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Abstract

Machine learning is an approach to devise algorithms that compute an output without a given rule
set but based on a self-learning concept. This approach is of great importance for several fields of
applications in science and industry where traditional programming methods are not sufficient. In
neural networks, a popular subclass of machine learning algorithms, commonly previous experience
is used to train the network and produce good outputs for newly introduced inputs. By increasing
the size of the network more complex problems can be solved which again rely on a huge amount
of training data. Increasing the complexity also leads to higher computational demand and storage
requirements and to the need for parallelization.
Several parallelization approaches of neural networks have already been considered. Most ap-
proaches use special purpose hardware whilst other work focuses on using standard hardware.
Often these approaches target the problem by parallelizing the training data. In this work a new
parallelization method named poadSGD is proposed for the parallelization of fully-connected, large-
scale feedforward networks on a compute cluster with standard hardware. poadSGD is based on the
stochastic gradient descent algorithm. A block-wise distribution of the network’s layers to groups
of processes and a pipelining scheme for batches of the training samples are used. The network
is updated asynchronously without interrupting ongoing computations of subsequent batches. For
this task a one-sided communication scheme is used. A main algorithmic part of the batch-wise
pipelined version consists of matrix multiplications which occur for a special distributed setup,
where each matrix is held by a different process group.
GASPI, a parallel programming model from the field of “Partitioned Global Address Spaces”
(PGAS) models is introduced and compared to other models from this class. As it mainly relies on
one-sided and asynchronous communication it is a perfect candidate for the asynchronous update
task in the poadSGD algorithm. Therefore, the matrix multiplication is also implemented based
GASPI. In order to efficiently handle upcoming synchronizations within the process groups and
achieve a good workload distribution, a two-dimensional block-cyclic data distribution is applied
for the matrices. Based on this distribution, the multiplication algorithm is computed by diagonally
iterating over the sub blocks of the resulting matrix and computing the sub blocks in subgroups of
the processes. The sub blocks are computed by sharing the workload between the process groups
and communicating mostly in pairs or in subgroups. The communication in pairs is set up to
be overlapped by other ongoing computations. The implementations provide a special challenge,
since the asynchronous communication routines must be handled with care as to which processor
is working at what point in time with which data in order to prevent an unintentional dual use of
data.
The theoretical analysis shows the matrix multiplication to be superior to a naive implementation
when the dimension of the sub blocks of the matrices exceeds 382. The performance achieved in
the test runs did not withstand the expectations the theoretical analysis predicted. The algorithm
is executed on up to 512 cores and for matrices up to a size of 131, 072× 131, 072.
The implementation using the GASPI API was found not be straightforward but to provide a
good potential for overlapping communication with computations whenever the data dependencies
of an application allow for it. The matrix multiplication was successfully implemented and can
be used within an implementation of the poadSGD method that is yet to come. The poadSGD
method seems to be very promising, especially as nowadays, with the larger amount of data and
the increased complexity of the applications, the approaches to parallelization of neural networks
are increasingly of interest.
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Zusammenfassung

Ein maschinelles Lernen Modell ist ein künstliches System, das ohne einen vorgegebenen Regel-
satz basierend auf vorherigen Erfahrungen eigenständig lernt, zu unbekannten Eingaben passende
Lösungen zu produzieren. Dieser Ansatz ist für mehrere Einsatzgebiete von großer Bedeutung
sowohl in der Wissenschaft als auch der Industrie, wenn traditionelle Programmiermethoden nicht
ausreichen. In neuronalen Netzwerken, einer beliebten Unterklasse der maschinellen Lernalgorith-
men, werden vorgegebene Trainingsdaten bestehend aus Ein- und Ausgabewerten verwendet, um
das Netzwerk basierend auf der Differenz zwischen dem vorgegebenen Wert und dem Ausgabew-
ert des Netzwerkes zu trainieren. Durch größere Netze können komplexere Probleme abgebildet
werden, die wiederum auf das Vorhandensein einer großen Anzahl von Trainingsdaten angewiesen
sind. Die Erhöhung der Komplexität führt so zu höherem Rechenbedarf und höheren Speicheran-
forderungen, weshalb eine Parallelisierung des Trainings sinnvoll scheint.

Es wurden bereits mehrere Parallelisierungsansätze für neuronale Netze in Betracht gezogen. Viele
Ansätze verwenden Spezialhardware, während sich andere Arbeiten auf die Verwendung von Stan-
dardhardware konzentrieren.

In dieser Arbeit wird eine neue Parallelisierungsmethode namens poadSGD vorgestellt, welche sich
an vollständig verbundene, sehr große Feedforward-Netzwerke richtet, welche auf einem Rechen-
cluster mit Standardhardware ausgeführt werden. PoadSGD basiert auf dem stochastischen Gra-
dientenverfahren und verwendet eine blockweise Verteilung der Netzwerkschichten auf Gruppen
von Prozessen, sowie ein Pipeline-Schema, das jeweils für eine Serie von Trainingsdaten ausgeführt
wird. Das Netzwerk wird asynchron aktualisiert, ohne die noch laufenden Berechnungen der nach-
folgenden Serien zu unterbrechen. Hierfür wird ein einseitiges Kommunikationsschema verwendet.
Ein wesentlicher Teil des Algorithmus sind Matrixmultiplikationen, wobei für einen Teil davon der
Fall auftritt, dass die Matrizen auf jeweils unterschiedliche Prozessgruppen verteilt sind.

In dieser Arbeit wird daher GASPI, ein paralleles Programmiermodell aus dem Bereich der Parti-
tioned Global Address Spaces (PGAS) Modelle, vorgestellt und mit anderen Modellen dieser Klasse
verglichen. Da es hauptsächlich auf einseitiger und asynchroner Kommunikation basiert, ist es ein
perfekter Kandidat für die Umsetzung des asynchronen Updates im poadSGD-Algorithmus. Daher
ist die Matrixmultiplikation auch auf der Basis von GASPI implementiert. Um eine gute Verteilung
der Arbeitslast zu erreichen und möglichst effizient mit der Synchronisation, die durch die zusam-
menarbeitenden Prozessgruppen entsteht, umzugehen, wird für die Matrizen eine zweidimensionale
blockzyklische Datenverteilung angewendet. Basierend auf dieser Verteilung wird der Algorithmus
für die Matrix-Multiplikation durch eine diagonale Iteration über die Teilblöcke der Ergebnismatrix
und die Berechnung dieser Teilblöcke in Untergruppen der Prozessgruppen umgesetzt. Die Rechen-
last der Berechnung der Teilblöcke wird zwischen den Gruppen aufgeteilt und die Kommunikation
findet hauptsächlich paarweise oder nur in Untergruppen statt. Die paarweise Kommunikation
erfolgt so, dass sie von anderen laufenden Berechnungen überlappt wird. Die Implementierung des
Algorithmus stellt eine besondere Herausforderung dar, da die asynchronen Kommunikationsrou-
tinen mit Sorgfalt gehandhabt werden müssen. Es muss zu jedem Zeitpunkt klar sein, welcher
Prozessor mit welchen Daten arbeitet oder wohin versendet, um eine unbeabsichtigte doppelte
Nutzung von Daten zu verhindern.

Die theoretische Analyse zeigt, dass die hier präsentierte Matrixmultiplikation einer naiven Imple-
mentierung überlegen ist, wenn die Dimension der Teilblöcke der Matrizen größer als 382 ist. Diese
Erwartung hat die in den Testläufen erzielte Performance nicht erfüllt. Der Algorithmus wurde
auf bis zu 512 Kerne für Matrizen bis zu einer Größe von 131.072 × 131.072 ausgeführt. Die Im-
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plementierung mit der GASPI-API wurde für nicht einfach befunden, wobei die API allerdings ein
gutes Potenzial verspricht für die Umsetzung von Anwendungen ohne große Datenabhängigkeiten.
Auch wenn die Performance nicht den Erwartung entsprach, so wurde die Matrixmultiplikation
erfolgreich umgesetzt und kann für eine Implementierung der poadSGD-Methode verwendet wer-
den. Der Ansatz der poadSGD-Methode ist sehr vielversprechend, zumal heutzutage mit den
immer größeren Datensätzen und der erhöhten Komplexität der Anwendungen die Ansätze zur
Parallelisierung von neuronalen Netzwerken zunehmend von Interesse sind.
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Mathematical Contributions

The approach of machine learning is of great importance, both in science and in industry,
when traditional algorithms are no longer sufficient.
In this work a parallelization method for large-scale feedforward neural networks is pre-
sented. The method used for its training thereby relies on the stochastical gradient descent
method and is combined with a block-wise distribution of the network layers to groups
of processes, as well as a pipelining scheme for batches of the training samples and an
asynchronous update of the network.
A particular challenge of the proposed method is a matrix multiplication for very large
matrices with a special parallel distribution of the matrix elements. For this particular
configuration, a parallel algorithm is developed based on asynchronous communication
mechanisms, which have an impact on the algorithmic implementation. In addition, the
algorithm is analyzed with regards to its communication complexity and its potential for
exploitation of overlapping communication and computation enabled by the asynchronous
communication. Through the development and implementation of the matrix multipli-
cation for the parallelization of neural networks, experience in the use of asynchronous
communication for basic, numerical methods is gained.
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Chapter 1

Introduction

In a field where adequate rules are too difficult to devise for a given problem, classical
programming approaches are not sufficient and instead machine learning algorithms are
applied. These algorithms follow the concept of learning to solve a problem based on
previous experiences. They are then able to generalize and to produce solutions for inputs
they have never seen before. Machine learning has become of great importance in science
and industry. Amongst others, it is used to solve problems from the fields of medical ap-
plications, image and voice processing, search engines and social networks [Sch14, Nie15].
A classical machine learning algorithm is the artificial neural network. Originally inspired
by the human brain it is built up of several layers of neurons connected by synapses which
transfer signals throughout the network and generate a solution when given a new input.
Algorithms have been developed to optimize such a network by adapting the parameters
of the network during a training phase based on previous training data. Increasing the
size of these networks enables more complex problems to be solved. But this also leads to
issues with the convergence of the training that need to be dealt with. Equally important
is that the higher complexity also increases the computational demand and the storage
requirements [PLWH03]. A solution to this is to parallelize these networks. However, to
efficiently accomplish this task, several factors are of great importance: which hardware
is selected, which parallel programming model suits the problem best and finally how ex-
actly the algorithm is parallelized such that it scales well for differently sized networks
and generates no unnecessary overhead.

For the training phase different parallelization approaches of neural networks have al-
ready been considered [RS97]. Most approaches use special purpose hardware such as
GPUs [DCM+12] or specialized neuromorphic computers [FFA92, SBG+10]. But, as this
special hardware is not always available in all research labs and universities, other works
focus on using standard hardware. The parallelization techniques used include the run-
ning of several instances of the network in parallel [PLWH03]. Either these instances are
started with the same initial state or different ones. Furthermore, they can all be trained
with the same training input or with different parts of the data. After the separate train-
ing the results are reconciled. Other techniques parallelize the training inputs for a single
network, pipeline the training samples or partition the network topology itself amongst
several processes [NS92]. For parallelization on CPUs, MPI is often used for the commu-
nication between the processes, for example in [DMN08]. Furthermore, the update of the
networks’ parameters often occurs in a synchronized way by a central instance [DCM+12],
limiting the efficiency.
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2 Introduction

This thesis devises an efficiently parallelized algorithm named poadSGD for the training of
a neural network, when using a compute cluster with standard hardware. The focus is on
the question whether an improvement of the performance can be achieved by using differ-
ent communication schemes as provided by the partitioned global address space (PGAS)
programming model. One such model is GASPI [Con13] which relies only on one-sided
and asynchronous communication patterns. This leverages the idea of devising a batch-
wise variant of the stochastic gradient descent method with a pipelining scheme where
GASPI allows for an asynchronous update. The poadSGD algorithm maps the network
layer-wise to different groups of processes, together achieving a pipeline which processes
several batches of training samples directly after another. The updates are computed by
averaging the updates of a batch and applying the result directly to the network. Updates
are thereby sent asynchronously without interrupting ongoing computations of subsequent
batches. The main algorithmic part of the pipelined version is the matrix multiplication
which occurs for a special distributed setup, namely each matrix being held by a different
process group. All in all, the main research question thereby is how to efficiently imple-
ment a scalable version of this matrix multiplication where both matrices are distributed
amongst different process groups and when employing the asynchronous and one-sided
communication scheme of GASPI.

In order to efficiently handle upcoming synchronizations within the process groups and
achieve a good workload distribution, a two-dimensional block-cyclic data distribution is
applied for the matrices. Thereby, a matrix is divided into sub blocks and these are mapped
to individual processes by means of a process grid containing the processes associated with
the matrix. A structure is defined which simplifies the determination of the exact location
of each matrix element. As a result, the computation of each sub block of the matrix
resulting from the matrix multiplication only depends on the processes in a row of the
process grid of the first matrix and the processes in a column of the process grid of the
second matrix. Therefore, the first computational scheme is to diagonally iterate over these
sub blocks and compute the sub blocks which allows for a maximum number of blocks
to be computed in parallel. At the heart of the method is then the overlap algorithm.
Here, processes first work in pairs where one process is from each of the matrix groups.
The algorithm is implemented with a focus on achieving an overlap of the communication
between these pairs of processes with ongoing computations. Furthermore, based on the
setup of the process grid, the algorithm makes use of the process grid topology to apply
reduction operations on sub-groups of the process grid.

The result is an implementation of the matrix multiplication for dense matrices relying on
GASPI’s features with a special focus on its asynchronous communication scheme. The
approach is analyzed theoretically with regard to its capability for overlap for its two main
parts: the diagonal iteration over the blocks of the result matrix and the overlap algorithm
which is the main part of the computation of these blocks. The diagonal iteration proves
to always be superior to a naive implementation and the overlap algorithm is shown to
improve performance when the dimension of the blocks exceeds 382. In addition, the
strong and weak scalability on a high performance cluster is evaluated. As a first step, for
each combination of possible number of processes and size of the matrices, the block size
with the best performance is chosen for further tests. For these parameter combinations
the matrix multiplication is then run on up to 512 cores and for matrices up to a size of
131, 072 × 131, 072 (≈ 17.2 billion elements). The performance achieved in the test runs
did not withstand the expectations the theoretical analysis had promised. The speedup
and efficiency highly depend on the matrix size used. They were determined with respect
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to the results achieved on the smallest process grids with 4 processes each, such that
the ideal speedup is 64 for the largest process grid. The efficiency is about 0.2 or better
for matrices smaller than 1024 × 1024 but for larger matrices it drops drastically when
increasing the number of processes.

The implementation using the GASPI API were found to be tedious as GASPI does not
provide a black-box with easy-to-use communication calls, but provides a clearly structured
interface that leaves many details to the user such as the management of the position of
global data (in terms of offsets) and handling of buffers. Also correctly implementing with
GASPI proves to be a challenge as it requires a deep understanding of the underlying
functionality. However, the matrix multiplication was successfully implemented for the
special setup of matrices distributed across multiple process groups and based on GASPI,
although the results achieved by the test runs were below expectations. As a follow-
up step a performance analysis tool could be employed in order to detect which points
of the current algorithm could be optimized. Of further interest would be a complete
implementation of the poadSGD method based on an asynchronous framework such as
GASPI or to adapt an existing software framework for neural networks for this task.

1.1 Contributions

To provide a better overview, the author’s contributions are listed in this section.

� An introduction to machine learning and neural networks is given, also providing an
overview of parallelization techniques.

� The author presents a new pipelined method poadSGD for the parallel implementa-
tion of large-scale fully-connected feedforward networks which is based on one-sided
and asynchronous communication schemes.

� As in literature parallel models are described differently, this work presents an
overview of the different categorizations. This enables the user to understand the
context of PGAS models and to better understand the shift from comparing com-
puter architectures to comparing memory models of programming languages.

� An introduction to GASPI is presented, providing an understanding of its one-sided
and asynchronous communication model and how it affects the development of an
algorithm. Possibilities how GASPI’s communication routines are used and how they
can be employed to overlap communication with computation are demonstrated by
small examples.

� A description of the matrix multiplication algorithm based on a PGAS-model with
one-sided and asynchronous communication, written in C and GASPI, is presented.
Divided into two main sub algorithms, an analysis of the combined arithmetical and
communication complexity is given. Thereby the focus is on determining if or when
overlap occurs and how it may increase the overall performance of the application.

� Moreover helpful approaches for future numerical implementations are given: ideas
how to realize algorithmic steps and for the theoretical analysis of such algorithms,
how data usage and active processors in each algorithmic step may be represented
and that close attention has to be paid to the data dependencies.



4 Introduction

� Possible extensions and improvements are put forward, both for the author’s imple-
mentations to improve the current implementation and for the GASPI standard to
lower the entry threshold for new users.

1.2 Structure

The structure of this thesis is divided into six parts.

Chapter I - Introduction The first chapter gives a short motivation of this thesis, ad-
dressing the class of machine learning algorithms and focusing on artificial neural
networks and their significance in today’s world. Furthermore, the need for paral-
lelization of the training methods of these models is described.

Chapter II - Neural Networks A general introduction into machine learning is given
based on the description of a simple feedforward network (FNN) and a presentation
of a common learning method, the backpropagation. The task of parallelizing large-
scale FNNs is put forward and different parallelization techniques are discussed.
Finally a new parallelization approach is proposed: the poadSGD method. It is de-
scribed and its key requirements regarding the asynchronous communication scheme
and the main algorithmic part, the matrix multiplication for a special distributed
case are explained.

Chapter III - Parallel Computing Models In this chapter different parallel comput-
ing models are introduced, leading to the definition of the PGAS model and ending
with a brief presentation of the two main PGAS languages and a short overview of
further PGAS languages.

Chapter IV - GASPI At the start of this chapter, the parallel programming model
GASPI is introduced. A brief outlook on its history is given and then GASPI’s main
features are described. The introduction is illustrated by small, numerical examples.
Finally GASPI’s main characteristics are compared to those of two other PGAS
languages, UPC and CAF.

Chapter V - Dense Matrix Multiplication in GASPI This chapter first introduces
the data distribution and its implementational concept that is key to the implemen-
tation of the algorithms as it also is the basis for the later work distribution. Here-
inafter the implementation of a matrix multiplication is presented which applies to
the special case of the matrices residing on different process groups. It is followed by
a theoretical analysis of its algorithmic parts. Finally, the results of different runs
on a high performance cluster and the achieved scalability are discussed.

Chapter VI - Conclusion and Outlook The last chapter starts with an overview of
the work accomplished in this thesis. The results are discussed and additionally,
an overview of possible extensions and improvements is given. Finally, the work is
concluded by giving an outlook on future development in parallel programming and
the future significance of machine learning.



Chapter 2

Machine Learning and Neural
Networks

After their first showdown in the 60s/70s, with the rediscovery of the backpropagation
algorithm and the development of further network topologies, neural networks experienced
a revival in science and industry.

This chapter gives a general introduction to machine learning, focusing hereby on the sub-
class of artificial neural networks. First, a simple version of a feedforward network and its
learning method is introduced. The section thereafter presents variations to this network
model and describes different optimization opportunities. This information is provided
in order to give a more complete overview of this field but is not required in order to
understand the whole of this thesis. Then, turning back to the basic feedforward network,
the parallelization possibilities of neural networks are explained and an emphasis is put
on the parallelization realized on generic compute clusters. Finally, a new parallelization
approach is presented in order to achieve a pipelined, distributed version of a feed-forward
neural network. The approach combines known with new parallelization techniques and
leads to both a rethinking of the parallel paradigms used, as well as points out the need
to further discuss a large-scale matrix multiplication.

The first section of this chapter is based on knowledge gained from various sources: the
online book of Michael A. Nielsen [Nie15], a very detailed review paper in preprint form by
Jürgen Schmidhuber [Sch14], the Coursera online course “Machine Learning” by Associate
Professor Andrew Ng from Stanford University [Ng16] and a book on machine learning
from Kevin P. Murphy [Mur12].

2.1 Introduction to Machine Learning

Learning to program most often one starts out with classic programming languages. A
problem is given and an algorithm is devised to solve this problem. A prominent example
from first year’s programming class is to write code that imitates a calculator. Enter some
numbers and operations and get the according results as an output. But a problem setup
may also be much more complex and therefore require skilled and challenging programming
code for solving it.

However, for the implementation of the calculator example, the rules for the computational
steps are well known and taught at every school. But for other problems there may not be
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6 Neural Networks

such a simple recipe for solving, meaning they may not have a predefined set of explicit
rules for the solution steps. An example are the tomography screens of a patient who has
a brain tumor. Based on these pictures, writing an application that determines whether
the tumor is malignant or benign is no straight-forward task but overly complex and it
requires medical experience.
Here a different programming approach may step into place: machine learning. Arthur
Samuel coined this term in 1959 and denotes machine learning1 as the . . .

“. . . field of study that gives computers the ability to learn without being ex-
plicitly programmed.”

This means learning how to solve a given problem without specifying any rules. Of course
this does not mean that machine learning is a panacea with no effort or computational cost
involved. In machine learning the algorithm is often learned based on previous experience.
Input and output pairs are provided to the machine learning algorithm which then needs
to decide on its own how to get from input to output.
Tom Mitchell gives a more formal definition [Mit97]:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T,
as measured by P, improves with experience E.”

So a doctor may provide several pictures of brain tumors and label each picture with the
additional information whether it is malignant or benign. These labelled pictures are the
previous experience E. The task T of the program would be to develop an algorithm which
produces the risk classification for the current picture as well as newly added ones. Mea-
suring the performance P would be equal to counting the number of correctly classified
pictures. The derived algorithm would be acknowledged as “learning”, if the number of
correctly classified pictures increases.

Further applications arise from a wide range of topics, such as ([Sch14]):

� image recognition and classification,

� image segmentation,

� object detection,

� speech recognition,

� sequence recognition or

� propositional logic.

Concrete examples include the recognition of fingerprints, the detection of specific persons
or faces in photographs or surveillance videos and the detection of fraud payments by
credit card. Medical applications, such as the discovery of a tumor or its classification,
can benefit from machine learning, too. Today, machine learning is already employed by
miscellaneous companies, such as Google (search engine), Microsoft or Facebook (social
network analysis) [Nie15].

1Note that this quote is cited multiple times throughout literature but the author could not track down
the original source. It is sometimes referenced as a quotation from Samuel’s paper on checkers [Sam59]
(which is not true) and also cited as a quotation from an article in the “The New Yorker and Office
Management” from 1959 [JEG16] to which the author had no access.
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Classifications of Machine Learning Algorithms

The machine learning model is rather a generic concept. Algorithms following this model
can be classified into three main categories: supervised, unsupervised and reinforcement
learning [Mur12]. Depending on the literature the algorithms are categorized into more
differentiated subcategories including semi-supervised and active learning.
For supervised algorithms2 the previous experience E from Mitchell’s model consists of a
given data set together with correct outputs which the algorithm shall be able to reproduce
most accurately. This type of algorithm can be applied to two different types of problems:
regression problems for which the predicted result is continuous or classification problems
where the output is discretely valued. An example for the first problem type could be
the prediction of rental costs based on rentals of the previous years, whilst the formerly
mentioned tumor classification turns out to be a classification problem.
Unsupervised algorithms3 on the other hand only provide data input but no correct output
or concrete goals. The rather general purpose often is to find some kind of structure within
the input data. Again two different types of problems can be identified: clustering and
non-clustering problems. As the name indicates, the clustering problem strives to find
some kind of clustering of the data based on some relationships within the data. The non-
clustering problem on the other hand looks for some other kind of structure. An example
for the clustering problem is the grouping of news entries from different websites based on
common topics as it is used by search engines. A different example may be the grouping
of people in an election into groups of voters, undecided voters and non-voters based on
a social analysis of their profile in a social network for further campaigns. A prominent
non-clustering problem is the cocktail party problem which opts for filtering single voices
from different sound recordings at a party.
For the third type of machine learning, reinforcement learning, no samples are given.
Instead, learning occurs by means of encouragement, so it is based on rewards or punish-
ment signals given by its environment throughout the learning process. This is what most
closely resembles the way humans learn, for example when learning how to walk.
This thesis concentrates on the category of supervised learning.

2.2 Fundamentals of Neural Networks

There are several approaches to solving supervised machine learning problems. They range
from learning based on a decision tree over applying support vector machines (SVM) or
genetic algorithms to artificial neural networks and deep learning. In this section some
concepts of machine learning are introduced based on the example of an artificial neural
network (ANN), often also simply referred to as neural network, with a training algorithm
used quite often, the backpropagation. The backpropagation algorithm was originally
introduced in the 1970s, but its importance wasn’t fully appreciated until a famous paper
on that topic was published by David Rumelhart, Geoffrey Hinton, and Ronald Williams
in 1986 (republished later as [RHW88]).

Biological Background

The original inspiration of neural networks was the information processing of the human
brain. Why so? In comparison, computers already are quite large: they have up to and

2Also known as “predictive” algorithms [Mur12].
3Also known as “descriptive” algorithms [Mur12].
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probably by today more than 109 transistors with a switching time of 10−9 seconds [Kri07].
However, a human brain has about 1011 neurons with a switching time of only 10−3

seconds. Furthermore, the brain with its rather simple layout can work massively parallel,
can reorganize itself (some parts are able to take over tasks of other brain parts) and are
fault tolerant against internal or external errors (up to a certain degree). Additionally,
the brain is able to learn, either from training samples or by means of encouragement.
A computer today is able to compute in parallel and there are certain means as to fault
tolerance. But both are not as powerful as the human brain’s performance and telling
one part of a computer to cope for other failing parts is seemingly impossible. Picking up
on these qualities, the artificial neural network, commonly known as neural network, was
derived.
First, we take a step back and explore the “architecture” of a human brain in a simplified
way and then we follow up on the artificial neural network. The information on the
biological background was taken from [Kri07] and simplified a bit, focusing on the main
characteristics of the brain’s functionality. The major players of the human brain are
the neurons. A neuron may be viewed as a switch with an information input and an
information output. Even a fly already has about 105 neurons and humans with their 1011

neurons are again topped by elephants and some whale species who have twice as many.
The neurons transfer information to other neurons via synapses. These can be electrical
or chemical synapses. A chemical synapse is interrupted by a gap, the so-called synaptic
cleft. In short, the incoming electrical signal is transformed into a chemical signal, some
chemical processes occur in the cleft and the output is converted into an electrical signal
again. The electrical signal then arrives at the neuron. The cell nucleus accumulates all
the signals it receives from different synapses (from other neurons) into a single pulse.
When the accumulated signal exceeds a certain threshold potential, an electrical pulse is
sent on to other neurons.

2.2.1 Components and Basic Functionality of a Neural Network

The artificial neural network started out as a caricature of biology. The neurons, synapses
and their functionality are the basic components of a neural network. Note, that there is
not a single “neural network”. There is a common basis of the structure and functionality
and from there different neural networks have evolved. Next, a basic setup of a neural
network is introduced.
Figure 2.1 shows an exemplary graphical representation of an artificial neural network. In
the figure, the neurons are depicted as circles and are arranged in several vertical layers.
Here, a distinction is made between the neurons in the first (most left) input layer, the
output layer (most right) and the so-called hidden layers in-between. The connections
between them correspond to the synapses. These are tagged with a certain weight value
to account for the variability of the chemical processes in the synaptic cleft.
The basic functionality of a neural network can be viewed as the analysis of a given
problem on the basis of several differently weighted decision levels. Consider the problem
of identifying the fruit shown in a given picture (or set of pictures). The layers could
represent different decision levels to this question. The first layer would take the picture
in form of its pixels and hand this information on to the next hidden layer. This layer
could, for example, detect the shape of the fruit. Based on the shape the next layer
could decide on the main color within this shape. Then, another layer could categorize
the texture of the shape and so on. The output of the last layer would be a number
representing a certain kind of fruit.
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input layer hidden layers

ỹ

output layer

Figure 2.1: Depiction of a small neural network with two hidden layers.

Now how does this neural network work? In the 1950s/60s Frank Rosenblatt defined
the network as above with perceptrons (artificial neurons) which take a binary input and
output [Nie15]. Each perceptron (in one of the hidden or output layers) receives several
input values via the incoming synapses which are additionally each provided with a weight.
The binary output of a perceptron then depends on whether the sum of all weighted inputs
exceeds a perceptron-specific threshold or not.

x1

x0 bw0

w1

Figure 2.2: Single perceptron of a hidden layer within a neural network with weighted
input synapses w0 and w1 and bias b.

The output of the perceptron in Figure 2.2 is then computed as

output =

{
1, if w0x0 + w1x1 ≥ threshold

0, if w0x0 + w1x1 < threshold

or rewriting this equation as

output =

{
1, if

∑
j wjxj + b ≥ 0

0, if
∑

j wjxj + b < 0,

where the bias b acts as the negative threshold. The perceptron in this picture makes its
decision by weighing up the results of the former layer, in this case the input layer.
However with these binary-valued perceptrons making small adjustments to some weights
may result in large changes to the output. To avoid that, the sigmoid neuron may be
used: its input and output values are real-valued and range from 0 to 1 and the function



10 Neural Networks

determining the output is chosen such that small changes to the weights only cause small
changes to the output. The corresponding function is referred to as sigmoid as it is often
shaped like an “S” (see Figure 2.3). More generally, the sigmoid neuron is simply called
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Figure 2.3: Sigmoid function often used in a neural network (see Equation (2.1)).

“the” neuron, not placing any restrictions to the output function which is then called
activation function a(). Its task is more generally the limitation of the amplitude of the
output of the neuron. Still, most commonly a sigmoid function is used, for example

σ(z) =
1

1 + e−z
, (2.1)

where z is the sum of the weighted inputs.

Formal Definition of a Neural Network

An (artificial) neural network is a network consisting of multiple layers of neurons which
are connected by weighted synapses and typically modelled as a graph. More formally the
topology of the network is a triple (N,W,B) of neurons, weighted synapses and biases.
The set of neurons is denoted layer-wise as a vector:

N := {nl | nlj variable denoting j-th neuron in l-th layer, l ∈ [0, L]}. (2.2)

Similarly, the set of weighted synapses is a set of matrices where each matrix contains the
weights on the synapses between the (l − 1)-th and the l-th layer:

W := {W l | wlij := (W l)ij is weight between nl−1j and nli, l ∈ [1, L]}. (2.3)

Finally, each neuron is assigned a bias which is represented accordingly as a vector in each
layer, too:

B := {bl | blj is bias of neuron nlj , l ∈ [1, L]}. (2.4)

The first column of neurons with l = 0 is the input layer with no incoming connections
or biases. The last column l = L is the output layer with no outgoing connections. For
now it is assumed that neurons of neighboring layers are fully connected and the graph is
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nl−1j

bl−1j

nli

bli

wlij

Figure 2.4: Two neurons from subsequent layers with weighted synapses and the corre-
sponding biases.

acyclic, so without loops and synapses do not skip layers. Whilst the weights and biases
are real values, nlj is only a variable used to clarify which node is meant. The indexing of

these components is illustrated in Figure 2.4.

