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SUMMARY 

Polarization of hepatocytes is important for the liver to carry out its functions such as bile 

secretion and detoxification. In this context, cell polarity complexes, which are spatially 

segregated at specific membranous domains, define the 3-dimensional orientation of 

hepatocytes. The disturbance of cell polarity in early phases of tumorigenesis is 

associated with the activation of intracellular oncogenic signaling pathways affecting 

tumor initiation and progression. However, if the disturbance of hepatocellular polarity 

participates in the tumor formation and how the dysregulation of polarity factors affect 

hepatocarcinogenesis is poorly understood.  

In order to define relevant cell polarity factors, which may support hepatocellular 

carcinoma (HCC) development, high-dimensional expression array data derived from 

HCC patients were screened for significantly dysregulated cell polarity genes. A panel of 

significantly dysregulated factors, including the baso-lateral complex protein Scribble 

(Scrib), correlated with poor patient outcome and tumor recurrence. Scrib overexpression 

in HCC tissues associated with genomics gains of the Scribble gene locus on 

chromosome 8q24.3. The loss of membranous Scrib expression or its cytoplasmic 

enrichment was frequently observed in HCC tissues and HCC cell lines but not in normal 

liver tissues. In order to analyze the biological impact of cytoplasmic Scrib accumulation, 

polarized HCC cell lines (HepG2) stably expressing wildtype Scrib (Scrib
WT

, with 

membrane binding) and a mutated Scrib isoform (Scrib
P305L

, with enforced cytoplasmic 
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enrichment) were generated. In vitro, cytoplasmic Scrib
P305L 

reduced the formation of 

canalicular structures and moderately supported cell proliferation. In vivo, hydrodynamic 

gene delivery of Scrib
P305L 

and c-MYC induced elevated liver tumor formation compared 

to Scrib
WT 

and c-MYC co-injection. Importantly, Scrib
P305L

 stimulated HCC cell 

invasiveness, reorganization of actin filaments and overexpression of Rho GTPases. A 

comparative analysis of oncogenic pathways revealed an activation of AKT by Scrib
P305L

, 

which was mediated through the destabilization of negative AKT regulators leucine rich 

repeat protein phosphatase 1 (PHLPP1) and phosphatase and tensin homolog (PTEN). 

Transcriptome analysis detected Scrib
P305L

-dependent upregulation of genes, which were 

associated with cell motility, epithelial-mesenchymal transition (EMT) and extracellular 

matrix (ECM) remodeling. Among these genes, secreted protein acidic and cysteine rich 

(SPARC) was highly induced by cytoplasmic Scrib and facilitates cell invasion 

depending on the AP-1 transcription factor subunits ATF2 and JunB. Lastly a significant 

association between cytoplasmic Scrib, AKT and ATF2 activation/phosphorylation and 

loss of E-cadherin was confirmed in human HCC samples and Scrib
P305L

-induced gene 

signatures were detected in patient subgroups with worse overall survival.   

Taken together, this study illustrates that the overexpression and cytoplasmic enrichment 

of the cell polarity factor Scrib supports HCC development and tumor cell dissemination 

through the induction of distinct molecular mechanisms. These mechanisms include 

activation of the AKT signaling axis and stimulation of AP1-target genes, which are 

critical for the migratory phenotype of HCC cells.  
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ZUSAMMENFASSUNG 

Die drei-dimensionale Ausrichtung bzw. Polarität von Hepatozyten ist von zentraler 

Bedeutung für die Funktion der Leber (z.B. Galleproduktion und Detoxifikation). 

Membranassoziierte Zellpolaritätskomplexe definieren die apikale, laterale und basale 

Region einer Hepatozyte und der Verlust hepatozytärer Polarität ist ein frühes Ereignis in 

der Lebertumorentstehung. Gleichzeitig deuten publizierte Ergebnisse darauf hin, dass 

der Polaritätsverlust epithelialer Zellen sowohl eine tumorinitiierende als auch eine 

progressionsfördernde Wirkung ausüben können. Welche Polaritätsproteine jedoch 

maßgeblich an der Lebertumorentstehung beteiligt sind und wie die Dysregulation dieser 

Faktoren die Tumorentstehung beeinflusst, ist bisher kaum unterricht.  

Zur Identifikation relevanter Polaritätsfaktoren im hepatozellulären Karzinom (HCC) 

wurden hoch-dimensionale Expressionsdaten primärer humaner HCCs und des 

umgebenden gesunden Lebergewebes miteinander verglichen. Hierbei korrelierte die 

Überexpression des basolateralen Proteins Scribble (Scrib) signifikant mit einem 

schlechteren Überleben und frühen Tumorrezidiv von HCC-Patienten. Neben der Scrib-

Überexpression, bedingt durch die Amplifikation des Scribble Gens auf Chromosom 

8q24.2, ist ebenfalls ein Verlust der membranären Lokalisation sowie eine 

zytoplasmatische Anreicherung von Scrib in HCC-Geweben und Tumorzellen zu 

beobachten. Um die biologische Wirkung der zytoplasmatischen Scrib-Anreicherung zu 

analysieren, wurden in der HCC-Zelllinie HepG2 wildtypisches Scrib (Scrib
WT

 mit 

Membranbindung) und mutiertes Scrib (Scrib
P305L

 mit erzwungener zytoplasmatischer 

Anreicherung) stabil exprimiert. In vitro reduzierte zytoplasmatisches Scrib
P305L

 die 

Bildung des kanalikulären Netzwerks, was auf eine gestörte Zellpolarität hinweist, und 
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reduziert Zellproliferation. In vivo induzierte die Koexpression von Scrib
P305L

 und des 

Onkogens c-MYC mittels hydrodynamischer Injektion eine erhöhte Lebertumorbildung 

im Vergleich zu Mäusen mit Scrib
WT

/c-MYC Koexpression. Vor allem induziert 

Scrib
P305L

 die HCC-Zellinvasivität, die Reorganisation von Aktinfilamenten und die 

Überexpression von motogen-wirkenden Rho-GTPasen. Vergleichende Analysen auf 

zellulären Signalwegen zeigen eine Aktivierung des AKT-Signalweges in Scrib
P305L

-

exprimierenden Zellen, was sich durch eine erhöhte Destabilisierung der AKT-

Regulatoren Leucin-rich Repeat-Protein-Phosphatase 1 (PHLPP1) und Phosphatase and 

Tensin-Homolog (PTEN) erklärt. Mit Hilfe von Transkriptomanalysen konnten 

Scrib
P305L

-abhängige Signaturen identifiziert werden, welche mit Zellmotilität, Epithelial-

mesenchymale Transition (EMT) und dem Remodelling der Extrazellularmatrix (EZM) 

assoziiert sind. Unter diesen Scrib
P305L

-abhängigen Genen befindet sich Secreted Protein 

Acidic and Rich in Cysteine (SPARC), welches die Invasivität von HCC Zellen 

signifikant erhöht und durch die AP-1 Transkriptionsfaktoruntereinheiten ATF2 und 

JunB positiv reguliert wird. In humanen Geweben konnte der Zusammenhang zwischen 

zytoplasmatischem Scrib, der Phosphorylierung von AKT und ATF2 als auch dem 

Verlust von E-Cadherin als EMT-Marker bestätigt werden. Ferner konnte eine 

signifikante Anreicherung von Scrib
P305L

-abhängigen Signaturgenen in HCC-Patienten 

mit schlechter Prognose gezeigt werden.  

Zusammenfassend zeigt diese Studie, dass die Überexpression und die zytoplasmatische 

Anreicherung des Zellpolaritätsfaktors Scrib die HCC-Entwicklung und die 

Tumorprogression durch die Induktion bestimmter molekularer Mechanismen unterstützt. 

Diese Mechanismen umfassen die Aktivierung der AKT-Signalkaskade und die 

Stimulation von AP1-Zielgenen, welche für den Migrationsphänotyp von HCC-Zellen 

von zentraler Bedeutung sind. 
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1 INTRODUCTION 

 

1.1 Liver and Hepatocellular carcinoma (HCC) 

1.1.1 Physiology of the liver 

The liver has very important functions such as secretion of bile acid and salt, metabolism 

(anabolic and catabolic processes) of nutrients, as well as detoxification of toxic compounds [1]. 

The physiological function of the liver is mediated by different cell types. The parenchymal cells 

of the liver and metabolically active cells are hepatocytes (about 60% of all cells); while non-

parenchymal cells in the liver include liver sinusoidal endothelial cells (LSECs), Kupffer cells 

and stellate cells. LSECs separate hepatocytes from blood stream and facilitate the so-called 

porto-central blood flow [1]. Kupffer cells are localized near the LSECs in the sinusoids and act 

as central regulators of immune responses in case of infections. Stellate cells are located in the 

Space of Disse between hepatocytes and LSECs and represent the 'store-house' for vitamin A. In 

addition， they produce extracellular matrix (ECM) material in case of liver damage [2].  

The liver exhibits a specific “plate-like” spatial architecture, with layers of hepatocytes in 

between sinusoidal spaces (Figure 4A). The plasma membrane of hepatocyte forms a branching 

network of “bile canaliculi”, which is the place for the secretion of bile components [3]. The liver 

has a unique blood vessel system, in which 75% of the liver blood supply comes from the 

nutrient-rich venous arm, while hepatic arteries contribute with 25% of oxygenated blood [4]. 

Highly fenestrated LSECs allow a permanent contact of hepatocytes with the blood stream, 

which allows a highly efficient transportation between hepatocytes and blood vessels [5]. 
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Figure 1: Liver lobe near the central area. Scheme shows the liver specific “plate-like” structure near the 

central area of a hepatic lobule. Dark blue arrow illustrates the direction of blood flow from the portal triad to 

the central vein. Red dots show the bile canaliculus network between two adjacent hepatocytes. Figure 

modified from “The two epithelial cell types in the liver” [6]. 

 

1.1.2 Epidemiology and Etiology of HCC 

Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. 

Worldwide, HCC is the fifth most common cancer type in men (7.9% of cancers) and seventh 

most common in women (6.5% of cancers) [7]. Its incidence is highest in Africa and Eastern Asia 

with more than 80% of all new HCC cases. In contrast, Northern Europe and United States have a 

lower HCC incidence with less than 5.0 per 100,000 individuals. However recent studies 

illustrated decreased HCC incidence in developing countries and an elevated number of cases in 

developed and industrialized countries [7]. The reasons for this phenomenon are changes in the 

frequency of risk factors in the respective population (e.g. viral infections and virus-independent 

liver diseases; see below). Compared to other malignant tumors, HCC is the third leading cause 

of cancer-related death and the 1-year overall survival rate is below 50% [8]. 

Hepatitis B virus (HBV)/hepatitis C virus (HCV) infections are major risk factors for HCC 

development [9]. About 5% of all people worldwide (around 75% in Asia) exhibit a chronic HBV 

infection. There is evidence showing the mechanistic connection between chronic HBV infection 

and cancer development, and HBV is considered to be causative for more than 50% of HCCs [7]. 

In contrast, 30% of the global HCC cases are due to chronic HCV infection. Compared to HBV, 

HCV is leading to a higher percentage of chronic hepatitis (80%) and liver cirrhosis development 
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(20%) [10]. In countries with low HBV/HCV prevalence such as the United States and Germany, 

alcohol abuse is one key etiological risk factor that may lead to alcohol-induced liver disease 

(ALD) and HCC [11]. In addition, nonalcoholic fatty liver disease (NAFLD) and the 

nonalcoholic steatohepatitis (NASH) represent further important risk factors for the development 

of HCC. NAFLD and NASH may progress to liver cirrhosis in about 5% and eventually tumor 

initiation. Although the relative numbers of HCCs derived from NAFLD is low (about 0.5%), this 

etiology is getting more relevant because of the high prevalence of obesity and diabetes in 

industrialized countries [12]. In addition, autoimmune disorders, cholestatic disorders, inherited 

disorders (e.g. hemochromatosis) and aflatoxin exposure represent further risk factors of 

hepatocarcinogenesis.  

 

1.1.3 Pathogenesis of HCC 

So far it is not yet fully understood how HCC progresses from damaged hepatocytes to advanced 

tumors. However, compared to other solid cancers, HCC has some specific histomorphological 

characteristics, which include the step-wise progression from normal hepatocytes to well-

differentiated and premalignant lesions to poorly differentiated and malignantly transformed 

HCC cells [13]. Another important feature of hepatocarcinogenesis is the formation of multiple 

tumors, which might arise from independent tumor initiating events or satellite nodules due to 

intrahepatic metastasis. Especially intrahepatic metastasis is considered to be more aggressive 

resulting in poor patient prognosis [14]. In addition, HCC shows aberrant vascularization, which 

further supports the aggressiveness of tumors [15].  

With regard to molecular pathogenesis, the accumulation of genomic alterations plays an 

important role in the development and progression of HCC. Classification approaches based on 

transcriptome analysis and sequencing data revealed a clear association between distinct genomic 

alteration patterns with biological and clinical features of HCCs [16]. For example, a subgroup of 

HCCs that was characterized by high tumor invasiveness, showed higher HBV copy numbers, 

mutations of the tumor-suppressor gene TP53 mutation, phosphoinositide-3-kinase (PI3K)/AKT 

activation, and rare PI3K catalytic alpha (PIK3CA) mutations. Another subgroup with 

intrahepatic metastasis associated with reduced expression of E-cadherin and activation of the 
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wingless (Wnt) signaling pathway [16]. In addition, chromosome instability and dysregulation of 

DNA methylation have also been described to be involved in the pathogenesis of HCC [17, 18]. 

The tumor microenvironment is another important parameter affecting HCC progression. During 

liver fibrosis and cirrhosis under continuous inflammation, fibrotic stromal cells (so-called 

myofibroblasts) increase the production of secreted factors such as urokinase and matrix 

metalloproteinases (MMPs), which directly affect ECM composition. On the other hand, 

malignantly-transformed tumor cells gain properties of mesenchymal cells, with an abnormal 

production of these secreted factors, which leads to a degradation of basal lamina and increased 

invasion/metastasis of tumor cells [19]. In addition, cytokines and chemokines secreted by non-

parenchymal cells, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), transforming 

growth factor (TGF), accelerate the process of liver fibrosis and are critical for the induction of 

HCC invasiveness [2].  

1.1.4 Treatment for HCC  

So far, surgical resection followed by liver transplantation, which improves the five-year survival 

from 15.2% to 77.2%, represents the only curative treatment for HCC patients. However, the 

treatment is limited to patients with early tumor stages (according to the TNM staging system) 

and good residual liver function (Child-Pugh score). Surgical resection and liver transplantation 

do not improve prognosis of late-stage patients with multiple nodules (>3), metastasis or severe 

liver dysfunction due to cirrhosis [20]. For patients with intermediate or advanced tumor stages, 

only palliative treatment can be offered. HCC must be considered as a chemoresistant tumor 

since neither doxorubicin alone nor combinations of doxorubicin, cisplatin, interferon and 5-

fluorouracil or any other clinically established cytotoxic substances significantly improve 

patient's survival [21].   

Some other therapeutic approaches have been developed for HCC patients with un-respectable 

lesions. For example, transarterial chemoembolization (TACE) treatment was established due to 

the aberrant vascularization of HCC [10]. TACE combines inhibition of tumor blood supply with 

regional delivery of chemotherapy, which shows promising effects on tumor regression and is 

used for intermediate-stage patients and down-staging treatment for surgical resection [22]. In 

addition, the small tyrosine protein kinase inhibitor Sorafenib targets multiple receptors 

regulating pathway in tumor cells and endothelial cells including vascular endothelial growth 
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factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR). By this, 

Sorafenib not only affects tumor cell biology but also inhibits angiogenesis in a multi-modal 

manner. Although, first results illustrated that Sorafenib increase the overall survival of HCC 

patients about 3 months [23], a recent randomized phase III study of HCC patients (n=1,114) 

after surgical resection or ablation demonstrated that Sorafenib treatment did not significantly 

improve patient overall and recurrence-free survivals [24]. Thus, the beneficial effects of 

Sorafenib for HCC patients are controversially discussed.  

Basic research and clinical trials are still ongoing to identify novel and druggable therapeutic 

targets, which may improve HCC patient's situation. For example, the PI3K/AKT pathway and 

mechanistic target of rapamycin (mTOR) are activated in HCC patients and mTOR inhibitors are 

currently used in clinical trials for HCC patients after surgical resection or TACE treatment [25]. 

This pathway is of special relevance since it has been shown that a number of oncogenic 

pathways and cellular mechanisms may activate the PI3K/AKT signaling axis [26]. Therefore, a 

deeper understanding of the underlying molecular mechanisms may help to identify HCC patients 

that may benefit from specific PI3K/AKT-directed inhibition approaches.  
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Figure 2: HCC development and current treatment options. The scheme illustrates the process of liver 

cancer development and progression. Risk factors that promote the progression from chronic liver diseases to 

HCC are summarized. Most relevant risk factors and pathogenenic mechanisms are listed. Therapeutic 

approaches for early/progressed HCC are mentioned next to the green arrow. Figure modified according to 

“Natural history of chronic liver disease” [2].  
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1.2 Epithelial cell polarity 

1.2.1 Cell polarity is important for epithelial cell functionality 

A high degree of cell polarity is a basic feature of many epithelial cells. The most important 

characteristic of epithelial cell polarity is the partitioning of plasma membrane into apical, lateral 

and basal domains. The apical domain refers to the membrane surface facing to cavities of 

organs. The lateral domain keeps close connection and cell-cell contact between adjacent cells, 

while the basal domain has direct contact with ECM or the basal lamina [27]. Cell polarity and 

membrane segregation are essential for epithelial cells to carry out their biological functions such 

as directional transport (absorption and secretion) of nutrients and salt between the extracellular 

environment and tissues. Intracellularly, it facilitates the molecular trafficking between 

organelles, e.g. from endoplasmic reticulum (ER) to the Golgi complex. In addition, cell polarity 

plays an essential role in keeping cell morphology, which is essential in different biological 

events, such as differentiation, migration and epithelial to mesenchymal transition (EMT) [28]. 

The establishment of cell polarity has been studied in a variety of cell types under different 

physiological and pathological conditions. Spatial orientation was first described during 

embryogenesis and tissue development, which is characterized in the following steps: a) initial 

appearance of cell-cell contact, b) assembly of cell junctions and c) establishment of epithelial 

cell morphology [29]. In these steps, cell junction-associated molecules are of special importance 

for the formation of cell polarity. For example, tight junctions (TJs), which mediate strong cell-

cell contact between adjacent cells, are important in the initiation and maintenance of epithelial 

cell polarity and define the boundary between apical and lateral domains. TJs include 

transmembrane proteins (e.g. occludin and claudin), junctional adhesion molecules (JAM, e.g. 

JAM-A, JAM-B) and peripheral membrane proteins (e.g. zonula occludens-1) attached to 

cytoskeleton [30]. In addition to TJs, adherens junctions (AJs) have also been found to be 

indispensable in the maintenance of cell polarity. The transmembrane protein E-cadherin is the 

core component of AJs, which allows a tight physical interaction of neighboring cells via the 

formation of homodimer and binding of extracellular domains. In addition, E-cadherin forms a 

complex with intracellular catenin proteins, which on one hand mediate the interaction with the 

actin cytoskeleton and on the other hand affect signal transduction [31].  
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Establishment and maintenance of cell polarity and junctional structures are a fundamental 

characteristic of epithelial cells to carry out their respective functions under various biological 

conditions. However, in addition to the core proteins directly involved in the assembly of TJ and 

AJ, other proteins and lipids, which are associated with cell-cell junctions, also participate in the 

process of epithelial polarization. A considerable number of factors has emerged to a complex 

network, which include epithelial polarity program (EPP) polarity protein complexes, Rho 

GTPases and polarity lipids [28]. 

 

1.2.2 Key players of EPP: Polarity complexes  

Polarity complexes refer to groups of proteins that are found in close proximity to certain polarity 

domains. These protein complexes are associated with the core proteins of cell junctions, and 

play a central role in EPP. So far, three polarity complexes have been described: the Crumbs 

complex, the Par complex and the Scrib complex. The Crumbs complex consists of 

transmembrane Crumbs (CRB), protein associated with Lin-7 1 (PALS1) and PALS1-associated 

tight junction protein (PATJ).  The Crumbs complex is located at apical cellular domains, which 

directly affect the assembly of TJ structures [32]. The Par complex comprises the proteins 

partitioning defective-3 (Par3, synonym: Baz), partitioning defective-6 (Par6) and atypical 

protein kinase C (aPKC).  It is located near subapical cell domains where it interacts with core 

proteins of both TJ and AJ [33]. The Scrib complex is composed of scribbled planar cell polarity 

protein (Scrib), discs large (Dlg) and lethal giant larvae (Lgl, LLGL1 in human). This complex 

defines the basolateral domain of epithelial cells and is critically involved in the formation of AJ, 

probably in an E-cadherin-dependent manner [33] (Figure 3).  

Although different polarity complexes are defined by their specific localization at the plasma 

membrane, they are not mechanistically separated from each other. Instead, polarity proteins 

from different complexes frequently communicate with each other in terms of an active protein 

exchange. These interactions result in either the recruitment of different proteins in the same 

complex or the competitive integration of individual proteins in different complexes. This 

mechanism of communication between polarity complexes is defined as “mutual exclusion” [33]. 

For example, the Par complex constituent aPKC is integrated in the apical Crumbs complex at 

early stages of Drosophila embryogenesis. In later developmental stages, it is recruited by Par3 to 
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the Par complex near the subapical domain [34]. In contrast, Par6, an adaptor protein for aPKC, 

binds and mediates the inactivation of Lgl, which is a major component of Scrib complex, via the 

phosphorylation by aPKC. Inactivated/Phosphorylated Lgl is then excluded from the subapical 

domain [35]; see Figure 3. Thus, through interactive communication with each other, cell polarity 

complexes represent highly dynamic modules that can adjust the cellular shape and functionality 

according to extracellular and endogenous requirements. 

 

 

Figure 3: Polarity complexes and spatial 

membrane organization of epithelial cells. 

The scheme shows the three main polarity 

complexes in an epithelial cell. The specific 

membranous domains are indicated by 

different colors. The apical domain, lateral 

domain and basal domain of this epithelial 

cell are shown in dark red, yellow and 

green, respectively. TJ and AJ are located at 

the lateral domain. Integrin connects the 

basal domain with the underlying 

extracellular matrix. The arrows indicate the 

phosphorylation of CRB (Crumbs complex) 

and Lgl (Scrib complex) by aPKC (Par 

complex), illustrating the dynamic 

interaction of proteins with polarity 

complexes.  

 

 

 

 

1.2.3 Crosstalk between Rho GTPases and polarity complexes 

In addition to the polarity complexes, Rho GTPases are also central regulators of the EPP system. 

Rho GTPases belong to small G proteins of the Ras family, which bind to GTP or GDP and 

catalyze the hydrolysis of GTP [36]. During the formation and maintenance of cell polarity, Rho 

GTPases modulate epithelial morphology through the re-organization of the cellular cytoskeleton. 

