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Abstract

Following experimental measurements of clustered connectivity in the cortex, recent 

studies have found that clustering connections in simulated spiking networks causes 

transitions between high and low firing-rate states in subgroups of neurons. An open 

question is  to  what  extent  the sequence of  transitions  in  such networks can be 

related to existing statistical and mechanical models of sequence generation. In this 

thesis we present several studies of the relationship between connection structure 

and network dynamics in balanced spiking networks. We investigate which qualities 

of the network connection matrix support the generation of state sequences, and 

which properties determine the specific structure of transitions between states. We 

find  that  adding  densely  overlapping  clusters  with  equal  levels  of  recurrent 

connectivity to a network with dense inhibition can produce sequential winner-takes-

all  dynamics in  which high-activity states pass between correlated clusters.  This 

activity is reflected in the power spectrum of spiking activity as a peak in the low-

frequency delta range. We describe and verify sequence dynamics with a Markov 

chain framework, and compare them mechanically to “latching” models of sequence 

generation. Additionally we quantify the chaos of clustered networks and find that 

minimally  separated  states  diverge  in  distinct  stages.  The  results  clarify  the 

computational  capabilities  of  clustered spiking  networks  and  their  relationship  to 

experimental  findings.  We  conclude  that  the  results  provide  a  supporting 

intermediate  link  between abstract  models  and biological  instances of  sequence 

generation.
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Zusammenfassung

Basierend auf  experimentellen Untersuchungen der  geclusterten Konnektivität  im 

Kortex haben neuere Studien herausgefunden,  dass geclusterte Verbindungen in 

simulierten,  gepulsten  neuronalen  Netzwerken  Übergänge  zwischen  hohen  und 

niedrigen Feuerraten in Untergruppen von Neuronen erzeugen. Eine offene Frage 

ist,  inwieweit  die  Schaltaktivierung  in  solchen  Netzwerken  auf  existierende 

statistische und mechanische Model der Sequenzerzeugung bezogen werden kann. 

In dieser Arbeit präsentieren wir eine Reihe von Studien über den Zusammenhang 

zwischen  der  Verbindungsstruktur  und  Netzwerkdynamik  von  balancierten, 

gepulsten  neuronalen  Netzwerken.  Wir  untersuchen  welche  Eigenschaften  der 

Verbindungsmatrix  eines  Netzwerks  zur  Generierung  von  Zustandssequenzen 

führen, und welche Eigenschaften die spezifische Struktur der Übergänge zwischen 

einzelnen Zuständen bedingen. Wir konnten zeigen, dass das Hinzufügen dichter, 

überlappender  Cluster  mit  dem gleichen  Ausmaß  an  rezidivierender  Aktivität  zu 

einem  Netzwerk  mit  starker  Inhibition,  sequentielle  winner-takes-all  Dynamiken 

erzeugen können, bei denen Zustände hoher Aktivität zwischen korrelierten Clustern 

hin-  und  herwechseln.  Diese  Aktivität  spiegelt  sich  im  Leistungsspektrum  der 

Spiking-Aktivität als Peak im niederfrequenten Delta-Bereich wider. Wir beschreiben 

und  verifizieren  diese  Sequenzdynamiken  im  Rahmen  eines  Markov-Ketten-

Prozesses und vergleichen diese mit  der  Mechanik von „Latching“  Modellen der 

Sequenzgenerierung. Darüber hinaus quantifizieren wir das Chaos in geclusterten 

Netzwerken und finden, dass minimal separierte Zustände in bestimmten Stadien 

voneinander  abweichen.  Die  Ergebnisse  geben  Einblick  in  die  rechnerischen 

Fähigkeiten von geclusterten Spiking-Netzwerken und setzten diese in Bezug mit 

experimentellen  Befunden.  Wir  schließen  daraus  das  die  Ergebnisse  einen 

intermediären  Zusammenhang  zwischen  abstrakten  Modellen  und  biologischen 

Beispielen von Sequenzgenerierung herstellen.
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 1 Introduction

Activity  in  neural  systems is  characterized  by  dynamic  changes of  state  across 

multiple levels of space and time. Measuring and understanding the nature of these 

dynamic changes and their relationships to neural structure  is one of the greatest 

technical and theoretical challenges in science.

A core element of neural activity at the single neuron level is the action potential, a 

transient change in an individual neuron's state that is the basis of inter-neuronal 

communication. At the level of neural populations, transient patterns of increases 

and  decreases  in  the  rate  of  action  potential  firing  are  associated  with  specific 

perceptions,  motor  actions  and  behavioral  sequences  (Balaguer-Ballester  et  al. 

2011; Mante et al. 2013). The physiological bases of these rate variations and their 

relationships to thought and behavior are uncertain but under intense investigation. 

On the experimental side, the effort includes the development of imaging technology 

and statistical methods. The neural information gathered with these methods is used 

to  develop  and  test  hypotheses  regarding  activity-cognition  relationships  and 

computational principles.

 1.1 In-vivo neural dynamics

In some lower brain areas action potential firing is closely tied to sensory or motor 

events, such as the stimulation of a sensory receptor or the activation of muscle 

fibres. Further up the brain hierarchy firing is irregular but typically varies in rate over 

time. In some cases, the relationship between firing patterns and cognition appears 

to  have  a  relatively  straightforward  interpretation.  One  example  is  delay  period 

activity during experimental working memory tasks. In-vivo recordings of primates 

have found raised firing  rates in  stimulus-specific  neuron populations  associated 

with  recall  of  a  stimulus  a  short  period  after  its  presentation.  This  activity  is 

particularly prominent  in the prefrontal  and parietal  cortex  (Fuster and Alexander 

1971;  D’Esposito  and  Postle  2015;  Constantinidis  and  Steinmetz  1996). 

Comparable  activity  has  been  observed  using  fMRI  techniques  in  humans 

(D’Esposito  and  Postle  2015).  The  activity  in  this  case  has  a  clear  theoretical 

interpretation in terms of attractor states in systems of recurrently connected units 
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(Durstewitz, Seamans, and Sejnowski 2000b).

In most cases, neural activity displays a more complex relationship to cognition, 

involving increases and decreases of  firing  rates  across groups of  neurons that 

change over time. Coordinated sequences of activity have been detected in-vivo in 

response to apparently simple sensory features, such as in rodent gustatory cortex 

in  response  to  taste  stimuli  (Jones  et  al.  2007),  and  in  rodent  visual  cortex  in 

response to natural scenes and grating stimuli  (Carrillo-Reid et al. 2015). Spatio-

temporal sequences of activity are also observed in anesthetized animals and in in-

vitro slice preparations, strongly suggesting that the spatio-temporal dynamics result 

from intrinsic local circuit  properties, rather than being directly driven by external 

input (Ikegaya et al. 2004; Luczak et al. 2007; Cossart, Aronov, and Yuste 2003).

As might be expected, sequences of neural activity have also been experimentally 

associated with sequences of observable behavior. Response-predictive transitions 

between  apparently  discrete  states  have  been  observed  during  a  delayed 

localization task in primates (Seidemann et al. 1996). In the hippocampus, internally-

generated  sequences  have  been  associated  with  the  storage  of  behavioral 

sequences and the generation of prospective future behavioral sequences during 

the planning of goal-directed behavior (Pezzulo et al. 2014).

Choice-specific sequences of activity have been observed in rodent prefrontal and 

parietal cortex during a maze task requiring perceptual judgement and behavioral 

choice  (Harvey,  Coen,  and Tank 2012;  Fujisawa et  al.  2008),  and stage-specific 

temporal patterns of activity have been found in the rodent anterior cingulate cortex 

during a maze task (Balaguer-Ballester et al. 2011).

Song  production  in  songbirds  is  a  particularly  clear  subject  for  the  study  of 

behavioral sequences. This is most often studied in finches. In finches, neurons in 

the forebrain premotor nucleus HVC show bursting activity which can be associated 

with  specific  segments  in  the  birds  song,  such as  phrases,  syllables  and  notes 

(Fujimoto,  Hasegawa,  and Watanabe 2011;  Long,  Jin,  and Fee 2010).  This  has 

been modeled in various ways, including statistical models of the song sequence's 

underlying  syntax  (Katahira  et  al.  2011) and  mechanistic  models  of  the  neural 

circuits involved (Long, Jin, and Fee 2010).

Several of the experimental examples just mentioned explicitly describe sequences 
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in terms of sequential activations of groups of neurons in which each group forms a 

functional  unit  whose  members  activate  more  or  less  simultaneously  (Cossart, 

Aronov, and Yuste 2003; Jones et al. 2007; Carrillo-Reid et al. 2015; Seidemann et 

al. 1996). This is in accordance with the hypothesis that the neural assembly is a 

fundamental  unit  in  the  functional  organization  of  the  brain  (Yuste  2015).  This 

hypothesis will be discussed further in section 1.3.3.

 1.2 Oscillatory activity in the brain

The power spectral density of summed brain activity measures such as the local 

field potential shows peaks in several frequency bands. These can be related to 

various  dynamic  processes,  cognitive  states  and  computational  functions.  Delta 

oscillations in the sub 4 Hz band are particularly prominent in sleep states, but are 

present in all cognitive states and have been reported to increase during executive 

cognitive  processes  such  as  working  memory,  attention  and  response  inhibition 

(Harmony  2013).  Source-localization  of  electroencephalographic  (EEG)  data 

indicates that sources of delta oscillations in the awake brain include frontal cortical 

areas  associated  with  executive  functions,  which  supports  this  association 

(Harmony 2013;  Guntekin and Basar 2015). Reduced power of  delta oscillations 

during performance of experimental cognitive tasks has been found in subjects with 

various  neurological  and  psychiatric  diseases,  including  Alzheimer's  disease, 

schizophrenia  and  bipolar  disorder  (Guntekin  and  Basar  2015).  In  contrast,  the 

same patient groups tend to show  increased spontaneous delta oscillations when 

not engaged in a task (Guntekin and Basar 2015).

The associations between delta oscillations and cognitive states suggests that they 

have  a  computational  function.  Harmony  (2013) suggested that  they  could  help 

synchronize large-scale cortical networks with control systems in the frontal lobes 

during  the  application  of  internally  and  externally  directed  attention.  Another 

suggestion is that delta oscillations increase brain synchronization with autonomic 

processes, potentially including processes related to motivation (Knyazev 2012).

One relatively untested possibility is that delta oscillations influence neural dynamics 

in  a  way  that  alters  their  computational  qualities.  This  could  support  effective 

processing in  general,  and oscillations  could  also  be selectively  introduced to  a 

system in order to adapt computational qualities to behavioral demands. Animals 
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face  a  variety  of  different  environments  and  behavioral  challenges,  and 

computationally optimum dynamics in a neural system could differ  depending on 

context.  An  example  of  contrasting  cognitive  strategies  is  the  contrast  between 

exploration and exploitation when seeking resources (Hills et al. 2014). This can be 

related to the contrast  between cognitive flexibility  and stability,  which has been 

related  to  neural  dynamics  and  their  adaptation  through  modulatory 

neurotransmitters  such  as  dopamine  (Durstewitz  and  Seamans  2008). 

Neuromodulatory  neurotransmitters  modulate  oscillatory  activity  in  vitro,  which 

simulation analysis indicates occurs due to modulation of local neuron properties 

(Durstewitz  2009).  The  specific  effect  of  neuromodulator-induced  oscillations  on 

behaviorally-relevant system properties is largely unexplored.

 1.3 Models of neural dynamics

 1.3.1 Balanced spiking networks

The  firing  of  cortical  neurons  is  often  temporally  irregular.  The  input  to  cortical 

neurons is largely from other cortical neurons, and an influential hypothesis is that 

irregular spiking activity emerges from intrinsic network-level dynamics when large 

numbers of  otherwise noiseless neurons are sparsely interconnected with strong 

synapses, with parameters appropriately chosen so that recurrent inhibition within 

the network is strong enough to counteract excitation. Neurons in such networks 

have approximately equal mean levels of excitatory and inhibitory input, and so are 

termed “balanced” networks. The irregular spiking in this case arises as a result of 

fluctuations in the mean input to each neuron, which drive the neuron's membrane 

potential  over  the  spiking  threshold  at  irregular  intervals.  This  phenomenon has 

been well demonstrated and explored theoretically and in simulation (van Vreeswijk 

and Sompolinsky 1996). Excitatory neurons in the cortex are sparsely connected 

(Perin, Berger, and Markram 2011), which supports this hypothesis.

A practical  and  commonly  used  assumption  in  the  simulation  and  analysis  of 

balanced networks is to assume that all neurons in the population being simulated 

send and receive connections to and from all other neurons with equal probability, 

effectively  being  randomly  connected.  This  assumption  has  the  advantage  of 

facilitating analytical tractability, as the numbers of connections, and the mean and 
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variance of synaptic input, can be predicted in terms of probability distributions.

The  computational  capabilities  of  randomly  connected  balanced  networks  are 

uncertain but under continuing investigation. One simple but useful property is that 

the mean firing rate of  such a network increases approximately  linearly  with the 

input to the network, with a timescale several times smaller than the integration time 

constant of a single neuron. A balanced network could therefore potentially function 

as a fast integrating relay of its inputs (van Vreeswijk and Sompolinsky 1996).

A further emergent property of a randomly-connected balanced network is that the 

firing rate of individual units can display a kind of amplifying selectivity to different 

patterns of input to the network, even when the connections are random rather than 

specifically designed to produce selective responses. The reason for this property is 

that the recurrent inhibition in a balanced network dampens the mean of excitation 

to individual units to a greater extent than the variance of input, which results in 

responses of individual units to different input patterns being relatively large even if 

the absolute input to each unit is similar (Pehlevan and Sompolinsky 2014).

 1.3.2 Reservoir computing

A  particularly  notable  computational  capability  of  artificial  randomly  connected 

networks is  to be found within the theoretical  framework of  reservoir  computing. 

Reservoir computers are a class of computing system which perform computations, 

in the sense of mapping inputs to outputs, on spatial and / or temporal patterns of 

input. This is performed with the use of a dynamic “reservoir” of randomly connected 

units, which are “read” as a weighted sum by a layer of linear output units. A suitable 

reservoir  has  two  particularly  useful  qualities.  First,  it  can  produce  non-linear 

responses to linear combinations of patterns, therefore enabling complex non-linear 

computations. Second, because the state of a dynamic reservoir is influenced by 

both its past states and current input, it has a form of memory that can be used to 

perform computations on temporal series of input.

The  set  of  mappings  performed  by  reservoir  computers  can  be  powerful,  but 

because the only computation-specific connection-setting they require in order to 

produce the desired input-output responses is the relatively simple training required 

to set the connections from the reservoir to the linear output units, they are relatively 

simple to create in comparison to neural computers in which connections between 
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hidden, recurrently-connected units must also be trained, as this form of training is 

difficult to design, parameter-sensitive and computationally comparatively expensive 

(Lukoševičius and Jaeger 2009).