Each layer l ∈ [1, L] corresponds to a function f (l) which for the neurons of each layer
accumulates the weighted inputs and computes the activation function a for the input x:

xl := f (l)(x) = a(zl), where (2.5)

zl = W lxl−1 + bl. (2.6)

Here, xl−1 denotes the input vector to the synapses leading to layer l and is equal to the
output of the former layer. The dimension changes accordingly to the number of neurons
in each layer. The input vector x0 is usually simply denoted as vector x ∈ Rm (or in a
normalized fashion x ∈ [0, 1]m) with m being the number of input elements for one sample.
The same applies to the output which is displayed as y ∈ [0, 1]m with m specifying the
number of output components. The auxiliary vector z is also named the weighted input.
Note that the activation function is applied element-wise.

The neural network then is a function f : x 7→ ỹ consisting of multiple chained functions

f(x) = f (L)(f (L−1)(...f (1)(x)...)) = ỹ (2.7)

and dependent on the weights W , the biases B and the activation function a is applied4.

Note that a network where the output of one layer corresponds to the input of the next is
called a feedforward neural network. This particularly requires the graph to be acyclic.

2.2.2 Training a Neural Network

The basic concept of the neural network’s supervised learning (or the user training it) is
based on two steps: First the output of the network f(x) = ỹ is computed for a given
training sample {(x, y)}. Based on a cost function that uses the difference between the
network’s output ỹ and the known solution y an optimization of the neural network is then
computed. Thereby the parameters of the network are adapted, namely the weights W
(see Equation (2.3)) and the biases B (see Equation (2.4)). This is carried out successively
for each training sample given.

However, not all available training samples are used for the training of the network. In-
stead, the set of training data is subdivided into two (sometimes three) data sets: a training

4A mathematically better notation would be f(W,B, a, x) and f (l)(W l, bl, a, x). However, the additional
variables are omitted for a better readability.
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set, a test set and sometimes also a validation set. The largest one, often two-third of the
whole data set, is utilized for the training of the network. It is denoted as

(X,Y ) = {(xj , yj) | (xj , yj) is a pair of the training set with j = 0, . . . , n− 1, (2.8)

xj is the input vector, yj the desired output}.

In case an iterative approach is used, i. e., the training algorithm may iterate several times
over this training set. The validation set may then be applied to decide whether or not
to continue training. Note, that the validation set is only applied after a supposedly
successful training. Finally, to evaluate the performance of the trained network, the test
set is used. The performance metric is often determined as the proportion of samples of
the test set for which answers are given correctly. With the test set one can see how the
model reacts to data it has not seen before.

As mentioned above, the outputs computed by the neural network are needed in order to
set up the cost function. This is done by propagating the input information from each
sample xj of the training set through the network to get ỹj . The formula for this forward
propagation already was given in Equation (2.7) with the details noted in Equations (2.5)
and (2.6).

In order to optimize the network, the backward propagation is employed. It was first
defined by Rumelhart, Hinton and Williams in 1988 [RHW88]. They denoted it to be a
procedure that . . .

“. . . repeatedly adjusts the weights of the connections in the network so as
to minimize the measure of the difference between the actual output vector of
the net and the desired input vector.” [RHW88]

The measure of difference mentioned by Rumelhart et al. is what in this work is called a
cost function and is used to determine when a network has improved. The cost function
used in this work is the mean squared error of the outputs. It is given in Equation (2.9).

C(W,B, (X,Y )) =
1

2n

∑
xj∈X

‖yj − f(xj)‖2 (2.9)

This cost function is non-negative, quadratic and convex, improving the probability of
finding a global minimum. Optimizing the neural network then corresponds to minimizing
the cost function.

As a means of minimizing the cost function, the gradient descent (GD) method can be
applied. In order to minimize a function g(v) with parameters v = (v1, v2) the gradient of
the function

∇g =

(
∂g

∂v1
,
∂g

∂v2

)
is computed. The gradient then determines “the direction to go” to find the minimum.
The GD law of motion [Nie15] then follows as:

∆v = −η∇g, (2.10)

where η is a small and positive value which is called the learning rate.
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Applying this law to the cost function (2.9) it yields the following update rules for the
weights and biases:

wl,newij = wl,oldij − η ∇C
∇wlij

, (2.11)

bl,newi = bl,oldi − η∇C
∇bli

. (2.12)

The gradient of C (2.9) however, can also be seen as an averaged gradient of the sub-
functions Cx = 1

2‖y − f(x)‖2. These subfunctions can be computed with the help of the
error δlj in the j-th neuron of the l-th layer which is defined as follows:

δlj :=
∂Cx

∂zlj
. (2.13)

The error δlj accounts for a change of the weighted input zlj in layer l and therefore also for
changes in the weights and biases. Applying the chain rule to Equation (2.13) the error
for the last layer L can be computed as

δLj =
∂Cx

∂f (L)(x)j
a′(zLj ) =

∂Cx
∂ỹj

a′(zLj ). (2.14)

This can also be written in vectorized form as

δL = DL∇xLC, (2.15)

where DL is diagonal matrix containing the entries a′(zLi ) and ∇LxC the gradient vector
of C in layer L with respect to the sample x:

DL = diag(a′(zL)) =

a
′(zL0 ) 0

. . .

0 a′(zLm)

 ,

∇xC =


∂Cx

∂f (L)(x)0
...

∂Cx

∂f (L)(x)m

 .

This error is then propagated backwards through the neural net, similarly to the forward
propagation, yielding δl for l = L − 1, . . . , 1 as presented in vectorized form in Equa-
tion (2.16).

δl =
(

(W l+1)T δl+1
)
� a′(zl), l = L− 1, . . . , 1 (2.16)

Here, � is the Hadamard product which computes the product of two vectors element-wise.
The propagated error δl can then be related to the gradients of Cx as follows:

∂Cx
∂bl

= δl, (2.17)

∂Cx
∂W l

= f (l−1)(x)δl. (2.18)
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Based on these equations the new weights and biases of the neural network can be com-
puted. All in all, Algorithm 1 describes one learning step of the neural network based on
the GD method.

It is known, that GD does not always perform well. For example, methods also making
use of the second derivative converge a lot faster. However, only using the first derivative
makes computation simpler and can be implemented in an easier way [RHW88]. More
details about the issues of GD are explained in Section 2.2.4.

// INPUT: Neural network (N,W,B) and training set (X,Y ).

// Initialization of network

1 setup network topology
2 initialize weights and biases

// Iterate over training set

3 for (x, y)j ∈ (X,Y ) do

// Feedforward of input

4 for l = 1, 2, . . . , L do
5 compute the weighted input zl as in Equation (2.6);

6 compute the output of this layer xl as in Equation (2.5);

7 end

// Backward propagation

8 compute the error δL in the neurons of layer L as in Equation (2.14);
9 update weights WL and biases bL as in Equation (2.11) and (2.12) ;

10 for l = L− 1, . . . , 1 do
11 compute error δl in the neurons of layer l as in Equation (2.16);

12 update weights W l and biases bl as in Equation (2.11) and (2.12) ;

13 end

14 end

Algorithm 1: Application of forward and backward propagation to a training set
based on gradient descent.

In the setup of Algorithm 1, the network is trained with the same data (possibly in the
same order) over and over again. Unfortunately, the backpropagation algorithm cannot
be shown to converge [Hay09]. Therefore, some kind of stopping criterion is required to
determine when the training is assumed to suffice. The computation of the gradient for the
whole training set may take quite long [Nie15]. A variation of GD, the stochastic gradient
descent (SGD) method therefore follows a different path to speed up the computation.
The idea is to randomly divide the training set into smaller subsets and then train with
each such mini-batch one after the other. After having trained the network with each mini-
batch, the validation set is applied and the percentage of correct answers determined. This
validation step avoids overfitting. If the result is not good enough, another such epoch
is started. Different mini-batches are randomly created and again trained one by one.
Algorithm 2 shows the stochastic GD method. The size of the mini-batches s and the
number of epochs E are freely selectable. If the size s is chosen to be one, the method is
called on-line learning.
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// INPUT: Neural network (N,W,B) and training set (X,Y ).

// epoch

1 for e = 1, . . . , E do
2 randomly shuffle training data;
3 create mini-batches of size s: (X,Y )m = {(xi, yi) ∈ (X,Y ) | i = ms, . . . ,ms+ s};

// training of network on mini-batches

4 for m = 1, ...,M do
5 apply forward and backward propagation as in Algorithm 1 for neural

network (N,W,B) and training set (X,Y )m;

6 end

// evaluate neural network

7 evaluate neural network with validation data;
8 if percentage of correct results high enough then
9 stop;

10 end

11 end

Algorithm 2: Stochastic gradient descent (SGD).

2.2.3 Characterizing Different Neural Network Models

In Section 2.2.1 a certain model of a neural network was introduced. But not all networks
use the same topology or work the same way. In general, artificial neural networks can be
characterized by three different properties [Lip88]:

� network topology

� node characteristics

� training rules.

The first aspect refers to the number and type of layers of the neural network and to the
connectivity structure in the neural net’s graph. Also, for some networks the topology
may not be fixed but dynamically adaptable. The node characteristics are represented by
the internal threshold (the bias) and the way a node processes its given inputs, including
the non-linearity (the activation function) that is applied. Additionally, the node charac-
teristics include the type of neuron activation, representing the moment when a neuron is
activated. This can be done synchronously for all neurons of a network at once or asyn-
chronously following the topological order or in a random order [Kri07]. The last aspect
is the training rules. This is a broad field, ranging from choosing of the training set, ini-
tializing the network’s parameters, choosing the loss function, determining how and when
the network is updated down to deciding about the stopping criterion for the training.
Some network models not only assume a certain topology but may also fix the activation
function or the training algorithm to be used. This work focuses on the usage of feedfor-
ward neural networks, like those encountered in Section 2.2.1. Beyond that, this section
gives a short overview on the characteristics of different network models, as well as further
activation functions and training algorithms for the interested reader. This overview is not
necessarily required in order to understand the rest of this work but completes the basic
overview of this topic. For more information on models and types of neural networks,
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the author refers to a very detailed review paper from Jürgen Schmidhuber [Sch14], cur-
rently published as a preprint at this point. It contains a very detailed overview on the
evolvement of neural networks up till 2014.

Models of Neural Networks

In Section 2.2.1, the feedforward neural network (FNN) was introduced. It is a multi-layer
network with synapses only pointing in the direction of the subsequent layer. Thereby the
output of one layer is always the input to the subsequent layer, no information is ever fed
back. In other words, the corresponding directed network graph is acyclic. The network
always consists of an input layer, a number of hidden layers and an output layer. By
increasing the number of hidden layers, the network may extract higher-order statistics
from its input [Hay09]. The connectivity structure between layers and neurons depends
on the network’s topology. A network is called fully connected when all neurons in a
layer are connected to all neurons in the subsequent layer, otherwise it is called partially
connected. At times, an FNN may also include shortcut connections: In this case a neuron
is connected not only to the subsequent layer but also to another one closer to the output
layer.

A special type of FNN is the convolutional neural network (CNN). In addition to the fully
connected layers known from the FNN, it contains special layers such as convolutional
layers (from which the name is derived) together with feature maps or subsampling lay-
ers [BRSS15]. The convolutional layer extracts local features from its given input. This
locality is implemented by connecting the neurons inside such a layer only to a few neu-
rons of the previous layer which form a so-called local receptive field. Neurons which are
part of feature maps share their weights, which leads to an invariance to shifts or certain
transformations of the input data. This also reduces the number of parameters needed in
the network. Pooling or subsampling layers perform a kind of non-linear down-sampling,
thereby reducing the transferred data. The most common one is the max pooling. Com-
binations of convolutional and pooling layers are also referred to as MPCNN networks.
In general, a convolutional network is well suited for pattern classification and therefore
often applied for image or video processing and operations involving the natural language.
Some popular CNNs include the “LeNet”, the “AlexNet” and the LSTM network [Nie15].

Another network type is the recurrent neural network (RNN). The main difference between
an RNN and an FNN is the removal of the feedforward restriction. In an RNN the synapses
may also point backwards to a previous layer or back to a neuron itself. In other words,
the corresponding directed network graph allows for backward connections and therefore
cycles. Otherwise it is a static multilayer perceptron network [Hay09].

How does this affect the behavior of the network? Interpreting this in the biological sense,
the neuron fires only for a limited time span [Nie15]. Firing backwards therefore does not
affect other neurons instantaneously but in a different time step, avoiding dependencies.

So whilst a CNN performs a convolution in space, the RNN performs a convolution in
time. The final output of the network then depends on the current input as well as all
(or some) previous inputs. In addition to input, hidden and output layers an RNN also
contains an element called a time-delay unit to delay the firing.

Such a network can also work in a “generative mode”. That means it can produce new
elements by sampling from the output probabilities. RNNs are often applied to the pro-
cessing of natural language or speech and in general to applications which predict certain
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time series such as the weather forecast. An example for an application to the natural lan-
guage is the task of predicting the probability of the next word in a sentence or generating
a scientific paper based on previous ones.

The following information about further network models in this section is based on a book
from David Kriesel [Kri07]. Another supervised learning model is the Hopfield network
that features completely linked neurons without any self-connections but with symmetric
weights. The Hopfield network originates from simulating the behavior of particles in a
magnetic field. Other possible models from the class of unsupervised learning are self-
organizing maps, adaptive resonance theory or radial basis function networks. A short
overview of these three is given in order to provide a better understanding of other network
types.

A self-organizing map (SOM) is basically a neural network where the output is not a
vector of values but the state of the network itself. This can be compared to the state of
our brain when storing memories. The brain has a concept which is learned and adapted
given new impressions each day. When a new external input (a new impression) is given,
it is stored in some way and the output is the new state of the brain.
The idea of an adaptive resonance theory network (ART) is to classify a given input by
returning a 1-out-of-n output, following the winner-takes-all scheme. It only consists of
two layers: the input and the resonance layer. These are fully connected in both directions,
propagating activities in one layer back to the other one, leading to a resonance. Training
an ART network therefore means adapting both weight matrices. First the activity in
the input layer is propagated to the resonance layer, where the strongest corresponding
neuron wins. Then the weights of the according weight matrix are updated to enhance
the output even more. Afterwards, only the weights of the winning neuron are conveyed
back to the input layer.
Finally, radial basis function networks (RBF) are again more similar to FNNs. However,
the number of hidden layers is fixed to exactly one and different computational rules apply
to RBF and the output layer. Firstly, neurons in the RBF layer do not have any input
weights (or are constantly set equal to 1). Instead they compute the euclidean distance
between the input and the position of the current neuron and feed this information into a
radial basis function (the activation function). Secondly, neurons in the output layer do
not apply an activation function (or only apply the identity function). So they basically
compute a linear combination of the RBF layer’s outputs. RBF networks originate from
approximation theory [Dre05].

Activation Functions

Some of the activation functions were already introduced in Section 2.2.1 or mentioned
alongside with the models of neural networks in the previous paragraphs. Here, three
popular activation functions applied in standard neural network models such as the FNN
are presented. These three functions are illustrated in Figure 2.5.

The threshold function is used by a binary-neuron, also referred to as McCulloch-Pitts
model [Hay09]. For the weighted input of a given neuron, the output is computed as:

a(z) =

{
1, if z ≥ threshold

0, if z < threshold

It has the all-or-none property, in this case a(z) ∈ {0, 1}.
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(a) Threshold function used in McCulloch-
Pitts model.
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(b) Logistic or Fermi function σα(z) for dif-
ferent values of α.
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(c) Hyperbolic tangens function tanh(z).

Figure 2.5: Examples of activation functions.

The most commonly used activation function is the sigmoid function which was introduced
in Section 2.2.1. It has an S-shaped form and its output values are in the range [0, 1].
Contrary to the threshold function, the sigmoid function is differentiable. The more general
version of it, the logistic [Hay09] or Fermi function [Kri07], allows for the usage of different
slopes. It is defined as

σα(z) =
1

1 + e−αz
, (2.19)

including the slope parameter α. As α approaches infinity, the function becomes the
threshold function. Figure 2.5b shows the sigmoid function for different values of α.
In order to get values from a different range, the hyperbolic tangens function tanh can be
used:

tanh(z) =
ex− e−x

ex + e−x
.

The activation function then ranges from −1 to +1. This may be desirable for certain
cases [Hay09]. The function is illustrated in Figure 2.5c.

2.2.4 Challenges of Gradient Descent, Optimization and Regularization

For multilayer FNNs, the classical backpropagation was the first successful algorithm to
be used [CGBFRAB06]. However, this version encountered various problems which are
presented in the next paragraph. Thereafter different optimization and regularization
techniques for these problems are briefly introduced and further literature is listed.
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Challenges of the Gradient Descent Method

The depth of a neural network is determined by its number of layers L. A neural network
is considered deep if it has a high number of layers. Using more layers means increasing
the complexity of a problem. Each layer can be interpreted to be a decision step concerned
with a different level of abstraction compared to the original problem. So a deeper network
may give more precise results than a shallow one or be more general (i. e., better cope with
new, yet unknown samples).

However, when using a deeper feedforward network with a gradient-based learning method
and backward propagation, an instability in the learning process may be experienced [Nie15].
For either the earlier or the later layers of the network learning process proceeds noticeably
slow.

Reflecting on the computations of the backward propagation, we notice that the gradient
of the cost function is computed by multiplying the outputs of the activation function
according to the chain rule. Using an activation function with absolute values smaller
than one thus results in very small to almost zero gradients. Hence, the gradients for
the first layers are very small which makes the learning progress there slow. By some
researchers this is known as the vanishing gradient problem and was first described by
Sepp Hochreiter in his diploma thesis [Hoc91]. If instead an activation function is used
with significantly large gradients, learning in the first layers is considerably faster than in
the later layers.

As shown by this example, the basic setup of learning for a deep neural network has got
some obstacles. In general, other problems may occur as well. Classical backpropagation
has been observed to be a rather slow learning algorithm [Roj96, CGBFRAB06]. If some
parameters are not chosen well enough, it might become even more slow. The learning of
an ANN being NP-complete, results in the worst case scenario having the computational
effort for computing the parameters increase exponentially with the number of unknown
parameters [Roj96].

Other than that the success of the gradient descent method highly depends on the ini-
tialization of the weights and the choice of the learning rate. If the learning rate is too
small, the updates computed by backpropagation may get stuck in a local minimum of the
nonlinear error function. If otherwise the learning rate is too large, the gradient direction
may be trapped in a canyon of the error surface, oscillating frequently.

Finally, the success of classical backpropagation also highly depends on the problem it is
applied to. Even though a network setup may provide good results, often a learning task
can be found which makes the same network perform much worse [Roj96].

Neural Networks can also encounter a point in training where the training result first
improves but then saturates. The result may be an overfitting or overtraining of the
network. A reason may be that the network may be too complex and too few training
samples may have been provided. The network may then adjust to noise in the data or
simply memorize the input samples [Dre05]. As a result, it is not able to generalize well
to new unseen samples.

The opposite can also happen: when the model is too simple, it will not be able to adapt
to data with a high complexity. For example a model represented by a linear function will
not be able to learn to map input and output pairs from a parabolic function.
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Optimization and Regularization

Today, many variations of the backward propagation algorithm are used or applied a
priori in order to cope with the challenges presented in the last section. Typically, not
only one technique is used but a combination of them [Roj96]. However, finding out which
techniques work best for a given problem is often only achieved by trial-and-error.

The choice of the initialization of the weights influences the convergence speed of the
method applied. Castillo [CGBFRAB06] summarizes some of these methods, from statis-
tically controlling the weights to initializing them with vector quantization prototypes.

In order to avoid the gradient direction leading to wide oscillations in a narrow valley
of the error surface, a momentum term can be added [Roj96, Hay09]. Instead of solely
using the negative gradient direction, a combination of both the current gradient and the
previously computed update is used:

∆wij(t) = η
∇C
∇wij

− µ∆wij(t− 1).

The addition of the previous gradient direction is controlled by a scalar µ, the momentum
rate. With its introduction there are now two parameters that need to be set appropriately,
depending on the learning task.

A similar idea is to add a small constant ε to the derivative of the sigmoid [Roj96]. This
fixed offset term then can help to move out of a too flat region of the error surface. The
term is only added when moving across relative flat surfaces, otherwise the exact gradient
direction is used.

Clipping the derivatives of the sigmoid function, for example by setting σ(z) ≥ 0.01,
is an approach proposed to avoid the vanishing gradient described in the previous sec-
tion [Roj96]. The computation then does not use the actual derivative anymore but the
vanishing gradient would be avoided.

Although the backpropagation algorithm is highly sensitive to the precision and the range
of numbers which are being used [NS92], the floating-point operations also make the algo-
rithm quite expensive. Therefore, the goal of the this technique is to reduce the number of
floating-point operations [Roj96]. As the activation function is typically based on exponen-
tial functions (sigmoid and hyperbolic tangens), an idea is to not compute them explicitly
but instead store the output values in tables and only look-up the result. An alternative
is to use fixed-point arithmetic.

The step size taken by the standard backpropagation method is fixed. Contrary to this,
the adaptive step algorithms follow the idea of adapting the step size by changing the
learning rate based on additional information [Roj96]. The idea is to increase the step
size whenever the direction leads further down towards the minimum and to decrease
the step size whenever the algorithm oversteps a minimum. An example is the dynamic
adaption algorithm which first generates two points and then moves to the point with the
lower error [Roj96]. In case the learning rate is not global but each weight has its own
local learning rate, the learning rates can be optimized individually to better correct the
direction of the negative gradient. Further methods mentioned by Castillo et al. are the
self-determination of the learning rate, a nonlinear adaptive momentum scheme for fast
stochastic gradient descent and other new methods [CGBFRAB06].

Another set of algorithms aiming at optimizing the learning of a neural network are the
second-order algorithms. Their basic idea is to find a better gradient direction and increase
the speed of convergence by also including information about the curvature of the error
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function in terms of its second derivatives [Roj96, Hay09]. Instead of evaluating the Hes-
sian matrix and computing its inverse at each step, which is computationally expensive, a
quadratic approximation is used or heuristics applied. Examples include the quasi-Newton
methods DFP and BFGS which employ an approximation of the inverse, the Levenberg-
Marquardt method and the conjugate gradient algorithms [CGBFRAB06]. In general,
second-order methods are more efficient than methods based on gradient descent but they
are not as useful concerning larger networks when trained in batch mode [CGBFRAB06].

Relaxation methods utilize the perturbation of weights [Roj96]. Instead of computing
the gradient of the error function explicitly, it is discretely approximated. A small value
is added to a weight and the update of the parameters is then based on the difference
between the error of the gradient with and without the disturbance. Thereafter the next
weight is randomly selected and the same procedure applied.

In their work Castillo et al. also show a sensitivity-based linear method for a two-layered
FNN [CGBFRAB06]. The weights are learned by solving a system of linear equations and
based on a sensitivity analysis.

The general approach to avoid overfitting of a model is to either increase the amount of
training data or to reduce the model’s parameters. In situations with large networks where
overfitting cannot be avoided, regularization methods are applied. The methods can be
divided into two classes, as described by Dreyfus [Dre05]. The first is the class of early
stopping methods. The basic idea here is to stop the training before the minimization
of the loss function is finished. The training may still improve for the given training
set but may not generalize well anymore, if training was to be continued. An example
for a stopping criterion is to monitor the variation of the standard prediction error of a
validation set and to stop when that increases. However, the second class of regularization
methods is often preferred: the penalty methods. A penalty term is added to the cost
function that penalizes overly complex models. The most popular term is the weight
decay which prevents the weight parameters from increasing too much.

2.3 Parallelizing Neural Networks

The advancement of computing power enables larger and more complex neural networks
to be implemented. Such large-scale networks can contain several thousand neurons per
layer, leading to networks with several billions of parameters [DCM+12]. Other networks
increase the depth of the network in order to increase the complexity of the initial problem.
All in all, the higher complexity leads to a higher computational demand, especially in
the training phase [PLWH03]. As neural networks inherit the natural parallelism of their
biological origin [Sei04], it is only natural to move onward with their parallelization.

The following sections give an overview of the kind of hardware employed for parallelizing
neural networks, in what way parallelization techniques for neural networks were catego-
rized so far and a short review on how these techniques were implemented in the past. The
final section then proposes a new way of parallelizing neural networks: firstly, by employ-
ing a new parallelization method and secondly, by radically switching to a new parallel
programming paradigm which makes use of its one-sided, asynchronous communication
scheme.
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2.3.1 Hardware Employed for Parallelization

Parallelizing the training phase of neural networks has been vastly considered [RS97].
Neural networks have been implemented on different kinds of hardware:

Most approaches focus on special purpose hardware such as GPUs which have the ability
of performing computations on huge data sets massively in parallel, especially when batch
training is used. In particular, GPUs apply well to convolutional neural networks. Now,
although GPUs are well placed for these parallel computations, they are limited in their
amount of memory when used as a standalone processor. Not all models fit into the
memory of a single GPU [DCM+12]. Therefore, some researchers try to reduce the size of
the data sets or to decrease the size of the network itself but often this is then less attractive
for the problem it is applied to. Others consider using multiple GPUs. Already some
software frameworks support the usage of up to 4 GPUs [AAB+15, JSD+14, BLP+12].
However, efficiently parallelizing large-scale neural networks on multiple GPUs remains
more difficult to implement successfully.

Other researchers aim at using computers which are specifically designed for neural net-
works: different neurocomputers [FFA92] or neuromorphic hybrid systems such as the
BrainScaleS [SBG+10]. These systems are closer to the biological origin of neural net-
works but are less well able to be applied to more general problems.

Also note, that not all computing labs or research institutions have access to advanced
special-purpose hardware. Hence, being able to parallelize well when resorting to stan-
dard hardware may be of great advantage. Of course, using common computing clus-
ters entails other drawbacks, due to the often high network latency and low bandwidth.
Therefore, several different approaches have been made in order to avoid the occurring
communication [DMN08]. Nevertheless, the high availability of computing clusters in
many cases outweighs the potential limitation of speed-up. In addition, it was shown that
the performance of an implementation on a compute cluster can also surpass that of an
implementation on a GPU [DCM+12].

It remains to be said that there is no “best way” of parallelizing a neural network imple-
mentation. The best parallelization method depends on the type of the problem and the
availability of hardware. This thesis rises to the challenge of using compute clusters with
standard off-the-shelf hardware.

2.3.2 Types of Parallelization

Artificial neural networks offer many possibilities of parallelizing them. In their paper from
1992, Nordström and Svensson describe six different methods of parallelization [NS92]
when using several processing elements at once. Not all types provide equally useful
speed-up and may also work differently well on different types of hardware. Later authors
usually chose only one or two of these methods.

The first parallelization type in the hierarchy described by Nordström and Svensson is the
parallelization of the training session. Here, each processing element receives a copy of the
complete neural network and the training set. However, each network is initialized differ-
ently and may also train with different learning rates. After training them individually for
a certain number of epochs, the best trained network is selected. This method makes it
possible to try a lot of different network types without having to restart a training session
over and over again.

The next type of parallelization is based solely on the distribution of the training set:
the training example parallelization. Also referred to as sample parallelism [BP95], ex-
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emplar parallelism [RS97] or pattern parallelism, the overall term data parallelism is self-
explanatory. Again each processing element holds a replica of the neural network, only
this time the networks have identical parameters to start with. The training set is then
distributed across the processing elements. Either each subset is chosen to be disjoint
of the others or the subsets are selected randomly [DMN08]. Each process then trains
its replica based on its sample subset. At the end of an epoch, the weight changes are
accumulated and all network copies synchronized. In which way the weight exchange
and update occurs, is implementation-dependent. Pethick et al. [PLWH03] accomplish
this by exchanging the data with one master process whilst Rogers and Skillicorn [RS97]
implement a tree method.

Layer parallelization, also called Forward-Backward Parallelism is based on the idea of
pipelining the computations by sending one sample directly after the last through the
network, so that several are processed simultaneously in different layers. Nordström and
Svensson considered this type of parallelization not to have enough effect to be further
considered.

More popular in being used are the following two types of model (or network) parallelism:
neuron parallelism and weight parallelism. Neuron or node parallelism5 distributes a
network across several processing elements such that all incoming weights to a neuron
are held by one processing element. Related to the weight matrix of one layer this is
equivalent to mapping a row of the weight matrix, corresponding to all synapses leading
to one neuron, to a process. Thereby, all weighted sums and activations in a layer are
computed concurrently. According to Dahl et al. [DMN08] and Dean et al. [DCM+12],
this type of parallelization only then yields good performance when the distributed neural
network being used is large enough to diminish the effect of dominating communication
costs.

The second way of distributing a network across the processing elements is the weight
parallelism. The weights are distributed such that all inputs to a neuron can be processed
in parallel. This way the neurons of a layer are mapped to different processes. For the
weight matrix this corresponds to a column-wise distribution to the processes.

A combination of the latter two parallelization types not mentioned by Nordström and
Svensson but considered by Rogers and Skillicorn [RS97] is the block parallelism. Rogers
and Skillicorn here map the neurons of the network to the processes in a block-wise fashion.

The last parallelization type Nordström and Svensson introduce is the bit parallelism.
It refers to processing the bits of a value simultaneously and was found not to increase
speed-up enough to be worth further consideration.

2.3.3 Review of Parallelization of Neural Networks on CPUs

Over the years, parallelizing a neural network for a computing cluster was done based on
the different types of parallelization described in the previous section. Here we present
some of the research that has been carried out in this field throughout the years.

As mentioned before, Nordström and Svensson [NS92] introduced different types of paral-
lelization. Additionally, they described all kinds of different parallel computers that were
specifically designed for or at least employed to implement neural networks.

Further special-purpose built neurocomputers are mentioned by Fujimoto et al. [FFA92].
They also propose two new parallel architectures for neurocomputers: the toroidal lattice
architecture (TLA) and the planar lattice architecture. The key idea behind these archi-

5Also called unit parallelism.
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tectures is to split the neuron model into its synapses and dendrites, i. e., the weighted
sum of the inputs, and the cell body which computes the activation function. These basic
functionalities are then mapped to hardware, leading to dedicated synapse and cell pro-
cessors, as well as processors specialized for input and/or output purposes. Fujimoto et
al. find the performance of their prototype of the TLA neurocomputer, when applied to
the traveling salesman problem and the identity mapping, to be almost proportional to
the numbers of processors used.

Besch and Pohl approach the parallel implementation of an FNN using the BP training
algorithm by encapsulating functional units such as the computation of the gradient, the
calculation of the error and the update of the weights [BP95]. These functional units are
then parallelized and are re-used as black boxes within the code. The communication
within the units is accomplished by a distributed logarithmic tree.

Rogers and Skillicorn on the other hand compare different parallelization techniques: ex-
amplar (training example), block and neuron parallelism [RS97]. Contrary to the neuron
parallelism described by Nordström and Svensson [NS92], Rogers and Skillicorn choose
to map the neurons of the neural network randomly to the processing elements. Fur-
thermore, they reduce the block parallelism soon to layer parallelism, by choosing the
width of the rectangle to be one. These three models are compared by viewing them as
bulk synchronous parallelism (BSP) programs. BSP programs consist of sequentially ex-
ecuted supersteps which contain three phases: local computation, global communication
and a synchronization step. Based on this program model, Rogers and Skillicorn find all
three parallelism types to require the same amount of time for computation but that the
exemplar parallelism outperforms the other two considering the communication cost.

