DISSERTATION

submitted
to the

COMBINED FACULTY FOR THE
NATURAL SCIENCES AND MATHEMATICS

of

HEIDELBERG UNIVERSITY, GERMANY

for the degree of

DoOCTOR OF NATURAL SCIENCES

Put forward by

Dipl.-Math. techn. Martin Wlotzka

born in Essen, Germany

Date of oral examination:
September 25, 2017

PARALLEL NUMERICAL METHODS
FOR MODEL COUPLING IN
NUTRIENT CYCLE SIMULATIONS

Advisor: Prof. Dr. Vincent Heuveline

Co-Advisor: Prof. Dr. Klaus Butterbach-Bahl

Abstract

We present a new approach to ecosystem nutrient cycle simulations. Nutrient conversion and
fluxes between ecosystem compartments are driven by highly complex biogeochemical and hydro-
logical processes. Nutrient cycles in soils supply vegetation and crop growth, affect groundwater
and surface water eutrophication, and release greenhouse gases into the atmosphere. Simulating
nutrient cycles is regarded a grand challenge due to the multi-scale properties and involved multi-
physics of the considered ecosystems. Common approaches are restricted on several levels, often
suffering from limited temporal and spatial extent, resolution or accuracy, model simplifications,
or inability to use high performance computing effectively.

In order to cope with their inherent complexity, we consider nutrient cycle simulations as a mul-
tiphysics problem by means of a coupling of dedicated biogeochemical and hydrological models.
We formulate the model coupling problem in an abstract multiphysics setup to manage the com-
plexity. We propose a new variant of operator splitting schemes for the time propagation of the
coupled models. Our scheme employs local model propagators such that accuracy is maintained
on the global level. Furthermore, the scheme features an inherent parallelism on the coupling
level which is independent of possible parallelizations of the models. We present advances in a
software technique which facilitates the model coupling on high performance computing plat-
forms. Our development allows for dynamically changing the parallel configuration of models
and their data distribution during runtime. We validate our approach to nutrient cycle simula-
tions by means of numerical experiments using a greenhouse gas emission scenario and a nitrate
leaching scenario. The results show the benefits of the proposed scheme in terms of an improved
coverage of indirect and local effects. Furthermore, we present performance tests showing the
superior parallel efficiency of our methodology over common approaches, which is due to its
parallelism with respect to the coupling strategy.

Zusammenfassung

Wir préasentieren einen neuen Ansatz fiir die numerische Simulation von Néahrstoffkreislaufen.
Hochkomplexe biogeochemische und hydrologische Prozesse bestimmen die Umsetzung von Nahr-
stoffen und Fliisse zwischen Bestandteilen von Okosystemen. Kreisliufe in Boden versorgen Vege-
tation mit Nahrstoffen, tragen zur Eutrophisierung von Gewdéssern bei, und lassen Treibhausgase
in die Atmosphére entweichen. Thre numerische Simulation ist aufgrund der Multi-Skalen- und
Multi-Physik-Eigenschaften der betrachteten Okosysteme eine groBe Herausforderung. Ubliche
Vorgehensweisen sind oft auf mehreren Ebenen Einschrankungen unterworfen, etwa durch be-
schrankte zeitliche oder rdumliche Ausdehnung der Simulation, durch beschrinkte Auflosung
oder Genauigkeit, durch Vereinfachungen der Modelle, oder durch mangelnde Eignung zur effek-
tiven Nutzung von Hochleitsungsrechnern.

Wir betrachten die Simulation von Nahrstoffkreisldufen im Sinne einer Kopplung von dedizierten
biogeochemischen und hydrologischen Modellen. Um die Komplexitit zu bewéltigen, fithren wir
die Kopplung der Modelle in eine abstrakte Formulierung iiber. Wir schlagen eine Variante von
Operator-Splitting-Methoden vor, mit deren Hilfe konsistente und konvergente Zeitschrittver-
fahren fiir das gekoppelte System definiert werden kénnen. Dariiber hinaus prasentieren wir eine
Weiterentwicklungen einer Kopplungssoftware, mit deren Hilfe Multiphysikprobleme effizient auf
Hochleistungsrechnern implementiert werden kénnen. Wir zeigen die Stichhaltigkeit unserer
Vorgehensweise anhand eines Szenarios mit Treibhausgasemissionen und eines Szenarios mit Ni-
tratausspiilungen. Die Ergebnisse zeigen die Vorteile unseres Ansatzes, mit dessen Hilfe lokale
und indirekte Effekte in Nahrstoffkreislaufen wesentlich genauer erfasst werden konnen als mit
iiblichen Vorgehensweisen.

Mathematical contributions

We consider a coupling of dedicated biogeochemical and hydrological models for nutrient cycle
simulations. For the time propagation of the coupled models, we propose the use of composed
one step schemes which employ local model propagators to form time integration schemes for
the global system. The main mathematical contributions are the proofs of first order in time
consistency and convergence for the composed one step schemes. The proofs use assumptions on
continuity, boundedness and Lipschitz conditions. A family of ordinary differential equations
which relates the single models to the global system allows to convey the proof techniques
known from one step methods to the composed schemes. We complement the theorems with
numerical experiments in a natural convection scenario showing the expected first order in time
convergence. Furthermore, we present developments of advanced parallel communication routines
for the OpenPALM software coupler tool to implement the composed one step schemes in model
coupling applications. This enables the effective use of high performance computing for the
considered nutrient cycle simulations.

vii

Acknowledgements

I am taking this opportunity to say thanks to the numerous people who accompanied and sup-
ported me during my doctoral studies.

First of all, I am deeply grateful to my advisor Prof. Vincent Heuveline. You guided my work
with trust and freedom, beginning at Karlsruhe Institute of Technology, then at Heidelberg
University at the Interdisciplinary Center for Scientific Computing and at the Faculty of Math-
ematics and Computer Science, and finally at the University Computing Center.

Not a bit less am I grateful to my co-advisor Prof. Klaus Butterbach-Bahl. You warmly wel-
comed me in the collaboration and opened a new scientific field for me.

Enormous thanks are dedicated to all my past and present colleagues in Karlsruhe, Heidelberg
and Garmisch-Partenkirchen. Thanks for the uncountable discussions, coffees, Mensa lunches,
meetings and Klausurtagungen, which I always enjoyed with you and which you made my daily
joy and motivation.

I also thank very much Prof. Olivier Thual and his group at Centre Européen de Recherche et
de Formation Avancée en Calcul Scientifique in Toulouse. You made my research stay a great
experience.

Furthermore, I acknowledge the support of the German Research Foundation (DFG) under grant
no. HE 4760/4-1.

Finally, I sincerely thank my family for their support outside of the office. You backed me up

with encouragement and patience. In particular my nearest loved ones Kristina, Sophia and
Jonathan, thank you so much!

ix

Contents

1

Introduction

1.1

1.2

A new approach to nutrient cycle simulations
1.1.1 Abstraction to a general multiphysics setup
1.1.2 Composed one step schemes oo
1.1.3 Dynamic OpenPALM distributors
1.1.4 Ecosystem scenarios e
Thesis outline L

Abstract multiphysics setup and composed one step schemes

2.1
2.2
2.3

24

Abstract multiphysics problem formulation
Classical theory of ordinary differential equations
One step methods
2.3.1 Consistency, discrete stability and convergence
Operator splitting methods and composed one step schemes
2.4.1 Composed one step schemes L.

Appendix e e

Numerical experiments on the convergence of the composed one step schemes

3.1

3.2

Natural convection scenarioo
3.1.1 Continuity equation L L
3.1.2 Cauchy equation of motion
3.1.3 Constitutive equations L oo
3.1.4 Boussinesq approximation Lo
3.1.5 Heatequation.
3.1.6 Natural convection model
3.1.7 Spatial discretization
Numerical experiments L L

Dynamic parallel communication mechanism in OpenPALM

4.1

4.2

OpenPALM terms and concepts at the application level
4.1.1 Units e e e
4.1.2 Spaceso e
4.1.3 Distributors and localizations,
4.1.4 Objects o
4.1.5 Sub-objects
Data exchange between units L L oo
4.2.1 The PALM_ Putroutine
4.2.2 The PALM_ Getroutine
4.2.3 Direct communication
4.2.4 Indirect communication o
4.2.5 Buffer communication
4.2.6 Optimized communication mode

SO R W N -

(=]

Xi

Contents

6

xii

4.3 OpenPALM terms and concepts for internal communication management
4.3.1 Entities e e
4.3.2 Tubes, communication events, comids, and the commstate table
433 EOSand DOR

4.4 Internal data transfer mechanism in the legacy OpenPALM version 4.1.4

4.5 New features to enable dynamic spaces, distributors and sub-objects
4.5.1 New API routine PALM_Distributor _set
4.5.2 New API routine PALM_ Subobject_set
4.5.3 Enhanced API routines PALM_Put and PALM_Get

4.6 Realization of the concurrent operator splitting scheme using OpenPALM

Biogeochemistry-hydrology coupling for nutrient cycle simulations

5.1 Biogeochemical modeling L o Lo
5.1.1 LandscapeDNDC

5.2 Hydrological modeling
5.2.1 Hydrology problem formulation
5.2.2 Discretization Lo
5.2.3 Implementation and parallelization of the hydrology model

5.3 Simulation with OpenPALM using a hybrid operator splitting method

5.4 Numerical experiments L L
5.4.1 Soil N5O emission scenarioo
5.4.2 Parallel performance tests
5.4.3 Vegetated buffer strip scenario oL

5.5 Résumé

Conclusion

55
55
55
56
o6
63
65
66
67
78

83
85
86
88
92
92
95
96
102
102
103
105
107

109

1 Introduction

Major global concerns such as alimentation of the world population, freshwater quality, and
climate change are affected by ecological processes related to the nutrient cycle. Nutrients are
those chemical elements and compounds which are essential for the growth of living organisms.
Among the most important nutrients are carbon and nitrogen. Nutrient cycles in soils are par-
ticularly important for agriculture, for water quality management, and for climate. They supply
vegetation and crop growth, affect groundwater and surface water eutrophication, and release
greenhouse gases such as carbon dioxide, methane or nitrous oxide into the atmosphere. Un-
derstanding nutrient cycles is thus crucial for assessing nutrient budgets, improving agricultural
land management practices, maintaining water quality, and mitigating greenhouse gas emissions
from soils.

Nutrient cycles involve highly complex biological, geochemical and hydrological processes. Mi-
crobial activity, soil and vegetation properties, plant uptake, land management, water availability
and transport are among the primary drivers of nutrient conversion and fluxes between ecosys-
tem compartments. It is often a difficult task to quantify their impact on nutrient cycles due to
the complexity of ecosystems. Moreover, intricate interactions between the involved processes
give rise to indirect and local effects which can contribute significantly to nutrient cycles, but are
even harder to capture and predict. Measurement techniques like closed chambers, fast boxes,
or eddy covariance techniques are limited both in the temporal and in the spatial scale. Indirect
effects can occur with such temporal and spatial extent that it is practically impossible to mea-
sure and trace them back to their origin. Furthermore, capturing local effects like emission hot
spots and hot moments requires a high temporal and spatial measurement resolution. This may
lead to prohibitive costs for equipment and effort for operation. Therefore, predicting ecosystem
feedback on changes in land use or climate, and evaluating mitigation strategies for reducing
greenhouse gas emissions and water eutrophication can not solely rely on measurements, which
are not always feasible for the needed time and space scales.

The ecosystem research community has responded to this issue with the development of numerical
simulation models. The genesis of terrestrial nutrient cycle simulations dates back to the 1980s,
when the foundations of process-oriented biogeochemical models were laid. Seeking to capture
the complex ecosystem dynamics, biogeochemical models have evolved to a state where many rel-
evant processes are incorporated. Today, the “DeNitrification / DeComposition”(DNDC) model
system is widely adopted for carbon and nitrogen cycle simulations. However, biogeochemi-
cal models are typically one-dimensional in space, representing a single soil column. Lateral
fluxes are ignored in such models, although they contribute significantly to nutrient cycles. In
particular, topographical effects on hydrology and lateral transport of nutrients are neglected.
Furthermore, many biogeochemical models lack of a precise resolution of aerobic and anaerobic
soil conditions, and transitions between them, which are also largely affected by hydrology. This
limits the accuracy of simulations severely since oxygen availability has an essential impact on
biogeochemical processes. Overall, the ecosystem research community realized that hydrological
processes need to be incorporated into biogeochemical simulations in a much more profound way
as it has been done so far.

Efforts to overcome these shortcomings mainly aim in two directions. On the one hand, hydrolog-
ical models are extended with simplified biogeochemical process descriptions. On the other hand,

1 Introduction

biogeochemical models are coupled in a one-way fashion to a hydrological model which serves as
a transport module. However, the common approaches to improve nutrient cycle simulations are
facing major challenges:

1. The issue of different temporal and spatial scales.
Models need to resolve short-term and localized events at the site scale occurring within
days, hours or even minutes to capture hot spots and hot moments. But they also need to
account for long-term and large-scale processes on the landscape scale over years or even
decades to assess nutrient budgets and indirect effects.

2. The issue of different modeling approaches and numerical treatment.

Hydrological models are often given in terms of partial differential equations, e.g. by means
of the Richards equation for subsurface flow and kinematic wave equations for overland
flow. The hydrological model domain is usually three-dimensional, with fully coupled
model equations for all space dimensions. In contrast, the one-dimensional biogeochemical
models are typically given in terms of functional relations of nutrient availability, microbial
activity and other factors. Domains with lateral extent are covered by placing several
independent model instances next to each other. Therefore, the models demand for different
numerical treatment. In particular, the definition of biogeochemical models has usually not
a continuous, but a discrete character in the first place, both with respect to space in terms
of soil layers and with respect to time in terms of predefined time steps.

3. The issue of different demands for computational resources.

The biogeochemical model computations for one time step usually require only moderate
computing resources due to their site-oriented nature and plain mathematical structure.
Moreover, the parallelization is straight forward since the model instances can be calculated
independently from each other. In contrast, hydrological model computations can be much
more demanding, and harder to parallelize, due to their fully coupled three-dimensional
nature. Also the time step sizes often need to be much smaller for hydrological models
than for biogeochemical ones, thus requiring more steps to be computed.

4. The issue of software complexity and reuse.

Already the biogeochemical and hydrological simulation codes by themselves are often com-
plex software packages. Incorporating one model into the other, or coupling them, results
in additional complexity. Refactoring existing, or even developing new software for nutri-
ent cycle simulations might require prohibitive effort and costs. It is thus a desire to reuse
existing simulation codes with as little modifications as possible. However, there are often
no interfaces available to facilitate interaction and data exchange, since biogeochemical and
hydrological models have mainly been developed in separate communities.

Biogeochemistry and hydrology simulations are already complex matters on their own, and it is
even more challenging to combine them properly. The road to further progress in nutrient cycle
simulations is blocked by the sketched issues.

1.1 A new approach to nutrient cycle simulations

As we outlined above, difficulties are encountered on multiple levels. Therefore, a new approach is
needed to respond to the severe challenges in nutrient cycle simulations. First of all, we acknowl-
edge the fact that well-established models and simulation codes are available for biogeochemistry
as well as for hydrology as the starting position of our work. It is desirable to reuse existing

1.1 A new approach to nutrient cycle simulations

codes for both scientific and practical reasons. In this thesis we present a new methodology for
combining existing biogeochemical and hydrological models with minimal code modifications to
improve nutrient cycle simulations. The key novelty is a model coupling technique which main-
tains the capabilities, the accuracy, and the computational performance of the models which
are used as building blocks of the overall system. The basis of our approach is an abstraction
of the model coupling for nutrient cycle simulations to a more general multiphysics setup. On
this basis, we develop the tools to address all four issues mentioned above, both on the mathe-
matical level and on the implementation level. The abstraction of nutrient cycle simulations to
general multiphysics setups is the key to reduce the complexity. We present a new variant of
operator splitting methods for the time propagation of coupled models on that abstract multi-
physics level. Furthermore, we present new software developments to facilitate model coupling
and interaction. The proposed software coupling technique is the key tool to implement our new
operator splitting variant for parallel platforms and high performance computing systems. This
is crucial to meet the demand for computational resources of complex applications. Finally, we
demonstrate the feasibility of our approach to nutrient cycle simulations by means of numerical
experiments on a greenhouse gas emission scenario, and on a nutrient leaching scenario. In the
following subsections, we introduce further details of our approach and highlight the main thesis
contributions.

1.1.1 Abstraction to a general multiphysics setup

The core idea of our approach is to couple dedicated models for the biogeochemical and for the
hydrological processes. The desire to include all relevant phenomena in numerical simulations
is clearly not new, but rather natural. Indeed, “simulations that couple multiple physical phe-
nomena are as old as simulations themselves” [52, p. 1]. Our approach is however new in that
it can significantly improve the accuracy and the computational efficiency of nutrient cycle sim-
ulations, and it enables to capture local and indirect effects. Furthermore, our model coupling
technique is applicable to general multiphysics problems, not only to nutrient cycle simulations.
This is a benefit of our measure to manage the complexity of nutrient cycle simulations by using
an abstraction to a general multiphysics model coupling setup. The term multiphysics denotes
systems which consist of more than one physical component or quantity governed by its own
principle for evolution or equilibrium. In our case, these are the biogeochemical and the hy-
drological processes. The classical approach to multiphysics is to form a system of equations
which incorporates all considered phenomena. Such systems may in general involve algebraic
equations, ordinary differential equations (ODE), as well as partial differential equations (PDE).
Solving the multiphysics system as a whole is called a “monolithic” scheme. Other types of
coupling and solution schemes exists, which can be described using the terminology of Keyes et.
al. (2011). They introduce the notion of “strong”, “weak”, “tight” and “loose” coupling in the
following sense [52, p. 73]. The attribution of strong versus weak coupling refers to the physics
represented by the models. A coupling is called strong or weak if the physics of the models have
a strong or weak influence on each other. On the mathematical level, strongly coupled models
may lead to stiff problems. In contrast, the attribution of tight versus loose coupling refers to
numerical or algorithmic aspects of multiphysics simulations. Tight coupling schemes attempt to
keep the state variables synchronized across models at all times, whereas loose coupling schemes
allow for non-synchronous model states. A typical example of a loose coupling is the shift of one
model by one time step against another model.

Our abstraction from nutrient cycle simulations to a general multiphysics setup consists in the
assumption that models are given in terms of a functional representation. We focus on the case
of time-dependent models which can be represented by a function describing their temporal vari-

1 Introduction

ation. Such functional representation may result from models with purely temporal variability,
or from spatially discretized PDE, possibly using the method of lines [94]. This abstract setup
opens a broad scope for multiphysics applications. It includes all kinds of models defined by
ODE, and all kinds of models defined by PDE as long as they are accessible in a spatially dis-
cretized form. The latter requirement is mostly not a limitation, since numerical simulations of
models defined by PDE usually involve a spatial discretization. The generality on the coupling
level is the key for addressing the four issues we identified above. Based on this generic principle,
the properties of the solvers used for the separate models can usually be leveraged in a conver-
gent and efficient scheme for the global problem. Furthermore, it allows to effectively use high
performance computing even if individual models demand for different computational resources,
and it allows to reuse existing simulation codes in the coupling.

1.1.2 Composed one step schemes

As indicated above, we assume in our abstract view on multiphysics that models are given in
terms of a functional representation describing their temporal variation, i.e. models are given as
the right hand side functions of ODE. We already pointed out that this may also include models
with spatial variation, e.g. PDE in spatially discretized form. As part of our novel model coupling
technique we propose the notion of “composed one step schemes” for propagating the coupled
models in time. The characteristic properties of our composed one step schemes are that they
represent one step methods on a global time grid, and that the global solution for a given time
step is composed of individual model contributions. The concept of composed one step schemes is
derived from classical operator splitting methods. We present two variants of composed one step
schemes which we call “consecutive” and “concurrent” operator splitting, respectively. In the
consecutive variant, the individual model contributions are computed one after another, while
the concurrent variant features an inherent parallelism among models. Both variants allow for
internal parallelization in the individual model implementations. On top of that, the concurrent
variant offers an additional level of parallelism which is independent of possible internal model
parallelism.

We already published the notion of consecutive and concurrent operator splitting schemes in our
previous works [108, 107]. However, their rigorous definition is an original thesis contribution.
The consecutive operator splitting is equivalent to the well-known Lie(-Trotter) splitting [89] in
our setup, whereas there is no classical operator splitting counterpart for the concurrent scheme.
The major thesis contributions on composed one step schemes are our proofs of first order in
time consistency and discrete stability, and thus convergence, of both the consecutive and the
concurrent variant. By these proofs, we re-establish the known first order convergence of the
Lie(-Trotter) splitting in our setup, and we show the first order convergence of our new concurrent
variant. Our proofs rely solely on the basic assumptions of continuity, boundedness and Lipschitz
conditions of the functional model representations without requiring any further knowledge of
possible internal mathematical structure of the models.

We supplement our theoretical convergence results with numerical experiments. We investigate
the numerical convergence of our composed one step schemes in a natural convection scenario
comprising a fluid dynamics model and a temperature model. The results show the expected
first order in time convergence in different flow regimes.

1.1.3 Dynamic OpenPALM distributors

We address multiphysics on the mathematical level by means of a composed one step scheme.
On the software level, the issue of different demand for computational resources, and the issue

1.1 A new approach to nutrient cycle simulations

of software complexity and reuse require dedicated techniques for efficiently implementing multi-
physics systems. Assuming the proposed modeling, the coupling of existing biogeochemical and
hydrological models implies important modifications of the underlying model codes. We employ
a dedicated software coupler tool named OpenPALM to realize our multiphysics approach to
nutrient cycle simulations. OpenPALM is a general purpose software coupler tool which serves
as the link between the coupled models. It controls the execution of the models and manages
data transfer between them. A core feature of OpenPALM is its ability to support two levels of
parallelism, both on the coupling level and on the model level. OpenPALM’s coupling level par-
allelism allows to execute multiple models at the same time. This feature on the implementation
side is the exact pendant of the concurrent operator splitting parallelism on the mathematical
side. OpenPALM’s model level parallelism allows to manage data transfer between models which
are internally parallelized. The coupler is able to transfer distributed data between parallelized
models, including the case of differing data distributions on the two end points of a transfer.
OpenPALM maintains the integrity of global data objects by properly arranging the transfer of
corresponding local object parts between models. This feature is essential for allocating adequate
computational resources to the biogeochemical and hydrological models in order to meet their
different demands.

In OpenPALM such data transfer between parallelized models is however restricted to the case
where the data distribution is known a priori. It has to be specified in a configuration which is
processed during the compilation of the multiphysics application. Moreover, the data distribu-
tion cannot be changed during runtime of the application. A further restriction is that only data
objects of a priori known and fixed size can be transferred in parallel. These restrictions have
major implications on the usage of OpenPALM. The size of data objects is often not determined
a priori, but during runtime in the setup phase of an application. For instance, vector sizes may
depend on various factors like mesh size or discretization parameters, which are only known at
runtime. Also the distribution of data among the processes of parallelized models is often deter-
mined at runtime, e.g. through a domain decomposition. OpenPALM must however be supplied
with data sizes and distributions prior to application startup. The usual way to determine them
is to perform offline test runs of the separated models using the exact same input data, pa-
rameters and parallelization as later in the multiphysics model coupling, and to note down the
resulting data sizes and distributions. This may result in substantial overhead for setting up the
OpenPALM configuration. Furthermore, the configuration is then fixed throughout the whole
simulation. This restriction prevents from common practices like refinement or load balancing
which would require to change data sizes and distributions during runtime. The usual way using
OpenPALM is to shut down the application, determine the new configuration with offline tests,
and then restart the application with the new configuration.

We present a new development in the framework of OpenPALM which allows to overcome these
restrictions by means of “dynamic distributors”. These distributors drop the problematic re-
quirement of specifying data sizes and distributions a priori, and thus remove the restrictions
described above. This new feature allows to change the size of data objects as well as their
distribution during runtime of the application. This eases the usage of OpenPALM greatly since
neither the preliminary offline testing is needed anymore, nor the shutdown, reconfigure, restart
procedure. Instead it is possible to temporize the configuration of the transfer mechanism until
data sizes and distributions are known after the setup phase of applications, and also to change
the configuration any time during runtime without interrupting the execution. Based on our de-
velopment OpenPALM thus fully supports the usual course of scientific computing applications
where vector and matrix sizes and their distribution are not determined a priori, but only at
runtime in a setup phase, and where data sizes and distributions may change during runtime
due to refinement or rebalancing.

1 Introduction

1.1.4 Ecosystem scenarios

With the adequate mathematical methods and software tools in hand, we demonstrate the ef-
fectiveness of our approach to nutrient cycle simulations by coupling dedicated biogeochemical
and hydrological models. We present a greenhouse gas emission scenario and a nutrient leach-
ing scenario, where indirect and local effects contribute significantly to nutrient cycles in both
cases. In order to capture these effects, simulations need to resolve the biogeochemical and the
hydrological processes accurately enough. We show that our model coupling approach can sub-
stantially improve the ability to cover indirect and local effects compared to common nutrient
cycle simulation techniques. Furthermore, we exemplify the parallelization and efficient use of
high performance computing for the simulations even though the individual models exhibit dif-
ferent demand for computational resources. This allows for sufficiently small time steps on an
hourly or even sub-hourly basis, while at the same time considering ample simulation times of
multiple years or even decades. The proper combination of our composed one step schemes with
our dynamic distributors feature is an enabling technique for nutrient cycle simulations, and for
multiphysics model coupling in general.

1.2 Thesis outline

Chapter 2 is dedicated to the derivation of the composed one step schemes. To lay a basis
for the derivation, we briefly recall some basic results from the classical theory of ordinary
differential equations and their numerical treatment. The main emphasis in Chap. 2 is the
definition of the composed one step schemes and proofs of their first order in time consistency,
discrete stability and convergence. Chapter 3 presents numerical experiments on the convergence
of the composed one step schemes using a natural convection scenario. We investigate the
numerical accuracy of our first order composed one step schemes and compare with a second
order in time monolithic scheme. The expected convergence orders are accurately achieved
even for large time step sizes in a wide range of flow regimes. Chapter 4 is devoted to the
development of the dynamic distributors, i.e. the advanced parallel communication capabilities
of OpenPALM. We introduce the concepts and functionalities of OpenPALM as a general purpose
dynamic parallel software coupler tool. We add further details on the previously existing parallel
communication routines which we use as the baseline for our developments. We complete the
chapter with the presentation of our new dynamic parallel communication features. Chapter 5
presents the multiphysics ecosystem nutrient cycle simulations. We demonstrate the use of our
composed one step schemes in conjunction with our new OpenPALM dynamic distributors data
transfer feature for coupling a biogeochemistry model and a hydrology model. We introduce the
basic processes which affect nutrient cycles in soils and the corresponding modeling approaches.
To overcome the limitations of traditional modeling approaches in assessing indirect and local
effects, we present our approach of coupling dedicated models for biogeochemical and hydrological
processes. We reuse existing model implementations and realize the coupling and data exchange
with OpenPALM, which allows to allocate high performance computing resources adequately for
both models to balance their different computational demands. We demonstrate the feasibility
of our approach by means of numerical experiments comprising a nitrous oxide emission scenario
and a nitrate leaching scenario, and we present parallel performance tests. Chapter 6 concludes
this thesis with a summary of the main results and perspective remarks.

2 Abstract multiphysics setup and
composed one step schemes

This chapter introduces the mathematical basis of our approach to nutrient cycle simulations.
We consider a coupling of dedicated biogeochemical and hydrological models in a multiphysics
application. Coupling dedicated models allows to address the issues identified in the introduction
in several respects. Models and their numerical treatment may be tailored to adequately match
the needed temporal and spatial scales, and existing model implementations may be reused in
the coupling. A coupling methodology is then needed which yields a well-defined global system,
and which at the same time maintains the properties of the models and their solvers on the local
level. Moreover, the coupling methodology is desired to allow to allocate suitable computational
resources to the models, and to deal with software complexity.

As we outlined in the introduction, we accept a bottom up view considering existing models as
the starting point of our work. The specific modeling and implementation of the biogeochemical
and hydrological processes which we use for nutrient cycle simulations are discussed in Chapter
5. By reusing existing models and codes, we intend to leverage the capabilities on the model
level as described above. We complement this bottom up view with a top down view on the
coupling level. In the top down view, we propose a coupling methodology to form a consistent
global multiphysics system using existing models as building blocks. We assume the availability
of models in an abstract mathematical formulation which serves as the interface between bottom
up model view and top down coupling view.

2.1 Abstract multiphysics problem formulation

We consider the following very basic multiphysics situation: two models interact by simulta-
neously affecting a common quantity y. This might include spatially and temporally variable
quantities, model interfaces, boundary values, or other quantities. In nutrient cycle simulations,
the common quantity may include soil water content or nutrient concentrations. From the bot-
tom up view, models might be given in terms of equations involving y, or in terms of software
which implements actions on y. We assume that the common quantity is time dependent, i.e.
y = y(t), which suits our ecosystem models as well as any model with temporal variability in
general. In particular, models given in terms of ODE comply with this assumption. Note that
possible space dependency of y is not explicitly considered on the coupling level in our approach.
Instead, we assume that any possible space dependency of y is treated on the model level, and
only the time dependency is exposed to the coupling level. This does mostly not prevent from
considering models with space dependence, e.g. models given in terms of PDE, provided that
only time dependence is exposed. Space dependence may be treated by means of a discretization,
e.g. using the method of lines for PDE.

Our abstraction from the processes related to nutrient cycles to a general setup consists in the
assumption that models are given in terms of functions describing the temporal variation g of
the common quantity. For two models, the individual model action is formulated as y = f(¢,y)
and y = ¢(t, y), respectively. Insofar, the functions f and g represent the effects of the individual

2 Abstract multiphysics setup and composed one step schemes

models on the common quantity y. The coupled multiphysics system can then be stated in the
form of the following initial value problem

y=f(t,y) +gt,y),tel,

y(0) =yo , @1

where I = [0, T] with some final time T > 0 is the time interval under consideration, and yo is a
given initial value of the common quantity. The setup can obviously be extended to any number
of models acting on the same common quantity y. Also systems of the form

Y2 9ty,y2))
can be reformulated in the sense of (2.1) using

v=maw”s = (TR) e = (0)

g(tayla y2)

Equation (2.1) is the abstract global problem formulation which we use in our approach to multi-
physics model coupling. It is the interface between the bottom up model view and the top down
coupling view. It abstracts from the specific models at hand to a formulation which is reduced
to the role of the common quantity y as the mathematical medium of the coupling.

The ODE form of the abstract setup describes the temporal evolution of the common quantity y
under the simultaneous influence of both models. One might in principal consider any numerical
method for solving (2.1), such as one step or multi step methods, Galerkin methods, extrapola-
tion methods, splitting methods, or others. The application of an ODE solver to the combined
right-hand-side function f + g is a standard approach and results in a monolithic scheme. How-
ever, embracing f 4+ ¢ in a monolithic scheme is opposed to our approach of coupling dedicated
models. On the conceptual side, a monolithic scheme treats both models with the same solver
which can result in exactly those issues identified in the introduction. On the practical side, the
individual models represented by f and g might only be separately accessible, e.g. if they are
implemented in separate codes and applications.

We adopt the idea of splitting methods [89], or operator splitting, for our approach to model
coupling. Splitting methods, such as the well-known Lie(-Trotter) splitting or the Strang split-
ting, treat the constituents of the coupling separately by means of individual model propagators
and combine the split solutions to yield a global solution. We use this idea to establish our own
notion of coupled model propagators, which we call composed one step schemes. Our aim is
to compose global propagators from one step methods on the model level. The composed one
step schemes yield numerical solutions of the global multiphysics problem on a global time grid.
Naturally, the global time steps are synchronization points for the models. Note that this does
not prevent individual models from computing local sub-steps, possibly using other types of time
stepping schemes such as multistep methods, as long as the models are synchronized at the global
time steps. We propose two variants of composed one step schemes which we call consecutive
and concurrent, respectively. The consecutive variant resembles the Lie(-Trotter) scheme in our
setup, while the concurrent variant is dissimilar from the known splitting schemes. Both schemes
are first order in time consistent and convergent.

In the first section, we recall some basic results from the classical theory of ODE which are rele-

vant for the proofs of consistency and convergence of the proposed schemes. The second section
recalls the basic definition of one step methods, and the concepts of consistency, discrete stability

10

2.2 Classical theory of ordinary differential equations

and convergence. The last section is devoted to the presentation of splitting and composition
schemes, our proposed schemes for coupled models, and the proofs on their consistency, discrete
stability and convergence.

