⎞
⎟⎟⎠

(3.33)

holds for all φρ ∈ H1
0 (Ω) and for all n = 0, . . . ,M − 1. Furthermore, it holds
(
(ρ∗)(0) − ρ∗0, ψρ

)
= 0 for all ψρ ∈ H1(Ω).

6. The identity

p
(n+1)
th − p(n)th −∆tθ13

∫
Ω κw

(n)∂zp0dx

(1− κ) |Ω| −∆tθ14

∫
Ω κw

(n+1)∂zp0dx

(1− κ) |Ω| = 0 (3.34)

holds for all n = 0, . . . ,M − 1. Furthermore, it holds

p
(0)
th = 0.

3.3.3. Discretisation in space

Problem 3.9 is discretised in space with the finite element method analogously to Subsection 2.3.1.
With the same notation as for the finite element discretisation of the Compressible Navier-Stokes
model, the fully discrete formulation of Problem 3.6 reads:

Problem 3.10 (Discrete formulation of Problem 3.9)
Let Ω ⊂ R3 be as in (2.94), T h a triangulation of Ω as in (2.116) and T ≥ 0 a final point in
time. Furthermore, let ti, i = 0, . . . ,M be a an equidistant discretisation of the interval [0, T ] as
defined in (2.140). Let θj ∈ [0, 1], j = 1, . . . , 12 be such that

θj + θj+6 = 1, j = 1, . . . , 6,

as well as θ13, θ14 ∈ [0, 1] such that
θ13 + θ14 = 1.

Find

v
(n)
h ∈ (Vh)

3 , (ρ∗h)
(n) ,

(
θ∗v,h

)(n) ∈ Qh, (p∗h)
(n) ∈ Ph, p

(n)
th ∈ R ∀ n = 1, . . . ,M, (3.35)

where
v
(n)
h :=

(
u
(n)
h , v

(n)
h , w

(n)
h

)⊤

and p∗h fulfils (3.5), such that the following conditions are satisfied:

1. The variables satisfy

w
(n)
h = 0 on Γ, ∀ n = 0, . . . ,M, (3.36)

as well as periodic boundary conditions in both horizontal directions.
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2. The integral identity

0 =
(
v
(n+1)
h − v

(n)
h +∆tθ1(v

(n)
h · ∇)v(n)

h +∆tθ7(v
(n+1)
h · ∇)v(n+1)

h , φv,h

)

+

(
∆tθ2

1

ρ
(n)
h

∇ (p∗h)
(n) +∆tθ8

1

ρ
(n+1)
h

∇ (p∗h)
(n+1), φv,h

)

+

⎛
⎝∆tθ4

(
−fv(n)h , fu

(n)
h ,

(ρ∗h)
(n)

ρ
(n)
h

g

)⊤

, φv,h

⎞
⎠

+

⎛
⎝∆tθ10

(
−fv(n+1)

h , fu
(n+1)
h ,

(ρ∗h)
(n+1)

ρ
(n+1)
h

g

)⊤

, φv,h

⎞
⎠

+
(
∆tθ3νa∇v(n)

h +∆tθ9νa∇v(n)
h ,∇φv,h

)

(3.37)

holds for all φv ∈ (Xh)
3 and for all n = 0, . . . ,M − 1. Furthermore, it holds
(
v
(0)
h − v0, ψv,h

)
= 0 for all ψv,h ∈ (Vh)

3 .

3. The integral identity

0 =

(
p
(n+1)
th − p(n)th

p
(n+1)
th + p0

+
∆tθ5

p
(n+1)
th + p0

(
w

(n)
h ∂zp0 +

p
(n)
th + p0
1− κ div v

(n)
h

)
, φp,h

)

+

(
∆tθ11
1− κ div v

(n+1)
h +

∆tθ11

p
(n+1)
th + p0

w
(n+1)
h ∂zp0, φp,h

) (3.38)

holds for all φp ∈ Zh and for all n = 0, . . . ,M − 1. Furthermore, it holds
(
(p∗h)

(0) − p∗0, ψp,h

)
= 0 for all ψp,h ∈ Ph.

4. The integral identity

0 =
((
θ∗v,h

)(n+1) −
(
θ∗v,h

)(n)
+∆tθ6

(
w

(n)
h ∂zθv,0 +

(
v
(n)
h · ∇

) (
θ∗v,h

)(n))
, φθ,h

)

+
(
∆tθ12

(
w

(n+1)
h ∂zθv,0 +

(
v
(n+1)
h · ∇

) (
θ∗v,h

)(n+1)
)
, φθ,h

) (3.39)

holds for all φθ,h ∈ Yh and for all n = 0, . . . ,M − 1. Furthermore, it holds
((
θ∗v,h

)(0) − θ∗v,0, ψθ,h

)
= 0 for all ψθ,h ∈ Qh.

5. The integral identity

0 =
(
(ρ∗h)

(n+1), φρ,h

)

−

⎛
⎜⎜⎝

(
p0

p
(n+1)
th +p0

)κ

p
(n+1)
th θv,0 +

[(
p0

p
(n+1)
th +p0

)κ

− 1

]
p0θv,0 − p0

(
θ∗v,h

)(n+1)

(
− gκ

R′θz
ln
(
1 + θzz

θ0

)
+ 1
)
R′
(
θv,0 +

(
θ∗v,h

)(n+1)
)
θv,0

, φρ,h

⎞
⎟⎟⎠

(3.40)
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holds for all φρ,h ∈ Yh and for all n = 0, . . . ,M − 1. Furthermore, it holds

(
(ρ∗h)

(0) − ρ∗0, ψρ,h

)
= 0 for all ψρ,h ∈ Qh.

6. The identity

p
(n+1)
th − p(n)th −∆tθ13

∫
Ω κw

(n)
h ∂zp0dx

(1− κ) |Ω| −∆tθ14

∫
Ω κw

(n+1)
h ∂zp0dx

(1− κ) |Ω| = 0 (3.41)

holds for all n = 0, . . . ,M − 1. Furthermore, it holds

p
(0)
th = 0.

3.3.4. Stabilisation

Analogously to the case of the Compressible Navier-Stokes model, the space-discretisation of the
Low-Mach model is stabilised. Additionally to the stabilisation of the transport operators above,
the so called grad-div stabilisation [17] is applied in order to allow equal-order interpolation of
the velocity and pressure finite element spaces, respectively.

Problem 3.11 (Stabilised discrete problem of Problem 3.6)
Let Ω ⊂ R3 be as in (2.94), T h a triangulation of Ω as in (2.116) and T ≥ 0 a final point in
time. Furthermore, let ti, i = 0, . . . ,M be a an equidistant discretisation of the interval [0, T ]
as defined in (2.140). Let v̄ ∈ (Vh)

3 be a reference velocity field and θj ∈ [0, 1], j = 1, . . . , 12 be
such that

θj + θj+6 = 1, j = 1, . . . , 6,

as well as θ13, θ14 ∈ [0, 1] such that

θ13 + θ14 = 1.

Find

v
(n)
h ∈ (Vh)

3 , (ρ∗h)
(n) ,

(
θ∗v,h

)(n) ∈ Qh, (p∗h)
(n) ∈ Ph, p

(n)
th ∈ R ∀ n = 1, . . . ,M, (3.42)

where

v
(n)
h :=

(
u
(n)
h , v

(n)
h , w

(n)
h

)⊤

and p∗h fulfils (3.5), such that the following conditions are satisfied:

1. The variables satisfy

w
(n)
h = 0 on Γ, ∀ n = 0, . . . ,M, (3.43)

as well as periodic boundary conditions in both horizontal directions.
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2. The integral identity

0 =
((

v
(n+1)
h − v

(n)
h

)
+∆tθ1

(
v
(n)
h · ∇

)
v
(n)
h +∆tθ7

(
v
(n+1)
h · ∇

)
v
(n+1)
h , φv,h

)

+

⎛
⎝∆tθ2

1

ρ
(n)
h

∇(p∗h)(n) −∆tθ4

(
fv

(n)
h ,−fu(n)h ,−(ρ∗h)

(n)

ρ
(n)
h

g

)⊤

, φv,h

⎞
⎠

+

⎛
⎝∆tθ8

1

ρ
(n+1)
h

∇(p∗h)(n+1) −∆tθ10

(
fv

(n+1)
h ,−fu(n+1)

h ,−(ρ∗h)
(n+1)

ρ
(n+1)
h

g

)⊤

, φv,h

⎞
⎠

+
(
∆tθ3ν∇v(n)

h +∆tθ9ν∇v(n+1)
h ,∇φv,h

)

+
∑

K∈T h

τv,K
(
vn+1
h − vn

h , (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

)
K

+
∑

K∈T h

τv,K

(
∆tθ1

(
v
(n)
h · ∇

)
v
(n)
h , (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

)
K

+
∑

K∈T h

τv,K

(
∆tθ7

(
v
(n+1)
h · ∇

)
v
(n+1)
h , (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

)
K

+
∑

K∈T h

τv,K

(
∆tθ2

1

ρ
(n)
h

∇(p∗h)n, (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

)

K

−
∑

K∈T h

τv,K

⎛
⎝∆tθ4

(
fv

(n)
h ,−fu(n)h ,−(ρ∗h)

(n)

ρ
(n)
h

g

)⊤

, (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

⎞
⎠

K

+
∑

K∈T h

τv,K

(
∆tθ8

1

ρ
(n+1)
h

∇(p∗h)(n+1), (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

)

K

−
∑

K∈T h

τv,K

⎛
⎝∆tθ10

(
fv

(n+1)
h ,−fu(n+1)

h ,−(ρ∗h)
(n+1)

ρ
(n+1)
h

g

)⊤

, (v̄ · ∇)φv,h − νa∆φv,h

⎞
⎠

K

−
∑

K∈T h

τv,K

⎛
⎝∆tθ10

(
fv

(n+1)
h ,−fu(n+1)

h ,−(ρ∗h)
(n+1)

ρ
(n+1)
h

g

)⊤

,∇φp,h

⎞
⎠

K

−
∑

K∈T h

τv,K

(
∆tθ3ν∆v

(n)
h , (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

)
K

−
∑

K∈T h

τv,K

(
∆tθ9ν∆v

(n+1)
h , (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

)
K

(3.44)
holds with τv,K ≥ 0 for all φv,h ∈ (Xh)

3, all φp,h ∈ Zh and all n = 0, . . . ,M − 1, where

ρ
(i)
h := (ρ∗h)

(i) + ρ0.

Furthermore, it holds
(
v
(0)
h − v0, ψv,h

)
= 0 for all ψv,h ∈ (Vh)

3 .
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3. The integral identity

0 =

(
p
(n+1)
th − p(n)th

p
(n+1)
th + p0

+
∆tθ5

p
(n+1)
th + p0

(
w

(n)
h ∂zp0 +

p
(n)
th + p0
1− κ div v

(n)
h

)
, φp,h

)

+

(
∆tθ11
1− κ div v

(n+1)
h +

∆tθ11

p
(n+1)
th + p0

w
(n+1)
h ∂zp0, φp,h

)

+
∑

K∈T h

τρ,K

(
p
(n+1)
th − p(n)th

p
(n+1)
th + p0

, div φv,h

)

K

+
∑

K∈T h

τρ,K

(
∆tθ5

p
(n+1)
th + p0

(
w

(n)
h ∂zp0 +

p
(n)
th + p0
1− κ div v

(n)
h

)
,div φv,h

)

K

+
∑

K∈T h

τρ,K

(
∆tθ11
1− κ div v

(n+1)
h +

∆tθ11

p
(n+1)
th + p0

w
(n+1)
h ∂zp0, div φv,h

)

K

,

(3.45)

holds with τρ,K ≥ 0 for all φp,h ∈ Zh, all φv,h ∈ (Xh)
3 and all n = 0, . . . ,M − 1. Further-

more, it holds (
(p∗h)

(0) − p∗0, ψp,h

)
= 0 for all ψp,h ∈ Ph.

4. The integral identity

0 =
(
(θ∗v,h)

(n+1) − (θ∗v,h)
(n), φθ,h

)

+
(
∆tθ6

(
w

(n)
h ∂zθv,0 + v

(n)
h · ∇(θ∗v,h)(n)

)
, φθ,h

)

+
(
∆tθ12

(
w

(n+1)
h ∂zθv,0 + v

(n+1)
h · ∇(θ∗v,h)(n+1)

)
, φθ,h

)

+
∑

K∈T h

τθ,K

(
(θ∗v,h)

(n+1) − (θ∗v,h)
(n), v̄ · ∇φθ,h

)
K

+
∑

K∈T h

τθ,K

(
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(
w

(n)
h ∂zθv,0 + v

(n)
h · ∇(θ∗v,h)(n)

)
, v̄ · ∇φθ,h

)
K

+
∑

K∈T h

τθ,K

(
∆tθ12

(
w

(n+1)
h ∂zθv,0 + v

(n+1)
h · ∇(θ∗v,h)(n+1)

)
, v̄ · ∇φθ,h

)
K

(3.46)

holds with τθ,K ≥ 0 for all φθ ∈ Yh and all n = 0, . . . ,M − 1. Furthermore, it holds
((
θ∗v,h

)(0) − θ∗v,0, ψθ,h

)
= 0 for all ψθ,h ∈ Qh.

5. The integral identity

0 =
(
(ρ∗h)

(n+1), φρ,h

)

−

⎛
⎜⎜⎝

(
p0

p
(n+1)
th +p0

)κ

p
(n+1)
th θv,0 +
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p0

p
(n+1)
th +p0

)κ

− 1

]
p0θv,0 − p0

(
θ∗v,h

)(n+1)

(
− gκ

R′θz
ln
(
1 + θzz

θ0

)
+ 1
)
R′
(
θv,0 +

(
θ∗v,h

)(n+1)
)
θv,0

, φρ,h

⎞
⎟⎟⎠

(3.47)
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holds in for all φρ,h ∈ Yh and for all n = 0, . . . ,M − 1. Furthermore, it holds
(
(ρ∗h)

(0) − ρ∗0, ψρ,h

)
= 0 for all ψρ,h ∈ Qh.

6. The identity

p
(n+1)
th − p(n)th −∆tθ13

∫
Ω κw

(n)
h ∂zp0dx

(1− κ) |Ω| −∆tθ14

∫
Ω κw

(n+1)
h ∂zp0dx

(1− κ) |Ω| = 0 (3.48)

holds for all n = 0, . . . ,M − 1. Furthermore, it holds

p
(0)
th = 0.

The stabilisation parameters and the reference velocity are chosen as in the case of the Com-
pressible Navier-Stokes model, see Subsection 2.3.3.1.
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The discretisation approaches for both the Compressible Navier-Stokes model and the Low-
Mach model lead to non-linear algebraic systems of equations, see Problems 2.15 and 3.11,
respectively. In general, these systems describe the solution at the next time-step implicitly. To
resolve the implicit description of the solution, the non-linear equations are solved in a fully-
coupled manner by means of a damped inexact Newton method. The application of a Newton
method requires the Jacobian matrix of the non-linear system in each Newton-step as well as a
linear solver to solve the linear system defined by the Jacobian matrix. The details about the
chosen Newton method, the linear solvers and preconditioners are described in this Chapter.
Furthermore, the choices of finite element spaces and the weights in the time-stepping schemes
are given.

In Section 4.1 the chosen finite elements as well as the weights in the time-stepping schemes are
described. In the following Section 4.2, the applied Newton method with damping and forcing
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strategies is presented. Section 4.3 presents the needed Jacobian matrices for both discussed
models. Finally, the linear solvers and preconditioners that are used to solve linear systems with
the Jacobian matrices are presented in Section 4.4.

4.1. Discretisation Parameters

In both the Compressible Navier-Stokes model and the Low-Mach model, the unknown functions
v, ρ∗, θ∗v and p∗ are discretised in space by means of finite elements. For this purpose, the
domain Ω in triangulated admissibly in congruent hexahedrons, see Definition A.21. Based on
this triangulation, finite elements (see Definition A.22) of Lagrange type (see Theorem A.23) with
trilinear basis polynomials are chosen for all six unknown functions, i.e., a Q1/Q1/Q1/Q1/Q1/Q1

discretisation is chosen in space. Expanding all six unknown discrete functions in the nodal basis
{ψi}Nh

i=1 of this discretisation, i.e.,

u
(n)
h =

Nh∑

i=1

Ui(tn)ψi,

v
(n)
h =

Nh∑

i=1

Vi(tn)ψi,

w
(n)
h =

Nh∑

i=1

Wi(tn)ψi,

(ρ∗h)
(n) =

Nh∑

i=1

Ri(tn)ψi,

(
θ∗v,h

)(n)
=

Nh∑

i=1

Θi(tn)ψi,

(p∗h)
(n) =

Nh∑

i=1

Pi(tn)ψi,

(4.1)

each function can be identified with its coefficient vector in the respective expansion. Therefore,

the solution tuple
(
u
(n)
h , v

(n)
h , w

(n)
h , (ρ∗h)

(n) ,
(
θ∗v,h

)(n)
, (p∗h)

(n)

)
at any discrete point in time tn

can be identified with the solution vector

x(n) := (U(tn),V(tn),W(tn),R(tn),Θ(tn),P(tn)) ∈ RN , N := 6Nh. (4.2)

Also, all finite dimensional test function spaces are chosen to be defined by the Q1 discretisation
of the domain Ω by hexahedrons.

The implementation of both models is accomplished with the aid of the finite element library
HiFlow3 [41]. HiFlow3 is a multi-purpose finite element software providing powerful tools for
the efficient and accurate solution of a wide range of problems modelled by partial differential
equations (PDEs). Based on object-oriented concepts and the full capabilities of C++, the
HiFlow3 project follows a modular and generic approach for building efficient parallel numerical
solvers. It provides highly capable modules dealing with the mesh setup, finite element spaces,
degrees of freedom, linear algebra routines, numerical solvers, and output data for visualisation.
Parallelism – as the basis for high performance simulations on modern computing systems – is
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Parameter θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12
Value 0.5 0 0.5 0.5 0 0.5 0.5 1 0.5 0.5 1 0.5

Table 4.1.: Weights in time-stepping scheme

introduced on two levels: coarse-grained parallelism by means of distributed grids and distributed
data structures based on the Message Passing Interface (MPI) standard [53], and fine-grained
parallelism by means of platform-optimised linear algebra back-ends.

