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Abstract

The appearance of bubbles was determined in three di�erent wind wave facilities utilizing
an optical bright �eld technique. Based on the bubble detection algorithm by W. Mischler
[22], an algorithm has been developed by means of which bubbles and their sizes can be
detected automatically. The method is applicable up to moderate to high bubble densities.
At the Aeolotron bubble detection up to the water surface is feasible. It has been shown
that the density of bubbles correlates to wind speed, water conditions, the distance to the
water surface as well as to the tank geometry.
Observations show an increased bubble density in salt water compared to fresh water at the
same wind conditions. A study on the in�uence of lower Butanol concentrations of about
50 ml m−3 was carried out. Low Butanol concentrations in the water lead to an increased
density of bubbles and additionally, as could be shown in the Aeolotron, a signi�cant in-
crease of very small bubbles (r< 65 µm). Adding Butanol seems to be a good, non-corrosive
substitute for sea water. The in�uence of the fetch length was systematically researched by
carrying out measurement series in the annular wind wave facility in Heidelberg as well as
measurement series in linear wind wave facilities in Marseille, France and Kyoto Japan, both
of which have di�erent sizes and fetch lengths. Comparing these three wind wave facilities a
high correlation between the appearance of bubbles and the fetch length could be detected.
Analysis of fresh water measurements at hurricane like wind conditions lead to the discovery
of a saturation e�ect on the appearance of bubbles.

Zusammenfassung

In drei verschiedenen Wind-Wellenkanälen wurde das Auftreten von Blasen mithilfe einer
optischen Hellfeldmethode untersucht. In Anlehnung an den Blasendetektionsalgorithmus
vonW.Mischler [22] ist ein Algorithmus entwickelt worden, mit dessen Hilfe Blasen und deren
Radien automatisiert detektiert werden können. Diese Methode in zuverlässig anwendbar
bis zu mittleren bis hohen Blasendichten und ermöglicht im Heidelberger Wind-Wellenkanal
Blasendetektionen bis an die Wasserober�äche. Die Abhängigkeit der Blasendichten von der
Windgeschwindigkeit, den Wasserbedingungen, dem Abstand zur Wasserober�äche und der
Geometrie des Kanals konnte gezeigt werden.
Beobachtungen zeigen ein gesteigertes Aufkommen bei gleichenWindverhältnissen von Blasen
in Salzwasser im Vergleich zu Süÿwasser. Der Ein�uss von geringen Butanolkonzentratio-
nen von etwa 50 ml m−3 auf Süÿwasser wurde hinsichtlich Blasen untersucht. Genannte
Butanolkonzentrationen im Wasser führen zu einer erhöhten Blasendichte und, wie am Ae-
olotron gezeigt werden konnte, einem signi�katen Anstieg sehr kleiner Blasen (r< 65 µm).
Die Zugabe von Butanol scheint ein guter, nicht korrosiver Ersatz für Meerwasser zu sein.
Durch den ringförmigen Kanal in Heidelberg und zwei lineare Kanäle unterschiedlicher
Gröÿe und Windstreichlänge in Marseille, Frankreich und Kyoto, Japan, konnte der Ein-
�uss der Windstreichlänge untersucht werden. Im Vergleich der drei Wind-Wellenkanälen
zeichnet sich eine starke Abhängigkeit im Blasenaufkommen von der Windstreichlänge ab.
Bei Analysen von Süÿwassermessungen bei hurrikanähnlichen Windbedingungen (maximales
u10=67 m s−1), wurde ein Sättigungse�ekt für das Aufkommen von Blasen entdeckt.
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Introduction

Gas exchange takes place at the interface between air and water. These processes are most
in�uencing for human life at the oceans, as water compartment and the atmosphere, as air
compartment. Research is conducted to develop models describing gas exchange processes.
Several parametrizations try to describe gas exchange in terms of the velocity in ten meter
above sea level u10 [12], [24].
Beneath exchange at the water surface, breaking waves entrain bubbles into the water bulk.
The role of air bubbles is not yet fully understood, but they might contribute in a signi�cant
way to transfer processes. Their contribution is in�uenced by several mechanisms.
Bubbles enlarge the interface due to their additional surface under water. Buoyant degassing
enhances turbulence which itself enhances gas transfer. The hydrostatic pressure under water
and surface tension both augment partial pressure of individual tracers and thus may lead
to supersaturation and even to a complete dissolution of bubbles. This asymmetric e�ect
enhances the invasion of gas due to increased pressure.
To quantitatively analyse the bubble e�ect, size distributions and some characteristic time
scales have to be known. The residence time is limited by the rise velocity due to buoyancy.
Two dissolution times of bubbles are de�ned as a consequence of increased pressure, the
hydrostatic pressure and the surface tension. The equilibrium time describes the time until
the air in the bubble and the surrounding water are in equilibrium. All these time scales are
dependent on the size of a bubble.
Especially the equilibrium time depends on the solubility of a tracer. Those with higher
solubility equilibrate faster and, in a �rst approximation, it can be assumed that the whole
bubble volume reaches equilibrium. Low soluble gases take longer to reach equilibrium.
Bubbles might even be dissolved, or breach the water surface before equilibrium.
For a better understanding of the role of bubbles in gas exchange and to identify regimes of
importance for low and high soluble gases, replicable measurements are needed. Those can
give insights in the transport mechanisms, also via air bubbles. Experiments in laboratory
facilities are very promising to reproduce same conditions. Laboratory experiments facilitate
the variation of only some speci�c parameters. On the same time a bunch of environmental
parameters is measurable. The downside of most wind wave channels is the water quality.
Most of the facilities are not suitable for seawater, which is very corrosive due to its salt
content. The di�erence between salt water and fresh water is considerable, in particular for
bubble formation processes. At �rst sight, seawater tends to form more, especially small
bubbles.

Goal of this work

For laboratory experiments a substitute for seawater is of great interest. An alternative
which does not contain corrosive salt and which is easy to prepare would signi�cantly im-
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prove laboratory experiments. It is observable that a low Butanol concentration in water
changes the occurrence of bubbles. In general more bubbles and smaller bubbles are ap-
parent. Whether Butanol is a good alternative and how it changes the bubble formation
and occurrence should be shown in this thesis. The comparison with proper seawater is a
subsequent aim.
Furthermore, the role of bubbles for gas exchange should be investigated by bubble observa-
tions. Previous experiments show an additional increase in gas exchange from wind speeds
of about u10 = 35 m s−1 on, Krall [19]. This increase is likely to be in parts of bubble origin.
Bubble measurements over a wide range of wind and water conditions will reveal new infor-
mation about bubble occurrence. The aim is to characterize the change in bubble spectra
which is supposed to happen at around u10= 35 m s−1.
To accomplish the stated objectives, bubble measurements are performed at three laboratory
facilities of di�erent geometry and size.
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1. Theoretical background

1.1. Gas exchange

The transport of gas or more general a tracer between liquid and gaseous media is driven by
molecular and turbulent di�usion. Molecular Di�usion is a result of random thermal motion.
A concentration di�erence results in an e�ective tracer transport.

In the case of a vertical concentration gradient, molecular di�usion leads to a net �ux from
higher to lower concentrations described by Fick's 1st law in (1.1).

j = −D · ∂c
∂z

(1.1)

j being the net �ux, D the molecular di�usion coe�cient and c the concentration of a tracer.

Equation (1.1) can be extended by the turbulent di�usion coe�cient Kc(z) that is dependent
on the distance to the boundary layer. The resulting �ux density is described by eq. (1.2)
[15].

j = (D +K(z))
∂c

∂z
(1.2)

The variable that describes the amount of a tracer passing through the surface per time is in
the unit of a velocity m s−1 and is called transfer velocity. Equation (1.3) de�nes the transfer
velocity k as the �ux density per concentration di�erence.

k =
j

csurf − cbulk
(1.3)

csurf is the concentration at the surface and cbulk the concentration in the bulk at a reference
level. Both, at the air-side and at the water-side, a mass boundary layer exists. The one
with the larger transfer resistance or smaller transfer velocity dominates the transfer pro-
cess. At the interface a thermodynamic solubility equilibrium is assumed thus the tracer's
concentration is discontinuous at the surface due to Henry's law eq. (1.4), which reads:

cwater = α · cair (1.4)

Where α is the tracer dependent dimensionless solubility. A higher solubility leads to an
air-side mass boundary layer control and vice versa, see Jähne [15]. Beneath these general
transfer mechanisms at an interface, bubbles entrained by breaking waves contribute to the
transfer in a speci�c way.
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1. Theoretical background

1.1.1. In�uence of bubbles

Bubbles might have a signi�cant in�uence on the transfer velocities depending on the wind
and water conditions and the tracer speci�c solubility.
Bubbles a�ect the transfer velocity by di�erent mechanisms:

� Bubbles provide an additional surface where exchange of a tracer can take place. The
contribution of a bubble of radius r is proportional to the concentration di�erence
(cw − cb) and described by a net �ux J:

J = 4πr2 · j · (cw − cb)

where j is the 'individual bubble transfer velocity' (Jähne [17] and Woolf [31]), cw
concentration in the water and cb concentration at the interface. With cb = α · pb and
pb being the partial pressure of the gas in the bubble.

� Henry's law states that the equilibrium concentration is proportional to the partial
pressure in the gas phase. A high hydrostatic pressure as well as additional surface
tension might lead to supersaturation and such enhance the gas exchange.

� Bubbles created by breaking waves enhance the near surface turbulence resulting in
an increase in gas transfer [15].

Gases with high solubility quickly come into equilibrium for gas transport from the atmo-
sphere to the ocean. For those gases bubbles contribute to the exchange only for a very
short time and the e�ect on the exchange rate is rather small. Bubbles have a larger rela-
tive impact for gases with lower solubility since they contribute for a larger fraction of their
lifetime.
Net air-sea �ux of a gas can be described by eq. (1.5) where kb is the contribution of bubbles
to the air-sea transfer rate [30].

F = (k0 + kb)[c− α · p(1 + ∆)] (1.5)

The partial pressure of the gas in the lower atmosphere is named p, α is the solubility of the
gas and ∆ is a value which estimates the equilibrium supersaturation.

4



1.2. Bubble visualisation method

1.2. Bubble visualisation method

There are many ways to measure bubble distributions. In addition to the here mentioned
optical methods, acoustical methods are widely used as for instance in Breitz [4], Deane [8],
Medwin [21], and Su [28].

1.2.1. Bright �eld method

Figure 1.1.: Bright �eld method

To image air bubbles under water a bright �eld
method can be used. The light source is opposing
the camera. Without bubbles the sensor is evenly il-
luminated. Bubbles entrained into the water due to
breaking waves refract the light with the result that
no light reaches the camera sensor through the bub-
ble. Depending on the incident angle or distance to
the central ray respectively a shadow of the bubble is
imaged to the camera as shown in �g. 1.1, from [10].
An exception is the central ray penetrating the bub-
ble perpendicular to the surface which goes straight
through the bubble and can be imaged for large bub-
bles.

1.2.2. Dark �eld method

Dark �eld methods illuminate passively from the side or from the back with divergent rays.
In the absence of bubbles no light is directed to the cameras sensor. Light gets refracted at
the bubbles surface and thus partly redirected to the sensor. An example for a dark �eld
image is shown in �g. 1.2b.
Detailed description of di�erent visualisation techniques can be found in Balschbach [1].

The three measurement campaigns, investigated for this thesis, all use a bright �eld technique
to visualize bubbles.
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1. Theoretical background

(a) (b)

Figure 1.2.: Images obtained by a bright �eld method (a) and a dark �eld method (b),
taken from [1].

1.3. Basics in image processing

In this section some basics in image processing, which are used in the detection algorithm
and for data evaluation are explained. For further reading, we recommend Jähne [16].

1.3.1. Convolution

The discrete convolution is one of the most important tools in image processing. The convo-
lution with a �lter mask can be seen as a weighted averaging where the �lter mask determines
how the original picture is modi�ed. It can be used for smoothing, to build the derivative
and other linear operations [16] . The continuous description of a N-dimensional convolution
reads as follows:

g(x) ∗ h(x) =

∫ ∞
−∞

h(x′) · g(x− x′)dNx′ . (1.6)

Analog to eq. (1.6) the discrete convolution in one or multi dimensions is constituted by:

g′n = g(x) ∗ h(x) =
N−1∑
n′=0

hn′gn−n′ (1.7)

g′m,n =

M−1∑
m′=0

N−1∑
n′=0

hm′n′gm−m′,n−n′ (1.8)

At the edge of a picture there are three possibilities to perform the convolution. Either a
cyclic extension, a repetition of the edge pixels or all pixels that extend beyond the picture
dimensions are set to zero. The latter is used for all convolutions performed in this work.
Thereby areas are formed at the edge that can not be used for further evaluation since
arti�cial �ltering e�ects occur. These edges are cut-o�, thus neglected.
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1.3. Basics in image processing

1.3.2. Gradient

A very useful property of a picture is its gradient. In a continuous description the gradient
of a function of two variables is de�ned as eq. (1.9).