2.2 Classical theory of ordinary differential equations

In this section, we outline some results form the classical theory on the existence, regularity,
uniqueness and stability of solutions for systems of ordinary differential equations. To state the
results which are relevant for the derivation of the composed one step schemes in Sec. 2.4.1, we
use a first order ODE of the form

y@t) = ft,y@t), tel (2.3)

with an independent variable t € I C R, a right-hand-side function f(t,y) = (f1 (t,y), ..., falt, y))T,

and the unknown function y(t) = (y1(t), ...,yd(t))—r. The independent variable is often associ-
ated with time and, unless otherwise indicated, we chose without loss of generality the interval
I =[0,T] with some T > 0. We assume that f is defined on

D=IxQCRxR?

with some set C RY. For a given initial value yo € ©, we seek a solution of (2.3) according to
the following definition [84, p. 13].

Definition 2.1 (Initial Value Problem)
The problem of finding a continuously differentiable function y : I — R% which satisfies

Graph(y) = {(Ly(t)) ,te I} cD, (2.4a)
y(t) = f(t,yt),tel, (2.4b)
y(0) =wo, (2.4c)

is called an initial value problem (IVP) with problem data f, D =1 x Q, and yp.

In the following, we use the notation for the p-Norms (1 < p < 00) and the maximum norm

d 1/p
— |p = , d
1yl = (> 1 4l) » ylloo = max Juif , y € RT,
pen

and for the Euclidean norm and the scalar product

d

lyll = llyllz > (z.9) = i, &,y €RE.
=1

We first state the classical existence theorem by Peano. The Peano theorem assumes continuity
of the right-hand-side function f of the initial value problem and guaranties the existence of a
local solution.

Theorem 2.1 (Local Existence Theorem by Peano)
Let f: D — R? be continuous on

D={(t.y) eRxR: |t| < o, [ly — yoll < B}

11

2 Abstract multiphysics setup and composed one step schemes

where a,, B > 0 are constants. Then there is a solution y of the initial value problem (2.4) on the
interval I = [=T,T] with

T:min{a,%} , M:max{”f(t,a:)” : (tx) GD}.

Proofs based on the uniform convergence of equidistant Euler polygons to a solution can be found
in [84, p. 14] and [37, p. 42].

Remark:
The constant M = max{ If(t,)] : (tz) € D} in Theorem 2.1 surely exists, since f is assumed

to be continuous and therefore attains its maximum on the compact set D. In the case of M = 0,
i.e. f =0, we have the obvious solution y = yo on I = [—a, a].

The next two theorems give statements on the continuation of local solutions.

Theorem 2.2 (Continuation Theorem)

Let f be continuous on a closed set D = J x Q C R x RY containing the point (0,y0), and let y
be a solution of the initial value problem (2.4) on some interval I = [-T,T] C J. Then the local
solution y can be continued up to the boundary of D.

Proofs can be found in [84, p. 17] and [37, p. 40].

Theorem 2.3 (Global Existence Theorem)
Let f be continuous on R x RY, and let y be a solution of the initial value problem (2.4) on some
interval I. If there is a continuous function B : R — R such that

ly@®I <B), tel,
then y can be continued to a global solution on R.

A proof can be found in [84, p. 18].

The following theorem guaranties the regularity of the solution depending on the regularity of
the right-hand-side function of the initial value problem.

Theorem 2.4 (Regularity Theorem)
Let y be a solution of the initial value problem (2.4) on some interval I. If f € C™ (D) for some
m > 1, then y € C™ ().

A proof can be found in [84, p. 19].

The theorems on the existence of solutions stated above only assumed continuity of f. How-
ever, to address stability and uniqueness of a solution, the additional assumption of a Lipschitz
condition is necessary.

Definition 2.2 (Lipschitz Condition)
(1) The function f: D — R satisfies a Lipschitz condition on its domain D C R x R?, if there
is a positive and continuous function L : R — R with

||f(t,fL'1) - f(t7$2)H < L(t)||$1 - $2||) (tvxl)v (tamQ) €D.

12

2.2 Classical theory of ordinary differential equations

In this case, L is called the Lipschitz constant.

(2) The function f : D — R? satisfies a local Lipschitz condition on its domain D C R x R?, if
f satisfies a Lipschitz condition on any bounded subset of D. In this case, the Lipschitz constants
may depend on the subsets.

Remark:
Note that a Lipschitz condition implies continuity of f with respect to the second argument,
since

1t 21) = f(E,z2)|| < L(E) |21 — 22| = 0 (21 — 22) .

On the other hand, continuity does in general not imply a Lipschitz condition. As a counter
example, consider the function f(¢,z) = f(x) = +/z for « € [0, 1], which is continuous. With the

sequence x,, := + (n € N) we have x,, — 0 (n — o0) ,|z, — 0| = £ and |f(z,) — f(0)] = \/%

T n n

Thus for any fixed L >0
|f(zn) — f(O)| > L|z, — 0] <= n>L*,
therefore no Lipschitz condition holds.
The following theorem guarantees the stability of solutions under the assumption of a Lipschitz

condition.

Theorem 2.5 (Local Stability Theorem)
Let f,g be continuous on D = I x Q C R x R?, and let two initial value problems be given as

= f(t,u),tel,u0)=m1up, (2.5a)
v=g(t,v),tel,v(0)=uvp. (2.5b)

Furthermore, let f satisfy a Lipschitz condition on D with a Lipschitz constant L(t) and L :=
sup;c; L(t) < 0o. Then for any solution u of (2.5a) and any solution v of (2.5b) holds

t
Jut) = o(®)] < e [luo ~ voll + [e(s)ds] te 1.
0

where €(s) = sup,cq || f(s,z) — g(s, z)].

A proof based on the Gronwall Lemma can be found in [84, p. 23].

A direct consequence of the stability is the uniqueness of the solution.

Theorem 2.6 (Local Uniqueness Theorem)
Let f be continuous and satisfy a Lipschitz condition. Then there is a unique local solution y of
the initial value problem (2.4).

A proof can be found in [84, p. 24].

We finally state a theorem on global existence and uniqueness.

Theorem 2.7 (Global Existence and Uniqueness Theorem)
Let f be continuous on D = R x R and satisfy

1F(t2)|| < @zl +5(), (t,2) € D

with non-negative continuous functions a, 8 : R — R. Then there is a global solution y of the
initial value problem (2.4) on R. Furthermore, if f satisfies a Lipschitz condition, then the global
solution is unique.

13

2 Abstract multiphysics setup and composed one step schemes

A proof based on the generalized Gronwall Lemma can be found in [84, p. 26].

We close this section with the existence theorem by Picard-Lindel6f, which can be proved in-
dependently from the Peano theorem. In contrast to the Peano theorem, the Picard-Lindel6f
theorem assumes not only continuity, but also a Lipschitz condition on f. Therefore, it guaranties
existence and uniqueness of the solution.

Theorem 2.8 (Existence Theorem by Picard-Lindelof)

Let f : D — RY be continuous and satisfy a local Lipschitz condition. Then, for any (to,yo) € D,
there is a T > 0 and a local solution y : [to — T, tg + T] — R? of the initial value problem (2.4)
Moreover, this local solution is unique.

A proof based on the Banach Fixed Point Theorem can be found in [84, p. 27].

2.3 One step methods

In practice it is often not possible to construct analytical solutions to initial value problems.
This might be the result of failing to meet the requirements of the known construction meth-
ods like the separation of variables [37, p. 14] or the variation of constants [37, p. 18], lack
of knowledge of a construction method which suits the problem at hand, or even incomplete
information on the problem data, e.g. if the function f is not entirely known but only given as a
computer program. Nevertheless, in many situations where no analytical solution is known, one
can compute approximations to the solution by means of numerical methods for solving ordinary
differential equations. In this section, we briefly recall the concept of one step methods. These
methods are based on a discretization of the time interval I = [0, 7] into a grid of N + 1 distinct
instants of time 0 = tg < t; < ... < ty = T with time step sizes h, = t, —t,—1(n = 1,...,N)
and h := maxi<n<n hy. Starting from the given initial value yg, these methods successively
compute approximations y1 ~ y(t1),y2 ~ y(t2),...,yn =~ y(tny) to the solution y of the initial
value problem (2.4). Therefore they are also called time stepping schemes. We call a family of
vectors y" = (yn)o<n<n (yn € R?) a grid function on the time grid I" = {to,...,tn}.

One step methods use the approximation y,_; from the last time instance ¢,,_; to compute the
approximation y, for the next time instance t,,. One step methods can be stated as

Yn = Yn—-1 + hnF(hn,tn—layn,yn—l) , =]-7 ceey N (26)

or equivalently by means of the difference operator Lf as

(LEy") = P = F(hastamt, Yoy got) = 0, n =1, N (2.7)

where F' is the defining function of the method. Since a one step method is entirely characterized
by means of its defining function F', we may call it “method F” for short. To illustrate the role
of F', we give some examples of well-known one step methods which are widely used in practice:

« explicit or forward Euler method, also known as Euler polygon method [37, p. 36]:
Yn = Yn—1 + hnf(tn-1,Yn-1), (2.8)

ie. F(hnytnflvyn/ynfl) = f(tnfhynfl)

14

2.3 One step methods

o implicit or backward Euler method [37, p. 204]:
Yn = Yn—1 + hnf(tn,yn) (2.9)
Le. F(hn,tnflvyna ynfl) = f(tna yn)

o Trapezoidal rule [84, p. 140]:

Yn = Yn—1 + % [f(tnflaynfl) + f(tnvyn)] ’ (210)

ie. F(hrutn—layn; yn—l) = %[f(tn—layn—l) + f(tnayn)]

 general s-stage Runge Kutta methods [38, p. 40]:

9i = Yn—1+ hnzaijf(tn—l + Cihn,gj),i=1,...,s (2.11a)
j=1

Yn = Yn—1 + hn Z bjf(tn—l + thnagj) (211b)
j=1

S
ie. Flhn,tn_1,Yn,Yn—1) = ijf(tn_l + ¢jhn, g;), where the g; (i = 1,...,s) are deter-
j=1
mined through (2.11a). The parameters a;;, b; and ¢; (4,7 = 1,...,s) define the specific
method at hand. The method is explicit in case of a;; = 0 for ¢ < j, otherwise implicit.
Runge-Kutta methods can be represented in a Butcher table as

c| A
b)
where A = (a;j)1<4,j<s is the coefficient matrix and ¢ = (¢, ..., cs)' and b = (by,...,bs)

are the coefficient vectors. Note that the one step methods stated above represent Runge-
Kutta methods with the following Butcher tables:

0]0 1)1 0p o0 0
- : 100 1
12 1/2

explicit Euler implicit Euler trapezoidal rule

2.3.1 Consistency, discrete stability and convergence

We briefly outline the concepts of consistency, stability and convergence. First we recall the
definition of consistency, which formulates the relation of a one step method with the solution
of the initial value problem.

Definition 2.3 (Consistency)
Let y be a solution of the initial value problem (2.4). The local discretization error, or truncation
error, of a one step method (2.6) is defined as

ﬁ::ﬂﬁl%ﬂﬁil—memkhmm%m%ﬂn7n:1wwN. (2.12)
n

15

2 Abstract multiphysics setup and composed one step schemes

The one step method is called consistent with the initial value problem if

max |7 =0 (b — 0),
tn€l

and it is called consistent with order p > 0 if for sufficiently smooth y
h
=O(h?).
max |7, || = O(h?)

Definition 2.4 (Lipschitz Continuity of One Step Methods)
A one step method is called Lipschitz continuous, if its defining function F satisfies a uniform
Lipschitz condition with Lipschitz constant L > 0 such that

|F(hyt,2,9) = F(hst,,5)] < L(Jle — 2l + ly - 1)

forallt €I and x,z,y,y € .

Theorem 2.9 (Discrete Stability Theorem for One Step Methods)
Let F be a Lipschitz continuous one step method with Lipschitz constant L according to Definition
2.4, and let y" = (Yn)o<n<n and 2h = (Yn)o<n<n be grid functions. Then for h < ﬁ

lyn = zall < €t (llyo =20l + > hill(Lny" — Lhzh)iH) ;0<n<N (2.13)
i=1

with the constant k = 4 for implicit methods. For explicit methods, the constant is k = 1 and
the condition on the step size can be omitted.

A proof can be found in [84, p. 52].

Definition 2.5 (Convergence)
A one step method is called convergent, if for any initial value problem (2.4)

max [lyn —y(ta) =0 (h = 0),

where y is the solution of the initial value problem and y" = (yn)
computed by the one step method.

o<n<n the approximation

In case of one step methods, convergence is a direct consequence of consistency and discrete
stability, as stated by the following theorem.

Theorem 2.10 (Convergence Theorem for One Step Methods)
Let F be a Lipschitz continuous one step method with Lipschitz constant L according to Definition
2.4, and let F' be consistent with the initial value problem (2.4). If ||yo —y(0)|| — 0, then the one
step method is convergent

max [lyn — y(ta) =0 (b= 0),

and for sufficiently small step sizes h < i the a priori error estimate
n
g — y(E)]| < €22 <||Z/o — 4Ol + thm) 0<n<N,
i=1

holds. The condition on the step size can be omitted for explicit methods.

Proof. Since Lpy" = 0 and L,y = 7", the claim follows directly from the Discrete Stability
Theorem 2.9 [84, p. 54]. O

16

2.4 Operator splitting methods and composed one step schemes

2.4 Operator splitting methods and composed one step
schemes

Now we turn our attention back to the abstract multiphysics problem stated in (2.1). In this
section, we derive the composed one step schemes which we propose for the time integration of
the coupled models using the idea of operator splitting methods. The literature defines the term
“splitting” or “splitting method” for a given initial value problem y = X (y),y(0) = yo by means
of the following three steps [89, p. 343]:

1. choosing a set of vector fields X; such that X = Z Xi;

2. integrating either exactly or approximately each Xj;
3. combining these solutions to yield an integrator for X.

The third step mentions the complement of splitting, namely combining the split parts to form a
solution or approximation to the original problem. Combining the split parts is usually denoted
a composition method in the literature. As an example, writing the exact solution by means of
the flow () = exp(tX), the composition

P(t) = exp(tXy) exp(tXs)...exp(tXy) (2.14)

is first order accurate, i.e. B(t) = (t) + O(t?).
The analysis of splitting methods is often studied by means of a classification of dynamical
systems, in particular for flows of X which belong to some group of diffeomorphisms. Three
main categories were identified [88]: dynamical systems, where the flow lies in a semi-group, in
a symmetric space, or in a group. There is a rich literature on the analysis of splitting methods.
In particular splittings have been studied which preserve certain properties of the system, like
Hamiltonian systems [86, 10, 95], Poisson systems [85], volume-preserving systems [30, 66, 31],
conformal volume-preserving systems, conformal Hamiltonian systems [65], contact systems [31],
foliate systems with integrals [67, 46], general foliate systems [71], systems with symmetries [25],
systems with reversing symmetries [58, 68], polynomial vector fields [19, 96], or trigonometric
vector fields [82].
Widely known composition methods for flows X = A + B include the first order Lie(-Trotter)
method

¢rr(t) = exp(tA) exp(tB),

which is the example (2.14), and the second order Strang method [100]

ps(t) = exp(%A) exp(tB) exp(%A))

The prevalent composition methods present in the literature are derived from the general non-
symmetric composition
0= eamtAebmtB.“ealtAebltBeaotA ,

also called exponential operator splitting [48, 63], which is denoted an m-stage method with coef-
ficients ag, ..., Gm, b1, ..., by The choice of the number of stages and of the coefficients determines
the convergence properties of the methods. Order conditions have been derived which ensure
that methods have certain order p. The main methodologies for determining order conditions are
direct methods based on [101] and [110], expansions by means of the Baker-Campbell-Hausdorff
formula [39], extensions of the rooted tree approach known from the analysis of Runge-Kutta

17

2 Abstract multiphysics setup and composed one step schemes

methods [74], and symmetrized products of non-commutating operators [103].

A typical field of application for splitting methods is the numerical solution of partial differential
equations, where the differential operators are split with respect to the spatial variables. Known
splitting methods of this type include the alternating direction implicit (ADI) or Peaceman-
Rachford scheme [79], which is a modification of the Crank-Nicolson scheme, and generalizations
thereof like the Douglas-Rachford scheme [26], or fractional 6-schemes [21], which are based on
the idea by Glowinski and Periaux [35].

2.4.1 Composed one step schemes

Analogously to splitting methods which are based on approximations to the flow ¢(t) = exp(tX)
of the vector field X as outlined above, we propose integration schemes for coupled models based
on the numerical flow of one step methods. We use the following notation for numerical flows of
one step methods.

Definition 2.6

For the initial value problem (2.4), let y,—1 be a given approzimation to the solution at the time
instant t,,—1, and let F' be the defining function of a one step method as outlined in Sec. 2.3. We
denote by ®F the numerical flow of the one step method F, i.e. the function that maps a tuple
(fytnstn—1,Yn—1) to the approzimation y, at time instant t,, which results from the application
of the one step method according to

O (fitntno1,Un1) — Yn such that vy = yYp_1 + hoF (s trn—1y Yns Yn—1) - (2.15)
Remarks:

« For explicit one step methods, the numerical flow ®F is clearly well-defined, since computing
the approximation for the next time step requires only function evaluations with known
arguments from the previous time step.

o However, the application of an implicit one step method possibly requires to solve a non-
linear algebraic system of equations. In this case, ®f represents the implicitly defined
function for y, in (2.6), which is the system of equations resulting from the application
of the method. Obviously, ®" is well-defined if and only if (2.6) is well-defined. This is
surely the case if the problem data complies with the assumptions of the Implicit Function
Theorem. In turn, this holds true if the system of equations resulting from the implicit
method fulfills the assumptions of the Convergence Theorem for the Newton iteration, since
these imply the assumptions from the Implicit Function Theorem. Precise statements of
the Implicit Function Theorem and of the Convergence Theorem for the Newton iteration
can be found in the Appendix of this chapter.

Let one step methods F' and G with corresponding numerical flows ® and ®& according to
Definition 2.6 be given. Our idea is to address the initial value problem (2.1) by means of an
operator splitting scheme, where F' and G are used to treat the constituents f and g of the right-
hand-side individually. We compose time stepping schemes for solving the coupled problem (2.1)
while keeping the access of F' to f separate from the access of G to g.

Definition 2.7 (Composed One Step Schemes)
Let one step methods F and G with corresponding numerical flows ®F and ® according to
Definition 2.6 be given. The composed one step schemes ®F°C¢ and ®F+C for (2.1) are defined

18

2.4 Operator splitting methods and composed one step schemes

by

éFOG(fagvtnatnfl,ynfl) = (I)F (fa tn;tnflv(I)G(gatnvtnflaynfl)) ’ (216)
(I)F+G(f7gatnatnflaynfl) = ¢F<f7 tnztnfly ynfl) + (PG(Q; tn; tnflayn—l) — Yn—1- (217)

We call ®F°C o consecutive operator splitting scheme because ®F is applied to the result of .
In contrast, we call ®F+C o concurrent operator splitting scheme because ®F and ®C are applied
independently and their individual results are combined to form the global result.

Remarks:

« Note that the consecutive scheme ®°¢ represents the application of the Lie(-Trotter)
splitting by consecutively executing the one step method G, then F'.

« In contrast, the concurrent scheme ®¥*¢ is different from the operator splitting schemes
outlined above, which all share the consecutive nature.

« Both ®°¢ and ®¥'*& obviously represent numerical flows of one step methods, since

FoG FoG Un =Yn-1+ hnG(hna tn—1,Un, yn—l)
Y :q) (fvgat 7t —1,Y 71)<:> 5
" e " ySOG = Yn-1+ hnF(hnvtn—hyrI;OGa Un)

thus ngG =Yn—1+ hnF<hnatn717ynayn71 + hnG(hn,tnfla'Una ynfl))a and

Unp, =Yn-1+ hnF(hnatn—hunyyn—l)
y7€+G = (I)F+G(f,g,tn7tn_17 yn—l) — Un = Yn—-1 + hnG(hn;tn—lvvnayn—l))
yTI;"—i-G = Un + Vn — Yn—1

thuS nyrG = UYn—-1 + hn F(hnatnfla Umynq) + G(hnatnfl,vnvynfl)} .

We now prove theorems on the consistency, discrete stability and convergence of the composed
one step schemes. We surely expect the consecutive scheme to be of order 1 since it resembles
the Lie(-Trotter) splitting in our setup. However, our proofs emphasize the role of the one step
methods used in the composition. Furthermore, we show that also the new concurrent scheme
is of order 1.

For later reference, we state two families of initial value problems based on a solution y of the
initial value problem (2.1). For v € [0, 1], we define

W) = f(t,u®)) (W <t<T),

u) (WT) = y(vT), 219
and

0 =g(t,0") (T <t<T),
v (WT) = y(uT). (2.19)

These families of initial value problems can be seen as attaching to any point on the trajectory
y of the coupled system (2.1) trajectories of the separate models.

19

2 Abstract multiphysics setup and composed one step schemes

Theorem 2.11 (Consistency Theorem for the Consecutive Operator Splitting Scheme)

In the initial value problem (2.1), let f and g be continuous and satisfy a Lipschitz condition,
and let My := sup.cs zcqllgle,)| < oo. Let F' be a consistent one step method for (2.18)
and Lipschitz continuous with Lipschitz constant Lp. Moreover, let G be a one step method.
Then the consecutive operator splitting scheme ®F°C as defined in (2.16) is consistent for (2.1).
Moreover, if F is consistent of order one or higher, then ®°C is consistent of order one.

Proof. Since f and g are assumed to be continuous and to satisfy a Lipschitz condition, according
to Theorem 2.6 the initial value problems (2.1) and (2.19) have unique solutions y and v®*) for
all v € [0, 1], respectively. The truncation error of ®°¢ with respect to (2.1) is

TE 0 G) = 1 [ultn) = (ta1)] = Flhn,tus,y(ta), 0 (0)
= TvizL(F) + F(hmtn—lay(tn)a y(tn—l)) - F(hnvtn—h y(tn)7v(un_l)(tn)) >

where 7(F) is the truncation error of F' with respect to (2.18) for v = v,,_; :=t,,_1/T. Using

tn
W) = yltaa) + [o0 (s))ds,
t

n—1

due to the Lipschitz condition we have

17 (F 0)l < N7t (B + 1 F (st y () 9 (1)) = F (s b (), 0= (80)]
< (E) + Lelly(tn—1) — v ()]

tn
< [l (F)] +LF/ lg(s, 0= (s))] ds

tn—1

< NP || + hoLeM,, .

Since F is assumed to be consistent for (2.18), the consecutive operator splitting scheme ®°¢ is
consistent for (2.1), and even consistent of order one if F' is consistent of order one or higher. [J

Theorem 2.12 (Consistency Theorem for the Concurrent Operator Splitting Scheme)

In the initial value problem (2.1), let f and g be continuous and satisfy a global Lipschitz condition
with Lipschitz constants Ly and Ly, respectively. Moreover, let My := Sup ey ,eq |l f(€,2)|| < oo
and My = sup.cr ,cqllg(e,)|| < co. Let F' and G be consistent one step methods for (2.18) and
(2.19), respectively. Then the concurrent operator splitting scheme ®F+C as defined in (2.17)
is consistent for (2.1). Moreover, if both F and G are consistent of order one or higher, then
OF+C s consistent of order one.

Proof. Since f and g are assumed to be continuous and to satisfy a global Lipschitz condition,
according to Theorem 2.6 the initial value problems (2.1), (2.18) and (2.19) have unique solutions
y, u”) and v®) for all v € [0, 1], respectively. Using

tn
u(y”fl)(tn) — y(tnq) + f(s, u(”n—1)(8)) ds,

tnfl

tn
,U(l/n—l)(tn) =y(tn_1) +/ g(s,v(vn,l)(S)) ds,

tn—1

Y(tn) = y(ta_) + / " f(s.u(s)) + 9(s.u(s)) ds

20

2.4 Operator splitting methods and composed one step schemes

the truncation error of ®+¢ with respect to (2.1) is

T(F +G) = 3 [y(ta) — yltn)]

n

- F(hnvtn717u(l’"*l)(tn)’y(tnil)) - G(hnatnflv'U(Vnil)(tn)vy(tnfl))

- h [U(Vn_l)(t") - y(tn_l)} - F(hnvtn—lau(yn_l)(tn)vy(tn—l))

£ [ult) + 0ltacs) —u® (1) — o)

F(s,y(8)) = f(s,u=1(5)) + g(s,y(s5)) — 95,0071 (s)) ds,

where 7/'(F) and 7/*(G) are the truncation errors of F' and G with respect to (2.18) and (2.19)
for v = v,,_1 := t,—1/T, respectively. Due to the Lipschitz condition and owing to the Local
Stability Theorem 2.5 we have

s " Hs () = o) () + gl 9()) = g, 000 () |

tn—1

Lf tn tn
<[- %1um+—/ ly(s) — o) ds
tn—1

tn—1
L Ljh
< fe / / sup ||g(e :L')||deds+ / / sup || f(e, x)|| deds
_1 TEQ _, TEQ
< thneth"Mq + Lyhpets" My = O(hy,).

Thus we have |72 (F + G)|| < |[|[72(F)|| + ||72(G)|| + O(h,,). Since by assumption F is consistent
for (2.18) and G is consistent for (2.19), the concurrent operator splitting scheme ®*¢ is
consistent for (2.1), and even consistent of order one if both F' and G are consistent of order one
or higher. O

Theorem 2.13 (Discrete Stability Theorem for the Consecutive Operator Splitting Scheme)
Let F and G be Lipschitz continuous one step methods according to Definition 2.4 with Lip-
schitz constants Ly and Lg, respectively, and L = max{Lg,Lg}. Let y" = (Yn)o<n< N,
2h = (Yn)o<n< N, uh = (un)o<n<n and ol = (Un)o<n<n be grid functions. Then there exist
constants k, \, p and n such that for h < i

[yn — znll < exp (antn +ALpLg Zh?)> {Myo — 2ol + D> hall (L5 °Cy" — i)
i=1 i=1

Lo SRS Lfvmu},

=1

where, according to (2.7), LE is the difference operator of G, and LﬁOG is the difference operator
of ®F°C as defined in (2.16). Depending on whether F and G are explicit or implicit one step

21

2 Abstract multiphysics setup and composed one step schemes

methods, the constants k, A\, u and n are given in Table 2.1. In case if both F' and G are explicit
one step methods, the step size restriction can be omitted.

explicit G implicit
Fexplicit | k=1L A=1Lpu=1n=1 k=2 A=2,u=1,n=2
Fimplicit | k=4, A=2,u=2,n=1 k=8A=0,p=2,n=

Table 2.1: Values of the constants x, A and p in the Theorems 2.13 and 2.15.

Proof. This proof follows [84, p. 52]. Applying the difference operators L and L¥°¢ to the grid
functions yields

(LEuM), = i(un —Yn-1) — G(hp,tn—1,Un, Yn-1) , (2.21)
(Lfvh)n = %(vn —2zn-1) — G(hn, tn—1,Vn, 2n—1), (2.22)
(LECyh),, = i(yn = Yn—1) = F(hn,tn—1,Yn, un) , (2.23)
(LEO), = i(zn 1) = Py a1 2 tm) (2.24)

Case 1: F is an explicit one step method. Subtraction of (2.23) and (2.24) yields

lenll < llen—1ll + hnllF (hny tn 1, Yny wn) = F(hnstn—1, 20, va) || + hnllel, °

. (2.25)
<llen—1ll + hnLpllun — val| + hnHErIj GH)

where e, := y, — 2, and €£°¢ ;= (LﬁOGyh - L,IfOGzh)n.

Case la: G is also an explicit one step method. Then subtraction of (2.21) and (2.22) yields

”un - Un” S Hyn—l - Zn—l” + hn”G(hvutn—la unayn—l) - G(hnatn—hvnv Zn—l)” + hn”GS”
< llen—1ll + hnLallen—rll + hnlle || (2.26)

where €§ = (Lu — LEo"),,. Using (2.26) in (2.25) yields
lenll < [len—1ll + hnLp (1 + hnLc)llen—1ll + hn||€5°G|| + hiLFHESH :

Applying this formalism recursively we get

n—1 n n
lenll < lleoll + D his1 Le(1+ hipaLa)llesll + D hillef %Il + L Y b [l -
=0 =1 =1

The Discrete Gronwall Lemma yields

n n n
llen]] < exp <LFtn +LrLc Z@) {Ileol + > hillel €l + Lr thefll} ;
=1 i=1

=1

22

2.4 Operator splitting methods and composed one step schemes

which holds without restriction on the time step size h.

Case 1b: G is an implicit one step method. Then subtraction of (2.21) and (2.22) yields
||un - UnH < ”yn—l - Zn—l” + hn”G(hnatn—launa yn—l) - G(hnytn 1,Uny Zn— 1)” + h ||€GH

< llen-1ll+ huLa (lwn = vnll + llen-al) + halleF

and for h < 5

by,

n— vl < —2"Z e, [L — . 2.2
= vl £ T el + T e (227)
Using (2.27) in (2.25) yields
1+ h,Lqg FoQ h? L a
n < n— hnL 7 17 7 ltn— hn ° ———
el < el + hnLr 137 fen |+ Aol |€E°] + 122]
Applying this formalism recursively we get
n—1 n
1+ hz+1LG o h‘ LF
lenll < lleoll + thLF || ill +Zh llef>€| +Z || el

i=0
The Discrete Gronwall Lemma yields with ﬁ <2
G
n n n
llenll < exp <2LFtn +2LrLa) h?) {|€o|| +) hille Gl +2Lp Y h?lléﬂ} -
i=1 i=1 i=1
Case 2: F is an implicit one step method. Subtraction of (2.23) and (2.24) yields

||en|| é ||en71|| + hn”F(hnatnflvynvun) - F(hnatn 1,Zn7Un)|| + h ||€FOG||
roc (2.28)
< llen—ll + hnLr (lleall + lun = vall) + hnleF>C

Case 2a: G is an explicit method. Using (2.26) in (2.28) yields
llenll < llen—1ll + hnLF(Ilenll +llen—1ll + hnLallenll + hnllefH) + ha e °l.

With h < i and hg := 0 we get

(1= haLe)lleall < (4 huLp + B2LrLa)en] + hall S + B2L [
(hn + hn—l)LF =+ hiLFLG
1- hnflLF

== hp_1Lp)llen-ll + (1= hp—1Lp)llen—1]l

+ hllen Sl + b LelleS |,
and setting w := (1 — h, Lp)e,, results in

(hn + hn—l)LF + h%LFLG

1~ hp1Lr lwn—1ll + P ll€h %l + R LplleS ||
e

[wn || < flwn-al +

23

2 Abstract multiphysics setup and composed one step schemes

Applying this formalism recursively we get

n—1 n n
(hiy1 +h))Lp +h? LrLg o
[wnll < flwoll + Y ~— L hiL, = lwill + > hallef N + Le Y [l

The Discrete Gronwall Lemma yields

— (hit1+hi)Lp + h? LrLg = o -
el < - exp (Z o Jwoll+3° hellef >l +Le S A2 E ¢
i=1 i=1
hL
For 0 < h < i we have ﬁ < eT s and ﬁ < 2, therefore
hnLp = (his1 +hi)Lg + b3 LrLa
<
lenll < exp (1 - hnLF> P (z; 1— hilp
fateol+ Soner 1+ e 3|
i=1
<

exp <4Lptn +2LpLg Z hf) {2||eo|| + Z hillef°C|| + Ly Z h2||9|| } .

i=1 i=1

Case 2b: G is also an implicit method. Using (2.27) in (2.28) yields

1+ hyL hn .
||€n|| S ||€n—1|| + hnLF (”67;, + ﬁ”en—ln + ﬁ”é) + hnHEf GH .
With h < ﬁ and hg := 0 we get
1+ hpLg FoG hilr |
1— hoLp)llen <(1 oL 7) w1l Bl L
(1= haLelenl] < (14 hnLo 727) lenoall + hullefoC + 25— eS|

hn—1Lp + hyLpitheke
LS (1 — by 1 Lp)llen|

=1 =hp1Lp)llen—1l +

1-— hn—lLF
h2Lp
h. FoG n G
+ e + T el
and setting w := (1 — h, Lg)e,, results in
hn 1LF +h LF iJrZ éG hQLF
W< e G e h FoG n G
0l < Nt = LS | e+ e
Applying this formalism recursively we get
hilp + thF% gy Le
E Hwon+z el Y+)

The Discrete Gronwall Lemma yields

_ 14+hig1Lg n
1 hLFJth_lLFW o h2LF
||en|_1hLexp(Z e) ol eI s

=0

24

2.4 Operator splitting methods and composed one step schemes

hLp

1 1 TR 1 1 1+hLg
For 0 < h < 5; we have T S € Py Thie <2 Tohrg <2 and e <3 therefore

hpLp S hiLp + hz+1LF7iZ;£§
e —— X
1—h Ly | SP 1—h,Lp

=0

x {2”60 + > hillef %) +2Lp Zh?HEiGH}

i=1 =1

exp <8Lptn> {2||eo|| + ZhiHGfOGH +2Lp the?”} .