Again different implementations of the backpropagation on a cluster computer are com-
pared by Pethick et al. [PLWH03]. They focus on exemplar and node parallelism whereas
for the latter they also discuss whether to update after each sample or only after computing
a whole batch. For both parallelism schemes communication is performed by sending data
back and forth with a master process. They use one hidden layer and vary the number
of neurons per layer (ranging from 125 to 2000), the size of the training set (between 100
and 20,000 samples) and using different numbers of processes (up to 32). Pethick et al.
conclude that node parallelism tends to outperform exemplar parallelism for either small
training sets or large networks. If it is the other way around, exemplar parallelism wins.

Similarly, Dahl et al. parallelize an artificial network based on backpropagation for an
eight-node cluster with pattern parallel training [DMN08]. However, here the subgroup
of patterns for each processing element are chosen randomly, thus opening the possibility
that not all samples have been processed in the end. Also, in contrast to Pethick et al.,
in this publication the global synchronization is not performed via a master process but
by using the MPI Allgather function which is basically a synchronous broadcast call. For
the local computations, the open source library FANN [Nis03] is employed. In total they
get a best speed-up factor of 10.6 for 8 nodes being used.

A parallel implementation of the stochastic gradient descent algorithm is performed by
Zinkevich et al. [ZWLS10]. Their algorithm SimuParallelSGD distributes the training set
to the processing elements which all have a copy of the network. Each network is trained
with its batch of data and computes the updates of the gradient independently. After the
batch is processed the weights from all processes are aggregated and averaged weights are
computed. Zinkevich et al. praise their algorithm for its small amount of communication
due to communication only being necessary at the very end of the training phase.

In their paper Dean and his team introduce the software framework DistBelief [DCM+12].
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Within this framework they developed two new algorithms for simulating neural networks:
Downpour SGD and Sandblaster L-BFGS. Downpour SGD is an asynchronous variant
of the stochastic gradient descent algorithm whilst Sandblaster L-BFGS relies on a dis-
tributed batch optimization. Both algorithms combine both model and data parallelism
and follow the concept of a centralized sharded parameter server. These parameter servers
each hold a part of the network parameters and run independently from each other. Other
groups of processes each fetch the current network parameters, train on a subset of the
training set and send their weight updates to the central servers. For the Sandblaster algo-
rithm there is also an additional coordinator process. The updates occur asynchronously
and at any time parameters retrieved at a given time may already be outdated. Dean et
al. apply their algorithms to speech recognition and visual object recognition applications
with 5 layers and 2560 hidden nodes each for the first and 3 stages with 21,000 nodes in
the output layer for the second application. The training sets contain 1.1 billion labeled
samples and 16 million images, respectively. As a final result, they find that “given access
to sufficient CPU resources, both Sandblaster L-BFGS and Downpour SGD with Adagrad
can train models substantially faster than a high performance GPU” [DCM+12].

Keuper and Pfreundt propose the algorithm ASGD which is based on stochastic gra-
dient descent and which especially relies on an asynchronous one-sided communication
paradigm [KP15]. Following a scheme similar to SimuParallelSGD, the algorithm initial-
izes the same network on all nodes and provides each with a subset of the training samples.
For a certain number of iterations, the algorithm then proceeds with its computations lo-
cally thread-parallelized and independently from the other nodes. Each node randomly
chooses a mini-batch from the subset and computes the aggregated update of the sam-
ples of this batch. The weight update consists not only of the locally computed results
but is combined with an update computed by another node at a different iteration step.
To ensure the combination improves the result, the Parzen-Window optimization [KP15]
is applied. After completing the local update, the node sends its the result to another
randomly chosen node, writing it into a buffer of the receiving node. The receiving node
then uses this result again for its own weight update. The communication occurs asyn-
chronously, thereby opening the possibility of overwriting updates in the buffer that have
not been used yet or working with only partially written data. Keuper and Pfreundt refer
to this as a lock-free approach which scales quite well on up to 1024 cores.

2.4 New Parallel Method for Neural Networks: poadSGD

The network this work focuses on is a large-scale fully-connected feedforward neural net-
work featuring a high number of hidden layers with a large number of neurons each. For
easiness of use it is assumed to have the same number of neurons in each hidden layer.
As a consequence, the network has a very high total number of parameters which do not
fit into a single processor’s RAM, leading to the need for its parallelization. As men-
tioned before, various types of hardware can be employed for this task. However, in lack
of special-purpose hardware, the implementation shall be applicable to a compute cluster
consisting of standard commodity hardware. The author therefore proposes the train-
ing algorithm poadSGD, a pipelined, one-sided and asynchronously updated, distributed
variant of SGD.

The next Section 2.4.1 introduces the key ideas of the algorithm. The algorithm itself is
introduced in Section 2.4.2. The special focus of Section 2.4.3 is on the distribution of
the network data. The last Section 2.4.4 about the poadSGD algorithm concludes with
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an outlook emphasizing the most crucial points needed when implementing this algorithm,
concerning the programming model and the numerical algorithms.

2.4.1 Key Ideas

The author’s idea of parallelizing the training for this network is based on picking up
on characteristics from the existent concepts of parallelism mentioned in Section 2.3 and
combining them with new ideas.

The first step of the poadSGD method is to distribute several successive layers across
groups of processes. Grouping the L layers into groups of γl successive layers and dividing
the P processes into just as many groups of size γp, they are mapped as follows:

layers processes
{1, . . . , γl} 7→ {1, . . . , γp}
{γl + 1, . . . , 2γl} 7→ {γp + 1, . . . , 2γp}

...
{L− γl + 1, . . . , L} 7→ {P− γp + 1, . . . , P}

This is a variant of the block parallelism described by Rogers and Skillicorn [RS97]. They
organized the network’s neurons into blocks of depth x (in the direction of crossing layers)
and width y (the direction within one layer). In the case of poadSGD the depth x coincides
with the number of successive layers in a group γl and the width y is simply chosen to be
the complete length of each layer m. An exemplary distribution is shown in Figure 2.6.

. . .

process group 1 process group 2 process group P
γp

Figure 2.6: Mapping of γl = 3 successive layers to process groups.

Next an idea of the layer parallelism mentioned in [NS92] is employed: the pipelined
processing of samples. Here, the first group of processing elements proceeds with the
computations corresponding to its layers. When the first group has processed its layers,
the feedforward step from one layer group to the next is computed together by these
two process groups. Hereafter, the second process group continues computing its layers’
contributions and accomplishes the last step again together with the following process
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group and so on. To avoid the first process group being unemployed, the samples of the
training set are sent through one by one. Once the pipeline is filled, all process groups
are continuously active and work independently and in parallel. The only exception is the
border case of the layer groups in which case two process groups have to work together.
In order to directly proceed with the backpropagation, a reverse copy of the network is
attached to the end of the pipeline. An exemplarily visualization based on a quite small,
not yet distributed network is shown in Figure 2.7. After the output of the feedforward
propagation has been computed it is directly used to start the backpropagation of the
error.

forward propagation backward propagation

Figure 2.7: Attaching reverse copy of network: forward and backward propagation.

Another idea that is adopted is a batch-wise operation similar to the SGD algorithm given
in Algorithm 2. Instead of performing the feedforward and backward propagation steps
only for one sample at a time as shown in Equation (2.6), a batch of samples is propagated
simultaneously. The batches

(X,Y )k with |Xk| = |Y k| = n+ 1 and k = 1, . . . , N/(n+ 1)

are chosen either randomly from the complete training set (X,Y ) – with |X| = N (see
Equation (2.8)) such that they are disjoint – or else fully randomly without any specifica-
tions except for the size of the batch.
The computation of the feedforward and backward propagation is accomplished by adapt-
ing their rules to work with all samples of a batch at once, thereby performing matrix
matrix multiplications instead of matrix vector multiplications. In the feedforward al-
gorithm – Equations (2.5) and (2.6) – computing the weighted sum and executing the
activation function for the batch Xk is then reformulated as follows:

X l := f (l)(Xk) = a(Z l) , where (2.20)

Z l = W lX l−1 +Bl (2.21)

with

X l = (xl0 |xl1 | . . . |xln ),

Z l = ( zl0 | zl1 | . . . | zln ),

Bl = ( bl | bl | . . . | bl ),

l = 1, . . . , L and W l as the weight matrix between layer l − 1 and l as specified before.
Note, that xlj denotes the output vector of layer l when computed in the feedforward
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propagation using the j-th sample of Xk as network input. In other words, element X l
ij

is the output of neuron i of the l-th layer when considering sample j.
The same conversion is done with the equations of the backward propagation for the error
of samples processed in a batch. The equations for the computation of the error in each
layer for a single sample were given in Equations (2.15) and (2.16). The error is represented
as an error matrix

Dl =
(
δl0 | · · · | δln

)
,

where l = L, . . . , 1 and δlj is the error vector in the l-th layer for sample j of the batch.

Based on these, the error DL in the final layer L yields

DL = G�AL, (2.22)

where G represents the matrix of gradient vectors and A holds the derivative vectors of
the activation function:

G =
(
∇x0C | · · · |∇xnC

)
Al =

(
a′(zl0) | · · · | a′(zln)

)
.

In this case the entry Alij contains the derivative of the activation function for the weighted
input of the i-th neuron of the j-th sample in layer l. Again the Hadamard product � is
used to denote the element-wise multiplication.
Likewise, the computation of the error Dl in the other layers is derived:

Dl =
(

(W l+1)>Dl+1
)
�Al, l = L− 1, . . . , 1 (2.23)

Both main Equations (2.21) and (2.23) of the feedforward and the backward propagation
are now mainly based on the matrix-matrix multiplication of the weight matrix with an-
other matrix. The backward step uses the transpose of the weight matrix. However, in
order to use the same implementation of the matrix multiplication, for the backward part
of the network the weighted matrix W k is directly stored in transposed form. The corre-
sponding computation then simply omits the transpose in Equation (2.23). For batches
of the same dimension as the length of a layer, these matrix multiplications are performed
for two squared matrices. In general, this is not necessarily the case.
After computing the gradient updates for a given batch, these updates are averaged and
applied to both the forward and backward network. Since a global synchronization of
all processes (of both networks) would undermine the pipelining effect, the update of
the weights occurs asynchronously. A concept of the ASGD algorithm from Keuper and
Pfreundt [KP15] is used: relying on asynchronous and one-sided communication for this
tasks. However, unlike Keuper and Pfreundt the updates are not asynchronously writ-
ten to a random node that started out with the same initial network. Instead, there is
only one distributed network that is to be updated. This update occurs similar to the
asynchronous Downpour SGD of Dean et al. [DCM+12] whenever an update of a batch
has been computed. Performing this in a one-sided and non-blocking way, it does not
interfere with the ongoing computations of other batches by the receiving processes. The
main difference to the asynchronous update of Downpour SGD is that with poadSGD the
network is not stored by a central instance but by the processing elements themselves.
However, they share the fact that the processing of a single batch may not occur with up-
to-date parameters and parameters may even be changed whilst being used. This process
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is continued until one of the following applies: either a certain threshold is reached, e. g.
after a certain number of batches all processes halt at a global barrier and the training is
evaluated or a specified number of batches has been processed.

2.4.2 The poadSGD Algorithm

All of these characteristics of the poadSGD algorithm are gathered in Algorithm 3.

// INPUT: Large-scale fully-connected neural network (N,W,B),
training set (X,Y ) and groups of processes {P0, . . . , PP}.

// Setup of network

1 initialize network(N,W,B);
2 attach reverse copy(N,W,B);
3 distribute layers(W, P);

// Train for s iterations

4 for i = 0, . . . , s− 1 do

// First process group: Start Pipeline

5 if mygroup == P0 then
6 pick batch((X,Y ), rand, n+ 1);
7 inner feedforward();
8 notify process(P1);
9 right border feedforward(P1) ;

10 end

// Inner process groups: Pipelined Computations

11 if mygroup 6= {P0, PP−1} then
12 wait on notify(Pmygroup−1);
13 left border feedforward or backward (Pmygroup−1) ;
14 inner feedforward or backward();

// Last Process group of Pipeline

15 if mygroup 6= PP−1 then
16 notify process(Pmygroup+1);
17 right border feedforward or backward(Pmygroup+1) ;

18 end

19 end

// Last process group: Compute Network Update and Distribute

20 if mygroup == PP then
21 wait on notify(PP−1);
22 compute weight updates();
23 async update(P0, . . . , PP−1) ;

24 end

25 end

Algorithm 3: Application of forward and backward propagation to a training set
based on gradient descent.
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As the characteristics were already mentioned before, the steps are only briefly commented.
In Line 1 and 2 the network is set up, the topology is created, attaching the reverse
network, and the weights and biases are initialized. The layers are distributed across
the process groups in groups of subsequent layers as shown in Figure 2.6. The exact
mapping is discussed in more detail later in this section. Then the training starts with the
feedforward and backward processing Line 4. In this case, as a stop criterion a fixed number
of iterations was chosen. The algorithm decides on what work is to be accomplished based
on the process group a process belongs to. The first process group P0 starts the pipeline
in Line 6 by picking the batch samples for this iteration from the whole training set and
computing the first forward propagation of its layers in Line 7 based on Equations (2.21)
and (2.20).
The general setup for the forward and backward computational steps is then as follows:
Reducing the view to a single process group Pi either in the forward or backward network,
the processes of Pi first compute their first layer step from their left-most layer together
with process group Pi−1. This joint calculation is referred to as a “border” step (either
feedforward or backward) as in Lines 8, 12 and 16. The right or left depends on the
position of the layer within the local layer group. In order to start a border case step only
when both process groups are ready, a notification is sent from Pi−1 to Pi. Only then does
the computation start. Afterwards, the next layer steps are computed. This all occurs
only within the process group Pi, it is an “inner” feedforward or backward step (Line 7 and
14). After the final outputs of the last layer are computed, the process group Pi notifies
the next process group Pi+1 holding the next group of layers. Again a synchronization
between the two process groups occurs as they get together to compute the next forward
or backward step together.
When a batch has passed all forward and backward layers, from Line 19 on, the updates
are computed (averaging them as mentioned before) and finally applied to the network.
In order not to interfere with the ongoing computations of the other process groups which
already process the next batches, the update shall be accomplished by using one-sided
and asynchronous communication. That is, the final process group sends the weight
updates to the other process groups without interrupting their ongoing computations
or the processes needing to post some kind of communication call in order to receive
the data. The sending and the arrival of the updates is an asynchronous process. Of
course, the parallel programming language used for implementation needs to support these
communication schemes.

2.4.3 Distribution of Weight Matrix

Now, one question that has not been addressed yet, is how exactly the layers are mapped
to the processes. To be more specific, the question is how the weights of the weight
matrix are distributed within its assigned group of processes Pi. In neuron and weight
parallelization, the weights are distributed such that all incoming weights to a neuron or
all outgoing weights from a neuron are held by a processing element. The new approach
of the poadSGD method is, not to distribute the weights based on where the weights go
to or come from a certain neuron. Instead the distribution of the weights depends on their
position in the weight matrix of the later computations in Equation (2.21) and (2.23).
The idea is to distribute the matrix in a two-dimensional block-cyclic fashion based on a
process grid. A more detailed explanation of the distribution is given in Ch. 5.1. For an
exemplary illustration a process group is assumed to consist of four processing elements:
the blue, the red, the yellow and the green one. The distribution of the weight matrix is
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then accomplished as shown in Figure 2.8.
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Figure 2.8: On the left: Two-dimensional block-cyclic distribution of a weight matrix
to a group of four processing elements (blue, red, yellow, green) and on the right the
corresponding mapped weights between two hidden layers.

This distribution of the weight matrix mainly affects the computational steps of the poad-
SGD algorithm: the inner feedforward or backward steps and the border feedforward and
backward steps. Inner steps mean matrix-multiplications within a block of layers that are
held by the same process group, as presented in Figure 2.9.

Figure 2.9: Inner case of the layer grouping: Matrix multiplications within a block layer.
Both matrices are held by the same process group.

On the other hand, matrices occurring in the computational step in between two group-
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ings of layers, in the border case, are held by separate groups of processes as shown in
Figure 2.10. This proves to be a real challenge due to the increase of communication

Figure 2.10: Border case of the layer grouping: Matrix multiplications across block layers.
The matrices are held by disjoint process groups.

necessary in order to compute the matrix-matrix multiplication of the border case with
both groups together.

2.4.4 Outlook

The poadSGD algorithm introduced in this section is based on several key points which
are visualized in Figure 2.11.
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programming
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Figure 2.11: Key characteristics of poadSGD algorithm for large-scale FNNs.
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Aiming at an efficient realization on large-scale systems, one crucial point is the implemen-
tation of the “border case” of the matrix multiplication in the feedforward and backward
step. That the matrices involved are held by disjoint groups of processes poses a challenge
of additional data exchange and distribution of the work amongst the processes.
Next to thinking about how to algorithmically implement this task, another major ques-
tion is how to deal with the additional communication. This involves not only the data
exchange between the two process groups in the border case but also opens the question of
how to update the network’s parameters without introducing unnecessary global synchro-
nizations or disturbing ongoing computations. The author proposes to circumvent this
problem by not working with standard synchronous communication mechanisms as often
know from MPI [Mes12] but to look into the area of programming models based on asyn-
chronous communication and a globally addressable address space for the asynchronous
update of the weights.
In the following we will focus on these challenges proposed, believing unless feasible solu-
tion to these key points are found, the approach of the poadSGD method may not work
efficiently. The next chapter (Ch. 3) will give an overview of different parallel program-
ming models and indicate a new parallel programming model GASPI which is introduced
in Ch. 4. The proposed implementation of the matrix-matrix multiplication for the border
case of the poadSGD is presented in Ch. 5. An implementation of the complete poadSGD
algorithm is beyond the scope of this thesis.
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Chapter 3

Parallel Computing Models

This chapter covers the background on parallel architectures and parallel programming
models by presenting different ways of classifying them. This includes a classification
based on the system’s physical memory architecture and a differentiation based on the
view on memory which is enforced by the programming model used. Therefore, first the
classification of the tightly vs. the coupled system architecture is presented. Then, the
differentiation between the shared and the distributed programming model is described,
together with a brief presentation of their respective dominating programming languages.
This leads to another parallel programming model, the partitioned global address space
(PGAS) programming model which is described in the section thereafter.

In order to better illustrate the PGAS model, two PGAS language extensions and their
handling of distributed data are described. They are also often considered to be the
standard ones in the PGAS realm: Unified Parallel C (UPC) [UPC13] and Coarray Fortran
(CAF) [NR98]. Finally, a basic overview of further languages and language extensions,
current and dispersing, which are associated with the PGAS model is given.

3.1 Classifying The Parallel World

The employment of parallel computers nowadays is a well-established approach to scientific
problems requiring high performance computing. There are some basic components that
each of these parallel computing systems consists of such as the processing element(s),
the memory, caches, registers and the some kind of interconnection network. However, no
standard setup or structure for a parallel computer or parallel computing model exists.
Instead, there are different ways of classifying parallel computers [Bar14].

A classical differentiation is the hardware classification by Flynn [Fly72]. Here computers
are differentiated by the number of their instruction and data streams. He sets up four
categories referring to whether a computer has a Single or Multiple Instruction streams
and a Single or Multiple data streams. In an MIMD6 system for example there are multi-
ple instruction and multiple data streams, so that each processor processes its individual
set of instructions as well as its individual data stream. However, most of today’s par-
allel architectures belong to the category of MIMD systems, reducing this classification’s
significance.

6multiple instruction, multiple data

35
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Other classifications are based on the way memory is organized and accessed [RR10].
Thereby, the most commonly used classification is based on the memory architecture of
the computing system, referring to the physical distribution of memory with regard to its
processes. This classification of tightly and loosely coupled systems is described in the
following Section 3.1.1. As today’s architectures seldomly fit into one of these concepts,
another classification type is introduced.
Hereby the view on memory is not based on its physical distribution but is based on
the way that the memory appears to the user, preset by the programming model used.
The section thereafter, Section 3.1.2, therefore deals with the classification of parallel
systems from a programmer’s point of view, differentiating between shared, distributed
and partitioned global address space models.
Moreover, classifications may be based on the granularity of the architecture or the topol-
ogy of the processors [ALO02]. Other, newer propositions for classifications have been
made as well. Duncan, for example, made a proposal for a classification which excludes
low-level parallelism and instead defines an informal taxonomy based on high-level prin-
ciples [Dun90]. He suggests a new high-level taxonomy with the three categories of syn-
chronous (such as vector or processor array architectures), MIMD and MIMD paradigms
parallel architectures. However, so far these newer proposals did not receive as much
attention.
Note that so far no comment was made on the type of processing elements used. Of
course, there is the possibility of using compute resources other than the standard central
processing unit (CPU). Already a lot of large-scale systems today include other processing
units such as GPUs or FPGAs. However, this work focuses on more general computing
systems solely involving standard CPUs.

3.1.1 Classification based on the Memory Architecture

Parallel computing systems may also be differentiated by their memory structure. There
exist two broad categories: the tightly coupled and the loosely coupled systems. In a
loosely coupled system the memory is physically distributed, usually by means of each
processing unit having its own local memory, whereas a physically shared memory is the
main characteristic of a tightly coupled system. This categorization is only concerned with
the physical memory structure as depicted in Figure 3.1 and does not take into account any
structural organization of the interconnection network (hypercubes etc.) or in what way
the memory is to be accessed or communication occurs. An example for a loosely coupled
system is a multiple-processor computer system, where several processors reside in a single
computing system and share a common memory. A tightly coupled system would be
represented by a cluster which is a collection of multiple standalone commodity computers
with, for example, one processor each, connected via an interconnection network. In a
cluster, these single computers are called “nodes”. Note, that these two types of computer
architectures are also often simply referred to as shared and distributed memory systems.
However, this categorization is a rather limiting description, as today’s architectures sel-
domly appear in this simple way: Following the continuous evolution of technology, com-
puting systems today most often contain multi-core processors instead of single-core pro-
cessors. These multi-core processors contain several processing units (cores) which all share
the same physical memory and peripherals. In case of compute nodes of a distributed sys-
tem with multi-core processors, the cores of one compute node may not be able to access
memory on a different computing node, resulting in a distributed shared memory system
(DSM). Computing systems of this mixed type are also called NUMA architectures re-
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(a) System with a tightly coupled archi-
tecture.

(b) System with a loosely coupled architec-
ture.

Figure 3.1: Two types of computer architectures with a tightly (left) and a loosely (right)
coupled architecture, also referred to as shared and distributed memory systems.

ferring to the non-uniformally accessible memory modules (local vs. different remote) or
ccNUMA in case of additional cache coherency. If the memory were uniformly accessible
(as is the case in a UMA system where the memory is truly physically shared), all pro-
cesses would have the same, uniform latency and bandwidth for accessing the memory.
An example of such a ccNUMA architecture is shown in Figure 3.2.

Figure 3.2: A ccNUMA system with two sockets, where processors on one socket share
the L3 cache and the memory interfaces are connected via a coherent link [HW10].

A further case may be a computing system with a physically shared memory which is
divided into memory modules each being assigned to a certain processor and thereby
supporting a distributed memory model.
Then again, another computing system with an appropriate network logic may make
distributed memory modules appear as one single address space to the user [HW10],
mimicking a shared memory.
All of these cases are hard to be matched to the loosely or the tightly coupled architectures
exclusively.

3.1.2 Classification based on Parallel Programming Models

As described in Section 3.1.1, the categorization of parallel computers solely based on
their memory setup may be inadequate. Therefore, it may be preferable to categorize
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these computer systems from the programmer’s point of view, by comparing the view on
memory the parallel programming models impose, instead of architectures.

A shared memory programming model is given when each processor has access to
every existing part of the memory, no matter its location (excluding caches and registers).
Data exchange between processors thereby occurs via the shared memory, e. g., via shared
variables.

OpenMP (“Open Multi-Processing”) [Ope13] is often thought of as the main representative
for shared memory programming model. In OpenMP directives7 are used to mark special
parts of the code which are to be processed in parallel. At the beginning of such a section
the thread running the program, called the master thread, forks a specified number of
other threads, called slave threads, in order to share the workload between them. All of
the created threads have access to the shared memory and may accomplish their thread-
specific work on any data in the memory. At the end of this section the slave threads are
put to sleep again and the master thread continues on through the code. Such a work
distribution is called the fork-join model. Both at the beginning and the end of such a
section, synchronization implicitly occurs. But explicit synchronization may be triggered
by the user as well. However, scaling beyond a few dozen processors with OpenMP is
difficult as the interconnection network is strained trying to provide fast access to global
memory for each thread [RR10], especially for distributed shared memory. Furthermore,
OpenMP does not provide any directives for exploiting locality [Ope13, CH08].

It should also be mentioned that OpenMP requires cache coherency, as remote data is
cached and therefore needs to be explicitly updated when it is remotely changed. There-
fore, NUMA architectures with an Infiniband network8 may not be able to run OpenMP
unless by special means. For example, “vSMP” aggregates multiple servers into one single
virtual system and presents a NUMA SMP architecture to the guest O/S [STW+10] on
which OpenMP may be run.

A distributed memory programming model on the other hand is characterized by
each memory module being attributed as private and therefore being only accessible by the
associated processor. In order to exchange information, processes have to send messages
via the network, known as message passing.

The “Message Passing Interface” (MPI) [Mes12] is regarded as the main representative of
the distributed programming model. MPI’s first specification was established in 1994, with
new versions continuously being published since then, together with several commercial
and open-source implementations, varying in implementational details if permitted by the
specification. The MPI standard has undergone quite some changes in its development
over the years. Three major versions were published, namely MPI 1.0 [Mes94], MPI
2.2 [Mes09] and MPI 3.0 [Mes12]. These versions will be referred to as MPI-1, MPI-2 and
MPI-3, for simplicity.

With MPI-1, communication was basically focused on two-sided communication calls.
They require both the sending and the receiving process to post a matching communica-
tion call. Both calls come in two basic versions. First, they can be blocking, allowing the
sending process only to return from its call when the data from the send buffer has been
transferred and the send buffer itself is reusable again. Secondly, they can be non-blocking,
where the communication procedure may return even though the communication has not

7Special commands for the compiler.
8Interconnect technology allowing for direct memory accesses [Pad11].
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been completed, allowing for other computation to take place (hardware-dependent also in
parallel) before posting a communication completion call to make the local buffer reusable
again. Whether the data is transferred directly to the receiver’s memory or first copied
to a temporary system buffer is implementation-dependent or may depend on the under-
lying communication layer. In the second case the system buffer may have to store all
messages from pending communication requests. Consequently, for too many processes
and communication calls the system’s resources may not be sufficient. Additionally, the
synchronization coming alongside with the synchronous communication mode prevents im-
plementations from making use of a possible overlap of communication and independent
computation. MPI-2 then introduced one-sided communication calls, with the hope of
tackling these problems. With it came parallel I/O and a dynamic process management.
In MPI-3 collective operations and extensions to one-sided operations were included to-
gether with non-blocking versions of them. However, including all new functionalities of
the MPI-3 standard into the MPI implementations takes some time. As of November 2014
for example several main implementations had not yet implemented all features [For15],
by mid-2016 almost all MPI implementations had included them [For16]. Still most non-
sophisticated applications do not yet make use of these functionalities.

Another approach to parallel computing is the PGAS programming model, relying on
a Partioned but Global Address Space for which first programming languages and APIs
emerged in the mid-90s. It is designated for distributed memory systems but provides a
virtually shared memory [RR10]. Thereby it allows for combining the benefits of a tightly
coupled with a loosely coupled architecture, as it provides a globally addressable memory
space but due to its distribution is still scalable. Often, shared memory systems may be
used, too, although performance may decrease. As this thesis is mainly concerned with
the PGAS model, a more thorough introduction to the PGAS concept and associated
languages is given separately in the following section.

3.2 The PGAS Model

In this section an introduction to the PGAS concept is given and two well-known represen-
tatives of the PGAS-languages are presented, including their features and functionalities.
A short overview of other existent PGAS languages and interfaces is given thereafter. The
Partioned but Global Address Space (PGAS) model is a parallel programming model
based on distributed (loosely coupled) memory [Pad11]. To the user the memory appears
as one globally addressable memory space. Additionally, each single part of this mem-
ory region has an affinity to one of the processors, leading to a quicker memory access
for this process compared to remote accesses of others. The according setup of such an
architecture is illustrated in Figure 3.3.

These three components “set of processors/nodes”, “global partitioned memory” and
“affinity of shared memory” is what a PGAS model consists of [Pad11].

There exist several languages, language extensions and APIs which build up upon these
three components. However, although all of these are based on the PGAS model, they
differ in several important points. Language-dependent, work assignment can be influ-
enced by the user or data dependencies can be automatically resolved. Furthermore, each
language may have different types of synchronization mechanisms and handle memory con-
sistency differently. They may also have a different way of accessing global, remote data,
from simple referencing of variables to providing detailed information about the memory
location. Eventually, each process may have its own local memory to which access is
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Figure 3.3: Architecture with local memory modules appearing as one global address
space.

restricted solely to the local process.

For a better understanding of the fundamentals of the usage of a partitioned global address
space, a short introduction of two PGAS-based language extensions and their notion of
shared data is given in the following sections. This chapter then concludes with an overview
of further PGAS-based languages and language extensions.

3.2.1 Coarray Fortran (CAF)

Coarray Fortran (also known as CAF) is a parallel programming model based on For-
tran and is the first parallel programming model known to be added to a programming
language [Pad11]. It started out in the 1990s under the name F−− as a syntactic ex-
tension of Fortran 95, intended for parallel computing. The extension was then renamed
to CAF, extending Fortran 2003, until it was integrated into Fortran 2008 as a standard
feature [Rei10]. Today, Fortran 2008 and therefore also CAF is developed and main-
tained by the International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) through their Joint Technical Committee 1 (JTC1).

Figure 3.4: Coarray a(:)[∗] in CAF located on an arbitrary number n of images.

The coarray programming model is a PGAS model and follows the single-program multiple-
data (SPMD) parallelization scheme. The program to be executed is replicated multiple
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times and runs asynchronously on each process. The replications of the program are
called images and can be identified by their unique image index. Each image has its own
independent execution state as well as its own data objects, in- and outputs.
Syntactically CAF extends Fortran by adding an extra trailing subscript in square brackets
to a data object. This addition indicates a remote memory element and the subscript,
the codimension, specifies the remote image index. Thereby access to remote data can be
achieved by simple references, omitting the need for explicit communication calls.
For example,

1 real :: a(5) [*]

declares a single precision floating point coarray a which appears as a local vector with 5
elements on each image. Figure 3.4 illustrates it’s data distribution.
Remote accesses occur then as follows:

1 real :: a(5) [*]

2 real :: b(5)

3
4 b(:) = a(:)[2]

In line 4 of the above example, each image copies the data from vector a located on the
second image into its local vector b. For the image with index 2 this is a simple, local
reference. The codimension may also be multidimensional, creating a multidimensional
layout for the data and their images.

1 real :: c(5)[2,*]

The above declaration of the shared array c would then create a local array of length five
on each image, organizing the images in a grid with the first dimension being two and the
second dimension depending on the total number of images executing the program (grid
may remain incomplete).

Figure 3.5: Data structure of coarray c(5)[2, ∗] with a codimension of rank two for four
images.