The Rho GTPases family consists of about 20 different GTPases, including RhoA, Rac1 and 

CDC42. Importantly, different GTPases carry out their functions at specific subcellular regions 

[37]. For example, RhoA interacts with actin-myosin filaments in the cytoplasm, which affects 
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membrane retraction during different biological process, e.g. cytokinesis [38]. CDC42 and Rac1 

are both found at the leading edge of migrating cells, where they regulate actin filament 

polarization and induce lamellipodia formation [39]. The specific subcellular localization of Rho 

GTPases suggests that they may have functional relevance in the regulation of polarity 

complexes. 

Indeed, Rho GTPases and cell polarity proteins are frequently interacting under different 

physiological and pathological conditions. For example, in the process of EMT, CDC42 binds to 

Par6 and facilitates the activity of aPKC-Par6 complex [39]. In addition, the aPKC-Par6 complex 

activates Rac1 via the RAC-specific guanine nucleotide exchange factor (GEF) T-cell lymphoma 

invasion and metastasis 1 (TIAM1) [40]. In addition, aPKC also activates p190A Rho GTPase 

activating protein (GAP), which switches off the activity of RhoA [39]. With the help of the Par 

complex, CDC42 induces the activity of Rac1 at lamellipodia, and inhibits the activity of RhoA 

in the cytosol. As a result, the Par complex promotes cell motility in the process of EMT via the 

modulation of different Rho GTPases [39]. Thus, cell polarity complexes communicate with Rho 

GTPases in the fine adjustment of cell cytoskeleton dynamics, which is essential in the 

modulation of cell morphology and motility. 

 

1.2.4 Disturbance of cell polarity in cancer development 

Loss of cell polarity is frequently found at early stages of epithelial tumor formation. For 

example, disruption of epithelial sheets, aberrant multilayering and loss of physiological lumen 

are typical features in early tumor development. However, disturbance of cell polarity is more 

than a consequence of tumor development [27]. This conclusion is supported by the fact that 

polarity proteins in different tumor types are frequently altered by genomic amplifications, 

deletions and mutations. For example, Dlg, Lgl and PATJ are downregulated, while Par6 is 

amplified and overexpressed in different cancer types [33]. Nevertheless, for some polarity 

proteins (e.g. Scrib, aPKC and Par3) both overexpression and downregulation have been 

described in several tumors suggesting that different mechanisms might be involved in the 

development of cancers [33, 41, 42].  

Cell division/proliferation can be affected by disturbed cell polarity. During asymmetric cell 

division, some important proteins and RNAs are segregated into daughter cells, which determine 
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the fate of daughter cells in differentiation [43]. This process of asymmetric localization is 

dynamically modulated by the polarity proteins, e.g. aPKC and Par-proteins via phosphorylation 

and mutual exclusion. Mutation and dysfunction of these polarity proteins lead to dysfunctional 

asymmetric cell division. As a result, cells continue with symmetric divisions without cell cycle 

termination, which may give rise to tumors [43]. In addition to the disturbed asymmetric division, 

pathways that directly regulate mitosis such as the Hippo pathway can be activated or inactivated 

by disturbed cell polarity in cancer development [33].  

Cell invasion/metastasis is also affected by disturbed cell polarity during tumor progression. Loss 

and reestablishment of cell polarity is necessary for tumor cells to leave the original localization 

and to achieve metastatic properties. In this context, EMT, which is highly relevant during 

embryogenesis, is of special importance for initial steps in tumor cell dissemination 

dissemination [44]. The process of EMT is directly connected with cell polarity, since the loss of 

the AJ molecule E-cadherin, as well as overexpression of N-cadherin and vimentin is regarded as 

important characteristics of EMT [19]. In addition to E-cadherin, Rho GTPases also play a 

central role in EMT via the interaction with cell polarity proteins. As described earlier, important 

positive regulator of EMT (CDC42 and RAC) are activated by polarity protein Par6 and aPKC 

(see chapter 1.2.3). Indeed, Par6 overexpression has been found to induce tumor metastasis in 

breast cancer via the activation of EMT-associated signaling pathway [33, 45].  

Therefore, genetic alterations as well as abnormal localization of polarity proteins are associated 

with tumor progression via cell dedifferentiation, cell proliferation, EMT and early metastasis 

[33].  

 

1.2.5 Disturbance of cell polarity affects oncogenic signaling pathways 

Recent studies have focused on the molecular mechanisms how dysregulation of the EPP system 

affects tumorigenesis. Cell polarity proteins integrate extracellular information into intracellular 

pathway responses and a dysregulation of cell polarity proteins is supposed to affect these tumor-

relevant downstream signaling pathways. Indeed, several oncogenic pathways have been 

identified to be modulated by EPP components. Here, mutations of single polarity proteins or 

disruptions of polarity complexes accounts for the activation of intracellular oncogenic pathways 
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[33]. Among these, the Hippo/yes-associated protein (YAP) and Wnt pathways are two 

examples, which affect tumor development and progression in different tissues. 

The Hippo/YAP pathway is essential for organ size control and HCC development [46]. First 

evidences already illustrated that the apical membrane protein FERM domain-containing protein 

6 (FRMD6) regulates the Hippo/YAP pathway. Specifically, FRMD6 forms a complex with two 

other apical membrane proteins, kidney and brain expressed protein (Kibra) and neurofibromin 2 

(NF2, synonyms: Merlin). The FRMD6/NF2/Kibra complex induces the phosphorylation of 

Hippo pathway component large tumor suppressor kinase 1 (Lats1), which results in the 

dephosphorylation and degradation of the transcriptional co-activator YAP in the cytoplasm. 

Thus, the apical complex FRMD6/NF2/Kibra acts as a tumor suppressor via the negative 

regulation of oncogenic YAP activity [47, 48]. In addition, other EPP components have also been 

identified as upstream modulators of the Hippo/YAP pathway. For example, Angiomotin 

(AMOT), which is usually localized in close proximity to apical Crumbs complex and which 

contains Proline-Proline-x–Tyrosine (PPxY) motifs, binds directly to the WW domain of YAP 

and its homolog WW domain containing transcription regulator 1 (WWTR1, synonyms: TAZ). 

The interaction between AMOT and YAP/TAZ fosters the localization of YAP/TAZ to TJs, 

which is associated with their inactivation [49]. Besides this, independent studies have shown the 

regulatory effect on YAP/TAZ by the basolateral Scrib complex, and the apical Crumbs 

complexes [50, 51]. 

 

Figure 4: Known EPP regulators of Hippo/YAP 
pathway. Scheme shows the apical polarity 

complex NF2/FERM6/Kibra that mediates the 

phosphorylation of macrophage stimulating 1/2 

(Mst1/2), which is a major component of Hippo 

pathway. Phosphorylation of Mst1/2 turns on the 

Hippo kinase cassette, including phosphorylation of 

Lats1/2 and YAP. Except for the NF2/FERM6/Kibra 

complex, AMOT directly binds to YAP, leading to 

the cytoplasmic retention of YAP near TJs. The 

interaction between AMOT and YAP may also 

induce phosphorylation of YAP by the Hippo 

pathway components. Phosphorylated YAP is 

degraded by ubiquitination or kept in the cytoplasm 

by 14-3-3 protein binding. In this case, YAP cannot 

bind to its transcriptional co-activator TEAD, 

leading to the repression of YAP-target genes.  
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Wnt pathway is another example for an EPP-relevant signaling pathway, which plays an essential 

role in defining cell fate determination (canonical pathway) and regulation of cell movement 

(non-canonical pathway) [52]. The canonical Wnt pathway depends on the AJ-associated protein 

β-catenin, which activity is inhibited after binding to a protein complex consisting of 

adenomatosis polyposis coli (APC), glycogen synthase kinase 3 (GSK3) and Axin [53]. Followed 

by Wnt ligand binding to the receptors Frizzled (Fz) and low density lipoprotein receptor-related 

protein 5/6 (LRP5/6), the APC/GSK3/Axin complex is recruited to the plasma membrane by 

LRP5/6, which induces the translocation of β-catenin into the nucleus [53]. Nuclear β-catenin 

activates transcriptional factors T cell-specific transcription factor (TCF) and target genes 

involved in cell fate determination and oncogenesis [53]. Interestingly, Wnt signaling also 

activates a non-canonical pathway independent on β-catenin, which regulates cell morphology 

and movement via Rho GTPases [52]. Wnt stimulation activates a protein complex consisting of 

Dishevelled (Dsh) and Dishevelled associated activator of morphogenesis 1 (Daam1), which 

further increase the activity of RhoA in the rearrangement of actin filaments [54].  

It is worth mentioning that except of the Hippo/YAP and Wnt pathways, other signaling 

pathways (e.g. TGF-β) are also regulated by different cell polarity components [44]. Thus, EPP 

components play an important role in the transduction of extracellular signal, and regulation of 

intracellular signaling pathways related to cell division, differentiation and migration; while 

disruption of polarity complexes may lead to dysregulation of these pathways, which promotes 

cancer development via cell proliferation, dedifferentiation and metastasis.   
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1.3 Hepatocellular polarity and HCC development 

1.3.1 Liver function depends on hepatocellular polarization 

The important functions are carried out by the major liver cell type, the hepatocyte [1]. The 

physiological function of the hepatocyte strictly depends on the establishment and maintenance 

of hepatocellular polarity, including the formation of the well-defined apical, lateral and basal 

domains comparable to other epithelial cell types such as small intestinal cells [6]. However, 

hepatocytes establish a specific polarity domain composition, which is important for carrying out 

their functions [6]. For example, adjacent hepatocytes orient their apical domains towards each 

other to form small lumens, which further branch in 3-dimensional canalicular structures for bile 

secretion (Figure 5) [3]. Similar to the apical site, hepatocytes form extensions and protrusions at 

the basal domain in close proximity to the Space of Disse and LSECs, which is a requirement for  

a highly efficient transportation between hepatocytes and blood vessels [5]. In this way, 

maintenance of hepatocellular polarity supports the liver function under physiological conditions, 

whereas the disturbance of cell polarity can lead to dysfunction of liver and disease. 

  

Figure 5: Hepatocellular polarity. Scheme shows cell-cell junctions, which facilitate the cell-cell contact 

between two adjacent hepatocytes. The red membrane indicates the apical lumen. Iron pumps and transporters, 

e.g. MRP2 are expressed at this domain of hepatocyte, which are important for bile secretion. The yellow 

membrane indicates the lateral domain of hepatocytes, where AJs and TJs are located. The green colored 

membrane represents the basal domain in direct contact with the Space of Disse. BC: bile canaliculus. 
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1.3.2 Disturbance of hepatocellular polarity in early HCC development  

Disturbance of cell polarity is considered to be an early event in epithelial tumor development 

[27]. In the liver, during liver fibrosis and cirrhosis, excessive matrix deposition reduces the cell 

contact with sinusoidal blood or neighboring hepatocytes, which eventually leads to regenerative 

nodules [6]. In HCC, the loss of hepatocellular polarity is detected in the early stage of 

hepatocarcinogenesis such as dysplastic nodules. The “plate-like” structures with clear porto-

central architecture are replaced by pseudoglandular structures in neoplastic livers [55]. 

Furthermore, discontinued canaliculi formation with the mislocalization of canalicular proteins 

(Na
+
-K

+ 
ATPase and alkaline phosphatase) are detectable in preneoplastic lesions [56]. 

Interestingly, the morphology of neoplastic hepatocytes have a high similarity with polypotent 

embryonic or hepatocytes after damage, which is also mirrored by the regression of cellular 

polarization during liver regeneration [6]. These observations suggest that the disturbance of 

hepatocellular polarity happens at early steps in tumorigenesis, which may play a specific role in 

the pathogenesis of liver cancer. 

The development HCC is associated with the dysregulation of cell polarity factors and relevant 

proteins such as liver kinase B1 (LKB1) and inositol polyphosphate phosphatase-like 1 

(INPPL1), for which a direct impact on hepatocarcinogenesis have been discussed [57]. The 

kinases LKB1 and its effector 5'-AMP-activated protein kinase (AMPK) play an important role in 

the maintenance of cell polarity via direct regulation on polarity protein Par1, and modulation on 

other polarity components (Scrib and Crumbs complexes) [58]. Mutations of LKB1 and AMPK 

disturb hepatocellular polarity and induce tumor formation in the liver in mouse model [57]. In 

addition to LKB1, the AJ protein E-cadherin also shows important function in HCC development. 

Loss of membranous E-cadherin is associated with an EMT phenotype and intrahepatic 

metastasis in HCC patients [16]. 

In summary, loss of hepatocellular polarity is an early event in liver tumor development. Several 

polarity proteins and polarity-associated pathway have been connected with hepatocarcinogenesis 

[57]. However, if a general loss of cell polarity or a disturbance of a certain polarity complex is 

important for liver tumorigenesis remains unknown. 
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2 OBJECTIVES 

Maintenance of cell polarity is considered to facilitate tumor-suppressor functions in epithelial 

cells. Disturbance of the spatial epithelial cell organization leads to a loss of function and has 

been discussed to be involved in the initiation and progression of cancers. For the liver, a high 

degree of hepatocellular polarization is important to fulfill its biological functions, including 

deteoxification and bile production. So far, it is not fully understood if and how the spatial 

disturbance of hepatocellular polarization can promote liver carcinogenesis. It is also unknown 

which specific molecular mechanisms are induced by the dysregulation of cell polarity 

constituents. For these reasons, the objectives of this study are:   

1. Identification of cell polarity-associated genes that are significantly dysregulated in human 

HCC samples in comparison to non-malignant liver tissues.  

2. Defining the expression/localization of selected cell polarity proteins in HCC cells and tissues. 

3. Establishment of an in vitro model for the functional und molecular characterization of the 

identified polarity proteins. 

4. Confirming the vivo relevance of the identified polarity gene in liver tumor formation using a 

hydrodynamic gene delivery approach.  

5. Identification of effector mechanisms induced by the dysregulation of the selected polarity 

proteins.   

6. Corroboration of findings in an independent HCC sample cohort.  
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3 MATERIALS 

 

3.1 Consumables 

Consumables and plastic ware used in this study are listed in Table 1.  

Table 1: Consumables 

Substance Company 

Cell culture plates TPP, Trasadingen, Switzerland 

Coverslips and slides Engelbrecht, Edermünde, Germany 

Parafilm Pechiney, Düsseldorf, Germany 

Matrigel Matrix-coated Transwells Corning, Wiesbaden, Germany 

PCR 96 well plate Applied Biosystems, Thermo Fisher Scientific, 
Langenselbold, Germany 

PCR reaction tubes Life science, Brand, Wertheim, Germany 

Nitrocellulose membrane 0.4 µm GE Healthcare, Freiburg, Germany 

Cell scrapper Corning 

Whatman paper GE Healthcare 

Sterile vacuum-filter 0.22µm Corning 

Mr. Frosty™ Freezing Container Thermo Fisher Scientific 

Eppendorf tubes Eppendorf, Hamburg, Germany 

Precellys tubes 
Bertin Technologies, Montigny-le-Bretonneux, 
France 

Cryovials Sigma-Aldrich, Taufkirchen, Germany 
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3.2 Equipment 

Table 2: Equipment 

Name Company 

12-Tube Magnet Qiagen, Hilden, Germany 

Agarose gel electrophoresis  Kreutz Reiskirchen, Germany 

AlphaImager™ Gel Imaging System Biozym Scientific, Hessisch Oldendorf, Germany 

Laminar Flow Hood Kojair Tech, Vilppula, Finland 

Centrifuges (MIKRO 200 R) M.S. Laboratories, Wiesloch, Germany 

CO2 atmosphere  Sigma-Aldrich 

FLUOstar Omega Microplate Reader BMG Labtech, Ortenberg, Germany 

Fume hood (Secuflow) Waldner, Wangen, Germany 

Immunofluorescence Microscope (CKX41) Olympus, Eislingen, Germany 

LI-COR Odyssey® Imaging System LiCor Biosciences, Bad Homburg, Germany 

Nanodrop Spectrometer (ND-1000) Thermo Fisher Scientific 

PH Meter (pH210) Hanna Instruments, Vöhringen, Germany 

PCR cycler (PTC-200) Bio-Rad Laboratories, München, Germany 

Rolling shaker (CAT RM5) Neolab, Heidelberg, Germany 

StepOne Plus Thermo Fisher Scientific 

Sonicator (S-4000) Qsonica, Newton, USA 

SDS-PAGE electrophoresis Bio-Rad Laboratories 

Thermomixer Eppendorf 

Western immunoblotting chambers Bio-Rad Laboratories 
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3.3 Reagents 

3.3.1 General reagents 

General reagents including chemicals, transfection reagents, polymerase chain reaction (PCR) 

reagents etc. are listed in Table 3. 

 

Table 3: Chemicals, transfection reagents and PCR reagents 

Substance Company 

2-Mercaptoethanol Roth, Karlsruhe, Germany 

Acetic acid Sigma-Aldrich 

Agarose Roth 

Ammonium persulfate (APS) Roth 

Avidin and biotin Kit  Vector Laboratories, Burlingame, USA 

ABsolute qPCR SYBR Green ROX Mix  Thermo Fisher Scientific 

Bovine Serum Albumin (BSA) Sigma-Aldrich 

Bradford reagent Sigma-Aldrich 

Cycloheximide (CHX) Sigma-Aldrich 

10x Cell Lysis Buffer Cell Signaling/New England Biolabs, Frankfurt, 
Germany 

Dimethyl sulfoxide (DMSO) Thermo Fisher Scientific 

Dynabeads Protein G Thermo Fisher Scientific 

dNTP-Mix Thermo Fisher Scientific 

Peroxidase Substrate (DAB) DAKO, Hamburg, Germany 

Ethanol Sigma-Aldrich 

Ethylenediaminetetraacetic acid (EDTA) Serva, Heidelberg, Germany 

Fugene HD transfection reagent Thermo Fisher Scientific 

Formaldehyde (37%) Merck, Darmstadt, Germany 

Geneticin (G418) Thermo Fisher Scientific 

GeneRuler DNALadder Mix Thermo Fisher Scientific 

Glycine Sigma-Aldrich 

Hydrochloric acid (HCl) Merck 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Roth 

Horseradish peroxidase (HRP) system  DAKO 

Igepal CA 6 Sigma-Aldrich 

Isopropanol Sigma-Aldrich 

Rat-tail tendon collagen I Roche, Mannheim, Germany 
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Lipofectamine® RNAiMAX Life Technologies, Darmstadt, Germany 

Magnesium chloride hexahydrate Roth 

Methanol Sigma-Aldrich 

Na-deoxycholate Roth 

Sodium chloride (NaCl) Roth 

Protease inhibitor Serva, Heidelberg, Germany 

Phosphotaseinhibitor PhosStop  Roche 

PageRuler Prestained Protein Ladder Thermo Fisher Scientific 

Paraformaldehyde (PFA) Merck 

Phosphate-buffered saline (PBS) GE Healthcare 

Phenylmethylsulfonyl fluoride (PMSF) Merck 

REAL Hematoxylin  DAKO 

Recombinant human SPARC R&D Systems, Wiesbaden, Germany 

Salmon sperm DNA Thermo Fisher Scientific 

Tetramethylethylenediamine  Roth 

Tris-hydroxymethyl-aminomethane (Tris) Roth 

Triton x-100 Merck 

Tween 20 Sigma-Aldrich 

Trypsin/EDTA PAA Laboratories, Cölbe, Germany 

Wortmannin Sigma-Aldrich 
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3.3.2  Solutions and buffers 

Table 4: Solutions and buffers 

Lysis Buffer (for Co-IP) RIPA Buffer 

Tris-HCl pH 7.4                     

Igepal CA 630 (NP40)           

Na-deoxycholate                   

NaCl                                      

EDTA                                     

PMSF                                     

50 mM 

1% 

0.25% 

150 mM 

1 mM 

1 mM 

NaCl                               

SDS                                      

Na-deoxycholate      
Igepal CA 630 (NP40)          

EDTA                       

Tris (pH8.0) 
  

 

150 mM 

0.1%  

0.5% 

1% 

5 mM   

50 mM 

IP-Wasch Buffer TE Buffer 

Tris (pH 8.5)  

LiCl                   

NP40                                    

Na-deoxycholate      
   

 

100 mM 

500 mM 

1%   

1% 

Tris (pH 8.0)  

EDTA                

 

70 mM 

1 mM 

Talianides Buffer 4X SDS-PAGE loading buffer 

Tris (pH 8.0) 

EDTA                   

SDS                   

 

70 mM 

1 mM 

1.5% 

TrisHCl (pH 6.8)                

DTT                                 

SDS                                   

Bromophenol blue            

Glycerol                            

 

200 mM 

400 mM 

8% 

0.4% 

40% 

Borate buffer TBS Buffer 

Boric acid                      
NaCl                               
Sodium tetraborate         
Adjust the pH to 8.4 

 

100 mM 

75 mM 

25 mM 

TrisHCl (pH 6.8)                 

NaCl                                  

Adjust the pH to 7.6 

50 mM 

150 mM 

Caspase Lysis Buffer Caspase Assay Buffer 

TrisHCl (pH 7.4)               

NaCl                               

Glycerin                           

Triton X-100                     

EDTA                                

20 mM 

137 mM 

10% 

1% 

2 mM 

HEPES (pH 7.5)                 

NaCl                                

EDTA                               

Glycerin                            

50 mM 

50 mM 

10 mM 

5% 
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3.3.3 Enzymes 

Restriction enzymes, DNA polymerase and transcriptase used for cloning and PCR reaction are 

shown in Table 5. 

Table 5: Enzymes for cloning 

Name Company 

DpnI restriction enzyme New England Biolabs 

EcoRI restriction enzyme Thermo Fisher Scientific 

Gateway® BP Clonase® II Enzyme mix Thermo Fisher Scientific 

Gateway® LR Clonase® II Enzyme mix  Thermo Fisher Scientific 

Phusion® High-Fidelity DNA Polymerase New England Biolabs 

Q5® High-Fidelity DNA Polymerase New England Biolabs 

REDTaq® ReadyMix™ PCR Reaction Mix Sigma-Aldrich 

RevertAid H Minus Reverse Transcriptase Thermo Fisher Scientific 

T4 Polynucleotide (PNK) Kinase New England Biolabs 

T4 DNA Ligase New England Biolabs 

Calf intestinal alkaline phosphatase (CIAP) Thermo Fisher Scientific 

 

3.4 Assays and Kits 

Table 6: Assays and Kits 

Name Company 

NucleoSpin® Gel and PCR Clean-up kit Macherey-Nagel, Düren, Germany 

Plasmid Miniprep kit Qiagen, Hilden, Germany 

Plasmid Midprep kit Promega, Mannheim, Germany 

EndoFree Plasmid Maxiprep kit Qiagen 

NucleoSpin® RNA extraction kit Macherey-Nagel 

NE-PER Nuclear and Cytoplasmic Extraction kit Thermo Fisher Scientific 

Mem-PER Plus Membrane Protein Extraction Kit Thermo Fisher Scientific 

NucleoSpin® Gel and PCR Clean-up kit  Macherey-Nagel, Düren, Germany 

SPARC Quantikine ELISA kit R&D Systems, Wiesbaden, Germany 

CellTiter-Blue® Assay  Promega 

CellTox™ Green Cytotoxicity Assay Promega 

AP based DCS Detection Line system  DCS, Hamburg, Germany 
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3.5 Antibodies 

Antibodies and concentrations used for protein biochemistry analyses are listed in Table 7. 

