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ABSTRACT 
 

The development of episomally maintained DNA vectors that are capable of providing safe, 

persistent and stable modification of cells whilst avoiding the risk of integration-mediated 

genotoxicity would provide a valuable tool for genetic research.   

DNA vectors harboring a Scaffold/Matrix Attachment Region (S/MAR) can provide persistent and 

robust transgene expression in human cancer cell lines which can be used in in vitro, in vivo and ex 

vivo studies. A prototype S/MAR DNA vector with which we initiated this study replicates 

episomally, remains unsilenced and unmethylated following the genetic modification of cells. 

Although, it showed great promise it does have significant limitations which restricts its application. 

The establishment rate of the original DNA vector is an inefficient passive process and the selection 

procedure is lengthy and often produces drug-resistant but non-expressing colonies generating a 

mosaic of cells with differential transgene expression. Thus, these vectors represent a reasonable 

tool for simple studies such as cell labelling with reporter genes but are not suitable for more 

sophisticated work such as gene-rescue experiments or for the genetic engineering of primary 

human cells. In this project, we have refined and enhanced the S/MAR DNA vector system. The 

range of next-generation DNA vectors that we have produced provide several advances over the 

original vectors. We have demonstrated that this new S/MAR DNA vector platform is more 

efficient and stable with improved efficiency in establishing stable cell-lines. We have also 

demonstrated that the persistence of transgene expression and the molecular integrity of the 

vector has been improved in a range of cancer cell lines as well as in primary human cells. 

We have used this next-generation of DNA vector to generate labelled cells suitable for in vitro and 

in vivo drug screening. We have also generated isogenic tumor models which provide insights into 

the mechanism of pancreatic cancer development by restoring crucial tumor suppressor genes to 

the cells without altering the molecular or biochemical integrity of the cells. Additionally, we have 
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utilized the vector system to persistently modify a range of dividing cell types including primary 

mouse embryonic stem cells and embryonic fibroblasts and primary human fibroblasts.  

As an ultimate demonstration of the efficacy of this DNA vector we have used it to genetically 

modify human T-cells for immunotherapy and have demonstrated it to be capable of expressing 

transgenes in these cells for over 1 month with minimal toxicity.  

We have demonstrated that this novel class of DNA vector can be used to persistently modify 

every cell-type tested providing sustained and high levels of transgene expression whilst avoiding 

the risk of insertional mutagenesis induced by the random integration of genetic material with 

minimal impact to the cell. 
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ZUSAMMENFASSUNG  
 

Die Entwicklung von episomal aufrecht erhaltenen DNA Vektoren, würde ein brauchbares 

Werkzeug für die Forschung liefern. Während sie das Risiko von Genotoxizität vermeiden, sind 

diese in der Lage, sichere, dauerhafte und stabile Modifizierung von Zellen zu ermöglichen.  

DNA Vektoren mit einer Scaffold/Matrix Attachment Region (S/MAR) können stabile und robuste 

transgen Expression in humanen Krebszelllinien liefern, welche daraufhin in in vitro, in vivo und ex 

vivo Studien verwendet werden können. Zu Beginn dieser Studie arbeiteten wir mit einem Prototyp 

S/MAR DNA Vektor, welcher episomal replizierend ist und nach stabiler Modifizierung von Zellen 

unsilenced und unmethyliert bleibt. Trotz seiner vielversprechenden Eigenschaften, zeigten sich bald 

Limitierungen in seinen Anwendungsmöglichkeiten. Zum einen ist die Etablierungsrate dieses 

originalen DNA Vektors ist ein ineffizienter, passiver Prozess. Außerdem ist die Selektion 

zeitaufwändig und liefert oft resistente, aber nicht exprimierende Kolonien, was in einem Mosaik 

aus Zellen mit verschiedenster Transgen Expression resultiert. Dementsprechend stellen diese 

Vektoren ein angemessenes Werkzeug für einfache Studien wie Zellmarkierung mit Reporter 

Genen dar. Für anspruchsvollere Arbeiten wie Gen-Rescue Experimente oder für die genetische 

Modifizierung von humanen Primärzellen sind sie allerdings weniger geeignet.  

In diesem Projekt wurde daraufhin das vorliegende S/MAR DNA Vektorsystem verfeinert und 

optimiert. Das Sortiment an von uns hergestellten next-generation DNA Vektoren liefern 

verschiedenste Vorteile gegenüber dem ursprünglichen System. Wir konnten beweisen, dass diese 

neue S/MAR DNA Vektor Plattform effizienter und stabiler ist, und zusätzlich verbesserte Effizienz 

in der Etablierung von stabilen Zelllinien aufweist. Des weiteren wurde die Aufrechterhaltung der 

Transgen Expression und die molekulare Integrität der Vektoren in vielen humanen Krebs- und 

Primärzelllinien verbessert.  



Zusammenfassung 

 8 

Wir verwendeten diese next-generation DNA Vektoren um markierte Zellen, die für in vitro und in 

vivo Medikament screenings geeignet sind, herzustellen. Außerdem haben wir isogenetische Tumor 

Modelle generiert, in denen wir, durch die Wiederherstellung der Funktionalität von Tumor 

Suppressor Genen, die Entwicklung von Bauchspeicheldrüsenkrebs studierten. Die Vektoren 

wurden auch erfolgreich verwendet um verschiedenste sich teilende Zellen wie primäre 

embryonale Maus Fibroblasten und Stammzellen, sowie primäre humane Fibroblasten dauerhaft zu 

verändern. Als wichtigste Veranschaulichung der Leistungsfähigkeit dieser Vektoren wurden sie für 

die genetische Modifizierung von humanen T-Zellen für die Immuntherapie verwendet. Hierbei 

konnten wir die Expression der Transgene für eine Dauer von über einem Monat mit minimaler 

Toxizität demonstrieren.  

Wir zeigten auf, dass unsere neue Klasse an DNA Vektoren verwendet werden kann, um dauerhaft 

jegliche untersuchten Zelltypen zu verändern. Dabei liefern sie nachhaltige hohe Transgen 

Expression mit minimalem Einfluss auf die Zelle, ohne das Risiko willkürlicher Integration des 

genetischen Materials.  
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1 Introduction 
1.1 Current methods used for the Genetic Engineering of 

dividing cells 
 

The possibility of persistently modifying mammalian cells represents an attractive field for molecular 

and cell biologists. A system that provides efficient, persistent and stable expression, or 

suppression, of genes in mammalian cells may represent a useful tool for a variety of studies, such 

as gene regulation, disease modelling, drug testing and gene supplementation for therapeutic 

correction. In the past decade many techniques were developed with the aim of introducing foreign 

DNA into mammalian cells. Among several different approaches, the three most popular and 

efficient ways to introduce genetic material into cells are represented by the Lentiviral Gene 

Delivery system (Figure 1, a), the Sleeping Beauty Transposon (Figure 1, b) and the CRISPR/CAS9 

method (Figure 1, c). 

 

 

Figure 1. Current systems used for gene expression and genome editing of 
 mammalian cells. 
(a) In the Lentiviral Gene Delivery system the gene of interest (GOI) is introduced into the 
genome of a lentivirus and its translocation into the nucleus of the target cells is mediated by the 
virus itself. (b) Two plasmids DNA are necessary to deliver DNA through the Sleeping Beauty 
(SB) transposon technique. The first plasmid contains the expression cassette of the GOI and 
the second generate the enzyme transpose that is responsible for the integration of the GOI into 
the genome of the target cell. (c) In the CRISPR/CAS9 system, the guide RNA (gRNA) recruits 
the ribonuclease Cas9 on its homologous region on the cell genome. This complex formation 
mediates the modification of the cellular DNA at the recognised genomic locus. 
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1.1.1 The lentiviral system for the genetic modification of 

 mammalian cells 
 

In the lentiviral gene delivery system the Gene of Interest (GOI) is introduced into a viral genome 

and the virus mediates the delivery of the genetic material into the nucleus of the target cell  

(Figure 1, a). This technique is based on attenuated Lentivirus and in research these viruses are 

used primarily as a tool to introduce a gene product in cells or animal models. Lentivirus belong to 

the family of the Retroviridae, group VI, single-stranded RNA that require reverse transcription 

(ssRNA-RT). They are known to cause chronic and deadly diseases in humans characterised by long 

incubation periods. The most well studied lentivirus is the Human Immunodeficiency Virus (HIV). It 

represents the infectious agent that causes the severe human disease known as Acquired 

Immunodeficiency Syndrome (AIDS) (Sepkowitz 2001).  

The genome of this class of virus comprises a ssRNA that, once transferred into the cytoplasm of 

the target cells is recognised by the cellular transcription machinery and translated into proteins. 

Complexed with the viral genome, a viral particle carries an essential protein: an RNA dependent 

DNA-Polymerase. This protein converts the viral RNA genome into DNA (Figure 1, a). Once 

produced, the DNA is translocated into the nucleus where viral proteins mediate its integration 

into the cellular genome. The viral genome is incorporated into the cellular genome and its 

transcription (together with the transcription of the GOI) and translation exploits cellular 

machinery.  

 

1.1.2 Sleeping Beauty Transposons: an integrating non viral system 

for the engineering of mammalian cells 
 

The Sleeping Beauty Transposon (SB) is a system composed of two expression units. One mediates 

the expression of the Sleeping Beauty Transposase, the other carries the GOI. The transposition is 
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defined “as a precise process in which a DNA fragment is excised from one DNA molecule and 

moved to another site in the same or different DNA molecule or genome” (Plasterk 1993). Once 

the two expression systems reach the nucleus of the target cells the insertion site can be anywhere 

in the nucleus of the cell. The enzyme Transposase mediates the insertion of the transposon in AT-

rich sequences. Like for viral DNA, once integrated, in the SB system the transcription and 

translation of the GOI exploits cellular machinery. Arguably, the most exciting potential application 

of SBs is for human gene therapy. This system was used to generate ex vivo genetically engineered T 

cells and tested in clinical trials for patients at risk of death from advanced malignancies (Hackett, 

Largaespada et al. 2010).  

 

1.1.3 CRISPR/Cas9 genome editing system 
 

The third genome editing system is based on the Cluster Regulatory Interspaced Short Palindromic 

Repeats (CRISPR). It was discovered in bacteria and where it plays a key role in their defence 

system (Horvath and Barrangou 2010). In research it forms the basis of the genome editing 

technology known as CRISPR/Cas9. By delivering the Cas9 nuclease complexed with a synthetic 

guide RNA (gRNA) into a cell (Figure 1, c), the cell’s genome can be cut at a desired location, 

allowing existing genes to be removed and/or new ones added. Often a plasmid containing the main 

components of the system is transfected into a cell, however hard to transfect cells such as stem 

cells or neurones require more efficient delivery systems. For these cells the components of 

CRISPR/Cas9 can be packaged into lenti-, adeno- or adeno-associated virus. A clinical trial based on 

this system started in 2016 in China. The aim of the study is to edit T cells of patient carrying a 

stage five non-small cell lung cancer. The Programmed cell death protein 1 (PDCD1) gene is 

knocked out by CRISPR in the T cells of the patient and the cells are expanded ex vivo before their 

infusion into the patient (“PD-1 knockout engineered t cells for metastatic non-small cell lung cancer. 

www.clinicaltrials .gov Retrieved 2017-08-07). 
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1.2 Limitations of the current systems used for persistently 

modifying dividing cells  
 

Despite the efficiency of these systems in generating persistently modified mammalian genomes, 

they also present several limitations and drawbacks. The random integration of the viral genome 

can generate genotoxic effects such as cis activation or suppression of onco- and tumour 

suppressor genes which may lead to tumour formation, as well as trans activation of endogenous 

genes due to their interaction with viral proteins. Viral DNA is more prone to be recognised by the 

cellular RNA-DNA sensing system (Atianand and Fitzgerald 2013). It was reported that nuclear and 

cytosolic proteins can bind “non-self” DNA or RNA and trigger the innate immunity of cells which 

leads to the epigenetic silencing of the foreign DNA, induced cell death and the activation of the 

adaptive immunity when the DNA is delivered into an immunocompetent organism (Tao, Zhou et 

al. 2016). Although considered a “safer” gene integration system, in the Sleeping Beauty Transposon 

system, the enzyme Transposase drives the integration of the expression cassette into regions of 

the genome that are rich in A-T content (Hackett, Aronovich et al. 2011). Integration can occur 

anywhere and it has been calculated that a mammalian genome has approximately 200 million TA 

sites. AT rich DNA regions of the nucleus are not associated with coding sequences but they 

normally map as regulatory elements and often represent the binding site for structural proteins. 

The efficiency of the CRISPR/CAS9 in the editing of single base pairs (Mali, Yang et al. 2013) is well 

documented. It represents a useful tool for generating persistent knockdowns as well as for 

repairing the functionality of genes that present point mutations. Despite its efficiency in modifying 

single nucleotides, the system becomes particularly inefficient when it comes to the re-introduction 

of lost fragments of DNA. The chance of having two recombination events at the same genomic 

locus is very low. The guide RNA (gRNA), then, can sometimes bind alternative complementary 

regions of the genome, generating unexpected modification of those loci as well. The off target 
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effects, represent a major problem in the application of this system especially when it comes to the 

modification of primary human cells with the possibility of using them for clinical application.  

 

1.3 An ideal, non viral, non integrative system for the safe, 

persistent and stable modification of dividing cells 
 

To overcome the limitation of these methods an ideal system suitable for the genetic engineering of 

mammalian cells would be represented by a non-integrative DNA Vector. Once delivered to the 

nucleus of a target cell, the ideal vector should be able to express a gene of interest stably and 

persistently for the lifetime of the cell. The ideal vector system should overcome all the genotoxic 

problems induced by the integration of foreign DNA and/or off-targeting. Unlike some viruses, 

DNA Vectors shouldn’t damage or kill the host cells after they have replicated. They should remain 

episomal and they shouldn’t integrate into the cellular genome reducing the possibility of cis-

transactivation or suppression of onco- and tumour- suppressor genes. Also, as it doesn’t have to 

undergo a packaging process, the vector system would have potentially an unlimited capacity and to 

be functional it would not need the co-delivery of additional biological macromolecules.  

 

1.4 Plasmid DNA: where do they come from?  
 

In 1952, Joshua Lederberg defined a plasmid as  “any bacterial genetic material that exists in an 

extrachromosomal state for at least part of its replication cycle” (Lederberg 1952). To distinguish a 

plasmid from a virus, the definition was later narrowed to “genetic elements that exist exclusively or 

predominantly outside of the chromosome and can replicate autonomously” (Verma and Somia 1997). 

Plasmids contain sequences that can recruit a particular set of proteins which initiate and mediated 

their independent replication. In nature, plasmids provide a mechanism for gene transfer within a 

population of microbes and typically they provide a selective advantage under a given environmental 
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state. They may carry genes that provides resistance to naturally occurring antibiotics, or allow the 

organism to utilise particular organic compounds that would be advantageous when nutrients are 

scarce (Hayes 2003). 

 

1.5 Plasmids as a vector system for expression and transfer 

of genetic information  

 
Artificially constructed plasmids are used as vectors in genetic engineering. These plasmids are 

commonly used to clone and amplify particular genes. The vector itself is generally a DNA 

sequence that consists of a gene of interest (GOI) which normally is represented by a transgene 

and a larger sequence that serves as the “backbone” of the vector. The backbone normally contains 

the Origin of Replication (Ori) and a selective marker, normally, an antibiotic resistance, that allows 

the selection of the desired molecule in bacteria. The purpose of a vector which transfers genetic 

information to another cell is typically to express the GOI, or insert, in the target cell. The 

manipulation of DNA vectors is normally conducted in the bacterial strain E.Coli. Depending on 

their application DNA plasmids can be divided into different categories:  

• expression vectors  

• transcription vectors  

• shuttle vectors  

Expression vectors produce protein through the transcription of the vector’s insert followed by 

translation of the produced mRNA. Different features characterise vectors designed for the 

expression of a GOI in prokaryotic or eukaryotic cells. Normally, plasmid DNA designed for the 

expression in bacteria utilise a strong promoter like the lac (lactose) or the trp (tryptophan) operon 

and a Ribosome Binding Site (RBS) including a Shine-Delgarno sequence (a translation initiation site 8 

base pairs upstream the AUG start codon) that follows the promoter and sustain the efficient 
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translation of the protein of interest (POI). A Eukaryotic expression vector, instead, requires 

different sequences. The promoter has to have a eukaryotic origin because it must be recognised 

by the eukaryotic cell transcription machinery. At the 3’ end of the transcribed pre-mRNA is 

required the presence of a Poly-adenylation tail that stabilises the transcribed RNA. The Kozak 

consensus sequence plays a major role in the initiation of the translation process mediating the 

assembl of the ribosome on the mature RNA. The introduction of this sequence in an expression 

vector results in a more efficient and stable protein production.  

The Kozak sequence is identified by the notation gccRccAUGG which is derived from a wide 

variety of eukaryotic species (Kozak 1987). Some other vectors are designed for transcription only 

and they represent a useful tool for the in vitro production of mRNA. They lack the sequences 

necessary for poly-adenylation and termination and therefore cannot be used for protein 

production. RNA is normally generated in bacterial cells and therefore in these vectors the 

transcription is driven by a strong bacterial promoter which can be easily recognise by the 

endogenous bacterial RNA-Polymerase.  

A shuttle vector is a construct that can be propagated in two different host species. The main 

advantage of these vectors is that they can be manipulated in E.Coli and then used in a system which 

is more difficult to handle (e.g. yeast or mammalian cells). A shuttle vector that is going to be used 

for the expression of genetic material in mammalian cells needs to have some specific features. 

Normally it has two compartments (Figure 2). The bacterial backbone, contains the Ori and the 

antibiotic resistance driven by a bacterial promoter, allows the modification, propagation and 

expansion in bacterial cells. Separate from this compartment there is the eukaryotic expression 

cassette, that presents all the features necessary for the transcription and translation in eukaryotic 

cells previously described for an expression vector. These vectors are the basis for the generation 

of a class of plasmids extensively used for the expression of genetic material in cells from different 

species. The bacterial backbone is normally conserved, but according to the organism or species, 
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the expression cassette can be optimised for the transgene expression. Different organisms and 

species and even tissues from the same organism use different codon reading and promoters. 

Shuttle vectors have the big advantage of being flexible, they can be propagated easily in bacteria 

and then modified ad hoc for expression in eukaryotic cells. 

 

 

 

 

 

 

 

 

 

 

1.6 DNA plasmids for gene expression in mammalian cells  
 

The development of eukaryotic expression vectors has provided a direct and convenient way of 

introducing novel genetic information into mammalian cells. The over-expression of recombinant 

genes has found widespread use in the production of therapeutically important proteins. For 

example, the treatment of the genetic disease haemophilia A requires repeated infusions of the 

Figure 2. Schematic representation of a shuttle vector.  
The bacterial backbone contains the bacterial origin of replication and the 
selection marker. It allows the manipulation and amplification in bacterial cells. 
The expression cassette which comprises a promoter, a chimeric intron 
sequence, the transgene of interest and a poly-adenylation signal allows the 
expression of a gene of interest in eukaryotic cells. 



Introduction 

 31 

coagulation factor VIII (FVIII). In the 1970s and 1980s, the protein used for in the treatments was 

isolated and concentrated from the plasma of healthy donors. This method of isolation, although 

highly efficacious, carried a significant risk of the transmission of pathogens. The development of 

recombinant DNA technologies and the generation of vectors able to sustain the expression of 

transgenes in mammalian cells revolutionized the way of producing this essential coagulation factor. 

The protein is now produced and purified from mammalian cells in culture (Chen, Fang et al. 1999). 

The generated FVIII has a higher safety profile as well as a lower cost of production.  

The efficiency of gene transfers as well as the improvement in the vector expression cassette found 

applications in all fields of cellular biology and this tool became essential for studies of gene 

regulation and protein-protein interaction. When transferred into mammalian cells in culture DNA 

plasmids are typically able to sustain transgene expression for only a limited period of time, 

normally two to three days, before they are slowly diluted and lost from the cell population.  

If the aim of a study is to investigate the function of a gene over time, then stable and persistent 

expression becomes necessary. This is typically achieved only by taking advantage of one of the 

three systems previously described (Figure 1). However, long term gene expression can also be 

achieved, upon delivery of plasmid DNA utilising particular protocols. DNA plasmids cannot be 

maintained episomal in the nucleus of eukaryotic cells without the treatment of the transfected 

cells shortly after DNA delivery with high doses of antibiotics, which force the vector to be 

randomly integrated into their genome. The maintenance of selection pressure for some days helps 

also in the selection of those cells in which the integration successfully took place in a region of the 

genome that allows the expression of the integrated vector. The side effects induced by the 

integration of DNA Vectors are equivalent to those previously described for the lentiviral and the 

SB system.  
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1.6.1 Plasmid DNA (pDNA) vector mediated transgene expression  
 

Typically, pDNA transgene expression in mammalian cells is transient. It reaches its maximum 

expression 24 - 48 h after administration of the DNA into the target cells. It drops slowly and 

consistently over subsequent days and rarely persists beyond one week. Following gene delivery 

there are several reasons for the loss of expression. It may be due to a co-occurrence of epigenetic 

events and immune responses. pDNA itself can elicit immunostimulatory responses (Mansur, Smith 

et al. 2014). One of the characteristics which distinguishes bacterial from mammalian DNA is the 

methylation of the CpG motifs. Normally these DNA sequences are methylated in eukaryotic 

genomic DNA and appear unmodified in DNA which has a prokaryotic origin (Li, Hursting et al. 

2003).  

The conspicuous presence of unmethylated CpGs is detected in mammalian cells by a family of 

protein receptors known as Toll-like receptors (TLRs), in particular the TLR-9 (Hemmi, Takeuchi 

et al. 2000). This class of protein is strongly expressed in tissues involved in immune function, such 

as the spleen, peripheral blood leukocytes and tissue exposed to the external environment but they 

are expressed constitutively in almost the cell types. It was shown that in lungs TLR-9 activate 

transcription factors such as AP-1 (O'Neill, Golenbock et al. 2013), NF-KB (Kawai and Akira 2007) 

and interferons (IFN) (Uematsu, Sato et al. 2005), generating an innate immune response against 

the pDNA backbone which leads to silencing of pDNA-encoded transgene or elimination of the 

transfected cells (Liu, Liang et al. 2017). The expression of transgenic proteins as well as the 

presence of foreign DNA can trigger also an immune response resulting in suppression or 

elimination of the expressing vectors (Sarukhan, Garcia et al. 1998).   

Kay et al. (Chen, He et al. 2003) demonstrated that the bacterial backbone is mainly responsible for 

the silencing of the vector. It is suggested that inactive chromatin structures can spread from 

methylated regions or can generate small interfering RNAs (RNAi) which can lead to transcriptional 

inhibition. The gene silencing process is a fundamental mechanism that normally takes place during 
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the embryonic development. After fertilisation the blastocyst undergoes a rapid genome-wide de-

methylation followed by gradual methylation after the implant in the womb. This de novo 

methylation occurs at discrete CpG sites and can spread throughout the chromatin. An active 

promoter or genomic elements called boundaries or insulators stop this procedure of spreading 

compact chromatin preventing the silencing of endogenous genes. This phenomenon is not limited 

to the early phase of embryo development or to integrated transgene. It has been reported that 

methyl transferase also acts on episomally maintained expression vectors such as EBV-vectors 

(Hsieh, Lemas et al. 1999)) and they are mostly active in the region of the bacterial backbone. 

 

1.6.2 DNA Viruses based on episomally maintained DNA plasmids  
 

To circumvent problems inherent in genotoxicity, the genetic engineering of episomal 

(extrachromosomal) eukaryotic vectors offers an attractive alternative.  

The idea arose from the studies into episomally maintained DNA Viruses (Wade-Martins, Saeki et 

al. 2003). These viruses are able to hook their genome onto the nuclear matrix of target cells and 

they are maintained episomally. Like all the other types of viruses, they are infectious agents that 

take advantage of the host cell transcription and translation machineries for the expression of 

proteins. The cell replication machinery is recruited then for the synthesis of new viral genomes. 

Viral proteins are able to build bridges between the viral DNA sequences and the host genome 

preventing its integration. This interaction represents the basis for the mechanism of latency.  

 

1.6.2.1 Polyomavirus simian virus (SV40) based vectors  
 

The first virus-derived vector for gene therapy was based on genetic elements of the Polyomavirus 

simian virus 40 (SV 40). Vectors derived from this virus are reported to be effective in delivering 

constitutively expressed cDNA that encodes protein products as well as untranslated RNA 
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products to many different cell types (Kalos and Fournier 1995, Ohgane, Yagi et al. 2008). Despite 

the high efficiency in transgene delivery the usage of this vector system is limited to a transient set-

up. This virus can replicate several times within the cells at every cell cycle and as a consequence of 

the over expression of viral genes results in cell death. For stable expression experiments, episomal 

vectors were designed on the basis of viral elements of BK virus (BKV), bovine papilloma virus 

(BPV-1) and Epstein-Barr virus (EBV). Each of these vectors contains a viral origin of DNA 

replication and viral early genes which activates the viral origin and thus allows the episome to 

reside in the transfected host cell line as a non-integrated entity. 