To ensure data availability synchronization statements can be included in between data
accesses. These can be barriers combined with memory synchronizations which apply to
all images together or only to designated images. In addition, CAF provides lock and
unlock statements as well as critical sections which limit access to a piece of memory or
code, respectively, to one image at a time.
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Compilers supporting coarrays include the commercial Cray and Intel Compiler and the
free OpenUH and G95 compilers [FBC+14]. However coarrays are often not yet or only
partially supported by other Fortran compilers [CS14].
Additionally, scientists from Rice University in Houston, Texas developed Coarray Fortran
2.0 (CAF 2.0) [MCASJ09]. CAF 2.0 is a runtime library and is based on the coarray
programming model but includes additional features.
More details on CAF’s features are discussed in Section 4.3.

3.2.2 Unified Parallel C (UPC)

Unified Parallel C, or UPC for short, is a parallel extension to the C standard and
is based on the PGAS programming model [UPC13]. Its first specification version was
published in May 1999 [RR10] at the Institute for Defense Analyses Center for Computing
Sciences. The next version to be published, version 1.0, was a cooperate effort of industry,
government and academia in 2001. Further versions followed with the latest specification
being version 1.3, which was disclosed in November 2013. Developing UPC was based
on experience gained from “its distributed shared memory C compilers such as Split-
C [KCD+93], AC and PCP” [CSC+05].
The general setup in UPC is as follows: First of all, instances of execution in UPC are
called threads. Each thread then is assigned local memory which is divided into two parts.
One part of it is declared to be private memory to which no other thread has access. The
other part is the thread’s portion of the shared memory space, to which this thread has an
affinity to and which any other thread may directly access. Note, that ’shared memory’
only for the context of this section refers to the partitioned, global address space, not a
tightly coupled memory architecture.
One feature of UPC is that it provides simple statements for remote memory accesses. Data
to be shared is simply declared as a shared type. Internally, the data is then distributed
blockwise across all threads in a round robin fashion, if not declared otherwise. A shared
variable is declared as follows:

1 shared <type > <variable >[<length of array >];

In the next example an array a of length 2∗THREADS and of double precision floating point
type is declared. The type supplementation shared declares the location of the array to
be within the global address space.

1 shared double a[2* THREADS ];

As a shared array is distributed across all threads and the length of the array in this case
corresponds to two times the number of threads existent, each thread would store two of
its values in its local, but globally accessible memory space, as depicted in Figure 3.6.
Each thread may then access each element of this shared array by simply calling the array
with the index of the array, handling it as one continuous array:

1 shared double a[THREADS ];

2 double d;

3
4 d = a[2];

Note that the thread does not need to know where the data is located exactly, but only
needs to name the index within the array, which is two in the code example above.
Shared arrays may also be distributed in chunks of a given size, determined in squared
brackets after the shared qualifier:
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Figure 3.6: Round robin distribution of a shared array declared as shared int a[6]

across 3 threads.

1 shared [2] double b[10];

Each thread holds the same amount of memory for this shared variable or array:

c ∗ ddl/ce/THREADSe ,

where c is the chunk size, l the original global length of the array and THREADS the number
of threads existent. The actual amount of memory held may include some padding if
the array distribution does not add up to the number of threads available, as shown in
Figure 3.7.

Figure 3.7: Distribution of a shared array declared as shared [2] int b[10] across
3 threads with a block size of 2.

UPC also provides various mechanisms for memory synchronization. Code sections or
single memory accesses can be labelled as strict or relaxed memory consistency modes.
Strict memory consistency means that statements within a code section marked as such
have to be executed without re-ordering, while relaxed code sections allow for compiler
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optimizations by changing the order of statements. Furthermore UPC provides locks to
prevent multiple concurrent accesses from different threads and blocking barriers as well
as split-barriers for general thread synchronization.

Other than the barrier, no collective operations are specified in the UPC Language Spec-
ification. However there is an additional specification for collective operations [Con03], as
well as one for parallel I/O with UPC [EGCS+06].

Besides, there are several more UPC-specific features, such as shared pointers, explicit
work distribution on each thread via a special for-loop depending on shared data, different
shared memory allocation methods and copying methods that transfer blocks of data from
private to shared, vice versa and shared to shared memory.

There are several implementations or compiler extensions for UPC. These include pro-
prietary versions like HP UPC from Hewlett-Packard which is only conform to the UPC
Language Specification v.1.2 [HPDC09], Cray UPC [BYEG06] and SGI UPC [SGI13],
as well as open-source versions like Berkeley’s UPC compiler [pro14], MuPC UPC from
Michigan Tech University [ZSS06] and GNU UPC [FV13].

More details on UPC’s features are discussed in Section 4.3.

3.2.3 Further PGAS-based languages

Similar to UPC and CAF, Titanium [YSP+98] is another PGAS-based programming model
which is designed to extend an existing sequential high-level language, in this case Java,
and builds upon a static parallelism model. It extends the Java language by immutable
classes, synchronization and communication routines, local and global references and a
possibility for the user to control memory management [YSP+98]. Titanium was developed
at U.C. Berkeley and uses the Berkeley Titanium compiler which translates the Java dialect
source-to-source directly to C with calls to the communication layer GASNet [Bon02].

Another course of development was that of the HPCS languages, named so for their origin.
In 2002, the U.S. Defense Advanced Research Projects Agency (DARPA) offered funding
for research leading towards novel languages in the HPC community as part of the pro-
gram High Productivity Computing Systems (HPCS). Funding in the first phase went
to Hewlett-Packard, SGI, Cray, IBM Corp. and Sun Microsystems, Inc., although only
Fortress from SUN [ACH+08], Chapel from Cray [CCZ07] and X10 from IBM [STG+14]
made it into the second funding phase with the latter two being the only to remain in
the third phase. These three languages were developed with a different focus than UPC,
CAF and Titanium. From the start they were not designed as extensions to existing
sequential languages, but as autonomous languages, aiming at productivity, which is de-
clared by DARPA as “a combination of performance, programmability, portability and
robustness” [Wei07].

Fortress for example introduced a new syntax, mimicking mathematical notations in order
to ease the use of Fortress for mathematical scientists. However in 2012 work on Fortress
was discontinued9.

X10 uses Java syntax, as well as its types and data structures, however it uses only a
subset of Java, i. e., leaving out arrays and instead including parallelism supporting con-
structs.The concept of X10 is based on the asynchronous PGAS (APGAS) model [SAB+10]
and includes the possibility to spawn a new thread which runs asynchronously to the oth-
ers and can remotely fulfill specified tasks on remote data [STG+14]. Thereby, remote
memory accesses are moved into remote tasks, avoiding the need of direct remote mem-

9https://blogs.oracle.com/projectfortress/entry/fortress_wrapping_up
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ory accesses [Bre12]. Atomic operations enforce local node synchronization and therefore
guarantee memory synchronization. X10’s latest version 2.6.0 was published in June 2016.
Chapel, the Cascade High Productivity Language, builds on syntax from many previous
languages, such as C, Fortran, Java, Modula and Ada [CCZ07, CCZ04]. Just as X10 it is
based upon the APGAS model, including a dynamic multi-threaded execution model. Its
main feature is the locale, an execution unit which combines computational capabilities and
uniform memory access. Chapel’s parallel features are high-level abstractions that were in-
fluenced by ZPL, HPF and Cray’s multi-threaded extensions to C and Fortran [BAdA+08].
They include atomic sections, synchronization variables, parallel statements such as forall
and the spawning of computations via section declarations. Additionally new types were
introduced, e.g. domains which are index sets and build the basis to array definition and
manipulation [Wei07]. Chapel’s latest version 1.13.1 was published in June 2016.
All three HPCS languages have in common that they combine the PGAS model with
dynamic multithreading.
There also exist several APIs which are based on or contain PGAS-motives. This thesis
is based on one of them: GASPI, which will be described in detail in the following Chap-
ter 4. In its last section (4.5), the other PGAS-APIs will be listed with some additional
information.
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Chapter 4

Global Address Space
Programming Interface (GASPI)

This chapter gives an overall introduction to GASPI, the Global Address Space
Programming Interface – an API based on the PGAS model.

It begins with a brief outline of the development of GASPI. Then an overview of the
concepts and features of GASPI is given, illustrated by small code examples.

Subsequently, in order to gain a better understanding of these features, GASPI is com-
pared to the two PGAS-languages which were introduced in Sections 3.2.1 and 3.2.2;
UPC and CAF. They were chosen for comparison as they are among the most well-known
representatives of the PGAS programming model and as the PGAS memory model is very
clearly present with these two. The focus is hereby on setup, data exchange and synchro-
nization mechanisms. The chapter concludes with a short overview of other programming
languages and APIs which are based on one-sided communication.

4.1 GASPI’s Origin

From 2005 on, the Fraunhofer Institute for Industrial Mathematics ITWM developed the
Fraunhofer Virtual Machine (FVM), a communication library and runtime system influ-
enced by the RDMA10 model and targeting Infiniband architectures [ML09]. The FVM
was superseded by GPI11 from 2007 on, again ITWM software with the same goals as

10remote direct memory access
11Global Address Space Programming Interface, not to be confused with GASPI
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the FVM and so far an in-house development being employed in some industrial compa-
nies [ITW, Pfr10].
In 2011, the GASPI project was launched with the main goal to design a new PGAS API on
the strength of the concepts and mechanisms of GPI and to enhance these. Furthermore,
the project’s goals were to develop an open-source, highly portable implementation with
additional numerical libraries to extend the capabilities available with GASPI and finally,
to provide a performance profiling interface and tool. Hence, GASPI is based on the
partitioned global address space, its one-sided and optionally asynchronous communication
and a fine-grained synchronization mechanism, the so-called notifications.
GASPI was a joint project of several research institutions: Dresden University of Tech-
nology, Fraunhofer Society, scapos AG, T-Systems Solutions for Research GmbH, German
Aerospace Center (DLR), Jülich Research Centre, Karlsruhe Institute of Technology (till
April 2013) , Heidelberg University (from May 2013 on) and the German Meteorological
Service (DWD). For a period of three years, it was funded by the “Bundesministerium für
Bildung und Forschung” within the funding program “IKT 2020 - Research for Innova-
tions”.
As a member of the Engineering Mathematics and Computing Lab (EMCL) at Karlsruhe
Institute of Technology and later Heidelberg University the author was part of the GASPI
project from the start, actively involved in the development of the API specification, as
well as carrying out research for numerical libraries based on GASPI with a focus on dense
linear algebra.
The further work of this thesis is based on the eminent outcomes of this project: the GASPI
specification v.1.01 [Con13] and its open-source implementation GPI-2 v.1.0 [WJJ13].
Today the project partners and further interested parties established the GASPI Forum 12.
The Forum’s members have been meeting once or twice a year since September 2014.

4.2 GASPI Specification and Functionalities

This section is mainly based on the GASPI specification v.1.0.1 published November
14th, 2014 [Con13]. Later versions did not significantly change the functionalities until
lately. The latest version is version 17.1 and was published only recently on February 7th,
2017 [GAS17]. The main characteristics mentioned in this section have not significantly
changed, but some functionalities were added. Whenever mentioned in this section, these
additional functionalities are pointed out explicitly. Furthermore, this section is based on
the author’s own experience with GASPI, if not mentioned otherwise.
Within the code examples throughout this section some variables are continuously reused.
They are therefore declared once in code block 4.1 and then used without further decla-
ration in order to avoid repetition and to gain a better insight. Also, the complete syntax
is kept in C-notation, as all applications in this thesis were implemented in C.

1 gaspi_rank_t myrank; // the identification ID of the calling

2 // process

3 gaspi_offset_t offset; // a length of memory in bytes

4 gaspi_pointer_t seg_ptr; // void pointer to the start of a segment

5 gaspi_queue_id_t queue_id; // the ID of a local queue

6 gaspi_return_t ret; // return value of a GASPI function

7 gaspi_segment_id_t seg_id; // the ID of a segment

8 gaspi_size_t datasize; // size of data in bytes

9 gaspi_timeout_t timeout; // the timeout of a function in seconds

12http://www.gaspi.de/
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10 gaspi_notification_id_t not_id; // the ID of a local notification

11 gaspi_notification_t not_val; // the value of a notification

Code 4.1: Declarations of variables which will be used without further declaration
throughout this section.

Furthermore, code blocks occurring later in this section may depend on previous code
blocks. Therefore, code sections which also appear in preceding codes will not be reprinted
but only mentioned in a comment. For example, the initialization of GASPI or the general
infrastructure setup will not be repeated each time but is shown only once.

4.2.1 Process and Memory Setup

As mentioned before, GASPI’s programming model is based on the PGAS model and
allows for SPMD as well as MPMD applications. Its memory is split up into two regions
known as globally accessible (RDMA) and private regions. They distinguish themselves
by allowing remote access or by restricting the access solely to the local process and
its threads. The according setup of the architecture with these two memory regions is
illustrated in Figure 4.1. Although GASPI may also be run on shared memory systems,

Figure 4.1: PGAS architecture with local memory divided into private and global (shared)
regions.

its main focus is on distributed systems, leaving open the possibility to combine GASPI
with a shared memory programming API for local parallelization. For example, GASPI
may be run together with OpenMP [BSH14], ITWM’s MCTP threads [Pfr10] or POSIX
threads.

The term process will be used from now on to represent a processing element which may
be part of a multiprocessor or a single computing unit. Note, that this does not specify
whether a process has local memory or not. However, in order to work with remote data,
each process must possess a portion of the partitioned global address space.

In GASPI each such process is uniquely identified by a process ID, called its GASPI rank.
With this unique rank, code parts may be restricted to certain processes and thereby
workload may be distributed based on the rank of the processes. Each process may
inquire its own rank and the number of participating processes as shown in Code 4.2
which showcases the standard “Hello, World!” example in GASPI.
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1 #include <iostream >

2 #include <GASPI.h>

3
4 int main() {

5 gaspi_rank_t myrank;

6 gaspi_number_t numprocs;

7
8 // initiate GASPI

9 gaspi_proc_init( timeout );

10
11 gaspi_proc_rank( &myrank );

12 gaspi_proc_num( &numprocs );

13
14 printf("Hello , world! My rank is %d from %d\n", myrank , numprocs);

15
16 gaspi_proc_term( timeout );

17 return 0;

18 }

Code 4.2: “Hello, World!” in GASPI.

In this example gaspi_proc_init creates the GASPI processes, sets predefined environ-
mental parameters or uses default ones and may set up the communication infrastructure
which is required for data exchange. The initialization procedure is furthermore given a
timeout parameter which will be explained in more detail in the following Section 4.2.2.
The functions gaspi_proc_rank() and gaspi_proc_num() return the information on the
rank of the calling process and the total number of GASPI processes running in this pro-
gram. Processes with rank r will from now on be named Pr, e. g. P0 stands for the process
with rank 0.
In GASPI the globally accessible memory regions mentioned before are called segments.
Segments are normally allocated at the start of the program. However this is not necessary
and they may be created dynamically later when needed. The user is responsible for
defining their number and size (in Kb) which both may vary from process to process. As a
result a process may host more than just one segment. These segments may also be mapped
to a variety of memory types, which may differ in terms of bandwidth and latency of data
accesses [Con13]. Thereby GASPI segments may also be allocated on SSDs13, memory
of GPUs14, MICs15 and NUMA16 partitions. An example for the mapping of a GASPI
segment to GPU memory is described in [Ode13].
Segments are allocated locally with a given, locally unique segment ID and then need to be
individually registered at processes which are to have remote access. These two steps can
also be performed in one go via gaspi_segment_create(), with automatic registration of
the segment with all members of a given group of processes as shown in Code 4.3. From
this point on the segment is globally accessible for all threads of the processes where it
was registered at.

1 // create segment for each process

2 gaspi_alloc_t alloc_policy = GASPI_MEM_INITIALIZED;

3 gaspi_segment_create(seg_id

4 ,datalength * sizeof(int)

5 ,...

13solid state devices
14graphical processing units
15many integrated cores
16non-uniform memory access
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6 ,alloc_policy);

7
8 gaspi_segment_ptr(seg_id , &seg_ptr);

Code 4.3: Setup of segments (i. e., globally accessible memory) in GASPI.

In order to set up data within a segment, the segment pointer, a void pointer pointing
to the start of the segment, can be acquired with a call to gaspi_segment_ptr(). With
its help local store and load operations may occur, whereas remote access is possible via
pre-defined read or write accesses.

The GASPI specification from 2017 [GAS17] contains the additional calls gaspi_segment
_bind() and gaspi_segment_use() that allow the user to allocate memory himself and
re-use that memory as a GASPI segment. This allows the user to position a segment
wherever wanted.

4.2.2 General Concepts of GASPI Functions

GASPI also provides the possibility to group processes for the use in collective operations
or in other functions involving several but not all processes at once. One such group is
always predefined: GASPI_GROUP_ALL contains all GASPI processes available at startup
per default. All subsets of this group can form a new group which is identified by its only
locally valid group ID. The number of groups an application may create depends on the
GASPI implementation used. GPI-2 has a limitation of 32 groups.

Next, GASPI also features time-based blocking : All non-local functions which may be
blocking include a timeout parameter. A blocking function hereby indicates that a process
may not return from such a function unless the operation has completed. The timeout
parameter of a timeout-based function then specifies the time in milliseconds the function
will remain in the operation, e. g. waiting on data from other processes, before it returns,
unless the function has completed earlier already. If the timeout takes effect, the function
immediately returns. However, this does not necessarily include its successful completion.
A contrario, a process may return whilst the operation still continues on in the background
or may simply have halted.

Depending whether the function is synchronous or asynchronous, this may be synonymous
with the function making progress or not. Table 6.1 and 6.2 in the appendix give an
overview on all GASPI procedures, noting whether they are synchronous or asynchronous,
local or non-local and if they are time-based blocking. gaspi_write() for example is
an asynchronous non-local time-based blocking procedure, while collective operations are
time-based blocking and may be implemented as synchronous or asynchronous functions.

There are special timeout parameters: GASPI_BLOCK stands for a blocking call or a timeout
of value infinity. GASPI_TEST denotes another special timeout, requiring a process to only
remain inside the function as long as is necessary to complete all local work.

Note that in the GPI-2 implementation, if a process enters a read or write procedure, no
remote data has to be waited on. The information about the data to be transferred is
put into a local queue and the process may return (more information on the concept of
queues in Section 4.2.4). Hence calling such a procedure with the timeout GASPI_BLOCK

or GASPI_TEST may seem to be interchangeable. But when using GASPI together with
a threading package, only one thread will accomplish the local operations. Therefore
whilst with gaspi_write(..., GASPI_TEST) other threads calling the same function will
return with GASPI_TIMEOUT, with gaspi_write(..., GASPI_BLOCK) all threads will wait
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together for the one thread accomplishing the local work. Other implementations of the
GASPI standard may of course differ, in this point.
Another intention of GASPI is to enable fault tolerant programming. Most GASPI func-
tions have the same return type: gaspi_return_t. Function-dependent it returns either
GASPI_SUCCESS if the operation was completed, GASPI_TIMEOUT if the function did not
finish within the specified timeout or with GASPI_ERROR or a different user-defined error
code stating that an error has occurred.

4.2.3 Synchronization

From the start, all GASPI processes run independently from each other per default. How-
ever, GASPI also provides several synchronization mechanisms.
As many other parallel programming languages, GASPI provides a barrier, namely
gaspi_barrier. It takes two input parameters: a group and a timeout. A process of the
specified group which reaches this point has to wait until all processes in the named group
have reached the barrier. Alternatively the process will wait for timeout milliseconds
and return immediately, whatever event occurs first. Note that this synchronization does
not include a memory fence, i. e., no synchronization of memory is guaranteed and data
transfer may even occur in the background across the barrier.
GASPI also features real global atomics. These are global, shared variables whose values
can be fetched, increased or swapped and compared by all processes, but only by one
process at a time. A process trying to access an atomic which is occupied by another
process will wait until the atomic has been freed again. Atomics can be used to synchronize
processes. For example when one process has written data it can increase the atomic by
one. A master process sees that all data has been written when the value of the atomic
corresponds to the number of processes participating. Otherwise they may be used as
global shared variables.
A weak synchronization mechanism GASPI provides is the notification. Each process has
several local notifications that the other processes may set to a new value. These are
similar to global atomics in terms of their global setting. However they belong to a certain
process and remote processes only have write access. So a process may notify another
process by writing a certain value to a predetermined notification. The receiving side then
can check on a single notification or a set of notifications whenever it is ready to.

1 // set notification ID 3 on rank 1

2 if( myrank == 0 )

3 gaspi_notify(remote_seg_id , 1, 3, not_val , queue_id , GASPI_BLOCK);

4 ...

5 // check on notifications 2,3,4,5

6 if( myrank == 1 )

7 gaspi_notify_waitsome(local_seg_id , 2, 4, &first_id , GASPI_BLOCK);

Code 4.4: Notification mechanism in GASPI.

In Example 4.4, P0 sets the notification with ID 3 on rank 1 to the value not_val. Process
P1 checks on 4 notifications starting from 2 and returns the ID of the first notification to
be non-zero.

4.2.4 One-sided Communication

The main building block of GASPI is its one-sided and asynchronous communication.
With a one-sided communication mechanism one process may write to the globally ac-
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cessible part of a remote process without any interaction of that process. This ability
to access data on a remote process’s memory is also called remote direct memory access
(RDMA) and needs to be supported by the hardware.

Asynchronity specifies the ability of a function to continue making progress although
the process already has returned from that function. In other words, progress of an
asynchronous function may be achieved without involvement of the CPU of the calling
process. Meanwhile the network system takes care of that task while the process itself may
turn its attention to other tasks which are independent of the ongoing communication.
Next the available communication mechanisms are described, an example of how their
asynchronity may be usefully deployed is given in Section 4.2.7.

GASPI in principle provides two point-to-point (or global address space to global ad-
dress space) communication or rather data transfer mechanisms: gaspi_write() and
gaspi_read(). These DMA requests are directed to one of the local queues which stores
all information on what type of request was made. Then the underlying network infras-
tructure takes care of the actual data transfer, allowing the process to return. To gain
information on the local status of the request posted, the queue can be monitored. Either
the length of the queue may be inquired or gaspi_wait() may be called on the queue
in question. This forces the process to wait until the complete queue has been processed
or the specified timeout applies. If gaspi_wait() returns successfully, the local data is
reusable. Different data requests may be sent to different queues, thereby allowing the syn-
chronization of a set of communication requests separately from others. All DMA requests
posted to a queue will maintain the input order, so they are guaranteed to not overtake.
DMA requests posted to different queues however are not ordered in their execution line,
although fairness of transfers is to be guaranteed across queues by the implementation.

The information that is posted into the queue includes the source and the destination
location of the data within the global address space, the size of the data, the queue ID
and the timeout for this function, as shown in Code 4.5.

1 // write data of size ‘‘datasize ’’ to remote rank

2 gaspi_write(seg_id_local

3 ,offset_local

4 ,rank_remote

5 ,seg_id_remote

6 ,offset_remote

7 ,datasize

8 ,queue_id

9 ,timeout);

10
11 // wait until local data is reusable

12 gaspi_wait(queue_id , timeout);

Code 4.5: Write and wait function in GASPI.

The location of data on the source or destination process consists of the following triplet:

(segment ID, offset, remote rank).

The segment ID has to be given, as each process may have multiple segments. In addition,
the offset then specifies the exact location within the segment by giving the byte offset
from the start address of the segment. Last, the remote rank determines the process where
the data is written to/read from. As can be perceived from their specifications, both data
locations, remote and local, need to be within the global address space.
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It is important to know that before posting a communication request it should be checked
that the queue has space enough for another communication request, as the length of
a queue is limited. This is done by querying the queue size and flushing the queue if
needed. Otherwise, if the queue is already full, the behavior of the program is undefined.
The latest GASPI specification [GAS17] defines a new return code for a communication
request: GASPI_QUEUE_FULL. This code is returned if the queue is already full and the
communication call could not be posted. Checking for this code avoids waiting on every
communication request to ensure that it can be posted. This functionality was not yet
considered in the implementation in this work.
As mentioned, these simple gaspi_write and gaspi_read calls only involve contribution
of the caller’s side. However sometimes at least some kind of notification is wanted on the
remote process’s side, e. g. on the receiving side of a gaspi_write. Then a gaspi_notify

can be triggered right after a gaspi_write which writes a notification into an internal
notification buffer on the remote process. If the notification request is put into the same
queue as the communication call, it will be executed only after the writing request. This
procedure is enclosed in a shortcut as gaspi_write_notify which posts the communi-
cation request and an associated notification to the same queue as is demonstrated in
Code 4.6.

1 // write data of size ‘‘datasize ’’ to remote rank

2 // and additionally notify the rank afterwards

3 gaspi_write_notify(seg_id_local

4 ,offset_local

5 ,rank_remote

6 ,seg_id_remote

7 ,offset_remote

8 ,datasize

9 ,not_id

10 ,not_val

11 ,queue_id

12 ,timeout);

Code 4.6: Combination of write and notify function in GASPI.

The following Code 4.7 is an example showcasing the functions of GASPI the sections have
covered so far. It was shortened for better readability and hence excludes self-explanatory
variable declarations or declarations already made in Code 4.1 and some other necessities.
The complete example can be found in the appendix, Code 6.1.
The code is written for exactly two GASPI processes. The setup is as follows: two vectors
are divided among two processes so that each process holds half of the vector. More
precisely the first half of both vectors reside on the process P0 and the second half can be
found in the memory of the process P1. The goal is to calculate the dot product of these
two vectors. Note that the names of pointers to global address space are preceded with
gas_ whereas pointers to private memory are preceded by loc_.

1 #include <GASPI.h>

2
3 int main(int argc , char *argv []) {

4
5 const int vlength = 8;

6 int loc_a [10] = {1,2,3,4,5,6,7,8};

7 int loc_b [10] = {2,2,2,2,2,2,2,2};

8 gaspi_pointer_t seg_ptr;

9 int *gas_a , *gas_b , *gas_result;

10
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11 // initiate GASPI

12 gaspi_proc_init(GASPI_BLOCK);

13 gaspi_proc_rank (& myrank);

14 gaspi_proc_num (& nprocs);

15 int ll = vlength/nprocs; // local vector length

16 gaspi_size_t seg_length = (2*ll+2) * sizeof(int);

17
18 // create segment for each process , get pointer

19 gaspi_segment_create(seg_id

20 ,seg_length

21 ,GASPI_GROUP_ALL

22 ,GASPI_BLOCK

23 ,GASPI_MEM_INITIALIZED

24 );

25 gaspi_segment_ptr(seg_id , &seg_ptr);

26
27 // setup data in global memory

28 // P0: 1,2,3,4,2,2,2,2 (a_0 ,b_0)

29 // P1: 5,6,7,8,2,2,2,2 (a_1 ,b_1)

30 gas_a = (int*) seg_ptr;

31 gas_b = gas_a + ll;

32 gas_result = gas_b + ll; // offset: 2 * ll * sizeof(int)

33
34 for(i=0;i<ll;i++) {

35 gas_a[i] = loc_a[i+myrank*ll];

36 gas_b[i] = loc_b[i+myrank*ll];

37 }

38
39 // calculate intermediate result , store in gas_result

40 for( i=0; i<ll;i++ )

41 *gas_result += gas_a[i] * gas_b[i];

42
43 // get queue data

44 gaspi_queue_size_max (& queue_max);

45 gaspi_queue_size(queue_id , &queue_size);

46
47 // check if queue full

48 if(queue_size > queue_max - 1)

49 gaspi_wait(queue_id , GASPI_BLOCK);

50
51 // set offsets to position of gas_result [0] and gas_result [1]

52 gaspi_offset_t loc_offset = 2 * ll * sizeof(int);

53 gaspi_offset_t rem_offset = loc_offset + sizeof(int);

54
55 // write local result to other process

56 gaspi_write_notify( seg_id , loc_offset , (myrank +1)%nprocs

57 , seg_id , rem_offset , sizeof(int)

58 , not_id , not_val

59 , queue_id , GASPI_BLOCK);

60
61 // wait on intermediate result from other process

62 gaspi_notify_waitsome(seg_id , not_id , 1, &not_id , GASPI_BLOCK);

63
64 // calculate global result

65 dotproduct = gas_result [0] + gas_result [1];

66 printf("(%d) dotproduct = %d\n", myrank , dotproduct);

67
68 // wait to ensure data in gas_result [0] is free before exiting

69 gaspi_wait(queue_id , GASPI_BLOCK);

70
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71 gaspi_barrier(GASPI_GROUP_ALL , GASPI_BLOCK);

72 gaspi_proc_term(GASPI_BLOCK);

73 return 0;

74 }

Code 4.7: Calculation of dot product with gaspi write notify for the exchange of
intermediate results. Short version of Code 6.1.

Here, in l. 34, the vectors are written into global memory first, although this is not
necessarily needed for this code. However it is a likely case in larger parallel applications.
Each process then first calculates its local intermediate result (l. 40) and then writes the
result via gaspi_write_notify to the other process (l.56). After the successful reception
of the second intermediate result (l.62), the two intermediate results are summed up and
so each process has the global result. To ensure that the local part of the gaspi_write

operation has completed before exiting the program, the queue is waited on in l.69. Of
course, this case only demonstrates the simple usage of these functions and does not make
any real use of the one-sided and asynchronous communication pattern. However it gives
the user a feeling for the complexity and high level of detailed information that the user
has to provide: from the structure how the data is distributed, to the size of the segments
and to the determination of the exact location of the data.

4.2.5 Collectives

As already mentioned when explaining GASPI’s group concept, GASPI also provides col-
lectives of which it is not determined whether they are synchronous or not. Collectives
are operations which are called by several processes simultaneously (the process mem-
bers of a specified group) and typically involve global cohesive computation and therefore
communication. The simplest one, introduced in Section 4.2.3, is gaspi_barrier, the
only collective not involving any concrete data exchange. Further collectives that GASPI
provides are all kinds of reduction operations. GASPI pre-defines different reduction op-
erations like the determination of a minimum or maximum over some data set or the
summation of distributed data. This list of reduction operations can be extended, as
GASPI offers the possibility to create a user-defined allreduce-operation.

The following Code 4.8 shows how a collective may be employed to solve the calculation of
the dotproduct which was implemented with gaspi_write operations before in Code 4.7.
Instead of only two processes, here four GASPI processes come into play. The vectors are
extended to hold sixteen elements each, so each process holds four elements per vector.
The code excludes parts already shown in Code 4.7. The complete and executable version
can be found in the appendix: Code 6.2.

