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1 INTRODUCTION 

1.1 Case-control association studies: medical research and the role of 

confounding, outliers and stratification 

Case-control association studies rely on the observation of a disease status, or a symptom and 

on collected characteristics such as medical data, smoking status, or else, of samples. 

Association between samples characteristics and affection status or symptoms are sought, in 

order to find a significant link. Early studies of this type (Lane-Claypon 1926, Doll 1950) 

brought about decisive advances in their time, and case-control studies are still indispensable 

in fields where randomized controlled trials are hardly possible, such as in human genetics or 

in the human microbiome fields. 

Association between genetic predictors (generally, single nucleotide polymorphisms, SNPs, 

are typed for each control and each case) or microbiological predictors (for example, presence 

and abundance of a specific microbe in each sample individual) and a trait yields the base for 

valuable information to the clinician, such as risk prediction and treatment outcome 

prognosis. Well-known examples are SNPs in the BRCA gene, which correspond to an 

increased risk of breast, ovarian or prostate cancer, allowing to plan tailored screening or 

prevention actions. Treatment outcome has also become an important aim of association 

studies, for example to evaluate toxicity  or not after chemotherapy (recent examples are 

Montassier et al. 2016 - microbiome ; Ozkavruk et al. 2016 - genome). In both cases the goal 

is the emergence of personalized medicine. To this aim, predictive or prognostic biomarkers 

are looked for, such as specific SNPs or sets of SNPs (to name only a few recent examples of 

conditions where biomarker are studied: diabetes, cancer, asthma, attention disorder, 

rheumatoid arthritis and more generally complex diseases - Buus et al. 2016, Komi et al. 

2016, Bonvicini et al. 2016, Hollman et al. 2016, Saad et al. 2016, Müller et al. 2016). 

Recently, many associations between the microbiome and human health were highlighted, 

such as in gastrointestinal diseases and obesity (Malinen et al. 2010, Turnbaugh et al. 2006), 
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but also in complex diseases such as cancer and Crohn's disease (Kostic et al. 2012, Zou et al. 

2016, Ferrarelli 2016, Dey et al. 2013), or psychological traits (a short review on links 

between microbiota and diseases is given in Gilbert et al. 2016). 

However, association studies are plagued by confounding, and -as a consequence- by failed 

replications, which affect the genetic associations field since its beginnings (Ioannidis et al. 

2001, Cardon and Bell 2001, Hirschhorn et al. 2002, Marchini et al. 2004) and is only an 

emerging topic in microbiome associations (Blaser et al. 2013, Sinha et al. 2015). 

Confounding happens when unknown (or unaccounted covariates) factors impair validity of 

the association tested, either if the association is spurious (false positive, inflated type I error), 

or if a true association fails to be detected (false negative, masking). For both genetic or 

microbiome associations, this has been imputed for a part to population stratification 

(Pritchard and Rosenberg 1999, Cardon and Bell 2001, Ioannidis et al. 2001, Hirschhorn et al. 

2002 ; Blaser et al. 2013, Vogtmann and Goedert 2016). On the other hand, underlying 

structure or population stratification can be useful, for example to define groups-specific 

associations (Larson et al. 2000, Li et al. 2016 ; Nasidze et al. 2009, Holmes et al. 2011, 

Blaser et al. 2013, Falony et al. 2016), and therefore be a part of personalized medicine. 

Lastly, it is important to stress that confounding can take different forms. Stratification is a 

situation where distinct groups or clusters are present. Additionally or alternatively, a 

continuous structure, for example a varying ancestry component or cryptic relatedness, can be 

present. Finally, outliers are confounders since they influence the estimates although they do 

not correspond to the pattern taken by the majority of the data. 

1.2 Genetic case-control association studies and population structure 

Genetic case-control association studies aim at finding a significant association between allele 

frequencies in a collection of genetic variants (SNPs) sequenced in a large number of case and 

control individuals. The dataset usually consists of a matrix containing the sum of minor 

alleles, for each SNP and for each individual. Confounding through population structure has 

been identified in such studies early on, and has long motivated the use of family-based 

studies instead of population-based studies (Cardon and Bell 2001). Beginning in 1999, 

methods to detect and correct for population structure emerged, in particular the 

STRUCTURE software based on a set of unlinked SNPs (Pritchard and Rosenberg 1999, 

Pritchard and Donnelly 2000) and the genomic control method (Devlin and Roeder 1999), 

which allows to adjust p-values for residual population stratification by looking at allele 



4 

 

frequencies differences. Intensive discussion was led and a wealth of new methods appeared 

at the time (Reich and Goldstein 2001, Satten et al. 2001, Zhang et al. 2001, Thomas and de 

Witte 2002, Wacholder et al. 2002, Hoggart et al. 2003). In parallel, concerns about 

replication were aired (Cardon and Bell 2001, Ioannidis et al. 2001). In  particular, Hirschhorn 

et al. (2002) reviewed 166 genetic association studies and found that only 6 were 

"consistently replicable", even if half of the remaining associations could be replicated 

sometimes, but not always.  

As a consequence, this pioneering era was followed by increased awareness that a cautious 

study design was needed in genetic case-control studies (Freedman et al. 2004, Marchini et al. 

2004), that an increased number of SNPs from a few dozens to thousands were needed 

(Freedman et al. 2004), even if ancestry marker SNPs were used, and finally that increased 

sample sizes were necessary (Hirschhorn and Daly 2004), which lead to the development of 

genome-wide association studies (GWAS - 1
st
 GWAS in Ozaki et al. 2002, early and later 

reviews in Hirschhorn and Daly 2004 and Kingsmore et al. 2008, respectively). Further care 

was still taken to detect and correct for population structure, or to use alternative methods 

(genomic control, ancestry matching of cases and control groups). In particular, Marchini et 

al. (2004) revealed that even subtle population structure inside a population leads to 

confounding, when sample size increases. Accordingly to the increase in significance and in 

size of the GWAS, the practicable and efficient PCA method (Eigenstrat) was developed by 

Price et al. 2006, which has been applied broadly (Price et al. 2010, Clarke et al. 2011, 

Bouaziz et al. 2011, Wu et al. 2011) ever since, while genomic control was deemed less 

appropriate (Freedman et al. 2004, Price et al. 2010, Bouaziz et al. 2011, Wu 2011).  

Nevertheless, concern still arose about confounding through finer structure or cryptic 

relatedness (Voight and Pritchard 2005, Astle and Balding 2009, Sillanpää 2011, Liu et al. 

2011, Shibata et al. 2013), which can be viewed as a form of continuous structure and occurs 

when unknown moderate relatedness is present between samples which are taken to be 

unrelated, and which is not explicitly taken into account by STRUCTURE or PCA 

(Eigenstrat). Enduring concerns about insufficient correction of population stratification were 

also expressed (Salanti et al. 2005, Saito et al. 2006, Choudhry et al. 2006). Several methods 

were proposed to tackle both issues of population stratification and cryptic relatedness, such 

as mixed models (Price et al. 2010, Yang et al. 2014, Chen et al. 2016) which make use of a 

kinship matrix to account for relatedness. Further tailored PCA-derived methods like 

ROADTRIPS, EMMAX or PCAiR (Thornton et al. 2010, Kang et al. 2010, Conomos et al. 

2015, respectively) were also developed. However, PCA was found to perform at least as well 
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as mixed models in the presence of admixture (Liu et al. 2011), and mixed models are mostly 

relevant when only relatedness and no stratification occurs (Yang et al. 2014), which is 

however seldom the case. Moreover, methods ROADTRIPS and EMMAX did underperform 

as compared to PCA (Eigenstrat) in Wu et al. (2011) and there is little information yet on 

method PCAiR, which is for now rarely applied (Dunn et al. 2016). Furthermore, 

multidimensional scaling methods were applied, either on a matrix of covariance or of 

identity-by-descent between samples, but the results obtained were found similar to PCA 

(Wang et al. 2009, Zhang et al. 2014). 

To this day, PCA (Eigenstrat) remains the most broadly applied method to detect and correct 

for population structure (Clarke et al. 2011, Bouaziz et al. 2011, Wu et al. 2011), in agreement 

with the fact that authors insist PCA is necessary (Widmer et al. 2014) or at least 

recommended (Liu et al. 2011), although concerns about fine structure or cryptic relatedness 

still exist ("There is no certainty that population stratification is completely controlled for in 

large-scale meta-analyses", Robinson et al. 2016). Some amount of confusion even exists, as 

some authors sometimes revert to  using genomic control (Fuchsberger et al. 2016) though it 

may impair finding of true associations, or come back to using family-based designs 

complementary to population structure correction (Robinson et al. 2016, Okbay et al. 2016), 

though family-based studies are also prone to false positives and are underpowered in 

comparison to case-control studies (Hirschhorn and Daly 2004). 

1.3 Microbiome case-control association studies and underlying structure 

The microbiome is constituted of microbes which coat the surfaces of the human body, such 

as the gastrointestinal tract or the skin. A few early studies in 1985 (Lane et al. 1985) 

pioneered the analysis of this microbiome by genomic sequencing of the set of microbes, and 

in particular by typing the highly variable 16S ribosomal RNA part. As a result, microbes can 

be classified in phylogenies, and the abundance of each of these phylogenies is recorded. A 

microbiome dataset generally consists of a matrix of abundances for each phylogeny and for 

each sample. Microbiome analysis have developed fast after 2002 due to improved 

sequencing possibilities, which has led to the first microbiome association studies (Breitbart et 

al. 2002, Tyson et al. 2004) and to numerous studies up to now. Many potentially useful 

associations in a large array of conditions ranging from gastro-intestinal diseases to cancer, 

and as far as autism or depression (a review can be found in Gilbert et al. 2016). 
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Microbiome associations, similarly to genetic associations, are interesting in medical research 

because they provide risk factors, predictive or prognostic biomarkers useful in precision 

medicine. They are similar to genetic association studies in the sense that a careful analysis is 

needed and that confounding factors can be present and impair replication (Blaser et al. 2013, 

Gilbert et al. 2016, Vogtmann and Goedert 2016). First ideas point to population structure 

confounding, which might either correlate to host genotype favoring specific microbiomes, or 

to diet habits (same authors). However, underlying structure in microbiome is not only a 

confounding factor but also an expected advantage, because it can help in prediction or 

tailoring treatment (Nasidze et al. 2009, Holmes et al. 2011). Many authors express the need 

to identify patient stratification, for example classify patients in subgroups of individuals 

corresponding to different levels of risk (Nasidze et al. 2009, Holmes et al. 2011, Blaser et al. 

2013, Falony et al. 2016, Wang and Jia 2016, Zmora et al. 2016), which allows ultimately the 

clinician to choose the option best adapted to each subgroup. Furthermore, the recognition of 

a definite structure in the microbiome, for example a deviation of the microbiome from a 

healthy or normal microbiome can inform on the course or the grading of a disease (Cho and 

Blaser 2012, Ash 2016, Lloyd-Price et al. 2016). For example, it is hoped that cancer 

diagnosis can be accelerated and treatment toxicity reduced by taking into account 

information derived from microbiome analyses (Vogtmann and Goedert, citing Wallace et al. 

2010 and Iida et al. 2013).   

The limited knowledge on confounding factors on one hand, and the potential expected from a 

better defined microbiome structure motivates the exploration of microbiome datasets with 

dimension reduction techniques like PCA or MDS (Gilbert et al. 2016). Many such methods 

were proposed, for example MDS using different distance metrics (Gilbert et al. 2016) or 

robust PCA based on the least absolute distances (ℓ1-norm, Brooks et al. 2013) instead of 

least squared distances (ℓ2 norm). However, no consensus has been reached so far although it 

is necessary in order to obtain results comparable between studies (Blaser et al. 2013). As 

microbiome association studies have moved towards large-scale consortia (MWAS, HMP 

project Turnbaugh et al. 2007), and as more integration between different omics is called for 

(Blaser et al. 2013, GWAS with microbiome as an outcome as in Folseraas et al. 2012, 

Goodrich et al. 2016), a sound choice of these exploration methods is essential. 
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1.4 Stable estimates in the presence of confounding structure 

Confounding and subsequent replication exist in both genome and microbiome association 

studies (genome: Ioannidis et al. 2001, Hirschhorn et al. 2002, Marchini et al. 2004, Salanti et 

al. 2005, Saito et al. 2006, Choudhry et al. 2006, Nilsson et al. 2013, Li and Meyre 2013, Liu 

et al. 2013 ; microbiome: Harley and Karp 2012, Blaser et al. 2013, Sinha et al. 2015, Gilbert 

et al. 2016). For both, population stratification is still thought to be responsible for these 

issues, at least partly (Nilsson et al. 2013, Gilbert et al. 2016). 

However, robust PCA or MDS, which aim at producing stable estimates of underlying 

structure and hence enhance reproducibility, are seldom applied. This is probably because 

most robust methods were developed in other contexts or are not always directly applicable to 

genomic or microbiome datasets (for example minimum covariance determinant MCD, 

Rousseeuw and van Driessen 1999, was developed for the chemometrics field). The few 

methods claiming to be robust in the genetics field actually do remove outliers (Liu et al. 

2013), or use the term 'robust' for the resilience to a specific aspect only (for instance to 

relatedness, which is a continuous structure, but not to outliers, in Conomos et al. 2015).  

Currently, attempts to make analyses more reliable consist in applying a sound and consensus 

quality control (for example: protocols Clarke et al. 2011, Turner et al. 2011). Additionally, it 

is almost always recommended to remove outliers from the dataset (Bellenguez et al. 2010, 

Shen et al. 2010, Clarke et al. 2011, Turner et al. 2011, Liu et al. 2013, Callahan et al. 2016). 

However, this practice is questionable, since these outliers are not necessarily false points but 

may contain relevant or sometimes decisive information (Yu et al. 2002, Scott et al. 2005, 

McMurdie and Holmes 2014, Ray 2014, Friend and Schadt 2014). Furthermore, they are 

detected based on a perceived, but not necessarily relevant difference with respect to the 

majority of the points (van den Broeck 2005, Bakker et al. 2014), so that it might not be 

straightforward to decide which points are or not outliers and if they should be excluded.  

Robust statistics aim precisely at resolving this issue by accommodating outliers, that is to say 

it takes advantage of the information contained in these, while maintaining stable estimates. 
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1.5 Objectives and organisation of this work 

Considering the largely unmet need in detecting underlying structure reliably and robustly, the 

aim of this thesis is the robust exploration and control of underlying structure in genetic and 

microbiome case-control association studies. This is carried out by comparing a large array of 

standard and robust methods in terms of representativity of the underlying structure, and in 

terms of robustness to outliers, among which several new improved methods are proposed.  

PCA- and MDS- based methods commonly applied in the genome and microbiome fields are 

included, as well as a variety of robust extensions, including MCD, spherical PCA (Locantore 

et al. 1999), MDS based on Manhattan metric (Barile and Weisstein 2016) or non-metric 

MDS (Kruskal 1964a, 1964b). My contributions include robustifications of existing methods, 

adaptation to the genomic or microbiome field, and a new method for dimension exploration 

and reduction, nSimplices, applicable in both contexts.  

The comparisons were carried out on two synthetic datasets, on genetic SNP data from the 

EPIC initiative (European Prospective Investigation Into Cancer and nutrition, Riboli et al. 

2002, Campa et al. 2011), and finally on microbiome abundance data from the Human 

Microbiome Project (HMP, Turnbaugh et al. 2007). Outliers were introduced in varying 

proportions in synthetic example 2 and in the two real datasets. As a result, 10 principal 

components or axes were kept for each method and for each percentage of outliers included. 

Then, these estimated axes were assessed in terms of representativity. This was measured by 

the quality of the fit of these axes to the known underlying structure. Additionally, the 

robustness of the 10 axes disturbed by the inclusion of outliers was evaluated. This was 

assessed by how well the disturbed 10 axes could fit each one of the original axes. 
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2 MATERIAL AND METHODS 

2.1 Datasets 

The different methods were compared on two synthetic examples and two real world datasets. 

Simple synthetic examples served to assess methods at a well-controlled and tractable scale. 

Genetic variants and microbiome abundances datasets were used to assess all methods in a 

realistic context in higher dimension. Different classes of outliers were introduced, based on 

the principle of their relevance with regard to different types of data. Indeed, most genetic or 

microbiome datasets contain outliers but their published versions are extensively cleaned from 

outliers. This makes necessary to reintroduce some, in order to reproduce a realistic situation 

where some outliers are present. 

2.1.1 Synthetic dataset 1: Underlying structure with small variance 

This first dataset is designed to mimic a situation where a relevant or confounding structure is 

present in the data, but where this confounding structure is hard to detect because of its small 

variance. The structure is represented by one underlying factor with two distinct but close 

groups. One group of 1000 samples is drawn from  a normal distribution with mean 1. and 

standard deviation 0.5 (𝒩(1,0.5)), and a second group of 1000 samples from 𝒩(-2.,1.).  

Further 15 independent underlying factors devoid of any structure are generated for the same 

samples by drawing 2000 values from 𝒩(𝜇, 𝜎). The mean 𝜇 is itself drawn from 𝒩(0,10), 

and 𝜎, the standard deviation, in the set {0.2,0.9,1.71,5,10} (recycled three times). This set 

was chosen to represent standard deviations ranging from values smaller, equal or greater to 

1.71, which corresponds to the standard deviation of the first, confounding factor. This leads 

to a set of 16 underlying factors, which constitute a 2000-by-16 matrix 𝑋𝑓𝑎𝑐𝑡𝑜𝑟. These 
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underlying factors were linearly combined with a mixing matrix A, so as to obtain a more 

realistic dataset, where a relevant factor can be spread over several measured variables. The 

mixing matrix A is a square matrix of order 16. Elements of A are picked from a uniform 

distribution between -0.5 and 3 (𝑈[-0.5,3]). The synthetic dataset 1 with underlying structure 

is the 2000-by-16 matrix X calculated as follows: 𝑋 = 𝑋𝑓𝑎𝑐𝑡𝑜𝑟 ∙ 𝐴. 

2.1.2 Synthetic dataset 2: Underlying structure with noise and outliers 

This second dataset is an extension of an example dataset described previously (Spence and 

Lewandowski 1989, Forero and Giannakis 2012). Briefly, 25 points are spread evenly along 

two orthogonal segments of length 12 (arbitrary units), which intersect at their middle point. 