∇I =
∂I

∂x
êx +

∂I

∂y
êy (1.9)

A corresponding discrete �lter mask for a central di�erence is in the form of eq. (1.10) for
the horizontal and eq. (1.11) for the vertical direction.

dx = [−101] (1.10)

dy =

−1
0
1

 (1.11)

The horizontal and vertical gradients dxI and dyI are obtained by convolution with the
intensity picture I(x, y).

dxI = dx ∗ I(x, y) , dyI = dy ∗ I(x, y) (1.12)

The absolute value of the gradient is an important feature, especially for the bubble detection
algorithm. The gradient is a measure of depth from focus. It can be calculated from the
discrete derivatives dxI and dyI.

|∇I| =
√

(dxI)2 + (dyI)2 (1.13)

1.3.3. Dilation and maximum �lter

A maximum �lter is a non-linear neighbourhood operator and a typical rank value �lter. It
sorts all grey values within the �lter mask and writes the maximum value to the respective
pixel. Median and minimum �lter work the same way only with another selection criterion for
the chosen value. The size and shape of the �lter determines the e�ect on the structures of the
picture and is often called structuring element. Gray-scale dilation using a �at structuring
element is equivalent to a maximum �lter operation. A general form of gray-scale dilation of
A by B can be written as eq. (1.14) where DB is the domain of the structuring element B.

A⊕B(x, y) = max{A(x− x′, y − y′) +B(x′, y′)|(x′, y′) ∈ DB} (1.14)

In this thesis dilation is mainly used to obtain a background picture by eliminating objects.
This is relevant for the Aeolotron data evaluation where the background is rapidly changing
due to the slightly moving mirror which is used to redirect the background light.
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1. Theoretical background

1.3.4. Smoothing

Smoothing of a picture is done by onedimensional binomial �lters bx/y shown in eq. (1.15) and
eq. (1.16). For symmetry reason an odd number of coe�cients is necessary. The horizontal
and vertical �lter can be applied successively.

bx =
1

4
· [121] (1.15)

by =
1

4
·

1
2
1

 (1.16)

1.3.5. Discrete Fourier transform

The Fourier transform is a useful tool for spectral analysis. It transforms space- or time-based
data into frequency-based data. The continuous Fourier transform is given by eq. (1.17).

g̃(k) =

∫ ∞
−∞

g(x) e−2πikxdx (1.17)

The discrete Fourier transform of a vector gn of length N is a vector g̃ñ of the same length,
see eq. (1.18).

g̃ñ =
1

N

N−1∑
n=0

gn e
− 2πinñ

N , ñ ∈ [0, N − 1] (1.18)

Usually the discrete Fourier transform (DFT) is performed by a fast Fourier transform al-
gorithm. This reduces the computational complexity for a one-dimensional transformation
from O(N2) to O(N · log(N)). DFT is used in this thesis to realize a low-pass �lter for the
detection of overlapping bubbles, details in sec. 2.3.2.

8



2. Image processing

In this chapter, the bubble detection algorithm is treated. Therefore some imaging prop-
erties of bubbles, that are used in the algorithm, must be stated. Various backgrounds are
present due to the di�erent experimental set-ups. In sec. 2.2 preprocessing steps, such as
the normalization and a drift correction, are presented. Finally, in sec. 2.3, the developed
algorithm and complementary functions are examined.

2.1. Imaging properties of bubbles
in

te
n
si
ty

0

0.5

1

Figure 2.1.: Step function Θ in black (two-
sided). Convolution of Θ with Gaussian func-
tions g(x) with di�erent σ in blue, red and
yellow.

For bubble detecting algorithms some imag-
ing properties of bubbles have to be dis-
cussed. Especially the gradient at a bubble's
edge plays an important role for detection
and depth determination.

The connection between a point in the ob-
ject plane and the image plane is described
by the point spread function (PSF) g(x).
Mathematically the image h(x) at the image
plane can be expressed by the convolution of
the object function f(x) with the PSF g(x).

h(x) =

∫
f(x′) · g(x− x′)dx′ (2.1)

The PSF consists of a depth dependent blur-
ring part and a di�raction part which is constant for a �x optical system. In the focal plane
the PSF consists only of the di�raction part, which occurs due to di�raction at the aper-
ture and can be described by a Gaussian function. A one dimensional description of the
system is reasonable justi�ed as long as the object is much larger than σ of the Gaussian
function. Within the one dimensional description the edge of the bubble is described by the
step function θ(x).

Θ = 0 | if x < 0

Θ =
1

2
| if x = 0

Θ = 1 | if x > 0

The gradient h′(x) of a depicted bubble in the focal plane is then described by the derivative
of the convolution of Θ with g(x).

9



2. Image processing

h′(x) =
d

dx
[Θ(x) ∗ g(x)]

=
d

dx

∫
Θ(x− x′) · g(x′)dx′

=

∫
δ(x− x′) · g(x′)dx′

= g(x)

(2.2)

Assuming a Gaussian PSF g(x) and the edge to be at x = 0, the gradient is maximal at this
position and is equal to

h′(x = 0) =
1√

2πσ2
with g(x) =

1√
2πσ

e−
x−x0
2σ2 (2.3)

When the object is not in the focal plane, defocussing of the image is described by a depth
dependent PSF. The PSF has the shape of the used aperture and is thus a circle [16]. A depth
dependent PSF is determined to quantify the measurements depth of �eld, see sec. 4.1.1.

The size of bubbles is determined at half of their maximal grey value. Which is correct for
bubbles being larger than PSF. Fig 2.1 shows a simulation in one dimension for di�erent
PSF (σ). Here, maximal grey values of one are reached. For smaller bubbles the size at
half maximum is an approximation which is simple and therefore easy to apply. At least in
a certain depth range and for bubbles larger than a critical bubble size, it is reasonable to
calculate like this. Further investigation of the quality of size determination is performed in
sec. 4.4.

2.2. Preprocessing

Before one can detect bubbles in the measurement pictures, they have to be preprocessed.
Background intensities vary over the �eld of view which can be corrected by normalization.
Furthermore a detailed analysis of background anomalies of the di�erent experiments and
the resulting drift and scatter corrections is given.

2.2.1. Normalization

Ideally, the background should be homogeneously lighted. Due to the �nite extend of the
light sources and other constructive constraints this is usually not the case in the experi-
ments. A correction by a background image, also called zero image, taken in calm water
is necessary. This correction should lead to a homogeneous background with grey values of
one in the measurement picture. Shadows caused by bubbles have intensities around zero
in the normalized image. Every experiment has speci�cities to obtain a meaningful back-
ground image such as a changing illumination or particles a�ecting the background. How the
zero images are taken in the individual experiments, is explained in the respective section
in chapter 3. Every image sensor has a certain dark signal Id. It has to be corrected for
Id by subtracting it from the raw image Iraw and the background image I0. To be able to
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2.2. Preprocessing

apply this simple one dimensional model, images where the object has grey values of one,
the background has values of zero and the edge has intensities between zero and one, are
needed. Therefore pictures are inverted.

2.2.2. Drift correction

The drift correction is relevant in particular for the measurements in Kyoto, where high
bubble densities are obtained. It is observable that bubble clouds reduce the background
intensity due to scattering. This results in an evenly darkened background which is problem-
atic for bubble detection. Another reason for a global reduction of background intensity is a
�uctuating light source. This phenomenon is not observed explicitly but cannot be ruled out
either. It is assessed as a minor factor. Since the absolute gradient is decisive of counting
an object or not, a global reduction in background intensity would lead to systematic lower
gradients. A factor fd corrects for the global intensity reduction.

2.2.3. Scatter correction

The scatter correction is relevant in particular for the measurements in Marseille and Heidel-
berg. It is observed that bubbles and particles do not cause the expected intensity reduction
to zero. An attempt at an explanation could be scattering of light from other bubbles. Since
the aperture angle is rather small this should not have a large e�ect. The �uorescent dye
Pyranine, which is added for the wave height measurement (see sec. 3.4.1), emits around
λ = 512 nm and is thus detectable by the bubble camera. Pyranine is excited by a laser
with a temporal delay to the bubble camera of 300 µs to 1.8 ms, see �g. 3.7 for Luminy and
�g. 3.10 for the Aeolotron measurements. Common �uorescence lifetimes are in the order of
ns. Thus the e�ect of the �uorescent light is expected to be rather small.
Still, systematic higher intensities of the bubbles shadow would lead to systematic lower
gradient values. It is assumed that this increase in intensity can be seen as a systematic
o�set and a scatter factor fs corrects for it.

Kyoto

The corrected, normalized and inverted picture I for the measurements in Kyoto is then
de�ned as written in eq. (2.4).

I1(x, y) = 1− Iraw(x, y)

I0(x, y)
, fd =

I1,min + I1,µ

2
, I =

I1 − fd
1− fd

(2.4)

Iraw is the raw image. I0 is the mean of 25 background images. These images are taken
during calm water conditions. The drift factor fd is calculated as the arithmetic mean of the
minimal grey value I1,min and the centre of gravity I1,µ of grey values between 0 and 0.8 of
I1. Especially for measurements with Butanol added to the water a drift in the background
over time can be observed. An explanation for this drift could be a decrease in concentration
of Butanol resulting in lower bubble densities. Fig. 2.2 shows the temporal evolution of the
minimal background intensity in the inverted pictures for the highest wind condition with
added Butanol. Background intensities should be close to zero, bubbles should have grey
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2. Image processing

low fetch
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Figure 2.2.: Temporal evolution of the background intensity per picture over 65 min for
Butanol conditions at fref=800 rpm, at the high fetch (yellow) and at the low fetch (blue).

values around one. Due to the drifting background, fd is calculated for every picture. Dark
images are negligible due to the very small exposure time of 250 µs.

Aeolotron Heidelberg

A changing background, caused by the mirror redirecting the illumination light, makes the
Aeolotron data challenging. The background intensities are changing, since the mirror moves
with the wave movement. A separate zero image is needed for each picture. It is obtained
by dilation (sec. 1.3.3) of the original bubble picture. A structuring element is chosen so
that all objects are �ltered out and a reasonable smooth and �at background is obtained.
Therefore a ball-shaped non-�at structuring element with size = 50 px and norm = 10 is
used. The size represents approximately the size of the largest objects. The norm is a sort
of weighting area. The dark image is negligible due to the camera settings. It is zero for all
pixels and thus not relevant.
Zero images obtained by dilation are not value-conserving. Thus the zero image and the
bubble image have to be normalized by the maximum grey value of the images.

Iraw,norm =
Iraw

max(Iraw)
, I0,norm =

I0

max(I0)
(2.5)

The general way to calculated the corrected, normalized and inverted images I is shown in
eq. (2.6).

I1 =
Iraw,norm
I0,norm

, I = 1− I1 − fs
1− fs

(2.6)

The correction factor fs accounts for scattering. It is calculated from minimal and maximal

12



2.3. Algorithm

grey values by an adapted way of smoothing and application of minimum and maximum
�lters. More precisely, the minimum and maximum value of the central part (y=300:699,
x=100:499 in px) of every image in the whole time series is identi�ed. Only the central part
is taken since intensity �uctuations are less extreme there. Furthermore the minimum should
be the result of a bubble or dirt particle. For low bubble concentrations this is ensured by a
minimum �lter over about 30 images. This leads to a vector vmin containing minimum values
of the time series. Since maximum values are less sensitive to distortion a simple smoothing,
described in eq. (1.15), is applied resulting in a vector vmax of maximal intensities. No drift
in intensities over time is observed, hence fs is calculated once for each measuring cycle,
which lasts �ve.

fs = median

(
vmin

vmax

)
(2.7)

Luminy Marseille

Usually a background image is taken at calm water conditions before or after the measure-
ment. During the Luminy measurements many particles are dispersed in the water, making
the background images not representative for the background illumination. For each con-
dition a background image is developed by image processing, using dilation (see sec. 1.3.3)
and subsequent averaging of about 200 bubble pictures. Pictures of di�erent times during
the measurement are selected. The structuring element for dilation is the same as for the
Aeolotron data. The dark image is negligible due to the camera settings. It is zero for each
pixel and thus not relevant.
The scattering factor fs for the Luminy data is determined in the same way as at the
Aeolotron, Heidelberg. A measuring cycle at Luminy lasts �ve or ten minutes.

2.3. Algorithm

In this section the algorithm used for automated bubble detection is described. The algorithm
is based on concepts of Mischler [22] and Honkanen [14]. Mischler compares four bubble
detecting algorithms. The recommended algorithm uses a segmentation at half maximum
of the grey values and analyses overlapping bubbles. These two properties are included for
detection. In the following, details about the implemented algorithm and complementary
functions are given. Attempts are made to take full advantage of bubble speci�c properties
to not detect any dirt particle. Nevertheless, particles resembling bubbles in their shape
may be detected as bubbles. Some examples of detected asymmetric objects are presented
in �g. 2.3

2.3.1. Bubble detection

Fig. 2.4 shows details about the bubble detecting algorithm. It is the version as it is used
for data recorded in Luminiy and at the Aeolotron. The preprocessing for the data of Kyoto
is slightly di�erent, as described in sec. 2.2. Once the corrected and normalized image I is
obtained, the following steps are identical. The main compartments of the algorithm are
highlighted in di�erent colours. The preprocessing section has a grey background. Identi-
fying and consecutively numbering of objects, also called labeling, is shaded in red. The
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2. Image processing

Figure 2.3.: Examples of asymmetric objects. Red circles indicate detected bubbles.

bubble size determination is in shaded in yellow.

