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Summary

Detailed metabolic characterization of cancer cells provides an important cellular
footprint in addition to well-studied genomic features and could play an important role
for understanding sensitivity of cancer cells to drug treatment. Thus, detailed
understanding of metabolism and gene expression profiles of cancer cells could be an
important guideline supporting the steps of drug selection and a determining factor for

designing treatment strategies with available anticancer drugs.

The aim of the presented study was to analyze the metabolic activities and cell-cell
interaction and cell-matrix adhesion properties of a large number of cancer cell lines
and correlate these cellular characteristics with drug sensitivity and compare this
relation to established knowledge using gene expression and drug sensitivity prediction.
For this, correlations among these different set of analytical information were analyzed
to obtain cancer cell profiles linking metabolism, gene expression and drug ICso values,

by calculating Pearson correlation coefficients.

The results obtained clearly corroborate well-known relations but also provide
important novel findings underlying the importance of cancer cell metabolism in drug
sensitivity. As expected, the proliferation rate correlates well with the glycolytic activity
of cancer cells (r = 0.71**) as well as with HOXA7 expression (r = 0.95***). The
metabolism-related candidate genes are PGLS, COX5B, RHBDLZ2, IFI16, GCN1L1, INPP5B,
and LGALS8. Furthermore, the calculated Pearson product-moment correlation
coefficients show that the sensitivity of seven known drugs correlate with some of the
analyzed cellular features of cancer cells. These compounds are elesclomol, Nutlin 3a, PF

4708671, EHT 1864, IPA3, RDEA119, and methotrexate.

The detailed metabolic and electrochemical profiling of cancer cells carried out for this
study reveals new relationships between genes expression, drug sensitivity/tolerance,
and basic metabolic features of cancer cells. New insights are provided into cancer
metabolism, genomic regulation, and a potential application to designing new

chemotherapeutic strategies.
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Zusammenfassung

Die detaillierte metabolische Charakterisierung von Krebszellen liefert eine Reihe
wichtiger Parameter zum zellularen Wachstumsverhalten, die bisher noch nicht genauer
erfasst wurden. Diese metabolischen Informationen liefern eine wichtige Ergdnzung zu
bereits sehr gut untersuchten genomischen Verdanderungen, die in Tumorzellen
auftreten. Die metabolischen Informationen konnten daher eine neue erginzende,
wichtige Rolle fiir unser Verstiandnis zum Ansprechen der Krebszellen auf anti-tumor
Wirkstoffe bieten. Langfristig konnte die Kombination aus genetischen Verdnderungen,
Genaktivitit und Metabolismus ein wichtiger Leitfaden fiir die Auswahl geeigneter
Wirkstoffen und ein bestimmender Faktor fiir die Planung und Festlegung der

Therapiestrategie sein.

Das Ziel der vorliegenden Arbeit war es die metabolische Aktivitat, Zell-Zell-Interkation
und Zell-Matrix-Adhasion-Eigenschaften einer grofden Zahl von Tumorzelllinien zu
bestimmen und diese mit anderen zellularen Eigenschaften wie Empfindlichkeit auf
Wirkstoffe zu verkniipfen und diesen Zusammenhang mit bekannten Informationen zur
Wirkung von Arzneistoffen in Abhangigkeit Zell-spezifischer Genexpressionsprofile zu
vergleichen. Dazu wurden die Korrelationen zwischen diesen verschiedenen
analytischen Datensitzen ermittelt und Tumorzell-spezifische Profile ermittelt, die
Metabolismus, Genexpression und ICso Werte der Wirkstoffe durch Berechnung von

Pearson Korrelationskoeffizienten verkniipfen.

Die erhaltenen Ergebnisse unterstiitzen sehr gut bereits bekannte Beziehungen und
liefern zusatzlich eine Reihe neuer Ergebnisse, die die Bedeutung des Zellmetabolismus
fiir das Ansprechen von Tumorzellen auf Wirkstoffe bestatigen. Wie erwartet korreliert
die Proliferationsrate sehr gut mit der glykolytischen Aktivitit der Krebszellen (r =
0,71**) sowie mit der Expression von HOXA7 (r =0,95***). Neue hier gefundene
Metabolismus-bezogene Markergene sind PGLS, COX5B, RHBDL2, IFI16, GCN1L1,
INPP5B und LGALSS8. Dartiber hinaus zeigen die errechnete Pearson Produkt-Moment
Korrelationskoeffizienten, dass das Ansprechen auf sieben bekannte Wirkstoffe sehr gut
mit den zelluldren Eigenschaften der Krebszellen libereinstimmt. Diese Wirkstoffe sind

Elesclomol, Nutlin 3a, PF 4708671, EHT 1864, IPA3, RDE119 und Methotrexat.
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Die hier vorgelegten detaillierten metabolischen und elektrochemischen
Untersuchungen von Krebszellen zeigen bisher nicht bekannte Verkniipfungen zwischen
Genexpression, Empfindlichkeit auf Wirkstoffe, und der grundlegenden metabolischen
Aktivitdit von Krebszellen. Die Ergebnisse lassen auch erwarten, dass die neuen
Einsichten in den Tumormetabolismus und dessen Verkniipfung mit genomischen
Verdanderungen eine vielversprechende Option fiir die Entwicklung neuer

chemotherapeutischer Strategien liefern konnen.
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1. Introduction

1.1 Cellular Features

1.11 Glycolysis and Gluconeogenesis

Glycolysis is an ancient pathway preserved in evolution and present in almost all
living organisms (Berg et al. 2002, Zheng 2012). There are variations of glycolysis like
the Entner-Doudoroff pathway that occurs in some bacteria and which produces just
one molecule of ATP. Other organisms like phototrophs use an alternative glycolysis
pathway where no ATP is produced at all and that simply serves to form carbon
skeletons (Bar-Even et al. 2012). On the other hand, some microorganisms show
variants of glycolysis with a high yield of ATP, producing three or four ATP molecules at
the end of the pathway (Bar-Even et al. 2012). Glycolysis and variations are found in
eukaryotes, bacteria, and archaeans (Romano & Conway 1996).

The term glycolysis comes from the Greek “to split sugar” in where the
monosaccharide glucose is converted into two three-carbon molecules (pyruvate), two
ATP, and two NADH molecules. Glycolysis takes place in the cytosol. The synthesis of
glucose from pyruvate, lactic acid, or glycerol is called gluconeogenesis. It is used in
animals and humans to balance the sugar level in the blood. Gluconeogenesis shares
most of the enzymes with glycolysis but is not exactly the reverse process (Berg et al.
2002) and different enzymes in gluconeogenesis perform the irreversible steps in
glycolysis. For example, the conversion of fructose 6-phosphate to fructose 1,6-
phosphate is an irreversible step catalyzed by phosphofructokinase in glycolysis and the
reversion is done by fructose biphosphatase in gluconeogenesis.

Elucidating the entire glycolysis pathway took more than 80 years and began
with Louis Pasteur in 1860 who discovered that fermentation always involves a life
process, either by yeast or some other microorganism. The Buchner brothers
accidentally discover that fermentation can also occur by yeast extracts, meaning that
the process can also take place outside a living cell. Gustav Embden eventually compiled
the contributions of generations of researchers and elucidated the complete pathway in
1940.

The aim of glycolysis is to provide energy to the cells and although it is not an
efficient way to produce ATP, it is the only way for cells to do not have mitochondria,

like erythrocytes, and the most used pathway for this purpose for some other cells like
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those derived from brain, skin, and cancer cells. In glycolysis, just two ATP molecules are
synthesized in comparison with the 36 ATPs produced by oxidative phosphorylation
(OXPHOS). OXPHOS is the process by which the cells produce ATP from ADP plus
inorganic phosphate in mitochondria. Cancer cells are estimated to use glycolysis
around 200 times more than their normal counterpart cells (Akram 2013). This feature
that cancer glycolysis is much more active than that of healthy tissue is called the
Warburg effect. In 1930, Otto Warburg described this phenomenon and proposed that
the mitochondria of cancer cells are dysfunctional and that this could be the main reason
for cancer abnormalities, rather than the increase in proliferation (Akram 2013, Zheng
2012). Recent investigations have demonstrated that the enzymes in OXPHOS are
functional in most tumors and cancer cell lines do not carry mutations that disengage
their performance (Vander et al. 2009, Zheng 2012).

The increase in glycolytic activity by cancer cells has been shown to be regulated
by oncogenes, the inactivation of tumor suppressors, mutations in the mitochondrial
DNA, and the rapid proliferation of cancer cells. In solid tumors, generation of new
vessels (angiogenesis) is limited due to the fast tumor growth and therefore cells suffer
from hypoxic conditions (Zheng 2012). It is also known that genes involved in glycolysis
are overexpressed in many cancers. In 70% of human cancers there is an
overexpression of glycolysis genes especially in prostate, brain, and lymph node cancers
where almost all of the mentioned pathway genes are highly expressed (Altenberg &
Greulich 2004). The genes that are overexpressed in most cancer types are the ones for
encoding glyceraldehyde-3-phosphate dehydrogenase, enolase 1, and pyruvate kinase
(Altenberg & Greulich 2004). On the other hand, many of the glycolytic enzymes have
pro-cancer non-glycolytic functions, an example being hexokinase and phosphoglucose
isomerase that have antiapoptotic functions; phosphoglucose isomerase together with
glyceraldehyde-3-phosphate dehydrogenase have a positive role in survival pathways;
phosphofructokinase 1 and triose phosphate isomerase activate the cell cycle and
aldolase promotes epithelial to mesenchymal transition (Lincet & Icard 2015).

[t is important to highlight that aerobic glycolysis (the type of glycolysis that
occurs both in normoxic or hypoxic conditions) acts together with OXPHOS, cooperating
and keeping a balance to fulfill the energy demand of the cell. The metabolism of cancer
cells differs markedly from the metabolism of normal tissues. Cancer cells have a higher

level of plasticity and are more heterogeneous, being able to adapt themselves to
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adverse conditions and different media giving them a survival advantage in comparison

with normal cells.

1.1.2 The Contribution of Mitochondria to Cellular Respiration

Mitochondria are organelles responsible for energy production of a cell, and are
involved in cell signaling and regulation of the cell cycle and growth as well as apoptosis
(Yang et al. 2016). It has been shown that the mitochondria of cancer cells are different
in function and structure as compared to normal cells (Yang et al. 2016). In healthy cells
under normal O; environments, between 70% and 90% of the energy is supplied by the
mitochondrial OXPHOS. Under hypoxic conditions, that most cancerous cells are
exposed to, ATP is mainly produced via glycolysis and the pentose phosphate pathways
(Zheng 2012, Yang et al. 2016). Mutations in mitochondrial DNA has been reported to
play an important role for the transformation of normal cells into cancerous ones, as
well as cancer progression and drug resistance that lead to an increase of cellular
glycolytic activity (Rogalinska 2016).

Cellular respiration consists of a series of biochemical reactions taking place
within the cells to produce energy as ATP from glucose, fatty acids, and amino acids.
Respiration starts in the cytosol with the production of pyruvate from glucose in
glycolysis. In low oxygen microenvironments, pyruvate will be reduced to lactic acid.
Under normoxic conditions, pyruvate will be oxidized into acetyl-CoA plus one molecule
of COz and one molecule of NADH in the mitochondria by the pyruvate dehydrogenase
complex. Acetyl-CoA in combination with oxaloacetate in the tricarboxylic acid (TCA)
cycle will be further oxidized to CO; at the same time that NAD is reduced to NADH. The
NADH molecules enter the electron transport chain to synthesize more ATP.

In cancer cells within tumors metabolism greatly varies. It has been
demonstrated that not all cancer types follow a Warburg effect, and they show great
heterogeneity within the same tumor (Hensley et al. 2016). In recent years it has been
shown that some cancers use principally the OXPHOS to obtain their energy (Corbet &
Feron 2017, Zheng 2012). The substrate necessary for the TCA cycle is provided from
different sources such as amino acids and fatty acids, and it is possible to simultaneously
observe elevated levels of fermentation and mitochondrial respiration (Hensley et al.
2016). During the last decades several studies have suggested that cancer cells rely on
glycolysis to obtain ATP due to damaged and nonfunctional OXPHOS (Warburg effect)
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and Otto Warburg to some extend misinterpreted his observations (Koppenol et al.
2011).

Moreover, nowadays it is known that in some cancers mitochondrial metabolism
is necessary for tumorigenesis and to support tumor progression (Corbet & Feron
2017). Mutations of the TCA cycle enzymes lead to a formation of oncometabolites (TCA
intermediaries, like citrate) that are responsible for the inhibition of the tumor
suppressor p53, the stabilization of hypoxia-inducible factor, the activation of cell
growth pathways, glycolysis, and reactive oxygen species (ROS) formation (Sajnani et al.
2017). The coordinated redox balance existing in normal tissues is out of control in
cancer cells. Mitochondrial DNA mutations can elevate ROS production and high ROS
levels induce genetic instability responsible for mutations (Yang et al. 2016, Okon & Zou
2015, Kang et al. 2015). In normal cells the production of ROS is proportional to the
activity of the electron transport chain, and as mentioned earlier, is controlled by an
antioxidant system that keeps the necessary amount of ROS high enough to function in
protein regulation and signaling (Okon & Zou 2015, Kang et al. 2015). The elevated ROS
in cancer cells has multiple functions apart from the induction of mitochondrial DNA
mutations. The impact of ROS in cancer will depend on i) the levels of ROS, ii) the type of
tumor and tissue, iii) the disease stage, and iv) the type/duration of treatment (Okon &
Zou 2015). Elevated ROS levels have been implicated in cancer initiation, progression,
and drug resistance (Okon & Zou 2015). Among ROS functions, elevated ROS
accumulation has been attributed to the stabilization of the hypoxia-inducible factor 1A
creating a pseudohypoxic environment under normoxic conditions, the hyperactivation
of oncogenes to promote cancer development, and tumorigenesis mediated by K-ras,

cancer cell proliferation and survival (Yang et al. 2016).

1.1.3 Cellular Proliferation

Cellular proliferation is the process by which cells grow and divide resulting in an
increasing number of cells. The proliferation rate in adults is in equilibrium with cell loss
by cell differentiation and cell death. A key characteristic of tumors is the uncontrolled
nonregulated proliferation rate by which the signals that control a normal cell division
behavior are no longer properly working. The uncontrolled proliferation of cells is
considered one of the first symptoms in cancer development. A continued noninvasive
proliferation of cells without spreading into distant tissues is observed in benign tumors
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(Cooper & Hausman 2000). Malignant tumors (cancers) are the ones that apart of
present abnormal and uncontrolled proliferations are also capable of invading the
surrounding tissue and migrating to distant sites (Cooper & Hausman 2000). Several
biomarkers connected to cell proliferation are widely used in the clinical context to
characterize human cancers as to tumor grade, therapy responses, and prognosis (Wood
etal. 2015).

Most of these upregulated proteins (biomarkers) used for therapeutic application
are needed for efficient uptake of nutrients for producing the necessary biomass for new
cells in fast-proliferating tumor cells. Evidence demonstrates that several signaling
pathways that regulate proliferation do also regulate cell metabolism in cancer cells
regarding the uptake and incorporation of nutrients for ATP production (Vander Heiden
et al. 2009, Agathocleous & Harris 2013). Some of the pathways involved in regulating
proliferation and metabolism are the mTOR, RAS, MYC, PI3K, and Hedgehog pathways
(Agathocleous & Harris 2013). Changes in metabolism observed in cancer cells
(Warburg effect and disruption of the redox balance, TCA cycle enzymes and lipid and
amino acid metabolism) lead to utilization of metabolites for energy-producing
pathways and biosynthetic anabolism for cell growth and proliferation (Agathocleous &
Harris 2013). This behavior can also be observed in normal cells that display a Warburg
effect mode in the production of ATP when stimulated to proliferate (Brand & Hermfisse
1997). This is not surprising if one takes into consideration that glycolysis serves as a
starting point for pathways leading to the synthesis of nucleic acids, amino acids, and
polysaccharides, all of which needed as building blocks in cell proliferation (Toyoda &

Saitoh 2015).

1.1.4 Membrane Capacitance

Capacitance is defined as the ability to store electrical energy. Cells in their
conductive electrolyte solution media (water plus ions) act as capacitors being able to
store electricity (Mosgaard et al. 2015). A capacitor is formed by two conductive plates
separated by a dielectric (an insulating material). Cell membranes act as an insulator
(nonconductive material) and the inner and outer space of the cell as conductive plates
with free ions that can transport electrical charges (Niebur 2008). A completely sealed
membrane or insulator does not allow the passage of current from one side to the other.
Artificial membranes built of pure phospholipid bilayers are quite good insulators. They
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are highly impermeable to polar solutes, meaning that there are no ions that can
transport charges across the hydrophobic central core of the bilayer (Niebur 2008).
Nevertheless, natural membranes in cells are made up not only of phospholipids but
also of different ion transporters and transmembrane proteins. The transmembrane ion
transporter proteins that act as ion channels need, in order to cross the polar solutes
through the membrane without a solvent, to build special interactions with the ions, and
organize themselves to be selective and efficient in the transport (Fyles 2007). The
composition of the lipid bilayer and the characteristics of the ion transporters give the
cells different electrical properties. Depending on the cellular function, ion transporters
differ in their distribution and quantity in different cell lines (Jones 2012).

Cell membranes themselves can also act as capacitors (Mosgaard et al. 2015). In
this model, the hydrophobic central core of the phospholipid bilayer is the
nonconductive material.

Capacitors can be charged connecting a cathode to one of the conductive plates
and the anode to the second conductive plate producing a flow of electron (current).
Cells can be charged applying a current across the membrane. The two conductive plates
or in the case of a cell, the lipid bilayer, on one side, will be positively charged and, on
the other side, negatively charged. For example, during the nerve impulse, neuron
membranes are transiently charged due to the flow of current (charged molecules of Na*
and K*) through the ion channels (Mosgaard et al. 2015). Depending on the structure
and composition of the cell membranes, different amounts of electrical charges can be
stored. The charge stored by the capacitor is measured in Farads (F).

Cell membranes differ due to the particular lipid concentration, the number of
lipid-rich microdomains, fatty acid composition and cell surface proteins, their content
and degree of modification like by glycosylation (Christiansen et al. 2014). The plasma
membrane is a complex structure and in charge not only for maintaining particular
environments inside and outside of the cell (due to its function as a barrier and ion
transporter), it also is a key component in cell signaling giving feedback between the
extracellular and intracellular media (exocytosis and endocytosis, protein secretion,
membrane receptors, etc). It is also implicated in compartmentalization and
organization of the inside of organelles forming an endomembrane system with the
Golgi apparatus, endoplasmic reticulum, nuclear membrane, and lysosomes (O'Connor
et al. 2010) and for cell interactions, being responsible for cell-cell binding and cell-

matrix contact in cell tissue organization. The plasma membrane's complexity in cells is
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so important that it has been referred to as the capacitor for energy and metabolism
(Ray et al. 2016). The different structures that form and provide the complexity of the
plasma membrane are attributed to play specific rolls in the electrical properties of cells
and tissues (Eisenberg 1980). Therefore, one can postulate that the insulating
properties of the membranes, and in consequence their capacitance abilities, are unique

characteristics for each cell line.

1.2 Public Data Repositories

A public data repository is an online database service used for long-term storage,
preservation, archiving, managing, sharing, and accessing research data (Uzwyshyn
2016). The aim of a public repository is to provide benefit by sharing and improving
knowledge allowing faster research and discoveries (Uzwyshyn 2016). “The ability to
build upon the findings of others is one of the cornerstones of science” (Joung et al. 2015).
To do research using the findings of others it is necessary that this information is made
available and this information must be easily and permanently accessible and
trustworthy. Therefore, data repositories must have the resources to secure the long-
term preservation of the data, update the data, and provide a user-friendly platform to
upload, download, and search the data, and to provide stable and resolvable identifiers
and above all, the necessary technology for the data curation (Lemberger 2015).

Since the development of new sequencing technologies and microarrays, huge
amounts of genome data have been accumulated in public archives. Every year more and
more big data are generated that give information about genome evolution, gene
regulation, cancer genetics and their effects on patients, drugs targets, etc. The explosion
of data started in 2009 and in 2012 the amount of data produced was 4 times that
produced in 2011 (Marx 2013). By the end of 2015, the European Bioinformatics
Institute (EMBL-EBI), one of the largest data repositories for biology, had stored 75
petabytes (1 petabyte is 101> bytes) of data and backups of genes, proteins, and small
molecules (Cook et al. 2016); being in 2013 just 20 petabytes (Marx 2013). The data
generated is continuously increasing nowadays. With the low price of high-throughput
technology almost every small laboratory can be a big data generator and of course
thanks to the online repositories a big data user (Marx 2013). The data curation process

and the maintaining and development of the tools necessary to deal with the data
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explosion require that new types of professionals and carriers evolve; data scientist,
data archivist, data visualization experts, data curators, among others, will be more and
more required (Uzwyshyn 2016).

Knowledge of gene expression has dramatic increased since the utilization of
high-density immobilized oligonucleotide probes in arrays (Illumina, Affymetrix) (Rung
& Brazma 2013) and the RNA sequencing (RNA-Seq) technique. Due to the requirements
of being able to deal with and handle huge volumes of computational data,
bioinformatics has become a central and important area of biology (Rung & Brazma
2013). Microarray analyses require expertise and computational resources based on the
development of new tools and methods. Biologists benefit from such environments as
Bioconductor (Huber et al. 2015) provided by the bioinformatics community to take
advantage of the gene expression data generated and freely available in public
repositories for microarray data like the Gene Expression Omnibus (GEO) of the U.S.
National Center for Biotechnology Information (NCBI) or the ArrayExpress of EBI (Rung
& Brazma 2013). To date, GEO contains more than 2 million samples freely available
with raw data that every researcher in the world can work with (GEO, NCBI accessed 12
April 2017). A sample is an array measurement, for example, the gene expression of the
complete genome of a determined cell line using one of the Affymetrix platforms. Other
public repositories like The Genomics of Drug Sensitivity in Cancer Project (GDSC)
funded by the Wellcome Trust Sanger Institute or The Cancer Imaging Archive
supported by the NIH (U.S. National Cancer Institute) are focused on the improvement of
cancer treatment. The GDSC is a freely available resource with curated data for reuse by
the academic and medical communities. GDSC is performing a large-scale drug screen
with compounds that include cytotoxic chemotherapeutics and targeted therapeutics
from commercial sources, academic collaborators, and from the biotech and
pharmaceutical industries. The drugs are tested in more than 1000 characterized human
cancer cell lines and an incorporation of genomic analyses to identify drug response
biomarkers and correlate them with the drug sensitivity patterns are in continued
progress (Yang etal. 2012).

There is an enormous scientific and economic cost saving by the general access to
previously published data. It allows the reanalysis of existing data to address different
questions and the possibility to integrate and combine different data types giving

enormous perspectives for leading research forward.
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1.3 Correlations in Cellular Biology

Correlation is a statistical method used to evaluate the presence or not of a linear
relationship between two variables and is measured by the correlation coefficient (r)
(Mukaka 2012). The correlation coefficient gives the strength of the association. The
calculated r is a dimensionless quantity between -1 and 1, with -1 a perfect negative
correlation, 1 a perfect positive correlation, and 0 indicating the absence of a
relationship among the two variables. A negative r indicates that the two variables are
indirectly related, meaning that when the value of one variable goes up, the value of the
other one goes down. On the other hand, a positive r shows that the variables are
directly related: when the value of one variable goes up, the value of the second variable
behaves the same (Fenton & Neil 2012, Mukaka 2012, McDonald 2009). In statistical
terms, any other form of relation that does not follow linearity is not a correlation
(Mukaka 2012). The calculation of a correlation or a linear regression needs two
measurement variables (the ones that will be tested in order to find or not a linear
relation) and a nominal variable. The nominal variable is not used directly for the
calculation but is necessary to attribute the common measurements to the two
measurement variables putting them together, for example a patient ID, a gene name, a
cell line, etc. (McDonald 2009).

There are mainly two ways to calculate the correlation coefficients: the Pearson's
product moment correlation coefficient and the Spearman's rank correlation coefficient.
Pearson correlation is the most common statistical test used to evaluate the presence of
a linear relationship between two variables and is the one used when the variables are
normal distributed (data distributed in a bell-shape curve). Otherwise, Spearman's rank
correlation is used when the data show skewness (non-normal distributed data with the
presence of an asymmetry in the distribution), or one of the variables is ordinal
(categorical) and is robust when outliers are present (Mukaka 2012, McDonald 2009).
However, controversial information is found about the better performance test in non-
normal distributed data. While some authors indicate that Pearson's formula is
inadequate when one or both variables do not distribute normal (Mukaka 2012) others
point out that Pearson's formula is sufficiently robust to deal with non-normal data and
that should not be worried about when using regression or correlation coefficients
(McDonald 2009). As stated by Chok (2010): “Pearson'’s correlation coefficient could have

significant advantages for continuous non-normal data, which does not have obvious
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outliers. Thus, the shape of the distribution should not be a sole reason for not using the
Pearson product moment correlation coefficient”. Moreover, Bishara & Hittner (2012)
tested 12 different methods in non-normal distributed data to calculate correlations and
concluded that Pearson's formula performs better after data transformation than non-
parametric statistics like Spearman's. Important to highlight that when outliers are
present, type I and Il errors appear with the Pearson algorithm but there are ways to
solve that. An increase in the robustness of Pearson in non-normal distributed data with
outliers is done excluding the outlier or transforming the data to a normal shape before
running Pearson correlations (Bishara & Hittner 2012, McDonald 2009). A
transformation can be done using log-transformed data, natural log-transformed data,
transformation to rank scores, square-root transformation, etc. (Bishara & Hittner
2012). Existing infinitive ways to transform the data to perform a properly statistical
analysis of the data leaves them to follow a normal distribution (McDonald 2009).

In Pearson's product moment correlation, the null hypothesis (Ho) is that no
relation between the two variables is present, meaning that the r coefficient is equal to
0, therefore a positive or negative r indicates a direct or inverse relation, respectively.
The significance of the correlation analysis is calculated using the p-value. Hy is rejected
when the p-value is less than 0.05. A significant level (p-value) of 0.05 indicates the risk
of finding a correlation when no relation exists, in percentages this means that there is a
5% probability of getting a relation when no relation actually exists (Fenton & Neil
2012). Rejecting the null hypothesis when it actually is true is called type-I error or
significance level (false positive or to find a relation when no relation exists). A type-II
error is to accept Ho when it is, in fact, false (false negative or to not find an existing
relation).

One important and widespread use of correlation coefficients in cellular biology
is the use of Pearson's correlations on fluorescence microscopy as a statistic to quantify
colocalization. Karl Pearson developed the correlation coefficient in 1896 and almost
100 years later Manders introduced its use in microscopy (Dunn et al. 2011). For
evaluating the colocalization of two or more different fluorescence labels, almost all
image analysis software uses Pearson coefficients to correlate the overlap of the pixels
measuring the covariance in the signal level of the images (Dunn et al. 2011). Pearson
correlation has been used also for searching relations between gene expression and
cancer (Gyorffy et al. 2016, Liu et al. 2014). GyOrffy et al. used Pearson correlation

analysis to search correlations between gene expression, breast cancer prognosis, and
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the DNA methylation of genes. They found 48 genes that were significantly associated
with breast cancer prognosis (p < 0.05) and 32 of these prognostic genes showed a
direct correlation between its expression and its DNA methylation confirming that
epigenetic aberrations like DNA methylations are associated with breast cancer features
(Fleisher et al. 2014). Liu et al. (2014) performed gene expression analyses of
hepatocellular carcinoma tissues and found that miR-122 levels correlated with
glycolytic genes and that pyruvate kinase showed a highly significant negative
correlation with the miRNA (p < 0.0001). Furthermore, Pearson correlation analysis has
been used to search transcription factor target genes. The expression levels of a given
transcription factor is correlated with the expression of candidate target genes. The
relations obtained are corroborated by biochemical and functional analysis (Mansson et
al. 2004). Moreover, gene expression levels also have been correlated using Pearson
correlation on chemosensitivity in order to find candidate genes associated with a
sensitivity of anticancer drugs in cancer cell lines (Nakamura et al. 2009). Other
important uses of Pearson correlations are in attempts to find improvement in drug
treatment of cancer, like in the prediction of anticancer drug responses using
information of cell line similarity network data and drug similarity network data from
the Cancer Cell Line Encyclopedia and Cancer Genome Project public databases (Zhang

etal. 2015).

The aim of this study has been to perform a large number of assays in different
human cell lines to characterize the inherent electrical and metabolic properties. Data
on cellular features were used to search for correlations between gene expression of the
entire genome and drug sensitivity of the cells. In addition to confirming some
previously well-known relations, we found a sizeable amount of new relationships
between cellular features and new candidate genes that may involve in cancer
metabolism. Moreover, the sensitivity of cancer cells to widespread drugs was
associated with certain cellular properties, giving further insights for possible

improvements in cancer drug treatment.
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2. Experimental Methods

2.1 Cellular Properties Acquisition

2.1.1 Cell Cultures

Human cell lines were cultivated under standard conditions in Dulbecco's
modified eagle medium (DMEM) (PAA Laboratories) supplemented with 10% FBS (v/v)
(PAA Laboratories) and 1% PenStrep (10,000 units/ml penicillin and 10,000 units/ml
streptomycin) (Gibco Invitrogen) in a 5% CO: incubator at 37°C with a 95% humidity.
When confluence arrived cells were split under sterile conditions. The detachment of the
cells from the flask was done by using a trypsin substitute TrypLE Express (Thermo
Fisher), afterwards washed with Dulbecco’s phosphate buffered saline (DPBS) (Thermo
Fisher) and recultivated, seeded or directly used for further analysis. The cell lines used

in this study are shown in Table 1.

Table 1. List of cell lines used in this work

Cell line Tissue Disease Cell type
MCF7 Breast Adenocarcinoma Epithelial
MDA-MB-231 Breast Adenocarcinoma Epithelial
HCT 116 Colon Carcinoma Epithelial
HT-29 Colon Carcinoma Epithelial
LS174T Colon Adenocarcinoma Epithelial
AsPC-1 Pancreas Adenocarcinoma *
BxPC-3 Pancreas Adenocarcinoma Epithelial
JoPaca-1 Pancreas Carcinoma *

MIA PaCa-2 Pancreas Carcinoma Epithelial
Panc-1 Pancreas Carcinoma Epithelial
LNCaP Prostate Adenocarcinoma Epithelial

PC-3 Prostate Adenocarcinoma Epithelial
DU 145 Prostate Carcinoma *
HaCaT Skin No malignancy Keratinocyte

MDA-MB-435 Skin Melanoma Melanocyte

HeLa Cervix Adenocarcinoma Epithelial
Hep G2 Liver Carcinoma Epithelial
1321N1 Central nervous system Astrocytoma Glial

*Not specified
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2.1.2 Online Monitoring of Membrane Capacitance and Cellular

Metabolism

Bionas Discovery 2500 instrument (Bionas GmbH) was used to measure the
glycolytic activity, respiration, and the capacitance of cells seeded in sensor chips
(Bionas Discovery SC1000) in real time (Fig. 1).

The glycolytic and respiratory activities are indirectly measured as pH changes
and oxygen depletion in the media, respectively. The capacitance is measured directly by
the sensor. To estimate glycolysis, respiration, and to measure capacitance each Bionas
sensor chips contains five pH ISFET sensors (ion-sensitive field-effect transistors)
(Bergveld 1981), two Clark-type electrode sensors (Clark et al. 1953) and one IDES
sensor (Interdigitated Electrodes) (Ehret et al. 1997).

The pH ISFET sensors measure the pH changes by detecting ion
concentrations in solution. The current between the reference electrode and the
electrode in the solution changes according to the ion concentration in the media.
Acidification in cancer cells is mainly due to lactic acid production at the end of the
glycolysis.

The Clark sensor measures the free oxygen in the media. A fixed voltage is
applied to the sensor, which contains a cathode and an anode. In the platinum cathode,
the oxygen in the media is reduced while silver is oxidized in the anode generating a
current. The current that is produced is proportional to the oxygen reduced.

The membrane capacitance of the cells is measured by the IDES sensor.
Alterations in the capacitance value of the cells are the product of the changes in cellular
morphology, adhesion/confluence, cell-cell contacts and cell-matrix binding. The IDES
sensor contains an interdigitated palladium electrode pair in which an alternating
current is applied. The flow of the current through the two electrodes is interrupted by
the cells that adhere to the sensor surface, and such interruption is recorded.

The Bionas 2500 system allows reading of six independent chips. The influx of
new media and an outflux of the used media are done in the fluid head of "biomodules"
(Fig. 1). In each chip a different cell line can be seeded. The perfusion system supplies
the cells with a constant flow of medium (running medium) and enables to do
noninvasive, label-free measurements. The Bionas running medium consists of

ultrapure water (Werner Reinstwassersysteme) with 1mM HEPES, 1 g/l glucose, 10
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mg/]1 phenol red, 8.22 g/l DMEM powder, 1% PenStrept, 0.1% FCS and 2 mM L-
glutamine. The pH was adjusted to 7.4 and the running medium was sterilized by

filtration with a 0.2 pum hydrophobic filter (Millipore).

