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ABSTRACT

Deutsch

N ichtlokale Gravitationstheorien sind Versuche Quantenkorrekturen in die Einstein-
Hilbert-Wirkung miteinzubeziehen. Dies ist ein eleganter Weg, um offene Fragen der
Allgemeinen Relativitätstheorie anzugehen. In dieser Dissertation haben wir hauptsäch-

lich infrarot-relevante, nichtlokale Modifikationen von Gravitation als mögliche Quelle für die
beschleunigte Expansion des Universums zu späten Zeiten untersucht. Wir zeigen, dass, wenn
diese Korrekturen in der Effektiven Wirkung mit einer infrarot-relevanten Größenordnung
auftreten, sie zu einer validen Kosmologie zu späten Zeiten führen können, die sowohl auf
dem Hintergrund- als auch den Störungsniveaus mit allen beobachteten Daten übereinstimmt.
Überdies können manche dieser Modelle besser mit den beobachteten Daten übereinstimmen als
das ΛCDM Standardmodell. Wir haben auch Probleme untersucht, die mit der theoretischen For-
mulierung nichtlokaler Gravitationsmodelle assoziiert werden, wie beispielsweise die Rolle der
Anfangsbedingungen für die Lösungsräume. Wir haben herausgefunden, dass eine unvorsichtige
Behandlung der Anfangsbedingungen zu einem Übersehen mancher physikalisch sinnvoller
Lösungen führen kann. Desweiteren haben wir die Frage nach den klassischen Instabilitäten
in tensoriellen nichtlokalen Gravitationsmodelle untersucht, woraus wir schließen, dass neue
Mechanismen oder Symmetrien eingeführt werden müssen, um die Gültigkeit dieser Modelle zu
etablieren.

English

Theories of nonlocal gravity are attempts to include quantum corrections into the Einstein-
Hilbert action. Inclusion of these corrections is an elegant way to address open issues
within General Relativity. In this thesis, we have primarily studied infrared-relevant

nonlocal gravity modifications as a possible source for the late time accelerated expansion of the
Universe. We show that if these correction appear in the effective action with an infrared-relevant
scale, they can lead to a valid late time cosmology, which is in agreement with all observational
data, both at background and perturbation levels. Moreover, some of these models can have
even better agreement with observational data than the standard ΛCDM model. We have also
investigated problems associated with the theoretical formulation of nonlocal gravity models,
namely the role of initial conditions on their solution spaces. We have found that if not treated
carefully this can lead to the overlook of some valid physical solutions. The question of classical
instabilities in tensorial nonlocal gravity models has also been studied, where we conclude that
inclusion of some new mechanisms or symmetries is needed to render these models valid.
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1
INTRODUCTION

I t is already more then hundred years as Einstein in 1915 has formulated his theory of

General Relativity (GR) [1] which is one of the most elegant and successful theories in the

history of physics. It has been able to explain with a grate precision all gravitational phe-

nomenon from sub-millimeter scales up to astrophysical distances, enlarging our understanding

of the world surrounding us.

Despite this tremendous success, Einstein’s theory of General Relativity is not able to explain

the physics at cosmological distances, where one of biggest mysteries of the modern science enters

into the game. This is the so-called Dark Energy (DE) component responsible for the late time

accelerated expansion of the Universe [2, 3]. Together with Dark Matter (DM), they contribute

almost 96% to the today’s energy budget of the Universe [4].

The existence of these, physically yet unknown components has been proved by series of

observational missions which have also put strong constraints on their physical properties [5, 6].

These constraints will be even more improved by upcoming surveys, such as Euclid satellite

mission [7], which aim to shade light on physical processes at time and energy (distance) scales

which have been never accessed before. This opens up new prospects for scientists to get a better

understanding about fundamental mechanisms and processes governing the physical evolution

of our Universe. Hence, this is the right time for the development of different theoretical models

which can address the question of DE and DM and can be possibly distinguished by cosmological

observations.

In this respect, the ΛCDM model is maybe the simplest one. It is built upon GR plus Cold

Dark Matter (CDM) component and the cosmological constant (CC) term Λ. With a tiny value for

the cosmological constant, Λ≈ 3×10−122 in reduced Planck mass units, this model fits the current

observational data remarkably well becoming a phenomenological “étalon” model. However,
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CHAPTER 1. INTRODUCTION

despite its phenomenological success, the ΛCDM model lacks a fundamental understanding.

Indeed, the cosmological constant Λ is assumed to account for the vacuum energy of the Universe

and once we make a step into Quantum Field Theory (QFT) to understand how is this value

generated, we observe that the Λ is not technically natural. This means that it will receive

uncompensated quantum corrections at each level of loop expansion. The main reason behind this

issue is the incompatibility of classical GR with another pillar of the modern science, quantum

physics, which dictates the reality at microscopic scales. At first glance this reasoning can

seem a bit naive, as it is hard to imagine how those two distinct microscopic and macroscopic

(cosmological) scales can influence each other. However, a consistent (renormalizable) quantum

gravity theory can become “the tool” which will link those two physical scales. We believe that

the existence of a viable quantum gravity theory would allow us self-consistently calculate the

cosmological constant term and possibly find a solution to the cosmological constant problem.

Unfortunately, the final theory of quantum gravity is not available yet, although, there are

several well motivated candidates for this role [8–15].

Based on the above discussion, it is justified to search for theoretical models which can

perform phenomenologically at the same level as the ΛCDM but on the theoretical side are

free from potential dangers. But once we have decided to modify GR it opens up a plethora of

possibilities.

Modifications which will be discussed in this thesis are attempts to consider GR as an effective

field theory and encode possible quantum corrections into its action. For this purpose, the first

thing which one can do is to analyze quantum corrections arising in the semi-classical picture.

With this we refer to the studies of backreaction effects induced by quantum corrections in the

matter sector, which then influence the classical gravitational background. In the effective action,

these effects usually lead to a running of physical coupling constants as well as to an inclusion of

higher curvature terms [16–24].

To study cosmological properties of these corrections we need to write the effective action

in a coordinate space. By doing so, the running of coupling constants are generally expressed

through particular integral operators that are consistent with symmetries of the theory. The

appearance of integral operators in the effective action renders it to be nonlocal [22, 25–29].

These modifications of GR are presumably the most natural ones. Indeed, their inclusion does

not require an introduction of new physical concepts or symmetries beyond those existing in

initial theories. Nonlocal corrections will always arise in a quantum effective action, once we

take into account possible quantum corrections. Moreover, if those corrections become relevant at

some energy scales they can have a significant impact on the cosmic evolution of the Universe.

Hence, it is natural to ask whether these corrections can target open questions which cannot be

answered within GR. Motivated by this, recently there has been a lot of investigations about the

role of nonlocal corrections at different time and energy (length) scales of the Universe [30–36].

In this thesis we have been mostly interested in the role of possible nonlocal corrections in the
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late time cosmology as DE candidates. In Chapters 4 and 5, we will see that if these correction are

generated with an infrared (IR) relevant scale, they can serve as a valid DE candidate consistent

with all observations both at background and perturbation levels. Furthermore, differently from

most of modifications of GR, nonlocal gravity theories do not suffer from ghost instabilities at

quantum level. This directly follows from the fact that theories defined with a quantum effective

action, which arises from a healthy fundamental theory after integrating out some degrees of

freedom, cannot accommodate any pathological degree of freedom [19, 20, 24]. In Chapter 7,

we will make a step further and analyze late time cosmological predictions of a model, where

quantum corrections are induced in the context of a pure nonperturbative quantum gravity theory,

namely, asymptotically safe lattice quantum gravity [13, 37, 38]. In this class of quantum gravity

models, the ultraviolet (UV) completion of the theory is achieved by assuming an existence of

a non-Gaussian fixed point (NGFP), which controls the UV convergence of the theory [8, 9, 39].

This example is important because it shows that if quantum gravity effects lead to a strong

IR relevant running of physical couplings, these running of physical quantities can result in

observationally valid and theoretically well motivated DE candidates.

In addition to phenomenological studies of several nonlocal gravity models, in Chapter 6 we

will investigate classical instability issues common for the subclass of nonlocal gravity models

referred to as tensorial nonlocal gravity theories [40, 41]. Our results confirm that besides very

limited cases, an introduction of additional mechanisms is needed to make theories which contain

tensorial nonlocal terms theoretically viable.

At the practical level, nonlocal gravity models are usually studied by implementing a special

localization procedure. This is done by introducing several auxiliary fields which translates initial

nonlocal theory into a local multiscalar one. In the literature, while implementing this procedure,

there was a common confusion about initial conditions of auxiliary fields. This fact has led to

an incomplete investigation of solution spaces of the theories. In Chapter 4, with the use of

dynamical system analysis methods, we will address this issue for a particular nonlocal gravity

model and find new physical solutions of the model which previously have been overlooked.

Though, our analysis are implemented for a particular nonlocal model, the approach is very

general and can be easily extended for other nonlocal models too.

Throughout this thesis we will work in natural unites where the speed of light c and Planck

constant ~ are set to unity, i.e. c = ~ = 1. Furthermore, we will denote with a dot a derivative

with respect to (w.r.t.) the cosmological time t and with a prime a derivative w.r.t. e-folding time

N = lna. Metric quantities, unless explicitly specified, will be always given with the signature

(−,+,+,+).
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CHAPTER 1. INTRODUCTION

1.1 Background

1.1.1 The Equivalence principle and Einstein equations

In this section we will give a basic introduction to the theory of General Relativity, by introducing

the main quantities and notations used throughout this thesis. Here we mainly follow the

discussion done in Ref. [42]. So, let us begin by declaring that General Relativity is a theory built

on the Equivalence Principle (EP). The EP states that in a small surrounding of any spacetime

point in a general gravitational field, there exist always a local "inertial" coordinate system in

which the effects of gravity are absent. The EP allows us to find the equations of motion (EoM)

controlling the behavior of the physical system in any small spacetime region where we can

neglect gravity. To include the gravitational effects we just need to covariantize those "locally"

defined equations. The general covariant equations will not depend on the choice of coordinate

system and are valid in any gravitational field. In the case when the gravitational field is absent

these covariant equations should reduce to those defined in a local inertial coordinate system.

Within Einstein’s formulation of GR the gravitational effects are encoded into the geometry of

spacetime, which is characterized by a general metric gµν. The distance between two spacetime

points of a differentiable manifold, in the case of a general geometry, is given by the following

line element

(1.1) ds2 = gµνdxµdxν,

where dxµ is an infinitesimal spacetime element. For the later cosmological purposes we also

need to introduce the concept of a perfect fluid (PF). The PF is a medium at every point of which

there exists a local co-moving inertial Cartesian frame, where the fluid looks the same in every

direction. In a corresponding local frame the components of the PF’s energy momentum tensor

Tµν are

(1.2) Ti j = δi jP, T0i = T0i = 0, T00 = ρ,

where ρ and P are the energy density and pressure of a perfect fluid (PF), respectively. Using

Eq. (1.2) we find that the energy momentum tensor Tµν for the PF in a Cartesian frame is

(1.3) Tµν = Pηµν+ (P +ρ)uµuν.

To find the expression for the PF energy momentum tensor for any geometry, we write Eq. (1.3)

in a covariant form, such that

(1.4) Tµν = P gµν+ (
P +ρ)

uµuν,

where uµ is a four-velocity vector of the fluid defined as

(1.5) uµ ≡ dxµ

dτ
,

4



1.1. BACKGROUND

with τ standing for the proper time. The equations that establish a connection between spacetime

geometry (gravity) and the matter content of the Universe are known as Einstein equations and

have the following structure

(1.6) Gµν = 8πGTµν,

with the Newton constant G. The tensor Gµν in the left hand side of Eq. (1.6) has a pure

geometrical origin and is defined as

(1.7) Gµν ≡ Rµν− 1
2

gµνR.

The Ricci scalar R and Ricci tensor Rµν are derived from the Riemann curvature tensor Rµνρσ

by contracting it with the metric gµν, such that R = gµνRµν and Rµν = gρσRρµσν. The Riemann

tensor in its turn is given by

(1.8) Rρ
µνσ = ∂Γ

ρ
µσ

∂xν
− ∂Γ

ρ
µν

∂xσ
+ΓλµσΓρλν−ΓλµνΓ

ρ

λσ
,

where the Christoffel symbols are

(1.9) Γ
ρ
µν =

1
2

gρλ
(
∂gλµ
∂xν

+ ∂gλν
∂xµ

− ∂gµν
∂xλ

)
.

The energy momentum tensor Tµν, written in the right hand side of Eq. (1.6), for an arbitrary

matter content ψ with the Lagrange density Lm
[
gµν,ψ

]
, is obtained by taking a functional

derivative of the Lagrange density w.r.t. the metric gµν, i.e.,

(1.10) Tµν =− 2p−g
δ

(p−g Lm
)

δgµν
,

with g = det(gµν). In particular, for the case of a perfect fluid the energy-momentum tensor Tµν

defined by Eq. (1.10) takes the form (1.4). Finally, let us introduce a full covariant action which

leads to the gravitational field equations (1.6)

(1.11) S = SEH
[
gµν

]+Sm
[
ψ, gµν

]= 1
16πG

ˆ

d4x
p−g R+

ˆ

d4x
p−g Lm.

The first term in the action (1.11) is usually referred as the Einstein-Hilbert action, which is

responsible for the gravitational part of Eq. (1.6). The second term Sm
[
ψ, gµν

]
is the action

corresponding to the general matter sector sourcing the right hand side of Eq. (1.6). So, as we can

see the matter sector is determining the geometry of the spacetime; in other words it gravitates.

The curved spacetime in turn determines how matter moves in it. For a test particle in the

absence of all forces besides gravity, the trajectories will be governed by the following geodesic

equation

(1.12)
duµ

dτ
+Γµ

σλ
uσuλ = 0.

5



CHAPTER 1. INTRODUCTION

Let us close this section by introducing a couple of important relations which will be used in

future discussions. As we know from special relativity the energy momentum tensor Tµν satisfies

the following conservation law

(1.13) ∂µTµν = 0,

and in general relativity this will be promoted to the covariant conservation law

(1.14) ∇µTµν = 0,

with ∇µ standing for a covariant derivative.

Another useful identity, which is also named as Bianchi identity, has a pure geometrical

nature and leads to the covariant conservation of the Einstein tensor Gµν, i.e.,

(1.15) ∇µGµν ≡ 0.

The self-consistency of the relations (1.14), (1.15) can be directly checked at the level of the

Einstein equations (1.6) by acting on the both sides of it with the covariant derivative ∇µ.

1.1.2 Homogeneous and Isotropic Universe

If we look at any direction in the Sky at distances larger than 300 billion light years, the observ-

able Universe seems to be the same. The most important observational evidence supporting this

argument is the cosmic microwave background (CMB), first observed by the COBE satellite [5].

The small temperature fluctuation spectrum in the CMB shows that the Universe was homoge-

neous and isotropic already 14 billion years ago. The possible existence of global homogeneity

and isotropy of the Universe tells us that there is no any special location in the Universe and that

it will look the same in every direction for all static observers, regardless their location in the

space. The assumption of a homogenous and isotropic universe allows us to choose a coordinate

system in which spacetime metric takes a simple form. This type of a metric was first studied by

Friedman [43] as a solution of Einstein equations (1.6) and then derived by Robertson and Walker

from first principles of isotropy and homogeneity [44]. A vast part of the modern cosmology, at

least as a first approximation, is based on this choice of a metric. In a four dimensional spacetime

the Friedman-Lemaître-Robertson-Walker (FLRW) metric is defined in the following way:

(1.16) ds2 ≡ gµνdxµdxν =−dt2 +a(t)2
(

1
1−Kr2 + r2dΩ2

)
,

with the scale factor a(t) and the differential solid angle

(1.17) dΩ≡ dθ2 +sin(θ)2dφ2.

The quantity K is the so-called curvature constant and can take values K ⊂ {−1,0,1}, correspond-

ing to a closed, flat or an open universe, respectively. All of these three cases are representing a

6



1.1. BACKGROUND

model with a homogeneous and isotropic structure and to know which case occurs in reality we

should look at observations.

The conditions of isotropy and homogeneity constrain the structure of the PF energy momen-

tum tensor (1.4), making it diagonal

(1.18) Tµ
ν ≡ diag{−ρ,P,P,P}.

In the FLRW metric, from the 0th component of the conservation law (1.14), we get

(1.19) ∇µT0µ = ∂ρ

∂t
+ 3ȧ

a
(ρ+P)= 0.

We can solve Eq. (1.19) for different matter species constituting the Universe. To do this we

need to introduce a thermodynamical relation between the pressure and the energy density of

individual particle species. This relation is usually written as

(1.20) P = wρ,

where w is the equation of state parameter. Plugging the equation of state (1.20) for a constant w

into Eq. (1.19) we find the following general solution

(1.21) ρ∝ a−3−3w.

Using Eq. (1.21) we can understand how the energy density of the Universe will evolve during

different stages of cosmic evolution. For example in the case of radiation-domination, where

the matter content of the Universe consist mostly of a relativistic gas with w = 1/3, Eq. (1.21)

simplifies to

(1.22) ρ∝ a−4.

This result is easy to understand. Indeed, as in the case of any conserved density, when we

increase the volume of space, it will decrease proportional to an inverse of the volume, which

in our case is proportional to a−3. On the other hand, because all length scales in the universe

will change proportional to the scale factor a, we should also change wavelengths of relativistic

particles with the same factor a. Thus, we get in total that the energy density of a relativistic

fluid will scale as a−4. After the radiation-domination era, when the particles due to the cosmic

expansion cool down and become non-relativistic, we enter into the matter-domination period.

During this era baryonic matter in the Universe is well described by a dust-like equation of state

w = 0. Therefore, we obtain from Eq. (1.21) the energy density

(1.23) ρ∝ a−3,

which is proportional, as it is expected, to an inverse of the volume of the visible universe. Another

important case to be mentioned separately is the evolution of the Universe with the CC Λ. For
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the CC we have that Tµν∝ gµν and thus P =−ρ, which means that in this case the equation of

state parameter is w =−1. Inserting this value of w into the general solution (1.21) we obtain for

the CC

(1.24) ρ∝ const.

All this results hold also when we have DM or early DE components in the Universe (to be

introduced in the next section), provided that there is no direct interaction between the different

components.

1.1.3 Dynamics of the cosmic evolution

The cosmic evolution of the Universe is governed by the Einstein equations (1.6). Using the

FLRW metric (1.16) in Eq. (1.6) we find for its 00 component

(1.25) 3
(

ȧ
a

)2
+3

K
a2 =−8πGρ,

and for the spacial (i j) components we have

(1.26)
2ä
a

+
(

ȧ
a

)2
+ K

a2 = 8πGP.

For the cosmological implementations it is sometimes useful to write down these equations

through dimensionless quantities. This task can be completed by dividing Eq. (1.25) by 3H2, such

that we get

(1.27) 1= 8πGρ
3H2 − K

a2H2 =Ω+ΩK,

where we have defined

(1.28) Ω≡ 8πGρ
3H2 ΩK ≡− K

a2H2 .

The quantities defined in Eq. (1.28) are called cosmological critical densities. If the Universe

consists of several not-directly interacting components such as DM, radiation, dust-like matter,

we can write the total energy density ρtot as a sum of energy densities of these components ρ i, i.e.

(1.29) ρtot ≡
∑

i
ρ i,

which also implies

(1.30) Ωtot ≡
∑

i
Ωi.

From current observational data [4] we know that nowadays |ΩK| < 0.005, which means that

currently the curvature constant K is almost vanishing which in turn signals that our geometry

8



1.2. INFLATION

is a flat one. Based on this, from now on we will assume that the curvature constant K is always

vanishing and we have a spatially flat geometry. In this case, by inserting the scaling law of an

energy density from Eq. (1.21) into the left hand side of the Friedman equation (1.25) and solving

it analytically, one gets for the scale factor a

(1.31) a∝ t
2

3+3w .

The solution (1.31) characterizes how the scale factor a changes during the cosmic time t for a

single component universe. For the CC with w =−1 this solution does not hold anymore. To find

the evolution of a for the CC, we solve Eq. (1.25) by setting ρ = 3H2/8πG to be a constant. The

solution in this case is the following

(1.32) a∝ exp(Ht).

The FLRW metric with the scale factor (1.32) is referred to as the de Sitter metric. As we can see

from Eqs. (1.31)-(1.32) the scale factor a is increasing with the time in all cases of our interest,

e.g. radiation, matter and CC dominated periods. At this stage another important question

arises, namely, what is the rate of cosmic expansion? To answer this question we introduce the

deceleration parameter q defined as

(1.33) q ≡− äa
ȧ2 .

If the Universe expands with an acceleration ä > 0 we will have that the deceleration parameter

is negative. In the opposite case of a decelerating expansion this parameter is positive. It is useful

to express the deceleration parameter q through the pressure and energy density of the PF. To do

this we can subtract Eq. (1.25) from Eq. (1.26) and divide by H2. After some simple algebraic

manipulations we get

(1.34) q = 4πG(ρ+3P)
3H2 .

From Eq. (1.34) we immediately notice that in order to have an accelerated expansion of the

Universe the following condition must be satisfied

(1.35) P +3ρ < 0⇒ w <−1
3

.

As it will become clear later, this criterion is playing an important role in the process of analyzing

different Dark Energy and Modified Gravity models.

1.2 Inflation

The discussion of the FLRW cosmology in the previous section does not explain why the Universe

is homogeneous and isotropic on large scales. These questions are addressed in the context of
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inflation, where an exponential expansion at the early stages of cosmic history drives an initially

generic state towards a homogeneous and isotropic one. But maybe the most important function

of inflation is to provide a mechanism, that explains how early universe quantum perturbations

can seed large scale structure formation.

1.2.1 Conditions for Inflation and a Simple Realization

In this section, we will follow the discussion in Ref. [45, 46] and summarize all conditions needed

to have a cosmologically viable inflationary scenario. The first ingredient is to have a period

of accelerated expansion. In Sec. 1.1.3 we have already mentioned that negative values of the

deceleration parameter q correspond to an accelerated expansion. The deceleration parameter q

is closely related to another physical quantity called co-moving Hubble radius defined as (aH)−1.

An accelerated expansion in the language of the co-moving Hubble radius can be realized when

this radius decreases. Indeed, we can write that

(1.36)
d
dt

(aH)−1 = qa.

As we can see from Eq. (1.36), when q is negative that corresponds to a decreasing Hubble

radius. In the physics of inflation in general there is another set of parameters which is used

to characterize the expansion during inflation. These parameters are the so-called slow-roll

parameters and are introduced in the following way:

(1.37)
d
dt

(aH)−1 =−1
a

(1−ε),

where

(1.38) ε≡− Ḣ
H2 .

Therefore, the shrinking Hubble radius also corresponds to ε< 1. To solve the flatness and

horizon problems it is not enough to have a period with an accelerated expansion; it should also

last relatively long from N ∼ 40 to 60 e-folds to be able to set the right initial conditions for the

cosmic evolution afterwards. To achieve this condition we require the relative change of ε per

Hubble time to remain sufficiently small, i.e.

(1.39) |η| ≡ |ε̇/Hε| < 1.

In the rest of this section we will introduce and discuss one of the simplest inflationary models,

namely, the single scalar field model. This model is given by the following action

(1.40) S =
ˆ

d4x
p−g

[
M2

pl

2
R− 1

2
gµν∂µφ∂νφ−V (φ)

]
,

10
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where R is the Ricci scalar and V (φ) is an arbitrary potential. In the action (1.40), the mass

parameter Mpl stands for the reduced Planck mass defined as Mpl ≡ (8πG)−1/2. After varying the

action (1.40) w.r.t the inflaton field φ we get

(1.41) φ̈+3Hφ̇=−V ′.

Here, the prime denotes the derivative w.r.t the field φ. On the other side after varying the

action (1.40) w.r.t the metric gµν we find

(1.42) H2 = 1
3M2

pl

[
1
2
φ̇2 +V

]
.

Using Eqs. (1.41)-(1.42) we derive for the time variation of H

(1.43) Ḣ =−1
2
φ̇2

M2
pl

.

Inserting this expression into Eq. (1.38) one gets

(1.44) ε= φ̇2

2H2M2
pl

.

Therefore inflation occurs (ε¿ 1) when the kinetic energy of a scalar field φ̇2/2 is much smaller

then a potential energy V . This in turn implies that Eq. (1.42) can be simplified to

(1.45) H2 ≈ V
3M2

pl

.

By demanding that the relative change of ε per Hubble time is small (or equivalently that η¿ 1)

we find from the Klein-Gordon equation (1.41) that

(1.46) 3Hφ̇≈−V ′.

Plugging Eqs. (1.45)-(1.46) into Eq. (1.44) we find

(1.47) ε= φ̇2

2H2M2
pl

≈
M2

pl

2

(
V ′

V

)2

≡ εv.

Finally by taking the time derivative of Eq. (1.46)

(1.48) 3Ḣφ̇+3Hφ̈=−V ′′φ̇,

and plugging into Eq. (1.39) one achieves

(1.49) η=− φ̈

Hφ̇
− Ḣ

H2 ≈ M2
pl

V ′′

V
≡ ηv.

Equations (1.47)-(1.49) play a very important role in the construction procedure of different

effective theories to explain inflation. In particular, as it will be shortly discussed in Sec. 2.2, UV

relevant quantum corrections to the inflationary potential V can lead in some cases to a violation

of the slow-roll conditions εv, ηv ¿ 1 and thus making the model physically not viable.
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1.3 Dark Matter

The main part of the matter content in our Universe (≈ 25%) does not consist of ordinary baryonic

matter, but rather of some unknown component. There are several indirect observational evi-

dences which confirm the existence of a non-relativistic (cold) and very weakly or non-interacting

sector in our Universe, which exhibits itself only gravitationally. These observational tests span

over different astrophysical length scales, from galaxy to galaxy cluster scales [42, 47, 48]. This

unknown matter sector is usually referred to as Dark Matter (DM). It is called "Dark" because it

does not radiate photons and therefore is completely non-luminous. Elementary particle physics

theory offers several cold DM candidates. Among the widely discussed candidates are weakly

interacting massive particles (WIMPs) and in particular those coming from physics beyond the

Standard Model, such as string theory, SUSY, etc. . There are also several models, which in

order to explain the gravitational influence of the DM sector, do not require the inclusion of

any new particle species. In these models, the physical effects of DM are promoted instead to a

modification of gravity (see e. g. Ref. [49–51]).

1.4 Dark Energy and Modified Gravity

The discovery of the accelerated cosmic expansion made by two independent groups [2, 3] has

provoked another fascinating challenge for the modern science. The accelerated expansion of

the Universe has also been conformed by many ground-based and satellite observations [4, 6]

and is still to be tested by upcoming surveys, such as Euclid [52]. This discovery was surprising

because ordinary fluids which consist of matter or radiation can only lead to a decelerating

expansion, due to the fact that gravitational interaction between them is attractive. This also

can be seen from Eq. (1.34) where in both cases of radiation P = 1/3ρ and dust-like matter P = 0,

the deceleration parameter q is positive, which means we have a decelerating expansion. To

address this problem, one can think of two possible ways. First, we can modify the matter sector

of the Universe by adding a component with an equation of state parameter smaller than −1/3.

This type of modification will alter the right hand side of the Einstein equation (1.6) and in

literature are usually called "Dark Energy" (DE) models. Another possibility will be to modify

the Einstein-Hilbert action, thus changing properties of a gravitational field itself. Modifications

belonging to this category are called "Modified Gravity" (MG) theories and their contribution will

be encoded in the left hand side of the Einstein equations (1.6). The current observations [4] show

that DE or MG components amount for approximately 68% of the Universe energy budget today

and the value of their equation of state parameter is constrained to be w =−1.019+0.075
−0.080.

These observational results are consistent with the simplest DE candidate one can think

about, which is the standard ΛCDM model. In this model Λ stands for the cosmological constant

and CDM for a cold DM component. The Einstein equation (1.6) in the presence of the CC takes
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the form

(1.50) Gµν = 8πGTµν−Λgµν.

Written in this way Eq. (1.50) allows us to interpret the CC as a constant source in the energy

budget of the model. The energy density and pressure of the CC term are

(1.51) ρΛ ≡ T00 = Λ

8πG
PΛ ≡ T i

i /3=− Λ

8πG
,

respectively. From Eq. (1.51) it follows that the CC energy contribution does not dilute and

remains always constant. This is clearly not a property of a particle fluid and thus the CC should

have some other "microscopic" origin. Usually, it is associated with the vacuum energy of the

Universe. Though being the most economical possibility of addressing the question of the late time

expansion, the cosmological constant has its own theoretical and naturalness problems [53–55].

We will discuss these pathologies in the next section.

1.4.1 Cosmological Constant Problem

The Einstein-Hilbert action with the CC termΛ, which encounters for vacuum energy contribution

in the gravity, is written as

(1.52) SEH = 1
16πG

ˆ

d4x
p−g (R−2Λ)

As any type of energy, the vacuum energy of matter fields gravitates. Of course, to address the

question of vacuum energy at all energy scales, one has to have some knowledge about Quantum

Gravity. However, if we are interested in energy scales way below the Planck scale, the interaction

with gravitons will be very suppressed, so we can assume that gravity is classical whereas the

matter sector can be fully quantized. In this case the effective Einstein equations (1.6) are

(1.53) Gµν = 8πG
〈
0|Tµν|0

〉
.

On the right hand side of this equation, we have the vacuum contribution of the matter energy

momentum tensor (1.10). A self-consistent way of calculating this contribution is to compute

vacuum-loop diagrams for all the particle content of the Universe. As an example, using dimen-

sional regularization, the one loop vacuum contribution from a canonical scalar field φ, with mass

m, is [56]

Γ1
vac ∼

i
2

Tr
[
log

(
−i

δ2S
δφ(x)δφ(y)

)]
=−1

2

ˆ

d4x
ˆ

d4kE

(2π)4 log(k2
E +m2)(1.54)

=− m4

(8π)4

[
−2
ε
+ log

(
m2

4πµ2

)
+γ− 3

2

]ˆ
d4x

⊂−ρvac

ˆ

d4x,
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where ε= 4−D within dimensional regularization. Furthermore, γ is the Euler-Mascheroni con-

stant and µ is the renormalization group scale. Adding counter terms to remove the divergences

and generalizing this result to over larger particle contents, one might await for the total vacuum

energy to be given by [56]

(1.55) ρvac ∼
∑

i
O(1)m4

i ,

where the index i runs over all massive particles. Already in the case of the Standard Model we

have particles almost up to TeV scale, thus the vacuum energy ρvac in this case can be estimated

to be of the order ρvac & (TeV)4. Now let us see how this vacuum energy will effect the dynamics

of our Universe [56]. The energy momentum tensor of vacuum contributions will be

(1.56) Tvac
µν =−ρvac gµν.

Inserting the vacuum energy momentum tensor (1.56) into Eq. (1.53) we get for the Hubble

parameter

(1.57) H2
vac =

ρvac

3M2
pl

.

If ρvac is positive this will lead to an accelerated expansion of the Universe. As it was already

mentioned before current observations put strong constraints on the value of ρvac and they

require ρobs
vac u (MeV)4 which is a much smaller value than the one obtained from vacuum one-

loop results. So, now how we can reconcile this problem. The most straightforward way is to

introduce a constant Λ̃ counter term in the Einstein Hilbert action, such that it will absorb

the large value of the vacuum energy (1.55). Implementing this idea, we get for a renormalized

cosmological constant Λren

(1.58) Λren = Λ̃+Λvac.

Now, since Λvac ≈ (TeV)4 ∼ 1060 (MeV)4, to achieve the observational value Λobs =Λren ≈ (MeV)4

we have to make an extreme fine-tuning of the order 10−60 between Λ̃ and Λvac. Usually when

people refer to the CC problem they have in mind this fine-tuning issue. But this fine-tuning

itself cannot be a problem, because we are always allowed to add counter terms and absorb the

large value of the vacuum energy. The important question here is how sensitive is this fine-tuning

upon higher order radiative corrections? If the Einstein-Hilbert theory with the Standard Model

particle content were perturbative renormalizable we would be able, by adding a finite number of

counterterms, to stabilize our result at any loop order. Unfortunately, this is not the case and

higher loop corrections in this model cannot be suppressed. For that reason, we have to tune the

value of the observed cosmological constant at each level of perturbative loop expansion1. This

1In Ref. [57] one can find an estimate of the minimal amount of loops needed to be tuned.
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tells us that the vacuum energy is sensitive to the details of UV physics of which we are oblivious.

This is the real cosmological constant problem. There is another largely discussed statement that

the CC problem can be just an artifact of a truncation in the loop expansion series. Namely, if we

were able to sum all the loops we might obtain an exact expression for the vacuum energy. This is

per se a very optimistic consideration. Indeed, by taking into account the fact that in effective

field theories, which are not UV complete, beyond leading order one has higher dimensional

terms with unknown coefficients, there is not much hope that we will ever be able to sum all the

loops [56].

To summarize, if we want to address the CC problem within a QFT framework we first need

to find a way which makes the CC safe from possible quantum corrections. At this point it is

worthwhile to investigate possible alternatives to the CC term which can also generate late

time acceleration of the Universe. In the current cosmological literature there are dozens of

suggestions for alternatives to the CC, which are classified either as a DE model or as a MG one.

Below, follwing the discussion in Refs. [48, 58] we will briefly describe some of those models. Here

we have chosen the models which are most discussed in the literature and that are well-motivated

from a theoretical point of view. Another important thing to be clarified here is the following: all

the models which will be mentioned bellow do not solve the CC problem as such and one has to

still invoke a mechanism (symmetry) to explain the absence of the vacuum energy contribution

into the gravitational sector.

1.4.2 Dark Energy Models

One of the simplest models within this category which one can think of is the quintessence

model [59–64]. This model is very similar to the simple scalar field inflationary model introduced

in Sec. 1.2.1 and is given by the same action (1.40) plus the contribution from the matter sector,

i.e.

(1.59) S =
ˆ

d4x
p−g

[
M2

pl

2
R− 1

2
gµν∂µφ∂νφ−V (φ)

]
+Sm.

The equation of state parameter for the quintessence field φ is

(1.60) wq =
1
2 φ̇

2 −V (φ)
1
2 φ̇

2 +V (φ)
.

As one can see during the period when the potential energy of the quintessence field dominates

over its kinetic energy V (φ)À φ̇2/2, this model will resemble a CC type evolution with w ≈−1.

In this respect, the late time acceleration in quintessence models resembles to a period of very

low energy scale inflation. In general, the quintessence equation of state wq is a time-dependent

quantity and provides a dynamical DE candidate. Another important feature, which is inherit

to a wide class of quintessence models, is the existence of tracking solutions [65, 66]. Within

the tracking regime the quintessence field energy density closely traces the background fluid
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density and becomes dominant over it only recently. This type of behavior can explain the so-

called "coincidence" problem, which is: why are the DE and DM energy densities compatible in

nowadays Universe. Finally, let us also mention that in cases when the potential V (φ) is very flat,

we will effectively reintroduce the CC term which should be reabsorbed into the bare CC term.

