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1. Introduction 

 

Diabetes is a major global epidemic of 21st century and has had a 50% increase in the 

incidence rate in the last ten years1.  Yet, due to its virtue of being a ‘slow and a silent 

killer’ it diminishes the alarm raised amongst the medical practitioners, researchers and 

therefore, most definitely, the pharmaceutical industry.  Diabetes manifests initially as a 

seemingly harmless symptom of hyperglycaemia, and slowly progresses into the nearly 

irreversible late complications affecting the eyes (retinopathy), the kidney 

(nephropathy) and the nerves (neuropathy).  With around 422 million adults suffering 

from diabetes around the globe, a risk of doubling this number by 20301, 2 and 

insufficient treatments to manage the devastating late complications, diabetes poses a 

considerable economic burden on the health services. 

1.1 Diabetic peripheral neuropathy 
 
During diabetes, the damage to the microvasculature results in the most debilitating 

late diabetic complication – diabetic neuropathy. More than 50% of the diabetic patients 

develop this complication3.  Diabetic neuropathy can affect the autonomic, motor and 

sensory nerves of the peripheral nervous system. There is, however, a growing 

awareness of the damage occurring in the spinal cord and the peripheral nerves. 

1.1.1 Clinical symptoms 
 
During diabetes, the microvascular complications occur, which affect the nerves in the 

extremities leading to a sensorimotor neuropathy (hereon, referred to as diabetic 

peripheral neuropathy; DPN).  DPN is a condition that starts as tingling or weakness in 

the most distal organs (fingers and more commonly toes) and progresses up the arms 

or legs in glove and stocking manner4. The sensory modalities are primarily affected 

rather than the motor nerves. As the small afferent nerve fibers are affected, the patient 

shows symptoms of excruciating pain, burning sensation or allodynia; ca.26% of 

diabetic patients suffer from such chronic painful symptoms5. As the disease progresses, 

large and small afferent nerve fibers are affected in varying degrees resulting in mixture 

of symptoms such as presence of numbness, loss of cold and vibration sensations and 
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episodes of sharp pain. However, at the later stages, the damage to the nerve fibers is 

extensive, while nerve regeneration is minimal, there is a loss of innervation in the 

limbs leading a continued loss of pain sensitivity4.  Around 15% of the diabetic patients 

develop foot ulcers6 as consequence of this loss in pain sensitivity and the  occurrence 

of neuropathic ulcerations is associated with increased foot amputations and 

mortality6,7. 

1.1.2 Treatment 
 

Significance of timely intervention is enunciated by the fact that up to 62% of patients 

suffering from DPN are detected with pre-diabetic condition5. However, due to a lack of 

adequate knowledge of the pathomechanisms underlying DPN, there exists no 

treatment that can address the sensory deficits. Thus, DPN can only be managed 

indirectly to some extent. 

 

Since diabetes is characterized by hyperglycaemia, a control of blood glucose continues 

to be the primary treatment option for controlling DPN. However, the drawback of 

intensive glycemic control is the increased occurrence of episodes of hypoglycaemia 

with a risk of brain injury and even death. Moreover, normalizing blood glucose is not 

effective in reducing the incidence of neuropathic symptoms in type 2 diabetic patients 

and can only marginally restore the abnormal nerve functions in type 1 diabetic 

patients3,8,9. In fact, development of DPN in prediabetic patients shows that glucose 

control does not target the pathogenesis of DPN and hence is an ineffective treatment 

by itself. In addition, Gaede P. et al showed that a multifactorial intervention against 

hypertension, dyslipidemia and smoking along with aspirin and antioxidants was only 

effective against diabetes related cardiovascular disease, while no improvement in DPN 

was noted10.  

 

At present, only symptomatic relief in the form of analgesics, such as gabapentin, 

pregabalin and duloxetine, are available for the control of DPN. However, they do not 

show uniform effect in all DPN patients. Many patients are resistant to one or more 

analgesics 11. Therefore, a combination of analgesics is prescribed, such as, gabapentin 

with opioids or nortryptiline. Yet, whether as a monotherapy or in combination, such 

drugs have shown a non-uniform effectiveness12. Moreover, these drugs have adverse 
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side effects of nausea, vomiting, CNS depression13. In addition, a sudden reduction in 

Hba1c due to the medications, can even precipitate a condition called ‘treatment 

induced neuropathy’ with severe anatomic and sensory defecits14. 

 

Thus, rather than managing the symptoms of DPN, it is crucial to develop therapeutic 

approaches targeting the pathogenesis of the condition. Understanding the mechanisms 

contributing to DPN is therefore of utmost importance. 

1.2 Endogenous Opioid System 
  

The metabolic disturbances caused by hyperglycaemia also have many consequences 

with inflammation being the most proximal one15. As such, attention has traditionally 

been focused on increased pro-algesic and pro-inflammatory mediators, such as 

cytokines, chemokines, and prostaglandins. However, there exists an innate system to 

counter pain and inflammation, known as the endogenous opioid system. The 

endogenous opioid system consists of an opioid receptor and an endogenous opioid 

ligand. Classically, three genetically distinct endogenous opioid precursors peptides 

have been identified: pro-opiomelanocortin (POMC), pro-enkephalin (PENK) and pro-

dynorphin (PDYN). Upon proteolytic cleavage, these precursors produce opioid 

peptides which bind with highest affinity to the mu opioid receptor (MOR), delta opioid 

receptor (DOR), and kappa opioid receptor (KOR) respectively 16. Three additional 

opioid peptides have been discovered;  the endomorphin-1 and -2, which bind to MOR17 

and nociceptin, which binds to an opioid orphan like receptor 118. In general, 

inflammatory cytokines, namely IL-1ß, cellular stress and increased neuronal excitation 

induce pathways that culminate in release of endogenous opioids. The classical opioids 

have a common N terminus, Tyr-Gly-Gly-Phe, which interacts with the opioid receptor. 

Binding of the endogenous ligand to its cognate opioid receptor triggers the anti-

nociceptive signaling. The endogenous opioids are also important for protection against 

neuronal damage16 and improve neuronal survival19.  
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1.2.1 Endogenous opioids 
 

(a) Pro-opiomelanocortin (POMC): 
 
Gene and regulation: The POMC gene encodes a complex, multifunctional precursor 

peptide to many biologically active peptides with neuroendocrine modulatory activities, 

such as MSH, ACTH and ß-endorphin. The POMC gene was first discovered and cloned 

by Nakanishi in 197620. Thereafter, using POMC gene deletion studies, the role of POMC 

and its derived peptides in food intake, regulation of body weight, adrenal function, and 

opiate activity was shown. Initially, it was thought that given the various functions 

assigned to POMC, there must exist more than one copy of the gene in the genome. 

However, only a single functional copy was isolated per haploid genome of human21, 

cow22, rat23 and mouse24. 

 

Several POMC gene regulation studies were carried out in pituitary derived AtT-20 cell 

line. The POMC gene consists of three exons, with exon two and three coding for the 

precursor protein and N terminal signal sequence. One of the major regulators of POMC 

promoter is corticotropin-releasing hormone (CRH). CRH can activate POMC expression 

in multiple ways. CRH, by binding to its own receptor in the cell membrane, is able to 

indirectly stimulate POMC expression through recruitment of POMC activators. CRH-

CRHR interaction activates adenyl cyclase, which increases cAMP level, in turn 

activating PKA. ERK signaling pathway is triggered by PKA, which recruits multiple 

POMC activators such as Nur, Tpit, and SRC family of co-activators. Additionally, CRH 

can also stimulate POMC gene expression by directly binding to the POMC promoter25. 

There are not many known negative regulators of POMC promoter, however, 

glucocorticoid has been   confirmed as a suppressor26, whilst NF-kB remains a much 

debated candidate27,28. 

 

POMC precursor processing and ß-endorphin:  A 241 amino acid prohormone from 

human POMC gene is transcribed (235 in mouse; 78% sequence similarity). Following 

translation in the endoplasmic reticulum, POMC is packaged into vesicles and 

transported through the regulated secretory pathway, through trans golgi network. 

During this transport, different prohormone convertases cleave POMC at the basic 

residues, in a cell and tissue-specific manner. POMC derived peptides were associated 
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with different physiological activities using POMC-/- mice, e.g. N-POMC (48 amino acids) 

with mitogenic activity, MSH (13 amino acids) with a role in food intake, ACTH (17 

amino acids) has a steriodogenic activity, whilst ß-endorphin (31 amino acids) shows 

analgesic properties 29. (Figure 1) 

 

When ß-endorphin was discovered in 1976, Feldberg et al showed that the opiate 

activity of ß-endorphin was so remarkable, it was hundred times more potent than the 

exogenous opioid, morphine30. The half life of ß-endorphin (37 minutes) being much 

longer31 than any of the classical endogenous opioid peptides (less than 1 minute)32,33. 

But whilst being a highly potent analgesic effector, it can also induce tolerance. 

(b) Pro-enkephalin (PENK) 
 
Gene and regulation: Lewis et al discovered PENK in 1980 in the adrenal glands34. PENK 

gene is expressed during embryogenesis. Its expression is regulated developmentally 

and in a tissue specific manner. PENK gene expression is restricted upon terminal 

differentiation.  The full-length precursor peptide is expressed by 4 exons, and includes 

an N terminal signal sequence.  

 

In the 1980s, studies showed the PENK gene expression was regulated by change in 

electrical activity of adrenal cells. Potassium chloride treatment induced depolarization 

or calcium influx, elevated the PENK mRNA levels.   This shows that neurotransmitters 

which increase the electrical activity, indirectly act as POMC promoter activators 35. 

Calcium induced cAMP elevation, and thus, activated CREB binding to the promoter acts 

as a positive regulator for PENK36.   Secondary messengers such as, calcium influx, cAMP 

and also PKC activation critically influences PENK gene regulation. It can also be 

transactivated by AP1 proteins including Fos and Jun37. On the other hand, factors that 

reduce excitability or induce cell differentiation (TGFß in osteoblasts) repress PENK 

gene38. 

 

 PENK precursor processing and enkephalin:  Human full length PENK is a 267 amino 

acid opioid peptide precursor (268 in mouse; 91% sequence similarity).  This precursor 

contains a copy of leu-enkephalin and 4 copies of met-enkephalin (5 amino acids each). 

The enkephalins are produced from protelytic cleavages in the C terminal region of 
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PENK. The half-life of these pentapeptides is very short, and hence, a predominance of 

their larger, metabolically more stable predecessor peptides is often found 39.  

Differential processing by prohormone convertases and furin, depending on the cell 

type and therefore variable levels of PENK intermediates can be found in different 

organs40.  

(c) Prodynorphin (PDYN): 
 
Gene and regulation: The PDYN gene codes for the precursor prodynorphin (PDYN). The 

canonical form of PDYN mRNA consists of 4 exons, which encode the full-length protein. 

PDYN expression is found to be at negligibly low level in the neural component. In cell 

lines, basal PDYN expression was lower than in vivo, making it difficult to understand 

the regulatory mechanisms for PDYN gene. Therefore, mechanisms studied in vivo have 

revealed that the transcription factors AP-1 41, CREB36, cJun42 are amongst the known 

factors that can activate PDYN gene expression whilst glucocorticoids and DREAM are 

negative regulators. NF-kB, as for POMC, can activate or repress the gene expression 

depending upon the subunits that bind the promoter 43. While the cell lineage specific 

expression of PDYN is controlled by the transcription factors Ptf1a, Pax2, Lbx1 and 

others 44. 

 

PDYN precursor processing and dynorphin: The human PDYN precursor protein is 254 

amino acids in length (248 in mouse; 72% sequence similairty). Similar to POMC and 

PENK precursor peptides, PDYN protein undergoes a series of proteolytic cleavages by 

prohomone convertases and carboxypeptidase at the basic residues within PDYN to 

generate dynorphin A (17 amino acids) and dynorphin B (13 amino acids) and α neo-

endorphin 45. PDYN is also a potential precursor of leu-enkephalin, but it is interesting 

to note that in the cells expressing PDYN, dynorphins are detected but hardly any leu-

enkephalin is detected. This indicates that each opioid precursor is cleaved 

preferentially, and not at every possible cleavage site 46.   Dynorphins have been known 

to possess opiate activity upon binding to opioid receptors, but also shows non-opioid 

functions such as modulation of reward response induced by addictive substances, 

motor regulation, and stress induced behavioral responses. 
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Figure 1: Precursor processing of opioid peptide precursors The opioid peptide precursors POMC, PENK and 
PDYN are transcribed from 3 different genes. The precursor peptides each consist of a signal peptide for 
sorting to the endoplasmic reticulum. The precursors are then packaged into secretory vescicles where they 
undergo proteolytic cleavages by the enzyme prohormone convertases to produce the mature opioid peptides 
ß-endorphin, leu and met-enkephalin and dynorphin respectively. Modified from J Rossier; Biosynthesis of 
peptides; Neuropsychopharmacology; 1988. Diagram not to scale. 
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1.2.2 Opioid receptors 
 
There are 3 main types of opioid receptors –mu, kappa and delta receptors (abbreviated 

as MOR, KOR and DOR respectively). ε, σ and orphanin have also been described as non-

classical opioid receptors47. Additional pharmacological subtypes may result from 

alternative splicing, post-translational modifications or receptor oligomerization48. 

 

MORs is transcribed from OPRM1 gene (324kbp-mouse & 307kbp-human). There are 

18 known isoforms of MOR have found to exist as a result of alternate splicing. While 

many of the isoforms have no known cellular activity, other variants, such as MOR1D, 

underlie different behaviors, such as itching. However, MOR1 is the only isoform 

required for morphine induced analgesia, and hence, MOR1 the isoform of interest in 

the context of DPN 49. The endogenous agonist for MOR is ß-endorphin. 

 

KOR is transcribed from the gene OPRK1 (44kbp-mouse & 67kbp-human). OPRK1 gives 

rise to 6 mature mRNA variants. To date, only one KOR cDNA has been cloned50. KOR 

binds with highest affinity to dynorphin opioid peptide and also has some affinity to ß-

endorphin16. 

 

DOR is transcribed from the gene OPRD1 (23kbp-mouse and 34kbp-human). DOR binds 

enkephalins with highest affinity 16. 

 

The opioid receptors are expressed by central and peripheral nervous system, immune 

and ectodermal cells. The opioid receptors belong to the family of seven 

transmembrane G protein coupled receptors (GPCR).  

1.2.3 Opioid receptor signaling  
 
Upon binding to its respective ligand, opioid receptors trigger several downstream 

pathways that have varying effects, depending on the tissue in which the receptor is 

located. In context of DPN, the analgesic downstream signaling pathways by opioid 

receptor activation are of consequence. In principle, opioid receptor signaling is similar 

in all opioid receptors, however, there are certain differences pertaining to the 

regulation of signaling. Since most of the opioid analgesics used to treat painful diabetic 
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neuropathy exert their effect by binding to MOR, this thesis will have specific focus on 

understanding the signaling cascade of MOR and its regulation. 

 

In the peripheral nervous system, MOR1 is localized in the soma of DRG neurons, 

dendrites and nerve terminals.  MOR is said to be functional when it is present on the 

cell membrane, capable of binding to its ligands. In general, when an agonist 

(endogenous or exogenous) binds to a MOR, the receptor undergoes a conformational 

change that activates the heterotrimeric G proteins and signaling effectors at the plasma 

membrane. The Gβγ subunits then interact directly or indirectly to inhibit cAMP 

production by inhibition of adenylyl cyclise, inhibit Ca++ channels (N-, T- and P/Q type) 

and activate K+ channels (GIRKs – G protein coupled inwardly rectifying K+ channels). 

This leads to attenuated excitability of the neurons in the soma and reduced 

neurotransmitter release from the nerve terminals. For instance, release of substance P 

and CGRP is inhibited, both of which are proinflammatory and pro-nociceptive 

neuropeptides. Activation of peripheral opioid receptor also suppresses tetrodotoxin-

resistant Na+ channels51, purinergic 2X receptor mediated currents 52, as well as TRPV1 

currents 52. 