 

1.6.2.2 Epstein-Barr virus based episomal vector  
 

The most progress towards the development of an efficient episomal vector have come from work 

on EBV vectors. Such vectors have been used to deliver a dystrophin expressing plasmid into mice 

resulting in a significant enhancement in number of muscle fibres expressing the recombinant 

protein for muscular dystrophy (Tsukamoto, Wells et al. 1999). Although promising, the use of this 

vector system presented several limitations. In cultured human cells and in the absence of selection 

medium, episomal EBV vectors have a prolonged but not indefinite retention. The major drawback 

of the system might be represented by the necessity of the persistent expression of a viral trans-

acting factor which on its own my lead to transformation of the cells. In order to be retained 

episomally these vectors, indeed, require the co-expression of the protein EBNA1. To consolidate 

the safely profiles of this vector system it was shown in a hepatic background that, neither high 

levels of EBNA1 nor multiple copies of the episome interfere with the expression of liver-specific 

proteins (Lutfalla, Armbruster et al. 1989). However, in vitro experiments suggested that EBNA1 

protein may not be as harmless as previously thought. It can bind, at least in vitro, to RNA and may 

therefore be capable of influencing expression at post-transcriptional level (Snudden, Hearing et al. 

1994). Sixbey and Pagano, (Sixbey and Pagano 1985) showed some functional similarities between 
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the EBV oriP and the enhancing region near the proto-oncogene c-myc. They have demonstrated 

that under certain circumstances this sequence can also interact with EBNA1 resulting in the down-

regulation of the endogenous gene. In vivo experiments also create doubts about the safety of 

EBNA1. The expression of this protein predispose B cells to lymphoma in transgenic mice. The 

tumour cells are remarkably similar to those induced by transgenic c-myc over-expression (Wilson, 

Bell et al. 1996).  

 

1.6.3 Non viral episomal vectors 
 

The first attempt to generate non-viral episomal vectors date back to the early 80s, when 

autonomous replicating sequences (ARS) were described in yeast (Stinchcomb, Thomas et al. 1980). 

They were generated to study and better understand the replication control in higher eukaryotes 

but they also became immediately popular as a vector platform to genetically modify cells and 

organisms. This new class of vector reduced the safely problems of viral integrative vectors since 

they could replicate as an autonomous units and not require any exogenous trans-acting protein. 

They also avoid problems linked to insertional mutagenesis and do not lead to transformation of 

the cells caused by virally encoded proteins. 

ARS are short (ca 125bp) AT-rich DNA sequences with a highly conserved 11 bp core sequence 

that were isolated from the yeast genome. 

However, transfection of such vectors into mammalian cells never resulted in episomally 

maintained plasmids and in most cases this constructs were either lost from the cells or integrated 

into the host genome under selective conditions (Mesner, Hamlin et al. 2003).  

Subsequent sequence analyses of various mapped mammalian origins of replication revealed no 

sequence homologies but rather a number of structural characteristics, such as AT-rich regions, 

bend DNA and the presence of what is called S/MAR (scaffold matrix attaching region) sequences.  
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1.7 Scaffold Matrix Attachment Region 
 

Scaffold/matrix attaching regions (S/MAR) are defined as genomic DNA sequences that anchor 

chromatin to the nuclear matrix during interphase (Mirkovitch, Mirault et al. 1984, Cockerill and 

Garrard 1986). These sequences size range from 0.3 to 5 kb and possess a high AT content. The 

binding of the S/MARs to the nuclear matrix form looped domains that contribute structurally to 

the packaging of chromatin and functionally to the regulation of gene expression. Is still unclear 

what the real influence of the S/MARs to gene expression is. Their capability to generate curved 

DNA structures and their nucleotide composition which may destabilise or aid in the unwinding of 

the DNA duplex differentiate these sequences from standard promoters, enhancers and coding 

sequences. S/MARs are evolutionarily conserved and they have been identified in the introns (Kalos 

and Fournier 1995, Ohgane, Yagi et al. 2008) of several large genes, at the borders between two 

transcriptional units and in close proximity to enhancers. S/MARs are believed to increase 

transgene expression by facilitating the access of enhancers and transcription factors to gene 

regulatory regions to drive transcription, as well as providing mitotic stability by attaching the DNA 

to the nuclear matrix of the segregation of DNA into progeny cells (Jenke, Stehle et al. 2004). The 

formation of loops induced by the presence of these sequences may insulate genes from inactive 

chromatin positional effects through the recruitment of chromatin remodelling proteins which 

maintain the chromatin of the gene of interest in a transcriptionally active state, preventing it from 

silencing (Jenke, Fetzer et al. 2002) (Bode, Schlake et al. 1995). 

 

1.8 Plasmid Episomal (pEPI): the first non viral  

autonomous replicon  
 

The huIFNb-S/MAR based vector pEPI, developed in 1999, was the first non-viral plasmid vector to 

exploit only mammalian sequences for its replication, maintenance and transgene expression in 
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mammalian cells (Piechaczek, Fetzer et al. 1999). An S/MAR sequence derived from the human 

interferon b gene cluster was inserted in the plasmid right after the transgene. This system is 

dependent on the presence of an active gene upstream of the S/MAR element. The pEPI vector is 

retained at a low copy number, around five to ten copies per cell when transfected into Chinese 

Hamster Ovarian (CHO) cells and it is able to provide long term gene expression for at least 4 

weeks. Episomal replication of this vector was not restricted to CHO cells but was also observed 

in several tested cell lines. The efficiency of its replication, its mitotical stability and its segregation 

into daughter cells was also demonstrated. The vector was shown to be present in all the cell lines 

at an average copy number of fewer then 10 per cell.  

However, despite the success of the pEPI vector in vitro, long-term gene expression in mice was not 

sustained following delivery of the vector to the liver or the lungs and has never been shown. 

 

1.9 The maintenance and replication of pEPI in vitro  
 

Although the vector pEPI carries all cis-acting sequences required to support episomal replication 

and maintenance, only a small percentage (less than 5%) of transfected cells are stably established 

by the episome. This implies that in addition to the DNA sequence, epigenetic factors probably play 

a crucial role in the establishment of an autonomous replicon, a phenomenon not restricted to 

non-viral replicons but has also reported for several viruses (Haan, Aiyar et al. 2001). Although 

many of the DNA vectors reach the nucleus of target cells the establishment of the replicon is due 

to a stochastic procedure in which the majority of the DNA molecules are subsequently lost within 

a few days. In stably established cells, the replicon was found only in less condensed chromatin 

regions and frequently associated with nuclear region involved in RNA processing. (Hagedorn, 

Gogol-Doring et al. 2017) 

Jenke et al. (Jenke, Stehle et al. 2004) demonstrated that the pEPI vector binds to the nuclear matrix 
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and specifically to the prominent matrix protein SAF-A (scaffold attachment factor A).  

SAF-A/hnRNP-U is a prominent protein of the nuclear matrix that binds specifically to S/MARs 

from yeast to human through the highly conserved ‘SAF-box’ (Kipp, Gohring et al. 2000). The 

presence of the S/MAR sequence mediates the association of the vector with the nuclear matrix 

and the chromosomes scaffold and this interaction correlates with the replication of the vector as 

an episome. A truncated version of the plasmid, lacking the S/MAR, is prone to integrate into the 

host-cell DNA (Baiker, Maercker et al. 2000). 

S/MARs are involved in cohesion and separation of the chromatids (Mesner, Hamlin et al. 2003) and 

a vector carrying such sequences can therefore take advantage of the cellular replication machinery 

and undergo replication and segregation only during the S phase of the cell cycle. Once established 

the vector seems to be non-dynamic throughout the cell and is associated with histone modification 

typical of active chromatin, such as histone 3 methylation at Lys-4 (H3K4me1me3). This 

modification is typical of active chromatin enriched on genes replicating during the S phase. The 

accumulation of this modification on the S/MAR sequence highlights the relevance of this module 

for vector function.  Only those vector molecules that reach a nuclear compartment favourable for 

transcription and replication are able to be retained as episomes. The heterogeneity in transgene 

expression within an established population demonstrates that transgene expression is dependent 

upon the nuclear localisation of the vector and consequently the chromatin structure that it adopts.  

Transcription running into or through the S/MAR appears to be necessary for the maintenance of 

the plasmid creating a chromatin structure that is accessible for replication enzymes. Indeed, 

silencing of the expression cassette linked to the S/MAR was shown to result in the loss of the 

episome from the cells (Hagedorn, Lipps et al. 2010). 
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1.9.1 A tissue specific non viral vector provides persistent transgene 

expression in vivo 
 

The replacement of the original CMV promoter with tissue-specific ones leads to persistent 

transgene expression for at least 6 moths from a single administration (Argyros, Wong et al. 2008) 

in the liver of the treated mice. Argyros et al. demonstrated that swapping the original CMV 

promoter from the pEPI vector for a human liver specific one (a1-antytrypsin (AAT)) was sufficient 

to drive long-term episomal DNA expression in vivo. The removal of the S/MAR element resulted in 

the silencing of the vector within 1 week. The extensive methylation of CpG islands of a CMV 

promoter was reported to be responsible for the silencing of adenoviral vectors (Brooks, Harkins 

et al. 2004). In the presence of a S/MAR the CpG islands of the AAT promoter remains 

unmethylated, whereas the presence of the same sequence was unable to protect a corresponding 

CMV promoter from such transcriptional silencing. The decline in the transgene expression in the 

first few days upon DNA delivery may be due to a combination of events. The elimination of the 

transfected cells damaged during the procedure of infusion process, degradation of unstable DNA, 

as well as immune responses against the foreign DNA. Although the vector shows a high efficiency 

in terms of transgene expression after delivery, neither the CMV promoter nor the liver specific 

vector replicated following liver regeneration after a 70% partial hepatectomy.  

 

1.10  Limitations and drawbacks of the pEPI system  
 

The episomal S/MAR vector (pEPI) first described by Lipps at al. has been extensively studied and 

developed over time. Over the years the efficiency of the pEPI S/MAR vector for the genetic 

modification of cells has been described (Piechaczek, Fetzer et al. 1999, Argyros, Wong et al. 2008, 

Wong, Argyros et al. 2011, Hagedorn, Antoniou et al. 2013). The vector was shown to be efficient 

when used to deliver transgenes in cells in culture as well as in the liver of mice, sustaining the 
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expression of genes of interest for several months. The prototype vector pEPI depends on a 

transcription unit starting from constitutively expressed Cytomegalovirus immediate early promoter 

and directed into a 2000 bp long MAR derived from the human b-interferon gene. It contains two 

mammalian transcription units, one necessary for the vector propagation in bacteria which was also 

optimised for conferring the antibiotic resistance in cells and the other carrying the elements for 

the expression of the GOI. The S/MAR sequence is placed between the two transcript units  

(Figure 3). 

 

 

pEPI replicates episomally at a copy number of approximately 5-10 molecule per cell in all 

mammalian cell tested, it is mitotically stable and provides long-term expression of transgenes and 

shRNAs. The vector has been demonstrated to be replicated once per cell cycle due to its 

association with early replication loci. The establishment of stable pEPI episomes in transfected cells 

is very inefficient; only 0.5 - 5 % of transiently transfected cells develop into stable clones. It is 

assumed that the vector establishment in the nucleus of the target cells is a stochastic event and 

strongly depends on the nuclear compartment that it reaches after transfection. In 2013 Hagendorn 

Figure 3. Schematic representation of the pEPI DNA vector system.  
pEPI consists of two mammalian transcription units oriented in a clockwise direction. 
The first, a CMV promoter drives the transgene transcription unit and it is oriented into 
the S/MAR. The second, the Simian Virus 40 Ori/Promoter (SV40-P) drives the 
neomycin transcription unit and it has been used for bacterial and mammalian 
selection. Figure from Piechaczek et al. (6) 
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et al. showed that the introduction of genomic cis-acting sequences into pEPI improved the 

establishment efficiency. They demonstrated that the ubiquitous chromatin opening element 

(UCOE) enhanced the transgene expression and the establishment efficiency presumably via 

additional interactions with the nuclear matrix. It was also reported that another genomic 

sequence, called cHS4 is able to enhance the number of established clones but not the expression 

of the transgene (Figure 4). 

 

 

 
Figure 4. CHO cell line establishment with different versions of pEPI. 
(a) In the basic pEPI vector, the CMV promoter drives the expression of the reporter gene GFP. 
This expression cassette sustains the expression of the transgene in the target cells and it also 
responsible for the functionality of the S/MAR which is placed right after the GFP coding sequence. 
The bacterial backbone containing the Kanamycin/Neomycin resistance and the pUC origin of 
replication complete the vector. (b) The introduction in the basic pEPI system of the cis-activating 
genomic sequence UCOE before the expression cassette and (c) the chicken insulator (HS4) after 
the expression cassette prevent the vector from chromatin induced silencing. (d) Colony forming 
assays show that the pEPI-HS4 vector generates a significant higher number of resistant cells when 
compared to the other two variants. However, the number of GFP expressing (e) cells and the 
intensity of the transgene expression (f) improve only in the pEPI-UCOE version of the plasmid.  
enhances the number of established cells (a) and the transgene expression (b-c). Figure adapted 
from Hagendorn et al. (35) 
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Although the introduction of the cHS4 insulator results in the generation of more resistant cells 

(Figure 5, d) only ~ 20% of those test positive for transgene expression (Figure 5, e). The cHS4 

sequence is therefore improving the expression of the cassette that provides the resistance to the 

antibiotic but it has no effect on the transgene. The presence of the vector in the cells is confirmed 

by their acquired resistance to the selection but the mammalian expression cassette most likely still 

undergoes a process of chromatin induced silencing since the number of positive cells range 

between 5% and 20%. The UCOE sequence, instead, doesn’t affect the total number of established 

cells and for those which became established the number of GFP expressing cells ranges from 40% 

to 80%. Although this vector improved significantly the number of transgene expressing cells, the 

big variation within replicates and the proportion of negative cells in the populations underlines the 

major problem related to this vector system. Independently from the plasmid, the obtained 

populations present a large proportion of non-expressing cells even with selection with antibiotics. 

In these populations the vector could be lost over time or it might undergo a process of epigenetic 

induced silencing. The copy number assay revealed that 5 to 10 copy of the plasmid per cell were 

present in the populations. Since only a proportion of the cells retained the transgene expression it 

seems that the vectors are retained and replicated in the cells but in a large proportion they 

became inactive. This process can be the result of epigenetic silencing. The vectors are present and 

can be detected with the copy number assay but they don’t contribute in the overall GOI 

expression. Though these prototype vectors represent a suitable tool for simple studies as cells 

labelling with reporter gene (e.g. Luciferase or GFP) for more sophisticated work such as gene-

rescue it presents several limitations. 

 

1.11   The Next generation DNA Vector   
 

Variable expression in different cell lines, gene silencing in vivo and its low establishment rate 

represent the major limitations of the prototype pEPI vector. Modifications have been made with 
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the aim of increasing the transgene expression as well as the establishment rate. Some of the 

features of the vector are crucial for its episomal maintenance. The deletion of the S/MAR 

sequence results in its random integration under mammalian selection and deletion of the 

promoter or the insertion of a termination signal between transgene and S/MAR also result in the 

loss of the episome (Rupprecht, Hagedorn et al. 2010). Argyros et al. developed the vector pLuca 

swapping the original CMV promoter for a range of mammalian derived ones with the aim of 

generating a platform suitable for gene therapy. Moreover, to avoid innate immune reactions a 

reduction of the CpG motifs has proven to improve the vector establishment in vitro as well as the 

transgene expression in vivo (Haase, Magnusson et al. 2013). As previously mentioned Key et al. 

demonstrated that the bacterial backbone and more specifically, the gene that provides the 

resistance to the antibiotic can generate small interfering RNAs which can lead to transcriptional 

inhibition (Chen, He et al. 2003).  

To overcome the problems induced by the presence of the bacterial backbone, Bigger et al. (Bigger, 

Tolmachov et al. 2001) developed a bacterial strain which exploits the properties of the cre 

recombinase enzyme to generate what they called DNA mini-circles a class of vector that lacks 

bacterial elements.   

 

1.11.1 The S/MAR minicircle technology  
 

Minicircles are DNA plasmids in which the bacterial backbone is removed and they are constructed 

in bacteria with the use of recombinases (Bigger, Tolmachov et al. 2001, Vaysse, Gregory et al. 

2006). The introduction of two Flp sites, one before the promoter and one after the mammalian 

expression cassette allow, upon Cre recombinase induction, an intramolecular recombination that 

generates two circles: one containing the minicircle vector comprising exclusively the promoter-

transgene cassette and one containing the bacterial backbone called miniplasmid.  

This technology was used also the generate S/MAR-minicircles (Broll, Oumard et al. 2010) 
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(Argyros, Wong et al. 2011). Interestingly the prototype pEPI as well as the minicircles establish 

within a certain number of plasmid copies per cell, which suggest a stringent copy number control 

in the recipient cells. Although the number of vector molecules per cell ranges between 5 and 10, 

the expression levels of the minicircle vectors are higher when compared to normal plasmids. 

S/MAR minicircles establish in vitro in the absence of selection pressure and are maintained as 

episomes in vivo when delivered to the liver of mice. (Argyros, Wong et al. 2011) providing a longer 

and higher expression of the transgene.  

This once again leads to the suggestion that epigenetic features, chromatin structure, nuclear 

localisation and last but not least DNA composition strongly influence the regulation of 

transcription from a non-viral episome.    

 

1.12   Application of non viral, non integrative DNA vectors 
 

Gene Therapy represents an obvious field of application for non-integrative DNA Vectors. 

The delivery of corrective genetic material into cells is meant to cure or at least alleviate the 

symptoms of the disease. Although gene therapy seems an easy approach, in practise, considerable 

problems have emerged. In principle it consists in the identification of an appropriate DNA 

sequence and cell types an in the development of suitable tools for getting enough of the DNA into 

the target cells. The lack of efficient delivery systems, the lack of sustained expression and the host 

immune reactions remain still a big challenge to overcome for gene therapy to become a routine 

practise. (Verma and Somia 1997). Optimal vectors for gene therapy require (a) high and stable 

level of expression of the gene of interest, (b) high transfection efficiency, (c) no integration into 

the cell genome, (d) no transformation features that may induce secondary diseases. Many of the 

systems currently available utilise viral vectors derived from retrovirus, lentivirus or adenovirus. 

A less immunogenic, episomally maintained DNA vector should represent a valuable alternative 

particularly where the current necessity of personalised approaches (e.g. autologous therapy) are 
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becoming more important. The treatment of severe diseases by the ex-vivo modification of your 

own cells is opening an astounding field of therapy as well as immunotherapy is becoming a 

standard front line approach. Autologous cell therapy (ACT) is a novel therapeutic intervention 

that uses an individual’s cells, which are cultured and expanded outside the body and reintroduced 

into the donor. The advantages of such practise include the minimisation of risks from 

immunological reaction and disease transmission. Adoptive immunotherapy of malignancies involves 

the passive transfer of anti-tumour reactive cells into a host in order to mediate tumour regression. 

These cells are engineered in vitro by adding T Cell Receptors (TCR) or Chimeric Antigen 

Receptors (CAR). Currently, like in most of the gene therapy approaches, integrative system like 

viruses (Kershaw, Teng et al. 2005) or SBs (Deniger, Yu et al. 2015) are used for the genetic 

modification of these cells. Despite the efficiency the so modified cells present may present the side 

effects previously described. In was reported (Hacein-Bey-Abina, Von Kalle et al. 2003) that a 

promising clinical with T cells modified with a lentivirus may leads to complicate side effects due to 

the unexpected premalignant cells proliferation induced by the random integration of the  

viral genome.  

Argyros, Wong et al. (Argyros, Wong et al. 2008) demonstrated that an episomally maintained 

plasmid (pDNA) expression system harbouring a Scaffold/Matrix Attachment Region (S/MAR) can 

provide persistent and robust transgene expression in human cancer cells ex vivo, in vitro and in vivo 

and it can be further improved when the bacterial backbone is removed  (Argyros, Wong et al. 

2011). Thus this class of DNA vector can be further exploit for gene therapy approaches as well as 

for their capability of genetically engineer human primary cells such as lymphocytes.  
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1.13   Aim of the project  
 

The principal aim of this project is to refine and enhance the DNA vector system described earlier 

from Piechaczek et al. (Piechaczek, Fetzer et al. 1999) and Hagedorn et al. (Hagedorn, Antoniou et al. 

2013) to develop a range of next generation DNA vectors which provide several advances over the 

prototype vectors. The low efficacy of pEPI in establishing dividing cells as well as the current 

proprietary restriction for the use of minicircles for research inspired this work.  

The use of minicircle was not only limited form commercial licenses but also the modification and 

the preparation of the vectors is particularly long, tedious and expensive. The intracellular and 

intramolecular recombination generates not only a supercoiled form of the plasmid but also several 

concatemers which can be excluded from the DNA preparation only with a preparative High 

Performance Liquid Preparation (HPLC).  

Thus, the idea in this PhD project is to generate a cheap, ubiquitous and efficient non integrative 

DNA vector platform that can be used for the persistent, stable and safe genetic modification of 

mammalian cells.
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2 MATERIAL AND METHODS  
2.1 Materials 
 

The materials used in these experiments are listed below, along with the details of the 

suppliers from which they were purchased. 

2.1.1 General Chemicals and Reagents   
 

Table 2. General chemicals and reagents  

Agarose  Sigma Life Science  
Sodium dodecyl 

sulfate (SDS) 
Serva 

LB-Broth Invitrogen 
Protease inhibitor 

cocktail tablets 
Roche  

Ethanol Sigma-Aldrich Tris Sigma-Aldrich 

Isopropanol Sigma-Aldrich EDTA Acros 

Formaldehyde Sigma-Aldrich Sodium Chloride  Sigma-Aldrich 

Kanamycin Roche Hydrochloric Acid Sigma-Aldrich 

Luciferin  BIOMOL Hydroxyl Acid  Sigma-Aldrich 

Molecular DNA 

Marker 
Thermo Fisher  Polysorbate 20 AppliChem 

Paraformaldehyde Sigma-Aldrich Boric Acid  Merck 

SOC Medium  Invitrogen  Potassium Chloride  AppliChem 

Magnesium 

Chloride  
Merck Calcium Chloride  Merck 

Methanol Sigma-Aldrich Crystal Violet  AlfaAesar 

Phenol:Choloform Sigma-Aldrich Agar  Roth 

SOC Medium  Clonetech  Milk powder Roth 

PeqGree DNA/RNA 

Dye 
PeqLab   
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2.1.2 Enzymes and molecular biology reagents  
 

2.1.2.1 Restriction Enzymes  
 

Table 3. Restriction enzymes  

HindIII  Thermo Fischer  HindIII Thermo Fischer  

EcoRI Thermo Fischer  PstI Thermo Fischer  

XhoI Thermo Fischer  BamHI Thermo Fischer  

MluI Thermo Fischer  EcoRV Thermo Fischer  

BsrGI Thermo Fischer  NdeI Thermo Fischer  

NheI Thermo Fischer  AgeI Thermo Fischer  

EcoRV New England Biolab HindIII 
New England 

Biolab 

BamHI New England Biolab BstZ17I 
New England 

Biolab 

SpeI Thermo Fischer  SmaI 
New England 

Biolab 

 

 

2.1.2.2 Other enzymes for DNA manipulation 

 
Table 4. Other enzymes for DNA manipulation 

Klenow large fragment DNA Polymerase I Invitrogen 

T4 DNA ligase  Invitrogen  
In Fusion HD Cloning  Clonetech  
Plasmid-Safe-ATP-Dependent DNase  Epicentre  
 
 
2.1.2.3 PCR reagents  

 
Table 5. PCR reagents  

2’desoxynucleotide 5’triphosphate mix 
(dNTPs) 

Invitrogen 

Taq DNA Polymerase Hot Start Qiagen  
10X Loading buffer  Thermo Fisher  
CloneAmp HiFi PCR Premix  Clonetech 
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2.1.3 Tissue culture reagents  
 

Table 6. Tissue culture reagents  

DMEM Sigma 

RPMI Sigma 

IMDM Sigma 

Genetical (G418) sulphate  Roth 

Puromycin Panreac AppliChem 

Fetal Calf Serum  Gibco 

OptiMEM serum-free medium  Life-Technology 

Penicillin/Streptomycin (x100) Sigma-Aldricht 

L-Glutammate  Gibco 

Trypsin EDTA (x1) Sigma-Aldricht 

 

 

2.1.4 Transfection reagents  
 

Table 7. Transfection reagents  

jetPEI DNA Transfection Reagent Polyplus 

jetPrime DNA Transfection Reagent Polyplus 

Capan-1 Transfection Reagent  Altogen  

Amaxa Human T Cell Nucleofection Kit Lonza 

Amaxa P3 Primary Cell Nucleofection Kit  Lonza 

Amaxa SE Nucleofection Kit  Lonza  

Amaxa AD1/AD2 Nucleofection Kit  Lonza  

Amaxa 4D Nucleofector Optimisation Kit  Lonza  
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2.1.5 Bacterial Media  
 

Table 8. Bacterial Media 

LB Broth   1% Sodium Chloride 

  1% Tryptone 

  0.5% Yeast Extract  

  ph adjusted to 7.5 with 

NaCl 

LB Agar  LB Medium supplemented 

with  

1.5% agar  

SOC Medium   2% (v/v) Tryptone  

  0.5% (v/v) Yeast Extract  

  10 mM Glucose 

  10 mM NaCl 

  2.5 Potassium Chloride  

 