A Bionas system

Fluid Head
Running ¢ Running
medium out € medium in
4 min 4 min
56 pul/min 56 pl/min

Bionas Biomodul

<€~ Seeded cells

Sensor chip

Sensor chip

Fig. 1. Real-time monitoring of cell properties with the Bionas Discovery 2500 instrument
and the Bionas Discovery SC1000 chip. A. The main body of the instrument with its six
biomoduls and the tubes for perfusion. The pump system is not shown. B. Schematic view of a
single biomodul. The chip with the cell monolayer is located at the bottom, with the fluid-head
laying on top of the chip. During the measurement the system performs cycles of 4 min "go" and
4 min "stop" steps. In the 4 min "go" step, the cells are continually fed with fresh running
medium. Running medium is injected into the chips through the fluid head, with a flow rate of
56 pl/min, going out continuously. In the second step of the cycle, the constant perfusion stops,
leaving the cells with 6 pl of running medium for 4 min. C. Sensor chip. Each sensor chip contains
five pH ISFET sensors (ion-sensitive field-effect transistors) for pH measurements, two Clark-
type electrode sensors to measure oxygen concentration in the medium and one IDES sensor
(interdigitated electrodes) for cellular capacitance measurements. D. Amplified view of a chip. A
monolayer of HT-29 cells grown over the ISFET, Clark type and IDES sensors. Modified from
Alborzinia et al. 2011.
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2.1.21 Sensor Chip Seeding

Confluent cell cultures were used to seed ~200,000 cells per chip in 450 pl
DMEM medium supplemented with 10% FCS and 1% PenStrept. Before seeding, the
chips were sterilized with ethanol 70% for 20 min and washed with PBS three times.
Chips with cells were incubated overnight with 5% CO: at 37°C and 95% humidity in a

cell culture incubator.

2.1.2.2 Measurements

Before the cell-loaded sensor chips were placed in the system and the
measurement program started, the Bionas tubes were disinfected with ethanol 70%.
The disinfection program consists in sterilization with a continuous ethanol 70% flow of
12 min, followed by 4 min of rinsing with PBS. Finally, the tubes were filled with running
medium. The measurement program performs a cycle of 4 min "go" and 4 min "stop"
with running medium. In the 4 min "go" step the system injects running medium with a
constant flow of 56 pul/min and in the "stop" step leaves the cells with ~6 pul of medium.
At that point, the cells will consume oxygen and acidify the media. At the end of each
cycle a measurement of the acidification of the media (as voltage in time pV/s), the
cellular oxygen consumption (as current in time pA/s), and the cellular capacitance in
nF are taken. To prevent contamination, a cleaning program was run at the end of each
experiment. This program consists of 30 min constant flow of ethanol 70%. Finally, the

cleaning program removes all the liquid from the tubes by pumping air.

2.1.2.3 Data Collection and Analysis

Data for the glycolytic activity estimation, cellular respiration, and cellular
capacitance were obtained from the Bionas analyzer data file. Selected data contain
measurements of human cell lines, cultivated under standard conditions (in DMEM
supplemented with 10% FCS and 1% PenStrept in a 5% COz incubator at 37°C) run with
a 4 min "go" and 4 min "stop" cycle, and for which at least 4 independent experiments
were performed. Eighteen cell lines met the quality requirements and the total data
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generated by the sensors from ~1,300 chips was used for the analysis. The analyzer data
files contain sensor measurements at a time point in which the cells showed stable
cellular metabolism. This status was achieved around 4 h from the start of the
measurement program. The analyzer data files were collected with the R programming
language for statistical computing and graphics (Team, R. Core 2015) versions 2.7.0 and

3.2.1 (Supplements 5.1.1).

2.1.3 End Point Assays to Measure Cellular Metabolism

2.1.3.1 Adenosine Triphosphate (ATP) Production

The amount of extracellular ATP in the different cell lines was measured using
ATPlite 1step Luminescence ATP Detection Assay System kit (Perkin Elmer) and read in
a Tecan ULTRA plate-reader. The ATPlite 1step estimates the amount of ATP based on
the firefly (Photinus pyralis) luciferase activity. Light emitted by the ATP + luciferase +
D-luciferin reaction is proportional to the ATP concentration.

The measurements were done according to the manufacturer's instructions.
Briefly, cells were seeded in 96-well plates and ~10,000 cells per well were used. Plates
were incubated under standard conditions for 24 h. Before adding the ATP reagent the
plates were taken out from the incubator and kept at room temperature for 30 min. To
each well, 100 pl of DMEM (without FCS) plus 100 pl of the ATP reagent was added. The
cell suspension was shook for 2 min in the dark at 700 rpm in a thermo-mixer, and the
luminescence was measured in a Tecan Safire microplate reader. Per cell line, three

technical replicates and at least three independent measurements were carried out.

2.1.3.2 Mitochondrial Mass Content

The mitochondrial mass content of the cells in the different cell lines was
estimated using MitoTracker Green = benzoxazolium, 2-[3-[5,6-dichloro-1,3-bis[[4-
(chloromethyl) phenyl]methyl]-1,3-dihydro-2H-benzimidazol-2-ylidene]-1-propenyl]-3-
methyl chloride 201860-17-5 (Thermo Fisher). MitoTracker diffuses into the cells and

labels active mitochondria. Cells were trypsinized for 15 to 20 min until getting single

28



cells. The trypsinization was stopped with DMEM and ~250,000 cells were used to
estimate the mitochondrial mass. The cells were centrifuged for 3 min at 1,600 rpm
(Heraeus Multifuge Thermo Electronic) and washed two times with DPBS. Prewarmed
(37°C) MitoTracker Green at a final concentration of 7.5 nM in DMEM (without FCS) was
used to resuspend the cell pellet. The cell suspension was incubated by shaking for 30
min in the dark, repelleted and resuspended in prewarmed (37°C) DMEM without FCS.
Mitochondrial mass was measured by flow cytometry using a FACSCalibur instrument.
Excitation and emission settings were 490 nm and 516 nm, respectively (FL1 filter). At

least three independent measurements were done per cell line.

2.1.3.3 Reactive Oxygen Species (ROS) Accumulation

ROS accumulation in cells was measured using dihydroethidium (DHE) (Sigma-
Aldrich). DHE permeates cell membranes and freely diffuses to the cytosol where it
exhibits blue fluorescence, until oxidized by superoxide when it turns into a product
showing red fluorescence, and is retained by the cells. Cells were detached from the
culture flask by trypsinization for 10 min. The reaction was stopped with DMEM. Cells
were pelleted and resuspended in 500 ul DMEM (without FCS) containing 7.5 uM DHE.
The cell suspension was incubated for 15 min in the dark with shaking and repelleted
and later resuspended in DMEM without FCS. Accumulation of ROS was measured using
the FACSCalibur flow cytometer (Becton Dickinson). The excitation was set at 488 nm
and emission at 564-606 nm (FL2 filter). At least three independent measurements

were done per cell line.

2.1.3.4 Proliferation Assays

To estimate the proliferation rate of the different cell lines, data from nontreated
cells obtained from at least three independent measurements was used. Values obtained
represent the mean of three technical replicates. All the data collected comes from
experiments employing standard culture conditions. Confluent cells were plated in 96-
well plates, 3,000 cells per well, incubated in DMEM medium for 72 h at 37° C in an
incubator set with 5% CO2z and 95% humidity.
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The proliferation rate of each cell line was determined using two different
approaches; MTT = 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide
reagent (Sigma-Aldrich) and SRB = sulforhodamine B reagent (Sigma-Aldrich). MTT
penetrates viable eukaryotic cells. Cells with a mitochondrial activity reduce MTT
producing a purple-colored product. The SRB assay measures the total protein content.
The dye is incorporated into fixed cells and the amount of incorporated dye is
proportional to the amount of cells (Vichai & Kanyawim 2006). The specific protocols

are shown below:

MTT: The medium of the cells in the 96-well plates was replaced with 100 pl DMEM 1%
FCS containing 0.5 mg/ml MTT reagent per well. Plates were then incubated for 3 h at
37°C in a 5% CO2 incubator. The absorbance was measured in a Tecan Safire (Tecan)

microplate reader at 595 nm adding 200 pl per well of DMSO (Sigma-Aldrich).

SRB: Cells were fixed with 10% (w/v) cold trichloroacetic acid (Sigma-Aldrich) for 1 h at
4°C. The trichloroacetic acid was removed washing the plates carefully with water two
times. The excess of water was removed with a paper towel by tapping the plate several
times. The rest of water in the plates was evaporated in an oven at 56°C. Dry cells were
stained with SRB for 30 min at room temperature by adding 100 pl of 0.057% (w/v) SRB
in 1% acetic acid (Sigma-Aldrich) in each well. The excess of dye was removed by
washing three times with 1% (v/v) acetic acid (200 pl per well). The plates were dried
in an oven at 56°C. The boundary between the SRB and the proteins was dissolved in 10
mM Tris (pH 10.5) adding 200 pl per well and shaking them for 10 min. The optical

density determination was done at 510 nm in a Tecan Safire microplate reader.

2.2 Hierarchical Clustering

To group the cell lines based on metabolic features or gene expression, clusters
were drawn using R programming language packages plyr version 1.8.4 library plyr
(Wickham 2011) and rafalib version 1.0.0 library rafalib (Irizarry & Love 2016) The
cluster method used was the hierarchical clustering with the hclust function, Euclidean

distance and method complete (Supplements 5.1.6).
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2.3 Gene Expression Analyses

Raw data (.CEL files) from gene expressions obtained using Affymetrix Human
Genome U133 Plus 2.0 Array were obtained from GEO, NCBI (De Schutter et al. 2013,
Barretina et al. 2012). The according public accession numbers and cell lines are listed
in Table 2. All the analyzed data comes from cell lines cultivated in DMEM supplemented
with 10% FCS in a 5% CO: incubator at 37°C. Data for HaCaT and HeLa lines were

available in triplicate; a mean of the calculated expression value was used.

Table 2. Cell lines and gene accession numbers

Cell line Gene accession number
MCF7 GSM887291
MDA-MB-231 GSM887295
HCT 116 GSM887062
HT-29 GSM887141
AsPC-1 GSM886870
BxPC-3 GSM886896
MIA PaCa-2 GSM887320
PANC-1 GSM887501
LNCaP GSM887271
PC-3 GSM887506
DU 145 GSM886988
MDA-MB-435 GSM887298
Hep G2 GSM887079
1321N1 GSM886835
HeLa control a GSM960275
HeLa control b GSM960283
HeLa control ¢ GSM960291
HaCaT control a GSM960278
HaCaT control b GSM960286
HaCaT control ¢ GSM960294

Preprocessing of the .CEL files was done using the Robust Multi-array Average
(RMA) normalization method (Irizarry et al. 2003). This method allows background
subtraction, quantile normalization, and summarization (calculation of expression
values). RMA was applied in all probe sets belonging to the 16 cell lines listed in Table 2.
RMA calculations were done using Bioconductor (Huber et al. 2015), an open source
software for bioinformatics that uses R statistics programming language. Bioconductor
version 3.2 was run under R version 2.7.0. For the calculation, the package affy version
1.32.0 and the annotation package pd.hthg.ul33.plus.pm were used (Gautier et al.
2004). The RMA function (rma()) was run with the default options (normalize=TRUE,
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background=TRUE) (Supplements 5.1.2). Official gene symbols were downloaded from
affymetrix.com and the comma separated value file HGU133.Plus2.na34.annot.csv was

used.

2.3.1 Selection of Genes Related to Metabolism Pathways with Extreme

Expression in the Affymetrix Array

The Entrez gene ID belonging to the glycolysis-gluconeogenesis, pentose
phosphate, tricarboxylic acid cycle (TCA), and electron transport chain pathways were
downloaded from Wikipathways (Kelder et al. 2011). The entire downloaded gene lists
regards Homo sapiens. The specific Wikipathways used were: WP134 for pentose
phosphate, WP534 for glycolysis-gluconeogenesis, WP78 for TCA, and WP111 for
respiratory electron transport chain pathways. The Entrez gene identifiers acquired
from Wikipathways were uploaded in DAVID 6.7 (Huang et al. 2009). DAVID is a free
online bioinformatics resource database for annotation and gene list visualization. Using
the gene ID conversion tool from DAVID, the official gene symbols were obtained. A total
of seven genes were selected for further analysis of the pentose phosphate pathway, 48
genes from glycolysis-gluconeogenesis, and 116 genes of the TCA plus electron

transport chain (Tables 3, 4, and 5).

Table 3. Entrez gene identifiers of genes belonging to the pentose phospate pathway WP134
from Wikipathways. Official gene symbols and gene names were obtained with DAVID 6.7 online
database.

Wikipathways DAVID
Identifier = Database From To Species David Gene Name
Glucose-6-phosphate
2539 Entrez Gene 2539  G6PD  Homo sapiens Dehydrogenase(G6PD)

5226 Entrez Gene 5226 PGD Homo sapiens Phosphogluconate dehydrogenase (PGD)
Ribulose-5-phosphate-3-epimerase

6120 Entrez Gene 6120 RPE Homo sapiens (RPE)
6888 Entrez Gene 6888 TALDO1 Homo sapiens Transaldolase 1 (TALDO1)
7086 Entrez Gene 7086 TKT Homo sapiens Transketolase (TKT)

22934 Entrez Gene 22934 RPIA  Homo sapiens Ribose 5-phosphate isomerase A (RPIA)
25796 Entrez Gene 25796 PGLS  Homo sapiens 6-Phosphogluconolactonase (PGLS)
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Table 4. Entrez gene identifiers of genes belonging to the glycolysis-gluconeogenesis pathway
WP534 from Wikipathways. Official gene symbols and gene names were obtained with DAVID
6.7 online database.

Wikipathways DAVID
Identifier = Database From To Species DAVID gene name
Aldolase, fructose-bisphosphate
226 Entrez Gene 226 ALDOA  Homo sapiens A(ALDOA)
Aldolase, fructose-bisphosphate
229 Entrez Gene 229 ALDOB  Homo sapiens B(ALDOB)
aldolase, fructose-bisphosphate
230 Entrez Gene 230 ALDOC  Homo sapiens C(ALDOC)
dihydrolipoamide S-
1737 Entrez Gene 1737 DLAT Homo sapiens acetyltransferase(DLAT)
dihydrolipoamide
1738 Entrez Gene 1738 DLD Homo sapiens dehydrogenase(DLD)
2023 Entrez Gene 2023 ENO1 Homo sapiens enolase 1(ENO1)
2026 Entrez Gene 2026 ENO2 Homo sapiens enolase 2(ENO2)
2027 Entrez Gene 2027 ENO3 Homo sapiens enolase 3(ENO3)
2203 Entrez Gene 2203 FBP1 Homo sapiens fructose-bisphosphatase 1(FBP1)
glucose-6-phosphatase catalytic
2538 Entrez Gene 2538 G6PC Homo sapiens subunit(G6PC)
2645 Entrez Gene 2645 GCK Homo sapiens glucokinase(GCK)
glutamic-oxaloacetic transaminase
2805 Entrez Gene 2805 GOT1 Homo sapiens 1(GOT1)
glutamic-oxaloacetic transaminase
2806 Entrez Gene 2806 GOT2 Homo sapiens 2(GOT2)
2821 Entrez Gene 2821 GPI Homo sapiens  glucose-6-phosphate isomerase(GPI)
3098 Entrez Gene 3098 HK1 Homo sapiens hexokinase 1(HK1)
3099 Entrez Gene 3099 HK2 Homo sapiens hexokinase 2(HK2)
3101 Entrez Gene 3101 HK3 Homo sapiens hexokinase 3(HK3)
3939 Entrez Gene 3939 LDHA Homo sapiens lactate dehydrogenase A(LDHA)
3945 Entrez Gene 3945 LDHB Homo sapiens lactate dehydrogenase B(LDHB)
3948 Entrez Gene 3948 ldhc Homo sapiens lactate dehydrogenase C(LDHC)
4190 Entrez Gene 4190 MDH1 Homo sapiens malate dehydrogenase 1(MDH1)
4191 Entrez Gene 4191 MDH2 Homo sapiens malate dehydrogenase 2(MDH?2)
5091 Entrez Gene 5091 PC Homo sapiens pyruvate carboxylase(PC)
phosphoenolpyruvate carboxykinase
5105 Entrez Gene 5105 PCK1 Homo sapiens 1(PCK1)
pyruvate dehydrogenase (lipoamide)
5160 Entrez Gene 5160 PDHA1  Homo sapiens alpha 1(PDHA1)
pyruvate dehydrogenase (lipoamide)
5161 Entrez Gene 5161 PDHA2  Homo sapiens alpha 2(PDHAZ2)
pyruvate dehydrogenase (lipoamide)
5162 Entrez Gene 5162 PDHB Homo sapiens beta(PDHB)
5211 Entrez Gene 5211 PFKL Homo sapiens phosphofructokinase, liver type(PFKL)
5213 Entrez Gene 5213 PFKM Homo sapiens  phosphofructokinase, muscle(PFKM)
5214 Entrez Gene 5214 PFKP Homo sapiens  phosphofructokinase, platelet(PFKP)
5223 Entrez Gene 5223 PGAM1  Homo sapiens  phosphoglycerate mutase 1(PGAM1)
5224 Entrez Gene 5224 PGAM2  Homo sapiens  phosphoglycerate mutase 2(PGAM2)
5230 Entrez Gene 5230 PGK1 Homo sapiens phosphoglycerate kinase 1(PGK1)
5232 Entrez Gene 5232 PGK2 Homo sapiens phosphoglycerate kinase 2(PGK2)
5313 Entrez Gene 5313 PKLR Homo sapiens  pyruvate kinase, liver and RBC(PKLR)
5315 Entrez Gene 5315 PKM Homo sapiens pyruvate kinase, muscle(PKM)
6513 Entrez Gene 6513  SLC2A1  Homo sapiens solute carrier family 2 member
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6514

6515

6517

6518
7167

8050
8789

25874

26330

51660

92483

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene
Entrez Gene

Entrez Gene
Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

6514

6515

6517

6518
7167

8050
8789

25874

26330

51660

92483

SLC2A2

SLC2A3

SLC2A4

slc2a5b
TPI1

PDHX
FBP2

MPC2

GAPDHS

MPC1

LDHAL6B

Homo sapiens
Homo sapiens
Homo sapiens

Homo sapiens
Homo sapiens

Homo sapiens
Homo sapiens

Homo sapiens

Homo sapiens

Homo sapiens

Homo sapiens

1(SLC2A1)
solute carrier family 2 member
2(SLC2A2)
solute carrier family 2 member
3(SLC2A3)
solute carrier family 2 member
4(SLC2A4)
solute carrier family 2 member
5(SLC2A5)
triosephosphate isomerase 1(TPI1)
pyruvate dehydrogenase complex
component X (PDHX)
Fructose-bisphosphatase 2(FBP2)
Mitochondrial pyruvate carrier 2
(MPC2)
Glyceraldehyde-3-phosphate
dehydrogenase, spermatogenic
(GAPDHS)
Mitochondrial pyruvate carrier 1
(MPC1)

Lactate dehydrogenase A like 6B
(LDHAL6B)

Table 5. Entrez gene identifiers of genes belonging to the tricarboxylic acid cycle and electron
transport chain, pathways WP78 and WP111 from Wikipathways. Official gene symbols and

gene names were obtained with DAVID 6.7 online database.

Wikipathways DAVID
Identifier Database From To DAVID gene name

50 Entrez Gene 50 ACO2 aconitase 2 (AC02)
291 Entrez Gene 291 SLC25A4 solute carrier family 25 member 4 (SLC25A4)
292 Entrez Gene 292 SLC25A5 solute carrier family 25 member 5 (SLC25A5)
293 Entrez Gene 293 SLC25A6 solute carrier family 25 member 6 (SLC25A6)

ATP synthase, H+ transporting, mitochondrial F1
498 Entrez Gene 498 ATP5A1 complex, alpha subunit 1, cardiac muscle

(ATP5A1)

ATP synthase, H+ transporting, mitochondrial F1
506 Entrez Gene 506 ATPSB complex, beta polypeptide (ATP5B)

ATP synthase, H+ transporting, mitochondrial F1
509 Entrez Gene 509 ATP5C1 complex, gamma polypeptide 1 (ATP5C1)

ATP synthase, H+ transporting, mitochondrial F1
13 EntrezGeme 513 ATPSD complex, delta subunit (ATP5D)

ATP synthase, H+ transporting, mitochondrial F1
S14 Entrez Gene 514 ATPSE complex, epsilon subunit (ATP5E)

ATP synthase, H+ transporting, mitochondrial Fo
515 Entrez Gene 515 ATP5F1 complex subunit B1 (ATPSF1)

ATP synthase, H+ transporting, mitochondrial Fo
>16 Entrez Gene 516 ATP5G1 complex subunit C1 (subunit 9) (ATP5G1)
517 Entrez Gene 517 ATP5G2 ATP synthase, H+ transporting, mitochondrial Fo
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518

521

522

539

1327
1329
1337
1339
1340
1345
1346
1347
1349
1350
1351

1353

1355

1431
1738
1743
2271

3418

3419

3420

3421

4191
4508
4509
4512
4513
4514
4519

4535
4536
4537

4538

4539

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene
Entrez Gene

Entrez Gene
Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

518

521

522

539

1327
1329
1337
1339
1340
1345
1346
1347
1349
1350
1351

1353

1355

1431
1738
1743
2271

3418

3419

3420

3421

4191
4508
4509
4512
4513
4514
4519

4535
4536
4537

4538

4539

ATP5G3
ATPSI
ATP5]

ATP50

Cox4l11
Cox5b
Coxé6al
COX6A2
Cox6b1
COX6C
Cox7al
COX7A2
COX7B
COX7C
COX8A

cox11

Cox15

CS
DLD
DLST
FH

IDH2
IDH3A
IDH3B

IDH3G

MDH2
ATP6
ATP8
COX1
COX2
COX3
CYTB

ND1
ND2
ND3

ND4

ND4L

ATP synthase, H+ transporting, mitochondrial Fo
complex subunit C3 (subunit 9) (ATP5G3)

ATP synthase, H+ transporting, mitochondrial Fo
complex subunit E (ATP5I)

ATP synthase, H+ transporting, mitochondrial Fo
complex subunit F6 (ATP5])

ATP synthase, H+ transporting, mitochondrial F1
complex, O subunit (ATP50)

cytochrome c oxidase subunit 411 (COX411)
cytochrome c oxidase subunit 5B (COX5B)
cytochrome c oxidase subunit 6A1 (COX6A1)
cytochrome c oxidase subunit 6A2 (COX6A2)
cytochrome c oxidase subunit 6B1 (COX6B1)
cytochrome c oxidase subunit 6C (COX6C)
cytochrome c oxidase subunit 7A1 (COX7A1)
cytochrome c oxidase subunit 7A2 (COX7A2)
cytochrome c oxidase subunit 7B (COX7B)
cytochrome c oxidase subunit 7C (COX7C)
cytochrome c oxidase subunit 8A (COX8A)

COX11, cytochrome c oxidase copper chaperone
(Cox11)

COX15, cytochrome c oxidase assembly homolog
(CoX15)

citrate synthase (CS)
dihydrolipoamide dehydrogenase (DLD)
dihydrolipoamide S-succinyltransferase (DLST)
fumarate hydratase (FH)

isocitrate dehydrogenase (NADP(+)) 2,
mitochondrial (IDH2)

isocitrate dehydrogenase 3 (NAD(+)) alpha
(IDH3A)

isocitrate dehydrogenase 3 (NAD(+)) beta
(IDH3B)

isocitrate dehydrogenase 3 (NAD(+)) gamma
(IDH3G)

malate dehydrogenase 2 (MDH2)

ATP synthase FO subunit 6 (ATP6)

ATP synthase FO subunit 8 (ATP8)
cytochrome c oxidase subunit I (COX1)
cytochrome c oxidase subunit I (COX2)

cytochrome c oxidase III (COX3)
cytochrome b (CYTB)
NADH dehydrogenase, subunit 1 (complex I)
(ND1)
MTND2 (ND2)

NADH dehydrogenase, subunit 3 (complex I)
(ND3)

NADH dehydrogenase, subunit 4 (complex I)
(ND4)

NADH dehydrogenase, subunit 4L (complex I)
(ND4L)
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36

4540

4541

4694

4695

4696

4697

4698

4700

4701

4702

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

4714

4715

4716

4717

4718

4719

4720

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

4540

4541

4694

4695

4696

4697

4698

4700

4701

4702

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

4714

4715

4716

4717

4718

4719

4720

ND5

ND6

NDUFA1

NDUFAZ2

NDUFA3

NDUFA4

NDUFA5S

NDUFA6

NDUFA7

NDUFAS8

NDUFA9

NDUFA10

NDUFAB1

NDUFB1

NDUFB2

NDUFB3

NDUFB4

NDUFB5

NDUFB6

NDUFB7

NDUFB8

NDUFB9

NDUFB10

NDUFC1

NDUFC2

NDUFS1

NDUFS2

NADH dehydrogenase, subunit 5 (complex I)
(ND5)
NADH dehydrogenase, subunit 6 (complex I)
(ND6)
NADH:ubiquinone oxidoreductase subunit A1
(NDUFA1)

NADH:ubiquinone oxidoreductase subunit A2
(NDUFA2)

NADH:ubiquinone oxidoreductase subunit A3
(NDUFA3)

NDUFA4, mitochondrial complex associated
(NDUFA4)
NADH:ubiquinone oxidoreductase subunit A5
(NDUFAS5)

NADH:ubiquinone oxidoreductase subunit A6
(NDUFAS®6)

NADH:ubiquinone oxidoreductase subunit A7
(NDUFA7)
NADH:ubiquinone oxidoreductase subunit A8
(NDUFAS)

NADH:ubiquinone oxidoreductase subunit A9
(NDUFA9)

NADH:ubiquinone oxidoreductase subunit A10
(NDUFA10)
NADH:ubiquinone oxidoreductase subunit AB1
(NDUFAB1)

NADH:ubiquinone oxidoreductase subunit B1
(NDUFB1)

NADH:ubiquinone oxidoreductase subunit B2
(NDUFB2)
NADH:ubiquinone oxidoreductase subunit B3
(NDUFB3)

NADH:ubiquinone oxidoreductase subunit B4
(NDUFB4)

NADH:ubiquinone oxidoreductase subunit B5
(NDUFBS5)
NADH:ubiquinone oxidoreductase subunit B6
(NDUFB6)

NADH:ubiquinone oxidoreductase subunit B7
(NDUFB7)

NADH:ubiquinone oxidoreductase subunit B8
(NDUFBS)
NADH:ubiquinone oxidoreductase subunit B9
(NDUFB9)

NADH:ubiquinone oxidoreductase subunit B10
(NDUFB10)

NADH:ubiquinone oxidoreductase subunit C1
(NDUFC1)
NADH:ubiquinone oxidoreductase subunit C2
(NDUFC2)

NADH:ubiquinone oxidoreductase core subunit
S1 (NDUFS1)

NADH:ubiquinone oxidoreductase core subunit
S2 (NDUFS2)



4722

4723

4724

4725

4726

4728

4729

4731
4967
6341

6389

6390

6391

6392

6834

7350
7351
7352

7381

7384

7385

7386

7388

8801
8802

9016

9167
9377

9481

9551

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene
Entrez Gene
Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

Entrez Gene

4722

4723

4724

4725

4726

4728

4729

4731
4967
6341

6389

6390

6391

6392

6834

7350
7351
7352

7381

7384

7385

7386

7388

8801
8802

9016

9167
9377

9481

9551

NDUFS3
NDUFV1
NDUFS4
NDUFS5
NDUFS6
NDUFS8
NDUFV2

NDUFV3
OGDH
SCOo1

SDHA
SDHB
SDHC
SDHD

SURF1

UCP1
UCP2
UCP3

Uqcrb
UQCRC1
Uqcrc2
Uqcrfs1
Uqcrh

SUCLG2
SUCLG1

SLC25A14

COX7A2L

Coxba

SLC25A27

ATPS5]2

NADH:ubiquinone oxidoreductase core subunit
S3 (NDUFS3)

NADH:ubiquinone oxidoreductase core subunit
V1 (NDUFV1)

NADH:ubiquinone oxidoreductase subunit S4
(NDUFS4)

NADH:ubiquinone oxidoreductase subunit S5
(NDUFS5)

NADH:ubiquinone oxidoreductase subunit S6
(NDUFS6)

NADH:ubiquinone oxidoreductase core subunit
S8 (NDUFS8)

NADH:ubiquinone oxidoreductase core subunit
V2 (NDUFV2)

NADH:ubiquinone oxidoreductase subunit V3
(NDUFV3)

oxoglutarate dehydrogenase (OGDH)

SCO1, cytochrome c oxidase assembly protein
(sco1)

succinate dehydrogenase complex flavoprotein
subunit A (SDHA)

succinate dehydrogenase complex iron sulfur
subunit B (SDHB)

succinate dehydrogenase complex subunit C
(SDHQC)

succinate dehydrogenase complex subunit D
(SDHD)

SURF1, cytochrome c oxidase assembly factor
(SURF1)

uncoupling protein 1 (UCP1)
uncoupling protein 2 (UCP2)
uncoupling protein 3 (UCP3)

ubiquinol-cytochrome c reductase binding
protein (UQCRB)
ubiquinol-cytochrome c reductase core protein I
(UQCRC1)
ubiquinol-cytochrome c reductase core protein II
(UQCRC2)
ubiquinol-cytochrome c reductase, Rieske iron-
sulfur polypeptide 1 (UQCRFS1)
ubiquinol-cytochrome c reductase hinge protein
(UQCRH)
succinate-CoA ligase GDP-forming beta subunit
(SUCLG2)

succinate-CoA ligase alpha subunit (SUCLG1)
solute carrier family 25 member 14 (SLC25A14)

cytochrome c oxidase subunit 7A2 like
(COX7A2L)

cytochrome c oxidase subunit 5A (COX5A)
solute carrier family 25 member 27 (SLC25A27)

ATP synthase, H+ transporting, mitochondrial Fo
complex subunit F2 (ATP5]2)
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COX17, cytochrome c oxidase copper chaperone
(Cox17)

ATP synthase, H+ transporting, mitochondrial Fo
complex subunit D (ATP5H)

ATP synthase, H+ transporting, mitochondrial Fo
complex subunit G (ATP5L)

ubiquinol-cytochrome c reductase, complex III
subunit XI (UQCR11)

ubiquinol-cytochrome c reductase complex III
subunit VII (UQCRQ)

ATP synthase, H+ transporting, mitochondrial Fo
complex subunit s (factor B) (ATP5S)

ubiquinol-cytochrome c reductase, complex III

10063 Entrez Gene 10063 COX17
10476 Entrez Gene 10476 ATP5H
10632 Entrez Gene 10632 ATP5L
10975 Entrez Gene 10975  UQCR11
27089 Entrez Gene 27089 Uqcrq
27109 Entrez Gene 27109 ATP5S

29796 Entrez Gene 29796 Uqcr10

subunit X (UQCR10)
NADH:ubiquinone oxidoreductase subunit A12
55967 Entrez Gene 55967 NDUFA12 (NDUFA12)
93974 Entrez Gene 93974 ATPIF1 ATPase inhibitory factor 1 (ATPIF1)

NADH:ubiquinone oxidoreductase core subunit
S7 (NDUFS7)

374291 Entrez Gene 374291 NDUFS7
Using the official gene symbols from the selected pathways, the probe set IDs

from the RMA normalized data were selected (Supplements 5.1.3). From the original
table with 54,676 rows corresponding to the total probe set IDs in the Affymetrix U133
array, we extracted three small tables with 13 probe sets for the pentose phosphate
pathway, 94 probe sets for the glycolysis-gluconeogenesis pathway, and 218 probe sets

for TCA and electron transport chain.

The statistical method "Presence-Absence calls with Negative Probe sets" (PANP)
was used to estimate the significance of the detection on Affymetrix U133 series
microarrays (Warren et al. 2007). The probe sets in which an “Absence” value is given
are the ones in which the expression level is below the threshold of detection, meaning
that the expression level does not differ from zero significantly and that the fluorescence
intensity generated in the sample occurred by unspecific hybridization.

The PANP function runs in the R programming language and uses Affymetrix-
reporter probes with unknown hybridization partners to calculate the cutoffs and gives
the p-values for each probe set. The panp package (Bioconductor) with the PANP
function (panp()) was run with the default option for the p-values (0.01 and 0.02 as
cutoffs, see Supplements 5.1.4). “P” (present) calls were given to the probe sets in which
the p-value for the detection intensities was below 0.01; “M” (marginal) was given to the

probe sets in which the p-value for the detection intensities was between 0.01 and 0.02;
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and “A” (absence) was given to the probe sets in which the p-value for the detection
intensities was above of 0.02.
In the Affymetrix U133 array the probe set IDs are named with a number

followed by a letter suffix that indicates the probe set type:

o “_at” suffix: predicted to perfectly match the antisense strand of the gene of interest.

Just one single transcript is included.

e “_a_at” suffix: at least one probe of the probe set cross-hybridized with transcripts

from the same gene.

» “_s_at” suffix: at least one probe of the probe set cross-hybridized with transcript from

the same gene or from homologous genes.

e “ x_at” suffix: is a mixed probe set that contains some probes that are identical or

highly similar to other sequences.

A selection of one probe set per gene was done based on the probe set suffix and
on the "Presence-Absence calls”. Independently of the "Presence-Absence calls”, all
probe sets with a _x suffix were deleted. For glycolysis-gluconeogenesis together with
the pentose phosphate pathways, 107 probe sets were reduced to 51 (51 genes). From
the 218 probe sets belonging to the TCA together with the electron transport chain
pathways, 104 probe sets remained (104 genes). Scale and center were applied to the
expression values to normalize the expression of each gene in each cell line. To center
the gene expression columns, the mean of the gene expression was calculated per each
gene and then subtracted from the gene expression value in each cell line. These
centered column values are divided by the column's standard deviation. A range to
compare the expression values of each gene in the studied cell lines from -3 (lowly
expressed genes) to 3 (highly expressed genes) was obtained. Scaling and centering was
calculated using R programming language function biscale from the package softimpute
version 1.4 library softimpute (Hastie et al. 2015) (Supplements 5.1.5). Genes that had
high or low expression levels (extreme values after scale and center >1 or <-1) in at
least 7 of the 16 cell lines were selected (Supplements 5.1.5). A set of 17 genes out of the

155 remained for correlation analysis with the metabolic assays.
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2.3.2 Selection of Genes in the Total Probe Sets of the Affymetrix Array

with Extreme Expression

Gene expression data of the total probe sets of the Affymetrix array normalized
with the RMA function (Experimental Methods 2.3) were scaled and centered per probe
set base in the expression value of the analyzed cell lines (Experimental Methods 2.3.1).
In the complete data with 54,676 probe set IDs we selected the extreme expressed
probe sets (values greater than 1 and lower than -1) per cell line (Supplements 5.1.5). A
new range was done with the cell lines that presented the most extreme expressed
probe set values. Probe sets were selected that were either highly or lowly expressed in
at least 9 of the 16 cell lines. A total of 202 probe sets remained. The gene symbol of the
202 probe sets was added to search all the probe sets that target that gene symbol. A
new list containing 481 probe sets was obtained. The probe sets with a _x suffix were
deleted leaving 456 probe sets.

