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SUMMARY 

 
During neuron development, the establishment of precise neuron connections is 

crucial for the correct wiring pattern formation. The effectiveness of such a neuronal 

network is secured by repulsive signals, generated upon homophilic interactions 

between molecular probes that prevent synapse formation with sister dendrites (self-

avoidance). In addition, the presence of surface receptors on the cells dictates the 

axon orientation and growth, in response to signaling molecules (guidance cues) 

through attractive or repulsive mechanisms. 

Down Syndrome Cell Adhesion Molecule (DSCAM) is a cell surface receptor, the 

ectodomain of which, comprises 10 Immunoglobulin (Ig-like) and six Fibronectin 

(FNIII) domains. It is expressed, mainly, in commissural axons in mammals and is 

known to control neuronal response through heterophilic binding to guidance cues, 

like netrin-1. Their interaction induces axon chemoattraction that triggers cytoplasmic 

signaling, leading to axonal growth. In addition, DSCAM mediates homophilic 

interactions, essential for promoting cell adhesion and aggregation. Its homologue in 

D. melanogaster (Dscam), upon homophilic binding, has a different role and appears 

to be involved, mainly, in neuron self-avoidance and dendritic discrimination. The aim 

of the thesis was to identify the domains involved in homodimerization of human 

DSCAM and explore its heterophilic interactions with netrin-1, in order to assess the 

mechanistic differences between the two species. To this end, biophysical and 

structural studies involving SAXS, EM and X-ray crystallography were performed. 

A selection of DSCAM constructs comprising the N-terminal domains Ig1-Ig4, 

Ig1-Ig8 and Ig1-Ig9 was designed, successfully expressed and isolated in high purity. 

The results obtained from biophysical characterization assays and SAXS, suggested 

that DSCAM homodimerization probably follows a different mechanism than the one 

observed in Dscam. DSCAM Ig1-Ig9 was found to be a dimer in solution and 

domains Ig1-Ig4 did not seem to participate in the dimerization interface. EM studies 

with negative staining revealed, for the first time, the overall shape of human DSCAM 

nine Ig domains (Ig1-Ig9) in a monomeric state; out of these, the first four N-terminal 

domains (Ig1-Ig4) were engaged in a conserved rigid horseshoe arrangement. In the 

presence of netrin-1, DSCAM Ig1-Ig9 was predominantly depicted as a monomer by 

EM (negative staining); however, the dimeric population observed was probably 

induced by netrin-1 with the identity of the second molecule not being clearly 

resolved. SAXS analysis indicated that a plausible complex between DSCAM Ig1-Ig9 
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and netrin-1 could be formed under the conditions used in the study, but further 

investigation is required to confirm complex formation. 

Diffracting crystals were successfully grown for all three DSCAM constructs. 

DSCAM Ig1-Ig9 crystals diffracted to 9 Å resolution. Preliminary characterization of 

DSCAM Ig1-Ig8 at 6.7 Å resolution, showed that it crystallized in the C-centered 

orthorhombic lattice. For DSCAM Ig1-Ig4, two complete diffraction data sets were 

collected to 2.7 Å (space group C2221) and to 3.1 Å resolution (space group 

P212121), indicating that the more rigid configuration adopted by this shorter form, 

was more prone to crystallize and diffract X-rays to higher resolution, compared to 

the larger constructs. Molecular replacement did not provide a solution when Dscam 

Ig1-Ig4 was employed as a search model and derivatization of the crystals using 

heavy atoms, resulted in poor anomalous signal, not sufficient for phase 

determination. An additional data set was recently collected at 2.35 Å resolution from 

crystals belonging to space group C2221. The structure of Neurofascin, bearing a 

horseshoe domain organization, was used as a search model and the 3D structure of 

DSCAM Ig1-Ig4 was determined. The domains of DSCAM Ig1-Ig4 crystal structure 

adopted a horseshoe shape arrangement (as indicated by EM negative staining for 

DSCAM Ig1-Ig9), forming a dimer in the asymmetric unit. Dimer formation was shown 

to be induced by crystal packing interactions and the biological assembly of DSCAM 

Ig1-Ig4 seemed to be monomeric, as indicated by the results obtained for this 

construct in solution.  

The present study demonstrates that the underlying mechanism of human 

DSCAM homophilic interactions differs from Dscam in D. melanogaster; however, 

this finding requires further investigation, including the 3D structure of DSCAM Ig1-

Ig9 in order to elucidate its functional role. Overall, the results obtained contribute to 

the preliminary characterization of human DSCAM and reveal the structural 

differences of the two species. In addition, the applied integrated structural biology 

approaches determined the workflow towards understanding the structure-function 

relationship that dictates the interactions of DSCAM and netrin-1. Deciphering the 

role of cell receptors in axon guidance in vertebrates requires holistic approaches to 

dissect the complexity of this biological system. 
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ZUSAMMENFASSUNG 

 
Während der neuronalen Entwicklung ist die Etablierung präziser Verbindungen 

zwischen Neuronen entscheidend für die korrekte Ausbildung des neuronalen 

Netzwerks. Die Effektivität des neuronalen Netzwerks wird durch repulsive Signale 

gesichert, die durch homophile Interaktionen zwischen Schwester-Dendriten 

entstehen und somit die Ausbildung von Synapsen verhindern (Selbst-Vermeindung). 

Zusätzlich wird die Orientierung und das Wachstum von Axonen von Rezeptoren auf 

der Zelloberfläche bestimmt, die in Abhängigkeit von bestimmten Signalmolekülen 

(Führungssignale) anziehende oder abstoßende Reaktionen auslösen.  

Das ‚Down Syndrome Cell Adhesion Molecule‘ (DSCAM), ist ein Zelloberflächen-

Rezeptor, dessen Ektodomäne aus sechs Fibronektin- (FNII) und 10 Ig-ähnlichen 

Immunoglobulin-Domänen besteht. In Säugetieren wird er hauptsächlich in Axonen 

der Kommissurenzellen exprimiert und kontrolliert die neuronale Antwort durch 

heterophile Bindung an Führungssignale, wie z.B. Netrin-1. Ihre Interaktion löst 

Signale im Zytoplasma aus, die zu Chemoattraktion zwischen Axonen führen und 

deren Wachstum stimulieren. DSCAM vermittelt auch homophile Interaktionen, die 

essentiell für Zelladhäsion und -aggregation sind. Das homologe Protein aus D. 

melanogaster (Dscam) hat eine andere Funktion und scheint, ausgelöst durch 

homophile Bindungen, hauptsächlich in der neuronalen Selbst-Vermeindung und 

dendritischen Unterscheidung involviert zu sein. Das Ziel dieser Arbeit war es, die 

Domänen des humanen DSCAM zu identifizieren, die an der Homodimerisierung 

beteiligt sind, sowie heterophile Interaktionen mit Netrin-1 zu untersuchen, um die 

mechanistischen Unterschiede zwischen beiden Spezies zu untersuchen. Dazu 

wurden biophysikalische und strukturelle Studien durchgeführt, im speziellen SAXS, 

Elektronenmikroskopie (EM) und Proteinkristallographie. 

Um die Homodimerisierung zu untersuchen, wurden drei Konstrukte des 

humanen DSCAM mit den N-terminalen Domänen Ig1-Ig4, Ig1-Ig8 sowie Ig1-Ig9 

erstellt, exprimiert und aufgereinigt. Die Resultate der SAXS und biophysikalischen 

Analysen legen nahe, dass die Homodimerisierung von DSCAM und Dscam 

unterschiedlichen Mechanismen folgen. DSCAM Ig1-Ig9 liegt als Dimer in Lösung 

vor, jedoch scheinen die Domänen Ig1-Ig4 nicht an der Dimerisierung beteiligt zu 

sein. Mittels EM-Studien (Negativfärbung) konnte zum ersten Mal die vollständige 

Form von neun Ig-Domänen des humanen DSCAM (Ig1-Ig9) im monomeren Zustand 

gezeigt werden; von denen die ersten vier N-terminalen Domänen (Ig1-Ig4) ein 
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konserviertes starres Hufeisen-Arrangement bilden. In Anwesenheit von Netrin-1 

zeigten die Negativfärbungs-EM-Studien DSCAM Ig1-Ig9 vorrangig als Monomer. Es 

ist jedoch zu vermuten, dass die beobachteten Ig1-Ig9-Dimere durch Netrin-1 

induziert wurden, wobei die Identität des zweiten Moleküls nicht geklärt werden 

konnte. Die SAXS-Analysen weisen darauf hin, dass DSCAM Ig1-Ig9 mit Netrin-1 

einen Komplex unter den gewählten Bedingungen bilden. Diese Ergebnisse müssen 

jedoch durch weitere Untersuchungen bestätigt werden. 

Von allen drei DSCAM-Konstrukten wurden erfolgreich Proteinkristalle erzeugt. 

Kristalle von DSCAM Ig1-Ig9 hatten eine Auflösung von 9 Å, DSCAM Ig1-Ig8 

kristallisierte in einer C-zentrischen orthorhombischen Raumgruppe und hatte eine 

Auflösung von 6.7 Å. Von DSCAM Ig1-Ig4-Kristallen konnten zwei komplette 

Datensätze gesammelt werden, mit einer Auflösung von 2.7 Å (Raumgruppe C2221) 

und 3.1 Å (Raumgruppe P212121). Die starrere Konfiguration des kürzeren Ig1-Ig4 

scheint im Vergleich zu den langen Konstrukten dessen Kristallisation begünstigt zu 

haben. Die Struktur konnte jedoch weder mit ‚molecular replacement‘ unter Nutzung 

der bekannten Dscam Ig1-Ig4-Struktur gelöst werden noch durch Derivatisierung mit 

Schwermetallen, da das anomale Signal zu schwach für die Phasen-Bestimmung 

war. Kürzlich wurde ein weiterer Datensatz mit einer Auflösung von 2.35 Å 

(Raumgruppe C2221) erhalten. Unter Nutzung einer Neurofascin-Struktur, deren 

Domänen eine Hufeisen-Organisation aufweisen, konnte die Ig1-Ig4-Struktur gelöst 

werden. Sie zeigt, dass DSCAM Ig1-Ig4 eine Hufeisen-Organisation aufweist, wie es 

die EM-Studien mit DSCAM Ig1-Ig9 vermuten ließen, und Dimere in der 

asymmetrischen Einheit bildet. Das Vorhandensein der Dimere ist auf die 

Kristallpackung zurückzuführen, während der biologische Aufbau von Ig1-Ig4 

monomerisch ist, wie die Untersuchungen des Konstrukts in Lösung vermuten 

ließen. 

In der vorliegenden Arbeit konnte gezeigt werden, dass humanes DSCAM einen 

unterschiedlichen Mechanismus in der homophilen Interaktion im Vergleich zu 

Dscam aus D. melanogaster aufweist. Diese Ergebnisse erfordern jedoch durch 

weitere Untersuchungen, einschließlich einer 3D-Struktur von DSCAM Ig1-Ig9, um 

seine Funktion zu entschlüsseln. Die erhaltenen Resultate leisten einen wesentlichen 

Beitrag für die Charakterisierung des humanen DSCAM und decken strukturelle 

Unterschiede zu Dscam aus D. melanogaster auf. Zusätzlich beeinflussten die 

genutzten strukturbiologischen Anwendungen den Arbeitsablauf in Richtung eines 

besseren Verständnis der Struktur-Funktion-Beziehung, die Interaktion von DSCAM 
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und Netrin-1 bestimmen. Um die Rolle von Zellrezeptoren in der Orientierung von 

Axonen in Wirbeltieren zu entschlüsseln und diese komplexen biologischen Systeme 

zu analysieren, ist eine ganzheitliche Herangehensweise erforderlich. 
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Chapter 1  

INTRODUCTION 

1.1 Physiology of the neuron  
 

At the end of the 19th century, Santiago Ramón y Cajal and Camillo Golgi made 

the first attempts to describe the components comprising the brain tissue. Golgi 

believed that the brain was composed of a continuous connected tissue, while Cajal 

suggested that the brain consisted of distinct cells. Cajal showed that the brain tissue 

consisted indeed of individual neuron cells, using silver impregnation, a staining 

technique originally developed by Golgi. His discovery confirmed his hypothesis; 

however, the use of any other staining technique would have been misleading, since 

the remaining cells would have been visualized as tangled tissue (Levitan and 

Kaczmarek, 2002).  

Today, it is known that brain tissue is composed of two major cell types, glial and 

neuron cells, forming a complex nervous system. Glial cells can be categorized into 

microglia and macroglia (Eglitis and Mezey, 1997). Migroglia are the primary immune 

cells in the central nervous system (CNS) and are mainly responsible for providing 

protection from pathogens (Prinz and Priller, 2014). Macroglia, such as astrocytes 

and oligodendrocyte cells in the CNS and in Schwann, enteric and satellite cells in 

the peripheral nervous system (PNS) (Jessen, 2004) have multiple roles in the 

nervous system. Among others, they provide insulation to neurons (Kettenmann and 

Verkhratsky, 2008), they maintain the necessary ion levels on the extracellular 

environment (Jessen, 2004) and they also support the neuron cells by maintaining 

their structure and regulating synaptic connectivity without their direct involvement in 

electrical signaling (Purves et al., 2001; Eroglu and Barres, 2010).  

Neurons are mainly responsible for signal transduction, either intracellularly or 

among different cells (Purves et al., 2001). The human brain contains approximately 

1011 neurons and each neuron is connected on average with a thousand other 

neurons following a precise wiring path (Ranscht, 2000; Alberts et al., 2002; Bashaw 

and Klein, 2010). Neuronal communication in the adult nervous system is a process 

that is highly regulated by gene expression during neuronal development and is 

fundamental for the proper function of the neuronal circuit (Chédotal and Richards, 

2010). 
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A typical neuron cell consists of an axon and dendrites. The axon is a thin 

structure arising from the main cell body and it can be elongated from micrometers to 

meters. Signal transmission is mediated with the aid of highly specific proteins 

located in the axonal plasma membrane that can transfer electrical signals along its 

length. Dendrites have a highly branched structure, shorter than the axon and they 

mainly arise from the cell body or originate from certain regions in the axons (e.g. in 

invertebrates). They are composed of small protrusions, the dendritic spines, which 

allow electrical signal transmission within the neuron cell body. In some cases 

dendrites are also involved in signal transmission with neighboring neuron cells 

(Alberts et al., 2002) (Figure I-1). 

 
Figure I-1. Schematic representation of a typical vertebrate neuron cell. 

 

 

1.2 Neuronal wiring 
 

 During brain development, axons follow specific pathways to establish precise 

neuron connections with their presynaptic targets (Chao et al., 2009; Kolodkin and 

Tessier-Lavigne, 2011). The specificity required from the neurons for locating their 

binding partners, is dictated by a variety of mechanisms, which among others involve 

diffusible guidance molecules (chemotropic cues) that influence the axonal growth 

and synaptogenesis, adhesive molecules that activate intracellular signaling and cell 

receptors that either promote or prohibit the axonal growth (Dickson, 2002). In 

particular, guidance cues exhibit high diversity, allowing axons to modify their 

responses depending on the receptors present on the neuron surface. This process 

influences axonal navigation and along with second messenger signaling pathways 
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that mediate dynamic cytoskeletal reorganization, lead to the final axon movement 

(Chauvet and Rougon, 2009; Bashaw and Klein, 2010; Dent et al., 2011). Cell 

surface receptors are located at the tip of the axon, the growth cone, which facilitates 

axonal movement and growth during development. The growth cone is an actin-

based motile structure, rich in microtubules that maintain the shape of the neuron 

and provide structural support (Lowery and van Vactor, 2009). More specifically, it is 

mainly driven by subsequent polymerization and depolymerization of the actin 

filaments, which along with motor proteins (such as myosin II) (Medeiros et al., 2006) 

promote the movement of the neuron, while neurofilaments (intermediate filaments) 

maintain the neuron structure (Alberts et al., 2002; Burnette et al., 2008; Levitan and 

Kaczmarek, 2002). The projections of the growth cone are called filopodia or 

microspikes (finger-like extensions), which are surrounded by a membrane 

composed by mesh-like F-actin network, the lamellipodia-like veils (flat sheet-like 

extensions). Both filopodia and lamellipodia are constantly in motion, enhancing the 

final axonal elongation (Alberts et al., 2002; Dent et al., 2011) (Figure I-2).  

 

 
 

Figure I-2. Schematic representation of the growth cone which is divided into three areas; the 
Peripheral (P) and the Central (C) domains, along with the Transition zone (T). The P domain 
contains individual dynamic microtubules and long actin filaments, the F-actin bundles, which 
compose the filopodia. The latter along with the lamellipodia create a highly dynamic P 
domain in which cell receptors and adhesion molecules are mainly located. The C domain 
exhibits less dynamic motion and contains organelles, vesicles and stable microtubules, 
which enter the growth cone arising from the axon shaft, maintaining the normal growth cone 
morphology. The T zone is located between the P and the C domains and contains mainly 
motor proteins and F-actin arcs (actomyosin contractile structures). The arc structures are 
composed of antiparallel bundles of actin that interact with microtubules, transporting them to 
the central domain. Image adapted from (Lowery and van Vactor, 2009). 

 
 

Initially, a hypothesis that neurons carry specific molecules, which guide the axons 

to certain directions, was investigated by Langley (Langley, 1895) and later on by 



	 24	 	

Sperry (Sperry, 1963), who performed neurological experiments on cats and 

amphibians, respectively. Their studies involved dissecting the optic nerves of their 

animal models, which resulted in neuron regeneration and formation of functional 

connections. Based on these observations, Sperry originally suggested that axons 

locate their targets and establish neuron connections, with the assistance of 

molecules (molecular tags) present on the neuron surface of the axon and their 

counterparts located on the target surface. Therefore, neurons must be chemically 

specified with certain molecules in order to promote axonal growth (Chemoaffinity 

hypothesis) (Sperry, 1963). His initial hypothesis, was later modified stating that 

guidance cues, are also essential for allowing a correct neuron targeting (Meyer, 

1998). 

During the last twenty years, a plethora of experimental data and the discovery of 

guidance cues, have supported the chemoaffinity hypothesis. More specifically, a 

variety of molecules with multifunctional properties that have been identified as 

guidance cues, along with cell surface receptors, provide a key role in neuron 

recognition, specificity and axonal growth. Guidance cues may act either at short 

range, by being present on the growth cone, or at longer range, secreted from a 

distant target (Kolodkin and Tessier-Lavigne, 2011). They mediate attraction or 

repulsion depending on the surface cell receptors they respond to. Thus, in the case 

of chemoattraction, the growth cone turns towards the signal source, resulting in 

axonal extension, whereas in the case of chemorepulsion, the axon moves away 

from the source (de Castro et al., 1999) (Figure I-3). 

 

 
 

Figure I-3.  The diversity of axon guidance. Guidance cues can act either at short or long 
range mediating attraction or repulsion responding to different receptors on the neuron cells. 
Image adapted from (Kolodkin and Tessier-Lavigne, 2011). 

 
 



	 25	 	

Studies have shown that certain proteins are responsible for allocating different 

specificity to the axons that act as diffusible chemotropic cues, such as netrins 

(Kennedy et al., 1994; Serafini et al., 1996), semaphorins (Kolodkin et al., 1993), slits 

(Brose et al., 1999) and Ephrins (Tessier-Lavigne, 1995) along with a broad range of 

receptors e.g. Down Syndrome Cell Adhesion Molecule (DSCAM) (Andrews et al., 

2008), deleted in colorectal cancer (DCC) (Keino-Masu et al., 1996), roundabout 

(Robo) (Kidd et al., 1999), uncoordinated5 (UNC-5) (Leung-Hagesteijn et al., 1992), 

plexins (Tamagnone et al., 1999) and Eph (Klein, 2004) (Table I-1).  Additionally, the 

growth cone contains molecules that are involved both in physical cell adhesion and 

synapse formation and also in neuronal wiring during development, like cell adhesion 

molecules (CAM), members of the Immunoglobulin superfamily (Ig), fibronectins (FN), 

laminins and cadherins (Tomaselli et al., 1988; Kolodkin and Tessier-Lavigne, 2011) 

(Table I-1). 

 
Table I-1. Cell adhesion and axon guidance molecules with their receptors. 

Adhesion factor Receptor Guidance molecule Receptor 
Fibronectin 
Laminin 

Integrin Semaphorin Neuropilin 
Plexin 

CAM 
DSCAM 

CAM 
DSCAM 

Netrin/UNC-6 
(Caenorhabditis 
elegans) 

DCC (vertebrates)/UNC-40  
(C. elegans) 
Neogenin 
DSCAM 
UNC-5 (vertebrates) 

Cadherin Cadherin Ephrin EphA & EphB 
  Slit Robo 
 

 

1.3 Axon guidance for neuronal wiring 
 

During embryonic development in vertebrates, the correct wiring of the spinal cord 

through axon guidance is essential in order to neurally coordinate the two sides of 

the body. The floor plate located at the ventral midline of the spinal cord, is 

composed of epithelial cells and is considered as an intermediate target that 

influences axon guidance (Odenthal et al., 2000; Chao et al., 2009). More specifically, 

commissural axons, which connect the CNS across the spinal cord, differentiate in 

the dorsal area of the latter and follow a pathway towards the ventral midline of the 

cord, by crossing the floor plate (Colamarino and Tessier-Lavigne, 1995). A key 

feature of the commissural axons is that they can switch their response to specific 

guidance cues, by altering their sensitivity as they travel across the floor plate. This is 



	 26	 	

achieved by changing the type of receptors expressed on their surface (Shirasaki et 

al., 1998). In that way, the system ensures that the axons, which have initially 

responded to a specific guidance cue, will lose sensitivity for it while remaining in 

their target region (Figure I-4). The repulsion signal, generated by the floor plate, is 

sensed by the axons and prevents them from returning to their original position in the 

spinal cord, ensuring a precise neuronal wiring (Alberts et al., 2002). Studies in 

zebrafish (Bernhardt et al., 1992) and mice mutants lacking a floor plate (Kadison et 

al., 2006), have shown that its role is substituted by other cells acting as intermediate 

targets. In invertebrates, like in Drosophila melanogaster, the floor plate is substituted 

by specific midline glial cells that promote axon guidance (Klämbt et al., 1991).  

 

 
 

Figure I-4. Schematic representation of the neural tube in the developing spinal cord in 
vertebrates. The guidance cue netrin-1 (shown in black), which is secreted by the cells of the 
floor plate, attracts the commissural axons (shown in yellow) to the floor plate, upon DSCAM 
(shown in blue) expression. The axons expressing DSCAM can mediate turning responses to 
netrin-1 (chemoattraction) (Ly et al., 2008). 

 
 

Signaling factors are secreted either by the floor plate, the roof plate (located in 

the dorsal midline of the cord), or by the ventral two-thirds of the spinal cord, and 

guide specific receptors of the commissural axons towards the spinal cord (Kennedy 

et al., 1994; Chizhikov and Millen, 2004). This activation leads to membrane 

depolarization, resulting in an intracellular Ca2+ release. The change in Ca2+ levels 

activates the extension mechanism and the actin reorganization induces dynamic 

changes in the cytoskeleton, which lead to movement of the growth cone towards the 

gradient source (Hong et al., 2000; Bashaw and Klein, 2010). Axons that do not 

express the corresponding receptors are not accepted and they are targeted back to 

the roof plate (Alberts et al., 2002). On the contrary, chemorepulsion mediates 
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membrane hyperpolarization. For example, in the case of semaphorins, a local 

change in the calcium influx, results in the activation of the plexin receptor, which in 

turn activates certain ion channels in the membrane. Therefore, calcium levels guide 

the axon away from its source, mediating repulsion (Nishiyama et al., 2008).  

 

 

1.4 Netrin as a guidance cue 
 

Netrins are secreted proteins that had been originally characterized as 

chemoattractants, however, both in vivo and in vitro studies, demonstrated that they 

also promote chemorepulsion (Colamarino and Tessier-Lavigne, 1995) and their role 

as bifunctional guidance cues has been evolutionary conserved (Kolodkin and 

Tessier-Lavigne, 2011). They are found both in vertebrates and invertebrates with 

UNC-6 being the first netrin identified in C. elegans (Hedgecock et al., 1990; Ishii et 

al., 1992). There are two netrins in D. melanogaster, netrin-A and netrin-B (Harris et 

al., 1996), four proteins in mammals netrin-1, netrin-3, netrin-4, netrin-5 (Yamagishi 

et al., 2015) with netrin-2 being recently discovered in Gallus gallus. There are also 

two membrane associated glycophosphatidylinositol (GPI) linked proteins in 

mammals netrin-G1 and netrin-G2 (Kolodkin and Tessier-Lavigne, 2011). Netrins 

guide many different axons by acting either over a short (Brankatschk and Dickson, 

2006; Rajasekharan and Kennedy, 2009) or over a long distance (Kennedy et al., 

1994) and they mediate repulsion or attraction depending on the receptor expressed 

on the neuron surface (Kolodkin and Tessier-Lavigne, 2011). Within the spinal cord 

of the vertebrates, two netrins exist. Netrin-1, which is only present in the floor plate 

and netrin-2, mainly in the ventral half of the spinal cord present in Gallus gallus 

domesticus (Keino-Masu et al., 1996; Kennedy et al., 1994).  

Netrin-1 is expressed in the developing neuron system, influencing axon guidance 

and synaptogenesis. In the non-neural systems it is highly expressed in tissues, such 

as heart (Zhang and Cai, 2010), lungs (Liu et al., 2004) pancreas (Yebra et al., 2003) 

and the visual system (Sugimoto et al., 2001), where netrin-1 regulates cell migration, 

cell adhesion and survival (Rajasekharan and Kennedy, 2009). It is composed of a 

laminin domain VI, which is globular, followed by three epidermal growth factors 

EGF-like repeats of the γ-chain of laminins V (EGFV-1, EGFV-2, EGFV-3). These N-

terminal domains are linked to a C-terminal netrin-like module (Lai Wing Sun et al., 

2011) (Figure I-5).  
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Figure I-5. Schematic representation of netrin family. Netrins are members of the laminin 
superfamily (in purple) and consist of three major domains, V, VI and C. The N-terminal 
laminin encodes domains VI and V (in red), which are homologous to the corresponding 
laminin domains VI, V of the γ-chain (in orange). Similarly, domains VI, V (in light green) 
which correspond to Netrin-4, G1 and G2, are homologous to the β-chain of laminins (in dark 
green). Image adapted from (Ko et al., 2012). 
 

 

1.4.1 Cell receptors of netrin-1 

Netrin-1 is associated with a significant number of cell surface receptors for the 

activation of chemotropic responses and adhesive mechanisms. In mammals, 

several receptors that mediate netrin-dependent attraction, have been identified, 

such as DCC (Keino-Masu et al., 1996; Chen et al., 2013; Finci et al., 2014;), 

neogenin (a DCC paralogue in vertebrates) (Bell et al., 2013; Xu et al., 2014) and 

DSCAM (Ly et al., 2008; Liu et al., 2009). DCC orthologues are present in C. elegans 

(UNC-40) (Chan et al., 1995) and in D. Melanogaster (Frazzled) (Kolodziej et al., 

1996) promoting chemoattraction as well. On the contrary, axonal chemorepulsion in 

vertebrates, is mediated when UNC-5(a-d) (also found in D. melanogaster and in C. 

elegans) is present on the neuron surface (Hong et al., 1999; Keleman and Dickson, 

2001) (Figure I-6). 
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Figure I-6. Schematic representation of selected cell surface receptors interacting with netrin-
1, such as DSCAM, DCC with its paralogue in vertebrates: neogenin and homologue 
members of DCC: the UNC-5 family. Ig: Immunoglobulin domain, FNIII: Fibronectin type III 
domain, PID: Pak-interacting domain, P1, P2, P3: phosphoserine (P1, P3) and 
phosphothreonine (P2) conserved sequence domains, TSP: thrombospondin type 1 domain, 
ZU5:	 zona occludens 5 domain, DB: binding domain of DCC, DD: death domain. Image 
adapted from (Lai Wing Sun et al., 2011). 

 

 

1.5 Deleted in Colorectal Cancer 
 

The gene of DCC was originally characterized as a potential tumor suppressor, 

detected on the human chromosome 18q21, which is usually absent in colorectal 

carcinomas (Fearon et al., 1990). DCC is involved in mediating the transition from 

proliferation to terminal differentiation and its loss is implicated in the majority of 

colorectal and other types of cancer and probably also leads to tumor metastasis 

(Krimpenfort et al., 2012). DCC binds to netrin-1 inducing a signaling complex. Upon 

the absence of netrin, the complex dissociates leading to cell apoptosis. In cancer 

cases, the tumor cells switch off this apoptotic pathway, by deleting the cell receptor 

of DCC, resulting in selective cellular survival (Mazelin et al., 2004). In vertebrates 

during development, DCC is present on the growth cones of spinal commissural 
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neurons and it is required for promoting the axonal growth in response to netrin-1. 

Loss of either netrin-1 or DCC results in loss or mistargeting of several commissural 

axons in vivo (Keino-Masu et al., 1996). 

The DCC protein family consists of four Ig domains, arranged in a horseshoe 

conformation (Chen et al., 2013) and six FNIII repeats in its extracellular region, 

followed by a transmembrane single domain. The intracellular domain comprises 

three sequence conserved phospho-domains (P1, P2, P3), whose role is to 

accumulate cytoplasmic signal transduction molecules (Rajasekharan and Kennedy, 

2009) (Figure I-6). Studies have shown that the extracellular domains of DCC are 

required for binding to netrin-1, which induces the formation of a homodimer, 

involving also the P3 intracellular domain. This binding promotes chemoattraction, 

which leads to the reorganization of the cytoskeleton, with the activation of several 

proteins within the cell (e.g. Rho family of GTPases, Src-kinases, Ser/Thr kinases) 

(Rajasekharan and Kennedy, 2009; Lai Wing Sun et al., 2011). More specifically, it 

has been proposed that DCC binds to netrin-1 through the extracellular N-terminal 

FNIII domains FN4 and FN5 (Geisbrecht et al., 2003; Kruger et al., 2004), a view that 

was also supported by structural studies (Xu et al., 2014). 

Additional structural studies between netrin-1 and domains FN5-FN6 of DCC, 

revealed homodimerization of DCC upon binding to netrin-1, providing evidence that 

these FN domains are also essential for inducing binding (Finci et al., 2014). The 3D 

structure revealed that the binding sites of DCC were located in two different regions 

of the V domain of netrin-1, underlying the important role of domain FN5. One 

binding site (BS1) was located at the tip of the EGFV-3 domain of netrin, and the 

amino acids implicated in the interactions formed, proved to be evolutionary 

conserved. Binding at this site involved only domain FN5, in accordance with the 

structural findings obtained by Xu and co-workers for the specific domain (Xu et al., 

2014). The second binding site (BS2) involved both domains FN5 and FN6, which 

interacted with netrin-1 domain EGFV-1 (Figure I-7). Based on neuronal experiments 

with netrin-1, UNC-5 and DCC mutants, it was proposed that BS1 was specific for 

DCC binding, whereas BS2 could accommodate other receptors such as UNC-5, 

offering distinct signaling (Finci et al., 2014).  

These findings provide an example of how the axons switch their response from 

attraction to repulsion when distinct receptors are present on the cell surface, e.g. in 

the case of netrin-1 and its counterparts, the complex of DCC:netrin-1 mediates 

chemoattraction, whereas UNC-5:netrin-1 induces chemorepulsion. In vertebrates, it 
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has been shown that many neurons require both UNC-5 and DCC on their cell 

surface for repulsion that occurs upon netrin-1 binding to their extracellular domains 

(Colavita and Culotti, 1998; Hong et al., 1999). This binding mode potentially triggers 

the formation of a UNC-5:DCC complex, involving also interactions of their 

cytoplasmic domains, necessary for the ternary structure (Finci et al., 2014; Lai Wing 

Sun et al., 2011) (Figure I-7). 