2.1.6 Antibiotics 
 

Stock solutions of antibiotics were prepared at the working concentrations below and stored  

at -20° C 

Table 9. Antibiotics stocks concentration 

Kanamycin  50 mg/ml Sigma-Aldrich  

Puromycin  1 mg/ml Panreac AppliChem  

Ampicillin  50 mg/ml Panreac AppliChem 

2.1.7 Southern blot analysis reagents  
 

Table 10. Southern blot analysis reagents  

Depurination Solution 250 mM HCl 

Denaturation Buffer 500 mM NaOH 

Neutralisation Buffer  1.5 M NaCl 
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 0.5 M Tris 

 adjust to pH 7 

20X SSC 3M NaCl 

 300 mM Sodium Tricitrate 

 adjust to pH 7 

1x Church Buffer  250 mM Sodium Phosphate  

 1 mM EDTA 

 1% BSA 

 7% SDS  

 adjust to pH 7 

 

2.1.8 Bacterial strain 
 

Table 11. Bacterial strain 

E.Coli DH10B  Invitrogen Stbl3  Invitrogen  

E.Coli DH5a Invitrogen  
Stellar Super 

competent Cells  
Clonetech  

 

2.1.8.1 Commercial kits  
 

Table 12. Commercial kits  

QIAprep Spin Miniprep Kit Qiagen  

QIAquick Gel Extraction Kit Qiagen  

Endofree Plasmid Maxi  Qiagen  

Quiquick Spin PCR Purification Kit Qiagen 

RNeasy Mini Kit Qiagen 

DNeasy Blood and Tissue Kit Qiagen  
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BCA protein assay  Piercenet  

2.1.9  Histology and Immunohistochemistry reagents  
 

 Table 13. Histology and Immunohistochemistry reagents  

ABC Complex/HRP DakoCytomation 

Avidin/Biotin Blocking Kit  Vector Laboratories Inc 

Biotinylated goat anti-rabbit 

immunoglobulins 
Dako 

DAB (3,3’-dianminobenzidine) Vector Laboratories Inc 

Horse Serum  Dako 

Biotinylated horse anti mouse anti-rabbit 

immunoglobulins 
Vector Laboratories Inc 

Biotinylated horse anti mouse Vector Laboratories Inc 

Hydrogen peroxide  Sigma-Aldrich 

PBS (non tissue culture) Sigma-Aldrich 

PAP (hydrophobic barrier pen)  Vector Laboratories Inc 

Rabbit polyclonal Luciferase antibody  Santa Cruz Biotechnology  

Haematoxylin stain BDH 

Histo-clear National Diagnostics (USA) 

2.1.10 Cell lines and primary cells 
 

 Table 14. Cell lines and primary cells  

Hek293T ATCC 

Capan-1 ATCC 

BxPC-3  ATCC 

Mouse Lungs Fibroblast  Isolated from BALB mice 
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Panc-1  ATCC 

MiaPaCa-2  ATCC 

PC-3  ATCC 

Paco-2  Patient Derived Pancreatic Cancer Cells  

PBMC  Isolated from healthy donors  

CD8+  Isolated from healthy donors  

2.1.11 Equipment  
 

 Table 15. Equipment  

FusionSL Vilber 

Lourmat  
PeqLab  Duomax 1030 Heidolph 

Centrifuge 5424R  Eppendorf MiniVac Power  PeqLab 

Centrifuge 5430R Eppendorf  Cell Sure Lock Invitrogene 

PersonalHyb Stratagene 
Thermomixer 

Compact  
Eppendorf 

Thermomixer 

comfort  
Effendorf  MicroPulser  BioRad 

RM5 (Roller) CAT MR Hei-Tec Heidolph 

KB 2400-2N  Kern 
PeqStar PCR 

machine  
PeqLab 

Mini PROTEAN 

Tetra Cell 
BioRad Light Cycler 96 Roche  

PCR Workstation Labcaire QIAcube Qiagen  

PowerPac Basic  BioRad PowerEase Invitrogene 
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40-0708 DNA 

Electrophoresis  
PeqLab 

Horizontal Gel 

Electrophoresis 

system  

Horizon 

NUARE incubator Tecnomara Safe 2020 Thermo Fisher 

CK40 Microscope  Olympus  
Amaxa Nucleofector 

II 
Lonza  

Amaxa 4D-

Nucleofector  
Lonza Centrifuge 5810 Eppendorf 

N90 UV-

Transilluminator 
Konrad Benda  Sorvall RC6+  Thermo Fisher 

Keyence BZ-9000 Keyence  Sorvall RC5+ Thermo Fisher 

Certomat SII Brown Biotech GenPure Pro Thermo Fisher 

pH Meter 538 WTW 
Precellys Control 

Device 
PeqLab 

MS2 Minishaker IKA NanoDrop 2000c  Thermo Fisher 

MultiskanEx  Thermo Fisher   
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2.2 Methods 
 

2.2.1 Molecular biology techniques  
 

2.2.1.1 Agarose gel electrophoresis 
 

Electrophoresis was performed on 1% agarose gels with 3 µl PeqGreen DNA/RNA Dye pro 50 ml 

of agarose solution. Before loading, the DNA samples were mixed with the 10X Loading Buffer and 

loaded into wells with an appropriate molecular weight marker. Electrophoresis was usually carried 

out at 75-100 V in a 40-0708 DNA Electrophoresis chamber PeqLab with a PowerPac Basic BioRad 

power supply. Visualisation of DNA fragments was achieved by viewing on the UV-Transillumiator. 

Images were capture using the FusionSL Vilber Lourmat gel documentation software package 

(PeqLab). 

 

2.2.1.2 Purification of DNA using Qiagen column 
 

Up to 10  µg DNA can be purified with the PCR purification kit from Qiagen. This method uses a 

column with a silica matrix membrane that absorbs DNA at high salt conditions while unwanted 

contaminants pass thorough. This was used to purify double stranded DNA fragments from PCR, 

other enzymatic reactions and when was necessary to purify linearised plasmids. 5 volumes of 

binding buffer were added to 1 volume of DNA sample and mixed. The sample was then applied to 

a spin column and centrifuged at high speed for 1 min. The columns were washed with a ethanol 

based solution and the DNA equated in 30-50 µl TE Buffer. 

 

2.2.1.3 Purification of DNA from agarose gel 
 

DNA fragments of interest were excised from the gel under UV illumination using a scalpel blade 
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and purified using a QIAquick Gel Extraction Kit from Qiagen. The column membrane can be 

washed under high salt conditions to remove agarose and the ethanol to remove salt and other 

contaminants. Briefly, gel slices were incubated at 50˚ C in 3 gel volumes of the solubilisation buffer 

for 10 min until the agarose had dissolved. One gel volume of isopropanol was added and the 

mixture applied to the spin column and allowed to bind to the matrix. The columns were washed 

with wash buffer then the DNA eluted in 30-50 µl TE buffer. 

 

2.2.1.4 Digestion with restriction enzymes 
 

Restriction digests were carried out according to the supplier’s instructions. DNA samples were 

digested with the appropriate enzyme in a compatible buffer and distilled water. Usually up to 1 µg 

of DNA were digested with 1-5 µl of restriction enzymes (10 U/µg) with appropriate 10x enzyme 

reaction buffer in a 20 µl (for the Thermo Fisher enzymes) or 50 µl (for the New England Biolab's) 

reaction volume, made up with distilled water. The incubation period and the temperature was 

usually performed at 37˚ C for 10 min (Thermo Fisher) or 1-2 h (New England Biolab). Double 

digests were either performed in one step in the enzyme performed optimally in a similar buffer or 

in two sequential steps with an intervening buffer exchange step between the digests. The desire 

DNA fragments were purified either with through PCR Purification Kit from Qiagen or thorough 

the gel extraction protocol previously described and elute in 30-50 µl of TE buffer. 

 

2.2.1.5 DNA modifying enzymes  
 

Fill-in overhanging restriction endonuclease termini using Klenow  

When it was not possible to generate compatible sticky ends in both vectors and insert fragments, 

terminal overhangs were blunted by treatment with the Klenow fragment of DNA Polymerase I 

from E.Coli. The Klenow fragment exhibits 3’ to 5’ exonuclease activity and 5’ to 3’ polymerase 
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activity, but lacks the 5’ to 3’ exonuclease activity. During restriction digestion, 0.5U Klenow/µg 

DNA was added to the reaction mix along with a small quantity (<0.5 mM) of dNTPs and incubate 

at 37˚ C for at least 1h. 

 

2.2.1.6 Ligation of digested fragments  
 

T4 DNA Ligase was used for the blunt end ligations. The relative amounts of digested vector to 

insert were adjusted so that the molar ratio of insert vector varied between 3:1 and 20:1 The 

fragments were usually incubated with 2 µl T4 DNA Ligase (1U/µl) in the provided 5x T4 DNA 

ligase buffer at 14˚ C overnight. After which, usually 1-2 µl of the ligation mixture was transformed 

by heat shock into Stellar Supercompetent cells (Clonetech) 

 

2.2.1.7 In-Fusion Cloning  
 

When possible the insertion of one or more DNA fragments into an acceptor vector was made 

through the In-Fusion cloning system provided by Clonetech. Briefly, the insert was cloned into the 

plasmid via homologous recombination instead of ligation of two compatible ends. The acceptor 

vector was prepared for the cloning by restriction digestion and the it was purified either with the 

PCR Purification kit from Qiagen when linearized or with the QIAquick Gel extraction kit when a 

double digests was required. The insert was prepared through PCR and the primers were designed 

in order to present 15 bp homologous to the target sequence. The insert was also purified with the 

PCR Purifiation kit from Qiagen. Normally, 100 ng of the linearised vector and 50 ng of the 

amplicon were mixed together with the In-Fusion Cloning mix from Clonetech following the 

manufacture protocol in a total volume of 10 µl. The reaction was incubated for 15 min at 50˚ C, 

chilled into ice and 2.5 µl were then transferred into 50 µl of Stellar Supercompetent Cells. After 

30 min incubation in ice, the cells were transformed through heat shock. 
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2.2.2 Bacterial cell methods  
 

2.2.2.1 Growth and storage of Escherichia Coli 

 

Liquid culture of E.Coli DH10B, Stbl3, Stellar Supercompetent, and E.Coli DH5a were grown into 

sterile Luria-Bertani (LB) broth with the appropriate antibiotic at 37˚ C in a shaking incubator at 

200 rpm. Culture volumes were dependent on the nature of the experiment and varied between 5 

ml for a plasmid extraction by Miniprep kit to 250 ml for production of larger amount of pDNA by 

Maxiprep. To obtain separate bacteria colonies derived from a single cell, cultures were spread 

onto solid agar plates and incubated at 37˚ C overnight. For short term storage bacterial cultures 

were stored at 4° C. Long term storage of bacteria were stored at -80˚ C following addition of 

glycerol to the final concentration of 20% (v/v) glycerol. 

 

2.2.2.2 Transformation of bacterial cells  
 

2.2.2.2.1 Transformation by heat shock 

 

Commercially available chemically competent E.Coli DH5a and Stellar Supercompetent Cells were 

aliquoted into 50 µl volumes in chilled 1.5 ml tubes containing the desire amount of pDNA to 

transform, 1-100 ng or 2.5 µl of the In-Fusion reaction. The cells were incubated on ice for 30 min, 

subjected to a 45 second heat shock at 42˚ C, then allowed to recover on ice for 2 min. 450-950 µl 

of SOC medium was added and the cultures shaken at 200 rpm for 60 min. After this time 10 µl 

and 100 µl undiluted cells were spread onto LB agar plates containing the appropriate antibiotic for 

selection of transformants. 
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2.2.2.2.2 Transformation of DH10B E.Coli with electroporation  

 

In preparation for transformation, BIORAD Gene Pulser (1mm) cuvettes were chilled on ice and 

DH10B bacteria cell aliquots thawed on ice. For the plasmid rescue up to 2 µg of DNA was added 

to bacteria aliquots and the pipetted into chilled cuvettes. The cuvettes were electroporated in a 

BIORAD Gene Pulser using the standard protocol for bacteria. Immediately afterwards the cells 

were incubated at 37˚ C for 60 min in a shaking incubator set at 200 rpm. The cells were plated as 

described before. 

 

2.2.3 Isolation of pDNA 
 

2.2.3.1 Small scale isolation of pDNA by Miniprep 
 

For small scale plasmid isolation, 5 ml cultures of E.Coli containing the plasmid of interest were 

grown in LB with the appropriate antibiotic selection and plasmid DNA was isolated using the 

Miniprep spin column kit from Qiagen. Bacterial were pelleted by centrifugation at 15000 rpm for 1 

min in a Eppendorf 54324 R Centrifuge, re-suspended in a RNase A-containing resuspension buffer 

then lysate in the provided lysis buffer. The solution was neutralised and protein precipitated by 

adding neutralisation buffer, debris was spun out by centrifugation ad 15000 rpm fro 10 min and 

resulting supernatant was transferred to a spin columns and allowed to bind the column matrix. 

Following two wash steps, the pDNA was eluted in 50 µl elution buffer. The protocol results in 

isolation of approximately 10 µg DNA.  

 

2.2.3.2 Large scale isolation of pDNA by Maxiprep  
 

For production of larger quantities of DNA, the EndoFree Plasmid Maxiprep kit from Qiagen was 

used according to the manufacture’s instructors. The principle is the same as the Miniprep kit, but 

the volumes are scaled up. Briefly, 5 ml started cultures were used to inoculate 250 ml fresh LB 



Methods 

 60 

medium in 1 l flask containing the appropriate antibiotic. The cells were pelleted for 15 min at 6000 

rpm in a Sorvall RC6+ centrifuge and resuspended by vortexing in resuspension buffer containing 

RNase A. The cells were then lysed with the addition of lysis buffer at room temperature for 5 min. 

The lysed cells were neutralised with neutralisation buffer and the lysate was incubated in 

endotoxin-removal buffer prior to binding to the column. The lysate was passed over a column 

with an ion-exchange resin, which binds DNA at a pH of 7 and ionic strength of 750 mM NaCl. 

Following elution, DNA was precipitated with 0.7 volumes isopropanol, pelleted by centrifugation 

at 15000 g for 30 min in a Sorvall RC6+ centrifuge, then washed with 70% ethanol before 

resuspended in an endotoxin-free elution buffer. The theoretical yield is approximately 1-1.5 mg of 

endotoxin free plasmid DNA. 

 

2.2.4 Determination of DNA purity and concentration  
 

To measure the concentration and purity of recovered pDNA, a NanoDrop 2000c spectrometer 

was used (Thermo Fisher). This spectrophotometer requires only 1µl on undiluted samples for 

assessment of concentration of double stranded DNA. To measure DNA, the instrument 

automatically detects the high concentration and uses 0.2 mm pathlength to calculate the 

absorbance at OD 260. An OD260 of 1 corresponds to 50 µg/ml for double stranded DNA. The 

absorbance ration of A260/A280 provides an estimate for the purity of the nucleic acid where 

acceptable levels of DNA purity have ratios of 1.7 to 1.9. A higher ration is due RNA 

contaminations, whereas a smaller ratio suggests protein impurities. Elution buffers used in each 

protocol were used as a controls for OD measurements. 
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2.2.5 Mammalian cell culture methods 
 

2.2.5.1 Growth and maintenance of mammalian cells  
 

The mammalian cancer cell lines were maintained in the respected recommended medium 

according to ATTC protocols. Normally Dulbecco’s modified Eagle’s medium (DMEM), Roswell 

Park Memorial Institute (RMPI), Iscove’s Modified Dulbecco’s Medium (IMDM) containing 

Glutamine and supplemented with 10% fatal calf serum (FCS), penicillin (5U/ml) and streptomycin 

(50mg/ml) were used to culture the cells in monolayers in sterile Petri Dishes in a NUARE 

incubator (Tecnomar) and maintained at 37˚ C in a humid 5% CO2/95% air atmosphere. When the 

cells were 80/90% confluent, growth medium was aspirated and the monolayer washed once with 

DPBS. Trypsin-EDTA solution was added and the dish incubated at 37˚ C until the cells began to 

detach from the flask and from each other. The dish was gently tapped if necessary, to further 

dislodge cells. Trypsin activity was neutralised by adding an equal volume of growth medium and the 

cells pipetted up and down until a homogenous single cell suspension was achieved. An aliquot of 

this was transferred to a new dish containing fresh growth medium and the dish replaced in the 

incubator. The cells were passaged twice weekly at a ration 1:5 - 1:10. 

 

2.2.5.2 Growth and maintenance of patient derived human pancreatic cancer cells  
 

The human patient derived pancreatic cancer cells (Paco2) were kindly provided by Dr. Martin 

Sprick, HiStem GmbH (Heidelberg). The cells were cultured in 75 cm2 PRIMARIA tissue culture 

flasks (Corning) in monolayers until 80/90% confluence. The growing medium as a well-defined 

cocktail of cytokines and growth factors was also provided from Dr. Sprick. Once a week the 

medium was aspirated from the flask and the cells washed with DPBS. Accutase solution (Promo 

Cell) was added and the flask incubated for 15 min at 37˚ C until the cells were detached and 
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dislodged. An equal volume of CO2 independent IMDM medium containing 1% BSA was added to 

neutralise the accutase and an aliquot of the cells was transferred, at a ration 1:3, into a new flask. 

 

2.2.5.3 Long term storage in liquid nitrogen 
 

For long term storage, confluent monolayers were trypsinised and resuspended in culturing 

medium containing 20% FCS and 10% DMSO. 1 ml volumes were aliquoted into cryotubes and 

frozen slowly to -80 C for 24 h. After this time the vials were stored in liquid nitrogen until further 

required. To bring cells up from the liquid nitrogen, the cells were thawed rapidly by placing them 

into a water bath at 37˚ C. An aliquot was the diluted in fresh medium and 10% FCS, cells pelleted 

at 1000 rpm for 5 min, resuspended in medium with 10% FCS and seeded in a new culture dish. 

The media was aspirated away and replaced the next day to ensure removal of any remaining traces 

of DMSO. 

 

2.2.6 Transfection  
 

2.2.6.1 Transfection using JetPEI DNA transfection reagent (Polyplus)  
 

For the transfection of on well of a 12 well plate, 80000-200000 cells were seeded one day prior 

the transfection in 1-2 ml of growing medium. 2 µg of pDNA were diluted into 50 µl of 150 mM 

NaCl solution and 4 µl of jetPEI were diluted as well in 50 µl of 150 nM NaCl. The jetPEI solution 

was added to the DNA solution, vortexed and briefly span. After 15 min incubation of the 

combined solution at room temperature, it was added drop-wise to the cells in 1 ml of serum-

containing medium. 
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2.2.6.2 Transfection with jetPRIME DNA siRNA Transfection reagent  
 

For optimal DNA transfection of one well of a 12 well plate 80000-150000 cells were seeded one 

day prior the transfection in 1 ml of growing medium. 1µg of pDNA and 3 µl of jetPRIME reagent 

were diluted into 100 µl of jetPRIME buffer for complex formation. The solution was vortexed for 

10 second and span down briefly. After 15 min incubation at room temperature is was transferred 

drop-wise to the cells in 1 ml serum-containing medium. 

 

2.2.6.3 Nucleofection  
 

The nucleofection solutions and the correspondent buffers were purchased from Lonza and the 

transfection was carried in either the Amaxa Nucleofector II or the Amaxa 4D-Nucleofector device 

(Lonza) following Lonza manufacture users guidelines. Briefly, 1-5x106 cells pro transfection were 

isolated with Trypstin-EDTA or accutase treatment and centrifuged at 200xg for 10 min at room 

temperature. The supernatant was discarded and the cells re-suspended carefully in 100 µl room 

temperature Nucleofector Solution pro sample. 1-5 µg od pDNA were added to the solution and 

the tube was gently flanked to generate an homogenous mixture. The cell/DNA suspension was 

then transferred into nucleofection cuvettes and it was then placed into the Nucleofector Cuvette 

Holder of the correspondent device. The transfection was achieved applying the recommended 

pulse. After the pulse 500 µl of pre-equilibrated culture media was added to the cuvette and the 

cells resuspended prior to transfer into a new well of a 12 well plate containing 1 ml of pre-warmed 

growing medium 

 

2.2.7 Plasmid rescue  
 

Usually 500 - 1000 ng of DNA extracted from cells were used for transformation into DH10B 

E.Coli. Bacteria were transformed by electroporation in a BIORAD Gene Pulser using the standard 
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pule for bacteria. Transformed colonies were selected on agar plates containing the appropriate 

antibiotic. DNA was isolated from individual resistant clones, subjected to restriction analysis with 

the appropriate enzymes, and analysed by gel electrophoresis on 0.8% agarose gels. 

 

2.2.8 Gene expression analysis following pDNA administration 
 

2.2.8.1 Fluorescent Microscopy 
 

Fluorescent cells of interest were visualised under the GFP or RFP channel and photographed using 

a Keyance fluorescent microscope at 4x-20x magnification.The images were transferred to a 

computer and where necessary the brightness, contrast and colour levels were adjusted using 

Affinity Designer and Affinity Photo software. When necessary, fluorescent and bright field images 

were merged using Keyence software, a program that performs the task automatically 

 

2.2.8.2 In vitro Bio-Imaging 
 

Cells were washed in PBS, and their medium replaced by DMEM serum-free containing 150 µg/ml 

D-luciferin. After 5 min incubation in the cell culture incubator they were imaged for 

bioluminescence with the FusionSL (PeqLab). BLI was performed in the dark and the auto function 

was used to define the binning level. The acquisition time were ranged from 1 to 10 min depending 

from the cell lines.   

 

2.2.8.3 FACS 
 

Flow cytometry analysis were performed on a LSR Fortessa (BD Bioscience). When cells were 

cultured in a two dimensions system they were first detached as previously described, washed for 

two times with PBS before being re-suspended in 200-500 µl of PBS. For the analysis of the GFP 
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expression, shortly before the analysis of the samples the fluorescent marker Propidium Iodide for 

the discrimination of live/death cells was added to a final concentration of 0.01 mg/ml. Cells were 

incubated for 1 min and then placed in the FACS. The acquiring of the data was performed through 

the DIVA software and the data were analyzed with the software FlowJo. 

 

2.2.9 Drug resistance selection 
 

Stably transfected mammalian cells were placed in selective medium 48 h after transfection by 

addition of Geneticin (G418 sulphate) at a concentration of 1 mg/ml or Puromycin at a 

concentration of 0.5 µg/ml in growing medium. The cells were placed under selection pressure for 

2-3 weeks with media refreshed every 3-4 days. After selection, colonies or mixed populations of 

cells containing the neo or the puro drug resistance gene were checked for expression, and placed 

in fresh normal medium or long-term gene expression studies. 

 

2.2.10 Determination of protein concentration 
 

The protein concentration of each sample was determinate using the BCA Protein Assay kit from 

Pierce. One volume of cell lysate was diluted in one volume lysis buffer and 10µl of each diluted 

sample was added to the wells of a flat-bottomed 96-well plate. When possible samples were 

analysed in triplicate. A batch of protein asset reagent was prepared by mixing Reagent A and B in a 

ration of 49:1, and 200 µl of this reagent was added to each well. Plates were incubated for 30 min 

at 37˚ C in the dark. The absorbance of each sample at 570 nm as measured using a MultiskanEx 

(Thermo Fisher) and the data exported into Microsoft Excel. A dilution series of albumin standards 

prepared in duplicate was assayed alongside the samples and used to generate a standard curve, to 

which the absorbance values of the unknown samples could be compared and their protein 

concentrations determined. 
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2.2.11 Western blot analysis  
 

Approximately 5x105 cells or 10 mg of tissue were lysed in 50 - 500 µl 1 x lysis buffer containing 

2% SDS, 10 mM Tris pH 7.5 and 0.1 mg/ml Protease inhibitor (Roche) and centrifuged at 20000 g 

for 30 min at 4˚ C. The protein concentration of the cell lysate was determined using the BCA 

protein assay and equal amounts (20 µg) were separated on a 4-12% SDS-PAGE gel with a 

molecular weight marker (Thermo Fisher) Following separation, total protein was transferred to a 

PVDF membrane (Millipore) using a iBlot2 (Invitrogen). The membrane was blocked with 5% non 

fat milk, washed with PBS-Tween 2- and probed with primary antibodies at the appropriate dilution. 

For detection, secondary antibodies conjugated to HRP was incubated with the membrane at the 

appropriate dilution for 1h at room temperature and immune complexes visualised by enhanced 

chemiluminescent detection system by FusionSL Vilber Lourmat system.  

Smad4 Western analysis was performed using primary mouse monoclonal Smad4 antibody (Santa 

Cruz) at a 1:200 dilution and a secondary anti-mouse HRP-conjugated antibody at a 1:1000 dilution 

(Jackson Lab). 

 

2.2.12 Preparation of total DNA  
 

For preparation of genomic DNA from cells and tissue, DNeasy Blood and Tissue kit from Qiagen 

was used according to the manufacturer’s instructions. 10 mg of tissue was lysed with kit provided 

lyse solution in tube containing ceramic beads in strong agitation with the Precellys Control Device 

(PeqLab). Genomic DNA was exacted by proteinase K treatment of the cells followed by ethanol 

binding of DNA. The cells were pelleted for 10 min at 300 g and re-suspended in 200 µl of PBS. 

They were lysed by adding 20 µl of proteinase K solution followed by 200 µl of lysis solution. The 

mixture was then vortexed and then incubated for 10 min at 70 C to achieve complete lysis. The 

lysate was prepared for binding by adding 200 µl of Ethanol and vortexing. The lysate was then 
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loaded onto a column with a silica membrane that binds DNA after treatment with ethanol and 

centrifuged for 1 min at 6500 g. The column was then washed twice and the DNA eluted in 100 µl 

volume. 

