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Chapter 1

Introduction

Investments in education have on average large individual and social returns and have

been found to be one of the major drivers of economic development and growth. Following

the pioneering work of Becker (1962, 1964), the economic literature on the returns to

education has mushroomed over the past 50 years. Microeconomic studies have found that

the average individual wage returns to an additional year of schooling range from 5% in

Scandinavian countries to 9% in Anglo-Saxon countries (see, e.g., Harmon et al., 2003).

Many studies have focused on accounting for a possible “ability bias” when establishing the

causal link between education and earnings. However, studies comparing identical twins

or exploiting institutional features of the school system in an instrumental variable setting

find estimates that are relatively similar to those of standard OLS earnings regressions

(Card, 1999). While some of these earnings returns might simply be due to job market

signaling of higher ability (Spence, 1973), empirical research finds very little evidence that

signaling plays an important role (Lange and Topel, 2006). Education must thus increase

individual productivity. In fact, macroeconomic studies also find that education has large

productivity effects. A one year increase in the average education is found to increase

GDP per capita by 3 to 6% and GDP growth by 1 to 3 percentage points (see, e.g., Sianesi

and Van Reenen, 2003). The overall returns to education are generally larger than private

ones, because they might appear as profits rather than wages (Gennaioli et al., 2013).

Moreover, research has highlighted that a large portion of the effects of education on

economic development can to be attributed to positive human capital externalities.1 First,

human capital might lead to innovations and new technologies that increase economic
1 Throughout the dissertation I use the term “education” and “human capital” interchangeably, although
human capital is in theory a broader concept than education.

1
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growth (Lucas, 1998; Romer, 1990). Second, a higher level of human capital in the economy

might increase the sharing of knowledge and make learning from others easier and faster

(Moretti, 2004b). Third, educated workers might also increase the pecuniary returns of

less-educated workers (Acemoglu, 1996). Social returns to education do not only show up

in terms of productivity spillovers, but also in terms of better health and lower crime rates

(Lochner, 2011). All these results provide a rationale for the tremendous increase in the

level of education across the world. In OECD countries the share of individuals aged 25 to

34 with a tertiary degree increased from 26% in 2000 to 41% in 2014 (OECD, 2015a). The

presence of human capital spillovers and positive social returns to education also suggests

that governments should subsidize education. While the average public investment in

education in OECD countries amounted to 4.8% of the GDP in 2000, by 2012 this figure

had increased to 5.2% (OECD, 2015a).

Most studies on the returns to education have treated education as unidimensional.

However, as the average level of education has dramatically increased, educational decisions

are about the type of education to pursue as well as about the quantity. When deciding

whether to increase investment in education, policymakers are typically confronted with

trade-offs concerning the allocation of funding to different types of education. Similarly,

individuals would like to know on what type human capital they should invest in. Is

it better to spend resources on reducing the number of secondary school dropouts or

on boosting tertiary education?2 What are the returns to academic versus vocational

education? What are the returns and career options of different fields of study? Many

of these questions have still not been sufficiently addressed by economists. While there

has been some research on heterogeneous returns depending on school quality, much

less is known about the returns of different levels of education (Card, 1999; Sianesi and

Van Reenen, 2003). Moreover, only recently there has been a growing body of research on

the returns to different university subjects (Altonji et al., 2016). There are typically huge

differences in earnings between graduates of different fields of study. For instance, in the

US the gap between the most and less well-paid university subjects is as large as the wage

differences between university and high school graduates (Altonji et al., 2016).

2 Clearly such a question might have an impact on inequality and thus requires a political response.
Nevertheless, more precise information regarding the returns to different educational investments would
allow policymakers to base their choices on actual evidence.
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This dissertation aims at contributing to the literature on the returns to higher education

by investigating the individual payoffs of different fields of study in Germany, as well as

the impact of universities on the labor market and on economic development. Particular

attention is devoted to the outcomes of STEM (Science, Technology, Engineering, and

Mathematics) education. These fields of study are of special concern for many governments,

because of their direct link to innovation and economic growth. Indeed, STEM education

is found to lead to larger human capital exernalities than other fields of study (Winters,

2014). In this respect Germany is a very interesting case, since it is the one of the OECD

countries with the largest share of graduates in natural sciences and engineering (OECD,

2015b). Many of these graduates study at technical colleges (Fachhochschulen), which

provide a type of education that is more practice-oriented and includes periods of practical

training so that students can gain work experience during their studies. This dissertation

focuses on two further aspects. First, not only I do analyze the wage payoffs of education,

but also at the match between educational qualifications and job requirements. Second, I

devote particular attention to regional disparities and to educational payoffs at the local

level.

With an increase in the level of education and in the degree specialization, the effects

of education on productivity will very much depend on the extent to which skills acquired

through formal education are used on the job. A higher specialization during formal

education is likely to increase uncertainty about future payoffs. Given that education is

typically acquired before entering the labor market, an unexpected shift in labor demand

could lead to a mismatch in the skills acquired by individuals during education and those

required on the job. For instance, there is evidence that technological changes have replaced

many manual and cognitive routine tasks over the past 30 years (Autor et al., 2003). This

has of course affected those workers that specialized in such tasks on the job, but it might

be especially harmful to those that also specialized in such skills during their education

(e.g. accountants) because of higher investment costs such as foregone earnings and tuition

fees. Even in the absence of a major shift in skill demand, labor market frictions such as

imperfect information and costly job search might lead to a mismatch between workers’

education and job requirements (Sattinger, 2012). If human capital depreciates fast, a job

mismatch for a short period of time might have a persistent effect on future earnings and
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productivity.3 Thus, the increase in educational attainment and specialization provides

a rationale for investigating job match quality, since its importance in explaining wage

differences might have increased. Moreover, from the worker’s point of view the quality of

the job match might also increase utility independently of wages, for instance if individuals

have a preference for the subject they have specialized in. Besides wages, I will thus also

look at measures of job match quality as outcome variables.

Job match quality can be measured in different ways. Most studies in the education

economics literature have focused on the match between qualifications held by workers

and job requirements. Job requirements are either based on workers’ self-assessments

or imputed at the occupational level based on the observed education in the workforce.

Measures of overqualification and relatedness of job requirements to completed education

are found to be strongly correlated to wages (Leuven and Oosterbeek, 2011; Robst, 2007).

Such measures of mismatch have also been found to be negatively associated with job

satisfaction (Hersch, 1991). In this dissertation I employ qualification mismatch measures

based on workers’ self-assessments.

Education is deemed to be one of the main factors of economic development not only

at the national level, but also at the regional level. Regions that have invested dispro-

portionately into education, or where advanced educational institutions are established

by the national government, experience a higher GDP per capita and larger economic

growth compared to other regions within the same country (Gennaioli et al., 2014, 2013).

Nevertheless, there is little literature on the impact of different types of institutions, as

well as on the channels explaining the economic impact of educational institutions at the

regional level. Valero and Van Reenen (2016) find some initial evidence on the importance

of the impact of universities on regional economic growth. This might be simply due to

the larger supply of skilled workers who are on average more productive. However, there

are other channels that are especially relevant at the local level. First, human capital

externalities have a geographic dimension and are found to decrease quickly with distance

(Fu, 2007; Rosenthal and Strange, 2008). Several papers have documented the presence of

important innovation spillovers from university research in terms of commercial patents,

which are especially large at the local level (see, e.g., Belenzon and Schankerman, 2013;

Jaffe, 1989; Jaffe et al., 1993). Moreover, Kantor and Whalley (2014a) find that universities

3 Liu et al. (2016) show for instance that graduating during a recession has persistent negative effects due
to a higher skill mismatch when graduates enter the labor market.
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increase local wages, especially when universities are more research-intensive and firms are

technologically closer to universities. Second, higher education institutions might affect

regional economic growth through a local multiplier effect. An increase in the supply of

high skill labor might increase the demand for local goods and services (Moretti, 2010).

These developments are not only likely to increase economic growth, but also population

growth through migration from other regions.

There is a strong complementarity between densely populated regions and skills that

goes beyond the fact that regions with a higher concentration of skills might attract new

migrants and grow in size. The reverse is also true: large cities disproportionally attract

high-skilled workers. One reason might be that returns to education are generally found

to be larger in urban areas (see, e.g., Becker, 1964). However, while gross wages are higher

in cities there is generally no evidence that real wages are higher (Glaeser and Mare,

2001). Urban amenities, such as theaters or good restaurants, might be more valuable

to high-skilled individuals (see, e.g., Glaeser and Gottlieb, 2009). It might also be that

knowledge spillovers and thick labor markets matter mostly for high-skilled individuals.

Gould (2007) finds that there is an urban wage premium in the US only for white-collar

workers while there is no premium for blue-collar workers. There is evidence that highly

skilled couples locate in big cities because of the likelihood of finding good job matches

for both partners (Costa and Kahn, 2000). But it might also be easier for single highly

educated individuals to find a job that is a good match for the skills acquired in large

cities.

This dissertation consists of three essays. The second chapter, coauthored with Ulrich

Zierahn, investigates the individual payoffs of different fields of study in Germany. In

particular, we compare graduates from STEM subjects to graduates from two other groups,

Business & Law and Social Sciences & Humanities. Graduates in natural sciences and

engineering are often found to earn higher wages and to have a lower risk of overqualification.

However, STEM subjects are also typically associated with more challenging programs,

as the drop-out rate is higher in these subjects (see Heublein et al., 2012, for Germany).

Moreover, there is evidence from the US that STEM students have better results in both

mathematics and verbal pre-college tests (Arcidiacono, 2004). It is thus unclear whether

the positive individual returns to STEM tertiary education are to be attributed to the

human capital acquired at university or reflect positive individual characteristics of STEM
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students, such as higher ability, ambition or motivation. We employ an instrumental

variable strategy to deal with selection into fields of study. Using data from the German

Socio-Economic Panel, we find that selection matters when STEM graduates are compared

to the Business & Law group, while it plays only a minor role for the difference between

STEM and Social Sciences & Humanities graduates. Workers with a STEM degree are

on average less likely to be overqualified compared to graduates from other fields. When

controlling for selection, the difference with Business & Law graduates disappears, while

the difference with Social Sciences & Humanities graduates gets even larger. Moreover,

STEM graduates earn on average similar wages to Business & Law graduates in our

sample and about 25% higher wages than Social Sciences & Humanities graduates. The

wage difference relative to the latter group persists when controlling for selection. On the

contrary, we find evidence that that Business & Law subjects lead to higher payoffs than

STEM fields.

Our results hint to a positive selection of students into STEM subjects. This result

has important policy implications given that governments are often concerned that the

aggregate supply of STEM graduates might be too low. Policies promoting STEM over

Business & Law subjects could negatively affect individual wage payoffs. There is evidence

that individual preferences and subject-specific abilities play a major role when choosing a

field of study (see, e.g. Arcidiacono et al., 2012; Hilmer and Hilmer, 2012; Stinebrickner and

Stinebrickner, 2014). Therefore, if more STEM graduates are desired, governments should

consider policies focusing on students at a younger age, such as fostering the development

of math skills early in school.

In the third chapter I investigate regional differences in qualification mismatch depending

on the size of the local labor market. There is ample evidence that wages are higher in

more densely populated regions (see, e.g. Glaeser and Mare, 2001, for the US; Lehmer

and Möller, 2010, for Germany; and Combes et al., 2008, for France). This should reflect

some forms of agglomeration economies, such as better matches between workers and firms.

Using data from the German Socio-Economic Panel, I find that male workers who live

in denser regions are both less likely to be overqualified for their job and less likely to

work in a different field than the one they are trained for. The impact on overqualification

is robust to the inclusion of an extensive set of control variables and is relatively large.

An increase of 10% in the regional employment density is associated with a decrease of
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1-1.5% in the overqualification incidence. The impact of horizontal mismatch is slightly

smaller and less precise. I then employ different empirical strategies to account for the

potential sorting of talented workers into more urbanized areas. I get very similar results

for overqualification when I focus on individuals who never leave the place where they

grew up, when I estimate fixed-effects regressions obtaining identification through regional

migrants, or when I instrument current density with historical population data. Finally,

I investigate the extent to which lower qualification mismatch in large agglomerations

contributes to the urban wage premium. I find that overqualification accounts for about

6% of the impact of regional employment density on hourly wages, while the contribution

of horizontal mismatch appears to be insignificant.

Overqualification entails only one specific aspect of job-worker match, namely the

match in formal qualifications obtained through education.4 Other types of matches

have been shown to play an important role, such as assortative matching between highly

productive firms and workers (Dauth et al., 2016). With the expansion of higher education,

the contribution of job-worker matches to regional wage inequalities might have gained

importance.5 If this is the case, regional disparities in population might grow over time,

since workers might have a greater incentive to move to larger cities. There is indeed some

evidence that regional disparities in population have grown in West Germany over the

past 40 years.6. However, it is not clear what policy response is needed to deal with the

rising importance of agglomeration economies (Glaeser and Gottlieb, 2008). Subsidizing

unproductive areas is not an efficient way to transfer resources to poor people (Kline and

Moretti, 2014). After all, national policymakers should care about people not regions.

Policymakers at the national level should thus probably accommodate these changes,

for instance by ensuring that enough housing is available in growing cities (Glaeser and

Gottlieb, 2008). Local policymakers instead might wish to increase regional income and

population. Polices that attract or train high-skilled workers might be the most efficient

way to achieve those goals (Glaeser and Gottlieb, 2008). The last chapter of the dissertation

analyses the local impact of university openings.

4 Note that skill mismatch is a broader concept than overqualification including, for instance, skills
acquired on the job by accumulating experience. Skill mismatch is thus likely to explain a larger part of
the urban wage premium. However, skill mismatch is very difficult to measure accurately.

5 This is a policy relevant topic which would require further research.
6 Using regional data for West Germany, I estimate that urban regions (as defined by the Federal Office
for Building and Regional Planning) have experienced a 15% higher employment growth and a 12%
higher population growth between 1980 and 2010.
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The fourth chapter, coauthored with Christina Gathmann and Verena Lauber, studies

the effects of universities on the local economy. In particular, we investigate how the

opening of technical colleges in Germany during the 1980s and 1990s has affected local

employment and wages of workers with different qualifications using administrative data.

Our empirical strategy combines a matching procedure with a time-varying difference-in-

differences approach to find suitable control regions for regions that had a college opening.

The opening of a technical college substantially increases the regional student population.

This results in a large positive shock of high-skilled labor in the district when the first

cohorts complete their studies. We find that high-skilled employment in the region increases

by 12% eight to nine years after the opening. We also find evidence that new colleges also

raise the employment of workers without a college degree suggesting complementarities in

the local production function. Moreover, wages of high-skilled workers do not decrease

in the medium-run indicating a shift in local demand, especially for high-skilled workers.

The employment and wage effects remain if we exclude all employees working in education,

suggesting that a college opening has an impact on the local economy beyond additional

jobs in teaching and research. The large increase in employment and the lack of a drop in

wages point to sizable adjustments on the labor demand side. We find no large increase

in employment at new establishments, suggesting that most of the adjustments happen

in incumbent firms either through changes in the output mix or through changes in the

technology used in the production process.

While our analysis focuses on the short- to medium-run effects of a college opening,

the insights gained have important implications for regional policy. First, opening a new

college is indeed an effective strategy to increase the skill level of the regional workforce.

Second, we do not find evidence of adjustment costs in terms of lower wages or employment

of such a large shock in high-skilled labor. Whether establishing new universities is a

cost-effective strategy to boost local economic development ultimately depends on the size

of the positive human capital externalities in the longer run. This is an important topic

for future research.



Chapter 2

Field of Study, Qualification

Mismatch, and Wages: Does Sorting

Matter?

2.1 Introduction

There is a widespread belief in the public debate that Science, Technology, Engineering and

Mathematics (STEM) are important drivers of innovations and play a key role for economic

growth (Aktinson and Mayo, 2010). There is also some scientific evidence that the social

returns to STEM education exceed the private benefits. For example, Winters (2014) finds

that human capital externalities are especially high for STEM graduates. Hence, it is often

claimed in western economies that the number of STEM graduates is too low and that

policy makers should engage in increasing it.1 This gave rise to recent policy initiatives for

This chapter is joint work with Ulrich Zierahn and has been published as ZEW Discussion Paper
No. 14-076. We thank Christian Bommer for research assistance and Christina Gathmann, Marco
Caliendo, Maresa Sprietsma, Melanie Arntz, as well as seminar participants at ZEW and IAAEU, at
the universities of Utrecht, Mannheim and Trier, of “The Optimal Skill Mix for a Modern Economy”
conference, the 2013 IAB workshop on “Perspectives on (Un-) Employment”, the “1st RWI Research
Network Conference on the Economics of Education”, the “5th International Workshop on Applied
Economics of Education” and of the AIEL and EALE 2014 conferences for valuable comments. We
gratefully acknowledge financial support from the Germany’s Federal Ministry of Education and Research
framework program “Economics of Science” (BMBF, research grant 01PW11019). The usual disclaimer
applies.

1 For the US, see for example National Academies (2010) and ManpowerGroup (2013). For Germany, see
for example the report of Anger et al. (2013) on skilled labour in STEM fields.

9
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promoting STEM fields, for example in the US2 or in Germany3. Since STEM graduates

earn on average higher wages (Arcidiacono, 2004; Daymont and Andrisani, 1984; Grogger

and Eide, 1995; James et al., 1989) and face a lower risk of overqualification (Dolton and

Vignoles, 2000; Frenette, 2004; McGuinness, 2006) than non–STEM graduates, policies

pushing pupils to study STEM subjects might also positively affect individual careers.4

Moreover, such policies could enhance the efficiency of the tertiary education system by

providing the graduates who are demanded by the labor market, if these policies would

really reduce the risk of overqualification.

The positive effects of these policies on individual careers and on the skill match in

the economy critically depend on the assumption that differences in overqualification and

wages between subjects are attributable to the subjects studied rather than individual

characteristics (sorting). However, there is evidence that STEM subjects are associated

with more challenging studies and require higher ability (Arcidiacono et al., 2016; Betts

and Morell, 1999; Rask, 2010). This is reflected in higher drop-out rates for students in

STEM subjects. For example, the drop-out rate for mathematics and science in Germany

is 39% and 48% for engineering, as compared to 24% in economics, social sciences and law.5

Further, there is evidence from the US that pupils choosing STEM subjects have better

results in both mathematics and verbal pre-college tests (Arcidiacono, 2004). Therefore,

students in STEM subjects are likely to differ in their personal characteristics, such as

ability, as compared to other students. This implies that the effect of the university

field of study on wages and overqualification rates cannot be interpreted in a causal

way unless controls for all relevant personal characteristics are appropriately included

(Altonji et al., 2012). Employing a dynamic discrete choice model for the US, Arcidiacono

(2004) finds indeed that most of the differences in wage returns to fields of study decrease

after controlling for ability sorting. Policies promoting STEM subjects might thus push

pupils into fields of study which do not fit their abilities. This would negatively affect

2 For example, the National Science and Mathematics Access to Retain Talent (SMART) Grant or the
“Educate to Innovate” initiative of the Obama administration.

3 For example, the program “Komm Mach MINT” seeks to increase the number of female students in
STEM fields of study (http://www.komm-mach-mint.de/). Other programs, which are often, but not
always, publicly sponsored, are listed in the website of the STEM gateway “MINT Zukunft schaffen”:
www.mintzukunftschaffen.de.

4 Overqualification corresponds to a “vertical” educational mismatch denoting the possession of a higher
qualification than the one necessary for the job. In the paper, we use the term skill mismatch and
overqualification interchangeably. In particular, we refer to overqualified employees as (skill) mismatched
employees and vice versa.

5 Heublein et al. (2012), numbers for bachelor students based on the alumni year group 2010 in Germany.

http://www.komm-mach-mint.de/
www.mintzukunftschaffen.de
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the efficiency of these policy measures concerning the aim of providing adequate STEM

graduates. Moreover, the overall effects of such policies on individual careers are unclear

and could be even adverse.

Against this background, the present paper tests the hypothesis that higher wages and

lower risk of overqualification of STEM graduates compared to other graduates are at least

partly driven by differences in unobserved characteristics. We compare STEM graduates to

graduates of Business & Law subjects and of Social Sciences & Humanities. The analysis

is based on data from the German Socio–Economic Panel (GSOEP) for employed male

graduates, which includes detailed information about the current job, such as a subjective

evaluation of the required qualifications, and information on parental background and the

educational career. To ensure that the results are not affected by the transition process

from university to the labor market, we rely on employed individuals who graduated at

least five years prior to the survey. We use an instrumental variable approach to control for

the selection of individuals into subject groups when estimating the effects of the subjects

on wages and the risk of overqualification. Our exclusion restrictions are the difference in

mathematics and German grades from the last school report (using average school grades

as a control variable) and a binary variable indicating whether the individual played a

music instrument in youth. Making use of linear and non-linear IV techniques, we find

that selection matters for differences in the risk of overqualification and wages when STEM

graduates are compared to the Business & Law group, while it plays only a minor role for

the difference between STEM and the Social Sciences & Humanities graduates.

The rest of the paper is organized as follows. In Section 2.2 we provide a concise review

of the literature. In Section 2.3 we discuss the role of sorting into subjects and how we take

account of sorting in our econometric specification. In Section 2.4 we describe our data

and we provide definitions, as well as summary statistics, for the variables included in the

analysis. Section 2.5 contains the results of our estimations, while Section 2.6 concludes.

2.2 Literature Review

The approach of this paper is motivated by Job Assignment Models (c.f. Sattinger, 1993).

In those models there exist different types of workers and different types of jobs. Workers

choose jobs based on utility maximization and there is a certain technology which links
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workers with specific characteristics to jobs with specific characteristics. The quality of the

match between workers and jobs affects the work productivity and thus leads to different

labour market outcomes. There is growing empirical evidence in favor of Job Assignment

Models (McGuinness, 2006). While the empirical literature building on these models

usually focuses on the wage effects of overqualification, we are interested in the effects of

worker characteristics on the quality of job matches. In particular, we are interested in

how the field of study affects overqualification and wages as two key aspects of the quality

of job match. We interpret them as outcomes of the assignment problem. There exist two

strands of literature, which already deal with these issues.

