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DUAL FLOWS IN HYPERBOLIC SPACE AND DE SITTER

SPACE

HAO YU

ABSTRACT. We consider contracting flows in (n+1)-dimensional hyper-
bolic space and expanding flows in (n + 1)-dimensional de Sitter space.
When the flow hypersurfaces are strictly convex we relate the contract-
ing hypersurfaces and the expanding hypersurfaces by the Gaufl map.
The contracting hypersurfaces shrink to a point zg in finite time while
the expanding hypersurfaces converge to the maximal slice {7 = 0}.
After rescaling, by the same scale factor, the resclaed contracting hy-
persurfaces converge to a unit geodesic sphere, while the rescaled ex-
panding hypersufaces converge to slice {r = —1} exponential fast in

C>=(S™).

ZUSAMMENFASSUNG. Wir betrachten kontrahierende Fliisse im (n + 1)-
dimensionalen hyperbolischen Raum und expandierende Fliisse im
(n + 1)-dimensionalen de Sitter Raum. Wir verbinden die kontrahie-
renden Hyperflichen mit den expandierenden Hyperflichen durch die
GauBlsche Abbildung, falls die Hyperflichen der Fliisse strikt konvex
sind. Die kontrahierenden Hyperflichen schrumpfen zu einem Punkt
zo in endlicher Zeit, wihrend die expandierenden Hyperflichen zu dem
maximalen Schnitt {r = 0} konvergieren. Nach Reskalierung mit dem
gleichen Faktor konvergieren die reskalierten kontrahierenden Hyper-
flachen nach einem geodétischen Einheitsspire, wihrend die reskalier-
ten expandierenden Hyperflichen nach dem Schnitt {r = —1} expo-
nentiell schnell in C°(S™) konvergieren.
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1. INTRODUCTION

In a recent paper [7] a pair of dual flows was considered in S"*!. The one
flow is the contracting flow

(1.1) i=—Fv,

while the other is an expanding flow

(1.2) i=F"1y,
where F' € C°°(I"y) and F is its inverse

- 1

(1.3) F (ki) D)

There is a Gaufl map for the pair (S*™1, S"*1) which maps closed, strictly
convex hypersurfaces M to their polar sets M, cf. [5, Chapter 9]. Gerhardt
[7] proved, that the flow hypersurfaces of (1.1) and (1.2) are polar sets of each
other, if the initial hypersurface have this property. Under the assumption
that F'is symmetric, monotone, positive, homogeneous of degree 1, F' strictly
concave (cf. 3.1) and F concave, it is proved in [7] that the contracting flows
contract to a round point and the expanding flows converge to an equator
such that after appropriate rescaling, both flows converge to a geodesic sphere
exponential fast.

The GauBl map exists also for the pair (H"™! N), where H"*! is the
(n + 1)-dimensional hyperbolic space and N is the (n + 1)-dimensional de
Sitter space, cf. [5, Chapter 10]. We prove in this work similar results as in
[7] by using this duality. Let M(t) resp. M(t) be solutions of the contracting
flows

(1.4) i =—Fv
in H**! resp. the dual flows
(1.5) i=—Fly

in N, where F is the inverse of F defined by (1.3). We impose the following
assumptions.

1.1. Assumption. Let F € C*(I}) be a symmetric, monotone, 1-
homogeneous and concave curvature function satisfying the normalization

(1.6) F@1,...,1)=1
We assume further, either

(1) F is concave and F is concave and the initial hypersurface My is
horoconvex (i.e. all principal curvatures x; > 1),

or

(2) F is convex and My is strictly convex.

We now state our main results
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1.2. Theorem. We consider curvature flows (1.4) and (1.5) under as-

sumption 1.1 with initial smooth hypersurfaces My and My, where My is the
polar hypersurface of My. Then the both flows exist on the maximal time
interval [0, T*) with finite T*. The hypersurfaces M(t) are the polar hyper-
surfaces of M(t) and vice versa during the evolution. The contracting flow
hypersurfaces in H* T shrink to a point xo while the expanding flow hyper-
surfaces in N converge to a totally geodesic hypersurface which is isometric
to S". We may assume the point xq is the Beltrami point by applying an
isometry such that the hypersurfaces of the expanding flow are all contained
in N_ and converge to the coordinate slice {T = 0}.
Viewing H"t! and N as submanifolds of R*11 and by introducing polar
coordinates in the Euclidean part of R* 41 centered in (0,...,0) € R"™1 we
can write flow hypersurfaces in H**! resp. N as graphs of functions u resp.
u* over S™. Let © = O(t,T*) be the solution of (1.4) with spherical initial
hypersurface and exitence intervall [0,T*). Then the rescaled functions

(1.7) i =u0"!
and
(1.8) w=u*0"!

are uniformly bounded in C°°(S™). The rescaled principal curvatures k;© as
well as &0~ are uniformly positiv, where &; are the principal curvatures of
M(t).

If the curvature function F is further strictly concave or F' = %H, then the
rescaled functions (1.7) resp. (1.8) converge to the constant functions 1 resp.
—1 in C>(S™) exponentially fast.

Let us review some results concerning the contracting flows in H"*!. Un-
der the assumption that the initial hypersurface is strictly convex and satisfies
the condition x; H > n for each ¢, Huisken [11] proved that the flow (1.4) with
F = H converges in finite time to a round sphere. Andrews [2] proved sim-
ilar results for a general class of curvature function with argument x; — 1.
Makowski [13] proved the contracting flow with a volume preserving term
exists for all times and converges to a geodesic sphere exponentially fast.
The key ingredient treating the contracting flow is the pinching estimates.
Under assmuption 1.1 (1) it follows by a similar calculation as in [13], while
Gerhardt [8] proved the pinching estimates under assumption 1.1 (2).

The elementary symmetric polynomials are defined by

(1.9) Hi(Kiy.. o k) = Z Kiy - Kip, 1<k<n.
1<ip < <ip<n
Examples of curvature functions F' satisfying assumption 1.1 (1) (up to nor-
malization condition (1.6)) are
e the power means (>, fﬁ)l/r for |r| <1,
o op = H./F for 1 <k <n,
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e the inverse g of o for 1 < k <n,

o (Hy/H)* D for0<i<k<n,

o HonH " '™  H?"**HM ™2 for a; > 0 and ), oy = 1.
For a proof see [3, Chapter 2]. Moreover, the curvature functions in the above
list are all strictly concave with exception of the mean curvature (cf. Section
3)
Examples of convex curvature functions F , which is used in assumption 1.1
(2) (up to normalization condition (1.6)) are (cf. [5, Remark 2.2.13])

e the mean curvature H,

e the length of the second fundamental form |A] = (3, 2

e the complete symmetric functions

1/k
Vi(K1y ey hin) = (Z|a\:k KTTRS?. /@%”) for1 <k <n.

Note that for convex F under assumption 1.1 (2), F is of class (K) and
homogeneous of degree 1, hence strictly concave. (cf. [5, Definition 2.2.1,
Lemma 2.2.12, 2.2.14], [7, Lemma 3.6])

)

)1/2

2. SETTING AND GENERAL FACTS

We now review some general facts about hypersurfaces from [5, Chapter
1]. Let N be a (n + 1)-dimensional dimensional semi-Riemannian manifold
and M be a hypersurface in N. Geometric quantities in N will be denoted
by (Gap), (Rapys), etc., where greek indices range from 0 to n. Quantities in
M will be denoted by (gi;), (hij) etc., where latin indices range from 1 to n.
Generic coordinate systems in N resp. M will be denoted by (z%) resp. (£°).