1 #include <GASPI.h>

2
3 int main(int argc , char *argv []) {

4
5 // declaration of other variables

6
7 const int vlength = 16;

8 int loc_a [16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

9 int loc_b [16] = {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2};

10 int *gas_a , *gas_b;

11 gaspi_pointer_t buff_send , buff_recv;

12
13 // initiate GASPI



4.2. GASPI Specification and Functionalities 57

14 // create segment for each process , get pointer

15
16 // setup data in global memory

17 // P0: 1, 2, 3, 4,2,2,2,2 (a_0 ,b_0)

18 // P1: 5, 6, 7, 8,2,2,2,2 (a_1 ,b_1)

19 // P2: 9,10,11,12,2,2,2,2 (a_2 ,b_2)

20 // P3: 13,14,15,16,2,2,2,2 (a_3 ,b_3)

21 ll = vlength/nprocs;

22 gas_a = (int*) seg_ptr;

23 gas_b = gas_a + ll;

24
25 for(i=0;i<ll;i++) {

26 gas_a[i] = loc_a[i+myrank*ll];

27 gas_b[i] = loc_b[i+myrank*ll]; // offset: 2 * ll * sizeof(int)

28 }

29
30 // setup of allreduce buffers in global memory

31 buff_send = seg_ptr + 2*ll*sizeof(int);

32 buff_recv = buff_send + sizeof(int);

33
34 // local calculations , store intermediate result in buff_send

35 for( i=0; i<ll;i++ )

36 *((int*) buff_send) += gas_a[i] * gas_b[i];

37
38 // calculate global result via allreduce , is stored in buff_recv

39 gaspi_allreduce( buff_send , buff_recv , 1, GASPI_OP_SUM

40 , GASPI_TYPE_INT , GASPI_GROUP_ALL , GASPI_BLOCK);

41
42 dotproduct = *( (int*) buff_recv );

43 printf("(%d) dotproduct = %d\n", myrank , dotproduct);

44
45 // barrier and GASPI termination

46 return 0;

47 }

Code 4.8: Calculation of dotproduct with the help of GASPI’s allreduce function. Short
version of Code 6.2.

Here, while the intermediate result is again stored in globally accessible memory, the
intermediate result does not occur by write operations as in Code 4.7. Instead, in l.39
the reduction function gaspi_allreduce() with the predefined operation GASPI_OP_SUM

is called to sum up the intermediate results on all processes.

In general, the GASPI specification only provides reduction operations and no gather,
scatter or broadcast operations. However, a broadcast algorithm is under development at
T-Systems Research17 but has not been officially published or included in GPI-2, yet.

4.2.6 Further GASPI Features

GASPI provides further features which will be touched only briefly.

For one thing, the GASPI specification also includes passive communication primitives.
These are communication calls with a two-sided semantic similar to gaspi_write but
without the receiver knowing beforehand who the sender will be. They may be useful for
example, if many processes have to send data to one process and some kind of synchro-
nization is needed alongside. The passiveness comes into play as both communication calls

17http://www.t-systems-sfr.com/e/downloads/2014/vortraege/6end.pdf
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are to avoid busy-waiting and thereby spending almost no CPU time at allow giving time
for computations.
In order to detect processes that have failed, GASPI includes a state vector. It is a
local construct and contains the states of all other processes in terms of whether they
are still healthy or not. The health of a process indicates whether communication with
it is possible or not. The state vector is first set after gaspi_init and then after each
non-local operation depending on who was in involved in the operation.
In case of a node failure, the state of that process will return as not healthy. In this
case a new GASPI process can be started on a spare host which then take on the rank of
the failed process. However, communication infrastructure and groups have to be rebuilt
wherever the failed process was involved.
Furthermore the GASPI specification includes a profiling interface. On the one hand
it offers the possibility to collect basic profiling data based on implementation-defined
statistics counters. The GASPI profiling interface thereby provides functions for retrieving
information on these counters. On the other hand it offers an interface so that an event
tracing tool may communicate with the application, e. g. to inspect or even intercept
GASPI functions. For the GPI-2 implementation, Vampir, the Performance Analysis Tool
of ZIH, TU Dresden, can be used.
GASPI also offers the possibility to jointly use MPI and GASPI in one code. As a result
of this interoperability, it is possible to not having to completely port the existing MPI
implementation but to only rewrite compute-intensive code parts to work with GASPI.
However it should be taken care that MPI and GASPI communication do not cross.
Finally, important to the Fortran community, GASPI also offers language bindings for
Fortran 2003 code. A Python interface is existent, as well [BSH14].

4.2.7 Overlap of Communication and Computation

The main aspect not clearly stated so far, is the use of the one-sided and asynchronous
communication to overlap the data transfer with computations independent of it. As soon
as a DMA call has been started the program may turn to other computational tasks which
do not involve the data involved in the communication process. Such a dummy example
is shown in Code 4.9.

1 if( myrank == 0 )

2 gaspi_notify(seg_id , 1, not_id , not_val , queue_id , GASPI_BLOCK);

3
4 if( myrank == 1 ) {

5 ret = gaspi_notify_waitsome(seg_id , not_start , num , &first_id ,

GASPI_TEST);

6
7 while(work==TRUE && ret== GASPI_TIMEOUT) {

8
9 do_other_work (); // sets work to TRUE when all work is done

10 ret = gaspi_notify_waitsome(seg_id , not_start , num , &first_id ,

GASPI_TEST);

11 }

12
13 if (ret == GASPI_TIMEOUT)

14 gaspi_notify_waitsome(seg_id , not_start , num , &first_id ,

GASPI_BLOCK);

15 }

Code 4.9: Overlap of communication and computation in GASPI.
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Here data may have been transferred (either before the gaspi_notify in line 2 or with
a gaspi_write_notify instead of the gaspi_notify). The process P0 wants to notify
P1 that this transfer has been completed. P1 first checks that the notification has not
yet returned successfully or with an error and therefore needs further attention. It then
continues on other work, computational tasks that do not involve the memory space which
is used for the DMA request and in between periodically checks if the notification has
arrived meanwhile. Of course the periodical checking on the notification in line 10 is not
necessary and can be omitted.

This example is only a theoretical construct, but it may be of use in real algorithms, too.

4.3 Comparing Features: GASPI vs. CAF & UPC

The focus of this section is to better understand in what way GASPI distinguishes itself
from other PGAS implementations and to point out what similarities exist. For this,
the feature-set of GASPI [Con13] is compared to two well established PGAS realizations,
namely Coarray Fortran (CAF) [Rei10] and Unified Parallel C (UPC) [UPC13] which al-
ready were briefly introduced in Chapter 3.2.2 and 3.2.1. In this comparison we continue
to use the GASPI naming convention and e. g. call both CAF images and UPC threads
processes, as well. This section is based on the author’s previous work in the publication
[BSH14].

Programming Model and Setup – First of all, both, CAF and UPC, use the Sin-
gle Program Multiple Data (SPMD) model of computation, whilst GASPI also allows for
Multiple Program Multiple Data (MPMD) style programs. All three follow the PGAS
model, CAF and UPC as extensions to a high level languages and GASPI as a PGAS API
available with two interfaces.

View of Global Memory – Based on the PGAS model, each process in all three pro-
gramming paradigms has a partition of the global address space to which it has a logical
affinity to and additionally a private memory space to which only the local process has
access to. Note, that in GASPI the processes need not necessarily have such a partition,
although without it no data exchange may occur with this process, reducing its usability.
It is important to note, that the view of the global memory is quite differently with GASPI
and CAF/UPC. In CAF/UPC, the user has no clear notion of the exact location or shape
of the global memory. It is only important to know the way that global data is defined. In
GASPI on the other hand, the view of the memory is much more clearly that of separated
memory which is globally accessible but it is not given to the user as the notion of a shared
memory with shared variables.

Allocation of Global Memory – The allocation of global memory in CAF occurs solely
via the declaration of coarrays which may be allocated dynamically. These coarrays are
thought of to be within the local portion of the global memory. However, as mentioned,
beforehand no information is given as to where exactly the coarrays are put within that
memory. Similarly, shared variables in UPC are created without any prior knowledge of
their exact position. But additionally, UPC allows for dynamic allocation of shared mem-
ory space without a binding to a specific variable. This shared memory space can then
be accessed via shared pointers. GASPI on the other hand completely abstains from the
notion of shared variables and provides dynamically allocatable and globally addressable
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memory spaces, only. Furthermore, in contrast to CAF, UPC and GASPI do not neces-
sitate a process and its memory to be located on the same physical node. If provided,
a GASPI implementation may even allow for the inclusion of non-standard memory, e. g.
the allocation of memory on a GPU, which none of the others allow. However, the speci-
fication requires only a default allocation policy.

Declaration and Access to Global Data – Due to the different setup of the global
memory and in addition because of the different view of global data, the way global data,
i. e., variables, arrays or matrices, are set up and distributed is different.

First of all, UPC provides a shared variables namespace. It thereby provides the easiest
way to access global data by simply requiring the global index of the global object which
is to be accessed. Here, the global arrays are distributed in a cyclic or block-cyclic fashion
among all processes using a round-robin pattern. The user can then control the block
size of the distribution. However, it is not possible to distribute a matrix, being stored
element-wise, by using a two-dimensional block-cyclic distribution. Additionally, global
arrays are always shared amongst all processes, not allowing for a global object to be
shared only by a subgroups of processes.

In CAF, global data exists in terms of coarrays, which are declared globally. They are not
distributed the same way as in UPC, although all processes have their share. Instead the
(standard) view is rather that each process holds the very same variable or an array of
exactly the same size. This means that a distributed array will have to divide up evenly
among all processes or is filled in with zeros in the end. To access a coarray on another
process the local index and the process ID (or co-dimension in this case) have to be named
explicitly. The mapping of the global index to these values is the task of the user. Thereby
access to these local array parts is still relatively easy but more information is required
than with UPC. In the special case that non-evenly distributed arrays are required, access
is more complicated. This is because this only may be accomplished by setting up a
coarray containing pointers as components which point to arrays of different sizes.

But for all that, GASPI requires even more information about the location of the required
global data. In GASPI no notion of shared or global variables exists. Instead global mem-
ory is simply viewed as a memory space on each process into which the user may place
whatever data necessary. Therefore a global array which is distributed amongst GASPI
processes may be placed in very different locations on each process. Only the user has to
know exactly where the data is located. For this, first of all, the owning process of the
required data has to be named, just as in CAF. Additionally, in GASPI the user has to
provide the exact location of the data in terms of the offset to the start of the memory
segment. This means more complexity in programming for the user, but also opens up
opportunities for a more direct data/memory management, including the usage of any
data distribution, e. g. a two-dimensional block-cyclic distribution.

Communication Mechanisms – CAF and UPC do not require any explicit communica-
tion mechanisms as data access occurs directly via the global variables. In order to enable
access to global but remote data, GASPI on the other hand provides explicit communica-
tion calls. Thereby data is transferred from the remote to the local memory location (both
in the globally addressable section) or vice versa. This entails an extra communication call
but also provides the possibility of overlapping this data transfer with other computation
which is independent of it. If wanted these accesses can be extended to include leaving
a notification on the remote process’s side when the access has been accomplished. With
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this mechanism of remote completion the remote process asynchronously gains knowledge
of the completion. Additionally GASPI provides passive communication calls which have
a two-sided semantic (send and receive), allowing for communication patterns in which
the receiver must not know the identity of the sender.

Synchronization Mechanisms – A synchronization mechanism supported by all three
languages is the barrier which forces all processes to synchronize. CAF includes a kind
of point-to-point barrier which is only relevant for the processes named in the call. This
barrier does not require all participating processes to wait for each other simultaneously.
Instead the calling process synchronizes with each of the processes named one at a time.
GASPI on the other hand also offers barriers for subgroups of processes, avoiding unnec-
essary waiting of processes not truly involved in the synchronization. In CAF and UPC
the barrier also ensures a consistent view on memory, i. e., all previously issued writes are
guaranteed to be completed and all local copies of global data are marked as invalid or
updated. A barrier in GASPI has no influence on memory consistency.

Another specialty concerning the synchronization of memory ought to be mentioned. As
described before, in UPC shared data may be accessed directly by naming the variable or
the array and its index. In what way these accesses are accomplished can be controlled
by the user by defining the shared object in two ways: either as strict or relaxed objects.
Accesses to a strict object essentially follow sequential consistency known from shared
memory programming, while relaxed accesses follow relaxed consistency and therefore can
be reordered freely by the compiler or the run time system. Strict memory accesses also
serve as a memory fence ensuring that all previous modifications of shared data is visible to
other processes and modifications of other processes are visible to the calling processes. If
not declared otherwise, access to a shared object is relaxed by default. UPC also features
an explicit fence. In CAF, optimization by the compiler may occur, but only in-between
explicit synchronizations. In GASPI, the wait on a queue takes over the roll of a memory
fence, as it guarantees that after the wait all operations within that queue are completed.
However, as GASPI allows for multiple queues, it is possible to apply a fence only on a set of
memory regions. In general, memory consistency in GASPI is managed locally by waiting
on a queue and remotely via the wait-on-notification functionality which can be used for
an overlap of communication and computation, as previously stated. But these wait and
notify procedures may also be used for basic point-to-point synchronization. UPC also
features notification and wait calls but here their purpose is to frame a synchronization
phase for all processes and not only point-to-point. More precisely, no process may exit
from the wait call unless all processes have executed the notification call.

Further tools for the synchronization of processes or events are the locking and unlocking
functions featured by CAF and UPC and GASPI’s atomics. Other than that, both UPC
and GASPI have further collectives aside from the barrier, namely reductions which may
be synchronous or asynchronous. UPC provides these and further collective operations
such as broadcast, scatter and gather, in an extra specification [Con03]. In GASPI the
collectives also support subgroups of processes, in contrast to UPC where the collectives
always apply to all processes together. CAF does not supply any collectives other than
the barrier.

Fault Tolerance – Neither CAF nor UPC feature the fault tolerance of GASPI which, to-
gether with the flexibility in the setup of groups of processes for synchronization purposes
or for applying collectives, enables a GASPI program to make up for failing processes and
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re-organizing itself. In contrast, in CAF the number of processes, equal to the number
of program replications, is fixed at startup and accordingly the number of memory parti-
tions is fixed, too. UPC also supplies a dynamic process environment. Moreover, GASPI
provides another feature allowing for fault tolerant code: procedures acting on remote
data (non-local functions) include a timeout. Among other things, this enables the user
to check on the correctness of such a function. Both UPC and CAF do not feature any
timeouts in procedures as GASPI does.

Compatibility & Interoperability – Regarding more general language information for
Fortran, according to the MPI-3 specification [Mes12], MPI is only compatible “with the
Fortran 90 standard with additional features from Fortran 2003 and Fortran 2008”. The
Coarray Fortran 2.0 version, again from Rice University, on the other hand is compatible
with MPI, as shown in [YBMCB14]. UPC on the other side is of course compatible with
C, but not C++ or other languages. However, it allows for calls to highly optimized serial
code written in other languages. Then again the UPC implementation of Rice University
allows mixing of C, C++, Fortran and MPI with some limitations 18. Finally, GASPI may
be used together with C, C++, Fortran and Python and is interoperable with MPI.

Summary – Altogether CAF’s shared data notation seems to come in handy if one
is already familiar with Fortran, however CAF does lack the fine-tuned synchronization
mechanisms GASPI and UPC provide. Comparing UPC and GASPI one immediately
notices the easier way of accessing shared data in UPC but also the greater freedom in
the exact placement of data in GASPI. Additionally the fault tolerance of GASPI may
provide better futures prospects especially regarding the application on large clusters.
Furthermore, GASPI provides a higher degree of freedom with regard to the ordering of
memory accesses or synchronization mechanisms, however further research is required to
identify if this provides any real world benefits.

4.4 Related Work with GASPI

This section is concerned with research carried out in conjunction with GASPI, its refer-
ence implementation GPI-2 or its predecessor GPI (named GPI-1 for a better distinguisha-
bility). Note that GPI-1 does not implement all of GASPI’s features, e. g. notifications are
not provided. However, the main concept of one-sided and asynchronous communication
is still present in GPI-1.
In [Pfr10], on the basis of microbenchmarks, Pfreundt compares the latency and band-
width of GPI-1 to MPI. Furthermore implementations of a 2D fast Fourier transform are
evaluated, showing GPI-1 to be faster than MPI.
In [MLAP11], Machado et al. study a dynamic load balancing problem of irregular applica-
tions, based on the traversing of a large tree. For the implementation GPI-1 together with
a threading package is utilized leading to a factor of 2.5 more tree nodes being processed
per second than with MPI.
Simmendinger et al. [SJML11] rewrote an unstructured solver for computational fluid dy-
namics, called TAU. An increase in performance of a hybrid OpenMP/GPI-1 implemen-
tation was shown compared to the original two-sided MPI implementation and a hybrid
OpenMP/MPI version. Furthermore both hybrid versions were shown to have an almost
linear weak scaling.

18http://upc.lbl.gov/docs/user/interoperability.shtml
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The performance of a 4D nearest neighbor stencil operator implemented with GPI-1 is eval-
uated by Grünewald [Grü12], especially in comparison to an MPI implementation which
uses two-sided, non-blocking communication calls. Additionally, the overlap efficiency for
an algorithm is defined and discussed. For GPI-1 it is found to be perfect under certain
assumptions, e. g. requiring the total time needed for communication to be smaller than
the computational time. The GPI-1 implementations achieve speedups of up to 20-30 per
cent compared to MPI.

Shahzad et al. examine the implementations of a spare matrix-vector multiplication and a
fluid flow solver based on Lattice Boltzmann based on GPI-1 vs. non-blocking MPI with
and without the support of the APSM19 library for the latter [Sha13]. Implementations
with GPI show no significant advantages compared to the MPI implementations for the
former application and a weaker strong scaling of performance when increasing nodes.
For the latter application the authors considered the weak scaling and found GPI to
outperform MPI.

In [WJJ13] Grünewald and Simmendinger introduce most of GASPI’s features and mention
its open-source implementation GPI-2.0.

A formal model for SIMD programs with PGAS APIs is defined in [CDMM13]. How-
ever, the model only includes the main features of the APIs and is thereby reduced to
asynchronous data transfers.

In [Ode13] Oden performs microbenchmarks on a 2 node system containing GPUs com-
paring GPI-2 implementations to MPI. For small messages the ping-pong benchmark with
GPI-2 is found to be up to 3 times faster compared to MPI, whilst for large messages the
timing is about the same. In terms of latency and bandwidth the benchmarks show about
the same results, whilst in terms of smaller messages achieving better results.

Oden also performed the measurement of the power consumption resulting from perfor-
mance bottlenecks such as the data transfer between GPUs [OKF14]. Hereby a hybrid
CPU/GPU system, where the communication is controlled by the CPU using MPI or GPI-
2, is compared to a version where the communication is GPU-controlled. It is shown that
the performance per Watt increases up to 10 per cent although the overall performance
decreases.

The scalability of a hybrid GPI-2 and C++11 threads implementation of a TSQR algo-
rithm which solves the least squares problem is studied by Kumar in [Kum14].

In [BSH14], Breitbart et al. present microbenchmarks on which basis the performance of
multithreaded communication for small messages with GPI-2 is found to be up to an order
of magnitude faster than a comparable implementation with MPI. Furthermore the feature
set of CAF, UPC and GASPI is compared and a theoretical analysis of an implementation
basis for a matrix-matrix multiplication is given. The author of this thesis is co-author of
this publication.

Not a specific application but a software development platform is presented by Rotaru in
[RRP14] which is a MapReduce implementation dealing with data intensive computations.

Stoyanov and Pfreundt study different hybrid GPI-2 implementations of a sparse matrix-
vector multiplication. They also compare hybrid GPI-2 implementations of the Conju-
gate Gradients method and a Jacobi-preconditioned Richardson method to the according
PETSc solvers, finding the GPI-based versions to show good scaling and a better perfor-
mance than the PETSc methods.

19Asynchronous Progress Support for MPI – a library allowing for asynchronous communication when
using MPI.
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In [SRG15], Simmendinger et al. give an extensive overview of the GASPI API specifica-
tion.

4.5 Further One-sided Communication APIs

Looking further than purely PGAS-based programming models, GASPI is not the only par-
allel library interface that mainly relies on or includes one-sided communication. Other in-
terfaces include the Global Arrays Toolkit [NPT+06, NT02], MPI since version 2.2 [Mes09]
and OpenSHMEM [Ope15]. Just as GASPI, UPC, CAF and others these interface/li-
braries themselves rely on low-level libraries or networking layers, such as ARMCI, GAS-
Net, OpenFabrics Verbs, Myricom’s MX which provide the routines for the communication
calls such as RMA operations or atomics and other relevant operations for diverse net-
works.
Global Arrays is developed by Pacific Northwest National Laboratory with its latest release
from August 2016. It consists of many libraries, including the RMA communication library
ARMCI and IO libraries originating from computational chemistry, and an interface for a
shared memory programming style on distributed systems.
OpenSHMEM was created as an effort to standardize diverse existent, non-conform
SHMEM libraries which were developed by several companies such as SGI, Quadrics, HP,
IBM, Mellanox, QLogic and the University of Florida [Ope15]. OpenSHMEM also is a
PGAS library with a notion of shared data objects (called symmetric in OpenSHMEM),
similar to the idea of coarrays in CAF. Hence it also requires each process to allocate a
symmetric data object with the same name, type, size and offset. Further, it provides
communication and synchronization operations on private and remote data objects and
also supports collectives, atomics and locks. As of now there is an active OpenSHMEM
community in the process of further development of OpenSHMEM.
MPI, as described in Chapter 3.1.2 is a major message passing library [Mes12]. Due to its
high dissemination, more details will be given about the one-sided communication calls of
MPI. As mentioned, its most popular communication methods are two-sided, which means
that the data transfer occurs through cooperative operations on both the origin and the
target process. These two-sided methods appear either as blocking or non-blocking call
with an additional completion call. Additionally, MPI provides one-sided communica-
tion methods. These are based on the concept of windows which are individually sized
shared memory segments allocated by a group of processes, either collectively or may be
dynamically attached later on. For data inside these windows, simple get and put opera-
tions are provided for remote access as well as an accumulation call, which combines the
data transferred with the target data. One-sided communication only may occur within
communication epochs which are framed by matching synchronization calls. These syn-
chronization calls can either be collective calls or can be restricted to groups of processes,
requiring synchronization calls on both the caller’s and the target’s side. Also, there is
a synchronization variant where windows may be locked, giving a process exclusive ac-
cess or allowing for multiple accesses to a window part on a specific process. Here no
synchronization calls are needed on the target’s side.
Furthermore MPI includes collective operations, dynamic process creation, parallel I/O
and much more.



Chapter 5

Dense Matrix Multiplication
in GASPI

In Chapter 2 the new algorithm poadSGD was introduced for the training of large-scale
feedforward networks. Key to this algorithm is the multiplication of two dense matrices
for a certain parallel distribution of these matrices which is the result from the network
distribution and the pipelining of poadSGD. Both of these matrices are distributed across
a group of processes each. These process groups however, are disjoint so the processes have
to work together in order to accomplish the multiplication. This chapter presents such
an implementation, focusing on the matrix multiplication, not the complete poadSGD
algorithm.

In addition to dealing with the disjoint process group setup, another challenge posed in
Chapter 2.4.4 is taken on: using a parallel programming language which supports one-
sided and asynchronous communication schemes. Here, the programming model GASPI
(Chapter 4) comes into play. The implementation of the matrix multiplication presented
in the following relies solely on GASPI for its parallelization.

First the data distribution for matrices used in this thesis is described: the g-matrix. It is
based on the matrix descriptor global_desc_t which contains information about the exact
layout, information about the subgroups, the distribution across the processes and the
exact location of remote data and its local equivalent local_desc_t, which additionally
contains information local to the processor such as the exact length of the local data and
many more.

This g-matrix is then employed for the implementation of the matrix multiplication for
dense matrices. The implementation itself is described focusing on the two main aspects
of this algorithm: a simple way of enforcing parallelism by diagonally processing the
matrix sub blocks and a more complex way to achieve an overlap of computation and
communication in the processing of each sub block. In addition the time required for
the operation is compared in a theoretical analysis, once for a parallel implementation
without any RMA-capabilities and processing the matrix blocks sequentially and once for
the author’s implementation. Finally, the results of scaling tests of the code executed on
up to 2048 cores are presented and discussed.

Part of Section 5.1 and the implementation section of 5.2 are strongly based on the author’s
own contribution to the publication [BSH14].

65



66 Dense Matrix Multiplication in GASPI

5.1 Matrix Representation

In parallel implementations the setup and distribution of data is one of the crucial points
when designing a parallel application. In this case, it concerns matrices of various sizes.
In order to achieve a scalable and balanced data distribution, the matrix is distributed in
a blockwise fashion, aiming at a good work balance. In addition, it allows to break down
the original algorithm into smaller matrix operations based on these data blocks. This
also provides the opportunity to transfer data blockwise. Furthermore, it allows for the
local usage of BLAS-3 (matrix-matrix) operations that are already highly optimized for
most platforms.

Therefore, in this thesis matrices are distributed in a two-dimensional block cyclic fashion,
as described by Dongarra et al. [DLP03], among a given group of processes. First the
matrix of dimension gm × gn is divided into blocks of size bm × bn, allowing for non-full
blocks in the most right block column or the lowest block row. Figure 5.1 shows the division
of an exemplary 24 × 24 matrix into blocks of size 3 × 3. The processes of the process

Figure 5.1: Dividing a gm × gn matrix (here 24× 24) into blocks of size bm × bn = 3× 3.

group holding the matrix are mapped to a process grid of dimension P×Q. The blocks are
then mapped in a two-dimensional block cyclic fashion to the processes corresponding to
the process grid. Figure 5.2 depicts this distribution of the blocks amongst the processes
P0, P1, P2 and P3 on a process grid of dimension 2× 2. A matrix distributed this way is

P0

P2 P3

P1

Figure 5.2: Mapping the matrix blocks in a two-dimensional block-cyclic fashion to pro-
cesses on a 2× 2 process grid, obtaining a g-matrix.
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referred to as a g-matrix in this work.

Each process stores its local matrix data blockwise in a rows and continuously from a
certain starting point in global memory. It is possible to access a specific element of the
g-matrix by only knowing its global element index. Therefore, information is needed about
the rank of the process holding the element, the segment ID on which the data resides and
the exact offset of the element in the respective segment. So certain information has to
be known by all processes that access matrix elements. This information is stored within
a global descriptor of the g-matrix, called global_desc_t (the corresponding part of the
code is given in Code 5.1). Its values have identical for all processes or at least for those
working with the g-matrix. The global descriptor contains the following information

� the dimensions of the process grid (P× Q),

� the dimensions of the matrix (gm × gn) and its blocks (bm × bn),

� an array procs containing an ordered list of the processes appendant to the matrix,

� an array segment containing the segment IDs on which the local matrix parts reside,
respectively for each of the procs processes and

� an array memloc containing the associated offsets on the respective segment.

For each of the matrix processes the information within these arrays is stored corresponding
to their position in the procs array.

1 typedef struct {

2
3 // process grid (PxQ)

4 gaspi_rank_t P;

5 gaspi_rank_t Q;

6
7 // array of procs in the group of length P*Q

8 gaspi_rank_t* procs;

9
10 // global size of matrix (mxn)

11 gaspi_number_t g_m;

12 gaspi_number_t g_n;

13
14 // size of matrix blocks (mxn)

15 gaspi_number_t b_m;

16 gaspi_number_t b_n;

17
18 // starting point in memory for each proc ordered by group rank

19 gaspi_offset_t* memloc;

20 gaspi_segment_id_t* segment;

21
22 } global_desc_t;

Code 5.1: The global descriptor of a g-matrix.

To complete this set of information, the local descriptor local_desc_t (Code 5.2) exists
which also includes several other information containers next to the global descriptor.
These containers are each only valid for the local process. The first is a GASPI group
of which all processes noted in the procs array are part of. Further components are two
arrays, rowgroups of length P and colgroups of length Q, which hold the group IDs of the
groups containing the processes of each process grid row and column, respectively. These
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subgroups are not always necessary but are useful in case of reduction operations which
should only affect processes of the same row or column of the process grid. The number of
blocks the local process owns in each dimension are stored in numblockm and numblockn.

In case the blockwise data distribution does not come out evenly, the sizes of the last (most
right) column of the matrix lastblockn and of the last row of the matrix lastblockm
are stored as well.

1 typedef struct {

2
3 // global information of the matrix

4 global_desc_t global;

5
6 // group which owns the matrix

7 gaspi_group_t group;

8
9 // my coordinates within the process grid

10 gaspi_number_t myp;

11 gaspi_number_t myq;

12
13 // my position within the ’procs ’ array

14 gaspi_rank_t mygrank;

15
16 // subgroups of rows (array length global.P)

17 gaspi_group_t* rowgroups;

18
19 // subgroups of cols (array length global.Q)

20 gaspi_group_t* colgroups;

21
22 // #local blocks

23 gaspi_number_t numblock_m;

24 gaspi_number_t numblock_n;

25
26 // #elements in last block

27 gaspi_number_t lastblock_m;

28 gaspi_number_t lastblock_n;

29
30 } local_desc_t;

Code 5.2: The local descriptor of a g-matrix.

For an exemplary g-matrix that does not distribute evenly into blocks like a 14×13 matrix
with block sizes of 3× 3, the global descriptor would contain the following values:

(P, Q) = (2, 2),

procs = {0, 1, 2, 3},

(gm, gn) = (14, 13),

(bm, bn) = (3, 3),

with the memloc and the segment array depending on the user’s setup. The local infor-
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mation, e. g. for process P2 would be:

(myp, myq) = (1, 0)

mygrank = 2

(numblockm, numblockn) = (2, 3)

(lastblockm, lastblockn = (3, 1)

All information in the global descriptor and some information in the local descriptor such
as the groups have to be set by the user. Getter functions are implemented for the rest of
the components in the local descriptor. In case the global descriptor is set correctly, the
getter functions also work for processes that are not members of the matrix group as they
are only based on the global information.

Algorithms using this g-matrix structure benefit of a good data distribution which allows
for a good work load balance, presuming the matrix size is not too small. It also enables
the use of collectives on just one row or column of processors of the whole process grid.

5.2 A Matrix Multiplication Algorithm with GASPI

Assuming two matrices A ∈ Rm×k and B ∈ Rk×n are to be multiplied. The result is an
m× n matrix C:

C = A · B

or written component-wise:

ci,j =
m−1∑
l=0

ai,l · bl,j

for i = 0, . . . ,m− 1 and j = 0, . . . , n− 1. When implemented sequentially, this algorithm
needs m · n · k operations, as the computation of each of the m · n elements of matrix C
requires k operations.

Before turning to the actual implementation of the matrix multiplication of GASPI, the
next section provides a review of previous matrix multiplication algorithms. After de-
scribing the author’s implementation in the following section, a theoretical analysis of the
algorithm is provided.

5.2.1 Related work

Several parallel algorithms for matrix multiplication exist. These are based on some kind
of process grid to which the processes participating are mapped. They differ in various
other aspects: they use different communication patterns, distribute their data differently,
require the process mesh or the matrices to be squared or not, or also limit the sizes
of the sub matrices. Of course, in times the underlying hardware also places additional
constraints which push the algorithm being developed in a certain direction.

One of the best-known algorithms for the multiplication of two matrices was developed
by Cannon in 1969 [Can69]. He assumes a distribution based on a joint two-dimensional
process grid for all three matrices A,B and C. The algorithm targets an array-structured
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computer and relies on a step-wise shifting of certain rows in the first and columns in the
second matrix in order to generate intermediate elements of the sums giving the resulting
element of the matrix C. It is also often referred to as the two-dimensional systolic
approach.

The second classic algorithm is Fox’s algorithm [FOH87], also known as the broadcast-
multiply-roll approach. It also assumes at least a two-dimensional periodic mesh intercon-
nect and the data is scattered across a squared process grid. Each process hereby receives
one large continuous sub matrix. At each stage of the algorithm a block of the matrix
A is broadcasted across its corresponding process row and one block of B is exchanged.
Thereby each process can compute one component of the sum (5.2) per stage, i. e., the
multiplication of two sub matrices.