 

2.2.13 Southern blot analysis  
 

For DNA analysis total DNA was extracted using the DNA Blood&Tissue Extraction (Qiagen) and 

quantified using a NanoDrop 2000c (Thermo Fisher) spectrophotometer. For southern analysis 

total DNA (10-15 µg) were digested overnight with an appropriate restriction enzyme(s), mixed 

with 10x Loading Dye and separated slowly on 0.8% agarose gel at 20 mV overnight. The gel was 

immersed in 0.25 M HCl for 10 min, incubated twice for 15 min in depurinisation buffer followed by 

a 15 min incubation in neutralisation buffer. To transfer the DNA to nylon membrane by capillary 

action, the apparatus shown in Figure (3).  

 

 

 

 

Figure 5. Schematic representation of the Southern Blot apparatus 
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The gel was supported on a layer of Whatman 3MM paper with a tank containing 20x SSC nucleic 

acid transfer buffer. A Hybond XL nylon membrane from Amersham Bioscience was soaked with 

buffer and placed on top of the gel, taking care to remove any bubbles. Once the paper towel were 

positioned, a weight was balanced on top, and the apparatus was left overnight to allow transfer to 

be completed. The following day the apparatus was disassembled and the nylon membrane was 

exposed to UV-radiation for one min to permanently cross-link the DNA to the membrane.  

The GFP or the Luciferase gene was used to generate DNA fragments that were labelled with 32P 

(Prime-It II Random Primer Labelling kit, Agilent Technologies) and used as a probe. The 

hybridisation was performed in Church buffer at 65˚ C for 16 h. 

 

2.2.14 Animal procedures  
 

Animal work was carried out with the assistance of Corinna Klein, and with the support of the 

DKFZ animal staff. All surgical procedures were performed using sterile techniques. 

 

2.2.15 Determination of copy number  
 

Relative amounts of plasmid DNA in mammalian cells were calculated by real-time PCR 

(LightCycler 96, Roche). Universal ProbeLibrary System Assay Design software from Roche was used 

to design the oligonucleotide primers (Sigma) and the probe (Roche) for luciferase or gfp to 

determine amounts of S/MAR plasmid, and primers and probes specific for the human GAPDH 

gene to enable normalisation between the samples thorough calculating the number of cells used as 

the input.  
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Table 16. qPCR primers for copy number assay and Roche probes number  

GAPDH For gctgcattcgccctctta 10 

GAPDH Rev gaggctcctccagaatatgtga 10 

GFP For cgacggcggctactacag 5 

GFP Rev gtggatggcgctcttgaa 5 

 

Amplification reaction (11 µl) contained 50 ng genomic DNA, 5.5 µl Roche Mix, 100 mM primers 

and 0.1 µl probe. Serial dilutions of the plasmids containing appropriate sequences to produce a 

standard amplification curve for quantification an all samples were tested in triplicate. 

 

Step 
Temperature - 

Time  

1.Preincubation  95˚ C - 600 sec  

2.Denaturation  95˚ C - 10 sec 

3.Annealing - 

Extension  
60˚ C - 30 sec  

Repeat step 2-3 for 40 cycles. 

 

2.2.16 Polymerase Chain Reaction (PCR) for the Amplification of DNA 

fragments 
 

The amplification of a desired DNA fragments was carried through PCR in a PeqStar (PeqLab) 

thermocycler. For the design of the oligonucleotide primers, it was used the software SnapGene. 

Normally in a final volume of 25 µl, the amplification reaction contained 1-10 ng of template DNA, 

10 µM primers and 12.5 µl HiFi PCR Premix (Clonetech). 
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Step Temperature - Time  

1. Denaturation 95˚ C - 2 min 

2. Denaturation  98˚ C - 10 sec 

3. Annealing  
Primer Tm – 5˚ C - 10 

sec  

4. Extension  72˚ C - 5 sec/Kb 

5. Final Extension  72˚ C - 10 min  

6. Storage  8˚ C  

Repeat step 2 to 4 for 30 cycles  

 

The desired fragments were processed afterword with the PCR Purification Kit (Qiagen) for 

removal of residual contaminants. 
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3 Results  
3.1 Establishing a stable genetically modified cell line with 

S/MAR DNA vectors  
 

Cells can be persistently labelled with S/MAR DNA Vectors and this can be defined as an 

established population when the cells that it comprises harbour at least one copy of the DNA 

vector and actively express any transgene it carries. The establishment process is represented 

schematically in Figure 6. Upon DNA delivery, the cells are treated with an antibiotic which allows 

the selection of those that have the vector and eliminates any that are un-transfected. The duration 

of the selection pressure is cell and antibiotic-dependent and it can range from 2-3 up to 14 days, 

with regular medium change.   

 

 

Figure 6. Schematic representation of the workflow for establishing cells with an S/MAR 
DNA vector. DNA vectors containing a S/MAR sequence are delivered to target cells in a 
process called transfection. Upon delivery, cells are grown for a few days and then treated with 
antibiotics that allow the selection of those which have the vector and that induce the cell death 
of those that are not transfected. The resulting population is composed by cells which presents at 
least one copy of the vector and that express the gene of interest. 
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3.2 Illustrating the limitations of the prototype pEPI-UCOE 

DNA vector system  
 

Hek293T cells were established following the process described in Figure 3 with the current state 

of the art vector published from Hagedorn et al.  (Hagedorn, Antoniou et al. 2013). Upon 

transfection with pEPI-UCOE the cells were selected with the antibiotic Neomycin (G418) for 14 

days, as described in the publication. In this vector system the CMV promoter drives the 

expression of the reporter gene GPF. Its expression was used to monitor the cells. Surprisingly, the 

establishment procedure generated a HEK293T cell population in which the majority of the cells 

were not positive for the transgene expression; the majority of the cells modified with pEPI-UCOE 

were negative (Figure 7) but resistant to antibiotic pressure.  

 

 

 

Figure 7. Analysis of Hek293T cell line establishment with the prototype S/MAR based 
DNA vector pEPI-UCOE.  
FACS analysis on Hek293T cells established with the vector pEPI-UCOE reveal that after 14 
days of constant selection with the antibiotic Neomycin only a small proportion of the population 
is positive for the transgene expression (FACS histograms). The percentage of positive cells is 
summarized in the right panel as the average of three independent experiments and the error 
bars show the standard deviation. The establishment rate of the plasmid pEPI-UCOE is 
inefficient and most of the cells in the population don’t express the transgene.  
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To investigate the reason for the low establishment efficiency, a plasmid rescue assay was 

performed. The scope of this analysis was to characterise the vector’s molecular status in these 

cells. To determine whether the vector was present but not active or, if it was lost during the cells’ 

replication, total DNA from established cells was isolated and used to transform electro-competent 

bacteria. The assay is based on the principle that only circular non-integrated DNA that carries a 

bacterial antibiotic resistance marker is able to transform prokaryotic cells and sustain their growth 

under antibiotic pressure. A representative number of colonies were grown, plasmid DNA was 

extracted and it was subjected to restriction analysis (Figure 8). The restriction patterns, generated 

from the digestion of plasmids extracted from the bacterial colonies, were compared to the those 

created with pEPI-UCOE. Surprisingly, the rescued vectors looked smaller and also not completely 

digested. These findings lead to conclusion that vector rearrangements occurred in the established 

HEK293T. This could also be the main cause for the low percentage of GFP expressing cells. 

However, although the cells were not positive for the transgene expression, the vector was still 

kept in its episomal form and it was not integrated. The plasmids were able to sustain the bacterial 

growth in solid and liquid medium, which meant that they carried the kanamycin resistance gene. 

The plasmid rescue assay and the FACS analysis supported the hypothesis of rearrangements. In 

33.3% of the cells the vectors were able to sustain the expression of the GFP. However, in the 

remaining 66.6%, the cassette responsible for the expression of the transgene was missing but in 

the episomes, the gene responsible for the antibiotic resistance was still present and they were able 

to transform bacteria. In the pEPI-UCOE vector platform the mammalian and bacterial selection are 

generated from the same expression cassette. 
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To test the molecular integrity and functionality of the rescued plasmids, Hek293T cells were re-

transfected but no transgene expression was detected, thus confirming the defective nature of the 

rescued vectors. (data not shown). 

  

Figure 8. Plasmid rescue and restriction analysis following bacterial transformation of total 
DNA derived from Hek293T cells established with  
pEPI-UCOE. 
9 colonies derived from the transformation of bacteria with total DNA extracted from HEK293T cells 
established with the vector pEPI-UCOE were grown and plasmids were isolated with the MiniPrep Kit 
(Qiagen). The DNA obtained from the bacterial colonies and DNA from the Maxi preparation used to 
transfect the cells were digested with the enzyme BamHI. The DNA fragments were resolved on an 
1% agarose gel and the restriction patterns compared. The analysis showed that none of the DNA 
extracted from the bacterial cells had a restriction pattern that is similar to the one generated with the 
control vector  
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3.3 Development of the next generation pS/MARt  

DNA Vector  

 

The low efficacy in establishing cells and the stability issues that arose using pEPI-UCOE, ushered in 

the development of a new S/MAR vector platform. Minimally sized DNA vectors such as minicircles 

have previously been demonstrated to be more efficient than bacterial plasmids, but due to 

commercial restrictions it was decided to develop a vector system which could be generated and 

evaluated in the DNA Vector Lab without restriction. The originally described pEPI plasmid vector 

was extensively studied over the past decade and it was known that, in order to keep the plasmid 

episomal the S/MAR motif had to be part of a transcriptionally active cassette. In this vector the 

functionality of the S/MAR was coupled with the transgene expression but it was totally 

independent from the resistance marker. In a rather simple but significant modification of the 

plasmid the activity of the S/MAR was decoupled from the expression of a gene of interest (GOI) 

and linked directly to the expression of a drug resistance gene (Figure 9). Together with this 

innovation Puromycin (Puro) was chosen instead of Neomycin (Neo/G418) primarily because the 

selection procedure is more efficient and the non-established cells could be cleared more quickly. 

The bacterial backbone of the original vector was also swapped for a more modern minimally sized 

one. This new vector platform was called pS/MARt. The link between the mammalian selection 

marker and the transgene should also avoid the instability issue noticed in pEPI, reducing therefore 

the number of resistant but non transgene expressing cells. 
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Figure 9. Cartoon representation of pEPI and the next generation pS/MARt DNA Vectors.  
The vector system pEPI present a large bacterial backbone which contains the hybrid 
bacterial/mammalian selection marker Kan/Neo that allows the propagation in bacteria as well as 
the section in mammalian cells. A pUC Ori is necessary for the replication in bacteria and the 
SV40 Ori is present for the replication in mammalian cells. A second expression cassette is 
present in the vector. The CMV promoter drives the expression of a GOI and this transcription 
activity is responsible for the functionality of the S/MAR sequence. In the pS/MARt vector 
system, the expression of the mammalian selection marker is linked to the expression of the GOI 
and actively also sustain the functionality of the S/MAR. The mammalian selection gene Puro is 
linked molecularly to the GOI and the bacterial backbone is minimised. It presents only the pUC 
Ori and the Kan resistance gene for the selection and propagation in bacterial cells. 
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To test the functionality of the new S/MAR vector three different variants were created: one in 

which the Puro expression was linked via a P2A sequence to the reporter gene GFP, the second, 

where a IRES sequence linked the Puro and the GFP and a third in which, a fusion protein was 

generated. The P2A sequence creates a direct molecular link between the first and the second 

gene. This sequence was described as a “self-cleaving” small peptide and it was first identified by 

Ryan et al. (Ryan, King et al. 1991) in the foot and mouth disease virus (FMDV). The length of the 

P2A peptide is 18-22 amino acids. The designation “2A” refers to a specific region of the 

picornavirus polyproteins. During the translation of the polyprotein mRNA, the ribosomes skip of 

the glycyl-prolyl peptide bond at the C terminus of the 2A peptide leads the cleavage of the peptide 

and form two proteins with a ration of 1: 1. The link represented from an Internal Ribosome Entry 

Sequence (IRES) do not generate such protein equimolar ration. The IRES sequences are distinct 

regions of RNA molecules that are able to recruit the eukaryotic ribosome (Pelletier and 

Sonenberg 1989) and induce the translation of the protein in a cap-independent manner. The 

binding of the ribosomes to the IRES is rather random and normally the expression of the second 

gene is ~20% of the first.  All the vectors were tested in HEK293T and compared to pEPI-UCOE. 

FACS analysis revealed that cells established with the version of pS/MARt carrying the P2A linker 

(Figure 10, c) and the IRES (Figure 10, d) generated ~97% of GFP expressing cells and an 

insignificant proportion of negative cells (Figure 10, e), whereas the positive cells established with 

pEPI numbered only 33% (Figure 10, e). The version of pS/MARt that was generated to produce the 

fusion protein between the GPF and Puromycin did not function as expected and was able to 

establish only 9% of the cells and it was not considered for further experiments. It was 

hypothesised that the peptide generated by the fusion between the Puro and the GFP was capable 

of providing antibiotic resistance but it was not able to form a structurally active GFP tetramer. The 

cell populations established with pS/MARt produced a higher (Figure 10, g) and more homogenous 



Results 

 78 

expression profile than the one generated with the pEPI system whose GFP expression varied 

widely with a significant contamination of non- and poorly expressing cells. 

 

 

 

 

  

Figure 10. HEK293T populations established with pEPI and different versions of pS/MARt.  
FACS analysis show that pS/MARt established a higher number of cells (c-d) when compared to 
the (a) untreated control and pEPI (b). Not all the version of pS/MARt are efficient in the process. 
The version that carries the fusion protein GFP-Puro doesn’t establish as well as the other two. 
(f) The green bars represent the percentage of cells that express the reporter gene GFP and are 
considered established. The white bars represent the non-expressing and therefore non 
established cells. (g) The geometric mean of the expression of the different established 
populations demonstrates that pS/MARt-GFP-2A-Puro and pS/MARt-GFP-IRES-Puro are better 
not only in terms of establishment rate but also in terms of transgene expression within the 
populations. 
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3.4 Improving cell establishment using pS/MARt  

DNA Vectors 

 

Based on the work carried out by Zhang et al. and Ted H.K. Kwaks et al. (Kwaks, Barnett et al. 

2003) two new variants of the plasmid were generated in order to test two different insulator 

sequences. In independent papers the authors demonstrated that the presence of insulator 

elements (UCOE and Element40) improve cell establishment as well as transgene expression when 

used in viral systems. The insulators were cloned before the mammalian promoter generating the 

vectors: pS/MARt-Ele40-GFP-2A-Puro and pS/MARt-UCOE-GFP-2A-Puro. Our idea was to protect 

the mammalian expression cassette from any possible influence induced by the bacterial backbone. 

A colony forming assay was performed to compare the different versions of pS/MARt to pEPI 

(Figure 11).  

 

 

 

 

Figure 11. Colony forming assay.  
For each construct 100 positively transfected cells were plated into a 10cm tissue culture dish 
after FACS sorting and cultured in the presence of the appropriate antibiotic (0.5 ug/ml Puro or 
0.75 mg/ml Neomycin). After 4 weeks the developing colonies were fixed, stained and quantified. 
The introduction of genomic elements in the pS/MARt vector generated a significantly higher 
number of colonies compared to the pEPI vector prototype ( t test has been used to generate the 
statistical comparison between the vectors ** p < 0.005, * p < 0.05) 
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In order to determine whether the establishment procedure was influenced or not by the antibiotic 

selection, corresponding Neo/G418 versions of the plasmids were also produced. 

The introduction of the genomic insulator sequences before the mammalian expression cassette 

improved the efficiency of cell establishment. The colony forming assay also revealed that the P2A 

link between the reporter and the selection marker was more efficient than the IRES sequence. The 

vector based on the P2A sequence which creates a direct link at the transcriptional and 

translational level between transgene and selection marker, was selected for further studies. Since 

the insulator sequence significantly improved the number of the resistant colonies, the version of 

pS/MARt that comprised the anti-repressive Element 40 was elected for future analysis. We 

discontinued development of the UCOE version although it was reasonably efficient due to 

previous work using this genomic sequence and due to restrictions in its use (Patent number: WO 

2002024930 A2).  

 

3.5 Vector development: from pEPI to pSMARter 

 

The aim of this thesis was to develop a new vector system that could be widely applied in a range 

of research applications without restriction. We also wanted to produce a vector that was easy to 

manipulate and simple, cheap and quick to produce. The continued development and refinement of 

this vector technology continued for the duration of this project. The application of the DNA 

vector system in increasingly intriguing and difficult cells and projects challenged the vector’s 

capabilities and as the complexity of the experiments increased the development of novel, more 

modern versions of the vector was required to overcome the apparent limitations of the previous 

version. For obvious time limitations not all the experiments could be performed with the most up 

to date version of the plasmid. This section will provide an overview of the DNA vector 
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development that commenced with derivatives of the original pEPI vector in June 2014 and ended 

with the latest generation of the pS/MARt(er) DNA vector in August 2017 (Figure 12). In the 

following sections the application of the DNA vector systems and their advantages and 

disadvantages will be described. The ultimate goal of this project was to generate a platform which 

might be used for the efficient genetic modification of primary human material for personalized 

medicine and gene therapy.  

The pEPI vector system, as previously described, with its intrinsic instability couldn’t be considered 

a suitable tool for any of these “dream” applications. The first version of pS/MARt was created 

removing from pEPI a fundamental feature (f1 Ori) for the episomal maintenance and replication in 

mammalian cells and the Neomycin resistance gene. The removal of these features allowed us to 

use a minimally sized and more modern bacterial backbone where the minimal SV40 promoter 

draw the expression of the resistance gene Kanamycin for the selection in prokaryotic cells and the 

pUC Ori allowed a high copy maintenance and replication. In the pS/MARt vector the selection in 

eukaryotic cells was carried out through Puromycin (Puro) resistance which provides a quicker and 

more effective selection pressure. The expression of the Puro was directly linked to the expression 

of the GOI and the S/MAR functionality. A genomic insulator was also introduced in pS/MARt.1 to 

shield the eukaryotic expression cassette from the bacterial backbone. This vector was shown to 

be more efficient in generating established cells  

(Figure 11).  

 

3.6 Development of minimally sized Nano-S/MARt  

DNA Vectors 
 

Kay et al. (Chen, He et al. 2003) demonstrated that the de novo methylation at discrete CpG sites in 

plasmids bacterial backbone is the main responsible for the silencing of the vector. It is suggested 
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that inactive chromatin structure can spread from methylated regions or can generate small 

interfering RNAs (RNAi) which can lead to transcriptional inhibition. The minicircle technology 

(Bigger, Tolmachov et al. 2001, Vaysse, Gregory et al. 2006) overcame these problems generating 

vectors that lacks the bacterial components.  

To further improve the DNA vector system that could potentially be used for clinical application 

we developed a range of Nano-S/MARt (NP-S/MARt) vectors in collaboration with Nature 

Technology™ (NTX). This new class of minimally sized vectors which can be produces without 

extraneous bacterial sequences is based on pS/MARt.1 but presents a profound change in the 

bacterial backbone. The technology developed by NTX produces nano-plasmids which are very 

similar to minicircles. The manipulation and preparation of NP-S/MARt is discussed in detail in a 

dedicated paragraph below. The new nano-vector technology has all the advantages previously 

discussed for minicircle and many more. The first and potentially most important for future clinical 

application, is that the composition of the vector is approved by the Federal Drug Administration 

(FDA) for use in humans. The NP technology also introduced the capability to work with more 

delicate and difficult cells, like human patient derived and/or human primary material.  

The removal of the bacterial backbone was followed by another step of vector development with 

the aim of producing an expression cassette that could mimic a human endogenous gene. In a 

dedicated paragraph below, it will be described in detail the production of the Nano-S/MAR-splice 

vector, in which the transgene presented an intro-exon like structure with the purpose of 

stabilizing the transcript. 

 

3.7 Replacement of the S/MAR motif 
 

Ultimately, in the last step of development, the S/MAR element, the most fundamental and 

important keystone feature of this class of vectors was replaced. The S/MAR sequence isolated 



Results 

 83 

from the human b-globin gene in 1999 and since then considered an irreplaceable feature of this 

vector system was replaced with a novel, smaller and more efficient one, generating the vector 

pS/MARter. The vector pS/MARter, although still in plasmid form and not yet in a nano-format, by 

any measure outperforms every other vector previously described including the nano-vector 

derivatives. Thus, it can be considered the ultimate step in this current process of DNA vector 

development. 

As new vectors were developed over the year newer constructs were always compared to 

previous versions in order to determine whether the new modifications were providing any benefit 

and producing any desired effect.  

In a final experiment all the vectors generated during this project were tested and compared for a 

range of functionality including: their efficacy in generating stable cells, their transgene expression in 

established populations, the molecular integrity of the plasmids, the relative RNA levels and the 

number of copy plasmids necessary to establish cells. HEK293T cells were transfected with the 

plasmid displayed in Figure 12. 
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Each of the different forms of the vector comprised the same mammalian cassette with a typically 

used CMV promoter driving the expression of the reporter gene GFP. The translation of the GFP 

gene was coupled via a P2A sequence to the eukaryotic selection marker Puromycin. The S/MAR 

sequence was placed after this transcription unit. The genomic insulators UCOE and anti-repressive 

element 40 (Ele40) were used as boundaries between the bacterial backbone and the expression 

cassette.  

The pS/MARt series of plasmids, Nano-S/MARt and pS/MARter were compared to previous best-in-

class pEPI-UCOE. Cells were monitored weekly for GFP expression via FACS and 38 days post 

transfection the RNA and DNA were extracted and analyzed. The establishment rate was also 

evaluated by colony forming assay (Figure 13).  

 

 

Figure 13. A comparison in colony forming efficiency between all the DNA vectors 
generated in this study.  
The graph reports the number of colonies obtained with the different version of the vector. Upon 
DNA delivery, cells positive for the expression of the reporter gene GFP were isolated via FACS 
sorting (FACS Aria II) and 100 cells were plated into a 6 cm cell culture dish. The cells were 
then cultured for 4 weeks in presence of 0.5 µg/ml Puromycin. After 4 weeks the developing 
colonies were fixed with PFA and stained with Crystal Violet. The results are expressed as the 
average of 3 independent experiments. A representative picture of the experiments outcome is 
displayed above the graph. The Nano-S/MAR splice vector generates the highest number of 
colonies. The plasmid pS/MARter although carries a bacterial backbone performed better than 
the other Nano vectors and pS/MARts.  
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24 hours after transfection GFP expressing cells were isolated via FACS sorting (FACS Aria II) and 

100 cells were plated into a 6 cm dish. For each vector, three replicates were produced. The cells 

were cultured for 38 days in presence of 0.5 µg/ml Puro when transfected with pS/MARt based 

plasmids and 0.75 mg/ml Neo for those transfected with pEPI. The resulting colonies were fixed 

with PFA, stained with Crystal Violet and counted to address the vectors establishment efficacy. 

The number of colonies and pictures representative of the experiment outcome is reported. 

The Nano-S/MAR-splice vector generated the highest number of colonies followed by its non 

spliced version NP-UCOE and NP-Ele40. pS/MARter, harboring the ApoL MAR instead of the b-

interferon one, had an establishment rate that was similar to the Nano plasmids although it sill 

presented a normal bacterial backbone. pS/MARt-UCOE and pS/MARt-Ele40 presented a lower 

efficacy. The result showed that the b-Interferon MAR was less efficient that the new 

ApolipoproteinB MAR non nano-vectors. The splicing of the S/MAR resulted in more colonies 

probably because the removal of an unstable sequence from the pre-mRNA improved the message 

stability. Cells established with this vector are more prone to tolerate the selection pressure.  

The number of colonies established from pEPI is undoubtedly higher than any of the S/MARt 

vectors (Figure 14).  

 

 

 

Figure 14. Established colonies with pEPI-UCOE and FACS analysis.  
The established cells with the vector pEPI-UCOE were fixed in PFA and stained with Crystal Violet. 
One of the plate replicate was used to assess to number of GFP expressing cells in the established 
colonies. FACS analysis on the right shows that only a small proportion of the population is positive for 
the transgene expression.  
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Although this system looks superficially efficient, FACS analysis on the population reveled that only 

a small percentage of the cells were positive for the expression of the transgene GFP. A great 

number of colonies were formed but only few, if any, were real established ones. The molecular 

integrity of the new plasmid-generations was assessed with Southern Blot analysis and a plasmid 

rescue assay was performed on those vectors that had a bacterial backbone.  

The genomic DNA of the established HEK293T populations was extracted and digested with the 

restriction enzymes BamHI. This enzyme acts as a single cutter for all vector species and its 

cleavage site (GGATCC) is recurrent in the human genome. The genomic DNA was digested, the 

DNA fragments were separated on an agarose gel and analyzed via Southern Blot. In parallel the 

DNA maxi-preparation used to transfect the cells were digested with BamHI and used in the 

Southern Blot to control the plasmids size. The Southern Blot (Figure 15) showed that all the 

vectors isolated from mammalian genomes had the same size of their respective controls.  

 

 

 

 

Figure 15. Southern Blot analysis of pS/MARt vectors, Nano-S/MARt and pS/MARter. 
Total DNA from Hek293T established with different versions of the S/MAR vector was extracted 
(Blood&Tissue DNA Kit, Qiagen) and subjected to digestion with the restriction enzyme BamHI 
(NEB) for 12 h at 37°C. The DNA fragments were resolved on a 0.8% agarose gel and 
transferred on a nylon membrane. Simultaneously, plasmid DNA from the maxi preparations 
used to transfect the cells before establishment were treated with the same approach. The 
reporter gene GFP was used to generate the radioactive probe for testing the controls (left panel) 
and the vectors in the cell population (right panel). All the plasmids have the same size when 
compared to the correspondent reference vector which demonstrate their episomal maintenance.   
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The absence of smears and/or additional bands demonstrated also that the majority of the SMAR 

plasmids were kept episomally. This analysis showed that these vector didn’t integrate and didn’t 

undergo clear rearrangements. Although the episomal status was clearly confirmed by Southern 

Blot, only more detailed integration analysis could show whether rare integration events took place 

or not. The integrity of the plasmids pS/MARt-UCOE, pS/MARt-Ele40 and pS/MARter was 

investigated via plasmid rescue. Electro competent bacteria were transformed with total DNA 

extracted from HEK293T established with these vectors. Restriction analysis on pDNA extracted 

from bacterial colonies revealed that the rescued vectors (Figure 16) had the same size of the 

correspondent plasmid used to transfect the cells. 