According to several analyses, the neural reservoir in a reservoir computing system 

should have certain properties to be computationally useful. These properties are 

closely  related  to  the  mathematical  concepts  of  stability  and  chaos  in  dynamic 

systems  (Strogatz 2014).  The degree of  stability  and chaos in  systems such as 

neural networks is dependent on their parameters, and optimal computational power 

is hypothesized to be found in systems which are at the so-called “edge of chaos”,  

close to the boundary between stable and chaotic dynamics. This is because both 

stabilty and chaos have computationally useful properties. When considering inputs 

as initial states of a dynamic system and outputs as the state of the system at some 

later  point,  stable  systems  generate  similar  outputs  for  similar  inputs,  thereby 

supporting  generalization  of  input-output  transformations  to  novel  inputs.  On the 

other hand, as the current state of a chaotic system is sensitive to its past states, a 

chaotic  system possesses a form of  memory for  its  past  inputs.  This  allows for 

computation  on  temporally-extended  inputs.  Systems  at  the  edge  of  chaos 

potentially possess both qualities to a useful degree, and so support generalizing 

computation on temporally-extended inputs.

Several  investigations  have  been  made  into  the  computational  and  chaotic 

properties of various types of simulated neural network and their relationships to 

network parameters. One particularly sharp distinction between network classes in 

this respect is the distinction between networks in which units are connected with 

continuously-valued connections, such as networks of firing rate units, and networks 

in  which units  are  connected with binary-valued connections or  pulses,  such as 

spiking networks  (Büsing, Schrauwen, and Legenstein 2010). Systems with binary 

connections show  a  particularly  strong  parameter-dependence  of  the  degree  of 

chaos,  with  a  sharp  transition  between  ordered  and  chaotic  dynamics  and  a 

considerably smaller range of parameters which produce the useful edge of chaos 

state (Büsing, Schrauwen, and Legenstein 2010). Relevantly to the subject of in-vivo 

computation,  spiking  and  binary-connected  networks  have  been  found  to  be 

produce  chaotic  dynamics  at  relatively  low  values  of  two  important  system 

parameters,  those controlling recurrent  connection strengths and the numbers of 
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connections to each unit. Of these, the parameter controlling the number of within-

reservoir connections to each reservoir unit, or “in-degree”, is the parameter most 

problematic to the hypothesis that reservoir computing principles are used in cortical 

neural networks. Simulation, theoretical and in-vivo studies have provided evidence 

that  fast  chaotic  dynamics  occur  when  reservoir  units  have  more  than  a  small 

number of connections, typically less than 10  (Wallace, Maei,  and Latham 2013; 

London et al. 2010; Büsing, Schrauwen, and Legenstein 2010; Monteforte and Wolf 

2010).  As  cortical  neurons  typically  have  many more connections  that  this,  this 

suggests that reservoir computing principles do not operate in the cortex. Similarly, 

the transition from order to chaos with increased connection weights has been found 

to be sharp in binary and pulse-connected networks. Although this finding has not 

been explicitly  related to the balanced state, simulation studies indicate that  this 

transition occurs at connection strengths lower than that required to spontaneously 

produce balanced-state irregular spiking (Natschläger, Bertschinger, and Legenstein 

2005; Legenstein and Maass 2007). This suggests that balanced state networks in 

particular are not good reservoirs, agreeing with analysis that finds that balanced 

networks are highly chaotic (Jahnke, Memmesheimer, and Timme 2009; Monteforte 

and Wolf 2010). Compounding this issue is the finding that synaptic transmission is 

unreliable, with synaptic failures preventing a high proportion of action potentials 

from  being  transmitted  to  their  postsynaptic  targets  (Branco  and  Staras  2009). 

Network dynamics are highly sensitive to the omission of spikes (Wallace, Maei, and 

Latham 2013).

A notable exception to the predominant finding of chaos in highly-connected spiking 

networks is the case of networks of deterministic spiking neurons connected with 

inhibitory delta synapses, where delta synapses are non-temporal synapses which 

transfer  charge  instantly.  Such  networks  display  order  rather  than  chaos  when 

differences  in  initial  conditions  are  limited  to  small  differences  in  spike  times. 

(Jahnke, Memmesheimer, and Timme 2009; Monteforte and Wolf 2012).

 1.3.3 Clustered networks and assemblies

It is very likely that computation in cortical neural networks requires some degree of 

non-random connectivity.  As  it  is  not  yet  possible  to  measure more  than  a  tiny 

fraction  of  the  synapses  in  any  one  biological  neural  circuit,  the  nature  of  this 
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connectivity requires inference from limited data and theoretical speculation (Yuste 

2015). A popular hypothesis is that neurons act together as groups with correlated 

targets. A particularly influential further hypothesis is the existence of “assemblies” of 

excitatory neurons which project excitatory connections to each other with raised 

probabilities  or  potencies,  thereby  providing  a  mechanism  by  which  they  can 

mutually excite each other into a state of raised spike firing rates. As the raised firing 

rate state in all assembly members can be initiated by similar states of raised or 

partially raised firing rates of a subset of assembly neurons, the high-activity state of 

the  assembly  constitutes  an  attractor,  into  which  nearby  states  are  drawn.  This 

assembly attractor therefore provides local stability in the neural dynamics at the 

level of firing rates.

The ability  of  an assembly  to maintain  a specific  state  for  extended periods,  in 

conjunction with the possibility that this state can be engaged and disengaged by 

external mechanisms, provides a potential mechanism for cognitive phenomena that 

require  the  maintenance  of  information  for  extended  periods  in  the  absence  of 

external cues, such as working memory or sustained attention. The hypothesis that 

this is employed in the brain is supported by evidence of sustained firing activity in 

parts of the brain associated with state maintenance, such as the prefrontal cortex, 

during experimental  tasks that require temporary storage of  information, such as 

working memory tasks (Durstewitz, Seamans, and Sejnowski 2000b).

The attractor property of the recurrently-connected assembly, whereby states in the 

“basin of attraction” of the attractor lead to the system moving to the attractor state, 

has been proposed as a model of decision processes. In these, different attractors 

correspond  to  different  choices  in  a  decision  task,  with  evidence  for  a  specific 

decision  causing  excitatory  input  to  the  corresponding  assembly  that  pushes  it 

towards the basin of attraction of the high-activity state. Such systems have been 

modeled at various levels of realism and complexity, and have some experimental 

support from in-vivo electrophysiology in primates performing somatosensory and 

visual discrimination tasks (Braun and Mattia 2010; Durstewitz and Deco 2008), and 

in rodents performing a rule-learning task (Durstewitz et al. 2010).

 1.3.4 Attractor assemblies and firing rate variability 

In  addition to the previously-mentioned potential  for  recurrently-connected neural 
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assemblies to create a kind of stability in neural activity, there has recently been 

increased interest in the somewhat paradoxical potential for recurrent assemblies to 

generate variability in large-scale neural dynamics. The variability in this case is at 

the level of variability of firing rates over longer timescales of 100s of milliseconds or 

more,  which has been observed experimentally  in  the  cortex  (Churchland et  al. 

2011; Litwin-Kumar and Doiron 2012).

The  core  principle  here  is  the  existence of  assembly  attractors  similar  to  those 

implemented in working memory models, but in which both the low and high firing 

rate states have transient or reduced stability, so that the assembles switch between 

their low and high activity states purely as a consequence of dynamics internal to 

the  network.  A  central  cause  of  state  switching  in  existing  models  of  this 

phenomenon  is  the  irregularity  of  spike  firing  inherent  to  balanced-type  spiking 

networks, which, due to the finite size of the assemblies, causes fluctuations in the 

cumulative  recurrent  excitation  of  the  assembly  which  causes  the  assembly  to 

“jump” between the basins of attractions of the low- and high-firing-rate states. The 

dependence of state transitions on the inherent irregularity of spike times results in 

stochastic transitions between states in specific assemblies, and a corresponding 

stochastic fluctuation of the firing rates of individual neurons. The combination of 

stochastic variation in firing rates along with spike times has correspondingly been 

referred to as a doubly stochastic process  (Churchland et al. 2011; Litwin-Kumar 

and Doiron 2012).

Existing studies have mainly focused on the ability of spiking networks of multiple 

transiently-stable  attractors  to  reproduce  broad  statistical  measures  of  in-vivo 

activity, such as firing rate variability and the Fano factor. However, little attention 

has been focused on the question of how the activity of such networks relates to 

more complicated phenomena seen in biological networks, and in particular how it 

relates to the tendency for biological neural networks to show predictable activity 

trajectories. 

The  relationship  between  assemblies  and  firing  rate  variability  suggests  a 

relationship with theoretical neural mechanisms of sequence generation, particularly 

the “synfire chain”. Synfire chains are a theoretical form of sequence storage and 

generation in which assemblies of neurons are connected in feed-forward chains, 

and so produce sequential  chains of high-firing rate activity.  Synfire chains have 
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been  well-explored  theoretically  and  can  be  generated  with  various  naturalistic 

neural plasticity mechanisms (Zheng and Triesch 2014; Abeles 2009), and have also 

received experimental confirmation (Ikegaya et al. 2004; Long, Jin, and Fee 2010). 

However,  the  groups  in  theoretical  and  simulated  synfire  chain  models  do  not 

usually include recurrent connections within groups, and so do not necessarily fit the 

definition of recurrently connected assemblies (Abeles 2009).

Aside from synfire  chains,  the spontaneous activity  in  clustered neural  networks 

suggests  potential  relationships  with  other  computational  models.  These  include 

models of spontaneous sequence generation, with functional applications including 

language production (Russo and Treves 2011) and memory search (Tsuda 2001).

 1.4 Thesis motivation and organization

Although dynamic activity in clustered spiking networks has been reasonably well-

explored  in  respect  to  their  formation  and  effect  on  spiking  statistics,  their 

computational capacities remain largely untested. This study explores the effect of 

clustering on the dynamics of balanced networks, with an emphasis on implications 

for  computation.  The  state-switching  dynamics  described  in  previous  studies 

suggests a potential link to existing models of sequence generation, and particular 

effort will be given to interpret output in this context. The study uses computational 

neuroscience  methods,  particularly  simulations  and  analysis  of  representative 

systems.

After this introduction, the first part of the thesis will describe a process of producing 

a clustered network with stochastic attractor dynamics, by measuring the dynamics 

of  a  balanced  network  in  terms of  assembly  attractor  states  and  low-frequency 

oscillations, and systematically determining which qualities determine dynamics in 

the case of dense overlapping clusters. In the second part we will analyze the output 

of a subset of the previously-determined network configurations and statistically test 

the  hypothesis  that  activity  can  be  described  in  terms  of  a  Markov  chain.  We 

examine  furthermore  which  dynamical  phenomena  induce  transitions  between 

states, and which features of the network connection matrix determine probabilities 

of  transitions  between specific  pairs  of  states.  In  the  final  part  we will  test  and 

quantify  the  order  or  chaos of  the previously  created clustered and unclustered 

networks,  and  test  the  hypothesis  that  clustering  qualitatively  or  quantitatively 
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changes the form of chaos in the network.
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 2 Defining a sparse spiking network model 
with overlapping assemblies

In this chapter we describe the specification and preliminary analysis of the neural 

network that is the main subject of this thesis. The work described was performed to 

test  the  hypothesis  that  clustered  spiking  networks  produce  computationally 

noteworthy dynamics, and also to find potentially interesting parameter regimes for 

more in-depth analysis.

We specify  a spiking neural  network,  and a “base” balanced network parameter 

configuration that produces irregular firing at low physiologically plausible rates. We 

then  specify  both  an  existing  and  novel  method  of  clustering  connections,  and 

several  statistical  measures to be applied to the spiking output  of  the simulated 

networks.

Using these measures to describe the output, we then simulate networks created 

using the two clustering methods, systematically varying the clustering parameters 

in  order to quantify their  effect  on network output.  We furthermore measure the 

effect of clustering on network connection structure, using measures which include 

the  clustering  coefficient  and  the  eigendecomposition  of  the  connection  matrix. 

Relationships between network output and connection structure are noted.

 2.1 Spiking network model

 2.1.1 Neuron and synapse model definitions

Neurons were modeled as adapting leaky integrate and fire units. The evolution of 

the voltage V  of these units was determined by

Cm

dV (t )
dt

=(−gL (V (t )−EL )+ Iinj (t)+ I syn(t)−w( t)) (1)

where   Cm  is  the  capacitance  of  the  membrane  of  the  unit,  gL  the 

membrane  conductance,  and  EL  the  reversal  potential  of  the  leakage 

current.  Iinj  and  I syn  are  externally-injected  and  net  synaptic  currents, 
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respectively. w  is a hyperpolarising variable which obeys

τw

dw( t)
dt

=a(V (t )−EL)−w(t ) (2)

where  τw  is  the  time  constant  and  a  is  a  scalar  which  controls  the 

subthreshold growth rate of  w . The definition of the  w  adaptation current 

follows that of the equivalent current in the adaptive exponential  integrate 

and fire neuron proposed by Brette and Gerstner (2005).

The action potential firing condition is triggered when V  reaches a threshold 

value θ  from below. When this happens, the membrane potential V  is set to 

the reset value V r  and held at this value for a fixed refractory period V ref , 

the adaptation variable w  is augmented by a fixed value b , and a synaptic 

event is triggered at all downstream connected units.

Total synaptic currents I syn  are given by

I syn(t)=I GABA (t)+ I NMDA(t )+ I AMPA (t) (3)

Synapses  were  modeled  as  conductance  synapses,  in  which  synaptic 

currents  are  dependent  on  postsynaptic  unit  membrane  potential  V m . 

Synapses  were  either  excitatory  or  inhibitory,  with  inhibitory  synapses 

defined entirely by GABA conductances, and excitatory synapses consisting 

of both NMDA (N-Methyl-D-aspartic acid) and AMPA (α-Amino-3-hydroxy-5-

methylisoxazole-4-propionic  acid)  conductances  in  each  synapse.  These 

obeyed

IGABA ( t)=(V (t)−EGABA )∑
j=1

K j
inh

G j
GABA (t ) (4)

I AMPA (t )=(V (t)−E AMPA)∑
j=1

K j
exc

G j
AMPA (t) (5)

I NMDA (t)=(V (t)−ENMDA)s∑
j=1

K j
exc

G j
NMDA (t) (6)

In which E  is the reversal potential of the synapse type in superscript, K j  is the in-
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degree  (number  of  input  connections)  of  neuron  j ,  and  G j  is  the  respective 

synaptic conductance.  s  is a dynamic coefficient which models the effect of the 

voltage-dependent  Mg2+ block  found  in  NMDA  synapses,  according  to  the 

formulation of Mel (1993)

s=
1.50265

(1+0.33e−0.0625V (t ))
(7)

Individual  synaptic  spike  responses  were  modelled  as  a  temporal  difference-of-

exponentials conductance change according to

G j(t )=∑
l=1

L t (Fl gl B(e
t 0l−t

τoff −e
t 0l−t

τ on )) (8)

where l is the index of presynaptic spikes prior to t  and Lt  is the total number of 

these spikes, t 0l  is the time of postsynaptic arrival of spike l , determined by the 

respective spike time of the presynaptic unit plus a transmission delay D , and τon  

and  τoff  are  the  time  constants  of  the  two  exponentials,  corresponding 

physiologically to the time constants of neurotransmitter-receptor binding and of the 

clearance of transmitter from the synaptic cleft, respectively.  B  is a normalization 

scalar obeying (9) which normalizes the maximum value of the double exponential 

term to 1, so that the maximum conductance is directly set by the scalar gl  (Dayan 

and Abbott 2001):

B=(( τon
τoff

)
τ rise/ τoff

−(
τon
τoff

)
τ rise/ τon)

−1

, τrise=
τoff τon

(τoff−τon)
(9)

Excitatory synapses also modelled short-term synaptic depression, according to the 

formulation of  Tsodyks and Markram (1997). According to this formulation, synaptic 

efficacy is produced by utilization of a finite synaptic resource. Each synapse has a 

pool of usable synaptic resource, and each presynaptic action potential results in the 

use and inactivation of a proportion U  of the total available synaptic resource R , 

with this utilized proportion immediately being added to the pool I  of the resource 

in the inactivated state. The resource is gradually recovered from the inactivated to 

the available state R  with first order dynamics:
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dR(t)
dt

=
I (t)
τrec

, I=1−R (10)

where τrec  is the time constant of recovery. As the magnitude of the postsynaptic 

conductance  change  (PSC)  produced  by  a  presynaptic  spike  is  scaled  by  the 

proportion  of  resource  utilized  UR ,  depletion  of  R  by  recent  previous  action 

potentials  causes  a  cumulative  reduction  in  PSC  magnitude,  i.e.  synaptic 

depression.  Using  this  formulation,  the  current  fraction  F  of  the  total  potential 

postsynaptic conductance change was calculated with the iterative expression

Fn+1=Fn(1−U )e
−Δ/ τrec+U (1−e

−Δ/ τ rec) (11)

 where Δ  is the time interval between action potentials n  and n+1  (Tsodyks and 

Markram  1997).  The  computed  fraction  F  scaled  the  corresponding  synaptic 

conductance change in equation (8).