The first strand of literature has grown rapidly in recent years with an increasing

attention towards the variation of economic returns to university education by field of study.

These studies provide evidence that STEM graduates earn higher wages than graduates

in art, humanities and social sciences (Arcidiacono, 2004; Daymont and Andrisani, 1984;

Grogger and Eide, 1995; James et al., 1989; Robst, 2007). The differences in the returns

to higher education across subjects are found to be substantial and possibly larger than

differences in returns to college quality (James et al., 1989). However, most studies do not

account properly for selection into fields of study and simply use OLS with a large set

of control variables. Selection might be a substantial problem, since students are likely

to choose particular subjects based on the heterogeneity of returns. Moreover, omitted

variables that influence both the choice of the fields of study and earnings may also lead

to biased estimates. It is therefore not clear whether we can consider in this case OLS

estimates as estimates of the causal impact of university subjects (Altonji et al., 2012). In

particular, there is evidence that individuals choosing STEM fields perform better in both

cognitive and verbal tests than individuals choosing other fields (Arcidiacono, 2004). Thus,

OLS estimates are likely to overestimate the earnings returns to STEM subjects. Only few

analyses attempt to address selection into fields of study. Webber (2014) uses a simulation

approach and various assumptions about selection on unobservables to argue that large

disparities in lifetime earnings between fields of studies remain even after addressing

selection. Arcidiacono (2004) employs a dynamic discrete choice model and finds that most

of the differences in wage returns to fields of study persist after controlling for selection,

albeit they decrease in size. While structural models are very valuable to understand

how individuals make sequential educational choices and can account for educational
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costs, they generally impose strong simplifications. In their recent review of the literature

Altonji et al. (2012) state that “given the complexity and pitfalls of estimation based on

dynamic structural models, we expect careful studies using IV strategies or OLS with

rich controls to continue to play a critical role in the literature going forward”. To the

best of our knowledge, the only papers using an instrumental variable or a regression

discontinuity approach to deal with selection into fields of study are Berger (1988) and

Hastings et al. (2013). While Berger is mainly interested in estimating the impact of

expected future earnings on subject choice, the author investigates also the wage returns

to fields of study in the US. He focuses on five subject groups and uses some individual

and family background characteristics, such as father’s occupation, ethnic origin and

parental education, as exclusion restrictions in the subject choice equation. However, the

validity of these instruments might be questioned, since it is likely that family background

characteristics could affect skills and earnings directly and not only through the subject

choice channel. Hastings et al. instead estimate the returns to fields of study in Chile

and use the thresholds in the centralized Chilean admission system to apply a regression

discontinuity approach. They find large and significant differences in returns by field of

study with higher returns for business, law and technical fields than for arts, architecture

and humanities.

Apart from earnings returns, graduates in STEM fields seem to be also better off

with respect to non–wage labour market outcomes than their peers graduating in other

subjects. There is a general public perception that these subjects enable a better link

to the labour market and that the skills provided by these curricula are more useful for

future jobs. The second strand of literature therefore investigates how skill mismatch

for graduates varies across fields of study (see Berlingieri and Erdsiek, 2012, for a survey

of the literature on skill mismatch in Germany). Most of these studies have focused on

the discrepancy between the type of qualification (i.e. possessing a higher qualification

than required) among graduates of different fields of study (Dolton and Vignoles, 2000;

Frenette, 2004; Green and McIntosh, 2007).6 Except for graduates of some specific majors,

such as education or medicine, for whom this type of mismatch is close to zero, graduates

majoring in STEM fields appear to have a lower risk of overqualification than graduates

in humanities and social sciences (Büchel and Matiaske, 1996; Dolton and Vignoles, 2000;

6 Another literature investigates the role of fields of study for horizontal mismatch, i.e. mismatch between
the content of the field of study and occupational content (see for example Robst, 2007).
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Fehse and Kerst, 2007; Frenette, 2004; McGuinness, 2006). Similarly to most of the studies

on wage returns to university subjects, these studies focus on estimates from simple logit

or probit regressions. However, the potential bias is likely to be larger for studies on

qualification mismatch, since they typically fail to include fundamental control variables,

such as high school grades. In fact, high school grades are found to be key predictors of

both university subject choice and earnings (Rose and Betts, 2004). Since overqualification

is typically associated to lower earnings, failure to take into account high school grades

(or other proxies for ability) is likely to lead to an overestimation of the differences in job

mismatch across fields of study. Moreover, to the best of our knowledge, no previous study

on overqualification has tried to address directly the selection problem. It is still not clear

if the cross–subject differences in qualification mismatch persist after controlling for the

selection into different fields of study and, if so, how large is the bias when predictors of

subject choice are omitted.

Further, as this paper addresses the role of sorting into subjects, it is related to studies

which focus on the role of individual characteristics for the choice of the field of study. In

the literature, individual characteristics such as gender and parents education (Boudarbat

and Montmarquette, 2009), tastes and motivations (Hilmer and Hilmer, 2012) or expected

earnings (Arcidiacono et al., 2012; Beffy et al., 2012; Freeman and Hirsch, 2008) have been

found to be important predictors for subject choice. Notably, differences in ability affect

the subject choice of college majors (Turner and Bowen, 1999). Moreover, Arcidiacono et al.

(2012) show that students subject choice depends on the subject-specific abilities of the

individuals. This suggests that differences in labor market outcomes between graduates of

different subjects might be affected by the differences in omitted or unobserved individual

characteristics.

In summary, graduating in a STEM subject is related to on average higher wages and

a lower risk of overqualification. We hypothesize that this relationship is partly driven

by sorting into fields of subject. That is, we expect that, if differences in (unobserved)

individual characteristics are taken into account, the positive effect of graduating in STEM

versus other fields on wages and the negative effect on the risk of overqualification decrease.
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2.3 Econometric Methods

In this paper, we apply instrumental variable (IV) techniques to control for the selection

into subjects when estimating the effects of graduating in a subject on the risk of over-

qualification and wages. We first present the approach of our paper for modeling the

probability of overqualification and wages, before we discuss our choice of instrumental

variables. Finally, we present the implementation of our approach.

2.3.1 Approach

The aim of this paper is to estimate the effect of fields of study on wages and the

probability of overqualification for graduates. Ideally, we would estimate the probability

of an individual to work in a matched vs. mismatched job with a probit model,

Pr(overqualifiedi = 1) = Pr(βX1,i +
2∑
j=1

φjsubjectji + εi > 0) ; j = 1, 2 (2.1)

where overqualified indicates whether individual i is overqualified (0 for non–overqualified

and 1 for overqualified) and subjectji is a dummy variable equal to 1 if the individual i

graduated in the university subject j, taking into account other relevant covariates X1,i.

We distinguish between three groups of subjects j: STEM (j = 0) as the base category,

Business & Law (j = 1) and Social Sciences & Humanities (j = 2).

Analogously, we are interested in the effect of the field of study on wages, using log wages

as the dependent variable. Ideally, we would estimate log wages in a linear specification:

log wage = δX1,i +
2∑
j=1

ϕjsubjectji + εi ; j = 1, 2 (2.2)

The key problem for analyzing the effects of subjects on wages and overqualification is

that the choice of the subject itself depends on observable and unobservable characteristics

of the individuals. Assume that the utility Uji of individual i to study subject j is a function

of observable characteristics X2,i and unobservable characteristics ηji, Uij = θjX2,i + ηji.

Individual i will study subject j when his utility from studying this subject is higher than

the utility from any other subject k and the probability that he will study subject j is
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Pr(subjectji = 1) = Pr(θjX2,i + ηji > θkX2,i + ηki) ; j 6= k (2.3)

where X2,i represents covariates which influence the subject choice and might overlap

with X1.7 There might be unobserved characteristics of the individuals that influence both,

the choice of the subject and the probability of a mismatch resp. wages. For example,

individuals choosing STEM university subjects might have on average a higher ability than

individuals choosing other subjects. There might also be other unobserved characteristics

which could affect both, the choice of the field of study and labor market outcomes, such

as motivation or ambition. These qualities are highly rewarded in the labour market and

potentially decrease their probability of overqualification in the job resp. increase their

wages. If this is the case, there will be a non–zero correlation between the error–terms of

the equations, i.e. between ηji and εi resp. εi.8

Then subjectji contains ηji, which is correlated with εi and εi. Therefore, the estimation

of the effect of subjects on the risk of overqualificaton resp. wages is inconsistent for

β1 and φj resp. δ1 and ϕj. Hence, subjectji is a multinomial endogenous variable. In

order to account for the potential endogeneity, we apply instrumental variable techniques.

Through the instrumental variable approach we can estimate the effect of the fields of

study on labor market outcomes excluding the effects of unobserved heterogeneity of the

graduates. By comparing the estimates with and without the instrumental variables, we

can visualize to what degree differences between fields of study are driven by unobserved

heterogeneity. However, the precise underlying mechanisms cannot be identified. For

example, unobserved heterogeneity might affect labor market outcomes through differences

in ability, motivation or ambition between the graduates of different fields of study. Even

though we cannot identify the precise underlying mechanisms, by distinguishing between

7 In the analysis we include in X1,i and X2,i demographic characteristics, family background and educati-
onal background characteristics. The two matrices differ with respect to two instrumental variables,
which are included only in X2,i. The detailed list and description of the variables included in the analysis
is presented in Section 2.4.

8 The sign of the correlation depends on the definition of the reference groups. In our case, graduating in
STEM and being non–overqualified are the reference groups, so that we expect a positive correlation
between ηji and εi. This is because we expect that unobservables which are associated with a higher pro-
bability to graduate in STEM subjects are also associated with a lower probability of being overqualified.
Analogously, we expect a negative correlation between ηji and εi because we expect that unobervables
which are associated with a higher probability to graduate in STEM subjects are associated with higher
wages.
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the effects of unobserved heterogeneity and the direct effects of the fields of study, we can

analyze whether policy measures aimed at improving individuals’ labor market outcomes

should focus on pre-university characteristics or on directly altering the relative number

of students in different subjects. Further, we can discuss how promoting STEM subjects

might affect labor market outcomes of those who are pushed in these subjects.

2.3.2 Instrumental Variables

The key problem for our empirical analysis is that unobservable factors, such as ability,

most likely not only affect the individual risk of overqualification and individual wages,

but also the probability of graduating in a STEM vs. other subjects. We control for a wide

range of individual characteristics. Further, we partly control for ability by using average

school grades as a proxy. However, school grades only partly reflect ability, so that the

unobserved variation of ability (which is not covered by school grades) still can lead to

biased estimates for the effects of graduating in specific subjects. Moreover, there might

be other unobservable characteristics which are linked to both, the choice of subjects and

labor market outcomes, such as motivation or ambition. To address the selection problem,

we employ two instrumental variables for the subject choice.

Our first instrumental variable is the difference of mathematics and German grades

in the last year of school. We argue that, once we control for the average of high school

grades in German and math as well as for other observables, the difference in grades has

an effect on the job match and on wages only through the university subject. For example,

assume that two individuals have the same overall ability, i.e. the same average math and

German grades. The individual who has relative better math than German grades is more

likely to choose a STEM subject, as this individual is likely to be more interested and

has a comparative advantage in STEM topics. We argue that his comparative advantage

in math does not have per se an effect on labour market outcomes. This might seem

a strong assumption considering that there are studies stressing the role of high school

mathematics grades on future earnings (Joensen and Nielsen, 2009; Murnane et al., 1995)

and that, at least for the US, math courses might be more important for labour market

outcomes than English courses (Rose and Betts, 2004). We conduct a series of robustness

checks and informal tests to analyze whether this issue might be relevant in our case and

to investigate if and in which direction our IV estimates might be biased. We conclude
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that, when controlling for broad field of study groups, mathematics grades do not have

stronger effects on labour market outcomes than German grades. This is in line with novel

evidence on returns to skills by Hanushek et al. (2015), who find that, contrary to the US,

monetary returns to mathematical skills and to literacy skills are very similar in Germany.

We are therefore convinced that the first instrument is valid.

Our second instrumental variable is a binary variable indicating whether the individual

played a music instrument or was involved in other music activities in youth. Our argument

is analogous to the above discussion. An individual, who played an instrument in youth

is likely to have different interests compared to other individuals, hence choosing other

subjects in university — holding constant all other variables. Once we control for average

high school grades and other observables, such as family background characteristics, we

argue that playing versus not playing an instrument affects wages and job match only

through the university subject. Again, this might seem a strong assumption as there

is literature arguing that playing an instrument in youth relates to outcomes such as

skills, personality or educational achievement, even though such analyses usually do not

detect causal effects (Hille and Schupp, 2015). Schellenberg (2004) provides evidence

for a causal, albeit very small, effect on educational outcomes and IQ, while Hille and

Schupp (2015) provide evidence for causal effects on skills, school grades and personality.

Nevertheless, those effects are measured against the alternative of no extracurricular

activity and for samples drawn from the whole population. As Schellenberg (2004) notes,

other extracurricular activities might have very similar effects. Note that we focus on

university graduates only, who are a homogeneous group, and that we rely on a rich set of

covariates. If the alternative of playing an instrument is another activity with similar effects

on skills, then differences in skills between those who played an instrument in the youth

and those who did not are likely to be small and ambiguous. In a sample of graduates, who

typically come from families with a higher social status, such as in our sample, this is more

likely to be the case. Hence, we believe that there is only little room left for the variable

“played an instrument in youth” to directly affect the remaining variation in overall ability,

as we control for the most relevant variables which affect labour market outcomes and as

we solely focus on graduates. Anyhow, we check whether the variable is a valid instrument

using several strategies. First, we restrict our analysis to bivariate comparisons of subjects

(STEM versus Business & Law and STEM versus Social Sciences & Humanities), so that
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we can check whether the two instruments are invalid using overidentification tests. The

tests indicate that the instruments are not invalid. Second, we apply analogous robustness

checks and informal tests as for the first instrument to analyze the validity of the second

instrument. All tests suggest that the second instrument does not directly affect labour

market outcomes when controlling for a rich set of control variables and broad field of

study groups. We are therefore convinced that both instruments are valid.

2.3.3 Implementation

In order to implement our empirical approach, we rely on a probit specification for the risk

of overqualification in equation (2.1) and a linear specification for log wages in equation

(2.2). The key challenge is to account for the endogeneity of the subject choice. We

therefore estimate the subject choice in equation (2.3) as a multinomial probit model. We

then have two econometric models, one for subject choice and overqualification and one

for subject choice and wages.

Having a probit specification for the risk of overqualification and a multinomial probit

specification for the subject choice, we assume that the errors of both parts of the model

follow a multivariate normal distribution, so that we can estimate a joint model of subject

choice and overqualification using simulated maximum likelihood. Analogously, if we

rely on a normally distributed error for our wage equation, we can estimate wages and

subject choice in a joint model using simulated maximum likelihood. We rely on the

Geweke-Hajivassiliou-Keane (GHK) algorithm for implementing the simulated maximum

likelihood of these two mixed-process (MP) models (Geweke, 1989; Hajivassiliou and

McFadden, 1998; Keane, 1994).

The two implementations are recursive models, where the endogenous variable of the

multinomial probit part (the subject choice) appears as an explanatory variable in the

probit part (risk of overqualification) resp. the linear part (log wages). Only the equation

for the risk of overqualification resp. wages is fully specified. For the subject choice

equations, we rely in both cases on instrumental variables to address the endogeneity

problem. Hence, we apply a limited-information maximum likelihood estimator for the

two models (Roodman, 2011).

In the multinomial probit model for the subject choice, we choose STEM as the base

category, so that we can compare how choosing Business & Law or Social Sciences &
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Humanities over STEM affects wage and overqualification.9 This implies that the base

category is not included in equations (2.1) and (2.2) and that we use θ0 = 0 to define

the base category in the multinomial probit in equation (2.3). The error terms in the

multinomial probit equation are assumed to be independent and identically distributed

implying that the relative probability of choosing one subject over another is assumed to

be independent of the availability of the third subject. We impose this assumption, which

is generally called independence of irrelevant alternatives (IIA), because we do not have

alternative-specific variables.

As we have two endogenous variables (in both, the model for wages and overqualification),

we require two instrumental variables. We compare our main specifications, the MP models,

with corresponding single-equation models for the risk of overqualification (probit model)

and wages (ordinary least squares, OLS). We do so in order to compare how taking account

the endogeneity affects the results, so that we can visualize the role of sorting into subjects

for wages and overqualification.

Actually, we do not need any instruments to technically identify these models, since the

non–linearity is already sufficient for technical identification. Moreover, the non–linearity

will contribute to the identification of the model even if we do include instruments, such

that it is hard to distinguish whether identification is due to the instruments or the

non–linearity (Altonji et al., 2005). We therefore compare our basic specification to linear

specifications where the identification solely relies on the instruments. In particular, we

model the probabilities of choosing Business & Law versus STEM resp. Social Sciences

& Humanities versus STEM as individual linear probability models (LPMs).10 Based on

these, we apply two-stage least squares (2SLS) approaches for estimating the effects of the

choice of subjects on wages and the risk of overqualification (with a LPM-specification for

overqualification).

We compare these implementations to other specifications to check the robustness of our

results. First, we compare our results to the approach proposed by Deb and Trivedi (2006,

9 Choosing STEM as the base category might seem counterintuitive, given that we are mainly interested
in the results for STEM. However, note that if we would choose e.g. Business & Law as the base category,
we were unable to discuss how choosing Social Sciences & Humanities instead of STEM (or vice versa)
would affect wages and overqualification. Therefore, in order to discuss how choosing STEM versus
Social Sciences & Humanities and STEM versus Business & Law affects wages and overqualification, we
have to choose STEM as the base category.

10In addition to the strong assumptions implied by the LPM, this specification further treats the two
subject choices as independent processes. Therefore, this implementation does not take into account the
correlation of the two subject choice equations.
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2009), where the correlation of the error terms of the multinomial treatment equation

(subject choice) and the outcome equation (overqualification resp. wages) is modeled by

introducing a latent variable which enters both parts of the model (henceforth DT). Second,

for wages we apply the two-step procedure proposed by Wooldridge (2010, p.939), where we

use the predicted probabilities from separate probit models for the subject choices (Busines

& Law versus STEM and Social Sciences & Humanities versus STEM) as instruments in

the outcome equation.11 The advantage of this IV estimator (henceforth ATEIV) is that

it is more efficient than the standard 2SLS, if the probit model is a better approximation

for the first stage than the linear model (Newey, 1990).

2.4 Data and Descriptive Statistics

2.4.1 Data Source and Key Variables

The sample used is drawn from the German Socio–Economic Panel (GSOEP), a panel

data set for the years 1984-2011 consisting of about 20,000 individuals living in Germany

(see Kroh, 2012, for details). We focus on highly educated males surveyed in the years

2001 to 2011, for whom there is information about the subject of their tertiary degree.

We restrict the analysis to male graduates, since female labour market participation in

Germany is strongly influenced by child care and family responsibilities. The investigation

of females therefore requires a different econometric approach that takes into account

selection out of the labour market. On the contrary, more than 96% of male graduates

under 55 in our SOEP sample are employed.12 The 11 GSOEP waves include 4,081 male

adults aged between 26 and 65 with a university degree (including universities of applied

studies) and for 2,252 there is information on the field of study.13 Of these, 2,064 are

employed in one of the 11 waves. We select one observation per individual such that the

time since graduation is minimized, but is at least 5 years. Moreover we drop individuals

graduating before the age of 20 or after the age of 35, because the likelihood to obtain a

11This implementation, just like the LPM models from above, does not take into account the correlation
of the two subject choice equations.

12Of these, less than 2% are respectively unemployed and non–employed and the shares differ only slightly
across the three subject groups considered. Because of early retirement provisions, the share of employed
workers is lower for male graduates aged 55 to 65. Table 2.A.6 shows that our main results are not
driven by this age group.

13Note that the high number of lost observation is mainly due to the fact that this type of information
was not asked in the biography questionnaire before 2001
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university degree at a later stage of life might be higher for particular subject groups and

we want to hinder that this could possibly affect our results. We end up with a sample of

896 individuals, for whom we have information on all variables relevant for our analysis.

Most of the reduction of the sample is due to missing values for high school grades, which

are available for about 75% of employed graduates.14

To analyze differences across fields of study, we divide graduates into three broad

groups: STEM, Business & Law and Social Sciences & Humanities. Graduates in the fields

of medicine and education (or teaching) are omitted from the analysis, because of the

specificity of the link between education and occupation.15 We consider as STEM fields

mathematics, natural sciences (physics, chemistry and biology), computing, engineering

and architecture.16 The Business & Law group comprises law, management, public

management, managerial engineering and economics. All other subjects including other

social sciences, arts and humanities are grouped in the Social Sciences & Humanities

category. Table 2.A.1 provides a detailed overview of the fields of study included in each

subject group category.

Overqualification is measured based on workers’ self–assessment about the educational

requirement of the job. More precisely, the following question is asked in the GSOEP

questionnaire: “what type of education or training is usually necessary for this type of

work?” We consider an individual to be overqualified if a graduate reports that her job

requires a vocational degree or a no degree at all.17 The measure, which is widespread

in the overeducation literature, has the drawback of relying on the subjective individual

self–assessment. Nevertheless, several authors have claimed that the measurement errors

are probably less severe for this measure than for measures based on the distribution of

educational qualification within occupations – i.e. “realized matches” on the qualification

required by the job. This is because the latter is the result of demand and supply forces

14Again, this is because this information was only asked in the biography questionnaire starting in 2001.
Therefore, we do not have information for individuals entering the GSOEP before 2001 if they already
completed high school.

15In Germany, students graduating in medicine and teaching have to take a state examination at the
end of their studies. For each discipline, these state examinations are a prerequisite for holding a civil
service job or a job regulated by the state. Since graduates of these subjects cannot be overqualified if
they act within their profession, they face a very low overqualification risk.

16We follow the classification provided by the German Institute for Employment Research (IAB) for MINT
subjects (the German acronym for STEM). See for example, IAB (2010). Re-defining architecture as a
Social Sciences & Humanities field does not qualitatively alter the results.

17Note that we do not distinguish between university and university of applied science (Fachhochschule)
degrees, although the variable allows such a distinction.
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and it ignores variation in required schooling across jobs within an occupation (Leuven

and Oosterbeek, 2011).