Two algorithms were derived from the broadcast-multiply-roll approach: PUMMA by Choi
et al. [CWD94] and BiMMeR by Huss-Lederman et al. [HLJT93]. With PUMMA Choi
et al. developed a software package containing the standard matrix-matrix multiplication
but also variants for one or two of the matrices being transposed. It is based on the idea of
Fox’s algorithm but also builds on the ideas of the ScaLAPACK implementation, hence also
includes the two-dimensional block cyclic data distribution. Here however a non-square
process grid and matrices of arbitrary dimensions are allowed. The algorithms presented
in this paper achieve some parallelism in the outer block iteration by performing multiple
instances of it together. In the inner loop blocks of B are broadcasted along a process
column. For the computation and communication steps smaller blocks are conglomerated
together in order to achieve a better performance. But as mentioned in [Cho97] this
also limits the possibility for an overlap of computation and communication. The second
algorithm building up on Fox’s algorithm is BiMMeR [HLJT93]. A different data layout,
the virtual 2D torus wrap, is utilized leading to a different algorithm. For simplicity Fox
assumed the matrices to be squared, the process grid however may be non-square. Both
algorithms were executed on the Intel Touchstone Delta, a supercomputer yet using its
own message passing interface, NX.

Agarwal, Gustavson and Zubair also designed a matrix-matrix multiplication based on a
two-dimensional processor grid for square matrices [AGZ94]. They claim to be the first
to implement it with an overlap of communication and computation. In their algorithm,
the data distribution is blockwise, each process receives one block of the corresponding
size. The size of these sub matrices is chosen such that the local BLAS3 call runs at its
peak performance and the actual matrix size is chosen based on a reasonable distribution
on the given processor grid. The algorithm includes two steps in which an update for
the resulting matrix C is computed whereas the data for the next update step is already
transmitted and received. This is done in terms of broadcasts across processor columns or
rows. The tests are run on an Intel iPSC System 860 and its successor Intel Touchstone
Delta.

Independently Geijn and Watts [vdGW95] developed the same algorithm as Agarwal et
al. and named it SUMMA. In addition, Geijn includes the algorithms for one or both of
the matrices also being transposed before the multiplication.

In [Cho97] Choi also suggests a variant of SUMMA, named DIMMA, supplemented by
two new ideas: a pipelined communication scheme for an effective overlap of communi-
cation and computation and further exploiting the block size determination concept in
order to achieve a maximum performance when calling local BLAS procedures. Compar-
ing DIMMA and PUMMA, Choi et al. found performance only to improve for smaller
matrices.
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Well known or rather widely used is the implementation of the matrix multiplication used
in the PBLAS collection, the parallel BLAS collection [CDO+96].
Further algorithms concerning matrix multiplications are described in [FW97, GS94,
KN04].
Another type of algorithm was developed by Li, Skjellum and Falgout [LSF95]. They de-
veloped a poly-algorithm which chooses between three algorithms: Cannon’s, broadcast-
multiply-roll and broadcast-broadcast, in order to always achieve the best possible perfor-
mance.
In 2012 Georganas et al. [GGDS+12] reviewed Cannon’s and the broadcast-multiply-roll
algorithm and implemented both based on UPC (see Section 3.2.2). They also imple-
mented two additional versions for each algorithm: one applying communication-overlap
techniques and with the other aiming at avoiding communication, i. e., reducing the overall
amount of communication.
Other recent work includes algorithms for matrix multiplications targeting heterogeneous
clusters. The basic idea is for the algorithm carrying out the data partitioning to take
into consideration the speed of each processor and accordingly balance the computational
load in terms of differently sized rectangular sub matrices. KL [KL99] and BR [BBRR01]
are examples hereof. Hereby the performance evaluation of the single processor depends
on a static model returning a single value. Clarke et al. [CLR12] on the other hand use a
functional performance model to determine the size of the rectangles and then maps these
rectangles to the processors with the main goal of a minimizing the communication.
Furthermore dense matrix multiplication has not only been carried out on CPUs. For
example in [CCZM10], the general matrix-matrix multiplication was implemented on the
GPGPUs with cache on the Fermi architecture (Nvidia) using CUDA.

5.2.2 Implementation of Matrix Multiplication in GASPI

The basic ideas used in the GASPI implementation of the matrix-matrix multiplication,
documented in this chapter, are based on the blockwise data distribution of the g-matrix as
described in Section 5.1. In comparison, an important difference to other implementations
(see Section 5.2.1), is that in this setting each of the matrices A and B has its own
process grid. This means that a process may belong to only one of the process grids.
This significantly distinguishes the algorithm from others, as considerations about data
dependencies and data exchange are completely different. Before elaborating further on
the details of the algorithm, information about the setup and assumptions that are made
are described.

The simple notation of the dimensions in the section before is exchanged for one derived
from the descriptor of the g-matrix, thereby achieving a better distinguishability when
speaking about dimensions of different matrices. Therefore, the matrices and their dimen-
sions are denoted as follows:
The matrices

A ∈ Rg
A
m×gAn and B ∈ Rg

B
m×gBn

are divided into blocks of size

bAm × bAn and bBm × bBn ,

respectively, further assuming gAn = gBm and bAn = bBm. In general the implementation also
is capable of an uneven apportionment but in order to ease notation and discussion, the
matrices are required to divide evenly into blocks. That is, every block of the g-matrix is
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of full size bm · bn. The number of blocks a matrix then consists of is given by bmA · bnA
for matrix A and bmB · bnB for matrix B, whereas

bmA = gAm/b
A
m,

bnA = gAn /b
A
n = gBm/b

B
m = bmB,

bnB = gBn/b
B
n .

Furthermore, it is assumed that the process groups of A and B are distinct and that the
resulting matrix C is stored with the exact same process grid as matrix A, adopting the
same order of process ranks. This data distribution of the matrices A, B and C to the two
process grids is illustrated in Figure 5.3.

A

P0 P1

P2 P3

B

P5

P7P6

P4

C

P0 P1

P2 P3

Figure 5.3: Mapping of the matrices A and B to their process grids and the multiplication
result C = AB to A’s process grid.

Additionally, the process grids of both matrices must match in one dimension just as the
matrices themselves, i. e.,

QA = PB. (5.1)

In the following, a matrix block is referred to by its block coordinates within its matrix,
e. g. A0,1 denotes the second block of A in its first block row. On the other hand,

(p, ∗)A

denotes the set of processors of A that are in the p-th row of the process grid, while

(∗, q)B
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refers to the set of processors in the q-th column of the process grid of B and the other
combinations, analogously.

Computation of C – Diagonal Iteration

Due to the blockwise distribution of data, the calculation of a block of the resulting matrix
consists of a summation of several smaller matrix multiplications. Enumerating all blocks
of the matrix C with the indices i ∈ {0, . . . , bmA − 1} and j ∈ {0, . . . , bnB − 1}, the block
Ci,j is computed as

Ci,j =
bmA−1∑
k=0

Ai,k · Bk,j . (5.2)

The goal of this implementation is to use a scheme that divides the computations into
parts which each affect only one process or a subgroup of processes of each matrix group,
respectively. By this means, the resulting computational parts are independent from each
other and can be run in parallel.
Within the calculation of one block Ci,j only the processes of one process row (p, ∗)A of A
and the processes of the corresponding process column (∗, q)B of B are active, assuming
that the blocks Ai,∗ are held by the processes of (p, ∗)A and the processes (∗, q)B hold the
blocks in B∗,j . This is illustrated in Figure 5.4. So to compute block C2,5 data is needed

C

P0 P1

P2 P3

C2,5

A

P0 P1

P2 P3

B

P5

P7P6

P4

Figure 5.4: Illustration of the data needed for the computation of block C2,5 and the
processes of A and B involved in the calculation.

from only one process row of A and one process column of B. Hence the other process rows
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of A and process columns of B are free to work on other process blocks of C in parallel,
provided that they are not in the same process row or columns, e. g. block C1,4.
In order to make use of this natural parallelization, the procedure iterates over the blocks
of the resulting g-matrix C, computing one block of C in each step. Processes not belonging
to the corresponding process row of A and process column of B of one iteration simply
skip that calculation and continue with the next block and so on. A process not involved
in a computation moves on until it reaches a block calculation in which it can participate.
The idea is to accomplish this iteration in a way that subsequently computed blocks are
held by groups of processes disjoint from that of the last block in which case subsequent
blocks can be computed in parallel. Thus, the iteration starts with the upper left block
and moves across the other blocks in a diagonal pattern, as shown in Algorithm 4. The
diagonal iteration ensures the parallel computation of at least min{PA, QA, QB, bmC , bnC}
blocks at once.

1 for k = 0, . . . , bnC − 1 do
2 for i = 0, . . . , bmC − 1 do
3 j = (i+ k) mod bnC ;
4 compute block(Ci,j);
5 end

6 end

Algorithm 4: Diagonal iteration scheme for iteration over blocks of C.

Computation of block Cij

The function compute block(Ci,j) in Algorithm 4 computes the sub block Ci,j of the matrix
C. First the basics of the computation are explained, the content of body is then given
in Algorithm 5. It is based on the fact that the calculation of Ci,j can be split into a
sum of several smaller matrix multiplications, as given in Equation (5.2). So each block
equals a summation of other blocks and each of these sums is calculated by a subgroup
of processes of matrix A and a subgroup of processes of the matrix B’s matrix group.
Due to the assumption in Equation (5.1), these subgroups are of the same size. Viewing
Equation (5.2) from a processes point of view, it can be written as follows:

Ci,j =

QA−1∑
q=0

Nq−1∑
k=0

Ai,k · Bk,j︸ ︷︷ ︸
=:Sq(i,j)

=

QA−1∑
q=0

Sq(i, j) (5.3)

where the block Ci,j is owned by the process (p̂, q̂)C and

Nq = numblock(p̂,q)
A

n

is the number of blocks a process has locally. (pA, qB) = (p̂, q̂) denotes the grid coordinates
of the process that owns block Ci,j in the process grid of C and Sq(·) the inner sum. In
Figure 5.4 this would be process P1 which owns block C2,4 with coordinates (p̂, q̂) = (0, 1)
in the process grid of C.
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The outer sum of Equation (5.3) iterates over the processes within the grid row (p̂, ∗)A
or grid column (∗, q̂)B. In Figure 5.4 this corresponds to the process grid row 0 of A
containing processes P0 and P1 and the process grid column (∗, 1) = {P6, P7} for the B
matrix. For each q the inner sums Sq(i, j) are only computed by a pair of processes, one
from each matrix group: a ∈ (p̂, ∗)A and its counterpart b ∈ (∗, q̂)B. No data has to be
exchanged with any processes of the other matrix group. In Figure 5.4, for example, P1
only needs to exchange data with P7 and not communicate with P6.

The idea of the proposed algorithm is that as a first step each process a = (p̂, q) computes
its contribution to block Ci,j , namely the inner sum Sq(i, j) together with its counterpart
b = (q, q̂). Together they have to compute Nq matrix multiplications of their submatrices.

To share the workload the number of blocks is divided in half. So basically, the inner sum
from Equation (5.3) is split once more into two halves: the first α = dNq/2e summands
and the latter β = Nq − α ones.

Sq(i, j) :=
α−1∑
k=0

Ai,k · Bk,j︸ ︷︷ ︸
=:S1

q (i,j)

+

Nq−1∑
k=α

Ai,k · Bk,j︸ ︷︷ ︸
=:S2

q (i,j)

, (5.4)

Ci,j =

QA−1∑
q=0

S1
q (i, j)︸ ︷︷ ︸

=:S1(i,j)

+

QA−1∑
q=0

S2
q (i, j)︸ ︷︷ ︸

=:S2(i,j)

. (5.5)

Algorithm 5 outlines the computation of these sums.

1 if myrank ∈ (p̂, ∗)A or myrank ∈ (∗, q̂)B then

// Computation involving process pair (a, b)
2

(
S1
q (i, j), S2

q (i, j)
)

= compute inner sum half(i, j, q);

// A procs now hold S1
q (i, j), B procs hold S2

q (i, j).

// reduction involving process row or column

3 S1(i, j) = reduce inner sums( S1
q (i, j) ) ;

4 S2(i, j) = reduce inner sums( S2
q (i, j) ) ;

5 end

6 if myrank == (p̂, q̂)A or myrank ∈ (0, q̂)B then

// Summation involving process pair

7 Ci,j = final sum
(
S1(i, j), S1(i, j)

)
;

8 end

Algorithm 5: Sketch of computation of block Ci,j in function compute block(Ci,j)
in Algorithm 4.

In function compute inner sum half() in Line 2 of Algorithm 5 the inner sum parts
S1
q (i, j) and S2

q (i, j) are computed by applying Equation (5.4). Thereafter, each process
a = (p̂, q) holds the sum part S1

q (i, j) and each process b = (q, q̂) holds the sum part S2
q (i, j).
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The exact computation of these sum parts is explained in the “Overlap Algorithm” in the
following section.
As a next step in the functions reduce inner sums() in Line 3 and 4 all processes of
(p̂, ∗)A and analogously of (∗, q̂)B reduce their results within their row or column group,
respectively. After this allreduce, all processes of (p̂, ∗)A contain the result of the first
half of the inner sum S1(i, j) and all processes of the (∗, q̂)B column receive the result of
the second half S2(i, j). An allreduce function is used as GASPI does not provide any
other type of reduction operations. These allreduce-calls are possible as each descriptor
contains the groups of each block row and block column. Following this step in the function
final sum() in Line 7 the first process in the process column of B, b = (0, q̂)B, writes its
allreduce result S1(i, j) to the A process a = (p̂, q̂)A which will hold the final result. The
process a = (p̂, q̂) then calculates the final sum given in Equation (5.5) and stores it in
the space it belongs to.
This concludes the computation of block Ci,j and therefore the function compute block(Ci,j)
in Algorithm 4 returns and the diagonal iteration moves on with the next computation as
described by that algorithm.

Computation of S1(i, j) and S2(i, j) – Overlap Algorithm

The details of function compute inner sum half() in Line 2 of Algorithm 5 are described
in the following paragraphs. Here, the inner sum parts S1

q (i, j) and S2
q (i, j) are computed as

shown in Equation (5.4). The implementation is explained for two processes a = (p̂, q) from
the corresponding row group of A and its counterpart b = (q, q̂) from the corresponding
column group of B.
In order to share the workload, the inner sum is split into two halves as explained in
Equation (5.4). The general idea is for a to compute S1

q (i, j) and b to compute S2
q (i, j).

However for this task a needs the blocks Bk,j (k = 0, . . . , α − 1) from b and b needs the
blocks Ai,k (k = α, . . . , Nq − 1) from a.
One possibility to implement this would be for b to first send its blocks Bk,j to a and for b
to meanwhile send the blocks Ai,k to b. Then each part could compute its inner sum half
as all sub blocks involved are available (assuming a large enough buffer for that). In order
to avoid the overhead of the communication involved with this block of data exchange,
the overlap algorithm (Algorithm 6) strives to mix these local matrix multiplications of
S∗q (i, j) with the necessary exchange of blocks Ai,k or Bk,j . The key feature of the overlap
algorithm is that by mixing these operations, the communication resulting from the block
exchange can be overlapped by the matrix multiplications.
This is accomplished by employing a pipeline. The idea is to overlap the sending of a
block needed by the other process with the computation of the matrix multiplication of a
different block that has already been sent. To initialize this pipeline, both processes a and
b send the first block needed by the other process to each other (Line 6 and 25). Each data
exchange is implemented by using the gaspi write notify so that not only the data is
sent but additionally a notification is set on the receiver’s side as soon as the block’s data
has arrived. In Algorithm 6 this function is split into two commands (write block and
notify) for a better readability. The data is always stored in a designated location on a
buffer within the global address space on the remote side. Same as the notification the ID
of the buffer is circulated in order to not write into a memory space or set a notification
that has not yet been seen by the remote side.
Then the pipeline itself starts, represented by the for loops in Line 8 and 24 of Algorithm 6.
Both a and b processes write a block needed by the other process to the other process’s
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// Processes a = (p̂, q)A and b = (q, q̂)B compute S1
q (i, j) and S2

q (i, j).

1 α = dNq/2e;
2 β = Nq − α;
3 k = 0;

4 if process a then
5 determine rank of partner process b = (q, q̂)B;
6 write block Ai,k+α to buffer(k+1) mod 4 on b;

7 notify b with ID k + 1;
8 for k = 1 : β − 1 do
9 write block Ai,k+α to buffer(k+1) mod 4 on b;

10 notify b with ID k + 1;
11 wait for notification k mod 4 from b;
12 compute Ai,k−1Bk−1,j ;
13 end
14 wait for notification k mod 4 from b;
15 compute Ai,β−1Bβ−1,j ;
16 k++;
17 wait for notification k mod 4 from b;
18 compute Ai,βBβ,j ;
19 end

20 if process b then
21 determine rank of partner process a = (p̂, q)A;
22 write block Bk,j to buffer(k+1) mod 4 on a;

23 notify a with ID k + 1;
24 for k = 1 : β − 1 do
25 write block Bk,j to buffer(k+1) mod 4 on a;

26 notify a with ID k + 1;
27 wait for notification k mod 4 from a;
28 compute Ai,k+α−1Bk+α−1,j ;
29 end
30 write next block to buffer(k+1) mod 4 on a;

31 notify a with ID k + 1;
32 wait for notification k mod 4 from a;
33 compute Ai,α+β−1Bα+β−1,j ;
34 end

Algorithm 6: The overlap algorithm: Overlapping the exchange of blocks and local
matrix-matrix multiplications for the computation of the inner sum halves S1

q (i, j)
and S2

q (i, j) (see Equation (5.4)).
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buffer and notify it. Afterwards, it waits on the notification that a block from the other
process has arrived as sketched in Line 11 and 27. In case a process receives a positive
answer whilst waiting for a notification, it then knows that the expected data has arrived
and can start the local matrix-matrix multiplication (Line 12 and 28). The result is added
to a buffer designated to store the intermediate result, thereby step by step computing
S1
q (i, j) and S2

q (i, j), respectively.

In order to obtain a better understanding of the algorithm, an example of this algorithm
is illustrated in Table 5.1. The processes a = (p̂, q)A and b = (q, q̂)B together compute
S1
q (i, j) and S2

q (i, j). They use the simplified pseudo-code functions write notify(B, x),

a ∈ A b ∈ B
write notify(A3, 0) write notify(B0, 0)

write notify(A4, 1) (for-loop) write notify(B1, 1)
wait(0) & calc(A0B0) wait(0) & calc(A3B3)
wait(1) & calc(A1B1) write notify(B2, 2)
wait(2) & calc(A2B2) wait(1) & calc(A4B4)

Table 5.1: Simplified version of the overlap algorithm described in Algorithm 6 for Nq = 5,
α = 3 and β = 2. The number in brackets denotes the notification ID.

wait(x) and calc(B). A call from process a to write notify(B, x) means that the calling
process is writing block B (assuming a sequential numbering) to b into buffer x and setting
the notification x. The wait(x) call executed by process b designates that the process waits
for notification ID x to be set by a. This means that block B sent by write notify(B, x)
has arrived in buffer x. Finally, function calc(B) denotes the computation of block B.

5.2.3 Theoretical Analysis of the Algorithm

The goal of this section is to evaluate the algorithm with respect to its potential for
overlapping communication phases with other computational parts. This overlap reduces
the total runtime and therefore enhances the efficiency of the implementation. Thereby,
an important aspect is to detect necessary synchronization points in the algorithm. These
divide the algorithm into sections that can only be executed sequentially. However, not all
synchronization points affect all processes. Instead they may only apply to a subgroup of
one matrix or of each process grid. Furthermore, it should be pointed out that within these
sections between synchronization points computations still can be executed in parallel. In
order to investigate if an overlap within these sections is possible, the time needed for the
computational steps and the communication calls is evaluated in detail.

The implementation of the matrix multiplication is sketched in Algorithm 7. This pseudo-
code builds up on Algorithm 4 but also points out the synchronization points. Synchro-
nization occurs in two places between subgroups of both matrices. First, in Line 1 all
processes are synchronized together, then in Line 5 only two subgroups are synchronized,
whilst the other processes continue on.

Thereby the algorithm naturally consists of two main parts which are framed by barriers.
In this implementation a barrier also conclude all previous memory operations to be com-
pleted. The first of these two parts is the diagonal iteration, that is the outer loop over
the blocks of the matrix C starting in Line 2 after the global barrier. The second part is
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1 gaspi barrier (ALL);

2 for diagonal iteration(i, j) do

3 if myrank /∈ (p̂, ∗)A and myrank /∈ (∗, q̂)B then
4 return GASPI SUCCESS ;
5 else
6 gaspi barrier ((p̂, ∗)A, (∗, q̂)B);
7 compute block(Ci,j);
8 end

9 end

Algorithm 7: Sketch of matrix multiplication algorithm with focus on global syn-
chronization.

the compute block() procedure in Line 7 which is implemented in the overlap algorithm
and starts after the synchronization of the row and column group.
Therefore, in a first step, only the outer loop of the algorithm which iterates over these
sub-blocks is analyzed. The computations of such a sub-block (the overlap algorithm) is
assumed to be fixed and is characterized by Tblock(b). It is compared to a naive version of
its implementation. Then, in a second step, the overlap implementation of loop body is
evaluated and again compared to a naively implemented version.
All in all, in the following the timings of the following sections are regarded:

� Tnaive loop: Outer loop implemented naively.

� Tdiag loop: Outer loop implemented with diagonal iteration.

� Tnaive body: Loop body implemented naively.

� Toverlap body: Loop body implemented with overlap algorithm.

For the theoretical analysis, a simplified data distribution is assumed: the matrices are
assumed to be square, i. e., g × g, as well as its b × b sub-blocks. The process grids are
assumed to be square as well, i. e., P×P. Furthermore, each process shall receive the same
number of blocks of a matrix ν2l . The total number of blocks in a block row of a matrix
is then denoted as νg := νlP.
Consequently the size of the matrices is given as

g2 = (νgb)
2 = (νlPb)

2.

Here νg represents the global number of blocks in one dimension, whilst νl denotes the
local number of blocks in one dimension.

Analysis of the outer loop

Assuming a naive approach, the computation of the sub-blocks would proceed row by row,
left to right. This naive approach is shown in Algorithm 8. So the order in which the
blocks are processed is C0,0, C0,1, ...C0,νg , C1,0, ..., Cνg ,νg . When moving through one row of
C, the calculation of two consecutive blocks involves two disjoint B (column) groups but
the same A (row) group. For example, the calculation of the blocks

Ci,j : requires A(i, ∗) and B(∗, j) and

Ci,j+1 : requires A(i, ∗) and B(∗, j + 1)
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1 for i = 0, . . . , νg − 1 do
2 for i = 0, . . . , νg − 1 do
3 compute block(Ci,j);
4 end

5 end

Algorithm 8: Naive iteration over the blocks to be calculated of C.

where i ∈ [0, νg) and j ∈ [0, νg − 1).

Therefore blocks within a block row can only be computed sequentially one after the
other as they all depend on the same process row group of A. The only possibility where
two consecutively called blocks do not depend on the same groups and therefore can be
computed in parallel, is the calculation of the last block in one row and the first block in
the next row:

Ci,νg−1 : requires A(i, ∗) and B(∗, νg − 1) and

Ci+1,0 : requires A(i+ 1, ∗) and B(∗, 0)

where i ∈ [0, νg − 1). For such a pair of blocks no data or processor dependencies exist.
This is exemplarily illustrated by a matrix consisting of 6× 6 sub-blocks in Table 5.2.

s s s s s p

p s s s s p

p s s s s p

p s s s s p

p s s s s p

p s s s s s

Table 5.2: Illustration of a row-wise iteration over matrix blocks in a naive implementation.
’s’ characterizes the blocks that can only be computed sequentially one after the other and
’p’ the blocks that can be computed in parallel.

Thus, in total the time required for the computation of C is as follows

Tnaive loop(b, P, νl) =
(
ν2g − (νg − 1)

)
Tblock(b)

=
(
(Pνl)

2 − Pνl + 1
)
Tblock(b). (5.6)

Note that this formula assumes that the computation of two blocks may run in parallel
ideally, i. e., ignoring any sharing of latency bandwidth or other resources between the
different process groups of each block computation.

Now using the diagonal approach, the iteration proceeds as implemented in Algorithm 4.
This approach leads to a different ordering of the block iteration which is exemplarily
visualized in Table 5.3 with the same matrix example as in Table 5.2.

With this algorithm, the blocks are processed in a diagonal fashion, whereby the numbers
in Table 5.3 indicate when a block is computed. If one block’s number is different from
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1 4 7 10 13 16

16 1 4 7 10 13

14 17 2 5 8 11

11 14 17 2 5 8

9 12 15 18 3 6

6 9 12 15 18 3

Table 5.3: Illustration of a diagonal iteration over matrix blocks distributed across a 2× 2
process grid. The numbers indicate the order when blocks are computed.

an other, they are computed at different times, with the lower number sooner than the
higher one. Blocks labeled with the same number are computed simultaneously.

Looking at these blocks from a more general perspective, the computation of P consecu-
tively computed blocks in the diagonal fashion involves the following groups:

Ci,j : requires A(i, ∗) and B(∗, j),

C(i+1)%νg ,(j+1)%νg : requires A((i+ 1)%νg, ∗) and B(∗, (j + 1)%νg),

C(i+2)%νg ,(j+2)%νg : requires A((i+ 2)%νg, ∗) and B(∗, (j + 2)%νg),

...

C(i+P−1)%νg ,(j+P−1)%νg : requires A((i+ P− 1)%νg, ∗) and B(∗, (j + P− 1)%νg),

for i = nP with n = 0, . . . , νl−1 and j ∈ [0, νg−1). Due to the design of the process grid, in
the case of P ≥ 2, the calculations of these P blocks involve 2P different groups which do not
interfere. Therefore, here the number of blocks that can be computed independently and
in parallel is limited by P. Note, that in a more general (non-square) case, the limitation
would be L := min{PA, PB, (νg)Cm, (νg)Cn}. This gives the following estimation for the time
needed for the diagonal outer iterations, again assuming a perfect architecture, an infinite
bandwidth and a network worth buying:

Tdiag loop(b, P, νl) =

⌈
ν2g
L

⌉
Tblock(b)

=

⌈
(P νl)

2

P

⌉
Tblock(b)

= P ν2l Tblock(b) (5.7)

It is assumed that the diagonal iteration is superior to the naive implementation:

Tdiag loop ≤ Tnaive loop (5.8)

(5.7),(5.6)⇐⇒ P · ν2l · Tblock(b) ≤
(
(P · νl)2 − P · νl + 1

)
Tblock(b)

Tblock(b) 6=0⇐⇒ P · ν2l ≤ P2 · ν2l − P · νl + 1
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Looking at Tnaive loop (Equation (5.6)) and Tdiag loop (Equation (5.7)), it can be seen that
for a fixed matrix and block size, Tnaive loop roughly grows in O(P2) and Tdiag loop in O(P).

Figure 5.5 emphasizes this superiority of the diagonal iteration over the naive iteration. It
shows the times needed for each iteration in dependency of both parameters νl and 2 · P2.
Here

Figure 5.5: The time needed for the outer loop iteration of the matrix computation. The
loop body is assumed to be of fixed size. The time (vertical z-axis) depends on two
parameters given on the x and y-axis: νl and 2P2.

Analysis of the loop body

Turning to the loop body of the outer loop described in the last sections, we turn to
the computations of the sub-blocks of the matrix C which are computed in the overlap
algorithm. The computation of one sub-block is assumed to be fixed and is characterized
by Tblock(b). The overlap algorithm is based on the assumption of being able to overlap
part or all of the transfer of one sub-block with a computational step.

In order to determine the time needed for the computation of a matrix multiplication of
one sub-block of A times a sub-block of B, first the time needed for one floating point
operation needs to be known. The system’s hardware (see Section 5.3) contains Intel Xeon
E5-2630 v3 which manage 16 FLOPs per cycle. Running at a clock rate of 2.4 GHz, a
single such processor is able to compute

2.4 GHz · 16 FLOP/cycle = 2.4 · 109 cycle/s · 16 FLOP/cycle = 38.4 · 109 FLOP/s

This comes down to one FLOP taking about 2.6 · 10−11 seconds.

Another way of computing the time needed for one FLOP, is by using the maximum peak
performance achieved by benchmarks for the top500 list20. The maximum performance

20http://www.top500.org/system/178541
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acquired by the computing cluster that was used, the ’bwForCluster MLS&WISO’21, with
the Linpack benchmark is 241.113 TFLOP/s = 241.113 · 1012. Divided by 7,552 cores this
gives 3.192704 · 1010 FLOP/s per core.

TFLOP =
1 FLOP

3.192704 · 1010 FLOP/s

= 3.13 · 10−11 s

All in all, it can be safely assumed that the most time a floating point operation will take,
is

TFLOP = 3.13 · 10−11 s. (5.9)

Setting TFLOP to be the average time22 a single processor needs for one floating-point
operation, the time consumed by the computation of a single sub matrix can be estimated.
If all data is locally available, a matrix multiplication of two matrices of size b× b requires
b multiplications and b − 1 additions for each element of the resulting sub matrix Ci,j .
This occurs when one process already received the counter sub matrix from its counter
rank. In total this gives b2(2b− 1) floating point operations. Equation (5.10) presents the
resulting time needed for this computation.

Tcomp(b) = b2(2b− 1)TFLOP

= (2b3 − b2)TFLOP (5.10)

Of course, the loop body also contains a call to the allreduce function where even more
floating-point operations occur and which is not covered so far. But due to the associated
synchronization, for now the focus is only on the overlap algorithm.

As mentioned before, the time needed for the transfer of a sub block of the matrix is the
other side of the equation. The time needed for a transfer of a block with b2 elements,
each of size β bits, is

Ttr(b) =
b2β

B
,

where B denotes the point to point bandwidth of two nodes of the cluster. So next to the
block dimension, the time for a block transfer is highly dependent on the architecture and
the network topology it runs on.

The bandwidth between two nodes on the bwForCluster MLS&WISO is 40 Gbit/s. How-
ever, in a general setting not only a single core is used on each node, but several cores.
In this case the cores may be sending data at the same time and thus have to share the
network, reducing it to B/ppn, where ppn is the number of cores on both nodes in use.
Using the worst case scenario of all 16 cores using the network simultaneously and data

21See Section 5.3.1 for details on the cluster.
22On different platforms, floating-point operations may be implemented differently, thereby requiring a

different number of instructions to complete and consuming a different amount of time. However multipli-
cation and addition usually take up the same amount of time and else wise an average time is assumed.
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of type double (β = 64 bits), the time needed for the transfer comes down to:

Ttr(b) =
b2 · 64 bit
40 Gbit/s

16

=
b2 · 64 bit · 16

40 · 10243 bit/s

=
b2

40 · 10242
s. (5.11)

In order to hide the amount of communication Ttr behind the computations achieved in
Tcomp, we need

Ttr < Tcomp (5.12)

to hold. Plotting these two functions as given in Equation (5.11) and (5.10), gives a
first indication of the block dimension from which on Equation (5.12) holds. Figure 5.6

Figure 5.6: Comparing the time needed for the transfer of a sub-block Tcomp and the time
needed for a local matrix multiplication of two sub-blocks Ttr with block dimensions of up
to 800.

shows the functions of Ttr (blue graph) and Tcomp (green graph). The time needed for the
transfer is longer than the time needed for the computational operations up till a block
size between 370 and 390 from which on Tcomp is faster.