 

 

Figure 2: MOR signaling Under resting condition, MOR is associated with an inactive G protein. When an 
agonist binds to opioid receptor, G protein is phosphorylated, and α subunit is dissociated from ß, ϒ. Α subunit 
then inhibits cAMP production while ßϒ subunits modulate the ion channels, which result in inhibition of pain 
and inflammation. Also other pathways such as, PKC, PKA and MAPK cascades are triggered upon activation of 
opioid receptors. Modified from Hasani et al; Anaesthesiology; 2011. 
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1.2.4 Regulation of opioid receptor function 
 
MOR protein level is controlled by rate of transcription of the gene, but more relevant to 

pain related pathways, is the agonist-mediated regulation of receptor expression and its 

signaling efficiency.  Depending on the type of the agonist and the length of exposure to 

it, the pharmacological properties of MOR can change. This change of functionality is 

mediated by MOR phosphorylation and it’s sorting to intracellular compartments. For 

instance, following a short-term exposure of few seconds, the above-mentioned G 

protein coupled signaling pathways is triggered. However, upon a longer exposure of a 

few minutes to highly efficacious MOR agonists, such as ß-endorphin53 or enkephalin54  

MOR is phosphorylated at the C terminal tail by G protein receptor kinase 2/3. This 

results in binding of ß-arrestin to the C terminus, which in turn leads to internalization 

of MOR into an endosome, via clathrin coated pit55. The receptor, now absent from the 

cell surface and unavailable to bind to ligands, is now said to be functionally 

desensitized. Since, phosphorylation of MOR by GRK requires a receptor conformational 

change induced by binding to its own ligand, this type of desensitization is termed as 

homologous desensitization. 

 

Once inside the endosomes, MOR has two possible fates. First, the receptor can be 

dephosphorylated and recycled back to the surface, referred to as resensitization. The 

resensitized receptor is shown to be more potent in terms of cellular responsiveness to 

repeated or long exposure of opioids 56. Second, following an exposure to excessive 

levels of agonist or a long term exposure (several hours), the recycling event described 

becomes  impaired and the constantly desensitized MOR is eventually trafficked to the 

lysosomes anddegraded54. This reduces the total number of MOR present in a cell and 

therefore results in a prolonged attenuation of cellular responsiveness to the agonist. 

Persistent desensitization followed by presence of excessive levels or chronic exposure 

to an agonist is termed as tolerance. Resensitization protects the cell from excessive 

signaling by continued presence of the agonist and offers protection against tolerance 

57. 

 

However, MOR can also be phosphorylated without binding to its ligand. This is called 

heterologous phosphorylation. When binding to its ligand activates a GPCR proximal to 
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MOR, it triggers downstream signaling cascade. Kinases activated due to this GPCR can 

phosphorylate MOR and cause its desensitization. For example, Pfeiffer et al, showed 

that cross-phosphorylation and cross-internalization of MOR occurs when a co-

expressed GPCR NK1 is activated58. This crosstalk is mediated by direct 

phosphorylation of MOR by protein kinase C (PKC). Involvement of PKC in agonist 

independent MOR desensitization was confirmed by Illing et al by showing that PKC 

activation by phorbol esters causes phosphorylation at the residue Threonine 370 in C 

terminus of MOR, while an exposure to exogenous MOR agonist DAMGO does not59.  

 

The regulation of MOR by agonist dependent and agonist independent pathways 

complicates the understanding of the MOR signaling in pain related pathways, but 

explains the non-uniform results given by different opioid analgesics. 

 

Figure 3: MOR trafficking Depending upon whether MOR is activated due to binding to its own agonist or 
because of activation of a proximal GPCR, MOR is phorphorylated by GRK or PKC respectively. After being 
phosphorylated, MOR is internalized due to arrestin binding. The desensitized MOR can now be recycled back 
to the surface or is degraded in lysosomes. MOR is traffickied to lysosomes in presence of excess of MOR 
agonists or prolonged exposure to the same. Modified from Williams et al; Pharmacological Reviews; 2013. 
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1.3 Tissue distribution of opioids, receptors and their physiological 
role 
 

The endogenous opioid system has a widespread localization in different tissues and 

organs of the body. The endogenous opioids are located in the central nervous system, 

peripheral nervous system, immune cells, enteric nervous system, heart and skin. 

Depending upon the cell and tissue type, the opioids and receptors are differentially 

regulated and have specific functions. 

1.3.1 Central nervous system 
 
Within the brain and spinal cord, there is a differential organization of the endogenous 

opioid pathways. The ß-endorphin synthesizing neurons, designated as POMC neurons, 

are present predominantly in hypothalamus and dorsal medulla. PENK and PDYN are 

expressed locally in the multiple areas of the brain including the neocortex, 

hippocampus, hypothalamus, basal ganglia and superficial layers of dorsal horn and 

trigeminal nucleus caudalis. Similarly, opioid receptors too are differentially expressed 

in the cerebral cortex, limbic system, basal ganglia, brainstem, dorsal horn and dorsal 

root ganglia. Each individual opioid signaling pathway regulates different functions in 

the brain apart from supraspinal and spinal mechanisms of pain pathways. For instance, 

POMC plays a major role in glucose sensing, food intake, satiety60. MOR signaling also 

infleunces reward releated behavior61, fear conditioning response62 and anxiety 

behavior in rats63. Enkephalin- DOR pathway play an important role in neuroprotection 

from excitotoxicity64. Dynorphin-KOR  signaling is implicated in stress pathways, 

anxiety and emotional distubances65. 

1.3.2 Peripheral Nervous System  
 
It is been widely accepted that the majority of endogenous opioid peptide expression is 

only found in the central nervous system. Although, this remains correct, there have 

been studies, which have shown that endogenous opioids gene expression occurs in the 

dorsal root ganglia (DRG) and peripheral sensory nerves. mRNAs for all three opioids 

have been detected in DRGs66–68, however there are  few studies showing presence of 

opioid peptides in the DRG, but only one has looked at the functional contribution of 

opioid peptide(dynorphin)69–71. The MOR, DOR and KOR are expressed by neuronal cell 
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bodies located in the dorsal root ganglia (DRG) and transported to the nerve endings. 

The endogenous opioid receptor signaling in the peripheral nervous system is only and 

widely studied in the context of peripheral analgesia (discussed in section 1.4). 

1.3.3 Immune cells 
 
Opioid peptides, as well as receptors are also expressed in different immune cell 

populations, such as, granulocytes, monocytes/macrophages and lymphocytes. Several 

studies have shown that leukocytes express only a truncated form of POMC mRNA, but a 

mature mRNA expression could be induced under inflammatory conditions or by 

application of CRH. Liou et al showed that Ly6G+ leukocytes, CD3+ T cells and Mac2+ 

macrophages expressed enkephalin. This study also showed colocalization of CD45+ 

leukocytes with all three opioid peptides72.  Opioid receptors are also expressed on the 

immune cells. Few studies have shown that all three opioid receptors are found to be 

expressed in the T and B lymphocytes. An evidence for occurrence of opioid receptor 

signaling in monocytes/macrophages, dendritic cells and even NK cells is shown via 

application of exogenous opioid receptor agonists 73. Although, some studies argue that 

while expression of opioid receptors at an mRNA level is observed in the immune cells, 

detection of proteins is not certain due to lack of specific receptor antibodies74. 

 

Since the discovery of opioids in immune cells, focus has been on neuro-immuno 

crosstalk for modulation of pain sensitivity in the peripheral nervous system (section 

1.4). However, recent evidence is emerging showing that exogenous opioid agonists 

have an immunomodulatory effect. Exogenous agonists are able to elicit 

immunomodulatory effects to varying degrees. A strong immunomodulation effect is 

afflicted by methadone, morphine, fentanyl while oxcycodone, tramadol and 

buprenorphine, not so much. The reason for this inconsistent effect is not well 

understood. Application of exogenous opioids has shown to affect splenic and thymic 

weight of rodents, T cell viability and function, leukocyte migration, number of 

macrophages, leukocyte-endothelial adhesion, cytokine production, superoxide 

production and activity of NK cells74.  However, the exact reason for the expression of 

endogenous opioids in immune cells and their effect on immune system is not studied. 
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1.3.4 Peripheral organ systems 
 

Cardiovascular system: All the three opioids have been detected in heart. They are 

present in the myocardial cells as well as the sympathetic innervation of the heart75–77. 

Activation of MOR signaling in the heart has been shown to modulate cardiovascular 

function leading to suppression of stress induced blood pressure and heart rate, 

urination and inhibition of systemic arterial pressure. While DOR and KOR activation 

protects the heart against ischemic injury78. 

 

Gastrointestinal system: Opioids and the receptors are primarily localized in the enteric 

nervous system and can regulate the digestion process. The release of opioids in the gut 

and binding to their respective receptors, results in the control of gut motility and 

digestive secretions. The gut opioid system is complex. It is able to provoke excitatory 

neural circuits or induce the inhibitory circuits. As a result, activation of opioid receptor 

signaling may either result in gut muscle relaxation or spasms79. 

 

Skin: Opioid expression is found in skin melanocytes and keratinocytes. The cutaneous 

opioid system is able to regulate epidermal cell proliferation. It can also regulate 

epidermal homeostasis. The wound healing process is also influenced by activation of 

opioid signaling80.  

1.4 Neuropathic pain modulation by endogenous opioid system 
 
Neuropathic pain is a chronic pain triggered by conditions that directly affect the 

functioning of the somatosensory system.  It can be caused by nerve injury due to 

trauma, such as amputations or peripheral nervous system diseases, such as diabetes or 

herpes zoster. The characteristic of neuropathic pain is that it is able to persist long 

after the cause has ceased. It hence can be considered as a disease in its own right. The 

pathophysiology has been considered to be the consequence of persistent inflammation 

at the site of nerve injury and dysfunctional transmission of nerve impulses.  

 

Immune system activation and mobilization is closely associated with inflammation. 

Due to the inflammatory signals expressed at the site of injury (ICAM-1 upregulation), 
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immune cells are recruited to the site of inflammation and infiltrate the tissue. 

Subsequently, these immune cells become activated and secrete chemotactic factors 

resulting in the attraction and infiltration of more immune cells to the site of 

inflammation. Immune cells secrete pro-inflammatory (IL-1ß, IL-6 etc.) and anti-

inflammatory (IL-10, IL-4) cytokines, which can modulate pain sensitivity in the 

peripheral nervous system. The involvement of immune system in neuropathic pain 

was proposed to contribute to neuropathic pain. 

 

However, a direct neuro-immune crosstalk in neuropathic pain was revealed upon the 

discovery of endogenous opioid expression in immune cells. Animal models with 

peripheral nerve injury have been used to show that cells of the activated immune 

system can infiltrate the peripheral nerves in response to inflammatory signals released 

by the damaged nerve. Schafer et al showed for the first time that CRH and IL-1ß 

treatment releases the endogenous opioids from immune cells in vitro81. Thereafter, 

Liou et al showed that nerve injury causes release of CRH, which in turn in able to 

induce opioid release from infiltrating immune cells72. Endogenous opioids released by 

the immune cells are able to act as analgesic mediators, relieving painful symptoms. 

Several studies have reported the presence of immune cell derived opioids in the 

injured nerve and a correlation with reduction of thermal and mechanical hyperalgesia 

72,82–84.  

 

Immune cells have therefore been the primary focus in nerve injury models as the 

major source of opioids. However, evidence of expression of opioids in the DRGs also 

exists. Few studies however have addressed the significance of neuron-derived opioids 

in neuropathic pain models. In 2009, Obara et al showed that PENK mRNA was 

downregulated in the DRGs or mice with hindpaw inflammation. The study also showed 

increase in PDYN following chronic constriction injury 68. The importance of neuron-

derived opioid was asserted by reduction in thermal hyperalgesia and improved 

locomotion upon overexpressing PENK in DRG cells of polyarthritic rats 67. However, 

the importance of neuron-derived endogenous opioids in neuropathic pain models 

without a direct physical injury to the nerves remains unknown. 
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Figure 4: Neuroimmune crosstalk during neuropathic pain In Injury induced neuropathic pain models, there is 
an acute inflammation leading to recruitment of immune cells from blood vessels to the site of injury. Using 
overexpressed ICAM-1 receptor, immune cells infiltrate the injured nerve trunk. The immune cells secrete 
proinflammatory cytokines and also opioid peptides, which bind to the cytokine receptors and opioid 
receptors respectively. DPN is metabolic model for neuropathic pain. A persistent low-grade inflammation due 
to metabolic disturbances is present during diabetes. Whether opioid/cytokine containing immune cells are 
able to influence DPN remains unknown. Modified from Stein et al; Pharmacological Reviews; 2011. 

1.5 Endogenous opioid system, diseases and implications in 
diabetes 
 
Endogenous opioids and their respective receptors have diverse physiological roles in 

different organ systems. The deficiency or an excess of any component of the opioid 

system would not only translate into aberrant pain sensitivities but also result 

significant pathophysiological consequences.  

 

POMC deficiency caused by mutations in the gene causes seizures, excessive feeding and 

severe obesity beginning from first year after birth. The resulting adrenal insufficiency 

can have severe life threatening consequences. A similar phenotype has been noted in 

POMC-/- mice85. A decrease in POMC derived ß-endorphins in leukocytes contributes to 

systemic inflammation in Crohn’s disease86 In fact, there are implications of ß-

endorphin in autoimmune disorders. ß-enorphins and enkephalins have also been 

implicated in the pathophysiology Parkinson’s disease8788, Huntington chorea89, RLS90 
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and Tourette’s91 patients. Imbalance in the opioid system in the gut, specially, 

enkephalin, underlies the pathology of opioid bowel syndrome with symptoms of 

idiopathic constipation or diarrhoea and abdominal pain92.  

 

Excessive opioid signaling is also detrimental. Increased level of dynorphins, and 

therefore, increased KOR signaling, is thought to contribute to the pathogenesis of 

Alzheimer’s disease impairing cognition and inducing neurodegeneration 93. Increased 

POMC expression is associated with Addison’s disease, polycystic ovarian syndrome94 

autism95.  

1.5.1 Endogenous opioids and diabetes 
 
Until the 1990s, there were several studies in experimental diabetes models showing 

changes in the endogenous opioid system during diabetes. Nearly all of them have 

measured opioid levels in the plasma or in the central nervous system. Forman et al 

showed that after 4 weeks of STZ injection (type 1 diabetes model), there was a 

significant decrease in the pituitary and hypothalamus of female rats. The decrease was 

not attributed to an STZ injection effect because the authors argued that STZ was not 

administered intracerebrovetricularly 96. The same group showed persistence of low ß-

endorphin levels 8 weeks post STZ induction in the plasma of female rats97. Both Taylor 

et al and Cheung et al showed that male mice showed lower ß-endorphin levels in the 

anterior pituitary and neurointermediate lobe after 1 week of STZ injection. The males 

and female mice showed different degrees of the lowering effect of STZ on ß-

endorphin98. Similar changes were also shown in enkephalin and dynorphin in non-STZ 

diabetic mouse models. 

 

Greenberg et al showed changes in met-enkephalin in pituitaries of male db/db mice99. 

Timmers et al showed that in the db/db mice, enkephalin and endorphin level in 

pituitary and pancreas respectively, decreased in the initial weeks, but as the obesity set 

in, the opioid levels were higher than the lean littermates100.Dynorphins were shown to 

be higher in the brains of STZ treated male rats101. 

 

There also were studies translating the results observed in mouse and rat models into 

humans. Fallucca et al reported a decreased met-enkephalin level in the plasma of 
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diabetic patients with neuropathy, even if the neuropathy was asymptomatic. The 

authors reasoned the effect of plasma met enkephalin in metabolic disturbances rather 

pain modulation during diabetes102. Tsigos et al showed that ß-endorphin levels were 

decreased in diabetic patients regardless of neuropathy symptoms. It was also shown 

that CSF ß-endorphin levels did not correlate with pain sensitivity.  

 

From the existing data, one can conclude that although changes in the endogenous 

opioids may be expected during diabetes, in order to understand the relevance of 

endogenous opioids in pain modulation, the expression of opioids must be studied in 

the peripheral nervous system rather than in the plasma or brain. Juranek et al showed 

that STZ mice, upon nerve crush injury, shown an increase in infiltrating immune cells 

in the nerves. These immune cells were reported to be pro-inflammatory 

macrophages103. Another report by Liou et al, has studied opioid expression in diabetic 

nerves after crush injury. The authors demonstrated that the infiltrating immune cells 

in the nerves of NOD mice after injury, expressed of opioid peptides and helped alleviate 

pain72. A single study, to date, exists showing increased basal dynorphin level and KOR 

in the peripheral nervous system of STZ treated female rats without an external 

injury78.  

 

MOR expression in the PNS during diabetes has been studied in order understand the 

poor efficiencies of exogenous opioid analgesics. 104–106. MOR is reported to be 

upregulated in the PNS during inflammation and injury induced neuropathic pain 107. 

Surprisingly, in DPN, there are some reports that show decreased MOR signaling, 

increased G protein uncoupling and desensitization106,108.  

 

Thus far, it is evident that though there is a vast knowledge on opioid expression post 

nerve injury, there is very little information on the changes in endogenous opioid 

system in the nerves during diabetes.  
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1.6 Aims of the project 
 

Given that endogenous opioids can modulate pain sensitivity and that the CNS derived 

peptides may not directly influence peripheral pain sensitivity, it is worthwhile to 

investigate, the yet unclear, relevance of endogenous opioid system to the pathogenesis 

of DPN. 