Hourly wages are measured through the self-reported monthly gross income divided by

monthly working hours. We calculate real wages based on the CPI deflator using 2010 as

the base year. In order to ensure that outliers are not driving the main results we trim

wages excluding the 1st and the 99th percentile (individuals receiving a hourly wage lower

than EUR 5 or higher than EUR 100) and we employ the standard logarithmic form for

the wage regressions.

Concerning high school grades, we have data on the mathematics and the verbal

(German) score from the last school report. These two subjects are the only compulsory

courses for the high school diploma in most federal states in Germany. Grades are measured

using the 6 points scale typical for the German system. We reverse the order of the grades

in order to ease the interpretation of the regression results, so that 6 is the highest grade

and 1 the lowest. We construct the variable Grade:average, which equals the individual

average of the two grades, and the variable Grade:difference, resulting from subtracting

math grades from verbal ones. The latter will be positive for students with a comparative

advantage in math, negative for those better in German and equal to zero for students

receiving the same grade for both subjects.

The school grades play an important role for the entrance of pupils into the university

system in Germany. At the end of school education in the upper secondary level, pupils

can earn the Abitur or Fachabitur, which qualifies them for general (Abitur) or subject-

specific (Fachabitur) higher education entrance. University students typically have a

general higher education entrance qualification, whereas the share of subject-specific higher

education entrance qualification is higher for students at universities of applied sciences

(Fachhochschule). In specific subjects where the number of applicants typically exceeds the

number of available places at universities, the allocation of places to applicants is centrally

organized at the national level and based on the final grade of the Abitur. Students whose

final Abitur grade is not sufficient can queue for a place at a university whereas their

queuing time depends on their grade. Universities also have individual university-specific

entrance limitations for other subjects, which are typically based on the final Abitur grade

and which are specific to the subjects. In these subjects, individuals require a minimum

grade (numerus clausus) for registering as a student. For many subjects, however, no
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entrance limitation exists and anyone with a higher education entrance qualification can

register as a student.

2.4.2 Descriptive Results

Table 2.1 presents the mean and standard deviation for relevant variables. STEM subjects

represent the largest field of study group (53%) followed by Business & Law (31%) and

Social Sciences & Humanities (16%). The sample composition across fields of study reflects

the fact that the STEM subjects are typically male-dominated subjects, differently from

subjects of the other fields. 34% of the sample studied at an university of applied science

(Fachhochschule, abbr. FH ) for their highest degree. More than two thirds of graduates

have an ‘Abitur’ high-school degree, which allows direct access to university. The great

majority of those who don’t have such a degree graduated then from an university of applied

science (meaning that the variables ‘Abitur’ and ‘FH degree’ are negatively correlated).

About 16% have a high-school degree providing direct access only to universities of applied

sciences (Fachhochschulreife). Almost 30% of graduates did a professional apprenticeship,

which is done in general before starting university. FH graduates are more likely to have

done such an apprenticeship. Instead of actual experience we include potential experience,

specifically time since graduation, which is independent from the unemployment spells.

The average time since graduation is 19 years, while the average age is 46 years. The

majority of the individuals was born in the 50s and the 60s.

Table 2.2 shows summary statistics of the dependent variables and other main variables

by the three field of study groups employed. In our sample graduates from the Business &

Law group earn on average slightly more than STEM graduates. Graduates from Social

Sciences & Humanities have on average the lowest earnings. Concerning overqualification,

STEM graduates face a lower risk of being mismatched (12%) followed by the Social

Sciences & Humanities (14%) and Business & Law (18%). As regards average grades from

the last school report, STEM graduates received on average better grades than the other

two groups. This supports our hypothesis that STEM graduates might have on average

higher ability, meaning that there is some ability sorting into fields of study. The figures

on the difference between math and German grades anticipate the results of the first stage

regressions. STEM graduates had a comparative advantage in math at school, while Social

Sciences & Humanities graduates had a comparative advantage in German. Graduates of
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Table 2.1: Summary Statistics

mean sd min max
Subject group

STEM fields 0.53 0.50 0 1
Business & Law 0.31 0.46 0 1
Social Sciences & Humanities 0.16 0.36 0 1

Dependent variables and other main variables
Real hourly wage (log) 3.15 0.45 1.55 4.54
Overqualified 0.14 0.35 0 1
Grade: average 4.68 0.72 2.5 6
Grade: difference 0.26 1.08 -4 4
Played music in youth 0.37 0.48 0 1

Demographic characteristics
Christian 0.60 0.49 0 1
Migration background 0.07 0.25 0 1

Parental education and employment
Father: higher educ. 0.28 0.45 0 1
Mother: higher educ. 0.09 0.29 0 1
Mother non employed (age 15) 0.45 0.50 0 1

Pre-graduation characteristics
FH degree 0.34 0.48 0 1
Apprenticeship 0.27 0.44 0 1
University access (Abitur) 0.69 0.46 0 1
FH access (Fachhochschulreife) 0.16 0.36 0 1
Birth year
Born before 1950 0.19 0.40 0 1
Born in the 1950s 0.32 0.47 0 1
Born in the 1960s 0.29 0.46 0 1
Born in 1970 or after 0.19 0.39 0 1
High school federal state
Schleswig-Holstein & Lower Saxony 0.11 0.3 0 1
Hamburg & Bremen 0.03 0.18 0 1
North Rhine-Westphalia 0.21 0.41 0 1
Hesse, Rhinel.-Palatinate & Saarl. 0.13 0.34 0 1
Baden-Wuerttemberg 0.14 0.34 0 1
Bavaria 0.14 0.34 0 1
Berlin 0.02 0.12 0 1
East Germany or outside Germany 0.22 0.41 0 1

Post-graduation characteristics
Married 0.90 0.29 0 1
Urban region 0.56 0.50 0 1
Job in West Germany 0.70 0.46 0 1
Time since graduation 19.15 9.92 5 43
Time since grad. squared 465.3 404.3 25 1849
Survey year
Surveyed in 2001 or 2002 0.27 0.44 0 1
Surveyed in 2003, 2004 or 2005 0.33 0.47 0 1
Surveyed in 2006, 2007 or 2008 0.15 0.36 0 1
Surveyed in 2009, 2010 or 2011 0.25 0.43 0 1

The summary statistics refer to the final sample of 896 observations.
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the Business & Law group had on average very similar German and math school grades.

The Social Sciences & Humanities group presents the highest share of individuals playing

an instrument or being involved in other music activities in youth (47%), followed by

STEM and Business & Law graduates (37% and 33% respectively).

Table 2.2: Relevant Variables by Field of Study

STEM Business & Law Social Sciences
& Humanities

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.
Real hourly wage (log) 3.16 0.44 3.24 0.47 2.94 0.43
Overqualified 0.12 0.33 0.18 0.38 0.14 0.35
School grade: averagea 4.82 0.7 4.54 0.73 4.54 0.73
School grade: difference 0.56 0.99 0.01 1.1 -0.27 1.05
Played music in youth 0.37 0.48 0.33 0.47 0.47 0.5
aNote that we reverse the order of grades typical to the German system, so that 6 is the
highest and 1 the lowest grade.

2.5 Results

2.5.1 Impact of University Subjects on Overqualification

Our first aim is to investigate the impact of the field of study on the probability of being

overqualified. To do so, we explicitly model the subject choice to address the selection

into the three broad subject groups considered. We include the difference in math and

German high school grades and whether the individual played a musical instrument in

youth as instrumental variables for the subject dummies (see Section 2.3). In order to

highlight the relevance of modeling the sorting into subjects, we compare the results of the

instrumental variable model with a simple linear probability model and a probit model for

the probability of overqualification where we do not account for sorting.

The results from the overqualification regressions are shown in Table 2.3. The first two

columns present the results of the linear probability model, where the overqualification

dummy is regressed on the fields of study dummies and a large set of demographic,

family background, pre-graduate education and geographic control variables. We show

the coefficients for the subject groups Business & Law and Social Sciences & Humanities,

leaving STEM fields as the comparison group. While the specification in column (2)
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Table 2.3: Effect of Fields of Study on the Risk of Overqualification

LPM MP LPMa Probit MP Probitb

(1) (2) (3) (4) (5)
Panel A: Overqualification equation

Business & Law 0.084*** 0.075*** 0.021 0.068*** -0.075
(0.027) (0.027) (0.035) (0.025) (0.081)

Social Sc. & Humanities 0.057* 0.046 0.500*** 0.045 0.210*
(0.034) (0.034) (0.034) (0.033) (0.114)

Grade: average -0.045** -0.026 -0.048*** -0.051***
(0.018) (0.020) (0.016) (0.019)

Demographic charact. Yes Yes Yes Yes Yes
Parental education Yes Yes Yes Yes Yes
Pre-graduation charact. Yes Yes Yes Yes Yes
Post-graduation charact. Yes Yes Yes Yes Yes
School state dummies Yes Yes Yes Yes Yes

Panel B: Subject choice equation
Business & Law fields
Grade: difference -0.120*** -0.122***

(0.017) (0.017)
Played music in youth -0.084** -0.086**

(0.040) (0.039)
Grade: average -0.074** -0.076***

(0.029) (0.028)
Social Sc. & Humanities
Grade: difference -0.098*** -0.116***

(0.015) (0.015)
Played music in youth 0.048 0.043

(0.032) (0.034)
Grade: average -0.075*** -0.076***

(0.024) (0.023)
Control variables
Demographic charact. Yes Yes
Parental education Yes Yes
Pre-graduation charact. Yes Yes
Post-graduation charact. Yes Yes
School state dummies Yes Yes
Observations 896 896 896 896 896
R-sq. 0.111 0.118
Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01. The coefficients in Panel B and
in columns (4) and (5) are average marginal effects. a MP model with linear specification for the
overqualification equation; b MP model with probit specification for the overqualification equation.
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includes the average of math and German grades from the last school report, this variable

is omitted in the model of column (1). Graduates in STEM fields appear to be less likely

to be overqualified than graduates in other fields. According to the first specification the

coefficient is of about 8% for Business & Law graduates (significant at the 99% confidence

level) and of about 6% for Social Sciences & Humanities graduates (significant at the

90% confidence level). The point estimates decrease by about 1 percentage point in the

second specification, when we control for school grades. High school grades have a negative

and significant effect on the overqualification probability and appear to be an important

omitted variable in the first specification. Since graduates in STEM fields had on average

better grades at school, the difference in the overqualification risk with respect to other

graduates decreases when grades are controlled for.

Column (3) of Table 2.3 shows the results of the instrumental variable model with

a linear probability model for the overqualification equation. Panel A shows again the

coefficients for the main variables from the overqualification equation. Panel B shows the

coefficients of the instrumental variables and the average school grades for the subject

choice equation. The coefficients in Panel B are average marginal effects. In Section 2.4

we already anticipated the relationship between the instrumental variables and the subject

dummies. Panel B shows that this relationship is strong also in the model including control

variables (i.e. the other instruments). First of all, the coefficients for the difference in

grades are negative and strongly significant for both Business & Law and Social Sciences

& Humanities. This means that individuals with a comparative advantage in mathematics

are more likely to choose STEM subjects than the other two subject groups. Second, the

coefficient for playing music in youth is negative and significant for Business & Law and

positve but not significant for Social Sciences & Humanities, meaning that individuals

playing music in youth are less likely to choose Business & Law subjects and are more likely

to choose other Social Sciences & Humanities subjects. Third, the average of mathematics

and German high-school grades has a strong impact on the field of study chosen. Students

with higher grades select themselves into STEM fields. We test the two instruments for

joint significance in the multinomial probit model using the likelihood ratio (LR) statistic.

The test statistic is of 81, which is much larger than the 99 % critical values for χ2(4).

Thus the result confirms that the instruments are relevant.18

18We also estimate a simple 2SLS model considering the two subject dummies as independent variables
in order to compute the Angrist and Pischke multinomial F-test of excluded instruments (Angrist
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Turning to the results of the subject equation (Column (3), Panel A) the coefficient

for Business & Law graduates decreases now to 2% and becomes insignificant. It appears

thus that the differences between graduates of this group and STEM graduates are almost

entirely explained by selection into subject groups. Conversely, the coefficient for Social

Sciences & Humanities increases strongly suggesting that graduating in Social Sciences &

Humanities increases the risk of overqualification relative to graduating in STEM disciplines.

Thus the results point towards the presence of individual unobservable characteristics,

which simultaneously increase the chance of studying Social Sciences & Humanities and

lower the risk of overqualification. It remains unclear, which characteristics these might be.

Nevertheless, the group of Social Sciences & Humanities is both small and heterogeneous,

and this might affect the results. Columns 4 and 5 show the results for the simple probit

regression and the instrumental variable model with a probit model for the overqualification

equation, respectively. All the coefficients shown are average marginal effects, so that we

can compare these to the coefficients of the previous models. Comparing the outcomes

from the model in column (5) to the simple probit, we can find a similar pattern as the one

found with the linear models (contrasting the linear probability model with the model in

column (3)). In the non-linear instrumental variable model the Business & Law coefficient

becomes even negative (see column (5)). The Social Sciences & Humanities coefficient

increases, albeit to a lower extent than in the linear instrumental variable model (see

column (3)). These results are robust with respect to the specification used, as the 2SLS

and DT specifications lead qualitatively to the same results (Table 2.A.2).

2.5.2 Impacts on Wages

Our second aim is to investigate the effect of subjects on wages. The main model we

estimate is the MP model following the procedure described in Section 2.3, which allows

us to take into account the non-linearity of the first stage regression. The instruments

used are the same as for the overqualification models and the model is analogous to the

one presented in column (3) of Table 2.3. Again, we compare our main model to two OLS

models with and without the inclusion of the average high-school grades.

and Pischke, 2008). The test statistic equals 18.6 for Business & Law and 23.6 for Social Sciences &
Humanities, much above the rule-of-thumb value of 10.
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Column (1) of Table 2.4 shows the results of the OLS regression when grades are

omitted. Graduates in Business & Law subjects appear to receive hourly wages that are

very similar to those of STEM graduates. The difference in earnings between the two

groups of graduates found in the descriptive table thus disappears when we include control

variables. Differently, graduates in Social Sciences & Humanities earn about 25% less than

the above groups and the coefficient is highly significant. Column (2) shows the results of

the same model when average grades are controlled for. As expected, the coefficient of

school grades is positive, but is not significant at standard confidence levels. Nevertheless,

it seems to be important to control for grades since the point estimates for the subject

group dummies change slightly. Consistently with ability sorting into STEM fields, the

negative coefficient of Social Sciences & Humanities decreases, while the Business & Law

coefficient increases.

Column (3) of Table 2.4 shows the results of the MP model. Again, Panel B shows

the coefficients of the instrumental variables and the average school grades for the subject

choice equation. The coefficient shown in Panel B are average marginal effects. Since the

subjects choice equations are the same as for the overqualification results, the coefficients

are almost the same. Coefficients for the log wage equation are shown in Panel A. The

coefficient for Business & Law subjects is larger compared to the OLS coefficient, but

remains insignificant because of the larger standard errors of the IV model. The difference

in hourly wages between Business & Law graduates and STEM graduates increases to

about 10%. Similarly to the overqualification regressions, selection into subjects appears

to play a role when we compare these two groups, although the effect is still insignificant.

However, note that the effect becomes significant if we exclude self-employed individuals

or individuals with migration background (see Table 2.A.6). Conversely, the coefficient for

Social Sciences & Humanities decreases slightly in the MP model. Thus, selection does

not seem to matter much for the difference between the STEM and the Social Sciences &

Humanities group. The results are robust with respect to the specification employed, as we

get comparable results with the ATE IV, 2SLS and DT specifications (Table 2.A.3). The

coefficient for Social Sciences & Humanities are larger in the ATE IV and DT compared

to the MP specification and insignificant in the ATE IV and 2SLS specifications, but

they again remain close to those of the OLS models, such that our interpretation remains

unaffected.
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Table 2.4: Effect of Fields of Study on Log Hourly Wages

OLS MP
(1) (2) (3)

Panel A: Wage equation
Business & Law -0.003 0.002 0.102

(0.029) (0.030) (0.105)
Social Sciences & Humanities -0.249*** -0.243*** -0.245**

(0.037) (0.038) (0.115)
Grade: average 0.025 0.031

(0.020) (0.021)
Demographic charact. Yes Yes Yes
Parental education Yes Yes Yes
Pre-graduation charact. Yes Yes Yes
Post-graduation charact. Yes Yes Yes
School state dummies Yes Yes Yes

Panel B: Subject choice equation
Business & Law fields
Grade: difference -0.122***

(0.017)
Played music in youth -0.088**

(0.040)
Grade: average -0.076***

(0.029)
Social Sciences & Humanities
Grade: difference -0.117***

(0.015)
Played music in youth 0.036

(0.034)
Grade: average -0.070***

(0.024)
Control variables
Demographic charact. Yes
Parental education Yes
Pre-graduation charact. Yes
Post-graduation charact. Yes
School state dummies Yes
Observations 896 896 896
R-sq. 0.353 0.355
Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01. The
coefficients in Panel B are average marginal effects.
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2.5.3 Robustness Checks

In Section 2.3 we highlighted that there are studies showing that mathematics skills are

particularly important for labour market outcomes (Joensen and Nielsen, 2009; Murnane

et al., 1995). Therefore, there might be reasons to be suspicious about the validity of the

difference in grades instrument. For example, if mathematics grades would have a larger

positive effect on wages than German grades (other than through the field of study chosen),

this might lead to biased IV estimates. Since the grade difference is negatively correlated

with the Business & Law and Social Sciences & Humanities dummies, coefficients of the two

subject dummies would be underestimated in the 2SLS wage equations. By the same token,

if mathematics grades would matter more than German grades for overqualification, this

would lead to an overestimation of the two subject dummies in the 2SLS overqualification

equation. Therefore, if mathematics grades matter more than German grades for labour

market outcomes, the IV models would underestimate the bias of a possible ability sorting

into STEM subjects. We perform an informal test to investigate whether math and

German grades have different impacts on the dependent variables. Table 2.A.4 shows the

results of OLS regressions for overqualification and wages highlighting the impact of high

school grades. For each dependent variable, we show the results from two specifications

- with and without the inclusion of subject dummies. The coefficient for average grade

is, as expected, negative for the overqualification regressions and positive for the wage

regressions. Conversely, the coefficient of the difference in grades (i.e. of the instrumental

variable) is never significant in any specification. When subject dummies are not controlled

for, the coefficient is small and negative in the overqualification regression (column (1))

and small and positive in the wage regression (column (3)). From these regressions

mathematics grades seem to be slightly more important than German grades for labour

market outcomes, even if the effect is close to zero and far from being significant. However,

when we control for subject dummies the coefficient approaches zero in the overqualification

regression (column (2)) and reverses sign in the wage regression (column (4)). We receive

similar results when regressing wages (resp. overqualification) on math and German grades,

i.e. both grades have effects of similar sizes on wages (resp. overqualification). This informal

test suggest that the difference in grades does not directly affect labour market outcomes,

i.e. that it is a valid instrument. This is in line with recent evidence, which shows that
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returns to mathematical and literacy skills are very similar in Germany (Hanushek et al.,

2015).

The exogeneity of the other exclusion restriction i.e. playing music in youth could

be also called into question. We believe that in our setting the potential concerns are

minimized for the reasons outlined in Section 2.3.2. Nevertheless, we perform the same

informal test also with this second instrumental variable. The results are shown in Table

2.A.5. The coefficient for playing music in youth is never significant in any specification.

The coefficient is positive in the overqualification equation and is about 2% in both

specifications (with or without subject dummies). Conversely, it is negative and about 3%

in the wage equation without subject control variables, but drops to the half (1.4%) when

subject dummies are included. All coefficients are very small and far from being significant.

Thus, playing music in youth does not seem to have a direct effect on overqualification

and wages, i.e. we are confident that it is a valid instrument.

Since our model is just-identified, we cannot directly implement a test of overidentifying

restrictions in our context. A simple solution is to drop one of the three subject categories,

estimate a GMM IV model with the binary subject dummy as endogenous variable and

test our overidentifying instruments. We first drop the Social Sciences & Humanities

category and estimate a model comparing STEM fields to Business & Law fields. The test

statistic of the Hansen-Sargan test equals 0.017 (p-value of 0.90). Similarly, dropping the

Business & Law fields and comparing STEM to Social Sciences & Humanities, we get a

test statistic of 0.635 (p-value of 0.43). Finally, if we drop STEM fields and follow the

same procedure we get a test statistic of 2.44 (p-value of 0.12). Therefore, in none of the

three cases we would reject the null hypothesis that the two instruments are valid. The

conditions under which the overidentification test can fail to detect invalid instruments

seem implausible in our case (c.f. appendix 2.A.1).

Although we restrict our sample to employed males with at least 5 years of potential

experience (measured as time since graduation), our sample is still very heterogeneous.

Ideally, we would like to look at potential heterogeneous effects by interacting the instrument

with relevant individual characteristics. However, because of the small sample size and

the many control variables, this is impracticable. A feasible alternative is to exclude small

sub-samples of individuals and estimate the main specifications with a restricted sample.

This can also ensure that our results are consistent for the whole sample and are not driven
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by large effects for very specific graduates. Table 2.A.6 shows the results for sub-samples

excluding self-employed, part-time workers and older cohorts, respectively. We included

self-employed workers in our main specification, because we consider self-employment to

be an outcome of the university subject choice. However, individuals with a propensity

towards self-employment might choose specific fields especially because they allow them the

possibility to be self-employed. Moreover, self-employed workers might respond differently

to the question regarding the qualifications required for the job and this can affect the

overqualification variable.19 Results for the sub-sample of employees are shown in Panel A

of Table 2.A.6. If anything, we can observe larger differences to the main model for the

wage regression than for overqualification regressions. While the point estimates in the

OLS do not differ too much to the main specifications, the difference to the coefficients in

the IV model gets larger. On the one hand, the coefficient for Business & Law increases to

0.22 and is now statistically significant (at the 90% confidence level). On the other hand,

the coefficient for Social Sciences & Humanities is of -0.13 (about 9 percentage points

larger than the estimate in the OLS case). Panel B shows the results when we exclude

part-time workers. Again, we did not control for part-time jobs considering them more an

outcome of the study choice than an individual attitude. This argument is especially valid

for involuntary part-time. On the contrary, voluntary part-time might be the outcome of

individual attitudes such as family orientation. The results for the sub-sample of full-time

workers are very similar to the main results. This is not surprising since there are only 24

males in our sample that work in part-time jobs. Panel C shows the results for a younger

sub-sample, namely if we exclude individuals born before 1950. Also in this case the results

do not differ qualitatively. Nevertheless, it has to be pointed out that ability sorting (or

other similar unobservable biases) seem to play a smaller role for the difference in wages

between STEM and Business & Law graduates when older cohorts are excluded.

