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Abstract:

This thesis explores the implementation of a spin-1/2 system to realise quantum
simulation of Heisenberg XX and XXZ models. The spins are mapped onto two
high-lying atomic levels, so-called Rydberg states, in an ultracold sample of ¥ Rb
and coupled by a microwave field. Efficient synthesis and control of the driving field
has been introduced in the setup in order to probe the spin dynamics with NMR
sequences. Two- and three-photon excitation schemes are implemented to prepare
the Rydberg spins. In order to spatially resolve the Rydberg excitation dynamics,
a new imaging technique is employed, which uses the depletion of absorption in
presence of Rydberg atoms to detect their distribution in the atomic cloud, revealing
the emergence of spatial order of the Rydberg excitations due to strong van der
Waals interactions. To benchmark the validity of this platform, the coherence of
the spin ensemble is measured by Ramsey techniques in the low-density regime,
where the single-spin dynamics accurately describes the observations. Despite the
black-body redistribution of Rydberg spins setting a limit for the T% time of the spin
system, the coherence is measured to persist over long timescales on the order of
130 us. Thus, scaling up the density of spins, first signatures of dipolar many-body
effects for |nS) — [nP) (XX) and [nS) — |(n + 1)S) (XXZ) spin combinations have
been observed.



Zusammenfassung:

Diese Arbeit beschreibt die Implementierung und Charakerisierung eines Spinsy-
stems um einen Quantensimulator des Heisenberg XX und XX7 Hamiltonians zu
realisieren. Die Spins werden auf zwei hoch gelegenen Atomniveaus abegbildet, diese
sogenannten Rydberg Zustéinde werden in einem ultrakalten Gas von 3"Rb an-
geregt und mittels Mikrowellenstrahlung gekoppelt. Eine effiziente Synthese und
Kontrolle des angelegten Feldes wurde in der Versuchsanordnung eingefiithrt um
die Spindynamik mit NMR Sequencen zu proben. Zwei- oder Drei-Photon Anre-
gungsschemata sind implementiert um die Rydberg-Spins zu preparieren. Um die
Dynamik der Rydberg-Anregungung raumlich aufzulésen, wurde eine neue Abbil-
dungsmethode angewendet, die die Verringerung der Absorption in Gegenwart von
Rydberg-Atomen nutzt. Dies zeigte die Entstehung rdumlicher Ordnung durch Van-
der-Waals-Wechselwirkungen. Um die Giiltigkeit dieser Plattform zu iiberpriifen,
wurde die Kohérenz des Spin-Ensembles mittels der Ramsey-Methode bei geringer
Dichte gemessen, bei der die Einzelspindynamik genau die Beoabachtungen beschreibt.
Abgesehen von der Schwarzkérper-Umverteilung der Rydberg-Spins, die eine Grenze
fiir die T3 Zeit des Spin-Systems setzt, besteht die Kohérenz iiber lange Zeitskalen
von etwa 130 us. Durch ein Hochskalieren der Spindichte konnten erste Signaturen
von dipolaren Vielkorpereffekten fiir [nS) — [nP) (XX) und |nS) — |(n 4+ 1)5) (XXZ)

Spinkombinationen beobachtet werden.
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Chapter 1

Introduction

Simulating the evolution of many-body quantum mechanical problems has been
demonstrated to be a titanic task with classical numerical methods due to the large
amount of memory required to store information about large physical systems, which
increases exponentially with the amount of particles. To solve this problem, Feynman
envisaged to implement so-called "quantum computers" [Feynman, 1982], devices
based on quantum elements that would potentially allow to process a huge amount of
information in a limited physical resource. Such strategy stimulated the development
of two different types of controllable quantum platforms which are able to mimic
the behaviour of other quantum systems: digital quantum simulators and analog
quantum simulators [Buluta and Nori, 2009; Hauke et al., 2012; Georgescu et al.,
2014]. The first type is based on the implementation of universal quantum gates which
may compose any arbitrary operation on a quantum state [Lloyd, 1996|, constituting
then suitable platforms for quantum information processing |Garcia-Ripoll et al.,
2005]. On the other hand, analog quantum simulators leverage the idea of emulating
the quantum behaviour of a system by mapping the Hamiltonian which governs its

evolution onto another well-controlled quantum platform [Somaroo et al., 1999].

One of the most successful approaches to quantum simulations relies on the use of
cold quantum matter. The development of laser cooling and trapping techniques [Wi-
neland et al., 1978; Ashkin, 1978; Raab et al., 1987; Lett et al., 1988| enabled the
exploration of physics at ultra-low temperatures, where the many-body dynamics is
dominated by the quantum nature of constituent. This was demonstrated by the first
realisation of degenerate Bose-Einstein |Bradley et al., 1995; Anderson et al., 1995;
Davis et al., 1995] and Fermi gases [DeMarco and Jin, 1999]. Thereafter, ultracold
quantum matter has been broadly used to study quantum properties of condensed-

matter systems which are otherwise hard to access at the microscopic level, e.g. the
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Bose- and Fermi-Hubbard models for high-T, superconductivity and superfluidity,
proposed [Jaksch et al., 1998; Hofstetter et al., 2002| and explored |Greiner et al.,
2002; Kohl et al., 2005] with ultracold atoms in optical lattices and exchange amongst
lattice sites. Such achievements allowed to explore the superfluid to Mott-insulator
phase transition |Greiner et al., 2002] or the BEC-BCS crossover |Greiner et al., 2003;
Bartenstein et al., 2004] and are good candidates to explain superfluidy behaviour
and high-T, superconductivity in other materials. Thus, they constitute the basis for
analog quantum simulations of complex condensed-matter systems in the many-body
regime [Bloch et al., 2008; Bloch et al., 2012].

In order to simulate quantum magnetism with cold matter, the spin-spin interacti-
ons must be emulated. Neutral atoms trapped in optical lattices have been employed
as a platform to simulate the transverse Ising model, where the spin-spin interactions
can be emulated through a combination of on-site interactions and tunneling amongst
the lattice sites [Simon et al., 2011; Struck et al., 2011|. Here, the pseudo-spin is
mapped on the occupation number of each lattice site. Apart from the enormous con-
tributions of cold trapped ions in the development of quantum computing |Kielpinski
et al., 2002; Debnath et al., 2016|, they have been proposed as an alternative route
for quantum simulation due to the versatility of the Coulomb interaction, capable
to engineer a large variety of Hamiltonians [Barreiro et al., 2011; Blatt and Roos,
2012]. One of the most outstanding features of such system is the formation of the
so-called Coulomb crystal due to the strong Coulomb repulsion between the ions.
This has been employed to implement Ising-type models with tunable long-range
interaction |Britton et al., 2012|, recently demonstrating entanglement of hundreds
of spins [Bohnet et al., 2016].

Another magnetic spin system which stimulates interest since long time is the
Heisenberg model of magnetism [Heisenberg, 1928, which describes the properties
and phases of coupled magnetic dipoles as spin-spin interactions amongst particles
in a lattice. However, only the evolution of the one-dimensional chain is exactly
solvable by means of the Bethe-Ansatz in one spatial dimension [Bethe, 1931; Yang
and Yang, 1966], whereas different spin configurations require complex approximated
methods. A generalisation of the Heisenberg model is the quantum Heisenberg XXZ
Hamiltonian, which can be simulated using dipolar-interacting polar molecules or
Rydberg atoms and is expected to show rich far-from-equilibrium dynamics and
correlations [Hazzard et al., 2013; Hazzard et al., 2014a; Hazzard et al., 2014b|. By
mapping the spin-1/2 system onto two rotational states, a dipolar-interacting spin-
exchange XX Hamiltonian has been mimicked in a two-dimensional lattice [Yan et al.,

2013], where the dipole-dipole interactions present oc 1/R? scaling. Nevertheless,



the cooling process of two species and generation and control of polar molecules
in a lattice is technically very demanding and the Hamiltonians are difficult to
tune [Moses et al., 2015].

In this thesis, I realise a versatile spin-1/2 platform for analog quantum simulation
of Heisenberg-type many-body Hamiltonians with Rydberg atoms. Such atoms
excited to highly-lying electronic states are ideal to explore many-body physics of
interacting spins, as they offer long-range electric dipole-dipole interactions, either
attractive or repulsive, with strength much higher than any of the previously discussed
systems. This is a consequence of their large dipole moments |Gallagher, 1994;
Saffman et al., 2010|. The strength and long-range character of such interactions can
be vastly tuned by the appropriate selection of quantum states and by externally
applied fields. Interaction effects can be strong enough during the Rydberg atom
preparation to compete with the laser coupling strength, leading to the Rydberg
blockade (dipolar or van der Waals) of the excitation [Comparat and Pillet, 2010;
Low et al., 2012|, which generates strongly correlated many-body states. Since only
one Rydberg atom can be excited within a certain critical distance, spatial order
may emerge from the preparation of Rydberg spins. Evidences of this phenomenon
have been observed [Heidemann et al., 2007; Gaétan et al., 2009; Urban et al., 2009;
Dudin et al., 2012; Barredo et al., 2014], resulting in suppression of the excitation
dynamics [Singer et al., 2004; Tong et al., 2004; Vogt et al., 2006; Vogt et al.,
2007] or the sub-Poissonian counting statistics |[Reinhard et al., 2008; Viteau et al.,
2012; Hofmann et al., 2013]. The effect can be leveraged to implement quantum
information protocols and to create universal quantum gates [Jaksch et al., 2000;
Isenhower et al., 2010; Saffman et al., 2010; Saffman, 2016].

Such ground-Rydberg system has been mapped onto an Ising-type model with ||)
as the ground state and |1) as the Rydberg level in the frozen gas regime [Robicheaux
and Hernandez, 2005; Weimer et al., 2008; Schachenmayer et al., 2010; Lesanovsky,
2011], revealing signatures of crystalline structure [Schwarzkopf et al., 2011; Schauf
et al., 2012].

I focus on mapping the spin-1/2 system onto two different levels within the
Rydberg manifold [Ryabtsev et al., 2005; Carter and Martin, 2013; Hermann-
Avigliano et al., 2014]. Here, spins with different angular momenta (e.g. |nS)
and |nP) present direct dipole-exchange oc 1/R? coupling [Afrousheh et al., 2004;
Afrousheh et al., 2006a] which allows to map a long-range XX model [Bettelli et al.,
2013|, whereas two spins on states with identical angular momenta (e.g. |n.S) and
In'S)) give access to the Heisenberg XXZ with both spin-exchange and Ising oc 1/ RS
terms [van Bijnen and Pohl, 2015; Whitlock et al., 2017]. To benchmark the validity
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of this flexible platform, the coherence of the system is observed in the low density
regime, where interaction effects are negligible and a single spin model can be used
as a reference. The coherence time of the quantum simulation platform is measured
to persist over sufficiently large timescales to explore interaction-induced dynamics,
which is characterised by means of Ramsey [Ramsey, 1990] and NMR, [Ernst, 1992]
techniques. Scaling up the number of spins leads to our first evidences of many-
body effects on the XX and XXZ Heisenberg dynamics. Alternative platforms with
few Rydberg-spins located in two-dimensional trap arrays currently investigate the
few body aspects of the described spin-exchange XX [Barredo et al., 2015] and
Ising |Labuhn et al., 2016] models.

To spatially resolve the excitation dynamics of Rydberg atoms and characterise
their preparation, I developed an imaging technique that allows to measure the
distribution of Rydberg spins despite their lack of interaction with the imaging
optical field. In this scheme, one can spatially resolve the depletion of absorptive
atoms in presence of pre-excited spins and thus quantify the local number of spins in
different regions of the atomic cloud. With this technique, I observe the saturation
of the excitation dynamics due to van der Waals interactions, which reveals the

emergence of long-range order of the spins.

Outline

This work is structured in several chapters which comprise the key aspects of
my research. Chapter 2.1 reviews the extreme properties of Rydberg atoms and the
types of interactions arising between them, followed by a brief description of the
experimental apparatus (Section 2.4) and the implementation of refined microwave
control of Rydberg-Rydberg transitions for state-tomography experiments (Sec. 2.5).
Then, Ch. 3 offers a detailed analysis of three different excitation schemes and of
the detection methods that allow to create and probe the Rydberg spin system. In
particular, a detailed study of the spatial population distribution excited by two-
photon (either resonant or off-resonant from intermediate levels) schemes addressing
nS-states is presented and a three-photon off-resonant excitation scheme of n P-states
is introduced. In Ch. 4, the platform to study Rydberg spin-spin interactions and the
main features which describe its dynamics are discussed, demonstrating an excellent
coherence and control of the quantum state in the non-interacting regime. Then,
our first investigations of many-body effects on XX and XXZ models are presented
in Ch. 5. Finally, Ch. 6 discusses the latest developments on an advanced imaging
technique called Interaction-Enhanced Imaging, that can potentially resolve the

temporal evolution and spatial correlations of few or even single Rydberg spins.



Chapter 2

Ultracold Rydberg atomic gases:
properties and experimental

manipulation

The study of the emission spectra of highly-excited, so-called Rydberg, atoms has
triggered great progress in the understanding of quantum mechanics (see |Gallagher,
1994; Stebbings and Dunning, 1983; Pillet and Gallagher, 2016]). The development of
laser-cooling and consequently of the field of ultracold atomic gases, in combination
with the extreme properties of Rydberg atoms, allowed to extend the research on
Rydberg atoms to a broad range of topics |[Low et al., 2012]: few- and many-body
physics [Choi et al., 2006; Comparat and Pillet, 2010; Hofmann et al., 2014], quantum
non-linear optics |[Pritchard et al., 2013; Firstenberg et al., 2016; Murray and Pohl,
2016; Busche et al., 2017], quantum simulation [Weimer et al., 2008; Weimer et al.,
2010; Miiller et al., 2012; Labuhn et al., 2016] and quantum computing [Saffman et al.,
2010; Saffman, 2016], strongly correlated plasmas [Killian et al., 2007; Pohl et al.,
2011; Robert-de Saint-Vincent et al., 2013] and ultracold chemistry [Bendkowsky
et al., 2009; Gaj et al., 2014; Schlagmiiller et al., 2016|. The large separation between
the Rydberg electron and its atomic core results in exaggerated dipole-dipole or van
der Waals interactions, which can be several orders of magnitude larger than any
other energy scale in ultracold Rydberg gases, rendering the system dominated by
the quantum nature of such phenomena.

Here, some of the basic properties of Rydberg atoms are reviewed (Sec. 2.1). In
particular, the nature of different types of interactions and the mapping onto spin
Hamiltonians is presented (Sec. (2.2-2.3)). Then, the general experimental set-up

(Sec. 2.4) and the microwave control of Rydberg-Rydberg transitions introduced in

5
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the course of this thesis (Sec. 2.5) are discussed in detail.

2.1 Alkali Rydberg atoms: general properties

Rydberg atoms are atoms with at least one electron lying in a highly-excited
atomic state. In such states, the electron experiences a 1/r-potential as a consequence
of the weak electronic bound, which renders the Rydberg atoms similar to hydrogen
atoms. The behaviour of Rydberg atoms has been studied since the late 19th century,
when Balmer described the spectral lines of hydrogen |Balmer, 1885]|, previously
observed by Angstrém [Angstrom, 1855]. The generalisation to other elements,
realised by Rydberg [Rydberg, 1890|, in combination with the theoretical framework
provided by the Bohr model [Bohr, 1913|, allowed to descriion of the hydrogen
spectra and their binding energy.

The experiments presented in this thesis are performed with Rydberg states of
Rubidium. As other alkali atoms, it has a single valence electron, which is excited to
a Rydberg state and thus it is on average far away from the core. The other Z — 1
electrons fill the low-lying electronic shells close to the core, reducing the physical
description of the core potential to that of a single positive charge. For this reason,
the wave functions of alkali atoms resemble those of the hydrogen atom. Nevertheless,
the valence electron of alkali atoms can penetrate the low-lying shells and suffer from
the effect of inner charges, leading to deviations of the real core potential to that of a
single positive charge, which are relevant when the valence electron is in states with
low angular momentum ¢ < 3. Such effect results mainly in a phase shift of the wave
function and a higher eigen-energies than those of hydrogen atom. This is quantified
by means of quantum defect theory [Seaton, 1983], resulting in a generalisation of

the Rydberg formula for the binding energy, as

Rpy Rpy
E,=—hc—— = —hc : 2.1
=bul P 2
Here, the Rydberg constant R, = 8?;;:3 [Mohr et al., 2016] is scaled by the effective
0

mass of 8Rb and, therefore, it is substituted by the effective Rydberg constant
Rpy = #";’mm’ = 109736.62 cm~!. The hydrogenic quantum number n is replaced
by an effective principal quantum number n* = n — 4, ¢, is an effective principal
quantum number for the state |n,[, 7). As a consequence of the significant quantum
defect 6,0, for |nS), |nP) and |nD) states, they are non-degenerate and thus
spectroscopically distinguishable. For ¢ > 3 the quantum defect 6,,;; ~ 0, resulting

in degenerate hydrogenic energy levels. The quantum defect of rubidium Rydberg
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Property Notation (n*)-scaling
Orbital radius r (n*)?
Electron binding energy E, (n*)—2
Level spacing E,..—E, (n*)=3
Tonisation field £ (n*)~4
Radiative lifetime To (n*)3
Black-body lifetime Tho (n*)?
Polarizability o) (n*)?
Rydberg transition dipole moment  (nl|er |n(l + 1)) (n*)?
Excitation transition dipole moment (5P| er|nl) (n*)=3/2
Dipolar interaction strength Cs (n*)4
vdW interaction strength Cs (n*)1

Table 2.1: Scaling laws for Rydberg atom properties. Selected poperties of Rydberg

atoms and their scalings with the effective principal quantum number n* =n — 6, ;.

atoms has been studied spectroscopically [Li et al., 2003; Han et al., 2006]. It can
be described by the Rydberg-Ritz formula 6, ¢; = § + da/(n — dg)? |Jastrow, 1948,
with the following measured values

Jo = 3.1311804  and  J, = 0.1784 (2.2)
for [nS;)2) states and

o = 2.6416737  and 6, = 0.2950 (2.3)

for [nPs5), broadly used in the course of this thesis.

As the physical properties of hydrogen Rydberg atoms still apply to alkali
atoms with an effective principal quantum number n* instead of n, some important
properties widely used in this work and their scaling with n* are given in Table 2.1
(see |Gallagher, 1994]), which can be used to infer the optimal range of n* for a
certain experiment. The orbital radius of the electron scales with (n*)?, leading to
extremely large electronic wave functions for high n* and thus, effective diameters
of up to few um. The scaling of the dipole matrix element preserves the same
scaling than the orbital radius because it corresponds to the wave function overlap
between the neighbouring states, which must increase with the same ratio than the
individual wave functions. A direct consequence of this is the quadratic increase of

Rabi frequency with n* for Rydberg-Rydberg transitions.
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Spontaneous and stimulated Rydberg atom decay

The lifetime of Rydberg states is an important quantity to account for in order to
encode a spin-1/2 system onto Rydberg states. The spontaneous decay determines
the loss of Rydberg atoms, whereas the stimulated black-body decay induces a
redistribution within the Rydberg manifold.

The different decay terms can be quantified from the model developed by Gallager
and Cooke [Gallagher and Cooke, 1979, where the individual transition rates are
given by the Einstein A-coefficients of each transition. Thus, the global spontaneous

decay rate is calculated as

T YTV g MTTE S 24
o 0 - R ‘

i>f i>f

where R, is the transition matrix element from i to f states (see Appendix B)
and w;y is the frequency spacing of the transition. The radiative decay scales with
the probability of the Rydberg electron to be close to the nucleus, since the overlap
to the low-lying states is highest there.

Accounting for the Planck distribution of black-body photons for each transition

Ny = e“’if/k—lBT_17 the total black-body decay rate is expressed as

1
— =Ty =Y Aifh,. (2.5)

Thb
f

Thus, the total lifetime of the Rydberg states consists of the contributions of sponta-

neous decay and stimulated black-body decay, resulting in the global rate
1
- = Lo+ Tye. (2.6)

The black-body redistribution is caused by the low transition frequencies amongst
high-lying neighbouring states of the Rydberg manifold, which overlap with the
black-body spectrum at typical room temperatures. Additionally, the large transition

matrix elements between neighbouring Rydberg states enhances the coupling. The

403k T
3h(n*)2 "

calculations for |nS), [nP) and |[nD) states may be consulted in [Beterov et al.,

Precise

global scaling can be understood with the simple model Iy, =

2009|. In Figure 2.1, the resulting rates for the state [485/,) are presented, which

are relevant for experiments in Ch. (4-5).
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Il Spontaneous decay

4000
1 Il Black-body stimulated decay

"N'3500

—

3000

Transition rates |H
= N N
[6,] o ul
o o o
£.3.89

=
o
o
T

" hl Il
o4 ‘II,“‘""" — — ,"""'I‘ —_—
10 40
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n (principal quantum number)
Figure 2.1: Transition rates of the [485, ;) state to other states. Radiative
spontaneous decay (red) causes loss of population to the ground and close-by states.
Stimulated emission due to black-body radiation at 7" = 300 K (green) transfers some
population to nearby Rydberg |nP) states. Calculations based on ARC [Sibali¢ et al.,
2017].

2.2 Rydberg-Rydberg interactions

Interactions amongst Rydberg atoms are well-described as the effect of the multi-
pole expansion of the electric interaction between different atoms. Such interactions
arise thanks to the huge transition dipole moments of Rydberg atoms. Here, a
simple description of the origin of Rydberg-Rydberg interactions is reviewed and the
quantum-mechanical mapping between the interaction matrix and the Heisenberg

XX and XXZ Hamiltonians is summarised.

The main interaction mechanism is dipole-dipole interactions: a temporary
fluctuation in the electronic distribution of one atom creates a dipole moment which
subsequently induces a dipole moment in a neighbour atom, allowing for interactions
to arise. Considering the two dipoles fi; and ji; separated by a distance F?, the

classical dipole-dipole interaction is expressed as

EE EE

which can be developed in a series of angular dependent terms as detailed in [Reinhard
et al., 2007; Paris-Mandoki et al., 2016].
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2.2.1 Two-atom dipolar coupling

In the quantum mechanics the dipoles are described by dipole operators i = er
with matrix elements p = (¢|i|¢)'). A detailed composition of the dipole operators
can be consulted in Appendix B, including the effect of the angular distribution,
which is neglected here for simplicity. Thus, the interaction energy Vg, for two atoms

in the states [11) and |t¢9) is build up as a combination of several terms such that

HUR) o= 3 {nlmlot) (limlv) = 32, ol Sh20t, 0t (28)

R3
[¥1),13) [v1,45)

accounting for the coupling to all possible states |¢]) and [¢}) that contribute to the
interaction. Typically this is restricted to close-by states which present the strongest
contribution. For example, considering the interaction between the states |nyS) and

|ne.S) as depicted in Figure 2.2, the strongest coupled states are |n} P) and |n,P).

a b ’
(@ (b) 104 )
P— i — i‘7le> \ :l' Vo \=
! H2 1 , H :
| em— |11, P) H i
........ ‘ i [n} P, nyP) !
} - | Ar :
_______ L 71, n2S) H
|an> : — : — ‘\ J
1
i Ha i
i i
[n15) L_—___-__) — J — |15, 1y P)

atom 1 atom 2 pair states

Figure 2.2: lllustration of strong Rydberg-Rydberg interactions. (a) Schematic
of the bare states of two atoms. Interaction between |n1S) and |n2S) emerges due
to coupling to their closest pair states [n}P) and |nP), which constitute the main
contribution to the interaction between the first pair. (b) Representation of the main
interaction channels in the pair state basis. The coupling strength V}, is determined by
w1 and po and by the Foérster defect Ap, which accounts for the the energy difference
between coupled pairs. Taken from [Giinter, 2014].

In order to calculate the interaction between two states, the pair state basis
provides a more suitable description (Eq. (2.8)). The pair |n,S, neS) is coupled
to [nyP, nyP), as represented in Fig. 2.2(b). The complete Hamiltonian H =
Hi®14+1® Hs + Hgq describes the global system, which can be expressed as

(0 ViR
"= ( /RS Ar ) , (2.9)
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with Vo/R?® = (nyS, naS|Haa|n) P, ny,P) representing the strength of the dipole-
dipole coupling and Ap = [E(|n|P)) + E(|nyP))] — [E(|n1S)) + E(|n2S))] is the
so-called Forster defect which provides the energy difference between pairs. The

eigenvalues of the coupled pair states deliver the energies of the coupled atoms

By — % (AF £ \/A%+ 4(V0/R3)2> . (2.10)

As a function of the inter-atomic separation R and on the Forster defect A, two

interaction regimes are possible:

e resonant dipole-dipole interaction (V,/R? > Ar): for small distances or
when Ap is tuned to zero (e.g.: through the application of electric fields to
reach a so-called Forster resonance |Gallagher et al., 1982; Anderson et al.,
1998; Mourachko et al., 1998]), the dipole-dipole coupling dominates, reducing

the energy shift to
prpe | Cs
I iﬁ : (2.11)

In this regime, the Rydberg atoms exhibit resonant dipole-dipole interactions

EL =+

with strength Cs = s o< (n*)3. A special case occurs when the two initial
states are directly coupled to each other, e.g. a nearby |[nS,n’P) pair. Then,
the coupling dominantly produces exchange symmetric coupling to |n’ P, nS)

and the 1/R? scaling is preserved at any distance.

e van der Waals interaction (V;/R? < Ay): for sufficiently large inter-atomic

distance the perturbative expansion of the eigenenergies leads to

V02/AF and F_ ~ —VOQ/AF = Co

RS R6 RS

B, ~Ap+ (2.12)

In this van der Waals regime, the scaling of the Forster defect with the level
spacing Ap o (n*)~3 naturally leads to a strong scaling of the van der Waals
coefficient Cg = C2/Ap o< (n*)**?/(=3) o (n*)'. The sign of the interaction is
determined by the Forster defect: Cg < 0 corresponds to positive level shifts

and repulsive interactions.

At an interaction energy close to the energy of the Forster defect, a transition
between the two regimes takes place, resulting in a crossover distance R..,ss =
V/1Cs|/Ar o (n*)"/? [Walker and Saffman, 2008]. Whereas the oc 1/R? regime is
inherently long-range, the dynamics of a van der Waals dominated oc 1/RS system is

dominated by nearest neighbour interactions.
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2.2.2 Mapping of Rydberg-Rydberg interactions onto spin

Hamiltonians
Heisenberg XX Hamiltonian

We consider the case of two different Rydberg states that are directly coupled by
a resonant dipole-dipole interaction term, e.g, |nS) and [nP). Since the interaction
matrix (Eq. (2.9)) presents an off-diagonal form, the interaction can be mapped onto
an exchange between two spin states. In terms of the spin operators S@w.2) h 5@y,
the interaction between two Rydberg spins in the states |]) = [nS) and |T> = |nP)

can be expressed as the exchange Hamiltonian

1C5(0)
2 R}

1C5(0)
2 R3

Hint = (Sf87+5787) = (5185 +508%) (2.13)

where S* = §% +45%. This constitutes a basic description of a long-range Heisenberg
XX-type Hamiltonian [Bettelli et al., 2013; Barredo et al., 2015; Pifieiro Orioli et al.,
2017].

When the effect of a resonant driving field addressing the Rydberg-Rydberg
transition is included, the generalised Hamiltonian which results for many Rydberg

spins presents the general form H fe;q + Hint, €xpressed as

H=Yq (cos(¢)éf + sm(o;)S*g/) 124" (S - 1) (stx + Sysy) ,
i i 1,j<i
(2.14)
where ¢ is the phase of the driving field and A is the detuning of the field from the

resonance.
In a many-body disordered sample, the interaction term can be considered as
J, =C5/ Rfj. These states can be driven by a single-photon microwave transition in

the GHz regime.

Heisenberg XXZ7 Hamiltonian

In a more general situation, two Rydberg states of the manifold can be considered,
e.g. [4) =|nS) and |1) = |n'S) with equal magnetic quantum number. The principal
contribution to the interaction is given by the coupling to nearby |P) states. In the
pair basis, the pairs present a Forster defect Ar. Applying second order perturbation

theory to derive the van der Waals operator [Reinhard et al., 2007|, an interaction
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matrix arises such that

Csy 0 0 0

- 1| 0o Gy G 0
Hint - _6 ~

RSl 0 Cs Co, O

0 0 0 G,

(2.15)

which presents off-diagonal exchange terms and diagonal terms contributing to an
Ising shift.

Thus, in presence of a driving field the general Hamiltonian can be expressed as

H~ Z Q; <cos(q§)§f + sin(gzﬁ)gj’) + 2A Z <§f — 1) +
: 4, i (2.16)
3 {szij)s;g; i 20) (grge s;yg;z)} ,

1,7 <t

where J, = 2Cj ../ Rg; represents the spin-exchange interaction energy and the term
J, = RL?]. (C’6TT + Ce,, — QCGH) is an Ising level shift. This case has been discussed
in detail in the theoretical proposal by [Whitlock et al., 2017|.

2.3 Dipole blockade of the Rydberg excitation

The optical excitation of Rydberg atoms is strongly affected by Rydberg-Rydberg
interactions. A prominent consequence of the strong Rydberg interactions is the
emergence of so-called dipole blockade in the excitation from a ground to Rydberg
states [Jaksch et al., 2000; Lukin et al., 2001]. To illustrate the phenomenon the
simple case of a pair of atoms is considered, both of them initially in the ground state
|g), and with laser excitation light resonant to the ground-to-Rydberg transition, as
depicted in Figure 2.3(a). When one of the two gets excited to the Rydberg level |r),
the energy of the second atom is shifted according to the inter-atomic distance. If
this level shift is smaller than than the excitation bandwidth AWV, the second atom
can be still excited to the Rydberg state. However, if the energy shift is larger, the
excitation process becomes off-resonant and greatly suppressed. In the pair basis, the

states |gr) are almost unshifted due to the small polarisability of the ground state,

but the transition |gr) < |rr) is rendered sensitive to the inter-particle separation R.