A quite simple generalization of the quintessence model, is to consider non-canonical terms

for the scalar field φ, which will introduce derivative self interactions for φ. A possible action

embedding these properties can be written as [58]

(1.61) S =
ˆ

d4p−g

[
M2

pl

2
R+K

(
φ, X

)]+Sm,

where K is a general function depending on the field φ and its kinetic energy X defined as

X ≡−(1/2)gµν∂µφ∂νφ. These models are usually referred to as k-essence [67–69]. The equation of

state parameter for k-essence is given by the following expression

(1.62) wK = K
2X K,X −K

.

From Eq. (1.62) it is not difficult to see that, by appropriately choosing the form of the non-

canonical function K , one can attain a situation with wK < −1/3, which will correspond to an

accelerated expansion. An important difference between this type of non-canonical DE models

as compared with canonical ones manifests itself at the level of perturbations. Indeed, as it has

been shown in Ref. [70], the cosmic perturbations in k-essence models do not longer propagate

with the speed of light, but rather have a K dependent sound speed cs given

(1.63) c2
s =

K,X

K,X +2X K,X X
.

Due to this property, cosmic structure formation (to be discussed in Sec. 1.5) in k-essence models

is noticeably different from that in canonical DE models, where perturbations usually propagate

at the speed of light.

1.4.3 Modified Gravity Theories

Let us now turn our discussion towards theories of MG. Here we will mostly talk about MG

theories which have been constructed as consistent IR modifications of GR , allowing us to explain

the late time acceleration of the Universe. These IR modifications usually introduce new degrees

of freedom into the physical spectrum of the theory. One important thing which one needs to

check before studying the phenomenology of these models, refers to the question of their stability.

Already long time ago in 1850, Ostrogradsky has formulated his famous theorem [71] according

to which, theories which have EoM higher then second order contain instabilities. The modes

which cause those instabilities are usually referred to as Ostrogradsky Ghosts. We will talk

about ghost-like degrees of freedom and issues related to them in Sec. 3.3. Coming back to the
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discussion of MG theories and keeping in mind the Ostrogradsky theorem we can ask a natural

question, namely, what is the most general single scalar-tensor field theory in a four dimensional

spacetime (4D) which has at most second order EoM. The theory satisfying the above mentioned

condition has been constructed by Horndeski [72] and carries his name. The Lagrangian density

for Horndeski theory is [73]

L = K(φ, X )−G3(φ, X )2φ+G4(φ, X )R+G4,X (φ, X )
[
(2φ)2 − (∇µ∇νφ)2]+(1.64)

G5(φ, X )Gµν∇µ∇νφ−
1
6

G5,X (φ, X )
[
(2φ)3 −3(2φ)(∇µ∇ν)2 +2∇µ∇αφ∇α∇βφ∇β∇µφ

]
.

Written in this form, this theory contains four arbitrary functions, K , G3, G4, G5 and X is the

usual kinetic term for the scalar field φ. In general, to fix the form of arbitrary functions in

Eq. (1.64) one has to make some additional assumptions about the foundations of the theory [58],

for example choose a particular symmetry of the model, see e.g. the Galileon theory [74–76].

During the last years there has been some attempts to relax the assumption of second order

EoM in order to find the most general local scalar-tensor theory in 4D which has three healthy

propagating degrees of freedom [58]. In these models ghostly degrees of freedom are eliminated

by model-relevant constraints [77].

Another well studied class of models, within the family of scalar-tensor theories, are higher

curvature f (R) gravity theories. The general action corresponding to this class of models is given

by

(1.65) S = Mpl

2

ˆ

d4x
p−g (R+ f (R))+Sm(gµν,ψ),

where f (R) is a general function of the Ricci scalar and Sm stands for a standard matter

action. Depending on the structure of the f (R) function, these corrections to the Einstein-Hilbert

action become relevant either at early times when R/H2 À 1 for UV scales or at late times

when R/H2 ¿ 1 corresponding to IR energy scales. Based on this fact, these models have been

extensively studied both as candidates for inflation physics as well as to explain the late time

cosmic behavior of our Universe [48, 78, 79]. At first glance it seems that f (R) theories are

completely different from the above mentioned scalar-tensor theories, but as it has been shown

in Refs. [80, 81], at least at the classical level, these are just scalar-tensor theories written in

the Jordan frame. To see this one can perform a conformal transformation with subsequent field

redefinitions after which the action (1.65) turns into

(1.66) S =
ˆ

d4x

(
M2

plR

2
− 1

2
(∂φ)2 −V (φ)

)
+Sm

[
A(φ)2 gµν,ψ

]
,

where we have defined

(1.67) V (φ)≡ Mpl

2

(
φ f,φ− f

)(
1+ f,φ

)2 , A(φ)= exp
(
φp
6

Mpl

)
,
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where f,φ stands for the first derivative of the function f w.r.t. the field φ. Later on, as it has

been shown in Ref. [82], the local gravity tests [83] put strong constraints on the functional form

of f (R) models. The tension with the local gravity tests, due to the appearance of additional

degrees of freedom, is also inherited to most of scalar-tensor theories. One usually avoids those

problems by introducing a screening mechanism [48, 84]. Different screening mechanisms, such

as chameleon [85, 86], Damour-Polyakov [87, 88] and Vainshtein [89] types, allow to screen effects

of additional fields within local gravity systems, so we can recover the consistency with all local

tests. Finally, let us mention that there are several f (R) gravity models which can pass all local

constraints and lead to a viable cosmology [90, 91]. We refer to Ref. [79] for a comprehensive

review on these models.

Before starting our discussion on the main subject of this thesis, nonlocal gravity theories, let

us close the current section by briefly introducing related MG models which have triggered big

scientific interest in recent years. Namely, those are dRGT [92–95] and massive bigravity [96, 97]

theories. These theories try to address whether it is possible or not to construct a healthy theory

for massive gravitons in the effective field theory limit. Moreover, if we will be able to construct

such a theory, what are the subsequent phenomenological consequences. In order to construct a

mass term for a graviton we could follow the standard procedure in particle physics, i.e add a

square term of the metric field gµν with a mass-coefficient into the Einstein-Hilbert action. But

we immediately realize that this will not work in the case of gravity, as for the metric field in

4D we have that gµνgµν = 4, which is just a number. An interesting way-out of this situation is

to introduce a second metric fµν which is referred to as a reference metric. With the use of this

metric one is able to construct a unique action. For dRGT massive gravity we have [92]

(1.68) SdRGT =−
M2

pl

2

ˆ

d4x
p−g (R− I)+Sm

[
gµν,ψ

]
,

while for bigravity we have [96]

(1.69) SBG =−
M2

g

2

ˆ

d4x
p−g

(
Rg − I

)− M2
f

2

ˆ

d4x
√
− f Rf +Sm

[
gµν,ψ

]
,

with the ghost-free interaction term I between two metrics given by the following polynomial

structure

(1.70) I = 2m2
4∑

n=0
βnen

(√
g−1 f

)
.

In Eq. (1.70), m is the graviton mass and en are elementary polynomials of
√

g−1 f , defined

as
√

g−1 f
√

g−1 f ≡ gµν fµν. The parameters Mg and Mf are Planck masses for g and f metrics,

respectively. In both theories the matter fields, through the matter action Sm, are directly coupled

only to the metric gµν and follow its geodesics. The influence of the metric fµν on particle

trajectories is only indirect, via the interaction term (1.70). The structural difference between

dRGT and bigravity theories is triggered by the fact that in the case of dRGT the reference metric
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1.5. COSMIC PERTURBATION THEORY

fµν is not a solution of any dynamical equations and should be fixed by hand. On the other hand,

in bigravity this metric will be a self-consistent solution of dynamical equations, because of its

own Einstein-Hilbert term in the action (1.69).

In quantum physics, a massive particle with a spin S in total will have 2S+1 degrees of

freedom. In this respect, one expects for a massive spin-2 graviton to have five degrees of freedom.

It has been shown that indeed in the physical spectrum of dRGT theory one has five propagating

degrees of freedom. Meanwhile for bigravity there are seven propagating degrees of freedom

corresponding to a situation with one massive and one massless graviton. This difference between

the physical content of the two theories is due to an additional kinetic term Rf for the metric

fµν in the bigravity action (1.69). From the phenomenological side of those models [98–104] one

arrives to the conclusion that all the consistent models which are free from gradient and ghost

instabilities are almost indistinguishable from the standard ΛCDM model [105]. Together with

my collaborators I have been also involved in searches of possible way-outs which could help

to preserve the nice original properties of the model by providing a mechanisms to cure the

bigravity model from existing instabilities. One of these possibilities discussed in our work [106]

suggests instead of taking ad hoc FLRW-FLRW metric combinations for the metric fields gµν and

fµν, which is the case for most of bigravity literature, one should also investigate other possible

metric combinations which could in principle predict a model free of instabilities present in initial

models. In the same work, on a pure mathematical ground, we have found that not all the metric

combinations can be realized in the nature and we separated those combinations which at least

guarantee mathematical consistency of the theory. Whether those combinations lead to viable

models free of instabilities is still unknown and is a task for future research. In another work

with my collaborators [107] we have shown that allowing Lorentz invariance violation in the

gravity sector one can achieve a consistent theory on both quantum and classical levels, even

though the model has a ghost mode in its spectrum.

We close this section by referring interested readers to the review papers [108, 109], where

one can find information about all the recent developments in the fields of Massive Gravity and

Bigravity.

1.5 Cosmic Perturbation Theory

So far we have considered the Universe to be perfectly homogeneous, but if we want to see how the

observed astrophysical structures form in our Universe we need to go beyond this approximation.

To do this we can expand the Einstein equations (1.6) order by order in perturbations of the

metric and energy-momentum tensor. Of course, this procedure will be only justified as long as

we can treat perturbations to be small. For small fluctuations we can write a general metric

gµν as a combination of a background part ḡµν plus small perturbations δgµν ≡ hµν. Under this
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splitting the FLRW background metric can be written as

(1.71) ds2 =− (1+h00)dt2 +2h0idtdxi +a2 (
δi j +hi j

)
dxidx j.

The spatial indices in Eq. (1.71) should be raised or lowered with the use of the Kronecker delta

symbol δi j. The homogeneity and isotropy of the background metric ḡµν allows us to decompose

perturbations into scalars, divergenceless vectors and divergenceless traceless symmetric tensors,

which are not coupled to each other by the field equations or conservation equations. Hence,

perturbations to the metric can be written as

h00 = 2Ψ,(1.72)

h0i = a (∂iω̃+ωi) ,

hi j = a2 (
2Φδi j +∂i∂ jΘ+∂iχ̃ j +∂ jχ̃i +χi j

)
,

where the perturbation functions ωi, χ̃i and χi j = χ ji are satisfying the following conditions

(1.73)
∂ωi

∂xi = ∂χ̃i

∂xi = 0,
∂χi j

∂xi = 0, χii = 0.

Now let us perturb the energy momentum tensor for the PF (1.4). Again, decomposing it into

a background (T̄µν) and perturbation (δTµν) part, we find for the components of the energy

momentum tensor

T0
0 =−(

ρ̄+δρ)
,

T0
i =

(
ρ̄+ P̄

)
vi,(1.74)

T i
j =

(
P̄ +δP

)
δi

j +Σi
j,

where Σi
j stands for a traceless part of the energy momentum tensor, defined as Σi

j ≡ T i
j −

δi
j

3 Tk
k .

Among above mentioned perturbation quantities not all are physical modes. Some of them

are connected with each other through gauge (coordinate) transformations

(1.75) xµ→ x′µ = xµ+εµ(x).

The Einstein equations are invariant under this gauge transformation. Depending on the problem

one can choose a particular gauge which will allow to simplify the problem and to remove

redundant modes from the theory’s spectrum.

In practice for linear large scale structure formation it is sufficient to consider only scalar

perturbations. This can be done in a general manner due to the fact that at the linear level scalar,

vector and tensor perturbations are decoupled from each other and also in most of the standard

cosmological scenarios, the vector perturbations vanish rapidly during the cosmic evolution.

Tensor perturbations, on the other hand, are responsible for the gravitational waves, which have

been recently directly detected [110]. For the discussion in the next chapters it is convenient to
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1.5. COSMIC PERTURBATION THEORY

use the so-called Conformal Newtonian Gauge, which corresponds to Θ= ω̃= 0. The FLRW line

element, in the case of scalar perturbations, is given by

(1.76) ds2 =− (1+2Ψ)dt2 +a2 (1+2Φ)δi jdxidx j,

where the scalar perturbative functions Φ and Ψ are also known as the gravitational Bardeen

potential. With the use of Eq. (1.76), the perturbed gravitational field equations (1.6) take the

form

∇2Φ−3H (∂τΦ−HΨ)=−4πGa2δρ,(1.77)

∇2 (∂τΦ−HΨ)= 4πGa2 (
ρ̄+ P̄

)
θ,(1.78)

∂2
τ+H (∂τΦ−2∂τΨ)− (

2∂2
τH +H 2)

Ψ−(1.79)
1
3
∇2 (Ψ+Φ)=−4πGa2δP,

∇2 (Ψ+Φ)= 12πGa2 (
ρ̄+ P̄

)
σ,(1.80)

where θ and H stand for the divergence of the peculiar velocity θ ≡ ∂ivi and for the conformal

Hubble function H ≡ aH, respectively. The anisotropic stress σ is defined through
(
P̄ + ρ̄)∇2σ=

−
(
∂i∂

j − 1
3δ

i
j∇2

)
Σ.

Additionally, to the set of perturbation equations (1.77) we also need to add perturbations of

the covariant conservation law of the energy-momentum tensor (1.14), this yields

∂τδ=− (1+w) (θ+3∂τΦ)−3H
(
c2

s −w
)
δ,(1.81)

∂τθ =−H (1−3w)θ− ∂τw
1+w

θ− c2
s

1+w
∇2δ+∇2σ−∇2Ψ,(1.82)

where we have introduced the sound speed of a perfect fluid cs defined as c2
s ≡ δP/δρ and the

matter density contrast δ defined as δ≡ δρ/ρ̄. To close the set of perturbation equations (1.77)-

(1.81) one needs to specify an equation of state for the PF and fix the value of the anisotropic

stress perturbation σ. The anisotropic stress perturbation σ is usually sourced only by relativistic

components such as, radiation and neutrinos in the early Universe. As structure formation

mostly happens during the matter-domination period, so for the Universe with cold DM the above

mentioned physical quantities are c2
s = w =σ= 0. This assumption simplifies the perturbation

equations considerably. In general, it is impossible to find analytic solutions for Eqs. (1.77)-

(1.81), expect we do some additional assumptions on the scales where equations are applied for.

To see how this actually works, the equations are going to be written in Fourier space. To go

to Fourier space we need to replace ∇2 →−k2 and ∂ivi → ikivi. Inserting these replacements

into Eqs. (1.77)-(1.81) a particular dimensionless combination k/H arises on both sides of the

perturbation equations. Here we separate two limits first when k ¿H known as super-horizon

limit and k ÀH known as sub-horizon limit. For structure formation we are mostly interested
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in wave lengths which are well inside Hubble radius, i.e. λ ∼ k−1 ¿ H −1. Under this choice

Eqs. (1.77) turn to be

∇2Φ=−4πGa2ρ̄δ,(1.83)

Ψ=−Φ,(1.84)

where we have neglected the derivative terms ∂τΨ and ∂τΦ, compare with those which have a

prefactor k/H . The energy-momentum conservation equation (1.81) simplifies to

(1.85) ∂2
τδ+H ∂τδ= k2Ψ.

As a final remark to this section let us mention that, in the case of DE and MG theories the

standard linear parturbation equations do not hold anymore. A convenient way to parametrize

these changes upon the standard case is to introduce two new MG parameters η (a,k) and µ (a,k),

which are defined as

(1.86) η= Ψ+Φ
Φ

, Ψ= [
1+µ]

ΨGR,

where ΨGR is the Bardeen potential for GR. In this formulation, η, which is effectively also an

observable parameter [111] shows how much we diverge from GR, for which it exactly vanishes

ηGR = 0. On the other hand, the parameter µ enters into right hand side of the growth rate

Eq. (1.85), which can affect the overall process of structure growth in the Universe. One can find

a comprehensive review on the physics of cosmological perturbations in Ref. [112].
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2
ORIGIN OF NONLOCAL CORRECTIONS

In this chapter, we start the discussion of the main subject of this thesis, which is nonlocal

gravity theories. Throughout this chapter, we will explain how nonlocal effective actions

arise at the first place. In particular, we will start from the phenomenological derivation

of nonlocal theories which are suited to yield valid cosmic evolution of the Universe and to find

possible solutions to some open fundamental questions in cosmology, such as the CC problem,

the Big Bang singularity problem, etc. Later we will focus on questions of the origin of several

nonlocal corrections to the Einstein-Hilbert action, discussing their connection with different

fundamental theories and their derivation from first principles of QFT.

2.1 Nonlocality and degravitation

In this section, we introduce nonlocal theories, where nonlocality is associated with an inclusion

of the mass term. These theories have the property to screen the contribution of the CC term in

the Friedman equations and thus provide a possible solution to the CC problem. Before showing

how the screening is realized in the gravitational context, we start from a similar example in

QED, namely the Proca theory for massive photons. As we know from classical Electrodynamics,

the Maxwell action for massless photons in the presence of an external source takes the form

(2.1) S =
ˆ

d4x
[
−1

4
FµνFµν− jµAµ

]
,

where Aµ is an electromagnetic four-vector, jµ is a conserved (∂µ jµ = 0) external current and Fµν

is the electromagnetic tensor defined as: Fµν ≡ ∂µAν−∂νAµ. The action (2.1) is invariant under

U(1) local gauge transformations, which amounts to a transformation with a local phase α(x), i.e.
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CHAPTER 2. ORIGIN OF NONLOCAL CORRECTIONS

A′
µ = eiα(x) Aµ. Now, let us consider the Proca action where one introduces an explicit mass term

for photons

(2.2) S =
ˆ

d4x
[
−1

4
FµνFµν− 1

2
m2
γAµAµ− jµAµ

]
,

In this action mγ stands for the mass of the photon. The modified Maxwell equations for Proca

theory are

(2.3) ∂µFµν−m2
γAν = jν.

By acting on both sides of Eq. (2.3) with the partial-differential operator ∂ν and taking into

account that ∂ν∂µFµν = 0 and ∂ν jν = 0 we find the constrain equation

(2.4) m2
γ∂νAν = 0

For mγ 6= 0, Eq. (2.4) as a constraint equation allows us to remove one of the components of the

electromagnetic field Aµ so that, at the end, we are left with three propagating degrees of freedom,

as it should be for massive spin-1 fields [19]. With the use of Eq. (2.4), the Maxwell-Proca Eq. (2.3)

reduces to

(2.5)
(
2−m2

γ

)
Aµ = jµ.

The Proca action (2.2) is manifestly local but it violates the U(1) gauge symmetry of the original

theory. The mass and interaction terms in the Proca action can be made gauge-invariant by using

the Stückelberg trick [113, 114]. This method is implemented by introducing a Stückelberg field

ϕ in the following way

(2.6) Aµ→ Aµ+ 1
mγ

∂µϕ,

so the action (2.2) becomes

(2.7) S =
ˆ

d4x
[
−1

4
FµνFµν− 1

2
m2
γAµAµ− 1

2
∂µϕ∂

µϕ−mγAµ∂µϕ− jµAµ

]
.

In its current form, the action (2.7) is invariant under the gauge transformation

(2.8) Aµ→ Aµ−∂µα, ϕ→ϕ+mγα.

The EoM corresponding to the action (2.7) are

∂µFµν = m2
γAν+mγ∂

νϕ+ jν,(2.9)

2ϕ+mγ∂µAµ = 0.(2.10)

In the case when the field ϕ is vanishing, we recover back the initial EoM for Proca theory. At

this point an interesting question arises: can we rewrite the action (2.7) in such a way that it will
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2.1. NONLOCALITY AND DEGRAVITATION

contain only the electromagnetic four-vector Aµ ultimately preserving the gauge invariance. This

possibility has been explored in Ref. [115]. In that work, the goal has been achieved by formally

solving Eq. (2.9) for ϕ, which gives ϕ(x)=−mγ2−1(∂µAµ). Then by plugging this solution into the

action (2.7), we finally get [19]

(2.11) S =−1
4

ˆ

d4x

[
Fµν

(
1−

m2
γ

2

)
Fµν− jµAµ

]
.

For the discussion of this chapter it is enough to introduce the standard definition of an inverse

operator: An inverse operator L−1 is defined such that, for any differentiable function f (x), the

following relation takes place: LL−1 f ≡ f , i.e. LL−1 = id. This definition allows us to write for(
L−1 f

)
(x) the following integral representation

(2.12)
(
L−1 f

)
(x)=

ˆ

d4√
−g(y)G (x, y) f (y) ,

where the Green’s function G (x, y) of the integral representation satisfies the equation

(2.13) LxG (x, y)= δ4 (x− y) .

In Chapter 3, we will discuss mathematical and physical properties of inverse operators in a

more detailed way. Written in its current form, the action (2.11) for massive photons is manifestly

gauge invariant at the price of nonlocality which is revealed by the term Fµν2−1Fµν. The EoM

corresponding to this nonlocal action are

(2.14)

(
1−

m2
γ

2

)
∂µFµν = jν =⇒ ∂µFµν =

(
1−

m2
γ

2

)−1

jν,

or, in the language of Aµ,

(2.15)
(
2−m2

γ

)
Aν =

(
1−

m2
γ

2

)
∂ν∂µAµ+ jν.

Let us now study the behavior of Eq. (2.14) in two different energy regimes. First, when the

energy scales of the interest are much larger then the mass of the photon, i.e. m2
γ/2∼ m2

γ/k2 ¿ 1

and second, when the scales are much smaller, so that m2
γ/2∼ m2

γ/k2 À 1. In the first case, the

contribution of the operator m2
γ/2 in the l.h.s. of Eq. (2.14) can be neglected so that we recover

the standard Maxwell equations for massless photons. This is not a surprising result because if

we are interested in effects happening at very high energies the mass of photons will not give

any contribution to the total energy budget so that the situation will be very close to the one for

massless photons. However, this is not true anymore in the second case when we are interested

in energy scales much below the photon mass. Under this condition Eq. (2.14) formally reduces to

(2.16) ∂µFµν =− 2
m2
γ

jν,
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CHAPTER 2. ORIGIN OF NONLOCAL CORRECTIONS

where now the contribution of any external current jµ to the r.h.s. of the Maxwell equations will

be suppressed by a factor k2/m2
γ¿ 1 and hence will not affect the electromagnetic-field Aµ. This

result leads us to the conclusion that the operator
(
1− m2

γ

2

)−1
acts as a screening operator. The

screening properties of this operator are very similar to those of Yukawa screening, which is

implemented by the operator e−mr/r. Sometimes, this type of screening in Electrodynamics is

also referred to as "de-electrification". Now it is natural to ask whether it is possible or not to

extend the same procedure to the case of gravity. First of all, this will allow us to construct a

theory for massive gravitons which fully respects the diffeomorphism invariance of GR. Indeed,

the latter one is completely broken in Massive Gravity [108] and only partially preserved in

bigravity [109]. A second important achievement would be the inclusion of a possible screening

mechanism, which can be then used to screen the contribution of vacuum energy thus giving a

solution to the CC problem. First steps into this direction have been done in Ref. [18], where the

authors, analogously to the modified Maxwell Eq. (2.14), postulated modified Einstein equations

for massive gravitons as a first approximation

(2.17)

(
1−

m2
g

2

)
Gµν = 8πGTµν =⇒Gµν = 8πG

(
1−

m2
g

2

)−1

Tµν,

where mg is the mass of a graviton. As in the case of massive photons, we can separate out two

scales: first when m2
g/2¿ 1, i.e. at scales much higher than the mass of graviton, or equivalently

at distances much smaller than the graviton wavelength λg ∼ m−1
g . In this case, as it is expected

we recover the Einstein equations (1.6) for GR. This also means that at small scales ( such as

solar system scales) we retain all the usual successes of GR. Secondly, in the opposite limit when

m2
g/2À 1, Eq. (2.17) effectively becomes

(2.18) Gµν ≈−8πG
2
m2

g
Tµν,

from which it is obvious that any contribution to the energy momentum tensor of the structure

Λgµν will be filtered out due to the fact that 2(Λgµν) = gµν2Λ = 0. This also means that the

vacuum energy Λ does not gravitate. The problems associated with its value (or the so-called

technical naturalness) will decouple from the physical scope of large scale cosmology. Despite all

these remarkable properties, the model given by Eq. (2.17) has several principal drawbacks. The

most important one is that this model does not follow from an action based formulation, which

in turn does not give us the opportunity to understand from which fundamental theory these

modification could in principle originate from. This difficulty is closely related to the fact that

Eq. (2.17) is not consistent with the Bianchi identities. Indeed, applying the covariant derivative

∇µ on both sides of Eq. (2.17) and remembering that ∇µGµν =∇µTµν = 0, Eq. (2.17) reduces to a

constrain equation

(2.19) ∇µ (
2−1Gµν

)= 0.
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This condition cannot be satisfied for a general background gµν, since the covariant derivative ∇µ
and the d’Alembert operator 2 do not generically commute [19], i.e. for a differentiable function f

we have that ∇µ2 f 6=2∇µ f . This condition, therefore, translates also into ∇µ2−1 f 6=2−1∇µ f . To

overcome this problem, in Ref. [116] it has been suggested to replace the nonlocal term (2−1Gµν)

in Eq. (2.17) with the term
(
2−1Gµν

)T which transforms Eq. (2.17) into

(2.20) Gµν−m2
g
(
2−1Gµν

)T = 8πGTµν,

where T denotes the extraction of the transverse part. Let us see how this change would help us

to make our model consistent with the Bianchi identities. As we know, any symmetric tensor Sµν

can be decomposed as

(2.21) Sµν = ST
µν+1/2

(∇µSν+∇νSµ

)
,

where the transverse part ST
µν satisfies the condition ∇µST

µν = 0. In our case Sµν =2−1Gµν, so

then the covariant conservation of Eq. (2.20) is automatically fulfilled. The model (2.20) still

permits a degravitating solution. This can be checked by considering a modification of Eq. (2.20)

of the form [19]

(2.22) Gµν−m2
[(

2−µ2)−1
Gµν

]T = 8πGTµν,

where µ is a regularization parameter to be set to zero at the end of the discussion. Now, by

plugging the energy momentum tensor Tµν = Λgµν for the CC into Eq. (2.22) we find that it

admits a de Sitter solution Gµν = Λ̃gµν, where Λ̃= 8πG
[
µ2/(m2 +µ2)

]
. Taking the limit where

µ→ 0, we observe that Λ̃→ 0, which signals degravitation of vacuum energy [19]. Unfortunately,

this model does not lead to a valid cosmology and turns out to be unstable already at the

background level [117, 118]. In Ref. [117], it has been also observed that these instabilities are

due to tensorial nonlocal structures, such us (2−1Gµν) or (2−1Rµν). Later in our work [119],

which will be discussed in Chapter 6, we prove that these instabilities have a more general

ground and are present in a big class of tensorial nonlocal gravity models.

The authors in Ref. [117] have noticed that, if we replace in Eq. (2.20) the tensorial non-

local term 2−1Gµν by a scalar nonlocal term 2−1R, the instabilities disappear. Based on this

observation the following model has been proposed

(2.23) Gµν− m2

3
(gµν2−1R)T = 8πGTµν.

The model (2.23) is known as the "RT" model [19], where R stands for the Ricci scalar and T

for the transverse part. At the phenomenological level [117], the RT model has been shown to

be able to provide a valid dynamical DE candidate. The amount of DE can be matched to the

today’s observed value (ΩDE ' 0.68) by appropriately choosing the value of the mass parameter

m in Eq. (2.23). It is found to be of the order m ' 0.67H0. The equation of state parameter wDE

for this model, in the parametrization wDE(a)= w0 + (1−a)wa, has been calculated in Ref. [117]
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where the authors have found that w0 '−1.04 and wa '−0.02. These results are consistent with

the latest Planck data [4, 6]. The cosmological perturbations of the RT model have been studied

in Ref. [120] and compared to CMB, BAO, SNIa and LSS data. As a result it has been noticed

that in the case when one chooses a higher prior on h0 & 0.7, which is the case for the local

measurements [121], the data strongly favor the RT model over ΛCDM [122]. On the other hand,

in the case of a lower prior on h0 (0.67 . h0 . 0.70), as suggested by the Planck data [4] the

RT model and ΛCDM are statistically comparable [122]. Despite all of these phenomenological

achievements, there are several open questions in the RT model still to be addressed.

The most important question is related to the possible origin of the RT nonlocal gravity

model. Being derived purely on the phenomenological ground, this model lacks some connections

with fundamental theories. The main obstacle to find these links is the fact that the RT model

is defined only at the level of EoM and, so far, no action based formulation is known. In the

early stages of the development of the RT model, some of the attempts to construct an action for

this model led to the discovery of another well known nonlocal gravity model, namely the RR

nonlocal gravity model. Below, we will have a brief look inside this procedure, first executed in

Refs. [116, 123]. The main idea behind this procedure is to find the graviton propagator for the

RT model at the level of Eq. (2.23), and to construct then a corresponding action which leads to

this type of graviton propagation. To do this, we linearize Eq. (2.23) over the flat background ηµν
by decomposing the metric gµν into gµν = ηµν+hµν, where hµν is a small perturbation. If we plug

this metric decomposition into Eq. (2.23) and keep only terms which are at most first order in

hµν, Eq. (2.23) turns to [19]

(2.24) E µν,ρσhρσ− 2
3

m2PµνPρσhρσ =−16πGTµν,

where we have defined Pµν as

(2.25) Pµν = ηµν− ∂µ∂ν

2
,

and E µν,ρσ stands for the Lichnerowicz operator [124]

E µν,ρσ ≡ 1
2

(
ηµρηνσ+ηµσηνρ−2ηµνηρσ

)
2+ (

ηρσ∂µ∂ν+ηµν∂ρ∂σ)
−1

2
(
ηµρ∂σ∂ν+ηνρ∂σ∂µ+ηµσ∂ρ∂ν+ηνσ∂ρ∂µ) .(2.26)

Here the operator 2 stands for the flat-space d’Alembertian. It is important to mention that

during the process of linearization for the transverse term (gµν2−1R)T in Eq. (2.23) we used the

fact that in flat space the covariant derivative ∇µ goes to the standard partial derivative ∂µ and

acting on both sides of Eq. (2.21) with partial derivatives ∂µ and ∂µ∂ν we find1 [19]

(2.27) ST
µν = Sµν−2−1 (

∂µ∂
ρSρν+∂ν∂ρSρµ

)+2−2
∂µ∂ν∂

ρ∂σSρσ.

1 This expression for ST
µν is true only for the Minkowski background ηµν. In a generic curved background, due to

the fact that
[∇µ,∇ν

] 6= 0, it does not hold.
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Here, we can already write the corresponding flat space action for Eq. (2.24), which is

(2.28) Γ(2)
RT = 1

16πG

ˆ

d4x
[

1
4

hµνE µν,ρσhρσ− 1
6

m2hµνPµνPρσhρσ
]
+
ˆ

d4xhµνTµν.

Now we can try to covariantize the action (2.28). This will allow us to construct a fully covariant,

nonlinear nonlocal theory whose equations at the linear level coincide with those for the RT

model. To covariantize, we first observe that the Riemann tensor linearized around flat space has

the structure Rµν = R(1)
µν +O (h2), where R(1)

µν in [125] reads

(2.29) R(1)
µν =−1

2
2hµν+ 1

2
∂µ

(
∂λhνλ− 1

2
∂νh

)
+ 1

2
∂ν

(
∂λhµλ− 1

2
∂µh

)
.

By contracting Eq. (2.29) with the flat metric ηµν we find for the linearized Ricci scalar R(1)

(2.30) R(1) = ∂µ∂ν
(
hµν−ηµνh

)= 1
4

hµνE µν,σρhσρ.

Let us now plug Eq. (2.30) into Eq. (2.28) so we finally obtain for Γ(2)
RT

(2.31) Γ(2)
RT = 1

16πG

ˆ

d4x
[
R(1) − 1

6
m2R(1) 1

22 R(1)
]
+
ˆ

d4xhµνTµν.

Hence, the natural covariantization of the action (2.31) is

(2.32) S = 1
16πG

ˆ p−g d4x
[
R− 1

6
m2R

1
22 R

]
+
ˆ p−g d4xLm.

At this point, it is very important to mention one more time that the EoMs derived from the

covariant action (2.32) do coincide with Eq. (2.23) for the RT model only at the linearized level

around flat space. Nevertheless, at the full nonlinear level or linearized around other backgrounds

the two models are completely different [19]. The theory defined with the action (2.32) was first

introduced in Ref. [123] and is usually referred to as either RR or the Maggiore-Mancarella (MM)

nonlocal gravity model. This model has successfully passed all the phenomenological tests and is

a consistent model describing the late time acceleration of the Universe. We will come back to

the phenomenology achievements of the RR model later in Chapter 4. For now, since we have an

action based formulation for the RR nonlocal gravity model, we will investigate how in general

these type of nonlocal corrections emerge into the Einstein-Hilbert action.

2.2 Nonlocality and quantum effective actions

In the general framework of QFT, nonlocalities appear when we take into account the running

of physical couplings due to different loop corrections. For illustration purposes, we will start

our discussion with a simple Quantum Electrodynamics (QED) example. In particular, we will

consider the running of the electric charge induced by one loop electron corrections [126, 127].

The bare action for this case is given by

(2.33) eiΓQED(Aµ) =
ˆ

DΨDΨexp
{

i
ˆ

d4x
[
− 1

4e2 FµνFµν+Ψ(i /D−me + iε)Ψ
]}

,
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where e is the electric charge and me is an electron mass. Taking into account the one-loop

electron correction in the modified minimal subtraction (MS) scheme, one gets for the quantum

effective action up to quadratic order in Aµ the following expression [126, 128]

(2.34) ΓQED
(
Aµ

)=−1
4

ˆ

d4x
[
Fµν

1
e2(2)

Fµν+O (F4)
]

,

where the running of the electric charge in the coordinate space is given by

(2.35)
1

e2 (2)
= 1

e2(µ)
− 1

8π2

ˆ 1

0
dt(1− t2) log

[
m2

e − 1
4 (1− t2)2
µ2

]
.

In this expression µ stands for the renormalization scale and e(µ) is the value of the renormalized

electric charge at that scale. The logarithm in Eq. (2.35) is a nonlocal operator defined as [19, 28]

(2.36) log
(−2
µ2

)
=
ˆ ∞

0
dm2

[
1

m2 +µ2 − 1
m2 −2

]
.

