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Abstract

The neutrino magnetic moment (NMM) in the Standard Model, minimally extended
allowing for massive neutrinos, is many orders of magnitude below current and ex-
pected experimental sensitivities. A potential measurement would therefore strongly
hint to new physics beyond the Standard Model. It raises the question how a positive
NMM signal in future experiments could be explained in a theoretically consistent
way. After a brief theoretical introduction, we summarize existing experimental
bounds and systematically analyze the possibilities of model building for accommo-
dating large NMMs in beyond the Standard Model frameworks. As a by-product, we
derive new limits on millicharged particles from the non-observation of NMMs. The
tight connection of NMMs and neutrino masses generically leads to a fine-tuning
problem in typical models that predict sizable NMMs. We explicitly demonstrate
this problem using a model in which NMMs are proportional to neutrino masses.
Finally, we investigate mechanisms that provide large NMMs and at the same time
avoid the fine-tuning problem. As a result, we find only two such mechanisms that
are not yet excluded and in which large transition magnetic moments can be realized
for Majorana neutrinos only.

Zusammenfassung

Das magnetische Moment eines Neutrinos (MMN) im um Neutrino-Massen minimal
erweiterten Standardmodell der Teilchenphysik liegt um einige Größenordnungen
unter den aktuellen und zu erwartenden experimentellen Sensitivitäten. Eine po-
tentielle Messung wäre daher ein deutlicher Hinweis auf die Existenz neuer Physik
jenseits des Standardmodells. Das wirft die Frage auf, wie ein mögliches posi-
tives MMN-Signal zukünftiger Experimente theoretisch konsistent erklärt werden
könnte. Nach einer knappen Einführung in die theoretischen Grundlagen fassen
wir die bisherigen experimentellen Ergebnisse zusammen und suchen systematisch
nach möglichen Modellen jenseits des Standardmodells, die große MMN vorher-
sagen können. Als Nebenprodukt leiten wir aus der Nichtbeobachtung von MMN
neue obere Schranken für Masse und Ladung milligeladener Teilchen her. Der enge
Zusammenhang zwischen MMN und Neutrinomassen führt dazu, dass es in typischen
Modellen mit großen MMN ein sogenanntes Feintuning-Problem gibt. Wir demon-
strieren dieses Problem anhand eines Modells, in dem die MMN proportional zu den
Neutrino-Massen sind. Schließlich untersuchen wir Mechanismen, die ein messbares
MMN liefern und gleichzeitig das Feintuning-Problem umgehen. Als Resultat finden
wir nur zwei mögliche Mechanismen, die noch nicht ausgeschlossen sind und in denen
sich große Übergangs-Momente, allerdings nur für Majorana Neutrinos, realisieren
lassen.
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Chapter 1

Introduction

With the discovery of the Higgs boson at the LHC in 2012 [3,4], the particle content

of the Standard Model (SM) is experimentally verified. Among the shortcomings of

this remarkably successful theory, the experimentally most striking one is provided

by the phenomenon of neutrino oscillations. It inevitably implies the existence of

small, but non-zero neutrino masses and thus requires the SM to be extended such

that neutrinos become massive. Up to now, the absolute value of neutrino masses is

still unknown. Current upper limits show that neutrino masses considerably larger

than 0.2 eV are in conflict with cosmological observations [5].

The idea that neutrinos oscillate was first proposed by Pontecorvo in 1957 [6]

and is considered as well-established since together with the results for atmospheric

neutrinos by the Super-Kamiokande experiment in 1998 [7] and for solar neutrinos in

2002 by SNO [8] the discrepancy between the expected and measured solar neutrino

fluxes could be explained. In the context of this discrepancy, also known as the solar

neutrino problem, the possibility of a solution by a large neutrino magnetic moment

(NMM) led to an increasing interest in theoretical models that can generate NMMs

of sufficient size [9–17]. It eventually turned out that the solar neutrino problem is

solved by resonant neutrino flavor transitions inside the sun, thereby ruling out the

NMM-solution of the solar neutrino problem. In the subsequent years experiments

measuring reactor, atmospheric, accelerator as well as solar neutrinos continuously

improved the precision of the neutrino mixing parameters.

The current sensitivity to NMMs, on the other hand, is still far away from the SM

prediction1. The best direct upper limit is obtained in the reactor neutrino experi-

ment GEMMA which measures the electron recoil of antineutrino-electron scattering

1In the original Standard Model neutrinos are massless. As a consequence the NMM is exactly
zero. In the context of NMM predictions, we thus refer by ‘SM’ to minimally extensions of the
Standard Model that allow for massive neutrinos as introduced in Sec. 2.1.
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near the reactor core. It constrains the effective magnetic moment to be less than

2.9 · 10−11µB [18]. In the SM, the NMM is of the order 10−19µB(mν/eV) [19–23] (in

units of the Bohr magneton µB = e
2me

and the neutrino mass mν) which is eight

orders of magnitude below the GEMMA limit. The smallness of the SM prediction

implies that a measurement of a finite NMM would be a clear indication for new

physics beyond the SM. Upcoming experiments are expected to reach NMMs of the

order µν & 10−12µB [24–27]. Consequently, it suggests itself to ask what kind of

new physics could explain such large NMMs. In this work, we hence want to analyze

the possibilities of generating large NMMs in a theoretically consistent way. Typi-

cally, one is looking for suitable models at high energy scales, but we also study the

interesting connection of large NMMs with light millicharged particles.

The outline of this thesis is as follows. The theoretical background of neutrino

mass and mixing, neutrino oscillations as well as neutrino electromagnetic properties

and the neutrino magnetic moment is introduced in Chap. 2, followed by a brief sum-

mary of current direct laboratory experiments as well as astrophysical observations

that constrain the size of NMMs in Chap. 3. In a systematic study of theoretical

NMM predictions in Chap. 4, we explicitly rederive the SM prediction for Dirac as

well as Majorana neutrinos and thereby explain the computation procedure. We

then classify the potential generic NMM couplings and calculate the corresponding

results in the case of Dirac and Majorana neutrinos as well as for the zeroth and first

order in neutrino mass. We apply and cross-check our results in the two simplest

scenarios, a model with a charged scalar singlet and the left-right-symmetric model,

in which the proportionality to the neutrino mass can be avoided. It turns out that

in both cases large NMMs can only be introduced by paying the price of fine-tuned

neutrino masses due to large radiative corrections. In Chap. 5 we use the result of

our generic calculation and apply it to models where millicharged particles couple to

right-handed neutrinos. The non-observation of NMMs leads to new constraints for

such scenarios which however turn out to be less stringent than limits from astro-

physical observations. The problem of generating large NMMs, while simultaneously

avoiding the fine-tuning of neutrino masses is explained and tackled in Chap. 6. We

investigate the possibility of NMMs in a model with millicharged particles and find

that there seems to be no room for large NMMs. We then explain the generic diffi-

culty of generating large NMMs due to the tight connection with the neutrino mass

by means of a particularly insightful model and conclude that it is necessary to intro-

duce new symmetries in order to obtain naturally large NMMs. We review, update

and discuss three promising models that provide such a symmetry. It turns out that



7

currently there is no idea for consistently incorporating large NMMs for Dirac neutri-

nos. For Majorana neutrinos, a SU(2)H horizontal symmetry can realize a large νe-νµ

transition moment. In the Barr-Freire-Zee model, which relies on a spin-suppression

mechanism, it is also possible to generate sizable νe-νµ as well as νe-ντ and νµ-ντ

Majorana transition moments.





Chapter 2

Theoretical preliminaries

In this chapter, we give a brief introduction to the basic concepts of neutrino masses,

neutrino oscillations and the neutrino magnetic moment (NMM). In favor of con-

ciseness, the scope of this chapter is restricted to what we consider necessary for

the understanding of this thesis. For more details about neutrino physics and basic

quantum field theory, we refer to the extensive literature, see e.g. Refs. [28–35].

2.1. Neutrino masses and mixing

Except for the neutrinos all fermions in the original Standard Model (SM) consist of

right- and left-chiral fields. For introducing neutrino masses it is therefore straight-

forward to simply add three new right-handed neutrinos to the SM particle content.

In analogy to the other right-handed fermions of the SM it is assumed that they are

SU(2)L singlets. Since neutrinos are electrically neutral this implies a zero hyper-

charge, which makes them total SM singlets.

When introducing such right-handed neutrino fields νR, it immediately leads to the

additional Lagrangian terms

LD = −
∑

α,β=e,µ,τ

YαβLαφ̃νβR + h.c., (2.1)

LM =
1

2

∑
α,β=e,µ,τ

MR
αβν

c
αRνβR + h.c., (2.2)

where Lα are the SM lepton doublets, Yαβ is the Yukawa coupling matrix, MR
αβ is

a Majorana mass matrix for right-handed neutrinos and φ̃ = iσ2φ
∗ using the Higgs

doublet φ and the second Pauli matrix σ2. The superscript c denotes the charge

conjugated field defined by νc = Cν̄T with the charge conjugation matrix C.
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After electroweak symmetry breaking Eq. (2.1) induces Dirac neutrino masses,

while Eq. (2.2) is a Majorana mass term for the right-handed neutrinos. Note that

the latter violates total lepton number conservation, which is an accidental symmetry

of the pure SM. In principle one could force the Majorana mass term to be absent,

by imposing total lepton number conservation. In this case the neutrinos are of

Dirac type as will be discussed in Sec. 2.1.1. However there do not exist compelling

arguments for demanding a priori the conservation of lepton number. The presence

of a right-handed Majorana neutrino mass rather provides an interesting and popular

mechanism for explaining the smallness of the neutrino mass. We elaborate on this

scenario in more detail in Sec. 2.1.2.

2.1.1. Dirac neutrinos

When assuming total lepton number conservation the Yukawa interaction, Eq. (2.1), is

the only source of neutrino mass. After spontaneous electroweak symmetry breaking

the neutral component of the Higgs acquires a non-zero vacuum expectation value

〈φ0〉 = v/
√

2. Eq. (2.1) then contains the neutrino mass term

−LD ⊃
∑

α,β=e,µ,τ

ναLM
D
αβνβR + h.c., (2.3)

where the mass matrix given by MD
αβ = v/

√
2Yαβ. The diagonalization of the mass

matrix is achieved by unitary transformation matrices UL, UR in such a way that MD

becomes diagonal, i.e. (UL
†
MDUR)ij = δijmνi . The transformation of the neutrino

fields into the basis of mass eigenstates ν1, ν2, ν3 is then given by

ναL/R =
3∑

k=1

U
L/R
αk νkL/R (2.4)

and leads to

−LDm =
3∑
i=1

mνiνiLνiR + h.c. =
3∑
i=1

mνiνiνi (2.5)

with the Dirac field νi = νiL + νiR.

Similarly, the diagonalization of the mass matrix for the charged lepton fields
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`′ = e′, µ′, τ ′ gives the transformation

`′L/R =
∑

`=e,µ,τ

V
L/R
`′` `L/R, (2.6)

such that in the mass eigenstate basis e, µ, τ the charged lepton mass is diagonal. In

the electroweak neutral current interaction the transformation matrices cancel each

other due to their unitarity. The only term in the diagonalized Lagrangian, where

those transformation matrices appear is the charged current coupling, which reads

LCC =
∑

`=e,µ,τ

g√
2
W+
µ `
′
Lγ

µν`L + h.c. (2.7)

=
∑

`=e,µ,τ

3∑
k=1

g√
2
W+
µ `Lγ

µU`kνkL + h.c. (2.8)

Here, we have defined the matrix in flavor space U = V L†UL, which is called the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix after the works of Refs. [6, 36].

Since the only physical effect of mixing is in the charged current coupling, it is con-

venient to work in a basis, where the charged lepton mass is diagonal. The mixing

is then considered to be present only in the neutrino fields. One therefore defines

the neutrino flavor states νe, νµ, ντ such that the charged current interaction takes it

simple form of Eq. (2.7) with the direct coupling to the charged lepton fields e, µ, τ .

The neutrino mass matrix written in this basis is not diagonal. Performing the trans-

formation into the mass eigenstates via the PMNS matrix according to να = Uαiνi

results in a diagonal mass, but then the in the PMNS matrix appear in the charged

current coupling.

Since the PMNS matrix is a 3× 3 unitary matrix, it can be parametrized by three

rotation angles and six complex phases. Except for the charged current term, where

the PMNS matrix is present, the rest of the Lagrangian is invariant under a global

phase shift of the charged lepton fields. One can thus absorb three complex phases

by exploiting the freedom of choosing such a phase shift accordingly. In addition, one

can redefine the Dirac neutrino fields and absorb two further complex phases. This is

not possible with Majorana neutrinos. However, since those two phases are irrelevant

for neutrino oscillations, we will ignore them even in the Majorana case. For more
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details see for example Refs. [31, 33,37]. We arrive at the parametrization

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 , (2.9)

where sij = sin θij and cij = cos θij with the mixing angles θi and the CP-violating

phase δ. Neutrino oscillations will be discussed in Sec. 2.2 in more detail. We first

turn to the case of Majorana neutrinos.

2.1.2. Majorna neutrinos

Without the assumption of total lepton number conservation the extension of the SM

by right-handed neutrinos introduces the Majorana mass term in Eq. (2.2). Note

that the quantum numbers of the left-handed neutrino field do not allow for an

analogous Majorana mass term of the left-handed neutrinos. Such a term would

require more model building effort, like for example introducing extra scalar triplets.

See Refs. [28,34] for more details. In this brief discussion of Majorana neutrino masses

we stick to the minimal SM extension of just adding right-handed neutrinos. Then,

the two Lagrangian terms, Eqs. (2.2) and (2.3), can be rewritten into [28]

LD +LM ⊃ −1

2
N c
L

(
0 MDT

MD MR

)
NL + h.c. (2.10)

by defining a vector consisting out of the six neutrino fields

NT
L =

(
νeL νµL ντL νceR νcµR νcτR

)
. (2.11)

One can block-diagonalize the 6× 6 mass matrix of Eq. (2.10) by assuming the right-

handed Majorana mass matrix to be much heavier than the Dirac mass term. This

assumption is reasonable, since MD is generated after electroweak symmetry breaking

at low scale, while MR could be related to a high-energy completion of the SM and

therefore be at a high energy scale. The diagonalization yields a light and a heavy

3× 3 Majorana mass matrix Ml,Mh. In the limit MR �MD they are given by (see

Ref. [28] and references therein)

Ml = −MDT (MR)−1MD, Mh = MR. (2.12)
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In this way one obtains three light Majorana neutrinos with their masses being the

eigenvalues of Ml and three heavy Majorana neutrinos with the mass matrix MR. It

is important to point out that the mechanism presented here provides a reasonable

explanation for the smallness of the three left-handed neutrino masses simply by

assuming the masses of the right-handed neutrinos MR to be much larger than the

electroweak scale (which is the maximum vale of MD as argued above). Ml can

therefore be naturally pushed to the sub-eV scale. This interesting and well-studied

mechanism known as seesaw mechanism [38–42].

Accordingly, the low-energy effective mass term of the left-handed neutrinos is given

by

LMeff = −1

2

∑
α,β=e,µ,τ

(Ml)αβν
c
αLνβL + h.c. (2.13)

The diagonalization is achieved by means of a unitary transformation matrix Ũ such

that (ŨTMlŨ)ij = δijmνi resulting in

LMeff = −1

2

3∑
i=1

mνiν
c
iLνiL + h.c. = −1

2

3∑
i=1

mνiν
c
i νi, (2.14)

where we have defined the Majorana neutrino field νi = νiL + νciL with the property

νci = νi implying that it is its own antiparticle.

Analogous to the Dirac case the mixing matrix for Majorana neutrinos is given by

U = V L†Ũ and appears in the charged current interaction.

2.2. Neutrino oscillations

We have seen in the previous sections that the presence of a non-zero neutrino mass

directly results in the mixing of neutrino mass and flavor eigenstates. This in turn

manifests itself in the observable effect of neutrino oscillations. Conversely, the ob-

servation of neutrino oscillations provides a proof that neutrinos carry mass. In 2015,

Takaaki Kajita from the Super-Kamiokande Collaboration [37] and Arthur B. Mc-

Donald from the Sudbury Neutrino Observatory (SNO) [43] Collaboration received

jointly the Nobel prize [44] for the discovery of neutrino oscillations. In the following,

we briefly discuss the concept of neutrino oscillations, since oscillation effects play a

role in understanding the physical observables of the NMM.

We want to consider a neutrino source producing neutrinos of flavor α in some
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distance L of a detector, which is sensitive to incoming neutrinos of flavor β. The

probability of the flavor transition να → νβ in vacuum can be calculated by the

quantum mechanical amplitude according to

Pνα→νβ =
∣∣ 〈νβ|να(t)〉

∣∣2 =
∣∣∣ 3∑
i=1

∑
γ=e,µ,τ

〈νβ|U∗αie−itEiUγi |νγ〉
∣∣∣2. (2.15)

Note that the neutrino flavor states are no eigenstates of the Hamiltonian. The neu-

trino field has therefore to be transformed into the mass basis and back again, yielding

two insertions of the PMNS matrix. This property causes the probability of detecting

the neutrino in a certain flavor state to oscillate over time. The probability can now be

further simplified by using 〈νβ|νγ〉 = δβγ and assuming a relativistic neutrino t ≈ L

as well as a definite three-momentum which is the same for all contributing mass

eigenstates. Using this assumption, one can write the neutrino energy approximately

as Ei ≈ |p|+ m2
i

2|p| ≈ |p|+
m2
i

2E and obtain

Pνα→νβ =
∣∣∣ 3∑
i=1

U∗αie
−iLEiUβi

∣∣∣2 =
∣∣∣ 3∑
i=1

U∗αie
−iL|p|e−iL

m2
1

2E e−iL
∆m2

i1
2E Uβi

∣∣∣2
=
∣∣∣ 3∑
i=1

U∗αie
−iL∆m2

i1
2E Uβi

∣∣∣2, (2.16)

where ∆m2
ij = m2

i − m2
j . The result of this simplified derivation of the oscillation

probability agrees with the correct treatment accounting for the momentum spread

of the neutrino and using the full quantum field theoretical formalism [31,34].

Experiments are usually not sensitive to all oscillation phases ∆m2
ijL/(2E) simul-

taneously. The best sensitivity is achieved for ∆m2
ijL/(2E) ∼ O(1). If instead

∆m2
ijL/(2E) � 1, the oscillation is averaged out so that the oscillation pattern

can not be detected due to the finite detector resolution. An experiment with

∆m2
ijL/(2E)� 1, on the other hand, could not measure flavor transitions at all. Let

us assume, for example, that ∆m2
21L/(2E)� 1 while ∆m2

31L/(2E) ≈ ∆m2
32L/(2E) ∼

O(1). This is reasonable, since the mass square differences indeed satisfy |∆m2
21| �

|∆m2
31| ≈ |∆m2

32|. The oscillation probability then takes the simple form [33]

Pνα→νβ ≈ 4|Uα3|2|Uβ3|2 sin2

(
∆m2

31

4E
L

)
. (2.17)

This case is applicable for atmospheric, accelerator and reactor experiments. The
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quantity ∆m2
31 ∼ 10−3 eV2 is therefore also called the atmospheric mass square differ-

ence. For solar and very long baseline experiments, ∆m2
21 ∼ 10−5 eV2 is the relevant

quantity, also called the solar mass square difference. From Eq. (2.17), one can see

that the amplitude is determined by the matrix elements while the oscillation length

is given by Losc = 4πE/∆m2
31.

So far, we implicitly assumed that the neutrino stays in a coherent superposition

of neutrino mass eigenstates. It is only justified as long as the path length L is much

smaller than the coherence length Lcoh = 4
√

2E2∆L/|∆m2| [31]. The coherency

depends on the spatial uncertainties of the neutrino detection and production, referred

to as ∆L. Once the path length becomes much larger, i.e. L� Lcoh, as it is the case

for example in solar neutrino experiments, the oscillation probability is calculated via

the incoherent sum

P incoh
να→νβ =

∑
i

Pνα→νi · Pνi→νβ =
∑
i

∣∣ 〈νi|να(t)〉
∣∣2 · ∣∣ 〈νβ|νi〉 ∣∣2

=
∑
i

∣∣∣U∗αie−iL∆m2
i1

2E

∣∣∣2 · |Uβi|2 =
∑
i

|Uαi|2 · |Uβi|2. (2.18)

Up to this point, we considered only neutrino oscillations in vacuum. When neu-

trinos travel through matter, they experience the effect of a matter potential induced

by coherent forward scattering off electrons, protons and neutrons. While the neutral

current interaction is the same for all flavors, only the electron neutrinos take part

in the charged current scattering off electrons. The difference in the scalar potential

among the flavors causes the eigenstates of the Hamiltonian and the mass eigenstates

to be not identical anymore (which is the case in vacuum). This in turn effects the

oscillation pattern and leads to a dependence on the matter density. Neutrinos that

travel through a varying matter profile, like for example neutrinos produced inside

the sun, can underlie resonant flavor transitions, which is called Mikheyev-Smirnov-

Wolfenstein (MSW) effect [45,46]. For more details see for example Ref. [33].

In order to conclude this brief discussion of neutrino oscillations, we want to point

out that in the last decades many neutrino experiments have been developed. They

determined the oscillation parameters to good precision. On-going experiments will

even further improve the precision. For the analyses in this work, we use the global fit

values of Ref. [47]. Since the value of the CP-violating phase δ in the PMNS matrix,

Eq. (2.9), is not determined yet, we assume it to be zero for the purposes in this

thesis.
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2.3. Electromagnetic form factors

Λ
µ
fi

νi νf

γ
q

Figure 2.1.: The effective neutrino-photon vertex.

Since the neutrino is neutral, its electromagnetic properties appear only at loop

level. A convenient way of studying these properties on a model-independent level is to

consider the effective neutrino photon interaction. In the one-photon approximation,

the effective electromagnetic interaction Hamiltonian is given by [28]

H(x) = Jµ(x)Aµ(x) =

3∑
f,i=1

νf (x)Λfiµ νi(x)Aµ(x). (2.19)

The indices f, i ∈ {1, 2, 3} refer to the neutrino mass eigenstates, Jµ is the effective

neutrino photon current and Λfiµ is the corresponding vertex function. Within a

certain model, it is obtained by applying the Feynman rules to diagrams of the type

Fig. 2.1 and removing the neutrino spinors and the polarization vector of the photon.