These distances are contaminated with noise drawn from a normal distribution 𝒩(0,0.3) 

(truncated so that resulting distances are positive). In addition, a varying percentage in 

{0.25,0.5,1,2,5,7,10}% of the distances are picked at random and turned into outliers by 

adding a value drawn from 𝑈[0,20] (this is similar but not fully identical to Forero and 

Giannakis 2012). These contaminated configurations are denoted DO (distance outliers). 

I added two configurations to strain further the subsequent multidimensional scaling (MDS) 

calculations. The idea here is that, though MDS is non-robust with respect to large disparities 

(see for example Spence and Lewandowsky 1989, Forero and Giannakis 2012), a distant, but 

in-plane point, should degrade accuracy but should not modify the general shape of the 

solution. As a consequence, a single distant point is a simple test for overall consistency of a 

MDS-based method. In the first additional configuration I introduced one such distant point 

(coordinates (100,100) in the axis system defined by the two segments with origin at their 

intersection). Noise and distance outliers are added as described above. This additional 

configuration is denoted DOd (DO with distant point). 

Finally, contextual outliers are introduced. Contextual (or conditional) outliers correspond to 

observations which could be considered correct or aberrant depending on the context (see a 

description for example in Song et al. 2007). They can be visualized geometrically, as points 

which have an additional coordinate along an axis orthogonal to the subspace where most 

points lie. These outliers are generated by adding a fixed contribution 𝛿𝑠𝑢𝑝𝑝𝑙 drawn from 
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𝑈[0,20] along an axis orthogonal to the main subspace. This translates simply in the following 

formula : 𝛿𝑐𝑜𝑛𝑡𝑒𝑥𝑡
2  =  𝛿ℎ𝑦𝑝𝑒𝑟𝑠𝑝𝑎𝑐𝑒

2  +  𝛿𝑠𝑢𝑝𝑝𝑙
2 . The intuition here is that these outliers might 

represent a more drastic perturbation for a MDS-based method than a distant point or noisy 

observations. This is because MDS would try and mirror the additional, outlying distance, 

thus affecting all coordinates, without taking into account the fact that the outlying distance 

regards only one or a few points. Contextual outliers are added to the noisy distances, in 

proportions of {4,8,12}% of the points (which correspond to 1, 2 and 3 outliers). No 

additional distance outliers are added. This last setting is denoted CO (contextual outlier). 

2.1.3 EPIC 

The EPIC (European Prospective Investigation Into Cancer and nutrition) dataset used here 

comprises genome-wide single nucleotide polymorphisms (SNPs) from 432 prostate cancer 

cases and 428 controls from the EPIC cohort (see published description of the EPIC cohort in 

Riboli et al. 2002). Before quality control, 591 841 SNPs are present. Among these, some are 

filtered out using PLINK v1.07 (Purcell et al. 2007) if minor allele frequency (MAF) is less 

than 5%, or if the p-value for Hardy-Weinberg equilibrium is less than 0.001, or again if 

missingness in SNPs exceeds 10%. Remaining SNPs are further pruned out if linkage 

disequilibrium is present (option "--indep 50 5 2" in PLINK). After quality control, 123 174 

SNPs remain, among which 100 000 are randomly selected for further analyses. The resulting 

(n,p)=(100 000,860) matrix 𝑋𝐸𝑃𝐼𝐶 is used for further analyses. In this matrix, each genotype is 

coded as the number of minor alleles: 0 (2 major alleles), 1 (1 minor allele) or 2 (2 minor 

alleles). 

A varying percentage ({0.25,0.5,1,2,5,7,10}% of the original individuals) of individual 

outliers are generated according to the bad leverage points (BLP) definition (outliers with 

detrimental influence because of large components along main axe - Rousseeuw and van 

Zomeren 1990), by introducing large values along principal components 1 and 2, drawn from 

𝒩(10,1), and a random small component on remaining principal components, drawn from 

𝒩(0,0.0001). The new individuals thus generated in principal components base are 
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subsequently transformed in a SNPs-by-individual matrix, using the following equation, after 

which they are rounded to the nearest integer values 0, 1 or 2: 

𝐼𝑆𝑁𝑃 = √𝑓 ∙ (1 − 𝑓) ∙ 𝑝 ∙ (𝐼𝑃𝐶 ∙ 𝑃 ∙ 𝑋𝐸𝑃𝐼𝐶) + 𝐸[𝑋𝐸𝑃𝐼𝐶], 

where 𝑓 is the unbiased minor allele frequency 𝑓 = (1 + 𝑛 ∙ 𝐸[𝑋𝐸𝑃𝐼𝐶]) / (2 + 2 ∙ 𝑛)  , 

𝐸[𝑋𝐸𝑃𝐼𝐶] is the mean of 𝑋𝐸𝑃𝐼𝐶 along rows (i.e., SNPs), and P is the (p,p) square matrix 

containing eigenvectors (in columns). This formula corresponds to de-centering (+𝐸[𝑋𝐸𝑃𝐼𝐶]) 

and de-standardisation (√𝑓 ∙ (1 − 𝑓) ∙ 𝑝), which is applied to the matrix of outliers in 

principal components base (𝐼𝑃𝐶) transformed back into a SNPs base (𝐼𝑃𝐶 ∙ 𝑃 ∙ 𝑋𝐸𝑃𝐼𝐶) (this is 

simply derived from singular value decomposition equations, described for example in Lieser 

and Mehrmann 2015). The eigenvectors used here in matrix 𝑃 are calculated using Eigenstrat 

(Price et al. 2006, see also brief description in §2.2). The resulting matrix of outlier 

individuals is joined to 𝑋𝐸𝑃𝐼𝐶 to constitute an extended, synthetic outlier-containing dataset.  

Alternatively, real individual outliers are drawn randomly from non-European populations 

from the 1000 Genomes public database (1000 Genomes Consortium et al. 2012), and added 

in varying percentages {0.25,0.5,1,2,5,7,10}% of the original EPIC individuals. The subset of 

SNPs corresponding unambiguously to the EPIC SNPs was used (same name, same position, 

same reference and alternative alleles). The resulting additional individuals were joined to 

𝑋𝐸𝑃𝐼𝐶, which constitutes a real outlier-containing dataset. 

2.1.4 HMP 

The HMP dataset is constituted of human microbial abundances at several body sites, 

downloaded from the Human Microbiome Project (HMP, Turnbaugh et al. 2007). The source 

data are the high quality phylotype counts, classified using the microbial 16S ribosomal 

variable region V13, as made available by the HMP consortium (URL: 

http://hmpdacc.org/HMMCP/). Then, quality control filters are applied to exclude samples or 

phylogenies with less than 10 strictly positive counts. The dataset is used subsequently either 

unchanged, as a (2 255,425) samples-by-phylogenies counts matrix, or transformed in 

proportions so that phylogenies proportions add up to 1 for each sample. 
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Outlier samples are generated according to the bad leverage points (BLP) definition, as 

described above, by creating large coordinates along the main principal components and 

transforming the data back to a samples-by-phylogenies matrix. The eigenvectors used in this 

transformation derive from multidimensional scaling on a distance matrix (Torgerson 1957, 

see brief description in §2.2). 

2.2 Available methods to summarize underlying structure  

A subset of the following methods was applied to the synthetic examples and to the EPIC and 

HMP datasets. Of the principal components, or top axes, produced, the 10 top ones were kept 

for the evaluation of representativity, or of robustness. These axes were also used in the 

subsequent association test in the EPIC dataset. Unless otherwise stated, each method was 

implemented in the Python language (van Rossum 1995). As the second example contains 

only 2 dimensions, only 2 components or axes are examined in this case. 

A brief summary of each method is presented here. A list of methods applied to each dataset 

is provided in §2.4.  

2.2.1 Methods based on Principal Components Analysis 

- ICA. Independent Component Analysis (ICA) might be useful to detect an underlying 

structure, or outlyingness, because it separates non-gaussian components. Indeed, it was 

designed to separate independent but mixed signals (Hérault and Ans 1984, Comon 1994). 

This situation can be compared with a structure concealed in a high number of dimensions. As 

independence implies non-gaussianity (see for example Hyvärinen and Oja 2000), this could 

be useful in the uncovering of outliers. Here, the algorithm fastICA of Hyvärinen and Oja 

2000, as implemented in R package fastICA (Marchini et al. 2013), was used. ICA was 

applied as an illustration and proof of principle to the synthetic example 1 only. Indeed, ICA 

does not provide ordered components, contrary to principal components analysis (PCA, 

Pearson 1901). Therefore, retrieving the first 10 components from ICA does not necessarily 

mean that these components are the most meaningful. As a consequence, the use of ICA to 
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explore a large-dimensional dataset such as EPIC or HMP is not straightforward and hasn't 

been done here. 

- PCA and Eigenstrat (denoted EIG in the following). Principal Components Analysis 

(PCA, Pearson 1901) is applied either on a centered and standardized matrix (synthetic 

dataset 1, using R) or following the Eigenstrat method. Eigenstrat was suggested and 

described in Price et al. 2006. Eigenstrat is a popular approach to correct for population 

stratification and is therefore used here as a reference. Briefly, a (n,p) SNP-by-individual data 

matrix A, is first centered and normalized as follows: 

𝑏𝑖𝑗 = (𝑎𝑖𝑗 − 1/𝑝 ∙ ∑ 𝑎𝑖𝑗

𝑝

𝑗=1
) √𝑓𝑖 ∙ (1 − 𝑓𝑖)⁄  ,  

where 𝑏𝑖𝑗 are the elements of matrix B, (i,j) are the indices of rows and columns of A or B, 

and 𝑓𝑖 = (1 + ∑ 𝑎𝑖𝑗
𝑝
𝑗=1 ) (2 ∙ (𝑝 + 1))⁄ . This step is denoted "Eigenstrat normalisation" in the 

following. B is then used to build a covariance matrix 𝐶 =  1/𝑛 𝐵𝑇 . 𝐵. Principal components 

are computed by eigen-decomposition of 𝐶. 

- SPH. Spherical PCA was proposed by Locantore et al. 1999. This procedure is similar to 

Eigenstrat, but instead of performing an Eigenstrat normalization, the following normalization 

towards a unity sphere is done: 

𝑏𝑖𝑗 = (𝑎𝑖𝑗 − 1/𝑛 ∙ ∑ 𝑎𝑖𝑗

𝑛

𝑖=1
) √∑ (𝑎𝑖𝑗 − 1/𝑛 ∙ ∑ 𝑎𝑖𝑗

𝑛

𝑖=1
)²

𝑝

𝑗=1
,⁄  

where matrices A and B follow the same definition as in EIG. 

- MCD. The Minimum Covariance Determinant (MCD) procedure was introduced by 

Rousseeuw (1984) and improved in Rousseeuw and van Driessen (1999). The implementation 

used here comes from Python package scikit-learn (Pedregosa et al. 2011), which was adapted 

for the needs of this thesis (tolerance to missingness, acceleration). The principle at the heart 

of this method is to select the core of the data by iterating on the covariance matrix's 

determinant. The size of the core subset can vary between 50% and 100% of the original 

dataset. Here this size is set to 60%. The data matrix 𝑋𝐸𝑃𝐼𝐶 had to be restricted to 20 000 

SNPs instead of 100 000 to guarantee that all calculations were tractable. Furthermore, a 
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small amount of jitter was applied to 𝑋𝐸𝑃𝐼𝐶 in order to ensure that subset-based covariance 

matrices have almost always full rank. This is better than removing fully identical SNPs, 

because there are only very few of them, so that their removal would have only marginally 

helped to guarantee full rank matrices.  

- IBS. This approach consists in PCA applied to the Identity-By-State (IBS) matrix between 

individuals, instead of a covariance matrix, as done in PLINK v1.07 (Purcell et al. 2007). IBS 

is defined as follows: 𝐼𝐵𝑆𝑗𝑘,𝑖 = 1 − |(𝑔𝑗1,𝑖 + 𝑔𝑗2,𝑖) − (𝑔𝑘1,𝑖 + 𝑔𝑘2,𝑖)| 2⁄ , where 𝑔𝑗1,𝑖 is the 

genotype of individual j (1
st
 allele copy) at SNP i. 

- L1PCA. (ℓ1-norm)-PCA was proposed by Brooks et al. (2013) and is based on the least 

absolute distances, which correspond to the ℓ1-norm. Here, a Python implementation, based 

on the algorithm of Brooks et al. (2013) and on the R function l1pcastar provided by the 

authors is used. The calculation relies on linear program optimization, here performed by the 

Fortran routine rqfnc.f (Koenker and Portnoy 1997), which was integrated into Python using 

F2PY (Peterson 2009).  

2.2.2 Methods relying on Multidimensional Scaling 

Multidimensional scaling (MDS) aims at finding the coordinates of a set of points along 1, 2 

or more main axes, based on the pairwise distances between them. MDS takes a distance 

matrix, which contains the pairwise distances, as input, and generates the coordinates along 

the main axes for all the points. This is done by minimizing the residual errors between the 

input distances and the distances recalculated based on the coordinates (Hastie et al. 2001). 

- cMDS. Classical multidimensional scaling (cMDS) was presented by Torgerson 1957. This 

method is closely related to PCA since it relies on an eigen-decomposition, which is applied 

to a double-centered distance matrix instead of being applied to a covariance or correlation 

matrix (Hastie et al. 2001). 

- MDSm and MDSe. Both methods apply cMDS to a distance matrix, where the distances are 

either calculated using the Manhattan distance (Barile and Weisstein 2016), denoted MDSm, 
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or Euclidean distance, denoted MDSe, on pyhlogenies proportions. In synthetic dataset 1, 

MDSe is carried out in R. 

- LAR. The Least Absolute Residuals (LAR) method is a MDS method which relies on the 

ℓ1-norm instead of the ℓ2-norm. This means in practice that squared distance residuals are 

replaced by absolute distance residuals. The LAR algorithm proposed by Heiser (1988) was 

implemented and used here. 

- RMDS and RSMDS. The methods Robust MDS (RMDS) and Robust MDS for Structured 

Outliers (RSMDS) were introduced by Forero and Giannakis (2012). Both are iterative 

procedures which aim to regularize distance outliers and therefore accommodate for them. 

RSMDS additionally aims to take advantage of outliers sparsity. Both methods need a tuning 

parameter. Wherever necessary, an extensive domain was explored in order to find out the 

best tuning parameter (lowest final MDS stress - only the best tuning parameter was used to 

produce the results presented here). 

- nmMDS. Non-metric MDS was proposed in Kruskal (1964a and 1964b) and considers 

ranked distances only, instead of least squares residuals (Hastie et al. 2001). The input used 

for nmMDS is the matrix of Euclidean distances between phylogenies (normalized as 

proportions). The implementation used here is the manifold function (package scikit-learn, 

Pedregosa et al. 2011), except regarding synthetic dataset 1, for which nmMDS is carried out 

in R. 

2.3 Proposed improved methods to explore underlying structure 

In this section, I present six new own methods to improve structure detection and analysis of 

genome-wide SNP data, or of microbiome abundance data.  

2.3.1 gMCD 

In genetic MCD (gMCD), the MCD procedure is applied to unbiased estimates of inter-

individual relatedness (Oliehoek et al. 2006, Weighted Corrected Similarity - WCS), instead 
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of being applied to a covariance matrix. Genetic relatedness between individuals j and k can 

be written as follows (simplified from Oliehoek et al. 2006, with only two alleles possible):  

𝑟𝑗𝑘 =
4

𝑊
∙ ∑ 𝑤𝑖 ∙ 𝑆𝑗𝑘,𝑖 − 2

𝑛

𝑖=1
, 

where 𝑤𝑖
−1 = 3/4 ∙ (𝑚𝑎𝑓2 + (1 − 𝑚𝑎𝑓)²) ∙ (1 − (𝑚𝑎𝑓2 + (1 − 𝑚𝑎𝑓)2), 𝑊 is the sum of 

weights 𝑊 = ∑ 𝑤𝑖
𝑛
𝑖=1  , 𝑚𝑎𝑓 is the minor allele frequency: 𝑚𝑎𝑓 = (1 + ∑ 𝑎𝑖𝑗

𝑝
𝑗=1 )/ (2 ∙ (1 −

𝑝)) , and the elementary genetic similarity between individuals j and k at SNP i is: 

 𝑆𝑗𝑘,𝑖  =  1/4 ∙ [𝐼𝑗1,𝑘1 + 𝐼𝑗1,𝑘2 + 𝐼𝑗2,𝑘1 + 𝐼𝑗2,𝑘2], with 𝐼𝑗𝑥,𝑘𝑦 equal to 1 if allele copy x in 

individual j and allele copy y in individual k are identical, equal to 0 otherwise (same 

definition as in Oliehoek et al. 2006). 

2.3.2 gMDS 

Genetic Multidimensional scaling (gMDS) corresponds to cMDS applied on a genetic 

distances matrix. The genetic distance between individuals j and k, 𝑔𝑗𝑘, is defined as follows: 

𝑔𝑗𝑘 = 1 − 𝑟𝑗𝑘/2, where 𝑟𝑗𝑘 is the genetic relatedness proposed by Oliehoek et al. (2006) 

described in previous paragraph. 

2.3.3 rgMDS 

Robust genetic multidimensional scaling is a method based on gMDS, where classical MDS, 

which relies on the minimization of the squared residuals, is replaced by the minimization of 

robust residuals: 

min
𝑋

∑ 𝜌(𝑥𝑗𝑘)
𝑗,𝑘 𝑘≠𝑗

, 

where 𝜌(∙) is the Huber function (Huber 1964):  

𝜌: 𝑢 ⟼ {

1

2
∙ 𝑢2                 𝑖𝑓  |𝑢|  ≥ 𝛾

𝛾 ∙ (|𝑢| −
1

2
𝛾)     𝑖𝑓 |𝑢| < 𝛾  

     , 

where 𝑥𝑗𝑘 is the residual 𝑥𝑗𝑘 = (𝛿𝑗𝑘 − 𝑑𝑗𝑘(𝑀)), 𝛿𝑗𝑘 is the fixed distance calculated on the 

SNP-by-individual data matrix, and 𝑑𝑗𝑘(𝑀) is the distance calculated on a (MDS-axes)-by-

individual matrix M. This procedure was initialized using the cMDS solution, further 

optimization towards the minimum was conducted using IPOPT (Wächter and Biegler 2006) 
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and linear solvers from HSL (HSL. A collection of Fortran codes for large scale scientific 

computation. http://www.hsl.rl.ac.uk/). 