=1 i=1

IN
o
[}
e}

len

IN

Theorem 2.14 (Discrete Stability Theorem for the Concurrent Operator Splitting Scheme)
Let F and G be Lipschitz continuous one step methods according to Definition 2.4 with Lip-
schitz constants Ly and Lg, respectively, and L := max{Lp,Lg}. Let y" = (yn)o<n<n, 2" =
(Yn)o<n<N, UZ = (Uy.n)o<n<N, U = (Uzn)o<n<N, U{f = (Vy.n)o<n<n and v = (v, ,)o<n<n be
grid functions. Then there exist constants k, A\, u and n such that for h < i

9 — zull < exp (nLtn +AL2Y h%) {|3/0 ol + SRl Cy — LR |

i=1 i=1

+uLr Yy BEILyuy — Liul);| (2:29)
=1

Lo S RLE - LEvZ)jll} |

i=1

where, according to (2.7), Lf and Lf are the difference operators of F' and G, respectively, and
LS"'G is the difference operator of ®¥+C as defined in (2.17). Depending on whether F and G
are explicit or implicit one step methods, the constants k, A, p and n are given in Table 2.2. In
case if both F' and G are explicit one step methods, the step size restriction can be omitted.

‘ G explicit G implicit
Fexplicit | k=4A=2u=1n=1 k=5 A=3,u=1,n=2
F implicit | k=5, A=3,u=2,n=1 kK=6,A=4,u=2n=2

Table 2.2: Values of the constants k, A, u and 7 in the Theorems 2.14 and 2.16.

Proof. This proof follows [84, p. 52]. Applying the difference operatorsL?, Lf and Lf +¢ to the

25

2 Abstract multiphysics setup and composed one step schemes

grid functions we have

1
(Lgug};)n = hi(uy,n - yn—l) - F(hTHtTL—la Uy,nvyn—l)) (230)
1
(qu?)n = h—(uzn — Zn-1) — F(hn,tn_1, Uz n, Zn-1), (2.31)
1
(Lgvg)n = hi(vy,n - yn—l) - F(hnatn—lvvy,nayn—l>) (2-32)
1
(Lgvg)n = hi(vz,n - anl) - F(hnytnfhvz,na anl) ’ (233)
1
(L5+Gyh)n = hi(yn - ynfl) - F(hnvtnflauy,naynfl) - G(hnvtnfla 'Uy,nvynfl)v (234)
n
1
(LerGzh)n = hi(zn - anl) - F(hn»tnflauz,nv anl) - G(hnvtnfla Vz,ms anl) . (235)

Both F' and G are assumed to be Lipschitz continuous, therefore
HF(hna tn—h Uy n s yn—l) - F(hna tn—h Uz n,s Zn—l)

+ G(hnatnfhvy,n»ynfl) - G(hn»tnflavz,ny znfl)H
< (Lr 4 Le)llyn-1 = zn-1ll + Lrlluyn — wen|l + La|lvyn — vl
< 2L|len—1| + Lrllexll + Lellenll »

where e, 1= Y5, — 2, €l 1= Uy — Uz, and e} = vy, — U, ,. Subtraction of (2.34) and (2.35)

yields
leall < llen—1ll +2hn Lllen—1]| + hnLrllenll + hnLallepll + haller Y1l (2.36)

where £/ +C .= (LT +Cyh — LF+C 0,

Case 1: Both F' and G are explicit one step methods. Subtraction of (2.30) and (2.31), and
subtraction of (2.32) and (2.33) yield
lenll < (1 + hnL)llen—1ll + haller |l (2.37)
lenll < (1 + hnL)llen—1]l + halleg], (2.38)
where €] := (Lfull — Li'ul), and €5 := (L} vl — Lfv!),. Using (2.37) and (2.38) in (2.36) we
get
llenll < llen—tll + (4hnL + 213 L?)[len—1ll + hulleg *1 + hi Lpllen || + i Lelle | -

Applying this formalism recursively we get

n—1 n n n
lenll < lleoll + D (4hsa L+ 207 L2)llesl| + Y hallef G| + Le > hillef | + La Y b7l |-
=0 =1 =1 i=1

Using the Discrete Gronwall Lemma we infer

n—1 n n n
l[enll < exp (Z 4hiy1 L+ 2hf+1L2> {Ileol + > e+ Le Y bl |+ Lay h?llﬁ?ll}
i=1

1=0 =1 =1

. (4Ltn+szzhf){eon EY Rl 4 Lo ST B2 +LGZh?||e?||},
=1 =1 =1

i=1

26

2.4 Operator splitting methods and composed one step schemes

which holds without restriction on the time step size.

Case 2: Exactly one of the methods F' and G is implicit, and the other method is explicit. Since
the concurrent operator splitting scheme is symmetric with respect to F' and G, it is sufficient
to prove only the case if is F' explicit and G is implicit. Then subtraction of (2.32) and (2.33)
yields
G
lenll < llen—1ll + hnL(lex | + llen—1ll) + hnlle |-

With h < ﬁ and hg := 0 we get

1+h,L hn, e
. T 2.39
el < T henmall+ T e (239)
Using (2.37) and (2.39) in (2.36) we get
1+ h,L
leall < leamtll+ (3t Lt o L7 422 ewoal|+hall e €1 42 Ll |+ 1225 e
Applying this formalism recursively and using ﬁ < 2 we get
n—1 n n n
lenll < lleoll + Y~ (5has1 L+ 33 L) lesl + > hllef Gl + L Y hZ|lef | +2La Y b [l -
i=0 i=1 i=1 i=1
Using the Discrete Gronwall Lemma we infer
n—1 n n n
len|| < exp (Z Shit1L +3hi,, L) {Ileoll + Y hille G+ Le Y bl || +2Le Y h?llefl}
i=0 i=1 i=1 i=1
= exp <5Ltn +3L%) h?) {IeoH + 3 b€+ Le Yy Bl 4206) h?kf”} :
i=1 i=1 i=1 i=1

Case 3: Both F and G are implicit one step methods. Then subtraction of (2.30) and (2.31)
yields
lle | < llen—tll +AnL(lenll + len—1ll) + hnlley |l

With h < i and hg := 0 we get

et < L en-all + T2 e (2.40)
Using (2.40) and (2.39) in (2.36) we get
leall < eaal + (a4 2023 L Yo) 4 4+ 0L e 4 Pt
Applying this formalism recursively and using ﬁ < 2 we get
n—1 n n n
leall < lleoll -+ 32 (6her L+ 4k L)l + 3 hallef € + 2L " W2F) + 2L S R2eF)
=0 1=1 1=1 =1

27

2 Abstract multiphysics setup and composed one step schemes

Using the Discrete Gronwall Lemma we infer

n—1 n n n
el < exp (z il + 4h?+1L2> {ueo S e 4 2L SR 4 2L Zh?ef"ll}

=0 =1 1=1 =1

= exp <6Ltn +4L7 Zh2> {||€0|| + > hille N + 2L Y Bl || + 2L Zh?HGiG|} :

i=1 i=1 =1 =1

O

Theorem 2.15 (Convergence Theorem for the Consecutive Operator Splitting Scheme)

In the initial value problem (2.1), let f and g be continuous and satisfy a Lipschitz condition,
and let My = sup.cs zcqllg(e,)| < oo. Let F' and G be consistent and Lipschitz continuous
one step methods according to Definition 2.4 with Lipschitz constants Lr and Lg, respectively.
Let y be the solution of (2.1), and y" = (yn)o<n<n be the discrete solution computed by means
of the consecutive operator splitting scheme ®¥°C as defined in (2.16). Moreover, let v be the
solution of (2.19) with v = 0 and v" = (v,)o<n<n the approzimation computed by means of
G. If lyo — y(0)|| = 0 and ||jvg — v(0)|| — 0, then the consecutive operator splitting scheme is
convergent, and there exist constants K, A and p such that for sufficiently small h

[yn — y(tn)]| < exp (HLFtn +ALpLc Y h?)) {ullyo —y(O) + > hallC
=1

=1
+nLFZh%IITFI},

(2.41)

i=1
where TF+C = LfoGy and 7¢ = Lfv. Depending on whether F' and G are explicit or implicit
one step methods, the constants k, A\, i and n are given in Table 2.1.

Proof. We have LE°%yh = 0 and L{v" = 0. Theorem 2.13 holds by the assumptions, therefore
using 2" = y and u" = v directly yields (2.41). Also Thm. 2.11 holds by the assumptions,
therefore ®7°¢ is consistent and thus ||71°%|| — 0 (h — 0) for n = 1,..., N. Furthermore, since
G is itself assumed to be consistent, we have ||| — 0 (h — 0) for n = 1, ..., N. This completes
the proof of the convergence of ®°C. O

Theorem 2.16 (Convergence Theorem for the Concurrent Operator Splitting Scheme)

In the initial value problem (2.1), let f and g be continuous and satisfy a global Lipschitz condition
with Lipschitz constants Ly and L, respectively. Moreover, let My = sup.cr zcq || f(€,)] < oo
and My = sup.cr .cq l|l9(€,7)|| < 0o. Let F' and G be consistent and Lipschitz continuous one
step methods according to Definition 2.4 with Lipschitz constants Lp and Lq, respectively, and
L =max{Lp,Lg}. Lety be the solution of (2.1), and y" = (yn)o<n<n be the discrete solution
computed by means of the concurrent operator splitting scheme ®F'+TC as defined in (2.17). More-
over, let u be the solution of (2.18) with v =0 and u" = (u,)o<n<n the approzimation computed
by means of F', and v be the solution of (2.18) with v = 0 and v" = (v,)o<n<n the approzimation
computed by means of G. If |lyo — y(0)|| = 0, |jup — u(0)]] = 0 and ||vg — v(0)|| — 0, then the
concurrent operator splitting scheme is convergent, and there exist constants k, A, p and n such

28

2.4 Operator splitting methods and composed one step schemes

that for sufficiently small h

lyn — y(tn)|| < exp (@tn +AL? th) {Ilyo —y(O) + > halliH
=1

i=1

+ule S B2 (2.42)

i=1

n
+nla h§|7'iG||} ;
i=1
where TFTE = Lf*Gy, ™ = Ly and ¢ = Lfv. Depending on whether F' and G are explicit
or implicit one step methods, the constants k, \, u and n are given in Table 2.2.
Proof. We have L T¢y" = 0, LFu" = 0 and L§v" = 0. Theorem 2.14 holds by the assumptions,
therefore using 2" = v, uZ =l ul = u, vg = v" and v" = v directly yields (2.42). Also Theorem
2.12 holds by the assumptions, therefore ®7+¢ is consistent and thus |7/ +¢|| — 0 (h — 0) for
n = 1,...,N. Furthermore, since F' and G are themselves assumed to be consistent, we have

I7E| — 0(h — 0) and ||7¢|| — 0(h — 0) for n = 1,..., N. This completes the proof of the
convergence of ®F+C, O

Remarks:

e The definition of the composed one step schemes can easily be generalized to treat initial
value problems

k
y:Zfi<t7y)) y(o):yo

with any number k& > 1 of constituents. Given one step methods F1, ..., Fy, the consecutive
and the concurrent operator splitting schemes read

(DFlomOFk(fh "'7fk?atnatn—17y7l—1) = (I)Fl (,fl;tn;tn—h (I)Fk (fk’tnatn—lvyn—l)'“))

k
(I)F1+W+Fk(f17 ---7fk7tnatn—17yn—1) = Zq)Fi(fi;thtn—lvyn—l) - (k - l)yn—l :
i=1

Also our theorems on consistency, discrete stability and convergence of the composed one
step methods generalize accordingly. Additional summands appear in the proofs of Theo-
rems 2.11 and 2.12, and in the estimates (2.20), (2.29), (2.41) and (2.42). For the consecu-
tive operator splitting scheme, higher order terms up to k¥ appear, while for the concurrent
operator splitting all additional terms are of order 2. Nevertheless, the statements of the
theorems hold unchanged.

o As already mentioned in the beginning of this chapter, also systems of the form
@ f(t,z,y))
D) = 2.43
((]) (9(t, z,y) (2.43)

can be treated with our composed one step schemes. Let one step methods F for f, G for
¢ and corresponding numerical flows ®, ®% be given. We define

f(t,,y) = (f(t,(:)my)) o gtz y) = (g(tv(;?,y))

29

2 Abstract multiphysics setup and composed one step schemes

and numerical flows

~ Q)F tot Ty B
F(fatnvtn—hxn_l,yn_l) = < (f’ L ”y 1 X n—1,Yn 1) > ’
n—

*G /A _ Tn—1
¢ (g7tnatn—1axn—17yn—1) - ((I)G(g;tn;tn—laxn—hyn—l)) .

The consecutive operator splitting scheme then reads

X x Fo N
(.) :(I)F G(f,g’tn,tn_l,l'n—l,yn—l)
Yn

=3 f tnytn—1, Tn— 1a(i)G(gatnatn—hl'n—lvyn—l)) (244)
(I)F f?t’ﬂ?t’ﬂ 1, Tn— 17¢G(g7tn7tnfl7xn717ynfl))
G(gatnatnflawnflaynfl) ’

and the concurrent operator splitting scheme reads

m ~
(" > (I)F+G(f na n 1, Tn—1)Yn— 1)
Yn

. a Ty
(I)F(fatnatn—lvxn—layn—l)+(I)G(gatnatn—17xn—1vyn—l)< y ! > (2'45)

n—1

— (DF(fatnatn—hxn—lvyn—l)
(I)G(g7tnatn—1axn—1,yn—l) ’

Theorems 2.12-2.16 hold unchanged for (2.43). Only in Theorem 2.11 an assumption needs

to be added that, in addition to the method F, also G must be consistent and Lipschitz
continuous.

e We did not investigate if higher order composed one step methods are possible since we are
using a first order scheme for the biogeochemical model in the nutrient cycle simulations.
Although we did not investigate if our proof technique can be generalized, we nevertheless
assume that higher order consecutive schemes may exist, since one can resemble the classical
exponential operator splitting methods in our abstract setup. In contrast, our proof of first
order consistency for the concurrent variant uses the Local Stability Theorem in a way
which does not allow to derive higher order schemes. Therefore, even if higher order
concurrent variants exist, one would need to investigate other proof techniques.

Appendix
Theorem 2.17 (Discrete Gronwall Lemma [84, p. 46f.])
Let (wn)n>0, (an)n>0 and (by)n>0 be sequences of non-negative real numbers with wy < by and

n—1

wy, < Zaiwi—i—bn (n>1).
i=0

If the sequence (by)n>0 is monotonically increasing, then

n—1

wy, < exp (Zai)bn (n>1)

i=0
holds.

30

2.4 Operator splitting methods and composed one step schemes

Theorem 2.18 (Implicit Function Theorem [41, p. 292],[77, p. 128])
Let G C RP and H C RY be non-empty open sets, and the function F' : GXxH — R continuously
differentiable. Furthermore, let £ € G and n € H be points with

F,n) =0 and (&,m) invertible.

or
dy
Then there exists a neighborhood U C G of & and a neighborhood V. C H of n and exactly one
continuous function f : U — V with

f(&)=n and F(z, f(z))=0 VaelU.

Moreover, for any fized x € U is f(x) the only solution of F(x,y) = 0 which lies in V.

Theorem 2.19 (Convergence Theorem for the Newton iteration, following theorems 10.2.1 and
10.2.2 in [77, p. 310ff.])

Let f : D C R" — R” be differentiable in an open neighborhood Dy C D of some point
x* € int(D) with f(x*) = 0. Let Vf be continuous at x* and the Jacobian V f(x*) be non-
singular. Then there exists an open neighborhood S C Dy of x* such that the Newton iteration

oS S Vf(xk)*lf(ggk) , k=0,1,... (2.46)

is applicable with any initial vector x° € S and the iterate ¥ converges super-linearly towards
x*. Moreover, if f is continuously differentiable on S and the second derivative of f exists at x*
and satisfies

Vif(z*)(z,x) A0 Y€ S,z #0,
then the convergence is even quadratic.

In practice, the Newton iteration (2.46) is endowed with some stopping criterion. Widely used
stopping criteria are based on prescribed tolerances for the residual norm or a maximum number
of iterations. The following algorithm states the Newton iteration as we used it in this work.

Algorithm 1 Newton iteration

. Set initial vector 20, tolerance € > 0, kmax > 0, and k = 0.
while || f(2")|| > € and k < kpyay do

Solve V f(z*)ck = — f(2*) for & € R™.

Set zFtl =2k 4 ¢F, and k «+ k + 1.
end while

31

3 Numerical experiments on the
convergence of the composed one step
schemes

In this chapter we present numerical experiments on the convergence of the composed one step
schemes which we presented in the previous Chapter 2. Our experiments are based on a natural
convection fluid flow scenario. This scenario comprises an incompressible fluid flow model using
the Boussinesq approximation to account for buoyancy, and a temperature evolution model. We
use a second order monolithic solver to compute a reference solution which we compare with
results obtained from the first order composed one step schemes. In the first section of this
chapter, we outline the natural convection scenario in terms of the underlying modeling and
discretization. The second section is dedicated to the numerical experiments on the convergence
of the consecutive and the concurrent operator splitting schemes using the monolithic scheme as
a reference.

3.1 Natural convection scenario

Our natural convection scenario is situated in some bounded domain C R?, where R? represents
the physical space of dimension d = 2 or d = 3. We consider a time interval (0,7") with initial
time t = 0 and final time ¢t = T > 0 for evolution of the scenario. For the derivation of the
model, we first recall the definition of a material volume and the Reynolds Transport Theorem.

Definition 3.1 (Material Volume)
The material volume V(t) C Q of a set of fluid particles is the volume which is occupied by the
particles at time t € (0,T).

Theorem 3.1 (Reynolds Transport Theorem [7])
Let V(t) € Q,t € (0,T) be a material volume. Then for any scalar differentiable function
¢:Qx(0,T) = R holds

i/ (bda::/ 06+ V - (éwdr in (0,T), (3.1)
dt Jy () V()
where u is the velocity field of the fluid.

3.1.1 Continuity equation

The total mass m of the fluid particles building a material volume V'(¢) is
m= / pdz
v(t)

33

3 Numerical experiments on the convergence of the composed one step schemes

where p denotes the density of the fluid. Since the mass of this material volume does not change
over time we have according to Thm. 3.1

d d

0=—m=— pdx:/ Op+ V- (pu)dx.

Since the material volume was chosen arbitrary, this leads to the continuity equation
Op+V-(pu)=0 in Qx(0,7), (3.2)

which expresses the physical principle of conservation of mass.

3.1.2 Cauchy equation of motion

According to the second Newton axiom, the temporal variation of the momentum I is equal to
the resultant force F', i.e. dI/dt = F. The momentum of a material volume is

1= / pudz
V(t)

and the resultant force F' = FV 4+ F* is the sum of a volumetric and a surface force. The

volumetric force
FY = / pf?dx
V(t)

acts on the fluid particles in V(¢) and is proportional to the mass, where f* denotes the accel-
eration acting on the particles. The surface force

F = / £ ds
AV (t)

acts on the boundary 9V () and is proportional to the surface area, where f* denotes the force
per unit area acting on the surface. Using Thm. 3.1 we can write component wise

Oc(pus) + V - (puu) :/ pf? dx—i—/ fids (i=1,..,d),
V(1) oV (t)

V()

where d = 2 or d = 3 is the dimension of the physical space. It has been proved that there exists
a second order tensor T, the stress tensor, such that

fS:n'T7

where n denotes the outer unit normal field on 9V (t) [7]. By means of the Gauss Theorem [41]

it follows
T1)
/ fsdsf/ aj (i=1,..,d).
OV t)j 1 al‘]

Since the material volume was chosen arbitrary, this leads to the Cauchy equation of motion

d
Ty . .
On(pui) + V- (puu) = pff + 3 =L in Qx (0,T) (i=1,...d), (3.3)
= 81‘]‘

which expresses the momentum balance of a continuum under the influence of volumetric and
surface forces.

34

3.1 Natural convection scenario

3.1.3 Constitutive equations

The constitutive equations define the relation of the stresses in the continuum and the deforma-
tion or the rate of deformation. A fluid is characterized by the property that it can be arbitrarily
deformed by shearing forces. The shearing force necessary to cause a deformation tends to zero
whenever the rate of deformation tends to zero. This property born from the viscosity defines
a fluid [99]. Due to the conservation of angular momentum in the fluid the stress tensor S can
be assumed to be symmetric [7]. Polar fluids, where the angular momentum is not conserved in
general, are not considered in this work.

A stress is called hydrostatic if on any surface element it acts in normal direction and is inde-
pendent of the orientation. A hydrostatic stress has the form

Sij = —péij (Z7j = 17...,d),
where d;; denotes the Kronecker symbol. In general the stress can be written
Sij = 7p51'j + Pij (Za] = 13 (X3} d) (34)

with a second order tensor P, the viscous stress tensor. To derive constitutive equations for a
non-elastic fluid, assumptions with respect to the stress tensor are made. A Stokesian fluid is
characterized by the following assumptions:

1. The stress tensor S is a continuous function of the deformation tensor e = %(Vu +Vu')
and of the thermodynamic state, but independent of other kinematic quantities.

2. The fluid is homogeneous, i.e. S does not explicitly depend on =z.
3. The fluid is isotropic.
4. The stress is hydrostatic if there is no deformation, i.e. S;; = —pd;; for e = 0.

The stress tensor of a Stokesian fluid has the form

d
Sij = 7])57] +Oé($ij +/867;j +’}/Zeik€k]‘ (Z,] = 1,...,d)7
k=1
where «, # and - are functions of the invariants of the deformation tensor. A Newtonian fluid is
defined as a linear Stokesian fluid, i.e. the viscous stress tensor is a linear function of e. Therefore
B is a constant, and v = 0. The only linear invariant of the deformation tensor e is its trace
V - u. Due to the fourth assumption of a Stokesian fluid, o must be a linear function of V - u.
Thus P has the form

P =XV -u)d;; +2pe;; (4,7 =1,...,d) (3.5)

with constants A\, u € R, where p is called the dynamic viscosity.

3.1.4 Boussinesq approximation

The Boussinesq approximation assumes the fluid to be incompressible, yet incorporating buoy-
ancy effects. Due to the incompressibility assumption, the continuity equation (3.2) reduces
to

V-u=0

and the Cauchy equation of motion (3.3) becomes

plou+ (u-Viu| = pf+ Vp+ pAu. (3.6)

35

3 Numerical experiments on the convergence of the composed one step schemes

As volumetric force we have pf’ = —pgey with the gravitational acceleration g and upward
vertical unit vector e4. Introducing a hydrostatic ground state with density pg, pressure pg, and
temperature 6y which only depend on the vertical coordinate and which fulfill

0 _

Oy gpo
and the ideal gas law

po = Rpobo ,

we write the actual quantities as p = pg+ p, p = po + p and 0 = 6y + é, where the hat symbol
denotes the deviation from the ground state. Therefore, (3.6) reads

00 (1 + %) [&u + (u- V)u} — pAu = —pggeyg — pgeq — Vpg — Vp = —pgeq — Vp.

Assuming furthermore that the variations of density, pressure and temperature are small com-
pared to the ground states, the momentum equation simplifies to

1
du+ (u-V)u—vAu+ —Vp = fﬁged,
Po Po

where v = u/pp is the kinematic viscosity. This equation is known as the Boussinesq approxi-
mation of the equation of motion with the buoyancy term p/pogeq [28, p. 184]. From the ideal
gas law the simplification —p/pg = /6y can be derived [28, p. 184 ff.]. This leads to the form

1 0
du+ (u-Viu—vAu+ —Vp= —gey. (3.7)
Po 0o

3.1.5 Heat equation

We use the heat equation to model the evolution of the temperature 6 of the fluid. Following
[18], the conservation of heat energy derived from the first law of thermodynamics leads to

df
—_—— . k 0 =
e V- (kVO) =0,

where ¢ denotes the specific heat capacity and k the thermal conductivity of the medium. Using
Thm. 3.1 the heat equation reads

pc|lOf+V - (6u)| —V-(kVO) =0 in Qx(0,T). (3.8)

3.1.6 Natural convection model

We use a two-dimensional natural convection model for our numerical experiments. It is com-
posed of the continuity equation (3.2), the Boussinesq approximation of the momentum equation
(3.7), and the heat equation (3.8). We defined the ground states as pg = 1kg/m?, py = 0kg/ms?
and 0y = 273.15K. Assuming the fluid being incompressible, the continuity equation (3.2) re-
duces to V- u = 0. Using this, and an isotropic thermal conductivity k = const, the heat
equation (3.8) simplifies to

3t9+(u-V)07aA9:0,

where a = k/pc denotes the thermal diffusivity.

36

3.1 Natural convection scenario

Summing up, the natural convection model reads

Ou+ (u-V)u—vAu— %Vﬁ - e%ged =0 in Qx(0,7), (3.92)
V-u=0 in Qx(0,7), (3.9b)

O+ (u-V)d—aAd=0 in Qx(0,T), (3.9¢)

u(0)=0 in Q, (3.9d)

—aAf(0)=0 in Q. (3.9¢)

u=0 on 09, (3.9f)

0 =0hot on Ihot, (3.9g)

0 =0cola on Icou, (3.9h)

VO-n=0 on Iy, (3.91)

where Q = (0,1) x (0,1) is the domain with boundary 9Q = Thot U T'eola U 'y, and (0,7)
with T = 30 is the time interval. We use the Dirichlet-type boundary conditions (3.9g) and
(3.9h) to model a heated wall I',ot = {0} x [0, 1] and a cooled wall I'coig = {1} x [0,1]. On the
remaining boundary part I'v = (0, 1) x {0} U(0, 1) x {1} we use the homogeneous Neumann-type
boundary condition (3.91) to model thermally insulated walls. For the velocity, we impose the
no-slip condition (3.9f) on the whole boundary. In the initial state, we assume the fluid to be
at rest by means of the initial condition (3.9d), and an equilibrium temperature state (3.9e).
As parameters, we used the kinematic viscosity v = 1.57 x 107°m? /s, the thermal diffusivity
a = 1.9 x 107°m? /s, the gravitational acceleration g = 9.81m/s?, the heated wall temperature
Onot = 283.15 K, and the cooled wall temperature 0.,q = 0y = 273.15 K. These parameters are
realistic for an air flow scenario. The Rayleigh number is

Ra = 9ot —00) 0.
vaby

Theory on existence and uniqueness of strong and weak solutions of the Navier-Stokes equations
can be found e.g. in [102] and [98].

3.1.7 Spatial discretization

We use a conforming Lagrange finite element Galerkin method for the spatial discretization of
the natural convection model (3.9). The domain € is covered by a grid €2, of quadrilateral cells.
For the velocity and pressure variable we use inf-sup-stable Q2 /@1 Taylor-Hood elements, and for
the temperature we use () elements [27]. Denoting the trial and test functions for the velocity
variable by ¢, for the pressure variable by ¢, and for the temperature variable by ¢, the finite
element ansatzes read

wn(e0) = 3 wlt)eo),

for the discrete velocity field u, where the ¢; form a nodal basis of the ()5 finite element space
U, = {CP € QQ(Qh), @ =0o0n 39} C H&(Q), and

pr(z,t) = ipi(t)%(l‘)

37

3 Numerical experiments on the convergence of the composed one step schemes

for the discrete pressure field p, where the 1; form a nodal basis of the @), finite element space
P, = {’(/) S Ql(Qh)} C LQ(Q), and

O t) = 3 0,(H)6i()
i=1

for the discrete temperature field 8, where the ¢; form a nodal basis of the Q)5 finite element
space T, = {¢ € Q2(Q), ¢ = 0 on I'yoy UTcoa} € HY(Q). For t € (0,T), the time-dependent
coefficients can be written in vector form as

.

u(t) = (W (t), o un, (1) €R™,
T

p(t) = (1) P, (1) € R,
T

o(t) = (Gl(t), s O, (t)) e R™ .

Using above ansatz, the following variational form results from the natural convection model:

Zﬂi(%,ﬂpk) + Z uiu;((@i - V)ej, @)
i=1

i,j=1
Ny 1 Np
+v > ui(Vei, Vi) — p > PV o) (3.10a)
=1 i=1

—%Zei(@ed,w)zo i (0,7) (k=1,..,n4),
=1

S uwi(Veogi k) =0 in (0,7) (k=1,..,np), (3.10b)
=1
ne . ng
D 0:(disdn) + Y 0il(an - V)i, d)
=t - (3.10¢)
+ay 0:(Vei, Vor) =0 in (0,T) (k=1,..,ng),
=1
up(0)=0 (k=1,...n4), (3.10d)
pr(0)=0 (k=1,...,np), (3.10e)
0r(0) = bhot if node k lies on T'hes (3.10f)
0 (0) = Oco1a if node k lies on I'eola (3.10g)
a 0;(0)(Vei, Vér) =0 if node k lies in QUTx . (3.10h)
=1

Here, the boundary conditions (3.9f)-(3.91), which are incorporated in the finite element spaces,
have been treated in the usual way as indicated e.g. in [27] or [9] and are thus implicitly
included in the variational form. Equation (3.10) represents an initial value problem for the
time-dependent coefficient vectors u, p and 6. Although not present in the continuous model
(3.9), where the pressure has the role of a Lagrange multiplier for the velocity, we artificially
introduced the initial condition (3.10e) on the pressure to avoid ambiguity. The methodology

38

3.2 Numerical experiments

of discretizing a partial differential equation with respect to space and obtaining an ordinary
differential equation in time, which is subsequently treated by means of an integrator, is called
the method of lines [94]. We introduce the following short notation to represent Eq. (3.10):

Migli+ Nl p.gl(u,) + villglu = Blonglp— -Cloglo =0 i (0.1), (3.11a)
Dip,jlu=0 in (0,T), (3.11b)
M[8]0+ Np, ¢, ¢)(u,0) + €A[g]0 =0 in (0,7), (3.1lc)
u(0) =0, (3.11d)
p(0) =0, (3.11e)
A[]6(0) =4, (3.11f)
where
),ﬂ (pisor) (N[cpsoso) szyg wi-V)pj, o) for x,yecR™,
4,j=1
Mlgl) = @no) . (Neodl@y) =d D aws((ei Vo én) for aeR™yeR™,

=1 j=1

(1

(v19)) .=

(Aiwl), = (Vor, Vo) ., (4l]) = (Ver Vo),
(

(

BWJ»‘P])]“ = (Vﬂ’u‘Pk)) (C[¢’¢})kz = (¢ied7(pk)) (D[CPJ/J})I“ = (V<Pu¢k)»
Ohot if node k lies on I'y,
~ Or; if node k lies on I'pot U Teola ~ hot 1 noce .1e5 O L hot
A[¢]) = , Ok =< 0coiq if node k lies on T'¢oiq
ki (Vor, Vo) else 0 el
else

In order to apply the operator splitting schemes proposed in Section 2, we use the form

(1,0)" = F(u,p,0) + G(u,0) in (0,T), (3.12a)
(u,0)"(0) = (0,60) ", (3.12b)
where
Fluup, Nlp..@l(u,w) + vAlglu — LBl elp — §:Clo.)6 + Dl v]u)) |
0

0
(Mg (N, 6, 6](u, 0) + aA[0]0)) ’

0o = Aj#] 4.

Clearly, F represents the Boussinesq fluid model, whereas G represents the temperature evolution
model.

3.2 Numerical experiments

Our goal is to study the impact of the operator splitting approaches from Section 2.4.1 on the
quality of the solution of the natural convection scenario. To this end, we conduct numerical

39

3 Numerical experiments on the convergence of the composed one step schemes

experiments where we use the operator splitting schemes with different time step sizes, and
compare to a reference solution. We define three test series which differ in the time stepping
scheme as follows:

1. Monolithic test series: (3.12) is integrated as a fully coupled system using the Crank-
Nicolson time stepping scheme as stated in Alg. 2

Algorithm 2 Monolithic solution scheme for (3.12) using the Crank-Nicolson integrator.