Starting with the raw image Iraw an exclusion criterion for an image is its maximum and
minimum value ('max min'). Images taken above the water surface are widely overexposed
or underexposed. This is re�ected in the pictures maximum or minimum intensity value.
Pictures with intensity values above 250 (of 255) or below 5 are not taken into account.
For valid pictures an inverted, normalized and background corrected image I is obtained
by dilation, smoothing and normalization to maximum values. From I a binary image Ibin
is created with a threshold of 0.5. Labeling produces an image Ilabel similar to Ibin where
every connected area, also referred to as object, is numbered by consecutive numbers. A
bounding box describes a rectangular area around the object. Furthermore the length of
the major and the minor axis lmaj, lmin of the object is determined by the eigenvalues of the
covariance matrix. Every bounding box is successively examined for several criteria. If an
image contains an object with lmaj > 200 px, the image is skipped. Such large objects are
either enormous conglomerates of bubbles, what makes a good detection very unlikely or
the image is taken close to the water surface and where the illumination becomes random.
If an object ranges to an edge of the FOV, the object is not considered. Usually this is
the case for bubbles partly in the FOV. Especially at high bubble densities neighbouring
objects might reach into other bounding boxes. Therefore only the object with the longest
contour is taken into account. The contour is obtained by the MATLAB built in function
contourc, which provides isolines of a given matrix. The height of the isolines can be chosen.
For our purpose it is typically de�ned as 0.5 · l.m., with l.m. being the local maximum grey
value. Subsequently a criterion for symmetry is tested. If lmaj and lmin di�er more than 3
pixels the object is treated as an asymmetric object. Asymmetric objects are assumed to be
overlapping bubbles. The separation of overlapping bubbles is described in sec. 2.3.2. For
symmetric objects with lmaj > 20px the central beam can lead to a loss in intensity. To
avoid wrong detections the central part of the object is manually set to the maximum grey
value within the bounding box. The radius of symmetric objects is determined in two ways.
One method is to count pixels with intensities larger than half of the maximum grey value
of the object. This gives the area A and thereof the radius is calculated by r =

√
A/π.
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Figure 2.4.: Algorithm for bubble detection and size determination. grey: preprocessing.
red: identify objects io. yellow: bubble radius determination. Preprocessing slightly varies
between the campaigns, see sec. 2.2.
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2. Image processing

Additionally a circle �t method is used, introduced in sec. 2.3.3. Both �tting methods have
di�culties with measuring small bubbles. A comparison is given in sec. 4.4.

Thresholds given in �g. 2.4 are optimized for the measurement campaigns at the Aeolotron.

2.3.2. Separation of overlapping bubbles

The basic idea of how to separate overlapping bubbles is taken from Honkanen [14]. Consider
the contour of an object which consists of overlapping bubbles. The contour leads to the
curvature, which is positive for a convex shape and negative at a concave shape. At local
minima of the curvature, connecting points of bubbles can be assumed. Thus segments of
bubbles are received and circles can be �t to the individual segments to obtain their size.

Here a detailed description of the algorithm and more information related to the individual
steps is given and depicted in �g. 2.5.
io is the part of image I including an asymmetric object. The contour at half maximum
height is extracted from io. In images of large bubbles, a bright spot appears from the
central beam passing the bubble without refraction. In this bright central part a second
contour at half maximum intensity is often present. So that N=2, with N being the number
of contours. This contour disturbs a correct detection and is thus eliminated arti�cially. If
thereafter another contour is present (N > 1) the object gets rejected. A rough estimation
of perimeter P and area A covered by the object is done, which is used later. Only closed
contours C can be used in this algorithm. This is veri�ed if the �rst and last point of C are
the same. Short contours, as 30 points, cannot be split into multiple parts. If the length of
the whole contour C is shorter than 30 points, the object is ruled out. Contours received from
contourc usually are very wiggeling. For further processing a smooth contour is necessary.
This is realized by a low-pass frequency �lter. Which transforms x- and y- data of C by
a fast Fourier transform and cuts of wiggles with a higher frequency than fthr (sec. 1.3.5).
The threshold proposed by Honkanen [14], is dependent on the length of the contour l and
slightly modi�ed to:

fthr = 0.07 · l · 10√
l + 30

,

which leads to smooth contours Cs without high frequency wiggles. From Cs the curvature
κ is determined in multiple steps as follows. The derivative of the x- and y-components of
the smoothed contour Cs,x, Cs,y is calculated by a di�erence scheme of the general form:

f ′(t) =
f(t+ 2)− f(t− 2) + 8 · (f(t+ 1)− f(t− 1))

12
t ∈ [1, l].

A periodic extension of f(t) has to be performed to calculate f ′(t). The slope ϕ of the
perimeter is de�ned by ϕ = arctan

Cs,y

Cs,x
. Discontinuities arise since the arctangent function

returns angles in the range [−π, π]. These discontinuities can be corrected by unwrapping
the slope, therefore multiples of 2π are added when absolute jumps between two consecutive
elements are greater than π.

ϕ′ is the derivative of ϕ and calculated by the above mentioned di�erence scheme. The
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Figure 2.5.: Algorithm for separattion of overlapping bubbles. Details and explanation on
variables are given in sec. 2.3.2. Dashed lines indicate an input for an operation.
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curvature κ of the perimeter is calculated as

κ =
ϕ′√

C ′s,x
2 + C ′s,y

2
.

A positive curvature means that the perimeter is convexe and turns towards the centre. The
curvature has a negative sign for a concave slope, which is the case at connecting points of
overlapping bubbles. If the curvature has values below the threshold κthr = 0.0, it is searched
for local minima. These minima in curvature are taken as the connecting points between
objects. If only one local minimum is found it is most likely that no bubble is imaged,
rather a dirt particle. Otherwise the contour is split at the connecting points into segments
ci, representing the contour segment of bubble i. The function circlefit determines radius
and centre of ci as described in sec. 2.3.3. The absolute distance between the centres of two
bubbles i and j is indicated as ∆i,j. If the distance is smaller than ε = 10, it is most likely
that the segments ci and cj belong to the same bubble. The segments are fused and again,
a circle is �t to the fused segment. The used circle �t method is only robust if the length of
the segment is larger than < 15% of the perimeter, which is estimated by P = 2πr. Finally
the gradient of the bubble image at the segment has to be encountered. Therefore a binary
image is created with ci. The �rst and last 10% of ci are neglected since these parts are in
the transition area between bubbles and thus not representative for gradients of only bubble
i. An extended image cext of the contour segment is obtained by dilation, with a disk-shaped
structuring element of radius 4. Multiplication of cext with the gradient image of the whole
object io,grad leads to an image, which includs only gradients of segment i. If the gradient
threshold gthr, speci�c for every experiment, is reached, bubble i is counted with the above
calculated radius.

One step back: If no local minima of κ below 0.0 is found, it is possible that one large
bubble is imaged and considered as asymmetric due to motion blur. If the ratio of the
perimeter squared to the area is approximately 4π± 0.7, it is assumed to be a large bubble.
The following handling of the gradient is the same as for segments. Finally the radius is
determined by the function 'circle �t' .

2.3.3. Circle �t

A fast and simple circle �tting method is explained, taken from Gander [9] and already used
in Mischler [22]. This method minimizes the algebraic distance of given points in the plane.
The general form of the equation of a circle and some transformation is given in eq. (2.8),
with x0, y0 being the coordinates of the centre.

(xi − x0)2 + (yi − y0)2 = r2
0

or: xi · 2x0 + yi · 2y0 + r2
0 − (x2

0 + y2
0) = x2

i + y2
i

(2.8)

This can be written in a matrix representation, see eq. (2.9). ~em is a unit vector of dimension
m. With known contour points (~x, ~y), the matrix A and vector ~c are given. ~b can be extracted
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by right-matrix division.

A ·~b = ~c

with: A = (~x, ~y, ~em) , ~b =

 2x0

2y0

r2
0 − (x2

0 + y2
0)

 , ~c =

 x
2
1 + y2

1
...

x2
m + y2

m

 (2.9)

Centre points (x0, y0) and radius r0 can be calculated from ~b, see (2.10).

x0 =
b1
2

, y0 =
b2
2

, r0 =
√
b3 + x2

0 + y2
0 (2.10)

This �tting method is robust as long as the given points of the contour cover more than 15%
of the expected perimeter, Mischler [22].
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3. Experiments

Images recorded in three laboratory facilities are evaluated in this thesis. A brief descrip-
tion of the wind-wave channels at Kyoto University, at IRPHE-IOA in Marseille and the
Aeolotron at Heidelberg University and their characteristics is given in this chapter. Infor-
mation about the measured wind and water conditions is supplied. The various measurement
set-ups are described in the respective sections as well as the way how zero and dark pic-
tures are recorded and applied. Several measurement techniques are conducted during the
measurement campaigns. Those, directly a�ecting the bubble measurements, are brie�y
described and referenced in sec. 3.4.

3.1. Kyoto 2015

Figure 3.1.: Measurement set-up in
Kyoto. The water channel is be-
tween camera and light source, both
marked with red arrows.

Experiments in Kyoto are conducted at a linear high
speed wind-wave channel which can be operated at
hurricane wind speeds. It has a total length of 15.7 m,
a �ume width of 0.8 m and a height of 1.6 m. As it is
built out of glass, the channel is suitable for optical
measurements. The water height is about 0.8 m and
the total surface length 12.1 m. At 6.5 m fetch wind
speeds up to u10 = 67.1 m s−1 can be reached. This
very strong wind conditions lead to an enormous en-
trainment of bubbles and high spray production. As
reference for wind conditions usually the frequency
fref of the wind generator is given in rotations per
minute (rpm). The Kyoto wind-wave channel oper-
ates with tap water, also referred to as fresh water
in this thesis. Further details about the Kyoto wind-
wave channel can be found in [18]. Measurements
are performed by W. Mischler and A. Klein in Octo-
ber/November 2015.
In the following sections, details about the bubble
measurement in Kyoto are summarized. First a de-
scription of the measurement set-up is given includ-
ing information about the used cameras and lenses.
Challenges of colour images are mentioned. Further-
more, measured water and wind conditions are listed
and measurement speci�c calibration features are de-
scribed.
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3.1. Kyoto 2015

3.1.1. Bubble measurement set-up

Bubble measurements are performed at two di�erent fetches. The measurement section 'low
fetch' is situated at 3 m, the section of 'high fetch' at 8 m. A sketch of the measurement
set-up is shown in �g. 3.2 and the respective camera and lens settings are listed in tab. 3.1.
The illumination and camera systems are set up outside the tank, opposite to each other.
Since light is shining through the full 0.8 m width of the channel an intense reduction in
background illumination is observed for high wind conditions, due to the amount of bubbles
and spray.

camera lens

focus

air

lens light source
water

80cm

Figure 3.2.: Bubble measurement set-up in Kyoto

Table 3.1.: Camera and lens speci�cations of the bubble measurement set-up in Kyoto.

Nikon D800 SLR camera
sensor type CMOS
sensor size 35.9 mm x 24 mm, 7360px x 4912px
pixel size 4.8µm x 4.8µm

lens system camera f=200 mm, β=1:1, nf=5.3
lens system light source f=3 m, nf=2.8

Colour sensor - Bayer pattern

Images are taken with two Nikon D800 single-lens re�ex digital cameras (DSLR). This kind
of camera is colour sensitive since a Bayer �lter is placed in front of the sensor. A Bayer
�lter covers 50% of pixels with a green, 25% with a blue and 25% with a red �lter. These
�lters enable to obtain a colour image. Prerequisite for colour images is a polychromatic
illumination. The light source consists of blue, green and red LEDs which emit around
470 nm, 530 nm and 670 nm respectively.
For bubble detection only light intensities are relevant. As can be seen in �g. 3.3a the
spectral sensitivity of green, red and blue pixels diverges [13]. As a consequence, the absolute
intensities of the respective colour pixels diverge. Colour images constitute a second problem:
Fig. 3.4a depicts a line pro�le of the used grating. Maxima and minima correspond to the
translucid and optically opaque parts of the grating. Maxima and minima of red, green and
blue light are at the same position for the central part of the picture. Fig. 3.4b shows the
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Figure 3.3.: (a) Example for the spectral sensitivity of a CMOS sensor with Bayer �lter
for blue, green and red light, respectively. (b) Wavelength dependence of the refractive
index of water. Wavelengths of blue, red and green LEDs used as light source for bubble
measurements are marked as well as the di�erence in refractive index.

left part of the same line pro�le. Maxima and minima of red are shifted with respect to the
green and blue minima and maxima. An explanation is a lateral chromatic aberration, since
the water bulk acts as an optical element. The di�erence in nwater(λ) between green and
blue is less due to the closer wavelength peak, see �g. 3.3b. Nervertheless it is unclear, why
blue and green seems to be barely shifted.
Additionally longitudinal chromatic aberration leads to di�erent focal lengths. Assuming a
water path of 400 mm, it would result in a di�erence in focal length of about 3 mm between
red and blue light.
As a consequence of these chromatic aberrations, only the green �ltered pixels are used and
missing pixels are interpolated linearly. Larger distances between the evaluated pixels cause
a reduction in resolution and could thus lead to additional aliasing [16].