2.3.4 wMDS 

Weighted corrected MDS (wMDS) corresponds to a transposition of the Weighted Corrected 

Similarity method from Oliehoek et al. 2006 to count data, here microbiome abundances. The 

similarity 𝑆𝑗𝑘,𝑖 between samples j and k at SNP i is replaced by the distance 𝑧𝑗𝑘,𝑖 between 

samples j and k, at phylogeny k. The key principle in weighted corrected similarity is to 

weigh each SNP by the inverse of genetic variance to ensure that each SNP contributes 

equally to the relatedness estimate. Here, the weight applied to phylogeny i is taken as the 

inverse of the variance of distances at phylogeny i. The resulting weighted distance 𝑧𝑗𝑘,𝑖 can 

be written: 

𝑍𝑗𝑘,𝑖 = 1/𝑊 ∙ ∑ 𝑤𝑖 ∙ 𝑧𝑗𝑘,𝑖

𝑝

𝑖=1
 

where 𝑊 = ∑ 𝑤𝑖
𝑝
𝑖=1  , with 𝑤𝑖 =

1

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑧𝑗𝑘,𝑖)
 for j,k in {1,n}. 

2.3.5 quantile-MDS 

The idea behind this method is that a full equivalent to a genetic distance must take into 

account the statistical distribution of the abundance data under study. Whereas genetic data 

can be considered binomial with the minor allele frequency as unique parameter, microbiome 

data are highly skewed towards 0 and are more likely to be well modelled by a Negative 

Binomial distribution, Poisson, or Exponential distribution (Holmes et al. 2012 ; phylogenies 

may be modelled by an exponential, see for example Jeraldo et al. 2012). 

The Poisson, Negative Binomial and Exponential distributions were examined by fitting each 

of them to a subset of samples (these regressions were done using function fitdistr, in R). This 

results in parameters 𝑟𝑃, 𝜇𝑁𝐵, 𝑠𝑁𝐵 and 𝜆𝐸. Akaike Information's Criterion (AIC) derived from 

each fit was used to compare and choose appropriate model distributions. Then, fitted 

parameters were used to transform abundances into quantiles of the corresponding 

distribution. These quantile values (instead or counts or proportions) are used to build a 

distance matrix, using Euclidean distance, after which cMDS is applied to this quantile 
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distance matrix. The method is denoted q
P
-MDS, q

NB
-MDS or q

E
-MDS, for the Poisson, 

Negative Binomial or Exponential distribution. 

Remark: The Cumulative Sum Scaling (CSS) proposed and described in Paulson et al. 

(2013) presents a similar idea than quantile-MDS, although these methods have been initiated 

and developed independently. However it appeared important to apply the CSS method in the 

frame of this work (using Bioconductor package metagenomeseq, Paulson et al. 2015), so as 

to provide a comparison between CSS and quantile-MDS. 

2.3.6 nSimplices 

Here, I present a method which, to my knowledge, is entirely original. Allegedly, simplices, 

which are a generalization of triangles and tetrahedrons in any dimension n, have already been 

used extensively in other contexts (for example to investigate data depth in Liu 1990, 

tumorigenesis in Roman et al. 2015, protein geometry statistical analysis in Tropsha et al. 

1996, localization in Thomas and Ros 2005). However, it seems that their use to perform 

dimension reduction or to accommodate outliers is new. Briefly, I developed the four 

following tasks with the aim of improving robustness in high-dimensional genetic or 

microbiome abundance distance matrix analysis: 

- detect dimension, 

- detect and accommodate outliers, 

- perform dimension reduction, 

- apply classical MDS at the reduced dimension. 

The main concept, and how each of these tasks is carried out, are presented in the following. 

- Influence of contextual outliers. The intuition behind this method is that multivariate 

outliers do not necessarily have large components along the main axes, but could have 

influential contributions along less important axes. Here, this category is denoted "contextual 

outliers" (CO). The term "contextual" (or sometimes "conditional") refers to the fact that these 

points are aberrant or not depending on the context, or depending on a condition (Song et al. 

2007). Fig.1 presents a schematic view of this type of outliers, where most points lie in a 

plane of dimension 2. However, one point has a coordinate along a third dimension. Thus, this 
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point could be considered aberrant if the supplementary dimension is considered, or as a 

normal measurement if one looks at its projection on the plane. The nSimplices method aims 

at identifying and accommodating such outliers, where, in the simple situation described in 

Fig.1, accommodation would correspond to projecting the outlier on the plane.  

 

 

 

 

Figure 1. Schematic view of a contextual outlier 

- Non-zero volumes inform on the relevant dimension in a dataset. Considering the 

schematic situation in Fig.1, three points chosen at random would form a triangle with a non-

zero area, which will be denoted (n=2)-volume. The (n=2)-volumes formed by different sets 

of 3 points take various values which reflect the specific positions of the points. The fact that 

these volumes are positive intuitively relates to the fact that the dimension of this dataset is 

n=2 at least. Then, if four points are chosen at random, a tetrahedron is formed, which would 

have a (n=3)-volume. Most of these (n=3)-volumes would be equal to zero, since they would 

be included in the plane. From this derives, that the relevant dimension of the dataset in Fig.1 

is n=2, and not n=3, since the vast majority of (n=3)-volumes are zero. 

This rationale can be extended to any dimension n=4, 5, etc., using the notion of n-simplex. A 

n-simplex is a generalization of a triangle or tetrahedron in dimension n, constituted by (n+1) 

distinct points (Sommerville 1929). As such, a triangle can be seen as a 2-simplex, in 

dimension 2, formed by 3 points ; a tetrahedron is a 3-simplex, in dimension 3, formed by 4 

points ; if n=10, a 10-simplex would be a volume in dimension 10, and is formed by 11 

points. The volume of a n-simplex can be calculated on the matrix of pairwise distances 

between the points, using the Cayley-Menger formula (Sommerville 1929): 
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𝑉𝑛² = 2𝑛 ∙ (𝑛!)2 ∙ 𝑑𝑒𝑡

(
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     1         0      𝛿1,2
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2
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2

⋱      ⋮     
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)

 
 

, 

where 𝑉𝑛 is the n-volume of the n-simplex constituted by n+1 points, det() is the matrix 

determinant, and 𝛿𝑗𝑘 is the distance between points j and k. 

- Contextual outliers form a non-zero outlying volume. Still considering Fig.1, the 

(n=3)-volume of a tetrahedron formed by the unique point outside the plane and any three 

other points would be non-zero, contrary to most (n=3)-volumes which would be constituted 

by four points in the plane, and therefore are equal to 0. This observation can be used to detect 

the point outside the plane as a contextual outlier. This can also be generalized to any 

dimension n using the Cayley-Menger formula mentioned previously. 

- In practice, volume in dimension n can be replaced by the height in dimension n. In 

dimension n, the height of a specific point belonging to a n-simplex is the distance between 

this point and the base of the simplex, exactly like the height in a tetrahedron is the distance of 

one point relative to the base formed by the 3 other points (Sommerville 1929). Then, as the 

base is itself a (n-1)-simplex, in dimension (n-1), formed by n points, the height can be 

expressed simply as ℎ = 𝑛 ∙ 𝑉𝑛 𝑉𝑛−1⁄  (Sommerville 1929). A zero or non-zero volume in 

dimension n corresponds to a zero or non-zero height, respectively, so that the relevant 

dimension in a dataset can be determined using heights instead of volumes. Similarly, a 

contextual outlier can be revealed by its strictly positive height in dimension n, whereas other 

points would have zero height in dimension n. 

- In real datasets, the notion of strictly positive height can be replaced by the notion of 

non-normal height distribution. In real datasets, neither a flat volume as contained in the 

plane in figure 1 would be strictly equal to zero, nor the corresponding height, because of the 

imperfect measurements in the data, which will make the volume or height calculations not 

fully exact. These deviations can be considered as random variables, and it is assumed here 

that they follow a normal (or Gaussian) distribution. This assumption is reasonable because 
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the normal distribution is encountered in many situations in nature or human sciences, though 

not always (Bortz 2005). Based on this hypothesis, zero height in a perfect case would 

correspond in a real framework to normal-distributed heights. Conversely, strictly positive 

heights in a perfect case in dimension n, indicating that this dimension n is still relevant, 

correspond to a real situation where heights do not follow a normal distribution. This can be 

visualized by considering that in a still relevant dimension, heights mirror - at least partly - the 

configuration of points (dimension 1 or dimension 2 in Fig.1), or else said the structure of the 

points, whereas in the first non-relevant dimension, heights reflect some noise, which is 

assumed normal-distributed here (dimension 3 in Fig.1, with the exception of the contextual 

outlier).  

- Decide if dimension n is relevant as compared to dimension n-1. Dimension n is here 

taken as relevant if heights do not follow a normal distribution. This is done in practice by 

studying the distribution of height over a large number B (for example B=1000) of randomly 

sampled n-simplices replicates. This set of height is denoted {ℎ𝑏}𝑏=1,..,𝐵, or abbreviated as ℎ. 

Normality or non-normality in the distribution of ℎ can be measured by using a gaussianity or 

non-gaussianity index (see for example Hyvärinen and Oja 2000). A convenient choice is the 

kurtosis 𝐾, which is equal to 𝜇4/𝜎4, where 𝜇 is the mean and 𝜎 is the standard deviation. 

Following Moors' interpretation (Moors 1986), kurtosis takes large positive values if the 

distribution is concentrated around its mean value (for example a normal distribution has a 

kurtosis equal to 3). I hypothesize here that positive values of 𝐾 roughly correspond to noise 

or perturbations, thereby extending to distributions close to the normal distribution. Whereas, 

if 𝐾 takes negative values, then the distribution is less concentrated around the mean (Moors 

1986). In the method nSimplices, negative values of 𝐾 are interpreted as actual structure in 

the data, as opposed to noise. The steep increase of 𝐾, and ultimately when 𝐾 takes a positive 

value, is interpreted as the passage of a relevant dimension (n) to a non-relevant one (n+1). 

Since kurtosis is calculated by taking the mean and standard deviation to the power of four, it 

is highly sensitive to outliers. For this reason the robust kurtosis formula proposed by Moors 

(1988) is used: 𝐾 = ((𝐸7 − 𝐸5) + (𝐸3 − 𝐸1)) (𝐸6 − 𝐸2)⁄ − 1.23, where Ei is the i
th

 octile 

in the set {ℎ𝑏}𝑏=1,..,𝐵. As ℎ is unsigned (so that only half of the distribution is observable), this 
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has to be simplified into the following equation: 𝐾 = (𝑄3 − 𝑄1) 𝑄2 − 1.23⁄ , where Qi is the 

i
th

 quartile in the set {ℎ𝑏}𝑏=1,..,𝐵. 

Here is the algorithm I suggest and that is implemented in method nSimplices, to detect the 

relevant dimension of a dataset: 

for n in {nmin,...,nmax}: 

 for point i in {1,...,N}: 

  for b in {1,...,B}: 

   Pick a set of n points distinct from point i, without replacement 

   Calculate 𝑉𝑛, volume of the n-simplex 𝑆𝑛 formed by the set of n points and point i 

 Calculate 𝑉𝑛−1, volume of the (n-1)-simplex 𝑆𝑛−1 formed by the set of n points alone 

 Calculate ℎ𝑖(𝑏) = 𝑛 ∙ 𝑉𝑛 𝑉𝑛−1⁄   

 Calculate 𝐾𝑖
(𝑛)

 on {ℎ𝑖(𝑏)}𝑏=1,..,𝐵 

 (optional: Take ℎ𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛({ℎ𝑏}𝑏=1,..,𝐵) ) 

 (optional: Take ℎ𝑠𝑖 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑡𝑟𝑖𝑚({ℎ𝑏}𝑏=1,..,𝐵)) ) 

 Stop if 𝑚𝑒𝑑𝑖𝑎𝑛({𝐾𝑖
(𝑛)

}
𝑖=1,..,𝑁

) 𝑚𝑒𝑑𝑖𝑎𝑛({𝐾𝑖
(𝑛−1)

}
𝑖=1,..,𝑁

⁄ ) < 𝑐 

The cutoff 𝑐 on the kurtosis index can for example be set to 0.5, to detect a large increase in 

kurtosis (this corresponds to a doubling of the kurtosis, when the initial kurtosis is negative). 

The ratio 𝑚𝑒𝑑𝑖𝑎𝑛({𝐾𝑖
(𝑛)

}
𝑖=1,..,𝑁

)/𝑚𝑒𝑑𝑖𝑎𝑛({𝐾𝑖
(𝑛−1)

}
𝑖=1,..,𝑁

) is denoted "kurtosis index". 

- Detect and accommodate outliers. A point can be identified as outlier for example if the 

ratio of its height to the sub-space relative divided by the median distance between this point 

and other points, ℎ𝑚𝑖 = ℎ𝑖 𝑚𝑒𝑑𝑖𝑎𝑛({𝛿𝑖𝑗}𝑗=1,..,𝑁)⁄ , exceeds a threshold. This threshold can for 

example be set at 𝑚𝑒𝑑𝑖𝑎𝑛(ℎ𝑚𝑖) + 3 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛. 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒. 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(ℎ𝑚𝑖). Remark 1: there 

is a bias when including 𝛿𝑖𝑖 in the calculation, but it is here neglected since the median 

absolute deviation is highly robust. Remark: Other choices for outlier detection would be 

possible. For example, a point i0 could be identified as outlier if 𝐾𝑖0

(𝑛)
/𝑚𝑒𝑑𝑖𝑎𝑛({𝐾𝑖

(𝑛−1)
}
𝑖=1,..,𝑁

) 

is still below the cutoff 𝑐, while the kurtosis index is above it. 

The accommodation of outlier i0 is done by removing the component which lies outside of the 

relevant n dimensions. The height h calculated in dimension (n+1) corresponds to this outside 

component. Therefore the accommodation can be described by the following equation: 

𝛿𝑖0𝑗
2 = 𝛿𝑖0𝑗

2 − ℎ𝑖0
2𝑐𝑜𝑟𝑟 . Remark: instead of removing ℎ𝑖0

2 , it could make sense to remove the 

excess outlyingness (ℎ𝑖0 − 𝑚𝑒𝑑𝑖𝑎𝑛(ℎ𝑖0))². 
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- Perform dimension reduction. In case the relevant dimension n is much higher than the 

number of dimensions desired, then a procedure similar to outlier accommodation can be 

performed, by considering that additional components in larger dimensions are a form of 

outlyingness of each point. Provided that ℎ𝑖 has been calculated for all points i=1,…,N, then 

distances are corrected by removing the highest outlying component. This can be written as 

follows: 𝛿𝑖𝑗
2 = 𝛿𝑖𝑗

2 − max (ℎ𝑖 − ℎ𝑗)²
𝑐𝑜𝑟𝑟 . Remark: possibly, outlying components of two 

points i and j lie along orthogonal components. Then the correction should be written 

𝛿𝑖𝑗
2 − ℎ𝑖

2 − ℎ𝑗
2. It is possible to check for this, for example by calculating the height of j in 

dimension n+2 relative to the simplex formed in dimension n+1 by i and n further points. This 

relative height is simply derived from the formula of height in dimension n (Sommerville 

1929): ℎ𝑗(𝑖) = (𝑛 + 2) ∙ 𝑉𝑛+2 𝑉𝑛+1⁄ , with 𝑉𝑛+1 including point i and a set of n+1 distinct 

other points, and with 𝑉𝑛+2 including point j and all points of 𝑉𝑛+1. However, this calculation 

is intensive and does not necessarily improve the dimension reduction, which is why it was 

not carried out here. 

- Apply classical MDS at the reduced dimension. Outlier accommodation or dimension 

reduction procedures lead to a distance matrix of the same size as before correction. Classical 

MDS (or other forms of MDS) can be applied to this matrix. As for other methods, the 10 top 

axes resulting from MDS are selected, in order to assess their representativity and their 

robustness. 

2.4 List of methods applied to synthetic, EPIC and HMP datasets 

The rationale and list of methods applied are detailed in §2.4.1 to §2.4.4 and summarized in 

table 1. 

2.4.1 Exploration of synthetic dataset 1 

The synthetic example 1 is constituted of random components interwoven with a structure 

component characterized by a small variance. This dataset is thought of as a proof of principle 

for the detection of small variance axes. Therefore, ICA and the main categories of methods 

were applied, as given in the following list: PCA, MCD, MDSe and nmMDS. 
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2.4.2 Exploration of synthetic dataset 2 

This example was designed to illustrate RMDS performances and served as a motivation to 

develop nSimplices. Therefore, RMDS, nSimplices, and complementary MDS-based methods 

MDSe and nmMDS, are applied. 

2.4.3 Analysis of the EPIC dataset 

The following standard and robust methods were applied to the EPIC dataset:  

- PCA-based methods:  Eigenstrat, SPH-PCA, MCD, IBS 

- MDS-based methods:  LAR, RMDS, RSMDS, nmMDS 

- own methods:         gMCD, gMDS, rgMDS, nSimplices. 

It should be noted that classical MDS (cMDS) has not been applied to the EPIC dataset, since 

cMDS has been compared to Eigenstrat for the discovery of genetic population structure in 

Wang et al. (2009), who found that both methods produced similar structure estimates (while 

Eigenstrat-derived principal components performed marginally better in association tests). 

More robust MDS-based procedures are nevertheless included, since they were not considered 

in Wang et al. (2009). 

2.4.4 Analysis of the HMP dataset 

It is useful to note that microbiome counts are sparse and therefore most raw-counts-based 

methods, used for SNP or other types of medical data are not appropriate. However, ℓ1-based 

PCA proved useful in microbiome analysis (Brooks et al. 2013) and was therefore included. 

Otherwise, microbiome count data can be transformed in a distance matrix, and analyzed by 

MDS-based methods. The methods used are: 

- PCA-based methods:  L1PCA, 

- MDS-based methods:  MDSm, MDSe, LAR, RMDS, RSMDS, 

- own methods:         wMDS, quantile-MDS, nSimplices, 

Additionally, the method CSS (Paulson et al. 2013) was included. 
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Table 1. Methods contributed and applied to synthetic examples, EPIC dataset, and HMP 

dataset. 