 

Opioid expression in the PNS has always been studied within the context of nerve injury 

in animal models, wherein, infiltrating immune cells are the source of opioids. In order 

to study the endogenous opioids system in context of DPN, first it was important to 

establish whether the opioids peptides are expressed in the PNS in absence of external 

nerve injury. The next objective was to determine if immune cells in the sciatic nerve 

are the source of endogenous opioids in DPN, as during nerve injury.  

 

If the presence of opioids was detected in the PNS in diabetic mice, the most important 

question was whether a change in expression of any of the opioids and their receptor 

was observed and what is the mechanism that may contribute to the alterations. Lastly, 

it was crucial to determine the functional consequences of changes in the endogenous 

opioids in diabetic peripheral neuropathy. 
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2. Materials & Methods 

2.1 Materials 

2.1.1 Chemicals and Reagents  
 
Agarose, Ultra Pure Roth, Karlsruhe, Germany 

Ammonium Hydroxide Sigma-Aldrich, Taufkirchen, Germany 

Bovine Serum Albumin (BSA)  Promega, Mannheim, Germany 

Bovine Serum Albumin, fraction V  Sigma-Aldrich, Taufkirchen, Germany 

Bradford reagent Biorad, Taufkirchen, Germany 

Chloroform  Sigma-Aldrich, Taufkirchen, Germany 

Corticotropin releasing hormone (CRH) Sigma-Aldrich, Taufkirchen, Germany 

DNAseI Sigma-Aldrich, Taufkirchen, Germany 

2´-Deoxynucleoside 5´-triphosphates (dNTPs) Fermentas, St. Leon-Rot, Germany 

Dimethyl Sulfoxide (DMSO)  Roth, Karlsruhe, Germany 

EDTA  Sigma-Aldrich, Taufkirchen, Germany 

Ethanol  Sigma-Aldrich, Taufkirchen, Germany 

Ethidium Bromide  Sigma-Aldrich, Taufkirchen, Germany 

Glycerol Sigma-Aldrich, Taufkirchen, Germany 

Gö6983 (PKC kinase inhibitor) Santa Cruz Biotechnology, HD, Germany 

Vent DNA polymerase NEB, Mannheim, Germany 

Isopropanol Sigma-Aldrich, Taufkirchen, Germany  

KCl (potassium chloride) Roth, Karlsruhe, Germany 

Low range DNA ladder,  Fermentas, St. Leon-Rot, Germany 

Magnesium Chloride Sigma-Aldrich, Taufkirchen, Germany 

Mass Ruler, 1 Kb DNA Ladder,  Fermentas, St. Leon-Rot, Germany 
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2-Mercaptoethanol Sigma-Aldrich, Taufkirchen, Germany 

Methanol Roth, Karlsruhe, Germany 

Micrococcal nucelase Cell signaling, Denver, USA 

Milk Powder Roth, Karlsruhe, Germany 

NaCl (sodium chloride) Sigma-Aldrich, Taufkirchen, Germany 

Na-deoxycholate Sigma-Aldrich, Taufkirchen, Germany 

Na-fluoride Sigma-Aldrich, Taufkirchen, Germany 

Na-orthovandate Sigma-Aldrich, Taufkirchen, Germany 

Nonidet-p40 (NP-40) Sigma-Aldrich, Taufkirchen, Germany 

Pre-stained protein marker Invitrogen, Karlsruhe, Germany 

Phenol Roth, Karlsruhe, Germany 

Phosphatase inhibitor  ThermoScientific, Waltham , USA 

PMSF Sigma-Aldrich, Taufkirchen, Germany 

Primers MWG, Germany 

Proteinase K Sigma-Aldrich, Taufkirchen, Germany 

Protein A/G agarose beads Santa Cruz Biotechnology, HD, Germany 

Protease Inhibitor Cocktail Sigma-Aldrich, Taufkirchen, Germany 

Sodium Acetate Sigma-Aldrich, Taufkirchen, Germany 

Sodium Chloride Sigma-Aldrich, Taufkirchen, Germany 

Sodium Dodecyl Sulfate (SDS) Sigma-Aldrich, Taufkirchen, Germany 

TEMED Sigma-Aldrich, Taufkirchen, Germany 

Tween-20 Roth, Karlsruhe, Germany 

Tris-base Roth, Karlsruhe, Germany  

TRIZOL Invitrogen, Karlsruhe, Germany 

Table 1: Chemicals and reagents 
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2.1.2 Mouse Models 
 
C57BL/6; females; streptozotocin induction 

(T1D mouse model) 

 

Charles River Laboratories, Inc., 

Wilmington, MA, USA 

Table 2: Mouse model 

2.1.3 Cells 
 
AtT20 cells Sigma-Aldrich, Taufkirchen, Germany 

Primary DRG culture from WT C57Bl/6 mice Generated by our group 

HEK293T Cells Sigma-Aldrich, Taufkirchen, Germany 

Table 3: Cell lines and primary cells 

2.1.4 Cell culture medium components 
 
DMEM with L-glutamine Life Technologies, Darmstadt, Germany 

Ham’s F10 Nutrient medium Life Technologies, Darmstadt, Germany 

DMEM/F10 with L-glutamine Life Technologies, Darmstadt, Germany 

1x Dulbecco's PBS without Ca and Mg Sigma-Aldrich, Taufkirchen, Germany 

Foetal calf Serum Std Quality, EU approved PAA laboratories, Pasching, Austria 

Horse serum, EU approved Sigma-Aldrich, Taufkirchen, Germany 

100x Penicillin / Streptomycin PAA laboratories, Pasching, Austria 

0.05 % Trypsin and 0.05 % EDTA PAA laboratories, Pasching, Austria 

Table 4: Cell culture medium components 

2.1.5 Cell Culture Media 
 
AtT20 culture media 

Ham’sF10 500ml 

Horse serum 15% 

FCS 2.5% 

Penicillin/streptomycin 50 µg/ml 

Amphotericin B 50 µg/ml 
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L-glutamine 2mM 

Table 5: AtT20 cell culture medium preparation 

 
HEK 293 culture media 

DMEM 1gm/l Glucose 500ml 

FCS 10% 

NEAA 1% 

Pencillin/streptomycin 50 µg/ml 

Amphotericin B 50 µg/ml 

L-glutamine 2mM 

Table 6: HEK 293 cell culture medium preparation 

DRG culture media 
DMEM/F10 4.5gm/l Glucose 500ml 

Horse serum 10% 

NEAA 1% 

Pencillin/streptomycin 50 µg/ml 

Amphotericin B 50 µg/ml 

L-glutamine 2mM 

Table 7: Primary DRG culture medium preparation 

2.1.6 Antibodies 
 

Antibody  
 

Species  Supplier  Application  

ß-actin Rabbit 4967 (Cell signaling) WB 

CD11b-Biotin Rat  101203 (Biolegend) IF 

CD45 Rat  103101 (Biolegend) IF 

Endorphin Rabbit AB5028(Chemicon) IF 

Enkephalin Rabbit T-4293 (Peninsula) IF 

Dynorphin Rabbit Ab82509 (Abcam)  IF 

Iba-1 Rabbit 019-19741 (Wako) IF 

Lamp1 Rat 12601 (Biolegend) IF 

MOR Rabbit RA10104 (Neuromics)  IF, WB 

mCherry Goat AB0040-20 (Sicgen) IF 

NF-kB p65 Goat Sc-109x (Santa Cruz) EMSA 

NF-KB p65 Goat   100-4165 (Rockland)  ChIP, WB  

NF-kB p52 Rabbit  Sc-848x (Santa Cruz) EMSA 

NF-kB p52 Rabbit  Ab175192  (Abcam) ChIP, WB 



 

34 

 

NF-kB p50 Rabbit  Sc-114x(Santa Cruz) EMSA 

NF-kB p50 Rabbit   Ab32360 (Abcam)  ChIP, WB, IF  

NF-kB cRel Rabbit  Sc-70x (Santa Cruz) EMSA, WB  

NF-kB cRel Rabbit  PA5-47370 (Invitrogen)  ChIP  

NF-kB Rel B Rabbit  Sc-226 (Santa Cruz) ChIP 

Pan PKC Rabbit SAB4502356 (Sigma) IF 

Pan opioid Mouse MAB5276 (Millipore)  IF, WB 

PGP9.5 Rabbit AB5925 (Millipore)  IP  

PGP9.5 Guinea 
pig 

GP101014 (Neuromics)  IF 

POMC Goat PA5 18368 (Thermo 
Fischer) 

IF, WB 

RNA polymerase Mouse 8WG16/MMS-126R 
(Covance) 

ChIP 

Tuj1 Rabbit T2200 (Sigma)  IF  

Secondary antibodies    
 
 Anti Goat-HRP  Donkey sc-2033 (Santa cruz) WB 

Anti Rabbit IgG-HRP  Goat 7074(Cell Signaling) WB 

Anti mouse IgG-HRP  Horse 7076 (Cell signaling) WB 

Anti Goat-Alexa-647 Donkey Ab150139 ( Abcam) IF 

Anti-Goat-FITC Donkey 705-095-003 (Jackson) IF 

Anti-Goat-TRITC Donkey 705-025-003 (Jackson) IF 

Anti mouse-Alexa-647 Donkey 4410 S (Cell signaling) IF 

Anti-mouse-Alexa-488 Goat A11001 (Thermo Fischer) IF 
 

 
Anti Rabbit-Alexa-555 Donkey Ab150074 ( Abcam) IF  

 
Anti Rabbit-Alexa-488 Goat 4412S(Cell signaling) IF 

Anti-Rabbit-Alexa-647 Goat 4410S (Cell signaling) IF 

Anti-Guinea Pig-Alexa-
647 

Goat SAB 4600180(Sigma) IF 

Table 8: Primary and secondary antibodies 

2.1.7 Kits 
 
ChIP kit EMD Millipore Corporation, Billerica, MA 

ELISA kit Phoenix Pharmaceuticals, Arizona, USA 

ECL reagent  GE Healthcare EU GmbH, Freiburg, Germany 

PKC kinase activity kit Enzo Lifesciences, Lörrach, Germany 

QIAGEN Plasmid Plus Maxi and Mini Kit  Qiagen, Hilden, Germany 

GenElute™ Gel Extraction Kit  Sigma-Aldrich, Taufkirchen, Germany  

Table 9: Kits 
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 2.1.8 Buffers and solutions 

(a) Western Blotting 
 
RIPA buffer for whole tissue lysates 
Tris-Cl(pH=8)   hh 50mM 

NP 40 1% 

Na deoxycholate 0.5% 

NaCl 150mM 

Dithiothreitol 0.1mM 

PMSF 10 µg/ml  

Benzonase 1 unit/ml 

 

SDS stacking gel buffer 
Tris-Cl (p               h=8)            1.5M 

SDS 0.4% 

**Adjust pH to 6.8     

SDS resolving gel buffer 
Tris-Cl (p               h=8)            1.0M 

SDS 0.4% 

**Adjust pH to 6.8 
 
5x SDS running buffer 

Tris-Cl (           h=8)            25M 

SDS 5% 

Glycine 1.25mM 

 
1x SDS sample buffer 

Tris-Cl(pH=6.8) 62.5mM 

SDS 2% 

Glycerol 10% 

Bromophenol blue 0.01% 

Dithiothreitol 50mM 

 
Transfer buffer 

Tris-Cl (           h=8)            20M 

Methanol 20% 

Glycine 150mM 

 
Blocking buffer 

PBS-Cl (           h=8)            100ml 

Milk powder 5g 

Tween20(v/v) 0.05% 

 
Washing buffer 

PBS-Cl (           h=8)            100ml 

Tween20(v/v) 0.05% 
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2.1.8 Equipment 
 
BioDoc Station Biometra, Goettingen, Germany 

Blot chamber Trans-Blot Electrophoretic Transfer Cell, 

Biorad Laboratories, Germany 

Cell culture flasks and dishes Becton Dickinson, Heidelberg, Germany 

Cover slips for cell culture Paul Marienfeld GMBH & Co.KG, Lauda- 

Königshofen, Germany 

Centrifuge-labofuge-400R Heraeus, M & S laborgeräte GMBH, 

Wiesloch, Germany 

CF 100 pulse generator Biochemical Laboratory Service, Budapest, Hungary 

Developer (for western blot) CURIX 60, Agfa 

Neon Electroporation unit Thermo Fischer Scientific, Waltham, USA 

Hettich-Table Centrifuge GMI, Inc, Minnesota, USA 

High speed ultracentrifuge Beckman Coulter GMBH, Krefeld, Germany 

Hotplate Ugo Basile, Monvalle, Italy 

Hargreaves Ugo Basile, Monvalle, Italy 

Immobilon-P Transfer Membrane Millipore Corporation, Billerica, MA 

Mechanical Plantar Anaesthesiometer Ugo Basile, Monvalle, Italy 

Microscope, flourescence Nikon, Amsterdam, Netherlands 

Microscope, confocal: LSM700, LSM780  Carl Zeiss NTS, Oberkochen/Germany 

Microplate reader BMG Labtech, Ortenberg, Germany 

Power supply unit Biorad Laboratories, Germany 

Pipettes Gilson Pipetman, Gilson, Germany 

Pipettes, pipette tips and falcon tubes Finnpipp, Germany 

Spectrophotometer BIO-TEK-Instruments, Inc, Vermont, USA 

T3000 Thermocycler Biometra, Goettingen, Germany 

Von Frey filaments Stoelting, Illinois, USA 

X-ray film GE Healthcare EU GmbH, Freiburg, Germany 

Table 10: Instruments 
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2.1.9 DNA oligonucleotides 
 

Name Application Sequence 

Actin_forward 
 

qPCR GGC TGT ATT CCC CTC CAT CG 
 

Actin_reverse 
 

qPCR CCA GTT GGT AAC AAT GCC ATG T 
 

18srRNA_forward qPCR 
 

GTA ACC CGT TGA ACC CCA TT 
 

18srRNA_reverse qPCR 
 

CCA TCC AAT CGG TAG TAG CG 
 

POMC_forward qPCR ATGCCGAGATTCTGCTACAGT 
 

POMC_reverse qPCR TCCAGCGAGAGGTCGAGTTT 
 

PENK_forward qPCR TGCGCTAAATGCACGTACC 
 

PENK_reverse qPCR TCCCAGATTTTGAAAGAAGGCAG 
 

PDYN_forward qPCR CTCCTCGTGATGCCCTCTAAT 
 

PDYN_reverse qPCR AGGGAGCAAATCAGGGGGT 
 

MOR_forward qPCR TCCGACTCATGTTGAAAAACCC 
 

MOR_reverse qPCR CCTTCCCCGGATTCCTGTCT 
 

NF-kB consensus EMSA E329a (Promega) 

POMC 
promoter_forward 

ChIP AGTTCTTCCTAACCACCAGCGCC 

POMC 
promoter_reverse 

ChIP TATACTTGCAGGGTTGGGTGGGTG 

GAPDH_forward ChIP CAGCCGGAGTTCTTAACCAG 
 

GAPDH_reverse ChIP CTGCCAATCCTGATGGACTAA 
 

FlagMOR_forward Cloning ACGTACGAATTCTGATTCGAGCTCGCCCCGCCCCCAG 

FlagMOR_reverse Cloning GATCCGCGG GGGCAATGGAGCAGTTTCTGCTTCCGCA 

Table 11: Oligonucucleotide sequences 
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2.2. Methods 

2.2.1 Animal Experimentation 

(a) 3.1.1 Animals 
 
C57/Bl6 female mice, obtained from Charles River, USA were used throughout this 

study. The mice were housed in groups of four and a 12h/12h light / dark cycle with 

always exposed to free access to food and water. The procedure of the experiments was 

approved by the Animal care and use committees at the Regierungsspräsidien Tubingen 

and Karlsruhe, Germany (35-9185.81/G-90/0435-9185.81/G-182/08).  

(b) 3.1.2 Experimental groups, diabetes induction and monitoring 
 
Diabetes was induced in the 8 weeks old mice by intra-peritoneal administration of 

Streptozotocin (50mg/kg) on 6 subsequent days. Insulin supplementation was started 

as soon as the blood glucose levels reached 300mg/dL. An initial time course study was 

conducted in order to study the expression of all three endogenous opioids. For this, 4, 8 

and 12 weeks post STZ induction were chosen as the time points of interest. For each 

time point, 4 diabetic and 4 age matched non-diabetic mice were included. There 

onwards, each study was conducted at 12 weeks post STZ induction. For each study at 

this time point included 5-6 mice in the diabetic and 5-6 mice in the control group. The 

mice were continuously monitored by measuring blood glucose levels and body weight. 