3.1.2. Calibration measurements

Calibration measurements are performed with a rebuilt set-up in Heidelberg, in February
2016. A water tank with dimensions of 300 mm x 300 mm x 600 mm (height x width x depth)
is used for the measurements.
All settings are adjusted as good as possible to the settings in Kyoto, still the calibration

Table 3.2.: Camera settings at Kyoto wind-wave channel. Height speci�es the distance of
the imaging system to the ground of the channel.

frame rate FOV texp height β

0.13 Hz 7360 px x 4912 px 250 µs 50 cm 1:0.98
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(a) Central part of the gratings pro�le. (b) Left part of the gratings pro�le.

Figure 3.4.: Line pro�le of a picture of the used grating. Red, green and blue pixels are
interpolated and smoothed separately. Di�erent intensities occur due to di�erent spectral
sensitivities. Furthermore the focal length is wavelength dependent and out of focus, extrema
are less pronounced. The shift of red towards blue and green extrema is partly explained by
the chromatic dependency of nwater(λ).

should be handled attentively. The measurement set-up at the low and the high fetch are
identical in construction. The calibration is only performed for the camera at the low fetch
but applied to images of both fetches.
For the determination of the magni�cation factor β a grating with 500 l.p.i. (lines per inch)
is used as calibration target in the object plane. The grating is an optical target which
is characterized by constant intervals of bar and space, high edge de�nition and a high
contrast ratio. Distances in the sensor plane are known from pixel dimensions. Thereof β
can be calculated, see tab. 3.2. For depth calibration, pictures of the same grating are taken
in 10 µm steps covering a depth interval of 2.65 mm. Some depth positions are measured
twice.

3.1.3. Measurement conditions

The measurement conditions of the measurement campaign in Kyoto are listed in tab. 3.3.
A wide range of wind conditions is covered in Kyoto. Especially the very high, hurricane like
wind speeds o�er impressive conditions. Those conditions lead to a water loss at the end of
the tank due to spray and water patches torn apart from the water surface. To compansate
for the loss, fresh water is pumped into the channel at the water entrance.

Butanol

The Kyoto wind-wave channel enables to measure at two water conditions. First, fresh water
experiments are conducted. Later, Butanol is added to the water to �nd out whether low
Butanol concentrations in the water volume constitute a non-corrosive seawater model.
The channel has a holding capacity of 13.7 m3. 700 ml of Butanol is added to the water,
which results in an initial Butanol concentrations of c0 = 51.1ml m−3. Due to mass transfer
across the interface between water and air a decrease in concentration with time is expected,
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Table 3.3.: Wind conditions for fresh water conditions in Kyoto from Takagaki [29]. The
supplement '+ Butanol' indicates that measurements are also performed in Butanol condi-
tions. u10 and u* are only available for fresh water conditions and are taken for both water
conditions.

water condition fref in m s−1 u10 in m s−1 u∗,w in cm s−1

fresh 200 16.7 0.84
fresh 250 23.75 2.34
fresh 300 29.8 3.10
fresh 350 33.8 5.19

fresh + Butanol 400 40.7 6.13
fresh + Butanol 500 48 7.25
fresh + Butanol 600 56.4 9.37
fresh + Butanol 700 64.3 11.00
fresh + Butanol 800 67.4 11.53

especially for high wind conditions. Additionally, water is blown out of the tank and partly
replaced by fresh water. Monitoring of Butanol concentrations is di�cult due to an unex-
pected behaviour of the mass spectrometer. E�orts are made to start experiments with the
same initial concentration c0.

3.2. Luminy - Marseille 2016

In June 2016 experiments are conducted in the Large Air Sea Interaction Simulation Tunnel
of the Institut de Rechereche sur les Phénomène Hors Equilibre, Laboratoire Interactions
Océan-Atmosphère Luminy (IRPHE-IOA) in Marseille, France. This measurement campaign
is called Luminy in the following.

The linear wave channel at Luminy has a length of 40 m, a width of 2.6 m. The water depth
is adjustable and at the measurement section usually about 0.9 m. Waves can be produced
by wind and by mechanical paddling. Luminy has a recirculating air �ow channel with a
width of 3.2 m, a height of 1.5 m and a length of 40 m. Reference wind speeds up to 14 m s−1

are generated by an axial fan located in the recirculation �ume. The mechanical paddle can
be adjusted by its frequency fpad and amplitude Apad. Measurement instruments are set up
at the test section at 28 m fetch, which is equipped with glass windows. Common tap water
is used in Marseille and regularly skimming is conducted to reduce surface �lms. For more
information about Luminy see Coantic [6] and Caulliez [5].

In general very little bubble formation can be seen. High numbers of dirt particles are
present in the channel despite thorough cleaning. Due to the linearity of the channel, a
bottom current opposed to the wind direction is evident and observable.
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3.2.1. Bubble measurement set-up

A scheme of the Luminy set-up is shown in �g. 3.5. Camera and lens are built into a
waterproof tube. An additional bandpass colour �lter for green light (λ = 500 nm to 550 nm)
is attached to the camera to reduce scattering light.

Fig. 3.6 shows a picture of all four measurement systems built up at Luminy. Two of the
cameras, named cam1 and cam4, are installed just below the measurement area of the laser
height camera (LHC) [27], in heights h1 = 33.4 cm and h4 = 50.5 cm respectively. The other
two cameras, named cam2 and cam3, are positioned approximately 28 cm upwind of the �rst
measurement section and set up in heights h2 = 26.8 cm and h3 = 43.6 cm.

For illumination purpose a light source consisting of 76 green LEDs is used. It is operated
with U = 33 V and Imax = 5 A and has a cylindrical shape with length l = 15 cm and radius
r = 13 cm. The LEDs are arranged on one side of the cylinder and a frosted glass screen in
front of the LEDs ensures a homogeneous illumination, see �g. 3.6. Due to problems with
operating all four light sources simultaneously, the priority is set to cam1 and cam4 and
only the latter two are operated for the whole campaign. As will be shown later, very little
bubble formation is observable and only data of the upper camera cam4 is evaluated.

Table 3.4.: Camera and lens speci�cations of the bubble detecting set-up at Luminy.

acA1920 155um � Basler ace
sensor typ CMOS � sony IMX174
sensor size 11.3 mm x 7.1 mm, 1920 px x 1200 px
pixel size 5.86 µm x 5.86 µm

lens system f = 180 mm, nf = 11

camera lens

water

focus

air

light source

32.3 cm

70 cm70 cm

40 cm

Figure 3.5.: Measurement set-up at Luminy.
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LEDs

cameras

Figure 3.6.: Left: Cameras and LED light sources in the facility of Luminy. Dashed arrows
indicate cam2 and cam3 and the respective light sources, which are not run for the whole
campaign. Right: Light source for bubble illumination (with some defect LEDs). Here,
LEDs are partly covered by a frosted glass screen. For experiments a screen is glued onto
the cylinder.

Table 3.5.: Camera settings at Luminy for cam4. Height speci�es the distance to the ground
of the channel from the middle of FOV.

water frame rate �eld of view texp height β

fresh/Butanol 200Hz 1800 px x 978 px ≈ 100 µs 50.5 cm 1 : 2.12± 0.01

3.2.2. Calibration measurements

For depth calibration a grating with 500 l.p.i. (lines per inch), which equals to a grating
distance of 51 µm, is used. Calibration pictures are taken in 50 µm steps adjusted by a
micrometer screw. 200 pictures are taken covering a depth interval of 10 mm. Out of focus
the depth dependent PSF is in the order of the grating distance, e.g. d=5px∼= 62 µm. This
means the used grating has too small grid spacing for depth calibration out of focus. It
leads to smoothed intensities out of the focal plane, thus lower maximal and higher minimal
intensities. Therefore the background factor fbg, also applied at the calibration data, slightly
corrects. Lacking alternatives the calibration data is used.

3.2.3. Measurement conditions

At Luminy optical bubble measurements are performed in two di�erent heights, mentioned
in sec. 3.2.1. The upper one is installed approximately 40 cm below the calm water surface.
It would have been desirable to install them closer to the surface to enlarge the probability
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of detecting bubbles. This was not possible due to restrictions by the channel geometry.

The camera and lens speci�cations used in Luminy are listed in tab. 3.4. Data of camera
settings are presented in tab. 3.5. A trigger system, using an Arduino Uno, is installed to
perform simultaneous measurements with the LHC. The Arduino receives the trigger input
at a rate of f0=100 Hzfrom a function generator and redistributes the signal to the LHC,
the bubble cameras and the bubble light sources. All measurement techniques use di�erent
recording frequencies which can be deduced from f0. Fig. 3.7 shows the trigger conditions
for bubble and LHC measurements. For more details the work in progress of Bopp [3] is
recommended. The magni�cation factor is determined by a chessboard pattern with squares
of 2 mm x 2 mm . The exposure time texp is adapted to the light conditions so that the 8 bit
range is fully used. The �eld of view is selected in such a way, that at a recording frequency
of f = 200 Hz, continuous data transfer via an USB3 interface is possible.
The wind and water conditions measured at Luminy are listed in tab. 3.6. Friction velocities
u∗ are only available for fresh water measurements without additional wave paddle. Fre-
quency and amplitude of the mechanical paddling is adjusted to obtain a two dimensional
homogeneous wave �eld (fpad= 0.9 Hz, Apad= 2 V, A∗pad= 1 V) and most unstable break-
ing conditions (fpad= 1.3 Hz, Apad= 2 V). The signi�cant wave height Hs is calculated by
the wave de�ection η, Hs = 4

√
η2. The dominant wave frequency fpeak adapts the paddle

frequency for paddle conditions.

Table 3.6.: Wind and wave conditions in Marseille. Dominant wave frequency fpeak and
signi�cant wave height Hs from Bopp [3]. Friction velocity u∗ from Kunz [20]. Wind speed
u10(uref= 10 m s−1) from unpublished data of K.Degreif (Heidelberg), data for u10= 12 m s−1

and 14 m s−1 is extrapolated.
uref in m s−1 u10 in m s−1 u∗ in cm s−1 Hs in mm fpeak in Hz paddle

14 18.6 2.31 92 1.47 o�
14 - - 132 0.9* on
14 - - 233 0.9 on
14 - - 130 1.3 on
12 15.5 1.59 75 1.93 o�
12 - - 188 0.9 on
10 12.6 1.66 58 1.52 o�
10 - - 161 0.9 on
10 - - 119 1.3 on

Butanol

Butanol is added while mixing to obtain a well mixed water volume. Mixing is performed
for the mass balance method, running a circulating pump to mix water into the water bulk,
which is highly treated with gas. Thus, an uniform Butanol concentration can be assumed.
Butanol is is added in two steps: before the experiments on the 22/06/2016, 6 l of Butanol
are added. On the 23/06/2016 another 2.5 l of Butanol are added. From a water meter, the
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Figure 3.7.: Trigger conditions in Luminy. LHC with texp = 200 µs at f = 500 Hz. Bubble
set-up with texp = 100 µs at f = 200 Hz.

total water volume in the channel is read to be V= 125 m3. Neglecting gas transfer, Butanol
concentrations of c1=48 ml m−3 (22/06/2016) and c2=68 ml m−3 (23/06/2016) are reached.

3.3. Aeolotron - Heidelberg 2016

The Aeolotron at the Institute of Environmental Physics at Heidelberg University is an an-
nular wind wave channel. It has a diameter of about 9 m, the width amounts to 60 cm and
a common water height is 100 cm. Two wind engines generate reference wind speeds of up
to 10 m s−1 resulting in water bulk velocities of about 20 cm s−1 and u∗ is in the order of
3 cm s−1 [2]. The Aeolotron can be operated in an open and in a closed mode, referring to
the air-side. This is of interest for mass balance methods. Several environmental parameters
as temperature, humidity, wind speed and bulk velocity can be measured by probes.
During this measurement campaign other measurement techniques are applied simultane-
ously. Most relevant for this work is the LHC (see sec. 3.4.1) which provides the water-wave
height and a mass balance technique measuring gas transfer rates (see sec. 3.4.2). For more
detailed information about the Aeolotron and its components see Richter [25]. More infor-
mation about the wind and water velocity �elds is provided by Bopp [2].

3.3.1. Bubble measurement set-up

Figure 3.8.: Camera and light source.

Measurements at the Aeolotron are taken in dif-
ferent heights. Therefore the light source and the
camera system are mounted on a movable bar and in
an as close as possible and �xed position. By mov-
ing the bar the measurement system is adjustable in
height. Due to technical restrictions and limitations
by the dimension of the channel a mirror is added
to the system to realise the illumination. It has the
same dimension as the measurement window and
is stuck to the outer wall of the annular channel.
Advantage of the mirror technique is, that no addi-
tional object is in the water, which in�uences water
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Figure 3.9.: Measurement set-up at the Aeolotron.

currents, except the �at mirror stuck to the wall.
A shift adapter for the camera lenses is necessary because of the slightly inclined light path
via the mirror. The shift adapter shifts the lens system parallel to the sensor of the camera,
enabling all optical elements being parallel. The inclination angle can be approximated by
tan-1(a/b) with a≈ 5 cm being half the vertical distance between camera and light source
and b≈ 60 cm the width of the Aeolotron. This results in an inclination angle of α= 4.8◦.
The angle is small enough to not in�uence the imaging quality noticeable. A sketch of the
measurement set-up is shown in �g. 3.9.