 

 
Figure I-7. Schematic representation showing the biofunctional role of guidance cues in axon 
guidance. Binding of netrin-1 (shown in red) to DCC extracellular domains induces 
chemoattraction through clustering of DCC molecules with the involvement of cytoplasmic 
domains P3, whereas upon binding to UNC-5 induces chemorepulsion, in cases that short-
distance repulsion is required. When netrin-1 binds simultaneously to both UNC-5 and DCC, 
chemorepulsion is also mediated (in long range repulsion cases), inducing cytoskeletal 
changes through binding of P1 and DB domains. This is an example of how an axon can 
switch its response, depending on the receptors that are expressed on its surface. Image 
adapted from (Cirulli and Yebra, 2007).  
 

 

1.6 Down Syndrome Cell Adhesion Molecule  
 

Cell adhesion is an essential process, found in several tissues, for maintaining 

cellular structure. This molecular regulation of morphogenesis is based on the 

differential gene expression of cell adhesion molecules (CAM). When this 

mechanism is triggered, a number of surface modifications occur, which provide the 

cells with specific motilities. This synchronization of the CAM expression helps 

decimating the non-acceptable connections between the cells (Edelman, 1984). More 
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specifically, CAM and members of the Ig superfamily (e.g. DSCAM), provide the 

bridge for cell-cell communication, through homophilic and heterophilic interactions 

through mechanical processes (Dalva et al., 2007). Besides that mechanism, it has 

been additionally proposed that they are also involved in axon guidance and in 

signaling pathways regulation, during neuronal development (Kolodkin and Tessier-

Lavigne, 2011). Initially, it was suggested that only CAM guide axons through cell 

adhesion (Harrelson and Goodman, 1988; Lin and Goodman, 1994), but recent 

studies showed that axon guidance and outgrowth is also mediated by responding to 

signals arising from other axons mainly through heterophilic interactions (Kolodkin 

and Tessier-Lavigne, 2011). 

The Ig superfamily of DSCAM is a cell surface receptor and its gene was initially 

identified in chromosome band 21q22, which is responsible for many of the 

phenotypes in Down Syndrome (trisomy 21) (Yamakawa et al., 1998). It was 

proposed that the presence of three copies of DSCAM, observed in Down Syndrome 

(DS), might affect cell adhesion by altering cell properties, resulting in neuron 

clustering. In addition, postmortem studies in DS cases have revealed alterations in 

axons and in dendrite spine morphology, proposing that DSCAM plays an important 

role in axon guidance (Antonarakis and Epstein, 2006). In humans, the second gene 

(DSCAML1) is located in chromosome 11q23 and is related to Tourette and 

Jacobsen Syndromes (Agarwala et al., 2001).  

 

1.6.1 Dscam in Drosophila melanogaster 

Previous studies have shown that Dscam, a D. melanogaster homologue gene of 

human DSCAM, encodes through alternative splicing, more than 38,000 variable 

isoforms and is involved in the formation of the neuronal circuit (Schmucker et al., 

2000). The extracellular domains of Dscam are composed of ten Ig-like C2-set 

domains and six FNIII domains. The Ig-like domains contain 70-110 amino acids and 

they share a characteristic Ig-fold with a Greek-key-sandwich-core structure formed 

by two β-sheets of antiparallel β-strands. 

More specifically, the Dscam gene in Drosophila contains three arranged groups 

of alternative exons, which encode 12, 48 and 33 isoforms for the domains Ig2, Ig3 

and Ig7, respectively. The locus also encodes two variations of the transmembrane 

domains and alternative splicing produces also four different C-terminal tails. Due to 

the fact that mRNA splicing in each group of exons is independent of the others, it 

gives the possibility for generation of a total of 19,000 different extracellular domains 
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in 38,000 variations (Schmucker et al., 2000; Zipursky and Grueber, 2013) (Figure Ι-

8).  

 
 

Figure Ι-8. Alternative m-RNA splicing of Dscam gene in D. melanogaster that generates 
multiple isoforms depicting the molecular variability of Dscam protein. The gene consists of 
four blocks of exons, each responsible for encoding alternative variants of Ig domains. Exon 4, 
6 and 9 encode Ig2, Ig3 and Ig7, respectively and the combination of different exons results in 
19,008 ectodomains. For the transmembrane domain, exon 17 consists of two variants 
encoding this region of the protein. For Dscam homophilic binding all three domains (Ig2, Ig3, 
Ig7) should match. In case there is a mismatch (even one is sufficient), binding does not 
occur. Image adapted from (Zipursky and Grueber, 2013). 
 

Several biochemical and cell aggregation assays revealed the role of the domains 

variability. Experiments, where more than 3,000 different isoforms were tested, 

demonstrated that homophilic binding (with a few exceptions) occurred only when 

domains Ig2, Ig3 and Ig7 were matching with the corresponding ones from the other 

isoforms (Wojtowicz et al., 2004, 2007) (Figure I-8). A Kd estimation of the 

homodimers when the three domains were matching, was of 1-6 μM (Wu et al., 

2012) whereas matching only between domains Ig3 and Ig7 did not lead to dimer 

formation. This result underlines the specificity required for homodimerization 

between the different isoforms.  

Structural studies of two Dscam isoforms comprising the first four Ig domains 

(Dscam Ig1-Ig4), confirmed the specificity required for domains Ig2 and Ig3 (Meijers 

et al., 2007). Both structures share a U-shape (horseshoe) arrangement involving 

isoform pair matching of domains Ig2 and Ig3 in an antiparallel orientation. Further 

studies of Dscam ectodomain consisting of eight Ig N-terminal domains (Dscam Ig1-

Ig8), confirmed the aforementioned and also illustrated the role of Ig7 domain in 
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homophilic binding (Sawaya et al., 2008). This domain, pairs with the Ig7 of the same 

isoform in an antiparallel way, consistent with the pairing observed for domains Ig2 

and Ig3. The 3D structure also revealed that domains Ig5 and Ig6 are essential for 

allowing the homophilic binding of Ig7 domain. More specifically, Ig5 and Ig6 domains 

are involved in intramolecular interactions, forming a ‘bend’ interface that stabilizes 

the chain turn, bringing domain Ig7 in an antiparallel axis for homophilic pairing 

(Sawaya et al., 2008; Schmucker and Chen, 2009) (Figure Ι-9). Although, the binding 

interface of Dscam homodimerization in Drosophila, contains all five domains Ig2, Ig3 

and Ig5-Ig7, domains Ig2, Ig3 and Ig7 are required for specificity and recognition. All 

the domains are finally arranged in a double S-shape configuration, associating in a 

two-fold symmetric dimer, with domains Ig1-Ig4 forming a rigid horseshoe-like 

conformation (Figure Ι-9).  

 

 
 

Figure Ι-9. Schematic representation of the proposed model for Dscam homophilic 
interactions based on the crystal structure of Dscam Ig1-Ig8 in Drosophila (PDB entry 3DMK) 
(Sawaya et al., 2008). Upon homodimerization, Ig domains are arranged in a double S-shape 
conformation. Out of these, Ig1-Ig4 are engaged in a horseshoe configuration. The specificity 
required for homophilic binding is attributed to domains Ig2, Ig3 and Ig7 of each monomer. 
Domains Ig5 and Ig6 form intramolecular interactions that allow and stabilize the chain turn, 
bringing domain Ig7 in an antiparallel axis for homophilic pairing.	When homophilic binding 
occurs (Kd = ~2 μM), a repulsion signal is generated, which is then transduced to the 
cytoplasmic domain of Dscam, facilitating cytoskeletal rearrangements. This event leads to 
self-avoidance and discrimination among sister dendrites. When the variable Ig domains do 
not match, binding does not occur (Kd > 500 μM). The Kd values were determined by 
analytical ultracentrifugation (Wu et al., 2012). Image adapted from (Sawaya et al., 2008 and 
Zipursky and Grueber, 2013).  
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Dscam in D. melanogaster is expressed in axons and dendrites during 

development and is involved both in homophilic and heterophilic interactions. It is 

implicated in axon guidance in certain neuron types (optic nerve) (Schmucker et al., 

2000) and in neuronal wiring through cell recognition and discrimination. Loss of 

Dscam results in dendrite self-crossing and fasciculation (Kise and Schmucker, 

2013). More specifically, Dscam through homophilic interactions provides 

discrimination among the dendrites arising from the same neuron cell. Sister 

dendrites usually express the same Dscam isoforms in their cell surface and when in 

contact, Dscam pairs with the neighboring dendrite. Homophilic binding instantly 

generates a repulsion signal inducing cytoskeletal rearrangements. This results in 

self-discrimination among sister dendrites, preventing undesirable synapse formation 

(Kise and Schmucker, 2013; Matthews et al., 2007) (Figure I-9). This process is 

called self-avoidance and instructs a selective recognition mechanism for neuronal 

discrimination among neighboring neurons (non-self) and sister dendrites on the 

same neuron (self). The high molecular diversity of Dscam and its domain specificity, 

provide each neuron with a distinct identity (Neves et al., 2004; Kise and Schmucker, 

2013). This is essential for neuronal recognition and discrimination to ensure correct 

wiring and formation of a functional neuronal system (Chen et al., 2006).  

Watson and co-workers showed that Dscam was involved in heterophilic binding 

interactions in the immune system of insects. It was suggested that Dscam diverse 

isoforms attract bacterial pathogen molecules and their binding resulted in 

phagocytosis, demonstrating a potential role in immune signaling (Watson et al., 

2005) (Figure I-10). Dscam was also found to be implicated in axon guidance, 

through dendritic targeting signals, arising from netrin-A, netrin-B (Andrews et al., 

2008) and Frazzled (Matthews and Grueber, 2011); however, the underlying 

mechanism is still under investigation. 
 

1.6.2 DSCAM in vertebrates 

DSCAM studies, performed mainly in mammals, have shown that it is involved in 

commissural axon guidance and dendritic branching during embryonic neuronal 

development, as well as in heterophilic interactions with other cell receptors when 

present, such as DCC (Liu et al., 2009; Ly et al., 2008).  

DSCAM mediates axon turning in response to netrin-1 concentration gradient. 

More specifically, in vivo studies in mice demonstrated DSCAM role in commissural 

axon development. In the presence of DSCAM, axons managed to reach the floor 
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plate, whereas in knockdown experiments in mice lacking DSCAM siRNA, axons 

failed to cross the ventral midline (Ly et al., 2008). Additional studies with netrin-1 

and DSCAM, showed that knockdown of DSCAM prevented netrin-induced axonal 

growth and commissural attraction. Therefore, it was concluded that DSCAM 

response to netrin-1 endows axon guidance and growth through chemoattractive 

responses.  

Further studies on the interactions formed upon DSCAM:netrin-1 binding, were 

performed with co-immunoprecipitation and activity assays. To determine domain 

specificity, in-solution-binding assays were performed with DSCAM domains Ig1-Ig6, 

Ig7-Ig9, Ig1-Ig9 and FN1-FN6. The results demonstrated that binding possibly 

occurred among domains Ig1-Ig9 and Ig7-Ig9, suggesting that domains Ig7-Ig9 

should contribute to netrin binding (Ly et al., 2008). Additional studies for examining 

DSCAM oligomeric state in response to netrin-1, showed that DSCAM does not 

homodimerize upon netrin binding, suggesting that either DSCAM acts as a 

monomer, or it requires another co-receptor for signal response (Ly et al., 2008) 

(Figure I-10). However, the results obtained from cell binding assays, imply the 

presence of an additional molecule, induced by DSCAM expression, that might also 

bind to netrin-1 (Liu et al., 2009). Therefore, further research is required to elucidate 

whether another protein is also essential for DSCAM:netrin-1 complex formation. 

The role of DSCAM in association with DCC was also examined both in the 

presence and absence of netrin-1. In vivo assays demonstrated that both receptors 

were localised on the cell surface of some commissural axons, forming a 

heterocomplex, via interaction of their transmembrane domains. In the presence of 

netrin-1, complex interactions were abolished, indicating that netrin-1 interferes with 

DSCAM:DCC heterodimerization. Therefore, it was proposed that either 

DSCAM:DCC complex is required for another signaling mechanism, or the complex 

is maintained until the concentration of netrin-1 reaches a critical point, at which 

proteins respond, by dissociating the complex previously formed (Ly et al., 2008).  

Besides heterophilic interactions, DSCAM in mammals was shown to be also 

involved in homophilic binding (homodimerization), which is crucial for promoting cell 

adhesion and aggregation during synaptic targeting (Agarwala et al., 2001; 

Yamagata and Sanes, 2008) (Figure I-10).  

Despite the absence of molecular variability (only two isoforms are expressed in 

humans, DSCAM and DSCAML1), in certain cell types, the role of Dscam in 

Drosophila concerning chemorepulsion is also conserved in mammalian DSCAM. 
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More specifically, studies performed on DSCAM in the mouse retina, concluded that 

DSCAM is involved in self-avoidance through homophilic interactions, to prevent 

neurons from fasciculation (Fuerst et al., 2008). However, this theory proposes that 

DSCAM in this case, is likely involved in anti-adhesive functions, rather than 

promoting directly repulsion in specific cell types (Fuerst and Burgess, 2009; Garrett 

et al., 2012). Since DSCAM in mammals lacks isoform diversity, in contrast to Dscam 

in Drosophila, it was suggested that it is only implicated in self-avoidance but not in in 

self-discrimination, which requires the expression of a variety of different isoforms 

(Fuerst et al., 2008; Schmucker and Chen, 2009). Further studies are required to 

provide evidence on DSCAM role in self-avoidance and axon guidance in order to 

uncover the molecular mechanisms underlying these processes in vertebrates and 

understand how neuronal wiring is achieved.  

 

 
 

Figure I-10. Schematic representation of DSCAM in humans (shown in blue) and Dscam in D. 
melanogaster (shown in black), which summarizes their implication in homophilic (left image) 
and heterophilic (right image) interactions. Dscam is engaged in homophilic interactions 
mediating repulsion, which leads to self-avoidance and discrimination, whereas DSCAM 
mediates attraction, through cell adhesion, during synaptic targeting. Anti-adhesive function is 
maintained only in some neuron types (e.g. mouse retina), but not self-avoidance. Upon 
heterophilic interactions, Dscam binding to different pathogen molecules is suggested to be 
important for immune signaling processes, whereas DSCAM binding to guidance cues, like 
netrin-1, mediates axon guidance and growth during neuron development. Image adapted 
from (Schmucker and Chen, 2009).  
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1.7 Aim of the study  

Biochemical and structural studies performed on Dscam in D. melanogaster, 

propose a mechanism of its homodimerization. However, the corresponding 

mechanism underlying DSCAM homophilic and heterophilic interactions in humans is 

still under investigation. DSCAM lacks molecular diversity, compared to the large 

number of isoforms expressed in Dscam. In the frame of this thesis the hypothesis 

that DSCAM function is dictated by a different dimerization profile, compared to the 

one observed in insects, was examined. The aim of the research conducted, was to 

identify the interactions that drive human DSCAM homophilic binding and to assess 

potential differences of its homodimerization, with Dscam in Drosophila. The role of 

DSCAM in axon guidance was also explored, through DSCAM interactions in 

association with netrin-1, with the aim to elucidate whether DSCAM 

homodimerization is abolished upon binding to netrin-1 and to determine the domains 

implicated in heterophilic binding. To this end, structural and biophysical studies 

using SAXS, EM and X-ray protein crystallography were performed with DSCAM and 

DSCAM in the presence of netrin-1. 
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Chapter 2  

MATERIALS AND METHODS 
 

2.1 Materials 

The chemicals, laboratory consumables, equipment, antibodies, enzymes and 

primers used in the frame of the present thesis are described in the Appendix 

Section.  

2.2 Methods 

This section describes in detail the procedures followed for performing the 

experimental work that has been included in the research conducted.  

2.2.1 Constructs 

Down Syndrome Cell Adhesion Molecule is a member of the Ig superfamily. It 

consists of nine Ig-like C2-set domains located at the N-terminus, followed by six 

FNIII domains with a tenth Ig-like C2-set domain lying between the fourth and the fifth 

FNIII domain. The protein also consists of a transmembrane and a cytoplasmic 

domain at the C-terminus. Studies performed in the frame of this thesis, on human 

DSCAM (Homo sapiens UniProtKB-O60469), focused on the structural 

characterization of its extracellular domain. The DNA sequences encoding the N-

terminal eight Ig domains of DSCAM (DSCAM Ig1-Ig8), along with the ninth domain 

(DSCAM Ig9), were obtained as synthetic genes designed by GenScript, optimized 

for the mammalian expression system. In an effort to identify the different protein-

protein interactions formed, two additional constructs were designed, including the N-

terminal four and nine Ig domains of DSCAM, DSCAM Ig1-Ig4 and DSCAM Ig1-Ig9, 

respectively (Table M-1). 
  Table M-1. List of constructs for protein expression in Human Embryonic Kidney cell line. 
Protein ID Construct Domains HEK 293T HEK 293S 

(GnTI-) 
DSCAM 
O60469 

DSCAM Ig1-Ig8 
(Synthetic) 

Ig1-Ig8 
a.a. residues: 18-783 

 
+ 

 
+ 

 DSCAM Ig9  
(Synthetic) 

Ig9 
a.a. residues: 787-883 

 
+ 

 

 DSCAM Ig1-Ig9  
(PCR) 

Ig1-Ig9 
a.a. residues: 18-883 

 
+ 

 
+ 

 DSCAM Ig1-Ig4  
(PCR) 

Ig1-Ig4 
a.a. residues: 18-401 

 
+ 

 
+ 
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Table M-2. Selected web tools for protein construct design and structure prediction. 
Name Function Reference 

GlyProt In-silico Glycosylation of Proteins Bohne-Lang et al., 2005 
Modeller Comparative Protein Structure Modeling Eswar et al., 2007 

Pfam server Protein Families Database Finn et al., 2016 
Phyre2 Protein Homology/Analogy Recognition 

Engine 
Kelly et al., 2015 

ProtParam Calculation of physicochemical protein 
properties 

Gasteiger et al., 2005 

PSIPRED Protein Sequence Analysis Buchan et al., 2013 
UniProt Protein DataBase The UniProt Consortium, 2017 

 
 

2.2.2 Vector design 

All protein constructs were expressed using the pXLG vector, (suitable for 

mammalian expression in human embryonic kidney (HEK) cells), which was kindly 

provided by Dr. David Hacker and Prof. Florian Wurm (Protein Expression Core 

Facility, EPFL Lausanne, Switzerland) (Figure M-1). Prior to use, the pXLG vector 

was modified by inserting a KpnI restriction site, immediately after the native 

secretion signal peptide (amino acid residues 1-17) for every DSCAM construct. In 

addition, a SacI restriction site was also introduced, followed by a polyhistidine tag 

(His6-tag) and a double stop codon at the C-terminus. 

 

 
Figure M-1. Schematic representation of the pXLG vector. 
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2.2.3 Molecular cloning 

 

2.2.3.1 Preparation of insert gene 

The synthetic gene encoding DSCAM was received in the pUC57 vector and 

was ligated into the pXLG vector, using the NotI and HindIII restriction enzymes 

(Figure M-2). More specifically, the pUC57 vector containing the DSCAM insert gene, 

was amplified by means of polymerase chain reaction (PCR) using the high-fidelity 

phusion polymerase (Table S2) and the primers shown in Table M-3. Each primer 

was designed to contain the appropriate combination of restriction sites, so as to 

enable the generation of suitable overhangs.   

 

 
 

Figure M-2. Schematic representation of the pXLG vector with DSCAM. 
 

Table M-3. Primers for preparation of the insert gene. 
Primers for DSCAM Ig1-Ig8 (native secretion signal - His6-tag) 

Forward with NotI: 
5’-AATACCGGTCATAGTTCCCTGTATTTTGTGAAC-3’ 
Reverse with SacI: 
5’-AGGGGTACCGAGCTCAATCTTCACAGTCA-3’ 

 

Plasmid amplification was performed using the PCR protocols described at 

Tables M-4 & M-5 with the necessary positive and negative controls. The polymerase 

was added at the last step, prior to the reaction. The total reaction volume was 50 μl. 
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Table M-4. PCR reaction protocol for plasmid amplification. 
Reagent Volume (μl) 

Polymerase HF reaction buffer (5x) 10  

dNTPs (2 mM) 5  

DNA template (50-150 ng/μl) 5  

Forward primer (10 pmol/μl) 1.5  

Reverse primer (10 pmol/μl) 1.5  

Phusion HF DNA polymerase (2 U/μl) 0.7  

Milli-Q H2O (nuclease-free) 26.3  

 

Table M-5. PCR thermocycling conditions for plasmid amplification. 
Step Temperature (˚C) Time Repeats 

Initial denaturation 98 2 min 1 

Denaturation 98 30 sec 18 

Annealing 63 30 sec 18 

Initial extension 72 30 sec/kb 18 

Final extension 72 10 min 1 

Storage 4 - - 

 

2.2.3.2 DNA digestion and ligation in restriction endonuclease cloning 

The amplified product obtained by PCR, was mixed with DNA loading dye (Table 

S2) and was visualized under UV light on 1 % agarose gel. The remaining product 

was purified using the Qiagen quick PCR purification kit (Table S2) and the 

concentration was verified with the absorbance measurement at 260 nm with 

Nanodrop. The purified product and the pXLG vector were digested with the 

appropriate restriction endonucleases, according to the manufacturer’s protocol. The 

digested products were loaded on an electrophoresis agarose gel and the bands, 

which corresponded to the pxLG vector and to the amplified insert gene, were 

removed carefully and were further purified using the Gel Extraction procedure from 

Qiagen, in accordance to the manufacturer’s guidelines. Purification of the DNA 

product was followed by the ligation of the insert gene into the linearized vector. This 

process was performed using the T4 DNA ligase with a molar ratio of insert to vector 

DNA of 3:1 (Tables M-6 & M-7). 
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Table M-6. Restriction enzyme digestion reaction for inserts and vectors. 
Reagent Volume (μl) 

Not1-HF (Cf= 0.4 U/μl) 1 
Sac1-HF (Cf= 0.4 U/μl) 1 

10x NEBuffer 2.1 (C = 1x) 5 
Insert or vector DNA (Cf= 1.0 μg)   x * 

MilliQ H2O Vt= 50 
            * The amount of DNA, is related to its concentration C. 
             Cf, Vt: Final Concentration and Total Volume, respectively. 
 
 
 

Table M-7. Restriction enzyme ligation reaction for inserts with vectors. 
Reagent Quantity 

10x T4 ligase buffer 2 μl 
Vector DNA *   50 ng 
Insert DNA **      z ng *** 
T4 DNA ligase                           1 μl 

Milli-Q H2O Vt= 20 μl 
            * The size of pXLG vector is 4783 bp. 
            ** DSCAM Ig1-Ig8 insert size is 2370 bp, DSCAM Ig9 insert size is 414 bp. 
            *** The required mass insert z (ng) = desired insert/vector molar ratio x mass of  
             vector (ng) x ratio of insert to vector lengths. 
 
 
 
2.2.3.3 Overlap extension cloning 

Overlap extension cloning (OEC) is a method of ligation-independent cloning 

and relies on the fact that there is no requirement for restriction enzymes and in vitro 

ligation. It is based on the generation of complementary overhangs between the 

insert and the vector through PCR. This is achieved by designing suitable primers, 

which contain the specific extensions. The OEC requires two rounds of amplification. 

Initially, the insert gene is amplified with PCR using a primer with 5’ ends 

complementary to the target site (Table M-5). This results in producing a 

megaprimer, the 3’ ends of which can anneal and amplify the vector successively by 

overlap extension PCR. This method was used to produce the large DSCAM Ig1-Ig9 

construct by combining DSCAM Ig1-Ig8 and DSCAM Ig9 constructs. DSCAM Ig1-Ig4 

construct, which involved reduction of the main domains, was obtained as previously 

described in §2.2.3.1 and §2.2.3.2. All the primers were designed having 

complementary overhangs between the insert and the vector (Table S5). 
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2.2.3.4 Agarose gel electrophoresis 

Agarose gel electrophoresis is a standard technique for separating DNA 

fragments based on their base length (Raymond and Weintraub, 1959). Negatively 

charged molecules are placed into an electric field and they migrate towards the 

positively charged pole. The most commonly used matrix, which was also used in 

this study, is agarose. This method was applied for both qualitative analysis and for 

purification of DNA fragments (inserts or vectors).  

The gel was prepared by dissolving 2 g of agarose (Table S2) in 200 ml of Tris-

acetate-EDTA buffer (TAE) (40 mM Tris pH 8.5, 20 mM Acetic acid, 1 mM EDTA) to 

achieve 1 % solution. The mixture was homogenized in a microwave until it was 

dissolved. To visualize the DNA fragments under UV light, ethidium bromide was 

added to the solution to a final concentration of 0.2 μg/ml before its polymerization. 

DNA samples were mixed with DNA loading dye (Table S2) and were then loaded to 

the gel along with 1kb DNA ladder, since the DNA fragment size exceeded 500 base 

pairs. TAE was used as a running buffer and voltage was applied at 80 V until the 

dye bands had migrated to approximately 75-80 % of the bottom of the gel.  

 

2.2.3.5 Transformation of E. coli competent cells  

After ligation, the mixture was incorporated to chemically competent DH5a E. coli 

cells, using the heat-shock transformation method. The same method was used to 

transform every DNA construct.  

The ligation mixture 1-10 ng/μl (1 to 5 μl) was added to frozen (-80 ˚C) 

chemically competent cells (100 μl for ligation or 50 μl for DNA constructs) and the 

cells were incubated on ice for 30 min. Cell incubation was followed by a heat-shock, 

which was performed in 42 ˚C for 45 sec. The cells were further incubated on ice for 

2 min for cell damage reduction. Finally, 80 μl of SOC autoclaved medium (0.5 % w/v 

yeast extract, 2 % w/v bacto-tryptone, 2.5 mM KCl, 10 mM NaCl, 10 mM MgCl2, 10 

mM MgSO4) were added to the cells and the mixture was incubated at 37 ˚C for 40 

min in a shaking incubator. After incubation, 100 μl of culture were spread on a LB-

agar plate, containing a suitable antibiotic (100 mg ampicillin stock, in 1:1000 dilution) 

and colonies appeared within 12-16 hours of incubation at 37 ˚C.  
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2.2.3.6 Plasmid preparation 

Plasmid preparation is a method used to isolate and purify plasmid DNA from 

bacteria. Single colonies were selected from the LB-agar transformation plates and 

used to inoculate 5 ml of LB broth (5 g/L yeast extract, 10 g/L bacto-tryptone, 5 g/L 

NaCl) with the appropriate antibiotic (ampicillin). The cultures were incubated for 12-

16 hours at 37 ˚C in a shaking incubator and cells were harvested by centrifugation 

at 4000 rpm for 15 min at 4 ˚C. The supernatant was discarded and the pellet was 

used for plasmid purification with the QIAprep Spin Miniprep kit, according to the 

manufacturer’s protocol. Plasmids were eluted in Milli-Q water and DNA 

quantification and purity were verified by measuring the absorbance at 260 nm and 

280 nm. 

 

2.2.3.7 Confirmation of construct 

The correct sequences of every construct were verified by DNA sequencing, 

performed by Eurofins MWG Operon. The resulting sequences were validated in 

comparison to the original theoretical sequences, using the multiple alignment-

sequencing tool ClustalW2, EMBL-EBI.  

 

2.2.3.8 Culture preparation for plasmid amplification 

Protein expression in the mammalian HEK cell line requires large amounts of 

plasmid DNA for transfection (2.0 mg/L). Therefore, E. coli competent cells (DH5a) 

were utilized for the plasmid amplification. The DNA plasmid of interest was used to 

transform DH5a cells, as previously described (§2.2.3.5) and positive single colonies 

were inoculated in 4L of LB media with the suitable antibiotic (ampicillin). Cultures 

were incubated at 37 ˚C in a shaking incubator. After 12-16 hours of incubation, the 

cultures were centrifuged and the pellet was retained for plasmid purification using 

the QIAplasmid Plus Gigaprep kit (Table S2), following the manufacturer’s guidelines. 

DNA quantification and purity were verified by measuring the absorbance at 260 nm 

and 280 nm. The absorbance ratio (A260/280) was used to assess the purity of the 

DNA (for pure DNA, the ratio should be ~1.8). 
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2.2.4 Protein expression in Human Embryonic Kidney cells 

 

2.2.4.1 Preparation of HEK cells  

HEK 293T and HEK 293S cell lines were selected for transient expression in 

adherent cultures. Mammalian proteins were expressed and secreted in their natural 

environment for efficient post-translational modifications, necessary for their proper 

folding (Aricescu et al., 2006a; Aricescu and Owens, 2013). HEK 293T cells 

synthesize complex N-glycans, which due to their heterogeneity, might interfere with 

the formation of high quality diffracting crystals (Davis et al., 1993; Chang et al., 

2007). Therefore, HEK 293S cell line, was used instead. These cells are 

characterized by the absence of N-acetylglucosaminyltransferase-I (GnTI-) (Reeves 

et al., 2002), the main enzyme responsible for transferring β-1,2-N-acetyl-D-

glucosamine (GlcNAc) to α-1,3-asparagine linked mannose for the synthesis of 

complex N-glycans. Therefore, in its absence, these types of glycans are not 

synthesized, reducing the heterogeneity of the carbohydrate chains. HEK 293S line 

produces instead, lower molecular weight glycans such as Man5GlcNAc2. The 

proteins do not lose their ability of proper folding, however, they become sensitive to 

enzymatic treatments with endoglycosidases, such as endoglycosidase H (Davis et 

al., 1993; Butters et al., 1999; Chang et al., 2007).  

 

2.2.4.2 Cell maintenance  

Cells were grown in polystyrene culture flasks with a surface area of 175 cm2 in 

an incubator (37 ˚C, 5 % CO2 atmosphere) (Table S1) and were maintained in 30 ml 

Dulbecco’s modified eagle’s medium (DMEM), containing 2 mM L-Glutamine, 1x non-

essential amino acids and 10 % fetal calf serum (FCS) (Table S2). During cell 

growth, cells were subcultured before reaching their full confluence (80-90 %) in an 

effort to maintain their proliferative phenotype. Cell passaging was performed by 

aspirating culture medium (DMEM) on the cells and residual FCS was removed after 

a washing step with 10 ml of PBS. Cells were detached from the surface of the flask 

with 3 ml 1x Trypsin-EDTA (Table S2) and were subsequently incubated for ~3 min 

at room temperature (RT). The trypsinization reaction was quenched with 7 ml of 

culture media (DMEM) containing 10 % of FCS and each culture flask was passaged 

into new flasks (in a dilution 1:5) containing 25 ml of DMEM with 10 % FCS. An 

assay was then performed to determine cells viability. Cells were counted before 

transfection, using a hemocytometer and the quality was assessed by visualization 
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using 0.4 % trypan blue stain dye (Table S2), since viable cells membrane is 

impermeable to this type of dyes. Cultures with less than 90 % viability were 

discarded.  

 

2.2.4.3 Protein transfection and large-scale expression 

Large-scale cultures were performed in expanded surface polystyrene roller 

bottles with a surface area of 2125 cm2 (Table S1). ¼ of cells (with 90 % confluence), 

originally harvested from T175 flasks (as it was described in §2.2.4.2), were re-

suspended in 7 ml DMEM with 10 % FCS and were added to 250 ml total culture 

medium per roller bottle. Large-scale cultures were incubated prior to transfection for 

72 h, under a gentle rotation of 0.8 rpm/min. Transient gene expression was 

performed by chemical transfection using the branched cationic polymer 

polyethylenimine (PEI) (Table S2). The latter forms complexes with negatively-

charged DNA molecules that bind to anionic cell surface residues, resulting in 

endocytosis. The amine protonation (by PEI) causes a decrease of the osmotic 

potential and leads to the release of the polymer-DNA complex in the cytoplasm, 

allowing the DNA molecules to dissociate and diffuse into the nucleus (Nimesh and 

Chandra, 2008). The transfection protocol involved PEI dilution to a final 

concentration of 1 mg/ml (pH 7.4) with a DNA to PEI molar ratio of 1:2. For large-

scale expression, PEI was incubated with the plasmid of choice (500 ng DNA for 250 

ml culture) in 50 ml DMEM (without addition of FCS). Incubation for 10 min was 

followed by the replacement of culture media with 200 ml fresh DMEM that contained 

2 % FCS. Cultures were further incubated at 37 ˚C in low speed (0.8 rpm/min) in 5 % 

CO2 atmosphere and the protein of interest was secreted to the medium. After 4 

days, the cells were discarded using standard filter papers (Table S1). Secreted 

proteins in the culture media were preserved for long storage periods at 4 ˚C, using 

1mM NaN3 for microbial growth prevention. Protein expression was verified using 

Western blot analysis (§2.2.6.2).  
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2.2.5 Protein purification 

Protein purification was conducted at 4 ˚C and all protein constructs were 

handled with extra precaution on ice throughout the experiments. Classical liquid 

chromatography techniques were employed taking advantage of the sample 

properties. These involved:  

 

(i) Immobilized metal affinity chromatography (IMAC), firstly introduced by Porath 

and coworkers (Porath et al., 1975), that was used to purify polyhistidine-tagged 

proteins or proteins containing cysteine or tryptophan residues, utilizing the natural 

binding tendency of certain amino acid side-chains to metal ions (e.g. Ni+2, Co+2, Zn+2, 

Cu+2). The desired tagged protein is bound on a resin bearing immobilized metal ions 

and then is eluted by either pH or imidazole gradient. The choice of immobilized 

metal ion is related to its affinity and specificity for the binding proteins. 