 

 

 

 

The expression of the reporter gene was monitored weekly for more than one month (Figure 17). 

The analysis showed that between DNA delivery (day 1) and the end of the selection process 

(day7) the number of GFP expressing cells dropped dramatically. In this time window, the non-

Figure 16. Plasmid rescue analysis of pS/MARt-UCOE, pS/MARter and pS/MARt-Ele40.  
Genomic DNA from HEK293T cells established with pS/MARt-UCOE, pS/MARter and pS/MARt-
Ele40 was transformed into E.Coli DH10B (Invitrogen). Upon transformation the bacteria were 
plated on LB-Agar plates with additional Kanamycin and incubated over night at 37 °C. Colonies 
were picked and grown for 12 h in LB medium and Kan before the plasmid DNA was extracted 
(Qiagen, Miniprep Kit). For the analysis, the plasmid DNA from the colonies was digested with the 
enzyme BamHI. As a control also the maxi preparation used to transfect the Hek293T was 
digested with the same enzyme and run on agarose gel as reference. All the rescued vectors had 
the same size of the correspondent plasmid used as reference control.  
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transfected and the not established cells were killed and only those able to maintain the vector 

grew. From day 7 to day 14 the cells underwent the expansion phase and at this stage, they were 

mostly positive for the expression of the transgene. The analysis of the median fluorescence 

intensity in the different populations, revealed that the Nano-S/MAR-splice vector had the highest 

expression profile, while cells established with the ApoL MAR presented the lowest.  

 

 

 Figure 17. Reporter gene analysis over time and expression in the different populations. 
Hek293T transfected with different version of pS/MARt were followed over time and the 
number of cells positive for the expression of the reporter gene GFP was addressed weekly 
(upper panel) via FACS (Lsr, Fortessa). At day 42, the expression within the populations was 
estimated (lower panel). The values in both representations are the average of the results 
obtained in 3 independent experiments. All the plasmids except pEPI generate cell populations 
in which almost all the cells express the reporter gene. The cell population established with the 
Nano-S/MAR-splice vector presents the highest GFP expression  
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The expression monitored by FACS was evaluated at the RNA level via quantitative real-time PCR 

(q-PCR) that confirmed the results previously displayed (Figure 18). When compared to the 

expression of the endogenous gene GAPDH, the RNA levels of the cells established with the 

Nano-S/MAR-spliced vector are the highest, followed by the Nano vector series and the three 

different versions of the episome that carry a bacterial backbone. 

 

 

 

 

 

 

 

  

Figure 18. Relative RNA expression values in HEK293T established with different versions 
of the vector. 
Total RNA was extracted from established Hek293T populations (RNAeasy Kit, Qiagen) and 
via quantitative Real-Time PCR (qPCR) the GFP RNA relative levels were calculated using 
the endogenous gene GAPDH as reference. The Nano-S/MAR-splice vector sustained the 
highest transgene expression. The other nano plasmids display expression levels that are 
higher than the vectors with a normal bacterial backbone. 
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3.8 Application of the new vector system 
 

3.9 Generation and in vitro validation of Luciferase labelled 

Isogenic pancreatic cancer cell lines 
 

To validate the efficiency of the new plasmid in modifying cancer cells, the reporter gene GFP was 

swapped for Luciferase (luc). The primary advantage of utilising Luciferase over GFP is the 

possibility to visualise expressing cells through Bioluminescent imaging (BLI). This technique allows 

non-invasive sequential imaging of in vivo transgene expression.  In these experiments it was utilised 

to monitor tumour development and early metastasis reducing the number of animals used per 

experiment. As part of a collaboration within a European Consortium a panel of different 

pancreatic cancer cell lines were labelled using our vector system and used as a tool for in vitro and 

in vivo screening of drug compounds. The labelling was performed with the non-integrative S/MAR 

vector system over other technologies because most of the cell lines were refractive to viral 

transduction. The pancreatic cancer cell line Capan-1 was used to compare the establishment 

efficiency of the pS/MARt and pEPI vectors. 12 weeks of repetitive rounds of Neomycin selection 

were necessary to generate modified Capan-1 cells with pEPI (Figure 19,a), whereas the 

establishment with pS/MARt.1 took only 5 weeks and a single administration of Puro (Figure 19, b). 

Human BxPC-3, MiaPaCa-2, Capan-1 and Panc-1 cell lines were also established with the vector 

pS/MARt.1-Luciferase. The reporter gene expression in the modified lines was evaluated in 

accordance with the number of cells (Figure 19, c). As demonstrated by a linear relation, all the 

components of the different populations contributed to the Luciferase expression. These cell lines 

were created with the aim of generating xenograft models and this validation excluded the 

possibility of mosaicism in their further applications in vivo.  For a more thorough evaluation, the 

luc-labelled cells growth in presence and absence of gemcitabine (a clinically approved pancreatic 

cancer drug) was compared to the match parental unmodified cells. They showed in vitro a 
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behaviour that was similar to the respective parental controls (Figure 19, d). The growth curves 

demonstrated that, even though the cells were modified with the vector pS/MARt and they were 

growing and replicating with the episomes, the plasmids presence as well as the expression of a 

reporter gene was not influencing their behaviour.  

 

Figure 19. Luciferase labelled pancreatic cancer cells.  
(a) Capan-1 colonies formed after 12 weeks of selection and several rounds of G418 treatments 
and (b) colonies formed after 5 weeks of selection with pS/MARt and only a single Puromycin 
treatment. (c) Luciferase expression was evaluated in comparison to the number of cells. Value 
represents the mean of six replicates for each cell number. (d) Proliferation was determined by 
measuring number of viable cells upon treatment with the control compound gemcitabine. 
Gemcitabine inhibits the proliferation of both, parental and luciferase labelled cells with the same 
efficacy. The cell validation was provided by Pharmatest Service (Turku, Finland) 
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3.10   Utilising DNA Vectors to generate Pancreatic Cancer 

Xenograft Models  
 

The pancreatic cancer cell line BxPC-3 was used to validate in xenograft models pS/MARt luciferase 

labelled cells. In vitro, BxPC3-luc cells showed a behaviour similar to the parental unmodified 

control line. In order to investigate their applicability for in vivo drug tests, their tumorigenic 

potential in xenograft models was evaluated. BxPC-3-luc and unmodified cells were inoculated 

orthotopypcally into the pancreas of athymic nude mice and the tumour growth was monitored 

over time with non-invasive imaging (Figure 20, a).  

 

 
 
Figure 20. Xenograft models with pS/MARt-Luciferase labelled BxPC3 and  
histological analysis.  
(a) Bioluminescent detection of orthotopically injected BxPC-3 in the pancreas of nude mice. Images 
were taken with an IVIS Lumina 2, 10 min after luciferin injection (3mg/mouse, ip). (b) Histopathological 
assessment of parental BxPC-3 and (c) BxPC-3 Luciferase. (d) IHC staining for Luciferase before 
injection and (e) after tumor development. The tumors generate with the luciferase labelled BxPC-3 have 
the same morphology to those generated from the unmodified control cells. The BxPC-3 luc cells show 
sustained expression of the reporter gene prior and after orthotopic injection. 
 

The luciferase labelled cells maintained their transgene stable expression also in vivo. Tumours 

derived from the pancreases of mice injected with parental control BxPC-3 and luciferase labelled 

cells were taken and used for histopathological assessment. Genetically modified BxPC-3 formed 

tumours that had the same phenotype to those generated from the parental unmodified cells 



Results 

 94 

(Figure 20, b-c). Immuno-histochemical staining for luciferase confirmed that before (Figure 20, d) 

and after orthotropic injection and tumour establishment (Figure 20, e) all the genetically 

engineered BxPC-3 were showed sustained expression of the reporter gene.  

These results confirmed that the pS/MARt vector platform was able to produce highly reliable 

genetically tagged cancer cells and when applied in orthotropic xenograft studies they formed a 

reliable and essential non-invasive imaging platform.  

This BxPC-3 luciferase labelled cells were used for testing the pancreatic cancer experimental drug 

compound VAL401 (ValiRx, UK). Four groups were included in the study: 1) control untreated, 2) 

gemcitabine, 3) VAL401 (1mg/kg, p.o. daily), 4) VAL401 (2mg/kg, p.o. daily). Orthotopically injected 

cells were successfully followed for 5 weeks by BLI (Figure 21, a).  

 

 

Figure 21. Testing the efficacy of a new pancreatic cancer treatment.  
(a) Bioluminescent detection of Luciferase upon vehicle treatment, reference compound (gemcitabine) 
and study compound VAL401 (VAL401 1mg/kg and 2 mg/kg). Images were taken with and IVIS Lumina 
2, 10 min after luciferin injection (3mg/mouse, ip). (b) Measure of tumors size based on the area of the 
detected bioluminescence. (c) Measure of tumors size upon mice sacrifice. The tumor growth was 
successfully followed in vivo for 34 days and the luciferase expressing cells formed a useful tool for the 
test of a new anti-pancreatic cancer drug. 
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Indirect measures of the tumours size showed that both doses of the experimental compound 

reduced the cancers dimension (Figure 21, b). Endpoint analysis on primary pancreatic neoplasms 

(Figure 21, c) confirmed previous data inferred by BLI. The reference compound gemcitabine as 

well as the experimental one significantly reduced the tumour size when compared to the vehicle 

treatment.  

In vitro and in vivo validations confirmed the reliability of the genetic modified cells obtained with the 

pS/MARt system. These cancer cell lines showed a proliferation rate that was comparable to the 

unmodified controls. When applied in orthotropic xenograft studies those cells formed a reliable 

and essential non-invasive imaging platform that improved substantially the efficacy testing of 

anticancer drug candidates reducing the number of animals necessary for the experiments. 

 

3.11 Immortalisation and reprogramming into iPSC of    

mouse primary lung fibroblasts  
 

pS/MARt.1 harbouring with the T-antigen from the SV-40 virus (Figure 22, a) was tested for its 

efficacy in transforming mouse primary lungs fibroblasts (Figure 22, b). High expression of the 

transforming agent was enough to induce the fibroblasts immortalisation and proliferation. The 

resistance marker was therefore swapped for the reporter gene GFP and it this was used to 

monitor the cell growth and to select the positive one via FACS sorting (Figure 22, c-d). T-antigen 

expression was evaluated in Western Blot (Figure 22, e) and these modified fibroblasts were used 

for the PhD project of Alicia Roig-Merino  

(DNA Vector Laboratory Research, DKFZ). Reprogramming these cells into pluripotent stem cells 

(iPSC) demonstrated that pS/MARt was capable of sustaining the expression of a transgene during a 

process that involved profound epigenetic and phenotypic changes. The reprogramming factors 

were delivered via lentivirus and the iPSC were analysed for GFP (Figure 22, g) and alkaline 
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phosphates expression (Figure 22, h). Common markers for pluripotency such as Nanog, Oct4 and 

SSEA-1 (Figure 22, i) were used to further validated the pluripotency and the success of the 

reprogramming process. iPSC obtained from immortal fibroblasts would generate unreliable 

differentiated cells that cannot be used in further studies, however the experiment fulfilled the 

expectations. For the first time a non- integrative DNA plasmid was capable of sustaining a 

transgene expression during the reprogramming process. The experiment opened the possibility of 

exploiting the new technology in the field of stem cell modification and stem cell therapy.  

 

 

 

 

 

  

Figure 22. Immortalisation and reprogramming of primary mouse lung fibroblasts.  
(a) pS/MARt vectors containing with the transforming factor T-antigen from the SV-40 virus was 
used to transfect primary murine lungs fibroblast (b). The presence of the vector in the 
immortalised fibroblast was confirmed by fluorescent microscopy (c and d) and Western Blot (e). 
The immortalised fibroblasts were used to generate iPSC (f) which were tested for GFP (g). The 
alkaline phosphatase test (h) and the immunofluorescent staining for pluripotency markers Oct4, 
Nanog and SSEA-1(i) was used to confirm the successful reprogramming process. 
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3.12 Pronuclear injection of pS/MARt vectors  
 

The efficacy of pS/MARt in establishing cells in culture has clearly been demonstrated. Typically, at 

least one round of selection is necessary during this process in order to eliminate the un-

transfected cells as well as those that are not able to retain the vector. The establishment process 

is a stochastic event and in approximately 3% of rapidly dividing cells the S/MAR vector is 

maintained in its episomal status in absence of selection (data not shown).  

In collaboration with Dr. Franciscus Van der Hoeven (DKFZ, Transgenic Service) pS/MARt 

expressing the reporter gene GFP was injected into a 1-cell stage zygotes of BL6 mice (Figure 23).  

 

 

 

 

Figure 23. Pronuclear injection and in vitro follow-up of the embryonic development. 
1-2 pl of 1-3 ng/ul of filtered and dialyzed pS/MARt vector was injected in the pronucleus of 1-cell stage 
embryos. The embryonic development was followed in culture and the GFP expression was monitored 
via fluorescent microscopy. On day 4.5 the embryos were transferred on gelatin-feeder coated wells 
and the embryos that hatched in these artificial condition was monitor for transgene expression to 
death (Embryos follow-up and culture was performed by Alicia Roig Merino (DKFZ, DNA Vector Lab. 
The figure was provided by Alicia). The pS/MARt vector was able to sustain the expression of the 
reporter gene GFP in vitro until the embryo hatched.  
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The aim was to determine whether the vector was able to sustain the transgene expression during 

the embryonic development and remain active and unsilenced. Upon injection in the pronucleus the 

embryos were transferred into pseudo pregnant mothers and Alicia Roig Merino (DKFZ, DNA 

Vector Lab) is investigating the GFP expression in the new born transgenic mice via fluorescent 

microscopy and GFP-PCR on tail biopsies.  

In order to evaluate potential toxic effects induced by the plasmid, 12 embryos were kept in 

cultured and monitored over time. One arrested the development at the 1-cells stage, three 

stopped dividing and the other 8 underwent compaction and progress to the blastocyst stage. In 

one case the embryo hatched and attached to gelatinized-feeder coated plated and GFP expression 

was still detectable.  

For the first time this new class of DNA vectors was able to sustain the expression of a transgene 

during the embryonic development in vitro remaining unsilenced and active. The analysis of the 

animals will definitely prove if the pS/MARt vector system can be also used for the generation of 

transgenic mice.  

 

3.13  Utilising pS/MARt vector for Liver Gene Therapy  
 

Alkaptonuria is a rare inherited genetic disorder in which the body cannot completely process the 

amino acids phenylalanine. It is caused by a mutation in the Homogentisate 1-2-dioxygenase (HGD). 

People who have both of copies of their HGD gene mutated build up an intermediate substance 

called homogentisic acid (HGA). This accumulation leads to osteoarthritis and the formation of 

stones. The phenylalanine degradation takes place in the liver and to better understand this disease 

HGD knockout mice were generated. The liver represents an easy target for the delivery of DNA. 

The hydrodynamic injection is indeed an efficient delivery process to transfer plasmids to this 

organ.  
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Argyros et al. developed a modified version of pEPI for the targeted expression in the liver of mice 

that carried a tissue specific promoter instead of the viral CMV. Although it guaranteed the 

luciferase expression for the lifetime of the animal an appreciable decline was observed, while 

minicircles remained more active in the same period of time. pS/MARt showed in vitro higher 

efficiency in establishing cells than pEPI. It was therefore tested for its capability in expressing the 

wild type cDNA of the HGD gene in vivo. A synthetic minimally sized liver specific promoter (P3) 

was used to drive the expression of the gene and two different versions of the vector were created 

and delivered to the liver of HGD knockout mice (experiment performed in collaboration with the 

group of Dr. Jonathan Jarvis, Institute of Aging and Chronic Disease, University of Liverpool). In one 

vector the P3 promoter drew the expression of the wild type HGD cDNA (pS/MARt-P3-HGD), in 

the other, it was responsible for the expression of the reporter gene Luciferase (pS/MARt-P3-Luc). 

Upon DNA delivery the HGA levels in the plasma of mice treated with pS/MARt-P3-Luc were 

comparable to the saline treated group. In comparison, in the animals where the HGD gene was 

restored, the HGA level in the plasma was restored to normal levels (Figure 24).  

Figure 24. HGA plasma level upon hydrodynamic delivery of pS/MARt vectors and saline 
control. 
HGA levels in the plasma of the treated mice were measured upon delivery of the vectors expressing 
the wild type cDNA of the HGD gene and the Luciferase reporter gene. The HGA plasma levels were 
reduced below toxic levels from a single administration of pS/MARt expressing the HGD cDNA. 
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These levels were maintained for several weeks and they were used as proof of the vector’s 

functionality. The expression of the enzyme was inferred from the analysis of the plasma but, in 

order to determine whether also in this new system the transgene expression declines more 

detailed analysis such as regular qPCRs and Western Blots are ongoing.  

 

3.14 Generation of Isogenic Pancreatic Cancer Cell Lines 

and the genetic rescue of the tumor-suppressor SMAD4  
 

A range of pancreatic cancer cell lines labelled with the reporter gene luciferase was tested for cell 

growth in vitro and, in the case of the BxPC-3 also used for evaluating the efficacy of a new 

pancreatic cancer drug in vivo. 

The pancreatic cancer cell line Capan-1 was selected to also test the vector system for its capacity 

to rescue the functionality of a fundamental tumour suppressor gene whose loss is fundamental in 

many aggressive pancreatic tumours. The interest in these particular cells and this gene arose from 

a collaboration with Prof. Offringa’s group (DKFZ, Molecular oncology and gastrointestinal 

tumours). Previously, the DKFZ core facility attempted to produce genetically modified Capan-1 

with lentiviral vectors but, it proved difficult to obtain stably expressing lines with reports of 

variable and/or diminished expression. We were challenged to apply pS/MARt in this difficult to 

modify cell line. The aim was to initially generate Capan-1 cells that expressed the reporter gene 

luciferase and demonstrate the capability of the vector in modifying these cells. If this proved 

successful, the idea was to rescue the functionality of the tumour suppressor gene SMAD4 which 

was knocked out in this line. The mutation of SMAD4 represents one of the key events in the 

development of aggressive pancreatic cancer. Capan-1 cells represent a reliable model for the study 

of this disease because they present mutations in four primary pathways: KRAS (G12V), TP53 
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(A159V), CDKN2A (del), SMAD4 (S343*)(Deer, Gonzalez-Hernandez et al. 2010). The study aimed 

to investigate the effect of the resurrection of SMAD4 in relation to the TGFb pathway.  

pS/MARt-luc and pS/MARt-SMAD4-luc vectors were used to generate stable cell lines following 

two different approaches. In one, the cells expressing SMAD4 were expanded via single cell clonal 

expansion. In the other, a mixed population expressing the tumour suppressor was obtained. The 

expression of SMAD4 was evaluated via Western Blot (Figure 25, a) and its impact on cancer 

development was tested in vivo by injecting 0.5x106 cells orthotopically into NSG mice to generate 

xenograft models. 

 

 

 

 

 

Both vectors used for the modification of the cells carried the reporter gene Luciferase,  

therefore, four weeks after orthotopic implantation the tumour development was analysed by BLI. 

The signals generated from animal injected with the Capan-1-Luciferase cells were significantly 

higher than those produced from Smad4 rescued cells (Figure 25, b) which meant that also the 

correspondent tumours were bigger. 

Figure 25. In vitro and In vivo analysis of the modified Capan-1 cells.  
(a) The expression of the tumour suppressor SMAD4 in the Capan-1 cell line was evaluated in 
comparison to the pancreatic cancer cell line Panc-1 which has normal expression of this gene. 
(MP, mix population. SC, single cell). (b) The cells were injected orthotopically in NSG mice and 
the tumour growth monitored through BLI. The images were taken 10 min after luciferin injection 
(3mg/mouse, ip) with an IVIS Lumina 2. 
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In accordance with previous observations (Yatusome et al Clinical & Experimental metastasis 

22:461-473, 2005) the rescue of the functionality of the tumour suppressor SMAD4 leads to a 

reduction in tumour growth. All the mice injected with parental or control cells developed a 

primary tumour in the pancreas and those in which the xenografted cells had restored SMAD4 

showed small non-invasive accumulations of transplanted cells. The single cell clonal expansion (SC) 

cell line as well as the mixed population (MP) generated small tumours but metastasis was not 

detected. For the first time, taking advantage of the high sensitivity of the BLI technique, metastasis 

were observed in the liver and in the lungs of mice injected with Capan-1 luciferase labelled cells 

(Figure 26, a). The histo-pathological analysis revealed that the luciferase modified cells developed 

tumours (Figure 26, c) phenotypically similar to those formed from the parental unmodified cell line 

(Figure 26, b), characterized by a highly differentiated ductal structure. Both cell lines expressing 

SMAD4 formed primary tumours with identical histology (Figure 26, d-e). They appeared less 

differentiated and showed a higher recruitment of stroma.  

 

 

 

Figure 26. Detection of Luciferase expression in liver and lungs metastasis and histological 
analysis of primary tumours.  
(a) Detection of metastasis in the liver and in the lungs of the mice injected with the Luciferase 
labelled Capan-1 cells. Primary tumour formed from the Capan-1 luciferase (c) present the same 
morphology and a well-defined ductal differentiation, like those generated from the parental 
unmodified cells (b). The restoration of Smad4 induce profound change in the phenotype of the 
tumour (d - e). Both cell lines, SC (d) and MP (e) form an identical primary tumour. 
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Since the Capan-1-luc and parental cells generated identical primary tumours and metastasis, the 

differences observed in the tumour masses generate by Smad4 rescued Capan-1 appeared to be 

directly dependent to the re-introduction of the tumour suppressor gene SMAD4. 

Primary tumours from Capan-1-luc and Capan-1-SMAD4 cell lines were compared for: phenotype 

(Figure 27, A), proliferation via staining of Ki67 (Figure 27, B) and expression of SMAD4 (Figure 27, 

C and D). 

 

 

A significantly reduced number of Ki67 positive cells (Figure 27, B) in tumours formed with Capan-

1-Smad4 cells, demonstrated that those masses had a lower proliferation rate. The positive staining 

for Smad4 (Figure 27, C and D) confirmed the vector activity upon orthotropic injection and 

tumours development. It demonstrated that the observed effects were induced by the re-acquired 

functionality of Smad4. Tumours formed from Capan-1 luciferase cells showed also positive staining 

for Smad4 (upper panels C and D) due likely to cross reactivity of the antibody. A mouse 

Figure 27. Immunohistological assessment of Capan-1 luciferase and Capan-1 Smad4.  
Capan1-Luciferase (A to D upper panel) and Capan-1-SMAD4 (A to D lower panel) were 
assessed for morphology (A) with the H&E staining, proliferation (B) via staining for the 
proliferative marker Ki67 and SMAD4 expression. SMAD4 was evaluated at two different 
magnifications (C, 4X and D, 10X). The tumours formed from Capan-1 modified with the reporter 
gene luciferase shows a defined ductal differentiation typical of pancreatic cancers and a high 
proliferative rate. Instead, the primary tumours formed from cells where Smad4 functionality is 
restored appear less differentiated and with a significantly lower proliferation potential. All the 
masses stained positive for Smad4. Capan-1 Smad4 rescued cells strongly stained for this 
protein, whereas in tumours formed with Capan-1-luciferase cells only infiltrating fibroblasts 
express the gene.  
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monoclonal anti-Smad4 antibody was used for the analysis and it bound probably also SMAD4 

proteins endogenously expressed from infiltrating fibroblasts. To investigate the effects produced 

by the vector as well as by SMAD4, genome wide RNA profile analysis on primary tumours was 

performed. The RNA was extracted from 3 mice per group and analysed on a IlluminaHuman12 

chip (Analysis performed at the DKFZ Genomic and Proteomic core facility). The RNA quality 

control, the microarray hybridisation and the data normalisation were performed by the core 

facility. The differences in gene expression was analysed with the Partek Genomic Suite software 

(Thermo Fisher) upon logarithmic transformation of the microarray data. The RNA expression 

levels were introduced into the non-rooted hierarchical clustering tool of the software and they 

were also analysed for Principal Component Analysis (PCA) differences (Figure 28).  

 

 

The un rooted hierarchical clustering showed 3 different clusters that correspond to the tumours 

obtained from the different xenografted Capan-1tumours. The phylogenic tree generated by the 

software showed two different branches. One for the parental unmodified cells and another one 

divided into two nodes. The first, clustered closer to the parental cells represent the luciferase-

Figure 28. Non rooted hierarchical clustering and PCA analysis of RNA profiles from Capan-1 
derived pancreatic tumors. 
Total RNA from pancreatic tumors was extracted (RNAeasy Kit, Qiagen) and the expression profiles 
were determined by microarray hybridization with a Human Illumina-12 Chip. Genome wide RNA 
expression values were analyzed with the Partek Genomic Suite software in a non-rooted hierarchical 
clustering test (left panel) and a PCA assay (right panel). Pancreatic tumors from three mice per group 
were considered for the study.  
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labelled Capan-1 derived sample whilst in the other, more distant, cluster the SMAD4-luciferase 

tumour samples were located. The different branches generated in the hierarchical clustering 

demonstrated that cells which underwent the selection procedure and establishment were more 

similar compared with the unmodified parental samples. The analysis of the PCA confirmed the 

differences between cell lines. The three replicates per group clustered together also in this assay 

which showed that the differences were conserved within the biological replicates.  