 2.1.2 Network composition

The form of  network activity  selected as the base of  our study was a balanced 

network  of  the  general  type  described  in  van  Vreeswijk  and  Sompolinsky  (van 

Vreeswijk  and  Sompolinsky  1996),  in  which  network  excitation  is  dynamically 

balanced by inhibition from a pool of recurrently connected inhibitory neurons. The 

resulting  small-magnitude net  mean input  to  units  in  such networks  results  in  a 

moderately sub-threshold mean membrane potential V , while irregularities in each 

neuron's input cause occasional deviations of V  away from the mean to the spike 

threshold  θ ,  resulting in irregular spiking. While some balanced network models 

have  used  irregular  network-external  input  as  a  source  of  this  irregularity  (e.g. 

Brunel 2000), the system used here was deterministic and the irregularity originated 

from the pseudo-random sparse connectivity of the network, as external input to the 

network was held constant unless otherwise indicated.

The network was composed of excitatory and inhibitory units in a 4:1 ratio, a ratio 

which  corresponds  to  the  ratio  of  pyramidal  cells  to  interneurons  in  the  cortex 

(Brunel and Wang 2001). Unless otherwise specified, in the simulations described 

here  the number  of  excitatory  neurons  NE=1000  and the number  of  inhibitory 

neurons N I=250 . Excitatory and inhibitory units projected exclusively excitatory or 

inhibitory  connections  to  other  units,  as  well  as  differing  in  their  neural  model 
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parameters.  The  parameters  used  for  simulations  are  displayed  in  Table  1. 

Connection  probabilities  pxy  from neuron  population  y  to  population  x  were 

pII=pIE=p IE=0.5  and  pEE=0.1 .  The higher connectivity  to and from inhibitory 

neurons here comes from the finding of dense inhibitory connectivity in the cortex 

and the corresponding principle of nonspecific inhibition (Fino and Yuste 2011; Hofer 

et al. 2011). The connection algorithm set the total number of received connections 

K x  of each individual unit of population  x  from population  y  to  floor ( pxy N x) , 

and  these  K xy  connections  were  randomly  chosen  from  the  N x  possible 

connections.

Neuron parameter values were chosen mainly according to standard values used in 

previous  works  (Renart,  Brunel,  and  Wang  2004;  Durstewitz,  Seamans,  and 

Sejnowski 2000a), which were intended to reflect typical physiological values. Some 

neuron parameter values were modified in order to reproduce experimental findings, 

such as a shorter refractory period in inhibitory units in order to facilitate fast-spiking 

interneuron-like behavior (Compte, Constantinidis, et al. 2003).

Synaptic coupling strengths were set with the aim of producing a desired level and 

form of spontaneous activity, using a combination of manual setting of parameters to 

according  to  previously-outlined  principles  of  balanced  network  dynamics 

(Durstewitz and Seamans 2002; Brunel 2000), and automated parameter search by 

iterating simulations over ranges of parameter values.

 2.1.3 Clustering definitions and algorithms

We used two clustering methods,  both of  which were based on the principle of 

defining  fixed-sized  groups  of  excitatory  units  as  clusters  and  then  increasing 

recurrent connectivity within these groups in terms of both connection probability 

and  connection  weight.  This  definition  has  been  used  in  earlier  studies  which 

investigate clustering in  simulated networks  (e.g.  Litwin-Kumar and Doiron 2012; 

Klinshov  et  al.  2014),  and  is  also  similar  to  methods  used  in  neural  network 

paradigms which employ bistable assemblies as a form of memory (e.g. Latham and 

Nirenberg 2004; Brunel and Wang 2001).

The  first  clustering  definition  employed  was  that  specified  by  Litwin-Kumar  and 

Doiron  (2012), in which connectivity within each group is determined by a ratio of 
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connection  probabilities  between  within-group  connections  and  without-group 

connections. For brevity we will refer to this as the ratio method.

A central aim of our study was to embed multiple overlapping groups in a network in 

order to observe possible dynamics that result from the existence of multiple nearby 

quasi-attractors.  Preliminary  simulations  using  the  ratio  method  indicated  that 

attractor dynamics were reduced when networks with multiple overlapping clusters 

were created with this method. Previous work on assembly attractors indicated that 

intra-cluster recurrent excitation is an important determinant of activity in clustered 

networks  (Durstewitz,  Seamans,  and  Sejnowski  2000a;  Latham  and  Nirenberg 

2004), and so we created a definition of connection clustering that included within-

cluster  recurrent  connectivity  as  as  a  parameter.  In  this  section  we define  both 

methods and sketch an algorithm to produce connection matrices in accordance 

with the new method.

For both cluster methods, first a number of clusters were defined, each comprising a 

fixed number  Nassembly
E  of excitatory units. For the ratio method, for each unit the 

overall excitatory connection probability pEE  is divided into within and without-group 

connection  probabilities  pin
EE  and  pout

EE ,  with  a  ratio  parameter  REE=
pin

EE

pout
EE  

determining the relative value of these two parameters and hence the degree of 

clustering. A normalization term is used for each unit so that the overall connection 

probability pEE  remains the same for all units regardless of the number of potential 

clustered connections.  Additionally,  the synaptic  strength  g  was set  to a higher 

value for within-group connections.

For the second clustering method, clustering was defined not by the ratio of within-

group  to  without-group  connection  probabilities  in  individual  units,  but  by  a 

parameter  pin
EE  which  set  the  overall  connection  probability  within  individual 

clusters. As the number of units in each assembly was also fixed by the parameter 

N assembly
E , clusters in this method had a fixed total recurrent connection weight and 

number  of  connections.  Because  this  method  produced  networks  containing 

assemblies with uniform total recurrent excitation, we termed this method the “equal 

assemblies” method, or EQASS method for short. As with the ratio clustering model, 

17



the  fixed  overall  connection  probability  pEE  remained,  while  the  without-group 

connection probability pout
EE  and therefore the ratio of connection probabilities were 

left as free parameters. As with the ratio model, the synaptic connection strength 

was  higher  for  within-group  connections,  but  the  total  input  synaptic  connection 

strength was fixed per-neuron, with without-group input connection strength left as a 

free parameter.

In order to not exceed the fixed connection probability and total connection weight of 

each unit and group, the algorithm which created network connections according to 

the EQASS definition functioned according to a general principle of first randomly 

generating  within-cluster  connections  for  clustered  units  one  by  one  until  the 

required within-cluster connectivity  pin
EE  was achieved, checking total per-unit and 

per-cluster connection numbers after each connection was created, and blocking 

units  from  receiving  any  further  within-cluster  connections  if  they  reached  the 

maximum number of incoming cluster  connections possible.  The total  number of 

within-cluster connections per-unit was limited so as not to exceed the fixed uniform 

connection  probability  and  cumulative  connection  weight.  After  all  within-cluster 

connections were generated, non-cluster connections were then generated for each 

unit with the required number and connection strength for the unit to reach the pre-

defined connection probability and total weight values.

Specifically, assuming a total set of NE  excitatory units, a parameter Nassembly
E  was 

set, determining the number of units in a clustered assembly. A parameter gEE  was 

set, determining the average weight of an excitatory synapse, and also a parameter 

gin
EE>gEE , which determined the weight of within-assembly synapses. Similarly, the 

parameter  pEE  set  the  overall  and  pin
EE  the  within-assembly  connection 

probabilities.  From these  values  the maximum numbers  of  per-assembly  within-

assembly  connections,  Kassembly
EE =floor ( pEE(Nassembly

E )2)  and  per-neuron  assembly 

connections   K in ,max
EE =floor((gEE pEE NE)

gin
EE )were  calculated,  the  latter  being  the 

maximum  number  of  assembly  connections  that  a  neuron  can  receive  before 

exceeding the fixed total presynaptic weight gEE pEE N E .
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All assemblies were defined by choosing N assembly
E  units for each assemblies, either 

as disjoint sets or randomly (i.e. without regard as to whether units were members of 

multiple assemblies). After assemblies were defined, connections were created by 

randomly  selecting  from  all  possible  intra-assembly  connections.  After  each 

connection was created, the total number of connections to each unit  and within 

each assembly checked, and all further potential connections to the unit or assembly 

were removed from the pool of available connections if the number of connections 

was equal to K in ,max
EE  or Kassembly

EE , respectively. This process continued until either all 

assemblies had the requisite number of within-assembly connections  Kassembly
EE , or 

until no further possible within-assembly connections were available, in which case 

the algorithm terminated and returned an error. As will be shown in the results, the 

likelihood of this error condition increased with increasing numbers of assemblies 

and higher values of pin
EE .

After all within-assembly connections were defined, without-assembly connections 

were  created  for  each  unit  by  randomly  selecting  from  available  possible  non-

assembly connections, until each unit had  KEE=pEE N E  connections in total. The 

connection  weight  of  these  connections  gout  was  set  so  that  the  total  input 

connection  weight  was equal  to  gEE pEE N E ,  i.e.  so that  the mean synaptic 

weight was gEE .

For  both  the ratio  and equal  assembly  clustering  methods,  all  other  connection 

matrices (i.e. excitatory-inhibitory and inhibitory-inhibitory) were chosen randomly so 

that each unit received K xy=pxy N x  connections, each of equal strength gxy .

 2.1.4 Iteration routine

In order to explore the effect of clustering, simulations were systematically run with 

progressively  increasing  levels  of  key  clustering  parameters.  Networks  were 

generated with either 10, 20 or 30 embedded assemblies Nassembly , each comprising 

a proportion 0.1 of  NE=1000  total  excitatory neurons.  In  the networks with 10 

embedded  assemblies,  networks  were  created  with  both  overlapping  and  non-

overlapping assemblies. In networks with 20 or 30 assemblies,  assemblies were 
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necessarily  overlapping  as  NE<0.1N E Nassembly .  In  networks  with  overlapping 

assemblies, assembly members were selected randomly.

Simulations were run with progressively greater values of the respective clustering 

parameters  REE  and  pin
EE .  In  the  case  of  the  networks  created  with  the  ratio 

clustering method, REE  was varied from 1 to 3.9 in increments of 0.145, and in the 

case of the networks created with the equal assemblies method,  pin
EE  was varied 

from 0.1 to 0.3 in increments of 0.01. In both of these cases, the lowest level of the 

parameter range corresponded to no additional clustering above that produced by 

random connectivity.  The  ranges  and  steps  were  chosen  to  produce  equivalent 

levels of within-cluster recurrent connectivity for both methods in the case of non-

overlapping clusters.

For each combination of  parameter levels,  24 different and independent network 

instances  were  created  using  different  random  number  generator  seeds. 

Simulations  had  a  duration  of  32000ms  (32  s),  of  which  the  first  2000ms was 

discarded in subsequent analysis to remove initial transients.

 2.1.5 Computational framework

Simulations  were  performed  using  both  an  in-house  system  written  in  C  and 

MATLAB (The MathWorks Inc., Natick, MA, 2000)., and the NEST spiking neural 

network simulator with Python and C++  (Gewaltig and Diesmann 2007). Analysis 

was performed in MATLAB and Python.  Pseudorandom numbers (referred to as 

random numbers in this thesis for convenience) were generated by the Mersenne 

Twister algorithm implemented in both MATLAB and Python.

 2.2 Analysis methods and results

The output of the network was analyzed in order to compare it in a general sense to 

in-vivo data, and to characterize the dynamics introduced by the clustering, under 

the assumption that clustering would cause cluster-specific variations in firing rate. 

Analysis  was primarily  performed on the spiking output,  where individual  spikes 

were represented as single timepoints. We specify here the measures used.
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 2.2.1 Methods

The simplest descriptive measure of  spike firing is the firing rate of  a neuron or 

group  of  neurons.  Following  Dayan  and  Abbott  (2001,  9),  this  can  be  formally 

defined by representing spikes as Dirac δ functions, and the spiking response of a 

neuron at a given time t as ρ(t) . The firing rate r can then be defined as 

r (t)= 1
Δ t

∫
t

t+Δ t

d τ ⟨ρ(τ)⟩ (12)

Another  measurement  used  to  characterize  spiking  output  was  the  interspike 

interval (ISI), the time difference between two consecutive spiking events

ISI j=t j−t j−1 (13)

where j  is the spike index and t j  is the time of the jth spike.

In addition to the mean and standard deviation of the ISI, the coefficient of variation 

CV  of  the  ISI  distribution,  the  ratio  of  the  standard  deviation  to  the  mean,  is 

valuable as measure of spiking irregularity.

CV =
σ ISI

⟨ ISI ⟩ (14)

Here, a CV  of 0 corresponds to completely regular firing. The Poisson distribution, 

in which ISIs have an exponential distribution, has a CV  of 1.

The Fano factor  F was also computed on spike trains. This is a measure of the 

variability of the spike rate over time, computed as the ratio of the variance to the 

mean of binned spike counts N , where bin sizes are equal:

F=
σN

2

⟨ N ⟩
(15)

 2.2.1.1 Spike power spectrum analysis

The power spectrum of the population spike firing rate was calculated using Welch's 
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method (Welch 1967), by first binning the spike output of all neurons then using the 

resulting time series as input to the  welch function in the SciPy signal processing 

toolbox. Briefly, Welch's method creates an estimate of the power spectral density 

by dividing the data into overlapping segments, computing a periodogram for each 

segment using a fast Fourier transform, and averaging the periodograms. Compared 

to the use of a single periodogram calculated on the whole time series, this method 

has the advantage of producing a less noisy estimate, at the expense of a loss of 

frequency resolution at the lower end.