As we can see from this example, nonlocality is nothing else than a running of the effective

coupling constant e in coordinate space. Let us now return back to the question of nonlocal

corrections in gravity. In analogy with the above example, we can try to calculate the running

of coupling constants induced in the gravitational sector. For this purpose, we will discuss an

important case realized in higher curvature gravity theories. Namely, we will consider a model

given by the following bare vacuum action in Euclidean signature [23, 29, 129]

(2.37) Svac = SEH +SHD,

where the first term is the Einstein-Hilbert action (1.52) with the cosmological constant, whereas

the second term is the higher order gravity term and contains higher derivative terms quadratic

in the curvature, i.e. [19, 24, 129]

(2.38) SHD =
ˆ

d4x
p

g
(
c1R2 + c2RµνRµν+ c3RµνρσRµνρσ

)
,

or in the Weyl basis
{
C2,R2,E

}
(2.39) SHD =

ˆ

d4x
p

g
(
a1C2 +a2R2 +a3E

)
,

where

(2.40) C2 = R2
µνρσ−2R2

µν+1/3R2,

is the square of the Weyl tensor and

(2.41) E = R2
µνρσ−4R2

µν+R2,

is the integrand of the Gauss-Bonnet topological invariant. In the above expressions the coeffi-

cients ai and ci are dimensionless parameters. In a realistic physical situation, the matter sector
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is always present. A sensible EFT therefore must also include relevant matter field contribu-

tions. For the sake of simplicity we will only consider the case of a single massive scalar field

non-minimally coupled to gravity, which is given by the following action

(2.42) Ss = 1
2

ˆ

d4xg1/2
(

1
2

gµν∂µφ∂νφ+m2
sφ

2 +ξRφ2
)
,

where ms is the mass of the scalar field and ξ is the nonminimal coupling to gravity. The idea

we want to present here is: due to quantum corrections the couplings in an effective action are

not constants but rather scale dependent quantities. These couplings are exposed to a running

governed by renormalization group equations. Depending on the sign of the corresponding β-

functions they will either increase or decrease with energy. In the case of the current model (2.37),

using heat-kernel techniques [130] combined with expansion in powers of the curvature, one gets

the following one-loop effective action in the Weyl basis [21–24, 26, 129]

S1-loop =− 1
2(4π)2

ˆ

d4xg1/2 m2
s

2

(
1
ε
+ 3

2

)
+ ξ̄m2

sR
(

1
ε
+1

)
+1

4
Cµνσρ

[
1

60ε
+kW

(−2
m2

s

)]
Cµνρσ+R

[
1
2ε
ξ̄2 +kR

(−2
m2

s

)]
R,(2.43)

where ε−1 = 2(4−D)−1 + log(4πµ2m−2
s )−γ within dimensional regularization. The kW(2) and

kR(2) are running coefficients in the finite part of the one-loop effective action and are given

by [19, 24, 131]

kW

(−2
m2

s

)
= 8A

15a4 + 2
45a2 + 1

150
,(2.44)

kR

(−2
m2

s

)
= ξ̄2 A+

(
2A
3a2 − A

6
+ 1

18

)
ξ̄+ A

(
1

9a4 − 1
18a2 + 1

144

)
+ 1

108a2 − 7
2160

,

where

(2.45) A = 1− 1
a

log
(

2+a
2−a

)
, a2 = 42

2−4m2
s

,

with ξ̄= ξ−1/6. To get a further inside into the running of the form factors (2.44) we can discuss two

asymptotic regimes, namely the UV limit 2/m2
s ∼ k2/m2

s À 1 and the IR limit 2/m2
s ∼ k2/m2

s ¿ 1.

For simplicity, we will assume that the matter field is conformally coupled to gravity, i.e. ξ= 1/6.

For 2/m2
s ∼ k2/m2

s À 1 we find that [19, 24, 131, 132]

kW

(−2
m2

s

)
'− 1

60
log

(−2
m2

s

)
+ 5

18

(
m2

s

−2

)
− 1

6

(
m2

s

−2

)
log

(−2
m2

s

)
+ 1

4
m4

s

22 +O

(
m4

s

22

)
,(2.46)

kR

(−2
m2

s

)
'− 1

36
log

(−2
m2

s

)
− 5

27

(
m2

s

−2

)
+ 1

18

(
m2

s

−2

)
log

(−2
m2

s

)
+ 1

36
m4

s

22 +O

(
m4

s

22

)
.(2.47)

Then, by subtracting the divergent part in Eq. (2.43) and using the expansion from Eq. (2.46) for

the limit 2/m2
s À 1, we observe that in the effective action (2.43) we get several nonlocal terms
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and in particular the one corresponding to the RR model, i.e. R
(
m4

s2
−2)

R. In the opposite limit

when 2/m2
s ¿ 1 from Eq (2.44) we find that these form factors become local [19],

(2.48) kW(−2/m2
s),kR(−2/m2

s)=O (2/m2
s).

Indeed, this result is expected. If the particle is heavy compared to the relevant energy scale

the radiative corrections in a mass-dependent subtraction scheme are local and suppressed by

the mass of the corresponding particle. As we can observe, nonlocal radiative corrections due

to massive particle loops can appear in the effective action for the late time cosmology only if

the condition 2/m2
s À 1 is satisfied. This condition for IR scales of the late time universe can

be satisfied if the particles running in the loops are either massless or light as compared to

the energy scales of interest. Before closing this section let us also briefly mention that the

radiative corrections, as those given in Eq. (2.46) can also have relevant contributions at UV

scales, where the condition 2/m2
s À 1 must be satisfied. Opposite to the IR case, in the UV

regime this condition instead will be satisfied for massive particles [19, 24]. UV relevant nonlocal

corrections can contribute to the inflationary potential [36, 133, 134] and therefore one has to

be careful that these corrections do not spoil its flatness, which is needed for slow-roll inflation.

Nonlocal corrections at UV scales have also been used in attempts to construct UV complete

theories of gravity [135–139].

2.3 Nonlocalities from anomalous symmetry breaking

As explained in the previous section, the IR relevant nonlocal corrections in the quantum effective

action are induced by massless or very light particles. In this context, another important example

with IR-relevant nonlocal structure is the conformal-anomaly induced effective action. Let us

start our discussion with an example in two dimensional (2D) gravity. For the matter content of

the model we will consider Ns conformally-coupled massless scalar and Nf fermionic fields. In the

classical limit, because of the conformal symmetry the trace of the energy-momentum tensor for

conformal matter fields vanishes, i.e. Ta
a = 0. However, the situation changes at quantum level.

Indeed, the counter-terms which we add to the bare action during the standard regularization

procedure do not preserve conformal symmetry such as the trace of the quantum corrected

energy momentum tensor does not vanish anymore. This phenomenon is known as conformal-

anomaly or trace-anomaly [140, 141]. In two-dimensional spacetime the conformal-anomaly

induced non-vanishing vacuum expectation value (VEV) of the trace Ta
a is given by [19, 142, 143]

(2.49)
〈
0|Ta

a |0
〉= N

24π
R,

where N = Ns +Nf is the total number massless particles. As shown in Ref. [130] even though

the trace-anomaly (2.49) has been obtained at the one-loop level, it is in fact exact, so that the

higher loops do not give any contribution to this result. Next, we try to find an effective action
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which will reproduce the trace-anomaly (2.49). To do this we can make the following conformal

transformation gab = e2σgab, where gab is the reference metric. Under this transformation the

Ricci scalar R transforms as

(2.50) R = e−2σ
(
R−22σ

)
.

The conformal-anomaly induced effective action Γan is defined as [19, 24]

(2.51)
δΓan

δσ
= 2gab

δΓan

δgab
=p−g

〈
0|Ta

a |0
〉

In a two-dimensional spacetime we can always choose the reference metric to be locally flat, i.e.

gab = ηab. In this case Eq. (2.50) becomes

(2.52) R =−2e−2σ2σ,

where 2 is the flat-space d’Alembertian. Inserting (2.52) into Eq. (2.51) and integrating the result

over σ we finally obtain [19, 24]

(2.53) Γan[σ]=− N
24π

ˆ

d2xσ2σ,

where we have used the fact that for vanishing curvature invariants (σ= 0) the effective action

Γan also vanishes Γan[0]= 0. We can covariantize the action (2.53) for a general metric gab at the

price of locality. This provides [19, 142, 144]

(2.54) Γan[gab]=− N
24π

ˆ

d2xe2σσ2σ=− N
96π

ˆ

d2x
p−g R

1
2

R.

In this expression we have used the relations 2= e−2σ2 and R =−22σ. The nonlocal action (2.54)

is known as the Polyakov quantum effective action, and exact at any order of a perturbative

theory. The next step will be, to construct the anomaly-induced effective action in four-dimensional

spacetime by using the same strategy as above. In 4D the trace-anomaly is [24, 130, 145, 146]

(2.55)
〈
0|Tµ

µ |0
〉= b1C2 +b2

(
E− 2

3
2R

)
+b32R,

where C2 and E are the Weyl squared (2.40) and Gauss-Bonnet (2.41) terms, respectively. The

parameters b1, b2 and b3 are theory-level fixed constants depending on the number of conformally-

coupled massless particle content [19, 24]. Just as in the case of 2D we write that

(2.56)
δΓan

δσ
=p−g

[
b1C2 +b2

(
E− 2

3
2R

)
+b32R

]
.

Let us now apply the conformal transformation gµν = e2σgµν. The crucial difference between 2D

and 4D cases relies on the fact that in 4D, due to diffeomorphism invariance, one cannot choose

the reference metric be flat anymore, i.e. to be of the form gµν = ηµν [147]. Under the conformal

transformation gµν = exp(2σ)gµν the geometrical quantities of the model transform as [19, 24]

(2.57) R = e−2σ
(
R−62σ−6∇µσ∇µσ

)
,
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and

p−g C2 =
√

−g C̄2,(2.58)

p−g
(
E− 2

3
2R

)
=

√
−g

(
E− 2

3
2R+4∆̄4σ

)
,(2.59)

where the fourth-order differential operator ∆4 is called Paneitz operator [148] and is defined as

(2.60) ∆4 ≡22 +2Rµν∇µ∇ν− 2
3

R2+ 1
3

gµν∇µR∇ν.

So, now we can already integrate Eq. (2.56), which gives us [19, 144]

Γan(gµν)=Γan(gµν)− b3

12

ˆ

d4x
p−g R2

+
ˆ

d4x
√
−g

[
b1σC

2 +b2σ

(
E− 2

3
2R

)
+2b2σ∆̄4σ

]
.(2.61)

The first term in Eq. (2.61) is the conformally-invariant part of the effective action (Γan(gµν)≡
Γc(gµν)), which satisfies

(2.62) Γc

(
e2σgµν

)
=Γc

(
gµν

)
.

As we have already done for the Polyakov action (2.53), we can try to covariantize the action (2.61)

to get the effective action for an arbitrary metric gµν. One of the possible covariantizations of the

action (2.61) is given by the Riegert action, first derived in Ref. [149]

Γan(gµν)=Γc(gµν)− b3

12

ˆ

d4x
p−g R2

+1
8

ˆ

d4x
p−g

(
E− 2

3
2R

)
∆−1

4

[
b2

(
E− 2

3
2R

)
+2b1C2

]
.(2.63)

The Riegert action (2.63) is generally-covariant and has a nonlocal structure. Of course, this action

is only one part of the full effective action and is induced by the trace-anomaly. The full effective

action is obtained by adding this part to the Einstein-Hilbert action. On the phenomenological

side, one of the intriguing properties of anomaly induced corrections is related to their possible

relevance at the IR scales. Indeed, as it has been stressed in Refs. [150, 151], conformal-anomaly

induced effects imply that quantum fluctuations grow logarithmically and remain relevant at

large scales and hence can modify the IR behavior of the classical theory. Hereby, when talking

about quantum fluctuations, we mean those related to the conformal factor σ. A final observation

which we would like to make at the end of this section refers to the question of possible connections

between the RR nonlocal gravity model and the anomaly-induced nonlocal effective action. Now,

by using Eq. (2.57) for the transformed Ricci scalar and choosing a locally flat reference metric

gµν = ηµν for the sake of simplicity, we get

(2.64) R =−6e−2σ (
2σ+∂µσ∂µσ

)
,
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Accordingly, up to linear order in σ, we have

(2.65) R =−6σ+O
(
σ2)

Finally, plugging Eq. (2.65) into the nonlocal part of the action (2.32) and upon integration by

parts one obtains [19]

(2.66) R
1

22 R = 36σ2 +O
(
σ3)

.

This expression tells us that the nonlocal term in the RR model corresponds to a mass term for the

conformal mode. This observation is particularly interesting in the context of the trace-anomaly.

Indeed, in pure GR the conformal mode is a massless and non-propagating degree of freedom.

The situation is completely different at the quantum level where due to the trace-anomaly, the

conformal mode has a kinetic term (see e.g. Eqs. (2.54) and (2.61)) and is fully dynamical. All this

allows us in the context of R2 gravity to discuss the possibility of a dynamical mass generation of

a massless conformal mode σ [27].

2.4 Nonlocalities from nonperturbative Quantum Gravity

In this section we will discuss possible nonlocal modifications of the Einstein-Hilbert action

motivated by the nonperturbative Quantum Gravity studies. The nonlocal gravity models we

study arise in the context of asymptotically safe Quantum Gravity theories. This candidate of

Quantum Gravity theory is usually referred to as Asymptotic Safety (AS). Here, we just give a

brief introduction to AS, which will be sufficient for later cosmological discussions. The interested

reader can find comprehensive studies on fundamental aspects of AS in Refs. [8, 9].

As we know the Einstein-Hilbert theory of gravity is not perturbatively renormalizable [152–

154]. On the other side, the phenomenological success of GR motivates us to look at the Einstein-

Hilbert theory as an effective theory at low energy scales and to try to find a possible UV

completion at high energies [155]. The UV completion in the AS scenario might be achieved by an

existence of a UV non-Gaussian fixed point (NGFP) for the gravitational renormalization group

(RG) flow [156]. This fixed point controls the running of physical quantities at high energies and

preserves them from unphysical divergences. Another important concept in the AS scenario is the

UV critical surface corresponding to the NGFP. It is a surface which consists of all points in the

theory space that are attracted into the NGFP by the inverse RG flow, which means from IR to

UV scales [8]. The dimensionality of the critical surface corresponds to the number of attractive

directions in the space of couplings. For the AS paradigm to be valid one needs to prove the

existence of the UV NGFP. Additionally, it has to be shown that there is a regime where classical

gravity is reproduced. This question has been investigated widely, putting the AS scenario on

firm grounds [39, 132, 157, 158]. The main mathematical tool on which AS computations rely is

the functional renormalization group (FRG) equations [159] for the gravitational effective action
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Γk at some energy scale k, also known as Wetterich equations, given by

(2.67) ∂kΓk [g, ḡ]= 1
2

Tr

[
∂kRk

Γ(2)
k +Rk

]
,

The term Γ(2)
k is the Hessian of the effective action and is defined as the second functional

derivative of it w.r.t. the fluctuation field on a fixed background. The quantity Rk is an IR

regulator, which provides a k-dependent mass term for the fluctuations with momenta p2 ¿ k2,

while vanishing for p2 À k2. The appearance of the regulator Rk both in the nominator and

denominator of Eq. (2.67) renders the trace finite both at the IR and UV scales and ensures that

the flow is driven by fluctuations with momenta p2 ≈ k2 [159–161]. By construction, Eq. (2.67)

uses the background formalism where one splits the general metric gµν into the combination of a

background metric ḡµν and a perturbation hµν. From this one could conclude that the RG flow

may actually strongly depend on the background metric choice. As is shown in Ref. [162], this is

not the case and physical results are background independent. The simplest effective action to

start with in the gravitational field space is the Einstein-Hilbert effective action

(2.68) Γk =
1

16πGk

ˆ

d4x
p

g (−R+2Λk)+Γgf +Γgh.

This effective action is written in Euclidean signature, where the physical constants are now scale

dependent quantities. The Γgf and Γgh are the usual gauge-fixing and ghost terms, respectively.

The scale dependence of the coupling-constants Gk and Λk is governed by the following flow

equations

(2.69) k∂k gk =βg (gk,λk) , k∂kλk =βλ (gk,λk) ,

where gk and λk are the dimensionless counterparts of Gk and Λk, respectively, which are defined

as

(2.70) gk ≡ k2Gk, λk ≡ k−2Λk.

The beta functions fully characterize the scale dependence of the coupling constants. They also

contain information about fixed points u∗ of the RG flow, which are the points where the beta

function vanishes, i.e. β(u∗)= 0. To find the RG flow of the coupling constants in the vicinity of a

fixed point, we can linearize beta functions in the right hand side of Eqs. (2.69) around that point,

so that

(2.71) k∂kuα(k)=∑
γ

Bαγ

(
uγ(k)−u∗

γ

)
,

where uα(k) stands for the set of running coupling constants and u∗
α are the corresponding fixed

points. The Bαγ is the Jacobi matrix for beta functions and is defined as Bαγ ≡ ∂γβα (u∗). The

general solution of Eq. (2.71) can be written as

(2.72) uα(k)= u∗
α+

∑
I

CIV I
α

(
k2

0

k2

)θI /2

,
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where the V I are the eigenvectors of Bαγ with eigenvalues −θI. The CI in Eq. (2.72) are constants

of integration and k0 is a fixed reference scale. The quantities θI are also called as critical

exponents. If uα(k) describes a real RG trajectory on the UV critical surface, one has to show that

when k →∞ they approach UV fixed point u∗
α.

Now, let us try to embed the running (2.72) of the coupling constants into the effective

action (2.68). To do this, we first need to specify how we are going to write the RG improved

effective action in a coordinate space. If we want to preserve the general covariance of the theory

at the level of action, we should identify the cutoff scale k of the theory with a covariant quantity

which has the same scaling as k2. Since, there is no an unique way of doing so, we should consider

different possible identifications. In the literature the most discussed ones are k2 ∼ R [155, 163],

k2 ∼ χ [164] (where χ is a "cosmon" field) and k2 ∼ 2 [37, 38]. In our studies, we have mostly

focused on the third choice, which is to identify the momentum dependence of the RG running of

coupling constants with the d’Alembert operator, ultimately promoting them to a nonlocal form.

Pioneering works in this direction are Refs. [37, 38]. In these works, the authors have shown that

the RG improvement of Newton’s constant can lead to strong IR-relevant effects, providing a valid

DE model. The nonlocal effective action, which encodes the RG running of Newton’s constant in

it, is written as

(2.73)
1

16πG0

ˆ

d4x
p−g

(
1− cζ

(
1
ζ22

)1/2ν
+O

((
ζ22

)−1/ν))
R,

where G0 is the local value of Newton’s constant and ν stands for the critical exponents and is

related to θg in Eq. (2.72) as ν−1 ≡ θg. The coefficient cζ is an order one dimensionless quantity.

The only component left to be specified in the action (2.73) is the non-perturbative reference

scale k0 = ζ−1. This scale has an important role as it quantifies the deviation of the quantum

theory from the classical one at the large scales. As discussed in Ref. [37], the magnitude of ζ is

proportional to

(2.74) ζ−1 ∝ΛUV exp
(
−
ˆ g dg′

β(g′)

)
∼ lim

g→g∗ |g− g∗|ν,

where ΛUV is the UV cutoff of the theory and g∗ is a UV NGFP. To find the actual value of the

nonperturbative scale ζ, we need to have some external input, as the underlying theory can not

fix it. But some properties of the overall behavior of ζ can be still reflected from Eq. (2.74). Indeed,

for positive values of the critical exponent ν> 0, the magnitude of ζ−1 increases if we move away

from the UV fixed point along a RG trajectory. So, the total coefficient at the front of 2−1/2ν can

be sufficiently big at scales away from the UV fixed point. In Ref. [37] it has been argued that

it is natural to identify ζ at the cosmological scales either with the spacial average of the Ricci

scalar 〈R〉 or with the macroscopic expansion rate of the Universe, given by the Hubble function,

i.e. ζ∼ H−1. In our work, which will be presented in Chapter 7, we have chosen the latter scale

identification. In previous works [37, 38, 165], the phenomenological studies of the model (2.73)
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have been carried out at the level of effective Einstein equations, where the bare Newtonian

constant was directly replaced with the RG improved one, namely

(2.75) Rµν− 1
2

gµνR = 8πG(1+ A(2))Tµν,

with

(2.76) A(2)≡ cζ
(

1
ζ22

)1/2ν
.

In Refs. [37, 165] it has been shown that Eq. (2.73) leads to a late time acceleration for positive

values of the critical exponent ν. The studies based on Eq. (2.73) have two important drawbacks.

First, the effective Eq. (2.75) does not correspond to the one which we would get by varying

the action (2.73) with respect to the metric gµν. Indeed, in this case one also has to vary the

d’Alembert operator, which gives rise to additional terms in Eq. (2.75). Secondly, written in

its current form Eq. (2.75) is not consistent with the Bianchi identities (1.15). This is a direct

consequence of the fact that in a general curved background the d’Alembert operator 2 and the

covariant derivative ∇µ do not commute. As a result by acting with the covariant derivative on

the right hand side of Eq. (2.75) we will in general have that ∇µ [
(1+ A(2))Tµν

] 6= 0, which is

indeed not consistent with the Bianchi identity ∇µGµν = 0. In our work discussed in Chapter 7,

we have studied the model in a self-consistent way, which is to get the EoMs directly from the

level of the action (2.73). Due to the covariant formulation of this action, the EoMs derived from

it will automatically be consistent with the Bianchi identities.

2.5 Other scalar nonlocal gravity models

In the previous sections, we have discussed several mechanisms for the generation of nonlocalities

from QFT. There are nonlocal gravity models, for example the RR or Hamber models, which may

originate from those mechanisms. On the other side, in the literature on nonlocal gravity there

are also other phenomenologically well established models, whereby the question of their origin

still remains widely open. Within these models, the Deser-Woodard (DW) model [166] is worth to

be mentioned separately. This model was the first nonlocal model suggested to be able to explain

the late time acceleration of the Universe and was crucial for understanding different aspects of

nonlocal gravity models. This model generalizes the Einstein-Hilbert action in the following way:

(2.77) SDW = 1
16πG

ˆ

d4x
p−g R

[
1+ f

(
2−1R

)]
,

where f is a free function also known as the nonlocal distortion function [167]. This model,

being the first in its class, provides a natural delay from the onset of the cosmic acceleration,

addressing therefore the coincidence problem in cosmology. The delay is due to the fact that

during the radiation-domination period the Ricci scalar R vanishes (or more precisely it is much

smaller than the Hubble rate, i.e. R/H2 ¿ 1), so 2−1R cannot grow until the beginning of the
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matter-domination period, and even then its growth is only logarithmic [168]. Of course, these

arguments can be equally applied to other nonlocal models which also have a 2−1R structure in

their construction. This model has also another important property, which is the absence of a

new scale in the theory. The only physical scale present in the model is the Planck mass. This

is important because the corrections to Einstein-Hilbert action will not be suppressed by an

additional M2
pl term as is the case for f (R) theories introduced in Sec. 1.4.3. Moreover, in the case

of the action (2.77), the nonlocal term we have added is not prohibited by any symmetry and has

the same physical relevance as the Einstein-Hilbert term. The precise shape of the function f is of

course beyond our control and ideally has to be derived from some fundamental theory. Although

there have been some suggestions that this type of nonlocal corrections can appear in different

string compactification scenarios [169], this question needs further extensive investigation. So,

at this stage one should assume that Eq. (2.77) just provides a simple parametrization of the

physics at particular energy scales and can be constrained by observations. As it has been shown

in Ref. [167] the function f (2−1R) can be always tuned to reproduce any behavior of the scale

factor a(t). In the same work, the authors have worked out the form of the function f needed to

reproduce the exact ΛCDM evolution. The phenomenology of this model both on the background

and perturbative levels is discussed in Chapter 5, where we will also investigate the observational

validity of the model.

2.6 Tensorial nonlocal gravity models

The nonlocal gravity models discussed so far belong to the family of so-called scalar nonlocal

gravity theories. This name represents the point that in all the models above we have that

nonlocal operators are located between two scalar functions, namely the Ricci scalar R. However,

as we can observe from Eqs. (2.43) and (2.63) a general EFT action in addition to scalar nonlocal

terms will also contain some nonlocal terms of the tensorial nature, i.e. a nonlocal operator

located between two tensors. In particular, these terms are of the structure where a nonlocal

operator is directly applied on tensors, such as the Ricci tensor Rµν or the Riemann tensor

Rµνσρ. Importantly, these tensorial nonlocal corrections in an effective action are of the same

order as their scalar companions and should be discussed simultaneously in a consistent EFT

framework. In this respect, a natural generalization of the RR scalar nonlocal gravity model

including tensorial nonlocalities would be [19]

(2.78) S =
M2

pl

2

ˆ

d4x
p−g

[
R+α1R

1
22 R+α2Rµν 1

22 Rµν+α3Rµνσρ 1
22 Rµνσρ

]
.

It is also useful to write the action (2.78) in the Weyl basis which will give us

(2.79) S =
M2

pl

2

ˆ

d4x
p−g

[
R+β1R

1
22 R+β2Rµν 1

22 Rµν+β3Cµνσρ 1
22 Cµνσρ

]
.
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Here {αi} and
{
βi

}
are parameters with mass squared dimension. As in the case of scalar

nonlocal theories, we will study the phenomenology of tensorial models at the background

and perturbation levels. Let us start our discussion for the background level. If we choose our

cosmological background to be of FLRW type, the Weyl tensor on that background is vanishing

(Cµνρσ ≡ 0). As a result, the Weyl-square term in the action (2.79) will not make any contribution.

As we can see, the only relevant tensorial term at the background level is an arbitrary nonlocal

F (2) operator placed between two Ricci tensors, i.e. RµνF (2)Rµν.

Before investigating more complicated choices of the operator F , let us start with the simplest

case when F (2)≡2−1. For this choice the corresponding action was first fully studied in Ref. [40]

and is given by

(2.80) S =
M2

pl

2

ˆ

d4x
p−g

(
R+αRµν 1

2
Rµν

)
,

where we have dropped the scalar nonlocal part R2−1R for simplicity and because we are mostly

interested in the individual contribution of the tensorial terms. To study the behavior of the model

at the background level we need to derive the EoM. By varying the action (2.80) with respect

to the metric gµν and using the relation δ(2−1) = −2−1δ(2)2−1 [19], we find for the modified

Einstein equations [40]

(2.81) Gµν = 8πG
(
TNL
µν +Tµν

)
,

where the term

TNL
µν = α

8πG

(
−gµνRσρSσρ+Rµν+ gµν∇σ∇ρSσρ+∇µHσρ∇νSσρ(2.82)

−1
2

gµν∇λSσρ∇λSσρ+
[
Sσρ∇σ∇µSρν+∇σSσρ∇µSνρ−∇σSρ

µ∇νSσ
ρ

−Sρ
µ∇ρ∇νSρ

σ+Rσ
µSσν−∇σ∇µSσ

ν +
(
µ↔ ν

)])
,

stands for the contribution of the tensorial nonlocalities. Here we have introduced the auxiliary

tensorial field Sµν which is defined as a solution of the local differential equation

(2.83) 2Sµν = Rµν.

The natural expectation from any type of modification of the Einstein-Hilbert theory is, to

preserve all the successes of GR for the cases where it is considered to be a valid theory. This

logic should also hold for nonlocal tensorial models. A first requirement for the model (2.80) is

not to differ much from GR during the radiation- and matter-domination periods where the GR

picture is very accurate. For this to be the case, the energy momentum tensor for the nonlocal

contribution TNL
µν in Eq. (2.81) must be smaller from the one of the matter content, i.e. TNL

µν ¿ Tµν.

Let us now assume that this condition is indeed satisfied, so we can consider nonlocal terms as a

perturbation on the GR background. In this case, the FLRW line element in conformal time τ is

(2.84) ds2 = a(τ)2 (
dτ2 −d~x2)

,
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where the scale factor a takes the form a(τ) = a0τ for the radiation-domination period and

a(τ)= a0τ
2 for the matter-domination period. To solve Eq. (2.83) for the field Sµν, we first notice

that the symmetry of the FLRW metric allows us to reduce the tensor Sµν to a simple diagonal

form

(2.85) Sµ
ν = diag {S1,−S2,−S2,−S2} ,

where S1 and S2 are homogenous scalar functions. Taking this into account, the set of equa-

tions (2.83) becomes

S̈++2H Ṡ+−8H 2S+ = 4H 2 −2
ä
a

,(2.86)

S̈−+2H Ṡ− =−6
ä
a

,(2.87)

with the conformal Hubble function H ≡ aH and the scalar functions S± defined as

(2.88) S+ ≡ S1 +S2, S− ≡ S1 −3S2.

The set of equations (2.86)-(2.87) for the pure radiation (a(τ) = a0τ) and matter-domination

(a(τ)= a0τ
2) periods can be solved analytically. By inserting the expression for the scale factor

during the radiation-domination period into Eqs. (2.86)-(2.87) we find for S± the following power-

law solutions

(2.89) S+ =α1+τp+ +α2+τp− − 1
2

, S− = α1−
τ

+α2−,

with p± =−1
2 ±

p
33
2 , and the corresponding solutions for the pure matter-domination period are

(2.90) S+ =β1+τ p̃+ +β2+τ p̃− − 3
8

, S− = β1−
τ3 −4lnτ+β2−,

with p̃± =−3
2 ±

p
137
2 . In the solutions (2.89)-(2.90), the parameters {αi±} and {βi±} are arbitrary

constants that need to be fixed from initial conditions. Now, when we have derived the evolution of

the tensorial field Sµν during pure radiation and matter-domination eras, we can check whether

the initial assumption TNL
µν ¿ Tµν, holds. After all, we notice that in the solutions (2.89)-(2.90)

the dominant contribution is given by the terms with a positive power-law. During the radiation-

domination period the growth is governed by the term S+ ∝ τp+ = τ2.37 ∝ a2.37 and during the

matter-domination period by S+ ∝ τ p̃+ = τ4.35 ∝ a2.18. Finally, inserting these leading modes

into Eq. (2.82) we get a−2TNL
00 = ρNL ∝ a0.74 and a−2TNL

00 = ρNL ∝ a1.35 for the radiation and

matter-domination periods, respectively.

This result is of crucial importance which demonstrates that the above-discussed tensorial

nonlocalities do not lead to a valid cosmic evolution. In fact, during radiation- and matter-

domination periods the assumption TNL
µν ¿ Tµν will not be satisfied. Indeed, as we see during
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the radiation-domination period the nonlocal energy density ρNL increases with the scale factor

a as ρNL ∝ a0.74, whereas the standard radiation density decreases with the scale factor as

ρR ∝ a−4. This shows that, even if initially ρNL ¿ ρR, after a short time ρNL becomes dominant

thus violating the condition TNL
µν ¿ Tµν. These arguments also hold for the matter-domination

period where the matter density ρM decreases as ρM ∝ a−3. At this point the following remark is

in place. As one can observe, in Eq. (2.89) the growing mode is multiplied with the constant α1+,

so we can ask whether it would be possible to choose initial conditions such that this constant

will vanish. If α1+ is set to zero, the contribution of the leading τp+ term vanishes. Moreover, as

is shown in Ref. [40] the next to leading terms in Eq. (2.89) do not lead to a growing ρNL and

therefore the condition TNL
µν ¿ Tµν will be satisfied. However, the price to pay is an extreme fine

tuning. Namely, we can choose initial conditions so that α1+ vanishes, but because solution (2.89)

is not of an attractor type, any small perturbation around the chosen initial conditions will again

reactivate the dangerous τp+ term. Moreover, for the case of the matter-domination period, in

Eq. (2.90) we do not have the freedom to choose initial conditions. They will be dictated by the

evolution of the system during the radiation-domination period, and in general the parameter

β1+ will not vanish. Hence, the main conclusion of this section is, due to the existence of fast

growing modes, the tensorial nonlocal model given by the action (2.80) will not lead to a viable

cosmology. Already in Ref. [40] it has been argued that the instabilities in the model (2.80) might

be cured by promoting the nonlocal operator 2−1 to some other form, which could possibly include

two physically very relevant cases, such as the cases of a massive propagator
(
2+m2)−1 and

the conformal anomaly operator ∆4 (2.60). These possibilities have been firmly addressed in our

work [119]. We devote Chapter 6 to the discussion of this work.
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NONLOCAL GRAVITY AS AN EFT

In the previous section we have seen how nonlocal corrections arise in the effective field

theory action once we take into account contributions coming from different radiative

corrections. To proceed, we first need to understand how to deal with these nonlocal terms.

In order to obtain the spectrum of solutions for the models given by nonlocal actions, we should

find the corresponding EoMs. The main task of this chapter is to elucidate how the general

variational principle is implemented for nonlocal models and what are the important differences

compare to local theories.

3.1 Nonlocal actions

The first observation we make is: a variation of nonlocal actions leads to EoM which have both

causal and acausal parts. Let us see why this is the case. For simplicity let us consider the

following correction [168] to the scalar field action (1.40)

(3.1) ∆Γ=−1
2

ˆ

d4xφ(x)
(
2−1φ

)
(x)=−1

2

ˆ

d4x
ˆ

d4x′φ(x)G
(
x, x′

)
φ(x′).

Here G
(
x, x′

)
is the Green’s function of the nonlocal operator 2−1 defined as

(3.2)
(
2−1φ

)
(x)=

ˆ

d4x′G(x, x′)φ(x′).

The Green’s function G
(
x, x′

)
can be written as a combination of retarded and advanced Green’s

function, i.e.

(3.3) G
(
x, x′

)≡GR
(
x, x′

)+GA
(
x′, x

)
.
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From the symmetry condition of a general Green’s function, G(x, x′)=G(x′, x), we see that under

coordinate permutations a retarded Green’s function GR(x, x′) transforms to an advanced Green’s

function GA(x′, x) and vice versa. Now by varying the action (3.1) w.r.t. the field φ we obtain

δ∆Γ(φ)
δφ(y)

=−1
2

ˆ

d4x
ˆ

d4x′
(
δ4(x− y)G

(
x, x′

)
φ(x′)+φ(x)G

(
x, x′

)
δ4(x′− y)

)
=−1

2

ˆ

d4x (G(y, x)+G(x, y)) .(3.4)

Thus, from Eq. (3.4) we can see that EoM arising from the action (3.1) will contain a part with

the advanced Green’s function. Even if initially the action (3.1) would be defined only through

a retarded Green’s function, due to the fact that the variation affects both the field φ(x) in the

future and the field φ(x′) in the past, we will get a term with GR(x, x′) and a term with GR(x′, x),

which is just a corresponding advanced Green’s function GA(x, x′)=GR(x′, x) [168].

Now let us discuss why the appearance of an advanced Green’s function in EoM is not desired.

In the definition of a retarded Green’s function GR(x, x′) the four-coordinate x′µ is on or within

the past like cone of the four-coordinate xµ, which means that x′µ is the point where initial

conditions on GR(x, x′) are provided. On the other hand, in the case of an advanced Green’s

function the four-coordinate x′µ is located within the future light-cone of the point xµ. In this

case, to identify an advanced Green’s function GA(x, x′) at the current time t we need to provide

some information about the state of our physical system at some future point tf. This situation is

in disagreement with the causality conjuncture in physics, which states that physical conditions

in a physical system at a given time-point t should depend only on the processes happening in

the past light-cone of that point. From the arguments mentioned above one can conclude that

in a fundamental action nonlocality implies the loss of causality already at the classical level,

unless there are some symmetries which protect the model from acausal solutions.