2.6 Conclusions

In this paper, we analyze the effects of graduating in STEM fields and other subjects on

wages and the risk of overqualification. Unobservable factors, such as ability, are likely

19A concern is that self-employed could underestimate the qualification required by the job. Indeed,
self-employed workers are more likely to report to be overqualified in the job. The overqualification
incidence is of 19% for self-employed and of 14% for other worker and this difference is significant (at
the 99% confidence level) according to a simple t-test.
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to affect not only wages and the risk of overqualification, but also the probability of

graduating in a specific subject. We therefore apply instrumental variable techniques to

control for the selection into subjects.

We find that the risk of overqualification for Business & Law graduates is about

7-8 percentage points higher compared to STEM graduates, even when controlling for

individual, family, and other characteristics. However, once we control for the selection

into subjects, no significant differences in the risk of overqualification remain between

these groups. Moreover, controlling for individual, family and other characteristics we find

almost no wage differences between Business & Law and STEM graduates. However, once

we control for selection, we find that Business & Law graduates earn on average 10% more

than STEM graduates.20 These results hint to a positive selection of students into STEM

subjects.

The results for Social Sciences & Humanities are less clear. Graduates in these subjects

face a higher risk of overqualification, and it seems that this risk is even higher when

controlling for selection into subjects. This would imply that studying Social Sciences &

Humanities is associated with a higher risk of overqualification than studying STEM and

that this is reduced on aggregate by the selection of students with favorable unobserved

characteristics into Social Sciences & Humanities. Moreover, Social Sciences & Humanities

graduates earn less than STEM graduates and controlling for selection does not significantly

affect this wage gap. However, this group accounts for only 16% of the sample and contains

very diverse subjects, so that these results could be influenced by the small sample size

and the diversity of the subjects.

Our results are robust with respect to different specifications, variations of the sample,

and in- or exclusion of control variables. Additionally, we provide tests to confirm the

credibility of our instruments.

Our results indicate that it is not sufficient to compare average wages and average risks

of overqualification between fields of study when one is interested in the individual returns

to subject choices. Moreover, the results are highly relevant for education policy. They

suggest that policies promoting STEM over Business & Law subjects could negatively

affect wages while having no effect on the risk of overqualification for pupils, who would

otherwise have chosen Business & Law. This does not imply that such policies are

20The effect is only significant when individuals with migration background or self-employed individuals
are excluded from the sample.
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ineffective. Assuming that there is a lack of STEM graduates, such policies could be an

option to increase the aggregate supply of these graduates. The results, however, indicate

that the individual level effects of such policies could be negative in terms of wages and

that these policies might not reduce the incidence of overqualification. This negatively

affects the efficiency of such policy measures with respect to their goal of increasing

the supply of STEM graduates. Our results suggest that individual characteristics play

an important role for the subject choice, as well as for labor market outcomes. This

would imply that policy measures which aim at increasing the supply of adequate STEM

graduates should additionally take into account individual characteristics by, for example,

fostering the development of math skills early in school. In line with this, Stinebrickner

and Stinebrickner (2014) argue that students’ subject choices by and large fit their abilities,

so that policies which aim at increasing the supply of science graduates should focus on

providing pupils with the skills required by these subjects.

Our findings are based on a sample of German men born between 1940 and 1980. It

would be very relevant from a policy perspective to check whether similar results are found

for women and for younger cohorts. Moreover, further research is necessary to evaluate

the role of policies promoting STEM fields for the aggregate supply of STEM graduates

and to identify whether there is an excess demand for STEM graduates.
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2.A Appendix

2.A.1 A Note on the Overidentification Test

Above we have reduced the sample to bivariate comparison of fields of study (for each

potential comparison) so that we were able to apply overidentification tests. In non of the

cases did the test reject the null hypothesis that the instruments are valid. However, an

objection against the use of the overidentification test for detecting invalid instruments

is that the test does not detect invalid instruments when the IV estimators using the

full and the reduced set of instruments are similarly asymptotically biased (Wooldridge,

2010, p. 135). Parente and Santos Silva (2012) discuss this issue in the case of one

endogenous explanatory variable and two instruments — as in the case of our bivariate

comparison of fields of study — and argue that the overidentification test does not detect

invalid instruments if γ2/γ1 = π2/π1, where π1 and π2 are the coefficients in the linear

projection of the explanatory endogenous variable (field of study) on the instruments and

γ1 and γ2 are the coefficients in the projection of the error of the outcome equation on the

instruments. More generally, De Blander (2008) shows that the overidentification test does

not detect invalid instruments if the instruments appear in the same linear combination

in the linear projection of the error of the outcome equation on the instruments, as they

appear in the linear projection of the endogenous explanatory variable (field of study) on

the instruments.

In our case both instruments are negatively correlated with the Business & Law dummy,

so that the test would fail if the instruments were directly linked to the error in the outcome

equation and if the ratio of these effects would be about the same as for the instruments’

effects on the endogenous explanatory variable. This requires that the instruments are

linked with the same sign to the error in the outcome equation. For example, higher

ability pupils might both have relative better math grades and might be more likely to

play instruments, so that we would underestimate the wage-effect of the Business & Law

dummy with both instruments, assuming that ability positively affects wages. Conversely,

the first instrument is negatively and the second instrument is positively correlated to

the Social Sciences & Humanities dummy, so that the test would fail if the instruments

were directly linked to the error in the outcome equation and if the ratio of these effects

would be about the same as for the instruments’ effects on the endogenous explanatory
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variable. This requires that the instruments are linked with opposite signs to the error

in the outcome equation. For example, higher ability pupils might have relative better

math grades and might be less likely to play instruments, so that we would underestimate

the wage-effect of the Social Sciences & Humanities dummy with both instruments. This

implies that the test can fail in both cases only if the instruments are differently linked to

the outcome equation for the two fields of study. In fact, in neither case the test rejects

the null so that the test can only fail if the instruments differently directly affect wages

(overqualification) for Business & Law vs. STEM than for Social Sciences & Humanities

vs. STEM. This seems implausible and we are therefore confident that the test is reliable.

2.A.2 Tables and Figures

Table 2.A.1: Fields of Study Groups

Subject group Specific fields of study
STEM Mathematics, Physics, Astronomy, Chemistry, Pharmacology,

Biology, Geosciences, Computer Science, Engineering (incl.
Civil, Mechanical, Electrical and Traffic Engineering), Mining
and Metallurgy, Architecture and Interior Design, Regional
Planning, Surveying and Mapping

Business & Law Law, Business Administration, Public Management and Go-
vernance, Economics, Managerial Engineering

Social Sc. & Humanities Philosophy, History, Literary Studies, Linguistics, Philology,
Cultural Studies, Theology, Psychology, Political Science,
Social Sciences, Social Work, Geography, Landscape Conser-
vation, Agricultural Sciences, Forest Management, Fine Arts,
Design, Performance, Film and Television, Theater, Sport
Science, Music, Musicology

Note that Education, Medicine, Dentistry and other health sciences are excluded from the sample.
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Table 2.A.2: Effect of Fields of Study on the Risk of Overqualification - Different Specifi-
cations

LPM 2SLS DT

(1) (2) (3)
Panel A: Overqualification equation

Business & Law 0.075*** -0.096 0.019***
(0.027) (0.184) (0.005)

Social Sc. & Humanities 0.046 0.203 0.262***
(0.034) (0.206) (0.005)

Grade: average -0.045** -0.048** -0.031***
(0.018) (0.021) (0.002)

Demographic charact. Yes Yes Yes
Parental education Yes Yes Yes
Pre-graduation charact. Yes Yes Yes
Post-graduation charact. Yes Yes Yes
School state dummies Yes Yes Yes

Panel B: Subject choice equation
Business & Law fields
Grade: difference -0.061*** -0.562***

(0.015) (0.096)
Played music in youth -0.091*** -0.424**

(0.032) (0.204)
Grade: average -0.043* -0.367**

(0.024) (0.143)
Social Sciences & Humanities
Grade: difference -0.061*** -0.738***

(0.011) (0.118)
Played music in youth 0.054** 0.294

(0.026) (0.223)
Grade: average -0.038** -0.453***

(0.018) (0.157)
Control variables
Demographic charact. Yes Yes
Parental education Yes Yes
Pre-graduation charact. Yes Yes
Post-graduation charact. Yes Yes
School state dummies Yes Yes
Observations 896 896 896
R-sq. 0.118 0.023
Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01. Note
that the coefficients shown in column (3) and column (4) are not average
marginal effects and cannot be directly compared to the coefficients of
the other models.
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Table 2.A.3: Effect of Fields of Study on Log Hourly Wages - Different Specifications

OLS 2SLS ATEIV DT
(1) (2) (3) (4)

Panel A: Wage equation
Business & Law 0.002 0.152 0.069 0.200***

(0.030) (0.200) (0.164) (0.050)
Social Sc. & Humanities -0.243*** -0.271 -0.217 -0.229***

(0.038) (0.206) (0.153) (0.077)
Grade: average 0.025 0.032 0.030 0.036*

(0.020) (0.022) (0.022) (0.021)
Demographic charact. Yes Yes Yes Yes
Parental education Yes Yes Yes Yes
Pre-graduation charact. Yes Yes Yes Yes
Post-graduation charact. Yes Yes Yes Yes
School state dummies Yes Yes Yes Yes

Panel B: Subject choice equation
Business & Law fields
Grade: difference -0.061*** -0.059*** -0.585***

(0.015) (0.014) (0.098)
Played music in youth -0.091*** -0.087*** -0.444**

(0.032) (0.031) (0.209)
Grade: average -0.043* -0.037* -0.371**

(0.024) (0.022) (0.147)
F-test (excl. instr.) 18.6
Social Sciences & Humanities
Grade: difference -0.061*** -0.058*** -0.825***

(0.011) (0.011) (0.128)
Played music in youth 0.054** 0.052** 0.305

(0.026) (0.024) (0.257)
Grade: average -0.038** -0.032* -0.511***

(0.018) (0.016) (0.179)
F-test (excl. instr.) 23.6
Control variables
Demographic charact. Yes Yes Yes
Parental education Yes Yes Yes
Pre-graduation charact. Yes Yes Yes
Post-graduation charact. Yes Yes Yes
School state dummies Yes Yes Yes
Observations 896 896 896 896
R-sq. 0.355 0.330 0.351
Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01. Note that the
coefficients shown in Panel B of column (4) are not average marginal effects and cannot
be directly compared to the coefficients of the other models.
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Table 2.A.4: Effect of High-School Grades on Overqualification and Wages

Overqualification Log hourly wages

LPM LPM OLS OLS
(1) (2) (3) (4)

Grade: difference -0.007 0.000 0.008 -0.008
(0.012) (0.013) (0.012) (0.012)

Grade: average -0.051*** -0.046** 0.035* 0.026
(0.018) (0.018) (0.020) (0.020)

Business & Law 0.075*** -0.002
(0.029) (0.030)

Social Sc. & Humanities 0.046 -0.249***
(0.035) (0.039)

Demographic characteristics Yes Yes Yes Yes
Parental education Yes Yes Yes Yes
Pre-graduation charact. Yes Yes Yes Yes
Post-graduation charact. Yes Yes Yes Yes
School state dummies Yes Yes Yes Yes

Observations 896 896 896 896
R sq. 0.110 0.118 0.319 0.355

Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01

Table 2.A.5: Effect of Playing Music in Youth on Overqualification and Wages

Overqualification Log hourly wages

LPM LPM OLS OLS
(1) (2) (3) (4)

Played music in youth 0.021 0.024 -0.029 -0.014
(0.024) (0.024) (0.027) (0.026)

Grade: average -0.053*** -0.046** 0.038* 0.025
(0.018) (0.019) (0.019) (0.019)

Business & Law 0.077*** 0.001
(0.028) (0.030)

Social Sc. & Humanities 0.044 -0.242***
(0.033) (0.038)

Demographic characteristics Yes Yes Yes Yes
Parental education Yes Yes Yes Yes
Pre-graduation charact. Yes Yes Yes Yes
Post-graduation charact. Yes Yes Yes Yes
School state dummies Yes Yes Yes Yes

Observations 896 896 896 896
R sq. 0.110 0.119 0.320 0.355

Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01
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Table 2.A.6: Results for Restricted Sample

Overqualification Log hourly wages

Probit MP Probit OLS MP
(1) (2) (3) (4)

Panel A: Excluding self-employed workers
Business & Law 0.067** -0.074 -0.003 0.224*

(0.026) (0.087) (0.028) (0.121)
Social Sc. & Humanities 0.032 0.197 -0.220*** -0.132

(0.035) (0.152) (0.038) (0.099)
Grade: average -0.044** -0.048** 0.035* 0.056**

(0.017) (0.019) (0.020) (0.022)
Demographic characteristics Yes Yes Yes Yes
Parental education Yes Yes Yes Yes
Pre-graduation charact. Yes Yes Yes Yes
Post-graduation charact. Yes Yes Yes Yes
School state dummies Yes Yes Yes Yes
Observations 760 760 760 760
R sq. 0.401

Panel B: Only full-time workers
Business & Law 0.070*** -0.085 0.002 0.078

(0.025) (0.081) (0.028) (0.110)
Social Sc. & Humanities 0.045 0.253** -0.260*** -0.297***

(0.033) (0.108) (0.038) (0.085)
Grade: average -0.044*** -0.048** 0.021 0.024

(0.016) (0.019) (0.019) (0.020)
Demographic characteristics Yes Yes Yes Yes
Parental education Yes Yes Yes Yes
Pre-graduation charact. Yes Yes Yes Yes
Post-graduation charact. Yes Yes Yes Yes
School state dummies Yes Yes Yes Yes
Observations 872 872 872 872
R sq. 0.380

Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01;
The coefficients in columns (1) and (2) are average marginal effects.
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Table 2.A.6: Results for Restricted Sample (continued)

Overqualification Log hourly wages

Probit MP Probit OLS MP
(1) (2) (3) (4)

Panel C: Younger cohorts
Business & Law 0.071** -0.090 -0.017 0.034

(0.028) (0.077) (0.031) (0.125)
Social Sc. & Humanities 0.067* 0.210* -0.251*** -0.254***

(0.036) (0.109) (0.042) (0.108)
Grade: average -0.047*** -0.049** 0.021 0.024

(0.018) (0.019) (0.021) (0.022)
Demographic characteristics Yes Yes Yes Yes
Parental education Yes Yes Yes Yes
Pre-graduation charact. Yes Yes Yes Yes
Post-graduation charact. Yes Yes Yes Yes
School state dummies Yes Yes Yes Yes
Observations 722 722 722 722
R sq. 0.357

Panel D: Excluding individuals with migration background
Business & Law 0.059** -0.111 0.009 0.173*

(0.026) (0.079) (0.030) (0.096)
Social Sc. & Humanities 0.040 0.161 -0.248*** -0.265**

(0.034) (0.127) (0.040) (0.115)
Grade: average -0.043** -0.050** 0.010 0.020

(0.017) (0.020) (0.020) (0.022)
Demographic characteristics Yes Yes Yes Yes
Parental education Yes Yes Yes Yes
Pre-graduation charact. Yes Yes Yes Yes
Post-graduation charact. Yes Yes Yes Yes
School state dummies Yes Yes Yes Yes
Observations 837 837 837 837
R sq. 0.365

Standard errors in parentheses; * p<0.10, ** p<0.05, *** p<0.01
The coefficients in columns (1) and (2) are average marginal effects.





Chapter 3

Local Labor Market Size and

Qualification Mismatch

3.1 Introduction

There is ample evidence that workers earn higher wages in larger labor markets. For

instance, Glaeser and Mare (2001) show that average wages in metropolitan areas with

a big city (i.e. a city with more than 500.000 inhabitants) are about 33% higher than

outside these areas. From an individual perspective, the higher cost of living in cities

might explain why not all workers are willing to move to larger cities. However, the urban

wage premium must reflect higher productivity in larger cities to explain why firms do not

relocate to less urbanized areas. Duranton and Puga (2004) distinguish three mechanisms

behind the higher productivity in larger cities: the sharing of facilities and risks, faster

learning and knowledge diffusion and better matches between firms and workers. While

the importance of better matches as a source of agglomeration economy is stressed from a

theoretical perspective, there is little evidence of its empirical relevance (Puga, 2010). A

major explanation for this is the paucity of data allowing to measure match quality in

I am indebted to Melanie Arntz, Wolfgang Dauth, Jorge De la Roca, Christina Gathmann, Henry
Overman, Ulrich Zierahn for their valuable remarks and suggestions. The paper also benefitted from
helpful comments at the workshop “New Research in the Economics of Educational and Skills Mismatch”
(Aberdeen, 2014), the workshop “Perspectives on (Un-)Employment” (IAB Nuremberg, 2014), the 6th
EGIT workshop (Dusseldorf, 2015), the 5th European meeting of the Urban Economics Association
(Lisbon, 2015), the 2015 conference of the Verein für Socialpolitik, the CEDEFOP/IZA Workshop on
Skills and Skill Mismatch (Thessaloniki, 2015) and the 2015 Barcelona workshop on regional and urban
economics. I gratefully acknowledge financial support from the Germany’s Federal Ministry of Education
and Research framework program “Economics of Science” (BMBF, research grant 01PW11019). The
usual disclaimer applies.
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a comprehensive way. Previous studies have attempted to measure it indirectly through

the share of occupational and industry changes (Bleakley and Lin, 2012) or through

assortative matching in terms of worker and firm quality (Andersson et al., 2007; Dauth

et al., 2016) and found evidence of better matches in more urbanized areas. The focus

in this paper is on a direct measure of job match quality, namely the match between the

formal qualifications earned by workers and the job requirements. This type of match

has been found to be strongly related to wages and firm productivity (Kampelmann and

Rycx, 2012; Leuven and Oosterbeek, 2011). More specifically, I look at the match between

actual and required qualifications both in terms of level (vertical match) and in terms

of content (horizontal match), since there is reason to expect both types of match to be

better in thicker labor markets.

The question whether workers in more densely populated areas are less exposed to

educational mismatch is also interesting in and of itself and relevant for the labor economics

literature on skill mismatch. Does it actually pay off for individuals to move to larger

cities in terms of better job matches and future career prospects? Previous studies have

already investigated the impact of various regional labor market characteristics including

the size of regional labor markets, regional unemployment rates and mobility restrictions

on overqualification (Büchel and Ham, 2003; Jauhiainen, 2011). However, these studies

aimed at analyzing several determinants of overqualification and not at establishing a clear

- and possibly causal - link between the size of the local labor market and qualification

mismatch. OLS regressions with standard control variables might lead to biased estimates

in this context. On the one hand, since cities generally have a higher share of university

graduates, one could suspect that they could be more attractive for individuals with higher

unobserved ability. In fact, several papers have stressed the importance of addressing the

spatial sorting of workers by individual skills in order to estimate the urban wage premium

(Combes et al., 2008; Glaeser and Mare, 2001). On the other hand, the skill mismatch

literature has found a positive correlation between measures of individual ability and

overqualification (Leuven and Oosterbeek, 2011). Since more talented individuals could be

both more likely to live in large cities and to have a better job match, the sorting of workers

across areas could lead to an overestimation of the effect of city size on the job match.

To address this potential bias, I estimate linear regressions of qualification mismatch on

regional employment density including an extensive set of control variables that correlate
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with individual ability, such as information on parental background, school grades and

personality traits.1 I then follow three main empirical strategies to sequentially deal with

the major empirical concerns and test whether the baseline estimates are robust for different

sub-groups of individuals.2 Firstly, by restricting the sample to individuals who have

remained in the region where they grew up (non-movers) biases from the direct migration of

more talented workers into cities can be addressed. Secondly, by estimating a fixed effects

model on our panel of workers and obtaining identification through individuals migrating

form one region to another, I can get rid of unobserved time-invariant heterogeneity (such

as individual ability). Thirdly, I deal with potential reverse causality by instrumenting

current employment density with historical population data from the 19th century.

The obtained estimates of employment density on overqualification are fairly similar

across the different specifications. An increase of 10% in the regional employment density

is associated with a decrease of 1-1.5% in the probability of being overqualified. On the

contrary, most of the estimates of employment density on the horizontal mismatch measure

are smaller and not statistically significant. Finally, I investigate the contribution of

better qualification matches in explaining the wage premium in thicker labor markets. By

including our mismatch measures to an OLS regression of log hourly wages on employment

density (and other control variables), overqualification is found to explain only 6% of

the impact of regional employment density on hourly wages, while the contribution of

horizontal mismatch appears to be insignificant.

Two other recent studies analyze the effect of population or employment density on job

mismatch for the US (Abel and Deitz, 2015) and France (Boualam, 2014).3 Abel and Deitz

(2015) find evidence of a moderate effect of population size and employment density on

measures of vertical and horizontal mismatch for US college graduates. They also find that

mismatch accounts for 5-8% of the urban wage premium. Boualam (2014) investigates the

impact of employment density on a measure of horizontal match based on the distribution

1 I use regional employment density to measure the labor market size following previous studies (for a
review of the literature on agglomeration economies see Combes and Gobillon, 2015 and Heuermann
et al., 2010). The results do not change qualitatively when using population density or dummy variables
for urban areas.

2 This procedure is common in the urban wage premium literature, because of the difficulty of finding
exogenous sources affecting the mobility of individuals across regions.