Covariant differentiation will usually be denoted by indices, only if ambi-
guities are possible, by a semicolon, e.g. h;j.1.

Let x : M < N be a spacelike hypersurface (i.e. the induced metric is
Riemannian) with a differentiable normal v, which is always supposed to be
normalized, and (h;;) be the second fundamental form, and set o = <1/, V>.
We have the Gauf$ formula

(2.1) x5y = —ohijv?,

the Weingarten equation

(2.2) Ve = hfag,

the Codazzi equation

(2.3) hijik = hikyj = Rapysv®x) 2]z,

and the Gauf$ equation

(2.4) Rijii = o{hikhji — hithji} + Ragv,;:c?xfxz:c?.

Let us review some properties of H"™! and N, cf. [5, Section 10.2]. We
label the coordinates in the (n + 2)-dimensional Minkowski space R"*1:1 as
r = (2%),0 < a < n+ 1, where z° is the time function. Recall that the
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hyperbolic space H**! and de Sitter space N are the subspaces of R**!:1
defined by

(2.5) H* = {z e R""M! : (z,2) = —1,2° > 0},

(2.6) N={zeR""": (z,2) =1}

Introduce polar coordinates in the Euclidean part of R™t%1 centered in
(0,...,0) € R""! such that the metric in R" ™1 is expressed as

(2.7) ds? = —dz°® + dr® + r2o;detder

where o;; is the spherical metric.
By viewing H"*! as

(2.8) H = {(2%r, &) :r = /][22 — 1,2° > 0,£ € S},

and by setting

(2.9) o = arccosh 2,

H"*! has coordinates (o, ¢%) and the metric

(2.10) d5%,41 = do® + sinh® goy; dE'de .
Similarly,

(2.11) N ={(a%r&):r=1+202,2° e R, € S},
and by setting the eigentime

(2.12) 7 = arcsinh 2°,

N has coordinates (7,£%) and the metric

(2.13) ds3 = —dr? + cosh? 7o;;dE'd¢.

3. STRICTLY CONCAVE CURVATURE FUNCTIONS

For &,k € R™, we write £ ~ k, if there is A € R such that & = Ak.

3.1. Definition. Let F' € C?(I") be a symmetric, monotone, 1-homogeneous
and concave curvature function. We call F' strictly concave (in non-radial di-
rections), if

(3.1) F €' <0 V& ot mand £#£0,

or equivalently, if the multiplicity of the zero eigenvalue for D*F (k) is one
forall k € I'.

Note since F' is homogeneous of degree 1, x € I is an eigenvector of
D?F (k) with zero eigenvalue. In [7, Chapter 3] it is proved that o, 2 < k < n
and the inverses 6y, of oy, 1 < k < n are strictly concave. In [12, Chapter 2]
it is proved that Qp = Hyy1/Hy,1 < k < n — 1 are strictly concave in I';.
We consider the rest of the concave and inverse concave curvature functions
listed on page 3.
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3.2. Lemma. The curvature functions
(3.2) F=@XY kDY —1<r<1
are strictly concave in I'y.

Proof. Note that F converges locally uniformly to o, = (k1 --- k)Y as
r — 0 and o, is strictly concave. Furthermore, for —1 < r < 1 and r # 0,

11
OF :
(3.3) - = ntr (Z /@f) wih
Ok .

19
92F i I . r
(B4) o =n (1) (2} fel) A T —zl:méz-j)-

Consider 1 such that Fj;n’ = 0. Since r # 1,

~1
(3.5) N = <Z nf) /igflnjni.
1

Knowing that F' is concave for |r| < 1 we conclude that F' is strictly concave
for -1 <r < 1. [l

3.3. Lemma. Let f* be concave in Iy for oll 1 < a < k and strictly
concave in I’y for at least one index in 1 < o < k. Let ¢ be strictly monotone
increasing and concave in Iy, then

(36) F(’ilﬂ"' 7Hn) = (p(fl(ﬂl,~~~ 7”71)7"' afk(nla"' a’in))

is strictly concave in I';.

Proof. Let 0 # £ € R™ and £ ¢ K, then

(3.7) Fi€'€ = 0af36'€ + pap [l 766 <0,
since by assumption

(3.8) Pa >0, @ap <0, [EE <0
and

(3.9) i‘;‘{’fj < 0 for at least one 1 < a < k.

Note that the weighted geometric mean

(3.10) PUff @) = (F) - (f)™ with Zai =1



DUAL FLOWS IN HYPERBOLIC SPACE AND DE SITTER SPACE 7

is a strictly monotone increasing and concave function. Knowing that
Hiy1/Hg,1 <k <n—1 are strictly concave in Iy, we conclude that
(3.11)

(Hy/H)Y* D = (7 /H)Y Dy Heo )Y 0<i<k<n
and
(3.12)

N . e B Hl [e7] H2 a2 Hn Qn
HQ"H n—1 no, HCEQ OésHoél o2 i i e
n n—1 2 1 <HO> <H1 H, 1

with a; > 0, ZZ a; =1 and a; # 1 are strictly concave in I'y.

4. POLAR SETS AND DUAL FLOWS

We state some facts about Gaufl maps for (H"*1, N), cf. [5, Section 10.4].

4.1. Theorem. Let x : My — M C H"*! be a closed, connected, strictly
convex hypersurface. Consider M as a codimension 2 immersed submanifold
in R" 41 such that
(4.1) Tij = Gij T — hij.f,
where ¥ € T,(R" Y1) is the representation of the exterior mormal vector
v=w*) of M in T,(H"'). Then the Gaufs map
(4.2) T:My— N
is the embedding of a closed, spacelike, achronal, strictly convex hypersurface

M C N. Viewing M as a codimension 2 submanifold in R"11 | its Gaussian
formula is

(43) .fij = _gijj + ilij.ﬁ,

where gw,izw are the metric and second fundamental form of M and x is
the embedding of M which also represents the future directed normal vector
of M. The second fundamental form h” is defined with respect to the future

directed mormal vector, where the time orientation of N is inherited from
R™+LL - Furthermore, there holds

(44) hiy = hi.
(4.5) Ry = ry L
O

We prove in the following that the duality is also valid in case of curvature
flows.

4.2. Lemma. Let & € C™(Ry) be strictly monotone, & > 0, and let
F € C>(I'y) be a symmetric, monotone, 1-homogeneous curvature function
such that F|p+ > 0 and such that the flows

(4.6) &= —&(F)v
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in H" 1 resp.

(4.7) i=—®(F Y

in N with initial strictly convex hypersurfaces My resp. My exist on mazimal
time intervals [0,T*) resp. [0,T*), where v and U are the exterior normal
resp. past directed normal. The flow hypersurfaces are then strictly conzer.
Let M(t) resp. M(t) be the corresponding flow hypersurfaces, then T* = T*
and M (t) = M(t) for all t € [0,T*).