A final selection was done for genes with consistent information through their
probe sets. Genes with just one probe set were discarded. There remained 36 probe sets

corresponding to 17 genes for correlation analysis with the metabolic assays.

2.3.3 Real-Time Polymerase Chain Reaction (qPCR)

The gene expression of six genes belonging to the glycolysis-gluconeogenesis
pathway (GOT1, HK1, HK2, LDHa, PFKM, SLC2A) was estimated by quantitative real-
time PCR in MCF7, MDA-MB-231, HeLa, HCT 116, HT-29, Hep G2, ASPC-1, BxPC-3, MIA
PaCa-2, PANC-1, PC-3, and DU 145 cell lines. The RNA for the gqPCR came from cells
cultivated under standard conditions. The total RNA from each cell line was isolated
with RNeasy Mini Kit (Qiagen) according to the manufacturer's instructions. The quality
of the RNA was examined by electrophoresis in agarose gels and quantified by
spectrophotometry (260 nm/280 nm) in a NanoDrop 2000 (Thermo Scientific). A mass
of 250 ng of total RNA for each cell line was transcribed into cDNA with the RevertAid
Reverse Transcriptase (Thermo Fisher). For the synthesis, oligo-dT primers and random
hexamer primers were used. The reverse transcription reaction program entailed

incubation of 10 min at 25°C, a reverse transcription of 30 min at 48°C, and inactivation
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of the reverse transcriptase for 5 min at 95°C. The amplification reactions contained 1 pl
of cDNA, 1 pl SYBR Green Master (Qiagen), and 1 pl of the target primers (Eurofins
Genomics). The primer sequences are listed in Table 6. The qPCRs were performed
using a qTOWER (Analytik Jena) system with the following program: Taq polymerase
activation (10 min at 95°C) and 40 amplification cycles (denaturation at 95°C for 15 sec

and annealing/extension at 58°C for 1 min).

Table 6. List of the primer sequences used in real-time PCR for estimating the expression of
some of the genes involves in the glycolysis-gluconeogenesis pathway

Target gene Type of primer Sequence
GOT1 Forward 5’ CACTAT CTG CCA ATCCTG 3’
Reverse 5’ CCT ACCCGCTTCTCCTTG AG 3’
HK1 Forward 5 GTT GCC AAC ATT CET AAGGTCC 3’
Reverse 5’ CAC TTG CAC CCG CAG AAT TCG 3’
HK2 Forward 5" GTG GCA CCCAGC TGT TTGAC 3’
Reverse 5’ CGA GAA GGT AAA ACC CAGTGG 3’
LDHa Forward 5’ GAA GGG AGA GAT GAT GGATCTC 3’
Reverse 5 CTT ATC TTC CAAGCCACGTAGG 3’
PFKM Forward 5" GGT GGA GAT CACATC AAGGAAG 3’
Reverse 5’ CTC GTT CCC GAA AGT CCT TGC 3’
SLC2A Forward 5 CAGTTT GGC TACAACACTGGAG 3
Reverse 5’ GCA GGATGC TCT CCC CAT AG 3

2.4 Half Maximal Inhibitory Concentration (IC50) Estimations

241 ICso Values from the Genomics of Drug Sensitivity in Cancer Project

(GDSC)

The ICsos of several drugs were obtained from the GDSC, part of the Wellcome
Trust Sanger Institute (UK) and the Center for Molecular Therapeutics, Massachusetts
General Hospital Cancer Center (USA) (Yang et al. 2012). For this study, the release 5
(June 2014) was used. ICso values for 99 drugs in 11 out of the 18 cell lines that contain

metabolism estimations were found (Table 7).
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Table 7. 1Cso values in uM obtained from the Genomics of Drug Sensitivity in Cancer project.

ICso pM
Drug Name MDZASI E’IB' MCF7 }1{3 HT-29 Asfc' BX;’ ¢ Mia g aa- MDgISWB' PC-3 LNCaP 1[)4%
681640 6.86 599 2871 1606 4021 1503  29.54 169 2716 2072 0.16
17-AAG 4512 0097 0266 0033 0152 0135  0.003 0.079 0079 0800 2.79
ABT-263 12143 4551 1619 6026 1987 8117 1132 1109 1574 1056  0.90
ABT-888 21062 4329 8778 6803 257.3 4353 8221 373.0 2867 2995 1391
AG-014699 13.77 803 718 409 3165 2800 1233 1455 1067 3226 50.49
AICAR 2401 1894 2555 17.723 1327 1376 3429 2480 3007 8310 6767
AKT inhib. VIII 1038 3227 776 243 4811 222 9578 1048 1051 1046 17.69
AMG-706 2121 2886 2109 7596 5451 1864 2136 3890 1351 1598  0.47
AP-24534 1021 1181 021 2579 729 035 1.01 4332 4443 2535 108
AS601245 1231 150 2315 427 3178 186 098 2842 1162 7399 12.02
ATRA 7180 5235 2171 1729 997 2114 4259 4151 3432 974 5055
AUY922 0.091 0003 0152 0044 254 0043 0015 0218 0132 0082 0.013
Axitinib 1865 4655 1039 2930 30.02 7439 183 37.16 2180 3485 413
AZD-2281 6656 9179 3005 2412 3678 4969  23.79 4933 1975 3004 2177
AZD6244 5.57 2435 106 7039 032 466 3884 0.04 2357 3954 1338
AZD6482 60.07 335 669 2976 3268 345 1471 2063 1654 152 137
AZD6482 60.96 4686 1934 1879 1768 3936  266.2 2168 3920 241 37.28
AZD7762 1.60 1324 142 037 066 026  0.14 0.14 971 144  40.63
AZD8055 172 041 143 233 074 089 0.42 0.47 072 035 677
BAY 61-3606 547.9 115 398 281 4329 286 540 1699 418 218  7.97
Bexarotene 6320 2739 2687 1081 7973 5229  10.51 53.58 6553 896.1 1583
BIBW2992 2828 1647 441 5524 19.65 2501 2521 4413 2111 1542 045
Bicalutamide 106 3930  59.95 8840 7447 6805  77.87 5048 1028 4129 9821
BIRB 0796 2064 7689 3247 2819 4279 2636 1453 734 1528 4317 394
Bleomycin 0.27 117 288 054 8250 381 0.11 322 1331 1832 082
BMS-708163 339 1498 1880 1188 6085 1104 1924 6196 7838 4544 163
BMS-754807 2.61 009 321 001 188 138 025 6.59 193 786 193
Bosutinib 4762 1354 223 461 1456 6263 105 449 1026 147  67.74
Bryostatin 1 0.65 005 005 047 012 005 0.26 0.01 048 021  0.08
BX-795 8.24 3583 499 3855 5272 1001 226 5.22 417 3060 429.1
Camptothecin 0010 0024 0032 0047 0168 0053  0.002 0012 0007 0031 228
CCT007093 519.2 386 4343 238 1261 1612 6879 4795 5921 8741 759.1
CCT018159 2.80 1998 577 1111 9069 1105 442 3128 954 1864 822
CEP-701 0.59 320 014 087 162 101 0.50 0.05 1261 035 216
CHIR-99021 2009 5176 4321 1228 1528 470 176 2311 99.06 1759 109.95
C1-1040 4.29 7660 681 147 537 839 0.92 015 3129 2396 100.6
Cisplatin 3169 5664 1184 9655 2095 825 1.48 1664  49.66 5154 1112
Cytarabine 0.53 197 031 057 139 475 0.39 0.58 086 131 52.13
DMOG 3679 15360 658 8462 3924 6391  139.1 1859  417.6 3.206 8245
Docetaxel 0.009 0002 0002 0006 0008 0004  0.002 0.002  0.008 0.001 0.013
Doxorubicin 153 0012 0207 0037 0855 0211  0.034 0905 0957 0204 0.074
EHT 1864 2608 1476 4091 700.6 9564 4640 5812 2973 2164 1435 3633
Elesclomol 0.019 0031 0040 0068 0038 0141  0.005 0122 0.005 0.008 0.500
Embelin 21.82 835 2852 7.52 5566 641 470 1101 1481 2192 876
Epothilone B 0.025 0000 0005 0000 0144 0002  0.001 0.037 0023 0.004 0.001
Etoposide 9.09 083 101 198 3026 1686  2.66 795 6127 2352  0.59
FH535 1434 264 372 553 2229 684  0.60 8323 812 2157 469
FTI-277 41.53 8308 2102 330 2364 1884 3283 65.56  49.26 63.89 12.04
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GDC-0449
GDC0941
Gefitinib
Gemcitabine

GSK-1904529A

GSK-650394
GW 441756
IPA-3
JNJ-26854165
JNK Inhib. VIII
JNK-9L
KU-55933
LAQ824
Lenalidomide
LFM-A13
Methotrexate
Midostaurin
Mitomycin C
MK-2206
Nilotinib
NSC-87877
NU-7441
Nutlin-3a
NVP-BEZ235

Obatoclax
Mesylate

0SI-906
0SU-03012
PAC-1
Pazopanib
PD-0325901
PD-0332991
PD-173074
PF-4708671
PF-562271
PLX4720
QS11
RDEA119
RO-3306
SB 216763
SB590885
Shikonin
SL 0101-1
Temsirolimus
Thapsigargin
Tipifarnib
TW 37
Vinblastine
Vinorelbine
Vorinostat
VX-702
ZM-447439

65.44
16.71
35.51
0.028

8.19

91.65
116.2
280.4
4.56
378.6
0.97
462.7
0.07
159.8
81.98
22.90
0.28
3.24
177.5
54.53
1911
121.5
515.8
0.11

0.80

40.99
4.16
236.5
108
0.16
3.82
43.96
631
2.50
1.079
42.39
1.12
273.7
74.90
29.60
1.02
654.5
0.68
0.001
5.83
0.108
0.030
0.037
4.70
141.9
28.49

897.4
0.90
15.81
0.000

29.27

1.82
22.34
2.18
17.19
279.6
0.39
60.99
0.02
503
464.4
16.20
0.33
0.01
2.86
141.1
657.8
80.22
5.44
0.05

0.00

5.15
1.06
35.31
28.71
3.86
2.71
11.62
83.29
91.71
39.86
2.26
162.5
11.18
145.9
115.4
0.43
437
0.57
0.000
0.17
0.34
0.032
0.005
5.01
193.7
89.42

129.1
30.56
25.42
0.051

51.92

32.07
55.11
1.254
14.62
684.7
0.16
464.7
0.04
280.9
703.1
0.79
0.24
1.02
137.2
27.43
441.1
212.8
3.30
0.13

0.09

74.82
9.30
97.56
541.2
0.29
5.10
44.99
54.03
3.51
923.4
51.47
0.52
19.67
258.4
50.88
0.39
161.8
3.41
0.001
4.88
0.053
0.007
0.003
1.18
78.45
1.81

1.515
1.47
40.56
0.000

33.69

7.27
105.4
2.562
22.51
562.9

0.36
67.92

0.02
330.6
865.8

0.16

0.98

0.04

9.55
10.64
205.6
17.62
672.8

0.41

0.04

0.24
3.59
6.71
737.9
0.01
0.86
168.5
922.9
9.12
2.72
8.45
0.09
42.83
27.18
2.13
0.64
1.091
18.00
0.005
0.55
2.13
0.050
0.003
3.12
337.1
8.62

38.47
6.75

32.36
2.50

48.54

879.2
81.74
1.516
36.26
516
3.80
87.17
0.05
2241
344.7
0.27
9.86
2.90
0.22
105.2
1.559
30.81
36.15
0.03

7.49

40.46
249.1
35.14
112.4
0.05
0.25
144.4
125.9
65.60
87.62
1.381
1.07
80.39
433.7
7.14
0.62
79.55
1.15
1.14
72.39
0.97
0.013
1.36
2.71
178.6
44.97

878.3
6.08
10.97
0.037

35.82

28.95
171.3
367.9
14.46
936.5
0.35
198.8
0.03
422.2
42.52
4.41
0.49
0.77
40.57
167.1
1.169
100.5
468.9
0.08

0.07

52.74
6.36
2.09
1113
0.39
6.27
135.8
1.083
2.35
247.2
56.65
1.60
385.4
59.73
502.4
0.33
388.7
0.96
0.007
4.33
2.48
0.005
0.004
11.37
145.5
19.38

29.67
0.90

44.41

0.023

59.71

7.08
8.13
18.14
12.83
57.23
1.40
17.13
0.04
71.12
600.8
4.66
20.74
0.28
1.77
4.98
542.7
5.93
484.3
0.04

0.23

8.86
18.81
191.2

5.60

0.01

1.86
47.70
170.1
15.42
17.04

8.88

0.32
10.50
70.22
142.4

0.28
531.5

0.10
0.003

0.32

0.48
0.004
0.006

0.77
40.09

2.44

763.8
3.31

25.44
0.52

49.83

669.2
191.1
1.947
59.18
238.1
0.34
147.7
0.30
563.7
979.3
1.94
15.85
1.34
23.41
113.9
392.3
13.03
658.3
0.06

0.46

75.53
7.37
160.1
87.92
0.00
32.98
92.23
133.7
164
0.22
348.7
0.03
123.7
751.8
0.08
1.49
476.7
0.46
0.014
580
2.83
0.009
0.021
2.67
160.2
11.80

609.9
5.92
5.34
2.83

760.5
129.4
911.1
36.03
42.28
4.55
43.80
0.07
219
583.9
13.34
4.67
4.07
11.58
40.13
815.5
8.27
268.3
0.01

1.75

131.7
8.25
120.3
212.7
9.07
1.35
112.2
214.2
6.13
53.36
55.22
75.77
18.00
268.7
196.2
0.86
239.3
0.02
0.008
11.29
0.72
0.024
0.104
7.71
147
28.46

541.8
0.80
24.02
2.65

12.90

1.794
70.58
47.38
1.21
586.7
0.90
682.8
0.05
311.9
178.5
9.58
35.34
0.45
0.61
94.49
1.640
17.52
2.64
0.04

2.30

38.56
31.05
21.38
12.36
24.43
13.80
154.4
62.79
37.19
1.174
13.43
410.8
128.5
246
321.2
41.59
1.131
0.18
0.032
11.46
0.81
0.008
0.018
6.80
109.1
59.37

18.32

151.5
0.22

0.009

18.99

20.50
4.01
8.21
15.78
19.87
0.48
3.27
0.03
336.7
445.2
1.01
0.32
0.01
0.65
68.00
1.713
98.49
327.5
14.51

0.47

70.31
2.31
195.8
14.76
20.28
3.46
1.58
196.3
2.49
137
7.86
1.06
209.9
11.65
61.53
0.19
100.3
0.56
0.009
8.66
0.052
0.099
0.005
748.2
0.15
125.3
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2.4.2 Drug ICso Estimations

The ICso values were determined for 17-AAG (Sigma-Aldrich), CCT007093
(Sigma-Aldrich), LFM-A13 (Sigma-Aldrich), PAC-1 (Sigma-Aldrich), IPA-3 (Sigma-
Aldrich), AKT inhibitor VIII (Sigma-Aldrich), and BAY 61-3606 (Sigma-Aldrich) in the
human cell lines MCF7, MDA-MB-231, LNCaP, PC-3, DU 145, HT-29, HCT 116, ASPC-1,
MIA PaCa-2, and BxPC-3. Inhibition of the cell proliferation was monitored by means of
the SRB assay (see Experimental Methods 2.1.3.4). Cells were incubated for 72 h with a
serial dilution (up to 8 concentrations) of each drug (Table 8). Calculations were done
using the Excel add-in ED50plus v1.0 development by Mario H. Vargas (2000). The
software is a pharmacological analysis tool in the form of a Microsoft Excel worksheet,
which allows creating and analyzing dose-response curves. The fit was done using

sigmoid and linear regressions.

Table 8. Compounds and concentrations (uM) used for the ICso calculations.

AKT
Dilution 17-AAG CCT007093 LFM-A13 PAC-1 IPA-3  inhibitor VIII BAY 61-3606

1 10 200 400 200 400 100 200
2 5 100 200 100 200 50 100
3 2.5 50 100 50 100 25 50

4 1.25 25 50 25 50 12.5 25

5 0.625 12.5 25 12.5 25 6.25 12.5
6 0.313 6.250 12.500 6.250 12.500 3.125 6.250
7 0.156 3.125 6.250 3.125 6.250 1.563 3.125
8 0.078 1.563 3.125 1.563 3.125 0.781 1.563

2.5 Dependencies between Cellular Properties and Gene

Expression or Drug IC50s

The linear correlation value (r coefficient) between the metabolic features of the
cell lines and the gene expression or drugs' ICsos were obtained with the Pearson
algorithm using the Hmisc package (version 3.17-4) and the function rcorr (Harrell et al.

2015) (Supplements 5.1.7) in R programming language.
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2.6 Graphics and Statistics

Plots and statistics were done using R programming language version 2.7.0.
Barplot. boxplots and scatterplots were drawn using the ggplot2 package version 2.1.0
functions ggplot and gplot (Wickham 2009). For the linear correlation scatterplots the
geom_smooth method="Im", se = FALSE was used. Heatmaps of the gene expression
were constructed using the pheatmap package version 1.0.8 and RColorBrewer with the

function colorRampPalette (green, black, red) (Kolde 2015) (Supplements 5.1.6).
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3. Results

To get a better understanding of the properties of cancer cells, assessment of the
membrane capacitance and a set of metabolic assays were performed on different
cancer cell lines. These parameters included the direct measurement of cellular
capacitance (cell membrane properties), respiratory activity (Oz consumption),
glycolytic activity (acidification), energy metabolism (ATP level), intracellular ROS
accumulation, and mitochondrial mass and proliferation rates (MTT and SRB assays)
(Table 9). The information obtained from the studied cell lines was compared with
public gene expression data (Barretina et al. 2012, De Schutter et al. 2013) and drugs
ICs0s (Yang et al. 2013) to search for correlations. The results revealed a set of candidate
genes that could be involved in cell matrix adhesion or cell-cell interactions and cancer

metabolism, as well as new relations between known drugs and cancer features.

Table 9. Mean value of the cell capacitance and metabolism features of cancer cell lines.
Cellular capacitance, glycolytic and respiration activities were measured with the Bionas 2500
online monitoring system. Cells were seeded in chips containing IDES sensors for the estimation
of the cellular capacitance. ISFET sensors were used to measure glycolytic activity and Clark
electrodes for determining respiration. Lower capacitance indicates a stronger cell matrix
adhesion and cell-cell contact interactions. Higher respiration and glycolysis are observed in
cells with greater pA/s and pV/s values, respectively. The ATP level was measured with ATPlite
1step Luminescence ATP Detection Assay System kit (Perkin Elmer). The luminescence is
proportional to the ATP concentration in the cells. The mitochondrial mass content was
determined using MitoTracker Green (Thermo Fisher). The fluorescence intensity is
proportional to the mitochondrial mass of the cells. ROS accumulation in cells was measured
using dihydroethidium (DHE). The fluorescence intensity produced is directly related to the ROS
accumulation in the cells. The proliferation rate was estimated using the MTT and SRB assays.
MTT reagent labels active mitochondria and its reduction produces a colored compound that can
be measured by absorbance at 595 nm. The SRB dye is incorporated into fixed cells and the
amount of incorporated dye is proportional to the amount of cells; the dye has an absorbance at
510 nm. SD = Standard deviation. At least three independent experiments with three technical
replicates were used to calculate the means of each assay per cell line.
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3.1 Cellular Capacitance and Metabolism

Data of cellular capacitance and metabolism was obtained from cell lines
belonging to breast (MDA-MB-231 and MCF7), colon (HCT116, HT-29, and LS174T),
pancreas (AsPC-1, MIA PaCa-2, JoPaCa-1, Panc-1, and BxPC-3), prostate (LNCaP, PC-3,
and DU145), skin (HaCaT and MDA-MB-435), cervix (HeLa), liver (HepGZ2), and central
nervous system (1321N1) (Experimental Methods 2.1.1, Table 1). HaCaT corresponds to
keratinocytes that come from normal tissue and is the only noncancerous cell line
included in this study. For the measurements, all the cell lines were cultivated in DMEM
media with 10% FCS and 1% PenStrep in a 5% CO2 incubator at 37°C with 95%
humidity (see Experimental Methods 2.1.1 for details). The data were obtained from
online monitoring (real-time measurements) and end-point assays. Cellular capacitance,
glycolysis, and respiratory activities were estimated in real time using the Bionas 2500
system (Experimental Methods 2.1.2). The Bionas 2500 instrument contains a perfusion
system that allows feeding of the cells with a flow of culture media for 4 min “go”
followed by 4 min “stop” protocol. In the "stop" phase, cells consume the nutrients in the
media and at the same time the measurements are done (Experimental Methods
2.1.2.2). Energy metabolism (ATP level), mitochondrial mass, ROS accumulation and
proliferation rates of the studied cell lines were determined using end-point assays

(Experimental Methods 2.1.3, Table 9).

3.1.1 Cellular Capacitance

The cell capacitance was measured with the Bionas 2500 online monitoring
system (Experimental Methods 2.1.2, Fig. 1). For each cell line equal numbers of cells
were seeded in sensor chips with an IDES sensor (Experimental Methods 2.1.2.1). In the
sensor chips, an alternating current is applied and interruption of electric current is
recorded. Cells that are seeded in the chip block the flow of electrons between the two
electrodes of the IDES sensor. Electricity does not affect the viability of the cells, neither
their physical properties nor metabolism (Ehret et al. 1997). The chips in the Bionas
2500 perform a continuous determination of the cellular capacitance. The IDES sensor

allows to detect changes in cellular morphology, confluence, cell-cell contact, and cell-
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matrix contacts (Ehret et al. 1997). Lower capacitance (in the nano Faraday, nF, scale)
indicates stronger cell-matrix adhesion and cell-cell physical interactions. The prostate
carcinoma cell line DU145 and the breast adenocarcinoma cell line MCF7 showed the
lowest capacitance values, displaying the greatest interaction between the cells and the
chip surface. In contrast, the prostate adenocarcinoma LNCaP and the cervix
adenocarcinoma HeLa cells showed the highest capacitance values (Fig. 2). For the
calculation, three independent experiments were performed for MDA-MB-435 and
LNCaP (cell lines with fewer replicas) and 97 independent experiments for MCF7 (cell
line with most replicas). All of them with six technical replicates. The data comes from
selected experiments in which the culture and experimental conditions were identical in

all the cell lines (Experimental Methods 2.1.2.3).
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Fig. 2. Cellular capacitance per cell lines. The capacitance was measured on the Bionas 2500;
cells are seeded in chips with IDES sensors. Equal numbers of cells per cell line were seeded in
sensor chips. Higher capacitance values indicates low cell-cell and cell-matrix adhesion. Box-plot
diagram for different cell lines. Box = 25t and 75t percentiles; error bar = standard deviation;
black dot inside the box = mean; black line = median; dashed line = mean value for all the analyzed
cell lines; black dots out of the box = outliers. Cell lines are grouped by tissue type. At least three
independent experiments were done per cell line and each one with six technical replicates.
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3.1.2 Glycolytic Activity

The extracellular acidification rate was measured as a proxy for the cell's
glycolytic activity (Experimental Methods Fig. 1). Equal numbers of cells per cell line
were seeded in sensor chips with ISFET sensors (Experimental Methods 2.1.2.1). The
ISFET sensor measures the pH changes in the media by detecting ion concentrations
(Bergveld 1981). The chips are located in the Bionas 2500 for a continuous online
monitoring of the acidification rate. The ISFET sensor allows to detect changes of media
acidification due to lactic acid production by cells as a result of aerobic glycolysis, known
to be activated in cancer cells (Warburg effect). Cell lines with higher acidification rate
showed an elevated glycolysis pathway (Fig. 3). The colorectal carcinoma cell line
HCT116 and the cervix adenocarcinoma HeLa cells showed the highest acidification rate
and also displayed strong glycolytic metabolism in all the tested cell lines (Fig. 3). In
contrast, the noncancerous skin keratinocyte HaCaT showed the lowest glycolytic
activity (Fig. 3). The HaCaT and HT-29 cell lines show a large data dispersion, showing
the largest distance between data in the 25th and 75th percentiles. Four and sixteen
independent experiments were used to determine the acidification rates for the HaCaT
and HT-29 cell lines, respectively (data not shown). All independent experiments for all
cell lines are composed of six internal replicates. Selected data comes from experiments
in which the culture and experimental conditions remained the same for all the cell lines

(Experimental Methods 2.1.2.3).

Breast Colorectal Pancreas Prostate Skin Serviy Liver Brain
50-
Q40'
>
2
2
c 30
o
g &
R T e SRR
820 I :
ie]
S == =
<

_k
Q

e fer %l a.g 838z

o - § 8 7T & - 9 8§ 15 70(2_,2-

mﬁgr—aoggéozgjﬁmI%%

EIOII_IDU-)B_D.NDQ_I a ¢ = o
= < g £ 0 @ T 4

< = <

a = a

= =

50



Fig. 3. Glycolytic activity per cell lines. The glycolytic activity was measured on the Bionas
2500 ; cells are seeded in chips with ISFET sensors. Equal numbers of cells per cell line were
seeded in sensor chips. Higher acidification rate indicates stronger glycolytic activity. Box-plot
diagram for different cell lines. Box = 25t and 75t percentiles; error bar = standard deviation;
black dot inside the box = mean; black line = median; dashed line = mean value for all the analyzed
cell lines; black dots out of the box = outliers. Cell lines are grouped by tissue type. At least three
independent experiments were done per cell line and each one with six technical replicates.

3.1.3 Respiration Activity

The mitochondrial activity of the cells was measured as oxygen consumption
determined by Clark electrodes of the Bionas 2500 system in real time. Clark electrodes
measure free oxygen in the culture medium (Clark et al. 1953). These electrodes are
equipped with oxygen-permeable membranes to enable the free diffusion of oxygen
(Clark et al. 1953). A fixed voltage is applied to the electrode, which allows oxygen
reduction in the cathode, and oxidation of silver in the anode, thus generating an electric
current. The amount of current produced is proportional to the oxygen concentration in
the medium (Experimental Methods 2.1.2). The Bionas software calculates the
difference between oxygen levels in the “go” cycle with those at the end of the “stop”
cycle. Cell lines with a higher oxygen consumption showed a stronger respiratory
activity (Fig. 4). The pancreatic cell lines Panc-1 (carcinoma) and JoPaCa-1 (carcinoma)
show the highest and the lowest oxygen consumption in the tested cell lines,
respectively. The prostate adenocarcinoma LNCaP also shows strong respiration
activity, contrary to its tissue-type pairs (PC-3 and DU145), which rather show a
respiration near the overall mean (Fig. 4). The skin cell line HaCaT, the brain
astrocytoma 1321N1, and the pancreas JoPaCa-1 are found in the low oxygen-

consumption range (Fig. 4).
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Fig. 4. Respiration activity per cell line. The oxygen consumption was measure in Bionas
2500; cells are seeded in chips with Clark electrodes. Equal numbers of cells per cell line were
seeded in sensor chips. Higher oxygen consumption indicates stronger respiration rate. Box-plot
diagram. Box = 25t and 75t percentiles; error bar = standard deviation; black dot inside the box
= mean; black line = median; dashed line = mean value between the analyzed cell lines; black dots
out of the box = outliers. Cell lines are grouped by tissue type. At least three independent
experiments were done per cell line and each one with six technical replicates.

3.1.4 Energy Metabolism (ATP Level)

The energy metabolism of the cells was measured as the amount of ATP
produced by using firefly (Photinus pyralis) luciferase activity (see Experimental
Methods 2.1.3.1). In this assay, the luminescence produced is proportional to the
extracellular ATP concentration present in the cell suspension (Experimental Methods
2.1.3.1). At least three technical replicates and three independent measurements were
done per cell line.

The lowest levels of energy metabolism activity are found in the colorectal cell
lines (the carcinomas HCT116 and HT-29 and the adenocarcinoma LS174T). Also, one of
the skin cell lines (the melanoma MDA-MB-435), the cervix adenocarcinoma HeLa and
the liver carcinoma Hep G2) present low levels of energy metabolism activity. On the
other hand, high levels of energy metabolism activity is found in four out of the five
pancreatic cell lines (AsPC-1, JoPaCa-1, MIA PaCa-2, and Panc-1), with the remaining

BxPC-3 having ATP levels corresponding to the mean of all the tested cell lines. The
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breast adenocarcinoma MCF7 and the brain astrocytoma 131N1 are also among the cell

lines with high levels of energy metabolism activity (Fig. 5).
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Fig. 5. Energy metabolism (ATP level) per cell line. The ATP production of the cell lines was
measured with ATPlite 1step Luminescence ATP Detection Assay System kit (Perkin Elmer). The
luminescent counts are proportional to the ATP concentration. Box-plot diagram: Box = 25th and
75t percentiles; error bars = standard deviation; black dot inside the box = mean; black line =
median; dashed line = mean value between the analyzed cell lines; black dots out of the box =
outliers. Cell lines are grouped by tissue type. At least three independent experiments were done
per cell line and each one with three technical replicates.

3.1.5 Total Mitochondrial Mass

The mitochondrial mass of the different cell lines was estimated using
MitoTracker Green compound that permeates cell membranes and labels active
mitochondria (see Experimental Methods 2.1.3.2). At least three independent
measurements with three technical replicates were carried out per cell line. High
fluorescence intensity is proportional to the mitochondrial mass in the cells. The highest
levels of mitochondrial mass were found in the cervix HeLa cell line. This cell line shows
higher levels than all the other studied cell lines. It is followed in intensity by two of the

three colorectal cell lines, the carcinomas HCT116 and HT-29. These two colorectal cell
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lines present a high data dispersion, showing higher values of standard deviation and
25th-to-75th percentil distances. The cell lines with the lowest levels of active
mitochondria are the breast adenocarcinoma MDA-MB-231, the colorectal
adenocarcinoma LS174T, and noncancerous skin cell line HaCaT (Fig. 6). The breast,
pancreatic, and prostate cell lines appear together around the mean of the total cell lines

used for the analysis (Fig. 6).
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Fig. 6. Total mitochondrial mass per cell line. The mitochondrial mass content of the cells
was determining using MitoTracker Green (Thermo Fisher). Cell lines with higher fluorescence
intensity contain higher mitochondrial mass. Box-plot diagram: Box = 25t and 75t percentiles;
error bars = standard deviation; black dot inside the box = mean; black line = median; dashed line
= mean value between the analyzed cell lines; black dots out of the box = outliers. Cell lines are
grouped by tissue type. At least three independent experiments were done per cell line and each
one with three technical replicates.

3.1.6 Reactive Oxygen Species (ROS) Accumulation

Reactive oxygen species (ROS) formation was measured using dihydroethidium

(DHE) in the studied cell lines. DHE permeates into cell membranes and diffuses into the
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cytosol, where it is oxidized by superoxide resulting in the emission of red fluorescence
(Experimental Methods 2.1.3.3). At least three independent measurements with three
technical replicates were done per cell line. The cell line with the highest levels of ROS is
the pancreatic carcinoma Panc-1 followed by the breast adenocarcinoma MDA-MB-231
(Fig. 7). The lowest level of ROS accumulation is found in the colorectal HT-29 cell line.
[ts tissue type pairs, HCT116 and LS174T, also show low ROS, with its levels being under

the mean for all cell lines tested (Fig. 7).
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Fig. 7. Reactive oxygen species (ROS) formation per cell line. ROS accumulation in cells was
measured using dihydroethidium (DHE). Cell lines with higher fluorescence intensity present a
higher ROS formation. Box-plot diagram: Box = 25t and 75t percentiles; error bars = standard
deviation; black dot inside the box = mean; black line = median; dashed line = mean value
between the analyzed cell lines; black dots out of the box = outliers. Cell lines are grouped by
tissue type. At least three independent experiments were done per cell line and each one with
three technical replicates.

3.1.7 Cell Proliferation Rate

The cell proliferation rate for different cell lines was estimated using two

different approaches: i) metabolic activity measured by MTT assay and ii) the total
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protein content of the cells using SRB assay. The MTT reagent diffuses into the cells and
labels active mitochondria and therefore is an indirect measurement for -cell
proliferation. However, the SRB assay stains total proteins of fixed cells, after washing
out the dead cells, which then is directly proportional to cell number and proliferation
rate (Vichai & Kanyawim 2006) (Experimental Methods 2.1.3.4). For each cell line, equal
numbers of cells were seeded and the cells were left growing for 72 h before performing
the measurements. At least three independent measurements with three technical
replicates were done per cell line and assay. The MTT and SRB assays proved to be
reliable methods to compare proliferation rates in the different cell lines. Both yielded
the same results for almost all tested cell lines (Figs. 8 and 9). Only HeLa and HepG2
cells showed contradictory information between the assays, being the MTT
measurement in HeLa cells the one with the highest proliferation rate and HepG2 the
one with the lowest. Besides, in SRB, both cell lines remain around the mean of all the
tested cells (Figs. 8 and 9). In both assays, at the tissue-type level, the colorectal cell lines
show the fastest proliferation and the breast cell lines the slowest proliferation rate
(Figs. 8 and 9). In the three tissue types where the assays were tested, cell lines
belonging to the same tissue type showed similar proliferation rates, i.e., "within cell-
type”. The prostate tissue type was only measured for the adenocarcinoma PC-3,

therefore no "within cell-type" comparisons were possible (Figs. 8 and 9).
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Fig. 8. Proliferation rate measured as metabolic activity (MTT assay) per cell line. The
MTT reagent is reduced by active mitochondria producing a purple-colored product with an
absorbance at 595 nm. Cells with higher absorbance present a higher metabolic activity that is
used as an estimation of the proliferation rate. Equal low cell numbers per cell line were seeded
in 96-well plates, the absorbance was measure after 72 h. Box-plot diagram: Box = 25t and 75t
percentiles; error bars = standard deviation; black dot inside the box = mean; black line = median;
dashed line = mean value between the analyzed cell lines; black dots out of the box = outliers. Cell
lines are grouped by tissue type. At least three independent experiments were done per cell line
and each one with three technical replicates.
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Fig. 9. Proliferation rate measured as total protein content (SRB assay) per cell line. In the
SRB assay a dye is incorporated into fixed cells and the amount of incorporated dye is
proportional to the amount of cells. Cells with higher absorbance have a higher protein content
that is used as an estimation of the proliferation rate. Equal low cell numbers per cell line were
seeded in 96-well plates, the absorbance was measured after 72 h. Box-plot diagram: Box = 25t
and 75t percentiles; error bars = standard deviation; black dot inside the box = mean; black line =
median; dashed line = mean value between the analyzed cell lines; black dots out of the box =
outliers. Cell lines are grouped by tissue type. At least three independent experiments were done
per cell line and each one with three technical replicates.
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3.2 Cellular Properties of the Cancer Cell Lines by Tissue Type.