The blockade condition can be expressed as the energy shift for which the condition
V(R)™ > hW is fulfilled. This introduces a natural length scale in the system: the

critical distance below which double excitation |rr) is inhibited, so-called Rydberg
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blockade radius Ry (see Fig.2.3(b)). It can be generally defined as

6 C(6 s CS
Ry =4/ =V Ry = =Y (2.17)

for van der Waals (oc 1/R®) and resonant dipole-dipole (o< 1/R?) interactions,
respectively. It must be noted that the excitation bandwidth W depends on the
Rabi frequency of the excitation process €2 and the dephasing of the excitation
mechanism. Typical blockade radii correspond to distances on the order of few
um, which affect a spherical volume with radius Ry. Whereas this blockade picture
precisely describes the nature of the interactions amongst isotropic |nS) states,
angular dependent anisotropic interactions (e.g. amongst |[nP) or |[nD) states) lead
to complex ellipsoidal volumes or to no interaction for certain conditions [Saffman
et al., 2010]. Multiple experimental evidences of the dipole blockade have been
revealed in the past years for different systems and configurations [Singer et al., 2004;
Tong et al., 2004; Gaétan et al., 2009; Urban et al., 2009; Viteau et al., 2011; Hankin
et al., 2014|, some of which are reviewed by Comparat et al. [Comparat and Pillet,
2010]. As a consequence, to excite Rydberg atoms in the blockaded regime, the laser
frequency must be changed to match the energy shift of the atoms [Malossi et al.,
2014; Schempp et al., 2014].

2.3.1 Collective Rydberg excitation

The emergence of Rydberg blockade also changes the dynamics of a gas of many
atoms due to the reduction of accessible many-body states. Any individual blockade
sphere is made up of N — 1 ground state atoms and a single Rydberg excitation.
This many-body state is symmetric under particle exchange, since the excitation
cannot be assigned to a specific atom of the system, but is shared amongst all of
them. This results in a collective quantum state of N atoms. Therefore, it can be

expressed in a Dicke-state basis as

N
1
\R(1)> = — |91, -y Tiy ey N - (2.18)
The excitation from the collective ground state |¢®) may be understood as the

result of a collective v/ N enhancement of the excitation Rabi frequency €., = VNQ.

The increase of the excitation bandwidth also affects the blockade distance in this

Ry = (i) v . (2.19)

super-atom picture, such that
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(a)
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Figure 2.3: Rydberg excitation blockade effect. (a) Energy of an atomic pair as a
function of inter-atomic distance R. Both atoms can be excited to the Rydberg state |rr)
when the inter-atomic separation is large. However, for smaller separation, the pair-state
interaction increasingly shifts the energy of the pair |rr). The blockade radius Ry; is
defined at the inter-atomic distance at which the interaction energy equals the excitation
bandwidth ZW. At shorter distances, the formation of close Rydberg pair is inhibited
and only a single excitation is allowed. (b) The blockade effect in a large atomic cloud
generates blockade spheres (black dashed lines) in which a unique Rydberg excitation is
allowed. Taken and adapted from [Hofmann, 2013; Giinter, 2014; Gavryusev, 2016].

Despite the definition of a many-body blockade radius presents a higher com-
plexity due to the specific positions of the atoms, this basic picture qualitatively
explains the many-body theoretical calculations [Robicheaux, 2005| and experimen-
tally accessible scaling of the blockade radius with the atomic density of a disordered

sample [Heidemann et al., 2007|.

2.4 Experimental setup and methods

The experiments introduced in the course of this thesis are realised with the
experimental setup described below, with the goal of preparing ultracold dense
disordered atomic samples of 8Rb in a tunable geometrical configuration and excite
a fraction of the atoms to Rydberg states by means of optical laser beams to create
Rydberg spins. The control and manipulation of the Rydberg atoms within the
Rydberg manifold is discussed in Section 2.5. The main detection method for the
spins, based on field ionisation detection is briefly discussed here, whereas its precise
calibration is extensively discussed in Section 3.1.6.

The technical details and possibilities of the excitation are discussed within the



Chapter 2. Ultracold Rydberg atomic gases: properties and experimental
16 manipulation

present section, whereas Chapter 3 provides results emerging from the experiments
on Rydberg excitation of the spins. For a more detailed description of the general
apparatus, the reader can find additional information in [Hofmann et al., 2013,

Hofmann, 2013| and the recent updates may be consulted in [Gavryusev, 2016].
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Figure 2.4: Setup for preparation and detection of Rydberg atoms in an ultracold
8TRb gas. Pre-cooled atoms are transferred from a magneto-optical trap into the reservoir
optical dipole trap. An additional tight dipole trap in the vertical direction may be employed
to create mesoscopic samples. After being released from the trap, the atoms are excited
to Rydberg states by a combination of a 780 nm laser, a counter-propagating 480 nm
coupling laser and microwave radiation at ~ 2—67 GHz. An electrode structure composed
of 8 field plates is used for precise electric field control and for field ionisation of Rydberg
atoms. Two deflection rings guide the ions (green trajectories) onto a micro-channel
plate (MCP) detector. Spatial information on the distribution of ground state atoms
is acquired in parallel by absorption imaging with a CCD camera. The inset shows the
two-level absorption of the atoms in the tight trap. Adapted from [Gavryusev, 2016]
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2.4.1 Preparation of ultracold atomic samples

In order to prepare ultracold and dense samples of 3"Rb, common laser cooling
and trapping techniques are applied |[Ketterle et al., 1999]. A three step process
is employed: (i) the atoms are pre-cooled in a 2D-MOT, (ii) then loaded into
a 3D-MOT in the science chamber [Dieckmann et al., 1998; Schoser et al., 2002]

(iii) and directly transferred into a "reservoir" optical dipole trap (ODT) |Grimm

et al., 2000]. The details of the MOT can be consulted in [Hofmann et al., 2013].

Additionally, for a tighter confinement of the atoms, evaporative cooling and transfer

into a smaller and denser ODT in the perpendicular (vertical) direction is available.

Optical dipole trap

This trap is composed of two weakly-focused laser beams crossing at a small
angle and generated by a 50 W single frequency fiber amplifier laser at a wavelength

of 1064 nm, resulting in an elongated cigar-shaped atomic cloud of width of ~

40 pum x 40 pm x 800 um at 1/¢€?; tilted from the x probing direction by 45° (Fig. 2.4).

This geometry allows for efficient loading from the 3D-MOT, leading to large densities
up to 5- 10 em 3 with typical temperatures of 40 K. In order to control the atomic
cloud geometry we can shape the beams or release the atoms from the trap during
few milliseconds of time-of-flight to allow for the desired density distribution.

A second ODT, composed of a single focused "dimple" beam is oriented along
y at 45° with respect to the "reservoir" trap. In order to achieve higher densities,
the atoms are temporarily transferred from the reservoir trap to a "dimple" ODT
aligned on the y direction. All-optical evaporative cooling is used to increase the
phase-space density of the atoms whilst decreasing their temperature [Clément
et al., 2009]. The resulting atomic cloud resembles a cigar-shaped cloud of width
~ 22 um X 22 um x 150 um at 1/e?. The temperature decreases to 1 uK and the
ground state density increases up to a peak of 210 cm™3. An additional optimised
ramp could be applied to reach Bose-Einstein condensation [Hofmann, 2013|, which

is not a subject of interest in the experiments of this thesis.

Tight optical dipole trap

Some experiments may require the use of much smaller atomic samples (see
Ch 6). Experiments realized in the large ODT have shown the emergence of diffusive
transport effects [Giinter et al., 2013| that may be undesired. To circumvent such

effects, the atoms can be confined into a small region comparable to the typical
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Rydberg blockade volume using an additional vertical tight ODT. In the experiment,
a second intense and tightly focused dimple beam is oriented in the vertical direction
z to trap the atoms at the intersection of all three traps. After performing evaporative
cooling and transferring the atoms to the dimple ODT, the tight ODT is loaded
by increasing its potential depth while reducing the one of the dimple trap. The
final cloud contains up to 3000 atoms in a volume of ~ 8 um x 22 pum x 8 wm (width

3 as well as low temperatures of

at 1/e?), providing densities up to 1.5-10%cm™
~ 1 uK. Therefore only very few Rydberg atoms can be excited in this tight trap

before reaching the fully-blockaded regime.

2.4.2 Excitation and detection techniques

Here, the technical capabilities of the experimental setup are explained, focusing
on the tools which are used for different excitation schemes of Rydberg spins. The

setup consists of the following components to manipulate the atomic state:
(i) Microwave synthesizer Windfreak SynthHD, for ground state preparation
(ii) 780nm laser TOPTICA DL100 PRO, for imaging and Rydberg excitation.

(iii) 480 nm frequency doubled lasers TOPTICA TA-SHG and TOPTICA TA-SHG

pro, for off-resonant and resonant coupling to the Rydberg state.

(iv) Microwave synthesizer Anritsu MG3697C , for transferring Rydberg atoms
within the Rydberg manifold.

Ground state preparation

When the ultracold atomic sample is loaded into one of the dipole traps, a static
magnetic field of up to 6 G is applied along the x direction to define the quantisation
axis. Initially, the ground state atoms in |55)/;) are distributed amongst both
the FF = 1 and F' = 2 manifolds. In order to prepare a clean ground state, the
repumping light at the end of the MOT cooling stage is switched off, preventing
the atoms from populating the F' = 2 manifold. Thereafter, the population in
the state [551)2, F = 1,mp = 1) is transferred to the desired ground state |g) =
1551 /2, F' = 2, mp = 2) by means of a microwave Landau-Zener adiabatic sweep of
the magnetic field at a fixed frequency of 6.8 GHz, which addresses the central
resonance of the F' = 1 to F' = 2 transition. Varying the duration of the sweep allows

to control the ground-state atomic density of the sample.
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780 nm probe beam: imaging light

In order to optically image the ultracold gas a 780 nm weak laser beam is coupled to
the |g) < |e) = |5Ps2, F = 3, mp = 3) transition with o¢* polarisation, propagating
along the x horizontal direction (parallel to the quantisation axis). The beam is
collimated with a beam waist of 1.5 mm. The transmitted light is collected onto an
Andor iXon Ultra 897 EM-CCD camera (Fig. 2.4) via a nearly diffraction limited
imaging system with a resolution of 4.8 um (Rayleigh criterion). Further details
about the imaging setup can be found in [Helmrich, 2013]. This so-called "probe"
laser beam is used at the transition resonance for two-level absorption imaging
experiments (see Section 3.1.2) or for two-photon resonant excitation of the spins

with an electromagnetically-induced transparency scheme (see: Section 3.2, Ch. 6).

780 nm off-resonant excitation beam

To allow for off-resonant excitation of spins, a vertical 780 nm beam propagating
along the vertical direction is set up with linear polarisation perpendicular to the

x quantisation axis. Thus, it is decomposed into two polarisation components o™

and o~. This beam is not shown in Fig. 2.4 for the sake of clarity of the picture.

The beam addresses the transition |g) <+ |e) = [5P3/2, F' = 3, mp = 3) with the o™
component and is detuned from the transition by A.. For most experiments, the
o~ component becomes irrelevant since it leads to off-resonant processes which can
be reasonably neglected. This beam is used for two- (Sec. 3.1) and three-photon

(Sec. 3.3) schemes, off-resonant from the intermediate state |e).

480 nm resonant coupling beam

An additional counter-propagating 480 nm strong coupling beam is focused on
the center of the cloud to couple the transition from |5P5,, F' = 3,mp = 3) to a
|n.S) Rydberg state with o~ polarisation. The transition is addressed resonantly and
the beam size can be tuned by fine adjustment of the position of the beam relative
to the collimating lens using a precise translation stage. This beam is employed in
combination with the resonant 780 nm probe beam in experiments which require an
EIT scheme (Section 3.2, Ch. 6) and in the de-excitation scheme for Rydberg atoms
Sec. 3.4.
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Figure 2.5: Relevant atomic levels of 8"Rb in presence of a magnetic field. The
atoms distributed over the F' =1 manifold are transferred from [55) 5, F' = 1,mp = 1)
to the selected ground state |g) = [5S; /9, F' = 2,mp = 2). A 780nm o' -polarized
laser beam addresses the |g) <+ [e) = 5P/, F' = 3, mp = 3) transition. A 480nm
o~ -polarised laser couples |e) to the Rydberg state |r) = |n.S) or |r) = |nD) Rydberg
states. The state |i) = |nPj,m;) may be excited in the desired Zeeman level by a
microwave photon with a frequency between 2 and 67 GHz, depending on the chosen
n. Two identical microwave photons allow to couple to |i) = |nS) or |i) = |[nD). Taken
from [Gavryusev, 2016]

480 nm off-resonant coupling beam

An additional 480 nm laser beam is available in the experimental setup, counter-
propagating with ¢~ polarisation in the same direction as the previously described
resonant coupling beam. The size of the beam can be modified in a similar manner.
However this laser beam is far detuned from the |[5Ps/5, F' = 3, mp = 3) < |nS)
transition. The detuning typically compensates for A, such that the combination of
both photons fulfils the two-photon resonance condition with |nS), which is relevant
in Sec. 3.1.
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Pound-Drever-Hall stabilisation

In order to minimise the dephasing rate on the Rydberg-state transition, the
frequency fluctuations of the lasers which contribute to the dephasing rate 7, have to
be minimised. For such purpose, the 780 nm and 480 nm lasers are frequency stabilised

to a passive high finesse ultra-low-expansion glass Fabry-Pérot cavity [Gregory et al.,

2015; Aikawa et al., 2011] via the Pound-Drever-Hall method (PDH) [Black, 2001].

The cavity mirrors are dual-wavelength coated, allowing for simultaneous stabilisation
of both colours. We estimate the frequency stability of our lasers by measuring the
root mean square instantaneous frequency deviation relative to a cavity mode of a
reference active Fabry-Pérot cavity (Sirah Eagle Eye). For timescales longer than
3 us, a linewidth below 10 kHz, considerably smaller than the typical Fourier width
of the excitation pulses (pus-duration). A detailed characterisation may be consulted

in [Gavryusev, 2016].

Microwave synthesizer

The Anritsu MG3697C microwave synthesizer provides a microwave field which
allows to address transitions between Rydberg states, either with different angular
momentum (e.g. |nS) <> [nP) transitions), by means of a single photon, or with
the same angular momentum (e.g. |nS) <> |(n + 1)S) transitions), by means of two
identical photons. The frequencies generated range between 2 and 67 GHz. The
microwave radiation is emitted into the science chamber by a microwave horn antenna
which is tilted relative to the quantisation axis due to geometrical constraints of
the accessibility to the science chamber. Thus, all polarisations are possible in the
experiment. A refined control of the microwave field is discussed in the next section

(Sec. 2.5).

Field ionisation

The experimental apparatus has an electrode structure which allows to apply
and control the electric fields in the three dimensions. Moderate electric fields can
be applied to DC-Stark shift the energy levels of the Rydberg atoms or to tune their
Forster defect and therefore the strength of the interactions. The electrodes are used
to ionise the Rydberg atoms after each experimental repetition and to guide them to
a micro-channel-plate (MCP) particle detector, counting the number of impacts and
the integrated signal, typically proportional to the atom number. This enables to
detect the global the Rydberg atom number. A calibration of the detection efficiency
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is presented in Sec. 3.1.6.

2.5 Microwave control of Rydberg transitions

As discussed in Chapter 1, the main goal of this thesis is to create a platform
to investigate spin-1/2 dynamics with Rydberg atoms, where the spins are encoded
onto two different Rydberg states. Thus, a remarkable fraction of the experiments
requires control of atomic transitions within the Rydberg manifold [Goy et al., 1982;
Cheng et al., 1994; Merkt and Schmutz, 1998; Li et al., 2003]. To acquire such

capability, different parameters must be controlled:
e The time t,,, of the microwave pulse.
e The frequency v of the microwave field.
e The microwave power output, which determines the amplitude of the field.

e The phase of the field ¢.

Transition (n) | v, (GHz) Ao (cm)
nSij <> NP3
~100 2.0 14.99
90 4.81 6.233
70 10.6 2.828
95 22.7 1.321
48 35.0 0.857
45 43.0 0.697
42 53.8 0.557
40 62.9 0.477
39 68.3 0.439

Table 2.2: Transition frequency between nS;,; and nP;/, Rydberg states in
the range provided by the Anritsu MG3697C microwave synthesizer. The lowest
addressable transitions of such type correspond to [40S] /9) ¢+ [40P5/9). Below n = 40,
the required microwave frequency 1 exceeds the upper limit of the synthesizer In green,

the transitions experimentally explored over the course of this thesis.

The microwave synthesis is performed by means of a commercial microwave synthesizer
Anritsu MG3697C, which allows to address Rydberg transitions in the range between 2
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to 67 GHz. A broad number of Rydberg-Rydberg transitions is accessible, as depicted
in Table 2.2. However, due to slow modulation bandwidth (~ ms timescales), fast
switching of the microwave phase and frequency are not possible on the timescales
associated to the Rydberg atom dynamics (few pus). A new approach is required to
efficiently implement and control complex pulse sequencies. We achieve this through
frequency mixing of the microwave field with a modulating radio-frequency signal
by means of a frequency up-conversion technique. The basic principles of frequency

mixing may be consulted in [Hagen, 2000; Steer, 2009].

2.5.1 Frequency up-conversion in the GHz range

Frequency up-conversion is a technique which relies on the principles of frequency
mixing, where the base signal and a control signal are manipulated to produce a
third signal as an output. An ideal would output the multiplication of two oscillating
signals: a local oscillator (LO) and an intermediate frequency (IF) [Marki and Marki,
2010]:

UroUrr
Urrp ~ — [COS(QW(VLO + vp)t) + cos(2m(vpo — I/[F)t)} . (2.20)
This signal consists of a two-peak spectrum shifted by the IF frequency v;r with

respect to the LO carrier frequency vpo. A real mixer generates as well higher order

harmonics of the input signals product, which often are undesired.
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Figure 2.6: General frequency up-conversion setup for microwave control of
Rydberg spins. The carrier microwave frequency from the Anritsu MG3697C microwave
synthesizer (vpo = 2 to 67 GHz) is mixed up with another radio frequency signal
provided by a DDS 1 (v7p = 400 MHz). A second DDS 2 is employed to realised complex

sequences, switching between two sets of parameters {¢1,Q1, 1,11} and {ta, Qa, P2, 12}
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Our setup for microwave synthesis consists of the following devices, as represented
in Figure 2.6. A local oscillator, which our Anritsu 3697C synthesizes, provides a
microwave field that can be tuned close to the Rydberg transition of interest. A
digital-digital synthesizer (DDS 1) with a frequency range up to 1.2 GHz is used
as intermediate frequency to modulate and control the amplitude and frequency of
the desired output. A second DDS 2 is available in order to switch to a different
configuration of frequency, amplitude or phase of the field. Both DDS are phase
locked in order to accurately control the relative phase that can be implemented
and all three synthesizers are locked to the same precise 10 MHz reference clock.
A switch is used to select which DDS controls the mixing operation. After the
output microwave field is produced, it is sent through a high-pass filter to remove the
residual IF frequency. For the experiments performed in Chapter (4-5) are realised
with a double balanced Marki M4-0165, which can cover the whole frequency range
of the synthesizer (1 — 65 GHz). The principal source of error is given by the jitter
of the DDSs, which is measured to be < 10ns. This makes a negligible impact on
the measurements.

During an experimental run, the Anritsu 3697C LO signal is set to a fixed
configuration and the synthesis of the microwave output field is controlled by the
DDS. Since each DDS can be triggered to change its parameters once in each
experimental run, a complex sequence of 2V independent pulses can be generated,
with N the number of DDS in parallel.

In Figure 2.7(a), a typical spectrum of the up-converted frequency output is
presented. The observed peaks corresponds to the side-bands generated by the
frequency mixing process around the carrier LO frequency, which is not completely
suppressed. The "+1" side-band is used to address the atomic transition. Since the
detuning between the driving side-band and the carrier (LO) is A/2r = 400 MHz,
the 18 dBc suppression of the LO with respect to the carrier leads to a reduction of
off-resonantly excited population on the order of ~ 10° for typical Rabi frequencies
of few MHz. In order to the eliminate the side-bands of one side of the spectrum,
an IQ mixing process may be introduced, which relies on parallel mixing with two
modulating branches and latter recombination of both outputs. A preliminary
characterisation is presented in Appendix A.

An example of the up-conversion optimisation is depicted in Fig. 2.7(b) for
a LO at 25 GHz and IF at 400 MHz. The up-conversion process is optimised at
high TF powers, as in the present case P = 12dBm. At high LO and IF powers,
the suppression of undesired side-bands and carrier frequency is maximized. The

optimum working point is at the beginning of the saturation of the RF output power.
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Figure 2.7: Optimisation of frequency up conversion with a Marki M4-0165
double balanced mixer. (a) Power spectral measurement for a carrier LO at v;p =
30.04 GHz and input power Pro = 16dBm. A DDS provides a modulating frequency
vir = 400 MHz. (b) Power output of the generated radio-frequency (RF) signal (blue)
of the first side-band (41). The LO signal is provided by the microwave synthesizer at a
frequency vr.o = 25 GHz, and a v;p = 400 MHz IF signal with power Prp = 12dBm.
The optimal suppression of the undesired signals occurs at the saturation point of the first

side-band for high IF powers, where the power starts to redistribute to other components.

At higher powers, the excess of LO power in the mixer does not lead to an increase
of the first side-band amplitude, but result in a stronger LO component. The poins
at which the saturation reduces the RF output by 1dB relative to the ideal linear

increase is called the 1dB compression point, which occurs at Prp ~ 13.5dBm.

Additional details of the characterisation may be consulted in |Geier, 2016].






Chapter 3

Preparation of Rydberg spins:
excltation mechanisms and

characterisation of the dynamics

Section 3.2 is based on parts of the following publication:

Density matrix reconstruction of three-level atoms via Rydberg electro-
magnetically induced transparency

V. Gavryusev, A. Signoles, M. Ferreira-Cao, G. Ziirn, C. S. Hofmann, G. Giinter, H.
Schempp, M. Robert-de-Saint-Vincent, S. Whitlock and M. Weidemdiller

J. Phys. B 49, 16 (2016)

Section 3.3 is based on parts of the following publication:

Interaction-Enhanced Imaging of Rydberg P states
V. Gavryusev, M. Ferreira-Cao, A. Keki¢, G. Ziirn and A. Signoles
Eur. Phys. J. ST 225, 15 (2016)

Investigations on Rydberg spin physics require an efficient preparation and
precise detection of Rydberg atoms. For such purpose, |nS) or [nD) Rydberg states
have been traditionally excited using two photon optical transitions, whereas direct
excitation of |[nP) states has been performed by means of an ultra-violet single-photon
transition |Gallagher, 1994]. Alternative schemes relied on preliminary excitation of
|n.S) atoms and later transfer of population to |[nP) by means of a microwave field,

leading to undesired dipolar (x gz) broadening of the spectrum [Anderson et al.,

27
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2002; Afrousheh et al., 2004; Afrousheh et al., 2006b; Park et al., 2011]|. A three
photon resonant scheme, but off-resonant from the intermediate levels, is implemented
here to directly address such states with negligible population of additional Rydberg
states.

The excitation dynamics of Rydberg states in dense atomic clouds presents
strong deviations from the single-particle regime due to the increasing effect of
Rydberg-Rydberg interactions, which strongly suppress the excitation in the blocka-
ded regime [Singer et al., 2004; Tong et al., 2004] and may lead to collective
dynamics [Reetz-Lamour et al., 2008a; Dudin et al., 2012; Gaétan et al., 2009; Urban
et al., 2009; Barredo et al., 2014]. In order to locally characterise the Rydberg
excitation processes, a new imaging technique, so-called Depletion Imaging, is intro-
duced in this chapter. This method reveals the presence of Rydberg excitations by
measuring the depletion of absorption when |n.S) atoms are pre-excited, which allows
to locally resolve the two-dimensional distribution of Rydberg atoms. Such spatial
profile of Rydberg ensembles can be measured using a tomographic approach [Va-
lado et al., 2013| or by other imaging techniques previously applied to observe the
two-dimensional excitation profile of a Rydberg cloud [Lochead et al., 2013| or an
ultracold plasma of Rydberg atoms [McQuillen et al., 2013]. Nevertheless, here is
reported the first direct observation of the local Rydberg fraction pg, and the spatial
dependence of its profile in a many-body regime. This led to the first observation of
the flat-top profile which emerges due to the strong interaction-induced van der Waals
blockade over a large ensemble of up to ~ 1.7 - 10* Rydberg atoms. Such phenomenon
may result in the emergence of spatial order mediated by the dipole blockade, which
has been previously observed [Schaufs et al., 2012]. Finally, characterisation of the
excitation rates permits to discern several regimes of the driven dynamics in different
regions of the Rydberg many-body ensemble [Heidemann et al., 2007; Valado et al.,
2016], opening the path for local studies of universal excitation properties |[Low et al.,
2009; Helmrich et al., 2016].

The chapter consists of the following structure. As a first step, two-photon
excitation of |nS) is explained in Section 3.1 and locally characterised with an
absorption imaging technique in order to measure the interacting dynamics of Rydberg
atoms and calibrate the detection of spins. Then, in Section 3.2 a two-photon
resonant scheme is implemented, based on the principles of electromagnetically-
induced transparency, to reconstruct the Rydberg atom distribution and calibrate
the local Rabi frequency of the excitation |Gavryusev et al., 2016b|. In Section 3.3,
a recently introduced three-photon excitation scheme of Rydberg |nP) states is

presented [Gavryusev et al., 2016a|, reduced to an effective two-photon scheme
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and applied for spectroscopic studies of Rydberg excitation dynamics and Rydberg
interactions. Finally, a de-excitation protocol is introduced in Sec. 3.4 to selectively

detect the Rydberg spin components.

3.1 Two-photon excitation of |[nS) Rydberg states:

global and local observation of the dynamics

In the present section, excitation of 8"Rb from the ground state to |nS) state by
means of a two photon scheme is performed, off-resonant from the intermediate state
le). The two-photon scheme is resonant with the upper Rydberg level |nS) to avoid
population transfer to undesired intermediate levels. Rydberg atom excitation has
been object of multiple investigations due to the appearance of strong interaction
blockade effects between Rydberg atoms, which modify the dynamics [Reetz-Lamour
et al., 2008a; Reetz-Lamour et al., 2008b; Urban et al., 2009; Gaétan et al., 2009],
reviewed by |Comparat and Pillet, 2010]. The excitation dynamics is locally charac-
terised by means of a new imaging technique based on absorption imaging and the
profile of the excitations is revealed. The local and global sensitivity of the technique
is characterised and this imaging tool is also used as a calibration protocol to quantify
the detection efficiency 7,5 of Rydberg atoms by field-ionisation detection. Thus,
accurate numbers of Rydberg spins can be prepared and measured under a large

variety of conditions.

3.1.1 Off-resonant excitation of [nS) states

The excitation of Rydberg |n.S) atoms in this section is realised by the combination
of a 780nm infra-red and a 480nm photons. The 780nm vertical laser beam,
homogeneously distributed at the position of the atoms, addresses the transition
lg) <> |e) with the relevant o™ component. As described in Fig. 3.1, the coupling is
given by a Rabi frequency .4 and it is detuned A, from the transition resonance.
In the experiments presented in this section, the states |g) = [5S1/2, F = 2, mp = 2)
and |e) = [5Ps)9, F' =3, mp = 3) are used, with a detuning A./27 = —97MHaz.
The second excitation step is realised by means of a o~ polarised ~ 480 nm laser
beam with spatially-dependent Rabi frequency €2,.(x,y). The Rabi frequency (2,
of the beam addressing the |e) <> |r) transition compensates for the detuning of
the first photon. Thus, the two-photon process is resonant to the Rydberg energy
level, (A, + A,) = 0. Hereafter, the described experiment considers the Rydberg
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Figure 3.1: Excitation scheme and experimental sequence for two-photon off-
resonant excitation, followed by a diagnosis absorption imaging pulse. The two-
photon excitation pulse is applied during a variable time ¢.;.. In order to spatially resolve
the excitation dynamics, an absorption imaging pulse is resonantly implemented during a
fixed exposure time t.,), after the excitation. This is followed by a field-ionisation pulse

to collect the ion signal from the Rydberg excitations in an MCP detector.

state |r) = [4851/2, m; = 1/2), for which the Zeeman sub-state is well-defined by a
B, = 6.1 G magnetic field parallel to the imaging direction (see Sec. 2.4.1). It is
important to note that A, > €., Q,., I',, such that the population in the intermediate
state is negligible in comparison to both |g) and |r) states. Therefore, the scheme
may be considered as an effective two level transition between |g) and |r), with Rabi
frequency Q.fr(x,y) = %’fc’y) in the region of interest, adiabatically eliminating

the population of the intermediate state |e) [Reiter and Sgrensen, 2012].

The spatially-dependent Rabi frequency Q.(x,y) determines the maximum spatial
extension of the excitation region of Rydberg atoms. Both laser beams are switched
on and off simultaneously and the number of prepared Rydberg spins is controlled

by varying the excitation time t.,..
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3.1.2 Spatially-resolved imaging of the excitation dynamics

In order to characterise the excitation process, we introduce an imaging technique
which reveals the spatial distribution of Rydberg atoms in the cloud. It relies on
the absorption imaging of the ground state |g) = |55 /2, F' = 2, mp = 2) atoms with
a probe beam (2, addressing the intermediate state |e) = [5Ps2, F' = 3, mp = 3)
with o polarisation and the comparison of the absorption level with and without
Rydberg atom excitation. Such Depletion Imaging method is simple to implement
and nonetheless quite powerful because it allows to extract local information on the

Rydberg atom distribution and excitation dynamics.

Description of the Depletion Imaging method

The optical response of an atomic gas of density n exposed to a probe light of
intensity I o Q; can be well described through its first order susceptibility y, defined

for the general case as
oonl’, r

_oomle i ote, 3.1

where o9 = 3A?/27 is the resonant absorption cross-section, k the wavevector and p,,
the single-atom matrix element for the probe transition |g) <+ |€). In our experiments,
the density is a function of position n(r) due to the Gaussian profile of the atomic
cloud, while p., depends in particular on the probe intensity /.
For a simple two-level system, the resonant scaled susceptibility x,; is given by
X2i il

Xot = ——

= e (3.2)
Xo Fg + 2@12)

To detect the distribution of Rydberg atoms, two sets of images, with and without
Rydberg state excitation, are acquired on a CCD camera. Assuming constant light
intensity at the atom position, non-linear effects of the light propagation can be
neglected. Experimentally, the total absorption A = (I;, — Iirans)/Lin is accessed,
given by

+oo
A=1-¢e with OD= / k- Im|x|dx = oolm[x|naqg (3.3)

where OD is the optical density and I refers to the light intensity collected on
the CCD camera for each specific case and nsyy is the atomic density integrated
along the propagation direction. To collect only information about the Rydberg

atoms pre-excited in the atomic gas, the collected light under presence of Rydberg
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atoms Ig, and without them Iy is to be compared through the depleted absorption
AA = (Ipy — Iy) /IR,

AA=1-e2" with AOD = ODy — ODg, (3.4)

that can be experimentally accessed. This missing absorption represents the signal
emerging from the excited spins, varying from 0 to As;.