Intradermal insulin (Lantus, Aventis) injections were given when the glucose levels 

were more than 350mg/dL. Blood glucose, body weights and Hba1c measurements 

were used as parameters to verify diabetic status of the mice. At the desired time point, 

the mice were sacrificed, perfused and organs (lumbar DRG, sciatic nerves and 

footpads) were dissected for further analysis.  

(c) 3.1.3 Behavioral testing 
 
Before sacrificing the mice, thermal and mechanical hyperalgesia were measured. 

Thermal pain sensitivity was measured using hotplate and Hargreaves, while Von Frey 

filaments were used to measure mechanical pain sensitivity. 

Hotplate: The mouse was dropped on a hotplate at 50°C. A stopwatch was immediately 

started. The mouse was closely monitored for signs of distress, such as, licking of paw or 

lifting of paw. As soon as these signs were seen, the stopwatch was stopped and the 
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mouse was lifted from the hotplate. The timings were recorded for each mouse 

thrice109.  

Hargreaves: The mice were placed in the chambers of the Hargreaves apparatus for an 

hour for three consecutive days for acclimatization. On the fourth day, Hargreaves 

measurements were carried out after fifteen minutes of acclimatization. The laser beam 

was placed under the left paw and the timing was recorded until the mouse its paw. The 

same was recorded for the right paws. Five readings were taken per mouse, per paw110.  

Von Frey filaments: The mice were dropped in the mechanical pain testing apparatus-

transparent cages with a wire mesh at the bottom. After acclimatization for an hour, 

each paw of the mice was stimulated with filaments of the strengths 0.16g, 0.4g, 0.6g, 

1.4g, 2g. Each paw was stimulated five times111.   

For each test, the mean recording of diabetic group was compared with those of the 

control group. Student’s t-test was used as the statistical measure to determine the 

significance of the difference. 

2.2.2 Ex vivo methods 

(a) Western blotting 
 
Lysate preparation: After sacrifice and perfusion of the mice with ice-cold PBS, lumbar 

DRGs(n=12) , sciatic nerves(n=2), footpads(n=2) from each mouse were snap frozen in 

liquid nitrogen. The organs were then crushed mechanically using the glass pestle, also 

frozen in liguid nitrogen. Once a powder was obtained, upto 100 μl of ice cold RIPA 

buffer was added to the the tubes. The tubes were incubated on ice for 60 minutes. The 

lysates were then centrifuged at 20,000g for 30 minutes at 4°C. The supernatant 

containing proteins was carefully pipetted out into a new tube and placed immediately 

on ice. The proteins were then quantified using the Bradford assay.  

 

Immunoblotting: Equal amount of protein samples were electrophoretically separated 

on SDS Polyacrylamide gels and transferred to PVDF membranes. Following blocking, 

(room temperature, 1 hour) the membrane was incubated with primary antibody at 

appropriate dilution made in blocking buffer (4°C, overnight) with continuous shaking. 

The membrane was washed with washing buffer and was incubated with appropriate 

secondary HRP conjugated antibody at diluted in blocking buffer (room temperate, 1 
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hour). Unbounded antibodies were removed by washing and signals were developed 

using ECL kit according to manufacturer’s instructions (GE Healthcare, Germany). 

 

Analysis:  The bands obtained were scanned and quantified by densitometry using 

ImageJ software. The band intensities were compared between control and diabetic 

groups and significance determined by Student’s t-test. 

(b) Immunoflourescence staining, microscopy and image analysis 
 
Tissue fixation and embedding: After perfusion, the lumbar DRGs and sciatic nerves were 

dissected, fixed in 4% paraformaldehyde and cryoprotected in 30% sucrose solution 

overnight. The tissues were then embedded in Tissue-tek (Sakura, Japan). The DRGs and 

sciatic nerves were cut at a thickness of 10µm thick sections on a cryostat, while 16 µm 

thick sections were cut for footpad samples. The sections were dried at RT for two 

hours and then stored at -20°C until staining. 

 

Immunoflourescence staining: Each fifth section from every mouse in the group was 

used for staining. The sections were thawed at RT for 2 hours. They were then fixated in 

acetone at -20°C for 10 minutes. After air drying the sections at T for 15 minutes, the 

sections was washed with 50mM Glycine for antigen retrieval and permeabilized using 

0.1% aqueous solution of Saponin for 30 minutes at room temperature. These 

permeabilized sections were then washed extensively with Phosphate buffered saline/ 

0.2% Triton X100 (TBS-T) for 5 mins x 3 times. The sections were then blocked with 

10% horse serum in PBS-0.2% Triton X100 for 45 minutes at room temperature. After 

incubation respective antibodies were diluted in the blocking buffer and incubated at 

4°C overnight. The sections were then washed with PBS-T (10 minutes x 3 times). 

Fluorochrome conjugated respective secondary antibodies were then used to detect the 

signal. The sections finally were washed to remove excess secondary antibody, stained 

with DAPI(nuclear stain) and mounted with Permaflour mountant medium (Thermo 

Fischer Scientific) 

 

Image analysis: Images were acquired by a fluorescence microscope (Nikon) using 20x 

and 60x optics or confocal microscope (Zeiss) using 63x objective. Image analysis was 

performed using ImageJ software. The Mean Flourescence Intensities (MFI) were 
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measured or number of positive cells for respective protein were counted and then 

compared amongst the diabetic and non diabetic groups. 

 

(c) ELISA 
 
Extraction of ß-endorphin: From each mouse, 12 lumbar DRG, 2 sciatic nerves and 2 

footpads were dissected and snap frozen in liquid nitrogen. The organs were then 

crushed using frozen glass pestle. 1M acetic acid was added to the crushed tissue and 

incubated for 15 minutes at room temperature for 15 minutes and then at 95°C for 

another 15 minutes. The samples were cooled by placing them on ice for 5 minutes and 

later centrifuged at 4000g for 15 minutes at 4°C. The supernatant containing ß-

endorphin was collected. To preclear the supernatant of endogenous biotin, 10µl of 

avidin coated magnetic beads washed with 1M acetic acid were added to each sample. 

The samples were then tumbled for 30 minutes at 4°C and the beads were separated 

using a magnetic rack. The precleared supernatants were then lyophilized and 

resuspended in 1X assay buffer. 

 

ELISA: To quantify the ß-endorphin levels, ELISA kit (Phoenix Pharmaceuticals, USA) 

was used. The 50µl of each sample was added in duplicates to a 96 well plate coated 

with a secondary antibody. Diluted primary antibody specific for ß-endorphin was 

added to each well, except ‘Blank’ and incubated overnight at 4°C. Here onwards, all 

incubation steps were carried at room temperature with continuous shaking. Unbound 

antibody and proteins were removed by washing. Biotinylated peptide was later added 

to the wells for competitive binding and incubated for 2 hours, followed by another 

washing step. After which, substrate was added to the wells and incubated for 1 hour 

and finally, colour was developed using tetramethylbenzidine substrate (TMB). 2N HCL 

was used to stop the reaction. The absorbance was measured at 450 nm in a microplate 

reader. 

 

Analysis: Omega software was used to interpret the readings. A standard curve was 

constructed by plotting the known concentrations of standard peptide on the log scale 

(X-axis), and its corresponding O.D. reading on the linear scale (Y-axis). 4 parameter 

logistics was used to quantify the concentration of standard peptide. The standard 
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curve showed an inverse relationship between peptide concentrations and the 

corresponding absorbance. As the standard concentration increases, the yellow color 

decreases, thereby reducing the O.D. absorbance. The measured concentration was 

adjusted according to quantity of protein added per well and ß-endorphin 

concentration per mg or protein was determined for each sample. The means of groups 

were compared and significance was determined using the Student’s t-test.  

(d) PKC kinase activity 
 
Lysate preparation: To determine the activity of PKC kinase in the DRGs, protein lysates 

were prepared from freshly isolated DRGs (not frozen in liquid nitrogen). The lysate 

preparation is described in 2.2.2(a). The lysates were immediate used for the kinase 

activity determination. 

 

Kinase activity assay: PKC kinase activity kit was used for this purpose (Enzo 

Lifesciences, UK). A 96 well plate and the buffers were thawed at room temperature. 

The wells were washed once with Kinase Dilution Buffer and equal quantities of protein 

were added per well. Each sample was added in triplicates. Diluted ATP was added to all 

wells and incubated at 30°C for 90 minutes. The kinase reaction was terminated by 

emptying the wells and a phosphospecific substrate antibody was added to the wells, 

which bind specifically to the phosphorylated peptide substrate. Unbound antibody as 

removed by washing.  The phosphospecific antibody is subsequently bound by a 

peroxidase conjugated secondary antibody. The assay was developed with TMB 

substrate. A color development proportional to PKC phosphotransferase activity is 

observed. The color development was stopped with acid stop solution and the intensity 

of the color was measured in a microplate reader at 450 nm. The mean absorbance of 

the diabetic group was compared with the control group and Student’s t-test was used 

to determine the significance. 

(e) Chromatin immunoprecipitation (ChIP) 
 
To determine whether POMC promoter is bound with NF-kB subunits, a ChIP assay kit 

(EMD Millipore, USA) was used.  The lumbar DRGs and snap frozen in liquid nitrogen 

were gently thawed on ice before beginning the assay. To each tube containing 12 DRGs, 

freshly prepared 18.5% formaldehyde was added and incubated at room temperature 
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for 20 minutes for crosslinking of protein-DNA. Adding glycine to a final concentration 

of 0.125M terminated the crosslinking. The DRGs were then washed with ice-cold PBS 

and mechanically dissociated in Cell Lysis buffer using a glass pestle to release the 

nuclei. The lysate was incubated on ice for 15 minutes and centrifuged (800g, 5 minutes, 

4°C) to pellet nuclei. The nuclei were then suspended in MN buffer(10mM TrisCl 

pH=7.5, 4mMMgCl2, 1mMCaCl2, PIC). Micrococcal nuclease was added to each tube and 

incubated at 37°C for 10 minutes to fragment the chromatin. Adding EDTA to the tubes 

and incubating on ice for 10 minutes terminated the nuclease activity. The fragmented 

chromatin was pelleted by centrifugation (10,000g, 1 minute, 4°C). The pellet was 

resuspended in Nuclear Lysis Buffer. Each sample was sonicated (20 seconds, 3 pulses, 

20%power) to break the nuclear membrane. The samples were then centrifuged 

(10,000g, 10 minutes, 4°C) to separate the debris. The samples were then precleared 

using 10 µl protein A/G magnetic beads. µl from these precleared chromatin-protein 

preparations were used to check whether the DNA is fragments are appropriately sized. 

To these 25µl, proteinase K was added, incubated for 2 hours at 62°C and the purified 

using columns provided in the kit. The sample was electrophoretically separated on 2% 

agarose gel. The bands were expected to be between 200bp-900bp. If the appropriate 

digestion was achieved, 20 - 60µg chromatin was transferred to tubes for each 

immunoprecipitation reaction. Appropriate NF-kB subunit antibody at a predefined 

concentration was added to the tubes, along with magnetic protein A/G beads. The 

immunoprecipitation reaction was allowed to proceed overnight at 4°C on a rotor. The 

beads bound with antibody and the chromatin was separated using a magnetic rack and 

further washed to remove excess unbound material. Finally, the DNA fragments were 

eluted in Elution Buffer and proteins were degraded by Proteinase K treatment. The 

quantification of POMC promoter fragments specific for NF-kB binding sites were 

quantified using specific primers (listed in section 2.1.9) in a quantitative real time PCR 

(described below).  

(f) Quantitative real time PCR 
 
RNA isolation from DRGs: RNA was isolated from DRGs snap frozen in liquid nitrogen 

using the Trizol reagent (Invitrogen, Germany). The frozen DRGs were gently thawed on 

ice and homogenized mechanically in Trizol reagent. The homogenates were incubated 

at room temperature for 5 minutes and vortexed.  One-fourth volume of chloroform was 
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then added, properly mixed by inverting and then centrifuged (20,000g, 15 minutes, 

4°C) for phase separation. Topmost aqueous layer was pipetted out into a new tube. The 

RNA was precipitated using 100% isopropanol (20,000g, 15 minutes, 4°C). The 

isopropanol was removed from the RNA preparation by ice-cold 70% ethanol washes (2 

washes; 10,000g, 10 minutes each, 4°C). The final pellet was air dried and resuspended 

in DEPC water and quantified spectrophotometrically. The RNA preparation was then 

treated with DNAseI (Invitrogen, Germany) for 15 minutes at room temperature to 

remove contaminating DNA fragments. The DNAse action was stopped by added EDTA 

to a final concentration of 0.25mM and an incubation at 65°C for 10 minutes. 

 

Measuring DNA quality and concentration: RNA concentration was measured using 

spectophotometer (Bio-Tek Instruments, USA) according to manufacturer instructions. 

Absorption peaks indicated possible contamination of RNA. Ratios of absorption 

260/280 or 260/230 were used as indicators of contamination for proteins and 

aromatic compounds, respectively. In particular, preparations with 260/280 ratio of 1.8 

– 2.0 and 260/230 ratio greater than 2.0 were considered of good quality, and used for 

further analysis. RNA was stored at -20°C for short term, or at -80°C for long time. 

cDNA preparation: For cDNA synthesis, 1µg of total RNA was diluted cDNA Master Mix 

using reagents from cDNA systhesis kit (Applied Biosystems, UK). cDNA was stored at -

20°C.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Master Mix per reaction 

10X RT Buffer 2 µl 

25X dNTP Mix  0.8 µl 

10X RT Random Primers 2 µl 

Reverse Transcriptase 1 µl 

RNase Inhibitor 1 µl 

Nuclease-free H2O 3.2 µl 

Total per Reaction 10 µl 

 

PCR conditions 

25°C C °C 10 minutes 

37°C 120 minutes 

85°C 5 minutes 

4°C pause 

 

Table 12: cDNA synthesis reaction set up and temperature conditions 
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Quantitative real time PCR: Relative expression of target genes was measured by 

quantitative real time PCR (qRT-PCR) using the Lightcycler 480 real-time PCR system 

(Roche, Germany). The qRT-PCR was performed in a 96 well plate in duplicates. 

Lightcycler 480 SYBR green I Master (Roche, Germany) containing FastStart Taq DNA 

Polymerase and DNA double-strand-specific was used for product detection and 

characterization.  Primers specific to gene analysed are listed in the 2.1.9 Section. The 

reaction mix and PCR conditions are given below in table 1. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

Analysis: To calculate the relative expression of a gene of interest (GOI), the ∆Ct method 

was used, which normalizes the cycle of threshold (Ct) measured for the GOI to the Ct 

measured for a housekeeping gene (HKG) taking into account the primer efficiency. One 

of the samples was used as internal reference for the fold induction calculation of the 

transcript level of the other samples. The calculation can be summarized in the 

following formula: 

 

              
   (          (   )) –   (       (   )) 

              
   (          (   )) –   (       (   ))

 =                 

 

Primer specificity was evaluated by analysis of the melting curve and by including 

appropriate controls. Actin or 18srRNA was used as the housekeeping gene for 

normalization, and the mean of fold induction was calculated. 

Master Mix per reaction 

dH2O 7.2 µl 

10 µM Forward primer 0.4 µl 

10 µM Forward primer 0.4 µl 

SYBR green Mix 10 µl 

cDNA 2 µl 

Total per Reaction 10 µl 

 

PCR conditions 

Stage1 95°C 3 minutes 

Stage2 95°C 10 seconds 

60°C 20 seconds 

70°C 1 seconds 

Stage3 95°C   5 seconds 

65°C 1 minute 

97°C continuous 

 40°C Melt curve 

 

Table 13: qPCR reaction set up and temperature conditions 
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2.2.3 Cell culture methods 

(a) AtT20 cell culture 
 
AtT20 (Sigma-aldrich, USA) is a cell line is a POMC expressing cell line, established after 

alternate passage of mouse pituitary tumor cells as tumors in animals and in cell 

culture. These are suspension cells; are round and grow in aggregates. The cells were 

cultured in Ham's F10 medium, 82.5%; horse serum, 15%; FBS, 2.5%, 1%Penicillin-

streptomycin, 1% AmphotericinB, 1% L-Glutamine).  

 

The cells were grown in T-25 culture flasks at 37°C, 5% CO2. For sub-culturing, the 

clusters were allowed to settle and all but 2 ml medium was removed. The clusters were 

gently transferred to new flasks and fresh medium was added. A subcultivation ratio of 

1:2 was always used. 

(b) CRH response assay 
 
In this assay, AtT20 cells were exposed to increasing glucose concentrations in presence 

and absence of Corticotropin Releasing Hormone (CRH) and then harvested to quantifiy 

POMC mRNA levels. 