Summary Figure and Cluster Dendrograms

The basal metabolic profile and the cellular capacitance of the 18 cell lines
belonging to different tissue types are shown in Fig. 10; this summarizes all the different
features of the studied cell lines done before (Figs. 2 to 9).

The broad overview of the cellular properties in the studied cell lines allows
comparisons of the cellular capacitance, the O; consumption (respiratory activity),
media acidification (glycolytic activity), ATP levels (energy metabolism), intracellular
ROS accumulation, mitochondrial mass, and proliferation rates (MTT and SRB assays)
(Table 9) by cell lines and tissue type.

The two adenocarcinoma breast cancer cell lines differ in their capacitance and in
their energy metabolism (ATP level) but present similar respiratory activity, ROS
accumulation, and proliferation rates (Fig. 10). Hierarchical clustering performed on the
data for the different assays (with measurements in each cell line) show the two
adenocarcinoma breast cell lines in the same branch for the MTT proliferation assay and
in proximal branches in the ROS formation and in the SRB proliferation assay (Fig. 11).
However, respiration activity does not appear neither in the same or close branches, in
fact, energy metabolism shows a closer distance between the two cell lines in the
dendrogram (Fig. 11). By comparing the breast cancer cell lines with the other tissue
types, it is possible to say that these cells present high ATP and ROS levels and low
proliferation rates (Figs. 5, 7, 8, 9, and 10).

The two colorectal carcinoma cancer cell lines HCT116 and HT-29 show similar
membrane capacitance, glycolysis activity (acidification), and mitochondrial mass,
indicating discrepancies with their the adenocarcinoma LS174T (Fig. 10). Hierarchical
clustering locates these two carcinoma cells in near branches and far away from the
adenocarcinoma LS174T for cell capacitance, glycolysis, and mitochondrial mass assays
(Fig. 11). The three cancer cell lines share similar levels in ATP, ROS, and proliferation
rates (Fig. 10). Dendrograms of the mentioned assays confirm these observations,
grouping the three cell lines in near branches for energy metabolism and ROS
accumulation, and in the same branch for the proliferation assays (Fig. 11). Regarding
the respiratory activity, the hierarchical clustering grouped LS174T and HCT 116

together in the same branch (Fig. 11). In contrast, for the breast and pancreas cancer cell
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lines, cells of the colorectal tissue type present low ATP and ROS levels (Figs. 5, 7,
and 10) and the highest proliferation rate among all the tissue types analyzed (Figs. 8, 9,
and 10).

The pancreatic cells do not seem to show similarities between the type of disease
(or type of tumor) and their cell properties, like the colorectal line does, with the two
adenocarcinomas AsPC-1 and BxPC-3 or the three carcinomas MIA PaCa-2, JoPaCa-1,
and Panc-1 having no similar features. The data for the Oz consumption in pancreatic
cells spreads in a wide range within this tissue type presenting the highest (Panc-1) and
the lowest (JoPaCa-1) respiration activities in all tested cell lines (Fig. 10). Glycolysis
activity, energy metabolism, and proliferation locate the pancreas cells roughly together,
the measurements showing similar means (Fig. 10). The hierarchical cluster for the MTT
proliferation assay locates the pancreas tissue type cells together in one group apart
from the rest of the cell lines. Such a strong match is not displayed in the dendrogram
for the SRB proliferation assay; clusters spread the pancreas cells in two of the three
branches (Fig. 11). The dendrogram for energy metabolism shows the pancreas tissue
type in close branches. Comparing the pancreas tissue type with breast and colorectal
tissue types makes possible to observe that pancreas cells behave like breast cells
showing relative high ATP and low proliferation. The ROS accumulation differs in the
five pancreas cell lines (Figs. 5, 7, 8, 9, and 10).

The prostate cell lines PC-3 (adenocarcinoma) and DU145 (carcinoma) show
almost equal respiration and glycolysis activities as well as mitochondrial mass and
seems to differ from the adenocarcinoma LNCaP (Fig. 10). Hierarchical clustering for
glycolysis and mitochondrial mass support the observations, showing the three cell lines
in different branches but near the PC-3 to the DU 145. Dendrograms of the respiration
activity present PC-3 and DU 145 in the same branch and far away of the LNCaP
(Fig. 11). The highest and the lowest membrane capacitance of all the tested cell lines
are present in the prostate cells being LNCaP that exhibits a weaker cell-cell contact and
cell-matrix binding (high cell capacitance) and DU 145 with stronger cell adhesion and
cell bindings (low cell capacitance).

The last tissue type group in which the data was collected was the skin cell line
HaCaT, a noncancerous cell line, and the melanoma MDA-MB-435. These two cell lines
were plotted together with the cervix HeLa, the liver HepG2, and the brain 1321N1. The
mean value of the two skin cell lines seem to be similar for the cellular capacitance, O2

consumption, acidification rate and ROS accumulation measurements (Fig. 10).
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Hierarchical clusters build with the cell capacitance data show the two skin cell lines in
different branches but together in one of the two main tails of the tree. In the glycolysis
and respiration dendrograms, HaCaT and MDA-MB-435 are far away from each other;

they cluster in separated branches. For the ROS accumulation, hierarchical clustering

located the cells for the skin tissue type in different branches (Fig. 11).
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Fig. 10. Summary of cell capacitance and metabolic features of cell lines by tissue type.
Cellular capacitance, glycolytic activity (acidification), and respiratory activity (O2 consumption)
were measured on the Bionas 2500 online monitoring system. Cells were seeded in chips
containing IDES sensors for the estimation of the cellular capacitance, ISFET sensors to measure
the acidification rate, and Clark-type electrodes for determining oxygen consumption. Lower
capacitance indicates a stronger cell matrix adhesion and cell-cell contact interactions. A
stronger acidification rate indicates a higher glycolysis level. Higher oxygen consumption
indicates stronger respiration rate. The energy metabolism (ATP level) was measured with
ATPlite 1step Luminescence ATP Detection Assay System kit (Perkin Elmer). The luminescence
is proportional to the ATP concentration in the cells. The mitochondrial mass content was
determined using MitoTracker Green (Thermo Fisher). The fluorescence intensity is
proportional to the mitochondrial mass of the cells. ROS accumulation in cells was measured
using dihydroethidium (DHE). The fluorescence intensity produced is directly related to the ROS
accumulation in the cells. The proliferation rate was estimated using MTT and SRB assays. MTT
reagent labels active mitochondria and its reduction produces a colored compound that can be
measured with absorbance at 595 nm. The SRB dye is incorporated into fixed cells and the
amount of incorporated dye is proportional to the amount of cells, the dye has an absorbance at
510 nm. Box-plot diagram: Box = 25t and 75t percentiles; error bars = standard deviation; black
dot inside the box = mean; black line = median; dashed line = mean value between the total
analyzed cell lines; black dots out of the box = outliers. At least three independent experiments
were done per cell line and each one with three technical replicates.

The cervix adenocarcinoma cell line HeLa shows a much higher mitochondrial
mass than the rest of the studied cell lines (Figs. 6 and 10). Hierarchical clustering
corroborates this observation localizing HeLa in the mitochondrial mass content
dendrogram alone in a branch separate from the others. Looking deeper into the cellular
property clusters, it is remarkable that in several of the metabolic assays HeLa cells
appears closer to the colorectal cell lines, sharing with the three of them the same
branch in the MTT proliferation assay dendrogram and being closer to the ones in the
respiration activity and energy metabolism clusters. Moreover, in ROS formation
dendrogram it shares the same branch with HT-29 and with HCT 116 in the glycolysis
activity dendrogram (Fig. 11).

The liver carcinoma cell line Hep G2 seems to not share features with other cell
lines except for cellular capacitance and glycolysis activity where, in the hierarchical
clustering, it shares the same branches with pancreas carcinoma Panc-1 (Fig. 11).

The central nervous system astrocytoma 1321N1 cell line in the hierarchical
clusters of the metabolic assay measurements appears near the pancreas cells JoPaCa-1
and Panc-1. The brain cell line localizes in the same branches with JoPaCa-1 regarding

its respiratory activity and in the ROS accumulation dendrograms. Notice also that
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appears near the branches of Panc-1 in glycolysis and mitochondrial mass (Fig. 11).




Fig. 11. Hierarchical clustering of cellular capacitance and metabolic features. Cell lines
were grouped based on their electrical and metabolic properties. Cellular capacitance, glycolytic
and respiratory activities were measured on the Bionas 2500 online monitoring system. Energy
metabolism (ATP level) was measured with ATPlite 1step Luminescence ATP Detection Assay
System (Perkin Elmer). The mitochondrial mass content was determined using MitoTracker
Green (Thermo Fisher). ROS accumulation in cells was measured using DHE. The proliferation
rate was estimated using MTT and SRB assays. The clustering calculations were done via
R programming language and Euclidean distance approach. Cell lines belonging to the same
tissue type share the same color. The height in the y-axis gives the values of the respective
metabolism assay tested. The mean of at least three independent experiments per assay and per
cell line was used for the cluster analysis.

3.3 Linear Relations between the Cellular Properties of the

Studied Cell Lines

The data collected for the cellular properties of the studied cell lines (Figs. 2 to
10) was used to calculate a Pearson product moment correlation (see Experimental
Methods 2.5) in order to search for linear relationships within the different cellular
features. The Pearson correlation coefficient (r coefficient) indicates whether there is a
linear relationship between two variables and how the two sets of data are related, i.e.,
whether a positive linear relation (0 < r < 1) or a negative linear relation (-1 <r <0)
exists, with r being the correlation coefficient. An r value equal to 1 indicates a perfect
positive correlation between the two variables, and -1 is a perfect negative correlation.
Zero indicates no linear correlation. Table 10 shows the r and its associated p-values
obtained for the calculation of the Pearson product moment with the cellular properties
data in the studied cell lines. The obtained significant (p-values < 0.05) relationships are
plotted in Fig. 12.

The proliferation rate measured as metabolic activity by MTT and the
proliferation rate measured as total protein content by SRB present a positive
correlation (r = 0.69) (Fig. 12A). In the dependency graph it is possible to observe that
the three colorectal cell lines have high proliferation rates for both measurements and
localize near one another; the pancreatic cells present a low proliferation rate and
localize together. The breast cancer cell lines exhibit an even lower proliferation rate.

A significant (p-value < 0.01) positive relation is also recorded for the glycolytic
activity and the proliferation rate MTT assay (r = 0.71) (Fig. 12B), meaning that the cell

lines that proliferate most, also possess a strong glycolytic activity. Similarly to the
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proliferation rate assay dependency, colorectal cell lines display the highest acidification
and proliferation rate values in the three tissue types tested, the breast tissue type cells
show the lowest, and the pancreatic tissue type cell lines with moderate values. Cells
belonging to the colorectal tissue type do not appear together in the plot due to their
differences in the acidification rate. On the other hand, cells with a high proliferation
rate accumulate less ROS (r = -0.68) (Figs. 12C and D). Notice that for this negative
dependency the colorectal tissue type with its faster proliferation shows the lowest ROS
formation. The opposite is the case in the breast cancer cell lines with high ROS and low
proliferation.

[t is remarkable that ROS accumulation negatively correlates with both MTT and
SRB proliferation assays, having a significant (p-value < 0.05) inverse relationship with
the metabolic activity as well as with the total protein content of the studied cell lines
(Fig. 12C and D and Table 10). Moreover, ROS accumulation exhibits a significant (p-
value < 0.01) positive relation with the energy metabolism (r = 0.64) (Fig. 12E).
Pancreatic and breast tissue type cells show higher ROS and ATP levels in comparison
with the colorectal ones which localize at the lower end in the correlation plot, showing
low ROS accumulation and low energy metabolism (Fig. 12E). The last significant (p-
value < 0.05) linear dependency found among the cellular properties of the studied cell
lines is the negative relation between energy metabolism (ATP formation) and
proliferation rate measured as total protein content in the SRB assay (r = -0.64)
(Fig. 12F). Due to the positive dependency found between ATP level and ROS
accumulation in cells, the negative relation between ATP and the SRB assay supports the

dependency of ROS formation and proliferation rate in the studied cell lines.

Table 10. r coefficients and p values of the linear dependencies between the electrical and
metabolic properties of the studies cell lines. A Pearson comparison between the different
assays was used to search for correlations. The calculation was done using the mean of at least
three independent experiments. Cellular capacitance, glycolytic and respiratory activities were
measured on the Bionas 2500 online monitoring system. The ATP level was measured with
ATPlite 1step Luminescence ATP Detection Assay System kit (Perkin Elmer). The mitochondrial
mass (mitomass) content was determined using MitoTracker Green (Thermo Fisher). ROS
accumulation in cells was measured using DHE. The proliferation rate was estimated using MTT
and SRB assays. The Pearson comparison calculation was done using R programming language
package Hmisc function rcorr. In yellow the significant correlations (p -values < 0.05).
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r coefficients Capacitance Respiration Glycolysis ATP Mitomass ROS SRB

Capacitance 1
Respiration 0.28 1
Glycolysis 0.36 0.44 1
ATP 0.14 0.11 -0.32 1
Mitomass -0.002 0.06 0.45 -0.21 1
ROS -0.11 0.24 -0.31 0.64 -0.24 1
SRB 0.12 0.26 0.55 -0.64 0.21 -0.68 1.00
MTT 0.42 0.42 0.71 -0.55 0.53 -0.68 0.69

p -values Capacitance Respiration Glycolysis ATP Mitomass ROS SRB

Respiration 0.2561
Glycolysis 0.1387 0.0700
ATP 0.5970 0.6650 0.2115
Mitomass 0.9932 0.8096 0.0627 0.4180
ROS 0.6655 0.3468 0.2221 0.0072 0.3476
SRB 0.7092 0.4055 0.0630 0.0263 0.5220 0.0147
MTT 0.1696 0.1765 0.0100 0.0654 0.0767 0.0154 0.0127

3.4 Cellular Properties and Affymetrix Gene Expression

Gene expression data was obtained from public repository files in GEO, NCBI (De
Schutter et al. 2013, Barretina et al. 2012). Public accession numbers and cell lines are
listed in Table 2. The data comes from experiments done in Affymetrix Human Genome
U133 Plus 2.0 Arrays. To avoid introducing extra variability between the data obtained
for the electrical and metabolic parameters with the Affymetrix arrays, all the gene
expression data collected comes from cell lines cultivated in DMEM supplemented with
10% FCS in a 5% CO: incubator at 37°C, the same conditions set for the acquisition of
the electrical and metabolism features. Gene expression data were obtained for 16 of the
18 cell lines used in this work. The cell lines were: MDA-MB-231 and MCF7 (breast
tissue type), HCT 116 and HT-29 (colorectal tissue type), AsPC-1, MIA PaCa-2, Panc-1,
and BxPC-3 (pancreas tissue type), LNCaP, PC-3, and DU 145 (prostate tissue type),
HaCaT and MDA-MB-435 (skin tissue type), HeLa (cervix tissue type), Hep G2 (liver
tissue type), and 1321N1 (central nervous system tissue type) (Experimental Methods,
Table1l). The raw data of the 16 cell lines collected from Affymetrix arrays was
preprocessed using Bioconductor in R programming language and the Robust Multi-
array Average (RMA) normalization method (Irizarry et al. 2003, Gautier et al. 2004)

(Experimental Methods 2.3, Supplements 5.1.2).

65



r

40

30
Acidification Rate (uV/s)

20

0.68*

r=-

160

120

Fluorescence Intensity)

80
FL-2 mean (

40

- 0.64*

r=

1.5x10'

1.0x10%
Luminescent Counts

0.69**

r=

b <
" WU GBS 1B 9oUBGIOSqY

0.5

1.5

1.0
Absorbance at 595 nm

0.5

5
0

" WU GBS 1B B0UBGIOSqY

0.68*

r=-

0.5

120 160
FL-2 mean (Fluorescence Intensity)

80

40

4.0

0 < 0
™ (e o
wu Q1. 1e eoueqloSqy

N
oi

1.5

0 o o}

4.0

™ (%) oi
Wwu Q1. Je 90uBQIOSqQY

N
ai

1.5

160-

4.0
5
0
5

N
ai

0.64**

r=

<
&

80-

Az_m:m.ﬂc‘_.wocwommho:_u_v ueaw g-14

40-

1.5

5.0%10%

1.0x10® 1.5x10"®

Luminescent Counts

5.0x10*°

INLSEL
ZodeH @
eToH
SEr-dN-Ya
1eQeH
€-0d
€-0dxd
|—oued
g-eded VIN
L—eoedor @
I=0dsY
192181
62-1H
9LL1OH @
240N @
LEZ-aN-YaN

aul |1IeD

ureig %
oA (B
XIAJ9D) &W
UMS K-

a)e)soid .
sealoued 4
reyosi0100 i
isealg ¢
adA] anssi]

66



Fig. 12. Significant dependencies between the cellular features of the analyzed cell lines.
Linear correlation coefficients between the cellular properties of the studied cell lines were
obtained using the Pearson algorithm. Only the significant dependencies (p-values < 0.05) are
shown. The proliferation rate was estimated using MTT and SRB assays. MTT reagent labels
active mitochondria and its reduction produces a colored compound that can be measured by
absorbance at 595 nm. The SRB dye is incorporated into fixed cells and the amount of
incorporated dye is proportional to the amount of cells, the dye has an absorbance at 510 nm.
The glycolytic activity (acidification rate) was measured on the Bionas 2500; cells were seeded
in chips containing ISFET sensors. A stronger acidification rate indicates a higher glycolysis
level. ROS accumulation in cells was measured using dihydroethidium (DHE). The fluorescence
intensity produced is directly related to the ROS accumulation in cells. Energy metabolism (ATP
level) was measured with ATPlite 1step Luminescence ATP Detection Assay System kit (Perkin
Elmer). Luminescence is proportional to ATP concentrations in cells. Pearson coefficients were
calculated using the mean of at least three independent experiments per cell line and per
metabolic assay. The calculations were done using R programming language package Hmisc and
rcorr function. The shape of the dots gives the tissue types and the color indicates cell lines. The
black lines represent the linear regressions. For each dependency the r correlation coefficient is
shown; asterisks represent level of significance (p-values < 0.05* and p-values < 0.01**). Error
bars = standard error (se). Linear correlations of: A. SRB and MTT proliferation assays. B.
Glycolysis activity and MTT proliferation assay. C. ROS accumulation and SRB proliferation
assay. D. ROS accumulation and MTT proliferation assay. E. Energy metabolism and ROS
accumulation. F. Energy metabolism and SRB proliferation assay.

Entrez genes and gene symbols belonging to the metabolism-related pathways
glycolysis, gluconeogenesis, pentose phosphate pathways, TCA, and electron transport
chain were gathered using Wikipathways (Kelder et al. 2012) and DAVID (Huang et al.
2009)(Experimental Methods 2.3.1, Tables 3, 4, and 5 and Supplements 5.1.3). A
selection of probe set IDs was done using the statistical method "Presence-Absence calls
with Negative Probe sets" to estimate the significance of the detection on Affymetrix
U133 series microarrays and to exclude the probe sets that could show an unspecific
hybridization (Warren et al. 2007). The Presence-Absence call calculations were done
using R programming language and Bioconductor (Experimental Methods 2.3.1 and
Supplements 5.1.4). Additionally, all the probe sets with a _x suffix (mixed probe set that
contains some probes that are identical or highly similar to other sequences) were
deleted. For the glycolysis-gluconeogenesis together with the pentose phosphate
pathways, the original 107 probe sets were reduced to 51 and just one probe set per
gene was selected. From the 218 probe sets belonging to the TCA together with the
electron transport chain pathways, 104 probe sets remained, with also just one probe

set per gene. In order to search for possible relations with the metabolism properties of
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the studied cell lines (Figs. 2 to 10) and their gene expression level in metabolism, the
selected metabolism-related pathways were split in two; the nutrient-uptake related
pathways (glycolysis-gluconeogenesis and pentose phosphate pathways) and the
oxidative phosphorylation (OXPHOS) related pathways (TCA cycle and electron

transport chain).

Table 11. Affymetric gene expression means of selected pathways by cell line. Affymetric
Human Genome U133 Plus 2.0 Array gene expression raw data were obtained from GEO, NCBI.
Public accession numbers of the cell lines are listed in Experimental Methods 2.3, Table 2.
Preprocessing was done using Robust Multi-array Average (RMA) normalization method. The
normalized expression mean of the genes belonging to the glycolysis-gluconeogenesys plus
pentose phosphate pathway (left side of the table) and TCA cycle plus electron transport chain
(right side of the table) were used to determine three categories: low, medium, and high total
gene expression per cell line.

Glycolysis-gluconeogenesis and pentose TCA and electron transport chain

phosphate pathways
. Mean Expression . Mean Expression
Cell line . Cell line .
expression value level expression value level
Pancl 6.83 low 1321N1 10.06 low
DU145 7.00 low AsPC1 10.14 low
HaCaT 7.00 low HaCaT 10.17 low
MDAMB435S 7.02 low MDAMB231 10.24 low
1321N1 7.07 low HepG2 10.26 low
AsPC1 7.14 medium HeLa 10.26 medium
HCT116 7.16 medium Pancl 10.29 medium
PC3 7.20 medium PC3 10.31 medium
BxPC3 7.21 medium MDAMB435S 10.32 medium
MiaPaCaZ2 7.22 medium DU145 10.33 medium
MCF7 7.28 medium BxPC3 10.38 medium
HeLa 7.29 high HCT116 10.39 high
LNCaP 7.34 high MiaPaCa2 10.42 high
HT29 7.41 high HT29 10.51 high
MDAMB231 7.42 high MCF7 10.55 high
HepG2 7.66 high LNCaP 10.66 high

The mean value of the total gene expression of the nutrient-uptake related pathways per
cell line was used to determine three expressions levels (Table 11): low, medium, and
high total gene expression. The same was done for the OXPHOS pathways. The cell lines
were sorted by their expression level in the nutrient-uptake related pathways and
OXPHOS related pathways and plotted against their cellular properties (data not
shown). For all the generated plots, the one with the glycolysis-gluconeogenesis and
pentose phosphate pathways against the cell capacitance (Fig. 2) suggests a positive
correlation between the two mentioned variables in the studied cell lines (Fig. 13A).

68



Cells with high expression levels appear to have high cell-capacitance values and cells
with low expression values a low capacitance. However, Pearson product moment
correlation gives a nonsignificant (p-values > 0.05) and low dependency (r = 0.3)
(Fig. 13A). Additionally, the plot generated with the expression level in the TCA cycle
together with the electron transport chain versus respiration activity (02 consumption)
(Fig. 4) seems also to show a positive correlation between the cell lines (Fig. 13B). Cells
with low expression level in the OXPHOS related pathways appear to have a low O;
consumption and the ones that show high expression of the genes related to the
OXPHOS pathways a high respiration activity. Nevertheless, Pearson correlation
calculation shows a nonsignificant (p-values > 0.05) moderately positive dependency (r
= 0.44) (Fig. 13B).
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Fig. 13. Relation of cellular capacitance and respiration activity with Affymetrix gene
expression level of selected metabolism pathways. The cell capacitance and the respiration
activity were measured on the Bionas 2500 online monitoring system. Cells were seeded in
chips containing IDES and Clark electrodes. Lower capacitance (nF values) indicates a stronger
cell-matrix adhesion and cell-cell contact interactions. Higher oxygen consumption indicates a
stronger respiration activity. Equal numbers of cells per cell line were seeded in the chips and at
least three independent experiments were done per cell line, each one with six technical
replicates. Affymetrix Human Genome U133 Plus 2.0 Array gene expression raw data were
obtained from GEO, NCBI. Public accession numbers of the cell lines are listed in Experimental
Methods, Table 2. Preprocessing was done using Robust Multi-array Average (RMA)
normalization method. The normalized expression mean of genes belongs to the glycolysis-
gluconeogenesis and pentose phosphate pathways together (A) and TCA cycle together with the
electron transport chain (B) were used to determine three categories: low, medium, and high
total gene expression per cell line. Dashed line indicates the mean between the analyzed cell
lines. Black dot indicates the mean for the corresponding cell line. Linear correlation coefficients
between the variables were obtained using Pearson algorithm. r coefficients and p-values for the
dependencies are shown. Nonsignificant dependencies (p-value > 0.05) were found. No data
shows the cell lines in which no Affymetrix gene expression is given. Linear correlation and RMA
normalization were done using R programming language with the package Hmisc and rcorr
function and Bioconductor package affy.

3.4.1 Selection of Genes Belonging to the Selected Metabolism Pathways

A selection of genes belonging to the glycolysis-gluconeogenesis pathway,
pentose phosphate pathway, TCA cycle, and electron transport chain was obtained
based on the expression values of the genes in the studied cell lines. For the selection,
the expression of each gene was normalized across the cell lines. Scale and center was
applied to normalize the gene expression relative to the set of cell lines used. A range to
compare the expression values of each gene in the studied cell lines from -3 (lowly
expressed genes) to 3 (highly expressed genes) was obtained (Figs. 14A and 15A)
(Experimental Methods 2.3.1). Scaling and centering was calculated using R
programming language package softimpute (Hastie et al. 2015) (Supplements 5.1.5).
Normalized extreme expression values were the ones greater than 1 and lower than -1
(Supplements 5.1.5). A set of 17 genes out of the 155 remained for correlation analysis
with the capacitance and metabolic assays (Figs. 14 and 15). In the metabolism-related
glycolysis-gluconeogenesis and pentose phosphate pathways the selected genes were
the ones that present, after scaling and being centered, the highest or the lowest

expression levels in at least 7 of the 16 cell lines (Fig. 14B).
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Cell Line/Gene _ DLD GOT1 GOT2 PC PDHB PGLS RPE  SLC2A1 SLC2AS

MDA-MB-231 | -1.15 -0.02 -0.58 1.28 1.04 0.44 0.38 1.78 0.40
MCEF7 1.36 0.52 -0.75 1.37 -0.30 -0.46 -1.05 -0.54 0.93
HCT 116 0.33 1.38 0.70 -1.24 -0.42 -1.33 0.05 0.91 -0.53
HT-29 0.37 -0.46 0.25 0.11 -0.85 0.30 -0.21 0.52 -1.42
AsPC-1 -0.25 -0.40 -1.73 -1.00 -0.55 1.69 0.87 0.43 -0.07
MIA PaCa-2 -0.73 -0.15 1.24 0.09 -1.46 1.61 2.06 -1.10 -1.08
Panc-1 -1.58 0.80 -1.28 -1.40 0.19 -1.69 -0.25 -1.72 1.31
BxPC-3 0.61 1.07 1.19 0.45 -0.73 -0.06 -0.38 1.35 0.36
LNCaP 1.31 0.72 0.73 0.37 1.33 -0.33 0.35 -1.01 -0.49
PC-3 0.64 -1.39 -0.24 -0.70 0.85 1.22 -0.58 0.28 0.46

DU 145 -0.31 0.86 1.12 -1.61 -1.09 -1.17 0.59 0.38 -1.87
HaCaT -1.59 -1.10 -0.65 0.28 -1.71 1.19 -1.53 -0.23 1.62
MDA-MB-435 0.76 -1.37 1.12 -0.58 1.1 0.06 1.22 -0.45 -0.35
HeLa 0.37 -1.39 -0.13 1.22 0.09 -0.94 -1.53 -1.16 1.24
Hep G2 -1.42 1.69 0.70 1.61 1.20 -0.28 -1.11 1.34 0.54
1321N1 1.28 -0.76 -1.71 -0.26 1.30 -0.26 1.13 -0.78 -1.06

Fig. 14. Selection of genes related to the glycolysis-gluconeogenesis and pentose
phosphate pathways. Affymetrix Human Genome U133 Plus 2.0 Array gene expression raw
data (.CEL files) were obtained from GEO, NCBI. Public accession numbers of the cell lines are
listed in Experimental Methods 2.3, Table 2. Preprocessing of the .CEL files was done using
Robust Multi-array Average (RMA) normalization method. The normalized expression was
scaled and centered to compare the expression levels of each gene in the studied cell lines. A
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range from -3 (lowly expressed genes in green) to 3 (highly expressed genes in red) was
calculated. Genes with extreme expression values in at least 7 of the 16 cell lines were selected.
Extreme expression values were the ones greater than 1 and lower than -1. A. Heatmap of the
expression levels of genes belong to glycolysis-gluconeogenesis and pentose phosphate
pathways. Arrows show the genes that present extreme expression after scaling and centering.
B. Scale and center values of genes that present extreme expression in the analyzed cell lines.
Scale-center and RMA normalizations were done using R programming language with the
package softImpute function biscale and Bioconductor package affy.

From the 51 genes corresponding to the mentioned pathways, 9 were selected

(Fig. 14). The proteins corresponding to the selected genes are:

1. DLD (dihydrolipoamide dehydrogenase) oxidizes dihydrolipoamide to lipoamide.

2. GOT1 (glutamic-oxaloacetic transaminase 1) located in the cytosol, catalyzes the
reversible transamination of aspartate to oxaloacetate.

3. GOT2 (glutamic-oxaloacetic transaminase 2), located in mitochondria, catalyzes the
reversible transamination of aspartate to oxaloacetate.

4. PC (pyruvate carboxylase), catalyzes the carboxylation of pyruvate to oxaloacetate.

5. PDHB (pyruvate dehydrogenase (lipoamide) beta) is one of the enzymes of the
pyruvate dehydrogenase complex that catalyzes the conversion of pyruvate to
acetyl-CoA.

6. PGLS (6-phosphogluconolactonase) of pentose phosphate pathway catalyzes the
hydrolysis of 6-phosphogluconolactone to 6-phosphogluconate.

7. RPE (ribulose-5-phosphate-3-epimerase) of the pentose phosphate pathway
catalyzes the reversible epimerization of D-ribulose 5-phosphate to D-xylulose 5-
phosphate.

8. SLC2A1 (glucose transporter 1, solute carrier family 2 member 1) transports glucose
across the plasmatic membrane.

9. SLC2AS (solute carrier family 2 member 5) transports fructose into the intestinal

lumen.

In the respiration-related pathways, the selected genes were the ones with higher and
lower expression levels in at least 8 of the 16 cell lines (Fig. 15B). From the 104 genes
corresponding to the TCA cycle and electron transport chain together, six were selected

(Fig. 15). The proteins corresponding to the selected genes are:

72



10. ATP5H (mitochondrial Fo complex subunit D), one of the subunits of ATP synthase
that catalyzes ATP synthesis.

11. ATP6AP2 (ATPase H* transporting accessory protein 2) is a proton-translocating
ATPase.

12. COX17 (cytochrome c oxidase copper chaperone). Cytochrome c oxidase catalyzes
the electron transfer from cytochrome c to oxygen.

13. COX5A (cytochrome c oxidase subunit 5a), a subunit of the cytochrome c oxidase
complex.

14. COX5B (cytochrome c oxidase subunit 5b), a subunit of the cytochrome c oxidase
complex.

15. NDUFS4 (ubiquinone oxidoreductase subunit S4), a subunit of complex I that

removes electrons from NADH to forward them to the electron acceptor ubiquinone.