The effective number AN of depleted ground-state atoms due to the presence
of pre-excited Rydberg atoms is calculated with up to pixel resolution (pixel area

apr = 4.29 um? in the object plane) as

apa(1 4 50)
0o g0 0o

AN = AOD = Mln [(1 _ AA)—I)] _ ape (1 + 50) In |:ﬁ:|,

Iy
(3.5)

where sy = 2027 /T’ accounts for intensity saturation effects of the addressed transition.

Experimental realisation

The experiments presented in this section are realised under the following condi-
tions. In a first repetition, the ground state atomic cloud is probed by a resonant
imaging beam in the |g) <> |e), as described in Sec. 3.1.1. At T' ~ 40 uK, the average
displacement of 8"Rb atoms is ~ 1um/us. Therefore, a reduced exposure time
texp = D s and a strong Rabi frequency €2, = 27 x 1.57 MHz are selected to minimize
the cloud expansion during imaging, while preserving a good SNR. We measure a
Gaussian-shaped atomic cloud with (N) a2 1.27 - 10° atoms with waists o, = 233 um,
o, =0, =>57um (1/€?). In a second repetition, Rydberg atoms are pre-excited to
the state |r) = |4851/2, m; = 1/2), as described in Section 3.1.1. The effective Rabi
frequency is estimated to present a Gaussian spatial profile with €., = 143 kHz,
with waist o = 125 um (1/e?). Afterwards, an imaging pulse is performed in the
same conditions of the first run. The collected transmitted light is processed as in
Eq. 3.5 to reconstruct the two-dimensional profile of the atoms, integrated along the
propagation direction (Z). The experiment is repeated for different excitation times
ranging from ... = 0.1 us up to te,e = 3 us, in order to map the local excitation
dynamics in several interaction regimes and be able to neglect dissipative effects
taking place at longer times. Since the 780 nm excitation is activated during short
time, the additional heating of the atomic cloud during the excitation makes a
negligible impact.

In Figure 3.2, the spatial profile of the depleted absorbers (AN (z,y)) = (Ngy(z,y))

is presented after an excitation time t.,. = 2.03 us, averaged over 50 repetitions of
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Figure 3.2: Spatial distribution of [485, 5, m; = 1/2) Rydberg atoms. (a) Two-
dimensional distribution of the missing number of absorbers AN (x,y), comparing ab-
sorption imaging of ground state atoms for two experimental realisations: with and
without pre-excitation of Rydberg atoms. The difference in atom number between is
attributed to the presence of Rydberg atoms AN = Np,. (b) Local signal-to-noise ratio
(SNR). The image is the average over 50 repetitions, with exposure time ¢.,;, = 5 us and
Q, = 21 x 1.57 MHz. The excitation time is te;c = 2.03 pus. Each image bin (4x4 pixels)
is equivalent to ~ 8.28 x 8.28 um? on the object plane at the atoms’ position.

the experiment, with 8.28 x 8.28 um resolution due to the use of software binning on
a region of 4 x 4 pixels. The Rydberg ensemble emerges in a region determined by
the extension of the Gaussian coupling laser beam 2.(z,y), with its maximum at
the center, where the signal-to-noise ratio (SNR) is maximum and leads to reliable

observations.

3.1.3 Observation of strong blockade in the excitation profile

By comparing the local number of ground state atoms N (z,y) to the depleted

number of atoms Ng,(z,y), this technique allows to reconstruct the population
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density-matrix elements of the effective two-level system, p, and pg,, such that

NRy(x7 y)

d e) =1 — ,Y). 3.6
N(l’,y) an pg( {U) pRy(m y) ( )

Pry(T,Y) =

The experimentally observed Rydberg fraction profile pg, is shown in Figure 3.3.

At increasing driven excitation time, the initially quasi-Gaussian distribution of
excitations progressively reaches a spatially-homogeneous saturation at an observed
maximum pg, ~ 0.28. Fig. 3.3(b) shows a horizontal cut of the distribution at
the vertical center, in which the emergence of an extended flat-top distribution of
Rydberg excitations is revealed. As a consequence, the volume of the excitation region

presents an increase far beyond the maximum expectations for thermal expansion.
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Figure 3.3: Emergence of a flat-top profile on the Rydberg distribution (pr,) at

the center of the ensemble. (a) Rydberg fraction distribution (pr,) at the excitation
time teze = 2.03 us. (b) Horizontal profile at the center of the Rydberg cloud (y = 0 um).
The different data points correspond to various excitation times: 0.58 us (navy blue),
1.07 us (red), 1.55us (violet), 2.03 us (brown), 2.52 us (green), 3.00 us (sky blue).
The saturation towards a flat-top profile at higher excitation times is caused by the
increasing blockade amongst Rydberg atoms. Each image bin (4x4 pixels) is equivalent

to ~ 8.28 x 8.28 um? on the object plane at the atoms’ position.
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The observation of saturation is interpreted as a direct effect of repulsive van
der Waals interaction amongst Rydberg atoms, leading to a Rydberg blockade effect
with a critical distance, estimated to be Ry = (Cs/hAv)Y/6 ~ 4.7 ym, where Av is
the spectral width of the Rydberg excitation (Av > .s). Within this distance,
only a single Rydberg atom is likely to be excited. This constitutes the first direct
observation of an homogeneous blockaded profile over a large ensemble of Rydberg
excitations, which confirms previous observations of the emergent spatial order in
Rydberg gases [Schauf et al., 2012|.

3.1.4 Local excitation dynamics

Further insight into the excitation dynamics can be obtained by following the tem-
poral evolution of sub-samples of the ensemble. Previous experiments demonstrated
collective Rabi oscillations amongst Rydberg atoms in a mesoscopic ensemble [Reetz-
Lamour et al., 2008a; Dudin et al., 2012| and even at the few atom level [Gaétan

et al., 2009; Urban et al., 2009; Barredo et al., 2014].

However, in the weakly driven regime of these experiments, the dynamics is
dominated by contributions from many dephased superatoms. This results in an
incoherent excitation of the Rydberg atoms, leading to saturation in the blockaded
regime, previously explored in experiments performed in a large magnetic trap with

homogeneous Rabi coupling [Heidemann et al., 2007].

In order to quantify the excitation rates and the blockaded fraction, our data is

fitted to an exponential saturation function
—Regc 't
PRy(t) = psat| 1 — € psot . (3.7)

In Figure 3.4, the evolution of the excitation process in different parts of the sample
is presented, revealing different regimes of evolution: fast dynamics at the center of
the cloud, where the coupling is strongest, is followed by saturation as observed in
Fig. 3.3, and a linear increase at the outer regions around the edge of the excitation
volume (sky blue curve). The two regimes are discriminated by the ratio between
the effective Rabi frequency and the interaction strength. The suppression of Rabi
oscillations, leading to an initial quasi-linear increase of the excitation probability,
has been predicted by many-atom wave function calculations [Robicheaux, 2005],

where the effective dephasing between superatoms dominates the dynamics.
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Figure 3.4: (a) Local excitation dynamics at different cloud positions. The lines are
represent the corresponding fits to an exponentially saturating function (Eq. (3.7)). The
dynamics presents a faster excitation dynamics closer to the center of the excitation

L. red,

region (blue, Reze = 0.298 us™1) than in outer regions (green, Reye = 0.192 us™
Reze = 0.139 us™!) or at the tails (turquoise, Reze = 0.045us™!). The fits reveal
saturation due to van der Waals interaction at the following Rydberg fraction: 0.28 (blue),
0.31 (green), 0.32 (red). The dynamics saturates due to Rydberg interaction effects.
Regions at the edge of the excitation area follow a slower dynamics (e.g. sky blue curve).
A temporal offset tg = 0.11 us is subtracted. (b) Local excitation rate R.;. extracted
from the local fits of the excitation dynamics. Each data point (in (a)) or image bin (in
(b)) corresponds to a 16.57 x 16.57 um? region at the cloud position, integrated along

the imaging direction (8x8 pixels).

3.1.5 Sensitivity of the optical detection

In order to characterise the resolution of this imaging technique and determine
the precision in the measurement of a local number of Rydberg atoms Ng,, the local
sensitivity has to be calculated. The simplest procedure consists in the determination

of the signal-to-noise ratio (SNR) of the average measurements, defined as the ratio
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between the mean quantity of a distribution of measurements and the standard
deviation from the mean. In this specific case, the SNR of the local Rydberg atom
number is given as

(Nry(z,9))

UNRy (xvy)

SNR (W, (2)) = (38)

This estimator depends on the imaging noise introduced by the optical detection
and the shot-to-shot fluctuations of the ground-state density. The minimum number
of atoms that generate an accurately quantifiable change in the absorption image is
identified as the sensitivity threshold S, which corresponds to the average number of
atoms detected with SNR = 1, quantity directly influenced by the size of the local

detection area of our CCD camera.

Figure 3.5: Sensitivity of the imaging technique. Signal-to-noise ratio (SNR) as
a function of the mean number of Rydberg atoms (Ng,) in an integrated area of
16.57 x 16.57 um? (4x4 pixels). The different colours represent data from various
excitation times tqz., showing that the sensitivity only depends on the size of the analysed

region and the imaging properties. The measured sensitivity is S ~ 15 Rydberg atoms.

In Figure 3.2(b), the SNR corresponding to the local Rydberg atoms (Ng,) from
Fig. 3.2(a) is presented. The measurement reveals a fine signal-to-noise SNR > 2
towards the center of the excitation region, whereas it drops below 1 around the
tails of the distribution, for each region of 16 pixels. Hence, this bin size can be
preserved to spatially resolve the Rydberg excitation properties. The local sensitivity
is estimated from Fig. 3.5. Each point of the graph represents the SNR of an

individual 8.28 x 8.28 um? integrated region. Different colours show measurements
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from various t.,., which present a very similar spread in (Ng,) and SNR. This
can be understood as an indication that the dominating noise sources are not
related to the Rydberg excitation dynamics but to the experimental shot-to-shot
fluctuations of light intensity. The sensitivity is estimated to be S ~ 15 Rydberg
atoms with a Poissonian spread, which scales quadratically with the bin surface.
Therefore, in a 4.14 x 4.14 um?, below Ry, the depleted absorption of approximately
7.5 Rydberg atoms is required for sensitive observations, impeding to achieve enough

local sensitivity to map Rydberg correlations from the intensity pattern of the image.

Global single-shot sensitivity

To quantify the accuracy of measuring a certain number of Rydberg atoms in a
single realisation, a different procedure has to be introduced. We employ the threshold
method to calculate the probability of having (Ng,) Rydberg atoms present in the
cloud or, alternatively, the presence of none of them. Then, two distributions arise
from our experiment: the background distribution, where only ground-state atoms
are present and therefore, it is centered around (Ng,) ~ 0, and the distribution
with Rydberg atoms pre-excited. The later represents the "null" hypothesis Hy that
Rydberg atoms are present in the cloud, which has to be verified. The detection
fidelity F [Bochmann et al., 2010]|, answers this question, since it quantifies the

probability for the hypothesis to be true in any single experiment, expressed as
F=1-€na (3.9)

where €,,,, is the maximum probability of incorrectly rejecting the Hy hypothesis
due to imperfections in the detection and/or the state preparation. Initially, an
arbitrary threshold is set such that the hypothesis is accepted when Ng, < Nyp,.
This threshold is iteratively varied until the probability of incorrect assignment is
minimal and, therefore, the fidelity is maximised. In this case, this sensitivity gives
a bound for detection in a single shot of the experiment. This concept is applied
here to describe the single-shot measurement of the global quantities, instead of the
local averaged measurements. The information extracted is complementary to the
local SNR calculations.

From the fidelity F, the single-shot sensitivity S can be extracted. As in the
previous section, given the large number of Rydberg atoms and knowing that they
follow a Gaussian distribution, we define the sensitivity threshold for single shot
detection to correspond to an SNR equal to 1, which corresponds to a fidelity of
F = 0.8413. Figure 3.6 shows the fidelity calculated with the threshold method, and
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Figure 3.6: Single-shot detection fidelity for an increasing average number of
Rydberg atoms (Ng,). For different excitation times the sensitivity threshold F =
0.8413 (black dashed line) is crossed at (Ng,) ~ 7300 Rydberg atoms. Errorbars
correspond to the statistical error from the bootstrap method. Inset: Distributions of
the background (grey), where no Rydberg spins are pre-excited, and the Rydberg atom
number (blue) for the case of (Ng,) = 8595, revealing a fidelity 7 = 0.943 £ 0.029 per

single shot.

we observe that the threshold of F = 0.8413 is crossed at (Ng,) ~ 7300 Rydberg
atoms, establishing that the global single-shot sensitivity of our imaging technique
in the current conditions is S ~ 7300 Rydberg atoms in the state |48S5).

Whereas Depletion Imaging of Rydberg atoms constitutes a precise tool to study
the excitation dynamics of Rydberg atoms locally and to potentially investigate the
scaling of the Rydberg spin driven dynamics [Heidemann et al., 2007; Low et al., 2009;
Valado et al., 2016; Helmrich et al., 2016|, this technique is not suitable to observe
the dynamical evolution of few Rydberg spins due to the insufficient sensitivity and
the lack of state selectivity. In order to study the evolution of few Rydberg spins
with high resolution, a sophisticated imaging technique called Interaction Enhanced

Imaging has been developed and is presented in Chapter 6.

3.1.6 Detection of spins via field ionisation

As discussed in Section 2.4.2; electric fields may be applied in the experiments
to bring the Rydberg atom energy above the ionisation threshold due to the Stark
effect and, thus, generate Rydberg ions and guide them to an MCP detector. Due to
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the lack of selectivity and the small sensitivity of the Depletion Imaging technique
which has been introduced along this section, Rydberg spin detection based on
the field ionisation mechanism is used in the present work as the main detection
method to measure smaller number of Rydberg spins with high accuracy and when
no spatial information is required, providing a global observable. Here, the detection
of Rydberg atoms via field ionisation is characterised over three orders of magnitude
in the Rydberg atom number. The method is compared to the global Rydberg spin
measurements via Depletion Imaging, allowing to calibrate the detection efficiency
1. The experiments discussed in this section are performed on the Rydberg state
14851 /2, mj = 1/2).

In order to calibrate the atomic detection, the global number of optically measured
atoms (Ng,) displayed in Figure 3.7(a) is considered as a reliable measurement.
There, the initially linear increase starts to slightly saturate, due to the van der
Waals blockade between Rydberg atoms. However, the global measurement does
not show such strong saturation (see Fig. 3.3) since Rydberg atoms can still be
excited in the tails of the distribution. In contrast, the dynamics measured by field
ionisation (Fig. 3.7(b)) reveals a big saturation effect, starting at ~ 1270 (a.u.). At
this turning point the Rydberg atom densities are > 1.5 x 10° cm ™3, leading to an
estimated Wigner-Seitz radius < 5.3 um. This could arise due to the increasing
Coulomb repulsion amongst the created ions during the time-of-flight towards the
MCP, such that a fraction of ions is unable to hit the detector. As a consequence,
initially constant detection efficiency n485 = 0.227 can be accurately inferred from
the comparison of both methods in the linear regime, where all the experiments
explained in the scope of this thesis occur. As observed in Fig. 3.7(c), the efficiency

progressively decreases at high atom numbers.

Hence, combined optical and atomic detection of Rydberg atoms establishes an
accurate and consistent calibration protocol which is used to measure the detection
efficiency of the MCP detector across few orders of magnitude in the Rydberg density.
In the following spin experiments from Chs. (4, 5), all measurements are performed
in the linear regime for low and intermediate Rydberg densities. In spite of the
increasing systematic error introduced at higher densities, field ionisation detection
is a very sensitive technique (SNR > 1) to measure global Rydberg spin numbers in
different regimes and the bias of the signal can be corrected by accounting for the

quasi-linear reduction of detection efficiency.
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Figure 3.7: Global measurements of [485, 5, m; = 1/2) Rydberg atom signal.
(a) Total average number of Rydberg atoms in the excitation time as a function of
the excitation time t,.. The optically measured number of Rydberg atoms (Ng,) is
extracted from the mean depletion of the ground state, averaging over 50 repetitions.
(b) Integrated ion signal on the MCP detector . At high number of ions, the signal
(Ionspnt) collected on the MCP saturates. Inset: SNR of the field-ionised integrated ion
signal. SNR > 1. The signal (Ionsy,) is the average over 50 repetitions. Errorbars
correspond to the standard deviation. (c) Comparison between the optically detected
number of Rydberg atoms (/Ng,) and the measured integrated ion signal (Ionsr,:). The
detection efficiency in the typical regime is extracted from a fit of the first two points,

giving mug5 ~ 0.227.

3.2 Two-photon resonant excitation: spatial charac-

terisation

In this section, a two-photon resonant scheme is applied, based on the principles
of electromagnetically-induced transparency (EIT), to excite a fraction of the ground
state atoms to the Rydberg state. Unlike for the two-photon off-resonant scheme

implemented in Section 3.1, we do not require an additional Depletion Imaging
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method to characterise the subsequent spin distribution in the resonant case, but can
be fully described by combining the theoretical knowledge of EIT with measurements
of the EIT absorption spectra and applying parallel optical spectroscopy analysis
of multiple pixels in a single experiment to resolve the spatial distribution. This
is combined with additional information obtained by atomic spectroscopy of the
Rydberg population spectrum. The coupling Rabi frequency profile Q.(x,y) as well
as spatially resolved optical susceptibility y and Rydberg fraction p,, are successfully
reconstructed |Gavryusev et al., 2016b]. Such scheme has been previously used
to create Rydberg spins to the state ||) = [485)/2,m; = 1/2) and measure the
interaction-induced dephasing on Rabi oscillations to the spin state |1) [Schempp,
2014, Ch. 7; Pineiro Orioli et al., 2017|. In addition, the characterisation presented
here constitutes the basis to apply Interaction Enhanced Imaging to observe of

Rydberg spins, as explained in Chapter 6.

3.2.1 Three-level Optical Bloch Equations and weak probe

solution

Electromagnetically-induced transparency is a quantum interference effect which
emerges in a three-level system when two long-lived states are coherently and
resonantly coupled to a short-lived state [Harris, 1997; Marangos, 1998; Fleischhauer
et al., 2005|. Hereafter, a ladder scheme described by the atomic ground state
lg) = [5S1/2), the fast decaying intermediate state |e) = |5P5/;) and a long-lived
Rydberg state [n.S;/,) is considered, as described in Fig. 3.8. The optical control field
Q. which couples the |e) <+ |r) branch renders an otherwise absorptive gas transparent
to the weak probe beam €2,. Strong coupling produces an Autler-Townes doublet of
dressed states and, subsequently, destructive interference on the transition probability
[Fano, 1961]| for the probe laser addressing the transition |g) <> |e). Therefore, the
transparency resonance is sensitive to the Rydberg-state properties [Mohapatra et al.,
2007].

In the low density regime, the system can be well-described by the analytic solution
of the steady-state optical Bloch equations (OBE) for the single-atom density matrix.
The three-level non-interacting Hamiltonian of the atom-light coupled system in the

rotating wave approximation is described as

. 0o 0
H = 3 Q, —24, Q. (3.10)
0 Q —2(A,+A)
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where (2, . are the Rabi frequencies of the probe and coupling lasers, and A, . are the
detunings from the probe and coupling transitions. The intermediate state decays
with decoherence rate I', to the ground state, whereas decay from the long-lived
Rydberg state can be neglected (I', < I'. €, ). In order to account for incoherent
effects like decay and laser dephasing [Pritchard et al., 2010; Gérttner and Evers,

2013], the master equation for the single-atom density matrix p is derived

i

p= =79+ Lacelp) + Laeon () (3.11)

The Lindblad superoperator terms [Lindblad, 1976] read as

2

1
Liec(p) = ==Y (ClChp + pCICi) + ) CipCf (3.12a)
k k

1 0 TpPge  YgrPgr
Laepn(p) = =5 [ Wpeg 0 Yeper | (3.12b)
YgrPrg VePre 0

where Cye = V/I'c|g) (e| and /T, |e) (r| describe the quantum jumps amongst the
involved states.

As a result, the system is fully described by the following set of coupled equations

Pgg = —pIm[pge] + Lepee

pee = +QIm[pge] — QImlper] — Tepee + Trpyy

pre = +QcImlper] — Ty

Pge = —Lgepge/2 + 1Qepgr/2 + 1 (pgg — pec) /2
Por = —Lgrpgr/2 = {(Qpper — Qepge) /2

per = —Lerper/2 — 1(Qeprr + Qppgr — Qepee) /2,

(3.13)

with pjr. = pi;. The equations rely on the rates I'je = Fge +2iA,, Tep = T +7.+2iA,

and I'y, = FST, +2i(A, + A,) with Fge =Te+7, [ =T.+T, + 7., Fgr =TI\ 4+ g

Steady-state weak-probe solution

After transient evolution, the system reaches stationary equilibrium. Such steady
state is described at pj; = 0 by the following relations
_ QpIm[pye| ~ QpImfp,| iLerper 4+ Qepee — Qppgr

ee s er — T 1 1 rr — . 3.14
P T, Per = Rell,,| * " Q. (3:14)
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Assuming a weak probe approximation (€2, < €2, I'.), the coherences are analyti-

cally approximated as

il’,-2 —-Q.0
e T o T o (3.15)
get gr c gel gr c
When both transitions are resonantly addressed and (2. is higher than the depha-
sing terms, then, due to destructive interference, the probability to populate the

intermediate state drops to zero, opening a transparency window with FWHM as

0.5 1

2
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Figure 3.8: (a) Three-level ladder scheme for Rydberg EIT. The atomic ground state
|g), the fast-decaying intermediate state |e) and the selected Rydberg state |r) are
simultaneously coupled by two laser fields with probe and coupling Rabi frequencies
Q, . and A, . detuned from the single photon resonances. The excited and Rydberg
states decay with rates I'c,, where I', << I'.. Under strong coupling (2, > T'.),
the eigenstates are well-defined in the dressed-state basis as the split Autler-Townes
doublet |+) = %(]r) + |e)). Scheme adapted from [Giinter, 2014]. (b) Analytical
weak-probe response of the imaginary and real part of the scaled optical susceptibility
and Rydberg population fraction (Egs.(3.14,3.15)) as a function of the probe detuning,
given T',., A, = 0 and negligible laser-induced dephasing. Three cases are presented:
Q. = 0 (red) describes the two-level response; Q2. = 0.3T'. shows a narrow EIT resonance
with Lorentzian p,, distribution; €. = I, presents the strong coupling regime, where
the Autler-Townes peaks are highly separated (o.i; =~ €2.) and the Rydberg population is

suppressed.
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Experimentally accessible variables

The density matrix element p,. can be immediately determined by accessing the
scaled susceptibility (Eq. 3.1). Simulated weak-probe steady-state scaled suscepti-
bility can be found in Fig. 3.8(b). Additional laser dephasing mechanisms would
lead to finite absorption, reducing the depth of the EIT resonance, as described
in [Pritchard, 2011; Giinter, 2014; Gavryusev, 2016]. This quantity determines the

transmission of the probe field through the atomic cloud,
A= exp (—UOIm[)Z]ngd) = exp(—0OD). (3.16)

Additionally, the Rydberg population N, = [ p,,.(r)n(r)dr can be measured by field

1onisation.

Three-level optical susceptibility

Based on an analytical calculation of p, (Eq. 3.15), the specific case of the

resonant EIT susceptibility Y, results in

Xett = T T2 2T, gy + 202

(3.17)

x2;; depends on the effective dephasing rate 7,,/2 of the matrix element pg, (Eq. 3.15),
with contributions of the decay rate of |r) and any additional dephasing effect.
However, the sources of dephasing acting on the intermediate level |e) are negligible
compared to I'.. Equation (3.17) shows that x%, < oon/k as soon as Q2 > I'.7,,,
which is satisfied for coupling Rabi frequencies (). on the order of few MHz.

3.2.2 Experimental reconstruction of spatial properties: non-

interacting density matrix

Here, we show measurements of EIT optical and atomic spectra as function of
the probe laser detuning A, for the case of a spatially inhomogeneous coupling
beam (2.(z,y) [Gavryusev et al., 2016b|. The observations from Figs. (3.9, 3.10) are
performed under identical experimental conditions. Prior knowledge given by the
analytic weak-probe solution of the OBEs is used to identify the two observables
allow to fully characterise the system by determining its non-interacting density
matrix: Rydberg population N, and probe-beam transmission through the cloud
T (Eq. (3.16)). All experimental parameters (2., A, [y gr) and density matrix

elements of interest (pge prr) can be obtained by accurate analysis of both variables.
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For the sake of simplicity, the few kHz Rydberg decay rate can be neglected, since
it is three orders of magnitude smaller than the other decays and Rabi frequencies.
Laser-induced dephasing on the probe transition is also neglected, since v, < I,

whereas 7qepn must be still considered in the Rydberg state.

Experimental procedure: local resolution

In the experiments presented here, a three-level ladder scheme (Fig. 3.8(a))
couples the states |g) = [5S1)2, F' =2,mp =2), |e) = [5Ps, F =3, mp = 3) and
lg) = 142S1/2,m; = 1/2), as described in Section 2.4.1. A homogeneous 3 G magnetic
field along the probe beam direction defines the quantisation axis. Our probe
Rabi frequency is measured by saturated absorption imaging, such that §2,/27 =
(1.03+£0.05) MHz |Reinaudi et al., 2007|. The coupling laser is focused into the center
of the cloud with a waist of ~ 15 um and an intensity of ~ 0.9 % Approximately
3-10° ground state atoms are prepared in the ODT, resulting in an elliptical Gaussian-
shaped cloud with width o aqia1 = 90 & 7 um, 0 axiar = 380 £ 13 um (1/€?) and a peak
atomic density of ng = 7-10°cm=3. The peak Rydberg density is expected to be
preno < 2-10% cm ™3, corresponding to a Wigner-Seitz radius of 4.9 um, much larger
than the predicted blockade radius of &~ 2.3 um. Under these conditions, interactions
effects are assumed to be negligible |Pritchard et al., 2010; Schempp et al., 2010;
Sevingli et al., 2011; Ates et al., 2011].

To measure the optical response we record 93 averaged absorption images for
different probe detunings A, /27 ranging from —8.1 MHz to 8.1 MHz. Since the
coupling beam does not cover the whole cloud, the measured transmission in the
regions where the coupling Rabi frequency is negligible (2. — 0) provides information
on the susceptibility of the two-level system composed by the states |g) and |e).
Pixels illuminated by the coupling beam are excluded in order to fit each image to
a 2D Gaussian distribution. This fit is interpolated into the excluded area to infer
the two-level absorption and the local atomic 2D density nyy of the atom cloud at
the position of the coupling beam. Then, the scaled optical susceptibility x(4,) is
extracted for each pixel as in Eq. 3.16. In addition, the Rydberg-state population
is detected at the end of the sequence, with the signal integrated and calibrated as
described in Ch. 2.4.1 to quantify the number of detected ions.

In Figure 3.9(a), the imaginary part of X(A,) is presented, for a region measured at
the center of the coupling laser beam (red diamonds). This is compared with the two-
level susceptibility (blue circles) and the corresponding Rydberg population spectrum

(green squares). On two-photon resonance, we observe a complete suppression of
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Figure 3.9: (a) Local scaled optical susceptibility and population spectrum as a function
of the probe laser detuning. The three curves show: three-level optical response averaged
over the center of the coupling laser beam (red diamonds), two-level optical response
(blue circles) and integrated Rydberg population (green squares, right axis). The green
solid line represents the Rydberg population spectrum estimated by numerically solving
the OBEs. The asymmetry of the absorption spectrum is attributed to residual lensing
effects [Han et al., 2015]. (b) Locally measured three-level absorption spectra, sorted
according to the fitted coupling Rabi frequencies with 0.2 MHz binning. The transition
from the EIT towards the Autler-Townes regime is observed. (c) Fitted absorption spectra
using Egs. (3.15-3.2). (d) Rydberg population spectrum inferred analytically (Eq. (3.14)).

absorption (> 99%). The Rydberg population spectrum is much narrower and shows
no evidence for the Autler-Townes doublet structure.

A two-step fitting algorithm is applied to allow pixel-by-pixel resolution. In
the first step, the two level absorption is fitted to a Lorentzian lineshape and
used to calibrate the two-level optical response. The resonance width is observed
to be (6.21 £+ 0.03) MHz, in good agreement with the power broadened natural
decay rate I'. /27 - /1 +2(€,/T.)? = 6.23 MHz. This confirms that the dephasing
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plays a limited role on the |g) <> |e) transition. Analogously, a Lorentzian fit
is employed on the detected Rydberg population to determine the laser detuning
A./2m = (0.10 £ 0.01) MHz and the resonance width W/27 = (0.63 + 0.01) MHz,
which is attributed to dephasing of the Rydberg state (Yaepn = W). Now, all
global parameters are determined and only the locally varying .(x,y) remains
unknown. Using the fitted local two-level optical susceptibility and Egs. (3.2, 3.16),
X(4,) is extracted. The local measurement is shown in Fig. 3.9(b). In order to
efficiently estimate Q.(z,y) (Fig. 3.9(c)), the least-squares difference amongst each-
pixel spectrum and the theoretical model is minimised. The measurements yield

coupling Rabi frequencies up to 12.8 MHz.

Reconstruction of (2., p33 and

Figure 3.10(a) shows the spatial distribution of coupling beam Rabi frequencies as
extracted from the fits to the single-pixel optical spectra. The distribution reflects the
elliptical shape of the coupling beam, independently confirmed using a beam profiler.
The measured coupling profile approaches a Gaussian with peak Rabi frequency
Q./2m = (12.8 £ 0.5) MHz, close to the theoretical expectation of €2./2m = 10.7 MHz
which considers the coupling laser intensity, the dipole matrix element for the [5P;/5)
to |425;9) transition and the extension of the excitation region. The fitted sigma
radii of the axes present are 11.8 um (semi-minor) and 15.4 pm (semi-major).

Combining the spatially-resolved distribution of Rabi frequencies (Fig. 3.10(a))
and the global parameters constrained by the two-level absorption and of the total
Rydberg population spectrum, we can reconstruct the full density matrix of the
system at each position using the analytical solution derived in equations (3.14) and
(3.15). As practical demonstrations, we show the spatial distribution of y and the
Rydberg population p,,. (Fig. 3.10(b-d)). Using the results of this reconstruction
procedure, we also present the Rydberg population as a function of 2, and A, in
Fig. 3.9(d). For large coupling strengths (2, > I'.) the Rydberg population resembles
the Autler-Townes doublet resonance structure with two maxima at A, = £Q./2,
while in the limit of weak coupling €2, < I'. the population is concentrated in a
narrow peak with maximum at resonance. The small population is consistent with
the expression p,, & Qz / (912) +Q2) for two-photon resonant with negligible dephasing.

