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Summary 

 

Breast cancer tumors are recognized to be highly heterogeneous, and differences in 

their metabolic phenotypes are less well understood. While a number of mostly RNA-

based profiling approaches have been developed aiming to improve diagnostic and 

therapy decision, few have entered clinical practice. Alongside metabolic alterations, 

tumor hypoxia has consistently been associated with a more aggressive malignant 

phenotype. Both tumor hypoxia and dysregulated metabolism are classical features of 

cancer and currently no studies either systematically examine the prognostic value of 

metabolism associated enzymes in a large cohort of breast cancer patients or their 

alterations in oxygen deprived conditions. 

For my PhD project, I undertook systematic profiling of metabolic enzymes in a cohort 

of 801 breast cancer patients to evaluate the relationship between profiles of 

metabolism-associated protein expression and clinicopathological characteristics. I 

identified three metabolic clusters of breast cancer that are significantly correlated with 

overall and recurrence-free survival, but do not reflect the common receptor-defined 

subtypes. Furthermore, high protein expression of the Serine Hydroxy-

methyltransferase 2 (SHMT2) and the Amino Acid Transporter (ASCT2), were 

identified as independent prognostic factors for overall and recurrence-free survival in 

breast cancer patients. 

Another aspect of research revealed the heterogeneous regulation of metabolic 

enzymes during oxygen deprived conditions and elucidated glutamate-ammonia ligase 

(GLUL) as a novel effector of the hypoxic response in breast cancer cell lines. 

The findings of my thesis are the first to demonstrate metabolic heterogeneity at the 

protein level in a large breast cancer cohort and highlight the clinical significance of 

SHMT2 and ASCT2 protein expression as new independent prognostic markers in 

breast cancer patients. Additionally, GLUL protein expression was identified as a 

novel effector of the hypoxic rewiring process in breast cancer cell lines. These 

findings may pave the way for the utilization of SHMT2 and ASCT2 as potential 

targets for innovative personalized therapy and advance the understanding of 

metabolic adaptation during hypoxic conditions. 

 





Zusammenfassung 

 

Das Mammakarzinom ist eine heterogene Tumorentität, wobei Unterschiede in 

Tumormorphologie und deren metabolischen Phänotypen bisher wenig erforscht sind. 

RNA-basierte Untersuchungstechniken wurden entwickelt, um die Diagnose- und 

Therapieentscheidung von Brustkrebs Patientinnen zu verbessern, jedoch nur wenige 

haben Eingang in die klinische Routine gefunden. Neben metabolischen 

Veränderungen ist auch die Tumorhypoxie mit einem aggressiveren Phänotyp 

assoziiert. Sowohl Tumorhypoxie, als auch ein dysregulierter Stoffwechsel stellen 

klassische Merkmale von Krebszellen und Tumoren dar. Derzeit gibt es keine Studien, 

die die prognostische Aussagekraft Stoffwechsel assoziierter Enzyme in einer großen 

Kohorte von Brustkrebspatientinnen untersuchen, bzw. die metabolischen 

Veränderungen in hypoxischen Bedingungen auf breiter Proteinebene abbilden. 

Im Rahmen dieser Promotionsarbeit, erfolgte die systematische Untersuchung 

Metabolismus-assoziierter Enzyme in einer Kohorte von 801 Brustkrebspatientinnen, 

um die Beziehung zwischen Proteinexpressionen und klinischen bzw. pathologischen 

Eigenschaften zu bewerten. Drei Cluster konnten identifiziert werden, die signifikant 

mit dem Gesamt- und Rezidiv-freien Überleben korrelieren, jedoch nicht die Rezeptor-

definierten Subtypen reflektieren. Darüber hinaus wird das Ausmaß der 

Proteinexpression der Serin-Hydroxy-methyltransferase 2 (SHMT2) und des 

Aminosäure-Transporters (ASCT2) als unabhängige prognostische Faktoren für das 

Gesamt- und Rezidiv-freie Überleben bei Brustkrebspatienten beschrieben. 

Unter hypoxischen Bedingungen konnte zudem eine heterogene Regulation von 

metabolischen Enzymen gezeigt werden. Hierbei wird die Glutamat-Ammoniak-

Ligase (GLUL) als neuer Effektor der hypoxischen Adaption in Brustkrebszelllinien 

vorgestellt. 

Die Ergebnisse meiner Arbeit zeigen erstmals die metabolische Heterogenität auf 

Proteinebene in einer großen Kohorte und demonstrieren die klinische Bedeutung der 

SHMT2 und ASCT2-Protein-Expression als neue unabhängige prognostische Marker 

bei Brustkrebspatientinnen. Basierend auf diesen Ergebnissen können SHMT2 und 

ASCT2 als potenzielle Kandidaten für innovative personalisierte Therapien weiter 

untersucht werden. Zusätzlich konnte die Expression von GLUL als neuer Effektor 



 

 

des hypoxischen Adaptionsprozesses in Brustkrebszelllinien identifiziert und so das 

Verständnis der metabolischen Anpassung während hypoxischer Bedingungen 

erweitert werden. 
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1.1  Hallmarks of cancer 

 

The Hallmarks of cancer represent acquired features of cancer cells during 

carcinogenesis. First introduced in 2000 by Hanahan and Weinberg, they comprised 

limitless replicative potential, evading apoptosis, self-sufficiency in growth signals, 

insensitivity to anti-growth signals, sustained angiogenesis, tissue invasion and 

metastasis [1]. Due to extensive research in the field of oncology, more than a decade 

later, Hanahan and Weinberg revised the classical hallmarks of cancer and added four 

new additional features. These novel hallmarks represent tumor-promoting 

inflammation, genome instability, immune system evasion, and dysregulated energy 

metabolism [2]. Taken together, these functional features of abnormal cell growth, 

represented in diverse cancer genotypes and phenotypes, are adaptive strategies to 

overcome specific microenvironmental growth constraints such as hypoxia and enable 

cancer development [3]. Especially cancer metabolism, as new hallmark of cancer, is 

of particular interest to my PhD project and its proteomic investigation represents the 

main part of this thesis (Figure 1). 

 

Figure 1 - Hallmarks of cancer: A focus on cancer metabolism. 

Hallmarks of Cancer, as illustrated in this figure, are either modulated by metabolic changes 

or affect metabolism. The schematic overview was adapted from Lewis and Haleem, 2013 [4]. 
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1.2  Breast cancer 

 

1.2.1 Epidemiology, etiology and pathology 

Worldwide, breast cancer (BC) is the most prevalent cancer entity among women and 

commonly known as a heterogeneous disease in terms of tumor morphology and 

molecular structure [4], [5], [6]. The majority of the increasing incidence of breast 

cancer cases and deaths, occur in less developed regions with low health expenses per 

capita. Despite the increase in breast cancer cases, mortality rates have decreased, 

mainly due to screening programs, earlier detection of the disease, a deeper 

understanding of the tumor biology, and the development of novel therapeutic 

strategies for the treatment of patients [7]. 

The heterogeneity of breast tissue is reflected in its morphology. Surrounded by 

stromal tissue, the luminal epithelial cells are enveloped by myoepithelial cells that 

enclose lobules and ducts. Breast cancer refers to several types of neoplasm arising 

from breast tissue. Differences in the local microenvironment and cellular 

differentiation states can give rise to phenotypically diverse tumors [8], [9]. Several 

risk factors like germline mutations, radiation exposure, age, gender, family history, 

alcohol and obesity have been associated with breast cancer development [10]. The 

disease is accompanied by a number of symptoms such as a lump in the breast or nipple 

discharge, and while it is often diagnosed after spread has occurred, the diagnosis at 

screening (ultrasound or mammography) is increasing [11]. 

Histologically, breast tumors are classified based on their structural organization and 

their morphology. Patient tumors are graded based on the degree of cellular 

pleomorphism, tubular/gland formation, and number of mitoses. Associated with poor 

outcome are the presence of necrosis, lack of an inflammatory cell reaction, and 

lymphatic and blood vessel invasion. Furthermore, the presence or absence of lymph 

node involvement has a strong effect on relapse, rather than the amount of lymph nodes 

involved [12]. 

Routine pathological assessment, usually performed by immunohistochemistry (IHC), 

includes the determination of estrogen receptor (ER) and progesterone receptor (PR) 

status, which help to predict which patients will benefit from hormonal therapy [13], 
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[14]. In addition, the human epidermal growth factor receptor 2 (HER2) is also 

measured as its oncogenic amplification and/or overexpression has an adverse 

prognostic effect [15]. Cancers overexpressing ER or HER2 are suitable for targeted 

therapy, like monoclonal antibodies binding to the receptor and disrupting the 

signaling cascade [16]. 

 

1.2.2 Staging and markers of prognosis 

Current methods of staging include clinical and pathological information as well as 

biological assessment. The most commonly used classification is the UICC 

(International Union Against Cancer) and TNM (Tumor, Node, Metastasis) 

classification systems, where tumors are classified by size, number of regional lymph 

nodes and presence or absence of distant metastases [17]. However, the disease course 

is heterogeneous and while some patients survive for years after developing 

metastases, others’ disease rapidly progresses despite treatment. 

The limitations of pathological information for predicting response to treatment, have 

led to increasing interest in biomarkers such as gene expression signatures and 

complemented data obtained from histological and immunohistochemical profiling 

[18]. Gene expression profiling has had a considerable impact in understanding breast 

cancer biology. During the last decade, intrinsic molecular subtypes of breast cancer 

(Luminal A, Luminal B, HER2-enriched, Basal-like) and a normal breast-like 

subgroup have been identified and intensively studied [19]. Recent technological 

advances and tremendous efforts of consortia like The Cancer Genome Atlas (TCGA) 

and the Molecular Taxonomy of Breast cancer International Consortium 

(METABRIC) have further increased our understanding of the molecular pathways 

and their heterogenous derangements in human solid tumors [20]. A combined 

evaluation of recurrent gene mutations, gene copy number alterations, and 

transcriptomic profiles has led to a refinement of the molecular classification of breast 

cancer (Figure 2). Subtypes can now be defined by multiparameter molecular tests 

such as the MammaPrint/BluePrint or Prediction Analysis of Microarray (PAM) 50 

[21], [22]. However, in clinical practice, the key question is not the separation of 

molecularly defined intrinsic subtypes, but rather the discrimination between patients 

who will or will not benefit from particular therapies. Several of the multiparametric 
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molecular markers have been utilized for this purpose [23], [24]. However, none has 

received approval in Germany yet for routine testing and therapy decision [25]. 

 

 

Figure 2 - Breast cancer pathogenesis and molecular subtypes. 

This figure was adapted from Sims et al., 2007 [26]. 

 

Although many genes and proteins have been investigated as prognostic and predictive 

factors, only a few are currently decisive for treatment. For now, available predictive 

models to inform the systemic treatment of individual patients are still limited to a few 

established biomarkers (mainly hormone receptor and HER2 status, and markers of 

cell proliferation like Ki67). 

A predictive biomarker gives information about the effect of a therapeutic intervention, 

whilst, a prognostic biomarker provides information about the patient’s overall cancer 

outcome regardless of therapy. So far, just a few predictive biomarkers and signatures 

like the ‘Oncotype Dx’ have been evaluated in large scale clinical trials [27], [28]. 

 

1.2.3 Treatment and therapy 

The current standard of care for patients with primary breast cancer is local 

management, including surgery and radiotherapy, with or without systemic therapy, 
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depending on the tumor type and stage. Successful cancer treatment requires the early 

removal of the tumor cells to prevent recurrence and metastasis, which is the main 

cause of mortality. If suitable, patients receive neoadjuvant therapy to shrink the tumor 

before treatment and to allow a breast-conserving surgery. Patients who have no 

detectable cancer after surgery can be given adjuvant systemic therapy to treat micro 

metastases. 

Stage I and II tumors are usually treated with breast conserving surgery as well as 

radiotherapy, while Stage III or IV, representing large tumors, may require 

mastectomy. A systemic therapy may involve hormone treatment, like tamoxifen or 

aromatase inhibitors and chemotherapy. The treatment protocol depends on 

stratification factors like patient’s age, menopausal status, ER status and HER2 status, 

Tumor (T) stage, and with increasing prevalence also genomic screening [29]. Please 

refer to Table 1, adapted from Senkus et al. (2015), for systemic treatment 

recommendations [30]. 

 

Table 1 - Systemic treatment recommendations for breast cancer subtypes 

Subtype Recommended therapy Comments 

Luminal A-like ET alone in the majority of cases ChT if:   
high tumor burden (four or more 
positive LN, T3 or higher)   
grade 3 

Luminal B-like  
(HER2-negative) 

ET + ChT for the majority of 
cases 

 

Luminal B-like  
(HER2-positive) 

ChT + anti-HER2 + ET for all 
patients 

If contraindications for the use of 
ChT, one may consider ET + anti-
HER2 therapy 

HER2-positive 
(non-luminal) 

ChT + anti-HER2 

 

Triple-negative 
(ductal) 

ChT 

 

ET, endocrine therapy; ChT, chemotherapy; LN, lymph node. 

 

Recently, preclinical studies underline the importance of the immune landscape and 

point towards the additional benefit of combining treatments aimed at the immune 

system. Immune-targeted drugs , like PD-1 inhibitors may be suitable in this setting 

[31]. Another issue based on the broad use of hormonal therapy, is overcoming 
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endocrine therapy resistance. Combining endocrine agents and blockers of growth 

factors might be a useful strategy in this context [32]. 

The heterogeneity of breast cancer is an ongoing challenge for clinicians, as patients 

with breast cancer and identical clinicopathological characteristics often present 

markedly distinct outcomes. There is a clear need to identify additional markers to help 

patient stratification and selecting those patients that may benefit from a certain type 

of therapy. Therefore, biomarker discovery approaches in areas of the new hallmarks 

of cancer, like the proteomic exploration of cancer metabolism during my PhD project, 

might pave the path for a better patient stratification and prognosis evaluation. 
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1.3 Cancer metabolism 

 

1.3.1 Rewiring of cellular metabolism in cancer 

Altered metabolism has been known to characterize tumors ever since Otto Warburg, 

in the 1920s, reported his first observations of metabolic changes that accompany 

malignancy [33]. Moreover, deregulated cancer metabolism has regained attention and 

is regarded as a new hallmark of cancer [34]. 

Cancer cells differ from healthy cells due to extensive molecular changes, many of 

which are mechanistically linked to metabolic reprogramming. Proliferative cells as 

well as tumor cells alter their metabolism in order to support biosynthetic reactions 

required for accumulation of biomass and the production of macromolecules [35]. 

Classical features of cancer may be conditioned by metabolic reprogramming, or 

metabolic reprogramming may be the consequence of nonmetabolic oncogenic events, 

such as constitutive activation of growth factor pathways, HIF-1 activation, and 

inactivation of p53 [36]. Moreover, in this context, somatic mutations in oncogenes as 

well as environmental conditions like inflammation or hypoxia have been shown to 

cooperate in generating the malignant phenotype [35]. 

Cancer cells require large amounts of energy and therefore increase their uptake of 

carbon units with glucose and amino acids as their main sources [35]. Furthermore, 

oncogenes and tumor suppressors have been shown to directly control many of these 

adaptations, and consequently, most tumor cells display altered metabolism compared 

to normal cells [37]. This metabolic rewiring in cancer cells provides a continuous 

supply of building blocks and supports the production of intermediates for lipid, 

protein and nucleotide synthesis. Metabolic transformations have been intensively 

studied over the past decade and as a result, first therapeutic strategies are emerging 

which target altered metabolism of cancer cells [38]. 