3.4.1.1 Dependencies between Cellular Properties of the Studied Cell
Lines and Affymetrix Gene Expression of Pathways of Selected
Genes

With the aim of finding undiscovered dependencies among genes and metabolism
or cell capacitance, Pearson product moment correlation was used to search for novel
relationships within the expression values of the previous selected genes and the
cellular properties data. Linear correlations were calculated between the data of the
studied cell lines for cellular capacitance, respiratory activity (Oz consumption),
glycolytic activity (acidification), energy metabolism (ATP level), intracellular ROS
accumulation, mitochondrial mass, and proliferation rates (MTT and SRB assays)
(Figs. 2 to 10) and the 15 selected metabolism-related genes (DLD, GOT1, GOT2, PC,
PDHB, PGLS, RPE, SLC2A1, SLC2A5, ATP5H, ATP6AP2, COX17, COX5A, COX5B, and
NDUFS4) (Figs. 14 and 15). The gene expression data of the 15 genes and their total
probe sets in the Affymetrix Human Genome U133 Plus 2.0 Array were used for
searching dependencies with the cellular features. Only those genes with consistent

information across their probe sets were chosen as candidate genes.
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B Cell Line/ ATPSH ATPGAP2 COX17 COX5A COX5B NDUFS4
Gene symbol
MDA-MB-231] -0.87 0.61 -0.62 -0.81 029 1.28
MCF7 1.03 0.99 1.19 1.24 1.54 0.38
HCT 116 1.28 -1.33 0.26 0.12 021 1.06
HT-29 0.99 -1.51 14 1.51 0.2 0.09
AsPC-1 142 147 -0.95 -1.16 -0.01 -1.00
MIA PaCa-2 0.53 0.14 -1.61 031 0.47 1.23
Panc-1 1.38 11 1.03 0.55 0.63 0.8
BxPC-3 -1.09 0.3 0.49 1.07 1.41 0.43
LNCaP -0.51 0.52 1.24 1.00 121 111
PC-3 121 1.14 0.68 -1.53 0.16 -1.34
DU 145 1.02 -0.58 -1.00 0.25 -1.36 0.74
HaCaT 0.13 1.36 -0.61 -0.62 152 -0.69
MDA-MB-435 0.23 0.59 1.03 0.68 -1.02 -0.11
HeLa -1.76 1.09 0.19 1.41 -1.76 111
Hep G2 0.25 -1.03 -0.88 -0.61 -0.08 0.11
1321N1 0.41 0.88 -1.45 143 1.04 211

Fig. 15. Selection of genes related to TCA cycle and electron transport chain. Affymetrix
Human Genome U133 Plus 2.0 Array gene expression raw data (.CEL files) were obtained from
GEO, NCBI. Public accession numbers of the cell lines are listed in Experimental Methods 2.3,
Table 2. Preprocessing of the .CEL files was done using Robust Multi-array Average (RMA)
normalization method. The normalized expression was scaled and centered to compare the
expression levels of each gene in the studied cell lines. A range from -3 (lowly expressed genes
in green) to 3 (highly expressed genes in red) was calculated. Genes with extreme expression
values in at least 8 of the 16 cell lines were selected. Extreme expression values were the ones
greater than 1 and lower than -1. A. Heatmap of the expression levels of genes belonging to TCA
cycle and electron transport chain. Arrows indicate the genes that present extreme expression
after scaling and centering. B. Scale and center values of genes that present extreme expression
in the analyzed cell lines. Scale-center and RMA normalizations were done using R programming
language with the package softiImpute function biscale and Bioconductor package affy.
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PGLS and COX5B are the genes that shown significant correlation and consistent
information across their probe sets with some of the metabolism data. The cellular
capacitance did not show any relation with any of the selected metabolism genes
(Table 12). PGLS (6-phosphogluconolactonase) is an enzyme that catalyzes the
hydrolysis of 6-phosphogluconolactone to 6-phosphogluconate in the second reaction of
the pentose phosphate pathway oxidative phase.

The PGLS gene presents four probe sets in the Affymetrix platform used, all of
which show consistent information about the dependencies between the expression
level and mitochondrial mass content, glycolytic activity, and proliferation rates
measured as metabolic activity (MTT assay) and total protein content (SRB assay). The
negative correlation observed with the mitochondrial mass is significant (p-values
< 0.05) in three out of the four probe sets. The fourth probe set gave significance (Table
12). Additionally, the same three probe sets show also a negative correlation with
glycolysis activity but just one of the probe set reached significance (p-value < 0.05)
(Table 12). The significant dependency of PGLS with SRB assay is corroborated just for
one out of the four probe sets, but all of them having a moderate negative correlation.
Moreover, this is corroborated by according dependencies with the proliferation assay
MTT, which presents a moderately negative correlation with the entire probe set of
PGLS (Table 12). The negative dependencies found indicate that cell lines with high gene
expression of PGLS present low mitochondrial mass content, low glycolytic activity, and
low proliferation rates.

COX5B is a nuclear-coded subunit of the cytochrome c oxidase complex in the
electron transport chain. COX5B contains two probe sets in the Affymetrix platform used
for this study. One of the two probe sets shows a significant (p-value < 0.05) negative
correlation with the proliferation assay MTT, which is in agreement with the moderate
r coefficient of the second probe set. The calculated dependencies between the two
probe sets and the SRB proliferation assay validated these relations (Table 12). The
obtained correlations indicate that cell lines with high gene expression of COX5B

present low proliferation rates.

Table 12. r coefficients and p-values of the significant dependencies between metabolism
features and Affymetrix gene expression of candidate genes of the selected pathway. The
mitochondrial mass content of the cells was determined using MitoTracker Green (Thermo
Fisher). Cell lines with higher fluorescence intensity contain higher mitochondrial mass. The
proliferation rate measured as metabolic activity (MTT assay) estimates the reduction of MTT
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reagent by active mitochondria and can be measured by absorbance at 595 nm. Energy
metabolism (ATP level) was estimated with ATPlite 1step Luminescence ATP Detection Assay
System kit (Perkin Elmer). Luminescence is proportional to ATP concentrations in the cells.

A set of genes were selected based on the expression values of genes belonging to glycolysis-
gluconeogenesis, pentose phosphate, TCA cycle, and electron transport chain metabolic
pathways. The gene expression raw data (.CEL files) were obtained from GEO, NCBI and
correspond to Affymetrix Human Genome U133 Plus 2.0 Array. Public accession numbers of the
cell lines are listed in Experimental Methods Table 2. Preprocessing of the .CEL files was done
using Robust Multi-array Average (RMA) normalization method. The selection process included
scale and center normalization of the gene expression in the studied cell lines. The genes with
extreme expression values in at least 7 of the 16 cell lines were selected for Pearson
comparisons with the metabolism assay. All the probe sets of the selected genes in the
Affymetrix array are shown. The Pearson coefficients were calculated using the mean of at least
three independent experiments per cell line and per metabolic assay. Pearson comparisons,
scale-center, and RMA normalizations were obtained using R programming language with the
packages Hmisc function rcorr, softimpute function biscale and Bioconductor package affy. In
yellow the probe sets that present a significant dependence with the metabolic assays (p-value
< 0.05).

r coefficients Glycolysis ATP Mitomass ROS SRB MTT

PGLS.1554316_at 0.00 0.34 -0.39 0.21 -0.17 -0.43
PGLS.218387_s_at -0.51 0.17 -0.58 0.06 -0.41 -0.53
PGLS.218388_at -0.47 0.08 -0.53 -0.03 -0.32 -0.42
PGLS.230699_at -0.41 0.66 -0.68 0.55 -0.72 -0.51
COX5B.213735_s_at -0.15 -0.28 -0.13 -0.29 -0.10 -0.27
COX5B.213736_at -0.18 0.68 -0.13 0.59 -0.36 -0.60
p-values Glycolysis ATP Mitomass ROS SRB MTT

PGLS.1554316_at 0.9977 0.2142 0.1385 0.4488 0.6135 0.1850
PGLS.218387_s_at 0.0427 0.5457 0.0183 0.8218 0.2114 0.0923
PGLS.218388_at 0.0643 0.7776  0.0354 09149 0.3437 0.1995
PGLS.230699_at 0.1183 0.0072 0.0037 0.0330 0.0120 0.1061
COX5B.213735_s_at| 0.5912 0.3119 0.6363 0.2893 0.7676 0.4292
CO0X5B.213736_at 0.5133 0.0052 0.6202 0.0213 0.2819 0.0494

Figure 16 shows the significant dependencies (p-values < 0.05) among three out of four
probe sets of PGLS gene and the mitochondrial mass content. The entire set of probe
sets belonging to the PGLS gene display a negative relationship between the expression
of the gene and the mitochondrial mass content in the cell lines. The probe set
230699_at shows a strong correlation representing the highest r coefficient with
mitochondrial mass. Although the probes in the probe-sets 230699_at and 218388_at
interrogate just one transcript (_at suffix), the information differs for some cell lines
from the others. Colorectal cells PC-3 and DU-145 show more similar expression values

for the PGLS gene with the data of the 230699 _at probe set than for the 218387_at or
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Fig. 16. Significant dependencies between mitochondrial mass content and gene
expression of candidate gene PGLS. Linear correlations of the gene expression values from
probe sets belonging to the PGLS gene that presents significant dependencies (p-values < 0.05)
with mitochondrial mass in the studied cell lines. The correlations were calculated using
Pearson algorithm. Mitochondrial mass content of the cells was determined using MitoTracker
Green (Thermo Fisher). Cell lines with higher fluorescence intensity contain higher
mitochondrial mass. The Pearson coefficients were calculated using the mean of at least three
independent experiments per cell line. The expression values were obtained from GEO, NCBI
and correspond to Affymetrix Human Genome U133 Plus 2.0 Array. Public accession numbers of
the cell lines are listed in Experimental Methods, Table 2. Preprocessing of the .CEL files was
done using Robust Multi-array Average (RMA) normalization method. Pearson comparisons and
RMA normalizations were obtained using R programming language with the packages Hmisc
function rcorr and Bioconductor package affy. The shape of the dots gives the tissue types and
the color the cell lines. The blue lines represent linear regressions. For each dependency the r
correlation coefficient is shown; asterisks represent the level of significance (p-values < 0.05*
and < 0.01**). Error bars = standard error (se).

218388_s_at. In these last two probe sets, Panc-1 shows a similar expression level to
HCT 116, but a much higher one in the 230699_at probe set. Indeed, the two "_at" probe
sets correlate with each other with an r coefficient of just 0.55. On the other hand, the
218388_at and 218387_s_at probe sets are highly correlated by an r coefficient of 0.99

(data not shown).

3.4.2 Relations between Cell Properties of the Studied Cell Lines and the

Extremely Expressed Probe Sets in Affymetrix Arrays

The preprocessing (RMA normalized data, Experimental Methods 2.3) gene
expression data of the total probe sets in the Affymetrix Human Genome U133 Plus 2.0
Array for the studied cell lines were normalized using scale and center standardization.
The expression of each probe set was standardized across the cell lines. Scale and center
was applied to normalize the probe set expression relative to the set of cell lines used.
From the complete Affymetrix platform with more than 50,000 entries we selected the
extreme expressed probe sets per cell line (Supplements 5.1.5). The choice was made for
probe sets that were either highly or lowly expressed in at least 9 of the 16 cell lines.

Using the gene symbol it was possible to collect the entire set of probe sets that join the
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extreme expressed probe sets chosen. A final selection of genes with consistent
information through their probe sets was done. That final selection includes the
condition that no pair of the chosen probe sets could show an extreme expression in less
than seven cell lines. Genes with just one probe set were discarded (Experimental
Methods 2.3.1). With the remaining 36 probe sets, corresponding to 17 genes, linear
relationships were searched with the metabolic properties of the studied cell lines and
the probe set gene expression (Table 13). The linear dependencies were calculated
using Pearson product moment correlation using R programming language package
Hmisc and rcorr function.

Three probe sets showed a linear dependency with some of the metabolism
assays. No probe sets showed a significant dependency with cellular capacitance
(Table 13). The first probe set with a correlation to metabolism is the 1552502_s_at
belonging to the RHBDLZ (rhomboid-related protein 2) gene. RHBDL2 contains three
probe sets in the Affymetrix array used, and the other two probe sets are consistent with
1552502_s_at (Fig. 17). It is remarkable that the only two probe sets of the IFI16
(gamma-interferon-inducible protein 16) gene (206332_s_at and 208965_s_at) are the
second and third probe sets that present a correlation with metabolism (Fig. 18).

The cell lines with higher expression levels of RHBDL2 are the ones which have less
glycolytic activity and mitochondrial mass (Fig. 17A). An r coefficient of -0.53 and -0.52
was calculated for the dependencies between 1552502_s_at probe set with glycolysis
activity and mitochondrial mass content, respectively. The other two probe sets that
interrogate the RHBDL2 gene, the 1554895_a_at and 1554897_s_at, corroborate these
findings and present a highly significant positive relation (p-value < 0.0001) with
1552502_s_at (Fig. 17B). A much higher expression of the RHBDL2 gene is observable in
the noncancerous skin cell line HaCaT, with the skin cell line pair MDA-MB-435
completely in the bottom of the plot with one of the lowest expression values. Moreover,
is it not possible to observe a correlation between the tissue type of the cell lines and the
gene expression level of RHBDL2. Glycolysis activity and mitochondrial mass content

both present a nonsignificant (p-value > 0.05) moderately positive relation (Table 10).

Table 13. r coefficients and p values of the extreme expressed probe sets in Affymetrix
array and the cell properties of the studied cell lines. In the total probe sets data from
Affymetric Human Genome U133 Plus 2.0 Array the extreme expressed probe sets were selected
for Pearson comparison with the electrical and metabolic features of the studies cell lines. The
gene expression values were obtained from GEO, NCBI, and public accession numbers of the cell
lines are listed in Experimental Methods, Table 2. Preprocessing of the .CEL files was done using
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Robust Multi-array Average (RMA) normalization method. The normalized expressions per gene
were scaled and centered to normalize them across the studied cell lines. A range to select the
probe sets that were either highly or lowly expressed in at least 9 of the 16 cell lines was done.
Cellular capacitance, glycolytic and respiratory activities were measure on the Bionas 2500
online monitoring system. The ATP level was measured with ATPlite 1step Luminescence ATP
Detection Assay System kit (Perkin Elmer). The mitochondrial mass (mitomass) content was
determined using MitoTracker Green (Thermo Fisher). ROS accumulation in cells was measured
using DHE. The proliferation rate was estimated using MTT and SRB assays. At least three
independent experiments per assay and cell line were used for the calculations. Pearson
comparisons, scale-center and RMA normalizations were obtained using R programming
language with the packages Hmisc function rcorr, softImpute function biscale and Bioconductor
package affy. In yellow the two probe sets of IFI16 gene (206332_s_at and 208965_s_at) that
show a significant linear dependency with respiration activity and one of the three probe sets of
the RHBDLZ2 gene that show a significant dependency with glycolysis and mitochondrial mass.

r coefficients Capacitance Respiration Glycolysis ATP Mitomass ROS SRB MTT

1555735_a_at 0.17 -0.09 0.03 0.04 0.00 0.32 -0.14 -0.47
201419 at 0.37 -0.16 0.07 -0.21 0.07 0.09 -0.17 0.14
201130_s_at -0.06 0.09 -0.14 0.24 0.04 -0.09 0.08 -0.14
201131 _s_at -0.33 0.11 -0.35 0.27 -0.16 0.10 0.08 -0.30
201116_s_at 0.16 0.13 0.21 0.09 0.26 0.17 -0.12 -0.08
201117_s_at 0.22 0.19 0.23 0.13 0.28 0.16 -0.12 -0.01
203501 _at 0.03 0.22 0.09 0.08 0.06 0.23 -0.23 -0.47
208454 _s_at -0.11 0.21 0.09 -0.06 0.22 0.20 -0.06 -0.31
217889_s_at 0.18 -0.40 0.00 -0.13 -0.11 -0.21 -0.22 0.14
222453 _at 0.23 -0.27 -0.03 -0.09 -0.16 -0.24 -0.23 0.19
220318_at 0.00 -0.12 -0.27 0.23 -0.23 0.04 0.05 -0.25
223895 s_at -0.20 0.03 -0.16 0.11 -0.02 0.04 0.26 -0.10
219121 _s_at -0.19 -0.01 -0.21 0.20 0.00 -0.08 0.24 -0.01
225846_at -0.19 -0.07 -0.23 0.15 -0.01 -0.16 0.23 -0.01
225602_at 0.27 0.19 0.43 0.25 0.27 0.02 0.26 0.45
225604 _s_at 0.18 0.04 0.34 0.16 0.33 -0.03 0.26 0.36
219976_at -0.19 0.08 0.10 -0.10 0.17 -0.28 0.49 0.16
225792 _at -0.17 0.04 0.05 -0.16 0.20 -0.37 0.48 0.25
206332_s_at -0.07 -0.59 -0.42 -0.12 -0.28 -0.10 -0.58 -0.23
208965_s_at -0.08 -0.57 -0.42 -0.06 -0.30 -0.06 -0.58 -0.27
235301_at 0.16 -0.01 0.02 0.26 0.22 -0.09 -0.10 -0.05
244317 _at 0.13 0.03 0.05 0.32 0.11 -0.07 -0.07 -0.14
218656_s_at -0.40 -0.23 -0.40 0.05 -0.26 0.30 -0.42 -0.42
231411 at -0.35 -0.09 -0.26 0.02 -0.24 0.39 -0.30 -0.28
233634 _at -0.21 -0.07 -0.13 0.02 -0.21 -0.25 0.42 0.04
239148 _at -0.33 -0.14 -0.26 -0.01 -0.10 -0.21 0.34 -0.03
239350_at -0.27 -0.17 -0.19 -0.01 -0.16 -0.29 0.44 0.04
1555397_at -0.37 -0.13 -0.33 0.10 -0.10 -0.26 0.06 -0.14
212338 _at -0.36 -0.22 -0.42 0.01 -0.17 -0.20 0.08 -0.20
205479_s_at -0.16 0.02 -0.45 0.22 -0.29 0.47 -0.33 -0.29
211668_s_at -0.19 0.03 -0.42 0.16 -0.23 0.49 -0.30 -0.39
1555579_s_at 0.23 -0.15 0.25 -0.15 0.02 -0.11 -0.20 -0.04
203329_at 0.33 -0.12 0.21 -0.02 0.04 -0.04 -0.22 0.11
1552502_s_at -0.21 -0.42 -0.53 0.00 -0.52 -0.04 -0.19 -0.43
1554895_a_at -0.22 -0.44 -0.42 -0.23 -0.39 -0.05 -0.15 -0.47
1554897_s_at -0.03 -0.36 -0.41 0.14 -0.38 -0.01 -0.20 -0.25
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205768_s_at
205769 _at

p values

1555735_a_at

201419_at
201130_s_at
201131 _s_at
201116_s_at
201117 _s_at
203501 _at
208454 _s_at
217889 s_at
222453 _at
220318_at
223895 s_at
219121 _s_at
225846_at
225602 _at
225604 _s_at
219976_at
225792 _at
206332_s_at
208965_s_at
235301 _at
244317 _at
218656_s_at
231411 _at
233634 _at
239148 _at
239350_at
1555397 _at
212338_at
205479 _s_at
211668_s_at

1555579 _s_at

203329_at

1552502_s_at
1554895 _a_at
1554897 _s_at

205768_s_at
205769 _at

-0.26 -0.18 0.11 -0.30 0.53 0.07

-0.20 -0.07 0.16 -0.36 0.60 0.28

Capacitance Respiration Glycolysis ATP Mitomass ROS SRB MTT
0.54 0.75 0.92 0.90 0.99 0.24 0.69 0.14
0.16 0.55 0.79 0.46 0.79 0.75 0.62 0.68
0.82 0.74 0.60 0.39 0.89 0.76 0.81 0.69
0.21 0.69 0.18 0.32 0.55 0.72 081 0.36
0.56 0.62 0.45 0.74 0.33 0.54 0.73 0.82
0.42 0.47 0.39 0.66 0.30 0.56 0.72 0.98
091 0.41 0.74 0.77 0.82 041 0.50 0.14
0.67 0.43 0.75 0.83 0.40 049 086 0.35
0.50 0.13 0.99 0.65 0.67 045 0.52 0.68
0.39 0.31 0.92 0.76 0.54 040 049 0.57
0.99 0.65 0.32 0.40 0.40 090 0.89 047
0.46 0.93 0.54 0.69 0.94 0.89 0.44 0.78
0.47 0.98 0.44 0.49 1.00 0.78 0.48 0.99
0.49 0.81 0.39 0.59 0.96 0.58 0.49 0.98
0.32 0.48 0.10 0.37 0.31 094 043 0.17
0.51 0.87 0.19 0.56 0.21 092 044 0.28
0.48 0.78 0.72 0.71 0.53 0.32 0.12 0.63
0.53 0.87 0.85 0.58 0.45 0.17 0.14 0.46
0.79 0.02 0.10 0.66 0.30 0.73 0.06 0.49
0.77 0.02 0.10 0.84 0.27 0.84 0.06 043
0.55 0.97 0.93 0.35 0.40 0.76 0.77 0.89
0.62 0.90 0.86 0.25 0.68 0.81 0.84 0.68
0.13 0.39 0.13 0.85 0.34 0.27 0.20 0.20
0.18 0.75 0.33 0.95 0.37 0.15 037 041
0.43 0.79 0.64 0.94 0.43 0.38 0.19 0091
0.21 0.61 0.34 0.98 0.71 045 031 094
0.31 0.52 0.47 0.98 0.54 0.29 0.17 0.90
0.16 0.62 0.21 0.72 0.73 0.35 0.86 0.67
0.17 0.42 0.10 0.98 0.52 046 082 0.55
0.55 0.93 0.08 0.44 0.27 0.08 0.33 0.39
0.48 0.90 0.11 0.58 0.39 0.06 037 0.24
0.40 0.57 0.36 0.60 0.94 0.69 0.55 0.90
0.22 0.65 0.44 0.93 0.88 090 0.52 0.76
0.43 0.10 0.04 0.99 0.04 0.88 0.58 0.19
0.42 0.09 0.11 0.42 0.14 0.87 0.65 0.15
091 0.17 0.12 0.61 0.14 097 0.55 0.46
0.33 0.90 0.71 0.53 0.70 0.27 0.09 0.84
0.46 0.97 0.66 0.81 0.54 0.19 0.05 041
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Fig. 17. Significant dependencies between glycolytic activity and mitochondrial mass with
one of the probe sets of the RHBDL2 gene. From the total probe set data from Affymetrix
Human Genome U133 Plus 2.0 Array the extreme expressed probe sets were selected for
Pearson comparison with the cellular features of the studied cell lines. The glycolytic activity
was measured on the Bionas 2500 containing chips with ISFET sensors. A stronger acidification
rate indicates a higher glycolysis level. Equal numbers of cells per cell line were seeded in sensor
chips. The mitochondrial mass content of the cells was determined using MitoTracker Green
(Thermo Fisher). Cell lines with higher fluorescence intensity contain higher mitochondrial
mass. The relationships were calculated using the mean of at least three independent
experiments per cell line and per metabolic assay. The gene expression values were obtained
from GEO, NCBI, and the public accession numbers of the cell lines are listed in Experimental
Methods, Table 2. Preprocessing of the .CEL files was done using Robust Multi-array Average
(RMA) normalization method. The normalized expressions per gene were scaled and centered to
normalize them across the studied cell lines. A range to select the probe sets that were either
highly or lowly expressed in at least 9 of the 16 cell lines was done. Pearson comparisons, scale-
center and RMA normalizations were obtained using R programming language with the
packages Hmisc function rcorr, softimpute function biscale and Bioconductor package affy. A.
Linear dependency curves. The shape of the dots gives the tissue types and the colors the cell
line. The blue lines represent the linear regressions. For each dependency, the r correlation
coefficient is shown; asterisks represent the level of significance (p-values < 0.05*). Error bars =
standard error (se). B. Number of cell lines with extreme expression of the probe sets, r
coefficients, and p-values. The RHBDL2 gene has consistent information in the r coefficients in
the three probe sets, but just one of them has a significant p score.

The description of IFI16 is “encodes a member of the HIN-200 (hematopoietic
interferon-inducible nuclear antigens with 200 amino acid repeats) family of cytokines.
The encoded protein contains domains involved in DNA binding, transcriptional regulation,
and protein-protein interactions. The protein localizes to the nucleoplasm and nucleoli,
and interacts with p53 and retinoblastoma-1. It modulates p53 function, and inhibits cell
growth in the Ras/Raf signaling pathway. Alternatively spliced transcript variants
encoding different isoforms that have been found for this gene” (NCBI/Gene summary,
Gene ID: 3428). Our results shown that the two probe sets corresponding to [FI16 have a
significant negative correlation (p-value < 0.02) with the respiration activity (Fig. 18),
meaning that the cell lines that present a high expression of this gene respire less (less
02 consumption). It is obvious that there is a group of cell lines that present much higher
expression levels of [FI16, in contrast to a group with much lower expression of that
gene (Fig. 18A). Among the highest expressing cells are the brain 1321N1, the two skin
cell lines HaCaT and MDA-MB-435, the two adenocarcinoma pancreatic cell lines AsPC-1
and BxPC-3 and one of the two breast cancer cell lines the adenocarcinoma MDA-MB-

231 (Fig. 18A). The carcinoma cell lines Hep G2 (liver) and HT-29, as well as HCT 116
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(colon), MIA PaCa-2, and Panc-1 (pancreas) showed low expression levels of the IFI16

gene.
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Fig. 18. Significant dependencies between respiratory activity and the two probe sets of
IFI16. In the total probe sets data from Affymetrix Human Genome U133 Plus 2.0 Array the
extreme expressed probe sets were selected for Pearson comparison with the metabolic features
of the studies cell lines. The respiratory activity of the cells was measured on the Bionas 2500
containing chips with Clark electrodes. Higher oxygen consumption indicates higher respiration
rate. Equal numbers of cells per cell line were seeded in sensor chips. For the calculation the
mean of at least three independent experiments per cell line with six technical replicates each
one was used. The gene expression values were obtained from GEO, NCBI, and public accession
numbers of the cell lines are listed in Experimental Methods, Table 2. Preprocessing of the .CEL
files was done using Robust Multi-array Average (RMA) normalization method. The normalized
expressions per gene were scaled and centered to normalize them across the studied cell lines. A
range to select the probe sets that were either highly or lowly expressed in at least 9 of the 16
cell lines was done. The IFI16 gene has consistent information in the r coefficients and p-values
in its two probe sets. Pearson comparisons, scale-center and RMA normalizations were obtained
using R programming language with the packages Hmisc function rcorr, softimpute function
biscale and Bioconductor package affy. A. Linear dependency curves. The shape of the dots
shows the tissue types and the color the cell line. The blue lines represent linear regressions. For
each dependency the r correlation coefficient is shown; asterisks represent the level of
significance (p-values < 0.05*%). Error bars = standard error (se). B. Number of cell lines with
extreme expression of the probe sets, r coefficients, and p-values.

Besides, two of the seven cell lines with the lowest expression levels of IFI16 are
the breast adenocarcinoma MCF7 and the prostate adenocarcinoma LS174T (Fig. 18A).
The probe sets 206332_s_at and 208965_s_at are the only ones that interrogate the
IF116 gene and present an almost perfect positive correlation with each other, with an r

coefficient of 0.99 (Fig. 18B).

3.4.3 Relationships between Cell Properties of the Studied Cell Lines and

Affymetrix Gene Expression of the Probe Sets with High Significance

The expression values of the entire probe sets in the Affymetrix Human Genome
U133 Plus 2.0 Array were used for Pearson product moment statistical tests to search
for highly significant dependencies (p-values < 0.0001) of the cellular properties of the
studied cell lines (Tables 14 and 15). The expression values of the pair probe sets from
the ones that present highly significant relations with the cellular properties were
collected and their dependencies recalculated (Table 16). From the 13 genes that
present at least one probe set with a highly significant relation with the cellular features,

four genes have consistent information across their set of probe sets (Table 16). These
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are genes like LARP4 for which one of the _at probe sets shows a moderate negative
relation with the proliferation assay as metabolic activity MTT, and the others (_s_at,
_a_at and _at) a positive one (Table 16). Even more drastic is the situation with the six
probe sets that interrogate ZNF333 gene. For this gene, one of the _a_at probe sets gave a
highly significant positive dependency with the proliferation assay SRB (that measure
the total protein content of the cells). Also, a positive but moderate dependency is
present with the other _a_at. However, the four remaining probe sets, all of them with
the _at suffix show moderated negative dependencies with the mentioned proliferation
assay (Table 16). Moreover, from the 13 genes that present at least one probe set with a
highly significant dependency with some of the cellular properties, all the ones that
contain only one probe set were not taken into account.

Figure 19 plots the highly significant dependencies among the cellular properties
and selected probe sets of genes with consistent information across their probe sets. All
of these genes contain more than one probe set on the Affymetrix platform used. Notice
that the entire set of probe sets belonging to the four candidate genes, present at least a
significant (p-value < 0.05) relationship with the proliferation rate of the studied cell

lines (Table 16).

The GCN1L1 gene (elF-2-alpha kinase activator GCN1) with its probe set
216232_s_at shows a highly positive significant dependency (p-values < 0.0001) with
the proliferation rate measured as total protein content in the SRB assay (r = 0.91)
(Fig. 19A). UniProtKB/Swiss-Prot refers to GCN1L1 as follows: “acts as a positive
activator of the EIF2AK4/GCNZ protein kinase activity in response to amino acid
starvation. Forms a complex with EIF2ZAK4/GCNZ on translating ribosomes; during this
process, GCN1 seems to act as a chaperone to facilitate delivery of uncharged tRNAs that
enter the A site of ribosomes to the tRNA-binding domain of EIF2AK4/GCNZ2, and hence
stimulating EIF2ZAK4/GCNZ kinase activity. Participates in the repression of global protein
synthesis and in gene-specific mRNA translation activation, such as the transcriptional
activator ATF4, by promoting the EIF2AK4/GCN2-mediated phosphorylation of eukaryotic
translation initiation factor 2 (elF-2-alpha/EIF251) on 'Ser-52', and hence allowing ATF4-
mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient
depletion” (UniProtKB/Swiss-Prot accession number: Q92616). Furthermore, probe set
216232_s_at of GCN1L1 presents a significant (p-value < 0.05) dependency with the
MTT proliferation assay (Table 15). The second probe sets that interrogate GCN1L1 in
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the Affymetrix array corroborate the relations found giving a significant (p-value < 0.05
data not shown) correlation with both the proliferation assays, SRB and MTT (Table 16).
The expression value of this gene measured according to the probe set 216232_s_at does
not show much variation across the studied cell lines (Table 14). The cell lines with the
highest expression are the colorectal HT-29 and HCT 116 (relative expression of 8.92
and 9.14, respectively) and the lowest are the skin cell lines HaCaT and MDA-MB-435
(relative expression of 8.04 and 7, respectively) (Table 14). Due to the missing data for
the proliferation assays in the skin cell lines, the lowest values shown in the linear
dependency curve in Fig. 19A are the ones for the breast cancer cell lines MDA-MB-231
and MCF7. These results indicate that the cell lines that proliferate the most present a
high expression of the GCN1L1 gene and this is also related to the tissue type from which

the cells are derived.

Moreover, the proliferation rate (MTT/SRB assays) shows significant positive
dependencies with HOXA7 (Homeobox 7) (Tables 15 and 16) for its two probe sets.
NCBI describes HOXA7 as follows: “In vertebrates, the genes encoding the class of
transcription factors called homeobox genes are found in clusters named A, B, C, and D on
four separate chromosomes. Expression of these proteins is spatially and temporally
regulated during embryonic development. This gene is part of the A cluster on chromosome
7 and encodes a DNA-binding transcription factor which may regulate gene expression,
morphogenesis, and differentiation. For example, the encoded protein represses the
transcription of differentiation-specific genes during keratinocyte proliferation, but this
repression is then overcome by differentiation signals“ (NCBI/Gene summary, Gene ID:
3204). The expression values of the two probe sets that interrogate HOXA7 showed a
strong positive relation with the proliferation assay measured as metabolic activity in
MTT, and is corroborated with a significant (p-values < 0.01, data not shown) positive
relation found between the two probe sets and the proliferation assay SRB (Table 16).
For this gene it is also possible to observe a significant (p-values < 0.01, data not shown)
negative dependency between the two probe sets and ROS accumulation in the cells. As
discussed in Sect. 3.3, the proliferation rate in the SRB and MTT assays presents a
significant negative correlation (r = -0.68) (Table 10) with ROS accumulation in the
cells. These findings indicate that cells with high proliferation rates also express the
HOXA?7 gene to a higher degree and show less ROS accumulation. The expression levels

of HOXA7 are low for most of the cell lines; the two breast cancer cell lines and the four
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pancreatic ones show equally low levels of the gene. In contrast, the two colorectal
cancer cell lines HT-29 and HCT 116 present a much higher expression level of HOXA7
(Fig. 19B). Even higher is the expression of HOXA7 in HaCaT and HeLa cells (Table 14),
being these two cell lines the ones with the stronger expression. The cell lines belonging
to the prostate tissue type (LNCaP, PC-3, and DU 145) present a similarly low expression

level as the pancreatic and breast tissue type cell lines (Table 14).

The third gene that presents a high dependency with the proliferation rate is
INPP5B (inositol polyphosphate-5-phosphatase B). NCBI describes INPP5B as follows:
“This gene encodes a member of a family of inositol polyphosphate-5-phosphatases. These
enzymes function in the regulation of calcium signaling by inactivating inositol
phosphates. The encoded protein is localized to the cytosol and mitochondria, and
associates with membranes through an isoprenyl modification near the C-terminus“
(NCBI/Gene summary, Gene ID: 3633). The highly sifnificant (p-value < 0.0001) positive
dependency found for the probe set 213643_s_at of the INPP5B gene and the SRB assay
is corroborated by the three probe sets that contain information for the gene, all of them
having a significant (p-value < 0.01, data not shown) positive relation with the MTT
proliferation assay (data not shown). The expression of the INPP5B gene behaves in the
same way as the expression for HOXA7; most of the cell lines showed similar relative
low expression levels with the two colorectal ones having together a higher expression
(Fig. 19C). Interestingly, the lowest relative expressions are for the breast and pancreas
cell lines, which are around 5.5, and the highest is for the brain 1321N1 with just 7.14.
The colorectal HT-29 and HCT 116 present a relative expression of around 6.5 (Table
14). Cell lines with low expression levels of the INPP5B gene also present low

proliferation rates.