3 Andini et al. (2013) also analyze the impact of population density on different measures of job matching,
including the appropriateness of the educational qualification for the job. However, their coefficients
are not statistically significant for the educational match, as well as for most of the other measures of
matching.
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of workers’ fields of study within an occupation for French labor market entrants. While

this measure of match quality is found to increase with employment density, it does

not seem to explain differences in wages between thick and thin labor markets. The

present paper provides at least three contributions. First, while the cited papers make

use of cross-sectional data, I employ panel data that enables me to estimate fixed effects

regressions to eliminate the time-invariant unobserved ability bias as in previous studies

on the urban wage premium (Combes et al., 2008; Glaeser and Mare, 2001). Second, the

survey data I use (i.e. the German Socio-Economic Panel) has extensive information on

workers characteristics and biographies that might be very important to account for in the

analysis to avoid potential omitted variable biases, such as detailed parental background

information, high-school final grades and information on personality traits. Third, the data

contains direct questions on the qualifications required by the job, allowing me to construct

vertical and horizontal qualification mismatch variables based on workers’ self-assessments.

Measures based on worker’s self-assessment are typically preferred over measures which

infer the required qualification from the data at hand, since the latter not only depend on

demand forces but also on qualifications supplied (Hartog, 2000).

The rest of the paper is organized as follows. Section 3.2 describes the data and

presents descriptive evidence of the link between employment density and qualification

mismatch. Section 3.3 contains the main results on the impact of employment density on

overqualification and horizontal mismatch. While in Section 3.4 I attempt to disentangle

the effect of labor market size from that of other characteristics of denser regions (such as

specialization and skill structure) on the mismatch incidence, in Section 3.5 I investigate

the contribution of qualification mismatch to the wage differential across regions. Finally,

Section 3.6 concludes.

3.2 Data and Descriptive Statistics

3.2.1 Data Source and Key Variables

The sample used is drawn from the German Socio–Economic Panel (GSOEP), a panel

data set for the years 1984-2012 consisting of about 20,000 individuals living in Germany

(for details, see Kroh, 2012). I restrict the sample to males surveyed in the years 2000 to

2011 to avoid concerns about possible selection biases into labor force participation for
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women. The sample is further restricted to dependent workers employed full-time. The

12 GSOEP waves include 8,288 male adults aged between 16 and 64 with a university

degree or a completed training qualification who are employed at least twice in the time

framework considered. I end up with an unbalanced panel of 5,625 individuals (35,363

observations), for whom I have information on all variables relevant for our analysis.

I employ the regional employment density at the level of labor market regions as a

measure of labor market size.4 This is calculated by the number of employed individuals per

square kilometer. Labor market regions are defined by the Federal Office for Building and

Regional Planning to differentiate areas in Germany based on their economic interlinkages

and of commuting patterns. This classification specifies 258 labor market regions with an

average of 16 regions in each of the 16 federal states.5 Information on employment density

at the level of regional labor markets is gathered from administrative data sources (i.e. the

INKAR database) and merged to the individual place of residence in the GSOEP data. 6

I employ two measures for qualification mismatch: vertical mismatch (i.e. overqua-

lification) and horizontal mismatch. Overqualification is measured based on workers’

self–assessment about the educational requirements of the job. More precisely, the follo-

wing question is asked in the GSOEP questionnaire: “What type of education or training

is usually necessary for this type of work?” I consider an individual to be overqualified

if he reports that his job requires a lower degree than the he possesses. One drawback

of this measure, which is widespread in the literature on overeducation, is the reliance

on the subjective individual self–assessment. For instance, according to Hartog (2000),

respondents might have a tendency to upgrade the status of their position. However,

since I employ this measure as an outcome variable, subjectivity would be an issue only

if workers in small and large labor markets systematically differ in the way they answer

such a question. Several authors have claimed that overqualification measures based

on self-assessments are preferable to measures based on the distribution of educational

qualifications within occupations – i.e. “realized matches” (Leuven and Oosterbeek, 2011).

4 Similar results are found though when using population density or dummy variables for urban areas.
5 Results using a different classification of 150 labor market regions show baseline estimates that are of
similar magnitude, as shown in Table 3.A.4.

6 Ideally, I would consider the workplace location, because agglomeration economies are expected to arise
where the production process takes place. Unfortunately, this information is not available in the GSOEP.
Nevertheless, I do not expect this to affect much the results, since few individuals commute outside of
regional labor markets. Moreover, the GSOEP data includes information on commuting distances, so
that I can test whether the results are robust to excluding long-distance commuters.
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Measurement error might be more severe for measures based on realized matches, because

they ignore any variation in required education within occupations. Moreover, realized

matches do not reflect only job requirements but are already the outcome of the interplay

of supply and demand (Hartog, 2000). I also rely on workers’ self–assessment to compute

the horizontal mismatch measure similarly to previous studies (see, e.g., Robst, 2007). The

question asked in the GSOEP is: “Is this position the same as the profession for which

you were educated or trained?”. Since the only possible answers are yes or no, I construct

a dummy that is equal to 1 if individuals answer negatively to this question.

Hourly wages are measured through the self-reported monthly gross income divided by

monthly working hours. I calculate real wages based on the CPI deflator using 2010 as the

base year. In order to ensure that outliers are not driving the main results I trim wages

excluding the 1st and the 99th percentile (individuals receiving a hourly wage lower than

EUR 4 or higher than EUR 75) and I employ the standard logarithmic form for the wage

regressions. The richness of the data allows me to include in the analysis an extensive

set of control variables. I consider demographic characteristics, educational and parental

background information, job characteristics and some geographic characteristics, such as

previous regional mobility. Further information on school grades, personality traits and

risk preferences is available only for certain waves or for given individuals depending on

the time of their first participation to the survey. I thus add this characteristics only in a

separate analysis. In Section 3.4 I also add further regional information at the local labor

market level which is gathered from the INKAR database.

3.2.2 Descriptive Results

Table 3.1 presents the mean and standard deviation for the variables included in the

analysis. The overqualification incidence is about 15% in the sample, while the incidence

of horizontal mismatch amounts to 30%. Employment density ranges from 16 employed

individuals per square km in Salzwedel (Sachsen-Anhalt) to 1,889 in Berlin.7 Most

individuals have a vocational degree as their highest qualification (68%), while the rest

of the sample has a tertiary degree either from a standard university or a university of

applied science (Fachhochschule, FH ). I further include information on the school leaving

7 Figure 3.A.2 shows the differences in employment density across the 258 German labor market regions
in 2010 (darker colors depict a higher employment density).
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Table 3.1: Summary Statistics

Mean Std. Dev. Min. Max.
Dependent variables and other main variables

Overqualified 0.19 0.39 0 1
Horizontal mismatch 0.34 0.47 0 1
Hourly wage (log) 2.76 0.44 1.59 3.91
Employment density (log) 5.03 1.02 2.75 7.56

Main control variables
University degree 0.21 0.41 0 1
FH degree 0.11 0.31 0 1
Vocational degree 0.68 0.47 0 1
Migration background 0.08 0.27 0 1
Married or living with partner 0.82 0.38 0 1
Actual work experience 21.1 10.5 0 48
Has children 0.40 0.49 0 1

School leaving qualification
University access (Abitur) 0.27 0.44 0 1
FH access (Fachhochschulreife) 0.08 0.27 0 1
Realschulabschluss 0.35 0.48 0 1
Hauptschule or no degree 0.30 0.46 0 1

Parental background
Father: higher educ. 0.14 0.34 0 1
Mother: higher educ. 0.06 0.25 0 1
Mother non-employed (age 15) 0.24 0.43 0 1

Geographic characteristics
Lives in city of childhood 0.61 0.49 0 1
Macro-region
Centre 0.33 0.47 0 1
North 0.13 0.34 0 1
South 0.27 0.44 0 1
East 0.27 0.44 0 1

Job characteristics
Public sector 0.25 0.43 0 1
Firm tenure 12.8 10.5 0 47
Industry
Agriculture 0.01 0.12 0 1
Energy 0.02 0.13 0 1
Mining 0.01 0.07 0 1
Manufacturing 0.23 0.42 0 1
Construction 0.19 0.39 0 1
Trade 0.10 0.30 0 1
Transport 0.07 0.25 0 1
Bank & Insurance 0.05 0.23 0 1
Services 0.32 0.47 0 1
Note: The summary statistics are based on the baseline sample of 35,363
observations (5,625 individuals). Main control variables include year fixed
effects, as well as a squared term for work experience. Job characteristics also
include firm tenure squared.
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qualification, which is a further important control variable in Germany because of the

tracking system of secondary education. Individuals have on average 21 years of work

experience, most of which (13 years on average) gained with their current employer. Most

of the individuals in the sample (61%) never left the city where they grew up.

Figure 3.1: Employment Density and Qualification Mismatch
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Horizontal mismatch

Figure 3.1 shows the existence of a negative relationship between employment density

and qualification mismatch as measured through the subjective assessment of the qualifica-

tion level required by the job (vertical mismatch or overqualification) and the relatedness

of the job to the worker’s field of education or training (horizontal mismatch). The unit of

observation in both graphs is the labor market region, meaning that the information on

the individual match is aggregated at the regional level. The slope of the fitted regression

line is -0.014 for vertical mismatch and -0.022 for horizontal mismatch and the coefficients

are statistically significant at standard levels for both regressions.
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3.3 Impact of Agglomeration on Qualification Mis-

match

3.3.1 Baseline Regressions

Having seen that there is a negative relationship between employment density and qualifi-

cation mismatch, I first test whether the results change when I include an extensive set of

control variables. I thus estimate a the following simple linear probability model8:

Pr(mismatchijt = 1) = α + β empdensityjt + γXijt + εijt (3.1)

where mismatch is a dummy variable that takes value 1 in case of a qualification mismatch

for individual i in year t, empdensity denotes the employment density of the region of

residence j in year t and Xijt is a vector of covariates that differs across specifications. Panel

A of Table 3.2 shows the results for the overqualification dummy, and Panel B those for

horizontal mismatch. Column (1) reports results for a regression with the inclusion of the

main control variables only (i.e. highest educational qualification, migration background,

marital status, having children in household, actual experience, experience squared, year

dummies). The remaining five columns show results by gradually including dummies

for the school leaving qualification, parental background characteristics (i.e. father and

mother education, whether the mother was employed when the individual was 15 years

old), geographic characteristics (macro-region dummies and whether individual still lives

in place of childhood), job characteristics (i.e. tenure, public sector, industry dummies)

and occupation fixed effects in column (6).

Column (1) in Panel A shows the existence of a negative relationship between regional

employment density and the probability of being overqualified for the job when standard

control variables are included. The coefficient is equal to -0.031 and is significant at the 1%

significance level. A 10% increase in employment density would imply a decrease of about

0.3 percentage points in the overqualification probability, which is equal to a decrease of

about 1.6% (given that the overqualification rate in our sample is 19%). The employment

density coefficient decreases to -0.018 when school degree dummies, parental background

8 Average marginal effects estimates of a probit model lead to results that are very similar to the linear
probability model estimates.



Chapter 3. Local Labor Market Size and Qualification Mismatch 54

Table 3.2: Impact of Employment Density on Qualification Mismatch

(1) (2) (3) (4) (5) (6)

Panel A: Overqualification
Empl. density (log.) -0.031*** -0.026*** -0.025*** -0.017*** -0.019*** -0.012***

(0.005) (0.005) (0.005) (0.005) (0.005) (0.004)
Main controls Yes Yes Yes Yes Yes Yes
School degree No Yes Yes Yes Yes Yes
Parental background No No Yes Yes Yes Yes
Geographic charact. No No No Yes Yes Yes
Job charact. No No No No Yes Yes
Occupation FE No No No No No Yes
Observations 35,363 35,363 35,363 35,363 35,363 35,363
R-squared 0.021 0.049 0.051 0.060 0.090 0.207

Panel B: Horizontal mismatch
Empl. density (log.) -0.030*** -0.027*** -0.025*** -0.012* -0.015** -0.012**

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Main controls Yes Yes Yes Yes Yes Yes
School degree No Yes Yes Yes Yes Yes
Parental background No No Yes Yes Yes Yes
Geographic charact. No No No Yes Yes Yes
Job charact. No No No No Yes Yes
Occupation FE No No No No No Yes
Observations 35,363 35,363 35,363 35,363 35,363 35,363
R-squared 0.041 0.055 0.057 0.069 0.099 0.184

Note: The table shows the estimates of a linear probability model with skill mismatch measures as
dependent variables. Standard errors are clustered at the individual level; *** p<0.01, ** p<0.05, *
p<0.1. Control variables included are the main control variables (highest degree, migration background,
marital status and children, experience, experience squared and year fixed effects), school degree,
parental background (higher education of mother/father and working status of mother), geographic
characteristics (macro-regions and whether living in city of childhood) and job characteristics (tenure,
tenure squared, industry and public sector dummies).

information, geographic characteristics and job characteristics are included. The inclusion

of occupation fixed effects (ISCO 1-digit) in column (6) leads to a smaller coefficient

(-0.012), but is still statistically significant. While the ISCO classification at the 1-digit

level is relatively broad, its inclusion together with the information about educational

qualifications might partially capture vertical qualification mismatch. Therefore, in the

overqualification regressions it is better not to control for occupation fixed effects, since

these might be bad control variables.

Panel B shows that regional employment density appears to have a negative impact on

horizontal mismatch as well, i.e. whether one works in the same field of one’s education or

training. The coefficient in column (1) is equal to -0.030 and is statistically significant. A

10% increase in employment density would imply a decrease of about 1% in horizontal
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mismatch (since the incidence of horizontal mismatch is about 30%). The coefficient decre-

ases to -0.016 when school degree dummies, parental background information, geographic

controls and job characteristics are included. In particular, a large part of the correlation

between density and horizontal mismatch can be explained by differences between West

and East Germany, as East Germany is characterized on average by both a lower em-

ployment density and a higher incidence of horizontal mismatch. When occupation fixed

effects are included, the coefficient drops (in absolute value) further to 0.012 but is still

significant at the 5% significance level. Since no information on the field or orientation

of the highest qualification obtained is included, there are less arguments against the

inclusion of occupation fixed effects in the case of horizontal mismatch. Workers in denser

regions appear thus to have a better job match in terms of their actual qualifications.

3.3.2 Controlling for School Grades, Personality Traits and Risk

Preferences

The GSOEP data contains further individual information which might be important to

control for when analyzing the effect of employment density on skill mismatch. First,

high-school grades might proxy individual ability and motivation and thus reduce potential

biases from the sorting of talented individuals into larger cities. Second, personality traits

and risk preferences might differ on average across regional areas and are likely to affect the

job match, as well as the individual assessment of the match. Since these characteristics

are available only for a relative small sample of individuals, I exclude these from the

baseline regressions and present separate results for a sub-sample of 2,141 individuals, for

whom I have information on all relevant characteristics.

Table 3.A.1 presents results of a linear probability model of qualification mismatch by

gradually adding mathematics and German grades from workers’ final school reports, stan-

dard measures of the big five personality traits (extraversion, consciousness, agreeableness,

neuroticism and openness to experience) and a subjective measure of risk preference.9

9 Mathematics and German are the only compulsory courses for the high school diploma in most federal
states in Germany. The grades are measured using the 6 points scale typical for the German system,
where 1 is the best grade and 6 the worst. The big 5 personality traits are indexes in the range of 1 to
21, which are computed basing on a larger set of personality items contained in the survey following
Gerlitz and Schupp (2005). The measure of risk preference is a index ranging from 1 to 10 based on an
individual statement. Since I have information for both the big five and risk preference only for specific
years, I compute the individual average of all observed values.
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Columns (1) and (5) of the table present the results of the same model of column (5) in

Table 3.2, where all baseline control variables are included except for occupation fixed

effects. The employment density coefficient is slightly larger in absolute terms for over-

qualification compared to the baseline sample and is statistically significant. Conversely,

the estimate is not significant for horizontal mismatch, because of the smaller sample

size. For both variables, however, the estimates remain very similar when school grades,

personality traits and risk preference are included. While some characteristics matter for

the qualification mismatch measures, they appear to be almost irrelevant for the impact

of employment density on the match.10

3.3.3 Addressing the Omitted Ability Bias

Two empirical strategies are employed to address the potential overestimation of the results

due to omitted ability bias stemming from the sorting of talented individuals into larger

cities. Similarly to Boualam (2014) I first investigate whether the results are different for

the sub-samples of individuals ever moving from a district to another (movers) and the

ones who stay in the place where they grew up (non-movers). Focusing on non-movers

helps me to avoid biases from the direct migration of more talented workers to cities.

Column (1) of Table 3.3 reports the results for the same linear regression estimated in the

last column of Table 3.2 (with the inclusion of all control variables apart from occupation

fixed effects). The same model is then estimated on the sub-sample of individuals never

moving from the place of childhood who represent about 61% of the sample.11 In the case

of overqualification, the coefficient for the sub-sample of non-movers is very similar to the

one for all individuals. In the case of horizontal mismatch, the coefficient is even slightly

larger.

The results for the sub-sample of non-movers might still be biased if talented individuals

are more likely to grow up in cities because of inherited abilities by parents and grandparents

who moved to large agglomerations (Bosquet and Overman, 2016; Glaeser and Mare, 2001).

Thus, in a second step, I exploit the panel structure of the data in order to control for

individual fixed effects. On the one hand, this enables me to address the problem that

10In particular, it appears that individuals with better math and German school grades have a lower
likelihood of mismatch. Among the big 5 personality traits neuroticism in particular appears to be
positively associated with both mismatch variables.

11This question is constructed based on a survey question asking if the individual still lives in the city or
regional area where most of the childhood was spent.
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Table 3.3: Impact of Employment Density on Qualification Mismatch: Addressing Spatial
Sorting

Pooled OLS Fixed effects
all non-movers all restricted sample
(1) (2) (3) (4) (5) (6)

Overqualification
Empl. density (log.) -0.018*** -0.017*** -0.017* -0.020*

(0.004) (0.006) (0.009) (0.011)
Ave. empl. density (log) -0.014 -0.017*

(0.009) (0.010)
Horizontal mismatch

Empl. density (log.) -0.016*** -0.019** -0.005 -0.005
(0.006) (0.008) (0.009) (0.010)

Ave. empl. density (log) -0.002 -0.002
(0.009) (0.009)

Control variables Yes Yes Yes Yes Yes Yes
Occupation FE No No No No No No
Observations 35,363 21,532 35,363 35,363 35,137 35,137
Note: Standard errors are clustered at the individual level in the cross-sectional regressions and at the
individual level in the panel regressions; *** p<0.01, ** p<0.05, * p<0.1; Control variables included are
the main control variables (highest degree, migration background, marital status and children, experience,
experience squared and year fixed effects), school degree, parental background (higher education of
mother/father and working status of mother), geographic characteristics (macro-regions and whether
living in city of childhood) and job characteristics (tenure, tenure squared, industry and public sector
dummies). a Only control variables that change over time are included.

unobserved individual ability might lead to an overestimation of the results. On the other

hand, the identification will be achieved through individuals migrating from one district

to another and individuals moving to a different region are likely to do so because they

find a better job match (Gould, 2007). Therefore, the identification strategy will rely on

the assumption that the reason to change region will not differ for the same individual

whether he moves to a larger or a smaller region. Only 486 individuals in our sample

change their labor market region of residence. 260 of these change both region and job.

Since the identification will hinge upon those changing their region of residence and only

job switchers can change the match status, I also estimate a regression excluding the spells

in which individuals change region but not the job.

For simplicity, I estimate the following linear fixed effects model that gets rid of the

time-constant unobserved individual heterogeneity:

Pr( ¨overqualijt = 1) = β ¨empdensityjt + γẌ1,ijt + ε̈ijt (3.2)
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where the “double dot” denotes that the variables are time demeaned, overqual is a

dummy variable denoting if individual i in year t is overqualified for the job, empdensity

denotes the employment density of the region of residence and the vector X1,ijt includes

all time variant control variables, excluding occupation fixed effects. These are part of the

demographic characteristics, job and geographic characteristics. In a separate regression I

also use the average regional employment density over the period considered (2000-2011),

so that change in density across years are not taken into account. I do this because, unlike

wages, the mismatch measures are dummies that are typically constant if the worker does

not change job and it is unlikely that they respond quickly to small changes in the size

of the labor market. Column (4) of Table 3.3 presents the results of the fixed effects

model. The coefficient for overqualification (-0.017) turns out to be similar to the estimate

of the baseline model, but it is less precise and statistically significant only at the 90%

confidence level. In column (5) I not allow regional employment density to vary over time

and the coefficient turns out to be smaller (in absolute value) and not anymore statistically

significant. When I exclude the spells of those changing region but not job, the size of the

effect increases slightly and both the time-varying and the average employment density

coefficients become statistically significant at the 90% confidence level. Differently from

overqualification, the impact of employment density on horizontal mismatch appears to

vanish in the fixed effects model.

Thus the fixed effects estimate turns out to be similar to the baseline LPM regression

for overqualification, but almost zero for horizontal mismatch. As said, while the fixed

effects estimation gets rid of the omitted ability bias, it relies on the assumption that the

individual reasons to change region do not differ systematically depending on the move

to a bigger or smaller region. If the same individual moving to a larger city because of a

better job match then returns to his place of childhood at the cost of a worse match (e.g.

to take care of the parents), this will of course affect the results.

3.3.4 Addressing Potential Reverse Causality

Another potential bias arising in the estimation of agglomeration economies is reverse

causality. In fact, higher local wages or areas with better matching could attract workers

and increase local labor supply and thus employment density (Combes and Gobillon,

2015). Following several studies in the literature I use historical population values as
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an instrument for current density (Andini et al., 2013; Ciccone and Hall, 1996; Combes

et al., 2008). Specifically, I employ population data from the 1880 census of all cities and

towns with more than 10,000 inhabitants.12 The cities and towns from 1880 are then

matched to actual regional labor markets. In regional labor markets, for which no city

is listed in the 1880 census, a population of 10,000 is imputed. As it will be shown, the

instruments are relevant because of inertia of the local population. However, because of

the profound changes that affected Germany over the past century, I am confident that

the instrument is exogenous to the current match. The country experienced a structural

shift from agriculture to manufacturing and services, dramatic political and administrative

changes, two world wars that strongly reshaped its borders, as well as the separation and

reunification of East and West Germany.