The software package HiFlow3 offers relevant advantages to the numerical simulation of phe-
nomena from a wide range of research topics: In the field of uncertainty quantification (UQ),
HiFlow3 provides a software module for using Polynomial Chaos expansions to model uncer-
tainties in physical problems by a linear algebra framework. Standard iterative solvers can be
employed to solve the associated linear systems of equations. In addition, HiFlow3 supports
mean based preconditioning to accelerate convergence for UQ problems. In the field of Compu-
tational Fluid Dynamics (CFD) and Meteorology, HiFlow3 enables the numerical simulation of
various flow phenomena by providing highly scalable preconditioners and solvers for both linear
and non-linear systems.

For the time-stepping scheme, the weights θj , j = 1, . . . , 12 are chosen as stated in Table 4.1.
With these weights, in the momentum equation in both the Compressible Navier-Stokes and
the Low-Mach model all terms are treated in a Crank-Nicolson manner except for the pressure
part p∗, which is treated in an implicit Euler manner. The continuity equation is in both cases
discretised by the implicit Euler scheme in time, whereas the thermodynamic energy equation is
discretised by the Crank-Nicolson time-stepping scheme.

4.1.1. Low-Mach model: Operator splitting

In the case of the Low-Mach model, the thermodynamic part of the pressure pth is determined
independently via the relation (3.48) as it only depends on time and, therefore, is not discretised
by finite elements. Consequently, it is not part of the solution process via Newton’s method and
needs to be determined on its own.

Instead, an operator splitting applied in order to resolve pth and the dependence of (3.45) and
(3.47), respectively, on it:

1. Compute p(
n+ 1

2)
th with an half explicit Euler step of (3.48), i.e., θ13 = 1, θ14 = 0, with

∆t← ∆t
2 .

2. Solve (3.44), (3.45), (3.46), (3.47) via Newton’s method with given constant value p(n+1)
th ←

p
(n+ 1

2)
th and obtain

v
(n+1)
h , (ρ∗h)

(n+1), (θ∗v,h)
(n+1), (p∗h)

(n+1).

3. Compute p(n+1)
th with an half implicit Euler step of (3.48), i.e., θ13 = 0, θ14 = 1, with

∆t← ∆t
2 and p(n)th ← p

(n+ 1
2)

th .
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4.2. Newton’s method

The fully discrete systems of both the Compressible Navier-Stokes (Problem 2.15) and the Low-
Mach model (Problem 3.11) can be written in residual form

F (x) = 0, (4.3)

where, in the following, F : RN → RN is assumed to be a non-linear function in C1
(
RN ,RN

)

with regular Jacobian matrix JF (x) ∈ RN×N for any x ∈ RN and N denotes the number of
degrees of freedom in the discretisation. The solution x∗ of (4.3) corresponds in both models to
the solution vector x(n+1) at the new time-step.

In the following, the derivation of Newton’s method and its variants is only sketched up to
the extend that is needed in order to explain to choices of parameters in Subsection 4.2.3. For a
thorough discussion of these methods, including the convergence theory, see [49], for example.

Observe, that (4.3) is equivalent to solve the following optimization problem:

Minimise ∥F (x)∥ s.t. x ∈ RN . (4.4)

Therefore, the value ∥F (x)∥ is taken as criterion for the success of the presented algorithm.
In Newton’s method, the function F is replaced by its Taylor series expansion of first order,

i.e., F is linearised in the neighbourhood of any fixed x0 ∈ RN

F (x0 +∆x) ≈ F (x0) + JF (x0)∆x, (4.5)

where ∆x is an arbitrary vector in RN . Setting x := x0 +∆x and replacing F (x) in (4.3) by its
linearisation (4.5) yields the approximation

F (x) ≈ F (x0) + JF (x0)∆x = 0 (4.6)

of (4.3). The solution of (4.6) is given by

x̃ = x0 +∆x, (4.7)

where ∆x is the solution of the linear system of equations

JF (x0)∆x = −F (x0). (4.8)

Taking the solution x̃ of the linearised system as a new guess for the solution of (4.3) leads to
Newton’s method as described in Algorithm 4.1.
Algorithm 4.1 (Newton’s method)
Let an initial solution x0 ∈ RN , a relative tolerance εrel > 0, an absolute tolerance εabs > 0 and
a maximum iteration number Imax ∈ N be given.

1. Compute initial residual norm ∥F (x0)∥.
2. Set i← 0.

3. While
∥F (xi)∥
∥F (x0)∥

> εrel and ∥F (xi)∥ > εabs and i ≤ Imax :

a) i← i+ 1.
b) Solve

JF (xi−1)∆xi = −F (xi−1).

c) xi ← xi−1 +∆xi.
d) Compute residual norm ∥F (xi)∥.
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4.2.1. Forcing

The computation of the Newton step ∆xi via (4.8) necessitates the solution of a linear system
with the matrix JF (xi−1). Since the Jacobian matrix for both discussed models is sparse, see
Section 4.3, Krylov subspace methods [54, 66, 67] are well-established choices for the solution of
(4.8). Typically, the speed of convergence of these methods strongly depends on the condition
number of the matrix JF (xi−1) and, therefore, efficient preconditioning is needed, see Section
4.4, in order to achieve feasible computing times. A further reduction of the computational effort
can be achieved, if the influence of the accuracy of the solution of (4.8) on the convergence of
Newton’s method is analysed, i.e., ∆xi is not computed exactly but only up to an approximate
solution. This leads to a class of inexact Newton methods. One family of these inexact Newton
methods is obtained, if the Newton step ∆xi is asked to satisfy

∥JF (xi−1)∆xi + F (xi−1)∥ ≤ ηi−1 ∥F (xi−1)∥ . (4.9)

In this context, an approximate step is accepted provided that the relative residual of (4.8) is
small. The condition (4.9) is exactly the small linear residual termination condition for the
iterative solution of (4.8), so the acceptance of the approximate Newton step is well-motivated.
The term ηi−1 is called forcing term. For a convergence analysis of these methods, see [49],
Chapter 6.

A possible choice for the forcing term ηi is the so called Eisenstat-Walker forcing (see [28]),
which is used in the computation of the numerical results in Chapter 6. Given an initial forcing
term η0 ∈ [0, 1) and a maximum forcing term ηmax ∈ [0, 1), choose

ηk = min

{ |∥F (xk+1)∥ − ∥F (xk) + JF (xk)∆xk+1∥|
∥F (xk)∥

, ηmax

}
, k = 1, 2, . . . . (4.10)

The resulting algorithm, where any appropriate iterative solver for the considered Jacobian
matrices can be applied, is as follows:

Algorithm 4.2 (Newton’s method with Eisenstat-Walker forcing)
Let an initial solution x0 ∈ RN , a relative tolerance εrel > 0, an absolute tolerance εabs > 0, a
maximum iteration number Imax ∈ N, an initial forcing term η0 ∈ [0, 1) and a maximum forcing
term ηmax ∈ [0, 1) be given.

1. Compute initial residual norm ∥F (x0)∥.

2. Set i← 0.

3. While
∥F (xi)∥
∥F (x0)∥

> εrel and ∥F (xi)∥ > εabs and i ≤ Imax :

a) i← i+ 1

b) Solve
JF (xi−1)∆xi = −F (xi−1)

with an appropriate iterative linear solver up to the relative tolerance ηi−1.

c) xi ← xi−1 +∆xi.

d) Compute residual norm ∥F (xi)∥.
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e) Compute new forcing term

ηi = min

{ |∥F (xi)∥ − ∥F (xi−1) + JF (xi−1)∆xi∥|
∥F (xi−1)∥

, ηmax

}

Further choices of the forcing terms ηk are discussed in [28, 49], for example.

4.2.2. Damping

The update strategy in step 3c of Algorithm 4.2 does not ensure convergence or even monotonous
convergence, because it does not hold

∥F (x0)∥ ≥ ∥F (x1)∥ ≥ ∥F (x2)∥ ≥ . . . (4.11)

in general, because, on the one hand, Newton’s method does not converge globally and, on
the other hand, the step ∆xi can be too large. A remedy to at least the latter problem is
to introduce a so called damping mechanism to the update step 3c of Algorithm 4.2. In the
context of optimization theory, this strategy is known as line search. Observe, that there are
other techniques to solve the two mentioned problems. For an overview, consider [49, 58] and
the references therein.

The basic idea is, that not necessarily the full Newton step ∆xi is taken. If the full step does
not lead to a reduction of the non-linear residual, then the size of the step is decreased until a
reduction is achieved. Therefore, a step length parameter λ ∈ (0, 1] is introduced. The initial
value is λ = 1. If the new iterate candidate

xi = xi−1 + λ∆xi (4.12)

does not yield a reduction of the non-linear residual, then λ is decreased by a factor fd ∈ (0, 1),
i.e.,

λ← fdλ.

Then, a new iterate candidate is computed by (4.12) and the resulting non-linear residual is
checked again for a reduction compared to the last iterate. This procedure is iterated, until a
reduction is obtained.

Although this strategy yields a monotonous reduction of the non-linear residual, if a reduction
in the search direction ∆xi is possible, it can happen, that the convergence is very slow, because
the reduction is very slightly. To remedy this situation, the test for simple decrease can be
replaced with one for sufficient decrease. Instead of checking for the simple decrease of the
non-linear residual, the condition

∥F (xi−1 + λ∆xi)∥ < (1− αλ) ∥F (xi−1)∥ (4.13)

needs to be fulfilled in order to accept the step length λ. (4.13) is called sufficient decrease of
∥F∥. α ∈ (0, 1) is a small, but positive, number, which needs to be chosen such that (4.13) can
be as easy as possible satisfied. This strategy is called the Armijo rule, see [49]. To prevent an
infinite reduction of the step length λ, a minimum step length λmin ∈ (0, 1) is introduced.

Finally, the full Newton method including Eisenstat-Walker forcing and Armijo damping
strategies reads as follows:
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Parameter εrel εabs Imax η0 ηmax fd λmin α

Value 10−6 5 · 10−15 · |Ω| 1000 10−3 10−3 3−
√
5

2 10−16 10−6

Table 4.2.: Parameters for Newton’s method with Eisenstat-Walker forcing and Armijo damp-
ing (Algorithm 4.3). |Ω| denotes the volume of the computational domain Ω.

Algorithm 4.3 (Newton-Eisenstat-Walker-Armijo method)
Let an initial solution x0 ∈ RN , a relative tolerance εrel > 0, an absolute tolerance εabs > 0,
a maximum iteration number Imax ∈ N, an initial forcing term η0 ∈ [0, 1) and a maximum
forcing term ηmax ∈ [0, 1) be given. Furthermore, let a step length reduction factor fd ∈ (0, 1),
a minimum step length λmin ∈ (0, 1) and a parameter α ∈ (0, 1) for sufficient decrease be given.

1. Compute initial residual norm ∥F (x0)∥.

2. Set i← 0.

3. While
∥F (xi)∥
∥F (x0)∥

> εrel and ∥F (xi)∥ > εabs and i ≤ Imax :

a) i← i+ 1

b) Solve
JF (xi−1)∆xi = −F (xi−1)

with an appropriate iterative linear solver up to the relative tolerance ηi−1.

c) Set λ← 1

i. xi ← xi−1 + λ∆xi.

ii. Compute residual norm ∥F (xi)∥.
iii. If

∥F (xi)∥ < (1− αλ) ∥F (xi−1)∥ or λ < λmin

goto 3d) (accept the step), else
λ← fdλ

and goto 3c)i (reject the step).

d) Compute new forcing term

ηi = min

{ |∥F (xi)∥ − ∥F (xi−1) + JF (xi−1)∆xi∥|
∥F (xi−1)∥

, ηmax

}

.

4.2.3. Parameters for Numerical Results

Algorithm 4.3 is used for the computation of the numerical results in Chapter 6 with the par-
ameters given in Table 4.2. Observe, that |Ω| denotes the volume of the computational domain
Ω. The given parameters are taken for both the Compressible Navier-Stokes and the Low-Mach
model.
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4.3. Jacobian matrices

In the following, the Jacobian matrices of both the Compressible Navier-Stokes and the Low-
Mach model are derived. The momentum, continuity, thermodynamic energy and ideal gas law
equations of Problem 2.15 and Problem 3.11, respectively, can all be written in the form

G

(
v
(n+1)
h , (ρ∗h)

(n+1) ,
(
θ∗v,h

)(n+1)
, (p∗h)

(n+1)
)
= 0. (4.14)

Thus, the derivative of G with respect to v
(n+1)
h in the direction of any ψv,h ∈ (Vh)

3 is given
by

∇
v
(n+1)
h

G

(
v
(n+1)
h , (ρ∗h)

(n+1) ,
(
θ∗v,h

)(n+1)
, (p∗h)

(n+1)
)
· ψv,h

= lim
h→0

1

h

[
G

(
v
(n+1)
h + h · ψv,h, (ρ

∗
h)

(n+1) ,
(
θ∗v,h

)(n+1)
, (p∗h)

(n+1)
)

−G
(
v
(n+1)
h , (ρ∗h)

(n+1) ,
(
θ∗v,h

)(n+1)
, (p∗h)

(n+1)
)]
.

(4.15)

Analogously, the derivatives with respect to the other unknown solution functions can be derived.
Since the finite element spaces have finite dimension, it is sufficient to consider the derivatives
in the direction of all basis functions of the trial space, where the equations are tested with all
basis functions of the finite dimensional finite element test spaces. Therefore, each finite element
test function defines one row of the Jacobian matrix and each direction, i.e., trial function, one
column of the Jacobian matrix.

The results of the limits in (4.15) are stated in the following Subsections. Observe, that
the derivatives for the thermodynamic energy equations are only given once since the discrete
formulations are identical for both models.

4.3.1. Momentum equation

4.3.1.1. Compressible Navier-Stokes model

The discrete momentum equation (2.144) depends on v
(n+1)
h , (ρ∗h)

(n+1) and (p∗h)
(n+1). Therefore,

the derivatives with respect to these variables need to be derived.

The derivative of (2.144) with respect to v
(n+1)
h in the direction of any

ψv,h := (ψu,h, ψv,h, ψw,h)
⊤ ∈ (Vh)

3
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is given by

∇
v
(n+1)
h

G

(
v
(n+1)
h , (ρ∗h)

(n+1) , (p∗h)
(n+1)

)
· ψv,h

=
(
ψv,h +∆tθ7

(
(ψv,h · ∇)v(n+1)

h +
(
v
(n+1)
h · ∇

)
ψv,h

)
, φv,h

)

−
(
∆tθ10 (fψv,h,−fψu,h, 0)

⊤, φv,h

)

+ (∆tθ9νa∇ψv,h,∇φv,h)

+
∑

K∈T h

τv,K (ψv,h, (v̄ · ∇)φv,h − νa∆φv,h)K

+
∑

K∈T h

τv,K

(
∆tθ7 (ψv,h · ∇)v(n+1)

h , (v̄ · ∇)φv,h − νa∆φv,h

)
K

+
∑

K∈T h

τv,K

(
∆tθ7

(
v
(n+1)
h · ∇

)
ψv,h, (v̄ · ∇)φv,h − νa∆φv,h

)
K

−
∑

K∈T h

τv,K

(
∆tθ10 (fψv,h,−fψu,h, 0)

⊤, (v̄ · ∇)φv,h − νa∆φv,h

)
K

−
∑

K∈T h

τv,K (∆tθ9νa∆ψv,h, (v̄ · ∇)φv,h − νa∆φv,h)K .

(4.16)

The derivative of (2.144) with respect to (ρ∗h)
(n+1) in the direction of any ψρ,h ∈ Qh is given

by

∇
(ρ∗h)

(n+1)G

(
v
(n+1)
h , (ρ∗h)

(n+1) , (p∗h)
(n+1)

)
· ψρ,h

=

⎛
⎜⎝∆t

⎛
⎜⎝−θ8

ψρ,h(
ρ
(n+1)
h

)2∇ (p∗h)
(n+1) + θ10

⎛
⎜⎝0, 0,

gρ0(
ρ
(n+1)
h

)2ψρ,h

⎞
⎟⎠

⊤⎞
⎟⎠, φv,h

⎞
⎟⎠

−
∑

K∈T h

τv,K

⎛
⎜⎝∆tθ8

ψρ,h(
ρ
(n+1)
h

)2∇ (p∗h)
(n+1), (v̄ · ∇)φv,h − νa∆φv,h

⎞
⎟⎠

K

+
∑

K∈T h

τv,K

⎛
⎜⎝∆tθ10

⎛
⎜⎝0, 0,

gρ0(
ρ
(n+1)
h

)2ψρ,h

⎞
⎟⎠

⊤

, (v̄ · ∇)φv,h − νa∆φv,h

⎞
⎟⎠

K

.

(4.17)

The derivative of (2.144) with respect to (p∗h)
(n+1) in the direction of any ψp,h ∈ Ph is given

by

∇
(p∗h)

(n+1)G

(
v
(n+1)
h , (ρ∗h)

(n+1) , (p∗h)
(n+1)

)
· ψp,h

=

(
∆tθ8

(
1

ρ
(n+1)
h

∇ψp,h

)
, φv,h

)

+
∑

K∈T h

τv,K

(
∆tθ8

(
1

ρ
(n+1)
h

∇ψp,h

)
, (v̄ · ∇)φv,h − νa∆φv,h

)

K

.