 

1.3.2 The Warburg Effect 

Historically, the field of cancer metabolism has been rooted in discoveries of the 

German biochemist Otto Warburg in the 1920s [39]. He and his colleagues observed 



Chapter 1 

12 

that proliferative cells use glycolysis for adenosine triphosphate (ATP) production 

even in the presence of oxygen and that tumor cells, unlike most normal cells, utilize 

glycolysis rather than oxidative phosphorylation (OXPHOS) for ATP production 

(Figure 3). The consequences of this metabolic adjustment are increased glycolytic 

activity and enhanced lactate secretion, also termed aerobic glycolysis and later known 

as the “Warburg effect” [34]. 

 

 

Figure 3 - Energy pathway comparision. 

Depicted are differences between oxidative phosphorylation, anaerobic glycolysis, and 

aerobic glycolysis (Warburg effect). The Figure was adapted from Vander Heiden et al., 

2009 [40]. 

 

For energy production in normal cells, pyruvate is mainly oxidised in the mitochondria 

via the tricarboxylic acid cycle (TCA) and under low oxygen conditions, pyruvate is 

converted into lactate (anaerobic metabolism). Cancer cells primarily use the 

anaerobic metabolism route. Several explanations have been proposed to describe this 

phenomenon. Although aerobic glycolysis is less efficient than the OXPHOS in terms 

of ATP molecules produced per cycle, it has been discussed that tumor cells with 

glycolytic driven metabolism progress rapidly due to their enhanced glycolytic flux 

and competitive advantage over their normal counterparts [41]. Since, the production 

of ATP molecules reaches/exceeds that of oxidative phosphorylation due to the 
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increased glycolytic flux, the ATP levels meet the demand of highly proliferating cells 

[40]. Furthermore, lactate, the main end product of aerobic glycolysis provides acidic 

conditions causing an environment in favour of tumour invasion and suppressing 

anticancer immune effectors. Cancer cells may also favour aerobic glycolysis over 

mitochondrial respiration to minimise the generation of reactive oxygen species 

(ROS). The metabolic re-programming in cancer is essential for redox balance and the 

synthesis of fatty acids, amino acids and nucleotides to generate macromolecules for 

cell growth [42], [43]. The extensive increase in glucose uptake by cancer cells also 

leads to clinical progress in the field of radiology, where glucose uptake is exploited 

clinically to visualize tumours by 2-(18F)-fluoro-2-deoxyD-glucose positron emission 

tomography (FDG-PET) [44]. 

Nevertheless, tumor cells require more than glucose molecules and glycolytic 

intermediates for their needs to achieve the production of necessary metabolites [45]. 

In fact, in proliferating cells, glucose alone cannot be used for carbon catabolism and 

for ATP production. High levels of ATP would impair Coenzyme A production, and 

consequently another energy source is needed for replenishing the TCA cycle with 

intermediates for the biosynthesis of macromolecules. In particular, for restoring 

Oxaloacetic acid levels, which are impaired by the export of citrate from the 

mitochondria in order to synthesize lipids, tumor cells exploit a different source: 

glutamine [46]. 

 

1.3.3 Glutamine metabolism 

After glucose, glutamine represents the most prominent carbon resource for synthesis 

of the three major classes of macromolecules (Figure 4) [47], [46]. It is also the most 

abundant amino acid in human plasma and a fundamental source for nucleotide, amino 

acid and glutathione (GSH) synthesis [48], [49]. 

The primary functions of glutamine are the storage and transport of nitrogen in the 

muscle and between organs. Besides its various functions, glutamine is also required 

for the regulation of the cellular redox potential. Glutamine metabolism provides 

precursors for the synthesis of GSH, the major thiol containing endogenous 

antioxidant, which serves as a redox buffer against various sources of oxidative stress. 

During glutaminolysis, defined as a metabolic process where glutamine is converted 

to α- ketoglutarate via glutamate, glutamine acts as a nitrogen donor to provide 
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building blocks for further synthesis of nonessential amino acids [50]. Glutamine itself 

is traditionally considered a nonessential amino acid, but during periods of rapid 

growth, the demand for glutamine exceeds its supply and it becomes essential. 

 

 

Figure 4 - Glutamine metabolism. 

The Figure was modified from Wise et al., 2010 [51]. OAA, Oxaloacetic acid; Ac-CoA, Acetyl-

Coenzyme A.  

 

Glutamine can be utilized by the cell to generate the amino acids arginine and proline. 

In addition to their function as precursors for protein synthesis, proline can act as an 

antioxidant and arginine is involved in nitric oxide signalling [52], [53]. Moreover, 

glutamine shuttling across the plasma membrane is necessary for the import of 

essential amino acids such as phenylalanine [54]. Glutamine itself is transported by 

several families of amino acid transporters, of which the Na+-dependent ASCT2 

transporter, also named SLC1A5 (Solute Carrier Family 1 Member 5), belongs to the 

most ubiquitously expressed glutamine transporters in human cancer cells [55]. 
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High glucose and glutamine uptake is a common feature of tumor cells and is 

associated with increased secretion of metabolic by-products such as lactate, alanine 

and ammonia. [56]. The so-called ‘glutamine addiction’, which is characterized by 

poor cancer cell survival in the absence of glutamine, has been observed in several 

cancer entities [57]. Glutamine addicted cells alter their transcriptional programme to 

upregulate the expression of glutamine transporters and enzymes within the 

glutaminolysis pathway. Depletion of glutamine prevents the replenishment of TCA 

cycle metabolites and induces cells to undergo apoptosis. On the contrary, the 

replenishment of the mitochondrial carbon pool by glutamine provides mitochondria 

with precursors for the maintenance of mitochondrial membrane potential and for the 

synthesis of nucleotides, proteins and lipids [58], [59]. Furthermore, glutamine has 

also been described as an essential activator of the mammalian target of rapamycin 

complex 1 (mTORC1), which regulates protein translation, cell growth and autophagy 

[60]. 

 

1.3.4 Serine metabolism 

Apart from the glutamine metabolism, serine and glycine are also important mediators 

in cancer cell development. Serine and glycine are biosynthetically linked, and 

together provide essential precursors for the synthesis of proteins, nucleic acids, and 

lipids that are crucial to cancer cell growth. Serine hydroxymethyltransferase (SHMT) 

converts serine to glycine, connecting the serine and glycine pathways. Glycine is 

required to maintain the cellular redox balance and also sustains oxidative 

phosphorylation in the mitochondria [61]. It has been shown that glycine uptake and 

catabolism are able to promote tumorigenesis and malignancy, suggesting that serine 

and glycine metabolism could in principle be a target for therapeutic intervention [62]. 

Serine is an important amino acid, not only for protein synthesis, but also for other 

amino acids, lipids, as well as nucleotide biosynthesis. The endogenous serine 

synthesis pathway, is the main source of serine in several mammalian tissues, serving 

also as a source for glycine and one-carbon units for methylation (Figure 5). The 

upregulation of this pathway has been associated with the ability of breast cancer cells 

to metastasize [63]. Furthermore, a loss of function screen pointed out that certain 

breast cancers show PHGDH amplifications and rely on endogenous serine production 

to sustain proliferation [64]. Interestingly, metabolomics analysis showed that 
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melanoma and breast cancer cells with PHGDH amplification divert large amounts of 

glucose-derived carbons into serine and glycine biosynthesis [65]. 

 

Figure 5 - Serine synthesis pathway. 

Scheme of the serine synthesis pathway from glucose and the main biosynthetic pathways in 

which L-serine is involved. PHGDH, phosphoglycerate dehydrogenase; PSAT1, 3-

phosphoserine α- ketoglutarate aminotransferase; PSPH, 3-phosphoserine phosphatase; 

SHMT1/2, serine hydroxymethyl transferase 1 and 2. Dotted lines indicate multiple step 

reactions. 

 

In addition to the endogenous serine synthesis pathway, serine metabolism is also 

important for cancer cells, by contributing to redox balance and glutathione 

production. Furthermore, p53 has been related to the ability of cells to survive to serine 

starvation [66], [67]. 

 

1.3.5 The role of metabolism in cancer therapy 

The increased biosynthetic activity of rapidly proliferating cancer cells provides an 

‘Achilles heel’, as cells depend on the biosynthesis of macromolecules, such as fatty 

acids, nucleotides and amino acids. During the recent years, it has become clear that 

altered metabolism could be utilized to develop novel therapeutic approaches and to 

increase the overall survival of cancer patients. Nowadays, changes of metabolism are 

investigated in areas of biomarker discovery, patient stratification and drug discovery 

as well as personalized medicine. 

The vast majority of metabolic pathways, which are altered in cancer cells, are also 

essential for the survival of normal cells and hence are not, in principle, suitable drug 

targets. However, changes in the activity of a pathway or the presence of a specific 

enzyme isoform may allow suitable target options. Several studies demonstrate that 

the metabolic adaptations of cancer cells are not only the consequence of oncogenic 
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signaling events but can be causally involved in the transformation process. Opinions 

are emerging that selective pressure can not only alter the activity of metabolic 

enzymes to enhance the survival of cancer cells, but can also lead to the production of 

onco-metabolites that may drive tumorigenesis. 

Based on these hypotheses, new potential treatment options are emerging. In some 

tumors, oncogenic BRAF and RAS mutations have been associated with increased 

GLUT1 expression and specific GLUT1 inhibitors are currently being explored in 

clinical trials [68], [69]. Another example, addressing the increased lactate production 

of cancer cells, is the PDK inhibitor DCA (Dichloroacetate), that showed anti-cancer 

effects in pre-clinical studies and it is already a prescription drug for the treatment of 

lactic acidosis and well tolerated in patients with glioblastoma multiforme (GBM) 

[70]. However, neither DCA nor other PDK inhibitors have been approved yet for 

cancer therapy. A number of therapeutic strategies that target upstream regulators of 

metabolic pathways, like the hypoxia response factor HIF and the PI3K/AKT signaling 

cascade, are also emerging as potential targets of interest [71], [72]. 

Tumor growth is not only characterized by uncontrolled proliferation but also by 

changes in the microenvironment of the cancer cells. Moreover, the tumor 

microenvironment itself can impact tumor metabolism and affect the metabolic 

activity of cancer cells. The increased nutrient influx into cancer cells and their 

enhanced metabolic rate also leads to an increase in metabolic by-products that are 

secreted into the surrounding tissue. In order to remove any toxic by-products, tumor 

cells need profound mechanisms that can stabilize their intracellular as well as their 

extracellular environment. One of these metabolic adaptations due to changes in the 

microenvironment is represented in the metabolic rewiring in oxygen deprived 

conditions, like tumor hypoxia. 
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1.4 Tumor hypoxia 

 

1.4.1 Tumor hypoxia and microenvironment 

Tumor hypoxia is characterized as an insufficient oxygen supply for metabolic needs 

of the cell and has been shown to be an independent adverse prognostic factor in many 

cancers, including breast cancer [73]. The negative effect of tumor hypoxia on survival 

is displayed in two ways. On the one hand, limited effectiveness of radiation therapy 

leads to less oxygen free radicals generated by ionizing radiation that can cause DNA 

damage such as cross linkages and double-strand breaks [74]. On the other hand, 

hypoxic cells can be chemo resistant due to decreased drug action in the absence of 

oxygen, cell cycle changes, or altered pH gradients [75]. 

Hypoxia in solid tumors arises from changes in the tumor vasculature such that oxygen 

demands exceed supply (Figure 6). 

 

Figure 6 - The vascular network of normal tissue versus tumor tissue. 

The picture shows the vascular network of normal tissue (a) and tumor tissue (b). The Figure 

was adapted from Brown et al., 2004 [76]. AV, Arteriovenous. 

 

These abnormalities arise mainly from a rapidly growing tumor, inefficient alignment 

of capillaries, low partial pressure (pO2) in regions distant from arteriolar origin, low 

vascular density, and variations in capillary red blood cell flux [76].  
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A key factor of hypoxia is the activation of gene expression pathways to control 

angiogenesis, resistance to oxidative stress, the switch to anaerobic metabolism, 

metastasis, and to enhance survival of tumor cells after therapy [77]. Conditions of 

very severe hypoxia are commonly called anoxia and also reflect the morphology in 

tumors. In response to anoxia, cells induce cryoprotective programs and stress 

response to protect key cellular components by reducing translation, increasing 

expression of endoplasmic reticulum chaperones and arresting in G1 phase of the cell 

cycle [78]. 

Compared to room air oxygen with a pO2 of approximately 159 mmHg, the pO2 in 

arterial blood reaches approximately 40 mmHg, and most normal tissues show levels 

of above 20 mmHg. A partial pressure of less than 10 mmHg, generally induces genes 

regulated by the hypoxia-inducible transcription factor which is further discussed in 

the next section. Some normal tissues like primitive stem cells in the bone marrow are 

hypoxic per se and are maintained in a quiescent state by hypoxia-related proteins. 

Tumors show a heterogeneous picture in oxygen status and frequently display large 

hypoxic areas (in approximately 60% of solid tumors) with pO2 median values across 

the tumor of less than 10 mmHg [79]. 

Hypoxic experiments referred to in this thesis were performed at 21%, 1,2% or 0.2% 

oxygen and are roughly equivalent to pO2 of 159 mmHg, 9 mmHg and 1.5 mmHg 

respectively. 

 

1.4.2 Hypoxia-inducible factors and their role in cancer 

Hypoxia inducible transcription factor 1 (HIF-1) is a key regulator of the hypoxic 

response. HIF was discovered and first mentioned as the transcriptional regulator of 

the erythropoietin gene (EPO) in renal fibroblasts and HIF activation under low 

oxygen concentrations was found to lead to an increased EPO production [80]. There 

are three genes that encode α-subunits of HIF in mammals (HIF-1α, HIF-2α and HIF-

3α). HIF-1 consists of two subunits, α (inducible) and β (constitutively-expressed, or 

ARNT). 

In the presence of oxygen, proline residues in the oxygen-dependent degradation 

domain of HIF-1α are hydroxylated by prolyl hydroxylases (PHDs) [81]. This enables 

the von Hippel-Lindau (VHL) protein to recognize HIF-1α, causing it to be 

ubiquitylated and targeted to the proteasome for degradation [82]. The process is 
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precisely regulated in several ways, including cofactor dependencies of the PHDs such 

as ascorbate (Vitamin C), Krebs cycle intermediates, and iron [83]. 

In oxygen-deprived tissues (below 2% O2), HIF α-subunits become stabilized and 

consequently activated due to the diminished activity of the prolyl hydroxylases 

(PHDs) and hetero-dimerize with ARNT. These heterodimers recognize and bind to 

hypoxia response elements (HRE) (5'-[AG]CGTG-3'), specific genomic sequences 

that lie within target gene promoters and recruit transcriptional co-activators such as 

p300/CBP for full transcriptional activity (Figure 7). This leads to changes in the 

transcription of genes that are necessary to overcome oxygen deprivation [80]. HIF-

1α activation helps cells to adapt to oxygen deprivation by regulating the expression 

of genes involved in proliferation, metabolism, angiogenesis and invasion/metastasis 

[84]. 

 

Figure 7 - HIF-1α structure and its regulation. 

The HIF-1α cascade and its fate under normoxic and hypoxic conditions. The Figure was 

adapted from Weidemann et al., 2008 [82]. 

 

Historically, most research has been centered around HIF-1α, but more recently 

specific targets and roles of HIF-2α have become well understood. Hypoxia inducible 

transcription factor 2α (HIF-2α) is a protein with sequence similarity to HIF-1α, also 

regulated by proline hydroxylation. HIF- 2α activates transcription of a group of target 

genes that overlap with, but are distinct from those regulated by HIF-1α [85], [86]. For 
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example, opposing effects of HIF-1α and HIF-2α on the activity of c-Myc have been 

reported [87]. Furthermore, there is evidence that HIF-1α is more important for 

metabolic regulation in cancer cells, while HIF-2α is thought to mainly act on the 

regulation of angiogenic and metastatic processes [88]. In contrast to the presented 

transcription factors, the HIF-3α is an inhibitor of HIF-1α that is rarely studied and is 

thought to be involved in feedback regulation [89]. 