Table 3.4: Impact of Employment Density on Qualification Mismatch: IV Regressions

Overqualification Horizontal mismatch
2SLS FE IV 2SLS FE IV
(1) (2) (3) (4)

Empl. density (log.) -0.028*** -0.018* -0.023*** 0.006
(0.006) (0.009) (0.008) (0.010)

First-stage equation
1880 Population (log.) 0.679*** 0.710*** 0.679*** 0.710***

(0.008) (0.003) (0.008) (0.003)
Control variables Yes Yesa Yes Yesa

Occupation FE No No No No
Observations 35,363 35,363 35,363 35,363
Note: Standard errors are clustered at the individual level in the cross-sectional
regressions and at the individual level in the panel regressions; *** p<0.01, **
p<0.05, * p<0.1; Control variables included are the main control variables (highest
degree, migration background, marital status and children, experience, experience
squared and year fixed effects), school degree, parental background (higher education
of mother/father and working status of mother), geographic characteristics (macro-
regions and whether living in city of childhood) and job characteristics (tenure,
tenure squared, industry and public sector dummies). a Only control variables that
change over time are included.

Column (1) of Table 3.4 shows the results of a two-stage least square regression on

overqualification, where the log of employment density is instrumented by the log of

the (city) population in 1880. The coefficient of the 1880 population in the first-stage

equation is large and significant and the F-statistics on the excluded instruments is equal to
12The data was collected from the Statistical Yearbooks of the German Empire (Statistisches Jahrbuch
für das Deutsche Reich).
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6648. The coefficient of employment density in the overqualification regression is negative,

statistically significant and even larger in absolute value than in the the baseline regression.

Column (3) shows the results of the same model for horizontal mismatch. Also in this case

the coefficient is negative, statistically significant and larger than the baseline estimate.

Column (2) and (4) report the results for fixed-effects models, where employment density

is instrumented with historic population. Again the results are similar to the fixed-effects

equation. The employment density is negative and significant (at the 90% confidence

level) in the overqualification regression and not significantly different from zero in the

horizontal mismatch regression (similar to the baseline model).

3.3.5 Further Robustness Checks

I carry out several robustness checks to ensure that the main results are not driven by

outliers and specific regions. Given that regions in East Germany have on average a higher

mismatch and a lower employment density, it is important to test if the results are driven

by differences between East and West Germany. Estimating the baseline regression only

for West Germany gives very similar estimates for overqualification, while the horizontal

mismatch estimate is slightly smaller (in absolute values) and not statistically significant

(see Table 3.A.2). Very similar results are also found when leaving out Berlin, which is

the largest agglomeration. I then test if the results are comparable for younger and older

workers and split the sample into those younger and older than 45. The results do not

change for overqualification, while the density estimate for individuals younger than 45 in

the horizontal mismatch regression is similar but not statistically significant. This shows

again the robustness of the results for overqualification, while the outcomes for horizontal

mismatch are much less precise and not always statistically significant.

While one would ideally use the density of the place of work, in this paper only the

place of residence is observed. I am confident that the vast majority of individuals live and

work in the same labor market region, as the definition of the regional level that I employ

is based on commuting patterns. However, not observing the place of work can lead to a

certain degree of measurement error. This is likely to lead to an attenuation bias, as for

any type of measurement error in the explanatory variable. In the present setting, there

are also reasons to believe that the employment density in larger cities is underestimated,

since individuals are more likely to commute to denser regions. The attenuation bias
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could thus get even larger. While there is no information on the place of work, there is

information on commuting distances for a sub-sample of the population. To minimize the

error, I drop those individuals who commute long distances and are thus likely to work

in a different region from the one of residence. However, one needs to bear in mind that

individuals in less dense areas are more likely to commute, even within the regional labor

market, and commuters are more likely to have a better match. So, if commuters within

the regional labor market are dropped, one could actually induce a further attenuation bias.

When excluding individuals commuting more than 50 km we get results that are about

10% larger in the overqualification equation and very similar in the horizontal mismatch

equation (see Table 3.A.3). When dropping all individuals commuting more than 25 km

the employment density coefficient gets smaller than the baseline both for horizontal

mismatch and overqualification, suggesting that the attenuation bias gets larger when

restricting the sample to individuals commuting short distances. These results suggest

that the main estimates suffer from a certain degree of attenuation bias. Nevertheless, it

is very difficult to estimate the bias precisely with the data at hand.

In this paper I use employment density at the regional labor market level (258 regions)

to measure agglomeration. However, the main results are very similar when employing

population density as an agglomeration measure (see Table 3.A.4). The baseline results

are also qualitatively very similar if I employ a broader definition of local labor markets

(150 regions) or the finer administrative definition of 402 districts. Finally, even a binary

variable distinguishing urban from rural districts leads to negative and significant results.13

The likelihood to be overqualified is about 20% lower in urban regions, while horizontal

mismatch is about 11% lower.

3.3.6 Heterogeneous Effects by Education Level

So far I have estimated the impact of employment density on qualification mismatch without

distinguishing among individuals with a different highest qualification. However, denser

regions have typically a higher share of high-skilled individuals and if the qualification

mismatch measures differ across individuals with different levels of education this is likely

to lead to biased results. Moreover, it would be interesting to analyze whether the effect

of agglomeration on better matches differs between tertiary graduates and individuals

13The urban variable is based on the definition of the Federal Office for Building and Regional Planning.
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with a vocational degree. To analyze heterogeneous effects by qualification level I first add

an interaction term to the baseline regression and then estimate separate regressions for

individuals with a tertiary education degree and for those who have a vocational degree as

their highest qualification.

Better educated individuals are more likely to be overqualified in our sample (see

Figure 3.A.1 for more details). Conversely, the incidence of horizontal mismatch differs

substantially across qualifications and is much higher for individuals with a vocational

degree compared to university graduates. Even if I controlled for the highest degree

obtained in the baseline specifications, it is very important to make sure that the results

obtained are not biased from the different composition of qualified labor across regions.

To better address these compositional issues I first add an interaction term between

employment density and the highest degree obtained in the baseline model for the whole

sample considered. Columns (1) and (2) of Table 3.5 show the results of this estimation

without and with the inclusion of occupation fixed effects. For simplicity, I include only

the interaction between employment density and vocational qualification, so that I can

interpret the employment density coefficient as the effect for tertiary graduates. The

regressions for overqualification (panel A) show estimates for tertiary graduates that are

similar but slightly higher than the baseline estimates for the full sample. Conversely, the

estimations for horizontal mismatch show a zero effect of density on horizontal mismatch

for tertiary graduates. Thus, if there is a significant impact of agglomeration on horizontal

mismatch, this seems to be only present for individuals with a vocational degree.

The results of the separate regressions on the sub-sample of tertiary graduates and on

that of individuals with a vocational degree as their highest qualification are fairly similar

to the model with interaction terms. However, as regards overqualification, the estimates

are now very similar for the two education groups. As regards horizontal mismatch, the

coefficient for individuals with a vocational degree is larger than the baseline estimates and

statistically significant at standard confidence levels. For tertiary graduates, again there

does not seem to be any difference in the horizontal mismatch between smaller and larger

cities. This could also point to the fact that this type of measure is not always a “real”

job mismatch for university graduates. In fact, even if graduates that are horizontally

mismatched earn on average less than better matched graduates, some individuals in

highly remunerated jobs also report being mismatched with respect to their field of study.
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Table 3.5: Impact of Employment Density on Qualification Mismatch by Qualification
Level

All degrees Vocational degree Tertiary degree
(1) (2) (3) (4) (5) (6)

Panel A: Overqualification
Empl. density (log.) -0.025*** -0.025*** -0.020*** -0.012*** -0.020** -0.014*

(0.010) (0.009) (0.005) (0.005) (0.010) (0.008)
Vocational degree -0.291*** -0.466***

(0.061) (0.055)
Vocational degree × 0.008 0.019*
Empl. density (0.011) (0.010)
Control variables Yes Yes Yes Yes Yes Yes
Occupation FE No Yes No Yes No Yes
Observations 35,363 35,363 24,277 24,277 11,290 11,290

Panel B: Horizontal mismatch
Empl. density (log.) -0.012 -0.011 -0.019** -0.015** -0.011 -0.009

(0.010) (0.009) (0.008) (0.007) (0.010) (0.010)
Vocational degree 0.119* 0.073

(0.066) (0.065)
Vocational degree × -0.006 -0.003
Empl. density (0.012) (0.012)
Control variables Yes Yes Yes Yes Yes Yes
Occupation FE No Yes No Yes No Yes
Observations 35,363 35,363 24,277 24,140 11,223 11,223
Note: The table shows the estimates of a linear probability model with skill mismatch measures as
dependent variables. Standard errors are clustered at the individual level; *** p<0.01, ** p<0.05, *
p<0.1. Control variables included are the main control variables (highest degree, migration background,
marital status and children, experience, experience squared and year fixed effects), school degree, parental
background (higher education of mother/father and working status of mother), geographic characteristics
(macro-regions and whether living in city of childhood) and job characteristics (tenure, tenure squared,
industry and public sector dummies).

3.4 Determinants of the Qualification Mismatch Dif-

ferential across Regions

So far I have established that thick labor markets reduce the probability of workers being

overqualified for their job. In this section I investigate the channels that contribute to the

mismatch differential across cities. More precisely, I am interested in highlighting those

characteristics of denser regions (apart from a pure market size effect) that contribute to

better average job matches. I did not include those characteristics in the previous chapters,

because I consider these to be outcomes or intrinsic characteristics of larger cities. However,

from a theoretical perspective it is very important to try to disentangle agglomeration
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economies and localization economies, as well as to separate the agglomeration economies

due to better matches from those due to knowledge spillovers.

Denser regions typically have a higher proportion of high-skilled individuals. On the

one hand, one would like to exclude the effects of skills from agglomeration economies, as

far as this represents a pure composition effect (Combes and Gobillon, 2015). High-skilled

individuals might be over-represented in cities, because they value city amenities more or

because of historical migration of high-skilled individuals (with their skills being partly

transmitted to their children). On the other hand, people could become more skilled

through living in cities, thanks to stronger learning effects in denser regions. Faster learning

and knowledge diffusion is indeed one of the main mechanisms of agglomeration economies

(De La Roca and Puga, 2017). In our setting, it is interesting to analyze the qualification

mismatch differential across regions while keeping the regional skill composition fixed.

Column (2) in Table 3.6 shows the results of our baseline regression augmented with the

regional share of tertiary educated individuals in the workforce. This variable has often

been used in the literature to account for knowledge spillovers (Moretti, 2004a). A higher

share of high-skilled workers is associated with a lower risk of overqualification (but the

coefficient is not statistically significant), probably because of a greater availability of high-

skilled jobs. Controlling for skill composition, the employment density coefficient drops

(in absolute value) to -0.012 but remains statistically significant at the 90% confidence

level. Conversely, the high-skill share coefficient is positive and not statistically significant

in the horizontal mismatch equation, so that the employment density estimate increases

slightly in absolute value.

Previous studies have often included an index of industrial concentration or diversity in

order to isolate the effect of agglomeration economies from urban specialization (localization

economies) (see for instance D’Costa and Overman, 2014). I thus include an index of

industrial concentration of the region (Herfindahl-Hirschman-Index, HHI) based on the

regional share of employment in 7 major industries in column (3) of Table 3.6. The

coefficient of the industrial concentration turns out to be negative in both equations but

is not statistically significant. The effect of employment density on qualification mismatch

appears thus to be robust to the inclusion of this variable.

Firm size has been found to be an important determinant of the urban wage gap in

Germany (Lehmer and Möller, 2010). In column (4) I also add two dummies for firm
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Table 3.6: Determinants of the Qualification Mismatch Differential

(1) (2) (3) (4) (5)

Panel A: Overqualification
Empl. density (log.) -0.019*** -0.012* -0.018*** -0.019*** -0.011*

(0.005) (0.006) (0.005) (0.005) (0.006)
High-skilled share -0.005* -0.005**

(0.002) (0.002)
HHI industry -0.324 -0.386

(0.268) (0.270)
Large firm (>200 empl.) 0.005 0.006

(0.010) (0.010)
Small firm (<=20 empl.) -0.008 -0.007

(0.012) (0.012)

Panel B: Horizontal mismatch
Empl. density (log.) -0.015** -0.018** -0.014** -0.018*** -0.019**

(0.006) (0.008) (0.006) (0.006) (0.008)
High-skilled share 0.002 0.001

(0.003) (0.003)
HHI industry -0.439 -0.442

(0.353) (0.353)
Large firm (>200 empl.) 0.046*** 0.046***

(0.012) (0.012)
Small firm (<=20 empl.) -0.086*** -0.086***

(0.016) (0.016)

Control variables Yes Yes Yes Yes Yes
Occupation FE No No No No No
Observations 35,363 35,363 35,363 35,363 35,363

Note: The table shows the estimates of a linear probability model with skill mismatch
measures as dependent variables. Standard errors are clustered at the individual level; ***
p<0.01, ** p<0.05, * p<0.1. Control variables included are the main control variables
(highest degree, migration background, marital status and children, experience, experience
squared and year fixed effects), school degree, parental background (higher education of
mother/father and working status of mother), geographic characteristics (macro-regions and
whether living in city of childhood) and job characteristics (tenure, tenure squared, industry
and public sector dummies).

size to see if the lower mismatch incidence in denser regions can be partly explained by

the presence of larger firms. The firm size coefficients turn out not to be significant in

the overqualification equation and the main results are not affected. On the contrary,

horizontal mismatch turns out to be more common in larger firms. Since firms are on

average larger in thicker labor markets, the employment density coefficient increases (in

absolute value) in the horizontal mismatch equation.

Finally, column (5) presents the results of a regression in which all discussed determinants

are included. The coefficient of the variables included do not lose their magnitude suggesting
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that they affect the two mismatch variables through different channels. The coefficient

of horizontal mismatch does not change substantially compared to the baseline equation,

suggesting that it can be interpreted as a pure labor market size effect. Conversely, the

overqualification effect drops by almost one half when the regional high-skilled share is

included. Part of the agglomeration effect found in the baseline is thus associated with a

different skill composition in denser regions.

3.5 Qualification Mismatch and the UrbanWage Pre-

mium

I will now investigate the importance of qualification mismatch as a mechanism of ag-

glomeration economies. More precisely, I analyze what portion of the effect of regional

employment density on earnings can be explained by better job matches with respect to

workers’ qualifications. To do so, I first estimate an OLS regression with hourly wages

as the dependent variable, the regional employment density as the variable of interest

and the full set of control variables presented in the previous sections. I then add to

this regression our measures of qualification mismatch and look at how the coefficient

for employment density is affected. Since I found a relatively large effect of employment

density on overqualification and the overeducation literature documents a strong negative

relationship between overqualification and wages, I expect that a large part of the effect of

regional employment density on wages can be explained by a lower probability of being

overqualified.

Table 3.7 shows the results of these regressions, where both employment density and

hourly wages are expressed in logarithmic form. The coefficient of employment density in

column (1) is equal to 0.049 and is significant at the 1% significance level. Doubling the

number of employed workers per square kilometer is associated with an increase in wages

of about 5%. This result appears to be in line with previous studies which estimate the

magnitude of urban agglomeration economies as ranging from 0.02 to 0.07 (Combes and

Gobillon, 2015). In column (2) and (3) I add our measure of overqualification and horizontal

mismatch separately. Consistent with the literature, vertical and horizontal mismatch

are both associated with lower wages. As expected the coefficient of employment density

decreases in both specifications. However, the decrease is relatively small. According to
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the estimations, overqualification accounts for about 6% of the urban wage premium while

horizontal mismatch accounts for less then 2%. In column (4) both mismatch measures

are added and it becomes clear that they are positively correlated, since their coefficients

decrease significantly. Their impact on the wage premium does not appear to add up,

suggesting that they explain slightly more than 6% of the effect of employment density on

wages. In column (5) I also add an interaction term between employment density and the

mismatch variables. The results show that the regional difference in wages are significantly

smaller for overqualified workers. Doubling employment density is associated with about

3% higher wages for the overqualified compared to 5% higher wages for those that are

well-matched according to their qualifications.

Table 3.7: Impact of Employment Density and Mismatch on Log Hourly Wages

(1) (2) (3) (4) (5)
Empl. density (log.) 0.049*** 0.046*** 0.048*** 0.046*** 0.049***

(0.005) (0.004) (0.005) (0.004) (0.005)
Overqualification -0.156*** -0.154*** -0.062

(0.009) (0.009) (0.048)
Horizontal mis. -0.053*** -0.004 -0.002

(0.008) (0.008) (0.040)
Overqualification × -0.019*
Empl. density (0.010)
Horizontal mis. × -0.000
Empl. density (0.008)
Control variables Yes Yes Yes Yes Yes
Occupation FE No No No No No
Observations 34,204 34,204 34,204 34,204 34,204
R-squared 0.512 0.530 0.515 0.530 0.530
Note: Standard errors are clustered at the individual level; *** p<0.01, ** p<0.05, *
p<0.1. Control variables included are the main control variables (highest degree, migration
background, marital status and children, experience, experience squared and year fixed
effects), school degree, parental background (higher education of mother/father and working
status of mother), geographic characteristics (macro-regions and whether living in city
of childhood) and job characteristics (tenure, tenure squared, industry and public sector
dummies).

The wage results are consistent with previous studies using different measures of

skill mismatch, which found that it only accounts for about 5-8% (Abel and Deitz,

2015) of the urban wage premium or has almost no contribution at all (Boualam, 2014).

Overqualification seems to be the most important channel here, while horizontal mismatch

does not seem to add much to this. Furthermore, knowing that less talented individuals
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are more likely to be overqualified (Leuven and Oosterbeek, 2011), part of this explained

effect might actually denote unobserved ability. Indeed, due to spatial sorting, controlling

for ability is expected to lead to a decrease in the coefficient of the urban wage premium

and the overqualification dummy might to some extent proxy unobserved ability.

3.6 Conclusion

The aim of this paper is to measure the effect of local labor market size on vertical

and horizontal qualification mismatch. Estimating a linear probability model with an

extensive set of control variables, I find that German male workers who live in denser

regions are less likely to be overqualified and to work in a different field than that of

their education or training. The impact on overqualification is robust to the inclusion of

an extensive set of control variables (including school grades, personality traits and risk

preference) and is relatively large. An increase of 10% in the regional employment density

is associated with a decrease of 1-1.5% in the overqualification incidence. The impact

of horizontal mismatch is slightly smaller and less precise (not statistically significant

in some specifications). I then follow three empirical strategies to deal with the fact

that talented workers might sort into larger cities. First, by restricting the sample to

individuals that remain in the area they grew up in, I get a smaller but still sizable

estimate of the effect of employment density on overqualification and a similar estimate

for horizontal mismatch. Second, by exploiting the panel structure of the data and

accounting for individual fixed effects, I get a coefficient for overqualification that is less

precise, but very similar in size to the baseline regressions. Conversely, the estimate in the

horizontal mismatch regression is not statistically different from zero. Third, I address

potential reverse causality by instrumenting current employment density with historical

population data. The IV regression estimates are very similar to the baseline and fixed

effects regression results.

While differences in the regional skill composition account for a large portion of the

match differential across regions, most of the impact found seems to be attributable to a

pure labor market size effect. Finally, I investigate the extent to which lower qualification

mismatch in large agglomerations contributes to the urban wage premium. I find that
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overqualification explains about 6% of the impact of regional employment density on

hourly wages, while the contribution of horizontal mismatch appears to be insignificant.
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3.A Further Tables and Figures

Figure 3.A.1: Qualification Mismatch by Highest Degree
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Figure 3.A.2: Employment Density in German Labor Market Regions (in 2010)
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Table 3.A.2: Excluding Specific Regions or Age Groups

Excluding regions Excluding age groups
only west excl. Berlin 45 or younger over 45

(1) (2) (3) (4)
Overqualification

Empl. density (log.) -0.019** -0.018*** -0.018*** -0.020***
(-0.007) (0.006) (0.006) (0.007)

Horizontal mismatch
Empl. density (log.) -0.013 -0.011 -0.013* -0.016*

(0.008) (0.008) (0.008) (0.009)
Control variables Yes Yes Yes Yes
Occupation FE No No No No
Observations 25,780 34,215 18,449 16,914
Note: The table shows the estimates of a linear probability model with skill mismatch
measures as dependent variable. Standard errors are clustered at the individual level; ***
p<0.01, ** p<0.05, * p<0.1. Control variables included are the main control variables
(highest degree, migration background, marital status and children, experience, experience
squared and year fixed effects), school degree, parental background (higher education of
mother/father and working status of mother), geographic characteristics (macro-regions
and whether living in city of childhood) and job characteristics (tenure, tenure squared,
industry and public sector dummies).

Table 3.A.3: Excluding Long-Distance Commuters

Commuters excluded
None >50 km >30 km > 20 km
(1) (2) (3) (4)
Overqualification

Empl. density (log.) -0.020*** -0.022*** -0.021*** -0.018***
(0.005) (0.005) (0.006) (0.006)
Horizontal mismatch

Empl. density (log.) -0.016** -0.017** -0.014** -0.012*
(0.006) (0.007) (0.007) (0.007)

Control variables Yes Yes Yes Yes
Occupation FE No No No No
Observations 33,313 30,406 26,947 22,688
Note: The table shows the estimates of a linear probability model with skill mismatch
measures as dependent variables. Standard errors are clustered at the individual
level; *** p<0.01, ** p<0.05, * p<0.1. Control variables included are the main control
variables (highest degree, migration background, marital status and children, experience,
experience squared and year fixed effects), school degree, parental background (higher
education of mother/father and working status of mother), geographic characteristics
(macro-regions and whether living in city of childhood) and job characteristics (tenure,
tenure squared, industry and public sector dummies).
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Table 3.A.4: Other Agglomeration Measures

258 regions 150 regions 402 districts
(1) (2) (3) (4)
Overqualification

Pop. Density (log.) -0.019***
(0.005)

Emp. Density (log.) -0.020*** -0.014***
(0.006) (0.003)

Urban region -0.040***
(0.010)

Horizontal mismatch
Pop. Density (log.) -0.016**

(0.007)
Emp. Density (log.) -0.023*** -0.015***

(0.008) (0.008)
Urban region -0.034***

(0.013)
Control variables Yes Yes Yes Yes
Occupation FE No No No No
Observations 35,363 35,363 35,363 35,363
Note: The table shows the estimates of a linear probability model with skill mismatch
measures as dependent variables. Standard errors are clustered at the individual level;
*** p<0.01, ** p<0.05, * p<0.1. Control variables included are the main control vari-
ables (highest degree, migration background, marital status and children, experience,
experience squared and year fixed effects), school degree, parental background (higher
education of mother/father and working status of mother), geographic characteristics
(macro-regions and whether living in city of childhood) and job characteristics (tenure,
tenure squared, industry and public sector dummies).



