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Zusammenfassung

Das Schatzen von Bewegung und raumlicher Struktur aus Bildfol-
gen sind grundlegende Probleme in der Bildverarbeitung. Diese Prob-
lemstellungen sind noch aktuell, obwohl die ersten Methoden bereits
vor mehreren Jahrzehnten vercffentlicht wurden. Wir prasentieren
neue Verfahren zur Bewegungs- und Strukturschatzung fiir das au-
tonome Fahren. KEin autonomes Auto braucht genaue Kenntnis iiber
seine Umgebung, da eine Fehleinschatzung gravierende Konsequenzen
haben kann. Speziell behandeln wir monokulare Verfahren, bei denen
nur eine Kamera auf dem Fahrzeug verfiigbar ist.

Bildfolgen aus dem Straflenverkehr sind fiir das Schatzen von Be-
wegung besonders herausfordernd. Durch die hohe Geschwindigkeit
ist die Bewegung sehr grof3, die Lichtverhaltnisse sind nicht stabil und
es kann Verfalschungen geben durch Reflektionen und wetterbedingte
Storungen. Wir stellen neue diskrete Verfahren zur Berechnung des
optischen Flusses vor, welche probabilistische graphische Modelle fiir
den optischen Fluss definieren.

In dem ersten Ansatz wahlen wir einige Stellen im Referenzbild aus,
und vergleichen diese mit dem zweiten Bild. Die besten Korresponden-
zen, welche auch zu einer monokularen Bewegung passen, werden als
Kandidaten fiir ein graphisches Modell ausgewahlt. In einem weit-
eren Verfahren, vergleichen wir alle Stellen im Referenzbild, 16sen das
graphische Modell jedoch nicht direkt, sondern approximieren es mit
einer Sequenz von kleineren Modellen.

Da wir eine monokulare Bildsequenz haben, miissen neben der
Szene auch die Kamerapositionen rekonstruiert werden. Bedingt durch
die projektive Geometrie gibt es blinde Flecken auf den Bildern und
Mehrdeutigkeiten beziiglich der Skalierung, welche es bei einem System
mit mehreren Kameras nicht gibt.

Wir stellen zwei Verfahren fiir die Strukturschatzung vor. Das er-
ste Verfahren bestimmt den optimalen Weg einer Kamera beziiglich
einer Energiefunktion aus optischem Fluss und Tiefenschatzungen. Das
zweite Verfahren schatzt die Bewegung der Kamera und planare Szenen-
beschreibung aus einem einzigen Flussfeld.

Wir evaluieren die Verfahren auf verschiedenen realen und kiinstli-
chen Daten. Fiir die Evaluation der planaren Rekonstruktionen haben
wir einen eigenen Datensatz erstellt, welcher Tiefen- und Ebeneninfor-
mationen enthélt.






Abstract

Motion and structure estimation are elementary problems of com-
puter vision. These are active areas of research, even though the first
methods were proposed several decades ago. We develop new ap-
proaches for motion and structure estimation for autonomous driving.
An autonomous vehicle requires an accurate model of its environment,
wrong decisions made by an autonomous car can have severe conse-
quences. We assume the monocular setup, where only a single camera
is mounted on the car.

Outdoor traffic sequences are challenging for optical flow estima-
tion. The high speed of the car causes large displacements in the optical
flow field, the lighting conditions are unstable and there can be strong
distortions due to reflections and difficult weather conditions. We pro-
pose new discrete methods, which determine optical flow as optimal
configuration of probabilistic graphical models.

The first approach selects sparse locations in the reference frame,
and matches them across the second image. The best correspondences,
which match constraints from a multiple view configuration, are con-
sidered motion vectors in a graphical model. In a second approach,
we solve for dense optical flow by approximating the original infeasible
graphical model with a sequence of reduced models.

The monocular configuration poses challenges to the estimation of
scene structure, camera positions and scene parameters need to be
estimated jointly. The geometry of multiple views creates blind spots
in the images, and adds a scale ambiguity, which both to not exist in
a setup with multiple cameras.

We propose two methods for structure estimation. The first ap-
proach determines the energy optimal camera track, given optical flow
and depth observations. A further approach estimates camera motion
and a piecewise planar scene description jointly from a single optical
flow field. The scene description contains depth and plane normal in-
formation.

We evaluate our approaches for motion and structure estimation on
different real world and rendered datasets. In addition to evaluation
on publicly available evaluation data, we evaluate on a new rendered
dataset with ground truth plane normals.
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CHAPTER 1

Introduction

1.1. Motivation

Autonomous vehicles are about to revolutionize individual mobility
in the near future. Prototypes are driving autonomously already, these
are equipped with multiple cameras and other sensors such as GPS,
laser, radar and ultrasound sensors. Detection of drivable area, traf-
fic signs, traffic lights, other cars and pedestrians is vitally important
for autonomous driving, which is why many redundant sensors are ap-
plied. Cameras have the advantage that they are passive, they record
light from the environment without any active interaction, while radar
and ultrasonic sensors emit their own signal and have difficulties with
interference and other noise.

A configuration with multiple cameras compared to a single camera
provides more information, but needs to be calibrated. If the calibra-
tion breaks down due to deformation, or outage of individual cameras,
the whole system does not operate correctly anymore. Additionally,
any part inside the car comes at a cost, consumes power and space.
Therefore, we investigate the monocular setup, which consists of a sin-
gle forward facing camera.

Human drivers proof that car driving based on visual cues is possi-
ble, but computer algorithms still are much worse in image abstraction
than humans. Motion and structure estimation are intuitive and in-
stantaneous operations for us, whereas these have been active computer
vision research areas in the last decades. Algorithms, however, have
the advantage that they can make faster and more accurate decisions
than humans, and are not influenced by distraction. We believe that
autonomous cars will outperform humans as drivers in the future, and
reduce the number of car accidents drastically while increasing comfort
for the passengers at the same time.

This work consist of two major parts, motion estimation under re-
alistic outdoor conditions and structure from motion estimation. Out-
door traffic sequences are challenging for motion estimation, due to
difficult lighting conditions and fast vehicle motion. The large range of
depth in an outdoor environment induces a non linearly curved motion
field, even if the underlying scene is perfectly flat and simple. Tradi-
tional motion estimation methods struggle with this type of motion,
which leads to errors in scene reconstruction.
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The monocular camera setup provides less information than a cal-
ibrated stereoscopic or multiple view camera systems. We investigate
the limits, and propose new methods for monocular structure estima-
tion.

1.2. Related Work

There is a large collection of literature about motion and structure
estimation, which are fundamental problems of computer vision. Point
correspondences provide an abstraction of raw images, which is required
by many computer vision systems. Motion can be defined differently,
depending on the task it is designed to solve. The tracking problem
consists of the motion of a small set of interest points (or keypoints)
over several frames. If only two frames are used, tracking is usually
referred to as feature matching, while pixel wise dense correspondence
between two frames is denoted optical flow.

Similarly, the formulation of structure estimation is application de-
pendent. Early algorithms for monocular structure estimation operate
on a small set of keypoints, and aim at accurate camera localization.
Later methods introduces dense depth maps for each view, yielding
three dimensional models of the environment.

1.2.1. Feature Matching and Optical Flow. While both fea-
ture matching and optical flow relate to image correspondence, they are
addressed with very different means. Feature matching is performed
only on few locations in the image, therefore rich features can be com-
puted and matched efficiently. One of the most widely used feature
descriptor is the scale invariant feature transform (SIFT) [55], which
computes image keypoints consisting of location, scale and orientation,
as well as a 128 dimensional feature descriptor. Figure [L.1]shows SIFT
keypoints for two example images from a traffic sequence. An approxi-
mate version of SIFT is given by the speeded-up robust features (SURF')
[8]. SIFT and SURF have motivated further image descriptors, for ex-
ample binary robust independent elementary features (BRIEF) [19] and
oriented fast and rotated brief (ORB) [75]. Histogram of oriented gra-
dients (HOG) features [22] were originally proposed for object recog-
nition, but have been applied in the context of point correspondence
as well.

In contrast to sparse feature matching, dense optical flow cannot
rely on distinct keypoints with precomputed scale and orientation, but
has to use a simpler matching criterion. The first optical low methods
were proposed by Horn and Schunck [40] and Lucas and Kanade [56],
and both are based on the brightness constancy assumption (BCA),
assuming that image intensity does not change between two frames
along the flow field. This condition alone does not define a unique
optical flow field, since it only provides one constraint on two variables.
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F1GURE 1.1. Detected SIFT keypoints on two consecutive frames
from the KITTI dataset. The keypoints provide orientation and
scale, which allows the feature extractor to compensate distortions
which are due to rotation and scaling. The SIFT keypoint detector
is very robust in practice, and can compensate strong perspective
distortions. The approach in [2] aligns random tourist pictures using
SIFT and computes a three dimensional model of the sights, which
shows the robustness of the SIF'T matching algorithm. Since the
number of keypoints is small, compared to the number of pixels in
the image, rich features can be extracted and matched in real time
on a single core CPU, or on a mobile device.

Therefore, Horn and Schunck add a quadratic regularity term, which
yields an energy function with unique minimum. Lucas and Kanade
impose implicit regularity through the assumption, that neighboring
pixels will have similar optical flow, which does not define a dense flow
field in general.

In practical outdoor conditions, the BCA does not hold in many
cases due to the complex lighting conditions in outdoor environments
and fast movement of the camera. Additionally, the quadratic regu-
larity term does not preserve sharp motion discontinuities and tends
to oversmooth the flow field. The original formulation of Horn and
Schunck has been basis for many later approaches, where data and reg-
ularity terms have been replaced by more robust energy terms [73}, [90]
or data terms based on feature descriptors such as SIFT and HOG
[22, [16], [52]. The authors of [25] estimate illumination changes explic-
itly based on training data.

A Further limitation of the BCA is, that it can only be enforced if
the optical flow field is very small, ideally on a subpixel level, which
is called the aperture problem [10]. Therefore, an image pyramid with
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FI1GURE 1.2. Pyramid setup for dense optical flow computation.
The optical flow field is scaled up and refined when proceeding to
the next layer in the image pyramid. The difference between the
reference and the warped frame is used for the data energy, and
there usually is a regularity energy of the optical flow field as well.
The red parts of the warped frame are undefined, because the flow
vectors point outside of the second image, these regions are either
ignored, or extrapolated during optical flow estimation. Due to the
hierarchical nature of the approach, objects may be lost on a small
scale, and cannot be recovered at a later stage.

hierarchical reﬁnement of the estimated optical flow field is required, as
depicted in Figure|l.2, There is no guarantee that the optical flow field
minimizes the respectlve energy on full image scale. Some methods
improve the initialization by patch matching [93) 6] and by additional
information, such as edge detection [74].

Several optical flow methods have been proposed, which avoid the
image pyramid by modeling optical flow as discrete optimization prob-
lem, where the labels are given by displacement vectors in each pixel.
The main drawback of discrete optical flow lies in the large label space,
depending on the maximum flow vector norm there may be thousands
of displacement candidates, combined with the large number of pix-
els in the image, we get an intractable graphical model. The Dis-
creteFlow approach by Menze et al. [60] reduces the number of dis-
placement candidates using patch matching by two to three orders of
magnitude, which turns the discrete model into tractable size. Other
methods extend the optical flow problem with occlusion setection [5), 3]
or segmentation of the flow field into layers with independent motion
[79, [78, 84, [85].

Even though continuous methods using the heuristic image pyra-
mid do not guarantee global optimality, they perform very well in prac-
tice. However, these methods have been optimized over several decades,
while discrete optical flow methods are relatively new. With increas-
ing computational resources, and improvements in discrete inference
methods, we see potential in discrete optical flow methods, and focus
on them.
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1.2.2. Structure Estimation. Monocular structure estimation,
in particular simultaneous localization and mapping (SLAM) consist
of estimation of camera poses and three dimensional scene parameters,
which are determined simultaneously. Several approaches to monocular
structure computation have been presented, which address the task
with different techniques and scene representations.

The parallel tracking and mapping (PTAM) method [43] tracks a
set of keypoints over several frames, and computes the camera location
as well as point dpeth values for each view. In the Dense Tracking
and Mapping (DTAM) approach [67], camera locations are computed
first, followed by a dense depth map estimation and camera location
refinement for each frame. While PTAM and DTAM are primarily de-
signed for reconstruction of small objects in a confined space, Large
Scale Direct Monocular SLAM (LSD-SLAM) [28] performs localiza-
tion and mapping in a large scale outdoor environment. Loop closure
ensures accurate alignment of the point cloud, if the same location is
visited repeatedly.

The authors of [46] use a voxel representation in a sparse octree
datastructure, allowing them to represent large outdoor environments.
They combine their approach with a semantic assignment of the scene
into road, car, building, pedestrian and similar classes. Recent ap-
proaches apply convolutional neural networks (CNN’s) for monocular
scene reconstruction. The CNN-SLAM approach [87] integrates depth
predictions from a single view into a SLAM architecture, jointly with
applying a CNN for semantic labeling. Similarly, the authors of [27]
estimate depth and plane normal information from a single view using
a pre-trained CNN.

A stereo setup with two calibrated cameras provides more infor-
mation than a single camera system. In the monocular case depth
information needs to be accumulated over time, while stereo matching
corresponds to direct depth observation. The approach presented in
[68] fits stizels to the estimated depth map. Stixels are vertical seg-
ments, which cover the entire vertical span of an object, they reflect the
assumption that objects in a traffic scene most likely are positioned on
the ground. Similarly, [53] assigns the classes sky, building, vehicle or
pedestrian and street from top to bottom in fixed order for each pixel
column of the reference image. The approach in [47] performs stereo
matching and semantic labeling jointly with a graphical model.

Related to stereo estimation is the problem of scene flow estima-
tion, where both camera and scene movement are reconstructed from a
sequence of stereo image pairs. In a static scene, the scene movement
is zero, or inverse to the camera movement, depending on the reference
coordinate system. In scenes with dynamic objects, however, scene
flow defines the motion of each object in the scene. The approach by
Vogel et al. [91] estimates rigid motion and plane parameters on image
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superpixels. Menze et al. [59] compute a segmentation of dynamic ob-
jects. Cars are recognized by comparison with detailed computer aided
design (CAD) models.

1.3. Contribution

We present new approaches to discrete optical flow estimation and
structure computation from monocular video. Both tasks are addressed
with variational methods, we define probabilistic graphical models for
discrete optical flow, and apply optimal control and continuous energy
minimization to the structure computation task.

Our proposed discrete optical flow approaches are based on exhaus-
tive matching in a search window, which yields very large, intractable
label spaces. In a sparse approach, we only match distinct regions
in the reference frame, and keep very few displacement candidates for
consideration in the graphical model. This strategy reduces the size
of the graphical model, but it also removes valuable information from
the system. Therefore, we present a dense approach, which reduces
the large dense model by clustering of flow vectors, and applying a
reduction technique based on probabilistic divergence. The reduction
procedure is iterated, until a flow field is defined.

For the task of structure computation, we propose two approaches
with different objectives. We present a new minimum energy filter,
which computes the energy optimal trajectory of the camera from op-
tical flow and depth observations. Additionally, we present an energy
minimization framework, which computes camera motion and a scene
description using planar segments from two frames only. In order to
evaluate the piecewise planar scene description, we generated a dataset
with ground truth normal information available.

1.4. Organization

In chapter [2], we present the mathematical principles behind opti-
mization. Starting with an introduction to convex analysis, we pro-
ceed to continuous optimization algorithms for convex functions. A
brief introduction to optimal control concludes the chapter. Chapter
on mathematical models introduces probabilistic graphical models and
manifolds. We discuss different approaches to inference on graphical
models, and demonstrate how discrete inference relates to convex op-
timization. We define manifolds, tangent spaces and optimization on
functions, which are defined on manifolds.

Chapter [4] explains the concepts of computer vision, that we need
for our algorithms. We introduce epipolar geometry, which explains
the geometry of point correspondences between multiple views of the
same scene, and how point correspondences are used for structure com-
putation.
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We explain variational optical flow estimation, in particular dis-
crete optical flow in chapter [5] Discrete optical flow methods mainly
struggle with the large label space of optical flow models. We present
related methods, and propose new strategies for reducing the models
to a tractable size.

In chapter [6] we present filtering techniques for monocular scene
reconstruction, and compare the advantages of filtering to batch ap-
proaches. We present our minimum energy filter framework, and the
two frame scene estimation approach. Chapter [7| concludes the thesis.






CHAPTER 2

Mathematical Optimization

Physical processes obey the principle of minimum potential energy.
Similarly, mathematical problems can be expressed as energy mini-
mization or variational problems in many cases. Depending on the
formulation of the objective function, different techniques need to be
applied, of which we present a brief overview in this chapter.

A major property of an objective function lies in convexity. Convex
optimization problems are convenient from the viewpoint of optimiza-
tion, since there is no risk of converging to a local instead of a global
minimum. From duality theory, we get optimality bounds on the cur-
rent state. There are many optimization methods available for convex
problems, which can incorporate constraints and do not require the
energy to be continuous or differentiable. However, many practical
optimization tasks are non convex. Those can be relaxed to a con-
vex problem, or approximated by a sequence of convex optimization
problems.

Optimal control describes the scenario, where we cannot influence
the state directly, but only through control variables which satisfy a
system of differential equations.

We start with an introduction to convex analysis in section [2.1]
in particular linear programming, followed by a survey of optimiza-
tion algorithms suitable for convex minimization in section We
distinguish continuous optimization techniques ad splitting methods,
which do not require smoothness of the objective function. In section
[2.3] we present Pontryagin’s maximum principle, defining optimality
conditions of the control variables in optimal control problems.

2.1. Convex Analysis

We will briefly summarize the key concepts of convex analysis, that
provide the basis for optimization of convex functions. Convex func-
tions generally provide convergence to a global optimum, while for non
convex functions convergence can only be achieved to a local optimum,
if convergence can be achieved at all.

Before we define convex functions, we define convexity for sets.

DEFINITION 2.1.1 (convex set). A set C' € R" is convex, if the line
connecting any two points in C'is fully contained in C' as well,

(I-Nzx+IyeC, Ve,yeC, VAXe]0,1].
9
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EXAMPLE 2.1.1. Basic convex sets.

halfspaces: A hyperplane divides R" into two halfspaces
Hi, ={z €R" : (p.2)>0)
Hyo={z€R" : {pz) <a)

polyhedral set: The intersection of finitely many halfspaces is
called polyhedral set. The halfspace equations can be written
in a matrix A and vector b,

P={zxeR" : Az <b}

Bounded polyhedral sets are called polytopes. Note that an
equality constraint can be expressed as the intersection of two
inequality constraints.

convex hull: Given a set of points {z; € R"}, the set of all
linear combinations forms a convex set,

d d
=1 i=1

probability simplex: The (n— 1 dimensional) probability sim-
plex represents the set of all discrete probability distributions
in R”,
A, ={xeR" : >0, (L,z)=1}.
convex cones: A set K € R" is called a convex cone, if
MeK, MNecR', VrxeK, and K is convex.
The polar cone K* of cone K is given by
K'={yeR" : (y,x) <0, VxeK}. (2.1)
The normal cone N¢(z) to a convex set C is defined as
N z)={veR" : (v,y—2z)<0, VyeC}.

The normal cone represents all hyperplanes intersecting with
C' in point z, but no other point in C'. The polar cone can be
expressed as normal cone of K at zero, K* = N%(0).

DEFINITION 2.1.2 (convex function). A function f : R® — R is
convex, if and only if Vz,y € R”

F(T=Nz+Ay) < (1 =) f(2) +Af(y), vYAel0,1].

There is a direct connection between convex sets and convex func-
tions, a function f : R™ — R is convex, if and only if its epigraph

epi f ={(z,a) e R" xR : f(x) < a}

is a convex set. Level sets of convex functions are convex sets as well,

levy, f={z e R": f(z) < a}.
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The directional derivative of function f : R™ — R is defined as

D)) = iy H M) = 1(0)

The gradient V f(z) is given by
Df(x)v] = (Vf(z),v), VYveR"

For any convex and differentiable function f, the affine approximation
around z( provides a lower bound of f,

f(@o) +(Vf(x0), 2 — m0) < f(). (2.2)

If f is convex, the lower bound is valid on the entire domain, while in
the non convex case it holds only in a small neighborhood of z.

Equation ([2.2) motivates the definition of the subdifferential for non
differentiable functions

Of(xo) ={p € R" : (p,v —x0) < f(x) — f(w0)} . (2.3)

the elements of the subdifferential are called subgradients. Subgradients
can be interpreted as slopes of affine functions supporting the original

function f. If f is differentiable at zg, then 0f(zq) = {V f(z0)}.
THEOREM 2.1.1 (Fermat’s rule). A conver function f is minimized
at z, if and only if
0 € of(z).

PROOF. From the definition of the subgradient in eq. (2.3)), we see
that 0 € 0f(zo) if and only if f(zo) < f(x), Vo € R™ O

2.1.1. Duality. A convex function can be described as a set of
points, or as supremum of a set of hyperplanes. This dual perspective
on the same function has many applications in mathematical optimiza-
tion. The Fenchel conjugate of function f : R™ — R is given by

R =R f*(p) = sup{(p,x) — f()}.

z€eR™

The biconjugate of f is given by
[ (x) = (f)(z) = sup {{p,z) — f*(p)}-

peER”™

The dual function f* is always convex, hence f** is convex as well. f**
is the tightest convex approximation of f.