However, the situation changes when we move towards quantum effective actions, which as

we have seen in the previous section are in general nonlocal. Here a natural question arises:

can quantum effective actions describe a system with causal EoMs. The answer of this question

is positive, and is obtained by implementing the so-called Schwinger-Keldysh path integral

formalism [170–173]. We know that the variation of a quantum effective action does not yield

classical EoMs of the field, but rather EoMs for the vacuum expectation values of corresponding

field operators [174]. To obtain these EoMs we use either in-in or in-out matrix elements. In order

to clearly distinguish these two cases, let us first introduce the scattering amplitude 〈Ψout|φ̂|Ψin〉,
which is given by the following expression [175]

(3.5) 〈Ψout|φ̂|Ψin〉 ∼
ˆ

Dφ(t)Ψ∗
out

[
φ(tf)

]
φ(t)Ψin

[
φ(ti)

]
ei
´ tf

ti
dtL[φ(t)],

where Dφ stands for an integral over the space of all possible trajectories for the field φ. The

physical states |Ψin〉 and 〈Ψout| are defined at the initial and final times ti and tf, respectively.

The expression (3.5) for the scattering amplitude is acausal because it counts processes happening
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before and after the time t. Moreover, if one computes vacuum to vacuum amplitudes on non-

trivial backgrounds as we have in the case of cosmology, the final vacuum state is no longer equal

to an initial one and the matrix element 〈0out|φ̂|0in〉 is not real-valued [174]1. In fact, there is

nothing wrong with this result. The in-out matrix elements are not observable quantities, but

just auxiliary objects used in intermediate steps to calculate scattering amplitudes and Feynman

propagators. Indeed, as explained in Ref. [176] in the case of physical scattering amplitudes, the

real observable quantity is not 〈Ψout|φ̂|Ψin〉 but rather the corresponding probability

(3.6) |〈Ψout|φ̂|Ψin〉|2 = 〈Ψin|
(
φ̂†|Ψout〉〈Ψout|φ̂

)
|Ψin〉,

which can be understood as an in-in matrix element of the new operator
(
Ô = φ̂†|Ψout〉〈Ψout|φ̂

)
.

As will become clear below this operator is well defined and causal. In order to get causal

EoM for physical observables we inspect the quantum effective action for the expectation value

〈Ψin|φ̂|Ψin〉, where both states |Ψ〉 are given at the same time point ti. To construct this matrix

element we can use Eq. (3.5) where instead of connecting |Ψin〉 from ti to φ̂ at t and then the

latter to 〈Ψout| at tf, we now connect |Ψin〉 from ti to φ̂ at t and then the latter again back to |Ψin〉
at ti. Under these conditions Eq. (3.5) becomes

〈Ψin|φ̂|Ψin〉 ∼
ˆ

Dφ+(t)Dφ−(t)Ψ∗
in

[
φ−(ti)

]
Ψin

[
φ+(ti)

]
×δ(

φ+(t)−φ−(t)
)
exp

[
i
ˆ t

ti

dt′
(
L

[
φ+(t′)

]−L
[
φ−(t′)

])]
,(3.7)

where φ+(t) and φ−(t) correspond to modes going forward and backward in time, respectively,

within the same time interval [ti, t]. From Eq. (3.7) it is already obvious that the dynamics of the

matrix element 〈Ψin|φ̂|Ψin〉 will be determined by the physics in the time-interval [ti, t] implying

a causal evolution. The generating functional Win-in [J+, J−] for this case has the following

form [175]

Win-in [J+, J−]=−i log
ˆ

Dφ+(t)Dφ−(t)Ψ∗
in

[
φ−(ti)

]
Ψin

[
φ+(ti)

]
×δ(

φ+(t)−φ−(t)
)
exp

[
i
ˆ t

ti

dt′
(
L

[
φ+(t′)

]−L
[
φ−(t′)

]−φ+J++φ−J−
)]

,(3.8)

and the corresponding effective action upon Legendre transform of the generating functional is

given by

(3.9) Γin-in =Win-in [J+, J−]−
ˆ

dt′
(
φ+J+−φ−J−

)
.

This effective action generates the following EoMs for the field expectation values,

(3.10)
δΓin-in

δϕ+(t′)
=−J+(t′),

δΓin-in

δϕ−(t′)
=−J−(t′).

1In the case of Minkowski spacetime one has that |0in〉 = |0out〉 = |0〉.
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Here, ϕ+(t′) and ϕ−(t′) are the vacuum expectation values of the fields φ±, defined as ϕ+(t′) ≡
〈Ψin|φ̂+|Ψin〉 and ϕ−(t′) ≡ 〈Ψin|φ̂−|Ψin〉, respectively. Setting external sources J± to zero, the

variation of Γin-in also vanishes, leading to the correct effective EoMs.

In summary, in this section we have seen that by using Schwinger-Kyldish path integral

formalism we can find EoM corresponding to the in-in effective action Γin-in, which are perfectly

causal. Hence we conclude that if a nonlocal model is described with an effective quantum action

of some underlying fundamental local theory, by using the Schwinger-Keldysh formalism we get

causal and well defined dynamics for the theory.

3.2 Localization procedure

Another subtle issue to be investigated concerns the number of degrees of freedom in nonlocal

gravity. To address this question we will first discuss localization procedure in nonlocal gravity.

Nonlocal gravity theories are generally described by integro-differential equations, which contain

both derivatives and integrals of some function [16–19, 128, 176–178]. In general, these equations

can be written as

(3.11) L [ f (x)]−λ
ˆ b

a
K (x, y,P ( f (y)))d y= f (x),

here L is called external differential operator, K is the so-called kernel of integro-differential

equation and P is another differential operator which is also referred to as an internal differential

operator. In physical context we will mostly deal with linear integro-differential equations, where

the internal differential operator P enters linearly, i.e.

(3.12) L [ f (x)]−λ
ˆ b

a
K (x, y)P ( f (y))d y= f (x).

Equation (3.12) is usually called Fredholm equation of the second kind [179]. When the source

function f (x) in Eq. (3.12) vanishes, the equation is known as Fredholm equation of first kind.

It is also possible to have situations when one of the limits of integration in Eq. (3.12) is not a

constant but a variable. In this case the integro-differential equations are referred to as Voltera

type integro-differential equations [179]. Depending on the choice of the integral kernel K it

is sometimes possible to introduce a finite number of auxiliary fields and express an integro-

differential equation through a set of differential equations of these auxiliary fields [180–184]. In

this case the corresponding nonlocal theory can be written as a local theory of multiple auxiliary

fields. We call this type of nonlocal theories as localizable. Later we will see how this works

when discussing particular nonlocal models and their localization procedure. For a moment let us

assume that we have a nonlocal theory of the scalar field ϕ, which leads to the following equation

of motion [175]

(3.13) 2ϕ+m42−1ϕ= J,
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where m is the mass parameter of the model and J is some source term. Here, and in the reminder

of this section, in agreement with the previous section, we will assume that 2−1 =2−1
R , i.e. we

consider only retarded Green’s functions. Now let us introduce a new function φ which is defined

as

(3.14) φ≡ m22−1ϕ.

Using the definition of the function φ we can write Eq. (3.13) in a local form, i.e.

(3.15) 2ϕ+m2φ= J.

To close the set of local differential equations describing our model, one must supplement

Eq. (3.15) with the following equation for φ

(3.16) 2φ= m2ϕ.

Now let us check whether the final set of Eqs. (3.15)-(3.16) is equivalent to the initial nonlocal

equation (3.13) or not. To do this we need to solve Eq. (3.16) for φ and plug the solution back into

Eq. (3.15). By solving Eq. (3.16) analytically we find the following general solution

(3.17) φ=φhom +m22−1ϕ,

where φhom is the solution of the homogeneous equation 2φ = 0. From Eq. (3.17) we see that

the solution for φ differs from its initial definition by an addition of the homogeneous solution

φhom. In this case the local and nonlocal descriptions coincide if and only if φhom = 0 at the initial

time ti when we start the convolution in Eq. (3.13). This leads to an important conclusion that

the dynamical field φ satisfying differential Eq. (3.16) is not a free field. This means that the

initial conditions on the field φ are not free to be chosen, as is the case for usual local theories,

but are uniquely fixed by boundary conditions of the original nonlocal theory. The choice of the

homogenous solution is part of the definition of 2−1 operator and therefore of the original nonlocal

effective theory. Let us clarify this point in a more detailed way. By using the definition of an

inverse operator L−1 satisfying LL−1 = id, one can easily show that it does not uniquely specify

the inverse operator L−1. Indeed, we can have several inverse operators which are related to

each other by adding a homogenous solution and as such if we pick a L−1 once and for all, other

inverse operators can be found by adding a homogenous solution to L−1 [175]. Indeed one can

write for any inverse operator

(3.18) L−1
genϕ= L−1ϕ+φhom,

and now if we let the operator L act on both sides of this equation, keeping in mind that LL−1 = id

and Lφhom = 0, we find an identity. On the other hand, the inverse operator L−1 in a Green’s

function representation is

(3.19)
(
L−1ϕ

)
(x)=

ˆ

dD yG (x, y) .
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By combining Eqs. (3.18) and (3.19) we can conclude that different choices of L−1 correspond

to different spacetime boundary conditions on the Green’s function. Coming back to our initial

discussion we can state that different choices of the homogenous solution φhom correspond to

different choices of the 2−1 operator, thus different original theories. Importantly, this also

implies that the choice of initial conditions on φ is a theory-level data.

3.3 Degrees of freedom and ghosts

We begin our discussion of this section by considering first nonlocal theories which do not have

local representation. Those, as it was also mentioned before, are theories which can not be

represented by a finite set of second-order differential equations of auxiliary fields. These models

usually can be shown to be equivalent to ones with infinitely many derivatives [31, 183]. The

question whether the theories with infinity many derivatives contain ghosts is directly related

with the structure of the theory’s propagator. In particular, if the propagator of the theory contains

only a single pole, the theory will be ghost-free [183]. The reason for this is that theories with

only one pole in the propagator describe a single degree of freedom and thus do not contain any

spurious degrees of freedom. Now let us see how this statement goes along with the famous

Ostrogradski theorem [71, 185], stating that: “Every non-degenerated Lagrangian that contains

derivatives of order two or higher describes a theory that propagates at least one ghost degree of

freedom” [186]. As an example let us consider a higher-derivative theory with a Lagrangian that

depends non-degenerately on some field and its first N derivatives. In this case the corresponding

Hamiltonian will depend on 2N canonical variables corresponding to 2N initial data which are

needed to specify the solutions of the EoM. It can be easily shown that the Hamiltonian in this

case will depend linearly on N −1 conjugate momenta. From this it follows that the Hamiltonian

is unbounded from below and in the limit of large N half of modes in the physical phase-space

will correspond to unstable degrees of freedom [183]. One could naively think that in the case

of all infinite-derivative theories the situation is even worse and by taking the limit N →∞ in

Ostrogradski theorem we would get that this models contain infinitely many ghost-like degrees

of freedom. But this is not the case [183]. Indeed, as far as the propagator of infinite-derivative

theories contains only one pole, one will only need two initial conditions to specify the solutions

of the EoM. This situation is the same as in the case of the theories with two canonical variables,

which are perfectly in agreement with Ostrogradski theorem. The breakdown of the Ostrogradski

theorem for the case of infinite derivative theories has been first noted in Ref. [187].

We will now proceed and discuss the question of degrees of freedom in the context of "lo-

calizable" nonlocal theories. As we have discussed in the previous sections these theories are

local but the auxiliary fields therein are constrained. As we will see later usually at least one of

these auxiliary fields has a ghost-like signature in the diagonalized action, i.e. has a negative

coefficient at the front of its kinetic energy. At this point it is important to understand if these

48



3.3. DEGREES OF FREEDOM AND GHOSTS

constrained fields destabilize the theory or not. Here we need to separate two distinct cases,

namely, the stability of the model at classical and quantum levels. Following Refs. [20, 24, 123] let

us start our discussion from stability questions at quantum level. In our case, this question will

be translated into the problem of quantization of a theory with constrained auxiliary fields. We

will illustrate the details of this procedure on a particular nonlocal gravity model, namely the RR

nonlocal gravity model introduced in Sec. 2.1. This model is given by the effective action (2.32).

For the moment we will assume that this action correspond to some fundamental theory. To find

the propagator structure of the model we first decompose the metric gµν as a combination of the

background metric ηµν and the small perturbation hµν such that gµν = ηµν+hµν. Now, plugging

this decomposition back into the action (2.32) and expanding up to quadratic order in powers of

hµν we find [20, 123]

(3.20) Γ(2)
RR = 1

16πG

ˆ

d4x
[

1
4

hµνE µν,ρσhρσ− 1
6

m2hµνPµνPρσhρσ
]
+
ˆ

d4xhµνTµν,

where E µν,ρσ and Pµν are defined in Eqs. (2.26) and (2.25), respectively. The linearized ac-

tion (3.20) around a flat background is the same as the action (2.28) for the RT model. This is

not surprising because, as we already mentioned in Sec. 2.1, the RR and RT models linearized

around the Minkowski background coincide. Therefore, the outcomes for this section regarding

the RR model will also hold for the RT model [19]. Now, to find the propagator corresponding to

the action (3.20), we still need to add the gauge fixing term for linearized gravity given by [152]

(3.21) Lgf =−(
∂νh̄µν

)(
∂ρ h̄ρµ

)
,

with h̄µν = hµν− (1/2)hηµν. Finally, inverting the quadratic action Γ(2)
RR+Γgf we obtain the theory’s

propagator D̃µνρσ(k)=−i∆µνρσ(k) [19, 20], where ∆µνρσ(k) is

∆µνρσ(k)= 1
2k2

(
ηµρηνσ+ηµσηνρ−ηµνηρσ)
+1

6

(
1
k2 − 1

k2 −m2

)
ηµνηρσ.(3.22)

The second term in this propagator shows that we have an exchange between a healthy massless

scalar mode plus a ghostlike massive scalar mode. In a standard QFT picture, if our theory would

had such a ghost mode in its spectrum we would immediately state that the model is ill-defined

and physically nonviable at quantum level. Is the situation the same in the case of local theories

with constrained auxiliary fields? To be able to answer to this question, we first need to localize

the RR model (2.32). We can do this by introducing two auxiliary fields U and S defined as [123]

(3.23) U ≡−2−1R, S ≡−2−1U .

Now, with the help of these functions, we can write the action (2.32) in the following local form

(3.24) S =
M2

pl

2

ˆ

d4x
p−g

[
R

(
1− m2

6
S

)
−ξ1(2U +R)−ξ2(2S+U)

]
,
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where ξ1 and ξ2 are Lagrange multipliers. Varying this localized action w.r.t. to the metric gµν
we find the modified Einstein equations [123]

(3.25) Gµν = m2

6
Kµν+8πGTµν,

where

(3.26) Kµν = 2SGµν−2∇µ∂νS+ gµν
[−2U +∂ρS∂ρU − (1/2)U2]− (

∂µS∂νU +∂νS∂µU
)
.

In order to find which field in this localized language corresponds to the massive ghost mode

mentioned above we need to perturb Eq. (3.26) to linear order. For the scalar perturbations in the

Newtonian gauge one finds [19, 123]

∇2
[
Φ− m2

6
S

]
=−4πGρ,(3.27)

Φ−Ψ− m2

3
S =−8πGσ.(3.28)

To this set of equations we need to add the ones which we get after linearly perturbing the

localization equations (3.23). These equations first derived in Ref. [123] are

(3.29)
(
2+m2)

U =−8πG(ρ−3P) 2S =−U .

From Eqs. (3.27)-(3.29) we immediately recognize that the Bardeen potentials Φ and Ψ remain

non-radiative degrees of freedom. Secondly, we note that the massive ghost mode in Eq. (3.22)

corresponds to the auxiliary field U , whereas the massless healthy pole belongs to the field S. Now

that we have identified the ghost-like mode we can investigate how it will behave at the quantum

level. The canonical quantization of the theory is done by promoting classical fields of the model

to quantum operators imposing particular conditions on their commutators [174]. In order to

discuss particle creation processes in a quantum theory, one needs to introduce particle creation

and annihilation operators. This is done by solving the classical equation for the quantizable field

and promoting its free coefficients to creation and annihilation operators. Returning back to the

RR model for the field U as a solution of the inhomogeneous equation (3.29) we get

(3.30) U =Uhom +Ũ ,

where Uhom is the general solution of the homogenous equation 2U = 0 and Ũ is a particular

solution of the inhomogeneous equation. The flat-space homogenous solution Uhom can be rep-

resented as a combination of plane waves with the free coefficients which then, in the context

of QFT, will be promoted to annihilation and creation operators. In general, this procedure is

valid only for dynamical fields. However, in our case the situation is different. As it was discussed

in the previous Sec. 3.2, the initial conditions for U are fixed once we have specified our def-

inition of the 2−1 operator, hence the homogenous solution Uhom will not have any more free
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parameters. Therefore, at quantum level we cannot promote them to annihilation and creation

operators [19, 140, 174, 188].

From the above discussion we conclude that at quantum level one cannot associate any

quantum degree of freedom to the auxiliary field U and, as such, it is just an artificial field

(spurious degree of freedom) which has been introduced to localize our theory.

The Polyakov action (2.54) serves as another useful example which again illustrates that

the spectrum of the theory cannot be read naively from the quantum effective action [19, 20].

This action is an effective quantum action of a perfectly healthy fundamental theory. We can

localize this model in analogy with the RR model by introducing an auxiliary field U defined

again as U ≡−2−1R. Inserting this field with the corresponding Lagrange multiplier ξ into the

action (2.54) we get

(3.31) S =
ˆ

d2x
p−g [−cRU +ξ (2U +R)] ,

with c =−N/(96π), where N is the number of conformally coupled massless particles. Varying

this local action with respect to the fields ξ and U one finds

(3.32) 2U =−R 2ξ= cR,

respectively. Using Eq. (3.32) we can write ξ = c2−1R = −cU, so the local action (3.31) finally

simplifies to

(3.33) S = c
ˆ

d2x
[
∂aU∂aU −2UR

]
.

Classical equivalence of the actions (3.33) and (2.54) has been shown in Ref. [150], where

the authors have checked that the trace of the energy-momentum tensor computed from the

action (3.33) correctly reproduces the quantum trace anomaly (2.49). Furthermore, by applying a

conformal transformation gab = e2σηab to the action (3.33) and introducing the field χ=U /2−σ
to diagonalize it, we eventually arrive at [19, 24]

(3.34) S = 4c
ˆ

d2x
(
ηab∂aχ∂bχ−ηab∂aσ∂bσ

)
.

This action with its current structure suggests that one of the fields is a ghost. For a negative

c, the field σ is a ghost, while χ is a healthy mode2. This naive outcome is not correct since, as

we know the Ployakov effective action is originally derived from a healthy theory which consists

of gravity plus a conformally coupled healthy massless matter sector, and does not contain any

pathological degree of freedom in its spectrum [19, 20, 24]. Here, we emphasize again that, as

in the case of the previous example for the field U, the field σ does not have any associated

quantum degree of freedom and is eliminated by the physical state condition [189]. At the end of

this section let us make some remarks about the question of the classical stability of nonlocal

2In our case c =−N/(96π), i.e. it is a negative number.
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gravity models. At quantum level a possible existence of unconstrained ghost modes is disastrous,

leading to an immediate decay of the physical vacuum. On the other hand, even if we consider

nonlocal models purely classically, the existence of constraints on ghost modes does not guarantee

classical stability of those models. At classical level both constrained and unconstrained ghosts

can be equally dangerous [19, 176, 190]. In order to be sure that the classical evolution of our

models, both at background and perturbation levels, is not damaged by ghost modes, we need to

analyze these models case by case to find out about possible issues. In this respect, it is important

to mention that since the scale of nonlocalities for IR relevant effects is of the order of the Hubble

parameter today, H0, any such instabilities would only develop on cosmological timescales, so

they must be studied on the FLRW background [19]. This has been implemented for the studies

conducted in the proceeding chapters.
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I. INTRODUCTION

The current standard model of cosmology, called ΛCDM
(CDM for cold dark matter), cannot be reconciled with
general relativity (GR) and the Standard Model of particle
physics without extreme fine-tuning. In particular, the ratioffiffiffiffi
Λ

p
=M2

Pl derived from observations [with Λ the notorious
cosmological constant (CC) and MPl the reduced Planck
mass] is almost infinitesimal compared to the value obtained
by the most straightforward extrapolations of GR and
quantum field theory, to the infrared scale

ffiffiffiffi
Λ

p
=MPl and

high-energy scales approachingMPl, respectively. This calls
both for the observational pursuit of signatures that could
provide hints on the possible physics beyond the ΛCDM
model, and for theoretical extensions that could explain the
cosmological data in a more natural way [1,2].
Various attempts at such extensions have been undertaken

in the context of nonlocal gravity [3,4]. In a top-bottom
approach, the possibility that gravitational interactions
become nonlocal near the Planck scale is suggested, among
others, by string theory [5,6]. From a bottom-up perspective,
nonlocal theories are appealing because of their potential
to provide an ultraviolet completion of the metric gravity
theory [7–9], but there are also motivations to contemplate
nonlocal terms in the infrared as well. Such infrared
nonlocal terms arise generically in effective field theories
after integrating out light degrees of freedom [4,10,11], but
may also feature in more fundamental actions in Euclidean
quantum gravity [12,13]. Nonlocal effective formulations
have been found for gravity models with a massive graviton
[14,15], multiple metrics [16], and post-Riemannian, affine

geometry [17]. In passing, we note that indeed the recent
development of a conformal affine gauge theory of gravity
[18] introduces a novel holography that, along the lines of
Ref. [19], may naturally provide a nonlocal link between the
value of the cosmological constant and the amount of
information contained in the emergent spacetime.
Nonlocal gravity models are typically written as an

Einstein-Hilbert term supplementedwith integral or infinite-
derivative curvature terms. The first proposal for a nonlocal
dark-energy model was put forward by Deser and Woodard
(DW) and has the form [20]

LDW ¼ M2
Pl

2
R
�
1 − f

�
R
□

��
; ð1Þ

where R is the Ricci curvature scalar and 1=□ is the inverse
d’Alembertian, an integral operator such that□ð1=□Þ ¼ 1,
with□≡ gμν∇μ∇ν and∇μ the Christoffel covariant deriva-
tive.With the dimensionless combinationR=□, one could in
principle construct models without introducing new scales.
The integral dependence of the corrections could generate
the observed acceleration at the present cosmological epoch
dynamically and without special fine-tunings. However,
detailed investigations have shown that, although the func-
tion f can be chosen in such a way that the background
expansion is consistent with the data [21–23] and the model
has a viable Newtonian limit [24,25], the impact of the
nonlocal corrections on the evolution of perturbations is
strong and utterly rules the model out when this is con-
fronted with large-scale structure data [26]. On top of that,
nonlocal modifications of gravity result generically in
instabilities at the level of perturbations, at least if they
involve tensorial terms such as ðWμνρσ=□2ÞWμνρσ [27] with
Wμνρσ the Weyl tensor appearing in models inspired by the
conformal anomaly [28,29].
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One of the remarkable features of the model,

LMM ¼ M2
Pl

2
R

�
1 −

m2

6

�
1

□

�
2

R

�
¼ M2

Pl

2

�
R −

m2

6

�
R
□

�
2
�
;

ð2Þ
proposed by Maggiore and Mancarella (MM) [30] is that it
can produce nonlocal dark energy able to fit the background
data while retaining a matter power spectrum compatible
with observations (see Refs. [31–34] and [35–38] for studies
of the background expansion and of structure formation,
respectively). It is also notable that the ðR=□Þ2-correction to
GR has indeed been obtained in an effective field theory
for gravity at the second order curvature expansion1 [10]
and that the MM model appears to have only one new
parameterm at the level of the gravitational Lagrangian, i.e.
none more than ΛCDM.2 It has also been argued that ghost
fields do not destabilize the model [30] (see also Ref. [40]).
Spherically symmetric solutions have also been consid-
ered [25,41].
In this paper, we study the cosmological dynamics of the

MM model, with special attention to the problem of initial
conditions. Nonlocal theories with infinite order derivative
operators require the specification of an infinite number of
initial conditions for the formulation of the Cauchy
problem. Analogously, nonlocal integral operators, such
as the one featured in the MM model, are strictly defined
only by specifying the boundary conditions for each of the
infinite number of modes in the continuum limit of the
Fourier space. Various techniques have been considered to
deal with such theories, see Refs. [42–49]. The MM model
(2) can be reformulated in terms of two scalar fields [24],
which should not be considered however as local dynami-
cal fields evolving freely in time, but as auxiliary fields
whose configuration at each spatial hypersurface is dictated
by the other fields and the boundary conditions of the
1=□-operator. In the phase space of the homogeneous
cosmological dynamics, the trajectories of the two (fake)
scalar degrees of freedom are uniquely fixed given four
numbers at any given cosmological epoch. The cosmology
of the MM model seems to offer a natural or “minimal”
assumption for the choice of these numbers: at a sufficiently
early epoch in the standard cosmology, the Universe is filled
with radiation only, for which R ≈ 0. It therefore seems an
obvious choice to set R=□ ¼ R=□2 ¼ 0 at such an epoch.3

However, already at the linear order in the inhomogeneous

fluctuations, both the inverse- and the double-inverse-
d’Alembertian operators bring forth scale-dependent func-
tions in the momentum space. Unless finely adjusted and
compensating scale dependence is encoded into the boun-
dary conditions of the 1=□-operators, the initial conditions
for cosmological perturbations would feature additional
scale dependence (compared to ΛCDM). The minimal
boundary conditions, that is δðR=□Þ ¼ 0 when δR ¼ 0
(we denote perturbations with δ), would require scale
dependence in the initial conditions for the auxiliary fields.
An important point is that due to their assumed nonlocal
origin, they impose constraints rather than adding dynamics.
Thus one expects the nonminimal scale dependence of the
initial conditions to be directly projected (or, if set in terms of
the auxiliary fields, to effectively propagate) to the smaller
redshifts of the crucial observables, where especially the
matter power spectrum is very sensitive to the possible scale
dependence in the dark sector, as that is reflected through the
gravitational interaction in the baryon distribution. Since the
confrontation with large-scale structure is crucial for dis-
tinguishing theMM(2) and the earlier proposal (1), the issue
of (scale-dependent) linear boundary conditions calls for
clarification.
In this paper we undertake a comprehensive study of the

expansion dynamics in the MMmodel. In Sec. II we rewrite
the model (2) in terms of two (effective) auxiliary scalar
fields, and set up the phase space spanned by convenient
dimensionless variables whose dynamical system can be
closed into an autonomous form. In Sec. III we perform a full
dynamical system analysis in order to identify the critical
points in the cosmological phase space and determine their
stability. Each set of initial conditions fixes a trajectory in the
phase space, corresponding to a particular family of MM
models with the same mass parameter m and the same four
cosmological background boundary conditions. By explor-
ing the global structure of the phase space we can thus map
the cosmology of different models and investigate the
sensitivity of the predictions to changing the parameters
of the model (i.e. to the initial conditions that have been
previously assumed minimal). In Sec. IV we confront the
model with supernovae data constraining the background
expansion, in such a way that we do not fix all the initial
conditions but marginalize over them. Our findings are then
summarized in Sec. V.

II. THECOSMOLOGYOFR 1
□2 RGRAVITYMODEL

The full action, including both gravity and matter sectors,
for the MM nonlocal theory introduced in Eq. (2) has the
form

SMM ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

m2

6
R

1

□
2
R

�

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð3Þ

1As shown in Ref. [39], the coefficient of the R□−2R obtained
by this procedure should satisfyM2=H2 ≪ 1withM4 ∼ ðMPlmÞ2.
Unfortunately, this condition is not compatible with the value of
m required to obtain a realistic cosmology (m ∼H0).

2Expectedly, viable dark energymodels requirem∼Λ=MPl∼H0,
where H0 is the present Hubble rate.

3Note however that the cosmology obviously depends on the
thermal history. In Appendix B, we check the impact of setting
R=□ ¼ R=□2 ¼ 0 either at the matter-radiation equality or at an
earlier period.
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with the mass scale m the only free parameter of the theory,
to be determined observationally, and Lm the matter
Lagrangian minimally coupled to gravity.
In order to derive the modified Einstein equations, we

vary the action (3) with respect to the metric gμν:

δSMM ¼ M2
Pl

2

Z
d4xδð ffiffiffiffiffiffi

−g
p Þ

�
R −

m2

6
R

1

□
2
R

�

þM2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
δR −

m2

3
δR

1

□2
R

þm2

3
R
1

□
δ□

�
1

□
2
R

��
þ δ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lm; ð4Þ

where we have used δð□−2Þ ¼ −2□−1ðδ□Þ□−2. Denoting
the conserved stress-energy tensor of matter by Tμ

ν, the
gravitational field equations turn out to be [30]

Gμ
ν −

1

6
m2Kμ

ν ¼ 8πGTμ
ν ; ð5Þ

where we have defined

Kμ
ν ≡ 2SGμ

ν − 2∇μ∂νSþ 2δμν□Sþ δμν∂ρS∂ρU −
1

2
δμνU2

− ð∂μS∂νU þ ∂νS∂μUÞ; ð6Þ

and introduced the two auxiliary fieldsU and S through the
equations

□U ≡ −R; ð7Þ

□S≡ −U: ð8Þ

Writing the field equations in terms of U and S allows us to
work with a local formulation of the theory [30]. In order to
solve Eq. (5) we need to first solve Eqs. (7) and (8). The
general solutions for U and S are given by

U ≡Uhom −□
−1
retR; ð9Þ

S≡ Shom −□
−1
retU; ð10Þ

with Uhom and Shom the solutions to the homogeneous
equations

□Uhom ¼ 0; □Shom ¼ 0; ð11Þ
and□−1

ret the inverse of the retarded d’Alembertian operator.
The equivalent local form of the theory then depends on the
choice of Uhom and Shom. The ad hoc choice of a retarded
Green function in the definition of inverse d’Alembertian
operator □

−1 will ensure causality (for details see e.g.
Ref. [49]). Note, however, that it has been argued that
causality can emerge automatically if one considers only
in-in (observable) vacuum expectation values [40,50,51].

Let us now turn to our studies of the cosmology of
the model. We will assume a flat Friedmann-Lemaître-
Robertson-Walker (FLRW) metric

ds2 ¼ −dt2 þ a2ðtÞd~x2; ð12Þ
wtih t the cosmic time and a the scale factor.
Solving the field equations for this metric yields

the evolution equations (equivalent to the Friedmann
equation) [30]

h2 ¼ Ω0
Me

−3N þ Ω0
Re

−4N þ ðγ=4ÞU2

1þ γð−3V − 3V 0 þ ð1=2ÞV 0U0Þ ; ð13Þ

U00 ¼ 6ð2þ ξÞ − ð3þ ξÞU0; ð14Þ

V 00 ¼ h−2U − ð3þ ξÞV 0; ð15Þ

in terms of the auxiliary fields U and V ≡H2
0S, and their

derivatives, with H0 the present Hubble rate. Additionally,
we have assumed the Universe to be filled with matter and
radiation, with present density parameters Ω0

M and Ω0
R,

respectively, and have defined the quantities

γ ≡ m2

9H2
0

; h≡ H
H0

; ξ≡ h0

h
; ð16Þ

where a prime denotes a derivative with respect to the
number of e-foldings N ≡ ln a.
The evolution of the total energy density can be para-

metrized in terms of an effective equation of state [1]

weff ¼ −1 −
2

3

h0

h
¼ −1 −

2

3
ξ: ð17Þ

The evolutions of the matter, radiation and dark energy
components contributing to weff follow from the conserva-
tion of the energy-momentum tensor,

Ω0
M þ ð3þ 2ξÞΩM ¼ 0;

Ω0
R þ ð4þ 2ξÞΩR ¼ 0;

Ω0
DE þ ð3þ 3wDE þ 2ξÞΩDE ¼ 0; ð18Þ

with

ξ ¼ −4ΩR − 3ΩM þ 3γðh−2U þU0V 0 − 4V 0Þ
2ð1 − 3γVÞ : ð19Þ

Combining the conservation equations (18) and taking into
account the cosmic sum rule,

ΩDE ¼ 1 − h−2ðΩ0
Me

−3N þΩ0
Re

−4NÞ

¼ γ

�
1

4
h−2U2 þ 3V þ 3V 0 −

1

2
V 0U0

�
; ð20Þ

we obtain the dark energy equation of state,
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wDE ¼ γð4ðU þ 3Þ − ðU þ 2ÞU0ÞV 0 þUðγVðΩR þ 3Þ − ΩDEÞ þ 4ð3γV −ΩDEÞ
Uð1 − 3γVÞΩDE

: ð21Þ

III. PHASE SPACE AND DYNAMICAL
ANALYSIS

In order to perform the dynamical analysis of the
model, it is convenient to rewrite the second order
differential equations (14) and (15) in a first order form.
To do this, we introduce two new fields Y1 and Y2

defined as Y1 ≡U0 and Y2 ≡ V 0. We can now rewrite the

system as a set of six autonomous first order differential
equations,

U0 ¼ Y1; ð22Þ

V 0 ¼ Y2; ð23Þ

Y 0
1 ¼ −

3ððU þ 2ÞY1 − 4ðU þ 3ÞÞð2ð3γV − 1Þ − γðY1 − 6ÞY2Þ þ 3ðU þ 4ÞðY1 − 6ÞΩM þ 4ðU þ 3ÞðY1 − 6ÞΩR

2Uð3γV − 1Þ ; ð24Þ

Y 0
2 ¼ −

Y2ð6ð3γV − 1Þ − 3γðY1 − 4ÞY2 þ 3ΩM þ 4ΩRÞ
2ð3γV − 1Þ ð25Þ

−
ð2ð3γV − 1Þ þ 3γY2Þð2ð3γV − 1Þ − γðY1 − 6ÞY2 þ 2ðΩM þΩRÞÞ

γUð3γV − 1Þ ;

Ω0
M ¼ −

ΩMðUð3ð3γV − 1Þ − 3γðY1 − 4ÞY2 þ 3ΩM þ 4ΩRÞ þ 12ð3γV − 1Þ þ 12ðΩM þ ΩRÞ − 6γðY1 − 6ÞY2Þ
Uð3γV − 1Þ ; ð26Þ

Ω0
R ¼ −

ΩRðUð4ð3γV − 1Þ − 3γðY1 − 4ÞY2 þ 3ΩM þ 4ΩRÞ þ 12ð3γV − 1Þ þ 12ðΩM þ ΩRÞ − 6γðY1 − 6ÞY2Þ
Uð3γV − 1Þ : ð27Þ

A quick look at Eqs. (22)–(27) reveals that they are not
invariant under U → U þ Uhom and ρ → ρþ Λ, where ρ
is the energy density of the system. Contrary to the
nonlocal models considered in Ref. [40], nonzero and
constant values of Uhom are not equivalent to a cosmo-
logical constant. The main purpose of this work is a
complete characterization of the system (22)–(27) for
arbitrary values of Uhom and Vhom. As argued in Ref. [30],
each choice of Uhom and Vhom in Eq. (11) (note that S and
V are the same up to a constant factor) corresponds to the
choice of one and only one boundary condition in the
nonlocal formulation of the theory. Different initial
conditions, and therefore different solutions, should be
associated with different nonlocal models. The qualitative

analysis of Eqs. (13)–(15) will allow us to understand
which of these models are phenomenologically viable.