(4.18)
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4.3.1.2. Low-Mach model

The discrete momentum equation (3.44) depends on v
(n+1)
h , (ρ∗h)

(n+1) and (p∗h)
(n+1). Therefore,

the derivatives with respect to these variables need to be derived.
The derivative of (3.44) with respect to v

(n+1)
h in the direction of any

ψv,h := (ψu,h, ψv,h, ψw,h)
⊤ ∈ (Vh)

3

is given by

∇
v
(n+1)
h

G

(
v
(n+1)
h , (ρ∗h)

(n+1) , (p∗h)
(n+1)

)
· ψv,h

=
(
ψv,h +∆tθ7

(
(ψv,h · ∇)v(n+1)

h +
(
v
(n+1)
h · ∇

)
ψv,h

)
, φv,h

)

−
(
∆tθ10 (fψv,h,−fψu,h, 0)

⊤, φv,h

)

+ (∆tθ9νa∇ψv,h,∇φv,h)

+
∑

K∈T h

τv,K (ψv,h, (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h)K

+
∑

K∈T h

τv,K

(
∆tθ7 (ψv,h · ∇)v(n+1)

h , (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

)
K

+
∑

K∈T h

τv,K

(
∆tθ7

(
v
(n+1)
h · ∇

)
ψv,h, (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

)
K

−
∑

K∈T h

τv,K

(
∆tθ10 (fψv,h,−fψu,h, 0)

⊤, (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

)
K

−
∑

K∈T h

τv,K (∆tθ9νa∆ψv,h, (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h)K .

(4.19)

The derivative of (3.44) with respect to (ρ∗h)
(n+1) in the direction of any ψρ,h ∈ Qh is given by

∇
(ρ∗h)

(n+1)G

(
v
(n+1)
h , (ρ∗h)

(n+1) , (p∗h)
(n+1)

)
· ψρ,h

=

⎛
⎜⎝∆t

⎛
⎜⎝−θ8

ψρ,h(
ρ
(n+1)
h

)2∇ (p∗h)
(n+1) + θ10

⎛
⎜⎝0, 0,

gρ0(
ρ
(n+1)
h

)2ψρ,h

⎞
⎟⎠

⊤⎞
⎟⎠, φv,h

⎞
⎟⎠

−
∑

K∈T h

τv,K

⎛
⎜⎝∆tθ8

ψρ,h(
ρ
(n+1)
h

)2∇ (p∗h)
(n+1), (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

⎞
⎟⎠

K

+
∑

K∈T h

τv,K

⎛
⎜⎝∆tθ10

⎛
⎜⎝0, 0,

gρ0(
ρ
(n+1)
h

)2ψρ,h

⎞
⎟⎠

⊤

, (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

⎞
⎟⎠

K

.

(4.20)
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The derivative of (3.44) with respect to (p∗h)
(n+1) in the direction of any ψp,h ∈ Ph is given by

∇
(p∗h)

(n+1)G

(
v
(n+1)
h , (ρ∗h)

(n+1) , (p∗h)
(n+1)

)
· ψp,h

=

(
∆tθ8

(
1

ρ
(n+1)
h

∇ψp,h

)
, φv,h

)

+
∑

K∈T h

τv,K

(
∆tθ8

(
1

ρ
(n+1)
h

∇ψp,h

)
, (v̄ · ∇)φv,h − νa∆φv,h +∇φp,h

)

K

.

(4.21)

4.3.2. Continuity equation

4.3.2.1. Compressible Navier-Stokes model

The discrete continuity equation (2.146) depends on v
(n+1)
h and (ρ∗h)

(n+1). Therefore, the deriva-
tives with respect to these variables need to be derived.

The derivative of (2.146) with respect to v
(n+1)
h in the direction of any

ψv,h := (ψu,h, ψv,h, ψw,h)
⊤ ∈ (Vh)

3

is given by

∇
v
(n+1)
h

G

(
v
(n+1)
h , (ρ∗h)

(n+1)
)
· ψv,h

=
(
∆tθ11

(
ψw,h∂zρ0 + ψv,h · ∇ (ρ∗h)

(n+1) + (ρ∗h)
(n+1)div ψv,h

)
, φρ,h

)

+
∑

K∈T h

τρ,K

(
∆tθ11

(
ψw,h∂zρ0 + ψv,h · ∇ (ρ∗h)

(n+1) + (ρ∗h)
(n+1)div ψv,h

)
, v̄ · ∇φρ,h

)
K
.

(4.22)
The derivative of (2.146) with respect to (ρ∗h)

(n+1) in the direction of any ψρ,h ∈ Qh is given by

∇
(ρ∗h)

(n+1)G

(
v
(n+1)
h , (ρ∗h)

(n+1)
)
· ψρ,h

=
(
ψρ,h +∆tθ11

(
v
(n+1)
h · ∇ψρ,h + ψρ,hdiv v

(n+1)
h

)
, φρ,h

)

+
∑

K∈T h

τρ,K

(
ψρ,h +∆tθ11

(
v
(n+1)
h · ∇ψρ,h + ψρ,hdiv v

(n+1)
h

)
, v̄ · ∇φρ,h

)
K
.

(4.23)

4.3.2.2. Low-Mach model

The discrete continuity equation (3.45) depends on v
(n+1)
h . Therefore, the derivative with respect

to this variable needs to be derived.
The derivative of (2.146) with respect to v

(n+1)
h in the direction of any

ψv,h := (ψu,h, ψv,h, ψw,h)
⊤ ∈ (Vh)

3
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is given by

∇
v
(n+1)
h

G

(
v
(n+1)
h

)
· ψv,h

=

(
∆tθ11
1− κ div ψv,h +

∆tθ11

p
(n+1)
th + p0

ψw,h∂zp0, φp,h

)

+
∑

K∈T h

τρ,K

(
∆tθ11
1− κ div ψv,h +

∆tθ11

p
(n+1)
th + p0

ψw,h∂zp0, div φv,h

)

K

.

(4.24)

4.3.3. Thermodynamic energy equation

The discrete thermodynamic energy equations (2.148) and (3.46), respectively, depend on v
(n+1)
h

and
(
θ∗v,h

)(n+1)
. Therefore, the derivatives with respect to these variables needs to be derived.

The derivative of (2.148) and (3.46), respectively, with respect to v
(n+1)
h in the direction of

any
ψv,h := (ψu,h, ψv,h, ψw,h)

⊤ ∈ (Vh)
3

is given by

∇
v
(n+1)
h

G

(
v
(n+1)
h ,

(
θ∗v,h

)(n+1)
)
· ψv,h

=
(
∆tθ12

(
ψw,h∂zθv,0 + ψv,h · ∇(θ∗v,h)(n+1)

)
, φθ,h

)

+
∑

K∈T h

τθ,K

(
∆tθ12

(
ψw,h∂zθv,0 + ψv,h · ∇(θ∗v,h)(n+1)

)
, v̄ · ∇φθ,h

)
K
.

(4.25)

The derivative of (2.148) and (3.46), respectively, with respect to
(
θ∗v,h

)(n+1)
in the direction

of any ψθ,h ∈ Qh is given by

∇
(θ∗v,h)

(n+1)G

(
v
(n+1)
h ,

(
θ∗v,h

)(n+1)
)
· ψθ,h

=
(
ψθ,h +∆tθ12v

(n+1)
h · ∇ψθ,h, φθ,h,τ

)

+
∑

K∈T h

τθ,K

(
ψθ,h +∆tθ12v

(n+1)
h · ∇ψθ,h, v̄ · ∇φθ,h

)
K
.

(4.26)

4.3.4. Ideal gas law

4.3.4.1. Compressible Navier-Stokes model

The discrete ideal gas law (2.150) depends on (ρ∗h)
(n+1),

(
θ∗v,h

)(n+1)
and (p∗h)

(n+1). Therefore,
the derivatives with respect to these variables need to be derived.

Define
Fρ (ρ, θ) := −

1

1− κ

(
− gκ

R′θz
ln

(
1 +

θzz

θ0

)
+ 1

)
R′ (θ + θv,0)

·

⎡
⎣

(
− gκ

R′θz
ln
(
1 + θzz

θ0

)
+ 1
)
R′ρ (θ + θv,0)

p0
+
θ + θv,0
θv,0

⎤
⎦

κ
1−κ

.
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Then, the derivative of (2.150) with respect to (ρ∗h)
(n+1) in the direction of any ψρ,h ∈ Qh is

given by

∇
(ρ∗h)

(n+1)G

(
(ρ∗h)

(n+1) ,
(
θ∗v,h

)(n+1)
, (p∗h)

(n+1)
)
·ψρ,h =

(
Fρ

(
(ρ∗h)

(n+1) ,
(
θ∗v,h

)(n+1)
)
ψρ,h, φp,h

)
.

(4.27)
Define

Fθ (ρ, θ) := −
(

1

1− κ

(
− gκ

R′θz
ln

(
1 +

θzz

θ0

)
+ 1

)
R′ρ+

p0
θv,0

)

·

⎡
⎣

(
− gκ

R′θz
ln
(
1 + θzz

θ0

)
+ 1
)
R′ρ (θ + θv,0)

p0
+
θ + θv,0
θv,0

⎤
⎦

κ
1−κ

.

Then, the derivative of (2.150) with respect to
(
θ∗v,h

)(n+1)
in the direction of any ψθ,h ∈ Qh is

given by

∇
(θ∗v,h)

(n+1)G

(
(ρ∗h)

(n+1) ,
(
θ∗v,h

)(n+1)
, (p∗h)

(n+1)
)
· ψθ,h

=
(
Fθ

(
(ρ∗h)

(n+1) ,
(
θ∗v,h

)(n+1)
)
ψθ,h, φp,h

)
.

(4.28)

The derivative of (2.150) with respect to (p∗h)
(n+1) in the direction of any ψp,h ∈ Ph is given

by

∇
(p∗h)

(n+1)G

(
(ρ∗h)

(n+1) ,
(
θ∗v,h

)(n+1)
, (p∗h)

(n+1)
)
· ψp,h = (ψp,h, φp,h) . (4.29)

4.3.4.2. Low-Mach model

The discrete ideal gas law (3.47) depends on (ρ∗h)
(n+1) and

(
θ∗v,h

)(n+1)
. Therefore, the derivatives

with respect to these variables need to be derived.
The derivative of (3.47) with respect to (ρ∗h)

(n+1) in the direction of any ψρ,h ∈ Qh is given by

∇
(ρ∗h)

(n+1)G

(
(ρ∗h)

(n+1) ,
(
θ∗v,h

)(n+1)
)
· ψρ,h = (ψρ,h, φρ,h) . (4.30)

Define

Fθ,LM (θ) :=

(
p0

p
(n+1)
th +p0

)κ

p
(n+1)
th θv,0 +

[(
p0

p
(n+1)
th +p0

)κ

− 1

]
p0θv,0 + p0θv,0

(
− gκ

R′θz
ln
(
1 + θzz

θ0

)
+ 1
)
R′ (θv,0 + θ)2 θv,0

.

Then, the derivative of (3.47) with respect to
(
θ∗v,h

)(n+1)
in the direction of any ψθ,h ∈ Qh is

given by

∇
(θ∗v,h)

(n+1)G

(
(ρ∗h)

(n+1) ,
(
θ∗v,h

)(n+1)
, (p∗h)

(n+1)
)
· ψθ,h

=
(
Fθ,LM

((
θ∗v,h

)(n+1)
)
ψθ,h, φρ,h

)
.

(4.31)
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4.4. Linear solvers and preconditioners

In each iteration of Newton’s method (Algorithm 4.3) a linear system needs to be solved. Beside
the assembly of the Jacobian matrix and the residual vectors, this is the computationally most
expensive step in each Newton iteration. Therefore, efficient linear solvers for the Jacobian
matrices are needed, which solve the arising linear systems accurately, fastly and scalably.

The Jacobian matrices of the Compressible Navier-Stokes and the Low-Mach model have
different structures and properties. While the Compressible Navier-Stokes model with the de-
scribed discretisation (see Section 2.3) results in Jacobian matrices, that can be solved by a
GMRES method [67] with an appropriately configured black-box preconditioner like incomplete
LU factorisation (ILU) [65, 66] or Algebraic Multigrid (AMG) methods [55, 71], for example, the
Low-Mach model with the depicted discretisation (see Section 3.3) leads to Jacobian matrices
with saddle-point structure, which can also be solved by a GMRES method, but a special pre-
conditioner is needed, that is capable of dealing with the special properties of these matrices like
ILU with thresholding [66], multigrid with Vanka smoother [48] or Schur complement techniques
[14, 19, 23, 48, 68], for example. Recently, Metsch presented in his Ph.D. thesis [55] an extension
of AMG to saddle-point problems.

Therefore, in contrast to the outer Newton iteration, the step of solving the linear system
with the Jacobian matrix is model-dependent and different algorithms need to be applied. In
Subsection 4.4.1 the solution technique for the Compressible Navier-Stokes model is described.
Subsection 4.4.2 covers the algorithm for the Low-Mach model.

4.4.1. Compressible Navier-Stokes equations

4.4.1.1. The linear solver: GMRES

The Jacobian matrix of the Compressible Navier-Stokes model, see Section 4.3, is a regular but
not symmetric matrix, which has a sparse structure with the presented finite element discreti-
sation, see Section 4.1. For the approximate and iterative solution of linear systems with these
matrix properties the preconditioned GMRES method [67] is a well-established, efficient and ro-
bust choice. It belongs to the class of Krylov subspace methods [66]. There are further methods
among the Krylov subspace algorithms, that are theoretically suited to solve the arising linear
system in the Compressible Navier-Stokes case, e.g., the preconditioned BiCGSTAB algorithm
[75], but empirical experience shows, that GMRES is more robust in the scenario presented in
Chapter 5.

The GMRES algorithm with Right Preconditioning is stated in Algorithm 4.4. It is given
here to allow a clear presentation of the differences to the version used for the solution of the
Low-Mach model in Subsection 4.4.2. For a thorough derivation and convergence analysis see
[54, 66, 67].

Algorithm 4.4 (GMRES with Right Preconditioning)
Let an initial solution x0 ∈ RN , a right hand side vector b ∈ RN , a system matrix A ∈ RN×N , a
relative tolerance εrel > 0, an absolute tolerance εabs > 0, a maximum iteration number Imax ∈ N
and a preconditioning matrix M−1 ∈ RN×N be given.

1. Compute initial residual r0 ← b−Ax0

2. If ∥r0∥ ≤ εabs, then END.
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3. Set
v1 ←

r0
∥r0∥

, γ1 ← ∥r0∥ .

4. For j = 1, . . . , N do:

a) Set
wj ← AM−1vj

b) For i = 1, . . . , j do:

i. Set
hij ← v⊤

i wj .

ii. Set
wj ← wj − hijvi.

c) For i = 1, . . . , j − 1 do:
(

hij
hi+1,j

)
←
(
ci+1 si+1

−si+1 ci+1

)
·
(

hij
hi+1,j

)
.

d) Set

β ←
√
h2jj + h2j+1,j , sj+1 ←

hj+1,j

β
, cj+1 ←

hjj
β
.

e) Set hjj ← β

f) Set
γj+1 ← −sj+1γj , γj ← cj+1γj .

g) If
|γj+1|
|γ1|

> εrel and |γj+1| > εabs and j + 1 ≤ Imax :

set
vj+1 ←

wj

hj+1,j
,

else:

i. For i = j, . . . , 1 do:

yi ←
1

hii

(
γi −

j∑

k=i+1

hikyk

)
.

ii. Set

z←
j∑

i=1

yivi.

iii. Set
x← x0 +M−1z.

iv. END.
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Parameter εrel εabs Imax

Value ηi−1 5 · 10−15 · |Ω| 1000

Table 4.3.: Parameters of GMRES (Algorithm 4.4) for the Compressible Navier-Stokes model.
ηi−1 denotes the current forcing term in Newton’s method and |Ω| the volume of
the computational domain Ω.

Remark 4.5 (GMRES with Right Preconditioning)
1. The matrix M ∈ RN×N denotes an approximation to the system matrix A ∈ RN×N , i.e.,
M ≈ A, which is chosen such that it can be inverted with low computational costs. In many
applications, the matrix M or its inverse are not computed explicitly but an approximate
solution with the matrix A is used, e.g., an ILU solve or fixed numbers of Jacobi, Gauß-
Seidel or SOR iterations, see [54, 66]. Also fixed numbers of multigrid cycles are possible
([54, 66]). This is done below for the Compressible Navier-Stokes model. In the context
of PDE, matrices corresponding to discretisations of a “similar” PDE, that are cheaper to
solve in terms of computational costs, are also a popular choice, e.g., discretisations of the
Stokes or Oseen equations in the case of the incompressible Navier-Stokes equations, cf.
[14, 48, 68]. This approach is chosen for certain parts of the Low-Mach model solver, cf.
Subsection 4.4.2.

2. Algorithm 4.4 does not incorporate the possibility to use the GMRES algorithm with
restarts, i.e., the so called GMRES(m) algorithm, see [54, 66, 67]. In the test scenario of
interacting cyclones, see Chapter 5, the iteration numbers for stable time-step sizes are low
such that GMRES can be used without restarts.

The numerical results in Chapter 6 for the scenario described in Chapter 5 are obtained with
the GMRES parameters given in Table 4.3. The relative tolerance is given by the current forcing
term ηi−1 of the outer Newton iteration and |Ω| denotes the volume of the computational domain
Ω.

4.4.1.2. The preconditioner: AMG

The GMRES algorithm (Algorithm 4.4) is preconditioned by an Algebraic Multigrid (AMG)
method (see, e.g., [31, 33, 55, 71]) in order to solve the linear systems arising in the computation
of the Newton steps for the Compressible Navier-Stokes model. AMG algorithms are developed
with the aim to provide solution methods that incorporate the convergence behaviour of Geo-
metric Multigrid (GMG) methods, but they are based purely on algebraic considerations, i.e.,
the structure of the system matrix, and not on the geometry of the discretisation’s grid [55]. Lots
of efforts have been taken by the AMG community to extend the abilities of these methods in
terms of robustness, parallelisation, scalability and applicability to a broad range of applications
and matrices, see, e.g., [30, 32, 33, 55, 77, 78] to just name a few. An overview of modern AMG
techniques is given in [55].