Among the highly significant positive dependencies found between the set of
candidate genes and the proliferation rate is LGALS8 (Galectin 8), the only one that
shows a negative correlation with one of the proliferation assays and also with the
cellular mitochondrial mass content (Table 16 and Fig. 19D). NCBI describes LGALSS8 as
follows: “This gene encodes a member of the galectin family. Galectins are beta-
galactoside-binding animal lectins with conserved carbohydrate recognition domains. The
galectins have been implicated in many essential functions including development,

differentiation, cell-cell adhesion, cell-matrix interaction, growth regulation, apoptosis,

88



1€ | see | 90 | 90v | 9re | Ses | ove | ¥ve | sve | es€ | zse | s8¢ | €9€ | s8E | ove | SzE |worsesz | oguam
v8e | 1L€ | s | 89c | wve | zoe | 99¢ | ¥U¥ | ss€ | we | s9€ | 15€ | ¥8€ | 16€ | 65€ | 19°€ |preesceost| geeanz
098 | 29, | oror | 908 | 1€8 | Ss8 | 106 | 896 | e6cL | 188 | STOT | zZ6 | ¥S8 | L68 | €9L | €6 |wsezszz |orveens
8.8 | €6 | STOT | L6 | Lve | L6 | 626 | 66 | €¥6 | L¥e | ¥L6 | 0€6 | 696 | 900T | 06 | S¥6 |wviaz| vauvi
80S | e¥e | 90, | oL | s8¥ | €9€ | sce | s0e | so¥ | eve | ogE | ¥ | 925 | 6TL | ze€ | 0TE |wsissoz| Lvxom
108 | €¥L | €8 | og8 | 6L | evL | €9L | 7oL | oL | eoL | 8LL | 8€L | zeL | Ss08 | 9L | O¥L |waesiz| 1009
88c | 69¢ | 6€8 | 6% | 86 | 16€ | ze | %79 | 60s | 099 | 19 | 0% | %09 | ¥l | 6§ | 6T% |wweoz | zdsna
YL | 68S | 819 | g9 | €es | 9r9 | zrs | zes | 295 | 485 | S9S | 6z | 8¢9 | £99 | €5S | #SS |wsevoerz| asdann
ss8 | v¥8 | 998 | ¥0'8 | 00L | S¥8 | 898 | 8c8 | 158 | €98 | s98 | z¥8 | 268 | ¥I6 | Lz8 | 61'8 |wszezorz| viINDD
ECTHDI-
vez | voe | 787 | s8¢ | 8T | boe | Le6T | Lo0€ | IU'E | 0zE | €0€ | 187 | ¥8C | S6T | 8U'E | €EUE |wsoscrz [COHIPOHA
// €TTHTI
6627 | Soe | zoc | €8z | v6z | 60€ | €re | 06T | 6Tt | soe | zre | 967 | OUE | 8¥E | 66T | S8 |rreswsosr sxu1
285 | 618 | 6% | S96 | ¥S9 | 29L | L¥9 | LUe | zeL | ogcs | 18L | L08 | zzL | 2.9 | 1T8 | SE8 |wssessoz| 8s1v1
8% | Sev | se¥ | v0s | ¥8¥% | 88% | €0 | v | SUS | 8% | 66% | 605 | ¥6¥ | 8% | 0TS | 98% |wwoorz | 6110
INTIZET z9 doH BT9H JLedeH mm“ﬁﬂ_i SY1 Nna €-0d deIN1 €-0dxd T-oued ([Z-e)ed VIN| T-DdSV 67-LH 911 LOH LAIN H.M<NA.HM_‘_:E 198 M_ho.-m _Mau“-“m
"UMOUS 94 (44xT000°0 > Son|eA d) suone|alod
quedayiusis 1saySiy ay3 Y1IM SaU0 Y3 JO SaN|BA UOISSaJdXa By} ‘Pale|Nd|ed Sem JUIdL302 Y 3yl YdIym Ul $33s 8qotd 000‘yS Uyl 210w Wo.d 'sau|
[[99 parpmis a1} Jo sanaadoad xen[ad ayy yum sapuapuadap yuesyrusis A[ySiy ayl smoys 1ey) sauag ay) Jo uoissaxdxs auad dLNdWAYY ¥ d[qel,

89



10-91°T S0-92°9 10-91°L 10-9%'8 10-9€°€ 20-9%°€ 10-9S°T 10-92'T 1eTE8LE9GT €EEIANZ
S0-48'C 20-48'8 20-3€’S 10-30'% 10-A€¥ 10-9%°L 10-429 10-36'S 179Z5E¥2 9gdam
10-3%'T 10-4€L 10-38'6 10-35°9 10-4T°9 20-3%'% Z0-49°'6 S0-4T°S 1®G6752T 0TV6ED1S
¥0-48'% 20-3%'L 10-99'T S0-9L'C 20-9%'L 20-9%°E 10-9%'C 10-9L°S e 696951 8XH'T
20-30°'T 10-45C 20-3%'8 50-4S'S 20-41'8 20-3%'L 10-9%'L 10-99'S 1875756802 8STVI1
S0-30°'T 20-4LT 10-4T% 10-4T% 10-9%'C 20-9€'¥ Z0-409 T0-AT'T W®FTLZIT Ydav1
€ZTHTI
20-95'8 10-3S'T S0-9%'9 10-90'% 20-9S°€ 10-42°% 10-91°C 10-36'% 1®°505417 | -ZOHdSOHd
/// €TTHTA
€0-4T'8 S0-30°9 20-99°L 10-30°E 10-3€9 10-92°C 10-49°€ 10-40°Z 1€7STEY9ETT dSddNI
90-47°6 £0-99'6 £0-16'8 10-49°'T 20-3€°S 10-39°C 10-39°S 10-98°L 1®7S/L$890T LVXOH
20-90'C S0-96'6 00+30°T 10-9S°T 10-9%'8 10-9€°€ 10-98°€ 10-48'9 1®SZET9TT TTINDD
S0-49'L 20-4L9 10-3%'C 10-9LC 10-48'F 10-41°% 10-4S'6 10-98'S 17716812 1209
S0-30'8 20-30'8 10-30°9 20-30°S 10-3%'% £0-47'8 Z0-90°T 10-9%'1 1®F6L702 Zdsna
10-3¥%L 10-30°6 10-3%°€ 10-39°'S 10-35°9 50-3S°8 10-39°% 10-30'C 17720012 611D
LLIN TS SOy SSEWONIN dLV SISA[024]H uoneaidsay | soueiede) | 1313s2qoad | [0quAS dudn

‘Affp adexoed 1030NpUOIOIg pUE 110D1
uonouny osiwy sageyded ayy Yam abpvnbup] buiwwp.ibo.ad y 3uisn paureiqo aJom UONeZI[EULIOU YNY pue uosrredwod
uos.aead WSysy ate Aerte a39[dwod ayd ur punoj (10000 > sonfea d) sepuapuadap juedyrudis A[ySiy oyl jo sanfea
d sy, ‘poyzow uonezijeuriou (YNY) 98elaAy Aelie-nNjy 1snqoy Suisn auop sem safly 14D Y3 jo Suissadoad-ald "z 9[qelL
€'Z SPOYIRIN [EIULWILIOdXH Ul PIAISI[ 1B SAUI[ [[92 Y3 JO SIaquinu UoISsadde diqnd pue [gIN ‘OdD WOJj paureiqo aIom
son[ea uoissaldxa auad a9y, "WYILI0Z[e uosIead Suisn paje[nd[ed atom s1as aqold Aelry 'z snid €SI dWOUdN UBWNY
XLIJDWAYY 919[dwoo oY) pue saaniesj Je[nj[ed ayl UsdMiaq SIUSIDJO0I UONL[a.LI0D Jedul] *AeLly JLIIDWAY WO.1J SI9S
s3qo.d [e101 ay) pue sanIadoad J1e[n[[ad ay) usamiaq sanuapuadap juedyyiusdis A[Ysiy ayl jo sanjea d :g1 d[qe

90



9.0- 7
5 5
3 85 26
172 1%
o o
[=% o
x x
L L
2 2
o 8.0 § °
O] (0]
2 2
© 8
[0} [0}
T 75 o 4
7.0- 3
15 2.0 25 3.0 35 4.0 05 1.0 1.5
C Absorbance at 510 nm D Absorbance at 595 nm
7.0 r = 0.92%**
9
c c
il kel
A &
8 65 3 8
o o
x X
w w
(9] (0]
5 5
() G 7
260 2
T K]
& &
6
5.5
—A 5 Y N
1.5 2.0 25 3.0 35 4.0 75 100 125 150
Absorbance at 510 nm FL-1 mean (Fluorescence Intensity)
o 3
[] [N
& T o E < I
T80 © e -0 _ o -
Pﬁ@ﬁgg x C%n*&énﬂflé%mg'?\s% 6z
8523z f I35, 2288005089 ¢gx
- O = o = o = © [CR)
8::306.“0.5)0:0:%2211225550_012119
—oEd4O KDDL o0 o o

Fig. 19. Highly significant dependencies between the metabolic features of the analyzed
cell lines and the total probe sets in Affymetrix Array. Linear correlation coefficients
between the metabolic features and the complete Affymetrix Human Genome U133 Plus 2.0
Array probe sets were calculated using Pearson algorithm. Mitochondrial mass content was
determined using MitoTracker Green (Thermo Fisher). The fluorescence intensity is
proportional to the mitochondrial mass of the cells. The proliferation rate was estimated using
MTT and SRB assays. MTT reagent labels active mitochondria and its reduction produces a
colored compound that can be measured by absorbance at 595 nm. The SRB dye is incorporated
into fixed cells and the amount of incorporated dye is proportional to the amount of cells; the
dye absorbs at 510 nm. Gene expression values were obtained from GEO, NCBI, and public
accession numbers of the cell lines are listed in Experimental Methods, Table 2. Preprocessing of
the .CEL files was done using Robust Multi-array Average (RMA) normalization method. From
more than 54,000 probe sets in which the r coefficient was calculated, the ones with the highest
significant p-values (< 0.0001***) were selected and only those genes with consistent
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information in all their corresponding probe sets were plotted. Pearson comparison and RMA
normalization were obtained using R programming language with the packages Hmisc function
rcorr and Bioconductor package affy. The shape of the dots gives the tissue types and the color
the cell line. The blue lines represent linear regressions. For each independent dependency the r
correlation coefficient is shown; asterisks represent the level of significance. Error bars =
standard error (se). Linear correlations between: A. SRB proliferation assay and GCN1L1 probe
set 216232_s_at. B. MTT proliferation assay and HOXA7 probe set 206847_s_at. C. SRB
proliferation assay and INPP5B probe set 213643_s_at. D. Mitochondrial mass content and
LGALSS8 probe set 208935_s_at.

Table 16. r coefficients of the highly significant dependencies between metabolism
features and total probe sets from Affymetrix Array. Linear correlation coefficients between
the cellular features and the complete Affymetrix Human Genome U133 Plus 2.0 Array probe
sets were calculated using Pearson algorithm. Cellular capacitance, glycolytic activity
(acidification), and respiratory activity (02 consumption) were measured on the Bionas 2500
online monitoring system. Cells were seeded in chips containing IDES sensors for the estimation
of the cellular capacitance, ISFET sensors to measure the acidification rate, and Clark-type
sensor for determination of oxygen consumption. Energy metabolism (ATP level) was measured
with ATPlite 1step Luminescence ATP Detection Assay System kit (Perkin Elmer). Mitochondrial
mass content was determined by MitoTracker Green (Thermo Fisher). ROS accumulation in cells
was measured using dihydroethidium (DHE). Gene expression values were obtained from GEO,
NCBI, and public accession numbers of the cell lines are listed in Experimental Methods, Table 2.
Preprocessing of the .CEL files was done using Robust Multi-array Average (RMA) normalization
method. From more than 54,000 probe sets in which the r coefficient was calculated, the ones
with the highest significant p-values (< 0.0001***) were selected. Genes with consistent
information of the r coefficients in their total probe sets are highlighted. Pearson comparison
and RMA normalization were obtained using R programming language with the packages Hmisc
function rcorr and Bioconductor package affy.

S}(l;::ll:::)l Probe set ID Capacitance | Respiration | Glycolysis | ATP | Mitomass ROS | SRB | MTT
CCL19 210072_at -0.39 -0.26 -0.78 0.13 -0.13 0.18 | -0.70 | -0.54
DUSP2 204794 _at 0.38 0.62 0.64 -0.21 0.50 -0.14 | 0.55 | 0.91
218912 _at 0.15 -0.02 0.22 -0.20 0.29 -0.31 | 0.57 | 0.92
GCC1 243306_s_at -0.22 -0.16 0.07 -0.17 0.19 -0.26 | 0.65 | 0.08
243437 _at 0.14 0.04 0.03 0.13 0.34 0.01 |-0.02 | 0.04
212139 at 0.14 0.30 0.22 0.15 0.31 0.02 | 0.54 | 0.73

GCN1L1
216232_s_at 0.11 0.24 0.26 0.06 0.37 0.00 | 091 | 0.68
206847_s_at -0.08 -0.16 0.30 -0.51 0.37 -0.63 | 0.74 | 0.95

HOXA7
235753 at -0.05 -0.20 0.22 -0.49 0.27 -0.62 | 0.63 | 0.90
1563565_at 0.51 0.01 0.50 0.15 0.21 -0.17 | 0.29 | 0.71
INPP5B 213643_s_at -0.10 -0.25 0.33 -0.14 0.28 -0.46 | 0.92 | 0.75
213804 _at -0.08 0.17 0.28 0.04 0.36 -0.27 | 0.57 | 0.73
KLHL23 213610_s_at 0.23 0.09 0.64 -0.29 0.24 -0.28 | 0.64 | 0.38

/1]

PHOSPHO 217505_at -0.19 0.33 -0.22 0.55 -0.22 0.83 | -0.46 | -0.54

2-KLHL23
LARP4 1555384 _a_at 0.26 0.49 0.42 0.35 0.01 0.36 | 0.23 | 0.13
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212714 _at 0.41 0.48 0.51 -0.32 0.22 -0.22 | 0.66 | 0.95

214155_s_at 0.19 0.38 0.38 0.17 0.29 0.27 0.11 | 0.38

238959_at 0.13 0.47 0.41 0.33 0.08 0.38 0.23 | -0.13

238960_s_at 0.14 0.32 0.45 0.25 0.09 0.21 0.34 | 0.00

208933_s_at -0.20 0.05 -0.45 0.30 -0.76 0.38 | -0.32 | -0.77

208934 _s_at -0.35 0.18 -0.41 0.40 -0.67 0.50 |-0.22 | -0.70

LGALSS 208935_s_at -0.16 0.09 -0.46 0.46 -0.84 0.45 |-0.38 | -0.73
208936_x_at -0.26 0.19 -0.45 0.39 -0.70 0.50 |-0.31 |-0.75

210731_s_at -0.24 0.01 -0.47 0.17 -0.73 0.35 | -0.30 | -0.75

210732_s_at -0.33 0.13 -0.41 0.38 -0.68 0.52 | -0.23 | -0.74

LHX8 1569469_a_at 0.15 0.31 0.53 -0.47 0.85 -0.37 | 0.56 | 0.87
SLC39A10 225295 _at 0.84 0.43 0.51 0.14 0.12 0.01 0.12 | 0.48
WDR86 243526_at -0.15 0.12 0.09 -0.22 0.23 -0.49 | 0.54 | 0.93
1552375_at 0.23 0.33 0.18 0.60 -0.20 0.50 |-0.33 |-0.41

1559674_at 0.19 0.18 0.22 0.00 -0.10 0.21 | -0.21 | 0.01

ZNF333 1563783_a_at 0.36 0.38 0.53 0.27 0.05 0.10 0.92 | 0.51
1569250_at 0.22 -0.11 0.23 0.29 -0.21 0.17 | -0.10 | -0.07

1569251 _a_at 0.40 0.12 0.30 0.39 -0.10 -0.01 | 0.13 | 0.27

231369_at -0.25 -0.11 0.00 0.10 -0.07 0.23 | -0.02 | -0.48

and RNA splicing. This gene is widely expressed in tumoral tissues and seems to be involved
in integrin-like cell interactions” (NCBI/Gene summary, Gene ID: 3964). The probe set
208935_s_at shows a highly significant (p-value < 0.0001) and negative dependency
with the mitochondrial mass content (Fig. 19D). The LGALS8 gene contains five probe
sets more and in all of them a significant (p-value < 0.01 data not shown) negative
dependency with the mitochondrial mass is found (Table 16). In the entire set of probe
sets that interrogate the LGALS8 gene, a negative and significant (p-value < 0.01, data
not shown) relation with the MTT proliferation assay is observable as well, but not for
SRB. However, the dependencies found between the LGALS8 probe sets and SRB assay
display the same tendency, a negative correlation (Table 16). The data obtained for the
Pearson correlation coefficients indicate that the cell lines that express the higher level
of the LGALS8 gene are the ones that present the lowest proliferation rate measured as
metabolic activity and mitochondrial mass. As shown in Table 10, the mitochondrial
mass content of the studied cell lines and the MTT proliferation assay do not show a
significant dependency upon each other. However, a moderate positive correlation is
present. Different to the expression pattern observed for the other three candidates
genes, here, the colorectal cells HT-29 and HCT 116 are part of the ones that present the
lowest expression levels (Fig. 19D). The relative expression of the LGALS8 gene for the
breast and pancreas tissue type cells is high in comparison with the colorectal cell lines.

The prostate cell lines differ in their expression levels and the same is observable for the
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skin cell lines, MDA-MB-435 being one of the lowest and the noncancerous cell line
HaCaT the highest in all the tested cell lines. The lowest relative expression is displayed

by the cervix HeLa cell line (Fig. 19D).

3.4.4 Affymetrix Gene Expression and qPCR

The relative gene expression of the glycolysis-gluconeogenesis genes GOT1
(glutamic-oxaloacetic transaminase 1), HK1 (hexokinase 1), HK2 (hexokinase 2), LDHA
(lactate dehydrogenase A), PFKM (phosphofructokinase-muscle), and SLC2A1 (solute
carrier family 2 member 1) was estimated by qPCR. Real-time PCR was performed in the
breast cancer cell lines MDA-MB-231 and MCF7, the colorectal cell lines HCT 116 and
HT-29, the pancreatic cell lines AsPC-1, MIA PaCa-2, Panc-1, and BxPC-3, the prostate
cell lines PC-3 and DU 145, the cervix HeLa, and the liver cell line Hep G2.

The RNA for the Reverse Transcriptase PCR comes from cells cultivated in DMEM
medium at 37°C in 5% CO: incubator with 95% humidity. Primer sequences for the
qPCR are listed in Table 6 (Experimental Methods 2.3.3). The relative gene expression
was calculated as the mean of three independent experiments. Most of the amplified
genes are highly expressed in the carcinoma cell lines Hep G2 and HCT 116 (Fig. 20). In
contrast, HK1 and PFKM present the lowest expression values in all the tested cell lines
for Hep G2. A high expression is also observed for LDHA in the adenocarcinomas AsPC-1
and PC-3 (Fig. 20).

Comparison was made between the results obtained from the qPCR gene
expression estimations (Fig. 20) and the data from the Affymetrix Human Genome U133
Plus 2.0 Array obtained from public repositories files (Experimental Methods 2.3)
(Fig. 21). The qPCR expression value of each of the six amplified genes was normalized
across the cell lines. Scale and center were applied to normalize the gene expression
relative to the set of cell lines used. A range of calculations was obtained to compare the
expression values of each gene in the tested cell lines from -3 (lowly expressed genes) to
3 (highly expressed genes) (Experimental Methods 2.3.1). The same procedure was
done regarding the gene expression of the same six genes obtained from the available
public repositories (De Schutter et al. 2013, Barretina et al. 2012) (Experimental
Methods 2.3). For the genes that contain more than one probe set in the Affymetrix, a

mean of the probe sets was used. Probe sets with a _x suffix were deleted. Scaling and
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centering were calculated using R programming language package softimpute (Hastie &
Mazumder 2015) (Supplements 5.1.5).

Affymetrix arrays and qPCR standardized relative expression values of GOT1,
HK1, HK2, LDHA, PFKM, and SLC2A1 in the 12 cell lines were plotted together in order
to compare our results with the ones obtained by De Schutter et al. (2013) and Barretina
et al. (2012) (Fig. 21). From a total of six glycolytic genes in the 12 cell lines, 53 out of
the 72 comparisons show the same tendency, positive expression or negative
expression, within the set of cell lines used. However, in most of the cases, they do not
share the level of expression between the two methodologies. An exception is observed
for GOT1 in Hep G2; HK1 in DU 145 and HeLa; HK2 in HT-29, HCT 116, Panc-1, and
MCF7; PFKM in Panc-1; and SLC2A1 in MCF7, AsPC-1, and MIA PaCa-2 that showed
relative similar expression values in relation to the cell lines used (Fig. 21). Major
similarities are found in the prostate cell line PC-3 and the liver cell line Hep G2, where
all the amplified genes follow the same Affymetrix patterns, being similarly either

upregulated or downregulated (Fig. 21).

Gene Expression by gPCR
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Fig. 20. Real-time polymerase chain reaction (qPCR) in key metabolic genes of the
glycolysis-gluconeogenesis pathway. The RNA for the RT-PCR comes from cells cultivated in
DMEM medium supplemented with 10% FBS (v/v) in a 5% CO2 incubator at 37°C with a 95%
humidity. Standard deviations come from three independent experiments with three internal
replicates for each one. Primer sequences and amplification details are given in Experimental
Methods 2.3.3.
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Fig. 21. Affymetrix Gene expression and qPCR comparison. Affymetrix Gene expression raw
data (.CEL files) were obtained from GEO, NCBI and correspond to the Human Genome U133
Plus 2.0 Array. Public accession numbers and cell lines are listed in Experimental Methods
Table 2. Preprocessing of the .CEL files was done using Robust Multi-array Average (RMA)
normalization method. Primer sequences and amplification details for the qPCR are given in
Experimental Methods 2.3. The standard deviation of the gPCR experiments is not shown (for SD
of qPCR see Fig. 19). Scale and center normalization were applied to the expression values of the
Affymetrix and the qPCR data to normalize the expression of each gene in the set of studied cell
lines. A range from -3 (lowly expressed genes in the lower part of the plot) to 3 (high expressed
genes in the upper part of the plot) was obtained. Expression values that come from qPCR are

“«_n

denoted by a “q” followed by the corresponding gene symbol. Scale-center and RMA
normalizations were obtained using R programming language package softimpute function
biscale and Bioconductor package affy.

3.5 Cellular Properties and Drug IC50s

3.5.1 Relationships between Cell Properties and Drug IC50s of the Studied

Cell Lines

To reach a better understanding of the impact of drugs in relation to cancer
metabolism and cellular capacitance, measurements were obtained on the cellular
properties of the studied cell lines (Figs. 2 to 10) and the log10 of the ICso values for
several drugs (Fig. 22 and Experimental Methods 2.4.1, Table 7) were used to search for
relationships. Novel links between known drugs and cellular features were discovered.
Pearson product moment correlations were used to find linear dependencies between
the mentioned two variables. For the cellular properties, at least three independent
experiments per assay and per cell line, on the average, were carried out. The 1Cso values
of nearly 100 compounds were obtained from the Genomics of Drug Sensitivity in
Cancer project (Yang et al. 2013) (Fig. 22 and Experimental Methods 2.4.1, Table 7).
Data for drug ICsos were found for 11 out of the 18 cell lines used in this study. The data
collection was done for the following cell lines: MDA-MB-231 and MCF7 (breast); HCT
116 and HT-29 (colon); AsPC-1, MIA PaCa-2, and BxPC-3 (pancreas); LNCaP, PC-3, and
DU 145 (prostate); and MDA-MB-435 (skin) (Experimental Methods 1.1, Table 1). The

r coefficients were acquired using R programming language packages Hmisc and the
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Fig. 22. Drug ICses of 99 compounds were obtained from the Genomics of Drug Sensitivity in
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Elesclomol is a copper chelator that induces growth arrest and apoptosis in
cancer cell lines through the induction of oxidative stress and an increase in ROS
production (Rae & Mairs 2017, Krishner et al. 2008). Preclinical studies showed an
efficacy against acute myeloid leukemia (Hedley et al. 2016). Our results indicate a
negative correlation of elesclomol with cellular capacitance, indicating stronger cell-
matrix and cell-cell contacts of the prostate DU 145 and the pancreas cancer cell line

BxPC-3 that may make them more resistant to the compound (Fig. 23).
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Fig. 23. Elesclomol - significant dependencies between cellular capacitance and the log10
ICso of elesclomol. The cellular capacitance was measured with the Bionas 2500 online
monitoring system. Cells were seeded in chips containing IDES sensors. Lower capacitance
indicates a stronger cell matrix adhesion and cell-cell contact interactions. The mean value of at
least three independent experiments per cell line was used for the Pearson correlation. The ICsp
was obtained from the Genomics of Drug Sensitivity in Cancer project. The Pearson calculation
was done using R programming language package Hmisc function rcorr. The shape of the dots
gives the tissue types and the color the cell lines. The blue line represents the linear regression.
The r correlation coefficient is shown and the asterisks represent the level of significance (p-
values < 0.01**). Error bars = standard error (se).
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Fig. 24. Nutlin 3a and PF 4708671 - significant dependencies between respiration activity
and the log10 ICso of Nutlin 3a (A) and PF 4708671 (B). The respiration activity was
measured with the Bionas 2500 online monitoring system. Cells were seeded in chips containing

Clark electrodes. Higher oxygen consumption indicates stronger respiration rate. The mean

value of at least three independent experiments per cell line was used for the Pearson
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correlation. ICso values were obtained from the Genomics of Drug Sensitivity in Cancer project.
The Pearson calculations were done using R programming language package Hmisc function
rcorr. The shape of the dots gives the tissue types and the color the cell lines. The blue lines
represent the linear regressions. For each independent dependency the r correlation coefficient
is shown; asterisks represent the level of significance (p-values < 0.01**). Error bars = standard
error (se).

Nutlin 3a inhibits the interaction between mdmz2 (a negative regulator of p53)
and the tumor suppressor p53 (Kojima et al. 2006) and has been shown to have a
negative correlation coefficient with the respiratory activity of the cancer cells
(Fig. 24A). The cell lines with the lowest oxygen consumption, being the breast MDA-
MB-231 and the colorectal HT-29, are the most resistant cells to Nutlin 3a (Fig. 24A).

PF 4708671 is an inhibitor of the p70 ribosomal S6 kinase 1 (p70S6K1) (Pearce
et al. 2010). p70S6K1 is involved in the regulation of protein synthesis, proliferation,
growth, and longevity and is activated by insulin and growth factors through PI3K and
mTOR (Pearce et al. 2010). The cancer cell lines with high oxygen consumption rates are
more sensitive to PF 4708671 as indicated by the negative correlation of the inhibiton of
p70S6K1 with the respiratory activity (Fig. 24B).

EHT 1864 is a Racl, Raclb, Rac2, and Rac3 small family GTPase inhibitor
(Onesto et al. 2008). The Rho family proteins are known to have an effect in the
stimulation of proliferation, invasion, and metastasis of cancer cells (Onesto et al. 2008).
Racl has been implicated in cell tumorogenesis transformation via Ras oncogenes
(Kissil et al. 2007) and the four of them have been found to be overexpressed in cancer
(Onesto et al. 2008). In this study EHT 1864 displayed an inverse relation with energy
metabolism, the cells with low ATP formation (MDA-MB-435 and HT-29) being the more
resistant ones towards the mentioned drug (Fig. 25A).

IPA3 is a small molecule inhibitor of p21-activated protein kinase 1 (PAK1)
(Singhal and Kandel 2012). The analysis showed a negative correlation between energy
metabolism of the cells and the log10 ICso of IPA3, meaning that the cell lines that
produce more ATP are more sensitive to this compound (Fig. 25B). The colorectal
carcinoma cell lines HCT 116 and HT-29 displayed the lowest ATP levels and the highest
ICso values, while the adenocarcinoma MCF7 (breast) and LNCaP (prostate) with the
highest ATP levels had the lowest [Cso values (Fig. 25B).
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Fig. 25. EHT 1864, IPA3, and RDEA119 - significant dependencies between energy
metabolism and the log10 ICso of EHT 1864 (A), IPA3 (B), and RDEA119 (C). The ATP level
was estimated with ATPlite 1step Luminescence ATP Detection Assay System kit (Perkin Elmer).
The luminescence is proportional to the ATP concentration in the cells. The mean value of at
least three independent experiments per cell line was used for the Pearson correlation. 1Csp
values were obtained from the Genomics of Drug Sensitivity in Cancer project. The Pearson
calculations were done using R programming language package Hmisc function rcorr. The shape
of the dots gives the tissue types and the color the cell lines. The blue lines represent the linear
regressions. For each independent dependency the r correlation coefficient is shown; asterisks
represent the level of significance (p-values < 0.01**). Error bars = standard error (se).

RDEA119 is a highly selective allosteric inhibitor of MEK1/2 enzymes and has
been shown to act in xenograft models of melanoma, colon and epidermal carcinomas,
and pancreatic cancers (Iverson et al. 2009). Our results show a positive dependency
between the cellular tolerance to RDEA119 and energy metabolism (Fig. 25C). Cell lines
like the colorectal carcinoma HT-29 and the skin melanoma MDA-MB-435 with low ATP
levels are the most sensitive to the mentioned drug (Fig. 25C).

Methotrexate is the most used drug in the treatment of rheumatoid arthritis
(Phillips et al. 2003, Abolmaali et al. 2013, Bianchi et al. 2016) and was approved by the
FDA in 1988 (Abolmaali et al. 2013). It is also used for the treatment of other diseases
like psoriasis, multiple sclerosis, and the Crohn’s disease. It successfully has been used
for the treatment of breast cancer, acute lymphatic leukemia, osteogenic sarcoma,
choriocarcinoma, lung cancer, bladder carcinoma, brain medulloblastoma, primary CNS
lymphoma, and chronic myeloid leukemia (Abolmaali et al. 2013). Methotrexate is a folic
acid analog that acts as an inhibitor of dihydrofolate reductase, an enzyme involved in
purine and pyrimidine nucleotide synthesis. DNA replication and repairing are affected
along with RNA synthesis resulting in an antiproliferative action that leads to cell death
(Phillips et al. 2003, Abolmaali et al. 2013, Thomas et al. 2015). In our analysis
methotrexate displayed a highly significant and strong positive correlation with ROS
accumulation in cancer cells (Fig. 26). The cell lines that accumulate more ROS are the
ones more resistant to the drug, like the breast MDA-MB-231 and MCF7 and the prostate
LNCaP and PC-3 (Fig. 26).
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Fig. 26. Methotrexate - significant dependencies between ROS accumulation and the
log10 ICso of methotrexate. ROS accumulation in cells was measured using dihydroethidium
(DHE). The mean value of at least three independent experiments per cell line was used for the
Pearson correlation. ICso values were obtained from the Genomics of Drug Sensitivity in Cancer
project. The Pearson calculations were done using R programming language package Hmisc
function rcorr. The shape of the dots gives the tissue types and the color the cell lines. The blue
lines represent the linear regressions. For each independent dependency the r correlation
coefficient is shown; asterisks represent the level of significance (p-values < 0.001***). Error bars
= standard error (se).

3.5.2 Drug Sensitivity (ICso) of the Cell Lines

The ICso values of almost 100 drugs were collected from the Genomics of Drug
Sensitivity in Cancer project (GDSC) (Yang et al. 2013) (Fig. 22 and Experimental
Methods 2.4.1, Table 7). For seven of these compounds, the ICso values were calculated
for our cell lines. These drugs are 17-AAG, CCT007093, LFM-A13, PAC-1, IPA-3, AKT
inhibitor VIII, and BAY 61-3606. The inhibition of cell proliferation was monitored by
means of the SRB assay (Experimental Methods 2.1.3.4) in the human cell lines MCF7,
MDA-MB-231, LNCaP, PC-3, DU 145, HT-29, HCT 116, ASPC-1, MIA PaCa-2, and BxPC-3.
The serial dilution of each drug used for determining the 1Cso was selected based on the
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ICso values obtained from the GDSC (Yang et al. 2013) (Experimental Methods 2.4.2,
Table 8). The obtained absorbencies were fitted to sigmoid and linear regressions and
the best fit was chosen (r coefficient near to -1). At least three independent
measurements, with three technical replicates each, were done per drug and cell line.
Fittings and ICso calculations were performed using the Excel add-in ED50plus v1.0
developed by Mario H. Vargas (2000).

The results obtained from the GDSC project for the 1Cso values of drugs (Yang et
al. 2013) (Fig. 22 and Experimental Methods 2.4.1, Table 7) differ in most of the cases
from the estimations done by us. Furthermore, it is possible to observe one order of
magnitude difference between the two calculations for CCT007093 in MCF7, PAC1 in
MDA-MB-231, AKT1/2 kinase inhibitor in HT-29, for BAY61-3606 in MCF7 and MIA
PaCa-2, and for IPA3 in HCT 116 and HT-29 (Table 17). Similarly, the cases where the
ICso from the database and our estimations differed in less than 25% were the ones
calculated for CCT007093 in HCT 116, HT-29 and MDA-MB-435, LFM-A13 in AsPC-1,
PAC1 in AsPC-1, and BAY61-3606 in HCT 116 (Table 17)

Table 17. Database drug ICsos compared with own estimations in our cell lines. Drug ICsp
values were obtained from the Genomics of Drug Sensitivity in Cancer (GDSC) project. From the
total of drugs in the database, seven were used for our ICso estimations. The ICso calculations
were done based on the inhibition of cell proliferation in ten cell lines. Cell proliferation was
monitored by means of the SRB assay. Cells were incubated for 72 h with a serial dilution (up to
eight concentrations) of each drug (Experimental Methods, Table 8). At least three independent
measurements with three internal replicates were done per drug and cell line. The fit was
adjusted to sigmoid and linear regressions. Based on the r coefficients, the best fit was selected.
ICs0 GDSC = ICso Genomics of Drug Sensitivity in Cancer project; ICso = our ICso estimation; SD =
standard deviation of our ICso estimations; fit r coefficient = r coefficient between the estimation
done by the data and the sigmoid or linear regressions to the fit model.