A. Critical points and evolution paths:
Numerical analysis

The fixed points of the dynamical system (22)–(27) are
those at which all the first derivatives on the left-hand side
of the equations vanish. In some cases though, one can have
fixed surfaces instead of fixed points, that is, only a subset
of variables is constant. In order to go from the fixed
surfaces to fixed points (in a lower dimensional phase
space) one has to perform an appropriate variable trans-
formation (cf. Appendix A for details regarding the

TABLE I. Critical points of the dynamical system (22)–(27). The quantities ~ΩM, ~ΩR, and ~U stand, respectively, for some constant
values of ΩM, ΩR and U.

Point U V U0 V 0 ΩM ΩR weff Type

I ~U ð1 − ~ΩRÞ=ð3γÞ 0 0 0 ~ΩR 1=3 Saddle
II 2N þ ~U ð1 − ~ΩMÞ=ð3γÞ 2 0 ~ΩM 0 0 Saddle
III þ∞ 1=ð3γÞ 4 0 0 0 −1 Attractor
IV 4N þ ~U �∞ 4 �∞ 0 0 −1 Saddle
V −3 �∞ 0 4V ∓ ∞ 0 1=3 Attractor
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treatment of fixed lines). By following this procedure, we
obtain the five nontrivial fixed points/surfaces I–V listed in
Table I. The values of the dynamical variables of the system
(i.e. the quantities U, V, U0, V 0, ΩM, and ΩR) are given for
each point, as well as the value of the effective equation of
state parameter weff. As reflected in the table, we find two
attractors and three saddle points.4

The behavior of the solutions around each of the critical
points can be determined by using the standard phase-space
analysis methods. Although the set of equations (22)–(27)
is nonlinear, the system behaves linearly in the vicinity of
each critical point, provided that the point is isolated and
the Jacobian at the point is invertible.5 The linearization of
Eqs. (22)–(27) in the vicinity of each fixed point gives rise
to a set of linear equations, which can be generically written
in a matrix form X0 ¼ A ·X, with A a 6 × 6 matrix and
X ¼ fU;V;U0; V 0;ΩM;ΩRg. The behavior of the system
around each critical point is determined by the eigenvalues
of the corresponding A matrix. The results are summarized
in the last column of Table I (cf. Appendix A for details).
The precise interpolation of the solutions between the

critical points I–V depends on the initial conditions, and in
particular, on the relation between the initial valueU0 and a
γ-dependent critical value Ū that we obtain numerically for
the case Ω0

M ¼ 0.3,6

ŪðγÞ≃ −14.82þ 0.67 log γ; ð28Þ

and that is valid in the range illustrated in Fig. 1. We can
distinguish two kinds of trajectory. IfU0 (the initial value of
U) is bigger than Ū, the system follows the sequence
I → II → III. In the opposite case, it follows the I → II →
IV → V sequence. We will refer to these two possibilities
as path A and path B, respectively (see Fig. 1). The
previous work on this model, i.e. Ref. [32], has focused
on the particular case of path A, as we discuss in
detail below.

1. Path A

The numerical behavior of the dynamical system along
path A is shown in Figs. 2 and 3. Note that in Fig. 2 we have
fixed V0 ¼ 0. This choice can be made without loss of
generality due to the attractor behavior of point III.
As can be clearly seen in Fig. 2, the saddle points I

and II correspond to intermediate radiation- and matter-
dominated eras. The transition to the attractor point III
proceeds through a transient phantom regime with

weff < −1. This kind of behavior was first recognized in
Ref. [32] where the authors considered the solution of the
dynamical system (13)–(15) for a specific choice of the
initial conditions (U0 ¼ 0, V0 ¼ 0) and derived a lower
bound for the effective equation of state (−1.14≤weff<
−1). As shown in Fig. 2, this bound is not robust under
variations of the initial conditions. General choices of U0

can lead to a stronger phantom regime (or even to its
complete disappearance, cf. Sec. III A 2). Note also that
the particular choice of initial conditions in the MM model
rests on the assumption of a vanishing Ricci scalar prior to
matter-radiation equality, or in others words, on the exist-
ence of a perfect radiation-dominated era. However, the
accuracy and redshifts for which this assumption holds
depend on the thermal history of the Universe. As shown in
Appendix B, if the initial MM conditions were set for
instance at the end of inflation/reheating, one should expect
nonvanishing values of U0 at the number of e-foldings at
which the MM initial conditions are usually implemented
(N ≃ −14) [35].
In spite of the asymptotic approach of the effective

equation of state to weff ¼ −1, the attractor point III should
not be identified, sensu stricto, with a de Sitter point. For a
solution to be de Sitter, the Hubble parameter around this
solution should remain constant (or, more generally, the
Ricci scalar R should be constant). This is certainly not the
case here. Indeed, the Hubble rateHðNÞ becomes infinitely
large when N → ∞. This unusual behavior can be easily
understood by considering the consistency of Eqs. (14),
(15), and (17) at the fixed point III.7

FIG. 1. The two evolution paths A and B for the background
cosmology of R□−2R gravity, in terms of the initial value U0

of the auxiliary fieldU and the value of γ ≡ m2

9H2
0

. The diagonal line

depicts the critical value Ū as a function of γ. The green (red)
region corresponds to the realizations of path A (B).

4One should note that for point III, Eqs. (22)–(27) may seem to
be singular in the limit V → 1=3γ. This is, however, not the case,
as in the limit V 0 ¼ ΩM ¼ ΩR ¼ 0 and U0 ¼ 4, the divergent
factor is canceled out.

5This argumentation holds only if the fixed point of the
linearized system is not a center-type point.

6We will recover analytically the γ-dependent part of this
equation in Sec. III B.

7In order for Eq. (15) to be consistent at III, we must require
H → ∞ faster than U.

DYNAMICAL ANALYSIS OF R 1
□

2 R COSMOLOGY: … PHYSICAL REVIEW D 94, 043531 (2016)

043531-5



2. Path B

The numerical evolution of the dynamical system along
path B is shown in Figs. 4 and 5. Note that in Fig. 4 we have
fixed V0 ¼ 0. This can be done without loss of generality,
provided that V0< 1=ð3γÞ−V0

0 (see the discussion below).
The initial behavior of the system coincides with that in

path A. In particular, the Universe undergoes radiation- and
matter-dominated eras while passing through the saddle
points I and II. The differences appear only when the
system approaches the fixed point IV. As shown on the left-
hand side of Fig. 4, this point gives rise to a true de Sitter
epoch with weff ≃ −1 and HðNÞ≃ constant. Note,

however, that this point is not an attractor but rather a
saddle point. This means that the solution stays close to the
point for some period of time but eventually moves to the
final attractor, the fixed point V. In particular, the late-
time evolution depends on the value of V0 and V0

0. As
discussed in Appendix A, if V0> 1=ð3γÞ−V0

0 then the
system approaches the fixed point V withΩM → −∞. Since
ΩM takes negative values whenV0> 1=ð3γÞ−V0

0, this set of
initial conditions should be discarded on general physical
grounds. On the contrary, if V0 < 1=ð3γÞ − V0

0 we can
obtain a physically viable scenario. As shown on the right-
hand side of Fig. 4, the matter density parameter in this case

FIG. 2. (Left) Evolution of the effective equation of state weff as a function of N ≡ ln a for path A. (Right) Evolution of the density
parameters ΩM;ΩR, and ΩDE for the same path with U0 ¼ 0. In both plots we have fixed V0 ¼ 0.

FIG. 3. Evolution of the auxiliary fieldsU and V, and their derivatives with respect toN ≡ ln a,U0 and V 0, for path A. In the plots ofU
and U0 we have fixed V0 ¼ 0, and in the plots of V and V 0 we have fixed U0 ¼ 0.
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is driven toþ∞while the dark energy one goes to−∞. This
limit is acceptable since ΩDE does not represent a proper
matter content but rather an effective description of the
gravitational degrees of freedom. Note that the effective
equation of state at point V approaches the radiation-
domination value weff ¼ 1=3, even though there is no
radiation left.8

The cosmological evolution along path B requires only
that U0 < Ū. The value of U0 is in principle unbounded
from below. Could it be possible to obtain a phantom
regime similar to that occurring for path A by choosing

U0 ≪ Ū? The answer to this question turns out to be
negative. As shown in Fig. 5, when we increase the
absolute value of U0, the variableU0 approaches a maximal
value U0

max ¼ 4, stays there for some time interval
ΔNU0

maxðU0Þ, and eventually falls into its future attractor
regime U0 ¼ 0. The maximum value of U0 (U0

max ¼ 4)
translates, through Eq. (14), into a value ξmax ¼ 0, and as a
result, weff ¼ −1 − 2

3
ξ cannot be smaller than −1. In other

words, path B is never phantom.

B. Evolution paths: Analytical results

The novel ingredient of the local formulation of the
R□−2R model with respect to general relativity is the

FIG. 4. (Left) Evolution of the effective equation of state weff as a function of N ≡ ln a for path B. (Right) Evolution of the density
parameters ΩM, ΩR, and ΩDE for the same path with U0 ¼ −60. In both plots we have fixed V0 ¼ 0.

FIG. 5. Evolution of the auxiliary fieldsU and V, and their derivatives with respect to N ≡ ln a,U0 and V 0, for path B. In the plots ofU
and U0 we have fixed V0 ¼ 0, and in the plots of V and V 0 we have fixed U0 ¼ −20.

8In fact, for all the points III, IV, and V, ΩR → 0.
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presence of two “integral fields” U and V arising from the
nonlocal structure of the theory, cf. Eqs. (9) and (10). In this
subsection, we take an in-depth look at the evolution of
the 2þ 2 homogeneous and 1þ 1 inhomogeneous modes
and analytically confirm the results obtained in Secs. III A 1
and III A 2.
The basic building blocks of cosmological model con-

struction are solutions with constant effective equation of
state weff . Assuming weff ¼ wc with wc a constant, and
using Eqs. (9) and (10), we obtain the following equations
for the U and V fields:

UðNÞ ¼ u0 þ u1e−
3
2
ð1−wcÞN þ 2ð1 − 3wcÞ

1 − wc
N; ð29Þ

VðNÞ ¼ 2e3ð1þwcÞN

9ð1þ wcÞð3þ wcÞ

×

�
u0 −

2ð1 − 3wcÞð5þ 3wcÞ
3ð1 − w2

cÞð3þ wcÞ
−
2ð1 − 3wcÞ
1 − wc

N

�

þ 2e
3
2
ð1þ3wcÞN

9ð1þ wcÞð1þ 3wcÞ
u1 þ v0 þ v1e−

3
2
ð1−wcÞN;

ð30Þ

with u0, u1, v0, and v1
9 integration constants set at N ¼ 0.

These equations reveal that the inhomogeneous modes
disappear if and only if wc ¼ 1=3. As a default, wc ¼ 1=3
is the only constant equation of state giving rise to an
attractor solution.10 Note also that for −3 < wc < 1 the
fastest-growing exponent in Eq. (30) appears in the first
term, which is controlled by u0 only. Taking this into
account, we will mostly focus on variations of u0 in what
follows.
Let us first consider a solution within radiation domi-

nation, like that taking place around the fixed point I. The
growing modes in this case are given by U → u0 and
V → 1

20
e4Nu0. If we start with an initial condition ΩR ¼ 1,

the numerator of Eq. (13) tells us that the nonlocal
corrections take over at NNL ¼ − 1

4
logðγu0

4
Þ e-foldings.

Thus, the radiation-dominated Universe in the MM model
is stable if and only if we have exactly the minimal
boundary condition prescription.
In a realistic cosmology we should also consider

a matter-dominated epoch following the radiation-
domination era. This matter-dominated era happens around
the critical point II. For wc ¼ 0, the inhomogeneous modes
in Eqs. (29) and (30) survive and the solution is necessarily
unstable. The number of e-foldings NNL at which the

nonlocal corrections take over is again dictated by the
numerator of Eq. (13). At NNL e-foldings, the sign of the
fastest-growing mode is positive if11

u0 > −
�
10

9
þ 4

3
log

9

5

�
þ 2

3
log γ: ð31Þ

As we will confirm below, one should expect this sign
to determine the evolution of the system beyond point II.
Note that Eq. (31) can be translated into a bound on the
value of UðN�Þ at any given number of e-foldings N� by
noticing that

u0 ¼ UðN�Þ − 2
ð1 − 3wcÞN�

1 − wc
−
4ð1 − 3wcÞ
3ð1 − wcÞ2

: ð32Þ

In particular, for matter-radiation equality (N� ¼ −8.1), we
get UðN�Þ > −15.65þ 2

3
log γ. Note that this is close to the

numerical value of Ū found in Eq. (28).
The above two cases constitute the only possibilities for

realizing a constant equation of state weff ¼ wc in a
universe with nonvanishing and minimally coupled radia-
tion and dust components. In what follows, wewill consider
vacuum solutionswithΩR ¼ ΩM ¼ 0. CombiningEqs. (13)
and (15) we get

UV 00−2U0V 0 ¼−
3

2
ðU−wcUþ8ÞV 0−12Vþ4

γ
: ð33Þ

As in the nonvacuum case, the attractor solutions can be
associated only to an effective equation of state wc ¼ 1=3.
The fixed point V falls into this category. Indeed, when we
set u1 ¼ v1 ¼ 0, Eq. (33) reduces to

FIG. 6. Value of U0 needed to reach path A (blue curve) or path
B (red dotted curve) when Ω0

M ¼ 0.3. For largem, the two curves
converge to Ū, represented by the intermediate dashed curve,
which follows Eq. (28).

9The values u0 and v0, that are set at N ¼ 0 according to the
solutions (29) and (30), should not in general be confused with
U0 and V0, the initial values for U and V set at an early radiation-
dominated epoch.

10Equations (29) and (30) are exact and model-independent
solutions as long as we can assume that weff is a constant.

11This formula is approximate because whenΩM¼1=2, wc ¼ 0
is not exact.
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e4Nðu0 þ 3Þ − γ

4u0
ð1 − 3γv0Þ ¼ 0; ð34Þ

which allows for the solutions

UðNÞ ¼ −3; VðNÞ ¼ 1

3γ
−

3

20
e4N: ð35Þ

Equations (35) are exact solutions of the system of
Eqs. (29), (30), and (33). Note, however, that there can still
be approximate solutions. Consider temporary regions with
wc ≈ −1, as those appearing around points III and IV. In
these regions, Eqs. (29) and (33) give U0ðNÞ → 4 and
VðNÞ ¼ 1=ð3γÞ, but one should be aware that Eq. (30) is
only valid for a constant weff . If UðNNLÞ < −3 when this
solution is reached at NNL, the trajectory will hit the
aforementioned attractor with wc ¼ 1=3 and stay there;
this is then part of what we called path B, cf. Sec. III A 2. If
UðNNLÞ > −3, the evolution will continue in the phase
with wc ≈ −1 and U0 ¼ 4; this phase belongs to path A,
cf. Sec. III A 1.
To summarize, the post-matter-dominated Universe

reaches an accelerating stage with wc ≈ −1 which goes
on until UðNÞ ¼ u0 þ 4N ¼ −3. If u0 > −3, this period
extends forever. Otherwise, one can prolong the transient
acceleration for ΔN e-foldings by lowering the initial value
of U0 → U0 − 4ΔN.
The results of this subsection are in agreement with what

we studied in greater detail in the previous subsections,
namely the stability analysis in the phase-space formulation
and the numerical integration of the field equations.

IV. CONSTRAINTS FROM SUPERNOVAE DATA

Since both paths A and B realize cosmologies that are in
principle viable (i.e., they contain a sequence of proper
radiation-, matter-, and dark-energy-dominated eras), we

need to compare both to observations. Here, we assume as
free parameters, m in units of H0 and the present matter
density parameter Ω0

M, and fix Ω0
R ¼ 4.15 × 10−5h−2 and

V0 ¼ 0. The initial condition deep in the radiation era, that
we choose arbitrarily as U0 ≡ UðN ¼ −14Þ, is fixed by the
requirement that we reach Ω0

M today. In practice, for every
point fm;Ω0

Mg in the parameter space, we vary iteratively
U0 until we find Ω0

M at N ¼ 0. Since there are two possible
paths, we find two values of U0 for every choice of
parameters. The particular choice of U0 as a function of
m whenΩ0

M ¼ 0.3 is presented in Fig. 6. For largem, paths
A and B lead to a common behavior, and their initial
condition U0 also converges.
Once the two trajectories are found, we evaluate the

Hubble rate HðzÞ for each path and compare the associated
luminosity distance dLðHðzÞÞ to the Joint Light-curve
Analysis (JLA) supernovae data set [52] in order to obtain
two independent likelihoods over m and Ω0

M, one for each
path. When the pair fm;Ω0

Mg is specified, the effective
equation of state weff is completely determined. The results
are shown in Figs. 7 and 8. Focusing onΩ0

M ≈ 0.3, one sees
that all the values of m up to 0.5 are roughly compatible
with supernovae. Note, however, that the expectation value
Ω0

M ≈ 0.3 comes from standard cosmology and it should
not be directly applied to modified gravity cases. In fact, the
supernovae data set is roughly compatible with all values of
Ω0

M < 0.45, so a more robust upper limit for m is around
1.2. For very small m, the trajectories of both path A and
path B become observationally indistinguishable from
ΛCDM.12 Note, however, that this may change in the
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FIG. 7. Supernovae likelihood contours at 2-σ level for path A (left panel) and path B (right panel). The associated values of U0 are
also displayed.

12Indeed, when m is small, the dynamical part associated with
nonlocal contributions in Eq. (13) is suppressed. The leading
contribution at early times is of order mUhom, which is a constant
in our case. Note that this is in agreement with the curve
corresponding to path B in Fig. 6.
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future when the dynamical part associated with nonlocal
contributions in Eq. (13) becomes dominant again.

V. SUMMARY AND CONCLUSIONS

Nonlocality can emerge from local theories. If one
focuses on classical physics at long wavelengths, there
can appear nonlocal constraints due to the effect of short
wavelengths that have been integrated out. In quantum field
theories, nonlocality is introduced in the computation of the
effective action via the integration of the radiative correc-
tions due to massless or light particles.
It is thus natural to consider that nonlocal, infrared

modifications of gravity at cosmological scales, such as in
the model described by (2), could provide a useful effective
approach to study the problems of cosmological constant
and of dark energy. An important subtlety, not arising in
local modifications of gravity, has to then be taken into
account in such studies: in addition to the mass parameter
in the Lagrangian (2), the nonlocal model is understood to

be specified by the boundary conditions implied by the
presence of the inverse-d’Alembertian.
In this work, we have considered the effect of general

initial conditions on the dynamical system (22)–(27) for the
background evolution of the R□−2R cosmological model,
as well as the constraints from supernovae data on the
parameters m and Ω0

M. The system exhibits two distinct
classes of late-time behavior, which lead to two different
types of cosmological evolution, dubbed path A and
path B.
Path A (path B) is realized above (below) a certain

threshold Ū for the initial condition of the auxiliary fieldU,
U0. The case U0 ¼ 0, belonging to path A, is the one
already discussed in Ref. [32]. Note, however, that the
initial conditions in this theory are sensitive to the thermal
history of the Universe. In particular, the value of U at a
given number of e-foldings cannot be unambiguously set to
zero by setting Uhom ¼ 0. The main result of this work is to
extend the cosmological analysis to the full range of initial
conditions.
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FIG. 8. Supernovae likelihood contours at 2-σ level for path A (upper panels) and path B (lower panels). The associated values of w0

and w1 in the standard parametrization weff ¼ w0 þ ð1 − aÞw1 are also displayed.
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We found that although both paths possess well-behaved
radiation and matter eras, the subsequent evolution is in
general radically different. Along path A, the system goes
through a phantom regime and finally reaches an attractor
on which the effective equation of state weff remains frozen
at the CC value −1. This final state, however, is not a de
Sitter stage since H (and therefore the Ricci scalar R) is not
constant, but rather grows indefinitely. Along path B,
instead, the evolution remains always nonphantom; the
system reaches generically a weff ¼ −1 stage which
approaches a true de Sitter stage. This is however a
temporary stage in cosmic evolution, as the solution is
not an attractor but, rather, a saddle point. After a transient
period the system reaches a final configuration represented
by a decelerated, radiationlike, weff ¼ 1=3 state (and there-
fore with R ¼ 0), in which, however, no radiation is
present. The present value of the nonlocal-term equation
of state, wDE, can take essentially any values around −1.
The impact of initial conditions on the final evolution is
therefore important.
Both paths are in principle cosmologically viable. When

compared to supernovae observations, we find the regions
in the fm;ΩMg parameter space that satisfy observational
constraints. It is interesting to note that small, even
vanishing, values ofm are perfectly acceptable. This means
that cosmologically viable nonlocal terms can be generated
from standard loop corrections, which require m=H0 ≪ 1
(in Planck units). However, in this case the evolution
becomes indistinguishable from ΛCDM.
The methods employed in this paper can be applied to

more general nonlocal models. We saw that the possible
cosmological dynamics of a given model can be conven-
iently derived from the behavior of the additional scalar
modes carried by the nonlocal integral operators. Assuming
a background evolution with a power-law expansion of the
scale factor, we solved for the mode functions in the model
(2), and from the general solutions (29) and (30) deduced
the handful of fixed points and their basic properties. A
similar analysis should be even more transparent for actions
of the type (1), since there the nontrivial modes are given
solely by Eq. (29). In models featuring the conformal Weyl
curvature [18,28,29], a substantial simplification is that
only the homogeneous modes are nonvanishing.
In conclusion, the cosmological background dynamics

of the nonlocal model studied here depend qualitatively
upon the initial conditions. We discussed the initial con-
ditions in terms of U0 set at an early radiation-dominated
epoch and showed that different values for this parameter
can result in the Universe ending up eventually in drasti-
cally different stages: in the two most typical cases studied
here, either a phantomlike approach towards asymptotic
singularity, or an eternal conformal expansion. The initial
value U0 ¼ 0 is a natural choice, but its implementation in
fact depends on the thermal history of the Universe. As
shown in Appendix B, however, the ambiguity is not large

enough to change the evolution from the former track to
the latter.
We can thus regard the interesting dark energy behavior

as a robust background prediction of the model (2). It
remains to be seen whether one can learn further about the
structure formation in nonlocal cosmology by revisiting the
boundary conditions of the integral operators at the level of
the inhomogeneous perturbation modes.
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APPENDIX A: SOME CLARIFICATION ON
FIXED POINTS AND PATHS

1. From fixed surfaces to fixed points

As explained in Sec. III A, when the first derivative of a
variable on the left-hand side of Eqs. (22)–(27) takes a
constant value, the dynamical system contains a fixed
surface rather than a fixed point. To illustrate how to deal
with this situation, we present below the complete phase-
space analysis for the critical point II in Table I. A similar
analysis can be done for points III and IV.
As follows directly from Eq. (22), when Y1 ¼ 2 the

variable U satisfies the equation of a line, U0 ¼ 2. In order
to go from this fixed line to a fixed point we can consider a
field redefinition,

U ¼ ~U þ 2N; ðA1Þ

with N the number of e-foldings. Inserting this relation into
Eqs. (22)–(27), one immediately realizes that Y1 ¼ 2
corresponds to a fixed point ~U0 ¼ 0. Written in the new
variables, the analysis proceeds along the lines discussed in
Sec. III A. The behavior of the system around the fixed
point is determined by the eigenvalues of the characterizing
matrix, which are given by

λi ¼
�
0; 0;−1;−

3

2
;−

3

2
;
3 ~U0 þ 6N þ 4

~U0 þ 2N

�
; ðA2Þ

with ~U0 an arbitrary constant. From the theory of dynami-
cal systems we know that the so-called Lyapunov coef-
ficients si (i ¼ 1; 2;…; 6) are equal to the real part of the
eigenvalues λi, provided that these eigenvalues are con-
stant. Note however that, due to the field redefinition (A1),
the last eigenvalue in Eq. (A2) depends on the number of
e-foldings N. The Lyapunov coefficient in this case is
defined by the upper limit
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s6 ¼ lim
N→∞

1

N − N0

Z
N

N0

Refλ6ðN0ÞgdN0; ðA3Þ

with N0 some initial value for N. Taking into account (A2),
we get

s6 ¼ lim
N→∞

1

N − N0

Z
N

N0

3 ~U0 þ 6N0 þ 4

~U0 þ 2N0 dN0 ¼ 3: ðA4Þ

The resulting spectrum of Lyapunov coefficients

si ¼
�
0; 0;−1;−

3

2
;−

3

2
; 3

�
ðA5Þ

shows that the fixed point under consideration is a
saddle point.

2. On the two realizations of the fixed point V

Note that point V in Table I has two different realizations.
The first one is obtained for V ¼ þ∞ and ΩM ¼ −∞,
while the second case corresponds to V ¼ −∞ and
ΩM ¼ þ∞. In this Appendix, we discuss the set of initial
conditions giving rise to each one of these configurations.
Around the fixed point V, we have U0 ¼ U00 ¼ 0. These

two conditions restrict the ξ parameter in Eq. (14) to a fixed
value ξ ¼ −2. Inserting this constant value into Eq. (15)
and taking into account the largeN limit of Eq. (13), we get

V 00 − 3V 0 − 4V þ 4

3γ
¼ 0: ðA6Þ

For N ≫ 1, the solution of this differential equation reads

V ≈
1

3γ
þ
�
V0 −

1

3γ
þ V0

0
�
e4ðN−N0Þ; ðA7Þ

with V0 and V 0
0 the values of V and V 0 at some initial time

N0. In view of this solution, we can distinguish two
possibilities. If V0 > 1=ð3γÞ − V0

0, the system approaches
the fixed point V with V → þ∞.13 In the opposite case, the
fixed point V is realized with V → −∞.

APPENDIX B: INITIAL CONDITIONS AND
THERMAL HISTORY OF THE UNIVERSE

In this Appendix we estimate the robustness of the MM
initial conditions when the detailed particle content of the
Universe prior to matter-radiation equality is taken into
account.

For some purposes, the transition from radiation to matter
domination can be approximated by an instant transition at
Neq ≃ −8.1 in which the trace of the energy-momentum
tensor changes abruptly from zero to e3Neq times its present
value. This approximation implicitly assumes that all the
particles in the early Universe have roughly the same mass,
and transit simultaneously from a relativistic to a non-
relativistic state. A detailed analysis of the thermal history of
the Universe allows us to go beyond this approximation and
to account for the fact that particles with different masses
become nonrelativistic at different temperatures, or equiv-
alently, at different cosmic times.
The change in the trace of the energy-momentum tensor

can be parametrized as

trðTμνÞ ¼
ρ − 3P
M2

Pl

≡ ρR
M2

Pl

ΣðTÞ; ðB1Þ

with T and ρR the temperature and energy density of the
radiation bath.14 The so-called “kick” function ΣðTÞ is
computed by summing the individual contributions to the
bath of the particles with mass mi, temperature Ti and gi
degrees of freedom [53],15

ΣiðTÞ ¼
ρi − 3pi

ρi

¼ 15

π4
gi

g�ðTÞ
�
mi

T

�
2
Z

∞

mi=T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − ðmi=TÞ2

p
eu � 1

du; ðB2Þ

where g�ðTÞ≡ ρR½ðπ2=30ÞT4�−1 is the total number of
relativistic degrees of freedom in the bath.
Equation (B1) translates, via Einstein equations, into a

change of the Ricci scalar, R ¼ trðTμνÞ. Integrating Eq. (9)
with aðtÞ≃ t1=2 and taking into account the relation
between time and temperature at radiation domination,

t≃
ffiffiffiffiffiffiffi
45

2π2

r
g−1=2�

MPl

T2
; ðB3Þ

we get

ΔU≡U −Uhom

¼ 45

2π2
M2

Pl

Z
Tf

T i

dT 0DðT 0Þg1=4� ðT 0ÞT 0

×
Z

T 0

T i

dT 00DðT 00Þ RðT 00Þ
ðT 00Þ5g5=4� ðT 0Þ

; ðB4Þ

with

13Note that realizations with V0 > 1=ð3γÞ − V0
0 are not

physically acceptable. As can be easily deduced from
Eq. (13), these configurations give rise to negative values of
h2 around the fixed point V.

14Note that if all the particles prior to recombination were
completely massless, ΣðTÞ would be zero.

15Theþ and − signs in the denominator of the integrand apply,
respectively, to fermions and bosons.
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DðTÞ≡
�
−
2

T
−

1

2g�ðTÞ
∂g�ðTÞ
∂T

�
: ðB5Þ

Here, T i and Tf are the higher and lower temperatures for
which radiation domination is a reasonable first order
approximation for the background evolution of the
Universe. Note that, due to the integration between T i
and Tf , even a tiny value of the scalar curvature at early
times (Tf ≪ T i) can give rise to a sizable modification of U
at matter-radiation equality.16

The radiation-domination requirement (R ¼ 0) giving
rise to the MM initial conditions should be understood only
as an approximation of the actual dynamics. The value ofU
at radiation domination cannot be unambiguously set to

zero by simply setting Uhom ¼ 0. Indeed, if the initial
conditions are set at the end of inflation/reheating, one
should expect nonvanishing values of U0 at the number of
e-foldings at which the MM initial conditions are usually
implemented (N ≃ −14). Note also that, even if the MM
initial conditions are taken for granted, the detailed thermal
history of the Universe will inevitably affect the subsequent
evolution of U. The uncertainty associated to this effect
depends on the particle content of the early Universe.
Assuming radiation domination between 1000 GeV and
0.75 eV and considering only the contribution of Standard
Model particles, we can numerically integrate Eq. (B4) to
obtain a correction

ΔU ≈ 1.6; ðB6Þ
to be added on top of the nonvanishingMM value at matter-
radiation equality [35]. The assumptions leading to the
uncertainty (B6) are indeed quite conservative. Larger
values of ΔU should be expected if we accept the existence
of new physics beyond the Standard Model.
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1 Introduction

The late-time accelerated expansion of the universe [1–8] is attributed in the standard cos-
mological model, or ΛCDM, to the influence of dark energy in the form of a cosmological
constant Λ, interpreted as the energy density of the vacuum. However, this otherwise formally
and observationally consistent model carries two unsolved puzzles: the so-called coincidence
and the fine-tuning problems. The former issue refers to ΛCDM not explaining the fact
that the accelerated phase in the expansion began only recently in the cosmological time,
while the latter expresses the enormous disagreement between the energy scale introduced
by Λ and the predictions of the Standard Model of particle physics for the vacuum energy
density. Consequently, a wealth of alternative, more complicated cosmological models are
continuously developed and proposed with the purpose of providing a more accurate and
robust description of our universe, the majority of which may be classified as dark energy
(if they introduce new matter content) or modified gravity (if they depart from Einstein’s
general relativity) models (although of course from a purely gravitational point of view there
is no fundamental distinction between these two classes). Typically, these new models are
required to emulate the background expansion history of the universe given by ΛCDM, which
provides a good fit to data. The imposition of this condition is called the reconstruction prob-
lem. Once this step is fulfilled, one can observationally distinguish among models by looking
at their predictions beyond the background, such as solar system tests and the structure
formation in the universe.

Within the class of modified gravity models, nonlocal gravity theories have recently
gained remarkable interest. In this direction, pioneering works are [9, 10], where the authors
attempt to construct a viable alternative to the standard ΛCDM cosmology through nonlocal
modifications of the form f(�−1R). This model, at the background level, has the advantage,
over ΛCDM, that it exactly reproduces the same evolution without introducing a new energy
scale. The price to pay is the loss of structural simplicity. Indeed, in order to exactly duplicate
the ΛCDM behavior, the function f(�−1R) must be of a somewhat contrived form [10]. On
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a phenomenological basis, the DW nonlocal gravity model has been shown to be ghost-free1

and close to GR in gravitationally-bound systems [13]. The behavior of the model at the
perturbation level was studied in [11] and in [14, 15]. The authors of the last two papers
found that, according to the redshift-space distortions (RSD) observations available at the
time, the DW model was disfavored over ΛCDM by 7.8σ.

In this work we revisit this problem and show that the localized version of DW model
shows a different picture according to which the DW model is not anymore disfavored over
ΛCDM and actually gives a significantly better fit to the RSD data. At the same time, the
model predicts a slightly lower value of σ8 than ΛCDM, in agreement with recent lensing
results [16, 17]. It is important to remark that once the background is fixed to reproduce
ΛCDM, no more free parameters are left to adjust to the RSD data. Our results disagree
with those in [14, 15]. Despite intensive testing, we have been unable to identify the reasons
for this discrepancy; we discuss some conjectures below.

We also make one step further and relax the model-dependent assumptions implicit in
previous works concerning the initial conditions for the perturbation equation in the matter
era. More precisely, we allow the two initial conditions for the linear growth equation to vary
(as opposed to fixing them to their standard CDM values). As we will show, however, this
improves the fit only marginally.

Throughout the paper, we work in flat space and natural units, i.e. units such that
c = ~ = 1.

2 The model

In ref. [9] the authors proposed a model in which the Einstein-Hilbert action is nonlocally
modified as

SDW =
1

16πG

∫
d4x
√−gR

[
1 + f(�−1R)

]
, (2.1)

where the nonlocal distortion function f is a free function of the inverse d’Alembertian acting
on the Ricci scalar, �−1R. Since this combination is dimensionless, the Lagrangian does not
introduce any new energy scale. Variation of (2.1) with respect to the metric gµν yields the
modified Einstein equations,

Gµν + ∆Gµν = 8πGTµν , (2.2)

which in a Friedman-Lemâıtre-Robertson-Walker (FLRW) background

ds2 = −dt2 + a2d~x2, (2.3)

can be written as

3H2 + ∆G00 = 8πGρ, (2.4)

−2Ḣ − 3H2 +
1

3a2
δij∆Gij = 8πGp.

1The localized version of the DW model has been shown [11, 12] to be ghost-free only when the function
f(�−1R) satisfies particular ghost-freeness conditions.
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Here, the tensor ∆Gµν corresponds to the nonlocal contribution and is given, for the FLRW
metric, by the following expressions [9],

∆G00 =
[
3H2 + 3H∂t

]{
f
(
�−1R

)
+

1

�
[
Rf,

(
�−1R

)]}

+
1

2
∂t

(
�−1R

)
∂t

(
1

�
[
Rf,

(
�−1R

)])
, (2.5)

∆Gij = a2δij

[
1

2
∂t

(
�−1R

)
∂t

(
1

�
[
Rf,

(
�−1R

)])

−
(

2Ḣ + 3H2 + 2H∂t + ∂2
t

)(
f +

1

�
[
Rf,

(
�−1R

)])]
, (2.6)

where ρ and p are respectively the energy density and pressure of a perfect fluid. From now
on, a comma next to f represents a derivative of the function w.r.t. its argument. Equa-
tions (2.5)–(2.6) can be localized by introducing the auxiliary variables X and U defined as

�X ≡ R, (2.7)

�U ≡ f,R (2.8)

With the use of the auxiliary functions X and U , eqs. (2.5)–(2.6) can be rewritten as

∆G00 = (3H2 + 3H∂t)(f + U) +
1

2
ẊU̇ , (2.9)

∆Gij = a2δij

[
1

2
ẊU̇ −

(
2Ḣ + 3H2 + 2H∂t + ∂2

t

)
(f + U)

]
, (2.10)

where an overdot stands for a derivative w.r.t. cosmological time.
The DW model has been shown to be capable of reproducing the background evolution

given by ΛCDM with ΩM ≈ 0.28 [10] by fixing the nonlocal function to

f(X) = 0.245
[
tanh(0.350Y + 0.032Y 2 + 0.003Y 3)− 1

]
, (2.11)

with Y ≡ X + 16.5. This choice fully determines the model and no more free parameters
are left.