In the context of this thesis, AMG methods are used as given tools, i.e., this thesis does not
provide any contribution to the theory or practical implementation of AMG algorithms. The
AMG implementation of the software package hypre [20, 34], which is called BoomerAMG [38],
is chosen for all applications of AMG algorithms within this thesis. The broad applicability of
BoomerAMG to discretised PDE problems, its robustness and scalability have been investigated
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Parameter Value Description
CoarsenType 6 Falgout coarsening
NumFunctions 6 Solution has six component functions

RelaxType 3 hybrid SOR smoother, forward solve
RelaxWt 0.5 Relaxation weight for SOR smoother

InterpType 4 Multipass interpolation
AggNumLevels 5 Number of levels of aggressive coarsening

MaxIter 1 Number of multigrid cycles per preconditioner call
Tol 0.0 Relative tolerance for convergence

StrongThreshold 0.6 Strong threshold for dropping matrix entries

Table 4.4.: Parameters of BoomerAMG for preconditioning GMRES (Algorithm 4.4) in each it-
eration of Newton’s method (Algorithm 4.3) in the case of the Compressible Navier-
Stokes model.

and are documented in the literature, see [5–9, 21, 22, 32, 37, 55], for example. For the numerical
results in Chapter 6 version 2.10.1 of the hypre library is used.

Due to the amount of implemented options for coarsening and interpolation operators, smooth-
ers, multigrid cycles etc., the number of configurable parameters of BoomerAMG is quite exten-
sive, cf. [44]. The hypre User Manual [45] provides introductory hints at the choice of certain
parameters for specific problems at hand. For every configurable option BoomerAMG provides a
default value and these defaults are documented in the hypre Reference Manual [44]. Therefore,
only those parameters, which have been altered from the default values, are documented in this
Chapter.

The BoomerAMG parameters, which are set to precondition the GMRES algorithm 4.4 for the
computation of the Newton step in each iteration of Algorithm 4.3 in the case of the Compressible
Navier-Stokes model, are given in Table 4.4. For the meaning of these parameters, see [44].
Observe, that with the default values a V -cycle is performed.

4.4.2. Low-Mach number approximation

4.4.2.1. The linear solver: FGMRES

The Jacobian matrix of the Low-Mach model, see Section 4.3, is a regular but not symmetric
matrix, which has a sparse structure with the presented finite element discretisation, see Section
4.1. Additionally, the weak formulation of the Low-Mach model forms a saddle-point problem as
it contains the Stokes problem as a special case, see [13], for example, which has to be considered
in the construction of an appropriate preconditioner, see [62]. The Schur complement based
preconditioning approach, that is presented in Subsection 4.4.2.2, is a well-known and well-
suited preconditioning technique for saddle-point problems [48, 62]. It leads to another linear
system, the so called Schur complement equation, that itself needs to be solved approximately
by an appropriate iterative Krylov subspace method. Therefore, the presented preconditioner is
no fixed one any more, see [66], and a so called flexible variant of the considered Krylov subspace
algorithm is needed. Due to the same stability reasons as in the case of the Compressible Navier-
Stokes model, see Subsection 4.4.1, GMRES is chosen as iterative linear solver for the linear
systems arising in the computation of the Newton steps in Algorithm 4.3, but now in its flexible
variant FGMRES [66].



66 Chapter 4: Solver

Furthermore, the hydrodynamic part of the pressure p∗ is only defined up to an additive
constant. Consequently, the coefficient vector of the discrete solution is sought in a subspace
Sp of RN , where the pressure coefficients P(tn+1) have to be such that the corresponding finite
element solution incorporates the zero mean value property. It is known, that the convergence
of Krylov subspace methods improves the better the obtained basis of the Krylov subspace
approximates the problem specific solution space [54, 66]. Therefore, projection steps onto Sp,
which ensure, that the corresponding finite element solutions of all iterates incorporate mean
value zero in the discrete hydrodynamic pressure, are introduced. Observe, that in this way the
FGMRES iteration takes place in the correct subspace Sp of RN .

The FGMRES algorithm with the described modification for the projection on the subspace
Sp is stated in Algorithm 4.6. For a thorough derivation and convergence analysis of FGMRES,
see [64, 66].

Algorithm 4.6 (FGMRES with Right Preconditioning and Projection)
Let an initial solution x0 ∈ RN , a right hand side vector b ∈ RN , a system matrix A ∈ RN×N , a
relative tolerance εrel > 0, an absolute tolerance εabs > 0, a maximum iteration number Imax ∈ N
and preconditioning matrices M−1

j ∈ RN×N , j ∈ N be given.

1. Project x0 onto Sp.

2. Compute initial residual r0 ← b−Ax0

3. Project r0 onto Sp.

4. If ∥r0∥ ≤ εabs, then END.

5. Set
v1 ←

r0
∥r0∥

, γ1 ← ∥r0∥ .

6. For j = 1, . . . , N do:

a) Set
zj ←M−1

j vj .

b) Project zj into Sp.

c) Set
wj ← Azj .

d) Project wj into Sp.

e) For i = 1, . . . , j do:

i. Set
hij ← v⊤

i wj .

ii. Set
wj ← wj − hijvi.

f) For i = 1, . . . , j − 1 do:
(

hij
hi+1,j

)
←
(
ci+1 si+1

−si+1 ci+1

)
·
(

hij
hi+1,j

)
.



4.4. Linear solvers and preconditioners 67

g) Set

β ←
√
h2jj + h2j+1,j , sj+1 ←

hj+1,j

β
, cj+1 ←

hjj
β
.

h) Set hjj ← β

i) Set
γj+1 ← −sj+1γj , γj ← cj+1γj .

j) If
|γj+1|
|γ1|

> εrel and |γj+1| > εabs and j + 1 ≤ Imax :

set
vj+1 ←

wj

hj+1,j
,

else:

i. For i = j, . . . , 1 do:

yi ←
1

hii

(
γi −

j∑

k=i+1

hikyk

)
.

ii. Set

x← x0 +

j∑

i=1

yizi.

iii. Project x onto Sp.

iv. END.

The main differences between Algorithm 4.4 and Algorithm 4.6 in terms of computational and
memory costs are the following:

Remark 4.7 (GMRES vs. FGMRES with projection)
1. The memory costs of FGMRES are approximately twice those of GMRES, because add-

itionally to the Krylov subspace basis vj ∈ RN , j ∈ N, the vectors zj ∈ RN , j ∈ N, need
to be stored.

2. The projection onto the subspace Sp ⊂ RN needs to be computed twice in every FGMRES
iteration. In the context of the Low-Mach model each projection step requires the com-
putation of the mean hydrodynamic pressure, i.e., the assembly of a scalar value over the
computational domain Ω, and the correction of pressure coefficients, which can be written
as a vector-vector addition.

3. Remark 4.5, 2., also holds in the situation of FMGRES and the Low-Mach model.

The numerical results in Chapter 6 for the scenario described in Chapter 5 are obtained with
the FGMRES parameters given in Table 4.5. The relative tolerance is given by the current
forcing term ηi−1 of the outer Newton iteration and |Ω| denotes the volume of the computational
domain Ω.
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Parameter εrel εabs Imax

Value ηi−1 5 · 10−15 · |Ω| 1000

Table 4.5.: Parameters of FGMRES (Algorithm 4.6) for the Low-Mach model. ηi−1 denotes the
current forcing term in Newton’s method and |Ω| the volume of the computational
domain Ω.

4.4.2.2. The preconditioner: nested Schur complement

The FGMRES algorithm (Algorithm 4.6) is preconditioned by an nested Schur complement solver
in order to solve the linear systems arising in the computation of the Newton steps for the Low-
Mach model. Schur complement techniques are successfully employed to solve the saddle-point
problems, that arise in the solution of the incompressible Navier-Stokes equations, see [14, 48,
68], for example. In the following, the Schur complement is extended from the incompressible
Navier-Stokes equations to the Low-Mach model by applying two Schur complements in a nested
way, i.e., one Schur complement solver is preconditioned by a second one. This approach to
precondition the Low-Mach model equations has – to the best of the knowledge of the author –
not been reported in the literature so far.

The idea of the Schur complement algorithm is the following: Let a linear system Aξ = b in
block matrix form

Aξ =
(
A B

C D

)(
x
y

)
=

(
f
g

)
(4.32)

be given and assume, that A is regular. By performing a block LU decomposition on (4.32), this
linear system is equivalent to the following two equations:

(
D − CA−1B

)
y = g − CA−1f , (4.33)

x = A−1f −A−1By. (4.34)

The matrix Σ := D − CA−1B ∈ RN1×N1 , 0 ≤ N1 ≤ N , is called the Schur complement of A
in the block matrix A and (4.33) is called the Schur complement equation for y. The strategy
to solve equations (4.33) and (4.34), that is considered in the remainder of this thesis, is as
following:

Algorithm 4.8 (Schur complement solver)
Let an initial solution ξ0 ∈ RN , a right hand side vector (f, g)⊤ ∈ RN , a system matrix A ∈
RN×N , a relative tolerance εrel > 0, an absolute tolerance εabs > 0, a maximum iteration number
Imax ∈ N and preconditioning matrices M−1

j ∈ RN1×N1 , j ∈ N for the Schur complement matrix
Σ be given.

1. Solve Schur complement equation (4.33) for y by FGMRES with Right Preconditioning
and Projection (Algorithm 4.6) and the given parameters εrel, εabs, Imax and M−1

j . The
applicability of the projection is described below in Remark 4.11.

2. Compute x via (4.34).

Remark 4.9 (Schur complement solver)
GMRES (Algorithm 4.4) with Right Preconditioning and the BoomerAMG preconditioner (see
Subsection 4.4.1.2) are used to compute A−1, wherever it occurs, for the computation of the
numerical results in Chapter 6.
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In the context of discretisations of PDE, each of the blocks A, B, C, and D corresponds to the
couplings between certain variables in the PDE system. The decomposition into those blocks
for both applied Schur complement solvers is described next. The Jacobian matrix JF of the
Low-Mach model can be written in variable-wise block matrix form as

JF =

⎛
⎜⎜⎝

Av,v Av,ρ Av,θ Av,p

Aρ,v Aρ,ρ Aρ,θ Aρ,p

Aθ,v Aθ,ρ Aθ,θ Aθ,p

Ap,v Ap,ρ Ap,θ Ap,p

⎞
⎟⎟⎠ .

Ai,j corresponds to the matrix block, where the finite element test functions belong to variable
i and the finite element trial functions to variable j.

The first Schur complement solver (Algorithm 4.8) operates on the Schur complement decom-
position of the Jacobian matrix JF of the Low-Mach model and is used as preconditioner for
Algorithm 4.6 in the computation of each Newton step. Since this is the outer Schur comple-
ment solver, all block matrices etc. corresponding to this instance are denoted by the subscript
o. Especially, it holds Ao = JF . The four block matrices and four block vectors of the outer
Schur complement are as follows:

• The matrix Ao corresponds to the block of JF , where both test and trial functions belong
to the temperature θ∗v and density ρ∗ variables, i.e., to the block matrix formed by (4.26),
(4.30) and (4.31). Therefore, Ao can be interpreted as the discrete instationary convection
operator for θ∗v and the Jacobian of the ideal gas law for ρ∗.

• The matrix Bo corresponds to the block of JF , where the test functions correspond to the
temperature θ∗v and density ρ∗ variables and the trial functions to the velocity components
v and the hydrodynamic pressure p∗, i.e., to the block matrix formed by (4.25). Bo can be
interpreted as the discrete representation of the influences of v and p∗ on θ∗v and ρ∗.

• Therefore, the block vectors xo and fo are defined by the test functions of temperature θ∗v
and density ρ∗.

• The matrix Co corresponds to the block of JF , where the test functions correspond to the
velocity components v and the hydrodynamic pressure p∗ variables and the trial functions
to the temperature θ∗v and density ρ∗, i.e., to the block matrix formed by (4.20). Co can
be interpreted as the discrete representation of the influences of θ∗v and ρ∗ on v and p∗.

• The matrix Do corresponds to the block of JF , where both test and trial functions belong
to the velocity components v and the hydrodynamic pressure p∗ variables, i.e., to the block
matrix formed by (4.19), (4.21), (4.24). Therefore, Do can be interpreted as the discrete
operator of a perturbed incompressible Navier-Stokes equation system. In contrast to the
incompressible Navier-Stokes equations, the density is spatially varying and the continuity
equation (3.15) contains additional terms due to the dependence of ρ∗ on p0 and pth.

• Therefore, the block vectors yo and go are defined by the test functions of the velocity
components v and the hydrodynamic pressure p∗.

Consequently, the partition of the matrix Ao for the application of the outer Schur complement
can be written in block matrix form as

Ao =

⎛
⎜⎜⎝

Aρ,ρ Aρ,θ Aρ,v Aρ,p

Aθ,ρ Aθ,θ Aθ,v Aθ,p

Av,ρ Av,θ Av,v Av,p

Ap,ρ Ap,θ Ap,v Ap,p

⎞
⎟⎟⎠ .
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Remark 4.10 (Schur complement as discrete operator splitting)
Based on the interpretation of the four block matrices Ao, Bo, Co, and Do, the Schur complement
solver can be interpreted as an operator splitting on the discrete level. Observe, that the splitting
is only done in the preconditioner of the linear solver, that computes the Newton step. Therefore,
the approximate solves of the Schur complement equation (4.33) need only to be accurate enough
to provide a Krylov subspace basis in Algorithm 4.6, such that the solution of the linear system
can be approximated with sufficient accuracy within a few iterations of Algorithm 4.6.

As described in Algorithm 4.8, the Schur complement equation (4.33) with the system matrix

Σo := Do − CoA
−1
o Bo (4.35)

is solved by Algorithm 4.6. Consequently, efficient preconditioners M−1
j,o for Σo are needed.

The Schur complement equation (4.33) for the outer Schur complement
(
Do − CoA

−1
o Bo

)
yo = go − CoA

−1
o fo (4.36)

resolves the Low-Mach model system (3.44)-(3.47) for the velocity vh and hydrodynamic pressure
p∗h components. Within this system, equations (3.46) and (3.47) represent the temperature and
density propagation, respectively. Keeping v fixed, (3.46) is an instationary advection equation
for the temperature θ∗v and the density ρ∗ depends on the solution functions θ∗v and pth only,
where the latter is resolved separately via an operator splitting approach, see Subsection 4.1.
Conversely, (3.44) and (3.45), which describe the propagation of the velocity field v and the
hydrodynamic pressure p∗, only depend on pth and ρ∗. Observe, that θ∗v , ρ∗ and p∗ represent
small deviations from the reference states only, see Subsection 2.1.5. Therefore, θ∗v and ρ∗ are
mainly determined by the convection due to the velocity field v, whereas ρ∗ only plays a role in the
balance of pressure gradient and gravitational forces in the equations for v and p∗. Consequently,
(3.44) and (3.45) – the disturbed incompressible Navier-Stokes system – form the dominant part
in the dynamics of the system (3.44)-(3.47).

In the discrete setting, this dominant part is the one described by the matrices Co and Do,
but the influence of the part Co on v and p∗ is small due to the above considerations. Therefore,
the matrix M−1

j,o with
M−1

j,o ≈ A−1
i and Ai = Do (4.37)

is chosen as preconditioner for Σo and A−1
i is again approximated by a Schur complement solver

(Algorithm 4.8), which is referred to as the inner Schur complement and all corresponding block
matrices etc. are denoted by the subscript i. The four block matrices and four block vectors of
the inner Schur complement are as follows:

• The matrix Ai corresponds to the block of Do, where both test and trial functions belong
to the velocity v variables, i.e., to the block matrix formed by (4.19) and (4.24) restricted
to the test function parts containing φv,h. Therefore, Ai can be interpreted as the discrete
instationary convection-diffusion-reaction operator for v.

• The matrix Bi corresponds to the block of Do, where the test functions correspond to the
velocity v variables and the trial functions to the hydrodynamic pressure p∗, i.e., to the
block matrix formed by (4.21) restricted to the test function parts containing φv,h. Bi can
be interpreted as the discrete representation of the influences of p∗ on v.

• Therefore, the block vectors xi and fi are defined by the test functions of velocity v.
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• The matrix Ci corresponds to the block of Do, where the test functions correspond to the
hydrodynamic pressure p∗ variable and the trial functions to the velocity v, i.e., to the
block matrix formed by (4.19) and (4.24) restricted to the test function parts containing
φp,h. Ci can be interpreted as the discrete representation of the influences of v on p∗.

• The matrix Di corresponds to the block of Do, where both test and trial functions belong to
the hydrodynamic pressure p∗ variable, i.e., to the block matrix formed by (4.21) restricted
to the test function parts containing φp,h. Therefore, Di corresponds to a discrete Poisson
problem for the hydrodynamic pressure p∗ with Neumann boundary conditions and arises
from the grad-div stabilisation.

• Therefore, the block vectors yi and gi are defined by the test functions of the hydrodynamic
pressure p∗.

Consequently, the partition of the matrix Ai for the application of the inner Schur complement
can be written in block matrix form as

Ai =

(
Av,v Av,p

Ap,v Ap,p

)
.

Remark 4.11 (Projection in FMGRES of Schur complement solver)
Since the Schur complement equations with both Σo and Σi contain the block where the test
functions correspond to the hydrodynamic pressure p∗, the projection onto the subspace Sp, see
Subsection 4.4.2, is applicable in both cases.

As described in Algorithm 4.8, the Schur complement equation (4.33) with the system matrix

Σi := Di − CiA
−1
i Bi (4.38)

is solved by Algorithm 4.6. Consequently, efficient preconditioners M−1
j,i for Σi are needed.

The Schur complement equation (4.33) with system matrix Σi is the discrete representation
of an equation for the hydrodynamic pressure p∗. Another popular approach to solve such an
equation for the case of the incompressible Navier-Stokes equations is via the so called pressure
poisson equation (PPE), see [69], for example. The idea for preconditioning Σi is, to imitate the
PPE technique with a regularized version of the matrix Di, which represents a Poisson problem
for the hydrodynamic pressure p∗ with Neumann boundary conditions, too, but arises due to the
grad-div stabilisation. One advantage is, that the matrix Di is already at hand and only the mass
matrix of the pressure needs to be assembled once in order to regularise Di. Consequently, no
additional assembly of a matrix for the preconditioner of Σi is necessary. Therefore, the matrices

M−1
j,i ≈ P−1

j with Pj = δpMp +Di (4.39)

are chosen as preconditioners for the Schur complement Σi, whereMp defined as

Mp := (Mi,j)
Nh
i,j=1 , Mi,j := (ψj , ψi) , (4.40)

denotes the mass matrix of the hydrodynamic pressure variable p∗ and

δp := 10−16 ·∆t (4.41)

denotes the regularisation parameter. With this regularisation, the matrices Pj are symmetric
and positive definite and, therefore, the inversion is computed by the preconditioned Conjugate



72 Chapter 4: Solver

Parameter εrel εabs Imax

Value ηi−1 0.0 3

Table 4.6.: Parameters of FGMRES (Algorithm 4.6) for the solution of the Schur complement
equation (4.36) of the outer Schur complement solver (Algorithm 4.8). ηi−1 denotes
the current forcing term in Newton’s method.