Low frequency  periodic  activity  in  the  delta  range  of  0  –  4  Hz is  of  particular 

physiological interest,  and has been associated with disease states  (Broyd et al. 

2009; Ford et al. 2002) and different forms of neural coding and cognition (Lakatos 

et al. 2008). Accordingly, we used a simple measure of delta band power by taking 

the root mean square (the square root of the mean of the square of the values) of 

the 0 – 4 Hz range of the spiking power spectrum calculated with Welch's method.

 2.2.1.2 Spike train autocorrelation function

Related to  the power  spectrum is  the autocorrelation  function  of  spiking activity 

when calculated on a population of neurons. This measures the distribution of times 

between all pairs of spikes from all sources in a population. This was calculated by 

binning the spikes,  subtracting the mean value from this binned spike train,  and 

calculating its autocorrelation, normalized by the variance of the spike rate r 

Autocorrelationρρ( τ)=
⟨(ρ( t)−⟨r ⟩)(ρ(t+ τ)−⟨r ⟩)⟩

σ r
2 (16)

 where ρ(t)  in this case is the binned spike response at time t.

 2.2.1.3 Assembly-specific measures

We define also basic measures of the effect of the clustering definitions, on both the 

connection matrix and activity during simulations, in order to verify and quantify the 

effect of the clustering methods, particularly on assembly-specific high-activity states 

and winner-takes-all dynamics.

First  we  measure  the  assembly-specific  recurrent  connectivity,  the  summed 
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projection of a group to itself. By representing a group as a binary vector g  of size 

NE  in which entries are 1 when the corresponding unit is a group member and 0 

otherwise,  the  summed  recurrent  group  projection  rec  can  be  calculated  as 

rec=gT Wg  where W  is the excitatory weight matrix.

Following Russo et al. (2008) and Hopfield (1982), we define an activation measure 

that quantifies the state of  the system in terms of  the attractor states which are 

embedded in it.  Following models of distributed memory storage such as that of 

Hopfield (1982), in which retrieval success of a specific memory is measured as the 

summed total of binary units which are in the memory state, we set a firing rate 

threshold  of  θ=10 Hz ,  and define  neurons firing  above this  threshold as  being 

active.  The activation state  A of  assembly  i is  then defined as the proportion of 

active neurons within its members.

A i=
1
N
∑

0

N

H (ri−θ) (17)

where H is the Heaviside step function. This measure was calculated on the spiking 

output of the network binned with a bin size of 100ms.

Unlike the memory retrieval definitions of Russo et al.  (2008) and Hopfield (1982), 

the definition used here does not include both activity and inactivity of units across 

the whole system in its state retrieval definitions. Instead, only activity within specific 

assemblies  is  counted,  similarly  to  spiking  neuron  memory  state  networks  (e.g. 

Brunel and Wang 2001; Durstewitz, Seamans, and Sejnowski 2000a). In principle, 

this allows multiple assembly states to be active simultaneously.

As a measure of winner-takes-all behavior, and also the degree to which the system 

state can be described in terms of a single assembly, we also define two further 

simple measures. First,  we measure the ratio of the mean firing rate of neurons 

within the most activated assembly in the network to the mean firing rate of the 

excitatory  population  as  a  whole.  Second,  we  measure  the  “separation”  of  the 

activation state in terms of the measure A. The separation measure is defined as the 

difference in the activation state  A between the most activated assembly and the 

second most activated. Finally, we calculate the “transition rate”, the rate at which 

the identity of most activated assembly changes.
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 2.2.2 Output of the network

In this section we systematically describe the output of the network qualitatively and 

in  terms  of  the  measures  described  above.  First  we  report  the  output  of  the 

unclustered  network,  which  displays  typical  balanced  network  activity.  Then  we 

report  separately  the  output  of  clustered  networks  with  non-overlapping  and 

overlapping  clusters.  In  doing  so we  highlight  the  emergence  of  transient  high-

activity states with increasing clustering, and contrast the sensitivity of the output of 

the  two clustering  mechanisms to  overlaps  between embedded clusters.  Output 

regarding the adaptation parameter  w  and delta band oscillations are reported in 

separate sections.

 2.2.2.1 Without clustering

Parameters  were  determined  at  which  the  network  spontaneously  produced 

irregular  low-rate  spiking  activity  (Figures  2.1 and  2.2). Averaging  over  24 

independently generated networks, the mean (standard deviation) steady state firing 

rate of the excitatory and inhibitory populations was 1.62(±0.26) Hz and 6.11(±0.55) 

Hz  respectively.  The mean  CV  and Fano Factor of  the excitatory and inhibitory 

populations were both close to 1, indicating approximately Poisson spiking with a 

stationary firing rate. In addition to the low rate asynchronous spiking of individual 

neurons,  both  the  population  averaged  autocovariance  and  power  spectrum 

indicated high frequency population oscillations with peaks at approximately 50Hz 

and 200Hz. 

When interpreted  through  the analytical  framework  of  Brunel  and Wang  (2003), 

which explored mechanisms of  population oscillations in spiking simulations with 

parameters similar to those used here, these oscillations likely result from inhibitory 

feedback loops, with the 50 Hz oscillation generated by the excitatory – inhibitory – 

excitatory  loop,  and  the  faster  200  Hz  oscillation  coming  from  the  more  direct 

inhibitory – inhibitory loop. One notable difference between the two oscillatory peaks 

produced here and the results explored in Brunel and Wang (2003) is that Brunel 

and Wang described only simulations with a single oscillatory peak, with differences 

in the intrinsic frequencies of the excitatory-inhibitory and inhibitory-inhibitory loops 

resulting in a frequency intermediate to the two. It is possible that the dual peaks 
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observed  here  were  possible  because  the  two  intrinsic  frequencies  are  well 

separated, and because the higher frequency is approximately an integer multiple of 

the lower. Confirming this, test simulations run with a slight alteration to one of the 

synaptic latencies (mean excitatory latency  Dex = 5ms rather than 3ms) produced 

output with approximately the same excitatory firing rate but two different population 

oscillation peaks. Example output is shown in Figure 2.3B, which shows population 

frequency peaks at approximately 30Hz and 150Hz.
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 2.2.2.2 Non-overlapping assemblies

When creating non-overlapping assemblies,  both the ratio and equal  assemblies 

methods produced qualitatively similar effects on clustering strength and network 

activity  Figure  2.4,  Figure  2.5.  The  clustering  parameter  of  each  method had a 

mainly  linear  relationship  with  total  within-assembly  connections  Kassembly
EE  and 

corresponding within-assembly weights, with a slight deviation in the case of the 

ratio method (Figure 2.4A) due to rounding effects arising from the constraint that 

the number of inward assembly connections per unit  K in
EE , which was determined 

internally by K in
EE=round ( p in

EE NE) , was restricted to integer values.

The relationship between clustering and the quantitative measures of spiking activity 

was strongly non-linear, particularly in regards to a form of soft phase transition that 

occurred  at  values  of  approximately  REE=1.9  and  pin
EE=0.165 . Around  these 

values the individual assemblies started to display bimodality in their firing rates, in 

that  the  increased  within-assembly  connectivity  supported  transient  periods  of 

higher  firing rates within individual  assemblies.  The mean rate of  firing over the 

whole network increased roughly  linearly  with the clustering parameter  after  this 

phase transition point, up to the maximum clustering values tested (Figure 2.4B).

These assembly-specific higher-firing-rate states, or “activations” as we will refer to 

them, occured initially only in one assembly at any one time, indicating competition 

via mutual inhibition. The disparity in firing rates between the activated assembly 

and  the  rest  of  the  network  is  reflected  in  the  firing  rate  ratio  and  activation 

separation plots (Figure 2.4C and  Figure 2.5A), which show a steep increase in 

these measures after the phase transition point. Visual inspection of plots of spiking 

activity and the assembly activation output confirm this interpretation (Figure 2.6).

With further increases in clustering, the firing rate ratio and separation measures do 

not increase monotonically but rather decline after reaching a peak (Figure 2.4C and 

Figure 2.5A). Inspection of simulation output confirms that this occurs as a result of 

increasingly  frequent  activations  in  multiple  assemblies  simultaneously.  At  the 

highest  tested  level  of  the  clustering  parameters  REE=3.9  and  pin
EE=3.0  the 
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separation measure returns to a mean value of approximately 0, as at least two 

assemblies are equally active at most times for the duration of the simulation (Figure

2.5A).

The  transition  rate  measure  (Figure  2.5B)  initially  shows  a  rapid  increase  in 

transitions with the onset of bistability,  up to a mean rate of slightly under 1 per 

second, before falling back to near 0. Inspection of simulation output indicates that 

this corresponds to the initial emergence of relatively unstable activated states at 

moderate levels of clustering, which then become more stable and therefore longer 

in duration as recurrent excitation increases with increased clustering.

The behavior of the networks created by the two different routines differs slightly in 

respect to the transition rate at higher levels of clustering. In the case of the equal 

assemblies  routine,  the  emergence  of  simultaneous  activated  assemblies  is 

accompanied by an increase in the transition rate, as activation switches between 

different assemblies, while in the case of the ratio routine the transition rate remains 

low,  as  multiple  assemblies  remain  largely  stable  in  the  activated  state.  These 

differences in dynamics can be attributed to the two differences between networks 

created by the two clustering methods In the case of non-overlapping assemblies. 

First,  total  input  connection  weights  are  kept  equal  for  all  units  by  the EQASS 

method but allowed to be higher in the ratio method. Second, all assembly units 

have a uniform number of within-assembly connections in ratio networks, but this is 

allowed  to  vary  in  EQASS  networks.  Assembly  units  in  non-overlapping  ratio 

networks therefore have greater and more uniform levels of total synaptic input than 

those in EQASS networks, and one or both of these factors will have caused the 

differences in behavior.

The effect of increased clustering on the Fano factor appears qualitatively similar to 

the  effect  on  the  transition  rate  (Figure  2.5C),  rising  from its  baseline  value  of 

approximately  1  with  the onset  of  transient  activations,  then falling  as  activated 

states become stable. As the Fano factor measures variations in neuron firing rates 

over 100ms+ periods, there is a direct association between the Fano factor and the 

tendency for assemblies to transition between low- and high-firing rate states.
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 2.2.2.3 Overlapping assemblies

Clustered connection matrices were defined according to both clustering definitions 

with 10,  20 and 30 overlapping assemblies and 21 equally-spaced levels  of  the 

clustering  parameters  REE  and  Pin
EE .  The  equal  assemblies  algorithm failed  to 

complete creation of connection sets with 30 assemblies and a clustering level of 

greater than Pin
EE=0.23 , as it was unable to create enough connections to reach the 

specified  total  recurrent  connectivity  for  each  assembly  without  exceeding  the 

connection limits for individual units.

In  the  networks  with  overlapping  assemblies  created  with  the  ratio  assembly 

definition the clustering parameter REE  had a non-linear relationship to total intra-

assembly  connection  weight  rec ,  which was also  dependent  on the number  of 

assemblies in the network  N assembly  (Figure 2.7A). The increase in  rec  was sub-

linear,  and  slower  with  greater  Nassembly .  Networks  created  with  the  equal 

assemblies definition had a linear relationship with Pin
EE  which was independent of 

Nassembly  and  whether  or  not  assemblies  overlapped.  As  the  equal  assemblies 

definition was created specifically to maintain this independence, this result simply 

confirmed that the algorithm had functioned correctly.

For the overlapping assembly networks created with the equal assemblies routine, 

the effect of increased clustering on the mean firing rate and the top assembly / 

mean firing rate ratio was similar to the effect of increased clustering on networks 

with non-overlapping assemblies, and was approximately equal for all 3 levels of 

Nassembly  (Figure  2.7).  The  mean  separation  measure  (Figure  2.8A)  appears  to 

marginally  decrease at  higher levels  of  Pin
EE  with increasing  Nassembly ,  while  the 

mean transition rate and Fano factor are consistently slightly higher with increasing 

Nassembly . This will be discussed in more depth later.

The response of the ratio networks in terms of the various activity measures was 

strongly  dependent  on  the  number  of  embedded  assemblies  Nassembly .  At  the 

Nassembly=10  level, the relationship between the measures and clustering parameter 
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REE  was  qualitatively  similar  to  the  corresponding  relationship  in  the  EQASS 

networks,  although  slightly  weaker.  At  the  higher  levels  Nassembly=20  and 

N assembly=30  the relationship between clustering and the measures is considerably 

weaker  in  most  cases,  as  might  be  predicted  from  the  lower  intra-assembly 

connectivity rec . The relationship also differed qualitatively in some respects, which 

can be seen most clearly in the results at the N assembly=30  level. Salient examples 

of these qualitative differences include the considerable increase in overall network 

firing  rate  but  relatively  small  increases  in  the  firing  rate  ratio  and  separation 

measures  (Figure  2.7B,  C  and  Figure  2.8A),  and  sharp  large  increase  in  the 

transition rate measure with a relatively  small  increase in  the mean Fano factor 

(Figure 2.8B, C). 

The  primary  reason for  the  loss  of  assembly  activation  dynamics  here  was the 

decrease in recurrent connectivity with increasing numbers of embedded clusters 

(Figure 2.7A). The increase in the total number of clusters in the network causes an 

increase  in  the  mean number  of  clusters  of  which  each  unit  is  a  member  and 

therefore an increase in the mean number of assembly co-members. As the ratio of 

within-cluster to without-cluster connection probabilities is determined by REE=
pin

EE

pout
EE  

with  the  cumulative  probability  of  any  connection  held  constant  at  pEE  by  a 

normalization factor, the inwards recurrent connection probability pin
EE  is determined 

individually  for  each unit  as  a  function  of  the  number  of  assembly  co-members 

according to  pin
EE= PEE REE N E

N in
E (REE−1)+N E ,  where  N in

E  is the number of assembly co-

members  for  the  unit  being  considered.  The  increases  in  N in
E  caused  by  the 

increase in overlaps therefore cause a lower within-cluster connection probability 

pin
EE  and correspondingly a decrease in recurrent excitation.

The higher mean firing rates, despite reduced assembly-specific activations, were 

partly a consequence of the effect of increased general excitatory transmission with 

increases in REE  and Nassembly , both of which increase the proportion of assembly 

connections in the network, which have a fixed higher strength than non-assembly 
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connections. As total connection weight is not normalized in the ratio definition, this 

leads to higher overall excitatory-excitatory connection strengths, and higher mean 

firing  rates.  The  increase  in  total  excitatory-excitatory  connection  strength  as  a 

function of Nassembly  and REE  is shown in Figure 2.9A. The higher transition rates in 

absence of assembly activation dynamics  (Figure 2.8B) were largely caused by 

these higher firing rates and an artifact of the method used to determine assembly 

activations, as the higher mean firing rates caused the firing rates of all neurons to 

approach the activation threshold of 10Hz (2.2.1.3) and the incorrect detection of 

assembly-specific activations. Figures 2.9B and C illustrate this behavior.
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 2.2.3 Switching activation dynamics and phase 

transitions in networks with overlapping clusters

We now  take  a  more  detailed  look  at  spiking  dynamics  of  clustered  networks, 

highlighting  3  qualitatively  different  states  that  are  found  with  different  levels  of 

clustering.  For  brevity,  we  restrict  our  analysis  to  networks  with  overlapping 

assemblies created by the equal assemblies algorithm.