Following this indication, we turn to the mathematical evaluation of the behavior of these
two functions and determine when Ttr is smaller than Tcomp and can therefore be over-
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lapped efficiently:

Ttr < Tcomp

(5.11),(5.10)⇐⇒ b2

40 · 10242
s < (2b3 − b2)TFLOP

b 6=0⇐⇒ 1

40 · 10242
s < 2bTFLOP − TFLOP

TFLOP 6=0⇐⇒ b >
1

40·10242 s + TFLOP

2TFLOP

TFLOP≈3.13·10−11

⇐⇒ b > 381.10

So a simultaneously performed data transfer can be completely overlapped by a local
matrix multiplication, when b ≥ 382. However, this only applies to the rather simple
consideration of one sub block communication and computation.
Next, the time needed for the loop body is considered. Before, it was simply taken
to be a fixed amount Tblock occurring in each iteration step of the outer block loop.
Again first a naive implementation of the loop body is considered which assumes the sub-
computations and the necessary data transfers to occur strictly consecutively, resulting in
the time Tnaive body. Then, the timing Toverlap body of the overlap algorithm as described
in Algorithm 6 is addressed.
Again the pseudo-code notation of before is used but slightly adapted and extended:

� write notify(b, n) denotes that the calling process writes the b-th block in the
corresponding row or column to its counterpart and there also sets the notification
n.

� wait(n) denotes that the calling process waits in a blocking way on the notification
with ID n.

� calc(b) denotes that the calling process calculates the sub matrix multiplication of
the b-th block.

� Twrite denotes the time needed by a process to post a write call to its queue assuming
the queue is available.

� Twait denotes the time a processes is waiting on a notification to be posted by another
process. It is no fixed time but varies from call to call depending on the current
algorithmic step.

Next to the block sizes, the time needed for both loop bodies also depends on the number
of blocks a processor locally has in a given row or column. Therefore, we will consider the
different cases one by one. They are outlined in Table 5.4 through 5.8. Again α denotes the
first half of a processes local blocks and β the second half, as introduced in Algorithm 6.
Due to these different cases, processes from matrix A may have to accomplish different
operations than processes from matrix B. Timings are therefore additionally equipped
with an exponent representing the process affiliation, e. g. T anaive body or T boverlap body. The
total time needed then results of the maximum of both process-bound times, i. e.,

Tnaive body = max{T anaive body, T
b
naive body}, (5.13)

Toverlap body = max{T aoverlap body, T
b
overlap body}. (5.14)
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Case 1: νl = 1, Table 5.4
In this case both a and b hold only one block in total (νg = P), so only one sub matrix

νl = 1, α = 1, β = 0

a ∈ A b ∈ B
wait(1) write notify(0, 1)

calc(0)

Table 5.4: νl = 1

multiplication has to be calculated by a and b only has to write its sub matrix to a. This
is visualized in Table 5.4. For the naive implementation these steps take place one after
the other. Here, the total duration of time for process b is

T bnaive body = T bwrite.

The write call itself takes up close to no time at all. After posting the write call, the
network takes on whilst the process b can continue on. In this case b moves on to the
allreduce function which actually has no work to perform at all. For process a the time
duration depends on the time spent in the wait and the time needed for the computation
of the one small matrix block. At this, the time spent in the wait depends on the writing
of process b and the time needed for the data transfer by the network. This results in:

T anaive body = T await︸ ︷︷ ︸
T b
write+Ttr(b)

+T acomp(b)

= T bwrite + Ttr(b) + T acomp(b).

Hence, the total amount of time is given by:

Tnaive body
(5.13)

= T bwrite + Ttr(b) + T acomp(b).

Regarding the implementation of Table 5.4 using the overlap algorithm, it can be seen,
that for this small number of blocks no overlap is algorithmically possible. Therefore, the
timings for the naive and the overlap implementation coincide:

Toverlap body = Tnaive body.

Case 2: νl = 2, Table 5.5
In this case each process has to process exactly one block, i. e., to write once and to
compute once. Again, due to the number of blocks available no overlap is possible and
Toverlap body equals Tnaive body. However the determination of T await is not as trivial as
before. It now concludes as the maximum time spent by the process a before that call
and the time needed by process b to reach the associated write notify call plus the time
needed by the network for the actual transfer.

T anaive body = T awrite + T await + T acomp(b)

= max{T awrite, T
b
write + Ttr(b)}+ T acomp(b)

= T bnaive body.
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νl = 2, α = 1, β = 1

a ∈ A b ∈ B
write notify(1, 1) write notify(0, 1)

wait(1) wait(1)

calc(0) calc(1)

Table 5.5: νl = 2

Basically this comes down to a sequential flow again, as no data is yet present at the time
the a starts its computation (i. e., the maximum only contains writes and transfers). So,
here the following equation holds:

Tnaive body = T anaive body = Toverlap body.

Case 3: νl = 3, Table 5.6
In the last “special” case, each process has three blocks in a block row or block column,
respectively. It is similar to case 2 but now for the first time two gaspi write notifys
occur right after another which are to start a pairing of the computation of one block and
a data transfer of the next block happening at the same time. For process a the following

νl = 3, α = 2, β = 1

a ∈ A b ∈ B
write notify(2, 1) write notify(0, 1)

wait(1) write notify(1, 2)

calc(0) wait(1)

wait(2) calc(1)

calc(1)

Table 5.6: νl = 3

holds:

T atotal = T awrite + T await + T acomp(b) + T await + T acomp(b)

= max{T awrite, T
b
write + T btr(b)}︸ ︷︷ ︸

=:M (constant)

+T acomp(b) + T await + T acomp(b)

= max{M + T acomp(b), 2T bwrite + 2T btr(b)}+ T acomp(b).

So in case the initial setup M does not take too long, the data transfer of the second block
from b to a may be overlapped with the first block computation of a (so 2T bwrite+2T btr(b) ≤
m+ T acomp(b)). But for process b clearly no opportunity for overlap is given.

T btotal = T bwrite + T bwrite + T bwait + T bcomp

= max{T awrite + T atr(b), 2T
b
write}+ T bcomp.

Case 4: νl > 3, Table 5.7 and Table 5.8
All of the following cases can be divided into the two general cases: the case where the
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number of local blocks in a block row or block column are even (Table 5.7) and the case
where they are uneven (Table 5.8). Both tables are almost identical, except for the IDs of
the blocks and the implementational part right after the for-loop. As they hardly differ
elsewise, the runtime will only be evaluated for the even case.

νl = 2r, α = r, β = r

a ∈ A b ∈ B
write notify(r, 1) write notify(0, 1)

for(k = 1 : β − 1)

write notify(k + r, (k + 1)%4) write notify(k, (k + 1)%4)

wait(k%4) wait(k%4)

calc(k − 1) calc(k + r − 1)

wait(r%4) wait(r%4)

calc(r − 1) calc(2r − 1)

Table 5.7: νl = 2r, r ≥ 2

νl = 2r + 1, α = r + 1, β = r

a ∈ A b ∈ B
write notify(r + 1, 1) write notify(0, 1)

for(k = 1 : β − 1)

write notify(k + r + 1, (k + 1)%4) write notify(k, (k + 1)%4)

wait(k%4) wait(k%4)

calc(k − 1) calc(k + r)

wait(r%4) write notify(r, (r + 1)%4)

calc(r − 1) wait(r%4)

wait((r + 1)%4) calc(2r)

calc(r)

Table 5.8: νl = 2r + 1, r ≥ 2

Thanks to the two write notify calls at the beginning, in each iteration of the for-loop
always the transfer of one block is initialized and right after that the computation of a
block independent from the communication step (the block sent by the counterpart in the
iteration before) is computed, starting as soon as the transfer has finished.
For this transfer to be completed, it has to take place simultaneously with the computation
of the counter rank in the iteration before.
For the following equations, we keep in mind, that both processes start at the very same
time and therefore although they do not synchronize in each step, due to the homogeneous
hardware, they can be viewed as running simultaneously for each step. For reasons of
overview we shorten the notation for the transfer time as follows:

T btr(k) := T btr(b),

for the k-th block in the sequence. Additionally note, that the superscript a or b does not
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matter for the execution time itself but when rethinking the equations it helps to know
“who” executed the action.

Determining the time needed for the wait in the k-th iteration, the time needed for the
first wait is as follows:

T await(1) = max{2T awrite, T
b
write + T btr(1)}

= T btr(1)

= T atr(1)

= max{2T bwrite, T
a
write + T atr(1)} = T bwait(1)

where Twrite is negligible as it takes only about one cycle to complete.

T await(2) = max{T await(1) + T acomp(1) + T awrite, T
b
tr(1) + T btr(2)} (5.15)

= max{T atr(1) + T acomp(1), T btr(1) + T btr(2)} (5.16)

T b
tr(1)=T

a
tr(1)= T atr(1) + max{T acomp(1), T btr(2)} (5.17)

It is shown that while a computes its first block, the transfer of the second23 block on the
side of b occurs. Again, the same applies to T bwait(2).

T await(3) = max{T await(2) + T acomp(2) + T awrite, T
b
wait(1) + T bcomp(1) + T bwrite + T btr(3)}

[(5.15), neglecting Twrite]

= max{T atr(1) + max{T acomp(1), T btr(2)}+ T acomp(2), T btr(1) + T bcomp(1) + T btr(3)}

[T btr(1) = T atr(1)]

= Ttr(1) + max{max{T acomp(1), T btr(2)}+ T acomp(2), T bcomp(1) + T btr(3)}

[max{T acomp(1), T btr(2)} ≥ T bcomp(1)]

= Ttr(1) + max{T acomp(1), T btr(2)}+ max{T acomp(2), T btr(3)} (5.18)

Through mathematical induction it can be shown, that the following equation holds for
all k ≥ 3:

T await(k) = Ttr(1) +

k−1∑
j=1

max{T acomp(j), T btr(j + 1)}︸ ︷︷ ︸
=:m(j,j+1)

(5.19)

Basis: Show that the statement holds for k = 3. See (5.18).

23Note that “first” and “second” here does not refer to the actual IDs but only to the sequence in which
they are called in the overlap algorithm.
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Inductive step: Show that Equation (5.19) holds for k + 1 if it holds for k ≥ 3.

T await(k + 1) = max{T await(k) + T acomp(k) + T awrite,

T bwait(k + 1) + T bcomp(k − 2) + T bwrite + T btr(k)}

[Basis, neglecting Twrite]

= max{T atr(1) +
k−1∑
j=1

m(j, j + 1) + T acomp(k − 1),

T btr(1) +

k−1∑
j=2

m(j, j + 1) + T bcomp(k − 2) + T btr(k)}

= Ttr(1) +

k−1∑
j=2

m(j, j + 1) + max{m(1, 2) + T acomp(k − 1), T bcomp(k − 2) + T btr(k)}

[m(1, 2) ≥ T bcomp(k − 2)]

= Ttr(1) +
k−1∑
j=2

m(j, j + 1) +m(1, 2) + max{T acomp(k − 1), T btr(k)}︸ ︷︷ ︸
=m(k−1,k)

= Ttr(1) +
k∑
j=1

m(j, j + 1)

As can be seen, each communication step occurs at the same time as an hereof independent
computation step. In order to tell if the communication is really hidden perfectly by the
computation, it is necessary to take a closer look at T acomp(j) and T btr(j + 1). In order

to speed up this part, it is desirable that T bcomp and T ppntr overlap. This is the case when
Ttr ≤ Tcomp (see Equation (5.12) which for the bwForCluster was shown before to be the
case when b ≥ 382.

However this equation assumes a homogeneous architecture and does not take into consid-
eration any cache effects (no memory hierarchies, cache misses or similar). Furthermore
no difference is made between different floating-point operations, although here only ad-
ditions and multiplications are considered, which most often take up the same number of
instructions to complete.

All in all, it was shown that the overlap algorithm achieves the most overlap when each
process holds at least a certain number of blocks in one row or column. To get the
best performance from this, it is best when Ttr(ppn, s) and Tcomp are almost equally
sized. If the block size is very small, the block transfer Ttr(ppn, s) hardly takes up any
time. The consequence is that all local computations do take place sequentially and the
only benefit could be taken from the fact that the computational workload is shared.
However the processes still have to go through the steps of reduction and last handshake
between two processes of each group. This decreases the performance if two times the
local computations plus these last steps take up more time than one processor executing
the whole computational work in one step (which is the case if each process only has one
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block). This is an overhead which does not exist when each process holds exactly one
block.

5.3 Performance Tests

The matrix multiplication algorithm is to be used for the training of large-scale neural
networks Thus, it is not only important to evaluate the performance of the algorithm,
but also to know how it scales considering larger networks on large clusters. Hereby it is
necessary to consider scaling the matrix sizes, the block sizes, and the number of processes
employed, represented by the scaling of the process grids.
The exact configuration of the test parameters depends on the physical features of the
cluster, algorithmic requirements such as memory for buffering and eventually the user’s
choice. In order to understand the final choice of the parameter settings, the influential
circumstances are described in Section 5.3.1. Afterwards, in Section 5.3.2, the results
based on these parameter settings are presented and discussed.

5.3.1 Test Setup

Before presenting how the test parameters came about, a description of the method is
given that is used to validate the results of the matrix multiplication algorithm and a brief
overview of the compute cluster employed.

Method Validation and Time measurement

The implementation of the matrix multiplication presented in this work is validated us-
ing Octave [E+]. For this the matrices A and B are generated externally, the code reads
them from file and the matrix CGASPI = AB is output to file again. Proof of correct-
ness is achieved by entering these files into Octave and comparing the solution with the
multiplication performed by Octave:

norm(CGASPI − (AB)Octave) ≤ 10−6.

The check was performed for different grid sizes and matrices of up to approximately
2.1 · 109 elements (i. e., a matrix dimension of ≈ 46, 340 × 46, 340), as Octave cannot
handle larger matrices. For the performance tests, the matrices are generated locally by
each process itself in order to avoid time delays due to file input and output.
The amount of time needed for the matrix multiplication is measured via gettimeofday()

from the start of the matrix multiplication to its end – in between barriers to ensure that
all processes have completed their previous actions. It is assumed that when this function
is called within a larger application, e. g. the poadSGD method introduced in Chapter 2,
the matrices are already existent. Therefore the time measurement does not include the
setup of the matrices, i. e., the input from file for A and B, the output of the resulting
matrix C or their local generation.

Computing and Software Requirements

Running an application using GASPI requires certain compute resources. First of all,
GASPI is designed to carry out communication between cores not necessarily present on
the same socket or sharing any memory. Actually in these cases other designs may even
work better. Therefore, the main requirement for the compute resources to be used, is
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having a minimum of two cores with some extra memory available each and connected
by an InfiniBand network24. The memory is used in parts by the GASPI library itself.
However, it is mainly needed for the share of each core in the partitioned global address
space (the GASPI segments) when using asynchronous communication. The size of the
memory needed depends on the application and the number of processes participating in
the execution. Although the InfiniBand network is needed for the asynchronous commu-
nication calls, it is also possible to execute a GASPI application on a computing resource
with an Ethernet network, thereby eliminating the effect of asynchronity. In addition,
applications using the GASPI communication routines of course also need to install the
GASPI library. In this case the GPI-2 v.1.0 [WJJ13] implementation was used. Further-
more, the matrix multiplication algorithm locally calls BLAS routines [CDO+96] for local
matrix multiplications for which the MKL v.11.2.325 implementation was chosen.

Computing Resources

The test runs were executed on the bwForCluster MLS&WISO Production26 in Heidelberg
and Mannheim. It contains 666 nodes that are linked via an InfiniBand QDR [Inc] which
provides an interconnect with 10Gb/s in each direction.The cluster contains different types
of nodes. For the test runs in this work, the “standard” nodes of the cluster were used.
These contain two octa-core 64-bit Intel Xeon CPUs with Haswell Bridge architecture
running at 2.4 GHz and with 64 GB main memory. Point to point bandwidth between
two standard nodes ought to be more than 5000 MB/s.

For each run the same amount of cores had to be requested for each node. The nodes were
always used exclusively. In order to use the local batch system for execution, a trick had
to be applied: in the code MPI is initiated at the beginning before starting GASPI and
is finalized at the very end after GASPI has finished. That way mpirun could be used to
run the application properly on the cluster. MPI in no other way influenced the execution
or any communication.

Parameter Selection

The choice of the test settings includes various parameters depending on hardware set-
tings, algorithmic requirements or simply user-preferences. For the sake of simplicity and
comparability, the process mesh, the matrices and the sub matrices (the blocks) are all
assumed to be squared. However, the implementation is more general and can cope with
all non-square cases, only the testing was done based on squared blocks and meshes. Fur-
ther it is assumed that each process part of a process grid also receives at least one block
of its matrix. The test run itself then requires the following settings:

� P – dimension of process grid (P× P)

� g – dimension of matrices (A,B, C ∈ Rg×g)

� b – dimension of blocks in which the matrix is divided

� segsize – the size of the GASPI segments used

24Interconnect technology allowing for direct memory accesses [Pad11]
25https://software.intel.com/en-us/intel-mkl/
26https://www.bwhpc-c5.de/wiki/index.php/Category:BwForCluster_MLS&WISO_Production
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These values are not completely freely chosen but are dependent on cluster-defined pa-
rameters such as

� CoresPerNode – number of cores used per node

� GBperNode – GB RAM available per node (and thus per core)

and the memory limitations induced by the matrix multiplication algorithm itself, includ-
ing

� maxsegsize – maximum size of the GASPI segment

� freespace – amount of space needed for each core as temporary storage (e. g. for
buffering).

Dimension of process grids P

The matrices A and B are held by disjoint groups of processes and the process grids are
of the same size and squared, i. e., PA = QA = PB = QB := P. Therefore, the total number
of processes numproc participating in the test runs is given by

numproc = PAQA + PBQB = 2P2

Furthermore, GASPI does not run sequentially but requires at least two processes to run.
Also, most of the algorithm is designed for being run by at least two processes per process
grid, therefore the minimum number of processes is 2P = 2 · 4 = 8. To allow for an even
divisibility of the data, the process grid sizes are multiplied by two, starting with the
smallest process grid of size 2 × 2. The resulting process grid sizes and the associated
number of processes used are given in Table 5.9.

Process grid (P× P) 2× 2 4× 4 8× 8 16× 16 32× 32

# processes per grid 4 16 64 256 1024

# all processes (numproc) 8 32 128 512 2048

Table 5.9: Dimensions of the process grids used and the resulting number of processes
used per grid and in total. Running the process grid 32×32 turned out to be not possible.

Further limitations apply to the maximum number of processes. The queuing policy of the
“standard” nodes of the cluster only allows the usage of a maximum of 128 nodes (2048
cores). Thereby using process grids of size 64× 64 or larger was not possible.

CoresPerNode and GBperNode

A “standard” node on the bwForCluster MLS&WISO contains 16 cores. When using
several nodes, one can only use the same amount of cores for each node. Using less than
16 cores per node means that each process used has more memory available. Using more
nodes on a core leads to less inter-node communication. In order to balance the larger
memory size per core and the amount of communication in between nodes, 8 cores per
node are used. Thereby only the 2 × 2 grids theoretically have an advantage as their
communication infrastructure is located solely on one node. Note that for the process grid
size of 32× 32 less memory is available per core compared to all the others. Later results
also showed that for the matrix multiplication algorithm, the 32 × 32 process grid failed
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Process grid (P× P) 2× 2 4× 4 8× 8 16× 16 32× 32

Nodes 1 4 16 64 128

Cores per node 8 8 8 8 16

Table 5.10: Listing of nodes and cores per node used for both process grids. Process grid
of 32× 32 had trouble running.

to run as the initialization of GASPI failed. The resulting distribution of cores and nodes
is given in Table 5.10.

A node on the bwForCluster MLS&WISO has 64 GB of RAM. However, not all of it is
freely available to the cores on the node, due to the operating system running on the
node also requesting resources. The amount of memory running on the node can only be
estimated. Following the experience gained with less memory available to the operating
system and thereby crashing several nodes, a safety estimate of 4 GB is made which is not
to be used by the application. The maximum amount of memory available hence is 60 GB
per node. The resulting amount of memory available per core is 3.75 GB for the 32 × 32
grid and 7.5 GB for all the other process grids.

Maximum segment size segsize

The GPI2-library requires a certain amount of memory space in order to build up the
communication topology of GPI2 and to store GASPI-elements such as notifications and
queues. This quantity is application-dependent and varies with the segment size, the
number of GASPI processes used and how they are connected. Unfortunately, there is no
formulae which returns the total amount of memory needed by GPI2. Therefore, an appli-
cation was created in which each participating process solely sets up the communication
topology as required by the matrix multiplication algorithm and creates a segment of a
given size. By trial and error it was then determined which the maximum usable segment
size is. If this maximum size was exceeded, processes were terminated by the system. For
the process grid 32 × 32 even for segment sizes as small als 0.5 GB the test application
failed, indicating trouble whilst creating the segments or when setting up the communi-
cation topology during the initialization of GASPI. Because of that the maximum usable
process grid that was used is 16 × 16. In the application the following segment sizes can
be used:

Process grid (P× P) 2× 2 4× 4 8× 8 16× 16 32× 32

Segment size [GB] 7.4 7.2 6.8 4.0 −

Table 5.11: Listing of segment sizes used depending on the process grid.

Once the segment size is known, the potential size of a matrix in connection with the
given number of processes can be determined. For some cases, e. g. for larger matrices on
smaller process grids, technical problems arose, presumably due to the unclear status of
the memory.

Amount of Buffer in Global Address Space freespace

Freespace denotes the amount of memory space needed for each core as a temporary buffer
for different one-sided communication operations not operating directly on matrix data.
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This application-specific, user-defined memory space is required to be within the global
address space, that is inside the allocated GASPI segments.

For the matrix multiplication in this work it is used as a buffer for the overlap algorithm,
the allreduce and the final block computation. This additional buffer is used in favor of
more synchronization points. All in all, the memory needed is seven matrix blocks plus a
single element, all of the same data type:

freespace = (7b2 + 1) sizeof(double) (5.20)

Matrix dimension g

In order to achieve only full blocks when dividing the matrix into sub blocks, matrix sizes
are powers of two. To start with a meaningful matrix size, the smallest matrix size is 64.
The maximum matrix size is limited by the memory capacity available for the segment,
the given block size b and the memory needed for the buffer freespace. Further, the size
depends on the process that holds the most data. The processes of the process grid of A
hold both matrices A and C and therefore need more memory than processes of B. Hence,
the maximum amount of matrix elements that are assigned to a core is the amount that
is assigned to the process with grid coordinates a0 = (0, 0) of matrix A.

In order to fit the maximum matrix into a GASPI segment, using Equation (5.20), the
following requirement needs to hold:

segsize ≥ (2 maxsizematrix + freespace) sizeof(double) (5.21)

=

(
2

⌈
dg/be
P

⌉2
b2 + 7b2 + 1

)
sizeof(double)

where dg/be is the number of blocks in a block row of a matrix. Divided by P accordingly
denotes the number of blocks a process locally has in one dimension. Together, the first
term states how many elements of the matrices A and C are stored in the memory of
process a0.

Process grid (P× P) 2× 2 4× 4 8× 8 16× 16

Maximum matrix size g 32,768 65,536 131,072 262,144

Number of elements g2 1.1 billion 4.3 billion 17.2 billion 68.7 billion

Total Memory [GB] 8 32 128 512

Memory per core [GB] 2 2 2 2

Table 5.12: Table of largest possible matrix sizes, the corresponding number of matrix
elements and their overall size, as well as the resulting memory space needed on each core.

Equation (5.21) was applied to various combinations for matrix sizes for

g ∈ {64, 128, 256, . . . , 8589934592}

and block sizes from

b ∈ {2, 4, 8, 16, . . . , 1048576}
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for all process grids mentioned in Table 5.9. In addition it was checked that each process
receives at least one block (g ≥ Pb). The maximum attained sizes in this process are given
in Table 5.12.

Block dimension b

As explained before, first the triplets that are technically possible in terms of memory
requirements and process numbers are determined. Then these combinations were run
several times in order to identify the block dimension that achieves the best performance
with respect to each process grid and matrix size. These best combinations are noted in
Table 5.13.

P× P \ g 64 128 256 512 1024 2048

2× 2 32 64 128 128 512 512

4× 4 16 32 64 128 256 512

8× 8 2 16 32 8 16 256

16× 16 4 8 8 32 32 128

P× P \ g 4096 8192 16384 32768 65536 131072

2× 2 1024 2048 2048 2048

4× 4 512 1024 2048 4096 4096

8× 8 512 1024 1024 2048 4096 4096

16× 16 256 512 1024 2048 2048 4096

Table 5.13: Block dimension b of fastest triplet of process grid P, matrix dimension g and
block dimension b.

P× P \ g 64 128 256 512 1024 2048

2× 2 1 1 1 2 1 2

4× 4 1 1 1 1 1 1

8× 8 4 1 1 8 8 1

16× 16 1 1 2 1 2 1

P× P \ g 4096 8192 16384 32768 65536 131072

2× 2 2 2 4 8

4× 4 2 2 2 2 4

8× 8 1 1 2 2 2 4

16× 16 1 1 1 1 2 2

Table 5.14: Number of local blocks in a block row or column per process for fastest triplets
(P, g, b) in Table 5.13.

The combinations from this table show that for the smaller matrices the best possible
block size almost always had the best timing performance. The biggest exceptions occur
for the process grid 8× 8 with the matrix sizes 64, 512 and 1024. Especially for the latter
two the best runs were achieved with 8 blocks per process (see Table 5.14). Other than
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that the overlap algorithm seems to work better for larger block sizes as it is the case when
the matrices themselves are larger. This is of course always delayed a bit for the smaller
process grids gain bigger block sizes much quicker than larger process grids.

5.3.2 Results

The setup for the performance runs of the matrix multiplication algorithm is based on
the parameter combinations from Table 5.13. Each (P, g, b) triplet from that table is run
25 times. The first 5 runs are cut off as the first ones often take inexplicably longer and
the average is computed for each combination based on the following 20 runs. Figure 5.7
depicts these averaged runtimes for each process grid whilst varying the dimension of the
matrices. In this graphic both axes are logarithmically scaled.
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Figure 5.7: Runtime of matrix multiplication for different process grids and different
matrix sizes. Note the logarithmic axes.

First, it is observed that all run times more or less increase with the computation of larger
matrix sizes, except for the smallest process grid. Up to a matrix dimension of 211 = 2, 048,
the smaller the process grid is, the faster are the run times. This is possibly due to the
fact that the larger process grids in their computational step only have very small blocks
(see Table 5.13) which are no match for the communication overhead produced by the 16
processes per process subgroup. The smaller process grids have block sizes between 16-64
for the first two matrices and less communication overhead in the allreduce than the larger
process grids.

For matrix sizes of 212 = 4, 096 and 213 = 8, 192 the run times of all process grids are
similar. For larger matrices the previously observed order is reversed: the largest process
grid also is the comparatively fastest. The block sizes mostly are larger for the smaller
process grids but each process also holds more of these blocks and therefore has more
locally sequential computations to complete. For the matrix size 215 = 32, 768, all process
grids have the same block size, except for the 4 × 4 grid. The difference here is that
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each process of the 2 × 2 grid has to compute 8 of these blocks whilst the 8 × 8 only
deals with 2 of these blocks and hence the 16 × 16 grid only has one block. So even if
the overlap algorithm does hide away the necessary communication for the exchange still
the performance of the smaller grids for this matrix size is worse as they each have to
accomplish more computations each.

Next to the author’s own observations of the runtimes, the scalability of the parallel
implementation is analyzed based on its speedup and efficiency. The speedup Sp(n) is
defined as the ratio of the runtime of a sequential implementation T ?(n) and the parallel
runtime Tp(n) with p processes, both with a problem size of n [RR10]:

Sp(n) =
T ?(n)

Tp(n)
.

The ideal speedup is achieved if Tp(n) = 1
pT

?(n) and therefore Sp ≤ p. However, as
mentioned before, any algorithm implemented with GASPI cannot be run sequentially as
GASPI requires at least two GASPI processes to run. In addition, the algorithm is set
up to use all processes it was called with. So there is no chance of cheating the program
by starting it with two processes but only using one in the implementation. In lack of
a sequential implementation, the runtimes achieved by process grid 2 × 2 are used as
reference. The speedup is then calculated as

Ŝp(n) =
T4(n)

Tp(n)
. (5.22)

Hence, the ideal speedup needs to be scaled as well, becoming Ŝp(n) ≤ p
4 .

The efficiency of an algorithm is computed by dividing the speedup by the number of
processors used:

Ep(n) =
Sp(n)

p
. (5.23)

The ideal efficiency in reference to a sequential implementation would be constantly 1.
Again using the results from 2 × 2 as a basis, the Equation (5.23) can be rewritten as in
Equation (5.24). The ideal efficiency then remains the same:

Êp(n) =
4Ŝp(n)

p
. (5.24)

Speedup and efficiency could not be evaluated for matrix dimensions 65, 536 and 131, 072
as for these sizes no runtime reference was available from process grid 2× 2. The results
discussed for the total execution time of the matrix multiplication are also reflected in
the speedup and efficiency charts, given in Figure 5.8 and 5.9. Again, the behavior very
strongly depends on the matrix dimension. Matrices with a dimension smaller than 210 at
first have a very good speedup and efficiency, even scaling super-linearly. However, these
speedups drop below the ideal line with increasing process numbers but still reaches about
half of the ideal speedup. On the contrary, for matrices with a dimension between 211

and 213 the speedup first drops and then slightly increases again. The worst performance
occurs for the largest matrices 214 and 215 where the speedup simply drops and is far off
from the ideal speedup when increasing the number of processes. This also matters when
considering the efficiency. Efficiency drops far below 0.004 for both the largest matrices.
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For the matrices smaller than 210 the efficiency first is far better than 1 but then also
decreases with a minimum for g = 26 at 0.16.

It turns out hard to interpret these results on a solid basis. On one hand, it seems clear
that the scalability is better for smaller or medium matrices than for significantly larger
matrices. On the other hand, the differences in the block sizes and the associated number
of blocks per process have a high influence on the overlap algorithm and the allreduce
operation and their performance. This is not represented in Figures 5.8 and 5.9. It is
therefore difficult to reason about these results since the number of blocks held by each
process of the reference process grid 2 × 2 is significantly different to the other process
grids for larger matrices.

Another approach to evaluate the scalability is therefore undertaken by evaluating the
behavior of the implementation when the workload for each process is kept constant while
the number of processes is increased. This is referred to as the weak scalability and is
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defined as

R =
T (αp, αn)

T (p, n)
, (5.25)

where T (p, n) is the runtime for the algorithm run with p processes and the workload n.
If the increase of both workload and number of processes by the factor α scales well, R
is constant. Again, the efficiency is computed by referring to the runtime of T (4, n) as a
basis and given in Figure 5.10.
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Again, the workload distribution does not take into account the number of blocks held by
each process. Instead the best triplet is used once more. In general, in Figure 5.10 it can
be deduced that the more processes have the same workload, the worse is their perfor-
mance. However, the best behaviors are achieved for the largest workload per process, so
a better result may be expected for larger workloads per process.