The dependence of the nonlocal modification on X is suggested by quantum radiative
corrections [18] and is triggered mainly at the end of the radiation domination era, where the
Ricci scalar in units of H2 can be taken to be very small, R/H2 ≈ 0, with a slow evolution
afterwards. The interesting question arises then, whether the DW model that gives the same
background evolution as ΛCDM, produces also the same behavior at perturbation level. The
answer is no, and in the following sections we will see why is it so.

It is useful to write down modified Einstein equations (2.2) as well as auxiliary field
equations (2.7)–(2.8) through e-folding time N = ln a

1 + f + U + f ′ + U ′ +
1

6
X ′U ′ = ΩM + ΩR (2.12)

−2ξ−3+
1

2
X ′U ′− (2ξ+3)(f+U)−2(f ′+U ′)−f ′′−U ′′−ξ(f ′+U ′) = 3wMΩM+3wRΩR (2.13)

and

X ′′ + (3 + ξ)X ′ = −RH−2 = −6ξ − 12 (2.14)

U ′′ + (3 + ξ)U ′ = −Rf,H−2 = −f,(6ξ + 12) (2.15)
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where the prime stands for a derivative w.r.t. N , ξ ≡ H ′/H and ΩM and ΩR are the matter
and radiation fractional densities, respectively. We will use these equations later.

3 Perturbation equations

In this section, we introduce the linear scalar perturbation equations for the DW model. Our
method of getting perturbation equations is similar to one implemented in ref. [11] and the
results are consistent up to some conventions. Here, we work in the Newtonian gauge, in
which scalar perturbations of the metric are given by

ds2 = − (1 + 2Ψ) dt2 + a2 (t) (1 + 2Φ) δijdx
idxj (3.1)

We expand the auxiliary fields as X + δX and U + δU . In general for the anisotropic fluid
in the first order of perturbation we have

T 0
0 = − (ρ+ δρ) (3.2)

T 0
i = (ρ+ p) vi (3.3)

T ij = (p+ δp) δij + Σi
j (3.4)

Here we write the pressure perturbation δp as δp = c2
sδρ, where c2

s is the sound speed of
the perfect fluid. The density contrast δ is defined as δρ/ρ and vi is the peculiar velocity
field. In the case where the matter content consists of radiation and non-relativistic matter,
we have a vanishing anisotropic stress tensor Σi

j ' 0. Below we will write down the linearly
perturbed field equations

δ (G00 + ∆G00) = 8πGδT00, (3.5)

δ (Gij + ∆Gij) = 8πGδTij , (3.6)

in Fourier space. The first order perturbation of the (00) component of Friedman equations
is given by the following expression:

δG00 = 6H2Φ′ + 2
k2

a2
Φ (3.7)

δ∆G00 =
k2

a2
f, δX + 2

k2

a2
Φf +

3

2
H2
(
X ′δU ′ + U ′δX ′

)
+
k2

a2
δU +

2k2

a2
ΦU (3.8)

δT00 = ρδ (3.9)

In the following equations we often put ourselves in the sub-horizon limit ( k/aH � 1). To
do this, we assume that Φ,Ψ, δU, δX, k−2δ, and their ln a derivatives, are all of the same order
(as indeed can be verified a posteriori) and systematically take the limit of large k/aH. For

the (ij) component, after contracting it with the projecting operator
(
ki

k
kj

k − 1
3δ
ij
)

, we get

2

3
k2 (Ψ + Φ) +

(
ki

k

kj

k
− 1

3
δij
)
δ∆Gij = −8πG (ρ+ p)σ (3.10)

where σ represents the anisotropic stress, and where δ∆Gij in the sub-horizon limit is

δ∆Gij = Dij (f, δX + δU) + δDij (f + U) (3.11)

+
1

2
H2a2

(
X ′δU ′ + U ′δX ′

)
δij +H2a2 (Φ−Ψ)X ′U ′δij
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where Dij and δDij , also in the sub-horizon limit, are respectively

Dij = −δijk2 + kikj (3.12)

δDij =
(
−δijk2 + kikj

)
(Ψ + Φ) . (3.13)

Now to complete the set of equations we need also to perturb eqs. (2.7)–(2.8). We get

δX ′′ + (3 + ξ) δX ′ + k̂2(δX + 2Ψ + 4Φ)− 2Ψ(X ′′ + 3X ′ + ξX ′ + 6 + 6ξ) (3.14)

−Ψ′(X ′ + 6) + 3Φ′X ′ + 6Φ′′ + 6 (4 + ξ) Φ = 0

and

δU ′′ + (3 + ξ) δU ′ + k̂2δU − 2ΨU ′′ −
(
2 (3 + ξ) Ψ + Ψ′ − 3Φ′

)
U ′ (3.15)

= −6f, , δX (ξ + 2) + 6f,
(
Ψ′ + 2 (2 + ξ) Ψ

)

−6f,
(
Φ′′ + (4 + ξ) Φ

)
− 2f, k̂2 (Ψ + 2Φ) .

where k̂ = k/aH. Moving to the sub-horizon limit we find, for the (00) component,

Φ +
f, δX

2
+ Φf +

δU

2
+ ΦU = 4πG

a2ρδ

k2

=
3H2

0

2k2

(
Ω0
Ra
−2δR + Ω0

Ma
−1δM

)
. (3.16)

For the (ij) component, after acting with the projection operator, we have

2

3a2
k2 (Ψ + Φ) +

2

3a2
k2[f, δX + δU + (Ψ + Φ) (f + U)] = −8πG (ρ+ p)σ, (3.17)

At late times, when the relativistic contribution is small, we can neglect the contribution
coming from the anisotropic stress, σ ≈ 0. So we get

Ψ + Φ + f, δX + δU + (Ψ + Φ) (f + U) = 0 (3.18)

Eqs. (3.14)–(3.15) reduce to

δX = −2 (Ψ + 2Φ) , (3.19)

δU = −2f, (Ψ + 2Φ) . (3.20)

From the covariant conservation law of the energy-momentum tensor, ∇µTµν = 0, we get
finally the following equations for the matter density perturbation δM in the sub-horizon limit:

δ′′M + (2 + ξ) δ′M = −k̂2Ψ. (3.21)

In order to solve this equation we need to find an expression for Ψ. This can be done by
combining eqs. (3.16)–(3.18) and eqs. (3.19)–(3.20). After simple algebraic manipulations
we find for the modified gravity function η and for the potentials Ψ and Φ the following
expressions:

η =
Φ + Ψ

Φ
=

4f,

1 + U + f − 4f,
, (3.22)

Ψ = − 3H2
0 (1 + U − 8f,+f) Ω0

MδM
2ak2 (1 + U − 6f,+f) (1 + f + U)

, (3.23)

Φ =
3H2

0 (1 + U − 4f,+f) Ω0
MδM

2ak2 (1 + U − 6f,+f) (1 + f + U)
. (3.24)
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Finally, by plugging the expression for Ψ from eq. (3.23) into eq. (3.21), we obtain the
k-independent growth equation

δ′′M + (2 + ξ) δ′M =
3H2

0 (1 + U − 8f,+f) Ω0
MδM

2a3H2 (1 + U − 6f,+f) (1 + f + U)
. (3.25)

In order to solve numerically eqs. (2.7)–(2.8), we set the following initial conditions deep
inside radiation-dominated period (Nin = lna∗in = −16):

X(a∗in) = U(a∗in) = X ′(a∗in) = U ′(a∗in) = 0. (3.26)

At this point it is important to mention that for the function f(X) at hand, the denominators
in eqs. (3.22)–(3.25) never vanish. In ref. [19] it was argued that these initial conditions force
the homogenous solutions of the localized model to vanish, rendering it equivalent to the
nonlocal versions of the DW model. For the growth equation (3.21), the initial conditions
deep into the matter era are taken to be as in pure CDM

δM (ain) = ain,
δ′M (ain)

δM (ain)
= 1, (3.27)

where the initial scale factor ain is taken at redshift zin = 9. In the next section we generalize
the initial conditions.

The quantity of interest in this paper is the RSD observable, also called growth rate:

fσ8(z) ≡ σ8(z)(ln δM )′, (3.28)

with the amplitude of fluctuations σ8(z) defined as

σ8(z) = σ0
8
δM (z,k)
δM (0,k) . (3.29)

As we mentioned, the background has been fixed to ΛCDM, so the same constraints on the
background apply, namely Ω0

M ≈ 0.3, so for simplicity we fix Ω0
M = 0.3 in the following.

At perturbation level, the model is also identical to ΛCDM far into the matter era, so we
take σ8(zin = 9) to be identical to ΛCDM. Then there are no more free parameters and we
just need to compare the result of eq. (3.25) with the RSD data collected in table 1. The
numerical results for the anisotropic stress η and for fσ8(z) are presented in figure 1.2 The
DW model fits the data better than ΛCDM (χ2 per d.o.f. equal to 0.66 instead of 1.05, see
table 2). The resulting lower normalization, σ0

8 = 0.78, is in agreement to better than 1σ
with the recent estimates based on lensing (σ0

8 = 0.745+0.038
−0.038 for Ω0

M = 0.3, see [17], table
F2, column S8), contrary to ΛCDM. See also [16]. It should be stressed again that the value
σ0

8 = 0.78 for the DW model was obtained by assigning the same initial σ8(zin) as in ΛCDM
and evolving it with the linear growth factor δM of the DW model. A more general treatment
in this respect is provided in section 6.

Our results differ significatively from those in [15], in which fσ8(z) lies above the ΛCDM
curve, although we agree with their results at the background level, in particular with figure 1

2We would like to point out the fact that fσ8(z) data are not completely model-independent, as they
assume a scenario of specific bias, redshift space distortions and nonlinear clustering which is not necessarily
shared by modified gravity theories (see e.g. [20, 21]). Therefore, the comparison made here and in [15]
between ΛCDM and the DW model based on ΛCDM data should be taken carefully. However, this does not
affect our extension of the analysis done in [15], as in that work the authors also assume that such comparison
can be made.
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Figure 1. Left panel: the evolution of anisotropic stress η as a function of redshift and best fit
with the polynomial A3a

3 +A2a
2 +A0, where {A3, A2, A0} = {−0.54, 1.79,−0.05}. Right panel: the

growth rate fσ8(z) for ΛCDM and DW as functions of redshift.

of [15]. We have not been able to point out the reasons for this discrepancy. One could
conjecture it might be due to the fact we are solving a localized version of the model in
which the solution depends on the initial conditions on δX, δU , which in the sub-horizon limit
are not free quantities but depend on Φ,Ψ, and therefore on δM . However, the quasi-static
solution is the attractor solution for large k, so it is unlikely that the discrepancy depends on
the localization procedure or the quasi-static approximation. Our expression (3.19) is indeed
different from the corresponding quasi-static non-local expression eq. (29) in [14], but the
two expressions coincide asymptotically in time in the limit in which Ψ,Φ are weakly time-
dependent with respect to the rapidly varying sinusoidal function in the integrand for large
k, conditions that are met in the quasi-static limit. It is still possible that the disagreement
is due to the asymptotic equivalence between the local and non-local quasi-static limits not
having been reached by the present time.

We have also checked the ghost-freeness conditions for the localized theory derived in
ref. [11]

6f,> 1 + f + U > 0, (3.30)

and we found that at all times the condition 6f,> 1 + f +U is violated, while the condition
1 + f + U > 0 is always satisfied. In ref. [22] the authors have discussed a particular case
when the ghost-free condition (3.30) is satisfied and leads to an interesting cosmology. In the
case of tensor-scalar theories it has been shown that the appearance of a ghost mode in the
theory’s spectrum will lead to a situation where the effective gravitational constant Geff (in
units of GNewton) defined as

Geff = 1 + Y = − 2k2Ψ

3(aH)2Ω0
MδM

=
(1 + U − 8f,+f)

(1 + U − 6f,+f)(1 + U + f)
(3.31)

will become negative [23]. From figure 2, left panel, we indeed see that Y is always negative
when the non-local contributions are non negligible. This explains why the perturbations
grow more slowly than in ΛCDM. We see that Geff goes negative near the present epoch.
This however is only true in our linear approximation. Near non-linear structures, one must
assume the existence of a screening mechanism in order to pass local gravity constraints, so
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Figure 2. Left panel: the evolution of the effective gravitational constant correction Y = Geff − 1
as a function of red-shift and best fit with the polynomial A4a

4 + A3a
3 + A0, where {A4, A3, A0} =

{−1.95, 0.33,−0.03}. Right panel: the evolution of fσ8(z) as a function of redshift and best fit with
the polynomial A4a

4 +A3a
3 +A2a

2 +A1a, where {A4, A3, A2, A1} = {1.41,−3.03, 0.97, 0.94}.

that within the screening radius, standard gravity is recovered. This issue has been already
discussed in ref. [19].3

The behavior of η can be approximated with an analytic fit of the form: A3a
3+A2a

2+A0,
where A3, A2 and A0 are free parameters. We find the following best fit results with a
percentage error up to 2% for the quantity 1 + η in the range z ∈ (0, 5): {A3, A2, A0} =
{−0.54, 1.79, 0.95} (see figure 1, left panel).

Similarly, the behaviors of Y and fσ8(z) can be approximated with analytical fits of the
polynomial form A4a

4 + A3a
3 + A0. The best fit result in the case of Y , with a percentage

error up to 3% for the quantity 1 + Y within z ∈ (0, 5), corresponds to {A4, A3, A0} =
{−1.95, 0.33, 0.97} (see figure 2, left panel). For the case of fσ8(z) we find the best fit result
A4a

4 +A3a
3 +A2a

2 +A1a. with a percentage error up to 1% in the same redshift range, for
{A4, A3, A2, A1} = {1.41,−3.03, 0.97, 0.94} (see figure 2, right panel).

4 Sound speed

In order to ascertain that the quasi-static approximation is valid, one has to ensure the
absence of gradient instabilities, i.e. whether the sign of the sound-speed of the perturbative-
quantities δX and δU is positive. To do this, we rewrite eqs. (3.14)–(3.15) in the follow-
ing way:

δX ′′ + 3δX ′ + k̂2(δX + 2Ψ + 4Φ) = 0 (4.1)

δU ′′ + 3δU ′ + k̂2(δU + 2f,Ψ + 4f,Φ) = 0 (4.2)

keeping now the derivatives of δX, δU , but still neglecting Ψ,Φ and their derivatives with
respect to k̂2Ψ, k̂2Φ. Now from eqs. (3.16)–(3.18) in the case of vacuum (δ = σ = 0) we
find that

Φ = Ψ = − f, δX + δU

2(1 + f + U)
. (4.3)

3In this work the authors use the fact that X ≡ �−1R changes its sign from positive to negative one, when
one shifts from gravitationally bound systems to large scale cosmology. On the other hand, the reconstruction
procedure for the function f(X) is only done for cosmology and it does not fix the value of f(X) when X > 0.
In this setup one can achieve a perfect screening by choosing f(X) ≡ 0 for all X > 0. This is not the only
choice that effectively screens non-local gravity for bound systems, it is just the simplest possibility.

– 8 –



J
C
A
P
0
4
(
2
0
1
7
)
0
4
6

Survey z σ8f References

6dFGRS 0.067 0.423± 0.055 Beutler et al. (2012) [24]

LRG-200
0.25 0.3512± 0.0583

Samushia et al. (2012) [25]
0.37 0.4602± 0.0378

BOSS

1) 0.30 0.408± 0.0552, ρ12 = −0.19
Tojeiro et al. (2012) [26]

2) 0.60 0.433± 0.0662

3) 0.38 0.497± 0.045, ρ34 = 0.48

Alam et al. (2016) [27]4) 0.51 0.458± 0.038, ρ45 = 0.51

5) 0.61 0.436± 0.034, ρ35 = 0.17

WiggleZ

1) 0.44 0.413± 0.080, ρ12 = 0.51

Blake (2011) [28]2) 0.60 0.390± 0.063, ρ23 = 0.56

3) 0.73 0.437± 0.072

Vipers 0.8 0.47± 0.08 De la Torre et al. (2013) [29]

2dFGRS 0.17 0.51± 0.06 Percival et al. (2004) [30, 31]

LRG 0.35 0.429± 0.089 Chuang and Wang (2013) [32]

LOWZ 0.32 0.384± 0.095 Chuang et al. (2013) [33]

CMASS 0.57 0.441± 0.043 Samushia et al. (2013) [34]

Table 1. Up-to-date RSD measurements from various sources, with the relevant correlation coeffi-
cients ρij . These are the points shown in figure 1 and figure 4.

So, by inserting eq. (4.3) into eqs. (4.1)–(4.2) we get finally

δX ′′ + 3δX ′ + k̂2δX =
3k̂2(f, δX + δU)

(1 + f + U)
(4.4)

and

δU ′′ + 3δU ′ + k̂2δU =
3f, k̂2(f, δX + δU)

(1 + f + U)
(4.5)

We can combine these two equations and write them in a matrix form

X ′′i + 3X ′i + k̂2SijXj = 0, (4.6)

where Sij is a two by two matrix, defined as

S =
1

(1 + f + U)

(
1+f+U−3f, −3
−3f,2 1+f+U−3f,

)
(4.7)

and Xi are the components of the vector X = (δX, δU). If S is positive-definite, the per-
turbative quantities δX and δU have a positive sound-speed independent of the propagation
direction. An arbitrary matrix A is called positive-definite when it has only positive eigen-
values. The eigenvalues of the matrix S are

λ1 = 1, λ2 =
(1 + f + U − 6f, )

(1 + f + U)
. (4.8)

As mentioned in the previous section, for the DW model one has (1+f+U) > 0. On the other
hand from the violation of the ghost-free condition (3.30) we have that (6f,−f −U − 1) < 0.
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Under these two conditions both eigenvalues of the matrix S are always positive and so the
matrix S is positive-definite. Here, we conclude that the quasi-static approximation is a
valid one, which means that the solution based on this approximation is an attractor one and
any solution of eqs. (3.14)–(3.15) should approach it at some point. In ref. [11], the same
procedure is carried out in the Einstein frame, with the same result.

5 Model-independent constraints

Eq. (3.21) is a second order differential equation for the density contrast δM and, in order
to solve it, we need to specify two initial conditions. The typical choice corresponds to a
standard cosmology dominated by pressureless matter at high redshifts, in which δM ∼ a.
Namely, as already mentioned, one assumes

δM (ain) = ain,
δ′M (ain)

δM (ain)
= 1, (5.1)

where ain is some arbitrary initial value of the scale factor a outside the range of redshift for
which we have observations, say at redshift z = 9.

These initial conditions, however, depend on several assumptions about the past: they
require, in fact, that matter dominates (ΩM = 1), that matter is pressureless, that any
decaying mode has been suppressed, and that gravity is Einsteinian. Broadly speaking,
there is very little direct proof for any of these assumptions. Let us consider for instance
two analytical toy models. In the first, one can imagine that there is a fraction Ωh of a
homogeneously distributed component along with matter in the past, just like in models of
Early Dark Energy (except we are not requiring this component to lead to acceleration at
the present). Then the growth of fluctuation obeys the equation

δ′′M + (2 + ξ) δ′M −
3

2
ΩMδM = 0, (5.2)

with ΩM = 1−Ωh instead of ΩM = 1. In this case, the growth exponent is no longer δM ∼ a1

but rather ∼ ap where

p =
1

4

(
−1±

√
1 + 24ΩM

)
(5.3)

Therefore, if for instance Ωh = 0.05, a value consistent with the analysis in [35] the total
growth from zCMB ≈ 1100 to z0 = 0 is smaller than the corresponding pure CDM one (we
are neglecting here the final accelerated epoch) by a factor

(zCMB)p

zCMB
≈ 0.8 (5.4)

So the existence of a small non-vanishing homogeneous component would produce a value of
σ8 which would be 0.8 times smaller than the Planck ΛCDM value.

The second analytical toy case comes from the simplest Brans-Dicke model, parametrized
by the Brans-Dicke coupling parameter ω. In such a case in fact one has during the matter era

δ′M (ain)

δM (ain)
=

2 + ω

1 + ω
(5.5)

rather than unity. If the Brans-Dicke gravity is universal and unscreened, then ω � 1 because
of local gravity constraints, and one recovers the standard initial condition. But if the scalar
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force is not universal and baryons are uncoupled or, alternatively, if the force is screened by
a chameleon-like mechanism, then δ′M/δM can deviate substantially from standard.

These two toy models show that if one wants to test modified gravity, and not also at
the same time the entire CDM paradigm, then one needs to isolate the effects of modified
gravity from those that depend on different assumptions. The simplest way to do so is to
introduce then two new parameters that correspond to the two initial values of the growth
equation (5.2) and marginalize the likelihood over them. Instead of δM (ain) we adopt the
present normalization σ0

8 as first parameter, and

α ≡ δ′M (ain)

δM (ain)
(5.6)

as second free parameter. It is worth mentioning that our approach is of course not com-
pletely model independent, in the sense that we still assume that the matter content in the
observational range is given by a pressureless perfect fluid and is conserved.

The current value of the amplitude of fluctuations σ0
8 is estimated through e.g. weak lens-

ing [36], the cosmic microwave background power spectrum [37] or cluster abundances [38].
In all these cases the estimate depends, in general, on the choice of a gravity theory. As a
consequence the current value of σ0

8 is highly model-dependent.

6 Likelihood analysis

Assuming now that σ0
8 and α can take any value for modified gravity models, it is of interest

to see how the growth rate fσ8(z) behaves, in terms of agreement with data, when we allow
those two parameters to vary. The data we used in this analysis are displayed in table 1.
Here again we fix Ω0

M = 0.3 for simplicity.

In general, the likelihood function of a given model (represented by the parameter vector
Θ) with respect to some data is given by L(Θ) = A exp[−χ2/2] with

χ2 = (D − T )TC−1(D − T ). (6.1)

Here, D and T are respectively the data and theory vectors, C is the covariance matrix and
A is a normalization constant. The vector D contains the measurements of the observable
quantity (in our case, the growth rate fσ8(z)) for each point (i.e. each redshift value) and
T represents the corresponding predictions for that observable. Note that, as is manifest in
table 1, the RDS measurements used are not independent, so we consider the full covariance
matrix.

We choose to integrate the equation for density perturbations (3.21) from the redshift
zin = 9. The results of the fits are shown in table 2, in which we display the χ2 deviation
given by ΛCDM, by the DW model and by the DW varying first only σ0

8 (Case I) and then
varying both σ0

8, α (Case II).

The Case I likelihood for σ0
8 is displayed in figure 3. For Case II, the best-fit yields a

better performance compared with ΛCDM, but the χ2 improves only marginally upon the
no-free parameters DW.

In figure 4 we show the growth rate given by the three analysis and by ΛCDM.
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Model σ0
8 α χ2/dof

ΛCDM 0.83 1 1.05

DW 0.78 1 0.66

DW: case I 0.80± 0.024 1 0.68

DW: case II 1.04+0.33
−0.27 −1.26+3.26

−0.06 0.65

Table 2. The χ2/dof for RSD measurements for ΛCDM, DW and for the best-fit cases of the DW
model for σ0

8 (Case I) and {σ0
8 , α} (Case II), respectively.
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Figure 3. The likelihood for σ0
8 , when α is fixed to 1 (Case I). The maximum lies at σ0

8 = 0.80.
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Figure 4. The growth rate fσ8(z) for ΛCDM and the three best-fit cases for the DW model. The
data points are collected in table 1.

7 Conclusion

In this work, we have extended the analysis performed in [15] regarding the predictions of
RSD given by the DW model of nonlocal gravity. We have found that the localized version
of the theory is not ruled out by the RSD data, as was the case for the previous analysis, and
actually leads to a better agreement than the standard ΛCDM cosmology. Ultimately, this
behavior is due to the violation of the ghost-free condition. In ref. [39] it has been argued
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that the existence of ghosts in non-local theories does not necessarily rule out the model
since the ghost mode is actually “frozen” due to fixed boundary conditions imposed on the
model. Interestingly, the predicted value σ0

8 = 0.78 for Ω0
M = 0.3 is in agreement to better

than 1σ with the recent estimates (σ0
8 = 0.745+0.038

−0.038) based on lensing, see e.g. [16, 17]. We
have also investigated how much the fit improves when we generalize the initial conditions
of the growth rate function, and we find that the improvement is just marginal.

We fixed Ω0
M = 0.3 because, as we repeatedly mentioned, the background of the DW

model is by construction identical to the ΛCDM one. The value of Ω0
M is then highly

constrained by cosmological probes likes CMB, SN etc. It is true, however, that at the
perturbation level the DW resembles ΛCDM only up to a redshift of order unity and therefore
the constraints coming from probes that depend on perturbations, primarily CMB, will be
different from those on standard cosmology. Because of this, an analysis that generalises
to any Ω0

M would be welcome, also to see how the degeneracy direction ΩM , σ8 compares
to the one observationally found, e.g. in KIDs. Since our main goal here was however to
note that the DW model is in agreement with current data, rather that to fully explore its
consequences, we leave this task to future work.

Our perturbation results do not agree with the analysis in [15], who integrated nu-
merically the equations in their nonlocal form. This could be due to an intrinsic difference
between the nonlocal and the localized versions of the DW model, for instance in the way
the quasi-static limit is performed. Unfortunately, we have been unable to point out the
reason for this discrepancy, notwithstanding extended testing. In any case, we believe the
localized version of the DW theory gives interesting predictions on linear perturbation level
and deserves further consideration.
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We discuss the cosmological implications of nonlocal modifications of general relativity containing
tensorial structures. Assuming the presence of standard radiation- and matter-dominated eras, we show that,
except in very particular cases, the nonlocal terms contribute a rapidly growing energy density. These
models therefore generically do not have a stable cosmological evolution.
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I. INTRODUCTION

Most extensions of general relativity are manifestly local.
A priori, however, we need not impose this restriction. Like
general relativity itself, most proposed theories of modified
gravity are nonrenormalizable, which is often a sign of new
physics at high energies. From a local high-energy theory,
nonlocalities often appear in the effective theory describing
low-energy physics. For example, nonlocalities appear
generically when massless or light degrees of freedom are
integrated out of a local fundamental theory [1–4].
Nonlocal modifications of general relativity constructed

out of inverse differential operators give rise to infrared
effects that become relevant at large temporal and spatial
scales. The consequences of these nonlocalities are far-
reaching and could provide a dynamical explanation for
dark energy. Numerous examples of this line of thinking can
be found in the literature [5–11]. Most of the existing
nonlocal gravity models are purely phenomenological and
are constructed out of nonlocal operators involving the Ricci
scalar only for reasons of simplicity [12–15]. It is still an open
question whether we should expect these particular nonlocal
structures, as opposed to something more complicated,
to arise in the low-energy limit of fundamental theories.
Tensorial extensions involving elements such as the Ricci or
the Riemann tensors should not be a priori excluded.
Adding nonlocal interactions can also improve some of

general relativity’s more undesirable properties, and these
seem to specifically require tensorial nonlocalities. For
example, in order to alleviate the ultraviolet divergences of

general relativity, one has to modify the graviton propa-
gator, which requires a tensorial term in the action [16].
Considerable recent progress has been made in ghost-free
ultraviolet nonlocal gravity [17,18]. Furthermore, nonlocal
modifications of general relativity could degravitate a
large cosmological constant, providing an appealing
solution to the problem of why a large vacuum energy
does not gravitate [8]. For the purposes of degravitation, it
is likely insufficient to rely on scalar degrees of freedom
introduced via nonlocal scalar curvature terms. Tensorial
nonlocalities, by contrast, could help implement a consis-
tent degravitation mechanism, as is the case in the frame-
work of massive gravity where nonlocalities modify the
tensor propagator [10,19].
The cosmological consequences of tensorial nonlocal-

ities involving inverse powers of the d’Alembertian
operator were considered in Refs. [20–22]. Tensor non-
localities in these models were shown to contain rapidly
growing modes, leading to instabilities in the background
expansion.1 Note, however, that the inverse d’Alembertian
operators considered in these references are certainly not
the most general possibility that can be implemented at
each order in curvature. It is possible that other well-
motivated differential operators might lead to a somewhat
different evolution that is consistent with observations.
In this work we extend the analysis of Refs. [20,21] to

general nonlocal tensorial actions at quadratic order in the
curvature invariants and investigate whether these

*h.nersisyan@thphys.uni‑heidelberg.de
†akrami@lorentz.leidenuniv.nl
‡l.amendola@thphys.uni‑heidelberg.de
§tomi.koivisto@nordita.org∥j.rubio@thphys.uni‑heidelberg.de
¶adamsol@physics.upenn.edu

1Note that these instabilities are not directly related to unitarity
violation. This can be seen by considering a nonlocal term of
the form Gαβðm2=□2ÞRαβ, which results in a massive graviton
propagator of a unitary form (cf. Ref. [9], where this model
corresponds to α ¼ 0 and is shown to be unitary.). However, as
the action contains, in addition to scalar terms, the tensorial term
Rαβðm2=□2ÞRαβ, it will be cosmologically unstable, as can be
seen from Ref. [20] and from the following.
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modifications are phenomenologically viable. This paper is
organized as follows. In Sec. II, we introduce our tensorial
nonlocal model. The cosmological consequences of this
model during radiation (RD) and matter domination (MD)
are discussed in Sec. III. Finally, the conclusions are
presented in Sec. IV.

II. THE Rαβ△
−1Rαβ MODEL

Consider the most general action quadratic in the
curvature invariants [16] for some differential operator △,

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð−Rþ Rfð△ÞRþ Rαβgð△ÞRαβ

þ Rμναβhð△ÞRμναβÞ þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð1Þ

whereMPl ≡ ð8πGÞ−1=2 is the reduced Planck mass andLm
is the matter Lagrangian minimally coupled to gravity.
Different nonlocal theories are characterized by different
choices of the operator △ and of the functions f, g and h.
In the case △ ¼ □, the above action is the most general
parity-invariant quadratic curvature action; see Ref. [23]
for derivation of the field equations. We generalize this by
allowing for more general differential operators, in par-
ticular, those with curvature dependence. Note that we
would recover the results of Refs. [16,23] for the quadratic
truncation of the theory.
It is well motivated to consider more general forms for

the operator △; in fact the main rationale for the usual
choice △ ¼ □ is just simplicity. For the nonlocally
modified theory to be consistent on suitable backgrounds,
one may need to implement a regularization [24,25]. For
example, Ref. [25] considered a curvature-dependent regu-
larization of the form ð□þ P̂Þ−1 with2

P̂≡ Pαβ
μν ¼ aRðαðμβÞ

νÞ þ bðgαβRμν þ gμνRαβÞ
þ cRðμ

ðαδ
νÞ
βÞ þ dRgαβgμν þ eRδμναβ; ð2Þ

and a, b, c, d, and e arbitrary constants. For example, in the
de Donder gauge the graviton kinetic operator3 would

correspond to a ¼ −2, b ¼ 0, c ¼ 2, d ¼ 1=3, and
e ¼ −4=3.
In the following, we also allow the differential part of the

operator to assume a more generic form, involving combi-
nations of the curvature invariants and covariant derivatives
∇ that arise in explicit loop computations. We consider
simple forms for the functions g and h,

gð△Þ≡ M̄1
2

6△
; hð△Þ≡ M̄2

2

6△
; ð3Þ

with M̄1 and M̄2 mass scales to be determined by
observations. These two properties allow us to simplify
the action (1) for a Friedman-Lemaître-Robertson-Walker
(FLRW) background

ds2 ¼ H−2dN2 − a2dx2; ð4Þ

where N ≡ ln a is the number of e-folds, a is the scale
factor, andH ≡ _a=a stands for the Hubble rate with the dot
denoting derivative with respect to cosmic time. Indeed,
by noticing that for an FLRW metric in four dimensions
the Weyl tensor

Cμναβ ≡ Rμναβ − ðgμ½αRβ�ν − gν½αRβ�μÞ þ
1

3
gμ½αgβ�νR ð5Þ

vanishes, and using the fact that△ is by construction metric
compatible, we can write

Cμναβ△
−1Cμναβ ¼ 0 ⟶

Rμναβ△
−1Rμναβ ¼ −

1

3
R△−1Rþ 2Rαβ△

−1Rαβ: ð6Þ

Substituting this relation into Eq. (1) we obtain the
simplified action

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð−Rþ RFð△ÞRþ Rαβgð△ÞRαβÞ

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð7Þ

where we have defined Fð△Þ≡ fð△Þ − M̄2

18
△−1 with M̄2

being a linear combination of M̄2
1 and M̄2

2. For cosmologi-
cal backgrounds, the Riemann tensor does not explicitly
contribute to the background evolution4; all the dynamical
information can be encoded in nonlocal terms constructed
out of Ricci scalars and Ricci tensors only.
The RFð△ÞR part of Eq. (7) has been extensively studied

the literature for several choices of Fð△Þ and △

[12,15,26–28]. In this work we concentrate on the phe-
nomenological consequences of the tensorial structure
Rαβgð△ÞRαβ. In particular, we consider the action

2Here and in the following, (μν) denotes symmetrization over
the indices and [μν] denotes the antisymmetrization.

3In an isotropic and homogeneous background, the action of
this operator on a tensor reduces to the action of the scalar
operator on each component of the tensor [22], suggesting that
the cosmological tensorial instability might be removed by
dressing the inverse d’Alembertian into its appropriate tensor
representation. Strictly speaking, this would take us beyond the
starting point action (1) [or, otherwise, we would consider the
four indices in the representation of the ð1=ΔÞμναβ implicitly
shuffling those of the Rμν]. Explicit construction of such models
can be considered as a topic of future study; in this article we
focus on the action of a general scalar (derivative) operator 1=Δ
on the (Ricci) tensor Rαβ.