To be more precise, the neutrino part of the amplitude is given by

〈νf (p′)| Jµ(x) |νi(p)〉 = ei(p
′−p)xū(p′)Λfiµ (q)u(p), (2.20)

where q is the four-momentum of the photon as indicated in the Feynman diagram in

Fig. 2.1. The effective neutrino electromagnetic vertex function can be decomposed

into Lorentz invariant bilinears. The most general form is [28]

Λfiµ (q) =Ffi1 (q2)

(
γµ −

qµ/q

q2

)
+ Ffi2 (q2)

iσµνq
ν

(mνf +mνi)

+ Ffi3 (q2)
2qµ

mνf +mνi

+ Gfi1 (q2)

(
γµ −

qµ/q

q2

)
γ5

+ Gfi2 (q2)
iσµνq

ν

(mνf +mνi)
γ5 + Gfi3 (q2)

2qµ
mνf +mνi

γ5, (2.21)

where Ffik , Gfik are the neutrino electromagnetic form factors, i refers to the initial, f
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to the final neutrino mass eigenstate and σµν = i/4[γµ, γν ] as well as γ5 = iγ0γ1γ2γ3

are matrices in Dirac space given by the Dirac matrices γµ.

For an appropriate definition of the magnetic moment µ and electric moment ε in

terms of the form factors, one has to make sure that in the non-relativistic limit the

classical definition is reproduced. The classical electric/magnetic moment describes

the interaction of the spin with the electric/magnetic field E/B according to the

Hamiltonian [48]

Hµnon-rel. = −µB(0 + a)σ ·B, Hεnon-rel. = −εσ ·E, (2.22)

where σ is the vector of Pauli matrices, µB = 2/(2me) is the Bohr magneton, me the

electron mass and a is the anomalous magnetic moment. Since neutrinos are neutral,

there is no tree-level electromagnetic interaction and the magnetic moment is thus

given by its anomalous magnetic moment only. For electrons, for example, one has

to replace (0 + a) with (1 + a). For the neutrino it is convenient to define µ := aµB

and call it the neutrino magnetic moment. One can show (see for example [48]) that

the non-relativistic limit, Eq. (2.22), is reproduced by defining

µ = i
F2(q ' 0)

mνf +mνi

, ε =
G2(q ' 0)

mνf +mνi

. (2.23)

In doing so, µ and ε are considered as matrices in flavor space, accounting for the possi-

bility to have off-diagonal entries, also called transition moments. The corresponding

high-energy effective Lagrangian terms are then given by (using Eqs. (2.19), (2.21)

and (2.23))

Lµeff = −Hµeff = −1

2

iF2(q2)

mνf +mνi

ν̄(x)σµνν(x)Fµν(x), (2.24)

Lεeff = −Hεeff = − i
2

G2(q2)

mνf +mνi

ν̄(x)σµνγ5ν(x)Fµν(x), (2.25)

where Fµν is the electromagnetic field tensor.

The Hamiltonian and the neutrino photon current are Hermitian, which implies for

the vertex function Λµ(q) = γ0Λ†µ(−q)γ0 and thus for the Dirac electric and magnetic

moment matrices to be Hermitian as well. In the case of Majorana neutrinos there

exists one additional contraction of the neutrino fields, because Majorana particles
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are its own anti-particles. The amplitude is then given by

〈νf (p′)| Jµ(x) |νi(p)〉 = ei(p
′−p)x

(
ū(p′)Λfiµ (q)u(p)− v̄(p)Λifµ (q)v(p′)

)
. (2.26)

Using the Majorana spinor relation v = uc = CuT , one arrives at the Majorana vertex

function

ΛMfi
µ = Λfiµ + C(Λifµ )TC−1. (2.27)

In contrast to the Dirac electric and magnetic moment matrices, this results in µ and

ε to be Hermitian and anti-symmetric, i.e. to be purely imaginary. In addition, if CP

is conserved, one can show that either µ or ε is zero [28]. At this point, it is interesting

to notice the possibility of discriminating between the Dirac and Majorana nature of

the neutrino field by measuring the NMM, since for Majorana neutrinos only the

off-diagonal components exist.

Early systematic studies of neutrino electromagnetic properties can be found in

Refs. [19, 20,49–54]. For a recent and detailed review see [28].

2.4. Effective neutrino magnetic moment

In general, neutrino experiments can not directly measure the electric and magnetic

moment matrices in the basis of neutrino mass eigenstates as introduced in Eq. (2.23).

Instead, the physical observable is a combination of the electric and magnetic mo-

ment. Furthermore, neutrino oscillation effects have to be taken into account, since

the neutrino source typically emits neutrinos which are in a superposition of mass

eigenstates [55,56].

In App. B we explicitly derive the cross-section for the neutrino electromagnetic

scattering process, which is the detection channel in laboratory experiments achieving

the currently best sensitivity on NMMs. From the derivation in Eq. (B.25) one can

infer that the cross-section is proportional to the combination |µfi− iεfi|2. By simply

inserting the spinor u−(p) for the initial neutrino in the scattering matrix element in

Eq. (B.1), we implicitly assume the initial neutrino field to be in the pure neutrino

mass eigenstate |νi〉. Let us change this assumption by considering neutrinos that

are produced in a specific flavor state |να〉 instead. When the neutrinos are detected

after traveling a distance t ≈ L between source and detector, at the time of detection

the neutrino fields are in the quantum state |να(t)〉 =
∑

k U
∗
αke
−iEkL |νk〉. The field

contraction then yields ν |να(t)〉 ∝∑k U
∗
αke
−iEkL. Again using the approximation as
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used in the derivation of Eq. (2.16) this implies for the cross-section

3∑
f=1

dσ(να → νf )

dT
∝

3∑
f=1

∣∣∣∣∣
3∑

k=1

U∗αke
−iL

∆m2
kf

2E (µfk − iεfk)
∣∣∣∣∣
2

=:
(
µeff
να

)2
, (2.28)

where µeff
να is the effective neutrino magnetic moment. Although ε and µ contribute

to equal amount, it is sometimes also called ’magnetic moment’. For antineutrinos

one has to substitute µfk with −µ∗fk, εfk with −ε∗fk as well as U with U∗ effectively

leading to [28]

(
µeff
ν̄α

)2
=

3∑
f=1

∣∣∣∣∣
3∑

k=1

U∗αke
iL

∆m2
kf

2E (µfk − iεfk)
∣∣∣∣∣
2

, (2.29)

i.e., the only difference is the different sign in front of the oscillation phase.

For reactor and accelerator experiments with short baselines, such that for the

largest mass square difference L � 2E/∆m2 holds, the effective magnetic moment

can be simplified by the approximation

(
µeff
να

)2
≈
(
µeff
ν̄α

)2
≈

3∑
f=1

∣∣∣∣∣
3∑

k=1

U∗αk (µfk − iεfk)
∣∣∣∣∣
2

, (2.30)

which is the same for neutrinos and antineutrinos. In experiments with long baselines,

L � 2E/∆m2, on the other hand, neutrino oscillation is washed out as discussed in

Sec. 2.2. This leads to

(
µeff
να

)2
≈
(
µeff
ν̄α

)2
≈

3∑
k=1

|Uαk|2
3∑

f=1

|(µfk − iεfk)|2 . (2.31)

Finally, for solar neutrino experiments, matter effects have to be taken into account.

Since in this case the neutrino path length corresponds to the Sun Earth distance,

the long-baseline approximation, Eq. (2.31), can be applied, where one has to replace

the PMNS matrix by the effective mixing matrix in matter at the point of neutrino

production inside the sun.





Chapter 3

Experimental status

The presence of neutrino magnetic moments (NMMs) would lead to a rich phe-

nomenology. In this chapter we give an overview over the most important observables

and the resulting constraints on the NMM. Due to the numerous amount of obser-

vations effecting the NMM, we restrict ourself to those yielding the most stringent

constraints. For more details we refer to Ref. [28, 57–59].

3.1. Terrestrial experiments

The most sensitive and widely used method for constraining NMMs is to measure the

electron recoil due to elastic neutrino-electron scattering with reactor, solar or ac-

celerator neutrinos. We calculate the corresponding electromagnetic scattering cross-

section (dσ/dT )NMM explicitly in App. B. In addition to the NMM induced scattering,

the electroweak neutrino-electron scattering has to be taken into account. In the ul-

trarelativistic limit the Standard Model (SM) weak interaction conserves the helicity

while in the NMM interaction the helicity is changed. Thus, the experimentally ob-

served cross-section is a incoherent sum of both processes. The small interference

term due to finite neutrino masses can be neglected [55, 60, 61]. The cross-section is

therefore given by

dσ

dT
=

(
dσ

dT

)
SM

+

(
dσ

dT

)
NMM

, (3.1)
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Figure 3.1.: Neutrino electron scattering cross-sections averaged over the typical an-
tineutrino reactor spectrum. The colored lines correspond to the elec-
tromagnetic contribution for different NMM values near the current best
upper limit of 2.9 · 10−11µB. The electroweak contribution is shown in
red. Figure taken from [18].

where the SM electroweak cross-section, here for ν̄e-e scattering, can be written as [62]

(
dσ

dT

)
SM

=
G2
Fme

2π

[(
1− T

Eν

)2

(1 + 2 sin2 θW )2 + 4 sin2 θW

− 2(1 + 2 sin2 θW ) sin2 θW
meT

E2
ν

]
. (3.2)

Here, GF is the Fermi constant, θW the Weinberg angle, Eν the neutrino energy and

T the electron recoil energy. Fig. 3.1, taken from [18], shows the two cross-sections for

different NMM values near the current experimental sensitivity. One can see, that it

is necessary to build neutrino detectors that are able to measure electron recoils as low

as T < 100 keV in order to further increase the sensitivity on NMMs. From Eqs. (3.2)

and (B.25), one can estimate that the NMM signal exceeds the SM background if

T .
π2α2

G2
Fm

3
e

(
µeff
ν

µB

)2

(3.3)

is fulfilled [59]. Here, µeff
ν is the effective NMM (compare to Sec. 2.4) and µB the

Bohr magneton. In principal, it is also possible to investigate the NMM via neutrino-

nucleus scattering. It would, however, require a sensitivity to tiny atomic recoil
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energies, e.g. for germanium (Z = 32) it would be around T ∼ 0.04 eV, see Ref. [63]

and references therein for more details.

The strategy of direct laboratory experiments is to decrease the electron recoil en-

ergy threshold while simultaneously suppressing background radiation by appropriate

shielding methods. Constraints on the effective NMM can then be derived from the

lack of any observable distortion in the electron recoil energy spectrum. The first

experiment measuring the ν̄e-e elastic scattering was performed in the 50’s at the Sa-

vannah River Laboratory [64–66] (see also Ref. [59] for a short review of the detector

details) using a detector consisting out of 15.9 kg plastic scintillator. For shielding

against cosmic rays they used a 300 kg NaI crystal shielded by led and cadmium

and enclosed in 2200 liters of liquid scintillator. They measured the recoil energy

of electrons from the scattering with reactor antielectron neutrinos in the range 1.5

MeV to 4.5 MeV. An improved analysis in Ref. [62] hinted at a NMM signal of the

order of µeff
ν̄e ∼ (2 − 4) · 10−10µB. However, in the 90’s the two follow-up reactor ex-

periments Krasnoyarsk [67] and Rovno [68] also measured the antielectron neutrino

scattering and found upper limits for the effective NMM of µeff
ν̄e < 2.4 · 10−10µB and

µeff
ν̄e < 1.9 ·10−10µB respectively, thereby ruling out the previous signal. The currently

best laboratory limit was obtained by the GEMMA experiment [18] located close to

the reactor core of the Kalinin Nuclear Power Plant. The higher sensitivity could

be achieved by the use of a 1.5 kg high purity Germanium detector with an energy

threshold as low as 2.8 keV. They obtained the upper limit

µeff
ν̄e < 2.9 · 10−11µB (90%CL). (3.4)

The competing reactor experiment TEXONO [69] located at the Kuo-Sheng nuclear

power plant also used a germanium detector with a threshold of 12 keV. They obtained

an upper limit of µeff
ν̄e < 7.4 · 10−11µB.

There have been several accelerator experiments that also searched for NMMs. For

a review, see e.g. [28]. Among them the experiments BNL-E734 [70] and LSND [71]

measured the elastic electron scattering of muon neutrinos, DONUT [72] measured

ντ -e as well as ν̄τ -e scattering and LAMPF [73] was able to detect both, νe-e as well

as νµ-e scattering. Due to the lower neutrino rate, those experiments are less sensitive
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compared to the reactor experiments. They obtained the upper limits of

µeff
νe < 1.1 · 10−9µB (LAMPF [73]), (3.5)

µeff
νµ < 6.8 · 10−10µB (LSND [71]), (3.6)

µeff
ντ < 3.9 · 10−7µB (DONUT [72]). (3.7)

Finally, it is also possible to constrain NMMs by data from solar neutrino exper-

iments, for which the expected weak scattering rates are a priori unknown. As we

have seen in Fig. 3.1, in the case of reactor antineutrinos, the dependence on the

electron recoil energy is quite different between the weak and NMM induced scat-

tering cross-sections. The NMM limits are therefore extracted by a shape analysis

and are thus independent of the underlying standard solar model [56]. Data from

the Super-Kamiokande neutrino experiment lead in this way to the limit on the solar

effective NMM µeff
solar < 1.1·10−10µB [74]. Very recently the solar neutrino experiment

Borexino presented as a result of their physe-II data an even more stringent limit of

µeff
solar < 2.8 · 10−11µB [75], which is of comparable size to the GEMMA limit.

Several planned future experiments will potentially increase the sensitivity on

NMMs down to values of the order of µeff
ν & 10−12µB [24–27].

3.2. Astrophysical observations

Neutrino-electron electromagnetic elastic scattering also play a role in core-collapse

supernovae. As discussed in the previous section, the neutrino helicity is flipped

in the NMM induced scattering process. If the neutrino is of Dirac nature, left-

handed neutrinos are thereby transformed into right-handed neutrinos. Those in

turn are sterile, i.e. do not participate in SM interactions, and can thus freely escape

the interior of a supernova. The so induced energy-loss should not be larger than

the total neutrino luminosity and hence leads to an upper bound of the order of

µeff
ν . (0.1 − 0.4) · 10−11µB [76, 77], which is a slight improvement of the previous

result in Ref. [78].

Another NMM-induced process is the radiative decay of a heavy neutrino into a

lighter one by the the emission of a photon νi → νf+γ. The Feynman diagram for this

decay is depicted in Fig. 3.2 (a), where the blob denotes the effective electromagnetic

neutrino interaction. From the magnetic and electric moment contribution to the
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Figure 3.2.: Feynman diagrams for radiative decay (a) and plasmon decay (b) gen-
erated by the presence of a non-zero NMM.

vertex function Λfiµ , see Eq. (2.21), one can derive the decay rate [79–81]

Γνi→νf+γ =
1

8π
(|µfi|2 + |εfi|2)

(
m2
νi −m2

νf

mνi

)3

. (3.8)

The phase space is suppressed due to the small neutrino mass. The resulting limits

are thus weaker than those obtained in other processes. From the absence of the

decay photons one can derive limits from reactor, solar, supernova as well as cosmic

background neutrinos. The latter give the dominant limit of (|µfi|2 + |εfi|2)1/2 <

10−11(eV/mν)9/4µB, see also Refs. [28, 81] and references therein. Note that this

combination of the electric and magnetic moments is different than the effective NMM

discussed in the context of neutrino-electron scattering. For comparing the upper

limits one has to account for the PMNS matrix, the neutrino energy, the neutrino

path length and the mass square differences according to Eq. (2.28).

The more interesting process for constraining NMMs is the plasmon decay γ∗ →
ν̄i + νi, shown in Fig. 3.2 (b). It is kinematically allowed in very dense media, where

a dispersion relation of ω2 − k2 > 0 makes the photon to behave like a particle

with an effective mass. This process was first studied in Ref. [82] in the context

of solar energy-loss channels. Demanding the energy-loss via plasmon decay not

to exceed the standard solar model luminosity gives the upper limit (
∑

ij |µij |2 +

|εij |2)1/2 < 4 · 10−10µB. A stronger constraint is obtained from red giant stars in

globular clusters. The helium burning inside the core depends sensitively on the

temperature. The energy-loss for a high plasmon decay rate would lead to a cooling

and a delay of the helium ignition. This in turn would imply a larger core mass which

is in conflict with observations. The resulting NMM limit is even stronger than those

from direct laboratory experiments. However, as the other constraints presented in
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this section, it is inly an indirect limit, i.e. astrophysical model-dependent. First

derived in Refs. [83, 84], the updated limit is [85]√∑
ij

(|µij |2 + |εij |2) < 2.6 · 10−12µB (68%CL). (3.9)

The authors of Ref. [86] showed that large plasmon decay rates not only effect the time

scale of helium burning, but also qualitatively change the structure and evolution of

stars. They estimated the sensitivity of those effects on the NMM to be of the order

(2− 4) · 10−11µB.

When charged particles move with a velocity greater than the speed of light inside

the environmental medium, they emit Cherenkov radiation. The same is true for

neutrinos with a non-zero NMM. The Cherenkov radiation process is helicity flipping,

analogous to the radiative decay νL → νR + γ. It was first studied in Ref. [87] in

the context of solar neutrinos. It was found that the resulting energy-loss of solar

neutrinos is not efficient enough for reducing the solar neutrino flux significantly.

Later in Ref. [88] it was shown that although it is a small effect, it can have an

impact on core-collapse supernova. Cherenkov radiation for Dirac neutrinos implies

that more energy is carried away due to the helicity flip which transforms the left-

handed active neutrinos into right-handed sterile neutrinos. By requiring that the

energy-loss of this mechanism is less than the total neutrino luminosity of a typical

core-collapse supernovae, the authors of Ref. [88] found an upper limit for the Dirac

diagonal magnetic dipole moment of 2 · 10−14µB.

Let us finally mention the studies on neutrino spin-flavor precession [19, 89–91].

Neutrinos propagating in an electromagnetic field are effected by an effective potential

similar to matter effects in the context of neutrino oscillations, see Sec. 2.2. The

potential is induced by the coherent forward elastic (NMM-induced) scattering and

depends on the electric and magnetic moments. It is especially interesting to consider

Majorana neutrinos, since the NMM interaction generates ν-ν̄ transitions (due to the

chirality flip). In this way, one can derive bounds on the Majorana transition moments

from the measured solar neutrino flux. For more details and a theoretical description

of this process see Ref. [28] and references therein.
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Neutrino magnetic moment predictions

In view of the experimental sensitivity on neutrino magnetic moment (NMM) signals,

we want to investigate theoretical frameworks predicting NMM values of observable

size. Note that in the pure Standard Model (SM) neutrinos are massless and the

NMM is thus zero. Since it is by now considered as an experimental fact that neu-

trinos are massive, in the following, we refer by ‘SM’ to those minimally extended

SM frameworks allowing either for massive Majorana neutrinos or massive Dirac neu-

trinos, respectively, as introduced in Sec. 2.1. In this chapter, we start by studying

the NMM in those SM extensions in Sec. 4.1. We then analyze and classify generic

NMM couplings in Sec. 4.2. The two simplest scenarios which, at first sight, seem

to be suitable for generating large NMMs are discussed in Secs. 4.3 and 4.4, thereby

applying and cross-checking our results of Sec. 4.2.

4.1. Neutrino magnetic moments in the Standard Model

The computation of the NMM in the SM at one loop order was already done in the

literature, see for example Refs. [19–22]. In order to understand the calculation in

full detail, cross-check our computation procedure as well as compare the outcome

to other models we explicitly derive and reproduce the former results in this section.

To begin with, we present the calculation, assuming three right-handed neutrinos

leading to Dirac neutrino masses. Afterwards, we explain the difference for the case

of Majorana neutrinos. We stick to minimal extensions of the SM in the sense that

we just assume the Dirac/Majorana nature of the neutrino without accounting for

possible additional contributions that could for example emerge from an extended

(model-dependent) scalar sector.
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4.1.1. Dirac neutrinos

The six Feynman diagrams contributing to the NMM, when evaluating diagrams at

one loop order in Feynman gauge are depicted in Fig. 4.1. First of all, we start by

calculating the neutrino-photon vertex function Λfiµ , where i refers to the initial and f

to the final neutrino flavor. This vertex function was already introduced in Eq. (2.21).

It is given by the coherent sum of all contributing Feynman diagrams. Applying the

SM Feynman rules as summarized in App. A we arrive at the contributions Dx with

x referring to the corresponding Feynman diagram in Fig. 4.1. For the explicit loop-

integrals, see Eqs. (D.1) - (D.6) in App. D.

Here, we are only interested in the electric and magnetic dipole moments. For this

purpose, one can extract from the full vertex function,

Λfiµ =
6∑

x=1

Dx, (4.1)

the contribution of a single form factor by using appropriate projection operators.

The relevant form factors F fi2 and Gfi2 are then obtained from the Dirac trace

F fi2 = tr
[
PF2Λfiµ

]
, Gfi2 = tr

[
PG2Λfiµ

]
. (4.2)

The explicit derivation of the projection operators PF2 , PG2 can be found in App. C.

From the form factors one can directly calculate the magnetic and electric dipole

moment matrices by taking the limit q2 → 0 according to Eq. (2.23). As in the rest

of this work we use Mathematica Package-X [92] for the analytical computation of

one loop integrals. The result for Dirac neutrinos at first order in the neutrino mass

is

µDfi =
3eGF (mνf +mνi)

16
√

2π2

∑
l=e,µ,τ

f(al)U
∗
lfUli, (4.3)

εDfi =
3ieGF (mνf −mνi)

16
√

2π2

∑
l=e,µ,τ

f(al)U
∗
lfUli, (4.4)

with the loop function

f(al) =
1

2

(
1 +

1

1− al
− 2al

(1− al)2
− 2a2

l lnal
(1− al)3

)
, (4.5)

whereGF =
√

2g2
2/(8M

2
W ) is the Fermi constant, Uli the PMNS matrix and al = (ml/MW )2
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Figure 4.1.: Feynman diagrams contributing to the vertex function Λfiµ .

is the ratio between the charged lepton and the W boson mass.