The activity of HIF-1α is controlled on several levels and various studies have shown 

elevated levels of HIF-1α and/or HIF-2α in primary tumors and their metastases [90], 

[91]. Oncogenic pathways can stabilize HIF-1α, of which the best described are the 

RAS and the PI3K/Akt pathways [92]. Additionally, growth factors such as HER2, 

especially when upregulated, can also increase HIF-1α synthesis, primarily via the 

action of mammalian target of rapamycin (mTOR). The balance of these pathways is 

critical for tumor growth and development [93]. Furthermore, fluctuations in hypoxia 

typically seen in tumors, has been shown to generate a higher level of stabilized HIF-

1α than a stable hypoxia exposure [94]. HIF-1α activates multiple hypoxia-response 

genes with roles in many aspects of cancer biology, including angiogenesis, immune 

evasion, pH regulation, glycolysis, invasion and metastasis [95], [96], [97], [98], [99]. 

Thus, HIF-1α induces a number of genes which enable cells to adapt to low oxygen 

condition, and thereby contribute to cancer progression. The elevation of HIF-1α and 

HIF-2α expression levels is associated with increased tumor growth and poor 

prognosis in the majority of human tumors including breast cancer [100]. 

 

1.4.3 Limitations of existing hypoxia markers 

Tumor cells exhibit a distinct growth pattern into surrounding healthy tissue 

accompanied by limited access to the vascular system for certain areas of the tumor. 

This also leads to heterogenic features in hypoxic regions. These hypoxic regions 

correlate with increased HIF-1α and HIF-2α levels and have been associated with a 

poor OS signature in several cancers like brain, pancreas, colon and breast [101]. 

Assessing hypoxia in tumors is a complicated matter since current methods have 

significant limitations. Measuring pO2 directly via polarographic needle electrodes is 

invasive and provides no information about the hypoxic distribution across the whole 

tumor architecture [102]. Nuclear medicine imaging and radiological techniques can 

provide suitable data but are expensive, suffer from low resolution and are hard to 
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standardize between many centers. In addition, the markers used are mainly dependent 

on the glycolytic state of the cell [103]. 

Another way to assess hypoxia may be through the expression of many hypoxia-

induced genes, like the median RNA expression signature of a 99-gene set predicting 

recurrence-free survival in head and neck cancer [104]. Similarly, a gene-expression 

signature of the cellular response to hypoxia was developed for prognosis in ovarian 

and breast cancer [105]. 

Therapeutic drugs in the hypoxic context, like Bevacizumab, a monoclonal antibody 

targeting VEGFA, have shown some promising effects in certain cancers such as renal 

cancer and metastatic colorectal cancer. However, in other entities such as breast 

cancer the patient benefits were rather disappointing. It has been demonstrated that 

hypoxic breast tumors do no respond well to established therapeutics and 

predominantly show poorer clinical outcome [106]. Identifying novel targets within 

these hypoxic tumors is a necessary need and a worthwhile endeavor. 

Along this line, most studies lack novelty and translation into the proteomic level. 

Therefore, a part of my PhD project aimed to address this issue and to investigate a 

new hallmark of cancer in the context of hypoxia at a proteomic level via reverse phase 

protein arrays. 
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1.5 Reverse phase protein arrays 

 

1.5.1 The RPPA technology 

The Reverse Phase Protein Array (RPPA) technology represents a highly efficient and 

cost effective successor of miniaturized immunoassays that use a sandwich format for 

antigen capture [107], [108]. First described by Paweletz et al. in 2001, the term 

“reverse phase” refers to the analytes (antigen) which are immobilized on a solid phase 

(nitrocellulose), and subsequently probed with an antibody against a specific target 

[109]. RPPA allows to multiplex quantitative measurements of total, phosphorylated, 

glycosylated, acetylated or cleaved proteins from multiple samples [110]. The 

technology is widely used for protein expression profiling and signal pathway mapping 

in cell lines, clinical specimen, as well as serum and plasma samples [111], [112], 

[113], [114]. The basic readout is usually reflected in the detection of a unique change 

in expression of one protein, or pattern of changes in many proteins as well as protein 

networks (Figure 8). 

 

 

Figure 8 - The basic principle of RPPA. 

Reverse phase protein arrays (RPPA) experimentation involves (A) printing of samples in a 

neatly organized array format onto, for example, nitrocellulose-coated glass slides; (B) 

Incubation with a highly target-specific primary antibody to detect proteins-of-interest, or a 

certain phosphorylation sites; (C) Signal detection of the primary antibody is commonly 

performed by fluorescence, chemiluminescence or colorimetric methods; (D) Target intensities 

are quantified after scanning and analyzing signal intensities of individual spots; (E) Data 

processing and quality control. NIR, Near-infrared. 

 

During the last decade, the RPPA approach has been used for several applications in 

the field of system biology and biomarker discovery in different tumor entities [115], 

[116]. RPPA has been shown to be able to concurrently measure a large number of 
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analytes with an analytical precision and accuracy similar or superior to clinical-grade 

assays such as ELISAs [114]. Especially the high throughput capabilities and 

sensitivity of RPPA paved the way for in depth investigations of tissue samples, 

usually originating from small-bore core biopsies or fine needle aspirates, with 

exceedingly small amounts of target material. Unlike other existing competing 

technologies, RPPA can quantitatively measure large numbers of low abundance 

analytes, such as phosphorylated signaling proteins, from a single small sample input 

[117]. Several studies could show, that this technology can generate linear quantitative 

data with an analytical sensitivity of detection in the fg/ml range with linearity in the 

sub pg/ml range, which is several orders of magnitude more sensitive compared to 

current multiple reaction monitoring (MRM) mass spectrometry approaches [118], 

[119], [120]. In addition, the throughput of RPPA is currently not feasible by 

conventional western blot or any other proteomic technology. 

Taken together, RPPA represents a rapidly emerging and advancing cost-effective 

technology that is able to quantitatively analyze hundreds of proteins and post-

translational modifications in small samples sizes. While other proteomic approaches 

like mass spectroscopy hold great promise for the analysis of samples, they do not 

currently have the throughput, sensitivity and ability to deal with small amounts of 

material, or the cost effectiveness of the RPPA platform [121]. 

 

1.5.2 RPPA platform at DKFZ 

The RPPA platform at the Division of Molecular Genome Analysis (DKFZ) was 

established in 2007 and further developed in terms of automation and data processing 

in the recent years [122], [123], [124]. The general principle of the RPPA platform at 

DKFZ is outlined in Figure 9 and a detailed workflow description can be found in 

Chapter 3, Section 3.2.7. The flexibility of the RPPA technology to analyze large 

sample numbers in parallel either in an unbiased approach or for a protein network of 

choice, remains the major strength of the platform and provides the opportunity to 

study hundreds of patient samples simultaneously. Based on these core attributes that 

favor biomarker guided clinical research and the ability to identify therapeutic markers 

that could be suitable for patient stratification, I used the RPPA platform as the method 

of choice for my PhD project. 
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Figure 9 - RPPA workflow at DKFZ. 

Schematic presentation of the DKFZ workflow of using reverse phase protein arrays for a 

targeted profiling. NC, Nitrocellulose; NIR, Near-infrared. 

 

The reliability of RPPA highly depends on the quality of the antibodies used. However, 

universally applied guidelines or a standardized workflow for determining the 

antibodies applicable for use in RPPA has not yet been established. Antibody 

validation during my PhD was carried out as previously described [125]. Primary 

antibodies were selected in order to cover a range of metabolic pathways and to 

achieve a broad perspective on breast cancer metabolism. Please refer to Chapter 3, 

Section 3.1.5 for further information on antibodies relevant to this project. 
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Breast cancer tumors are highly heterogeneous and differences in their metabolic 

phenotypes are not well understood. While a number of mostly RNA-based profiling 

studies have aimed at improving diagnosis and therapy decision, few tests have entered 

clinical practice. Furthermore, less is known about the metabolic phenotype of breast 

cancer, especially on a proteomic scale. Currently there are no studies that have 

systematically examined the prognostic value of metabolism associated enzymes in a 

large cohort of breast cancer patients or investigated the dynamic behavior of 

microenvironmental factors like hypoxia on cancer metabolism in a time resolved 

manner. 

 

In order to provide novel insides into the proteomic landscape of breast cancer, I 

addressed the following questions: 

 

Is a targeted proteomic approach applicable towards the characterization of breast 

tumors at the metabolic level? 

• A large cohort of breast tumor specimen was utilized via targeted 

proteomics and further statistically examined for metabolic features. 

 

Which metabolic enzymes, transporters and regulators are important for the survival 

of breast cancer patients and could serve as potential biomarkers? 

• Based on the generated protein expression matrix, the relationship 

between metabolism-associated protein expression profiles and 

clinicopathological characteristics were evaluated. 

 

What are the metabolic adaptive responses under hypoxia and its main regulators? 

• Time resolved breast cancer cell line data was generated via targeted 

proteomics and further processed by bioinformatic methods. Findings 

were assessed in order to reveal metabolic changes, with a focus on top 

regulated targets. 

 



 

 



 

 

 

 

 

 

 

 

 

3. Chapter 3 
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3.1 Materials 

 

3.1.1 Patient cohort and clinical samples 

Human primary breast cancer samples were collected at the Martin-Luther University, 

Halle-Wittenberg between 2009 and 2011 as part of the multicenter prospective PiA 

trial (NCT 01592825). Only fresh frozen tissue samples of female patients with 

operable non-metastasized breast cancer were included. The study was approved by 

the ethics committee of the Martin-Luther University Halle-Wittenberg and informed 

consent had been obtained from each patient. I investigated a cohort of 801 primary 

tumor tissue samples with RPPA. Tumor specimens were fresh frozen after surgery 

and stored at −80 °C until further use. Tumor content was verified by histopathology. 

Clinicopathological parameters were obtained for each patient and documented using 

SPSS 22. TNM staging system was used [126]. Patient information was anonymized 

prior to analysis. Receptor defined breast cancer subtypes were determined according 

to the St. Gallen classification [12]. Due to missing Ki-67 values, histopathological 

grading was used to assess cell proliferation [127]. The standardized definitions for 

efficacy end points (STEEP) criteria were used as endpoint definitions [128]. 

 

The following stratification system was applied: 

 

Luminal A-like:  Estrogen receptor (ER) positive and/or Progesterone receptor 
(PgR) positive, HER2 negative, grade 1 or 2. 

Luminal B-like:  ER positive and/or PgR positive, HER2 negative, grade 3. 
(HER2 negative) 

Luminal B-like:  ER positive and/or PgR positive, HER2 positive, all grades. 
(HER2 positive) 

HER2 positive:  ER negative and PgR negative, HER2 positive, all grades. 
(non-luminal-like) 

Triple negative:  ER negative, PgR negative, HER2 negative, all grades. 
(TNBC) 
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3.1.2 Instruments 

Aushon 2470 contact printer Aushon BioSystems (Billerica, US) 

BINDER Cell culture incubator BINDER GmbH (Tuttlingen, DE) 

Biofuge fresco centrifuge Heraeus (Hanau, DE) 

Biohit Proline multichannel pipette Sartorius (Göttingen, DE) 

BP121S and BP2100S balances Sartorius (Göttingen, DE) 

CASY cell counter Roche Innovatis AG (Bielefeld, DE) 

Dri-block®DB-2D heating block Bibby Scientific Limited (Stone, UK) 

DURAN® desiccator Schott (Mainz, DE) 

ErgoOne® pipette Starlab International (Hamburg, DE) 

HERA Safe cell culture hood Thermo Fisher Scientific (Waltham, 
US) 

Infinite M200 microplate reader Tecan Group (Männedorf, CH) 

inoLab pH meter WTW (Weilheim, DE) 

Liebherr Premium Freezer Liebherr-International (Biberach an der 
Riß, DE) 

Liebherr Premium Fridge Liebherr-International (Biberach an der 
Riß, DE) 

Milli-Q Biocel purification system Merck Millipore (Darmstadt, DE) 

Mini-Protean®II electrophoresis cell 
system 

BioRad (München, DE) 

Microscope IXM XL Molecular Devices (Sunnyvale, US) 

MR3001 magnetic stirrer Heidolph (Schwabach, DE) 

Multipette®plus hand-held dispenser Eppendorf AG (Hamburg, DE) 

Odyssey® Infrared Imaging System LI-COR Biosciences (Lincoln, US) 

Pipetboy acu pipette INTEGRA Biosciences (Fernwald, DE) 

Pipetman® pipette Gilson (Limburg, DE) 

Thermomixer comfort Eppendorf AG (Hamburg, DE) 

TissueLyser bead mill Qiagen (Hilden, DE) 

Titramax 100 rocking platform Heidolph (Schwabach, DE) 

Trans-Blot® Turbo™ Transfer System BioRad (München, DE) 

Tube Rotator VWR (Darmstadt, DE) 

Vacuboy aspiration device INTEGRA Biosciences (Fernwald, DE) 

VortexMixer 7-2020 neoLab (Heidelberg, DE) 
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3.1.3 Consumables 

348-well plate, AB-1056 Abgene (Epsom, UK) 

1.5 mL micro centrifuge tube  Eppendorf AG (Hamburg, DE) 

10cm Ø Petri dish Techno Plastic Products (TPP) AG 
(Trasadingen, CH) 

15mL conical tube Becton Dickinson (New Jersey, US) 

2 mL micro centrifuge tube Eppendorf AG (Hamburg, DE) 

50mL conical tube Becton Dickinson (New Jersey, US) 

6-well plate Nunc, Thermo Fisher Scientific 
(Waltham, US) 

96-well plate Becton Dickinson (New Jersey, US) 

Adhesive Optically Clear Plate Seal Thermo Fisher Scientific (Waltham, 
US) 

Anaeroclip® Merck KGaA (Darmstadt, DE) 

Anaerotest® Merck KGaA (Darmstadt, DE) 

Casy cup Roche Innovatis AG (Bielefeld, DE) 

Cell Culture Flasks, T-25, T-75, T-175 Greiner Bio-One International GmbH 
(Kremsmünster, AT) 

Cell Scraper Corning (Corning, US) 

Combitip Eppendorf AG (Hamburg, DE) 

Cry vials 1.8mL Nunc, Thermo Fisher Scientific 
(Waltham, US) 

Desiccant bag Conrad Electronics (Hirschau, DE) 

Filter tips, 10μL, 20μL, 100μL, 200μL, 
1000μL 

Neptune Scientific (San Diego, US) 

Mini-PROTEAN® TGX™ Precast Gel BioRad (München, DE) 

Oncyte® Avid Nitrocellulose Film-Slide Grace Bio-Labs (Bend, US) 

pipette tip Becton Dickinson (Heidelberg, DE) 

Scalpel Feather No21 pfm medical (Köln, DE) 

Serological pipettes 2.5mL, 5mL, 10mL, 
25mL, 50ml 

Becton Dickinson (New Jersey, US) 

Stainless steel bead (5 mm) Qiagen (Hilden, DE) 

Trans-Blot® Turbo™ LF PVDF 
membrane 

BioRad (München, DE) 

Trans-Blot® Turbo™ Transfer Stacks BioRad (München, DE) 

Whatman paper GE Healthcare (München, DE) 
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3.1.4 Chemicals and reagents 