Proof. The arguments are similar to those in [7, Section 4] with combination
with the results from [5, Section 10.4]. Since there holds
(4.8) (z,2) =1, (#,2) =0, (z;,2) =0, (Z,z) =0,

(see [5, Lemma 10.4.1] for the last identity) we can consider the flow (4.6) as
flow in R 11

(4.9) T = —Dx,

and we have the decomposition

(4.10) T,(R™0H) = T,(H*) @ (z).
Furthermore, we conclude from

(4.11) (Z,2;) =&;, (2,%) =0, (i,2) = D,
from the Weingarten equation (see [5, Lemma 10.4.3, 10.4.4])
(4.12) z; = hiay,

and from (4.10) that

(4.13) &= 0x 4 P"xy, = Ox + PTRE 3y,
where

(4.14) " = g™,

and the second fundamental form Eij is defined with respect to the future
directed normal vector #. The corresponding flow equation in N has the form

(4.15) i = @0+ P"hE iy
Let ty € [0,7*) and introduce polar coordinates in the Euclidean part of the

Minkowski space as well as an eigentime coordinate system in N as in Section
2. For e small and to < t < tg + €, M(t) can be written as graph over S”

(4.16) M (t) = graphisn,

and we obtain the scalar flow equation

(4.17) % = oo + ™R iy,

where

(4.18) ?=1—|Da*=1- ! 1005

——5—0
cosh” o
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Note that 7 in (4.15) is the future directed normal

(4.19) () =71 (1,a),
where
(4.20) u' = Cosilgaa“aj.
Thus it holds in view of (4.15)
ou du _ -
o
(4.21) = P!+ O"RE Gy — 5L Daf? — SRR Sl
= P0.
This is exactly the scalar curvature equation of the flow equation
(4.22) i=—di,
where 7 in (4.22) is the future directed normal and
(4.23) O =¢(F)=d(F ).

Now h;; in N is defined with respect to the future directed normal. By
adapting the convention in [5, p.307] we switch the light cone in N and by
defining 7 = —arcsinh 2% in (2.12) we still derive the flow (4.22) in N, where
U is now the past directed normal and the second fundamental form is defined
with respect to this normal. The rest of the proof is identical to [7, Theorem
4.2]. O

From now we shall employ this duality by choosing
(4.24) &(r) =r.

Note that the expanding flows in H""! was already considered in [6] and
its non-scale-invariant version in [14].

5. PINCHING ESTIMATES

We consider the contracting flow
z=—Fv,

(5.1) 2(0) = M,

in H?**! with initial smooth and strictly convex hypersurfaces My, where v
is the exterior normal vector.

Under the assumptions of Theorem 1.2 the curvature flow (5.1) exists on
a maximal time interval [0, 7*),0 < T* < oo, cf. [5, Theorem 2.5.19, Lemma
2.6.1].

5.1. Theorem. Let M(t) be a solution of the flow (5.1) in H" 1. If the
initial hypersurface My in H' T satisfies

(5.2) ki > 1,
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then this condition will also be satisfied by the flow hypersurfaces M (t) during
the evolution.
Proof. The tensor
(5:3) Sij = hij = gij
satisfies the equation
(5.4)

Sij — F¥ S = F¥ by hi by — 2FhEhy;

+ Kn{2Fgi; — FMgpihij} + 2Fhij + FF " hygihy

= Ni; + Ny,
where Nij = Fkl“hkl;ihm;j. At every point where hijnj = 1); there holds
(5.5) Nin'n? = {FMh.xh] — 2F + F* g} n> > 0.
It was proved in [3, Theorem 3.3, Lemma 4.4] that
(5.6) Nijninj + 51111p 2Fkl{2FfSi,.;k77i — IS} >0,

where only the inverse concavity of F' was used. Andrews’ maximum principle
in [3, Theorem 3.2] implies that S;; > 0 during the evolution. O

In the next step we use a constant rank theorem to allow the condition
ki > 1 in the proof of the succeeding Lemma 5.4.

5.2. Lemma. Let M(t) be a solution of the flow (5.1) in H"*! and assume
that the tensor S;; satisfies Si; > 0 on the hypersurfaces M (t) fort € [0,T%),
then S;j; is of constant rank l(t) for every t € (0,T%).

Proof. The proof is similar to those in [15, Theorem 3.2], where the main
part is based on the computation in [4, Theorem 3.2]. For ¢ > 0, let
(57) Wij = Sij -+ egij~

Let [(t) be the minimal rank of S;;(t). For a fixed to € (0,7%), let zop € M (to)
be the point such that S;;(to, &) attains its minimal rank at zg. Set

Hiyo(Wi; (t,€))

Hipa (Wi5(t,€))

where H; is the elementary symmetric polynomials of eigenvalues of W;;,
homogeneous of order . A direct computation shows

FRWija — Wiy = — FFh hi Wiy — F¥ g Wi + 2FhEW,,
(5.9) — PR Wi Waes.; + 2F gy,
— (1 — ) {F*hhf —2F + F* gy} ;.

As in [4], we consider a neighborhood (tg — 0, tg] x O around (to,&p). We use
the notation h = O(f) if |h(§)| < Cf(€) for every (t,&) € (to — d,t0] x O,

(5.8) o(t, &) = Hip1(Wij(t,6)) +
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where C is a constant, depending on the C'™*! norm of the second fundamental
form on (tg — 0, t9] x O, but independent of e. It was proved in [4, Corollary
2.2] that ¢ is in C11. And asin [4], let G = {n — I+ 1,n—1+2,...,n}
and B = {1,...,n —[}. We choose the coordinates such that h;; = k;d;;
and g;; = 6;;. In view of [4, (3.14)], in such coordinates ¢ is up to O(¢)
non-negative in O and we have

(5.10)

Fkl¢;kl - ¢ < Q/)ij{—Fklhrkh{Wij — Fklgleij + 2Fh£€ij
+2Fegij — F* 7 Wi, iWisj } + FM o7 WijWesy + O(6).

We can choose O small enough, such that e = O(¢) as in [4, (3.8)]. It was

proved in [4, (3.14)] that ¢* = O(¢) for i € G and since W;; < ¢ for i € B,
we infer that

(511) Fkl¢;kl - ¢ S 7¢iijl’T5Wkl;iWTs;j + Fqusij’rswij;kwrs;l + O(¢)

Using the inverse concavity of F' and proceed as in [4, Theorem 3.2], we
conclude

(5.12) FM¢pq — ¢ < C{¢+ |Dg|},

where C' is a constant independent of € and ¢. Taking ¢ — 0, the strong
maximum principle for parabolic equations yields

(5.13) Hy(1o)41(S55(t,€)) =0 V(¢ €) € (to — 6,t0] x O.
Since M (to) is a closed hypersurface, S;;(to, &) is of constant rank {(ty) on
M (o). O

Note that the proof of the Lemma 5.1 implies, if the initial hypersurface
satisfies k; > 1, then this condition remains true during the evolution. Fur-
thermore, every closed hypersurface in H" ! contains a point on which holds
k; > 1. Thus we conclude

5.3. Corollary. Let M(t) be a solution of the flow (5.1) in H" L. If the
initial hypersurface My in H" satisfies k; > 1, then k; > 1 for every
te (0,T7%).