 Description Cont. SE1 SE2 EPIC HMP 

CSS 
Multidimensional scaling based on  

standardized proportions 
    ● 

gMCD 
Minimum Covariance Determinant procedure  

on unbiased genetic relatedness estimates 
X   ●  

gMDS 
Multidimensional scaling 

on unbiased genetic relatedness estimates 
X   ●  

IBS 
Multidimensional scaling 

 on genetic Identity-by-State 
   ●  

ICA Independent Component Analysis  ●    

L1PCA Pure ℓ1-norm principal component analysis     ● 

LAR 
Multidimensional scaling 

with least absolute residuals 
    ● 

PCA Principal components analysis (Eigenstrat for EPIC)  ●  ● ● 

MCD 
Minimum covariance determinant, iterative procedure to 

find the main core of a dataset 
   ● ● 

MDSe Multidimensional scaling with Euclidean distance  ● ●  ● 

MDSm 
Multidimensional scaling 

with Manhattan (taxicab) distance 
    ● 

nmMDS Non-metric multidimensional scaling   ●  ● 

nSimplices 
Outlier-robust dimension reduction method to  

apply before e.g. MDS 
X  ● ● ● 

qMDS 
Multidimensional scaling on phylogenies counts 

normalized in empirical distribution quantiles 
X    ● 

rgMDS 
Robust multidimensional scaling using Huber loss function 

in an optimization procedure 
X   ●  

RMDS 
Robust multidimensional scaling based on  

graphic networks and outlier regularization 
  ●  ● 

RSMDS 
Robust multidimensional scaling based on graphic 

networks and sparsely structured outlier regularization 
    ● 

SPH PCA on a data matrix normalized to the unity sphere    ●  

wMDS 
Multidimensional scaling on  

standardized phylogenies counts 
X    ● 

Cont.: contributed ; SE1, SE2: Synthetic example 1, 2. 
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2.5 Structure fit quality and Association testing  

For all datasets, assessment of how good a method does represent the underlying structure is 

carried out by applying a regression (in R software, R core team 2015), where the structure or 

phenotype is considered as the outcome Y, and the main 10 axes are considered as the 

predictors. The regression is either linear or logistic (Hastie et al. 2001) depending if the 

outcome Y is continuous or categorical, respectively. I used AIC-based model selection 

(Hastie et al. 2001, and function stepAIC in R) to find out a subset of most representative 

predictors, and assess the quality of the model. The starting model for AIC-based model 

selection can be written as follows: 

𝑌 ~ 𝑃𝐶1  +  𝑃𝐶2 + . . . + 𝑃𝐶10, 

where 𝑃𝐶𝑖 is the principal component with the i
th

 highest variance, or the top i
th

 axis yielded 

by MDS or other methods. The quantity used to compare quality of the model provided by 

each method is the AIC. Additionally, association testing is conducted on the EPIC dataset. In 

this case, principal components are still present in the model as covariates, and additionally 

each SNP is included as predictor. 

For synthetic example 1, the outcome Y is categorical and corresponds to the underlying 

structure, a vector of length 2000 containing the group identifier, coded 0 or 1: 

𝑔𝑟𝑜𝑢𝑝 ~ 𝑃𝐶1  +  𝑃𝐶2 + . . . + 𝑃𝐶10 . 

In the synthetic example 2, Y is continuous and corresponds to the coordinates x and y:  

𝑥 ~ 𝑃𝐶1  +  𝑃𝐶2      and      𝑦 ~ 𝑃𝐶1  +  𝑃𝐶2 

In the EPIC dataset, the structure is either the origin of the sample (country, genotyping 

center), in which case a logistic regression is performed, or its ancestry (CEU, Utah residents 

with Northern and Western European ancestry from the CEPH collection ; YRI, Yoruba in 

Ibadan, Nigeria ; ASA, Asian ancestry), in which case a linear regression is performed. 

Association testing consists in the logistic regression of the disease status on the candidate 
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SNPs rs520820, rs3783501, rs4955720, rs546950, rs388372, etc. from Campa et al. (2011), 

including principal components as covariates. This can be written: 

𝑑𝑖𝑠𝑒𝑎𝑠𝑒. 𝑠𝑡𝑎𝑡𝑢𝑠 ~ 𝑋 + 𝑃𝐶1  +  𝑃𝐶2 + . . . + 𝑃𝐶10, 

where the disease status is a vector of size N coded 0 (control) or 1 (case) for all N individuals 

and the variable 𝑋 is a vector of size N, containing the sum of minor alleles for each 

individual at one of the candidate SNPs. 

In the HMP dataset, the representativity of underlying structure is investigated by a logistic 

regression between body site and the samples. This can be written as follows: 

𝑠𝑖𝑡𝑒 ~ 𝑃𝐶1  +  𝑃𝐶2 + . . . + 𝑃𝐶10, 

where site is a vector of length N containing the site coded as a factor containing the multiple 

sites, or as a 0/1 binary variable for each site. 

2.6 Evaluation of robustness 

Robustness is assessed in EPIC and HMP datasets by applying a regression where each axis 

calculated on the original dataset is taken as the outcome, and where the 10 axes perturbed by 

the inclusion of outliers are included as predictors. This can be written as follows: 

𝑃𝐶𝑖 ~ 𝑃𝐶1
𝑜 + 𝑃𝐶2

𝑜+. . . +𝑃𝐶10
𝑜  , 

where 𝑃𝐶𝑖 is the i
th

 original axis, and 𝑃𝐶𝑙
𝑜 is the l

th
 perturbed axis, i and l are integers between 

1 and 10. Methods are compared using adjusted 𝑅² (denoted simply 𝑅² in the following). The 

use of AIC is not necessary here, since the number of predictors is fixed. Further robustness 

measures, the influence function and the breakdown point are considered (see for example 

their description in Héritier et al. 2009). The empirical influence of outliers on each axis is 

taken as the value of 𝑅² of the top axis. The empirical breakdown point 𝜀∗ is taken as the 

proportion of outliers for which 𝑅² drops below the threshold value 0.70.  
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3 RESULTS 

3.1 Detection of confounding structure with small variance  

The synthetic dataset was investigated using ICA, PCA, metric and non-metric MDS, and the 

resulting axes were used as predictors of the underlying structure. The goodness-of-fit 

measure after variable selection, Akaike Information's criterion, is indicated for each method 

in table 2. 

Table 2. Structure inference in synthetic example 1 

 ICA PCA MDSe nmMDS 

AIC 434.7 1743.7 656.5 656.6 

 

ICA performs best, with the lowest AIC value of 434.72 corresponding to 5 predictor axes 

selected, among which only one is highly significant (axis 7, p-value<2.2e-16). PCA selects 6 

axes and performs worst with an AIC of 1743.7. MDSe and nmMDS achieve similar, 

intermediate values of AIC of 656.51 and 656.58, respectively and both select 8 axes.  

Figure 2 presents the axes kept after variable selection. The number of axes  selected is 5, 6 

and 8 in the ICA, PCA and MDS methods, respectively, which confirms the advantage 

represented by ICA, since a lower number of predictors describes best the underlying 

confounding structure. Furthermore, ICA axis number 7 clearly displays the 2 groups, while 

no such structure is visible on scatterplots nor on histograms (visible on the diagonal of 

Fig.2B) of PCA axes. The axes derived from MDSe and nmMDS exhibit little visible 

difference. Axis 8 in MDSe and nmMDS seems the closest to the underlying structure, in 
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agreement with the lower AIC shown in table 2, relatively to PCA. This is further confirmed 

by calculating the Pearson correlation coefficient 𝜌𝑃 between the group status corresponding 

to the underlying structure and the selected axis with the lowest p-value. Indeed, 𝜌𝑃 is highest 

in ICA with a value of 0.88 (axis 7), lowest in PCA (𝜌𝑃=0.55, PC 9) and intermediate in both 

MDSe and nmMDS (𝜌𝑃=0.71, axis 8). 

Figure 2. Pairwise scatterplots and histograms of the predictor axes chosen by a variable 

selection procedure, for synthetic example 1 (underlying 2-groups structure with low 

variance). Predictor axes are derived from the following methods: (A): ICA (Independent 

Component Analysis) ; (B): PCA (Principal Components Analysis) ; (C): MDSe (Multi-

Dimensional Scaling on Euclidean distances) ; (D): nmMDS (non-metric Multi-Dimensional 

Scaling) 
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3.2 Detection of structure with noise and outliers 

The synthetic dataset 2 studied here is a simple linear structure, shown in figure 4, 

contaminated with noise and with outliers. These outliers are either distance outliers, distance 

outliers and a distant point,  or contextual outliers. RMDS and nSimplices are compared to 

classical and non-metric MDS (MDSe and nmMDS). The AIC of each method and each 

configuration is given in table 3. 

Table 3. Structure detection accuracy (AIC) in synthetic example 2 

Distance outliers 

% MDSe nmMDS RMDS nSimplices 

 x y x y x y x y 

0 -10.3 -11.7 -30.3 -29.1 72.4 74.3 -10.3 -11.7 

0.25 80.6 75.7 23.1 5.7 66.3 104.5 80.6 75.7 

0.5 111.0 51.8 11.3 9.9 65.0 85.2 111.0 51.8 

1 101.7 125.0 6.1 0.3 77.5 95.6 101.7 125.0 

2.5 104.9 102.9 38.4 29.0 103.5 88.0 104.9 102.9 

5 105.0 103.3 68.0 45.2 86.4 101.4 105.0 103.3 

7.5 120.7 118.8 69.9 52.0 107.9 107.5 120.7 118.8 

10 123.3 119.6 80.4 74.1 94.7 107.6 123.3 119.6 

Distance outliers and distant point 

0 12.0 11.4 -38.0 -56.5 153.0 158.9 12.0 11.4 

0.25 103.6 106.0 5.1 -18.6 150.4 157.7 103.6 106.0 

0.5 97.8 98.1 -21.0 -3.5 150.7 154.9 97.8 98.1 

1 76.5 76.9 -15.3 2.2 151.5 158.8 76.5 76.9 

2.5 79.4 72.7 31.7 10.9 148.9 158.0 79.4 72.7 

5 99.0 100.0 108.4 121.8 159.0 148.3 99.0 100.0 

7.5 102.2 99.7 105.6 125.1 162.7 148.6 102.2 99.7 

10 104.8 103.6 94.0 132.1 155.4 152.8 104.8 103.6 

Contextual outliers 

0 -10.3 -11.7 -30.3 -29.1 72.4 74.3 -10.3 -11.7 

4 33.8 -11.7 59.3 6.0 65.2 110.7 7.3 -11.5 

8 77.0 26.1 82.8 24.8 86.2 71.3 -9.0 25.1 

12 100.0 112.9 87.1 84.5 98.2 103.7 -8.7 69.0 

Remark: AIC can be negative because the likelihood density function (used in R for the calculation of AIC in linear regressions) can take 

values larger than 1. However this does not affect the comparison between models. 

In the first configuration, distance outliers are present in proportions from 0% to 10%.  For all 

methods, AIC increases when more outliers are introduced, in agreement with the fact that the 

structure is increasingly difficult to detect correctly when more and more outliers are 
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introduced. nmMDS performs best with an AIC of 80.4 and 74.1 for axes x and y, 

respectively, when 10% of outliers are present. RMDS performs less good than MDSe when 

no outliers are present (AIC of 72.4 and 74.3 in RMDS, ), but it presents an advantage when 

1% or more outliers are present, with an AIC of 94.7 (x) and 107.6 (y) in RMDS, as compared 

to 123.3 and 119.6 in MDSe. However, nmMDS performs in all cases better than both RMDS 

and MDSe. The method nSimplices correctly detects that the actual dimension is 2, in spite of 

noise and up to 10% outliers (table 4a). Indeed, kurtosis takes values from -0.34 to -0.17 for 

n=2, and values from -0.09 to 1.46 when n=3. The kurtosis index (ratio of kurtosis in 

dimension 3 to dimension 2) lies between -9.1 and -0.2, which is less than the cutoff c=0.5, 

leading to the correct detection of n=2 as the relevant dimension. In agreement with the tested 

configuration, no contextual outlier is detected. As no correction for outlyingness takes place, 

the inferred axes are the same as the subsequent method used, which is here MDSe. 

Accordingly, AIC takes the same values for nSimplices than for MDSe, which are second best 

when no outlier is present (AIC of -10.3 and -11.7 for axes x and y , respectively), and which 

performs worst when 10% of outliers are present (AIC of 123.3 and 119.6). 

Table 4a. Dimension and outlier detection in nSimplices, configuration with distance outliers 

Distance outliers   Distance outliers and distant point 

% K
(2)

 K
(3)

 detected n  K
(2)

 K
(3)

 detected n 

0 -0.34 -0.09 2  -0.33 -0.11 2 

0.25 -0.33 -0.06 2  -0.33 -0.10 2 

0.5 -0.34 -0.08 2  -0.33 -0.06 2 

1 -0.34 -0.06 2  -0.32 -0.06 2 

2.5 -0.35 -0.06 2  -0.28 0.18 2 

5 -0.23 0.77 2  -0.18 0.92 2 

7.5 -0.21 0.92 2  -0.14 1.06 2 

10 -0.17 1.46 2  -0.16 1.00 2 
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Table 4b. Dimension and outlier detection in nSimplices, with contextual outliers 

Contextual outliers 

% K
(2)

 K
(3)

 detected n detected CO actual CO (h.) 

0 -0.34 -0.09 2 None None 

4 -0.35 -0.11 2 Point 5 5 (5.32) 

8 -0.39 -0.21 3 Point 3 3 (9.49), 21 (6.07) 

12 -0.35 -0.17 2 Points 3, 15 3 (13.62), 15 (17.83), 21 (3.72) 

 h.: outlying component 

In the second configuration, a single and unvarying distant point is added, along with a 

growing proportion of distance outliers, similarly to the first configuration. The added point 

affects MDSe and nmMDS in a limited manner. AIC is indeed lower, in spite of the presence 

of the distant point, when no or few distance outliers are present (nmMDS: AIC -21.0 and -3.5 

on axes x and y, respectively, when 0.5% distance outliers are present in the dataset), as 

compared to the case with no distant point. The largest AIC for MDSe is 104.8 (axis x) and 

103.6 (y), which is better than without the distant point (123.3 and 119.6), and the largest AIC 

in nmMDS is 132.1, which mirrors less well the confounding structure than in the 

configuration without any distant point (where AIC takes the maximum value of 80.4). 

RMDS is the most affected method, since AIC takes the largest values, between 148.3 and 

162.7. AIC does not seem to increase with the growing proportion of outliers, indicating that 

RMDS is affected by the single distant point rather than by the outliers. This is to compare 

with values between 65.0 and 107.6 obtained by the RMDS method when no distant point is 

present. The nSimplices method evaluates correctly that the relevant dimension is n=2, since 

the measured kurtosis takes values -0.33 (no outlier) to -0.14 (10% of outliers) when n=2, and 

-0.1 to 1.1 when n=3. As a consequence, the kurtosis index takes values between -7.6 and -0.2 

, which is less than the cutoff c=0.5, leading correctly to the detection of 2 as the relevant 

dimension, and 3 as an irrelevant dimension, in spite of the noise and outliers introduced. No 

contextual outlier is detected, again in agreement with the configuration. In particular, the 

distant point is not detected as a contextual outlier, which is correct. As above, since no 

correction occurs, AIC values are the same for nSimplices as for MDSe. 
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Figure 3. Robustness of axes inferred when contextual outliers are present. 

The last configuration considers noisy distances affected by 1, 2 or 3 contextual outliers (4 to 

12%). All methods are affected, as AIC reaches values of 112.9 for MDSe,  87.1 for nmMDS, 

110.7 for RMDS, and 69.0 for nSimplices, for 12% of outliers. This is also visible in figure 3, 

which shows the detected structure for 0 to 12% of outliers. One of the branch of the structure 

seems shifted in method RMDS, when one contextual outlier is introduced. When more points 

are introduced, this shift disappears, but perturbations occur at each point of the structure. 

MDSe and nmMDS seem to resist to one or two contextual outliers, though some clear 

perturbations are visible, and to break down when three outliers are present (shifted branches 

in MDSe, uneven rendered distances in nmMDS). nSimplices is less affected, in agreement 

with the lowest AIC values as compared to the other methods, when 1 or more contextual 

outliers are introduced, indicating that the outlier accommodation part of the method does 

brings an advantage in this situation. Additionally, dimension assessment in nSimplices is still 

correct in spite of 4% or 12% of outliers. Contextual outliers are also identified by nSimplices 

and corrected for correctly, when one outlier is introduced. When 2 (3) outliers are 

introduced, 1 (2) outlier(s) are correctly detected and accommodated, whereas outlier 21 is 

neither identified nor corrected for. Figure 4 presents the standardized residual distances, for 

methods nSimplices and RMDS affected by contextual outliers. This shows that residuals in 

nSimplices lie between -1 and 1, with most residuals close to 0 and about 10 larger residual 

distances. These larger residuals correspond to the most affected pairs of points, for example 
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the second and third points from the top of the vertical branch, in figure 3. Regarding method 

RMDS, in agreement with AIC values, residuals take larger values, and for a larger number of 

points. At least one group of points seems shifted (indices 240 to 300), which is likely to 

correspond to a point with a large deviation, which in turn affects pairwise distances between 

this point and all the others (for example the point at the bottom of the vertical branch in 

figure 3). 

 

 

 

 

 

Figure 4.  Underlying structure and standardized residuals with 3 contextual outliers. 
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3.3 Structure representativity and robustness, EPIC dataset 

3.3.1 Structure representativity in EPIC dataset 

The EPIC dataset comprises 860 individuals affected or not by prostate cancer. These 

individuals are stratified by country and center, and structured by ancestry components 

(European, African, Asian). How well each studied method reflects these underlying elements 

is reflected by how low AIC is, as given in table 5a (country, overall structure), table 5b 

(center, fine structure) and table 6 (ancestry components).  