 

AtT20 cells, in their log phase, were collected in a conical flask and centrifuged at 150g 

for 5 minutes at room temperature. The pellet was resuspended in PBS and divided 

equally into tubes per exposure condition. The tubes were centrifuged (150g, 5 

minutes) and the pellet was resuspended in 6mM, 20mM or 40mM glucose medium 

with reduced sera (0.5% horse serum and FCS). 20mM and 40mM Sorbitol controls 

were included to exclude effects on POMC expression due to osmotic changes. Half of 

the cells per tube were exposed to CRH (10-7M), while the other half were not. The cells 

were plated in 6 well plate (106  cells per well) in triplicates for each condition at 37°C, 

5% CO2. 

 

After 12 hours of exposure, the cells were harvested, washed twice with PBS and the 

pellet was resuspended in Trizol reagent. mRNA was extracted as described in section 

2.2.2(f). POMC mRNA expression was quantified and normalized with actin (house 

keeping gene) for each condition using the q-RTPCR. 



 

47 

 

(c) Western blotting 
 
Cell exposure conditions: AtT20 cells, in their log phase, were pooled, pelleted and 

washed with PBS. The pellet was then equally divided and exposed to either 6mM or 

20mM glucose in reduced sera culture medium. The cells were plated in quadruplicates 

per exposure condition, as 106  cells per well. After 12 hour-long exposure, the cells 

were pelleted and washed twice with PBS and proceeded for nuclear lysate preparation. 

 

Nuclear lysate preparation: The pellets were resuspended in Buffer A and incubated on 

ice for 10 minutes. The nuclei were pelleted by centrifugation (20,000g, 5 minutes, 4°C) 

and resuspended in Buffer C. The suspension was further incubated on ice for 20 

minutes and finally centrifuged(20,000g, 5 minutes, 4°C) to pellet the debris. The 

supernatant containing nuclear proteins was collected and quantified using Bradford 

assay. 

 

Immunoblotting: Equal amount of protein from each sample was loaded onto an SDS 

polyacrylamide gel. The blotted proteins were probed with either of the NK-kB subunit 

antibodies- p65, p50, p52, cRel. Histone H3 antibody was used as the loading control. 

The protocol is described in section 2.2.2(a).  

(d) Electromobility Shift Assay (EMSA) 
 
AtT20 nuclear lysates were prepared as given in 2.2.3(c). A radioactively labeled DNA 

probe, consisting of NF-kB consensus sequence was prepared by incubating the NF-kB 

oligonucleotide with radioactive P32 isotope along with T4 polynucleotide kinase 

overnight at 4ºC. The enzyme activity was terminated using 0.5M EDTA and the labeled 

DNA probe was then precipitated with 70% ethanol and sodium acetate. The probe was 

dissolved in ddH2O and stored at 4ºC for 48 hours. 

For EMSA reactions 10ug AtT20 nuclear lysates were mixed in a 20μL reaction with 

66.7nM of probe, 0.1mg/mL BSA, and EMSA Buffer (10mM Tris-Cl pH 7.4, 50mM KCl, 

0.5mM MgCl2, 0.1mM EDTA, 5% glycerol) for 30 minutes at room temperature. 

Reactions were then loaded onto a pre-electrophoresed 6% acrylamide/bis (37.5:1) gel 

in 0.5xTBE and run at 100V at 4ºC. The gels were dried and analyzed by exposing them 

to photographic film.  
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(e) Chromatin Immunoprecipitation (ChIP) 
 
AtT20 cells in their log phase were selected for performing ChIP assay such that there 

were 106 cells per IP reaction. The cells were centrifuged and resuspended in either 

6mM or 20mM glucose medium with reduced serum. Post 12 hours or exposure to low 

and high glucose, the cell were crosslinked. The rest of the procedure was same as 

described in section 2.2.2(e) 

(f) DRG (primary) culture 
 
DRGs from 6 week old female WT mice were dissected and dissociated using 0.3% 

collagenase and then by 0.05% trypsin at 37°C for 45 minutes per treatment. The DRGs 

were then mechanically dissociated using Pasteur pipette and trypsin reaction was 

stopped by adding FCS to the tubes. The cell suspension was then centrifuged at 300g 

for 3 minutes and washed with PBS twice. The pellet was resuspended in the culture 

medium and placed into wells of 12-well plate coated with (0.01%) and laminin 

(25µg/ml) drop by drop. The cells were allowed to attach by incubating the plate at 

37°C for 15 minutes. 1 ml of medium was added to each well gently and the cells were 

incubated overnight at 37°C at 5% CO2. Selection medium containing  cytosine 

arabinoside (AraC;10µM) and NGF (50ng/ml) to inhibit dividing non-neuronal cells and 

to promote neuronal growth. The cells were incubated with selection medium for 24 

hours and then replaced with normal DRG cell culture medium. 

(g) Transfection and live cell staining of DRG cells 
 
Transfection of primary cells: The DRGs were dissected and dissociated as above. After 

washing with PBS post dissociation, the cells pellet was resuspended in R buffer. The 

suspension was then divided equally into number tubes required for live cell staining 

conditions. 2µg of Flag-MOR-mCherry construct was added per tube except for the 

‘untransfected control’. The cells then were electroporated using the Neon transfection 

system with 2 pulses at1300V, 20 seconds each. The transfected cells were seeded on 

poly-L-ornithine and laminin coated coverslips and incubated overnight at 37°C at 5% 

CO2. Selection medium was added 12 hours post transfection. After 24 hours of 

transfection, the cells were incubated with either of the following medium: low glucose 

medium (17mM), low glucose + PKC inhibitor (1µM), high glucose (40mM) or high 

glucose+ PKC inhibitor. These media contained AraC and NGF. The same media (without 
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AraC and NGF) were refreshed after 24 hours of exposure. 48 hours post exposure 

conditions, the cells were staining live with Flag antibody 

 

Live cell staining: To each well, wheat germ agglutinin conjugated to FITC (5µg/ml) was 

directly added to the cells and incubated at 37°C for 10 minutes. The cells were washed 

thrice with PBS and fixed with 4% paraformaldehyde for 20 minutes. The cells were 

washed thrice with PBS, stained for DAPI and then mounted using Permaflour mountant 

medium. The stained cells were imaged using LSM 710 or LSM 700 confocal microscope. 

(h) Immunocytochemistry 
 
DRGs cells seeded on coverslips were fixed with 4% paraformaldehyde and 

immunostained as follows. The fixe cells were washed with PBS, permeabilized with 

PBS+0.2%TritonX100 and Blocked with PBS+10%FCS for 1 hour. Appropriate dilution 

of primary antibodies was then added to each well, except secondary antibody control. 

The cells were incubated at 4°C overnight and then washed with PBST 

(PBS+o.2%TritonX100) and probed with appropriate secondary antibodies. The 

unbound antibodies were washed with PBST. Finally, the cells were stained with DAPI 

and mounted using Permaflour mountant medium and imaged using confocal 

microscope. 

2.2.4 Molecular biology methods 

(a) PCR amplification of Flag-MOR 
 
N terminally tagged Flag-MOR construct was kind gift provided by Dr. Manojkumar 

Puthenveedu, Carnegie Mellon University, USA. Primers specific for the 5’ and 3’ 

terminus of the construct, containing restriction enzyme overhangs were generated 

(EcorI overhang in the forward and SacII in the reverse primer). Amplification of DNA 

sequences was performed using these specific primer sets.  For each PCR amplification, 

a 50μl reaction was set as below in table... A non-template control (ddH2O added 

instead of plasmid) was included to determine primer specificity Reaction mixtures 

were loaded into an automated DNA thermal cycler to undergo amplification. 
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The sample was loaded onto 0.8% agarose gel to check the molecular weight of the 

amplified product. The reaction mix was then purified using PCR purification kit 

(Qiagen, Germany). The samples were mixed with 5 volumes of Column Binding Buffer 

and loaded into a matrix-containing column. The columns were centrifuged at 13,000g, 

1 minute, 25°C. The column was washed with Washing Buffer (13,000g, 1 minute, 25°C) 

and the dry spun for 2 minutes (13,000g, 25°C). 30 µl Elution Buffer was directly added 

on to the column, incubated for 1 minute at room temperature and the centrifuged at 

13,000g, 1 minute, 25°C into a clean tube. 

(b) Restriction digestion of vector and insert 
 
A sequential digestion of purified PCR product (insert) and the vector pmCherryN1 

(Clonetech), was performed at 370C using restriction enzymes indicated for the two 

primers in 1X compatible buffer. The reaction was performed as per the table 2. The 

reaction tubes were then incubated at 37oC for 6 hours for each enzyme and were then 

analyzed for digestion. After digestion with the first enzyme, EcoRI, the vector and 

insert were PCR purified as described in 2.2.4.(a) and then the second digestion as set.  

 
EcoRI digestion 

DNA (vector or insert) Upto 30 µl 

Buffer H (Promega)  5 µl 

EcoRI (Promega) 1 µl 

dd H2O 14µl 

Total per Reaction 50 µl 

 

SacII digestion 

DNA (vector or insert) Upto 30 µl 

Buffer C (Promega)  5 µl 

SacII (Promega) 1 µl 

dd H2O 14µl 

Total per Reaction 50 µl 

 

Master Mix per reaction 

10X Thermopol Buffer 5 µl 

10mM dNTP Mix  1 µl 

10µM F+R Primers 2 µl 

Flag-MOR construct (100ng) 1 µl 

dd H2O 40µl 

DeepVent DNA Polymerase 1 µl 

Total per Reaction 50 µl 

 

PCR conditions 

94°C C °C 230 seconds 

94°C 60 seconds 

67°C 60 seconds  

72°C 110 seconds 

72°C 320 seconds 

72°C pause 

 

30 cycles 

  

 Table 14: PCR reaction set up and temperature conditions for cloning  

Table 15: Restriction digestion reaction set up and temperature conditions 



 

51 

 

(c) Gel purification of desired DNA fragments 
 
The completion of restriction digestion was analysed by loading the vector and insert 

using on 1% agarose gel electrophoresis. The intense band of correct size was excised 

using a disposable sharp scalpel. The excised DNA band was weighed on a tarred 

balance and processed as per the instruction manual of GenElute Gel extraction kit 

(Sigma- Aldrich, USA). Briefly the gel slice was melted in 3V of gel solublization solution 

and Incubated on dry bath maintained at 56oC. Meanwhile, the DNA Binding column 

was prepared by using 500ul of column preparation solution. Once the gel slice is 

melted, then one gel volume was added (100mg of gel= 100ul of gel volume) of Iso-

propanol. The solublized gel mix was then loaded onto the binding column, followed by 

centrifugation at maximum speed for 1 minute. After binding of DNA, the column was 

washed using 500ul of Column wash buffer. Finally, DNA was eluted with pre-warmed 

(56°C) 10mM Tris-Cl (pH=8.0). The concentration of eluted DNA was checked using 

spectrophotometer at 260nm and the quality of elution was analyzed by agarose gel 

electrophoresis. 

(d) DNA ligation of vector and insert 
 
The purified vector and insert DNA was further used for T4 DNA ligase mediated DNA 

ligation. The DNA Ligation was set up as per the table 3. Three different molar ratios of 

vector: insert for DNA ligation (1:3 and1:5) were used along with a vector alone as 

negative control. The insert molar ratios were calculated as described as follows, 

For a ration of 3:1, 

 

                                

                 
  
 

 
              

 

 

 
 

 

 
 
 

Components 1:3 1:5 -ve control 

10X DNA ligation buffer 2 ul 2 ul 2 ul 

Vector (digested) 50ng 50ng 50ng 

Insert  (Digested) 39 ng 64 ng 0.0 ul 

T4 DNA Ligase 1.0ul 1.0ul 1.0ul 

dH2O upto 10ul 10ul 10ul 

Table 16: Ligation reaction for restriction digestion fragments of vector (pmCherryN1) and insert (MOR) 
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The reaction mix was then incubated at 16 degree centigrade for 16 hours. After 

incubation the whole ligation mix was transformed into E.Coli XL1 Blue (endA1 

gyrA96(nalR) thi-1 recA1 relA1 lac glnV44 F'[ ::Tn10 proAB+ lacIq Δ(lacZ)M15] 

hsdR17(rK- mK+)). The recovered cells were then plated onto Luria-Bertani (LB) agar 

plate containing kanamycin. The plated cells were then incubated at bacteriological 

incubator maintained at 37°C for 16–18 hours. The well grown colonies were used for 

screening by inoculating 3.0 ml of LB medium containing Kanamycin (30ug/ml) were 

grown individually for 16 hours and the well grown culture was then used for the mini 

preparation of plasmid DNA using Qiagen mini-prep kit. A selected number of clones 

were further confirmed using restriction digestion and PCR amplification using specific 

primers. The positive clones were, then sequence verified using vector specific primers 

from MWG (Eurofins MWG, Germany). Only the positive clones were selected for 

protein expression by transfection in HEK 293 cells using electroporation method. The 

clone best expressing the protein of interest was sequenced and selected for further 

experiments.  
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3. Results  

3.1 Neuronal cells in the DRG are the major contributors of 
endogenous opioids during diabetes 

3.1.1 Immune cell population in diabetic sciatic nerves 
 
Immune cells infiltrating the sciatic nerves of mice with nerve injury have previously 

been shown to be the primary source of endogenous opioids in the PNS. To investigate 

the presence of endogenous opioids, the immune cell population in the sciatic nerves of 

diabetic mice was first studied. Every fifth section of sciatic nerves of mice 8, 16 and 24 

weeks post STZ induction were stained for the immune cell markers CD45 (leukocyte 

marker) and MHCII (antigen presenting immune cell marker). It was found that after 8 

weeks post STZ induction the number of MHCII+ leukocytes (Mean positive cells per 

section ± S.E.M.) were not significantly different from the age-matched control mice 

(1.8±0.25 in control vs. 2.4 ±0.49 in diabetic). However, at 4 months post induction, the 

number of MHCII+ leukocytes had increased by 2.6 fold in the diabetic sciatic nerves 

(3.6 ± 0.73 in control vs. 9.36±1.0 in diabetic). The number of double-positive 

(CD45+MHCII+) immune cells had decreased as compared to the 4 months diabetic mice, 

but still remained significantly higher than the control group (6.75 ± 2.71 in control vs. 

12.15±1.3 in diabetic) (Figure5a).  The immune cell population was also increased in 

the control mice as the age increased, but the increase in the immune cell number in the 

diabetic nerves was always higher than in the control nerves. The CD45+MHCII+ 

population in the nerves had peaked at 4 months post induction indicating a possibility 

of immune cell infiltration at this time point post STZ treatment.  

 

Since macrophages are one of the antigen presenting cells known to infiltrate the nerves 

post injury, the diabetic nerves of 4 months mice were examined for an increase in the 

macrophage population by co-staining for CD68 and MHCII markers. A significant 

increase in the CD68+ macrophage population was observed in the diabetic nerves 

(2.2±0.4 in control vs. 6.0±0.4 in diabetic) (Figure 1b). No T cell (CD3+) infiltration was 

observed in the nerves in control or in diabetic mice.  
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Figure 5 (a-d): Immune cell populations in control and diabetic sciatic nerves (a) Representative double 
immunoflourescence figures for CD45+(green) - MHCII+ (red) leukocytes in 16 weeks post STZ induction and 
age-matched controls. (b) A 2.6 fold increase was seen in MHCII+ leukocytes (CD45+ cells) at 16 weeks post 
STZ induction. (c, d) A subset of the increased immune cell population is the CD68+(green) – MHCII+(red) 
macrophages, which were also increased by 2.6 fold compared to the control mice. Dotted line represents the 
mean number of immune cells in age-matched controls. Data represented as Mean positive cells per 
section+/- SEM; Student’s t-test **p<0.01, ***p<0.001. Scale bar =50 µm. 

3.1.2 Expression of endogenous opioids in the PNS of diabetic mice 
 
As the CD45+ leukocyte population in the diabetic nerves was increased at 4 months, 

sections from these nerves were subsequently co-stained for opioid content, using a 

pan-opioid antibody and CD45. Surprisingly, no colocalization was observed between 

the two markers (Figure 6a). Therefore, the nerves were co-stained for a pan neuronal 

marker, ß tubulin III (Tuj1).  The maximum opioid staining colocalized with Tuj-1 

stained axons in the sciatic nerve. (Figure 6b).  

 

Axons of the neurons carry the proteins expressed in the cell bodies of the neurons. The 

axons present in sciatic nerves have their cell bodies in lumbar DRG. Hence, sections of 

lumbar DRG were subsequently stained for opioid content, leukocytes (CD45), neurons 

(Tuj1) and the glial cell marker, CD11b. Consistent with the findings in the sciatic nerve, 
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opioid contents colocalized with the neuronal cell bodies, although some signal was also 

found to colocalize with the glial and immune cells present in the DRG. (Figure 6c, d). 