Differential gene expression analysis was performed and a cut-off of 2 fold up/down-regulation with 

a False Discovery Rate (FDR) of 0.1 was applied (Figure 29).  

 

Figure 29. Genome wide RNA profiles analysis of primary xenografted tumors generated from 
different Capan-1 cell lines.  
RNA from primary tumors was extracted and used for microarray analysis on a IlluminaHuman.12 chip. 
The array was performed in the DKFZ Genomic and Proteomic Core Facility and also the 
normalization across the samples was performed there. For the analysis, primary tumor from 3 mice 
were analyzed per cell line. The gene expression was evaluated with the Partek Genomic Suite 
Software (Thermo Fisher) with the help of Mattia Falcone and Dr. Elisa Espinet (HiStem, DKFZ). A cut 
off of > 2 fold and <-2 fold, FDR = 0.1 was applied to study the expression differences. The figure 
shows the number of genes up- and dow-regulated in the modified cell lines when compared to the 
parental one (first two panels) and between them (bottom panel).     
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1% of the genes were perturbed when the expression profiles from Capan-1 luciferase tumours 

were compared to those formed from parental cells. 252 genes appeared downregulated and 190 

upregulated. The overall gene expression pattern appeared more perturbed when SMAD4 was re-

introduced. 2% of the genes were changed with 354 up- and 471 down-regulated. 0.5% of the genes 

changed in tumours generating with the cells expressing the double cassette SMAD4-luciferase 

when compared to the luciferase expressing cells. 108 were up and 142 down regulated.  

The comparison between the expression profiles revealed that only a small proportion of the genes 

was affected by the establishment procedure and the expression of the reporter gene. These genes 

however, didn’t influence the cells behaviour during the tumour development and/or the metastatic 

process. The differences became more prominent when SMAD4 was re-introduced. The effect of 

the tumour suppressor was already appreciated by histological analysis and further confirmed at the 

molecular level. The analysis of differently expressed genes was performed to identify SMAD4 

dependent perturbations and the effects induced by the vector and the expression of the inert gene 

luciferase (Figure 30).  

 
Figure 30. Differential gene expression clustering.  
Genes that had an upregulation of at least 2 fold with FDR=0.1 are displayed with a Venn diagram in 
the left panel and genes with at least 2 fold downregulation are shown in the right one. In the left panel 
are reported the genes which up regulation is Smad4 dependent by intersecting those that presented 
at least 2 fold up-regulation in the comparison between tumors from the three cell lines. The same 
approach (right panel) was used to identify the genes which down modulation was Smad4 dependent.  
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The results are summarised as Venn Diagrams and the transcripts that were up or down modulated 

by the re-introduction of Smad4 (Table 17 and Table 18) as well as those that changed as a 

consequence of the selection procedure were isolated (Table 19). 

Genes up-regulated in Smad4 positive cells are mostly associated with cell motility whereas the 

luciferase expressing cells presented up-regulation in transcripts involved in the interferon a and 

the inflammatory pathway.  

The profiles were further investigated via Gene Set Enrichment Analysis (GSEA). This analysis 

compared the gene expression values generated in the microarray to the gene expression in the 

most common cancer hallmarks. The strongest enriched hallmark in cells expressing SMAD4 was 

the Epithelial to Mesenchymal Transition (EMT) as displayed in Figure 31.  

 

 

 

 

 

Figure 31. GSEA of Smad4 modified cells versus Luciferase expressing Capan-1.  
The GSEA analysis shows a strong enrichment for the hallmark underling the epithelial to 
mesenchymal transition in Capan-1 cells where the functionality of the tumor suppressor 
gene Smad4 was restored.  
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In accordance with previous publications, the re-introduction of SMAD4 in pancreatic cancer cells 

that harbour mutations in this gene, induces EMT transition (David, Huang et al. 2016). David et al. 

demonstrated with genetically modified mice that, when pancreatic cancer is induced and the cells 

harbour Smad4 mutations, the ex vivo rescue of this gene functionally induced the EMT transition 

that leads the apoptosis and cell death. The epithelial to mesenchymal transition is normally 

responsible for the cells acquired plasticity which triggers the metastatic process. In the presence of 

functional Smad4 however, upon TGF-b stimulation, the apoptotic pathway is triggered and the 

cells undergo the programmed cell death.  

The enrichment in the EMT hallmark was a clear sign of SMAD4 functionality in the tumour models 

generated with the pS/MARt vector system. Although active, the genes involved in the EMT 

transition, upon stimulation with TGF-bI, didn’t trigger the apoptotic pathway nor in culture nor in 

vivo. Likely, the Capan-1 culturing system in presence of Fetal Bovine Serum (FBS), which contains 

TGF-bI, induced a secondary aberration that allowed the modified cells to grow. They also have 

mutations in other key pathways and the resurrection of a single gene was unlikely to be able to 

inhibit the cells growth and inducing the cells death. Proteins involved in cell proliferation pathway 

were found up-regulated which probably compensated the apoptotic signals induced by the activity 

of SMAD4. Indeed, the cells did present activated hallmarks for the PI3K-Akt as well as high levels 

of DAPK1. PI3K-Akt is well known to induce cell proliferation and to be an antagonist of the TGF-

b pathway. DAPK1 also acts as an inhibitor of the apoptosis. It was demonstrated that it has pro-

proliferative properties in presence of mutated p53.  

The elucidation of the effect of SMAD4 in pancreatic cancer tumour biology is beyond the 

expertise of the lab and the aim of this project. The main question, however, was whether the 

vector was capable of sustaining the expression of a crucial tumour suppressor gene in a 

representative pancreatic cancer cells or not, and whether the cells modified with the S/MAR 

technology were a reliable tool for tumour modelling. The result clearly demonstrated that the 
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genetically engineered cells with the S/MAR technology formed a reliable and useful platform for 

the study of pancreatic cancer and that these cells could be taken for further studies. The interest 

of the lab was more on the “vectorology” and to understand better the interaction between the 

vector and the cell’s genome. The array data generated from the Capan-1 cells were then used to 

investigate which genes were perturbed but not SMAD4 dependent (Table 19). The GSEA analysis 

showed an enrichment for the hallmarks associated with inflammatory responses (Figure 32).  

 

 

 

The interferon a pathway is associated with the cellular immune response to viral infection. It is 

part of the innate immunity and it is triggered by cytoplasmatic proteins that can bind infectious 

agents’ genome during the translocation into the nucleus. The fact that these signature appeared 

enriched in the analysis suggested that also pS/MARt was recognised as a foreign entity and its 

presence induced an inflammatory state. Foreign DNA is certainly recognised by the cells during its 

translocation into the nucleus during the transfection process, but, upon establishment it should be 

Figure 32. Enriched hallmarks in Capan-1 luciferase cells compared to Capan-1 wild type. 
GSEA analysis of Capan-1 luciferase expressing cells show strong enrichment for the hallmarks 
underling the interferon a and the inflammatory responses when compared to wild type Capan-1. 
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treated as part of the cell genome. The cell inflammatory state even after orthotopic injection 

suggested two possibilities. In the first, the DNA is recognised during the transfection and the cells 

maintain a memory of its presence. In second the episomal DNA is sensed by the cellular DNA 

sensors at every replication when the nuclear membrane is disaggregated for the mitosis. During 

this process the nucleus is accessible for the cytoplasmic proteins that can bind the DNA and 

induce an interferon response which is also associated with chronic inflammation. How a cell senses 

the DNA, which are the proteins responsible for this process and where this process takes place is 

still unclear. There is evidence that the protein STING and TLR9 are involved in the binding of 

DNA in the cytoplasm and this binding leads to the triggering of the innate immunity. STING and 

TLR9 act both in the cell cytoplasm and they would be candidates also for pS/MARt recognition. 

TLR9 binds unmethylated CpG islands, like those that characterise the pUC Ori or the Kan 

resistance gene and STING has a high affinity for DNA. It is normally not active under normal 

conditions, since is unlikley that genomic DNA leaves the nucleus. However, if the recognition 

takes place in the nucleus, other proteins would be involved. The vector system developed would 

then, not only a useful tool for generating cancer labelled cells or tumor models, but it may also be 

a useful platform for studying the pathogen DNA-cell interaction. To replicate, DNA viruses need 

to access the nucleus and here they have to elude the cellular mechanism of recognition. Our 

system could be used to further investigate this mechanism and the events that characterise the 

establishment of a persistent viral infection. 
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3.15 Generating minimally sized Nano-S/MARt vectors  
 

The efficacy of the new pS/MARt technology for generating genetically modified cell-lines was 

described previously. Some cells such as primary human cells are typically refractory to transfection 

with traditional bacterial plasmids that contain a large bacterial backbone which comprise an 

antibiotic resistance marker, the pUC replication origin and other bacterial sequences which are 

not required for gene expression in mammalian cells. To overcome this key aspect of  toxicity 

which can be induced by bacterial sequences contained in these bacterial vector systems, we 

developed minimally sized next generation S/MAR DNA vectors based on Nanoplasmid™ 

technology in collaboration with Nature Technology Corporation (Luke, Carnes et al. 2014). The 

idea was to produce a novel, more modern, DNA vector platform suitable for genetically modifying 

cells with a particular interest for application to patient derived (PDX) pancreatic cancer cells. This 

novel DNA nano-vector is characterised by a minimally sized bacterial backbone and an antibiotic 

free RNA-Out selection system (Figure 33). In this class of vector the bacterial backbone is reduced 

to a small interfering RNA (iRNA) motif and they can be manipulated and expanded in a specially 

engineered strain of E.Coli. The selection of the transformed bacteria is made on LB-Agar, enriched 

with sucrose. The vector expresses a small RNA that can bind a complementary sequence on the 

mRNA produced from the bacterial genome, responsible for the production of the enzyme 

levansucrase. This protein converts the sucrose into a toxic compound that induces the bacterial 

death. When the plasmid is present in the prokaryotic cell, the iRNA binds its complementary 

sequence, the levansucrase production is inhibited and the bacterial cells survive and proliferate. 
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The isolation of the nano-vector DNA is then made via normal DNA preparation. Compared to 

other minicircle producing systems, the manufacturing of NTX nano vector technology generates a 

high yield of DNA and its preparation is very simple and cheap. We cooperated with NTX to 

develop a Nano-S/MAR vector for persistent and stable expression in dividing cells. The primary 

limitations of other minicircle production procedures is that the purification of the minicircles from 

the producer plasmid vectors is time consuming and inefficient. In order to generate minicricles an 

intramolecular recombination in the so called “producer” plasmid is induced and the desired 

minicircle vector has to be isolated and purified using specifically designed and proprietary columns. 

Figure 33. Selection of recombinant plasmid with the RNA-OUT system (NTX ™).  
For the selection of bacteria and propagation of the plasmids, the nano vectors produced from 
NTX present a small interfering RNA (iRNA) instead of an antibiotic selection marker. The 
plasmids are propagated in a engineered strain of E.Coli which express the enzyme 
Levansucrase (SacB). In the genome of the bacteria between the promoter (PR) and the gene 
there is a sequence (RNAin) that is complementary to the iRNA expressed from the plasmid. 
When this particular strain of bacterial cells are transformed with a NTX vector, it produces the 
iRNA, that can bind the complementary RNAin sequence on the RNA responsible for the 
production of the levansucrase. This RNA-RNA interaction inhibit the translation of the protein. 
In absence of the iRNA, the protein is produced and in presence of sucrose this enzyme 
induces bacterial death. If the translation is inhibited the protein is not formed and the bacteria 
can grow and expand in presence of sucrose.  
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Minicircle production requires also an additional purification step to remove concatenamers which 

are generated during the intracellular recombination event. In the RNA-OUT system from NTX 

there is no need of intramolecular recombination and the exclusion of the bacterial backbone. With 

this system is possible to generate large quantities of pure supercoiled DNA vector without the 

need of additional steps of purification. The pS/MARt vectors were retrofitted with the nano 

bacterial backbone from NTX to generate the Nano-S/MARt vector system. (Figure 34)  

 

 

 

The RNA-OUT system significantly reduced the size of the vector (Nano-S/MARt is 1 kb smaller 

than pS/MARt) which resulted in a higher number of transfecting DNA molecule per cell. The 

establishment of the vector is a stochastic process and if only the vectors that reach the correct 

site in the nucleus are able to establish, the delivery of a higher number of DNA molecule per cell, 

together with the reduced toxicity due to the absence of the bacterial backbone, should increase 

the cells establishment rate. To test the efficacy of this new class of plasmid, named NP (Nano-

Plasmid), pS/MARt.1 vectors and pS/MARt were retrofitted into NTX™ technology generating: 

Figure 34. Schematic representation of pS/MARt and Nano-S/MARt vector.  
The bacterial backbone of pS/MARt containing the Kan resistance and the pUC Ori was 
swapped for the RNA OUT system previously described. This process reduces the amount 
of potentially toxic bacterial sequences by ~30% and the size of a typical vector by 2 kb. 
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Nano-S/MARt, Nano-S/MARt-Ele40 and Nano-S/MARt-UCOE. The vectors were compared in a 

colony forming assay (Figure 35). DNA was delivered to HEK293T cells and 24 h after transfection 

the positive cells were FACS sorted (FACS Aria). 100 cells were plated into a 6 cm dish and three 

replicates were generated per vector.  

 

 

As expected the Nano-Vectors have a higher efficacy in generating established cells when compared 

to the respective pS/MARt. The experiment showed that the bacterial backbone had an effect and it 

might be the cause of the induction of the innate immunity or of chromatin induced silencing.  

  

Figure 35. Colony forming assay pS/MARt and Nano-S/MARt.  
The Nano-S/MARt version of the vectors previously tested was evaluated in a colony forming 
assay. The analysis was performed with a t-test and the data were considered significant with a 
p < 0.05 ( * p < 0.05). The transfection was standardised on the number of DNA molecule. 
Where necessary the number of DNA molecule was adjusted with a non-expressing pUC 
plasmid. Nano-S/MARt-Ele40 and Nano-S/MARt-UCOE produce the highest number colonies 
compare to all the version of pS/MARt that carry a bacterial backbone.  
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3.16 Application of Nano-S/MARt for the generation of 

Isogenic Patient Derived (PDX) pancreatic cancer cells  
 

The efficacy of generating genetically engineered cell lines with the pS/MARt technology was 

previously demonstrated (figure 11). In order to evaluate the efficacy of the new Nano-S/MARt 

platform a Patient Derived Pancreatic cancer cell line (Paco-2) was selected. These cells were 

isolated from an aggressive pancreatic tumour, they form reliable xenograft models and they carry a 

deletion in the Smad4 genetic locus. Paco-2 cells are typically very difficult to transfect and 

transduce due to their high “inflammatory” state (Noll, Eisen et al. 2016). The same approach used 

for genetically modifying Capan-1 cells was applied for the Paco-2 cells testing the new nano vector 

system. The workflow was first set up generating a line expressing the reporter gene GFP and then, 

it was used to try the rescue of Smad4. These cells were derived from a patient with pancreatic 

ductal adenocarcinoma and upon isolation they were expanded in NSG mice. The established 

tumours were then kept in culture in a well-defined medium. In contrast to Capan-1 which are 

grown in medium supplemented with FBS, the Paco-2 cells are cultured without TGFb. The rescue 

of the functionality of Smad4 leads to the reactivation of the TGFb pathway, thus avoiding the risk 

of inducing alternative mutations.  

Two different engineered cell lines were generated with the Nano-S/MARt technology. In the first 

the vector provided the GFP expression and in the second Smad4 expression was restored 

together with the reporter gene GFP. The modified cells were analysed via fluorescent microscopy, 

FACS and Western Blot (Figure 36). In the experiment performed with the Capan-1 no differences 

were observed between single cell clonal expansion and mixed populations, therefore for this 

experiment only mixed populations were expanded. 
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Figure 36. Analysis of the genetically engineered Paco-2 cell lines with the NanoS/MARt 
vectors. Paco-2 cells were transfected with NanoS/MARt-GFP and NanoS/MARt-Smad4-GFP and 
selected in presence of 0.5 µg/ml Puro for 1 week. After one single administration of Puromycin the 
cells were expanded and grown as mixed populations. The presence of positive cells was first 
determined via fluorescent microscopy and the populations were also analyzed by Flow Cytometry 
for the expression of the reporter gene GFP. The expression of the tumor suppressor Smad4 was 
determined with Western Blot and it was compared to the expression of the same gene in the Panc-
1 cells. The experiments proved the functionality of the transgenic expression cassette in vitro. 
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The molecular integrity of the Nano-Vectors in modified Paco2 cells was determined via Southern 

Blot (Figure 37).  

The analysis revealed that upon genomic DNA extraction and digestion with a single cutter, only 

one band of the same size of the respective linearized maxi prep control was detected. The 

absence of smires or alternative bands demonstrated the integrity as well as the stability of the new 

Nano technology. 

 

 

 

Microarray analysis was performed on RNA from cultured cells was extracted and analysed on a 

IlluminaHuman-12 Chip (Microarray analysis performed from the Genomic and Proteomic core 

facility, DKFZ). Four biological replicates were prepared per cell line and the differences in the gene 

Figure 37. Southern Blot analysis of the vector Nano-S/MAR-GFP and Nano-S/MAR-Smad4-GFP 
in Paco-2 cells.  
The maxipreps of the Nano-Vectors (first two lanes) and the total DNA from the modified Paco-2 cells 
were digested with the restriction enzyme BamHI and separated on a 1% agarose gel before being 
transferred on a nylon membrane. The GFP reporter gene was used to generate the radioactive probe. 
The plasmids isolated via total DNA extraction from established cells show an identical size to their 
respective reference controls. The absence of alternative bands or smires confirmed their episomal 
maintenance  
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expression was analysed with the Partek Genomic Suite software (Thermo Fisher). The RNA 

expression levels were introduced into the non-rooted hierarchical clustering tool of the software 

and they were also tested in a Principal Component Analysis (PCA) assay (Figure 38). 

 

 

 

The un-rooted hierarchical clustering showed that the samples produced 3 clusters that 

corresponded to the different cell lines. The phylogenic tree generated by the software was 

composed of two branches. In one, the wild type unmodified cells clustered with the Paco-2-GFP 

divided into two nodes. In the other, the replicates for Paco2-Smad4 were grouped. The analysis of 

the PCA confirmed the differences between the cell lines. In contrast to the results obtained with 

the Capan-1, in this data set, Paco2 cells modified with the Nano-S/MAR-GFP vector and the 

parental unmodified cells clustered in the same branch. The GFP and the Smad4 expressing cells 

underwent the same selection process but the use of the new vector induced significantly fewer 

changes at the transcriptional level. To investigate which genes were changing, the RNA profiles 

Figure 38. Paco2 microarray analysis. Un-rooted hierarchical clustering and PCA. 
Total RNA from pancreatic tumors was extracted (RNAeasy Kit, Qiagen) and the expression 
profiles were determined by microarray hybridization with a Human Illumina-12 Chip. Genome 
wide RNA expression values were analyzed with the Partek Genomic Suite software in a non-
rooted hierarchical clustering test (left panel) and a PCA assay (right panel). Pancreatic tumors 
from three mice per group were considered for the study.  
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from these cell lines were compared with a cut off of >2 fold and <-2 fold with a FDR=0.1  

(Figure 39). Only 5 genes appeared up-regulated in Paco-2 expressing the reporter gene GFP and 

modified with the Nano-S/MAR, whereas several hundreds were perturbed when Smad4 was re-

introduced.  

 

 

 

 

GSEA analysis were used to prove Smad4 functionality. The enrichment in two pathways which 

activity is strictly dependent from Smad4 were found. The EMT transition, also found in Capan-1-

Figure 39. Genome wide RNA profiles analysis on Nano-S/MARt modified Paco2 cells. 
RNA from cultured cells was extracted and used for microarray analysis on a 
IlluminaHuman.12 chip. The array was performed in the DKFZ Genomic and Proteomic Core 
Facility and also the normalization across the samples was performed there. For the analysis, 
RNA from 4 independent extractions were analyzed per cell line. The gene expression was 
evaluated with the Partek Genomic Suite Software (Thermo Fisher). A cut off of > 2 fold and 
 <-2 fold, FDR = 0.1 was applied to study the expression differences.  
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Smad4 modified cells, and the TGFb-pathway demonstrated the functionality of the Nano Vector 

technology (Figure 40).  

 

 

 

0.5x105 cells were then injected orthotopically into NSG mice and the xenografted tumours in the 

pancreas were evaluated for morphology, proliferation (Ki67 staining) and Smad4 expression 

(Figure 41). Tumours formed from cells engineered with the Nano-S/MARt providing the 

expression of the reporter gene GFP presented the same morphology to those formed with the 

unmodified parental Paco-2 cells. They were characterised by highly differentiated ductal structures 

and showed high recruitment of fibroblasts that stained positive for Smad4. In mice injected with 

cells where Smad4 was rescued no tumour masses were detectable. The histological analysis 

confirmed the presence of small, dormant and inert patches of cells which resulted positive for 

Smad4 expression but that did not show proliferation activity (negative cells for Ki67).  

Figure 40. GSEA analysis of Paco-2 Smad4-GFP modified cells with the Nano-
S/MAR vector system. 
The GSEA analysis shows a strong enrichment for the hallmark underling the epithelial 
to mesenchymal transition and the activation of the TGFb pathways in Paco-2 cells 
where the functionality of the tumor suppressor gene Smad4 was restored when 
compared to wild type Paco-2 cells and cells expressing the reporter gene GFP. 
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Figure 41. Immunohistological assessment of primary tumors formed from the 
modified and parental Paco2 cells.  
Primary tumors obtained from the orthotopic injection of the modified and not modified Paco-
2 cells were assessed for the phenotype, the expression of Smad4 and the proliferation via 
staining of Ki67. 
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The Paco-2 cells modified with the reporter gene maintained their original behaviour demonstrating 

that the episomal Nano Vector was not having any effect on the cells behaviour nor on their 

molecular integrity. Therefore all the observed effect in the Smad4 rescued cells were attributed to 

the functionality of the tumour suppressor gene.  

 

3.17 Nano-spliced-S/MAR vector: a DNA vector that mimics 

a mammalian genomic endogenous gene 
 

It was mentioned previously that in order to be functional in a plasmid the S/MAR region has to be 

placed in a transcriptionally active expression cassette. However, it was also demonstrated that 

transcripts that contain this sequence or those generated from cDNA are less stable than those 

produced from a cell’s genome. Normally, an RNA that encodes for a protein is composed of 

characteristic intro-exon structures and it undergoes a splicing process in which the non-coding 

sequences are removed. This mechanism is mediated by proteins that remain bound to the mature 

mRNA, stabilising it until it is translated into a polypeptide. In order to mimic the RNA maturation 

process that normally takes place in eukaryotic cells, the sequences necessary for the splicing were 

added before and after the S/MAR motif in the pS/MARt vector. The idea was to generate a pre-

mRNA that started from the leader sequence of the expression cassette after the promoter and 

ended after the S/MAR and presented all the sites necessary to recruit the splicing proteins  

(Figure 42). 
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Figure 42. Schematic representation of the RNA maturation process. 
In the upper panel a representation of the process of RNA maturation in a eukaryotic 
cell is represented. In the lower one a representation of how the pS/MARt vector will 
mimic this procedure is displayed. 
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The vector was named Nano-S/MAR-splice and it was evaluated in Hek293T cells in comparison 

with the most up to date respective Nano-S/MAR vector. Cells were established with the standard 

protocols which required the application of Puromycin (0.5 µg/ml) for one week before expansion 

for at least 30 days. The established populations were analysed for the expression of the reporter 

gene GFP via FACS and the GFP RNA levels were evaluated via qPCR (Figure 43).  

 

 

 

The reporter gene expression in cells established with the Nano-S/MAR-splice vector was higher 

than in cells established with the non-spliced MAR plasmid. The maturation of the RNA with the 

binding of the splicing proteins increased the mRNA stability and corresponding expression. The 

efficacy in establishing cells was also tested in HEK293T through colony forming assay and it was 

demonstrated (Figure 13) that this plasmid had the highest efficacy in generating established cells 

producing the highest number of colonies. 

This preliminary data encouraged further experiments in which the molecular events that undergo 

the transgenic RNA generated from this vector have yet to be validated.  

Figure 43. Nano-S/MAR-splice GFP expression Vs Nano-S/MAR.  
The GFP expression was evaluated in the established population via FACS and the RNA 
levels were then confirmed via qPCR. The expression of the reporter gene was compared 
to the expression of the endogenous gene GAPDH. The fluorescent intensity as well as the 
relative RNA levels in cells established with the Nano-S/MAR-splice vector are higher than 
in cells treated with the respective un-spliced version of the plasmid.  
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3.18 pS/MARter: the ultimate design of S/MAR DNA  

plasmid vectors. 
 

Broll et al. (Broll, Oumard et al. 2010) demonstrated that a minicircle harbouring a human  

b-interferon S/MAR sequence undergoes spontaneous rearrangements and that these structural 

changes take place within the MAR element. They concluded that during cell replication and 

segregation of the chromosomes the fragile MAR sequence was readily damaged and was reduced 

to a minimally sized (200-300bp) attachment sequence. They hypothesised this to be an 

evolutionary process because it was found that the breaking point was always in the 5’ region of the 

genetic element.  