CASYton Roche Innovatis AG (Bielefeld, DE) 

cOmplete Mini Protease Inhibitor 
Cocktail 

Roche Diagnostics (Mannheim, DE) 

EDTA Sigma-Aldrich (Saint-Louis, US) 

Ethanol Sigma-Aldrich (Saint-Louis, US) 

Fast Green FCF Carl Roth (Karlsruhe, DE) 

KCL Sigma-Aldrich (Saint-Louis, US) 

Methanol Greiner Bio-One International GmbH 
(Kremsmünster, AT) 

M-PER mammalian protein extraction 
reagent 

Thermo Fischer Scientific (Rockford, 
US) 

NaCl VWR International (Darmstadt, DE) 

NaOH Sigma-Aldrich (Saint-Louis, US) 

peqGOLD Protein Marker IV and V PEQLAB Biotechnologie (Erlangen, 
DE) 

PhosSTOP Phosphatase Inhibitor 
Cocktail 

Roche Diagnostics (Mannheim, DE) 

Rockland Blocking Buffer Rockland Immunochemicals Inc. 
(Limerick, US) 

Roti®-Load 1, 4x sample loading buffer Carl Roth (Karlsruhe, DE) 

Staurosporine Merck Millipore (Darmstadt, DE) 

SDS Carl Roth (Karlsruhe, DE) 

Trans-Blot® Turbo™ Transfer Buffer BioRad (München, DE) 

Tris HCl Sigma-Aldrich (Saint-Louis, US) 

Tris-base Sigma-Aldrich (Saint-Louis, US) 

Triton X-100 Sigma-Aldrich (Saint-Louis, US) 

Tween 20 Sigma-Aldrich (Saint-Louis, US) 

 

3.1.5 Antibodies 

Primary Antibodies 

Dataset ID Gene ID Catalog# Company 

ACC ACACA 3662 Cell Signaling Technology (US) 
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Dataset ID Gene ID Catalog# Company 

ACC_Ser79 ACACA 3661 Cell Signaling Technology (US) 

ARG2 ARG2 GTX118048 GeneTex (US) 

ASCT2 SLC1A5 8057 Cell Signaling Technology (US) 

ASL ASL HPA016646 Sigma-Aldrich (US) 

ASS1 ASS1 HPA020896  Sigma-Aldrich (US) 

CAD CAD 11933 Cell Signaling Technology (US) 

CPS1 CPS1 ab128942 Abcam plc (UK) 

ER alpha ER E1678C002 DCS (DE) 

FASN FASN ab128856 Abcam plc (UK) 

FH FH sc100743 Santa Cruz Biotechnology (US) 

GAPDH GAPDH GTX 627408 GeneTex (US) 

GLK GCK GTX111517 GeneTex (US) 

GLS GLS ab156876 Abcam plc (UK) 

Glud12 GLUD 12793 Cell Signaling Technology (US) 

GLUL GLUL WH0002752M1 Sigma-Aldrich (US) 

GLUT1 SLC2A1 ab115730 Abcam plc (UK) 

GLUT4 SLC2A4 2213 Cell Signaling Technology (US) 

GOT1 GOT1 ab170950 Abcam plc (UK) 

GPT2 GPT2 sc398383 Santa Cruz Biotechnology (US) 

HER2 ERBB2 AB17MS730 Thermo Fisher Scientific (US) 

Hif1_alpha HIF1A 10006421 Cayman Chemical (US) 

Hif2_alpha HIF2A 7096 Cell Signaling Technology (US) 

IDH1 IDH1 8137 Cell Signaling Technology (US) 

IDH2 IDH2 12652 Cell Signaling Technology (US) 

Ki67 MKI67 M7240 Dako (US) 

LAT1 SLC7A5 5347 Cell Signaling Technology (US) 

LDHA LDHA 3582 Cell Signaling Technology (US) 

LDHB LDHB MAB2732 Abnova (TW) 

NAGS NAGS AV51183 Sigma-Aldrich Co. (US) 

ODC1 ODC1 ab126590 Abcam plc (UK) 

PCK1 PCK1 12940 Cell Signaling Technology (US) 

PCK2 PCK2 sc32879 Santa Cruz Biotechnology (US) 

PDH PDHA1 3205 Cell Signaling Technology (US) 

PGR PGR 1483 Epitomics (US) 

PHGDH PHGDH 13428 Cell Signaling Technology (US) 

PKM1 PKM1 7067 Cell Signaling Technology (US) 
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Dataset ID Gene ID Catalog# Company 

PKM2 PKM2 4053 Cell Signaling Technology (US) 

PSAT1 PSAT1 GTX110576 GeneTex (US) 

PSPH PSPH HPA020376 Sigma-Aldrich Co. (US) 

SDHA SDHA sc59687 Santa Cruz Biotechnology (US) 

SHMT2 SHMT2 HPA020543  Sigma-Aldrich Co. (US) 

SLC14A1 SLC14A1 ab67595 Abcam plc (UK) 

SMS SMS GTX114783 GeneTex (US) 

SREBP1 SREBF1 NB100-74542 Novus Biologicals, Inc. (US) 

STARD10 STARD10 HPA026661 Sigma-Aldrich Co. (US) 

 

Secondary Antibodies 

Format Reactivity Conjugate Company 

full-length IgG rabbit IgG (H+L) Alexa Flour® 680 Life Technologies (US) 

full-length IgG mouse IgG (H+L) Alexa Flour® 680 Life Technologies (US) 

F(ab')2 rabbit IgG (H+L) Alexa Flour® 680 Life Technologies (US) 

F(ab')2 mouse IgG (H+L) Alexa Flour® 680 Life Technologies (US) 

 

3.1.6 Buffers and solutions 

10x TBS: 1.37 M NaCl 
200 mM Tris 
pH 7.6 

10x TBST: 0.1% Tween20® in 10x TBS 

Cell line lysis buffer: mammalian protein extraction reagent (M-PER) 
1 tablet PhosSTOP Phosphatase Inhibitor Cocktail 
1 tablet Complete Mini Protease Inhibitor 
Cocktail 

Tissue lysis buffer: 50 mM Tris, pH 8.5 
138 mM NaCl 
2.7 mM KCl 
1% Triton X-100 

SDS-PAGE running buffer: 192 mM glycine 
25 mM Tris 
0.1% SDS 
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Transfer buffer 1L: 20% Trans-Blot® Turbo™ 5x Transfer Buffer 
20% EtOH 
60% H2O 

Blocking buffer: 50% Rockland blocking buffer 
5 mM NaF 
1 mM Na3VO4 

ad TBS 

Washing buffer: 0.1% Tween®20 in TBS (TBST) 

4x RPPA printing buffer: 10% Glycerol 
4% SDS 
10 mM DTT 
125 mM Tris 
pH 6.8 

FCF staining solution: 0.005% Fast Green FCF 
10% acetic acid 
30% ethanol 

FCF destaining solution: 10% acetic acid 
30% ethanol 

 

3.1.7 Kits 

Pierce™ BCA Protein Assay Kit Thermo Fisher Scientific (Waltham, 
US)  

Anaerocult® A mini Merck KGaA (Darmstadt, DE) 

Trans-Blot® Turbo™ RTA Transfer Kit BioRad (München, DE) 

 

3.1.8 Cell culture 

Breast cancer cell lines were purchased from the American Type Culture Collection 

ATCC (LGC Standards GmbH, Wesel, DE). Cell line authentication was performed 

via multiplex cell line authentication (Multiplexion GmbH, Friedrichshafen, DE). 

 

Cell line Characteristics 

MCF-7 ER+, HER2-, epithelial-like, adenocarcinoma from 
pleural effusion 

SKBR3 ER-, HER2+ (amplified), epithelial-like, adenocarcinoma 
from pleural effusion 

MDA-MB-231 ER-, HER2-, epithelial-like adenocarcinoma from pleural 
effusion 
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MDA-MB-468 ER-, HER2-, epithelial-like, adenocarcinoma from pleural 
effusion 

 

Media and reagents used for cell culture 

0.25% Trypsin EDTA (1x) Gibco BRL (New York, US) 

Fetal Bovine Serum Gibco BRL (New York, US) 

RPMI 1640 (+ L-Glutamine) Gibco BRL (New York, US) 

RPMI 1640 (- L-Glutamine) Gibco BRL (New York, US) 

Dulbecco's Phosphate Buffered Saline Gibco BRL (New York, US) 

 

3.1.9 Software 

GenePix Pro 7.0 Molecular Devices (Sunnyvale, US) 

GraphPad Prism 5 GraphPad Software Inc. (La Jolla, US) 

Molecular Devices MetaXpress Molecular Devices (Sunnyvale, US) 

Odyssey 3.1 LI-COR Biosciences (Lincoln, US) 

R version 3.0.2 

 

SPSS 22 

R Development Core Team  

(www.R-project.org) 

SPSS Inc. (Illinois, US) 
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3.2 Methods 

 

3.2.1 Preparation of protein extracts from cell lines 

Cells were lysed on ice with pre-chilled cell line lysis buffer (M-PER lysis buffer 

containing protease inhibitor Complete Mini and anti-phosphatase PhosSTOP). Cell 

lysates were incubated on a tube rotator for 30 min at 4°C and subsequently centrifuged 

for 10 min at 16.000 x g. Supernatant was stored at -80°C until further use. Total 

protein concentration was quantified with Pierce™ BCA Protein Assay Kit according 

to manufacturer’s instructions. 

 

3.2.2 Preparation of protein extracts from tumor samples 

Frozen tumor specimens were homogenized using a bead mill and pre-chilled tissue 

protein extraction reagent (50 mM Tris, pH 8.5, 138 mM NaCl, 2.7 mM KCl, 1% 

Triton X-100). Tumor lysates were centrifuged at 16.000 x g for 10 min at 4°C. The 

homogenized tumor lysate supernatants were aliquoted and stored at -80°C until 

further use. Total protein concentration was quantified with Pierce™ BCA Protein 

Assay Kit according to manufacturer’s instructions. 

 

3.2.3 Immunoblotting 

Protein lysates were denatured using 4x sample loading buffer (Roti®-Load 1) for 5min 

at 95°C. Samples were loaded on Mini-PROTEAN® TGX™ Precast Gels for protein 

mass separation and a prestained protein ladder (peqGOLD Protein Marker IV and V) 

was used as molecular mass marker. After protein separation via SDS-PAGE, the 

proteins were transferred to a polyvinylidene difluoride membrane (Trans-Blot® 

Turbo™ LF PVDF membrane) by electrophoresis. The Trans-Blot® Turbo™ Transfer 

System was used for the “semi dry” blotting set-up in accordance to the manufacture 

instructions. Afterwards the membrane was blocked for 1h at RT with blocking buffer 

and subsequently incubated with target specific primary antibody over night at 4°C on 

a rocking platform. The membrane was washed 4 x 5 min in TBST followed by an 1h 

incubation with Alexa Flour® 680 conjugated secondary antibody. After washing for 

4 x 5 min, the membrane was scanned at an excitation wavelength of 685 nm and a 
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resolution of 84 µm using the Odyssey® Infrared Imaging System. For western blot 

quantification, local background subtraction and β-Actin normalization was 

performed. 

 

3.2.4 Antibody validation 

Each antibody was tested for specificity to assure the detected signal is representative 

for the target of interest. The gold standard for antibody validation is western blot. A 

pool of different breast cancer cell lines was used as test samples. All antibodies 

resulting in a target specific single band or characteristic band pattern were used for 

RPPA. Antibodies resulting in several unspecific bands were not used for RPPA. All 

Antibodies used for RPPA profiling are provided in Chapter 3, Section 3.1.5. 

 

3.2.5 Immunohistochemistry 

Immunohistochemistry (IHC) analyses were performed by PD Dr. med. Jörg 

Buchmann at the pathology department of the Martin-Luther University Halle-

Wittenberg on 4-micron tissue sections. Protein expression was assessed using Bond 

Max Polymer Refine Immunohistochemistry protocol. Primary SHMT2 and ASCT2 

antibody was diluted 1:250. Epitope retrieval was performed with Bond Epitope 

Retrieval Solution for 30 minutes at pH6, followed by a peroxidase block. Primary 

antibody was incubated for 20 minutes and detected using Bond Polymer Refine 

Detection with DAB substrate. IHC were assessed by a pathologist as a visual score, 

semi-quantitative based on the fraction of cytoplasmic staining above background. 

 

3.2.6 Hypoxia exposure 

Exposure of cell cultures to hypoxia (1,2% or 0.2% oxygen) was undertaken in a cell 

culture incubator at 1.2% oxygen or in hypoxia bags at 0.2% oxygen (Anaerocult® A 

mini). In parallel, cells were maintained in normoxic conditions (5% CO2, 37°C, 21% 

oxygen). All experiments were performed in triplicate from independent cell cultures. 
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3.2.7 Reverse phase protein arrays 

Tumor and cell line lysates were adjusted to a total protein concentration of 2 µg/µl. 

Samples were mixed with 4 x RPPA printing buffer (10% glycerol, 4% SDS, 10 mM 

DTT, 125 mM Tris–HCl, pH 6.8) and denatured at 95°C for 5 min. Protein lysates 

were transferred to 348-well plates and centrifuged for 2 min at 200 x g. Six step 

dilution series of tumor samples/cell line pools were serving as internal controls. All 

samples were printed as technical triplicates on Oncyte® Avid Nitrocellulose Film-

Slides using a Aushon 2470 contact printer equipped with 185 µm solid pins (1.6 nl 

sample per spot, average spot diameter 250 µm). The humidity during the printing run 

was kept constant at 80%. Slides were stored after the print run at -20°C with desiccant. 

Post spotting, slides were incubated with blocking buffer in TBS (50%, v / v) 

containing 5 mM NaF and 1 mM Na3VO4 for 2h at room temperature. Each array was 

subsequently incubated with target-specific primary antibodies at 4°C overnight. 

Representative subarrays were incubated without primary antibody and served as 

“blank” control. After performing washing steps with 4 x 5 min TBST the detection 

of primary antibodies was carried out with Alexa Fluor® 680 F(ab')2 fragments of goat 

anti-mouse IgG or anti-rabbit IgG in 1:12000 dilution for 1h at RT. Slides were washed 

4 x 5 min with TBST followed by two final washing steps with ultra-pure water for 5 

min. Slides were air dried and further utilized in the imaging process. All incubation 

and washing steps were performed on a rocking platform and slides were protected 

from light. Every ninth slide of each run was stained using Fast Green FCF protein dye 

for total protein quantification and served as normalization reference. TIFF images (16 

bit) of all slides were obtained at an excitation wavelength of 685 nm and a resolution 

of 21 μm using the Odyssey® Infrared Imaging System. 

Signal intensities of individual spots were quantified using GenePixPro 7.0 software. 

The aquirred TIFF image of each slide and gene pix array list file, generated by the 

printer to map the sample location on the slide, were matched into a gene pix result 

file. At this step, a visual inspection of each spot was performed and slides without 

uniform background signal were excluded from further analysis. RPPA raw data 

preprocessing and quality control were performed using the RPPanalyzer R-package 

[123]. The gene pix result files as well as sample and antibody information text files 

were required for further raw data analysis. The raw signal intensities of the control 

samples were plotted against the respective total protein concentration. Only data of 
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antibodies showing a linear correlation between target signal intensity and protein 

concentration were used for further analysis. Next, target signals were normalized to 

the total protein amount per spot via Fast Green FCF control. After median calculation 

of technical replicates, normalized target signal intensities were plotted against the 

signal intensities obtained by incubation of primary antibody controls (blank signal). 