LEMMA 2.1.2 (Fenchel’s inequality). From the definition of the con-
jugate function, we see

f(p) + f(z) > (p, x).
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FIGURE 2.1. The dual function f*(p) represents the optimal (neg-
ative) shift of hyperplane (p,z), so that the epigraph of f is sup-
ported. Any convex epigraph can be described as infinite set of
points, or as infinite intersection of hyperplanes.

Furthermore
[ () < [fla),
with equality if and only if f is convex. Hence, there is a one to one
correspondence between f and its dual f* for convex functions, which
is called the Legendre-Fenchel Transform.

The duality between points and bounding planes can be illustrated
by looking at the dual of the indicator function on a convex set C' C R",

5C($)={O reC

oo otherwise
The dual is given by

oc(p) = sup {(p,x) — ()} = igg(p, z) =: oc(p),

which is the support function. oc(p) represents the bounding hyper-
plane in direction of p,

Cc{zeR" | (px) <ocp)}
The dual of the support function is again the indicator function d¢(p),

o5 (p) = sup {(p,z) — oc(x)} = {0 peC

ZER™ oo otherwise

If C = K is a cone, recalling the definition of the polar cone ({2.1)), we
observe that the support function on the polar cone K* is identical to
the indicator function on K 0x(z),

0 zekK
o~ (x) = sup (y,z) = ]
ye K oo otherwise
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Vector norms can be expressed as support functions, i.e. the 1-norm
can be expressed as

2]l = o110 ().
Hence the dual is given by
117 (p) = 01,22 ()

2.1.2. Lagrangian Multipliers. Many function we want to min-
imize in practice are of the form

E(x) = f(x) + 9(G(x)), (2.4)

where f(z) : R® — R may represent the actual model, and g : R™ — R,
G : R™ — R™ can enforce constraints or assumptions on regularity.
We perturb eq. (2.4) with auxiliary variables u,

¢(z,u) = f(z) + g(G(z) +u),
and introduce
v(u) = irxlf o(z,u).

Now we form the dual

v'(p) = sup {p,u) — mf f(z) +g(G(z) +u)

B uE]RST}ngeIRn —f(@) + (p,u) — 9(G(x) +u)
=~ inf f(z) + (p.G()) — g"(p)

Forming the biconjugate yields

V) = s o) — )

= sg%%(p, w) + nf f(z) + (p,G(z)) — g"(p)

At u =0, we have

v (0) = sup inf f(z)+ (p,G(x)) — g*(p)

peRm TeR™

From the original objective and the biconjugate, we get the follow-
ing system of primal and dual objectives,

(P)  inf sup f(x) + (p,G(z)) — g"(p)

(D) sup inf f(x)+ (p,G(x)) —g"(p)

peRm TeR”™

(2.5)

The function
L(z,p) = f(z) + (p. G(2))
is called the Lagrangian with multiplier p. In many practical cases,

g*(p) will be an indicator function, and can be transformed into con-
straints on p.
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2.1.3. Optimality Conditions. We can obtain verified global
optimality from duality theory, since the duality gap between the pri-
mal and the dual energies vanishes only at the global optimal solution.
Subgradients of primal and dual conjugate functions can be related to
each other.

THEOREM 2.1.3 (Inversion Rule for Subgradients). Let f : R* — R
be convex, then

pedf(z) <« (pz)=f(@)+ () (2.6)
Furthermore, if strong duality holds
pedf(z) <« ze€df(p). (2.7)
PRrROOF. In order to show , we rearrange eq.
pedf(x) < f(z)>f(@)+ pP,x—1z), VreR"
& flz)=pz) =2 f(2) - (p5), VreR"

We may take the infimum with respect to x, remembering that equality
can be achieved at x = 7,

& =0 = f(@) - B 1),

which shows eq. (12.6]).
Applying (2.6 to the dual f*(p), assuming that f** = f yields
redf(p) < (ha)=[()+"2)
< (p,2) =)+ (@)
The RHS is identical to ([2.6]), which proofs eq. (2.7)). O

Applying the subgradient inversion rule to our system of primal and
dual objectives in ([2.5)), we get the following optimality conditions on
x* and p*,

¢* € argmin L(z,p"), p* € 9g(G(2")).

COROLLARY 2.1.4 (KKT conditions). With these optimality condi-
tions, we can derive the Karush-Kuhn-Tucker (KKT) conditions. We
look at minimization problems of the form

min f(z)
subject to G(z) <0,
H(z) = 0.

The Lagrangian reads

L(z,p,q) = f(z) + (p,G(z)) + (¢, H(z)),
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and we have the optimality conditions

z* € argmin L(z, p*, ¢%), G(z*) <0, H(z*) =0
@ (2.8)
p* >0, (p*,G(z")) =0.

PROOF. The subdifferential of the indicator function on a cone K
is the normal cone NX. In the case above we have

80 (G(z)) = N*(G(x)).

Since both R_ and {0} are cones with normal cones R, and R, respec-

tively, the result (2.8]) follows. O

2.1.4. Linear Programming. We introduce linear programming
briefly, since we will encounter it in the context of inference in graphical
models. Linear Programming consist of minimizing a linear objective
under linear constraints.

o
st. Az <b

The constraints limit x to a polyhedral set, we define the Lagrangian

L(z,p) = min max(c, z) + (p,b — Ax).

z€R™ peR™
By exchanging the min and max operations and rearranging, we get

in (p, b — AT
;ggg;gg}jp, )+ (c P, x),

which corresponds to the dual LP

b
max (b, p)

st. ATlp=¢, p<Oo.

It can be shown that if the primal LP is feasible and bounded, so is
the dual and there is no duality gap. Let * and p* denote the optimal
primal and dual solutions, then (p*,b — Az*) and (x*, ¢ — ATp*) both
have to vanish, which is called complementarity slackness.

There are two main approaches to solve linear programs in practice,
the simplex and the interior point methods. The simplex algorithm
searches the vertices of the feasible set until an optimal solution is
found, while the interior point method performs updates within the
feasible set. Even though the number of vertices is exponential in
the number of defining equations, the simplex method shows similar
performance in practice as polynomial-time interior point methods. If
in addition the variables have to be integer, we have an integer linear
program (ILP), which is an NP-hard problem.
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2.2. Continuous Optimization Algorithms

In the following we present different algorithms for different kinds
of minimization problems. The algorithms presented in this section all
operate in the primal domain without evaluating the dual function and
are iterative, variabel z is updated repeatedly until convergence to z*.

2.2.1. Differentiable Functions. In addition to differentiability,
we assume our function f : R® — R to have a Lipschitz continuous
gradient with constant L satisfying

Assuming that we know the gradient of the function we aim to min-

imize, we may move along the direction of maximum descent, which is
along the negative gradient, as shown in Algorithm I} This algorithm

Input : step size a € R, accuracy e
Output: x* satisfying Vf(z*) < €
while Vf(z) > ¢ do
‘ x < x—aVf(x),
end
Algorithm 1: Gradient descent with fixed stepsize.

is simple and straightforward to implement, but also shows slow con-
vergence. Since the stepsize is fixed, the updates are either too small
in the beginning, or to large when z is close to the optimum z*.

Applying a line search method will result in a better choice of up-
dates, and accelerate convergence significantly. The Armillo point is
the most distant intersection of the function with a linear expansion
around the current position,

fArmillo(y) = f(l') + <OéVf(£l§'),Z' + y>7 o€ (O %) :
The Armillo line search method is shown in Algorithm [2 Figure
illustrates the approach.

Input :z€R", yeR", ac (0, 3), (0, 1)
Output: stepsize t
t <+ 1
while f(z +ty) > f(z) + (aVf(z),z + ty) do
‘ t + [t;
end
Algorithm 2: Backtracking Line Search in direction .

The gradient may be more sensitive to changes in particular direc-
tions, so that the steepest descent is not necessarily optimal. But the
update direction y needs to be gradient related, in order to decrease
the value of f in each iteration, (V f,y) < 0. If we have the (positive
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r+ty z R

FIGURE 2.2. Armillo Line Search for f(x) = z? around x = 1 with
a =0.25and f = 0.9. The search direction is y = —1, the calculated
stepsize is t = 0.81.

definite) Hessian available, Newton’s method can be applied, as shown
in Algorithm [3|

If the second order derivative is available as well, optimization can
be improved further. Even if f is twice differentiable, storing the n x
n elements of the Hessian matrix in computer memory may not be
feasible. For non-convex f, the Hessian may not be positive definite,
so that the update direction is not guaranteed to be gradient related.
Negative components of the Hessian would need to be removed, in order
to guarantee convergence to a local minimum.

Input : accuracy €
Output: z* satisfying ||V f(z*)|| < €
while |V f(z)|| > ¢ do

y < (V@) IV f();

determine optimal step size t;

T 4 T +ty;
end

Algorithm 3: Newton method.

If we assume the function f to be a quadratic vector norm 3 || F(z) ||
(assuming that F'(z) is once differentiable), and apply the Newton
method, we have the Levenberg-Marquardt algorithm as presented in
Algorithm [4] We can find first and second order derivatives, VF(z) =
J, Vf(z) = JTF(z) and V2f(z) = J'J. Levenberg-Marquardt is a
special case of the Gauss-Newton method, where the Hessian matrix is
approximated with the Jacobian, H = J'J.

The Newton method fits a quadratic model to f, and minimizes the
model function for the update. But it may be desirable to restrict the
maximum update step to radius 7, since the model loses accuracy with
increasing distance. The quadratic model function reads

ma(y) = £(x) + (Vf,) + 3 (a, Hess(f)).
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Input : accuracy €
Output: z* satisfying ||V f(z*)| < €
while ||V f(z)|| > € do

y < —(JTI) LI F(x);

determine optimal step size t;

T 4z + ty;
end

Algorithm 4: Levenberg-Marquardt

The trust region size 7 is updated at each iteration based on the quo-
tient of the actual and the model energy difference. At iteration k, this
quotient is given by

fla*) = fa™)
my(0) — mge (bt — k)’

p determines whether the trust region should be increased or decreased.
If p is small, the model is not accurate, and the region should be de-
creased. On the other hand, if p is close to one, the model is accurate,
and the region should be expanded in order to allow larger updates. Ad-
ditionally, depending on p, an update may be rejected. This approach
is called the trust-region method, shown in Algorithm [5] Instead of the

p= (2.9)

Input : accuracy e, threshold paceepts, maximum size 7
Output: z* satisfying ||V f(z*)| < €
while ||V f(z)|| > € do
y <= argmin, my(y) + djy)<-(y);
calculate p as in eq. (2.9));
if p < }L then
T
end
else if p > 2 and ||y|| = 7 then
| 7 min(27, 7);
end
if p > paceept then
‘ T 4T+,
end
end

Algorithm 5: Trust-Region Method

hard constraint ||y|| < 7, a soft constraint penalizing x||y||* may be
utilized.

2.2.2. Splitting Methods. All of the approaches in the previous
section require a Lipschitz continuous gradient, thus cannot be used if
f is not differentiable or not continuous. Non-differentiable functions
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appear very often in image processing, for example as indicator function
or total variation (TV) term,

™ = [ |Vua).

Splitting methods can minimize these functions effectively.
We will need the proximal operator, which is defined as

Pross(z) = argmin { 5~ 1)* + 1)}

)
If f is not continuous, the proximal mapping may still be feasible to
evaluate in closed form. For example, if f = d¢ is the indicator function
on convex set C', the proximal map is the orthogonal projection on C.
The basic forward backward splitting, shown in Algorithm[6|method
can minimize functions of form

f(x) = g(z) + h(z).
With g and h both being proper and convex, but only ¢ being dif-
ferentiable with Lipschitz continuous gradient with constant L. An

Input :7€(0,2/L)
Output: approximate minimizer z*
repeat
| @ < Prox(z — 7Vg(x));
until convergence;
Algorithm 6: Forward Backward Splitting

extension to minimizing a sum of non-differentiable functions f(z) =
g(x)+>" hi(z) is presented in [70], called generalized forward-backward
splitting.

If f has the form

f(x) = h(z) + g(Az),
the fast primal dual algorithm can be used, shown in Algorithm [7]
h(x) needs to be differentiable with Lipschitz continuous gradient with
constant L, g(Az) only needs to be proper and convex. As shown in
section minimizing f corresponds to the saddle point problem
min max(Az,p) + h(z) — g°(p).
For guaranteed convergence, we require 7,75 L* < 1. If h(z) is strongly
convex, and accelerated version is available, where 7 and 75 are up-
dated on each iteration, thus achieving quadratic instead of linear con-
vergence. Details can be found in [20].
If we have the more general problem formulation

min g(x) 4+ h(z)

e (2.10)

st. Ar+ Bz =¢,
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Input : 7,75 >0
Output: primal minimizer x* and dual maximizer p*
2 x;

repeat
p < Prox,, ,«(p + 11 Az);
T
T+ Prox,,(x — 1A p);
z 4 2x — 1

until convergence;
Algorithm 7: Fast Primal Dual Algorithm

we introduce the augmented Lagrangian
Ly(w,2,y) = 9(2)+h(2) + (y, Av+ Bz —c) + £ || Av+ Bz —cl. (211)

The augmented Lagrangian can be minimized using the Alternating Di-

rection Method of Multipliers (ADMM), shown in Algorithm [8] While

Input :p>0
Output: approximate optimal point (z*, 2*) of eq. (2.10)
repeat

z < argmin, L,(z, z,y);
z <—argmin, L,(z, z,y);
y < y+ p(Az + Bz — ¢);
until convergence;
Algorithm 8: Alternating Direction Method of Multipliers (ADMM)

ADMM can be slow in obtaining the exact solution, it may find a good
approximation very quickly [13].

2.3. Elements of Optimal Control

In the previous sections on continuous and discrete energy mini-
mization, we assumed that the variable can be freely chosen, and the
associated energy is given immediately. In practice we may not be able
to choose the state arbitrarily, but only change it according to control
variables. Such an optimization task is called optimal control prob-
lem. We present an optimal control formulation for visual odometry in
section

If we need to optimize the optimal path of a car, the path is subject
to acceleration and steering, which are constrained as well. Simplify-
ing the setup to one dimension (the rocket car), the state is given by
distance s and velocity v, the control variable is acceleration u. We
have state constraints s(0) = a, v(0) = 0, s(7') = b, v(T") = 0, where
start time g = 0 and end time 7' is unknown. The control variable wu is
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constrained to the interval [—1, 1]. The optimal trajectory of the car
depends on the criterion we minimize, two possibilities are

m(igl T (time optimal) (2.12a)
u(t

T
1
Hl(lgl/ iu(t)th. (energy optimal) (2.12b)
u(t 0

DEFINITION 2.3.1 (Optimal Control Problem). Find control func-
tion u : [tp, T] — U C R* and corresponding state variables z :

[to, T] — R™ that satisfy an (ordinary) system of differential equa-
tions (ODE)

T = f(t,z(t),u(t)).

There may exist restrictions on u(t) and z(t). In many cases the initial
state may be fixed, z(0) = z¢, and u may be restricted to an interval,
or to a discrete label set. The control variable u needs to be optimized
subject to an objective function

() = ®(T, 2(T)) + /t L(z(t), u(t))dt.

Pontryagin’s maximum principle [4] states the optimality condi-
tions on optimal control variable u, which also depend on the con-
straints of u and x. Let the constraints be given by

r(T,z(T)) =0, r: RxR"—R™
s(Tyz(T)) >0 s: RxR" — R™.

Then with the adjoint variables A : [tg, T] = R", o € R™ | § € R™2,
we can define the Hamiltonian and the augmented cost function

H(x(t), ut), \(t)) = —L(x(t),u(t)) + A(&)" f(t,2(t), u(t))
U(T,2(T),a, 8) = (T, 2(T)) — a'r(R,a(T)) — B s(T,(T)).
Let (x*,u*) be feasible local minimum of the objective function,
then
e J adjoint variables \* : [ty, T] — R", o* € R™, * € R™2.
e \* satisfies the adjoint differential equation
M= — fo(t, 2 (), u* (1)) + L(z*(t),u*(t))"
= —H(2"(t), u"(1)).

e The Hamiltonian is constant,

H(z*(t),u"(t),\"(t)) = C.



22 2. MATHEMATICAL OPTIMIZATION

U
1

=e
[ 1 5
e
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ot Tt Tt
—1
(a) large T (b) small T (¢) minimum 7'

FIGURE 2.3. Optimum acceleration u(t) € [—1, 1] with respect to
the minimum energy objective and constraints s(0) = a,
s(T) = b, v(0) = v(T) = 0. If we choose T' = T* time optimal,
there is only one feasible trajectory, which is maximum acceleration
followed by maximum deceleration.

e The transversality conditions hold,
)\*(T*)T — —\lfz(T*,{E*(T*),OZ*,B*>
= =P, (T*,2*(T")) + 5% s, (T*, 2*(T™))
* * * a * * * * *
H(l‘ (t)au (t)7)‘ (t)) = a_T\IJ(T » L (T ),CY 76 )
It follows that H(x*(t),u*(t), A*(t)) = 0 if T is not free.

Furthermore, ©v* maximizes the Hamiltonian,
H(z"(t),u"(t),\"(t)) > H(z"(t),v,\"(t)), Vov:[te, T] = U.
From these optimality conditions, we can infer the optimal solution

of the one dimensional car trajectory mentioned above. Depending on
the value of T', compared to the distance d = b — a, we get different

solutions of the energy optimal case (2.12b)), as depicted in Figure .
In most practical examples, we do not get a closed form solution, but

need to integrate the corresponding variables numerically.



CHAPTER 3

Mathematical Models

In the previous chapter, we assumed a function or control vari-
able, which are either free or constrained by equality or inequality con-
straints. Some mathematical models assume the corresponding vari-
ables to lie in particular non Euclidean spaces. In particular, we present
discrete graphical models and smooth manifolds in this chapter.

Discrete graphical models define a probability for a configuration
of a graph with vertices and edges, where each vertex can be assigned
a finite number of values. Discrete optimization exploits the structure
of the underlying graph, because the discrete minimization problem is
NP hard in general. However, particular types of discrete optimization
problems can be solved efficiently.

In some cases, our variables cannot have arbitrary values, but are
restricted to a manifold- Manifolds define their own differential geom-
etry, which influence the optimization strategy.

We introduce graphical models and the inference problem in sec-
tion Since general inference on graphical models is an NP-hard
problem, we present different methods for different types of graph, uti-
lizing the respective graph structure. In some cases, discrete inference
can be reformulated as a convex continuous optimization problem. In
section we introduce manifolds with their respective differential
geometries, in order to perform optimization in non Euclidean spaces.

3.1. Probabilistic Graphical Models

Many real world problems are structured. There may be a hier-
archical structure between latent and observed variables, or they are
structured as a collection of smaller problems, such as an image segmen-
tation problem, which consists of many individual pixel segmentation
problems depending on each other. Probabilistic graphical models can
represent such dependencies explicitly, hence offering wide flexibility.
However, performing inference on graphical models can be challenging
in some cases.

3.1.1. Exponential Models. A probabilistic graphical model as-
signs a probability to each possible configuration of the variables. For
example, the multivariate Gaussian distribution N (z | i, ) with mean

23
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4 and covariance X assigns a probability to each x € R”,

1 1 »
P(o) = e (<3l —n e 6D

If we assume pu = (uy, p2) and ¥ = diag(o?, o3) to be diagonal, we
may rewrite the probability above as product of two univariate normal
distributions,

pa(z) = N(z | pn, o)N (@ | oo, 03). (3.2)

p1(z) and py(z) differ in the structure of the underlying graph, p, fac-
torizes into two distributions of simpler form. This factorization into
simpler parts is utilized when performing inference on graphical mod-
els, direct inference on the large model is typically not feasible.

The matrix multiplication in equation (3.1]) can be expanded, and

inserted into eq. (3.2)), yielding
— l A ozwm M 1 —pp #
pg(l’) - VA eXp — 207 o? 207 2032 o2 202 ) (b(l') ’

with ¢(z) = (m% Ty 1 23 19 1). The Gaussian distribution is a
special case of an exponential model, which is defined as

plalf) = i ex0 (0.0(0))) . 33

where Z(6) is the partition function ensuring normalization,
20) = | expl(6.6(0).
X

We may rewrite eq. as
p(x]0) = exp((0, o(x)) — P(x)), () =log(Z(0)).

An energy function can be associated with the probability defined
in eq. (3.3) by applying the negative logarithm,

E(x) = —logp(x) = 1(0) — (0, ¢(x)). (3.4)

The normalizing constant ¥(f) does not depend on state z, and hence
can be omitted in the context of inference.

Another important instance of the exponential family are discrete
graphical models. The probability of configuration z in any (second
order) graphical model with vertices V and edges £ is given by

p(q;|9):Z(10) exp | Y Ou(z) + Y vl 70)
veVY

(vyw)e€
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FiGURE 3.1. Example factor graph, vertices are shown as black
dots, and factors as gray squares. This example shows a 2 x 2 grid
graph, where factors are added to each vertex, and on horizontal and
vertical edges. Note the bipartite graph structure, no two vertices
or factors are connected.

The sum can be defined as an inner product between model parameters
0 and indicator vector ¢(z) given by

qbv(x,l):{l if 2, =1

0 otherwise

1 ifx, =1,,x, =l
0 otherwise

¢v7w<xva L, lvy lw) - {

A discrete graphical model can be represented by a factor graph,
which is a bipartite graph separating variables and factors. A factor
node is connected to a set of variable nodes, and assigns a local prob-
ability to each possible configuration.