1: Set initial solution (u%,6°)T = (0,6,) "
2: forn=1,2,... do

A
Solve (un,en)T _ (un—179n—1)T + 775 [f(u717p7 9”) + g(un7 en)

+‘F(un717p’ onfl) +g(u"71,0”*1) .
4: end for

2. Consecutive operator splitting test series: (3.12) is integrated using the consecutive
operator splitting scheme as stated in Alg. 3, where the Crank-Nicolson method is used
separately for the fluid and the temperature model.

Algorithm 3 Consecutive operator splitting scheme for (3.12) using the Crank-Nicolson inte-
grator.

1: Set initial solution (u®,6°)T = (0,6p) "

2: forn=1,2,... do

3 Solve (@, 0)T = (1, 0m)T + 4 [F(an,p,07) + F(un L p,0m)]

Solve (u™,0™)7T = (a",0™)7T + [g(u, ") +gan 9”)}

5: end for

Lo

3. Concurrent operator splitting test series: (3.12) is integrated using the concurrent
operator splitting scheme as stated in Alg. 4, where the Crank-Nicolson method is used
separately for the fluid and the temperature model.

Algorithm 4 Concurrent operator splitting scheme for (3.12) using the Crank-Nicolson integra-
tor.

1: Set initial solution (u®,8°)T = (0,6p) "

2: forn=1,2,... do

3 Solve (@",6") = (w10)T + 4 []:(ﬂ”,p, o) + F(un=t,p, 9”*1)} :
£ Solve (@, 0")T = (L 0m)T 4 4 [g(an,07) + G(un 1, 0m)]

5: Set (u™,0™)" = (a", én)T + (@, én)'l' — (w1, 0m)T

6: end for

We use the same spatial finite element discretization according to Sec. 3.1.7 in all test configu-
rations. The rectangular computational grid €2;, comprises 256 x 256 cells. We use inf-sup-stable
Q2/@Q1 Taylor-Hood elements for the velocity and pressure, and @2 elements for the temperature,

40

3.2 Numerical experiments

which results in 855,556 spatial degrees of

freedom. In every test series, we com- .
pute solutions with varying time step sizes ’
At = %,%,...,6—14. We take the solu-
tion computed with the monolithic scheme
with the time step size At = ﬁlg as

the reference solution for comparison. For
each test case out of the three test se-
ries, we compute the KEuclidean error norm

[| (2, 0)xo — (1,) mono|

with respect to the reference solution at each Fo-—oT7 L m- A=L2 Ar=1/16]
. . . | . v . nte
time step. Our expectation is to observe 7 e At=1/a Af=1/52
R : —- i At=1/8 - At=1/64
the second order convergence of the Crank- 2k - = = = = -

Nicolson scheme for the monolithic test se- t

ries, and to observe the first order con-
vergence of the consecutive and concurrent
operator splitting schemes as we proved in
Section 2.4.1 for the two other test se-
ries.

Figure 3.1: Error ||(¢,@)ret — (4, 0)monol|| be-
tween the reference and the so-
lution computed by means of the
monolithic scheme using Alg. 2.

The results from the first test series using the monolithic integration scheme are plotted in Fig.
3.1. They show the convergence of the solution (u,8)meno With successively smaller time step
sizes At = %, i, s é towards the reference solution (u,). Note that the reference solution
was also computed using this monolithic scheme with the time step size At = ﬁ. As stated
above, we expect second order convergence for the monolithic test series. Though, for At > 1—16
our results do not meet this expectation. Although the time step size is successively decreased
by a factor 2 using At = %, %, %, %, the error decreases less than the expected factor 22 = 4.
While the deviation from the expectation is only small for short integration times up to t ~ 7, it
is certainly significant for larger integration times when using time step sizes At > % We also

observe a considerable increase of the error at ¢ ~ 7 for all time step sizes. Nevertheless, when

I| (24, 8) vt — (24, 8) s |

—- At=1/27 - At=1/16 —- At=1/20 - At=1/16|
24 e At=1/4 == At=1/32 24 el At=1/40 == At=1/32]
-- At=1/8 - At=1/64 -- At=1/8 - At=1/64

[5 10 15 20 25 30 [5 10 15 20 25 30

Figure 3.2: Error ||(u,0)ref — (4,0)cs0s|| be- Figure 3.3: Error ||(u,0)ret — (U, 0)ccos|| be-

tween the reference and the so- tween the reference and the so-
lution computed by means of lution computed by means of
the consecutive operator splitting the concurrent operator splitting
scheme using Alg. 3. scheme using Alg. 4.

41

3 Numerical experiments on the convergence of the composed one step schemes

5,00

E3,75

22,50

E 25
0,00

g) t=10 | J | () t=20

Figure 3.4: Reference temperature distribution (color) and flow velocity (arrows) at selected time
steps. Note that the first vortices form up in the corners of the domain at t =~ 7. The
vortices subsequently travel counterclockwise, and eventually cover large parts of the
domain.

further decreasing the time step size to At = %, 6—14 the expected second order convergence is

actually achieved.

Figures 3.2 and 3.3 show the results from the consecutive and concurrent operator splitting test
series, respectively. They both show very accurately the expected first order convergence for
small integration times up to t ~ 7. For larger integration times, the first order convergence is

only maintained when using the smallest time step sizes At = 3—12, 6%1. However, the concurrent

42

3.2 Numerical experiments

t=28
Y 00013 00112 00519
o 5 | |
g ; I d
= i i i
= 00007 00056 00260
= I Ik '
=
| 0,0000 0,0000 0,0000
o
[}
—
—
>
3
=
— 0,0431 0.0948 01838
Z I I d
Q
8 E E L
— I L F
-~ 00216 -0,0474 00919
= I | '
S~—
| 0.0000 0,0000 0,0000
.
)
—
—
B
3
S~—
[0,051 8 [0,1 008 [0,2277
00259 70,0504 10,1139
[o,oooo [o,oooo [o,oooo

||(u, O)ret — (u, 9)CCOS||

Figure 3.5: Error norm at times ¢ = 6 (left column), ¢ = 7 (middle column) and ¢ = 8 (right
column) between the reference u,of and the monolithic solution (top row), the consec-
utive OS solution (middle row) and the concurrent OS solution (bottom row) using
At = 1/16. Note that the color bars reflect the observed error increase around ¢ = 7.

operator splitting scheme does not maintain the first order convergence for integration times
larger than t ~ 20. As in the first test series, we also observe a noticeable error increase at t ~ 7
in these two test series.

In all three test series we observe that the expected order of convergence of the time stepping
schemes is achieved accurately, or with only small deviations, for integration times up to ¢t ~ 7.
Furthermore, all three test series show a remarkable error increase at t =~ 7. The reason for that
lies in the behavior of the natural convection scenario. As can be seen from the visualization
of the reference solution in Fig. 3.4, a global clockwise flow evolves from the initial equilibrium
temperature distribution. At t &~ 7 the first vortices form up in the corners of the domain. The
vortices start to travel counterclockwise along the boundary, and eventually cover large parts
of the domain. The visualizations of the error between the reference solution and the solutions
from the three test series in Fig. 3.5 show the error growth around ¢ ~ 7, and they show that
the main error contributions appear in the corners. It is this change of the flow regime which
is reflected in the error curves in Figures 3.1-3.3. Obviously, the initial flow regime allows for

43

3 Numerical experiments on the convergence of the composed one step schemes

larger time step sizes At > % in all three test series, whereas the flow regime dominated by
vortices requires smaller time step sizes At < 3—12 Interestingly, among all three test series, the
flow regime change causes the most drastic error deterioration for the second order monolithic
integrator. As stated above, the first order operator splitting schemes also exhibit a remarkable
error increase, but less drastic than the monolithic scheme. In the initial flow regime, the mono-
lithic scheme is significantly more accurate than the operator splitting schemes. However, in the
vortex-dominated flow regime the consecutive operator splitting yields an accuracy of the same
order of magnitude as the monolithic scheme for At < i, and the concurrent operator splitting
yields only slightly less accurate solutions.

We conclude from the results of our experiments that both the consecutive and the concurrent
operator splitting scheme can yield accurate results for the time integration of the natural convec-
tion scenario. Since the operator splitting schemes investigated in this work are of first order as
proved in Section 2.4.1, one cannot expect to achieve the same accuracy as higher order schemes
for non-stiff problems. Indeed, the second order monolithic scheme shows better accuracy than
the splitting schemes in the initial flow regime. Nevertheless, we indeed observed the expected
first order convergence of the splitting schemes in the numerical experiments. However, the
monolithic scheme for the fully coupled natural convection model showed its expected second or-
der convergence only for the smallest time step sizes At < 3—12 In contrast, the splitting schemes
showed their expected first order convergence very accurately already for the larger time step
sizes At < % In the vortex-dominated flow regime, the operator splitting schemes performed
similarly well as the monolithic scheme with respect to the achieved accuracy, although the split-
ting schemes are of lower order than the monolithic scheme. This is due to the stiffness of the
ODE system induced by the flow regime change, which imposes stronger restrictions on the time
step size. It turns out that the second order monolithic scheme suffers drastically from the flow
regime change in the sense of a largely increased error. This error increase is much smaller, yet
still noticeable, for the first order splitting schemes. All three schemes end up with a comparable
accuracy for all but the smallest time step sizes. Remarkably, only for the smallest time step
size At = é is the monolithic scheme significantly more accurate than the concurrent operator
splitting scheme, and equally accurate as the consecutive scheme.

44

4 Dynamic parallel communication
mechanism in OpenPALM

As indicated in the introduction, we employ the OpenPALM [57, 80, 13] software coupler tool to
realize the model coupling. Based on our work [109], in this chapter we recapitulate the develop-
ment of the new features for advanced dynamic parallel communication routines in OpenPALM,
which we use in the nutrient cycle simulations. OpenPALM is a coupler with advanced features
like dynamic and concurrent execution models, the ability to couple parallel codes, and a flexible
communication scheme. It is a general purpose coupling tool, although its main focus lies on
scientific computing and numerical simulation. The fundamental concept of OpenPALM is to
consider applications as a composition of models which can be coupled by means of a data trans-
fer mechanism. One may in principal regard anything which can be implemented and executed
as a computer program as a model in terms of OpenPALM. Models may represent a vast variety
of computational tasks. Typical examples include reading or writing files, performing algebraic
operations, solving systems of equations, up to large applications such as complete climate codes
or ocean models. In our case, we regard biogeochemical and hydrological models as the building
blocks to be coupled for nutrient cycle simulations. OpenPALM’s goal is to easily enable the
coupling of new and of existing models and codes, even if they were not meant to be coupled
in the first place. Each model may be implemented individually. This offers the possibility to
develop specialized solvers for the coupled models or to reuse existing codes with only minimal
modifications. However, as we outlined in Sec. 1.1.3, OpenPALM’s communication features are
restricted to the case where data sizes and data distributions among the models are known a
priori. In this chapter, we present the basic terms and concepts of the legacy OpenPALM version
4.1.4, and our developments towards the new dynamic features available in the current version

4.2.3 as open source!.

OpenPALM consists of three main components: a graphical user interface named PrePALM, the
driver and the library. The user can compose a coupled application in a pre-processing step with
the help of the PrePALM graphical user interface (GUI). Its main feature is a canvas where the
user can describe the coupling algorithm in a graphical form. This is done by defining execution
paths, named branches in OpenPALM, scheduling the models by arranging them on the branches,
and by connecting the models to indicate data transfer. Figure 4.1 shows an example of two
independent execution branches, with one model scheduled to each of them.

OpenPALM allows dynamic control flows in the coupling algorithm. This includes the conditional
execution of models where it is not known a priori if and when conditions are fulfilled, repeated
execution of models in loops where it is not known a priori if and how often the loop will be
executed, or execution switches with multiple alternative paths. Complex control flows can be
defined using an arbitrary number of branches.

OpenPALM features two levels of parallelism. On the one hand, models can run concurrently
on separate sets of processors when they are scheduled to separate execution branches. On the
other hand, OpenPALM is able to couple models which are internally parallelized supporting
both shared and distributed memory parallel models, which may internally use message passing,

Thttp://www.cerfacs.fr/globc/PALM_ WEB /user.html retrieved on June 13, 2017

47

4 Dynamic parallel communication mechanism in OpenPALM

‘m Prepalm - coupling.ppl =1 eI
Flle Seftings Constants Step-actions Dale conversion Analyse run Uliiities Help
EI@E‘E“&I&I aa View: i Communications v Branches
@ Branches Steps
© Communications Spaces
 units Texts = = o
 Objects Distributors Ca nemnch R LR

" Sub-object descriptor (Localisations

Insert ‘ ‘ Filter ‘

no| name | color | stat | [+
1 CMF branch #0000ft IP_START_ON
2 LDNDC_branch#001f00 IP_START_ON

coos0
unil_cmf
CMF Hydrology Model
Q

Figure 4.1: The canvas of the PrePALM graphical user interface. The coupling algorithm in this
example has two independent execution branches, depicted as the blue and green
vertical bars. Each of the branches has one model, represented by the two boxes in
the middle, scheduled to it. Data transfer is defined through the connections between
the models.

multi-threading and/or accelerators.

A key feature is the communication mechanism. Owing to OpenPALM’s philosophy of coupling
individual models, it is necessary to facilitate data transfer between models and at the same time
keeping them general and independent from any particular application. Models are viewed as
entities which produce and/or consume data and perform certain computational tasks, so that
generality and reusability for any purpose is maintained. Therefore, models cannot know about
communication partners. Instead, they need a way to request for input data or to announce the
availability of output data without information about source or target of the communication.
OpenPALM offers communication routines for sending and receiving data, which fulfill these
requirements. These routines, among others, are implemented in the library. Developers can use
them in the model’s source code and link against the library. The communication routines are
independent from the specific application at hand by using an abstract description of the data to
be exchanged. These library routines used in the models are complemented by the OpenPALM
driver. The driver is a special entity which is automatically adjoined to any coupled application.
It has two main purposes: to orchestrate the execution of the branches and models, and to act
as a broker for the data transfer between the models. The driver starts, stops, and monitors the
execution of the branches, and controls the models’ access to resources such as files, memory,
or processors. It also forms the counterpart to the communication routines used in the models.
Since models do in general not know their communication partners, they announce data transfer
requests to the driver. The driver then deduces the correct matching of source and target, and
arranges a connection between the corresponding models.

In the following sections we describe the concepts and implementation aspects which are relevant
for the data transfer mechanism in more detail. In particular, we elaborate on the new mechanism
for adapting the communication routes dynamically to changes of the data distribution in parallel
models during runtime.

48

4.1 OpenPALM terms and concepts at the application level

4.1 OpenPALM terms and concepts at the application level

4.1.1 Units

In OpenPALM terminology, a component or model that can be scheduled in a coupling algo-
rithm is called a wnit. Usually, units are defined by the user and may represent any kind of
computational task. The granularity of the tasks may range from simple algebraic operations
to whole simulation models. In addition, OpenPALM offers a predefined set of linear algebra
units representing BLAS-like routines [3] and linear solvers for use with matrix and vector data
structures.

Units are defined through an identity (ID) card. The ID card declares the properties of a unit
which are relevant for OpenPALM like its name, its internal parallelism in terms of OpenMP
[76] threads or MPI [5] processes, and its data objects which may be exchanged with other units.
Details are described in [72]. The tasks represented by a unit can be implemented by the user
in Fortran 77 [1], Fortran 90 [2], C [4] or C++ [6] programming language, making it possible to
reuse existing codes and to couple units written in different programming languages.

An important aspect of the unit definition is the declaration of data objects which may be ex-
changed with other units. For OpenPALM to be able to manage the data transfer, it is necessary
to describe the data in an abstract way in the ID card. Such an abstract description is composed
of objects, spaces, distributors and localizations, which are explained in the following subsections.

4.1.2 Spaces

An OpenPALM space is an abstract description of a data type. To manage data transfer between
units, OpenPALM needs to know the specification of this data. The space concept is based on
the intrinsic data types of the programming languages for logical variables, characters, integers,
single precision, double precision and complex floating point numbers. Table 4.1 lists the basic
data types which are predefined in OpenPALM. Typically, spaces represent arrays of these basic
types; such spaces are called reqular. The rank of the space, i.e. the number of array dimensions,
may be chosen between one and seven. The restriction to a maximum rank of seven is imposed
by the Fortran 90 standard. The shape of the space may have individual extents of arbitrary
length in each dimension. OpenPALM also provides the possibility to define custom spaces for
describing derived types.

Basic data type OpenPALM keyword | Fortran 77 / 90 C / C++
logic type PL_LOGICAL LOGICAL int
character type PL_CHARACTER CHARACTER char
integer type PL_INTEGER INTEGER int
single precision floating
point number PL_REAL REAL float
double precision floating
point number PL_DOUBLE_PRECISION DOUBLE PRECISION double
complex floating
point number PL_COMPLEX COMPLEX float complex
derived types PL_AUTO_SIZE

Table 4.1: OpenPALM keywords and corresponding data types of Fortran 77/90 and C/C++
for defining spaces. When using complex numbers in C/C++, it is assumed that
complex.h is included.

49

4 Dynamic parallel communication mechanism in OpenPALM

A space must be defined in the ID card of a unit. The required information is a name, a shape,
and the size in bytes of the elements which make up this space. The sizes of the basic element
types are known in OpenPALM. For custom spaces of derived element type, one must describe
the composition of the derived element type out of known types. It is possible to nest the defini-
tion of custom spaces provided that the root of the nesting relies on the basic types. The keyword
PL_AUTO_SIZE must be used for custom spaces so that OpenPALM can infer the derived element
type size from its composition.

4.1.3 Distributors and localizations

If a unit is parallelized for distributed memory architectures using MPI, also its data objects
may be split into parts and distributed among several processes. Any process of the unit may
hold an individual local part of the overall global data. However, data transfer is described in
the coupling algorithm on the unit level where internal parallelism and distribution of objects
are hidden. Whenever data is transferred, OpenPALM must automatically take into account
the local contributions of the processes belonging to the unit. The means for describing the
distribution of data are the distributors and localizations. A distributor defines the decomposition
of the global data into parts and the memory layout of the local storage, whereas a localization
defines the ordered set of processes which take part in the distribution of an object. OpenPALM
automatically assumes the default localization which consists only of the process with the lowest
MPI rank. There are three predefined localizations which cover the following prevalent cases:

e SINGLE_ON_FIRST_PROC
The data is not distributed, but held entirely by the first process of the unit. This is the
default localization for all data without explicit definition of another localization.

o DISTRIBUTED_ON_ALL_PROCS
The data is distributed over all processes of the unit.

e REPLICATED_ON_ALL_PROCS
The data is not distributed, but replicated on all processes of the unit.

For all other cases, custom localizations can be defined in the unit’s ID card. A localization
definition comprises a name, a permutation of the process ranks which take part in the object
distribution, and a keyword to distinguish distributed and replicated data. The user has to
explicitly declare the localization in any other case than the three predefined cases. This is
typically done when an object is distributed only over a subset of the processes belonging to the
unit, or if the order of the local parts in the decomposition is different from the order of the MPI
process ranks.

Regular distributors

Regular distributors can be used to describe a block cyclic decomposition of the data. The
user defines a process grid with the same rank as the space of the data has, and an elementary
block size. The data is split into blocks of the elementary block size. These blocks are cyclically
numbered in each dimension with a cycling length equal to the process grid size in this dimension.
Then the blocks are assigned to the process with the same coordinates in the process grid. Blocks
which are assigned to the same process are stored contiguously in its local memory. Furthermore,
it is possible to define arbitrary coordinates in the process grid to specify the process which shall
receive the first local block. The local memory layout is defined by the shape of the local memory
and an offset for the location of the first local block. Figure 4.2 shows a two-dimensional example
of a regular distributor.

50

4.1 OpenPALM terms and concepts at the application level

0 1 0 0 0
proc to store
1st block A B C 0 A C
D E F | =1 D F
G H I 0 G |
process grid global data block cyclic distribution
process 0 process 1 process 2 process 3
individual
local memory
layout

Figure 4.2: Example of a two-dimensional regular distribution. Four processes are arranged in a
2x2 grid. The data is split into blocks of the elementary block size. The last block
in each dimension is smaller to fit the shape of the data. The block cyclic distribu-
tion begins with process rank 1 which stores block A. The complete distribution is
indicated by the colors of the corresponding process. The lower part of the figure
depicts a possible local memory layout of the four processes. Each processes may
provide local memory with an individual size which is depicted in gray color. The
local blocks are stored contiguously with an individual offset.

Custom distributors

Custom distributors do not rely on a regular pattern of the distribution, but one can describe
any structured or unstructured decomposition of the data. This is done by explicitly specifying
each block through its size, its location in the global data object, the process which stores the
block and its location in the local memory. Figure 4.3 shows a two-dimensional example of a
custom distributor.

4.1.4 Objects

Objects are the identifiers of the actual pieces of data which a unit may send to or receive from
other units. They must be declared in the ID cards of the units. Objects carry a user-given
name which must be unique within the same unit. OpenPALM internally suffixes any object
name with the corresponding unit name so that the declaration is independent from other units.
The data type of an object is defined by a space. Objects can be defined as input, output,
or both, depending on the purpose of the data. If multiple instances of the same object shall
be distinguished, one can use the time and tag attributes. For example, in time dependent
simulations, units may use the same object to exchange the solution for every time step, but the
new solution shall be treated as an additional instance of the object instead of overwriting the

51

4 Dynamic parallel communication mechanism in OpenPALM

E-I process 0 process 1 process 2

processes

A
.

F

custom distribution individual local memory layout

Figure 4.3: Example for the use of a custom distributor to describe an unstructured two-
dimensional block decomposition. The three processes use an individual memory
layout to store the blocks.

one from the last time step. The tag attribute serves the same purpose to distinguish instances
of the same object, and can be used independently from the time attribute. For parallel units,
the declaration of an object may further include a distributor and a localization to specify its
distribution among the processes of the unit.

4.1.5 Sub-objects

Whenever a situation occurs where not a whole object but only a part of it needs to be exchanged
between units, one can use the sub-objects mechanism. For example, this might be useful for
obtaining the boundary values from a solution which is defined on an entire domain. Sub-objects
act as a filter on the communication. Similar to distributors, there are reqular and custom sub-
objects. A regular sub-object describes a block cyclic selection from the data, whereas custom
sub-objects can describe any regular or irregular subset of the data. It depends on the specific
application at hand whether any sub-objects are needed or not. Sub-objects are therefore defined
in PrePALM and not in the ID cards to maintain the independence of the units. Sub-objects can
be used either for the source object or for the target object or for both objects. Figures 4.4 and
4.5 show examples for the use of a regular and a custom sub-object, respectively. For technical
reasons, there is the predefined identity sub-object which actually comprises the whole original
object. The identity sub-object is always assumed implicitly unless the user defines another
sub-object.

4.2 Data exchange between units

OpenPALM provides two basic routines for exchanging data between units, namely PALM_Put
and PALM_Get for sending and receiving, respectively. These routines are implemented in the
OpenPALM library. They can be used in the unit source code by including the OpenPALM
header file and linking the library.

52

4.2 Data exchange between units

Z
%
7
0
global object with regular regular sub-object pattern assembled regular
sub-object parts sub-object

Figure 4.4: Regular sub-object example. The pattern (center) defines the selection from the
global object (left), which is assembled into the sub-object (right).

421 The PALM _Put routine

The PALM_Put routine can be used in the units’ source code to send out data objects. It takes
as input parameters the space and object name associated with the data, the time and tag, and
the pointer to the memory location where the data resides; it returns an error code.

Owing to OpenPALM’s philosophy that producing and sending out data objects shall not block
the execution of the source unit, PALM_Put is non-blocking in the sense that it does not wait for
communication partners to receive the object. In case that a target unit is not yet ready for
reception, the data object is temporarily stored in a dedicated mail buffer storage managed by
the driver, so that the source unit can proceed its execution.

422 The PALM _Get routine

The PALM_Get routine can be used in the units’ source code to receive data objects. It takes as
input parameters the space and object name associated with the data, the time and tag, and the
pointer to the memory location where the received data shall be stored; it returns an error code.
It is assumed that units call PALM_Get only when data is needed to continue the computation.
Therefore, the PALM_Get routine is blocking in the sense that it returns only when the requested
data object has been received, otherwise it waits for the delivery.

4.2.3 Direct communication

A direct communication happens if the target unit has already notified its readiness to receive an
object by calling PALM_Get before the source unit calls the corresponding PALM_Put. In this case,
the OpenPALM driver arranges the connection between the units and the object is transferred
by means of MPI messages directly from the source to the target. If one or both units are
MPI-parallelized and the object is distributed on either side, then the communication is actually
done by transferring the distributed object parts between the individual processes of the units
according to the intersection of the involved distributors and localizations.

53

4 Dynamic parallel communication mechanism in OpenPALM

global object with custom assembled custom
sub-object parts sub-object

Figure 4.5: Custom sub-object example. Arbitrary selections from the global object (left) can
by defined by means of a custom sub-object. It maps the parts to the assembled
sub-object (right), which is indicated by the arrows in the schematic.

4.2.4 Indirect communication

An indirect communication happens if the target unit is not yet ready to receive an object at
the moment when the source unit calls PALM_Put to send it. In this case, the driver adopts
the role of an intermediate mail storage. It receives the object from the source unit and stores
it temporarily in the so called mailbuf. Later, when the actual target unit is ready to receive
the object and calls PALM_Get, the driver serves this request with the temporarily stored object
from the mailbuf. If one or both objects are MPI-parallelized and the object is distributed on
either side, then the object is put to the mailbuf, temporarily stored, and forwarded to the
individual target processes by parts according to the intersection of the involved distributors and
localizations. The actual data transfer is done by means of MPI messages between the source
unit and the driver for intermediate storage in the mailbuf, and between the driver and the target
unit for later delivery. The mailbuf is volatile in the sense that stored objects are erased once
they have been delivered to the target.

If the driver runs out of memory for storing objects in the mailbuf, it may spawn one or more
additional processes which serve as memory slaves extending the available memory capacity. If
memory slaves are active, the driver may order them to receive and temporarily store the object
from the source unit, and later forward it to the target unit. Whenever a memory slave runs
empty because it has delivered all stored objects to the target units, the driver may terminate
it. Memory slaves can be spawned again if needed.

4.2.5 Buffer communication

Users can not only define communication between two units, but also with the buffer. This is a
storage provided by the driver which can be explicitly used as source or target in communications,
in contrast to the mailbuf which is never the source or target of a communication but only an
intermediate storage. The buffer is non-volatile in the sense that stored objects are erased only
upon invocation of corresponding commands by the user, which is another important difference
from the mailbuf where objects are automatically erased after delivery. The preservation of
objects in the buffer allows to receive them multiple times by an arbitrary number of units. It

54

4.3 OpenPALM terms and concepts for internal communication management

is also possible to perform operations on the objects in the buffer, e.g. summation, averaging or
interpolation of data which represents a time series. The driver may use the same mechanism
of memory slaves as described for the indirect communication if its buffer memory capacity is
exhausted.

4.2.6 Optimized communication mode

The purpose of the optimized communication mode is to avoid the interaction with the driver,
which is necessary in the default non-optimized communication mode where the driver needs to
inform the units about the routing table of the object. Instead, the optimized mode enforces
a direct communication using a pre-computed routing table and dedicated MPI communicators
between source and target unit. As a tradeoff, the optimized mode imposes constraints on the
coupling algorithm, since not only the target side but also the source side uses blocking MPI
routines to facilitate the data transfer, thus implying the risk of deadlocks.

4.3 OpenPALM terms and concepts for internal
communication management

We introduce further terms and concepts of OpenPALM which are relevant for the description
of the internal communication mechanism, and for the presentation of our new developments.

4.3.1 Entities

Entities are those structures which can be scheduled in an OpenPALM coupling algorithm and
which may take part in communications. One such type of entity are the units, which are defined
above. In addition to the units, there are other types of entities. These are the driver with its
permanent buffer, the driver or memory slaves with the mail buffer, blocks of units which are
integrated into the same executable, and code which is not part of a unit but directly imported
from PrePALM.

4.3.2 Tubes, communication events, comids, and the commstate table

As can be seen from the example in Fig. 4.1, communication between entities is defined by means
of connections in the PrePALM canvas. Each such communication channel is called a tube, and it
is characterized by its source entity and object and its target entity and object. A communication
event is specified by a tube and a time-tag combination and, in case of replicated objects where the
localization is REPLICATED_ON_ALL_PROCS, the source and target process association. For each
tube, the possible communications through this tube are defined by the time-tag combinations the
user has given in PrePALM and by the localization associations. Since the time-tag combinations
rely only on PrePALM- and other constants and arithmetic expressions of them, and since
the localization associations are given by the distribution of the objects with fixed numbers
of processes, there is only a finite number of possible communication events for each tube.
Therefore, all of the possible communication events can be determined a priori from the user-given
information contained in the coupling algorithm described in PrePALM. However, it is usually
not known in advance, if, how often and when any particular communication event will occur.
Each communication event can be given a unique number by counting all possible communication
events, which is the concept of the comids. A comid is a non-negative integer value, by which a
certain communication event can be identified uniquely throughout the whole application. The

55

4 Dynamic parallel communication mechanism in OpenPALM

driver does a bookkeeping of all communication events in its commstate table. It keeps track
of the calls to PALM_Put and PALM_Get, and of the contributions of the individual processes in
the case of MPI-parallel entities. It also does a version control for multiple occurrences of the
same communication event. The driver uses the information contained in the commstate table
to serve the entities’ communication requests.

4.3.3 EOS and DOR

Whenever a communication event occurs, OpenPALM determines the corresponding comid. The
comid then allows to deduce the combination of entity, object and space, short EOS, for both
the source side and the target side of the associated tube. According to these two EOS, one for
each side of the tube, OpenPALM further determines any associated distributors, localizations
and sub-objects. For preparing the communications, OpenPALM computes the intersection of
all relevant distributors, localizations and sub-objects. This intersection generates a distributed
object representation (DOR) for the source and target side of each tube. A DOR specifies the
splitting of the possibly distributed global object into the parts resulting from the intersection,
and the process by process matching of these parts between source and target entity. Thus,
the DOR parts are non-overlapping, each DOR part represents a piece of the object which
is transferred between a specific source process and a specific target process, and their union
resembles the global object. For an actual data transfer, OpenPALM temporarily allocates
memory for the DOR parts. On the source side, the input data is copied piecewise to the DOR
memory, which is called disassembling. The DOR allows to iterate through the parts, which are
sent successively from the DOR memory to the corresponding receiver process. On the target
side, each process receives its DOR parts in the corresponding DOR memory. Once all parts
have arrived at the target, the object is rebuilt by copying the DOR parts to the correct locations
in the output data memory, which is called assembling. After the transmission has completed,
the temporary DOR memory is freed again.

4.4 Internal data transfer mechanism in the legacy
OpenPALM version 4.1.4

In the following, we present the legacy data transfer mechanism as it was implemented in Open-
PALM version 4.1.4. We state the legacy PALM_Put and PALM_Get routines in Algs. 5 and 6,
respectively, and the legacy implementation of the driver’s reactions to these communication
routines in Algs. 7 to 10. Some steps of the algorithms are marked with an asterisk indicating
that an explanatory comment is given below.

56

4.4 Internal data transfer mechanism in the legacy OpenPALM version 4.1.4

Algorithm 5 Legacy PALM_Put

1: Input: space name, object name, time, tag, pointer to local memory where the local object

is stored.

2: Determine the comids which are relevant for this call to PALM_Put.(*)
3: Set flag = 0.
4: for each comid do

5:

11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

if this is a non-optimized communication then

Check local mail buffer flag.(*)
if flag == 0 then
Notify the PALM_Put to the driver.*)
Receive the driver’s answer.*)
Set flag =1.(*)
end if
Determine rank and current shape of the space.
if the space is dynamic then
Check that the distributor is SINGLE_ON_FIRST_PROC, otherwise abort.(*)
Compute the DOR according to the distributor intersection from the source side.*)
end if
Allocate temporary memory for the DOR parts and disassemble the local object.
Determine which target processes shall receive a part of the disassembled local object
from this source process.
for each process of the target’s distributor do
if that target process shall receive a part then
if the object shall be written to a file then
Write the object part to the file.
else
Send a connection request to the driver.*)
Receive a connection authorization from the driver.(*)
Extract the communication type, the receiver entity type, and the receiver
MPI process rank from the drivers answer.
if the receiver is a unit or a memory slave then
Create an MPI intercommunicator to the receiver process.
end if
Send the object part to the receiver process.*)
if the receiver is a unit or a memory slave then
Delete the intercommunicator to the receiver process.
end if
end if
end if
Notify the completion of the transfer of this object part to the driver.
end for
if the space is dynamic then
Delete the DOR which was just created in step 15.
else
Deallocate the temporary memory for the DOR parts.
end if

57

4 Dynamic parallel communication mechanism in OpenPALM

43: else this is an optimized communication

44: Get the MPI intracommunicator for this object.