The diagonal entries of the Dirac electric dipole moments are zero in the SM, while

for the magnetic dipole moment we can use
∑

l U
∗
liUli =

∑
l|Uli|2 = 1 due to the

unitarity of the neutrino mixing matrix. With f(al) ≈ 1 one obtains the well-known

result (e.g. compare to [19–22])

µDii ≈
3eGFmνi

8
√

2π2
≈ 3.2× 10−20µB

( mνi

0.1 eV

)
, (4.6)

which is highly suppressed due to the smallness of the neutrino mass. This prediction

is about nine orders of magnitude below the currently best direct laboratory upper

bound, see Eq. (3.4), even for neutrino masses of mν ∼ 0.2 eV which is just below

current experimental bounds [5].

For the transition dipole moments one can use the unitarity relation
∑

l U
∗
lfUli = 0.

Taking into account the expansion f(al) ≈ 1−al
2 , the leading order is now proportional
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to al

µDfi ≈ −
3eGF (mνf +mνi)

32
√

2π2

∑
l

alU
∗
lfUli ∼ O

(
10−24

)
µB, (4.7)

εDfi ≈ −i
3eGF (mνf −mνi)

32
√

2π2

∑
l

alU
∗
lfUli ∼ O(10−24)µB. (4.8)

Here we have used that the ratio of charged lepton mass to W boson mass is at

most al ≤ aτ = (mτ/MW )2 ≈ 5× 10−4 as well as a neutrino mass of mν ∼ 0.1 eV.

This additional suppression is analogous to the GIM-mechanism, suppressing flavor-

changing neutral currents in hadronic interactions.

As a cross-check we also performed the calculation in unitarity gauge, where only

the diagrams (a) and (e) of Fig. 4.1 contribute. The loop-integrals are the same as in

Eqs. (D.1) and (D.5) with the W boson propagator in Feynman gauge replaced by the

unitarity gauge propagator given in App. A.1. The result agrees with the Feynman

gauge computation.

4.1.2. Majorana neutrinos

Because each Majorana fermion is its own anti-particle, we have to take into account

additional field contractions for the case of Majorana neutrinos. Hence we need to

calculate the extra contributions and add it to those for the Dirac case. A general

treatment, how to compute all relevant Majorana Feynman diagrams is explained

in App. A.3. However, in this case, there is a simple alternative. Given the Dirac

dipole moments of the previous section, we can already read off the NMM matrices

for Majorana neutrinos from the relation of the vertex function in Eq. (2.27). This

equation implies for the electric and magnetic form factors

FMfi
2

iσµνq
ν

(mνf +mνi)
= Ffi2

iσµνq
ν

(mνf +mνi)
+ C

(
F if2

iσµνq
ν

(mνf +mνi)

)T
C−1

=
(
Ffi2 −F if2

) iσµνq
ν

(mνf +mνi)
, (4.9)

GMfi
2

iσµνq
ν

(mνf +mνi)
= Gfi2

iσµνq
ν

(mνf +mνi)
γ5 + C

(
F if2

iσµνq
ν

(mνf +mνi)
γ5

)T
C−1

=
(
Gfi2 − Gif2

) iσµνq
ν

(mνf +mνi)
γ5, (4.10)
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where we have used the defining relation of the charge conjugation matrix C−1γµC = −γTµ
as well as

CσTµνC−1 = −σµν , C(σµνγ5)TC−1 = −σµνγ5. (4.11)

We therefore obtain the Majorana NMM matrices from the simple relation

µMfi = µDfi − µDif , εMfi = εDfi − εDif . (4.12)

Using the result of the previous section one immediately arrives at

µMfi = i
3eGF (mνf +mνi)

8
√

2π2

∑
l

f(al)Im
(
U∗lfUli

)
, (4.13)

εMfi = i
3eGF (mνf −mνi)

8
√

2π2

∑
l

f(al)Re
(
U∗lfUli

)
. (4.14)

As expected for Majorana neutrinos the electric and magnetic moment matrices are

antisymmetric and purely imaginary (see Sec. 2.3). Hence, there exist no diagonal

dipole moments. For the transition moments, i 6= f , one can use the unitarity of the

PMNS matrix as in the Dirac case. At leading order in al = (ml/MW )2 the Majorana

NMM matrices are

µMfi = −i
3eGF (mνf +mνi)

16
√

2π2

∑
l

alIm
(
U∗lfUli

)
, (4.15)

εMfi = −i
3eGF (mνf −mνi)

16
√

2π2

∑
l

alRe
(
U∗lfUli

)
. (4.16)

The Majorana moments are of similar size than the transition magnetic and electric

moments in the Dirac case. However, one can not directly compare them due to the

difference of the PMNS matrix.

As a cross-check we also compute the Majorana contribution by applying the Feyn-

man rules of App. A.3. In doing so, we use the unitarity gauge and find the expressions

for the two additional Majorana loop-integrals, emerging from the Feynman diagrams

depicted in Fig. 4.2. They can be found in Eqs. (D.7) and (D.8) in App. D. The other

two contributing diagrams are those of Fig. 4.1 (a) and (e). The corresponding loop-

integrals are Eqs. (D.1) and (D.5) with the W boson propagator replaced by the one

for unitarity gauge. Summing over those four diagrams and projecting out the form

factors, taking the limit q2 → 0 and expanding in neutrino mass as for the Dirac case,
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we get the same result as via using Eq. (4.12).

νi νfl

WW

A

(a)

νi νfl

W

A

l

(b)

Figure 4.2.: Additional Majorana Feynman diagrams contributing to the vertex func-
tion for Majorana neutrinos ΛMfi

µ . The extra line below the fermion line
indicates the fermion number flow.

4.2. Classification of neutrino magnetic moment couplings

Let us now turn to neutrino magnetic and electric dipole moments beyond the SM.

In order to understand what kind of NMM contributions could exist, a systematic

analysis is presented in this section. We classify the possible generic couplings, that

can lead to NMMs with special interest in avoiding the proportionality to the neutrino

mass, that is responsible for the small SM prediction.

4.2.1. Chirality flip

In this sense it is an important observation that the NMM interaction is chirality

changing, which can be seen by considering the effective electric and magnetic dipole

moment operators as introduced in Eqs. (2.24) and (2.25). The relevant Dirac matri-

ces are σµν and σµνγ5. Sandwiching those between neutrino spinors of same chirality

gives

νL/RσµννL/R = νPR/LσµνPL/Rν = νσµνPR/LPL/Rν = 0, (4.17)

νL/Rσµνγ5νL/R = νPR/Lσµνγ5PL/Rν = νσµνγ5PR/LPL/Rν = 0. (4.18)

Therefore, neutrinos taking part in the NMM interaction need to be of different

chirality. Note that this also holds for Majorana neutrinos, with the definition ν =

νL + νR = νL + νCL . A pictorial way to understand this property is to look at the

Feynman diagram in the basis of chiral fermions, i.e. treating the fermions as massless

with the mass terms of the Lagrangian as two-point interactions. For the generation



4.2. Classification of neutrino magnetic moment couplings 33

of a NMM at one-loop level, one necessarily needs a charged fermion F inside the loop.

Additionally there has to be at least one charged boson field B (scalar or vector) for

closing the loop appropriately. In this picture, the necessary chirality flip implies the

need of a mass insertion either at the internal fermion line or at one of the external

neutrino legs as depicted in Fig. 4.3.

νL νRFL

BB

A

νL

(a)

νL νRFL

BB

A

FR

(b)

Figure 4.3.: Generic NMM Feynman diagrams in the chiral basis, treating fermion
mass contributions as two-point vertices indicated with a cross. Since the
effective NMM operator is chirality flipping, one needs a mass insertion
either at one of the external legs as in (a) or at the internal fermion line,
figure (b). Note that there are additional diagrams with the photon line
attached to the internal fermion.

Following this line of thought, one understands why the SM prediction is propor-

tional to the neutrino mass. Due to the absence of right-handed electroweak charged

current interactions Feynman diagrams of the type in Fig. 4.3 (b) are not present in

the SM. All contributing NMM diagrams include the neutrino mass insertion at one of

the external legs as depicted in Fig. 4.3 (a). Accordingly, the NMM is proportional to

the neutrino mass. Avoiding this proportionality is only possible, when introducing

couplings to both, the left-handed and the right-handed neutrino field simultaneously.

4.2.2. Generic couplings for Dirac neutrinos

As discussed in the previous section, generating a neutrino magnetic moment at one

loop requires at least one charged fermion F plus either a charged scalar S or a

charged vector particle Vµ in the loop. Note that F , due to its charge, has to be a

Dirac fermion with F = FL +FR. For the same reason, S and Vµ have to be complex

fields. We only want to account for renormalizable and Lorentz invariant interactions.

Ignoring the SU(2) structure for the moment, these requirements lead directly to four

different Lorentz invariant generic couplings (and their hermitian conjugates), namely

ν̄LFRS, ν̄RFLS, ν̄LγµFLV
µ, ν̄RγµFRV

µ.
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We assume a right-handed as well as a left-handed coupling simultaneously1. In

this way, one also obtains contributions that avoid the proportionality to the neutrino

mass (see Sec. 4.2.1). We thus start with the following interaction Lagrangian for the

scalar case

Lint, scalar = gij ν̄iPLFjS + hij ν̄iPRFjS + h.c., (4.19)

and for the vector case

Lint, vector = gij ν̄i /V PLFj + hij ν̄i /V PRFj + h.c. (4.20)

Here, we are working in the basis of neutrino mass eigenstates, i.e. the indices i, j refer

to the three neutrino mass states. By assigning such an index also to the fermion, we

assume that it comes with three generations and that there is an implicit sum over i

and j. This is model-dependent and does not necessarily have to be the case. If one

wants to introduce a vector-like fermion with the same coupling to all flavors, one

should drop the index j from the fermion field as well as from the coupling matrices

gij , hij .

The computation of the electric and magnetic moment matrices is performed as for

the SM calculation of Sec. 4.1.1. The photon couplings are assumed to be the same as

in the SM. Note that this could in principle be a restriction to the model-independent

generic case, especially for the vector-photon coupling. For the application to models

with an enlarged gauge-sector, one therefore has to make sure to use the correct

gauge-invariant Feynman rules. In the following we use the unitarity gauge. For the

calculation with scalar couplings, the Feynman diagrams are essentially the same as

in Fig. 4.1 (d), (f), when exchanging the Goldstone boson and the charged lepton by

the generic scalar and fermion. They lead to the loop integrals in Eqs. (D.9), (D.10)

in App. D. For the vector couplings, the Feynman diagrams are analogous to to those

in Fig. 4.1 (a), (e) and lead to the loop integrals in Eqs. (D.11), (D.12). Note that the

charges of the scalar/vector and fermion have to fulfill QF = −QV/S due to charge

conservation. The electric and magnetic dipole moment matrices are obtained via

summing over the loop integrals Da +Db, performing the integration, projecting out

the corresponding form factors, taking the limit q2 → 0 and finally expanding up to

first order in neutrino mass, analogous to Sec. 4.1.1. The resulting NMM matrices

are summarized in Sec. 4.2.4.

1This assumption can later simply be dropped by sending the left- or right-handed coupling to zero
in the final result.



4.2. Classification of neutrino magnetic moment couplings 35

4.2.3. Generic couplings for Majorana neutrinos

For completeness we also derive the NMM matrices in the case of Majorana neutrinos.

The discussion for Dirac neutrinos in the previous section also apply to this case where

the right-handed neutrino given by the charge conjugated field νR = PRν = νcL.

The difference for Majorana neutrinos is that we now need to include additional

contributions. As for the SM calculation, those can be obtained using the Majorana

Feynman rules of App. A.3. For the calculation of the NMM with vector particles the

contributing diagrams are the same as in Fig. 4.2 with the internal particles exchanged

by the generic vector and fermion. For the scalar case, one also has to exchange the

vector boson line with the one for a scalar particle.

Applying the Feynman rules for the generic scalar and vector couplings then lead

to the loop integrals depicted in Eqs. (D.13)-(D.16) in App. D.

The NMM matrices for Majorana neutrinos are obtained in the same way as for

Dirac neutrinos, but now summing over the two Majorana and Dirac loop integrals

Da+Db+DM
a +DM

b . Applying the computation procedure described in the previous

section we arrive at the electric and magnetic moment matrices as summarized in

Sec. 4.2.4. As a cross-check we derive the Majorana NMM matrices also from the

relation derived in Eq. (4.12). We arrive at the same results.

4.2.4. Results and discussion

Tab. 4.1 contains the list of electric and magnetic dipole moment matrices obtained

from the generic model-independent couplings, as introduced in the previous sections.

The results contain the NMM contributions generated by scalar as well as vector

couplings, for Dirac as well as Majorana neutrinos and categorize the contributions

according to their power in neutrino mass. For better readability, the full mass

dependence is hidden in the loop functions f
S/V
0/1 that we define for the scalar and

vector case and for the zeroth and first order in neutrino mass, respectively. The

normalization is chosen such that they equal to one, if the masses of the particles

running in the loop are of same size. The loop functions depend only on the mass
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ratio al = mFl/mS or al = mFl/mV , respectively, and are given by

fS0 (a) = 2a

(
1

a2 − 1
− log a2

(a2 − 1)2

)
, (4.21)

fS1 (a) = 3

(
1

a2 − 1
+

2

(a2 − 1)2
− 2a2 log a2

(a2 − 1)3

)
, (4.22)

fV0 (a) =
2a

5

(
1− 3

a2 − 1
+

3a2 log a2

(a2 − 1)2

)
, (4.23)

fV1 (a) =
3

5

(
1− 1

a2 − 1
− 2a2

(a2 − 1)2
+

2a4 log a2

(a2 − 1)3

)
. (4.24)

O(m0
ν) O(m1

ν)

sc
al

ar

µDfi = − eQS
64π2mS

(gflh
∗
il + g∗ilhfl)f

S
0 (al) − eQS(mνf+mνi )

384π2m2
S

(gflg
∗
il + hflh

∗
il)f

S
1 (al)

εDfi = −i eQS
64π2mS

(gflh
∗
il − g∗ilhfl)fS0 (al) +i

eQS(mνf−mνi )
384π2m2

S
(gflg

∗
il − hflh∗il)fS1 (al)

µMfi = −i eQS
32π2mS

Im[gflh
∗
il + g∗ilhfl]f

S
0 (al) −i eQS(mνf+mνi )

192π2m2
S

Im[gflg
∗
il + hflh

∗
il]f

S
1 (al)

εMfi = −i eQS
32π2mS

Re[gflh
∗
il − g∗ilhfl]fS0 (al) +i

eQS(mνf−mνi )
192π2m2

S
Re[gflg

∗
il − hflh∗il]fS1 (al)

ve
ct

or

µDfi = − 5eQV
64π2mV

(gflh
∗
il + g∗ilhfl)f

V
0 (al) +

5eQV (mνf+mνi )

128π2m2
V

(gflg
∗
il + hflh

∗
il)f

V
1 (al)

εDfi = +i 5eQV
64π2mV

(gflh
∗
il − g∗ilhfl)fV0 (al) +i

5eQV (mνf−mνi )
128π2m2

V
(gflg

∗
il − hflh∗il)fV1 (al)

µMfi = −i 5eQV
32π2mV

Im[gflh
∗
il + g∗ilhfl]f

V
0 (al) +i

5eQV (mνf+mνi )

64π2m2
V

Im[gflg
∗
il + hflh

∗
il]f

V
1 (al)

εMfi = +i 5eQV
32π2mV

Re[gflh
∗
il − g∗ilhfl]fV0 (al) +i

5eQV (mνf−mνi )
64π2m2

V
Re[gflg

∗
il − hflh∗il]fV1 (al)

Table 4.1.: Neutrino electric and magnetic dipole moment matrices for generic scalar
and vector couplings up to first order in neutrino mass.

From Tab. 4.1, one can see that the NMM matrices at zeroth order in neutrino

mass are only non-zero if both, the left- and right-handed couplings are present. For

either g = 0 or h = 0, the NMM is suppressed because of the proportionality to the

neutrino mass as in the SM. This is due to the fact, that the NMM operator is chirality

changing as discussed in Sec. 4.2.1. Accordingly, for h = 0, the O(m1
ν) calculation

reproduces the SM result, compare to Eqs. (4.3), (4.4) and (4.13), (4.14). The second

observation is that all of the matrices are hermitian and those for Majorana neutrinos

are antisymmetric and purely imaginary as expected, see Sec. 2.3.

Let us now turn to the mass dependence. Fig. 4.4 shows the loop functions from

Eqs. (4.21)-(4.24) plotted against the fermion to scalar and fermion to vector mass



4.2. Classification of neutrino magnetic moment couplings 37

0.001 0.010 0.100 1 10 100
0

1

2

3

4

5

a=
mF

mS/V

f
(a
)

f0
S

f1
S

f0
V

f1
V

Figure 4.4.: Loop functions of the NMMs for generic scalar (blue) and vector (red)
couplings. The solid lines correspond to the contribution proportional
to the neutrino mass, while dotted lines are obtained from zeroth order
in mν , present only if a right- and left-handed coupling to the neutrino
exists.

ratio respectively. We have seen that all diagrams contributing to the the zeroth

order in neutrino mass (solid lines in Fig. 4.4) contain a mass insertion of the internal

fermion. Therefore in the limit mF → 0, the NMMs goes to zero as well, while for

the first order in mν (dotted lines in Fig. 4.4) it stays finite.

At the first look, the asymptotic behavior for large fermion mass is surprising,

because the loop function for the vector coupling is divergent for large mass ratios a

(red solid line in Fig. 4.4). Usually one would expect a decoupling, when sending the

mass of an particle inside the loop to infinity. However, in a gauge-invariant theory,

a coupling of ν and F to the same gauge boson implies that they have to be in the

same multiplet. Hence, the non-decoupling of the O(m0
ν) NMM contribution indicates

that in a gauge-invariant theory, one can not simply send mF → ∞ independently

of the neutrino mass. Note that in our computation procedure, when evaluating the

loop integrals we expand in neutrino mass to lowest order. Therefore, the appearent

non-decoupling in the mF →∞ limit is unphysical.

Expanding the loop functions from Eqs. (4.21)-(4.24) in the limit of large scalar or
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vector mass for finite mF , the scalar and vector particles decouple and the NMMs

goes to zero as expected.

So far we only investigated generic scalar and vector couplings that are renormal-

izable, i.e. of dimension four, and Lorentz invariant. We did not consider the SU(2)L

structure yet. Starting with the SM doublet L = (νL, eL)T with isospin I = 1/2, we

are interested in possible couplings to two additional SU(2) multiplets M1 and M2.

Without loss of generality let M1 be the higher n-plet. The possible gauge invariant

combinations are then given by Tab. 4.2. Note that a SU(2)L n-plet has isospin

(n− 1)/2.

M1 M2

I = 1/2 I = 0
I = 1 I = 1/2
I = 3/2 I = 1
I = 2 I = 3/2
. . . . . .
I = (n− 1)/2 I = (n− 2)/2

Table 4.2.: Possible SU(2) multiplet combinations coupling to a doublet.

One of the multiplets M1, M2 has to be the fermion and the other one a scalar

or vector. We thus can use the previous results and account for gauge invariance

by using Tab. 4.2 as well as the requirement of conserved hypercharge, i.e. summing

over the hypercharges of the combinations of L, M1, M2 have to give zero. According

to the Gell-Mann-Nishijima formula (first given in Ref. [93]), the electric charge is

then given by the sum of the hypercharge and the third component of the isospin

Q = I3 + Y . In this way the formulas of Tab. 4.1 together with the requirement of

gauge invariance categorize all possible NMM contributions at one loop level.

The most important observation in this analysis is that the smallness of the NMM

is a generic feature, in the sense that the NMM (generated at one loop level) will

always be proportional to the neutrino mass, unless there exists a diagram like in

Fig. 4.3 with a mass insertion of the internal fermion. In order to generate such a

NMM contribution one is forced to introduce a charged Dirac fermion with couplings

to both, the left- and right-handed neutrino field. In addition, for being able to close

the NMM diagram at one loop level, the third particle (scalar or vector) needs to be

part of both couplings.

In the following, we want to study the simplest scenarios beyond the SM that in-

corporate this idea. Simple in this context means that we introduce a number of
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new particles as low as possible and preferable lower SU(2)L multiplets. Restricting

ourself to singlet and doublet particles we are left with the following four possibilities2

for the coupling to the SM doublet L with isospin I = 1/2 and hypercharge Y = −1/2

(in our notation convention L(1/2,−1/2)):

1) scalar S(0, YS), fermion FL(1/2, 1/2− YS): L ⊃ gLciσ2FLS + h.c.

2) scalar S(1/2, YS), fermion FR(0,−YS − 1/2): L ⊃ gLSFR + h.c.

3) vector V (0, YV ), fermion FL(1/2,−YV − 1/2): L ⊃ gL/V FL + h.c.

4) vector V (1/2, YV ), fermion FR(0, 1/2− YV ): L ⊃ gLciσ2 /V FR + h.c.

Here, σ2 is the second Pauli matrix, acting in the SU(2)-space. In all of these cases,

a second coupling with the right-handed neutrino and the right- or left-handed coun-

terpart of the charged Dirac fermion is required. Otherwise the generated NMM

matrices would still be suppressed by the proportionality to mν as in the SM. This

leads us directly to the following additional couplings to the right-handed neutrino (a

total singlet in the SM νR(0, 0)) and requires the introduction of one extra fermion

field for each of the four possibilites.

1) fermion FR(0,−YS): L ⊃ hνRFRS + h.c.

2) fermion FL(1/2, YS): L ⊃ hνRS†FL + h.c.

3) fermion FR(0,−YV ): L ⊃ hνR /V FR + h.c.

4) fermion FL(1/2,−YV ): L ⊃ hνR /V FL + h.c.

One other essential ingredient is the mass term of the Dirac fermion which can be

introduced by a Higgs mechanism as in the SM. For example in the first case, the

mass is generated with the help of the SM Higgs H via the Yukawa term FLHFR.

At this point we are able to see that the simplest model generating a sizable NMM

(not suppressed by mν) is obtained by adding a scalar singlet (couplings 1)) with

hypercharge 1, because we then already have all required coupling terms without

adding additional particles. The role of the fermion doublet is played by the SM

doublet FL = L and the singlet by the SM right-handed charged leptons FR = lR.