5.4. Lemma. Let M(t) be a solution of the flow (5.1) in H"™' under
assumption 1.1 (1), then there exists a uniform positive constant € > 0 such
that

(5.14) K1 2 €kn
during the evolution, where the principal curvatures are labeled as

(5.15) K1 < -oe < K
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Proof. The proof is similar to [13, Lemma 4.2]. By Replacing My by M (to)
for a tg € (0,7*) as initial hypersurface, we can assume that x; > 1 on M
Let F' be a concave and inverse concave curvature function, then

(5.16) T;j = hij — gij — €(H — n)gs;
satisfies the equation

(5.17)
Tij — Fleij;kl = Fklhrkhf{hij — eHgij} — QFhf{hk] — EHgkj}

+2KNFg;j — 2neKNFgij — KnF* g{hi; — eHgi;}

- 2F(€Tl - 1)hz] + Fkl’rshkl;ihrs;j - €Fkl’rshkl;phrs;quqgij

= Ni; + Nij,
where Nij = Fkl’rshkl;ihrs;j — eFkl’TShkl;phrs;quqgij.
At every point where T;;77 = 0 there holds
Nign'n? = F¥hyhi (1 = en)|n|? + 2Fhij(en — 1)n'n’
+ {FM gy — 2F}(1 — en)|n|? — 2F (en — 1) hyn'n’
=(1—en) ZE(/@ZQ —2r; +1)|n]* > 0.

(5.18)

It is proved in [1, Theorem 4.1] (see also the modification in [13, Theorem
B.2]) that

(5.19) Nign'n? + Sl]{p 2FF O Ty — TE I T,s} > 0,

We can choose € > 0 sufficiently small, such that 7;; > 0 on My, then the
Andrews’ maximum principle [3, Theorem 3.2] implies T;; > 0 and hence

(5.20) k1—1>€e(H —n)

during the evolution. O

The following pinching results is due to Gerhardt. By using [8, Theorem
1.1] and the duality result Lemma 4.2 we obtain

5.5. Theorem. Let M(t) be a solution of the flow (5.1) in H" ™' under
the assumption 1.1 (2), then there exists a uniform constant € > 0 such that

(5.21) K1 2 €kn

during the evolution.
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6. CONTRACTING FLOWS - CONVERGENCE TO A POINT

Fix a point pg € H"*!, the hyperbolic metric in the geodesic polar coor-
dinates centered at py can be expressed as
(6.1) ds* = dr? + sinh® roy;da’da?
where 0;; is the canonical metric of S™.
Geodesic spheres with center in pg are totally umbilic. The induced metric,
second fundamental form and the principal curvatures of the coordinate slices
S, = {2° = r} are given by
(6.2) Gij = sinh? roij, hij = %éij = cothrg,;, Ry = cothr,

respectively. See [5, (1.5.12)].

6.1. Lemma. Consider (5.1) with initial hypersurface x(0) = Sy, then the
corresponding flow exists in a mazimal time intervall [0, T*) with T* finite
and will shrink to a point. The flow hypersurfaces M(t) are all geodesic
spheres with the same center and their radii © = O(t) solve the ODE

© = —coth O,

Proof. We set

2°(t,€) = O(t),

' (t,€) = (0, ).

In view of [5, (1.5.7)] the exterior normal of a geodesic sphere is (1,0,...,0).

Using that F(h}) = coth©, we see that x in (6.4) solves the flow equation
(5.1). Now the solution of (6.3) is given by

(6.5) cosh © = (coshrg)e™".

Thus the spherical flow exists only for a finite time [0, 7*). Note that (6.5)
can be rewritten as

(6.6) © = arccoshe™ 1.

(6.4)

O

Next we want to prove that the flow (5.1) shrinks to a point. Using the
inverse of the Beltrami map, H" " is parametrizable over B;(0) yielding the
metric (cf. [5, Section 10.2])

_ 1 r? .
(6.7) ds® = ) dr® + T 01 d€'de’.
Define the variable ¢ by
(6.8) o = arctanhr = 1 (log(1 + 1) — log(1 — 7)),
then

(6.9) d5? = dg® + sinh® poy; de'de.
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Let
(6.10) d3? = dr?® 4+ r?0;;d¢tded
be the Euclidean metric over B;(0). Define

1
6.11 dr = ————dr, d7 =r"2dr,
(6.11) Yoy
we have further
2
(6.12) a° =5 - S {dr? + 0id¢’de’y = eV {dr? + 0y;dgtde’},

d32 = r?{d? + 0y;d€ T} = 2P {d7? + 0y;dE dET ).

An arbitary closed, connected, strictly embedded hypersurface M C H"*!
bounds a convex body and we can write M as a graph in geodesic polar
coordinates.

(6.13) M = graphu = {T = u(z) : x € S"}.

M can also be viewed as a graph M in B, (0) with respect to the Euclidean
metric

(6.14) M =grapha = { 7 = a(z) : © € S"}.
Writing @ = ¢(u), then there holds (see [5, (10.2.18)])
(6.15) ¢* =112
The same argument as in [7, Lemma 6.1] yields
6.2. Lemma. Let M(t) be a solution of (5.1) on a mazimal time inter-

val [0,T%) and represent M (t), for a fized t € [0,T%), as a graph in polar
coordinates with center in xg € M(t)

(6.16) M (t) = graphu(t, -),

then

6.17 inf u<0O(t,T*) < sup u,

(6.17) ol < 00,7°) < sup

where the solution of the spherical flow ©(t,T*) is given by (6.6). O

6.3. Lemma. Let zo € M(t) be as above and represent M(t) in Euclidean
polar coordinates (6.10), then there exists a constant co = co(My) < 1 such
that the estimate

(6.18) r < co
holds for any t € [0,T*).
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Proof. The argument is similar to those in [7, Lemma 6.3, Remark 6.5]. Look-
ing at the scalar flow equation for a short time interval, we conclude that the
convex bodies M (t) C H™*! are decreasing with respect to t. Furthermore,
M, is strictly convex. Thus p is uniformly bounded and the claim follows
from the relation

2

6.19 =tanhp=1—- ——.
(6.19) r=tanhg=1-

O

Denote h;; resp. izij the second fundamental forms and x; resp k; the
principal curvatures of M with respect to the ambient metric gog resp. gags.

6.4. Lemma. The principal curvatures k; of M(t) are pinched, i.e., there
exists a uniform constant ¢ such that
(6.20) Fn < CR1,
where the k; are labeled as

(6.21) iy <ov < R

Proof. The hyj and h;j are related through the formula (see [5, (10.2.33)])
(6.22) hijo = (1 —1%)hiv,
where

02 =1 + aijuiuj,
(6.23) Y 2 i
v° =14+ ¢ 0 uu;.

Because of Lemma 6.3 there exists 0 < § < 1 such that

(6.24) 2 <1-96,

and thus

(6.25) dv? < 9% <02,
(6.26) Shij < hij < 6 hyj.

Furthermore, there holds

(6.27) Yii =12
gij = r*{@*uiu; + 0y}

and we conclude

(6.28) 6%9i5 < Gij < 9ij.