Drug Cell line IcsngD)SC ICso (M) SD (uM) fit r coefficient
17-AAG MDA-MB-231 45.12 6.14 1.04 -0.78
LNCaP 0.80 1.29 0.53 -0.95
MCF7 3.86 158 51.03 -0.80
HCT 116 434.3 435.3 227.5 -0.46
HT-29 238 187.4 51.54 -0.55
CCT007093 MIA PaCa-2 687.9 258.3 64.57 -0.61
LNCaP 874.1 311.5 70.41 -0.58
DU 145 759.1 406.1 46.31 -0.64
MDA-MB-435 479.5 415.2 73.93 -0.72
LFM-A13 MDA-MB-231 81.9 348.9 34.63 -0.94
MCF7 464.4 196.5 20.06 -0.95
HCT 116 703.1 189.4 20.40 -0.96
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HT-29 865.8 189.3 22.21 -0.86

AsPC-1 344.6 293.1 25.34 -0.94

MIA PaCa-2 600.7 212.6 13.07 -0.94

LNCaP 178.5 240.3 43.59 -0.91

PC-3 583.9 219.2 34.46 -0.96

DU145 445.2 231.2 18.59 -0.98

MDA-MB-231 236.5 4.01 1.42 -0.81

PAC1 AsPC-1 35.14 43.67 25.21 -0.59
MIA PaCa-2 191.2 106.3 23.56 -0.65

MDA-MB-435 160.1 105.1 34.70 -0.68

MDA-MB-231 103.8 24.80 1.01 -0.92

AKT1/2 Kkinase HCT 116 7.76 33.92 3.90 -0.82
inhibitor HT-29 2.43 44.96 12.50 -0.89
MDA-MB-435 105 35.27 3.29 -0.84

MCF7 1.15 11.76 1.52 -0.88

HCT 116 3.98 3.06 1.38 -0.94

BAY61-3606 MIA PaCa-2 5.40 368 55.39 -0.65
LNCaP 2.18 12.07 3.12 -0.74

DU 145 7.97 26.18 6.11 -0.72

HCT 116 1,254 37.58 10.38 -0.58

IPA3 HT-29 2,562 50.60 9.70 -0.59
LNCap 47.38 77.12 13.21 -0.64
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4. Discussion

4.1  Cellular Properties

The cellular features of 18 human cell lines were studied. The electrical (cellular
capacitance) and metabolic properties (glycolysis and respiration activities, energy
metabolism, mitochondrial mass content, levels of intracellular ROS and proliferation
rates) were used to characterize the cell lines based on their tissue type source.

Although the histological subtype of each cell line was not in focus in this work,
we could observe a difference between the colorectal carcinoma cells HCT 116 and HT-
29 and their counterpart pair the adenocarcinoma LS174T for the cellular capacitance,
glycolitic activity, and the mitochondrial mass content. The two carcinoma cells show
stronger cell-matrix adhesion and cell-cell contact binding (low capacitance) and
elevated glycolysis and mitochondrial mass content in comparison with the
adenocarcinoma (Results, Fig. 10). Evidence points to differences among the molecular
profile and metabolism between the histological subtype of tumors in some lung and
cervix cancers (Meijer et al. 2012, Wright et al. 2013). In lung cancer, the carcinoma
subtype displays a higher expression of glucose transporter 1 (GLUT1) in comparison
with the adenocarcinoma subtype (Meijer et al. 2012). In colorectal cancer cell lines
GLUT1 was found to be upregulated in cells with KRAS or BRAF mutations (Yun et al.
2009). The mutated cell lines present also higher glucose incorporation and higher
glycolysis levels than the wild-type cells (Yun et al. 2009). In patients with cervix cancer,
KRAS mutations were found only in adenocarcinomas subtype tumors and not in other
carcinoma types (Wright et al. 2013). The limited number of colorectal cancer cell lines
studied in this work impedes to draw a conclusion. However, the observation that
carcinoma cells behave differently in glycolysis, and the varying amount of active
mitochondria and different levels of capacitance in comparison with adenocarcinoma
cells, may serve as a lead for attempting to improve colorectal cancer treatment.

On the other hand, cluster dendograms localize in the same branch or in closer
ones the colorectal cell lines HCT116 and the LS174T for respiration activity, energy
metabolism, and ROS formation (Results, Fig. 11). Both cell lines share the presence of
KRAS mutations (Little et al. 2011, Lee et al. 2011) differing from HT-29 that carries a B-
RAFV600E mutation (Makrodouli et al. 2011).
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B-RAF protein kinases regulate the MAP kinase/ERKs signaling pathway affecting
cell division, differentiation, and secretion. Mutations in this pathway are associated
with various cancers, inducing cellular proliferation (Cicenas et al. 2017). On the other
hand, RAS genes are a family of small GTPase in which a mutation causes different
malignancies, including lung, pancreatic, and colorectal carcinomas. Oncogenic forms of
the RAS genes are prevalent in pancreatic carcinomas (>80%), colon carcinomas (40-
50%), and lung carcinomas (30-50%) but are rare in human breast cancers (Jancik et al.
2010, Niemitz 2013). RAS, as B-RAF mutations, result in an increase in cellular
proliferation (Cicenas et al. 2017).

Comparing the cell lines belonging to the colorectal tissue type with the cell lines
belonging to others tissue types as studied in this work (breast, pancreas, prostate, and
skin) reveals that the colorectal cells present the highest proliferation rate and the
lowest energy metabolism and ROS accumulation (Results, Fig. 10). Furthermore, breast
cancer cell lines, normally wt RAS (Niemitz 2013), show an inversed behavior with
higher ATP and ROS levels and a low proliferation rate (Results, Fig. 10). Between the
two breast cancer cell lines used in this study, MCF7 does not present mutations, neither
in KRAS nor in B-RAF, in contrast to MDA-MB-231 that has mutations in both oncogenes
(Forbes et al. 2016). The calculated Pearson correlation coefficient for energy
metabolism, ROS accumulation, and proliferation rates corroborate these findings,
indicating that cells with high ATP levels also have higher ROS levels (r = 0.64**)
(Results, Fig. 12E). Also, an inverse correlation is found between ROS and proliferation
(r =-0.68*) and ATP with proliferation (r = -0.64*) (Results, Fig. 12C, D, and F).

Pearson correlation shows the glycolytic activity of the cells and the proliferation
rate as a strongly positive related (r = 0.71**) (Results, Fig. 12B). These correlations
could indicate that cells that have more active glycolysis and proliferate more have less
pyruvate to enter into the mitochondria for the TCA cycle and therefore less oxygen is
consumed and less ROS is produced. Furthermore, glycolysis produces less ATP and a
moderate nonsignificant negative relation is found between these two variables (Results
3.3, Table 10).

It has been shown that glycolysis contributes to the generation of biomass in
providing the necessary building blocks for new cells; therefore, an increase in
glycolysis is observed in proliferating cells (Lunt & Vander Heiden 2011). A positive

correlation seems exist between glycolysis and cell proliferation. As was discussed in the
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Introduction, some enzymes belonging to the glycolysis pathway display non-glycolytic
functions crucial for cell proliferation (Lincet & Icard 2015).

Pearson correlation was applied in a study that could show a strong positive
relation between cell proliferation and the glycolytic efficiency in cancer cells (r = 0.82,
p-value = 0.04) (De Preter et al. 2016). In the same study, nonsignificant correlations
were found between glycolysis and ATP levels and also not for the oxygen consumption

with ATP nor with proliferation rate (De Preter et al. 2016).

4.2  Gene Expression and Metabolism

Data of gene expression from the public repository GEO, NCBI obtained using
Affymetrix Human Genome U133 Plus 2.0 Array platform (De Schutter et al. 2013 and
Barretina et al. 2012. Experimental Methods 2.3, Table 2) were used to search for linear
relationships with the cellular properties of cancer cell lines. Pearson product moment
correlations show that the expression levels of eight genes are correlated with the
metabolism features of cancer cells. These eight genes provide consistent information
through their corresponding probe sets. The metabolism-related candidate genes
encode the following proteins: PGLS (6-phosphogluconolactonase), COX5B (cytochrome
c oxidase subunit 5b), RHBDL2 (rhomboid-related protein 2), [FI16 (gamma-interferon-
inducible protein 16), GCN1L1 (elF-2-alpha kinase activator GCN1), HOXA7 (Homeobox
7), INPP5B (inositol polyphosphate-5-phosphatase B) and LGALS8 (galectin 8).

The PGLS gene is interrogated by four probe sets in the Affymetrix platform used
for this study. Among all the candidate genes PGLS is the one that displays the highest
number of relations with metabolism with all of the probe sets of this gene having
inverse congruent correlation with the mitochondrial mass content, the glycolytic
activity, and the proliferation rates measured as metabolic activity (MTT assay) and
total protein content (SRB assay) (Results 3.4.1.1, Table 12 and Fig. 16). It is not
surprising that PGLS appears to be related with glycolysis and cellular proliferation
because PGLS is the second enzyme in the pentose phosphate pathway (PPP) and
catalyzes the conversion of 6-phosphonoglucono-delta-lactone to 6-phosphogluconate.
The PPP produces ribose and NADPH and is a metabolic pathway parallel and directly
related to glycolysis (Cha, Jung & Koo 2017). Proliferating and cancer cells show an

increase in glycolysis as well as in PPP (Jin et al. 2017, Cha, Jung & Koo 2017). Cancer
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cells need pentose phosphate and NADPH for the synthesis of lipids and cell survival
under stress, repairing ROS damage produced by the accelerated proliferation (Cha, Jung
& Koo 2017, Jin et al. 2017). Lower rates of the PPP in cancer cells through siRNA
against the first enzyme in the pathway, glucose-6-phosphate dehydrogenase, leads to a
reduction in the proliferation rate of the cells (De Preter et al. 2016). In breast tissue,
PGLS protein has been reported to be overexpressed in 98% of the tumors in
comparison with normal tissue and thus has been identified as a breast cancer
biomarker (Ou et al. 2008). Here, we present that, among cancer cells, the cell lines with
high expression levels of PGLS present low glycolysis and low proliferation rates
(Results 3.4.1.1, Table 12 and Fig. 16). No literature was found that could indicate a
possible relation between PGLS and mitochondrial mass.

COX5B and its two probe sets in the Affymetrix platform show negative
correlations with the proliferation assay MTT and that is in agreement with the
moderate r coefficient between the two probe sets and the proliferation assay SRB
(Results 3.4.1.1, Table 12). The obtained correlations indicate that cell lines with high
gene expression of COX5B present low proliferation rates. COX5B is a nuclear encoded
protein part of the cytochrome c oxidase complex and it has been shown that depletion
of COX5B leads to a diminution of the cytochrome c oxidase activity, suggesting a
regulatory activity of this gene (Galati et al. 2009). No much evidence has been shown
about a possible relation between COX5B and cancer metabolism. In patients with
breast cancer an upregulation of COX5B in comparison with the normal tissue is
exhibited (Gao et al. 2015). Contrary to our findings, the same study reported that a
downregulation of COX5B in the breast cancer cell lines MDA-MB-231, MDA-MB-468
and MCF-7 leads to an inhibition of cell proliferation. The same group has shown that
cells with a COX5B knock-down also exert low migration activity, low ATP formation,
and an increase in ROS production (Gao et al. 2015).

RHBDL2 contains three probe sets in the Affymetrix array used, and three of
them show a middle to moderate negative correlation with glycolysis activity and
mitochondrial mass content (Results 3.4.2, Fig. 17). The Rhomboids are a relatively new
discovered family of intramembrane serine proteasess. RHBDL2 is one of the members
of this family that has been implicated in wound healing of keratinocytes by the cleavage
of thrombomodulin, a protein involved in cell adhesion and migration during wound
healing (Etheridge et al. 2013, Cheng et al. 2014). In keratinocytes, an overexpression of

RHBDL2 increases cell proliferation, reduces cell adhesion and supports the overcome
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of anoikis (Cheng et al. 2014). The other two substrates that have been attributed to
RHBDL2 in humans are the EGF ligand and the members of the EphrinB family
(Etheridge et al. 2013). All of the three recognized substrates contain an EGF-like
domain (Etheridge et al. 2013). RHBDL2 cleaves the EGF ligand inducing the activation
of the epithelial growth factor receptor (EGFR) (Cheng et al. 2014). Limited information
is available on the function of RHBDL2 and its relation to cancer is largely unknown.
Here we show that cancer cells with high expression of RHBDL2 present low glycolysis
activity and low mitochondrial mass suggesting a possible involvement of this protein in
cancer metabolism (Results 3.4.2, Fig. 17).

The two probe sets of the [FI16 gene presented a negative correlation with the
respiration activity at almost 0.6 (Results 3.4.2, Fig. 18). No information about a relation
between cellular oxygen consumption and the IFI16 gene have been found. IFI16 is a
transcriptional regulator that has a function in the inflammatory process (Shi et al. 2014,
Ansari et al. 2015), in immune response (Ansari et al. 2015), in autophagy and cell
survival under glucose depletion (Duan et al. 2011), and in cellular senescence
associated with cell growth arrest (Alimirah et al. 2007). Its function in the
inflammatory process and in immune responses are widely studied (Johnson et al. 2014,
Ansari et al. 2015). IFI16 is a pathogen DNA sensor that acts by inducing the production
of inflammatory cytokines (Ansari et al. 2015). The tumor suppressor p53 is one of the
main regulators of IFI16 activity (Shi et al. 2014). In human diploid fibroblasts it was
shown that the [FI16 protein is necessary for the activation of the ATM/AMPK/p53
pathway for autophagy upon glucose restriction and in low glucose microenviroments
the expression of IFI16 is increased (Duan et al. 2011). Noncancerous prostate cells with
an elevated expression of [FI16 protein show cellular senescence and cell growth arrest
(Alimirah et al. 2007). In cancer prostate cell lines, IFI16 protein is not present or its
amount is very low (Alimirah et al. 2007) being an advantage for the cancer cells
exposed to an energetic stress (Duan et al. 2011). An overexpression of IFI16 in the
prostate cancer cell lines LNCaP and DU 145 leads to an inhibition of proliferation
(Alimirah et al. 2007). In contrast to the prostate cells, in liver cancer cells the IF116
protein is expressed, but not in healthy adults hepatocytes (Shi et al. 2014). In our study
the prostate cancer cell lines DU 145 and PC-3 showed a mid-to-high expression of the
IFI16 gene in comparison with the other cell lines studied. On the other side, the
prostate LNCaP and liver HepG2 showed low gene expressions (Results 3.4.2, Fig. 18). It

is known that the expression of the IFI16 gene is well regulated at the transcriptional
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and posttranscriptional levels (Shi et al. 2014) suggesting that the protein levels of IFI16
is not necessarily reflected by the gene expression levels.

The GCN1L1 gene with one of its two probe sets shows a significant, highly
positive correlation with the proliferation rate measured by total protein content of the
SRB assay (r = 0.91 and p-values < 0.0001) (Results 3.4.3, Fig. 19A). The second probe
set that interrogates GCN1L1 also shows a significant dependency with SRB. The
relation with the proliferation is corroborated by both probe sets that present also a
significant relation with the MTT assay (Results 3.4.3, Table 15). It is well known that
GCN1L1 in Saccharomyces cerevisiae growing in amino acid reduced media is involved
in the activation of the eukaryotic initiation factor 2a that represses the synthesis of the
GCN4 transcription factor which induces the expression of the genes necessary for
amino acid biosynthesis (Kubota et al. 2001). Years later, it was found out in humans
that GCN1L1 is one of the factors that is associated with the CDK8 complex (Knuesel et
al. 2009). CDKS8 is an oncogene that presents a kinase activity necessary for the
regulation of B-catenin activity (Firestein et al. 2008). Colon cancer cells present high
levels of CDK8 and Wnt/B-catenin hyperactivity (Firestein et al. 2008). In renal
carcinogenesis, mutations were identified in members of the CDK8 complex including
GCN1L1 that could participate in the dysregulation of the Wnt/B-catenin pathway
inducing cancer transformation (Arai et al. 2014). It has also been well documented that
hyperactivity of the Wnt/B-catenin pathway induces cell proliferation (MacDonald,
Tamai & He 2009). We found that the gene expression of GCN1L1 is directly related to
the proliferation of cancer cells and the cell lines that express more GCN1L1 show a high
proliferation rate.

Both proliferation assays (MTT and SRB) show significantly positive
dependencies on HOXA7 for its two probe sets. The expression values of the two probe
sets that interrogate HOXA7 showed a strong positive relation with the proliferation
assay measured as metabolic activity MTT (r = 0.95 and 0.90, p-values < 0.0001)
(Results 3.4.3, Tables 15 and 16), and is corroborated with a significant (p-values < 0.01
data not shown) positive relation between the two probe sets and the proliferation
assay SRB (Results 3.4.3, Table 16). For this gene it is also possible to observe a
significant negative dependency between the two probe sets and ROS accumulation in
cells (p-values < 0.01, data not shown). The proliferation rate SRB and MTT assays
present a significant negative correlation (r = -0.68) (Results 3.3, Table 10) with ROS

accumulation in cells.
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HOX genes are transcriptional factors involved in morphogenesis, organogenesis,
differentiation, cell migration, and proliferation (Zhang et al. 2013, Li et al. 2015).
Several studies have shown a direct function of HOXA7 in the positive regulation of
cellular proliferation in cancer cells. Knockdown of HOXA7 in human precursor B-cell
leukemia MCF7, HepG2, and QGY-7703 cells reduces cell proliferation (Orlovsky et al.
2011, Zhang et al. 2013, Li et al. 2015). Our findings corroborate the relation of HOXA7
and proliferation indicating that cells with high proliferation rates also have a higher
expression of the HOXA7 gene giving a novel insight on the function of this
transcriptional factor and ROS accumulation in cancer cells.

The expression of the INPP5B gene presents a highly positive dependency with
the SRB assay (r = 0.92, p-value < 0.0001) that is corroborated by the three probe sets
that contain information on the gene, all of them having a significantly positive relation
also with the proliferation assay MTT (p-value < 0.01 data not shown). A deficiency in
the complementation of Ocrl’s functionality by INPP5B in humans, and not in mouse, is
responsible for the development of Lowe syndrome, an oculocerebrorenal X-linked
genetic disorder (Bothwell et al. 2010). There is no evidence that links INPP5B with
cancer. We show that cancer cell lines with low expression levels of the INPP5B gene
also present low proliferation rates, being the first time that this gene is implicated in
cancer metabolism.

LGALS8 shows a high negative correlation with the cellular mitochondrial mass
content (r = -0.84, p-value < 0.0001) and also with the MTT proliferation assay (r = -
0.73 p-value < 0.01) (Results 3.4.3, Table 16 and Fig. 19D). The LGALS8 gene contains
five probe sets more and in all of them a significant (p-value < 0.01, data not shown)
negative dependency with the mitochondrial mass and the MTT proliferation assay are
observable (Results 3.4.3, Table 16). The dependencies found between the LGALS8
probe sets and the SRB assay display the same tendency, a negative correlation (Results
3.4.3, Table 16). LGALSS is part of the galectin family of secreted proteins that bind
glycoproteins of the cell surface and the extracellular matrix. Galectins are involved in
cell-cell and cell-matrix interactions, cell-cell communication, migration, proliferation,
apoptosis, and angiogenesis (Delgado et al. 2011, Metz et al. 2016). In glioblastoma U87
cells a reduction of LGALS8 by shRNA leads to a decrease in the proliferation rate and
induces apoptosis (Metz et al. 2016). On the other hand, in colorectal cancer cell lines,
LGALS8 was inversely correlated to tumor growth and migration rates (Nagy et al.

2002). In our study, the data obtained with the Pearson correlation coefficients indicates
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that the cell lines that express a higher level of the LGALS8 gene are the ones that
present the lowest proliferation rate. No evidence was found that relate LGALSS8 activity

and the mitochondrial mass content of the cells.

The estimation of changes in gene expression levels in many cases assumes that
these changes will be propagated to protein expression and several studies take as a fact
that the gene expression is informative in predicting protein levels (Kern et al. 2003).
Regrettably, incongruences have been found in studies that calculate the correlation
between gene expression and protein levels (Guo et al. 2008, Maier, Giiell and Serrano
2009). In patients with acute myeloma leukemia, congruent results were obtained in
correlating the mRNA of 39 specific genes and their protein abundances in samples from
more than 100 patients (Kern et al. 2003). However, mRNA expression of freshly
isolated human monocytes correlated with their protein expression levels shows huge
variations in the different investigated genes and between different individuals. That
part of the studied genes presents a significant positive correlation with protein
expression (Maier, Giiell & Serrano 2009). Nevertheless, an overall congruence is found
indicating a general concordance between the abundance of mRNA and proteins (Maier,
Giiell & Serrano 2009). This indicates the necessity to corroborate the relation of the
candidate genes found and cancer metabolism before drawing any conclusions from our

findings.

4.3  Drug Sensitivity and Cellular Properties of Cancer Cell Lines

The ICso values of 99 compounds were obtained from the Genomics of Drug
Sensitivity in Cancer project (Yang et al. 2013) (Results 3.5.1, Fig. 22 and Experimental
Methods 2.4.1, Table 7) and were used for Pearson correlation calculations with the
cellular properties of cancer cell lines to search for linear relations between these two
variables. Pearson product moments show that the sensitivity of seven of these drugs
present a correlation with some of the cellular features of cancer cells. The compounds
that correlate with the cellular properties are: elesclomol, Nutlin 3a, PF 4708671, EHT
1864, IPA3, RDEA119, and methotrexate.
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Elesclomol is a copper chelator that transports the copper ions into
mitochondria inducing ROS production and, as a consequence, growth arrest and
apoptosis in cancer cell lines (Krishner et al. 2008, McCarty and Contreras 2014, Rae and
Mairs 2017). A study done in patients with melanoma treated with elesclomol shows
that the compound is more effective in the individuals with low lactate dehydrogenase
(LDH) levels in the serum (McCarty and Contreras 2014). Patients with elevated LDH
show cancer with a Warburg effect phenotype, meaning high glycolysis and less
oxidative phosphorylations in mitochondria, which can be the reason for the observed
low activity of the drug (McCarty and Contreras 2014). Our findings show that
elesclomol is negatively correlated with the cellular capacitance (r = -0.76 p-value <
0.01), indicating that the cancer cell lines presenting stronger cell-matrix and cell-cell

contacts are more resistant to the compound (Results 3.5.1, Fig. 22).

Nutlin 3a is an indirect activator of wild-type p53. The compound inhibits the
interaction between MDM?2, an ubiquitin ligase, and negative regulator of p53 and the
tumor suppressor p53 (Kojima et al. 2006). p53 is a tumor suppressor involved in
genomic stability and in the regulation of the cell cycle, senescence, and apoptosis (Lago
et al. 2011). It has also been shown to be involved in the promotion of oxidative
phosphorilation stimulating mitochondrial respiration and inhibiting glycolysis and that
mutated p53 contributes to the Warburg effect phenotype in cancer (Lago et al. 2011).
We show that cancer cells that are more sensitive to Nutlin 3a present a high respiration

rate (r = -0.74, p-value < 0.01) (Results 3.5.1, Fig. 24A).

PF 4708671 is an inhibitor of the p70 ribosomal S6 kinase 1 (p70S6K1) (Pearce
et al. 2010). P70S6K1 is involved in the regulation of protein synthesis, proliferation,
growth, survival, motility, longevity, and chemotherapy drug resistance in cancer cells
(Pearce et al. 2010, Qiu et al. 2016). Cells treated with PF 4708671 show cell cycle arrest
and a reduction in the proliferation rate and invasion (Qiu et al. 2016). We show that
cancer cell lines with high oxygen consumption are more sensitive to PF 4708671,
indicating that the inhibitor of p70S6K1 has a negative effect on respiration activity
(r=-0.74, p-value<0.01) (Results 3.5.1, Fig. 24B).

EHT 1864, as discussed in more detail in 3.5.1, is a Rac inhibitor (Onesto et al.

2008). Rac proteins are directly involved in proliferation, invasion, and metastasis in
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cancer cells (Onesto et al. 2008). We show that EHT 1864 correlates negatively with
energy metabolism (r = -0.77, p-value < 0.01) (Results 3.5.1, Fig. 25A).

IPA3 is a small molecule inhibitor of p21-activated protein kinase 1 (PAK1)
(Singhal and Kandel 2012). PAKs promote tumor cell proliferation (Liu et al. 2016). In
colon carcinoma and melanoma cell lines with mutations either in BRAF or in RAS
(NRAS or KRAS) genes, treatment of cells with RAS mutations with IPA3 appears to be
more effective (Singhal and Kandel 2012). RAS and specifically KRAS mutant cells show
high nucleotide biosynthesis, glycolysis, and PPP activity (Lv et al. 2016). In the mouse
model, mutant KRAS increased glucose and glutamine uptake and, on the other hand,
cancer cells cultivated under low glucose conditions acquired KRAS mutations (Lv et al.
2016). Here we show that there is a negative correlation between energy metabolism in
cells and the ICso of [IPA3 meaning that the cell lines that produce more ATP are more
sensitive to this compound (r = -0.77, p-value < 0.01) (Results 3.5.1, Fig. 25B). This data
provides further insight into treatment strategies of cancers with BRAF or RAS

mutations using [PA3 and targeting metabolism.

RDEA119 is a highly selective allosteric inhibitor of MEK1/2 enzymes (Iverson et
al. 2009). Crystallization of the MEK-RDEA119 complex indicates that the drug binds on
the adjacent side of the Mg-ATP binding region interacting with ATP, preventing the
binding and phosphorilation of the MEK substrate ERK (Iverson et al. 2009). MEKs are
downstream of BRAF in the RAS-RAF-MEK-ERK pathway implicated in cellular
proliferation (Iverson et al. 2009). RDEA119 that has shown to act in xenograft models
of melanoma, colon and epidermal carcinomas, and pancreatic cancers (Iverson et al.
2009) is now in phase II clinical studies (Caunt et al. 2015). Our results show a highly
positive relation between the cellular tolerance to RDEA119 and energy metabolism (r =

0.84, p-value < 0.01) (Results 3.5.1, Fig. 25C).

Methotrexate, as elaborated in Sect. 3.5.1, is an approved drug for use in several
conditions including breast cancer, acute lymphatic leukemia, osteogenic sarcoma,
choriocarcinoma, lung cancer, bladder carcinoma, brain medulloblastoma, primary
central nervous system lymphoma, and chronic myeloid leukemia (Abolmaali et al.
2013) and is the most used drug in the treatment of rheumatoid arthritis (Phillips et al.
2003, Abolmaali et al. 2013, Bianchi et al. 2016). Methotrexate has been widely studied
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in the context of its synthesis as an analog of folic acid. It is an inhibitor of dihydrofolate
reductase, an enzyme that is necessary for purine and pyrimidine syntheses. Due to its
effect of disrupting DNA synthesis, methotrexate has an antiproliferative effect (Phillips
et al. 2003, Abolmaali et al. 2013, Thomas et al. 2015). Here we show that the ICso of
cells to methotrexate displays a highly significant and strongly positive correlation with

ROS accumulation in cancer cells (r = 0.93, p-value < 0.001) (Results 3.5.1, Fig. 26).

In conclusion, the detailed metabolic and electrochemical characterization of
several cancer cell lines presented in this work demonstrates a wide variability
regarding metabolic activity and morphological properties of cancer cells. The data
obtained provide an overview of various growth parameters including proliferation
rates, energy metabolism, measured as glycolytic and respiration rates, formation of
reactive oxygen species (ROS), mitochondrial mass, as well as cell-cell and cell-matrix
interactions, which can be taken as a cell-specific footprint of the cancer cells analyzed.
With the large data sets obtained for these complementary metabolic and cell growth
parameters it became possible to calculate correlations between the analyzed
parameters and further available gene expression and drug sensitivity data sets in a
detailed computational analysis. Using a robust statistical analysis, based on Pearson
correlation coefficient calculation, several significant correlations could be identified.
The results support among others the relevance of HOXA7 as a potential drug target and

link the efficacy of known and potential anticancer drugs with metabolic properties.

The results obtained confirm in particular the efficacy of drugs aimed at the
control of cell metabolism and provides hints to specific metabolic markers and
metabolism-associated expressed genes indicating that metabolic parameters of cancer
cells could provide valuable additional information to optimize drug selection and adjust
patient-specific therapy by combining drugs targeting both metabolism and

proliferation.
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5. Supplements

5.1 R Scripts

The data collection, calculations, statistics and plotting for this study were done
using RStudio versions 0.98.1103 and 0.99.473. RStudio is an open-source integrated
development environment used as an interface for R programming language for
statistical computing and graphics (Team, R. Core. 2015). The R versions 2.7.0 and 3.2.1

were used.

5.1.1 Bionas Data Collection

path <- "/Users/admin/Documents/PhD/basal levels Results/human1"

## Get all the ANALYZER folders from the different cell line

folders1 <- list.files(path=path)
folders2 <- list.dirs(folders1)

file <- list.files(folders2, full.names=TRUE, pattern="*ANALYZER_DATA.dat",include.dirs =
TRUE)

write.csv(file, file="path.csv", row.names=TRUE)

out.file<-

for(i in 1:length(file)){
read <- readLines(file[i])
out.file <- rbind(out.file, read)

}

write.csv(out.file, file="raw data all cell lines.csv", row.names=TRUE)

class(out.file) #matrix

read2<- out.file[,c(11,42,72)] # read just ides, 02 and isfet. Columns 11,42y 72
colnames(read2) <- c("IDES DATA in norming distance per BM (nF)", "ELECTRODES DATA in
norming distance per BM (pA/s)", "FET DATA in norming distance per BM (uV/s)")
write.csv(read?2, file="raw data IDES,02 and FET all cell lines.csv", row.names=TRUE)

### IDES

IDES <- read2[,1] #to have just the column with IDES data

View(IDES)
class(IDES) #character

118



IDES1 <- as.numeric(unlist(strsplit(gsub(",", ".", IDES), "\t"))) # write dots and splitt the
experiments with comas

View(IDES1)
class(IDES1) #numeric

IDES2 <- matrix(IDES1, ncol=6, byrow=TRUE) # make a matrix with the 6 columns, one per each
biomodul

write.csv(IDES2, file="raw data IDES all cell lines.csv", row.names=TRUE)
#### 02

02 <-read2[,2] #just the column with 02 data
View(02)

02a <- as.numeric(unlist(strsplit(gsub(",", ".", 02), "\t")))
View(02a)

02b <- matrix(02a, ncol=6, byrow=TRUE)
write.csv(02b, file="raw data 02 all cell lines.csv", row.names=TRUE)
#### FET

FET <- read2[,3] #just the column with ISFET data
View(FET)

FET1 <- as.numeric(unlist(strsplit(gsub(",", ".", FET), "\t")))
View(FET1)

FET2 <- matrix(FET1, ncol=6, byrow=TRUE)

write.csv(FET2, file="raw data FET all cell lines.csv", row.names=TRUE)

5.1.2 Robust Multi-Array Average (RMA)

source("http://bioconductor.org/biocLite.R")

biocLite("affy") #The package contains functions for exploratory oligonucleotide array analysis
library(affy)

biocLite("pd.ht.hg.u133.plus.pm") #Annotation package for pd.ht.hg.u133.plus.pm built with
pdinfoBuilder.

Data<-ReadAffy()

#Robust Multi-array Average preprocessing methodology. This strategy allows background
subtraction, quantile normalization and summarization (via median-polish). The generated data

are stored as ExpressionSet class in the 'eset’ object

eset<-rma(Data).
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write.exprs(eset, file="Data.txt", sep="\t") # Writes expression values to text file in working
directory.

summarized <- rma(eset)
show(summarized)

HeLa<-rowMeans(hela, na.rm=TRUE)
View(HeLa)

nn

write.table(HeLa, file="HeLamean.txt",sep =" ",row.names = FALSE, col.names = "Mean")
HaCaT<-rowMeans(Hacat, na.rm=TRUE)
View(HaCaT)

nn

write.table(HaCaT, file="HaCaTmean.txt",sep = " ",row.names = FALSE, col.names = "Mean")

5.1.3 Pathways Gene Selection

ggenes <- HGU133plusna34pluslé6celllines # file with all probes sets and their gene symbol
colnames(ggenes)[3]<-"1321N1" #to have the column for 1321N1 without X (X1321N1)
View(ggenes)

### Genes for the Glycolysis/Gluconeogenesys, TCA cycle and Pentose phosphate pathways
were downloaded from The Database for Annotation, Visualization and Integrated Discovery
(DAVID 6.7).