We consider this model in Sec. 4.3 in more detail.

The other interesting – and in a model building perspective appealing – possibility

2Note that we use the convention to write all fermion singlet fields as right-handed.
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is to use the SM W boson with couplings of the type 4) in the well-known left-right-

symmetric model, which is discussed in more detail in Sec. 4.4.

4.3. Neutrino magnetic moment with a charged scalar

The probably simplest model generating large NMM is the one proposed by Fukugita

and Yanagida in Refs. [32,94]. It was originally introduced in order to have magnetic

moments of the size (10−10 − 10−11)µB in the context of the solar neutrino problem.

As indicated in the previous section, introducing a singly charged scalar singlet S+

with hypercharge +1 leads to the interaction Lagrangian

Lint = gijνRil
c
RjS

− +
1

2
h′ijLiiσ2L

c
jS
− + h.c.

= gijνiPLl
c
jS
− + hijνiPRl

c
jS
− + h.c., (4.25)

where hij is the antisymmetric part of h′ij and we have used the relation

1

2
h′ijLiiσ2L

c
j =

1

2
h′ij(νLil

c
Lj − lLiνcLj) =

1

2
h′ij(νLil

c
Lj − νLjlcLi)

=
1

2
(h′ij − h′ji)νLilcLj = hijνLil

c
Lj = hijνiPRl

c
j . (4.26)

In order to apply the result of our computation of the NMM for the generic La-

grangian, Eq. (4.19), we identify F = lc and QS = −1. For the contraction of two

charge conjugated fermion fields one finds

ψc(x)ψc(y) = 〈0| T ψc(x)ψc(y) |0〉 = −C 〈0| T ψT (x)ψT (y) |0〉C−1

= −C 〈0| T ψT (x)ψT (y) |0〉C−1 = C
[
〈0| T ψ(y)ψ(x) |0〉

]T
C−1

= C

[
ψ(y)ψ(x)

]T
C−1 =

∫
d3p

(2π)32Ep
C(/p

T +m)C−1e−ip(y−x)

=

∫
d3p

(2π)32Ep
(−/p+m)e−ip(y−x)

=

∫
d3p

(2π)32Ep
(/p+m)e−ip(x−y) = ψ(x)ψ(y), (4.27)



4.3. Neutrino magnetic moment with a charged scalar 41

which implies that it leads to the usual fermion propagator. Thus, we are now able

to read off of Tab. 4.1 the NMM for this model for Dirac neutrinos

µfi =
e

64π2mS
(gflh

∗
il + g∗ilhfl)f

s
0 (al), (4.28)

εfi = i
e

64π2mS
(gflh

∗
il − g∗ilhfl)fs0 (al). (4.29)

Given the interaction Lagrangian, we can read off of Tab. 4.1 the NMM generated by

diagrams of the type (d) and (f) of Fig. 4.1. Expanding the loop function fs0 (al) to

leading order in al = ml/mS we reproduce the result of Refs. [32, 94]

µfi = −e ml

32π2m2
S

(gflh
∗
il + g∗ilhfl)

(
1 + log

m2
l

m2
S

)
, (4.30)

εfi = −ie ml

32π2m2
S

(gflh
∗
il − g∗ilhfl)

(
1 + log

m2
l

m2
S

)
. (4.31)

At this point it is important to mention that for such a charged scalar singlet, there

are a variety of phenomenological constraints coming from processes like µ → eγ,

contribution to g − 2 of leptons, anomalous tauon and muon decay and constraints

from primordial nucleosythesis. A detailed discussion about those can be found in

Ref. [32].

Instead of introducing a scalar singlet, one could think of generating the NMM with

a scalar doublet, which would correspond to the second possibility in the catalog at

the end of Sec. 4.2.4. However, the phenomenology of a doublet would imply even

stronger experimental constraints. For example, the neutral component of the doublet

would also couple to quarks in a way that is in conflict with experimental results on

the K0
s -K0

L mass difference. Model variants using a scalar doublet instead of the

singlet are thus stronger constrained and for the purpose of generating large NMMs

it is therefore necessary to further extend such models [94].

To conclude, we want to point out that the key problem in this simple model is

the radiative neutrino mass correction, introduced by the NMM Feynman diagram

with the photon line removed. In order to obtain a small and finite neutrino mass

one has to introduce a fine-tuned counter term in the Lagrangian that cancels the

logarithmically divergent mass term as well as reproduce the right order of magnitude

for the neutrino mass. We turn to the discussion about this fine-tuning problem in

detail in Chap. 6, where we present variants of this model that successfully avoid the

fine-tuning, while still being consistent with experimental constraints and simultane-

ously leading to observable (i.e. large enough) NMMs. In the simple and minimal
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framework as presented in this section, however, one could generate sizable NMMs

only when allowing for fine-tuning in the neutrino masses.

4.4. Neutrino magnetic moment in the left-right symmetric

model

In the following, we compute the NMMs in the framework of the left-right symmetric

model, where we cross-check some of the intermediate expressions with Refs. [95,

96]. Although there are already NMM predictions for left-right symmetric models in

literature, see e.g. Ref [97], we redo the whole NMM calculation, because we could

not find an exact analytic expression for the loop function (at zeroth order in mν) in

the literature. Deriving this expression is in our interest in order to verify the results

for the generic vector couplings in an explicit model3. The calculation of this section

verifies our results of Sec. 4.2.4 and thus proofs the applicability of our generic ansatz

of Sec. 4.2.2 even in a complete and gauge-invariant theory.

4.4.1. Framework of the left-right symmetric model

The left-right symmetric model was originally proposed in the mid 1970s [99–102].

The basic idea is that at high energies the electroweak interaction Lagrangian is

invariant under parity transformations, according to the symmetry group SU(2)L ⊗
SU(2)R ⊗ U(1)′. Then after spontaneous symmetry breaking by a non-zero vacuum

expectation value above the electroweak scale, the SM symmetry group SU(2)L ⊗
U(1)Y is recovered.

There are several physical arguments in favor of the left-right symmetric model

besides the restoration of parity at high scales. First of all, it naturally generates

neutrino masses and can explain its smallness via the seesaw mechanism (compare

to Sec. 2.1). Second, it provides a solution to the strong CP problem, which is a

fine-tuning problem in quantum chromodynamics. There the Lagrangian contains

the CP-violating term

L = θ
1

16π2
F aµνF̃

µνa (4.32)

3There we found, that in the limit of large internal fermion mass, the loop function goes to infinity.
Naively one might think that it is a violation of the decoupling theorem [98], which is not the
case as indicated in Sec. 4.2.4. We explain this asymptotic behavior by the observation that the
neutrino and the second fermion in the NMM interaction have to be in the same multiplet, i.e. one
can not take the limit mF → ∞ while expanding to lowest order in mν simultaneously.
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which is experimentally strongly constrained by the measurement of the neutron

electric dipole moment, leading to θ � 10−9. The smallness of this θ-parameter is

referred to as the strong CP-problem. Since in the left-right symmetric model, the

Lagrangian can be constructed such that it respects parity, the operator in Eq. (4.32)

is forbidden and the strong CP problem is solved. See also for example Ref. [103] for

more details about the strong CP problem. Finally, the left-right symmetric model

offers an easy opportunity for grand unification into SO(10) [104].

We start by extending the SM with an additional SU(2)R symmetry such that L be-

comes symmetric under the exchange of SU(2)R and SU(2)L. We work in the frame-

work of manifest left-right symmetry, i.e. the associated coupling constants satisfy

g = gL = gR. In the scalar sector, the SM Higgs is replaced by one scalar bidoublet φ

and two scalar triplets ∆L,R. Starting with the gauge group SU(2)L⊗SU(2)R⊗U(1)′,

there are now two stages of symmetry breaking. While the vacuum expectation value

of ∆L can be chosen to be zero, the one of ∆R is non-zero and thus responsible for

the spontaneous breaking to the SM gauge group. This could also be done by scalar

doublets instead. However, this possibility is less popular since it does not allow ex-

plaining small neutrino masses via the seesaw mechanism. In the second stage, the

bidoublet φ acquires a vacuum expectation value, so that at low energies the SM phe-

nomenology is restored. It is also responsible for connecting left- and right-handed

fields, allowing for Dirac type fermion masses. The components of the scalar particles

are given by

φ =

(
φ0

1 φ+
1

φ−2 φ0
2

)
, ∆L,R =

(
δ+
L,R/
√

2 δ++
L,R

δ0
L,R −δ+

L,R/
√

2

)
, (4.33)

with the vacuum expectation values

〈φ〉 =
1√
2

(
κ1 0

0 κ2

)
, 〈∆L,R〉 =

1√
2

(
0 0

vL,R 0

)
. (4.34)

4.4.2. Lepton masses

The left-right symmetry requires the right-handed leptons to form a SU(2)R doublet.

For that reason, one needs the bidoublet φ (doublet under both SU(2)L and SU(2)R)

to take over the role of the SM Higgs. The scalar triplets also contribute and are

responsible for the Majorana neutrino masses so that the leptonic Yukawa couplings
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are given by

LY = fψ̄LφψR + hψ̄Lφ̃ψR + hM
(
ψ̄cL(iτ2)∆LψL + ψ̄cR(iτ2)∆RψR

)
+ h.c., (4.35)

where ψL and ψR refer to the left- and right-handed lepton doublets, f , h, and hM

are the coupling constants and φ̃ = σ2φ
∗σ2 with the second Pauli matrix σ2. After

spontaneous symmetry breaking via Eq. (4.34) we obtain

LY ⊃
fκ1 + hκ∗2√

2
ν̄LνR +

hMvL√
2
ν̄cLνL +

hMvR√
2
ν̄cRνR +

fκ2 + hκ∗1√
2

ēLeR. (4.36)

The computation of the NMMs for Majorana neutrinos is very similar and can easily

be derived from the Dirac case as we have seen in Sec. 4.1.2. Therefore, we assume

for now that we have only Dirac-type masses, i.e. put hM = 0 for simplicity. Then,

for one lepton generation, the neutrino and electron masses are given by

mν = −fκ1 + hκ∗2√
2

, me = −fκ2 + hκ∗1√
2

. (4.37)

4.4.3. Gauge boson mass

The gauge boson masses are derived from the scalar gauge kinetic term, when in-

serting the vacuum expectation values that φ, ∆R and ∆L acquire after spontaneous

symmetry breaking. It is given by

Lscalar, kin. = tr
[
(Dµφ)†Dµφ

]
+ tr

[
(Dµ∆L)†Dµ∆L

]
+ tr

[
(Dµ∆R)†Dµ∆R

]
, (4.38)

with the covariant derivatives

Dµφ = ∂µφ+ igWLµφ− igφWRµ, (4.39)

Dµ∆L = ∂µ∆L + ig [WLµ,∆L] + ig′B′µ∆L, (4.40)

Dµ∆R = ∂µ∆R + ig [WRµ,∆R] + ig′B′µ∆R. (4.41)

Using Eq. (4.34) we obtain the gauge boson mass terms

Lscalar, kin. ⊃
g2

2

(
W−Lµ W−Rµ

)
Mcharged

(
W+µ
L W+µ

R

)

+
1

2

(
B′µ WL3µ WR3µ

)
Mneutral

B′µ

Wµ
L3

Wµ
R3

 , (4.42)
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with the matrices

Mneutral =


g′2
(
|vL|2 + |vR|2

)
−gg′|vL|2 −gg′|vR|2

−gg′|vL|2 g2
(
|vL|2 +

|κ|21+|κ2|2
4

)
−g2 |κ|21+|κ2|2

4

−gg′|vR|2 −g2 |κ|21+|κ2|2
4 g2

(
|vR|2 +

|κ|21+|κ2|2
4

)
 ,

Mcharged =

(
|vL|2 +

|κ|21+|κ2|2
2 −κ1κ

∗
2

−κ2κ
∗
1 |vR|2 +

|κ|21+|κ2|2
2

)
. (4.43)

Diagonalization of Mcharged results in a heavy and light eigenstate. The latter has

to reproduce the phenomenology of the SM WL gauge boson, while the former has to

be heavy due to experimental constraints. Their masses are

M2
Wh,l

=
g2

4

(
|vL|2 + |vR|2 + |κ|21 + |κ2|2 ±

√
(|vL|2 − |vR|2)2 + 4|κ1κ2|2

)
, (4.44)

and in the limit |vR| � |vL|, |κ|1, |κ2|

M2
Wh

= g2/2|vR|2, (4.45)

M2
Wl

= g2/4
(
|vL|2 + |κ|21 + |κ2|2

)
. (4.46)

The corresponding mass eigenstates, expanded in |vR|−1 are given by

Wµ
h = Wµ

R −
κ∗1κ2

|vR|2
Wµ
L +O(|vR|−4), (4.47)

Wµ
l =

κ∗1κ2

|κ1κ2|
Wµ
L +
|κ1κ2|
|vR|2

Wµ
R +O(|vR|−4). (4.48)

Similar for the neutral masses one finds by diagonalizing the mass matrix in Eq. (4.42)

M2
A = 0 (4.49)

M2
Z =

g2(g2 + 2g′2)

4(g2 + g′2)

(
4|vL|2 + |κ|21 + |κ2|2

)
+O(|vR|−2) (4.50)

M2
Z′ = (g2 + g′2)|vR|2 +O(|vR|0). (4.51)

So far, we worked with, in general, complex vacuum expectation values. However, one

has the freedom to use SU(2)R and SU(2)L rotations in order to remove two phases

as will be explained in the next section. The computation of the corresponding
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eigenstates in the limit of real-valued vacuum expectation values and vL → 0 gives

B =
glA

g′
√

2 + g2

g′2

− gg′Z√
(g2 + g′2) (g2 + 2g′2)

− Z ′√
1 + g2

g′2

+O(
1

v2
R

), (4.52)

WL3 =
A√

2 + g2

g′2

− g2 + g′2Z√
g4 + 3g2g′2 + 2g′4

+O(
1

v2
R

), (4.53)

WR3 =
A√

2 + g2

g′2

+
Z√

g4

g′4 + 3g2

g′2 + 2
+

Z ′√
1 + g′2

g2

+O(
1

v2
R

). (4.54)

In order to derive the Feynman rules which are relevant to compute the NMM

contribution, one has to find the full basis transformation matrices between the mass

and flavor eigenstates. We did this in an exact (i.e. without expanding in v−1
R ) analytic

way with the help of Mathematica. For the derivation of Eqs. (4.73), we used these

exact transformation where in the final step, we again made the expansion in v−1
R .

4.4.4. Scalar potential

The scalar potential contains all possible combinations of the scalar fields up to di-

mension four that are allowed by the requirement of left-right symmetry, i.e.

ψL ←→ eθ1ψR, ∆L ←→ eθ2∆R, φ←→ eθ3φ†. (4.55)

In order to simplify the discussion, the phases θi could be rotated away by global

phase transformations of the scalar fields. The most general scalar potential is then

given by [96]

V = α1tr
[
φφ†
] (

tr
[
∆L∆†L

]
+ tr

[
∆R∆†R

])
+ α2

(
tr
[
∆L∆†L

]
tr
[
φ†φ′

]
+ tr

[
∆R∆†R

]
tr
[
φφ′†

])
+ α∗2

(
tr
[
∆L∆†L

]
tr
[
φ′†φ

]
+ tr

[
∆R∆†R

]
tr
[
φ†φ′

])
+ α3

(
tr
[
φφ†∆L∆†L

]
+ tr

[
φ†φ∆R∆†R

])
+ β1

(
tr
[
φ∆Rφ

†∆†L
]

+ tr
[
φ†∆Lφ∆†R

])
+ β2

(
tr
[
φ′∆Rφ

†∆†L
]

+ tr
[
φ′†∆Lφ∆†R

])
+ β3

(
tr
[
φ∆Rφ

′†∆†L
]

+ tr
[
φ†∆Lφ

′∆†R
])
− µ1

2tr
[
φ†φ
]
− µ2

2
(

tr
[
φ′φ†

]
+ tr

[
φ′†φ

])
− µ3

2
(

tr
[
∆L∆†L

]
+ tr

[
∆R∆†R

])
+ λ1tr

[
φφ†
]2

+ λ2

(
tr
[
φ′φ†

]2
+ tr

[
φ′†φ

]2)
+ λ3tr

[
φ′φ†

]
tr
[
φ′†φ

]
+ λ4tr

[
φφ†
] (

tr
[
φ′φ†

]
+ tr

[
φ′†φ

])
+ ρ1

(
tr
[
∆L∆†L

]2
+ tr

[
∆R∆†R

]2)
+ ρ2

(
tr[∆L∆L]tr

[
∆†L∆†L

]
+ tr[∆R∆R]tr

[
∆†R∆R

†])+ ρ3tr
[
∆L∆†L

]
tr
[
∆R∆†R

]
+ ρ4

(
tr[∆R∆R]tr

[
∆†L∆†L

]
+ tr[∆L∆L]tr

[
∆R
†∆†R

])
, (4.56)
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where now all of the parameters except for α2 are real-valued. Let us furthermore

assume for simplicity that there is no explicit CP-violation in the scalar potential

(α2 > 0). In this case there exist arguments that also all the vacuum expectation

values vL, vR, κ1, κ2 will be real as well [96]. The next step is to enforce the correct

minimum of the scalar potential. In doing so, we set ∂V
∂vR

= ∂V
∂vL

= ∂V
∂κ1

= ∂V
∂κ2

= 0 and

find

µ2
1 =

[
2λ1κ

4
1 + 4κ3

1κ2λ4 + α1κ
2
1

(
v2
L + v2

R

)
− 2κ1

(
2κ3

2λ4 + β1κ2vLvR
)

− 2λ1κ
4
2 − κ2

2

(
(α1 + α3)

(
v2
L + v2

R

)
+ 4β3vLvR

)
+ 2v2

Lv
2
R(2ρ1 − ρ3)

]
/
[
2(κ1 − κ2)(κ1 + κ2)

]
, (4.57)

µ2
2 =

[
2κ5

1λ4 + 4κ4
1κ2(2λ2 + λ3) + κ3

1

(
2α2

(
v2
L + v2

R

)
+ β1vLvR

)
+ κ2

1κ2

(
−4κ2

2(2λ2 + λ3) + α3

(
v2
L + v2

R

)
+ 2β3vLvR

)
+ κ1κ

2
2

(
−2κ2

2λ4 − 2α2

(
v2
L + v2

R

)
+ β1vLvR

)
+ 2κ2vLvR

(
β3κ

2
2 + vLvR(ρ3 − 2ρ1)

) ]
/
[
4κ1(κ1 − κ2)(κ1 + κ2)

]
, (4.58)

µ2
3 =

(
α1κ

2
1 + 4α2κ1κ2 + κ2

2(α1 + α3) + 2ρ1

(
v2
L + v2

R

))
/2, (4.59)

β2 = −
(
β1κ1κ2 + β3κ

2
2 + vLvR(ρ3 − 2ρ1)

)
/κ2

1. (4.60)

4.4.5. Gauge fixing

With the work of the previous section, we can now further investigate the scalar

sector. For a correct gauge-invariant calculation, we have to introduce a gauge fixing

term and in a second step compute the resulting Goldstone boson mass. The scalar

kinetic term, Eq. (4.38), contains the pure kinetic part, the gauge boson mass, the

three- and four-point interaction terms of the form ‘Wφφ’, ‘WWφφ’, ‘WWφ’, ‘W∆∆’,

‘WW∆∆’, ‘WW∆’ as well as the following mass/kinetic mixing term which has to

be cancel by the gauge-fixing term

Lscalar, kin. ⊃ Lm/k = tr
[
(∂µφ)†Wµ 〈φ〉+ (Wµ 〈φ〉)†∂µφ

]
+
∑

A=L,R

tr
[
(∂µ∆A)†Wµ∆A + (Wµ∆A)†∂µ∆A

]
. (4.61)

For notational simplicity we have used the abbreviations

Wµ 〈φ〉 ≡ ig
(
Wµ
L 〈φ〉 − 〈φ〉W

µ
R

)
, (4.62)

Wµ 〈∆A〉 ≡ ig [WAµ, 〈∆A〉] + ig′B′µ 〈∆A〉 . (4.63)
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With the SU(2) generators T a = σa/2 and the Pauli matrices σa, we obtain

Lm/k = itr
[
gW a

Lµ∂
µG(1)a + gW a

Rµ∂
µG(2)a + g′B′µ∂

µG(3)
]

(4.64)

with

∂µG(1)a = (∂µφ)†T a 〈φ〉 − 〈φ〉† T a∂µφ+ (∂µ∆L)† [T a, 〈∆L〉]− [T a, 〈∆L〉]† ∂µ∆L,

∂µG(2)a = T a 〈φ〉† ∂µφ− (∂µφ)† 〈φ〉T a + (∂µ∆R)† [T a, 〈∆R〉]− [T a, 〈∆R〉]† ∂µ∆R,

∂µG(3) = (∂µ∆L)† 〈∆L〉 − 〈∆L〉† ∂µ∆L + (∂µ∆R)† 〈∆R〉 − 〈∆R〉† ∂µ∆R.

A convenient way is to use the class of Rξ-gauges as described for example in Ref. [35].

In order to cancel Lm/k we thus add to our Lagrangian the gauge fixing term

Lg.f. = − 1

2ξ

{(
∂µW

aµ
L − igξtr[G(1)a]

)2
+
(
∂µW

aµ
R − igξtr[G(2)a]

)2

+
(
∂µB

′µ − ig′ξtr[G(3)]
)2
}

. (4.65)

Multiplying out the square brackets results in three different terms, being proportional

to ξ−1, ξ0 and ξ1 respectively. The term independent of ξ cancels exactly with Lm/k,
while the term proportional to ξ−1 contributes to the kinetic terms and modifies the

propagator accordingly. The remaining one results in

L ⊃ ξ

2

(
g2tr[G(1)a]2 + g2tr[G(2)a]2 + g′2tr[G(3)]2

)
(4.66)

and is responsible for the Goldstone boson mass. Choosing ξ = 1 corresponds to

Feynman gauge. With this choice the boson propagator takes the simple form of the

well-known Feynman propagator −igµν
p2−m2+iε

and the Goldstone bosons have exactly the

same mass as their associated gauge boson. Choosing instead ξ → ∞ corresponds

to unitarity gauge. In this limit the Goldstone bosons decouple and the propagator

becomes −i
p2−m2+iε

(gµν − pµpν

m2 ).