45: Determine rank and current shape of the space.

46: if the space is dynamic then

47: Check that the source distributor is SINGLE_ON_FIRST_PROC, otherwise abort.(*)

48: Compute the DOR according to the distributor intersection from the source side.*)

49: end if

50: Allocate temporary memory for the DOR parts and disassemble the local object.

51: for each process of the target distributor do

52: if that target process shall receive a part then

53: Create an MPI intercommunicator to the receiver process.

54: Send the object part to the receiver process.*)

55: Delete the intercommunicator to the receiver process.

56: Call MPI_Barrier on the local process group of this object’s MPI intra-
communicator.*)

57: end if

58: end for

59: if the space is dynamic then

60: Delete the DOR which was just created in step 48.

61: else

62: Deallocate the temporary memory for the DOR parts.

63: end if

64: end if

65: end for

Explanatory comments on Alg. 5:

Step 2: Note that the calling EOS might be the source in several tubes. For each affected tube,
the time-tag and localization matching is done, and the corresponding comids are determined.
The rank of the calling process with respect to the source distributor is derived from the local-
ization.

Step 6: Units which are integrated into the same block can use local mail buffer memory to
exchange data instead of using the driver’s mail buffer.

Step 8: The driver’s reaction to this notification is stated in Alg. 7.

Step 9: The driver’s answer is given in step 15 of Alg. 7.

Step 10: The flag is used to ensure that the driver is notified only once, even if there are multiple
comids. The driver can itself determine all relevant comids.

Steps 14 and 47: This is the reason why the legacy PALM_Put algorithm can only handle dy-
namic spaces for non-distributed objects.

Steps 15 and 48: Since dynamic spaces are only possible with non-distributed objects in the
legacy PALM_Put, the resulting DOR just represents the new space shape.

Step 24: The driver’s reaction to this connection request is stated in Alg. 8.

Step 25: The driver’s answer is given in steps 3, 8 or 24 of Alg. 8.

Step 30: The object part is received in step 26 of Alg. 6 in case of a direct communication, or
in step 18 or 20 of Alg. 8 in case of an indirect communication, or in step 12 or 14 of Alg. 8 in
case of a buffer communication.

Step 54: The object part is received in step 49 of Alg. 6.

Step 56: The MPI barrier is called on the local process group, i.e. only on the source side. This
is necessary to avoid race conditions where several source processes could send object parts to
the same target process at the same time.

58

4.4 Internal data transfer mechanism in the legacy OpenPALM version 4.1.4

Algorithm 6 Legacy PALM_Get

1: Input: space name, object name, time, tag, pointer to local memory where the local object

shall be stored after reception.

2: Check if there is a comid for this call to PALM_Get.
3: if there is a comid then

4:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

if this is a non-optimized communication then

Notify the PALM_Get to the driver.(*)
Receive the driver’s answer.*)
Check local mail buffer flag.(*)
Determine rank and current shape of the space.
if the space is dynamic then
Check that the target distributor is SINGLE_ON_FIRST_PROC, otherwise abort.*)
Compute the DOR according to the distributor intersection from the target side.*)
end if
Get the number of source object parts for this target process.
if the object shall be read from a file then
Read local object parts from file.
end if
Receive information from the driver where the object parts are located.*)
Allocate temporary memory for the DOR parts.
for each source process do
if that source process contributes an object part then
Send a connection request to the driver.*)
Check if an MPI intercommunicator is needed.*)
if an MPI intercommunicator is needed then
Create an MPI intercommunicator to the sender process.
end if
Receive the object part from the sender process.(*)
if an MPI intercommunicator was need then
Delete the MPI intercommunicator to the sender process.
end if
end if
end for
Assemble the DOR, parts to build the local object.
if the space is dynamic then
Delete the DOR which was just created in step 11.
else
Deallocate the temporary memory for the DOR parts.
end if

else this is an optimized communication

Determine rank and current shape of the space.
if the space is dynamic then
Check that the target distributor is SINGLE_ON_FIRST_PROC, otherwise abort.(*)
Compute the DOR according to the distributor intersection from the target side.*)
end if
Get the number of source DOR parts for this target process.
Allocate temporary memory for the DOR parts.
for each source process do
if that source process contributes a DOR part then
Create an MPI intercommunicator to the sender process.

59

4 Dynamic parallel communication mechanism in OpenPALM

49: Receive the object part from the sender process.(*)
50: Delete the MPI intercommunicator to the sender process.
51: end if

52: end for

53: if the space is dynamic then

54: Delete the DOR which was just created in step 42.

55: else

56: Deallocate the temporary memory for the DOR parts.
57: end if

58: end if

59: end if

Explanatory comments on Alg. 6:

Step 5: The driver’s reaction to this notification is stated in Alg. 9.

Step 6: The driver’s answer is given in steps 13 or 22 of Alg. 9.

Step 7: Units which are integrated into the same block can use local mail buffer memory to
exchange data instead of using the driver’s mail buffer.

Steps 10 and 41: This is the reason why the legacy PALM_Get algorithm can only handle
dynamic spaces for non-distributed objects.

Steps 11 and 42: Since dynamic spaces are only possible with non-distributed objects in the
legacy PALM_Get, the resulting DOR just represents the new space shape.

Step 17: The object part locations are sent by the driver in step 12 of Alg. 7 in case of a direct
communication, or in step 23 of Alg. 9 in case of an indirect or buffer communication.

Step 21: The driver’s reaction to this connection request is stated in Alg. 10.

Step 22: An MPI intercommunicator needs to be created if the sender is not the driver, to
which an intercommunicator exists anyway, and when the local mail buffer is not used.

Step 26: The object part is sent in step 30 of Alg. 5 in case of a direct communication, or in
step 10 or 12 of Alg. 10 in case of an indirect communication, or in step 3 or 5 of Alg. 10 in case
of a buffer communication.

Steps 49: The object part is sent in step 54 of Alg. 5.

Algorithm 7 Driver reaction on the PALM_Put notification in step 8 of Alg. 5

1: Determine the comids which are relevant for this call to PALM_Put.

2: for each comid do

3 Insert this PALM_Put into the commstate table.

4: Search the commstate table for a waiting PALM_Get matching this comid.

5: if there is a waiting PALM_Get then

6 Update the commstate table that the PALM_Get will be served by this PALM_Put.
7 if the source is the buffer then

8 Determine if the object is located at the driver or a memory slave.

9

: end if
10: for each target process do
11: Send answer to target process.(*)
12: Send object part locations to the target process.™*)
13: end for
14: end if
15: Send answer to the source process.*)
16: end for

60

4.4 Internal data transfer mechanism in the legacy OpenPALM version 4.1.4

Explanatory comments on Alg. T7:

Step 11: This answer is received in step 6 of Alg. 6.

Step 12: The object part locations are received in step 17 of Alg. 6.
Step 15: This answer is received in step 9 of Alg. 5.

Algorithm 8 Driver reaction on the PALM_Put connection request in step 24 of Alg. 5

1: Query the commstate table if this PALM_Put matches a waiting PALM_Get.

2: if a PALM_Get is waiting for the connection then

3: Send a connection authorization to the source process telling that the communication
type is direct, the target is a unit, and the MPI rank of the receiver process.*)

4: else the target is the buffer, or the object must be temporarily stored in the mailbuf

5 Determine if the target is the buffer, or if the mailbuf shall take the object part.

6: Determine if the driver or a memory slave shall receive the object.

7

8

if the driver receives the object part then
Send a connection authorization to the source process telling whether the communi-
cation type is buffer or indirect, the receiver is the driver, and the MPI rank of the

driver.(*)
9: end if
10: if the target is the buffer then
11: if the driver receives the object part then
12: Receive the object part from the source process and put it in the buffer.*)
13: else
14: Order a memory slave to receive the object part and to put it in the buffer.(*)
15: end if
16: else
17: if the driver receives the object part then
18: Receive the object part from the source process and put it in the mailbuf.*)
19: else
20: Order a memory slave to receive the object part and to put it in the mailbuf.(*)
21: end if
22: end if
23: if a memory slave receives the object then
24: Send a connection authorization to the source process telling whether the communi-

cation type is buffer or indirect, the receiver is a memory slave, and the MPI rank of
the memory slave.(*)

25: end if

26: end if

Explanatory comments on Alg. 8:
Steps 3, 8 and 24: This answer is received in step 25 of Alg. 5.
Steps 12, 14, 18 and 20: The object part is sent in step 30 of Alg. 5.

61

4 Dynamic parallel communication mechanism in OpenPALM

Algorithm 9 Driver reaction on the PALM_Get notification in step 5 of Alg. 6

1: Determine the comids which are relevant for this call to PALM_Get.
2: Query the commstate table to choose a comid.
3: if this PALM_Get does not read from a file then
4: if not all processes of the target entity have announced this PALM_Get yet then
5: Return.(*)
6: end if
7 if there is neither a matching PALM_Put currently active nor is the object available in the
mailbuf or buffer then
8: Memorize the PALM_Get to be wakened later in step 5 of Alg. 7 when a matching
PALM_Put occurs.
9: Return.®)
10: end if
11: else the object is read from a file
12: for each target process do
13: Send a dummy answer to the target process.(*)
14: end for
15: end if
16: for each target process do
17: for each source process do
18: if the object part is in the mailbuf then
19: Determine whether the object part is stored on the driver or a memory slave.
20: end if
21: end for
22: Send an answer to the target process telling the chosen comid for this PALM_Get.*)
23: Send the object part locations to the target process.*)
24: end for

Explanatory comments on Alg. 9:

Step 5: The driver only continues to serve this PALM_Get when all processes of the target entity
have announced it. Since the target processes wait for the answer in step 6 of Alg. 6, this implies
a synchronization among the target processes.

Step 9: Since the target processes are waiting for the answer in step 6 of Alg. 6, this makes the
target wait until a matching PALM_Put occurs.

Step 13: This is necessary to let the target entity continue since it is waiting for the answer in
step 6 of Alg. 6.

Step 22: This answer is received in step 6 in Alg. 6.

Step 23: The object part locations are received in step 17 in Alg. 6.

Algorithm 10 Driver reaction on the PALM_Get connection request in step 21 of Alg. 6

1: if the source is the buffer then

if the object is stored in the driver then
Send the object part to the target process.(*)

else
Determine which memory slave has the object and order it to send the object part to
the target process.*)

6: end if

62

4.5 New features to enable dynamic spaces, distributors and sub-objects

7: else the source is not the buffer
8: if the object part is served from the mailbuf then

9: if the object is stored on the driver then

10: Send the object part to the target process.*)

11: else

12: Determine which memory slave has the object and order it to send the object part
to the target process.™*)

13: end if

14: end if

15: end if

Explanatory comments on Alg. 10:
Steps 3, 5, 10 and 12: The object part is received in step 26 of Alg. 6.

4.5 New features to enable dynamic spaces, distributors and
sub-objects in OpenPALM version 4.2.3

As indicated above, the legacy OpenPALM version 4.1.4 exhibited several restrictions in the
use of spaces, distributors and sub-objects. The goal of our work on OpenPALM is to over-
come these restrictions. We have developed and implemented a mechanism which allows to use
dynamic spaces not only for non-distributed objects, but also for distributed or replicated ob-
jects, in OpenPALM version 4.2.3. Moreover, we have developed and implemented a means for
changing the distributor and sub-object definitions during runtime of OpenPALM applications,
while maintaining the consistency between sources and targets of communications without the
need for additional synchronizations. Using a similar denomination as for the dynamic spaces,
we call them dynamic distributors and dynamic sub-objects. In the following, we describe the
implementation of the new features, and how they are used by means of the new API functions
PALM_Distributor_set and PALM_Subobject_set.

In the legacy OpenPALM version 4.1.4, the dynamic spaces feature already existed, but with the
restriction to be used only for non-distributed objects. Moreover, all distributors and sub-objects
must have been defined at compile time, and could not anymore be changed at runtime. The
new features overcome these restrictions through several modifications of the relevant mecha-
nisms. In particular, it is not anymore necessary to define all distributors and sub-objects at
compile time. All spaces, distributors and sub-objects which are already known at compile time
of the OpenPALM application can be defined in the ID cards of the units, in PrePALM, or
through dedicated functions which are implemented for the purpose of returning a distributor
or sub-object definition, as it was already the case in the legacy version. This makes the new
developments compatible with existing applications. But with the new version, it is also pos-
sible to only declare distributors and sub-objects without defining them, i.e. to only signalize
their existence without providing a concrete distribution or a concrete sub-object definition. The
definition can be given later at runtime through the API functions PALM_Distributor_set and
PALM_Subobject_set, respectively. This new feature is particularly useful in the case when a
distribution or sub-object cannot be known at compile time, e.g. because a parallel unit uses
a domain decomposition which is determined only during runtime. In the legacy OpenPALM
version, one needed to start the unit, memorize its data distribution and sub-objects, stop the
application, provide the distribution and sub-object definitions, recompile the OpenPALM ap-
plication, and finally run it. Even worse, as soon as any distribution or sub-object changed, it
was necessary to repeat these steps. This could happen frequently, e.g. when using a different

63

4 Dynamic parallel communication mechanism in OpenPALM

number of processes or a different computational grid. With the new version, one can save this
effort and provide the distributions and sub-objects only when they are known during runtime.
Of course, all affected distributors and sub-objects must be defined before a communication can
be done. But this is no restriction in general, because it would be meaningless for a unit to
communicate without knowing its data distribution and sub-objects. The necessary information
would naturally be available in the units before they send or receive data.

Another modification of the mechanism is the introduction of a dynamicity flag. Each distributor
and sub-object has an individual flag which can either hold the value static or dynamic. The
value static means that the corresponding distributor or sub-object cannot be changed anymore
after it has been defined for the first time, which might be at compile time or later at runtime.
The value dynamic indicates that the corresponding distributor or sub-object is allowed to be
changed an arbitrary number of times. We introduced this flag for a performance reason. It
allows to skip the request for possible updates on distributors or sub-objects if they are static.
All dynamicity flags must be set at compile time in the ID cards or in PrePALM, and they cannot
be altered during runtime. This is no restriction, because the user would usually know whether
a unit needs to change a distributor or sub-object several times, or if it will stay fixed once it
has been defined. Even if this is not known at compile time, one can set the flag to dynamic to
not restrict the unit.

The driver as well as all processes of all entities hold lists of the spaces, of the distributors and
of the sub-objects. These lists are used to keep track of all space, distributor and sub-object
definitions. Whenever a space, a distributor or a sub-object changes, the new definition is ap-
pended as a new version in the corresponding list. Entities can only set new versions for their
own spaces, distributors or sub-objects, and all changes are announced to the driver. This en-
sures that entities cannot disorder each others’ lists, and that the driver is up to date with the
newest versions of all lists at all times. Another consequence is that unnecessary synchroniza-
tion between entities is avoided. Only when a communication event involves a dynamic space,
distributor or sub-object on the remote side, the entity requests the driver for possible updates
before computing the DOR.

Complementing the space, distributor and sub-object lists, we have enhanced the driver’s comm-
state table. In addition to the functionalities described in Sec. 4.3.2, the commstate table also
keeps track of the space, distributor and sub-object versions which were used in a communica-
tion event. This is necessary to check compliance between source and target sides of the affected
DORs. It is also necessary to detect a mismatch situation where the source and the target side
of a tube use different versions of a space, of a distributor or of a sub-object. This mismatch
situation can occur in an indirect communication. When the source entity issues the PALM_Put,
it uses the newest known versions at that time to compute the DOR. If the target entity did not
yet issue the PALM_Get, the object is received and temporarily stored in the mailbuf. If the target
entity later on changes the space, the distributor or the sub-object before it calls the PALM_Get,
then the DOR stored in the mailbuf and the DOR in the target entity do not match. To cope
with that, we have implemented a redistribution functionality which is used in target entities.
In a mismatch situation, when the temporarily stored object in the mailbuf has a DOR with an
outdated version of a space, a distributor or a sub-object, the target entity switches back to that
outdated version to receive the object from the mailbuf. It aborts the transfer if the spaces have
changed, since there is no way to transform an object from one space to another. However, if the
distributor or the sub-object has changed, the object itself is still intact. Only its distribution
or the sub-object selection may have changed. The target entity computes an auxiliary DOR as
the intersection of the outdated distributor and sub-object version and the new distributor and
sub-object version. This auxiliary DOR contains all necessary information so that the target
entity can internally redistribute the object received from the mailbuf to comply with the new

64

4.5 New features to enable dynamic spaces, distributors and sub-objects

distributor and sub-object.

possible local memory layout in source unit
process B

distributed global object with process A
regular sub-object filter

7

7

A3 /A4

AL disassemble local objects into DOR
distributed
sub-object
S A 2x magnified view
of the DOR
Ato A
source unit
intersection - A AwB
target unit | AtoC
[BtoA
[BtoC

a1

distributed {7 A2
sub-object - assemble Iocal&jectsfro DOR

distributed global object with process A process B
custom sub-object filter

possible local memory layout in target unit process C

Figure 4.6: Example of distributed sub-objects. Source (top) and target (bottom) unit hold
different global objects, but expose matching sub-objects. The DOR is the result of
the intersection of the two distributed sub-objects. The routing table defines for each
pair of source and target process the transfer of the relevant sub-object parts.

4.5.1 New API routine PALM_Distributor_set

We have developed a new API routine which allows to define distributors in an OpenPALM
application during runtime. Like the PALM_Put and PALM_Get routines, this new API routine
can be used in the source code of units. It takes as input the distributor name and an encoded
definition of the object distribution. It installs the new distributor version in the unit where the
routine is called, and it announces it to the driver. Units can only set new versions for their own
distributors which are marked with the dynamic flag, and for static distributors which have

65

4 Dynamic parallel communication mechanism in OpenPALM

only been declared but not yet defined. The routine is described in Alg. 11.

Algorithm 11 PALM_Distributor_set

1: Input: distributor name, encoded definition of the new distribution.

2: Check if the calling entity uses the distributor for at least one of its objects, otherwise return.

3: Check if the calling process belongs to the localization of the distributor, otherwise return.

4: Check if the distributor is dynamic, or if it is static but still undefined, otherwise abort.

5. if this process has rank 0 in the associated localization then ™)

6: Send a notification to the driver telling the size of the encoded definition of the new
distribution.*)

7: Send the encoded definition to the driver.(*)

8: end if
9: Append the new version in the local distributor list.
10: Call MPI_Barrier on the localization.™®)

Explanatory comments on Alg. 11:

Step 5: Only the first process in the localization communicates with the driver.

Step 6: The driver’s reaction to this notification is stated in Alg. 12.

Step 7: The driver receives the encoded distributor definition in step 1 in Alg. 12.

Step 10: Without this barrier, it could happen that a process other than the first process
finishes setting the new distributor version and issues a communication before the first process
has announced the new distributor version to the driver. This would result in a wrong mapping
of the object parts between source and target. The barrier is necessary to prevent from that.

Algorithm 12 Driver reaction on the PALM_Distributor_set notification in step 6 of Alg. 11

1: Receive the encoded definition from the entity.*)
2: Append the new version in the driver’s distributor list.

Explanatory comments on Alg. 12:
Step 1: The encoded distributor definition is sent in step 7 of Alg. 11.

4.5.2 New API routine PALM _Subobject _set

Similar to the PALM_Distributor_set routine, we have developed another new API routine
which allows to define sub-objects in an OpenPALM application during runtime. Like the
PALM_Put and PALM_Get routines, this new API routine can be used in the source code of units.
It takes as input the sub-object name and an encoded definition of the sub-object filter. It in-
stalls the new version in the unit where the routine is called, and it announces it to the driver.
Units can only set new versions for their own sub-objects which are marked with the dynamic
flag, or for static sub-objects which have only been declared but not yet defined. The routine
is described in Alg. 13.

66

4.5 New features to enable dynamic spaces, distributors and sub-objects

Algorithm 13 PALM_Subobject_set

1: Input: sub-object name, encoded definition of the new sub-object filter.

2: Check if the calling entity owns the sub-object, otherwise return.

3: Check if the calling process belongs to the localization of the object using this sub-object,

otherwise return.

4: Check if the sub-object is dynamic, or if it is static but still undefined, otherwise abort.

5. if this process has rank 0 in the associated localization then®)
Send a notification to the driver telling the size of the encoded definition of the new
sub-object.(*)

7: Send the encoded definition to the driver.(*)

8: end if

9: Append the new version in the local sub-object list.

10: Call MPI_Barrier on the localization.(*)

Explanatory comments on Alg. 13:

Step 5: Only the first process in the localization communicates with the driver.

Step 6: The driver’s reaction to this notification is stated in Alg. 14.

Step 7: The driver receives the encoded sub-object definition in step 1 in Alg. 14.

Step 10: Without this barrier, it could happen that a process finishes setting the new sub-object
version and issues a communication before the first process has announced the new sub-object
version to the driver. This would result in a wrong mapping of the object parts between source
and target. The barrier is necessary to prevent from that.

Algorithm 14 Driver reaction on the PALM_Subobject_set notification in step 6 of Alg. 13

1: Receive the encoded definition from the entity.(*)
2: Append the new version in the driver’s sub-object list.

Explanatory comments on Alg. 14:
Step 1: The encoded sub-object definition is sent in step 7 of Alg. 13.

4.5.3 Enhanced API routines PALM_Put and PALM_Get

In this subsection, we present the enhanced data transfer mechanism which is able to use dynamic
spaces, dynamic distributors and dynamic sub-objects. We state the enhanced PALM_Put and
PALM_Get routines in Algs. 15 and 16, respectively, and the enhanced implementations of the
driver’s reactions to these communication routines in Algs. 18 to 21. Some steps of the algorithms
are marked with an asterisk indicating that an explanatory comment is given below.

67

4 Dynamic parallel communication mechanism in OpenPALM

Algorithm 15 Enhanced PALM_Put

1: Input: space name, object name, time, tag, pointer to local memory where the local object
is stored.

2: Determine the comids which are relevant for this call to PALM_Put.*)

if at least one of the affected spaces, distributors or sub-objects is dynamic, or static but

still undefined then

o

4: Send an update notification to the driver.(*)

5: Send the last known versions of the spaces, distributors and sub-objects to the driver.(*)

6: Receive the list of available updates from the driver.(*)

7 for each new space, distributor or sub-object version do

8: Receive the definition of the new space, distributor or sub-object version from the
driver.*)

9: Append the new version in the corresponding local space, distributor or sub-object
list.

10: end for

11: end if

12: Set flag = 0.
13: for each comid do

14: if this is a non-optimized communication then

15: if flag == 0 then

16: Notify the PALM_Put to the driver.(*)

17: for each relevant comid do

18: Receive information from the driver whether this is a new object version.™)

19: if this is the first process which contributes a part to the object then

20: Determine the newest available distributor and sub-object versions for the

target entity.
21: if source and newest target sub-object do not comply then
22: Determine the sub-object which this source process has last used for the
target.

23: if source and last used target sub-object do not comply then

24: Use the IDENTITY sub-object for the target.

25: end if

26: end if

27: if source and newest target distributor do not comply then

28: Determine the distributor which this process has last used for the target.

29: if source and last used target distributor do not comply then

30: Use the SINGLE_PROC distributor for the target.

31: end if

32: end if

33: Send the chosen distributor and sub-object versions to the driver.*)

34: else

35: Receive the chosen distributor and sub-object versions from the driver.(*)

36: end if

37: end for

38: Receive the driver’s answer.(*)

39: Set flag =1.(%)

40: end if

41: Determine rank and current shape of the space.

42: if the source distributor or sub-object have changed since the last communication
event then

43: Compute the intersection of the source distributor and sub-object.

44; end if

4.5 New features to enable dynamic spaces, distributors and sub-objects

45:

46:
47:
48:

49:
50:
51:
52:
53:
54:
55:

56:
57:
58:
59:
60:
61:
62:
63:

64:
65:
66:
67:
68:
69:
70:
T1:
72:
73:
74:
75:
76:
7T
78:
79:

80:
81:
82:

83:
84:

if the target distributor or sub-object have changed since the last communication
event then
Compute the intersection of the target distributor and sub-object.
end if
if there is a new source or target distributor or sub-object version, or the source space
has changed since the last communication event then
if there is an old DOR then
Delete the old DOR.
end if
Compute the new DOR.
end if
Allocate temporary memory for the DOR parts and disassemble the local object.
Determine which target processes shall receive a part of the disassembled local object
from this source process.
for each process of the target’s distributor do
if that target process shall receive a part then
if the object shall be written to a file then
Write the object part to the file.
else
Send a connection request to the driver.(*)
Receive a connection authorization from the driver.*)
Extract the communication type, the receiver entity type, and the receiver
MPI process rank from the drivers answer.
if the receiver is a unit or a memory slave then
Create an MPI intercommunicator to the receiver process.
end if
Send the object part to the receiver process.*)
if the receiver is a unit or a memory slave then
Delete the intercommunicator to the receiver process.
end if
end if
end if
Notify the completion of the transfer of this object part to the driver.
end for
Deallocate the temporary memory for the DOR parts.

else this is an optimized communication

Get the MPI intracommunicator for this object.
Determine rank and current shape of the space.
if the source distributor or sub-object have changed since the last communication
event then
Compute the intersection of the source distributor and sub-object.
end if
if the target distributor or sub-object have changed since the last communication
event then
Compute the intersection of the target distributor and sub-object.
end if

69

4 Dynamic parallel communication mechanism in OpenPALM

85: if there is a new source or target distributor or sub-object version, or the source space
has changed since the last communication event then

86: if there is an old DOR then

87: Delete the old DOR.

88: end if

89: Compute the new DOR.

90: end if

91: Allocate temporary memory for the DOR parts and disassemble the local object.

92: for each process of the target distributor do

93: if that target process shall receive a part then

94: Create an MPI intercommunicator to the receiver process.

95: Send the object part to the receiver process.*)

96: Delete the intercommunicator to the receiver process.

97: Call MPI_Barrier on the local process group of this object’s MPI intra-

communicator.(*)

98: end if

99: end for

100: Deallocate the temporary memory for the DOR, parts.

101: end if

102: end for

Explanatory comments on Alg. 15:

Step 2: Note that the calling EOS might be the source in several tubes. For each affected tube,
the time-tag and localization matching is done, and the corresponding comids are determined.
The rank of the calling process with respect to the source distributor is derived from the local-
ization.

Step 4: The driver’s reaction to this notification is stated in Alg. 17.

Step 5: The driver receives the last known versions in step 1 of Alg. 17.

Step 6: The driver sends the list of available updates in step 3 of Alg. 17.

Step 8: The driver sends the new versions in step 5 of Alg. 17.

Step 16: The driver’s reaction to this notification is stated in Alg. 18.

Step 18: This information is sent by the driver in step 4 of Alg. 18.

Step 33: The chosen versions are received by the driver in step 6 of Alg. 18.

Step 35: The chosen versions are sent by the driver in step 8 of Alg. 18.

Step 38: The driver’s answer is given in step 27 of Alg. 18.

Step 39: The flag is used to ensure that the driver is notified only once, even if there are multiple
comids. The driver can itself determine all relevant comids.

Step 61: The driver’s reaction to this connection request is stated in Alg. 19.

Step 62: The driver’s answer is given in steps 3, 8 or 24 of Alg. 19.

Step 67: The object part is received in step 48 of Alg. 16 in case of a direct communication, or
in step 18 or 20 of Alg. 19 in case of an indirect communication, or in step 12 or 14 of Alg. 19
in case of a buffer communication.

Step 95: The object part is received in step 96 of Alg. 16.

Step 97: The MPI barrier is called on the local process group, i.e. only on the source side. This
is necessary to avoid race conditions where several source processes could send object parts to
the same target process for the same communication event.

70

4.5 New features to enable dynamic spaces, distributors and sub-objects

Algorithm 16 Enhanced PALM_Get

1: Input: space name, object name, time, tag, pointer to local memory where the local object

shall be stored after reception.

2: Check if there is a comid for this call to PALM_Get.
3: if there is a comid then

4:

© ®

10:
11:

12:
13:

14:
15:
16:

17:
18:
19:

20:
21:
22:

23:
24:
25:
26:

27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

if this is a non-optimized communication then

Notify the PALM_Get to the driver.(*)
Receive the driver’s answer.(*)
Send the last known versions of the spaces, distributors and sub-objects to the
driver.*)
Receive the list of available updates from the driver.(*)
for each new space, distributor or sub-object version do
Receive the definition of the new space, distributor or sub-object version from the
driver.(*)
Append the new version in the corresponding local space, distributor or sub-object
list.
end for
Receive the versions of the source and target distributors and sub-objects which the
sender has used for this object.(*)
Check local mail buffer flag *)
Determine rank and current shape of the space.
if the source distributor or sub-object have changed since the last communication
event then
Compute the intersection of the source distributor and sub-object.
end if
if there is a new target distributor or sub-object version since the last communication
event, or the source entity did not use the current target distributor and
sub-object then
Compute the intersection of the target distributor and sub-object.
end if
if there is a new source or target distributor or sub-object version, or the source space
has changed since the last communication event then
if there is an old DOR then
Delete the old DOR.
end if
Compute a new DOR as the intersection of the source distributor and sub-object
and of target distributor and sub-object which the source entity has used.
end if
Get the number of source object parts for this target process.
if the object shall be read from a file then
Read local object parts from file.
end if
Receive information from the driver where the object parts are located.*)
Determine if the object must be redistributed within the target entity after reception.
if the object must be redistributed after reception then
Allocate temporary memory for the local object redistribution.
end if
Allocate memory for the DOR parts.

71

4 Dynamic parallel communication mechanism in OpenPALM

38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:

49:
50:
51:
52:
53:
54:
55:
56:

57:

58:

59:

60:
61:
62:

63:
64:
65:
66:

67:
68:
69:

70:
71:

for each source process do

if that source process contributes an object part then
Send a connection request to the driver.(*)
Check if an MPT intercommunicator is needed.(*)
if an MPI intercommunicator is needed then
Create an MPI intercommunicator to the sender process.
end if
if the object must be redistributed after reception then
Receive the object part from the sender process in the temporary memory.*)
else
Receive the object part from the sender process in the local object
memory.*)
end if
if an MPI intercommunicator was needed then
Delete the MPI intercommunicator to the sender process.
end if
end if

end for
if the object must be redistributed then

Compute a temporary DOR as the intersection between the outdated target dis-
tributor and sub-object versions which the source entity has used, and the newest
target distributor and sub-object versions.
Assemble the local object from the DOR which the source entity has used into the
temporary memory.
Disassemble the local object from the temporary memory into the source side of
the temporary DOR.
for each process of this entity which shall receive an object part from this process
in the internal redistribution do
Call the non-blocking MPI_Isend to send the object part to that process.
end for
for each process of this entity which shall send an object part to this process in
the internal redistribution do
Call the non-blocking MPI_Irecv to receive the object part from that process.
end for
Call MPI_Waitall to wait for the completion of all send and receive operations.
Assemble the local object from the target side of the temporary DOR into the
local object memory.
Delete the temporary DOR and deallocate the temporary memory.

else

Assemble the local object from the target side of the DOR into the local object
memory.

end if
Send a notification to the driver telling that this process has finished the PALM_Get.

72

4.5 New features to enable dynamic spaces, distributors and sub-objects

72: else this is an optimized communication
73: Determine whether any affected space, distributor or sub-object might require an
update.
74: if an update is required then
75: Send an update notification to the driver.*)
76: Send the last known space, distributor and sub-object versions to the driver.*)
77 Receive the list of available updates from the driver.*)
78: for each available update do
79: Receive the new version from the driver and append it to the corresponding
space, distributor or sub-object list.*)
80: end for
81: Unpack all updates into the corresponding version lists of the affected spaces,
distributors and sub-objects.
82: end if
83: Determine rank and current shape of the space.
84: Determine whether a new DOR must be computed.
85: if a new DOR must be computed then
86: if there exists already an old DOR then
87: Delete the old DOR.
88: end if
89: Compute the new DOR.
90: end if
91: Get the number of source DOR parts for this target process.
92: Allocate temporary memory for the DOR parts if necessary.
93: for each source process do
94: if that source process contributes a DOR, part then
95: Create an MPI intercommunicator to the sender process.
96: Receive the object part from the sender process.(*)
97: Delete the MPI intercommunicator to the sender process.
98: end if
99: end for
100: Assemble the local object from the DOR.
101: end if
102: end if

Explanatory comments on Alg. 16:

Step 5: The driver’s reaction to this notification is stated in Alg. 20.