Parameter εrel εabs Imax

Value 10−6 0.0 1000

Table 4.7.: Parameters of GMRES (Algorithm 4.4) for the inversion of the matrix Ao in the
outer Schur complement solver (Algorithm 4.8).

Gradient (CG) method (see [39, 54, 66]) and the BoomerAMG preconditioner (see Subsection
4.4.1.2). The presented solution methodology proved to be effective in the scenario of interacting
cyclones, see Chapter 5 for the scenario description and Chapter 6 for the numerical results.

The nested Schur complement solvers (Algorithm 4.8) can be configured with a variety of
parameters for the occurring (F)GMRES (Algorithms 4.4 and 4.6) solvers and the corresponding
preconditioners. The parameters, which are used for the computation of numerical results in
Chapter 6, are given in Tables 4.6-4.13. Observe, that the CG algorithm – like (F)GMRES – is
an iterative Krylov subspace method and that, therefore, the same convergence criteria can be
applied.

Parameter Value Description
CoarsenType 6 Falgout coarsening
NumFunctions 2 Ao represents two solution functions

RelaxType 3 hybrid SOR smoother, forward solve
RelaxWt 0.25 Relaxation weight for SOR smoother

InterpType 2 Classical modified interpolation for hyperbolic PDEs
AggNumLevels 5 Number of levels of aggressive coarsening

MaxIter 1 Number of multigrid cycles per preconditioner call
Tol 0.0 Relative tolerance for convergence

StrongThreshold 0.6 Strong threshold for dropping matrix entries

Table 4.8.: Parameters of BoomerAMG for preconditioning GMRES (Algorithm 4.4) in the
inversion of the matrix Ao in the outer Schur complement solver (Algorithm 4.8).
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Parameter εrel εabs Imax

Value ηi−1 0.0 3

Table 4.9.: Parameters of FGMRES (Algorithm 4.6) for the solution of the Schur complement
equation (4.33) of the inner Schur complement solver (Algorithm 4.8) with the
system matrix (4.38). ηi−1 denotes the current forcing term in Newton’s method.

Parameter εrel εabs Imax

Value 10−6 0.0 1000

Table 4.10.: Parameters of GMRES (Algorithm 4.4) for the inversion of the matrix Ai in the
inner Schur complement solver (Algorithm 4.8).

Parameter Value Description
CoarsenType 6 Falgout coarsening
NumFunctions 3 Ai represents three solution functions

RelaxType 3 hybrid SOR smoother, forward solve
RelaxWt 0.5 Relaxation weight for SOR smoother

InterpType 4 Multipass interpolation
AggNumLevels 5 Number of levels of aggressive coarsening

MaxIter 1 Number of multigrid cycles per preconditioner call
Tol 0.0 Relative tolerance for convergence

StrongThreshold 0.6 Strong threshold for dropping matrix entries

Table 4.11.: Parameters of BoomerAMG for preconditioning GMRES (Algorithm 4.4) in the
inversion of the matrix Ai in the inner Schur complement solver (Algorithm 4.8).

Parameter εrel εabs Imax

Value 10−6 0.0 500

Table 4.12.: Parameters of CG for the inversion of the matrix Pj (4.39) in the inner Schur
complement solver (Algorithm 4.8).
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Parameter Value Description
CoarsenType 6 Falgout coarsening
NumFunctions 1 Pj represents only p∗

RelaxType 6 hybrid SSOR smoother, forward solve
RelaxWt 0.5 Relaxation weight for SSOR smoother

InterpType 0 Classical modified interpolation
AggNumLevels 5 Number of levels of aggressive coarsening

MaxIter 1 Number of multigrid cycles per preconditioner call
Tol 0.0 Relative tolerance for convergence

StrongThreshold 0.6 Strong threshold for dropping matrix entries

Table 4.13.: Parameters of BoomerAMG for preconditioning CG in the inversion of the matrix
Pj (4.39) in the inner Schur complement solver (Algorithm 4.8).
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5. Cyclone-Cyclone interaction

Contents
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A scenario of two interacting tropical cyclones is considered as benchmark problem for the com-
parison of the Compressible Navier-Stokes and the Low-Mach model in terms of both solution
properties and computational performance. It is a challenging and computationally expensive
task to forecast the motion and evolution of such an interaction by means of a numerical simu-
lation because physical processes that interact in complex ways on a wide range of spatial and
temporal scales need to be considered [11, 12]. The scenario is highly idealised in the sense that
exact initial conditions for the velocity field are assumed and that the computational domain
is located in the so called neutral convective mixed layer. The latter means that no interaction
with neither the Earth’s surface nor the outer space is considered, and the dynamics are assumed
to be purely driven by the fluid flow equations and the initial states of the unknown quantities
itself. Therefore, this scenario really allows a comparison of the different model dynamics as
influences by means of external forces and complex orographic effects are not present.

The investigation of the interaction of tropical cyclones has a long history in the community
of meteorology and reaches back to the 1920s [35, 36]. For an historical overview, see [12, 63], for
example. Observe, that it is not the objective of this thesis to provide an in-depth analysis of the
results of the two different models by means of meteorological expertise. Rather, the emphasis
is on numerical and computational aspects. Therefore, this scenario is considered in order to
provide a benchmark problem that has a relevance in numerical weather forecasting. A detailed
description of the objectives of the comparison is given in Chapter 6.

In Section 5.1, the computational domain and the initial, idealised velocity field are presented.
Based on the given velocity field, appropriate initial distributions for the thermodynamic quan-
tities density, temperature and pressure need to be determined. The exact procedure for this
step is given in Section 5.2.

5.1. Domain and initial velocity field

Typically, tropical cyclones have diameters on the scale of several 100 km [12]. In the considered
scenario, two cyclones of this type, which interact with each other, are placed in the computa-
tional domain with an initial distance of the storm centres of 400 km. Therefore, the horizontal
extend of the dynamic evolution of the two cyclones easily reaches the scale of 1000 km. Con-
sequently, the domain Ω needs to be chosen large enough such that the cyclones are still fully
contained within the domain on the considered time-interval. For the numerical results in Chap-
ter 6, the domain extends over 4000 km in both horizontal directions, and 13 km in the vertical.
Horizontally, the domain is centred around the origin of the coordinate system, i.e., the domain
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Ω is defined as

Ω := [−2, 000, 000; 2, 000, 000]× [−2, 000, 000; 2, 000, 000]× [0; 13, 000], (5.1)

where the boundaries of the intervals are given in meters [m]. The origin (0, 0, 0) ∈ R3 is
positioned at a northern latitude of Φ0 = 30◦. According to Section 4.1, Ω is triangulated by
400 cells in both horizontal directions and 32 cells in the vertical, which leads to a total amount
of 5, 120, 000 congruent hexahedrons, where each has the size 10, 000 m× 10, 000 m× 406.25 m.
The size of the cells is chosen such that so called non-hydrostatic effects come into account and
are – to the scale of the cell size – resolved in the numerical solution [46].

The initial velocity field is idealised as follows: First, the velocity profile is purely horizontal,
i.e., the vertical component is equal to zero in Ω, w ≡ 0. Second, the initial velocity field is
smooth. A third idealisation is made by assuming, that the two cyclones in their common initial
state can be modelled by linear superposition of two single storm profiles.

The initial velocity field of one cyclone is defined as follows and is due to [63]: Let a reference
velocity vref > 0, 0 < zl < zu, rmax, rcut, rwid > 0 and a, b > 0 be given. Furthermore, let
xc := (xc, yc)

⊤ denote the horizontal position of the centre of the cyclone, x := (x, y)⊤ the
horizontal coordinates and z the vertical coordinate. Then, the initial profile of one cyclone is
given as follows. Define

χ(z) :=

⎧
⎪⎪⎨
⎪⎪⎩

1, 0 ≤ z ≤ zl
1
2

(
cos
(
π z−zl
zu−zl

)
+ 1
)
, zl < z ≤ zu

0, else

(5.2)

as well as
r(x) := ∥x− xc∥2 , s(x) :=

r(x)

rmax
, (5.3)

and

ξ(x) :=

⎧
⎨
⎩
1− exp

(
− (r(x)−rcut)

2

r2wid

)
, 0 ≤ r(x) < rcut

0, else
. (5.4)

Furthermore, define the tangential velocity

vtan(x) := ξ(x) · vref ·
s(x) ·

(
1 + 6b

2a · s4(x)
)

(1 + a · s2(x) + b · s6(x))2
(5.5)

and
α(x) := arctan

(
y − yc
x− xc

)
. (5.6)

Then, the initial velocity field of one cyclone is given by

ṽ0(x, y, z) := χ(z) · vtan(x) · (− sin (α(x)) , cos (α(x)) , 0)⊤ . (5.7)

The two cyclones are initialized with the parameters given in Table 5.1. The cyclone with centre
at (−200, 000; 0) is denoted as western cyclone and the other with centre at (200, 000; 0) is
denoted as eastern cyclone.

Remark 5.1 (Boundary conditions of initial velocity field)
The initial velocity field (5.7) obviously fulfils the boundary conditions of Problems 2.6 and 3.6
and their discretisations, respectively.
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Parameter Value
vref 35.7605m

s

zl 2, 000 m

zu 11, 000 m

rmax 150, 000 m

rcut 1, 200, 000 m

rwid 500, 000 m

a 0.3398

b 5.377 · 10−4

xc - western cyclone −200, 000 m
yc - western cyclone 0 m

xc - eastern cyclone 200, 000 m

yc - eastern cyclone 0 m

Table 5.1.: Parameters for initial cyclone profiles

5.2. Computation of thermodynamics initial states

The given initial velocity field v0 from the previous subsection describes two idealised tropical
cyclones. Based on the velocity field, physically meaningful initial profiles for density, tempera-
ture and pressure need to be determined. This is done in two steps.

First, consider Table 2.1 again. The scale analysis given there indicates that for a stable initial
state the dominant forces in the momentum equation should be nearly balanced, i.e., the gradient
fluxes (v ·∇)v, the Coriolis force, the effective gravitational force and the pressure gradient force.
Collecting these forces in an equation and using the properties of the reference states for density
and pressure, the mathematical task now reads:

Problem 5.2 (Initial density and pressure)
Find ρ∗0, p∗0 ∈ C1(Ω), such that

ρ∗0 ((v0 · ∇)v0 + fe3 × v0 + ge3) +∇p∗0 = −ρ0 ((v0 · ∇)v0 + fe3 × v0) .

Of course, Problem 5.2 needs to be equipped with appropriate boundary conditions.

Remark 5.3 (Initial density and pressure)
1. Observe, that in the vertical momentum equation the hydrostatic balance of the reference

states is used.

2. Problem 5.2 consists of three equations for two unknown functions. Therefore, Problem
5.2 is over-determined.

Due to the second Remark 5.3, the goal of Problem 5.2 needs to be weakened in order to
provide a well-posed problem for the initial density and pressure states. To achieve this, the
problem of finding the initial states is reformulated as a least-squares approximation in the L2

sense, i.e., a least-squares Galerkin approximation is constructed [47].
Let L : H1(Ω) → L2(Ω) be an abstract differential operator of first order, f ∈ L2(Ω) and

u ∈ H1(Ω). Define the least-squares functional as

I(u) := ∥Lu− f∥2L2(Ω) = (Lu− f, Lu− f) . (5.8)
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Then, the least-squares problem reads:

Minimise I(u) subject to u ∈ H1(Ω). (5.9)

The goal functional (5.8) is convex. Therefore, the first-order criterion, i.e., u is a root of
the first-order derivative of I, is both a necessary and a sufficient condition for a minimum in
(5.9). Deriving the derivative of I with respect to u analogously to (4.15) leads to the following
variational problem: Find u ∈ H1(Ω) such that

(Lu,Lφ) = (f, Lφ) for all φ ∈ H1(Ω). (5.10)

Applying (5.10) to Problem 5.2 yields the following least-squares approximation for the initial
states of density and pressure. Furthermore, boundary conditions need to be set for ρ∗0 and p∗0.
To fix initial pressure uniquely – it is only determined up to a constant by the partial differential
equation as it only occurs with its gradient –, zero Dirichlet boundary conditions are set at the
upper boundary z = zmax for the pressure. Furthermore, the vertical momentum equation in
Problem 5.2 just describes the hydrostatic balance

∂zp
∗
0 = −gρ∗0,

because the vertical component of the initial velocity field is zero. To ensure, that the vertical
pressure gradient is zero on the boundary Γ, which is meaningful, because the initial velocity
field incorporates zero Neumann boundary conditions on Γ and, therefore, the pressure should
not change in the vertical, zero Dirichlet boundary conditions are set for ρ∗0 on Γ.

Problem 5.4 (Initial density and pressure - least-squares formulation)
Find ρ∗0, p∗0 ∈ H1(Ω), such that

(ρ∗0 ((v0 · ∇)v0 + fe3 × v0 + ge3) +∇p∗0, φρ ((v0 · ∇)v0 + fe3 × v0 + ge3) +∇φp)

= (−ρ0 ((v0 · ∇)v0 + fe3 × v0), φρ ((v0 · ∇)v0 + fe3 × v0 + ge3) +∇φp)

holds for all φρ ∈ H1(Ω) and all φp ∈ H1(Ω) as well as

ρ∗0 = 0 on Γ,

p∗0 = 0 on Γtop := {(x, y, z) ∈ Γ : z = zmax} .

Discretising Problem 5.4 by means of finite elements analogously to Chapters 2 and 3, respect-
ively, and using the notation introduced there, finally leads to the following discrete problem for
the initial density and pressure fields.

Problem 5.5 (Initial density and pressure - discrete)
Let Ω ⊂ R3 be as in (2.94) and T h a triangulation of Ω as in (2.116). Define

J (v) := (v · ∇)v + fe3 × v + ge3

Find (ρ∗h)
(0) ∈ Qh, (p∗h)

(0) ∈ Ph, such that
(
(ρ∗h)

(0)
J (v0) +∇ (p∗h)

(0), φρ,hJ (v0) +∇φp,h

)

=(−ρ0 ((v0 · ∇)v0 + fe3 × v0), φρ,hJ (v0) +∇φp,h)

holds for all φρ,h ∈ Yh and all φp ∈ Zh as well as

(ρ∗h)
(0) = 0 on Γ,

(p∗h)
(0) = 0 on Γtop := {(x, y, z) ∈ Γ : z = zmax} .
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Figure 5.1.: Initial velocity field and vertical vorticity component.

In the second step, the initial temperature field is computed from (ρ∗h)
(0) and (p∗h)

(0) via the
ideal gas law (2.98) and (3.9), respectively. In the case of the Low-Mach number approximation,
the thermodynamic pressure pth(0) = 0 is set. Under the assumption, that the Low-Mach ap-
proximation is valid and p∗0 is small compared to the other pressure parts, the initial temperature
fields are close to each other. Observe, that the initial pressure p∗0 is not required to have zero
mean value as it does not occur in the discrete dynamical system to the chosen time-stepping
scheme described in Subsection 4.1.

The initial states are depicted in Figures 5.1-5.5. Observe, that the vertical axis is scaled up by
a factor of 100 to allow a clearer visualisation. The initial temperature fields in Figures 5.3 and
5.4, respectively, show a little bit different shapes and a shift in the valuation, but observe, that
the field θ∗v is just the deviation from the reference state θv,0 which is larger by several orders of
magnitude, see Figure 2.1.
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Figure 5.2.: Initial density.

Figure 5.3.: Initial temperature of Compressible Navier-Stokes model.
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Figure 5.4.: Initial temperature of Low-Mach model.

Figure 5.5.: Initial pressure.
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6. Numerical results
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In the following, the proposed governing equations, namely the Compressible Navier-Stokes
model (see Chapter 2) and the Low-Mach model (Chapter 3), respectively, with their respective
discretisations are applied to forecast the evolution of the interacting tropical cyclone scenario
described in Chapter 5. It is the main objective to provide comparative measures of numerical
properties of the different models. Additionally, basic measures are defined in order to judge the
validity of the Low-Mach number approximation in the considered flow regime.

The numerical solution of the cyclone-cylcone interaction problem of Chapter 5 with the dis-
cretisations and solvers described in Chapter 4 yields a discrete problem with 31,680,000 un-
knowns or degrees of freedom (DoFs) in each time-step. In order to be able to solve these
systems in a feasible amount of time and to use the provided computing resources responsibly,
the scalability of the solvers proposed in Chapter 4 needs to be investigated and, based on this
study, a parallel configuration is chosen for the comparative tests of the two models. A final time
of

T = 96h = 345, 600s (6.1)

is chosen, which leads to a forecast of four full days.
In Section 6.1, the results of the proposed scalability study of the solvers are presented. In the

following Section 6.2, the comparison of the two models by means of numerical measures and
qualitative considerations is depicted.

All tests are run on the bwForCluster MLS & WISO. The abbreviation CNS is used to denote
results of the Compressible Navier-Stokes model and the abbreviation LM to denote those of the
Low-Mach model.