Table 7: Antibodies 

Antigen (clone) Company Concentrat

ion 

Application 

ATF2 (20F1) Cell signaling 0.5 µg/ml WB 

ATF2 (N-96) Santa Cruz Biotechnology 3 µg ChIP 

Phospho-ATF2 Thr71 Cell signaling 0.5 µg/ml WB and IHC 

JunB (C37F9) Cell signaling 3 µg ChIP 

Phospho-JunB Thr102/Thr104 (D3C6) Cell signaling 0.5 µg/ml WB 

c-Jun (60A8) Cell signaling 0.5 µg/ml WB 

Phospho-c-Jun Ser73 Cell signaling 0.5 µg/ml WB 

PTEN (138G6) Cell signaling 1 µg/ml WB 

ß-Tubulin BD Pharmingen 0.5 µg/ml WB 

Scribble (K-21) Santa Cruz Biotechnology 0.67 µg/ml WB and IF 

Scribble Sigma 5 µg/ml IHC 

Fascin R&D 1 µg/ml WB 

PHLPP1 Bethyl 0.5 µg/ml WB 

E-cadherin Epitomics 5 µg/ml IF 

N-cadherin QED Bioscience 5 µg/ml IF 

AKT Cell signaling 1 µg/ml WB 

Phospho-Akt Ser473 Cell signaling 1 µg/ml WB 

S6 Ribosomal protein (5G10) Cell signaling 1 µg/ml WB 

Phospho-S6 Ribosomal protein Ser235/236 Cell signaling 1 µg/ml WB 

Na+-K+-ATPase Cell signaling 1 µg/ml WB 

P38 Cell signaling 1 µg/ml WB 

 Phospho-P38 Cell signaling 1 µg/ml WB 

SP1 Cell signaling 3 µg ChIP 

YAP Cell signaling 1 µg/ml WB 

Phospho-YAP (Ser127) Cell signaling 1 µg/ml WB 

GFP Tag Proteintech 2 µg IP 

MCAM (ME-9F1) Biolegend 5 µg/ml IHC 

MRP2 (R260) Cell signaling 10 µg/ml Sandwich 
culture IF 

Cy™3 AffiniPure Donkey Anti-Rabbit Jackson ImmunoResearch 3 µg/ml IF 

Alexa Fluor® 488 AffiniPure Donkey Anti-Goat Jackson ImmunoResearch 7.5 µg/ml IF 

ChIP: Chromatin Immunoprecipitation, IHC: Immunohistochemistry, IP: Immunoprecipitation,  
IF: Immunofluorescence, WB: Western Immunoblotting. 
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3.6 Oligonucleotides 

Primers for semi-quantitative polymerase chain reaction (qPCR) analysis were designed to span 

intronic regions of the respective genes. Primers were synthesized by Thermo Fisher Scientific 

and Apara-bioscience (Denzlingen, Germany). 

3.6.1 Primers for qPCR  

Table 8: qPCR primers 

Gene Accession Number Forward primer (5´-3´) Reverse primer (5´-3´) 

SCRIB NM_015356.4 AGGAAGACGCCGAAGAGGACTA AGTGCGTCCTCTGCGAAATG 

PTEN NM_000314.6 AGTGGCGGAACTTGCAATC GGTCCTGAATTGGAGGAA 

PHLPP1 NM_194449.3 AATGCCCTGCGATCAGTC CTTCATGTTCTCCAACTCAG 

SPARC NM_003118.3 GAAACTGTGGCAGAGGTGA GGTTTCCTCTGCACCATCAT 

FSCN1 NM_003088.3 CATCAAAGACTCCACAGGCAA GAAGAAGTCCACAGGAGTGT 

CEACAM1 NM_001712.4 GACCCAGTCACCTTGAATGT ACGGTAATAGGTGTCTGAAG 

S100A10 NM_002966.2 CCTGAGAGTACTCATGGAA GGTCCAGGTCCTTCATTAT 

TIMP1 NM_003254.2 CAATTCCGACCTCGTCATCA ACGCTGGTATAAGGTGGTCT 

TIMP2 NM_003255.4 TATCTCATTGCAGGAAAGGC GAAGTCACAGAGGGTGATGT 

JunB NM_002229.2 CTACCACGACGACTCATACA GCTCGGTTTCAGGAGTTTGT 

ATF2 NM_001880.3 GAGGAGCCTTCTGTTGTAGA GTGCAGTTTGTGCCAATGGT 

CDH2 NM_001792.4 TGGCAGCTGGACTTGATCGAG GACATCTGTCACTGTGATGACGG 

MCAM NM_006500.2 TGTGAGCTCAACTACCGGCT CTCCACTTCCAGCCACACT 

B2M NM_004048.2 CACGTCATCCAGCAGAGAAT TGCTGCTTACATGTCTCGAT 
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3.6.2 Primers for molecular cloning 

Table 9: Cloning primers 

Application Name Sequence (5‘-3‘) 

Amplification of hScrib 
for Gateway Donor 
vector 

Scrib forward 
GGGGACAAGTTTGTACAAAAAAGCAGGCTCCACCATGCTC
AAGTGCATCCCGCTG 

Scrib reverse 
GGGGACCACTTTGTACAAGAAAGCTGGGTTCTAGGAGGGC
ACAGGGCCCAG 

hScribP305L mutagenesis 
Scrib (mut-P305L) forward CTGCTGATGGCCCTGCTCCGCTCCCTGGGAAAGC 

Scrib (mut-P305L) reverse GCTTTCCCAGGGAGCGGAGCAGGGCCATCAGCAG 

Amplification of hScrib 
for cloning into the pT3-
EF1α vector 

Scrib pT3 for tacACGCGTATGCTCAAGTGCATCCCGCTGT 

Scrib EcoRI pT3 rev attGAATTCCTAGGAGGGCACAGGGCCCAGG 

Bold and underlined letters indicate the mutation point. 

 

3.6.3 Primers for Chromatin Immunoprecipitation (ChIP) analysis  

Primers for ChIP analysis were designed to span an amplicon between 80-120 bp containing the 

transcription factor binding site. Control primers were designed to amplify downstream regions 

with no binding sites.  

 

Table 10: ChIP primers 

Name Accession number Sequence (5´-3´) 

SPARC binding site 1 forward ENSG00000113140 GTGGTACAAGTGGAGTTTGAGTG 

SPARC binding site 1 reverse ENSG00000113140 CAGGACTTACCACTGTACAGAC 

SPARC binding site 2 forward ENSG00000113140 GCCTGGAGAAGGAATCAACT 

SPARC binding site 2 reverse ENSG00000113140 AAAGGTTACCGTGGCAACTC 

SPARC control forward ENSG00000113140 GTCTAGCTCATGGCAGCAAATC 

SPARC control reverse ENSG00000113140 AATGTGGAGCCCAGAGGCTAT 
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3.6.4 Small interfering RNA (siRNA) 

SiRNAs were purchased from Qiagen or Eurofins Scientific (Ebersberg, Germany).  For PTEN, a 

27-mer Dicer substrate siRNA method was used for the design of siRNAs [59]. For the other 

genes, a traditional 19-21mer siRNA method with dTdT overhangs was applied. Sequences of 

sense and antisense strands as well as concentrations for each siRNA are shown in the following 

table.  

 

Table 11: siRNA 

Gene name 
Accession 
number 

Sense (5´- 3´) Antisense (5´- 3´) 
Used 
concentration 

PTEN#1 NM_000314.6 
UAGCAGAAACAAAAGGAGA
UAUCdAdA 

GAUAUCUCCUUUUGUUUC
UGCUAAC 

20 nM 

PTEN#2 NM_000314.6 
GAAUCAUCUGGAUUAUAG
ACCAGdTdG 

CUGGUCUAUAAUCCAGAU
GAUUCUU 

20 nM 

PHLPP1#1 NM_194449.3 
GAAGAGCUGAAGAGGAUU
AdTdT 

UAAUCCUCUUCAGCUCUUC
dTdT 

20 nM 

PHLPP1#2 NM_194449.3 
AUAACAGCCUCACAGACAA
dTdT 

UUGUCUGUGAGGCUGUUA
UdTdT 

20 nM 

SCRIB#1 NM_015356.4 
GGCAGCGGCTCATCCGCAA
dTdT 

UUGCGGAUGAGCCGCUGC
CdTdT 

30 nM 

SCRIB#2 NM_015356.4 
CAGGAUGAAGUCAUUGGA
ACAdTdT 

UGUUCCAAUGACUUCAUCC
UGdTdT 

30 nM 

JUN NM_002228.3 
AAGAACGUGACAGAUGAG
CAGdTdT 

CUGCUCAUCUGUCACGUUC
UUdTdT 

30 nM 

ATF2 NM_001880.3 
CGCGGGUGACCGAAAGGA
UCAdTdT  

UGAUCCUUUCGGUCACCCG
CGdTdT 

30 nM 

JUNB NM_002229.2 
ACAGACUCGAUUCAUAUU
GAAdTdT 

UUCAAUAUGAAUCGAGUC
UGUdTdT 

30 nM 

SPARC NM_003118.3 
ACCCAAGACAUGACAUUCU
UAdTdT 

UAAGAAUGUCAUGUCUUG
GGUdTdT 

30 M 
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3.7 Cell lines 

3.7.1 Liver cancer cell lines 

Liver cancer cell lines were purchased from the American Type Culture Collection (ATCC, 

Manassas, Virginia, USA). Cell lines were routinely confirmed by short tandem repeats profiling. 

Liver cancer cell lines and cell culture conditions are listed in Table 12-13. Liver cancer cell lines 

were seeded in hepatocyte sandwich culture, which allowed the establishment of apical lumens of 

canaliculi, and was used to analyze the extent of hepatic polarization [6]. MRP2 was used to 

visualize the canaliculi structure in hepatocyte sandwich culture. Liver cancer cell lines with 

different capacities of polarization were compared in Table 12. 

Table 12: Liver cancer cell lines 

Name Tissue Cell type Disease Cell polarity 

HepG2 liver epithelial   Hepatoblastoma High 

HuH1 liver epithelial   HCC High 

HuH6 liver epithelial   Hepatoblastoma High 

HuH7 liver epithelial   HCC Low 

HLE liver epithelial   HCC Low 

HLF liver epithelial   HCC Low 

Hep3B liver epithelial   HCC Low 

SNU182 Liver Epithelial   HCC Low 

 

3.7.2 Cell lines culture media 

Table 13: Cell culture media and supplements 

Name Media Supplement 

HepG2 RPMI-1640 (GE Healthcare) 
10% FCS (GE Healthcare)+ 1% 
Penicillin/Streptomycin (P/S) (GE Healthcare) 

HuH1 DMEM (GE Healthcare) 10% FCS+ 1% P/S 

HuH6 DMEM 10% FCS+ 1% P/S 

HuH7 DMEM 10% FCS+ 1% P/S 

HLE DMEM 10% FCS+ 1% P/S 

HLF DMEM 10% FCS+ 1% P/S 

Hep3B MEM 10% FCS+ 1% P/S 

SNU182 RPMI-1640 10% FCS+ 1% P/S 
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3.8 Bacterial strands  

Table 14: Bacterial strands for cloning 

Name Application Company Description/Genotype 

NEB® 5-alpha 
Competent E. coli  

Gateway vectors New England Biolabs Mutations in recA1 and 
endonuclease I (endA1) 

NEB
®
 Stable 

Competent E. coli 
pT3-EF1α vector New England Biolabs Eliminated activity of endA1 
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3.9 Plasmid maps 

 

 

Figure 6: Plasmid maps of Scrib vectors. (A) Plasmid maps for pEGFP-Scrib
WT

 and pEGFP-Scrib
P305L

. 

Inserts are located after a cytomegalovirus (CMV) promoter. This vector produces a fusion protein of Scrib
WT 

or Scrib
P305L

 with an N-terminal EGFP-tag. The attR recombination sites of Gateway system and Scrib 

mutation point (P305L) are indicated. (B) Plasmid maps for pT3-EF1α-Scrib
WT

 and pT3-EF1α-Scrib
P305L

 

vectors. Inserts are located after a human elongation factor-1 alpha (EF1α) promoter, which allows long-term 

expression of genes in mouse hepatocytes. Inverted Repeats (IR) defines, which is recognition sites for the 

transponase, are indicated. Internal ribosome entry site (IRES) sequence allows independent expression of 

Scrib
WT 

or Scrib
P305L

 and green fluorescent protein (GFP). 
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4 METHODS 

 

4.1 Cell culture 

4.1.1 Cultivation of immortalized liver cancer cell lines  

Human liver cancer cell lines were cultured in DMEM or RPMI supplemented with 10% FCS 

and 1% P/S at 37°C in a 5% CO2 atmosphere. Cell lines were authenticated by STR-analysis 

(DSMZ, Braunschweig, Germany) and were regularly checked for mycoplasma contamination. 

Cell lines and cell culture conditions are described in Chapter 3.7.1-2. All liver cancer cell lines 

were split every 3 days. In brief, cells on 10 cm dish were washed with 4 ml PBS, and incubated 

with 1 ml Trypsin/EDTA at 37°C for 5 minutes. After detaching, cell suspensions were seeded on 

10 cm dishes with pre-warmed cell culture media. For counting cells, 8 μl of cell suspension was 

added to the hemocytometer. Cells were counted in the four corners with gridded square under 

10x objective using an inverted microscope. The estimated cell number per ml equals to the 

average cell number multiplied by 10
4
. Subculture of cell lines and cell numbers used in different 

cell culture scales are listed in Table 15.  

 

Table 15: Subculture and cell seeding of liver cancer cell lines 

Cell line Subcultivation ratio Cell number (6-well) Cell number (6 cm) Cell number (10 cm) 

HepG2 1:4 3.0x10
5 

6.6x10
5
 1.8x10

6
 

HuH1 1:6 3.0x105 6.6x105 1.8x106 

HuH6 1:3 4.0x105 8.8x105 2.4x106 

HuH7 1:8 1.0x10
5
 2.2x10

5
 6.0x10

5
 

HLE 1:8 1.0x105 2.2x105 6.0x105 

HLF 1:10 1.0x10
5
  2.2x10

5
 6.0x10

5
 

Hep3B 1:3 3.0x105 6.6x105 1.8x106 

SNU182 1:6 2.0x105 4.4x105 1.2x106 
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4.1.2 Cryconservation of liver cancer cell lines 

Cells were cultured on 10 cm dishes until 70-80% confluence before cryconservation. One 

milliliter trypsin was added to each dish at 37°C for 5 minutes. After detaching, cells were 

resuspended in 8 ml cell culture media and centrifuged at 1000x rounds per minute (RPM) for 5 

minutes. After removing the supernatant, the remaining cell pellet was resuspended in 800 μl cell 

culture media supplemented with 20% FCS and transferred to 2 ml cryovials. An equal volume 

(800 μl) of cell culture media supplemented with 20% FCS and 20% DMSO (final concentration 

10%) was added to each cryovial. Vials were transferred into a freezing container at -80°C 

overnight, and stored in liquid nitrogen for long-time use.  

 

4.1.3 Preparation of HCC cell sandwich culture  

For the preparation of highly polarized 3D sandwich cultures, a collagen solution was prepared 

by dissolving rat-tail collagen I lyphilisate in sterile-filtered 0.2% (v/v) acetic acid overnight. 

Before use, the collagen solution was supplemented with concentrated DMEM medium (10x) and 

neutralized to pH 7.4 by adding NaOH (2 M) on ice. The collagen solution was completely 

dispensed on cell culture plates, which were incubated at 37°C for 1 hour to allow gelation. HCC 

cells (HepG2 or HuH6) were seeded on the collagen layer for at least 4 hours. After attaching, 

cells were washed once with ice-cold PBS. Additional collagen solution was dispensed on the 

upper layer of adherent cells. After 1 hour of gelation, the respective cell culture medium was 

added to the sandwich culture. HCC cell lines were cultured in collagen sandwich culture for 10 

days before further analyses. Cell culture media were changed every 3 days. Volumes of 

neutralized collagen solutions, cell culture media and numbers of cells used in different cell 

culture scales are listed in Table 16. 

 

Table 16: Sandwich culture preparation and cell plating 

Cell culture scale 
Neutralized collagen solution 
(for each layer) 

Number of HCC cell Media volume 

12 well plate 120 µl 5.6-7.2x10
4
 1.5 ml 

6 well plate 250 µl 1.4-1.8x10
5
 2 ml 

6 cm plate 500 µl 3.0-4.0x10
5
 6 ml 
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4.1.4 Generation of cell lines stably expressing Scrib
WT 

and Scrib
P305L 

For the generation of HCC cell lines stably expressing Scrib
WT

 or Scrib
P305L

, Fugene HD 

transfection reagent was used for the delivery of expression vectors. HepG2 cells were seeded on 

10 cm plates with 80% of confluence overnight. Transfection mixture consisting of pEGFP-

Scrib
WT

 or pEGFP-Scrib
P305L

 plasmids (9 µg), Fugene HD transfection reagent (42 µl) and Opti-

MEM was prepared with a total volume of 420 µl. After incubation at room temperature for 15 

minutes, the transfection mixture was distributed thoroughly to the HCC cells in 8 ml of 

transfection media (with 10% FCS, without antibiotics). G418 (1 mg/ml) selection was carried 

out 72 hours after transfection to allow the expansion of cells with stable integration of the 

vector. Single colonies started to appear 2 weeks of G418 selection. Colonies were carefully 

transferred to 96-well plates. For single colony expansion, a lower concentration of G418 (400 

ng/ml) was applied to the cell culture media. Cells were step-wise transferred to 24 -well plate, 6 

-well plate, and 6 cm plates. The transgene expression was confirmed by both western 

immunoblotting and real-time PCR (see 4.5.2 and 4.4.3). For further functional and gene 

expression analysis, the stable clones were cultured with full RPMI media without G418. 

Overexpression of exogenous Scrib was routinely checked by western immunoblotting every 

month.  

4.1.5 Small-interfering (siRNA)-mediated gene inhibition 

A reverse transfection protocol using Lipofectamine
®

 RNAiMAX was used for the transfection 

of siRNAs-mediated gene inhibition.  Treatment was carried out on 6-well plates. The siRNA 

solution (Table 17 solution A) and the Lipofectamine
®

 RNAiMAX solutions (Table 17 solution 

B) were prepared separately. SiRNA concentrations and target sequences of siRNAs are listed in 

Table 11. After incubation of solution A and B at room temperature for 10 minutes, solution B 

was added to solution A and incubated at room temperature for another 15 minutes. During this 

time, 3.5x10
5 

- 4x10
5
 cells were detached by trypsin and resuspended in 2.5 ml transfection media 

(with 10% FCS, without antibiotics). SiRNA transfection mixture (500 µl) and cell suspension 

(2.5 ml) were mixed well and transferred into a 6-well plate. Total RNA and proteins were 

extracted 48 to 72 hours after siRNA treatment. Cells without treatment as well as cells 

transfected with nonsense siRNA served as controls.  
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Table 17: Preparation of siRNA transfection solutions 

Solution Component Amount Final concentration 

A 
Opti-MEM 250 µl - 

SiRNA (20 µM) 3.0-4.5 µl 20-30 nM 

B 
Opti-MEM 250 µl - 

Lipofectamine
®
 RNAiMAX 7.5 µl 0.25% (v/v) 

 

 

4.1.6 Wortmannin treatment 

For the inhibition of PI3K activity, cells were treated with Wortmannin, which was dissolved in 

DMSO at 100 mM and stored light-protected at -20°C. One day before treatment, cells were 

seeded with a cell density of 7.5x10
3
/well in a 96-well plate or 3x10

5
/well in a 6-well plate. 

Wortmannin was pre-diluted in PBS to a concentration of 1 mM. Different working 

concentrations of Wortmannin (0.05, 0.1, 0.25, and 0.5 μM) were applied to the cells for 6.5 to 24 

hours. Cells treated with an equal amount of DMSO served as a control. 

 

4.1.7 Recombinant SPARC treatment 

Recombinant Human SPARC was reconstituted in PBS (final concentration: 100 μg/ml) and 

stored at -20°C. For the treatment, cells were seeded with a cell density of 6x10
4
 cells/well in 

FCS-free medium in 24-well plate of a Matrix-coated transwell chamber. In the lower chamber, a 

higher concentration of SPARC (200 ng/ml) was used to stimulate directional cell invasion. In 

the upper chamber, lower concentration of SPARC (20 ng/ml) was supplemented.  
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4.2 Functional assays 

4.2.1 Cell viability assay 

Cell viability was determined using the CellTiter-Blue reagent. Cells were seeded with a cell 

density of 7.5x10
3
/well in a 96-well plate. The CellTiter-Blue reagent was added to cultured cells 

according to the manufacturer's instructions. After 1 hour of incubation at 37°C, fluorescence was 

detected by a Fluostar Omega microplate reader at an excitation wavelength of 544 nm and an 

emission wavelength of 590 nm. Cell viability was detected 48 and 72 hours after respective 

treatments. 

4.2.2 Cell cytotoxicity and apoptosis assays 

CellTox Green reagent was employed for the measurement of cell cytotoxicity. Cells were seeded 

with a cell density of 7.5x10
3
/well in a 96-well plate overnight. Cell cytotoxicity was measured 

48 and 72 hours after seeding. For the measurement, cells were incubated with CellTox Green 

reagent at room temperature for 15 minutes according to the manufacturer's instructions. The 

fluorescence was subsequently measured at an excitation wavelength of 485 nm and an emission 

wavelength of 520 nm.  

Caspase-3 activity assay was used for the measurement of cell apoptosis. Proteins were extracted 

from cultured cells using the Protein Lysis buffer. Caspase-3 substrate Ac-DEVD-AFC (7-

Amino-4-trifluoromethylcoumarin, 100 µM in HEPES-Buffer) was prepared freshly according to 

the manufacturer's instructions. Protein lysate (50 µg) was incubated with the Caspase-3 substrate 

(50 µl) at 37°C for 4 hours. Caspase activity was detected at an excitation wavelength of 400 nm 

and an emission wavelength of 505 nm. Cells treated with cell culture medium served as negative 

controls, while cells treated with Doxorubicin (1 µM) were used as positive controls.  

4.2.3 Cell invasion assay 

Cell invasion experiments were performed using a matrigel invasion chamber with an 8 µm pore 

polycarbonate membrane. Cells were seeded on top of the matrigel with a cell density of 

6x10
4
/well in starvation medium. On the lower side of the invasion chamber, cell culture medium 

was supplemented with 10% FCS for a cell attractant. Cells remaining on the upper matrigel were 

removed by cotton tips after 48 to 96 hours, while transmigrating cells were fixed with 

paraformaldehyde (PFA, 4%, w/v) for 10 minutes. A crystal violet/methanol (5%, w/v) solution 
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was used for cell body staining on the polycarbonate membrane. After incubation with the crystal 

violet solution for 1 hour, the polycarbonate membrane was washed 3x with PBS, and 1x with 

distilled water. Seven different areas from each membrane were digitally documented and the 

numbers of transmigrating cells were visually counted (40-fold magnification).  