For DSCAM protein constructs (His6-tag located at C-terminus), Nickel 

sepharose Excel beads (Table S2) were used. The advantage of that resin relies on 

the fact that Ni+2 is strongly bound to a novel chelating ligand with high capacity and 

minimum ion leakage. Thus, no additional dialysis of protein media is necessary prior 

to the purification step. One Liter of medium, for all DSCAM constructs, was 

incubated at 4 ˚C over night with 4 ml Ni+2 Excel beads, which were equilibrated with 

60 ml of Washing Buffer I prior to use. The protein-infused beads were then 

transferred to a Bio-Rad glass gravity column (Table S1) for 30-minute incubation at 

4 ˚C with 50 ml of Washing Buffer I. After a two-step washing (2 column volumes 

(CV) of Washing Buffer I and 1 CV of Washing Buffer II), the protein was eluted into 

6x 2 ml fractions (Elution Buffer) until no further protein was detected (UV 

measurement at 280 nm). The molar extinction coefficient for DSCAM Ig1-Ig9 is 

ε=103140 (L.mol-1.cm-1) or 1.07 (for 0.1 % absorbance in 1 g/L), for DSCAM Ig1-Ig8 

is ε=93170 (L.mol-1.cm-1) or 1.05 (for 0.1 % absorbance in 1 g/L) and for DSCAM Ig1-

Ig4 is ε=48820 (L.mol-1.cm-1) or 1.12 (for 0.1 % absorbance in 1 g/L). Buffers used for 

IMAC purification are summarized in Table M-8. 

 
Table M-8. Composition of main buffers used for IMAC purification of DSCAM. 

Washing Buffer I Washing Buffer II Elution Buffer 

20 mM Phosphate pH 7.4 
500 mM NaCl 
1 mM TCEP 

20 mM Phosphate pH 7.4 
500 mM NaCl 
1 mM TCEP 
50 mM Imidazole 

20 mM Phosphate pH 7.4    
500 mM NaCl 
1 mM TCEP 
500 mM Imidazole  
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(ii) Size exclusion chromatography (SEC) that utilizes differences of proteins 

regarding their hydrodynamic volume. The protein solution migrates through a 

column packed with a matrix made of porous material of spherical particles and 

separation is achieved due to different elution time of each protein, based on their 

size differences. 

The elution fractions, resulting from IMAC purification, were filtered with a 

0.22μm membrane prior to SEC purification and were loaded on a Hiload Superdex 

200 prep grade column using the ÄKTA liquid chromatography purification system. 

The column was equilibrated with a different SEC buffer corresponding to different 

protein constructs (Table M-9). Purity and identification of the protein were 

determined by SDS-PAGE and Western blot analysis and the final concentration via 

absorbance measurements at 280 nm. 

 
Table M-9. Composition of main buffers used for SEC purification of DSCAM. 

Protein SEC Buffer 
DSCAM Ig1-Ig8 50 mM Citrate pH 6.0, 150 mM NaCl, 2 mM DTT 
DSCAM Ig1-Ig4 
& 
DSCAM Ig9 

50 mM MES pH 6.0, 250 mM NaCl, 1 mM DTT 

DSCAM Ig1-Ig9 50 mM MES pH 6.0, 150 mM NaCl, 1 mM DTT 

 

 

(iii) Ion exchange chromatography (IEC) that relies on differences of proteins in 

their net surface charge in relation to pH, a property unique for every protein. Protein-

binding to resin material of the column, is driven by the ionic interaction between the 

oppositely charged protein material (mobile phase in low ionic strength solution) and 

the material of the column. The sample is eluted by disrupting this interaction, using a 

solution of high ionic strength in an increasing gradient.  

IEC was used for DSCAM Ig1-Ig9 in order to prepare the protein for negative 

staining electron microscopy studies. More specifically, anion IEC was used after 

crosslinking of DSCAM with glutaraldehyde solution in order to separate the 

crosslinked from the non-crosslinked population. A MonoQ 5/50 GL column was 

equilibrated with 10 CV of Buffer A, 10 CV of Buffer B and 10 CV of Buffer A (or until 

the baseline, conductivity and eluent pH were stable) (Table M-10). The sample was 

injected to the column and was eluted with a gradient volume of 60 CV and an 

increasing ionic strength up to 1 M NaCl. The column was washed with 5 CV of 

Buffer B to elute any remaining bound material and it was re-equilibrated with 10 CV 
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of Buffer A. The eluates were analyzed with SDS-PAGE to determine whether protein 

separation was achieved.  

 
Table M-10. Composition of buffers used for IEC purification of DSCAM Ig1-Ig9. 
Protein Buffer A Buffer B 
DSCAM Ig1-Ig9 50 mM MES pH 6.0 

10 mM NaCl, 1mM DTT 
50 mM MES pH 6.0 
1 M NaCl, 1mM DTT 
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2.2.6 Protein detection and purity assessment 

 

2.2.6.1 SDS-PAGE  

Quality and relative molecular mass of every protein sample, was assessed with 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), a widely-

used technique (Laemmli, 1970) for protein separation and analysis. The polypeptide 

chains bind to SDS, which is an anionic detergent that dissociates the tertiary 

structure of the protein coating it with a uniform negative charge, which is 

approximately proportional to the protein’s molecular mass. The protein samples are 

heated to 95 ˚C in the presence of reducing agents and proteins are transformed to 

linear molecules, which can migrate in an electric field according to their charge-to-

molar ratio. 

The Mini PROTEAN Tetra Cell (Table S1) system was used for electrophoresis 

for all protein constructs. Aliquots from every protein sample (9 μl) at each 

purification stage were mixed with 3 μl of 4x NuPAGE LDS sample buffer supplied 

with 10 % β-mercaptoethanol. Protein samples were denatured at 95 ˚C for 5 min, 

centrifuged for 60 sec and loaded on a Bis-Tris gel. Gel composition is shown in 

Table M-11. The amount of acrylamide for every gel was adjusted according to the 

molecular weight (MW) of the protein.  

 
Table M-11. Composition of Bis-Tris gels. 

2 gels 10ml 15 % 12 % 10 % 8 % Stacking Gel 
5x gel 
buffer* 

2 ml 2 ml 2 ml 2 ml 0.8 ml 

40 % 
acrylamide 

3.8 ml 3 ml 2.5 ml 2 ml 0.5 ml 

MilliQ 4.2 ml 4.9 ml 5.4 ml 5.9 ml 2.7 ml 
20 % APS 25 μl 25 μl 25 μl 25 μl 25 μl 
TEMED  12.5 μl 12.5 μl 12.5 μl 12.5 μl 12.5 μl 
* 200 ml of 5x gel buffer: 74.7 g of Bis-Tris methane pH 6.5-6.8 with HCl. 
Gels were run at constant voltage (180 V) using the running buffers MES or MOPS, for low 
and high MW proteins, respectively (Table M-12). 
 
 

Table M-12. Composition of running buffers used for SDS-PAGE. 
Components 20x MES (500 ml) 

5-20 kDa proteins 
20x MOPS (500 ml) 
proteins > 20 kDa 

 97.6 g MES 104.6 g MOPS 
Tris base 60.6 g 60.6 g 
SDS 10 g 10 g 
EDTA 3 g 3 g 
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Gels were stained using the InstantBlue coomassie based stain (Table S2). The 

protein bands appeared within 15 min, with no additional destaining and washing 

steps.  

 

2.2.6.2 Western blot  

Protein immunoblot is a widely used technique for protein quality assessment 

based on the use of antibodies specific to target proteins (Towbin et al., 1979). After 

protein separation using SDS-PAGE, the gel was equilibrated for 5 min in Transfer 

Buffer (Table M-13) to remove the excess salt from electrophoresis and it was 

transferred to a nitrocellulose membrane using the Mini Trans-Blot Cell (Table S1). 

The Transfer Running Buffer was pre-chilled at 4 ˚C and the blotting cell was kept on 

ice during the electrophoretic transfer (constant voltage 100 V for 60 min) to 

decrease the heat produced. The membrane was subsequently washed with 3x 20ml 

PBS-T Buffer and then it was blocked for 60 min at RT with 5 % non-fat milk (in PBS-

T Buffer) to reduce the non-specific binding sites of the primary antibody. After an 

additional washing step, the membrane was incubated at RT with a penta-His 

primary antibody (1:2000 dilution in PBS-T with 0.05 % non-fat milk) for 60 min, 

followed by the incubation of the secondary antibody (1:5000 dilution in PBS-T with 

0.05 % non-fat milk) at RT for 30 min (Table S3). Several washing steps were 

performed, between the antibody incubation periods, for preventing non-specific 

binding. Detection of the proteins was performed with the SuperSignal West Pico 

Chemiluminescent Substrate (Table S2). The solution was prepared by mixing equal 

parts of stable peroxide substrate reagent with luminol solution (Table S2). The 

membrane was covered with 5 ml of that mixture and it was exposed using the 

GelDoc system, with an initial exposure time of 30 sec up to 5 min, depending on the 

protein concentration.   

 
Table M-13. Composition of buffers used for Western blot. 

10x Transfer Buffer 10x PBS pH 7.4 PBS-T 

25 mM Tris-HCl  
pH 8.3 

100 mM Na2HPO4.7H2O 1x PBS + 0.05 % w/v  
Tween 20 

192 mM glycine 18 mM KH2PO4  
20 % v/v methanol 1.37 M NaCl  
 27 mM KCl  
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2.2.7 Biophysical methods 

 

2.2.7.1 MALDI-TOF analysis 

Mass spectrometry (MS) is an analytical technique for detection and molecular 

weight (MW) determination of biomolecules (Hoffmann and Stroobant, 2007). Matrix- 

assisted laser desorption/ionization (MALDI) is a soft ionization technique that leaves 

the protein molecules intact. The protein, either in solution or in crystalline form, is 

mixed with a compound (matrix solution) under denaturing conditions and the mixture 

is applied on a stainless steel plate that is exposed at RT until dehydration is 

achieved. The dried material is placed in the mass analyzer chamber where the 

sample absorbs UV light (337 nm) in a short pulse duration, leading to its partial 

evaporation and protonation from the matrix compounds. The protonated molecules 

are accelerated in an applied electric field and are further analyzed, according to their 

time of flight (TOF) by estimating their mass-to-charge ratio (m/z).  

MALDI-TOF was the method of choice for protein assessment and MW 

determination in this study and was performed by the Sample Preparation and 

Characterization Facility (SPC, EMBL-Hamburg). 2 μl of protein sample in solution at 

1 - 10 μM concentration were mixed with the matrix solution (50 % acetonitrile, 0.1% 

v/v trifluoroacetic acid) in a 1:1 or 1:2 ratio. The mixture was applied on a sample 

plate until it was crystallized. For samples where the MW of a crystallized protein had 

to be determined, a single crystal was removed from the crystallization drop and was 

introduced to a fresh-5 μl-drop containing only the crystallization conditions. The 

crystal was subsequently washed with 3x 5 μl of reservoir solution, to remove any 

remaining protein solution around the crystal. The crystal was then washed twice with 

5 μl of acetonitrile, in order to reassure that non-crystallized protein and PEG will not 

interfere with the MW determination of the protein crystal (Nettleship et al., 2005).  In 

the final step, the liquid in excess was removed by wicking (Table S1) and the crystal 

was dissolved in 15 μl buffer of 20 mM Tris, 150 mM NaCl, 8 M urea and it was 

transferred to the sample plate until dehydration was achieved. All protein analyses 

were performed by the Voyager DE-STR MALDI-TOF mass spectrometer (Table S1). 

 

2.2.7.2 Thermal shift assay (Thermofluor) 

Thermofluor is a thermal denaturation assay, used for preliminary 

characterization of the protein to identify its stability and solubility under different 

conditions (buffers, pH, salts, ionic strength, ligands) by employing fluorescence 
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detection (Pantoliano et al., 2001). Thermofluor can also be used for optimization of 

existing crystallization conditions and detection of additives that might increase 

protein stability (Phillips and de la Peña, 2011). A fluorescent dye binds to 

hydrophobic residues and the emitted energy, as the protein unfolds, is monitored by 

a qPCR machine (Real-Time PCR). The melting temperature of the protein (ΔTm) is 

then determined by the unfolding curves. The conditions that stabilize the protein will 

result in curves with an increased melting temperature.  

In the frame of this project, protein samples were added in a PCR plate with 96 

different conditions, designed by the SPC staff members at EMBL-Hamburg (Boivin 

et al., 2013). Each well contained also the components shown in Table M-14 and the 

thermal denaturation analysis was performed in iCycler iQ system with an optical 

module for fluorescence detection (Table S1). The plate was successively heated 

from 5 ˚C - 95 ˚C with a temperature increase of 1 ˚C/min. Data were analyzed using 

GraphPad Prism 6.0 (GraphPad Software, Inc).  
 

 
Table M-14. Thermofluor 96-well assay. 

Components Volume (μl) 
ddH2O 16  
5x buffer 5  
62.5x SYPRO orange 2  
Protein sample (20 - 100 μM) 2  

 

2.2.7.3 FPLC-RALS/RI/UV 

Protein quality assessment of oligomeric state and MW determination were 

performed by fast performance liquid chromatography (FPLC) coupled with static 

light scattering (SLS). The technique combines right-angle light scattering (RALS) 

measurements along with refractive index (RI) and UV absorbance (280 nm), using 

the Malvern Instrument (Table S1). Protein samples for all constructs (~8 mg/ml, 100 

μl) were filtered through a 0.22 μm membrane filter in order to remove potential 

aggregates and were loaded on an analytical column (Superdex 200 10/300 GL) for 

SEC. Fractions were collected with a flow rate of 0.4 ml/min in RT. The buffers used 

for every construct were the same as those for SEC (Table M-9). The intensity of 

scattered light by protein sample was measured at RT and MW determination 

followed. MW of the eluted sample was calculated by using OmniSEC software 

(Malvern’s OmniSEC GPC/SEC multidetector system) according to either 
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concentration measurements (derived from base-line RI corrections) or UV 

measurements (derived from base-line corrected RALS intensities), using the 

following formulas (Follmer et al., 2004; Ma et al., 2015): 

 

RALS= c(dn/dc)2 x MW x KRALS 

RI= c(dn/dc) x KRI 

UV= cεKUV 

 

 * KRI, KRALS, KUV: instrument calibration constants determined using a protein standard  
(i.e. Bovine serum albumin (BSA))      

      * dn/dc= 0.185 ml/g: refractive index increment for unmodified protein 
      * ε: extinction coefficient (A= 0.1 % mg/ml) 
 
 
2.2.7.4 Isothermal titration calorimetry 

Isothermal titration calorimetry (ITC) is a technique for studying the interactions 

of molecules upon binding to their counterparts, by measuring the transferred heat 

either in endothermal or in exothermal processes. The reaction between two 

components takes place in an adiabatic system in constant temperature. The 

molecule of interest is kept in a stirred cell and the ligand or the binding partner is 

titrated through a syringe. Upon binding, the energy released or absorbed from the 

reaction of the two components, is measured by a microcalorimeter that detects the 

temperature change. The binding affinity is then quantified as a function of the total 

energy of the reaction, which is in direct proportion to the amount of complex 

formation. Upon binding, the protein in the cell is saturated with its counterpart and 

the heat change decreases until reaching the background dilution heat. The 

parameters that can be determined, after data analysis, are the stoichiometry of the 

reaction (n), the binding constant (Kd), enthalpy (ΔH) and entropy (ΔH) (Freyer and 

Lewis, 2008; Duff et al., 2011). 
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The experimental data fit to a mathematical model in order to maximize the 

confidence of the calculating parameters. This is referred as a c window (10<c<500, 

where c is a dimensionless constant) and when 20<c<100, the values obtained are 

very accurate. 

c= nM[tot]/Kd    

 
* n: stoichiometry of reaction 
* M[tot]: molar concentration in the cell 
* Kd: dissociation constant 

 

ITC experiments were conducted for studying DSCAMIg1-Ig9:netrinVIV 

interactions. The assays were performed in a VP-system at 25 ˚C in an identical 

buffer for both proteins (Buffer 1 and Buffer 2 were used in two independent 

experiments). DSCAM was titrated to a netrin solution using 30 injections of 3 μl with 

time intervals of 360 sec between the injections. Data were processed with Origin7 

software (MicroCal) (Table M-15). 

 
Table M-15. ITC experimental set-up and buffer composition. 

Components Concentration Volume (ml) 
NetrinVIV (Cell) 10 μM 1.4  
DSCAM Ig1-Ig9  
(Syringe-titrated partner) 

100 μM 0.25  

Buffer 1 50 mM MES pH 6.0 
150 mM NaCl  
1mM (NH4)2SO4 
1 mM DTT, 2 mM CaCl2 

 

Buffer 2 1x PBS pH 8.0  
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2.2.8 Structural characterization 

 

2.2.8.1 Small-angle X-ray scattering 

Small-angle X-Ray scattering (SAXS) is a method for biomolecular shape and 

size determination (Svergun and Koch, 2003) that can provide structural information 

for proteins and their conformations (at low-resolution 50 Å - 10 Å) complementary to 

the one obtained from other methods used for structure determination. Structural 

characterization of proteins using SAXS is performed in solution where the molecules 

are studied in their native form close to their physiological environment, overcoming 

the crystallization stage known to be a bottleneck in X-ray crystallography. 

Comparison of SAXS with NMR, which also involves structural studies of 

macromolecules in solution, shows that SAXS, although it is of lower resolution, is 

widely used for large proteins and multicomponent macromolecular complexes 

without any limitations imposed by protein size. SAXS is also combined with X-ray 

crystallography, Electron Microscopy, NMR and computational methods resulting in 

hybrid modeling approaches. 

 

a. SAXS data collection and analysis 

SAXS data were collected for DSCAM Ig1-Ig4, DSCAM Ig1-Ig8, DSCAM Ig1-Ig9 

and for netrinVIV in association with DSCAM Ig1-Ig9. Sample purity and 

monodispersity are essential for SAXS data analysis and structural modeling. 

Therefore, after SEC purification (Table M-9), the eluted samples were evaluated by 

SDS-PAGE and prior to use, were filtered with 0.22 μm membrane filters to discard 

possible aggregates. The protein concentration was determined at 280 nm (ε in 

§2.2.5i) by Nanodrop. For each sample a range of concentrations were tested 

(Tables S6-S9). Protein samples (30 μl) were loaded into the automatic sample 

chamber (10 ˚C) and were exposed to a highly monochromatic focused X-ray beam 

(λ= 1.24 Å), while flowing through a quartz capillary (P12, PETRA III, EMBL-

Hamburg, DESY, Germany). Scattered X-rays were recorded on a 2D Pilatus 

detector (Pilatus 2M, Dectris). The sample-to-detector distance was 3.1 m, covering 

a momentum transfer range of 0.008 Å-1 ≤ s ≤ 0.457 Å-1 (s= 4π sin(θ)/λ, 2θ: 

scattering angle and λ: X-ray wavelength). Each measurement was taken as an 

average of 20 successive frames with 50 ms exposure time in order to assess 

potential radiation damage. Comparison of the frames showed no significant change, 

thus no radiation damage was observed for these samples. 
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Detector images were radially averaged to yield 1D scattering profiles and were 

normalized to the intensity of the transmitted beam and to the exposure time. Sample 

contributions were averaged and corrected in relation to the solvent (buffer 

subtraction) and data collected were extrapolated to infinite dilution. The overall 

parameters were evaluated using the graphical package PRIMUS (Konarev et al., 

2003). More specifically, the radius of gyration (Rg) and the forward scattering 

intensity I(0) were determined from the scattering profile using Guinier approximation 

(Guinier, 1939) where for very small scattering angles (s ≤ 1.3/Rg), the intensity is 

represented by the following formula: 

𝐼𝐼 𝑠𝑠 ≅ 𝐼𝐼(0) ⋅ 𝑒𝑒!
!
!(!"#)

!
 

 

The maximum particle dimension, Dmax was obtained from the interatomic 

distance distribution function, p(r) and was calculated with the software GNOM 

(Svergun, 1992). The molecular mass (MM) of every protein construct was estimated 

by comparison of the extrapolated forward scattering to that of a reference protein 

(BSA). A second independent molecular mass estimation was calculated using the 

Porod equation (Porod, 1982) which estimates the excluded volume of the hydrated 

particle, Vp (smax=7.5/Rg to remove any undesired scattering contribution from the 

internal structure). The molecular mass of the particle can be derived from Vp-value 

in Å3 and it is approximately 1.7 times the MM of the protein (in Dalton) (Petoukhov et 

al., 2012). Superposition of low-resolution models with X-ray crystal structures was 

performed with SUPCOMB (Kozin and Svergun, 2001). 

 

b. Ab initio shape determination and model generation 

Low-resolution shape bead models were determined for all constructs with the 

ab initio modeling method, using software DAMMIN (Franke and Svergun, 2009). 

DAMMIN uses simulated annealing to represent proteins as bead models where the 

theoretical scattering of the proteins in solution fit optimally the experimental data. 

Several independent modeling runs are performed and DAMAVER is used to cluster 

and determine the averaged reconstruction (Volkov and Svergun, 2003).  

 

c. Rigid body modeling  

Rigid body models for each data set were constructed based on high-resolution 

models from the corresponding crystallographic structures. Real-space arrangement 

of subunits was refined against the experimental SAXS data using Monte-Carlo 
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stimulations with software CORAL (Petoukhov et al., 2012). Models were initially 

reconstructed in P1 to assess the robustness of model generation, followed by P2 

symmetry for DSCAM Ig1-Ig8 and DSCAM Ig1-Ig9. For each data set, ten 

independent model reconstructions were performed and the most representative 

model of the ensemble was identified using DAMAVER (Volkov and Svergun, 2003).  

 

2.2.8.2 Electron microscopy 

Electron microscopy (EM) is a widely used method that utilizes a beam of 

electrons as a light source, to obtain structural information of macromolecules without 

the need of a crystalline sample. Different approaches have been used for sample 

preparation and specimen analysis (e.g. cryo-fixation, negative staining, conductive 

coating, etc) (Frank, 2006). Cryo-EM, in particular, provides structural information at 

medium to high-resolution in order to produce an accurate 3D reconstruction model 

of the biological object. Although efforts have been made to simplify the data 

collection and automated processing, the method has some limitations imposed by 

the validation tools for evaluating the quality of the density maps (Cheng et al., 2015). 

Sample homogeneity is a critical factor for molecular averaging and classification 

(single-particle analysis) by EM. Conventional methods employed for sample 

preparation and evaluation, such as protein purification and SDS-PAGE, are 

insufficient to provide information about the sample consistency. Therefore, negative 

staining EM is in this case essential to assess the sample’s homogeneity and to 

identify different protein conformations. Additionally, negative staining introduces 

some benefits in analyzing heterogeneous populations in comparison with cryo-EM 

where vitrified molecules may adopt random conformations and orientations (Frank, 

2006).  

 

a. Negative staining 

Negative staining is a tool, where molecules or individual cell organelles, are 

embedded in a heavy metal solution, in RT, and they are visualized by exploiting the 

image contrast between the sample and the background. With the implementation of 

single-particle analysis and classification, useful information can be extracted for the 

shape and size of the macromolecule (Ohi et al., 2004). Samples in suitable buffers 

(phosphate buffers should be avoided to prevent stain precipitation on the grid) are 

stained with a solution and due to contrast enhancement, smaller molecules can be 

easily detected, in comparison with cryo-EM methods (Burgess et al., 2004; Ohi et 
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al., 2004). In addition, negative staining is used to assess sample purity and 

heterogeneity. One should take into consideration that negative staining also bears 

some limitations. During sample staining, the molecules are dehydrated and they 

might be visualized as flattened or distorted, making it difficult to deduce their 

physiological function. In addition, negative staining is not recommended in cases 

that high-resolution analysis is required for obtaining structural information. However, 

it is a suitable method for revealing structural features at 15 - 20 Å resolution for 

molecules with a MW of at least 110 kDa (Jawhari et al., 2006).  

Negative staining was used to investigate DSCAM dimerization and to determine 

the binding mode between DSCAM Ig1-Ig9 and netrinVIV. Specimens were prepared 

following the conventional negative staining protocol (Ohi et al., 2004) where 2.5 μl of 

protein solution (~5 - 10 μg/ml) was absorbed in a glow carbon-coated copper grid. 

The grid was washed with deionized water and the specimens were stained with 

0.75% uranyl formate (or uranyl acetate and ammonium molybdate) at RT. Raw 

sample images were taken with a Tecnai T12 electron microscope (operated at 120 

kV) using low-dose procedures and they were recorded on a Gatan US4000 CCD 

camera (magnification x71,138 and defocus value of ~1.0 μm). All images were 

binned over 2×2 pixels to obtain a pixel size of 4.16 Å on the specimen level and they 

were subjected to single-particle analysis where two-dimensional reference-free 

alignment and classification averages were obtained by ISAC (Yang et al., 2012). 

 

b. Protein crosslinking 

Mild chemical crosslinking is used to reduce the heterogeneity of the sample and 

to visualize different protein conformations. Although it is a widely used approach, 

there is a propensity for artifacts introduced by crosslinking. These include, positional 

fixation of the most favorable or most compact conformation of the protein or 

clustering of flexible regions, possibly leading to results with non-biological relevance 

(Cheng et al., 2015; Thompson et al., 2016).  

Mild protein crosslinking was performed in glutaraldehyde solution through 

gravity (PD-10 columns) (Table S1) or size exclusion columns (‘on-column’ protocol) 

(Shukla et al., 2014). For this purpose, EM-grade glutaraldehyde (Table S2) was 

used to crosslink the primary amines of DSCAM Ig1-Ig9 in an effort to stabilize the 

dimer interactions among its Ig domains. Initially, glutaraldehyde in a range of 0.1-

0.8% v/v was tested for different protein concentrations and buffer solutions to 

identify the optimum conditions for protein crosslinking. For the PD-10 protocol, the 
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columns were equilibrated with Stabilization Buffer (SB) (3x 3 ml). Equilibration was 

followed by the addition of 400 μl SB (until reaching the bed volume). Successively, 

on the column were added: 400 μl glutaraldehyde, 400 μl SB, 400 μl protein, 2x 400 

μl SB. The protein was eluted with 4x 0.9 ml buffer in small fractions of 30 μl and the 

crosslinked protein was detected by SDS-PAGE. Details of the protocol applied are 

described in Table M-16.  

Crosslinking was also performed in a batch-method using 1 ml of protein (1 mg) 

in both Stabilization Buffers with 5 μl of 2.3 % glutaraldehyde. The solution was 

incubated at 37 ˚C for 5 min and the reaction was quenched with 100 μl of 1 M Tris-

HCl pH 8.0. The crosslinked protein was assessed by SDS-PAGE. 

 
Table M-16. Protein crosslinking of DSCAM Ig1-Ig9 in PD-10 columns. 

Components Quantity Volume (μl) 
Glutaraldehyde (% v/v) 0.1, 0.2, 0.4, 0.8 400  
Stabilization Buffer 1 50mM MES pH 6.0, 1mM CaCl2 

150 mM NaCl, 1mM DTT 
400 

Stabilization Buffer 2 1x PBS pH 7.4 400 
DSCAM Ig1-Ig9 1 mg/ml 400 

 
 
 

2.2.8.3 X-ray protein crystallography 

 

a. Protein crystallization 

X-ray crystallography is a widely used method for the 3D structure determination 

of macromolecules, which at atomic resolution gives insights into the amino acid 

interaction network and in most cases reveals the biological function and the role of 

the macromolecules in the cell. X-ray crystallography requires a periodic 

arrangement of the protein molecules to ensure enhancement of the diffracted beam 

for enabling the signal to be recorded by the detector. This can be achieved by 

forcing the protein molecules to be arranged in a crystalline form. This process is 

rather challenging, considering that protein amino acids forming the polypeptide 

chain, adopt different conformations that might affect packing interactions of the 

molecules under crystallization (Deller et al., 2016). In addition, several parameters 

such as the sensitivity of protein samples to various conditions (e.g. temperature, 

ionic strength), the fragility of protein crystals compared to inorganic ones, due to 

weak interactions formed between the flexible amino acids and water molecules in 
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the crystal and the fact that there are no ‘universal’ crystallization conditions for a 

given protein, make crystal growth a demanding process (McPherson 2004; Rhodes, 

2000). The quality of the protein material, in terms of homogeneity, solubility and 

purity is also a critical factor in order to obtain diffracting crystals. Thus, protein 

purification protocols should be carefully designed and the suitability of protein 

samples, prior to crystallization, should be verified by biophysical characterization. 

Successful crystallization involves the identification of conditions that would bring 

protein molecules from the soluble phase to the supersaturation zone where crystals 

can nucleate and grow. Transition between the phases is induced by modifying a 

number of parameters such as protein concentration, type and concentration of 

precipitating agents, ionic strength, pH, temperature, etc (Chayen and Saridakis, 

2008). Throughout the years several different methods have been developed for 

increasing the success rate of crystallization attempts. In this context, efforts for high-

throughput screening and miniaturization of protein sample volumes have been made 

with emphasis on both the crystallization medium (crystallization kits) and the 

equipment used (robotic devices). 

 

b. Crystallization methods 

A number of methods and set ups are employed in order to achieve crystal 

growth (e.g. vapor diffusion, dialysis, batch/microbatch, etc). The most commonly 

used is the vapor diffusion method with sitting or hanging drops. A drop containing 

the protein with the mother liquor, in an isolated system, is suspended on a cover slip 

over the reservoir solution (hanging drop) or is positioned on a shelf within the well 

(sitting drop). The precipitant concentration in the reservoir solution and in the 

sample drop is different (the reservoir concentration is higher) and vapors from the 

sample drop diffuse into the reservoir until equilibrium is achieved. Protein 

concentration increases in the sample drop and depending on the combination of the 

precipitants used, crystallization might occur (Abts et al., 2012). In the batch method, 

the protein solution and the precipitant agents are mixed directly and are kept in a 

sealed isolated environment. The concentration of precipitants along with the protein 

remains constant throughout the experiment (Rayment, 2002). In some cases, to 

facilitate crystal growth the nucleation step is induced by adding small crystalline 

seeds at various dilutions. Crystal seeding is a tool that is also used with other 

techniques such as vapor diffusion, and it allows separating nucleation and crystal 

growth. In this method, seeds taken from previously nucleated crystals, are 
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introduced into a new crystallization drop in various dilutions (Bergfors, 2003). For 

microbatch crystallization (a variation of the batch method), a thin layer of oil (paraffin 

oil or a mixture of both paraffin and silicone oils) covers the drops, which are 

suspended in a microwell. The oil allows slow evaporation of water, which leads to 

concentration increase for both protein and precipitant agents, yielding to protein 

crystallization (Brumshtein et al., 2008; Chayen et al., 1990). Dialysis is also used for 

protein crystallization as a variation of the vapor diffusion method. This involves 

separation of the protein from the crystallization medium by a semi-permeable 

membrane that allows only ions and buffer components to cross the membrane 

(Chayen and Saridakis, 2008).  