Normalized protein data was saved in text files and further explored in collaboration 

with our collaboration partners at the Department of Medical Statistics at University 

Medical Center Goettingen (Goettingen, Germany) and the Institute of Physics at the 

Freiburg Institute for Advanced Studies (Freiburg, Germany). 

 

3.2.8 Statistical and bioinformatic analyses 

If not stated otherwise, the data was analyzed using GraphPad Prism 5 or the R 

statistical computing environment (version 3.0.2) [129]. A p value < 0.05 was 

considered statistically significant. 

 

STRING visualization 

STRING Database (Version 10) of the STRING Consortium was used for visualization 

of protein interactions by choosing Gene IDs corresponding to proteins [130]. 

 

Hierarchical clustering 

Hierarchical cluster analysis was performed on z-scores of protein expression levels 

using Ward's minimum variance method and squared euclidean distance. Patient 

samples and protein targets were clustered simultaneously and the resulting 

dendrograms were visualized together with a heatmap depicting z-score values. 

RPPanalyzer R-package was used for visualization, with an adjustment of color bars 

according to the clinicopathological features of interest and exploiting the dendextend 

R-package for dendrogram color-coding [123], [131]. 

 

Univariate analysis 

The relationship between clinicopathological variables and the three patient clusters 

was evaluated using analysis of variance (ANOVA), Kruskal-Wallis rank sum test, 
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and Fisher's Exact test, as appropriate. The relationship between the variables and the 

patient groups, stratified based on the median expression of a protein, was evaluated 

using t-test, Wilcoxon rank sum test, and Fisher's Exact test, as appropriate. 

 

Multivariate and survival analysis 

Patients stratified into groups (based on receptor-defined subtypes, median expression 

level or patient dendrogram clusters) were subjected to Kaplan-Meier analysis of 

overall survival (OS) and recurrence-free survival (RFS). The difference of Kaplan-

Meier curves was tested using the log-rank test implemented in the survival R-package 

[132]. Univariate Cox proportional hazard regression models were applied to test 

individual protein target association with OS and RFS [133]. For each target, the 

exponent of the estimated regression coefficient is reported as a hazard ratio (HR) 

along with its 95% confidence intervals (CI). P values were adjusted for multiple 

testing resulting in false-discovery rate (FDR) values [134]. Univariate Cox 

proportional hazard regression models were further used to evaluate 

clinicopathological variables. Multivariate Cox analyses were then performed on 

selected non-correlated clinicopathological covariates for each of the proteins that 

showed significance in the univariate Cox analysis. The median follow-up time of the 

cohort was 55.44 months for OS and 54.46 months for RFS. 

 

Linear regression model 

The preprocessed data of the time courses with triple replicates for each time point 

were analyzed individually for each target protein and for each of the 12 combinations 

of cell lines and treatments. In order to merge the replicates and asses the kind and 

strength of regulation, a linear regression model was used for the log2(10) signal 

intensities of the target protein time courses and cell line-treatment combination 

individually. The Cook's distance  was used to detect outliers in the measured time 

course [135] [136]. Based on this, 1% of data points was removed from the further 

analysis. A one-way analysis of variance (ANOVA) was applied to each time course 

in order to discriminate between a constant time course signal at the basal expression 

level of the target protein and significantly regulated expression profiles (pANOVA < 

0.05). Using t-statistics, time point specific regulation estimates have been tested 
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individually against the respective basal expression estimate in order to identify 

significantly regulated signals (p < 0.05). P-values are FDR adjusted for multiple 

testing using the Benjamini-Hochberg procedure. 

 

TCGA data analysis 

Analyses of The Cancer Genome Atlas (TCGA) data was conducted on primary breast 

cancer tumor samples with both RNA-sequencing data and clinical annotations. Level 

3 normalized gene expression data (TCGA_BRCA_exp_HiSeqV2-2015-02-24) was 

obtained from the cBioPortal website [137], [138]. Gene expression data was log2 

transformed and subset to the genes of interest. 
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4.1 Proteomic profiling of cancer metabolism in breast cancer 

patients 

 

4.1.1 RPPA patient dataset generation 

In order to investigate altered expression patterns of metabolism related proteins in the 

tumorigenesis of breast cancer, I established a collaboration with the gynecology 

department of the university clinic at the Martin-Luther-University Halle-Wittenberg 

(Halle(Saale), DE). With the aim to generate a proteomic dataset of breast cancer 

specimens, Dr. Eva Kantelhardt and Dr. Martina Vetter kindly provided me with over 

800 breast cancer samples of patients, diagnosed with primary breast carcinoma, for 

my research. The specimens received are part of an ongoing clinical trial and further 

information on clinicopathological features of the cohort are summarized in Table 2 

and in Chapter 3, Section 3.1.1. 

In a first step, the tumor specimens were lysed as described in Chapter 3, Section 3.2.2 

and I further determined the protein concentration of each sample. Afterwards I 

processed the samples via reverse phase protein arrays and produced protein array 

slides primed for primary antibody incubation. 37 suitable protein targets with 

relevance to cancer metabolism were chosen and conscientious antibody validation 

was performed. The RPPA slides were then incubated with the validated antibodies 

and a quantitative analysis of protein expression was performed. The RPPA protocol 

is reported in Chapter 3, Section 3.2.7. After quality control of the raw RPPA data 

from my side, the data matrix was further explored in collaboration with Dr. Astrid 

Wachter and Dr. Michaela Bayerlová of the Department of Medical Statistics, 

University Medical Center Goettingen (Goettingen, DE). The whole RPPA data matrix 

matched with clinical data is provided in the Appendix (Table S5). 

  



Chapter 4 

54 

 

Table 2 - Patient and tumor characteristics 

  Total (%) 

Number of patient samples   

        Total 801 (100) 

Age   

        Mean ± SD 62.25 ± 13.7  

        Median (range) 63 (22-90)  

Tumor size   

        < 2cm 400 (49.9) 

        ≥ 2-5cm 358 (44.7) 

        > 5cm 43 (5.4) 

Histology   

        Ductal 638 (79.7) 

        Lobular 118 (14.7) 

        Other 45 (5.6) 

T stage   

        T1 413 (51.6) 

        T2 342 (42.7) 

        T3 38 (4.7) 

        T4 8 (1.0) 

Grade   

        I 91 (11.4) 

        II 502 (62.7) 

        III 208 (26.0) 

Nodal status   

        N0 492 (61.4) 

        N1 226 (28.2) 

        N2 51 (6.4) 

        N3 32 (4.0) 

Menopausal status   

        Pre-Menopausal 167 (20.8) 

        Peri-Menopausal 51 (6.4) 

        Post-Menopausal 583 (72.8) 

Receptor status   

        ER+ 681 (85.0) 

        ER- 120 (15.0) 

        PgR+ 563 (70.3) 

        PgR- 238 (29.7) 

        HER2+ 110 (13.7) 

        HER2- 691 (86.3) 

        HR+ 688 (85.9) 

        HR- 113 (14.1) 

Receptor defined subtype   

        Luminal A-like 510 (63.7) 

        Luminal B-like (HER2 positive) 74 (9.2) 

        Luminal B-like (HER2 negative) 104 (13.0) 

        HER2 positive (non-luminal-like)  36 (4.5) 

        TNBC 77 (9.6) 
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4.1.2 Unsupervised clustering of protein expression profiles in patients 

with breast cancer 

Michaela Bayerlová and I decided to investigate the patient profiles of 37 metabolism-

related proteins by assessing their distribution via unsupervised hierarchical clustering. 

As a result, illustrated by the upper dendrogram coloring in Figure 10, clustering 

divided the whole cohort into two patient clusters (green, n = 440; violet, n = 361). 

 

 

Figure 10 - Unsupervised clustering of protein profiles. 

The heatmap represents expression levels of 37 metabolism related proteins after 

unsupervised hierarchical clustering. The data set consists of 801 tumor specimens. Z-scores 

of log2 transformed protein expression levels are color coded on a low-to-high scale (green –

black- magenta). Dendrogram branches divide the patient set into a green and violet cluster 

and protein targets into a ‘diffuse’ and ‘compact’ cluster. Annotation bars include receptor 

defined subtypes (a); Histological grade (b); Histology (c); Menopausal status (d); Nodal status 

(e) and T stage (f). 
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As presented in Figure 10, the distribution of clinical factors (illustrated as labels a, b, 

c, d, e and f, above the heatmap) showed no significant association with the green and 

violet patient cluster. 

To elucidate a potential association with survival, M. Bayerlová performed Kaplan-

Meier analysis of the two patient clusters (Figure 11). 

 

 

Figure 11 - Kaplan-Meier analysis of green and violet patient cluster. 

Kaplan-Meier curves show proportions of overall survivors (OS) and recurrence-free survivors 

(RFS) of two separate clusters (green and violet). Statistical difference in outcome between 

Kaplan-Meier curves were compared by log-rank test. pval, p value. 

 

As shown in Figure 11, no significant association with OS or RFS was detected. 

However, after observing the heatmap pattern more closely, a distinct horizontal 

partition of the protein targets showed up as a dominant feature of the heatmap. 

Furthermore, a separation into two protein expression clusters indicated a potential 

functional difference throughout the whole patient cohort. Therefore, I divided the 

protein targets by the given dendrogram (depicted on the left-hand side of the heatmap) 

into two protein cluster subgroups, a ‘diffuse’ cluster (blue, n = 19), characterized by 

a heterogeneous protein expression pattern and a ‘compact’ cluster (gold, n = 18) with 

clear protein expression pattern (Figure 10). Notably, the impact of the ‘compact’ 

protein cluster in driving the initial heatmap clustering and formation of the two patient 

clusters, seemed to subdue the effects of the ‘diffuse’ protein cluster. Since no 

differences in survival of the ‘compact’ cluster were observed, I focused on re-

investigating the ‘diffuse’ protein cluster separately. 
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4.1.3 ‘Diffuse’ protein signature revealed three patient clusters 

significantly associated with survival 

Unsupervised hierarchical clustering of the 19 protein targets represented in the 

‘diffuse’ cluster was performed over all patient specimens. Eliminating all proteins of 

the ‘compact’ cluster, resulted in a heterogenous heatmap with three refined patient 

clusters based on the dendrogram arrangement, depicted in blue (n = 242), yellow (n 

= 89) and brown (n = 470), (Figure 12A). 

Based on the resulted dendrogram, the patient clusters were compared for survival 

analysis in terms of OS and RFS outcome. This revealed a significant difference 

among the clusters in both, OS (p = 0.023, Figure 12B) and RFS (p = 0.0071, Figure 

12C), as illustrated in the Kaplan-Meier curves. The blue cluster showed the most 

favorable overall and recurrence-free survival, whereas the yellow cluster represented 

the least favorable outcome. Clinical parameters (age, tumor size, histology, T stage, 

grade, node status, menopausal status and receptor defined status) were further 

examined by M. Bayerlová for differences in distribution between the patient clusters. 

Univariate comparison across the patient’s groups showed that all clinical parameters 

were significantly different between the three clusters (p ≤ 0.05). Furthermore, 

multivariate analysis was conducted based on selected clinicopathological covariates 

(Appendix, Table S1). 
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Figure 12 - Unsupervised clustering and analyses based on ‘diffuse’ cluster 

refinement. 

The heatmap represents metabolism related protein expression levels of the ‘diffuse’ target 

signature after unsupervised hierarchical clustering of 801 tumor specimen. Z-scores of log2 

transformed protein expression levels are color coded on a low-to-high scale (green –black- 

magenta). Annotation bars include receptor defined subtypes (a); Histological grade (b); 

Histology (c); Menopausal status (d); Nodal status (e) and T stage (f). Statistical analysis of 

the three patient clusters (blue, yellow, brown) is shown in the Appendix (Table S1). Kaplan-

Meier curves visualize the proportion of overall survivors (B) and recurrence-free survivors 

(C), compared by log-rank test. pval, p value. 
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4.1.4 The proteomic network of the ‘diffuse’ and ‘compact’ cluster 

In respect to outcome, the different clinicopathological features represented between 

the unique cluster separation of Figure 10 merited a deeper investigation. Therefore, I 

was interested in the differences between the compact and diffuse protein cluster which 

had resulted from the initial clustering and explored their proteomic network. To 

visualize the biological context of the proteins representing the ‘diffuse’ and ‘compact’ 

clusters at a glance, I visualized them in two protein networks by using the STRING 

Database (Figure 13). 

 

 

Figure 13 - Protein network visualization. 

STRING illustrations are based on proteins represented in the ‘compact’ cluster subgroup (A) 

and proteins represented in the ‘diffuse’ cluster subgroup (B). STRING visualization was 

performed for each group individually and the evidence based network edges were set to an 

interaction score of 0.4. The given legend shows the type of interactions that were selected 

for the visualization. 

 

The STRING visualization resulted in distinct interaction nodes, illustrating possible 

protein relations. As part of the ‘diffuse’ cluster, all proteins related to glycine 

synthesis (SHMT2), lipid and fatty acid synthesis (FASN, STARD10, ACACA, 

SREBF1), as well as glycolysis and lactate production (GLUT1, GAPDH, PKM2, 

LDHA, LDHB) were observed. The ‘compact’ cluster in comparison is composed of 

all measured proteins associated with serine synthesis (PHGDH, PSAT1, PSPH). 

Pyruvate kinase isozyme M1 (PKM1) was the only glycolysis related protein 
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represented in the ‘compact’ cluster. Proteins related to the TCA cycle, urea cycle and 

glutaminolysis, were found in both, the ‘diffuse’ and the ‘compact’ cluster. 

In addition, I considered pathway enrichment analysis, however due to the relatively 

low numbers of measured proteins, M. Bayerlová could not detect any enriched 

pathways. Therefore, I decided to shift the main focus of the study towards biomarker 

discovery and further investigate the individual protein target expressions that shaped 

the whole initial clustering. 

 

4.1.5 Correlations between individual target expression and 

clinicopathological characteristics 

In order to identify individual proteins associated with survival and to evaluate their 

potential role as biomarkers, I next analyzed the expression of all probed proteins 

individually. The association of each protein expression level with OS and RFS was 

tested via univariate Cox proportional hazard regression models by M. Bayerlová and 

protein expression was treated as a continuous variable (Full table: Appendix, Table 

S2). Out of 37 metabolism related proteins tested, SHMT2 and ASCT2 were found to 

be significantly associated with overall survival (Table 3). 

 

Table 3 - Protein targets significantly associated with overall survival (OS) 

Target HR 95 % CI P FDR Affiliation 
      

SHMT2 1.93 1.48 – 2.51 <0.001 <0.001 Serine Metabolism 

ASCT2 1.83 1.39 – 2.42 <0.001 <0.001 Glutamine Metabolism 

OS events: 83; p, p value; HR, Hazard Ratio; FDR, false discovery rate; CI, confidence intervals 

 

Furthermore, univariate Cox analysis of recurrence-free survival, revealed 6 out of 37 

proteins to be significantly associated with outcome (Table 4). 
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Table 4 - Protein targets significantly associated with recurrence-free survival 

(RFS) 

Target HR 95 % CI P FDR Affiliation 

      

SHMT2 1.88 1.50 – 2.36 <0.001 <0.001 Serine Metabolism 

ASCT2 1.83 1.45 – 2.31 <0.001 <0.001 Glutamine Metabolism 

GAPDH 1.52 1.19 – 1.94 <0.001 0.009 Glucose Metabolism 

FH 1.65 1.20 – 2.27 0.002 0.019 TCA Cycle 

CAD 2.07 1.29 – 3.33 0.003 0.019 Pyrimidine Metabolism 

PKM2 1.46 1.13 – 1.88 0.003 0.020 Glucose Metabolism 

RFS events: 109; p, p value; HR, Hazard Ratio, false discovery rate; CI, confidence intervals 

 

After having revealed which protein expression profiles were univariately associated 

with survival, the breast cancer patients were grouped depending on “low” and “high” 

protein expression concerning these targets, to explore relationships with other 

clinicopathological variables. This was based on the median protein expression of 

SHMT2, ASCT2, GAPDH, FH, CAD and PKM2 (Appendix, Table S3). Univariate 

analysis showed that all six protein expression profiles were significantly associated 

with tumor size, T stage, grade, nodal status and receptor defined subgroups. Except 

for CAD, all proteins showed a significant association with histology, whereas PKM2 

displayed the only protein profile that significantly correlated with age. No significant 

difference between protein expression and menopausal status was observed. 