At the edges of the coupling beam region, the validity of the analytic solution
breaks down, since the condition €2, < €. is not fulfilled, which becomes visible
in Fig. 3.10(b). This is compared to the time-dependent numerical solution of the

OBEs, finding a mismatch smaller than 25% for coupling Rabi frequencies 2. > ),
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(a)

Figure 3.10: Reconstructed spatial distribution of (a) the coupling Rabi frequency
Qc(x,y), (b) the Rydberg population distribution and (c-d) the imaginary and real
parts of the scaled optical susceptibility y. For (b-d) we use analytic solutions of the
OBE (Egs. (3.14-3.2)) for A, = 0. The green dashed line in (b) marks the limit of
validity of the analytic reconstruction of p33 using Eq. (3.14). Outside the coupling region
defined by (a) Im[x] tends to reach the two-level response. Re[x| ~ 0, with slightly
increasing towards the edge of the region of interest due to the effect of a small detuning
A./2m = 0.1 MHz.

which is set as a criteria for validity of the analytic reconstruction and is indicated
by the green dashed line in Fig. 3.10(b). The numerical simulation is also employed
to reproduce the measured population spectrum (solid green line in Fig. 3.9(a))
by spatially integrating p,,(x,y). Best agreement is achieved fort vqepn/27 to the
value (0.20 £ 0.02) MHz. Therefore, additional broadening seen in Fig. 3.9(a) may
be attributed to a combination of power broadening of the |g) <> |e) transition and
spatial averaging over the excitation volume, atomic motion and residual Rydberg-
Rydberg interactions [Pritchard et al., 2010; Gérttner and Evers, 2013; Zhang et al.,
2014a]. Further details can be consulted in [Gavryusev et al., 2016a].

The reconstructed imaginary and real parts of the scaled optical susceptibility
X using the analytical formulas in Sec. 3.2 are shown for A, = 0 (for Ygepn/2m =
0.63MHz) in Fig. 3.10(c-d). As expected, Im|x| shows almost full transparency
Im[x| =~ 0 at the center of the coupling beam, whereas it approaches the two-level
response in the outer region. In contrast, Re[yx|, which is responsible for light

dispersion, is nearly zero across the whole spatial profile for A, = 0. The small
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observed deviation at the edges of the coupling beam region is due to the relatively
steep dispersion for (). < I'., combined with the slight detuning of the coupling
beam A./2m = 0.1 MHz. For larger detunings A, ~ 2./2 the amplitude of Re[Y]

can increase significantly. Similar effects have been studied in [Han et al., 2015].

Application as a spin preparation method

Combined field ionisation atomic detection and optical absorption spectroscopy
allowed us to spatially reconstruct relevant terms of the density matrix of a non-
interacting Rydberg ultracold gas under EIT conditions. Specially useful is the usage
of the technique to characterise Q.(x,y) in a spatially-resolved manner, which is
used for all excitation schemes described in this thesis. The spatial distribution
of Rydberg spins is successfully inferred, demonstrating that the spin distribution
is suppressed at the center of the coupling laser beam, where the transparency is
stronger. Such scheme is also used in Ch. 6 as a method to prepare an appropriate

medium to image Rydberg atoms.

3.3 Three-photon excitation of [nP) Rydberg states

To prepare [nP) Rydberg states, a two-photon excitation is prohibited by the
selection rules. Instead we use a three-photon excitation, making use of two optical
photons and an additional microwave photon. This procedure aims to create |nP)
Rydberg spins directly, with no need to excite |nS) states beforehand. The excita-
tion mechanism relies on a three-photon excitation scheme, off-resonant from the
intermediate |e) and |n.S) states, to directly transfer the population to the addressed
|nP) with negligible population of the intermediate levels. This approach allows
us to independently excite |nP) states or |nS), both required for the experiments
presented in this thesis. Here, the theoretical approach to describe a four level system
and its approximation as an effective two level system is explained before presenting
a spectroscopic characterisation of the excitation dynamics, including the underlying

atomic physics and observable effects of Rydberg-Rydberg interactions.

3.3.1 Off-resonant excitation of |[nP) states: theoretical des-

cription

The three-photon excitation scheme is presented in Figure 3.11. The first stage

of the excitation is done using a 780 nm laser beam propagating along the vertical
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direction and linearly polarized perpendicular to the quantisation axis (defined
by B.), such that it generates both ot and ¢~ polarisation. The o*-polarisation
couples the ground state |g) to the intermediate state |€). The o~ -polarised light
leads to off-resonant processes that can be neglected in good approximation. Hence,
a 480nm o -polarised laser, parallel to the quantisation axis, couples |e) to the
Rydberg state |r) = [nSi/2,m; = 1/2). The third stage of the excitation to the state
i) = |nPs/,m;) is done using a microwave photon from the Anritsu MG3697C
microwave synthesizer with a frequency between 2 and 67 GHz, depending on the
chosen n. The selection of m; sub-state of |i) is performed by the polarisation of the

microwave field. This four-level system is then described by the Hamiltonian

0 Q. 0 0

~  h| Q. —2A. Q, 0
H=— 3.18
2 O Qr _2Ar Qmw ( )

0 0 Qw2000

in the basis {g, e, r,i}. The accumulated one-photon, two-photon and three-photon
detunings are given by A., A,, A,,., respectively, whereas €., ., €,,, refer to the

Rabi frequencies of each transition.

Effective two-level approximation of a four-level system

To avoid populating the two intermediate states |e) and |r), we use large inter-
mediate detunings A, and A, compared to the Rabi frequencies €., €2, and €2,,,,,. In
this regime, the four-level excitation can be described by an effective two-level system
that we theoretically develop in this section. The model helps to derive the best
strategy to efficiently excite Rydberg |nP) states without any undesired additional
effects.

To simulate the three-photon excitation one can use the optical Bloch equations
in the four-level basis and numerically solve them for a set of the six experimental pa-
rameters given by Eq. (3.18). However, the numerical simulations do not give insight
into the excitation process to find the optimal settings for efficient state preparation.
Since the excitation is done in the off-resonant regime A., A, > Q.,Q,., Q., the
evolution of the intermediate state populations exhibit two very different timescales,
leading to a rapidly oscillating term at a frequency A, and a slow-varying envelope
that evolves together with the states |g) and |7). After a short-time, the fast oscilla-
tions average to zero due to the decay of the short-lived intermediate state |e). The
time derivative of the |e) and |r) populations can then be set to zero as they are

dominated by the fast-oscillating terms. By introducing the steady state solutions in
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Figure 3.11: Excitation scheme of Rydberg P states. (a) Three-photon excitation
scheme. The ground state |g) is off-resonantly coupled to the Rydberg state |i) by
two optical fields and one microwave field with Rabi frequencies Q., Q, and Q...
respectively. Large intermediate detunings A, and A, prevent extensive populations of
the two intermediate states |e) and |r). (b) Simulation of the time-evolution of the state
populations pgg and p;; (resp. black and green lines), assuming the initial population
in the ground state, with A, = A, = —27-100 MHz, Q. = Qe = 27 -2.4 MHz and
Q, = 2725 MHz. The exact calculation is compared to the effective two-level model
(dashed lines). The observed deviation is due to the absence of the decay I'¢ in the latter.
(c) Populations pe. (red) and p,, (blue) simulated in the same regime. With a maximum
fraction of 3-1073 these states are weakly populated. On short timescales, very fast
transient oscillations are damped after 2 us, justifying the adiabatic elimination, then the

populations follow a similar evolution to |g) and |r).

the optical Bloch equations, one can eliminate all the terms involving |e) and |r) in
order to write an effective equation valid in the limit of long timescales, which directly
couples |g) to |i). This approximation is known as adiabatic elimination [Linskens
et al., 1996; Brion et al., 2007]. With ¢, the projection of the wavefunction to the

state |x) (x = g,e,r,1), one obtains the following coupled equations

Q.
%:4%%+ifq (3.19)

Q.
q:q@m—&m+if% (3.20)
where S, and S; are the AC-Stark shifts of the states |¢g) and |i) defined by

02 02

2 - 2
P P

(3.21)
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and (2.4 is the effective Rabi frequency of the four-level system defined by

QeQerw

Qo = AA (3.22)

Equations (3.21, 3.22) simply show that one can reduce the effect of the three
off-resonant fields to AC-Stark shifts of the two outer states |g) and |i) and to an
effective Rabi frequency (2.4 coupling these states. The AC-Stark shifts may be
calculated in a perturbative approach. By setting the ground-state energy to zero

via a rotation in the rotating frame, the differential equations can be rewritten as

Qe
Cq = i—fo Cp (3.23)
Q.
& = —ilogrci + z‘Tffcg. (3.24)

with Agpp = A; + 54 — S; the effective detuning. At this stage one can identify the
Schrodinger equation of a two-level system with Rabi frequency 2. and detuning
Acss. Therefore the whole system can be considered as an effective two-level system
where conditions for the inversion of state populations are known.

This effective description is illustrated in Fig. 3.11(b), where the populations of
the four levels are plotted as a function of the excitation time (black and green dashed
lines) and compared to full numerical solutions of the optical Bloch equations. The
simulations clearly show that the two intermediate states are negligibly populated
and that the two outer states |g) and |i) behave like a two-level system, exhibiting an
evolution similar to two-level Rabi oscillations. It is worth noticing that the effective
model does not predict the decay of the oscillations which would be a consequence of
the decay of the intermediate state I'. /2w = 6.067 MHz, not considered in the current
effective model. To take it into account an effective operator formalism for open
quantum systems is used to derive an effective master equation |Reiter and Sgrensen,
2012|. The decay of the Rydberg states is neglected, since T',, T; <« T'.. It results
that the decay I', effectively leads to various terms in the two-level model which
can, on long timescales, either kill or enhance coherences. The typical experimental
times are limited to ... < 15 us, where both models give very similar results. In
the following discussion this decay is neglected, since it has no crucial impact on the
regime of exploration.

Using this approach, an optimized excitation scheme of the Rydberg state |i) is
derived. Due to the AC-Stark shifts, the intuitive resonance condition with A,,, =0

is not valid. From the effective two-level model, a modified resonance condition is
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derived, which must be fulfilled to efficiently transfer an atom from |g) to |i)

0? 02
Aegr =N+ —— — ——mw__ ), (3.25)

02 Q32
AAc —x- 4A - R

Experimentally, this can be spectroscopically measured and compensated.
In addition, two other constraints must be considered before performing the
experiment. On the one hand, excitation of the |nP) state on a timescale shorter

than its lifetime is required, leading to the condition
Qeff S T;l. (326)

On the other hand, avoiding population in both intermediate states is aimed. Popu-
lations in the Rydberg state |r) cannot be directly resolved by our field ionisation
protocol and would be mistaken for the desired state, while population in |e) could
lead to scattering and heating of the cloud. In Section 3.4, an optical approach
to distinguish both Rydberg populations is introduced. In the far-detuned regime,
which satisfies the condition €2, < A., A,, the atomic-state coefficients ¢, and ¢, are
accurately approximated by Q./A.-c, and Q,,.,/Apy - ¢, respectively. To satisty
both conditions, it is favourable to keep €2, and (2,,,, relatively small, while €2, can
remain large as long as the far-detuned condition is still fulfilled.

Experiments presented in Ch. 6.3.1, aimed at optically revealing the presence
of [nP) states, require a two-photon resonant EIT coupling to |nS) states. In the
following sub-sections and the mentiond Ch. 6.3.1, the same principal quantum
number n is chosen for both the |r) and |i) states, such that the same 480 nm laser
field is shared between the second step of the off-resonant excitation scheme and
the electromagnetically-induced transparency (EIT) coupling. Hence A, = 0 and
the detunings must fulfil A, = A,. In all experiments presented in this section,
these detunings are set to ~ 27 - 100 MHz. In such conditions, the red beam heating
effect is negligible if the Rabi frequency (). is below a critical value of typically
27 -2.5 MHz. Hence, €2, and (2,,,, can be adjusted to respect the above-mentioned
conditions. The simulations in Fig. 3.11(b),(c) show an example of efficient excitation

with populations in the intermediate states smaller than 3 %.

3.3.2 Three-photon spectroscopy of [42P) Rydberg states

Here, demonstration of three-photon off-resonant excitation of |nP) Rydberg
atoms is demonstrated, as a powerful method to prepare [nP) as a spin state avoiding

populating |[nS) during the process. According to the scheme proposed in Sec. 3.3.1
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Figure 3.12: Three-photon spectroscopy of the [42P;/,) states. (a) Microwave
frequency scan around the three-photon resonance, at a peak density ng = (3.30 +
0.18) - 10? cm~3 where interaction effects do not play a significant role. The atoms,
initially prepared in |g), are off-resonantly driven to |e) and |r) = [425) )5, m; = 1/2).
A detuned microwave radiation finally excites the state |i) by compensating the energy
mismatch. Only the Zeeman substates m; = {3/2,1/2,—1/2} are addressed with
{o", 7,07} polarization components, respectively. The Rabi frequencies are calibrated
to be Q. = 27-9.7 MHz, Q, = 27 -25MHz, Q,,,, = 27 -12MHz. The spectrum shows
a significant population of [42P;/5, m; = —3/2), coming from a residual 7 polarization
component of .. The additional residual peaks come from a cycling process that
populates different mp sub-states of [55 5, F' = 2). A magnetic field B, = 6.43G is
estimated from the fine splitting observed between the m; peaks. (b) Density dependent
width of the [42P3/5, m; = 3/2) resonance, extracted from Lorentzian fits. In contrast
to (a), interaction effects play a major role on the lineshape at higher densities. The
spectrum is acquired with Q. = 27 - 5.6 MHz, Q, = 27 - 25 MHz, Q,,, = 27 - 12 MHz.

and after theoretically understanding the excitation process, the resonance of different
my; sub-states of |i) = [42P35) is found and Rydberg-Rydberg interaction effects are
spectroscopically measured. This states can be used in later experiments to prepare
Rydberg spins or to image the evolution of coupled Rydberg atoms. The theoretical
predictions on the AC-Stark shift allow us to calibrate the coupling Rabi frequencies
Q. and $,,.,, leaving €2, as the only experimental parameter that is not calibrated
by spectroscopic methods. In Chapter 3.2.2, a method to spatially reconstruct the

two-dimensional Gaussian profile of €, is presented.

The two optical photons (~ 780 nm and ~ 480 nm) off-resonantly address the
Zeeman sub-state [425; /2, m; = 1/2). The target state |[42P;/5) is addressed by a
microwave field with different polarisation components {o*, 7,07}, as discussed
in Section 2.4.1, allowing for excitation of the m; = {—1/2,1/2,3/2} states. The
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magnetic field induces a Zeeman shift that lifts the degeneracy between the m;
components and allows for independent addressing of such sub-states. Scanning the
microwave frequency v, the spectrum shown in Figure 3.12(a) is recorded by means
of field-ionisation detection after the excitation pulse. Large numbers of ions are
measured at three expected equally-spaced frequencies. In addition a fourth, smaller
peak appears at the expected position of the m; = —3/2 Zeeman sub-state, which can
be explained by misalignment of the polarisation of the 780 nm excitation beam with
the perpendicular direction to the quantisation axis, resulting in a residual m-polarized
component for which two additional o~ photons allow to address the m; = —3/2
state. Small additional peaks with frequency separations exactly corresponding to
the ground state Zeeman splitting are also observed. Such resonances are signature
of transitions from the other hyperfine levels of the ground state [557 2, F' = 2) to
the [42P;/5) state. Population in these states cannot be explained by imperfections
of the state preparation, since the pure mp = 2 hyperfine state is initially excited
with high-efficiency. However, they could arise from coupling to the Rydberg state,
for which the purity of the mpr quantum number is not preserved.

The spectrum in Fig. 3.12 (a) was taken under low-density conditions to minimize
multi-particle interaction effects, which have been reported to strongly modify the
width of the observed transitions [Anderson et al., 2002; Park et al., 2011; Afrousheh
et al., 2004; Afrousheh et al., 2006a; Goldschmidt et al., 2016]. In these experiments,
excitation of the |42P5;, m; = 3/2) is realised at various densities of ground state
atoms and, as shown in Fig. 3.12(b), an increase of the width of the spectral line
at higher densities is observed, which constitutes a signature of van der Waals

Rydberg-Rydberg interactions [Singer et al., 2004].

Calibration of three-photon excitation experimental parameters

Three-photon spectroscopy provides a powerful tool to calibrate the Rabi fre-
quencies and the detunings of the fields involved in the excitation process because
the resonance condition depends on all these parameters according to Eq. (3.25).
Only the measurement of the coupling Rabi frequency €2, = €2, is independently
realized using a method based on a local fitting of the electromagnetically-induced
transparency profile [Gavryusev et al., 2016b|, described in Ch. 3.2.2. By performing
three-photon spectroscopy at different €2, (see Fig. 3.13(a)) while keeping the other
settings constant, we observe that the resonance frequency exhibits a linear beha-
vior with the laser power P, o< Q2 (measured independently), in perfect agreement

with Eq. (3.25). The unshifted resonance frequency is determined from a linear
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Figure 3.13: Calibration of Q2. and €,,,, from the light shift of the resonance.
(a) For a given coupling of €, and €,,,, the intensity of the red beam €. is varied.
The resonant position of the peak [42P3/5,m; = 3/2) undergoes a quadratic light shift
following Eq. (3.21). (b) Analogously, for given Q. and €2, the same procedure can be
applied to calibrate €2,,,,,. We must rely on the fact that the AC-Stark Shift is linear with

the power and therefore find the unperturbed central peak frequency.

extrapolation to zero intensity and afterwards the measured resonance frequencies
are expressed in terms of light shifts S, of the ground state, enabling to use equa-
tion (3.21) to calculate the Rabi frequency §2.. The calibration between P, and )2
is then employed in Figure 3.13(a), revealing a linear relation as would have been

expected from the two-level model, thus validating its use.

A similar unbiased procedure cannot be applied to calibrate the microwave Rabi
frequency €2,,, since the intensity of the microwave source at the position of the
atoms is unknown. Therefore we rely on the same theoretical predictions for the
AC-Stark shift, assuming a linear dependence with Q2 . From the variation of
the spectral peak position for different microwave intensities, the non-shifted three-
photon resonance that leads to a linear relation of the resonance frequency with
Q2. is inferred (Fig. 3.13(b)). From it, the AC-Stark shifts are calculated and
therefore an accurate calibration of €,,, is deduced. Measuring the non-shifted
transition, where €2, = €2,,,, demonstrates the consistency of these measurements,
obtaining a resonance shifted by —96 MHz, in agreement with the experimental
calibration of the detuning within 0.5 MHz uncertainty. In this way all the required
parameters to perform an efficient and controllable excitation of Rydberg |nP)-states

are determined.
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3.3.3 Incoherent excitation of |42P) Rydberg states

In order to precisely control the number of Rydberg atoms excited to |i) =
|42P5 )5, m; = 3/2), it is necessary to characterise and control the number of excited
atoms given by the evolution of the population in |i) with the excitation time teg..
The theoretical model predicts coherent Rabi oscillations between the ground and
the P-states with an effective Rabi frequency Q.4 given by Eq. (3.22). Yet the
measurements show the emergence of a saturation effect after typically 6 us (see
Fig. 3.14(a)), that is attributed to incoherent excitation of the [42P5/,, m; = 3/2)
Rydberg state. This is understood to be a consequence of a large degree of dephasing
introduced by the strong inhomogeneity of the effective Rabi frequency 2. ¢, due to
the Gaussian profile of the coupling beam [Heidemann et al., 2007].
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Figure 3.14: Excitation of [42P;/;,m; = 3/2) Rydberg atoms. (a) Excitation
dynamics as a function of the excitation time ¢.,.. The measurement is done after a
fixed time-of-flight of 1 ms, at a peak ground-state density ng = (7.2640.21) - 10° cm 3,
with Q¢ = Q0 = 27 - 10 MHz, Q, = 27 - 25 MHz. The data shows a saturation of the
number of excitations INV;. A fit with the function N;(teze) = Nsar(1 — e*tEIC/T) gives
Ngat = 206.2 +2.6 and 7 = (2.34 £ 0.11) us. (b) Blockade effect on the excited states.
Repeating the same experiment, we observe a saturation of Ny, while increasing the
ground-state density. To reach high enough densities, the time-of-flight is reduced to
0.5ms. (c) Heating induced by scattering on the |g) <+ |e) transition. The density is
plotted at different excitation times for Q. = 27 -[2.4, 7.1, 21] MHz (resp. dash-dotted
red, dotted green and solid blue lines). The microwave is switched off to avoid density

reduction due to Rydberg excitation. Error bars represent the standard deviation.
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Repeating the experiment for increasing ground-state atomic densities, we observe
a similar behavior of the excitation dynamics on the same timescale, but with different
saturated number of excitations Ngy. In Figure 3.14(b) this number is plotted versus
the ground-state density ng. As can be seen from the plot, a second saturation
effect is observed. This can be attributed to the Rydberg blockade between P-states:
due to their van der Waals interactions, the total number of Rydberg atoms in the
finite volume of the cloud is limited. The value Ny = 218 £ 6 is extracted from
the exponential fit is consistent with a geometrical estimation based on the van der
Waals P — P blockade radius Ry = (C¥/hAV,,)"Y% ~ 4 um, which would lead to
~ 230 Rydberg atoms in the excitation volume. Here, Av,,, is the width of the
resonance at low density, estimated from Fig. 3.12(b)).

The final step to optimize the excitation of [42P5/,, m; = 3/2) Rydberg states
consists in minimizing any heating effects due to large excitation Rabi frequency (2.,
which lead to loss of atoms from the atomic cloud (see Fig. 3.14(c)). In order to avoid
such an effect, the power of the 780 nm laser beam is reduced to €2, = 27 -2.4 MHz
and compensated by increasing the microwave Rabi frequency €2,,,, to 27 - 14 MHz,
such that the effective coupling is not significantly affected. Thus, a well-controlled
method to excite Rydberg spins directly to Rydberg | P) states has been demonstrated,

including high degree of control over all experimental parameters.

3.4 Distinguishability of spin components via selective

optical de-excitation

In the previous sections, excitation mechanisms for the creation of [nS) and
InP) Rydberg spins have been provided. They can be potentially used as two
interacting spin states, coupled by dipole-dipole interactions, as will be explained in
Ch. 4. Experiments exploring the dynamics of such spin system requires independent
measurements of both spin states [1) and ||). As described in Sec. 3.1.6, field
ionisation allows to count the total number of Rydberg spins (see Sec. 3.1) and the
electric fields are set to ionise Rydberg atoms with energies above a certain threshold,
which is selected below the Rydberg state |r) = |{).

To study the dynamics of two coupled Rydberg spins, distinction of each spin
component is essential. For such purpose, here is developed a method which combines
optical de-excitation of one spin state, e.g. |}) = |nS), with the global ionisation
of the remaining higher-lying Rydberg states (originally introduced in [Schempp,
2014, Ch. 7]). A resonant 480nm laser beam, Qg, (see Fig. 3.15), is used to de-
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Figure 3.15: Scheme for preparation and down-pumping of the spin states. The
spins are prepared in the Rydberg state |r) by means of a two-photon off-resonant process.
After preparation, the spin state evolves during a time t4eq,. The fraction of spins in
the state |r) is projected down to the ground state |g) by means of a down-pumping

resonant laser beam towards the rapidly-decaying intermediate state |e) = [5P;/5).

excite the spin down state into the intermediate state |e) = [5P5/,) which rapidly
decays into the ground state, potentially allowing to transfer the whole of the system
lg), potentially allowing to transfer the whole p,, population into p,y. The beam
covers a significantly larger region than the excitation beam §2,., so the depletion of
population is efficient in all regions of the cloud. Whereas other experiments rely on
this scheme to measure the Rydberg population on a single spin state by measuring
the fluorescence from |e) generated by the de-excitation procedure [Schauft et al.,

2012], our experiments use of it to distinguish different Rydberg components.

As can be observed in Fig. 3.16(a), the population in the Rydberg state (p,)
quickly evolves towards the ground state (py,). The intermediate state (p..) decays
to the ground state in a time-scale 7, ~ F% The simulations in Fig. 3.16(b) show an
optimal depletion of the Rydberg atoms at €24, ~ I'.. This process is considerably
slower if €4, < I'., whereas the efficiency does not increase when 24, > I'., since the
fastest time-scale is set by the spontaneous decay I',!. Damped Rabi oscillations may
appear during this transient time. In Fig. 3.16(c), a de-excitation experiment reveals
the predicted behaviour for 4, < I'.. Nevertheless, deviations arise in the efficiency

of the process: a residual fraction of atoms ~ 4.1 % remains at the steady-state,
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whereas simulations predict complete depletion of the spin state.
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Figure 3.16: (a) OBE simulation of the evolution of populations py, (golden), pee
(violet), prr (green) according to the couplings described in Fig. 3.15(c). Qg,/2m =
/27 = 6.067 MHz. (b) Fraction of Rydberg atoms p,, as a function of coupling
time to the resonant down-pumping beam at Qg,/27 = 15MHz (blue), Qg,/27 =
I'e/2m = 6.067 MHz (green) and €4,/2m = 1.25 MHz (red). (c) Fraction of atoms in
the prepared [425 /5, m; = 1/2) state with respect to the down-pumping time ¢4,. The

residual number of background atoms saturates to N,.s/Ny ~ 4.1 %. The exponential
fit shows a down-pumping rate I'y, = 2 MHz.

In order to understand the limitations described in Fig. 3.16(c), the time-
dependence of the down-pumping efficiency is explored. Rydberg atoms are excited
to |r) = [4251,2) during a t.,. = 5 us excitation process, as described in Fig. 3.15(a).
After the excitation, a certain number of Rydberg atoms Ny is detected via field-
ionisation. The experiment is repeated with different delay times ?4¢4,, between the

excitation and a tg, = 3 us down-pumping pulse, obtaining the residual population
N (tdetay)- The efficiency of the process is given by

N(tdelay)
—_— 2
) (3:27)

which represents the fraction of de-excited atoms.

Ndp (tdelay) =

As observed in Fig. 3.17, the down-pumping efficiency decreases with time, with
a rate I'; = 7.701 kHz, which can be attributed to population of additional Rydberg
states, not addressed by the down-pumping laser, due to black-body radiation induced
decay. According to the calculations explained in Sec. 2.1 (see Fig. 2.1), the global
black-body transition rate from |r) = [425/9) is I'y,,q = 13.244kHz, given a room
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temperature T' &~ 295 K. The discrepancy between the theoretical and the measured
rates, I'py,, = 1.719 x I';;, comes from the selection of our ionisation threshold. Thus,
the residual population corresponds to the fraction of atoms above n > 42, including
a fraction of atoms decaying to [42P) due to the proximity of its binding energy to

the ionization threshold.
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Figure 3.17: Down-pumping efficiency 74, for various delay times 4., between the
preparation of the Rydberg spins in the [425, /5, m; = 1/2) state (texzc = 5 ps) and the
down-pumping pulse (¢4, = 3 us). The fraction of down-pumped atoms decreases over
time with a rate I';) = 7.701 kHz.

Additionally, the first order decay rates to individual Rydberg states are cal-
culating, using Eqgs. (2.4, 2.5). For states above the original [425), a total rate of
5.328 kHz is predicted. A simple model with this rate predicts a residual fraction
of atoms in higher black-body states of 4.26 %, slightly smaller than the 5.39 %
observed. However, the experimental observation I',, = 7.701 kHz can be understood
by including 57.4 % of the decay to |41P) state. Therefore, this experiment can be
used to calibrate the ionisation threshold. The time origin of the linear fit from
Fig. 3.17(a) suggest that the redistribution of Rydberg atoms starts ~ 6.922 pus before
the down-pumping experiment is complete. This is consistent with a redistribution

process during the excitation (5 us) and down-pumping (3 pus) time.
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3.4.1 Optimal conditions

Black-body redistribution of Rydberg states plays an important role because it
affects spin experiments in several ways (see Ch. 4). On one hand, it reduces the
lifetime of the Rydberg spin states and constrains the time scale to explore the driven
dynamics of the Rydberg spins. On the other hand, it creates additional Rydberg
atoms that distort the precision on the detection of different spin components, since
it is not possible to directly detect to which Rydberg states the atoms have been

transferred by stimulated emission. The first limitation is overcome by driving the

dynamics on a much shorter timescale than the decay time of the Rydberg spins.

A third potential limitation of black-body redistribution concerns the introduction
of undesired interaction effects on the spin dynamics. Whereas the interaction
between atoms in well-defined spin states |nS) < |nP) or |nS) <> |n'S) can be
easily described in terms of spin operators (Sec. 2.2), this reservoir of Rydberg atoms
in various states contributes to additional interaction effects, acting a strong local
perturbations despite the total fraction of atoms in black-body redistributed states
is one order of magnitude smaller than the actual spin fraction. In order to reduce
the black-body decay fraction, a fast excitation of the spins and an efficient and
quick down-pumping are beneficial. Therefore, for the experiments presented in

the following chapter, we use a focused excitation beam with high coupling Rabi

frequency 2. and a slightly broader but intense down-pumping beam with g, > I'..

3.5 Prospects

In this chapter, three excitation schemes have been described, implemented and
characterised to potentially create Rydberg spins in two-different principal quantum
numbers (Sec 3.3 and Sec. (3.1, 3.2), respectively) and an efficient de-excitation
procedure is proposed to selectively discern the spin-state evolution (Sec. 3.4). This
is applied in spin experiments to characterise the magnetisation of the spin ensemble,
as described in Chapter 4. Schemes off-resonant from the intermediate states have
been demonstrated to be more convenient for the preparation of spins due to the well
defined distribution of Rydberg excitations, whereas the two-photon resonant scheme
(used in [Pineiro Orioli et al., 2017]) generates an inhomogeneous toroidal distribution,
with suppression of population (and therefore, of the spin-spin interaction) in the
center of the excitation region, where the EIT is strong. Excitation mechanisms
based on the stimulated Raman adiabatic passage (STIRAP) from ground to a

Rydberg state may be implemented to achieve high transfer efficiency in a low
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density regime [Cubel et al., 2005; Deiglmayr et al., 2006].

In addition, an imaging technique has been demonstrated to characterise the local
excitation dynamics, revealing the emergence of an extended flat-top distribution in
the Rydberg atom two-dimensional profile as a consequence of the strong van der
Waals blockade in the many-body regime. This imaging tool constitutes an excellent
diagnostic probe tool for future local studies of scaling dynamics of the Rydberg
excitation [Heidemann et al., 2007; Léw et al., 2007|, dependent on the local ground
state atom number N(z,y) and Rabi frequency €4 (z,y), allowing to investigate
a large parameter space where many different regimes are expected [Valado et al.,
2013; Helmrich et al., 2016]. Further applications of this technique may reveal the
local seeding dynamics of the creation of Rydberg aggregates [Schempp et al., 2014;
Malossi et al., 2014].