4Note however that it contributes at the level of perturbations.
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S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
−Rþ M̄2

6
Rαβ△

−1Rαβ

�

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð8Þ

with

△≡m4 þ α1□þ α2□
2 þ β1Rαβ∇α∇β þ β2R□

þ γð∇αRαβÞ∇β; ð9Þ

and α1, α2, β1, β2, γ, m constant parameters. Up to the m4

term, the differential operator (9) is the most general fourth-
order operator containing at least one covariant derivative
acting on the function following it. This choice of operator
has a special physical motivation in the celebrated con-
formal anomaly [29,30], in which quantum effects break
the conformal symmetry of massless fields coupled to
gravity. In this case the trace of the energy-momentum
tensor receives a nonvanishing contribution from the
counterterms introduced by renormalization. The form of
this contribution is highly nontrivial and depends on the
particle content. In four dimensions, the effective action
induced by the conformal anomaly is given by [30]

SA ¼ −
1

8

Z
d4x

ffiffiffiffiffiffi
−g

p �
E −

2

3
□R

�
△−1

4

×

�
b0
�
E −

2

3
□R

�
− 2bC2

μναβ

�
; ð10Þ

where E≡ R2
μναβ − 4R2

μν þ R2 is the Gauss-Bonnet term,
C2
μναβ ¼ R2

μναβ − 2R2
μν þ R2=3 is the square of the Weyl

tensor, b and b0 are numbers that depend on the particle
content of the theory, and △4 is defined as

△4 ¼ □2 þ 2Rαβ∇α∇β −
2

3
R□þ 2

3
ð∇αRαβÞ∇β: ð11Þ

This operator is just a particular case of the operator (9)
with m ¼ 0, α1 ¼ 0, α2 ¼ 1, β1 ¼ 2, β2 ¼ −2=3 and
γ ¼ 2=3.5

The equations of motion associated to the nonlocal
action (8) can be obtained by following a standard
procedure for the study of nonlocal theories. We localize
the action by introducing two auxiliary fields Sαβ and Kαβ,
defined as solutions of the differential equations

△Sαβ ¼ Rαβ; □Sαβ ¼ Kαβ: ð12Þ

After variation of our nonlocal action (8) with respect to
the metric gμν and taking into account the identity
δð△−1Þ ¼ −△−1δð△Þ△−1 (see Refs. [25,31] for details)
we get the modified Einstein equations

Rαβ −
1

2
gαβR ¼ 1

M2
Pl

ðTαβ þ TNL
αβ Þ; ð13Þ

where Tαβ is the energy-momentum tensor associated to the
matter LagrangianLm, which is by construction covariantly
conserved,∇αTα

β ¼ 0. The interaction term TNL
αβ arises from

the variation of the nonlocal term Rαβ△
−1Rαβ and can be

naturally split into six pieces,

TNL
αβ ¼TNLð0Þ

αβ þTNLð1Þ
αβ þTNLð2Þ

αβ þTNLð3Þ
αβ þTNLð4Þ

αβ þTNLð5Þ
αβ ;

ð14Þ

where we have defined

1

2M4
TNLð0Þ
αβ ≡ 1

2
RμνSμνgαβ − 2Rμ

αSμβ −□Sαβ − gαβ∇μ∇νSμν þ 2∇μ∇αS
μ
β; ð15Þ

1

2α1M4
TNLð1Þ
αβ ≡ 1

2
gαβ∇σSμν∇σSμν −∇αSμν∇βSμν − 2Sμν∇ν∇αSμβ þ 2Sμα∇ν∇βSνμ ð16Þ

− 2∇μSμν∇αSβν þ 2∇νS
μ
α∇βSνμ þ

1

2
gαβSμν∇σ∇σSμν; ð17Þ

1

2α2M4
TNLð2Þ
αβ ≡ 2Kβν∇μ∇αSμν þ 2∇αSμν∇μKβν − 2∇μSμν∇αKβν − 2Sμν∇μ∇αKβν

− 2Kμν∇μ∇αSβν − 2∇αSβν∇μKμν þ 2∇μSβν∇αKμν þ 2Sβν∇μ∇αKμν

− 2∇αSμν∇βKμν þ gαβ∇σSμν∇σKμν þ
1

2
gαβSμν□Kμν þ

1

2
gαβKμν□Sμν; ð18Þ

5Note that even though the form of the operator (9) is motivated by the form of the conformal anomaly operator △4, the action (1)
considered in this paper is not of the form of the action (10).
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1

2β1M4
TNLð3Þ
αβ ≡ −2Rασ∇μSμν∇σSβν þ 2Rβσ∇μSαν∇σSμν þ 2RβσSαν∇μ∇σSμν þ 2RασSμν∇β∇σSμν

þ 1

2
Rαβ∇σSμν∇σSμν þ

1

2
RαβSμν□Sμν −

1

2
∇σ∇αðSμν∇β∇σSμνÞ − 2RασSμν∇μ∇σSβν

−
1

2
gαβ∇σ∇τðSμν∇σ∇τSμνÞ þ SμαS

μ
βð∇σ∇τRστÞ −

1

2
∇σ∇βðSμν∇α∇σSμνÞ

þ 1

2
□ðSμν∇α∇βSμνÞ − Rασ∇βSμν∇σSμν − 2ð∇μRμσÞðSνα∇σSβνÞ

− 2ð∇μRασÞðSμν∇σSβνÞ þ 2ð∇μRβσÞðSαν∇σSμνÞ þ 2ð∇μRμσÞ∇σðSανSνβÞ

− ð∇σRσαÞðSμν∇βSμνÞ þ
1

2
ð∇σRαβÞðSμν∇σSμνÞ; ð19Þ

1

2β2M4
TNLð4Þ
αβ ≡ Sνα□RSβν − RSνβ□Sαν þ Sβν∇μ∇αRSμν þ∇αRSμν∇μSβν −∇μRSμν∇αSβν

− SμνR∇μ∇αSβν − Sμν∇μ∇αRSβν −∇αRSβν∇μSμν

þ∇μRSβν∇αSμν þ RSβν∇μ∇αSμν −∇βRSμν∇αSμν þ RαβðSμν□SμνÞ

þ 1

2
gαβ∇σRSμν∇σSμν þ

1

2
gαβRSμν□Sμν þ gαβ□ðSμν□SμνÞ −∇α∇βðSμν□SμνÞ; ð20Þ

1

2γM4
TNLð5Þ
αβ ≡ 1

2
gαβ∇τðSμνRτσ∇σSμνÞ −

1

2
∇τðSμνRαβ∇τSμνÞ

þ Sμνð∇τRτα∇βSμνÞ þ Sμνð∇βRατ∇τSμνÞ

þ 1

2
∇σ∇α∇βðSμν∇σSμνÞ −

1

2
gαβ∇σ∇τ∇σðSμν∇τSμνÞ −∇σðSανSνβð∇μRμσÞÞ; ð21Þ

with M4 ≡ 1
12
M̄2M2

Pl.

III. Rαβ△
−1Rαβ COSMOLOGY

Finding exact solutions for the complicated set of equa-
tions derived in the previous section is certainly not an
easy task. Inwhat follows,we adopt the approach ofRef. [20]
and assume that the energy density contributed by nonlocal
effects is subdominant, so that we have the standard
radiation- and matter-dominated eras (TNL

αβ ≪ Tαβ). We
investigate the stability of various regions of parameter
space, defined as the presence or absence of growing modes
in the energydensity contributedby thenonlocal interactions.
We assume α1 ¼ m ¼ 0, which allows us to find certain

analytic solutions. We have carried out a preliminary
numerical study for nonvanishing values of α1 and m
and found that the inclusion of these parameters does not
significantly modify the results presented below. A full
numerical study of the parameter space is beyond the scope
of this work.

A. Radiation-dominated era

During radiation domination, the Ricci scalar is 0 and the
terms proportional to R□ and ð∇σRστÞ∇τ in Eq. (9) vanish
(the latter due to the Bianchi identity). On top of that, the
symmetry of the FLRW metric (4) allows us to reduce

the tensor Sμν in Eq. (12) to a simple diagonal form,
Sνμ ¼ diagðS1;−S2;−S2;−S2Þ, that depends on two (homo-
geneous) scalar functions S1 and S2. Taking into account
these simplifications, the set of equations (12) can be
rewritten as

α2S
ð4Þ
þ − 6α2S

ð3Þ
þ þ 3β1S00þ − 11α2S00þ þ ð60α2 − 9β1ÞS0þ

þ 8ðβ1 − 4α2ÞSþ ¼ 4a4

Ω0
R
; ð22Þ

α2Sð4Þ− − 6α2Sð3Þ− þ ð3β1 þ 5α2ÞS00− þ ð12α2 − 9β1ÞS0− ¼ 0;

ð23Þ
where 0≡ d=dN denotes derivatives with respect to the
number of e-folds N, Ω0

R is the current value of the critical
radiation density, and we have defined two dimensionless
variables

Sþ ≡ ðS1 þ S2ÞH2
0; S− ≡ ðS1 − 3S2ÞH2

0; ð24Þ
in terms of the Hubble parameter today, H2

0 ¼ H2a4=Ω0
R.

Note that for α2 ¼ 0, the fourth-order differential equa-
tions (22) and (23) reduce to second-order differential
equations admitting the simple solution
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Sþ ¼ a
3
2

�
c1 sin

�
1

2

ffiffiffi
5

3

r
ln a

�
þ c2 cos

�
1

2

ffiffiffi
5

3

r
ln a

��

þ a4

5β1Ω0
R
; ð25Þ

S− ¼ 1

3
~c1a3 þ ~c2; ð26Þ

where c1, c2, ~c1, and ~c2 are integration constants to be fixed
by initial conditions. In the general case α2 ≠ 0, the
solution of Eqs. (22) and (23) is

Sþ ¼ a3=2
�
c1a−q− þ c2aq− þ c3a−qþ þ c4aqþ

−
a5=2

Ω0
Rð24α2 − 5β1Þ

�
; ð27Þ

S− ¼ 2a3=2−y=2

3 − y
~c1 þ

2a3=2þy=2

3þ y
~c2 þ

1

3
~c3a3 þ ~c4; ð28Þ

where

q∓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49α2 − 6β1 ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið44α2 − 9β1Þð12α2 − β1Þ
pq
2

ffiffiffiffiffi
α2

p ;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25α2 − 12β1

p
ffiffiffiffiffi
α2

p ; ð29Þ

and ci and ~ci (i ¼ 1;…; 4) are integration constants. Note
that in both cases the leading contributions in Sþ, S− at
large values of the scale factor a take the power-law forms

Sþ ≈ ~AaA; S− ≈ ~BaB; ð30Þ
with A and B being positive constants related only to the
model parameters fα2; β1g, and ~A and ~B coefficients keeping
track of the integration constants ci and ~ci (i ¼ 1;…; 4),
i.e., keeping track of the initial conditions. Inserting
these asymptotic expressions into Eq. (14) and
comparing the result with the standard form Tμ

ν¼
diagðρNL;−pNL;−pNL;−pNLÞ for a perfect fluid, we can
derive approximate expressions at the lowest order inΩ0

R for
the nonlocal energy density ρNL and the nonlocal equation
of state wNL ≡ pNL=ρNL during radiation domination,

ρNL ≈ −3M4Ω0
Rð ~AðAþ 4ÞaA−4 þ ~BðBþ 1ÞaB−4Þ; ð31Þ

wNL ≈−
1

3

ðA−1Þ ~AðAþ4ÞaA−4þ ~BðB2−1ÞaB−4
~AðAþ4ÞaA−4þ ~BðBþ1ÞaB−4 : ð32Þ

The behavior of wNL at large values of a depends on the
relation between A and B, i.e., on the precise choice of
the model parameters fα2; β1g. For B < A, the equation of
state asymptotically approaches wNL ¼ − 1

3
ðA − 1Þ, while

forB > A it instead evolves towardswNL¼−1
3
ðB−1Þ. Note

that, contrary to the nonlocal energy density ρNL, the asym-
ptotic values of wNL do not depend on the initial conditions.

For α2 ¼ 0 we have A ¼ 4 and B ¼ 3 [cf. Eqs. (25) and
(26)]. These asymptotic values translate into a constant
nonlocal energy density ρNL and a cosmological-
constantlike equation of state wNL ¼ −1. Therefore,
nonlocal contributions with α2 ¼ 0 can in principle lead
to a viable cosmology, as long as the radiation energy density
is dominant over ρNL for the entire radiation-dominated era.6

The situation changes completely in the α2 ≠ 0 case.
Demanding the absence of a growing mode in Eq. (31)
imposes A, B ≤ 4. By considering Eqs. (27) and (29) with
the restriction B ≤ 4, we get the constraints

α2 > 0; β1 ∈
�
0;
25

12
α2

�
: ð33Þ

Unfortunately, these two conditions are never satisfied for
A ≤ 4. Indeed, a simple inspection of Eq. (27) shows that
in order to keep A ≤ 4 we must have qþ þ 3=2 ≤ 4 and
q−þ3=2≤4, or equivalently β1 ≤ 24=5α2 and β1 ≥ 24=5α2,
in clear contradiction with each other and with (33).
The growing modes become rapidly dominant unless the
prefactor of the nonlocal contribution in the action is
largely suppressed.7

FIG. 1. Functional behavior of the nonlocal energy density ρNL
versus the number of e-folds N during radiation domination
for an operator △ ¼ α1□þm4 and different values of m. All
quantities are expressed in units with H0 ¼ 1. Note that the
dimensionful parameter α1 is not an independent parameter:
together with M̄, it fixes the amplitude of nonlocal effects and
does not modify the dynamics. In this plot, we set M̄ ¼ H0 and
α1 ¼ H2

0. The late-time evolution of the nonlocal energy density
develops a damped oscillatory pattern in the vicinity of N ¼ 0
when our radiation-domination ansatz for the scale factor a is no
longer applicable. The average of this quantity over an oscillation
period scales as a−8, i.e., faster than the radiation fluid (ρR ∼ a−4).
A similar damping during radiation domination would require
values of m comparable to the Hubble rate during that era.

6Note that this conclusion holds only for α1 ¼ 0. As shown in
Ref. [20], the α1 ≠ 0 scenario contains growing modes and leads
to an unstable cosmology.

7Note that instabilities associated with tensorial structures
appear also in ultraviolet extensions of general relativity. In the
case of Starobinsky inflation, the problem of instabilities coming
from the tensorial components is addressed by introducing a
hierarchy between energy scales of the R2 and RμνRμν terms [32].
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This conclusion does not seem to be modified for an
operator △ ¼ α1□þm4 with values of m and α1 of order
H0 and H2

0, respectively. As shown in Fig. 1, the evolution
of the nonlocal energy density in this case develops a
damped oscillatory pattern in the vicinity of N ¼ 0, when
our radiation-domination ansatz for the scale factor a
is no longer applicable. A similar damping during radiation
domination would require values of m comparable to the
Hubble rate at that era.

B. Matter-dominated era

Can the instabilities generated during radiation domina-
tion be suppressed during the subsequent evolution of the
Universe? To answer this question we study the behavior
of a subdominant nonlocal tensorial contribution during
matter domination (ρM ≫ ρNL). Taking into account the
definitions in (24) (with H2

0 ¼ H2a3=Ω0
M), we can write

the differential equations in (12) as

4α2S
ð4Þ
þ −12α2S

ð3Þ
þ þ6β1S00þ−73α2S00þ−12β2S00þ

−3S0þð9β1−6γ−41α2þ6β2Þ

þ16Sþð3β1þ7α2þ6β2Þ¼
12a3

Ω0
M

; ð34Þ

4

3
α2Sð4Þ− − 4α2Sð3Þ− − ð3α2 − 2β1 þ 4β2ÞS00−

− ð9β1 − 6γ − 9α2 þ 6β2ÞS0− ¼ −
4a3

Ω0
M
; ð35Þ

with Ω0
M being the critical matter density today. As in the

case of radiation domination, if we choose α2 ¼ 0, then
Eqs. (34) and (35) are reduced from fourth-order to second-
order differential equations. These equations can be solved
analytically,

Sþ ¼ 4a3

Ω0
Mð7β1 − 22β2 þ 18γÞ þ c1ap− þ c2apþ ; ð36Þ

S− ¼ 4a3

9Ω0
Mðβ1 þ 6β2 − 2γÞ þ ~c1

2ðβ1 − 2β2Þ
3ð3β1 þ 2β2 − 2γÞa

~y þ ~c2;

ð37Þ

with

p� ¼ 9β1 þ 6β2 − 6γ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−47β21 þ 108β1ðβ2 − γÞ þ 548β22 − 72β2γ þ 36γ2

p
4ðβ1 − 2β2Þ

; ~y ¼ 3ð3β1 þ 2β2 − 2γÞ
2ðβ1 − 2β2Þ

: ð38Þ

The detailed solution of Eqs. (34) and (35) for the α2 ≠ 0
case is cumbersome and largely irrelevant for the following
discussion. On general grounds, the leading contributions
to Sþ and S− at large values of the scale factor a can be
parametrized as8

FIG. 2. Functional behavior of the nonlocal energy density ρNL
versus the number of e-folds N during matter domination for an
operator△ ¼ α1□þm4 and different values of m. All quantities
are expressed in units with H0 ¼ 1. Note that the dimensionful
parameter α1 is not an independent parameter. Together with M̄ in
the action, it fixes the amplitude of nonlocal effects and does not
modify the dynamics. In this plot we set M̄ ¼ H0 and α1 ¼ H2

0.
The late-time evolution of the nonlocal energy density develops a
damped oscillatory pattern. The average of this quantity over an
oscillation period scales as a−6, i.e., faster than the matter fluid
(ρM ∼ a−3). Note that whenm is of the order of the Hubble rate at
matter-radiation equality, this could alleviate the previous growth
during radiation domination.

8Our results cover the tensorial action induced by the con-
formal anomaly and the extension of the Maggiore-Mancarella
model considered in Ref. [21]. For the parameters associated
to the conformal anomaly (α1 ¼ 0, α2 ¼ 1, β1 ¼ 2, β2 ¼ −2=3,
γ ¼ 2=3), one obtains

Sþ ¼ a
3
4

�
c1a−

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
133−4

ffiffiffiffiffiffi
385

pp
þ c2a

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
133−4

ffiffiffiffiffiffi
385

pp
þ c3a−

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
133þ4

ffiffiffiffiffiffi
385

pp

þ c4a
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
133þ4

ffiffiffiffiffiffi
385

pp
−
2a9=4

9Ω0
M

�
;

S− ¼ 2 ~c1a
1
2 þ 2

3
~c2a

3
2 þ ~c3aþ ~c4 −

2a3

15Ω0
M
;

while for the case △ ∝ □2 (α1 ¼ β1 ¼ β2 ¼ γ ¼ 0, α2 ≠ 0)
considered in Ref. [21] we find

Sþ ¼ a−
1
4
ð3þ ffiffiffiffiffiffi

137
p Þ

�
c2a

ffiffiffiffi
137

p
2 þ c3a3 þ c4a

1
2
ð6þ ffiffiffiffiffiffi

137
p Þ

þ c1 −
3a

1
4
ð15þ ffiffiffiffiffiffi

137
p Þ

44Ω0
M

�
;

S− ¼ −
2

3
~c1a−

3
2 þ 2

3
~c2a

3
2 þ ~c3

3
a3 þ ~c4 −

36 ln a − 44

243Ω0
M

a3:
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Sþ ≈ ~CaC; S− ≈ ~DaD; ð39Þ

with the positive constants C and D encoding information
about the model parameters, and the prefactors ~C and ~D
tracing the initial conditions. Note that the a3 dependence
of the source term in Eqs. (34) and (35) forces C and D to
be asymptotically larger or equal to 3. Using Eq. (14), we
can derive the nonlocal energy density

ρNL ≈
M4ðΩ0

MÞ2
32

ð ~Ea2C−6 þ ~Fa2D−6Þ; ð40Þ

with ~E and ~F being some constants built from the free
parameters of the theory and the initial conditions. Since
the exponents C and D satisfy always the condition C,
D ≥ 3, we have either a constant or growing nonlocal
energy density ρNL. Therefore, the instabilities arising
during radiation domination cannot be suppressed in the
matter-dominated era. Note that this result also holds for
the operator△ ¼ α1□þm4 with nonvanishing values ofm
and α1, with numerical results presented in Fig. 2.
For the sake of completeness, we present in Table I the

asymptotic values of the nonlocal equation of state wNL
when only one of the parameters in the operator (9) is
different from 0. The values associated to the conformal
anomaly operator (11) are also displayed. This helps us to
see in a qualitative way the contribution coming from the
different operators in (9) when the condition TNL

αβ ≪ Tαβ is
satisfied.9

IV. CONCLUSIONS

In this paper, we have explored the stability of a general
class of tensorial nonlocal extensions of general relativity.
Our result is a direct answer to Ref. [20], where the authors
conjectured that the instabilities arising in the tensorial
Rαβ□

−1Rαβ model might be cured by a generalization of the
d’Alembertian operator to α1□þm4 or to the conformal
anomaly operator △4. We have found that the growing
mode and the associated instabilities of tensorial nonlocal
models cannot be generically avoided by introducing the
most general nonlocal operator at second order in covariant
derivatives.
This conclusion holds also for a restricted version of the

operator, namely α1□þm4, if the scale m is chosen to
be of the order of the Hubble rate today. One could
alternatively consider scenarios in which m is comparable
to the Hubble rate at matter-radiation equality. In those
cases, an oscillatory pattern arises that could be compatible
with our requirement that the nonlocal contribution to the
cosmic expansion be subdominant to the matter contribu-
tion. This might give rise to phenomenologically interest-
ing features in the form of an oscillating early dark energy.
In the presence of growing modes, terms at higher and

higher order in curvature are expected to become relevant,
compromising the validity of the effective action (8).
Although one cannot exclude the possibility of some
cancellation mechanism among the various terms, a non-
perturbative study within the effective nonlocal theory is
quite difficult. We believe that the instabilities associated to
tensorial nonlocalities should instead be addressed in the
framework of local field theories by considering mecha-
nisms able to generate well-behaved nonlocal actions in the
infrared.
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TABLE I. Characteristic values of the nonlocal equation of
state wNL during RD and MD when only one of the parameters in
the nonlocal operator (9) is different from 0. Note that the
operators associated to β2 and γ vanish exactly during radiation
domination. The values associated to the conformal anomaly
operator (11) are also presented.

Model wNLðRDÞ wNLðMDÞ
α1 −1.25 −1.45
α2 −1.79 −2.45
β1 −1 −2
β2 0 −1
γ 0 −1
m 5=3 1
△4 −1.55 −1.92

9Note that this can always be achieved by fine-tuning the mass
scale M̄ in Eq. (8).
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We consider a nonlocal gravity model motivated by nonperturbative Quantum Gravity studies.
This model, if correct, suggests the existence of strong IR relevant effects which can lead to an
interesting late time cosmology. We implement the IR modification directly in the effective action.
We show that, upon some assumptions on initial conditions, this model describes an observationally
viable background cosmology being also consistent with local gravity tests.
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I. INTRODUCTION

After the discovery [1–8] of the late time acceleration of the universe, many suggestions how to explain it have been
advanced. As is well-known, the most elegant and simple solution is to include the so-called cosmological constant
Λ into the Einstein-Hilbert action. Although this model works extremely well at the classical level, it faces dramatic
challenges once we make a step towards quantum physics. Indeed, even in the quasi-classical approximation where
gravity is still classical and we quantize just the matter sector, the cosmological constant receives quantum radiative
corrections of the order of m4 for each massive species, which give a big contribution to the tiny value of Λ needed
for an appropriate cosmic evolution. In other words, Λ is not a technically natural parameter.

Of course, if the theory were renormalizable, one could adjust the value of Λ to fit the observations and then
not worry anymore about the questions of technical naturalness. Unfortunately, the Einstein-Hilbert theory with
a cosmological constant is not perturbatively renormalizable, and at each level of loop corrections it will receive
uncompensated quantum contributions which will destroy the predictability of the model. In this respect, quantum
gravity could solve this problem by providing a technically natural way of cosmological constant generation. Again, in
the context of quantum gravity there could be strong IR-relevant effects which can lead to an interesting modification
of the standard cosmological constant scenario and provide a dynamical dark energy candidate [9]. In this direction,
in Ref. [10, 11], the authors have argued that non-perturbative lattice quantum gravity calculations can lead to a
situation where the gravitational interactions slowly increase with distance. This behavior is encoded in the running of
the gravitational constant G. The running of G is calculated in momentum space and in order to write a corresponding
running in coordinate space one has to specify what is the relevant cutoff.

The choice of the relevant cutoff is not unique and in principle if we want to have a general covariance at the level of
the effective action, we can choose as a cutoff an arbitrary covariant function which scales as k2. In literature, common
choices have been either k2 ∼ R (see e.g. Refs. [12, 13]) or k2 ∼ �. In this paper we explore the choice k2 ∼ �,
a choice that renders the effective action nonlocal. Another important point is the inclusion of a non-perturbative
scale ζ, the scaling of which can be approximated with an inverse Hubble function H−1. The appearance of this scale
makes the model to be relevant for IR-dynamics of our universe and can lead to an interesting phenomenology for
the late-time universe. Previously, in Ref. [10, 11], the authors have studied the late time cosmology of this model
by replacing Newton’s constant with a running one at the level of Friedman equations. In this work, we study this
model in a more self-consistent way, which is to get the equations of motions (EoMs) by varying an effective action.
In this case, one has to vary the d’ Alembert operator, which gives rise to additional terms in Friedman’s equations.
For a particular choice of a critical exponent ν this model predicts results for the late time cosmology very similar to
those of Maggiore and Mancarella’s (RR) nonlocal gravity model [14].

Throughout the paper, we work in flat space and natural unites, i.e. units such that c = ~ = 1. Furthermore, we
will denote with a “dot” derivative with respect to the cosmic time and with a “prime” derivative with respect to the
number of e-foldings.
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II. THE MODEL

The structure of the model derives from the studies of non-perturbative lattice quantum gravity. Ref. [10, 11, 15] have
argued that the RG improvement of the gravitational constant G leads to the following effective action in coordinate
space1

1

16πG

ˆ

d4x
√−g

(
1− cζ(

1

ζ2� )1/2ν +O((ζ2�)−1/ν)

)
R, (1)

where the relevant cutoff is provided in the form k2 ∼ �. In the action (1) the constant ν stands for a critical
exponent, which is defined as

ν = −(β′(Gc))
−1, (2)

with the β function calculated in the vicinity of the UV non-Gaussian fixed point (NGF) Gc. The critical exponent
ν in general is a positive rational number and highly depends on the scheme of calculation. In realistic scenarios the
value of ν−1 belongs to the interval ν−1 ∈ [1, 4] [17–19]. Another parameter to be specified in the action (1) is the
genuinely non-perturbative scale ζ. Indeed, ζ is defined as

ζ−1 ≈ Λcut exp(−
ˆ G

β(G′)−1dG′) ∼G−→Gc Λcut|G−Gc|ν , (3)

where Λcut is the UV cutoff of the theory2. To determine the real physical value of ζ we need to have some physical
input since the underlying theory cannot fix it. An important property of ζ defined in Eq. (3) is that when we move
away from the UV fixed point along a RG trajectory, and in the case of positive critical exponents ν, we have that
ζ−1 grows. This behavior tells us that the corresponding QG corrections to the Einstein-Hilbert action, which are
proportional to ζ−1, might enter into the strongly coupled phase and become dominant at late times when we run
towards IR scales along RG trajectories. Now, in order to associate the scale of ζ with a scale of some physical
quantity we will follow the discussion in [11] where it has been argued that at the late-time cosmological setup it is
natural to associate this non-perturbative scale with either the inverse of the average curvature 〈R〉 or with the inverse
of the Hubble function, which determines the macroscopic size of the universe. As in previous works [10, 11], here
we will select the second option, so that ζ ≈ H−10 , where H0 is the current value of the Hubble parameter. The only
parameter left in the action (1) is then cζ . The value of cζ can be estimated in a lattice quantum gravity theory and,
in contrast to ν, which has a universal value, it depends on the choice of the regularization scheme and in general is
estimated to be a order one parameter. So the only free parameter of the model at hand is the non-perturbative scale
ζ, which has to be fixed in such a way to provide a valid cosmology.

Depending on the value of ν we can have either rational or integer powers of (1/�) operator in the action. In
general it is not trivial how to deal with a rational power of a differential operator (see e.g. Ref. [20, 21]). In this
work, however, we will study only the cases when the power of the � operator is an integer number, leaving the
treatment of the general rational power of the d’Alembert operator to future works. In the range ν−1 ∈ [1, 4], an
integer value for 1/(2ν) can be realized either when ν−1 = 2 or ν−1 = 4. A model similar to the case with ν−1 = 2
has been recently studied in Ref. [22]. So, in this work we will mainly concentrate on the case when ν−1 = 4. For
this choice of ν the effective action (1) reduces to

S =
1

16πG

ˆ

d4x
√−g

(
1− M4

6

1

�2

)
R+

ˆ

d4x
√−gLm, (4)

where we have also added the general matter Lagrangian. As already mentioned, the cosmological implementation of
this type of models has already been studied in [10, 11]. In these works, for simplicity, the running of the gravitational
constant was directly embedded into the right hand side of the Friedman equations. Below, we will show that doing
so one loses terms in equations of motion which can have a significant impact on the cosmological evolution. Another
important issue which arises when we directly implement the running of the gravitational constant into the Friedman
equations, is related to a violation of the covariant conservation of the energy-momentum tensor. Indeed, if the energy-
momentum tensor of the matter sector is derived from a covariant action, it will be automatically covariantly conserved.

1 The correct effective action should also contain the running cosmological constant term Λk. As is argued in Refs. [10, 16] in pure lattice
gravity the bare cosmological constant Λ is scaled out and does not run. So, in this case Λ is a constant which has to be properly fixed.
Similarly to studies in Ref. [10], in this work will assume that the contribution from Λ is sub-dominant with respect to the one induced
by the running of G, so that we can effectively approximate Λ ≈ 0.

2 For the case of lattice quantum gravity the UV cutoff corresponds to the inverse lattice spacing, i.e. Λcut ∼ l−1
p .
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On the other hand, from the Bianchi identities, we know that the Einstein tensor is also covariantly conserved. So, if
in the Friedman equations we change the gravitational constant with a running one obtained through an inverse-box
structure, we will not have anymore a covariant conservation on the matter side of the equations, as the covariant
derivative ∇µ and the inverse d’Alembert operator �−1 do not commute in general,

[
∇µ,�−1

]
6= 0.

III. THE �−2R MODEL

To study the cosmological evolution of this model we need to derive the Friedman equations. In Appendix (A) we have
derived the EoMs for a more general model. Corresponding EoMs for the �−2R model can be deduced by inserting
p = 0 and n = 1 into Eqs. (A7-A8), which will give us

Gαβ =
M4

6

{
LRαβ −∇α∇βL− gαβQ−

1

2
gαβ [S +RL]+

+
1

2
gαβg

σλ[∇σQ∇λS +∇σU∇λL]+

−∇αU∇βL−∇βQ∇αS −
1

2
gαβUQ

}
+ 8πGTαβ ,

(5)

with the four auxiliary fields satisfying the following set of equations

�U = −R, �Q = −1,

�S = −U, �L = −Q. (6)

In Eq. (5), Gαβ stands for the Einstein tensor and Tαβ is a perfect fluid energy-momentum tensor defined as T βα =
diag(−ρ, p, p, p), where ρ and p are correspondingly the energy density and pressure of the fluid.

In the case of the �−2R model the auxiliary fields Q and L have a simple meaning, namely, they are the Lagrange
multipliers of the constraint equations. Indeed, let us write the gravitational part of our nonlocal action (4) in a local
way by introducing the constraint equations right at the level of the action. Then we will have for the gravitational
part

S =
1

16πG

ˆ

d4x
√−g

[
R− M4

6
S + α1(�U +R) + α2(�S + U)

]
, (7)

where α1 and α2 are the Lagrange multipliers. Now by taking the variation of the action (7) with respect to the
Lagrange multipliers and the auxiliary fields U and S, we get the following set of equations

�U = −R, �α1 = −α2,

�S = −U, �α2 =
M4

6
. (8)

From Eq. (8) we see that α1 and α2, up to the multiplicative constant M4/6, correspond to L and Q, respectively.
Defining the dimensionless fields

V = H2
0S W = H2

0Q Z = H4
0L, (9)

and assuming a flat FLRW metric, the (00) component of Eq. (5) becomes

h2 =
γ

4

{
V +WU + h2[6Z + 6Z ′ − U ′Z ′ − V ′W ′]

}
+ Ω

(0)
R e−4N + Ω

(0)
M e−3N , (10)

where γ = (1/9)(M/H0)4 and h = H/H0.
In Eq. (10), Ω

(0)
R and Ω

(0)
M are the current values of radiation and matter critical densities in the universe, respectively.

By using the identity

Ω = Ω
(0)
R e−4N + Ω

(0)
M e−3N = h2(ΩR + ΩM), (11)
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from Eq. (10) we finally get for h2

h2 =
(γ/4)(V +WU)

1− ΩM − ΩR − (γ/2)[3Z + 3Z ′ − (1/2)(U ′Z ′ + V ′W ′)]
. (12)

The set of differential equations (6) for the auxiliary fields, assuming homogeneity, are now written as

U ′′ = −(3 + ξ)U ′ + 6(2 + ξ), (13)

V ′′ = −(3 + ξ)V ′ +
U

h2
, (14)

W ′′ = −(3 + ξ)W ′ +
1

h2
, (15)

Z ′′ = −(3 + ξ)Z ′ +
W

h2
. (16)

where ξ, defined as ξ = h′/h, has the following structure:

ξ =
1

2(1− (3/2)γZ)

[
Ω′

h2
+

3

2
γ

(
W

h2
− 4Z ′ + U ′Z ′ + V ′W ′

)]
. (17)

IV. NUMERICAL SOLUTIONS

Before moving to the full numerical analysis of the system, here we can briefly comment upon the stability of the
system during matter and radiation domination periods. In this case, ξ can be well approximated with a constant
in each era: ξ0 = {−2,−3/2} in matter and radiation-dominated periods, respectively. First, we can check the
consistency of the homogenous solutions of Eqs. (13-16). The homogenous solutions are the followings

U = u0 + u1e
−(3+ξ0)N , (18)

V̄ = v̄1e
−(3−ξ0)N + v̄2e

2ξ0N , (19)

W̄ = w̄1e
−(3−ξ0)N + w̄2e

2ξ0N , (20)

Z̄ = z̄1e
−(3−ξ0)N + z̄2e

2ξ0N , (21)

where V̄ = h2V , W̄ = h2W and Z̄ = h2Z. From the equations above we see that when ξ0 is changing in the interval
ξ0 ∈ [−2, 0] we have that the solutions either remain constant or decrease exponentially. This insures that the solutions
are stable during matter and radiation-dominated periods.

To solve Eqs. (13-16) numerically, with the constrains (12) and (17), we first fix the present values

Ω
(0)
M = 0.3 Ω

(0)
R = 4.15× 10−5h−2 (22)

to the standard values. Although the constraint on ΩM has been obtained assuming standard ΛCDM and therefore
in principle should be estimated anew with the present model, we will see the background evolution turns out not to
be very different from the standard one, so our choice may be considered a reasonable approximation. For later use,
we also need to define the effective equation of state weff and the critical dark energy density ΩDE, respectively, as

weff = −1− 2

3
ξ, (23)

ΩDE =
γ

4

[
1

h2
(V +WU) + 6Z + 6Z ′ − U ′Z ′ − V ′W ′

]
. (24)

Using the definition of ΩDE we can rewrite Eq. (10) as

ΩDE = 1− ΩM − ΩR. (25)

Furthermore, from the continuity equation of the dark energy critical density ΩDE

Ω′DE + (3 + 3wDE + 2ξ)ΩDE = 0, (26)
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γ 0.702 0.222 0.030 0.015

w0
DE −1.752 −1.268 −1.099 −1.086

wa
DE 0.843 −0.170 −0.077 −0.061

Table I. Today’s values of wDE and its first derivative w.r.t. the scale factor a, for different values of γ corresponding to different
initial conditions on the field W .

we find for the dark energy equation of state parameter wDE

wDE = −1− 2

3
ξ − 1

3

Ω′DE
ΩDE

= −3 + ΩR + 2ξ

3ΩDE
. (27)

Finally, making use of Eq. (17), we can write wDE explicitly in terms of the auxiliary fields

wDE =− 3 + ΩR

3ΩDE
− 2

2− 3γZ

(
1− 3 + ΩR

3ΩDE
+ 2

W

V + UW

)
+

−
(

3γ

2− 3γZ

)
1

3ΩDE

[
U ′Z ′ + V ′W ′ − 4Z ′ +

W

V + UW

(
U ′Z ′ + V ′W ′ − 6Z − 6Z ′

)]
.

