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Untersuchung der mikroskopischen Umgebung physiologischer Natrium-
ionen durch Beobachtung derT ∗

2 -Relaxation

Natrium (23Na)-Ionen spielen eine entscheidende Rolle in der Gewebephysiologie
und können aufgrund eines Kernspins von 3/2 mittels Magnetresonanztomographie
(MRT) nichtinvasiv detektiert werden. Die Wechselwirkung des elektrischen Kern-
Quadrupolmoments mit dem externen Feldgradienten bewirkt einen schnellen bi-
exponentiellen Signalzerfall, welcher einen direkten Einblick in die mikroskopische
Umgebung ermöglicht. Ziel dieser Arbeit war eine zeite�ziente In-vivo-Messung
der transversalen Relaxationszeiten T ∗2,s und T ∗2,l. Dies wurde für Hirnparenchym
durch Optimierung der zeitlichen Abtastung und einer neuartigen Hochfrequenz-
spule erreicht, was eine Steigerung des Signal-zu-Rauschverhältnisses von bis zu
145 % möglich machte. Mit dem optimierten Abtastmuster wurden die Relaxations-
zeiten in gesunder weißer Gehirnsubstanz zu T ∗2,s /T ∗2,l = 4,2 ± 0,4 ms / 34,4 ± 1,5 ms
ermittelt. Im Vergleich zu einer linearen Abtastung konnte die mittlere Unsicherheit
um bis zu 29 % reduziert werden. Monte-Carlo-Simulationen zeigten weiterhin eine
Verminderung der mittleren Abweichung um 73 %. Ausgehend von den T ∗2 -Werten
konnte die mittlere Korrelationszeit der Wechselwirkung mit 39,3 ± 2,5 ns abge-
schätzt werden.

Probing the microscopic environment of physiological sodium ions
through observation of theT ∗

2 relaxation

Sodium (23Na) ions play an essential role in the physiology of living tissue and
can be observed non-invasively due to a nuclear spin of 3/2 via magnetic resonance
imaging (MRI). The interaction of the electrical quadrupole moment of the nu-
cleus and the external �eld gradient causes a rapid biexponential signal relaxation,
which represents a direct probe into the microscopic environment. The aim of
this thesis was to develop a time-e�cient in vivo measurement of the apparent
transverse relaxation times (T ∗2,s, T ∗2,l). This was realized for brain parenchyma
by optimization of the temporal sampling and a novel radio frequency coil lead-
ing to an increase in signal-to-noise ratio of up to 145 %. With the optimized
pattern relaxation times were determined in healthy human white matter to be
T ∗2,s /T ∗2,l = 4.2 ± 0.4 ms / 34.4 ± 1.5 ms. Compared to linear sampling, up to 29 %
reduction in mean uncertainty was achieved. Monte-Carlo simulations further
demonstrated a 73 % decrease in bias. Based on the T ∗2 values, the average correla-
tion time of the interaction could be estimated at 39.3 ± 2.5 ns.
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1 Introduction

Sodium (23Na) ions play an essential role in the physiology of living tissue. Due to a nuclear
spin of 3/2, the 23Na ion distribution can be observed non-invasively via magnetic resonance
imaging (MRI), which has �rst been demonstrated in humans by Hilal et al. [1985] at 1.5 T.
In biological tissue, the 23Na concentration is precisely regulated by the 23Na-39K-ATPase
("sodium-potassium pump") and pathologies are often manifested in a local concentration
change [Boada et al., 2005; Madelin and Regatte, 2013]. To this end, special e�ort has been put
into quantitative mapping of the tissue 23Na content (e.g. [Thulborn et al., 1999b; Lommen
et al., 2016a]). Amongst other developments, dedicated acquisition strategies [Konstandin
and Nagel, 2014] and higher magnetic �eld strength [Schepkin et al., 2014; Mirkes et al.,
2015] increased the signal-to-noise ratio (SNR) e�ciency and allowed 23Na MRI to evolve
into a growing tool for clinical research [Madelin and Regatte, 2013].

23Na nuclei experience a strong interaction with local electric �eld gradients arising from
the microscopic environment due to their electric quadrupole moment [Hubbard, 1970;
Rooney and Springer, 1991b]. This interaction results in a rapid biexponential decay of
the transverse magnetization in the order of a few milliseconds with a short component of
T ∗2,s ≈ 0.2 ms to 5.0 ms and a longer component ofT ∗2,l ≈10 ms to 64 ms (cf. Table 2.3). In the
case of free ions, a monoexponential decay is observed (T ∗2 ≈ 60 ms) because the correlation
time τc of the interaction is short compared to the Larmor frequency (ω0τc � 1). Right from
the beginning, the rapid signal relaxation has been a challenge for 23Na imaging. On the
other hand, the strong interaction also provides potentially valuable information about the
microscopic tissue structure. This might allow the extraction of additional physiological
information which is not contained in concentration quanti�cation or hydrogen (1H) relax-
ation processes [Rooney and Springer, 1991b; Nagel et al., 2011]. The sensitivity of the 23Na
signal decay to motion restriction lead to the idea of separating the signal arising from the
extracellular space from intracellular ions. Di�erent approaches have been proposed such as
multiple-quantum �ltering [Boada et al., 2004; Tanase and Boada, 2005; Fleysher et al., 2010;
Matthies et al., 2010], shift reagents [Winter and Bansal, 2001; Gupta and Gupta, 1982], or
image contrasts with a weighting towards the intracellular space derived from multi-echo
acquisitions [Qian et al., 2015; Stobbe and Beaulieu, 2005; Nagel et al., 2011; Benkhedah
et al., 2013b; Madelin et al., 2014]. For a deeper understanding, precise knowledge of the
23Na signal relaxation would be of high value.
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1 Introduction

Due to a low tissue abundance in the millimolar range, the SNR of 23Na MRI is by four orders
of magnitude lower than the SNR of 1H MRI. Therefore, �rst in vivo measurements of the
apparent transverse relaxation T ∗2 were performed by global sampling of the free induction
decay (FID) [Nordenskiold et al., 1984; Cope, 1970]. The advances in SNR e�ciency then
allowed compartment-wise determination [Nagel et al., 2011] and �nally spatially resolved
maps were presented [Lu et al., 2011]. Nevertheless, the low signal still limits reliability as
well as detailed analysis of the signal behavior. This is re�ected in the wide variation of
reported relaxation times.