Finally calibrating detection efficiency of the ion signal collected on the MCP
detector by means of this imaging technique permits us to obtain accurate Rydberg
atom numbers in different density regimes, which constitutes an important observable

to understand the properties of the spin dynamics, presented in the next chapter
(see Ch. 4).



Chapter 4

Dynamics of a non-interacting

Rydberg spin-1/2 system

Rydberg atoms are well known to possess extreme properties like huge transition
dipole moments (x n*?) and enhanced lifetimes (o< n*3) [Gallagher, 1994]. Intensive
studies have been realised in the last decades in order to understand the effects of
van der Waals (x 37) [Singer et al., 2004; Tong et al., 2004] and dipolar (x 73)
[Mourachko et al., 1998; Anderson et al., 1998] interactions. The possibility of
controlling such interaction effects opened the path to perform quantum computation
and quantum information processing with Rydberg atoms [Jaksch et al., 2000;
Lukin et al., 2001; Saffman et al., 2010] and the implementation of dipole-blockade
mediated quantum gate [Isenhower et al., 2010]. The observation of collective
Rydberg excitation dynamics [Heidemann et al., 2007; Reetz-Lamour et al., 2008a]
triggered investigations on many-body physics with Rydberg atoms |Gallagher and
Pillet, 2008; Browaeys et al., 2016].

The strong tunability of the interactions, through inter-atomic distance and
quantum numbers, has been used to vary the energy range of the interactions from
a negligible strength to few kHz, MHz or even up to several GHz. In recent years,
cold Rydberg gases were demonstrated to constitute a versatile platform to perform
quantum simulation of Ising quantum magnets [Low et al., 2009; Schaufs et al., 2015]
using ground and Rydberg states as spins. Several proposals have been realised in
order to establish Rydberg atoms as a broader platform for quantum simulation
of Ising, Heisenberg XX and Heisenberg XX7 Hamiltonians [Bettelli et al., 2013;

van Bijnen and Pohl, 2015; Whitlock et al., 2017] with different long-range scaling
within the Rydberg manifold. Achieving fast driving Rabi frequencies of few MHz

(o ), as discussed in Chapter 2. This requires control of different spin states
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is not a complex task in the Rydberg manifold due to the huge dipole matrix
elements. Thus, encoding a spin on a Rydberg quantum state can reveal a fast
dynamical evolution of several Rabi cycles on typical timescales of few ps, dominated
by microwave-induced couplings instead of Rydberg-Rydberg interactions. These
timescales are much faster than those dominating the dynamics of ground state cold
atoms (~ 100 kHz) [Matthews et al., 1998; Windpassinger et al., 2008], trapped ions
(~ 100kHz) [Schmidt et al., 2005] or polar molecules (~ 1kHz) [Ospelkaus et al.,
2010] and similar to those driving electronic spins in vacancy centers |Golter and
Wang, 2014]|. Whereas efficient manipulation of two and three spins and observation
of their dynamics have already been proved [Ravets et al., 2014; Barredo et al., 2014;
Ravets et al., 2015; Barredo et al., 2015; Labuhn et al., 2016], much is still to be

investigated in the many-body regime.

In the present chapter, efficient control of the quantum state of hundreds of
spins driven between two Rydberg states by a microwave field in a cold atom
set-up is demonstrated. Transitions between Rydberg states |nS) < |nP) and
InS) <> |(n +1)S) have been considered, driven by one and two microwave photons,
respectively |[Ryabtsev et al., 2005|. The impact of imperfect spin preparation, field
fluctuations and spin-state redistribution is characterised. Additionally, Ramsey
interferometry [Ramsey, 1950] and rotary echo [Solomon, 1959; Rhim et al., 1971]
sequences are implemented to measure the visibility, coherence T time and phase
shifts of the Rydberg spins. This work aims to provide a well-controlled platform
to investigate interaction-induced Rydberg dynamics with negligible single particle
limiting effects. Additionally, by mapping the microwave field on the atom dynamics,
we establish an alternative approach to microwave electrometry [Sedlacek et al., 2012;
Anderson et al., 2014; Anderson et al., 2016; Oelsner et al., 2017].

This chapter is structured in the following way. First, efficient microwave control
of Rydberg-Rydberg transitions is demonstrated in section 4.1, for both single-photon
and two-photon transitions within the Rydberg manifold. Additionally, experimental
limitations on the observation of coherence are discussed in section 4.2. Subsequently,
a theoretical mapping of the Rydberg atoms as a Rydberg spin-1/2 system is presented
in section 4.3. Special emphasis is given to the description of the time evolution
and the magnetisation reconstruction of the spin ensemble. Section 4.5 shows a
tomographic approach to Rydberg spin interferometry. Finally, section 4.6 reveals
the observation of coherence amongst the spins, quantifying the visibility and T3

coherence time of the spin ensemble by means of Ramsey interference experiments.
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4.1 Microwave driving of Rydberg transitions

Accurate microwave driving of Rydberg atoms is essential to control the quantum
state of Rydberg spins. Here, we present investigations on the driving of one- and
two-photon Rydberg-Rydberg transitions for a three-dimensional disordered sample
of ultracold atoms. The experiments introduced along this section are limited to
the low Rydberg density regime, where the interactions between the atoms play
a negligible role, whereas additional phenomenology due to dipolar effects can be
observed in Chapter 5 (Sec. 5.1). The schemes for driving the desired transitions
and the characterisation of the experimental results in terms of effective two-level

systems are discussed.

4.1.1 Experimental procedure for one- and two-photon Rydberg-
Rydberg transitions

In order to experimentally observe Rydberg-Rydberg transitions, we apply the
experimental sequence sketched in Figure 4.1(a). Rydberg states are excited by
means of a two-photon pulse of length t.,. from the ground state of Rb to a
Rydberg state |nS,m;), as previously detailed in Sections (2.4,3.1). A microwave
field oscillating in the few-GHz regime addresses the desired transition between

Zeeman substates with the allowed polarisation. The transition is probed during
/
J
microwave photon. Successful observation of Rabi oscillation with no significant

a time t.,. Transitions between [nS;/y, m;) < [nP;,m/) are driven with a single
effect of additional m; transitions has already been reported in [Pineiro Orioli
et al., 2017|, for |48S: /2, m; = 1/2) < |48P5/5, m; = 3/2) transitions. In addition,
transitions amongst |nSy/2,m;) <> [n'S1/2,m)) are accessible with two isochromatic
photons. The later condition implies that the individual photons are detuned from
the intermediate |nP) states. As a result, the Rydberg states are coupled with a Rabi
frequency Q. A complete scheme of the transitions is provided in Figure 4.3(a.1),(b.1).
A magnetic field B, = 6.1 G is set in the direction of the laser fields during the
experimental sequence to set our quantisation axis and split the Zeeman sub-levels
of |nS),|nPyj2), and |nPss) by ~ 17.1, ~ 5.7 and ~ 11.4 MHz, respectively. Two

reasons motivate the removal of the m; degeneracy:

e Suppress the effect of quantum beats due to driving of additional transitions
with different polarisation of the microwave field [Ryabtsev and Tretyakov,
2001|. Therefore, A, > Q of the effective transition.
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Figure 4.1: (a) General technique for manipulation and detection of Rydberg
spins. During the initialization, the atoms are excited to the Rydberg |]) (red and blue
excitation pulses). The spin dynamics evolves under the effect of the Hamiltonian H.
|{) is eliminated by a down-pumping (blue pulse). By means of an electric field pulse,
the remaining Rydberg atoms above the ionisation threshold are ionised and read out.
(b) Control of the quantum state of the spins. The field vector ( (green) and the
spin-state vector (red) are represented. The spins evolve on the plane orthogonal to
@. The global spin state |¥) = cos(4) [4) + ¢i(o+3) sin(4) 1) can be rotated to any
arbitrary point of the Bloch-Poincaré sphere.

e Reduce dipole-induced coupling of the Zeeman sub-levels in future studies of
interaction-driven dynamics [Tresp et al., 2015; Vermersch et al., 2016]. For

such reason, Ay > Vi,

Finally, a 480 nm laser beam, resonantly coupling [n.S, m;) and |5Ps /9, F' = 3, mp = 3)

during ?4,, pumps the population in such Rydberg state outside the Rydberg manifold
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and allows to distinguish the different spin components (further details may be
consulted in Section 3.4). Immediately afterwards, an electric field is ramped to
ionise the remaining Rydberg atoms and to guide them to our MCP detector.
These experiments can be understood in terms of the Bloch-Poincaré picture as the
coupling of two quantum states |]) and |1). As presented in Figure 4.1(b), rotations
of the spin state of the driven system are characterised by two-coordinates, # and ¢.
The length t., and strength Q2 of the microwave pulses determine the rotation of the
state between the poles, with the angle § = 0 = () -t.,,, which establishes the degree
of superposition of both states, where .y = VQ2 + 4A2?, whereas ¢ = ¢ + 2A -t
determines the position of the field vector ¢ = Q (cos(¢)z + sin(¢)y) — 2AZ on the
xy-plane. Hereafter, we consider ¢y as the phase of the microwave field. For a single
microwave pulse, the phase may be arbitrarily considered to be ¢ = 0. Under the
effect of the driving field, the spin vector ﬁw can precess about ¢ [Riehle, 2004; Steck,

2007], as

dRCZ(t) — X Bu(t). (@.1)

Thus, the system can be described as the evolution of a general state ¢(t.,) under

coherent evolution given by the Hamiltonian
H = Q- (cos(®) - Sy + sin(¢) - S,) + 2A(S, — 1). (4.2)

In the resonant case, given A = 0, the spin evolution can be simplified to

e(t)) = cos 5 ) 10+ D sin( ) ). (43)

4.1.2 Microwave spectroscopy of Rydberg-Rydberg transiti-

ons

In order to explore the quality of our experimental procedure, we perform spectral
measurements of both |nS) <> |[nP) and |nS) < |(n+ 1)S) and observe the atoms
transferred to the spin-up state [1). In the low-density limit, without interaction-
induced broadening and with negligible decoherence sources, the driven transitions
are expected to follow the behaviour described by the Rabi-Breit model [Breit and
Rabi, 1931|. For two and three levels, the formulas that describe the spectrum are
expressed as

Py = 2 (EM) (4.4a)
e ™ ga2 4 2 2 '
QQ
Pires = 4(A — Apg)? + 2

sin® (tv/4(A — Apg)? + Q2), (4.4b)
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where pp4 refers to the transition probability from ||) to [1), as defined in [Ryabtsev
et al., 2005]. Arg is the power line shift contribution to the total detuning, which

will be characterised in Sec. 4.1.3.

(a) (b)
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Figure 4.2: Spectral profile of spin-up population fraction p+ for one- ((a))
and two-photon ((b)) microwave transitions between Rydberg states. (a) Single-
photon transition [42.5 /5, m; = 1/2) <+ [42P5)5,m; = 3/2). The microwave driving
time is set to 2 us. Line corresponds to a fit to the Rabi-Breit formula from Eq. (4.4a).
The population of atoms driven to external Rydberg states is observed to be negligible.
Q=27 x 0.50 £ 0.01 MHz, N = 262 £ 7 spins, vy = 53.830 GHz. (b) Two-photon
transition [485 /5, m; = 1/2) < 498, /9, m; = 3/2) for a 0.5 us microwave pulse at
two different effective Rabi frequencies: 2 = 27 x 1.22 + 0.04 MHz (blue squares) and
=27 x 1.58 + 0.02 MHz (green circles). The fitted offset reveals that 1.85 % of the
atoms are driven outside the spin-state transition. N = 566 = 37 spins, vy = 36.037 GHz
(blue); N = 591 + 45 spins, vy = 36.037 GHz (green) Lines correspond to a fit to the
Rabi-Breit formula for three-levels (see. Eq. (4.4b)). Error bars are given by one standard

error. Data are the average of 10 repetitions.

In Figure 4.2, the frequency-dependent profile of |]) = [4251/9,m; = —1/2)
1) = [42P3/9,m; = —=3/2) and ||) = [48S1/2,m; = 1/2) < |1) = |4851/2,m; = 1/2)
is shown. The measurements are fitted to the equations (4.4a,4.4b), showing good
agreement. The width of the spectral peaks corresponds to the Fourier limited given
by the Fourier Transform of the pulse temporal width. Such good agreement to the
theoretical limiting predictions demonstrates the small effect of dephasing sources on
the short timescales of the pulses. Additional analysis of the experimental limitations
of the driving will be presented in Section 4.2. By splitting the Zeeman sub-levels

with a magnetic field B, = 6.1 G, a complete isolation of the one photon transition
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is achieved, with a negligible fraction of atoms driven to neighbouring sub-states
(Fig. 4.2(a)). Analogously, we can observe a less efficient isolation in two-photon
excitation, where a significant percentage (~ 1.85% in Fig. 4.2(b)) of the atoms

evolve outside the desired transition.

4.1.3 Microwave field dependency of Rydberg-Rydberg tran-

sitions

The Zeeman splitting of the Rydberg spin sub-states allows us to assume an
effective two-level approximation to drive the transition between two specific sub-
states. In order to confirm such approximation, we characterise the relation between
the microwave power and the observed Rabi frequency of either one- and two-photon
transitions.

In Section 4.1.2, the transition probability has been measured spectroscopically,
by resonantly probing the transition for a variable driving time t.,, allowing for the
observation of coherent Rabi oscillations. The Rabi frequency €2 can be precisely
calibrated from a fit to pyp = 3[1 — cos(Q-t)- exp(—t?/o?)]. A more extensive
analysis of this phenomenon is presented in Section 4.2. For |nS) — |nP) transitions
the Rabi frequency is expected to scale linearly with the electric field, whereas for
|nS) —|(n 4 1)S) transitions, the relation is proportional to the product of both Rabi
frequencies and, therefore, quadratic with the microwave field. Ideally, for ultracold

atoms, the Rabi frequency is given as

1 E|

Q(l—'y) = T (45&)
fu iz B

Qe = “5pan - (4.5b)

Independent measurements of the electric field involved in the coupling are not
accessible due to the extended intensity profile emitted by the microwave antenna,
which makes it impossible to map the field amplitude at the position of the atoms.
However, the scaling relation can be still characterised, as microwave power output
is proportional to the square of the field amplitude, P o |E|>. In Figure 4.3,
the calibration of the scaling behaviour is presented. We show results for the
transitions (42512, m; = —1/2) < [42P3/9,m; = —3/2) and [48S5)/5,m; = 1/2) <
14951 2, m; = 1/2), respectively. The observations confirmed that single-photon
transitions amongst well-separated m; sub-states follow the expected proportionality

with the electric field (Fig. 4.3(a.2)) and the two-photon processes scale quadratically
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(Fig. 4.3(b.2)), despite possible interference effects of the multiple paths, represented
in Fig. 4.3(b.1).

Another important evidence of the validity of the effective two-level approximation
is demonstrated by the measurement of the spectral light shift A;g. At increasing
Rabi frequencies, a shift in the resonant position is measured. Compared to the
measured Rabi frequency of the [485) /2, m; = 1/2) < 4951 /2, m; = 1/2) two-photon
transition, a linear scaling is observed, with a fitted slope ~ 0.05140.001. Theoretical
analysis of two-photon light shift [Ryabtsev et al., 2005| leads to the following

behaviour

(i — p3)|E? i — 3
Ao — _ 0 4.6

thus, predicting a slope ~ 0.025.

In addition, we can rely on the precise knowledge of the dipole matrix elements
(see Appendix B) to perform local measurements of the microwave field, using the
atoms as a sensor. We are sensitive to microwave fields smaller than |E| ~ 1 % in
the present conditions, which can be further enhanced with a tailored selection of
states. This constitutes a precise and highly sensitive technique to perform microwave
electrometry in a cold gas of Rydberg atoms with reduced amplitude uncertainty;,
as an alternative to other methods based on microwave Autler-Townes splitting
of Rydberg-EIT spectra in thermal vapour cells [Sedlacek et al., 2012; Anderson
et al., 2014; Anderson et al., 2016]. Sensitivities of |E| ~ 8 % have been reported in
[Anderson et al., 2014| for the degenerate transition |62S51/2) > |62P3/5), for which
we expect a factor of ~ 2.2 sensitivity enhancement due to the o< n* scaling of the
transition matrix elements. Our atomic detection via calibration of Rabi oscillations
surpasses the to-date reported level of sensitivity and presents polarisation selectivity.
As a counterpart, this requires the implementation of a more complex cold-atom and
detection scheme, with less perspective for future miniaturisation and commercial

development of microwave sensors [Holloway et al., 2014].

In conclusion, our investigations reveal a precise control of one- and two-photon
microwave driven transitions and prove the validity of the effective two-level approx-
imation in the explored range. Nevertheless, enhancement or suppression of the
effective coupling €2>_,) could happen due to interference of multiple pathways in
the two-photon case, as sketched in Fig. 4.3(b.1).
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Figure 4.3: Experimental preparation of a Rydberg spin-1/2 system addressed
by one- ((a)) and two-photon transitions ((b)). (a.1) Level scheme for nS-nP
transitions separated by Zeeman shift. Rydberg atoms prepared in the selected spin
state, e.g. |]) = |nSij9, m; = 1/2), are coupled to the spin-up state, e.g. [1) =
|nP3/9,mj = 3/2), by means of a microwave field with three polarisation components.
The Zeeman m; sub-states are split by a magnetic field B, ~ 6.1 G that strongly
suppresses population transfer to neighbouring sub-states. (Zeeman splitting to scale.)
(a.2) Measured Rabi oscillations reveal a linear relation between the Rabi frequency
and the generated output field v/P (measurements taken for 4251 /2, mj = —1/2) <
|42P5 /5, mj = —3/2)). The amplitude |E| of significantly weak microwave fields is
accurately inferred. (b.1) Level scheme for nS-(n + 1)S transitions. Rydberg atoms
initially prepared in an n.S Zeeman sub-state, e.g. [|) = [nS /3, m; = 1/2), are coupled
to a Zeeman sub-state of (n+1)S by means of two photons of equal frequency, addressing
the intermediate nP;/, state with a large detuning A from the reference m; = 3/2,
which suppresses single-photon processes. A residual fraction of population can be driven
to the neighbouring Zeeman S /5 sub-states. (b.2) Consequently, driving of spins results
in an effective two-photon transition with Rabi frequency Q o |E|?, observed in the linear
relation of € to the microwave power P (for [4885 /5, m; = 1/2) <> 495 5, m; = 1/2)).
(b.3) Linearity of spectral AC-Stark shift Arg with the effective Rabi frequency (.
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4.2 Limitations to the observation of coherent Rabi

oscillations

In order to explore the dynamical properties of Rydberg spins under different
conditions, we aim to comprehend on which timescales we can observe coherent
Rabi oscillations. The dephasing due to frequency fluctuations of the microwave
field is negligible in comparison to any other timescales of the system, whereas the
loss of spins is small on timescales of few microseconds due to the large lifetimes of
Rydberg atoms (see Section 2.1). The wavelength of the microwave field that can be
generated by our Anritsu MG3697C microwave synthesizer ranges from ~ 4.5 mm
to ~ 150 mm, as discussed in Section 2.5. Therefore, it is reasonable to assume a
spatially homogeneous microwave field over the whole region of the Rydberg atoms
(~ 60 um). Such synthesizers also provide remarkable power stability, so the intrinsic
temporal power fluctuations should make a negligible impact on the experimental
observations. Taking all these factors into account, observation of full contrast in
resonant Rabi oscillations should be possible over ~ 10 us. Nevertheless, fluctuations
in the microwave intensity were measured by collecting the radiation from the
emitting microwave antenna with a second antenna after the experimental chamber.
Such fluctuations play an important role on the damping of the Rabi cycles. The
underlying process leading to intensity fluctuations of the field at the cloud position
may be related to interference effects of the field within the experimental apparatus.
As our experimental chamber presents metallic surfaces, the emission pattern of the
microwave field can be strongly reflected. Thus, the atoms could be affected by an
intensity pattern emerging from the interference of different contributions. Any small
variation of the optical path can generate a local variation of the relative phase of
the interfering fields and, thus, a temporal fluctuation in the intensity pattern. Such
random phase fluctuations would lead to temporal Gaussian fluctuation of the local
intensity at the position of the Rydberg atoms. Hence, this process can be modelled
by assuming a Gaussian distribution of intensity over time.

Considering a two-photon transition, [nS) < |(n+1)S), the transition Rabi
frequency () has been demonstrated to scale linearly with the microwave power
(Section 4.1). Therefore, Gaussian fluctuations of the microwave intensity may be

modelled as a Gaussian probability distribution of Rabi frequencies

dPQ 1 _922
2250 = 208 4.
o= (1.7)

In this case, the dynamical evolution can be solved analytically. For a single Rabi
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oscillation, the time evolution of the spin population in the |1) state, py4, is commonly
described as be

prs(t, Qo) = sin? <%) _ 1‘%8(900 (4.8)
In order to include the effect of Gaussian fluctuations on the Rabi frequency, the
Fourier transform of both frequency-dependent functions must be integrated in
the time domain thus leading to the following general expression for the spin-up
population

—ogt?

prote) = T E (19

The simplicity of the analytical solution from Eq. (4.9) allows for precise experi-

mental inference of the microwave intensity noise. As can be observed in Fig. 4.4(a),
our normalised Rabi oscillations present a significant dephasing. In order to account

for the dephasing rate, damped oscillations are fitted to the function

2
prr(t) = é <1 — cos(Qot) - e_;z) : (4.10)
A linear correlation between the dephasing rate o' and the Rabi frequency €y/27
is directly inferred (Fig. 4.4(b)), which implies the observation of a constant number
of Rabi cycles, o, - Qy/2m independently of the driving Rabi frequency. Given that
the noise distribution is assumed to be Gaussian (Eq. (4.7)), the fraction of intensity
fluctuations C' is defined as the quotient between the distribution frequency width
oo and its maximum 9. As a consequence, oq and its associated intensity noise are
predicted by comparing this correlation to the experimental dephasing rate of the

Rabi oscillations o~!. This is described by the simple expression

oo V2
QQ UT'QO

(4.11)

Thus, the microwave intensity fluctuation C' is directly proportional to the slope

of Figure 4.9(b), s = C\'/gﬂ, proving that only a fixed limited number of Rabi cycles
can be distinguished. The experiments show evidence of an initial 7.3 +0.5 % relative
variation of Rabi frequency (red curve), which corresponds to 3.1 + 0.1 coherent
Rabi cycles. To reduce this dephasing source, the microwave intensity stability could
be considerably improved by using metallic materials to guide the field between
the microwave antenna and the experimental chamber. Limiting the reflections and

interference effects of the microwave field with different parts of the set-up reduced
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Figure 4.4: Normalised two-photon Rabi oscillations between (485 /5, m; = 1/2)
and [49S)/5,m; = 1/2). (a) Comparison between Rabi oscillations without (red,
Qo/2m = 1.081 + 0.004 MHz) and with intensity stabilisation (turquoise, Qg/27 =
1.414 £ 0.003 MHz). A significant increase of the number of observed oscillations can
be appreciated after reducing the microwave intensity noise. Lines correspond to fit
with Gaussian envelope as described in Eq. (4.10). (b) Dependence of the dephasing
rate o, 1 on the Rabi frequency for experiments performed with (turquoise) and without
intensity stabilisation (red). The slopes reveal power fluctuations of C' = 7.3 £0.5% and
C = 2.440.2%, respectively, that correlate dephasing time 0! and Rabi frequency
for each set-up. (c) Measured (blue) and predicted (green line) number of Rabi cycles
within the dephasing rate o, given by o, -Qg/27, as a function of the percentage of
fluctuations C'. The number of cycles is independent of the measured Rabi frequency €.
Data are the average over 10 (turquoise) and 20 (red) realisations. Error bars are given

by one standard error.

the relative fluctuation to 2.4 + 0.2% (turquoise curve) and allowed to observe
an increased number of 9.3 + 0.2 Rabi cycles within the dephasing time o, (1/e).
Whereas the intensity fluctuations produce damping of the Rabi oscillations, they
would lead to Gaussian broadening of the spectrum for long driving times, when
the spectral width can no longer be reproduced by the Fourier limited Rabi-Breit
formula (see Section 4.1).
For the case of a single-photon transition, [nS) <> [nP), the Gaussian probability
distribution of power leads to a non-Gaussian Rabi frequency probability distribution
such as

dPp 1 —r? dPq 20 =
—2(P) = 20 =) = 2% 4.12
= = e Y e 12
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The Fourier transform of such distribution, which describes the envelope of the
temporal evolution is a more complex function, inappropriate to analytically describe
the field fluctuations. Nevertheless, the resultant distribution of Rabi frequencies
presents a shape that can still be approximated by a Gaussian. Thus, an oscillating
function with a Rabi frequency dependent Gaussian envelope can still constitute a
good model to describe |n.S) <+ [nP) oscillations.

The experiments discussed in this section revealed that power instability of the
driving field constitutes the principal limitation to the observation of coherence in
Rabi oscillations. Further improvement of the power stability would be beneficial,
in order to exclude dephasing effects from the driving field to play a role on more
refined experimental sequences. The effect of our field fluctuations on specific pulse
sequences will be quantified in Section 4.5. In addition, implementation of BB1
control sequences allows to perform oscillations between the spin states with reduced
effect of field intensity fluctuations [Morton et al., 2005].

4.3 Modelling the dynamics of non-interacting Ryd-
berg spins

In Section 4.1, the experimental approach to drive Rydberg-Rydberg transitions
has been presented. However, the fundamental limitations on the coherence of
Rydberg spins must be discussed. In this section, the behaviour of the spin system
is described with a simple model of two-level spins plus a third level which accounts
for the decay of the spin populations, acting as a container of additional states. The
coherent evolution is described by its Hamiltonian in the rotating frame (details can
be consulted in [Steck, 2007]) and the decoherence processes are considered by a
Lindblad superoperator. The evolution of the system is described in terms of its
density matrix [Blum, 2012].

The spin states |}) and 1), are coupled by means of a microwave field, with Rabi
frequency €2. A third state |c) includes the population of any other additional states.
The basis {], T, ¢} forms the Hilbert space of our model.

Two loss mechanisms are considered:

(i) Spontaneous decay from the spin states towards allowed dipole transitions.
This process presents negligible rates to nearby Rydberg states and high rates

to low-lying quantum states.

(ii) Stimulated black-body decay from the spin states. This phenomenon redistri-
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Figure 4.5: General level scheme to model the dynamics of Rydberg spins. (a)
Two Rydberg spin states ||) and [1) are coupled through a microwave field with Rabi
frequency 2. The population on the spin states is reduced due to loss of population
towards a container of additional states |c) and their coherence is limited by the interstate
decay I'y| (given I' |4 = T'4). (b) Experimentally, all states above the ionisation threshold
are detected. The redistribution of ||) and |1) spin states causes that a fraction of the
population decays to states above the ionisation threshold, |a), with rates I'|,, T'4,,
whereas the rest is lost to non-detected states below, |b), with rates I'j, I'yy. The
detection of ||) is discriminated by means of a rapid down-pumping pulse €4,, which
depletes the ||) population before detection. Independent experiments are required to
measure the decay rates towards |a) and |b).

butes spin populations towards dipole-allowed nearby states. A fraction of this
decay evolves bidirectionally between both spin states, incoherently exchanging

population.

The spin decay is quantified by the decay rates I'j., I't. from the spin states to
the container state |c). Such rates include the effect of spontaneous emission and the
fraction of black-body stimulated emission which evolves outside the two spin-state
sub-space {J},T}. Furthermore, the decay rates I';|,I'|+ account for the internal
decay between the spins. For Rydberg-Rydberg transitions, such rates are congruent

I'y; 2 T'j4+. The details of out schematic model can be consulted in Figure 4.5(a).
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4.3.1 Optical Bloch equations’ solution

To describe the coupled atom-light system, we consider the spins in the low
density regime, such that spin-spin interaction effects can be neglected. In the dipole

and rotating wave approximations, the system is described by the Hamiltonian

L (0 9 0
7%:5 Q —2A 0], (4.13)
0 0 0

in the basis {{, 1, c}.

The complete evolution of the dynamics and what limits the coherence time we
use the density matrix formalism and derive the master equation for the single atom
density matrix p

. (2
p= _ﬁ[Ha P] + ‘Cdec + *Cdeph (414)

where p;; = Pik and L4 is the Lindblad superoperator, accounting for the loss of

coherence due to population decay amongst the involved states
1
Lace=—73 %j(c,ickp + pCiCy) + Ekj CipC (4.15)

with the decay stength of the k — th decay channel defined by the collapse operators

C. In our model, the decay channels involved are the following

C\Lc = \/F_@|C> <\L| ) CTC = \/F_TC|C> <T| P

4.16
Cip=vIuM W, Cu=Tulb Al 10

The terms C|. and C4,. correspond to the decay from the states |]) or |1), respectively,
to the reservoir state |c), whereas C|4+ and C4 account for the rate of black-body

induced decay from [||) to |[1) and vice versa.

Since the driving microwave signal presents few hertz stability, we can ignore
the Lindblad term Lg,, related to dephasing. Hence, the matrix elements p;; are

described by a set of time-dependent coupled equations, so called Optical-Bloch
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equations (OBEs):

pr = —(Lig +Tie)pyy + o — 55 (o1 — pus) (4.17a)
prt = =Ty +Tre) pre + Loy + 15 (010 — p11) (4.17Db)
Pec = Liepry + Treprr (4.17¢)
pir = —5(Tpr + Trp + Tpe + T ) pis = 55 (o1 — 1) = 5801 (4.17d)
Pre =—2(Tp 4+ 1) pre — £ 2p1e (4.17e)
pre = —5(Crs +Tre) pre = 53010 — $001 (4.17F)
pri= (Pr)” (4.17g)
pep = (P1e)” (4.17h)
pet = (Pre)"- (4.171)

The numerical integration of equations (4.17) describes the general evolution of
the spin system. To fully understand the dynamics of the non-interacting spins, the
evolution of the spin projections under driving conditions has to be understood. For
such purpose, the evolution of the expectation values of the spin operators (Sa> has
to be described. For a spin—% system with loss of particles to a non-involved reservoir,

the components of the spin vector can be defined as

0 — 0
-1

0

. h . h ~ _h
o _ 0 == 4.1
8. =1 8= 8. =3 (4.18)

o = O
o O =
o O O
o O O
O O =
o O O

0
0

o o~

Since the subspace of interest is composed by the two spin states |]) and |1), the
evolution of the system is re-normalised over time by the remaining fraction of
atoms in the spin states. By performing this re-normalisation, we can define the

a—magnetisation of the spin states as

pn() +pir(®) N
M) = 5 o) + a0 (4-150)
_ i Pul®) = pu(®)
My(t) = i (o1 & (D) (4.19b)
ML(1) = pri(t) — pu(t) (4.19¢)

2- (pr(t) + py (1))

In Figure 4.6, the evolution of populations p;;, spin operators <5’a> and M,
magnetisation is numerically simulated (Eq. (4.17)). On the one hand, decay of the

spins between ||) and [1) results in a symmetric decoherence, which exponentially
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Figure 4.6: Simulations of the microwave-driven Rydberg spin dynamics. The
initial state is prepared as |19) = |) and resonantly driven with Rabi frequency (2, allowing
for evolution during a certain number of Rabi cycles 6. (a) The internal decay between the

desired spin states leads to decoherence, observed as an exponential decay of contrast in

A~

population (p;;), the expectation value of spin operators ((S,)) and the magnetsation (M)

of the spin ensemble, with rate I'ge. = Fit;;“. Pp=I4, =02-Q/27, T'|. =T4.=0.