4.4.6. Goldstone boson mass

For the purpose of calculating the neutrino magnetic moment in Rξ-gauge, we need

to know the decomposition of the Goldstone fields. Once we have diagonalized the

Goldstone mass matrix and identified its eigenvectors, we can find all resulting inter-

actions and are finally able to derive the required Feynman rules. The mass matrix
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of the Goldstone bosons G±lµ and G±hµ associated with the light and heavy charged

gauge boson fields W±lµ and W±hµ is fully contained in the gauge fixing Lagrangian

Lg.f.. Since the masses of the Goldstones depend on the gauge choice, there can not

be any mass contribution arising from the scalar potential. Still, we compute the

singly charged scalar mass contributions from the scalar potential. When evaluated

in the basis of mass eigenstates (G±lµ, G±hµ), there should be no additional mass con-

tribution which can be used as a consistency check for the correct diagonalization

procedure.

Starting from Lg.f. and throwing away any term containing a neutral or doubly

charged scalar field, we find

Lg.f. ⊃ −
1

4
g2


φ+

1

φ+
2

δ+
L

δ+
R


T 

κ2
1 + κ2

2 −2κ1κ2

√
2κ2vL −

√
2κ1vR

−2κ1κ2 κ2
1 + κ2

2 −
√

2κ1vL
√

2κ2vR√
2κ2vL −

√
2κ1vL 2v2

L 0

−
√

2κ1vR
√

2κ2vR 0 2v2
R



φ−1
φ−2
δ−L
δ−R

 .

(4.67)

Diagonalization of the matrix in the limit of vanishing vL gives the mass eigenstates

G±h =

(
1− 1

4

κ2
1 + κ2

2

v2
R

)
δ±R −

κ1√
2vR

φ±1 +
κ2√
2vR

φ±2 +O(v−3
R ) (4.68)

G±l =
|κ2

1 − κ2
2|√

κ2
1 + κ2

2

1√
2vR

δ±R + sign(κ2
1 − κ2

2)
κ1φ

±
1 + κ2φ

±
2√

κ2
1 + κ2

2

×

×
(

1− 1

4

(κ2
1 − κ2

2)2

κ2
1 + κ2

2

1

v2
R

)
+O(v−3

R ) (4.69)

with the correct masses, i.e. the same as the corresponding charged gauge bosons. As

a consistency check, we also perform the diagonalization of the singly charged scalar

mass matrix which arises as a consequence of the scalar potential,

L ⊃ −1

2

∑
scalars si,sj

(
∂

∂sj

∂

∂si
V

)∣∣∣∣
s=〈s〉

, (4.70)

and find that it contains no contribution to the unphysical Goldstone boson masses

G±hµ, G±lµ as expected.
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4.4.7. Neutrino magnetic moment couplings

With the effort of the previous sections, we are able to extract the NMM-relevant

couplings. Investigating the scalar gauge kinetic term, Eq. (4.38), one finds the cou-

pling term of the form ‘φφW ’. Evaluating in the basis of mass eigenstates, after

spontaneous symmetry breaking and with the identification

e =
g√

2 + g2/g′2
, (4.71)

we recover the interaction term of a photon with two charged Goldstone bosons

which corresponds to the usual quantum electrodynamic interaction as summarized

in App. A.2. In the same way, also for the light and heavy W bosons the SM-like

‘WWA’ coupling is reproduced from terms of the form ‘∂WWA’ that appear in the

kinetic terms of the gauge bosons

LW = −1

2
tr[Wµν

L WLµν ]− 1

2
tr[Wµν

R WRµν ]. (4.72)

For the triple gauge boson couplings involving a photon, a Goldston boson and a

W boson we find the coupling from the ‘WWφ’ terms in Lscalar, kin., Eq. (4.38). Here,

we perform the expansion in v−1
R in the final step which results in

LGAW =
eg√

2

(
vR +

1

4

κ2
1 + κ2

2

vR
+O(v−2

R )

)
AµW

+µ
h G−h

+
eg

2

√
κ2

1 + κ2
2

(
1− κ2

1κ
2
2

κ2
1 + κ2

2

1

v2
R

+O(v−3
R )

)
AµW

+µ
l G−l + h.c. (4.73)

From the Yukawa interaction, Eq. (4.35), the Goldstone boson decomposition,

Eqs. (4.68), (4.69) as well as using the expressions for the lepton masses, Eq. (4.37),

we derive the ‘νGe’ coupling

LνGe =−
√

2√
κ2

1 + κ2
2

e (mePL −mνPR) νG−l −
1

vR
e (mePR −mνPL) νG−h

+

√
2κ1κ2

(κ2
1 + κ2

2)3/2v2
R

e
[
(κ2

1 + κ2
2)(mνPL −mePR)

+ κ1κ2(mνPR −mePL)
]
νG−l +O(v−3

R ) + h.c. (4.74)

Finally, the charged current interactions are derived from the leptonic gauge kinetic

term similar as in the SM case, see App. A.2, but here with the difference that the
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leptons are also charged under SU(2)R. This leads to a left- and right-handed current.

Using the diagonalized gauge boson fields we arrive at

LCC =− g√
2
e

(
γµPL +

κ1κ2

v2
R

γµPR +O(v−4
R )

)
νW+µ

l

− g√
2
e

(
γµPR −

κ1κ2

v2
R

γµPL +O(v−4
R )

)
νW+µ

h + h.c. (4.75)

4.4.8. Result

The Feynman diagrams contributing to the NMM are similar to the SM case, see

Fig. 4.1. For the left-right symmetric model, however, there are twice as many di-

agrams, because one now has two different Goldstone bosons and W bosons that

contribute. We calculate all 12 diagrams in Feynman gauge. Those that contain the

heavy boson mass eigenstates lead to contributions of the order v−3
R or higher and are

thus highly suppressed compared to the other contributions. Since we compute the

final result only up to the leading order in v−1
R , we do not give the loop integrals for

diagrams containing the heavy bosons. Those are of higher order in v−1
R . The Feyn-

man diagrams, containing the light bosons, lead to the loop-integrals in Eqs. (D.17)

- (D.22) in App. D.

Following the procedure as explained in detail in Sec. 4.1.1, we compute the mag-

netic dipole moment for Dirac neutrinos in the left-right symmetric model

µν = − 5eg2

64π2MWl

κ1κ2

v2
R

fv0 (me/mWl
) +O(mν) +O(v−3

R ), (4.76)

with the loop function fv0 given by Eq. (4.23). Note that in the previous sections, we

have worked with only one lepton generation, for simplicity. However, a generaliza-

tion for the case of three generations can easily be achieved by introducing a leptonic

mixing matrix. The structure of the final result would then look exactly like our for-

mula for generic vector couplings of Tab. 4.1. Comparing the generic vector coupling,

as introduced in Eq. (4.20), with the charged currents in the left-right symmetric

model we identify

gij → −
g√
2

, hij → −
g√
2

κ2
1κ

2
2

v2
R

, (4.77)

with real-valued couplings and for one lepton generation. In this way, we reproduce

Eq. (4.76) using the result of our generic computation. The result for the electric

dipole moment is very similar. We explicitly checked that applying Eq. (4.77) to the
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generic result in Tab. 4.1 reproduces exactly what we obtain from the full computa-

tion.

We perform two further consistency checks. First, we calculate the NMM also in

unitarity gauge, i.e. using only two Feynman diagrams, similar to Figs. 4.1 (a) and (e)

with the appropriate gauge boson propagators in unitarity gauge (see App. A.1). We

reproduce the result of the Feynman gauge calculation and thereby proving explicitly

the gauge-independence of the final result. Second, we compare the leading order

term to the literature result. For that purpose, we define the mixing angle θ of the

gauge bosons according to(
W±l
W±h

)
=

(
cos θ − sin θ

sin θ cos θ

)(
W±L
W±R

)
. (4.78)

Together with Eqs. (4.47), (4.48) one finds for real-valued vacuum expectation values

cos θ = 1 +O(v−4
R ), (4.79)

sin θ = −κ1κ2

v2
R

+O(v−4
R ). (4.80)

In the limit MWl
� me we reproduce the result of Ref. [97], here for one lepton

generation

µν =
eg2me

8π2M2
Wl

sin θ cos θ +O(mν) +O(v−3
R ). (4.81)

The rich phenomenological consequences of the left-right symmetric model are dis-

cussed extensively in the literature, see for example in Ref. [104]. Depending on the

Majorana or Dirac nature of the neutrino as well as the mass of the right-handed neu-

trino, one can derive bounds from leptonic and non-leptonic decays on the WL-WR

mixing angle of the order θ ≤ 10−3. In this way the authors of Ref. [97] showed that

for the Dirac case one can get the diagonal magnetic dipole moments

µνeνe = 10−21µB, (4.82)

µνµνµ = 10−17µB, (4.83)

µντντ = 10−16µB, (4.84)

and for the Majorana case the transition magnetic moments can at maximum be of
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the order

µν ∼ 6.4 · 10−11µB. (4.85)

However, as for example also discussed in Ref. [105], such large values for the NMMs

are impossible, if one wants to avoid fine-tuning the neutrino masses. In the frame-

work of the minimal left-right symmetric model as discussed in this section, but with

the Majorana Yukawa couplings switched on (i.e. hM 6= 0 in Eq. (4.35)), the authors

of Ref. [105] find that the NMM can not exceed 10−19µB. Models that avoid this

fine-tuning issue and allow for large NMMs are addressed in Chap. 6.





Chapter 5

New limits on millicharged particles

In the previous chapter, we have systematically analyzed what kind of scalar and

vector interactions lead to neutrino magnetic moments (NMMs) and computed the

corresponding electric and magnetic moment matrices at one-loop order. From the

results in Tab. 4.1, one can see that the O(m1
ν)-term is approximately proportional

to the ratio of charge Q · e and squared mass m2 of the particles running inside the

loop1

µ, ε ∼ Qe/m2. (5.1)

Experimental bounds imply strong constraints for the masses of new particles below

the TeV scale. When thinking about theoretical frameworks beyond the Standard

Model (SM) that can realize large NMMs, the typical paradigm is therefore to search

for new physics at high energy scales. However, Eq. (5.1) is quadratic in 1/m and

just linear in Q. It thus motivates to study NMMs of observable size in the context

of light millicharged particles.

In the following, we present new limits on millicharged particles obtained from the

non-observation of NMMs. First, we briefly explain the idea of millicharged particles

in Sec. 5.1. We then give an overview over current phenomenological limits in Sec. 5.2

and continue in Sec. 5.3 with the derivation of the new limits. Finally, we present

and discuss the results in Sec. 5.4.

1This proportionality is exact, when assuming that the two particles inside the NMM-loop have
equal masses.
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5.1. Millicharged particles

The question of the quantization of the electric charge is a long standing and well

studied topic in elementary particle physics, see for example the reviews in Refs. [106,

107]. Although the experimental observation is that the electric charge of all particles

are integer multiples of one third of the electron charge, it would be theoretically

consistent to introduce particles with arbitrary real-valued charge. As this would lead

to a better understanding of the fundamental properties of quantum electrodynamics,

it is still of high physical interest to further study the possibility of millicharged

particles experimentally as well as theoretically.

There are several options how millicharged particles can arise in a theoretically

consistent way [108]. The simplest way would be to add a Dirac fermion which is a SM

singlet except for a finite fractional hypercharge Y = Qe with a small real-valued Q.

However, this seems to be in tension with the possibility of embedding the low-energy

theory into a grand unified model [109]. A second possibility is that neutrinos carry

a small electric charge. There exist theoretically consistent frameworks in which this

can be achieved, while preserving the SM anomaly cancellation [106, 107]. However,

current constraints on the millicharge for neutrinos are very strong [28]. For example,

from the neutrality of matter, one can derive an upper bound on the electron neutrino

millicharge of Q . 3 · 10−21 [80]. In the work of Ref. [110] the authors derive an

astrophysical limit on the neutrinos millicharge from mechanisms in the context of a

supernova explosion of Q . 1.3 · 10−19. This limit applies to all neutrino flavors.

The third and more promising possibility is the existence of a paraphoton with an

extra hidden gauged U(1)′ [111]. Such models are also studied in the context of dark

matter candidates and arise naturally in string theory constructions, see for example

Refs. [112, 113] and references therein. The basic idea is that there exists a dark

sector of new particles, charged under the new U(1)′ gauge group, but not under

the SM gauge group. If the associated gauge boson, the paraphoton (sometimes also

called dark photon or hidden photon), is massless, it can kinetically mix with the SM

photon. In this way, the particles being charged under the new gauge group, obtain

an effective fractional electric charge.

A possible way through which such a dark sector can interact with observable

particles is via the right-handed neutrino. Since it is the only particle being a total

SM singlet, this is one of only a few well-motivated portals between the SM and the

dark sector [112]. The existence of millicharged particles in such a dark sector, would

immediately lead to NMM loop processes via the neutrino portal. Since NMMs are



5.2. Current constraints 57

not observed, this imposes new limits on millicharged particles.

5.2. Current constraints
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Figure 5.1.: Constraints on millicharged particles in the plane of mass (here mf ) and
fractional charge (here ε) from various observations as explained in the
text. The figure is taken from [114].

It is convenient to summarize the experimental constraints on millicharged particles

in a charge vs. mass diagram like in Fig. 5.1 taken from Ref. [114]. The limits

are obtained by many different observations over the last decades which are briefly

summarized in the following.

Direct searches at collider and beam dump experiments (green shaded region in

Fig. 5.1) do not rely on additional theoretical assumptions and are therefore to be

considered rather robust [112]. The bounds include the LEP (Large Electron-Positron

collider) results of the Z width requiring that the millicharged particles should not

contribute to the invisible width more than the experimental 2 σ error [108], as well

as the limits from the ASP (Anomalous Single Photon) search carried out at SLAC

(Stanford Linear Accelerator Center) during the PEP (Positron-Electron Project).

There, the constraint is derived from the absence of processes e+e− → γX in electron-

positron collisions, where X could be any weakly interacting particle [108, 115]. The
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proton beam dump experiment E613 at Fermilab can be used as another direct probe

of millicharged particles. Here, the sensitivity on charge and mass is given by decays

of vector mesons V , pp → V + · · · → X̄X, and the direct production pp → γ∗ →
X̄X [116,117]. Moreover the electron beam dump experiment at SLAC leads to limits

obtained from the absence of trident produced2 pairs of millicharged particles [115].

The purple area in Fig. 5.1 corresponds to the constraint obtained in an experiment

at SLAC that was uniquely designed for that purpose [119]. This limit therefore

dominates the other direct bounds. At even lower masses, the authors of Ref. [120]

derived limits from the TEXONO experiment. They showed that the TEXONO

detector is sensitive to millicharged particles produced by Compton scattering e− +

γ → e−+γ∗ → e−ff̄ in the reactor core. The absence of corresponding electron recoil

signals of the expected subsequent e−f → e−f scattering process implies the limit,

indicated by the gray area in the upper left corner of Fig. 5.1. The observation that

the LHC results imply an exclusion region which fills out the gap at around 1011 eV

was derived in Ref [121].

The absence of invisible orthopositronium decays places a stringent bound on the

photon-paraphoton mixing [122] which leads to the yellow excluded area. This limit

is also a direct probe for millicharged particles, since it does not depend on further

model assumptions (except for the kinetic photon-paraphoton mixing).

The Lamb shift is a high-precision quantum electrodynamics observable from which

one can obtain a limit on new small-charged particles. It is not included in Fig. 5.1,

but can be found in Fig. 5.3 which also includes the result of this work. Without

additional assumptions, millicharged particles would contribute to the Lamb shift at

one loop level. The high experimental precision hence allows for obtaining a limit

that is stronger than the collider limits at masses up to 10 keV [108,123].

There are also indirect bounds that are, however, astrophysical and cosmological

model dependent. The dominant ones for the low mass region are those derived from

stellar evolution (in Fig. 5.1: WD - White Dwarfs, RG - Red Giants, HB - Horizontal

Branch). Constraints on the stellar energy loss can be translated in bounds on the

millicharge, because pairs of millicharged particles would be produced in plasmon

decays γ∗ → ff̄ and would contribute to the energy loss much more efficiently than

photons. The computation of the resulting bound in the charge vs. mass plane was

done in previous works [108,115] and updated in Ref. [114]. The energy loss argument

2The trident process is the production of electron-positron pairs in strong electromagnetic fields in
the form e− → e− + e+e−. The theoretically correct treatment of such interactions is still of
current interest, see for example Ref. [118] for a recent study.
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also leads to the bound obtained by the observation of the supernova (SN) 1987A,

where the number of observed neutrinos matched with theoretical expectations. If

there would have been millicharged particles involved in the cooling of the proton

neutron star, one would have observed reduced neutrino fluxes and a shorter neutrino

signal [108].

Two other indirect bounds can be deduced from cosmological considerations which

are computed and explained in Ref. [114] in great detail. First, the presence of a

thermalized dark sector would influence the temperature anisotropies in the cosmic

microwave background (CMB). The CMB contains the information of the number of

relativistic degrees of freedom at the time of decoupling Neff which would be larger

than the one obtained with the CMB data for values of the millicharge and mass

inside the light blue area of Fig. 5.1. Second, the knowledge of the helium-4 abundance

constrains the amount of extra radiation during the epoch of big bang nucleosynthesis

(BBN). In the framework of the dark sector model, the extra radiation increases the

expansion of the universe, leading to an earlier freeze-out of electroweak interactions

and thus increasing the amount of neutrons during the BBN. This in turn would imply

a higher helium-4 abundance and thus leads to the dark blue constraint in Fig. 5.1.

The CMB constraint at masses of around 10−12 eV is obtained from an upper limit

on the abundance of millicharged particles inferred from the Planck data [124]. The

authors of Ref. [114] then translated this limit for the dark sector model into an

exclusion area in the charge vs. mass plane.

Finally, the purple DM bound is a rough estimate of Ref. [115] for the sensitiv-

ity of dark matter detection experiments on models of millicharged particles with a

paraphoton.

5.3. Constraints from neutrino magnetic moments

The non-observation of NMMs places bounds on dark sector models containing mil-

licharged particles, if this sector speaks to the SM particles via the neutrino portal.

Let us therefore assume that among the particles of the dark sector there are a mil-

licharged fermion and a scalar with the coupling to the right-handed neutrino given

by

Lportal = giνRiFS + h.c., (5.2)
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where we define the coupling constants gi, such that it couples to the neutrino mass

eigenstates. As we have seen in Sec. 4.2, the presence of such an interaction directly

leads to the Dirac NMMs at first order in neutrino mass

µfi = −
eQ(mνf +mνi)

384π2M2
gfg
∗
i , εfi = +i

eQ(mνf −mνi)

384π2M2
gfg
∗
i . (5.3)

Here, Q is the millicharge of S, F is of opposite charge and we assume the masses

to be of the same scale, i.e. mS = mF = M = 1, which leads to the loop function

fs1 (mF /mS = 1) = 1 (compare to Eq. (4.22)).

For the derivation of constraints on millicharged particles, we use the results of

the GEMMA experiment which measured the antineutrino-electron scattering cross-

section near a reactor core and thereby obtained the currently best terrestrial limit on

NMMs. As discussed in Sec. 3.1, the bound on the NMMs is driven by the sensitivity

to low electron recoils. The GEMMA experiment realized an energy threshold of

T = 2.8 keV [18]. At such electron recoil energies the value for q2 in the neutrino-

electron scattering process is calculated to be
√
−q2 =

√
2meT = 53.5 keV. Also

see App. B where we compute the cross-section explicitly. When assuming that the

particles running inside the NMM loop are much larger than
√
−q2, it is reasonable

to take the limit q2 → 0. In that limit the cross-section is given by (see Eq. (B.25))

∑
f

dσ

dT
(ν̄ee

− → ν̄fe
−) =

e2

4π

(
1

T
− 1

E

)
(µeff
ν̄e )2, (5.4)

where the effective NMM is approximately given by Eq. (2.30).

For masses of millicharged particles in the regime M �
√
−q2 = 53.5 keV, one

can therefore directly apply the GEMMA limit of µeff
ν̄e < 2.9 · 10−11µB [18]. Using

Eq. (5.3), we arrive at the inequality

µeff
ν̄e =

√∑
j

∣∣∣∑
k

U∗ek(µjk − iεjk)
∣∣∣2 =

√√√√∑
j

∣∣∣∑
k

U∗ek

(−2eQmνk

384π2M2
gjg∗k

) ∣∣∣2
=

√∑
j

|gj |2 ·
∣∣∣∑
k

Uekgkmνk

∣∣∣ · eQ

192π2M2
< 2.9 · 10−11µB. (5.5)

However, we are interested in extending this analysis, allowing for lower masses

M <
√
−q2. In this mass regime, the approximation q2 → 0 is not valid anymore.

Hence, we want to derive a similar inequality for finite q2. In this case, instead of
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Eq. (5.4), the observable cross-section is now given by

∑
f

dσ

dT
(ν̄ee

− → ν̄fe
−) =

e2

4π

(
1

T
− 1

E

)∑
j

∣∣∣∑
k

U∗ek
F jk2 (q2)− Gjk2 (q2)

mνj +mνk

∣∣∣2, (5.6)

according to Eq (2.23). One could think of the term that took the place of µeff
ν̄e in

Eq. (5.4) as a “generalized” effective NMM. This makes sense, because in the limit of

zero q2, the effective NMM is recovered. For the purpose of simplifying the discussion

in the rest of this chapter, we therefore define

µeff
ν̄e (q2) ≡

√√√√∑
j

∣∣∣∑
k

U∗ek
F jk2 (q2)− Gjk2 (q2)

mνj +mνk

∣∣∣2. (5.7)

We repeat the calculation that we have performed in Sec. 4.2 for generic scalar cou-

plings, but now we keep the exact q2 dependence and expand only in the neutrino

mass. We find

F jk2 (q2)− Gjk2 (q2)

mνj +mνk

= −eQgfg
∗
imνk

16π2
F (M2, q2), (5.8)

with the definition

F (M2, q2) =
1

q4

{
3q2 +M2 log2

(√
q4 − 4M2q2 + 2M2 − q2

2M2

)

+
√
q4 − 4M2q2 log

(√
q4 − 4M2q2 + 2M2 − q2

2M2

)}
. (5.9)

The inequality in analogy to Eq. (5.5) then becomes

µeff
ν̄e (q2) =

√∑
j

|gj |2 ·
∣∣∣∑
k

Uekgkmνk

∣∣∣ · eQ
16π2

|F (M2, q2)| < 2.9 · 10−11µB, (5.10)

and is valid for masses M � mν .