Table 3.7.: Camera and lens speci�cations for bubble detection at the Aeolotron

acA1920 155um � Basler ace
sensor typ CMOS � sony IMX174
sensor size 11.3 mm x 7.1 mm 1920px x 1200px
pixel size 5.86 µm x 5.86 µm

lens system f=105 mm vivitar series nf = 11

3.3.2. Calibration measurements

Table 3.8.: Camera settings at the Aeolotron. Height speci�es the distance to moving water
surface during experiments.

experiment frame rate FOV texp height β

VE water 200 Hz 600 px x 1000 px 100 µs 0 to 60 cm 1 : 2.26± 0.01

VE + Butanol 200 Hz 600 px x 1000 px 100 µs 0 to 60 cm 1 : 2.03± 0.02
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Figure 3.10.: Trigger conditions at the Aeolotron. LHC with texp = 200 µs at f = 400 Hz.
Bubble set-up with texp = 200 µs at f = 200 Hz.

The basic idea of how to determine the measurement depth is explained in sec. 4.1.1. Here-
after, details of the calibration data and the used calibration target are described.
For fresh water measurements in October and November 2016 the same grating as for Luminy
and Kyoto calibration measurements is used as target (with 500 l.p.i ). Pictures in depth
intervals of 50 µm are taken, covering an overall depth of 9 mm . The used grating is not
an optimal calibration target since, out of focus, the depth dependent PSF (i.e. d = 5 px
∼= 66 µm ) is in the order of the grating distance ∆ ∼= 51 µm. Considering a background
correction as described in sec. 2.2.1, the error gets reduced. Lacking alternative calibration
data, this calibration is still used. For the Butanol measurements in December 2016 a
perforated plate is used as the target due to its sharp edges. At each depth, 20 images are
taken with an exposure time of texp = 100 µs. Pictures out of focus are taken in 500 µm
intervals. Close to the focal plane the interval is reduced to 100 µm.
The background correction and normalization is done in the same way as for bubble pictures,
see sec. 2.2.1.

3.3.3. Measurement conditions

Camera and lens speci�cations are summarized in tab. 3.7. The camera settings, which are
used for the experiments at the Aeolotron in autumn 2016, are listed in tab. 3.8. The exposure
time texp is chosen such that the 8 bit range is almost �lled out. In all experiments it is in
the order of 100 µs. Bulk velocities of 20 cm s−1 are expected for the highest wind speed.
This leads to possible smearing of 20 µm corresponding to about 1 to 2 pixels. This is of
no concern for bubble detection. For the measurements in December 2016 a new calibration
had to be done especially for the LHC, thus the camera system had to be readjusted. With
the given pixel size and image dimension a �eld of view of 7.1 mm x 11.9 mm for the �rst
measurements and 7.9 mm x 13.2 mm for the measurements with added Butanol in December
2016 is obtained.
How LHC and the bubble measuring system are triggered is depicted in �g. 3.10.
Measurements are performed at multiple wind and water conditions. The common reference
for wind speed at the Aeolotron is the frequency of the wind generating fan fref. Bubble
measurements are performed at the �ve highest standard frequencies of the wind generator,
since only the high wind conditions lead to wave breaking and thus entrain bubbles. Values
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3.3. Aeolotron - Heidelberg 2016

for the calculated wind speed in 10 m height u10, friction velocity u∗, the signi�cant wave
height Hs and the frequency of the largest dominant wave fpeak for the various conditions
are given in tab. 3.9.

Table 3.9.: Wind and water conditions for measurements at the Aeolotron. ∗ indicates
Butanol conditions. fpeak is obtained by applying a low-pass frequency �lter to the wave
spectra calculated by the smoothed LHC data. It is an approximation for the lowest, highly
developed wavelength. The data is provided by Bopp [3].

fref in Hz u10 in m s−1 u∗,w in cm s−1 Hs in mm fpeak in Hz

19.9 8.20± 0.39 0.96± 0.06 91± 7 0.85± 0.03

19.9∗ 8.36± 0.40 0.99± 0.06 89± 7 0.87± 0.04

25.1 11.19± 0.49 1.46± 0.09 134± 10 0.72± 0.03

25.1∗ 11.19± 0.50 1.46± 0.09 134± 10 0.74± 0.03

31.5 14.27± 0.64 2.06± 0.13 183± 13 0.64± 0.03

31.5∗ 14.20± 0.65 2.04± 0.13 183± 13 0.68± 0.06

39.5 18.89± 0.72 3.10± 0.18 301± 19 0.51± 0.01

39.5∗ 18.59± 0.77 3.03± 0.19 302± 15 0.51± 0.01

50.0 22.63± 1.23 3.96± 0.29 321± 16 0.44± 0.01

50.0∗ 22.58± 1.28 3.95± 0.30 332± 18 0.44± 0.01

Butanol

Butanol is added to the water for simulating seawater conditions. Seawater has, due to its
salt concentration, destructive properties for laboratory facilities. It is not yet explained
why Butanol might have a similar e�ect on bubble formation as salt. One aim is to compare
bubble spectra of Butanol water to those of salt water for an estimation whether it is a good
alternative.
As Butanol was already used in Kyoto, concentrations are chosen in the same order of
magnitude (initial concentration in Kyoto cbut= 51 ml m−3). In Heidelberg Butanol is added
in two steps to not overdose. First, 500 ml are added to the large storage water tanks with
a loading capacity of about 26 m3. 18 m3 of those are pumped into the Aeolotron. An by
eye measurement implied a to little concentration for signi�cant change in bubble formation.
In a second step 500 ml are added to the 18 m3 load in the facility, resulting in an initial
Butanol concentration c0.

c0 =
500 ml

26 m3 +
500 ml

18 m3 = 19.23ml m−3 + 27.78ml m−3 = 47.01ml m−3
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3. Experiments

3.4. Complementary measuring techniques

Two measurement techniques, which are of importance for bubble measurements, are brie�y
described below. Simultaneous measurements of the di�erent techniques are performed.

3.4.1. Laser height camera - LHC

The laser height camera allows a water-wave height measurement, using a �uorescent indi-
cator namely Pyranine which is added to the water. A blue laser is reshaped to a sheet with
a patch dimension of A= 30 mm x 2 mm, see Bopp [3]. Pyranine gets excited by the laser
beam and subsequently emits at around λ= 512 nm. This leads to a distinct gradient in
intensity at the water surface and thus makes the water height detectable. The signi�cant
wave height Hs, a peak frequency fpeak, the height h and thereof a low-pass �ltered phase
can be obtained from the LHC data. This measuring technique is used in the measurement
campaign at Luminy in June 2016 and at the Aeolotron in autumn 2016. For further in-
formation and more details about the detection algorithm of the water surface, see Schwarz
[27].

3.4.2. Mass balance method

The basic idea behind the mass balance method as an evasion experiment is to load the
water bulk with multiple trace gases by an oxygenator before the actual experiment starts,
such that there is a concentration di�erence between water and air. Tracers in di�erent
orders of magnitude of solubility are used. By monitoring the tracers concentration in the
water over time, after the wind is switched on, transfer velocities can be obtained. For
concentration analysis a membrane inlet mass spectrometer (MIMS) is used. The method
integrates over the whole water surface and has no spatial resolution. A box model is used
for the calculations and challenges as the leak rate have to be factored into the mass balance
equation. For further reading see Krall [18].
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4. Data analysis and processing

This chapter is about data analysis and its processing. First, details about calibration are
provided. The term 'height' describes a vertical distance, whereas 'depth' is a horizontal
measure, mostly in the meaning depth of �eld for volume calibration. Information about
how spectra are generated and how phase and height dependency can be evaluated is given.
Moreover limiting factors in size determination are analysed and an approach on error esti-
mation is revealed.

4.1. Calibration

Calibration of the collected data has to be performed at several points. First of all, the
measurement volume has to be determined. Therefore knowledge about the magni�cation
factor and the measurement depth is required, see sec. 4.1.1. For some data it is made use
of the absolute distance to water surface, which has to be calibrated, see sec. 4.1.2.

4.1.1. Measurement volume

The measurement volume has to be speci�ed to serve as a basis for density calculations. The
�eld of view (FOV) and the depth of �eld (DOF) determine the measurement volume V .

V = FOV ·DOF

with [FOV]=m2 and [DOF]=m.

Field of view

The FOV is known from the pixel dimensions and the magni�cation factor. How the latter is
obtained, is written in the descriptions of the experiments, chap. 3. An object size dependent
reduction of the FOV on all four sides is performed, since bubbles that extend beyond the
full FOV are not considered.

Depth of �eld

It is challenging to determine the size dependent depth of �eld. How the calibration is
realized for the present measurements is explained in the following.
The basic idea is to adjust a simulation of the calibration target, which includes the depth
dependency, such that it �ts best to the depth sequence of the calibration target. The
relation between an object in the object plane and its image in the sensor plane is described
by the point spread function (PSF), see sec. 2.1.
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4. Data analysis and processing

A model of the PSF consists of two parts, the di�raction part (PSFdi�), which depends on
the optical set-up, and a depth dependent part (PSFdepth,i). Once the model PSF (=PSFdi�

+ PSFdepth) is extracted from the calibration data, it is applied to the bubble simulation.
Depth information thus can be transferred to the bubble records.
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Figure 4.1.: Maximal gradients of O in the calibration picture series around the focal plane
and 4th order polynomial �t. The coloured lines indicate the DOF in depth i. Calibration
data: Heidelberg, December 2016.

A sharp edged object O is used as a calibration target. A depth sequence of the object O
is recorded. Maximal gradients of O for the depth sequence are depicted in �g. 4.1. The
image of O is simulated by a two dimensional step function. Comparing the simulation and
calibration sequence one can quantify PSFdi� and identify absolute depth for PSFdepth,i as
follows:

� PSFdi�: The PSF in the focal plane, caused by di�raction PSFdi�, can be approx-
imated by a Gaussian �lter G. To experimentally determine σ(G), σ is adopted till
the maximal gradient of the simulation equals the maximal gradient of the calibration
data. In tab. 4.1 the theoretically calculated and experimentally determined σ for the
di�erent measuring campaigns are compared.

� PSFdepth: Depth dependent blurring is a result of objects being out of the focal plane.
The depth dependent PSFdepth is realized by �lters of the shape of the aperture [16].
It is approximated by a disk of which the radius increases with depth ( r(i= 0)=0px,
r(i= 1)=1.5 px, r(i = 2)=2.5 px), r(i = 3)=3.5 px). These �lters are applied to the
simulated and with PSFdi� treated edge. Maximal gradients in the respective depth zi
are now identi�ed with an absolute depth in �g. 4.1.
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4.1. Calibration

Now the relation between PSF(σ,zi) and an absolute depth interval ∆z is identi�ed:

∆z(i = 0) = 0.65 mm

∆z(i = 1) = 2.97 mm

∆z(i = 2) = 4.69 mm

∆z(i = 3) = 6.45 mm
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Figure 4.2.:Maximal gradient per radius of a bubble. Determined from a bubble simulation.
PSF (σ = 1.94) of the Aeolotron data in december 2016 is applied. Additionally the depth
dependent PSF is applied to the simulation and indicated as z0 to z3. The horizontal line
represents the used gradient threshold of gthr = 0.16.

In the following the radius of the smallest bubble, still determinable in depth zi, is identi�ed.
Therefore the model PSF is applied to a bubble simulation. This simulation consists of circles
with radii of 1 px to 25.5 px in 0.5 px steps. The bubble detection algorithm uses a threshold
in gradient gthr to distinguish between focussed bubbles, which are taken into account, and
unfocussed bubbles, which are considered as invalid. For the detection of small bubbles
gthr is a limiting factor. Fig. 4.2 shows the size dependent maximal gradient of bubbles in
di�erent depth i = 0 to i = 3. The radius where gthr is reached, is the minimal detectable
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4. Data analysis and processing

bubble size rmin for the respective depth i:

rmin(i = 0) = 18.07 px

rmin(i = 1) = 4.63 px

rmin(i = 2) = 3.68 px

rmin(i = 3) = 3.27 px

The relation ∆z(rmin) extracted from the two relations ∆z(i) and rmin(i) is depicted in
�g. 4.3. A continuous description of the size dependent depth of �eld is obtained by �tting
a power series model of the form a+ b · xc to the resulting data points.
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Figure 4.3.: Radius dependent depth of �eld DOF(r)=∆z(r).

Some remarks on the depth sequence and the calibration target:

In �g. 4.1 the depth dependent maximal gradient is shown. The depth represents a relative
measurement of distance. Pictures of a calibration target are taken in steps of 10 µm to
500 µm, details are written in the descriptions of the experiments in chapter 3. A similar
normalization method as for the bubble pictures is used for the calibration pictures and an
appropriate image section is selected. Appropriate basically means that only the central
part is used, where the illumination is homogeneous. In the bubbles simulation the centres
of the bubbles are in the middle of a pixel. A shift of the x- and y- coordinate of the centres
leads to small changes in gradient of maximal ±3 ·10−3. Changes in gradient also dependent
on whether the radius is an integer or a half-integer but not in a systematic way. A better
calibration target would have contained bubbles, or holes, of di�erent known sizes.