Chapter 4

College Openings and Local

Economic Development

4.1 Introduction

Income and unemployment rates differ substantially across cities and regions in most

countries. In the United States, for example, wages in the highest and lowest paying

metropolitan areas differ by a factor of three (Moretti, 2011). Similar discrepancies in

income per capita are observed between regions in the European Union (OECD, 2009).

The variation in unemployment rates is even larger. In Germany, for example, local

unemployment rates across metropolitan areas vary by a factor of five or even six (BMWi,

2013).

In response to these large disparities, many governments promote policies aimed at

reducing regional inequalities. These place-based policies could be direct subsidies to firms

located in or planning to move into a disadvantaged area. Alternatively, they can take

the form of investments in infrastructure by local, state or federal governments in order

to increase the economic attractiveness of a region. One such local policy is the opening

of educational institutions like universities or colleges in a region. The opening of new

universities and colleges could be a powerful tool for regional development for at least three

reasons: first, by improving the human capital base in the region, they may attract new

This chapter is joint work with Christina Gathmann and Verena Lauber. We thank Susanna Bolz
and Patrick Colli for research assistance, as well as Henry Overman, Sascha Becker, Pat Kline and
participants at the CESifo Summer Institute, Verein für Socialpolitik, EALE and the ZEW for very
helpful comments and suggestions. We are responsible for all remaining errors.
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investments or plants to the region. Second, staff and students as well as the universities

and colleges themselves may stimulate the demand for local goods and services. Finally,

universities and colleges might generate positive spillover effects on local firms through

research collaborations or knowledge spillovers, for instance.

Yet, do colleges really promote regional economic development in disadvantaged regions?

And if so, what are the channels: is it the direct consequence of the educational institution

itself? Or, does an educational institution create spillover effects by raising labor demand

and by encouraging innovation in private firms in the region?

Our study sheds light on these important questions. An important challenge in this

endeavor is that the location of colleges is not random. As numerous universities and

colleges were originally established many decades ago, it is difficult to isolate the impact

of a university from other cumulative developments in the local economy. We solve this

identification problem in two steps: first, we use the establishment of new colleges in

Germany during the 1980s and early 1990s to study the short- and medium-run impact on

regional development. Using college openings, we can trace the evolution of skilled labor

and other adjustments in the local labor market and economy more broadly. Nevertheless,

regions that obtain a new college might differ from other regions without a college opening

in terms of prior employment, wages and innovative capacity. In a second step, we therefore

combine matching with a time-varying difference-in-differences approach. Our empirical

approach allows us to compare flexibly employment and wages in regions with a college

opening to employment and wages in suitable control regions that did not obtain a new

college.

We have three main findings. First, the opening of a technical college results in large,

persistent growth in the regional student population relative to the control regions. In

line with the notion that college openings change the composition of the workforce, we

find that high-skilled employment in the region increases by 12% eight to nine years after

the opening. Second, we find evidence that new colleges also raise the employment of

workers without a college degree suggesting complementarities in the local production

function. Third, we find that wages of high-skilled workers do not decrease in the medium

run, indicating a shift in local demand. The employment and wage effects remain if we

exclude all employees working in the education sector indicating that a college opening

has an impact on the local economy beyond creating additional jobs in teaching and
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research. The large increase in employment and the lack of a drop in wages instead point

to sizable adjustments on the labor demand side. We find no employment effect in new

establishments, suggesting that most of the adjustments happen in incumbent firms either

through changes in the output mix or through changes in technology.

Our article is related to several strands of the literature. A sizable amount of literature

has documented the correlation between the location of universities and patenting activity,

innovation and business start-ups (Andersson et al., 2009; Audretsch and Feldman, 1996;

Bania et al., 1993; Cohen et al., 2002; Jaffe, 1989; Woodward et al., 2006). Most studies

focus on the importance of academic research for the development of specific local industries,

such as pharmaceuticals or electronic equipment.1 Closer to our analysis are two studies

specifically on universities. Beeson and Montgomery (1993) study the link between the

quality of a university and local employment growth. Kantor and Whalley (2014a) use

shocks to a university’s financial endowment to identify wage effects outside the education

sector.2 The analysis in this paper uses a different, plausibly exogenous variation to

identify the link between universities, local employment and innovation: the opening

of new technical colleges. A second way in which this paper differs from most of the

literature is that we investigate the impact of colleges focused on applied research but

concentrate on their impact on the local economy as a whole - rather than just on specific,

technology-driven industries.

Furthermore, our analysis contributes to a sizable literature on the local effects of

labor supply shocks. A large number of studies in labor economics analyze how inflows

of immigrants into a region affect local wages (Borjas, 2003; Card, 2001; Glitz, 2012;

Manacorda et al., 2012; Ottaviano and Peri, 2012). Most studies using the local area

approach suggest that immigrants have a small effect on the local wages of natives (but

see Dustmann et al., 2017, who show that employment effects on natives may be sizable in

remote areas). Traditional open economy models instead emphasize adjustments to labor

supply shocks through changes in the output mix produced by the local economy. Regions

with a relative growth in low-skilled labor, for instance, experience shifts to products and

sectors that make intensive use of low-skilled labor. A third adjustment mechanism is that

firms adjust their production technology either through changes in the actual technology
1 Valero and Van Reenen (2016) use a global dataset to explore the link between research universities and
economic growth.

2 Kantor and Whalley (2014b) take a long-term view tracing the role of experiments in agricultural
technology for the evolution of agricultural activity over more than a century.
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of production (Acemoglu, 1998) or by redirecting research efforts (see, e.g. Beaudry and

Green, 2003, 2005; Caselli and Coleman, 2006). Evidence on technology adoptions suggests

that automation machinery does indeed expand more slowly in areas with high growth

rates in the relative supply of low-skilled labor (Lewis, 2011) and that skill abundance

leads to a faster adoption of new technologies (Beaudry et al., 2010).

As immigrants in most countries are on average less skilled than the native population,

these studies focus on adjustments to an increase in low-skilled labor (but see Ciccone and

Peri, 2011, which analyzes the growth in the number of medium-skilled workers following

compulsory schooling laws). Our study contributes to this literature by exploiting the

opening of new colleges as a plausibly exogenous shock to the high-skilled workforce in

the local labor market (see Carneiro et al., 2015). The adjustments to a low-skill supply

shock are likely to differ from the response to a shock to high-skilled labor if there are

human capital externalities or other types of knowledge spillovers. If high-skilled workers

raise the productivity or innovative capacity of other workers in the same firm or other

firms in the region, for instance, the effects on the local economy might be much larger

than a growth in the low-skilled workforce (Ciccone and Peri, 2006; Moretti, 2004b).

Another reason why college openings may foster economic growth in the region are

local multiplier effects: an increase in local employment may raise the demand for local

goods and services. The local multiplier effect could be especially strong in the case of

a college opening because much of the additional employment is concentrated among

high-skilled workers with more disposable income. Recent research suggests that local

multiplier effects may be sizable (see, for example, Moretti, 2010, for the US; Moretti and

Thulin, 2013, for Sweden; and Faggio and Overman, 2014, for the UK). Our study relies

on a different, plausibly exogenous source of identification to investigate how the creation

of new college-related jobs generates additional benefits in the non-tradable sector.

Finally, knowing whether an increase in high-skilled labor improves the economic

conditions of other workers in that region and the regional economy overall has important

policy implications. If there are indeed positive externalities from college openings on the

local economy, this could be one argument for public subsidies for tertiary education.3 In

addition, our results may also be important for the design of regional policies. National

3 We focus on the pecuniary benefits of an increase in the human capital stock of a region; there might be
other spillover effects, such as reduced criminal activity or increased political participation, for instance,
which we do not consider here (see e.g. Valero and Van Reenen, 2016).
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and state governments often use regional policies to support areas with high unemployment

and low economic growth. Prominent examples include region-specific subsidies to firms

or local governments, such as the Federal Empowerment Zones in the US (Busso et al.,

2013), regional subsidy programs in France (Gobillon et al., 2012), Italy (Bronzini and

Blasio, 2012), the UK (Criscuolo et al., 2012) or Germany (von Ehrlich and Seidel, 2015);

or the European Structural Funds (Becker et al., 2013; Becker et al., 2010).4 Our research

can shed new light on the question of whether public investments like the opening a new

college can improve employment prospects and local development in a region and thus

contribute to a decline in regional disparities.

The paper proceeds as follows. The next section introduces the empirical setting of

the college openings we analyze. Section 4.3 presents our data sources and discusses the

empirical strategy we use to identify the effects of a college opening on the local economy.

Section 4.4 presents the results. Finally, Section 4.5 discusses the implications of our

findings and concludes.

4.2 College Openings in West Germany

In 1968, the federal government of Germany decided to expand the tertiary education

sector in order to improve the competitiveness of Germany’s industry by increasing the

human capital base.

The resulting reform focused on the nationwide establishment of technical colleges

(Fachhochschulen) to complement tertiary education at regular universities.5 As student

capacity at existing universities and colleges was exhausted, policy-makers turned to the

establishment of new institutions in the face of rising demand for post-secondary education.

Technical colleges were considered particularly suitable for this purpose because of their

close ties to the local economy. Unlike universities, technical colleges focus on teaching.

Degree programs at technical colleges last three to four years and combine academic study

with periods of practical training allowing students to gain work experience. It was only

in the 1990s that technical colleges became more actively engaged in research activities.

4 Earlier work has focused on the relationship between city (or local industry) size or density and
productivity more generally (see, for example, Ciccone and Hall, 1996, for a seminal contribution and
Rosenthal and Strange, 2004, for a survey).

5 see “Abkommen der Länder in der Bundesrepublik Deutschland zur Vereinheitlichung auf dem Gebiet
des Fachhochschulwesens”(see also Wissenschaftsrat, 1991).
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Teaching and also research are more practice-oriented than at universities and are often

conducted in cooperation with local companies. In 2003, 31% of third-party funding in

technical colleges came from private companies, while it is only 20% in universities (Haug

and Hetmeier, 2003).

Technical colleges rank below universities in terms of pay and status. However, the

teaching staff have PhDs and, in addition, unlike at universities, several years of practical

work experience. Unlike universities, technical colleges also cover a more narrow set of

academic subjects. In 2001, 42% of all students of technical colleges were enrolled in

economics, social sciences or law, while around 30% were studying engineering (Haug and

Hetmeier, 2003).6

While the costs for establishing and running the new colleges were divided between

the federal and the respective state governments (see the law of 1969, Hochschulbauf-

örderungsgesetz), the individual states were responsible for setting up the new colleges.

Municipalities and local governments had only limited influence on the decision where a

new college would be located. A common goal in all states was to distribute post-secondary

educational institutions more evenly across space in order to reduce costs and facilitate

access to tertiary education. Our data show that new colleges were indeed predominantly

opened in rural and semi-rural districts with no university or technical college (see Table

4.1 and Figure 4.A.1).

Local economic performance also played a role in the decision-making process. The

perceived risk of structural problems was often taken as an explicit criterion for the

selection of suitable regions. It was hoped that colleges would attract new businesses and

prevent out-migration of potential students and other workers (Landtag, 1991; Schindler

et al., 1991; Wissenschaftsrat, 1995).7 Technical colleges were also seen as a tool to meet

the demand for high-skilled workers.8

Yet, targeted areas also had to fulfill certain criteria that would not apply to the least

developed regions. A prerequisite was that the demand for the degree programs offered

6 Admission criteria for a technical college is a high school degree or a more specialized secondary school
degree, which are both obtained after 12 or 13 years of schooling. Given their more practice-oriented
nature, technical colleges cannot award doctoral degrees.

7 In North Rhine-Westphalia, for example, policymakers hoped to speed up the structural transformation
from coal and steel to other industries and services (Holuscha, 2012). In a similar fashion, policymakers
in Rhineland-Palatinate hoped to counterbalance structural changes (Wissenschaftsrat, 1995).

8 The employers’ federation were typically in favor of opening new colleges (see e.g. Landtag, 1991;
Wissenschaftsrat, 1994).
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was deemed adequate and that a sufficient number of students and teaching staff could

be attracted in the catchment area. Local industry was required to cooperate with the

college and to offer jobs to graduates. Whether or not this was plausible was assessed on

the basis of measures of economic viability, infrastructure like transportation and overall

attractiveness of the region (see, e.g. Landtag, 1991; Schindler et al., 1991). In some cases,

technical colleges mainly served as a political bargaining tool: technical colleges were used

to compensate the Bonn area when the federal government moved to Berlin, for instance

(Wissenschaftsrat, 1996).

Based on the discussion above, we expect that the average economic performance of

regions with a new college would not differ much from the performance of other districts,

which is clearly supported by our data (see Table 4.1). However, technical colleges are

more likely to be established outside of metropolitan areas. Hence, regions with a college

opening are unlikely to be similar to the average region in West Germany in terms of wages,

employment and industry structure, for instance. In Section 4.3.2, we use a matching

procedure to select suitable control regions that have a similar industry and employment

structure in the years before the opening to that of districts that eventually get a new

technical college.

For our empirical analysis, we focus on college openings in the 1980s and 1990s. Earlier

openings often happened to be transformations of former vocational schools or similar

institutions for secondary education. We expect those adjustments to have a small and

relatively smooth effect on the regional supply of high-skilled workers (see Kulicke and

Stahlecker, 2004; Wissenschaftsrat, 1991). Furthermore, we cannot trace openings prior to

1980 as the social security data start in 1975 and we require up to four years before the

opening for our estimation approach. Our analysis is further restricted to publicly funded

colleges which were created following the federal law of college expansion. Private colleges

make up only a small fraction of tertiary education in Germany. These institutions are

often very small and cover only a narrow range of subjects. As a result, their founding

does not generate a sizable shift in local labor supply.9

In 1984, there were 58 public technical colleges with in total 97 campuses in West

Germany. By 2004, the number of campuses had increased to 123 located in 110 West

German districts. Of the 26 openings of a new campus, we analyze 23 events in 21 districts.

9 Finally, the founding of private institutions is often financed (or co-financed) by local companies and
hence, much more likely to be correlated with labor demand.
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Two college openings took place in the same district and year which we combine into

a single event.10 In two other districts, our matching procedure was unable to identify

suitable control regions (see section 4.3.2 for further details).11 Finally, we drop one

opening of a small campus because the post-treatment period overlaps with the opening of

a larger campus in the same district.12 Table 4.A.1 provides a list of the new colleges, the

district in which they were founded and the year of the opening. Our sample of colleges

is relatively small as are most technical colleges. Five years after the opening, the new

technical colleges have 98 employees as teaching and support staff on average. The total

number of students and employees of technical colleges amounts to just about 2.8% of

local employment eight to nine years after the college opening.

4.3 Data Sources and Empirical Strategy

4.3.1 Data Sources

To analyze the consequences of college openings empirically, we use German Social

Security Records over more than three decades. More specifically, we draw on employment

data from the German Establishment History Panel (BHP), a 50% random sample of

all establishments with at least one employee covered by the social security system in

Germany (see Schmucker et al., 2016, for more details). Civil servants, military personnel

and the self-employed are not included.13 The data have been available annually since 1975

which enables us to compare districts with a new college opening to suitable control regions

without an opening several years before the opening. Another advantage of our dataset is

that we observe the location of each plant. We can thus identify whether an establishment

is potentially affected by a college opening in the same district. We further observe the

detailed industry of an establishment which allows us to analyze whether the effects of a

new college affect the local economy as a whole or specific industries. To study whether

labor demand changes in new or incumbent plants, we rely on the procedure developed

by Hethey and Schmieder (2010) to distinguish plant openings from a simple change in

10These are the district of Göppingen in 1988 and the district of Rhein-Sieg in 1995.
11These are the district of Salzgitter and the district of Emsland, where new campuses for existing technical
colleges were opened in 1993 and 1995 respectively.

12This is the campus in Idar-Oberstein that was opened in 1986 in the district of Birkenfeld.
13The social security data cover around 80% of the German labor force.
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the establishment identifier as a consequence of spin-offs of existing establishments, for

instance.

Furthermore, we have detailed information on the workforce in each establishment,

especially the number of workers by skill, occupation and age. We distinguish three skill

groups based on the highest qualification obtained. High-skilled workers are workers who

have graduated from a college or university. Medium-skilled workers have completed

a vocational training program or obtained the university entrance certificate after high

school (Abitur). Low-skilled workers have lower qualifications or no qualifications at all.

In the raw data, the education variable is missing for about 9% to 37% of the observations

depending on the year. The BHP provides adjusted education variables based on standard

imputation procedures reducing missing education to less than 1% (see Fitzenberger et al.,

2006). We further distinguish three age groups (20-34, 35-49 and 50-64). Moreover, we

proxy the R&D intensity of a plant as the number of employees in engineering and natural

sciences.

Establishments also report for each employee the daily wage of the employment spell

which contains the reference date (June 30 of each year). As is common in social security

records, wages are right-censored at the highest level of earnings that are subject to social

security contributions. We use imputed wages based on the imputation procedure of Card

et al. (2013). All wages are deflated using the consumer price index with 1995 as the base

year.

We aggregate establishment data to the district level which is our main unit of analysis.

Overall, we observe 325 districts in West Germany with an average population of 196,000

and around 93,000 employees. Local employment refers to full-time employment on June 30

of each year; it excludes apprentices, workers in marginal employment or partial retirement.

We further compute regional employment shares and levels by skill level, age and industry.

We complement this data with regional information on population, total employment

and gross value added which is based on the European regional Database of Cambridge

Econometrics.

4.3.2 Matching Procedure

Regions that experience a new college opening are likely to differ from regions that did

not get a new college. The anecdotal evidence discussed in Section 4.2 suggests that local
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governments had little influence on the location decision of a new college. In most cases,

the location was chosen by the federal or state government which were also responsible

for financing the new institution. Nevertheless, politicians at the state and national level

might have chosen a location in order to foster economic development in the region. In that

case, the region with a new college might have had a less favorable economic development

prior to the opening.

A comparison of treatment regions (i.e. regions with a college opening) to the average

district in West Germany shows that event regions differ in some important characteristics

(see the first columns of Table 4.1). Specifically, regions with a college opening have a

lower employment share in agriculture and fishing, a higher employment share in public

administration and lower total employment (even if the difference is not statistically

significant). They were also less likely to have a university or technical college in their

district.

To find suitable controls for the event regions, we use a matching procedure. To each

region with a new college, we match a region without a college opening that is similar to

the event region in terms of its age structure (3 age groups 20-34, 35-49, 50-64), industry

structure (17 broad industries), skill structure (high-, medium- and low-skilled) and

population in the five years before the opening.14 In addition, we match on an indicator

whether a district had a university or college in the year prior to the college opening.

Including this indicator ensures that event and control regions have similar numbers of

students prior to the college opening.

To find a match for each event region, we use the Mahalanobis matching algorithm

which minimizes the standardized Euclidean distance of all matching variables between

treatment and control regions.15 We then use nearest-neighbor matching with replacement,

i.e. we select for each event region the control region with the smallest sum of normalized

squared distances. This matching method works best if the number of matching variables

is not too large (see Stuart and Rubin, 2008).

14We include the age and skill shares in τ − 1, τ − 3 and τ − 5 where τ is the year of the college opening.
Industry shares and population are measured in τ − 1 and τ − 5.

15 The distances between each treatment and each potential control region are normalized by the variance-
covariance matrix of the pooled sample of event and possible control regions. Normalizing by the
variance-covariance matrix in the control group only does not alter the results.
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Table 4.1: Treatment Versus Control Districts in the Pre-Event Period

Other West Difference Treated Difference Treated
Treated German Control versus versus
Districts Districts Districts Other Districts Control Districts

Coeff. S.E. Coeff. S.E.
(1) (2) (3) (4) (5) (6) (7)

Panel A: Matched Characteristics
Age:
Age: 25-34 0.439 0.442 0.448 -0.002 (0.008) -0.009 (0.009)
Age: 35-49 0.347 0.346 0.342 0.000 (0.007) 0.005 (0.007)
Age: 50-64 0.193 0.193 0.188 0.000 (0.005) 0.005 (0.006)

Education:
High-Skill Share 0.055 0.065 0.053 -0.010 (0.007) 0.002 (0.005)
Medium-Skill Share 0.792 0.790 0.800 0.003 (0.009) -0.008 (0.014)
Low-Skill Share 0.148 0.139 0.142 0.008 (0.009) 0.006 (0.016)

Industry:
Agriculture and Fishing 0.009 0.012 0.010 -0.004* (0.002) -0.002 (0.002)
Energy and Mining 0.020 0.024 0.022 -0.004 (0.009) -0.002 (0.009)
Food 0.031 0.040 0.031 -0.009 (0.006) -0.000 (0.005)
Consumer Goods 0.084 0.066 0.081 0.018 (0.011) 0.003 (0.019)
Producer Goods 0.086 0.104 0.102 -0.018 (0.019) -0.016 (0.019)
Investment Goods 0.179 0.175 0.175 0.004 (0.024) 0.004 (0.035)
Construction 0.098 0.105 0.110 -0.006 (0.008) -0.012 (0.009)
Retail Trade 0.160 0.145 0.138 0.015 (0.009) 0.021* (0.012)
Transport and Communications 0.044 0.041 0.038 0.002 (0.005) 0.006 (0.006)
Finance and Insurance 0.028 0.032 0.027 -0.004 (0.005) 0.001 (0.004)
Hotel and Restaurant Industry 0.020 0.026 0.025 -0.006 (0.005) -0.005 (0.004)
Educational Services 0.013 0.015 0.013 -0.002 (0.002) -0.000 (0.002)
Health and Social Services 0.083 0.078 0.096 0.005 (0.008) -0.013 (0.012)
Corporate Services 0.050 0.053 0.042 -0.003 (0.007) 0.007 (0.008)
Other Services 0.016 0.019 0.016 -0.003 (0.003) -0.001 (0.002)
Non-Profit Organizations 0.007 0.009 0.006 -0.002 (0.003) 0.001 (0.002)
Public Administration 0.075 0.057 0.066 0.018*** (0.007) 0.008 (0.013)

Other:
Population (in Thousands) 162.8 195.5 167.6 -32.7 (37.3) -4.9 (41.7)
Technical College in Region 0.095 0.303 0.190 -0.208** (0.101) -0.143 (0.100)
University in Region 0.143 0.331 0.095 -0.188* (0.103) 0.048 (0.102)

Panel B: Characteristics Not Matched

Population Per Square km 469.2 565.1 373.2 -95.9 (156.8) 96.0 (124.5)
Employment (in Thousands) 74.70 93.38 73.4 -18.68 (22.99) 1.31 (15.25)
Employment Growth (past 3 years) 0.024 0.027 0.027 -0.004 (0.015) -0.004 (0.015)
Average Daily Wage 84.07 86.32 82.05 -2.25 (2.08) 2.02 (1.66)
Wage Growth (past 3 years) 0.051 0.048 0.050 0.002 (0.008) 0.001 (0.011)
Gross Value Added 3241 4482 3147 -1240 (1369) 95 (742)

Note: Mahalanobis matching: all matched variables for t=-1; industry shares and population also for
t=-5; age and skill shares also for t=-3 and t=-5. The main data source is the BHP. Population, total
employment and GVA data come from the Cambridge Econometrics’ European regional Database.
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Note that we do not match on outcome variables prior to the event. Instead we work

with district fixed effects using a difference-in-differences approach.16

To rule out other confounding factors, we impose two additional restrictions. We

first exclude all control districts which share a border with an event district in order to

eliminate concerns that the event spills over across district boundaries to control districts.