With fixed assembly size but progressively increasing degree of clustering within 

assemblies, spontaneous network activity transitions through 3 qualitatively different 

stages (Figure 2.10). At low levels of clustering, activity is essentially identical to that 

of unclustered networks, with approximately Poisson firing and fast oscillations at 

the population level, as shown in figures  2.1 and  2.2. Above a threshold level of 

clustering,  firing  rates  within  individual  assemblies  become  bimodal,  showing 

transient periods of activation which become higher-rate and longer in duration with 

increased clustering, before reaching a peak (Figure 2.8).  In this state, up-states 

occur only in one assembly at a time, with brief periods of overlap, indicating mutual 

inhibition through the inhibitory population (Figure 2.11). The mean firing rate,  CV  

and Fano factor of excitatory spiking is considerably higher than the baseline state, 

indicating “bursting” spiking at the neuron level (Figure 2.12). The power spectrum 

of spiking shows a peak in the <2Hz range, in addition to the peaks at approximately 

50Hz and 200Hz that are seen in the baseline state. This is a result of sequential 

switching of activation between assemblies, which the transition rate metric shows 

as occurring at an approximately <2Hz rate at moderate clustering levels (Figure

2.8B). This subject is covered further in section 2.2.5.

As within-cluster connectivity increases, activation states start to occur in multiple 

assemblies simultaneously. Additionally, the networks more frequently enter a state 

of highly synchronous and regular spiking, similar to that described by Brunel (2000) 

in strongly-connected sparse random networks of integrate and fire neurons. The 

distributions of neuron firing rates,  CV  and Fano factors are shifted still further to 

the  right   (Figure  2.14B,  C and D).  The power  spectrum and autocorrelation  of 

spiking  in  the  highly  synchronous  state  are  dominated  by  the  effect  of  the 

oscillations (Figure 2.14E and F). The peaks in the power spectrum (Figure 2.14E) 
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at harmonics of the oscillation frequency of ~50Hz are due to the pulse-like signal 

produced by the binned spikes.
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 2.2.4 Adaptation current w during switching activation 

dynamics

As shown in  Figure 2.15, the adaptation current  w in excitatory units was strongly 

modulated by the activation state of the assemblies to which the unit belonged. By 

progressively reducing excitability with time in the activated state, this adaptation 

current increased the probability that a network would fall out of the activated state 

as a function of time. Test simulations (results not shown) found that the rate of 

activation  transitions  increased  and  became more  regular  with  increases  of  the 

adaptation parameters a and b, although transitions still occurred when adaptation 

was removed. 
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 2.2.5 Clustering and delta oscillations

The clustering parameters modulated the power of delta-band oscillations in network 

spiking,  which  appears  to  have  been  mediated  through  the  switching  activation 

dynamics. This can be inferred by comparing the measured delta oscillation power 

with the measured Fano factor, shown in Figure 2.16A. While the correspondences 

are not perfect, they do show an emergence of delta oscillations with the emergence 

of >1 Fano factor values at approximately Pconn ,in=0.17 , which corresponds to the 

emergence  of  switching  behavior.  The  power  in  the  delta  band  increases 

approximately with firing rate in networks with overlapping clusters (Figure 2.16B). 

The rate at which activation switches between assemblies is in the delta band of 0-

4Hz (Figure 2.8B), suggesting a causal link between the two.
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 2.3 Effects of clustering on network connectivity 

structure

The variations in spiking activity just described are due to variations in the excitatory 

connection matrix. The question arises of which qualities of the connection matrix 

cause  the  switching  activation  dynamics.  The  connection  matrix  itself  is  highly 

complex,  with  (N E)2  possible  connections,  and  therefore  requires  descriptive 

measures  to  be  understood.  The  clustering  parameters  REE  and  Pin
EE  are 

themselves descriptive measures, and have a direct effect on the intra-assembly 

connection weight  rec .  These have a clear but simple effect  on dynamics, with 

activation occurring after a threshold value and cumulative spiking in the activated 

state increasing with further increases of these values. In this section we preform 

exploratory  analysis  of  the  excitatory  connection  matrix  using  the  clustering 

coefficient measure and with the eigendecomposition of the matrix, in order to find 

properties that determine the switching activation dynamics described previously.

 2.3.1 Clustering coefficient

The connection matrix can be described as a directed graph or network, and can be 

analyzed with graph and network analysis measures. The clustering coefficient (CC) 

is one such measure which could potentially be informative in the present context. 

The original definition of this quantifies clustering by counting the instances of two 

mutually-connected nodes both being directly connected to a third node (thereby 

forming a “triangle”), and normalizing this by the maximum number of such triangles 

that could be formed given the number of connections possessed by the two nodes. 

As this original definition of the CC was for binary undirected graphs, we use an 

extension  of  the  clustering  coefficient  for  networks  with  weighted,  directed 

connections (Fagiolo 2007), which considers all 8 potential configurations of directed 

triangles between three units and their connection weights:

~
Ci

D(W )=
~
ti

D

~
T i

D
=

[W [1 /3 ]+(W T )[1 /3 ]]ii
3

2 [d i
tot (di

tot−1)−2di
↔ ]

(18)
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where  
~
Ci

D(W )  is the weighted directed clustering coefficient of unit  i of weighted 

directed connection matrix W, 
~
ti

D  is the number of triangles which include unit i and 

~
T i

D  is the maximum possible number of triangles given the degree of the unit, d i
tot  

is the total degree (in + out connections) of the unit, 2d i
↔  is the number of bilateral 

sets of connections of  i, i.e. the number of other units which a connection is both 

sent to and received from. The subscript ii denotes the value at location (i,i) of the 

corresponding  matrix,  i.e.  the  diagonal  entry  corresponding  to  unit i.  The 

implementation  used  was  taken  from  the  Python  conversion  of  the  Brain 

Connectivity Toolbox (Rubinov and Sporns 2010).

 2.3.1.1 Results

The clustering coefficient measure 
~
Ci

D  as described above was measured for each 

unit in each of the 24 randomly generated connection matrices for both clustering 

routines at each level of clustering. This was only calculated in respect to excitatory-

excitatory  connections,  as  other  connection  types  remained  random  in  all 

simulations.  The  mean and  SD of  these  measurements  in  respect  to  clustering 

parameters  REE  and Pin
EE  is plotted in Figure 2.17.

For the ratio networks, mean clustering coefficient  
~
Ci

D  as described above rises 

monotonically  and  supralinearly  with  increasing  clustering  REE .  In  the  case  of 

overlapping assemblies, 
~
Ci

D  increases with number of assemblies N assembly  in ratio 

networks (Figure 2.17, bottom left).

The  relationship  between  parameters  and  
~
Ci

D  is  more  complex  in  the  equal 

assembly networks, as the mean value does not increase monotonically for either 

Nassembly  and  Pin
EE  (Figure 2.17).  For increasing  Pin

EE ,  mean  
~
Ci

D  first decreases 

before  rising,  with  this  pattern  being  more  pronounced  with  higher  N assembly . 

Increased  Pin
EE  caused instead a monotonic increase in the standard deviation of 

~
Ci

D ,  with closer inspection revealing the development of a broader and bimodal 
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distribution.  Overall,  the  mean  weighted  directed  clustering  coefficient  does  not 

show a clear correspondence to any of the measures of network activity used in this 

study. This indicates that this measure should be interpreted carefully when applied 

to neural networks  (Saramäki et al. 2007), and in particular that the distribution of 

values should be considered in addition to the mean. This is in agreement with the 

general  conclusions  of  the  analysis  of Saramäki  et  al.  (2007),  that  clustering 

coefficient measures have subtle and specific relationships with network structure.
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 2.3.2 Connection matrix eigenvalue analysis

The  connections  between  neurons  can  be  represented  as  a  connection  weight 

matrix  W, which is amenable to analysis with linear algebra methods. This can be 

used to give insight into the qualities of the connectivity matrix that lead to bistability 

and  switching  behavior,  although  the  nonlinearities  of  the  spiking  neuron  and 

synapse  models  make  a  full  analysis  of  the  structure-dynamics  relationship 

intractable  (Schaub et  al.  2015).  Following previous analyses,  we calculated the 

eigendecomposition  of  each  of  the  24  randomly  generated  connection  matrices 

produced  by  each  of  the  clustering  routines  at  each  level  of  the  clustering 

parameters  REE  and  pin
EE .  This  was  done  as  an  exploratory  analysis  to  find 
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features of the eigenvalue spectrum that are associated with switching activation 

dynamics or other measured qualities, with the expectation that clustering sufficient 

to change activity regimes would be associated with the emergence of a subgroup 

of eigenvalues that are separated from the main group (Schaub et al. 2015).

As with the clustering coefficient,  the eigendecomposition was only  calculated in 

respect  to  excitatory-excitatory connections,  as other  connection  types remained 

random in all simulations, and because the differences between the excitatory and 

inhibitory neuron and synapse parameters would complicate the interpretation of the 

full connection matrix.

The  eigenvalue  spectrum  of  a  random  graph  such  as  a  randomly-connected 

connection matrix has, with a few exceptions, a circular distribution in the complex 

plane  (Rajan and Abbott 2006). This holds perfectly when matrix values sum to 0 

and positive and negative elements have the same variance, which is not the case 

here.  Here,  the excitatory-excitatory connection matrix has an isolated large real 

eigenvalue which corresponds to the recurrent excitatory drive of the network, with a 

value equal to K in
EE μEE , the number of input connections per unit multiplied by the 

mean excitatory connection weight. The remaining values in an unclustered matrix 

lie  within  a  circle  with  a  radius  of  √1+K in
EE(μEE)2

 (Rajan  and Abbott  2006),  as 

shown in Figure 2.18.

Above a threshold level of the clustering parameter  pin
EE , the addition of clustered 

assemblies to a connection matrix with the equal assemblies routine produces a 

subset of eigenvalues with real parts that are outside this circle, which correspond to 

the assembly-specific recurrent excitation within each assembly. The assemblies in 

this case can be conceived as vector directions which are amplified when multiplied 

by  the  connection  matrix.  Schaub  et  al.  (2015) stress  the  importance  of  an 

“eigenvalue gap” in the onset of switching activation dynamics. An eigenvalue gap is 

the distance in the real plane between the smallest of the group of eigenvalues 

corresponding to the assemblies and the main group of eigenvalues lying within the 

circle (Figure 2.18).  We measured the eigenvalue gap as the largest  gap in the 

ordered  list  of  the  real  parts  of  all  eigenvalues  excluding  the  large  eigenvalue 

corresponding to  the overall  recurrent  drive.  As  an additional  measure,  we also 

measured the mean of the “assembly eigenvalues”, those eigenvalues with a real 
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value greater than the radius of the circle of the large group of eigenvalues defined 

by √1+K in
EE(μEE)2

. Finally, we measured the standard deviation of the real parts of 

the assembly eigenvalues.

 2.3.2.1 Results

The relationship of these metrics to clustering parameters is shown in Figures 2.20 

and  2.21.  Qualitative  differences  are  evident  between  the  matrices  with  non-

overlapping  and  overlapping  assemblies,  with  notable  differences  between  the 

overlapping assembly matrices generated by the ratio and equal assembly routines. 

In  this  respect  the eigenvalues of  the connection matrices  resemble the spiking 

dynamics of the simulated networks.

The eigenvalue metric output is qualitatively similar for non-overlapping assembly 

matrices  created  by  both  the  ratio  and  equal  assembly  definitions,  with  an 

“assembly” group of eigenvalues emerging after a threshold level of clustering, and 

both the mean of this group and the eigenvalue gap increasing linearly as a function 

of clustering after (Figure 2.20A and B). The distribution of assembly eigenvalues is 

initially  relatively  large,  before  becoming  more  compact  as  clustering  increases 

(Figure 2.20C).

The  eigenvalue  gap  measurement  has  looser  relationships  with  clustering 

parameters and spiking dynamics when assemblies are allowed to overlap (Figure

2.21), with the relationships becoming looser with increasing number of assemblies 

Nassembly . This is also true for networks created with the equal assemblies algorithm, 

in  which  switching  activation  dynamics  were  largely  independent  of  Nassembly . 

However,  the  mean  of  the  emergent  group  of  assembly  eigenvalues  was  also 

virtually  independent  of  Nassembly  in  matrices  created  by  the  equal  assembly 

algorithm(Figure  2.21B).  As  with  the  non-overlapping  assembly  matrices,  the 

emergence  of  a  group  of  eigenvalues  with  a  mean  real  value  greater  than  a 

threshold value of  √1+K in
EE(μEE)2  slightly  preceded the emergence of  assembly 

activation dynamics in simulations. The measurements of the standard deviation of 

the assembly eigenvalues revealed a wider distribution in comparison to the non-

overlapping  assembly  matrices  (Figure  2.19 and  Figure  2.21B),  and  that  the 

53



distribution became wider with increased clustering and number of assemblies. This 

increased variance of eigenvalues appears to account for the discrepancy between 

the  eigenvalue  gap  and  the  assembly  eigenvalue  mean.  The  finding  of  weak 

association of the eigenvalue gap measure with switching activation and the strong 

association of the mean assembly eigenvalue measure can be considered a minor 

correction to the conclusions of Schaub et al. (2015).

The difference between matrices with overlapping and non-overlapping assemblies 

in this respect can be explained in terms of the eigenvectors associated with the 

assembly  eigenvalues.  While  non-overlapping  recurrent  assemblies  can  be 

described in terms of orthogonal directions in the  NE -dimensional feature space, 

the overlapping assemblies correspond to non-orthogonal directions. As recurrent 

excitation within assemblies can be considered as matrix amplification of activity in 

the  “direction”  of  the  assembly,  orthogonal  assemblies  with  equal  recurrent 

54

 

 
 



excitation  correspond  to  a  set  of  approximately  equal  eigenvalues,  with  some 

variance due to the semi-randomness of the connectivity. Equal amplification in non-

orthogonal directions, on the other hand, will  correspond to a more varied set of 

eigenvalues, whose associated eigenvectors can be related to commonalities and 

differences between the assemblies.
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 2.4 Discussion

The simulation results presented demonstrate that embedding clustered groups into 

balanced  networks  of  spiking  neurons  fundamentally  changes  spiking  dynamics. 

This replicates and extends previous work in this area  (Litwin-Kumar and Doiron 

2012; Schaub et al. 2015; McDonnell and Ward 2014).

The results indicate that intra-assembly recurrent  excitatory connectivity is a key 

determinant of activation dynamics, and that this knowledge can be used to predict 

specific types of spiking dynamics when setting connections in a neural network. We 

have also specified an algorithm which generates sparse connection matrices with 

embedded  assemblies  with  specific  levels  of  recurrent  connectivity.  This  was 

compared  to  the  ratio-based  clustering  definition  specified  by  Litwin-Kumar  and 

Doiron (2012), in which intra-assembly excitation and therefore dynamics is reduced 

when assemblies overlap. When comparing the two, it should be stated for the sake 

of fairness that the clustering definition of Litwin-Kumar and Doiron (2012) was not 

designed to fulfill the measurement criteria used here (assembly-specific activations 

in networks with densely overlapping assemblies), and so should not be considered 

inferior in terms of design.