Step 6: The driver’s answer is given in step 17 of Alg. 18 or in step 13 or 22 of Alg. 20.

Step 7: The driver receives the last known versions in step 18 of Alg. 18 or in step 23 of Alg.
20.

Step 8: The driver sends the list of available updates in step 19 of Alg. 18 or in step 24 of Alg.
20.

Step 10: The driver sends the new version in step 21 of Alg. 18 or in step 26 of Alg. 20.

Step 13: The driver sends the chosen versions in step 23 of Alg. 18 or in step 28 of Alg. 20.
Step 14: Units which are integrated into the same block can use local mail buffer memory to
exchange data instead of using the driver’s mail buffer.

Step 32: The object part locations are sent by the driver in step 24 of Alg. 18 in case of a direct
communication, or in step 29 of Alg. 20 in case of an indirect or buffer communication.

73

4 Dynamic parallel communication mechanism in OpenPALM

Step 40: The driver’s reaction to this connection request is stated in Alg. 21.

Step 41: An MPI intercommunicator needs to be created if the sender is not the driver, to
which an intercommunicator exists anyway, and when the local mail buffer is not used.

Step 46: The object part is sent in step 10 or 12 of Alg. 21.

Step 48: The object part is sent in step 67 of Alg. 15 in case of a direct communication, or in
step 10 or 12 of Alg. 21 in case of an indirect communication, or in step 3 or 5 of Alg. 21 in case
of a buffer communication.

Step 75: The driver’s reaction to this notification is stated in Alg. 17.

Step 76: The driver receives the last known versions in step 1 of Alg. 17.

Step 77: The driver sends the list of available updates in step 3 of Alg. 17.

Step 79: The driver sends the new versions in step 5 of Alg. 17.

Steps 96: The object part is sent in step 95 of Alg. 15.

Algorithm 17 Driver reaction on the space, distributor or sub-object update notification in
step 4 of Alg. 15 or in step 75 of Alg. 16

1: Receive the last known versions of the spaces, distributors and sub-objects from the entity.*)
2: Compare the last known versions of the entity with the newest available versions to determine
the necessary updates.
. Send the list of available updates to the entity.*)
: for each available space, distributor or sub-object update do
Send the definition of the new version to the entity.*)
end for

Explanatory comments on Alg. 17:

Step 1: The last known versions are sent in step 5 of Alg. 15 or in step 76 of Alg. 16.

Step 3: The list of available updates is received in step 6 of Alg. 15 or in step 77 of Alg. 16.
Step 5: The definition of the new version is received in step 8 of Alg. 15 or in step 79 of Alg.
16.

Algorithm 18 Enhanced driver reaction on the PALM_Put notification in step 16 of Alg. 15

1: Determine the comids which are relevant for this call to PALM_Put.

2: for each comid do

3: Insert this PALM_Put into the commstate table.

4 Send information to the source process whether this is a new object version.*)

5: if if this source process is the first process for this PALM_Put then

6 Receive the space, distributor and sub-object versions which the source process uses
for this PALM_Put, and store them in the commstate table.*)

else

8: Read the space, distributor and sub-object versions which the first process used for

this PALM_Put from the commstate table, and send them to the source process.*)
9: end if

Xt

10: Search the commstate table for a waiting PALM_Get matching this comid.

11: if there is a waiting PALM_Get then

12: Update the commstate table that the PALM_Get will be served by this PALM_Put.
13: if the source is the buffer then

14: Determine if the object is located at the driver or a memory slave.

15: end if

74

4.5 New features to enable dynamic spaces, distributors and sub-objects

16: for each target process do

17: Send answer to target process.(*)

18: Receive the last known space, distributor and sub-object versions from this target
process. *)

19: Determine if updates are available for this target process, and send the list of
available updates to the target process.*)

20: for each available update do

21: Send the new version to the target process.™*)

22: end for

23: Read the space, distributor and sub-object versions which the source entity uses

for this PALM_Put from the commstate table, and send them to this target
process.*)

24: Send object part locations to this target process.(*)
25: end for

26: end if

27: Send answer to the source process.(*)

28: end for

Explanatory comments on Alg. 18:

Step 4: This information is received by the source process in step 18 of Alg. 15.

Step 6: The chosen versions for the spaces, distributors and sub-objects are send in step 33 of
Alg. 15.

Step 8: The chosen versions for the spaces, distributors and sub-objects are received in step 35
of Alg. 15.

Step 17: This answer is received in step 6 of Alg. 16.

Step 18: The last known versions are sent in step 7 of Alg. 16.

Step 19: The update list is received in step 8 of Alg. 16.

Step 21: The new version is received in step 10 of Alg. 16.

Step 23: The chosen versions for the space, distributors and sub-objects are received in step 13
of Alg. 16.

Step 24: The object part locations are received in step 32 of Alg. 16.

Step 27: This answer is received in step 38 of Alg. 15.

Algorithm 19 Enhanced driver reaction on the PALM_Put connection request in step 61 of Alg.
15
1: Query the commstate table if this PALM_Put matches a waiting PALM_Get.
2: if a PALM_Get is waiting for the connection then
3: Send a connection authorization to the source process telling that the communication
type is direct, the target is a unit, and the MPI rank of the receiver process.*)
4: else the target is the buffer, or the object must be temporarily stored in the mailbuf
5 Determine if the target is the buffer, or if the mailbuf shall take the object part.
6 Determine if the driver or a memory slave shall receive the object.
7 if the driver receives the object part then
8 Send a connection authorization to the source process telling whether the communi-
cation type is buffer or indirect, the receiver is the driver, and the MPI rank of the
driver.(*)
9: end if

(0]

4 Dynamic parallel communication mechanism in OpenPALM

10: if the target is the buffer then

11: if the driver receives the object part then

12: Receive the object part from the source process and put it in the buffer.(*)

13: else

14: Order a memory slave to receive the object part and to put it in the buffer.*)

15: end if

16: else

17: if the driver receives the object part then

18: Receive the object part from the source process and put it in the mailbuf.®*)

19: else

20: Order a memory slave to receive the object part and to put it in the mailbuf.*)

21: end if

22: end if

23: if a memory slave receives the object then

24: Send a connection authorization to the source process telling whether the communi-
cation type is buffer or indirect, the receiver is a memory slave, and the MPI rank of
the memory slave.(*)

25: end if

26: end if

Explanatory comments on Alg. 19:
Steps 3, 8 and 24: This answer is received in step 62 of Alg. 15.
Steps 12, 14, 18 and 20: The object part is sent in step 67 of Alg. 15.

Algorithm 20 Enhanced driver reaction on the PALM_Get notification in step 5 of Alg. 16

10:
11:
12:
13:

15:

16

NP g W e

: Determine the comids which are relevant for this call to PALM_Get.
: Query the commstate table to choose a comid.
if this PALM_Get does not read from a file then

if not all processes of the target entity have announced this PALM_Get yet then
Return.®)
end if
if there is neither a matching PALM_Put currently active nor is the object available in the
mailbuf or buffer then
Memorize the PALM_Get to be wakened later in step 11 of Alg. 18 when a matching
PALM_Put occurs.
Return.*)
end if

else the object is read from a file

for each target process do
Send a dummy answer to the target process.(*)
end for

end if

: for each target process do
17:
18:
19:
20:
21:

for each source process do
if the object part is in the mailbuf then
Determine whether the object part is stored on the driver or a memory slave.
end if
end for

76

4.5 New features to enable dynamic spaces, distributors and sub-objects

22: Send an answer to the target process telling the chosen comid for this PALM_Get.(*)

23: Receive the last known space, distributor and sub-object versions from this target
process.*)

24: Determine if updates are available and send the list of available updates to the target
process.*)

25: for each available update do

26: Send the new version to the target process.*)

27: end for

28: Read the space, distributor and sub-object versions which the source entity uses for this
PALM_Put from the commstate table, and send them to this target process.™*)

29: Send the object part locations to the target process.*)

30: end for

Explanatory comments on Alg. 20:

Step 5: The driver only continues to serve this PALM_Get when all processes of the target entity
have announced it. Since the target processes wait for the answer in step 6 of Alg. 16, this
implies a synchronization among the target processes.

Step 9: Since the target processes are waiting for the answer in step 6 of Alg. 16, this makes
the target wait until a matching PALM_Put occurs.

Step 13: This is necessary to let the target entity continue since it is waiting for the answer in
step 6 of Alg. 16.

Step 22: This answer is received in step 6 in Alg. 16.

Step 23: The last known versions are sent in step 7 of Alg. 16.

Step 24: The update list is received in step 8 of Alg. 16.

Step 26: The new version is received in step 10 of Alg. 16.

Step 28: The chosen versions are received in step 13 of Alg. 16.

Step 29: The object part locations are received in step 32 in Alg. 16.

Algorithm 21 Enhanced driver reaction on the PALM_Get connection request in step 40 of Alg.

16
1: if the source is the buffer then
2: if the object is stored in the driver then
3: Send the object part to the target process.(*)
4: else
5: Determine which memory slave has the object and order it to send the object part to
the target process.*)
6: end if
7: else the source is not the buffer
8: if the object part is served from the mailbuf then
9: if the object is stored on the driver then
10: Send the object part to the target process.*)
11: else
12: Determine which memory slave has the object and order it to send the object part
to the target process.™*)
13: end if
14: end if
15: end if

7

4 Dynamic parallel communication mechanism in OpenPALM

Explanatory comments on Alg. 21:
Steps 3, 5, 10 and 12: The object part is received in step 46 or 48 of Alg. 16.

4.6 Realization of the concurrent operator splitting scheme
using OpenPALM

In this section, we review our work [107] on the implementation of the concurrent operator split-
ting scheme for the natural convection scenario presented in Sec. 3. Our goal is to illustrate the
use of OpenPALM to realize the concurrent operator splitting. This allows to actually propagate
the fluid model and the temperature model concurrently while synchronizing only at global time
steps. Both models are internally parallelized by means of individual domain decompositions on
separate sets of processes. This allows to adapt the allocation of computing resources for the
models to meet their individual computational demands. We recapitulate the performance tests
conducted in our work [107] showing that the concurrent operator splitting can yield superior
parallel efficiency compared to a monolithic solution scheme.

Figure 4.7 shows a schematic of the realization of the concurrent operator splitting using Open-
PALM. The coupling results in a multiple program, multiple data (MPMD) setup where the two

OpenPALM
I MPMD I
fluid dynamics temperature evolution
model model
forn=0.1,.... N forn=0,1,.... N

concurrent
operator solve one timestep solve one timestep
splitting

Figure 4.7: Schematic of the realization of the concurrent operator splitting using OpenPALM.
The coupling results in a multiple program, multiple data (MPMD) setup where the
two models and the OpenPALM driver are each compiled into their own executable
and run on separate sets of processes. Both models are internally parallelized using
individual domain decompositions. Figure taken from [107].

78

4.6 Realization of the concurrent operator splitting scheme using OpenPALM

1008 —
- 60
—
80
50 _—-\\.______—-I-—____.
60 40
"—_——*f’/ .
40
20
20 —&— fluid model —&— fluid model
—&— temperature model 10 =4=temperature model
o — single executable o — single executable
55+8+1 56+7+1 57+6+1 58+5+1 11+16+1 113+14+1 115+12+1 17+10+1 119+8+1 120+7+1
(a) 64 processes in total. (b) 128 processes in total.
50 60

== fluid model
45 50 —#— temperature model
40 — single executable
35 paN /
40
% —
25 30
20
15 20

== fluid model
10

—4— temperature model 10
5
= single executable
0 o
235+20+1 239+16+1 240+15+1 241+14+1 242+13+1 243+12+1 470+41+1 480+31+1 488+23+1 490+21+1 496+15+1 500+11+1
(c) 256 processes in total. (d) 512 processes in total.

Figure 4.8: Runtime per computed time step [sec] for the fluid model (blue) and the tempera-
ture model (red) in the concurrent operator splitting scheme with varying parallel
configurations, and of the monolithic solution scheme (black) for comparison. The
parallel configurations are indicated as a+b+1 where a and b are the number of pro-
cesses of the fluid and of the temperature model, respectively, plus one OpenPALM
driver process. The total number of processes is kept constant within each test series.
Figures taken from [107].

models and the OpenPALM driver are each compiled into their own executable.

We performed runtime performance tests with varying parallel configurations. Fig. 4.8 shows the
runtime results for computing one time step using the concurrent operator splitting scheme with
varying parallel configurations. The parallel configuration is indicated as a + b+ 1 where a and b
are the number of processes used for the fluid model and for the temperature model, respectively,
plus one OpenPALM driver process. The total number of processes is kept constant within each
of the test series using a + b + 1 = 64,128,256,512. The fluid model runtime is indicated in
blue, and the temperature model runtime in red. For comparison, we indicate the monolithic
scheme’s runtime using the total number of processes in black. In all cases, the time needed
for data transfer between the models in the concurrent operator splitting tests was negligible.
Therefore, the global runtime of concurrent operator splitting computations was equal to the
runtime of the slower model. The computational demand of the fluid model is much larger than
that of the temperature model. This is due to the nonlinearity of the fluid model, and due to
the larger individual model problem size. Therefore, we used considerably more processes for the
fluid model than for the temperature model in the concurrent scheme. In all four test series we
achieved smaller runtimes for the concurrent operator splitting scheme than for the monolithic
scheme by appropriately allocating processes to the models. For the parallel configurations using
64 processes in total (Fig. 4.8a) and 256 processes in total (Fig. 4.8¢c), the runtime benefit was
only moderate. The 128 processes in total configuration (Fig. 4.8b) yielded considerable speedup
of the concurrent over the monolithic scheme. Remarkably, the 512 processes in total concurrent

79

4 Dynamic parallel communication mechanism in OpenPALM

configuration (Fig. 4.8d) yielded tremendous speedup over the monolithic scheme. However, the
concurrent tests showed non-monotone behavior of the model runtimes, and in particular for the
fluid model, when shifting processes between the models. The reason is that the efficiency of
the block-Jacobi incomplete LU decomposition preconditioner used for the GMRES linear solver
[93] depends in a non-monotone way on the domain decomposition of the models. This evoked
the variation of the runtime results. Nevertheless, we proved that the inherent parallelism of
the concurrent operator splitting scheme on the level of the coupling algorithm can be exploited
to improve the overall parallel performance compared to monolithic schemes. Furthermore, we
demonstrated that OpenPALM is a suitable tool to implement the concurrent scheme using
individually parallelized models.

80

5 Biogeochemistry-hydrology coupling
for nutrient cycle simulations

This chapter is dedicated to the modeling and implementation of the biogeochemistry-hydrology
coupling which we use for nutrient cycle simulations. First, we outline the role of nutrients and
related biogeochemical processes in ecosystems. As indicated in Chap. 1, we regard those chem-
ical elements as nutrients which are essential for the growth of living organisms. Carbon (C),
oxygen (O), hydrogen (H) and nitrogen (N) are needed in the largest portion among all nutri-
ents [32, 43]. The predominant appearance of these nutrients is in gaseous form like molecular
nitrogen (N3) or carbon dioxide (COs), in mineral form, in inorganic ion form like ammonium
(NHJ) or nitrate (NOj3), and in organic form as part of diverse N and C compounds. Nutrient
cycling denotes the movement of nutrients between the compartments of ecosystems and their
transformation by geochemical and biological processes [78]. C and N cycles in agricultural
soils supply nutrients for vegetation and crop growth, and affect groundwater and surface water
eutrophication, and greenhouse gas (GHG) emissions such as nitrous oxide (N2O), COq, and
methane (CHy). Among these GHG emitted from soils, N2O has by far the largest 100-year
global warming potential (GWP-100) of 265, while CH4 has a GWP-100 of 28 [33]. The global
warming potential is an indicator for the capacity of a chemical compound to retain heat in
the atmosphere. It is defined relative to COo, whose GWP is set to 1. Nitrous oxide is an
intermediate product of the denitrification pathway of the nitrogen cycle [69, 23]. Denitrifica-
tion denotes the reduction of nitrate and nitrite (NO;) to molecular nitrogen by microbes, with
the intermediate products of nitric oxide (NO) and N2O. Denitrification is closely connected
to the nitrification pathway, which denotes the oxidation of ammonia (NHsz) and NHJ to NO3
by microbes, with the intermediate products of hydroxylamine (NH2OH) and NO; . The main
processes contributing to the nitrification pathway

NH3;/NHf — NH,OH — NO, — NOj,

are heterotrophic nitrification, which includes the conversion of organic N compounds to NHz /NH;,
autotrophic ammonia oxidation and autotrophic nitrite oxidation. The main processes contribut-
ing to the denitrification pathway

NO; — NO; — NO — N;O — Ng,

are coupled and distinct nitrification-denitrification, anaerobic or micro-aerobic denitrification,
co-denitrification with NO/N3O, and nitrate ammonification [14]. Nitrification requires aerobic
conditions, i.e. the presence of O,, since it uses oxygen as electron acceptor for oxidizing the
nitrogen. In contrast, the denitrification processes stated above occur under anaerobic condi-
tions, i.e. in absence of Os. Some microbes use denitrification for respiration under anaerobic
conditions, where nitrogen is reduced and thus takes the role of the electron acceptor instead of
oxygen. Another important process that can occur under anaerobic conditions is methanogenesis,
i.e. the microbial formation of CH, by decomposition of organic matter with the intermediate
product COs [23], e.g. the decomposition of acetic acid on the pathway

83

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

This brief outline of some pathways contributing to the carbon and nitrogen cycle in terrestrial
ecosystems indicates the complexity of the biological, geochemical and hydrological processes in-
volved in production, consumption and transport of nutrients in soils, and the fluxes of nutrients
between compartments. Greenhouse gases such as NoO and CH, are produced in soils mainly
as intermediate or final result of microbial activity in de-/nitrification and de-/composition pro-
cesses. Furthermore, inorganic nutrient forms such as NOj3 play an important role since plant
uptake of nutrients is mostly only possible in ion form [78]. However, excess nitrogen availability
in soils can result in ground water and surface water eutrophication due to nitrate leaching [83],
and in increased emissions of nitric oxide and nitrous oxide. In fact, agricultural soils have been
identified as major anthropogenic sources of surplus nitrate input to water bodies, of NoO green-
house gas emissions, and also as a considerable source of CH, emissions. Yet, the quantification
of these effects is difficult. Measurement techniques used to assess trace gas exchange between
soil and atmosphere are the traditional closed chamber method, an advanced chamber technique
called fast box, and eddy covariance (EC) techniques in conjunction with tunable diode laser
or quantum cascade laser spectrometers [14]. Closed chambers are easy to use and inexpensive,
but only cover a small site. Spatial and temporal variability is hard to assess with traditional
closed chambers due to their long measurement cycles of 30-60 minutes. Fast box measurements
can be taken in much shorter cycles of seconds allowing for good temporal resolution. Spatial
coverage can be improved with the fast box method by relocating it between measurements,
which is however manpower intensive. Eddy covariance techniques are able to measure NoO
fluxes for areas larger than 1 hectare (ha) [105]. A combination of chamber and EC measure-
ments can be used to obtain both the landscape-scale trace gas fluxes for estimating emissions
and local measurement data to study site-specific processes [14]. However, indirect effects due
to the transport of nutrients are hardly assessable with measurements. Such indirect effects may
appear with large spatial and temporal extent, but they may nevertheless contribute significantly
to GHG and nutrient budgets. Furthermore, the strong influence on the nutrient cycles exerted
by environmental factors such as temperature and moisture, by soil and vegetation properties,
and by land management can result in a high variability of microbial activity. This gives rise
to “hot spots” and “hot moments”, i.e. events of greenhouse gas emissions or nutrient leaching
which are highly localized with respect to space and time.

Understanding the complex interactions of biogeochemical processes, assessing nutrient fluxes on
various spatial and temporal scales, estimating impacts of current and projected future land use,
land management and climate conditions, and developing mitigation strategies are primary goals
in ecosystem research. As indicated above, field measurement techniques are in many situations
useful for investigations. However, they can be cost and manpower intensive, and limited in
spatial and temporal coverage and resolution. For these reasons, it is often difficult to capture
indirect effects, hot spots and hot moments with measurements. In particular, tracing these
effects back to determine their origin and evolution is hardly possible. Furthermore, prediction
of ecosystem feedback on changes in land use, land management and climate, and the evaluation
of mitigation strategies to reduce greenhouse gas emissions and water eutrophication are often
out of the scope of measurements.

Modeling and numerical simulation have been proved to be appropriate approaches to address
these issues. Considerable research has been dedicated to develop biogeochemical process mod-
els with varying scope and complexity [40, 17, 91, 87, 69, 59, 50, 34, 36]. Traditional modeling
approaches focus on the nitrogen and carbon cycle and related microbial activity. However, bio-
geochemical models are typically one-dimensional, representing a single site soil column. Lateral
fluxes are ignored in such models, although they contribute significantly to nutrient cycles. In

84

5.1 Biogeochemical modeling

particular, topographical effects on hydrology and lateral transport of nutrients are neglected.
Efforts to overcome these shortcomings include the extension of existing hydrological models with
simple biogeochemical process descriptions as e.g. in [56, 29], or one-way coupling of hydrology
models to biogeochemical models, e.g. [47]. Although aforementioned works present progress in
simulating nutrient cycles and the related biogeochemical and hydrological processes in terrestrial
ecosystems, it still remains a challenging task. All four issues related to multiphysics simulations
which we identified in the introduction are involved. First, the models need to resolve short-
term processes like surface water runoff, infiltration or greenhouse gas emission hot spots on the
scale of days, hours or even minutes, as well as long-term processes like emission and nutrient
inventories on the scale of years or even decades. Second, hydrological models are often given
in terms of partial differential equations, e.g. by means of the Richards equation for subsurface
flow and kinematic wave equations for overland flow, and biogeochemical models are typically
given in terms of functional relations of nutrient availability, microbial activity and other factors.
Therefore, the models demand for different numerical treatment. In particular, the definition
of biogeochemical models has usually not continuous but discrete form in the first place, both
with respect to space in terms of soil layers and with respect to time to adhere to the mostly
fixed time intervals of the given input data series. Third, the models often demand for different
computational resources due to their different mathematical nature. Fourth, existing simulation
codes need to be reused to maintain their well-tested capabilities and due to the prohibitive effort
for re-implementing them for the purpose of model coupling. Together, these four issues form
a major obstacle impeding comprehensive nutrient cycle simulations. Common approaches are
hence often limited in spatial or temporal extent or resolution, or model complexity.

To address this complex of problems, we recently proposed an advanced approach which uses a
bidirectional coupling of the process-oriented biogeochemical model LandscapeDNDC [36, 55, 24]
and the hydrology model Catchment Modelling Framework (CMF) [54]. This coupling of ded-
icated models addressing biogeochemistry and vegetation (LandscapeDNDC), and hydrology
(CMF) has been demonstrated to allow for previously unfeasible simulations of landscape-
scale scenarios addressing greenhouse gas emissions and nitrate leaching from agricultural soils
[108, 64, 92]. We use the OpenPALM coupler tool and our new dynamic distributor develop-
ments described in Sec. 4.5 to realize the model coupling. This allows us to reuse the existing,
well-established simulation codes of LandscapeDNDC and CMF in our multiphysics simulations.
In fact, their different mathematical nature yields largely different demands for numerical treat-
ment and computational resources. Our composed one step schemes described in Sec. 2.4.1 and
their implementation using OpenPALM to couple the models allow us to use high performance
computing appropriately tuned to the individual model demands.

In Sec. 5.1 and 5.2, we outline the biogeochemistry and the hydrology model, respectively. For
the multiphysics simulations we use a hybrid operator splitting scheme derived from the con-
secutive and concurrent scheme proposed in Sec. 2.4.1. We present this hybrid scheme and its
implementation using OpenPALM in Sec. 5.3. Section 5.4 is dedicated to the revision of our
previously published contributions and the new advances in this work.

5.1 Biogeochemical modeling

Biogeochemical modeling is based on extensive efforts to capture the complexity of ecosystem
dynamics. Stating all involved processes and their modeling would clearly exceed the scope
of this work. Instead, we give the exact references demonstrating important developments of
ecosystem models, and where equations and parameterizations of the basic processes related to

85

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

the terrestrial C and N cycle and trace gas emissions can be found.

A model definition for microbial respiration and denitrification in homogeneous soil is given in
[60, p. 338-340]. The model includes microbial growth rates, glucose carbon change rates, COx
production, electron acceptor change rates of Oz, NO3', NO;, NoO and Ny, nitrate assimilation,
and C and N mineralization and immobilization. Model parameters are derived from exper-
iments. In [59], an extension of that model is presented which takes anaerobiosis, soil water
dynamics and transport of dissolved C and N compounds into account. The model is tailored to
represent the simulation counterpart to soil aggregate experiments.

An abstraction of NO and N,O formation from the underlying biogeochemistry is developed in
[69, p. 8, 18]. The authors state that the regulation of N-trace gas production and consumption
in soils is well-understood on the cellular level in terms of substrate availability. However, the
authors stress that the impact of ecosystem properties and factors on the relative proportion
of end products of biogeochemical processes is less well-understood. They introduce a process-
oriented approach where the ecosystem regulation of nitrification and denitrification is modeled
by means of process pipe abstractions with “leaking” N-trace gas emissions.

[17, p. 9762, 9764, 9766f.] presents the basis of the widely-adopted “DeNitrification / De-
Composition” (DNDC) model system. It comprises sub-models for thermal-hydraulic flows, for
(de-)nitrification, and for (de-)composition. Using the process-oriented approach mentioned
above, the model system predicts temperature and moisture profiles from climate input data
which are driving the C and N biogeochemistry in agricultural soils. An extension of the DNDC
model system with a plant growth sub-model and cropping practice routines is presented in [16,
p. 239f.].

A refinement of microbial growth modeling is developed in [8, p. 1744-1747, 1750], where the
authors introduce the index of physiological state as a new state variable. This advanced model
is able to capture microbial transition between active and dormant state, priming action on the
decomposition of insoluble soil organic matter, and reduced efficiency of microbial biosynthesis
under N deficit.

Further advancement and specialization of the DNDC model system is presented in [15, p. 4373,
4376, 4378] for forest ecosystems, and in [61, p. 274-276] for agricultural ecosystems. The former
work describes the construction of the PnET-N-DNDC model system from the Photosynthesis-
Evapotranspiration (PnET) model [49], the DNDC model system [17], and a new nitrification
model. The main model innovation is the consideration of anaerobic micro-sites by means of the
anaerobic volume fraction of the soil, which is termed an “anaerobic balloon in [15]. The second
work mentioned above ([61]) presents an advanced DNDC model system for agricultural soils
consisting of two main components. The first component comprises soil climate, crop growth
and (de-)composition sub-models, and the second component comprises (de-)nitrification and
fermentation sub-models. This model system predicts soil environmental factors such as tem-
perature, moisture, acidity, oxidation/reduction potential and substrate concentrations. Based
on these factors, biogeochemical processes related to the N and C cycles, and in particular NO,
N>O and CHy4 fluxes, are calculated.

5.1.1 LandscapeDNDC

LandscapeDNDC is a process-based ecosystem simulation framework [36]. It represents a gen-
eralization of the agricultural and the forest DNDC model system. LandscapeDNDC combines
modules for plant growth, micro-meteorology, water cycling and carbon and nitrogen biogeo-
chemistry for forest, arable, and grassland ecosystems. It was successfully used in various stud-
ies, e.g. plant growth [106], water balance [44], soil respiration and carbon exchange [70], trace
gas emission [24, 53] and NOj leaching [83, 53]. The key model objects of LandscapeDNDC are

86

5.1 Biogeochemical modeling

one-dimensional “kernels” representing a single soil column. Multiple kernels can be arranged
in a lateral grid to extent the model application domain from site to regional scales. Vertical
discretization is done by means of subsurface soil layers and above ground vegetation and canopy
layers. Kernels can be configured to represent specific soil properties, vegetation structure and
microbiology and the related biogeochemical processes by attaching the corresponding process
modules. The water cycle module of LandscapeDNDC uses a tipping bucket approach which
models the vertical downward seepage of soil water through the layers. LandscapeDNDC does
not account for any lateral exchange.

Seeking to capture the high complexity of natural ecosystems, LandscapeDNDC comprises a
multitude of state equations to model the various involved processes. Here we explicitly state
only the most important model equations related to microbial nitrification and denitrification,
and to the N2 O greenhouse gas emissions. The presentation given here follows our previous work
[108]. The derivation of these equations, and of the other model components, can be taken from
the references given at the beginning of the section.

To address the high sensitivity of nitrification and denitrification on the presence or absence of
oxygen, LandscapeDNDC uses the anaerobic volume fraction f,, which is modeled as

fav = eXP(_ V aC(OQ» 3

where @ > 0 is a scaling parameter and ¢(O3) is the concentration of oxygen. Generally, we
denote the concentration of some chemical species as ¢(-). The main steps of nitrification are
the oxidation of ammonium (NHJ) and ammonia (NHj) to nitrite (NO;), and the oxidation of
nitrite to nitrate (NOj3). The nitrification rate is
2f, —(T,9)
9:c(NOy) = k[NO3 | — a“f% (1 fav)
fNO2— (pH) fNO2_ (c(NH]))

where k[NO3 | is a model parameter, fact,No; (T,0) is an activity factor of NO; -producing mi-
crobes which depends on temperature T and soil water content 6 as introduced in [8], and
fNO; (pH) and fNo; (c(NHJ)) are factors modeling the impact of acidity and ammonium con-
centration on the nitrification rate. The formation of NoO as a byproduct of the nitrification
pathway is modeled as

0¢¢(N20) = E[N2O] fact,N,0 (T, 0) fx,0(pH)0;c(NO2) .

The modeling of denitrification, i.e. the reduction of NO3 via NO;, NO and N2O to Ng, follows
[60]. To unify the notation for the denitrification pathway, we denote the set of reducible nitrogen
compounds as Nyeqa = {NO3,NO;,NO, N;0}. The denitrification rates are then modeled as

_ BN) e))
U = = (T.0) (55 + MV ZR) 1o dis v oI (O + 81)

for N' € Niea, where again k[-] are model parameters, fir ¢ are factors modeling the impact of

carbon availability, and
cN)= >).
NENred

The term d;¢(N ™) denotes the turnover rate of the next higher reduced N compound, e.g. NO3
is the next higher reduced N compound from NOj . The vertical diffusion of volatile species V
through the soil matrix depending on water content and temperature is modeled as

Bre(V) = 8, [Dv(l — g)ipre (;;) azc(V)} ,

87

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

where n is the soil porosity, Ty is the reference temperature, Dy, is the species’ diffusion coefficient
for =0,n =1, T =Ty, and vy, v, vz are model parameters. The vertical partial derivatives
are approximated using first order finite differences between adjacent soil layers.

This brief outline of some of the equations making up the LandscapeDNDC model system demon-
strates its mathematical nature with time dependent state variables including species concen-
trations, microbial biomass and their active and dormant fractions, and water content. The full
model definition including the components which are not presented here, e.g. the vegetation,
water and micro-climate models, or the (de-)composition and other processes, can be taken from
the references given above. Overall, the underlying mathematical form is a system of ordinary
differential equations. The model states are discrete in space since they are associated to soil
layers, and dependent on time.

As we discussed above, we are coupling LandscapeDNDC with the dedicated hydrology model
Catchment Modelling Framework (CMF) to account for lateral exchange of nutrients. Therefore,
we disable the water cycle module of LandscapeDNDC and leave all calculations related to the
movement of water and transport of dissolved substances to the hydrology model. The shared
state variables of CMF and LandscapeDNDC are the soil water content and the concentrations
of solutes. We use w to denote the shared water states, and s to denote the shared solute states.
Conceptually, the action of the biogeochemical model on the shared states can be written as

O(w,) = foge(w, s, 1), (5.1)

where fpec denotes the functional representation of the model action on the shared state vari-
ables. Note that, although we disable the water cycle module of LandscapeDNDC, it still acts
on the water states through the calculation of ice in the micro-climate module. However, Land-
scapeDNDC does neither expose its shared model states (w, s) in the sense of vectors to the user,
nor the functional representation fig of its action on them. Instead, LandscapeDNDC exposes a
function for propagating the model system by one time step. The time step size must be chosen
as an integer fraction of 24 hours due to internal restrictions on the preprocessing of input data.
The propagation is computed by means of a quasi steady state approximation (QSSA). Fast
processes are assumed to attain equilibrium instantaneously, and corresponding states are thus
approximated from algebraic relations. Slower processes are integrated by means of the explicit
Euler method. Using the notation introduced in Sec. 2.4.1 for composed one step methods, we
denote this biogeochemistry integrator by Fis. and the corresponding procedure by $oee. The
computation of one time step for the biogeochemistry model then reads

(ﬁ)n, gn) = (I)Fbgc (fbgca tna tn—la Wnp—1, Sn—l) . (52)

We denote the solution for the new time instance with the tilde symbol to emphasize its role as
preliminary result used in a concurrent operator splitting scheme to form the global result.