 

c. Crystallization of DSCAM 

Sparse-matrix screening involves usage of diverse precipitant agents to explore 

crystallization conditions and is often used as the first step in protein crystallization. 

The sparse-matrix screens are based on existing conditions from previously 

determined crystallographic structures in order to reveal a relationship among 

different parameters (Carter and Carter, 1979; Jancarik and Kim, 1991). In addition to 

‘randomly’ probing sparse matrix screens, systematic grid screens on pH versus 

specific precipitants (such as ammonium sulphate grid) can be also used to identify 

initial crystallization conditions or to optimize a hit from a sparse-matrix screen.  

Protein samples of DSCAM Ig1-Ig4, DSCAM Ig1-Ig8 and DSCAM Ig1-Ig9 were 

concentrated to 10, 8 and 10 mg/ml (final concentration), respectively and 

centrifuged for 10 min at 10,000 rpm (4 ˚C) to remove potential aggregates. Pre-

crystallization tests (PCT, Hampton Research) were performed to estimate 

approximately the starting concentration for crystallization experiments (Table S2). A 

variety of commercial screens from Qiagen, Molecular Dimensions and Hampton 

Research (Table S2) were used to identify the initial crystallization conditions. 

Experiments were conducted at the high-throughput crystallization facility (SPC-HTX, 

EMBL-Hamburg) (Boivin et al., 2015) using 96-well Greiner or iQ plates (Table S1). 

The final drop volume was 300 - 400 nl and the reservoir solution was mixed with the 

protein in different volume ratios (protein to reservoir solution 1:1, 1:2 and 2:1). The 

mixture was equilibrated against 50 μl reservoir solution applying the sitting-drop 

vapor diffusion method. Plates were set using the Mosquito-LCP crystallization robot 

(Table S1) and were stored at 19 ˚C, where they were monitored periodically by 

automated image acquisition (Rock Imager by Formulatrix). Optimization and fine-



	 66	 	

tuning of the crystallization conditions using rationally designed custom-made 

screens, was followed, based on the initial crystal hits, using the hanging-drop vapor 

diffusion method (in 24-well Linbro plates). A variation of different crystallization 

components and parameters were tested, such as temperature (4 - 20 ˚C), pH, drop 

volume and shape. For DSCAM Ig1-Ig4 and DSCAM Ig1-Ig8, optimization trials were 

also made with emphasis on changing the kinetics of the diffusion rate between the 

drop and reservoir solution. For this purpose, the vapor diffusion method under oil 

was used. A combination of paraffin and silicon oil was mixed in 50:50 and 40:60 

(silicon to paraffin) volume ratios and the mixture (200 μl - 600 μl) was applied on top 

of the reservoir solution, leading to larger single crystals (Chayen, 1997). 

 

d. Lysine methylation 

Reductive methylation of lysine residues was performed, by chemically 

modifying the primary amines (Lys and N-terminal residues) to tertiary amines. The 

positively charged Lys residues, lying on the surface of the protein, were transformed 

to small hydrophobic residues with the addition of a trimethyl group, in order to 

reduce the surface entropy of the protein and to increase the probability of crystal 

growth (Rayment, 1997; Walter et al., 2006). For this purpose, 1 mg of DSCAM Ig1-

Ig8 GnTI- after SEC (buffer described at Table M-9) was added to 20 μl of freshly 

prepared 1 M dimethylamine-borane complex (ABC) in 40 μl 1M formaldehyde. The 

mixture was incubated at 4 ˚C for 2 h under gentle shaking. The process was 

repeated, by adding 20 μl ABC and 40 μl formaldehyde and the mixture was further 

incubated for 2 h. A final aliquot of 10 μl ABC was added and the reaction continued 

over night at 4 ˚C. The reaction was quenched with the addition of 20 mM Tris-HCl 

pH 7.5 and the methylated protein was purified with SEC using 20 mM Tris-HCl pH 

7.5 in 150 mM NaCl. The MW of the methylated sample was assessed by MS.  

 

e. Endoglycosidase treatment 

Glycosylation is a post-translational modification of proteins, involved in diverse 

biological functions such as signaling processes, cellular trafficking, protein folding 

and stability. The flexibility of the different types of glycans lying on the vicinity of 

proteins residues, their size and their charge, in most cases introduce an increased 

level of conformational and chemical heterogeneity that might prevent protein 

crystallization (Aricescu and Owens, 2013). Protein deglycosylation is often used as 

a tool in order to decrease this heterogeneity. Endoglycosidase H (EndoH) was used 
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in this study to remove high mannose N-glycans from DSCAM Ig1-Ig8 when 

expressed in HEK 293S cells (GnTI-) (§2.2.4.1) in order to improve the quality of the 

diffracting crystals. The activity of the enzyme depends on the type of the 

glycosylation and it is only specific for a subset of glycans. Therefore, EndoH does 

not have the ability to cleave complex glycans, which are usually present in HEK 

293T cell line (Aricescu et al., 2006; Freeze and Kranz, 2010). More specifically, it 

cleaves asparagine-N-linked high mannose oligosaccharides and some hybrid-type 

N-glycans (Figure M-3), leaving one GlcNAc residue attached to the asparagine site 

(Chang et al., 2007; Freeze and Kranz, 2010). 

 

 
Figure M-3. Endoglycosidase H cleavage sites 

 

10-200 μg of DSCAM Ig1-Ig8 GnTI- were treated with 2 μl EndoH, 37.5 μl 

deionized water, 10 μl of Reaction Buffer 1 in 2 % SDS, in the presence of 150 mM 

β-mercapthoethanol (total reaction volume 100 μl) (Table M-17). The mixture was 

incubated at RT for 24 h and samples were taken at different time intervals. The 

protocol was also repeated using Reaction Buffer 2. The activity of EndoH was 

assessed by monitoring the reduction of the MW of DSCAM by SDS-PAGE and MS 

was used to verify the deglycosylation of the protein sample. 
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Table M-17. Deglycosylation of DSCAM Ig1-Ig8 GnTI- with EndoH. 
Components Concentration Volume (μl) 

EndoH 1.0 unit* in 20 mM Tris-HCl 
pH 7.5, 25 mM NaCl 

2 

Reaction Buffer 1 250 mM NaH2PO4  
pH 5.5 

10  

Reaction Buffer 2 50 mM MES pH 6.0 
150 mM NaCl 

10  

MilliQ H2O  37.5  
Glycoprotein 10-200 μg Vt= 100  

* One unit will release the N-linked oligosaccharides from 60 μmoles of ribonuclease B per 
hour at 37 ˚C (pH 5.5). 
 
 

f. Crystallographic data collection 

Protein crystals are a periodic assembly of protein molecules in an ordered 

array. In order to determine their structure, crystals are exposed to a monochromatic 

X-ray beam using either in-house or synchrotron radiation sources. Part of the X-rays 

that impinge on the sample, are scattered from the electron clouds of the atoms that 

compose the protein and the resulting diffraction pattern is recorded by a detector. 

The diffraction pattern is formed by spots (reflections) that reveal the position and the 

intensity of each reflection. In a process called indexing, the position of each spot in 

one or more diffraction images (described by Miller indices h, k, l) is used to 

determine the crystal lattice parameters and its orientation. The intensities of all 

reflections for each image are integrated and the values derived by different images 

are scaled. A list of reflections along with their intensities is produced and is further 

used to calculate the structure factors i.e. the resultant amplitude and phase of 

scattering of all the electron density distribution of one unit cell. The structure factor 

of all reflections F(hkl) is described from the following equation:  

F(hkl) = F(hkl) exp iα(hkl) = ∑jƒj exp [2πi (hxj + kyj + lzj)] 

 
* i, is the imaginary number 
* α (hkl) is the phase of the diffracted wave 
* F(hkl) is the amplitude of the wave 
* ƒj  is the scattering factor of the jth atom with positional coordinates xj, yj, zj. The 
summation is over all atoms of the unit cell 

In a diffraction experiment where the phase cannot be measured directly, the 

structure is solved either by molecular replacement (MR) or by experimental phasing 

(single or multiple-wavelength anomalous dispersion (SAD/MAD), single or multiple 
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isomorphous replacement (SIR/MIR) and their combination: single or multiple 

isomorphous replacement with anomalous scattering SIRAS/MIRAS)) and the Fourier 

transformation is used to calculate the electron density map (ρ(x,y,z)), using the 

following formula: 

ρ(x,y,z) = V-1 ∑hkl F(hkl) exp (-2πi (hx + ky + lz)) 

 
* V, is the volume of the unit cell 

 

In the case where MR is used, initial phases are derived from a known structure 

of a homologous protein, which can be used as a search model. The model is 

considered as a rigid body and is subjected to rotation and translation within the unit 

cell. The six-dimensional transformation comprising a set of Euler angles and a 

matrix for translation is applied to the model. Model building, followed by alternate 

cycles of restrained refinement against experimental data and manual corrections to 

the atomic coordinates after visual inspection of the electron density maps, resulted 

in the final 3D structure of the target protein. In experimental phasing, where no 

previous model is available, a heavy atom is introduced into the protein crystal lattice 

either by engineering the amino acid chain directly (e.g. selenomethionine derivative) 

or by soaking or co-crystallizing the protein crystals with a heavy atom compound. 

The phase problem can then be solved with one or more heavy atom derivatives due 

to the increased contribution of the heavy atom to the overall scattering intensity 

(Blundell and Johnson, 1976; Rhodes, 2000). Alternatively, atoms such as S, Br or 

metals already present in the proteins could be exploited to obtain initial phases 

using SAD or MAD methods.  

X-ray diffraction data for DSCAM Ig1-Ig9, DSCAM Ig1-Ig8 and DSCAM Ig1-Ig4, 

were collected at PETRA III MX beamlines (P13 and P14, EMBL-Hamburg, DESY, 

Germany). P13 is a tunable beamline (4.5 - 17.5 keV) that offers beam conditions 

with a beam-size of 30 x 20 μm2. P14 is also a tunable beamline (6 - 20 keV) that 

offers the option for micro-beam conditions (5 x 5 μm2) and has a beam-divergence 

below 0.3 mrad, for data collection. One advantage of P14 is that focusing and de-

focusing beam conditions can be easily adjusted and controlled by the software 

interface in order to work with different beam sizes and profiles. Both are high-

brilliance beamlines with a flux in the range of 1013 photons/sec. The ID29 beam line, 

dedicated to native and anomalous dispersion collection with an energy range of 6 - 

20 keV (ESRF, Grenoble, France) was also used to collect native DSCAM Ig1-Ig4 
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diffraction data. All beam lines are equipped with a PILATUS 6M detector (Dectris, 

Switzerland) enabling shutter-less oscillation data collection. For all protein 

constructs, crystals were carefully handled at the same temperature that they were 

grown, were mounted on cryo-loops (Table S1) and they were flash-cooled in liquid 

nitrogen for cryo-data collection (100 K). Prior to flash-cooling, cryo-protectant 

solutions with different concentrations of either glycerol, ethylene glycol, polyethylene 

glycol 400 (PEG 400) or isopropanol, were prepared based on the composition of the 

mother liquor of the crystallization conditions, in order to prevent ice formation by the 

nitrogen cryo-stream, during data collection, that would destroy the crystal lattice. 

For DSCAM Ig1-Ig4 both MR and experimental phasing were attempted. For 

experimental phasing, a range of heavy atoms was screened in order to examine 

their binding ability and the presence of the anomalous signal in the data collected. 

Protein crystals were soaked into fresh heavy atom solutions that contained 

complexes of Pb+2: Pb(CH3COO)2.3H2O, Pt+2: K2PtCl4, Yb+3: YbCl3.H2O and Gd3+: 

Gd-HPDO3A. More specifically a DSCAM Ig1-Ig4 WT crystal was transferred to 10 μl 

of a solution, containing the mother liquor reagents and the heavy atom in a final 

concentration of 5 - 100 mM in various soaking times (10 min - 24 h). Crystal quality 

was monitored with the aid of a microscope for possible signs of crystal cracking or 

dissolving effects. The remaining heavy atom solution, which surrounded the crystal, 

was removed by soaking the crystals in a reservoir solution containing 20-25 % PEG 

400 or ethylene glycol as a cryoprotectant. Crystals were then exposed to X-rays and 

data were collected at the absorption edge of each heavy atom (Table M-18).  

 

 
Table M-18. X-ray absorption edges. 

Heavy Atom Edge L-III (kEV) Å 

Pb 13.0352 0.9511 
Pt 11.5637 1.0722 
Yb 8.9436 1.3863 
Gd 7.2428 1.7118 
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g. Data processing, phasing and refinement 

Data collection at synchrotron radiation sources was performed using mxCuBE 

v2 (Gabadinho et al., 2010) and the diffraction images were displayed with Adxv 

software (Arvai Andrew, Scripps Research Institute). The images were indexed either 

with MOSFLM (Leslie et al., 2007) or with XDS (Kabsch, 2010). XDS was also used 

to integrate the reflections, followed by POINTLESS (Evans, 2006) to determine the 

crystal lattice and symmetry. The integrated reflections were further scaled and 

merged using SCALA or AIMLESS (Evans, 2006). For MR, either MOLREP (Vagin 

and Teplyakov, 1997) or PHASER (McCoy et al., 2007) was used and for 

experimental phasing, the SHELX package (Pape and Schneider, 2004; Sheldrick, 

2008). Refinement of the search model against experimental data was carried out 

with REFMAC (Murshudov et al., 1997, Murshudov et al., 2011). The aforementioned 

modules (except for XDS) are implemented in CCP4 suite (Winn et al., 2011). Visual 

inspection of the electron density maps and model building were conducted with 

COOT (Emsley and Cowtan, 2004). Schematic representation of protein molecules 

and graphics were prepared with UCSF CHIMERA Package (Pettersen et al., 2004). 
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Chapter 3  

RESULTS AND DISCUSSION 
 

3.1 Results 

Down Syndrome Cell Adhesion Molecule (DSCAM) is a cell surface receptor and 

its ectodomain consists of ten Ig-like C2 and six FNIII domains. It is expressed in 

neurons during development and is involved in axon guidance, cell aggregation and 

cell adhesion during dendrite arborization (Kise and Schmucker, 2013; Zinn, 2007). 

Previous studies in D. melanogaster suggest that Dscam in insects has a dual role; it 

is implicated mainly in self-recognition among dendrites arising from the same 

neuron cell and also in heterophilic binding with pathogen molecules (Watson et al., 

2005; Schmucker and Chen, 2009). Dscam trans homophilic binding between 

opposed dendrites, generates a repulsive signal not allowing them to establish 

connections. This process is called self-avoidance and prevents undesirable 

interactions between sister dendrites. This discrimination among dendrites of the 

same cell, seems to be achieved due to the high diversity that Dscam exhibits in 

Drosophila (~38,000 isoforms with ~19,000 ectodomains) and studies have shown 

that it is the specificity of certain domains that is responsible for the homophilic 

interactions and self-avoidance (Wojtowicz et al., 2007; Sawaya et al., 2008) (Figure 

I-9).  

On the contrary, DSCAM in vertebrates does not exhibit molecular diversity, 

resulting in an alternative role of DSCAM in mammals. Experiments in mouse retina 

(Fuerst et al., 2008), have shown that although DSCAM is involved in self-avoidance 

through homophilic binding interactions, it does not appear to be associated with self-

discrimination processes, as in insects. DSCAM is additionally found to be implicated 

in neuronal development and function (Yamakawa et al., 1998) and upon expression 

in commissural axons it is involved in axon guidance through heterophilic binding 

with guidance cues like netrin-1 and other receptors like DCC (Liu et al., 2009; Ly et 

al., 2008). Netrin-1 is a glycosylated protein involved in cell signaling in the 

developing and adult nervous system and it has been characterized as a guidance 

cue that can act either from a long or a short distance, mediating attraction or 

repulsion depending on its binding partners. It can also alter the formation of different 

tissues by mediating cell migration, cell-cell interactions and cell-extracellular matrix 
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adhesion (Lai Wing Sun et al., 2011). Upon binding to DSCAM, netrin mediates 

attraction and promotes axonal growth. 

It is anticipated that characterization of human DSCAM and of DSCAM in 

complex with netrin-1, will assist the efforts of unraveling the binding mechanism in 

vertebrates and identify the differences upon DSCAM homophilic and heterophilic 

interactions compared to the same mechanism in insects. To this end, structural and 

biophysical experiments were performed with the aforementioned proteins and are 

described in this section. 

 

DSCAM Ig1-Ig8, DSCAM Ig1-Ig9, DSCAM Ig1-Ig9:netrinVIV 

 

3.1.1 Construct design rationale of DSCAM Ig1-Ig8 & Ig1-Ig9 

According to previous structural studies of Dscam Ig1-Ig8 in D. melanogaster, 

the Ig domains implicated in the homodimerization, are Ig2, Ig3 and Ig5-Ig7 (Meijers 

et al., 2007; Sawaya et al., 2008), out of which domains Ig2, Ig3 and Ig7 were shown 

to be essential for isoform specificity. This specificity is important for homophilic 

recognition and binding interactions among the different isoforms arising from 

opponent dendrites (Wojtowicz et al., 2004, 2007). With the aim to explore DSCAM 

homodimerization in humans and assess the differences between the two species, 

the same construct (DSCAM Ig1-Ig8) was initially prepared (Figure R-1). 

Previous studies performed by Tessier-Lavigne and co-workers, suggested that 

the DSCAM binding interface with netrin-1 possibly lies between domains Ig7-Ig9 (Ly 

et al., 2008). In order to further investigate DSCAM heterophilic interactions in the 

presence of netrin-1, an Ig domain was added to the existing DSCAM Ig1-Ig8 

construct corresponding to the 9th Ig extracellular domain (Figure R-1). More 

specifically, the research focused on exploring the interactions of DSCAM with netrin-

1 upon complex formation and investigating whether DSCAM Ig1-Ig9 

homodimerization is abolished upon binding to netrin. Netrin-1 (Homo sapiens 

UniProtKB-O95631) is composed of a laminin domain VI, which is globular, followed 

by three epidermal growth factor (EGF-like) repeats of the γ-chain of laminins V 

(EGFV-1, EGFV-2, EGFV-3). These N-terminal domains are linked to a C-terminal 

netrin-like module (NTR) (Rajasekharan and Kennedy, 2009). The netrin-1 construct 

used in this study (netrinVIV), consists of one laminin domain (VI) and three laminin 

EGF-like domains (V) (Finci et al., 2014) (Figure R-1). 
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Figure R-1. Schematic representation of protein constructs for DSCAM and netrin-1. DSCAM 
extracellular domain comprises ten N-terminal Immunoglobulin-like domains (Ig-like C2-set) 
and six Fibronectin type III (FNIII) domains. DSCAM Ig1-Ig8 and DSCAM Ig1-Ig9 constructs 
were designed consisting of eight and nine Ig-like domains, respectively. NetrinVIV comprises 
one laminin domain (VI) and three EGF-like domains (V). The secretion signal peptide used 
for DSCAM expression was the native one. For netrinVIV the signal peptide used was from 
Human Pregnancy Specific Beta-1-Glycoprotein (PSG-1), a protein expressed in high yield in 
HEK cells.  
 
 

3.1.2 Purification & biophysical characterization of DSCAM Ig1-Ig8 & Ig1-Ig9 

The DNA sequence encoding the N-terminal eight Ig domains of DSCAM (Homo 

sapiens UniProtKB-O60469) (DSCAM Ig1-Ig8) was obtained as a synthetic gene by 

GenScript. For DSCAM Ig1-Ig9, overlap extension cloning was performed between 

DSCAM Ig1-Ig8 and DSCAM Ig9 domain (obtained by GenScript) (§2.2.3.3) with the 

primers listed in Table S5. Both genes were recloned into the pXLG vector, equipped 

with a C-terminal His6-tag, using DSCAM native secretion signal. After plasmid 

amplification in DH5a cells (E. coli), the DNA of both constructs was introduced into 

HEK 293T and HEK 293S cells (devoid of GnTI) and proteins were secreted to one 

Liter of culture media. The protein expression was assessed by WB (Figure R-2).  

Both proteins were purified with affinity chromatography, followed by SEC 

(§2.2.5). One Liter of cell culture resulted in ~10 mg for DSCAM Ig1-Ig8 WT and in ~8 
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mg for DSCAM Ig1-Ig8 GnTI-, after the final purification stage. Similarly, DSCAM Ig1-

Ig9 resulted in ~30 mg and ~20 mg for the WT and the GnTI- variant, respectively.  

 

The purification profile of DSCAM Ig1-Ig8 (both for WT and GnTI-), 

after SEC, indicated that the elution peaks corresponded to 

different oligomeric states. The protein purification was evaluated 

by SDS-PAGE (Figure R-3). 

 
 
 

 
FigureR-2. Western blot from 
large-scale expression (1 Liter 
cell culture) of DSCAM Ig1-Ig8 
(lanes 1,2) and DSCAM Ig1-Ig9 
(lane 3) in HEK 293T cell line.  
 
 

 
 
Figure R-3. SEC profile of DSCAM Ig1-Ig8 WT (a) and GnTI- (b) and SDS-PAGE after IMAC 
and SEC purifications. a. lanes 1-3: protein in the medium before purification, lane 4: washing 
step after IMAC, lanes 5,6: eluates after IMAC, lane 7: eluate corresponding to peak 1 after 
SEC, lane 8: eluate corresponding to peak 2 after SEC. b. lanes 1,2: protein in the medium 
before purification, lanes 3,4: washing steps after IMAC, lanes 5-8: eluates after IMAC, lanes 
9-11: eluates corresponding to peak 1 after SEC, lanes 12,13: eluates corresponding to Peak 
2 after SEC.  
 
 

In order to assess the oligomeric state of DSCAM Ig1-Ig8 after purification, 

further experiments were performed with FPLC coupled with static light scattering 

(SLS), using Malvern’s OmnISEC GPC/SEC multidetector (§2.2.7.3). The sample 

was filtered, loaded on a Superdex 200 10/300 GL column and was eluted with a flow 

rate of 0.4 ml/min. The first peak corresponded to dimeric DSCAM Ig1-Ig8 WT, with a 
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determined MW at 180 ± 10 kDa. The MW was calculated by UV measurements 

derived from baseline corrected RALS intensities and also by comparison to a protein 

that was used as a standard with an established MW (BSA). The second elution peak 

corresponded probably to monomeric protein, with an estimated MW around 98 ± 25 

kDa, due to limitations in resolution derived by the SEC column used (Figure R-4).  

 

 
 

Figure R-4. DSCAM Ig1-Ig8 WT oligomeric state analysis with FPLC coupled with SLS 
detectors, using Malvern’s OmnISEC GPC/SEC system. The protein in solution exists in two 
states with the dimer being the predominant species (Peak 1) with a MW determination of 
180±10 kDa. Peak 2 corresponds to monomeric DSCAM with MW estimation to 98±25 kDa. 
The red line corresponds to the refractive index (RI) and the green line to RALS. 
 
 

On the contrary, the purification profile of DSCAM Ig1-Ig9 showed that it was 

eluted only in one oligomeric state (as a dimer). This result suggested that the 

addition of Ig9 domain further stabilized the homodimeric interactions of the protein, 

compared to DSCAM Ig1-Ig8. Its oligomeric state was independent of salt 

concentration as it was shown by SEC purification profiles examined under various 

salt concentrations (10 mM - 1M NaCl) (Figure R-5c). The purity of the protein 

samples after IMAC and SEC was assessed by SDS-PAGE for both WT and GnTI- 

and the results are shown in Figure R-5a,b. The molecular weight of the protein was 

~114 kDa for the WT and ~109 kDa for the GnTI- as it was evaluated by MS analysis 

(the MW corresponded to monomeric DSCAM measured under denaturating 

conditions). 
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Thermofluor was also performed to examine the stability of DSCAM. A number of 

conditions were tested using different buffer solutions, salts and ligands. The results 

demonstrated that DSCAM Ig1-Ig8, in the presence of some of the conditions (e.g. 

3 % ethylene glycol, 100 mM CH3CO2K, 5 % PEG 400), exhibited a second unfolding 

event (Figure R-6). This observation indicated that DSCAM Ig1-Ig8 presented an 

intermediate substructure upon unfolding. Initially it was thought that this substructure 

could be either derived by a more rigid domain within the monomer or by dissociation 

of DSCAM dimer. When those conditions, which indicated a more stable protein 

population, were tested in the purification process (e.g. 150mM NaCl, 2 mM DTT, 

5 % glycerol) the eluted sample showed that DSCAM Ig1-Ig8 was still a mixture of 

monomers and dimers, with the dimeric state being the prevalent one. 
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Figure R-6. Selected graphs of thermofluor assays for DSCAM Ig1-Ig8 WT, examined under 
various conditions, indicated a melting point of ~50 ˚C. A second unfolding event was 
observed (marked with an arrow) in the presence of conditions such as 3 % ethylene glycol, 
100 mM CH3CO2K, 5 % PEG 400, 50 mM L-Glu, 50 mM L-Glu & L-Arg. 
 
 

For DSCAM Ig1-Ig9, the corresponding melting curves obtained by thermofluor, 

suggested that the protein remained stable in the presence of all conditions tested, 

without exhibiting additional unfolding curves. This was in accordance with the 

purification results for DSCAM Ig1-Ig9, which showed that the protein was always 

eluted as a stable dimer. Therefore, the differences observed between the two 

constructs, might be attributed to the addition of domain Ig9 that seemed to stabilize 

the dimer interactions of DSCAM Ig1-Ig9. Selected graphs are presented in Figure R-

7. 
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Figure R-7. Selected graphs of thermofluor assays for DSCAM Ig1-Ig9 WT, examined under 
various conditions, indicated a melting point of ~52 ºC.  

 
 
3.1.3 Structural characterization of DSCAM Ig1-Ig8 & Ig1-Ig9 

 

3.1.3.1 Small-angle X-ray scattering of DSCAM Ig1-Ig8 & Ig1-Ig9 

In order to shed light on DSCAM structural features and determine its overall 

shape, small-angle X-ray scattering experiments were performed with both DSCAM 

constructs (Ig1-Ig8 and Ig1-Ig9 in WT and GnTI- form). Data were collected at P12 

(PETRA III, EMBL-Hamburg, DESY, Germany) in collaboration with Dr. Gundolf 

Schenk and Dr. Haydyn Mertens (Svergun Group). Regarding DSCAM Ig1-Ig8, 

although it was in equilibrium of dimers and monomers, shifted towards the dimeric 

state, (as it was observed after its purification and biophysical experiments, Figure R-

4), measurements performed and reliable models based on the experimental data 

were only generated for the dimeric state after SEC (Figure R-3: sample 

corresponding only to dimer population). For DSCAM Ig1-Ig9, oligomerization state 

analysis demonstrated that it was dimer in solution (monodisperse population). A 

series of protein concentrations (Tables S6-S7) were tested and the extrapolated 

intensity at zero scattering angle I(0), the radius of gyration (Rg) and the maximum 
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interatomic distance (Dmax) calculated for this concentration range, showed no 

concentration-dependent oligomerization for both constructs examined.  

Two independent SAXS modeling approaches were employed: ab initio 

reconstruction directly from the data and rigid body refinement. The models were 

reconstructed by applying P1 (for an unbiased model reconstruction) and P2 

symmetry. The theoretical scattering curves calculated from the generated models 

for both Ig1-Ig8 and Ig1-Ig9, using the two methods, were in good agreement with the 

experimental data obtained from SAXS measurements, with the calculated 

discrepancy value, which represents the quality of the fit, chi2, being at 1.0.  

For DSCAM Ig1-Ig8, rigid body refinement was performed by defining the N-

terminal Ig1-Ig4 domains as a rigid core, resulting in similar models with normalized 

spatial discrepancy (NSD) of 1.0 (measure of quantitative similarity). Superposition of 

DSCAM Ig1-Ig8 ab initio model with the model generated by the rigid body approach, 

demonstrated the agreement between the models obtained independently by the two 

methods used (NSD=1.1) (Figure R-8). 

 

 
 
Figure R-8. SAXS analysis and model generation of DSCAM Ig1-Ig8 WT. a. Superposition of 
the ab initio model (transparent beads) with the model generated using the rigid body 
approach (domains Ig1-Ig4 are shown in dark blue & domains Ig5-Ig8 in light blue), depicted 
high similarity for the shape of DSCAM with NSD at 1.1. The theoretical N-glycosylation sites 
on DSCAM Ig1-Ig8 model (in yellow) were built using the GlyProt server (Bohne-Lang and 
Von der Lieth, 2005) based on DSCAM amino acid sequence. b. Calculated scattering curve 
of the ab initio model (in red) fits well the experimental data (in green) and is plotted as the 
logarithm of scattered intensity against the momentum transfer, with the quality of fit chi2 
being at 1.0 (Table R-1). 
 
 

In order to test the working hypothesis, the ab initio model was compared to 

Dscam Ig1-Ig8 homologous crystallographic structure from Drosophila, with 34 % 

sequence identity (over 263 out of 780 amino acids) at 4.2 Å resolution (PDB entry 
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3DMK) (Sawaya et al., 2008). The results showed that the theoretical scattering 

curve, computed from the crystallographic structure, did not fit the experimental 

SAXS data for DSCAM (chi2~ 4.0). DSCAM dimer in humans was more flexible and 

had differences from the Drosophila Dscam structure, mainly regarding domains Ig1-

Ig4 (Figure R-9). 

 

 
 

Figure R-9. DSCAM Ig1-Ig8 GnTI- SAXS experimental data in solution in comparison to 
Dscam crystallographic structure from Drosophila (PDB entry 3DMK). a. Superposition of the 
ab initio SAXS envelope of DSCAM (shown in pink) to the crystallographic structure of Dscam 
Ig1-Ig8 (each monomer is represented in brown and purple) (Sawaya et al., 2008). b. The 
theoretical scattering curve (shown in blue) computed from the crystal structure in Drosophila 
with CRYSOL did not fit the experimental scattering data (shown in black). Data are plotted as 
the logarithm of scattered intensity against the momentum transfer (s), with chi2 values being 
above 4.0. 
 

 

For DSCAM Ig1-Ig9, which was a dimer in solution, rigid body models were 

computed by restraining the N-terminal Ig1-Ig4 domains, either as a single rigid body 

using data obtained from DSCAM Ig1-Ig4 SAXS experiments (a detailed analysis for 

DSCAM Ig1-Ig4 construct is presented in §3.1.8.1), or using a global refinement 

procedure using the program CORAL (Petoukhov et al., 2012), incorporating data 

collected from all DSCAM constructs, simultaneously, i.e. Ig1-Ig4, Ig1-Ig8 and Ig1-

Ig9. Ten independent runs were conducted and similarity was assessed using the 

program DAMAVER (Volkov and Svergun, 2003), which also identified the most 

representative member of the ensemble. Since domain Ig9 appeared to stabilize the 

dimer interactions (based on purification results - Figure R-5) the models were 

constructed by defining this domain as a contact point, based on the Cα-Cα distances 

for constraining the rigid body modeling. The results demonstrated that all dimer 

models shared common structural features assembling into a T-shape configuration. 

Furthermore, in every model generated, domains Ig1-Ig4 (Figure R-10a in dark blue) 
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were shown to be located at the periphery of this T-shaped molecule away from the 

dimeric interface. This approach resulted in an ensemble of models that fit equally 

well the experimental data with chi2 values of 1.1 (Figure R-10b). 

 

 
 
Figure R-10. a. Cluster of DSCAM Ig1-Ig9 WT rigid body models obtained by SAXS (domains 
are shown in dark blue: for Ig1-Ig4, light blue: for Ig5-Ig8, green: for Ig9 and yellow: for 
glycans) reconstructed using simultaneously experimental data from DSCAM Ig1-Ig4, Ig1-Ig8 
and Ig1-Ig9. In every model, domains Ig1-Ig4 were located away from the core of the T-
shaped molecule (shown in dark blue). b. The calculated scattering curve of the models (in 
black) fits well the experimental scattering curve for DSCAM Ig1-Ig9 (shown in orange) with 
chi2 values of 1.1. Data are plotted as the logarithm of scattered intensity against the 
momentum transfer (s). 
 