Now the claim follows from the maximum-minimum principle. U
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For M(t) € H"t!, the inradius p_(t) and circumradius py (t) of M(t) are
defined by

p_(t) =sup{r : B.(y) is enclosed by M(t) for some y € H" '},

6.29 N
(6.29) p4(t) =inf{r : B,(y) encloses M (t) for some y € H"*'}.

Now, choose xy € M(t) to be the center of the inball of M(t) ¢ H**! and
let xg be the center of the geodesic polar coordinates. Note that the center
of the Euclidean inball is also z. Let p_(t) resp. p4(t) be the inradius resp.
circumradius of M (t) € H™'!, and let j_(t) resp. py(t) be the inradius resp.
circumradius of M (t) C R™t1,

6.5. Lemma. Let B, ()(z0) C M(t) be a geodesic inball, then there exist
positive constants ¢ and §, such that

(6.30) NI(t) C Byep_vy(x0) ¥t € [T" — 6,T").

Proof. The pinching estimates in the Euclidean ambient space (6.20) and [1,
Theorem 5.1, Theorem 5.4] imply

(6.31) pi(t) < (1)

with a uniform constant ¢, hence M (t) is contained in the Euclidean ball
B;(0),

(6.32) NI(t) € By(0),  jlt) = 265 ().
Furthermore, we deduce from Lemma 6.2 that

6.33 inf @ <O < sup i,
(6.33) M@ M(E))

where M (t) = graph @ is a representation of M (¢) in Euclidean polar coor-
dinates. We conclude further

(6.34) pt) = 2cp_(t) < 2¢O.
Choose now § > 0 small such that

(6.35) 2e0(t, T*) <1 Vte [T —6,T).
Now it holds for

(6.36) p(t) = arctanh p(t)

(6.37) M(t) C B (o) C HM.
Since

(6.38) pt) <1,

we conclude further

(6.39) pP<p<2p p-<p-.
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Thus
(6.40) p<2p=4dcp_ <dcp_

and the claim follows. O

6.6. Lemma. During the evolution the flow hypersurfaces M (t) are smooth
and uniformly conver satisfying a priori estimates in any compact subinterval
[0,T] C [0,T*).

Proof. Let 0 < T < T* be fixed. From (6.31) and (6.33) we infer
<

(6.41) cO(T, T*) < p_(T).
Since
(6.42) O(T,T*) = arctanh® (T, T*), p_(T) = arctanhp_(T),

and p_(T), (T, T*) are uniformly bounded from above by 1 we infer that
(6.43) 0 < £6 = £arctanh® < O < arctanh(cO) < p_(T).
Let zo € M (T") be the center of an inball and introduce geodesic polar coordi-

nates with center xy. This coordinate system will cover the flow in 0 <¢ < T.
Writing the flow hypersurfaces as graphs wu(¢, ) of a function we have

(6.44) 0<c'<u<ec

And since M(t) are convex,

(6.45) v? =1+ sinh™ 2w o uu;

is uniformly bounded. Under assumption 1.1 (1) we have x; > 1. And under
assumption 1.1 (2) it is proved in [8, Lemma 4.4] that

(6.46) %F@n <F<c

in N or equivalently, x; > ¢ in H**!. The proof of uniform boundedness of r;
from above is similar to those in [7, Theorem 6.6]. Since F' is concave, we may
first apply the Krylov-Safonov and then the parabolic Schauder estimates to
obtain the desired a priori estimates. O

In view of Lemma 6.1, 6.2, 6.5 and 6.6, the flow (5.1) shrinks in finite time
to a point xzg.

7. THE RESCALED FLOW

In view of Lemma 6.2 and 6.5 we can choose § > 0 small and define

(7.1) ts=T" -0,

such that

(7.2) M(ts) C Bgep (15)(20) Vo € M(ts),
and

(7.3) 8cp_(ts) < 8eO(ts, T*) < 1.
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Fixnow atg € (t5,7*) and let B,_(4,)(x0) be an inball of M (to). Choose zo
to be the center of a geodesic polar coordinate system, then the hypersurfaces
M (t) can be written as graphs

(7.4) M (t) = graphu(t, ) Vits <t <to,
such that
(7.5) p-(to) < ulty) < uft) < 1.

7.1. Lemma. Let

(7.6) X = g = vn(r),
if xi =0, then u; = 0.
Proof. Note that
1

(77 n(r) = sinh r
solves the equation

H
7.8 g = =
(7.8) ==,
hence the proof is same as those in [7, Lemma 7.1]. O

Similar to [7, Lemma 7.2, Corollary 7.3] we obtain

7.2. Lemma. There ezists a uniform constant ¢ > 0 such that
(7.9) O, T*)F <c Vtel|ts, T*),
and that the rescaled principal curvatures k; = k;© satisfy
(7.10) R <c Vtets, TT).
O
7.3. Lemma. Let t, € [ts,T*) be arbitrary and let t3 > t1 be such that
(7.11) O(te, T*) = 10(t1,T7).

Let xg € M(tg) be the center of an geodesic inball and introduce polar coor-
dinates around xo and write the hypersurface M(t) as graphs

(7.12) M (t) = graphu(t, -).
Define 9 by

(7.13) 9(r) = sinhr,
and

(7.14) 30:/ 9L,

2
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where ro = O(ty, T*). Then ¢(t,-) is uniformly bounded in C*(S™) for any
t1 <t <ty independent of t1,ts. Furthermore, let FZ-’; and ff; be the Christof-
fel symbols of the metrics g;; and o;; respectively, then the tensor F;; - fZ’;
is also uniformly bounded independent of t1,to.

Proof. As in [7, Lemma 7.4], we conclude from Lemma 6.2 and Lemma 6.5
that there exists a uniform constant ¢ > 1, independent of ¢1,t5, such that

(7.15) 1Oty T*) < u(t, &) < cO(ty, T*) Vit € [t1,ta].
Note that
(7.16) ¢ = {logsinh(5) — log cosh(%)}|:2,

thus we derive the C%-estimates
(7.17) || < loge.

As in the proof of [7, Lemma 7.5], an upper bound for the principal curvatures
of the slices {z° = const} intersecting M (¢) satisfies

sup cosh u(0, -) < ©
sinh Umin = Umin

(7.18) R <

Y

and from [5, (2.7.83)] we infer that the uniformly boundedness of v.

(7.19) D < eRlimax—timin) < C(FBE) 1
concluding further that

(7.20) |Dol> =v* —1<ec.
Define

(7.21) G =0 — 2yl
where

(7.22) o = o

Due to the boundedness of v the metrics g;; and o0y; are equivalent, thus we
can raise the indices of ¢;; by g;; and by employing the relation [6, (3.26)]

(7.23) e B G 1
we infer
(7.24) §%pjr = —vOh + 95},

concluding further from (7.10)
(7.25) i1 < e(v® 0% AP +nd?)
is bounded from above for all ¢ € [t1,t3]. We choose coordinates such that

ff; in a fixed point vanishes. Denote the covariant derivative with respect to
0;i; by a colon. In such coordinates

(726) F£ = %gkm(gm’i:j + gmj:i - gij:m)-
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From

(7.27) g =929

we compute

(728) " Gmis; = 3" {Pmj®i + @ijom + 2 coshu@;(Pmei + omi)}-

Using the estimates for ¢ proved before, we conclude that I 113 - I i’; are
uniformly bounded independent of ¢; and ts.