Since 1977 it has been known that the nuclear matrix organizes the 25 million nucleosomes in a 

single mammalian nucleus forming approximately 60.000 chromatin loops. This is achieved by the 

binding of nuclear matrix proteins to characteristic DNA landmarks in introns as well as proximal 

and distal flanking 5’ and 3’ ends of genes. (Paulson and Laemmli 1977, Gasser and Laemmli 1986). 

MAR, Ori and homeotic protein binding sites share common DNA sequence motifs (Boulikas 

1992). In particular, the ATTA and ATTTA motifs which constitute the core elements recognized 

by the homeobox domain from different species frequently occur in the matrix attachment sites of 

several genes as well being present in the sequences of different origins of replication such as yeast 

and viruses. The sequence of the b-INF MAR isolated by Lipps and collaborators in 1999 and used 

as anchoring site for the DNA plasmid, its replication and episomal maintenance (Figure 44) was 

analyzed for the presence of these recurrent motifs.  
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TAATGAATGTCTAAGTTAATGCAGAAACGGAGAGACATACTATATTCATGAACTAAAAGACTTAATATTGTGA

AGGTATACTTTCTTTCCACATAAATTTGTAGTCAATATGTTCACCCCAAAAAAGCTGTTTGTTAACTTGCCAA

CCTCATTCTAAAATGTATATAGAAGCCCAAAAGACAATAACAAAAATATTCTTGTAGAACAAAATGGGAAAGA

ATGTTCCACTAAATATCAAGATTTAGAGCAAAGCATGAGATGTGTGGGGATAGACAGTGAGGCTGATAAAATA

GAGTAGAGCTCAGAAACAGACCCATTGATATATGTAAGTGACCTATGAAAAAAATATGGCATTTTACAATGGG

AAAATGATGATCTTTTTCTTTTTTAGAAAAACAGGGAAATATATTTATATGTAAAAAATAAAAGGGAACCCAT

ATGTCATACCATACACACAAAAAAATTCCAGTGAATTATAAGTCTAAATGGAGAAGGCAAAACTTTAAATCTT

TTAGAAAATAATATAGAAGCATGCCATCATGACTTCAGTGTAGAGAAAAATTTCTTATGACTCAAAGTCCTAA

CCACAAAGAAAAGATTGTTAATTAGATTGCATGAATATTAAGACTTATTTTTAAAATTAAAAAACCATTAAGA

AAAGTCAGGCCATAGAATGACAGAAAATATTTGCAACACCCCAGTAAAGAGAATTGTAATATGCAGATTATAA

AAAGAAGTCTTACAAATCAGTAAAAAATAAAACTAGACAAAAATTTGAACAGATGAAAGAGAAACTCTAAATA

ATCATTACACATGAGAAACTCAATCTCAGAAATCAGAGAACTATCATTGCATATACACTAAATTAGAGAAATA

TTAAAAGGCTAAGTAACATCTGTGGCAATATTGATGGTATATAACCTTGATATGATGTGATGAGAACAGTACT

TTACCCCATGGGCTTCCTCCCCAAACCCTTACCCCAGTATAAATCATGACAAATATACTTTAAAAACCATTAC

CCTATATCTAACCAGTACTCCTCAAAACTGTCAAGGTCATCAAAAATAAGAAAAGTCTGAGGAACTGTCAAAA

CTAAGAGGAACCCAAGGAGACATGAGAATTATATGTAATGTGGCATTCTGAATGAGATCCCAGAACAGAAAAA

GAACAGTAGCTAAAAAACTAATGAAATATAAATAAAGTTTGAACTTTAGTTTTTTTTAAAAAAGAGTAGCATT

AACACGGCAAAGCCATTTTCATATTTTTCTTGAACATTAAGTACAAGTCTATAATTAAAAATTTTTTAAATGT

AGTCTGGAACATTGCCAGAAACAGAAGTACAGCAGCTATCTGTGCTGTCGCCTAACTATCCATAGCTGATTGG

TCTAAAATGAGATACATCAACGCTCCTCCATGTTTTTTGTTTTCTTTTTAAATGAAAAACTTTATTTTTTAAG

AGGAGTTTCAGGTTCATAGCAAAATTGAGAGGAAGGTACATTCAAGCTGAGGAAGTTTTCCTCTATTCCTAGT

TTACTGAGAGATTGCATCATGAATGGGTGTTAAATTTTGTCAAATGCTTTTTCTGTGTCTATCAATATGACCA

TGTGATTTTCTTCTTTAACCTGTTGATGGGACAAATTACGTTAATTGATTTTCAAACGTTGAACCACCCTTAC

ATATCTGGAATAAATTCTACTTGGTTGTGGTGTATATTTTTTGATACATTCTTGGATTCTTTTTGCTAATATT

TTGTTGAAAATGTTTGTATCTTTGTTCATGAGAGATATTGGTCTGTTGTTTTCTTTTCTTGTAATGTCATTTT

CTAGTTCCGGTATTAAGGTAATGCTGGCCTAGTTGAATGATTTAGGAAGTATTCCCTCTGCTTCTGTCTTCTG

AAAGAGATTGTAGAAAGTTGATACAATTTTTTTTTCTTTAAATATTTGATA 

Figure 44. DNA sequence of the b-Interferon MAR from Homo Sapiens.  
The DNA binding motives ATTA is presented in green and the ATTTA in dark yellow.  
 
 

Although in this MAR the motifs are particularly enriched (18 motifs in 1955 bp), they seem 

randomly distributed within the sequence and no conserved structure could be identified. We 

wondered whether a better MAR could be found and we identified that the ApoB gene might be a 

good candidate. In comparison to the b-interferon MAR, the one that is part of the human 
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apolipoprotein B gene is almost entirely composed of a contiguous stretch of 555 bp comprising of 

a mosaic of the ATTA-ATTTA (Figure 45). 

 

TTAAGAGCCTAAAGAGCATACATGTATGCTGGGTCACAGAATTGTTAGGAATCTACATCTCCACCCCTCCTCT

CCCAATCATACTTTCTTGGCCTTGAATGGATCCTGGCAGAGCTCCAGGGAGACATCTGGGGTCCGTATTGCCA

TGAAGCCCCTGGGGCTAGGACTCCCTAGCCATTCCTTCTCCACTCCTGGCAGGCTGAGTGAAATAAAGGACTT

GTTATTTCATCTCGAGGCCTACCGGAGAGCCTTGCCTTGCAAAGGCAGACAGTCAGTGAGGAAGACTATGTGG

CACATGAAGACACCAGAGGTGTTCCTCAGGATCAAAGTATGTACAAGCCTTTGTGAATATTTTTTCCTTCTCA

CTTGGCAAATACAATTCCTGAGATCAATAACCTCGTCTTTTTAATTTTTTCCTCGTCTTTTTAACTATTTATA

AAATATTGAATTATAAAATATGTAATTATAAATACTTTAATTATAAAATATGTAATTATAAATACTTTAATTA

TAAAATATGTAATTATAAATACTTTATAAAATATGTAATTATAAAATATGTAATTATAAACATTTTAATTATA

AAATATGTAATTATAAACATTTTAATTATAAAATATGTAATTATAAACATTTTAATTATAAAATATGTAATTA

TAAACATTTTAATTATAAAATATGTAATTATAAACATTTTAATTATAAAATATTTAATTATAAACATTTTAAT

TATAAAATATTTAATTATAAATATTTTAATTATAAAATATTTAATTATAAATATTTTAATTATAAAATATTTA

ATTATAAATATTTTAATTATAAAATATTTAATTATAAATACTTTAATTATAAAATATTTAATTATAAATATTT

TAATTATAAAATATTTAATTATAAATATTTTAATTATAAATATTTTAATTATAAAATATTTAATTATAAAAAC

ACAATTACCTCATCTTTTTAAATATTTTTGCAAAATATTTCCCTCCATAATTTCTCCGTTTCCATTTTTATTC

TGTTACTTAAATCACACTATGTGTTCTAGAGGTTTTGCTGTGCCAGAACATTTTATCAATGCCCTCGTTTCAC

TGTCTTTCAATACAAATGAGCCACATTCAGTGGTATGATACACAATAAAGACTCCATTTATTTGTTCCTCCTC

CCCCAAGTTTAGCAAAATAACTCAGATCCTGATTTTCTTTAACTTGCAAAAAATGCCATCCTTCTGAGTTCAG

AGACCTTCCGAGCCCTGGTGCCAGCTTTGGTGCAGGTCCAGTTCATATGTGCTTCTGCTTATAGTCTACTGCC

TACTGCAAGGCTGGCTCACTGTATGGTTTTATCAATATAGGCAGTTTGAATTTTTTCTGTGCTATGTGAAAGT

TCAATTGGAAAAGAAGAATAAATGAAGATTTCTTTTAAAAAATTAGAGGATGATAGTAAGTTCTCCTGGAGCA

AGCTTCATGTAGGGGTTCATGACTGTGGTTGATTGCAGCTTTTTCAGTAACTCCGTGATGTATATCAGAAATG

TGTGGTAGTTTTGAATGGACAGGTCAATCAATCTTTTGGATTCAGCAATAAATTTTTCATAGTAATCAGAGAG

TTGGTCTGAAAAATCTTGCAGTTTATATCTAAACT 

Figure 45. DNA sequence of the Apolipoprotein B MAR from Homo Sapiens.  
The ATTA motif is displayed in green, whereas the dark yellow show the ATTTA sequence. In light blue 
is shown the DNA sequence that was use for the cloning of this DNA stretch into the pS/MARt backbone.   
 

 

45 motifs are present in this 1600 bp DNA sequence and a repetitive conserved structure can be 

detected. The 11 bp sequence TAAATATTTTA divides two ATTA domains and the this very defined 

conserved structure may form an ideal binding site for the formation of stable DNA-protein 

complexes. Due to the high CpG content of the 5’ and 3’ end of the sequence, only the core 
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repetitive domain of this MAR was isolated and cloned into pS/MARt backbone substituting the 

original MAR element. Besides one or two trials, the possibility of testing a novel sequence has not 

been exploited because it was demonstrated that alternative smaller MARs were not as efficient as 

the b-interferon one. The highly conserved structure of the Apolipoprotein MAR, suggested that 

this sequence might also act as a anchoring sequence for a DNA vector. Its potential in mediating 

the extrachromosomal replication of the vector was then tested. The episome harboring this novel 

MAR was named pSMARter and its capability in genetically modifying dividing cells was tested in 

HEK293T. In a first preliminary test, cells transfected with pS/MARter were cultured  in presence 

of Puromycin (0.5 µg/ml) for 1 week and expanded in absence of selection. The established cells 

were tested for the expression of the reporter gene GFP via fluorescent microscopy and the 

molecular integrity of the new plasmid was investigated via plasmid rescue (Figure 46). The cells 

resulted positive for the expression of the reporter gene GFP and the episomal maintenance of the 

vector was demonstrated. The gDNA from the modified HEK293T cells was extracted and it was 

used to transform DH10B E.coli. 12 bacterial colonies were picked, digested with the enzyme 

BamHI (a single cutter in the plasmid sequence) and analyzed on an agarose gel. All the colonies 

showed the same restriction pattern and it was equivalent to the one obtained from the digestion 

of the maxi preparation used to transfect the cells at the beginning of the procedure. 

This experiments represent for the first time that a novel, functional alternative MAR sequence is 

able to mediate the episomal maintenance and extrachromosomal replication of plasmid DNA in 

the nucleus of actively dividing cells. The possibility of using this new anchoring sequence as a base 

for a novel vector platform was exploited and its efficacy in establishing cells was compared to 

pS/MARt and to the Nano-S/MAR series of plasmids in a colony forming assay (Figure 13). The 

vector based on the novel MAR sequence established cells with a lower efficiency than the Nano-

S/MAR-splice plasmid but it was as efficient as the other Nano vectors and better than the pS/MARt 
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series. Considering that this plasmid is still in a “normal” version with a bacterial backbone, the 

introduction of this new anchoring sequence dramatically increases its efficacy in establishing cells. 

 

 

 

 

  

Figure 46. Testing of pS/MARter in HEK293T cells and analysis of the molecular integrity 
of the vector upon cell establishment. 
Hek293T cells were transfected with the plasmid pS/MARter and selected with Puro (0.5 µg/ml) 
for 1 week. After the selection round the cells were grown in absence of Puro and expanded. An 
established mix population was tested via fluorescent microscopy for the expression of the 
reporter gene GFP and the molecular integrity of the plasmid was assessed via plasmid rescue. 
For the plasmid rescue the gDNA from established HEK293T was extracted with the 
Blood&Tissue DNAeasy kit (Qiagen) and transformed into DH10B E.Coli. The bacterial were 
grown on LB-Agar plates with Kanamycin. The resulting colonies were picked and grown in liquid 
LB medium with Kan overnight and the plasmid DNA was extracted with the MiniprepKit 
(Qiagen). For the analysis of the vector, the DNA mini preparations were digested with the 
restriction enzyme BamHI (Thermo Fisher) and the restriction pattern was addressed on a 1% 
agarose gel. As control the DNA used for transfecting the cells at the beginning of the 
establishment procedure was digested with the same enzyme and run as a reference. All the 
rescued plasmid show an identical restriction pattern to the one generate with the control vector. 
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3.19 An ultimate test of S/MAR vector activity – 

Genetic Engineering of primary human T Cells  
 

Immunotherapy is currently one of the most exciting and successful therapeutic strategies for the 

treatment of cancer. Recently, the FDA approved Kymriah™, the first cancer therapy with in vitro 

engineered T Cells for the treatment of Acute Lymphocytic Leukemia (ALL). Currently the genetic 

modification of these cells is achieved thorough the integrative lentivirus or the sleeping beauty 

transposon systems. Although the T cells modification via viruses is considered safe, severe side 

effects in the long term such as those already described by Hacein, Von Kalle et al.  (Hacein-Bey-

Abina, Von Kalle et al. 2003) represent the major risk for this treatments.  

The new S/MAR technology was challenged for its capability of generating genetically modified 

human primary T cells. As a proof of concept the sustained and stable expression of the reporter 

gene GFP was investigated. pS/MARt was delivered into freshly isolated Peripheral Mononucleated 

Blood Cells (PBMC) and the GFP expression was monitored for 12 days (Figure 47).  

 

Figure 47. CD8+ cells expressing the reporter gene GFP.  
pS/MARt vectors were delivered into freshly isolated PBMC via electro transfer (Amaxa 4D Nucleofector, 
Lonza) and the GFP expression was monitored over a 12 days time window. The plasmid is not able to 
sustain the stable expression of the reporter gene that drop dramatically within 12 days of delivery.  
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The DNA vectors were delivered via electro transfer (Amaxa 4D Nucleofector, Lonza) and 6 h 

after the electroporation the cells were cultured in wells coated with human anti CD3/CD28 and 

interleukine-2 (IL-2). This culturing system allowed the expansion and the proliferation of only 

cytotoxic lymphocytes CD8+. The number of cells expressing the reporter gene over was 

monitored once a week via FACS . The efficiency of the DNA delivery was approximately 30% and 

the number of cells expressing the transgene decreased constantly within the first two weeks of 

delivery. The experiment was repeated with plasmid in which the expression of the reporter gene 

GFP was driven from a different promoter such as, PGK and EF1a but the same trend was 

observed (data not shown). pS/MARter and Nano-S/MARt were then challenged in these difficult 

primary cells. The same approach was used and upon DNA delivery into freshly isolated PBMC, the 

GFP expression was monitored for 34 days (Figure 48).  

 

 

These plasmids were able to sustain the expression of the reporter gene for the whole period of 

the experiment, whereas the plasmids lacking the MAR and pEPI showed a dramatic decline within 

Figure 48. GFP expression in primary human T cells. 
Four different vectors were tested for their capability in sustaining the expression of the reporter gene 
GFP in human T cells. The plasmids were delivered to freshly isolated PBMCs via electro-transfer 
(Nucleofector Device Y, Lonza) and the cells were cultured in presence of IL-2 (5µg/ml, Biolegend) for 
34 days . Every 7 days the cells were checked for the transgene expression and their growth was 
stimulated via addition in the media of the antibody anti-CD28(Bioegend) and anti- CD3 (Biolegend). 
The Nano-S/MAR vector is able to sustain the expression of the reporter gene for 34 days in these cells 
but although it has a small decline during the last week. Instead pS/MARter provided more stable and 
persistent transgene expression in freshly isolated PBMC for at least 34 days.  
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10 days of delivery. The GFP reporter gene was swapped for the transgenic T Cell Receptor (TCR) 

MART1. This TCR is able to recognize and bind cells expressing the peptide MelanA, a 

characteristic epitope in melanoma cancer cells. In contrary to what observed with the reporter 

gene, when the vector expressing the TCR MART1 was introduced into T cells, the receptor 

expression was sustained at high levels only for a short period of time (Figure 49). The possibility of 

the silencing of the transgene induced by the promoter was tested. Plasmids in which MART1 

expression was driven by the CMV, EF1a, CAG, PGK and ROSA26 promoter were tested but they 

resulted in the same expression trend. 

 

Figure 49. MART1 TCR expression in human T cells. 
pS/MARter expressing the TCR receptor MART1 was delivered to freshly isolated PBMCs. The TCR 
expression was monitored via FACS. The expression of the receptor was measured with the antibody 
mTCRb PE (Biolegend) in relation to isotype antibody control (Hamster IgG PE, Biolegend). The 
plasmid can not provide a stable expression of the T Cell Receptor that decreases constantly 5 days of 
delivery. 
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The fact that the vector is able to sustain the expression of the transgene GFP for over a month 

demonstrate that the technology is suitable for genetic engineering of this cells but, the short 

expression of the TCR demonstrate also that further optimizations is required.  

This DNA vector technology would provide several advantages over the currently used systems. It 

is cheaper, easier and more safe to produce and manipulate. The high safety profile is given from 

their reduced toxicity as they avoid potential side effects induced by random integration. It is 

proposed a novel technology for the safe introduction of T-Cell receptors or Chimeric Antigen 

Receptor (TCRs or CARTs) into naive Human T-Cells with the scope of using them for 

autologous-immunotherapy.  
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4 Discussion 
 

4.1 Current state of art for the persistent modification of 

cells. Drawbacks and limitations.  
 

The potential to genetically engineer mammalian cells with non-integrative systems represents an 

attractive field of research. Many viruses have been attenuated and utilized as vectors for the 

transfer of genetic material into cells. This process takes advantage of the infectious nature of 

viruses and modified lentivirus, adenovirus and others are widely used for persistently modifying 

cells in research and also for therapeutic applications. The inherent nature of these viral vectors can 

and does lead to potential problems such as unexpected cellular proliferation induced by the 

random integration of the viral genome (Hacein-Bey-Abina, Von Kalle et al. 2003) and/or cell 

transformation. It was reported from Henderson et al. (Henderson, Rowe et al. 1991) that some 

viral proteins such as the latent membrane protein 1 (LMP1) from the EBV virus is able to 

upregulate the expression of the cellular endogenous genes bcl-2 inducing an uncontrolled 

proliferation. Even episomally maintained viruses such as Adenovirus were shown to cause severe 

side effects inducing strong adaptive immune responses against the viral capsid (Gregory, Nazir et 

al. 2011). However, despite the intrinsic risks related to the use of engineered infectious agents, 

cells genetically modified with viruses are still wildly use for basic research and in clinical trials. 

Recently, the FDA approved the autologous treatment of leukemia with lymphocytes modified with 

an integrative lentivirus.  

The necessity of developing alternative less toxic vectors has driven the creation of novel 

approaches such as CRISPR/Cas9 and sleeping beauty transposons. These alternative systems in 

some cases do not require delivery via viruses which potentially reduces their capacity for 

developing severe side effects. However, in the sleeping beauty transposons, to produce a 
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mammalian cassette that is constitutively expressed the genetic material has to be integrated into 

the cellular genome. The nature of the integration remains random and the expression of the gene 

of interest can be very different within cells from the same population. Integrated DNA can be 

silenced and it can induce cis activation or repression of surrounding genes. The CRISPR/Cas9 

system instead, is a technique that allows the precise editing of cellular genome. It was shown to be 

very efficient when it was applied in single nucleotide modification (Cong, Ran et al. 2013) but it 

showed its limitations when it was tested for the re-introduction or deletion of genes. It was 

estimated that the efficiency in re-introducing a gene in its locus was about 5% (Paquet, Kwart et al. 

2016). The possibility of off target effects and ethical discussions regarding the application of 

genome editing techniques in humans still represent major problems.  

 

4.2 pEPI: a non viral system that lacks stability  
 

The autonomous replicon pEPI vector which was first described in 1999 (Piechaczek, Fetzer et al. 

1999) represented an opportunity to develop alternative vectors for the field of cell engineering 

and gene therapy. It opened the possibility of modifying cells with a DNA plasmid platform that was 

able to provide sustained transgene expression and autonomous extrachromosomal replication. 

This prototype vector was described to be efficient in genetically modified providing persistent 

transgenes expression in a range of cells in vitro, and it was also shown to be able to sustain the long 

term expression of genes when delivered directly in vivo in the liver of mice.  

When we started to develop and apply this vector platform with the aim of generating isogenic cell 

lines, we realized that the efficacy of this technology in generating persistently modified cell lines 

was very low. The major problem faced was related to the instability of the plasmid once delivered 

into the cells. We demonstrated that a significant proportion of cells in a population that was kept 

under antibiotic selection for several weeks was negative for GFP transgene expression (Figure 7) 
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when tested via Flow Cytometry. We decided then to investigate whether the problem of such a 

low number of positive cells was related to the vector stability. We hypothesized that once 

delivered into the cells the pEPI plasmid was undergoing random rearrangement. A plasmid rescue 

assay (Figure 8), showed that the plasmids that were retrieved from established cells didn’t have the 

same molecular size as the control vector. pEPI derived DNA was still maintained in its episomal 

form but surprisingly the rescued plasmids were smaller with a different restriction pattern which 

confirmed the hypothesis of instability. Probably the constant selection pressure applied to those 

cells, selected those vectors that had a functional antibiotic cassette but not transgene expression.  

 

4.3 The potential of minicircle technology 
 

Minicircles have been shown to provide higher and more sustained transgene expression (Bigger, 

Tolmachov et al. 2001). The generation of S/MAR minicircles further improved the DNA vector 

technology for its application in animal studies and it also increased its efficacy in vitro. These class of 

vectors are produced in bacterial cells but they lack the bacterial backbone. The introduction of 

two Flp sites before and after the mammalian expression cassette allow, upon Cre recombinase 

induction, the production of a vector that comprises exclusively the promoter-transgene-S/MAR 

cassette. The prototype pEPI as well as the minicircle establish within a certain number of vector 

copies but the expression levels of the minicircle vectors are higher when compared to normal 

plasmids. When S/MAR minicircle were delivered to the liver of mice (Argyros, Wong et al. 2011) 

they were shown to provide a longer and higher level of expression of transgenes which leads to 

the suggestion that epigenetic features and DNA composition strongly influence the regulation of 

the expression from a non-viral episome. Minicircles then, minimize the potential innate immune 

reaction due to a reduction in their CpG content which is typically very abundant in the pUC Ori 

or in the antibiotic resistance gene. Intracellular nucleic acid sensors like the TLR9 can bind to 
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unmethylated CpG islands which leads to an innate immune response. Small interfering RNAs then 

can be generated from features of the bacterial backbone, such as the Ori, and they can lead also to 

transcriptional inactivation (Chen, He et al. 2003). Although this class of DNA vectors was 

demonstrated to be particularly efficient, restricted access to this technology, limited their 

application and development.  

 

4.4 pS/MARt - a stable DNA Vector episomally maintained 

in dividing cells 
 

Initially the aim of this project was to generate a range of luciferase labelled isogenic cell lines with 

the S/MAR plasmid pEPI and to utilize those for testing experimental drug compounds 

in vitro and in in vivo xenograft models. The focus of the DNA vector lab was, however, on the 

development of this DNA vector as a platform for a range of applications. As we became aware of 

the limitations and inefficiency of the original prototype pEPI vector such as low establishment rate 

and its instability issues we shifted the attention of this project towards the development of a new 

S/MAR DNA vector platform which could overcome these limitations.  

Primarily, the idea was to produce a tool which could be used to consistently and easily generate 

genetically modified cell lines of high purity and homogenicity, in which the number of non-

expressing cells was reduced to a insignificant fraction.  

The first modification we made to the vector was rather simple but proved significant to the 

functionality of the S/MAR. In the prototype pEPI vectors the mammalian selection marker was 

combined with the bacterial gene and this was expressed from within the bacterial backbone. To all 

extents of purpose, the expression of this gene had no correlation to the activity of the S/MAR and 

as we discovered it could be active providing drug resistance even in the absence of the transgene 

cassette. We decoupled the expression of the transgene and linked it to the expression of the drug 
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resistance Puromycin (Figure 9). This small change overcame several limitations of the previous 

vector system. It allowed the possibility of fine regulation of the transgene without limiting the 

functionality of the S/MAR motif. It also improved the establishment of the cellular clones making 

their formation part of an active process (Figure 10) which can be directly controlled by levels of 

selection pressure applied to the cells. Our next aim was to boost and sustain the expression of the 

cassette that drives the S/MAR.  Genomic elements, such as the anti-repressive element 40 (Kwaks, 

Barnett et al. 2003) were introduced into the vector to provide insulating boundaries within the 

construct that prevent its silencing through the spread of inactive chromatin from the nearby 

bacterial backbone. It was introduced before the mammalian promoter and the protection from 

this element provided to the expression cassette, increased the S/MAR vector establishment 

efficiency by 10 fold when compared to the pEPI vector prototype (Figure 11) as well as the 

transgene expression by 3 fold. The anti-repressive element 40 was discovered as a genetic element 

that is able to block chromatin- associated repressors. How this element counteract distinct 

repressors is still unclear but it is likely that it may interfere with the spreading of histone 

deactetylation and methylation patterns that are characteristic of a repressive state by recruiting 

DNA binding proteins such as transcription factors and others. This boundary element was 

selected over enhancer sequences or two adjacent promoters because it was reported that these 

combinations in some cases resulted in transcriptional interference with negative effects (Shearwin, 

Callen et al. 2005).  