The observation of the 23Na signal relaxation faces a trade-o� between two main chal-
lenges: low SNR and a fast biexponential signal decay in the range of the readout time
(TRO = 2 ms to 20 ms and mostly TRO/T

∗
2,s ≥ 1). Consequently, the acquisition of su�cient

information about the decay dynamics is challenging and often multiple repetitions of a
multi-echo measurement are required. Due to the rapid signal decay, center-out FID sam-
pling strategies are used [Boada et al., 1997; Gurney et al., 2006; Nagel et al., 2009]. In this
case, the acquisition time of each echo can be shifted arbitrarily to a later time point, which
might be useful to capture the speci�c shape of the signal decay. However, it renders the
search for an optimal sample distribution more complicated.

For 1H MRI, the quanti�cation of the transverse relaxation time and dedicated temporal
sampling schemes have been under extensive investigation [Poon and Henkelman, 1992;
Jones et al., 1996; Anand et al., 2009; Uddin et al., 2013; Linnet and Teilum, 2016]. Acquisition
schemes range from linear sampling to logarithmic patterns towards more sophisticated
strategies as proposed by Jones et al. [1996]. The latter authors used the Cramér-Rao theory
to analytically derive an optimal sampling scheme for a speci�cT2 value. However, the trans-
fer of these strategies to 23Na MRI is limited by low SNR and the fast biexponential decay.
Common approaches employing signal ratios [Haacke et al., 1999] can only be applied to
the long component using late echo times [Fleysher et al., 2009]. Furthermore, conventional
fast T2 sampling schemes [Poon and Henkelman, 1992; Pell et al., 2006] are not applicable to
23Na MRI due to high speci�c absorption rate (SAR) and increased echo spacings. Therefore,
most studies focus on the apparent relaxation T ∗2 .

The aim of this work was to establish a reliable in vivo measurement of the T ∗2 decay of the
23Na MRI signal. To this end, the sampling e�ciency needed to be increased in order to
achieve acceptable measurement durations. The main focus was put on the distribution of
temporal sampling points which was optimized for the application in brain parenchyma.
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2 Theory and background

In this chapter, the basic physical principles used in this work are described. First, nuclear
magnetic resonance and the application to magnetic resonance imaging is discussed. De-
tails of relaxation theory with focus on the electric quadrupole interaction are given and
measurement methods for the transverse relaxation are described. Some background on
image reconstruction from k-space data is provided as well.

2.1 Nuclear magnetic resonance

The phenomenon of nuclear magnetic resonance (NMR) occurs when atoms with a nuclear
spin are brought into a magnetic �eld. This enables absorption and emission of a resonant
radio frequency (RF) �eld. A short introduction will be given on the basis of Slichter [1989].

2.1.1 Zeeman interaction

The nucleus of an atom with spin Î exhibits a nuclear magnetic moment µ̂. It is connected
to the spin via the gyromagnetic ratio γ by

µ̂ = γ Î . (2.1)

The gyromagnetic ratio is a constant speci�c to each nucleus. In this work, 1H and 23Na
are of interest having values of γ1H = 42.58 MHz/T and γ23Na = 11.26 MHz/T. The energy
eigenvalues of the spin states |s,m〉 are

Î
2
|s,m〉 = I (I + 1)~2 |s,m〉 and (2.2)

Îz |s,m〉 =m~ |s,m〉 . (2.3)

Here,m is the magnetic quantum number running fromm = [−I ,−I + 1, . . . , I ]. If immersed
in an external magnetic �eld B0 = B0ez in z-direction, the magnetic interaction is described
by the Zeeman Hamiltonian

ĤZ = −µ̂B0 , (2.4)
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2 Theory and background

which, when acting on the state |s,m〉, has the energy eigenvalues

Em = −γ~mB0 . (2.5)

A splitting into 2I + 1 equidistant energy levels is observed with a di�erence of

∆E = γB0~ . (2.6)

2.1.2 Macroscopic magnetization

In a system containing a large number of atoms, a statistical analysis is more practical. The
occupation number of a statem is given by

pm =
e−Em/kBT

Z
=

e−γ~mB0/kBT

Z
, (2.7)

with kB being the Boltzmann constant and T the temperature. The the sum of states Z is
de�ned by

Z =
I∑

m=−I

e−Em/kBT . (2.8)

Applying the density matrix formalism with

ρ̂ =
∑
m

pm |m〉 〈m | (2.9)

the expectation value can be determined via the trace

〈Î 〉 = tr ρ̂Î . (2.10)

The macroscopic observable magnetization is the expectation value of the volume average
over all atoms in the volume V

〈M̂〉 =
1
V

N∑
i=1
〈µ̂i〉 =

1
V

N∑
i=1

γ 〈Î i〉 . (2.11)

Using the high temperature approximation (Em � kbT ), this leads to

M0 ≈
N

V

γ 2~2I (I + 1)
3kBT

B0 . (2.12)

Thus, the macroscopic magnetization M0 is proportional to the main �eld B0 and the density
of atoms in the volume V . Higher temperature T leads to a decrease in magnetization.
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2.1 Nuclear magnetic resonance