 

It can therefore be concluded that although there was an increase in the immune cell 

population in the nerves of diabetic mice, these immune cells did not express 

endogenous opioids.  

 
Figure 6 (a, b): Cells expressing endogenous opioids in PNS of 4 months diabetic mice (a) Co-staining of sciatic nerve 
sections of diabetic mice with cell specific markers for neurons (Tuj-1) and immune cells (CD45) with pan 
opioid marker showed presence of opioids in the axons rather than immune cells. (b) Calculation of Mander’s 
co-efficient for each marker showed maximum colocalization between Tuj-1 stained axons and pan opioid 
marker. Scale bar=50 µm. 
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Figure 6 (c, d): Cells expressing endogenous opioids in PNS of 4 months diabetic mice (c) Co-staining of DRG 
sections of diabetic mice with cell specific markers for neurons (Tuj-1), immune cells (CD45) and glial cells 
(CD11b) with pan opioid marker showed presence of opioids in neuronal cell bodies. (d) This was confirmed by 
calculating Mander’s correlation co-efficient Highest colocalization was seen between between Tuj1 and pan 
opioid marker. Scale bar =50 µm. 

3.2 Expression of endogenous opioids changes during the course of 
diabetes 
 
Since in DPN, DRG neurons were identified to be the most relevant cell type to study the 

endogenous opioid system, it was important to understand the changes occurring in 

these cells post STZ induction.   

3.2.1 Pain phenotype profiling post STZ induction 
 
Pain is the foremost functional consequence that the endogenous opioids in the PNS can 

influence. Thermal hyperalgesia was measured using the hotplate (50°C) in the control 
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and diabetic mice at 2, 4, 8 and 12 weeks post STZ induction. Shorter response times 

indicating increased pain sensitivity was observed 2 weeks after STZ treatment. 

However, after 4 weeks, the mice recovered from the initial hypersensitivity until the 

8th week. This is in accordance with previous reports showing early thermal 

hyperalgesia caused due to STZ injection and its reversal between 5-6 weeks 112,113. 

After the initial response to STZ, and following recovery, a significant hyperalgesia was 

again observed at week 12 (Figure 7). Whether diabetes induced changes in 

endogenous opioids could be associated with the observed hypersensitivity needed to 

be further investigated. Therefore week 12 was marked as the endpoint of the time 

course study for endogenous opioids.  

 
Figure 7 Thermal hyperalgesia post STZ induction STZ induced diabetic mice (n=12) and age matched controls 
(n=12) were measured using hotplate method until 12 weeks at which time point the diabetic mice showed 
significant increased pain sensitivity. Data represented as Mean +/- SEM; Student’s t-test *p<0.05. 

3.2.2 Alteration in endogenous opioids post STZ treatment: a time course study 

(a) Diabetic parameters of mice 
To understand the changes occurring in the endogenous opioids post STZ treatment, 4, 

8 and 12 weeks post induction were chosen as time points of interest. At each time 

point the STZ induced mice showed significantly higher blood glucose levels and Hba1c 

content, while body weight were significantly decreased indicting the mice were 
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diabetic. As the majority of the opioid content was observed within the neuronal cell 

bodies of lumbar DRG, the transcription and expression of the specific opioid subtypes 

was studied further at each of the stated time points.  

Weeks post STZ 
induction 

 Blood sugar 
(mg/dL) 

Hba1c 
(%) 

Body weight 
(g) 

4 weeks 
Control  97.25 3.3 22.85 

Diabetic  401.5*** 9.7*** 16.12*** 

8 weeks 
Control  145.25 3.5 27.2 

Diabetic  407.8*** 11.3*** 17.64*** 

12 weeks 
Control  122.5 3.2 26.02 

Diabetic  370.5** 9.8*** 19.37** 

Table 17: Diabetic Parameters of mice Data represented as Mean +/- SEM; Student’s t-test **p<0.01, 
***p<0.001. 

(b) Gene expression of endogenous opioids in lumbar DRG 
 
POMC mRNA showed a 98% decrease at 4 weeks, a 75% decrease at 8 weeks (p<0.01) 

and remained significantly downregulated by 90% till 12 weeks (p<0.001) post STZ 

treatment. Interestingly, a PENK and PDYN mRNA did not show a pattern of change 

similar to POMC mRNA, suggesting that the three different opioid genes are regulated 

differently after STZ treatment. At 4 weeks, mRNA levels of PENK were increased by 

50%, while no change was observed in PDYN mRNA level. At 8 weeks, along with POMC 

mRNA, PENK and PDYN mRNA levels were decreased significantly. At 12 weeks, the 

PENK and PDYN levels were recovered, unlike the POMC, which remained significantly 

downregulated (Figure 8). 
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Figure 8: Gene expression of POMC, PENK and PDYN in lumbar DRG  Quantification of mRNA levels and their 
normalization with actin revealed a sustained downregulation in POMC gene expression until 12 weeks post STZ 
treatment. The PENK and PDYN mRNA levels, however, showed only a transient decrease at 8 weeks and were 
restored to normal levels at 12 weeks. The dotted line represents the mRNA level in control. Data represented 
as Mean +/- SEM; Student’s t-test **p<0.01, ***p<0.001. 

(c) Opioid peptide levels in lumbar DRG 
 

At 4 weeks, the levels of POMC, PENK and PDYN were significantly increased in lumbar 

DRG (p<0.001 for all opioids). The increased POMC and PDYN peptide did not 

corroborate with the mRNA levels at 4 weeks. This suggested that the increased POMC 

and PDYN peptide content in the DRG must have been due to an increase in the mRNA 

level prior to the 4th week. At 8 weeks, the peptide levels of all three opioids were 

decreased, consistent with the mRNA levels. By 12 weeks, PENK and PDYN peptide 

levels were normalized as compared to the controls, consistent with the mRNA levels. 

However, the POMC peptide level was significantly decreased, again consistent with the 

mRNA levels (Figure 9, 10).  
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Figure 9: Endogenous opioid staining in lumbar DRG of 12 weeks STZ and control mice Representative double 
immunofluorescence staining of the opioids and pan neuronal marker PGP9.5 showed a decreased POMC 
staining, no change in dynorphin and an increased signal intensity for enkephalin at 12 weeks. Scale bar =50 
µm. 



 

61 

 

 
Figure 10: Mean Fluorescence Intensities (MFI) calculation for opioid peptide staining Signal intensities (MFI) 
for each DRG section stained for opioids were calculated for 4, 8 and 12 weeks post STZ and compared with 
those of age-matched controls. The dotted line represents the level in control. All three opioids had increased 
intensities at 4 weeks and showed a transient decrease at 8 weeks. The PENK and PDYN level recovered at 12 
weeks, but POMC level in the DRG remained significantly downregulated at 12 weeks. Data represented as 
Mean +/- SEM; Student’s t-test *p<0.05, **p<0.01, ***p<0.001. 

 

In summary, the temporal changes observed in the gene expression and consequently 

peptide levels were not similar between the three opioids. The opioid peptide levels 

were associated with the changes in pain sensitivity post STZ induction. For instance, 

recovery from previously increased pain sensitivity was seen at 4 weeks, perhaps as a 

consequence of increased opioids. There onwards, as the opioid levels decreased, the 

pain sensitivity too increased and failed to recover at 12 weeks even when the PENK 

and PDYN levels are returned to normal level. The overt hyperalgesic phenotype at 12 

weeks was associated with decreased POMC content in DRG at 12 weeks.  

This data would suggest that at 12 weeks, the hyperalgesic phenotype observed is 

associated with a decrease in POMC content in the DRGs, and that the regulation of 

POMC level is most relevant in the context of painful diabetic neuropathy 

3.3 Downregulation of POMC in 12 weeks diabetic mice 

3.3.1 Decrease of POMC and ß-endorphin peptide levels in DRG, sciatic nerves and 
footpads 
 

To further investigate POMC in diabetic neuropathy, peptide levels were measured in 

the lumbar DRGs, sciatic nerves and footpads of 12 weeks STZ-diabetic mice by western 
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blotting.  The diabetic mice had significantly increased blood glucose (mg/dL; 112.6 ± 

3.03 vs. 319.2 ± 34.4; Student’s t-test p<0001) and HbA1c (%; 3.02 ± 0.08 vs. 12.24 ± 

0.78; Student’s t-test p<0001) and decreased body weight (g; 25.8 ± 0.28 vs. 19 ± 1.09; 

Student’s t-test p<0001). There was a significant decrease of approximately 50% in the 

~28Kda band of POMC precursor peptide in the total protein lysates of all three tissues 

(Figure 11a, b). This decrease was confirmed in the DRGs by immunofluorescence 

double staining of POMC and Tuj1. It was found that the POMC signal intensity in the 

DRG was decreased in the diabetic DRG, but also the number of neurons expressing 

POMC had decreased by 5% per section (Figure 11c, d, e). The downregulation of POMC 

in the footpads was also confirmed by immunofluorescence double staining of POMC 

and PGP9.5, a marker for nerve fibers. There was a significant decrease in the number of 

PGP9.5 nerve fibers also expressing POMC from 66% in control to 44% in the diabetic 

mice. (Figure 11 f, g). Lastly, POMC is a precursor to the 3.5 KDa active opioid peptide, ß 

endorphin. Hence, ß-endorphin peptide levels were quantified (ng per mg protein) in 

the DRG, sciatic nerves and the footpads using an ELISA. There was a significant 

decrease in the sciatic nerves of diabetic mice (3.7 ± 1.17 in control vs 0.94 ± 0.79 in 

diabetic; Student’s t-test p>0.05) and the footpads (6.55 ± 0.02 in control vs 1.35 ± 0.55; 

Student’s t-test p<0.05). No change was observed in ß-endorphin levels in the DRG of 

control and diabetic mice (1.66 ± 1.28 in control vs 1.7 ± 1.19; Student’s t-test p<0.05) 

(Figure 11h).  

 

It is noteworthy that ß-endorphin level in the DRG is 4 fold lower than those in the 

footpads and more than 2 fold lower compared to the sciatic nerves in the control mice. 

This suggests that processing of POMC occurs majorly in the nerve endings in the 

footpads and to some extent in the sciatic nerves. 
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Figure 11: POMC expression in the lumbar DRG of control and diabetic mice (a) POMC peptide levels were 
compared between control and diabetic (n=6 each) in the lumbar DRG, sciatic nerves and footpads using 
western blot. (b) Upon densitometric quantification of the ~28Kda POMC band, a significant decrease of 46% 
was observed in the diabetic DRG and footpads, while the level in sciatic nerves had decreased by 62%. (c, d) 
Double immunofluorescence staining of POMC and Tuj1(pan neuronal marker) revealed a ~30% decrease in 
the Mean Fluorescence intensity (MFI) of the POMC signal. (e)Also, the number of neurons expressing POMC 
had decreased by 5% per section. Data represented as Mean +/- SEM; Student’s t-test **p<0.01, ***p<0.001. 
Scale bar =50 µm. 
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Figure 11: (f, g): POMC expression in the nerve endings of control and diabetic mice Co-staining of PGP9.5 
(pan neuronal marker) with POMC in the footpad sections of control and diabetic mice (n=6 each) revealed 
that there was a significant decrease in the number of PGP9.5 positive nerve endings expressing POMC in the 
diabetic footpads. Data represented as Mean +/- SEM; Student’s t-test  ***p<0.001. Scale bar =50 µm. 

 
Figure 11(h): ß-endorphin levels in control and diabetic mice ß-endorphin peptide levels were measured in 
control and diabetic (n=6 each) mice using ELISA. A significant decrease was found in the diabetic sciatic nerves 
and footpads compared to the controls, in the ß-endorphin in the DRGs remained unchanged indicating POMC 
processing must be taking place in the sciatic nerve exons and nerve endings in the footpads. 

 

(h) 
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3.3.3 Decrease in POMC mRNA expression 
 
To confirm whether the decrease in ß-endorphin and POMC was due to decreased gene 

expression, POMC mRNA levels were quantified in the DRG, sciatic nerves and footpads. 

A decrease of 80%was observed in the diabetic DRGs as compared to the control DRGs. 

No changes were detected in the POMC mRNA level in the sciatic nerves or footpads 

(Figure 12). In fact the gene expression in sciatic nerves and footpads was significantly 

lower as compared to the DRGs, reasserting the fact that the source of POMC and hence 

ß-endorphin in the PNS is the neurons present in the lumbar DRG. 

 
Figure 12: POMC gene expression in DRG, sciatic nerves and footpads POMC gene expression was majorly 
present in control DRG, while sciatic nerves and footpads showed negligible expression. An 80% decrease in 
diabetic lumbar DRG was found upon comparing with control lumbar DRG and normalization with 18srRNA 
(house-keeping gene). Data represented as Mean +/- SEM; Student’s t-test *p<0.05. 

3.4 Significant downregulation of MOR in 12 weeks diabetic mice 
An anti-nociceptive signaling is only triggered when ß-endorphin binds its cognate 

receptor MOR. From the above data it is evident that one arm of this anti-nociceptive 

pathway is defective due to decreased ß-endorphin level during diabetes. From a 

therapeutic point of view, it is therefore important to understand whether the other key 

component, MOR, is functional during diabetes. 

 

The MOR protein levels in control and diabetic lumbar DRG, sciatic nerves and footpads 

were determined using western blot. Surprisingly, the protein level of MOR was 
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decreased in the diabetic DRG by 78%; in the sciatic nerves by 45% and in the footpads 

by 65% as compare to the control tissues (Figure 13 a, b). This finding was confirmed 

by microscopic image analysis of the DRG sections (MOR signal intensity quantification; 

Figure 13 c, d) and in the foot sections which showed a 23 % decreases in PGP9.5 nerve 

endings, immunoreactive for MOR in the diabetic mice (Figure 13 e, f) 

 

Interestingly, the decrease in MOR protein level in the PNS of diabetic mice was not due 

to decreased MOR gene expression (Figure 13 g). This implied that MOR protein was 

synthesized equally in control and diabetic DRG, but was potentially undergoing 

degradation in the diabetic DRG. 

 

Figure 13 (a-f): MOR protein level in control and diabetic mice (a) MOR protein levels were compared between 
control and diabetic (n=6 each) in the lumbar DRG, sciatic nerves and footpads using western blot. (b) Upon 
densitometric quantification of the ~42Kda band, a significant decrease by 78% was observed in the diabetic 
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DRG, 45% decrease in the sciatic nerves and 65% decrease in the footpads. (c, d) Immunofluorescence staining 
of MOR in the DRG revealed a 40% decrease in the Mean Fluorescence intensity (MFI) of the MOR signal. (e, f) 
Also, the number of neurons expressing MOR had decreased by 23% per section. Data represented as Mean 
+/- SEM; Student’s t-test **p<0.01, ***p<0.001. Scale bar =50 µm. 

                 
Figure 13 (g): MOR gene expression in the DRG of control and diabetic mice No significant difference was 
observed in the MOR mRNA level in the DRG of control and diabetic mice (n=6 each). 18s rRNA was used as 
the house-keeping gene for normalization. Data represented as Mean +/- SEM; Student’s t-test n.s. p>0.05 

3.5 Downregulated POMC and MOR associate with increased pain 
sensitivity 
 
In order to understand the contribution of POMC-MOR pathway in pain sensitivity 

during diabetes, responses of mice to heat and mechanical stimulation were measured. 

The comparison of values showed that the diabetic mice were much more susceptible to 

pain than the control (Figure 14). Interestingly, this increase in pain sensitivity was 

associated with the decreased POMC and MOR levels in the mice. 

(g) 
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Figure 14(a-c): Increased thermal and mechanical hyperalgesia in diabetic mice Heat (a, b) and mechanical 
pain sensitivity(c) was found to be significantly increased in STZ mice 12 weeks post induction of diabetes 
(n=25 per group). Data represented as Mean +/- SEM; Student’s t-test **p<0.01, ***p<0.001. 

3.6 High glucose triggered NF-kB activation suppresses POMC 
expression 

3.6.1 High glucose triggered POMC suppression 
 
In order to understand the mechanism behind reduced POMC transcription in diabetes, 

in vitro studies were performed in AtT-20 cells. AtT-20 is a mouse pituitary cell line, 

routinely used to study POMC promoter, because of its high POMC expression levels. 