Most methods reflect stratification by country comparably, with for example an AIC between 

316.3 and 372.5, when the structure examined is Denmark/other country. This is valid for 

most methods, i.e. SPH, EIG, nSimplices, rgMDS, gMDS, IBS, gMCD and MCD. The group 

of 4 non-metric and ℓ1-based methods comprising nmMDS, LAR, RMDS and RSMDS is 

clearly less representative of the underlying Denmark/other country structure, with AIC 

ranging from 980.0 to 1026.0. This pattern is similar for other countries, for example almost 

all methods have a very low AIC of 6.0 (or 8.0 for rgMDS) and thus are well representative of 

the dichotomy Spain / other country, whereas LAR, RMDS, RSMDS and nmMDS have a 

larger AIC lying between 244.4 and 349.3. There is one exception for Netherlands, where 

AIC takes comparable values of 321.4 to 348.2 for all methods. This seems to correspond to 

individuals which are in small numbers and which do not correspond to any cluster (according 

to the methods used), as can be seen in figure 5. Besides, the best method for each country is 

not often the best method overall. Indeed, the best AIC for Denmark, Germany, etc. 

corresponds to methods SPH, gMDS, IBS (which has most often the lowest AIC), nSimplices 

and EIG, whereas the best method overall is EIG, with an AIC of 782.8 (followed by SPH, 

gMDS, nSimplices, IBS, etc. with AIC between 789.6 and 938.4). Again, the 4 methods LAR, 

RMDS, RSMDS and nmMDS are less representative overall with AIC values of 2634.5 to 

3145.7, which is consistent with the fact that they are less representative for each individual 

feature. 
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Table 5a. Detection of country stratification, EPIC dataset (AIC) 

 EIG SPH MCD IBS gMCD LAR RMDS RSMDS nmMDS gMDS rgMDS nSimplices 

Denmark 321.9 316.3 372.5 332.4 362.9 1025.4 1022.5 1026.0 980.0 330.9 329.7 324.6 

Germany 550.6 544.4 653.6 562.2 642.6 887.1 887.1 887.0 879.5 531.7 534.1 556.3 

Greece 48.1 44.0 56.5 42.1 49.8 153.2 145.9 148.2 112.2 50.0 50.7 46.6 

Italy 117.5 126.2 141.3 108.1 140.1 432.0 420.0 423.0 311.1 114.6 121.2 110.0 

Netherlands 325.9 328.2 328.6 329.7 330.7 348.2 347.5 338.9 347.0 325.6 321.4 325.0 

Spain 6.0 6.0 6.0 6.0 6.0 345.9 349.3 349.3 244.4 6.0 8.0 6.0 

Sweden 6.0 6.0 8.0 6.0 19.3 643.0 638.8 622.2 424.3 6.0 8.0 4.0 

UK 687.8 693.5 722.0 725.0 688.4 842.6 850.4 850.2 847.5 730.3 732.9 709.1 

COUNTRY 782.8 789.6 938.4 829.7 864.9 3141.8 3145.7 3140.9 2634.5 797.8 854.8 802.9 

Table 5b. Detection of center stratification, EPIC dataset (AIC) 

 EIG SPH MCD IBS gMCD LAR RMDS RSMDS nmMDS gMDS rgMDS nSimplices 

Aarhus 378.5 379.8 384.6 387.6 383.6 560.9 557.2 561.1 542.7 381.1 385.0 379.9 

Asturias 36.4 44.3 48.3 54.2 45.9 63.4 62.8 63.4 50.7 53.2 54.9 50.6 

Bithoven 325.9 328.2 328.6 329.7 330.7 348.2 347.5 338.9 347.0 325.6 321.4 325.0 

Cambridge 641.3 648.1 664.6 667.4 646.8 763.8 769.2 768.3 761.3 676.0 678.9 656.2 

Copenhagen 493.7 488.3 520.2 493.4 511.8 819.4 815.3 819.4 804.1 491.6 494.4 489.1 

Florence 114.6 112.5 132.4 111.2 117.8 274.6 271.3 272.8 216.9 120.2 121.1 110.7 

Granada 12.0 27.2 12.0 12.0 16.0 30.3 30.3 22.7 10.0 22.3 23.8 8.0 

Greece 48.1 44.0 56.5 42.1 49.8 153.2 145.9 148.2 112.2 50.0 50.7 46.6 

Heidelberg 569.6 567.0 587.1 570.3 589.2 644.1 644.2 643.9 637.4 568.0 565.8 572.2 

Navarra 63.5 63.5 62.8 57.7 60.3 91.5 92.3 87.0 81.7 62.1 63.7 61.6 

Oxford 224.0 225.3 227.5 230.5 218.4 235.1 241.6 242.0 242.0 226.6 227.6 227.6 

Potsdam 271.8 270.0 340.4 271.7 316.1 510.3 505.4 509.7 506.5 266.7 273.1 270.3 

Ragusa 14.0 36.0 34.9 38.1 45.2 84.5 80.2 85.8 58.7 40.0 45.3 37.2 

San Sebastian 60.7 64.3 65.7 68.7 62.1 251.8 255.6 253.4 182.0 70.8 70.5 62.5 

Turin 90.5 93.5 103.8 98.6 99.3 134.2 127.3 123.9 131.3 97.9 103.0 93.2 

Umea 6.0 6.0 8.0 6.0 19.3 643.0 638.8 622.2 424.3 6.0 8.0 4.0 

Varese 53.4 54.1 52.8 49.7 52.9 64.5 73.5 73.5 60.0 46.1 47.2 51.4 

CENTER 1729.9 1756.9 1907.5 1769.9 1813.6 4095.8 4096.7 4096.7 3636.0 1745.5 1897.0 1738.8 

Stratification by center is also characterized by two groups of methods, where most have 

comparably low AICs, for example 4.0 to 19.3 for methods nSimplices to gMCD, regarding 

the genotyping center Umea, whereas methods nmMDS, LAR, RMDS and RSMDS are 

notably less representative, with AIC ranging from 424.3 to 643.0. This is true for many 

centers but not all, in particular the gap is less large for centers Granada and Oxford (AICs 

between 8.0 and 30.3, and between 218.4 and 242.0, respectively). The best representative 
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method is either EIG, SPH, IBS, gMDS, rgMDS or nSimplices when centers are taken 

individually, as already observed above, and the best method overall is likewise EIG 

(AIC=1729.9). The next best methods are nSimplices, gMDS, SPH and IBS (AIC from 

1738.8 to 1769.9). 

Table 6. Detection of ancestry structure, EPIC dataset (AIC) 

   Ancestry    

  CEU ASA YRI 

EIG -4915.8 -4999.3 -5476.8 

SPH -4853.9 -4953.3 -5369.3 

MCD -4773.4 -4897.8 -5327.7 

IBS -4836.2 -4802.7 -5074.1 

gMCD -4946.1 -5018.4 -5550.2 

LAR -3460.1 -4171.4 -4034.7 

RMDS -3463.0 -4182.0 -4031.0 

RSMDS -3470.7 -4186.4 -4033.9 

nmMDS -3508.2 -4177.8 -4112.5 

gMDS -4846.4 -4999.2 -5458.8 

rgMDS -4859.4 -5010.6 -5519.1 

nSimplices -4627.2 -4749.9 -4918.2 

Structure by ancestry as detected by the different methods is given in table 6. Comparably, 

most methods obtain low AICs for CEU (European) ancestry, ranging from -4946.1 (gMCD) 

to -4627.2 (nSimplices), whereas larger values are obtained in nmMDS, LAR, RMDS and 

RSMDS (-3508.2 to -3460.1). The best method for all three ancestry components is gMCD 

with AIC of -4946.1, -5018.4 and -5550.2 for CEU, ASA and YRI ancestry, respectively. 

Notably, the gMCD method did underperform most methods in terms of country or center 

stratification though it is best in terms of ancestry. Inversely, nSimplices underperforms many 

methods in terms of ancestry, whereas it performed good or sometimes best in terms of 

country and center stratification.  

Regarding dimension detection and reduction by method nSimplices, the kurtosis calculated 

in each dimension n=2 to n=11 remains stable (table 6). As a consequence, the kurtosis index 

does not fall below the cutoff c=0.5, which indicates that the relevant dimension is likely 

more than n=10. This suggests that more than 10 axes would maybe be necessary to fully 
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describe the underlying structure in the EPIC dataset. This is consistent with the fact that 

some elements are well mirrored by the different axes (for example stratification for countries 

Spain and Sweden with AICs as low as 4.0 or 6.0, respectively), whereas others are 

substantially less well represented (e.g. Germany or UK with AICs no better than 534.1 and 

687.8, respectively). 

Table 7. Kurtosis index for dimension detection in method nSimplices, EPIC dataset. 

n 2 4 6 8 10 

kurtosis -1.226 -1.227 -1.228 -1.228 -1.228 

The main axes determined by methods EIG, SPH, gMCD and rgMDS are shown in pairwise 

scatterplots in figure 5. In agreement with the low AIC for extreme geographical locations 

shown in table 5 (for example Spain, Sweden, Umea), the structure of origin within Europe 

seems well represented by these axes. Though all depicted methods are well representative, 

they seem sensitive to a limited number of outliers, for example axis 4 of EIG and axis 1 of 

SPH but also gMCD on axis 1 or rgMDS on axis 4.  

Regarding globally the presented results (tables 5 and 6), methods non-metric MDS and ℓ1-

based methods did not seem to converge fully. In particular, the objective function which is 

used in RMDS and RSMDS iterative algorithm did not constantly decrease, whereas it should. 

These procedures had to be stopped after the maximum number of iterations was attained, but 

the non always decreasing objective function implies that the optimal solution may not have 

been found. Non-metric MDS also relies on an optimization and can have found a local 

minimum, which would explain the results obtained, which are less good than those produced 

by MDSe. New methods gMCD, gMDS and rgMDS bring some improvements in specific 

situations. For example, gMCD performs best in terms of ancestry. The optimization-based 

rgMDS improves the model quality as compared to gMDS, as indicated by AIC values 

decreased from -4846.4, -4999.2 and -5458.8 to -4859.4, -5010.6 and -5519.1, in CEU, ASA 

and YRI ancestry, respectively. The nSimplices method, which is applied to a genetic distance 

like gMCD, gMDS and rgMDS, brings an improvement in terms of fine-scale structure (for 

example, AIC by single country or center is sometimes better than the one produced by EIG), 

and brings a comparable or moderately improved result respectively to a method relying on 
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the same distance (gMDS, gMCD). For example AIC is decreased from 1745.5 (gMDS) to 

1738.8 (nSimplices) for the overall structure by center. However the ancestry structure is 

better represented by gMDS or gMCD than by nSimplices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Pairwise scatterplots of axes 1,..,4 produced by a subset of methods.(A): EIG 

(Eigenstrat) ; (B): SPH (spherical PCA) ; (C): gMCD (genetic Multi-Dimensional Scaling ; 

(D): rgMDS (robust genetic Multi-Dimensional Scaling) 

  



42 

 

3.3.2 Robustness in EPIC dataset 

Subsequently, synthetic outliers (bad leverage points) were introduced to strain the different 

methods in terms of robustness. The methods performing best, and MCD, are shown in Fig.6, 

panels A and B (whereas panels C and D correspond to real outliers and are described later). 

The full table which was used to produce this figure, including all methods, is given in 

table S1 in appendix. The influence of outliers on the top axis is represented in panel A, with 

SPH and IBS methods staying the most robust, since 𝑅2 is 1.00 from 0 to 10% of outliers. 

Then, gMCD and nSimplices perform better or slightly better than the reference method EIG 

(R² of 0.96, 0.88 0.85, respectively, when 10% outliers are present). In contrast, MCD proves 

least robust in this subset of methods, with 𝑅2=0.69. The method gMDS (table S1, not shown 

in figure 6A), is more robust than MCD but less than EIG, with a minimum 𝑅2 of 0.81 for 

axis 1. Approaches LAR, RMDS and RSMDS maintain their first axis (minimum 𝑅2 is 0.98, 

0.75 and 0.97, respectively, table S1) in spite of the presence of 10% outliers. The method 

nmMDS (table S1) performs worst, since 𝑅2 is 0.00 when 0.25% or more outliers are 

included. 

Then, axes 1 to 10 are examined in terms of breakdown point 𝜀∗ (Fig.4B), corresponding to 

the situation when R² falls under a cutoff of 0.70. The breakdown of axis 1 occurs at more 

than 10% outliers for most methods represented, except MCD (where 𝜀∗ is not larger, but 

equal to 10%). A large discrepancy exists for axis 2, where SPH, IBS and gMCD maintain a 

breakdown point higher than 10%, but the other methods have 𝜀∗ = 2% (EIG, MCD, 

nSimplices). The information contained in axes 3 to 10 is not well maintained when outliers 

are introduced, as breakdown occurs at 1% (axis 3 and 4, except MCD), or less (axes 5 to 10). 

The method gMDS (table S1) has a breakdown at 2% or less for axes 2 to 10. Methods 

nmMDS, LAR, RMDS and RSMDS are least robust with a breakdown at 0.25% for axes 2 to 

10. 

Alternatively, outliers sampled from a real population were included in the dataset. The 

methods most robust to this configuration are depicted in figure 4, panels C and D, and the 

full data is provided in table S2 in appendix. The influence on axis 1 is shown on panel C. All 
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methods shown keep an almost identical first axis, even with 10% of outliers. SPH is slightly 

less good and MCD performs least well in this subset of methods, with 𝑅2 of 0.98 and 0.95, 

respectively. Remaining methods also maintain their first axis well, except nmMDS, which 

presents with a R² of 0.00 when 0.25% or more outliers are present. 

The breakdown point 𝜀∗ for the configuration with real outliers is presented in figure 4, 

panel D. Breakdown 𝜀∗ is higher than 10% for axes 1 to 5 in all methods in figure 4 except 

MCD (0.25% for axes 4 and 5). On axes 6 to 10, nSimplices and SPH keep the largest 

breakdown point with 𝜀∗ values of 10% (axes 6, 7) and equal or more than 2% (axes 8 and 9). 

Then, methods EIG, IBS and gMDS drop to 5% (axis 6) and 2% or less (axes 7 to 10). IBS 

(table S1) has a breakdown point at 5% for axes 6 and 7, and 0.25% for axes 8 to 10. Methods 

nmMDS, LAR, RMDS and RSMDS prove least robust with real outliers, similarly to the 

situation with synthetic outliers, with a breakdown point 𝜀∗ of 0.25% for axes 2 to 10. 

 

 

 

 

 

 

 

 

 

Figure 6. Adjusted 𝑅2 for axes disturbed by synthetic outliers, for methods EIG, SPH, MCD, 

IBS, gMCD and nSimplices in panels (A): influence function ; (B): breakdown point 𝜀∗ for 

axes 1 to 10. Adjusted 𝑅2 for real outliers from 1000genomes, methods EIG, SPH, MCD, 

gMCD, gMDS and nSimplices in panels (C): influence function ; (D): breakdown point 𝜀∗. 
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 3.3.3 Association test, EPIC dataset 

Finally, candidate SNPs in EPIC prostate (Campa et al. 2011, table 2) were submitted to an 

association test with the prostate cancer disease status. The p-values corresponding to these 

tests are shown in table 8. Consistently with Campa et al. (2011), no significant association is 

found (with a predefined significance level at 0.05).  

Table 8. Candidate SNPs and their p-values as given by different methods, EPIC dataset 

  EIG SPH MCD IBS gMCD gMDS rgMDS nSimplices 

rs520820 0.60 0.61 0.64 0.74 0.57 0.63 0.64 0.61 

rs3783501 0.11 0.11 0.11 0.12 0.10 0.13 0.13 0.10 

rs4955720 0.30 0.32 0.30 0.34 0.31 0.35 0.36 0.30 

rs546950 0.84 0.85 0.90 0.91 0.88 0.88 0.88 0.84 

rs388372 0.99 0.99 0.97 0.99 0.89 0.98 0.99 0.96 

 

Next, an extended set of candidate SNPs corresponding to supplementary table 1 of Campa et 

al. (2011) was also tested for association with prostate cancer status. Table 9 shows the 20 

SNPs which obtain the lowest p-values in all methods. Though, when adjusting for multiple 

testing by the Bonferroni method (cutoff of 4.6e-5, corresponding to 0.05 divided by the 

number of tests, here 1 084), no p-value remains significant.  

The top SNP, rs8071475, has been cited in the context of gene expression in colorectal cancer 

(Slattery et al. 2014) and in kinase activity-affecting genes (Wang et al. 2015). However, 

genome-wide studies did not report any significant association between prostate cancer and 

rs8071475 (www.gwascentral.org, Beck et al. 2013), although there were significant 

associations with other diseases. Similarly, the second and third top SNPs were reported for 

other disorders than prostate cancer, but not in prostate cancer. 
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Table 9. Top 20 SNPs with lowest p-values as given by several methods 

 EIG SPH MCD IBS gMCD gMDS rgMDS nSimplices 

rs8071475 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

rs3799631 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 

rs2589118 0.005 0.005 0.004 0.007 0.004 0.007 0.007 0.005 

rs17239241 0.007 0.007 0.008 0.004 0.008 0.006 0.006 0.008 

rs7778077 0.009 0.009 0.014 0.014 0.010 0.011 0.012 0.011 

rs4425665 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

rs10235949 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01 

rs6443624 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

rs4648553 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 

rs7789699 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 

rs12703162 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

rs3799619 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

rs11757572 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

rs7621329 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

rs7754623 0.03 0.03 0.03 0.04 0.02 0.03 0.03 0.03 

rs4600802 0.03 0.03 0.03 0.05 0.03 0.03 0.03 0.03 

rs3934597 0.03 0.03 0.05 0.04 0.03 0.04 0.04 0.03 

rs6965834 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.04 

rs1569462 0.05 0.05 0.04 0.06 0.05 0.06 0.06 0.04 

rs3747636 0.05 0.06 0.05 0.06 0.05 0.06 0.06 0.05 

3.4 Structure representativity and robustness, HMP dataset 

3.4.1 Structure representativity in HMP dataset 

Samples and phylogenies in the HMP dataset are structured by body site where the 

microbiome was collected from. Representativity of each method with respect to this structure 

is measured by the AIC shown in table 11 for all methods studied except L1PCA, since this 

last method demanded long calculations (more than 48 hours for one point, in spite of the 20-

fold acceleration obtained by recoding the procedure in Python linked to Fortran). Before 

examining table 11, the model distribution on which the method qMDS relies has to be 

selected. This choice is based on the AIC of the fit of each considered distribution with the 

phylogenies proportions, for a subset of samples. These values are given in table 10 as the 

median AIC and its variability, measured by the median absolute deviation. The low AIC 

(488.7) obtained by the negative binomial distribution motivates its use, since it presents the 
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lowest AIC as well as the lowest variability. The exponential distribution presents a larger 

AIC of 602.6. However this distribution uses only one parameter where the negative binomial 

uses 2, so that it is always possible that the advantage obtained in the negative binomial is due 

to over-fitting. Therefore, the exponential distribution is also considered in the subsequent 

analyses. The Poisson distribution is not further used because it is least appropriate, since its 

AIC and corresponding variability are substantially larger. The same analyses conducted on a 

second subset of samples led to the same conclusions. qMDS with negative binomial 

(exponential) model distribution is denoted q
NB

-MDS (q
E
-MDS). 