(28)

The value of the only dimensionless free parameter of our model, γ, should be fixed in a such way as to satisfy the
condition h(0) = 1. This produces, for instance, the values γ = {0.702, 0.222, 0.030, 0.015} for the following initial
conditions onW ,W0 = {0, 0.5, 5, 10}, respectively. Now, to integrate Eqs. (13-16) we need to specify initial conditions
on our auxiliary fields at the onset of integration deep inside the radiation-dominated period. We choose Nin = −14
as the initial time. As is also argued in Ref. [23], the choice of initial conditions for the auxiliary fields in a deep
radiation-dominated period are per se arbitrary. Their value highly depends on the physical content of the Universe
at the epoch we start evolving the differential equations (13-16). For simplicity, we will assume that all the auxiliary
fields in our model, apart fromW , have vanishing initial conditions. The reason behind this particular choice of initial
conditions will become clear below.

Performing the integration of Eqs. (13-16), we find the numerical results as a function of N = log a plotted in
Figures (1-4) for four different choices of initial conditions for W . As we can see from Figures (1-4), the evolution of
all physical quantities as well as auxiliary fields does not show singularities. Moreover, from the left panel of Figure 3
we observe that the present model predicts a well defined radiation-domination period (weff = 1/3), followed by a
matter dominated period (weff = 0), which finally ends in a dark energy-dominated period. The transition between
the matter epoch and dark energy epoch, (N ≈ −0.4), is very well constrained by the current observational data [24],
so one can already put some restrictions on the model. In this respect, as one can notice from Figure 3, in our case
when the initial value of W (W0) is set to be vanishing, the evolution of weff and wDE exhibits a strongly phantom
behavior. The dark energy equation of state parameter wDE increases sharply from wDE ≈ −2.1 to wDE ≈ −1.2.
From the observational side, constraints on wDE are often obtained parametrizing it as a linear function of the scale
factor a, i.e. wDE = w0

DE + (1− a)wa
DE. Comparing the values of w0

DE and wa
DE for our model from Table I with the

corresponding observational constraints (see e.g. Ref. [25], Table 7) we immediately see that our solution for vanishing
W0 is in strong tension with the constraints and is probably already ruled out3.

As mentioned, we chose vanishing initial conditions for all auxiliary fields expect for W , which means that homoge-
neous solutions for those auxiliary fields are set to be zero deep in the radiation domination period. By relaxing these
assumptions we can see how the overall quantitative evolution is affected. This kind of analysis of initial conditions
has been performed in Ref. [23] in the case of the RR model. Here we apply the same analysis but only state the main
outcome. We find that the behavior of the present model during the dark energy-dominated period highly depends
on the choice of initial conditions for the auxiliary field W . Indeed, again from Figure 3, we observe that even a small
non-vanishing value of W0 can efficiently soften the strongly phantom behavior of the dark energy equation of state
parameter wDE, making it compatible with current observational constraints. Indeed, in contrast to the case of the
field U satisfying the equation �U = −R, the field W satisfies the equation H2

0�W = −1. Therefore the arguments
in the literature [14] for choosing vanishing initial conditions for U , related to the fact that R is also vanishing during
the radiation-dominated period, do not hold anymore. In principle W can have any initial value depending on its

3 Here is important to mention that these observational constraints are obtained by combining the supernovae (SNe) and Cosmic
Microwave Background (CMB) data. The constraints coming from CMB data can not be directly applied to our nonlocal model, both
because they are based on ΛCDM and because the linear parametrization of wDE is not a good approximation to the evolution of the
dark energy in the past. Lifting the CMB constraints the error bars on w0

DE and wa
DE, relax considerably, but even in the most realistic

case the nonlocal model with vanishing W0 will be still highly disfavored.
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early history. The dependence of the evolution of the field W on initial conditions is presented in the left panel of
Figure 2.

The high sensitivity of wDE to the non-vanishing choice of initial conditions forW can be also inferred from Eq. (28).
In the expression for wDE we see that there are several terms which are directly proportional to W . Therefore they
will affect the value of wDE only in the cases when W is non-vanishing. On the other hand, from Figure 2, we see that
W remains very close to its initial value W0 until the matter-dark energy transition point (N ≈ −0.4). Therefore,
when W0 = 0, W is also vanishing, so the terms in Eq. (28) proportional to W will never be activated and thus will
not contribute to the value of wDE.
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Figure 1. Evolution of auxiliary fields U , V and Z as a function of N = ln a, for different values of W0 and corresponding γ.
Initial conditions: U0 = 0, V0 = 0, Z0 = 0, U ′0 = 0, V ′0 = 0, W ′0 = 0, Z′0 = 0 .
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Figure 2. Evolution of the auxiliary field W , and its first derivative W ′ as a function of N = ln a, for different values of W0

and corresponding γ. Initial conditions: U0 = 0, V0 = 0, Z0 = 0, U ′0 = 0, V ′0 = 0, W ′0 = 0, Z′0 = 0 .
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Figure 3. Left-hand panel: Evolution of weff as a function of N = ln a, for different values of W0 and corresponding γ. Initial
conditions: U0 = 0, V0 = 0, Z0 = 0, U ′0 = 0, V ′0 = 0, W ′0 = 0, Z′0 = 0. Right-hand panel: Evolution of wDE as a function of
N = ln a, for different values of W0 and the corresponding γ. Initial conditions: U0 = 0, V0 = 0, Z0 = 0, U ′0 = 0, V ′0 = 0,
W ′0 = 0, Z′0 = 0.
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Figure 4. Left panel: Evolution of ΩM, ΩR, ΩDE as a function of N = ln a, for different values of W0 and corresponding γ.
Initial conditions: U0 = 0, V0 = 0, Z0 = 0, U ′0 = 0, V ′0 = 0, W ′0 = 0, Z′0 = 0. Right panel: Evolution of Hubble function h .

V. RELATION BETWEEN R�−2R AND �−2R MODELS

As one can see from Figures (1-4), the numerical evolution of the auxiliary fields as well as the behavior of weff and
ΩM,R,DE are very similar to those of the RR nonlocal model presented in Refs. [23, 26]. In order to understand why
two, at first glance, completely different models exhibit almost the same cosmological evolution let us first compare
them at the level of the actions. Here we just concentrate on the gravitational sectors:

S =
1

16πG

ˆ

d4x
√−g

[
R− M4

6

1

�2
R

]
, (29)

SRR =
1

16πG

ˆ

d4x
√−g

[
R− m2

6
R

1

�2
R

]
. (30)

By comparing the actions (29) and (30) we notice that when for these two models to predict the same behavior at
late times one needs to have for that period
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m2R = βM4, (31)

where β is some constant parameter of the proportionality. The relation (31) in the language of the dimensionless
parameter γ can be written as

β−1γRR = Bγ, (32)

with B ≡ H2
0/R. The value of the γRR and γ should be fixed in a way to reproduce the correct dark energy density

nowadays. For the RR nonlocal gravity model the parameter γRR is estimated to be γRR ' 0.0089 [14]. Moreover,

W0 =5 Γ =0.030
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0.01

0.02

0.03

0.04
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0.07

N

B
Γ

Figure 5. The evolution of Bγ as a function of e-foldings N = log a for different values of γ.

from Figure 5 we see that once we fix the value of γ to reproduce the exact matter content in the universe, due to the
running of B the quantity Bγ grows initially and then after some time (N ≈ 5) saturates and stays approximately
constant. This means that the two theories then should become equivalent, i.e. the condition (32) holds. This can
also be recognized from the right panel of Figure 3, where we display the evolution of the dark energy equation of
state. One can see that at early times the two models behave very differently and then around N ≈ 1.5 approach
each other.

VI. LOCAL GRAVITY CONSTRAINTS

Another important point to be discussed is whether the constraints on the gravitational constant G in the solar
system are satisfied. Indeed, as it was already discussed in Ref. [11], a vacuum-polarization-driven running of G can
lead to serious difficulties with experimental constraints on the time variability of G. Solar system measurements put
strong constraints on the time variation of G [27] |Ġ/G| < 10−12yr−1.

It is important to mention that the above mentioned constraints on the time variation of the effective gravitational
constant have been derived for the Earth-Moon system. In this respect it is important to know whether we can use
the time variation of G calculated at the cosmological scales inside the Earth-Moon system. In Refs. [28, 29] it has
been argued that this question should be taken with a special care. Indeed, inside the local scales such as the solar
system, Earth-Moon system and etc, we do not have expansion with the Hubble rate as is the case for very large
scales. This boils down to the question whether inside the solar system the scale factor a in Eq. (A14) has time
dependence or not. So, if the scale factor a is time dependent, the d’Alembertian operator will also depend on time so
G will vary inside the local scales. In the opposite case, the effective gravitational constant will be time independent
so the constraints on it will be trivially satisfied. Let us also emphasize that even if on the background level, for
local scales, the time dependence of G can be neglected it will not guarantee that the result will be the same also on
perturbative level. Indeed, possible time and coordinate dependent perturbations in the local scales can reintroduce
a time dependence of G which then should be consistent with all constraints. In any case, this is an open question
and deserves a dedicated study which is beyond the scope of the current work.

After simple algebraic steps we get that for our model today’s rate of G is

|Ġ/G|0 ≈ |
12γ

2− 3γ
|H0. (33)
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In our case valid cosmological models are obtained for non-vanishing values of W0. Plugging the corresponding values
of γ into Eq. (33) we get that indeed for all these cases |Ġ/G|H0 . H0 . 10−12yr−1. So, the models which have a
valid cosmological evolution satisfy the local constraints too.

VII. CONCLUSIONS

Nonlocal cosmological models have been the topic of intense work in the last few years [26, 30–34]. They can be
seen as an attempt at capturing quantum corrections to the Einstein-Hilbert Lagrangian and to provide, at the same
time, an accelerated cosmology even in the limit of vanishing cosmological constant. In this paper we have studied
in detail the background cosmological evolution of a novel nonlocal model inspired by a quantum gravity induced
non-perturbative effective action in which the FRG running of the gravitational constant, in a coordinate space, is
manifested by nonlocal operators. The model depends on a single dimensional constant M .

We find that, when the dimensional coupling constant is chosen appropriately, this model reproduces a viable
background with a final stable acceleration compatible with current constraints. Comparing our model with the
one proposed in [14], we find that the two models exhibit a different behavior in the past, but converge near the
present epoch. We also observe that the background evolution of the current model is sensitive to the choice of initial
conditions for the auxiliary field W (W0). In the case of vanishing W0 the dark energy equation of state parameter
wDE exhibits very strong phantom behavior and is in strong tension with current observational data. Furthermore,
the model with vanishing W0 does not pass the local gravity constraints on the time variation of G. The situation is
completely different for non-vanishing choices of W0, such that, even a small non-vanishing value of W0 changes the
overall behavior of the model sufficiently, making it compatible with observational constraints. As for any cosmological
model, one should also investigate the growth of matter perturbations to ensure compatibility with observations. This
is left to future work. Another work in progress is devoted to the investigation of cases with general (rational) values
of the critical exponent ν. These studies will allow us to deal with more realistic RG improved effective actions, where
the value of critical exponent ν, in general, can be arbitrary.
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Appendix A: A general case

1. The Model

We consider the general model defined by the following action:

SNL =
1

16πG

ˆ

d4x
√−g

[
R− µf(R)

1

�2
g(R)

]
+

ˆ

d4x
√−gLm, (A1)

where f and g are analytic functions of the Ricci scalar, µ stands for the scale of nonlocality and Lm is the matter
Lagrangian minimally coupled to gravity.

Taking the variation with respect to the metric tensor gµν ,

δSNL =
1

16πG

ˆ

d4xδ(
√−g)

[
R− µf 1

�2
g

]

+
1

16πG

ˆ

d4x
√−g

[
δR− µf,R δR

1

�2
g − µfδ(�−2)g − µf 1

�2
g,R δR

]
+ δ

ˆ

d4x
√−gLm ,

(A2)

making use of the identity

δ(�−2) = −�−1δ(�)�−2 −�−2δ(�)�−1, (A3)
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and introducing the four auxiliary fields

U = −�−1g , Q = −�−1f ,
S = −�−1U , L = −�−1Q , (A4)

we find the following equations of motion,

Gαβ = µKNL
αβ + 8πGTαβ , (A5)

where the contribution coming from the nonlocal term is the following:

KNL
αβ ≡(f,R S + g,R L)Rαβ −∇α∂β(f,R S + g,R L) + gαβ�(f,R S + g,R L)+

− 1

2
gαβ [fS + gL] +

1

2
gαβg

σλ(∂σQ∂λS + ∂σU∂λL)+

− ∂αU∂βL− ∂βQ∂αS −
1

2
gαβUQ.

(A6)

For simplicity we investigate the action (A1) in the case when f(R) and g(R) have a general power-law structure.
Namely, and g(R) are chosen to be f(R) = Rp and g(R) = Rn, respectively, with n and p being integer non-negative
numbers. The equations of motion for this model are easily obtained from Eqs. (A5) and (A6) by a direct substitution

Gαβ = µ
{

(Rαβ −∇α∇β + gαβ�)(pRp−1S + nRn−1L)+

−1

2
gαβ(RpS +RnL) +

1

2
gαβg

σλ(∂σQ∂λS + ∂σU∂λL)+

−∂αU∂βL− ∂βQ∂αS −
1

2
gαβUQ

}
+ 8πGTαβ ,

(A7)

while the auxiliary fields satisfy the following set of coupled differential equations

�U = −Rn , �Q = −Rp ,
�S = −U , �L = −Q . (A8)

If we introduce in the Lagrangian a parameter M with the dimension of a mass, we can redefine the µ parameter
in (A7) as follows:

µ =
1

6
M−2(n+p)+6 . (A9)

If n = 1 and p = 1 from Eqs. (A7) and (A8) we find the equations of motion of RR nonlocal gravity model [14].

Gαβ =
M2

6
KRR
αβ + 8πGTαβ , (A10)

�U = −R, (A11)
�S = −U, (A12)

where KRR
αβ tensor, which stands for the correction to Einstein equations coming from nonlocal corrections, is defined

as

KRR
αβ ≡ 2(Gαβ −∇α∇β + gαβ�)S + gαβg

σλ∇σU∇λS+

− (∇αU∇βS +∇βU∇αS)− 1

2
gαβU

2.
(A13)

These equations fully coincide with those for the RR nonlocal gravity model [14].

2. Cosmological Equations

In this section we will study the background cosmology of our model. To do this we choose our metric to be of a
flat FLRW type

ds2 = − 1

H2
dN2 + a2d~x2, (A14)
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with a being the scale factor, H the Hubble rate and N = log a the number of e-foldings.
We also introduce the following quantities

h =
H

H0
, ξ ≡ H ′

H
=
h′

h
, (A15)

where H0 is the Hubble rate today. For the cosmological analysis it is sometimes useful to go from dimensionful
quantities to dimensionless ones. To do this we multiply our dimensionful auxiliary fields by powers of H0 and as
such we define new dimensionless auxiliary fields as follows

X ≡ H2−2n
0 U, W ≡ H2−2p

0 Q,

V ≡ H4−2n
0 S, Z ≡ H4−2p

0 L.

From the (00) component of Eq. (A7) one can express h2 through new dimensionless functions defined above:

h2 =
2µ

3H
6−2(n+p)
0

h2Y NL +
8πG

3H2
0

ρ, (A16)

where all terms coming from the nonlocal part are collected in the following quantity:

Y NL =
1

4h2
{
WX − h2 (V ′W ′ + Z ′X ′) + h2p [Cp (V Bp + pV ′) +DpV ξ

′] +

+h2n [Cn(ZBn + nZ ′) +DnZξ
′]
}
,

(A17)

where, to simplify the notation, we have defined the following coefficients

Bk ≡ (2k − 1)(k − 1)ξ − k + 2 , (A18)

Ck ≡ 6k(ξ + 2)k−1 , (A19)

Dk ≡ k(k − 1)6k(ξ + 2)k−2 . (A20)

These terms only depends on ξ and on k, where the latter takes the values of either n or p. We will also express the
dimensionful scale parameter of the model µ through a new dimensionless quantity defined as

γ ≡ 2

3
µH

2(n+p)−6
0 . (A21)
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SUMMERY, DISCUSSION AND CONCLUSION

In this thesis we have studied the role of different IR-relevant nonlocal modifications of

GR in the late evolution of our Universe. We have investigated cosmological properties of

several well motivated models, both at background and perturbative levels. Some open

issues in the formulation of nonlocal theories have been also addressed.

8.1 Dynamical analysis of R2−2R model: Impact of initial
conditions and constraints from supernovae

Within the family of IR-relevant nonlocal gravity models, the RR model has received a lot of

attention in the last years. The corresponding action of the theory is

(8.1) S = 1
16πG

ˆ p−g d4x
[
R− 1

6
m2R

1
22 R

]
+
ˆ p−g d4xLm,

where m is the only free parameter of the model and has a dimension of mass. This model was

first introduced in Ref. [123], where the authors found that the model has a background evolution

consistent with current observational data [4, 6, 191]. Later in Refs. [122, 192] the RR model was

analyzed at the level of perturbations. In these works, using a modified CLASS code [193], it was

shown that the RR model is in good agreement with CMB, BAO, JLA supernovae and LSS data,

but still distinguishable from ΛCDM.

On the fundamental side, the question of a possible origin of the RR nonlocal modification has

also been widely studied. In particular, it has been argued that this type of modifications arise in

higher curvature theories, after taking into account loop corrections (see discussion in Sec. 2.2).

Unfortunately, as it was shown in Ref. [194] the mass scale m of the theory, estimated from

perturbative loop expansion, is not sufficient to account for the DE density today (ΩDE ≈ 68%).
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CHAPTER 8. SUMMERY, DISCUSSION AND CONCLUSION

This result has been derived by assuming that masses of particles running over loops are

constant [23, 24, 129]. In cases when the running of mass terms for the particles is also taken

into account, it might generate a value of the scale parameter m such that nonlocal modifications

become relevant in the IR [27, 131]. Another possible origin of the RR type corrections refers to

the dynamical mass generation for the conformal mode σ, which is defined from the conformal

transformation gµν = e2σgµν. As discussed in Sec. 2.2, in this language the nonlocal modification

in (8.1) corresponds to the mass term of the conformal mode σ, i.e. m2R2−2R ∼ m2σ2.

From the technical point of view, physical solutions of the RR model were found [123] by

localizing the action (8.1). To accomplish this, one introduces two auxiliary fields U and S as

solutions of the equations 2U =−R and 2S =−U , respectively, such that the localized action is

(8.2) S = 1
16πG

ˆ p−g d4x
[
R− 1

6
m2RS+ξ1 (2U +R)+ξ2 (2S+U)

]
+
ˆ p−g d4xLm,

where ξ1 and ξ2 are the corresponding Lagrange multiplier. In our work presented in Chapter 4,

investigating full properties of the RR model we have shown that the previously found solution

space of the model is not complete and other solutions exist leading to completely different

cosmological evolution of the model at late times. The main reason behind the fact that big part of

theory’s solution space was previously discarded originates from misleading assumptions about

initial conditions on auxiliary fields, which where set to be always vanishing. In our work, we

studied different mechanisms which can generate non-trivial initial conditions for the auxiliary

fields. With the methods of dynamical phase-space analysis we constructed the full solution

space of the RR model. We observed that depending on the initial condition of the field U, U0,

there are two distinct scenarios for the cosmic evolution of the RR model, separated by the

threshold line U that only depends on the mass parameter m. The two scenarios are: In cases

when U0 is bigger than U , the system follows the trajectory referred to as path A. The numerical

evolution of the effective equation of state weff along this path shows that the model goes from the

radiation-domination period (weff = 1/3) towards the matter-domination period (weff = 0) which

is then followed by a transient phantom regime (weff < −1) that asymptotically approaches a

quasi de Sitter state (weff = −1) at late times1. This solution was previously discussed in the

literature [122, 123]. If the value of U0 is smaller than the threshold value U, the system will

evolve along a different trajectory referred to as path B. In this scenario the system will move

from the radiation-domination period towards the matter-domination period as for the case of

path A. Then the system moves from matter-domination to a true de Sitter era (weff '−1 and

H = const), which is then followed by a radiation like state with weff = 1/3. This type of cosmic

evolution for the RR model is the novel result of our work and has not been discussed before. We

compared our results with the current SNIa data and found that the evolution of the RR model

along path B is cosmologically viable and placed constraints on the parameters of the model.

1This state is referred to as a quasi de Sitter state, because though weff =−1, the Hubble parameter is not constant,
which should be the case for the de Sitter solution.
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A next step in this direction is to test path B at perturbation level by checking its consistency

with CMB, BAO and LSS data. It is important to mention that even though our studies in

Chapter 4 were done for a particular nonlocal model, the approach developed in this work is very

general and can be easily extended also for other nonlocal models. This is indeed crucial, as it

can well be that also for other nonlocal models misleading assumptions about initial conditions

have led to an incomplete investigation of their solution spaces.

8.2 Structure formation in the DW nonlocal gravity model

The Deser-Woodard (DW) nonlocal gravity model is a pioneer within nonlocal gravity models

trying to address IR-relevant physics of the Universe. This model was first introduced in Ref. [166]

and is defined by the action

(8.3) S = 1
16πG

ˆ p−g d4x
[
R+R f

(
R
2

)]
+
ˆ p−g d4xLm,

where f is a general analytic function of its argument. Once we relax the assumption of locality

at large scales, there is no a priori reason that forbids adding this type of terms to the Einstein-

Hilbert action. Indeed, due to the fact that the Ricci scalar R and the d’Alembert operator 2

have the same physical dimension, the function f (R/2) is dimensionless. Hence, the function

f does not introduce any new physical scale into the theory and multiplied with R it has the

same importance as the Einstein-Hilbert term and cannot be neglected. Since the function f

respects diffeomorphism symmetry, there are no symmetry based arguments which prohibit its

addition to the Einstein-Hilbert action as well. The background cosmology of the DW model has

been extensively studied in Refs. [166–168, 190]. In particular, in Ref. [167] the authors have

reconstructed the functional form of f as

(8.4) f (X )= 0.245
[
tanh(0.350Y +0.032Y 2 +0.003Y 3)−1

]
,

with Y ≡ X +16.5, so that, it reproduces exactly ΛCDM cosmology. This choice was justified by

the fact that any viable background cosmology should be sufficiently close to the one of ΛCDM,

which fits all the background observational data remarkably well. On the other hand, even if two

models are the same at the background level it does not guarantee that they would be the same

also at the perturbation level. Indeed, as it has been shown in Refs. [195, 196] the DW model

at the perturbation level behaves completely different from the ΛCDM model. Moreover, in the

same papers the authors have found that the DW model is in strong tension with Redshift Space

Distortions (RSD) data and is ruled out at up to 7.8σ confidence level.

In our work presented in Chapter 5, we revisited this problem. By localizing the model we

have surprisingly found that the previous results which rule out the model are not true for the

localized version. Furthermore, the localized version of the DW model predicts a present-time

value of the amplitude of fluctuations σ0
8 = 0.78, which is in a better (1σ) agreement with recent
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data (σ0
8 = 0.745+0.038

−0.038) [6, 197] than the ΛCDM model with σ0
8 = 0.83. We have analyzed how

much our fit with RSD data improves when we generalize initial conditions of the growth rate

function. In our work we have found that the corresponding improvements are just marginal.

The next step on the phenomenological side is to implement the model into a Boltzmann code

which will allow to integrate the perturbation equations of the DW model for all energy scales.

Doing so we can probe our model against full CMB constraints.

On the theoretical side, we can try to simplify the functional structure of f while preserving

the success of this model at the perturbation level. This can be done by relaxing the requirement

that the DW model exactly resembles the background cosmology of the ΛCDM model. Indeed,

there is no reason behind why at the background level the DW and ΛCDM models should be

exactly the same. This was initially just a useful assumption for the reconstruction procedure. In

reality, one could come up with the function f , which does not reproduce exact ΛCDM behavior,

but still is consistent with observational data.

8.3 Tensorial nonlocal gravity

In general (see e.g. discussion in Sec. 2.2) nonlocal modifications of GR generated from quantum

corrections have also tensorial terms in their structure. These terms are mostly composed of

nonlocal operators placed between two Ricci tensors or Riemann tensors. In the context of IR-

relevant nonlocal gravity theories only the phenomenology of scalar radiative corrections (those

constructed from the Ricci scalar) has been studied [19, 168]. This is mainly due to the fact that

tensorial nonlocal models exhibit fast growing modes which render the model nonviable already

at the background level. In our work presented in Chapter 6 we tried to see whether these

instabilities are due to a particular choice of the nonlocal operator or whether they have a more

generic nature. In this respect, we have analyzed the following tensorial nonlocal modification of

the Einstein-Hilbert action

(8.5) S = 1
16πG

ˆ p−g d4x
[
R− 1

6
m2Rµν

1
∆

Rµν

]
+
ˆ p−g d4xLm,

where ∆ is the most general fourth-order operator defined as

(8.6) ∆≡ m4 +α12+α222 +β1Rµν∇µ∇ν+β2R2+γ(∇µRµν

)∇ν,

with α1, α2, β1, β2 and γ as free parameters. This choice of the operator is motivated by the fact

that it covers two very important cases. First, for particular values of free parameters it reduces

to the conformal-anomaly induced Paneitz operator (2.60)

(8.7) ∆4 ≡22 +2Rµν∇µ∇ν− 2
3

R2+ 1
3

gµν∇µR∇ν.

Secondly, it covers the case of the nonlocal operator corresponding to a massive propagator(
2+m2)−1. To have a valid background cosmology we need sufficiently lasting radiation and
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matter domination eras, which then will be followed by the DE domination period. Therefore,

any modification of GR which tries to address the DE problem should not violate the standard

evolution of the Universe during radiation and matter domination periods. For tensorial non-

local theories this means that their energy density ρNL should be negligible compared to the

radiation and matter energy densities during the periods of radiation and matter-domination,

respectively. In our work we have found that growing modes are also present for our choice of

the nonlocal operator (8.6). These modes, in general, grow so quickly that shortly after the onset

of radiation-domination period the nonlocal energy density ρNL dominates over the radiation

energy density, which terminates the regular cosmic evolution. The same occurs also during the

matter-domination period. In our work we have concluded that this is a warning signal, revealing

that for the case of tensorial nonlocal models one needs to introduce particular mechanisms

(symmetries) which will naturally suppress or eliminates unstable modes, hence allowing to

construct a consistent cosmological model.

8.4 Quantum Gravity inspired nonlocal gravity model

As we know GR is perturbatively non-renormalizable [152–154]. In this respect to construct a

predictable quantum theory of Gravity, one has to implement either new techniques of renormal-

ization or to go beyond GR. In the first case, a possible solution is to implement non-perturbative

renormalization methods [8, 13, 156], while for the second case we need to add particular, usually

higher curvature terms [137, 138, 198, 199], which could cancel divergences making the theory

renormalizable at every loop order. Most importantly, whatever modification we make, we need

to recover GR for those scales where it is estimated to give a good description of nature. In this

context we can think of GR as an effective theory defined at some particular energy scale k. In

this case the corresponding effective action is

(8.8) Γk =
1

16πGk

ˆ

d4x
p

g (−R+2Λk)+
ˆ p−g d4xLm.

In this action the gravitational constant G and the cosmological constant Λ are now scale

dependent quantities. Their evolution is governed by the corresponding flow equations. As argued

in Ref. [156], a possible existence of a UV non-Gaussian fixed point (NGFP) u∗, i.e. such that

for the beta-functions we have β (u∗) = 0 for u∗ 6= 0, can render the theory nonperturbatively

renormalizable (see the discussion in Sec. 2.4). In Refs. [37, 38], based on similar ideas, it has

been argued that nonperturbative lattice quantum gravity studies suggest that the strength of

gravitational interactions might increase with distance. This behavior is encoded in the running

of the gravitational constant Gk, which is given by

(8.9) Gk =G0

(
1+ cζ

(
1

ζ2k2

)1/2ν
+O

((
1/ζ2k2))1/ν

)
,
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where ν is the critical exponent and ζ is the IR-relevant nonperturbative scale parameter of the

theory. In the limit of small k, corresponding to IR scales, and for the positive ν, the effective

gravitational constant Gk grows thus strengthening gravitational interactions.

The value of the critical exponent highly depends on the details of the implemented calculation

scheme. In general, predictions for the value of ν suggest that it would be in the interval

ν ∈ [1,4] [200–202]. The value of a generic nonperturbative scale parameter ζ, as is mentioned

in Ref. [203], cannot be fixed within the underlying theory and one needs additional input to

determine its value. In the same work it was argued that the ζ can either be associated with the

inverse of the vacuum expectation value of the curvature scalar ζ−1 ∼ 〈R〉, or more naturally with

the inverse of the Hubble parameter, i.e. ζ−1 ∼ H (see also discussion in Sec. 2.4).

In our work presented in Chapter 7, we have studied the phenomenology of the model by

inserting the running of G from (8.9) into the effective action (8.8). To write the effective action

in a coordinate space we have identified the relevant cutoff k2 with the d’Alembert operator 2,

which gives2

(8.10) S = 1
16πG0

ˆ

d4x
p−g

(
1− cζ

(
1
ζ22

)1/2ν
+O

((
ζ22

)−1/ν))
R+
ˆ p−g d4xLm.

We derived the effective EoMs by varying this action w.r.t. the metric gµν. Since the d’Alembert

operator depends on the metric too, it will also undergo variation. This is a crucial point of our

work. In previous studies [37, 38] the cosmology of the current model has been studied by directly

embedding G(2) into the right hand side of the Einstein equations. However, as discussed in our

work, this modification, made directly at the level of Einstein equations, does not respect the

Bianchi identities and in principle is not valid. Contrary to this, in our case, as we derive the

modified Einstein equations directly from the covariant effective action, the Bianchi identities

will be satisfied automatically.

Another important point to be mentioned, refers to the choice of the value for the critical

exponent. Indeed, depending on its value the power of the operator 2−1 in (8.10) can either

be rational or integer. In general it is not trivial to deal with a rational power of an inverse

operator, though there are some mathematical tools [165, 183] which provide useful guidelines

on how to proceed in this case. In our work in Chapter 7, as a first step we chose the value of

the critical exponent such that the d’ Alembert operator occurs with an integer power in the

effective action. Since the exponent of the d’ Alembert operator in the effective action (8.10) is

−1/2ν, in the interval ν ∈ [1,4] there are only two values of the critical exponent which lead

to an integer power of the d’Alembert operator: ν−1 = 2 or ν−1 = 4. Recently, in Ref. [205] from

completely different perspectives the authors have developed a nonlocal model which is similar

to the case with ν−1 = 2. Thus, in our work we have investigated the case with ν−1 = 4. For this
2The correct effective action also contains the running of the CC term Λk. But as is argued in Refs. [37, 204] in

pure lattice gravity the bare CC Λ does not run and has to be fixed properly. In our work in agreement with Ref. [37]
we have assumed that the contribution from the CC is sub-dominant with respect to the one of the running G, so that
the former can be approximated with Λ≈ 0.
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choice, the d’ Alembert operator enters the effective action with quadratic power. If an action

contains a nonlocal operator which has a power-law structure with an integer power, it is possible

to localize the theory by introducing several auxiliary fields. For our case to localize the model

we have introduced four auxiliary fields. Investigating the model we found that for ζ being of

the order of the inverse Hubble parameter (ζ ≈ H−1
0 ), the model produces a valid background

evolution with a final accelerated state compatible with current observations. Moreover, we have

observed that the background evolution of the model is strongly sensitive to the value of initial

conditions on one of the auxiliary fields. For vanishing initial conditions the model exhibits strong

phantom behavior and is highly disfavored by current observational data. On the other hand,

even a small non-vanishing value of the initial condition, changes the situation completely by

efficiently softening the phantom behavior of the model and making it compatible both with local

as well as large scale cosmological data.

By comparing the background evolution of this model with the one of the RR model [123],

we find that although the two models have a different behavior in the past they converge near

the present epoch making them indistinguishable in the future. Even if the two models predict

similar behavior at late times, they have different origins and motivations from the theoretical

point of view. In particular, the current model is defined at the theory level with the scale ζ,

which is of the order of the inverse Hubble parameter H−1
0 , whereas for the RR model the scale

parameter m is completely free and is fixed later to be of the order of H0, in order to explain

observational data. This circumstance, in some sense gives a preference to the current model

over the RR one. As for any cosmological model one has to investigate the growth of structures to

ensure that it is consistent with corresponding observations. This task is under progress. Another

important direction of studies within quantum gravity inspired models are investigations of cases

where the critical exponent ν is a general rational number. In this cases the effective action will

consist of inverse d’Alembert operators with non-integer powers. These studies will allow us to

have a better understanding of phenomenological properties of IR-relevant quantum gravity

modifications, where the value of the critical exponent, in general, can be arbitrary.

8.5 Conclusion

Nonlocal gravity theories are theoretically well-motivated modifications of GR. They attempt to

use different quantum corrections to GR in order to address still unsolved physical questions

in cosmology. In this respect, there are already several viable nonlocal gravity models which

successfully target some of those open physical issues like Dark Energy, Dark Matter, Big Bang

Singularity, Black Hole Singularity, inflation.

Our results represented in this thesis first of all try to make a clarification in the theoretical

formulation of these models, emphasizing the importance of initial conditions in their cosmological

evolution. Secondly, we show that one of the nonlocal gravity models, namely the DW model, gives
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a better agreement with observational data than the ΛCDM model. This is a quite intriguing

result as only a few modified gravity models are able to perform observationally better than

ΛCDM model, while being fully consistent at the theoretical level. In this thesis we also studied

the issue of classical instabilities of tensorial nonlocal gravity models. We found that these

pathologies seem to be generic and there is a need of a comprehensive investigation of special

mechanisms which may render tensorial nonlocal gravity models valid. This is very important

because from a physical point of view tensorial nonlocal models are of the same relevance as their

scalar analogs and in realistic physical situations they usually appear simultaneously. Finally, we

also analyzed a possible nonlocal modification motivated by non-perturbative QG studies and we

found that these models in general are able to lead to a valid late time cosmology of the Universe.

This result gives us the hope that a possible QG theory might be able to provide a consistent and

complete description of the Universe’s cosmic evolution.
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