 

4.3 Molecular cloning 

4.3.1 Scrib cloning for the generation of stable cell lines 

Empty Gateway plasmids pDONR201 and pDEST-EGFP were kindly provided by Dr. Stefan 

Pusch (DKFZ, Heidelberg, Germany). Human pDEST-EGFP-Scrib
WT 

and pDEST-EGFP-

Scrib
P305L

 vectors for the generation of stable cell lines were constructed using the Gateway
®

 

system. Human Scrib complementary DNA (cDNA) was amplified from a human Scrib plasmid 

(pLK45) purchased from Addgene (Cambridge, Massachusetts, USA). For this, a proofreading 

Phusion
®

 High-Fidelity DNA Polymerase was employed for the amplification of Scrib cDNA. 

The reaction and program are shown in Table 18-19. 

 

Table 18: Amplification reaction of Scrib for pDONR201 

Component Amount Final concentration 

DNA template (pLK45-Scrib) 20 ng 0.4 ng/µl 

dNTP (10 mM) 1 µl 200 µM 

Scrib forward (10 µM) 2.5 µl 0.5 µM 

Scrib reverse (10 µM) 2.5 µl 0.5 µM 

5x Phusion
®
 GC buffer 10 µl 1 x 

DMSO 1.5 µl 3 % 

Phusion
®
 High-Fidelity DNA Polymerase 0.5 µl 0.02 units/µl 

Nuclease free water add to 50 µl - 
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Table 19: Amplification program of Scrib for pDONR201 

PCR cycle Step Temperature Time 

1 Initial denaturation 98 °C 30 seconds 

30x 
Denaturation 98 °C 30 seconds 

Combined annealing and extension  72 °C 3 minutes and 20 seconds 

1 Final extension 72 °C 10 minutes 

 

PCR product was separated on a 0.5% agarose gel, and extracted using the PCR Clean-up kit. 

The integration of Scrib cDNA in the Gateway
®

 pDONR 201 vector was performed using the 

Gateway
®

 BP Clonase II Enzyme Mix according to the manufacturers' instructions. In brief, 4 µl 

(30 fmol) of PCR product was incubated with pDONR vector (150 ng), Gateway
®

 BP Clonase
®

 

II Enzyme mix (2 µl), and filled up with TE buffer (pH 8.0) to 10 µl. The BP reaction was done 

at room temperature, overnight. In order to transfer the Scrib cDNA with Gateway
®

 expression 

vectors in other vectors, a LR reaction was performed using the Gateway
®

 LR Clonase II Enzyme 

Mix according to the manufacturers' protocol. In brief, 5 µl pDONR-Scrib (75 ng) Gateway
®

 

destination vector pDEST-EGFP (75 ng), Gateway
®

 LR Clonase
®

 II Enzyme mix (1 µl) and TE 

buffer (pH 8.0) were incubated together. LR reaction was carried out at room temperature for 4 

hours. All used constructs were confirmed by sequencing (Seqlab-Sequence Laboratories, 

Göttingen, Germany). 

4.3.2 Site-directed Scrib
P305L

 mutagenesis 

Site-directed mutagenesis was performed to include the P305L mutation in the wildtype form of 

Scrib [60]. For the generation of pDONR-Scrib
P305L

, forward and reverse strands were 

synthesized by PCR using complementary primers containing the desired mutation (Table 9). The 

reaction and program for new strand synthesis are shown in Tables 20-21. After that, methylated 

templates were digested using 1 unit of DpnI enzyme for 3 hours. The newly synthesized DNA 

carrying the P305L mutation was transformed into bacteria. The pDONR-Scrib
P305L

 vector was 

confirmed by sequencing. Subsequently, both pDONR-Scrib
WT

 and pDONR-Scrib
P305L

 were used 

to transfer Scrib
WT

 and Scrib
P305L

 in the pDEST-EGFP expression vector by using Gateway
®

 LR 

Clonase
®

 II Enzyme mix (Table 5). 
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Table 20: Reaction for ScribP305L mutagenesis 

Component Amount Final concentration 

DNA template (pDONR-Scrib) 100 ng 2 ng/µl 

dNTP (10 mM) 1 µl 200 µM 

Scrib (mut-P305L) forward (10 µM) 1 µl 0.2 µM 

Scrib (mut-P305L) reverse (10 µM) 1 µl 0.2 µM 

5x Phusion
®
 GC buffer 10 µl 1 x 

DMSO 1.5 µl 3 % 

Phusion® High-Fidelity DNA Polymerase 0.5 µl 0.02 units/µl 

Nuclease free water add to 50 µl - 

 

Table 21: Program for ScribP305L mutagenesis 

Cycle Step Temperature Time 

1 Initial denaturation 98 °C 60 seconds 

18 x 
Denaturation 98 °C 30 seconds 

Combined annealing and extension  72 °C 4 minutes and 40 seconds 

1 Final extension 72 °C 10 minutes 

 

 

4.3.3 Subcloning of Scrib
WT 

and Scrib
P305L 

for hydrodynamic tail-vein injection 

To generate the vectors for hydrodynamic tail-vein (HDTV) injection, human Scrib
WT

 and 

Scrib
P305L

 cDNAs were amplified by using Scrib pT3 for and Scrib EcoRI pT3 rev primers (Table 

9). Blunt-end cloning was employed for the transfer of the insert into the pT3-EF1α vector. PCR 

reaction and program for the implication of Scrib cDNA were indicated in the following tables 

(Table 22-23). Fifty microliters of PCR products were loaded on a 0.5% Agarose gel for 

separation. The specific product with 4.8 kb was cut out under UV light and purified using the 

PCR Clean-up kit. To phosphorylate the insert, 17 µl of purified PCR product was incubation 

with 1 µl T4 Polynucleotide Kinase (PNK) and 2 µl T4 ligation buffer at 37°C for 1 hour. T4 

PNK Kinase was inactivated at 65°C for 20 minutes. For the preparation of the backbone, the 

empty pT3-EF1α vector (2 µg) was digested with the restriction enzyme EcoRI (1 unit) at 37°C 
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for 3 hours. In order to generate blunt ends, Phusion
®

 polymerase (1 unit) and dNTPs (0.5 µl, 

final concentration: 250 µM) were incubated with the digested plasmid (2 µg) at 37°C for 1 hour. 

The blunt-end vector (17 µl) was dephosphorylated by CIAP (2 µl, 40 units) for 1 hour. The 

resulting pT3-EF1α vector was purified by PCR clean up kit. To ligate the Scrib
WT

/Scrib
P305L

 

cDNAs with the pT3-EF1α vector, the phosphorylated insert (250 ng) was added to the 

dephosphorylated vector (100 ng) with a molar ratio of 3:1 (insert:vector). T4 ligase (1 µl, 5 

units) and T4 Buffer (supplemented with ATP, 1 µl) were added to the DNA mixture and 

incubated at 16°C overnight. 

  

Table 22: Amplification reaction of Scrib for pT3-EF1α vector 

Component Amount Final concentration 

DNA template (pDONR-ScribWT/pDONR-ScribP305L) 20 ng 0.4 ng/µl 

dNTP (10 mM) 1 µl 200 µM 

Scrib pT3 for (10 µM) 2.5 µl 0.5 µM 

Scrib EcoRI pT3 rev (10 µM) 2.5 µl 0.5 µM 

5x Q5 buffer 10 µl 1 x 

5x High GC Enhancer 10 µl 1 x 

DMSO 1.5 µl 3 % 

Q5® High-Fidelity DNA Polymerase 1 µl 0.04 units/µl 

Nuclease free water add to 50 µl - 

 

Table 23: Amplification program of Scrib for pT3-EF1α vector 

PCR Cycle Step Temperature Time 

1 Initial denaturation 98 °C 30 seconds 

38x 
Denaturation 98 °C 5 seconds 

Combined annealing and extension  72 °C 3 minutes and 30 seconds 

1 Final extension 72 °C 2 minutes 
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4.3.4 Transformation of competent bacteria  

In order to amplify plasmid DNA, different vectors were transformed into competent bacteria. 

For bacterial transformation, 0.1-50 ng plasmid DNA was added to 50 µl of the respective 

bacterial strain (Table 14). After incubation on ice for 30 minutes, the plasmid/bacteria mixture 

was heated in a 42 °C water bath for 42 seconds, and incubated on ice for 2 minutes. For vectors 

containing kanamycin resistance, transformed bacteria were growing in 900 µl pre-warmed 

Luria-Bertani (LB) media at 37°C for 1 hour with shaking (250 RPM) before inoculation 

Kanamycin-containing (25 µg/ml) agar plate. For vectors with Ampicillin resistance, transformed 

bacteria were inoculated directly on Ampicillin-containing (50 µg/ml) agar plates. After selection 

overnight, single clones were picked for further testing and amplification.  

For long-term storage of transformed bacteria, single clones were picked and incubated in 2 ml 

LB media with respective antibiotics. After growing overnight, 500 μl of the cultured bacteria 

was added to 500 μl glycerol (50%) in a cryovial and storted at -80°C. 

 

4.3.5 DNA purification (MidiPrep and EndoFree Maxiprep) 

For in vitro experiments, midipreps were carried out for the purification of plasmid DNA. Single 

bacterial clones were picked and incubated with 80 ml LB media containing Ampicillin (50 

µg/ml) or Kanamycin (12.5 µg/ml) under shaking at 250 RPM. After overnight incubation, 

cultured bacteria were pelleted down by centrifugation at 5,000 RPM for 10 minutes. Cell pellet 

was resuspended in 3 ml Cell Resuspension Solution. Bacteria were lysed by adding 3 ml Cell 

Lysis Solution and mixed via gentle mixing. After incubation at room temperature for 3 minutes, 

the lysate was neutralized by adding 5 ml chilled Neutralization Solution. The neutralized lysate 

was incubated on ice for 5 minutes to allow sufficient precipitation. Afterwards, cell lysate was 

transferred on a PureYield Clearing Column to remove the precipitate. The clear supernatant was 

added to a DNA Binding Column. The DNA Binding Column was washed 1x 5 ml Endotoxin 

Removal Solution, 2x 20 ml Column Wash Solution. After drying of the DNA Binding Column, 

plasmid DNA was eluted by adding 600 μl nuclease free water and centrifugation at 5,000 RPM 

for 5 minutes.  
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For the purification of plasmid DNA for in vivo experiment, an EndoFree Maxiprep kit was 

applied (Table 6).  Single clones were picked up and incubated in 200 ml LB media containing 

the respective antibiotic overnight with shaking (250 RPM). Purification was performed 

according to the manufacturer’s instructions. Compared to the Midiprep, endotoxin produced by 

bacteria was removed by incubating with 2.5 ml Endotoxin Removal Buffer on ice for 30 

minutes. After elution of plasmid DNA from the column, DNA was precipitated by adding 10.5 

ml isopropanol and centrifuged at 5,000 RPM for 1 hour. Afterwards, the resulting DNA pellet 

was washed with 5 ml of 70% endotoxin-free ethanol, and centrifuged at 5,000 RPM for 40 

minutes. After drying, 600 μl endotoxin-free Buffer TE was added to dissolve the plasmid DNA.  

 

4.4 Messenger RNA (mRNA) quantification 

4.4.1 RNA extraction from cultured cells 

For total RNA extraction from cultured cells, the NucleoSpin RNA II kit was applied according 

to the manufacturer’s instructions. Specifically, cells grown on 6-well plate were lysed by adding 

350 μl Lysis Buffer RA1 with 1% ß-mercaptoethanol. Cell lysate was filtered by loading on a 

NucleoSpin
® 

Filter and centrifuged at 11,000x g for 1 minute. Filtered lysate was mixed with 350 

μl of 70 % ethanol and loaded on a RNA-binding column. After centrifugation at 11,000x g for 

30 seconds, silicon membrane was desalted by adding 350 μl Membrane Desalting Buffer. The 

genomic DNA on silicon membrane was digested with 95 μl DNase reaction mixture at room 

temperature for 15 minutes. Afterwards, the RNA column was sequentially washed with 200 μl 

RAW2, 600 μl RA3, and 250 μl RA3. After each washing step, the column was centrifuged at 

11,000x g for 30 seconds (last step for 2 minutes). RNA was eluted by adding 60 μl RNase-free 

water and centrifugation at 11,000x g for 1 minute. RNA concentrations were determined by 

Nanodrop and stored at -80°C.  

 

 

 



METHODS 
 

41 
 

4.4.2 cDNA synthesis 

Reactions and program for cDNA synthesis are listed in Table 24-25. cDNA was diluted 1:50 for 

further analysis.  

Table 24: Reaction of cDNA synthesis 

Component Amount Final concentration 

Total RNA 1 µg 50 ng/µl 

dNTP (10 mM) 2 µl  1 mM 

Random Hexamer primers (100 µM) 1 µl 5 µM 

5x RT reaction buffer 4 µl  1x 

RevertAid H Minus Reverse Transcriptase 0.9 µl  9 units/µl 

Nuclease free water add to 20 µl - 

 

 

Table 25: Program of cDNA synthesis 

Step Temperature Time Comment 

Denaturation 75 °C 5 minutes 
5x RT reaction buffer was added at the 
end of this step 

Annealing 25 °C 15 minutes 
Reverse Transcriptase was added after 
5 minutes of this step 

cDNA synthesis  42 °C 1 hour - 

Enzyme inactivation 70 °C 10 minutes - 

 

 

 

 

4.4.3 Semi-quantitative real-time PCR analysis 

Real-time PCR reactions were set up using the ABsolute qPCR SYBR Green ROX Mix (Table 

26-27). β2-Microglobulin was used for the normalization of in vitro experiments. StepOnePlus™ 

The standard curve method was used for quantification. Different dilutions of cDNA from 

HepG2 cells (1:12.5, 1:25, 1:50, 1:100, 1:200, and 1:400) were used for generation of the 

standard curves for each primer pair.  
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Table 26: Reaction of real-time PCR 

Component Amount Final concentration 

cDNA (1:50) 2 µl 1:500 

SYBR Green ROX Mix (2x) 5 µl 1x 

Forward primer (10 µM) 0.3 µl 0.3 µM 

Reverse primer (10 µM) 0.3 µl 0.3 µM 

Nuclease free water 2.4 µl - 

 

 

Table 27: Program of real-time PCR 

PCR Cycle Step Temperature Time 

1 Initial denaturation 95 °C 15 minutes 

40 x 
Denaturation 95 °C 15 seconds 

Combined annealing and extension  60 °C 60 seconds 

1 Melting curve 60 °C - 95 °C Increase at 0.5 °C/minute 

 

 

4.4.4 Gene expression profiling 

Affymetrix Human Gene 2.0 ST Arrays were used for the expression analysis of total mRNA 

derived from HepG2 cells stably expressing Scrib
WT

 or Scrib
P305L

. After extraction of total RNA 

from both cell lines, complementary RNA labeled with biotin was prepared according to the 

Affymetrix standard labelling protocol. The complementary RNA was purified, fragmented, and 

hybridized uisng the GeneChip Hybridization oven 640. The arrays were washed and stained 

with the GeneChip Fluidics Station 450, and detected by using the GeneChip Scanner 3000. 

Custom CDF with Entrez-based gene definitions were used for the annotation of the arrays [61]. 

Values from the arrays were rearranged by quantile normalization, and analyzed using the 

software package SAS JMP7. Array data was uploaded in the Gene Expression Omnibus 

database (available: http://www.ncbi.nlm.nih.gov/geo/; accession number GSE93742). 
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4.5 Protein biochemistry analyses 

 

4.5.1 Protein extraction from cultured cells 

Cells on culture plates were washed briefly with ice-cold PBS. A certain volume (80 µl for 6-well 

plate, 300 µl for 10 cm dish) of cell lysis buffer supplemented with Proteinase Inhibitor (1x), 

PMSF (1 mM) and PhosStop (1x) was incubated with cultured cell on ice for 2 minutes. Cell 

lysate was collected and briefly frozen in liquid nitrogen. After thawing, the cell lysate was 

sonicated for ten seconds to shear DNA. Afterwards, the suspension was centrifuged at 14,000 

RPM for 15 minutes. The supernatant containing total proteins were isolated and stored at -20°C 

before analysis. 

 

4.5.2 SDS-Polyacrylamide gel electrophoresis (PAGE) and western immunoblotting 

For western immunoblotting analysis, equal amount of proteins ranging from 30-50 µg were 

prepared in 3x SDS-protein sample buffer and denatured at 95°C for 5 minutes. Protein samples 

were loaded on polyacrylamide gels (8% to 12%) next to 8 µl of a 10-250 kDa Prestained Protein 

Ladder (Table 3). Electrophoresis was carried out with 120 V in electrophoresis buffer for 2 

hours. Proteins on polyacrylamide gel were transferred to a 0.45 µm nitrocellulose membrane 

using a blotting chamber with ice-cold borate buffer at 90 V and 1000 mA/chamber for 1.5 hours.  

After blocking unspecific bands with 5% (w/v) milk powder or 5% (w/v) BSA in TBST (0.1% 

Tween 20 in TBS, v/v) for 1 hour, membranes were incubated with primary antibodies 

(concentrations are listed in Table 7) at 4°C overnight. After incubation, the membranes were 

washed 3x with TBST (0.1%), and incubated with respective fluorophore-labeled secondary 

antibodies (1:20,000; IRDye 680 and 800) at room temperature for 1 hour. After washing 3x 

TBST (0.1%), signals on the membranes were detected using a LI-COR fluorescent imaging 

(Odyssey SA Infrared Imaging System). Actin was used as a loading control. 
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4.5.3 Fractionation of subcellular proteins  

For the fractionation of cytoplasmic and nuclear proteins, a NE-PER™ Nuclear and Cytoplasmic 

Extraction Reagents kit was used. Cells were seeded on 10 cm dishes at high cell density (>80% 

confluence). For experiments with low cell density, 4 dishes were prepared and pooled. 

Fractionation was performed according to the manufacturer’s instructions. After quantification, 

cytoplasmic and nuclear protein extracts were loaded on polyacrylamide gel with the ratio of 2:1 

(cytoplasmic: nuclear fraction) for western immunoblotting (see 4.5.2). β-Tubulin and PARP 

(poly-ADP ribose polymerase) served as loading controls for cytoplasmic and nuclear fractions, 

respectively. 

Membranous and cytoplasmic protein fractionation was performed by using the Mem-PER Plus 

Membrane Protein Extraction Kit. Cells were seeded on 10 cm dishes and fractionation was 

performed according to the manufacturer’s instructions. For western immunoblotting of 

membranous proteins, an antibody detecting Na
+
-K

+
-ATPase was used for a loading control. For 

cytoplasmic proteins, β-Tubulin was used as a loading control.  

4.5.4 Enzyme-linked immunosorbent assay (ELISA) 

Human SPARC Quantikine ELISA kit was used to determine the secreted concentrations of 

SPARC in the supernatant of cultured cells. For this, cells were starved in the respective medium 

without FCS for at least 12 hours. Media (100 µl) from cultured cells were collected from each 

sample and centrifuged for 15 minutes at 1,000x g to remove particles. The resulting supernatants 

were diluted 1:2 in Calibrator Diluent RD6-59. Samples, SPARC standards, and blank control 

(Diluent RD6-59) were incubated in the ELISA microplate at room temperature with 300 RPM 

shaking for 3 hours. After that, wells were washed simultaneously with wash buffer and 

incubated with of human SPARC conjugate antibody (200 µl) in the dark at 4°C for 1.5 hours. 

After an additional washing step, 200 µl of the substrate solution was added. Fluorescence was 

detected using the Fluostar Omega microplate reader at wavelengths of 450 nm and 550 nm. The 

absorbance of 550 nm was subtracted from the absorbance of 450 nm. For each sample and 

standard solution, the respective absorbance was corrected for the blank control. Absolute 

concentrations for SPARC were calculated according to the standard curves of recombinant 

SPARC provided by the manufacturer.  



METHODS 
 

45 
 

4.5.5 Protein half-life determination 

Cycloheximide (CHX) chase analysis was performed to compare protein stability. To define the 

optimal CHX concentration for HepG2 cells, the lowest concentration which efficiently blocked 

protein synthesis was analyzed. Specifically, different amounts of CHX (50, 100, 150, 200, and 

250 μg/ml) were applied to HepG2 cells for 16 hours. Proteins were extracted (see 4.5.1) and 

analyzed by western immunoblotting (see 4.5.2). Measurement of a known unstable protein (e.g. 

c-MYC) revealed that that 100 µg/ml CHX efficiently blocked protein synthesis without killing 

cells in this time-frame.  

For the analysis of PHLPP1 and PTEN stability, HepG2 stable cell lines were seeded with a cell 

density of 8x10
4
/well in a 12-well plate. PHLPP1 with short half-life was chased until 8 hours, 

with 0.5 to 2-hours intervals. PTEN with longer half-life was chased until 72 hours, with 2 to 8-

hours intervals. Protein extracts from each time points were collected and analyzed by western 

immunoblotting (see 4.5.2). The relative protein amounts for PHLPP1 and PTEN were quantified 

compared to the original protein levels at time-point '0'. Image Studio software was employed for 

the quantification of proteins. 

 

4.5.6 Immunofluorescence analysis of tissue cryosections  

A methanol-acetone fixation method was used for immunofluorescence stains of cryosections 

derived from human livers. Tissues were fixed in ice-cold methanol for 5 min followed by ice-

cold acetone for 1 min on ice. The permeabilization step was performed by incubation with 

Triton X-100/PBS (0.2%, v/v) at room temperature for 5 min. For blocking, tissue sections were 

incubated with BSA/PBS (1%, w/v) for 30 min. Samples were then incubated with primary 

antibodies (listed in Table 7) in a wet chamber at 4°C overnight. After three times of wash with 

PBST (0.01%, Tween in PBS, v/v), tissue sections were incubated with the respective secondary 

antibodies in a wet chamber for 1 hour. After washing 3x with PBST, and rinsed with distilled 

water, cryosections were dehydrated with 100% ethanol. The visualization of nuclei and tissue 

mounting were achieved by the incubation with DAPI Fluoromount-G.  
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4.5.7 Immunofluorescence analysis of sandwich cultures 

For the visualization of polarity markers in sandwich cultures, a published hepatocyte sandwich 

immunofluorescence staining method was modified [62]. In brief, sandwich cultures were 

prepared on coverslips in cell culture plates for 1-2 weeks. After washing 1x with MgCl2/PBS 

(2mM), the sandwich cultures were fixed with PFA solution (4%, w/v) at room temperature for 

20 minutes. This was followed by a permeabilization step with Triton/PBS (0.5%, v/v) at room 

temperature for 10 minutes. Afterwards, the coverslips were thoroughly washed 3x with PBS at 

room temperature (2x 5 minutes followed by additional 30 minutes). After blocking with 

BSA/PBS (5%, w/v) for 30 minutes, the coverslips were washed with PBST (0.05% Tween in 

PBS, v/v) and transferred into a wet chamber. On each slide 150-200 µl primary antibodies 

(Table 7) were incubated at 4°C, overnight. After primary antibody incubation, sandwiches were 

washed 3x with PBST at room temperature for 10 minutes followed by an incubation with 200 µl 

secondary antibodies at room temperature in a dark chamber for 2 hours. After incubation, the 

sandwich cultures were washed 3x with PBST for 10 minutes, and 3x with PBS for 10 minutes. 