(b) Loss of spins during the evolution time leads to an exponential decrease of the spin

%. This causes reduction of contrast in (S,) but the

populations with rate I'. =
magnetisation M, remains unaffected by the loss of spin population. Hence, M, is a
robust observable to characterise decoherence effects in the spin dynamics (Eq. (4.23)).
Fyp=T4y =0 T,.=TI4% =02-Q/27. For realistic Rydberg spins, all rates are an

order of magnitude smaller, depending on the selection of quantum numbers.
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reduces the contrast of the three quantities towards half of their maximum amplitude

with rate I'g.. = %. On the other hand, the effect of spin loss generates a decrease
of amplitude in the oscillations, transferring part of the population to the container

Iy etDye L
——¢_ This spin loss affects

|c), which exponentially increases with the rate I'. ~
(S’a) as well, symmetrically decaying according to I'.. However, the magnetisations
M, of the spin ensemble are insensitive to the loss of spins, constituting a reliable
platform to study the effect of the inter-spin decay, disentangled from the influence of
I'.. Thus, under continuous resonant driving, the numerical solution of the temporal

evolution is well described by the set of equations

1 (Qt) _%t G
— COS e _~te lc
pri(t) = 5 T (4.20a)
N 1PN ¢ ¢
(8 (1) = _cos(;)t) o Bty - Dretlie, (4.20b)
Qt _F +I
M. () = —COS; ) | st (4.20¢)

in the limit where I'y) ~ I'j4 and I'y, ~ I'j.. The complementary components

~ ~

(Sy) , M, follow the same dynamics as (S.), M., with a 7 phase shift.

4.3.2 Decoherence timescales

The decoherence of the spins can be understood in terms of the classical NMR
description of T} and 75 [Wangsness and Bloch, 1953; Redfield, 1957; Geva et al.,
1995]. Here these timescales are clarified for our specific system and experiments
proposed for their observation.

In NMR, the systems are affected by relaxation processes that lead to redistri-
bution of the two-spin components to achieve thermal equilibrium and the steady
value M,. The relaxation time of the spins defines the 7T} timescale, as described by
[Ithier et al., 2005] for a superconducting two-level qubit. In the Rydberg spin case,
the spins evolve towards a completely depolarised state with negligible population
on either ||) and [1), dominated by the decay rate to the container state |c). The
additional complexity of requiring a third state in our model implies that a 77 for
the spins, analogous to the NMR standards, cannot be determined. However, T} can

be defined as the time for the total population to be depleted. Thus,

1 2

B
VT, Ty T

(4.21)

This can be observed by measuring the temporal evolution of the population in the

superposition state |Sy) = \%(\@ +i1)).



4.4. Reconstruction of the magnetisation

The transversal component of the decoherence, given by the decay of the off-
diagonal components of the spin density matrix constitutes the T5. This timescale
can be inferred from the evolution of magnetisation in time-dependent Ramsey
experiments, as performed in Section 4.6. The decoherence rate measured in such
experiments is given by I' = @ Then,

L (4.22)

e Typ+Ty
It must be noted that the associated rate is different from the I'y.. affecting the
evolution under continuous driving due to the effect of the coupling field. In addition,
the experimental realisation includes the effect of inhomogeneities in the driving field.

Therefore, we will name the experimental timescale as 77 hereafter.

4.4 Reconstruction of the magnetisation

After developing our theoretical model, it becomes clear that it is convenient to
observe the evolution of M., but its experimental reconstruction presents several
subtleties. However, the experimental reconstruction of the magnetisation presents
certain subtleties that are to be discussed. As described in Section 3.1.6, our
spin detection technique relies on a global measurement of the number of spins in
the excitation volume by field-ionising the Rydberg atoms above a certain energy
threshold. The energy threshold is selected such that both |1) and |{) states can be
ionised and detected with similar detection efficiency, which is calibrated as explained
in Fig. 3.7(c). The spins can be distinguished by applying a down-pumping pulse
after their dynamics was explored, as introduced in Section 3.4.

The magnetisation of the spins during the time evolution is measured to be

Ni(t) — Ny(t)

MO = o T V)

(4.23)

Due to the lack of selectivity of our ionisation procedure, a fraction of the atoms in
the container state |c) is measured in each experimental sequence. In Figure 4.5(b),
this state is split into two different state collections, above |a) and below |b) the
ionisation threshold with rates I'y,, I'j, and I'y, '}, describing the decay to ionised
and non-ionised states, respectively. Therefore, during the exploration and detection
of the spin dynamics, the number of atoms evolving to states above threshold produces
a bias in the measurement, such as Nyeas(t) = Ni(t) + N,(t). Precise detection of
Ni(t) requires to subtract N,. Analogously, quantifying N, (t) = Ny — N4(t) — Ny (1)
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Figure 4.7: Experimental reconstruction of the spin-1/2 magnetisation. Measured
Rabi oscillations between [485 /5, m; = 1/2) <> [495, /5, m; = 1/2) (blue circles). The
redistribution of atoms from |]) to states below (a) (green squares) and above (b) (orange
squares) the ionisation threshold is quantified as detailed in Appendix C. The measured
number of atoms in the Rabi oscillation is biased by the population in |a) (see Fig. 4.5):
Ny(y(0) =15.5+£1.2, '), = 1.064 £ 0.119 us—". Analogous for the redistribution of
spins in [1): Ny)(0) = 151.6 £ 3.2, T'y,, = 1.159 £ 0.317 ps~*. (c) Evolution of the
magnetisation M., quantified with the equations from Ap. C.0.1. Fit (red line) corresponds
to a sinusoidal function with a Gaussian envelope: € = 27 x (0.879 £ 0.002) MHz,
o, = 6.26 = 0.32 us. Error bars given by one standard error. Data are the average over

20 realisations.

demands an independent knowledge of the initial number of spins Ny and the
population reduction due to evolution below threshold N,(¢). For that purpose, two

complementary experiments are performed:

(i) Free evolution time after the spin preparation. The decay rates to states below
threshold are measured: I'j;, I'4.

(ii) Free evolution time after the spin preparation, with final down-pumping pulse.
The initial imperfect preparation is quantified as N, (0), as well as the evolution
rates I' 4, ['1q.

From the combination of (i) and (ii) for both |1) and |/), the initial number of
spins Ny is also extracted, providing all the ingredients to distinguish Ny(t),
N, (t) and M,(t). Further details can be consulted in Appendix C. Additionally,

the information from the complementary experiments allows to measure 77 .
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In Figure 4.7, an example of this reconstruction procedure is provided. Rabi
oscillations between ||) = [48S51/2,m; = 1/2) and |1) = [495;,2, m; = 1/2) are driven
and experiments observed in (a) and (b) indicate the evolution of spins as in the
descriptions (i) and (ii), respectively for spins prepared in [|). The evolution for

spins in [1) is provided by the same measurements, multiplied by the theoretical
Diab)
Uitap
symmetrically towards the steady state M,(t — co) = 0. Analogous procedure is

correction factor . As a consequence, the reconstructed magnetisation evolves
applied to Ramsey-type experiments. This paves the path for accurate observation

of the spin time-evolution with combined atomic-optical selectivity.

4.5 Tomographic control of Rydberg spins

In Section 4.1, efficient driving of Rydberg one- and two-photon transitions has
been demonstrated. In this section, complete control of the quantum state of the
spins is presented, in order to implement refined quantum control experimental
sequences to probe the spin dynamics. In addition, the dephasing introduced by the
driving pulses is quantified, as previously discussed in Section 4.2.

Applying quantum state manipulation sequences is essential to engineer logic
quantum gates or to unravel the nature of spin-spin interactions [Vandersypen and
Chuang, 2005]. The pulse area 6, controlled by both the pulse length and its Rabi
frequency, has to be precisely controlled to rotate the spin-state (see Fig.4.1(b)).
The phase of the microwave field ¢ sets the orientation of the field vector about
which the spin Bloch vector rotates. Conventionally, the phase of the initial pulse
is considered to be ¢; = 0. Thus, the phase introduced in subsequent pulses refers
to the difference with respect to ¢;. A tomographic sequence relies on well-defined

rotations to prepare and read out arbitrary spin states.

Our generalised tomographic experiments rely on the application of two consecu-

7r_27r
2 4Q

initialisation of the atoms in |]) by a two-photon excitation scheme, a first resonant

tive 5 pulses (t ) to prepare and probe the coherent superposition state. After
microwave 7-pulse rotates the spins to the equatorial zy-plane of the Bloch-Poincaré
sphere. At the end of the pulse they lay in |S,) = \/ii(|¢> +1[1)). A second Z-pulse
with a phase ¢ relative to the initial one projects the state on different directions, as
described in Fig. 4.8(a). Repetitions of the experiment with different phases give a
global map of the final state after arbitrary rotations. Finally, a down-pumping pulse
and an ionising electric field allow to distinguish and detect the spin components.

Under ideal conditions, when no dephasing mechanism limits the spin operations,
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the following specific cases can be encountered:

(i)
(1)

(iii)

(a)

If = 0,27, the second pulse rotates the spins about z to the final state |1).

If = 7, the second pulse imprints a rotation about —z, reversing the effect of

the initial pulse to achieve the final state ||).

Ifgb:Tr 3

20720
which locks the spin phase evolution. The rotation of the spin vector about its

the superposition state |§y> rotates about ¢ or —y, respectively,

own axis constitutes the basis to apply spin-locking sequences [Redfield, 1955;
Hatanaka and Hashi, 1978|. Fixing the spin-lock time to a 7 pulse duration can
revert the acquired spin phase, as an alternative realisation of Hahn-spin-echo

experiments [Hahn, 1950| by simply rotating about the perpendicular axis.

0 (b)
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Figure 4.8: (a) Pulse sequence to rotate the quantum state of the spins. An initial

5-pulse prepares the spins in the state ]Sy) = %(N) +1i[1)). A second §-pulse is applied

to read out the spin state, with a relative phase ¢ to the initial pulse. (b) Experimental

demonstration of efficient spin rotation. The continuous line corresponds to a fit to the
experimental function from Eq. (4.24). The contrast is measured to be C' = 96.2+2.7%
and the global phase ¢pg = —(0.012 3 0.007) x 27. Data is averaged over 30 repetitions.

Error bars correspond to one standard error of the mean.

This technique is advantageous to acquire simultaneous information on the contrast

and phase-shift acquired by the spins, in opposition of Ramsey and rotary echo

experiments, where only the visibility is observed. A similar technique has been
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applied to probe the dynamics of dipolar-interacting polar molecules [Yan et al.,
2013], generalised by the implementation of an echo 7-pulse between the preparation
and the readout § pulses. More complex combinations of pulses may be implemented
with our experimental set-up, as discussed in Section 2.5.

In Figure 4.8(b), the experimental realisation of our tomographic sequence is
demonstrated. A 1.2 us excitation pulse prepares the Rydberg atoms in |[|) =
14851 /2, mj = 1/2). The spins are resonantly coupled with two v ~ 35.2378 GHz
photons to [1) = [4951 /2, m; = 1/2) with microwave J-pulses of duration ¢z = 200 ns,
calibrated with complementary Rabi oscillations. A phase jump is triggered by a
DDS after the first pulse, with no delay time in between. The measurements are
fitted to the model

M(¢) = C'- cos(é + ¢o), (4.24)

where C' is the visibility contrast and ¢ is the phase-shift acquired by the spin
ensemble of N = 89.9 + 5.5 spins. In the low spin-density regime, the magnetisation
follows a cosinusoidal behaviour with 96.2 + 2.7% contrast, oscillating between
40.481 h. This incomplete rotation is attributed to the dephasing produced by the
microwave power fluctuations (Section 4.2), 1.9 % for each 7 rotation.

Precise control of the phase oscillation of the spin state may be interpreted as a
basic demonstration of the Spin—% approximation and constitutes the fundamental

tool for interferometric measurements with interacting spins.

4.6 Observation of coherence on Ramsey experiments

In section 4.4, a method to reconstruct the magnetisation of the spin ensemble
was presented. As previously described, the temporal evolution of the magnetisation
is not affected by the loss of spins I'., but by the inter-state redistribution rate
I, which represents the fundamental physical limitation to the spin coherence.
Additionally, the effect of electric (or magnetic) field fluctuations may introduce
additional dephasing sources which reduce the contrast of the magnetisation.

Ramsey interferometry [Ramsey, 1950; Riehle, 2004| constitutes a suitable plat-
form to measure the 7 time associated to decoherence and dephasing of the spins.
In such experiments, an initial 7 driving pulse prepares the states in a coherent
superposition of |1) and ||), followed by a free evolution time Z4e1qy. A second 7
pulse probes the final state of the system to reveal the transition probability from
the initially prepared spin state to its orthogonal state. In the Bloch-sphere repre-

sentation, a state initially prepared in |]) (—Z2) is rotated to the equatorial zy-plane,
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e.g. to the spin superposition |S,) = \%(M) +i|1)). During the evolution time, the
spin Bloch vector may precess around the equator with a frequency determined by
the evolution frequency and the resonance A = 27 X (v — 14), which gives a rotation
period as T' = %”. After the readout 7 pulse, resonantly evolving spins should be
transferred to the [1), with the Bloch vector pointing along +Z2. However, dephasing
during the evolution time may lead to spread of the spins and, therefore, reduction of
the projected visibility. Figure 4.9a illustrates the evolution of the quantum state at
different stages of the experimental sequence. The Ramsey technique is advantageous
because of the reduced role of the driving field (limited to two fast & pulses) on
the observed coherence. It has been successfully applied to a large variety of spin
systems [Treutlein et al., 2004; Butscher et al., 2010; Pla et al., 2013].

We perform two different sets of Ramsey experiments:

(i) Frequency-domain Ramsey evolution. At a fixed 4.4, the detuning A is

1
t%‘f'tdelay
which describes the loss of transition probability far from resonance. The

varied. Ramsey fringes of width are expected, with a spectral envelope

experiments may be modelled by the generalised equation

Ny = E - sinc? <(y—1/0) -t;) X {14—0- coS (27r(1/—1/0) . (tg +tdelay)—l-§b1—¢2>] ,

2
(4.25)
where N is the total number of spins, ¢1, ¢ are the phases of the 7 pulses
and C indicates the contrast of the fringes [Morinaga et al., 2016]. High-level
of spectroscopic precision is at reach in comparison with continuous driving
measurements (see Section 4.1). Large coherence times allow to increase the
tdelay @t which the Ramsey fringes are obtained. Thus, the width of the fringes

decrease and the resolution of the spectroscopy increase.

(ii) Time-domain Ramsey evolution. At a fixed detuning A, variable evolution
times t4e1qy are recorded. Phase oscillations along the equator can be measured,
with a period T' = QK”. A decaying envelope accounts for temporal decoherence
of the spins and quantifies the transverse relaxation time 7. On the one
hand, if negligible or small field fluctuations are influencing the dynamics, an
exponentially decaying envelope fulfils the theoretical predictions from our
model (see 4.3). Otherwise, when non-negligible field inhomogeneities introduce
resonant shifts of the spins, a Gaussian envelope accurately reproduces the
time-evolution [Hermann-Avigliano et al., 2014]. Such inhomogeneities are
stronger for one-photon transitions because of the huge difference in polarisa-

bility between |nS) <+ [nP), whereas two-photon transitions between states
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of identical angular momentum (e.g. |[nS) <> |(n +1)S)) present a typical
polarisability difference smaller than 10 %. In the experiments presented in

this section, we apply the model function

t
M. (tgetay) = M,(0) - exp (_F> - coS(A - taelay)- (4.26)
2
Under manipulation by ideal § pulse sequences, M. (0) = g However, the initial
dephasing during the driving of the elementary pulse sequence is to be accounted
for, as quantified in Section 4.5. The transverse time can be calculated as

Ty = %, where the inter-state redistribution rate may be approximated as

1
F(l—'y) :é(FnSnP + FnPnS) + 0(2) = I‘nSnP + 0(2) (427&)
F(Q_fy) :1 9 FnSnPFnP(n—i—l)S + I-‘nS(n—2)P + FnS(n—l)P + FnSnP + I-‘nS(n—Q—l)P
2\ Tusnp + Thupmsns 2 2 2 2
F n n— F n n F n n F n n
+ ( +1);( )P 4 ( J;)S P 4 ( +1);( +1)P 4 ( +1);( +2)P

Lrsm-1)PL (n—1)P(n+1)s N L 1)sm+1)PL (n41)Prs )
Lonsm-np + To-1pmans  Uwrnsmenpe + Dng1)pas
+0(2) + 0O(3)
(4.27h)

For the two-photon case, all other redistribution terms in O(2) make a small

impact on I'p_,).

In Figure 4.9 our experimental observations are detailed. In the frequency-
domain Ramsey fringes from Fig. 4.9(b), we prepare the Rydberg atoms in |]) =
142P; /2, mj = —3/2) with a two photon transition off-resonant from the excited state
of 8"Rb by means of a 2 us excitation pulse. The Ramsey sequence is triggered
by tz = 139 ns resonant pulses, calibrated by complementary measurement of the
oscillating Rabi frequency, with a waiting time f4qy = 383.5ns. A 2ps down-
pumping pulse removes the [42S5 /5, m; = —1/2) population, so the detected signal
by field ionisation corresponds to spin states above the classical ionisation threshold
|Grimmel et al., 2015|. The measurement of the temporally fixed Ramsey fringes
revealed a spin population offset of ~ 0.4 %, which indicates that the transition is
controlled without additional coupling to nearby Rydberg states. Ramsey fringes
with 95.11 +4.86 % contrast were measured, ensuring good coherence for hundreds of

spins at short timescales. Such experiments constitute a solid benchmark to observe

1

73 interaction effects

density dependent decay of contrast due to dipolar-exchange o



90 Chapter 4. Dynamics of a non-interacting Rydberg spin-1/2 system

(a) t=0 . | .

1]

Elnit‘ial. 1

Preparation: Down | Detection:
1]

(E ) pumping| field ionisation
2/ 1

time

tprcp itgi tdelay i %i tdp 1

(b)

P11

N 0
= o4
-0.2f &
-0.3f
-0.4f
ol -0.5 ‘ ‘ ‘
53.824 53.826 53.828 53.83 53.832 53.834 53.836 0 5 10 15
1% GHZ tdelay [,us]

Figure 4.9: Observation of coherence on Ramsey experiments. (a) Ram-
sey experimental sequence. (b) Ramsey fringes between [425; /5, m; = —1/2) and
|42P; )5, mj = —3/2) for a Ramsey time T = tx +tdelay = 522.5£3.Tns. The visibility
reaches 95.1 £4.9% for N = 390+ 11 spins, extracted from a fit to Eq. (4.25) (red line).
(c). Coherence T time observed in a time-domain Ramsey experiment for N = 82.7+2.2
initial spins. The experiment is fitted to the expression from Eq. (4.26) (red line), giving
T3 = 126.6 + 58.9 us in an observation timescale of 16 us. The oscillations correspond
to induced precession by a detuning A = 27 x 0.46 MHz. Data are the average over 10

(a) and 30 (b) realisations. Error bars are given by one standard error.

with higher accuracy than observing the spectral broadening [Afrousheh et al., 2004;
Afrousheh et al., 2006a].

The time-evolution of the coherence between ||) = [485;/2,m; = 1/2) and |1) =
|4951/2,m; = 1/2) (Fig. 4.9(c)) is tested by exciting the atoms to the ||) with a
5 us two-photon pulse. Calibrated Rabi pulses of duration ¢z = 640 ns are used for
the two-photon microwave transition, performed by two identical photons tuned
at v &~ 35.2376 GHz. After the variable time evolution, a down-pumping pulse is
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applied to discriminate the spin states (see 4.4, appendix C). The atoms are ionised
by means of a ~ 86.5V /cm electric field. The initial magnetisation was constraint
to the value M,(0) = 0.481 A, given the 1.9% contrast reduction induced during
the driving sequence. Transverse relaxation 75 = 126.6 £ 58.9 us is extracted from
the fit. This value is consistent with our theoretical calculations, which estimate an
upper bound 75 ~ 185 us. Thus, the observation of coherence is confirmed to be
limited by inter-state redistribution I". Two-photon |nS) < |(n + 1)S) transitions
are proved to be less sensitive to strong additional dephasing mechanisms. Usage
of additional spin-echo sequences is not required in our explored timescales. Thus,
this spin system can be considered as a well controlled platform to study interacting

Rydberg spin dynamics.

4.7 Perspectives: new platform to explore few to
many-body dynamics

The presented experiments provide a precise benchmark for future explorations
of few to many-body interacting sping dynamics. Sensitivity of Rydberg spins to
weak microwave driving fields has been demonstrated and employed to accurately
manipulate one- and two-photon Rydberg-Rydberg transitions. An important aspect
to point out is the high-degree of precision in microwave field detection which
correspond to measured Rabi frequencies of up to tens of kHz. Our detection method,
relying on field ionisation and discrimination of the Rydberg spins states via down-
pumping allows for an atomic-based approach to measure microwave fields, which is
complementary to optical-based microwave electrometry, where the field strength
is observed on the bandwidth of electromagnetically-induced transparency spectra
[Sedlacek et al., 2012; Anderson et al., 2014; Anderson et al., 2016]. Sensitivity to
similar or even smaller field strengths was shown. At long driving times, transition
spectra and Rabi oscillations have revealed limited coherence due to microwave
intensity fluctuations, which enhance the dephasing of the spins under continous
driving. Application of more refined NMR and quantum information protocols like
BB1 composite pulse sequences [Morton et al., 2005; Vandersypen and Chuang,
2005] or dynamical decoupling [Zhang et al., 2014b; Souza et al., 2015] will allow to
overcome this and other sources of noise in the future. However, basic sequences of
pulses have already been realised with a small contrast reduction ~ 1.9 % per pulse, as
discussed in section 4.5. As a consequence, Ramsey experiments revealed interaction-

free T coherence times much larger than the typical timescales for observation
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of interaction effects. The coherence of Rydberg spins was proven to be limited
by intra-state black-body redistribution, which introduces dephasing in the spin
ensemble. Therefore, additional sources of dephasing play a minor role. Coherence
between Rydberg spins has also been observed while manipulating Rydberg spins
on superconducting atom chips [Carter and Martin, 2013; Hermann-Avigliano et al.,
2014]. However, we are able to observe large coherence times over the full spin
ensemble, whereas at the vicinity of the chip, the stray electric fields still dominate
the dephasing. Additionally, by scanning the phase of our microwave pulses, we
introduced a generalised rotary echo sequence which allows to simultaneously map
the magnetisation contrast and small phase shifts, as an alternative route for Rydberg
atom interferometry [Nipper et al., 2012]. This can play an important role on the
precision of Rydberg phase gates, as previously proposed by [Ryabtsev et al., 2005;
Paredes-Barato and Adams, 2014].

The precision of the spin detection will increase by implementing state-selective
field ionisation [Jeys et al., 1982; Robicheaux et al., 2000; Feynman et al., 2015]. Thus,
additional experiments to quantify the redistribution of spins will be unnecessary, as
well as the down-pumping protocol, since all Rydberg states could be distinguished
in every single shot. As a consequence, the noise reduction will facilitate the reliable
measurement of magnetisation variances in combination with spin tomography.
Hence, observation of temporal correlations and non-equilibrium dynamical effects
will become accessible.

Further investigations will focus on the effect of Rydberg-Rydberg interactions.
Accurate observation of few Rydberg interacting spins has already been demonstrated
|[Ravets et al., 2014; Barredo et al., 2014; Ravets et al., 2015; Barredo et al., 2015;
Labuhn et al., 2016]. Nevetheless, the high degree of control over hundreds of
Rydberg spins exhibited in the present chapter paves the way towards efficient
quantum simulation of Heisenberg XX and XXZ spin Hamiltonians in the many-body
regime. Preliminary results can be found in Chapter 5. In addition, structuring the
spin distribution with microtrap arrays [Nogrette et al., 2014; Labuhn et al., 2016 and
individually addressing the sites [Labuhn et al., 2014] will allow to map the transition

from few to many-body spin dynamics in different dimensional configurations.



Chapter 5

Interaction effects on the Rydberg

spin dynamics

In this section, preliminary observations of many-body effects in Heisenberg XX
and XXZ models with Rydberg spins are shown [Bettelli et al., 2013; Whitlock et al.,
2010]. By means of the methods established and characterised in Chapter 4, like
precise spectroscopy or Ramsey and tomographic techniques, the effect of spin-spin
interactions on the spectrum and the decay of coherence of the spin ensemble are
investigated, as an important step for further studies of quantum magnetism with
Rydberg atoms.

In the first section (Sec. 5.1) the dipolar broadening of the Rydberg transitions is
measured [Afrousheh et al., 2004; Afrousheh et al., 2006a/, revealing an anisotropic
effect arising from the angular dependence of the pair interactions. The decay of
the coherence due to 1/R? interactions is also presented and the role of the disorder
on the observation is suggested. In Section 5.2, the 1/R® spin system with two
different |nS) states is explored by means of spin-locking techniques, showing the
magnetisation curve of a Rydberg spin ensemble evolving under the Heisenberg XXZ

dynamics.

5.1 Interaction effects on a Rydberg interacting XX-

model

As discussed in Sec. 2.2.2, a direct dipole-dipole coupling between two different
states of different angular momenta can be mapped onto a spin-exchange Heisenberg

XX model wit oc 1/R? interactions, which presents an very rich dynamics. Previous
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experiments have revealed that the dephasing of Rabi oscillations in such interacting
regime cannot be explained by a simple mean field description, since quantum
correlations play an important role on its non-equilibrium properties and needs
to be modelled with more refined method like Moving-Average Cluster Expansion
(MACE) or Truncated Wigner Approximation (TWA) |Pineiro Orioli et al., 2017].
In this section, further observations of many-body effects on the spin dynamics are
introduced, which will lead to spectral broadening of the Rydberg atomic transition

and decay of the T} characterised by Ramsey experiments.

5.1.1 Asymmetric spectral broadening

Here, spectroscopic measurements of the spin-exchange interaction effect are pre-
sented. The spins are prepared in the state ||) = [425/2, m; = 1/2) and spectrosco-
pically probed to address the transition to |1) = [42P3/,m; = 3/2) by a single

microwave photon, as previously described in Section 4.1.2 (see Fig. 4.2).

Due to the anisotropy inherent to |nP) states [Walker and Saffman, 2008; Paris-
Mandoki et al., 2016], the dipole-dipole interaction amongst Rydberg pairs is strongly
dependent on the orientation of the spins [Carroll et al., 2004; Ravets et al., 2015;
Bigelow et al., 2016]. Thus, pairs of atoms can interact with J, (6; ;) = Cs(6;;)/R}; <
0, whereas different pairs present an interaction strength J, (6; ;) > 0. In case of a
disordered sample of spins, where all possible angular configurations are equiprobable,
integration of the dipole-dipole interaction coefficient C5(6) over all of them shows
that the average C3 = J d0C5(0) interaction shift depends on the selection of
Zeeman sub-states. Nonetheless, considering equiprobable coupling to the three
possible sub-levels, the average interaction shift is zero, resulting in a symmetric
spectral broadening due to both read and blue shifts, which has been observed to be
proportional to the Rydberg atom density [Afrousheh et al., 2004; Afrousheh et al.,
2006a].

In Figure 5.1, the spectral broadening of driven transition is presented, where
the described predominance of the blue energy shift is clearly observed. This seems
to confirm in good agreement with the theoretical expectation. This allows us to
spectroscopically determine the sign of the interaction strength of Rydberg spins and,
thus, reducing the number of unknown parameters for more complex investigations

of the spin dynamics.
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Figure 5.1: Asymmetric dipolar broadening of the spectrum of the driven spin dy-
namics. The transition between ||) = [425 /5, m; = 1/2) and [1) = [42P3/9,m; = 3/2)
is driven for 2 us by a resonant microwave field. The asymmetry is attributed to the
angular dependency of the dipole-dipole interactions. The integration over all possible
angles results in a favourable repulsive interaction, such that most of the pair energy
shifts are induced towards higher energies. Data are the average over 15 realisations.

5.1.2 Reduction of contrast on Ramsey fringes

In order to understand some basic features of dipolar interacting spin systems,
we realise Ramsey experiments and observe the coherence of the spin ensemble under
the effect of spin-exchange interactions. For such purpose, the experimental sequence
discussed in Sec. 4.6 is applied to obtain frequency-domain Ramsey fringes in the
transition |]) = [4251/9,m; = 1/2) <> |1) = [42P5)5, m; = 3/2). After a microwave
5 pulse of duration tz = 230 ns, the spins freely evolve for tgeq, = 1.78 s and a
second 7 pulse allows to read out the contrast. The fringes are fitted to the model

function

1—C’+ 2.-C
1+C 14C

N; = Ny+A - sinc? [(l/—l/o)tg] : cos? (7T(l/ — 1) (tx + taetay) + qbo)} ;

(5.1)
proposed by [Nipper et al., 2012]. The experiment is repeated at increasing number
of Rydberg spins within a volume V =~ 2.2-107%cm ™3, estimated by means of the
Depletion Imaging technique (3.1.2). As a result, the contrast of the Ramsey fringes

decays with the increase of the number of spins, as shown in Figure 5.2(a). The
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temporal coherence of the spins is also probed by means of the generalised sequence
which was introduced in Sec. 4.5, revealing a complex dynamics which cannot be
explained by a typical exponential decay (Fig. 5.2(c).

@ O

1
1 100 (b)
0.3% & 0.81 +
S « 60
06 l"-. “ 0.61 y
o |+ ° O }
0.4 'U,..‘ 5255 Ts(ﬁ—l] 53,835 0.4 + +
¢ 14 VA
0.2 R T 0.21 ¥ o4 "
............ . 4 ;
% 1 2 3 4 5 6 % 2 4 6 8

density y [cm ™3] x10° tdelay [115]

Figure 5.2: Decay of contrast in Ramsey experiments (a) Decay of the spin
coherence for increasing density of spins. (c) Inset: frequency-dependent Ramsey fringe
from (a). Fitted to Eq. (5.1) with results: vy = 53.8297 GHz, C = 52.3 £ 2.6. (c)
Temporal spin dynamics, obtained with the generalised sequence from Sec. 4.5. The
delay in between both pulses is varied at a fixed density of spins ny ~ 1.2-1078 cm 3.
The contrast C correspond to the experimental fit of the Ramsey fringes, whereas the

errorbars are the standard error.