6.1. Scalability study

An analysis of the memory requirements of both models shows that the Low-Mach model con-
sumes more memory than the Compressible Navier-Stokes Model due to the matrix copies needed
in the Schur complement preconditioners. For the described discretisation and the resulting prob-
lem size, the memory consumption of the Low-Mach model is approximately 610 GByte in total.
As the standard nodes of bwForCluster MLS & WISO are equipped with 64 GByte memory per
node, the minimum node number, on which both models can be run, is 10. Considering, that
the available 16 processor cores per node are used on 10 nodes and that one parallel MPI process
is used per core, the local problem size on each process is approximately 200,000 DoFs, which
is quite large. Therefore, the next larger power of 2, which is 256, was chosen as the minimal
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Number
of pro-
cesses

Accumu-
lated time
CNS [s]

Accumu-
lated time
LM [s]

Speed-
up
CNS

Effi-
ciency
CNS
[%]

Speed-
up LM

Effi-
ciency
LM [%]

256 390.661 2491.286 1 100 1 100
512 207.144 1330.151 1.886 94.30 1.873 93.647
1024 113.158 761.487 3.452 86.309 3.272 81.790
2048 72.843 669.027 5.363 67.038 3.724 46.547

Table 6.1.: Accumulated compute times for the first 10 time-steps without I/O of the two
models ranging between 256 and 2048 parallel processes.

configuration for the conduction of the scalability study. A power of 2 is chosen because global
reduction operations, as they occur in the computation of scalar products of vectors, are often
based on binary trees and, therefore, a number of processes, which is a power of 2, exploits this
strategy optimally.

Starting from 256 parallel processes, the scalability to process numbers of 512, 1024 and 2048,
which is the maximum number of processors, that can be allocated at once on bwForCluster
MLS & WISO, is investigated. In all four configurations, the first ten time-steps of both models
are computed and the compute times accumulated in order to filter out deviations in the results
that occur due to the scheduling of the underlying operating system.

The accumulated time measurements as well as the resulting speed-up and parallel efficiency
for the computation of a whole time-step, i.e., including assembly of matrices and vectors as well
as the compute times for the solvers of Chapter 4, without I/O are given in Table 6.1 and those
including I/O are given in Table 6.2. Visualisations of the speed-ups are given in Figure 6.1 and
of the efficiency in Figure 6.2. Input/Output operations (I/O) include the computation of the
vorticity field (see Subsection 6.2), output of the benchmarking quantities such as timings to a
Comma Separated Values (CSV) file, writing the solution and the computational mesh to the
parallel visualisation toolkit format (PVTU) and writing the solution for checkpointing purposes
to a parallel hierarchical data format (HDF5) file. In this context, speed-up and efficiency are
defined as follows: Let P1, P2 ∈ N with P1 ≤ P2 denote two numbers of processors and T (Pj),
j ∈ {1, 2}, the corresponding compute times. Then the (incremental) speed-up from P1 to P2

processors is defined as

SP1(P2) :=
T (P1)

T (P2)
. (6.2)

In the optimal case it should hold SP1(P2) = P2
P1

, which is referred to as the ideal speed-up.
Consequently, the ratio between actual speed-up and ideal speed-up is measure for efficiency of
the compute resources that are consumed additionally and, therefore, the (parallel) efficiency is
defined as

EP1(P2) :=

T (P1)
T (P2)

P2
P1

. (6.3)

In the context of the presented scalability study, it holds P1 = 256 and P2 ∈ {256, 512, 1024, 2048}.
The results show that both models scale very well up to 1024 processes and achieve over 80%

of parallel efficiency, while the differences between both models are small. For the configuration
of 2048 processes, there is a notable decrease in efficiency measure as the speed-up from 1024 to
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Number
of pro-
cesses

Accumu-
lated time
CNS [s]

Accumu-
lated time
LM [s]

Speed-
up
CNS

Effi-
ciency
CNS
[%]

Speed-
up LM

Effi-
ciency
LM [%]

256 443.582 2547.889 1 100 1 100
512 236.8996 1363.583 1.872 93.622 1.869 93.426
1024 132.970 782.117 3.336 83.399 3.258 81.442
2048 88.620 690.493 5.005 62.568 3.690 46.124

Table 6.2.: Accumulated compute times for the first 10 time-steps with I/O of the two models
ranging between 256 and 2048 parallel processes.
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Figure 6.1.: Speedup in strong scaling test for whole time-step on bwForCluster MLS & WISO
relative to 256 processes.
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Figure 6.2.: Efficiency in strong scaling test for whole time-step on bwForCluster MLS & WISO
relative to 256 processes.

2048 processes is notably smaller than for the lower processor numbers. On 2048 processors, the
Compressible Navier-Stokes model performs considerably better by providing an efficiency of over
60%, whereas the efficiency of the Low-Mach model decreases to approximately 45%. Therefore,
a process number of 1024 is chosen for the comparative computations in Subsection 6.2, because
this configuration provides the best compromise between time-to-solution and efficient usage of
the provided hardware resources.

The source of the decrease in efficiency is found in the performance of the linear solvers and
preconditioners, respectively. Inspecting the times and scalability measures for the assemblies
of residual vectors (Table 6.3) and matrices (Table 6.4) – the numbers for the solvers can be
determined by substracting the assembly times from the times given in Table 6.1 – shows that
the assembly scales almost perfectly as there is no communication between the different processes
needed and, therefore, only the solvers are left as source for the limitation in parallel efficiency.
The speed-ups of the assembly are visualized in Figure 6.3 and the efficiency in Figure 6.4. The
reason that the Low-Mach model lacks more in efficiency on 2048 processes than the Compress-
ible Navier-Stokes model is due to the fact that the Schur complement preconditioner requires
several solves with submatrices of the Jacobian matrix (see Subsection 4.4) and, therefore, the
missing scalability of one linear system solve is accumulated. One application of a linear solver,
more precisely: the AMG preconditioner, does not scale so well to 2048 processors, compared
to the configurations with lower process numbers. There are several possible reasons for the
behaviour. One possible reason is that, due to the decomposition of the computational domain
Ω to more processors, the ratio between local problem size and interface to neighbouring subdo-
mains decreases. As the smoother in the BoomerAMG implementation with standard parameters
only works on the local part of the linear system on each processor, the global efficiency of the
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Number
of pro-
cesses

Accumu-
lated time
CNS [s]

Accumu-
lated time
LM [s]

Speed-
up
CNS

Effi-
ciency
CNS
[%]

Speed-
up LM

Effi-
ciency
LM [%]

256 63.940 65.603 1 100 1 100
512 29.764 30.381 2.148 107.411 2.159 107.967
1024 18.699 18.879 3.419 85.487 3.475 86.875
2048 8.770 8.933 7.291 91.138 7.343 91.793

Table 6.3.: Accumulated assembly times of the residual vectors for the first 10 time-steps of the
two models ranging between 256 and 2048 parallel processes.

Number
of pro-
cesses

Accumu-
lated time
CNS [s]

Accumu-
lated time
LM [s]

Speed-
up
CNS

Effi-
ciency
CNS
[%]

Speed-
up LM

Effi-
ciency
LM [%]

256 132.562 168.243 1 100 1 100
512 59.633 75.467 2.223 111.148 2.229 111.468
1024 36.603 46.398 3.622 90.549 3.626 90.653
2048 16.67331 21.239 7.951 99.282 7.921 99.017

Table 6.4.: Accumulated assembly times of the Jacobian matrices for the first 10 time-steps of
the two models ranging between 256 and 2048 parallel processes.

smoother is decreasing and, consequently, the linear solver needs more iterations to converge to
a solution. A further possible source for lacking scalability is the applied coarsening scheme,
namely the Falgout coarsening, which is not invariant to the number of subdomains, i.e., on
different numbers of processors different coarse problems are generated. Therefore, a coarse grid
on 2048 processors can be less efficient than the one generated on 1024 processors. A detailed
analysis of the sources of the scalability lack on 2048 processors and a general improvement of
this behaviour to higher process numbers is a topic of further research, see Subsection 7.2.

6.2. Model comparison

The Compressible Navier-Stokes model and its Low-Mach approximation are compared in two
terms. First, numerical properties are analysed and compared in Subsection 6.2.1. Second,
aspects in terms of physical properties of the two solutions are investigated in Subsection 6.2.2.

6.2.1. Numerical aspects

The main objective of introducing the Low-Mach approximation to the Compressible Navier-
Stokes model is to investigate the gain in the maximum possible time-step size at which the
solution can be computed stably as the evolution of phenomena at the speed of sound or even
higher is filtered out of the model equations by the Low-Mach assumption. Therefore, these
maximal values are determined heuristically by decreasing the time-step size by bisection and,
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Figure 6.3.: Speedup in strong scaling test for assembly on bwForCluster MLS & WISO relative
to 256 processes.
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thereby, constructing nested intervals, starting from the interval [0s, 60s]. Via this procedure the
following maximal time-step sizes that allow a stable simulation of the cyclone-cyclone interaction
scenario are found: The Low-Mach model is able to run stably with a time-step size of

∆tLM = 10 s, (6.4)

whereas the Compressible Navier-Stokes model needs a time-step size of

∆tCNS = 0.125 s (6.5)

for stability of the simulation, i.e., the Low-Mach model allows a time-step size that is 80 times
larger than the one of the Compressible Navier-Stokes model for the considered scenario. Con-
sequently,

MLM = 34, 560 (6.6)

time-steps of the Low-Mach model need to be computed to simulate the cyclones up to the final
time T = 96 h, whereas

MCNS = 2, 764, 800 (6.7)

time-steps of the Compressible Navier-Stokes model are needed to complete the simulation.
Based on these findings, both models are run, which leads to the results given in Table 6.5.

As several thousands of time-steps need to be computed, the average numbers per time-step
are presented here. On average, one time-step of the Compressible Navier-Stokes model takes
approximately 9.2 s of computational time, whereas one time-step with the Low-Mach model
consumes about 47.5 s. Extrapolating these timings to the full number of intended time-steps,
the simulation of the cyclone dynamics consumes approximately 295 days with the Compressible
Navier-Stokes model, whereas the Low-Mach model finishes this task after approximately 19
days. Because of the infeasibility of the overall compute time with the Compressible Navier-
Stokes model, the simulation was stopped after 12:29 (HH:MM) simulated physical time and all
comparative results between the two models are based on this period of simulated time. Also
the results of Table 6.5 are based on this time-span.

The accumulated computing times for both models and their ratio are plotted in Figure 6.5.
As the Low-Mach model allows 80 times larger time-steps than the Compressible Navier-Stokes
model, but one time-step needs approximately a five times longer time to compute the solu-
tion, the Low-Mach model computes the solution with respect to the physically simulated time
approximately 15 times faster up to the considered time-span.

The non-linear algebraic system of equations of one time-step can be solved with two iterations
of Newton’s method (Algorithm 4.3) for both models on average. In the very first time-step, the
Low-Mach model needs three iterations of Newton’s method, but afterwards always two iterations
are needed. Therefore, the following comparisons of the linear solvers and the assembly times
are representative because the numbers depend directly on the number of Newton iterations.

To compute the Newton steps, the respective linear solver takes approximately 48 iterations
on average for the Compressible Navier-Stokes model and between two and three iterations
for the Low-Mach model. Therefore, the proposed preconditioning technique of nested Schur
complements for the Low-Mach model is very effective for the considered scenario. The five
times larger compute time for one time-step of the Low-Mach model results from the fact that
within in the Schur complement preconditioner several smaller linear systems need to be solved
and the needed compute times for each of these solver applications accumulate.

On average, the assembly of the residual vectors is about 6% faster in the Compressible
Navier-Stokes model. The assembly of the Jacobian matrices even takes about 25% less time.
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Figure 6.5.: Comparison of compute times.

Model Newton
iterations

Compute
time [s]

Assembly
time
residual
[s]

Assembly
time Ja-
cobian
[s]

(F)GMRES
iterations

LM 2.00023 46.533 1.718 4.437 2.305
CNS 2.0 8.892 1.607 3.342 47.751
Ratio CNS

LM 0.99988 0.191 0.935 0.753 20.714

Table 6.5.: Average quantities per time-step compared for both models.

The reason are the additional terms due to the grad-div stabilisation of the Low-Mach model
that are not present in the case of the Compressible Navier-Stokes model.

The progress of Newton iterations, compute times for one time-step as well as the number of
linear solver iterations in the course of the simulated physical time are plotted in Figure 6.6 for
the Low-Mach model and in Figure 6.7 for the Compressible Navier-Stokes model, respectively.
Observe, that the plot in case of the Low-Mach model covers the whole intended time-interval
up to T = 96 h.

6.2.2. Physical aspects

For the comparison of physical aspects of the computed solutions of the two models, both global
and local quantities are taken into account. Whenever the error of a quantity q ∈ Rn, n ∈ N is
considered, the relative error between the computed quantity qCNS of the Compressible Navier-
Stokes model and the computed quantity qLM with respect to the Compressible Navier-Stokes
model is taken into account, i.e.,

eq,rel :=
∥qLM − qCNS∥2
∥qCNS∥2

. (6.8)

On the global level, the overall mass of air in the domain Ω is monitored, which is a measure
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Figure 6.6.: Progress of comparative quantities obtained for the Low-Mach model.
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Figure 6.8.: Relative errors global of physical quantities plotted over simulated physical time.

for the conservation of mass, as well as the overall kinetic energy in Ω. The global mass of air
at any time t ∈ [0, T ] is given by

mΩ(t) :=

∫

Ω
ρ(t,x)dx, (6.9)

and the global kinetic energy at any time t ∈ [0, T ] is defined as

Ekin,Ω(t) :=
1

2

∫

Ω
ρ(t,x) ∥v(t,x)∥22 dx, (6.10)

where v denotes the velocity field and ρ the density. The relative errors in global mass of air
mΩ and global kinetic energy Ekin,Ω are depicted in Figure 6.8. In the global mass of air there
is virtually no difference between the solutions of the two models. Also the global kinetic energy
shows very good coincidence between the solutions of the Compressible Navier-Stokes and the
Low-Mach model, with the relative error remaining below the 5% bound. Inspecting these two
quantities more closely for both models individually, i.e., monitoring the minimum and maximum
values of both quantities and comparing them to the initial state, see Table 6.6, it is remarkable
that both models show virtually perfect conservation of mass within the considered span of time.
The kinetic energy takes its maximum value at the beginning of simulation for both models and
obviously decreases first, with the Compressible Navier-Stokes model showing a maximal loss of
kinetic energy of approximately 13%, whereas the kinetic energy in the Low-Mach solution has a
maximal loss of approximately 11%. The maximal loss occurs 767.5 s later with the Compressible
Navier-Stokes model in terms of simulated physical time. It is out of the scope of this thesis
to determine, if the energy is really lost or a transformation to another kind of energy causes
the decrease in kinetic energy. Answering this question requires expert knowledge in physics or
meteorology, respectively, and is a subject of further research, see Subsection 7.2.

On the local level, the following simple measure is applied which on the one hand can be easily
computed and on the other hand allows a comparison by means of relative errors. The measure
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Quantity CNS LM
Initial mass [kg] 1.35495 · 1017 1.35495 · 1017

Time-step 0 0
Minimal mass [kg] 1.35495 · 1017 1.35495 · 1017

Time-step 0 0
Maximal mass [kg] 1.35495 · 1017 1.35495 · 1017

Time-step 0 0
Initial kinetic energy [J ] 6.81979 · 1017 6.81979 · 1017

Time-step 0 0
Minimal kinetic energy [J ] 5.96013 · 1017 6.0834 · 1017

Time-step 157660 1894
Maximal kinetic energy [J ] 6.81979 · 1017 6.81979 · 1017

Time-step 0 0

Table 6.6.: Global physical quantities compared for both models.

is based on the so called (relative) vorticity of the velocity field. Vorticity is a local measure of
rotation in a fluid and is defined as the curl of velocity [42]. Therefore, the (relative) vorticity is
defined as

ω := ∇× v, (6.11)

such that in Cartesian coordinates it holds

ω =

⎛
⎝
∂yw − ∂zv
∂zu− ∂xw
∂xv − ∂yu

⎞
⎠ . (6.12)

In large-scale dynamic meteorology, one is mainly interested in the vertical component

ζ = ∂xv − ∂yu (6.13)

as it provides a measure for rotation around the vertical coordinate axis and is, therefore, a
measure for the large-scale horizontal motions of a fluid, which is air in the considered scenario.
For cyclonic storms in the Northern hemisphere is holds ζ > 0 [42], which is exactly valid for the
scenario at hand. As ζ takes its maximum at the centre of a cyclone, the position of a cyclone
is defined as the location of this maximum in the context of this thesis. In the discretisation
described in Chapter 4, the hexahedral cells of the triangulation are axis-aligned to the Cartesian
coordinate system such that the vertices of the mesh are organised in layers. To provide a position
analysis not only at a single point, but along the vertical axis, the two maximum values of ζ
and their locations are determined within each of these layers. Ideally, these two positions are
separated in each layer such that the locations of both cyclones can be tracked. The resulting
positions and the values of ζ are compared for both models.

Remark 6.1 (Vorticity tracking)
Vorticity is a local measure and derivatives of the velocity field are involved. Therefore, it is
a derived quantity. Furthermore, due to the Coriolis force the cyclones show different shearing
behaviour. Consequently, it can happen, that the determined maximum values of ζ in a layer are
within the same cyclone. Additionally, to keep the computation time for the maximal values low,
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only the values at the vertices of the triangulation are considered. These reasons lead to noise in
the determined vorticity data which is tried to be filtered out the following way: Starting from
the initial state where the positions of the maxima of vorticity are known a priori due to the
construction of the initial velocity field, in each time-step the determined potential positions are
only taken into account if the their distance is larger than six times the horizontal cell diameter.
The value of six was determined heuristically. If the positions of one time-step are considered
based on the described heuristic approach, their distances to the last “known” position of the
cyclone starting more in the west are compared, and the one, which is closer, is assigned to this
western cyclone. The other one is categorised as the new position of the eastern cyclone.