2.1.3 Equation of motion and radio frequency excitation

The temporal evolution of the magnetization can be determined with the von-Neumann
equation

d
dt 〈µ̂〉 =

i

~
[
Ĥ , µ̂

]
. (2.13)

Applying the knwon commutator relations, this leads to
d
dtM = γM × B , (2.14)

where classical vectors are used since these are macroscopic observables. In the general
case, the magnetization precesses around the magnetic �eld B with the Larmor frequency
ω0 = γB0. The transverse component M⊥ can be observed by induction. In order to bring
the magnetization from the equilibrium into the transverse plane, a resonant RF pulse
B1 = B1 exp(−iωRFt)ex is irradiated. In a rotating frame with frequency ω0, an e�ective �eld
Be� is seen and Equation 2.14 is altered to

d
dtM = γM × Be� = γM ×

©­«
B1
0

B0 −
ωRF
γ

ª®¬ . (2.15)

In case of a resonant pulse ωRF = ω0, a rotation around the axis of B1 occurs. The angle of
rotation is dependent on the amplitude B1(t) and duration tp of the pulse

α = γ

∫ tp

t=0
B1(t)dt . (2.16)

In this work, mostly rectangular pulses without temporal modulation are applied which
leads to α = γB1tp .

2.1.4 Relaxation of the NMR signal

The observed NMR signal represents an excited state, which decays over time due to di�erent
types of interactions of the nuclei with their environment. The time required to dissipate the
excitation energy to the environment is described by the time constantT1, termed spin-lattice
relaxation time. However, the decay of the measured signal is not only due to T1 but also
the coherence of the whole spin system gradually decreases over time. This loss of phase
coherence is characterized by the spin-spin relaxation time T2. An empirical description of
the dynamics of the magnetization is given by the Bloch equations [Bloch, 1946], which are
in the rotating frame

dM
dt =

©­­«
− 1
T2

0 0
0 − 1

T2
0

0 0 − 1
T1

ª®®¬M +
©­«

0
0
M0
T1

ª®¬ . (2.17)
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2 Theory and background

When de�ning the transverse component of the magnetization M⊥ = Mx + iMy and a
longitudinal part in the direction of the main �eld M‖ = Mz , the signal decay after a resonant
RF excitation pulse at time t is described by

M⊥(t) = M0e−t/T2 and (2.18)
M‖(t) = M0 −

(
M0 −M‖(0)

)
e−t/T1 . (2.19)

In practice, the observed transverse decay is shortened by dephasing caused by local static
�eld inhomogeneities stemming e.g. from susceptibility changes between tissues. This
apparent relaxation time T ∗2 is connected to the true T2 through

1
T ∗2
=

1
T2
+

1
T ′2
. (2.20)

The contribution from inhomogeneities of amplitude ∆B0 can be approximated by a local o�-
resonance frequency ∆ω = γ∆B0 = 1/T ′2. The apparent relaxation T ∗2 is shown as function
of the o�-resonance frequency in Figure 2.1.
The signal relaxation is speci�c to the microscopic structure of the object under investigation.
For medical imaging, the signal relaxation varies over tissues and is altered in pathologies.
This allows to obtain the high soft tissue contrast of MRI. For 1H MRI, the dominating
relaxation path is the magnetic dipole-dipole interaction between neighboring nuclei due to
their magnetic moment. The 23Na NMR dynamics are dominated by a quadrupole interaction
of the nucleus with the external electric �eld gradient as explained in more detail in the
following.

Transition probability and spectral density

A description for the relaxation processes of more quantitative nature can be given using
the theory developed by Bloembergen et al. [1948]. In case of a stationary perturbation, the
expectation value of a transition due to an interaction, such as the dipole-dipole or electric
quadrupole interaction, is given by the correlation functionGkl (τc). The correlation function
is a measure of similarity between the interaction Hamiltonian ĤIA at time t0 and at time
t = t0 + τc . The probabilityWkl for a transition from state l to state k can then be formulated
as

Wkl =
1
~2

∫ +∞

−∞

Gkle−i(k−l)τdτ . (2.21)

The time τc is the correlation time and describes the average time scale of the interaction.
Thus, for two uncorrelated states Gkl = 0 at all τc . Due to di�usion and other processes,
nuclei in an NMR experiment exhibit some sort of motion which can be characterized by τc .
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2.1 Nuclear magnetic resonance
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Figure 2.1: Apparent relaxation T ∗2
as function of T2 and o�-resonance
frequency ∆ω. The white line indi-
cates a 10 % deviation betweenT2 and
T ∗2 . For higher relaxation times, the
relative impact of o�-resonances is
stronger than for shorter T2.

In Equation 2.21, the integral resembles a Fourier transform of the correlation function. It is
of practical use, to de�ne the spectral density

Jkl (ω) =

∫ +∞

−∞

Gkl (τ )e−iωτdτ , (2.22)

which then allows to express the transition probability by

Wkl =
Jkl (k − l)

~2 . (2.23)

Since the Jkl give the probability of the interaction to happen at frequency ω, it is a measure
of how likely a transition at this frequency is to happen. Thus, signal relaxation is a function
of the amplitude of the spectral density at the resonance ω = ω0. If an exponential decay of
the correlation function is assumed, the spectral density is given by

J (ω) =
τc

1 + (ωτc)2
. (2.24)

From the transition probability, the relaxation constants T1 and T2 can be estimated. For the
simple case of isotropic liquids they are

1
T1
= K [J (ω0) + 4J (2ω0)] and (2.25)

1
T2
=
K

2 [3J (0) + 5J (ω0) + 2J (2ω0)] . (2.26)

The constant K is the coupling constant of the dipole-dipole interaction and J (0) = τc . In
Figure 2.2, the shape of the spectral density for an exponential correlation function is shown
for three values of τc and the relaxation times following from Equation 2.26 as function of
the τc . Applying the Bloemberg-Purcell-Pound theory to 3/2 nuclei allows understanding
their decay behavior as will be described in the next section.
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2 Theory and background
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Figure 2.2: Spectral density J and relaxation times T1 and T2 for varying correlation times
τc . The correlation times shown left correspond to the upper and lower limit of the right
�gure. The spectral density is highest at τcω0 ≈ 1 and lowest T1 relaxation is found for τc in
this range. The T2 relaxation gradually declines for increasing τc . In the extreme narrowing
limit τcω0 � 1, the relaxation times approach each other and T1 = T2 (right).