In similar experiments exploring the dynamics of a dipolar XX model with polar
molecules in spatially ordered optical lattices [Yan et al., 2013|, investigations of such
temporal evolution have shown a combination of exponential decay related to the
T coherence of the system and coherent oscillations due to the interaction strength
amongst neighbouring molecules in the lattice, which, in our case, is partially hidden
due to the disorder of the spin ensemble, since there is not such a well-defined nearest-
neighbour distance that determines the dynamics. Structuring the spin distribution
by means of arrays of micro-traps with tunable configuration [Labuhn et al., 2016;
Bernien et al., 2017] would allow us to distinguish the transition from fully coherent

temporal dynamics to the coherent superposition of multiple contributions.
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5.2 Towards quantum magnetism with an XXZ Ryd-

berg magnet

In this section, we present the characterisation of the magnetisation curve of a
Rydberg spin system with 1/R% XXZ interaction terms. To perform such measure-
ments by means of an spin-locking technique. In such experiments, we leverage the
generalised sequence explained in Section 4.5 and introduce a strong driving pulse
oriented in the direction of the spins in between the preparation and the readout
pulses, as depicted in Figure 5.3(a). The results show a surprising asymmetry and an
important phase acquired by the spin components under absence of any competing

driving.
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Figure 5.3:  Spin-lock experiment on the transition between ||) =

485 /9, m; = —1/2) and |1) = [4985/5,m; = 1/2). (a) After preparing the spins
in a superposition |S,) = %(N) +411)), a field is aligned or anti-aligned with such
state to measure the competition between the XXZ interactions and the driving field.
(b) Magpnetisation of the spins, showing an asymmetric magnetisation curve. (c). Phase

aquired by the spin ensemble.
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This observation constitutes the basis for our future investigations in quantum

magnetism with Rydberg atoms.

5.3 Prospects

In this chapter, preliminary experiments of the dynamics of XX and XXZ Heisen-
berg models with Rydberg atoms has been presented. By means of spectroscopic
methods and Ramsey techniques, indications of many-body dynamics have been
observed. Measuring the density dependence of the spectra under continuous dri-
ving and under the effect of resonant dipole-exchange interactions, the observations
suggest the important role of the combination of Zeeman sub-states on the sign of
the interaction strength, leading to favourable red or blue shifts in average. The loss
of coherence of the spins has been characterised by means of Ramsey techniques,
leading to a complex decay pattern, in which the disordered character of the sample
may play an important role. Additionally, studies of the 1/ RS XXZ dynamics of spins
allowed us to measure the magnetisation curve of the ensemble and the competing
behaviour of the driving field and the spin-spin interactions. An important question
to address in future experiments is the nature of the observed effect. Since our
characterisation has been realised only for the XXZ system, the observation of a
similar behaviour driven by isolated spin-exchange XX interactions would be an
important step forward to distinguish the subtleties of both Hamiltonians.

In order to fully understand the richness of the spin dynamics, further studies
will be convenient. One striking topic of future investigation is related to the possible
conditions for the spins to aggregate in magnetic domains. This could be answered
by measuring the spatial correlations between the Rydberg spins Schwarzkopf et al.,
2011; Schauf et al., 2012, which may be feasible by means of advanced imaging
techniques, as can be consulted in the following chapter. The implementation of
spatial order in the spin system |[Labuhn et al., 2016; Bernien et al., 2017| would allow
to explore the transition from a few-to-many body regime and efficiently characterise

the role of disorder and dimensionality.



Chapter 6

Interaction Enhanced Imaging of

Rydberg atoms

This chapter is partially based on the following publications, from which parts of the

text are reproduced verbatim:

Interaction-Enhanced Imaging of Rydberg P states
V. Gavryusev, M. Ferreira-Cao, A. Keki¢, G. Ziirn and A. Signoles
Eur. Phys. J. ST 225, 15 (2016)

Long-range interactions arising in Rydberg atoms [Saffman et al., 2010] enable to
study non-equilibrium properties of highly-correlated systems [Hazzard et al., 2014b)].
Multiple interesting phenomena can be observed like the formation of ultracold
plasmas [Vanhaecke et al., 2005; Vrinceanu et al., 2009; Pohl et al., 2011; Robert-de
Saint-Vincent et al., 2013|, the emergence of correlated nonlinear optical effects
[Pritchard et al., 2010; Peyronel et al., 2012; Firstenberg et al., 2013; Busche et al.,
2017| , the creation of crystalline structures [Pohl et al., 2010; Schaufs et al., 2012;
Levi et al., 2015] or the transport of energy through Rydberg aggregates [Schonleber
et al., 2015]. Nevertheless, only few techniques are suited to spatially image Rydberg
atoms. In Section 3.1, a new imaging technique , based on the depletion of absorption
of ground state atoms in presence of Rydberg atoms, has been introduced. This
technique is suited to investigate the local dynamics and correlations of the excitation
process , but its sensitivity is limited and it is not state selective, barring single-shot
detection of low Rydberg atom numbers.

Rydberg atom imaging based on field ion microscopy [Schwarzkopf et al., 2011]

has been applied to measure spatial pair correlations and van der Waals interactions
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between Rydberg atoms [Schwarzkopf et al., 2013; Thaicharoen et al., 2015; Weber
et al., 2015; Manthey et al., 2015]. Here, cold Rydberg atoms are ionised by a
inhomogeneous electric field and the resulting ions are guided along the divergent
field lines towards a fluorescent multichannel plate (MCP). Each ion is revealed by a
bright spot of light onto a CCD camera, allowing for few pum resolution. However,
the detection efficiency is limited to < 50 % by the quantum efficiency of the MCP.

Concerning optical approaches, Rydberg atoms in optical lattices have been
imaged with nearly single-site spatial resolution [Schauf et al., 2012]. The technique
consists in de-exciting the Rydberg atoms towards a short-lived intermediate state
(similar to the experiments in Sec. 3.4) and captured in an optical lattice, where
high-resolution fluorescence imaging on the ground to excited state reveals the atom
position. Spatial correlations have been observed with a detection efficiency of
~ 75%. Similarly, Rydberg atoms trapped in two-dimensional arrays have been
detected with ~ 97 % efficiency [Labuhn et al., 2016]. However, this method destroys
the Rydberg state.

Several techniques have been introduced for alkaline-earth atomic species. Scan-
ning autoionisation microscopy allowed to resolve the local atom number distribution
with 10 pm spatial resolution [Lochead et al., 2013]. This takes advantage of a tightly
focused laser beam and of the large autoionisation probability of the Rydberg state
when the core electron is excited, so local autoionisation is stimulated. A different
technique uses the laser-induced fluorescence light of an optical transition of the core
electron, which is sensitive to the second electron, previously excited to a Rydberg
state [McQuillen et al., 2013]. This provides high temporal resolution (~ 10ns), but

limited spatial resolution (~ 200 pm).

In this chapter detailed research on the Interaction Enhanced Imaging technique
(IEI) |Giinter et al., 2012; Gavryusev et al., 2016a; Giinter, 2014; Gavryusev, 2016 is
presented. It is applied as a sensitive technique for state-resolved detection of Rydberg
spins (hereafter called impurities) with high spatial and temporal resolution and it
is particularly suitable to observe time-resolved transport of Rydberg excitations
mediated by dipolar exchange interactions [Schonleber et al., 2015; Westermann, S.
et al., 2006; Schempp et al., 2015]. The main physical principle of the technique is
explained in Section 6.1. A formal model of IEI is introduced in Section 6.2 in order
to estimate the effect of Rydberg impurities and the sensitivity of the technique.
Then experimental results are presented in Section 6.4, both for the first average
measurements of reduced numbers of nP states (Sec. 6.3.1), and for single-shot

measurements of nS and nP impurities (Sec. 6.3.2).
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6.1 Working principle of Interaction Enhanced Ima-

ging

Interaction-enhanced imaging was developed and implemented within our research
group to study the dynamics of dipole-mediated energy transport processes in Rydberg
gases |Giinter et al., 2013| and, potentially, can be applied to resolve single rydberg
spins with state selectivity. Aiming to combine single-particle sensitivity and high
time-space resolution, the original proposal offered the possibility to detect Rydberg
atoms embedded in an atomic gas, hereafter called impurities, based on differential
absorption imaging, with potential resolution smaller than their Rydberg blockade
radius |Giinter et al., 2012|. The IEI technique, similar to the proposal by Olmos et
al. |Olmos et al., 2011], is based on detecting the change in absorption of a probe
light beam induced by the presence of the Rydberg impurities. Therefore, using
the background atoms as a contrast medium can reveal the difference of absorption
due to the effect of impurities. For such purpose, the cold atomic gas is coupled
under EIT conditions (see Section 3.2) to an auxiliary "probe" state and rendered
transparent to the probe light [Fleischhauer et al., 2005; Pritchard et al., 2011;
Sevingli et al., 2011]. Priorly excited impurities interact with the auxiliary probe
state, leading to local van der Waals or dipole-dipole interactions which shift the
energy of the probe atoms, breaking the EIT [Hofmann et al., 2013; Gérttner et al.,
2014]. Thus, a shadow is cast in the absorption profile, which allows to spatially map
the impurity location, as described in Fig. 6.1(a). The method has been implemented
with Rubidium Rydberg atoms |Giinter et al., 2013; Gavryusev et al., 2016a| but
has the potential to be applied to any particle which presents strong coupling to a

medium.

Amongst the advantages of the method, it is worth stressing the applicability to
investigate interaction-induced dynamics of Rydberg atoms. Since the signal is given
by the background atoms in the vicinity of each impurity, it can be strongly enhanced
to increase the efficiency of the detection. This amplification factor is determined by
the number of additional absorbers per impurity, which is equivalent to the number of
probe atoms per blockade sphere. In a hard-sphere picture, the critical distance R;,
defines the range below which probe atoms are considered as absorbers. Therefore,
the amplification can be tuned to strongly enhance the absorption. This makes the
IEI technique a pontential candidate for single-impurity sensitive imaging. Ideally,
a single snapshot might reveal the presence of impurities, as will be discussed in
Section 6.4.
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(b.1) (b.2) -

Figure 6.1: (a) Principle of interaction-enhanced imaging of Rydberg impurities (orange
spheres) within a gas of probe atoms (green spheres). Two resonant "probe" (£2,)
and "coupling" (€2.) fields, coherently couple the ground state |g) of the probe atoms
to a Rydberg state |r), rendering the atoms far from any impurity transparent to the
probe light field. Each impurity strongly interacts with the surrounding atoms within
r < Ry, leading to an energy shift of the Rydberg state |r), which locally becomes
absorptive. The presence of an impurity casts a shadow on the camera which collects the
probe light transmitted through the atomic cloud. (b) Absorption images acquired for
interaction-enhanced imaging experiments (reproduced from Giinter, 2014). (b.1) Atoms
illuminated by a strong coupling beam, with €2, ~ 27 -9 MHz in the central region become
transparent. (b.2) Absorption image performed with Rydberg impurities pre-excited in
the center. The local breakdown of EIT can be observed. (b.3) Sketch showing the
spatial distribution of the atomic cloud and the positions of the EIT-coupling (blue)
and excitation (red) beams. The ellipses indicate the regions corresponding to 1.5-¢
of the intensity profiles. (b.4) Difference in absorption between (b.1) and (b.2), which
contains spatially-resolved information about the number of additional absorbers and the
distribution of the Rydberg impurities. The images are averaged over 150 repetitions,

with an exposure time of 5 us. ~ 300 impurities estimated.
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6.1.1 Experimental realisation of IEI

The first successful implementation of IEI measured the spatial distribution
of impurities in an ultracold Rubidium gas |Giinter et al., 2013]. Atoms initially
prepared in the ground-state in an ODT at few uK were illuminated by a uniform
780 nm probe laser beam and a 480 nm blue laser beam focused in a smaller region,
as displayed in (Fig.6.1(b.3)). Therefore, the atoms were coupled to the [37S) probe
Rydberg state, inducing EIT on the |55) «» |5P) transition (Fig.6.1(b.1)). In a
second experimental run, impurities were pre-excited in the state |50S5) in the central
region by a two-photon transition. When the EIT coupling was turned on, a drop
in transparency was observed due to the presence of impurities (Fig.6.1(b.2)). The
final distribution of additional absorption is obtained from the difference between
both images (Fig.6.1(b.4)), in a similar way to the procedure in Sec. 3.1.

This experiment illustrates how IEI allows to map the distribution of Rydberg
impurities embedded in an atomic gas. The technique has been already used to
investigate classical [Giinter et al., 2013] and quantum [Schempp, 2014, Chapter 6]

diffusion induced by dipole-dipole interactions.

6.2 Model for Interaction Enhanced Imaging

Here, we present a brief description of a hard-sphere model that captures the
main features of the IEI technique that allows for an intuitive understanding of the
impact of probe-probe and impurity probe interactions. The system is considered in
the steady state in a quasi-frozen regime, where thermal and mechanical motion can
be neglected [Amthor et al., 2007; Teixeira et al., 2015|. Quantitative analysis of the

IEI technique is introduced, applicable to experiments and theory.

6.2.1 Rydberg-Rydberg interactions

In order to include the effect of probe-probe and impurity-probe interactions, we
assume previous knowledge of the two-level and three level optical response of the
medium, which have been previously described in Eq. 3.2 and Eq. 3.17.

It has been demonstrated in several investigations that the transparency in EIT
media breaks down at large Rydberg atomic density [Sevingli et al., 2011; Pritchard
et al., 2010; Pritchard et al., 2011; Hofmann et al., 2013; DeSalvo et al., 2016; Han
et al., 2016]. Then, van der Waals interactions introduce an energy shift in the

transition, which is approximated to be A;,; = V., [Gérttner et al., 2014; Ates et al.,
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2011]. This shift introduces a detuning A, = A;,; of the coupling light that modifies
the effective dephasing v, — V4 +2iA;; in Eq. (3.17), inducing absorption. For large
shifts V.. the susceptibility converges to the the resonant two-level susceptibility.This

can be observed in Figure 6.2(a).

We generalise a hard-sphere approach to describe the effect of both probe-probe
and impurity-probe interactions |[Petrosyan et al., 2011; Sevingli et al., 2011; Parigi
et al., 2012] (see Fig. 6.2). Whenever the atoms experience an energy shift larger than
half of the EIT bandwidth o.; /2, they are considered as two-level absorbers, whereas
they are still considered as transparent for A, < 0., /2. Impurities interacting with
a bath of EIT-coupled atoms introduce a level shift V;,. which renders the cloud
absoptive within a distance R;., enhancing the signal. Analogously, probe-probe
interactions break the EIT condition within the probe-probe blockade R,,, reducing
the IEI amplification and, thus, the contrast.
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Figure 6.2: Hard-sphere description of IEl. (a) Normalised EIT absorption as a
function of the detuning A, of the |e) <+ |r) transition, normalized by the FWHM of the
EIT transparency window. For A, < o.;;/2 atoms are considered transparent, whereas
for larger detuning, they are treated as two-level absorbers. (b) Hard-sphere description
of the interactions: the impurities (orange) interact with the bath of probe atoms (grey
and green dots for |g) or |r), respectively). The induced a level shift Vj, breaks the EIT
within a distance R;.. An absorption spot appears on the CCD camera when the probe
light is collected. Probe-probe interactions reduce the transparency within a distance
R, around each |r) Rydberg polariton. (c) The states |g), |e), |r) of the probe atoms
are coherently coupled by two resonant light fields with Rabi frequencies €2, and ..
Probe-probe interactions induce a level shift of V.. on |r) (right). When impurities |i) are
pre-located, interactions can cause state-dependent effect: a van der Waals shift V24"
in case of [nS) impurities or mixing of the eigenstates accompanied by an energy split

2V;, for [nP) impurities (left).
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Probe-probe interactions

To describe the probe-probe interactions, the EIT susceptibility can be expressed

as

Xeit = frrXor + (1= fir) Xgit’ (6.1)
where f,,. is the effective fraction of volume blockaded by the probe-probe interacti-
ons |Ates et al., 2011]. Then, f,. is given as

np). = NPy Prr
fr = MR (6.2)
Pl and p,, are the Rydberg population matrix elements in the non-interacting
and interacting regime, respectively. Thus, f,,. is expressed through the normalised
difference between np? , the density of Rydberg atoms that can be ideally excited,
and np,,, the effectively excited density of Rydberg atoms. The probe-probe van der

Waals interactions define the Rydberg blockade radius

20T é
Rrr - ( CG ) ) (63)

Oecit

which establishes the limit for atoms in the volume Vi = 4/3-71R?_ considered as
absorbers, leading to a Rydberg fraction f,., = np,,Vjy. By substituting it in Eq. (6.2)
we can extract the density matrix element p,..
_ P

1+ np0, Vi

r

Prr (6.4)

and obtain an analytical expression for the optical susceptibility in presence of

probe-probe interactions.

Impurity-probe interactions

Following a similar procedure, the optical response in presence of impurities
i) can be incorporated as a balanced combination of the two level susceptibility
(Eq. (3.2)) and the generalised EIT susceptibility with probe-probe interactions
(Eq. (6.1)), such that

Ximp = firxar + (1 = fir) Xeit- (6.5)
The fraction of volume blockaded by impurity-probe interactions is considered to be
fir = 1V, where n; is the density of impurities and Vi, = 4/3- 7R3 is the volume
in each impurity sphere. Therefore, f;. consistently defines the effect of impurities
and can be expressed as f;; =1 —1/(1 4+ n;Vy,).

In order to quantify the critical impurity-probe radius, two particular cases are

considered, as shown in Fig. 6.2(c):
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(i) For |i) = |nP), using probe atoms in a Rydberg S state, resonant [i) <> |r)
dipole-dipole interactions separate the pair eigenstates in a symmetric and
antisymmetric state combination (|ri) £ |ir))/v/2, whose energy differs by
+A; = £V; = £C¥(0)/R? [Lukin et al., 2001; Comparat and Pillet, 2010].

The critical blockade radius R;. which determines the hard-sphere absorption

263\
Rl-r:<0i> : (6.6)

The anisotropy of the interactions for P states leads to an interaction strength

condition is defined as

C¥ (6), which we reduce to C¥ by averaging over the total solid angle.

(ii) For |i) = |nS), using probe atoms in a different S state, van der Waals
interactions generated by the impurity in the probe state produce an energy

shift V;, = C{"/R®. Thus, the impurity-probe critical radius is given by

R; = (206 ) : (6.7)

Oeit

In both situations, we attribute two-level response at r < R;. and three-level EIT

response at r > R;,.

6.2.2 Detection method

To probe the impurity distribution we measure the absorption of the probe light
induced by the atomic cloud, analogously to the method described in Sec. 3.1.2,
where the light absorption is collected by a CCD camera (see Eq. 3.3). To collect
only information about the impurities embedded in the atomic gas, we compare
the collected light under EIT without impurities I.;;, and with impurities Ij,,,.

Their presence can therefore be revealed through an additional absorption A,qq =
(]eit - Iimp)/leit

Agga =1 —e 2 with AOD = OD;y,, — OD,;y , (6.8)
which represents the signal emerging from the impurities. The effective number N, 44

of absorptive atoms due to the presence of impurities (otherwise transparent) is

calculated with pixel resolution (pixel area a,, = 4.3 um? in the object plane) as

2(1
Nadd: Iy ( +SO>

AOD — Mln [(1 _ Aadd>_l):| _ a/px(l + SO) In |i]—eit 1 ‘
90 90 0o ['L'mp

(6.9)
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6.2.3 Experimental observation of the optical response

In order to verify the optical response predicted by the model, an IEI experiment
is performed in the large optical dipole trap (see Sec. 2.4). The atoms are initially
prepared in the ground state |g) at a temperature 7' ~ 40 uK. The atomic cloud
exhibits a Gaussian profile of width ¢, = 41.2 um (1/€?) and of tunable density, with
peak densities in the center of the cloud ng up to 1.5- 10" em™3. After the atomic
preparation, the trap is released and the response of the atomic cloud is probed by
measuring the absorption in three different configurations: without coupling light nor
impurities (two-level response), with the coupling light turned on but no impurities
(EIT response), and finally with both the coupling light and the impurities present.
The probe light absorption A (Eq. (3.3)) is measured by recording the probe intensity
Lirans as well as the intensity [;, after 10 ms when all the atoms have fallen below

the light path because of gravity.
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Figure 6.3: Absorption of the probe light as a function of peak atomic density ng in a
large ODT. The atomic response is shown under three conditions: two-level (red), EIT
(blue) and EIT in presence of [42P3/5,m; = 3/2) impurities (green). The absorption is
measured on a 3x3 pixels region at the center of the cloud. Data are averaged over 10
repetitions. Error bars are given by one standard error. The lines present a comparison to
the hard-sphere model, where the absorption is calculated from the corresponding optical

susceptibility.

The two-level optical response, in absence of coupling field, allows to map the
absorption Ay (Eq. 3.2) accounting for the Rabi frequency €,/27 = 1.14 £ 0.02 MHz
(which introduces a 7% correction). This measurement, shown in Figure 6.3 (red

diamonds), coincides with the theoretical two-level predictions.
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For a different realisation of the experiment, the coupling laser resonantly addres-
ses the state |r) = [425 /2, m; = 1/2) and induces the EIT condition. The absorption
Aeir (blue squares) is recorded in a small region in the center of the atomic cloud. The
coupling beam was independently calibrated (Sec. 3.2) to deliver a Rabi frequency
Q./2m = 9.45 £ 0.74 MHz. For increasing atomic density, loss of transparency is
observed, as expected in presence of emerging probe-probe van der Waals interactions.
The data is compared to the hard-sphere model (blue dashed line)and good agreement
is achieved considering a Rydberg blockade of R,, = 3.6 & 0.3 um, higher than the
theoretical expectation (~ 2.5um). The blockaded fraction f,.. increments up to
0.31 + 0.03 as a function of density.

As a last step, impurities are pre-excited to the state |i) = [42P5/5,m; = 3/2)
during a fixed excitation time t.,. = 5us and the optical response is measured
(green circles). The larger absorption compared to the previous case is caused by the
impurities. The density dependent absorption A;,,, is compared to the hard-sphere
model, where the interaction strength is considered to be C¥ = 27 x 1.7 GHz - ym?
including an angular averaging factor [Walker and Saffman, 2008|. This leads to
a blockade radius of R; = 6.1 um, roughly 2 times larger than R,,.. The model
reproduces well the data assuming a constant fraction of volume blockaded by the
impurities of f;. = 0.24 £ 0.02, resulting in 26 + 5 Rydberg impurities embedded in
the whole sample. From the field ionisation we estimate the number of impurities to
be ~ 20, which is consistent with the optical measurement.

In the density range explored in Figure 6.3, the increase of effective signal
with the peak atomic density indicates an increment of the amplification factor
(expressed as the number of additional absorbers per impurity) and the SNR, which
is enhanced from 0 to ~ 5. The atomic density fluctuations are estimated to be on
the 8 % level by analysis of the shot-to-shot variations in the two-level case. The
measurements presented here demonstrate qualitative agreement with the hard-sphere
model predictions. However, additional effects evidence an increase of probe-probe

interactions that lower the amplification factor in IEI experiments.

6.3 Sensitive detection of |nS) and |nP) states

In this section, recent studies of IEI using dipolar-interacting |nP) states as
impurities are introduced in Section 6.3.1 including a characterisation of the average
sensitivity for small number of impurities. Complementary investigations of the

single-shot sensitivity are carried out for van der Waals interacting [nS) states and
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compared to nP states (Section 6.3.2). These studies pave the way for probing spin
models implemented with Rydberg atoms at the single spin level with high spatial

and temporal resolution.

6.3.1 Averaged imaging of few |nP)-state impurities

Here observations of a small number of impurities are presented, under conditions
which restrict the diffusion of impurities outside their volume [Giinter et al., 2013,
necessary prerequisite to implement and probe Rydberg spin systems at the single
spin level. Our set of IEI experiments is performed in a mesoscopic dense atomic
sample of ~ 8 x 8 x 22 um Gaussian widths (1/e?), prepared in a tight ODT (see
Section 2.4.1).

The atoms are prepared in the ground state |g) at a temperature of ~ 1 uK with
a peak density of ng = (1.4 £0.3)- 10" em™2 . Rydberg impurities are prepared via
three-photon excitation in the state |i) = [42P55, m; = 3/2) (Sec. 3.3). EIT couples
the probe atoms to |r) = [425}/2,m; = 1/2). The average number of impurities NV is
varied by the duration time t.,. of the three-photon excitation and is independently
determined via field-ionization. For each t.,. the optical response under EIT conditi-
ons is recorded and compared to the response of the unperturbed EIT background
to deduce the additional absorption A,4;. Given the high-density of the sample, the
coupling Rabi frequency 2. is increased and calibrated (see Sec.3.2) to a peak value
26.2 + 2.3 MHz, which we assume quasi-homogeneous over the extension of the cloud.
Under this conditions, the cloud presents good transparency conditions even with
the effect of probe-probe interactions [Hofmann et al., 2013].

In Fig. 6.4(a), we present the spatially resolved additional absorption. The
integrated number of additional absorbers along the vertical axis is plotted in
Fig. 6.4(b) (red line) and is compared to a Gaussian fit (blue line). After averaging
50 repetitions, we observe that the signal is > 3 times higher than the noise level
for N; = 2 impurities. The total number of additional absorbers >N, 44 is extracted
through a 2D Gaussian fit over the absorption area and displayed in Fig. 6.4(c) as
a function of the mean number of impurities /V;. The measurements show a linear
increase followed by saturation at ~ 40 for N; > 4.

The observation of saturation is consistent with the theoretical predictions. For our
large €., we can assume x%, ~ 0 and, since f,. ~ 0.02 < 1, probe-probe interactions
are negligible. According to the IEI model described in Sec. 6.2, the increase of
absorption can be simply described by the relation XNyqq = fir N = N; - noVi,

linear with the number of ground-state atoms N and the impurity number N;. The
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Figure 6.4: Interaction-enhanced imaging of [42P;/5) Rydberg atoms in a mesoscopic
cloud. (a) Spatial distribution of the additional absorbers N,44 for increasing average
number of impurities NV; = 2, 3, 4, 6. Measurements averaged over 50 repetitions with
tewp = 30 us exposure time. (b) Additional absorbers integrated over the vertical direction
of the images from (a) (solid red). The blue dashed line correspond to a 2D Gaussian fit
to the data. The fit integral allows us to extract ¥ N,44, reducing the noise outside the
region of interest. (b) Detected additional absorbers ¥ N,44 as a function of the mean
number of impurities N;. The initially linear growth of additional absorbers is followed
by exponential saturation around 40 absorbers as a result of Rydberg impurity blockade.
Data are fit to a saturating exponential model, which delivers an initial slope of 17.4+0.2,
in agreement with our model that predicts an amplification factor of 17.1. Error bars

correspond to one standard error of the mean.
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amplification factor nyVy,; =~ 17 predicted by this formula is presented in the figure
(green line) and describes well the initial slope of the plot. Given N = 400 atoms and

saturation around N;_, = 40, the fraction of volume blockaded by impurity-probe

interactions is < 10 %. The observed deviation at larger number of impurities may
be interpreted as a Rydberg blockade effect amongst impurities in the center of the
absorptive region, estimated to be significant above ~ 10 impurities. Then, the
excitation saturates in the center of the sample, while it would be still possible in the
tails, where the density is low and thus the change in the optical response negligible.
Since in our case R; > Ry, only a small fraction of the total volume is effectively
blockaded.

These measurements demonstrate the suitability of IEI to detect single Rydberg
impurities with an average sensitivity close to 1, using 50 repetitions. In the regime of
strong EIT coupling and few impurities, the number of additional absorbers changes
linearly with the number of impurities and depends only on the atomic density ng
and the EIT bandwidth o.; through the blockade volume. This relationship allows
to directly estimate the number of impurities without considering the microscopic
details of the imaging. Increasing the number of ground-state atoms within each
blockade sphere could enhance the sensitivity of the technique. This can be obtained
by increasing the R;. blockade radius through an optimal choice of impurity probe

state pairs.

6.3.2 Single-shot imaging of few |n.S)-state impurities

Since our spin experiments explore the dynamics of [nS) — |n’S) or [nS) — |nP)
state combinations, IEI will have to be applied to observe |nS) spins. Now we
will investigate the question of single-shot detection of impurities, focusing on
measurements of |n.S) impurities in a dense small sample, in similar conditions to
the reported experiments in Sec. 6.3.1 for |[nP) impurities. Measurements of the
detected distributions are reported and the single-shot sensitivity § is analysed by
means of the threshold method, previously applied in Section 3.1. Deviations from
expected electromagnetically-induced transparency conditions are presented, which
are not included in the hard-sphere approach.

The following IEI experiments are performed, coupling the ground state to the
Rydberg state |r) = [42S;/2,m; = 1/2) by means of an homogeneous probe beam
with €2,/27 = (1.20 + 0.05) MHz and a coupling beam with a peak Rabi frequency
Q./2m = (10 £ 2) MHz at various densities. Figure 6.5(b), shows the time-dependent
increase of absorption (red) for a peak density ng = (7.0 £ 0.2) - 10" ecm ™2, which
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is accompanied by an increase of the number of excitations (blue). Whereas the
initial conditions at t.;, = 2 us can be explained with the hard-sphere predictions
(OD= 0.14, N;pns = 12.4), the additional increase cannot be explained by standard
probe-probe van der Waals interactions. Such observation is compatible with a
spurious seeding effect due to black-body-induced transfer of population to nearby P
states |Gallagher, 1994; Beterov et al., 2009; Branden et al., 2010]. The stimulated
decay of probe states to nearby Rydberg states would originate undesired impurities
which reduce the transparency of the EIT medium. Thus, black-body induced
redistribution has a negative impact not only on the spin dynamics, but also on the

their optical detection.
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Figure 6.5: Increase of optical density (red) and probe Rydberg atom population
(blue) as a function of exposure time t.,, under EIT conditions. Impurities
are prepared in |i) = [435] /5, m; = 1/2), whereas probe atoms are coupled to |r) =
14251 /5, m; = 1/2) in the "tight" dipole trap with peak atomic density no = (1.2 &
0.1)- 10 em=3. The Rabi frequencies are ,/27 = (1.20 + 0.05) MHz and Q./27 =
(10 +2) MHz. Taken and adapted from [Gavryusev, 2016].