DEFINITION 3.1.1 (Factor Graphs). A Factor graph (V, F, E) con-
sists of vertices V, factors F' and edges E, Figure shows a simple
example. The graph is bipartite, there are no edges between any two
vertex or factor nodes. Let a € F' denote a factor node, then z(a) de-
notes the connected vertices and f,(z(a)) the probabilities contained
in factor a. The probability of configuration x is given by

p(x) = [ fulala)).

acF

In order to express a factor graph in form of (3.3)), we introduce
¢(z) as a vector of indicator variables for each factor component. The
model parameters # contain the negative log of the corresponding factor

probabilities,
1
= 0o, Tq) | - 3.5
1) = i (S0 33)
acF
Given a graphical model, we may be interested in determining it’s
optimal configuration, where optimality can be defined in different

ways.
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3.1.2. Marginalization. One way is to maximize the marginal
probability for each label at each vertex, which is defined as

T,xn=l

Marginals can be computed in linear time with the sum product al-
gorithm, if the underlying graphical model is a tree. The algorithms
consists of sending messages between variable and factor nodes. Let
a € F denote a factor, and v € V a vertex, then the corresponding
messages are given by

Nysa(T0) = H My (T0) (3.6a)
ceN(v)\a

Maso(Ty) = Z falz H Nw—sa(Tew) (3.6b)
z€z(a)\zy weN (a)\v

Initially, all messages can be set to 1. This algorithm forms the basis
for the belief propagation class of inference algorithms, which will be
described in more detail below. If the model does have cycles, the
algorithm is also called loopy belief propagation and may not converge.
It is not possible to determine whether loopy belief propagation will
converge on a given graphical model.

3.1.3. Maximum A-Posteriori Inference. Choosing the label
with largest marginal for each vertex does not necessarily give the op-
timal configuration, it may not even be feasible. Thus, we may prefer
the mazimum a-posteriori (MAP) inference,

x* = arg max p(z). (3.7)
zeX
Note that the optimum of eq. does not depend on the scale of
p(z), normalization is not required for MAP inference.
If the model is cycle-free, a changing the sum into a max opera-
tion in eq. yields the mazx product algorithm, performing MAP
estimation.

Nosa(®y) =[] Mems(z) (3.8a)
ceN(v)\a
Ma—y(2,) = max H Nw—sa(Taw) (3.8b)

:cE:c(a)\xU weN(a)\w
As in marginalization, there is no convergence guarantee on cyclic
graphs. The max product algorithm may diverge in practice, but it
has been applied successfully in optical flow and stereo matching mod-
els [31].
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F1GURE 3.2. Example network for the maximum flow problem. The
flow is emitted from node s and absorbed by node ¢t. Each edge can
only transmit a limited capacity, and flow has to be preserved at
each vertex.

3.1.4. Submodular Graphical Models: Graph Cuts. While
inference in graphical models computationally hard in general, it can
be simpler for specific types of models. One example are submodular
graphical models, where inference can be related to the maximum flow
problem. An example maximum flow graph is shown in Figure [3.2

DEFINITION 3.1.2 (Maximum Flow Problem). Given a network
graph (V) E,c,s,t), we want to maximize the flow subject to con-
straints. V' and E represent graph vertices and (undirected) edges,
c represents a positive costs on each edge and s, ¢ are the source and
target vertices. The flow has to satisfy the following two constraints.

capacity constraint: f,, < c¢,,. The flow along edge (u,v)
must not exceed the edge capacity.

flow conservation: ) f, = > f.., Yu € V' \ {s,t}. For each
vertex (apart of s and t) the incoming and outgoing flows have
to be equal.

DEFINITION 3.1.3 (Graph Cut). A cut is a partition of a graph
with vertex set V into two subsets A, B C V. The sum of costs of the
edges crossing A and B is denoted the cost of the cut.

THEOREM 3.1.1 (Max Flow Min Cut Theorem (Ford & Fulkerson
1956)). The mazimum flow of a graph equals its minimum graph cut.
The mazimum flow problem can be modeled as linear program, of which
the dual can be interpreted as solving for the minimum cut.

Assuming that we have a binary graphical model, we may reformu-
late the inference problem as a maximum flow problem on the graph,
an illustration is shown in Figure 3.3l The maximum flow problem is
well understood and a variety of polynomial time algorithms exist to
solve it, thus enabling fast and exact inference.

For each vertex v, we define variable x, € [0, 1] relaxed labeling
variable, allowing soft assignments. Let J,(z),z € {0,1} denote the
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FiGURE 3.3. Reformulating the inference problem as graph cut.
The flow from s to ¢ has to pass the graphical model, where s and
t represent the labels. Unary costs are represented in the edges
between the original graph and s and ¢, while pairwise costs are
represented in the graph edges.

unary costs for vertex v, then the relaxed cost reads

Jo(2) = (1 — 2,)J,(0) 4 2,J,(1)

U(Jv(l) - Jv(o)) + Jv<0)
(1 - xv)(Jv(O) - Jv(l)) + Jv(l)
Depending on the sign of J,(1) — J,(1), the value has to be added as
cost to the edge connecting s or (with reverse sign) ¢. The constant
part J,(0) or J,(1) (depending on the sign of the difference) does not
affect the optimal configuration and is ignored.

The pairwise terms can be inserted into the network in a similar
way. The cost is given by

Jutown) = (1-2, ) (é g) (1 ;wxw)

= A+ (D —B)x,+ (B — A)zy
+(B4+C—A—D)x,(1 —xy).

This expression factorizes into constant part A, which can be removed,
two unary parts D — B and B — A, which need to be processed as
described above, and a pairwise part B+ C — A — D. Since a flow
network requires positive edge costs, the term J(0,1)+.J(1,0)—J(0,0)—
J(1,1) has to be positive. This property is called submodularity, which
also extends to the non-binary case.

DEFINITION 3.1.4 (Submodularity). A function f : [N] x [M] — R
is submodular, if for every 1 < i < i < N and 1 < j < j < M the
following property holds.

fG )+ £ 57 < £, 5 + £, 7).

Note that submodularity may depend on the order of labels, there is
also a notion of permuted submodular functions [77].
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W = =N

FI1GURE 3.4. Ishikawa’s method for MAP inference in a chain graph
with four vertices and three labels, counting vertices from left to
right. The original graph is replicated for each label, the edge
weights are determined by the unary and pairwise costs of the origi-
nal graphical model. The labels need to be ordered, and the pairwise
term has to be a convex function of the label difference. Inference
is performed by applying graph cuts to the extended graph.

If the graphical model is binary, but not submodular, Quadratic
Pseudo-Boolean Optimization (QPBO) [35] can be applied, but is not
guaranteed to find a label for each vertex.

Submodularity may be viewed as a correspondence of convexity
in discrete optimization, since submodular functions usually can be
solved to global optimality. There are extensions of the procedure
above for non-binary submodular models, which solve a sequence of
binary submodular function. Either by expanding a certain label o (a-
expansion) or by swapping two labels « and 5 (a--swap), as described
in [14].

In [41], Ishikawa presents inference on graphical models with more
than two labels as graph cut formulation. The labels have to be linearly
ordered, and the pairwise term has to be a convex function of the label
difference,

E(z) = ZD(:L‘v) + Z P(x, — ).
veV (vyw)eE
D(.) is the unary energy, which is arbitrary, and P(.) is the convex
pairwise term. An illustration of the graph construction is shown in
Figure [3.4l The flow network replicates the original graph for each
label, and edges have to be stored explicitly when solving the max flow
problem, which causes a large memory requirement of the approach.
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3.1.5. The Local Polytope Relaxation. Rather than maximiz-
ing the probability of a certain state, we may instead minimize the
corresponding energy,

arg min(f, ¢(z)).

reX
In order to simplify the expression further, we may replace the function
¢ with vector u, which is constrained to all possible vectors ¢(z), that
correspond to a configuration x € X,

arg min(@, u). (3.9)

pEM

Each component of the unary and pairwise factors has a corresponding
component in vector u. M is called the marginal polytope, since it also
represents all possible marginals of the original graphical model with
varying parameters ¢. While the objective function is simple, the con-
straint set M is complicated and contains the computational difficulty
of the original inference problem. ¢(z) is of higher dimension than z,
and more importantly, it is subject to interdependent constraints that
arise from the graph structure.

Minimizing eq. (3.9) is not easier than maximizing the original prob-
ability as in eq. but the highly complicated polytope M can be
replaced by a simpler set IL called the local polytope. Instead of modeling
the entire graph structure, the local polytope only imposes constraints
that arise on each factor independently. The local polytope is a super-
set of the marginal polytope, since those local constraints are satisfied
by any valid marginal. Elements of the local polytope are also referred
to as pseudomarginals [92].

Let f, be a unary factor, and v, be the corresponding vertex. Then
the corresponding part of u is subject to the following constraints.

pa(i) € [0,1], Vi € v,
Z fa(i) =1
1€Vq
These constraints imply that pu, is a valid probability distribution on

vertex v,. In case of second order factor f,;,, with corresponding vertices
v, and vy, the constraints read as follows.

tap(i,7) €10,1], Vi € v, € vy

Z ﬂab(ia ]) = ,ua(z)
JEU
Zﬂab<i7j) = 1(J)
1€V
The constraints ensure that label selections based on first order factors

are consistent with selections in second order ones. Higher order factors
can be handled similarly.
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The local polytope provides a relaxation of the marginal polytope
which can be feasible in many even high dimensional cases. While the
extreme points of the marginal polytope are always binary vectors, the
local polytope may contain fractional extreme points, resulting in not
well defined optimal states. If the underlying graph is a tree, the local
polytope is identical to the marginal polytope, and exact inference is
feasible.

3.1.6. Dual Decomposition. We may write the local polytope
relaxation as linear program,

min(0, /1)
I
s.t. u(i) € [0,1], Vi
for all second order factors fu:

Z,Uab("j) = Ha

JEv

Rather than listing constraints factor-wise, we may change to edges in
the factor graph.

min (6, /1)
I
s.t. for all edges (v, f),v €V and f € F:
pr(i) €10,1], Vi
Ay = p

Note that unary factors do not provide restrictive constraints. Since
[y is defined by its neighboring higher order factors, it is restricted
to [0, 1] implicitly. Also, for any unary factor f, A = I, so that the
consistency constraint reads p/ = ju,, thus p/ may simply be removed
from the LP.

In order to solve the local polytope relaxation, we introduce La-
grangian variables \V/,

Ll N) = (0,m)+ Y oa,(up)+ > W Ay — )

feEF (v,f)eE
= (0, )+ > daym)+ Y W Ay — (N )
fer (v,f)€E

Since u, is unconstrained, we need to impose constraints on A\’ f for a
well defined Lagrangian,

Z N =0, Yo eV.

(v,)EE
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The Lagrange term can now be optimized with any suitable algorithm,
such as ADMM, leading to the dual decomposition approach. In [42],
the Lagrangian is optimized with a bundle method, where a simple
approximation of the energy function is maintained and updated during
optimization.

3.1.7. Tree Based Belief Propagation Algorithms. As we
have seen many times in previous sections, inference on trees is much
simpler than inference on cyclic graphs. Therefore, it appears plau-
sible to approximate a cyclic graph by a collection of trees. This ap-
proach has been introduced in [92], presenting the tree-reweighted belief
propagation (TRBP) algorithm, and later extended to the sequential
tree-reweighted (TRW-S) algorithm in [44].

Instead regarding the model parameters as fixed values, we intro-
duce the MAP estimation problem as function of 6 as variable,

®(6) := min(6, (1))
®(0) is convex, hence Jensen’s inequality can be applied,

d(0) < Zaz@(@i), where Zaﬂi =0, o; >0 Vi.

Since inference on trees is inherently simpler than inference on cyclic
models, we may choose the 6 vectors to represent trees. Components of
0%, that correspond to factors which are not contained in the respective
tree, are set to zero. The #° vectors are stacked to matrix © € R4
and the following problem needs to be minimized,

max Z o; min{6', ¢(z))

st a0 =9
In order to find the dual, we set up the Lagrangian,

L(O,7) = Z a; ®(0") + (1,6 — Z a;0')
— Zai(cp(ei) — (0%, 7)) + (7,6)

The dual function ming £(©, 7) of 7 is precisely the LP relaxation over
the local polytope as presented in section[3.1.5] a proof is shown in [92].
This holds independently of the choice of trees, as long as each graph
edge is covered by some tree. The paper presents a belief propagation
approach over the tree decomposition, which is guaranteed to converge,
but the duality gap may not be tight at the optimum. If a set of vertices
can be found, for which the optimal configurations agree in all trees,
then this configuration is guaranteed to be globally optimal.
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The same graphical model can be represented with different vectors
6, i.e. by shifting unary energies into the pairwise terms. TRW-S gener-
alizes eq. by allowing any reparameterization of §. Through this
flexibility, TRW-S achieves monotonicity in its updates, while TRBP
may increase the energy.

3.1.8. Continuous Labeling. We can simplify the local polytope
relaxation as in section further, if the pairwise energy satisfies
certain conditions. We introduce simplex variable s(v) € Ay for
each vertex v, which represents the probabilities over all labels L(v).
The unary energy can be written as inner product,

Bunary = Y (F(0), 5(0)),
veV
where F'(v) contains the unary energies. If the pairwise term of two
neighboring vertices v and w is a convex function of s(v) — s(w), the
overall minimization is convex in the simplex variables, and we do not
need variables for the pairwise factors.

The authors of [49] use this formulation for image labeling with
TV regularization. We stack the simplex variables and corresponding
unaries to vectors s and f, and let A denote the vector valued discrete
gradient operator. The overall energy reads

E(s) = (s, f) + ol As|ly + 04, (s)- (3.10)
Rewriting the L1 norm as inner product with dual variable p,

af[Aslly = sup  (p, As),
pEl—a, ]lpl
we can minimize energy (3.10)) with splitting algorithms from convex
optimization. Projection on the simplex, which most likely will be
required, can be computed in a finite number steps as shown in [61].

3.2. Elementary Manifolds

In the previous chapter on mathematical optimization, we assumed
the variable x € R to be free in the Fuclidean space. Constraints can
be imposed by an indicator function on a set C' C R", but the structure
of set C is not represented adequately with this approach. For example,
if we restrict our variables to the unit sphere S”, the distance between
any two points should be given by the arc between them rather than
the straight line.

For a formal definition of manifolds, we first need to introduce
charts and atlases, as described in [1].

DEFINITION 3.2.1 (Chart). Let M be a set in R”. Then a bijection
¢ between a subset U C M and R? is called a chart, denoted (U, ¢).
¢(x) are the local coordinates of x € M, and the inverse mapping ¢*
is called a local parameterization of M.
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DEFINITION 3.2.2 (Atlas). An Atlas is a set of charts U, covering
the entire set M, |J, U, = M. Also, the given charts need to to be
compatible on their intersections. For any « and 8 with U, NUs # 0,
the sets ¢, (U, NUz) and ¢s(U, NUz) are open subsets of R?, and the
function ¢g o ¢, is smooth.

An Atlas defines a differentiable structure on M. The set M to-
gether with a differentiable structure is called a manifold.

3.2.1. Differential Geometry. If we have a real valued function
f defined on a manifold M, we need to incorporate the geometry of
M., in order to define derivatives. Let y(t) : R — M denote a curve
on M. Then the Euclidean derivative
. . 7(h) =1(0)
(0) = fim ————
may not well defined, since M is not necessarily a vector space, which
is required for evaluating the difference vy(h) — v(0). However, if we
compose v with function f: M — R, we can construct the derivative

C(fox) = DFGO) (0)),

which is the derivative of f at 7(0) in direction 7/(0). ~/(0) is a tangent
vector to M at (0). The span of all tangent vectors that arise from
different paths v with identical starting point «(0) is called the tangent
space of M at v(0), denoted T, M. Unlike the manifold itself, the
tangent space is vector space by construction. The union of all tangent
spaces is denoted tangent bundle,

TM= ] TuM. (3.11)
zeEM

A function £ : M — TM is called a vector field on M, the set of
all smooth vector fields is denoted with X(M). Let f : M — R be
a smooth real valued function on M, then the derivative of f along
vector field £ is given by £f : M — R,

(€N)(@) = &(f) = Df(2)[&].
The multiplication of £ by function f is given by

and we may add two vector fields £ and (,

(£+C)w =&+ G

In section [2.2] we have seen second order optimization methods,
for example the Newton method. Defining the second order derivative
of a function on a manifold M encounters a similar issue as in the
first order case. Tangent vectors in different locations live in different
tangent spaces, hence they are not directly comparable. In case of the
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Euclidean space, the classical directional derivative of vector field &
with respect to vector field ( is given by

(V€)= lim Sotic: ~ e (3.12)

V£ is called the covariant derivative of § with respect to (.

On non-Euclidean manifolds, covariant derivatives can be estab-
lished through affine connections. An affine connection V : X(M) x
X(M) — X(M) defines a derivative of a vector field on M, is not

unique, and has to satisfy the following properties,

Vicros = fVE+gV,& (linearity in ()
Ve(a€ +bn) = aVel+bVen (linearity in &)
Ve(f§) = (CNHE+ V& (Leibnitz’ law)
The affine connection for the Euclidean case (3.12]), where tangent vec-

tors to not need to be transformed, is called Euclidean connection or
canonical connection.

3.2.2. Riemannian Manifolds. While the tangent space of gen-
eral manifolds is a vector space, and hence can be equipped with the
Euclidean inner product, this inner product may not reflect the local
geometry well. Riemannian manifolds are equipped with a Riemannian
metric, which is an inner product (-, -), on the tangent space at © € M.
The corresponding norm is given by

1€lla = V(€ &)

If M is a submanifold of another Riemannian manifold M, then the
Riemannian metrics are identical. Most our manifolds are submanifolds
of R™P with its standard Riemannian metric

(A,B) = tr(A"B).
We now define the Riemannian gradient,

(Vaf:&)a = Df(x)¢],

and the Riemannian connection

VCzé = Px<D€(x)[Cm])
P, denotes orthogonal projection into the tangent space at x. The

derivative DE&(x)[(,] is well defined in the embedding manifold R"™*?.
The Riemannian connection defines the Hessian operator

Hess f(x)[&] = Ve, VS

With gradient and Hessian operators available, we can now formulate
second order optimization algorithms on general Riemannian mani-
folds.

In contrast to the Euclidean space, the update z**! = 2% + y may
not be well defined if x lies in a manifold M. Therefore we need
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retractions, which map a tangent vector back onto the manifold. At
point x € M, the retraction R, : T,M — M has to satisfy the
following properties,

R.(0) ==z

The first condition ensures that if update step y = 0, then x does
not change after the update. The second conditions is called local
rigidity, ans ensures that the direction of the update is (approximately)
preserved.

We can now define the pullback of f through retraction R,

f Tz = f o R,.
If an algorithm requires to evaluate f(xz+ty), as for example line search
does, we need to pull back the function f from the manifold into the
tangent space T, M.

There can be many different retractions for the same manifold that
satisfy the conditions in . For a unique definition, we may request
that the induced curve on the manifold has zero acceleration,

2

d
— R, (ty) = 0.
dt? (ty) =0

With this retraction, distance is preserved and there is a unique so-
lution, at least for a particular choice of affine connection, which is
required for the second order derivative. This particular retraction is
called the exponential map, and forms a local bijection between T, M
and M.

The unit sphere S*! forms a submanifold of R”, and is defined by

STl ={reR" |z'2 =1}

Let v(t) € S™! be a curve on the sphere. Then the derivative of
7(t)"y(t) has to vanish,

(3.13)

LA (1) =0 & 4090 + 1030 =0,

This has to hold for all paths v(¢), hence 4(¢) has to satisfy 5(t) "y(t) =
0 and the tangent space of S"~! is given by
T,(S" Y ={zeR"| 2z =0}

The orthogonal projection into the tangent space is given by the Eu-
clidean projection of R",

Po=I—xx'.
The exponential map is given by

Exp, (t€) = z cos(€][t) + H%“ sin([l€]19).
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We can check that the second derivative of the curve ~(t) = Exp, (t£)
vanishes,
2 2

B, (16) = Pu ()

= (I =) )(=lIENP)r () =0
The Orthogonal Stiefel manifold is defined as
St(p,n) ={X e R”? | X' X =I,}.

We can form the derivative of X (¢)" X (¢) for X(t) € St(p,n), and find
the tangent space of the Stiefel manifold,

Tx St(p,n) ={Z e R | X"Z+7"X =0} (3.14)

In order to simplify the expression, we decompose X (t) into the pat
spanned by X (t), and the orthogonal part,

X=X0+X K.

Inserting into eq. yields
XT(XQ+ X K)+(XQ+ X, K)'X =0
& Q+Q" =0
Hence, Q € Syew(p) and K € R™=P)XP. The dimension of St(p,n) is

dim St(p,n) = %p(p —1)+(n—p)p

1
=np — §p(p+ 1).

3.2.3. Lie Groups. Before we define Lie groups, we need to define
groups first. Let the set G be equipped with operation - satisfying

closure: Let a,b € G, thena-be G
associativity: a-(b-c) = (a-b)-c
identity element: dJe € G, eca=a-e=a, Va e G
inverse element: Va € G, Ja™ ' € Gst.a ' a=a-a" ' =e.

Then (G,-) is a group. Lie groups are groups, which are also differ-
entiable manifolds. We assume that the group operation is given by
matrix multiplication, the following sets are examples of Lie groups,

e The general linear group GL(n) = {X € R™" | det X # 0},
which contains all invertible matrices.

e The special linear group SL(n) = {X € R™"™ | det X = 1}.

e The orthogonal group O(n) = St(n,n) = {X e R" | XTX =
I,,}, representing all isometries in R™.

e The special orthogonal group SO(n) = {X € R | XTX =
I,,, det(X) = 1}, representing all rotations in R".