 
Table R-1. Table of selected statistics for DSCAM Ig1-Ig8 and DSCAM Ig1-Ig9 derived from 
SAXS data collection. The complete table of statistics can be found at the Appendix Section. 
Protein RgGuinier 

(nm) 
Dmax  
(Å) 

Volume 
(nm3) 

MW1 
(kDa) 

MW2 
(kDa) 

MW3 

(Da) 
Oligomeric 

state 
DSCAM 
Ig1-Ig8 

5.8±0.2* 20±0.5* 494±50* 167±17* 200±20* 88183 Dimer 

DSCAM 
Ig1-Ig9 

6.4±0.2 22.3±0.5 726±70 226±20 207±20 96890 Dimer 

* The values for DSCAM Ig1-Ig8 correspond to the dimeric state. 
MW1: calculation based on the absolute scattering intensity I(0).  
MW2: calculation based on BSA (used as a standard). 
MW3: calculation based on sequence (for the monomer without glycosylation). 
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3.1.3.2 Electron microscopy of DSCAM Ig1-Ig8 & Ig1-Ig9 

With the aim to identify which Ig domains are involved in homodimer interactions, 

structural studies of DSCAM Ig1-Ig8 and Ig1-Ig9 (both in WT and GnTI-) were 

performed with negative staining electron microscopy. 

EM studies on DSCAM Ig1-Ig8 were conducted in collaboration with the Electron 

Microscopy Core Facility (EMBL-Heidelberg). A variety of stains (i.e. uranyl formate, 

uranyl acetate and ammonium molybdate) in the presence of NaCl (at concentrations 

ranging from 100 to 500 mM) were tested for both dimeric and monomeric states 

after purification (Figure R-3, Peak 1 & Peak 2, respectively) corresponding to WT 

and GnTI- variant. The raw images obtained, showed a mixture of monomers, dimers 

and larger aggregates that coexisted in the sample. DSCAM samples in the presence 

of 500 mM NaCl exhibited less aggregates, compared to the ones in lower salt 

concentrations (Figure R-11). Despite the different conditions and stains examined, 

the enhanced heterogeneity observed in the population, prevented further particle 

analysis using this construct.  

 

 
Figure R-11. DSCAM Ig1-Ig8 WT (a) and GnTI- (a,c) raw images after negative staining, 
stained with 0.75 % uranyl formate or uranyl acetate (using 50 mM Citrate pH 6.0 and 500 
mM NaCl) corresponding to dimer (a,b) and monomer (c) populations after SEC purification. 
The images obtained demonstrated a mixture of monomers, dimers and larger aggregates. 
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Electron microscopy studies on DSCAM Ig1-Ig9 were performed by Skiniotis 

Group (Life Sciences Institute, University of Michigan). Preliminary analysis of the 

raw images showed that most of the population was monomeric with only a few 

particles depicting a dimer of DSCAM. Based on these initial observations, reference-

free alignment and classification was performed to obtain 2D averages of DSCAM 

Ig1-Ig9 (Figure R-12). 

More specifically, single-particle analysis demonstrated that although DSCAM 

Ig1-Ig9 was a dimer in solution (in concentration range 0.3 - 10 mg/ml), most of the 

specimen population appeared to be in monomeric state. Approximately 13,000 

particle projections of DSCAM Ig1-Ig9 WT were subjected to ISAC to address 

structural heterogeneity and assess the differences in the population between 

monomers and dimers. These resulted in 222 classes accounting for 9,965 particle 

projections from 20 rounds of classification. Part of the projections appeared only as 

single rods (Figure R-12 shown in green), some exhibited a partial monomer and 

others revealed the overall structure of DSCAM Ig1-Ig9 in different conformations and 

orientations (Figure R-12 shown in blue and red, respectively). The horseshoe-

shaped arrangement (comprising four N-terminal Ig domains), which was observed in 

projections that disclosed the overall structure, seemed to be similar to that of Dscam 

Ig1-Ig8 in D. melanogaster. Thorough analysis of these projections revealed that 

domains Ig1-Ig5 exhibited a more stable assembly, whereas domains Ig6-Ig9 formed 

a linear-like arrangement, moving away or leaning towards the rigid horseshoe 

configuration i.e. projections 70 & 98 (Figure R-12 marked with a red rectangle). 

Moreover, a closer look on some projections, where the horseshoe maintained the 

same orientation, (e.g. 136 and 140 Figure R-12 marked with a red circle) indicated 

that additional degrees of freedom were probably introduced among domains Ig7 to 

Ig9, resulting in a number of different conformations.  
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Figure R-12. Single-particle analysis of DSCAM Ig1-Ig9 WT in 50 mM MES pH 6.0, 150 mM 
NaCl. Reference-free alignment of particle projections was performed with ISAC and resulted 
in 222 classes accounting for 9,965 particle projections after 20 rounds of classification. 
DSCAM Ig1-Ig9 is depicted as a monomer in different conformations and orientations and 
selected projections are marked in red. Projections marked with the same colour and shape 
show DSCAM molecule in which the horseshoe maintains the same orientation but the rest of 
the domains are flexible. Partial monomers of DSCAM are shown in blue and domains that 
appeared as single rods are shown in green. A partial dimer of DSCAM where only the first 
four Ig domains can be visualized for one partner, is shown in yellow. 
 

The conformational flexibility of DSCAM could be attributed to a potential hinge 

located at any place in the tandem of Ig5-Ig9. The presence of hinges would explain 

the rotational freedom around an axis driving the last three or four Ig domains to 

move as a rigid body, either towards or away from the horseshoe arrangement 

(Figure R-13a). 
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Figure R-13. Schematic representation of DSCAM Ig1-Ig9 in different conformations (a) and 
orientations (b,c) after two-dimensional reference-free classification. a. The first four N-
terminal Ig domains adopt a rigid horseshoe conformation (Ig1-Ig4 in dark blue) with domains 
Ig6-Ig9 forming a linear-like arrangement (in light blue), which moves either away or leaning 
towards the horseshoe assembly. The pronounced variations in conformations might be a 
result of potential hinges that join domains Ig5-Ig6 (h1) or can be located anywhere among 
domains Ig6-Ig9 (h2). 

 

 

The domain structure of DSCAM (construct Ig1-Ig9) appears to follow the 

architecture of other cell adhesion molecules and its individual domains have an Ig-

like folding, which is formed by antiparallel β-strands, organized in a double β-sheet. 

Sequence alignment of DSCAM Ig1-Ig9 with selected protein receptors bearing 

similar domain organization and hinge regions, was performed, in order to identify 

potential hinges in DSCAM and justify the observations made by EM (Figure R-14). 

Two hinge regions were identified in Dscam Ig1-Ig8 from D. melanogaster (PDB 

entry 3DMK) (Sawaya et al., 2008) and in Titin Ig65-Ig70 (PDB entry 3B43) (von 

Castelmur et al., 2008), between Ig domains 4-5-6 and between domains 65-66-67, 

respectively (Figure R-14 shown in orange and green rectangles, accordingly). These 

regions boost the conformational freedom of the main chain through specific linkers 

(i.e. residues ERK in titin, Figure R-14 shown in green rectangles) that act as 

bending points. In most of the proteins examined, the observed conformers of each 

moving substructure seemed to depend on the length of the linker that dictated 

whether it would function as a hinge, allowing modular chain motions. The areas 

between Ig domains that consisted of two residues or of zero-length linker were more 

tightly connected, allowing only limited flexibility of the individual domains and not a 

profound chain bending (von Castelmur et al., 2008). 

In the case of Dscam, a linker, located between domains Ig4-Ig5, comprising five 

amino acids (i.e. residues GGRFD, Figure R-14 shown in orange rectangle) was 
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identified as a hinge region (using the DynDom server and by measuring the angle of 

the domains using the Dscam Ig1-Ig8 structure) allowing rotation of Ig1-Ig4 (as rigid-

body) relative to the rest of the molecule (Ig5-Ig8) (Hayward and Berendsen, 1998; 

Sawaya et al., 2008). In addition, a linker (connecting domains Ig6-Ig7) consisting of 

five residues induced as well a conformational bending motion. The hinge 

mechanism occurring around the specific domains seemed to lead to interdomain 

flexibility, necessary for hosting the second molecule of Dscam during 

homodimerization. 

Similarly, the presence of two hinge regions was identified in tyrosine kinase 

receptor KIT (PDB entry 2EC8) (Yuzawa et al., 2007) and in Colony-stimulating 

factor 1 (PDB entry 4LIQ) (Ries et al., 2014). These hinges were between domains 

Ig3-Ig4-Ig5 and domains Ig2-Ig3-Ig4, respectively (Figure R-14, shown in purple and 

yellow rectangles, accordingly) whereas the tyrosine kinase receptor Flt3 (PDB entry 

3QS7) (Verstraete et al., 2011) had one hinge axis among domains Ig3-Ig4 (Figure 

R-14, indicated in blue rectangle). Furthermore, there were conserved residues 

(Figure R-14, highlighted in purple), which although they did not belong to a hinge 

region, they participated in interdomain interactions, formed in the vicinity of the 

hinge axes.  

Sequence alignment revealed that although residues involved in hinges, were 

highly diverse, selected Ig-Ig transition motifs were conserved i.e. the NxxG motif, the 

presence of Leu residues at the end and of Pro residues in the beginning of almost 

each Ig domain. The aforementioned sequence features dictated the boundaries of Ig 

domains, which appeared to coincide for all the proteins examined, (including human 

DSCAM) independently of the residue type involved in the hinge bending mechanism. 

It was also concluded that the dynamic motion of every protein domain varies, based 

on the length of the hinge region. These findings suggested that the boundaries of 

DSCAM Ig1-Ig9 domains could be determined with potential hinges being 

intercalated between the Ig domains. Although the images produced from single-

particle analysis suggested that hinge areas might be present among domains Ig5 to 

Ig8 (since domains Ig1-Ig5 formed a less flexible core), an accurate hinge location is 

difficult to be predicted considering only features based on the protein sequence.  

 



	 89	 	

 
Figure R-14. Sequence alignment of DSCAM Ig1-Ig9 with protein receptors comprising Ig 
domains and hinge regions: Titin Ig65-Ig70 (25 % seq. homology, PDB entry 3B43) (green), 
Tyrosine kinase receptor 3-Flt3 Ig1-Ig4 (24 % seq. homology, PDB entry 3QS7) (blue), 
Dscam Ig1-Ig8 from D. melanogaster (34 % seq. homology, PDB entry 3DMK) (orange), 
Tyrosine kinase receptor-KIT Ig1-Ig5 (26 % seq. homology, PDB entry 2EC8) (purple), 
Colony-stimulating factor 1 (CSF-1) Ig1-Ig5 (22 % seq. homology, PDB entry 4LIQ) (yellow). 
Hinge regions for each protein are depicted in rectangles, the Ig domain boundaries with a 
vertical line, the conserved identical amino acids are white on a red background and similar 



	 90	 	

residues are red on a white background, following the color code given for the individual 
proteins. The highlighted amino acids (shown in purple) indicate the residues involved in Ig-Ig 
domain interactions. Multiple sequence alignment was performed using the ClustalW2 server 
(Sievers et al., 2011) and the output was processed and visualized using the ESPript 3.0 
server (Robert and Gouet, 2014). 

 

 

Single-particle analysis also revealed that the dimeric conformation was only 

rarely observed; therefore, DSCAM dimerization could not be elucidated (Figure R-12 

marked in yellow). With the aim to increase the incidence of dimer observation, 

additional experiments were performed using a variety of salt concentrations and 

buffer solutions at different pH, but all conditions led to similar results with the ones 

previously described.  

Further experiments then followed, giving emphasis on stabilizing the 

homodimer interactions through chemical crosslinking of DSCAM Ig1-Ig9 (WT and 

GnTI-), prior to negative staining. To ensure a mild chemical reaction, an EM-grade 

glutaraldehyde solution (Table S2) was applied to DSCAM Ig1-Ig9 using the ‘on-

column’ protocol (Shukla et al., 2014). A broad range of glutaraldehyde, salt 

concentrations and buffers were examined to establish the optimal conditions. 

More specifically, crosslinking was performed with the WT protein using low 

glutaraldehyde concentrations (ranging from 0.1 to 0.8 % (v/v)) in PD-10 desalting 

columns, in the buffer solution after SEC (Table M-9). After elution, protein samples 

were evaluated with reduced and non-reduced SDS gels, which showed that the 

amount of glutaraldehyde used initially was not sufficient for protein crosslinking 

(Figure R-15a,b); hence an alternative and quick batch method was applied to 

crosslink the protein by incubating it for 5 min at 37 ˚C using 2.3 % (v/v) 

glutaraldehyde. Based on the MW of the dimer, the results demonstrated that some 

of the protein sample was crosslinked; however, non-specific crosslinked protein was 

also observed in higher molecular masses (Figure R-15c,d). Therefore, different 

glutaraldehyde concentrations were examined, using both the batch and the ‘on-

column’ method to optimize the yield of the crosslinked protein. Despite the lower 

amount of crosslinked protein as compared to the one that was obtained by the batch 

method, the ‘on-column’ protocol was finally selected for protein crosslinking. This 

method would allow protein molecules subjected to non-specific crosslinking (with 

higher MW, prone to induce sample heterogeneity) to be discarded with mild 

crosslinking, using 1 and 2 % (v/v) glutaraldehyde. 
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Figure R-15. DSCAM Ig1-Ig9 WT and GnTI- crosslinking. a,b. SDS-PAGE of DSCAM Ig1-Ig9 
WT eluates (1 mg/ml) crosslinked in PD-10 columns, using 7 % reduced (a) and non-reduced 
gels (b). Buffer: 50mM MES pH 6.0, 150mM NaCl. Lane 1: control: non-crosslinked protein, 
lanes 2,3: eluates with 0.2 % (v/v) glutaraldehyde, lanes 4,5: eluates with 0.4 % (v/v) 
glutaraldehyde, lanes 6,7: eluates with 0.8 % (v/v) glutaraldehyde. c,d. SDS-PAGE of DSCAM 
Ig1-Ig9 WT and GnTI- (1 mg/ml) crosslinking in a batch method with 2.3 % (v/v) 
glutaraldehyde, using 7 % reduced (c) and non-reduced gels (d). Lane 1: WT control with 
non-crosslinked protein, lane 2: WT crosslinked in 50mM MES pH 6.0, 150mM NaCl, lane 3: 
WT crosslinked in PBS pH 7.4, lanes 4,5: GnTI- crosslinked in 50mM MES pH 6.0, 150mM 
NaCl and PBS pH 7.4, respectively.  
 

 

The selection of the ‘on-column’ method proved to be correct since the chemical 

reaction was milder for DSCAM, as presented in Figure R-16,a-c for batch method 

and in d-i for the ‘on-column’ one. 

In order to achieve separation between the crosslinked and non-crosslinked 

sample (resulted from the ‘on-column’ method), initially SEC was performed; however, 

the size differences of the two protein samples did not allow good resolution. 

Therefore, IEC was further tested with the anticipation that the chemical crosslinking 

would have altered the overall charge of the protein leading to sample separation. 

The elution profile showed that it was a mixture containing both protein populations. 

Nevertheless, the samples (for both WT and GnTI-) in the presence of NaCl (ranging 

from 0 to 1 M concentration) with 0.75 % uranyl formate, were further examined 

using EM negative staining and were imaged at RT. Protein destabilization and 

aggregation was observed when no salt was present in the buffer. The rest of the raw 

images indicated that the population of the crosslinked samples was more 

heterogeneous exhibiting high polydispersity, compared to the non-crosslinked ones. 



	 92	 	

Thus, it was concluded that single-particle analysis should only be conducted using 

the non-crosslinked population of DSCAM Ig1-Ig9.  

 

 
 

Figure R-16. DSCAM Ig1-Ig9 WT crosslinking. a-c. SDS-PAGE of DSCAM Ig1-Ig9 WT in a 
batch method using 1-5 % (v/v) glutaraldehyde in a range of buffers and salt concentrations. a. 
Buffer 20 mM MES pH 6.0, 50 mM NaCl with lanes 1,3: control with non-crosslinked protein 
sample and lanes 2,4,5: crosslinked protein with 1, 3, 5 % (v/v) glutaraldehyde, respectively. 
b. Buffer 20 mM Hepes pH 7.4, 50 mM NaCl with lane 1: control and lanes 2-5: crosslinked 
protein with 1, 2, 3, 5 % (v/v) glutaraldehyde, respectively. c. Buffer 50 mM MES pH 6.0, 150 
mM NaCl with lane 1: control and lanes 2-5: crosslinked protein with 1, 2, 3, 5 % (v/v) 
glutaraldehyde, respectively. d,e. DSCAM Ig1-Ig9 WT eluates after crosslinking with PD-10 
columns using 1 and 2 % (v/v) glutaraldehyde, respectively, in 20 mM MES pH 6.0, 50 mM 
NaCl with lane 1: control and lanes 2-6: crosslinked protein. f,g. DSCAM Ig1-Ig9 WT eluates 
after crosslinking with PD-10 columns using 1 and 2 % (v/v) glutaraldehyde, respectively, in 
20 mM Hepes pH 7.4, 50 mM NaCl with lane 1: control and lanes 2-9: crosslinked protein. h,i. 
DSCAM Ig1-Ig9 WT eluates after crosslinking with PD-10 columns using 1 and 2 % (v/v) 
glutaraldehyde, respectively in 20 mM MES pH 6.0 and no additional salt with lane 1: control 
and lanes 2-6: crosslinked protein.  
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3.1.3.3 X-ray crystallography of DSCAM Ig1-Ig8 & Ig1-Ig9 

Crystallization trials were set with DSCAM constructs expressed in WT and in 

GnTI- cells. Initially, the glycosylated protein (Ig1-Ig8 WT) was extensively tested for 

crystallization using a variety of conditions. However, the increased sample 

heterogeneity induced by the glycosylation sites probably prohibited the protein from 

crystallizing. To surpass that, the GnTI- form was used instead. Indeed, first crystals 

appeared in 400 nl drops (reservoir solution:protein volume ratio of 1:1), set up at the 

HTX facility (SPC, EMBL-Hamburg) under a variety of PEG conditions and buffers 

(PEG 4000, PEG 8000, PEG 20000, MES pH 6.0, Tris-HCl pH 8.0, Hepes pH 7.5) 

(Figure R-17a). Further optimization of the existing conditions was performed in 

larger volumes (1 - 2 μl drops) using Linbro plates (vapor diffusion-sitting drop) by 

designing custom-made screens. The conditions explored aimed to examine the 

behavior of DSCAM in a range of pH, sample volume, concentration and mixing 

volume ratios with the reservoir solution in order to identify those conditions that 

would allow growing good quality diffracting crystals.  

Crystals in different habits appeared in one week in the presence of PEG 4000 

and MES pH 6.0 using 8 mg/ml of protein. The crystals were then exposed to X-rays 

but diffracted weakly to 18 Å resolution (Figure R-17b). Further optimization was 

performed using the additive screen (Hampton Research) where a range of ligands, 

organic solvents, salts and detergents was tested. The addition of 1,4-dioxane 

improved diffraction to 8 Å resolution (Figure R-17c) and emphasis was then given 

on changing the kinetics of vapor diffusion with the aid of oil. For that purpose, 

crystals were grown under oil in approximately two weeks and after exposure to the 

beam, resolution was slightly improved to 7 Å. A variety of cryo-protectants (glycerol, 

isopropanol, PEG 400, ethylene glycol) was also tested to examine their effect in 

crystal diffraction. A solution containing 20 % (v/v) ethylene glycol along with 

precipitant agents that the crystal was grown into, coupled with a soaking time of ~10 

min, further improved the crystal diffraction and a data set was collected at 6.7 Å 

resolution (100 K) at PETRA III (Beamline P13, EMBL-Hamburg, DESY, Germany) 

(Figure R-17d,e). In parallel, additional methods to improve the diffraction quality of 

the crystal were examined, such as using the existing crystals as seeds 

(microseeding and seeding under oil); however, these seemed not to improve the 

diffraction power of the crystals. All the crystallization methods and optimization 

approaches used for obtaining crystals for DSCAM Ig1-Ig8 are summarized in Table 

R-6. 
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Figure R-17. Crystallization and optimization of DSCAM Ig1-Ig8 GnTI-. a. Thin needles 
developed in 15 - 30 % (w/v) PEG 8000/PEG 20000, 0.2 M MES pH 6.0/Tris-HCl pH 8.0 
resulted in no diffraction. b. Single crystals with sharp, non-defined edges in 20 % (w/v) PEG 
4000, 0.1 M MES pH 6.0 diffracted to 18 Å resolution. c. Single crystals with hollows at their 
growth ends in 15 % (w/v) PEG 4000, 0.1 M MES pH 6.0, 3 % (v/v) 1,4 dioxane diffracted to 8 
Å resolution. d. Single 3D well-defined crystals, developed under oil (400 μl of silicon 
oil:paraffin oil (v/v) 40:60), in 15 % (w/v) PEG 4000, 0.1 M MES pH 6.0, 3 % (v/v) 1,4 dioxane 
using 20 % (v/v) ethylene glycol as cryo-protectant. e. Diffraction pattern of data collected 
from crystal shown in (d), at 6.7 Å resolution.  
 

Diffraction images of DSCAM Ig1-Ig8 GnTI- collected at 6.7 Å resolution from a 

single crystal, were indexed and integrated with MOSFLM (Leslie et al., 2007) 

followed by POINTLESS (Evans, 2006) to determine the crystal lattice and 

symmetry. The integrated reflections were further scaled and merged using SCALA 

(Evans, 2006). Preliminary characterization demonstrated that the crystal belonged 

to C-centered orthorhombic lattice and C2221 space group, with unit cell dimensions 

a= 118.6 Å, b= 317.0 Å, c= 283.5 Å, α=β=γ= 90.0˚. Data collection statistics are 

summarized in Table R-2.  
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Table R-2.  Data collection statistics of DSCAM Ig1-Ig8 GnTI-. 
Data collection and processing statistics  
Experiment DSCAM Ig1-Ig8 GnTI- 
X-ray source Beamline P13, PETRA III 

DESY, Germany 
Wavelength (Å) 0.900 
No of images 1800 
Oscillation angle (˚) 0.1 
Space group C2221 
Unit cell dimensions (Å) a=118.6, b=317.0, c= 283.5, 

α=β=γ= 90.0˚ 
Resolution range (Å) 25.0 - 6.7 (7.1 - 6.7) c 
No of observations  62524 (9141)  
No of unique reflections  9917 (1438) 
Rm 

a 0.090 (0.862) 
Completeness (%) 99.6 (99.3) 
<I/σ(Ι)> b 11.6 (2.0) 
CC1/2 0.997 (0.790) 
Multiplicity 6.4 (6.3) 
a Rm = ∑hkl  ∑i ⏐Ii(hkl) – 〈I(hkl)〉⏐/ ∑hkl  ∑i  Ii(hkl),where Ii(hkl) is the intensity of a reflection and 
〈I(hkl)〉 is the mean intensity of all i symmetry-related reflections. 
b σ(Ι) is the standard deviation of I. 
c Values in parentheses correspond to the outermost shell. 

 

Efforts to increase the resolution of the diffraction data by post-crystallization 

treatments, focused on subsequent dehydration of the crystals, without achieving the 

desired results. Further studies were directed towards reducing the heterogeneity of 

the protein, prior to and during crystallization, by deglycosylation. To this end, the 

GnTI- protein was treated with EndoH so as to cleave asparagine-linked mannose 

oligosaccharides leaving one GlcNAc attached to Asn sites (§2.2.8.3e). DSCAM Ig1-

Ig8 GnTI- was incubated with EndoH at RT, which resulted in reduction of its size. 

This was already observed after 15min of incubation time, as indicated by SDS-

PAGE on samples taken at different time intervals (Figure R-18a). The previously 

identified crystallization conditions for the non-EndoH treated protein (Figure R-17d) 

were also tested with the deglycosylated sample (both by using the same conditions 

and by screening around them), without leading to crystal formation. Spare-matrix 

crystallization screening was also performed, using different conditions of PEG and 

pH, considering that deglycosylation would have altered the overall charge of the 

protein; however no crystals were formed. Alternatively, EndoH was incorporated in 

the crystallization drop (~3-5 %) repeating the sparse-matrix screening. The 

hypothesis was that using a lower enzyme concentration directly in the crystallization 

drop, would still lead to deglycosylated protein crystals, since the enzyme would 

interact longer with the protein. Successful crystallization of the deglycosylated 
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protein form, as indicated by MS, confirmed the aforementioned hypothesis. More 

specifically, cubic and tetragonal crystals were grown within three weeks in PEG 

3350 and MES pH 6.5 (Figure R-18b). Verification of the MW of the crystallized 

protein treated with EndoH was conducted by MALDI-TOF analysis. The spectrum 

produced, revealed that some of the N-linked oligosaccharides have been truncated 

as indicated by the MW of the protein that was decreased by ~6 kDa compared to 

the MW of GnTI- protein, prior to enzyme’s treatment (Figure R-18c). The 

deglycosylated crystals diffracted weakly to ~20 Å resolution.  

 

 
 
Figure R-18. EndoH treatment of DSCAM Ig1-Ig8 GnTI-. a. SDS-PAGE of deglycosylated 
DSCAM Ig1-Ig8 GnTI- when it was treated with EndoH at RT for 24h. Lane 1: control of 
DSCAM Ig1-Ig8 GnTI- without endoH, lane 2: t0 - immediately after EndoH addition, lane 3: 15 
min incubation, lane 4: 30 min, lane 5: 60 min, lane 6: 2 h, lane 7: 4 h, lane 8: 8 h, lane 9: 24 
h. b. Crystals of deglycosylated DSCAM Ig1-Ig8 GnTI- were grown within 3 weeks in 8% (w/v) 
PEG 3350, 50 mM MES pH 6.5 at 19 ˚C, only after the addition of EndoH in the crystallization 
drop (3 %). Crystals diffracted weakly to ~20 Å resolution. c. MALDI-TOF analysis of crystals 
grown in 3 % EndoH. The spectra in blue and black show the MW of DSCAM Ig1-Ig8 GnTI- 
prior to (~96 kDa) and after (~90 kDa) deglycosylation, respectively. The peaks corresponding 
to ~48 kDa and ~44 kDa, in each sample, are doubled charged states of the protein.  
 
 

In order to decrease the flexibility of the amino acid chains exposed to the 

solvent, which could prevent the formation of well-ordered crystals, the effect of the 

protein’s surface entropy reduction was also investigated. Reductive methylation of 
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lysine residues was performed in DSCAM Ig1-Ig8 GnTI- (~5 % Lys), where primary 

amines (Lys and N-terminal residues) were chemically modified to tertiary amines 

(Walter et al., 2006) (§2.2.8.3d). Although DSCAM was successfully methylated and 

crystals were grown, they diffracted to low-resolution (~7 Å). 

DSCAM Ig1-Ig9, in contrast to Ig1-Ig8, was more prone to crystallize both in the 

WT and the GnTI- form, which was in agreement with what it was anticipated, based 

on biophysical results (monodisperse population compared to DSCAM Ig1-Ig8). 

Crystallization trials of DSCAM Ig1-Ig9 were set up at the HTX facility in small-scale 

(300 nl drops) using a range of volume ratios between the reservoir solution and the 

protein sample. The optimum starting protein concentration for crystallization was 

estimated with pre-crystallization tests by Hampton Research. Initial crystal hits for 

both WT and GnTI- were observed under various conditions of PEG and other 

precipitant agents using commercial screens from Molecular Dimensions and Qiagen 

(Figure R-19a,b,d). These conditions were further optimized in large-scale (2 μl 

drops, 1:1 volume ratio in 500 μl reservoir solution) and crystals were grown within 

one week at 19 ˚C, as shown in Figure R-19c,e, using the vapor diffusion method 

(hanging drop). The crystals were tested at ID29 beamline (ESRF, Grenoble, France) 

and they exhibited weak diffraction to ~9 Å resolution.  

 

 
 

Figure R-19. Crystallization of DSCAM Ig1-Ig9 WT and GnTI-. a. Cubic and rhombic crystals 
of WT set up at the HTX facility, which were grown within 8 days, in the presence of 0.2 M 
potassium thiocyanate, 0.1 M sodium cacodylate pH 6.5, 8 % (w/v) PEG 20000, 8 % (w/v) 
PEG 550 MME using 7.5 mg/ml protein. b. Small round crystals of WT with non-defined 
edges set up at the HTX facility in the presence of 1 M Lithium chloride, 0.1 M MES pH 6.0, 
10 % (w/v) PEG 6000 were grown in 2 days using 7.5 mg/ml protein. c. Optimization of 
crystallization conditions (crystals shown in image b) resulted in a single large tetragonal 
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crystal, grown in 0.8 M Lithium chloride, 0.1 M MES pH 6.0, 7 % (w/v) PEG 6000 in 2 μl drops 
(reservoir solution:protein 1:2) using 5 mg/ml of DSCAM Ig1-Ig9 WT. d. Round crystals with 
non-defined edges of GnTI- (12 mg/ml) were grown an the HTX facility in 4 days, in 0.2 M 
potassium thiocyanate, 0.2 M potassium bromide, 0.1 M sodium cacodylate pH 6.5, 5 % (w/v) 
PEG 8000, 3 % (w/v) poly-γ-glutamic acid of low MW polymer (PGA-LM). e. Optimization of 
crystals shown in image d: Custom-made plates in 2 μl drops (reservoir solution:protein 1:1). 
The crystals had clear edges and they were grown in 0.2 M potassium thiocyanate, 0.1 M 
potassium bromide, 0.1 M sodium cacodylate pH 6.5, 9 % (w/v) PEG 8000, 2 % (w/v) PGA-
LM using 10 mg/ml of DSCAM Ig1-Ig9 GnTI-.  
 

Efforts to obtain crystals diffracting to a resolution that would allow at least the 

detection of the binding domains upon DSCAM homodimerization in vertebrates, 

proved to be rather challenging. Despite the different approaches employed for 

controlling the rate of crystal growth and the different optimization methods used, the 

diffraction quality and the mosaic spread of the crystals (~1.0˚) could not be further 

improved.  
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3.1.4 Binding affinity studies and in vitro reconstitution of DSCAM Ig1-Ig9 

WT:netrinVIV 

DSCAM Ig1-Ig9 binding affinity to netrinVIV and their stoichiometry were examined 

using ITC. NetrinVIV exhibited a high propensity to aggregate in a variety of buffer 

solutions, salt concentrations and pH; therefore, obtaining an optimal stabilization 

buffer for both proteins proved to be a challenge. The buffer solutions that were 

selected, were those that showed reduced precipitation of netrinVIV, i.e. MES pH 6.0, 

NaCl, DTT, CaCl2, (NH4)2SO4 or PBS pH 8.0 (§2.2.7.4). Nevertheless, the results 

obtained from the assays in the presence of these solutions showed that netrinVIV 

precipitated in the ITC cell during the experiments. 

Experiments were also performed aiming reconstitution of DSCAM Ig1-

Ig9:netrinVIV complex in vitro, with co-purification of the proteins using size exclusion 

chromatography. Each component was purified separately and incubation of DSCAM 

Ig1-Ig9 with netrinVIV followed, in 1:1 and 1:2 molar ratios, at 4 ˚C for 30-60 min. The 

protein mixture was further purified using SEC in the presence of both buffers and the 

purification profile resulted in two single peaks that corresponded to DSCAM Ig1-Ig9 

and netrinVIV, indicating that the complex could not be formed (Figure R-20).  

 

 
 

Figure R-20. Co-purification profile of DSCAM Ig1-Ig9 WT with netrinVIV after SEC in a. 1:1 
molar ratio (DSCAM Ig1-Ig9:netrinVIV) in 50 mM MES pH 6.0, 150 mM NaCl, 1mM DTT, 2mM 
CaCl2, 1mM (NH4)2SO4 shown in red and in PBS pH 8.0 shown in blue. b. 1:2 molar ratio 
(DSCAM Ig1-Ig9:netrinVIV) in PBS pH 8.0. The peak that elutes first corresponds to DSCAM 
Ig1-Ig9 and the second peak corresponds to netrinVIV. 
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3.1.5 Structural characterization of DSCAM Ig1-Ig9 WT:netrinVIV 

 

3.1.5.1 Small-angle X-ray scattering of DSCAM Ig1-Ig9 WT:netrinVIV 

Structural characterization and shape determination of DSCAM Ig1-Ig9 WT in 

association with netrinVIV was conducted with SAXS. Since prior information 

regarding the stoichiometry of netrin and DSCAM could not be extracted from binding 

assays or co-purification of the complex (where the concentration range was much 

lower than the one used for SAXS), DSCAM was incubated with netrinVIV prior to 

measurements in 1:1 molar ratio at RT for 15 min in a concentration range of 0.6-4.0 

mg/ml. All measurements were performed in collaboration with Dr. Haydyn Mertens 

(Svergun Group) at beamline P12 (PETRA III, EMBL-Hamburg, DESY, Germany). 