Define a new time parameter as

(7.29) T =—1og®,
then
dt sinh ©

In the following we denote the differentiation with respect to ¢ by a dot and
differentiation with respect to 7 by a prime.
7.4. Lemma. The rescaled quantity F = FO satisfies the inequality

(7.31) sup F <c inf F
M(t1) M(t2)

with a uniform constant ¢ > 0.

Proof. F satisfies the equation

. . inh® -
7.32 F/ — F®2 Sin _F
( ) cosh © ’
and from the evolution equation of F' in [7, (2.8)] we conclude further
~ ~ .. .. . . h @
7.33 a4 F_ FUFi . F h/z hkF K F ; A o S _
( ) ’ { at ehy B+ KnFgi F1O cosh © 0

We consider the non-trivial term in (7.33)

sinh ©

cosh®’

In view of (7.27), the pinching estimate and the boundedness of v, ©2F4
and o% are equivalent and hence uniformly positive definite. Furthermore,

(7.35) Fij=Fy — {FZ; - fi];‘}Fk'

(7.34) —~ FYF,;;0?

Hence we conclude from Lemma 7.3 that F satisfies a uniform parabolic
equation of the form

(736) F' - aijﬁ;ij + bZF‘Z + cF=0
in the cylinder [r,72] x S™, where 7, = —log®(t;, T*), with uniformly

bounded coefficients. The statement follows then from the parabolic Har-
nack inequality. O
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7.5. Corollary. The rescaled principal curvatures k; = kO are uniformly
bounded from below.
Proof. Consider a point (¢,£) in M (t) such that

(7.37) u(t,§) = sup u.
M(t)

In view of [5, (1.5.10)], it holds in (%, &)

coshu

7.38 hij > hij, i = Gijs i = Ri = — )
( ) i =gy 9ij = Gij, K =K sinh u

where we denote the quantity of the slices {2° = const } with a bar. In view
of (7.15)

(7.39) sup F' > F(R(t,€)) > F
M (t)

(coshu(t, €)

o, T*)) >c>0.
sinh u(t, §) ( )) =
The statement follows from the pinching estimates and Lemma 7.4. O

Let 29 € H™*! be the point the flow hypersurfaces are shrinking to and
introduce geodesic polar coordinates around it. Write M (t) = graph u(t,-)
and let

(7.40) a(r, &) = u(t, )0, T%) 7!,

(7.41) 75 = —1logO(ts, T*), Q(7s,00) = [15,00) x S™.

Using the same argument as in [7, Lemma 7.9, Lemma 7.10] we conclude that

7.6. Lemma. The quantities v and |Dal| are uniformly bounded form above

and @ is uniformly bounded from below and above in Q(7s,0). O
Let
0(0,T%)
(7.42) o= —/ 9t
u
then
(7.43) 0; = 0 Ty, Vij = ﬁ_luij —coshud2u; uj,
and

(7.44)  972|D%u|? + | Da|* cosh® u — 207 | D?u||Diif? coshu < | D?¢|%.

Since |D?p| and |Da| are bounded, we conclude that the C*-norm of @ is
uniformly bounded, where the covariant derivatives of @ and ¢ are taken
with respect to o;;. From [5, Remark 1.5.1, Lemma 2.7.6] we conclude that
sinh ©
cosh ©

(7.45) Fv = ®(x, 7,4, te ", Di, D*u),
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where @ is a smooth function with respect to its arguments, and

i — v Fijesinh@
(7.46) - O0(—uiy) cosh©®’
9sinh ©

@ij,kl _ Fij,kl,Z)fl@ .
cosh ©

Hence by applying first the Krylov and Safonov, then the Schauder estimates,
we deduce (cf. [5, Remark 2.6.2])

7.7. Theorem. The rescaled function w satisfies the uniformly parabolic
equation
(7.47) W =-P+u
in Q(7s,00) and a(T,-) satisfies a priori estimates in C°°(S™) independently
of T.
8. CONVERGENCE TO A SPHERE

The aim of this section is to prove that @ converges exponentially fast to
the constant function 1 if F' is strictly concave or F' = %H . Comparing the
proof in [7, Section 8], we should handle a term stemming from the negative
curvature of the ambient space Ky < 0.

8.1. Lemma. There exists a positive constant C' such that
(8.1) FMgu|AP — FH < CY (ki — 1),
i<j
Proof. The proof is similar to [7, Lemma 8.2]. Let
(8.2) o = Fgu|AP?> — FH.
Denote the partial derivatives of ¢ with respect to x; by ¢;, then

n n
(8.3) pj =Y FilAP +> 2Fk; — F;H - F,
=1

i=1

ok = Firl AP+ 2Fijki + Y 2Fik;
1=1 1=1 1=1
(8.4) .
+20j% Y F; — FjxH — Fj — Fy.
=1

Therefore
(8.5) O(En, -y kn) =0, @j(kn, -+ k) =0 Vj=1,...n

by using the Euler’s homogeneous relation and the normalization (1.6). Fur-
thermore, ;) are uniformly bounded from above, since ¢, are homogeneous
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of grad 0 and I%I are compactly contained in the defining cone. The state-
ment follows by an argument using Taylor’s expansion up to the second order
similar to those in [7, Lemma 8.2]. O

We want to estimate the function

(8.6) fo = F*(|A? = nF?),
where
(8.7) a=2-—o0,

and 0 < o < 1 small. For simplicity we drop the subscript ¢ of f,. In the
following we always assume that F' satisfies the assumption 1.1.

By Lemma 8.1 we have the following inequality corresponding to [7,
Lemma 8.3].

8.2. Lemma. Let F be strictly concave, then there exist uniform constants
€ >0 and C > 0, such that
—F9 fij+2* Fhyih f < aF 'FUF 5 f +2(a — 1) F ' FIF,f;

(8:8) ij i\ p—a 2 2 p—a
—2{h¥ — FnF9}F~F,; — 26| DA*F~ + 2C .

Corresponding to [7, Lemma 8.5] we have

8.3. Lemma. Let F' be strictly concave, then there exist positive constants
C and ¢ such that for any p>2, any § >0 and any 0 <t <T*

& [ Finnr <57ty - 1) ek [ P
(8.9) M M
+{dc(p —1) +c}/ |DAPPF—e fp~t +2c/ 17
M M

Parallel to [7, Lemma 8.6] we have

8.4. Lemma. Let F be strictly concave, then there exist C; > 0 and oy > 0
such that for all
(8.10) p>dee 2, o< min(%cile:gp*lﬂ7 00),
the estimate

(8.11) [fllps <C1 VE€[0,T7)
holds, where Cy, = C1(Mo,p) and oo = oo(F, My).

Proof. Multiply [7, (8.30)] with pfP~! and integrate by parts, and note that
(8.12) dupy = py dx on My,

where

4 d
(8.13) T = E\/E = 519" gij = —FHu,
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thus
i D _— p—1p/ HEF fP
(8.14) G| r=v[ g [ mEe,
and
d .
iy [ Ponaecp [ papr-es
(8.15)

< Up/ Fijhkihffp+40p/ 7.
M M

By choosing

(8.16) co = ic, o< min(e3p_1/2co_1,ao), §=ep /2,

and by using (8.9), the right-hand side of inequality (8.15) can be estimated
from above by

(8.17)
€p1/2co—1{62/ Fijhkih;?fp}_i_élcp/ 1P
M M

<P {07 elp — 1) + ¢} /M F9 il

+ ept2eg Hoelp — 1) + ¢} /IV[|DA|2F_O‘J“’_1 +{2Cep' /eyt + 4Cp) /M fP
= co {p(p — e+ ep'/%e} /M FYfififr?