We named this updated, more efficient, genetic tool pS/MARt. This new DNA vector was not only 

suitable for generating populations of cells marked with reporter genes but also allowed the 

generation of genetically modified isogenic cancer lines which required more sophisticated control 

of transgene expression.  
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4.5 Generation of isogenic pancreatic cancer cells 

expressing the reporter gene Luciferase 
 

With the new vector platform, Luciferase labelled pancreatic cancer cells were generated and the 

reliability of the genetic modified cells was confirmed in vitro and in vivo (Figure 19). These cancer 

cell lines showed a proliferation rate that was comparable to the unmodified controls and when 

used in orthotropic xenograft studies formed tumours that were phenotypically identical to the one 

formed from the parental control cell lines. As a proof of principle the cell line BxPC-3 was 

xenografted into nude mice and the cells modified with the episomal vector pS/MARt expressing 

the reporter gene Luciferase formed a tumour that had the same morphology as the parental 

BxPC-3 cells. The stable expression of the reporter gene Luciferase in the xenografted cells was 

evaluated via in vivo imaging and immunohistochemistry and we could conclude that the modified 

cells generated a reliable non-invasive imaging platform that was also used to test a novel pancreatic 

antic cancer drug (Figure 20 and 21). All the cells in the tumour masses contributed to the 

transgene expression avoiding the risk of mosaicism induced by the random silencing of foreign 

genetic material. The cells modified with the S/MAR technology are currently used in the evaluation 

of new anti-cancer compounds by Pharmatest Service, Turku (Finland).  

 

4.6 SMAD4 and its role in pancreatic cancer development  
 

A significant challenge in cell biology is the restoration of repressive or suppressive genes into cells 

which can function more effectively in their absence. The restoration of tumour suppressive genes 

into cancer cells which have lost them as part of their tumorigenic development present such a 

challenge. In pancreatic cancer one of the fundamental mutations which leads to aggressive tumour 

formation and metastasis is the loss of the tumour suppressor SMAD4. This gene’s normal function 
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is to induce programmed cell death upon stimulation from TGFb. SMAD4 protein normally shuttles 

from the nucleus to the cytoplasm. When a TGFb molecule binds its receptor it induces the 

phosphorylation of the cytoplasmic proteins SMAD2 and SMAD3. They then bind SMAD4 forming 

a trimeric complex that translocates into the nucleus and acts as a transcription factor. This 

activation induces the transcription of several genes, most of them involved in the cell cycle arrest 

such as p21. The loss of the gene prevents the formation of the complex and the blocking of this 

inhibiting pathway leads to uncontrolled cell proliferation.  

We initially elected to rescue the functionality of SMAD4 in the pancreatic cancer cell line Capan-1. 

These cells represent a typical pancreatic cancer line which has characteristic mutations in four key 

genes: KRAS, p53, CDKN2A and SMAD4. This allowed us to evaluate the impact of one of these 

important genes by resurrecting its functionality. The idea of challenging pS/MARt in these cells 

arose because we wanted to test our vector system in cells that were hard to manipulate with 

standard techniques. Indeed, the DKFZ Genomic and Proteomic Core Facility reported difficulties 

even in generating stable Luciferase labelled Capan-1 cells with their lentiviral system. This cancer 

line was reported to be particularly difficult to transduce and even under constant selection 

pressure the transgene expression was not stable. The viral genome probably underwent chromatin 

induced silencing which made the modified cells un-suitable for long term studies.  

Our primary focus was on the possibility of expressing a fundamental tumour suppressor gene in a 

representative pancreatic cancer cell line and we were interested in the reliability of the tumour 

model rather than the functionality of Smad4 in the context of pancreatic cancer development, 

which is beyond the expertise of the lab. The results clearly demonstrated that when injected 

orthotopically in the pancreas of nude mice the cells in which the functionality of Smad4 was 

restored formed undifferentiated cellular masses that had a completely different morphology to 

those tumours formed from parental Capan-1 and Capan-1 Luciferase expressing cells. The 

introduction of the reporter gene Luciferase didn’t change the cells behaviour, in fact they retained 
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their ability to form tumours characterized by well differentiated ductal structures and metastasis 

(Figure 26). When the SMAD4 tumour suppressor gene was restored the masses looked less 

differentiated (with a more mesenchymal-like phenotype) with a higher recruitment of stroma. The 

cells also lost their metastatic potential and the “primary” cell masses appeared dormant but they 

were still able to proliferate (Figure 27). The rescue of Smad4 in these cells, caused slower tumour 

development but not a complete cell cycle arrest. The mutations in the other three onco- and 

tumour suppressor genes in Capan-1 cells probably prevent the induction of the apoptosis. We also  

believe that the culturing conditions required for these cells includes Serum that contains high 

quantities of TGFb may have induced secondary aberration that allowed the cells to adapt their 

growth upon Smad4 restoration.  

The DNA vector showed high efficacy in generating stably expressing cancer cell lines and this 

opened up other possibilities that we wanted to explore that were not possible with other vectors 

(or previous versions of this vector platform). The vector stability and as a consequence the low 

efficiency in generating stably expressing cells limited the widely application of this non-integrative 

vector platform in the past years. The long and tedious selection procedure together with cell 

populations in which the transgene expression was not homogenous limited the application of the 

previous version of the S/MAR vector in more intriguing cells. 

 

4.7 The Genetic Engineering of Primary Cells 
 

One application which was particularly appealing was the generation of isogenic/transgenic primary 

cells. We knew from communication with collaborators and previous work in our lab that the pEPI 

plasmid had been tested several times for generating genetically engineered primary cells such as 

stem cells, but without success. In order to evaluate our vector’s function in this application we 

demonstrated that we could immortalize mouse lung fibroblasts with pS/MARt expressing the 
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transforming factor T-antigen (Figure 22). We then reprogrammed these fibroblast cells into IPSCs 

to understand better whether the pS/MARt vector could sustain expression through the 

reprogramming process. Without applying selection, we were able to immortalize and expand 

primary fibroblasts and the introduction of the reporter gene GFP in the mammalian expression 

cassette allowed us to follow the reporter gene expression over time and demonstrate the vector 

functionality throughout the whole process. For the first time we were able to demonstrate that a 

non-integrative DNA vector could provide sustained transgene expression during reprogramming 

into IPSCs and through differentiation. The potential of persistently expressing transgenes in stem-

cells opened up a brand new field of research for the lab with the potential of using our new vector 

platform for stem cell therapy. Stem Cells modified with this vector technology can be used for the 

treatment of several genetic diseases such as Severe Combined Immunodeficiency X-linked (SCID) 

where patient bone marrow stem cells could be corrected ex vivo and re-injected with the aim of 

fixing the immune system. Patients affected by SCID do not produce functional lymphocytes and 

therefore they are more sensitive to infectious agents and tumour development. A safe, non-

integrative system that can repair the mutations and produce “cured” CD34+ cells would 

undoubtedly provide a novel therapy for the treatment of this disease. 

The successful test in mouse primary fibroblasts encouraged us to apply the pS/MARt technology in 

more difficult and intriguing primary cells. Since the establishment of cells in culture was significantly 

more efficient, compared to the previous version of the vector we decided to challenge the 

technology and its capability of generating transgenic mice by direct injection. pS/MARt expressing 

GFP was administrated by pro-nuclear injection to 1-cell stage zygotes (Figure 23) and for the first 

time, by monitoring the embryos in vitro, we were able to demonstrate that the vector is capable of 

sustaining the expression of a transgene, at least in the first crucial stages of the embryonic 

development. Some of the zygotes were also implanted into pseudo-pregnant mice and the lab is 

currently undertaking the analysis of the new-born transgenic mice in order to determine whether 
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this new DNA vector is able to sustain its transgene expression throughout the whole gestation 

period and if it is maintained episomally. If GFP expression is detected, the possibility of germ line 

transition will be also tested in order to determine if this new vector technology can be used to 

generate transgenic mice.  

 

4.8 Genetic Correction of Alkaptonuria  
 

One obvious application of this vector system is as a tool for gene therapy. Our lab has been 

involved in several preclinical studies investigating the application of DNA vectors for the treatment 

of genetic liver disease. We have previously shown that prototypes of this vector system could 

provide sustained life-long transgene expression in the livers of mice from a single administration 

(Argyros, Wong et al. 2011, Wong, Argyros et al. 2011). We have also shown the genetic 

correction of the liver disease Phenylketonuria (PKU) by a single administration of a minicircle 

DNA vector (Viecelli, Harbottle et al. 2014). In this study we showed that the application of a 

plasmid DNA had no effect on the metabolic defect in mice and the vector was rapidly silenced. In 

our study, in collaboration with Prof Jonathan Jarvis in Liverpool we have investigated the possibility 

of using pS/MARt as a genetic therapeutic treatment for the metabolic disorder Alkaptonuria 

(AKU). We demonstrated for the first time that the Liver specific pS/MARt-P3-HGD (Figure 24) 

provided sustained and corrective expression of the HGD gene following hydrodynamic delivery to 

the livers of a mouse model of AKU mice (Figure 24). In our experience such a result has not been 

previously possible using bacterial plasmid vectors and has only been accomplished using 

minicircles. This is most likely because the big bacterial backbone is responsible for the spread of 

inactive chromatin and contribute to vector silencing. The minimalisation of the CpG islands 

together with the introduction of the genomic insulator overcame these problems demonstrating 

that our DNA Vector can also sustain the long term expression of corrective genes when delivered 
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in vivo. Hydrodynamic delivery is, of course not realistically applicable to the treatment of human 

disease. But, there are several groups that are working on the development of complexes such as 

nano-particles that might help the delivery of DNA vectors directly in humans for the treatment of 

disease.  

 

4.9 From pS/MARt to Nano-S/MARt - a novel vector without 

bacterial backbone. 
 

Although preliminary tests on primary cells with pS/MARt were encouraging, some cells such as 

primary human cells are often typically refractory to transfection with traditional bacterial plasmids. 

The disadvantages of vectors based on bacterial sequences were already discussed. Therefore, to 

improve the capability and application of our vector system that could potentially be clinically 

relevant we decided to generate a range of vectors based on pS/MARt in which the toxic 

extraneous bacterial sequences were reduced to a minimum. In all previous reports it was shown 

how minicircles outperformed their corresponding plasmids but their application and development 

is currently restricted. However, a collaboration with the American company Nature technology 

allowed us to swiftly generate a new class of vectors that are based on the pS/MARt platform but 

lack a bacterial backbone. We have called this new range of constructs Nano-S/MARt Vectors. 

When compared to minicircle technology, the manufacturing of Nano-S/MAR vectors is simpler, 

cheaper and quicker. They are prepared via normal DNA preparation in bacteria that generates a 

high yield. In comparison, the purification of minicircles from their producer plasmid vectors is time 

consuming and inefficient. In order to generate minicircles an intramolecular recombination of the 

“producer” plasmid is induced and the desired minicircle vector has to be isolated and purified 

using specifically designed and proprietary columns. Minicircle production also requires an 

additional purification step to remove concatemers which are generated during the intracellular 
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recombination event. In the RNA-OUT (Figure 33) system from NTX there is no need for 

intramolecular recombination and the exclusion of the bacterial backbone. With this system is 

possible to generate large quantities of pure supercoiled minimally sized DNA nano-vector without 

the need of additional steps of purification. This new generation of nano vectors performs better in 

any application (Figure 17-18-35) than their respective traditional plasmids confirming once again 

how the removal of the bacterial backbone significantly improves the plasmid efficacy. The cells 

looked to be less damaged in the days that followed the DNA delivery and the establishment 

efficiency was improved perhaps as a direct consequence of the delivery of more DNA molecules 

per cell. The Nano-Vectors are ~2kb (Figure 34) smaller than the corresponding plasmid and since 

the vector establishment is considered a stochastic process, the delivery of more DNA molecule 

per cell increases the chance for the vector to reach the appropriate nuclear compartment.  

 

4.10 Nano Vectors for the Genetic Modification of Patient 

Derived Pancreatic Cancer Cells 
 

We decided to further develop the Isogenic cell work and utilised these Nano vectors to 

genetically restore human, patient derived pancreatic cancer cells with SMAD4. These cells have 

been intensively studied and characterised by our collaborators in HiStem (Noll, Eisen et al. 2016) 

who demonstrated that they are particularly difficult to modify with other vector systems (personal 

communication). We showed that the nano-vector could successfully sustain the expression of the 

reporter gene GFP and functionally restore SMAD4 (Figure 36). The cells were tested in vitro for 

the transgenes expression and they were sub sequentially injected orthotopically into nude mice. 

The restoration of functional Smad4 in Paco2 cells induced the develop of masses that appeared 

less differentiated and were less aggressive when compared to those formed with unmodified and 

with GFP expressing cells. The immunohistochemical (Figure 41) analysis showed that the genetic 
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modification of these cells with a Nano-vector driving the expression of the reporter gene GFP had 

no impact on the behaviour of the cells. They formed tumours that displayed the same aggressive 

phenotype characterised by ductal structures and active proliferation as demonstrated with the 

Ki67 staining. The restoration of Smad4, instead induced profound changes. The injected cells did 

not develop tumours but formed only inert aggregates of cells that were not actively replicating (as 

demonstrated by the negative staining for Ki67). The rescue of Smad4 in these cells was able to 

induce cell cycle arrest but it failed to trigger the apoptotic pathway. This was also expected since 

these tumour cells spontaneously became immortalised and resistant to the cell death program 

during their isolation from primary human tumours.  

The impact of the Nano vectors on cells was investigated at the molecular level by measuring their 

genome wide RNA expression levels. The cells modified with the GFP expressing Nano vector 

surprisingly showed that even though they underwent the selection process and they were growth 

for months in presence of the episomal vectors, only 5 genetic changes (Figure 39) in their 

expression profile. We showed that in Capan-1 cells modified with pS/MARt (that have a bacterial 

backbone) around 300 genes (Figure 29) were either up-or down modulated and we believed that 

such a dramatic change in these expression profiles is due to the absence of bacterial sequences in 

the Nano vector.  

 

4.11 Nano Vector Splice - a DNA Vector that mimics 

human genes 
 

Ultimately, we have completely updated the pEPI vector system to generate the pS/MARt and 

Nano-SMART vectors and we have demonstrated that they perform better in every measure than 

the original (Figure 13-17 and 18). We first reduced the bacterial backbone removing the f1 Ori 

from pEPI which was initially described as a fundamental feature for episomal maintenance. We 
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boosted the activity of the mammalian expression cassette by insulating it from the bacterial 

backbone and by linking the expression of a selection marker directly to it. These changes resulted 

in the efficient pS/MARt vector that was shown to be capable of modifying cells more quickly and 

efficiently. The vector was then further updated by removing its bacterial backbone and swapping it 

for the minimal selection system based on RNA interference developed by Nature Technology. 

When, the updated vector was compared to pS/MARt it was shown that the new minimally sized 

version of the vector outperformed the original in any application.  

One aspect of DNA vector design which potentially has an impact on its functionality that had not 

previously been considered is the structure and sequence of its mRNA. We wanted to generate an 

expression system that has and intron-exon structure that is as similar as possible as those typical 

in eukaryotic cells. We decided to mimic such and expression cassette in our Nano (Figure 42). We 

felt that the DNA structure of our plasmid was as stable as possible and this was confirmed by 

Southern Blots therefore we worked in generating a vector system in which the RNA message was 

also improved. It was reported (Hicks, Yang et al. 2006) that pre-mRNA that do not undergo 

splicing have a shorter life time than those that undergo this process that leaves the nucleic acid 

covered and protected from so called splicing proteins. Broll et al. (Broll, Oumard et al. 2010) 

reported that when the b-interferon MAR was included in the transcripts it was less stable and that 

lead to weaker transgene expression. However, they didn’t change the structure of the expression 

cassette probably because, active transcription is necessary in the MAR sequence to make it 

functional. To overcome this problem, we decided to add splicing sites before and after the MAR 

generating what we called Nano-S/MAR-splice vector.  

The establishment efficiency of this new vector as well as the expression profile of the population 

were significantly better when compared to the un-spliced control (Figure 43). We believe that the 

maturation process improved the RNA stability and it doesn’t create uncoated RNA molecules that 

could be the recognized as a foreign entity such as RNA viruses by intra-cellular sensors.  
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4.12 A novel, more compact and efficient MAR sequence 
 

Following the development of our new vector system only one of the original features of the 

original pEPI vector remained unchanged and that was the almost sacrosanct “un-touchable” 

component of the vector the S/MAR motif from the  human b-interferon gene which provides the 

vector with its most unique functionality of an episomally maintained DNA vector. We decided that 

this element could also be improved so we exchanged it. 

Several MAR elements were evaluated and it was noticed that the primary limitation of the original 

S/MAR was the lack of a well characterized structure. We thought that a DNA sequence that was 

composed of repetitive modules could form much better binding sites for nuclear proteins that may 

facilitate the episomal anchoring to the nuclear matrix. The proteins that mediate the anchoring of 

our episome to the nuclear scaffold are still unclear but we thought that a more organized 

sequence would improve the recognition and the tethering of the DNA. Analysis of the core MAR 

sequences from several different organisms and species showed that in what was considered a 

“real” DNA origin of replication and also “putative” ones the recurrent motif ATTA or ATTTA 

was enriched. We then assessed the human genome looking for a region where these motifs were 

highly represented. We found that the Apolipoprotein B gene presents a MAR exclusively 

constituted by the repetition of two short domains. The original pEPI MAR was replaced by this 

more compact and potentially more efficient one. The newly designed vector was tested in 

comparison with all previous versions and we found that it established cells with the same efficiency 

as the Nano Vectors, despite having a bacterial backbone. The transgene expression within 

populations established with this version of the plasmid is however weaker.   
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4.13 The Genetic Engineering of Human T-Cells 
 

As an ultimate test of this vector we applied it to genetically engineer primary human T-cells. These 

cells as part of the immune system are designed to react against non-self entities and we expected 

that they would be particularly sensitive in the recognition of foreign DNA. We showed that 

pS/MARt could be successfully applied in several applications but when challenged with the 

persistent modification of T-Cells it proved to be incapable of mediating their modification. Those 

cells represent arguably the most challenging application for our vector system and although 

pS/MARt was not incapable of modifying these cells we managed to overcome the problem by 

generating and applying the Nano-vectors and the pS/MARter with the novel MAR motif. We 

showed that pS/MARter could sustain the expression of the GFP transgene for over a month 

(Figure 48) at sustained high levels without undergoing the decline that pEPI or the same plasmid 

without the MAR showed. However, when we tried to modify these cells with a transgenic TCR, 

we saw that even pS/MARter was not able to sustain the transgene expression beyond 6 days of 

delivery. We are currently performing several analyses in order to determine whether the loss of 

the expression is due to the silencing of the vector or to the post-translational down-modulation of 

the TCR. To be expressed on the T Cells surface the a and b chains of a TCR need to be 

complexed with CD3 adaptor molecules. The lack of these adaptors can potentially block the 

translocation of the complex to the membrane and induce degradation of the protein. Currently 

we are investigating via intracellular staining of the TCR whether the receptors are expressed but 

not translocated into the membrane or if the transfected cells die as a consequence of the over-

expression.  

The possibility of applying our episomal vectors for autologous therapy where T Cells are modified 

and reprogrammed to target tumor cells represents undoubtedly one of the most interesting and 
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intriguing fields of gene therapy research and we are continuing to improve our understanding of 

how we can generate a novel, alternative vector system suitable for this application. 

 

5 Conclusions  
In conclusion, the performance of our ultimate vector pS/MARter in the establishment of cells was 

better than most other vectors generated during this process. The number of colonies obtained in 

the colony forming assay test was comparable to the Nano Vectors despite that vector carrying the 

new MAR motif is still in a version with the bacterial backbone. The Nano-S/MAR-splice vector 

remains, however, the most efficient construct in all the aspects tested. We believe that the 

generation of pS/MARter, the ultimate vector produced in this study, takes the development of 

plasmid vectors with bacterial backbones as far as possible with our current understanding of 

vector genetics. We believe that an updated Nano version of this construct that comprises the 

novel splicing feature will improve its efficacy and application even further.   
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Table 17. SMAD4 dependent up regulated genes with at least 2 fold increase.  
 

ADAM19 ME1 
CDH3 LRRC33 
CFP MGC102966 
CHCHD2 MICB 
CHCHD9 MYEOV 
CLEC11A PPP2R2C 
COL16A1 PRSS1 
COL17A1 MMP1 
COL18A1 RRAD 
CSK SERPINE2 
CTHRC1 MMP3 
CXCR7 MMP9 
DPYSL3 SLC6A10P 
DSE SOSTDC1 
EGFR MTSS1 
FEZ1 MYL9 
FGFBP1 MYO1B 
GJB2 NUAK1 
GLIPR1 OLR1 
GLS SPPL2A 
GPX3 PANX2 
HBEGF PI3 
HCP5 ACTN1 
HOXA10 AIF1 
HS.554203 PLAU 
HS.567963 PPP2R2B 
ICAM2 ANTXR1 
IGSF3 APOD 
IL1RL1 PRNP 
IL20RB PRSS2 
IRX5 BASP1 
KRT14 PTGS1 
KRT6B RAB37 
KRT81 RPTN 
LAMA3 C12ORF54 
LAMC2 C18ORF45 
LGALS7B C6ORF15 
LOC100131139 C6ORF85 
LOC375295 CALD1 
LOC401817 S100A2 
LOC650200 SAA1 
LOC651397 SAA2 
LOC652002 SAA4 
LOC728324 CASP1 
LOC728910 CCL28 
MAOA CD276 
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SCGB3A1 THBS4 
SERPINB3 TIMP2 
SERPINE1 TNC 
SFN TNFSF10 
SNAI2 TPST1 
TAGLN TUBB2A 
THBS1  

 

 

Table 18.  SMAD4 dependent down regulated genes with at least 2 fold decrease 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

ACSL5  FAM149A 
BMP4 FOS 
BTBD16 GPD1L 
C10ORF81 IGFBP3 
C1ORF192 IL17RB 
C1ORF194 IQGAP2 
C3ORF15 KIAA1147 
C5ORF41 LOC391019 
C7ORF57 PAQR8 
C7ORF63 PGC 
CASC1 PLTP 
CEACAM1 PPP1R15A 
CTXN1 PPP1R16A 
CXORF57 RNASE1 
DEFB1 RPL14 
DGAT1 RPL15 
DHRS3 SCG5 
ERBB3 SLC38A5 
FOXJ1 SLC6A20 
GABRP STEAP1 
GSTK1 STXBP6 
IGFBP4 SUCLG2 
KLK11 TM4SF4 
KRT23 TNFRSF19 
LMTK3 TOP1MT 
LOC649821 TOP2B 
LOC728820 TRAK1 
LY6E ZNF256 
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Table 19. Genes at least 2 folds up-regulated in pancreatic tumors formed from the Capan-1 
Luciferase labelled cells upon orthotopic injection compared to tumors generated with unmodified 
Capan-1 cells.  
 

ALCAM COL4A5 
ALDH1A3 CST6 
ALDH3B2 CTSD 
ALOX5 CXCL6 
ANKRD33 DHRS9 
ANXA1 DMBT1 
ANXA8 DUSP6 
ANXA8L2 EDARADD 
AQP3 EFEMP1 
BLCAP EGLN3 
BST2 ELF5 
C14ORF4 F3 
C20ORF114 FAM83A 
C9ORF169 FCGBP 
CAV1 FGFR3 
CD14 FNBP1 
CD82 GABRP 
CDA GATS 
CFB GNA15 
CFH GPR116 
CFI HEG1 
CLIC3 HS.407903 
HSPBL2 LOC100133817 
IFI16 LOC283392 
IFI27 LOC644760 
IFI44 LOC645553 
IFI44L LOC645638 
IFI6 LOC652846 
IFIT1 LOC653879 
IGFBP6 LOC728969 
INHBB LRG1 
IRF9 LTBP2 
IRX3 LY6D 
JAG2 LYNX1 
KLK6 LYPD2 
KLRC2 MAGED1 
KRT13 MAMDC2 
KRT16 MMP10 
KRT5 MMP12 
KRT6A MT1A 
KRT6C MUC16 
LEPROT MUC4 
LGALS8 MX1 
LOC100129681 NOTCH3 



Tables 

 156 

NTN4 SGK1 
OAS2 SGSM2 
PADI3 SHISA2 
PALMD SIPA1L2 
PCDHB2 SLC16A3 
PDZK1IP1 SLC1A3 
PPP1R3C SLC4A11 
PROM2 STAT2 
PROS1 SYTL4 
PRSS23 TACSTD2 
PTGES TCN1 
PTPN20 TEAD2 
PYGL TMEM173 
RARRES1 TMEM45A 
RARRES3 TRIM29 
RNASET2 TSPAN1 
RXRA TSPAN9 
S100A8 VAMP5 
S100A9 VGLL1 
SCCPDH VTCN1 
SFTA1P WFDC2 
SGK  
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