Table 10. Model distributions for qMDS method. AIC median and AIC MAD (median 

absolute deviation) are calculated from two independent subsets of 50 samples.  

Distribution Median AIC (MAD) 

 Set 1 Set 2 

Exponential 602.6 (235.6) 620.1 (198.6) 

Negative Binomial 488.7 (170.7) 532.0 (176.9) 

Poisson 26 549.6 (19 585.6) 24 882.6 (15 601.2) 

 

Among methods presented in table 11, the most representative of individual body sites is 

nSimplices, combined either with q
NB

-MDS, q
E
-MDS or CSS (for example the sites throat, 

ears and mouth with AIC 628.0, 606.9 and 30.2, respectively). Then, a second group of 

methods performs less well with larger (though not exceedingly) values of AIC between 14.0 

and 1153.7. This group comprises MDSm, MDSe, q
NB

-MDS, q
E
-MDS and CSS (these three 

latter methods without prior dimension reduction with nSimplices). Notably, MDS based 

either on Manhattan or Euclidean distance performed identically, with the same values of 

AIC. Besides, the CSS method performs most often better than MDSm and q-MDS to 

represent the fine structure (sites throat, nose, elbows, mouth). Methods LAR, RMDS, 

RSMDS, as well as the new method wMDS (based on proportions with standardized 

variance) do no perform well, since AIC is largely increased, for example AIC takes values of 

1184.3 to 1276.1 at body site vagina, whereas most methods obtain an AIC of 10.1 to 95.1. 

This is true for all body sites. 
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The best method to represent the overall structure is nSimplices combined with q
E
-MDS, with 

an AIC of 1587.4. The next best methods are nSimplices combined with CSS, CSS alone and 

nSimplices combined with q
NB

-MDS, with AIC values of 1643.2, 1714.7 and 1742.7, 

respectively. In agreement with the performance achieved on individual features, overall AIC 

is larger in MDSm, MDSe, q
E
-MDS alone and q

NB
-MDS, and clearly inflated in LAR, 

RMDS, RSMDS and wMDS. 

Table 11. AIC for HMP microbiome site on 10 top axes from standard and robust methods 

 

MDSm MDSe LAR RMDS RSMDS wMDS qNB-MDS qE-MDS CSS 
 

qNB
-MDS 

nSimplices 

qE
-MDS 

 

CSS 

Throat 742.9 742.9 1016.7 1016.4 914.9 1017.9 661.7 700.8 654.0 628.0 696.9 661.1 

Ears 633.6 633.6 1738.0 1753.7 1526.7 1752.8 1082.0 1153.7 937.5 927.5 606.9 699.4 

Stool 469.7 469.7 1028.5 1029.5 735.9 1024.6 554.7 528.8 536.1 465.6 431.3 545.5 

Nose 915.9 915.9 3127.0 3127.0 2830.7 2898.6 917.2 1080.9 830.7 785.1 780.7 722.7 

Elbows 781.6 781.6 1596.1 1590.8 1415.4 1355.3 806.0 695.5 726.1 756.5 693.3 846.1 

Mouth 50.4 50.4 1076.0 1079.1 966.7 585.9 53.1 102.6 49.5 32.7 51.5 30.2 

Vagina 14.0 14.0 1275.9 1276.1 1184.3 1273.3 75.4 95.1 57.3 33.8 10.1 16.0 

SITE 1801.1 1801.1 7142.4 7146.7 5742.1 5729.3 1898.8 1863.2 1714.7 1742.7 1587.4 1643.2 

 

The kurtosis detected by the nSimplices method is shown on figure 7. Kurtosis does not 

increase and actually seems to decrease between n=2 and n=10. As a consequence, the 

relevant dimension is not detected for n≤10, and is likely to be higher than 10 in this dataset.   

 

 

 

 

 

 

Figure 7. Kurtosis of heights in dimension n (median taken over a set of 1000 replicates).  
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For higher values of n, kurtosis stays stable in q
NB

-MDS and increases slightly in q
E
-MDS. 

The kurtosis index does not fall under the predefined cutoff c=0.5, so that a detection of 

relevant dimension also does not happen for n=10 to n=260.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Structure restituted on 4 axes, in the HMP dataset, using methods (A) MDSm, (B) 

q
E
-MDS, (C) nSimplices-q

E
-MDS and (D) RSMDS. 

D 

B 

C 

A 



49 

 

The top axes produced by MDSm, q
E
-MDS, nSimplices combined with q

E
-MDS, and 

RSMDS are shown in figure 8. The way the underlying structure is reported is markedly 

different depending on the method. As an example, the mouth structure (in grey) forms a 

circular arc in MDSm, but is represented by two lobes in q
E
-MDS (axes 1 and 3), while 

nSimplices exposes both aspects of this structure (2 lobes in axes1 and 2, circular arc in axes 

1 and 3). MDSm seems to reveals other arc-shaped groups of points, for example on axes 2 

and 3, whereas q
E
-MDS exposes roughly ellipsoidal clusters of points. The combination of 

q
E
-MDS and nSimplices leads to varied structures, which apparently better reflect the actual 

data structure, since AIC is lowest for this method (table 11). RSMDS axes show a cross-

shaped structure and seem influenced by three points of the mouth body site (in grey), which 

take large coordinates along axes 2, 3 and 4. 

3.4.1 Robustness in HMP dataset 

In figure 9 is exposed the influence of outliers and the breakdown point of a subset of relevant 

methods applied to the HMP dataset. Exhaustive results are given in table S3, in appendix. All 

methods shown in figure 9 are robust, since R² stays close to 1 even with 10 % of outliers for 

axis 1, except for wMDS, for which R² drops to 0.47 (0.40) with 2.5% (10%) of outliers (table 

S3). Further methods MDSe, LAR, q
NB

-MDS (alone or combined with nSimplices) and 

RMDS also exhibit little influence on the top axis, with R² equal to 1.00 (except LAR: 

R²=0.98). Method RSMDS is strongly influenced since R² is 0.19 or less when 2.5% or more 

outliers are included. 

Most methods (in figure 9) are equally robust in terms of breakdown point 𝜀∗ as in terms of 

influence curve, since this characteristic is larger than 10% for axes 1 to 9 for all methods 

except wMDS (2.5%). This is also true for MDSe and q
NB

-MDS (alone or combined with 

nSimplices), but not for LAR, RMDS and RSMDS, for which 𝜀∗ is 2.5% for axes 2 to 9 (table 

S3). On axis 10, the methods q
E
-MDS or q

NB
-MDS, in combination with nSimplices or alone, 

are the only methods to stay robust, with a breakdown point 𝜀∗ still larger than 10%. CSS-

nSimplices has a breakdown point of 5%, and remaining methods MDSm, CSS, wMDS, 

LAR, RMDS and RSMDS have a breakdown point no larger than 2.5%.  
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Figure 9. Robustness in HMP dataset (A) Influence function ; (B) Breakdown point 𝜀∗.  
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4 DISCUSSION 

4.1 Robust exploration and control of underlying structure 

The objective of this work was the robust exploration and correction of underlying structure 

in case-control association studies. To this aim, several standard and robust PCA- and MDS- 

based methods, as well as some contributed improved methods, whose role is to mirror and to 

correct for the confounding structure and outliers, were compared. Each method produces a 

summary of the underlying structure on a limited number of axes, so that these axes can be 

included in the frame of genetic case-control association studies, of in the frame of 

microbiome association studies. The performance of each method was assessed in terms of 

representativity (meant here as the ability to summarize the confounding structure in a limited 

number of variables) and robustness (ability to produce stable estimates in the presence of 

perturbations, here outliers). The results obtained in the synthetic examples, in genetic SNP 

data from the EPIC study, and in microbiome data from the HMP project are discussed, in 

particular within the frame of currently published research, in §4.2.1 to §4.2.3. Then, a focus 

on advantages and limitations of method nSimplices is given in §4.3. Finally, the conclusions 

drawn from this thesis and an outlook are exposed in §4.4. 

4.2 Confounding structure and outliers in synthetic, genomic and microbiome 

data 

4.2.1 Structure identification in synthetic examples 1 and 2 

Results obtained on synthetic example 1 highlight the fact that a structure with low variance 

could stay undetected in a situation where the number of samples is high when compared to 
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the number of observations. The only method able to detect the hidden signal of two 

underlying groups with close but distinct locations was ICA, which is in agreement with the 

fact that this method detects preferably non-gaussian signals. Methods based on least squares 

such as PCA or MDS could not detect this 2-groups structure. This is in agreement with a 

similar yet less extreme observation made by Günther et al. 2014, where 2 groups in an 

integrative biology analysis could be better distinguished using ICA than with PCA. This 

stresses the influence of the implied solution shape (low entropy or normal distribution in ICA 

and PCA, respectively) on the solution. This could be of incidence in the frame of a study 

design where groups, or more broadly a non-gaussian structure is of interest. This has been 

recognized for instance in the context of neuronal activity (Bell and Sejnowski 1997, Delorme 

et al. 2007) but is seldom considered yet outside of this field. 

In the second example, method RMDS (and RSMDS in HMP data) showed a tendency to 

preferably account for a structure made of crossing lines (Figures 4 and 8), which represented 

the underlying structure less well than other methods (Tables 3 and 11). The fact that both 

RMDS and RSMDS rely on a graphical network might explain this characteristic, which 

proved detrimental here, but which could be useful in case such a representation is looked for. 

Both presented examples about ICA/PCA and RMDS/RSMDS corroborate the principle that 

different methods are able to discover or account for different patterns, similarly to an 

experimentator who might select different probes to measure specific traits. This encourages 

to use and compare several complementary methods, and is further justified by the 

observations of e.g. Sampson et al. (2011), Günther et al. (2014) who showed the benefits of 

this strategy in proteomics and multi-omics analyses, respectively. 

Regarding robustness to outliers in these examples, both distance outliers or contextual 

outliers degraded strongly the estimation of underlying structure, except when nmMDS or 

nSimplices methods were used, respectively (in example 2). The fact that MDS is sensitive to 

outliers and that non metric MDS is able to overcome this sensitivity is known and in 

agreement with e.g. Spence and Lewandowsky (1989) who developed and applied an instance 

of non-metric MDS in a setting with outliers, and with Liu et al. (2013), who observed 
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inflated false positive rates in MDS or PCA when outliers are introduced. These outliers could 

in principle be removed using MCD, as done in Liu et al. 2013 or in Song et al. 2007, but 

method nSimplices proved able to keep the contextual outliers in the dataset with no 

substantial loss in estimation quality. 

4.2.2 Structure identification in genetic SNP data, EPIC study 

Structure identification and association test in the EPIC study. PCA (Eigenstrat) and 

robust methods like SPH and IBS did allow to identify underlying structure well. 

Nevertheless, new contributions gMCD and nSimplices brought an advantage in terms of 

representativity (in some cases) and robustness, which comes at a small to moderate 

additional calculation cost (of the order of minutes for a PCA, tens of minutes for nSimplices, 

hours for gMCD). The MCD method applied to SNPs did not yield the anticipated 

advantages, probably because the matrix determinant is often very small, which impairs the 

convergence of MCD since it is precisely based on this determinant. However, the use of 

genetic relatedness estimates in gMCD did overcome this issue. Also unexpectedly, non-

metric MDS (nmMDS) performed poorly in the EPIC dataset. As nmMDS relies on 

optimization, the solution found could still be a local minimum (Shinkareva et al. 2013, citing 

Groenen and Heiser 1996 and Hubert et al. 1992), which would explain this result. A possible 

way to address this issue could be to use nmMDS after dimension reduction with nSimplices. 

The gMDS method, though using genetic unbiased relatedness estimates as in gMCD, proved 

less robust than other methods, and slightly less representative than Eigenstrat or IBS. The 

unbiased relatedness estimates would however probably bring a benefit in a context when 

admixture or genetic relatedness is substantial, for example in Hispano-American populations 

(unpublished data on South-American populations from 1000genomes and the HGDP panel 

www.cephb.fr/en/hgdp_panel.php).  

Association p-values between prostate cancer affection status and 1 084 SNPs examined in 

the EPIC publication by Campa et al. (2011) lead to comparable, non-significant p-values for 

a subset of 5 candidate SNPs. However, 20 other SNPs obtain significant p-values, which 

however do not stay significant after adjustment for multiple testing. As the three top SNPs 
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rs8071475 (colorectal cancer, Slattery et al. 2014, kinase activity-affecting genes Wang et al. 

2015), rs3799631 and rs2589118 have been detected in other contexts than prostate cancer, 

but not in prostate cancer (www.gwascentral.org, Beck et al. 2013), these results possibly 

reflect a correlation of prostate cancer with an altered health condition, rather than a direct 

causal link between these SNPs and prostate cancer. The fact that these SNPs were not 

significant in Campa et al. (2011) may derive from the fact that the dataset is slightly different 

(here, a subset was studied), and because sample stratification was not accounted for in 

Campa et al., since the allele frequencies differences were small. Though, the absence of 

correction might have masked true associations (Marchini et al. 2004), which is corroborated 

by the fact that principal axes were able to capture a complex structure (tables 5 and 6), and 

by the indication that 10 might be a too small number of axes to describe the underlying 

structure (table 7, method nSimplices).  

Link to current genetic case-control association studies research. Confounders in case-

control association studies are most often detected and corrected for using Eigenstrat (Price et 

al. 2006) or mixed models (Price et al. 2010). This work supports the use of Eigenstrat as a 

reasonable method to correct for population structure in genome-wide association studies 

(when no more than 2% outliers are present, Fig. 6), in line with authors who recommend 

Eigenstrat over mixed models and other methods (Liu et al. 2011, Liu et al. 2013, Widmer et 

al. 2014, Yang et al. 2014). However, concerns about the detection of fine relatedness 

structure by PCA lead to the continued use of genomic control (Fuchsberger et al. 2016). This 

is not supported by the results obtained here, since fine structure was detected by PCA-based 

methods (Table 5b), similarly to what was observed by Wang et al. (2009) and Zhang et al. 

(2014), and in agreement with Mc Vean (2009), who showed theoretically that PCA had the 

ability to detect fine structure, provided that a large enough set of SNPs is used. Therefore, the 

use of genomic control to avoid  cryptic relatedness seems questionable. Dropping genomic 

control should avoid masking of some true associations (Freedman et al. 2004, Price et al. 

2010, Bouaziz et al. 2011, Wu et al. 2011). 

The use of robust methods in this work was motivated by the need for stable and reproducible 

associations, as highlighted in Nilsson et al. (2013) and Li and Meyre (2013), which was 
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followed by only limited attempts to apply robust population structure correction (Liu et al. 

2013 applied MCD an other methods to remove outliers, Conomos et al. 2015 developed a 

relatedness-robust method). This thesis is one of the very few, if not unique, systematic 

comparison of standard and robust methods to correct population structure. As a result, there 

is no direct comparison with published results possible, though the successful use of MCD in 

Liu et al. 2013 to remove outliers and therefore maintain stable estimates can be said to relate 

to the robustness of gMCD observed in this work (Fig. 6). This small number of studies on the 

influence of outliers and robust methods underscore the need for further investigations in this 

topic. 

More broadly, though genome-wide case-control association studies have lead to tremendous 

new amounts of biological information in a very short period of time (Visscher et al. 2012), 

they can only partly explain disease heritability and functional mechanisms, as explained e.g. 

in Manolio et al. (2009).  Missing heritability can indeed derive from many other factors, 

including epigenetic or environmental factors, gene-gene interactions, and gene-environment 

interactions (Manolio et al. 2009, Li and Meyre 2013). This motivated a move towards several 

new approaches, including multi-omics or integrative approaches, which aim at evaluating the 

contribution and interactions of SNPs and other factors (Kristensen et al. 2014, Günther et al. 

2014, Iyengar et al. 2015, Miller et al. 2016, Zhang et al. 2016), or, meta-analyses of GWAS 

(advocated in Begum et al. 2012), or finally, extended GWAS (sometimes called 'post-

GWAS' studies), where pathway analysis or other functional-oriented analyses are conducted 

(Hart and Kranzler 2015). Notably, all of these new strategies are still based on a case-control 

association framework, so that a reliable correction for underlying structure will continue to 

be relevant. Even more so, since the ability of PCA and related tools to summarize data and 

reduce dimension are a key feature of integrative analyses (Günther et al. 2014, Ritchie et al. 

2015, Meng et al. 2016). 

4.2.3 Structure identification in human microbiome (HMP) data 

Structure identification in the HMP microbiome dataset. The methods qMDS, CSS and 

nSimplices performed best in the HMP dataset, while simpler methods MDSm and MDSe 
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performed reasonably well (table 11). All methods proved robust to 10% of outliers 

(Figure 9).  

The better performance of distribution or quantile-based methods is in agreement with the fact 

that proportions might not reflect best the information contained in microbiome data, because 

they downweigh information, if an abundance outlier is large, or increase artificially all 

proportions, in case the data for one or more phylogenies is missing (Paulson et al. 2013). 