38 3. MATHEMATICAL MODELS

Three dimensional rotations are Lie groups regarding matrix mul-
tiplication, and R? is a Lie group regarding addition, we define the
special Fuclidean group describing all rigid motions,

{1 )

The composition of two elements of SE(3) is given by matrix multi-
plication, therefore the inverse rigid transform is given by the matrix

inverse,
~1
R t R" —R"t
(20 () 19

In the following, we introduce the general algebra and the Lie alge-
bra, which is closely related to a Lie group.

ReSO(3), te R3} .

DEFINITION 3.2.3 (Algebra). An algebra A is a vector space, which
is extended with a product operation, written uv for u,v € A. The

product has to satisfy the following conditions, with u,v,w € A and
A € R,

AMuv) = (Au)v = u(Av)
(u+v)w = uw + vw
u(v + w) = uv + uw
If in addition u(vw) = (uv)w holds, A is an associative algebra.

The Lie bracket of two vector fields [X,Y] : X(M) x X(M) —
X(M) is again a vector field satisfying

(X, Y]f = X(YV[) = Y(X]).
This vector field is also called the commutator product of X and Y.

DEFINITION 3.2.4 (Lie Algebra). A Lie algebra is a vector space g,
equipped with a Lie bracket operation [.,.] : g x g — g satisfying
[au + Bu,w] = alu, w] + Blv, w]
[u, av + pw] = afu, v] + Blu, w]
[u,v] = —[v, u]
0= [u7 [Ua w]] + [Uv [wauﬂ + [wa [U,UH,
where u,v,w € g and «, 8 € R. The last condition is called the Jacobi
identity. Any associative algebra with the matriz commutator
(X, Y]=XY -YX (3.16)
defines a Lie algebra.

The tangent space at the identity element forms a Lie algebra [48].
The corresponding Lie algebras for the example Lie groups above are
given by

o gl(n) = R™™.
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e sl(n) ={X e R™" | tr(X) = 0}.

e O(n) and SO(n) share the same tangent space at the iden-
tity, which is given by the skew symmetric matrices, so(n) =
{X € R | XT = —X}. O(n) consists of SO(n), and a
second connected component with det(X) = —1, representing
reflections.

If the group operation is matrix multiplication, the exponential map
is given by the matrix exponential. The matrix exponential may not be
efficient to calculate, but in some cases we get closed form solutions. For
example in case of three dimensional rotations, the matrix exponential
is given in closed form by Rodrigues’ formula, which can be shown by
expanding and re-arranging the exponential series,

explla) = 1y -+ Sl L conllellyy,

3.2.4. Gradient Flows on Manifolds. Many algorithms we pre-
sented in can be extended to functions over manifolds [1]. Details
for the Stiefel and quotient manifolds are shown in [26]. In this section
we show that matrix factorizations, including eigenvalue computation
and singular value decomposition, can be reformulated as gradient flows
on matrix manifolds.

We will briefly present the double bracket isospectral flow presented
in [38], which diagonalizes a matrix under preservation of its eigenval-
ues.

Let @ = diag(Aq,...,\,) be any diagonal matrix. Then the mani-
fold of orthogonally equivalent matrices is given by

M(@Q)={0'QO |8 € O(n)}.
Any matrix in M(Q) has eigenvalues A, ..., \,, hence any gradient
flow on the manifold will be isospectral. Let H € Sgym(n) be a symmet-

ric matrix, then there exists diagonal matrix @) such that H € M(Q).
The tangent space of M(Q) at H is given by

THM(Q) =HQO - OH = [H, Q], e Sskew(n).

The tangent space can be found by differentiating ©" HO at © = I,,.
Let N € R™ " be a diagonal matrix, then the double bracket isospectral
flow

d
CH() = [H(1), [H (1), V]
converges to a diagonal matrix. If N = diag(1,...,n), the limit will

contain the sorted eigenvalues of H on its diagonal. Note that [A, B] is
skew symmetric, if both A and B are symmetric. In [38], the authors
show that this gradient flow corresponds to the Riemannian gradient
of the function

1 1
min §||N—H||2: min —

1
N|? + Z||H|?* — te(NH
HeM(Q) HGM(Q)2H | +2|| [ r(NH)
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for a suitable choice of the Riemannian metric. The terms || N]|? and
|H||? are constant, because N is constant and H has constant eigen-
values.

Similar to the manifold of isospectral matrices, the matrices of con-
stant rank form a smooth manifold as well. The following parametriza-
tion of the fixed rank manifold is given in [89],

M ={X € R™" | rank(X) = k}
={USV" | U € St(k,m),V € St(k,n),% = diag(oy,...,0%)},

with o1 > --- > 0, > 0. Rank constraints appear in multiview geome-
try, but also in other areas of computer vision [30].



CHAPTER 4

Multiple View Geometry

In contrast to laser and radar sensors, cameras cannot measure
depth directly. The scene can only be estimated by aligning images
from different cameras, whose positions are known. In our setup, the
exact camera locations are not known a priori, but need to be estimated
es well based on point correspondences. In this chapter, we present the
geometry of a multiple camera system, where in the monocular case the
different views are generated by the same camera in different locations.

We introduce projective geometry in section 4.1, where we demon-
strate the camera model, how homographies can represent planar mo-
tion between two views, and epipolar geometry. Sections introduces
the stereo matching problem, where point correspondences between two
calibrated cameras are estimated. Multiple frame scene reconstruction
is presented in section Section [4.4] gives an overview of monocular
reconstruction approaches.

4.1. Projective Geometry

Estimation of point correspondences can be simplified, if the im-
ages are taken by cameras in different, ideally known locations. We
introduce the camera model in seciton .11l If the scene consists of a
plane, the induced motion can be calculated by multiplication with a
homography matrix, which is described in section 4.1.2] In case of a
general scene with unknown depth, there is no direct point correspon-
dence, but the motion is constrained to epipolar lines by the Essential
matrix. Epipolar geometry and estimation of the Essential matrix are

described in sections 4.1.3] and [4.1.4]

4.1.1. The Camera Model. We assume the pinhole camera mod-
el, where viewing rays are captured on a planar image plane at z = 1.
Figure shows the pinhole camera setup and the projection of a
point into the image plane. Since the pinhole camera cannot distin-
guish different scales of the same point, any point represents its entire
equivalence class, which we refer to as homogeneous coordinates. The
projection m onto the image plane, where each viewing direction is
represented uniquely, is given by

Ty 2) =(2 2 1)

41
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T,y

FIGURE 4.1. The pinhole camera. Points along viewing rays can-
not be distinguished, hence they are identified through homogeneous
coordinates. The projection m maps each point onto its unique rep-
resentative on the image plane at z = 1.

Points and lines on the projective plane can be viewed as dual
objects [36]. The roles of points and lines can be exchanged in any
theorem of 2-dimensional projective geometry. As an example, any
two points x; and x5 define a line [ with line equation 'z = 0, and
any two lines [; and [ define a point z. Both relations can be expressed
as outer products,

[ =z X 29 (4.1a)
xr = ll X l2. (41b)

The duality principle holds for any statement of points and lines in
three dimensions.Homogeneous coordinates enable us to represent in-
finite points compactly as z = (z1 25 0)". The points at infinite lie on
the line at infinity given by loo = (00 1)".

The standard camera described above needs to be calibrated be-
fore it can be applied to a three dimensional scene. Focal lengths and
principal point are denoted intrinsic, and the camera position and ori-
entation extrinsic parameters. The intrinsic parameters are given by
camera matrix

fo 0 ¢
K=10 f, ¢f,
0 0 1

where f, and f, denote the focal lengths (in pixels) and (¢, ¢, 1)" is

the principal point, which is the pixel position corresponding to point
(00 1)". Inverting a camera matrix results in another camera,

1 Cx
Eo=103 =3
0O 0 1
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The extrinsic parameters are given by rotation R and translation ¢,
which need to be applied (inversely) to the scene points,

X
_ T _pT
r=K [R R t] ( 1) .
Inversion of egomotion parameters R and t is given by eq. (3.15). In
later sections, we will assume the intrinsic parameters to be known and
perform calculations in the 3D model, rather than the rasterized image.
We ignore other effects of physical cameras, such as lens distortion.

4.1.2. Homographies. Assuming that we know the camera loca-
tions, and the viewed scene consists of a single plane, point correspon-
dences can be computed by applying a homography matrix H € R3*3.
The representation with homographies is convenient, since it replaces
explicit modeling of camera and scene parameters with a simple ma-
trix multiplication. The homography matrix is scale invariant, hence it
has eight degrees of freedom, and can be estimated uniquely from four
correspondences.

We assuming that the extrinsic parameters of the two cameras are
given by

P =[I; 0], P=|[R {t],
and the plane is defined by parameters v satisfying
v’ X =1.

For point = in the image plane of the first camera, we can compute
depth d(z) with X = d(z)x by

1
T T
X = d =1 = dx)=—.
oTX = o (d(x)a) (2) =
From scene point X, we can find the corresponding point 2/,
v =n(RT(X —1)).

Using scale invariance of the projection 7, we can reformulate this equa-
tion to 2’ = w(R' (I3 —tv")x). We observe that point correspondences
on a plane can be calculated with homography H = R' (I3 — tv").
Again, we have eight degrees of freedom, three for each of R, t and v
minus one for the scale ambiguity between the translation vector and
the plane parameters.

The homography can be extended with camera intrinsics, in order
to map in the pixel domain by

H,=K,HK;'=A+av'. (4.2)

The components A and a depend on the camera motion, and v defines
the plane. In [29], the manifold of multiple homographies is presented,
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FIGURE 4.2. The viewing ray of the first camera along pixel  and
the second camera center define a plane, which intersects with the
second image plane and defines the corresponding epipolar line. The
Fundamental matrix F' provides immediate access to the correspond-
ing line in the second camera z'"l = 0 of point z in the first camera
by | = Fz.

where multiple homographies between the same frames are assumed to
share the same camera motion. We can vectorize eq. (4.2)),

A+ (L®ay=[I;®a) A (?)

Extending the plane vector to a matrix of multiple planes yields a
matrix of the corresponding homographies, where all share the same
components A and a. There are ambiguities in the representation in
eq. (4.2), which can be utilized to reduce the dimension to 4n + 7,
where n is the number of homographies, see [29] for details. Hence,
the factorization reduces the degrees of freedom already for two homo-
graphies.

While the calculation of the homography given camera motion and
plane parameters is straightforward, the inverse relation is not. There
are different approaches to factorize a given homography into its com-
ponents, see [57] for a survey. The decomposition is inherently not
unique, there exist two different decompositions (plus scale ambigui-
ties) that describe the same homography matrix.

—

H,

4.1.3. Epipolar Geometry. Assuming a setup of two cameras
with known positions and calibration, epipolar geometry describes how
point correspondences relate to 3D objects. The viewing ray from the
camera center through pixel z in the first camera renders itself as a line
in the image plane of the second camera, as shown in Figure [£.2] This
point to line mapping can be represented by a single matrix F', called
the Fundamental matriz, which depends on relative camera pose and
the intrinsic camera parameters. The corresponding line in the second
view can be calculated by [ = F'x, hence any two corresponding points
x and 2’ in the two cameras have to satisfy

2 TFx=0.
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FIGURE 4.3. The epipoles are given by intersecting the line con-
necting both camera centers with the respective image plane. Since
the camera center is part of every viewing ray, its point correspon-
dence has to lie on every epipolar line.

Conversely, F'T describes the mapping from the second into the refer-
ence camera, F "z’ = 0 holds as well.

An important concept of epipolar geometry is the location of the
epipoles in both cameras. The epipole is the intersection of the line
connecting the two camera centers with the image planes. Figure [4.3
depicts where epipoles e in the reference frame, and ¢’ in the second
frame are located. If relative camera pose R and t are known, we can
derive both epipoles immediately,

e=1
¢ =Rt
Since the epipole is contained in all epipolar lines, it must hold that
' Fr=0Vz = ¢"F=0.

Therefore, the Fundamental matrix has rank two.
The Fundamental matrix can be calculated from intrinsics K; and
K5 and the relative rotation R and translation ¢ by

F=KR"[t] K" (4.3)

This expression can be derived using the expression for the epipole and
eq. (4.1al).

Since we assume intrinsic parameters to be known and compensated
for, we may delete the camera matrices from expression (4.3)), and are
left with the FEssential matriz

E = R"[t].. (4.4)

R and t can be recovered from a given Essential matrix using the SVD,
but the solution is not unique. There are two distinct solutions for R,
and a sign ambiguity for ¢, which yields four possible solutions of the
decomposition. In later chapters, we will only refer to the Essential
matrix, and not model the camera parameters explicitly.

There are degenerate configurations where the Essential matrix can-
not be defined. The first case is when all points lie on a scene plane,
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then there exists a homography H such that x} = Hz, Vi. If we then
choose £ = SH, for any skew-symmetric matrix S, we have

o) Bx =2/ H' SHx; =0

There are infinitely many Essential matrices describing the point corre-
spondences perfectly. The second degenerate case is at t = 0. Eq.
would simply yield £ = 0, which is a trivial solution to the equation
2'TEx = 0 and does not satisfy the rank two constraint. Scene depth
cannot be recovered from a stationary camera.

4.1.4. Essential Matrix Estimation. So far, we assumed the
relative camera pose to be known and derived the Essential matrix,
but in practice this is rarely the case. Usually, the Essential matrix
needs to be estimated from point correspondences (z;, ), where the
rank 2 constraint needs to be enforced during estimation. We can
rewrite the Essential matrix constraint in linear form,

o' Er; =0 < (2] @2)")vec(E) = 0.

We then define A to contain the Kronecker products of all correspond-
ing points,

v @

A= . , Avec(E)=0. (4.5)

Ty @2y
The Essential Matrix has eight degrees of freedom. Since each point
correspondence introduces a linear constraint, we need at least eight
points for estimating the Essential matrix.

The baseline approach is the normalized 8-point algorithm, which
is based on the SVD. The algorithm does not require normalization to
Essential matrices, but can estimate arbitrary Fundamental matrices.
The 8-point algorithm is fast, since no iterative updates are required,

Input : Point correspondences {(x;,z})}

Output: Fundamental matrix F'

Find normalizing transforms 7" and 7", where z; = Tx;,
T, = Tal;

Construct A as in eq. in terms of ; and /. Define F' as
the vector corresponding to the smallest singular value of A;

Enforce rank constraint on F by setting the smallest singular
value to zero;

De-normalize the Fundamental matrix, F' = T" TF T;
Algorithm 9: Normalized 8-point algorithm

but may not be accurate. The choice of normalization influences the
outcome, and it is not clear which normalization should be utilized.
The rank constraint is enforced by projecting the estimated Essential
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matrix onto the manifold of rank two matrices, it is not clear how much
accuracy is lost at that step.

Another approach is to perform algebraic minimization. In [8§],
the energy W(Avec(FE)) is minimized subject to ||vec(E)|| = 1, where
¥ is a convex error function. The norm one constraint avoids the trivial
solution £ = 0, but does not enforce the correct rank, hence the matrix
needs to be projected again after iterative optimization.

In contrast to the above methods, the approach presented in [37]
introduces the manifold of essential matrices £, and performs the es-
timation task as energy minimization on the manifold. The Essential
matrix can be factorized as

E=UE\V', E,=diag(s,s,0), U,V € SO(3), s > 0.

Since scale cannot be determined from point correspondences, we re-
strict ourselves to normalized FEssential matrices with s = 1. Differen-
tiating with respect to U and V, with respective tangent spaces UQY
and VQV and Q = [(w; wy w3)']«, we find the tangent space

TpE ={UQVE, — E,QV)V '}

1% U 1%

0 W3 — Wz —Wy .

= U |WY —wy 0 wy |V
—wl¥ WY 0

We observe that wY and wy appear only in difference, hence we have
an over-parametrization with the six components of w¥ and w". The
Essential manifold is only five dimensional. This matches the geometric
interpretation, where we would expect three degrees of freedom from
the rotation and three from the translation part minus one for scale
ambiguity. Given vector z € R, we define tangent vector g () by

0 —X3 —Ts
Ep(z)=U | z3 0 z, | VT,
—Ty I3 0

We can translate the tangent vector back on QU and QY in order to
update U and V' accordingly during optimization,

X1 Tyq
Qv = Ta . QY = T5
3 =3
V2 x V2 x

The authors derive Riemannian gradient and Hessian of the quadratic

energy

1

J(E)=—Y () Ex)*
( ) 2n ;( 7 ) Y

and apply the Newton method for minimization, under consideration

of different retractions. The energy function is convex, but the set of

valid Essential matrices is not. Hence, we are not guaranteed global
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minimization, but the algorithm turns out to be fast and accurate in
practice.

In [18], the problem of estimating the fundamental matrix is lifted
into the set of probability measures on all valid Essential matrices.
Even though this set is infinite dimensional, the authors propose a
method to minimize the algebraic error as a sequence of convex poly-
nomial optimization problems, and demonstrate state of the art per-
formance.

4.2. Stereo Matching

In a camera setup, where two cameras are positioned horizontally,
and facing in the same direction and take pictures simultaneously, we
have a stereo camera system. Due to epipolar geometry, the optical
flow field between both images is restricted to be horizontal, which
reduces the stereo matching problem to one dimension, rather than
two. As in the monocular case, the horizontal epipolar lines intersect
in the epipole, which lies at infinity. Such a horizontal optical flow field
is called a disparity map, and the disparities are connected to depth by

depth — baseli?e '

disparity

The baseline has to be measured in pixels, thus depends on the intrinsic
camera parameters.

Even though stereo is similar to optical flow in its formulation, it
is addressed with very different methods. The search space is smaller,
and the labels are naturally ordered, which simplifies the application of
discrete approaches to stereo vision. Early papers in computer vision
[31], 86], as well as recent ones [95], [96], 12] solve the stereo estima-
tion problem by discrete MAP inference. A continuous approach to
the stereo estimation as labeling problem is presented in [72]. Other
approaches are local (independent at each pixel) [76], or semiglobal
[39], which means that an energy is formulated, but not minimized to
global optimality.

We present the semiglobal matching in more detail, it is a well
established stereo matching algorithm due to its fast runtime and high
accuracy. The approach does not require rectified stereo images, but
the camera poses need to be known in order to have a one dimensional
correspondence problem. The energy of disparity field D is given by

E(D)=> C(x,D(x))+

e

Z P11 p@)—Dy)=1 + P2l p@)—D(y)>1-
yeN (z)

(4.6)

The parameters p; and p, penalize disparity differences of 1 and > 1,
respectively, where p; < py should hold. Parameter p; represents small
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changes in disparity due to slanted or curved surfaces, while p, models
depth discontinuities.

The data energy is based on the information theoretic mutual in-
formation, which measures how well the first patch predicts the second
one. The mutual information of images I and the warped image I is
given by the entropy of the images minus their joint entropy

MI(I,1") = H(I) + H(I") — H(I, I").

Two images get high matching score if they contain much information,
and are well predictable from each other. The entropy is given by

H(I) = Pi(c)log Py(c),

where Pr(c) denotes the probability of gray value ¢ in image I. Simi-
larly, the joint entropy is given by gray value pairs (c;, ¢2) as they occur
in I and I". Note that the data energy is a function of the entire la-
beling, and cannot be evaluated pixel wise. The unary cost C'(z, D(z))
in eq. is defined based on an initial disparity map.

Exact inference on the energy is computationally non triv-
ial, since the problem is NP hard. However, if the vertices were lin-
early ordered, fast exact inference would be possible with dynamic pro-
gramming. Therefore, semiglobal matching approximates the original
problem on the two dimensional grid with a sum of one dimensional
problems with different slopes.

The stereo setup comes with advantages in three dimensional scene
reconstruction as well. Since the camera positions are known, the depth
can be estimated in correct scale, and the stereo camera positions pro-
vide more reconstruction accuracy, than a monocular camera traveling
into the scene. With the epipole at infinity, it does not have any in-
fluence on the depth reconstruction accuracy, there are no blind spots
in the image. In addition to this, both stereo cameras take pictures at
the same time, thus the static scene assumption is valid, while it may
not hold in a monocular setting. The stereo setup is inherently better
posed for reconstruction than the monocular one.

4.3. Structure Estimation with Bundle Adjustment

Given a set of images, bundle adjustment consist of estimating the
corresponding scene geometry. Depending on the scene setup, the vari-
ables may differ, but the set of images is assumed to be fixed, bundle
adjustment is a batch approach. Typically, point correspondences on
the images will be computed first, which are then explained by camera
poses and 3D scene points.

A slightly simplified scenario lies in the assumption that all cam-
eras have the same center point, and only differ in orientation, as for
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FIGURE 4.4. Panorama stitching with bundle adjustment. The 3D
orientations and intrinsic camera parameters need to be estimated,
in order to render the pictures into a common artificial view (top
row). The bottom image shows the final panorama, which is the re-
sult of further postprocessing. This particular panorama illustrates
the difficulty that arises with dynamic objects in the scene. A car
appears twice, because it was photographed in different locations in
the input images.

example in panorama stitching [I5]. Due to the lack of camera trans-
lation, the induced motion is depth invariant, and no 3D points need
to be computed. Each input image is equipped with a rotation R; and
intrinsic camera parameters K;. The homography mapping view j into
view ¢ is given by

Hij; = KRR K.

Given point correspondences {(uy,u)}, where i and j define an im-
age pair and k enumerates the respective matches, bundle adjustment
lies in minimization of the energy

1
=Y Sl = m(Hyb) P

i7j7k

over image rotations and intrinsic camera parameters. The energy
can be minimized with Levenberg-Marquardt. While the energy is
convex, the set of rotation matrices is not, and we are only guaranteed
convergence to a local minimum. Furthermore, no global orientation
is enforced, rotating all cameras jointly does not change the objective,
since the homography H;; only depends on relative orientation between
any two views.