Eventually, the sandwich cultures were dehydrated with 100% ethanol, and mounted by a DAPI 

Fluoromount-G. 

4.5.8 Immunohistochemistry (IHC) and histological analyses 

Paraffin embedded tissues were cut in 2-3 µm sections using a microtome and dried overnight. 

Tissues were deparaffinised by 3x incubation with xylene for 5 minutes. Afterwards, sections 

were rehydrated using an ethanol gradient (2x 100% Ethanol, 96% Ethanol, 70% Ethanol, water 

each 2 min). For antigen retrieval, tissue sections were incubated with 10 mM citrate buffer (pH 

6.0) in a stream cooker. After cooling down, tissues were blocked with avidin and biotin at room 

temperature for 30 minutes (Avidin/Biotin Blocking Kit), and incubated with primary antibodies 

(Table 7) in a wet chamber at 4°C overnight.  

For E-cadherin, ATF2, and pAKT stains, AP (alkaline phosphatase)-based DCS Detection Line 

system was employed. For this, tissue sections were incubated with Rabbit Enhancer for 20 min, 

and incubated with AP-Polymer Detection Line for further 20 min. After washing 2x with TBS 

for 5 minutes, sections were incubated with Permanent AP Red. For Scrib and MCAM stains, the 

horseradish peroxidase (HRP) system was used. Tissues were blocked with H2O2 for 10 min, and 

incubated with biotinylated secondary antibody for 30 min. This was followed by incubation with 

Streptavidin-HRP for 20 min and signal development with DAB (for Scrib stain) or AEC (for 
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MCAM stain). After washing 2x with TBS for 5 minutes, tissue sections were incubated with 

REAL Hematoxylin for nuclear visualization. All stains were performed by the IHC research 

facility at the Institute of Pathology, Heidelberg.  

For histological analysis of liver tissues, Hematoxylin and eosin (H&E) stains from each tissue 

samples were analyzed by pathologist. Tumors were identified by well-vascularized nodules with 

necrotic areas within the tumor mass. Tumor cells were identified with a pleomorphic shape, a 

basophilic cytoplasm and sometimes fat droplets. In addition, hyperchromatic nuclei with 

increased nuclear to cytoplasmic ratio were presented in the tumor cells. Immunohistochemistry 

stain of Ki-67 was used to detect the increased mitotic activity of tumor cells.  

 

4.6 Immunoprecipitation analysis 

4.6.1 Co-Immunoprecipitation (CoIP) analysis 

For the detection of specific protein-protein interactions, CoIP experiments with Protein A/G 

beads and magnetic separation were performed [63]. A 12-Tube magnet was used to capture the 

antibody-bound protein complexes. In brief, cells grown on a 10 cm dish were lysed with 300 µl 

ice-cold non-denaturing lysis buffer supplemented with protease inhibitors (3 µl). The 

supernatant was collected after centrifugation at 14,000x g for 10 minutes. In total, 20 µl of 

protein lysate were preserved as Input control. Dynabeads Protein G beads (50 µl) were 

incubated with 50 µl glycine solution (50 mM) for at room temperature for 5 minutes. After 

removing glycine solution from the Dynabeads, primary antibodies (2 µg) were pre-incubated 

with Dynabeads Protein G at 4°C for 4 hours under rotation. After two washing steps with PBST, 

the coupled antibody-Protein G beads were incubated with 1 mg protein lysate (defined by 

Bradford assay) under rotation at 4°C overnight. An equal amount of rabbit IgG antibody (2 µg) 

incubated with Dynabeads and eand quivalent amount of protein lysate were used as negative 

control. After incubation, Dynabeads-protein complexes were washed 3x with PBS using the 

magnet. After washing, the complexes were resuspended in 100 µl PBS and transferred in new 2 

ml-tubes. The bound proteins were eluted from the Dynabeads by incubation with Laemmli 

buffer (2x concentrated, 30 µl) at 95°C and vortexing for 15 min. The supernatant containing 

denatured proteins were analyzed by western immunoblotting analysis (see 4.5.2).  
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4.6.2 Chromatin-Immunoprecipitation (ChIP) analysis 

ChIP analysis was carried out to detect the interactions between transcription factors and specific 

promoter regions. For this, 1.1x10
7
 cells were seeded on 15 cm dishes and cultured for 2 

additional days. DNA and proteins were cross-linked using 20 ml of formaldehyde/PBS (1%) for 

12 min, followed by quenching with 1 ml of glycine (2.5 M) for 5 min. After washing with ice-

cold PBS, cells were lysed with 1 ml ice-cold RIPA buffer on ice. The DNA fragments (500 bp-1 

kb) were generated by sonication (amplitude 15, power level 1.5) for 2 minutes. Cell debris was 

removed by centrifugation at 16,000x g at 4°C for 15 minutes. Protein concentrations were 

determined by Bradford assay and equalized to 1 mg/ml with RIPA buffer. Diluted cell lysate 

was pre-cleared with 30 µl of Dynabeads Protein G. In parallel, 50 µl Dynabeads Protein G beads 

was blocked with salmon sperm DNA (15 µg) and BSA (50 µg) for 2 hours. Pre-cleared samples 

were incubated with blocked Dynabeads and respective antibodies (4 µg) at 4°C overnight. The 

resulting immunocomplex-bound-beads were washed 4x with RIPA buffer, 2x with IP wash 

buffer and again 2x with RIPA buffer (for 5 min each). The Dynabeads complexes were 

resuspended in 100 µl TE buffer. Immunocomplexes were eluted with 200 µl of Talianidis 

elution buffer (1.5x concentrated) at 65°C for 15 min. Reversal crosslinking was achieved by 

adjusting to 200 mM NaCl (4 M) and incubation at 65°C for 5 hours. DNA was extracted by the 

PCR Clean-Up kit according to the manufacturer's protocol. Real-time PCRs were performed to 

determine the quantity of precipitated promoter fragments with the normalization to a standard 

curve derived from serial dilutions of genomic DNA. As a negative control, primers binding to 

5,200 bp downstream of the start codon was used. 
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4.7 Mouse work 

The experimental setup and group size were approved by the German Regional Council of 

Baden-Wuerttemberg (ref. number: G-30/16; Karlsruhe, Germany) and in accordance with the 

institutional regulations of the Interfakultäre Biomedizinische Forschungseinrichtung (IBF), 

University of Heidelberg, Germany). Exclusion and termination criteria are defined in the ATBC 

criteria of the animal welfare officer of the University Hospital Heidelberg.  

 

4.7.1 Hydrodynamic tail-vein (HDTV) plasmid delivery 

A HDTV gene delivery method was employed to analyze the effect of cytoplasmic and 

membranous Scrib on liver tumor development. The establishment of HDTV is based on the 

anatomical structure of the liver, which is highly permeable between sinusoids and liver 

parenchymal cells (Chapter 1.1.1). The large volume of plasmid DNA solution flowing into vena 

cava inferior induces cardiac congestion, which leads to the enrichment of plasmids in the veins 

of mouse liver. This allows the penetration of injected plasmid DNA from blood vessels into 

hepatocytes under physical pressure. In order to allow a permanent integration and expression of 

target genes, a Sleeping Beauty transposon (SB) system was used to mediate genomic integration 

of the pT3-EF1α vectors [64]. The pT3-EF1α-c-MYC (12.5 μg) vector was combined with pT3-

EF1α-hScribWT-GFP or pT3-EF1α-hScribP305L-GFP (12.5 μg) plasmids and mixed with SB (5 

μg) in 2 ml (approximately 10% of animal body weight) sterile PBS for each mouse. Before 

injection, plasmid solutions were pre-warmed at 37´°C in a water bath and transferred in a 2 ml 

syringe. For injection, FVB/N mice at the age of 10 weeks were fixed in a mouse restrainer. 

Plasmid solution was injected into the lateral-tail vein within 7-10 seconds. As a control, pT3-

EF1α-c-MYC (12.5 μg) vector combined with pT3-EF1α-GFP (12.5 μg) was injected. The 

transient transfection efficiency can be analyzed 48 hours after injection by IHC stains of GFP. 

However, because the SB-induced genomic integration was applied in this technique, stable 

expression of transgenes was analyzed 2 weeks after injection. 
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4.7.2 Isolation of mouse liver tissue  

Four weeks after HDTV, liver tissue was isolated from injected mice for protein and histological 

analysis. The mice were sacrificed by CO2 asphyxiation. The abdominal cavity was carefully 

opened with a surgical scissor; the gastric system was removed to the right side. The ligaments on 

the anterior and superior liver surface were separated from the diaphragm. Afterwards, the mouse 

liver was slightly removed from the porta hepatis using a surgical tweezer. The inferior surface 

of liver was carefully separated from abdominal organs. The isolated livers were briefly washed 

with PBS, and put on a 10 cm cell culture dish. Individual lobes were separated using a surgical 

scalpel (blade #22).  

The isolated liver tissues were immediately fixed in buffered formalin for 2 days followed by 

IHC staining (Chapter 4.5.8). In addition, small pieces of liver tissues were transferred into 

Precellys tubes and transferred to liquid nitrogen for protein and RNA purification. The methods 

for protein and RNA extraction are described in 4.5.1 and 4.4.1 respectively. For long-term 

storage, the protein and RNA samples were stored at -80°. Representative IHC photos from 

isolated livers showing the Scrib-positive cells 2 days after injection are presented in Figure 7. 

 

Figure 7: Transient transfection of pT3-EF1α-hScrib
P305L

-GFP plasmid in mouse liver. A mouse liver was 

collected 2 days after the HDTV injection of pT3-EF1α-hScrib
P305L

-GFP and pT3-EF1α-c-MYC plasmids. The 

mouse liver was fixed in buffered formalin for 2 days, and continued with IHC stains of Scrib. Positive cells 

with transient Scrib expression (indicated by arrows) were observed surrounding the veins of liver. Photos were 

taken under 40x magnification, with scale bar: 500 μm; and 100x magnification, with scale bar: 200 μm. 
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4.8 HCC Patient material 

 

4.8.1 HCC patient gene expression and survival data 

Transcriptome and clinical data derived from 249 primary HCCs and corresponding non-

tumorous liver tissues were used for this study [65]. Expression levels of 33 polarity genes were 

compared between HCCs (n=249) and non-tumor livers (n=239). Overall survival and 

recurrence-free survivals of HCC patients (n=242) were analyzed using Kaplan-Meier curves and 

statistically compared using the Log-Rank Test. Chromosomal gains and losses were calculated 

by analyzing CGH array data derived from 60 HCC patients out of the transcriptome cohort [66]. 

In order to characterize the subcellular localization of Scrib in tissues, cryo-conserved non-

tumorous livers (n=20) as well as HCC tissues (n=32) were obtained from the NCT tissue bank 

Heidelberg (application no. 1921). The project was approved by the ethics committee of 

Heidelberg University. 

 

4.8.2 HCC tissue-microarray (TMA) analysis 

The TMA used for IHC analysis consisted of non-tumor livers (n=7) and HCC tissues (n=105). 

The histological grading of HCC tissues was done by an experienced hepato-pathologist (G1=10, 

G2=75, G3=16, G4=4). Immunohistochemistry stains were analyzed according to both 

quantitative and qualitative parameters. For quantitative parameter, number of cells was 

analyzed: 0=no positive cells, 1=less than 1%, 2=less than 10%, 3=10-50%, 4=more than 50%. 

For qualitative parameter, staining intensity was analyzed: 0=negative, 1=low, 2=medium, 

3=strong. The final score was given by multiplying quantitative and qualitative parameters. 

Evaluation was done by two experienced investigators. 
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4.9 Data acquisition and statistical analysis 

Data are presented as mean ± standard deviation. IBM SPSS Statistics (21.0, Armonk, NY, USA) 

was used to perform statistical analysis. The Mann-Whitney U test was used to compare 

nonparametric variables between two independent groups. The Spearman rank coefficient test 

was used to find associations between variables. Patient survival and recurrence data were 

analyzed by the Log-Rank Test. All in vitro experiments were repeated 2-3 times. 

Best Cutoff Finder was applied to define two groups of patients for survival analysis [67]. 

JASPAR data base was used to identify the potential AP1 family binding site on SPARC 

promoter region [68]. ImageJ software was used to add scale bars for photos. Adobe Photoshop 

CS5 was employed for the design and alignment of figures.  
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5 RESULTS 

 

5.1 Overexpression of Scrib is associated with poor survival in 

HCCs 

The hypothesis of this study was that dysregulation of single molecules of EPP system, 

which leads to a functionally disturbance of hepatocyte polarity, may also play an 

important role in the process of HCC development. In order to identify functionally 

relevant factors, mRNA expression data of polarity proteins were analyzed in a HCC 

cohort of 249 patients [65].  Candidate polarity genes included 33 different factors, which 

belong to the three major polarity complexes: Crumbs complex, PAR complex, and Scrib 

complex. Additional genes (e.g. CTNNA1 and CTNNB1) are closely related to cell-cell 

junctions. The selection criteria were (1) overexpression of the polarity gene in HCC 

tissues compared to the surrounding liver tissues; (2) expression level of candidate gene 

was associated with both overall survival and recurrence-free survival of HCC patients. 

Among the 33 polarity genes, six genes achieved these criteria: CDC42, CTNNA1, 

DLG5, MPP5, SCRIB and TJP1. A summary of the expression and survival data from all 

the 33 polarity genes is listed in Table 28. The comparisons of mRNA expressions 

between livers and HCCs, as well as the Kaplan-Meier survival curves for the six 

candidate genes are shown in Figure 8. 
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Table 28: Analysis of 33 polarity genes in human HCC and liver tissues 

Gene 
Symbols 

Gene Names 
HCCs compared 
to livers 

Survival 
correlation 

Recurrence 
correlation 

AMOT Angiomotin Underexpressed Yes No 

AMOTL2 Angiomotin like 2 Underexpressed No No 

CDC42 Cell Division Cycle 42 Overexpressed Yes Yes 

CDH1 Cadherin 1 Underexpressed Yes Yes 

CLDN1 Claudin 1 ns No No 

CRB1 Crumbs 1, Cell Polarity Complex 
Component 

ns No No 

CTNNA1 Catenin Alpha 1 Overexpressed Yes Yes 

CTNNB1 Catenin Beta 1 Overexpressed No No 

DLG1 Discs Large MAGUK Scaffold Protein 1 Overexpressed No Yes 

DLG2 Discs Large MAGUK Scaffold Protein 2 Underexpressed Yes* No 

DLG3 Discs Large MAGUK Scaffold Protein 3 Underexpressed No No 

DLG4 Discs Large MAGUK Scaffold Protein 4 Underexpressed Yes No 

DLG5 Discs Large MAGUK Scaffold Protein 5 Overexpressed Yes Yes 

INADL 
PATJ, Crumbs Cell Polarity Complex 
Component 

Underexpressed No No 

LIN7C 
Lin-7 Homolog C, Crumbs Cell Polarity 
Complex Component 

Underexpressed Yes Yes 

LLGL1 Lethal Giant Larvae Homolog 1 Underexpressed Yes Yes 

LLGL2 Lethal Giant Larvae Homolog 2 Overexpressed No no 

MPP1 Membrane Palmitoylated Protein 1 Underexpressed No Yes 

MPP5 Membrane Palmitoylated Protein 5 Overexpressed Yes Yes 

PARD3 Par-3 Family Cell Polarity Regulator Overexpressed No No 

PARD6A Par-6 Family Cell Polarity Regulator 
Alpha 

Underexpressed No No 

PARD6B Par-6 Family Cell Polarity Regulator Beta Underexpressed No No 

PRKCZ 
 
Protein Kinase C Zeta 

 

Underexpressed No No 

SCRIB Scribbled Planar Cell Polarity Protein Overexpressed Yes Yes 

TJP1 Tight Junction Protein 1 Overexpressed Yes Yes* 

TJP2 Tight Junction Protein 2 Underexpressed Yes No 

WWC1 
 
WW And C2 Domain Containing 1 

 

Overexpressed No No 

CRB2 
 
Crumbs 2, Cell Polarity Complex 
Component 

 

ns No No 

CRB3 
Crumbs 3, Cell Polarity Complex 
Component 

ns No No 

MPP4 
 
Membrane Palmitoylated Protein 4 

 

ns No No 

MPP7 
 
Membrane Palmitoylated Protein 7 

 

ns No No 

PARD6G 
 
Par-6 Family Cell Polarity Regulator 
Gamma 

 

ns No No 

AMOTL1 Angiomotin like 2 ns No No 

* Small group size according to the “Cutoff Finder”. Bold characters: genes significantly overexpressed in 
HCC patients and associated with poor overall survival and cancer recurrence. 
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Figure 8: Polarity gene expression of five candidate polarity genes correlated with HCC patient 
survivals.  (A) Gene transcriptome analysis of Scrib mRNA levels in HCC tissues (n=247) compared 

to non-tumor liver tissues (n=239). Cutoff value (Log2 mRNA expression) was 6.742 for overall 

survival, and 6.879 for recurrence free survival. (B) For CDC42, cutoff value was 5.56 for both 

overall and recurrence free survivals. (C) For CTNNA1, cutoff value was 6.55. (D) For DLG5, cutoff 

value was 4.90. (E) For MPP5, cutoff value was 3.96. (F) For TJP1, cutoff value was 5.45. The log-

rank test was used for the statistical comparison of groups. 



RESULTS 
 

56 
 

 

Among the 6 polarity genes, MPP5 and TJP1 were moderately but significantly 

overexpressed in the group of HCCs. Nevertheless, this elevated expressed of MPP5 and 

TJP1 was associated with better patient survival (Figure 8 E/F). Notably, Scrib showed 

the strongest induction (2.14-fold) in HCC tissues compared to surrounding liver tissues. 

In addition, its overexpression showed the strongest association with poor overall and 

recurrence-free survival. For this reason and because the functional impact of Scrib 

overexpression was never systematically analyzed in HCC, Scrib was selected for further 

analysis. 

In order to find out if the overexpression of Scrib in HCCs was due to genomic 

alterations, the mRNA expression data derived from human HCCs was compared with 

array-based comparative genomic hybridization (array-CGH) data [66]. In an aCGH data 

subset of 60 patients, amplifications of Scrib at the gene locus (chr. 8q24.3) were 

detected in 11 patients.  Indeed, the Scrib mRNA expression levels in these patients with 

chromosomal gains were significantly elevated in comparison to patients without 

genomic alterations (Figure 9), suggesting that the gains might be causative Scrib 

overexpression in some HCCs. 

 

 

 

Figure 9: Scrib overexpression was associated with 

chromosome gains. Scrib mRNA levels were 

compared between HCC samples with chromosomal 

gains (n=49), and without chromosomal gains (n=11). 

The Mann–Whitney U test was used for statistical 

comparison. 
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5.2 Mislocalization of Scrib in HCC tissues and cell lines  

Scrib is overexpressed in human HCC tissues and elevated Scrib levels may be due to the 

genetic amplifications. Interestingly, the mislocalization of Scrib has also been described 

in breast cancer patients [42]. For this reason, I hypothesized that also the localization of 

Scrib may play a role in the process of HCC development.  

In order to characterize Scrib localization in human livers and HCCs, 

immunofluorescence stains of Scrib were carried out using cyosections from healthy 

livers (n=20), as well as HCC tissues (n=32). A clear membranous Scrib localization was 

observed in most (90%) healthy liver tissues (Figure 10A).  In contrast, a frequent 

cytoplasmic Scrib mislocalization was found in the majority of HCC tissues (69%). In 

tissues with Scrib mislocalization, about 50% of patients had a partial loss of 

membranous Scrib, while other patients showed a complete membranous loss and 

cytoplasmic enrichment of Scrib (Figure 10B). 

 

 
Figure 10: Mislocalization of Scrib in HCC tissues. (A) Representative pictures of Scrib 

immunofluorescence stains from healthy livers and HCCs. In normal livers, 90% (18/20) of all 

analyzed samples showed a clear membranous Scrib localization. In HCCs, most of the cases 69% 

(22/32) had a cytoplasmic localization of Scrib. Scale bars: 200 µm. (B) Quantification of Scrib 

localization in healthy livers and HCCs. The relative amount of cytoplasmic Scrib is significantly 

higher in HCC tissues compared to healthy livers. Fisher's exact test was performed (P≤0.001).  
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In order to test for suitable in vitro models for further studies, the expression and 

localization of Scrib were compared in different HCC cell lines (HepG2, HuH1, Huh6, 

Hep3B, HLF and HuH7). The mRNA levels of Scrib were higher in most HCC cell lines 

compared to the immortalized hepatocytes (THLE-2), (Figure 11A). Protein analysis 

confirmed higher Scrib expression in HCC cell lines compared to the non-malignant cell 

line. Highest Scrib protein levels were detected in HepG2, HuH6, HLE and HLF cells 

(Figure 11B). To gain further insight into Scrib localization in HCC cell lines, 

immunofluorescence of Scrib was carried out in lines with higher protein abundance. 

HepG2, HuH1 and HuH6 showed a clear membranous localization, while Hep3B, HLF 

and HuH7 showed a predominately cytoplasmic localization (Figure 11C). These data 

illustrate that next to overexpression, Scrib is also localized in the cytoplasm in a 

subgroup of HCC cell lines.  
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Figure 11: Different expression and localization of Scrib in HCC cell lines. (A) Comparison of 

Scrib mRNA levels in different HCC cell lines (HepG2, Huh1, Huh6, Huh7, Hep3B, HLE, HLF, and 

SNU182) and non-malignant THLE-2 cells by real-time PCR. (B) Comparison of Scrib protein levels 

in HCC cell lines and THLE-2 cells using Western immunoblotting. Actin served as the loading 

control. (C) Immunofluorescence analysis reveals differential localizations of Scrib in human HCC 

cell lines. Magnification: 400-fold, scale bars: 40 μm.  
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5.3 Scrib localization affects hepatocellular polarity  

In order to study the impact of cytoplasmic Scrib in HCC cells, two cell lines stably 

expressing the wildtype (Scrib
WT

) and mutated Scrib (Scrib
P305L

) were generated. The 

P305L mutation in the leucine-rich repeats (LRR) domain abrogates the binding of Scrib 

with other cell polarity factor leading to its enforced cytoplasmic localization [69]. 