�adrupole interaction

The 23Na nucleus possesses a spin of 3/2 [Rabi and Cohen, 1934] and therefore exhibits a
nuclear quadrupole moment. For a description of the 23Na NMR signal relaxation, it is
su�cient to consider the quadrupole interaction since it is two to three orders of magnitude
stronger than the dipole-dipole interaction [Werbelow, 2007]. A derivation of the quadrupole
interaction is given in following based on Slichter [1989].
For nuclei with a spin ≥ 1, the nuclear charge density ρ is not symmetric. The quadrapole
moment can be described with the diagonal tensor

Qαβ =

∫
(3xαxβ − δαβr 2)ρ(r )d3r . (2.27)

When located in an external electric �eld ϕ(r ), the potential energy of a nucleus is given
by

E =

∫
ρ(r )ϕ(r )d3r . (2.28)

For a step-by-step analysis, E is expanded into a Taylor series

E = ϕ(0)
∫

ρ(r )d3r +
∑
α

∂ϕ

∂xα

∫
xαρ(r )d3r +

1
2
∑
α ,β

∂2ϕ

∂xα∂xβ

∫
xαxβρ(r )d3r + · · · (2.29)

The �rst term represents the Coulomb energy of a point charge. The second term is a
function of the dipole moment of the nucleus. It can be shown that all contributions except

8



2.1 Nuclear magnetic resonance

the quadrupole term vanish. Then, the quadrupole tensor can be substituted into the equation
by adding the δ distribution term in the integral of Equation 2.27. In combination with the
second derivative of the potential ϕ, this vanishes due to Laplace’s equation. The quadrupole
Hamiltonian is then given by

HQP =
1
6
∑
α ,β

∂2ϕ

∂xα∂xβ
Qαβ . (2.30)

Making the transition by replacing classical functions with operators and by applying the
known commutation relations, the �nal quantum mechanical Hamiltonian can be derived
to be

ĤQP =
eQ

6I (2I − 1)
∑
α ,β

∂2ϕ

∂xα∂xβ

[
3
2 (Îα Îβ + Îβ Îα ) − δαβ Î

2
]
. (2.31)

The fact, that the nucleus exhibits a state of certain angular moment can be interpreted
classically such that their exists a cylindrical symmetry of the charge density. To this end,
only one constant is necessary to described Q . For the 23Na nucleus, it was measured to be
Q = 0.109 ± 0.003 barn [Stone, 2011].

If the Zeeman interaction is su�ciently stronger than the quadrupole interaction, the change
in the energy levels can be determined via �rst order perturbation theory leading to the
energy levels of

Em = E0 − γm~B0 + ωQP~ , (2.32)

where ωQP~ are the energy eigenvalues of ĤQP. They are determined by the quadrupole
frequency

ωQP =
eQ

4s(2s − 1)~
[
3m2 − s(s + 1)

] [
1
2 (3 cos2 θ − 1) + 1

2η sin2 θ cos 2φ
]
. (2.33)

Here, θ and φ are the angles between the electric �eld gradient and the magnetic �eld.
Furthermore, the asymmetry of the potential was introduced with

η =

[
∂2ϕ

∂x2 −
∂2ϕ

∂y2

]
·
∂2ϕ

∂z2

−1
. (2.34)

For axial symmetry, η = 0 and the last term in Equation 2.33 vanishes. As can be seen
from Equation 2.33, the shift of the resonance lines due to the quadrupole interacation is
proportional to m2. Thus, the outer m = ±3/2 and the inner m = ±1/2 states are shifted by
the same amount.
For 23Na in biological tissue, commonly two types of environment are characterized as
demonstrated by Rooney and Springer [1991a]. This is �rst, the type d environment where

9



2 Theory and background

�uctuations of the electric �eld gradient occur on such a rapid time scale, that they are
averaged out. A monoexponential decay is observed. However, in the case of longer
correlation times of the order τcω0 & 1, a temporal modulation of the energy levels occurs in
the order of the resonance frequency (cf. Figure 2.3). This leads to a biexponential decay of
the transverse magnetization and is named a type c environment. For 23Na at a �eld strength
of 7 T, ω−1

0 = 12.7 ns.

Transverse relaxation for spin 3/2

For a spin 3/2 system, their exist four eigenstates with regard to the free precession Hamil-
tonian. In the case of rapid motion, quadrupole interaction is averaged out and three
degenerate transitions exist which exhibit the same decay rate. The general case is explained
in the following.
The transition probability from statem to n is with the density matrix ρm,n = 〈m | ρ̂ |n〉. In
the case of a multi-spin system, the Red�eld theory [Red�eld, 1957] provides the formalism
for the calculation of transition probabilities and thereby the relaxation constants can be
determined. It states that the elements of the density matrix are related by a set of di�erential
equations of the form

d
dt ρk,k

′ =
∑
j,j ′

Rkk ′,jj ′ei(k−k
′−j+j ′)tρ∗jj ′ . (2.35)

For the 3/2 system, this has been explicitly determined to be [Jaccard et al., 1986]

©­«
ρ′1,2
ρ′2,3
ρ′3,4

ª®¬ = C ©­«
−(J0 + J1 + J2) 0 J2

0 −(J1 + J2) 0
J2 0 −(J0 + J1 + J2)