The  association  between  delta  band  oscillations,  variability  of  firing  rates  and 

switching activation dynamics in this study suggests that these could be related in 

the cortex. We found that the distribution of assemblies (i.e. whether or not units can 

be members of multiple assemblies) has a direct effect on statistical descriptions of 

network activity. Specifically, we found that overlapping assemblies were associated 

with more frequent state transitions, with a corresponding effect on delta oscillations 

and firing rate variance. This effect will be further explored later in this thesis.

Compared  to  other  computational  studies,  the  network  model  we  used  had  an 

intermediate  level  of  biophysical  realism.  The network used an adapting  spiking 

neuron  model,  a  conductance  synaptic  model  with  multiple  channel  types  and 

synaptic  depression,  and  sparse  excitatory  connectivity  and  moderately  dense 

nonspecific  inhibitory connectivity.  This is more realistic  than models with binary, 

firing rate or other simple spiking units and all-to-all network connectivity, but less 

realistic than models with multiple neuron types, multi-compartment neuron models, 
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or  anatomically  accurate  network  topology  and  connectivity.  While  greater 

biophysical realism generally increases biological plausibility, all else being equal, 

increased complexity also decreases analytical tractability.  The relatively complex 

model  used  here  builds  upon  work  reported  in  previous  studies,  and  we  refer 

interested readers to these studies for further detail and theoretical justification of 

model  elements,  particularly  in  regards  to  the  function  of  NMDA synapses  and 

synaptic biophysics in supporting bistability of firing rates at physiologically realistic 

rates (Brunel and Wang 2001; Durstewitz, Seamans, and Sejnowski 2000a; Wang 

1999).  Neuron  adaptation  currents  are  relatively  unusual  in  balanced  network 

models, perhaps because analysis has often focused on steady-state activity, where 

adaptation  is  held  constant.  Their  inclusion  here  was  partly  inspired  by  their 

inclusion in models of neural computation which use rate neuron models, in which 

adaptation drives transitions between attractor states  (Wennekers and Palm 2009; 

Russo  et  al.  2008;  Gros  2007).  Adaptation  has  a  similar  function  of  driving 

transitions between states in the model presented here. In previous spiking models 

of firing rate transitions, transitions have been driven by firing rate fluctuations due to 

irregular spiking and finite-size effects (Litwin-Kumar and Doiron 2012; Schaub et al. 

2015; Moreno-Bote, Rinzel, and Rubin 2007). While irregular spiking and finite size 

effects  certainly  contribute  to  transition  dynamics  in  the  model  shown here,  the 

inclusion of an adaptation current increases the regularity and frequency of state 

transitions. Neuron adaptation currents are certainly biophysically realistic and are a 

well-explored  inclusion  in  neuron  and  network  models  (Hertäg  et  al.  2012; 

Durstewitz 2007; Brette and Gerstner 2005). At least two previous spiking network 

studies have linked adaptation with firing-rate transitions and delta band oscillations, 

although  not  necessarily  in  the  context  of  assembly  attractor  states  (Compte, 

Sanchez-Vives, et al. 2003; Durstewitz 2007).

The network showed winner-take-all dynamics at intermediate levels of clustering, in 

which the neurons of single assembly fired at a high rate, and neurons not belonging 

to  this  assembly  fired  at  a  lower  rate.  This  dynamical  regime  allows  a  simple 

interpretation of  the system state in  terms of  attractor  states corresponding to a 

single assembly.  The sequential  transitions of  the network between these states 

also potentially allows a macroscopic description of dynamics in terms of activity 

trajectories and transitions. This will be explored in the next section.
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We found that the network produced highly synchronized firing at higher levels of 

clustering.  Comparable  states  have  been  observed  in  simpler  random  spiking 

networks at high levels of connectivity (Brunel 2000), but are not reported in-vivo as 

far as we are aware. The biological plausibility and relevance of these fast regular 

spiking states is uncertain. The occurrence of such states is reduced by increased 

non-uniformity  of  synaptic  delays  (Brunel  2000),  and  it  may  be  that  biological 

networks do not possess the regularity and reliability to sustain such states.

Higher  clustering  rates  produced  states  in  which  multiple  assemblies  were 

simultaneously activated. Transitions in and out of activation states also occurred in 

this  regime,  with  the  transitions  largely  asynchronous  between  the  different 

assemblies. These dynamics would be more challenging to describe and analyze in 

comparison  to  the  single  assembly  attractor  states  that  occur  with  moderate 

clustering.

Worthy of  note is the distributed nature of  assemblies when they are allowed to 

randomly  overlap.  Each  neuron  is  on  average  a  member  of  3  assemblies  in  a 

network with 30 embedded assemblies, and so knowledge of the state of multiple 

neurons  is  generally  necessary  to  determine  the  attractor  state  of  the  network. 

Similar  phenomena  have  been  reported  during  in-vivo  experimentation. 

Determination of system state from multicellular experimental  recordings requires 

statistical techniques for estimating the system state from the subset of neurons for 

which data are available  (Seidemann et al. 1996; Balaguer-Ballester et al. 2011). 

Such techniques are not necessary for analysis of the simulated network, as the 

output of all neurons is available.
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 2.5 Standard simulation parameters

Table 1: Standard simulation parameters

Neuron and synapse parameters

Symbol Value

Cm 200 pF

 gL
ex 10 nS

gL
inh 15 nS

EL -70 mV

θ -50 mV

V reset -80 mV

τref
ex  5 ms

τref
inh 2 ms

a 4 nS

b 2.5 pA
τw 1000 ms

Iinj 350 mV

τon
AMPA 0.1 ms

τoff
AMPA 1.0 ms

gpeak
AMPA 1 nS

τon
NMDA 2.0 ms

τoff
NMDA 100.0 ms

gpeak
NMDA 0.09 nS

τon
GABA 0.1 ms

τoff
GABA 3.0 ms

gpeak
GABA 1 nS

EL
ex 0 mV

EL
inh -80 mV

Dex 1 – 5 ms (uniform distribution)

Dinh 1 ms
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Symbol Value

U 0.1
τrec 200 ms

Network parameters

Symbol Value

NE 1000

N I 250

pEE 0.1

pEI 0.5

pIE 0.5

pII 0.5

J EE 65

J EI 6

J IE 18

J II 5
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 3 Markov transition dynamics and sequences 
as emergent properties of clustered 
networks

 3.1 Introduction

In the simulations described in the previous section, the state of the neural network 

is readily interpretable in terms of the activation state of the embedded assemblies. 

This  is  particularly  the case for  those parameter combinations in  which a single 

assembly is in the activated state at most times of the simulation. The sequential 

switching nature of these states suggests an interpretation of network dynamics in 

terms  of  trajectories  through  network  state  space,  and  particularly  in  terms  of 

transitions between discrete states.

In  the  latter  case,  the  dynamics  of  transitions  between  discrete  states  can  be 

analyzed within the framework of Markov chains, in which a system is described in 

terms of a set of states S={ s1, s2, …., sr }  and a set of transition probabilities, such 

that probability pij  is the probability of a transition from state s i  to state s j . These 

can be conveniently represented in the form of a transition matrix, which facilitates 

analysis (Grinstead and Snell 2010).

In this section we describe a process by which the activity in clustered balanced 

networks is converted to a set  of  discrete states,  and dynamics described as a 

sequence of states. We test statistically the hypothesis that transition probabilities 

are  state-dependent  rather  than  uniform,  and  quantify  the  extent  to  which 

probabilities are non-uniform. We furthermore examine the relationship of this non-

uniformity to the degree of clustering in the network, and quantify the relationship 

between  individual  transition  probabilities  and  structural  features  of  networks, 

particularly the correlations between clusters. Finally, we propose a mechanism by 

which  transitions  are  determined,  with  reference  to  previous  neural  models  of 

sequence generation (Russo et al. 2008; Rabinovich et al. 2001).
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 3.2 Methods

We created representations of network dynamics as a transition matrix by sampling 

network activity during extended simulations. This process is depicted schematically 

in  Figure  3.1.  For  this,  we  restricted  simulations  to  networks  with  Nassembly=20  

overlapping assemblies created with the equal assemblies algorithm as before, as 

these had previously been found to show switching activation dynamics over a wide 

range of clustering levels. Simulations were run with the clustering parameter pin
EE  

systematically varied from 0.1 to 0.3 in increments of 0.01. For each level of pin
EE , 8 

independent  network  instances  were  created  using  different  random  number 

generator seeds. Simulations were run for 30 minutes (1800000 ms) of simulated 

time, plus an additional 5000ms which was discarded in subsequent analysis so as 

to remove initial transients. 

To produce a simplified characterization of network state in terms of the identity of a 

single assembly, the spiking activity was binned with a resolution of 100ms and the 

activation state A of each assembly was calculated as described in section 2.2.1.3. 

The resulting set of time series was then further processed to define the system 

state at each time by determining the most activated assembly at each time point 

(i.e. that with the highest value of  A) and setting the state correspondingly, except 

those periods where no assembly had an activation value greater than a threshold 

value of A=0.7 , in which case the state was set to the same state as the previous 

time step. This was to allow for brief low-activity periods during transitions between 

states.

The resulting time series was then further processed to produce a transition matrix 

by counting the number of times that the time series changed from state x to state y 

and recording this at t xy  of transition count matrix T. This was then converted to a 

matrix  of  transition  probabilities  P by  dividing each entry  t xy  by  the  sum of  all 

transitions from state x, i.e. pxy=
t xy

∑
j=1

Nassembly

t xj

.

We chose only to count and estimate transition probabilities for transitions between 
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different states, and not for the probability that the system remains in the same state 

for  successive time steps.  This was because the assembly state of  the network 

could  be  reasonably  assumed  to  be  a  time  inhomogenous  rather  than  a  time 

homogenous process, and as such would not be well-represented by a transition 

matrix which represents the probability of a transition as independent of the number 

of steps in which the system had already been in its current state. One reason for 

this inhomogeneity was that transitions between states were partly driven by the 

depolarizing conductance w, which increases in magnitude while assemblies are in 

the  activated  state,  thereby  increasing  the  likelihood  of  a  switch  to  a  different 

assembly state with time (Figure 2.15).

 3.3 Analysis methods and results

As  before,  switching  activation  dynamics  were  produced  by  networks  with 

pin
EE≥0.17 . Transition matrices were calculated for all networks at these levels, but 

were  discarded  for  pin
EE=0.17  due  to  insufficient  numbers  of  transitions.  Mean 

number of transitions as a function of clustering is shown in Figure 3.2A.

 3.3.1 Quantification of deterministic transition 

dynamics

Transition matrices showed large disparities in transition probabilities and appeared 

to clearly be the result of systems with inherent dynamical structures. We attempted 

to quantify the extent that this was the case, in order to obtain statistical confirmation 

that  the  system  produces  predictable  sequences  at  the  level  of  assembly 

activations,  to  compare  the  degree  to  which  different  systems  are  deterministic 

rather than random, and to be able to make correspondences between the non-

randomness of dynamics and features of the systems that produce them.

The activation statistics suggested a potentially simple form of non-random temporal 

structure that could be considered trivial. The counts of activations per assembly 

were highly inhomogeneous, which suggests that some states simply have larger 

basins of attraction, and so are more active and 'attractive' independent of current 

activation state.  An example plot  of  typical  activation counts during a 30 minute 

simulation  is  shown  in  Figure  3.2B.  Transition  dynamics  could  therefore  be 
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determined by a kind of unbiased competition between sub-active assemblies to 

become the new most-active assembly.

We defined multiple measures and tests of the inhomogeneity and predictability of 

transition dynamics that are based on Pearson's chi-squared test. The first was a 

test of the inhomogeneity of activation counts for each assembly. This is done by 

calculating the chi-squared statistic Χ 2 , with the null hypothesis of an equal number 

of activations per assembly:

Χ 2= ∑
i=0

N assembly (Οi−E i)
2

Ei

(19)
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where  Οi  is  the observed frequency of  activations  of  assembly  i  ,  Ei  is  the 

expected value of  Οi , which in this case is  N assembly /n , where  n  is the total 

number of activations.

Additionally,  we  also  defined  a  normalized  chi-squared  statistic  that  we  use  to 

compare homogeneity  of  distributions  as  a  function  of  parameters.  As  a  test  of 

deviation from a given distribution the chi-squared statistic is sensitive to the number 

of samples available. It is only exact in the case of an infinite number of samples, 

and tends to be conservative when sample numbers are low, particularly when the 

expected  frequencies  of  categories  are  low  (Cressie  and  Read  1989).  Total 

transition numbers in each 30 minute simulation had a wide, parameter-dependent 

distribution  in  the  simulations,  which  had  a  corresponding  effect  on  expected 

frequency counts  (Figure 3.2B).  To compensate for this, we therefore calculated a 

normalized chi-squared statistic by dividing counts by the total number of activations 

n, so that the total number of transitions was equal for all simulations. The resulting 

statistic can be considered a measure of the degree of inhomogeneity of activation 

counts.

The  results  of  both  the  normalized  and  unnormalized  chi-squared  statistics  are 

shown in  Figure 3.3A and B. The unnormalized chi-squared statistic  Χ 2  (d.f.=19) 

had a mean value of >500 (p<0.0001) for all values of  pin
EE≥0.17 , confirming that 

activation probabilities were unequal.  The normalized statistic  indicated peaks in 

activation  inhomogeneity  at  pin
EE=0.18  and  in  the  range  pin

EE=0.22−0.25 , 

suggesting  a  loose  association  with  low total  transition  counts  (compare  Figure

3.2A).

68



69

 

 
 
 



 3.3.2 State-dependent relative transition probabilities

The strong hypothesis that we are interested in is that relative transition probabilities 

are state dependent,  such that the relative probabilities of the system moving to 

states C or D are different depending on whether the system is currently in state A or 

B. As the transition matrix we use is constructed such that transitions from a state to 

the same state do not  occur,  the probability of  a transition of a state to itself  is 

always zero, and so absolute transition probabilities are always to some extent state 

dependent. However, it could be possible that the relative activation probabilities of 

the other assemblies are state independent. If this is the case, and the probabilities 

of the transitions to the other states depend only on the intrinsic general excitability 

of each state, then this is a simpler and computationally less interesting form of 

dynamics than the alternative hypothesis that the relative probabilities and levels of 

excitability differ depending on current state.

We create an expected distribution which corresponds to this null hypothesis that 

relative transition probabilities are state-independent.

Eij=
nin j

∑
j=0 , j≠i

N assembly

n j

(20)

where  Eij  is  the expected number of transitions from state i to  j and  ni  is the 

number of occurrences of state i.

The chi-squared measure for the test of state-dependent transition probabilities is 

therefore

Χ 2= ∑
i=0

N assembly

∑
j=0 , j≠i

Nassembly (Οij−E ij)
2

E ij

(21)

As  with  the  assembly  activation  counts,  we  defined  a  normalized  chi-squared 

statistic in order to compare the state-dependence of different parameter levels. As 

before, we calculated a normalized chi-squared statistic by first dividing transition 

counts by the total number of transitions n, so that the total number of transitions is 

equal  for  all  simulations.  Similarly  to  the  normalized  chi-squared  measure  of 
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activation count inhomogeneity, this can be considered a measure of the degree of 

state-dependence,  i.e.  the degree to which probabilities of  transitions to specific 

states differ depending on the current state.