The effect of increasing glucose concentrations on POMC promoter was studied in 

presence or absence of POMC promoter agonist, corticotropin releasing hormone 

(CRH). It was found that POMC mRNA level was decreased under high glucose 

conditions. The presence of CRH during the exposure significantly increased POMC 

mRNA level under normal glucose conditions, but failed to do so at 20mM and 40mM 

glucose conditions. This effect was not due to a change in osmolarity as the effect of 

either 20mM or 40mM sorbitol exposure conditions was equal to the change in 

expression observed at 5mM glucose (Figure 15). 
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Figure 15: High glucose inhibits POMC gene expression POMC mRNA level were quantified and normalized 
using 18s rRNA in AtT20 cells. Exposure to high glucose concentrations for 12 hours inhibited POMC gene 
expression, even in the presence of POMC promoter agonist (CRH). Sorbitol control show that this effect is not 
caused due to increase in osmolarity. Data represented as Mean +/- SEM; 2 way ANOVA test and Bonferonni 
post hoc test ***p<0.001. 

 

3.6.2 High glucose activates NF-kB in AtT20 cells 
 
As the presence of CRH could not increase POMC gene expression this would suggest 

that high glucose was activating some factor, capable of binding to the POMC promoter, 

which antagonizes the effect of CRH. In silico analysis of the mouse POMC promoter 

region showed the presence of a NF-kB binding region (-125 to -83) ahead of the CRH 

binding region (-173 to -160) as predicted in the literature114. Studies have shown the 

inhibitory effect of NF-kB and its ability to block CRH mediated activation of POMC 

promoter 27,115. However, it has also been shown that NF-kB is able to activate the POMC 

promoter116.  

 

Stimulation of AtT20 cells with increasing concentrations of glucose lead to increased 

activation of NF-kB (Figure 16a). Using supershift EMSA technique, p50 was identified 

as the major NF-kB subunit being activated (Figure 16b). This finding was supported by 

the increased p50 protein levels in the cells exposed to 20mM glucose for 12 hours as 

compared to those exposed to 5mM glucose (Figure 16c). 
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Figure 16 (a-c): High glucose induces NF-kB activation in AtT20 cells (a) Exposure of AtT20 cells to increasing 
glucose concentrations for 12 hours, induces NF-kB activation in an increasing order. Arrow denotes the band 
representing NF-kB (b) Supershift EMSA showed that p50 subunit was activated in AtT20 cells exposed to 
20mM glucose for 12 hours. (c) The increased p50 activation is supported by increased p50 protein levels in 
the AtT20 nuclear lysates harvested at 12 hours. Data represented as Mean +/- SEM; Student’s t-test 
**p<0.01. 

 

3.6.3 NF-kB activated during hyperglycaemia suppresses POMC promoter 
 
The direct evidence for the binding of glucose activated NF-kB to the POMC promoter 

was shown by ChIP assay.  It was found that after 12hrs of high glucose (20mM) 

stimulation the POMC promoter was significantly more occupied by p50 NF-kB subunit 

(Figure 16a). There also was an increased binding of cRel to POMC promoter under high 

glucose condition, suggesting that the POMC promoter was either bound by p50 

homodimer or p50-cRel heterodimer. Since p50 was the common subunit of the NF-kB 

complex binding to the POMC promoter, ChIP assay for p50 subunit was repeated in 
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control and diabetic DRG (n=5 each).  A significant increase in p50 binding to POMC 

promoter was noted in the DRG (Figure 16b). Upon co-staining of the control and 

diabetic DRG sections with NF-kB p50 subunit and POMC, it was found that the 

neuronal cell bodies in which an increased p50 expression was seen, the POMC 

expression was decreased and vice versa (Figure 16c). This data would suggest that 

high glucose triggers NF-kB activation, particularly the p50 subunits in the AtT20 and 

the lumbar DRG. The p50 subunits most likely form a homodimer and bind to the POMC 

promoter leading to suppression of promoter and decreased POMC mRNA and peptide 

levels (Figure 17). 

 
Figure 17 (a-c): NF-kB binding to POMC promoter (a) Two individual ChIP experiments were analysed together 
to investigate which NF-kB subunit binds POMC promoter under high glucose condition (20mM). Binding of 
p50 and cRel was significantly increased in the AtT20 cells (b) ChIP assay only for p50 binding showed 
significant occupancy of POMC promoter by p50 in diabetic DRG (c) Double immunostaning for POMC and p50 
showed that increased p50 signal was localized to those neuronal cell bodies in the diabetic DRG where the 
POMC signal was decreased. Data represented as Mean +/- SEM; Student’s t-test *p<0.05, **p<0.01, 
***p<0.001. Scale bar =50 µm. 
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Figure 18 Schematic representation for decreased POMC expression during diabetes NF-kB is activated 
during hyperglycaemia, and the NF-kB complex (likely to be p50 homodimer) translocated into the nucleus 
where is binds to the POMC promoter region inhibiting the expression of POMC gene. This leads to decreased 
POMC mRNA and protein levels in the PNS. NF-kB binding to POMC promoter blocks the effects of CRH on 
POMC expression. 

3.7 High glucose triggered PKC activation causes MOR degradation 

3.7.1 Increased PKC activation in DRG during hyperglycaemia 
 
There are two possible pathways that MOR can be degraded: agonist-dependent and 

agonist-independent. As the most potent endogenous MOR agonist, ß-endorphin, was 

deceased during diabetes, it was likely that MOR underwent degradation via the 

agonist-independent pathway.  In the agonist-independent pathway, MOR is 

phosphorylated by PKC. Several studies have shown chronic PKC activation during 

diabetes, however, it was first necessary to establish increase in PKC activation during 

diabetes. Total protein lysates from lumbar DRG of control and diabetic mice were 

assessed using the kinase assay for PKC activation. Indeed, a significant increase in the 

PKC activation was noted in the diabetic DRG (Figure19 a). Whether the activation of 

PKC in the DRG was triggered due to hyperglycaemia, was assessed by exposing DRG 

cells to low and high glucose in vitro. Activation of PKC was determined by subcellular 

localization of PKC. In the DRG culture exposed to low glucose (17.5mM), PKC signal 

was observed within the PGP9.5 stained neuronal cell body. While, high glucose 

exposed DRG neurons showed increased association of PKC signal with wheat germ 

agglutinin (WGA), a dye used to define the plasma membrane. This activation within the 
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DRG neurons was inhibited in presence of PKC inhibitor, seen by diffuse signal not 

associated with cell membrane (Figure 19b,c). 

 

 

Figure 19: Increased PKC activation under hyperglycaemic conditions (a) PKC activity was increased in the 
DRG of diabetic mice compared to the non-diabetic mice DRG. (b,c) A similar activation of PKC was also 
observed when DRG culture was exposed to high glucose (HG; 40mM) compared to the DRG culture exposed 
to low glucose (LG; 17.5 mM) for 48 hours. The increase in activity was determined by subcellular distribution 
of PKC. In active state, PKC was present within the neuronal cell body, while upon activation in HG exposure, 
the PKC signal was present at the cell membrane determined by Wheat Germ Agglutinin (WGA) staining. In 
presence of PKC inhibitor(Gö6983), PKC signal was relocalized within the neuronal cell body. Data represented 
as Mean +/- SEM; Student’s t-test *p<0.05, **p<0.01, ***p<0.001. Scale bar =10 µm. 
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3.7.2 Hyperglycaemia induced PKC activation is necessary and sufficient for MOR 
internalization 
 

To establish whether PKC activation under hyperglycemic conditions able to induce 

internalization of MOR, DRG cells were transfected with Flag-MOR-mCherry construct 

and exposed to low and high glucose conditions in presence and absence of a PKC 

inhibitor. After 48 hours it was found that in cells exposed to either low glucose or low 

glucose + PKC inhibitor, the mCherry/MOR signal was associated with the WGA signal 

which denoted the plasma membrane. However, when the cells were exposed to high 

glucose, mCherry/MOR signal was found to be within the cells rather than being 

associated with cell membrane. The internalization of MOR, was therefore found to be 

reduced in presence of the PKC inhibitor. This suggests that PKC mediated 

phosphorylation is capable of internalizing MOR (Figure 20a, b).  

 

A control to verify whether the neuronal cells of the DRGs were transfected with the 

construct, was set by co-staining with PGP9.5 and mCherry antibodies. 70% of the total 

cells were neuronal cells indicating a largely homogenous neuronal population was 

present in the cultured DRG cells. (Figure 20). 
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Figure 20: Hyperglycaemia induction PKC activation causes MOR internalization (a) Flag-MOR-mCherry 
transfected WT primary DRG cells were exposed to low (LG; 17.5mM) or high (HG; 40mM) glucose in presence 
and absence of PKC inhibitor (Gö6983). After 48 hours of exposure and live staining with wheat germ 
agglutinin (WGA) revealed internalization of MOR under high glucose condition, which was reversed 
significantly in presence of PKC inhibitor. (b) Presence MOR signal on cell surface or within the cell was 
determined by % colocalization of MOR with WGA (c) The DRG culture was stained with ßtubulin III, neuronal 
marker. 70% of the total cell population was neuronal cells. Data represented as Mean +/- SEM; unpaired 
Student’s t-test * **p<0.01, ***p<0.001. Scale bar =10 µm. 

 

3.7.3 MOR is trafficked to lysosomal degradation pathway during diabetes 

 
To determine whether MOR is trafficked to the lysosomal degradation pathway, DRG 

sections from control and STZ-diabetic mice were co-staining for MOR and the 

lysosomal marker, Lamp1. There was a significant increase in the colocalization in the 

STZ-diabetic DRG, providing evidence that the MOR was indeed being degraded in the 

lysosomes in STZ-diabetic DRG (Figure 21a, b). 
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Figure 21: Lysosomal degradation of MOR during diabetes MOR immunoreactivity was predominantly seen 
within the cytoplasm of DRG neuronal cells during diabetes and was colocalized with lysosomal marker 
indicating the trafficking of MOR into the lysosomal degradation pathway. The DRG neurons in the control 
mice showed MOR immunoreactivity on the cell surface and no colocalization with lysosomal marker. 
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In summary, the hyperglycemia induced chronic PKC activation is partly responsible for 

sustained MOR internalization and therefore its trafficking to the lysosomal degradation 

pathway during diabetes (Figure 22). 

 

Figure 22 Schematic representation of MOR downregulation during diabetes MOR is persistently internalized 
due to chronic PKC mediated phosphorylation. As a result, the failure of recycling event occurs which destines 
the receptor into degradation pathway. 

 

  

 
 
 
 
 
 
 
 
 
 
 
 



 

79 

 

4. Discussion 

Diabetic peripheral neuropathy (DPN) is a highly debilitating complication affecting the 

quality of life of diabetic patients severely. Current treatments for DPN such as opioid 

analgesics are ineffective while others namely; pregabalin, duloxetin etc. have adverse 

side effects11. Thus, in search of mechanisms underlying pain sensation anomalies in 

DPN, expression of the endogenous opioid peptides in the PNS of STZ induced mice was 

studied. 

 

The present study found that POMC, ß endorphin and MOR were decreased in the 

lumbar dorsal root ganglia, sciatic nerves and footpads of STZ treated mice, as 

compared to the untreated mice. While, downregulation of MOR seemed to be due to its 

lysosomal degradation induced by activated PKC, POMC promoter suppression seemed 

to be partly mediated by high glucose induced NF-kB. Interestingly, the downregulated 

POMC-MOR levels associated with increased thermal and mechanical pain sensitivity of 

the STZ mice. Taken together, this data indicates that POMC-MOR proteins are involved 

in the hyperalgesia experienced during diabetic peripheral neuropathy. 

 

Given that major opioid expression occurs in CNS, opioid peptide-opioid receptor pain 

signaling has been extensively studied in the CNS. For instance, Havlicek et al found that 

intracerebral injection of endorphin is able to induce a general state of anesthesia117. 

Decreases in ß-endorphin in the central nervous system results in chronic pain state118. 

Activation of DOR through enkephalin is of less consequence in acute pain state and 

more towards chronic pain in rodent CNS119. Dynorphin-KOR system results in 

analgesia partly due to direct inhibition of pain pathways and partly by its engagement 

in stress pathways120 However, such opioid signaling modulates the central and 

supraspinal mechanisms of pain. 

 

Whereas in the PNS, the endogenous opioids have been primarily studied in the mice 

with nerve injury as models of neuropathic pain. Peripheral nerve damage is associated 

with an activation of immune cells and their infiltration at the site of injury. The 

evidence for expression of opioids within the immune cells has prompted several 
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researchers to investigate the importance of immune cell-derived opioids in alleviation 

of injury induced heat and mechanical hyperalgesia72,82,121,122. However, the modulation 

of peripheral analgesic pathways in neuropathic models in the absence of a direct 

injury, such as DPN, has not been studied. Indeed, there are microstructural alterations 

in the sciatic nerves during diabetes, but they have been shown to occur in patients with 

advanced diabetic neuropathy. For instance, Pham et al, reported presence of lesions in 

the sciatic nerves of patients having diabetes for ca.20 years123. Yet, symptoms of 

increased pain sensitivity are shown even by pre-diabetic and patients with early 

diabetes 3. It is, therefore, important to identify pathogenetic mechanisms occurring in 

the early stages to prevent the progression of DPN. In this light, the contribution of 

endogenous opioid system to the pathogenesis of early DPN (until 12 weeks) was 

studied in STZ induced mice. 

 

Since, infiltrating immune cells were reported to be the primary source of opioids in the 

PNS of neuropathic pain models, the STZ induced diabetic mice were studied for 

immune cell infiltration. An increasing number of leukocytes and macrophages were 

found in the diabetic nerves. Interestingly, these immune cells were not found to 

express opioid peptides. There are two possible explanations to this finding. First, the 

identified macrophages were pro-inflammatory. Pannell et al (2016) showed that only 

the anti-inflammatory M2 macrophages express and release opioids121. Second, immune 

cells express negligible opioids under normal physiological condition124–126. The 

presence of CRH can upregulate opioid expression in the immune cells and releases the 

peptides. CRH is expressed in the nerve upon injury, but not otherwise127. As such, the 

immune cells were identified as not being the primary source of opioids in the diabetic 

nerves. The neuronal cells of lumbar DRG expressed the endogenous opioids in diabetic 

and non-diabetic mice. These results are in line with previous studies showing presence 

of neuron derived opioids in the PNS69,71,128. It was clear from this data that the 

pathobiology of DPN mouse model was different from the mouse models of nerve 

injury. 

 

The STZ mouse model used in the study has some limitations. Since the mice are 

induced diabetes chemically, it is important to determine whether the changes seen are 

due to hyperglycemia and not STZ. For this purpose a time course study was carried out 
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until 12 weeks post STZ treatment. The effect of STZ induced diabetes on DRG neurons 

was measured as a function of opioid expression and pain sensitivity at intervals of 4 

weeks. It was found that the mice showed an initial hyperalgesia, presumably as an 

effect of the STZ followed by a phase of recovery. This observation in agreement with 

other studies reporting the effect of STZ on pain sensitivity due to sudden increase in 

oxidative stress and inflammation112,113. The neuron-derived opioids, too, underwent 

transient changes in this period showing that STZ had a temporary effect on the DRG 

neurons, which was gone by 12 weeks post STZ treatment. There exist few studies on 

the harmful effect of STZ on the neuronal cells. For example, Genrikhs et al, reported the 

neurotoxic effects of STZ in cultured neuronal cells 129. However, the effects were 

monitored 48 hours post STZ exposure. Our data shows that though STZ does have 

some effect on the DRG neurons, they are not long lasting. This finding is supported by 

another study by Davidson et al,which showed that STZ has no direct effects on the 

peripheral nerves at 12 weeks post induction, using two different mouse strains and 

performing experiments in two different laboratories130.  

 

At 12 weeks post STZ treatment, Freeman et al, reported a dramatic increase in glucose 

and polyol pathway intermediates in lumbar DRG and sciatic nerves131. The authors 

reported a striking failure of energy homeostasis and oxidative stress in the sciatic 

nerves and argued that most severe molecular consequences were restricted to this 

region during diabetes. Although the metabolic dysregulation was severe in the nerves, 

the fact that there was a 14.6 fold increase in glucose and in sorbitol, fructose level in 

the DRG, shows that the pathogenic mechanisms occurring in DRG cannot be 

overlooked. There also were significant changes in levels of proteins involved in various 

pathways, namely, acute phase response, ER stress response, glycogen metabolism, 

ketogenesis and activation of LXR/RXR activation, which is known to affect POMC 

levels132. Although, the number of altered proteins were greater in the sciatic nerves, 

the changes occurring in the diabetic DRGs are more relevant to the endogenous opioid 

system in the PNS.  