5.2 Hydrological modeling

We consider porous media flow in the subsurface soil and free surface flow above the ground,
including advection of dissolved substances. Our models are based on the equation of continuity
for the water and for the substances, respectively:

o0b+V-q=v (5.3a)
Ot(ch) +V - (cq) =1 (5.3b)

where c¢ is the concentration of any dissolved substance in the water, and « and 7 represent any
sources or sinks of water and substances. € and q have different meaning for subsurface and

88

5.2 Hydrological modeling

overland flow, which we outline in the following paragraphs.

Overland flow

For overland flow, we label all terms with an “o” superscript. § = 6° in (5.3a) and (5.3b) means
the volume of water per unit area, i.e. water height above ground, and q = q° means volume
of water crossing horizontal unit width in unit time. We treat overland flow as a special case of
an open channel flow, which is often described with a kinematic wave approach. The mean flow
velocity is given by v° = q°/6°. Equating gravitational force pgSA(6°)L and frictional force
fpv?PL yields
o 1
Y= (&(9)) * _ VRS

fP
with cross-sectional flow area A(6°), channel length L, whetted perimeter P, friction coefficient
f, slope of the energy line S, downstream flow speed v, and C' := \/g/f, R := A(6°)/P [62]. R
is also known as hydraulic radius, and the slope of the energy line S is obtained as the derivative
of the overland water hydraulic head z + 6° in direction of the flow, where z is the elevation of
the ground with respect to a given reference. Based on the assumption that friction varies with
R as f o« R~/3, Manning derived the formula

v= VIR (5.4)
nm

where ny is a coefficient describing the roughness of the flow bed, also called “Manning’s n”
[20]. The kinematic wave approach thus yields the flow in downstream direction as

1 5
¢ = —V/56°% .
nM

Subsurface flow

For the subsurface porous media flow, we label the terms with an “s” superscript. According to
[12], porous media is characterized through the following properties:

e The space is occupied by a number of phases. A phase is defined as that portion of the
space which is occupied by a material with uniform properties, and which is separated from
other materials by a well-defined interface.

o At least one of the phases is solid.
e The phases are distributed throughout the whole space.

Clearly, the solid phase in our case is the soil. The voids or open spaces between the solid soil
particles are called pores. The pore space is occupied by a wetting phase and a gas phase, in
our case water and air. A common assumption in hydrology is that the gas phase pressure is
uniform in space. Therefore, the two-phase model decouples, and often only the water flow is of
interest [45]. An important porous media characteristic is its porosity

5 pore space in V
= 1m _—
" vol(V)—0 vol(V) ’

89

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

which is to be understood in terms of a density as a representative pore ensemble average in the
soil. The volumetric water content of the soil #° is defined similarly as

. volume of water in V'
0° = lim
vol(V)—0 vol(V)

Clearly, 6° < n since the maximum soil water content is achieved when the pores are entirely
filled. This state is called full saturation, where 8° = n by definition.

With respect to the equations of continuity 5.3, we write § = #° and q = q° meaning volumetric
water content of the soil and volumetric flux, i.e. volume of water crossing unit cross-sectional
area in unit time, respectively. According to Darcy’s law (1856) for saturated flow in porous
media, the volumetric flux is related to the total soil water potential ¢}, by

@ = KV,

where K denotes a proportionality factor known as hydraulic conductivity [12, 97]. Buckingham
postulated in 1907 that Darcy’s law is also valid in the case of unsaturated soils [75], where the
hydraulic conductivity becomes a function of the water content K = K (6°) yielding [12]

@ = ~K(6)VY, .

Using this flux law, Richards derived in 1931 from (5.3a) the equation
K =V - [K(0%)(Vom + pge.)| =, (5.5)

which is known as the Richards equation [90]. v, denotes the matrix potential of the soil, and
the total soil water potential is ¢f = ., + pgz. We use the van-Genuchten-Mualem model
[73, 104] to approximate the soil water retention curve 6°(1,,) and the hydraulic conductivity
K(6°).

Interface condition between overland and subsurface flow

At the interface I's between subsurface and overland flow, water may infiltrate or escape the
soil. Since the free surface overland water flow is explicitly included in our hydrology model, we
can treat infiltration by means of Richards approach, thus avoiding limited flux boundaries and
switching conditions. The infiltration/exfiltration flow depends on the difference of the hydraulic
head across the soil surface I's. The overland water hydraulic head is h° = 6° + z. According to
Richards’ approach we model the flow gs through the soil surface in upward vertical direction as

s = —K(6°Irs)(h° = B*|rg) = =K (6°[rs)(6° — Ymlrs) , (5.6)

where 6°|py, h®|rs and ., |rg are the traces of the soil water content, of the soil water hydraulic
head, and of the matrix potential on the soil surface I's, respectively. The soil surface I'g is
on the one hand the overland flow domain, and on the other hand the upward boundary of the
subsurface flow domain. Therefore, the infiltration/exfiltration flow ¢gg through I's represents
source or sink with respect to the overland flow, and a Neumann boundary condition with
respect to the subsurface flow.

The advection of solutes must take the direction of the flow into account. For infiltration, the
solute flow is determined by the concentration in the overland water, while for exfiltration it is

90

5.2 Hydrological modeling

determined by the concentration in the soil water. We denote by ¢(gs) the concentration at the
origin of the flow as

¢ ifgs >0,
clgs) = ¢ ¢ ifgs <O,
0 else.

Therefore, the solute flow through the soil surface I's in upward vertical direction is ¢(gs)gs.-

Boundary conditions

In the neighborhood Iyt of the lowest point on the boundary, we impose boundary conditions
which ensure that water may flow out of the area of study, but not into it. For the overland flow,
we prescribe a slope Sout pointing downwards from I'S,, := 't NI's. According to Manning’s law
(5.4), this causes an overland outflow 3, whenever 8° > 0 holds at I'S,;, or no flow otherwise,
ie. Q24 = 0. For the subsurface flow, we prescribe a Dirichlet condition on the water potential
Yi.- On all other parts of the boundary, denoted I'y and I'§ := I'gNI'g, we prescribe the no-flow
homogeneous Neumann conditions q°/* = 0. No boundary conditions for the concentrations ¢°/3

need to be prescribed on I'yyt and on Iy, since no inflow can happen through these boundaries.

Meteorological and environmental factors

We model the precipitation as a source term 7pyec for the overland flow. In contrast, evaporation
acts as a sink of water. Depending on the state of the system, it may happen either with ponding
water on the soil surface, or in near-surface soil layers without ponding water. We denote the
corresponding sink terms as yg,,,(0°,0%) and 5, (0°,6°), respectively. Finally, the source/sink
terms Ypgc(6°) and npec(6°, ¢®) for the subsurface system represent the net result of the biogeo-
chemical processes in the soil with respect to water and solutes, respectively.

91

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

5.2.1 Hydrology problem formulation

Summing up the above considerations, we state the hydrology problem as the following system

of partial differential equations:

ateo +V- qo =gqse; + Vprec + ’ygvap(eo’ 98)

at(coeo) +V- (Coqo) = C(Qs)Qsez + CprecVprec

O0° + V- @® = Voyap (07, 0°) + g (6°)
O(0°) + V- (q®) = Nige(0°, ¢°)

q° = gse.
q” = c(gs)gse

q° = Qg

wi} = (S>ut

q° =

qS =

0)=0

0)=0

(0) =65
0)=0

5.2.2 Discretization

We use a cell-centered finite volume method for the spatial discretization of (5.7). It is based
on a grid Q0 = Uf\il C; of N*® non-overlapping polyhedral cells C; (i = 1, ..., N®) covering the
domain . Let N° be the number of cells in the top layer which have a face F; (i = 1,..., N°) at
the soil surface. The vertical projection of F; onto the plane z = 0 is denoted A¢. The volume

on T's x (0,T)
on I's x (0,7
in Q x (0,7

in 2 x (0,7T)
on I's x (0,T)
on I's x (0,7
on I'¢, x (0,7)
on Toue % (0,7)
on I'j x (0,7)
on I'g x (0,7)
on I'g

on I'g

in ©

in

of overland water on face F; and the volume of soil water in cell C; are

0°do (i=

o _
wi—

1,...,N°) and

AO
wi = / *dx (i=1,...,N®), respectively.
Ci

s';":/ c®0°do (i =
A3

sj:/ cPdr (i=
C;

i

[e]

— ifwy >0
; and ¢ =

<

=0

0, else

1,...,N°) and

s
)

s ?
?

0, else

g

Analogously, the amount of solute on face F; and the amount of solute in cell C; are

1,...,N®), respectively.

The average concentration of the solute in the overland water on face F; and in the soil water in

, respectively.

5.2 Hydrological modeling

Integrating Eq. (5.7a) over a face F; and applying the divergence theorem [41] yields

oywy + / n-q°ds = / [n - dg + Yprec + ’ygvap(Qo, 95)} do .
OF;

i i

Let I denote the index set of the adjacent faces to F;. The boundary integral above turns into
a sum of fluxes to the adjacent faces

[omeatds= Y ay

JEI?

where ¢7; denotes the volumetric flux from F; to F}; over the edge 0F; N 0F; with cross-sectional
width AP;. According to Manning’s formula (5.4), the flow ¢f; is taken as

o sign(z — z;) o\ 3
45 = 7]\/ Sij (hz’j> (5.8)
nm
|h7 —h3]
V(@wi—z;)2+(yi—y;)?
potential difference, between the faces F; and F}, and

where the S;; = is the slope of the energy line, i.e. the overland water

wy/vol(A9) if z; > z; ,

ho = w? /vol (A hi; =
i = Wy /vol(Z)) J {w;?/vol(A?) if z; < Zj

is the average water height on the face where the flux originates from. For the advection of
solutes, a similar treatment of Eq. (5.7b) yields

/ n(Q) ds = 3 e85 A2,
oF: JEI?

where ¢f; is defined as

¢ ifgl >0,
g = ¢ ifgy <0,
0 else,

which is the average concentration of the solute on the face where the flux originates from.
We skip the details of the finite volume discretization for the subsurface flow since it uses the
same techniques. We only give the approximation of the flow according to Eq. (5.5)

2 hs — b
L/ K(W?)+1/K(W?) [Ix; — %2

05 = (5.9)

where .
Wi = %

* volume of the pore space in C;

is the wetness and h{ = ,,, (WF) + pgz; is the average water potential in cell C;.
At the interface I's, let Cj ;) be that cell of Q; which has F; C I's as a face. The flux through
F; is approximated as

i) B~ (W)
1/Kgat + 1/K(Wl:(i)) 0.5 x height(Ck(i)) ’

qs)i = (510)

93

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

where Kyt denotes the saturated conductivity of cell Ck(i) . The solute concentration is denoted

c? if g5 <O,

csi = CZ(i) ifgs; >0,

0 else .

The spatially discretized system reads

WP+ Y ahAG =57 i (0,7) (i=1,...,N°), (5.11)
JEI?
8+ Ay =00 i (0,7) (i=1,..,N°), (5.12)
JEI?
Wi+ YA =5 i (0,7) (i=1,..,N%, (5.13)
JEl;
S+ eyaAy =0 i (0,7) (i=1,...,N%), (5.14)
JEI?
wy(0) = w7 s s2(0) = 550 (i=1,..,N°), (5.15)
wi(0) = (R s3(0) = 570 (i=1,..,N%), (5.16)

where the terms on the right hand sides of Egs. (5.11) - (5.14) are

Vi = qs,i A7 + / Yprec T 7§vap do ,

i

77;‘) = CS,iQS,iA? + / CprecYprec do

i

715 = / 'Y:vap + rybgc dO’)

i

77: :/ Thgc do .
F,

i

For simplicity, we introduce the following short-cut notation for the spatially discretized system
(5.11) - (5.14):
Oi(w,) = fuya(w,s,t) in (0,7, (5.17)

where (w, s) = (w°, w®, 5°, 5°) € R?N°+2N" represents the vector of water and solute states, and

B Ay =1
jEI?
7 -3 a4y (i=1,..,N%
s, 5,1 -
hyd(W, S, 1) = B .
=Y Ay (i=1,...,N°)
jer?
T Y Ay (=1 N
jEI; |

denotes the complete right-hand-side function of the hydrology problem.

94

5.2 Hydrological modeling

Problem (5.17) is highly nonlinear due to the nonlinear dependency of the conductivity on the
soil water content [11, 73, 104]. Additionally, it shows multi-scale nature in terms of the tem-
poral scale of the various hydrological processes including subsurface flow under arid conditions,
steep infiltration fronts, and surface runoff upon intense rainfall. Therefore, powerful numerical
integration schemes are needed to accurately compute the temporal evolution of the hydrologi-
cal model. We use an integration scheme with a time step size control mechanism based on the
CVODE solver package for ordinary differential equation initial value problems [22, 42]. CVODE
is used in its stiff integration mode. In this mode, CVODE represents an implicit backward differ-
entiation formula (BDF) of variable order g between 1 and 5 with variable time step size. It uses
Newton’s method to solve the nonlinear system for each time step, employing preconditioned
Krylov subspace methods [93] for the solution of the linear system in each Newton iteration.
Inside the linear solver, the matrix vector product of the Jacobian matrix J = V fiyq and a
vector v, i.e. the directional derivative, is approximated by a finite difference as explained above.
We employ CVODE’s parallel vector data structure for evaluating the right-hand-side function
fnya and all internal computations of the CVODE routines. We denote the hydrology integrator
by Fhya and the corresponding procedure by $Fva g0 that the computation of one time step for
the hydrology model reads

(wwu gn) = (I)thd (fhyd7 tnv tn—la Wn—1, Sn—l) . (518)

Here we denote the solution for the new time instance with the hat symbol to emphasize its role
as preliminary result used in a concurrent operator splitting scheme to form the global result.

5.2.3 Implementation and parallelization of the hydrology model

We use Catchment Modelling Framework (CMF) [54] to realize the spatial finite volume dis-
cretization presented above. It is a C++ library for creating hydrological simulation models.
It offers a variety of classes and functions which represent the ingredients of a finite volume
discretization as proposed by Qu and Duffy [81]. Hydrological models are set up as a network
using node and connection objects within the soil. The nodes of the network represent the cells
of the spatial discretization in ;. They have the hydrological meaning of a water storage keep-
ing track of the water content. They are equipped with material specific constants, boundary
conditions and a position in the geometry. The connection objects represent the edges of the
network between adjacent cells. They contain the definition of the flux approximation, like the
Richards approximation for subsurface flow between adjacent cells, kinematic wave approxima-
tion for overland flow, and evaporation and rainfall on the soil surface.

For modeling the transport of dissolved substances like nitrate (NO3 ') or dissolved carbon (DOC),
CMF attaches solute storage objects to each water storage. The solute storages keep track of the
solute content in the cells. Both storage types provide methods to calculate the time derivative of
their state. For each cell C; € Qy, the corresponding water storage computes w;, and the attached
solute storage computes §; by iterating over the flux connections and evaluating the contribu-
tions using the flow approximations (5.8), (5.9) and (5.10). Thus, the CMF model calculates the
right hand side function finyq of Equation (5.17). Furthermore, it offers routines to transfer the
values of the hydrological model states from the CMF model core into vector form and vice versa.

For simulations with CMF, one usually employs a numerical integration scheme to compute the
temporal evolution of (5.17). The use of explicit schemes is straight forward since they rely on
evaluations of fhyq with known arguments from already computed past time steps. However,
explicit schemes may be restricted to small time step sizes and therefore possibly require a large
number of time steps resulting in a large number of function evaluations. Implicit schemes often

95

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

allow for larger time step sizes, but in general they require the solution of a nonlinear system
of equations to compute the new time step. The nonlinear system is often solved by means of
a Newton iteration, which approximates the solution in a sequence of linear problems involv-
ing the Jacobian matrix J(w, s,t) = V fuya(w, s,t). Since the Jacobian matrix is not available
in CMF, implicit schemes need to rely on a finite difference approximation of the directional
derivative J(w,s,t)[0,8] & +[fuya(w + had,s + hs,t) — foya(w, s,t)], again resulting in a large
number of evaluations of fiyq. Either way, a great portion of the overall computational effort for
CMF simulations is spent on function evaluations. Therefore, the target of our parallelization
approach for CMF is the parallelization of the function evaluation of fnyq and a corresponding
parallelization of the numerical integrator and the vector data structures.

Our concept to enable parallel computations on distributed memory machines using MPT [5] is
based on a horizontal domain decomposition of the computational domain €. Since the hydro-
logical catchment which we consider as our computational domain has by far greater extent in
the horizontal than in vertical direction, we use a two-dimensional horizontal domain decomposi-
tion. We assume that all grid cells are aligned in vertical direction, such that those cells which lie
upon another can be viewed as a vertical soil column. This conceptual lateral grid of vertical soil
columns is split into non-overlapping sub-domains Q, = J,. 1, Ci (r =1,...,p) according to the
number p of MPI processes, so that each MPI process is assigned to one sub domain. I, denotes
the index set of all cells C; belonging to sub domain £2,.. The partitioning is computed with the
help of the graph partitioner tool METIS [51] to obtain a balanced decomposition Q- (J/_, Q,
with a similar number of cells in each sub domain €2,.. The MPI processes have access only
to the cells of their own sub domain, and each MPI process is responsible for evaluating those
component functions of fiyq which correspond to any of its water or solute states.

Looking at the structure of the component functions which describe the temporal variation of
the water and solute state in a cell C' C €2, belonging to process r, it is necessary to compute
the water and solute fluxes between the cell C' and all adjacent cells. This is a straight forward
calculation if all relevant cells are accessible by the MPI process r, i.e. if all relevant cells be-
long to the same sub domain §2,.. However, if C lies at the sub domain boundary of €2, and
an adjacent cell belongs to the sub domain 2, of another MPI process s # r, fluxes across sub
domain boundaries have to be calculated. To account for fluxes between different sub-domains,
each sub domain is extended by ghost cells which mirror the adjacent cells on neighboring sub-
domains. MPI processes use the ghost cells in read-only mode to calculate the fluxes across sub
domain boundaries which contribute to the temporal variation of the water and solute states in
the cells of their own sub domain. Before the calculation, the MPI processes need to commu-
nicate the values of water and solute states at sub domain boundaries to keep the ghost cells
up to date. Such ghost update is necessary before any function evaluation performed by the
integrator. Therefore, the integrator is equipped with an appropriate communication function-
ality. It derives the communication pattern based on the adjacency of the sub-domains during
initialization. The actual transfer of ghost update values is implemented with the non-blocking
MPI send and receive routines MPI_Isend and MPI_Irecv, respectively. This allows to overlap
communication and computation in the integrator.

5.3 Simulation with OpenPALM using a hybrid operator
splitting method

Our goal is to employ the concurrent operator splitting scheme in order to benefit from its
inherent parallelism on the level of the coupling scheme by running both models concurrently

96

5.3 Simulation with OpenPALM using a hybrid operator splitting method

on separate sets of processors. However, care must be taken with respect to the feasibility of
the results in terms of their physical meaning. Even if both models safely respect the physics
individually, the concurrent operator splitting scheme may yield unphysical results. This is due
to the concurrent scheme’s nature of propagating both models independently and afterwards
combining their individual results as

(w'm Sn) = pliva (fhyd7 tn, tn_1, Wn_1, Sn—l) + Pl (fbgC7 tn,tn_1,Wn_1, Sn—l) - (wn—h Sn—l) .

The separation of the model propagation from the subsequent formation of the global result
implies the possibility of yielding results which are mathematically correct, but unphysical. In
our case, negative solute concentrations may result from the concurrent scheme if the sum of
transported and consumed solute from the hydrology and the biogeochemistry model during
one time step exceed the available amount before that time step. Provided that the continuous
multiphysics system and the individual model integrators are physically sound, the issue of
possible unphysical results of the concurrent scheme is clearly only a matter of the time step
size since it is first order consistent and convergent as we proved in Sec. 2.4.1. Therefore, one
possibility to prevent from unphysical results is to reduce the global time step size. However, we
refrain from varying the global time step size in our application for practical reasons. Instead,
we employ a hybrid form of the concurrent and consecutive operator splitting scheme which
also prevents from unphysical results. Provided that the continuous multiphysics system and
the individual model integrators are physically sound, the consecutive scheme maintains the
physical feasibility since it does not separate the model propagation from the formation of the
global result. Therefore, we use the consecutive scheme as fallback position to recompute a time
step whenever we encounter unphysical results from the concurrent scheme. This hybrid operator
splitting scheme is stated in Alg. 22.

Algorithm 22 Hybrid operator splitting scheme for the hydrology biogeochemistry coupling.

1: Given initial states wq, So.

2: forn=1,2,... do

3: Compute one time step for the coupled models using the concurrent operator splitting

scheme (wna sn) = éthdJergc (fhyda fbgm tna tn—l; Wn—1, Sn—l)-

if s, < 0 in some component then

5: Recompute the time step for the coupled models using the consecutive operator
splitting scheme (wy,, s,) = ®@FhwaFose(fy o froe by, ty1, Wp_1, Sn_1).

6: end if

7: end for

o

We designed two OpenPALM units, a CMF unit and a LandscapeDNDC unit, which implement
the hybrid operator splitting scheme of Alg. 22 from the hydrology model side and from the
biogeochemistry model side. The CMF unit is stated in Alg. 24, and the LandscapeDNDC unit
is stated in Alg. 23. Figure 5.1 shows the PrePALM graphical user interface with the coupling
scheme we used for our simulations. The blue and green vertical bars depict the two independent
execution branches of the application. The boxes sitting on the branches represent the units.
Each unit has a variety of plugs which are connected to each other. Plugs on the top side of a unit
represent input data, and plugs on the bottom side represent output data. By connecting the
plugs, units can communicate with each other. OpenPALM’s communication routines are used in
the units’ source code to perform the actual exchange of the data. As we run the hydrology model
with internal parallelization, the data to be exchanged is distributed among the corresponding
MPI processes on the hydrology side. OpenPALM derives the communication paths between the

97

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

Algorithm 23 LandscapeDNDC unit implementing the hybrid operator splitting scheme of Alg.
22 from the biogeochemistry model side. The LandscapeDNDC unit interacts with the CMF unit
in Alg. 24 by means of the OpenPALM communication routines.

Read input data and build the LandscapeDNDC project.
PALM_Put cells and topology information.
PALM_Put initial values wy, sg, vegetation parameters and climate data.
forn=1,2,... do
Compute one time step for the biogeochemical model to obtain
(W, $n) = ®Foee (foge, tny tn—1, Wn—1, Sp—1), where W,, = w,_; according to (5.2).
6: PALM_Put the solute states s, of the biogeochemical model, vegetation parameters and
climate data.
7: PALM_Get water and solute states wy, s,.
8: end for

individual processes of the units. This avoids to collect the distributed data on one process before
the communication, and to broadcast it afterwards. Instead, the data is transferred in portions
according the intersection of the individual data distributions in the units. The OpenPALM
driver and the two units are each compiled into their own executable. The simulations are then
carried out as a multiple program multiple data (MPMD) application. All input data necessary
for initializing and driving the simulations are read by the LandscapeDNDC unit from files. This
includes the geometric and topological information of the cells, the soil parameters, the initial
states of the models, the time series of climate and vegetation parameters, and the time series of
land use and land management actions. The LandscapeDNDC unit uses these data to initialize
and drive its biogeochemistry model computations. Furthermore, it sends the initialization and
driving data which are required by the hydrology model to the CMF unit. Table 5.1 lists the
initialization data transferred from the LandscapeDNDC unit to the CMF unit in the setup

Algorithm 24 CMF unit implementing the hybrid operator splitting scheme of Alg. 22 from
the hydrology model side. The CMF unit interacts with the LandscapeDNDC unit in Alg. 23
by means of the OpenPALM communication routines.

1: PALM_Get cells and topology information.

2: Build CMF project and determine domain decomposition.
3: PALM_Distributor_set the data distribution in CMF.
4: PALM_Get initial values wq, sg, vegetation parameters and climate data.
5: forn=1,2,... do
6: Compute one time step for the hydrology model to obtain
(wfu én) = @Fhva (fhyda tnytn—1,Wn-1, 5n—1)~
7 PALM_Get the solute states s,, of the biogeochemical model, vegetation parameters and
climate data.
8: Combine the states of both models as (wy,, $5,) = (Wn, 85) + (Wn, $n) — (Wp—1, Sp—1), Where
Wy, = Wp—1 according to (5.2).
9: if s, < 0 in some component then
10: Recompute the time step for the hydrology model to obtain
(wnv Sn) = (I)thd (fhyda tna tnflv @na gn)
11: end if
12: PALM_Put water and solute states w,,, S,.
13: end for

98

5.3 Simulation with OpenPALM using a hybrid operator splitting method

[]
CMF_branch
Start ON

NBE Ffou CMF
O m

unit_cmf
CMF Hydrology Model
CIeLd

Figure 5.1: Graphical representation of the coupling
algorithm in PrePALM.

phase of the simulation. From the LandscapeDNDC unit point of view, this is done by calling
the PALM_Put routine in steps 2 and 3 of Alg. 23. From the CMF unit point of view, the
corresponding calls to PALM_Get are in steps 1 and 4 of Alg. 24. During the time stepping
loop, the LandscapeDNDC unit computes one time step for the biogeochemical model in step
5 of Alg. 23, and then sends its new solute states and the climate and vegetation parameters
for the next time step to the CMF unit by calling PALM_Put in step 6. The data transferred
from the biogeochemistry model to the hydrology model is detailed in Tab. 5.2. The CMF unit
concurrently computes one time step for the hydrology model in step 6 of Alg. 24, and then
receives the solute states and the climate and vegetation parameters from the LandscapeDNDC
unit in step 7. Furthermore, the CMF unit combines the states of both models in step 8, checks
for possible negative concentrations and recomputes the time step if necessary in step 10. Finally,
it sends the new global water and solute states by calling PALM_Put in step 12 of Alg. 24, which
is complemented by the LandscapeDNDC unit’s call to PALM_Get in step 7 in Alg. 23. The data
transferred from the hydrology model to the biogeochemistry model is detailed in Tab. 5.3.

99

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

quantity transferred
CMF «— LandscapeDNDC

units

[CMF]

[[] and conversion factor «

+— [LandscapeDNDC] x «

soil layer depth

soil saturated conduct.
soil porosity

water on surface
water in layers

solutes on surface
solutes in layers
solutes in precipitation
solute retention factor
harvest event

leaf area index (LAI)
vegetation height
canopy closure

root fraction

ice fraction

current air temp.

max. air temp.

min. air temp.

ground temp.

relative vapor pressure
wind speed

radiation

precipitation

Pa

s,
10%J

day m?

10" 3%m
day

L O A O I O O I R O B

g E

x 144

w0 Wl

x cell surface area

0 1)

x cell surface area
cell surface area
x 1073

SlREEEBEEE

Em‘g
X

B

—
p

—
—

% rel.

EN‘ 8,

A3 A NNKE

x 1072 abs. vapor pressure

=
c
=3
o
=
<

0.0864
A
1000 &%

EEERE

Table 5.1: Parameters and model states transferred from the LandscapeDNDC biogeochemistry
model to the CMF hydrology model in the setup phase of the simulation, with the cor-
responding unit conversion where applicable. The LandscapeDNDC biogeochemistry
model sends the data in step 3 of Alg. 23, and the CMF hydrology model receives the
data in step 4 of Alg. 24.

100

5.3 Simulation with OpenPALM using a hybrid operator splitting method

quantity transferred units [] and conversion factor a
CMF +— LandscapeDNDC [CMF] <— [LandscapeDNDC] x «
solutes on surface kg — % x cell surface area
solutes in layers kg — % x cell surface area
solutes in precipitation ;—% — = x 1073
harvest event {0,1} «+— {0,1}
leaf area index (LAI) E—z — 2—2
vegetation height m — m
canopy closure % — %
root fraction % — %
ice fraction % — %
current air temp. °C — °C
max. air temp. °C — °C
min. air temp. °C — °C
ground temp. °C — °C
relative vapor pressure Pa +— % rel. humidity x 1072 abs. vapor pressure
wind speed = — 5
radiation R . 0.0864
precipitation 1%;;“‘ — =~ 1000 dAT;

Table 5.2: Parameters and model states transferred from the LandscapeDNDC biogeochemistry
model to the CMF hydrology model in each time step of the simulation, with the cor-
responding unit conversion where applicable. The LandscapeDNDC biogeochemistry
model sends the data in step 6 of Alg. 23, and the CMF hydrology model receives the
data in step 7 of Alg. 24.

quantity transferred units [-] and conversion factor «

CMF — LandscapeDNDC [CMF] — [LandscapeDNDC] x «

water on canopy m? — ﬁ—z x 1 / cell surface area

snow on surface m? — 2—2 x 1/ cell surface area

water on surface m:’ — % x 1/ cell surface area

water in layers = o

ice fraction % — %

solutes on surface kg — % x 1 / cell surface area

solutes in layers k% — % x 1/ cell surface area
infiltration flux énTg — Ar x At / (day x cell surface area)
water throughfall énT?{ — Ar x At / (day x cell surface area)
solute throughfall % — Afil > X At/ (day x cell surface area)
water discharge By 7 Ar x At / (day x cell surface area)
solute discharge (iTgy — yovi x At / (day x cell surface area)

Table 5.3: Parameters and model states transferred from the CMF hydrology model to the Land-
scapeDNDC biogeochemistry model in each time step of the simulation, with the cor-
responding unit conversion where applicable. The CMF hydrology model sends the
data in step 12 of Alg. 24, and the LandscapeDNDC biogeochemistry model receives
the data in step 7 of Alg. 23.

101

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

5.4 Numerical experiments

This section is devoted to the numerical experiments with our hydrology-biogeochemistry cou-
pling. We present two scenarios, one focusing on nitrous oxide greenhouse gas emissions, and
one focusing on nitrate leaching to water bodies. Furthermore, we present parallel performance
tests of the coupled model system. Both scenarios and the performance tests have already been
published in our works [108, 64, 92]. We review these results in the following sub-sections in the
chronological order of their publication. We present the nitrous oxide emission scenario in Sec.
5.4.1, the performance tests in Sec. 5.4.2, and the nitrate leaching scenario in Sec. 5.4.3.

5.4.1 Soil N,O emission scenario

The first scenario was designed as a numerical experiment to demonstrate the feasibility of our
coupling approach. Here we present the conception and the results of this numerical experiment,
details can be found in our previously published work [108].

The computational domain was chosen as a virtual landscape in the form of a valley with a
slope of 5%. The discretization details are stated in Tab. 5.4. A Dirichlet boundary condition
with hydraulic head set to 0.1 m below surface was used to model an outflow at the lowest part
of the domain. All other soil boundary parts were equipped with no-flow conditions. At the

| entities | physical extent per entity
horizontal ‘ 40x41 soil columns ‘ 10mx10m
vertical canopy, surface water, | soil layers top to bottom:
8 soil layers 5, 5, 20, 30, 30, 30, 30, 50 cm

Table 5.4: Discretization parameters of the computational domain shown in Figs. 5.2a and 5.2b.

surface, open water and canopy water elements were attached to the top soil layer to account
for surface runoff, rainfall interception, and infiltration. In this scenario we considered transport
only for NO3 as it was sufficient to demonstrate the effect of lateral exchange on NoO emissions.
Figures 5.2a to 5.2d show the results after 420 simulated days. Precipitation and subsequent
infiltration and redistribution of soil water created a saturated zone at the bottom of the valley
as shown in Fig. 5.2a. Nitrate was produced through mineralization and nitrification of plant
litter in upper soil layers, and transported into deeper layers and towards the valley (Fig. 5.2b).
Notably, NO3 concentrations were highest in medium depths of the flanks, and near the valley
surface. These were exactly those target regions where nitrate was transported to, but which
were not saturated, i.e. aerobic regions where nitrification was active and denitrification was
inhibited due to the presence of oxygen. In contrast, NO; concentrations were very low in the
deepest layers of the flanks and in all but the top layers of the valley. This was due to the high
saturation of these regions inducing anaerobic conditions where nitrification is inhibited, but
denitrification was active. Figure 5.2c shows the nitrous oxide emission pattern. The emission
pattern was clearly pronounced at the boundary of the saturated zone in the valley. This was
exactly the transition zone between aerobic and anaerobic conditions where the denitrification
pathway was intermitted and N3O was formed. The dinitrogen (N3) emission pattern in Fig.
5.2d was concentrated at the saturated region in the valley where denitrification can completely
reduce nitrate.