ª®¬ ©­«
ρ1,2
ρ2,3
ρ3,4

ª®¬ . (2.36)

Here, the spectral densities Jn and the coupling constant C are de�ned as

Jn =
2τc

1 + (nω0τc)
and C =

1
40

(
e2qQ

~

) (
1 + η

2

3

)
. (2.37)

This matrix can be diagonalized leading to three uncoupled equations with diagonal entries
Ri and vector elements σi

R1 = −C(J0 + J1) , σ1 =
1
√

2
(σ12 + σ34), (2.38)

R2 = −C(J1 + J2) , σ2 = σ23, (2.39)

R3 = −C(J0 + J1 + 2J2) , σ3 =
1
√

2
(σ12 − σ34) . (2.40)

Since the eigenvectors decay exponentially, the decay times are determined via

σi(t) = σi(0)eRit . (2.41)
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B0 = 0 B0 > 0
ωQP = 0 <ωQP> = 0

B0 > 0
<ωQP> = 0

ω0

3ω0

time

ω0

Figure 2.3: Splitting of the energy levels of quadrupole interaction for the �uctuating and
static case. For short correlation times, the �uctuations of the electric �eld gradient are
zero in average. For �uctuations with τcω0 & 1 the outer and inner lines are shifted but the
distance is not changed and a biexponential decay is observed.

The outer lines decay with the entries R1 and the inner component with R2. In the case of
extreme narrowing (ω0τc � 1) and isotropic motion, all spectral densities Jn = 2τc and a
monoexpontial is observed with

T2 =
1

4Cτc
. (2.42)

For the actual application, the dynamics after a 90° excitation pulse around the y-axis have
to be considered. Expressing the Hamiltonian through irreducible tensor operators T S=3/2

l ,m
as in [Müller et al., 1987] and ignoring constant factors

σ (t = 0) = Sx =

√
5
2 (T1,−1 −T1,+1) . (2.43)

By inserting and only focusing on p = +1 coherences, this leads to

σ (t = 0) = 1
2

[√
3 |1〉 〈2| + 2 |2〉 〈3| +

√
3 |3〉 〈4|

]
. (2.44)

By a coupled set of equations, this can be transformed into tensor operators

σ (t) = −
1
√

10

[
T1,+1

(
3eR1t + 2eR2t

)
+T3,+1

√
6
(
eR1t − eR2t

)]
. (2.45)

Only single-quantum coherences are visible in a one-pulse experiment. Thus, the �rst term
describes the transverse relaxation through quadrupole interaction. A biexponential decay
is found with contributions of 60 % and 40 %. The relaxation times are the inverse of the
rates Ri , being

T2,s =
1

J0 + J1
and (2.46)

T2,l =
1

J1 + J2
. (2.47)

11



2 Theory and background

By inserting the spectral densities with the assumption of exponentially decaying correlation
function, they are in terms of correlation times and resonance frequency

T2,s =
1

C
(
2τc + 2τc

1+(2ω0τc )2

) and (2.48)

T2,l =
1

C
(

2τc
1+(ω0τc )2

+
2τc

1+(2ω0τc )2

) . (2.49)

In summary, 60 % of the signal exhibit a short relaxation time with T2,s and 40 % decay with
the longer T2,l. The relaxation times of the two components and their ratio is shown in
Figure 2.4 for varying τc . Due to the strength of the quadrupole interaction compared to
the dipole-dipole interaction, the relaxation times of 23Na are shorter than those of 1H by
one to two orders of magnitude.

2.1.5 Signal reception and NMR sensitivity

The NMR signal can be detected through induction of a voltage in a nearby receive coil.
Faraday’s law states, that the voltage is proportional to the change in magnetic �ux ϕ

Vind(t) =
∂ϕ

∂t
. (2.50)

In the case of the precessing magnetization M(r ) at location r , this becomes an integral
over the complete volume of the object

Vind(t) = −
∂

∂t

∫
B(r )1M(r , t)d3r . (2.51)

Here, theB1 symbolizes the sensitivity of the coil at locationr , which equals the transmit �eld.
Carrying out the derivative, the induced signal amplitude S(t) shows the proportionality

S(t) ∝ ω0

∫
M⊥(r )e−t/T2(r )B1(r ) sin(ω0t)d3r . (2.52)

The magnetization is proportional to the spin density ρ(r ) (cf. Equation 2.12) and the Larmor
freuency ω0 = γB0. From this, an estimate of the NMR sensitivity of di�erent nuclei can be
derived. As a result, for 23Na and 1H in human tissue, an about four orders of magnitude
weaker signal is observed [Madelin and Regatte, 2013].
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Figure 2.4: Relaxation components of the quadrupoleT2 decay as function of the correlation
time τc . Left: At ω0τc � 1, a monoexponential decay is observed. At longer correlation
times of the order ω0τc & 1, the two components split. Right: For ω0τc � 1, the ratio of the
two relaxation times increases with the correlation time.

2.2 Magnetic resonance imaging

In magnetic resonance imaging (MRI), the NMR signal is modulated by linear magnetic �eld
gradients, which enables a spatial resolution of the object via the signal phase. This will be
explained in more detail in this section on the basis of [Haacke et al., 1999] and [Bernstein
et al., 2004].