Moreover, we drop matches with the highest difference in total employment growth using a

5% trimming margin. This results in excluding two treatment districts from our analysis.

Figure 4.A.1 shows the geographic location of treatment districts and control districts

in West Germany. Most college openings during our sample period occurred in Southern

Germany, especially in the states of Baden-Württemberg and Bavaria. The figure also

reveals that most districts with a college opening are located in more remote areas; the

same is true for most of the control districts.

Overall, the matching procedure successfully eliminates differences in observable cha-

racteristics between the event and chosen control districts. The right-hand side of Table

4.1 reveals that the selected control districts are very similar to the treated districts along

observable characteristics.

4.3.3 Empirical Model

Using our matched sample of regions, we then compare labor market outcomes in the event

regions to those in the control regions before and after a college opening. In particular, we

estimate variants of the following time-varying difference-in-differences model:

Yrτt =
−2∑

τ=−5
βτIτ · Treatr +

9∑
τ=0

γτIτ · Treatr + θτ + δt + αr + εrτt (4.1)

where Yrτt is the labor market outcome of interest in region r in a given calendar year

t for the event period τ . τ denotes the period relative to the year of the college opening,

which occurs in period τ = 0. We consider a period of five years before and nine years

after the college opening (i.e. −5 <= τ <= +9). Treatr is a binary variable equal to

1 if there is a college opening in region r and 0 for all other regions. Iτ is an indicator

function equal to one in the year τ before or after the college opening and zero otherwise.
16The difference-in-differences method allows for time-invariant unobservable confounders but requires
common trends. Matching in turn on pre-treatment outcomes does not require common trends but
assumes that conditional on pre-treatment outcomes unobservable confounders are mean independent of
the outcome (Lechner, 2011).
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Note that t and τ differ as college openings happened in different regions in different years.

Below, we report estimates for two-year increments of the event time τ .

Our parameters of interest are the γτ which trace the evolution of the outcome of

interest in the event region between τ years after the college opening and the pre-event

period (τ = −1) relative to the development in the control region over the same span of

years. The empirical model in (4.1) further controls for event fixed effects (θτ ) which are

measured relative to the year before the opening (i.e. τ = −1). Furthermore, we include

year fixed effects (δt) and region fixed effects αr. Standard errors are clustered at the

district level to account for the level of aggregation in the treatment variable.

The key identifying assumption is that labor market outcomes would have evolved

similarly in the event and control district in the absence of a college opening. The region

fixed effect allows for differences in the levels of the outcome variables. We only require that

trends in outcome variables are comparable between event and control districts conditional

on our control variables. The evolution of outcomes in the pre-event period sheds light on

the plausibility of this assumption. If the identifying assumption is valid, the parameters

βτ should be close to zero and statistically insignificant. We next discuss our empirical

results.

4.4 Empirical Results

4.4.1 Student Population and High-Skilled Employment

We start out by demonstrating that a college opening indeed increased the number of

college students in the region. A rise in the local student population is an important

indicator of the exact timing of the treatment. A rise in the student population is also a

prerequisite for a positive supply shock of high-skilled labor in the region.

Figure 4.1 traces the average number of college students in treated and control districts.

Prior to the college openings, there are on average about 300 university students in

treatment districts and about 2,000 students in control districts.17 We see a substantial

increase in the number of students in the event region starting from the year of the college

opening. Ten years after the college opening, the student population in the treatment

17Four districts already had another college or university before the new opening which explains the
positive student population prior to the treatment we analyze.
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regions has increased by about 1,600. In control regions in contrast, the student population

remains roughly constant over this period.

Figure 4.1: Number of Students in Treatment and Control Districts
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Note: Average number of full-time students enrolled in universities of treatment and control districts. The
year before the university opening is normalized to 1.

We also estimate the difference-in-differences model as in equation (4.1) using the

number of students relative to the number of employees in the region as the outcome

variable. Column (1) of Table 4.2 shows that new technical colleges lead to a large and

significant increase in the share of students: Five years after the college opening the

student population increases by 1.6% of total district employment, which is about 24% of

all employees with a college degree. The effect further accumulates over time. Eight to

nine years after the college opening the share has increased to 2.6% of local employment,

an increase in the share of high-skilled workers in the region of about 34%.

In a next step we examine whether the college opening actually induces a positive shock

in high-skilled labor. If most students leave the region after they finish their college degree

to work and live elsewhere, a college opening would not affect the skill structure of the

local workforce considerably. In that case, we would not expect to find any sizable impact

of a college opening on the local economy.
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Figure 4.2: High-Skilled Employment in Treatment and Control Districts
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Note: Average number of college graduates employed full-time in treatment and control districts. The
year before the university opening is normalized to 0.

Figure 4.2 traces the evolution of full-time employment of high-skilled workers in event

and control regions relative to the year prior to the college opening (τ = −1). High-skilled

employment increases slightly in treatment districts one to two years after the college

opening compared to control districts. Four to five years after the college opening, when

the first cohort of college graduates enters the labor market, the number of high-skilled

workers grows much faster in the event regions compared to control regions. Note that

there is a slight upward trend in the number of high-skilled workers in both treatment

and control regions prior to the opening which reflects the substantial growth in college

graduates over this period.18 Column (2) of Table 4.2 shows that eight to nine years after

the college opening local high-skilled employment has increased by about 12%.

Overall, the evidence on the student population and high-skilled employment highlight

that the opening of a new college generates a sizable positive shock to the supply of high-

skilled labor to the local economy. The timing of the shock to high-skilled employment in

the local economy supports our identification strategy. High-skilled employment exhibits

18Between the mid-1980s and the 2000s, the number of students at technical colleges increased by more
than 25% and hence, more than the student population in regular universities (see Beck and Wilhelm,
2003).
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Table 4.2: Effects on Student Population and Employment Levels

Share High-skilled Total FT Employment Employment
Student/Employed Employment Employment Education w/o Education

(1) (2) (3) (4) (5)

Period (τ=-4/-5) 0.002 0.015 0.010 0.010 0.010
(0.001) (0.022) (0.013) (0.038) (0.013)

Period (τ=-2/-3) 0.001 0.005 0.000 -0.012 0.001
(0.001) (0.012) (0.006) (0.026) (0.006)

Period (τ=-1)

Period (event year, τ=+1) 0.003*** -0.003 0.006 -0.013 0.007
(0.001) (0.016) (0.008) (0.028) (0.008)

Period (τ=+2/+3) 0.009*** 0.028 0.017 -0.024 0.018
(0.002) (0.029) (0.014) (0.047) (0.014)

Period (τ=+4/+5) 0.016*** 0.031 0.023 0.057 0.023
(0.003) (0.028) (0.019) (0.070) (0.019)

Period (τ=+6/+7) 0.021*** 0.078* 0.031 0.064 0.031
(0.004) (0.040) (0.026) (0.083) (0.026)

Period (τ=+8/+9) 0.026*** 0.115** 0.041 0.120 0.040
(0.005) (0.054) (0.031) (0.085) (0.032)

Event Period Fixed Effects Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
Region Fixed Effects Yes Yes Yes Yes Yes
Observations 714 714 714 714 714

Note: The table reports the estimates of the regression described in equation 4.1. The dependent variables
are the ratio of students over total district employment (column 1), the logarithm of the number of
full-time workers with a university degree (column 2), and the logarithm of full-time employment (total
and by sector, columns 3-5). The unit of observation is district-year. Standard errors are clustered at the
district level, * p < 0.10, ** p < 0.05, *** p < 0.01.

strong growth about four years after the opening when the first cohort of students graduates

and enters the local labor market. If high-skilled employment had increased earlier in

the region, this would have been an indication of local demand shocks affecting both

high-skilled employment and the decision to open a new college in the region. Alternatively,

this would raise doubts whether the observed increase might just reflect the number of

high-skilled jobs created in the college with no further effect on the local economy. We

now turn to the question how the college opening affected local labor markets.

4.4.2 Regional Employment

To trace the effects of a college opening on the local economy, we estimate variants of

the regression model in equation (4.1) where the dependent variables are the logarithm of

full-time employment in the district, log employment of medium- and low-skilled workers

and the share of employment in a given skill group over total district employment. All
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variables refer to employment of full-time workers and are measured relative to the calendar

year before the college opening in the event and control districts.

The effects on total district employment are shown in column (3) of Table 4.2. The

estimates are noisy but the coefficients are positive and picture an increase in overall

employment after the college opening. Eight to nine years after the reform the estimate

hints at an increase of employment of 4% in treatment districts. However, the coefficient

is imprecise and not statistically significant. Some of the additional employment might be

jobs created by the college itself. In order to assess the effect on the local economy net

of the new college jobs, we estimate equation (4.1) for the education sector and all other

sectors separately.

The estimates for full-time employment in the education sector are indeed larger than

for the other economic sectors but again not statistically significant (see columns (4) and

(5) of Table 4.2). The absence of an effect on employment in the education sector is not

too surprising given that the new technical colleges are relatively small compared to the

total educational sector (including schools at all levels) in the district, especially in the

first years after their opening. Moreover, given that employment by the technical colleges

represents only about 0.1% of total district employment, the results on total employment

do not change if we exclude the educational sector.

Table 4.3 presents the results separately by skill groups. Columns (1) and (2) suggest

that the college opening does not harm employment of low- and medium-skilled workers.

On the contrary, eight to nine years after the college opening employment of low- and

medium-skilled workers in the region has increased by 3-4% though the estimates fail to

reach statistical significance at conventional levels. The right-hand side of the table shows

that the college opening encourages a skill upgrading in the local economy where the share

of college graduates in total employment increases by 0.7 percentage points from a base

level of 5.5% (see columns (4) to (6) of Table 4.3).

We next ask whether the additional high-skilled employment occurs in incumbent plants

or in new plants. Table 4.4 shows that the share of employment in newly established plants

does not increase significantly more in treatment districts than in control districts after a

college opening. However, the share of high-skilled labor in new establishments relative

to total high-skilled employment in the district increases significantly in the long-run.

Eight to nine years after the college opening, the share of high-skilled employment in new
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Table 4.3: Effects on Employment by Skill Group

Log Employment Employment Share
Low-skilled Medium-skilled High-skilled Low-skilled Medium-skilled High-skilled

(1) (2) (3) (4) (5) (6)

Period (τ=-4/-5) 0.018 0.006 0.015 0.002 -0.002 -0.000
(0.019) (0.016) (0.022) (0.003) (0.004) (0.001)

Period (τ=-2/-3) -0.002 -0.001 0.005 0.000 -0.000 -0.000
(0.013) (0.007) (0.012) (0.002) (0.002) (0.001)

Period (τ=-1)

Period (event year, τ=+1) 0.002 0.006 -0.003 -0.000 0.000 -0.000
(0.015) (0.007) (0.016) (0.002) (0.002) (0.001)

Period (τ=+2/+3) 0.029 0.016 0.028 0.001 -0.002 0.000
(0.021) (0.013) (0.029) (0.002) (0.003) (0.001)

Period (τ=+4/+5) 0.030 0.021 0.031 0.000 -0.002 0.002
(0.029) (0.018) (0.028) (0.003) (0.004) (0.002)

Period (τ=+6/+7) 0.025 0.029 0.078* -0.002 -0.003 0.005*
(0.039) (0.025) (0.040) (0.005) (0.006) (0.002)

Period (τ=+8/+9) 0.034 0.037 0.115** -0.003 -0.004 0.007**
(0.043) (0.031) (0.054) (0.006) (0.007) (0.003)

Event Period Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Region Fixed Effects Yes Yes Yes Yes Yes Yes
Observations 714 714 714 714 714 714

Note: The table reports the estimates of the regression described in equation 4.1. The dependent variables
are the logarithm of full-time employment by skill group (columns 1-3) and the ratio of full-time workers
in given skill group over total full-time employment (columns 4-6). The unit of observation is district-year.
Standard errors are clustered at the district level, * p < 0.10, ** p < 0.05, *** p < 0.01.

plants has increased by 0.5% (see column (2)). Newly established plants thus contribute

to the educational upgrading of the labor force in treatment districts, possibly because

new firms locating in the treatment region are more innovative firms. Yet, we find no

evidence that the number of employees engaged in R&D increased in new establishments.

Overall, however, most of the additional employment in the treated regions is created in

incumbent plants.19

Taken together, the evidence on local employment indicates that a college opening

facilitates skill upgrading without negative consequences for the employment of less skilled

workers. Hence, the additional supply of high-skilled workers does not just replace less-

skilled workers with no effect on total employment. The very moderate effects on the

employment of workers without a college degree suggest modest local multiplier effects.

Given the relatively small size of the new technical colleges, the absence of a sizable boost

19The employment effects when new establishments are excluded are very similar to the overall effects.
For instance, the estimate for log high-skilled employment in a regression on incumbent establishments
is equal to 0.111 compared to 0.115 from Table 4.2.
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Table 4.4: Effects on Employment in New Establishments

Employment Relative to District Employment Structure
FT Employment High-skilled High-skilled Share R&D staff

(1) (2) (3) (4)

Period (τ=-4/-5) 0.000 0.002 0.006 -0.001
(0.001) (0.003) (0.008) (0.002)

Period (τ=-2/-3) -0.001 0.000 0.008 0.003
(0.002) (0.004) (0.010) (0.003)

Period (τ=-1)

Period (event year, τ=+1) 0.002 0.001 0.001 0.002
(0.002) (0.003) (0.009) (0.002)

Period (τ=+2/+3) 0.002 0.005 0.017 -0.000
(0.002) (0.003) (0.013) (0.002)

Period (τ=+4/+5) -0.001 0.000 0.003 -0.000
(0.001) (0.003) (0.013) (0.003)

Period (τ=+6/+7) -0.001 -0.001 0.000 -0.004
(0.002) (0.004) (0.009) (0.004)

Period (τ=+8/+9) 0.002 0.005** 0.018** 0.001
(0.002) (0.002) (0.007) (0.003)

Event Period Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Region Fixed Effects Yes Yes Yes Yes
Observations 714 714 714 714

Note: The table reports the estimates of the regression described in equation 4.1. The dependent variables
are the ratio of employment in new establishments over total full-time employment (for all workers or
high-skilled workers only, columns 1-2) and the ratio of full-time high-skilled workers or full-time workers in
R&D occupations in new establishments over total full-time employment in new establishments (columns
3-4). The unit of observation is district-year. Standard errors are clustered at the district level, * p < 0.10,
** p < 0.05, *** p < 0.01.

for local goods and services is not surprising. We next ask whether local wages by skill

group decrease or not in response to the positive labor supply shock to the local economy.

4.4.3 Average Wages in the Region

To investigate the effect of a college opening on local wages, we re-estimate the regression

model in equation (4.1) where the outcome variable is now the log average wages of

full-time workers. Table 4.5 shows that average wages in the district do not change much in

response to a college opening. In particular, we do not observe any negative effect on wages

of university graduates despite the increase in employment for this skill group (see column

(4)). The coefficient even turns positive eight to nine years after the college opening, when
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treated districts experience the largest increase in high-skilled labor. Unfortunately, the

data available to us do not currently allow us to distinguish the effects on high-skilled

wages for different age groups. Wages typically increase with labor market experience and

firm seniority. Since we expect a larger inflow of young high-skilled workers with little or

no labor market experience in the district, our results could mask some positive effects

on the wages of high-skilled workers in different age and experience groups. Column (2)

and (3) of Table 4.5 show that the wages of low- and medium-skilled workers were largely

unaffected by the college opening relative to the control region.

Table 4.5: Effects on Log Average Wages by Skill Group

All Skill Groups Low-skilled Medium-skilled High-skilled
(1) (2) (3) (4)

Period (τ=-4/-5) 0.000 0.003 0.001 -0.010
(0.004) (0.006) (0.004) (0.011)

Period (τ=-2/-3) 0.000 -0.001 0.001 -0.006
(0.003) (0.004) (0.002) (0.008)

Period (τ=-1)

Period (event year, τ=+1) -0.002 -0.004 -0.001 -0.004
(0.003) (0.005) (0.002) (0.009)

Period (τ=+2/+3) -0.001 -0.000 -0.001 0.001
(0.004) (0.007) (0.004) (0.012)

Period (τ=+4/+5) 0.002 0.001 -0.000 0.003
(0.006) (0.010) (0.006) (0.011)

Period (τ=+6/+7) 0.003 -0.018 -0.001 0.000
(0.008) (0.013) (0.007) (0.013)

Period (τ=+8/+9) 0.012 -0.005 0.005 0.014
(0.010) (0.015) (0.009) (0.016)

Event Period Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Region Fixed Effects Yes Yes Yes Yes
Observations 714 714 714 714

Note: The table reports the estimates of the regression described in equation 4.1. The dependent variable
is the logarithm of average gross daily wages of full-time workers. The unit of observation is district-year.
Standard errors are clustered at the district level, * p < 0.10, ** p < 0.05, *** p < 0.01.

Overall, the evidence suggests that an increase in the supply of high-skilled workers

does not reduce wages, which points to a positive adjustment on the labor demand side

in response to college openings. We also do not find evidence for spillovers on medium-

skilled and low-skilled workers. The skill upgrading without negative wage effects in the
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local economy indicates labor demand adjustments like changes to the output mix or

to technology used in production in response to a college opening. To investigate this

further and separate these two channels, we need to analyze the data at the industry- or

plant-level.

4.5 Discussion and Conclusion

Exploiting the opening of new technical colleges in Germany during the 1980s and early

1990s, this paper shows that universities have a significant impact in the local economy.

Our empirical strategy combines a matching procedure with a time-varying difference-in-

differences approach to find suitable control regions to regions that had a college opening.

We have three main findings. First, the opening of a technical college substantially increases

the regional student population. This results in a large positive shock of high-skilled

labor to the district when the first cohorts enter the local labor market. We find that

high-skilled employment in the region increases by 12% eight to nine years after the

opening. Second, we find some evidence of a positive, albeit imprecisely estimated, effect

on the employment of workers without a college degree. Third, we find that wages of

high-skilled workers do not decrease in the medium-run indicating a shift in local demand,

especially for high-skilled workers. The employment and wage effects remain if we exclude

all employees working in education, suggesting that a college opening has an impact on

the local economy beyond additional jobs in teaching and research. The large increase in

employment and the lack of a drop in wages point to sizable adjustments on the labor

demand side. We find no large increase in employment at new establishments, suggesting

that most of the adjustments happen in incumbent firms either through changes in the

output mix or through changes in the technology used in the production process.

While our analysis focuses on the short- to medium-run effects of a college opening,

the insights gained have important implications for regional policy. First, opening a new

college is indeed an effective strategy to increase the skill level of the regional workforce.

Second, we do not find evidence of adjustment costs in terms of lower wages or employment

of such a large shock in high-skilled labor.
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4.A Further Tables and Figures

Table 4.A.1: List of Treatment Colleges

College City District Opening
Year

FH Braunschweig-Wolfenbüttel Wolfsburg Wolfsburg 1988
Hochschule Esslingen, Hochschule Nürtingen-Geislingen Göppingen, Gesilingen Göppingen 1988
Hochschule Heilbronn Künzelsau Hohenlohekreis 1988
FH Furtwangen Villingen-Schwenningen Schwarzwald-Baar-Kreis 1988
Hochschule Albstadt-Sigmaringen Albstadt-Ebingen Zollernalbkreis 1988
Westfälische Hochschule Gelsenkirchen Bocholt Borken 1992
FH Westküste Heide Dithmarschen 1993
Hochschule Kaiserslautern Zweibrücken Zweibrücken 1994
Technische Hochschule Ingolstadt Ingolstadt Ingolstadt 1994
Technische Hochschule Deggendorf Deggendorf Deggendorf 1994
Hochschule Hof Hof Hof 1994
FH Neu-Ulm Neu-Ulm Neu-Ulm 1994
Hochschule Bonn-Rhein-Sieg Sankt Augustin Rhein-Sieg-Kreis 1995
Westfälische Hochschule Recklinghausen Recklinghausen 1995
Ostbayerische Technische Hochschule Amberg-Weiden Amberg Amberg 1995
Ostbayerische Technische Hochschule Amberg-Weiden Weiden Weiden 1995
FH Aschaffenburg Aschaffenburg Aschaffenburg 1995
Hochschule Trier Birkenfeld Birkenfeld 1996
Hochschule für angewandte Wissenschaften Ansbach Ansbach Ansbach 1996
Hochschule Koblenz Remagen Ahrweiler 1998
Hochschule Kaiserslautern Pirmasens Pirmasens 1988
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Figure 4.A.1: Geographic Location of Treatment and Control Districts

Treated
Control
Other

Districts
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