The data obtained from the measurements were compared to the SAXS data 

acquired from the individual components, where netrinVIV (Finci et al., 2014) (Figure 

R-21) was characterized as a monomer and DSCAM Ig1-Ig9 as a dimer in solution 

(Figure R-10). 

 
Figure R-21. NetrinVIV analysis derived from SAXS experimental data. a. Rigid body modeling 
of netrinVIV (shown in red) using atomic coordinates from its crystal structure (PDB entry 
4URT). The glycosylation sites are depicted in yellow. b. The calculated scattering curve 
(shown in red) fits well to the experimental data (shown in blue) and is plotted as the 
logarithm of scattered intensity against the momentum transfer (s), with the quality of fit, chi2, 
being at 1.1. 
 
 
 

SAXS data were analyzed using the existing crystal structure of netrinVIV along 

with rigid body models of DSCAM Ig1-Ig9, (generated in the absence of netrinVIV 

§3.1.3.1), in an equilibrium analysis using the program OLIGOMER (Konarev et al., 

2003). Analysis was performed in order to determine the fractions of the different 
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oligomeric states in the samples. The volume fractions of the population 

corresponded to a mixture of 70 % DSCAM Ig1-Ig9 dimer, 13 % DSCAM Ig1-Ig9 

monomer and 17 % free netrinVIV with an overall data fit being at 1.4 (chi2 ~ 1.4), 

suggesting that the two proteins did not form a complex. 

However, the SAXS parameters extracted directly from the experimental data, 

e.g. the decrease in the Dmax and the MW calculations of DSCAM Ig1-Ig9:netrinVIV, 

which showed a lower than the expected value, compared with the ones for the 

DSCAM Ig1-Ig9 dimer when alone in solution, suggested that these proteins could be 

alternatively engaged in complex formation. The MW estimation for DSCAM Ig1-

Ig9:netrinVIV could be attributed to one monomer of DSCAM and one monomer of 

netrinVIV (Table R-3). Based on these observations, rigid body models were 

constructed with SASREF (Petoukhov et al., 2005) using DSCAM Ig1-Ig9 monomer 

(extracted from CORAL dimeric model, as previously described) and netrinVIV 

monomer (extracted from the crystal structure with DCC56, PDB entry 4URT) (Finci 

et al., 2014). The latter has shown that netrinVIV occupies two distinct binding sites of 

DCC56 with binding site 1 being at the tip of netrinVIV involving EGF3 domain and 

binding site 2, involving EGF1 and EGF2 domains. DCC56 and DSCAM Ig1-Ig9 

share certain amino acids, which are present in both binding sites of netrinVIV. 

Previous work has shown that DSCAM Ig1-Ig9 binds to netrin-1 (Ly et al., 2008); thus, 

the hypothesis that DSCAM could potentially interact with the same sites as DCC 

was examined. Although, it was proposed that binding site 2 could accommodate 

other receptors as well (Finci et al., 2014), both binding sites of netrinVIV were 

examined with rigid body modeling. 

A radius of 10 Å was selected for probing DSCAM Ig1-Ig9 WT surface with 

netrinVIV and an ensemble of models was generated for both binding sides that fit 

equally the experimental data with chi2 value being 1.2 (Figure R-22). Based on the 

quality of the fits, the models for both sites were complied with the experimental data; 

however, in order to define the site that was more favorable energetically, a statistical 

analysis was performed based on the abundance of different amino acid pair 

interactions in known structures in the Protein Data Bank (PDB). Distance-dependent 

pair-potentials have been generated based on the frequency of observed amino 

acids interactions by using Boltzmann formulation. These statistical interaction 

potentials enable fast energy calculations and ranking of binding sites (Svergun 

Group, manuscript in preparation). The scoring of the two binding sites of DSCAM 

Ig1-Ig9:netrinVIV in the heterocomplex is shown in Table R-4. The orientation that 
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seemed most favorable energetically for binding site 1 was for models 1 and 3 and 

for binding site 2 the best scoring orientations were generated for models 2’, 4’ and 5’. 

However, it is not clear whether DSCAM Ig1-Ig9 interactions with netrinVIV are limited 

to binding sites 1 and 2 due to the resolution limit imposed by SAXS data collection.  

 

 
 
Figure R-22. a,b. DSCAM Ig1-Ig9 WT:netrinVIV rigid body models in complex formation (blue 
for DSCAM Ig1-Ig9 and red for netrinVIV) reconstructed using SASREF (Petoukhov et al., 
2005). Both netrinVIV binding sites for DCC, may accommodate DSCAM Ig1-Ig9 equally using 
a contact constrain of 10 Å. c. The calculated scattering curve (shown in black) fits well the 
experimental scattering data (shown in blue) with chi2 values of 1.2.	Data are plotted as the 
logarithm of scattered intensity against the momentum transfer (s). 
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Table R-3. Table of selected statistics for DSCAM Ig1-Ig9, netrinVIV and DSCAM Ig1-
Ig9:netrinVIV derived from SAXS data collection. The complete table of statistics can be found 
at the Appendix Section. 
Protein RgGuinier 

(nm) 
Dmax 
(Å) 

Volume 
(nm3) 

MW1 
(kDa) 

MW2 
(kDa) 

MW3 

(Da) 
Oligomeric 

state 
DSCAM  
Ig1-Ig9 

6.4±0.2 22.3±0.5 726±70 226±20 207±20 96890 Dimer 

NetrinVIV 3.9±0.1 13.5±0.5 100±14 48±5 52±5 49289 Monomer 
DSCAM  
Ig1-Ig9:netrinVIV 

 
6.3±0.2 

 
20.5±0.5 

 
474±45 

 
178±15 

 
163±15 

 
146179 

 
- 

MW1: calculation based on the absolute scattering intensity I(0).  
MW2: calculation based on BSA (used as a standard). 
MW3: calculation based on sequence (without glycosylation). 

 

Table R-4. Ranking of DSCAM Ig1-Ig9:netrinVIV models 
                               for binding site 1 and binding site 2. 

Model Z-score 
binding site1 

Z-score 
binding site 2 

1 2.76  
2 1.85  
3 2.42  
4 2.03  
5 1.91  
1’  2.06 
2’  2.57 
3’  2.48 
4’  2.56 
5’  2.56 

 
 

3.1.5.2 Electron microscopy of DSCAM Ig1-Ig9 WT:netrinVIV 

With the aim to investigate the interactions formed between DSCAM Ig1-Ig9 and 

netrinVIV, electron microscopy with negative staining experiments were performed by 

Skiniotis Group (Life Sciences Institute, University of Michigan). Prior to staining, 

DSCAM was mixed with netrinVIV in 1:1 molar ratio and incubated for ~15 min at RT.  

Analysis of the raw images showed an increase in the number of larger-in-size 

complexes, compared to the ones obtained from DSCAM images examined in the 

absence of netrinVIV. Reference-free alignment and classification followed in order to 

obtain two-dimensional averages of the complex. A total of 12,236 particle 

projections of DSCAM with netrinVIV were subjected to ISAC to distinguish the 

population between the complex and the individual components, resulting in 298 

classes with 20 rounds of classification. These results further supported that DSCAM 

was bound to a second molecule (Figure R-23). 
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More specifically, single-particle analysis of DSCAM Ig1-Ig9 WT with netrinVIV in 

1:1 molar ratio, showed that only a few projections presented DSCAM (consisting of 

domains Ig1-Ig9) interacting with a second molecule (Figure R-23a marked in yellow), 

while in most of the projections DSCAM Ig1-Ig9 monomer was primarily visualized 

having the same domain arrangement to the one adopted without netrinVIV (§3.1.3.2) 

(Figure R-23a marked in red). NetrinVIV with a MW of 56 kDa, consists of 420 amino 

acids and comprises a laminin domain VI and three EGF-like hands (Figure R-23d,e). 

Although it was anticipated that the second molecule would be netrinVIV, the EM 

findings showed a larger-in-size partner molecule interacting with DSCAM. The 

possibility that the second molecule could be netrinVIV cannot be excluded; however, 

based on the shape and size of the domains of the second partner, which were 

similar to DSCAM Ig folding, it was suggested that the partner molecule was only 

partially observed and could be attributed to DSCAM. A close-up view of selected 

images is presented in Figure R-23b,c. 

In order to confirm the identity of the second partner and resolve the discrepancy, 

efforts focused towards increasing the number of images that the complex was 

visualized. Thus, further experiments were performed by increasing the concentration 

of netrin during incubation with DSCAM (DSCAM Ig1-Ig9:netrinVIV molar ratio in 1:2). 

The results obtained from negative staining, showed similar 2D projections of the 

molecules with the ones recorded where 1:1 molar ratio was used, without providing 

additional information on the second binding molecule. Selected projections are 

shown in Figure R-24. 
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Figure R-23. a. Single-particle analysis of DSCAM Ig1-Ig9 WT with netrinVIV in 1:1 molar ratio, 
in 50 mM MES pH 6.0, 150 mM NaCl, 1mM DTT, 2mM CaCl2. Reference-free alignment and 
classification of particle projections was performed with ISAC. 12,236 particle projections of 
DSCAM with netrinVIV were subjected to ISAC resulting in 298 classes from 20 rounds of 
classification. A DSCAM monomer (Ig1-Ig9) can be primarily visualized (shown in red). A few 
averages show DSCAM forming larger complexes (marked in yellow) where DSCAM Ig1-Ig9 
is fully visualized with the second partner being partially observed. b,c. Close-up view of 
selected projections of DSCAM Ig1-Ig9 dimer formation. Front (d) and side view (e) of 
netrinVIV crystal structure obtained at 3.1 Å (Finci et al., 2014) comprising the laminin domain 
VI and three EGF-like domains. 
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Figure R-24. Single-particle analysis of DSCAM Ig1-Ig9 WT with netrinVIV in 1:2 molar ratio. 
7919 particle projections of DSCAM with netrinVIV were subjected to ISAC resulting in 108 
classes from 20 rounds of classification. Most of the projections resulted in monomeric 
DSCAM whereas the rest presented DSCAM forming dimers with the second molecule being 
partially observed. 
 

The ambiguity introduced by the second molecule observed interacting with 

DSCAM could be possibly resolved by crystallographic studies. However, in the 

frame of the present thesis, further experiments of DSCAM Ig1-Ig9:netrinVIV, were not 

conducted. 
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DSCAM Ig1-Ig4 

 

3.1.6 Construct design rationale of DSCAM Ig1-Ig4 

The results obtained from EM experiments for the longer DSCAM construct (Ig1-

Ig9), suggested that a rigid horseshoe-like configuration was adopted for the first four 

N-terminal Ig domains. This horseshoe-shape resembled the arrangement of Dscam 

in Drosophila, corresponded to the same Ig domains (Meijers et al., 2007) and it was 

also a common feature observed in other proteins involved in neuron recognition 

(Figure R-26). To this direction, DSCAM human sequence (Ig1-Ig4) was aligned with 

sequence homologous proteins with known crystal structures i.e. N-terminal DCC 

Ig1-Ig4 (Chen et al., 2013), N-terminal fragment of axonin-1/TAG-1 (Freigang et al., 

2000), contactin4 Ig1-Ig4 (Bouyain and Watkins, 2010) and neurofascin homophilic 

adhesion molecule (Liu et al., 2011) in order to identify common sequence features 

that could explain the horseshoe configuration (Figure R-25). 

According to previously determined structures, domains Ig1-Ig2 and Ig3-Ig4 form 

tight connections without the intervener of a linker; however there is a loop region 

consisting of five or six residues between domains Ig2-Ig3 that facilitates the 

horseshoe configuration (Figure R-25, highlighted in yellow). Although, the residues 

comprising the linker are hypermutable, there is a number of conserved amino acids 

that contribute to the U-shape (horseshoe) Ig1-Ig4 arrangement. This U-shape is 

further stabilized through conserved residues involved in intramolecular interactions 

creating an interface for Ig1:Ig4. More specifically, in the case of Dscam, residues 

Asp344 and Gly345 from domain Ig4, form hydrogen bonds with Ser93 from domain 

Ig1. In addition, Gln369 from domain Ig4 interacts with Ile91 from domain Ig1, 

creating a bridge between domains Ig1 and Ig4 that secures the structure. In close 

proximity to the aforementioned residues, certain conserved residues contribute as 

well to Ig1:Ig4 intraface, involved in hydrophobic interactions (Figure R-25, 

highlighted in green). The aforesaid amino acids are also conserved in human 

DSCAM forming a stable core structure with domains Ig1 and Ig4 to be engaged in a 

more rigid substructure. These findings were in agreement with the conclusions 

made from EM studies regarding the shape of this smaller construct. Therefore, the 

hypothesis that this structure would be more prone to crystallize compared to the 

longer constructs was tested and a smaller DSCAM Ig1-Ig4 construct was 

additionally designed.  
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Figure R-25. Sequence alignment of human DSCAM Ig1-Ig4 with Dscam in D. melanogaster: 
32 % sequence identity (over 124 out of 391 amino acids), with DCC: 26 % sequence identity 
(over 89 out of 343 amino acids), with axonin1: 26 % sequence identity (over 90 out of 352 
amino acids), with contactin4: 26 % sequence identity (over 89 out of 349 amino acids) and 
neurofascin: 23 % sequence identity (over 86 out of 378 amino acids). The arrows indicate 
the boundaries of the Ig domains based on Dscam sequence (Ig1: 1-102, Ig2: 103-204, Ig3: 
210-305, Ig4: 306-388) and the linker connecting domains Ig2-Ig3 is highlighted in yellow 
(a.a.: 205-209). The conserved identical residues for the six proteins are white on a red 
background and similar residues are red on a white background. The conserved amino acids 
involved in the Ig1:Ig4 intraface are highlighted in green. The amino acids involved in the 
dimer interface between Ig2.A-Ig2.A’ and Ig3.A-Ig3.A’ in Dscam in Drosophila, are highlighted 
in purple. Multiple sequence alignment was performed using the ClustalW2 server (Sievers et 
al., 2011) and the output was processed and visualized using the ESPript 3.0 server (Robert 
and Gouet, 2014). 
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Figure R-26. Superposition of Dscam Ig1-Ig4 structure, in monomer, (shown in orange) (PDB 
entry 2V5M, chain A) with structural homologous proteins adopting a horseshoe-like 
configuration. In purple: DCC FN1-FN4 (PDB entry 3LAF, chain A), in beige: axonin-1/TAG-1 
(PDB entry 1CS6, chain A), in light blue: contactin4 (PDB entry 3KLD, chain A), in green: 
neurofascin (PDB entry 3P3Y, chain A). Superposition was conducted with Lsqkab (CCP4 
suite) (Kabsch, 1976) over Cα atoms as matching residues and the molecular graphics 
representation was performed with UCSF CHIMERA (Pettersen et al., 2004). 
 
 

Recent findings emerging from studies on Dscam Ig1-Ig4 crystal structures in D. 

melanogaster using eight isoforms, in a resolution range from 1.9 Å to 4.0 Å, 

confirmed the aforementioned findings and suggested that all isoforms adopt a 

horseshoe module with the same conserved amino acids contributing to the Ig1:Ig4 

intraface, stabilizing the whole Dscam arrangement. In addition, the amino acids 

involved in the dimer interface formed between Ig2-Ig2 and Ig3-Ig3 are all conserved 

among the different isoforms examined, including the isoform representing the 

structure with PDB ID 2v5m (Li et al., 2016); however these residues are not 

conserved in human DSCAM (Figure R-26, highlighted in purple). 
 
 

3.1.7 Purification & biophysical characterization of DSCAM Ig1-Ig4 

DSCAM Ig1-Ig4 was cloned into the pXLG vector equipped with a His6-tag at the 

C-terminus, as described in §2.2.3 (primers listed in Table S5). Cloning was followed 

by transformation into DH5a E. coli cells and after sequence validation the protein 

was expressed using HEK 293S and GnTI- cells in one Liter of medium, secreted 
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using its native secretion signal. The protein expression was evaluated by WB 

(Figure R-27a). 

DSCAM Ig1-Ig4 was purified with IMAC followed by SEC (Figure R-27b) resulting 

in ~20 mg from one Liter of cell culture for WT (and in ~10-15 mg for the GnTI- 

protein). According to elution profile, using a Hiload Superdex 75 prep grade column, 

DSCAM Ig1-Ig4 was eluted in a single peak. It was estimated that the protein was in 

monomeric state under the conditions used for purification, in contrast to the longer 

constructs (DSCAM Ig1-Ig8 & Ig1-Ig9). 

 

 
 

Figure R-27. DSCAM Ig1-Ig4 WT and GnTI- expression and purification profile: a. Evaluation 
of expression by WB, lane 0: control of DSCAM Ig1-Ig8 expression, lanes 1,2: expression of 
DSCAM Ig1-Ig4 WT in different media preparations, lane 3: expression of DSCAM Ig1-Ig4 
GnTI-. b,c. Purification profile after SEC with the protein being eluted in a single peak for 
DSCAM Ig1-Ig4 WT and GnTI-, respectively. d. Evaluation of DSCAM Ig1-Ig4 WT purity with 
SDS-PAGE, lanes 1-6: correspond to the eluates after SEC.  
  

 

To further confirm the oligomeric state of DSCAM Ig1-Ig4, analysis of the WT form 

was performed with HPLC-RALS/RI/UV using the Malvern’s OmniSEC GPC/SEC 

multidetector system (§2.2.7.3). The protein was loaded on a Superdex 10/300 GL 

column and it was eluted with a stable flow rate of 0.4 ml/min. The MW distribution of 

the peak corresponded to monomeric state and agreed with the aforementioned 

results from the purification profile (Figure R-28). The MW was 49±3 kDa and was 

determined by UV measurements derived from RALS intensities and also by 



	 111	 	

independent comparison with BSA, which was used as standard protein. The MW 

determination was consistent with the results from the MS analysis, where it was 

found that the MW of the protein was ~48 kDa for the WT and ~47 kDa for the GnTI-. 

In parallel, the same experiment was performed for the GnTI- protein, which was also 

found to be a monomer in solution. 

 

 
 

Figure R-28. SEC coupled with SLS detector of DSCAM Ig1-Ig4 WT. The oligomeric state 
analysis after SEC, demonstrated that it was a monomer in solution with a molecular mass of 
49±3 kDa. 
 
 

3.1.8 Structural characterization of DSCAM Ig1-Ig4 

 

3.1.8.1 Small-angle X-ray scattering of DSCAM Ig1-Ig4 

SAXS measurements were performed for DSCAM Ig1-Ig4 WT in order to obtain 

information for the protein structural features and its overall shape in solution. A 

series of protein concentrations were examined (0.5 - 10.1 mg/ml) to identify changes 

in oligomeric state as concentration was increased. In addition, a number of salt 

concentrations were tested (0 mM - 1 M NaCl) to explore the effect of salt in DSCAM 

oligomeric state. The analysis demonstrated that the state of the protein in solution 

was monomeric, independent of protein concentration or of the presence of the salt 

in buffer solution.  

Models were generated using ab initio and rigid body modeling methods. More 

specifically, the ensemble of ab initio models indicated that the four Ig domains 

adopted a monomeric conformation with domain arrangement resembling the Dscam 

structure in Drosophila (Meijers et al., 2007) (Figure R-26). The results were 
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complied with rigid body models calculated independently where the Ig domains 

adopted a horseshoe configuration and superposition of the ab initio and rigid body 

models resulted in normalized spatial discrepancy value (NSD) of 1.0 suggesting a 

good agreement between the two methods (Figure R-29a). The calculated scattering 

data from rigid body modeling fit to the experimental scattering curve with calculated 

discrepancy value (chi2) of 1.1 (Figure R-29b). SAXS experimental data for human 

DSCAM Ig1-Ig4 showed good correlation in comparison with the crystallographic 

structure from Drosophila (Dscam Ig1-Ig4, PDB entry 2V5M), supporting the working 

hypothesis for this construct, as previously described in §3.1.6 (Figure R-29c). 

 

 
 

Figure R-29. SAXS analysis and model generation of DSCAM Ig1-Ig4 WT. a. Superposition of 
the ab initio model (transparent beads) with the model obtained from rigid body modeling 
(shown in dark blue) demonstrated good agreement between the two methods (NSD= 1.0). 
The theoretical N-glycosylation sites on DSCAM Ig1-Ig4 model (in yellow) were built using the 
GlyProt server (Bohne-Lang and Von der Lieth, 2005) based on DSCAM amino acid 
sequence. b. Scattering curve of the calculated data from rigid body modeling with and 
without glycans (shown in black and blue, respectively) that fit the experimental scattering 
curve (shown in red). The quality measure of the fit of the simulated scattering curve to the 
experimental data (chi2) was 1.3 for the model without glycans and 1.1 for the glycosylated 
model, indicating that the fit was better when glycans were introduced in the model. c. The 
theoretical scattering curve (shown in green) calculated from the crystal structure of Dscam 
Ig1-Ig4 (D. melanogaster) fits well to the SAXS experimental data (shown in red) with chi2 of 
1.1. Data are plotted as the logarithm of scattered intensity against the momentum transfer 
(s). 
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Table R-5. Table of selected statistics for DSCAM Ig1-Ig4 derived from SAXS data collection. 
The complete table of statistics can be found at the Appendix Section. 

Protein RgGuinier 
(nm) 

Dmax 
(Å) 

Volume 
(nm3) 

MW1 
(kDa) 

MW2 
(kDa) 

MW3 

(Da) 
Oligomeric 

state 
DSCAM 
Ig1-Ig4 

2.9±0.1 10±0.1 71±5 53±5 51±5 43754 Monomer 

MW1: calculation based on the absolute scattering intensity I(0).  
MW2: calculation based on BSA (used as a standard). 
MW3: calculation based on sequence (without glycosylation). 

 

3.1.8.2 X-ray crystallography of DSCAM Ig1-Ig4 

DSCAM crystallization was performed for both WT and GnTI- protein using a 

variety of commercially available screens from Qiagen. Drops (volume in the range of 

150-300 nl) were automatically set up utilizing the robotic systems at the HTX facility 

(SPC, EMBL-Hamburg) and a variety of mixing volume ratios (reservoir solution to 

protein ratio 1:1, 1:2 and 2:1) were examined. Initial hits included clusters of 

microcrystals (DSCAM Ig1-Ig4 GnTI-, 10 mg/ml) grown in PEG 3350 and tri-sodium 

citrate in 2:1 protein:reservoir solution drops, using the sitting drop vapor diffusion 

method (Figure R-30a). Based on these hits, custom-made screens were designed 

using larger volumes (1-2 μl) to optimize the existing conditions (using both the 

hanging and the sitting drop method); however, the crystal size remained small. 

Additional optimization trials were conducted employing microseeding. A series of 

dilutions of microcrystals (seeds) that were granulated from larger crystals by 

vortexing, were prepared and the seeds were introduced into a fresh protein-

precipitant droplet of similar conditions to those that crystals were originally grown. 

Microseeding was coupled with adjustments in protein concentration, precipitant 

solution, pH and storage temperature. Nevertheless, only microcrystals were grown 

(Figure R-30b). In addition, the additive screen from Hampton was also used, but no 

further improvement of the crystal size was achieved. 

After 60 days of incubation time at 19 ˚C, small thin needles of DSCAM Ig1-Ig4 

appeared for the WT form, in 96-well plates that were set up at the HTX facility in the 

presence of PEG 4000, sodium cacodylate pH 6.5 and PGA-LM (Figure R-30c). 

These conditions were further optimized using larger drop volumes (1-2 μl drops in 

500 μl precipitant solution) in 24-well Linbro plates with the vapor diffusion method 

(hanging and sitting drop). Large crystals, in different habits, appeared in three days 

in the presence of PEG 3350, sodium cacodylate pH 6.5 and PGA-LM using 10 

mg/ml of DSCAM Ig1-Ig4 WT, with various types of visible defects at their edges, 
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which diffracted to 10 Å resolution (Figure R-30d). Prior to data collection, crystals 

were soaked in a solution consisting of the reservoir ingredients with a small increase 

in PEG 3350 concentration (3-5 % (w/v)) and with the addition of 20 % (v/v) glycerol 

or 25 % (v/v) ethylene glycol for cryoprotection. Data collection that was also 

performed at RT showed that the cryoprotectant did not affect the crystal diffraction.  

Additional improvement of the existing crystals was performed by employing the 

under oil-crystal growth using the same conditions, with incorporation of the 

cryoprotectant (20 % glycerol or ethylene glycol) in the reservoir solution (Figure R-

30e,f). The protein:reservoir solution volume ratio was 1:1 and the crystals were 

grown within seven to ten days. This method improved the crystal size and quality 

and a complete data set was collected to 2.7 Å resolution. The crystallization 

methods and optimization approaches used for obtaining crystals for all DSCAM 

constructs are summarized in Table R-6. 

 

 

 
 

Figure R-30. Crystallization and optimization of DSCAM Ig1-Ig4 GnTI- (a,b) and WT (c-f). a. 
Thin microcrystals (DSCAM Ig1-Ig4 GnTI-) in inseparable clusters in 20 % (w/v) PEG 3350 
and 0.2 M tri-sodium citrate in 2:1 protein:reservoir solution drops set up by robotic systems. 
b. Thin needles after microseeding in 15 % (w/v) PEG 3350 and 0.1 M sodium citrate. c. 
Cluster of thin needles (DSCAM Ig1-Ig4 WT) set up at the HTX facility, appeared in 60 days in 
15 % (w/v) PEG 4000, 0.1 M sodium cacodylate pH 6.5 and 5 % (v/v) PGA-LM. d. 
Optimization of conditions from image c, led to larger crystals in different morphologies with 
non-defined edges (13-20 % (w/v) PEG 3350, 0.1 M sodium cacodylate pH 6.5 and 2-5 % 
(v/v) PGA-LM). e,f. Crystals developed under oil (500 μl silicon oil:paraffin oil (v/v) 50:50) in 
15 % (w/v) PEG 3350, 0.1 M sodium cacodylate pH 6.5 and 2 % (v/v) PGA-LM where 20 % 
(v/v) glycerol or ethylene glycol was incorporated in the reservoir solution during crystal 
growth, leading to single 3D crystals without any visible cracks or defects. 
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Table R-6. Summary of the crystallization methods and optimization approaches employed for 
all DSCAM constructs.  

 
* No diffraction 
 
 

Data collection of DSCAM Ig1-Ig4 WT (Figure R-30e,f) was performed at ESRF 

(Beamline ID29, Grenoble, France) and a complete data set was collected from a 

single crystal at 2.7 Å resolution using a helical data collection (Figure R-31). The 

reflections were indexed and integrated with XDS (Kabsch, 2010), followed by 

POINTLESS (Evans, 2006) to determine the crystal lattice and symmetry. The 

integrated reflections were then scaled and merged using SCALA (Evans, 2006). The 

crystal belonged to C-centered orthorhombic lattice, space group C2221 with unit cell 

dimensions a= 63.3 Å, b= 139.7 Å, c= 226.7 Å, α=β=γ= 90.0˚. Data collection and 

statistics are summarized in Table R-7.  
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Figure R-31. DSCAM Ig1-Ig4 WT helical data collection at ID29 (ESRF, Grenoble, France) of 
a single crystal grown under oil in 15 % (w/v) PEG 3350, 0.1 M sodium cacodylate pH 6.5 and 
2% (v/v) PGA-LM with cryoprotectant incorporation in the reservoir solution (20 % (v/v) 
glycerol) during crystal growth. A full data set was collected at 2.70 Å and the crystal 
belonged to space group C2221.  
 
 

Table R-7. Data collection statistics of DSCAM Ig1-Ig4 WT on C2221. 
Data collection and processing statistics  
Experiment DSCAM Ig1-Ig4 WT 
X-ray source Beamline ID29 

ESRF, Grenoble, France 
Wavelength (Å) 0.976 
No of images 1800  
Oscillation angle (˚) 0.1 
Space group C2221 
Unit cell dimensions (Å) a=63.3, b=139.7, c= 226.7 

α=β=γ= 90.0˚ 
Resolution range (Å) 25.0 - 2.7 (2.9 - 2.7) c 
No of observations  158258 (21955)  
No of unique reflections 24382 (3437) 
Rm

 a 0.075 (0.378) 
Completeness (%) 96.7 (94.2) 
<I/σ(Ι)> b 17.0 (4.3) 
CC1/2 0.998 (0.948) 
Multiplicity  6.5 (6.4) 
B-factor (Å2) (Wilson Plot) 55.8 
a Rm = ∑hkl  ∑i ⏐Ii(hkl) – 〈I(hkl)〉⏐/ ∑hkl  ∑i  Ii(hkl),where Ii(hkl) is the intensity of a reflection and 
〈I(hkl)〉 is the mean intensity of all i symmetry-related reflections. 
b σ(Ι) is the standard deviation of I. 
c Values in parentheses correspond to the outermost shell. 
 
 

A complete data set was also collected at 3.1 Å resolution, from crystals grown 

under the same conditions, with ethylene glycol instead of glycerol, being 

incorporated in the precipitant solution. These crystals belonged to Primitive 
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orthorhombic lattice, space group P212121 with unit cell dimensions a= 66.7 Å, b= 

147.1 Å, c= 230.1 Å, α=β=γ= 90.0 °. Data collection and statistics are summarized in 

Table R-8.  

Table R-8. Data collection statistics of DSCAM Ig1-Ig4 WT on P212121. 
Data collection and processing statistics  
Experiment DSCAM Ig1-Ig4 WT 
X-ray source Beamline ID29 

ESRF, Grenoble, France 
Wavelength (Å) 0.976 
No of images 1800 
Oscillation angle (˚) 0.1 
Space group P212121 
Unit cell dimensions (Å) a=66.7, b=147.1, c= 230.1 

α=β=γ= 90.0˚ 
Resolution range (Å) 25.0 - 3.1 (3.3 - 3.1) c 
No of observations  271649 (35706) 
No of unique reflections  42127 (5911) 
Rm 

a 0.095 (0.736) 
Completeness (%) 99.4 (97.2) 
<I/σ(Ι)> b 12.1 (2.5) 
CC1/2 0.997 (0.927) 
Multiplicity  6.4 (6.0) 
B-factor (Å2) (Wilson Plot) 75.0 
a Rm = ∑hkl  ∑i ⏐Ii(hkl) – 〈I(hkl)〉⏐/ ∑hkl  ∑i  Ii(hkl),where Ii(hkl) is the intensity of a reflection and 
〈I(hkl)〉 is the mean intensity of all i symmetry-related reflections. 
b σ(Ι) is the standard deviation of I. 
c Values in parentheses correspond to the outermost shell. 
 
 
 

The aforementioned data sets were collected from crystals grown under the 

same conditions with the cryoprotectant being included in the reservoir solution 

during crystal growth. Both data collections resulted in orthorhombic lattices 

exhibiting crystal polymorphism. In the case where glycerol was added in the 

crystallization medium, crystals belonged to space group C2221, while in the case of 

ethylene glycol, crystals belonged to space group P212121 taking into account the 

systematic absences for every space group.  

In order to avoid any possible ambiguity regarding the crystal lattice, both data 

sets were also processed independently, in P1 space group, followed by 

POINTLESS (Evans, 2006). The proposed space groups for both data sets were 

those as previously defined. C2221, which is in higher symmetry compared to 

P212121, has eight symmetry operators and P212121 has four. In this case where the 

unit cell size was approximately the same for both data, the number of molecules per 

asymmetric unit (ASU) should have been doubled for the lower symmetry space 

group. Indeed, according to Matthews Coefficient (Winn et al., 2011), for C2221 there 
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were two molecules of DSCAM Ig1-Ig4 in the ASU and for P212121 there were four 

molecules in the ASU (Table R-9). In addition, in order to investigate the presence of 

translational pseudosymmetry and twinning the programs SFCHECK (Vaguine et al., 

1999) and CTRUNCATE (French and Wilson, 1978) from CCP4 suite (Winn et al., 

2011) were used, respectively. The results showed that no pseudosymmetry or 

twinning was detected for either space groups (Figure R-32). 