Compare sigma calculated to the experimental determination

Tab. 4.1 shows the maximal gradient detected in the calibration picture series and the re-
spective σexp which is determined by discrete pixel �ltering and the calculated σcalc after
(2.3), σ = (

√
2π · gmax)−1, with maximal gradient gmax. Calculated sigma is always higher
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4.1. Calibration

Table 4.1.: Maximal gradient detected in calibration data for all four measurements. σexp is
the experimentally determined σ used for a gaussian �lter. σcalc is calculated from eq. (2.3).

max. gradient gthr σexp σcalc
Kyoto 10.2015 0.23 0.17 1.56 1.73
Marseille 06.2016 0.31 0.25 1.03 1.29
Heidelberg 09.2016 0.28 0.16 1.20 1.42
Heidelberg 12.2016 0.19 0.16 1.94 2.10

than the experimentally determined one. Higher means broader and thus a smoother tran-
sition from bubble to background. An explanation is the discrete character of the Gaussian
�lter used for the experimentally determined σexp. Especially for small σ the discrete �lter
is a rough approximation of the Gaussian distribution. Furthermore the determination of
discrete gradients (sec. 1.3.2) has a smoothing e�ect compared to the continuously calcu-
lated ones. Tab. 4.1 also lists the thresholds in gradient used for the various measurement
campaigns. These values are de�ned experimentally.

4.1.2. Height calibration
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ruler

target

η0

η

Δ

δ2

δ1

Figure 4.4.: Height calibration be-
tween the bubble measuring system
and the LHC.

A height calibration is necessary to get absolute dis-
tances between the wave height measurements and
the bubble camera. This calibration is only used for
the Heidelberg data set. LHC measurements are also
available for Marseille, due to the very little bubble
formation it is not applied yet. As indicated in �g. 4.4
the distance between the centre of FOV of the bubble
measurements and the water surface is described by
∆.

∆(η, zR) = (z0 − zR) + (η − η0)

with η being the height data from the LHC. η0 and
z0 are measured during calibration and represent the
same absolute height in the respective coordinates.
LHC data η is referred to the calibration target which
is temporary �xed in the channel. The LHC data is
provided by M.Bopp using [27]. zR is the position of
the bubble measuring system referred to a ruler which
is �xed outside the channel at a X95 bar. To measure
at di�erent heights, zR is varied. Two calibrations
are performed, one for the measurements in October
and November 2016 and one for the measurements in
December 2016.
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4.2. Representation of bubble spectra

For representation of bubble spectra usually histograms are used. How bin sizes are adapted
and why a logarithmic scale is useful is explained in the following.
Small bubbles occur more frequently than larger ones. Bubble size distributions typically
decrease exponentially with increasing radius. An increasing bin width leads to more bubbles
counted for larger radii and better statistics. Thus, a logarithmic scale is the preferable
option.
The boundaries of the intervals are given by ri,edge:

ri,edge = r0 ·Ai with i ∈ [0, b] (4.1)

The mean radius of the interval i is calculated by ri,mean:

ri,mean = r0 ·Ai+0.5 with i ∈ [0, b− 1] (4.2)

A free parameter is the number of bins b. 10 to 20 bins are common, depending on the
probability density. The more bins, the less bubbles per interval are sorted and the larger is
the statistical error, see sec. 4.3.2).
Furthermore the maximal and minimal radius rmax and rmin, which are included in the
histogram, have to be speci�ed. rmin is reasonably chosen as the smallest detectable bubble.
The limit due to size determination is decisive, a substantiated minimal radius is rmin =
3.5 px. Maximal radii are in the order of 400 µm, which corresponds to about 30 px depending
on the magni�cation factor.
The basis A is calculated by:

A =
(rmax

rmin

)1/b
(4.3)

As mentioned above an exponential decrease of bubble density of the form Ψ(r) = Ψ0 · r−s,
is expected. In a logarithmic representation this results in a linear relation:

log(Ψ(r)) ∝ −s · log(r) (4.4)

The slope s can be determined by a linear regression. This form of presentation is derived
from Geiÿler [11].

4.3. Error estimations

4.3.1. Depth dependent magni�cation factor

The magni�cation factor is taken constant for the whole measurement volume. More cor-
rectly the determined factor is only valid in the focal plane where it is determined. Therefore
the error resulting from bubbles, which are slightly out of focus, is estimated. Variables used
in the following calculations are referred to the sketch in �g. 4.5.

m =
B

G
=
b

g
, m′ =

B′

G
=

b

g + ∆z
(4.5)
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Figure 4.5.: b image distance, B image size, g object distance, G object size, ∆z depth of
�eld.

The image distance b is constant since the camera system is �xed. The relative error of the
magni�cation factor fm is calculated by:

fm =
∆m′

m
=
( b
g
− b

g + ∆z

)
· g
b

= 1− g

g + ∆z

The following numbers enable a reasonable assessment of fm: g in air in the Aeolotron is
approximately 300 mm. ∆z of 5 mm is reasonable.
This leads to a maximal relative error of fm = 1− 300 mm

305 mm = 2%.

4.3.2. Statistical error of bubble density

The bubble density is calculated by eq. (4.6)

Ψ(r) =
N(r)

V (r) ·∆r
=

N(r)

δ(r) ·A(r) · n ·∆r
(4.6)

with Ψ bubble density, N number of detected bubbles, δ depth of �eld, A �eld of view, n
number of pictures and ∆r(r) the bin width of the histogram. The statistical error of N can
be estimated by a binomial distribution. p is the probability to �nd a bubble of a speci�c
size in a small volume Vi. Choose Vi such that p is very small. k is the number of Vi �tting
into the whole measuring volume.
Expectation value µ and standard deviation σ for a binomial distribution are de�ned by:

µ = k · p

σ =
√
k · p · (1− p)

For small probability p the approximationσ ≈ √µ is valid.
The standard deviation for the bubble density is determined by eq. (4.7):

σ(Ψ(r)) =

√
N(r)

δ(r) ·A(r) · n ·∆r(r)
. (4.7)
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Figure 4.6.: Maximal intensity I of bubbles with radii of 1 px to 9.5 px in depth z0 to z3

in a.u.. The smallest bubble which can achieve intensity values of I = 0.5 has a radius
of rmin = 2.28 px. Graphs are obtained from bubble simulation for the campaign at the
Aeolotron in December 2016, with σ(PSFdi�) = 1.935.

4.4. Limits in bubble detection

Bubble radii are determined using di�erent thresholds and methods. Investigating those
limiting factors one can �nd a lower limit in bubble size detection.

4.4.1. Intensity threshold

To label the objects of an image an intensity threshold at half maximum (= 0.5) is used.
For small objects compared to the PSF, the maximum intensity decreases with depth. The
maximal intensity I per radius and depth can be determined from a bubble simulation.
Fig. 4.6 shows that the minimal detectable radius in the focal plane is r = 2.28 px.

4.4.2. Gradient threshold

The gradient threshold gthr is the crucial factor of validation of a bubble. From �g. 4.2,
which plots the maximal gradient per radius and depth, the minimal detectable bubble in
focus is identi�able with rmin = 3.27 px. Fig. 4.2 is created with σ(PSFdi�) = 1.935 for the
Aeolotron campaign in December 2016. This is the highest σ value of all campaigns (see
tab. 4.1) and thus the upper estimate of rmin.

4.4.3. Size determination

A validation of the circle �t and the pixel counting method is done to estimate the limit in
size determination. To compare the two methods of bubble size determination, a test pattern
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4.4. Limits in bubble detection

(a) (b)

Figure 4.7.: The size of simulated bubbles is determined by (a) circle �t, (b) pixel counting.
Dashed line indicates the real size. Red line indicates the mean bubble size determined by
the respective method. Thin multicoloured lines indicate size determinations with di�erent
shifts of x- and y- centre of the simulated bubbles.
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Figure 4.8.: Validation of bubble radius determination . ∆ represents the di�erence between
the determined radius and the real radius. The mean of all detected sizes for a certain radius
is marked with the thick red line. The di�erent determination is a result of shifting the
origin of the simulated bubbles. (a) radii are determined by the circle �t method .(b) radii
are determined by pixel counting.
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with bubbles of known sizes is created. The radii of the simulated bubbles vary between
1 px and 25.5 px. The simulation is run with di�erent positions of the centres relative to the
pixel grid. In the discrete representation the centres are shifted in 0.1 px steps in x- and y-
directions. In �g. 4.7a and 4.7b the detected bubble size is plotted versus the real radius.
Fig. 4.8a and 4.8b show the deviation ∆ of the detected from the real radius (rdet − rreal).
The multiple thinner lines represent the determinations for the di�erent centre shifts. The
mean of the determined size per simulated radius is drawn as thick red line. Except for the
pixel counting method at very small bubbles, sizes are systematically underestimated with
both methods. Due to strictly monotonically increasing of rdet(rreal) for radii > 2.5 px, it is
possible to correct for the underestimation. The variance of detected sizes by pixel counting
is larger as for the circle �t method. For a large number of detected bubbles the variance is
still not relevant.

4.4.4. Result of di�erent limitations

Limitations caused by the intensity threshold, the gradient threshold and by size determi-
nation are all in the order of 3 px. Di�erent PSF s only slightly change values. As shown in
�g. 4.8a and 4.8b the circle �t is less erroneous for smaller bubbles due to the higher slope.
As a consequence the sizes determined by the circle �t are used, with a minimal radius of
3.5 px. The radii are corrected by ∆(rdet), shown in �g. 4.9.

rcor(rdet) = rdet + ∆(rdet) = rdet + a · rbdet (4.8)

Table 4.2.: Correction coe�cients a and b, depicted in eq. (4.8) and �g. 4.9.
a b

Kyoto 10.2015 1.213 -0.9907
Marseille 06.2016 0.5473 -0.9961
Heidelberg 09.2016 0.7395 -0.9989
Heidelberg 12.2016 1.803 -0.9814

The correction a�ects small bubbles the most. Small bubbles are only detected in the focal
plane or very close. Thereof settings of the focal plane are used for the simulations. The
di�raction part of PSF is depending on the measurement campaign. Data shown in sec. 4.4
(except �g. 4.9) is from Heidelberg in December 2016.
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Figure 4.9.: Correction of radius size ∆(rdet) for all campaigns. Variance between ∆(rdet)
is due to varying σ(PSFdi�).
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4.5. Phase and height dependency
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Figure 4.10.: Upper: Time serie of height. Blue: raw data. Red: low-pass �ltered smoothed
height. Lower: Phase values in the range [−π, π]. Height is given relative to a calibration
height. Example from a measurement at the Aeolotron. 15.11.2016, at fref = 50 Hz.

It is of great interest to analyse height and phase dependent bubble distributions and their
characteristics. Measurements of the LHC provide height data of the same area as the
bubble camera is focussed on. The LHC records at a frequency of 400 Hz at the Aeolotron in
Heidelberg and 500 Hz at Luminy, Marseille. The LHC measurements are timed such, that
the temporal delay to the bubble measurements is < 1 ms. It is evident from �g. 4.10 that
height and phase varies little over this time span and the LHC data and the bubble data
can be considered as simultaneous measurements. Details about the trigger signals are to be
found in �g. 3.10 for the Aeolotron and �g. 3.7 for Marseille. Height dependency is always
expressed for a height interval of several cm so that the raw height data can be used. A
height calibration that matches LHC and the height of the bubble measurement is applied,
as described in 4.1.2. Phase dependence is reached by extracting the phase from the height
data. Therefore the raw data is smoothed by a low-pass �lter via Fourier transformation.
The threshold of the low-pass �lter is based on the peak frequency of the water waves. By
means of a Hilbert transformation phase values in the range [−π, π] can be extracted. The
jump from π to −π is an artefact of the periodicity of the phase.
Fig. 4.10 shows an example for the raw height data, the smoothed height and the obtained
phase. Details about the LHC data and its processing will be published in Bopp [3].
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5. Results and Discussion

Results of all measurement campaigns are presented concerning the goals mentioned in the
beginning. Every facility has individual advantages and disadvantages. They depend on the
wind conditions and the geometry of the facility. Limitations of the measurement technique
are analysed.
The results of the measurement campaign in Marseille have to be treated with caution. The
main reason for this is the increased amount of dirt particles in the water. Even thorough
cleaning of the channel did not improve the situation. A distance to water surface of about
40 cm is the highest possible position for measurements. It is restricted by the measurement
window. Wind conditions in Luminy, Marseille are in a rather low range. In general only
little wave breaking happens, penetrating only low depth. Low bubble counting rates in
combination with many particles in the tank amplify false positive detections and their
weighting. Results of Marseille are shown in the appendix and some overview plots. In
default of better data, u∗ and u10 of the respective uref of fresh water measurements without
additional paddle are taken for any kind of water and paddle condition, see tab. 3.6.

5.1. Bubble characteristics

Bubble spectra are analysed for the measurements at the Aeolotron and in Kyoto. Di�erences
and similarities of both campaigns are pointed out.

5.1.1. Aeolotron Heidelberg

An extensive investigation of the height dependency of bubble appearance is possible at the
Aeolotron.
The bubble measuring system is moved vertically to ten distinct positions with a spacing of
4 cm to investigate height dependency. Thereby an overall interval of 36 cm is covered. For
a clear display several height positions are summarized in Hi:

H1: 0.5 cm, 4.5 cm, 8.5 cm below calm surface.

H2: 12.5 cm, 16.5 cm, 20.5 cm below calm surface.

H3: 24.5 cm, 28.5 cm, 32.5 cm and 36.5 cm below calm surface.