Moreover, the distribution of phylogenies is highly asymmetric, with density concentrated 

about zero and decreasing steeply for more elevated counts (Holmes et al. 2012). In order to 

take this into account, new methods wMDS and qMDS were developed and applied. The 

transposition of gMDS, applicable to genetic SNP data, to wMDS, for abundance data, did not 

bring the expected benefit. This is likely due to the fact that microbiome abundances do not 

follow a normal distribution, but -for example- an exponential or multinomial-derived 

distribution (Jeraldo et al. 2012, Holmes et al. 2012), whereas the underlying distribution of 

SNP data can be thought of as a normal distribution (because it corresponds to the sum of a 

large number of binomial variables, central limit theorem - Bortz 2005). The qMDS method 

selects an appropriate model distribution before performing normalization, and accordingly 

outperformed  most other methods (table 11), though the CSS method of Paulson et al. (2013) 

was better. Finally, the procedure combining qMDS (using an exponential model) and 

nSimplices outperformed all the other methods, including CSS (table 11). The efficiency of 

this procedure is likely due to the ability of nSimplices to remove unuseful (because regarding 

only a single point, for example) information in each sample, therefore performing dimension 

reduction. This is in contrast with the way dimensionality reduction is done in PCA or MDS, 

since these methods select directions of lowest variance or distances, respectively. This makes 

them sensitive to single outlying values, and less sensitive if many points contain a small 

amount of private (e.g., regarding only one point) information, which might be the case in the 

HMP dataset.  

A drawback has been the transposition of ℓ1-based methods L1PCA, LAR, RMDS and 

RSMDS to the HMP dataset. Indeed, these methods rely on an iterative procedure, which 

proved relatively slow, or did not converge to a relevant solution. In particular, L1PCA, 
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though it was shown to perform well for microbiome data in Brooks et al. 2013, proved very 

long. First attempts in R were accelerated 20-fold when the L1PCA was transposed in Python, 

but would have lasted more than 48 hours on a fast computer (3.4 GHz, 64bit, processors i7). 

However, implementations in R and Python, though advantageous because they come with 

rich packages of both classic and cutting-edge methods, cannot compare with more 

demanding but incomparably faster languages such as Fortran or C/C++ 

(http://benchmarksgame.alioth.debian.org/). The transposition of L1PCA in one of these languages 

would certainly make its use tractable and support its wide application. However, lack of 

convergence in RMDS and RSMDS seems to be due to an actual shortcoming of the 

algorithm. 

In a nutshell, this work confirms the methods CSS and q
E
-MDS - nSimplices as methods of 

choice to explore underlying structure in microbiome data. All top methods used were very 

robust, especially q
E
-MDS and q

NB
-MDS, combined or not with nSimplices . More research 

aiming at making multivariate ℓ1-methods more tractable would be necessary, In particular, 

faster implementations would strongly support their evaluation and use in clinical research. 

Link to current microbiome research. The awareness about confounding structure in 

association or differential studies in the microbiome is only emerging (Blaser et al. 2013, 

Gilbert et al. 2016), while informative structure such as treatment tailoring based on 

microbiome profile has long ago been called for (Nasidze et al. 2009, Holmes et al. 2011). As 

Blaser et al. (2013) and Gilbert et al. 2016 pointed, no consensus on a preferable method 

exists yet, however some authors started evaluating or pointing flaws in current methods 

(Faust et al. 2012, Jiang et al. 2013, Schommer and Gallo 2013, McMurdie and Holmes 2014, 

Mandal et al. 2015).  

The use of proportions lead to underperforming results (table 11, MDSe, MDSm) when 

compared with data-driven normalization methods (qMDS, CSS). This is in agreement with 

McMurdie and Holmes (2014), who claimed that simple proportions are an inefficient way to 

normalize microbiome data, because of unequal variances. McMurdie and Holmes 

additionally advocate the use of negative-binomial based methods, derived from the gene 
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expression field. Even if the negative binomial seemed the most appropriate model (table 10),  

the exponential distribution (q
E
-MDS combined with nSimplices) led to better estimates, 

showing that the negative binomial might not be the best model distribution for phylogenies 

abundances. This observation is consistent with Faust et al. (2012), Schommer and Gallo 

(2013), Mandal et al. (2015), who argue that the microbiome composition derives from an 

ecosystem of competing  phylogenies, which is not adequately reflected in binomial or 

multinomial-based distributions. Jiang et al. (2013) compared PCA with ISOMAP, a 

procedure comparable to MDSe (Hastie et al. 2001, p.573), on 45 marine samples and 33 

human gut metagenomes. They found similar results for both methods, which complements 

the similar findings obtained here in MDSe and MDSm, so that PCA and MDS can be 

considered mostly equivalent in the analysis of microbiome data. This was also observed in 

genetic SNP data (Wang et al. 2009). 

Finally, least absolute (ℓ1) methods have theoretical and practical benefits which have already  

led to the reinforced use of the median, univariate ℓ1 regression (a comprehensive review 

including historical aspects can be found in Tveite 1985), the LASSO (Tibshirani 1996), and 

many other ℓ1 methods (e.g. Huber 1964). However, high dimensional applications to 

microbiome data proved difficult here and remain rare in the literature (Brooks et al. 2013 is 

one example). Though, there is a high expected benefit from the application of ℓ1 in high-

dimension datasets, as compared to ℓ2-based least squares (Aggarwal et al. 2001), which 

motivates making ℓ1 methods more practicable for high-dimensional datasets, possibly 

making them ultimately as widespread as the median or LASSO.  

4.3 Advantages and limitations of method nSimplices 

The method nSimplices allowed to explore the actual dimension of a distance matrix, to 

accommodate contextual outliers and to perform dimension reduction in an efficient manner 

(Tables 3, 5b and 11). Common methods for dimension reduction are based on an index, for 

instance this index is the variance in PCA, the distance-based cost function in MDS, the 

negentropy in ICA, or even any arbitrary index in projection pursuit (Friedman and Tukey 
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1974). An advantage of nSimplices is that it is free of such an index, since it relies on the 

volumes formed by the cloud of observations only. In other terms, this method directly 

identifies what lies outside of the relevant dimensional subspace (for example outside a 2-

dimension space, see table 4), and removes this external component accordingly. 

Method nSimplices did substantially outperform other methods in the HMP microbiome data 

and in synthetic example 2 with contextual outliers (tables 3 and 11). It further performed 

slightly better than other methods, in some cases, in the EPIC genetic SNPs dataset (table 5). 

In all these examples, nSimplices was among the most robust methods (figures 6 and 9). 

Dimension detection worked out well in synthetic example 2 (table 4), even in the most 

strained configurations, and hinted at a higher relevant dimension than 10 in EPIC and HMP 

datasets. 

A limitation lies in the kurtosis index of additional heights, which is supposed to notably 

increase between dimension n, the last relevant dimension, and dimension n+1. This condition 

could be violated in datasets with large levels of noise (such as synthetic example 2 with 

added gaussian noise with a large standard deviation of the same order of magnitude as the 

points themselves). Another restriction is that distance outliers were not properly 

accommodated (table 3). However, a  correction of triangle inequalities is in principle 

sufficient to address this issue, such as the triangle fixing approach proposed by Suvrit et al. 

(2005).  

As a conclusion, this new approach proved efficient, or markedly advantageous, in a variety 

of settings. Method nSimplices should therefore be considered to explore any genomic, 

microbiome or other dataset which can be meaningfully presented as a distance matrix, as far 

as the level of noise in the data is not exceedingly large, and if one takes the precaution to 

correct triangle inequalities wherever necessary. 
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4.4 Conclusions 

A systematic evaluation of several PCA and MDS-based methods applied to synthetic 

examples, to genetic SNP data from the EPIC study and to microbiome abundance data from 

HMP has been conducted. Each method yielded 10 axes, for which was assessed how well the 

underlying known structure was mirrored, and how robust these axes were after the inclusion 

of up to 10% outliers. The conclusions that can be drawn from this work are detailed in three 

sections: methods recommended in genetic data in §4.4.1, in microbiome data in §4.4.2, and 

recommendations valid in both categories, and which can be extended to further types of data, 

in §4.4.3. Briefly, it is possible to detect correctly and robustly an underlying confounder, for 

example using gMCD method (genetic SNPs), or using nSimplices (microbiome). 

Furthermore, different methods will report different types of structure, so that the use of two 

(or more) complementary methods is advisable. Finally, an original method for outlier 

detection and dimension reduction, nSimplices, has shown great promise and can be applied 

to genetic, microbiome or other categories of datasets. 

4.4.1 Exploring and controlling for confounding structure in genetic SNP data 

-  To robustly control for population structure in genetic case-control association studies with 

up to 10% of outliers (real outliers, top axes), the methods SPH, IBS, gMCD and 

nSimplices should be best in terms of representativity and of robustness, as was the case 

here. 

-  Outliers removal based on a diverging ancestry might not be necessary, since 5 top axes 

are conserved for up to 10% of outliers for most methods used. This applies to the case of 

real individual outliers, sampled from unrelated 1000genomes individuals.  

-  To control for population structure in genetic case-control association studies with a low 

amount of outliers (up to 2%), Eigenstrat remains a reasonably efficient method. 

-  In the EPIC dataset, the SNPs rs520820, rs3783501, rs4955720, rs546950, rs388372 were 

characterized by non significant association p-values, in agreement with phase 2 of Campa 

et al. (2011). However, 20 candidate SNPs were significant (which however do not reach 
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significance after correcting for multiple testing): rs8071475, rs3799631, rs2589118, 

rs17239241, rs7778077, etc. (full list in table 9). These SNPs were detected in GWAS in 

other disorders and might correlate indirectly with the prostate cancer status. 

4.4.2 Exploring and controlling for confounding structure in microbiome abundance 

data 

-  A recommendable method to account for overall and fine structure in microbiome data is 

nSimplices combined with qMDS approach (with an Exponential model of abundances).  

The qMDS method relies in the normalization of counts in quantiles of an exponential 

distribution. The nSimplices procedure comes as a pre-processing step to reduce 

dimensionality. Both approaches are tractable and fast (qMDS runs in minutes, nSimplices 

in 30 minutes, on the EPIC and HMP datasets used here). 

-  The CSS and qMDS methods performed second best here and should therefore still be 

meaningful, though suboptimal. These methods described both the overall and the detailed 

structure better than most methods. 

-  MDSe or MDSm were similarly representative and robust, but they underperformed 

markedly as compared to normalization-based methods. MDSe and MDSm would be 

advantageously replaced by nSimplices combined with q
E
-MDS or CSS. 

-  Outliers in  a microbiome dataset need not be removed. Indeed, nSimplices, qMDS and 

CSS proved robust to them. This is valid for up to 10% outliers, and for all 10 top axes 

(except CSS: axes 1 to 9). 

4.4.3 Exploring and controlling for confounding structure in further types of datasets 

The following considerations apply in principle to any dataset where a confounding structure 

could be present. This encompasses genetic SNP data and microbiome abundance data, but 

also further categories of datasets, for example multi-omics. 

-  The use of the nSimplices procedure developed and presented here should be taken in 

consideration for the exploration and dimension reduction of any high-dimensional dataset. 
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Indeed, nSimplices allowed to correctly detect and accommodate outliers (example 2), 

brought some advantage in genetic SNP data (EPIC cohort), and finally delivered a 

decisive advantage in the HMP dataset. This applies to any dataset which can be 

meaningfully represented as a distance matrix. 

-  The method shapes the solution: indeed, the approach chosen to detect confounding 

structure has itself and influence on the structure found, as observed in example 2 and in 

the EPIC and HMP datasets. The selected method could be compared to a probe with 

specificity for a particular target. It is recommended to apply several complementary 

methods to efficiently detect underlying structure and to avoid artefacts. 

-  More tractable procedures using least absolute residuals methods (ℓ1-norm approaches) 

would be needed, in particular high-performance implementations, since practical issues in 

this work undermined the expected potential of these methods.  

 

  



64 

 

5 SUMMARY 

Case-control association studies in human genetics and microbiome pave the way to 

personalized medicine by enabling a personalized risk assessment, improved prognosis, or 

allowing an early diagnosis. However, confounding due to population structure, or other 

unobserved factors, can produce spurious findings or mask true associations, if not detected 

and corrected for. As a consequence, underlying structure improperly accounted for could 

explain lack of power or some unsuccessful replications observed in case-control association 

studies. Besides, points considered as outliers are commonly removed in such studies 

although they do not always correspond to technical errors. A wealth of methods exist to 

determine structure in genetic and microbiome association studies. However, there are few 

systematic comparisons between these methods in the frame of genetic or microbiome 

association studies, and even less attempts to apply robust methods, which produce stable 

estimates of confounding underlying structure, and which are able to incorporate information 

from outliers without degrading estimates quality.  

Consequently, the aim of this thesis was to detect and control robustly for underlying 

confounding structure in genetic and microbiome data, by comparing systematically the most 

relevant standard and robust forms of principal components analysis (PCA) or 

multidimensional scaling (MDS) based methods,  and by contributing new robust methods. 

Own contributions include robustification of existing methods, adaption to the genetic or to 

the microbiome framework, and a dimensionality exploration and reduction method, 

nSimplices. Analysed datasets include a first synthetic example with a low-variance 2-groups 

confounding structure, a second synthetic example with a simple linear underlying structure, 

genome-wide single nucleotide polymorphism (SNP) from 860 case and control individuals 

enrolled in the European Prospective Investigation into Cancer and nutrition (EPIC prostate), 

and finally, 2 255 microbiome samples from the human microbiome project (HMP). Synthetic 

or real outliers were added in the second example and in EPIC and HMP datasets. All 

meaningful existing and contributed methods were applied to the EPIC and HMP datasets, 

while a restricted set was applied to the synthetic, illustrative examples. The 10 principal 

components or top axes resulting from each method were kept for further analysis. Quality of 

a method was assessed by how well these axes summarized the underlying structure (using 

Akaike's information criterion -AIC- from the regression of the 10 axes on known underlying 

structure in the data), and by how robust the estimates stayed in the presence of outliers 

(adjusted R² from the regression of each outlier-disturbed axis on the original axis).  

In synthetic example 1, only ICA was able to uncover the low-variance confounding structure, 

whereas PCA or MDS failed to do so, in agreement with the fact that these methods detect 

large rather than small variance or distance components. In synthetic example 2, non-metric 

MDS remained the most representative and robust method when distance outliers are 

included, while nSimplices combined with classical MDS was the only method to stay 

representative and robust if contextual outliers are present. In the EPIC dataset, Eigenstrat was 

the most representative method (AIC of 782.8) whereas sample ancestry was best captured by 

new method gMCD (unbiased genetic relatedness estimates used in a Minimum Covariance 
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Determinant procedure). Methods gMCD, spherical PCA, IBS (MDS on Identity-by-State 

estimates) and nSimplices were more robust than Eigenstrat, with a small to moderate loss in 

terms of representativity (AIC between 789.6 and 864.9). Association testing yielded p-values 

comparable with published values on candidate SNPs. Further SNPs rs8071475, rs3799631, 

rs2589118 with lowest p-value were identified, whose known role in other disorders could 

point to an indirect link with prostate cancer. In the HMP dataset, the new method nSimplices 

combined to data-driven normalization method qMDS mirrored best the underlying structure. 

The most robust method was qMDS (with nSimplices or alone), followed by CSS and MDS. 

Lastly, the original method nSimplices performed in all settings at least comparably (except 

ancestry in EPIC), and in some cases considerably better than other methods, while remaining 

tractable and fast in high-dimensional datasets. 

The improved performance of gMCD and qMDS agrees with the fact that these methods use 

adapted measures (genetic relatedness, selected model distribution, respectively) and 

recognized robust approaches (minimum covariance determinant and quantiles). Conversely, 

wMDS is likely to have failed because variance is not an adequate parameter for microbiome 

data. More generally, different methods report the underlying structure differently and are 

advantageous in different settings, for example PCA or non-metric MDS were best in some 

settings but failed in other. Finally, the original method nSimplices proved useful or markedly 

better in a variety of settings, with the exception of highly noisy datasets, and provided that 

distance outliers are corrected.  

Current genetic case-control association studies tend to integrate several types of data, for 

example clinical and SNP data, or several omics datasets. These approaches are promising but 

could be subject to increased inaccuracies or replication issues, by the mere combination of 

several sources of data. This motivates a reinforced use of robust methods, which are able to 

mirror accurately and steadily genetic information, such as gMCD, nSimplices or spherical 

PCA. Nevertheless, results on Eigenstrat show this stays a reasonable method. Results in 

microbiome confirmed that MDS based on proportions is a suboptimal method, and suggested 

the exponential distribution should be considered instead of multinomial-based distributions, 

certainly because the exponential better represents the inherent competitiveness between 

phylogenies in the microbiome. Moreover, illustrative and real world examples showed that 

methods could capture relevant, but different information, encouraging to apply several 

complementary methods when starting to explore a dataset. In particular, a low-variance 

confounder could stay undetected in some methods. Additionally, methods based on least 

absolute residuals revealed several shortcomings in spite of their utility in a univariate frame, 

but their expected benefit in a multivariate setting should motivate the development of more 

tractable implementations. 

Finally, SPH, IBS, gMCD are recommended methods in a genetic SNP dataset, while 

Eigenstrat should perform best if no more than 2% outliers are present. To mirror structure in 

a microbiome dataset, nSimplices (combined with qMDS, or with CSS) can be expected to 

perform best, whereas MDS on proportions is likely to underperform. Method nSimplices 

proved beneficial or largely better in various situations and should therefore be considered to 

analyse datasets including, but not limited to, genetic SNP and microbiome abundances.  
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8 APPENDIX 

 

Table S1. Adjusted 𝑅² for the robustness to synthetic outliers, EPIC dataset. 

 

Table S2. Adjusted 𝑅² for the robustness to real outliers, EPIC dataset. 

 

Table S3. Adjusted 𝑅² for the robustness to outliers, HMP dataset. 
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Table S1. Adjusted 𝑅² for robustness to synthetic outliers, EPIC dataset. 