 

At 12 weeks once the potential for non-specific STZ effects had gone and overt 

hyperglycemia was present, the opioid levels of PENK and PDYN did not show 

significant changes. POMC, however, was significantly downregulated. This was also 
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reflected by decreased a ß-endorphin level in the diabetic mice. There are only two 

studies to date, which have looked at basal endogenous opioid levels in the PNS of 

diabetic animal models. Kou et al, showed a decrease in the non-classical opioid 

endomorphin 2 in the lumbar DRG133. These measurements were carried out 72 hours 

post STZ treatment, making it likely to be an STZ effect rather than diabetes mediated 

mechanism. Jolivalt et al, reported increased dynorphin levels in diabetic rats at 8 

weeks post STZ treatment. The authors also showed that this increased endogenous 

dynorphin in the DRG contributed to hyperalgesia by activating the NMDA receptors in 

the peripheral nerves71. However, in the STZ mice model used in the present study, an 

upregulation of dynorphin and concomitant hyperalgesia was only observed at 4 weeks, 

which was considered to be a response to STZ.  The disparity in the findings could be 

due to use of different animal models (rats and mice) which may show effects on a 

different time scales post diabetes induction. 

 

As such, the current study is the only one to have reported changes in basal expression 

of POMC in the DRG during diabetes. There have been a few contradictory studies, 

which have shown changes in POMC and ß-endorphin peptide levels in the CNS and 

blood during diabetes. The most recent study was in 1999 by Cheung et al, which 

showed decreased ß-endorphin in the anterior pituitary and neurointermediate lobe 

after 1 week of STZ injection98.  A direct effect of STZ was ruled out in this case since the 

STZ injection was not given intracerebrovetricularly. Tsigos et al showed that diabetic 

patients had lower ß-endorphin levels in the CSF. Lowering of ß-endorphin and POMC 

in diabetic patients would suggest that similar decrease observed in the mice was not 

merely an STZ effect. Interestingly the CSF levels of ß-endorphin did not correlate with 

symptoms of pain in the patients134. This suggests that diabetes causes a systemic 

downregulation of POMC and ß-endorphin, but only the decrease in the PNS is relevant 

to painful DPN.  

 

The decrease in POMC was consistently found in the diabetic DRG, sciatic nerves and 

footpads. According to the classical model of opioid precursor processing, the 

precursors are synthesized in the cell bodies of neurons and then packaged into 

vesicles. They undergo proteolytic cleavage within these vesicles in the cell bodies to 

form mature opioid peptides, which are then transported, via axons, to the nerve 



 

83 

 

endings. Yakovleva et al challenged this model showing that the PDYN precursor 

peptides are only proteolytically cleaved in the nerve endings following an excitatory 

stimulus100. The data from this study would support the concept of the POMC peptide 

being synthesized in the neuronal cell bodies, located in the DRG, undergoing axonal 

transport, and subsequent cleavage to ß-endorphin in the nerve endings present in the 

footpads, but also to some extent in the sciatic nerves. This is evident from the amount 

of ß-endorphin found in each of the tissues; maximum ß-endorphin level (ng per mg 

protein) was found in the footpads of control mice (6.5 ±0.02) compared to sciatic 

nerves (3.7 ±1.17) and DRG (1.6 ± 1.28). This finding seems to partly agree with the 

classical model and partly with the non-conventional model.  

 

 Despite a few articles reporting the downregulation of the POMC peptide during 

diabetes, there exists very little information on the mechanism for this downregulation . 

It was found that decreased POMC gene expression in the diabetic mice was the reason 

for lower peptide levels. There are few known negative regulators of POMC promoter. 

Activated glucocorticoids receptor complex can inhibit the POMC promoter by directly 

binding to a region within the promoter and was first shown by Drouin et al 26. This was 

the only known negative feedback mechanism for POMC expression until recently when 

Ma et al, showed that FoxO1 is activated during diet induced leptin, and is able to 

restrict STAT3 mediated POMC activation135. The promoter repression by Smad 

heterodimers is suggested to play a role during early development and 

organogenesis136. NF-kB is a contested regulator of promoter regulation. Jang et al  

showed that NF-kB p65 subunit was activated and increased POMC expression in 

hypothalamus of mice injected with LPS or HIV-1 Tat protein. An infection associated 

inflammatory environment was mimicked in the mice to show and NF-kB mediated 

POMC activation is associated with a decrease in food intake, causing anorexia and 

weight loss in infectious diseases 28. This was supported by the study  of Takayasu et al, 

which demonstrated that in vitro exposure of mouse pituitary cells AtT20 to pro-

inflammatory cytokines TNF-α and IL-1ß caused translocation of p65 subunits to 

nucleus and binding to POMC promoter leading to promoter activation137. These two 

datasets indicated that acute inflammation caused p65 subunit to activated POMC 

promoter under acute inflammatory condition. Asaba et al reported that high glucose 

triggered NF-kB activation was responsible for POMC promoter activation in AtT20 
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cells116. Conversely, Shi et al showed that in chronic low-grade inflammation (high fat 

diet fed mice model) p65 is not able to activate the POMC promoter in hypothalamic 

neurons because of increased DNA methylation in the NF-kB binding region in the 

promoter. The free p65 subunit actually suppressed POMC promoter by inhibiting 

STAT3 signaling pathway138. A direct role for inhibitory activity of NF-kB has been 

described by Karalis et al 27. It was shown that NF-kB can bind directly to the POMC 

promoter and suppression of CRH mediated activation. This finding was reproduced by 

Zbytek et al  in human melanocytes115. These studies would indicate that NF-kB has the 

capacity to activate or suppress POMC gene expression depending on the 

mechanism/pathway behind the activation of NF-kB activation as well as the possibly 

cell/tissue type. 

 

NF-kB activation is shown to be present in the DRG of STZ induced rats. NF-kB 

activation has been linked with painful DPN, by showing direct binding of NF-kB to the 

promoter of purinergic P2X3R (ion channel upregulated during neuropathic pain) gene. 

In this particular study, p65 subunit was activated in DRG139. In this study, it was also 

shown that NF-kB was activated in the DRGs of diabetic mice and its role in enhancing 

the painful symptoms of DPN by lowering POMC gene expression. However, the subunit 

identified to suppress the POMC promoter was p50, (p50 homodimer or p50-cRel). 

Homodimers of p50 subunit have been known to transcriptionally repressive140,141.  The 

p50 homodimers are upregulated during inflammation and suppress the NF-kB target 

genes such as the pro-inflammatory cytokines TNF-α142 and IL-2143. Anti-inflammatory 

role of p50 homodimers was asserted by showing p50 knock-out mice were susceptible 

to inflammatory bowel disease144. This could indicate that NF-kB activation is triggered 

in the diabetic DRG due to hyperglycaemia associated inflammation, but suppression of 

POMC is an unwanted side-effect. Although Djurik et al showed an anti-inflammatory 

activity of cRel containing subunits145, p50-cRel heterodimers have only been shown to 

occur in mature B lymphocytes previously146.  This data confirms a negative regulatory 

role for NF-kB for POMC gene under hyperglycaemic condition. However, this result is 

contradictory to the data shown by Asaba et al mentioned above which argues for NF-

kB activation of POMC under high glucose condition. However, unlike the mentioned 

report, the present study has shown direct evidence for binding of p50 subunit and 

lowering of POMC mRNA in vitro as well as in vivo in diabetic mice. 
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NF-kB mediated downregulation of POMC rendered one arm of the ß-endorphin-MOR 

anti-nociceptive pathway dysfunctional. It was important to understand whether the 

other arm, MOR and its signaling was still functional.  It was found that MOR protein 

level, too, was decreased during diabetes. Since the MOR mRNA level remained 

unchanged, the receptor was hypothesized to undergo degradation. MOR is reported to 

undergo degradation in presence of excessive amounts of the agonist or presence of the 

agonist for longer duration of time (several hours at the minimum)147. Its most potent 

endogenous agonist, ß-endorphin, was found in this study to be significantly decreased. 

The next most potent agonist for MOR, enkephalin was also found not to be elevated at 

12 weeks in diabetic DRGs. Yet, MOR was found to co-localize with the lysosomal 

marker. This  is consistent with a previous study in the DRGs of STZ induced rats104. 

Given the circumstances of decreased endogenous agonists, the occurrence of MOR 

degradation was curious. A research article published by Illing et al showed that MOR 

could be phosphorylated by PKC in an agonist-independent manner59.  Phosphorylation 

is a prerequisite of MOR internalization. The hypothesis of agonist-independent 

phosphorylation, internalization and degradation seemed to be a probable scenario in 

the present study. Therefore, PKC kinase activity was assessed and a significant 

increase was observed in the diabetic DRGs. Mousa et al described the role of PKC in 

MOR phosphorylation in diabetic DRGs, usinga PKC inhibitor in vivo to show that PKC 

activation was responsible for uncoupling of MOR from the G proteins, causing 

desensitization of the receptor. PKC was shown to be activated in a RAGE dependent 

manner11133. Desensitization of MOR is usually followed by resensitization. Mousa et al 

indicated that in early diabetes, desensitization-resensitization event was still 

functional, since no reduction in MOR protein was found. In the current study, however, 

it was observed that high glucose mediated activation of PKC for 48 hours was capable 

of completely internalizing the MOR in DRG neurons in vitro, a step occurring after 

uncoupling from G proteins. An internalized receptor is reported to retain its 

functionality and signaling for few hours before being recycled back to the surface. But 

in the hyperglycaemic condition, even if the receptor was recycled back to the surface, 

chronic activation of PKC will internalize the receptor again, leading to futile loop event. 

The impairment of successful recycling results in lysosomal targeting of MOR147. The 

current study shows not just PKC mediated MOR internalization, but also an association 
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between chronic PKC activation and MOR lysosomal degradation. Further studies are 

required to determine the role of RAGE in the PKC mediated internalization during 

hyperglycaemic condition is using the RAGE-/- mice148. 

 

There have been numerous studies which have looked at MOR protein levels and 

whether its downstream signaling is functional in diabetes104,106,149. However, all of 

them have looked singularly at MOR expression and signaling during diabetes and 

therefore has given insufficient information on mechanistic details of this phenomenon. 

In this study, endogenous opioid system within the PNS has been comprehensively 

studied and was able to suggest an agonist-independent degradation of MOR as a 

possible mechanism for reduction in MOR protein.  

 

In summary, the POMC- MOR anti-nociceptive pathway was shown to contribute to 

painful diabetic neuropathy.  In order to study the changes in the endogenous opioid 

system, female mice were chosen for study. This was because firstly, multiple 

observations supporting presence of sexual dimorphism in response of the endogenous 

opioid systems 150; secondly, there are reports showing analgesics against peripheral 

neuropathic pain are less effective in females than in males 151,152 making females a 

more interesting model to study. In order to understand whether the findings of this 

study are gender specific, similar experiments in male mice could be performed. Also, to 

add more credibility to the findings, restoration of POMC and MOR levels in the diabetic 

mice and then examining their pain sensitivity would be a confirmatory proof. Although 

the impairment of the POMC-MOR pathway is affected due to hyperglycaemia, this data 

is restricted to the type 1 diabetic mouse model. Repeating the experiments in animal 

models of type 2 diabetes, such as dbdb mice or ZDF rats, will ascertain the role of this 

anti-nociceptive pathway in DPN. Since the alteration in POMC-MOR pathway is 

described in PNS, the study also raises the question whether such a defect might exist in 

other tissues known to express both proteins. Of course, in other tissues, if such a defect 

does exist, the effect may not be on pain sensitivity. But given the numerous roles of 

POMC and its derived peptides such an anomaly if in CNS, GI tract, heart or blood-borne 

immune cells (section 1.3), may have far reaching consequences in diabetes and 

therefore deserves further investigation. 
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In conclusion, this study, for the first time, emphasizes the importance of endogenous 

POMC and MOR pathway in the PNS in context of painful diabetic neuropathy. It 

provides a platform for development of new therapies to counter painful symptoms by 

boosting the endogenous POMC synthesis and prevention of MOR degradation. 

Administration of POMC promoter agonists such as CRH (usually administered in the 

patients with Cushing’s disease of POMC defeciency153) into the spinal cord may be one 

of the few alternatives to enhance ß-endorphin production in the peripheral nerves 

during diabetes. Use of gene delivery techniques would also be a potential therapeutic 

in the future for patients with painful DPN. More importantly, metformin, a commonly 

used anti-diabetic drug has been recently shown to lower POMC levels 132. It becomes 

all the more necessary to develop strategies to boost POMC-MOR expression in the PNS 

while using metformin to treat diabetes and preventing exacerbation of DPN. Further 

studies are therefore required to establish whether the targeting of POMC-MOR 

pathway could be a valid therapeutic opinion in the treatment of diabetic neuropathy.  
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Summary 
Diabetic peripheral neuropathy (DPN) is a highly debilitating complication affecting the 

quality of life of diabetic patients severely. Current treatments for DPN such as opioid 

analgesics are ineffective while others namely; pregabalin, duloxetin etc. have adverse 

side effects. Thus, in search of mechanisms underlying pain sensation anomalies in DPN, 

expression of the endogenous opioid peptides in the PNS of STZ induced mice was 

studied. 

To this end, immune cell population, 

previously shown to be opioid source in 

injured nerves were studied in the diabetic 

sciatic nerves. Though there was a significant 

increase in the number of leukocytes and 

macrophages in the sciatic nerves, a negligible 

number of these immune cells expressed 

opioid peptides. Instead, the opioids present in 

the sciatic nerves were derived from the 

neuronal cells present in the lumbar DRG. The 

neuronal cells of DRG were susceptible to STZ 

and exhibited transient changes in the opioid expression following STZ induction. 

However, at 12 weeks post induction, effect of STZ had subsided and opioid levels were 

restored. At this time point, although the PENK and PDYN peptide level had returned to 

normal, POMC peptide level in the DRG, sciatic nerves and footpads remained 

significantly downregulated. A downregulation in ß-endorphin and its receptor MOR 

was also observed in the diabetic mice. While, downregulation of MOR seemed to be due 

to its lysosomal degradation induced by activated PKC, POMC promoter suppression 

seemed to be partly mediated by high glucose induced NF-kB. Interestingly, the 

downregulated POMC-MOR levels correlated with increased thermal and mechanical 

pain sensitivity of the STZ mice. Taken together, this data indicates that POMC-MOR 

proteins are involved in the hyperalgesia experienced during diabetic peripheral 

neuropathy and restoring their normal level may endogenous levels may prove to be a 

novel therapeutic strategy against painful diabetic neuropathy. 
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Zussamenfassung 
 
Periphere diabetische Neuropathie (PDN) ist eine belastende Komplikation, welche die 

Lebensqualität von diabetischen Patienten stark beeinflusst. Aktuelle Behandlungen für 

PDN wie opioide Analgetika sind ineffektiv, während andere namentlich Pregabalin, 

Duloxetin etc. negative Nebeneffekte haben. Daher wurde zur Erforschung der 

zugrundeliegenden Mechanismen der Anomalien bei der Schmerzwahrnehmung in PDN 

die Expression von endogenen Opioidpeptiden in STZ induzierten Mäusen mit DPN 

untersucht. 

Dazu wurden Immunzellpopulationen, 

welche als Quelle von Opioiden in 

verletzten Nerven identifiziert wurden, 

in diabetischen Ischiasnerven 

untersucht. Trotz eines signifikanten 

Anstiegs in der Anzahl der Leukozyten 

und Makrophagen exprimierte nur eine 

vernachlässigbare Anzahl dieser Zellen 

Opioidpeptide. Stattdessen wurden die 

nachweisbaren Opioide in Ischiasnerven 

von den neuronalen Zellen der lumbalen 

Hinterwurzelganglien (HWGs) 

exprimiert. Die neuronalen Zellen der 

HWG waren anfällig für STZ und zeigten nach der Behandlung mit STZ kurzzeitige 

Veränderungen in der Opioidexpression. 12 Wochen nach der Induktion klangen diese 

Effekte ab und die Opioidlevel normalisierten sich. Obwohl die Level von PENK und 

PDYN sich normalisierten, blieben die Level des POMC Peptides in HWGs, Ischiasnerven 

und Fußsohlen signifikant verringert. Außerdem waren ß-Endorphin und sein Rezeptor 

MOR in diabetischen Mäusen runter reguliert. Das verringerte Level von MOR scheint in 

dessen lysosomaler Degradation, induziert durch aktivierte PKC, begründet zu sein. Die 

geringeren POMC Level scheinen ihre Ursache teilweise in erhöhter Glukose und daraus 

resultierender Inhibierung des POMC Promoters durch NF-kB zu haben. 

Interessanterweise korrelieren die verringerten POMC-MOR Level mit gesteigerter 

thermaler und mechanischer Schmerzempfindlichkeit bei den mit STZ induzierten 
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Mäusen. Zusammengenommen deuten diese Daten darauf hin, dass die POMC-MOR 

Proteine an der Hyperalgesie bei peripherer diabetischer Neuropathie beteiligt sind und 

die Normalisierung des endogenen Levels eine mögliche therapeutische Strategie gegen 

schmerzhafte diabetische Neuropathie sein könnte. 
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