For a numerical estimate, one can use the global fit values of Ref. [47] for the leptonic

mixing matrix and neutrino mass differences. We assume the lightest neutrino to have

a mass of 0.1 eV and normal neutrino mass ordering. For couplings gj ∼ 0.6, one
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arrives at √∑
j

|gj |2 ·
∣∣∣∑
k

Uekgkmνk

∣∣∣ ∼ 10−1 eV. (5.11)

Furthermore, we fix
√
q2 = 53.5 keV which is the value at which GEMMA has

the best sensitivity to physics beyond the SM as explained above. In this way, the

inequality, Eq. (5.10), implies a constraint on the fractional charge Q and mass M of

the millicharged particles.

5.4. Result

Using the results of the previous section and the GEMMA limit we are now able to

deduce constraints on millicharged particles. In Fig. 5.2, we show the generalized

effective NMM as a function of the millicharged particle’s mass M for a fractional

charge of Qs = 10−10. Values for µeff
νe (q2) above the experimental limit are excluded, as

indicated with the red shaded area. Thus, we can read out of Fig 5.2 that millicharged

particles with a coupling to the right-handed neutrino as in Eq. (5.2) with charges

up to Qs ≤ 10−2 can not be lighter than ∼ 105 eV. Otherwise GEMMA would have

already observed a corresponding NMM signal.

Fig. 5.3 summarizes the resulting limits in the plane of mass and millicharge and

compares it to already existing constraints. The latter are taken from Refs. [112,

114]. The strongest constraints are driven by astrophysical observations and are thus

astrophysics model dependent. In contrast, the new bound is completely astrophysics

model independent, since it is given only by laboratory experiments. Note however

that it relies on the particle physics model assumption that the new millicharged

particles couple to the right-handed neutrino. It also depends on the neutrino mass

and mixing parameters, the coupling strength as well as the new particle’s masses

which we have assumed to be of the same mass scale.
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Chapter 6

Naturally large neutrino magnetic

moments

In Chap. 4 we have already seen that in the simplest beyond the Standard Model (SM)

frameworks that predict a sizable neutrino magnetic moment (NMM) of µν � 10−19µB

simultaneously introduce large neutrino mass corrections δmν � mν . Such contribu-

tions have to be canceled by each other or by appropriate counter terms. If we would

have the proportionality δmν ∝ mν , the mass could be made naturally small. How-

ever, this is typically not the case in models with large NMMs (compare to Sec. 4.2.1).

The neutrino mass correction in such models tend to be proportional to masses of

heavier particles, which in turn implies a fine-tuning of neutrino masses. The require-

ment of small and technically natural neutrino masses therefore places a stringent

bound on the size of NMMs.

In view of upcoming experiments, which will improve in sensitivity on NMMs, it

appears nonetheless important to study those models that can accommodate large

NMMs while simultaneously avoiding fine-tuning large neutrino mass corrections.

Furthermore, since in the (for neutrino masses minimally extended) SM the NMM

prediction is at maximum of the order µν ∼ 10−19µB, a potential measurement of a

NMM would hence be a clear indication of physics beyond the SM.

In this chapter we therefore investigate theoretical possibilities how to generate

large NMMs with natural small neutrino masses. We start by explaining the fine-

tuning problem and the resulting bounds on NMMs in Sec. 6.1. In Sec. 6.2, we

consider the NMM in a model with light millicharged particles. In Sec. 6.3, we

explicitly demonstrate the generic difficulty of generating large NMMs by means of

a insightful radiative neutrino mass model. We then study models with large NMMs

that successfully avoid the fine-tuning of mν via symmetries in Sec. 6.4.
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6.1. Naturalness bounds

6.1.1. New physics above the electroweak scale

Consider a model with new physics scale Λ above the electroweak scale, Λ � vH ,

containing particles of electric charge Qe and new couplings G that introduce the

NMM at one loop. Fig. 6.1 (a) shows the corresponding Feynman diagram. When

removing the photon line, we immediately obtain the neutrino mass contribution

depicted in Fig. 6.1 (b). Integrating out particles of scale Λ, leaves us with effective

NMM and neutrino mass operators. For Majorana neutrinos the operators of lowest

dimension are of dimension seven and five, respectively and given by

O(5-dim) =
1

Λ

(
Lc(−iσ2)φ

) (
φT (−iσ2)L

)
, (6.1)

O(7-dim)
B =

1

Λ2

(
Lc(−iσ2)φ

) (
σµνφT (−iσ2)BµνL

)
, (6.2)

O(7-dim)
W =

1

Λ2

(
Lc(−iσ2)φ

) (
σµνφT (−iσ2)WµνL

)
, (6.3)

where L is the SM lepton doublet, φ the SM Higgs doublet, σ2 the second Pauli

matrix acting on the SU(2)L space and Bµν , Wµν are the U(1)Y and SU(2)L field

strength tensors, respectively. After electroweak spontaneous symmetry breaking, the

photon field is identified by Aµ = sin θWBµ + cos θWW
3
µ and the operators O(7-dim)

B ,

O(7-dim)
W would thus contribute to the magnetic moment, also compare to Eq. (2.24)

and Eq. (2.23). From a dimensional analysis, one can thus make the generic estimate

µν ∼
QeGv2

H

Λ3
, δmν ∼ G

v2
H

Λ
, (6.4)

Λν ν

γ
HH

(a)

Λν ν

HH

(b)

Figure 6.1.: Feynman diagrams generating a Majorana NMM and a radiative neu-
trino mass induced by new physics above the electroweak scale.
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which leads to

δmν

0.1 eV
∼ 1

Q

(
µν

10−19µB

)(
Λ

TeV

)2

. (6.5)

In the case of Dirac neutrinos, the lowest dimensional effective operators contain only

one single Higgs field instead of two. They are given by the operators in Eqs. (6.1)-

(6.3) when replacing the expressions (Lc(−iσ2)φ) by ν̄R. The corresponding effective

operators are therefore of dimension six and four, respectively. The estimate thus is

µν ∼
QeGvH

Λ2
, δmν ∼ GvH , (6.6)

leading to the same relation as for Majorana neutrinos, Eq. (6.5).

For the purpose of avoiding fine-tuning, we require the radiative neutrino mass

correction to be at maximum as large as the measured neutrino masses, δmν . mν .

For a numerical estimate we use mν ∼ 0.1 eV, Λ ∼ TeV as well as Q = 1 and obtain

the naive naturalness bound on NMMs

µν . 10−19µB. (6.7)

The current best laboratory limit on NMMs is µν . 2.9 · 10−11µB [18]. One

can hope for an increase of the sensitivity by future experiments down to about

µν & 10−12µB [24–27]. Hence, the above estimate shows that introducing such large

NMMs generically induces neutrino mass corrections that exceeds phenomenological

observations by many orders of magnitude. For example, cosmological observations

constrain the neutrino masses to be not larger than about mν . 0.2 eV [5]. Therefore

a fine-tuning of seven orders of magnitude would be required.

Let us assume for a moment that the Feynman diagram of Fig. 6.1 (b) is forbidden

for some reason (while diagram (a) is still allowed). In that case one would expect

the naturalness bound to be relaxed. However, even then higher loop diagrams of the

type in Fig. 6.2 can not be neglected and can still lead to considerable constraints on

Λν ν

Figure 6.2.: The presence of a NMM induces neutrino mass corrections of this type.
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the NMM. For the purpose of deriving those constraints, Bell et al. and Davidson

et al. performed detailed effective operator analyses for Dirac neutrinos [125] and

Majorana neutrinos [126, 127]. Requiring the naturalness condition δmν . mν for

Dirac neutrinos they found the model-independent bound of µν . 10−15µB for a new

physics scale of Λ ∼ 1 TeV and neutrino masses of mν ∼ 0.2 eV [125].

For Majorana neutrinos the NMM operator is flavor antisymmetric while the mass

operator is flavor symmetric. That is why one can not obtain a strong model-

independent naturalness bound on Majorana NMMs [126, 127]. For Λ = 1 TeV

and mν . 0.3 eV, one can derive the upper limits µντνµ , µντνe . 10−9µB, µνµνe .

3 · 10−7µB [127] which are however worse than current experimental constraints.

6.1.2. New physics below the electroweak scale

It is also interesting to consider models where the new physics scale is below the

electroweak scale, Λ� vH . The corresponding lowest-dimensional effective operators

for the NMM and the neutrino mass are then of dimension five and three, respectively,

as depicted in Fig. 6.3. We can thus make the naive estimate

µν ∼
QeG

Λ
, δmν ∼ GΛ, (6.8)

leading to

δmν

0.1 eV
∼ 1

Q

(
µν

10−13µB

)(
Λ

GeV

)2

. (6.9)

This relation points out that NMMs can be generated by light particles without fine-

tuning neutrino masses. For example, with Q ∼ 0.1 and Λ ∼ 0.1 GeV our estimate

in Eq. (6.9) shows that one can reach µν ∼ 10−12µB in a technically natural way.

Λν ν

γ

(a)

Λν ν

(b)

Figure 6.3.: The Feynman diagrams for the NMM and the radiative neutrino mass
induced by new physics below the electroweak scale.
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Summarizing the discussion so far we are left with two possibilities how to generate

naturally large NMMs. Either the new physics is at a high scale and the estimate in

Eq. (6.5) applies. In this case one has to find mechanisms to suppress the neutrino

mass correction. Or, alternatively, the new particles responsible for the NMM are

light with fractional charge Q < 1. The latter possibility is examined in the next

section. The question of neutrino mass suppression mechanisms will be tackled in

Sec. 6.4.

6.2. Naturally large neutrino magnetic moments via

millicharged particles?

In Chap. 5, we have already seen that millicharged particles with couplings to neu-

trinos generate NMMs. There we found that the non-observation of NMMs implies

a constraint on the mass and fractional charge of such particles. Motivated by the

estimate in the previous section, we are now interested in the possibility of generat-

ing large NMMs with the help of millicharged particles. In other words, we want to

analyze, whether or not there exist allowed values of millicharge Q and mass M such

that the generated NMM is of observable size (µν ∼ 10−12µB) while satisfying the

requirement of naturally small neutrino masses. The results in Sec. 5.4 tell us that

this is not possible in models where the millicharged particles interact with neutrinos

of only one chirality. The values for millicharge and mass that would be needed are

excluded by phenomenological observations. Moreover from the theoretical consider-

ations made in Sec. 4.2.1 we have also seen that for generating a sizable NMM one

needs both, left- and right-handed couplings. In the following we therefore consider a

model with a millicharged complex scalar S and a Dirac fermion F coupling to light

Majorana neutrinos via the interaction

L = fiFRνLiS + f ′jνLjFLS
† + h.c. (6.10)

The resulting neutrino electric and magnetic moment matrices have already been

computed in Sec. 4.2 and can be read off of Tab. 4.1 with the couplings replaced

appropriately. In the limit M ≡ mS = mF they are given by

µji =
iQe

32π2M
Im[fif

′
j − fjf ′i ], εji =

iQe

32π2M
Re[fif

′
j − fjf ′i ]. (6.11)
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Figure 6.4.: Lines of constant µν for δmν = 0.2 eV in the plane of mass M and frac-
tional charge Q of the new particles inside the NMM loop. The colored
regions corresponds to already existing constraints and are taken from
Ref. [114]. See also the working group report and references therein [112].

The neutrino mass correction can be computed from the same diagrams with the

photon line removed. The corresponding loop-integrals are simpler than the ones

including the photon line, see Eqs. (D.9) and (D.10) in App. D. A straightforward

calculation, again in the limit M ≡ mS = mF , gives

δmij =
fif
′
j + fjf

′
i

16π2
M log

M2

µ2
. (6.12)

For a numerical estimate we assume log(M/µ) ∼ 1 and that there is no cancellation

in the couplings among the flavors. One arrives at the relation

µν
δmν

' Qe

4M2
. (6.13)

In this way, one is able to estimate the required values of Q and M that allow for large

NMMs while avoiding fine-tuning neutrino masses. We set δmν ∼ 0.2 eV and assume

values of the magnetic moment µν close to the current experimental sensitivity. We

show the result in Fig. 6.4 in the plane of mass and millicharge of the new particle

overlaid over already excluded regions [112,114]. Note that the existing bounds have

been introduced in Sec. 5.2. They are taken from Ref. [114].

As the relevant parameter space is ruled out (predominantly by astrophysical ob-

servations) there seems to be no room for large NMMs generated by light millicharged
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particles.

6.3. The neutrino magnetic moment in a radiative neutrino

mass model

We turn to the discussion of scenarios in which the new particles are heavier than

the electroweak scale. The generic problem of such models is the tight connection of

the NMM and neutrino mass, see Eq. (6.5). In order to illustrate this in a concrete

example, we consider a model inspired by radiative neutrino mass models. In such

frameworks the light neutrinos have no tree-level mass term. Instead, the mass is

generated in one-loop processes typically involving neutral particles inside the loop,

as for example in the well-known model proposed by Ma [128]. In our context, the

basic idea is to construct such a model where the new particles responsible for the

neutrino mass carries electric charge. In this way, when attaching a photon line to

the internal particle, the radiative neutrino mass diagrams also serve as a source of

NMMs and we are able to predict the NMMs, given our knowledge of the mass and

mixing parameters of the neutrinos.

We start by extending the SM particle content by two scalar SU(2)L doublets η, φ

as well as a charged Dirac fermion Σ = ΣL+ ΣR with the quantum numbers given by

η =

(
η0

η−

)
∼ (2,−1/2), Li =

(
νLi

lLi

)
∼ (2,−1/2),

φ =

(
φ−

φ−−

)
∼ (2,−3/2), Σ−L/R ∼ (1,−1). (6.14)

The Yukawa couplings, generating both the neutrino masses as well as the NMMs,

are

LY = YiΣRη̃
†Li + Y ′jΣc

Lφ
†Lj + h.c. (6.15)

After electroweak symmetry breaking the singly charged components of the scalar

doublets mix according to(
η±1
η±2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
η±

φ±

)
, (6.16)
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and the Yukawa couplings become

LY = YiΣR(cos θη−1 − sin θη−2 )νLi + Y ′j ν
C
Lj(sin θη

+
1 + cos θη−2 )ΣL + h.c. (6.17)

The Feynman diagrams for the neutrino mass and NMM matrices are depicted in

Fig. 6.5. The computation is very similar to those performed in Chap. 4. We evaluate

the loop-integrals with Mathematica Package-X [92]. Note that for the neutrino

mass, the single η1 and η2 diagrams (Fig. 6.5 a) are divergent, but the divergencies

are canceled by each other due to the relative minus sign of the two diagrams. The

neutrino mass matrix turns out to be

mνiνj =
YiY

′
j + YjY

′
i

16π2
mΣ sin θ cos θ·

·
[

m2
η1

m2
η1
−m2

Σ

log

(
m2
η1

m2
Σ

)
−

m2
η2

m2
η2
−m2

Σ

log

(
m2
η2

m2
Σ

)]
. (6.18)

We have added only one charged Dirac fermion Σ which implies that one of the three

eigenvalues of the mass matrix is zero, i.e. the lightest neutrino remains massless. For

the electric and magnetic dipole moment matrices we obtain

µji =
−ie sin θ cos θ

16π2mΣ
Im
[
YiY

′
j − YjY ′i

]
f(
m2
η1

m2
Σ

,
m2
η2

m2
Σ

), (6.19)

εji =
−ie sin θ cos θ

16π2mΣ
Re
[
YiY

′
j − YjY ′i

]
f(
m2
η1

m2
Σ

,
m2
η2

m2
Σ

), (6.20)

with the loop function

f(a1, a2) =
a1(a2 − 1)2 log(a1)− (a1 − 1)

(a1 − 1)2(a2 − 1)2
·

·
(
−(a1 + 1)a2 + (a1 − 1)a2 log(a2) + a1 + a2

2

)
. (6.21)

Let us remark at this point that our model does not allow for fine-tuned cancella-

tions in the neutrino mass, since there is just one single and finite contribution. mνiνj

of Eq. (6.18) is therefore given by our knowledge of the two measured neutrino mass

square differences ∆m2
21, ∆m2

31 as well as the PMNS-matrix U according to

mνjνi = Udiag(0,
√

∆m2
21,
√

∆m2
31)U †. (6.22)

We use the results of the global fit from Ref. [47] and assume all CP-phases of the
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νi νj

η1, η2

Σ
(a)

νi νj

η1, η2

Σ

γ

(b)

νi νjη1, η2

Σ

γ

(c)

Figure 6.5.: Diagrams for neutrino mass and magnetic moment in the radiative neu-
trino mass model.

PMNS-matrix U to be zero. For the scalar and fermion masses we set m1 = 1.1 TeV,

m2 = 0.9 TeV, mΣ = 1 TeV. Solving Eq. (6.22) for the Yukawa couplings one findsY1

Y2

Y3

 =

 1

2.1∓ 1.6i

0.7∓ 2.8i

 · x · 10−6,

Y
′

1

Y ′2
Y ′3

 =

 2.9

6.0± 4.5i

2.0± 8.2i

 · 1

x
· 10−6, x ∈ C. (6.23)

Plugging the results into Eq. (6.19) we obtain for the Majorana neutrino electric and

dipole moment matrices

εji = 0, µji = ±i

 0 −2 −3.5

2 0 −5.9

3.5 5.9 0

 · 10−21µB, (6.24)

which is many orders of magnitude below current experimental sensitivity.

In summary, we have presented a simple insightful model which illustrates the

generic difficulty of generating large NMMs while simultaneously being compatible

with the observed upper bound on neutrino masses. Due to the tight connection

between neutrino mass and NMM, only very low NMMs are generated. Hence, we

conclude that one needs special mechanisms, if one is interested in generating large

NMMs in a consistent way. For the same reason, models not providing such a mech-

anism can not lead to NMMs considerably close to current experimental sensitivity.

This also applies for example to well-studied models like the left-right symmetric

model [105] (also compare to Sec. 4.4) and the supersymmetric model [129]. On the
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other hand, a recent parameter study in the framework of the minimal supersymmet-

ric model found room for large NMM [130], but does not solve the fine-tuning issue

of the resulting neutrino mass corrections.

6.4. Naturally large neutrino magnetic moments via

symmetries

As argued in Secs. 6.1 and 6.3, for generating sizable NMMs, one is in need of a mecha-

nism suppressing neutrino mass loop contributions. For this purpose, one should rely

on some sort of symmetry. One can distinguish two classes of symmetries. First,

it seems likely to use one of the quantum numbers of the photon for introducing

large NMMs in such a way that the same diagrams with the photon line removed are

suppressed. In this spirit, Barr, Freire and Zee (BFZ) proposed a spin suppression

mechanism in Ref. [131–133]. We also checked all one loop subdiagram possibilities

trying to exploit the other quantum numbers, the parity and charge conjugation, but

found no such suppression mechanism. The second ansatz is to exploit the symme-

try properties of the effective NMM and mass operators. Such ideas were already

proposed in the late 80s, for example the Voloshin-type symmetry [9,10] (e.g. SU(2)

with ν ↔ νC), SU(2) horizontal symmetry [11,12] and discrete symmetries [13–17].

In the following we give a brief overview over the BFZ model, the Voloshin-type

symmtery as well as the SU(2) horizontal symmetry and discuss which of those are

still able to generate large NMMs.

6.4.1. Barr-Freire-Zee model

The spin-suppression mechanism was proposed by BFZ in Ref. [131]. It relies on the

observation that the Feynman diagram depicted in Fig. 6.6 (a) is suppressed when

removing the photon line like in the diagram of Fig. 6.6 (b). In the latter only the

longitudinal degrees of freedom of the W gauge boson contribute, because of spin

conservation. The full two-loop neutrino mass diagram in Fig. 6.7 (a) contains the

subdiagram with the charged scalar h+ and the W coupled to the neutrinos and

a charged lepton inside the loop. It is proportional to the Yukawa coupling and

therefore suppressed by powers of the lepton mass. This suppression do not apply for

the NMM contribution and hence allows for NMMs of observable size as we will see

in the following. Note that this mechanism also applies for higher order contributions

which means that processes like the Feynman diagram in Fig. 6.2 are suppressed in



6.4. Naturally large neutrino magnetic moments via symmetries 75

h+ W+

γ

(a)

h+ W+

(b)

Figure 6.6.: The subdiagrams of the BFZ spin suppression mechanism with and with-
out the photon line. Due to spin conservation only the longitudinal com-
ponents of the W will contribute in diagram (b).

νi νjl−

W+h+

φ0
b

φ+
a

λab

(a)

νRi νLjl−

W+φ+
2

φ+
2

φ0
2

〈φ0
1〉

(b)

Figure 6.7.: (a) The full two-loop neutrino mass contribution in the BFZ model. The
NMM is generated by the same diagram with the photon line attached
to any particle inside the loop. (b) A similar diagram for a model variant
with Dirac neutrinos.
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the same way. The naturalness bounds summarized in Sec. 6.1 can thus be avoided.

The singly charged scalar singlet h+ is an characteristic ingredient for this mecha-

nism. It is rather difficult to find simple alternatives without such a singlet [132]. Its

coupling to the SM lepton doublet is given by

L = f jih+Lcjiτ2Li. (6.25)

Additionally, in the realization of the spin suppression mechanism in [131], there are

three scalar doublets φa with the quantum numbers of the Higgs. One can choose

the basis such that the neutral component of only one of them, say φ1 acquires a

non-vanishing vacuum expectation value. The scalar doublets couple to the scalar

singlet via the antisymmetric interaction

L = M̃abh+(φ−a φ
0
b − φ−b φ0

a). (6.26)

Together with the quartic term of the scalar potential

L = λab〈φ†1〉φa〈φ†1〉φb (6.27)

one has all ingredients for the NMM diagram in Fig. 6.7(a).