Plasmids coding for EGFP-tagged Scrib
WT 

and Scrib
P305L 

were transfected into HepG2 

cells, which showed a polarized phenotype as well as a membranous localization of Scrib 

(Figure 11C). Cell lines stably expressing Scrib
WT

 or Scrib
P305L

 were generated and tested 

for the localization of exogenous Scrib by immunofluorescence. As expected, Scrib
WT 

localized specifically to the plasma membrane, whereas Scrib
P305L

 predominantly 

accumulated in the cytoplasm (Figure 12A). The localization of both Scrib isoforms was 

confirmed by Western immunoblotting using membranous and cytoplasmic protein 

fractions (Figure 12B).   
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Figure 12: HepG2 stable cell lines with membranous and cytoplasmic Scrib. (A) 

Immunofluorescence of HepG2 cells stably expressing EGFP-tagged Scrib
WT

 and Scrib
P305L

. Upper 

right corner show higher magnifications to illustrate the expected subcellular Scrib localization. Scale 

bars: 40 µm. (B) Western immunoblots of protein fractions extracted from Scrib
WT

 and Scrib
P305L

 

expressing cells confirm the membranous localization of Scrib
WT

 and cytoplasmic localization of 

Scrib
P305L

. Na
+
-K

+
-ATPase and ß-tubulin served as the loading controls for membranous and 

cytoplasmic proteins fractions, respectively.  
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Interestingly, cell lines stably overexpressing Scrib
WT 

and Scrib
P305L 

showed different 

morphologies when grown on a plastic surface. The Scrib
WT

 cells established a columnar 

shape and compact multilayer colonies, while the Scrib
P305L

 cells acquired a flattened 

shape and a monolayer growth pattern (Figure 13A), which is indicative for disturbed 

cell-cell contact. In order to further analyze the impact of membranous or cytoplasmic 

Scrib on the 3-dimensional hepatocellular structure, a hepatocyte sandwich culture 

containing two layers of collagen matrix was used, which allows the formation of highly 

polarized cells in vitro [6]. After seeding the both cell lines under sandwich culture 

conditions for one week, the cell layers were stained for multidrug resistance-associated 

protein 2 (MRP2), which is a marker for the canalicular network. Elongated canalicular 

structures were detected in Scrib
WT

 cultures, while only spherical and shortened 

structures were found in Scrib
P305L

 cultures (Figure 13B). These results indicate that the 

proper localization of Scrib is critical for the maintenance of hepatocellular polarity.  

 

Figure 13: Disturbance of cell polarity by overexpression of cytoplasmic Scrib
P305L

. (A) Bright 

field photos of HepG2 cells stably expressing Scrib
WT

 and Scrib
P305L

 indicate differences in cell 

morphology and cell-cell contact. Low magnification: 100-fold, scale bar: 200 µm; High 

magnification: 400-fold, scale bar: 40 µm. (B) Sandwich culture stains of MRP2 in Scrib
WT

 and 

Scrib
P305L

 expressed HepG2 cells. Cell lines were seeded at a cell density of 400,000 cells per 6 cm 

dish between collagen sheets for one week. Immunofluorescence stains of MRP2 were performed to 

detect the presence of canalicular structures. Magnification: 400-fold, Scale bars: 40 µm.  
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5.4 Cytoplasmic Scrib induces cell invasion in HCC cell lines 

The initial correlation of Scrib expression and HCC patient data revealed an association 

of Scrib abundance and tumor prognosis. In addition, immunofluorescence illustrated the 

cytoplasmic localization of Scrib in many HCC tissues. In order to find out how 

cytoplasmic Scrib affects liver cancer progression, functional analyses including cell  

viability, apoptosis, and invasion assays were performed with Scrib
WT

 and Scrib
P305L

-

positive HepG2 cells. 

The cell viability assay revealed that cytoplasmic Scrib
P305L

 induced cell viability (Figure 

14A), while membranous Scrib
WT 

did not affect viability for up to 48 hours. In addition, a 

cell cytotoxicity assay illustrated that membranous Scrib
WT

 was associated with increased 

cell cytotoxicity (Figure 14B), while Scrib
P305L 

only moderately increased cell death in 

comparison to untransfected HepG2 cells. To further test if the increase of cytotoxicity 

was due to apoptosis and if Scrib with membranous and cytoplasmic localizations can 

differently affect drug-induced cell death, a caspase-3 activity assay was performed with 

both cell lines. Interestingly, the basal caspase-3 activity was not different between 

Scrib
WT

 and Scrib
P305L

 cells, however, cells expressing Scrib
P305L

 showed relatively lower 

caspase-3 activity after Doxorubicin treatment (Figure 14C). These data illustrate that 

cytoplasmic Scrib moderately affects cell apoptosis and that it may protect hepatocyte 

from cytotoxic challenges. 

Because Scrib overexpression significantly correlated with cancer recurrence in HCC 

patients, additional cell invasion assays were performed.  HepG2 cells stably expressing 

Scrib
WT

 showed a low invasive capacity. In contrast, cells stably expressing Scrib
P305L

 

had a significantly higher invasive capacity (Figure 14D).  

Together, the functional analyses revealed that cytoplasmic Scrib predominantly supports 

HCC cell mobility and invasion and to a lesser extent cell viability and apoptosis.   
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Figure 14: Functional analyses of HepG2 cells with membranous and cytoplasmic Scrib. (A) Cell 

viability of untransfected HepG2 and HepG2 cells expressing Scrib
WT

 or Scrib
P305L

 were measured 24 

and 48 hours after seeding. (B) Cell cytotoxicity assay of untransfected HepG2 and cells expressing 

Scrib
WT

 or Scrib
P305L

 were performed 24 and 48 hours after seeding. (C) Scrib
WT

 and Scrib
P305L

 

expressing HepG2 cells were treated with Doxorubicin (1 µM) for 24 hours followed by measurement 

of caspase-3 activity. Cell lysate were incubated with caspase-3 substrate for 4 hours. (D) HepG2 cells 

expressing Scrib
WT

 and Scrib
P305L

 were analyzed using Transwell chambers with Matrigel-coated 

inserts. The number of transmigrating cells was counted 72 hours after seeding. For each assay, cells 

were counted in seven different visual fields (40-fold magnification). Photos were taken with 100-fold 

magnification. Scale bars: 250 µm. For statistical testing, the Mann-Whitney U Test was used.  

 

 

Because GTPases play an essential role in regulating actin filament in cells which 

undergo EMT (see Chapter 1.2.3), cytoplasmic Scrib may interaction with GTPases in 

the regulation of cell invasion. To further figure out the reasons why cytoplasmic Scrib 

induced HCC cell invasion/migration, the Scrib
WT

 and Scrib
P305L

 cell lines were analyzed 

with regard to their actin organization as well as the content of Rho family GTPases 

using immunofluorescence and Western immunoblotting. Indeed, obvious differences 

were found in case of the actin filament organization. Cells expressing Scrib
P305L

 showed 

clear actin bundles at the leading and trailing edges, which has been regarded as the 

typical structure of actin cytoskeleton in invading/migrating cells [70]. Such actin 

filament structure was less obvious in cells expressing Scrib
WT 

(Figure 15A). Differences 
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regarding the expressions of Rho family GTPases were also detected in the both stable 

cell lines.  Rac 1/2/3 and CDC42, which were strong inducers of cell invasion/migration, 

were increased in cells expressing Scrib
P305L

. However, the negative regulator of cell 

invasion/migration, RhoA, was not differentially expressed in both cell lines (Figure 

15B).  

In summary, these data strongly suggest that cytoplasmic Scrib predominantly supports 

HCC cell mobility and invasion via the regulation of actin filaments and Rho GTPases.   

 

Figure 15: Effects of Scrib
P305L

 on actin filament and Rho GTPases. (A) Immunoflurescence stains 

of actin in cell lines stably expressing Scrib
WT 

or Scrib
P305L

 indicate differential cytoskeleton 

organization. Cells were documented with 400-fold magnification. Scale bars: 40 μm. (B) Western 

immunoblot analysis of Rho-GTPase family proteins in cells with Scrib
WT 

or
 
Scrib

P305L 
expression. 
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5.5 Cytoplasmic Scrib induces tumor formation via AKT 

signaling  

In the next step, we wanted to identify the relevant signaling pathways that were induced 

by cytoplasmic Scrib. Previous studies already demonstrated the regulatory effects of 

Scrib on extracellular signal-regulated kinases (ERK) and Hippo pathway activity [50, 

71]. We first tested if the transcriptional downstream effector of the Hippo pathway YAP 

was affected by the cytoplasmic Scrib
P305L

 in comparison to membranous Scrib
WT

. 

Because YAP phosphorylation regulates its subcellular localization, the phospho-status of 

YAP was considered to be a good read-out for the Hippo/YAP pathway activity [46]. 

However, no difference regarding YAP phosphorylation was observed in HepG2 cells 

stably expression both Scrib isoforms (Figure 16A). In addition, the localization YAP and 

its paralogue TAZ after siRNA-mediated inhibition of Scrib in untransfected HepG2 cells 

was analyzed. Again no nuclear enrichment of YAP or TAZ was detected after Scrib 

silencing (Figure 16B). These results indicate that no direct effect of Scrib on Hippo/YAP 

pathway activity is detectable in HCC cells.  

In the next step, other signaling pathways (ERK1/2, JNK and AKT pathways) that may 

be affected by Scrib were analyzed. In HepG2 cells stably expressing Scrib
WT 

or 

Scrib
P305L

, neither the ERK1/2 nor the JNK pathways were significantly regulated by the 

different Scrib isoforms (Figure 16C). However, the AKT/mTOR pathway was obviously 

induced by cytoplasmic Scrib. Phosphorylation of AKT and its downstream target 

phospho-S6 protein were both induced in cells expressing Scrib
P305L 

in comparison to 

cells with Scrib
WT

 expression (Figure 16C). In order to test if the induction of AKT 

depends on its physiological regulator phosphoinositide 3-kinases (PI3K), PI3K activity 

was inhibited by using Wortmannin. AKT activation was blocked under high dose (0.5 

μM) in both tested cell lines. However, using lower doses (0.05-0.25 μM), Wortmannin 

completely blocked AKT phosphorylation in cells expressing Scrib
WT

, but not in cells 

expressing Scrib
P305L 

(Figure 16D). These results illustrate that AKT/mTOR pathway was 

activated by the overexpression of cytoplasmic Scrib in a PI3K-independent manner.  
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Figure 16: Cytoplasmic Scrib activates the AKT/mTOR pathway. (A) Western immunoblot 

analysis illustrate that neither total YAP nor phospho-YAP are differentially expressed in Scrib
WT 

and 

Scrib
P305L

 cells. (B) siRNA-mediated Scrib inhibition cannot induce the nuclear enrichment of YAP or 

its paralogue TAZ in HepG2 cells. Proteins from cytoplasmic and nuclear fractions were isolated 60 

hours after siRNA treatment. PARP and ß-tubulin served as the loading controls for nuclear and 

cytoplasmic protein fractions, respectively. UTC: untreated cell, NS: non-sense siRNA. (C) Western 

immunoblot of protein lysates derived from Scrib
WT

 and Scrib
P305L

-expressing HepG2 cells shows 

increased phosphorylation of AKT and its downstream target S6 protein in the cells expressing 

Scrib
P305L

. (D) Western immunoblot analysis of Wortmannin-treatment cells illustrates the PI3K-

independent activation of the PI3K/AKT pathway in cells stable stably expressing Scrib
P305L

. DMSO: 

DMSO-treated cells.   
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5.6 Cytoplasmic Scrib destabilizes the phosphatases PTEN and 

PHLPP1 

To further define the molecular mechanism how cytoplasmic Scrib activates the 

PI3K/AKT pathway, two PI3K phosphatases: phosphatase and tensin homolog (PTEN) 

and PH domain leucine-rich repeat-containing protein phosphatase 1 (PHLPP1) were 

chosen as candidates for further analysis. Previous studies already illustrated an 

interaction between Scrib and PTEN in breast cancer cells and between Scrib and 

PHLPP1 in colon cancer cells [42, 72]. For this reason, I hypothesized that cytoplasmic 

Scrib activates PI3K/AKT pathway via physical interactions with PHLPP1 or PTEN in 

HCC cells. Interestingly, Co-IP experiments confirmed the bindings of both Scrib 

isoforms (Scrib
WT

 and Scrib
P305L

) with both phosphatases (PHLPP1 and PTEN). 

However, no significant difference in the binding capacity was detectable, indicating that 

Scrib localization did not change the binding properties with PHLPP1 and PTEN (Figure 

17A, B).  

Because the Scrib localization did not affect PTEN/PHLPP1 binding, it was interesting to 

analyze if and how both phosphatases were involved in the regulation of AKT in HepG2 

cells. To first confirm the inhibitory effect of PHLPP1 and PTEN on AKT 

phosphorylation and activity, a siRNA-mediated knockdown of PHLPP1, PTEN and both 

phosphatases was carried out. Silencing of PTEN or PHLPP1 resulted in a 1.6-fold and a 

1.2-fold increase in phospho-AKT, respectively. The strongest effect on AKT 

phosphorylation was detectable after combined PTEN/PHLPP1 inhibition (1.9-fold 

increase, Figure 17C). These results confirmed the relevance of both phosphatases in the 

regulation of AKT. However, how the phosphatases affect AKT activation in HCC cells 

was unclear. 

Although Scrib
WT

 and Scrib
P305L

 didn't show differential binding to PHLPP1 and PTEN, 

the subcellular localizations of Scrib/PHLPP1/PTEN complexes, which is closely 

associated with the activity of both phosphatases, might vary. For example, post-

translational modifications of PTEN at its membranous-associated PDZ domain led to 

changed protein stability [73]. For this reason, the subcellular localizations of PHLPP1 
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and PTEN were compared in both cell lines stably expressing Scrib
WT

 and Scrib
P305L

 by 

western immunoblotting. Indeed, PHLPP1 and PTEN were predominately reduced in the 

membranous fractions of Scrib
P305L

-expressing cells (PTEN: 67% reduction; PHLPP1: 

62% reduction, Figure 17D). The possibility of transcriptional regulation of PHLPP1 and 

PTEN in these cells was excluded by real-time PCR (Figure 17E).  

In cells with cytoplasmic Scrib, PHLPP1 and PTEN levels were reduced especially at the 

plasma membrane, which may be associated with decreased protein stabilities. To further 

analyze the impact of cytoplasmic Scrib on PHLPP1 and PTEN stability, protein lysates 

were collected at different time points after the administration of protein synthesis 

inhibitor CHX. Indeed, both PHLPP1 and PTEN were degraded much faster in the cells 

expressing Scrib
P305L

 than Scrib
WT

. The half-life of PHLPP1 was 6 hours in Scrib
WT 

cells 

and 3.5 hours in Scrib
P305L

 cells. Similarly, the half-life of PTEN was 48 hours in Scrib
WT

 

cells and 32 hours in Scrib
P305L 

cells (Figure 17F). In order to figure out if the decreased 

phosphatase stability was due to the increased proteasomal activity, Scrib
WT

 cells and 

Scrib
P305L 

cells were treated with proteasome inhibitor MG132 to block protein 

degradation. Interestingly, both phosphatases PHLPP1 and PTEN were obviously 

increased in Scrib
P305L 

cells but not in Scrib
WT 

cells (Figure 17G). Moreover, 

immunoprecipitation analysis of PHLPP1 and PTEN detected higher amount of 

ubiquitinated PHLPP1 and PTEN in Scrib
P305L 

cells compared to Scrib
WT 

cells (Figure 

17H). 

These results revealed that the interaction between membranous and cytoplasmic Scrib 

PHLPP1 and PTEN at specific subcellular locations. In addition, cytoplasmic-localized 

Scrib
 
leads to augmented degradation of PHLPP1 and PTEN via ubiquitination, which 

eventually activates PI3K/AKT-mediated signaling.  
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Figure 17: Cytoplasmic Scrib destabilizes the phosphatases PTEN and PHLPP1. (A) Co-IP 

experiments illustrate the interactions between PHLPP1 with Scrib
WT

 and Scrib
P305L

. Scrib was 

precipitated using an antibody against GFP. (B) Co-IP experiments demonstrate the interactions 

between PTEN with Scrib
WT

 and Scrib
P305L

. For (A) and (B), equal amounts of IgG antibody were 

used as negative controls. (C) Western immunoblot of phospho-AKT after siRNA-mediated inhibition 

of PTEN and PHLPP1. Bar chart shows the normalized results from 3 independent experiments. 

Nonsense siRNA (NS) was used as a control. (D) Protein analysis of PHLPP1 and PTEN in 

membranous and cytoplasmic protein fractions. Na
+
-K

+
-ATPase and ß-tubulin served as the loading 

controls for membranous and cytoplasmic fractions respectively. (E) Real-time PCR compares the 

mRNA levels of PHLPP1 or PTEN in Scrib
WT

 and Scrib
P305L

 cells. (F) CHX protein stability assays of 

PHLPP1 and PTEN in cells expressing Scrib
P305L

.
 
Polynomial regression graphs for PHLPP1 and 

PTEN were plotted from 3 independent experiments. (G) Cells were treated with MG132 (1 μM) 

overnight before protein isolation. DMSO served as a negative control. (H) Cells were pre-treated 

with MG132 (1 μM) overnight. For PHLPP1, protein was isolated under denatured condition, and 

detected with ubiquitination antibody. For PTEN, protein was precipitated with ubiquitin and detected 

with PTEN antibody. IP: immunoprecipitation, IB: immunoblotting. 
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5.7 Identification of target genes induced by cytoplasmic Scrib 

To identify the functional relevant downstream effector mechanisms of cytoplasmic 

Scrib, transcriptome analysis of cells stably expressing of Scrib
WT

 and Scrib
P305L

 was 

performed. For each RNA sample, three biological replicates were analyzed. Genes with 

changes ≥1.6 fold or ≤0.63 fold and with adjusted P-value ≤0.05 were selected. 

According to these criteria, 81 upregulated genes and 54 downregulated genes were 

found in Scrib
P305L

 expressing cells. KEGG database was used to for the network 

enrichment analysis of gene signatures and the GeneCards database was used for the 

functional annotation of selected genes [74, 75].  

Two groups of target genes (downregulated or upregulated) were selected according to 

their differential expression in Scrib
P305L

-positive cells compared to Scrib
WT

-positive 

cells. In the group of downregulated genes (n=54), three genes were described to be the 

WNT pathway inhibitors (BICC1, DKK1 and DKK4) according to the functional 

annotation by GeneCards database (Figure 18). In the group of positively regulated genes 

(n=81), 19 genes (23%) were related to cell invasion/migration according to the 

functional annotation and relevant publications. These 19 genes play a role in epithelial-

mesenchymal transition (EMT), tumor extracellular matrix (ECM) remodeling and actin 

reorganization (Figure 19).  
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Figure 18: Genes downregulated in Scrib
P305L

 cells. The heatmap shows the 54 genes significantly 

downregulated in the cell line stably expressing cytoplasmic Scrib
P305L

 in comparison to Scrib
WT

 cells 

(P≤0.05, fold change ≤0.63). Gene expression level is depicted by the blue-red intensities (blue 

indicates reduced genes). RNA samples and genes names of potential downstream targets are listed in 

x- and y-axis respectively. ** indicates genes negatively regulating WNT signalling pathway.   
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Figure 19: Genes upregulated in Scrib
P305L

 cells. Heatmap shows 81 genes significantly upregulated 

in the cell line stably expressing cytoplasmic Scrib
P305L

 in comparison to Scrib
WT

 cells (P≤0.05, fold 

change≥1.60). Gene expression level is depicted by the blue-red intensities (red indicates upregulated 

genes). Among the 81 upregulated genes, 19 genes (indicated by *) play have been described in the 

regulating cell motility, EMT, or related to tumor ECM remodelling. 
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Considering the gene expression levels induced by cytoplasmic Scrib, as well as the 

importance of genes in cell invasion/migration, eight out of 19 genes were selected for 

further analysis. For example, increased N-cadherin levels may affect cell-cell junctions 

and the induction of cell invasiveness [76]. Both carcinoembryonic antigen-related cell 

adhesion molecule 1 (CEACAM1) and melanoma cell adhesion molecule (MCAM) are 

cell adhesion molecules, which are known inducers of EMT and tumor invasiveness [77]. 

Fascin 1 has important function in the bundling of actin filament, which induces the 

filamentous actin (F-actin) in invading cells [78]. Secreted protein acidic and cysteine 

rich (SPARC, synonym: Osteonectin), TIMP metallopeptidase inhibitor 1 (TIMP1), 

TIMP metallopeptidase inhibitor 2 (TIMP2) and S100 calcium binding protein A10 

(S100A10) are secreted factors that play roles in the remodeling of tumor ECM [79-81]. 

Real-time PCR were carried out to confirm the overexpression of these invasion-

associated genes in Scrib
P305L 

and Scrib
WT

 cells. As expected, all the selected genes were 

significantly elevated in the Scrib
P305L

 cells compared to Scrib
WT 

cells with SPARC 

showing the highest induction (133-fold increase, Figure 20A). To confirm increased 

SPARC secretion in Scrib
P305L

 cells, a SPARC ELISA assay was used. The SPARC 

protein levels were 6.5-fold higher in cultured medium of Scrib
P305L

 positive cells (15 

ng/ml), compared to Scrib
WT

 positive cells (2 ng/ml) (Figure 20C). In addition, the 

overexpression of N-cadherin, CEACAM1 and Fascin 1 at protein levels were confirmed 

by western immunoblotting (Figure 20B). 

Because it is known that the upregulation of N-cadherin is often accompanied by the 

downregulation of E-cadherin in the process of EMT in epithelial cells [76], I tested the 

localization of both cadherins by immunofluorescence. In Scrib
WT

 expressing cells, E-

cadherin was clearly localized near the plasma membrane, while in the Scrib
P305L 

cells, E-

cadherin predominantly showed a cytoplasmic localization. On the other hand, the 

Scrib
P305L

 expressing cells showed a strong membranous stain for N-cadherin, which was 

much weaker in the Scrib
WT 

cells (Figure 20D). These data demonstrate that cytoplasmic 

Scrib induces an EMT-like phenotype partly via the regulation of cadherin adhesion 

molecules.  
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Because SPARC showed the strongest induction on mRNA and protein levels in cells 

expressing cytoplasmic Scrib
P305L

, this factor was chosen for further analyses. SPARC 

has been shown to mediate the interaction of cell surface molecules and extracellular 

collagen fibers, leading to the  induction of tumor cell invasion in the surrounding ECM 

[82]. For this reason, invasion assays with recombinant SPARC protein were performed 

to confirm the regulatory effect of SPARC. As previously demonstrated, Scrib
WT

-

expressing cells with low-SPARC levels showed a low invasive capacity (Figure 14D). 

Administration of recombinant SPARC significantly induced the invasiveness of Scrib
WT

 

expressing cells (Figure 20E). In addition, the invasive capacity of Scrib
P305L

 expressing 

cells, which have a high basal invasion potential, was suppressed when SPARC 

expression was inhibited by the siRNA (Figure 20F). 