Bubble size distributions Ψ(r) of the di�erent height intervals Hi for VE (deionized) water
and Butanol conditions are depicted in �g. 5.1. Results of fref= 19.9 Hz and 25.1 Hz can be
found in the appendix. The size distributions are part in two regimes, distinguishable by
di�erent slopes in the log log plot. Linear �ts, in the logarithmic representation, are given for
appropriate radius ranges. The �ts are weighted by the error of Ψ(r) and described by the
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5. Results and Discussion

slope α and β. Ranges are chosen manually with the aim to obtain little errors in the slope
and an overlap within the range of both �ts. Ranges are the same for one wind condition
but may vary between VE and Butanol condition.
A dependency of bubble size distributions, also called bubble spectra, on the distance to
water surface is observable, most pronounced at high wind conditions and large bubbles. In
general, a decrease in bubble population with depth is observable for VE water and Butanol
water measurements. Higher bubble densities for Butanol water are detected over all sizes
and wind conditions.
Small bubbles (50 µm to 150 µm) show little depth dependency for the two highest wind
conditions. They might be seen as an equilibrium background distribution. If there is
no depth dependency, an equilibrium between the buoyant force, Stokes friction force and
turbulence is reached. The upwelling buoyant force scales with ∝ r3, the force of friction
with ∝ r2. Therefore larger bubbles rise faster and thus show a stronger depth dependence.
A slight increase with wind condition of the radius where depth dependence starts can be
seen in �g. 5.1. This is explicable by stronger turbulence at higher wind conditions. The
stronger the turbulence is, the larger are bubbles in equilibrium.
As shown in �g. 5.1 only a weak depth dependence is observable at fref = 31.5 Hz over the
full range of bubble sizes. Large errors and low densities indicate very low counting rates for
large bubbles. Some of them might even be false positive detected objects, such as dirt or
bacteria particles.
A closer look at the height dependency is possible by combining the bubble measurements
with the wave height camera (LHC) data, see sec. 4.5. The following height intervals, which
represent the absolute distance to water surface, are chosen to be interesting:

δ1=0 cm to 2 cm

δ2=2 cm to 5 cm

δ3=5 cm to 10 cm

δ4=10 cm to 15 cm

δ5=15 cm to 60 cm

From �g. 5.2 it is evident, that the upper centimetres are the place where large bubbles, and
even a signi�cant higher concentration of small bubbles exist. Although there are restrictions
by the measurement geometry by positioning the camera slightly above the measurement
height, it is considerable that the resolution of bubbles in a distance of 0 cm to 2 cm below
surface is possible.

A measure of penetration depth of bubbles might be the signi�cant wave height Hs. From
tab. 3.9, an enormous increase in Hs between fref= 31.5 Hz and 39.7 Hz is observable. The
shape of the bubble spectra changes between those two wind conditions to higher bubble
densities and a pronounced knee, as described above. Beneath the signi�cant wave height,
penetration depth of waves gives an estimation for the penetration depth of bubbles entrained
by breaking waves. The penetration depth of a wave is de�ned as λ

2π , where λ is the
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Figure 5.1.: Bubble distributions at wind conditions of fref = 31.5 Hz, fref = 39.7 Hz and
fref = 50 Hz, for VE (deionized) water and Butanol conditions. The radius dependent bubble
density is shown for three height intervals below water surface, H1, H2 and H3.
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Figure 5.2.: Bubble density in various absolute distances to water surface with VE water
at fref= 50 Hz.

wavelength of the wave. The relation between wave frequency f and penetration depth zp of
a small amplitude wave is depicted in �g. 5.3. It can be derived from the dispersion relation
for small amplitude gravity waves, formulated as [26]:

ω(k) =
√
gk · tanh(k ·H)

with angular frequency ω, wave number k, gravitational acceleration g and water depth H.

zp(f) =
λ

2 · π
=

1

k
=

g · tanh(k ·H)

4 · π2 · f2

Frequencies of the largest dominant wave and penetration depths are listed in tab. 5.1. In
the present case of an annular facility, an additional water bulk velocity is expected, leading
to a Doppler shift in the frequency measurement. Phase velocities are in the order of m s−1,
bulk velocities in the order of cm s−1. Thus we measure systematically higher frequencies.
Furthermore the approximation of small amplitude waves is technically not precise. It is
not corrected for these de�ciencies since only an estimation is needed. The penetration
depth, in particular the stronger increase between fref= 31.5 Hz and 39.7 Hz, is consistent
with increasing wave height and a di�erent shape of the bubble distribution.

By means of the LHC a phase dependent resolution is possible. A phase dependency would
be expected close to the water surface. Unfortunately no signi�cant results are obtained.
More bubbles tend to be in the wave trough but the statistic in 0 cm to 2 cm distance to the
surface is not good an might even be biased by the measurement geometry.
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Figure 5.3.: Penetration depth λ/2π in m vs. frequency in Hz as a result of the disper-
sion relation for small amplitude waves. This approximation is valid for amplitudes and
wavelengths small compared to water depth [26].

Table 5.1.: Penetration depth zp and dominant frequency fpeak of reference wind frequency
fref at the Aeolotron.

fref in Hz 19.9 25.1 31.5 39.5 50.0
zp in cm 33.3± 2.6 45.3± 3.5 53.6± 7.0 81.5± 0.1 99.5± 0.2

fpeak in Hz 0.85± 0.03 0.72± 0.03 0.64± 0.03 0.51± 0.03 0.44± 0.03
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Figure 5.4.: Bubble size distributions of the Kyoto wind wave channel at di�erent wind
conditions for fresh water.

5.1.2. Kyoto

Major di�erences between the facilities in Kyoto and Heidelberg exist. The linearity of the
Kyoto wind wave channel induces a limited fetch, meaning a limited area for wind acting
on the water. Measurements are performed at 3 m ('low fetch') and 8 m ('high fetch') fetch.
In general an increase of bubbles with fetch is expected. Fresh water in Kyoto is common
tap water whereas VE (deionized) water is used in Heidelberg. How this in�uences bubble
formation is unclear.
The shape of the spectra of Heidelberg and Kyoto are similar and an increasing slope with
radius is obtained in both facilities. As shown in �g. 5.4, a signi�cant increase in bub-
ble appearance with increasing wind condition is observable for low and high fetch up to
fref = 500 rpm. The stagnation in increase, which is more pronounced at the high fetch,
is surprising. The knee at a rather distinct radius, where an abrupt change of the slope is
observed as in Heidelberg, is not observable in Kyoto. It could be an e�ect of the channel's
linearity and fetch dependency. The limited fetch might explain that a kind of equilibrium
condition, where small bubbles are equally distributed in the whole water bulk, is never
reached.
Especially at high wind speeds many bubbles colour the water whitish, leading to an overall
intensity reduction of the background. The background intensity should be close to zero
in the inverted and normalized image. A reduction of the illumination leads to a higher
background intensity, see �g. 5.5, directly in�uencing gradients in the images at the bubbles'
edge. Small bubbles are a�ected �rst, which explains the slight decrease in bubble density
for the smallest bubbles.
The condition at fref=800 rpm is taken with changed water conditions. Due to the high
water loss at the end of the channel, an additional pumping system is installed. For wind
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Figure 5.5.: Background intensity due to scattering bubbles vs. wind speed in fref. Cal-
culated by the center of mass µmin in the normalized and inverted image I, and min, the
absolute minimum in I. fb = µmin+min

2 .

speeds up to fref=700 rpm, fresh water is pumped into the channel at the wind entrance,
which reduces the water loss. The described water addition is not su�cient at fref=800 rpm
such that a di�erent pumping system is installed. The latter pumps water out of the channel
at the channels end and into the channel at the wind entrance. Less water is pumped out
than in. It is most likely that it in�uences bubbles spectra, but the concrete in�uence is
speculative.
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5.2. Butanol addition as seawater simulation

The main di�erence between seawater and fresh or deionized (VE) water is its ion concen-
tration, namely NaCl. The in�uence of salts on bubble formation processes is complex and
not yet well understood. Some e�ects are discussed by Craig [7]. One can argue with the
repelling behaviour of ions. Ions stuck to the bubble surface inhibit bubble coalescence. As a
consequence of this simpli�ed model more small bubbles are expected. Butanol is a primary
alcohol with the chemical structure C4H10O. It was discovered by hazard that it in�uences
bubble formation in a similar way as salt.
Comparing bubble size distributions in fresh/deionized water and water with added Butanol
will reveal new insights into the impact of Butanol. Initial Butanol concentrations of about
47 - 68 ml m−3 are used.
Butanol concentrations are monitored by a mass spectrometer. An expected decrease in con-
centration during a measurement, but an overall increase in Butanol concentration between
measurement cycles (time spans of hours to days) is observed by the spectrometer. The
increase is not explicable and it is understood as an artefact of the mass spectrometer which
can not yet be explained. The temporal evolution of the measured Butanol concentration of
the measurements in Heidelberg is shown in the appendix.

5.2.1. Aeolotron Heidelberg

Bubble distributions shown in �g. 5.6 are summarized over all heights for the measured wind
conditions. Similar colors represent the same wind condition with VE water and Butanol
water.
Some aspects in bubble spectra are signi�cantly di�erent for Butanol and fresh water. At
the Butanol conditions more bubbles are observable over all bubble radii. The enhanced
bubble appearance increases with increasing wind. The increase in bubble density at low
wind conditions is in the order of a factor 3/2, for the highest wind conditions an increase by
a factor of 10 is observable. The systematic increase of small bubbles (< 65 µm) is observed
for Butanol conditions and not for VE water. The presumption that more small bubbles
are present can be con�rmed. It is explained either by initial formation or by prevention
from coalescence, most likely both. One could expect enhanced turbulence due to the larger
number of bubbles, which mix the water while rising. But the qualitative argumentation
that the radius at the knee of the spectra depends on the strength of turbulence supports
the conclusion that turbulence is not changed by the additive Butanol, as the position of the
knee does not change signi�cantly with Butanol.

Variation of Butanol concentrations

Since the mass spectrometer does not provide reliable concentrations, the e�ect of a changing
concentration over time is estimated by a reference measurement. The condition at 50 Hz is
the �rst measured Butanol condition. After all regular wind conditions are performed, an-
other four heights at a condition of 50 Hz are performed. Distributions of both measurements
are shown in �g. 5.7. A slight decrease in bubble formation over time can be stated. The
characteristics of both measurements are still the same. Butanol concentration is assumed
to be su�ciently constant for the measurements at the Aeolotron.
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5.2. Butanol addition as seawater simulation

Figure 5.6.: Bubble distributions at multiple wind conditions given in reference frequency
fref.
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Figure 5.7.: Bubble size distributions for Butanol water measurements at 50Hz.
blue/greenish data is measured directly after Butanol is added to the water and well mixed.
Redish data is measured two days later, after �ve complete conditions are measured. A slight
decrease in bubble formation can be seen, explained by a reduction in Butanol concentration
due to gas exchange.
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Figure 5.8.: Bubble size distribution for various water and fetch conditions at
fref = 400 rpm in Kyoto.

5.2.2. Kyoto

At the measured conditions many bubbles form, such that an intensity reduction of the
illuminating light of up to 75% is determined, see �g. 5.5. A background reduction in�uences
the bubble detection directly and a�ects small bubbles �rst. Fig. 5.8 shows bubble spectra
at fref=400 rpm, which is the lowest wind condition for Butanol measurements in Kyoto.
Fresh water and Butanol conditions are depicted. Higher bubble densities are observed at
the high fetch and for Butanol conditions. An indication for the limits in precise bubble
detection at Butanol conditions are the decreasing bubble densities for small bubbles. From
measurements in the Aeolotron and the primary assumption of the impact of Butanol, we
would expect an increase, especially for small bubbles. It is explained by a systematic under
detection of small bubbles at conditions which signi�cantly reduce background illumination.
The larger the reduction of the background the larger are the a�ected bubbles. Results of
the Butanol measurements in Kyoto at high fetch are not meaningful, except the lowest wind
condition at fref=400 rpm. Bubble detection at the low fetch, is limited reliable. It would
have been interesting to have Butanol data from lower wind speeds.
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5.3. Bubble e�ect on gas transfer

A qualitative analysis of the in�uence of bubbles for high and low soluble gases is performed.
The exchange time τex, which is the time until equilibrium in the bubble is reached, is of
interest.

τex =
r

3 · α · kb(r)

r is the bubble radius, α the dimensionless solubility and kb(r) the transfer velocity of a
single bubble. Solubilities can be estimated as 'high' for values much higher than 10, and
'low' for values much lower than 10, Mischler [23].