From the relations for the generated radiative neutrino mass correction δmνiνj and

the NMM µij given in Ref. [131] we derive the estimate

δmνiνj =

(
m2
j −m2

i

M2
W

)
·
(
δM2

2 + δM2
3

2M2

)
·
(
M

TeV

)2

·

·
(

µij
10−12µB

)
· 0.5 · 106 eV. (6.28)

Here, it is assumed that the masses of the charged and neutral components of φ2 and

φ3 are of similar size M ≡ M2 ∼ M3 with small differences δM2, δM3. mi denotes

the charged lepton mass and MW the W boson mass.

In order to check if the model is still viable we use the LHC results of slepton decays

in supersymmetry searches [134, 135]. If the new charged scalar particles h+ or φ+
2,3

would be considerably lighter than 1 TeV, they would already have been detected1.

The new physics mass scale is therefore assumed to be at TeV scale, M ∼ 1 TeV.

1Because of similar decay channels in the case of massless neutralinos, the bounds are of the same
order of magnitude when compared to the sleptons.
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Allowing for NMM values of µij ∼ 10−12µB will then lead to

δmνeνµ =

(
δM2

2 + δM2
3

2M2

)
eV, (6.29)

δmνµντ , δmντνe =

(
δM2

2 + δM2
3

2M2

)
· 2.5 · 102 eV. (6.30)

We require the cosmological neutrino mass bound to be satisfied, δmνiνj . mνiνj <

0.2 eV [5]. In doing so we obtain
δM2

2 +δM2
3

2M2 < 0.8·10−3, which can be achieved without

fine-tuning. Moreover, this implies that one can accommodate naturally large NMMs

within the BFZ model although it introduces the NMM at two loop order.

So far we implicitly worked with the assumption of Majorana neutrinos. Is it also

possible to generate Dirac NMMs via the spin suppression mechanism? To answer

this question, we think about a modified version of this model in order to apply the

idea to Dirac neutrinos. For this case, one needs a scalar that connects the right-

handed neutrinos and the left-handed charged leptons. In addition to the doublet

φ1, which takes the role of the SM Higgs, we could introduce an extra scalar doublet

φ2 = (φ0
2, φ
−
2 )T with the required interaction Y Lφ2νR. The scalar potential would

then contain the coupling λφ†1φ2φ
†
2φ2. In this way, we would get a sizable NMM from

the Feynman diagram in Fig. 6.7 (b). However, the potential would also contain

the interaction λ′φ†2φ1φ
†
1φ1. When the neutral component of φ1 acquires a non-zero

vacuum expectation value, this term would also induce 〈φ0
2〉 6= 0, since it is linear

in φ0
2. This in turn would lead to an unsuppressed tree-level neutrino mass. We

therefore would again have the issue of fine-tuned neutrino masses. Following this

line of thought, we conclude that there seems to be no simple model variant that

applies the idea of the spin suppression mechanism to the case of Dirac neutrinos.

6.4.2. Voloshin-type symmetry

Another suppression mechanism proposed in Ref. [9] is based on the observation that

under the transformation νL → (νR)C , νR → −(νL)C the mass and NMM effective

operators transform as

νLνR → −νLνR, (6.31)

νLσµννRF
µν → +νLσµννRF

µν . (6.32)

This property can be exploited when imposing a SU(2)ν symmetry with ((νR)C , νL)T

transforming as a doublet. In this way the neutrino mass is suppressed, because it is
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not invariant under SU(2)ν while the NMM operator respects the symmetry. Note

that this mechanism can only suppress Dirac neutrino masses. Also note that for

incorporating the idea into an UV-complete theory (νR)C and νL have to be in the

same multiplet, implying that the SM SU(2)L doublet needs to be extended for (νR)C .

Hence, the simplest implementation is to use a SU(3)L × U(1)X gauge symmetry as

done in Ref. [10]. Obviously the new SU(2)ν symmetry can not be exact. The gauge

group is thus spontaneously broken and the electroweak gauge symmetry is recovered

at low scales. The neutrino mass then becomes proportional to the breaking scale of

the new symmetry.

In the model of Barbieri and Mohapatra [10] the Feynman diagrams for the NMM

and the neutrino mass correction δmν contain two charged components η1 and η2

from the scalar SU(3)L triplet. With the mass difference ∆m2
η = m2

η1
− m2

η2
they

derive the relation [10]

µν = δmν
2e

∆m2
η

log
m2
η

m2
τ

. (6.33)

The size of the NMM is constrained by the naturalness condition on ∆m2
η arising

from radiative corrections after symmetry breaking and depend on the mass of the

SU(2)ν gauge boson MV (for more details see Ref. [10]). Barbieri and Mohapatra

derive the inequality

∆m2
η &

αW
4π

M2
V , (6.34)

where αW is the electroweak fine-structure constant.

We account for experimental limits on new gauge boson and scalar masses by set-

ting MV ∼ mη ∼ 5 TeV [136]. Plugging this into Eq. (6.34) we arrive at ∆m2
η &

7 · 105 GeV2. Together with the requirement of naturally small neutrino masses

δmν . 0.2 eV we obtain from Eq. (6.33) potential values for the NMM of µν . 10−16µB.

There is a lack of four orders of magnitude until the benchmark value of µν ∼ 10−12µB.

This shows that within this framework it is not possible to generate NMMs that are

observable in next-generation experiments in a theoretically consistent way.

Frère, Heeck and Mollet derived inequalities between the transition moments for

Majorana neutrinos [137] and argued that a possible measurement of µντ at SHiP [138]

would hint to the Dirac nature of the neutrino. However, up to now it seems not

possible to obtain large Dirac NMMs in a technically natural way. In the case SHiP

would indeed measure a non-zero µντ , one has to find new ideas how to accommodate
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large Dirac NMMs while simultaneously avoiding the fine-tuning of neutrino masses.

6.4.3. Horizontal symmetry

In the mechanism proposed by Voloshin, the neutrino mass correction is suppressed

with respect to the NMM due to a new SU(2) symmetry under which the right- and

left-handed components of the Dirac neutrino field transform as doublets. One can

apply the same idea to Majorana neutrinos. We have already seen in Sec. 2.3 that no

diagonal Majorana NMMs exist. The question therefore is if it is possible to generate

a sizable transition NMM while suppressing the corresponding corrections to the off-

diagonal neutrino mass matrix. For this purpose, Babu and Mohapatra proposed in

Ref. [11] to introduce the new symmetry as a horizontal flavor symmetry, i.e. where

neutrinos of different flavors together form a multiplet under the new SU(2)H .

In their model, the usual tau lepton doublet, here denoted by Ψ3L, as well as the

right-handed τR are SU(2)H singlets. The lepton fields of the electron and muon

generation form the SU(2)H doublets

ΨL =

(
νe νµ

e µ

)
L

, ΨR =
(
e µ

)
R

. (6.35)

In the scalar sector, next to the SM Higgs doublet φs one introduces the bidoublet φ

and the SU(2)H doublet η

φ =

(
φ+

1 φ+
2

φ0
1 φ0

2

)
, η =

(
η+

1 η+
2

)
. (6.36)

In addition, in order to break the horizontal symmetry in such a way that tree-level

mixing between generation-changing horizontal gauge bosons and the generation-

diagonal ones are avoided, Babu and Mohapatra introduce two new SU(2)H triplet

fields, for more details see Ref. [11].

The above set of particles imply a bunch of new Yukawa couplings. The relevant

ones for the computation of the NMM and radiative neutrino mass δmν are

LY ⊃ fηiτ2Ψc
Liτ2Ψ3L + f ′tr(ΨLφ)τR + h.c. (6.37)

The scalar potential after electroweak symmetry breaking contains the term µ1κs(η
+
1 φ

+
1 +

η+
2 φ

+
2 ) with κs being the vacuum expectation value of φs. It generates mixing be-

tween the components of η with the charged components of the bidoublet φ. In the
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νe νµ

φ+1

τ−

η+1

(a)

νe νµ

η+2

τ−

φ+2

(b)

Figure 6.8.: The Feynman diagrams generating the νe – νµ transition moment, when
attaching a photon line to one of the charged particles inside the loop.
The circled cross indicates the scalar mixing term.

limit of exact SU(2)H (but broken SU(2)L), the two resulting diagrams for the radia-

tive neutrino mass δmνeνµ , as depicted in Fig. 6.8, cancel each other while the same

diagrams with the photon line attached still leads to the non-zero νe – νµ transition

NMM

µνeνµ = 2e
ff ′

16π2
mτ

µ1κs
m2
η −m2

φ

(
1

m2
η

− 1

m2
φ

)
, (6.38)

where mη = mη1 = mη2 and mφ = mφ1 = mφ2 . After the spontaneous symmetry

breaking of SU(2)H , mass splittings between the scalar charged components ∆m2
η =

m2
η2
−m2

η1
and ∆m2

φ = m2
φ2
−m2

φ1
are generated. This in turn leads to a non-zero

neutrino mass given by

δmνeνµ =
ff ′

16π2
mτµ1κs

(
1

m2
φ1
−m2

η1

log
m2
φ1

m2
η1

− 1

m2
φ2
−m2

η2

log
m2
φ2

m2
η2

)
. (6.39)

Assuming ∆m2
η � m2

η and ∆m2
φ � m2

φ as well as ∆m2
η/m

2
η = ∆m2

φ/m
2
φ one can now

derive the estimate(
µνeνµ

10−12µB

)
= 2

(
δmνeνµ

eV

)(
GeV2

∆m2
η

)(
m2
η

m2
φ

− 1

)
log

m2
η

m2
φ

. (6.40)

From this relation one can conclude that NMMs of the order 10−12µB can be reached

without fine-tuning for mass splittings ∆m2
η at GeV scale. Such small mass splittings

do not imply additional fine-tuning. One can choose ∆m2
η to be small in a technically

natural way, since it is generated by a soft cubic interaction with one of the scalar

triplets that break the horizontal symmetry.

Let us remark that this model allows for breaking SU(2)H in such a way that
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the charged lepton masses me and mµ are reproduced. It furthermore predicts extra

νe-ντ and νµ-ντ neutrino mass contributions. We have checked explicitly that the

model is compatible with the requirement δmνeντ , δmνµντ . 0.2 eV as well as with

the observed charged lepton masses. We found that choosing the masses of the new

particles at TeV scale still allows for a NMM of the order µνeνµ ∼ 10−12µB.

Only the electron and muon generation is charged under the horizontal symmetry.

Hence, in this model of Babu and Mohapatra only the νe-νµ transition moment can

be sizable, while the symmetry protects the corresponding neutrino mass contribution

from being too large. It suggests itself to think about applying the same mechanism

to the νe-ντ or νµ-ντ transition moments. One could either include the τ flavor instead

of the e or µ flavor in the horizontal symmetry or one could extend the horizontal

symmetry to all three generations, for example by using a horizontal SU(3) symmetry.

However, the Higgs decays h → ττ have been observed by the LHC [139, 140]. It is

therefore not possible to introduce the necessary horizontal symmetry breaking in the

coupling of the Higgs boson to charged leptons. Hence, the mechanism involving the

horizontal symmetry works only for Majorana νe-νµ transition moments.





Chapter 7

Summary and conclusion

In the pure Standard Model (SM) neutrinos are massless. From the observed phe-

nomenon of neutrino oscillations, we know that neutrinos carry a small, but non-zero

mass. We briefly discussed how to introduce Dirac and Majorana neutrino masses

in minimally extended SM frameworks in Chap. 2 and explained the concept of neu-

trino oscillations. The presence of neutrino masses inevitably implies the existence

of non-vanishing neutrino magnetic and electric moments. Since the neutrino is neu-

tral, the underlying quantum field theoretical processes occur at loop-level only and

are in general model dependent. We introduced the effective neutrino electromag-

netic vertex function and derived the physical observable of neutrino experiments, a

combination of the electric and magnetic moment, which is typically referred to as

neutrino magnetic moment (NMM).

We continued in Chap. 3 by summarizing the experimental status on NMMs. Al-

though astrophysical observations provide for Majorana (Dirac) neutrinos up to one

(three) order(s) of magnitude stronger constraints than direct laboratory experiments,

they depend on the underlying astrophysical assumptions. The constraints obtained

in terrestrial experiments are mainly driven by reactor neutrino experiments yielding

a model-independent upper limit of 2.9 · 10−11µB.

In contrast to the relatively low experimental sensitivity on NMMs, the SM, min-

imally extended for allowing neutrino masses, predicts substantially lower values.

We explicitly derived the corresponding Dirac and Majorana predictions in Chap. 4,

thereby explaining the methods of the NMM computation. We reproduced the re-

sults of previous works and found Dirac electric and magnetic dipole moments of the

order 10−20µB. For Majorana neutrinos, only the off-diagonal transition moments ex-

ist. For those as well as for the Dirac transition moments the NMMs are additionally

suppressed due to the GIM-mechanism. This small SM prediction raises the question,
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what kind of new particle physics scenarios could generate NMMs that are observ-

able in future experiments which will further increase the sensitivity. We showed that

reaching NMMs close to the benchmark point of 10−12µB is a challenge for model

building due to the tight connection of the neutrino mass and the NMM. The first

problem is that the chirality flip of the NMM operator leads to the requirement of a

mass insertion inside the NMM loop diagram. That is why in the minimally extended

SM, the NMM is proportional to the neutrino mass and consequently very small. In

order to avoid the suppression by the neutrino mass, one can introduce new parti-

cles with left- as well as right-handed couplings to the neutrino. We systematically

analyzed this possibility, classified and calculated the electric and magnetic moments

for generic scalar and vector couplings in the case of Majorana and Dirac neutrinos.

We found that the NMM can then indeed be large. We have shown this explicitly

in the two simplest models, a model with a charged scalar singlet and the left-right-

symmteric model and thereby cross-checked the results from our generic calculations.

However, we have seen that a second problem arises. In such models, radiative neu-

trino mass corrections are introduced being proportional to the mass of the particle

inside the NMM loop-diagram. This, in turn, leads to a fine-tuning problem for the

neutrino masses.

In Chap. 5, we used the result of our generic NMM calculation and studied models in

which millicharged particles couple to right-handed neutrinos. We briefly introduced

the concept of millicharge and summarized existing bounds. From the GEMMA

upper limit on NMMs, one can infer new limits on the charge and mass of such

particles which however turned out to be less stringent than limits from astrophysical

observations.

The problem of fine-tuned neutrino masses in models generating NMMs of ob-

servable size was explained and dealt with in Chap. 6. We found that large NMMs

generated by millicharged particles below the electroweak scale can in principle be

achieved while simultaneously avoiding a fine-tuning of neutrino masses, but it would

be in strong tension with astrophysical and cosmological observations. We showed by

means of a very insightful model that theories with new physics above the electroweak

scale predicting sizable NMMs generically lead to large neutrino mass corrections, thus

requiring fine-tuning of several orders of magnitude. We finally reviewed mechanisms

proposed in the literature that suppress such problematic neutrino mass corrections

by a symmetry. For Majorana neutrinos, one can build models using a SU(2)H hor-

izontal symmetry and obtain large νe-νµ transition moments. A second possibility

is the Barr-Freire-Zee model in which all three νe-νµ, νe-ντ and νµ-ντ transition mo-
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ments can be large due to a spin-suppression mechanism. For Dirac neutrinos, on

the other hand, it does not seem to be possible anymore to build models predicting

NMMs of observable size in a technically natural way.



Appendices



Appendix A

Feynman rules

There already exists various helpful lists of Feynman rules in literature, see for exam-

ple Refs. [30, 35], but they are dependent on some formal conventions. For example

in this work we use the metric tensor gµν = diag(1,−1,−1,−1) opposed to the con-

vention in Ref. [35]. In order not to confuse the reader, in this chapter, we shortly

comment on some of our conventions and summarize a small set of Feynman rules

that we use for our computations of quantum amplitudes.

A.1. Propagators

The propagators for scalars, fermions and vector bosons respectively are given by

p
= i

p2−m2+iε
,

p
=

i(/p+m)

p2−m2+iε
,

p
= −i

p2−m2+iε

(
gµν − (1− ξ)pµpν

p2

)
,

where the vector boson propagator is given in the Rξ gauge. Choosing for example

ξ = 1 corresponds to Feynman gauge and taking ξ → ∞ results in the unitarity

gauge. The latter has the advantage that the unphysical scalar degrees of freedom

are removed from the Lagrangian. However, in most cases, using the unitarity gauge

is not convenient for computing Feynman diagrams beyond tree-level, since it can

lead to artificial divergencies in the calculation of loop-integrals1. In this gauge the

1Such gauge dependent divergencies are unphysical and will thus cancel in the sum of all contributing
diagrams.
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propagator becomes

−i
p2 −m2

(
gµν − pµpν

m2

)
. (A.1)

A.2. Electroweak interactions

We do not give the complete set of electroweak Feynman rules. Instead, we list only

those that are needed for the computations performed in this work.

We begin with the interactions between photons with charged fermion fields. They

can be derived from the kinetic Lagrangian replacing the derivative with the gauge-

covariant derivative ∂ → D. We use the convention Dµ = ∂µ + ieQAµ where e > 0 is

the electric charge of a positron and Q the charge of the respective particle in units

of e. The gauge kinetic terms of such minimally coupled charged fermion particles

reads

Lfermion = iψ /Dψ ⊃ −eQψAµψγµψ, (A.2)

resulting in the Feynman rule

Aµ

ψ ψ
= −ieQψγµ.

For the purpose of calculating the NMM in the SM, we are interested in the WWA,

WHA and HHA triple boson interactions. Those can be derived from the gauge

kinetic terms of the W and the Higgs

LW = −1

2
tr [WµνWµν ] , (A.3)

Lφ = (Dµφ)†Dµφ. (A.4)

Here, φ is the Higgs doublet, Wµ is the gauge boson associated with the SU(2)L

symmetry, Bµ the gauge boson associated with the weak hypercharge and Dµφ =

(∂µ + ig1/2Bµ + ig2Wµ)φ. The field tensor is given by

Wµν = ∂µWν − ∂νWµ + ig2 [Wµ,W ν ] , (A.5)

where Wµ =
∑

aW
a
µσa/2 with the Pauli matrices σi. Using the relations of the boson
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fields

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ), (A.6)

Aµ = sin θWW
3
µ + cos θWBµ (A.7)

with the Weinberg angle sin θW = e/g2, cos θW = e/g1 as well as the Higgs doublet

φ = (H+, h + v/
√

2 + iH0/
√

2)T expanded around the vacuum expectation value v

we have all the ingredients for deriving the triple boson Feynman rules

k k′

Aµ

W+
α W−

β

q

= −ie
[
gαβ(−kµ + k′µ) + gβµ(qα − k′α) + gµα(kβ − qβ)

]
,

Aµ

W+
µ H−

= ieMW g
µν ,

k k′

Aµ

H+ H−

= ie(k′µ − kµ).

The SM neutrino charged current interaction is derived from the interaction La-

grangian

Lcc = − g2√
2
lLγ

µUliνLiW
−
µ + h.c. (A.8)

U is the PMNS-matrix and the sum over lepton flavors l = e, µ, τ as well as neutrino

mass eigenstates i = 1, 2, 3 is implicitly assumed. The corresponding Feynman rule is

W+
µ

l νi
= −i g2√

2
U∗liγ

µPL,

W−
µ

νi l
= −i g2√

2
Uliγ

µPL.

The coupling of neutrinos to the charged leptons and Goldstone boson H+ is

obtained from the Yukawa interaction. For a minimal extension one usually adds

right-handed sterile neutrinos introducing the Yukawa couplings Yν . The relevant
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Lagrangian after electroweak symmetry breaking then becomes

LY ukawa = −YlLLφlR − YνLL(iσ2φ
∗)νR + h.c. (A.9)

⊃ − g2ml√
2MW

U∗liνLiH
−lR +

g2mνi√
2MW

UlilLiH
+νR + h.c. (A.10)

where we have used that the non-zero vacuum expectation value of the neutral Higgs

component v leads to masses MW = g2v/2, ml = Ylv/
√

2 and mν = Yνv/
√

2. The

Feynman rule is thus given by

H+

l νi
= −i g2√

2MW
U∗li(mlPR −mνiPL),

H−

νi l
= −i g2√

2MW
Uli(mlPL −mνiPR).

A.3. Majorana fermions

Standard textbooks usually give very detailed information about the Feynman rules

for Dirac fermions. Since Majorana fermion fields are not present in the original SM,

there currently does not exist a wide-spread common way, how to obtain the Feyn-

man rules for Majorana particles in an easy way. Deriving the matrix element each

time from basic principles using Wick contractions, while carefully tracking all minus

signs correctly, seems to be very extensive. However, one can find several simpler

approaches in the literature that help to obtain simplified Majorana Feynman rules

similar to the Dirac case [141–146]. Very helpful pedagogical reviews on Majorana

particles in general can be found in Refs. [29,147]. In this work we use the Feynman

rules as proposed in Ref. [146] which are briefly summarized in this section.

Dirac fields ψ contain the annihilation operator of the particle and the creation

operator of the anti-particle, while Majorana fields χ contain the creation as well as

the annihilation operator of the particle. The field expansions are given by

ψ(x) =

∫
d3p

(2π)32Ep

(
bs(p)us(p)e

−ipx + d†s(p)vs(p)e
ipx
)

, (A.11)

χ(x) =

∫
d3p

(2π)32Ep

(
as(p)us(p)e

−ipx + a†s(p)vs(p)e
ipx
)

. (A.12)

As a consequence Majorana the field contractions χχT as well as χ̄T χ̄ are non-zero
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(unlike for Dirac fermions) and lead to additional propagators. In this way, there ex-

ists a larger number of Feynman diagrams for processes involving Majorana fermions.

Moreover, due to the existence of new Wick contractions, one has to make sure to

keep track of the minus signs arising when commuting two fermion fields.

In order to incorporate these differences, we define the Majorana Feynman rules in

the following way [146]:

1) Majorana fermions do not carry a fermion number flow. Majorana fermion lines

are therefore drawn without arrows. Instead for each fermion chain, an arbitrary

orientation (“fermion flow”) is chosen.

2) When Drawing all possible Feynman diagrams for the given process, one has to

account for additional diagrams, since Majorana fermion lines do not carry arrows.

3) The correct order of the Dirac matrices is the opposite direction as the chosen

fermion flow.