# SELECTION OF PROBES AGAINS GLYCOLYSIS GENES

gly.sub <- ggenes[ggenes$Gene.Symbol %in% c("ALDOA","ALDOB", "ALDOC", "DLAT", "DLD",
"ENO1", "ENO2", "ENO3", "FBP1", "G6PC", "GAPDHL6", "GCK", "GOT1", "GOT2", "GPI", "HK1",
"HK2", "HK3", "LDHB", "LDHC", "MDH1", "MDH2", "PC", "PCK1", "PDHA1", "PDHA2", "PDHB",
"PFKL", "PFKM", "PFKP","PGAM2","PGK1", "PGK2", "PKLR", "PKM2", "SLC2A1", "SLC2A2",
"SLC2A3","SLC2A4","SLC2A5","TPI1","PDHX","FBP2","MPC2","GAPDHS","MPC1","HKDC1","ADP
GK","LDHAL6B"), ]

gly.sub

write.csv(gly.sub, file="glycolysis genes.csv") #, sep =

nn

,row.names = TRUE, col.names = TRUE)

# SELECTION OF PROBES AGAINS TCA GENES

tca.sub <- ggenes[ggenes$Gene.Symbol %in%
c("AC02","SLC25A4","SLC25A5","SLC25A6","ATP5A1","ATP5B","ATP5C1","ATP5D","ATP5E","AT
P5F1","ATP5G1","ATP5G2","ATP5G3","ATP5I1","ATP5]","ATP6AP1","ATP50","COX411","COX5B","
COX6A1","COX6A2","COX6B1","COX6C","COX7A1","COX7A2","COX7B","COX7C","COX8A","COX11
","COX15","CS","DLD", "DLST","FH","IDH2","IDH3A","IDH3B","IDH3G","MDH2","COX3","ATP6",
"COX1","COX2","ATP6","CYTB","ND1","ND2","ND3","ND4","ND5","ND6","NDUFA1","NDUFA2",
"NDUFA3", "NDUFA4","NDUFA5","NDUFA6", "NDUFA7","NDUFA8","NDUFA9","NDUFA10",
"NDUFAB1","NDUFB1","NDUFB2","NDUFB3","NDUFB4","NDUFB5","NDUFB6","NDUFB7","NDUF
B8","NDUFB9","NDUFB10","NDUFC1","NDUFC2","NDUFS1","NDUFS2","NDUFS3","NDUFV1","ND
UFS4","NDUFS5","NDUFS6","NDUFS8","NDUFV2","NDUFV3","OGDH","SCO1","SDHA","SDHB","SD
HC","SDHD","SURF1","UCP1","UCP2","UCP3","UQCRB","UQCRC1","UQCRC2","UQCRFSL1",
"UQCRHL","SUCLG2","SUCLG1","SLC25A14","COX7A2L","COX5A", "SLC25A27",
"ATP5]2","COX17","ATP6AP2","ATP5H","ATP5L","UQCR11","UQCRQ","ATP5S","UQCR10","NDUF
A12", "NDUFA4L2", "ATPIF1","NDUFA11","NDUFS7"), ]
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write.csv(tca.sub, file="TCA genes.csv")
tca.sub

# SELECTION OF PROBES AGAINS PENTOSE PHOSPHATE PATHWAY GENES

pent.sub <- ggenes[ggenes$Gene.Symbol %in% c("TALDO1", "RPE", "G6PD", "RPIA", "TKT",
IIPGLSII' IIPGD")’ ]

write.csv(pent.sub, file="PPhosp genes.csv")

phosgenes <- as.character(pent.sub$Probe.Set.ID)

View(phosgenes)

5.1.4 Present and Absence Calls

#Presence-Absence Calls on AffyMetrix HG-U133 Series Microarrays with panp package
biocLite("panp")
library(panp)

pa.calls() #run a function with no arguments to obtain a summary of usage information

#default p-value cutoffs of 0.01 and 0.02. So in this case, intensities above the intensity at the
0.01 cutoff will be called "P” (present); intensities between the two cutoffs will be assigned an
"M” (marginal), and those below the intensity at the 0.02 p-value will get an "A”(absent)

PA <- pa.calls(eset)
PAcalls <- PA$Pcalls #The presence/absence calls and p-values are returned as two matrices,

Pvalues <- PA$Pvals
write.table(PAcalls, file="PAcalls_rma.csv", sep=",", col.Lnames=NA)

nmn

write.table(Pvalues, file="Pvalues_rma.csv", sep=",", col.names=NA)
#### present and absence calls for the probes belong to the pathway genes

tcagenes <- as.character(tcagenesnames|,1])
View(tcagenes)

tca.sub <- Pvalues_rma[Pvalues_rma$X %in% tcagenes, |
write.csv(tca.sub, file="tcasubPvalues.csv")

glygenes <- as.character(glygenesnames|[ ,1])
View(glygenes)

gly.sub <- Pvalues_rma[Pvalues_rma$X %in% glygenes, ]
write.csv(gly.sub, file="glysubPvalues.csv")

pentgenes <- Pvalues_rma[Pvalues_rma$X %in% phosgenes, ]
write.csv(pentsubPvalues, file="pentsubPvalues.csv")

glygenes <- as.character(glygenesnames|[ ,1])
View(glygenes)

gly.sub <- PAcalls_rma[PAcalls_rma$X %in% glygenes, ]
write.csv(gly.sub, file="glysubPAcalls.csv")

tcagenes <- as.character(tcagenesnames|,1])

View(tcagenes)
tca.sub <- PAcalls_rma[PAcalls_rma$X %in% tcagenes, |

121



write.csv(tca.sub, file="tcasubPAcalls.csv")

pentsubPAcalls <- PAcalls_rma[PAcalls_rma$X %in% phosgenes, ]
write.csv(pentsubPAcalls, file="pentsubPAcalls.csv")
# collection of data from the PP, gly and tca probes names selected

finalglyprobesdata <- as.character(glyprobesnamesselected|[ ,2])
View(finalglyprobesdata)

gly.final <- Data[Data$X %in% finalglyprobesdata, ]
write.csv(gly.final, file="finalglyprobesdata.csv")

tca.final <- Data[Data$X %in% tcaprobesnamesselected$Probe.Set.ID, |
write.csv(tca.final, file="final TCAprobesdata.csv")

pp.final <- Data[Data$X %in% pentsubPAcalls$Probe.Set.ID, ]
write.csv(pp.final, file="finalPPprobesdata.csv")

### with A calls
glyprobesselectionwithAvalues <- as.character(glyprobesselectionwithAvalues|[ ,2])

gly.final <- Data[Data$X %in% glyprobesselectionwithAvalues, ]
write.csv(gly.final, file="finalglyprobesdatawithAcalls.csv")

finaltcaprobesdata <- as.character(tcaprobesnamesselected][ ,1])
View(finaltcaprobesdata)

tca.final <- Data[Data$X %in% finaltcaprobesdata, ]
write.csv(tca.final, file="finaltcaprobesdata.csv")

pentfinal <- as.character(PPprobesselected[,1])

pentfinal <- Data[Data$X %in% pentfinal, ]
write.csv(pentfinal, file="pentfinal.csv")

5.1.5 Selection of the Highly and Lowest Express Probes

#HH##H#H#### Scaled and center

#TCA + electron transport chain

datatca <- TCAprobesforscale
rnames <- datatcal,1]

# assign labels in column 1 to "rnames”

mat_datatca <- data.matrix(datatca[,2:ncol(datatca)]) # transform from column 2 into a matrix
rownames(mat_datatca) <- rnames

colnames(mat_datatca)[1]<-"1321N1"

scaledtca<-biScale(mat_datatca, row.center=TRUE, row.scale=TRUE, col.center=FALSE,
col.scale=FALSE, trace=TRUE)

View(scaledtca)

write.csv(scaledtca, file="scaledtca.csv", row.names=TRUE)
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#Glycolysis

datag <- glyandpphosforscale
rnames <- datag[,1]

# assign labels in column 1 to "rnames”
mat_datag <- data.matrix(datag[,2:ncol(datag)]) # transform column 2-5 into a matrix
rownames(mat_datag) <- rnames

colnames(mat_datag)[1]<-"1321N1"

scaledgly<-biScale(mat_datag, row.center=TRUE, row.scale=TRUE, col.center=FALSE,
col.scale=FALSE, trace=TRUE)

write.csv(scaledgly, file="scaledgly.csv", row.names=TRUE)
#### PENTOSE PHOSPHATE ####

datapent <- penttoscale
rnames <- datapent[,1]

# assign labels in column 1 to "rnames”
mat_datapent <- data.matrix(datapent[,2:ncol(datapent)]) # transform column 2-n into a matrix
rownames(mat_datapent) <- rnames

colnames(mat_datapent)[1]<-"1321N1"

scaledpent<-biScale(mat_datapent, row.center=TRUE, row.scale=TRUE, col.center=FALSE,
col.scale=FALSE, trace=TRUE)

write.csv(scaledpent, file="scaledpent.csv", row.names=TRUE)
# USED FOR THE ANALYSIS OF THE 16 CELL LINES with gene expression data
### Krebs cycle pathway

select.range<-function (scaledtca, min, max, data)

{
if (nargs() > 3){
min.cond <- scaledtca > min
max.cond <- scaledtca < max

cond <- min.cond & max.cond

}

else cat("Usage: select.range(scaledtca,min,max,datavec)\n")
3ninmaxtca<-select.range(scaledtca,-1.0,1.0, data)
write.csv(minmaxtca, file="MinMaxTCA1.0.csv", row.names=TRUE)
### glycolysis/gluconeogenesys pathway

select.range<-function (scaledgly, min, max, data)
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{
if (nargs() > 3){
min.cond <- scaledgly > min
max.cond <- scaledgly < max

cond <- min.cond & max.cond

}

else cat("Usage: select.range(scaledgly,min,max,datavec)\n")

}

minmaxgly<-select.range(scaledgly,-1.0,1.0, data)
minmaxgly

write.csv(minmaxgly, file="MinMaxglyandPP1.0.csv", row.names=TRUE)
### pentose phosphate pathway

select.range<-function (scaledpent, min, max, data)

{
if (nargs() > 3){
min.cond <- scaledpent > min
max.cond <- scaledpent < max

cond <- min.cond & max.cond

}

else cat("Usage: select.range(scaledpent,min,max,datavec)\n")

}

minmaxpent<-select.range(scaledpent,-1.5,1.5, data)

write.csv(minmaxpent, file="MinMaxPP.csv", row.names=TRUE)

5.1.6 Heatmap and Hierarchical Clustering

install.packages("pheatmap")
library(pheatmap)
install.packages("softimpute")
library(softimpute)
library("RColorBrewer")
display.brewer.all()

colfunc <- colorRampPalette(c("green", "black”, "red"))

pheatmap (mat_datatca,scale="none",col=colfunc(150), border_color = NA,cellwidth = 15,
cellheight = 7,fontsize_row=6,fontsize_col=7, main = "Heatmap of genes involved in \nKrebs
Cycle and Electron Transport Chain", fontsize = 7, filename="tca7.pdf")

pheatmap (mat_datagly,scale="none",col=colfunc(150), border_color = NA,cellwidth = 15,
cellheight = 7,fontsize_row=6,fontsize_col=7, main = "Heatmap of genes involved in Glycolisys,\n

Gluconeogenesis and Pentose Phosphate Pathways", fontsize=7, filename="gly7.pdf")

##### Hierarchical Clustering
# Hierarchical Clustering. Euclidean distance. hclust method complete
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install.packages("plyr")
library(plyr)

install.packages("rafalib") # pretty clusters
library(rafalib)

## Bionas Capacitance

mm <- ddply(labexperimentsdata, "Cell.Line", summarise, Im = mean(Bionas.Impedance,
na.rm=T)) #make a new tablewith the cell lines and the mean value of the impedance
mm # cluster used just one values per condition (mean)

rownames(mm) <- mm[,1]
rownames(mm)

Capacitance <- dist(mm, method = "euclidean") # distance matrix
Capacitance

fit <- hclust(Capacitance)

plot(fit)

colbars1 <-
c("orangered","orangered","cadetblue”,"cadetblue"”,"cadetblue”,"goldenrod","goldenrod"”,"golden
rod","goldenrod","goldenrod","palegreen”,"palegreen”,"palegreen","
pink","orangered4","turquoise")

op = par(bg = "grey35")

myplclust(fit, lab.col = colbars1, main = "Capacitance Cluster Dendrogram") # gives title

peachpuff","peachpuft”,"hot

H#H### 02

mm <- ddply(labexperimentsdata, "Cell.Line", summarise, Oxigen.Consumption =
mean(Bionas.02, na.rm=T)) #make a new tablewith the cell lines and the mean value of the
impedance

mm

rownames(mm) <- mm[,1]

Oxygen.Consumption <- dist(mm, method = "euclidean") # distance matrix

fit <- hclust(Oxygen.Consumption)

plot(fit)

op = par(bg = "grey35")

myplclust(fit, lab.col = colbars1, main = "Oxygen Consumption Cluster Dendrogram")

#### FET

mm <- ddply(labexperimentsdata, "Cell.Line", summarise, FET = mean(Bionas.Acid, na.rm=T))
#make a new tablewith the cell lines and the mean value of the impedance

mm

rownames(mm) <- mm[,1]

Acid.Lactic.Production <- dist(mm, method = "euclidean") # distance matrix
fit <- hclust(Acid.Lactic.Production)
plot(fit)

op = par(bg = "grey35")
myplclust(fit, lab.col = colbars1, main = "Acid Lactic Production Cluster Dendrogram")
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H### ATP

colbars1 <-
c("orangered","orangered","cadetblue”,"cadetblue”,"cadetblue”,"goldenrod"”,"goldenrod","golden
rod","goldenrod","goldenrod","palegreen”,"peachpuff","peachpuff”,"hotpink","orangered4
uoise”

mm <- ddply(labexperimentsdata, "Cell.Line", summarise, ATP = mean(ATP, na.rm=T)) #make a
new tablewith the cell lines and the mean value of the impedance

mim

,"turq

dfsub<-subset(mm,!(is.na(mm["ATP"]))) # take out nas. Cell lines in which no measurenment
was done
dfsub

rownames(dfsub) <- dfsub[,1]

Intracellular.ATP<- dist(dfsub, method = "euclidean") # distance matrix
fit <- hclust(Intracellular.ATP)

plot(fit)

op = par(bg = "grey35")
myplclust(fit, lab.col = colbars1, main = "Intracellular ATP Cluster Dendrogram")

#### Mitomass

mm <- ddply(labexperimentsdata, "Cell.Line", summarise, Mito = mean(Mitomass, na.rm=T))
#make a new tablewith the cell lines and the mean value of the impedance

mm

rownames(mm) <- mm[,1]

Cellular.Mitochondrial.Mass<- dist(mm, method = "euclidean") # distance matrix
fit <- hclust(Cellular.Mitochondrial.Mass)
plot(fit)

op = par(bg = "grey35")
myplclust(fit, lab.col = colbars1, main = "Cellular Mitochondrial Mass Cluster Dendrogram")

#### ROS

mm <- ddply(labexperimentsdata, "Cell.Line", summarise, ROS = mean(ROS, na.rm=T)) #make a
new tablewith the cell lines and the mean value of the impedance

mm

dfsub<-subset(mm,!(is.na(mm["R0OS"]))) # take out nas. Cell lines in which no measurenment
was done

dfsub

rownames(dfsub) <- dfsub[,1]

Reactive.Oxygen.Species<- dist(dfsub, method = "euclidean") # distance matrix
fit <- hclust(Reactive.Oxygen.Species)

plot(fit)

op = par(bg = "grey35")

myplclust(fit, lab.col = colbars1, main = "Reactive Oxygen Species Cluster Dendrogram")
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H#### MTT

colbars1 <-
c("orangered","orangered","cadetblue”,"cadetblue"”,"cadetblue”,"goldenrod","goldenrod"”,"golden
rod","goldenrod","palegreen”,"hotpink"”,"orangered4")

mm <- ddply(labexperimentsdata, "Cell.Line", summarise, MTT = mean(MTT, na.rm=T)) #make
a new tablewith the cell lines and the mean value of the impedance

mm

dfsub<-subset(mm,!(is.na(mm["MTT"]))) # take out nas. Cell lines in which no measurenment
was done

dfsub

rownames(dfsub) <- dfsub[,1]

MTT<- dist(dfsub, method = "euclidean") # distance matrix
fit <- hclust(MTT)
plot(fit)

op = par(bg = "grey35")
myplclust(fit, lab.col = colbars1, main = "MTT Cluster Dendrogram")

#### SRB

mm <- ddply(labexperimentsdata, "Cell.Line", summarise, SRB = mean(SRB, na.rm=T)) #make a
new tablewith the cell lines and the mean value of the impedance

mm

dfsub<-subset(mm,!(is.na(mm["SRB"]))) # take out nas. Cell lines in which no measurenment
was done

dfsub

rownames(dfsub) <- dfsub[,1]

SRB<- dist(dfsub, method = "euclidean") # distance matrix
fit <- hclust(SRB)

fit

plot(fit)

op = par(bg = "grey35")
myplclust(fit, lab.col = colbars1, main = "SRB Cluster Dendrogram")

#Huttt######## SCALEING AND CLUSTERING BY COLUMNS THE GENE EXPRESSION DATA
(WILL BE THE TOTAL GENE EXPRESSION PER CELL LINE) ##########H###H#H#H#HH##

#glycolysis/gluconeogenesys

scaledbycolgly<-biScale(mat_datag, row.center=FALSE, row.scale=FALSE, col.center=TRUE,
col.scale=TRUE, trace=TRUE)

write.csv(scaledbycolgly, file="scaledbycolgly.csv", row.names=TRUE)

rnames <- ggenetocluster[,1]
ggenetocluster <- data.matrix(ggenetocluster[,2:ncol(ggenetocluster)])

rownames(ggenetocluster) <- rnames
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View(ggenetocluster)

# Ward Hierarchical Clustering

d <- dist(ggenetocluster, method = "euclidean") # distance matrix
fit <- hclust(d, method="ward")

plot(fit) # display dendogram

groups <- cutree(fit, k=2) # cut tree into 2 clusters

# draw dendogram with red borders around the 2 clusters
rect.hclust(fit, k=2, border="red")

# krebs cycle plus electron transport chain

scaledbycoltca<-biScale(mat_datatca, row.center=FALSE, row.scale=FALSE, col.center=TRUE,
col.scale=TRUE, trace=TRUE)

write.csv(scaledbycoltca, file="scaledbycoltca.csv", row.names=TRUE)

rnames <- tcagenetocluster[,1]
# assign labels in column 1 to "rnames”
tcagenetocluster <- data.matrix(tcagenetocluster[,2:ncol(tcagenetocluster)])

rownames(tcagenetocluster) <- rnames

# Ward Hierarchical Clustering

d <- dist(tcagenetocluster, method = "euclidean") # distance matrix
fit <- hclust(d, method="ward")

plot(fit) # display dendogram

groups <- cutree(fit, k=2) # cut tree into 2 clusters

# draw dendogram with red borders around the 2 clusters
rect.hclust(fit, k=2, border="red")

5.1.7 Pearson Correlation Coefficients Estimation

probes <- as.character(probes.metabolic.assays.and.drugs.IC50.for.pearson[,1])

View(probes)

probes.sub <- All.probes.set.16.cell.lines[All.probes.set.16.cell.lines$Probe.Set.ID %in% probes, ]
write.csv(probes.sub, file="probes.sub.csv")

##t######## PEARSON CORRELATION BETWEEN extreme expresses probes sets and
metabolic assays ######

install.packages("Hmisc")
library(Hmisc)

mat <- data.matrix(DRUGSPEARSON[,2:ncol(DRUGSPEARSON)]) # transform from column 2
into a matrix
rownames(mat) <- DRUGSPEARSON],1]

correlation <-rcorr(mat, type="pearson")

correlation
str(correlation) # shows the 3 components of the function;r, n and p
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df.correlation.r=data.frame(correlation$r) #convert the r part to a data frame

write.csv(df.correlation.r,"correlationmatrixDRUGSPEARSON.csv") # the data frame can be
exported

df.correlation.P=data.frame(correlation$P) #convert the p part to a data frame

write.csv(df.correlation.P,"pvaluescorrelationmatrixDRUGSPEARSON.csv") # the data frame can
be exported

rownames(pvaluescorrelationmatrixDRUGSPEARSON)<-
pvaluescorrelationmatrixDRUGSPEARSON],1]
rownames(pvaluescorrelationmatrixDRUGSPEARSON)

# selection of the p values < 0.05

select.range<-function (pvaluescorrelationmatrixDRUGSPEARSON, min, max, data)

{
if (nargs() > 3){
min.cond <- pvaluescorrelationmatrixDRUGSPEARSON > min
max.cond <- pvaluescorrelationmatrixDRUGSPEARSON< max

cond <- min.cond & max.cond

}

else cat("Usage: select.range(pvaluescorrelationmatrixDRUGSPEARSON,min,max,datavec)\n")

}

minmaxtca<-select.range(pvaluescorrelationmatrixDRUGSPEARSON,0,0.05, data)
write.csv(minmaxtca, file="MinMaxpvalues0.05DRUGSPEARSON.csv", row.names=TRUE)

#t######## PEARSON CORRELATION BETWEEN all probes sets and metabolic assays
##t#### search p < 0.0001 in all the probes

mat <-
data.matrix(probes.sets.for.pearson5001to10000[,2:ncol(probes.sets.for.pearson5001to10000)
]) # transform from column 2 into a matrix

rownames(mat) <- probes.sets.for.pearson5001to10000[,1]

correlation <-rcorr(mat, type="pearson")

correlation

str(correlation) # shows the 3 components of the function;r, n and p
df.correlation.r=data.frame(correlation$r) #convert the r part to a data frame
write.csv(df.correlation.r,"correlationmatrixprobe1to5000PEARSON.csv") # the data frame can
be exported

df.correlation.P=data.frame(correlation$P) #convert the p part to a data frame
write.csv(df.correlation.P,"pvaluescorrelationmatrixprobe1to5000PEARSON.csv") # the data
frame can be exported

PP <- pvaluescorrelationmatrixprobe1to5000PEARSON

max <- subset(PP, PP[,2] < 0.0001)
max <- subset(PP, PP[,6] < 0.0001)
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mat <- data.matrix(forpearsonprobes5001to10000[,2:ncol(forpearsonprobes5001to10000)]) #
transform from column 2 into a matrix

rownames(mat) <- forpearsonprobes5001to10000[,1]

rownames(mat)

correlation <-rcorr(mat, type="pearson")

correlation

str(correlation) # shows the 3 components of the function;r, n and p
df.correlation.r=data.frame(correlation$r) #convert the r part to a data frame
write.csv(df.correlation.r,"correlationmatrixprobe5001to10000PEARSON.csv") # the data frame
can be exported

df.correlation.P=data.frame(correlation$P) #convert the p part to a data frame
write.csv(df.correlation.P,"pvaluescorrelationmatrixprobe5001to10000PEARSON.csv") # the
data frame can be exported

PP <- df.correlation.P

max1 <- subset(PP, PP[,1] < 0.0001)
max2<- subset(PP, PP[,2] < 0.0001)

max3 <- subset(PP, PP[,3] < 0.0001)
max4 <- subset(PP, PP[,4] < 0.0001)
max5 <- subset(PP, PP[,5] < 0.0001)
max6 <- subset(PP, PP[,6] < 0.0001)
max?7 <- subset(PP, PP[,7] < 0.0001)
max8 <- subset(PP, PP[,8] < 0.0001)

mat <- data.matrix(allprobes10001to20000[,2:ncol(allprobes10001t020000)]) # transform
from column 2 into a matrix

rownames(mat) <- allprobes10001to20000[,1]

rownames(mat)

correlation <-rcorr(mat, type="pearson")

correlation

str(correlation) # shows the 3 components of the function;r, n and p
df.correlation.r=data.frame(correlation$r) #convert the r part to a data frame
write.csv(df.correlation.r,"correlationmatrixprobe10001to20000PEARSON.csv") # the data
frame can be exported

df.correlation.P=data.frame(correlation$P) #convert the p part to a data frame
write.csv(df.correlation.P,"pvaluescorrelationmatrixprobe10001to20000PEARSON.csv") # the
data frame can be exported

PP <- df.correlation.P

max1 <- subset(PP, PP[,1] < 0.0001)
max2<- subset(PP, PP[,2] < 0.0001)

max3 <- subset(PP, PP[,3] < 0.0001)
max4 <- subset(PP, PP[,4] < 0.0001)
max5 <- subset(PP, PP[,5] < 0.0001)
max6 <- subset(PP, PP[,6] < 0.0001)
max?7 <- subset(PP, PP[,7] < 0.0001)
max8 <- subset(PP, PP[,8] < 0.0001)
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mat <- data.matrix(allprobespearson20001to30000][,2:ncol(allprobespearson20001to30000)])
# transform from column 2 into a matrix

rownames(mat) <- allprobespearson20001to30000[,1]

rownames(mat)

correlation <-rcorr(mat, type="pearson")

str(correlation) # shows the 3 components of the function;r, n and p
df.correlation.r=data.frame(correlation$r) #convert the r part to a data frame
write.csv(df.correlation.r,"correlationmatrixprobe20001t030000.csv") # the data frame can be
exported

df.correlation.P=data.frame(correlation$P) #convert the p part to a data frame
write.csv(df.correlation.P,"pvaluescorrelationmatrixprobe20001t030000.csv") # the data frame
can be exported

PP <- df.correlation.P

max1 <- subset(PP, PP[,1] < 0.0001)
max2<- subset(PP, PP[,2] < 0.0001)

max3 <- subset(PP, PP[,3] < 0.0001)
max4 <- subset(PP, PP[,4] < 0.0001)
max5 <- subset(PP, PP[,5] < 0.0001)
max6 <- subset(PP, PP[,6] < 0.0001)
max?7 <- subset(PP, PP[,7] < 0.0001)
max8 <- subset(PP, PP[,8] < 0.0001)

mat <- data.matrix(allprobespearson30001to40000][,2:ncol(allprobespearson30001to40000)])
# transform from column 2 into a matrix

rownames(mat) <- allprobespearson30001to40000[,1]

rownames(mat)

correlation <-rcorr(mat, type="pearson")

str(correlation) # shows the 3 components of the function;r, n and p
df.correlation.r=data.frame(correlation$r) #convert the r part to a data frame
write.csv(df.correlation.r,"correlationmatrixprobe30001t040000.csv") # the data frame can be
exported

df.correlation.P=data.frame(correlation$P) #convert the p part to a data frame
write.csv(df.correlation.P,"pvaluescorrelationmatrixprobe30001t040000.csv") # the data frame
can be exported

PP <- df.correlation.P

max1 <- subset(PP, PP[,1] < 0.0001)
max2<- subset(PP, PP[,2] < 0.0001)

max3 <- subset(PP, PP[,3] < 0.0001)
max4 <- subset(PP, PP[,4] < 0.0001)
max5 <- subset(PP, PP[,5] < 0.0001)
max6 <- subset(PP, PP[,6] < 0.0001)
max?7 <- subset(PP, PP[,7] < 0.0001)
max8 <- subset(PP, PP[,8] < 0.0001)
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mat <- data.matrix(allprobespearson30001toend][,2:ncol(allprobespearson30001toend)]) #
transform from column 2 into a matrix

rownames(mat) <- allprobespearson30001toend],1]

rownames(mat)

correlation <-rcorr(mat, type="pearson")

correlation

str(correlation) # shows the 3 components of the function;r, n and p
df.correlation.r=data.frame(correlation$r) #convert the r part to a data frame
write.csv(df.correlation.r,"correlationmatrixprobe30001toend.csv") # the data frame can be
exported

df.correlation.P=data.frame(correlation$P) #convert the p part to a data frame
write.csv(df.correlation.P,"pvaluescorrelationmatrixprobe30001toend.csv") # the data frame
can be exported

PP <- df.correlation.P

max1 <- subset(PP, PP[,1] < 0.0001)
max2<- subset(PP, PP[,2] < 0.0001)

max3 <- subset(PP, PP[,3] < 0.0001)
max4 <- subset(PP, PP[,4] < 0.0001)
max5 <- subset(PP, PP[,5] < 0.0001)
max6 <- subset(PP, PP[,6] < 0.0001)
max?7 <- subset(PP, PP[,7] < 0.0001)
max8 <- subset(PP, PP[,8] < 0.0001)

to5000plusgenename <-
merge(correlationmatrixprobe1to5000PEARSON,genesymbol,by="Probe.Set.ID")

colnames(correlationmatrixprobe1to5000PEARSON)
rownames(correlationmatrixprobe1to5000PEARSON)

colnames (correlationmatrixprobe1to5000PEARSON) [1]<- "Probe.Set.ID"

class(correlationmatrixprobe1to5000PEARSON) #dataframe
class(genesymbol)#dataframe

a<- sub("X","",colnames(correlationmatrixprobe30001toend)) #column names without the X as
first letter

class(a) #character

a<-data.frame(a)

colnames(a) <- "Probe.Set.ID"

a <- a[-c(1), ] #to eliminate a row

to5000plusgenename = data.frame(a, correlationmatrixprobe30001toend) # to bind dataframe
a with dataframe correlationmatrixprobe30001toend

to5000plusgenename <- to5000plusgenename[-c(1), ] #to eliminate a row

to5000plusgenename <- merge(a,genesymbol,by="Probe.Set.ID")
colnames(to5000plusgenename)[1]<-"Probe.Set.ID"

rcorrplusgenename40001toend <- merge(genesymbol,to5000plusgenename,by="Probe.Set.ID")
rcorrplusgenename40001toend <- rcorrplusgenename40001toend[,c(1,2,5,6,7,8,9,10,11,12)]
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write.csv(rcorrplusgenename40001toend, file="rcorrplusgenename40001toend.xls",
row.names=TRUE)

#### probes 1 to 5000

a<- sub("X","",colnames(correlationmatrixprobe1to5000PEARSON)) #column names without
the X as first letter

a<-data.frame(a) ### give me just the first column with the probes sets names without the X
colnames(a) <- "Probe.Set.ID"

a <- a[-c(1), ] #to eliminate a row

a<-data.frame(a)

colnames(a) <- "Probe.Set.ID"

correlationmatrixprobe1to5000PEARSON = data.frame(a,
correlationmatrixprobe1to5000PEARSON)

rcorrplusgenename1to5000 <-
merge(genesymbol,correlationmatrixprobe1to5000PEARSON,by="Probe.Set.ID")
rcorrplusgenename1to5000 <- rcorrplusgenename1to5000][,c(1,2,4,5,6,7,8,9,10,11)]
rcorrplusgenename1to5000<- rcorrplusgenename1to5000[,c(2,1,3,4,5,6,7,8,9,10)]
write.csv(rcorrplusgenename1to5000, file="rcorrplusgenename1to5000.xls",
row.names=TRUE)

#### probes 5001 to 10000

a<- sub("X","",colnames(correlationmatrixprobe5001to10000PEARSON)) #column names
without the X as first letter

a<-data.frame(a) ### give me just the first column with the probes sets names without the X
a <- a[-c(1), ] #to eliminate a row

a<-data.frame(a)

colnames(a) <- "Probe.Set.ID"

correlationmatrixprobe5001to10000PEARSON = data.frame(a,
correlationmatrixprobe5001to10000PEARSON)

rcorrplusgenename5001t0o10000 <-
merge(genesymbol,correlationmatrixprobe5001to10000PEARSON,by="Probe.Set.ID")
rcorrplusgenename5001to10000<- rcorrplusgenename5001to10000[,c(1,2,4,5,6,7,8,9,10,11)]
rcorrplusgenename5001to10000<- rcorrplusgenename5001to10000[,c(2,1,3,4,5,6,7,8,9,10)]
write.csv(rcorrplusgenename5001to10000, file="rcorrplusgenename5001to10000.xIs",
row.names=TRUE)

#### probes 10001 to 20000

a<- sub("X","",colnames(correlationmatrixprobe10001to20000PEARSON)) #column names
without the X as first letter

a<-data.frame(a) ### give me just the first column with the probes sets names without the X
a <- a[-c(1), ] #to eliminate a row

a<-data.frame(a)

colnames(a) <- "Probe.Set.ID"

correlationmatrixprobe10001to20000PEARSON = data.frame(a,
correlationmatrixprobe10001to20000PEARSON)

rcorrplusgenename10001to20000 <-
merge(genesymbol,correlationmatrixprobe10001to20000PEARSON,by="Probe.Set.ID")
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rcorrplusgenename10001to20000<-
rcorrplusgenename10001t020000[,c(1,2,4,5,6,7,8,9,10,11)]
rcorrplusgenename10001t020000<- rcorrplusgenename10001to20000[,c(2,1,3,4,5,6,7,8,9,10)]
write.csv(rcorrplusgenename10001t020000, file="rcorrplusgenename10001to20000.xls",
row.names=TRUE)

#### probes 20001 to 30000

a<- sub("X","",colnames(df.correlation.r)) #column names without the X as first letter
a<-data.frame(a) ### give me just the first column with the probes sets names without the X
a <- a[-c(1), ] #to eliminate a row

a<-data.frame(a)

colnames(a) <- "Probe.Set.ID"

correlationmatrixprobe20001to30000 = data.frame(a, df.correlation.r)

rcorrplusgenename20001to30000 <-
merge(genesymbol,correlationmatrixprobe20001to30000,by="Probe.Set.ID")
rcorrplusgenename20001to30000<- rcorrplusgenename20001to30000[,c(1,2,3,4,5,6,7,8,9,10)]

rcorrplusgenename20001to30000<- rcorrplusgenename20001to30000[,c(2,1,3,4,5,6,7,8,9,10)]
write.csv(rcorrplusgenename20001to30000, file="rcorrplusgenename20001to30000.xls",
row.names=TRUE)

#### probes 30001 to 40000

a<- sub("X","",colnames(correlationmatrixprobe30001t040000)) #column names without the X
as first letter

a<-data.frame(a) ### give me just the first column with the probes sets names without the X

a <- a[-c(1), ] #to eliminate a row

a<-data.frame(a)

colnames(a) <- "Probe.Set.ID"

correlationmatrixprobe30001to40000 = data.frame(a, correlationmatrixprobe30001t040000)

rcorrplusgenename30001to40000 <-
merge(genesymbol,correlationmatrixprobe30001to40000,by="Probe.Set.ID")
rcorrplusgenename30001to40000<-
rcorrplusgenename30001to40000[,c(1,2,4,5,6,7,8,9,10,11)]
rcorrplusgenename30001t040000<- rcorrplusgenename30001to40000[,c(2,1,3,4,5,6,7,8,9,10)]
write.csv(rcorrplusgenename30001t0o40000, file="rcorrplusgenename30001to40000.xls",
row.names=TRUE)

pvalues10001to20000 <- pvaluescorrelationmatrixprobe10001to20000PEARSON],c(1,2,3,
4,5,6,7,8,9)]
write.csv(pvalues10001to20000, file="pvalues10001t020000.xls", row.names=TRUE)

pvalues20001to30000 <- df.correlation.P[,c(1,2,3, 4,5,6,7,8)]
write.csv(pvalues20001to30000, file="pvalues20001t030000.xls", row.names=TRUE)
pvalues30001to40000 <- pvaluescorrelationmatrixprobe30001to40000[,c(1,2,3, 4,5,6,7,8,9)]
write.csv(pvalues30001to40000, file="pvalues30001to40000.xls", row.names=TRUE)

PP <- pvalues10001to20000
class(pvalues10001to20000)
class(PP)

max1 <- subset(PP, PP[,1] < 0.0001)
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max2<- subset(PP, PP[,2] < 0.0001)

max3 <- subset(PP, PP[,3] < 0.0001)
max4 <- subset(PP, PP[,4] < 0.0001)
max5 <- subset(PP, PP[,5] < 0.0001)
max6 <- subset(PP, PP[,6] < 0.0001)
max?7 <- subset(PP, PP[,7] < 0.0001)
max8 <- subset(PP, PP[,8] < 0.0001)

pvaluescorrelationmatrixprobe5001t010000 <-
pvaluescorrelationmatrixprobe5001to10000PEARSON[,c(1,2,3, 4,5,6,7,8,9)]
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