The results of these measures are shown in Figure 3.3C and D. The mean (SD) chi-

squared statistic Χ 2  (d.f.=324) rises from 472 (91) at pin
EE=0.18  to 22384 (2811) at 

pin
EE=0.3 ,  which corresponds to p<0.05 for  pin

EE=0.18  and p<0.0001 for  higher 

values. This indicates that relative transition probabilities were state-dependent, with 

high  probability  for  higher  clustering  values.  The  normalized  chi-squared  value 

shows a non-monotonic relationship to clustering level which resembles that of of 

the top assembly / mean firing rate ratio metric, rising from a low level at pin
EE≈0.18 , 

reaching a peak at pin
EE≈0.23  then falling to an intermediate level. It is notable that 

the  form  of  the  normalized  chi-squared  state-dependence  graph  has  a  close 

correspondence to the firing rate ratio / Pin
EE  graph (Figure 2.7C).

The  drawback  of  the  normalization  measure  that  we  apply  is  the  proportionally 

greater amplification of chance variation in simulations with lower transition counts, 

which could potentially inflate values. As a control against this potential bias, we 

repeated the analysis with an equalized dataset using only the first 900 transitions 

from each simulation, which produced results which were virtually identical to those 

produced  using  the  full  dataset  (results  shown  in  appendix  in  Figure  6.1).  The 

results of the simulations at Pin
EE=0.18  and Pin

EE=0.22  also demonstrate that there 

is  not  a  strong  relationship  between  total  transition  count  and  normalized  chi-

squared  value,  as  the simulations  at  these parameter  levels  have  similar  mean 

numbers of total transitions (1091 and 1392 respectively, Figure 3.2A) and levels of 

activation inequality (Figure 3.3A and B), but are at opposite ends of the range of 

normalized chi-squared values for state-dependence of transitions (Figure 3.3D).

 3.3.3 Network structure and transition probability

The finding  of  deterministic  transitions  raises  the questions  of  how activation  is 

passed  between  assemblies  and  which  features  of  network  structure  determine 

transition probability.

The activity of the spiking network here is similar to that of the networks of Potts 
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units created by Treves and others (Treves 2005; Russo et al. 2008). The Potts unit, 

or  model,  is  a generalization of  the Ising spin-state model,  which in this case is 

taken to represent a local neural network which has multiple attracting states. In 

latching models, Potts units are connected together in a larger network in which 

multiple attractor states are embedded, each of which corresponds to a subset of 

units being in unit-specific attractor states, so that a global attractor state consists of 

the co-occurrence of a set of sub-attractors. An adapting term is added to the Potts 

units, so that the system falls out of each attracting state after the state is reached, 

so allowing the system to move to a different attractor.

While the network units of the Potts associative memory network are very different 

from the spiking units presented here, the qualitative activity of the Potts network for 

some parameter combinations is notably similar to the switching activation regime 

(Figure  3.4).  The  transitions  between  states  in  the  Potts  network  are  also 

probabilistic,  and  a  mechanism  underlying  these  transitions  has  been  termed 

“latching”, a process involving activity being passed between correlated attractors, 

such that activity in one attractor is initiated by a subset of units of that attractor 

which are also active in the previous attractor state. This activity is associated with 

correlations between successively active attractor states and higher levels of activity 

within  two  attractors  at  the  time  at  which  the  second  attractor  becomes  more 

activated that the first.

We note here that our use of the term “latching” is slightly different from that used by 

Treves and colleagues, who described all transitions in their networks as latching 

transitions,  making  a  distinction  between  latching  transitions  between  correlated 

attractors, which proceeded as described in the previous paragraph, and latching 

transitions  between  non-correlated  attractors,  which  occurred  via  a  different 

mechanism. We use the term latching to denote only the first transition type, while 

we characterize other transitions as resulting from a process in which the currently-

active assembly spontaneously falls out of the high-activity state due to fatigue or 

fluctuation  of  the  recurrent  synaptic  drive,  and  another  assembly  spontaneously 

entering the high-activity state in its place.

Transitions  between  in  attractor  states  in  the  spiking  network  can  also  be 

characterized by the activation state of the two attractors at the point of transition, 

suggesting that a similar latching process could determine transitions (Figure 3.4). In 
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order to test this hypothesis we measured various aspects of network structure and 

activity during the extended simulations. We hypothesized that, similarly to latching 

Potts networks (Russo et al. 2008), transition probabilities and transition cross-over 

levels would be higher for positively correlated assemblies.

 3.3.3.1 Transition level

The “transition level”,  the activity level  A i=A j  at  which the identity of the most 

activated assembly transitions from assembly  i to assembly  j, was measured for 

each transition and the mean transition level  for  each transition identity  tij  was 
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calculated. If, between activations, a bin period occurred in which the activity of both 

assemblies dropped below A=0.7  (such as in Figure 3.4B, right), both assemblies 

were assumed to have fallen to baseline activity levels during the transition. In these 

cases the transition level was recorded as the baseline activity level, which was set 

to be the mean activity level of sub-threshold assemblies over the duration of the 

simulation.

 3.3.3.2 Assembly overlap, assembly projection, and Z-scores.

As a simple measure of the correlation between assemblies, the overlap between 

each assembly was calculated as the number of units which were members of both 

assemblies. The overlap between assembly ai  and a j  was therefore

overlapij=ai
T a j (22)

where ai  is a binary vector of size NE  corresponding to all the excitatory units in 

the network, in which entries had a value of 1 when the corresponding unit was a 

member of assembly i and a value of 0 otherwise.

As the latching mechanism in the spiking network was hypothesized to function by 

transmitting  excitation  between  assemblies,  we  also  measured  the  summed 

excitatory  projection  weight  from  each  assembly  to  each  other  assembly.  The 

summed excitatory projection from assembly i to assembly j was calculated as

projij=(Wai)
T a j (23)

where W is the excitatory weight matrix.

The motivation for  measuring overlaps and projections was to make quantitative 

estimations of the extent to which transitions were determined by these structural 

features.

Transitions  were  hypothesized  to  be  determined  by  some  form  of  competition 

between sub-active  assemblies.  Assuming  that  only  overlaps  with  or  projections 

from the currently active assembly were relevant in determining transitions, we also 

standardized  overlap  and  projection  measurements  so  means  and  variances  of 

values were equal in relation to each pre-transition assembly, i.e.:
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z ij
overlap=

overlapij−μ i
overlap

σi
overlap (24)

where  μi  is  the mean and  σi  is  the standard deviation of  overlap values with 

assembly i, and

z ij
proj=

proj ij−μ i
proj

σi
proj (25)

where  μi  is  the mean and  σi  is  the standard deviation  of  summed excitatory 

projections from assembly i to each of the other assemblies.

 3.3.3.3 Results

The relationships of interest were those between the structural measurements and 

the transition probabilities. Figure 3.6 shows plots of mean transition probabilities as 

a function  of  the  proj  and  overlap  metrics.  Distributions of  the corresponding 

structural metrics are shown underneath for comparison.

The correlation between the structural metrics and transition probability was also 

calculated at each level of pin
EE  at which switching activation activity occurred, using 

the set of measurements from all randomly-generated networks at each level as a 

single  dataset.  As  initial  analysis  indicated  that  the  distribution  of  transition 

probabilities was highly non-normal, the nonparametric Spearman rank correlation 

ρ  between transition probability and the structural metrics was calculated at each 

level of clustering. The results are shown in Figure 3.5A.

It  is  clear  from these measurements  that  transitions  are  strongly  determined by 

network structure at higher clustering levels, with virtually zero transitions between 

assemblies with below-mean overlaps and projection strengths, and a supralinear 

rise in transition probability with higher overlap and projection strength values after 

the mean. The concentration of  transition probabilities on the upper arms of  the 

distribution of connectivity indexes indicates that transitions occur primarily across a 

small  proportion of  highly connected assembly conjunctions.  The slightly  steeper 

curve of the structure-probability plots at the pin
EE=0.23  level, which corresponds to 
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the clustering level at which transitions were most state-dependent as measured by 

the normalized chi-squared metric, suggests that the concentration of transitions at 

the upper end of inter-assembly connectivity scale (i.e. the supralinear non-linearity) 

is greater at intermediate levels of clustering. However it  is notable that the rank 

correlation  coefficient  ρ  does  not  reflect  this  difference  in  distribution  or  the 

difference in normalized chi-squared values (Figure 3.5A).

The relationship between structure and transition probability is notably weaker at the 

pin
EE=0.18  level, as indicated by both the flatter structure-transition probability plots 

and  the  non-significant  correlation  coefficient  (Figures  3.6 and  3.5).  The  mean 

transition level of A=0.25  at this level of clustering indicates that transitions were 

mostly  the  non-latching type,  as compared to  A>0.7  for  levels  of  clustering  of 

pin
EE≥0.21  (Figure 3.5B). 
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 3.4 Discussion

The results demonstrate that balanced spiking networks with connections clustered 

into overlapping assemblies produce predictable sequences of activity, at the level 

of firing rates of groups of neurons. These sequences appear to be generated by a 

relatively  intuitive  mechanism  which  has  clear  relationships  with  network 

connectivity.  Transitions between states are stochastic  and state-dependent,  and 

can be described as a Markov chain of at least first-order.

Many  functional  applications  have  been  proposed  for  systems  that  generate 

sequences of  distinct  states,  and multiple examples of  sequence generation are 

found  in  biology,  as  detailed  in  the  introduction.  The  switching  activation  model 

presented here has face similarity with several of these, particularly those which 

have  been  associated  with  sequences  of  assembly-like  firing-rate  states  (e.g. 

Seidemann et al. 1996; Jones et al. 2007).

The correlations between transition probability and both assembly correlations and 

excitatory  connectivity,  and  the  qualitative  similarity  of  assembly  activity  during 

transitions, indicate that activity is propagated and transferred between assemblies 

by a mechanism similar to the latching mechanism studied by Treves and others 

(Treves 2005;  Russo et  al.  2008;  Linkerhand  and Gros 2013).  There  are  some 

significant features of the latching Potts networks that are not reproduced in our 

study, in particular the specification that global attractor states are formed from the 

conjunction of multiple local attractor states in the subnetworks that are represented 

by the Potts units. Despite these structural differences, our results provide evidence 

that a latching transition mechanism is possible with relatively biophysically realistic 

spiking neurons in a network with sparse clustered connectivity.

The sequences produced by latching networks of Potts units have been specifically 

associated with language generation, in a framework in which attractors correspond 

to words, and the Markov chain quality of transitions corresponds to the restriction of 

word  order  according  to  syntactic  rules.  One  particularly  salient  application  of 

Markov chain modeling in the current context is that of song generation in songbirds 

(Katahira et al. 2011). Although custom neural models of birdsong generation have 

been  proposed  before  (Long,  Jin,  and  Fee  2010;  Hanuschkin,  Diesmann,  and 
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Morrison  2011),  the  Markov  sequence  generation  in  this  study  suggests  a 

generation model with relatively realistic spiking neurons and relatively few structural 

assumptions.

The  latching  mechanism  can  be  considered  in  terms  of  the  linking  together  of 

multiple correlated but discrete quasi-attractor states, such that each state is close 

to the basin of attraction of another attractor state, so that when the system starts to 

fall  out  of  one  attracting  state  due  to  an  instability  the  system  moves  towards 

another  semi-stable  attracting  point.  This  kind  of  dynamics,  when  transitions 

between multiple quasi-attractors are stochastic and dynamics in some parts of the 

system are chaotic, has been termed “chaotic itinerancy”, and has been proposed to 

be a form of dynamics found in the brain. In this context, the quasi-attractors could 

correspond to items of memory and the spontaneous transitions could function as a 

form of search mechanism, testing different behaviors for effectiveness or stored 

percepts for matches to sensory input (Tsuda 2001; Friston, Breakspear, and Deco 

2012).

The overlap and connectivity measures had a Spearman correlation  with transition 

probability  of  approximately  ρ=0.6  at  higher  clustering  levels,  and  so  did  not 

account  entirely  for  transitions  and first-order  transition  probabilities.  For  various 

reasons, these measures are only a partial measurement of the structural factors 

which determine transition probabilities. For example, the relative 'advantage' that a 

specific  assembly  has  due  to  structural  connectivity  with  the  currently  active 

assembly is also dependent on the structural connectivity of other assemblies with 

the  currently  active  assembly,  which  is  not  accounted  for  by  the  overlap  and 

connectivity  measures  used  here.  Chance  differences  in  indirect  connectivity 

between assemblies via the inhibitory population are also likely to be relevant.

In  addition  to  differences  in  transition  probabilities  resulting  from  differences  in 

connectivity, it is also possible that temporally extended processes have a role. One 

example might be the lingering effect of differences in the slow adaptation current 

w  resulting from previous assembly activations. This could cause an interaction 

between  previously-active  assemblies  and  current  transition  probabilities.  In  this 

case the system would be better described as a second order or higher Markov 

process,  rather  than  the  first  order  Markov  process  implicitly  assumed  by  the 

transition  matrices  calculated  here.  Further  analysis  would  be necessary  to  test 
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these hypotheses.

The  inherent  stochasticity  of  transitions  is  likely  partly  driven  by  fluctuations  in 

synaptic drive due to the irregular and presumably chaotic spiking. This chaos will 

be explored further in  the final  section of  this  thesis.  Finally,  a proportion of  the 

missing correlation will also result from chance effects due to finite sampling of the 

stochastic transitions. 

 3.4.1 Future outlook

The  structure  of  the  networks  studied  here  was  determined  largely  at  random. 

Despite this, chance inequalities in connectivity and correlation structure produced 

systems  with  meaningfully  reliable  temporal  dynamics.  It  should  be  possible  to 

intentionally  produce  networks  which  produce  an  arbitrary  pattern  of  activity  by 

purposefully  setting  or  modifying  connection  structure,  such  as  by  modifying 

excitatory connectivity between two assemblies in order to increase the probability 

of  sequential  activation of  these assemblies.  Further studies could test  how this 

might be produced in-vivo by neural plasticity processes.
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 4 Chaos in clustered networks

As  discussed  in  the  introduction,  the  degree  of  chaos,  roughly  defined  as  the 

divergence rates of the trajectories of nearby system states, is a computationally 

important quality of a neural system. Analysis of the chaos of neural systems is 

challenging, and analytically rigorous investigations have only so far been performed 

on highly simplified systems (e.g. Wallace, Maei, and Latham 2013; Monteforte and 

Wolf 2010). Numerical methods can be used with more complex systems (Jahnke, 

Memmesheimer, and Timme 2009; Legenstein and Maass 2007), and there have 

even been efforts to measure the chaos of biological neural networks (London et al. 

2010). The conclusions of these studies have been consistent, in that they conclude 

that networks with connectivity rates similar to those in the cortex are highly chaotic, 

apart  from some special cases such as simulated purely inhibitory networks with 

delta synapses (Jahnke, Memmesheimer, and Timme 2008).