 

4.1.6 SHMT2 and ASCT2 protein expression as independent prognostic 

factors in patients with breast cancer 

To confirm the findings, multivariate Cox analyses for overall and recurrence-free 

survival was performed based on selected clinicopathological covariates and 

univariate significance. Proteins showing significance in the univariate Cox analysis 

were included (Full table: Appendix, Table S4). 
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Table 5 - Univariate and Multivariate Cox regression analysis of overall 

survival 

 
 

Univariate 
analysis 

SHMT2 ASCT2 

Characteristics 
Multivariate analysis Multivariate analysis 

p Hazard Ratio (95% CI) p Hazard Ratio (95% CI) p 

Protein expression high vs. low 
 

1.53(1.10-2.12) 0.011 1.23(0.90-1.68) 0.194 

Age at surgery (years) <0.001 1.06(1.03-1.09) <0.001 1.06(1.03-1.08) <0.001 

Tumor size <0.001 Not included 
 

Not included 
 

        < 2cm 
     

        ≥ 2-5cm 
     

        > 5cm 
     

Histology 0.306 Not included 
 

Not included 
 

        Ductal vs. non-ductal 
     

T stage <0.001 
    

        T1 vs. ≥T2 
 

1.46(0.88-2.40) 0.141 1.49(0.90-2.47) 0.123 

Grade <0.001 
    

        I 
 

Reference 
 

Reference 
 

        II 
 

1.69(0.52-5.49) 0.385 1.77(0.54-5.76) 0.345 

        III 
 

2.40(0.70-8.23) 0.163 2.95(0.87-9.99) 0.081 

Nodal status <0.001 
    

        N0 vs. ≥N1 
 

1.86(1.18-2.92) 0.007 1.85(1.17-2.92) 0.008 

Menopausal status 0.001 
    

        Pre-/Peri- vs. Post-Menopausal 
 

0.72(0.28-1.85) 0.489 0.80(0.31-2.05) 0.640 

Receptor status 
     

        ER- vs. ER+ <0.001 Not included 
 

Not included 
 

        PgR- vs. PgR+ <0.001 Not included 
 

Not included 
 

        HER2- vs. HER2+ 0.682 Not included 
 

Not included 
 

        HR- vs. HR+ <0.001 0.72(0.42-1.22) 0.217 0.63(0.37-1.06) 0.082 

Receptor defined subtypes <0.001 Not included 
 

Not included 
 

        Luminal A-like 
     

        Luminal B-like (HER2 positive) 
     

        Luminal B-like (HER2 negative) 
     

        HER2 positive (non-luminal-like)  
     

        TNBC 
 

        

CI, confidence interval; A p value < 0.05 is considered statistically significant 
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Table 6 - Univariate and Multivariate Cox regression analysis of recurrence-

free survival 

 
 

Univariate 
analysis 

SHMT2 ASCT2 

Characteristics 
Multivariate analysis Multivariate analysis 

p Hazard Ratio (95% CI) p Hazard Ratio (95% CI) p 

Protein expression high vs. low 
 

1.54(1.16-2.04) 0.003 1.31(1.01-1.71) 0.042 

Age at surgery (years) <0.001 1.04(1.02-1.07) <0.001 1.04(1.02-1.06) <0.001 

Tumor size <0.001 Not included 
 

Not included 
 

        < 2cm 
     

        ≥ 2-5cm 
     

        > 5cm 
     

Histology 0.110 Not included 
 

Not included 
 

        Ductal vs. non-ductal 
     

T stage <0.001 
    

        T1 vs. ≥T2 
 

1.77(1.15-2.74) 0.010 1.80(1.16-2.80) 0.009 

Grade <0.001 
    

        I 
 

Reference 
 

Reference 
 

        II 
 

1.79(0.65-4.98) 0.262 1.85(0.66-5.14) 0.240 

        III 
 

2.18(0.75-6.35) 0.154 2.64(0.92-7.59) 0.072 

Nodal status <0.001 
    

        N0 vs. ≥N1 
 

1.62(1.10-2.40) 0.015 1.59(1.07-2.35) 0.021 

Menopausal status 0.010 
    

        Pre-/Peri- vs. Post-Menopausal 
 

0.65(0.31-1.38) 0.263 0.73(0.35-1.54) 0.410 

Receptor status 
     

        ER- vs. ER+ <0.001 Not included 
 

Not included 
 

        PgR- vs. PgR+ <0.001 Not included 
 

Not included 
 

        HER2- vs. HER2+ 0.489 Not included 
 

Not included 
 

        HR- vs. HR+ <0.001 0.79(0.49-1.27) 0.334 0.69(0.43-1.10) 0.115 

Receptor defined subtypes <0.001 Not included 
 

Not included 
 

        Luminal A-like 
     

        Luminal B-like (HER2 positive) 
     

        Luminal B-like (HER2 negative) 
     

        HER2 positive (non-luminal-like) 
     

        TNBC 
 

        

CI, confidence interval; A p value < 0.05 is considered statistically significant 

 

The analyses of the association between SHMT2/ASCT2 protein expression levels and 

clinical characteristics of BC via multivariate Cox models was conducted to address 

the question whether SHMT2 and ASCT2 protein expression are independent 

prognosticators for OS and RFS. This revealed, that high SHMT2 protein expression 

is indeed an independent negative prognostic factor for OS (p = 0.011; Table 5) and 
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both, high SHMT2 and high ASCT2 protein expression levels are independent 

negative prognostic factors for RFS (SHMT2, p = 0.003; ASCT2, p = 0.042; Table 6) 

in BC patients. Kaplan–Meier survival estimates, based on dichotomized protein 

expression data, subsequently confirmed that BC patients with high SHMT2, as well 

as high ASCT2 protein expression presented a significantly unfavorable OS time 

(SHMT2, p = <0.001; ASCT2, p = 0.0165) and RFS time (SHMT2, p = <0.001; 

ASCT2, p = <0.001), (Figure 14). 

 

 

Figure 14 - Kaplan-Meier survival estimates and boxplot representation of key 

targets associated with survival. 

Kaplan-Meier plots of SHMT2 and ASCT2 for overall survival (OS), (A), and recurrence-free 

survival (RFS), (B). Statistical difference in outcome between high (n = 400) and low (n = 401) 

protein expression were compared by log-rank test. Boxplots represent the relative target 

protein expression per receptor defined subtype, Luminal A-like (n = 510), Luminal B-like 

HER2neg (n = 104), Luminal B-like HER2pos (n = 74), HER2pos (n = 36), TNBC (n = 77). 

FDR, false discovery rate; pval, p value. 

 

Additionally, I explored the distribution of SHMT2 and ASCT2 protein expression 

across BC subtypes. This revealed a higher protein expression of both targets in the 
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aggressive HER2 positive and the triple negative (TNBC) breast cancer subtype, as 

compared to the luminal subgroups (Figure 14). 

In collaboration with PD Dr. med. Jörg Buchmann of the Institute of Pathology, 

Hospital Martha-Maria (Halle(Saale), DE), the results from my screen were confirmed 

in clinical practice via SHMT2 and ASCT2 immunostaining of representative cases. 

As illustrated in Figure 15, the cases selected on the basis of the RPPA data are in line 

with the observed cellular target expression pattern of SHMT2 and ASCT2. Cases of 

high target protein expression in RPPA also represented a high cellular target protein 

expression in IHC and vice versa. 

 

 

Figure 15 - Representative immunoexpression of SHMT2 and ASCT2. 

Cases were selected on basis of RPPA protein expression results. The figure shows 

representative pictures of the highest or lowest 10% cases based on the target expression 

over all cases. SHMT2 immunoexpression is elevated in Case M571 and low in Case M1084. 

ASCT2 immunoexpression is elevated in Case M1199 and low in Case M907. The scale bar 

indicates 200 μm (20x). 
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Taken together, these results illustrate the prognostic value of profiling proteome data 

and highlight the importance of the proteomic level in biomarker research. All 

presented results are further discussed in Chapter 5. 
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4.2 Proteomic profiling of metabolic adaptations in hypoxic 

conditions 

 

4.2.1 Experimental rationale and generation of linear regression model 

In order to approach the proteomic profiling of metabolic changes under dynamic 

hypoxic conditions, I used 4 different breast cancer cell lines (MCF-7, SKBR3, MDA-

MB-231 and MDA-MB-468) for my perturbation experiments. All cell lines were 

treated individually under the same conditions. The cell lines were incubated in 

normoxic (21% O2), mild hypoxic (1.2% O2), strong hypoxic (0.2% O2) and MIMIC 

conditions (200µM CoCl2) in a time dependent manner. The protein was harvested 

after 0h, 6h, 18h and 24h of incubation and after a 2h re-oxygenation at 26h. To obtain 

quantitative expression data, the protein lysates were further processed via RPPA and 

protein array slides were probed with antibodies targeting 40 metabolism related 

proteins. Thereby, the selected set of protein targets reflects the full spectrum of 

metabolism related proteomic targets used in the breast cancer patient’s cohort and 

three additional proteins of interest. The full list of antibodies used during my projects 

is illustrated in Chapter 3, Section 3.1.5. After performing the raw data analysis and 

quality control, I reached out to investigate the data in more depth and collaborated 

with Christian Tönsing of the Institute of Physics at the University of Freiburg (DE). 

Together, we decided to create a linear regression model (LRM) of the data matrix in 

order to statistically define which target expression is altered under the given 

conditions. 

 

 

Figure 16 - Experimental workflow. 

Schematic presentation of the experimental workflow and analysis. 
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The preprocessed RPPA time course data with biological triplicates for each time point 

were analyzed by C. Tönsing individually for each of the target proteins and for each 

of the 12 combinations of cell lines and treatments. A linear regression model was used 

for the log2 signal intensities of the target protein time courses and cell line-treatment 

combination individually, to merge the replicates and asses the kind and strength of 

regulation. ANOVA was applied to each time course in order to discriminate between 

a constant time course signal at the basal expression level of the target protein and 

significantly regulated expression profiles (p < 0.05). The linear regression model 

further served to illustrate the data and for approaches to determine top-regulated 

targets. The experimental workflow is depicted in Figure 16. 

 

4.2.2 Heatmap representation of the dataset via a linear regression 

model 

In a first step, the linear regression model was used to visualize the whole data set. 

Therefore, target protein regulation profiles were assigned based on time point specific 

regulation strengths from the LRM. Only significantly regulated estimates with 

p[t{6,18,24}] < 0.05 compared to the basal expression level were used to identify 

either a up or down regulation. Time courses with one, two or three significantly up-

regulated time points were assigned to expression profiles ‘one up’, ‘two up’ and ‘all 

up’, respectively and likewise for down-regulated signals. Time courses with 

alternating sign, i.e. a significant down-regulation followed by a not significant 

regulation and further by a significant up-regulation were specified as ‘down-up’, 

while the opposite was termed as ‘up-down’. A double sign-change of significantly 

regulations, e.g. ‘up-down-up’ was not observed in the dataset. All other time courses 

with no significant regulation were assigned to ‘constant’ profiles. The resulting 

heatmap represents all target protein regulation profiles per cell line and condition 

(Figure 17). The corresponding color coding is displayed and explained in the 

corresponding legend. 
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Figure 17 - Heatmap visualization of protein time course profiles. 

The heatmap represents the condensed time course data of each target on the basis of the 

linear regression model results. Protein target expression direction, during treatment exposure 

is color coded and clarified in the figure legend on the right-hand side. 

 

As a result, the heatmap showed a quite diverse pattern. Nevertheless, the behavior of 

HIF-1α, displayed as upregulated in all hypoxic and mimic conditions and over all cell 

lines, confirmed the power of the LRM and its visualization. No obvious pattern of a 

whole metabolic pathway matching with a treatment condition could be observed. 

However, individual target regulation profiles (e.g. GLUT1) seemed to be heavily 

influenced in all hypoxic conditions and cell lines. Therefore, I decided to statistically 

approach the data set in order to elucidate individual top-regulated targets. 

 

4.2.3 Identification of top-regulated target proteins 

Given the complex picture of the heatmap visualization, two different statistical 

approaches were utilized to investigate the top-regulated target proteins. First, I 
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analyzed top-regulated targets via a ‘Cell line (Cl) score’ (Figure 18A). The Cl Score 

enables the identification of top-regulated target proteins in all cell lines and treatment 

combinations. For each treatment, the Cl Score indicates the number of target proteins, 

with expression time courses indicating for a significant regulation throughout all cell 

lines. A pANOVA of < 0.05 has to be fulfilled by a target protein expression time 

course of a cell line/treatment combination to be identified as significantly regulated. 

A Cl Score of 0 indicates the number of target time courses which are not significantly 

regulated in any cell line, whereas a Cl Score of 1 indicates the number of target time 

courses significantly regulated in 1 cell line, a Cl Score of 2 in 2 cell lines, a Cl Score 

of 3 in 3 cell lines and a Cl Score of 4 in all four cell lines. The full data matrix of 

Figure 18A can be found in the Appendix (Table S6). 

Next, C. Tönsing used a different second indicator for top-regulated target proteins, a 

regulation ranking combined by the rank product [139]. For this, target proteins were 

ranked by two measures to obtain the strength of the regulation for each combination 

of cell line and treatment individually. The first measure is the summed square of 

residuals (SSR) from the ANOVA, if pANOVA < 0.05 which is sensitive for sustained 

expression profiles. The second measure ranks the target proteins by the absolute value 

of the maximal time point specific regulation in the time course and thus takes account 

of peaked expression profiles. The two rankings are combined by the rank product for 

each cell line and treatment combination. The ‘rank by treatment’ contains rank 

product combinations in all cell lines, for each treatment individually. In a last step, 

treatment ranks were combined by the rank product yielding the ‘overall rank’. A low 

rank number thereby indicates a high ranked target, whereas a high rank number 

indicates a low ranked target (Figure 18B). 
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Figure 18 - Determination of top-regulated protein targets. 

Illustrated are the results from the Cell line (Cl) Score analysis (A) and the rank product 

analysis (B). Furthermore, the reaction of one of the top-targets GLUL is shown in (C). 

 

As presented in Figure 18A, the highest Cl Score was presented by 4 target time 

courses in the mild hypoxic condition (1.2% O2), 7 target time courses in the strong 

hypoxic condition (0.2% O2) and 7 targets in the MIMIC condition (200µM CoCl2). 

As highlighted in blue, it was striking that out of all targets, three target time courses 

(HIF1_alpha, GLUT1 and GLUL) were found to be significantly regulated in all 

treatment conditions and all four cell lines. This observation was further validated by 

the second approach, the rank product, were HIF1_alpha, GLUT1 and GLUL achieved 

the highest ‘Overall ranks’ together with LDHA. 

In order to provide an in-depth view on the top-targets during hypoxia exposure, the 

time course data of each target were extracted and depicted in Figure 19. 
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Figure 19 - LRM and time course data of top-regulated protein targets. 