Figure [4.4] shows an example panorama image, where postprocess-
ing has to been applied after bundle adjustment. Differences in bright-
ness need to be reduced (gain compensation), and the transition be-
tween the different views needs to be blurred.
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4.4. Monocular Localization and Mapping

Structure from Motion for monocular videos is referred to as simul-
taneous localization and mapping (SLAM), where the camera position
inside a virtual world is computed, while the world map is updated si-
multaneously. In the following, we present a short survey of monocular
SLAM approaches.

An early work in the field is the parallel tracking and mapping
(PTAM) approach [43], where the video is split into segments sing
keyframes, and bundle adjustment is performed on each segment. The
tracking and mapping parts are handled in parallel in two independent
threads. The method tracks a very sparse set of feature points, and
is targeted towards small closed environments, such as small objects
in an indoor environment. A similar approach, which does not split
intow two parallel threads, and has a different set of image features, is
presented in [23].

Large Scale Direct Monocular SLAM (LSD-SLAM) [28] focuses on
accurate odometry and semi-dense depth maps for long video sequences
in outdoor environments. The keyframes are aligned according to the
estimated camera parameters and depth values, minimizing the photo-
metric error yields accurate poses and depths, and reduces sensitivity
to scale drift. Loop closure detects previously visited locations, and
corrects drift errors in previous keyframes. The approach runs in real
time on a single core CPU.

A dense approach is given by the Dense Tracking and Mapping
(DTAM) method [67], which still runs in real time, but on parallel
GPU hardware. Each keyframe is equipped with a dense inverse depth
map &. Auxiliary variables « are introduced, which are coupled to &,

1
Beo = / GIVEN +AClu,0) + 55(6 — ). (47)
Q
g(u) denotes a weighting term, which depends on the image gradi-
ent. The € norm is defined similarly to a scaled version of the Huber

norm (|5.3),
llzli3 if ||z]|2 < €
||a:||e={ 2 Il

€

|z|ly =5 otherwise

but the choice between L1 and L2 norm depends on the respective case.
Selecting the L2 norm for small values of ||z|| reduces the staircasing
effect, which tends to occur with TV regularization. C(u,«) is the
photometric error term, which depends on o and the camera parame-
ters, which are estimated in a separate tracking method. Utilizing the
dense depth estimates improves pose estimation compared to the sparse
PTAM tracking algorithm. Energy is minimized with the primal-
dual method. The non convexity of the dataterm C'(u, «v) is handled by
discretizing the inverse depth interval [{yin, &max] into equally spaced
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segments, and performing exhaustive search in order to evaluate the
proximal operator. More recent similar approaches are presented in
(82, 54, 24].

An alternative scene representation is given by voxels, which can
either be empty or solid. Each keyframe is equipped with a depth map,
which are then fused into a global voxel representation. The following
energy is presented in [99] and [98] for depth map integration,

E(u) = /QZwi(xﬂu(x) — fi(@)|dz + a TV (u).

fi(z) denotes the vote of frame ¢ for voxel x, which is 1 for air and —1
for solid, the object surface is given by the isosurface u = 0. Occluded
voxels are ignored by setting w;(z) = 0 for a certain depth behind the
observed object. The TV term is three dimensional, including x, z and
z derivatives. The approach in [94] describes a setup, where a camera is
mounted to a flying drone, while a compute server estimates a voxel re-
construction simultaneously. The dense voxel representation is limited
to small range objects and grows cubic with increased resolution.



CHAPTER 5

Variational Discrete Optical Flow Estimation

The original optical flow methods based on the brightness constancy
assumption are successful on many optical flow benchmarks, but they
also have limitations. The brightness constancy assumption does not
always hold in outdoor scenarios, especially in the case of a camera
mounted on a car. Modifying the optical low method to minimize a
more robust data term may not be trivial. The warping scheme adds
a further source of estimation error. Small objects tend to disappear
on a small scale, recovering an object later on a finer scale is unlikely.

Discrete optical flow methods can overcome these limitations. The
data term is evaluated for each pixel independently, hence there is no
requirement on convexity or differentiability, and there is no require-
ment of a warping scheme, However, depending on the search space of
optical low candidates in each pixel, the model may become infeasible.
Another drawback of discrete optical low methods is the regular grid
structure of the displacement labels. Discrete optical flow methods
usually apply a continuous postprocessing, in order to achieve subpixel
accurate optical flow.

In this chapter, we summarize continuous and discrete optical flow
methods with their respective advantages. We propose two new ap-
proaches to discrete to discrete optical flow, a sparse approach with
filtered flow candidates, and a dense one. The sparse version is par-
ticularly targeted to the static outdoor environment, and making use
of epipolar geometry. The dense version approximates the intractably
large flow model by sequence of smaller models, where the approxima-
tion strategy is justified by probabilistic means. We choose discrete
optical flow models, because we think that the limitations of discrete
approaches will become less important in the future, where computers
will have more memory and computing resources available, and discrete
inference algorithms are likely improve as well.

5.1. Optical Flow Estimation

The classical optical flow estimation methods are presented by Horn
and Schunck in [40] and Lucas and Kanade [56]. Both approaches are
based on the assumption, that the image brightness does not change
over time along any track in the sequence,

dl
dt
53

0.
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The time derivative decomposes into x, y and t,
di 9l dv OI dy OI
dt  Ox cjt Jy dt Ot

=u =v

0. (5.1)

The partial derivatives of the intensity is given by the respective image
gradients. At each location, we get a single constraint on two variables,
thus the problem formulation is underdetermined. The brightness con-
stancy assumption can only estimate the part of optical flow, which
lies along the image gradient, the orthogonal part on constant bright-
ness cannot be recovered from image data alone. Therefore, regularity
between neighboring pixels is imposed by adding the squared optical
flow gradient to the objective, which reads

Eus(u) = / (L@t L@+ ()

+ a (Vug)® + (Vuy)?) dz.

From the Euler-Lagrange equation, we get optimality conditions on the
optical flow field,

(5.2)

I*u + LI = a?Au— 11,
Lilu+ Lv=o’Av—1,1

An iterative scheme solves for v and v satisfying the Euler-Lagrange
equations, using a discrete approximation to the Laplace operator. The
classical model by Horn and Schunck has been basis for several optical
flow methods, which extended the original formulation to different data
and regularity terms, e.g. [16, [83].

The approach by Lucas and Kanade avoids the requirement of
an explicit regularization by assuming that neighboring pixels {z'}
will have very similar optical flow. This assumption generates sev-
eral brightness constancy equations, where the exact number depends
on the choice of neighborhood, such that the resulting system is overde-
termined.

) HE [
L6 1 ~I(a")
—A =b

We compute v and v using the least squares solution
ATA <Z> =ATh = (g) = (ATA) ' ATD.
We may multiply the image patch with a weighting matrix W,

(Z) = (ATWA) TATWb.
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The matrix (ATW A) is also called the structure tensor, which we will
encounter again in the section sparse optical flow estimation. In ho-
mogeneous regions, however, the resulting linear system may not be
invertible. There is no guarantee for estimating a dense optical flow
field. In contrast to the method by Horn and Schunck, there is no need
for an iterative update scheme.

The drawback of both approaches is that the relation in eq.
only holds if the motion is very small compared to the image resolution.
Displacements over several pixels can only be estimated by refining the
optical flow field estimated over different scales of the image. Since
details are lost after blurring and downscaling, motion of small objects
may not be estimated correctly.

5.1.1. Robust Optical Flow. The traditional approaches to op-
tical flow estimation as presented in the previous section lack robust-
ness, of both the data and the regularity term. The gray value con-
stancy assumption is not robust against changes in illumination, and
the quadratic smoothing prior does not preserve sharp motion
discontinuities.

Robustness against changes of illumination can be achieved by nor-
malized cross correlation (NCC') [90] on image patches. Given two
vectors of gray values, the NCC energy reads

(p—p)'(¢—7)

lp = pllllg — all’

p and ¢ denote the average grey values of the respective patch. We ob-

serve that NCC is invariant against additive and multiplicative changes

in p or . However, the energy is not differentiable and not convex.
Another robust matching term is based on the CENSUS transform

[97, 134], which lists the sign differences of the respective pixels in
comparison to the patch center x*,

Exce(p,q) =1—

-1 ifa< —e
CENSUS(p, ) = sign,(p(z) — p(z™)), sign.(a) =0  if |a| <€ .
1 if a>e

This is a modified version of CENSUS, which is also used in [90], the
original transform does not have the e ball around zero. The CENSUS
matching of patches p and ¢ consists of counting different signs in the
CENSUS transformed patches,

Ecensus(p, q) = Z LeENSUS(p2)ACENSUS(q,2)
x
The CENSUS transform is robust against both additive and multiplica-
tive changes as well, it reduces the gray value information into a binary
or ternary sign function, thus removing most of the information. The
energy is piecewise constant in terms of the center pixel gray value.
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The quadratic regularity term (5.2) can be replaced by the more
robust L1 norm or total variation,

TV(u) = [[Vuelly + [V |-

The L1 norm is more robust, since outliers get a linear rather than
quadratic weight, and convex, but not differentiable. Therefore, it may
be approximated by a the Huber norm,

1.2 i
" s if |Oé| <46 5.3
[levl[5 {5(‘04 — 10) otherwise ’ )

2
which is locally quadratic around zero, but grows linearly for large
values of . A similar approximation is the Charbonnier functional
[17], which does not require a piecewise definition and has a continuous
second derivative,

la|l§ = Va2 +6.

This approach has been applied in [16, [83].

The non-differentiability of the L1 regularity term can be addressed
by applying optimization techniques, which do not require a smooth
objective. E.g. the DataFlow approach [90] computes the optical flow
field using the fast primal dual method for the dataterms mentioned
above and total generalized variation (TGV),

ETgv(u, U)) = Edata(u) + a1HVu — U)H1 + Oéo“VU)Hl. (54)

The auxiliary variable w contains affine parameters for the optical flow
field, whose gradient is assumed to be sparse. Thus, TGV regulariza-
tion encourages piecewise affine optical flow, while TV regularization
assumes a piecewise constant flow field u. The fast primal dual method
requires to evaluate the proximal operator for the data term, which is
possible for NCC and CENSUS matching. Also, the proximal operator
of the data term can be evaluated for each pixel independently, which
makes the approach parallelizable.

A similar approach is presented in [71], but the TGV term is ex-
tended to a non local neighborhood,

NLTGV(u,w) =) Y an(z,y)u(@) — uly) — (w(z),x —y)|

e ye

+3°N apl@ y)llw(e) — wly)h

e ye

The Census matching is evaluated across different scales, in order to
increase robustness against scale changes as well. Energy minimization
is performed over the image pyramid in a fast primal dual framework
as well.
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5.1.2. Discrete Approaches. The methods for optical flow es-
timation we presented in the previous section require the creation of
a multiscale pyramid, in order to warp and refine the flow field from
coarse to fine. Small objects, which cannot be detected at small scale,
will not be rediscovered at a finer level due to the greediness of the
approach. Different approaches to avoid the coarse to fine scheme have
been proposed, which operate on the reference images in full size.

The approach of Steinbriicker [80] separates the data and regularity
energies by introducing auxiliary variables v and v,

E(u,v) = Eqata(t) + Ereg.(v) + %(u — )2

The energy is minimized with respect to u and v alternatingly until
convergence. The regularity plus coupling term is convex, and can
be minimized for example with the fast primal dual method. The
data plus coupling term can be minimized by exhaustive search. The
method does not have any requirement on the dataterm, Drawback
of this approach is that it requires a long sequence of independent
optimization tasks, and parameter 6 needs to be decreased over time
in order to couple u and v.

Estimating optical flow by means of discrete optimization is diffi-
cult, due to large number of labels. The approach by Mozerov [65] fil-
ters optical flow candidates by the symmetric phase only filter (SPOF),
a frame correlation method based on the Fourier transform. The con-
strained search area is input to a graphical model with gray value and
gradient constancy as data energy, and a truncated TV regularity term,
followed by a (discrete) subpixel refinement.

The approach by Menze et al. [60] “DiscreteFlow” addresses this is-
sue by reducing the optical flow labels to a small set of proposals. These
proposals are generated by a nearest neighbor search in a feature space,
similar to the PatchMatch approach [7]. The nearest neighbor search
is implemented efficiently on a randomized k-d tree datastructure. Op-
tical flow proposals are also shared among neighbors, since they are
likely to have similar motion. Inference on the graphical model with
on optical flow proposals is implemented with block coordinate descent
(BCD) [21], which is a fast but approximate inference method.

FusionFlow [50] takes a similar approach, by fusing the outcome
of different continuous methods into a single optical flow field. The
labels are generated by the Horn and Schunck and Lucas and Kanade
approaches with different parameters, the problem is then reformulated
into a binary graphical model and optimized with graph cuts. The final
optical flow field is postprocessed with a continuous method, which is
very common in discrete optical flow estimation.

5.1.3. Functional Lifting and Convex Relaxation. As in the
discrete approaches we presented so far, the problem of optical flow
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estimation is viewed as labeling problem, where labels correspond to
displacement vectors. This strategy increases the problem size, the
unary energies have to be precomputed for all possible displacements.
Inference may increase memory requirement further, e.g. if Ishikawa’s
method is applied, to which we introduce a more memory efficient
alternative in the following.

We may interpret the (second order) labeling problem as continuous
energy minimization task, assuming that the labels are ordered and the
label assignment can change continuously between them. If all unary
and pairwise energies were convex, the overall energy is convex, and
can be minimized to global optimality. However, the assumption, that
all unary energies are convex is unrealistic in the context of optical
flow estimation, but the convexity assumption on the pairwise term is
satisfied by an L2 or L1 penalty term.

We now shift from the discrete to the continuous problem formula-
tion, in order to reformulate the labeling problem into a convex energy
at the expense of increasing the dimension. Let the (one dimensional)
optical flow energy be given by

Bu) = / _ Bucala,u)dr + / Vu|da. (5.5)

€N

Let I" denote the possible range of optical flow. We now introduce the
lifted function ¢ : [2 x I'] — {0, 1},

o(5,7) = {1 u(x) >~

0 otherwise

with the constraint that ¢(z, Ymin) = 1 and ¢(z, Ymax) = 0, YV € Q.
The valid constraint set is denoted with €2r. Then we can reformulate

energy (5.5)) in terms of ¢,

E(9) = /( 900+ B, 00l 7). (6

A proof is presented in [69]. However, we do not yet have a convex
energy in eq. , since €lr is not convex. We need to relax the
binary set {0,1} to the interval [0, 1], in order to get a convex relaxed
functional in ¢, which can be optimized with the primal dual algorithm.
The approach requires an ordered label set, hence it is evaluated on
stereo cases only. The authors of [33] present an extension, where the
general flow problem can be modeled with a similar strategy, under the
assumption that the pairwise term is separable (e.g. the L1 norm),

Ereg (1, 0) = Ereg (1) + Ereg (v)-

The data energy needs to be computed for all possible displace-
ments, which limits the approach to small motions.
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In the following sections, we describe two approaches of describing
optical flow as labeling problem, which address the problem of large
displacements.

5.2. Sparse Discrete Optical Flow

We express optical flow estimation as a labeling problem, where
labels correspond to precomputed sparse optical flow candidates. The
flow candidates have to satisfy several properties, they need to match
well according to visual features, and they need to meet constraints
that arise from epipolar geometry. The workflow of our algorithm is
presented in algorithm [I0] In the following sections, we explain the

Input : reference and secondary images [; and I

Output: sparse flow field u

learn patch characteristics on Iy;

determine distinct locations in /;

perform matching, keep a limited number of matches per pixel,

estimate epipolar geometry and filter matches;

infer optical flow by means of discrete optimization;
Algorithm 10: Our sparse discrete optical flow approach.

individual steps in detail.

5.2.1. Learning Patch-based Matching. Given a patch p, we
subtract the mean gray value p to gain robustness against illumination
changes and define the vector

fp)=p—D

Given a set of training patches P = {p,...,p,} extracted from the
reference frame at each pixel (sufficiently distant from the image bor-
der), we apply Principal Component Analysis (PCA) by computing the
respective empirical mean pp and covariance matrix C'p

1
MP:EﬂE:ﬂm,

Cp = % S () — o) (Fp) = 1)

Since C'p is a covariance matrix, it has only real and non-negative
eigenvalues. We perform the spectral decomposition

Cp = BTAB,

where B contains the eigenvectors as its rows, and the diagonal matrix
A = diag(\) contains the eigenvalues Ay > Ay > ---. We only keep
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the first N eigenvectors which represent the components that capture
most variance of the data,

B':= (bij)i=1,. Nj=1...Ds

N = diag(Aq, ..., Ay).

We can reduce the dimension of our features by projecting onto the
subspace of N components which capture most variance,

f'=DBf(p),

and compute the data energy, e.g. NCC, on the projected features.
The a-contrario model [76] is based on the principal components
as well, but takes a probabilistic approach to the matching problem.
Image statistics are calculated on the reference frame by finding the
histograms of the respective principal components. The cumulative
histogram of the i’th principal component of patch ¢ is denoted H;(q).

The resemblance probability p’,, represents the probability, that the
7’th principal components of ¢ and ¢’ occur by chance,

R H;(q') if Hi(¢') — Hi(q) > Hi(q)
Py = 1— Hi(q) if Hi(q) — Hi(q') > 1 — Hi(q)
2|H;(q) — Hi(¢')| otherwise

If both components are equal, the resemblance probability is zero, since
equality cannot happen by chance. The mismatch probabilities are
computed for each component, quantized into a non decreasing se-
quence of negative powers of two, and multiplied to a single mismatch
probability for the pair of patches. The quantization step ensures that
mismatches in early components get a higher weight than later ones,
since these are visually more perceivable. The full method is presented

in algorithm [I1]

Input : principal components ¢ and ¢’ and cumulative
histograms H;

Output: mismatch probability p

permute ¢ and ¢’ jointly, so that ¢ is sorted in decreasing order;

compute p*,, for each comporlent;
define Doy 88 quantization of p’,/;

p=1L0ry;
Algorithm 11: a-contrario matching

Discrete patch matching can only be successfully applied in distinct
or feature-rich regions. We select the most distinct points in the refer-
ence frame and only apply matching on them. Our model can directly
evaluate the distinctness of a patch by using its Euclidean distance to
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(a) reference frame (b) a-contrario 50

(c) distinct patches (d) NCC 100

FIGURE 5.1. Comparison of the ground truth (c) with our approach
and different data terms. Our method recovers large scale motion
in distinct areas.

F1GURE 5.2. Matches found by our NCC with 100 principal com-
ponents. Multiple matches which differ by only one pixel are joined
to one here for illustration. In two of three cases, the correct cor-
respondence is included in the candidate list. The example, where
the correct match is not found, is a case of disocclusion. Figure 5.3
shows a more detailed view on the patches.

the average patch, this is similar to distinctness as defined in [58]. An
example of distinct patches is shown in Figure. |5.1}

Figures [5.2] and [5.3] show example matches found by NCC and the
a-contrario model. We can observe that the correct match is found, if it
is not occluded, and that the wrong matches are similar in appearance.

5.2.2. Graphical Model Construction and Inference. We es-
timate optical flow by defining a graphical model on optical flow candi-
dates, which are found by matching the patch around the pixels in the
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Patch GT NCC NCC 100 a-con. 50

FiGure 5.3. Close up view of the example matches shown in Fig-
ure All matchings find the correct correspondence for the first
two patches, which are highlighted in green. The third patch is
changing due to a disocclusion, so that we cannot expect a correct
match. We can see that the original (full rank) NCC finds a subset
of the approximate NCC dataterm. The a-contrario model finds ex-
actly the correct match on those two by looking at only the first 50
of 625 principal components, but returns a wrong match on the third
patch. Also we can see that patch-wide changes in illumination are
correctly ignored by all matchings.

i BN]

reference image with the second one. In order to accelerate the match-
ing, we only match distinct locations in the first image, and restrict the
search space to a maximum displacement. The resulting matches are
filtered by the matching score, and limited in number for each pixel.
A distinct patch may not appear in the graphical model, if no suitable
match can be found.

In addition to the appearance based filtering, we assume a monoc-
ular scene setup, and filter matches based on epipolar geometry. We
calculate the Essential matrix with the Helmke algorithm [37] on key-
point matches found by SIFT [55]. For increased robustness against
outliers, the Essential matrix estimation is inside a random sample con-
sensus (RANSAC) framework. The Essential matrix is estimated on
a small sample from the input data, and evaluated against the whole
dataset. If a sample describes many input points well, the current es-
timate is returned, otherwise the procedure is repeated. Even though
this approach appears to be heuristic, it has been applied successfully
in many contexts in computer vision [36]. If the epipolar line constraint
is violated, we delete the respective match from the list of candidates.

The epipolar line constraint alone is not strong enough to filter out
wrong matches effectively, since only a small portion of the epipolar line
contains matches with positive depth. In order to find scene depth, we
factorize the Essential matrix into rotation R and translation ¢, under
the assumption that the camera moves forward, and has only small
rotation. For a given match, we calculate the respective depth d at
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FIGURE 5.4. The candidates of the middle patch in Figure ,
x is the patch location in the reference frame. Candidates which
are further away from the epipolar line than a given threshold are
not admitted by our model. Also, the depth corresponding to a
candidate must be positive, where the projected points ¥, are used
for depth computation. Candidate 1, fails in both these tests, y3 and
Y4 are within the margin but do not correspond to a positive depth.
Only the correct match y; is admitted for further consideration in
the graphical model.

location z in the first image, and depth d’ for the corresponding point
2’ by solving a linear system
de=t+d2 & [¢ —a] (Call,) =1.