2.2.1 Spatial encoding by means of magnetic field gradients

The signal detected by an RF coil (cf. Equation 2.52) is the integral over the full object. The
origin of the signal can be resolved by application of additional magnetic �eld gradients G,
which are superimposed on the main magnetic �eld. In case of three independent linear
gradients

G = (Gx ,Gy,Gz)
T (2.53)

the local precession frequency is changed

ω(r ) = ω0 + γGr . (2.54)

At time t , the local signal phase at position r is thus

φ(r , t) = γ

∫ t

0
G(t ′)dt ′r = 2πk(t)r , (2.55)
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2 Theory and background

where the spatial frequency k was de�ned with

k(t) =
γ

2π

∫ t

0
G(t ′)dt ′ . (2.56)

Inserting the space-dependent phase into the signal equation (cf. Equation 2.52), the complex
valued signal is determined by

S(k, t) ∝

∫
M⊥e−2πikrd3r (2.57)

Signal relaxation and constant contributions are neglected in this equation. From this relation,
it follows that the measured signal is the Fourier transformation (FT) of the magnetization
and can be determined by

M⊥(r ) ∝

∫
S(k)e2πikrd3k . (2.58)

The necessary requirements for the sampling of the signal in the so-called k-space are
well-known from signal theory and are described in the following section.

2.2.2 Discrete sampling and Fourier reconstruction

It is only possible to sample the signal at discrete points and within a certain band of spatial
frequencies k . In classical sampling theory [Nyquist, 1928], the requirements for the recovery
of a signal from a �nal number of discrete, equally spaced samples are determined by the
Shannon-Nyquist theorem. For the one-dimensional case, the nominal image resolution ∆x
and the �eld of view (FOV) are determined by the highest value acquired in k-space kmax
and the sampling width ∆k by

FOV = 1
∆k

and (2.59)

∆x =
1

2kmax
. (2.60)

In general, the k-space can be sampled in an arbitrary fashion as long as the above cri-
teria are ful�lled. Conventionally, cartesian schemes are used, which allow a fast image
reconstruction via the fast Fourier transformation (FFT). For 23Na MRI, radial acquisition
strategies are employed, where the k-space is sampled by radial center out trajectories,
so-called projections. Thus, a sphere with radius kmax is covered. The Nyquist criterion
applies in this case in the radial and angular directions, leading to the requirements

∆kr =
1

FOVr
and (2.61)

Nproj = 4π
(
FOV
2∆x

)2
. (2.62)
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2.2 Magnetic resonance imaging

The index r stands for the radial direction and Nproj is the number of equally space pro-
jections. It is noted at this point, that these classical requirements can be loosened by the
theory of compressed sensing as shown for the application in MRI by Lustig et al. [2007].

During the acquisition or reconstruction of the MRI data, the k-space is likely to undergo
some kind of desired or undesired �ltering. Some typical examples occurring for 23Na MRI
are shown in Figure 2.5 with the respective �lter function and the reconstructed image. The
�lter functions are divided into two classes: step-type �lters and smooth �lters. Step-type
�ltering is represented by a �lter function consisting of zeros and ones. An examples during
the acquisition is the band-limitation leading to a �nite resolution. This is shown in (a) and
(b) where k-space is sampled up to two di�erent values of kmax. For the lower resolution in
b), typical Gibbs ringing artifacts are visible additionally to the decreased resolution. The
higher spatial frequencies, contained in the k-space periphery are shown in (c). The case of
radial sampling, where a sphere in k-space is acquired, is shown in d). A loss of resolution
is found, due to the missing information from the edges [Rahmer et al., 2006]. In order to
minimized the ringing artifacts in low resolution image, a Hamming �lter is often applied,
which is designed to suppress the side bands of the point spread function (PSF). This is an
example of a smooth �lter, which continuously modulates the amplitude of the k-space. In
(e) and (f), example reconstructions are shown for two base resolutions. It can be seen that
the application of the Hamming �lter decreases the resolution (e) but also suppresses the
ringing (f). Due to the rapid T ∗2 decay of the 23Na signal, a damping of higher frequencies
occurs dependent on the readout time of the projections (TRO). This e�ect is demonstrated
in (g) and (h) for a biexponential decay with decay times of T ∗2,s = 5 ms and T ∗2,l = 40 ms and
TRO of 10 ms and 5 ms. In the reconstruction of the shorter TRO, a better resolution of small
structures can be seen. However, also ringing artifacts are suppressed by this intrinsic
�ltering.

2.2.3 MRI image contrasts

Di�erent image contrasts can be achieved in MRI since relaxation constants and spin
density are characteristic for each tissue. The contrast can be in�uenced by the acquisition
parameters echo time (TE), repetition time (TR), and the �ip angle α . For a gradient echo
experiment, which can be characterized by subsequent application of excitation and signal
readout with perfect spoiling, the signal amplitude is

S ∝ ρ
1 − e−TR/T1

1 − cos(α)e−TR/T1
sin(α)e−TE/T ∗2 . (2.63)

The �ip angle, leading to the most e�cient acquisition is the so-called Ernst angle [Ernst
and Anderson, 1966] and is determined by

αErnst = arccos(e−TR/T1) . (2.64)
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Figure 2.5: Examples for �ltering of k-space data. Shown are �lter functions and the
respective reconstructions. The full k-space and the reconstruction at 1 mm resolution is
shown in (a). In (b) and (c) only center or periphery are considered. Spherical coverage is
shown in (d). In (e)-(h) four kinds of smooth �lters are shown: a) and b) depict Hamming
�ltering at the resolutions shown in (a) and (b), and (g) and (h) depict �ltering by T ∗2 decay
along radial trajectories for two di�erent readout durations. See text for further description.