High solubility

Gases with high solubility quickly reach equilibrium. The volume of air entrained by breaking
waves is the decisive factor. In a �rst approximation the whole bubble equilibrates and the
total bubble volume participates at the gas exchange. A common representation of the
bubble volume is the void fraction. Void fraction is a dimensionless number giving the ratio
of air volume per water volume. The void fraction p is calculated from the bubble size
distribution Ψ(r).

p =
b∑
i=1

4

3
πr3

i ·Ψ(ri) ·∆(ri)

with the mean radius of bin i ri, number of bins b, the bubble spectrum Ψ(ri) and the bin
size ∆(r).
Large errors are obtained due to the large errors in bubble densities, especially for large
bubbles. A more realistic estimation of upper and lower limits of the calculated void fraction
is by a relative error. With the relative error δΨ = σ

Ψ the upper and lower limits p+/−(r)
are calculated by:

p+(r) = p(r) · (1 + δΨ(r)) and p−(r) = p(r) · ( 1

1 + δΨ(r)
). (5.1)

Low solubility

The bubble surface acts in a �rst approximation as an additional interface. This is valid
especially for tracers of low solubility. Equilibration takes longer for those gases such that
the surface acts longer as an additional exchange interface.
The ratio between the water surface and the bubble surface gives an estimation of the rele-
vance of bubbles in gas exchange. The water surface gets enlarged by waves. An enlargement
factor is hard to calculate and is certainly dependent on various parameters. The calm water
surface of the respective facility is therefore used as reference.
The area fraction, abbreviated by q, is calculated from the bubble size distribution Ψ(r) of
the respective condition, with the facility speci�c water height H.

q =
b∑

i=1

4πr2
i ·Ψ(ri) ·∆(ri) ·H
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Figure 5.9.: Void fraction (left) and area fraction (right) at the Aeolotron. Measurements
with VE (deionized) water and under Butanol conditions are depicted. During the campaign
in October it is likely that bacteria in�uenced the measurements.

The error of q is determined in accordance to eq. (5.1).

5.3.1. Aeolotron Heidelberg

As shown in the logarithmic plot in �g. 5.9, the void fraction p increases with wind speed u10.
The wind conditions do not reach the regime where bubble mediated gas transfer is supposed
to play a major role. Nevertheless a signi�cant increase in bubbles is observable over the
measured conditions. Void fraction is very low for the measured conditions. This indicates
that bubbles are negligible for tracers with high solubility for the measured conditions.
As can be seen from �g. 5.9, at the highest wind conditions bubble surface reaches the order
of the calm water surface. An overall bubble surface of the same size as the �at water
surface might increase gas transfer by a factor of two. This conclusion is only valid in the
approximation for low solubility.

5.3.2. Kyoto

The shape of void fraction and area fraction is similar. An increasing void fraction and area
fraction with wind speed for fresh water is observed and shown in �g. 5.10.
Butanol data is also depicted and, as argued with the intensity reduction, does not rep-
resent what is seen by eye during the experiments. The spectral analysis showed that at
fref=400 rpm (u10 = 40.7 m s−1) reasonable bubble detection is possible for Butanol condi-
tions. This is re�ected in the fractions: void and area fractions with Butanol are enlarged
by factors 4 to 10, the increase tends to be larger at the high fetch. A closer look at the low
fetch Butanol condition implies, that they are not as bad as described before, also by taking
the background conditions as indication.
Fresh water, which is conventional tap water, shows an interesting behaviour for high wind
speeds. The slope of void and area fraction decreases and a saturation is observable. The
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Figure 5.10.: Void and area fraction for the various measurements in Kyoto. Circles rep-
resent fresh water conditions, triangles indicate Butanol conditions.

saturation implies, that from wind speeds of about u10 = 60 m s−1 on, no additional bubble
formation is present. Bubbles form when waves are breaking. For even higher wind conditions
the assumption is made that waves do not break any more but rather water patches get
torn o� and large amounts of spray are produced. The highest measured wind condition is
questionable due to the additional water pumping, as mentioned above.

5.4. Discussion of the results

In the following an evaluation of possible errors and there in�uence on bubble spectra, void
fractions and area fractions is performed. The depth calibration (DOF), see sec. 4.1.1, is
the most questionable error source and might lead to systematic errors. As described in
sec. 3, a more suitable calibration target could be used. The DOF changes the volume and
thus bubble densities only linear reciprocally. A maximal error of factor 2 in DOF for mea-
surements in Heidelberg and Marseille is estimated. Bubble size, wind and water condition
dependencies and the general shape of Ψ(r), p(u10) and q(u10) would be barely e�ected.
Particularly the calibration for the Kyoto data is critical, since it is done with a rebuilt
set-up in Heidelberg. Furthermore high bubble densities are challenging in detection. The
developed and applied drift correction (sec. 2.2.2) enables bubble detection for those strong
conditions. How the drift correction in�uences the measurement volume is not investigated
within this thesis. In �g. 5.11 the depicted data of all campaigns is measured in about 30 cm
distance to water surface. Area fractions p are calculated with the assumption of constant
bubble density over the whole water column. This assumption might be correct for small
bubbles. A �rst estimation of the penetration depth of bubbles could be the penetration
depth of deep water waves, which is dependent on the dominant wave frequency and water
depth. Wave frequencies are not available for the Kyoto data. Water depth in Heidelberg is
about 1 m and Marseille 0.9 m. Referring to �g. 5.3, which displays the frequency dependence
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Figure 5.11.: Void and area fraction for the various measurement campaigns in Heidelberg
(blue), Marseille (red) and Kyoto (green).

of penetration depth in Heidelberg, and the knowledge, that dominant wave frequencies in
Marseille are in the order of 1.5 Hz (tab. 3.6), penetration depths in Marseille of about 15 cm
are estimated. Evaluations of the height dependent data at the Aeolotron imply only little
height dependence of void and area fractions. Whether the measurement height in Marseille
at 40 cm below surface represents the mean in bubble density is hard to estimate.
Systematic errors would shift fractions of all conditions up or down. Only little in�uence
on the shape of bubble spectra and thus void and area fraction is expected. As a conclu-
sion, absolute values for Ψ, p and q have to be treated with caution. The wind speed and
depth dependency within one campaign and the general shape of bubble distributions are
meaningful. In particular fresh water measurements and their fetch dependency are reliable.
The saturation e�ect, which is observed for fresh water measurements at both fetches, and
measurements at the low fetch for Butanol conditions, is assumed to be true. For veri�cation
of the e�ect, further studies are needed.
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6. Conclusion and Outlook

By means of the adapted algorithm of Mischler [22], bubble imaging data is evaluated from
three di�erent laboratory facilities in Heidelberg, Kyoto and Marseille. Special emphasis is
placed on:

� Bubble characteristics of three wind-wave channels.

� The e�ect of low Butanol concentrations in fresh water as a substitute for seawater.

� The fetch dependency of bubble occurrence.

6.1. Conclusion

With the veri�ed and adapted algorithm of Mischler [22] precise bubble detection is possible
for various wind and water conditions. The lower detection limit of the applied method is at
radii of 3.5 px, see sec. 4.4. Depending on the set-up components and the magni�cation fac-
tor, bubbles sizes of rmin=,18.2 µm in Kyoto, rmin= 46.6µm in Marseille and rmin= 44.7 µm
in Heidelberg are detectable (sec. 3). Changing illumination conditions, which occur by redi-
recting the background illumination via a slightly moving mirror or due to the amount of
bubbles, are addressed. Dirt particles represent a challenge for automated bubble detection.
For small particles which have a symmetric round shape - which look like bubbles - it is hard
to �nd bubble speci�c properties which might improve the algorithm. In particular for little
counting rates, as it is the case for large bubbles, dirt particles that are detected as bubbles
might bias the spectrum. At wind and water conditions which darken the background due
to the amount of bubbles, precise detection in particular of small bubbles is limited. The
critical regime depends on fetch, wind speed and whether fresh or Butanol conditions are
investigated.

Butanol The study has shown that initial Butanol concentrations of about c0 = 48 ml m−3

to c0 =68 ml m−3 enhance bubble formation signi�cantly. Typically void fractions and area
fractions are raised by a factor of 3 to 10 with the existence of Butanol. At higher wind
speeds the increase tends to be larger. Increasing bubble density is also visible in the spec-
tra. An above-average augmentation is observed for small bubbles with rbub< 65 µm in the
Heidelberg measurements. No details about the e�ect of changing Butanol concentrations
are known. At high wind conditions it is likely that concentrations change signi�cantly in
a time span which is relevant for measurements. From the Heidelberg measurements, with
a maximal wind speed of u10 = 22.5 m s−1, a slight decrease in concentration over two days
and multiple measurement cycles is shown, which does in�uence the bubble occurrence.
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6. Conclusion and Outlook

Bubble surface. For the Marseille facility bubble concentrations are too low, to con-
tribute considerably to gas exchange. At highest wind conditions in Heidelberg, bubble
surfaces are in the order of 10% of the calm water surface for fresh water and 100% for
Butanol conditions. An increase in gas transfer by bubbles for low soluble gases by a factor
of two would thus be the upper limit of bubble in�uence in Heidelberg. Kyoto, with its hur-
ricane like wind conditions, reaches bubble surfaces in the same order as the water surface,
already for fresh water conditions. The bubble e�ect on gas transfer in fresh water thus
should be similar to the e�ect under Butanol conditions in Heidelberg. Results at the low
fetch in Kyoto and the results of Heidelberg prove the assumption of higher bubble formation
under Butanol conditions.

Bubble volume. At Heidelberg and Kyoto the void fraction, which is decisive for high
soluble tracers, is in the order of 10−8 to 10−4. This is rather small compared to Deane and
Stokes [8], who observed void fractions in oceanic bubble plumes in the order of 10−2 (30 cm
below whitecaps). This is explicable by the detected bubble sizes, which are much smaller as
in [8]. It is questioning whether larger bubbles than 400 µm do not appear in the measured
facilities or are just not detectable by the applied method.

Fetch dependence. A strong fetch dependency of bubble appearance is observed, com-
paring three laboratory facilities. Similar bubble concentrations are counted in Kyoto as at
the Aeolotron only for signi�cantly higher wind conditions. Measurement positions in Kyoto
are at 3 m and 8 m fetch, the annular geometry of the Aeolotron implies in�nite fetch.

An expected sharp increase in bubble formation at wind speeds around u10 = 35 m s−1 could
not be observed . For hurricane like wind conditions at Butanol conditions, bubble detection
is not reliable with this optical method.
Comparing the results of all campaigns a surprising �nding is made. Kyoto implies a satu-
ration in bubble appearance at wind speeds above u10 = 60 m s−1. It seems reasonable with
the following explanation: Wind forces waves to break, thereby bubbles get entrained. From
certain high wind speeds on water gets torn away from the surface and no more increase in
bubble formation is present. Even a decrease in bubble formation is conceivable.

6.2. Outlook

Results of Heidelberg show a change in bubble spectra with Butanol as it is assumed for
seawater. A comparison of Butanol spectra to real seawater spectra is necessary for a better
assessment of the impact of Butanol. Furthermore an analysis about Butanol concentra-
tions, the range where it a�ects bubble formation and how sensitive bubble formation is to
concentration changes, is vital. Seawater experiments at the SUSTAIN facility in Miami,
Florida, were conducted in May 2017. Bubble measurements in the mentioned facility will
reveal new insights of the comparability between Butanol conditions and seawater.
For extreme wind conditions with Butanol and enormous bubble densities, a precise bubble
detection is not possible any more. A factor might be de�ned, which represents the reduction
of the background intensity and thus determines a simple measure of bubble density.
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6.2. Outlook

Furthermore residence times, which can be determined by rise velocities, are interesting.
Rise velocities can be obtained by evaluating consecutive images and bubble tracking of the
existing bubble data from the Aeolotron.
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A. Appendix

A.1. Measurement results of all campaigns

A.1.1. Aeolotron Heidelberg

Figure A.1.: Bubble size distributions at H1 to H3 for wind speeds given in fref= 19.9 Hz
and 25.1 Hz . Aeolotron, Heidelberg.
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A. Appendix

Figure A.2.: Bubble density in various absolute distances to water surface with VE water.
Aeolotron, Heidelberg.
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A.1. Measurement results of all campaigns

Figure A.3.: Bubble density in various absolute distances to water surface with Butanol.
Triggering at the upper heights failed for the condition at 50 Hz, explaining that no clear
height dependence is displayed. Aeolotron, Heidelberg.
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A. Appendix

A.1.2. Luminy - Marseille

1.4 1.6 1.8 2 2.2 2.4

10-8

10-7

10-6

Figure A.4.: Void fraction dependent on u∗. Luminy, Marseille.
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Figure A.5.: Area fraction dependent on u∗. Luminy, Marseille.

66



A.1. Measurement results of all campaigns
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Figure A.6.: Bubble size distributions at various conditions. The activation of the me-
chanical paddle is indicated in the legend, paddle frequencies are given in Hz. Luminy,
Marseille
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A. Appendix

A.1.3. Kyoto
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Figure A.7.: Number of detected bubbles per picture averaged over the entire condition.
Kyoto.

20 30 60 100 200 350

100

101

102

103

104

105

106

20 30 60 100 200 350

100

101

102

103

104

105

106

Figure A.8.: Bubble size distributions for Butanol conditions in the wind wave channel in
Kyoto at low and high fetch.
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A.2. Butanol concentrations

A.2. Butanol concentrations

0 1 2 3 4 5 6

10-13

10-12

0 1 2 3 4 5 6
10-14

10-13

Figure A.9.: Measured partial pressure of Butanol over time for the measuring days
19.-21.12.2016 in Heidelberg. Partial pressure can be seen as a measure of concentration.
Measurements are performed by a mass spectrometer which splits the Butanol molecule into
a 31 u molecule and a 56 u molecule, monitored above.
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A. Appendix

A.3. Characteristics of optical �lter

Figure A.10.: Green bandpass �lter. Edmund optics. 525 ± 25 nm. Used for measurements
in Marseille.
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