Taken together, these results demonstrate that overexpression of cytoplasmic Scrib 

induces tumor invasiveness via the upregulation of genes, including SPARC, which are 

involved in EMT and ECM remodelling.   
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Figure 20: Cytoplasmic Scrib induces HCC cell invasiveness. (A) Real-time PCR analysis confirms 

the overexpression of the eight selected genes, which are involved in EMT and cell migration (N-

cadherin, CEACAM1, Fascin1, SPARC, TIMP1, TIMP2, and S100A10). Mann-Whitney U test was 

performed (P≤0.01). (B) Western immunoblot analysis confirms increased amounts of N-cadherin, 

CEACAM1 and Fascin 1 in the cells expressing Scrib
P305L

. (C) Human SPARC Quantikine ELISA 

assay was used to detect SPARC in the supernatant of cultured Scrib
P305L

 expressing cells in 

comparison to Scrib
WT

 expressing cells. Supernatant was collected from stable cell lines under 

starvation condition after 12 hours. (D) Immunofluorescence stains of N-cadherin and E-cadherin 

illustrates the overexpression of N-cadherin and the cytoplasmic localization of E-cadherin in 

Scrib
P305L

 cells. Magnification: 400-fold. Scale bars: 40 μm. (E) Cell Invasion was measured 96 hours 

after SPARC stimulation. Cells were stained with crystal violet (blue color). (F) Invasion assays 

illustrate the SPARC-induced cell invasion was abolished after siRNA-mediated silencing of SPARC 

in Scrib
P305L

 cells. The outer wells were supplemented with full FCS. Invasion was measured 72 hours 

after transfection. For (E) and (F), photos were taken under 100-fold magnification, scale bars: 200 

µm. Invading cells were counted in seven different visual fields under 40-fold magnification. 
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5.8 The role of AP1 family in regulating cytoplasmic Scrib-target 

genes 

AP1 transcriptional factors are activated by extracellular stimuli and stress, such as 

cytokines and growth factors. It can be activated by a variety of intracellular signaling 

pathways, e.g., JNK, ERK，p38 and AKT [83]. In order to define the transcriptional 

factor, which accounts for the upregulation of Scrib-target genes via AKT, the AP1 

family constituents (c-Jun, ATF2 and JunB) were compared in nuclear fractions of cells 

stably expressing Scrib
WT

 or Scrib
P305L

. Both increased total and phosphorylated protein 

levels of c-Jun and JunB were observed, while induced phosphorylated level without 

changing the total amount of ATF2 was detected in the cells expressing Scrib
P305L

 (Figure 

21A). To test if Scrib affects the transcription of AP1 family constituents, real-time PCR 

was performed to compare c-Jun, ATF2, and JunB mRNA levels. Interestingly, c-Jun was 

transcriptional upregulated in Scrib
P305L 

expressing
 
cells, while ATF2 and JunB were not 

affected (Figure 21B).   

In the next step, I evaluated the regulatory effect of these AP1 family members on 

cytoplasmic Scrib-target genes by siRNA-mediated gene silencing in Scrib
P305L

 

expressing cells. After c-Jun silencing, S100A10 was repressed, however, the other 

potential target genes were not drastically regulated at all or slightly induced (Figure 

21C). After ATF2 inhibition, SPARC, TIMP2 and MCAM were reduced, while Jun-B 

silencing led to diminished SPARC, TIMP1, TIMP2, CEACAM, S100A10 and MCAM 

transcript levels (Figure 21D/E). Especially, the impact of ATF2 and Jun-B on SPARC 

protein secretion in cells stably expressing Scrib
P305L

 was confirmed using the SPARC 

ELISA assay (Figure 21F).  
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Figure 21: Scrib target genes are regulated by transcription factor AP1 subunits. (A) Western 

immunoblotting shows the differences of total and phosphorylated c-Jun, JunB and ATF2 in the 

nuclear fraction of Scrib
P305L

 expressing cells in comparison to Scrib
WT

 expressing cells. (B) Real-time 

PCR reveals an upregulation of c-Jun at the mRNA level in cells stably expressing Scrib
P305L

 in 

comparison to cells stably expressing Scrib
WT

. No differences were detected for ATF2 or JunB. (C) 

Real-time PCR analysis after c-Jun inhibition in Scrib
P305L 

expressing cells. Significantly regulated 

genes were S100A10 (-63%) and TIMP2 (-24%). (D) Real-time PCR of Scrib
P305L

 expressing cells 

after ATF2 silencing. Significantly regulated genes were: SPARC (-73%), TIMP2 (-39%) and MCAM 

(-33%). (E) Real-time PCR analysis after JunB inhibition in Scrib
P305L 

expressing cells. Significantly 

regulated genes were SPARC (-26%), TIMP1 (-38%), TIMP2 (-38%), CEACAM1 (-55%), S100A10 

(-49%) and MCAM (-50%). (F) SPARC ELISA assay confirms reduced secretion of SPARC after 

ATF2 (-66%) or JunB (-29%) silencing. The siRNA treatment was performed under full FCS 

condition. Supernatant were collected from cells after starvation for 12 hours. SPARC concentrations 

in Scrib
P305L

 and Scrib
WT 

cells were determined using the SPARC Quantikine ELISA assay (3 

independent repetitions). For (C), (D), (E) and (F), UTC: untreated cells, NS: nonsense siRNA 

control. Statistical test: Mann-Whitney-U test. 
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To test if the AP1 subunits regulate SPARC expression through direct promoter binding, 

ChIP analyses were carried out in cell lines stably expressing Scrib
WT 

and Scrib
P305L

 

lines. Two different potential AP1 binding sites were predicted by the JASPAR database 

(Figure 22A). The first site was located upstream of the transcriptional start (position -

469 to -360). The second one was located within the second exon of SPARC (position 

+1890 to +1998) [84]. Primers were designed to detect these two potential binding sites, 

while primers that recognize an unspecific sequence downstream of the SPARC gene 

were designed as negative control (position +16083 to +16191). The c-Jun ChIP analysis 

revealed binding of c-Jun at the second binding site of the SPARC gene in the Scrib
P305L

 

expressing cells (Figure 22B). The ATF2 ChIP analysis demonstrated binding between 

ATF2 with both potential binding sites in the SPARC gene (Figure 22C). Similar to c-

Jun, binding of JunB was detectable at the second binding site in the SPARC gene 

(Figure 22D). Importantly, none of these interactions between AP1 family members and 

the SPARC promoter were found in Scrib
WT

 expressing cells (Figure 22B-D).  

Together, these data suggest that cytoplasmic Scrib induces invasion-associated genes via 

activation of the AP1 transcriptional factors ATF2 and JunB. Interestingly, c-Jun also 

binds to the SPARC promoter. However, this AP1 family member negatively regulates 

SPARC expression. 
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Figure 22: Interaction of the AP1 family member c-Jun, ATF2 and JunB with the SPARC 
promoter. (A) Scheme of two AP1 binding sites in the human SPARC gene promoter region. Primers 

used for ChIP analysis are indicated with grey arrows. (B) Real-time PCR for c-Jun ChIP analysis in 

cells stably expressing Scrib
WT

 and Scrib
P305L

. (C) Real-time PCR for ATF2 ChIP analysis in cells 

stably expressing Scrib
WT

 and Scrib
P305L

.  (D) Real-time PCR for JunB ChIP analysis in cells stably 

expressing Scrib
WT

 and Scrib
P305L

. For (B), (C) and (D), the amount of precipitated DNA was 

normalized to a standard curve of genomic DNA. Statistical test: Mann-Whitney-U test. 

 

5.9 Cytoplasmic Scrib promotes c-MYC-induced tumor 

formation 

Previous studies illustrated that cytoplasmic Scrib also facilitates oncogenic properties 

[42]. For this reason, mouse experiments were carried out to define the oncogenic 

potential of cytoplasmic Scrib
P305L

 in comparison to Scrib
WT 

after their stable genomic 

integration in non-malignant hepatocytes in vivo by using HDTV injection. For this, 

human Scrib
WT

 and Scrib
P305L

 were cloned into pT3-EF1α vectors, which allowed the 

integration of genes in hepatocytes after co-expression of the transposase SB in mice 
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(HDTV injection gene delivery technique). Two ml of plasmids diluted in PBS were 

injected into lateral tail-vein of each mouse in 7-10 seconds. Increased pressure in liver 

vessels forced the entry of plasmids through highly permeable capillary endothelium into 

injured hepatocyte [64, 85].  

We hypothesized that c-MYC overexpression might be necessary for Scrib to gain its full 

oncogenic properties, because c-MYC is frequently co-amplified with Scrib at the 

chromosome 8q.24 [86].  For this reason, the pT3-EF1α-c-MYC vector was co-injected 

with pT3-EF1α-hScribWT-GFP or pT3-EF1α-hScribP305L-GFP vectors. An IRES sequence 

in the pT3-EF1α-hScribWT-GFP and pT3-EF1α-hScribP305L 
constructs allowed the co-

expression of GFP and Scrib isoforms without the formation of fusion proteins. For this 

reason, GFP expression was used as a reporter to determine the transfection and 

integration efficiency of exogenous Scrib.  

Four weeks after injection, macroscopically visible tumors formed in the majority of the 

mice that expressing c-MYC and hScrib
P305L

, whereas small and microscopically visible 

lesions were found in the mice that received c-MYC alone or c-MYC/hScrib
WT

 (Figure 

23A). Increased levels of tested EMT and cell invasive signatures (SPARC, CDH2, 

TIMP2), and an activation of AKT was observed in samples with c-MYC/Scrib
P305L

 co-

expression was observed in comparison to c-MYC/Scrib
WT 

samples (Figure 23B/C). 

Notably, immunohistochemical analysis revealed a prominent induction of AKT and 

ATF2 phosphorylation as well as SPARC production in the tumors induced by c-

MYC/Scrib
P305L

 but not in control tumors (Figure 5D). Together these results indicate 

that cytoplasmic Scrib selectively activates AKT in hepatocytes and supports liver tumor 

formation in conjunction with another oncogene in vivo. 
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Figure 23: Cytoplasmic Scrib induces tumor formation after hydrodynamic gene delivery.  (A) 

Eight-weeks old FVB mice were injected with vectors coding for c-MYC, SB and one of IRES-GFP 

(pT3-EF1α-hScrib
WT

-GFP, pT3-EF1α-hScrib
P305L

-GFP or pT3-EF1α-GFP empty vectors). Mouse 

livers were collected 4 weeks after injection. Scale bar: 1 cm. (B) Scrib target gene expressions were 

compared in liver tissues isolated from the mice injected with Scrib
WT

/c-MYC (n=4) or Scrib
P305L

/c-

MYC (n=4). Statistic test: Mann-Whitney U. (C) Western immunoblot analysis revealed increased 

amounts of phospho-AKT in mouse livers injected with Scrib
WT

/c-MYC compared to the mouse livers 

injected with Scrib
P305L

/c-MYC. The presence of GFP protein confirmed the stable integration of 

Scrib-transgenes in mouse livers. (D) HE overviews and immunohistochemical analysis of pAKT, 

pATF2 and SPARC in Scrib
P305L

/c-MYC- or c-MYC- induced liver tumor. Scrib
WT

/c-MYC co-

injection induced one single microscopically visible tumor, which was not suitable for histological 

analysis. Tumor and surrounding healthy tissues are shown. N: normal liver, T: tumor. Photos were 

taken under 200x magnification, scale bar: 50 μm. Dash lines indicate the hepatocyte-tumor border.  
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5.10 Cytoplasmic Scrib, AKT and ATF2 are associated with HCC 

prognosis 

To confirm the previous findings in HCC patients, IHC stains of Scrib, phospho-AKT, E-

cadherin and phospho-ATF2 were carried out using a HCC TMA containing human 

HCCs and histologically normal livers (7 histologically normal livers, 105 HCCs). 

Immunohistochemistry stains were scored by multiplying quantitative and qualitative 

parameters (see Chapter 4.8.2).  In the non-tumor livers and well-differentiated HCCs, 

Scrib showed predominantly a membranous localization (Figure 24A). In contrast, in 

poorly differentiated HCC tissues, Scrib was frequently located in the cytoplasm (Figure 

24A). Because the function of Scrib depends on its localization, both membranous and 

cytoplasmic Scrib were evaluated using individual scores. Phospho-AKT was 

predominantly expressed in the cytoplasm of poorly differentiated HCCs, while it was 

not detestable in non-tumor livers and well-differentiated HCCs. More importantly, the 

expression of cytoplasmic Scrib positively correlated with the expression of phospho-

AKT (rs=0.54, p≤0.001). Phospho-ATF2 was expressed in the nuclei of HCCs, which 

also had a positive correlation with cytoplasmic Scrib expression (rs=0.28, p=0.037). In 

addition, E-cadherin was expressed on the plasma membrane of non-tumor livers and 

well-differentiated HCCs, which is frequently lost during the process of EMT in tumor 

development. Interestingly, the cytoplasmic Scrib expression negatively correlated with 

the membranous expression of E-cadherin (rs=-0.49, p≤0.001) (Figure 24A).  

To figure out if the IHC stains of TMAs (Scrib, phospho-AKT, phospho-ATF2 and E-

cadherin) were statistically associated with tumor de-differentiation, IHC scores for the 

respective proteins were compared with HCC grading (Figure 24B). Cytoplasmic Scrib 

stains correlated with a poorer tumor differentiation (rs=0.24, p=0.02), whereas 

membranous E-cadherin stains correlated with a better tumor differentiation (rs=-0.21, 

p=0.04). Phospho-AKT expression also showed association with tumor de-

differentiation, nevertheless this association did not reach the significance level (p=0.1).   
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Figure 24: Cytoplasmic Scrib correlates with AKT and ATF2 activity in human HCC tissues. 
(A) Representative IHC stains illustrates the association of cytoplasmic Scrib with an EMT-like 

phenotype (loss of E-cadherin) and AKT pathway activation (phospho-AKT; pAKT). Exemplary IHC 

stains of one non-tumorous liver, two HCC tissues with strong cytoplasmic Scrib, and two HCC 

tissues with predominantly membranous Scrib are shown. Photos were taken under 400-fold 

magnification (scale bars: 50 µm) and 80-fold magnification (scale bars: 200 µm). (B) Proportional 

bar charts illustrate the correlation of IHC stains with tumor de-differentiation. IHC scores (0-12) were 

used for the correlation with the tumor grading (0: normal liver tissue, 1: G1, 2: G2. 3: G3, 4: G4). 

Spearman’s correlation was used for statistical testing. Constituents of each scoring range (high score, 

medium sore and low score) are indicated with different grayscales. 
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The previous results strongly indicated that gene signatures induced by cytoplasmic Scrib 

could be used for the identification of HCC patients, who may have a higher risk to 

develop tumor metastasis.  Therefore, I next aimed to correlate the gene signature 

induced by cytoplasmic Scrib with HCC patient prognosis. For this, a HCC cohort 

containing 91 patients with defined prognostic subgroups was applied (Figure 25). In this 

HCC cohort, transcriptome expression data of patients with good or poor clinical 

outcome was analyzed for the presence of gene induced by cytoplasmic Scrib [87]. Genes 

identified previously as Scrib-target genes (upregulated or downregulated) in the 

Scrib
P305L

 cells were employed for Gene set enrichment analysis (GSEA). Interestingly, 

the GSEA revealed a significant correlation between the Scrib
P305L

-induced gene 

signature (n=65) and poorer patient prognosis. Furthermore, invasion-associated genes 

(n=16) were selected from the upregulated genes, which again showed a significant 

enrichment in HCC patients with poor prognosis (Figure 25 A, B). Vice versa, genes that 

were downregulated by Scrib
P305L

 (n=46) showed a significant association with better 

HCC prognosis (Figure 25C).  

Lastly, survival data from a 249 patients HCC cohort were further used for the analysis of 

the eight selected Scrib-target genes SPARC, CDH2, FSCN1, CEACAM1, TIMP1, 

TIMP2, S100A10 and MCAM [65]. For SPARC, CDH2, TIMP2, S100A10 and MCAM, 

significant induction in HCC tissues compared to the corresponding normal livers were 

detectable (Figure 26A). Moreover, the overexpression of CDH2 and MCAM in HCC 

tissues positively correlated with poorer overall and recurrence-free survivals (Figure 

26B). When patient data were compared with the gene expression of SPARC, CDH2, 

S100A10 and TIMP2 in surrounding tissues, all Scrib
P305L

 target genes exhibited 

significant correlations with worse overall survival recurrence-free survivals (Figure 27). 

To sum up, these data confirmed the association between the overexpression of 

cytoplasmic Scrib with the activation of AKT and ATF2 in HCC tissues. The 

overexpression of Scrib-target genes is associated with poorer prognosis in HCC patients. 
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Figure 25: Expression of Scrib target genes correlates with HCC prognosis. (A) GSEA and 

respective heatmap of Scrib-induced target genes in the pre-defined subgroups of HCC patients with 

poor or better prognosis. (B) GSEA and heatmap of invasion-associated genes selected from Scrib-

upregulated signatures in the pre-defined two subgroups. (C) GSEA and heatmap of Scrib-

downregulated signatures in both HCC subgroups. The GSEA was performed using GSEA software 

provided by the Broad Institute [88]. For A-C, normalized enrichment score (NES) was used to reflect 

the enrichment of signatures for each group. Statistical significance was calculated by nominal P-value 

using an empirical phenotype-based permutation test. Heatmaps show the expression of Scrib-target 

genes in the two subgroups of HCC patients with poorer or better prognosis.  
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Figure 26: Overexpression of Scrib-target genes in HCC tissues. (A)  Gene transcriptome analyses 

reveal that SPARC, CDH2, TIMP2, S100A10 and MCAM are significantly overexpressed in HCC 

tissues compared to surrounding livers. (B) Kaplan-Meier curves illustrate that higher expression of 

CDH2 (Log2 expression≥8.4) and MCAM (Log2 expression≥5.3) levels correlate with poorer overall 

and recurrence-free survivals. The overexpression of SPARC in the HCC tissues does not significantly 

correlate with survivals. Log-Rank test was used for the survival analyses. 
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Figure 27: Overexpression of Scrib-target genes in tumor-surrounding tissues correlate with 
poorer survivals. Kaplan-Meier curves shows higher expression of SPARC (Log2 expression≥8.7 for 

overall survival, Log2 expression≥7.7 for recurrence-free survival), CDH2 (Log2 expression≥7.9), 

S100A10 (Log2 expression≥9.0) and TIMP2 (Log2 expression≥5.7 for overall survival, Log2 

expression≥5.4 for recurrence-free survival) mRNA levels in the tumor-surrounding tissues positively 

correlate with both worse overall and recurrence-free survivals. Log-Rank test was used for the 

survival analyses. 
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6. DISCUSSION 

 

6.1 Dysregulation of cell polarity proteins defines HCC patients with 

poor clinical outcome  

Previous studies already identified alterations of cell polarity genes in different solid cancer cell 

types. These alterations include the downregulation of polarity proteins (e.g. Dlg, Lgl and PATJ), 

their overexpression (e.g. Par6, aPKC) or mislocalization (e.g. Par3, Scrib, aPKC) [33]. However, 

a systematic study of EPP components and their impact on the development and progression of 

HCC was missing, so far. In this study, 33 different polarity genes, which belong to the apical 

Crumbs complex, the subapical Par complex, and the basolateral Scrib complex were compared 

according to the expression levels in HCCs and surrounding tissues [65]. The comparison of 

transcript levels in HCCs with clinical data revealed candidate polarity genes, which may act as 

oncogenes (in case of overexpression) or tumor-suppressor genes (in case of downregulation). 

Although this transcriptome analysis allowed the identification of dysregulated factors; it cannot 

identify genes carrying mutations (e.g. point-mutations or small deletions) with direct impact on 

protein functionality.  

In the subgroup of overexpressed polarity genes that were associated with oncogenic properties, 

Scrib, CDC42, CTNNA1 and DLG5 were identified. Their overexpression in HCCs was 

associated with poor patient outcome. Notably, two of these polarity genes belong to the 

basolateral Scrib complex (Scrib and DLG5), indicating the importance of this complex in 

hepatocarcinogenesis. In addition, CTNNA1 (coding for α–catenin) also shows a close spatial 

proximity with the Scrib complex at the AJs [89]. A previous study demonstrated the activation 

of Wnt singling pathway in HCC patients with multiple intrahepatic metastasis, which was 

associated with β-catenin mutations in 70-100% [16]. Although little is known about α–catenin in 

HCC development, it has been suggested that this protein supports tumorigenesis via the 

interaction with β-catenin and the actin cytoskeleton [90]. The GTPase CDC42, which plays an 

important role in the dynamic reorganization of actin filament in migrating cells [39], was 
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overexpressed and associated with a poor HCC prognosis in our study. The oncogenic property of 

CDC42 identified in my study is in agreement with a previous study, which demonstrated the 

important role of CDC42 and other Rho GTPases in HCC invasion and migration [91]. 

In the subgroup of reduced polarity genes with potential tumor suppressive effects, CDH1 

(coding for E-cadherin), LLGL1, TJP1, LIN7C, and MPP5 were identified. Their presence 

correlated with a better HCC outcome. Among these polarity genes, E-cadherin has been widely 

accepted as a tumor-suppressor in HCC, which is downregulated in a subgroup of HCC patients, 

and is associated with Wnt pathway activation in intrahepatic metastasis [16, 92]. Like E-

cadherin, TJP1 is a major component of TJs. In HCC, loss of TJs and associated proteins (e.g. 

ZO-1 and claudin) have been connected with the tumor cell dedifferentiation and early metastasis 

[93]. Two other regulated factors, LIN7C and MPP5, belong to the apical Crumbs complex in 

association with TJs [32]. Although little is known about the role of LIN7C and MPP5 

(synonyms: PALS1) in cancer development, these two polarity proteins form a complex with the 

apical localized membrane protein Angiomotin, which can inhibit mouse liver tumor formation 

via the Hippo/YAP signaling pathway [49, 94].  

This systematic analysis of polarity genes in HCC patient material suggested the tumor-

promoting role of the basolateral Scrib complex and the tumor-suppressing property of the apical 

Crumbs complex. In many cases, the causes for the enrichment of polarity proteins from the same 

complexes sharing a specific biological functionality (oncogenic or tumor-suppressive) remain 

unknown. One explanation could be that individual polarity complexes may preferentially 

modulate specific intracellular signaling pathways, which may affect different aspects of tumor 

cell biology [33].  
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6.2 The Scrib gene is frequently amplified and Scrib protein is enriched 

in the cytoplasm of HCC cells 

Based on stringent selection criteria (significant overexpression and association with patient 

outcome), Scrib was further analyzed for its relevance in liver cancer. My study illustrated that 

Scrib overexpression in HCCs compared to normal livers was associated with poor clinical 

outcome. The upregulation of Scrib was also detected in other human tumor entities (e.g. breast 

cancer and lung adenocarcinoma), which confirmed the importance of Scrib in different cancer 

types [95]. Interestingly, the Scrib gene is located on chromosome 8q.24.3, which is frequently 

amplified in many cancer types [96, 97]. To define the cause for Scrib upregulation, Scrib 

expression levels in HCC samples with 8q24.3 gains were compared with samples without 

detectable genomic alterations. Indeed, transcriptional upregulation of Scrib was associated with 

chromosome amplifications at 8q24.3 (see Chapter 5.1). A meta-analysis of comparative genomic 

hybridization data derived from 785 HCC patients confirmed that the Scrib gene locus was 

amplified in more than 40% of all HCC patients [98]. Together with my study, these illustrate 

that the Scrib upregulation in HCC patients is probably due to the genomic amplification. 