16



2.2 Magnetic resonance imaging

2.2.4 Noise in magnitude data

The noise in MRI data has two main sources, the object itself and electronic consisting of the
coil and further electronic contributions. It exhibits a complex Gaussian distribution with
standard deviation σk at every measurement point in k-space. The observed noise variance
can be expressed summing up the independent contributions by

σ 2
k (k) = σ

2
object(k) + σ

2
coil(k) + σ

2
electronics(k) (2.65)

∝ 4kbT · R · BW . (2.66)

The noise amplitude is proportional to the temperature T , the e�ective resistance of the
coil R and the readout bandwidth BW . However, for an imaging experiment, the SNR in
the image space is most important. Through image reconstruction via the FT, the Gaussian
distribution of noise is sustained. Thus, the SNR in image space is de�ned by the ratio of
the signal S(r ) and the observed noise standard deviation in image space σm

SNR(r ) = S(r )

σm
. (2.67)

Typically, magnitude image data is used which are derived from the complex valued data.
This changes the distribution of the noise to a so-called Rician distribution [Gudbjartsson
and Patz, 1995]. In a region without signal, mean and standard deviation of the Rician
distribution are connected to the Gaussian by

σ 2
Rice = (2 − π/2)σ 2

Gauss and (2.68)
S̄Rice =

√
π/2σGauss . (2.69)

The two distributions are compared in Figure 2.6 for regions with and without signal. The
Rician distribution approximates the Gaussian for SNR ≈ 3.

2.2.5 Observation of the transverse relaxation

In the following, basic acquisition schemes for the measurement of T2 and T ∗2 are described
and a short summary of the research concerning the distribution of the temporal sampling
points in 1H MRI is given. Radial k-space sampling will be used throughout as example
readout scheme since this is applied in 23Na MRI due to the rapid decay. A list of previous
T ∗2 reports for 23Na is also provided.

Pulse sequences

The apparent decay timeT ∗2 is typically measured with a multi-echo gradient echo sequence.
A schematic diagram is shown in Figure 2.7. After the excitation pulse, a prewinder
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Figure 2.6: Comparison of Gaussian and Rician distribution. Left: In a region without signal,
both distributions di�er but the Rician distribution approaches the Gaussian for SNR > 0
(right).
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Figure 2.7: Sequence diagram of a multi-echo gradient echo pulse sequence (a). After
the excitation, a prewinder gradient prepares the magnetization for the following bipolar
readouts. The resulting k-space trajectory is displayed in (b) and example multi-echo data
together with image reconstructions are shown in (c).

18



2.2 Magnetic resonance imaging

gradient prepares the magnetization towards the speci�c position in k-space where the
readout should start. Each line is then sampled continuously by switching between positive
and negative gradient polarity. The echo time TEi is de�ned as the time at which the k-
space center is acquired. The k-space is �lled by repeating the temporal sampling at all
necessary k-space lines (cf. Section 2.2.2). For the determination of T2, an additional 180°
refocusing pulse is inserted in order to refocus dephasing due to B0 �eld inhomogeneities
(cf. Figure 2.8). The refocusing pulse is switched at TE/2 to achieve full rephasing at the
time of the acquisition. Additionally, crusher gradients are switched before and after the 180°
pulses to minimize residual excitation due to B1 inhomogeneities. B1 �eld inhomogeneities
can lead to incomplete refocusing especially at ultra-high �eld (UHF) and SAR can become
an issue. More accurate values for T2 can be determined by performing a single-echo
spin echo (SE) acquisition with varying echo times. This however, prolongs measurement
duration.

Sample distribution

The timings of the TE in a multi-echo relaxation measurement can have signi�cant in�uence
on the accuracy. In the following, a short summary of the research in 1H MRI is given
concerning sample distribution for decay quanti�cation. It was reported that the optimal
strategy to sample an exponential decay is to use as few di�erent sampling times as possible
and rather apply averaging ([Haacke et al., 1999], p. 664�). Accuracy can be increased by
choosing sampling times such that they allow an e�cient determination of the underlying
parameters by matching the signal shape with the sample positions. For increased accuracy
these points can then be averaged multiple times. Jones et al. [1996] reported that best
accuracy can be obtained when placing measurements only at two time points: t1 = 0 ms
and at t2 = 1.28 ·T2. The point at t2 should be sampled four times as often as t1. Thus, this
sampling pattern is solely determined by the value of T2 in the tissue. It has been shown,
that sampling patterns with a small number of sampling points are generally superior to
multi-point strategies when averaging can be performed Fleysher et al. [2008].

Previous 23NaT ∗
2 measurements

A list of previous studies of 23NaT ∗2 measurements in brain at a �eld strength of 7 T is given
in Table 2.3. Only considering studies at 7 T, a variation from 2 ms to 5 ms is found for T ∗2,s.
T ∗2,l is often considered to be detectable with higher accuracy since a higher sampling rate
can be achieved (TRO < T

∗
2,l). Still, a large spread of values between 22 ms and 40 ms is seen.

The even longer decay time of cerebrospinal �uid (CSF) ranges from 47 ms to 57 ms at 7 T.
A more extensive list can be found at the end of the chapter including other �eld strengths
and acquisition parameters (Table 2.3).
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Figure 2.8: Sequence diagram of a multi-echo spin echo experiment. A 180° pulse is applied
at TE/2 leading to refocusing of the magnetization at TE (a). The k-space trajectory produced
by the gradients is displayed (b) together with k-space and image data (c).
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2.2 Magnetic resonance imaging

Table 2.1: Overview of previous studies of the apparent transverse relaxation time T ∗2 of
23Na in brain tissue at 7 T. Separate values forT ∗2,s andT ∗2,l are given together with the relative
contribution (r ) of each component. The di�erent tissue types are GM, WM, CSF, brain
parenchyma (BP = WM + GM), vitreous humor (VH), and whole brain (WB). A detailed list
of previous studies including other �eld strengths and acquisition parameters is presented
at the end of the chapter (page 26).