Since probe-probe interactions make a extremely small effect in the optical
absorption for densities < 3-10'°cm™ (see Fig. 6.4), given the present conditions
and probe quantum state, the increase of absorption at long exposure times has not
been observed in such regime.

For subsequent measurements, the probe Rabi frequency €2, is lowered and the
coupling Rabi frequency (2. is increased in order to reduce probe-probe interactions.
In order to analyse the sensitivity of IEI for each individual experimental realisation,
the single-shot fidelity (as defined in [Bochmann et al., 2010]) is calculated by
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Figure 6.6: Distribution of measured counts on the CCD camera and single-shot
fidelity detection for a variable number of impurities. IEl experiment realised in a
dense mesoscopic sample with impurities in the state |i) = [435) /9, m; = 1/2) and EIT
bath coupled to the probe state |r) = 425 5, m; = 1/2). The normalised distributions
over 200 repetitions show the number of generated counts in the CCD camera in presence
(blue) and absence (grey) of impurities. Each distribution corresponds to an average
number of impurities (N;): (a) (N;) = 0.8+ 0.2. (b) (N;) = 13.1 £0.4. (c) Fidelity
calculated with the threshold method (see Sec.3.1.5). For (N;) = 13.1 £ 0.4, the fidelity
threshold is crossed, giving F = 0.86 4+ 0.2. Sensitivity of S ~ 12 impurities. Errorbars
of F are estimated with the bootstrap method [Efron and Tibshirani, 1994]. Taken and
adapted from [Gavryusev, 2016].

means of the threshold method [Cowan, 1998|, which allows us to discriminate
how distinguishable the distribution of impurity transmission is with respect to the
distribution of transmission under EIT. The procedure can be consulted in more
detail in Section 3.1, as it has been used to optically distinguish Rydberg atoms
through Depletion Imaging. Further details can be found in [Gavryusev, 2016, Ch. 5].

In Figure 6.6, single-shot sensitivity analysis of IEI experiments is presented. In
this experiment, |i) = [435/2,m; = 1/2) and |p) = |42S)/2,m; = 1/2). The small
atomic sample (see Sec. 6.3.1) has a peak density ng = (7.0 +0.2) - 10" cm ™3 and is
coupled with Rabi frequencies €,/2m = (0.30£0.05) MHz and 2./27 = (20+1) MHz
during an exposure time t.,, = 10 us. The transmission is acquired in a region of
4 x 5 pixels of the CCD camera, corresponding to 8.25 x 10.35 um? in the object

plane. Varying the average number of impurities detected by field ionisation (IV;), we
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observe an increase of fidelity up to F = 0.86 £ 0.2 for (V;) = 13.1 £ 0.4. The single
shot detection sensitivity (defined as in Ch. 3.1.5) for [43S5}/2, m; = 1/2) impurities
in such conditions is measured to be & = 12.

Analogously, the presented fidelity analysis with the threshold method has been
applied to analyse the single-shot sensitivity of |43P;/,, m; = 3/2) impurities em-
bedded in a probe EIT gas coupled to 425/, m; = 1/2), as for the experiments in
Sec. 6.3.1. This lead to § ~ 4 impurities per single-shot, which represents the highest
sensitivity of IEI to date. Nevertheless, achieving good transparency conditions and
high probe-light signal simultaneously is a challenging task at high densities, where
additional effects, as the one observed in Fig 6.5, quickly increase the absorption of

the probe atoms and consequently reduce the detection sensitivity of IEIL.

6.4 Prospects: enhancement of the sensitivity to ob-

serve spin dynamics

This chapter introduced an overview of Interaction Enhanced Imaging to observe
Rydberg atoms, as well as the latest progress towards single-impurity sensitivity.
Since this method relies on mapping the presence of Rydberg impurities on the
increase of absorption of an EIT gas of cold atoms, a consistent characterisation of
EIT was beneficial (Section 3.2). At increasing density, Rydberg-Rydberg interaction
effects degrade the good transparency conditions and limit the IEI signal range
(Fig. 6.4 ,Fig. 6.5(a)). Selecting optimal conditions, optical imaging of [42P5 ;) and
14351 /2) Rydberg impurities has been demonstrated with good spatial resolution and
few atom sensitivity (Fig. 6.4), in a dense mesoscopic sample with size of few impurity-
impurity blockade radii R;;. Both the spatial resolution and the sensitivity of IEI are
comparable to the resolution of other Rydberg atom imaging methods [Schwarzkopf
et al., 2011; Schau® et al., 2012; McQuillen et al., 2013; Lochead et al., 2013].
However, this technique does not destroy the Rydberg state due to the measurement
procedure.

Competition amongst several non-linear effects plays a key role in the signal-
to-noise ratio of IEI. Therefore, achieving single-shot sensitivity constitutes a big
challenge. For instance, increasing the cloud density has been proven essential to
increment the amplification factor per impurity, but concurrently the impact of
probe-probe interactions rises, which reduces the achievable contrast. Single-impurity
sensitivity per single-shot has been reported in the context of creating optical

transistors controlled by a single stored photon (stored impurity) [Baur et al., 2014;
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Strongest impurity-probe pairs for IEI

2) — |r) Rir /Ry
|43S) — |42S5) 1.38
|79S5) — |57S5) 1.67
|69S) — |675) 2.00
139S5) — |38S) 2.72

Table 6.1: Ratio between impurity-probe R;, and probe-probe R,, Rydberg blockade
for the state pair combinations |i) — |r). The calculations of both R;. and R,, assume
x % scaling of van der Waals interactions. Only pairs with stronger ratio than the first

state combination of the list are presented in this table.

Tiarks et al., 2014; Gorniaczyk et al., 2014]. Spatially resolved and single particle
sensitive imaging as in IEI is a highly demanding task, since it requires to detect a
higher number of photons to resolve the particles, but this also increases the undesired
probe-probe interactions. So far, a single-shot sensitivity of S = 4 impurities has been
achieved for [42P;/5) —|42S51/2) and S = 12 for [435 j2) — 4285 2). To further enhance
the IEI sensitivity, the density and probing and coupling Rabi frequencies have to
be carefully optimised, after choosing impurity-probe Rydberg state combinations
that present optimal interaction strength ratios. In fact, the ratio between impurity-
probe R;. (Eq. (6.7), Eq. (6.6)) and probe-probe R,, (Eq. (6.3)) critical radii is a
key figure of merit. Whereas in the case of resonant dipole-dipole impurity probe
interaction, an increase of principal quantum number of the |nS) — |[nP) pair is
enough to raise the SNR and, consequently, the sensitivity, the case of van der Waals
interactions for [nS) — |n’S) pairs presents additional subtleties, discussed more in
detail in [Gavryusev, 2016]. The optimal choices are state combinations that present
a small Forster defect, which extraordinarily enhances the interaction strength, and
the most promising state combinations are listed in Table 6.1.

Achieving an SNR > 1 would allow to recover spatial resolution below the
Rydberg blockade radius R;;, thus, permitting to follow the local evolution of single
spins. This would enable new observations of Rydberg dynamics and formation of
correlations mediated by dipolar or van der Waals interactions. Studies of diverse
phenomena like energy transport [Schonleber et al., 2015; Schempp et al., 2015; Fahey
et al., 2015; Yu and Robicheaux, 2016], formation of Rydberg aggregates [Malossi
et al., 2014; Schempp et al., 2014; Urvoy et al., 2015] or evolution of Rydberg
dynamics under Ising or Heisenberg Hamiltonians [Hazzard et al., 2014b; Glaetzle
et al., 2015; van Bijnen and Pohl, 2015; Barredo et al., 2015; Labuhn et al., 2016;
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Whitlock et al., 2017] will be subject of future investigations mediated by IEI.

Observing the dynamics of two spin components

As a specially interesting application of the IEI technique, I propose its use
to follow the evolution of a two-component spin ensemble. For such purpose, the
principles of IEI must be generalised to include three spin components: two Rydberg
spins and a probe Rydberg state |r). As both spins interact with the probe EIT
medium, a clever selection of states must be realised to maximise the interaction
between the probe state and the spin-state of interest while minimising the interaction
to the other spin component. In this three-state imaging process, an interesting
option is to excite the |]) state to a Rydberg level close to a Forster resonance with
the |r) state and to leverage this feature to follow the temporal evolution of |]).
A suitable combination of states is given by the strongly interacting ||) = |795)
and |r) = |57S), with a ratio R,/ R,, = 1.67. To minimise the interaction between
the probe state and the other spin component, the spin-up state can be chosen to
be |1) = |[T7P) or [1) = |78S) to explore the XX and XXZ dynamics, respectively.
For |1) = |785) the Cy interaction coefficient between [1) — |r) is several orders of
magnitude smaller than the interaction amongst ||) — |r) states, thus, leading to a
spin-probe blockade radius with ratio R4,/R,, = 0.51. This indicates that the effect
of |1) on the absorption is even smaller than that of probe-probe interactions, whereas
the impact of |]) is 3.29 times higher. However, the residual absorption induced by
the presence of |1) states must still be subtracted from the calculated additional
absorption, as in Eq. (6.8). For this, a separate calibration of the absorption under
the presence of each component and under the bare effect of the probe state are

required, which modifies Eq. (6.8) into the effective expression
AOD = OD, — OD,y — OD; . (6.10)

Such experiments could reveal the formation of magnetic phases in the XX and XXZ

Heisenberg models, and would open the way for an enormous variety of investigations.



Chapter 7
Conclusion and outlook

In the scope of this thesis, I investigated the mapping of a spin-1/2 system onto
two Rydberg states and the usage of such platform to study many-body dynamics
amongst dipole-interacting Rydberg atoms and its relation to several spin Heisenberg
Hamiltonians. These studies were possible due to the implementation of refined
control of the microwave field that couples the relevant excited atomic levels and
allows to establish complex sequential protocols to manipulate the quantum state
of the Rydberg spins, with independent amplitude, frequency and phase control for

each pulse of an arbitrary experimental sequence.

To prepare the spin system, accurate implementation and characterisation of
several Rydberg atom excitation schemes was necessary. Here, two-photon optical
excitation of Rydberg |nS) states was optimised to accurately prepare the |]) state,
whereas combined three-photon excitation of |nP) Rydberg levels, with two optical
photons and a microwave field, was introduced as a possibility to independently
address a potential |T) of the spin system. Additionally, an optical scheme to de-excite
one spin state before detection was optimised, in order to render the spin states
distinguishable. By means of a new Depletion Imaging technique, which relies on the
lack of absorption from Rydberg atoms, the excitation dynamics has been locally
resolved. This evidenced the emergence of Rydberg blockade during the excitation
and thus the spatial self-ordering of Rydberg spins at high densities was revealed.
This technique also provided information about the regime of excitation of Rydberg
atoms by locally mapping the excitation rates. Furthermore, the Depletion Imaging
technique provides a precise method to calibrate the global Rydberg spin number
detected through field-ionisation and identify its spatial distribution.

Addressing Rydberg-Rydberg transitions to manipulate the selected spin states

has been proven feasible with negligible decoherence effects in short timescales

117
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compared to the spins’ life-time and being able to use the Rydberg atoms as a
sensitive probe to measure weak microwave fields (|E| ~ 1), With this level of
control of the Rydberg spin platform, it was possible to benchmark the dynamics
of non-interacting spins with a theoretical model governed by the dynamics of the
single-spin, demonstrating efficient manipulation of the quantum state of the spin
ensemble by tomographic sequences and finding an excellent coherence time of the
spins (~ 127 um for n = 48). I quantified the experimental limitations, thus enabling
our first observations of interaction effects amongst the spins in the many-body
regime. Spectroscopy methods provided a tool to experimentally determine the
sign of the average dipole-dipole interaction strength J |, which is found to strongly
depend on the selection of quantum numbers. The application of Ramsey techniques
allowed to characterise the strength of the interaction in different configurations, as
well as the phase shift produced on the spins. Finally, we could measure the effect
the competition of XXZ interactions with a driving field, which lead to an asymmetry
of the spin magnetisation curve. This paves the way to explore non-linear dynamical
effects and possible phase transitions within Rydberg XXZ Heisenberg models.

In addition, the application of another imaging technique called Interaction
Enhanced Imaging, with potential to achieve few-to-single spin spatial resolution
per single shot, has been tested to image Rydberg spins, leading to a single-shot
sensitivity S ~ 4 for [42P) states. This technique makes use of the strong interactions
of the spins to map their position on the absorption profile of an otherwise transparent
atomic gas (by being under EIT coupling). Optimising the selection of Rydberg
states, single-spin sensitive measurements may be rendered possible. Using the same
principles of the imaging technique, I propose a method to measure the local spin
dynamics in a two-spin component ensemble.

In the future, the range of application of Depletion Imaging may be successfully
extended to reveal the number, size and local distribution of Rydberg aggregates in
combination with full counting statistics (FCS) [Schempp et al., 2014; Malossi et al.,
2014; Urvoy et al., 2015] and could give insight into the seeding mechanism that leads
to the formation of crystalline structures [Pohl et al., 2010; Schauf et al., 2015]. The
potential achievement of single-atom resolution with Interaction Enhanced Imaging
could be also utilized to map the emergent correlations |[Schwarzkopf et al., 2011,
Schauf et al., 2012] in such systems, as well as the evolution of magnetic domains
in spin experiments. Moreover, it can be used to measure the transport of energy
carried by the spins |Giinter et al., 2013; Robicheaux and Gill, 2014; Schénleber
et al., 2015; Fahey et al., 2015; Yu and Robicheaux, 2016] with a high spatial and

temporal resolution.
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The different excitation techniques described in the course of this thesis can be
jointly applied in the future to independently create spins after the initial preparation,
inducing fluctuations and imbalance of the spin magnetisation which may play an
important role in non-linear spin dynamics of the system in both the XX and
XXZ Heisenberg models. An step forward in the control of the spin preparation
would consist in structuring the optical fields in order to address specific regions

of the atomic cloud |Lu et al., 2015], which can be obtained by using a spatial

light modulator (SLM) [van Bijnen, 2013; Bowman et al., 2015; Naber et al., 2016].

Thus, our experiments would achieve a higher level of control over the disordered
distribution of spins, engineering their initial configuration.

Making use of our high-degree of control over the microwave field, more complex
quantum control protocols can be applied to probe the spin dynamics in future
experiments. On the one hand, an important goal in our spin experiments will be to
distinguish the nature of the observed asymmetry with respect to the orientation
of the competing field in the XXZ experiments. The dependence on the properties

of the spin-exchange (XX part of the Hamiltonian) may be easier to confirm by

repeating the experiments in a direct dipole-dipole interacting configuration (e.g.

1) = |nS), [T) = |nP)). The transition between the few to many-body behaviour
could be explored by increasing the principal quantum number, where a smaller

total number of spins is accessible without reducing the interaction strength and the

longer coherence of the spin system allows for longer evolution and observation times.

By adiabatically ramping the competing microwave driving field, the ground state of
the system could be revealed. Introducing spatial structure on the spin distribution
will also provide a consistent framework to distinguish the effect of disorder from the
inherent few-to-many body effects [Labuhn et al., 2016; Bernien et al., 2017]. On the
other hand, the observation of time-crystalline structures and temporal correlations
on Rydberg spin systems may soon become possible [Zhang et al., 2017; Choi et al.,
2017|. Ultimately, the reduction of technical noise in the detection, provided by
state-selective field ionisation, would give access to precise variance measurements of
the magnetisation of the spin ensemble, which can potentially reveal rich non-linear
dynamics and the development of squeezed states and entanglement or the spread of
correlations |Hazzard et al., 2013; Hazzard et al., 2014b].
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Appendix A

IQ double mixing to suppress

undesired side-bands

[Q-mixing provides a manner to realise frequency up-conversion with additional
suppression of the side-bands of either higher or lower energy of the spectrum. Such
suppression allows us to avoid the driving of undesired Rydberg transitions. 1Q-
mixing relies on the cancellation of signals by two 90° phase-shifts of the mixing
components, creating a 180° shifted signal which adds up to the original signal. Thus,
a typical IQ-mixer consists of two internal mixers. Each of them is fed with a local
oscillator (LO) signal provided by the carrier signal, which is previously split and
90° phase-shifted. Similarly the modulating intermediate frequency (IF) for each
mixer is split and 90° phase shifted. The output radio-frequency (RF) signal from
both I and @ branches is added up by means of an in-phase combiner (as observed

in figure [A.1]) and the resulting signal cancels out the low side-band components.

R X
L

90° Hybrid |

o
RF D— > o0 Lo [500Q Load

90° Hybrid

Figure A.1: Working scheme of a general IQ-mixer. The IF and LO signals are split
for into two paths with a 90° relative phase. Individual mixing processes are recombined

to produce the global RF output. Figure taken and adapted from "Marki microwave".

123



124 Appendix A. IQ double mixing to suppress undesired side-bands

Mathematically, the IF signals (analogously, the LO inputs) of a perfect mixing

process can be described for each branch as

I(t) = % cos(2mvypt) (A.1a)
Q(t) = % sin(27w1Ft) (Alb)

Depending on the sign of the 90° phase shift, we can suppress the low or the
high-frequency components.

Hence, the output given by each of the mixers presents the following shape

A A
P = ZLo cos(2mvrot) - et cos(2mvrpt)
A2 A 2 (A.2a)
= % [cos(2m(vro + vir)t) + cos(2m(vro — vip)t)]
A A
Py =— Lo sin(2mvpot) - Ll sin(27vypt)
) 2 A 2 (A.2b)
= % [cos(2m(vro + vir)t) — cos(2m(vio — vip)t)]
Finally, the recombination of both branches allow us to get a global RF output
such like A A
Prp = % cos(2m(vro + vir)t), (A.3)

where only the high-frequency side-band is present.
The experimental characterisation realised with the [Q-mixer Marki MLIQ-1845L
confirm the benefits of such mechanism to suppress one side of the modulated

spectrum with respect to standard mixers.
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Figure A.2: Power spectral measurement of the 1Q-mixer Marki MLIQ-1845L radio-
frequency (RF) output for a carrier local oscillator (LO) frequency vro = 30.04 GHz and
input power Pro = 16dBm. The DDS provides a mixing intermediate frequency (IF)
signal at a frequency v7p = 400 MHz. The local oscillator (LO), first and second side-
bands from the up-conversion process are observed. Inset: power spectral measurement
of the mixer M4-0165, relying on standard frequency up-conversion. The amplitude of

the low-frequency side-bands is strongly suppressed by means of the 1Q-mixer.






Appendix B

Coupling between [n.S; ,,, ;) and

/ .
n P]/,mj> states

As evidenced in the previous chapters of this thesis, extensive use of 8’Rb Rydberg
|n.S) and |n’P) Zeeman sub-states has been employed. In Ch. (3.3, 6, 4, 5), Rydberg
[n.S1 2, m;) states are coupled to [n' Py, m’) by either a microwave field of the desired
polarisation (Ch. (3.3, 4)) or by means of dipole-dipole interaction due to the strong
dipole matrix elements (Ch. (6, 5)). To quantify the coupling between the involved
states, the dipole operator is described as p = er’- € in terms of polarisation vector é,

so it can be transformed into the spherical basis operators ji,, given by

4
Hy = er\/ngq(@,gb), (B.1)

where ¢ describes the polarisation dependence: ¢ = {+1,0,—1} = {o,m,0_}
transitions. The Wigner-Eckart theorem provides a mechanism to separate the dipole
matrix element into a radial contribution and an angular pre-factor [Weissbluth,
1978; Sobelman, 1979|. Thus, the reduced matrix element between the states |1) and
2) in the total angular momentum basis {n,[, j,m;} and {n’, ', j', m/}, respectively,

is expressed as

<j||m|j'>:<—1>l+s+ﬂ"+1-<ssw<zj+1><2j'+1>{j; y i’}anuuw, (5.2)

where

<zum|z’>—(_1>l¢(2z+1)<2zf+1){é (1) g} (niler|nl') (B.3)

The overlap between the radial wavefunctions and the dipole moment of the involved
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<nljmj‘ﬂq‘n’l’j/m;>

XRnoosn1 || Pryz—172 | Prosie | Pajo—3s2 | Psjo—1/2 | Psjav1y2 | P3j2,.43/2
1 V2 1 V2 1
Si/2,-1/2 3 5 NG E 3 0
V2 1 1 V2 1
S1/2.41/2 5 3 0 ~3 ¥ s

Table B.1: Dependence of the coupling between n.S and n’ P states with the quantum
numbers {j,m;}. The table represents the total pre-factor from Eq. (B.5) which multiplies
the overlap between the dipole moments (Eq.(B.4)).

states, independent of the spin-orbit coupling, is calculated as
T0
(nl|er|n’l') = Rnl—)n’l’ = / le (T)GTRnIJ/ (’I")TQd’l“, (B4)

by numerical integration, performed using the Numerov algorithm, as described
in [Sibali¢ et al., 2017|. Finally, the dipole matrix element on the {n,{, j,m;} basis
is given by the expression

(b g0ty = (=)= 35 1) (257 + 1) (2 + D)2l + 1)
17 ' 1 7 [ 17
x {7 J J J (nller|n'l'y .
U s 1 —m; —q m5) \0 0 0
(B.5)
The angular and radial contributions [Paris-Mandoki et al., 2016| are noted as
q j—mj+s+j'+1 J L
Cl 9 = (_1)] J J ’ (B6a)
' —mj —q m;

I 10
0 00

fiio = /(25 +1)(25' +1)(20 + 1)(20 + 1) {j 1 j’} <

; Rui—ny- (B.6b)
' s |

Therefore, the radial components fins, ,np,, = —\/ngoﬁn/,l and fins, ,n'p,, =

\%Rmoﬁngl. For the nS-nP transitions broadly used along this thesis:

n =42 n = 48
Rn,O—m’,l 1733.7 - €ago 2339.5 - eago




Appendix C

Rate model for the evolution of

populations

In order to reconstruct the magnetisation of the spin ensemble, complementary
information about the fraction of detected population which does not belong to the
1) state is required, as discussed in Section 4.4. For such purpose, the decay rates
of [1) and [1) to |a) and |b) are measured with additional experiments, as defined in
Figure 4.5(b). In this appendix, the three-level rate equation model |Tsai and Morse,
1979; Zizak et al., 1980] employed to quantify the redistribution of populations is
described.

Analogous considerations are valid for ||) and |1), so only the evolution of ||) is
explained. The notation employed refers to the total population in the states ||),
1), |a) and |b) as N|, Ny, N, and N, populations, respectively. Populations decay
with rates I'},, I}, (from |})) and Iy, Iy (from |1)).

Additionally, second-order temporal redistribution of population between the

states |]) is neglected. Thus, it is valid as ﬁ, F%b > t.

C.0.1 General dynamics

Experimental procedure to measure the spin populations N, N; and the magne-
tisation of the spin ensemble, M. :

(i) Rydberg preparation pulse.
(ii) Spin-manipulation sequence with variable time t,.

(iii) Down-pumping pulse during a fixed time ¢4, selected at the steady state of

experiment A.
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After ionising the spin populations, all spin states above the ionisation threshold

are detected, so

where Ny and Ng() are the populations from |]) and |1), respectively, decaying to
la). Terms labelled as *) are to be weighted by the fraction of time the spin spends
in the state |1) or |[{). 50 % contribution from both spin states is assumed.

Therefore, spin-up population is subtracted as
NT(tev> == Nmeas(tev) - NO : (FTa + Fia) : tev - Na(o) (02)

To quantify N|, the fraction of atoms decaying to |b) must be subtracted, as

Do + T+ o + Ty
2

Ny(tew) = No — Ny tev — Ni(tey) (C.3)

Hence, the magnetisation can be reconstructed as

Ni(t) — N (t)
2(N4(t) + N(t)

M.(t) =

C.0.2 Experiment A: Down-pumping

Experimental procedure to understand the redistribution of Rydberg states during

a down-pumping experiment (Fig. C.1(a)):
(i) Rydberg preparation pulse.
(ii) Down-pumping pulse with variable time t4,.

As the population decays, a residual amount of Rydberg atoms can be measured:

Nres(tap) = Na(tap) + N (tap)-
The temporal evolution of the populations obey the following rate equations

dN
d_; =—(Lap + T +Tp) - Ny (C.5a)
dN,

=Ty N, (C.5b)
dN,

d_tb = (FU) -+ de) . N¢, (C.5C)

where Ftot = de + FJ,a + Fu;.
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Therefore, each individual population is integrated as

N$<tdp) = No- eXp(_Ftottdp)

Ty,
Na(tap) = —No*[exp(~Trortap) = 1] + No(0)

tot
I wT de
1—\tot

Ny(tap) = —No lexp(—T'ostap) — 1] + Ny (0)

NreS(tdp) = N¢(0) ) eXp(_Ftottdp) +

assuming initial Rydberg preparation Ny = N|(0).

(1 — exp(—Thortay)) | + Na(0),

For large time, as tg4, — 00, the steady-state solutions describing the population

in states above threshold and the residual measured populations are found to be

Ni(tdp — OO) ~ 0

C.0.3 Experiment B: Redistribution to |b)

(C.7a)
(C.7b)

(C.7¢c)

(C.7d)

Experimental procedure to understand the redistribution of Rydberg states to

non-detected states |b) during the evolution time at which the dynamics occurs

(Fig. C.1(b)):
(i) Rydberg preparation pulse.

(ii) Free evolution with variable time t.,.

The temporal evolution of populations during t., follows the rate equations

dN,
YN T, +Ty)N
o (o +Tp) - Ny
dN,

“_T, N

o ta Ny
dN;

=Ty, N,

dt

(C.8a)
(C.8b)

(C.8¢)
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Therefore, the populations present the temporal dependence

Ni(tev) = NO . exp[—(Fw + Fib)tev] (CQa)
r,
Na( ) NO—(l - exp[ (FJ,a + Fib)tev]) + Na(o) (Cgb)
Lo +Tp
Ly
Ny(te) = No F—i(l — exp[—(Tpa + Tp)ten]) + N3(0) (C.9¢)
ta+ gy
I I
Nyes(tey) = Ng——— + N+ (1 — ——¢ ). —(Dyo + Typ)ten] + No(0).
(tev) = 0F¢a+F¢b+ o Ha—l-ﬂb) P (L + Lpfen] + Nul0)
(C.9d)
Consequently, the first-order Taylor expansion in t., delivers
Ni(tev) = _NO . (Fia + Fib) . tev (Cl()a)
I
Ny(tey) = Nom————=+ No -4 tew + No(0 C.10b
() = Mo+ No T ) (€ 10b)
No(tew) = Nom—— + Ny - Ty Loy + Ny(0 C.10
b(tev) o1y, TN Tu v(0) (C.10c)
I
Nyes(ter) = No——*— — Ny Ty tey + Ny(0). C.10d
(1) = N2 = Ny T ) (C.104)

C.0.4 Experiment C: Redistribution to |a)

Experimental procedure to measure the redistribution of Rydberg spins to detecta-
ble states above the ionisation threshold, |a). It requires to combine the experiments
from appendices (C.0.3, C.0.2), as observed in Figure C.1(c):

(i) Rydberg preparation pulse.
(ii) Free evolution with variable time ¢.,.

(iii) Down-pumping pulse during a fixed time t4,, selected at the steady state of

experiment A.

Hence, the rate equations which describe the evolution of such experiment are

identical to those from Eq. (C.5). Nevertheless, the initial state is given by the
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output from Eq. (C.9). Thus,

Ni(tev + tdp) = Ni(tev) . eXp(—FtOttdp) (Clla)
I

Naltew +tap) = =Ny (tr) 22 [exp(~Trtay) — 1] + Naften) (C.11b)
tot

Ny(teo + tap) = — N, (ter) lexp(—Thortay) — 1] + Ny(teo) (C.11¢)

1~ exp(— rmtdp»} + Nuto)
(C.11d)

L',
Nres(tev + tdp) - Ni(tev) : {GXP(_Ftottdp) F (
tot

Analogously, the Taylor-expanded steady-state solutions are described as

Ni(teva tdp — OO) ~0 (C12a)
Ny(tey tay — 00) = No| (T LN R Dia + N,(0)
a\lev; Udp X0) =~ IV la Ftot la Ib)lev ) lev Fia T Fib
(C.12Db)
I'y,+1 'y
Ny(tew, tap — 00) & Ny Kru, R+ Fu,)tev)tev —¢] + N,(0)
tot I'io +T
(C.12¢)

Nyes(tew, tap — 00) & No(tey, tap — 00). (C.12d)
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Appendix C. Rate model for the evolution of populations

(a) 1.0 s==-----mmmm-eoeooeoaooaoes
Preparation Down-pumping : Detection: 0.8 e [\| n
pulse pulse : field ionisation N
F—=0 1 0.6 a
q : 2 = Np
: 0.4 = Nres
. 0.2 === Niotal
time
< > > 0.0 , , , ,i, : : : ;
tprep Ldp ! 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
' tap [11s]
Preparation i | Detection: 0.8 \
pulse Free evolution . field ionisation
1 0.6
O | =
' 0.4
1
1
: o ”? éyzy”’i
-« > < > 0.0
tprep tey X 0 2 4 6 8 10 12 14 16
! teo (18]
Preparation X Down-pumping : Detection: 0.8
Free evolution PR
pulse pulse : field ionisation
0.6
t=0 '
. : 2,
! 0.4
.2
time 0
< > < > 0.0
tprep tew tap ! 0 2 4 6 8 10 12 14 16

' tew (18]

Figure C.1: Rate equation description for the redistribution of ||) Rydberg spins
to experimentally ionised |a) and non-ionised |b) states. (a) Down-pumping cha-
racterisation (Eq. (C.6)). After the experimental preparation of ||) states, a coupling
blue laser pumps the N| population to a fast-decaying state (see Fig. [3.15]) below the io-
nisation threshold, increasing IV;,. Down-pumping rate I'g, = 2.5 MHz. The steady-state
is achieved at tg, ~ 2 us, with detected population N,.s = N,. (b) Characterisation of
decay to states below the ionisation threshold, |b) (Eq. (C.9)). The population in the
initially prepared state freely evolves from ||) towards |a) and |b) with rates I'|,, I'}s.
The depletion of detected population N, is equivalent to the increase of IV, allowing
for experimental measurement of I'};,. (c) Characterisation of decay to states above the
ionisation threshold, |a). After (b), the remaining N| population is depleted by means of
a 2 pus down-pumping pulse. Therefore, N5 evolves in accordance to I, (Eq. (C.11d)).
Simulations consider an initial fraction N (0) = 0.94 atoms in ||}, whereas the remaining
6 % is distributed amongst |a) and |b), proportionally to the decay fraction to each of
those states. Decay rates selected for the first-order transitions from [|) = [4885 /5):
T, = 7.1345kHz, T}, = 10.6288 kHz.
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