 
Table R-9. Matthews coefficient as calculated by CCP4 suite for DSCAM Ig1-Ig4 WT. 

Spacegroup C2221, MW: 48 kDa 
Nmol/asym Matthews coef. % solvent P (tot) 

2 2.61 52.94 0.97 
3 1.74 29.41 0.02 

Spacegroup P212121, MW: 48 kDa 
Nmol/asym Matthews coef. % solvent P (tot) 

4 2.98 58.79 0.20 
5 2.39 48.49 0.53 

 

 

 
 

Figure R-32. |L| test for twinning for data collected in space groups (a) C2221 and (b) P212121 
using CTRUNCATE (CCP4 suite). The L statistic was 0.479 for C2221 and 0.491 for P212121 
(for untwinned data the statistic is 0.5 and for perfect twin is 0.375) (Padilla and Yeates, 2003). 
The blue and green lines represent theoretical untwinned and perfectly twinned data, 
respectively. The red curve represents the experimental data indicating that no twinning was 
detected for either space groups. 

 

In order to determine the 3D structure of human DSCAM Ig1-Ig4, Dscam Ig1-Ig4 

from D. melanogaster (PDB entry 2V5M, 32 % sequence identity) (Meijers et al., 

2007) was used as a search model for both space groups. A polyalanine model, 

excluding the solvent and glycans, was prepared (Chainsaw, CCP4 suite) and 

molecular replacement (MR) was conducted with MOLREP (Vagin and Teplyakov, 

1997) and Phaser (McCoy et al., 2007) programs, applying standard protocols as 

implemented in CCP4 suite. The results showed that no solution was found. 
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Additional search models were tested including the initial polyalanine model with loop 

regions trimmed (e.g. the 5-residue-linker between Ig2-Ig3 domains), as well as 

individual ensembles comprising domains Ig1:Ig2 and Ig3:Ig4. An ensemble of 

Ig1:Ig4 domains was also examined as a search model, since previously determined 

structures, bearing a horseshoe shape, showed that domains Ig1 and Ig4 were 

involved in intramolecular interactions forming a more stable substructure (§3.1.6); 

however, the results obtained from MR, using Phaser, indicated that no solution was 

found (Table R-10). An automated molecular replacement pipeline, BALBES, was 

also used towards the structure solution (Long et al., 2008). For space groups C2221 

and P212121, single solutions were found (with 54.1 % and 38.9 % probability, 

respectively), which were further subjected to refinement (Murshudov et al., 1997, 

Murshudov et al., 2011) against the experimental data but no convergence to true 

structure was achieved. The results are summarized in Table R-11. 

 

 
Table R-10. Results obtained from MR using Phaser for DSCAM Ig1-Ig4 WT. Dscam Ig1-Ig4 
(PDB entry 2v5m) from Drosophila was used as a search model along with various 
combinations of its Ig domains. 
 C2221  P212121  
Search models 
for MR with 
Phaser 

RF LLG/ 
Z-score 

TF LLG/ 
Z-score 

RF LLG/ 
Z-score 

TF LLG/ 
Z-score 

Ig1-Ig4* 21.3/3.87 33.12/6.6 16.5/3.0 19.0/3.3 

Ensemble 1: 
Ig1:Ig2 
Ensemble 2: 
Ig3:Ig4 

 
21.2/4.0 
 
11.2/4.1 

 
31.35/5.6 
 
9.1/5.1 

 
-39.8/4.0 
 
-21.5/3.6 

 
-311.9/6.1 
 
-217.1/6.2 

Ig1:Ig4 22.8/4.0 27.9/4.9 -16.2/3.9 -266.2/5.8 
Ig1 21.4/3.7 18.2/4.7 21.8/3.4 -13.2/5.7 
Ig2:Ig3 6.1/3.6 2.7/4.9 -21.5/4.0 -290.5/4.6 
* Ig1-Ig4, polyalanine model. 
RF: Rotation Function, TF: Translation Function, LLG: Log Likelihood Gain. 

 

 
Table R-11. Refinement statistics for DSCAM Ig1-Ig4 WT by BALBES *. 

 C2221  P212121  
 Initial Final Initial Final 
R 0.5510 0.5340 0.5650 0.5150 
Rfree 0.5440 0.5250 0.5550 0.5580 
Q factor 0.454  0.407  
* The best solution suggested by BALBES for C2221, was based on the search model of the 
N-terminal fragment from Human TAG-1 comprising 2 Ig domains (PDB entry 2OM5) (Mörtl et 
al., 2007) and for P212121 the structure from Dscam Ig1-Ig4 (PDB entry 2v5m) (Meijers et al., 
2007) was used as a search model, providing the best solution. 
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In parallel, efforts were directed towards obtaining experimental phases with 

heavy atoms derivatized crystals, using single-wavelength anomalous dispersion 

(SAD). Diffraction data were collected at beamline P13 (PETRA III, EMBL-Hamburg, 

DESY, Germany) at 100 K from DSCAM Ig1-Ig4 WT crystals soaked in heavy atom 

solutions. The concentration of the heavy atoms ranged from 5 mM to 100 mM and 

different soaking periods were tested (10min - 24h). The majority of the crystals 

soaked with Gadolinium (Gd-HPDO3A) were immediately dissolved and crystals 

soaked with Lead (Pb(CH3COO)2.3H2O) showed cracks that prevented further 

indexing and characterization during data collection. To identify the optimum 

conditions, the heavy atom concentration and soaking periods were decreased using 

larger crystals for the experiments. The results obtained showed that crystals 

diffracted to ~5 Å resolution. Soaking with Ytterbium (YbCl3.H2O) and Platinum 

(K2PtCl4) complexes enabled data collection to 3.3 Å resolution at the Yb L(III) and Pt 

L(III) absorption edges (with wavelengths 1.386 Å and  1.072 Å, respectively) but no 

binding was observed as it was indicated by the poor anomalous signal recorded 

(Tables R-12 & R-13).  

 
Table R-12. Diffraction data statistics of DSCAM Ig1-Ig4 WT soaked with YbCl3.H2O. 

 
 

Table R-13. Diffraction data statistics of DSCAM Ig1-Ig4 WT soaked with K2PtCl4. 
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Most recently, additional data were collected at 100 K from a single crystal of 

DSCAM Ig1-Ig4 WT that was previously grown in 13 % PEG 3350, 2 % PGA-LM and 

0.1 cacodylate buffer pH 6.5 (Figure R-30d) at beamline P13 (PETRA III, EMBL-

Hamburg, DESY, Germany). Prior to data collection, the crystal was flash-soaked 

into a derivative cryo-solution, containing the precipitant agents (with 5 % PEG 

increase), 10 % (v/v) glycerol and 1mM K2PtCl4. The crystal diffracted to 2.35 Å 

resolution and a complete data set was collected. X-ray data were processed with 

XDS package (Kabsch, 2010), followed by AIMLESS (Evans, 2006). Diffraction data 

analysis showed that the crystal symmetry was consistent with space group C2221 

(C-centered orthorhombic lattice), with unit-cell dimensions a= 55.0 Å, b= 146.1 Å, c= 

231.5 Å, α=β=γ= 90.0˚. Data collection statistics for DSCAM Ig1-Ig4 are summarized 

in Table R-14. 

 

i. Structure determination and refinement of DSCAM Ig1-Ig4 WT 

The 3D structure of DSCAM Ig1-Ig4 was determined at 2.35 Å resolution by Dr. 

Isabel Bento (Schneider Group) with molecular replacement using MOLREP (Vagin 

and Teplyakov, 1997). The search model used was generated by the Rosetta 

Comparative Modeling server (Kim et al., 2004; Song et al., 2013), based on the 

crystal structure of neurofascin from H. sapiens (PDB entry 3P3Y, chain A, 23 % 

sequence identity, Figure R-26 in green) (Liu et al., 2011). Superposition of DSCAM 

(monomer A) with neurofascin (monomer A) over Cα atoms (330 residues), gave an 

r.m.s.d of 3.7 Å, as calculated with the Lsqkab program (CCP4 suite) (Kabsch, 1976). 

The correct solution had a contrast of 3.27 and the translation factor contrast (TF/sig) 

was 8.91. The model was then subjected to ten rounds of rigid body refinement, with 

isotropic B-factors, using REFMAC (Murshudov et al., 1997, Murshudov et al., 2011) 

considering each monomer as one rigid domain (starting R and Rfree values from rigid 

body refinement: 49.1 % and 50.5 %, respectively). Alternate cycles of restrained 

refinement with non-crystallographic symmetry (NCS) restrains were also performed, 

followed by manual building of the model with COOT (Emsley and Cowtan, 2004). 

The model was then subjected to further rounds of restrained refinement followed by 

phase improvement using Parrot (Cowtan, 2010). Additional alternating cycles of 

automated model building and refinement were performed with Buccaneer (Cowtan, 

2006, 2008) and REFMAC, respectively. The final coordinates of the structure were 

optimized with Phenix (Adams et al., 2010) and the structure was refined to a final R 
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factor of 20.54 % and a final Rfree of 25.35 %. Refinement statistics and model 

validation for DSCAM Ig1-Ig4 are presented in Table R-14.  

Table R-14. Data collection and refinement statistics of DSCAM Ig1-Ig4 WT on C2221. 
Data collection and processing statistics  
Experiment DSCAM Ig1-Ig4 WT 
X-ray source Beamline P13, PETRA III 

DESY, Germany 
Wavelength (Å) 1.071 
No of images 1200 
Oscillation angle (˚) 0.1 
Space group C2221 
Unit cell dimensions (Å) a=55.0, b=146.1, c= 231.5 

α=β=γ= 90.0˚ 
Resolution range (Å) 73.05 - 2.35 (2.43 - 2.35) c 
No of observations  167040 (13416) 
No of unique reflections 39162 (3777) 
Rm

 a 0.072 (0.39) 
Completeness (%) 99.2 (97.4) 
<I/σ(Ι)> b 15.08 (2.85) 
CC1/2 0.998 (0.296) 
Multiplicity  4.3 (3.6) 
Refinement statistics and model quality  
Resolution range (Å) 73.0 - 2.35 
No of monomers in the ASU 2 (Chain A, B) 
No of reflections 39160 
Residues included A: 3-383 

B: 2-383 
No of protein atoms A: 3007 

B: 3013 
No of heteroatoms 201 

Solvent molecules 133 
Glycerol molecules 2 
GlcNAc molecules 4 

Matthews coefficient (Å3 Da-1) 2.59 
Rfree  (%) d  25.35 
Rwork (%) 20.54 
R.m.s.d in  

Bond lengths (Å) 0.003 
Bond angles (˚) 0.723 

Molprobity analysis e  
Ramachandran favoured/outliers/allowed (%)  93.3/0.65/6.01 
Rotamer outliers (%) 9.31 

B-factor (Å2) (Wilson Plot) 38.82 
Average B-factor (Å2) for protein residues f  

Overall A: 50.7 
B: 47.6 

Main chain atoms A: 48.5 
B: 45.3 

Side chain atoms A: 53.0 
B: 49.8 

Average B-factor (Å2) for heteroatoms f  
Water molecules 43.7 
Glycerol molecules 50.3 
GlcNAc molecules 78.9 

a Rm = ∑hkl  ∑i ⏐Ii(hkl) – 〈I(hkl)〉⏐/ ∑hkl  ∑i  Ii(hkl),where Ii(hkl) is the intensity of a reflection and 
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〈I(hkl)〉 is the mean intensity of all i symmetry-related reflections. 
b σ(Ι) is the standard deviation of I.  
c Values in parentheses correspond to the outermost shell. 
d Rfree is calculated using 5 % of the total reflections that were randomly selected and 
excluded from refinement. 
e  Molprobity analysis was performed using the Molprobity server (Chen et al., 2010). 
f  Analysis performed by BAVERAGE (Winn et al., 2011). 
 
 
 
ii. DSCAM Ig1-Ig4 WT structural analysis 

 

The 3D structure of human DSCAM Ig1-Ig4 revealed the presence of two 

molecules in the ASU (Monomer A: 381/383 a.a. and Monomer B: 382/383 a.a.) 

forming a homodimer (Figure R-33). The overall fold of the DSCAM Ig1-Ig4 monomer 

was similar to the homologous structures from Drosophila (Meijers et al., 2007; Li et 

al., 2016) and to protein structures previously determined bearing a U-shape 

(horseshoe-shape) configuration (Figure R-26). Each monomer consisted of four Ig-

like domains (Ig1: Ser3-Leu102, Ig2: Arg103-Ser198, Ig3: Ala204-Lys291, Ig4: 

Gln292-Glu383) with a five-residue linker (a.a.:199-203) connecting domains Ig2 and 

Ig3 (Figure S1). The secondary structure elements of each Ig domain were formed by 

two β-sheets of antiparallel β-strands, linked with one disulphide bond and adopted 

the characteristic Ig-fold of the C2-set domain that resembled the antibody constant 

domain (Fowler and Clarke, 2001). Visual inspection of the electron-density maps 

during the final stages of refinement revealed additional density at Asparagine 

residues of monomer A (Asn58) and monomer B (Asn8 and Asn58) that was 

attributed to GlcNAc molecules, as a result of the glycosylation. More specifically, 

one GlcNAc molecule was covalently bonded to Asn58.A, one to Asn8.B and two 

molecules to Asn58.B. The GlcNAc molecules observed were part of the 

glycosylation chain and were consistent with the prediction results obtained using the 

NetNGlyc 1.0 Server (Gupta and Brunak, 2002) for DSCAM, based on the Asn-X-

Ser/Thr motif for the presence of Asparagine N-glycosylation sites. In addition, two 

glycerol molecules were also included in the structure, originating from the 

cryoprotectant used, as it was indicated by the difference Fourier maps (Fo-Fc) at 3.0 

sigma contour level. 
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Analysis of the intraface (Ig1.A:Ig4.A and Ig2.A:Ig3.A) 

As it was previously described (§3.1.6), the residues involved in the stabilization of 

the Ig1:Ig4 intraface (for each monomer) were conserved among structural 

homologous proteins; however, a sequence comparison of DSCAM with Dscam 

structures from Drosophila, showed that although the amino acids were conserved in 

human DSCAM as well (Figure R-25), structural comparison revealed that there were 

differences among the residues contributing to this substructure formation. More 

specifically, Ser88 and Lys90 from domain Ig1.A, interacted with Gln379 and 

Asn330-Gly331 from Ig4.A, respectively. In addition the structure was stabilized 

through a hydrogen-bond network formed among Asp95, Arg368, Arg92 and Gln364 

residues of the same monomer (Figure R-33c). The horseshoe-shape structure was 

further stabilized with intramolecular hydrogen bonds formed among Ig2.A and Ig3.A 

domains and solvent molecules acting as intermediates. Two residues extending 

from the CD-loop of domain Ig2 (Thr158 and Lys124) interacted directly with two 

water molecules and then with Asp209 and Gly210 from Ig3 domain. Although the 

solvent accessible surface area for Ig2:Ig3 was smaller than for Ig1:Ig4 one, it made 

a substantial contribution to the maintenance of the horseshoe-shape (Figure R-33b).  
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Figure R-33. The crystal structure of human DSCAM Ig1-Ig4 determined at 2.35 Å resolution. 
a. Ribbon representation of the structure with two molecules of DSCAM forming a homodimer 
in the ASU (monomer A, shown in blue and monomer B, shown in purple). b. Expanded view 
of the intraface formed between Ig2 (shown in beige) and Ig3 (shown in cyan) of the same 
chain. c. Expanded view of the intraface formed between Ig1 (shown in beige) and Ig4 (shown 
in cyan) of the same chain. The amino acids forming the interactions are presented in ball and 
stick with oxygen in red, nitrogen in blue, carbon in beige (for Ig1 and Ig2) and cyan (for Ig3 
and Ig4). Water molecules (w) are depicted as red spheres. The molecular graphics 
representation was performed with UCSF CHIMERA (Pettersen et al., 2004). 
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Analysis of the dimeric interface in the ASU (monomer A:monomer B) 

The interface formed between monomer A and monomer B (Figure R-33a, 

depicted in blue for monomer A and purple for monomer B), was different from the 

one observed in Dscam structures in Drosophila and it was sustained by a hydrogen 

network involving all Ig domains from both monomers. More specifically, the dimer 

was stabilized by a salt bridge between Arg287 (Ig3.A) and Glu324 (Ig4.B) and direct 

hydrogen bonds among residues belonging to Ig1 and Ig2 domains. Residues from 

Ig1.A domain, Phe71 and Thr73 interacted with Arg109 and Glu111, respectively, 

from Ig2.B. In addition, residues from domain Ig1.A (Thr42 and Glu44) formed 

hydrogen bonds with residues from Ig3.B (Lys283 and Ser206). Three residues, 

Ile207.A, Thr281.B and Asn325.B formed water-mediated hydrogen bond 

interactions with Asn78.B, Gly43.A and Glu274.A, respectively. The analysis also 

revealed that the dimer was not stabilized by residues directly involved in 

hydrophobic interactions. 

In order to investigate whether the interface formed was of biological significance 

or a result of crystal contacts, the buried surface area (BSA) of the interface was 

calculated using the PISA server (Krissinel and Henrick, 2007). The BSA was found 

to be 1080 Å2, which was below the threshold value of 1200 Å2, that was proposed 

by Janin and co-workers for the formation of specific contact interactions (Janin and 

Rodier, 1995; Janin, 1997). In addition, the analysis of this protein interface, 

performed by PISA server, revealed the absence of specific interactions that could 

result in the formation of a quaternary structure. However, only the calculation of the 

interface size is not sufficient to distinguish biological dimers from crystal packing 

interfaces and additional parameters were investigated (Bahadur et al., 2004). 

Therefore, parameters such as the non-polar interface area (ƒnpB) that was 514 Å2 

(46.7 %) and the fraction of fully buried atoms (ƒbu), which was 0.14, were calculated 

using the BioCOmplexes COntact MAPS server (Vangone et al., 2011) and the 

PROFACE server (Saha et al., 2006). According to Bahadur and co-workers studies, 

the average ƒnpB was found to be 50-70 % and the average ƒbu in the interface of 

well-characterized structures presenting homodimers was around 0.34-0.36. In 

addition, determination of the shape complementarity value (SC), calculated with the 

programme SC (supported by CCP4), was also taken into consideration (Lawrence 

and Colman, 1993). The shape correlation statistic is used to quantify the shape 

complementarity of two interacting molecular surfaces, by taking into account 

distances and angles of both molecules involved in the interface. In the DSCAM case, 
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the SC value was 0.51, which was lower than the expected values reported for 

determined protein-protein interactions or homodimers (0.70±0.08) (Lawrence and 

Colman, 1993; Kuroda and Gray, 2016). Therefore, the aforementioned criteria 

indicated that the homodimer formation of DSCAM Ig1-Ig4 in the ASU, was a result of 

the crystal packing.  

 

 

Structural comparison with Dscam Ig1-Ig4 in Drosophila (Ig2.A:Ig2.B’ & Ig3.A:Ig3.B’) 

Dscam in Drosophila (Isoform 1.34, PDB entry 2v5m) consists of 388 residues, 

has one molecule in the ASU and the biological unit, which is known to be a dimer, is 

formed with a symmetry related monomer. Superposition of DSCAM (monomer A) 

with Dscam over Cα atoms (360 residues), gave an r.m.s.d of 2.7 Å. The rest of 

Dscam structures corresponding to different isoforms, determined by Li and co-

workers (Li et al., 2016) form homodimers with 2 molecules per ASU and the r.m.s.d. 

values vary from 2.3 to 2.5 Å. The dimeric interface of Dscam, necessary for the 

repulsion mechanism, is formed due to specific interactions among domains Ig2 and 

Ig3 from monomer A with their corresponding domains from monomer B (Ig2, Ig3) 

(Figure R-35a). These residues are either identical or similar among the different 

Dscam isoforms (Figure S1, highlighted in purple); however they are not conserved 

in human DSCAM. Since the DSCAM interface formed in the ASU was different from 

the one observed in Drosophila, the contacts of symmetry related molecules of 

DSCAM that were generated, were investigated to examine whether any of those 

dimers were mimicking the Dscam interface (Figure R-34a). The symmetry related 

molecules showed that an interface was indeed formed between monomer B and its 

symmetric one monomer A’  (or between monomer A and B’, respectively) (Figure R-

34b) that resembles the one formed in Dscam Ig1-Ig4, involving the same domains.  
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Figure R-34. Ribbon representation of DSCAM Ig1-Ig4 molecules in the crystal. a. DSCAM 
molecules in the ASU are depicted in blue for monomer A and purple for monomer B. The 
symmetry related molecules are shown in cornflower blue and plum for monomers A’ and B’, 
respectively. b. Rotation of image (a) by 90˚ along the b axis. A dimer interface is formed 
between monomer B (purple) and its symmetric A’ (cornflower blue) and monomer A (blue) 
and its symmetric B’ (plum), involving interactions among domains Ig2:Ig2’ and Ig3:Ig3’. The 
molecular graphics representation was performed with UCSF CHIMERA (Pettersen et al., 
2004). 
 
 

Despite the structural similarity of human DSCAM monomer with the Drosophila 

one, the aforementioned crystal lattice configuration of the dimer exhibited many 

differences (Figure 35). More specifically, the orientation of monomer B in DSCAM 

(Figure 35b, in purple) was different from the corresponding one in Dscam (Figure 

35a, in green) and the BSA formed between the monomers was very small compared 

to the one in Drosophila. A closer look in the residues involved in the interactions of 

these domains in DSCAM, revealed that the amino acids varied from the homologous 
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structures. In addition, the small number of interactions formed and the small surface 

of the interface (Table R-15), as calculated by PISA server, did not lead to a 

biological form of the protein and this assembly, was a result of the crystal packing. 

In addition, analysis of the rest of the interfaces among the dimer of DSCAM and the 

symmetrical molecules in the vicinity, suggested that they were also formed due to 

crystal contacts. 

 

 
 

Figure R-35. a. Ribbon representation of Dscam in Drosophila in the ASU (PDB entry 4X83) 
(Li et al., 2016) (monomers A and B are shown in green and light green, respectively) b. 
Ribbon representation of human DSCAM Ig1-Ig4 structure with a symmetry related molecule 
(monomers B and A’ are shown in purple and cornflower blue, respectively). c. Close-up view 
of figure R-34.b where Dscam dimer from Drosophila has been superposed on to human 
DSCAM for comparison of the interfaces. The interfaces formed involve the same domains in 
each case; however the amino acids of DSCAM are fewer and different and the BSA is very 
small compared to the one from Drosophila. Superposition was conducted with Lsqkab 
(CCP4 suite) (Kabsch, 1976) with r.m.s.d. over Cα atoms (352 residues) being 2.3 Å. The 
molecular graphics representation was performed with UCSF CHIMERA (Pettersen et al., 
2004). 
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Table R-15. Buried surface area and number of residues (Nres) involved in interdomain 
interactions of Dscam Ig1-Ig4 homodimers (Ig2:Ig2 and Ig3:Ig3) in comparison to DSCAM 
interface involving the same domains (Ig2:Ig2’ and Ig3:Ig3’). 
PDB 
entry 

Human 
DSCAM 

4X83 2v5m 4X9B 4X9F 4X8X 4X9H 4XB8 4X9G 4XB7 

BSA 
(Å2) 

350 1174 1795 1496 1723 1323 2193 1646 1642 2171 

Nres 13 40 50 50 48 41 62 54 53 64 
Resol. 
(Å) 

2.35 1.90 1.95 2.20 2.35 2.50 2.95 3.20 3.40 4.0 

Dscam Ig1-Ig4 structure with PDB entry 2v5m was determined by (Meijers et al., 2007) and 
the rest of Dscam structures representing different isoforms by (Li et al., 2016). 
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3.2 Discussion 

Previous studies have shown that Dscam in insects is expressed in ~38,000 

isoforms with ~19,000 distinct extracellular domains (Armitage et al., 2012). There is 

evidence that this molecular diversity is essential for neuron recognition and self-

avoidance among branches, arising from the same cell (Chen et al., 2006; He et al., 

2014). This seems to become possible through specific homophilic interactions 

among the same Dscam isoforms (homodimerization) (Schmucker and Chen, 2009; 

Wojtowicz et al., 2004, 2007). On the contrary, mammalian DSCAM does not exhibit 

isoform variability. Furthermore, animal studies conducted in mice proposed that 

DSCAM is mainly implicated in heterophilic interactions with guidance cues like 

netrin-1, necessary for neuronal connectivity and commissural axon guidance. These 

in vivo assays demonstrated that the DSCAM domains involved in netrin-1 binding 

are Ig7, Ig8 and Ig9 (Ly et al., 2008). However, in insects according to structural 

studies, domain Ig7 is required for Dscam dimerization (Wojtowicz et al., 2007). 

Therefore, one could suggest that the mechanism dictating DSCAM homophilic 

binding might be different or in case it is conserved, it might be disrupted by netrin-1 

binding and as a result, the interactions observed in insects might not be formed in 

the same way in vertebrates. 

With the aim to explore the mechanism underlying DSCAM homodimerization, 

biophysical and structural studies of human DSCAM such as ITC, SAXS, EM and X-

ray protein Crystallography, were performed. Two hypotheses were examined; i) 

DSCAM homophilic interactions in vertebrates are formed without the involvement of 

the same domains as in insects, ii) Binding of netrin-1 interferes with DSCAM 

homodimerization by disrupting the dimer interactions. In order to investigate these 

hypotheses and to assess how netrin is implicated in heterophilic interactions with 

DSCAM, the aforementioned studies included netrinVIV in association with DSCAM as 

well.  

To examine the above hypotheses, two constructs of human DSCAM 

ectodomain were designed, comprising eight and nine Ig domains (DSCAM Ig1-Ig8 

and DSCAM Ig1-Ig9), respectively. Both constructs were expressed in HEK 293S 

and 293T cells. DSCAM Ig1-Ig8 elution profile after purification showed that it was 

predominantly a dimer in solution, while the rest was in a monomeric state (Figure R-

3). Moreover, introduction of the 9th domain to the construct, further stabilized the 

dimer interactions, suggesting that this domain was also involved in DSCAM 
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homodimerization process. Indeed, DSCAM Ig1-Ig9 was always eluted as a dimer (in 

monodisperse population) (Figure R-5), in agreement with previous studies reported 

in the literature for human DSCAM. 

In addition, a smaller construct was designed (DSCAM Ig1-Ig4) to investigate by 

structural methods the plausible formation of a more rigid configuration. 

Determination of DSCAM Ig1-Ig4 3D crystal structure would not provide a thorough 

answer on the mechanism under which DSCAM domains are implicated in 

homodimerization; however, it would facilitate spotting the differences of the first four 

Ig domains between humans and insects (in comparison to the 3D structures of 

Drosophila of the same construct (Meijers et al., 2007; Li et al., 2016)). DSCAM Ig1-

Ig4 was expressed both in the WT and GnTI- form and the results obtained, from 

different methods, indicated that it was a stable monomer in solution (Figure R-28). 

The results from all DSCAM constructs are summarized in Table D-1. 

 
Table D-1. Summary of methods employed and results obtained for human DSCAM. 
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More specifically, SAXS measurements were performed for all DSCAM 

constructs as well as for DSCAM Ig1-Ig9:netrinVIV using a range of concentrations. 

For DSCAM Ig1-Ig4 all models generated had good correlation with the experimental 

data, demonstrating a horseshoe domain arrangement resembling Dscam in 

Drosophila (Figure R-29), but in a monomeric state. In contrast to DSCAM Ig1-Ig4, 

DSCAM Ig1-Ig9 was shown to form always dimers in solution (monodisperse 

population), whereas DSCAM Ig1-Ig8 was found both in monomeric and dimeric 

states, with the dimeric state being the prevalent one. More specifically, DSCAM Ig1-

Ig9 dimer was depicted as an ensemble of models, revealing the overall shape of the 

molecule. This shape indicated that the first four Ig domains were not part of the 

dimerization interface forming an independent core, away from the main dimeric body 

(Figure R-10). All the proposed model structures generated by SAXS, despite the 

various configurations adopted by the domains involved in the dimeric interface, 

shared two rigid T-shaped branches lying at the periphery of this interface bilaterally. 

These extensions corresponded to the Ig1-Ig4 domains and were fitting optimally the 

experimental data. 

In addition, DSCAM Ig1-Ig8 averaged dimeric model from SAXS was also 

compared with Dscam Ig1-Ig8 crystal structure from Drosophila (Sawaya et al., 

2008). The results showed that human DSCAM was poorly correlated with Dscam in 

Drosophila since the computed theoretical scattering curve extracted from the 

crystallographic structure, could not fit the SAXS experimental DSCAM data. 

Superposition of the two models showed that there were large differences in the 

radius of gyration suggesting that human DSCAM had a larger and possibly more 

flexible dimer assembly than the one occurring in Drosophila (Figure R-9). The 

observations extracted from the larger constructs and the fact that DSCAM Ig1-Ig4 

does not dimerize in solution, support the working hypothesis that DSCAM 

homodimerization follows, probably, a different mechanism in humans, than the one 

observed in Drosophila (where Ig1-Ig4 was shown to be a dimer) without the 

involvement of the four N-terminal Ig domains in the dimer interface. Nevertheless, 

direct comparison of DSCAM in solution with Dscam crystal structure in Drosophila, 

might not provide an immediate answer, since Dscam molecules might be involved in 

crystal packing interactions imposed by the symmetry of the crystal that might not be 

present in DSCAM when in solution.  

SAXS measurements of DSCAM Ig1-Ig9 with netrinVIV (1:1 molar ratio) were 

compared to the individual plots acquired from netrinVIV (Finci et al., 2014) and 
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DSCAM when alone in solution. The samples in solution did not seem to be engaged 

in complex formation, as supported by the fact that oligomer analysis showed a 

mixture of dimeric DSCAM (70 %), monomeric netrinVIV (17 %) and monomeric 

DSCAM (13 %) in the population, with chi2 being 1.4. Alternatively, the two proteins 

could interact and analysis was performed by constructing rigid-body models of the 

complex. These models fit slightly better the experimental data (chi2~ 1.2) and some 

structures seemed more plausible based on the statistical analysis performed for 

ranking the structures energetically (Figure R-22). However, in order to resolve the 

discrepancy between the two different results reported from SAXS measurements, 

additional evidence would be required regarding the stoichiometry and binding affinity 

upon complex formation (e.g. data from binding assays, such as ITC or SPR). 

Negative staining electron microscopy experiments were performed with DSCAM 

Ig1-Ig8, Ig1-Ig9 and DSCAM Ig1-Ig9:netrinVIV. In the case of DSCAM Ig1-Ig8, the 

sample showed increased heterogeneity after negative staining, preventing further 

single-particle analysis. This could be attributed to its polydispersity observed in 

solution (mixture of monomers & dimers). On the contrary, DSCAM Ig1-Ig9 raw 

images were less heterogeneous, as it was anticipated, and indicated that the 

population of DSCAM was primarily in monomeric form (even though it was known to 

be a stable dimer in solution). Taking into account these observations, single-particle 

analysis and classification were performed with the longer construct in order to 

produce two-dimensional projections of the protein. The results demonstrated that 

DSCAM Ig1-Ig9 adopted different conformations where the first four Ig domains (Ig1-

Ig4) formed a rigid horseshoe core, present in most of the different classes. The Ig1-

Ig4 arrangement confirmed the results obtained from SAXS regarding the shape of 

the domains, showing that this horseshoe is conserved among the species. The 2D 

projections also revealed that DSCAM Ig1-Ig9 exhibited a variety of orientations that 

could be attributed to different angular distributions of the molecule on the carbon 

support film used for negative staining (Frank, 2006). 