This scenario successfully demonstrated the feasibility of our coupling approach using the biogeo-
chemical model system LandscapeDNDC together with the hydrology model CMF. The explicit
consideration of lateral movement of water and transport of solutes results in more realistic
emission patterns. In particular, our model coupling approach enables to consider the indirect

102

5.4 Numerical experiments

|
0
(b) Nitrate (NOs) concentration [kg N/ha] in
the soil water.

(a) Soil water content [mm/m?].

t5
S12
8

4

FO
100

75
-50

=5
25
! J

(c) Spatial distribution of accumulated nitrous (d) Spatial distribution of accumulated dinitro-
oxide (N2O) emissions [kg N/ha]. gen (N2) emissions [kg N/ha].

Figure 5.2: Results after 420 simulated days.

effects which are known, but which were so far hardly reflected in models. Moreover, the com-
bination of a detailed biogeochemistry model coupled to a dedicated hydrology model allows for
the previously unmatched capability of catching local emission events, i.e. hot spots and hot
moments.

5.4.2 Parallel performance tests

We briefly review our parallel performance tests published in [64]. As shown in Fig. 5.3a, we
used a similar domain as in the N2 O emission scenario described above. Our goal was to asses the
ability or our coupling approach using OpenPALM to address the issue of the models’ different
computational demands. To this end, we ran test series on two different domain sizes with
varying parallel configurations of the hydrology model, since it requires by far more computing
power than the biogeochemistry model. The spatial discretization lead to 34,800 unknowns for
the small test case, and to 870,000 unknowns for the large test case. Total simulation time was
three years with a time step size of one hour, resulting in 26,280 time steps. Figures 5.4 and 5.5
show the state of the system after more than 1.5 years.

For our performance tests, we ran the simulation both with our new concurrent operator splitting
scheme, as well as with the consecutive scheme for comparison. We report average runtimes in
seconds per time step taken from the first 96 hours of the simulation. For both test cases, we
measured the runtime of the consecutive and of the concurrent operator splitting scheme. In
addition, we report the individual runtime of the biogeochemistry model. Figures 5.6a and 5.6b
show the runtimes for the two test cases. The green line represents the individual runtime of
the biogeochemistry model, and the blue line represents the runtime of the coupled application

103

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

b) Anthropogenic land use on the three do-
main parts. Grassland (blue), intensive

maize cultivation (red) and extensive maize
cultivation (gray).

(a) Computational domain of the small test case
with outflow boundary at the forefront.

Figure 5.3: Domain and land use.

’5

Figure 5.4: Cut view into the domain showing the water content of the soil after 16,348 hours.
The lower part of the soil is fully saturated (red color) and the water table balances
the slope of the domain. The saturation drops (gray to blue color) near the soil
surface and at the outlet.

=

Figure 5.5: Zoomed cut view into the domain showing the nitrate (NOj) concentration after
15,013 hours. High concentration near the soil surface in the area with intensive
maize cultivation (dark red), medium concentration in the area with extensive maize
cultivation (light red), and low concentration on the grassland (blue). Percolation and
downstream transport of nitrate can cause high concentrations in lower soil layers.

104

5.4 Numerical experiments

5 100
g —¥- biogeochmistry B -¥- biogeochmistry
2 4 8- consecutive OS 2 &80 & consecutive OS
] 8 -e-concurrent OS
7 3 —e-concurrent OS 7 60
5] 5]
a a
o o
£’ g
€ E
2 1 2 20
5 o —
@ 0 © o)
1 2 4 6 8 10 1 2 4 6 8 10
no. MPI processes of hydrology model no. MPI processes of hydrology model
(a) Average runtime per time step for the small (b) Average runtime per time step for the large
test case. test case.
1.2 1.2
1 1
z z
.E 0.8 .E 08
= =
£ 06 £ 06
]]
g 0.4] g 0.4
§ | T consecutive OS g o2 -E-consecutive OS
=e-concurrent OS —4-concurrent OS
0 0
1 2 4 6 8 10 1 2 4 6 8 10
no. MPI processes of hydrology model no. MPI processes of hydrology model
(c) Parallel efficiency for the small test case. (d) Parallel efficiency for the large test case.

Figure 5.6: Runtimes and efficiency of the consecutive and the concurrent operator splitting
schemes for the small and large test cases.

using the consecutive scheme. Therefore, the difference between the green and the blue line is
the individual runtime of the hydrology model. The time needed for the data transfer between
the models is negligible compared to the computation time. From the p = 1 cases, one can see
that the hydrology model demands for approximately 8 to 9 times the computational effort of the
biogeochemistry model. When using more processes for the hydrology model, the runtimes for
the coupled applications decrease for both operator splitting schemes. The consecutive scheme
has a runtime which is the sum of the two models. In contrast, the concurrent scheme has
a runtime equal to the slower of the two models. For p = 10, the concurrent scheme shows
nearly the same runtime for coupled application as for the biogeochemistry model alone. That
means, the parallelization of the hydrology model yields a speedup for its execution such that
the runtimes of both models are balanced. We calculated the parallel efficiency from the runtime
measurements as E(p) = T(1)/ [pT (p)], where p is the number of MPI processes of the hydrology
model, and T'(p) is the corresponding runtime of the coupled application. Shown in Figures 5.6¢
and 5.6d, the graphs illustrate the advantage of the concurrent scheme. It maintains an efficiency
of approximately 80 % for the p = 10 case where the runtimes of the two models are balanced,
while the efficiency of the consecutive scheme drops to less than 40 %.

5.4.3 Vegetated buffer strip scenario

In our second scenario we address the impact of vegetated buffer strips on the lateral transport of
nutrients and the related input to water bodies through leaching, and on N-trace gas emissions.
Here, we briefly introduce the setup of the study which has been published in [92]. In the sense
of this work, vegetated buffer strips are patches of land covered with vegetation which separate

105

5 Biogeochemistry-hydrology coupling for nutrient cycle simulations

areas under cultivation from water bodies such as streams or rivulets, or from other areas. Due
to their capability to retain nitrate and other nutrients, vegetated buffer strips are an option to
mitigate nitrate leaching from agricultural soils to water bodies. The scenario domain is a 100
%100 meter domain of one meter depth with 5% downslope towards south-east. The study area
is subject to agricultural land management including different crops and N fertilizer application.
Vegetated buffer strips are located along the south and east boundary of the domain. Different
buffer strip sizes ranging from zero (no buffer) to 20 meters were tested. The main results
reported in [92] are largely increased denitrification rates and corresponding No emissions from
buffer strips with high water content, and reduced nitrate leaching.

The aforementioned work provides quantitative results on No and NoO emission inventories and
nitrate loss to water bodies.It used the consecutive operator splitting scheme, and a time step
size of one hour. We complement the study by using the concurrent operator splitting scheme
implemented with OpenPALM, and the domain decomposition parallelization of CMF in our
simulations. This allows for a refinement of the time step size to 30 minutes while at the same
time speeding up the simulations. Figure 5.7 shows qualitative results for three model runs

no buffer strip 10 meter buffer strip 20 meter buffer strip

Vv

Water filled pore space [%] after 1000 days.

NO3
100
I 10
1
01
001
'o,om

Nitrate load [kg N/ha] after 1000 days.

> e

Nitrate load [kg N/ha] after 1090 days.

050

- 020

I0,05

035

NO3
100
I
s
0.1

ODI
0001

Figure 5.7: Simulation results for buffer strip sizes 0, 10 and 20 meters (left to right). Top row:
water filled pore space after 1000 days. Middle row: nitrate load after 1000 days.
Bottom row: nitrate load after 1090 days. The plots are scaled by factor 10 in vertical
direction for better visibility.

106

5.5 Résumé

without buffer, or with 10 or 20 meters buffer width, respectively. One can see that the buffer
strip holds significantly more moisture than other parts of the soil. Also nitrate retention in
the buffer strip is clearly visible. The high water content and nitrate availability in the buffer
strip causes increased denitrification rates. This leads to the reported higher No emissions and
reduced nitrate leaching.

5.5 Résumeé

We applied our multiphysics model coupling approach for the simulation of nutrient cycles in
soils. We showed the coupling of the hydrology model CMF with the biogeochemical model Land-
scapeDNDC to assess nutrient and emission inventories in different scenarios. In this Chapter we
presented new developments and qualitative results, and we reviewed our previously published
contributions. We demonstrated the ability of our approach to capture indirect and local effects
in ecosystem simulations. The spatial extent of our scenarios investigated so far was moderate,
which is natural in this early stage of development, but nevertheless appropriate to give a proof of
concept. Moreover, performing simulations for the relevant temporal extent of years to decades
with small time steps of hours or less is evenly challenging. We showed that this can be suc-
cessfully addressed with the proposed multiphysics simulation technique due to its ability to use
high performance computing effectively. Possible future work could address the parallelization of
all model parts including LandscapeDNDC. This would allow for simulations of larger domains
and higher spatial resolution.

107

6 Conclusion

In this work we presented a new approach to nutrient cycle simulations for terrestrial ecosystems.
We considered a coupling of dedicated models for the involved biogeochemical and hydrologi-
cal processes leading to a system of ordinary and partial differential equations. The system
describes the temporal evolution of a common state variable under the simultaneous influence
of the coupled models. For the time integration of the coupled models, we proposed specific
operator splitting schemes by means of a composition of one step methods. These schemes use
one step methods as local model integrators to compose global solutions on a global time grid for
the coupled system. We established two variants of composed one step methods, a consecutive
operator splitting and a concurrent operator splitting, respectively. In the consecutive variant,
the output of one model integrator is used as input to another model integrator. In the concur-
rent variant, models are integrated independently of each other until the next synchronization
point is reached. The consecutive operator splitting resembles the well-known Lie(-Trotter) split-
ting in our setup, whereas the concurrent operator splitting has no classical counterpart. The
main results of Chap. 2 are the proofs of first order in time consistency and convergence of
the composed one step methods with respect to the global system. These proofs solely assume
continuity, boundedness and Lipschitz conditions for the functional model representation in the
abstract formulation, and consistency and Lipschitz continuity for the one step methods used on
the local model level. We presented numerical experiments on the convergence of the composed
one step methods using a natural convection scenario in Chap. 3. The results accurately show
the expected first order in time convergence for both the consecutive and the concurrent variant
in different flow regimes.

To facilitate the model coupling, we employed the OpenPALM software coupler tool. It enables
the coupling of dedicated model codes, controls their execution and manages data transfer be-
tween models. We extended the data transfer mechanism of OpenPALM by means of dynamic
distributors, which is the main result of Chap. 4. Our development allows to dynamically
change data sizes and data distributions among models during the simulation, while at the same
time keeping OpenPALM’s internal routing table consistent. This feature supports the online
configuration and adaption of the data transfer mechanism during runtime. Without dynamic
distributors, the configuration needed to be derived from offline tests before the simulation could
be started, and it could not be adapted during runtime. Furthermore, the OpenPALM coupling
technology allows to allocate adequate computing resources to the individual models. This is
essential to effectively use high performance computing and to achieve a balanced parallel setup
if models demand for different computing resources. We presented performance tests using the
natural convection scenario where we achieved substantial improvements of the parallel efficiency
with the concurrent operator splitting scheme compared to a monolithic solver.

In Chap. 5, we presented the modeling and implementation of the biogeochemical and hydro-
logical processes which we considered in our nutrient cycle simulations. We used the composed
one step methods and the dynamic distributors feature of OpenPALM to realize the model cou-
pling approach in a greenhouse gas emission scenario, and in a nitrate leaching scenario. We
demonstrated that our approach allows to capture indirect and local effects which was previously
unfeasible using standard simulation techniques. Furthermore, we showed that our coupling tech-
nique enables an effective use of high performance computing.

109

6 Conclusion

Our techniques are not restricted to the simulation of nutrient cycles, but they are rather usable
for model coupling in general, using any number and granularity of models. The composed one
step methods allow to propagate the models separately between global time steps. They only
require the local model integrators to represent one step methods with respect to the global time
grid. This allows to use any appropriate numerical integration scheme, and also to compute
sub-steps, as long as the local model integrators synchronize at the global time steps. It is also
possible to stack the composed one step methods, which might be useful if two models require a
tight coupling and a third model only needs to synchronize with larger time steps. We proved
first order in time consistency and convergence of the composed one step schemes, provided that
the local model integrators are of first order or higher. Since the biogeochemical model integrator
used in the scenarios is of first order, we did not investigate if higher order composed one step
methods are possible. As stated in the concluding remarks of Chap. 2, we assume that higher
order consecutive schemes are possible, while the existence of higher order concurrent schemes
is unclear.

The dynamic distributors feature of OpenPALM is also not limited to nutrient cycle simulations,
but a general purpose technique. We used this feature in the hydrology model for the online
configuration of the parallel communication routines to match the domain decomposition which
is determined at runtime. Other use cases include coarsening or refinement, and load balancing
of the coupled models during runtime. The dynamic distributors are integrated into the com-
munication routines and thus available to any software coupling application in the framework of
OpenPALM.

To conclude, our developments to advance nutrient cycle simulations resulted in general purpose
techniques for multiphysics model coupling. The issues we encountered are typical for model
coupling problems, and the proposed methodology is suitable to address them in a wide range
of applications. In this sense, our approach is an enabling technique to tackle interdisciplinary
challenges by means of multiphysics simulations.

110

Bibliography

1]
2]
3]

[16]

[17]

[18]

ISO/IEC 1539:1980 Fortran 77 Standard, 1980.
ISO/IEC 1539:1991 Fortran 90 Standard, 1991.

BLAS Technical Forum Standard. International Journal of High Performance Computing
Applications, 2001.

ISO/IEC 9899:2011 Programming Language C, 2011.

MPI: A Message-Passing Interface Standard, Version 3.0, 2012.

ISO/IEC 14882:2014(E) Programming Language C++, 2014.

R. Aris. Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover, 1989.

S.A. Blagodatsky and O. Richter. Microbial growth in soil and nitrogen turnover: a
theoretical model considering the activity state of microorganisms. Soil Biol. Biochem.,
30(13):1743-1755, 1998.

D. Braess. Finite Elemente. Springer, 2007.

H.W. Broer, G.B. Huitema, and M.B. Sevryuk. Quasi-Periodic Motions in Families of
Dynamical Systems. Lect. Notes Math., 1996.

R.H. Brooks and A.T. Corey. Hydraulic Properties of Porous Media. Hydrol. Pap. No. 3,
Colorado State University, 1964.

W. Brutsaert. Hydrology. Cambridge University Press, 2005.

S. Buis, A. Piacentini, D. Declat, and the PALM Group. Palm: A computational framework
for assembling high-performance computing applications. Concurr. Comput. Pract. Fxp.,
18:231-245, 2006.

K. Butterbach-Bahl, E.M. Baggs, M. Dannenmann, R. Kiese, and S. Zechmeister-
Boltenstern. Nitrous oxide emissions from soils: how well do we understand the processes
and their controls? Philos. Trans. R. Soc. B, 368, 2013.

F. Stange K. Butterbach-Bahl H. Papen C. Li, J. Aber. A process-oriented model of NoO
and NO emissions from forest soils: 1. Model development. J. Geophys. Res., 105(D4):4369—
4384, 2000.

R. Harris C. Li, S. Frolking. Modeling carbon biogeochemistry in agricultural soils. Glob.
Biogeochem. Cycles, 8(3):237-254, 1994.

T.A. Frolking C. Li, S. Frolking. A Model of Nitrous Oxide Evolution From Soil Driven by
Rainfall Events: 1. Model Structure and Sensitivity. Geophys. Res., 97:9759-9776, 1992.

J.R. Cannon. The One-Dimensional Heat Equation. Addison-Wesley, 1984.

113

Bibliography

[19]

[20]

[21]

[22]

23]

[24]

[34]

[35]

114

P.J. Channell and W.F. Neri. Integration Algorithms and Classical Mechanics, chapter A
brief introduction to symplectic integrators, pages 45-58. AMS, 1996.

V.T. Chow. Open-Channel Hydraulics. McGraw-Hill, 1959.

J.C. Chrispell, V.J. Ervin, and E.W. Jenkins. A fractional step #-method for convection-
diffusion problems. J. Math. Anal. Appl., 333:204-218, 2007.

S.D. Cohen and A.C. Hindmarsh. CVODE, A Stiff/Nonstiff ODE Solver in C. Comput.
Phys., 1996.

R. Conrad. Soil Microorganisms as Controllers of Atmospheric Trace Gases. Microbiol.
Reviews, 60(4):609-640, 1996.

S. Klatt I. Santabarbara-E. Haas R. Wassmann-C. Werner-R. Kiese K. butterbach-Bahl
D. Kraus, S. Weller. How well can we assess impacts of agricultural land management
changes on the total greenhouse gas balance (COy, CHy and NOs) of tropical rice-cropping
systems with a biogeochemical model? Agriculture Ecosys. Environ., 224:104-115, 2016.

V. Dorodnitsyn. Symmetries and Integrability of Difference Equations, chapter Continuous
symmetries of finite-difference evolution equations and grids, pages 103-112. AMS, 1996.

J. Douglas and H.H. Rachford. On the numerical solution of heat conduction problems in
two and three space variables. Trans. Amer. Math. Soc., 82:421-439, 1956.

A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. Springer, 2004.
D. Etling. Theoretische Meteorologie. Springer, 2008.

M.E. Fenn J. Simunek F. Yuan, T. Meixner. Impact of transient soil water simulation
to estimated nitrogen leaching and emission at high- and low-deposition forest sites in
Southern California. Geophys. Res., 116:G03040, 2011.

K. Feng. Symplectic, contact and volume-preserving algorithms. In Z.C. Shi and T. Ushi-
jima, editors, Proc. 1st China-Japan Conf. Numer. Math. World Scientific, 1993.

K. Feng. Contact algorithms for contact dynamical systems. J. Comput. Math., 1998.
J.A.C. Fortescue. Environmental Geochemistry: A Holistic Approach. Springer, 1980.

F.-M. Breon W. Collins J. Fuglestvedt J. Huang D. Koch J.-F. Lamarque-D. Lee B. Men-
doza T. Nakajima A. Robock G. Stephens T. Takemura H. Zhang G. Myhre, D. Shindell.
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, chapter
Anthropogenic and Natural Radiative Forcing. Cambridge University Press, 2013.

L. Bakken P. Leffelaar L.E. Haugen G. Schurgers, P. Dorsch. Modelling soil anaerobiosis
from water retention characteristics and soil respiration. Soil Biol. Biochem., 38:2637-2644,
2006.

R. Glowinski and J. Periaux. Numerical methods for nonlinear problems in fluid dynamics.
Proc. Intern. Seminar on Scientific Supercomputing, Paris, Feb. 2-6, 1987.

[36]

[50]

[51]

[52]

Bibliography

E. Haas, S. Klatt, A. Froehlich, P. Kraft, C. Werner, R. Kiese, R. Grote, L. Breuer,
and K. Butterbach-Bahl. LandscapeDNDC: a process model for simulation of biosphere-
atmosphere-hydrosphere exchange processes at site and regional scale. Landsc. Ecol.,
28:615-636, 2013.

E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff
Problems. Springer, 2008.

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems. Springer, 2010.

B.C. Hall. Lie Groups, Lie Algebras, and Representations. Springer, 2003.

M. Heinen. Simplified denitrification models: Overview and properties. Geoderma,
133:444-463, 2006.

H. Heuser. Lehrbuch der Analysis, Teil 2. Teubner, 12 edition, 2002.
A.C. Hindmarsh and R. Serban. User Documentation for CVODE v2.7.0, 2012.
G.A. O’Connor H.L. Bohn, B.L. McNeal. Soil Chemistry. John Wiley & Sons, 1979.

J. Holst, R. Grote, C. Offermann, J.P. Ferrio, A. Gessler, H. Mayer, and H. Rennenberg.
Water fluxes within beech stands in complex terrain. Int. J. Biometeorol., 54:23-36, 2010.

O. Ippisch. Contributions to the large-scale Simulation of Flow and Transport in Hetero-
geneous Porous Media. Habilitation, Department of Mathematics and Computer Science,
Heidelberg University, Germany, 2016.

A. Iserles, H.Z. Munthe-Kaas, S.P. Norsett, and A. Zanna. Lie group methods. Acta
Numerica, 9:215-365, 2000.

G. Sun C. Trettin J. Cui, C. Li. Linkage of MIKE SHE to Wetland-DNDC for carbon
budbudget and anaerobic biogeochemistry simulation. Biogeochem., 72:147-167, 2005.

T. Jahnke and C. Lubich. Error bounds for exponential operator splittings. BIT Numerical
Mathematics, 40:735-744, 2000.

C.A. Federer J.D. Aber. A generailzed, lumped-parameter model of photosynthesis, evap-
otranspiration and net primary production in temperate and boreal forest ecosystems.
Oecologia, 92:463-474, 1992.

A.J.A. Vinten J.R.M. Arah. Simplified models of anoxia and denitrification in aggregated
and simple-structured soils. Furop. J. Soil Sci., 46:507-517, 1995.

G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM J. Sci. Comput., 20(1):359-392, 1999.

D.E. Keyes, L.C. McInnes, C. Woodward, W.D. Gropp, E. Myra, M. Pernice, J. Bell,
J. Brown, A. Clo, J. Connors, E. Constantinescu, D. Estep, K. Evans, C. Farhat, A. Hakim,
G. Hammond, G. Hansen, J. Hill, T. Isaac, X. Jiao, K. Jordan, D. Kaushik, E. Kaxiras,
A. Koniges, K. Lee, A. Lott, Q. Lu, J. Magerlein, R. Maxwell, M. McCourt, M. Mehl,
R. Pawlowski, A. Peters, D. Reynolds, B. Riviere, U. Riide, T. Scheibe, J. Shadid, B. Shee-
han, M. Shephard, A. Siegel, B. Smith, X. Tang, C. Wilson, and B. Wohlmuth. Multiphysics
Simulations: Challenges and Opportunities. Tech. Rep. ANL/MCS-TM-321, 2011.

115

Bibliography

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

116

Y. Kim, Y. Seo, D. Kraus, S. Klatt, E. Haas, J. Tenhunen, and R. Kiese. Estimation
and mitigation of N20 emission and nitrate leaching from intensive crop cultivation in the
Haean catchment, South Korea. Sci. Total Environ., 529:40-53, 2015.

P. Kraft, K. B. Vaché, H.-G. Frede, and L. Breuer. A hydrological programming language
extension for integrated catchment models. Environ. Model. Softw., 26(6):828-830, 2011.

D. Kraus, S. Weller, S. Klatt, E. Haas, R. Wassmann, R. Kiese, and K. Butterbach-Bahl.
A new LandscapeDNDC biogeochemical module to predict CH4 and N20 emissions from
lowland rice and upland cropping systems. Plant Soil, 386:125-149, 2015.

S. Julich H.-G. Frede L. Breuer, K.B. Vache. Current concepts in nitrogen dynamics for
mesoscale catchments. Hydrol. Sci., 53(5):1059-1074, 2008.

T. Lagarde, A. Piacentini, and O. Thual. A new representation of data-assimilation meth-
ods: The PALM flow-charting approach. Q. J. R. Meteorol. Soc., 127:189-207, 2001.

J.S.W. Lamb. Time-reversal symmetry in dynamical systems. Physica D, 112:1-328, 1998.

P.A. Leffelaar. Dynamics of partial anaerobiosis, denitrification, and water in a soil aggre-
gate: simulation. Soil Sci., 146(6), 1988.

P.A. Leffelaar and W.W. Wessel. Denitrification in a Homogeneous, Closed System: Ex-
periment and Simulation. Soil Sci., 146(5), 1988.

C. Li. Modeling trace gas emissions from agricultural ecosystems. Nutr. Cycl. Agroecosys.,
58:259-276, 2000.

M.J. Lighthill and G.B. Whitham. On kinematic waves, part I. Flood movement in long
rivers. Proc. R. Soc. Lond., Ser. A, Math. Phys. Sci., 229:281-316, 1955.

A. Ostermann M. Hochbruck. Fzponential integrators. Cambridge University Press, 2010.

S. Klatt D. Kraus E. Haas R. Kiese K. Butterbach-Bahl P. Kraft L. Breuer M. Wlotzka,
V. Heuveline. Parallel multiphysics simulations using OpenPALM with application to
hydro-biogeochemistry coupling. In accepted for Proceedings of 6th Int. Conf. on High
Perform. Sci. Comput., March 16-20, 2015, Hanoi, Vietnam, 2016.

R.I. McLachlan, M. Perlmutter, and G.R.W. Quispel. On the Nonlinear stability of sym-
plectic integrators. Preprint, 2001.

R.I. McLachlan and G.R.W. Quispel. Foundations of Computational Mathematics, chapter
Six lectures on geometric integration, pages 155-210. Cambridge University Press, 2001.

R.I. McLachlan, G.R.W. Quispel, and N. Robidoux. Geometric Integration using discrete
gradients. Phil. Trans. Roy. Soc. A, 357:1021-1046, 1999.

R.I. McLachlan, G.R.W. Quispel, and G.S. Turner. Numerical integrators that preserve
symmetries and reversing symmetries. SIAM J. Numer. Anal., 35:586-599, 1998.

E.A. Davidson M.K. Firestone. Ezchange of Trace Gases between Terrestrial Ecosystems
and the Atmosphere, chapter Microbial Basis of NO and NoO Production and Consumption
in Soil, pages 7-21. John Wiley & Sons, 1989.

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

Bibliography

S. Molina-Herrera, R. Grote, I. Santabarbara-Ruiz, D. Kraus, S. Klatt, E. Haas, R. Kiese,
and K. Butterbach-Bahl. Simulation of CO2 Fluxes in European Forest Ecosystems with
the Coupled Soil-Vegetation Process Model LandscapeDNDC. Forests, 6, 2015.

P. Molino. Riemannian Foliations. Birkhauser, 1988.

T. Morel, F. Duchaine, A. Thevenin, A. Piacentini, M. Kirmse, and E. Quemerais. Open-
PALM coupler version 4.1.4: User guide and training manual, 2013.

Y. Mualem. A New Model for Predicting the Hydraulic Conductivity of Unsaturated
Porous Media. Water Resources Research, 12:513-522, 1976.

A. Murua and J.M. Sanz-Serna. Order conditions for numerical Integrators obtained by
composing simpler intergators. R. Soc. London Philos. Trans. A, 357:1079-1100, 1999.

T.N. Narasimhan. Buckingham, 1907: An Appreciation. Vadose Zone Journal, 4:434-441,
2005.

OpenMP Architecture Review Board. OpenMP Application Program Interface, Version
4.0, 2013.

J.M. Ortega and W.C. Reinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, 1970.

R. Scholes P. Lavelle, R. Dugdale. Ecosystems and Human Well-being: Current State and
Trends, Volume 1, chapter Nutrient Cycling, pages 331-353. Islnd Press, 2005.

D.W. Peaceman and H.H. Rachford. The numerical solution of parabolic and elliptic
differential equations. J. Soc. Indust. Appl. Math., 3(1):28-41, 1955.

A. Piacentini and the PALM Group. PALM: A Dynamic Parallel Coupler. Lecture Notes
in Computer Science, 2565:479-492, 2003.

Y. Quand C.J. Duffy. A semidiscrete finite volume formulation for multiprocess watershed
simulation. Water Resources Research, 43:W08419, 2007.

G.R.W. Quispel and D.I. McLaren. Explicit volume-preserving and symplectic Integrators
for trigonometric polynomial flows. Preprint, 2002.

C. Werner S. Wochele R. Grote K. Butterbach-Bahl R. Kiese, C. Heinzeller. Quantifi-
cation of nitrate leaching from German forest ecosystems by use of a process oriented
biogeochemical model. Environ. Pollut., 159:3204-3214, 2011.

R. Rannacher. Numerische Mathematik 1: Numerik Gewohnlicher Differentialgleichungen,
2014.

S. Reich. Numerical integration of the generalized Euler equations. Technical report 93-20,
Dept. Computer Science, U British Columbia, 1993.

S. Reich. Backward error Analysis for numerical integrators. SIAM J. Numer. Anal.,
36:1549-1570, 1999.

E. Pattey R.F. Grant. Mathematical modeling of nitrous oxide emissions from an agricul-
tural field during spring thaw. Global Biogeochem. Cycles, 13(2):679-694, 1999.

117

Bibliography

[38]

[89]

[90]

[91]

[92]

[101]

[102]

[103]

[104]

[105]

118

G.R.W. Quispel R.I. McLachlan. What kinds of dynamics are there? Lie pseudogroups,
dydynamic systems, and geometric integration. Nonlinearity, 2001.

G.R.W. Quispel R.I. McLachlan. Splitting methods. Acta Numerica, pages 341-434, 2002.

L.A. Richards. Capillary Conduction of Liquids through Porous Mediums. Physics, 1:318—
333, 1931.

R. Kiese C. Werner K. Butterbach-Bahl S. Blagodatsky, R. Grote. Modelling of microbial
carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission. Plant
Soil, 346:297-330, 2011.

P. Kraft L. Breuer M. Wlotzka-V. Heuveline-E. Haas-R. Kiese K. Butterbach-Bahl S. Klatt,
D. Kraus. Exploring impacts of vegetated buffer strips on nitrogen cycling using a spatially
explicit hydro-biogeochemical modmodel approach. accepted for Environ. Model. Softw.,
2016.

Y. Saad. Iterative Methods for Sparse Linear Systems. 2 edition, 2000.

W.E. Schiesser. The Numerical Method of Lines: Integration of Partial Differential Equa-
tions. Academic Press, 1991.

Z.J. Shang. Resonant and diophantine step sizes in computing invariant tori of Hamiltonian
systems. Nonlinearity, 13:299-308, 2000.

J. Shi and Y.T. Yan. Explicitly integrable polynomial HHamiltonian and evaluation of Lie
transformations. Phys. Rev. E, 48:3943-3951, 1993.

C.T. Simmons. Henry Darcy (1803-1858): Immortalised by his scientific legacy. Hydroge-
ology Journal, 16:1023-1038, 2008.

H. Sohr. The Navier-Stokes Equations: An EleElement Functional Analytic Approach.
Birkhauser, 2001.

J.H. Spurk and A. Nuri. Fluid Mechanics. Springer, 2008.

G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer.
Anal., 5(3), 1968.

M. Suzuki. Fractal decomposition of exponential operators with applications to many-body
theories and Monte Carlo simulations. Phys. Lett. A, 146:319-323, 1990.

R. Temam. Navier-Stokes Equations. AMS Chelsea Publishing, 2001.

Z. Tsuboi and M. Suzuki. Determining equations for higher-order decompositions of expo-
nential operators. Int. J. Mod. Phys. B, 25:3241-3268, 1995.

M.T. van Genuchten. A Closed Form Equation for Predicting the Hydraulic Conductivity
of Unsaturated Soils. Soil Sci. Soc. Am. J., 44:892-898, 1980.

M. Zeeman P. Michna A. Zingg-N. Buchmann-L. Emmenegger W. Eugster, K. Zeyer.
Methodical study of nitrous oxide eddy covariance measurements using quantum cascade
laser spectrometery over a Swiss forest. Biogeosciences, 4:927-939, 2007.

[106]

[107]

[108]

109

[110]

Bibliography

C. Werner, E. Haas, R. Grote, M. Gauder, S. Graeff-Hénninger, W. Claupein, and
K. Butterbach-Bahl. Biomass production potential from Populus short rotation systems
in Romania. GCB Bioenergy, 4(6):642-653, 2012.

M. Wlotzka and V. Heuveline. A parallel solution scheme for multiphysics evolution prob-
lems using OpenPALM. EMCL Prepr. Ser., 1, 2014.

M. Wilotzka, V. Heuveline, S. Klatt, E. Haas, D. Kraus, K. Butterbach-Bahl, P. Kraft,
and L. Breuer. Handbook of Geomathematics, chapter Simulation of Land Management
Effects on Soil NoO Emissions using a Coupled Hydrology-Biogeochemistry Model on the
Landscape Scale. Springer, 2014.

M. Wilotzka, T. Morel, A. Piacentini, and V. Heuveline. New features for advanced dynamic
parallel communication routines in OpenPALM: Algorithms and documentation. EMCL
Prepr. Ser., 4, 2017.

H Yoshida. Construction of higher order symplectic integrators. Phys. Lett. A, 150:262-268,
1990.

119