Since the viewing rays do not have to intersect, but can be skew, the
system of equations is overdetermined. We find d and d’ by calculating
the least squares minimum. If depth d is negative, the match is deleted
from the list of candidates. Figure illustrates the match filtering.
Since the Essential matrix estimate is noisy, a patch is only deleted
with a large deviation from the epipolar line.

The remaining matches form the labels of a graphical model, whose
optimal state is our estimated flow field. We define two pixels as neigh-
bors, if they are closer than a certain radius r. Since we only have labels
on a subset of pixels, choosing a local neighborhood may result in many
disconnected components. Also, a non local neighborhood reduces the
staircasing effect, TV regularization is known for. Neighboring pixels
, which are further apart, get a lower weighting. The weight for pixels
x and y is given by

w(z,y) = exp (—30 [l —yl]) .
The overall energy is given by
E() =Y Buaan(l@) + Y w(z,y)lug) — il
z€N (z,y)eEN

The label at pixel z is denoted I(z), and wu; denotes the respective
displacement vector. The corresponding unary and pairwise factors are



64 5. VARIATIONAL DISCRETE OPTICAL FLOW ESTIMATION

a-contrario 50 NCC 100

seq. | dens. C++ ours | dens. | C++ ours

11 528 | 13.33 21.01 2.39 | 10.78 9.91

12 6.69 4.73 9.52 5.18 3.14 5.53

49 5.99 4.99 6.59 1.63 0.68 1.63

74 4.96 44.27 | 33.91 0.32 | 55.56 | 54.91
TABLE 5.1. Sparse optical flow evaluation of the 3px error on train-
ing sequences of the KITTI benchmark versus the Classic++ ap-
proach. We evaluated in the image regions, where both ground
truth flow and estimated flow are available. The data term of the a
contrario model gives a denser solution than the NCC but is inferior
in accuracy.

constructed as tables, and inference is performed using Tree Reweighted
Belief Propagation (TRBP) [92].

5.2.3. Evaluation. We test our method by evaluating the optical
flow field to the Classic++ estimation method by Sun et al [83], which
is a highly ranked method on the KITTI benchmark. The patch size
is 25 x 25 pixels. Figure shows four example outputs on the KITTI
flow benchmark. Our optical flow fields are very sparse, homogeneous
regions are not matched due to the low distinctness value.

Table shows a comparison of our approach to Classic++. We
observe that NCC yields larger accuracy while the a-contrario model
returns denser flow fields. In three cases, our approach achieves a lower
error, but we should note that the evaluation scheme has a slight favor
of our method. Our approach can decide the locations which are eval-
uated, while the Classic++ method has to find a point correspondence
for each pixel.

Figure shows the output of our method versus Classic++. We
see that our flow fields are very sparse, and do not represent the scene
structure well. Our matching term is robust against changes in illu-
mination, but does not model changes in scale or orientation, which
appear frequently in outdoor traffic sequences.

In the next section, we propose a dense framework, which does not
require the filtering of sparse matches, but instead approximates the
infeasible dense model by a sequence of small graphical models.

5.3. Dense Hierarchical Label Reduction

In the sparse optical flow framework, we inferred optical flow by
minimizing an energy function over a small set of filtered optical flow
candidates. For dense output, we wish to minimize the same energy
with a dense label set on the pixel grid. Current optical flow methods
are required to estimate accurate flow with large motion. Discretizing
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optical flow color encoding;: { ’

(c) sequence 49 (d) sequence 74

FiGure 5.5. Comparison of our sparse optical flow approach to
dense variational method C++ [83]. For each example we show from
top to bottom the reference frame, (sparse) ground truth optical
flow, the output of Classic++ and our approach with data term NCC
and 20 principal components. There are difficult lighting conditions,
especially in sequence 74, where the Classic++ method produces
erroneous optical flow in large regions. Our method produces very
sparse optical flow fields.
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= B

F1GURE 5.6. Label selection mechanism for a 2D optical flow field.
The square represents possible displacement vectors for a fixed pixel.
In the first iteration the displacement grid is partitioned into a 3 x 3
grid (3-tiling). Inference in the reduced graphical model is per-
formed, the best two labels are chosen and refined. This procedure

iterates until an individual label has been selected, here filled in
black.

s

fo—— ol ~ Bo— B

F1GURE 5.7. A graphical model with two vertices and an edge be-
tween them. The first vertex has three possible labels, and the
second five. The labels are clustered into a blue and an orange set.
The reduction is performed independently on each factor.

the search space with pixelwise resolution generates large graphical
models, where already the unary energy values will not fit into the
memory of a modern computer.

We aim at approximating an infeasible model with a sequence of
small models.LogCut [51] achieves logarithmic complexity by solving
for the variable bitwise, where each bit is found by inference on a binary
graphical model with graph cuts. Similarly, we define a hierarchy of
labels, and find a path through the tree by solving a small graphical
model at each step. The reduction is based on divergence between the
respective probability distributions.

In case of optical flow, there is a natural clustering of labels into
a regular grid structure, we refer to the grid size as tiling. Figure [5.6
shows a hierarchical path through label clusters, until a single optical
flow label is selected. Instead of selecting the single optimal cluster in
each step, we allow selection of multiple clusters, in order to track mul-
timodal distributions more accurately. In our experiments, we perform
inference with TRW-S, which calculates approximate marginals, that
allow us to select multiple best labels. Figure shows an example
reduction into a binary graphical model.
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5.3.1. Reduced Graphical Model Parameters. In this part
we derive the corresponding energy function for the proposed label
reduction technique. We define that clustering C' = {cy : k=1, ..., K}
to be the collection of all clusters. To each of these clusters, we associate
a probability denoted by ¢g. Each factor of the given graphical model
is reduced separately.

Let p; denote the probability of label [ in the respective factor. A
suitable measure of distance is given by the Kullback-Leibler (KL) [45]
divergence,

KLy(q) =YY mlog (ﬂ> (5.7a)

cx€C l€cy ey,
= — Z ac, logq., + const., a. = Zpl. (5.7b)
cpeC lEcy

The second equality follows from properties of the logarithm and that
the probability summed over the clusters are constant.

In order to minimize the KL distance, we need to differentiate
, and solve for a vanishing gradient. However, since ¢ represents
a probability distribution, the derivative needs to be projected to the
tangent space of the probability simplex. The projection is given by

1’

—T——, 1

pAK 171’ = (17 c 1)T GRKa

where [ is the identity matrix. Let a = (ay,...,ax) the vector of a,,
introduced in (5.7b)), then differentiating (5.7b]) w.r.t. ¢ results in

a

VK L(pla) = Py (5) |

where the division is done element-wise. We note that the stationary
point is obtained if and only if
a
-=1.
Or equivalently, we obtain the ezact reduced labeling scheme if the

cluster’s labels correspond to the probabilities of the attaining a label
in the original label space, i.e.,

Qep = Zpl, Vey,. (5.8)
lecy

Furthermore, we see that the reduction scheme is invariant to ad-
dition on model energies. We move from the probabilistic viewpoint
to the energy formulation. We get the following reduced energy for a

cluster ¢
E., = —log (Z eXp(—Ez)> :

lecy
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Adding a constant to each energy will increase the reduced energy
FEicq by the same constant. However, the reduced energies are not
invariant to multiplicative scaling of the energies. The identification
of the proposed reduction scheme as an instance of the generalized a-
divergence, presented next, gives an explicit interpretation of the scale
dependency.

5.3.2. Label Reduction Based on the a-Divergence. The in-
troduced label reduction technique can be viewed as an instance of the
general a-divergence [62]. Let a € R\ {0, 1}, then the a-divergence is

defined as,

1

Du(p |l q) = a(l—a)

Z apr+ (1= a)geq) — 11 o)™
!

Note that in the limit « — 1, D, corresponds to the standard
KL divergence measure between p and ¢. Assuming we have found
the optimal labeling in the original label space, we need to find the
corresponding optimal labeling of the clusters. We minimize D, (p || ¢)
over the probabilities ¢. There exist a closed from solution for the
global minimizer with vanishing gradient,

1
Py | —— l—a)— (1 —a)pq | =0,
A ((1/(1 —a) ;( ) — ( )p; qc(l))
with the projection as in (5.3.1)). In case of optimality, the projec-
tion is invariant under additive and multiplicative constants, therefore
optimality is given by

Zplo‘qc_(lo; ox 1. (5.9)
1

Equation (5.9)) implies the following relation between the cluster
probabilities and the label space probabilities. For all clusters ¢, € C,
we have

{qc—kazp? L 1, Ve, € C} = (.= <Zpla> . (5.10)

lecg lec

Expression ([5.10) matches our previous result with a« — 1. Since
the probability values p; are calculated from the energies, as given by
ps* corresponds to the probability of the scaled energy aF;. Scaling
factor v can be viewed a normalization constant, i.e., the operation
in scales the objective function, and after performing the KL
reduction it restores the original scale. As a — oo, the expression
converges to the maximum norm.

As a — 0, the a-divergence converges to the KL divergence between
q and p, lim, 0 Do (p||¢) = KL(¢||p). The divergence measure and its
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W energy B probability M optimal label

Lilalslylslslylgly C1C2C3 C1C2C3 C1C2C3 C1C2C3

1
0.1
l112l314l516l7l8l9 C1C2C3 C1C2C3 C1C2C3 C1C2C3
original a=0 a=1 a=10 a=o
FIGURE 5.8. Reduction output on nine random labels, which are
clustered into three clusters of equal size. We minimize the energy,
which corresponds to a maximization of the probability. In this case,

the optimal label shares the same cluster with low-energy labels, so
that the correct cluster is found only for o = oo.

minimum with respect to the cluster probabilities is given by

KL(qllp) = > qe(log g. — log pr),

ceC lec
qe;
VK L(qllp) = logqe, —logp, + o
lEc; ¢

whereby we get, after solving V,K L(q||p) = 0,

(Z@logpl> ( ZIECi—IOgm)
ge, =exp | =—t—— ) =exp | - —T— ).

|ci i

In this case, the minimum value corresponds to averaging the respective
energies.

Based on the interpretation of , we have shown that mini-
mizing the a-divergence between given label probabilities and cluster
probabilities correspond to an energy mean for o = 0, a soft-min for
positive a and the hard min for o = oo. Figure [5.8] shows the reduc-
tion output on a small example of nine random labels. These labels are
merged into three clusters of equal size. The top row shows the energy
values and the the corresponding probabilities for different values of «.
As clearly seen, only o = 0o corresponds to the correct labeling in this
unary case. This example illustrates that single labels with low energy
clustered together with high energy labels are lost with a small value
for a.
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global 3-tiling 5-tiling
inf.  2-marg. inf.  2-marg.
m  GT noc 1.24 2.23 2.05 | 2.04 2.13
% GT occ 1.38 2.80 2.40 2.51 2.39
global 0 4.66 3.98 4.12 3.74

y GT noc 9.22 | 11.94 11.19 | 11.69 14.37
& GT occ 10.64 | 13.82 12.91 | 13.54 15.97
global 0| 17.28 13.93 | 16.14 12.68

TABLE 5.2. KITTT stereo errors. The 2-marginals version achieves
lower error compared to the global optimal solution, but does not
necessarily outperform the single cluster selection when compared
against ground truth.

Choosing a strictly positive value for a introduces a scale depen-
dency, scaling the energy function can be compensated by scaling ad-
justing a accordingly. By selecting a@ = 0o, we eliminate this additional
degree of freedom and do not need to rescale our energy values.

5.3.3. Evaluation. We evaluate different aspects of the proposed
dense flow computation method. Starting with the choice for o and the
first aspect is runtime, we proceed to stereo and optical flow estimation
performance. All optical flow and stereo models we evaluate use the
NCC dataterm and TV as pairwise energy.

In Figure [5.9, we see the impact of changing o on a small stereo
model. We observe that an increased tiling improves the result for
all values of alpha. Increasing o generally improves the accuracy of
the reconstruction. At o = 0, the reduction is the mean operation on
the energies inside the cluster, the single correct label inside a clus-
ter does not have enough influence on the mean energy. However, at
a = 00, the reduction is the min operation, so that the energy of the
best label will be selected. We see that following two peaks using the
marginals instead of applying inference at each level introduces jitter
in the labeling.

Figure [5.10| shows the inference runtimes of direct inference and
the proposed dense hierarchical approach as a function of label size.
We observe that our algorithm has logarithmic increase in runtime,
while the runtime is worse for small models. The global model uses an
optimized version for the truncated L1 pairwise term, because global
inference would not be feasible for the large models otherwise. Even
though the global model is using a dedicated solver, the reduced model
performs better in terms of runtime.

In case of stereo estimation, inference on the global model is fea-
sible, and we can compare our method to both ground truth and the
global model optimum. In Table we can see that the finer 5-tiling
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stereo images and global model solution

5-tiling, in

10-tiling, inference (top) and 2-marginals (bottom)

e

a=0 a =10 a = 00

FIGURE 5.9. Results on the Tsukuba dataset for different values of
a. We can observe that larger values of o and a finer tiling improve
the accuracy. Especially with o« = 0 and the 3-tiling the scene
structure is lost to a large extent, with increasing a we capture
increasingly more details of the scene. There are visible artifacts
introduced by using the 2-marginals selection.
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t,
global
30 A
20 1
10-tiling
10 4
4 ——— 3-tiling
10 50 100 150 200 |L|

FIGURE 5.10. Inference runtime as function of the number of labels
for the proposed reduction scheme and direct inference. While the
original model shows linear runtime, our approach is logarithmic.
We make use of an optimized version of TRW-S for the truncated
L1 penalty function for the global model, but not for the reduced
models. Therefore the 10-tiling performs worse for ten labels, even
though the reduced model is identical to the global one. If the
tiling happens to align well with the number of labels, the reduced
method can perform better, which explains the positive outliers for
the reduced models.

and the tracking of two clusters rather than one increases accuracy
when comparing to the global model, but not against the ground truth
data. Jitter artifacts are introduced by the multimodal tracking of
two clusters, as we can also see in figures and The greedy
reduced method performs better compared to ground truth, than to
the global model. The TV model does not necessarily reflect the scene
structure well, assuming a piecewise affine rather than piecewise con-
stant scene would probably perform better. The greedy selection based
on matching score improves on the end point error score.

In case of optical flow, the global model is infeasible for direct infer-
ence, and we can compare our reduction approach only to the ground
truth flow. Figures|.13|and show example results on the sintel op-
tical flow benchmark. Due to the large label space and the previously
seen jittering effects, we do not evaluate the 2-marginal reduction, but
only inference on the reduced models. Our approach has difficulties
with string motion blur or low texture.

Tables and show optical flow errors in comparison to the
DiscreteFlow method by Menze et al. [60] for each sequence of the
sintel training set. The nearest neighbor flow proposals of Discrete-
Flow run on multiple scales, and thus achieve a better unary energy,
which leads to lower error in both measures. Postprocessing improves
the estimated flow field slightly by subpixel refinement and removal of
outliers.
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disparity: (0  e— max error: Opx m— opx

reference frame and global model disparity

sequence 9 sequence 18 | sequence 23

F1GURE 5.11. KITTI stereo examples with computed disparity and
error in comparison to the global model. The 2-marginals strategy
introduces jitter artifacts, as we can see in the errors. Most recon-
struction errors occur in the lower left part of the images, where no
correspondence exists, especially when the region has low texture.



74 5. VARIATIONAL DISCRETE OPTICAL FLOW ESTIMATION

reference frame and global model disparity

3-tiling, inference

sequence 44 sequence 68 sequence 69

F1GURE 5.12. Further KITTTI stereo examples. In some cases, the
greedier reduction approach outperforms the global TV based model.
The pole in the left image is reconstructed by the reduced, but not
by the global model. The global model can fill regions with low
unary information, while the reduced model filters out the correct
label cluster too early, as we can see at the windows in seq. 68.
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optical flow: / ’ error:  Opx Spx

reference frame and ground truth flow

alley_1 shaman 2 bandage_1 cave_2

FIGURE 5.13. Sintel optical flow examples with error map. We can
see that most errors occur in occluded regions and grid artifacts in
the bandage_1 and cave_2 sequences due to label discretization.
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reference frame and ground truth flow

5-tiling, postprocessed

N B

g PATON

market_b ambush_6 mountain 1 temple_Q

FIGURE 5.14. Further sintel optical flow examples. In the market_5
sequence, we have strong motion blur, which leads to an unreliable
dataterm. Similarly, low texture leads to optical flow errors, as seen
in the ambush_6 example. The mountain_1 sequence has low texture,
but very uniform motion, which simplifies optical flow estimation.
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3-tiling 5-tiling DF

postproc. off on off on

alley_1 0.67 0.58 0.65 0.57 0.17
alley_2 0.74 0.60 0.68 0.54 0.13
ambush_2 44.27 44.20 42.67 42.85 27.04
ambush_4 26.99 25.60 26.52 25.35 21.09
ambush_b 2.33 2.18 2.13 2.01 1.08
ambush_6 24.07 21.44 22.52 20.36 11.32
ambush_7 1.03 0.86 0.93 0.78 0.32
bamboo_1 0.67 0.55 0.65 0.54 0.24
bamboo_2 0.62 0.52 0.59 0.50 0.34
bandage_1 0.98 0.82 0.93 0.79 0.52
bandage_2 0.99 0.94 1.00 0.97 0.65
cave_2 3.84 3.70 3.43 3.32 1.43
cave 4 3.85 3.69 3.60 3.48 2.21
market_2 1.43 1.20 1.41 1.20 0.70
market_5 20.69 19.78 19.45 18.76 8.13
market_6 4.23 3.94 3.33 3.12 1.23
mountain_1 1.80 1.42 1.64 1.34 0.52
shaman_2 0.62 0.41 0.59 0.41 0.19
shaman_3 0.91 0.74 0.84 0.69 0.28
sleeping_1 1.31 0.79 1.29 0.81 0.10
sleeping_2 0.46 0.34 0.44 0.32 0.06
temple_2 5.28 3.40 5.35 3.64 1.06
temple_3 3.12 2.84 3.01 2.79 1.00

7

TABLE 5.3. Sintel optical flow end point errors in pixels. Postpro-
cessing improves the optical flow field, but the DiscreteFlow method
has lower errors in almost all cases. It has the advantage of a mul-
tiresolution dataterm, which is more robust against motion blur and
other deformations. Due to the filtering of optical flow candidates,
the DiscreteFlow method also runs faster than our approach.
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3-tiling 5-tiling DF

postproc. off on off on

alley_1 3.50 2.85 3.38 2.75 1.35
alley_2 2.90 2.55 2.61 2.26 0.81
ambush_2 88.24 87.67 87.12 86.32 71.53
ambush_4 62.81 61.56 61.08 59.75 49.26
ambush_b 21.37 18.59 19.90 17.44 12.50
ambush_6 64.23 62.93 62.70 61.34 48.50
ambush_7 5.46 4.04 5.03 3.87 2.38
bamboo_1 4.46 3.56 4.42 3.54 2.02
bamboo_2 2.60 1.99 2.46 1.93 1.19
bandage_1 8.70 7.35 8.16 6.98 5.09
bandage_2 10.92 9.78 10.79 9.64 8.26
cave_2 15.74 15.22 15.30 14.84 8.71
cave 4 15.81 15.54 15.54 15.45 10.20
market_2 10.00 8.93 10.03 9.11 6.21
market_5 49.39 46.92 48.61 46.45 36.35
market_6 23.47 21.51 22.11 20.07 12.31
mountain_1 14.91 10.27 13.96 10.13 5.00
shaman_2 4.36 1.96 4.05 1.95 0.76
shaman_3 5.26 3.55 4.41 2.94 2.09
sleeping_1 5.50 4.16 5.33 4.12 0.01
sleeping_2 0.55 0.36 0.42 0.27 0.00
temple_2 22.59 19.67 22.90 20.91 9.00
temple_3 25.39 22.40 25.04 22.12 8.35

TABLE 5.4. Sintel optical flow 2px errors in percent. Similarly to
the end point error, the DiscreteFlow method performs better than
the proposed hierarchical approach. The 2px error reflects error in
the image domain, whereas the end point error measures th error in
the flow domain.



CHAPTER 6

Structure from Motion

Assuming that point correspondences are known, we want to re-
construct the world, which was recorded by the camera. Many meth-
ods select a set of keyframes and compute bundle adjustment on the
frames between them, these are batch approaches. This separation into
keyframes increases latency, since many frames need to be captured
before bundle adjustment can be performed. An alternative approach
is given by filtering, where the reconstruction of the current frame is
computed directly using prior information from previous frames. The
filter remains fully responsive, since the reconstruction is computed on
each input frame immediately. In the case of car driving assistance,
fast response and dense reconstruction are vital requirements.

There are different mathematical models for the filtering problem,
of which we present the Gauss-Newton and the minimum energy filters
in the next section. Afterwards, we present a piecewise planar dense
scene reconstruction method for two frames, which can form the basis
of a filter for long sequences.

6.1. Monocular Reconstruction based on Filtering
Techniques

We briefly present the Gauss-Newton filter, which is the basis for
the approach presented in the next section. The state at frame k + 1
depends on the new observation and the states at frames 1 to k, thus
achieving a smooth transition between frames. For example, we may
have a quadratic prior z* of our variables z**!, which is added to a

quadratic data driven energy with observation z#+1,
1
E(xk+1) :§(l‘k+1 _ l,k)THprior(karl _ .Tk)
1
+ 5(Zk;—&—l o Z(ZL‘k+1>THdata<2k+1 o Z(l’k+1).