Domains (Ig6-Ig9) followed a linear arrangement, which appeared to move either 

away or leaning towards the horseshoe configuration through hinges potentially 

located in the tandem of domains Ig5-Ig8 (Figure R-12). With the aim to further 

investigate the location of the hinges, sequence alignment of DSCAM Ig1-Ig9 was 

performed with protein receptors bearing pliant hinge regions and similar domain 

organization, folding and size. Sequence comparison showed that only the residues 

in close proximity to the hinge regions were conserved, whereas the amino acids 



	 135	 	

belonged to hinges were being rather diverse. These findings confirmed previous 

studies, where it was suggested that only the sequence of the protein is not sufficient 

for predicting the hinge areas and the use of computational tools was proposed for 

producing concrete results (Flores et al., 2007, 2008; Shamsuddin et al., 2013).  

In contrast to the results obtained by SAXS where DSCAM Ig1-Ig9 was a dimer 

in solution, the majority of the EM projections showed a monomer of DSCAM. This 

observation potentially provides some evidence for the dissociation constant of 

DSCAM, which might be below the dilution range used for EM negative staining (~ 5- 

10 μg/ml), due to weak interactions during homodimer formation. Dimer dissociation, 

could also be attributed to the stain used (uranyl formate), since although it enhanced 

the scattering contrast compared to other stains, it might have interfered with 

DSCAM dimer formation due to its low pH (4.5-5.2) (Booth et al., 2011). Finally, 

dehydration of the protein as a result of negative staining could also lead to 

dissociation of the dimeric complexes depending on their stability. 

To ensure that DSCAM homodimers could be observed, efforts were directed 

towards preparing stable DSCAM homodimers, by crosslinking, prior to negative 

staining. Despite the variety of buffer solutions and salt concentrations used, the 

sample remained heterogeneous consisting of a mixture of crosslinked and non-

crosslinked dimer populations. Separation of the two populations with standard 

chromatographic techniques could not be achieved since the oligomeric state of the 

protein was the same (DSCAM was a dimer before and after crosslinking). The raw 

images after negative staining further supported this finding, resulting in rather 

heterogeneous populations, which prevented additional analysis and classification. 

Regarding DSCAM and netrin, although previous studies in neurons suggested 

that DSCAM interacts with netrin-1 in the cell (Liu et al., 2009; Huang et al., 2016), 

the results obtained in vitro by EM after image classification, showed a mixture of 

DSCAM Ig1-Ig9 monomers and larger complexes (most likely of DSCAM 

homodimers) under the conditions examined. 

More specifically, the abundant averages exhibited that DSCAM Ig1-Ig9 was in 

monomeric form with the same conformational arrangement as the one adopted in 

the absence of netrinVIV. The projections where DSCAM Ig1-Ig9 appeared to bind to 

another molecule, suggested that this partner was probably a partial molecule of 

DSCAM, based on the shape and size of its domains compared to netrinVIV (Figure 

R-23). A potential reason why the horseshoe of the partner molecule was not 

observed, could be attributed to the orientation of the complexes that might have 
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obscured its complete observation. Alternatively, one of the horseshoe domains 

might have been flexible (in different orientations) and could have been averaged out 

during image classification.  

Overall, it can be concluded that the addition of netrinVIV in DSCAM solution, 

induced the observation of dimers. The presence of netrinVIV probably changed the 

orientation of DSCAM on the carbon film, leading to new views where the homodimer 

could be observed. Although, the visualization of the dimer was a significant finding, 

in order to resolve the ambiguity regarding the identity of the second molecule, 

additional experiments were performed, by examining the proteins’ interaction in 

different stoichiometry (in favour of netrin). DSCAM Ig1-Ig9:netrinVIV complex was still 

not clearly detected under the conditions used in this study, resulting in similar 

projections as in 1:1 molar ratio experiments. This suggests that a number of 

restrains needs to be considered. The low MW of netrinVIV (56 kDa) might have 

prevented the observation of the protein. In addition, incomplete stain embedding 

might have also interfered with the complex visualization. The biochemical and 

biophysical experiments performed in this study support the view that if netrin-1 does 

bind to DSCAM, this might occur via weak interactions (low affinity complex 

formation). Furthermore, key processes that take place in the cell at molecular level 

during DSCAM:netrin-1 complex formation, should also be taken into consideration. 

For example, complex formation in the cell could be induced by other determinants, 

such as the orientation of DSCAM receptor in the cell membrane that promotes 

binding of netrin-1.  

In order to determine the binding affinity and stoichiometry between DSCAM and 

netrinVIV, binding assays were performed with ITC using both DSCAM Ig1-Ig8 and 

Ig1-Ig9 domains with netrinVIV. The lack of identifying a common stabilization buffer 

for ITC measurements for both proteins, prevented drawing any conclusions 

regarding the complex formation. This was mainly due to the propensity of netrinVIV to 

aggregate, despite the variety of buffers and pH tested. In vitro reconstitution of the 

DSCAM Ig1-Ig9:netrinVIV complex was also attempted, by mixing and co-purifying the 

two components using SEC (in 1:1 and 1:2 molar ratios), but no complex formation 

was observed under the conditions examined. 

In order to obtain more concrete information on the domains implicated in the 

homodimerization of DSCAM, structural studies with X-ray crystallography were 

performed using the Ig1-Ig8 and Ig1-Ig9 constructs. Diffracting crystals of DSCAM 

Ig1-Ig8 were only grown for the GnTI- form after excessive crystallization trials, 
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achieving low-resolution. Standard protocols for optimizing the initial conditions were 

further applied, but the diffraction quality of the crystals remained poor (6.7 Å 

resolution) (Table R-2). Protein methylation and the effect of EndoH treatment were 

also explored, but the resulting crystals did not diffract beyond 6.7 Å resolution. 

Crystallization of DSCAM Ig1-Ig9 was straightforward for both WT and GnTI- variant. 

This could be attributed to the addition of the Ig9 domain that possibly stabilized the 

homodimer interactions as indicated by biophysical studies. Yet, crystals only 

diffracted to 9 Å resolution. 

Concerning the smaller construct of DSCAM Ig1-Ig4, crystals were obtained in 

similar conditions with the Ig1-Ig9 construct, after two rounds of optimization. For the 

WT form, two complete data sets were collected at 2.7 Å (in C2221) and at 3.1 Å 

resolution (in P212121) (Tables R-7 & R-8), indicating that the more rigid configuration 

adopted by this shorter form was more prone to crystallize and diffract X-rays to 

higher resolution, compared to the larger constructs. The primitive orthorhombic 

space group was only observed when instead of glycerol, ethylene glycol was 

incorporated in the crystallization conditions during crystal growth. Molecular 

replacement did not provide a solution when Dscam Ig1-Ig4 from Drosophila was 

used as a search model. This could be explained by the angle that domains Ig1-Ig2 

form in Dscam, which might not be present in the human structure. In addition, the 

sequence homology of Dscam (~30 %) coupled with the resolution that the data were 

collected, increased the level of difficulty in solving the crystal structure of human 

DSCAM. Derivatization of the crystals using heavy atoms (Yb and Pt compounds), 

demonstrated poor anomalous signal not sufficient for phase determination. 

However, our hypothesis that DSCAM Ig1-Ig4 would form a more stable substructure, 

as suggested by EM studies (horseshoe configuration) and previously known 3D 

homologous structures, which would be more prone to crystallize, has been 

confirmed. The Ig1-Ig4 diffracted to 2.7 Å resolution, which is the highest resolution 

achieved from all the constructs studied, until recently that X-ray crystallographic 

data, were collected at 2.35 Å resolution by Dr. Isabel Bento, from previously grown 

crystals under the same conditions. The three-dimensional structure was determined 

in C2221 space group by molecular replacement using the structure of neurofascin as 

a search model (PDB entry 3P3Y, 23 % sequence identity) (Liu et al., 2011). The 

structure analysis revealed the presence of a homodimer in the ASU, with each 

monomer (A and B) consisting of four N-terminal Ig domains that adopted a 
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horseshoe-shape arrangement in agreement with the results obtained from EM and 

SAXS studies.  

The interactions that DSCAM Ig1-Ig4 dimer formed in the ASU and in the crystal 

were examined. DSCAM Ig1-Ig4 dimer was stabilized via hydrogen bond interactions 

involving domains (Ig1-Ig4) from both chains, while additional contacts were formed 

between each monomer and the symmetry related molecules in the crystal. Analysis 

of the interfaces among the dimer and the symmetrical molecules in the vicinity 

(generated for C2221) was performed by PISA. In addition, a set of parameters 

employed for the characterization of dimeric interfaces of determined protein 

structures (BSA, SC, ƒnpB, ƒbu) were calculated for DSCAM Ig1-Ig4 dimer. The overall 

analysis showed the absence of specific interactions that could result to a homodimer 

structure and the dimers observed were not biological assemblies of DSCAM Ig1-Ig4.  

In addition, DSCAM Ig1-Ig4 dimer was compared to the corresponding one in 

Drosophila (the biological unit of which was a dimer) and as it was anticipated, the 

domains implicated in dimer formation were different. Furthermore, no interactions 

between the individual monomers of DSCAM Ig1-Ig4 with the symmetry related 

molecules in the crystal were found to mimic the ones observed in Dscam Ig1-Ig4. 

According to the experimental evidence provided by SLS coupled with FPLC and 

SAXS studies, DSCAM Ig1-Ig4 was a monomer in solution and it was not part of the 

dimerization interface of DSCAM Ig1-Ig9. The crystal structure of DSCAM Ig1-Ig4 

along with the analysis on the interactions formed, suggested that dimer formation 

was attributed to the crystal packing interactions in C2221 space group, confirming 

that the functional form of the protein is probably monomeric. Despite the 

conservation of the horseshoe shape in both species, the structural and biophysical 

data analysis allow to conclude that the mechanism of DSCAM in humans does not 

follow the one in Drosophila, since there are differences on the interactions formed 

between the two species regarding the first four Ig domains. In addition, the rigidity of 

DSCAM Ig1-Ig4 3D structure could be exploited as a search model for solving the 

crystal structure of DSCAM Ig1-Ig8 using the low-resolution data collected at 6.7 Å, 

so as to resolve the sites of interaction upon dimerization.  
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Chapter 4  

CONCLUSIONS AND PERSPECTIVES 
 

With the aim to reveal the domains involved in DSCAM homodimerization in 

humans and how this mechanism is affected upon netrin-1 binding, biophysical and 

structural approaches were employed on DSCAM Ig1-Ig8, Ig1-Ig9 and their 

complexes with netrinVIV. In parallel, structural studies of a smaller DSCAM construct 

involving domains Ig1-Ig4 were performed with the aim to study a more rigid 

substructure and by determining its three-dimensional structure, to assess the role of 

these domains in human homodimerization.  

The results obtained provide an indication that there is not a universal binding 

mechanism of the Down Syndrome molecule among all species, in contrast to the 

common mechanism proposed in the literature until present (Sawaya et al., 2008). 

DSCAM domains Ig1-Ig4 adopt a rigid horseshoe arrangement (conserved among 

the species) similar to the one occurring in Dscam in Drosophila but they are not part 

of the dimerization interface, which probably lies among the rest of the domains (Ig5-

Ig9). This is supported by the fact that DSCAM Ig1-Ig4 does not dimerize in solution 

(compared to the longer construct) and that domain Ig9 appears to be involved in 

DSCAM dimer formation by stabilizing its interactions. The differences between the 

two species are also indicated in the results obtained from SAXS data in solution (for 

DSCAM Ig1-Ig8&Ig1-Ig9), where the ensemble of homodimer models has a different 

arrangement from the one observed in the Drosophila crystal structure. In addition, 

the sequence alignment between the two species (Figure S1), showed that the amino 

acids involved in the dimer interface of Dscam, are not conserved in the human 

homologue, supporting the aforementioned hypothesis. 

However, to consolidate this suggestion and shed light on the mechanism in 

vertebrates, further experiments are required. Direct comparison between insects 

and humans could be facilitated by performing SAXS studies on the corresponding 

Dscam Ig1-Ig8 and Dscam Ig1-Ig4 constructs in D. melanogaster. These would 

provide evidence for the oligomeric state of Dscam in solution. However, 2D diffusion 

of DSCAM in the cell membrane should also be taken into consideration, because 

additional restrains are imposed by the bilipid membrane that affect DSCAM 

orientation in the cells, in comparison with the orientations that DSCAM might adopt 

in vitro in solution. A clear evidence for improving our understanding of human 
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DSCAM structure-function relationship would be provided by optimization of DSCAM 

Ig1-Ig9 crystallization conditions to allow its 3D structure determination. 

Electron microscopy studies with negative staining revealed that DSCAM Ig1-Ig9 

was primarily observed in a monomeric state both in the absence and in the 

presence of netrinVIV, under the conditions examined in this study. For the first time 

DSCAM nine Ig domains were clearly visualized with the four N-terminal domains 

forming a horseshoe arrangement. Ig6 to Ig9 domains were shown to adopt a linear 

configuration that could move either towards or away from the core, around potential 

hinge axes that divided the molecules into rigid segments. These plausible hinge 

axes provide an indication of the dynamic motion of DSCAM, supporting its key role 

in forming interactions with its counterparts (i.e. netrin-1) or with itself. A comparison 

study of proteins (with previously determined 3D structures) bearing a similar domain 

organization with DSCAM, showed that the majority of hinge regions were identified 

close to sites that the proteins were anticipated to host their partners (intermolecular 

interface). However, sequence alignment of these proteins with DSCAM Ig1-Ig9 did 

not reveal a conserved motif on the hinge regions. To further investigate the dynamic 

motions of DSCAM, the 3D elucidation of a subfragment structure comprising 

domains Ig6-Ig9 or Ig7-Ig9 might be the key for investigating the hinge mechanism. 

In addition, the use of computational approaches e.g. molecular dynamic simulations 

(Shamsuddin et al., 2013), might also provide an indication of the mechanism, by 

prediction of regions that might act as hinges. 

In the presence of netrinVIV, DSCAM was predominantly depicted as a monomer, 

after negative staining; however, the dimeric population that was also observed was 

probably induced by the presence of netrin, resulting in averages where DSCAM Ig1-

Ig9 was bound to another partner, not being able to distinguish clearly the identity of 

the second molecule. To fully visualize either the homodimer or the complex 

DSCAMIg1-Ig9:netrinVIV and reveal the domains involved in these interactions, further 

research is required. Preliminary studies have already been performed and the 

findings have illustrated the parameters that could be further examined and 

optimized. These include, replacement of the stain used, with alternatives reacting at 

physiological pH, such as ammonium molybdate (pH range 5-7), or vanadium-based 

stains (pH range 7-8) (Nanovan). These stains although they produce a lower 

electron density, could result in the homodimer or heterodimer preservation since 

they are more stable and mild with biological samples (Tracz et al., 1997). 

Alternatively, cryo-EM could also be used since with this method the molecules might 
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be kept intact, leading to complex preservation and shape integrity, despite the low 

contrast. Recent studies have managed to ameliorate the low signal-to-noise ratio by 

the use of phase plates (i.e. Volta Phase Plate) resulting in images with higher 

contrast that even allow visualization of smaller proteins, such as netrinVIV (56 kDa) 

(Danev and Baumeister, 2016). Additional efforts towards elucidating the identity of 

the second molecule could also be focused on netrinVIV labeling, using an electron-

dense probe i.e. Nanogold (Nanoprobe Inc). This would enable distinguishing 

whether netrinVIV is part of the dimers observed.  

SAXS analysis indicated that a plausible complex between DSCAM Ig1-Ig9 and 

netrinVIV could be formed under the conditions used in the study; however to confirm 

complex formation and monitor the heterophilic interactions, even at low-range 

concentration, optimization of the stoichiometry or crosslinking of the two individual 

components could be essential. To determine stoichiometry and binding affinity 

between DSCAM Ig1-Ig9 and netrinVIV, binding assays with ITC were performed. 

However, the aggregation of netrinVIV prevented the determination of the two proteins 

affinity. Therefore, methods such as native MS or SPR could be employed, in order 

to assess the stoichiometry and the mass of the molecular assembly, or the binding 

affinity, using only small amount of proteins. Alternatively, any direct interaction could 

be revealed by the use of pull down assays between DSCAM and netrinVIV or co-

expression of the two components in vitro could also result in a soluble protein 

complex. However, the possibility that the interaction between the two proteins in the 

cell, might be facilitated by the presence of additional molecules induced by DSCAM 

expression, as suggested by previous results obtained from cell binding assays (Liu 

et al., 2009), can not be excluded. Therefore, further research is required to elucidate 

whether another protein is also essential for DSCAM:netrin-1 complex formation. 

The 3D structure determination of DSCAM was rather challenging because 

DSCAM comprises nine Ig domains and hinge regions. Out of these, only the 

domains involved in the horseshoe configuration (Ig1-Ig4) presented a rigid structure, 

while the rest seemed to be rather flexible. The hypothesis that DSCAM Ig1-Ig4 

would be more prone to crystallize and diffract to higher resolution was correct and a 

full data set was collected to 2.7 Å resolution. Most recently, a higher resolution data 

set was collected, allowing the structure determination of DSCAM Ig1-Ig4 at 2.35 Å 

resolution. This enabled direct comparison with its homologue in Drosophila 

providing evidence about the participation of these domains in DSCAM dimerization 

in mammals. The 3D structure of human DSCAM Ig1-Ig4 revealed that its 
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dimerization profile is different from the one occurring in Drosophila. The first four 

domains of DSCAM formed a dimer in the crystal; however this might be attributed to 

crystal packing interactions imposed by the crystallization conditions used. This 

result is consistent with the rest of the studies performed in this research project (in 

solution), suggesting that DSCAM Ig1-Ig4 biological unit is monomeric.  

The present study demonstrates that the underlying mechanism of human 

DSCAM homophilic interactions differs from Dscam in Drosophila; however, this 

finding requires further investigation, including the 3D structure of DSCAM Ig1-Ig9 in 

order to elucidate its functional role. Overall, the results obtained contribute to the 

preliminary characterization of DSCAM and reveal the structural differences of the 

two species. In addition, the integrated structural biology approaches that were 

applied, determined the workflow towards understanding the structure-function 

relationship that dictates the interactions of DSCAM and netrin-1. Deciphering the 

role of cell receptors in axon guidance in vertebrates requires holistic approaches to 

dissect the complexity of this biological system. 
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APPENDIX  
 

Table S1. List of laboratory consumables and equipment in alphabetical order. 
Consumables & Equipment Application Supplier 
ÄKTA FPLC, Purifier & Explorer Liquid chromatography GE Healthcare Life Sciences 
Amicon Ultra centrifugal  
filter units 

Protein concentration Merck Millipore 

Bio-Rad Econo-Column  
(150 ml bed volume) 

Protein purification Bio-Rad 

Mini Trans-Blot Cell Western blot Bio-Rad 
Chromatography columns  
for ÄKTA use 

Protein purification GE Healthcare Life Sciences 

Corning Costar Spin-X Plastic 
Centrifuge Tube Filters 

Filters 0.22 μm Sigma Aldrich 

Cryo-loops with easy-snap 
microtube 

Crystallography Hampton Research 

Crystallization linbro plates  
(24-well) 

Crystallography Hampton Research 

Crystallization plates IQ 
(96-well) 

Crystallography TTPLabtech 

Crystallization plates  
Greiner (96-well) 

Crystallography TTPLabtech 

Culture test plates (6-well)  Mini-scale for HEK cells  Techno Plastic Products 
Culture flasks (Greiner-T175) Midi-scale for HEK cells  Greiner Bio-One 
Deep 96-well block plates  Protein elution  Thermo Fisher Scientific 
Desalting Columns (Pd-10) Desalting & buffer 

exchange 
GE Healthcare Life Sciences 

Dialysis Cassettes  
Slide-A-Lyzer 

Buffer exchange Thermo Fisher Scientific 

Filter papers HEK cell harvest Carl Roth 
GelDoc Western blot Bio-Rad 
iCycler iQ Real-Time PCR 
detection system 

Thermofluor Bio-Rad 

Malvern’s OmniSEC GPC/SEC 
multidetector system 

FPLC-SLS Malvern Ltd, UK 

Mosquito-LCP Crystallization Robot for 
screen plate preparation 
and drop configuration 

TTPLabtech 

Nanodrop Spectrophotometer  
ND1000 

Absorbance 
measurements for 
proteins and nucleic 
acids 

NanoDrop Technologies, 
Wilmington, DE 

Nitrocellulose Membrane Protran Western blot Sigma Aldrich 
Paper Wicks Crystallization Hampton Research 
Polystyrene Roller Bottles  
2125 cm2 

Large-scale cultures for 
HEK cells (250ml) 

Greiner Bio-One 

Mini PROTEAN Tetra Cell SDS-PAGE Bio-Rad 
Siliconized glass cover slides Crystallography Hampton Research 
Scorpion Crystallization Robot for 

screen plate builder 
ARI 

Voyager DE-STR  
MALDI-TOF 

Mass spectrometry Applied Biosystems 

Wheaton incubator  
(Model I057606-C) 

HEK cell cultures Wheaton Industries 
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Table S2. List of chemicals in alphabetical order. 
Chemicals Application Supplier 
Additive Screen  Crystallography Hampton Research 
Agarose Gel electrophoresis Serva Electrophoresis 
DNA Loading Dye 6x Loading dye Thermo Fisher Scientific 
Dulbecco’s modified  
eagle’s medium 

HEK cell transfection Merck Millipore 

ECL Western blotting 
Substrate (PierceTM) 

Western blot Thermo Fisher Scientific 

Fetal Calf Serum-Gibco  
(low endotoxin level) 

Protein expression- 
HEK cells 

Thermo Fisher Scientific 

GeneRuler 1kb Plus DNA Ladder Thermo Fisher Scientific 
Glutaraldehyde solution grade 
I, (8 % in Η2Ο) suitable for EM 

Protein cross-linking Sigma-Aldrich 

Grid Screen Salt HT Crystallography Hampton Research 
InstantBlue coomassie stain Single-step protein stain Expedeon 
JCSG Core Suite I,II,III,IV,plus Crystallography Qiagen 
L-Glutamine HEK cell transfection Biochrom 
Nickel Sepharose Excel IMAC purification GE Healthcare  

Life Sciences 
Non-essential amino acids 1x HEK cell transfection Biochrom 
NuPage LDS Sample  
Buffer 4x 

Protein loading dye Thermo Fisher Scientific 

PageRuler Plus Prestained 
Protein Ladder  

Protein Ladder Thermo Fisher Scientific 

Paraffin oil Crystallography Hampton Research 
PBS Dulbecco’s HEK cell transfection Biochrom 
PCT: Pre-Crystallization Test Crystallography Hampton Research 
PEG (powder/solution) Crystallography Sigma Aldrich 
PGA LM_HT-96 Crystallography Molecular Dimensions 
pHClear suite I,II Crystallography Qiagen 
Polyethylenimine (PEI) HEK cell transfection Sigma Aldrich 
Protein Complex Suite Crystallography Qiagen 
QIAquick Gel Extraction kit DNA extraction from  

agarose gel 
Qiagen 

QIAprep Spin Miniprep kit DNA extraction from  
bacterial cells 

Qiagen 

QIAplasmid Plus Gigaprep kit DNA extraction from  
bacterial cells 

Qiagen 

RotiMark Protein Ladder His-tagged protein ladder for 
Western blot 

Carl Roth 

Silicon oil Crystallography Hampton Research 
SuperSignal West Pico 
Chemiluminescent 

Western blot Thermo Fisher Scientific 

SYPRO orange dye Thermofluor Invitrogen 
Qiagen PEG I, II suite Crystallography Qiagen 
Talon Metal Affinity Resin IMAC purification Clontech Laboratories 
Trypan Blue HEK cell viability test Biochrom 
Trypsin 10x-EDTA (1:250) Cell dissociation  Biochrom 
All chemicals used for buffer preparation were of analytical grade and were purchased by Carl 
Roth.  
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Table S3. List of antibodies in alphabetical order. 
Antibodies Application Supplier 
Anti-Bovine Serum Albumin 
(from mouse) 

Primary monoclonal antibody 
for Western blot 

Thermo Fisher Scientific 

Anti-mouse HRP conjugate 
(from goat) 

Secondary polyclonal antibody 
for Western blot 

Thermo Fisher Scientific 

Penta-His (from mouse) 
BSA free 

Primary monoclonal antibody 
for Western blot 

Qiagen 

 
 
 
 
 

Table S4. List of enzymes in alphabetical order. 
Enzymes Sequence Application Supplier 
DpnI 5’-GA^TC-3’       

3’-CT^AG-5’ 
Double DNA 
digestion 

New England Biolabs 

Endoglycosidase H  Deglycosylation New England Biolabs 
HindIII 5’-A^AGCTT-3’       

3’-TTCGA^A-5’ 
Double DNA 
digestion 

New England Biolabs 

KpnI 5’-GGTAC^C-3’      
3’-C^CATGG-5’ 

Double DNA 
digestion 

New England Biolabs 

NotI 5’-GC^GGCCGC-3’ 
3’-CGCCGG^CG-5’ 

Double DNA 
digestion 

New England Biolabs 

SacI 5’-GAGCT^C-3’    
3’-C^TCGAG-5’ 

Double DNA 
digestion 

New England Biolabs 

Phusion High Fidelity 
Polymerase 

- PCR New England Biolabs 

T4 DNA Ligase - DNA Ligation New England Biolabs 
 

 
 
 
 

Table S5. List of primers for construct design. 
Primer Target Cloning 

Site 
Sequence 

Overlap-
Forward 

DSCAM Ig1-Ig9 5'-ACGTGTCCAAAAGCATGTACCTGACTGTGA 
AGATCCCCGCTATGATTACTTCCTATCCCAA-3’ 

Overlap-
Reverse 

DSCAM Ig1-Ig9 5'-AGTAATCATAGCGGGGATCTTCACAGTCAG 
GTACATGCTTTTGGACACGTCGGCCC-3' 

D9-Reverse DSCAM Ig1-Ig9 5'-GTGGTGGTGGAGCTCTTCCTGGACGGTCAG 
CTGGA-3' 

Forward DSCAM Ig1-Ig4 5'-TAGGTACCCATAGTTCCCTGTATTTTGTGAAC 
GCC-3' 

Reverse DSCAM Ig1-Ig4 5'-ATAGAGCTCCTCCAGGACCACCTGCACGT  
AGT-3' 
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Table S6. SAXS data collection and scattering parameters for DSCAM Ig1-Ig8 WT. 
Data collection parameters 
Beamline 
 
Beam geometry (mm2) 
Wavelength (Å) 
s-range (Å-1) 
Exposure time (ms) 
Concentration range (mg ml-1) 
Temperature (K) 

 
P12 - PETRA III (EMBL-Hamburg 

DESY, Germany) 
0.2 x 0.12 

1.24 
0.008 - 0.475 

50 
1.5 - 7.5 

283 
Structural parameters 
I(0) (arbitrary units) [from p(r)] 
Rg (Å) [from p(r)] 
I(0) (arbitrary units) (from Guinier) 
Rg (Å) (from Guinier) 
Dmax (Å) 
Porod volume estimate (Å3) 
Dry volume calculated from sequence (Å3) 

 
5926±50 
5.9±0.2 

5894.1±45 
5.8±0.2 
20±0.5 
494±50 

399 
Molecular mass determination (Da) 
Absolute calibration 
Porod volume 
BSA 
Theoretical monomeric based on sequence 

 
167000±17000 
309000±30000 
200000±20000 

88183 
 
 
 
 
 

Table S7. SAXS data collection and scattering parameters for DSCAM Ig1-Ig9 WT. 
Data collection parameters 
Beamline 
 
Beam geometry (mm2) 
Wavelength (Å) 
s-range (Å-1) 
Exposure time (ms) 
Concentration range (mg ml-1) 
Temperature (K) 

 
P12 - PETRA III (EMBL-Hamburg 

DESY, Germany) 
0.2 x 0.12 

1.24 
0.008 - 0.457 

50 
0.46 - 8.30 

283 
Structural parameters 
I(0) (arbitrary units) [from p(r)] 
Rg (Å) [from p(r)] 
I(0) (arbitrary units) (from Guinier) 
Rg (Å) (from Guinier) 
Dmax (Å) 
Porod volume estimate (Å3) 
Dry volume calculated from sequence (Å3) 

 
5714±50 
6.4±0.2 

1680±20 
6.4±0.2 

22.3±0.5 
726±70 

934 
Molecular mass determination (Da) 
Absolute calibration 
Porod volume 
BSA 
Theoretical monomeric based on sequence 

 
226000±20000 
454000±45000 
207000±20000 

96890 
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Table S8. SAXS data collection and scattering parameters for DSCAM Ig1-Ig9:netrinVIV. 
Data collection parameters 
Beamline 
 
Beam geometry (mm2) 
Wavelength (Å) 
s-range (Å-1) 
Exposure time (ms) 
Concentration range (mg ml-1) 
Temperature (K) 

 
P12 - PETRA III (EMBL-Hamburg 

DESY, Germany) 
0.2 x 0.12 

1.24 
0.008 - 0.457 

50 
0.6 - 4.0 

283 
Structural parameters 
I(0) (arbitrary units) [from p(r)] 
Rg (Å) [from p(r)] 
I(0) (arbitrary units) (from Guinier) 
Rg (Å) (from Guinier) 
Dmax (Å) 
Porod volume estimate (Å3) 
Dry volume calculated from sequence (Å3) 

 
4547±40 
6.30±0.1 
1300±10 
6.3±0.2 

20.5±0.5 
474±45 

314 
Molecular mass determination (Da) 
Absolute calibration 
Porod volume 
BSA 
Theoretical monomeric based on sequence for 
DSCAM Ig1-Ig9:netrinVIV 

 
178000±15000 
296000±30000 
163000±15000 

146179 
 

 
 
 
 
 

Table S9. SAXS data collection and scattering parameters for DSCAM Ig1-Ig4 WT. 
Data collection parameters 
Beamline 
 
Beam geometry (mm2) 
Wavelength (Å) 
s-range (Å-1) 
Exposure time (ms) 
Concentration range (mg ml-1) 
Temperature (K) 

 
P12 - PETRA III (EMBL-Hamburg 

DESY, Germany) 
0.2 x 0.12 

1.24 
0.008 - 0.475 

50 
0.5 - 10.1 

283 
Structural parameters 
I(0) (arbitrary units) [from p(r)] 
Rg (Å) [from p(r)] 
I(0) (arbitrary units) (from Guinier) 
Rg (Å) (from Guinier) 
Dmax (Å) 
Porod volume estimate (Å3) 
Dry volume calculated from sequence (Å3) 

 
1889±16 
2.9±0.1 

1884.3±15 
2.9±0.1 
10±0.1 
71±5 
101 

Molecular mass determination (Da) 
Absolute calibration 
Porod volume 
BSA 
Theoretical monomeric based on sequence 

 
53000±5000 
44000±4000 
51000±5000 

43754 
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Table S10. List of amino acids. 
Amino acids Name 

Ala (A) Alanine 

Cys (C) Cysteine 

Asp (D) Aspartate 

Glu (E) Glutamate 

Phe (F) Phenylalanine 

Gly (G) Glycine 

His (H) Histidine 

Ile (I) Isoleucine 

Lys (K) Lysine 

Leu (L) Leucine 

Met (M) Methionine 

Asn (N) Asparagine 

Pro (P) Proline 

Gln (Q) Glutamine 

Arg (R) Arginine 

Ser (S) Serine 

Thr (T) Threonine 

Val (V) Valine 

Try (W) Tryptophan 

Tyr (Y) Tyrosine 
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Figure S1. Sequence alignment of DSCAM Ig1-Ig4 from H. sapiens with Dscam Ig1-Ig4 
different isoforms from D. melanogaster (Li et al., 2016; Meijers et al., 2007). The amino acids 
involved in the dimer interface between Ig2.A-Ig2.B and Ig3.A-Ig3.B in Dscam in Drosophila, 
are highlighted in purple. The conserved identical amino acids are white on a red background, 



	 164	 	

similar residues are red on a white background and the disulfide bonds are indicated in green 
numbers. The secondary-structure elements α-helices, 310-helices, β-strands and strict β-
turns are denoted η, α, β and TT, respectively. Multiple sequence alignment was performed 
using the ClustalW2 server (Sievers et al., 2011) and the output was processed and 
visualized using the ESPript 3.0 server (Robert and Gouet, 2014).  
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