+ g HE(p — e+ ept?e} /M|DA|2F7afpf1 + {2Cep*?cy + 4Cp) /M Vi

<Ip(p—1) /M FIfifi P2+ 3€(p - 1) /MIDAIQF’“J”H 150D /M 7

From (8.15), (8.17) we conclude that

d
(8.18) G| resenf g
and the Gronwall’s lemma leads to
(8.19) /M fr< /M fP|,_, - exp(5CPT™),
8200 fl= ([ ) ST+ sw s
M 0<0<1/2 Mo

O

To proceed further, we use the Stampacchia iteration scheme as in the
Huisken’s paper [10, Theorem 5.1], as well as [11, Theorem 5.1]. Note that
H"+! is simply connected and has constant sectional curvature Ky = —1,
thus the Sobolev inequality in [9, Theorem 2.1] has the form
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8.5. Lemma. Let v be a nonnegative Lipschitz function on M, then there
exists a constant ¢ = c(n) > 0, such that

(3.21) ([ = <ol [ o+ [ Hol.

Corresponding to [7, Theorem 8.7], we have

8.6. Theorem. Let F be strictly concave or F = %H, then there exist
constants § > 0 and ¢y > 0, such that

(8.22) |A|? = nF? < ¢gF*7°.
Proof. As in the proof of [10, Theorem 5.1} let f, ; = max(f, — k,0) for all
k > ko = supyy, fo and denote by A(k) the set where f, > k. We obtain
with v = fg,/,f for p > 4ce2,
d

7 v? +/ |Dv|? < Jp/ H?f2 +5Cp fr
(8.23) A(k) A(k) A(k) A(k)
<co) [ mp

A(k)

By applying Lemma 8.5 we can bound f, for ¢ small as in the proof of [10,
Theorem 5.1]. The case F' = L H is proved in [11, Lemma 5.1]. O

8.7. Lemma. Let F be strictly concave or F = L1H and M(7) be the
rescaled hypersurfaces, then there are constants c,6 > 0 such that

(8.24) /~ |IDA]? < ce™®™ Y1y <7 < 00,

where .

(8.25) 70 =—log®(0,T*), |DA]® =©%g"h},0h}. 0.
Proof. Choose

(8.26) f=F"2{|A? - nF?}.

From Theorem 8.6 we infer

(8.27) f<cF°<cO =ce™® VYr>m,

and from Theorem 7.7 we obtain

(8.28) |IDTA| < c|Al VYm > 1.

Integrating inequality (8.8) over M, using integraion by parts and using re-
lation (8.28), we infer

(8.29) 262/ |DA|?F~2 §c/ f.
M M
Hence (8.24) follows by rescaling (8.29). O

Using the same proof of [7, Lemma 8.10] we have
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8.8. Lemma. There are positive constants ¢ and § such that for all T > 19

(830) Fma,x - Fmin S 06_67—7
and
(8.31) |DE|| < ce™".

O

8.9. Lemma. There are positive constants ¢ and § such that for all T > 19

(8.32) |Dit| < ce™7,
where
(8.33) |Di|? = o ;i
Proof. As in the proof of [7, Lemma 8.12], we let
(8.34) p=logi, w=3|Dy|*
then
h©
8.35 B 1.
( ) 7 cosh® " v
Differentiate now (8.35) with respect to p* Dy, we obtain
h @ sinh @
L A YoR “Usinh ™2 wuwg ot
(8.36) w' =2 w coshe ' ¢ comhe!  SnhTuutukg
+ R + Ro,
where
Ri— o smh@ o
0sh©"
(8.37) smh O
Ry = e“”Fmv_l|D<p|4 sinh ™% u{u® coshu — u? sinhu} > 0.
In view of (8.31) Ry decays exponentially. Thus the function
(838) Wmax = SUp w
M(r)

is Lipschitz and satisfies

sinh @ e

> 2 PwFO ! —ce

Wmax = cosh @

for almost every 7 > 79. Using the same argument as in [7, Lemma 8.12] we
conclude that

(8.40) Winax (1) < $e7°7 V7 > 1.

(8.39)

O

The same arguments of [7, Corollary 8.13] and the interpolation inequali-
ties for the C™-norms (cf. [6, Corollary 6.2]) yield
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8.10. Theorem. Let F be strictly concave or F = %H, then the rescaled

function @ converges in C°°(S™) to the constant function 1 exponentially fast.
O

8.11. Lemma. Let F be strictly concave or F = %H, then there exist
positive constants ¢ and & such that

(8.41) |F(1,) = 1| < ce™® Y7 >

Proof. Observe that for 7 sufficiently large we have

sinh ©
42 — 0| <co? > 7.
(8.42) P @‘_c@ V1T >7
The rest of the proof is identical to [7, Lemma 8.16]. O

9. INVERSE CURVATURE FLOWS

Let M(t) be the flow hypersurfaces of the direct flow in H"™! and write
M (t) as graphs M (t) = graphu(t,-). with respect to the geodesic polar coor-
dinates centered in the point where the direct flow shrinks to. By applying
an isometry we may assume that the point xg is the Beltrami point. The
polar hypersurfaces M (t)* are the flow hypersurfaces of the corresponding
inverse curvature flow in the de Sitter space. Write M (¢)* = graphu*(¢,-)
over S™.

9.1. Lemma. The functions u,u" satisfy the relations

(91) Umax = —uy, vt € [t57T*)ﬂ

min

(9.2) Upin = — W Yt € [ts, T").

max

Proof. We use the relation [5, (10.4.65)]

(9.3) —

NS
and note that by comparing [5, (10.2.5)] and the metric in the eigentime
coordinate system in N (2.13) we infer that

(9.4) cosh?u* =1+ [3°2.
From (6.8) we infer that
(9.5) r = tanhu.

Since we have switched the light cone such that the uniformly convex slices
are contained in {7 < 0}, we deduce that
(9.6) u" = —arcsinh(0 sinh u) = —arcsinhy.

In a point where ©* attains its minimum, there holds v = 1 in view of Lemma
7.1. Thus u = —u* and w attains its maximum in such a point. This proves
(9.1). The proof of (9.2) is similar. O
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9.2. Corollary. There exists a positive constant ¢ such that

(9.7) —c<w=u0"t < ¢t Vte [t TY).
O

Define 9(u) = cosh(u) and g;; = ¥%0;;. We prove in the following that w
is uniformly bounded in C°°(S™). For simplicity, we write in the following
u instead u* for the graphs of the flow hypersurfaces in the de Sitter space.
The proof of C'-estimates of w is similar to [5, Theorem 2.7.11].

9.3. Lemma. There ezists a positive constant ¢ such that
(9.8) |Dw|? = ¥ w;w; < ¢ V€ [ts, T*).
Proof. Since
(9.9) | Du||? = g¥uin; = v 2g%uu; = v 2| Dul?,

we first estimate || Dul|/©71. Let A be a real parameter to be specified later
and define

(9.10) G = Llog(||Dul*©07?) + AuO~ .