An application to monocular SLAM is presented in [81], where each
frame is mapped into the same reference view.

6.1.1. Variational Structure from Motion. In [9], camera move-
ment and dense scene depth are propagated and updated at each frame.
The approach formulates inference in a probabilistic framework, where
state X*¥ = (d*,C*) consisting of depth and camera parameters in

79
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terms of observation Y* is given by

pXFYH) oc p(VHX") p(XFIXH)
obser‘v,ation p;;)r

The respective energy is given by a photometric unary energy, and a
quadratic regularity term,

E(X*) = —logp(X*|Y")
= E,(d*,C*) + Ec(C*) + Ey(d").

The probabilistic formulation provides the method with uncertainties,
which improve the prediction, and may also be of interest in the output.
The uncertainty is defined as second derivative of the corresponding
energy,

9 0?
o, = @log —p(x).

We explain the components very briefly here, more details are given
in the paper. E,(d*, C*) penalizes the quadratic difference to observed
optical flow,

Eu(d*,C%) = (@F — u(C*, ")) (35) 7 (aF — u(C*, d¥)).

The variables @ and X; are determined by the Lucas and Kanade optical
flow algorithm with Gaussian weight G,

@ =3 ((Gp(x) * VI(2)) " 0,1)

Yo = ((Gplz) x VI(z))'VI(z)) .

Ec(C%) is small, if the camera motion is close to its predicted value,
1
Ec(Ch) = 3 distdp, (C*, C* 1, 2¢).

Y% denotes the current standard deviation on SE(3), which defines the
distance of the extrinsic camera parameters on the special Euclidean
manifold.

The depth energy E,(d¥) is given by

Bu(d) = 5 (LS v

The predicted depth d* is determined from the previous frame, together
with depth uncertainty o¥. o, is a constant regularity parameter.

Optimization is performed using a Newton method with backtrack-
ing line search. The method is performed on a multiscale pyramid, as
this is required by the Lucas and Kanade approach.
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6.1.2. A Novel Minimum Energy Filter for Visual Odom-
etry. In contrast to the approach presented above, which implements
temporal smoothing with local prediction, the minimum energy filter
provides a global optimality criterion for the entire sequence. The mini-
mum energy filter can be computed recursively, using the reformulation
as optimal control problem presented by Mortensen [64].

In our approach [11], we describe a minimum energy filter on the
special Euclidean group SE(3). The camera movement is modeled as
continuous curve E(t) € SE(3), assuming zero acceleration,

E(t) = V(1)

] (6.1)
V(t)=0
Our state variable x(t) is given by the pair (E,V). Due to the Lie
group structure of SE(3), the derivatives are subject to the respective
tangent spaces, and we can rewrite the equation system (6.1)),

#(t) = f(x) = (E(@)v(t),0).

More details are given in [11]. The zero acceleration assumption does
not explain the camera poses perfectly, due to acceleration and noise in
the process, hence we add noise variable §(t) to our state equation. We
cannot observe the state variable directly, but only through estimated
optical flow @, which is expected to be close to the parameterized optical
flow field as given by eq. (6.3)). Again, both flow fields will not match
perfectly in general, and we require noise variable ¢(¢). The state and
observation system is given by

(state) @(t) = x(t)(f(x(t)) + (1)), z(0) = w0
(observation) a(t) = u(x(t),d(t)) + €(t).

Note that the depth d(t) is not part of the variables, but assumed to
be known or estimated independently.
We introduce energy function J (9, €, ¢y, t), in order to minimize the

noise variables §(t) and €(t) as well as deviation from the initial state
Ty = (147 0)7

t
j(5767t07t) = %ea(ttO) (H$ - (i[)o,O)HQ +/ 6(57677—7 t)dT)
to
c(0,6,7,8) = [[8(m)lls + lle(r)llo-

S € R¥»12 and Q € R?*? are arbitrary positive definite weighting
matrices. This objective forms the basis of the minimum energy fil-
ter, which is reformulated into the recursive framework in [1I]. The
approach also extends to constant acceleration rather than constant
velocity and higher order models.
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6.2. Depth and Normal Regularization

We model the scenes as piecewise planar, which is well suited es-
pecially for urban environments. A plane in 3D can be described by
plane equation

n'X =¢q, withn € R3 ¢geR.

Capital letters represent 3D scene points, lowercase letters denote ho-
mogeneous points, that are represented on the image plane at z = 1.
Assuming that ¢ # 0, we can divide this equation by ¢, and writing
v =mn/q, we get

v X =1.

With ¢ = 0, we would have a degenerate plane that intersects with
the camera center, hence the assumption ¢ # 0 does not restrict our
model. There is an affine relation between (inverse) scene depth z and
plane parameters,

-
X:E = 1:H = z=uv'z.
z z
Also, we can see here that the first two components of v denote the
affine parameters of inverse depth in the image plane, if viewing the
same plane. Absolute depth of a plane is not affine, which makes it
more natural to represent depth by its inverse, as shown in Figure [6.1

(a) reference frame (b) depthmap

50+ ‘ ‘
w©
0
2
10
-
sob T —
00—
Er—
20—
00—

0

(c) depth d(z) (d) z(z) =1/d(z)

FIGURE 6.1. Simple rendered scene consisting of a few planes. The
inverse depth parameterization z is affine on planar scene segments,
while absolute depth d induces a curved relation.
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6.2.1. Piecewise Planar Depth Map Smoothing. We assume
that we are given an estimated depth map Z, and compare different
piecewise planar regularity energies, in order to recover the original
scene. The data energy is given by the quadratic depth difference,

1
Eguta = §||z — Z||2

Total generalized variation (TGV) is known to preserve piecewise

affine structures, which in our case represents a piecewise planar scene.
The TGV model is given by

TGV(z,w) = a1||Vz — w1 + ao||Vwl|;.

We rewrite the energy as saddle point problem,
1 2112 T < T
Blawpa) =l = 2P+ [4 =) () +aCw

— 6a1[_1 1]l»l (p) - 50«)[-1 1]ldl (Q)

The matrix A denotes the gradient operator, where x and y gradients
stacked. (' is the second order gradient, therefore it contains mixed
gradients as well. We can then apply the primal-dual algorithm to this
energy, as shown in Algorithm

Input : Z, parameters aq, ag, 71, T2, T3, T4
Output: (inverse) depth z
repeat

prt = o 21 e (pk + 71 [A —I} (;)>7

¢ =Ty il (¢ + 7Cw0);
= Prox,, g, (2% — 3 ATpkth);
WL = Wk — 7y (CTgRH1 — D).
7 = 22k+1 _ Zk'

I

k+1 _ wk;

w = 2w
until convergence;
Algorithm 12: Depth map smoothing with TGV regularization.

The projection onto the set a[—1 1]™ can be performed element
wise by clipping to the interval [—« «]. The proximal operator of the
quadratic data energy is a weighted average,

y+TZ
PrOXTEdata(y) = 1 4T .

Figure shows an example output of the TGV regularized depth
reconstruction with ground truth depth as reference. We can see that
depth discontinuities are not preserved, but interpolated with planar
surfaces, leading to blur in the depth map.
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ceiling

depth: min M max

disp. error [px]: (0 m— 3

(a) normal color encoding (b) scalar colormaps

(c) rendered frame (e) disparity error

(f) scene normals (g) x gradient (wy) (h) y gradient (wy)

FIGURE 6.2. TGV reconstruction with the corresponding color en-
coding. Hinges are reconstructed accurately, but depth discontinu-
ities get interpolated in the reconstruction. The spherical normal
color encoding is based on the LAB color space, floor and ceiling
are shown in dark and light gray, on the equator we have strongest
intensities of the colors. The gradients in x and y direction are de-
fined on shifted domains. They would need to be mapped to the
pixel grid, in order to generate a pixel wise planar representation.

In order to encourage sharp depth discontinuities, we introduce vari-
ables j, and j,, representing depth jumps along x and y components.
We assume depth discontinuities to be sparse, thus we introduce an L1
penalty on j = (j, j,). The total energy reads

N . , :
E(z,w,5) = Sllz = 21 + anl|Vz —w — jlli + ool V]l + Blj]-
2

The algorithm is very similar to the original TGV formulation. We do
not require additional dual variables, the proximal operator of the L1
norm is given by the shrinkage operator,

Pross,(r) = axgmin o_(y — 2)° + |3y
Yy
x—71p ifx>71p0
=qx+70 ifr<—70.
0 if |[x] <7p8

For vector valued input, the shrinkage operation needs to be performed
element wise, the full method is shown in Algorithm [13]
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Input : Z, parameters ay, aq, B, 71, T2, T3, T4, Ts
Output: (inverse) depth z
repeat

Pt = I 1 e pF 47 [A —1I _I]

. g v

qu = Hao[—1 1]ldl (qk + 720@);
= Prox,, g, (2% — 3 ATpFth);
W = wh =y (CTgh+1 — ),

I

G = Proxe g, (5° + 75p);
Z = 22k — 2k

W = ka‘-f-l _ wk’

j =2 =g~

until convergence;
Algorithm 13: Depth map smoothing with extended TGV regular-
ization. The new variable j estimates depth discontinuities.

Figure |6.3] shows the output on the test frame. The depth is re-
constructed with higher accuracy, we can observe sharp depth discon-
tinuities. Also, artifacts in the gradients are not as strong as in the
original TGV model. Depth discontinuities are represented well by the
new variables j, and j,.

6.2.2. Scene Estimation from Dense Optical Flow. Given an
optical flow field, we are interested in the corresponding camera motion
and scene parameters.A similar method is presented in [66]. Synthe-
sizing optical flow from egomotion and scene depth relies on a static
scene, dynamic objects would need to be modeled explicitly. Transla-
tion vector t is restricted to the unit sphere, since scene scale cannot
be estimated from a monocular video alone, hence normalization needs
to be imposed.

The scene point X can be transformed into the coordinate system
of the second camera,

X' =R"(X —1t).

An illustration of the camera setup is shown in Figure [6.4. We can
determine the 2’ by projection onto the image plane,

¥ =m(X"), 7w(xy,19,73) = (ﬂ E, 1> )

I371'3

Since the projection 7 is invariant under scaling, we can express x’ as
a function of R, ¢t and inverse depth z at x,

v’ =m(R"(z — t2)).
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(a) (¢) disparity error

(d) scene normals (e) x gradient (wy) (f) y gradient (wy)

(g) scene objects (h) & jumps (j,) (i)  jumps (j,)

FI1GURE 6.3. Extended TGV reconstruction. Depth discontinuities
are reflected well by new variable j. The overall error in depth
reconstruction and artifacts in w decreased as well.

:v

FIGURE 6.4. If relative camera poses and scene depth are known,
the induced optical flow can be calculated. In three dimensions,
viewing rays do not have to intersect, but can be skew.

If we also have plane parameters v, z is given by v 'z, and we can define
a homography mapping H (R, t,v),

v =n(H(R,t,v)x), H(R,t,v)=R (I —tv"). (6.2)

The induced optical flow is given by the difference between z’ and =z,
w(R,t,v) =n(H(R,t,v)x) — . (6.3)
6.2.3. Plane Estimation on Superpixels. We fit scene planes

into superpixels rather than individual pixels, since a planar description
in each pixel would yield an overparametrization. Merging pixels into
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(a) superpixel discretization (b) plane segment

FIGURE 6.5. Superpixel discretization of our approach. Pixels are
marked in red, and provide a flow vector, which is used by the data
energy. Blue points on the superpixel boundary are used for regu-
larization, we assume a small deviation in depth of both neighboring
planes in these locations.

superpixels reduces the problem size.At the same time, superpixel seg-
mentation provides scene regularization, since it defines the granularity
of the planar reconstruction.

The superpixels are denoted with €2;, which form a partition of the
image domain (2,

UQZ-:Q.

(2

Q, denotes the boundary of superpixel €;. The shared boundary of
superpixels ; and Q; is denoted 9%,

o9 = 0, U,

Figure [6.5] illustrates the locations of the boundary points on the
pixel grid. The pixels are represented by red points, the blue boundary
points are shifted by half a pixel.

We define and minimize an energy function on the scene and vehicle
egomotion, which compares measured and parameterized optical flow
and imposes scene regularity,

E(R,t,v) = E (R, t,v) + A\, E.(v) + \Ey(v) + A\ Ep(v). (6.4)

The fidelity term E,(R,t,v) in our optimization problem is the
deviation of an observed optical flow @(z) from our model (6.3) and is
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Yy .
- |a] 10 - 2
Sy
-5 5 -1 17
FIGURE 6.6. The L1 norm, Charbonnier norm with a = % and
the squared Charbonnier with o = ;11. In both cases, ¢ = 0.01.

Both versions of the Charbonnier function are smooth at =z = 0,
and approximate the L1 norm. The squared Charbonnier can be
minimized with the Levenberg-Marquardt method, which requires a
quadratic energy. The second derivative of the squared Charbonnier
vanishes at zero, which improves numerical stability.

defined as

n

Bu(Rt,0) = 33 wa(a) ula; B, t,v) — a(x)]3.

i=1 .Z’EQi

Here, wy(z) > 0 denotes a spatially varying weighting of the data term
which is provided by a confidence measure of the optical flow algorithm
as detailed next.

The optical flow u between images I; and [, as required by the
data term is computed in a pre-processing step using the algorithm
DeepFlow [93], because the method is accurate and also very fast.

We complement the output obtained from DeepFlow with a confi-
dence map wg(x), which avoids the influence of flow vectors which are
considered incorrect. To this end we also estimate the backward flow
between I, and I, providing an estimate 4! () of the inverse mapping
of 4(x). Only points that are consistently mapped forth and back are
considered correct and we define the confidence map as

wa(z) = exp (~3lz — (@~ 0 @) (@)|[3/0?)

with value o; > 0. Experimentally, we found the value o5 = ﬁ to be
suitable.

In order to enforce that planes of neighboring superpixels form a
seamlessly connected surface in most parts of the image, we introduce
the prior E,(v) as follows. We consider points on the common boundary
x5 € 09 of superpixel i and j and penalize deviations of their inverse
depth 2(zp,v) = x}v according to the two plane models v; and v;,
Figure [6.5| illustrates the boundary points on the pixel grid.
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In order to encourage sharp depth edges we make use of the gener-
alized Charbonnier functional

pa(T) 1= (22 + €)* — €. (6.5)

Figure shows a comparison of the Charbonnier functional to the
original L1 norm. We choose ¢ = 107'% and a = 1/4, so that pZ(z)
smoothly approximates the LL1 norm. Then the energy function for one
boundary 0¥ reads

E9(v) := Z p2(x v — xTvy).
z€PY
The global smoothness term consists of a weighted sum of E% over all
neighboring superpixels (i, 7) € Nq:

E.(v):= >  EJ().

In addition to seamless surfaces on superpixel boundaries, we aim
at plane parameters which up to a small set of discontinuities are con-
stant over the image domain. This property encourages large connected
planar structures.

For the plane smoothness prior we employ again the Charbonnier
function p, (see eq. , here applied component-wise),

E)= Y lpalvi=v)l3

(Z,])ENQ

As a further constraint, we require all observed space points to be
in front of the camera. Thus, we introduce an additional prior E,,
where we apply a soft hinge function

1—2x z <0
pi(x) =q(1—-2)* 0<z<1,
0 1<z

to the inverse depth z(z’ v;), evaluated at superpixel centers z’ €
;. The center point is defined as mean value of all pixels in £2;,

Summing over all superpixels, this leads to

Ey(0) = Y A (x(aks ).
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6.2.4. Optimization Framework. The considered optimization
task comprises a sum of a non convex data energy function and con-
vex regularity terms (6.4), where manifold constraints R € SO(3) and
t € S? need to be respected. In order to find a local minimum of
E(R,t,v), we choose the Levenberg-Marquardt method [63], which
has been adapted to Riemannian manifolds in [1].

The proposed energy function F(R,t,v) can be decomposed into a
sum of m squared functions f;(R,t,v),

E(R7tvv) = Z(fj(R7tvv))2 = ”f(Rﬂt?U)Hg? (66)
j=1
with f(R,t,v) == (fi(R,t,v),..., fm(R,t,v))" € R™ and m = 2|Q| +
D (i)eNa [9i] + 3N + n.

We combine the variables into a vector Y := (R,t,v) and locally
re-parametrize Y near (R t* ov*) by parameters n = (w,dt,6v)" €
R3+3+3n as

Y*(n) == (R* Exp([w]x), T2 (" + 6), 0" + 6,).

Exp(-) denotes the matrix exponential function, which is applied to the
skew-symmetric matrix

0 —Ws3 (09))
Wx=1 ws 0 —uw
—W9o w1 0

A closed form expression for the matrix exponential is given by Ro-
drigues’ rotation formula [36]. Furthermore,

sz (t) := t/[]¢]2

denotes the orthogonal projection of t to S2.
Using first order Taylor expansion we obtain an approximation of

fY () in Y = (RF, t%,0"),

FEm) = F50) + 3(f)n,
with Jacobian J(f*) of f*. The Jacobian is obtained for the rota-
tion and translation by differentiating the function compositions %( fo

Exp)(w) and 2 (f oIls2)(t), respectively. Substituting this approxima-
tion in yields a model of the original energy function EF (n),

B4, (n) = i ()

We add a soft trust region term "Z—k |n||?, in order to control the step size
of the update, the resulting objective is quadratic in  and thus can be
solved efficiently. The update of state variables Y**! and trust region
parameter p**1 is presented in algorithm . The update is based on
the quotient p of the change in the original and model energies. If p
is close to one, the model is accurate, and p can be decreased. If p
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is close to zero, the model is inaccurate, and the trust region needs to
be reduced. For negative p the energy has decreased, and we omit the
update.

Input : Current state Y*, update vector n*, parameter u*

Output: Y1+t
E(YF)-BE(Y*@).

P B Bl
if p i }% thenk
|t = At
else if p > % then
|t =k
end
if p > 0 then
YY)
else
‘ Yk+1 — Yk;
end

Algorithm 14: Update rule for variables Y**! and trust region p**1.

A limit of 80 iterations was used as stopping criterion which was
sufficient for most of the considered data. The complete method is sum-
marized in algorithm [I5] We describe the construction of the Jacobian
in detail in the next section.

Input : Reference frame I, optical flow 1, reverse flow 4!

Output: Scene planes {v;}, normalized egomotion
R € S0(3),t € S*
Compute superpixels {£2;} using SLIC and weights wg;
Initialize R® « I, £ « (00 1)T, 09 < (00 0.001)T Vi € T ;
10 < 40;
while £ < 80 do
Determine F = f* and J = J(f*);
N (JTJ+ prL,) " Y(=JTF);
Determine Y**! and p**! using algorithm ;
k< k+1,;
end
Algorithm 15: Our method for monocular two frame piecewise pla-
nar scene reconstruction.

Calculating the derivative of the pixel correspondence in eq.
is challenging in two ways. Firstly, the projection 7 is not convex, not
differentiable everywhere and not bounded. And secondly, the variables
R € SO(3) and t € S? are subject to manifold constraints, so that the
respective differential geometry needs to be considered.
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FIGURE 6.7. Optical flow energy for fixed R and t. While the
function is not well behaved on large scale, it is convex in the region
of interest. The pole occurs at infinite optical flow, when the viewing
ray of the second camera is parallel to its image plane.

Figure|6.7|shows the flow energy 3 [|u(R, ¢, z) —a||? for a single pixel
as a function of z. There is a unique minimum at the true inverse
depth, and a pole at which u(R,t,z) = oo. Since we look at the inverse
depth here, at zero the actual depth changes continuously from +oo to
—o0, and at z = +00, we approach the camera center.

Inserting the definition of u(R,t,v) into the data energy, we get

Eﬁow Z Z ”ﬂ_ R,t,’Ui)fC) - 'IIAj/”2 ) (67)

i€Zo SCEQ

where ' = x 4 4(x) denotes the observed point correspondence. By
applying the rule vec(ABC) = (C" ® A)B, we can vectorize the ho-
mography matrix,

B = Y3

1€Z x€Q;

2

(6.8)

T ((IT ® [3)[?@) -
We can construct the derivative in terms of the vectorized homography,

aEﬁOW /Taﬂ- T
oF, g E wy (7 — 1) —ap(:v ® I3) (6.9)

1€Lo TES;
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The derivative of the projection 7 at p = (p, p, p.)" = H,x is given by

0 o 0
T D=z Pz
0 O 0

For the inner derivative of the homography matrix, we can vectorize
the homography matrix in different ways, writing R’ for R,

H;=R(I3—tv]) =R — Rtv]

0H;
H;, = ]3R/(13 — tUlT) = BN = ([3 — vitT ® I3)
)it
H;=R — Rt] = a&t = (v ®R)
OH,
Hi=R — (Rt I = o = —(I; ® R't)

We need to extend the derivative further, in order to respect the mani-
fold constraints on R’ and ¢. The tangent space of R’ is given by R'[w]y,
thus we get the derivative

OR
ow
We project the gradient into the sphere’s tangent space,

= vec(R/[w]x).

The total derivative is given by applying the respective inner derivative
to eq. .