Figures 6.9 to 6.12 as well as Figures A.1 to A.29 show the comparisons of cyclone positions
as well as vorticity magnitude at these positions in terms of the respective relative error. If
the plotted time-line is shorter than the considered span of time, then the cyclones could not be
distinguished according to Remark 6.1. Of course, a comparison is done if and only if the cyclones
can be distinguished in the forecasting of both models at the same time. Above approximately
10, 500 m, the maximal value of vorticity is on the order of machine precision and, therefore, the
results become more random for both models and a comparison is not possible any more, see
Figures A.23 to A.29 in Section A.5. Below, the results show a good coincidence of the predicted
storm positions of both models with a maximum deviation of 1.4 cell diameters at a height of
1625 m, while the values of vorticity differ at most about 16% at 10, 156.25 m height. Below
6500m of height, the relative errors in vorticity are even constantly below 5%. Therefore, in terms
of the predicted cyclone positions as well as the corresponding vorticity values, the Low-Mach
model performs very competitively to the Compressible Navier-Stokes model at significantly
smaller computational costs. Especially, it can be concluded that the overall vertical profiles of
the solutions of both models are very close to each other in the course of the simulated time-
span. Therefore, the vertical energy cascade is also very similar in both models which is a further
indication for the validity of the Low-Mach approximation in the considered scenario.

The cyclone tracks of the individual models at selected height levels are presented in Figures
6.13 and 6.14, respectively. Observe, that the plots of the Low-Mach model are again for the
full time interval up to 96 h of simulated physical time. Furthermore, it can be clearly seen in
Figure 6.14 that in the course of the full considered time-span both cyclones merge to a single
one, which is moving in north-western direction afterwards due to the Coriolis force.

Finally, the individual model solutions at the last visualisation point of the considered time-
span are presented by means of iso-surface and glyph plots, respectively, and analysed. Observe,
that the vertical axis is scaled up by a factor of 100 again to allow a clearer visualisation. Figure
6.15 shows the velocity fields (glyph visualisation) as well as the vertical vorticity component (iso-
surfaces). The vorticity distributions of the two considered models show slight differences in shape
as well as in the global minimal and maximal value, respectively. The velocity fields also look very
similar in their distribution and shape over Ω, but the predicted maximal wind speed is about
1.2m

s higher in the Compressible Navier-Stokes solution compared to the result of the Low-Mach
model, which corresponds to a relative error of approximately 4.5%. The density fields in Figure
6.16 show very good coincidence both in shape and lower and upper bounds of the predicted
variable values. There is a difference in the shape and the bounds of the two temperature
fields in Figure 6.17. This is due to the fact that already the initial distributions were different in
shape, see Chapter 5, and that, of course, the Low-Mach assumption and, consequently, the Low-
Mach approximation affects the overall relations in the modelling of thermodynamics. Observe
again, that the presented density, temperature and pressure fields are all deviations from the
constant-in-time reference states, which are larger by orders of magnitude. The pressure parts
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Figure 6.9.: Relative error in cyclone positions and corresponding vorticities at z = 0 m.
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Figure 6.10.: Relative error in cyclone positions and corresponding vorticities at z = 1625 m.
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Figure 6.11.: Relative error in cyclone positions and corresponding vorticities at z = 6500 m.
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Figure 6.12.: Relative error in cyclone positions and corresponding vorticities at z =
10, 156.25 m.
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(b) z = 812.5 m
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(c) z = 1625 m
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(e) z = 3250 m
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(f) z = 4062.5 m

Figure 6.13.: Cyclone tracks of Compressible Navier-Stokes model at selected heights.
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(b) z = 812.5 m
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(f) z = 4062.5 m

Figure 6.14.: Cyclone tracks of Low-Mach model at selected heights.



6.2. Model comparison 101

p∗ look very similar in their shape, only the lower and upper bounds differ due to the Low-Mach
approximation. The thermodynamic pressure pth of the Low-Mach solution is plotted over the
full time-span up to 96 h in Figure 6.19.

This chapter closes with the presentation of solution of the Low-Mach model at the final time
T = 96 h, see Figures 6.23 to 6.26. It can be seen, that in the course of the full considered
time-span both cyclones merge to a single one, see Figures 6.20 to 6.22 for the merging process,
which is moving in north-western direction afterwards due to the Coriolis force. Consequently,
also the locations, where the deviations of density, temperature and pressure, respectively, differ
mostly from the reference states, are moving in this direction. Observe, that a former study [11]
carried out with a two-dimensional inCompressible Navier-Stokes model showed that the two
cyclones do merge only if their initial separation is less or equal to 375 km. For larger initial
separations, especially the 400 km considered in this thesis, the results in two dimensions predict
that the two cyclones rotate around each other and diverge in different directions afterwards.
Therefore, the results obtained in this thesis coincide with the study [63] where the merging
was predicted by a simpler three-dimensional hydrostatic model. In contrast to [63], where the
two cyclones merged after 6 to 7 h, the merging occurs later in the Low-Mach model after
approximately 24 h. This result strongly indicates that the precise prediction of the tracks of
the cyclones depends significantly on the model physics and that models with more accurately
modelled physical processes are needed. Further possible developments in this direction which
are based on this thesis are pointed out in Section 7.2.



102 Chapter 6: Numerical results

(a) Compressible Navier-Stokes

(b) Low-Mach

Figure 6.15.: Velocity field and vertical vorticity component at common final time.
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(a) Compressible Navier-Stokes

(b) Low-Mach

Figure 6.16.: Density at common final time.



104 Chapter 6: Numerical results

(a) Compressible Navier-Stokes

(b) Low-Mach

Figure 6.17.: Temperature at common final time.
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(a) Compressible Navier-Stokes

(b) Low-Mach

Figure 6.18.: Pressure at common final time.
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Figure 6.19.: Thermodynamic pressure in the Low-Mach model plotted over time.

Figure 6.20.: Velocity field and vertical vorticity component at t = 16 h, computed with Low-
Mach model.
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Figure 6.21.: Velocity field and vertical vorticity component at t = 20 h, computed with Low-
Mach model.

Figure 6.22.: Velocity field and vertical vorticity component at t = 24 h, computed with Low-
Mach model.
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Figure 6.23.: Final velocity field and vertical vorticity component at T = 96 h, computed with
Low-Mach model.

Figure 6.24.: Finale density at T = 96 h, computed with Low-Mach model.
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Figure 6.25.: Final temperature at T = 96 h, computed with Low-Mach model.

Figure 6.26.: Final pressure at T = 96 h, computed with Low-Mach model.
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7.1. Summary

In this thesis, the compressible Navier-Stokes equations describing the dynamics of a dry at-
mosphere were derived. Based on a scale analysis for Low-Mach number flows, the Low-Mach
approximation was derived from the compressible Navier-Stokes equations by neglecting the
hydrodynamic part of pressure, which is small compared to the hydrostatic and thermodynamic
parts, in the ideal gas law. Both models were discretised by finite elements in space and finite
differences in time, where all common parameters of the discretisations were chosen identically in
order to minimise influences on the discrete solutions due to differences in the respective discreti-
sations. A solution strategy for both models based on an inexact Newton method was presented,
where the linear solvers and preconditioners are adapted to the respective model. In case of the
Low-Mach model, a preconditioning technique based on nested Schur complement iterations was
proposed. A scenario of two interacting tropical cyclones was presented as benchmark problem
in order to compare the solutions of the two models in terms of numerical as well as physical
properties. The obtained numerical results showed the scalability and robustness of the solu-
tion approach and that a fully-coupled solution approach with implicit time-stepping schemes
is possible and, in the case of the Low-Mach model, feasible. For the considered scenario, the
predicted tracks of the cyclones, which were computed by the Low-Mach model, showed very
good coincidence with those of the Compressible Navier-Stokes model at significantly smaller
computational costs, such that the Low-Mach approximation can be regarded as valid in this
case. Consequently, the Low-Mach model actually allows high-resolution simulations and studies
at feasible computational costs compared to the fully Compressible Navier-Stokes model which
constitutes a real advantage in the numerical simulation of the considered benchmark scenario.
Furthermore, the results obtained with the Low-Mach model over the full considered time-span
of 96 h show that the phenomenon of merging cyclones for the chosen model parameters coincides
with former studies in this field. In contrast to these studies it was found that the merging occurs
to a later point in time than with the simpler models considered in these studies. Therefore,
further research on this phenomenon with models including more physical aspects like moisture
or radiation, for example, is needed.

7.2. Outlook

The presented results showed a good coincidence between the Compressible Navier-Stokes model
and its Low-Mach approximation in terms of the considered comparative measures. Especially
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in the area of local quantities, an extension of the considered properties and features promises a
more fine-grained benchmark of the models. Methods for tracking certain features of dynamic
flows in meteorological applications are developed by the meteorological community and form an
own area of research, which does not involve physicists only, but also computer scientists. These
methods can often be applied in the post-processing steps, such that an analysis of the obtained
data is doable without carrying out new simulations.

Furthermore, the comparison was based on idealised models, i.e., moist processes, solar radi-
ation, and multiple chemical reactions, for example, are not represented in the considered sets
of equations. In the case of tropical cyclones, especially moist processes represent an important
addition as they are a crucial ingredient if also the genesis of cyclones shall be considered in the
simulation. Furthermore, moist processes are known to have stabilising effects on the dynamics.
Consequently, they could have an effect also on the gap in the time-step sizes between the con-
sidered models and, therefore, their effect on the obtained results should be investigated in the
future.

The presented comparison is only valid up to a scale of 10 km in the horizontal dynamics and
approximately 400 m in the vertical. Effects on smaller scales, like tiny vortices of an extent of
a few hundred meters, are not represented directly in the solution, but only their mean effects
on the larger scales by means of the applied stabilisation scheme, which can be interpreted as a
turbulence or subgrid-scale model. In order to facilitate investigations on the small scales, the
scalability of the solvers in terms of both strong – same global problem size computed on more
processors – and weak – constant local problem size, but more processors and, therefore, larger
global problem size – scaling needs to be improved. Observe, that in the context of this thesis only
strong scaling was considered. An ideal weak scalability would enable such simulations within
the same time of computation as presented here, if the number of processes is increased at the
same ratio as the global problem size grows when considering triangulations with finer cells. An
additional improvement of the strong scaling behaviour then allows to obtain the results in a
shorter time, if the computation is carried on even more processors. The latter is of exceptional
importance, if the Low-Mach model and the proposed solution methodologies are considered as
candidates for new numerical models for weather forecasting and climate prediction, respectively,
which require the time for computation to be smaller than the simulated time-span.

Another interesting question that was not addressed at all in the context of this thesis is
the following: How do the considered models for atmospheric perform, if they are initialised
with real data, e.g., from measurements? Real data are not as smooth as the presented ones
in case of the idealised tropical cyclones, because, on the one hand, real atmospheric flows –
especially on smaller spatial scales – have a much more complex structure and, on the other
hand, measured data always contain errors due to technical limitations. How robust are the
proposed models to errors in the data and potential lacks of smoothness, that is induced by
these errors? How can the answers to these questions be quantified? Methods from the field of
uncertainty quantification provide a promising approach to tackle these questions. To this end,
input data and parameters can be regarded as uncertain and be equipped with a probability
distribution of the errors or uncertainties in these data. Based on this modelling, such methods
do not compute a single, deterministic solution but several solutions of coupled problems which
represent stochastic modes of the problem under the considered uncertainties. Consequently,
these information can be processed to mean and standard deviation, which are well-understood
quantities of probability theory and give an idea, which result can be expected subject to the
considered errors and on which scale the results possibly scatter.
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A.1. Notation

A.1.1. Derivatives

Let Ω ⊂ Rn be a domain, a, b ∈ R with a ≤ b and u ∈ Cp((a, b);Cq(Ω)) continuously differen-
tiable with respect to the time variable t and with respect to the space variable x, respectively.
Let x ∈ Ω and t ∈ (a, b) and p, q large enough such that the derivatives make sense.

1. We shortly write

∂tu(t, x) :=
∂

∂t
u(t, x)

for the time derivative and

2.

∂iu(t, x) :=
∂

∂xi
u(t, x), i ∈ {1, . . . , n} ,

for the spatial derivative.
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3. Let α ∈ Nn
0 a multiindex. We define the αth-partial derivative of order

|α| :=

n∑

i=1

αi

as

∂αu(t, x) :=
∂|α|u

∂xα1
1 · · · ∂xαn

n
(t, x).

4. The Laplace differential operator ∆ is defined as

∆u(t, x) :=
n∑

i=1

∂2i u(t, x).

5. The gradient of u is defined as

∇u(t, x) := (∂1u(t, x), . . . , ∂nu(t, x))
⊤ ∈ Rn.

6. Let u ∈ Cp ((a, b) ; (Cq (Ω))n). The divergence of u is defined as

div u(t, x) :=
n∑

i=1

∂iui(t, x).

A.2. Calculus

A.2.1. Integration theory

Theorem A.1 (Gauß)
Let Ω ⊂ Rn be an open and bounded subset, where ∂Ω is C1. Suppose u ∈ C1(Ω). Then

∫

Ω
∂iu(x)dx =

∫

∂Ω
u(s)νi(s)ds (i = 1, . . . , n),

where ν : Rn → Rn denotes the outer normal vector field on Ω.

Proof:
See, e.g., [50]. □

A.3. Some functional analysis

This section summarizes the definitions and theorems of functional analysis as they are used
throughout this thesis. The definitions and theorems are taken from the textbooks [2, 29, 76].
For further details as well as proofs to the given theorems, refer to these references.
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A.3.1. Normed linear, Banach and Hilbert spaces

In this section, the definitions of three fundamental classes of spaces from functional analysis,
which are used throughout this thesis, are given.

Definition A.2 (Normed linear space)
Let X a vector space defined on a field K (= R or C) and ∥·∥X : X → R a mapping. The pair
(X, ∥·∥X) is called a normed linear space (and the mapping ∥·∥X is called a norm), if ∥·∥X fulfils
the following properties for all x, y ∈ X and α ∈ R:

1. ∥x∥X ≥ 0 and ∥x∥X = 0 ⇔ x = 0 (definiteness)

2. ∥αx∥X = |α| ∥x∥X (homogeneity)

3. ∥x+ y∥X ≤ ∥x∥X + ∥y∥X (triangle inequality)

Definition A.3 (Cauchy sequence, completeness, Banach space)
Let (X, ∥·∥X) a normed linear space.

1. A sequence (xk)k∈N in X is called Cauchy sequence, if ∥xk − xl∥X → 0 for k, l→∞.

2. x is called limit of (xk)k∈N, if limk→∞ ∥xk − x∥X = 0.

3. (X, ∥·∥X) is called complete or a Banach space, if every Cauchy sequence in X has a limit
in X.

Definition A.4 ((Pre-) Hilbert space)
1. Let X a K-vector space. A mapping (·, ·) : X ×X → K is called Hermitian sesqui-linear

form, if

a) (x, y) = (y, x) ∀x, y ∈ X (Hermitian)

b) (αx, y) = α (x, y) ∀x, y ∈ X, α ∈ K
c) (x, y1 + y2) = (x, y1) + (x, y2) ∀x, y1, y2 ∈ X

2. The sesqui-linear form is called positive semi-definite, if (x, x) ≥ 0 ∀x ∈ X, and positive
definite, if (x, x) ≥ 0 and (x, x) = 0 ⇔ x = 0. A positive definite sesqui-linear form is
called inner product.

3. The pair (X, (·, ·) is called pre-Hilbert space, provided (·, ·) is an inner product.

4. If X is complete with respect to the induced norm ∥·∥X :=
√
(·, ·), X is called Hilbert

space.

A.3.2. Function spaces
Definition A.5
Boundary regularity Let U ⊂ Rn be open and bounded, k ∈ {1, 2, . . .}. We say the boundary
∂U is Ck if for each point x0 ∈ ∂U there exist r > 0 and a Ck function γ : Rn−1 → Rn such
that – upon relabeling and reorienting the coordinate axes if necessary – we have

U ∩B
(
x0, r

)
=
{
x ∈ B

(
x0, r

)
: xn > γ (x1, . . . , xn)

}
.

Likewise, ∂U is C∞ if ∂U is Ck for k = 1, 2, . . ., and ∂U is analytic if the mapping γ is analytic.

Unless nothing else is stated, let Ω ⊂ Rn be an open, bounded and simply connected domain
with boundary ∂Ω in C1. For the definition of Ck, see Section A.3.2.1.
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A.3.2.1. Spaces of continuous functions

Let k ∈ N ∪ {0,∞}. Then

Ck(Ω) := {u : Ω→ R : u is k-times continuously differentiable} .

For k = 0, C(Ω) := C0(Ω) is the space of continuous functions on Ω.
In order to have smoothness near the boundary ∂Ω, for k ∈ N ∪ {0,∞} it is defined

Ck
0 (Ω) :=

{
u ∈ Ck(Ω) : u has compact support in Ω

}
.

For dealing with functions, which depend on several variables, which can be separated into
variables with respect to time and space, let p, q ∈ N∪{∞} and a, b ∈ R∪{−∞,∞} with a ≤ b.
Then

Cp ((a, b) ;Cq (Ω)) := {u(x, t) : u(·, t) ∈ Cq(Ω) ∀t ∈ (a, b),

u(x, ·) ∈ Cp((a, b)) ∀x ∈ Ω}.

Furthermore, let V be a separable Banach space, then, for m ∈ N, Cm([a, b];V ) denotes the
space of continuous functions defined on [a, b], whose m-th derivative is continuous, and

C([a, b];V ) := C0([a, b];V ).

Cm([a, b];V ) becomes a Banach space, if it is endowed with the norm

∥f∥Cm([a,b];V ) := max
t∈[a,b]

m∑

i=0

f i(t)

V
.

A.3.2.2. Lebesgue spaces

Let 1 ≤ p < ∞. The space Lp(Ω) consists of all real valued function, for which the p-th power
is measurable with respect to the Lebesgue measure dx := dx1 · · · dxn,

Lp(Ω) :=

{
u : Ω→ R :

∫

Ω
|u(x)|p dx <∞

}
.

Together with the mapping ∥·∥Lp(Ω) : L
p(Ω)→ R, which is defined as

∥u∥Lp(Ω) :=

(∫

Ω
|u(x)|p dx

) 1
p

and is in fact a norm, the pair
(
Lp(Ω), ∥·∥Lp(Ω)

)
is a normed space. With the definition

∥u∥L∞(Ω) := ess supx∈Ω |u(x)| ,

the definition of Lp(Ω) can be extended to p =∞ with

L∞(Ω) := {u : Ω→ R : ess supx∈Ω |u(x)| <∞} .