Analysis of Scrib localization in HCC tissues and healthy livers revealed the membranous loss 

and cytoplasmic enrichment of Scrib in the majority of HCC patients, suggesting the loss of 

membranous Scrib expression is one important step during liver cancer formation. Other studies 

have equally observed the association between cancer development and cytoplasmic Scrib 

localization. For example, disassembly of the Scrib complex led to ovarian tumor formation in 

Drosophila melanogaster [99], while overexpression of cytoplasmic Scrib induced hyperplastic 

nodules in mouse mammary glands [42]. A recent study showed Scrib was localized in the 

cytoplasm in all analyzed HCC tissues (n=6), whereas it was mostly membranous localized in 

healthy liver (3/4) [100]. These data further support that the oncogenic function of Scrib is 

strictly dependent on its subcellular localization.  

Previous studies have identified the membranous localization of Scrib in cells depends on its 

LRR and PDZ domains [101], and mutations in these two domains led to cytoplasmic 
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mislocalization of Scrib and disturbance of epithelial polarity in Drosophila melanogaster 

embryos and breast cancer cells [42, 102]. By analyzing exome sequencing data derived from the 

TCGA database, two missense mutations within the LRR or PDZ domains were identified in 

HCC patients (n=366). These mutations represent amino acid changes (R220W and A799V), 

which are present in 2% of HCC patients [103]. Thus, mutations in LRR and PDZ domains can 

be one explanation for the cytoplasmic localization of Scrib. However, the frequency of HCC 

patients carrying Scrib mutations is much lower than the HCC patients with cytoplasmic-

localized Scrib (2% vs. 69%), which illustrates that other mechanism may affect the subcellular 

Scrib localization in HCC cells.  

Underlying liver diseases such as liver fibrosis and cirrhosis may represent one reason for the 

cytoplasmic enrichment of Scrib in hepatocytes. During this pathological process, changes in the 

composition of ECM due to elevated production of collagen and reorganization of cell polarity 

modules is detectable [19], which might affect the release of cell polarity proteins from their 

complexes. Another possible reason for Scrib mislocalization might be infection with is hepatitis 

virus. So far, only the TJ-associated protein Claudin-1 has been described to interact with HCV-

derived proteins, which induces HCC invasiveness via ERK signaling pathway [104]. Scrib 

stability has been connected with human papillomavirus (HPV) infection, which induces 

ubiquitination and degradation of the Scrib complex [105]. However, if the infection with 

hepatitis viruses is a cause for the observed cytoplasmic Scrib enrichment is not clear, yet. For 

example, the analyzed HCC cohort consisted of HBV-positive cancer patients [65], however, 

only a subgroup of patients showed a clear Scrib alteration. In addition, a recent study revealed 

that palmitoylation of Scrib was necessary for its membranous localization [106], however, if this 

secondary modification is also involved in the observed mislocalization in HCC cells has not 

been analyzed, so far.  
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6.3 Cytoplasmic Scrib activates AKT signaling pathway via the 

destabilization of PHLPP1/PTEN 

Because one previous study identified TAZ as the downstream effector of Scrib in breast cancer 

cells [50], similar effects were expected for HCC cells. However, neither was the TAZ paralogue 

YAP differentially phosphorylated in the Scrib
WT

 and Scrib
P305L

-expression cells, nor did 

YAP/TAZ translocate into the nucleus via siRNA-mediated Scrib inhibition (see Figure 15A/B), 

which suggested that Scrib may regulate different signaling pathways in a cell type-dependent 

manner. Other tumor-associated signaling pathways, including ERK1/2, JNK, AKT and p38 

pathways were also not significantly affected by cytoplasmic Scrib. Instead, the AKT pathway 

was identified as the central downstream effector according to the used experimental setup 

(Figure 15C). This result is in agreement with a study in breast cancer, in which overexpression 

of Scrib
P305L

 induced AKT-mTOR activity in cancer cells [42]. However, another breast cancer 

study and a recent study in HCC identified the ERK1/2 as a downstream effector of Scrib [71, 

100]. In these two studies, the ERK1/2 was dephosphorylated when Scrib
WT 

was overexpressed 

in cancer cells, although these two studies had different observations regarding the upstream 

activities of ERK1/2 regulators: rapidly accelerated fibrosarcoma (RAF) and mitogen-activated 

protein kinase kinase (MEK) [71, 100]. Taken into account a very early study in Drosophila 

melanogaster, which identified an enhanced tumor growth after rat sarcoma (Ras) and Scrib 

alterations [107], it is possible that both PI3K-AKT and Ras-ERK pathways cooperate with 

cytoplasmic Scrib during  tumor development. Because PI3K-AKT and Ras-ERK intensively 

cross-talks with each other, e.g. phosphatidyl-inositol,3,4,5-triphosphate (PIP3) is activated by 

Ras [108], it is not clear if the differential activation of the two pathways is mediated through 

independent molecular mechanism. Because PI3K-AKT and Ras-ERK have a common 

downstream effector (S6 protein) [108], it is possible that similar target genes and biological 

processes can be induced by cytoplasmic Scrib via activation of AKT or ERK signaling.   

The phosphatases PHLPP1 and PTEN were analyzed as potential upstream regulators of AKT 

because they have previously been connected with Scrib in two independent studies [109, 110]. 

PTEN is a negative regulator of PI3K/AKT, which dephosphorylates PIP3 and therefore blocks 

the recruitment and phosphorylation of AKT at cell membrane [111]. Different from PTEN, 

PHLPP1 directly dephosphorylates AKT (on Ser473) and protein kinase C (PKC), and both 
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modifications inhibit the activation of AKT and its downstream effectors [109]. In my thesis, I 

describe the interaction of the two important AKT phosphatases (PTEN and PHLPP1) with 

membranous and cytoplasmic localized Scrib. Membranous Scrib stabilized PTEN and PHLPP1 

at the plasma membrane, while cytoplasmic Scrib induced the rapid proteasomal degradation of 

phosphatases. These results were confirmed by studies in breast cancer cells demonstrating 

binding capacities of Scrib with both phosphatases [42, 72]. However, my data further suggests 

how cytoplasmic Scrib leads to AKT activation. Here, PTEN and PHLPP1, which are tethered to 

cytoplasmic Scrib, are quickly degraded by ubiquitination, and thus AKT and downstream 

pathway are constitutively activated (Figure 17).  

 

Figure 28: Cytoplasmic Scrib activates AKT signaling via the destabilization of PHLPP1 and PTEN. (A)  

Under physiological conditions, Scrib co-localizes with the AJ of the plasma membrane. It binds to the 

PI3K/AKT phosphatases: PHLPP1 and PTEN. PTEN dephosphorylates PIP3 to PIP2, antagonizing the effect 

of PI3K, while PHLPP1 directly dephosphorylates AKT [109]. AKT and the downstream pathway are 

negatively regulated by PHLPP1 and PTEN [109]. (B) In HCC cells, Scrib is enriched in the cytoplasm, which 

leads to a disassembly of the Scrib/PHLPP1/PTEN complex and degradation of the phosphatases. As a 

consequence, PI3K constantly phosphorylates PIP2 to PIP3, which allows the phosphorylation of AKT by 

pyruvate dehydrogenase kinase (PDK) [111]. RTK - receptor tyrosine kinases. 
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6.4 Cytoplasmic Scrib induces a signature associated with invasiveness 

in HCC 

Functional analyses in the cell lines expressing Scrib
WT

 and Scrib
P305L

 revealed a moderate 

induction of proliferation and suppression of apoptosis. More strikingly, a strong induction of the 

cell invasive capacity was detected after cytoplasmic Scrib overexpression (Figure 14). In 

addition, transcriptome analysis of Scrib
WT

 and Scrib
P305L

 expressing cells revealed the 

dysregulation of invasion-associated genes in cells with cytoplasmic Scrib. These genes include 

cell surface adhesion molecules (N-cadherin, CEACAM1, and MCAM), an actin bundle 

component (Fascin1) and secreted factors (SPARC, TIMP1/2 and S100A10). Among these 

genes, upregulation of N-cadherin counteracts E-cadherin, which is defined as a so-called 

"cadherin switch" in the progression of EMT [76]. Another example for a Scrib
P305L

-induced and 

pro-invasive gene is Fascin. This actin binding protein facilitates the dynamic reorganization of 

actin filament at the protruding filopodia, which is found at the leading edge of migrating cells 

[112]. Fascin was previously found as a target of the EMT-associated transcriptional factor Zinc 

finger protein SNAI2, which promoted tumor growth in K-Ras overexpressed mice, and was 

associated with early metastasis in pancreatic cancer patients [113]. Among the other identified 

and Scrib
P305L

-induced genes with pro-invasive capacity TIMP1 and TIMP2, which can regulate 

the tumor microenvironment via the interaction with matrix metalloproteinases (MMPs), were 

found [114].  

Previous studies discussed the tumor-supporting impact of Scrib in cancer development in the 

context of tumor cell proliferation, cell apoptosis as well as EMT [71, 115-117]. For example, 

loss of Scrib was found to induce cell proliferation via the induction of G1 to S phase cell cycle 

transition [116, 117]. Regarding cell invasiveness, which was the most promising aspect from my 

analysis; previous studies have focused on the role of membranous Scrib in inhibiting tumor cell 

invasion and EMT [117, 118]. Loss of Scrib induced a highly invasive tumor phenotype in 

Drosophila melanogaster in combination with Ras overexpression [115]. It has also been 

illustrated that this effect of membranous Scrib was dependent on its interaction with βPIX, 

which is a GEF protein specifically activating CDC42 and RAC1 [118, 119]. However, a 

different mechanism was described in breast cancer through the negative regulation on ERK 

pathway and Zinc finger E-box binding homeobox (ZEB) transcriptional factors [71]. These 
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studies suggest that membranous-localized Scrib may inhibit EMT/cell invasion, while my results 

further demonstrate that cytoplasmic-localized Scrib may promote these invasiveness via the 

activation of genes involved in EMT, actin reorganization and ECM remodeling. In addition, the 

secreted factors (SPARC, TIMP2 and S100A10), which were upregulated by cytoplasmic Scrib, 

were associated with worse clinical outcome of HCC patients (Figure 27).  

 

6.5 SPARC in liver microenvironment induces HCC invasiveness 

SPARC was identified as one of the most interesting target gene induced by cytoplasmic Scrib. 

Functional analysis of HCC cell lines under different culture conditions with various SPARC 

levels demonstrated the indispensable role of this factor in inducing HCC cell invasiveness.   

SPARC has important functions in the formation of collagen fibrils (I and IV) and mediating the 

interaction between cells and ECM [120]. Depletion of SPARC in mice caused reduced 

expression and stability of collagen fibers [121]. For this reason, SPARC-knockout led to 

embryonic lethality in Drosophila melanogaster due to the incomplete formation of basal lamina 

[122]. However, SPARC is also important in tumor development, especially in promoting 

migration and metastasis. Mice lacking SPARC showed increased resistant to skin papillomas 

under the UV exposure [123], while SPARC-knockout mice had reduced lung metastasis 

compared to the mice with normal SPARC expression in a breast cancer xenograft mouse model 

[81].  

Difference studies identified multiple mechanisms explaining how SPARC can increase tumor 

cell invasion/metastasis and changes in ECM composition. These mechanisms include changes in 

the EMT process, enhanced integrin adhesion, and ECM remodeling [124-126]. SPARC was 

identified to activate the EMT-associated transcription factor SNAI2 in melanoma cells [124], 

and to decrease cell adhesion by reorganizing integrin subunits important for ovarian tumor cell 

invasion/metastasis [127]. Another study detected the interaction of SPARC with vascular cell 

adhesion molecule 1 (VCAM) on vascular endothelial cells, which increased vascular 

permeability via activation of the p38 pathway, and promoted melanoma metastasis in a 

xenograft mouse model [125]. Nevertheless, there are contradicting results about the role of 

SPARC in tumor development. For example, SPARC inhibited tumor cell proliferation and 
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induced cell cycle arrest via the TGF-β/Smad pathway in lung epithelial cells [128], and 

suppressed the activation of AKT pathway in ovarian cancer cells [127]. Thus, the potential 

tumor-supporting role of SPARC must be evaluated for each individual tumor entity under a 

certain pathological process.  

In case of HCC, previous findings support our results that SPARC acts as a positive regulator on 

liver cancer progression [129, 130]. SPARC was found to be overexpressed in poorly 

differentiated HCC tissues compared with non-tumor livers [130]. It was also shown that the CpG 

islands in the SPARC promoter were hypo-methylated in HCC primary cells, which could 

explain increased SPARC levels in HCC cells [129]. Interestingly, SPARC is already detectable 

in fibrotic livers, suggesting that early mechanisms in cancer development are responsible for its 

overexpression [2, 131]. Studies in fibrotic livers together with the early study in HCC described 

an enrichment of SPARC in liver myofibroblast, which develop from liver stellate cell under 

inflammatory conditions [2, 130, 131]. Based on these data, SPARC secreted by myofibroblasts 

may induce liver cancer progression in a paracrine manner. My data further illustrate that liver 

cancer cells can also produce SPARC after disturbance of cell polarity and cytoplasmic 

enrichment of Scrib.  

 

6.6 Mislocalization of Scrib activates the AP1 family members ATF2 

and JunB 

Because cytoplasmic Scrib activated the AKT signaling pathway and cell invasion/migration-

associated genes, I asked, which transcription factors were responsible for the upregulation of 

ttarget genes induced by AKT pathway. It is known that the cytokine and growth factor-induced 

AP1 protein family is sensitive to extracellular stimuli and is activated by a variety of 

intracellular signaling pathways such as the JNK, ERK，p38 MAPK and AKT pathways [83]. I 

therefore hypothesized that AP1 family members might play a key role in the regulation of 

Scrib
P305L

-induced target genes via activation of AKT signaling. Indeed, my results demonstrated 

a higher activity of the AP1 proteins ATF2, JunB and c-Jun in Scrib
P305L 

cells, indicating that 

AP1 family members may act as important regulators of SPARC transcription in the HCC cells.  
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Next, the binding capacity of the AP1 proteins ATF2 and c-Jun at the SPARC promoter was 

analyzed. AP1 family members belong to leucine zipper-containing transcription factors, which 

binds to DNA as homo- or heterodimers. C-Jun is regarded as a central protein of AP1 family, 

which can interact with both ATFs and Fos subgroup members. These subgroups recognize 

distinct AP1 dimer binding site. Jun/Fos dimers bind to a 7 bp DNA palindromic sequence (5’-

TGAGTCA-3’ or 5’-TGACTCA-3’) [132], while ATF2 directly binds to a 8 bp palindrome (5’-

TGACGTCA-3’) [133]. Interestingly, different AP1 family members also facilitate distinct 

biological processes dependent on the composition of the dimer and the cell types [134, 135]. For 

example, c-Jun plays an important role in the regulation of cell cycle and apoptosis, which can be 

antagonized by JunB [134]. This suggests that the composition of AP1 dimers might affect the 

migratory response of HCC cells as illustrated by the different impacts of AP1 constituents on 

SPARC transcription.   

ChIP analyses performed in my thesis showed binding of both JunB and c-Jun at the SPARC 

promoter/enhancer region, which contains the described 7 bp binding motif (binding site 2) in 

cells overexpressing Scrib
P305L

. Notably, siRNA-mediated c-Jun inhibition revealed its negative 

regulatory impact on SPARC secretion, which illustrated that c-Jun may act as a repressor for 

SPARC expression. This was confirmed by a previous study showing that SPARC transcription 

was repressed by a viral homolog v-Jun in Drosophila melanogaster SL2 cells [136]. In contrast, 

JunB induced SPARC transcription, demonstrating that this AP-1 subunit served as a positive 

regulator in the used cell system. In addition to c-Jun and JunB, another AP1 protein ATF2, 

which showed the strongest impact on SPARC expression, bound to both potential binding sites 

in the SPARC promoter/enhancer. This result was in agreement with a large-scale promoter array 

analysis, which identified the interaction between ATF2 and SPARC promoter after cisplatin 

treatment [137], Notably, the second binding site was a 7-bp palindrome for Jun/Fos subgroups 

instead of ATF2, suggesting that the binding of ATF2 at the SPARC promoter/enhancer was 

probably due to other binding partners of the AP-1 dimers. 
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Figure 29: Summarizing scheme of how cytoplasmic Scrib induces tumor metastasis and EMT via 

activation of AKT pathway and AP1 transcriptional factors. (A) When Scrib locates to the plasma 

membrane, PHLPP1/PTEN inactivates the AKT signaling pathway in normal hepatocyte. (B) When Scrib 

locates to the cytoplasm, the AKT pathway is activated, which leads to a nuclear enrichment of AP1 

transcription factors ATF2 and JunB. (C) ATF2 and JunB bind to respective target gene promoters, and turn on 

target gene expression important for EMT and cell invasiveness. (D) SPARC is highly expressed by cells with 

cytoplasmic Scrib, which binds to membranous receptors on liver cancer cells and activates downstream 

signaling pathways involved in EMT and metastasis [125]. In (A) and (B), green colored areas indicate 

different subcellular regions of Scrib. In (D), SPARC is indicated in red, while other secreted factors are 

presented with grey.  
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6.7 Cytoplasmic Scrib co-operates with c-MYC in supporting liver 

tumor formation in mice 

In this study, I analyzed the oncogenic property of cytoplasmic Scrib in combination with the 

oncogene c-MYC, because c-MYC gene is located on chromosome 8q24.21 in close proximity to 

the Scrib gene on 8q24.3. This genomic region is known to be frequently amplified in in HCCs 

[86, 138]. Previous studies found that c-MYC amplification in HCC patients and induced tumor 

formation and progression via different mechanisms, including tumor cell proliferation, apoptosis 

and dedifferentiation [139, 140]. C-MYC promotes cell cycle progression through the activation 

of cell cycle proteins, e.g. cyclin D, cyclin dependent kinase (CDK) 4 and CDK6 [141]. In the 

liver, c-MYC expression synergized with AKT activation in promoting liver tumors after 

hydrodynamic gene delivery of both oncogenes [64]. I therefore asked if the co-delivery of c-

MYC and Scrib
WT/P305L

 isoforms (with Scrib
P305L

 leading to AKT activation) in mouse livers 

could affect c-MYC-dependent tumor formation in polarized hepatocytes.  

Indeed, my data in hydrodynamic tail-vein (HDTV) mouse model demonstrated that cytoplasmic 

Scrib cooperates with c-MYC in hepatocarcinogenesis already in early phases of tumor 

development. These results are in line with a study in breast cancer, which analyzed the effect of 

cytoplasmic Scrib in mammary glands [42]. This study detected frequent occurrence of 

hyperplastic lesions and development of malignant tumors after a long-term overexpression 

Scrib
P305L

 for two years [42]. The results generated in my thesis, show that the co-expression of 

cytoplasmic Scrib and c-MYC accelerates tumor formation in hepatocytes, since first solid cancer 

nodules were detectable after 6-8 week.  This rapid process is interesting since stable integration 

of the injected vectors is achieved in was about 2%-10% of all hepatocytes [64]. Importantly, 

HDTV-induced tumor models resemble the human situation of liver cancers, where tumor lesions 

are derived from single cells with several genomic alterations [64]. 

Most studies in vivo paid special attention to the activity of membranous Scrib instead of 

cytoplasmic Scrib in cancer development. Loss of membranous Scrib resulted in an EMT-

phenotype and tumor migration in Drosophila melanogaster [99]. Another study showed that 

membranous Scrib suppressed the oncogenic property of c-MYC in mammary tumor growth in a 
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subcutaneous transplantation mouse model [117]. In the recent HCC study, transgenic mice with 

genetic Scrib deletion spontaneously developed liver tumors [100]. Together, these data all 

illustrate the tumor-suppressive role of membranous Scrib in different independent tumor models. 

However, my thesis added a new level of how cytoplasmic Scrib supports tumor development in 

the liver. While mice expressing Scrib
WT

 and c-MYC showed few and small hepatic tumors, the 

Scrib
P305L

/c-MYC co-expression increased the number and size of macros- and microscopically 

detectable tumors. These findings, together with the results from other groups, indicate that Scrib 

facilitates tumor-suppressor or oncogenic functions depending on its subcellular localization.  
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6.8 Potential application of Scrib in HCC prognosis and therapy 

Current studies revealed multiple functions of how polarity proteins are involved in tumor 

development under pathological conditions [33]. In my study, cytoplasmic localized Scrib 

showed an oncogenic property in promoting liver tumor progression, while other studies in HCC 

and breast cancer focused on the tumor-suppressive role of Scrib [100, 117]. According to this 

thesis, Scrib can be used as a biomarker for the classification of highly invasive HCC; however, 

the localization of Scrib has to be carefully analyzed in patients. In addition, some of Scrib target 

genes belong to EMT markers (e.g. CDH2 and MCAM). Together with Scrib, these EMT 

markers may help to define the subgroup of HCC patients with higher risk of 

migration/metastasis. 

From the therapeutic point of view, re-establishment of cell polarity with membranous Scrib 

localization could inhibit the progression of HCC. However, multiple factors contribute to the 

overexpression of Scrib (e.g. genomic alterations), while the direct molecular cause for 

cytoplasmic Scrib (mis-)localization is missing here. Current studies proposed an idea of re-

establishing cell polarity via the remodeling of liver ECM, however, irreversible fibrotic collagen 

deposition in livers makes this approach clinically not feasible, so far [2]. Because 

hyperactivation of AKT pathway was connected with the overexpression of cytoplasmic Scrib in 

this study, this supports the idea of personalized therapeutic approach in a subgroup of patients. 

These patients may benefit from an AKT/mTOR pathway-directed therapy with by FDA-

approved chemical compounds [142]. 

In this thesis, I also found that cytoplasmic Scrib induced signature gene expression (e.g., 

SPARC, TIMP1 and TIMP2) which was associated with remodeling of tumor microenvironment. 

These secreted factors are potential targets for the development of novel therapeutic approaches 

for the treatment of chronic liver disease and cancer [2]. Among these secreted factors, SPARC 

showed strongest effects on cell migration/invasion, which was confirmed by independent studies 

in different tumor entities [126, 127, 130]. So far, basic research for SPARC is still ongoing to 

define the relevant receptors and downstream signaling pathways. For example, the VCAM 

receptor, the platelet-derived growth factors (PDGF) receptor and stabilin have been identified as 
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potential SPARC-binding proteins. These receptors may differentially activate downstream 

pathways involved in, proliferation and migration of tumor cells but also vascular permeability 

and angiogenesis after SPARC uptake [125, 143, 144]. This thesis indicated that components 

targeting at SPARC or its receptors could be beneficial for a subgroup of HCC patients with early 

metastasis. Before this, a comprehensive understanding of the relevant SPARC receptors and 

their respective downstream signaling pathways is necessary. 
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