The regularity terms do not depend on the egomotion parameters,
but only on plane parameters v;. Therefore, we do not need to con-
sider manifold constraints, and can compute the Jacobian using the
Euclidean derivatives. The derivative of the depth smoothness term is
given by

o
%E? = Z P(2).25($T(Ui —vj))

x€dY
— ((12 + 6)0.25 . 6025) (IQ 4 6)0'75$
o .. o0 ..
S jc e p—— )
an z an z

The derivative of the plane smoothness term is very similar, since
v; —v; = I(v; — v;), which corresponds to the depth smoothness case
with z € {e',e? e*}. The positive depth energy consists of linear and
quadratic functions, which can be differentiated directly.
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FIGURE 6.8. Reprojective error between z = 0.01 (depth 100) and
2 = 0 (infinite depth), the reference camera is shaded in gray. In
case of stereo, the optical flow (or disparity) difference is constant,
but in the monocular case, we get a non linear optical flow devi-
ation, with zero error at the epipole. The epipole has zero error
independent of the estimated depth. In case of stereo estimation,
the epipole lies at infinity, and does not influence the error measure.

6.2.5. Evaluation on the KITTI Dataset. Before we evaluate
our approach, we discuss our evaluation strategy. In case of stereo
evaluation, the error is defined as the difference between ground truth
and estimated disparities. This error measure respects the stereo cam-
era setup well, since the disparity is directly observed by the camera
system.

Similar to the disparity comparison in stereo evaluation, we com-
pare the difference in optical flow as given by ground truth and es-
timated inverse depth. In contrast to stereo, the camera setup is un-
known, and hence the estimated camera displacement needs to be taken
for evaluation. Also, scene scale is unknown, and needs to be estimated,
which we implement by computing the median scale between estimated
and ground truth inverse depth maps.

Figure[6.8 shows the reprojection error between two constant depth
maps for different egomotion parameters. While the error is constant
for the stereo case, the epipole lies within the image for a forward
camera motion, and is clearly visible. The induced flow at the epipole
is independent of the depth value, hence the error is zero between any
depth maps. The authors of [9] propose a similar depth evaluation
scheme, by defining an uncertainty measure in the estimated depth
which relates to the induced optical flow field.

The KITTI stereo/flow dataset [32] contains traffic scenes with
ground truth depth.The ground truth depth is sparse and has been
acquired with a Velodyne laser scanner. Due to the rotation frequency
of the laser scanner, the camera frame rate is rather low at 10 frames per
second, which implies large displacements between successive frames.
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depth colormap: ( - 30

sequence 4 sequence 9

FIGURE 6.9. Rendered KITTI reconstructions found by our monoc-
ular approach. The scene is not normalized to metric units, but
scaled according to ||t|| = 1. The reconstructed depth depends on
the vehicle speed, the scene will appear closer with higher speed, the
color encoding is shown on top. In the last two cases (116 and 157),
the static scene assumption is violated. Therefore, the car coming
from the right in seq. 116, and the truck approaching the camera in
seq. 157 are not reconstructed correctly.
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As we can see if figure , our reconstruction algorithm captures
the main layout of the respective scenes. Also, the ground surface
is reconstructed well in most cases, and appears as a closed surface.
However, our regularity term also introduces artifacts, objects tend
to be merged with the background at the edge, while sharp depth
discontinuities would be preferable.

In sequence 74, the estimated optical flow field is incorrect in large
regions due to illumination changes and reflections. Our method can
compensate small errors in the optical flow field, but it would require
separate input data in order to compensate large errors.

Sequences 116 and 157 show dynamic scenes, the car to the right
in sequence 116, and the truck in sequence 157 are moving forward. In
case of the truck in sequence 157, its motion happens to align with the
camera egomotion, thus our method is tricked by an optical illusion.
The truck appears to the observer as a very close and very small object.
The large scene scale in sequence 157 is due to the low vehicle speed
in this example.

Figures [6.10], [6.11], [6.12] and [6.13] show our test frames in more de-
tail with a direct comparison to the sps-stereo method. Both methods
reconstruct most test images well, especially the ground surface is ori-
ented correctly in most locations.

We can observe that our approach lacks reconstruction accuracy in
the image center, which is approximately the location of the epipole.
Especially in sequences 4 and 32, we see that the trees are blurred
into the background, while other trees at the sides are reconstructed
with better detail. The stereo method does not have this disadvan-
tage in camera setup, and provides constant reconstruction accuracy.
In addition to the better suited camera setup, the stereo method has
calibrated cameras, and does not need to estimate camera poses.

Our approach favors smooth transitions between different regions,
while the stereo approach has more sharp discontinuities. In some
cases, we oversmooth the scene and merge foreground and background,
but sps-stereo detects too many discontinuities is some cases, and pro-
duces noisy estimates of homogeneous regions.

The flow weights mostly vanish in occluded regions, as we would
expect, since these cannot me estimated accurately from the images
alone. The weights of sequence 74 show that the flow field is very
inaccurate, which implies an inaccurate scene reconstruction as well.
Homogeneous regions, as for example the sky, usually have a small
weight as well, since these cannot be matched reliably.

Table shows depth reconstruction errors on the KITTI dataset,
in comparison with sps-stereo. Our approach copes well with occluded
parts of the image, but sps-stereo shows higher accuracy in depth re-
construction. The calibrated side by side camera setup is better suited
for depth estimation.
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n - depth [m]: (0 s o 50

ights: |
optical flow planes weights 0 1

KITTT stereo sequence 4

“)

reference frame optical flow flow weights

sps-stereo ours

KITTI stereo sequence 9

reference frame optical flow flow weights

Sps-stereo ours

FIGURE 6.10. Results on example frames from KITTI sequences 4
and 9. In case of sequence 4, the tree in the image center is almost
completely blurred, since it lies in the region of the epipole. In the
other example, the region around the epipole does not contain any
particular object, but shows the horizon, and can be interpolated
from the neighborhood without much loss in accuracy. The flow
weights represent the occlusion pattern well in both cases. Our ap-
proach favours objects, especially trees, to stand out of the scene as
sharp objects, while sps-stereo favors noisier estimates in the plane
reconstructions with sharper discontinuities in depth.
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FIGURE 6.11. Results on example frames from KITTT sequences 23
and 32. Sequence 23 shows that our method merges the garages into
a uniform planar surface, while the sps-stereo reconstruction is more
noisy. In sequence 32, we can again observe blurriness at the epipole.
The tree in front of the car is unclear, whereas the parked car on
the left is reconstructed in detail. Especially the normals provide a
good representation of the car, with sharp edges inside the object.
The opitical flow field is not accurate in the underexposed right part
of the image, therefore our reconstruction is lacking details in the
bottom right corner. The ground surface is reconstructed well by
both methods in both examples.
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FIGURE 6.12. Results on example frames from KITTT sequences 68
and 74. In the first example, the large building is reconstructed well,
but we have errors in depth reconstruction due to reflections in the
window in both methods. The example frame from sequence 74 has
strong changes in lighting conditions and optical lens effects in the
monocular, but not in the stereo case. The computed optical flow
field has large errors in large parts of the image, as shown by the
weight mask. Our method detects a few parts of the scene in the,
but does not reflect the surrounding environment well. In contrast to
this, the stereo approach shows similar accuracy as on the previous
examples.
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FIGURE 6.13. Results on example frames from KITTI sequences
116 and 157. In case of sequence 116, the motion of the dynamic
car does not align with the epipolar lines, and we get a wrong re-
construction. However, sequence 157 shows an inherent limitation
of the monocular camera setup. The movement with respect to the
truck and the environment only differ in scale, hence the motion
aligns with the epipolar lines given by the egomotion. The truck
appears as a much smaller, and much closer object, than it actually
is. The front of the truck is reconstructed to a similar distance as
the tree to the right of the camera, and as a sharp pointed object.
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occ noc

seq. sps-st. flow ours flow ours
4 0.22 1.06 0.63 0.36 0.62
=~ 9 0.40 1.51 0.59 0.92 0.56
_= 19 0.80 2.40 1.41 1.63 1.05
§ 23 0.26 1.00 0.35 0.39 0.33
3 32 0.88 3.62 1.38 1.08 1.34
= 68 0.17 1.24 0.73 0.67 0.72
2. 74 0.78 21.21 13.96 15.14 13.64
g 116 0.67 1.77 1.34 1.08 1.08
© 157 0.07 0.19 0.16 0.19 0.16
all 0.97 6.98 3.93 1.97 3.50
4 0.93 6.05 2.73 1.31 2.68
9 2.68 14.05 4.90 5.34 4.35
19 4.80 23.05 16.00 15.33 13.62
— 23 0.95 8.55 0.28 1.38 0.28
S 32 8.65 21.87 14.29 9.30 13.15
) 68 0.31 7.21 4.27 2.51 417
! 74 5.83 62.10 84.01 56.36 83.60
116 4.89 16.33 11.97 8.75 8.19
157 0.36 0.14 0.09 0.14 0.09
all 6.47 21.11 17.59 10.67 16.41

TABLE 6.1. KITTI monocular reprojective error and input optical
flow error for all pixels (occ) and non occluded ones (noc). We do
not include the sps-stereo method in the non occluded case, since
the occlusion pattern is different in the stereo camera setup. Our
approach shows similar accuracy on the visible and on all locations,
which suggests that occluded regions are detected correctly, and
filled with accurate data. However, the parameterized flow has larger
error than the input flow, we lose some information by imposing
regularity terms. The stereo approach performs better, as we would
expect from a stereo system.

6.2.6. Evaluation on Rendered Data. Plane normals are not
trivial to measure directly, and most structure estimation methods do

not evaluate or even estimate plane normals.

We did not find any

dataset providing the data we need, and we decided to generate our
own dataset with ground truth egomotion, optical flow, depth and
normals. We decided to render artificial scenes, where ground truth
normals are known from the scene setup.

In addition to estimated optical flow, we evaluate our method on
ground truth input, in order to remove influence of the optical flow
model and estimation errors from our reconstruction. We do not need
to estimate scene scale with the median, since the exact scale is known.
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stereo DeepFlow GT

seq. sps-st. flow ours ours

1 0.12 0.54 0.15 0.02

o 2 0.17 1.75 0.32 0.01
N 3 0.11 2.14 0.43 0.02
S 4 0.09 1.34 0.28 0.01
8 5 0.57 5.34 5.25 0.04
k= 6 0.16 0.38 0.18 0.02
g 7 0.59 6.67  27.69 0.01
g 8 0.32 | 27.13  42.29 0.01
© 9 0.10 0.35 0.25 0.04
10 0.11 4.48 6.65 2.01

1 0.43 6.44 111 0.15

2 1.86 | 10.08 4.45 0.09

3 020 | 11.14 5.87 0.08

— 4 0.14 9.51 3.36 0.08
N 5 1.32 | 1278  24.96 0.35
C@ 6 0.40 3.86 1.47 0.15
7 3.30 | 1212 13.26 0.08

8 0.74 | 11.79  31.30 0.01

9 0.28 2.87 1.37 0.23

10 023 | 1292  41.24 | 14.18

TABLE 6.2. Rendered scenes depth evaluation. We observe that our
method improves the input optical flow in all sequences except 7, 8
and 10, which are sequences with large errors in estimated optical
flow. The rendered scenes consist of only very few planar objects,
which fits our piecewise planar model well. The stereo approach
is outperforming our monocular method, as expected. On ground
truth input flow, we have very low error except for sequence 10,
which has large gaps in scene depth.

The dataset consists of four scene environments, using multiple camera
tracks for each environment, each containing 25 frames, which yields
24 optical flow fields.

Figures to show the results of our reconstruction for frame
10 of each sequence in comparison to sps-stereo and ground truth.
We note a very insignificant fuzziness at the epipole, which is again
approximately in the image center. The effect is weaker than on the
KITTI benchmark, since the rendered scenes consist of less objects,
and piecewise planar interpolation describes the scene better.

Sequences 7 and 8, depicted Figure [6.17, contain very fine texture,
which is difficult for optical flow estimation. We get strong artifacts in
the reconstruction from estimated flow, while the reconstruction from
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estimated flow ground truth
seq. | er [deg.] e; [met.] e, [deg.||egr [deg.] e; [met.] e, [deg.]
1 0.00 0.00 0.03 0.00 0.00 0.01
2 0.00 0.00 0.02 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.01
4 0.00 0.00 0.03 0.00 0.00 0.01
5 0.24 0.20 5.38 0.00 0.00 0.02
6 0.00 0.00 0.08 0.00 0.00 0.06
7 1.70 0.52 8.40 0.00 0.00 0.01
8 2.60 0.93 29.04 0.00 0.00 0.03
9 0.00 0.00 0.14 0.00 0.00 0.16
10 0.82 0.61 25.52 0.25 0.17 7.05

TABLE 6.3. Rendered scenes camera motion evaluation. The table
show rotation error in degrees, and translation error both in met-
ric units and as angle in degrees. We evaluate translation error as
angle, because translation norm cannot be estimated from a single
optical flow field without further assumptions. Most sequences are
reconstructed accurately from ground truth input. However, the
depth discontinuities of sequence 10 are not represented well by our
regularity term, which results in errors of egomotion estimation.

ground truth optical flow is accurate. The gap in depth reconstruc-
tion accuracy between estimated and ground truth flow is shown in
Table[6.2] In most cases, the estimated depth has lower error than the
input optical flow, our piecewise planar scene assumption represents
the rendered sequences well. Similarly, we can observe a discrepancy
between estimated and ground truth optical flow for the estimated
camera motion in Table 6.3l

As we have seen on the KITTI dataset, foreground objects are
merged with the background. This results in reconstruction errors,
especially in sequence 10, where depth discontinuities are particularly
large, as we can see in Figure [6.18, Tables and [6.3| show large
reconstruction errors for sequence 10 from ground truth input.

Table show normal reconstruction errors of our approach and
sps-stereo. The average error is similar to the stereo reconstruction,
but the distributions vary for both cases.



104 6. STRUCTURE FROM MOTION

scene environment 1, track 1 - forward motion

frame optical flow depth normals

sps-stereo ours (DeepFlow) ours (ground truth)

scene environment 1, track 2 - forward motion and rolling

frame optical flow depth normals

& V

sps-stereo ours (DeepFlow) ours (ground truth)

FIGURE 6.14. Rendered sequences 1 and 2, showing environment 1
with straight forward and forward rolling egomotion. The sps-stereo
method runs on stereo images independently of the egomotion. Our
method reconstructs both scenes accurately, with small artifacts on
the estimated flow. Also, the optical flow estimation does not work
reliably on occluded areas. As in the KITTI benchmark, we can
observe that our method merges objects with the background.
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scene environment 1, track 3 - right turn

frame optical flow depth normals

sps-stereo ours (DeepFlow) ours (ground truth)

scene environment 1, track 4 - left turn

frame optical flow depth normals

sps-stereo ours (DeepFlow) ours (ground truth)

FI1GURE 6.15. Rendered sequences 3 and 4, showing as same envi-
ronment as in Fig. with left and right turn motion. We see a
similar behavior as in the previous case, the occlusion pattern differs
due to the new camera motion, which explains reconstruction errors
on the left edge in the right motion case, and vice versa.



106 6. STRUCTURE FROM MOTION

scene environment 2, track 1 - forward motion

.

frame optical flow depth normals

sps-stereo ours (DeepFlow) ours (ground truth)

scene environment 2, track 2 - forward motion and rolling

frame optical flow depth normals

sps-stereo ours (DeepFlow) ours (ground truth)

FIGURE 6.16. Rendered sequences 5 and 6. The environment is
more complex than the previous one, it has more and smaller objects.
Our method reconstructs details such as the table and and top facing
wall and the entrance, while the large superpixels of sps-stereo do
not support reconstruction on the same level of detail. In the second
case using DeepFlow, the maximum depth is estimated too small,
which suggest an error in the estimated camera translation.
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scene environment 3, track 1 - right turn

frame optical flow depth normals

sps-stereo ours (DeepFlow) ours (ground truth)

scene environment 3, track 2 - forward motion

frame optical flow depth normals

sps-stereo ours (DeepFlow) ours (ground truth)

FIGURE 6.17. Rendered sequences 7 and 8. The environment is
very large, compared to the camera motion, and the wall has very
small texture. These are difficult conditions for optical flow esti-
mation, since the wall texture is lost on a small picture scale. As
consequence, our reconstruction is less accurate on estimated flow.
On ground truth flow we get high quality depth and normal recon-
struction, but objects tend to be blended with the background.
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scene environment 4, track 1 - forward motion

frame optical flow depth normals

sps-stereo ours (DeepFlow) ours (ground truth)

scene environment 4, track 2 - right turn

frame optical flow depth normals

sps-stereo ours (DeepFlow) ours (ground truth)

FI1GURE 6.18. Rendered sequences 9 and 10, the environment con-
tains large depth discontinuities and close objects. In this case, we
have low discrepancy between estimated and ground truth flow, our
regularity term oversmoothes the scene, which leads to strong arti-
facts at depth discontinuities. In case of estimated flow, we have an
error in depth scale.
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seq. | mean [°]  2°[%] 5°[%] 10° [%]  20° [%)]

1 209  12.66 8.36 5.93 4.02

— 2 2.93 1285 8.98 6.04 4.00
E 3 364  15.01 9.07 6.64 4.86
;‘; 4 2.61  12.62 7.34 4.95 3.34
= 5 2.66  12.18 7.20 4.86 3.33
o 6 2.61  14.58 7.27 4.49 3.04
= 7 211 11.02 5.30 3.60 2.42
g 8 248 1852 8.21 4.58 2.81
S 9 230 11.50 5.30 3.74 2.53
10 9.24 2361  21.04 19.71 18.11

1 1027  46.74  33.00 22.39 14.31

2 10.00 4877  33.27 923.17 15.43

3 13.46  46.35  34.62 26.47 18.38

4 11.55 5239  35.48 24.50 15.83

2 5 20.15  54.93  46.23 39.00 29.63
5 6 714 3356  18.68 13.38 9.90
7 1848  67.77  52.00 40.00 29.06

8 38.25  84.67  75.53 65.27 51.23

9 8.83 3568 2264 16.24 11.86

10 20.78  63.99  57.55 52.93 48.10

1 1149  60.85 3801 25.62 17.47

2 11.23 6150  42.86 28.48 16.48

3 12.85  64.30  46.92 30.55 19.24

9 4 10.84  60.60  37.27 24.73 16.84
g 5 13.84  69.19  50.20 33.90 19.42
i 6 10.44  60.15  34.44 23.59 15.91
& 7 27.43 8124  68.95 60.93 46.93
8 34.99  89.77  75.97 67.81 56.67

9 718 5379  28.19 16.09 8.88

10 9.03  68.06  44.27 925.72 11.24

TABLE 6.4. Rendered scenes normal evaluation. Sequences 7 and
8 show large error due to erroneous optical flow estimates, and se-
quence 10 has larger error on ground truth input data as well. In the
other cases, our method shows similar average error as sps-stereo.
When comparing the fraction of pixels that lie under a certain
threshold, our approach shows larger variance, while the sps-stereo
plane error distribution is more uniform.






CHAPTER 7

Conclusion

We presented novel approaches to discrete optical flow in chapter
and monocular structure estimation in chapter [ The discrete op-
tical flow problem is addressed in two ways, with sparse optical flow
for outdoor traffic scenes, and a dense approach for general optical
flow. Monocular structure estimation is approached with two methods
as well. We formulate a minimum energy filter, which computes the
optimal camera trajectory in a long monocular video sequence, and
present a structure estimation approach is taking two frames only as
input for estimating camera motion and a scene representation. The
scene is assumed to be piecewise planar, and estimated with depth and
normal information.

The sparse optical flow approach performs dense matching in a
search window around distinct locations in the reference image. We
compare different data energies, which are robust against changes in
illumination, that occur frequently in outdoor traffic scenes. A lim-
ited number of matches is preserved, and further filtered according
to distances from epipolar lines and parameterized depth. A discrete
graphical model based on matching scores and a regularity energy on
the optical flow field find the globally optimal displacement vectors.
The approach achieves accurate but very sparse results.

In order to overcome the sparsity of the resulting optical flow fields,
we designed a dense estimation method based on exhaustive matching
and inference on discrete graphical models. Direct inference in the
large graphical model is not feasible. We cluster the optical flow la-
bels into a tree structure, and navigate through the tree by means of
discrete optimization, where different strategies for label reduction are
compared. Our method can track multiple branches in the label tree.
However, following the single best cluster and applying the most greedy
reduction method show best performance.

The recursive minimum energy filter computes the optimal camera
trajectory in terms of a frame wise objective function depending on
optical flow and depth observations. The filter is applied frame wise,
and does not require caching of multiple frames, thus it remains most
responsive.

Our scene estimation method fits egomotion parameters, depth and
plane normals to estimated optical flow in a continuous framework. The
scene is assumed to be smooth in most parts and piecewise planar.
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Future Work

The approaches we proposed in this thesis have limitations. The
matching energies we applied do not model changes in scale and ori-
entation, which appear often in outdoor sequences. Furthermore, the
exhaustive matching is very time consuming. An efficient hierarchi-
cal matching over different image resolutions may improve on runtime
and performance of the approach, while maintaining the advantages of
discrete optimization. A discrete optical flow method can incorporate
further related tasks more easily than a continuous approach, such as
occlusion detection or segmentation of optical flow into independent
layers.

The recursive minimum energy filter for localization in a monocular
sequence has the drawback, that optical flow and depth are assumed
to be known. Especially depth is not directly available in a monocular
camera configuration. The two frame scene reconstruction approach
estimates camera motion, depth and plane normals from a single op-
tical flow field. Two frames only provide very limited information,
the approach can be extended to multiple frames by maintaining and
updating a global model of the scene as future work. Explicit model-
ing of depth discontinuities could increase reconstruction accuracy of
both depth and camera motion. A photometric error term could im-
prove image alignment, and is another aspect for future research. The
restriction to static scenes is unrealistic, traffic scenes are not static,
and the dynamic objects are of particular interest to the (autonomous)
driver. Incorporating a segmentation of dynamic objects, potentially
with monocular scene flow estimation, is a very interesting direction
for further work.
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