4) The expressions for a fermion propagator has to be modified with respect to

the usual one, if the particle is Dirac and the direction of fermion flow and fermion

number flow are opposite. In that case one has to replace the propagator S(p) with

S(−p).
5) The expression for a vertex has to be modified with respect to the usual one,

if there are Dirac fermion lines attached to that vertex and if the direction of the

fermion flow and the Dirac fermion number flow are opposite. In that case one has

to replace the vertex Γ with the reversed vertex Γ′ = CΓTC−1.

6) The spinors corresponding to the external states depend only on the chosen

fermion flow and are given by

= ūs(p),

= vs(p),

= v̄s(p),

= us(p).



Appendix B

Electromagnetic neutrino-electron

scattering

The most sensitive laboratory experiments measuring the NMM are designed to detect

low electron recoil energies of the neutrino-electron scattering process. Next to the

SM contribution, a non-zero NMM would also contribute to the scattering in form

of the Feynman diagram in Fig. B.1. Early computations of the cross-section can be

found in Refs. [62,148], see also Ref. [149] for a more recent work. Since this process

is crucial for the phenomenological analyses in this thesis, we give a short explicit

derivation of the NMM mediated neutrino-electron cross-section in the following.

k k′

p p′
q

e− e−

νi νf

Figure B.1.: The neutrino-electron scattering process mediated by a NMM. The gray
blob vertex depicts the effective NMM interaction.

It is convenient to calculate the cross-section in terms of the effective NMM opera-

tor. The electric and magnetic moments contribute to similar amount. The relevant

part of the neutrino-photon vertex therefore is
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Λ
νi νf

γ
q

= iσµνqν
Ffi2 (q2)+Gfi2 (q2)γ5

mνi+mνf
,

with the form factors Ffi2 and Gfi2 introduced in Chap. 2. We label the momenta

as shown in Fig. B.1. In the massless limit, the incoming left-chiral neutrino is at

good approximation in a negative helicity state. We thus obtain the following matrix

element for this process

iM = ūs′(k
′)ieγµus(k)

−i
q2
ūr(p

′)iσµνqν
Ffi2 (q2) + Gfi2 (q2)γ5

mνi +mνf

u−(p), (B.1)

where us(k) denotes a spinor of momentum k and spin s. We assume the ingoing

electrons to be unpolarized. Averaging over the initial electron spin and summing

over the spins of the final spinors, we obtain

|M |2 =
1

2

∑
s,r,s′

MM∗ =
e2

2q4

∑
s,r,s′

[
ūs′(k

′)γµus(k)ūs(k)γ0γ†νγ
0us′(k

′)
]
·

·
[
ūr(p

′)σµαqα
Ffi2 (q2) + Gfi2 (q2)γ5

mνi +mνf

u−(p)·

· ū−(p)γ0

(
σνβqβ

Ffi2 (q2) + Gfi2 (q2)γ5

mνi +mνf

)†
γ0ur(p

′)

]
. (B.2)

Using the Dirac properties γ0γ†µγ0 = γµ, γ0σ†µνγ0 = σµν as well as γ0γ†5σ
†
µνγ0 =

−σµνγ5, one arrives at

|M |2 =
e2

2q4

∑
s,r,s′

tr
[
us′(k

′)ūs′(k
′)γµus(k)ūs(k)γν

]
tr

[
ur(p

′)ūr(p
′)σµαqα·

· F
fi
2 (q2) + Gfi2 (q2)γ5

mνi +mνf

u−(p)ū−(p)σνβqβ
Ffi2

∗
(q2)− Gfi2

∗
(q2)γ5

mνi +mνf

]
. (B.3)

The polarized spinor relations in the ultra-relativistic limit are [35]

us(p)ūs(p) =
1 + sγ5

2
/p, (B.4)

vs(p)v̄s(p) =
1− sγ5

2
/p, (B.5)
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p
k′

p′
θ

Figure B.2.: Momenta and scattering angle in the lab frame, where the initial electron
is at rest, i.e. k = 0.

and for the unpolarized electron spinors we use∑
s

us(p)ūs(p) = /p+m, (B.6)∑
s

vs(p)v̄s(p) = /p−m, (B.7)

and obtain for the averaged squared matrix element

|M |2 =
e2

2q4
tr
[
( /k′ +me)γµ(/k +me)γν

]
tr

[
/p′σµαqα·

· F
fi
2 (q2) + Gfi2 (q2)γ5

mνi +mνf

1− γ5

2
/pσ

νβqβ
Ffi2

∗
(q2)− Gfi2

∗
(q2)γ5

mνi +mνf

]
. (B.8)

For the evaluation of the Dirac traces we use mathematica package X [92]. In terms

of the Mandelstam variables

s = (k′ + p)2 = (k + p)2, (B.9)

t = (k − k′)2 = (p′ − p)2 = q2, (B.10)

u = (k − p′)2 = (k′ − p)2, (B.11)

s+ t+ u = 2m2
e, (B.12)

we obtain

|M |2 = 4e2

∣∣∣∣∣Ffi2 (q2)− Gfi2 (q2)

mνi +mνf

∣∣∣∣∣
2

(m2
e − s)(m2

e − u)

t
. (B.13)

The differential cross-section can be computed from the phase space and the matrix
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element according to [35]

dσ =
|M |2

4(k · p)
dk′dp′

(2π)24E′eE
′
ν

δ4(p+ k − p′ − k′). (B.14)

For the evaluation of the phase space we parametrize the momenta in the lab frame

as depicted in Fig. B.2 with the 4-momenta explicitly given by

kµ =
(
me 0 0 0

)
, (B.15)

pµ =
(
Eν 0 0 Eν

)
, (B.16)

k′µ =
(
T +me 0 |k′| sin θ |k′| cos θ

)
, (B.17)

p′µ =
(
Eν − T 0 −|k′| sin θ Eν − |k′| cos θ

)
, (B.18)

where one finds |k′| =
√
T 2 + 2meT . Here, T denotes the electron recoil energy. The

integration over the phase space can now be performed in four steps.

1) Integrate over dp′δ3(k′ + p′ − k− p) and thereby eliminate p′.

2) Use dk′ = 2π|k|2d(cos θ)d|k|.

3) The remaining integral is of the form

I =

∫
A
(
|k′|, E′e(|k′|), E′ν(|k′|)

)
δ
(
Ee + Eν − E′e(|k′|)− E′ν(|k′|)

)
d|k|, (B.19)

and can be simplified by defining x ≡ Ee + Eν − E′e − E′ν . The correct integration

over the δ function then gives

I =

∫
A(x)δ(x)dx

(
dx

d|k|

)−1

= A(x)

(
dx

d|k|

)−1
∣∣∣∣∣
x=0

, (B.20)

where we find(
dx

d|k|

)−1

=

(
dE′e
d|k| +

dE′ν
d|k|

)−1

=

( |k′|
E′e

+
|k′| − Eν cos θ

E′ν

)−1

. (B.21)

4) For expressing the final result in terms of dT we use

−2meT = (k′ − k)2 = t = (p′ − p)2 = −2
(
Eν(Eν − T )− Eν(Eν − |k′| cos θ)

)
(B.22)
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and find

cos θ =
me + Eν
Eν

√
T

T + 2me
, (B.23)

d(cos θ)

dT
=
me(Eν +me)

Eν

1√
T

1

(2me + T )3/2
. (B.24)

Putting everything together we finally arrive at the differential cross-section

dσ

dT
=
e2

4π

∣∣∣∣∣Ffi2 (q2)− Gfi2 (q2)

mνi +mνf

∣∣∣∣∣
2(

1

T
− 1

Eν

)
=
e2

4π

∣∣∣µfi − iεfi∣∣∣2( 1

T
− 1

Eν

)
. (B.25)

In the second equality we used Eq. (2.23) as well as the limit q2 → 0. Note that the

computation is performed for neutrino fields with distinct masses, i.e. the indices f

and i refer to neutrino mass eigenstates. Since at the point of detection, neutrino

fields are typically in a (coherent) superposition of neutrino mass eigenstates, the

quantity |µfi − iεfi|2 has to be replaced by the effective NMM (µeff)2, which takes

into account oscillation effects, see Sec. 2.4.



Appendix C

Projectors for neutrino electromagnetic

form factors

A standard technique for calculations of quantities like the electric and magnetic

dipole moments is to project out the relevant Lorentz structure before evaluating

the full loop-integral. Such a technique is essential, especially when dealing with

one, two or higher loop orders. In the following, we derive the projection operators

for the electromagnetic form factors. We used this derivation at an earlier stage

of the package X [92] development in order to cross-check the projectors for the

case of transition moments. For a derivation of the diagonal form factors, see for

example [150].

Λ
mi mk

q

p p′

Figure C.1.: Effective NMM operator.

We start by the most general matrix element of the electromagnetic vertex with

two different external masses as depicted in Fig. C.1. Note that unlike in Eq. (2.21)

we absorb the mass dimension into the form factors F2 and G2 for simplicity. There

are six linearly independent Dirac operators. We therefore define

Λkiµ = Fki1 γµ + Fki2 iσµνq
ν + Fki3 qµ +

(
Gki1 γµ + Gki2 iσµνq

ν + Gki3 qµ

)
γ5. (C.1)

In the following we skip the indices for better readability. We choose as ansatz for



98 C. Projectors for neutrino electromagnetic form factors

the projectors

PµFi = (/p+mi) [aiγ
µ + biPµ + ciqµ] (/p

′ +mk), (C.2)

PGi = (/p+mi) [diγ
µ + eiPµ + fiqµ] γ5(/p

′ +mk), (C.3)

where we have defined Pµ = (pµ + p′µ)/2. Now, our task is to find the correct

coefficients ai-fi and verify that the projectors fulfill

tr[PµFiΛµ] = Fi, tr[PµGiΛµ] = Gi. (C.4)

Applying the Dirac trace with the help of mathematica package Feyn Arts [151] we

find

tr[PµFiΛµ] = F1

[
ai
(
2(d− 2)q2 − 8(d− 1)∆2 + 8M2

)
+ bi

(
2M(4M2 − q2)

)
+ ci(q

2 − 4M2)4∆
]

+ F2

[
ai(d− 1)4M + bi(4M

2 − q2)
]
(q2 − 4∆2)

+ F3

[
4∆ai + 4∆Mbi − 2q2ci

]
(q2 − 4M2), (C.5)

tr[PµGiΛµ] = G1

[
di
(
2(d− 2)q2 − 8(d− 1)M2 + 8∆2

)
+ ei

(
2∆(4∆2 − q2)

)
+ fi(q

2 − 4∆2)4M
]

+ G2

[
di(d− 1)4∆ + ei(4∆2 − q2)

]
(4M2 − q2)

+ G3

[
4Mdi + 4M∆ei − 2q2fi

]
(4∆2 − q2), (C.6)

where we have defined M = (mi +mk)/2 and ∆ = (mi −mk)/2. In order to be able

to use dimensional regularization in the evaluation process of the loop-integrals, we

have used that the trace of the unit matrix equals to d. Furthermore for displaying

the result in a nicer form we have used the kinematical relations

p · p′ = 1

2
(m2

i +m2
k − q2), (C.7)

p · q =
1

2
(−m2

i +m2
k − q2), (C.8)

p′ · q =
1

2
(m2

i −m2
k − q2), (C.9)

P · q =
1

2
(−m2

i +m2
k). (C.10)

In one last step Eqs. (C.5) and (C.5) can be solved in order to reproduce Eq. (C.4).
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In doing so, we finally obtain the projector coefficients

a1 =
q2(q2 − 4M2)

2A
, b1 =

2(d− 1)Mq2

A
, c1 =

∆
(
4(d− 2)M2 + q2

)
A

,

a2 =
M(4M2 − q2)

A
, b2 =− (d− 2)q2 + 4M2

A
, c2 =− 2(d− 1)∆M

A
,

a3 =− ∆(4M2 − q2)

A
, b3 =

4(d− 1)∆M

A
, c3 =

4(d− 1)∆2 + (d− 2)(4M2 − q2)

2A
,

(C.11)

d1 =
q2(q2 − 4∆2)

2B
, e1 =

2(d− 1)∆q2

B
, f1 =

M
(
4(d− 2)∆2 + q2

)
B

,

d2 =
∆(q2 − 4∆2)

B
, e2 =

(d− 2)q2 + 4∆2

B
, f2 =

2(d− 1)∆M

B
,

d3 =− M(q2 − 4∆2)

B
, e3 =− 4(d− 1)∆M

B
, f3 =− 4(d− 1)M2 − (d− 2)(q2 − 4∆2)

2B
,

(C.12)

with

A = (d− 2)(q2 − 4M2)2(q2 − 4∆2), (C.13)

B = (d− 2)(q2 − 4M2)(q2 − 4∆2)2. (C.14)

In the limit ∆ = 0 and M = m the projectors for the diagonal form factors are

reproduced correctly and agree with the projectors of package X [92].



Appendix D

List of loop-integrals

In the following we explicitly list some of the loop-integrals that appear in our calcu-

lations of NMM loop diagrams.

The loop-integrals for the Dirac neutrinos in the SM calculation (Sec. 4.1.1) are

Da = U∗lfUli
eg2

2

2

∫
d4k

(2π)4

γαPL(/k +ml)γ
βPL(

k2 −m2
l

) (
(p− k)2 −M2

W

) (
(p′ − k)2 −M2

W

) ·
·
(
gαβ(2k − p− p′)µ + gαµ(2p′ − p− k)β + gµβ(2p− p′ − k)α

)
, (D.1)

Db = U∗lfUli
eg2

2

2

∫
d4k

(2π)4

(mlPR −mνfPL)(/k +ml)γµPL(
k2 −m2

l

) (
(p− k)2 −M2

W

) (
(p′ − k)2 −M2

W

) , (D.2)

Dc = U∗lfUli
eg2

2

2

∫
d4k

(2π)4

γµPL(/k +ml)(mlPL −mνiPR)(
k2 −m2

l

) (
(p− k)2 −M2

W

) (
(p′ − k)2 −M2

W

) , (D.3)

Dd = −U∗lfUli
eg2

2

2M2
W

∫
d4k

(2π)4

(mlPR −mνfPL)(/k +ml)(mlPL −mνiPR)(
k2 −m2

l

) (
(p− k)2 −M2

W

) (
(p′ − k)2 −M2

W

) ·
· (2k − p− p′)µ, (D.4)

De = U∗lfUli
eg2

2

2

∫
d4k

(2π)4

γαPL(/p′ − /k +ml)γµ(/p− /k +ml)γαPL(
k2 −M2

W

) (
(p− k)2 −m2

l

) (
(p′ − k)2 −m2

l

) , (D.5)

Df = −U∗lfUli
eg2

2

2M2
W

∫
d4k

(2π)4

(mlPR −mνfPL)(/p′ − /k +ml)γµ(/p− /k +ml)(
k2 −M2

W

) (
(p− k)2 −m2

l

) (
(p′ − k)2 −m2

l

) ·
· (mlPL −mνiPR). (D.6)

The labeling is referring to the corresponding Feynman diagram in Fig. 4.1.

For the Majorana case, calculated in unitarity gauge, there are the following dia-

grams in addition to Eqs. (D.1) and (D.5) with the W boson propagator replaced by



101

the one for unitarity gauge

DM
a = U∗liUlf

eg2
2

2

∫
d4k

(2π)4

γαPR(−/k +ml)γβPR(
k2 −m2

l

) (
(p− k)2 −M2

W

) (
(p′ − k)2 −M2

W

) ·
·
(
gαα

′ − (p′ − k)α(p′ − k)α
′

M2
W

)(
gββ

′ − (p− k)β(p− k)β
′

M2
W

)
·

·
(
gα′β′(2k − p− p′)µ + gα′µ(2p′ − p− k)β′ + gµβ′(2p− p′ − k)α′

)
, (D.7)

DM
b = −U∗liUlf

eg2
2

2

∫
d4k

(2π)4

γαPR(−/p′ + /k +ml)γµ(−/p+ /k +ml)γβPR(
k2 −M2

W

) (
(p− k)2 −m2

l

) (
(p′ − k)2 −m2

l

) ·
·
(
gαβ − kαkβ

M2
W

)
. (D.8)

In the context of the classification of NMM couplings in Sec. 4.2 we calculated the

loop-integrals for the generic scalar case, which are

Da = eQS

∫
d4k

(2π)4

(gflPL + hflPR)(/k +mFl)(g
∗
ilPR + h∗ilPL)

(k2 −m2
Fl

)
(
(p− k)2 −m2

S

) (
(p′ − k)2 −m2

S

) ·
·
(
pµ + p′ν − 2kµ

)
, (D.9)

Db = eQF

∫
d4k

(2π)4

(gflPL + hflPR)(/p′ − /k +mFl)γµ(/p− /k +mFl)

(k2 −m2
S)
(

(p− k)2 −m2
Fl

)(
(p′ − k)2 −m2

Fl

) ·
· (g∗ilPR + h∗ilPL), (D.10)

and for the generic vector couplings

Da = eQV

∫
d4k

(2π)4

γρ(gflPL + hflPR)(/k +mFl)γ
ν(g∗ilPL + h∗ilPR)(

k2 −m2
Fl

) (
(p− k)2 −m2

V

) (
(p′ − k)2 −m2

V

) ·
·
(
gαβ(2k − p− p′)µ + gαµ(2p− p′ − k)β + gµβ(2p′ − p− k)α

)
·

·
(
gαν −

(p− k)ν(p− k)α

m2
V

)(
gβρ −

(p′ − k)ρ(p
′ − k)β

m2
V

)
, (D.11)

Db = −eQF
∫

d4k

(2π)4

γβ(gflPL + hflPR)(/p′ − /k +mFl)γµ(/p− /k +mFl)(
k2 −m2

V

) (
(p− k)2 −m2

Fl

)(
(p′ − k)2 −m2

Fl

) ·
· γα(g∗ilPL + h∗ilPR)

(
gαβ −

kαkβ
m2
V

)
. (D.12)
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For Majorana neutrinos we additionally have the contributions for the scalar case

DM
a = −eQS

∫
d4k

(2π)4

(g∗flPR + h∗flPL)(−/k +mFl)(gilPL + hilPR)

(k2 −m2
Fl

)
(
(p− k)2 −m2

S

) (
(p′ − k)2 −m2

S

) ·
·
(
pµ + p′ν − 2kµ

)
, (D.13)

DM
b = eQF

∫
d4k

(2π)4

(g∗flPR + h∗flPL)(−/p′ + /k +mFl)γµ(−/p+ /k +mFl)

(k2 −m2
S)
(

(p− k)2 −m2
Fl

)(
(p′ − k)2 −m2

Fl

) ·

· (gilPL + hilPR), (D.14)

and for the vector case

DM
a = −eQV

∫
d4k

(2π)4

γρ(g∗flPR + h∗flPL)(−/k +mFl)γ
δ(gilPR + hilPL)(

k2 −m2
Fl

) (
(p− k)2 −m2

V

) (
(p′ − k)2 −m2

V

) ·
·
(
gαβ(2k − p− p′)µ + gαµ(2p− p′ − k)β + gµβ(2p′ − p− k)α

)
·

·
(
gαδ −

(p− k)δ(p− k)α

m2
V

)(
gβρ −

(p′ − k)ρ(p
′ − k)β

m2
V

)
, (D.15)

DM
b = −eQF

∫
d4k

(2π)4

γβ(g∗flPR + h∗flPL)(−/p′ + /k +mFl)γµ(−/p+ /k +mFl)(
k2 −m2

V

) (
(p− k)2 −m2

Fl

)(
(p′ − k)2 −m2

Fl

) ·

· γα(gilPR + hilPL)

(
gαβ −

kαkβ
m2
V

)
. (D.16)
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In the left-right symmetric model we have found in Sec. 4.4 the loop-integrals

Da =
eg2

2

∫
d4k

(2π)4

γα(PL + κ1κ2

v2
R
PR)(/k +me)γ

β(PL + κ1κ2

v2
R
PR)

(k2 −m2
e)
(

(p− k)2 −M2
Wl

)(
(p′ − k)2 −M2

Wl

) ·
·
(
gαβ(2k − p− p′)µ + gαµ(2p′ − p− k)β + gµβ(2p− p′ − k)α

)
, (D.17)

Db = −eg
2

2

(
1− κ2

1κ
2
2

κ2
1 + κ2

2

1

v2
R

)
·

·
∫

d4k

(2π)4

(GLPL +GRPR)(/k +me)γµ(PL + κ1κ2

v2
R
PR)

(k2 −m2
e)
(

(p− k)2 −M2
Wl

)(
(p′ − k)2 −M2

Wl

) , (D.18)

Dc = −eg
2

2

(
1− κ2

1κ
2
2

κ2
1 + κ2

2

1

v2
R

)
·

·
∫

d4k

(2π)4

γµ(PL + κ1κ2

v2
R
PR)(/k +me)(GRPL +GLPR)

(k2 −m2
e)
(

(p− k)2 −M2
Wl

)(
(p′ − k)2 −M2

Wl

) , (D.19)

Dd = − 2e

κ2
1 + κ2

2

∫
d4k

(2π)4

(GLPL +GRPR)(/k +me)(GRPL +GLPR)

(k2 −m2
e)
(

(p− k)2 −M2
Wl

)(
(p′ − k)2 −M2

Wl

) ·
· (2k − p− p′)µ, (D.20)

De =
eg2

2

∫
d4k

(2π)4

γα(PL + κ1κ2

v2
R
PR)(/p′ − /k +me)γµ(/p− /k +me)γα(

k2 −M2
Wl

)
((p− k)2 −m2

e) ((p′ − k)2 −m2
e)
·

· (PL +
κ1κ2

v2
R

PR), (D.21)

Df = − 2e

κ2
1 + κ2

2

∫
d4k

(2π)4

(GLPL +GRPR)(/p′ − /k +me)γµ(/p− /k +me)(
k2 −M2

Wl

)
((p− k)2 −m2

e) ((p′ − k)2 −m2
e)
·

· (GRPL +GLPR), (D.22)

where we have defined for better readability

GL = mν +
κ1κ2

(κ2
1 + κ2

2)v2
R

(
mνκ1κ2 −me(κ

2
1 + κ2

2)
)

+O(v−3
R ), (D.23)

GR = −me +
κ1κ2

(κ2
1 + κ2

2)v2
R

(
−meκ1κ2 +mν(κ2

1 + κ2
2)
)

+O(v−3
R ). (D.24)

(D.25)
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