Illustrated are the time course data of HIF1_alpha, GLUL, LDHA and GLUT1 per condition and 

cell line. Indicators for protein signals and LRM parameters are described in the legend. 
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As shown in Figure 19, the protein expression of the hypoxia-inducible factor 1 alpha 

is elevated under hypoxic conditions in all cell lines and conditions. This observation 

confirms the experimental design and analysis. Further, the protein expression profiles 

of GLUT1 and LDHA were found to be mostly elevated under hypoxic conditions, 

whereas GLUL protein expression levels were mostly down regulated. Since HIF-1α 

served as internal control and GLUT1 and LDHA are known to be effected by hypoxic 

conditions, which I will further discuss in Chapter 5, I decided to follow up on the 

novel connection of hypoxia and GLUL in breast cancer. The glutamate-ammonia 

ligase (GLUL) pathway is illustrated in Figure 18C. 

 

4.2.4 GLUL expression profile 

After elucidating GLUL as one of the top-regulated targets during hypoxia exposure, 

I next wanted to know how the expression profile of GLUL is represented in breast 

cancer patients. Therefore, I used The Cancer Genome Atlas (TCGA) data which was 

conducted on primary breast cancer tumor specimen with both RNA-sequencing data 

and clinical annotations. Normalized gene expression data from the cBioPortal website 

was obtained, log2 transformed and filtered for the genes of interest. Further, a one-

way analysis of variance (ANOVA), was conducted to differentiate between breast 

cancer subtypes. The gene expression profile of GLUL in different breast cancer 

subtypes is shown in Figure 20. 

 

Figure 20 - GLUL expression profile. 

Boxplots represent the log2 GLUL gene expression in comparison to other glutamine related 

targets (A) and across different breast cancer subtypes (B). p, p value.  
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Interestingly, GLUL mRNA expression was found to be the highest among all 

glutaminolysis related genes in the TCGA dataset (Figure 20A). Furthermore, GLUL 

gene expression was significantly different between the BC subtypes and higher in the 

luminal breast cancer subtype in comparison to the basal subtype (Figure 20B). 

As reported in Chapter 1, hypoxic conditions and the basal breast cancer subtype are 

associated with a poorer prognosis in comparison to well oxygenized tumors and the 

luminal subtype. 

 

4.2.5 GLUL survival association 

After observing decreased protein expression of GLUL under hypoxic conditions and 

lower gene expression in the basal subtype, I was interested to investigate the impact 

of GLUL expression on overall survival (OS) and recurrence-free survival (RFS). 

I performed Kaplan-Meier survival analysis in terms of OS and RFS outcome. This 

revealed a significant difference between high and low GLUL gene expression in both, 

OS (p = 0.0027, Figure 21A) and RFS (p = 0.0173, Figure 21B), as illustrated in the 

Kaplan-Meier curves. High GLUL expression showed the most favorable OS and RFS, 

whereas low GLUL expression represented the worst. 

Furthermore, the correlation of GLUL gene expression with the Tumor (T) stage was 

analyzed. As shown in Figure 21C, lower GLUL expression is significantly correlated 

with a higher T stage and vice versa. Moreover, GLUL mRNA expression in high and 

low HIF-1α expressing subgroups of breast cancer cases were analyzed. As shown in 

Figure 21D, GLUL expression is significantly elevated in the HIF-1α low patient 

subgroup whereas low GLUL expression is associated with the HIF-1α high 

expressing patient subgroup. 

In conclusion, after I generated dynamic time course data of 40 metabolic proteins 

under hypoxic and MIMIC conditions, C. Tönsing and I were able to provide an 

overview of significant changes in protein regulation profiles under the given 

conditions and further elucidated top-regulated targets. With a focus on the novel 

associations of the hypoxic driven GLUL expression changes, I elaborated on clinical 

correlations with GLUL. All results are further discussed in Chapter 5. 
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Figure 21 - Kaplan-Meier survival estimates of GLUL gene expression and 

boxplot representation of T stage and HIF1-alpha association. 

Kaplan-Meier plots of GLUL for overall survival (OS), (A), and recurrence-free survival (RFS), 

(B). Statistical difference in outcome between high and low gene expression were compared 

by log-rank test. Boxplots represent the target gene expression in association to T stage (C) 

and HIF1-alpha expression subgroups (D). p, p value. 
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Since breast tumors are heterogenous at the molecular level and in patient outcome, 

clinical management includes an individual tumor characterization, which leads to 

personalized treatment decisions. However, this is mostly based on the measurement 

of few parameters, i.e. gene/protein expression status of ER, PR, and HER2. So far, 

the metabolic state of tumors has not been widely studied and is insufficiently covered 

with current molecular biomarkers that are predictive for clinical outcome. Even 

though RNA does inform on phenotypic characteristics, genomic and transcriptomic 

screens of BC patient tumors have thus far proven unsuccessful to predict protein states 

[140], [141]. Therefore, complementary studies investigating the metabolic landscape 

of breast cancer at the proteomic level should be superior in identifying metabolism 

based biomarkers with clinical impact. 

 

5.1 Proteomic profiling of breast cancer metabolism identifies 

SHMT2 and ASCT2 as prognostic factors 

 

In the first part of my PhD project, I wanted to assess the relationship between protein 

profiles of major metabolic targets/pathways and their potential prognostic value in 

breast cancer patients. 

As a first result, cluster analysis of the generated dataset separated the metabolism 

associated proteins into a ‘diffuse’ and a ‘compact’ protein cluster, indicating different 

metabolic profiles. STRING visualization results of the protein distribution depicted a 

prominent role of glycolysis and lactate production in the ‘diffuse’ cluster. Also, 

SHMT2, primarily responsible for glycine synthesis from serine, was part of the 

‘diffuse’ cluster, whereas all proteins of the serine pathway (PHGDH, PSAT1, PSPH) 

were part of the ‘compact’ cluster. Interestingly, key enzymes of the TCA cycle, 

crucial for citrate production like FH and SDHA, were present in the ‘diffuse’ cluster, 

whereas IDH1 and IDH2, which mainly drive the TCA cycle towards α-ketoglutarate 

production were part of the ‘compact’ cluster. This observation was supported by the 

presence of PDH, STARD10 as well as FASN in the diffuse cluster and hints towards 

a distinct citrate production in order to fuel the lipid and fatty acid synthesis. Mullen 

et al. reported in 2011 this metabolic flexibility in cancer cells. Normally, cells 
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condense glutamine-derived oxaloacetate with glucose-derived acetyl-CoA to produce 

citrate, whereas cells with defective mitochondria reverse part of their citric acid cycle 

using NADPH dependent isocitrate dehydrogenases (IDHs) to convert a-ketoglutarate 

to isocitrate via reductive carboxylation. Therefore, glutamine can reverse citric acid 

cycle reactions, such that reductive carboxylation yields acetyl-CoA for lipid 

synthesis. Despite the association between defective mitochondria and oncogenesis, 

the authors highlight the central importance of mitochondria in cancer, even when 

theses do not generate ATP [142]. 

Notably, the glutamine transporters ASCT2 (SLC1A5) and SLC7A5, as well as the 

glutamine producing enzyme GLUL, were also part of the ‘diffuse’ cluster. Altogether, 

the protein composition of the ‘diffuse’ cluster points towards glucose consumption, 

glutamine addiction and glycine production and indicates a more active Warburg like 

characteristic in comparison to the ‘compact’ cluster [51]. 

Following up on the ‘diffuse’ protein cluster, subsequent clustering analysis identified 

three patient clusters, which are significantly associated with survival. These three 

patient clusters do not fully reflect the receptor defined subtypes of BC and may thus 

provide a different angle towards understanding breast cancer heterogeneity. 

Interestingly, further analysis showed, that all proteins that were found to be 

significantly correlated with survival were part of the ‘diffuse’ cluster. SHMT2, 

ASCT2, GAPDH, FH, CAD and PKM2 were univariately associated with RSF and 

SHMT2, as well as ASCT2 with OS. Consequently, an exploration of the biomarker 

potential of these proteins in multivariate cox analyses was conducted. 

Multivariate analysis identified SHMT2 and ASCT2 protein expression levels to be 

significantly associated with age, nodal status, and T Stage (RFS only). Moreover, 

high SHMT2 protein levels were significantly associated with poor RFS and OS. 

Furthermore, high protein expression of ASCT2 was significantly correlated with poor 

RFS. Patients of HER2 positive and HR-negative breast cancer demonstrated 

increased SHMT2 and ASCT2 levels compared to luminal-like patients. Notably, the 

significant correlation of ASCT2 and SHMT2 with nodal status, T stage as well as 

survival, indicates a connection between higher metabolic activity and associated 

protein expression in metastatic and further progressed tumors. These observations are 

in line with previous studies reporting that metabolic demands of cancer cells are 

related to their cell size, progression and protein synthesis rates [143]. 
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Glutamine metabolism is considered to be a therapeutic target, as some cancer cells 

exhibit high uptake of this non-essential amino acid [51]. Recent studies have 

demonstrated that the primary glutamine transporter, ASCT2, promotes tumor cell 

survival, growth and cell cycle progression in neuroblastoma, colorectal cancer, 

prostate cancer, clear-cell renal cell carcinoma and non-small cell lung cancer [144], 

[145], [146], [147], [148]. Consequently, ASCT2 has gained more attention during the 

last years as its ubiquitous tissue expression, along with its ability to transport crucial 

amino acids, indicates a central role in physiological processes including glutamine 

homeostasis, embryogenesis, retroviral infection and cancer development [149], [150], 

[151]. Glutamine is not only an important nutrient for cancer cell survival, but also a 

crucial mediator for immune cell functions. ASCT2 was shown to be involved in 

inflammatory T cell responses, which might exert key functions in tumor immunity 

[152]. ASCT2 regulates the cellular uptake and concentration of nutrients and several 

studies indicate that blocking glutamine uptake might be an attractive strategy for 

cancer therapy [153], [154]. The presented results showed that high protein levels of 

ASCT2 are correlated with unfavourable prognosis for breast cancer patients. Along 

these lines, blocking the glutamine uptake by utilizing ASCT2 as a potential 

therapeutic target and reducing its protein expression, could be a promising approach. 

In addition to glutamine, the serine and glycine metabolism is also crucial in cancer 

cell development. Serine and glycine are biosynthetically linked and, besides cancer 

growth, also affect the cellular antioxidative capacity, thus supporting tumor 

homeostasis. SHMT2 has been implicated as an essential factor in serine and glycine 

metabolism in several cancer cell types, including breast cancer [62]. SHMT2 

catalyzes the reversible reaction of serine and tetrahydrofolate to glycine and 5,10-

methylene tetrahydrofolate. Studies have shown that high levels of glycine are 

associated with poor prognosis in breast cancer, irrespective of the ER status [155]. I 

demonstrated that high protein levels of SHMT2 are correlated with poor outcome in 

breast cancer patients. Inhibition of glycine synthesis by reducing SHMT2 protein 

expression, could therefore, represent a new treatment strategy to employ SHMT2 as 

a potential therapeutic target. Notably, to date there are no SHMT2 and ASCT2 

inhibitors available for cancer therapy and to my best knowledge these are the first 

observations to report the prognostic value of SHMT2 and ASCT2 at the protein 

expression level in breast cancer patients.  



Chapter 5 

82 

  



Discussion 

83 

 

5.2 Hypoxic regulation of metabolism associated enzymes in 

breast cancer 

 

The criteria to be used in evaluating tumor metabolism are still not well established 

and universally applied. Furthermore, it is mostly unclear how metabolic 

characteristics are influenced by tumor microenvironmental factors like hypoxia and 

how this might influence tumor development. Therefore, it is necessary to obtain a 

better understanding of molecular mechanisms underlying the heterogeneity of breast 

cancer metabolism in different microenvironmental milieus. 

In the second part of my PhD project, I thus investigated the time dependent expression 

changes of metabolism related proteins under different hypoxic conditions. Therefore, 

I generated proteomic time course data using RPPA.  

In a first approach, the data was visualized using a unique heatmap method that showed 

an upregulation of HIF-1α in all hypoxic and mimic conditions and over all cell lines, 

confirming the experimental procedure and the LRM. Interestingly, the heatmap 

pattern revealed a very diverse picture of all protein expression time courses tested. I 

did not observe an obvious connection of any metabolic pathway matching a certain 

treatment condition. Rather, the response patterns hint towards cell line diversity as 

the most prominent feature, reflecting the heterogenous nature of metabolic activities. 

Different tumor cells seem to preferentially utilize particular catabolites. Experimental 

models in ovarian, prostate and breast carcinomas have also revealed a metabolic 

coupling of stromal and cancer cells leading to diverse metabolic profiles [156], [157]. 

Genomic and metabolic differences throughout all cell types might, therefore, also 

result in a different adaption to oxygen deprivation. These observations cloud be the 

reasoning for the diverse behavior across all cell lines. However, a minority of 

individual target regulation profiles seemed to be changed in all conditions and cell 

lines. Consequently, I next elucidated individual top-regulated targets. Two different 

approaches were used in order to confirm the results. Since, similar to the heatmap 

approach, no standard procedure was available to assess the data sufficiently, a Cell 

line (Cl) Score was generated. Scoring the target time courses identified HIF-1α, 

GLUT1 and GLUL as significantly regulated in all cell lines and treatment conditions. 
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Furthermore, besides a high rank of LDHA, also HIF-1α, GLUT1 and GLUL showed 

the highest overall ranks in the rank product approach. These observations not only 

highlight the importance of the given targets as significantly affected under hypoxic 

conditions, it further confirms the results and the robustness of the methods used. 

Further investigation explored all time courses of the top regulated targets individually 

and found the protein expression of HIF-1α to be elevated under all hypoxic conditions 

and in all cell lines. Additionally, the protein expression profiles of GLUT1 and LDHA 

were found to be mostly elevated under hypoxic conditions, whereas GLUL protein 

expression levels were mostly down regulated. 

HIF-1α stabilization in response to environmental factors like hypoxia contributes in 

many ways to a pro-growth glycolytic metabolic program, by synchronizing 

proliferation rates with O2 availability [158]. On the one hand, HIF-1α seems to be a 

perfect drug target for hypoxic tumors, but on the other hand, despite the promise of 

HIF-1 inhibitors as anticancer agents, preclinical and clinical development of many 

agents have been halted because of safety or toxicity concerns [71]. HIF-1α is known 

to be an important contributor to the Warburg effect by inducing the expression of 

genes encoding glycolytic enzymes and glucose transporters [159], [160]. Therefore, 

my results are in line with previous observations, as I could show that the glucose 

transporter GLUT1 is upregulated during HIF-1α stabilization. Furthermore, HIF-1α 

also directly regulates the expression of the enzyme lactate dehydrogenase A (LDHA) 

and the monocarboxylate transporter 4 (MCT4) cell surface transporter, which 

mediates the efflux of lactate from the cell [161]. Promotion of lactate production by 

HIF-1α is a phenomenon, that is also reflected in my data set [162]. GLUT1 and LDHA 

are among the top-regulated targets suggesting that HIF-1α-induced upregulation of 

GLUT1 and LDHA contribute to the effective glycolytic production of lactic acid, a 

feature that has been suggested to promote survival in hypoxic settings [163]. 

Conversion of pyruvate to lactate and its removal by lactate transporters allows cancer 

cells to regenerate NAD+ and maintain glycolytic flux in hypoxia [164]. These findings 

are consistent with prior studies reporting a substantial shift towards anaerobic 

glycolysis as the major metabolic feature of HIF-1α expressing cells. This indicates 

that glycolysis may be the preferred pathway used for energy production in hypoxic 

states. However, under conditions of unlimited nutrient resources, cells are also able 

to utilize a variety of metabolic processes, including OXPHOS to generate energy. 