There is g € S™ such that

(9.11) G(z9) = s;p G,

and thus in xg

(9.12) 0= G = | Du| usu? + M © 1,

where the covariant derivatives are taken with respect to g;; and
(9.13) u' = guj = v 2%,

Since

(9.14) hijo™t = —u;j — 9oy,

we infer that
M| Dul|~*0™* = —uju'u’03
= vilhijuiujG*S + ﬁﬁoijuiujé)*:g.
By considering the dual flow in the hyperbolic space, we conclude that h;; >

0. Furthermore,

(9.16) Pojun? O3 = (9019 w2 || Dul|?0 72

(9.15)

By applying [5, Theorem 2.7.11] directly, we conclude that v=2 is uniformly
bounded. Note ¥O~! < c. Let ¢ be an upper bound for (90 ~1)9~1v=2 and
by choosing A < —cy we conclude that || Du||©~! can not be too large in .
Thus ||Du|/©~! is uniformly bounded from above. We conclude that

(9.17) ocww; = || Dul|*©20%?

is uniformly bounded. O
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9.4. Lemma. There exists a positive constant ¢ such that for all m > 2
(9.18) |ID™w? < e VtE [ts, T).

Proof. Let (h7) = (hi;)~" be the inverse of the second fundamental form in
H"t! and h;j the second fundamental form in N. We consider the mixed
tensor

(9.19) ili = gih™, 71{ = 3 hy,

where g;; and g;; = hfhkj are the metrics of hypersurfaces in H**! resp. N.
From the relation

(9.20) Ri=r; ",
we infer that
(9.21) hf = hi

From Theorem 7.7 we infer that h{ © are uniformly bounded in C*°(S™) and
due to Lemma 7.2 and Corollary 7.5 there are constants c¢j,ce > 0 such that

(9.22) 0< 10! <hlO < ed,

and thus fLZ 0!l = iALZ ©~!, as the inverse of hg O, are uniformly bounded in
C>(S™). We switch now our notation by considering the quantities in N
without writing a tilde. Denote the covariant derivatives with respect to g;;
resp. o;; by a semiconlon resp. a colon. In view of [5, Remark 1.6.1, Lemma
2.7.6] we have

(9.23)
v iy = —v 2wy — Idoy;
- —U_Q{un-j — %gkm ((192)jami + (192)iamj — (ﬁQ)maij) up} — 19190@3‘-
Therefore,
(9.24) Uy = —vhij + 219_119uiuj - 191901‘;%
By considering the dual flow in hyperbolic space, we infer that
(9.25) A0~ <,
and note that
(9.26) G < g +o %t = g,
where
(9.27) i’ = g"uy,
we conclude that
(9.28) oo hijhiy < c|A|?.

In view of 90~ < ¢ we conclude that |D?w|? is uniformly bounded.
Contract (9.24) with g we conclude further

(9.29) — g9w.i; — 972900 2| Dw|? + vHO ' + nd~ 1O~ = 0.
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Since v is uniformly bounded, (9.29) is a uniformly elliptic equation in w
with bounded coefficients. A bootstrapping procedure with Schauder theory
yields for all m € N

(9.30) |W]msn < cm VEE[0,T7).

From Lemma 8.10 and preceding results in Section 9 we conclude

9.5. Theorem. Let the geodesic polar coordinates (7,£%) of N be specified
in Section 2. Represent the inverse curvature flow (1.5) in N as graphs over
S™, M(t)* = graphu*(t,-), where the curvature function F satisfies the as-
sumption 1.1. Then u* converges to the constant function 0 in C*°(S™). The
rescaled function w = u*©~1 are uniformly bounded in C>(S™). When the
curvature function F' of the corresponding contracting flow is strictly concave
or F'= LH, then w(r,-) converges in C*(S™) to the constant function —1
exponentially fast. O

REFERENCES

[1] Ben Andrews, Contraction of convezr hypersurfaces in Euclidean space, Calc. Var. Par-
tial Differential Equations 2 (1994), no. 2, 151-171.

, Contraction of convex hypersurfaces in Riemannian spaces, J. Diff. Geom. 39

(1994), no. 2, 407-431.

, Pinching estimates and motion of hypersurfaces by curvature functions, J.
Reine Angew. Math. 608 (2007), 17-33.

[4] Baojun Bian and Pengfei Guan, A microscopic convezity principle for nonlinear partial
differential equations, Inventiones mathematicae 177 (2009), 307-335.

[5] Claus Gerhardt, Curvature Problems, Series in Geometry and Topology, Vol. 39, Inter-
national Press, Somerville, MA, 2006.

[6] , Inverse curvature flows in hyperbolic space, J. Diff. Geom. 89 (2011), 487-527.

[7] , Curvature flows in the sphere, J. Differential Geom. 100 (2015), no. 2, 301-
347.

8] , Pinching estimates for dual flows in hyperbolic and de Sitter space, preprint,

2015, arXiv:1510.03747.

[9] David Hoffman and Joel Spruck, Sobolev and Isoperimetric Inequalities for Riemannian
Submanifolds, Comm. Pure Appl. Math. 27 (1974), 715-727.

[10] Gerhard Huisken, Flow by mean curvature of convez surfaces into spheres, J. Diff.
Geom. 20 (1984), no. 1, 237-266.

, Contracting convexr hypersurfaces in Riemannian manifolds by their mean
curvature, Invent. Math. 84 (1986), 463-480.

[12] Gerhard Huisken and Carlo Sinestrari: Convezity estimates for mean curvature flow
and singularities of mean convex surfaces, Acta Math. 183 (1999), no. 1, 45-70.

[13] Matthias Makowski, Mized volume preserving curvature flows in hyperbolic space,
preprint, 2012, arXiv:1208.1898.

[14] Julian Scheuer, Non-scale-invariant inverse curvature flows in hyperbolic space, Calc.
Var. Partial Differ. Equ. 53 (2015), no. 1-2, 91-123.

[15] Guofang Wang and Chao Xia, Isoperimetric type problems and Alezandrov - Fenchel
type inequalities in the hyperbolic space, Adv. Math. 259 (2014), 532-556.

(11]

RUPRECHT-KARLS-UNIVERSITAT, INSTITUT FUR ANGEWANDTE MATHEMATIK, IM NEUEN-
HEIMER FELD 294, 69120 HEIDELBERG, GERMANY
E-mail address: h.yu@stud.uni-heidelberg.de


mailto:h.yu@stud.uni-heidelberg.de

Erkldarung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbststindig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe,
dass alle Stellen der Arbeit, die wortlich oder sinngeméifl aus anderen Quellen
iibernommen wurden, als solche kenntlich gemacht sind und dass die Arbeit in
gleicher oder dhnlicher Form noch keiner Priifungsbehorde vorgelegt wurde.

Heidelberg, den



	1. Introduction
	2. Setting and general facts
	3. Strictly concave curvature functions
	4. Polar sets and dual flows
	5. Pinching estimates
	6. Contracting flows - convergence to a point
	7. The rescaled flow
	8. Convergence to a sphere
	9. Inverse curvature flows
	References