However it is also notable that the chaos of large artificial neural systems has only 

been measured for networks with random or near-random connectivity, to the best of 

our  knowledge.  In  this  section  we  therefore  investigate  the  divergence  or 

convergence rates of the neural network types so far discussed in this thesis, and so 

investigate the qualitative and quantitative effects of clustering on chaos in balanced 

networks. The neuron and synapse models that we use in this study are of the level 

of complexity that requires analysis with numerical techniques, and so we employ 

perturbation  methods  similar  to  those  used  in  previous  studies  (Legenstein  and 

Maass  2007).  We  hypothesized  that,  although  spike  times  would  likely  remain 

chaotic,  the switching activation dynamics in  clustered networks could  lead to a 

slower divergence of trajectories.

 4.1 Trajectory divergence of adjacent states in 

clustered balanced networks

 4.1.1 Methods

We numerically measured the sensitivity of the system to perturbations by running 

pairs of otherwise identical simulations in which one was minimally perturbed, and 
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measuring  the  differences  in  system  states  between  the  two  systems  after  the 

occurrence of the perturbation.

Specifically,  we  randomly  generated  network  instances  and  initial  conditions 

according to the specifications and parameters in section 2, with both no clustering 

and 20 overlapping assemblies generated by the equal  assemblies method with 

pin
EE=0.19 ,  pin

EE=0.23  and  pin
EE=0.28 .  Simulations were run as matching pairs, 

with the difference that the occurrence of a spontaneously-occurring single spike in 

one of the simulations was delayed by the simulation step size (0.1ms) by “freezing” 

the state of the neuron producing this spike for one simulation step immediately 

before  the  occurrence  of  this  spike.  This  perturbation  was  introduced  at 

approximately  t=3000 ms ,  after  initial  transients  had  subsided.  The  difference 

between  the  states  of  the  paired  simulations  was  measured  by  summing  the 

absolute  differences  of  the  values  of  the  membrane  potential  variable  V in  the 

excitatory neurons of each simulation. This process was repeated for 50 iterations at 

each level of pin
EE .

 4.1.2 Results: three-stage divergence of trajectories

The states of the perturbed and unperturbed systems diverged to saturation values 

in 46/50 ( pin
EE=0.1 ), 47/50 ( pin

EE=0.19 ), 48/50 ( pin
EE=0.23 ) and 49/50 ( pin

EE=0.28 ) 

of  the  simulations,  and  in  the  remaining  simulations  the  two  systems  quickly 

converged back to identical states after the initial perturbation. In those simulation 

pairs that did not diverge, it was found that no further spike times were shifted at all 

after  the  induced  perturbation.  This  is  likely  to  be  a  result  of  limited  machine 

numerical resolution and of the spike time quantization inherent to the simulation 

software, which calculated the network state on a 'grid' of successive time steps. 

Each excitatory neuron projected to approximately 100 excitatory and 125 inhibitory 

neurons,  so  it  is  highly  likely  that  a  change  in  spike  time  in  system  of  infinite 

resolution would lead to a change of the membrane V and therefore next spike time 

of at least one neuron which would spike at a later point in the simulation.

In those simulation pairs in which system states diverged, the divergence showed a 

distinctive form, an example of which is shown in Figure 4.1A. States diverged at a 

relatively gradual rate for a short period after the induced perturbation, during which 
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the order of neuron firing of the two simulations is approximately equal, but with 

some spikes occurring at slightly differing times, no greater than a few milliseconds. 

This continued until activity differed by the occurrence of a spike in one simulation 

which was not matched within a short time period by the occurrence of a spike from 

the corresponding neuron in the other simulation, an event we refer to as a “spike 

mismatch”. After this point, spiking activity rapidly diverged to a saturation level of 

dissimilarity in ~20ms. Mean  V divergence as a function of clustering is shown in 

Figures 4.3B, C and D).

The times which elapsed between the perturbation and the first  spike mismatch 

were relatively short, with a mean (SD) of 25.43(24.1)ms, and did not substantially 

differ as a function of clustering (Figure 4.3A). Spike mismatches were detected by 

identifying spikes in either simulation which were not matched by a spike from the 

corresponding neuron in the paired simulation within a ±5ms time window.

The membrane potential  V of neurons in a balanced network has a low effective 

resistance and consequently a low effective time constant, and fluctuates rapidly as 

a function of  spike input  (Renart,  Brunel,  and Wang 2004).  The state difference 

value  ΔV  therefore mainly reflects the difference of spike times when calculated 

from  the  raw  membrane  potentials  V.  To  proportionally  reduce  the  influence  of 

individual  spike  times  and  increase  the  influence  of  firing  rates  on  ΔV ,  we 

therefore  additionally  calculated  ΔV  after  convolving  the  V of  each  excitatory 

neuron with a Gaussian filter with σ=30ms .

When calculated on the raw, unconvolved membrane potentials, the state difference 

measure  ΔV  showed a  similar  response to  perturbation  at  all  tested levels  of 

clustering  pin
EE  apart  from  pin

EE=0.28  (Figure  4.3B).  The occurrence of  a spike 

mismatch caused a fast and linear divergence of system states to near-saturation 

level in approximately  20ms in networks with  pin
EE  values of  0.1,  0.19 and 0.23 

(Figure 4.3C), indicating that clustering does not per se alter the degree of chaos in 

spike times. The divergence of membrane potentials in networks with  pin
EE=0.28  

showed  a  slower,  qualitatively  different  form.  As  described  in  section  2.2.3,  at 

pin
EE=0.28  excitatory  neurons  across  the  network  fire  synchronously  at 

approximately 50Hz, which appears to both retard the divergence of states after a 
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perturbation and exhibit a large effect on ΔV , in that ΔV  is greater when firing in 

the perturbed and unperturbed networks is out of phase (Figure 4.1B). The relatively 

gradual  divergence  of  system  states  shown  in  Figure  4.3B  and  C  is  therefore 

partially a result of the gradual desynchronization of the fast oscillations of the two 

networks. Convolving the V of each neuron removed the fast oscillation and also the 

effect of its desynchronization. At all levels of clustering, convolution reduced fast 

fluctuations caused by spike firing and reduced the effect of these on ΔV  (Figure

4.3D).

In the clustered networks, this proportional reduction of the effect of individual spikes 

made clearer the slower divergence of trajectories at the level of neuron firing rates, 

which appeared to reflect the divergence of the assembly attractor state sequences 

of the paired simulations. A representative example of the effect of perturbation on a 

pair of clustered network simulations is shown in Figure 4.2. In the aggregate, the 

divergence  of  neuron  firing  rates  in  highly-clustered  networks  occurred  over  a 

timescale of 3000-5000ms, 2 orders of magnitude greater than the timescale of the 

divergence of spike patterns after the occurrence of a spike mismatch (compare 

Figure 4.3D with Figure 4.3C).

The chaotic divergence of nearby trajectories in clustered spiking networks therefore 

seems to pass through 3 distinct stages: first the gradual divergence of spike times 

but approximate preservation of the sequence of spikes across the network until the 

first spike mismatch, then a fast divergence of spike sequences, then a slower but 

stochastic divergence of assembly activations and assembly activation sequences.
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 5 Conclusion and future outlook

 5.1 Recapitulation of main results

We have described here a series of simulation studies which synthesize and extend 

previous theoretical work regarding spiking neurons, network attractor dynamics and 

neural  computation.  We  have  confirmed  previous  findings  that  the  addition  of 

clustered  groups  induces  switching  activation  dynamics  in  spiking  balanced 

networks.  Total  within-cluster  recurrent  connectivity  is  a  critical  property  in 

determining  dynamics,  and  setting  this  property  in  the  case  of  correlated  (i.e. 

overlapping)  clusters  requires  special  measures.  The  emergence  of  clustering 

sufficient  to  induce  switching  activation  is  associated  with  the  emergence  of  a 

distinct group in the eigenvalue spectrum of the connection matrix, with the mean 

real  value  of  of  this  group  having  a  close  relationship  with  network  dynamics. 

Spiking activity in clustered networks reproduces key features of biological neural 

networks, particularly firing rate variability at the single neuron level and oscillatory 

activity in the sub-4KHz delta range. The sequence of spontaneous activations is 

probabilistic and can be highly state-dependent,  and the overall  degree of state-

dependence and the probability of individual transitions is dependent on structural 

features  of  the  network,  particularly  the  degree  of  clustering  and  the  degree  of 

correlation between clusters.  The state sequence dynamics and their  generation 

mechanism are comparable to those in previous models with simplified non-spiking 

units.  We demonstrate  for  the  first  time  the  production  of  these  dynamics  in  a 

network of spiking units, thereby supporting the hypothesis that similar mechanisms 

could generate sequences in the brain.  Finally,  we replicate previous findings of 

chaos in spiking balanced networks, and find that divergence of minimally separated 

states in spiking networks goes through two distinct stages with differing timescales, 

to which switching activation dynamics add a third stage in which the assembly-level 

activation states of the systems diverge.

 5.2 Correspondence to anatomy

This study has been primarily a theoretical simulation study with the aim of revealing 

general  neural  computational  principles  rather  than  replicating  specific  systems. 
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Various simplifications were made for the sake of minimizing computational load and 

design  complexity,  particularly  in  terms  of  homogeneity  of  neurons  within  the 

excitatory  and  inhibitory  classes,  and  ranges  and  distributions  of  cellular  and 

connection parameter values. Heterogeneity of neuron types and parameter values 

has been found to be increase statistical realism of dynamics in more anatomically 

realistic  models  of  the  cortex  (Hass  et  al.  2016).  It  is  plausible  that  the  crucial 

elements of the networks in this study, in particular the clustered assemblies, could 

be implemented in networks with a more complex structure and range of elements, 

but  this  would  necessarily  be more challenging to design.  One possible  way of 

testing  hypotheses  regarding  the  in-vivo  existence  of  structures  and  dynamics 

similar to those show here is to evaluate experimental data in terms of their fit to 

potential structure and dynamics in clustered networks (Klinshov et al. 2014).

Despite  the  simplifications,  the  clustered  network  model  here  contains  30+ 

parameters,  of  which  only  the  clustering  parameters  pin
EE  and  REE  were 

systematically  explored.  Exploration  of  the  full  parameter  space  would  be  a 

challenging  task  that  could  benefit  from  the  extension  of  previous  mean-field 

analysis of working memory models (Renart, Brunel, and Wang 2004). A potentially 

interesting form of parameter space analysis would be to test the effect of parameter 

modifications  that  mimic  experimentally  measured  effects  of  gene  alleles  or 

neuromodulatory transmitters such as dopamine. Previous simulation studies have 

used this approach to investigate the effect of neurotransmitters on spiking working 

memory  models,  in  the  context  of  behavioral  effects  and  functions  of 

neurotransmitters (Durstewitz 2007; Brunel and Wang 2001). The Markov transition 

description of network dynamics used for our network can also be interpreted in 

terms of  regularity  or  diversity  of  dynamics,  and it  would  be relatively  simple  to 

perform an equivalent simulation study of quantitative neurotransmitter effects on 

these dynamics.

We are essentially agnostic about where in the brain dynamics similar to those here 

might be found, but comparisons can be made with existing experimental neural and 

behavioral data, such as the HVC cortex in songbirds  (Fujimoto, Hasegawa, and 

Watanabe 2011), PFC activity during delayed localization tasks  (Seidemann et al. 

1996) and gustatory cortex activity during taste stimuli (Jones et al. 2007)(see also 

section 3.4).
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 5.3 Network size and scaling

The question of where in the brain might use mechanisms similar to those shown 

here is related to the issue of how and to what degree clustered networks could be 

scaled. The used network size of 1250 neurons has a similar order of magnitude as 

a  single  mammalian cortical  column  (Helmstaedter  et  al.  2007) but  many times 

smaller than a cortical area defined by other criteria, such as a Brodmann area. This 

network  size  was  chosen  to  be  large  enough  to  approximate  physiology  while 

computationally undemanding enough to allow extended duration simulations to be 

completed in a moderate amount of time using available hardware.

Changing the absolute size of a neural simulation while maintaining quantitative and 

qualitative  activity  typically  requires  adjustment  of  other  parameters  in  order  to 

compensate for the increased number of inputs to each unit. Connection weights J  

in balanced networks are typically scaled by  1/√K , where  K  is the number of 

inputs of the neuron population concerned, in order to maintain the synaptic input 

variance  Var (I synapse)=J 2 Kr ,  upon which  the firing  rate  depends,  assuming the 

balance condition  is  maintained  (Renart,  Brunel,  and Wang 2004).  Litwin-Kumar 

(2013) noted that scaling a clustered network in such a way that maintains dynamics 

is complicated by the requirement of maintaining the ratio of within-assembly and 

without-assembly  input,  and  that  the  parameter  sensitivity  of  the  existence  of 

attractor  or  quasi-attractor  states  increases  with  absolute  assembly  size,  which 

makes parameter-tuning more difficult.

The stochastic switching activation dynamics described in this study are also partly 

dependent on finite size effects that necessarily reduce as network size becomes 

larger. First, some of the stochasticity in the timing and identity of state transitions is 

driven by fluctuations in synaptic drive within and between assemblies due to finite 

size effects in the summation of the spiking of single neurons. Cumulative firing rate 

fluctuations should approximately obey 1/√K in  and so decrease with network size, 

which should lead to more predictable state transitions, assuming all other sources 

of variation remain equal (Deco and Rolls 2006).

A second issue is  that,  if  assembly  sizes  remain  a fixed proportion  of  the  total 

network  size  and  overlaps  between assemblies  are  random,  as  they  are  in  the 
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overlapping  assemblies  described  here,  the  standard  deviation  of  relative 

differences in overlap between assemblies, which obeys √N assembly
E p(1−p)  where 

p  is the size of each assembly as a proportion of the total neuron population, will 

increase with network size in absolute terms but decrease as a proportion of the 

mean overlap,  which  is  determined  by  Nassembly
E p .  Assuming  that  differences  in 

transition  probabilities  are determined more by  proportional  rather  than absolute 

differences in between-assembly connectivity,  increasing network size would also 

lead  to  a  reduction  in  differences  in  transition  probabilities  and  an  increase  in 

transition entropy, unless greater differential connectivity was set intentionally. It is 

notable  that  the  signs  of  the  predicted  finite  size  effects  of  connectivity  and 

fluctuations in synaptic drive on transition predictability are opposite. To what extent 

they would counteract each other in practice remains to be determined.

 5.4 Final remarks

Despite extensive investigation, understanding the human brain remains one of the 

most difficult challenges in contemporary science. The essential problem is one of 

complexity, as the brain contains vast numbers of neurons in a structure which is 

highly detailed at every spatial and functional level  (Abbott 2013). This study has 

considered dynamics at the level of local neural networks, where one of the greatest 

puzzles  is  understanding  how  large  numbers  of  comparatively  simple  units 

collectively  produce  highly  complex  but  useful  dynamics.  The  sheer  number  of 

constituent parts makes this particularly challenging, to the extent that even entirely 

artificial systems that use simplified neuron models require inference from simplified 

descriptions  of  dynamics  to  aid  understanding  (Sussillo  and  Barak  2013). 

Understanding the principles which produce cognition as an emergent property of 

neural networks is likely to require a long process of proposing, testing, extending 

and combining theoretical  building blocks in  order to make a greater whole.  We 

hope that the work presented in this study will become one of these blocks.
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