Drugs that target glycolytic enzymes and transporters of glycolytic products, such as 
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GLUT1 and LDHA have been investigated in several preclinical studies and some, 

like the GLUT1 inhibitor Silibinin are been tested clinically [165], [166], [167]. 

However, no inhibitors of glycolysis have yet been approved as anticancer agents. 

As described above, GLUT1 and LDHA, two of the three top regulated metabolism 

related proteins that I identified in my perturbation experiments, have been broadly 

explored in several studies and thus serve as a benchmark for my results. However, 

these lack novelty for further exploration. Therefore, I focused on exploring the rather 

unknown connection of GLUL and hypoxia. 

Glutamate-ammonia ligase (GLUL), an enzyme which catalyzes the de novo synthesis 

of glutamine from glutamate and ammonia, was found to be significantly perturbed 

during hypoxia exposure in all cell lines. Glutamine, in principle a non-essential amino 

acid, belongs to a group of amino acids that are conditionally essential, particularly 

under catabolic stressed conditions in which glutamine consumption rises dramatically 

[168]. Glutamine is transported into cells through transporters, such as the ASCT2 

transporter, that I found to be significantly associated with survival in breast cancer 

patients and further discussed in depth in the previous section of this Chapter [169]. 

Glutamine can be used for biosynthesis or be exported back out of the cell by 

antiporters in exchange for other amino acids such as leucine [54]. Overall, studies 

with tracer experiments have determined that at least 50% of non-essential amino acids 

used in protein synthesis by cancer cells in vitro, can be directly derived from 

glutamine [170]. Although the crucial role of glutamine metabolism in cancer cell lines 

is well established, it is less clear what role glutamine plays in tumors, where cells can 

face shortages of nutrients and oxygen [171]. I found the glutamine producing enzyme 

GLUL to be down regulated after exposure to hypoxia, indicating a reduced need for 

glutamine under hypoxic conditions. Further, I explored the connections between 

GLUL expression and clinicopathological characteristics of patients, using The Cancer 

Genome Atlas (TCGA) dataset. GLUL mRNA expression was found to be highest 

among all glutaminolysis related genes in the TCGA dataset and significantly higher 

expressed in the luminal breast cancer subtypes in comparison to the basal subtype. 

Furthermore, Kaplan-Meier analysis revealed a significant association of GLUL gene 

expression with both, OS and RFS. The most favorable overall and recurrence-free 

survival was represented by high GLUL expression, whereas low GLUL expression 

correlated with poor outcome. A significant association of lower GLUL expression 

with a higher T stage and vice versa was in line with these observations. 
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GLUL promotes glutamine production which can be used for anabolic processes such 

as synthesis of nucleotides and proteins. These building blocks are crucial for 

proliferation and the growth of cancer cells. My data reflects the general notion for the 

need of high glutamine levels in order to sustain cellular processes, as GLUL was 

found highly expressed in breast cancer patients and the association of high GLUL 

expression and favorable patient survival underlines this aspect. 

In summary, combining all results, poor outcome was found for patients with high 

HIF-1α and low GLUL gene expression. GLUL mRNA expression levels were 

significantly elevated in the HIF-1α low patient subgroup, whereas low GLUL 

expression was associated with the HIF-1α high expressing patient subgroup. These 

results illustrate the association of survival and decreased GLUL expression under 

hypoxic conditions indicating a cellular metabolic switch from proliferation to 

“survival mode” and an inhibition of glutaminolysis during hypoxia. Cells undergo 

cell cycle arrest under conditions of severe hypoxia, but are capable of recovering if 

hypoxia is not prolonged [172]. Therefore, for future studies it would be highly 

interesting to explore GLUL and its association with hypoxic conditions in more depth 

and a possible role of GLUL as hypoxia marker in breast cancer patients. 

Taken together, the maintenance of O2 homeostasis is essential for the survival of most 

species. O2 deprivation triggers complex adaptive responses at cellular, tissue and 

organismal levels to meet the metabolic and bioenergetic demands [173]. Most 

research concerning HIFs and their interaction with the metabolome has mostly 

focused on glycolysis. Revealing the effects of hypoxia using a broad panel of 

metabolism associated proteins has showed metabolic pathways beyond glycolysis 

that are important in cancer adaptation processes.  
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5.3 Concluding remarks and future directions 

 

Cancer was recognized as a disease of altered metabolism nearly 100 years ago, but 

metabolic reprogramming has only recently been recognized as an essential hallmark 

of neoplasia. Mutations in metabolic enzymes can drive tumorigenesis, more often 

however cancer metabolism is transformed by altered abundance and activity of the 

metabolic enzymes [174]. While many of the underlying causes of human disease 

occur at genetic and epigenetic levels, drug response and disease pathophysiology are 

driven by cellular phenotypes that in turn are regulated at the translational protein 

level. 

During the recent years, reverse phase protein arrays (RPPA) have emerged as a 

powerful high-throughput approach for targeted proteomics [109], [121]. RPPA allows 

the quantification of protein expression profiles in large sample sets while requiring 

very low amounts of biological sample. Therefore, the RPPA platform was ideally 

suited for my analysis of clinical materials and biomarker discovery purposes [175], 

[176], [177]. 

With respect to the current focus on outcome-based therapy and precision medicine, 

the identification of novel therapeutic proteins and prognostic biomarkers is critical 

for future clinical patient stratification and drug discovery. 

In the present study, I applied RPPA-based functional proteomics to a large number of 

patient samples from a multicenter prospective cohort, to evaluate the relationship 

between metabolism-associated protein expression profiles and clinicopathological 

characteristics. Clustering results, as well as individual protein expression patterns 

were associated with clinical data. The results showed metabolism associated proteins 

linked to breast cancer progression and metabolic clusters of breast cancer, 

characterized by differences at the proteomic level. Particularly, proteins mapping to 

the ‘diffuse’ cluster, were found to be associated with poor prognosis. Moreover, the 

results highlight the importance of SHMT2 and ASCT2 protein expression as 

independent prognostic factors and potential prognostic biomarkers for breast cancer 

patients, as their high protein expression is associated with poor outcome. 
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The results confirm the reported heterogeneity of breast tumors at a functional 

proteomic level and dissect the relationship between metabolism related proteins, 

pathological features and patient survival. 

Although my project revealed the clinical significance of SHMT2 and ASCT2 in breast 

cancer, some limitations warrant further investigation. For instance, the functional 

roles of SHMT2 and ASCT2. Furthermore, an investigation of an independent cohort 

is needed to validate the findings. Since a long-term follow-up of the patient cohort is 

conducted, continuous monitoring of the prognostic power of the achieved results 

would be a suitable consideration. 

In the second part of my study, I demonstrated that breast cancer cell lines regulate 

their metabolic protein levels in heterogeneous ways during oxygen deprived 

conditions. My results showed a significant regulation of a minor amount of proteins 

in all cell lines and conditions tested, rather than a complete pathway response. Among 

the top-regulated protein targets were known effectors of HIF-1α, such as GLUT1 and 

LDHA. Also, the novel discovery of a significant regulation of GLUL in all cell lines 

and perturbation experiments was observed. Particularly, GLUL showed an inverse 

correlation of protein expression compared to HIF-1α and was further found to be 

associated with survival in breast cancer patients. 

Although first insights into the hypoxic response of metabolism related targets was 

revealed, further investigations are needed to validate the findings. A more 

comprehensive investigation of GLUL and its regulation e.g. in glutamine-deprived 

conditions might foster new insights. The behavior of GLUL overexpressing cells to 

hypoxic conditions could lead to a better understanding of the role of glutaminolysis 

in an oxygen deprived microenvironment. 

In general, revealing new markers of HIF metabolism could lead to a better 

understanding of the phenotype and may enable more successful diagnosis and 

prognosis of patients with hypoxic tumors. Screening tumor extracts for relevant 

hypoxic signatures could thus be a first step towards identifying appropriate 

stratification regimes. Therefore, exploring GLUL and its association with hypoxic 

conditions in future studies and to investigate a possible role of GLUL as a hypoxia 

marker in breast cancer patients, could be a promising approach. 
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Table S1 Relationship between clusters and clinical and pathological characteristics. 

Please refer to the supplemented CD-ROM due to length of the table. 

 

Table S2 Univariate Cox proportional hazard regression models of OS and RFS. 

Target HR lower 95% CI upper 95% CI P FDR 

SHMT2 1.927 1.480 2.51 1.097E-06 4.060E-05 

ASCT2 1.833 1.390 2.42 1.749E-05 0.000 

GAPDH 1.480 1.119 1.96 0.006 0.075 

SDHA 1.860 1.116 3.10 0.017 0.113 

PKM2 1.414 1.056 1.89 0.020 0.113 

FH 1.543 1.068 2.23 0.021 0.113 

GLS 0.649 0.449 0.94 0.021 0.113 

ASS1 1.342 1.022 1.76 0.035 0.160 

ACC 0.618 0.377 1.01 0.057 0.197 

CAD 1.689 0.977 2.92 0.060 0.197 

GOT1 1.456 0.983 2.16 0.061 0.197 

ARG2 1.519 0.968 2.38 0.069 0.197 

GLUT1 1.213 0.985 1.49 0.069 0.197 

LDHA 1.286 0.969 1.71 0.081 0.214 

PCK2 0.810 0.636 1.03 0.087 0.214 

PDH 1.567 0.918 2.67 0.100 0.231 

PCK1 0.645 0.374 1.11 0.115 0.251 

GLK 1.468 0.880 2.45 0.141 0.290 

PSPH 0.795 0.560 1.13 0.199 0.384 

IDH1 1.295 0.866 1.94 0.208 0.384 

LAT1 1.194 0.867 1.65 0.278 0.489 

LDHB 1.224 0.778 1.93 0.382 0.643 

STARD10 0.867 0.609 1.24 0.432 0.653 

ODC1 0.807 0.462 1.41 0.450 0.653 

PKM1 0.850 0.553 1.31 0.459 0.653 

SREBP1 1.132 0.815 1.57 0.459 0.653 

PSAT1 1.154 0.729 1.83 0.541 0.741 

NAGS 0.924 0.672 1.27 0.625 0.820 

FASN 0.961 0.812 1.14 0.643 0.820 

CPS1 1.059 0.809 1.39 0.676 0.834 

GPT2 1.077 0.696 1.67 0.739 0.882 

ASL 0.939 0.610 1.44 0.773 0.894 

IDH2 0.960 0.692 1.33 0.810 0.908 

SMS 0.968 0.651 1.44 0.873 0.950 

PHGDH 1.026 0.658 1.60 0.909 0.961 

Glud12 1.016 0.689 1.50 0.935 0.961 

GLUL 0.995 0.789 1.26 0.968 0.968 
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Table S3 Correlations between key targets expression and patients and tumor 

characteristics. 

Please refer to the supplemented CD-ROM due to length of the table. 

 

Table S4 Univariate and multivariate Cox regression analyses of OS and RFS. 

Please refer to the supplemented CD-ROM due to length of the table. 

 

Table S5 RPPA data expression matrix with matched clinical data. 

Please refer to the supplemented CD-ROM due to length of the table. 

 

Table S6 Cl Score data matrix. 

Please refer to the supplemented CD-ROM due to length of the table. 
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List of Abbreviations 

 

ACC Acetyl-CoA Carboxylase Alpha 

AKT Protein kinase B 

ANOVA Analysis of variance 

ARG2 Arginase 2 

ARNT Aryl Hydrocarbon Receptor Nuclear Translocator 

ASCT2 Solute Carrier Family 1 Member 5 

ASL Argininosuccinate Lyase 

ASS1 Argininosuccinate Synthase 1 

AT Austria 

ATCC American Type Culture Collection 

ATP Adenosine triphosphate 

BC Breast cancer 

BRAF B-Raf Proto-Oncogene 

CAD Carbamoyl-Phosphate Synthetase 2 

CH Switzerland  

CI Confidence interval 

Cl Score Cell line Score 

CPS1 Carbamoyl-Phosphate Synthase 1 

DCA Dichloroacetate 

DE Germany 

DKFZ Deutsches Krebsforschungszentrum 

DNA  Deoxyribonucleic acid 

ELISA Enzyme-linked immunosorbent assay 

EPO Erythropoietin 

ER Estrogen receptor 

FASN Fatty Acid Synthase 

FDG-PET 2-(18F)-fluoro-2-deoxyD-glucose positron emission tomography 

FDR False-discovery rate 

FH Fumarate Hydratase 

G1 Gap 1 

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 

GBM Glioblastoma multiforme 
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GLK Glucokinase 

GLS Glutaminase 

GLUD Glutamate Dehydrogenase 

GLUL Glutamate-Ammonia Ligase 

GLUT Solute Carrier Family 2 Member 

GOT1 Glutamic-Oxaloacetic Transaminase 1 

GPT2 Alanine Aminotransferase 2 

GSH Glutathione 

HER2 Human epidermal growth factor receptor 2 

HIF Hypoxia Inducible Factor 

HR Hazard ratio 

HR Hormone receptor 

HRE Hypoxia response element 

IHC Immunohistochemistry 

IDH Isocitrate Dehydrogenase 

IgG Immunoglobulin G  

LAT1 Solute Carrier Family 7 Member 5 

LDHA Lactate Dehydrogenase A 

LDHB Lactate Dehydrogenase B 

LRM Linear regression model 

MCT4 Monocarboxylate transporter 4 

METABRIC Molecular Taxonomy of Breast cancer International Consortium 

MRM Multiple reaction monitoring 

mTORC1 Mammalian target of rapamycin complex 1 

N Node 

Na Sodium 

NADH Nicotinamide adenine dinucleotide 

NAGS N-Acetylglutamate Synthase 

OAA Oxaloacetic acid 

ODC1 Ornithine Decarboxylase 1 

OS Overall survival 

OXPHOS Oxidative phosphorylation  

p53 Tumor Protein P53 

PAM Prediction Analysis of Microarray 

PCK Phosphoenolpyruvate Carboxykinase 
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PD-1 Programmed cell death protein 1 

PDH Pyruvate Dehydrogenase  

PDK Pyruvate dehydrogenase kinase 

pH Potential of hydrogen 

PHD Prolyl hydroxylase 

PHGDH Phosphoglycerate Dehydrogenase 

PI3K Phosphatidylinositol-4,5-Bisphosphate 3-Kinase  

PKM Pyruvate Kinase, Muscle 

pO2 Partial pressure 

PR Progesterone receptor 

PSAT1 Phosphoserine Aminotransferase 1 

PSPH Phosphoserine Phosphatase 

PVDF Polyvinylidene difluoride 

RFS Recurrence-free survival 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RPPA Reverse Phase Protein Array 

RT Room temperature 

SD Standard deviation 

SDHA Succinate Dehydrogenase Complex 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SHMT2 Serine Hydroxymethyltransferase 2 

SLC14A1 Urea Transporter 1  

SMS Spermine Synthase 

SREBP1 Sterol Regulatory Element Binding Transcription Factor 1 

SSR Summed square of residuals 

STARD10 StAR Related Lipid Transfer Domain Containing 10 

STEEP standardized definitions for efficacy end points 

STRING Search Tool for the Retrieval of Interacting Genes/Proteins 

T Tumor 

TAC Thesis advisory committee 

TCA Tricarboxylic acid cycle 

TCGA The Cancer Genome Atlas 

TNBC Triple negative 

TNM Tumor, Node, Metastasis 
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TW Taiwan 

UICC International Union Against Cancer 

UK United Kingdom 

US United states of America 

VEGFA Vascular endothelial growth factor A 

VHL Von Hippel-Lindau 
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