All in all, the performance did not withstand the expectations. However, the implemen-
tation of the algorithm is fully functional and although the test were carried out only for
square matrices and process grids, the implementation is more general and can also be
applied to non-square cases (under the condition that gAn = gBm, bAn = bBm and QA = PB).
Therefore it can be used for the implementation of the poadSGD algorithm for the training
of fully-connected FNNs which was presented in Chapter 2.4.2.
Furthermore, this algorithm gave first impression on how to use the different features of
GASPI. For example by the usage of GASPI’s groups it is possible to apply collectives
only to a subgroup of processes, in this case to block rows or block columns featured by the
process grid of the g-matrix. Without this feature the distributed and parallel calculation
of blocks of the resulting g-matrix C would not have been possible. Furthermore, the
groups allowed for a group-specific synchronization used for the implementation of the
diagonal iteration over the C blocks. The usage of the notifications provided by GASPI
also made the overlap algorithm possible: by using the notifications when sending data,
an action on the remote process’s side was avoided. Unfortunately, the memory and node
limitations on the compute nodes restricted the dimensions of the matrices. The overlap
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algorithm may have benefited from a larger number and size of the sub matrices. Finally,
the algorithm is implemented to easily be integrated into a larger application such as the
training of a neural network as proposed in the poadSGD method or whenever needed in
other applications.
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Chapter 6

Conclusion and Outlook

The major contribution of this thesis is the development of a new parallel pipelined training
algorithm for fully-connected feedforward networks based on one-sided and asynchronous
communication and the implementation of the key part of this algorithm, a matrix multi-
plication for matrices distributed amongst disjoint processes which takes advantage of the
features GASPI’s communication paradigm provides.

Summary of the Work

In this section for each of the chapters presented in this work, a short summary of the
main findings is given.

An overview of machine learning and an introduction to the field of artificial neural net-
works was given in Chapter 2. Based on a simple fully-connected feedforward neu-
ral network (FNN) the feedforward and backward propagation were described and the
stochastic gradient descent method was presented. After a review on various paralleliza-
tion techniques for neural networks, a new parallelization approach was introduced which
recombines concepts from previous parallelization methods with new ideas. The poadSGD
algorithm was presented which relies on a distribution of its forward and backward copy of
the network whilst pipelining the training samples batch-wise and uses a one-sided com-
munication mechanism for the asynchronous update of the network. It was pointed out
that the pipelining scheme induces a matrix multiplication with a special data distribution:
the two matrices to be multiplied are distributed across different groups of processes.

Chapter 3 provided the necessary background for a basic understanding of the parallel
programming interface GASPI which is to be used for the asynchronous weight update of
the poadSGD algorithm and the implementation of the matrix multiplication. For this
purpose different classifications of parallel architectures and parallel programming models
were presented and a key distinguishing feature was identified: the view on memory that
these models possess. Thereby one differentiates between programming models with the
underlying communication model assuming a shared view of memory with common direct
access for all processes, a distributed view with only local accessibility requiring explicit
data exchange and a global view of memory where the memory is possibly distributed
but either provides a global view or is even directly accessible without interaction on the
host’s side. As two well-known representatives of the third category, the PGAS-models,
UPC and CAF were introduced and their communication mechanisms were presented.
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The following Chapter 4 then introduced a rather young development from the field of
PGAS models: the global address space programming interface GASPI which was used for
the parallel implementations of this work. GASPI was developed by a team consisting
of members from science and industry in a three year project from 2011-2014 in which
the author actively took part. The key features of GASPI were presented: being based
on a globally accessible address space, regardless of the actual layout of the hardware
architecture and the communication concept relying on one-sided and asynchronous com-
munication calls. The usage of these communication routines, further mechanisms for
synchronization such as the process barrier and collective communication requests were
explained, accompanied by introductory programming examples. In addition, GASPI was
compared to UPC and CAF whereby the focus was on the setup of globally shared data
and its distribution type, remote data accesses and synchronization mechanisms. Eventu-
ally, an overview of further communication models was presented, all of which follow the
idea of one-sided and asynchronous communication but differ in other aspects and are not
categorized as PGAS models.

The final chapter, Chapter 5 was dedicated to the development of a matrix multipli-
cation for matrices distributed across disjoint process groups by making use of GASPI’s
communication mechanisms in order to improve their performance. The two-dimensional
block-cyclic data distribution, relying on a distribution of the participating process to a
process grid, was presented. Furthermore, the programming structure of the g-matrix
which contains layout, memory and process groups information, were explained. For the
implementation of the matrix multiplication method two sub algorithms were presented.
Firstly, the “diagonal algorithm” was put forward which describes in what way the main
loop iterates over the blocks of the resulting matrix. Secondly, the “overlap algorithm”
was described which has the goal of, after an initial offset, overlapping needed data trans-
fers with other computations based on a pipeline concept together with the asynchronous
capabilities of GASPI. In order to evaluate the algorithm with respect to its potential
for overlapping communication phases with other computational parts, the time needed
for the computational steps and the communication calls was evaluated and compared to
a theoretical analysis of the same algorithm implemented in parallel but without RMA-
capabilities. This theoretical analysis provided good results for the proposed algorithms.
Finally, the setup of the test runs was described. To this end, first for each combination
of process grid dimensions and possible matrix sizes tests were run to determine the block
sizes that achieve the best performance. With these best possible settings the actual test
runs were performed. The runtimes on up to 512 cores were presented and discussed.
The speedup and efficiency showed strong variances depending on the actual matrix size
used for a test run with the efficiency varying between 0.10 and almost 1 for smaller and
medium sizes matrices and falling below 0.004 for both the largest matrices of dimension
16, 384 and 32, 768.

Conclusions

After the summary we now turn to the discussion of the main findings in this work and
draw conclusions. In addition, open questions or suggested extensions to this thesis are
presented.

GASPI as a PGAS model
With the introduction of the parallel world and its multiple ways of categorizing languages,
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models and architectures, the foundation is laid to be able to understand where GASPI is to
be placed herein. GASPI categorizes itself as a “PGAS API for communication” [Con13].
It is described as a communication interface that is based on a partitioned global address
space, a PGAS model. However, as the comparison to UPC and CAF shows, this does
not fully classify GASPI, as representatives of this category already differ from each other.
UPC and CAF, next to being set up as language extensions in contrast to the interface
GASPI, differ from GASPI especially in terms of their ways of setting up and accessing
remote data. Whilst in GASPI data in different memory segments is only connected
to each other in the mind of the programmer, UPC and CAF use global data objects
for the setup and distribution of data. Furthermore, with UPC and CAF data access
occurs indirectly as the user only needs to state the index of the global data object to
access a certain element, whereas GASPI therefore requires explicit data requests. From
a user’s point of view global data objects allow for an easier introduction into PGAS
programming. However, the simplification also prevents a more direct control of the
global data. With more direct control, the user has a greater freedom in the design of
an implementation, providing better opportunities to include an overlap of data transfer
with other computations.

Other interfaces such as OpenSHMEM or the one-sided mechanisms of MPI-3 are found
to be very similar to GASPI in several aspects. However from the start, they have dif-
ferent objectives. The goal of OpenSHMEM is to provide a low-level layer with which
PGAS languages can be implemented. MPI-3 aims at a broad audience, providing two-
sided and one-sided communications and many more operations including broadcasts and
gathers in different flavors. Reducing the view on MPI-3 to the one-sided communication
mechanisms, they are found to be very similar to GASPI’s, excluding the notification
mechanism.

Programming with GASPI
In general, starting to program with GASPI requires the knowledge of only a small amount
of GASPI functions. The communication calls are concentrated on a few basic procedures,
thereby narrowing the hurdle for new users. However, programming a simple example
with GASPI does not give the same impression as writing a more complex algorithm.
A more complex algorithm entails an increased complexity of the memory management,
the synchronization details and the tracking of which process is involved in which tasks,
especially when tasks are generically distributed via subgroups.

Also truly understanding the basic functions of GASPI requires some experience. For
example, forgetting to check the return value of an RDMA request whether the communi-
cation queue that is to be used is already full, quickly results in an undefined behavior of
the program. In addition to the communication library, the open-source implementation
of GASPI, GPI-2, also provides a debug library which incorporates several of these checks.

Next, if generic notification IDs are used for a gaspi write notify(), the user has to
take special care to have the remote process wait for the correct ID at the correct time.
Otherwise the process may proceed working on code involving old data. After a successful
wait for these notifications, they also need to be reset. When running the same application
multiple times it was even observed that notifications set in one application run were
still set in the next run causing the application to misbehave in an inexplicable way.
Furthermore, simply checking the values of the notifications without resetting them, is
not easy with the current GASPI calls where the notification values are always directly
reset. Checking the notification values without resetting them is only possible by knowing
the exact location of the notifications which is implementation-dependent and is usually
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hidden from the user.

Another pitfall a user may encounter is the gaspi barrier(). It has to be clearly under-
stood that although all processes wait until the last process arrives at this point, still data
transfers which were initiated before the barrier but not waited for, may not have com-
pleted yet. For this reason but also for convenience, an additional barrier which includes
a memory fence would be a useful extension to GASPI’s functionalities.

In order to develop a correct working implementation a concept of the memory manage-
ment needs to be derived beforehand by the user: the data that is worked on, written to
or read from another location needs to be tracked. This concerns all data in the GASPI
segments, both the self-managed buffer space and the memory space where the matrix
data is stored. The matrix data is tracked in terms of marking the data within the matrix
itself and not as it is distributed in memory.

If a synchronization mechanism is not used correctly, for example, it may have concerned
the wrong processes or a memory buffer may have accidentally been used twice, it is
hard to debug the code. Tracking the change of a specified data location by employing a
debugger is one method. However this does not help if the user monitors a part in memory
whilst the data is transferred elsewhere. Furthermore, the debugger is only attached to
one process at a time which is usually the process from which the program is started. To
attach a debugger to another process the program needs to be started, then all processes
need to be put to sleep for some seconds in order for the debugger to be started and
attached to an other process.

All in all, programming with GASPI is not trivial and can be error-prone and hard to
debug, especially when targeting complex data structures and algorithms.

Implementing a parallel matrix multiplication based on GASPI
After drawing conclusions on the programming with GASPI, the aspects of the develop-
ment of the algorithm for the matrix multiplication are examined. At first thought, the
matrix multiplication may appear to be straight-forward when considering the few lines of
code needed for a sequential implementation. However, truly aiming for a highly parallel
and scalable application many more characteristics have to be considered.

Firstly, it is important to bear in mind the computations that are to be accomplished
and how the data distribution affects the work load for each process. Then, the amount
and size of data exchange resulting from the data distribution need to be taken into
consideration. The author chose the two-dimensional block-cyclic data distribution as it
ensures quite a good work load balance for both applications. Furthermore, the author
developed a helpful structure in order to store the global and local information about the
distribution of the matrices which are essential for appropriate communication calls within
the applications, ease the work with the matrices and provide a better overview on the
distribution. Considering the work with the distributed data, it was found challenging
to cope with the mapping of global indices for blocks or elements to the local indices to
determine their actual location. For this reason auxiliary functions were implemented for
all necessary conversions from global or local indices of blocks or elements as well as their
coordinates and also to provide the possibility to map them to the rank that holds the
queried data. In addition mappings from global ranks to the corresponding group ranks
within a given group or their process grid coordinates and back were implemented.

On the basis of these, the algorithm was implemented as described in Chapter 5.2.2.
The goal of the diagonal iteration is to achieve a maximum amount of parallelism by
performing the computations for several blocks at the same time. After analyzing the
dependencies on the processes involved in the computation of each block, the develop-
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ment of the diagonal iteration was rather straightforward. In the diagonal algorithm, the
parallelization is achieved as disjoint groups of processes are concerned with the compu-
tation of each block. However, the theoretical analysis of the diagonal iteration compared
to a naive implementation shows just how much is achieved by such a seemingly “easy”
implementation.

The other sub algorithm, the “overlap algorithm” was developed with the goal of overlap-
ping needed data transfers with other computations, after an initial offset, based on the
asynchronous capabilities of GASPI. The implementation was more complex, as the two
processes working together in this sub algorithm and the synchronization of the individual
block parts had to be precisely coordinated: it is important to determine exactly which
block is written into which buffer at which time. It is also necessary to know which notifi-
cation is used, so that, on the one hand, no data is overwritten in the buffer before it has
been used and, on the other hand, processes do not idle whilst waiting for data. In doing
so, data races and deadlocks were to be avoided and, at the same time, not to interfere
with the local and global indices for elements, blocks and processes was challenging.

Performance of implementation
After the theoretical analysis of the matrix multiplication had predicted the overlap algo-
rithm to work well for block sizes larger than 382, the test results were behind expecta-
tions. Already tests run to determine the block size that achieves the best performance
for a given matrix size and process grid, showed that for these parameter combinations
the overlap algorithm was best when it was basically not used. That is, the time needed
mostly was the lowest when the block size was the largest possible, thereby reducing the
overlap algorithm to just a single step.

Nevertheless the algorithm was scaled up to 512 cores, whereas both matrices were dis-
tributed onto 256 cores each. The matrix dimensions ranged from 64 to 131, 072 with
the largest two matrices not being able to be run on all process grids due to memory
limitations. A speedup of about 62.5 was achieved for matrices of dimension 256 (65, 536
elements) for process grids with 256 processes each. As the speedup was determined with
respect to the results achieved on the smallest process grids with 4 processes each, the
ideal speedup in this case is 64. However, the speedup for matrices larger than 4096 was
only slightly above one and even less for larger matrices with the same process grid size.

With the size of about seven matrix blocks, the amount of memory required for the buffer
took up a lot of memory for some parameter settings. Due to this buffering used for the
asynchronous communication to not overwrite needed data and the associated limitations
of the memory, no larger matrices could be tested of which the overlap algorithm may
have benefited with more and larger block sizes.

poadSGD – a distributed pipelined algorithm for FNNs
The poadSGD introduced in Chapter 2.4 has not been implemented yet, as the first
implementational step in this thesis was to develop and implement the algorithm for
the matrix multiplication based on GASPI. Still, already first thoughts are given to the
proposal. In general, there are no convergence proofs for these algorithms, so there is no
indication other than previous experience and trial-and-error to determine whether or not
this training algorithm for neural networks works well. As to the implementation, some
details yet have to be clarified which do not appear in the algorithmic description. For
example the memory management should be well prepared: where to put the buffer for
the matrix multiplication or where to store the matrices. Especially as each process grid
will have to store at least two matrix parts if more than one layer is given to a process
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group. Further, the matrix multiplication algorithm needs to be changed to store the
result matrix on the second process grid instead of the first. In addition the number of
layers that is mapped to each process group should be chosen carefully with respect to
the frequency of updates being output at the end of the pipeline. Assuming a large-scale
FNN, a large data set will be needed for the network pipelining to have an effect and for
the network to not overfit the data. Based on the experience of the other researchers with
similar ideas for improvement, the algorithm seems to be very promising.

Future Work

Several extensions to GASPI are taken into consideration. First, one could think of a
gaspi setup() function that initiates GASPI with a default set of configuration, creates
one segment on each process of a default size and connects it to the other processes. In
addition it could directly return the rank for each process, the total number of processes
given by gaspi proc rank() and gaspi proc num() and the pointer to the start of the
segment. This would allow new users an easier start with GASPI, allowing to start with
the programming right away and not having to consider these configurations as their first
step. For more experienced users, the setup of user-created queues was only recently
added and is now included in the current specification of GASPI [GAS17]. Similarly, the
possibility to set up user-specific notifications should be provided as well. This would be
especially useful for the development of own libraries or when outsourcing parts of the
application into external functions, to ensure that the notifications and queues there do
not interfere with those in the main code. In the author’s work this would have eased the
usage and the separate handling of the notifications in the different sub functions. Further
possible additions include the provision of a broadcast function for groups. The author
developed a broadcast function that can be called for a specified group. It is implemented
as passing the data from one process to the next in a line. This function could be extended
to be used with different topologies, such as a ring, a tree or other topologies that the
user could choose from. In the same way improvements for the reduction functions are
conceivable.

Suggested improvements of the implementation of the matrix multiplication include in-
creasing the initialization of the pipeline in the overlap algorithm and thereby extending
the number of blocks that are computed in each for-loop step. In this way, the time needed
for the computation of the blocks is increased whilst the bandwidth is better exploited by
transferring more data in the same time. Another suggestion would be to design faster
implementations of the allreduce function. Or the allreduce operation could be incor-
porated into the overlap algorithm as well, computing it step by step and avoiding the
group barrier in each iteration. As a follow-up step a performance analysis tool could be
employed in order to detect which points of the current algorithm could be optimized. Of
interest would be to use the parallel analysis tool Vampir [Vam15], making use of GASPI’s
profiling interface. The final suggestion to be taken into account is to combine the usage
of GASPI with the usage of threads in order to speed up the local computations.

The next natural step for the poadSGD algorithm is to implement it. As described before,
a one-sided communication scheme such as GASPI should be used for this task. An pre-
analysis should first be applied to determine certain parameters such as the number of
layers to map to each process group, the block sizes in the distribution of the weight matrix
or the size of the process grids. This algorithm is a first sketch of the basic ideas, it can
be improved by applying some of the techniques presented in Chapter 2.2.4. One of these
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possibilities could include applying the Parzen-Window optimization to the update step
similar to Keuper and Pfreundt [KP15].

Outlook

GASPI proved to be an asynchronous communication model with great opportunities when
targeting parallel applications with a high capability for overlap and communication. But
in order to truly achieve a good performance both an experienced user and an applica-
tion that can make use of GASPI’s communication scheme are essential. Without a good
potential for an overlap of communication phases with computation, a GASPI implemen-
tation will only be as good as an implementation based on a synchronized communication
model. Assuming an algorithm provides this potential, implementations with GASPI are
very promising.

As of today, the programming community has not yet agreed on a common parallel com-
munication model. Of course, it is hard to imagine a perfect programming model that suits
all types of applications. On the contrary, it might even be the case that there is a need
for different models since each one targets different aspects. For one reason or the other,
in the recent years, new programming languages and models are still being developed or
“old” ones are enhanced, sometimes not only marginally but significantly just as Fortran
did when the coarrays were included. Of course, much also depends on the development
of the hardware. A single-core unit with a large amount of memory naturally necessitates
a different programming model than a multi-core processor and a homogeneous cluster
may call for other models than a cluster including specialized hardware such as GPUs or
Xeon Phis. Although it only started out as a three year project, GASPI is still present
at important HPC conferences and is employed by different research institutions. With
the establishment of the GASPI forum, the forum members expressed an earnest interest
to continue the development of GASPI. This thesis thereby represents an important mile-
stone in the evaluation of the applicability of GASPI targeting dense linear algebra and
the training of neural networks and is the basis for future work.

The topic of machine learning (ML) and especially of artificial neural networks remains
a hot topic. Due to the increase in digitalization, more and more data is generated and
collected than ever before. Thereby the amount of data that is to be analyzed and its
complexity has increased. Therefore, ML is increasingly used in areas where classical algo-
rithms reach their limits. ML algorithms are applied in research in the field of autonomous
driving, for the generation of online recommendations based on previous search results, for
the analysis of other data related to the internet, for medical applications and many more.
ML algorithms can not only learn an application once, but they can always adapt and
improve on new input. Companies also benefit from this, for example for the analysis of
economical factors, the exchange or real estate prices. Research approaches are therefore
pushed from many different directions in science and industry, which has a positive impact
on the development. Continuously new developments and algorithms are tested. With the
larger amount of data and the increased complexity of the applications, the approaches to
parallelization are increasingly of interest and are promoted by the technological advances
in hardware. It is the author’s belief that advancements in machine learning will remain
an important topic in the years to come and that the results will have a strong impact on
everyone’s future.
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Appendix

1 /** ex-dotproduct -rw.c

2 *

3 * simple example to demonstrate the writing mechanism of GASPI

4 * setup: 2 processes , 2 vectors distributed across these two procs

5 * task : calc the dotproduct of the two

6 *

7 * Note: this is a demonstration program written for 4 processes , more

8 * processes may be called , however only 4 will hold the data ,

9 * performance may decrease

10
11 */

12 #include <stdio.h>

13 #include <stdlib.h>

14 #include <GASPI.h>

15 #include <assert.h>

16
17 int main(int argc , char *argv []) {

18
19 int i, dotproduct , ll;

20 const int vlength = 10;

21 int loc_a [10] = {1,2,3,4,5,6,7,8};

22 int loc_b [10] = {2,2,2,2,2,2,2,2};

23 int *gas_a , *gas_b , *gas_result;

24
25 gaspi_rank_t myrank , nprocs;

26 const gaspi_segment_id_t seg_id = 0;

27 gaspi_pointer_t seg_ptr;

28 gaspi_number_t queue_size , queue_max;

29 gaspi_queue_id_t queue_id = 0;

30 gaspi_notification_id_t not_id = 1;

31 gaspi_notification_t not_val = 1, val;

32
33 // initiate GASPI

34 gaspi_proc_init(GASPI_BLOCK);

35 gaspi_proc_rank (& myrank);

36 gaspi_proc_num (& nprocs);

37 ll = vlength/nprocs;

38 gaspi_segment_t seg_length = (2*ll+2) * sizeof(int);

39
40
41 if( nprocs > 2 ) {

42 printf("Program not written for %d processes , please use 2 processes

only!\n", nprocs);

43 return -1;

44 }

45
46 // create segment for each process

111
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47 gaspi_segment_create(seg_id

48 ,seg_length

49 ,GASPI_GROUP_ALL

50 ,GASPI_BLOCK

51 ,GASPI_MEM_INITIALIZED

52 );

53
54 // reset notID to ensure no other initialization from program before

55 gaspi_notify_reset(seg_id , not_id , &val);

56
57 // barrier all procs , otherwise proc 0 may be quicker write_notifying

58 // than proc 1 with this first notification reset above

59 gaspi_barrier( GASPI_GROUP_ALL , GASPI_BLOCK );

60
61 // get segment pointer , set data pointers

62 gaspi_segment_ptr(seg_id , &seg_ptr);

63 int_ptr = (int*) seg_ptr;

64
65 // setup data in global memory

66 // P0: 1,2,3,4,2,2,2,2 (a_0 ,b_0)

67 // P1: 5,6,7,8,2,2,2,2 (a_1 ,b_1)

68 gas_a = (int*) seg_ptr;

69 gas_b = gas_a + ll;

70 gas_result = gas_b + ll; // offset: 2 * ll * sizeof(int)

71
72 for(i=0;i<ll;i++) {

73 gas_a[i] = loc_a[i+myrank*ll];

74 gas_b[i] = loc_b[i+myrank*ll];

75 }

76
77 // calculate intermediate result , store in gas_result

78 for( i=0; i<ll;i++ )

79 *gas_result += gas_a[i] * gas_b[i];

80
81 // get queue data

82 gaspi_queue_size_max (& queue_max);

83 gaspi_queue_size(queue_id , &queue_size);

84
85 // check if queue full

86 if(queue_size > queue_max - 1)

87 gaspi_wait(queue_id , GASPI_BLOCK);

88
89 // set offsets to position of gas_result [0] and gas_result [1]

90 gaspi_offset_t loc_offset = 2 * ll * sizeof(int);

91 gaspi_offset_t rem_offset = loc_offset + sizeof(int);

92
93 // write local result to other process

94 gaspi_write_notify( seg_id , loc_offset , (myrank +1)%nprocs

95 , seg_id , rem_offset , sizeof(int)

96 , not_id , not_val

97 , queue_id , GASPI_BLOCK);

98
99 // wait on intermediate result from other process

100 gaspi_notify_waitsome(seg_id , not_id , 1, &not_id , GASPI_BLOCK);

101
102 // calculate global result

103 dotproduct = gas_result [0] + gas_result [1];

104 printf("(%d) dotproduct = %d\n", myrank , dotproduct);

105
106 // wait to ensure data in gas_result [0] is free before exiting
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107 gaspi_wait(queue_id , GASPI_BLOCK);

108
109 gaspi_barrier(GASPI_GROUP_ALL , GASPI_BLOCK);

110 gaspi_proc_term(GASPI_BLOCK);

111
112 return 0;

113 }

Code 6.1: Complete example demonstrating usage of GASPI functions for a simple
dotproduct of two vectors. Extended version of Code 4.7.

1 /** ex-dotproduct -group.c

2 *

3 * simple example to demonstrate the writing mechanism of GASPI

4 * setup: 4 processes , 2 vectors distributed across these two procs

5 * task : calc the dotproduct of the two , use gaspi_allreduce

6 *

7 * Note: this is a demonstration program written for 4 processes , more

8 * processes may be called , however only 4 will hold the data ,

9 * performance may decrease

10 */

11 #include <stdio.h>

12 #include <stdlib.h>

13 #include <GASPI.h>

14 #include <assert.h>

15
16 int main(int argc , char *argv []) {

17
18 int i;

19 const int vlength = 16;

20 int loc_a [16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

21 int loc_b [16] = {2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2};

22 int dotproduct;

23 gaspi_rank_t myrank , nprocs;

24 const gaspi_segment_id_t seg_id = 0;

25 gaspi_pointer_t seg_ptr;

26 int *gas_a , *gas_b;

27 gaspi_pointer_t buff_send , buff_recv;

28
29 // initiate GASPI

30 gaspi_proc_init(GASPI_BLOCK);

31 gaspi_proc_rank (& myrank);

32 gaspi_proc_num (& nprocs);

33 int ll = vlength/nprocs;

34 gaspi_size_t seg_length = (2*ll+2) * sizeof(int)

35
36 // create segment for each process

37 gaspi_segment_create(seg_id

38 ,seg_length

39 ,GASPI_GROUP_ALL

40 ,GASPI_BLOCK

41 ,GASPI_MEM_INITIALIZED

42 );

43
44 // get segment pointer , set data pointers

45 gaspi_segment_ptr(seg_id , &seg_ptr);

46 gas_a = (int*) seg_ptr ;

47 gas_b = gas_a + ll ;

48
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49 // set pointers for allreduce op

50 buff_send = seg_ptr + 2*ll*sizeof(int);

51 buff_recv = buff_send + sizeof(int);

52
53 // prog written for 4 procs only , rest may take a break

54 if( myrank <= 3 ) {

55
56 // setup data in global memory

57 // P0: 1 , 2 , 3 , 4 ,2 ,2 ,2 ,2 ( a_0 , b_0 )

58 // P1: 5 , 6 , 7 , 8 ,2 ,2 ,2 ,2 ( a_1 , b_1 )

59 // P2: 9 ,10 ,11 ,12 ,2 ,2 ,2 ,2 ( a_2 , b_2 )

60 // P3: 13 ,14 ,15 ,16 ,2 ,2 ,2 ,2 ( a_3 , b_3 )

61 for(i=0;i<ll;i++) {

62 gas_a[i] = loc_a [ i + myrank * ll ];

63 gas_b[i] = loc_b [ i + myrank * ll ];

64 }

65
66 // local calculations , store intermediate result in buff_send

67 for( i=0; i<ll;i++ )

68 *(( int*) buff_send) += gas_a[i] * gas_b[i];

69 }

70
71
72 // calculate global result via allreduce , is stored in buff_recv

73 gaspi_allreduce( buff_send , buff_recv , 1, GASPI_OP_SUM

74 , GASPI_TYPE_INT , GASPI_GROUP_ALL , GASPI_BLOCK);

75
76 dotproduct = *( (int*) buff_recv );

77 printf("(%d) dotproduct = %d\n", myrank , dotproduct);

78
79 gaspi_barrier(GASPI_GROUP_ALL , GASPI_BLOCK);

80 gaspi_proc_term(GASPI_BLOCK);

81
82 return 0;

83 }

Code 6.2: Complete example demonstrating usage of GASPI’s allreduce function for a
simple dotproduct of two vectors. Extended version of Code 4.8.



115

sync/async local/non-local time-based
(s/a) (l/nl) blocking/blocking

(tb/b)

Setup and management
gaspi_config_get s l b
gaspi_config_set s l b
gaspi_proc_init s nl tb
gaspi_proc_num s l b
gaspi_proc_rank s l b
gaspi_proc_term s nl tb
gaspi_proc_kill s nl tb
gaspi_connect s nl tb
gaspi_disconnect s l b
gaspi_state_vec_get s l tb

Groups
gaspi_group_create s l b
gaspi_group_add s l b
gaspi_group_commit s coll tb
gaspi_group_delete s l b
gaspi_group_num s l b
gaspi_group_size s l b
gaspi_group_ranks s l b

Segments
gaspi_segment_alloc s l b
gaspi_segment_register s nl tb
gaspi_segment_create s coll tb
gaspi_segment_delete s l b
gaspi_segment_num s l b
gaspi_segment_list s l b
gaspi_segment_ptr s l b

One-sided communication
gaspi_write as nl tb
gaspi_read as nl tb
gaspi_wait as nl tb
Weak synchronization
gaspi_notify as nl tb
gaspi_notify_waitsome s nl tb
gaspi_notify_reset s l b
Extended communication and utilities
gaspi_write_notify as nl tb
gaspi_write_list as nl tb
gaspi_write_list_notify as nl tb
gaspi_read_list as nl tb
gaspi_queue_size s l b
gaspi_queue_purge s l tb

Passive communication
gaspi_passive_send s nl tb
gaspi_passive_receive s nl tb
gaspi_passive_queue_purge s l tb

Table 6.1: Part I of list of all GASPI procedures; stating whether they are synchronous
(s) or asynchronous (a), local (l) or non-local (nl) and if they are time-based blocking
(tb) [Con13].
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sync/async local/non-local time-based blocking/
(s/a) (l/nl) blocking

(tb/b)

Global atomics
gaspi_atomic_fetch_add s nl tb
gaspi_atomic_compare_swap s nl tb
Global atomics
gaspi_atomic_fetch_add s nl tb
gaspi_atomic_compare_swap s nl tb
Collective communication
gaspi_barrier s nl tb
gaspi_allreduce s nl tb
gaspi_allreduce_user s nl tb
Getter functions
gaspi_group_max s nl tb
gaspi_segment_max s nl tb
gaspi_queue_num s nl tb
gaspi_queue_size_max s nl tb
gaspi_transfer_size_max s nl tb
gaspi_notification_num s nl tb
gaspi_passive_transfer_size_max s nl tb
gaspi_atomic_max s nl tb
gaspi_allreduce_buf_size s nl tb
gaspi_allreduce_elem_max s nl tb
gaspi_network_type s nl tb
gaspi_build_infrastructure s nl tb
Environmental Management
gaspi_version s nl tb
gaspi_time_get s nl tb
gaspi_time_ticks s nl tb
gaspi_error_message s nl tb
Profiling interface
gaspi_statistic_counter_max s nl tb
gaspi_statistic_counter_info s nl tb
gaspi_statistic_verbosity_level s nl tb
gaspi_statistic_counter_get s nl tb
gaspi_statistic_counter_reset s nl tb
gaspi_pcontrol s nl tb

Table 6.2: Part II of list of all GASPI procedures; stating whether they are synchronous
(s) or asynchronous (a), local (l) or non-local (nl) and if they are time-based blocking
(tb) [Con13]..
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