For p = 2, the space L2(Ω) is a Hilbert space endowed with the inner product

(u, v)L2(Ω) :=

∫

Ω
u(x)v(x)dx, u, v ∈ L2(Ω).
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The dual space of Lp(Ω) is denoted by

(Lp(Ω))∗ :=

{
f : Lp(Ω)→ R : f is linear, ∥f∥(Lp(Ω))∗ := sup

u∈Lp(Ω)

⟨f, u⟩
∥u∥Lp(Ω)

<∞
}
.

For 1 < p <∞, it can be identified with Lq(Ω), where

1

p
+

1

q
= 1.

The dual pairing between Lp(Ω) and its dual space (Lp(Ω))∗ is denoted by

⟨f, u⟩(Lp(Ω))∗,Lp(Ω) := f(u).

For arbitrary 1 ≤ q ≤ p ≤ ∞ it holds that

Lq(Ω) ↪→ Lp(Ω).

Furthermore, one defines

Lp
loc(Ω) = {u : Ω→ R : u ∈ Lp(V ), V ⊂⊂ Ω} ,

i.e., V is a compact subset of Ω.
Let V a separable Banach space, a, b ∈ R ∪ {−∞,∞} with a ≤ b and p ∈ N. Lp(a, b;V )

denotes the space of equivalence classes of Bochner integrable functions u : [a, b]→ V , i.e.,

Lp(a, b;V ) :=

⎧
⎨
⎩u(t) : u(·) ∈ V,

(∫ b

a
∥u(t)∥pV dt

) 1
p

<∞

⎫
⎬
⎭ .

For p =∞, we have

L∞(a, b;V ) :=
{
u(t) : u(·) ∈ V, ess supt∈(a,b) ∥u(t)∥V <∞

}
.

Lp(a, b;V ) is also a Banach space and for 1 < p, q <∞ with 1
p+

1
q = 1 the dual space (Lp(a, b;V ))∗

can be identified with Lq(a, b;V ∗), where the dual pairing is given by

⟨f, u⟩Lq(a,b;V ∗),Lp(a,b;V ) =

∫ b

a
⟨f(t), u(t)⟩V ∗,V dt.

Again, it holds Lq(a, b;V ) ↪→ Lp(a, b;V ) for arbitrary 1 ≤ q ≤ p ≤ ∞.
The time derivative ∂tu of an abstract function u ∈ L2(a, b;V ) is defined in the sense of

distributions: A function v : [a, b]→ V , which fulfils

∫ b

a
u(t)φ′(t)dt = −

∫ b

a
v(t)φ(t)dt

for all test functions φ ∈ C∞
0 (a, b), is called the (distributional) derivative of u and is denoted

by
∂tu := v.
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A.3.2.3. Sobolev spaces

If one transfers the above concept of distributional derivatives to the space variables, then the
well-known Sobolev spaces are obtained

Weak derivatives
Definition A.6 (Weak derivative)
Suppose Ω ⊂ Rn is open, u, v ∈ L1

loc(Ω) and α is a multiindex. We say that v is the αth-weak
partial derivative of u, written

Dαu = v,

provided ∫

Ω
uDαφdx = (−1)|α|

∫

Ω
vφdx

for all test functions φ ∈ C∞
0 (Ω).

Lemma A.7 (Uniqueness of weak derivatives)
A weak αth-partial derivative of u, if it exists, is uniquely defined up to a set of measure zero.

Definition of Sobolev spaces and elementary properties

Definition A.8 (Sobolev space)
The Sobolev space W k,p(Ω) consists of all locally summable functions u : Ω → R such that for
each multiindex α with |α| ≤ k, Dαu exists in the weak sense and belongs to Lp(Ω).

Remark A.9
1. If p = 2, we usually write

Hk(Ω) =W k,2(Ω) (k = 0, 1, . . .).

The letter H is used, since (as we will see) Hk(Ω) is a Hilbert Space. Note that H0(Ω) =
L2(Ω).

2. We henceforth identify functions in W k,p(Ω) which agree a.e. (= almost everywhere, i.e.,
up to a set of measure zero), i.e., the elements of W k,p are equivalence classes.

Definition A.10 (Sobolev norm)
If u ∈W k,p(Ω), we define its norm to be

∥u∥Wk,p(Ω) :=

⎧
⎨
⎩

(∑
|α|≤k

∫
Ω |Dαu|p dx

) 1
p

(1 ≤ p <∞)∑
|α|≤k ess supΩ |Dαu| (p =∞)

It is easily verified, that ∥·∥Wk,p(Ω) is indeed a norm.

Theorem A.11 (Sobolev spaces as function spaces)
For each k = 1, 2, 3, . . . and 1 ≤ p ≤ ∞, the Sobolev space W k,p(Ω) is a Banach space.

Theorem A.12 (Sobolev spaces as Hilbert spaces)
For each k = 1, 2, 3, . . . the Sobolev space Hk(Ω) is a Hilbert space endowed with the inner product

(u, v)Hk(Ω) :=
∑

|α|≤k

∫

Ω
(Dαu)(Dαv)dx ∀u, v ∈ Hk(Ω).
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Approximation by smooth functions

Theorem A.13 (Global approximation by smooth functions)
Assume Ω is bounded, and suppose as well that u ∈ W k,p(Ω) for some 1 ≤ p < ∞. Then there
exist functions um ∈ C∞(Ω) ∩W k,p(Ω) such that

um → u in W k,p(Ω).

Theorem A.14 (Global approximation by smooth functions up to the boundary)
Assume Ω is bounded and ∂Ω is C1, and suppose as well that u ∈W k,p(Ω) for some 1 ≤ p <∞.
Then there exist functions um ∈ C∞(Ω) such that

um → u in W k,p(Ω).

Traces

Theorem A.15 (Trace Theorem)
Assume Ω is bounded and ∂Ω is C1, as well as 1 ≤ p < ∞. Then there exists a bounded linear
operator

T :W 1,p(Ω)→ Lp(∂Ω)

such that

1. Tu = u|∂Ω if u ∈W 1,p(Ω) ∩ C(Ω) and

2.

∥Tu∥Lp(∂Ω) ≤ C ∥u∥W 1,p(Ω)

for each u ∈W 1,p(Ω), with the constant C depending only on p and Ω.

Definition A.16 (Trace)
We call Tu the trace of u on ∂Ω.

Theorem A.17 (Trace-zero functions in W 1,p(Ω))
Assume Ω is bounded and ∂Ω is C1. Suppose furthermore that u ∈W 1,p(Ω). Then u ∈W 1,p

0 (Ω)
if and only if Tu = 0 on ∂Ω.

The space H−1

Definition A.18
The dual space to H1

0 (Ω) is denoted by H−1(Ω). ⟨·, ·⟩H−1(Ω),H1
0 (Ω) denotes the dual pairing

between H−1(Ω) and H1
0 (Ω).

Definition A.19
If f ∈ H−1(Ω), its norm is defined as

∥f∥H−1(Ω) := sup
{
⟨f, u⟩H−1(Ω),H1

0 (Ω) : u ∈ H1
0 (Ω), ∥u∥H1

0 (Ω) ≤ 1
}
.

Observe, that the space H1
0 (Ω) is not identified with its dual.
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Theorem A.20 (Characterisation of H−1)
1. Assume f ∈ H−1(Ω). Then there exist functions f0, f1, . . . , fn ∈ L2(Ω) such that

⟨f, v⟩ =
∫

Ω

(
f0v +

n∑

i=1

f i∂iv

)
dx

(
v ∈ H1

0 (Ω)
)
. (A.1)

2. Furthermore,

∥f∥H−1(Ω) = inf

⎧
⎨
⎩

(∫

Ω

n∑

i=0

⏐⏐f i
⏐⏐2 dx

) 1
2

: f fulfils (A.1) for f0, . . . , fn ∈ L2(Ω)

⎫
⎬
⎭ .

It follows from A.20The space H−1satz.A.20, that

H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω).

A.4. Finite Element theory

Finite Elements are shortly introduced as they are used throughout this thesis. For further
details see, e.g., [18].

A.4.1. Triangulation

Let Ω ⊂ R3 be a domain of polygonal shape such that it can be divided in tetrahedrons or
hexahedrons.

Definition A.21 (Triangulation)
1. A triangulation T = {T1, T2, . . . , TM} of Ω in tetrahedrons or hexahedrons, respectively,

is called admissible if the following properties are fulfilled:

a) Ω =
⋃M

i=1 Ti.

b) If Ti∩Tj consists of one and only one point, then this point is a vertex of both Ti and
Tj .

c) If Ti ∩ Tj consists for i ̸= j of more than one point, then Ti ∩ Tj is an edge or a facet
of both Ti and Tj .

2. We can write T h instead of T if the diameter of each element is at most 2h.

3. A family of triangulations {T h} is called quasi-uniform if there exists a number κ > 0
such that every T of T h contains a ball of radius ρT with

ρT ≥
hT
κ
,

where hT is half the diameter of T .

4. A family of triangulations {T h} is called uniform if there exists a number κ > 0 such that
every element T of T h contains a ball of radius

ρT ≥
h

κ
.
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A.4.2. Finite Element
Definition A.22 (Finite Element)
A Finite Element (FE) is a triple (T,Π,Σ) with the following properties:

1. T is a polyhedron in Rd. (Those parts of the surface ∂T which are located on a hyperplane
are called facets.)

2. Π is a subspace of C(T ) with finite dimension dimΠ = s. The functions in Π are called
shape functions.

3. Σ is a set of s linearly independent functionals on Π. Each p ∈ Π is uniquely determined
by the values of the s functionals of Σ.

For the following construction of finite elements the polynomial vector spaces Pk,Qk ⊂ Rd are
used.
Pk is the space of polynomials defined in the variables (x1, . . . , xd) with real coefficients, whose

overall degree is less or equal to k:

Pk =

⎧
⎨
⎩p(x) =

∑

0≤i≤k

αix
i : αi ∈ R

⎫
⎬
⎭ , if d = 1.

Pk =

⎧
⎨
⎩p(x1, x2) =

∑

0≤i+j≤k

αi,jx
i
1x

j
2 : αi,j ∈ R

⎫
⎬
⎭ , if d = 2.

Pk =

⎧
⎨
⎩p(x1, x2, x3) =

∑

0≤i+j+l≤k

αi,j,lx
i
1x

j
2x

l
3 : αi,j,l ∈ R

⎫
⎬
⎭ , if d = 3,

Pk =

⎧
⎨
⎩p(x) =

∑

|β|≤k

αβx
β : αβ ∈ R, β ∈ Nd

0, x ∈ Rd

⎫
⎬
⎭ .

It can be shown, that it holds

dimPk =

(
d+ k
k

)
=

⎧
⎪⎨
⎪⎩

k + 1, d = 1
1
2(k + 1)(k + 2), d = 2
1
6(k + 1)(k + 2)(k + 3), d = 3

.

Qk is the space of polynomials defined in the variables (x1, x2, . . . , xd) with real coefficients,
whose degree with respect to one single variable is less or equal to k:

Qk = Pk, if d = 1.

Qk =

⎧
⎨
⎩p(x1, x2) =

∑

0≤i,j≤k

αi,jx
i
1x

j
2 : αi,j ∈ R

⎫
⎬
⎭ , if d = 2.

Qk =

⎧
⎨
⎩p(x1, x2, x3) =

∑

0≤i,j,l≤k

αi,j,lx
i
1x

j
2x

l
3 : αi,j,l ∈ R

⎫
⎬
⎭ , if d = 3.
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It can be shown, that it holds
dim(Qk) = (k + 1)d.

Furthermore, it holds Pk ⊂ Qk ⊂ Pkd.

A.4.3. Nodal basis
Definition A.23 (Lagrange element)
To a Finite Element space let a set of points be known such that the functions are determined
by the values at the points. These functions which differ from 0 at one and only one point of this
set of points form a nodal basis. Furthermore, we speak in this context of Lagrange elements.

In the case of triangles in 2D and tetrahedrons in 3D, the Lagrange finite elements are given
by the spaces Pk, whereas in the case of quadrilaterals and hexahedrons they are defined by the
spaces Qk.

A.5. Further figures on cyclone tracking

In this section, additional figures on the tracking of the cyclones in the cyclone-cyclone interaction
scenario are given which are not part of the main text for the sake of clarity of the presentation.
Figures A.1 to A.29 show the comparisons of the cyclone tracks at those vertical grid levels that
have not been shown in Subsection 6.2.2.
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Figure A.1.: Relative error in cyclone positions and corresponding vorticities at z = 406.25 m.
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Figure A.2.: Relative error in cyclone positions and corresponding vorticities at z = 812.5 m.
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Figure A.3.: Relative error in cyclone positions and corresponding vorticities at z = 1218.75m.
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Figure A.4.: Relative error in cyclone positions and corresponding vorticities at z = 2031.25m.
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Figure A.5.: Relative error in cyclone positions and corresponding vorticities at z = 2437.55m.
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Figure A.6.: Relative error in cyclone positions and corresponding vorticities at z = 2843.75m.
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Figure A.7.: Relative error in cyclone positions and corresponding vorticities at z = 3250 m.
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Figure A.8.: Relative error in cyclone positions and corresponding vorticities at z = 3656.25m.
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Figure A.9.: Relative error in cyclone positions and corresponding vorticities at z = 4062.5 m.



132 Chapter A: Appendix

-1:
55

00
:12

00
:30

00
:47

01
:04

01
:21

01
:39

Simulated Time (HH:MM)

−0.04

−0.02

0.00

0.02

0.04

R
el
a
ti
v
e
er
ro
r
in

cy
cl
o
n
e
p
o
si
ti
o
n
s
w
rt
.
h

Western cyclone

Eastern cyclone

(a) Error in position

-1:
55

00
:12

00
:30

00
:47

01
:04

01
:21

01
:39

Simulated Time (HH:MM)

0.000

0.005

0.010

0.015

0.020

R
el
a
ti
v
e
er
ro
r
in

v
o
rt
ic
it
y
(z

co
m
p
o
n
en
t)

Western cyclone

Eastern cyclone

(b) Error in vorticity

Figure A.10.: Relative error in cyclone positions and corresponding vorticities at z =
4468.75 m.



A.5. Further figures on cyclone tracking 133

-1:
55

00
:13

00
:31

00
:49

01
:06

01
:24

01
:42

Simulated Time (HH:MM)

−0.04

−0.02

0.00

0.02

0.04

R
el
a
ti
v
e
er
ro
r
in

cy
cl
o
n
e
p
o
si
ti
o
n
s
w
rt
.
h

Western cyclone

Eastern cyclone

(a) Error in position

-1:
55

00
:13

00
:31

00
:49

01
:06

01
:24

01
:42

Simulated Time (HH:MM)

0.000

0.005

0.010

0.015

0.020

0.025

R
el
a
ti
v
e
er
ro
r
in

v
o
rt
ic
it
y
(z

co
m
p
o
n
en
t)

Western cyclone

Eastern cyclone

(b) Error in vorticity

Figure A.11.: Relative error in cyclone positions and corresponding vorticities at z = 4875 m.
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Figure A.12.: Relative error in cyclone positions and corresponding vorticities at z =
5281.25 m.
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Figure A.13.: Relative error in cyclone positions and corresponding vorticities at z = 5687.5m.
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Figure A.14.: Relative error in cyclone positions and corresponding vorticities at z =
6093.75 m.
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Figure A.15.: Relative error in cyclone positions and corresponding vorticities at z =
6906.25 m.
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Figure A.16.: Relative error in cyclone positions and corresponding vorticities at z = 7312.5m.



A.5. Further figures on cyclone tracking 139

-1:
51

00
:24

00
:57

01
:30

02
:03

02
:36

03
:10

Simulated Time (HH:MM)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
el
a
ti
v
e
er
ro
r
in

cy
cl
o
n
e
p
o
si
ti
o
n
s
w
rt
.
h

Western cyclone

Eastern cyclone

(a) Error in position

-1:
51

00
:24

00
:57

01
:30

02
:03

02
:36

03
:10

Simulated Time (HH:MM)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
el
a
ti
v
e
er
ro
r
in

v
o
rt
ic
it
y
(z

co
m
p
o
n
en
t)

Western cyclone

Eastern cyclone

(b) Error in vorticity

Figure A.17.: Relative error in cyclone positions and corresponding vorticities at z =
7718.75 m.
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Figure A.18.: Relative error in cyclone positions and corresponding vorticities at z = 8125 m.
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Figure A.19.: Relative error in cyclone positions and corresponding vorticities at z =
8531.25 m.
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Figure A.20.: Relative error in cyclone positions and corresponding vorticities at z = 8937.5m.
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Figure A.21.: Relative error in cyclone positions and corresponding vorticities at z =
9343.75 m.



144 Chapter A: Appendix

-1:
49

00
:27

01
:05

01
:42

02
:20

02
:57

03
:35

Simulated Time (HH:MM)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
el
a
ti
v
e
er
ro
r
in

cy
cl
o
n
e
p
o
si
ti
o
n
s
w
rt
.
h

Western cyclone

Eastern cyclone

(a) Error in position

-1:
49

00
:27

01
:05

01
:42

02
:20

02
:57

03
:35

Simulated Time (HH:MM)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
el
a
ti
v
e
er
ro
r
in

v
o
rt
ic
it
y
(z

co
m
p
o
n
en
t)

Western cyclone

Eastern cyclone

(b) Error in vorticity

Figure A.22.: Relative error in cyclone positions and corresponding vorticities at z = 9750 m.
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Figure A.23.: Relative error in cyclone positions and corresponding vorticities at z =
10, 562.5 m.
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Figure A.24.: Relative error in cyclone positions and corresponding vorticities at z =
10, 968.75 m.
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Figure A.25.: Relative error in cyclone positions and corresponding vorticities at z = 11, 375m.
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Figure A.26.: Relative error in cyclone positions and corresponding vorticities at z =
11, 781.25 m.
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Figure A.27.: Relative error in cyclone positions and corresponding vorticities at z =
12, 187.5 m.
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Figure A.28.: Relative error in cyclone positions and corresponding vorticities at z =
12, 593.75 m.
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Figure A.29.: Relative error in cyclone positions and corresponding vorticities at z = 13, 000m.
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