%outliers  axis 1 axis 2 axis 3 axis 4 axis 5 axis 6 axis 7 axis 8 axis 9 axis 10 

EIG 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.01 0.00 

0.5 1.00 1.00 1.00 1.00 1.00 0.93 0.06 -0.01 0.00 0.00 

0.75 1.00 1.00 1.00 1.00 0.03 0.00 0.00 0.01 0.00 0.00 

1 1.00 1.00 0.08 0.05 0.03 0.01 0.00 0.02 0.00 0.01 

2 0.94 0.17 0.06 0.06 0.05 0.01 -0.01 0.00 0.03 0.01 

5 0.89 0.14 0.09 0.03 0.07 0.01 0.00 0.00 0.03 0.03 

7 0.86 0.11 0.09 0.04 0.07 0.01 0.00 0.01 0.03 0.02 

10 0.85 0.23 0.07 0.04 0.05 0.01 0.00 0.01 0.03 0.02 

SPH 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 -0.01 

0.5 1.00 1.00 1.00 1.00 1.00 1.00 0.02 -0.01 0.00 -0.01 

0.75 1.00 1.00 1.00 1.00 0.20 0.33 0.01 0.01 0.00 0.00 

1 1.00 1.00 0.34 0.18 0.17 0.26 0.02 0.01 0.01 0.01 

2 1.00 0.92 0.27 0.16 0.14 0.24 0.01 0.00 0.00 0.01 

5 1.00 0.86 0.26 0.17 0.16 0.24 0.01 -0.01 0.00 0.00 

7 1.00 0.85 0.41 0.20 0.17 0.21 0.02 -0.01 0.00 0.00 

10 1.00 0.82 0.41 0.23 0.19 0.21 0.01 0.02 0.00 0.01 

MCD 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 0.95 0.85 0.76 0.56 0.38 0.16 0.02 0.10 0.05 0.04 

0.5 0.95 0.86 0.73 0.52 0.37 0.15 0.01 0.04 0.05 0.02 

0.75 0.95 0.85 0.75 0.52 0.00 0.03 0.00 0.02 0.01 0.02 

1 0.94 0.85 0.04 0.01 0.02 0.01 0.00 0.04 0.01 0.00 

2 0.84 0.11 0.05 0.01 0.03 0.01 0.02 0.03 0.02 0.00 

5 0.80 0.12 0.10 0.03 0.02 0.01 0.02 0.01 0.01 0.01 

7 0.77 0.13 0.09 0.03 0.03 0.02 0.01 0.02 0.02 0.01 

10 0.69 0.15 0.11 0.03 0.02 0.02 0.02 0.01 0.02 0.01 

IBS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.01 0.00 

0.5 1.00 1.00 1.00 1.00 1.00 1.00 0.16 -0.01 0.00 0.01 

0.75 1.00 1.00 1.00 1.00 0.22 0.18 0.09 0.00 0.00 0.01 

1 1.00 1.00 0.47 0.12 0.20 0.13 0.07 0.01 0.01 0.01 

2 1.00 0.98 0.43 0.11 0.20 0.14 0.07 0.00 0.01 0.03 

5 1.00 0.96 0.37 0.12 0.16 0.14 0.08 0.01 0.02 0.02 

7 1.00 0.95 0.34 0.16 0.17 0.14 0.08 0.01 0.03 0.02 

10 1.00 0.93 0.41 0.14 0.15 0.13 0.09 0.01 0.03 0.02 
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gMCD 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 0.96 1.00 0.99 0.98 0.97 0.96 0.82 0.63 0.00 0.12 

0.5 0.96 1.00 0.99 0.98 0.96 0.96 0.07 0.02 0.00 0.00 

0.75 0.96 1.00 0.99 0.98 0.34 0.16 0.03 0.02 0.01 0.00 

1 0.96 1.00 0.36 0.28 0.21 0.10 0.01 0.01 0.01 0.00 

2 0.96 0.92 0.36 0.26 0.17 0.10 0.02 0.02 0.00 0.00 

5 0.96 0.85 0.39 0.24 0.20 0.09 0.04 0.02 -0.01 0.01 

7 0.96 0.83 0.33 0.26 0.19 0.08 0.03 0.02 -0.01 0.01 

10 0.96 0.84 0.35 0.23 0.16 0.08 0.02 0.04 0.00 0.00 

LAR 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 0.98 0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.01 

0.5 0.99 0.01 0.02 0.01 0.00 0.00 0.01 0.00 -0.01 -0.01 

0.75 0.99 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 

1 0.99 0.00 -0.01 0.01 0.00 0.00 0.01 -0.01 0.01 0.01 

2 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.99 0.00 -0.01 0.00 0.00 0.00 0.01 -0.01 -0.01 0.00 

7 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.99 0.00 0.01 0.00 -0.01 0.00 0.01 -0.01 -0.01 -0.01 

RMDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 0.75 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

0.5 0.75 0.00 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 

0.75 0.77 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

1 0.75 0.00 0.01 0.00 0.00 0.01 0.00 0.00 -0.01 0.00 

2 0.74 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.01 -0.01 0.00 

5 0.78 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

7 0.78 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

10 0.77 0.00 0.01 0.00 0.01 0.00 0.00 -0.01 0.00 -0.01 

RSMDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.01 

0.5 1.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.00 

0.75 1.00 0.01 0.03 0.01 0.01 0.02 0.02 0.00 0.01 0.00 

1 1.00 0.03 0.02 0.00 0.02 0.02 0.01 0.01 0.01 0.00 

2 1.00 0.01 0.00 0.00 0.01 0.01 0.00 0.02 0.01 0.04 

5 1.00 0.02 0.01 0.01 0.00 0.01 0.03 0.01 0.01 0.00 

7 1.00 0.00 0.01 0.01 0.02 0.00 0.00 0.01 0.01 0.00 

10 0.97 0.01 0.02 0.00 0.01 0.02 0.00 0.00 0.03 0.00 

nmMDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 0.00 0.11 0.05 0.04 0.05 0.01 0.02 0.00 -0.01 0.06 
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0.5 0.00 0.11 0.04 0.00 0.05 0.01 0.02 0.00 0.00 0.11 

0.75 0.00 0.12 0.04 0.01 0.02 0.01 0.01 0.01 0.00 0.06 

1 0.01 0.10 0.06 0.01 0.02 0.03 0.01 0.00 -0.01 0.04 

2 0.00 0.09 0.05 0.01 0.03 0.02 0.02 0.00 0.00 0.07 

5 0.00 0.10 0.03 0.01 0.03 0.03 0.01 0.01 0.00 0.09 

7 0.00 0.14 0.03 0.02 0.03 0.01 0.02 0.00 0.01 0.07 

10 0.00 0.11 0.05 0.01 0.03 0.01 0.03 0.00 0.00 0.06 

gMDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 -0.01 

0.5 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.01 0.00 

0.75 1.00 1.00 1.00 1.00 0.01 0.00 0.01 0.00 0.01 0.00 

1 1.00 1.00 0.04 0.01 0.02 0.00 0.01 0.01 0.01 0.01 

2 0.89 0.17 0.08 0.03 0.02 0.01 0.02 0.00 0.00 0.01 

5 0.85 0.10 0.07 0.06 0.01 0.00 0.02 0.00 0.01 0.00 

7 0.86 0.12 0.07 0.07 0.00 0.01 0.01 0.02 0.02 0.00 

10 0.81 0.10 0.04 0.04 0.00 0.01 0.03 0.01 0.01 0.01 

nSimplices 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 0.99 0.98 0.96 0.53 0.36 0.73 0.49 0.23 0.17 

0.5 1.00 0.99 0.98 0.96 0.52 0.35 0.70 0.00 0.00 0.02 

0.75 1.00 0.99 0.98 0.96 0.02 0.00 -0.01 0.00 0.00 0.00 

1 1.00 0.99 0.03 0.04 0.03 0.01 0.00 0.00 0.01 0.02 

2 0.98 0.34 0.06 0.02 0.03 0.01 0.00 0.00 0.00 0.01 

5 0.91 0.20 0.10 0.03 0.03 0.02 0.03 0.00 0.00 0.01 

7 0.90 0.40 0.03 0.03 0.03 0.01 0.01 0.03 0.00 0.01 

10 0.88 0.41 0.05 0.03 0.03 0.03 0.02 0.01 0.00 0.01 
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Table S2. Adjusted 𝑅² for robustness to real outliers, EPIC dataset. 

%outliers  axis 1 axis 2 axis 3 axis 4 axis 5 axis 6 axis 7 axis 8 axis 9 axis 10 

EIG 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 1.00 1.00 1.00 0.97 0.99 0.86 0.99 0.95 0.00 

0.5 1.00 1.00 1.00 1.00 0.97 0.99 0.82 0.98 0.89 0.01 

0.75 1.00 1.00 1.00 1.00 0.97 0.99 0.79 0.97 0.86 0.00 

1 1.00 1.00 1.00 1.00 0.97 0.99 0.79 0.97 0.81 0.03 

2 1.00 1.00 1.00 1.00 0.95 0.99 0.63 0.95 0.14 0.01 

5 1.00 1.00 1.00 0.99 0.93 0.02 0.51 0.04 0.13 0.12 

7 1.00 1.00 1.00 0.99 0.93 0.02 0.51 0.05 0.13 0.13 

10 1.00 1.00 0.99 0.99 0.92 0.67 0.51 0.05 0.10 0.04 

SPH 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 1.00 1.00 1.00 1.00 0.93 1.00 0.92 0.91 0.66 

0.5 1.00 1.00 1.00 1.00 1.00 0.93 1.00 0.87 0.87 0.63 

0.75 1.00 1.00 1.00 1.00 1.00 0.93 0.99 0.87 0.87 0.26 

1 1.00 1.00 1.00 1.00 0.99 0.93 0.99 0.83 0.67 0.13 

2 0.99 1.00 1.00 1.00 0.99 0.91 0.98 0.81 0.52 0.13 

5 0.98 1.00 1.00 1.00 0.99 0.90 0.98 0.23 0.18 0.07 

7 0.98 1.00 1.00 1.00 0.99 0.90 0.97 0.22 0.18 0.07 

10 0.98 1.00 1.00 1.00 0.99 0.89 0.96 0.23 0.18 0.06 

MCD 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 0.95 0.85 0.76 0.58 0.46 0.24 0.13 0.10 0.06 0.05 

0.5 0.95 0.86 0.77 0.61 0.61 0.22 0.02 0.11 0.10 0.01 

0.75 0.95 0.86 0.77 0.62 0.59 0.29 0.03 0.10 0.04 0.00 

1 0.95 0.86 0.77 0.64 0.58 0.32 0.03 0.11 0.03 0.03 

2 0.95 0.86 0.77 0.65 0.58 0.22 0.01 0.12 0.05 0.02 

5 0.95 0.87 0.76 0.65 0.62 0.28 0.02 0.16 0.05 0.01 

7 0.95 0.86 0.76 0.65 0.61 0.28 0.01 0.17 0.04 0.02 

10 0.95 0.87 0.75 0.63 0.63 0.11 0.02 0.18 0.04 0.03 

IBS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 0.97 1.00 0.99 0.98 0.97 0.84 0.79 0.68 0.61 0.00 

0.5 0.97 1.00 0.99 0.98 0.97 0.83 0.76 0.67 0.46 0.01 

0.75 0.97 1.00 0.99 0.98 0.97 0.85 0.78 0.68 0.20 0.06 

1 0.97 1.00 0.99 0.98 0.97 0.85 0.79 0.68 0.14 0.05 

2 0.97 1.00 0.99 0.98 0.97 0.84 0.74 0.56 0.07 0.01 

5 0.97 1.00 0.99 0.98 0.97 0.47 0.30 0.02 0.02 0.04 

7 0.97 1.00 0.99 0.98 0.97 0.44 0.29 0.02 0.02 0.04 

10 0.97 1.00 0.99 0.98 0.97 0.44 0.28 0.02 0.02 0.02 
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%outliers  axis 1 axis 2 axis 3 axis 4 axis 5 axis 6 axis 7 axis 8 axis 9 axis 10 

gMCD 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.97 0.51 0.33 

0.5 1.00 1.00 1.00 1.00 0.99 0.99 0.76 0.92 0.05 0.08 

0.75 1.00 1.00 1.00 1.00 0.99 0.99 0.75 0.93 0.06 0.10 

1 1.00 1.00 1.00 1.00 0.99 0.97 0.56 0.43 0.09 0.05 

2 1.00 1.00 1.00 0.99 0.97 0.94 0.63 0.09 0.04 -0.01 

5 1.00 1.00 1.00 0.99 0.97 0.93 0.64 0.18 0.01 0.02 

7 1.00 1.00 1.00 0.99 0.97 0.93 0.64 0.19 0.02 0.01 

10 1.00 1.00 1.00 0.99 0.97 0.93 0.61 0.09 0.01 0.01 

LAR 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 0.98 0.00 0.00 0.00 -0.01 0.00 0.00 -0.01 0.00 0.01 

0.5 0.98 0.01 0.02 0.01 0.00 0.00 0.01 0.00 -0.01 -0.01 

0.75 0.97 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

1 0.98 0.00 -0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01 

2 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.98 0.00 -0.01 0.00 0.00 0.00 0.01 -0.01 -0.01 0.00 

7 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.99 0.00 0.01 0.00 -0.01 0.00 0.01 -0.01 -0.01 -0.01 

RMDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 0.76 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

0.5 0.75 0.00 0.00 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 

0.75 0.76 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

1 0.75 0.00 0.01 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 

2 0.75 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.01 0.00 0.00 

5 0.73 0.00 0.00 0.00 0.00 -0.01 0.01 0.00 0.00 0.00 

7 0.74 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

10 0.72 0.00 0.01 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 

RSMDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.01 

0.5 1.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.00 

0.75 0.99 0.01 0.03 0.01 0.01 0.02 0.01 0.00 0.01 0.00 

1 0.99 0.02 0.02 0.00 0.01 0.02 0.01 0.01 0.01 0.00 

2 0.99 0.01 0.00 0.00 0.01 0.01 0.00 0.02 0.01 0.04 

5 0.98 0.01 0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.00 

7 0.98 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.01 0.00 

10 0.97 0.01 0.02 0.00 0.01 0.02 0.00 0.00 0.03 0.00 
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%outliers  axis 1 axis 2 axis 3 axis 4 axis 5 axis 6 axis 7 axis 8 axis 9 axis 10 

nmMDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 0.00 0.11 0.03 0.00 0.05 0.01 0.01 0.01 0.00 0.09 

0.5 0.01 0.09 0.06 0.00 0.02 0.01 0.01 0.00 0.01 0.06 

0.75 -0.01 0.11 0.04 0.00 0.03 0.02 0.01 0.01 0.00 0.07 

1 0.00 0.11 0.05 0.00 0.04 0.01 0.03 0.00 0.00 0.08 

2 -0.01 0.10 0.03 0.00 0.03 0.00 0.00 0.01 -0.01 0.03 

5 0.01 0.12 0.03 0.01 0.05 0.00 0.01 0.00 0.00 0.08 

7 0.00 0.13 0.04 0.01 0.03 0.01 0.01 0.00 0.00 0.05 

10 0.00 0.13 0.04 0.01 0.04 0.00 0.02 0.00 0.01 0.08 

gMDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 0.99 0.98 0.96 0.93 0.77 0.83 0.64 0.35 0.35 

0.5 1.00 0.99 0.98 0.96 0.92 0.78 0.83 0.61 0.04 0.08 

0.75 1.00 0.99 0.98 0.97 0.89 0.77 0.75 0.09 0.03 0.02 

1 1.00 0.99 0.98 0.97 0.89 0.57 0.25 0.04 0.03 0.02 

2 1.00 0.99 0.97 0.90 0.82 0.34 0.16 0.02 0.03 0.01 

5 1.00 0.98 0.94 0.86 0.78 0.33 0.20 0.03 0.00 0.00 

7 0.99 0.98 0.94 0.84 0.79 0.37 0.18 0.03 0.01 0.00 

10 0.99 0.98 0.94 0.84 0.81 0.41 0.15 0.03 0.02 0.03 

nSimplices 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.25 1.00 1.00 1.00 0.99 0.92 0.92 1.00 0.98 1.00 0.02 

0.5 1.00 1.00 1.00 0.99 0.90 0.90 1.00 0.98 1.00 0.00 

0.75 1.00 1.00 1.00 0.99 0.90 0.90 1.00 0.98 1.00 0.00 

1 1.00 1.00 1.00 0.99 0.90 0.89 1.00 0.98 1.00 -0.01 

2 1.00 1.00 1.00 0.99 0.90 0.89 0.99 0.04 0.06 -0.01 

5 1.00 1.00 1.00 0.99 0.89 0.88 0.99 0.03 0.01 0.00 

7 1.00 1.00 1.00 0.99 0.88 0.88 0.99 0.03 0.00 -0.01 

10 1.00 1.00 1.00 0.99 0.87 0.87 0.98 0.02 0.00 -0.01 

 

 

Table S3. Adjusted 𝑅² for the robustness to outliers, HMP dataset. 

%outliers  axis 1 axis 2 axis 3 axis 4 axis 5 axis 6 axis 7 axis 8 axis 9 axis 10 

MDSm 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.26 

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.17 

7.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.15 

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.14 
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%outliers  axis 1 axis 2 axis 3 axis 4 axis 5 axis 6 axis 7 axis 8 axis 9 axis 10 

MDSe 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.26 

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.17 

7.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.15 

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.14 

LAR 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

7.5 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RMDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 1.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

5 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

7.5 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

RSMDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 0.19 0.16 0.10 0.13 0.15 0.06 0.17 0.15 0.19 0.16 

5 0.02 0.02 0.04 0.03 0.02 0.05 0.02 0.02 0.01 0.02 

7.5 0.18 0.12 0.08 0.11 0.11 0.02 0.16 0.11 0.17 0.13 

10 0.08 0.04 0.07 0.08 0.03 0.04 0.08 0.03 0.05 0.04 

wMDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 0.47 0.03 0.19 0.32 0.10 0.07 0.17 0.01 0.02 0.38 

5 0.43 0.03 0.16 0.29 0.10 0.06 0.15 0.01 0.02 0.28 

7.5 0.41 0.03 0.15 0.29 0.10 0.06 0.14 0.00 0.02 0.25 

10 0.40 0.03 0.13 0.29 0.09 0.06 0.13 0.00 0.02 0.24 

 

qNB-MDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

7.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

qE-MDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 

7.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 
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%outliers  axis 1 axis 2 axis 3 axis 4 axis 5 axis 6 axis 7 axis 8 axis 9 axis 10 

CSS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 1.00 0.05 

5 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 0.07 

7.5 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 0.08 

10 1.00 1.00 0.99 1.00 1.00 1.00 0.96 0.98 1.00 0.08 

nSimplices qNB-MDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.93 

7.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.90 

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.87 

nSimplices qE-MDS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

7.5 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 

10 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 

nSimplicesCSS 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.85 

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.48 

7.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.33 

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.24 
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