Study Tissue
type T ∗

2,s T ∗
2,l r

[ms] [ms]

Fleysher
et al. 2009

WM - 29±2 0
GM - 28±2 0
CSF - 54±4 0

Nagel
et al.
2011

BP
CSF

4.7±2
-

40± 2
56±4

0.67±0.02
0

Niesporek
et al. 2017

WM 3.5±0.1 23.3±2.6 0.6
GM 5.4±0.2 36.4±3.1 0.6
CSF - 46.9±2.1 0

Blunck
et al. 2017

WM 1.99±2.09 22.4±7.8 0.6
GM 2.02±1.67 25.9±8.3 0.6
CSF - 57.2±6.6 0

Bydder WM 4.50±0.65 39.99±5.24 0.6
et al. 2017 GM 5.02±0.89 33.89±5.96 0.45
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2 Theory and background

2.3 Physiological role of sodium

23Na is essential for a number of biological processes and occurs as positively charged Na+

ions in the body. In the intracellular space, the concentration is about 12 mM and in the
extracellular space it is 143 mM [Silbernagl and Despopoulos, 2003; Alberts et al., 2002].
This concentration gradient is actively regulated by the Na+-K+-ATPase ("sodium-potassium
pump") under the consumption of ATP. The Na+-K+-ATPase is a membrane enzyme which
exists in all animal cells. During each action cycle, it transports three Na+ through the
membrane into the extracellular space and at the same time pumps two K+ into the cell.
Thus, the concentration of K+ is inverted compared to the Na+ ions. The intracellular
concentration is 140 mM and extracellular only 4 mM are found. Together with Cl- ions, the
membrane potential can be closely approximated by the Goldmann-Hogkin-Katz equation

ϕm =
RT

F
· ln PNa[Na+]ex + PK[K+]ex + PCl[Cl+]in

PNa[Na+]in + PK[K+]in + PCl[Cl+]ex
. (2.70)

Here, R is the gas constant,T the temperature, F the Faraday constant and P the permeability
of the cell membrane for the respective ion. The indexes stand for intra- and extracellular
space. In the case of energy under supply, the Na+-K+-ATPase breaks down and cell swelling
leads to apoptosis. This process is accompanied by an increase in average sodium concen-
tration of the tissue. The tissue sodium concentration has therefore been described as a
measures of cell viability. A number of applications have been reported for 23Na concentra-
tion measurements via MRI [Madelin and Regatte, 2013] ranging from studies in tumors
or kidney to applications in muscle and cartilage towards neurodegenerative diseases such
as multiple sclerosis and Alzheimer’s. In the latter, 23Na is especially interesting since the
action potential of neuron is a result of the triggered in�ow of Na+ ions, which leads to a
depolarization of the cell.
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3 Methods

In this chapter the methods employed in this work are presented. First, the necessary
hard- and software for the MRI acquisition and image formation are described. Then, an
optimization procedure for the distribution of the T ∗2 sampling is shown. Finally, additional
methods are explained which were required for di�erent evaluation procedures.

3.1 The imaging process

In this section the required hard- and software for imaging of 23Na and 1H are shown. In
the �rst part, hardware and pulse sequences are explained which were employed for the
signal acquisition. In the second part, the image reconstruction from radial k-space data
and multi-channel receive arrays is described.

3.1.1 Data acquisition

The MRI data acquisition requires an MRI scanner and RF coils for transmission and reception
as well as dedicated pulse sequences for speci�c contrasts and spatial resolution of the object.
The respective characteristics are provided in the following sections.

Hardware

MRI Scanner The superconducting solenoid coil of the MRI scanner establishes the main
magnetic �eld B0 and three independent gradient coils produce the imaging gradients. All
measurements in this thesis were carried out at a passively shielded 7 T whole-body scanner
(Magnetom 7 T, Siemens Healthineers, Erlangen, Germany). The tomograph is equipped
with a broadband ampli�er which enables the transmission and reception on multiple distinct
frequencies of di�erent nuclei besides the standard 1H channel. Relevant frequencies for this
work were 297.16 MHz for 1H imaging and 78.60 MHz for 23Na. The gradient performance
is characterized by a maximum amplitude of 40 mT/m in x- and y-direction and 45 mT/m
in z-direction (direction of the main �eld and table movement). The minimal rise time to
maximum amplitude is 200 µs with the maximum slew rate being 200 T/m/s. A view of the
scanner is shown in Figure 3.1.

27



3 Methods

Figure 3.1: View on the 7 T whole-
body scanner. Photograph from
dkfz.de (10/21/2017).

Radio frequency coils During this work, two 23Na RF coils and one 1H coil were utilized.
These are a double-tuned 1H/23Na Tx/Rx birdcage, a double-tuned 1H/23Na Tx/Rx birdcage
with a nested 30-channel Rx array (both by RAPID Biomedical GmbH, Rimpar, Germany),
and a 1H Tx/Rx birdcage with a nested 24-channel Rx array (Nova Medical, Wilmington,
Massachusetts, USA). The RF coils are depicted in Figure 3.2. All three coils use birdcage
volume resonators for transmission [Vaughan et al., 1994]. Compared to surface coil geome-
tries, these allow a relatively homogeneous excitation pro�le. However, the multi-channel
array inserts of the two latter coils show a higher SNR e�ciency [Roemer et al., 1990].

Agarose tissue phantom Agarose gels are employed for validation and testing of quan-
titative imaging methods since their MRI properties are similar to tissue. Agarose is a
polysaccharide derived from seaweed, which after heating in a liquid solution forms a
continuous mesh. Phantoms are typically characterized by the amount of agarose which
they contain given in mass percent. Increasing the concentration results in shortening of
both T1 and T2 relaxation times of the phantom. For concentrations of 2 % to 5 %, the pore
sizes of the gel is in the range of 200 nm to 400 nm [Pernodet et al., 1997] and is dependent
on temperature [Narayanan et al., 2006]. In the phantom studies of this work, concentra-
tions ranging from 0 % to 7 % were used, allowing the analysis over a range of relaxation
times. The di�erent agarose concentrations where contained in smaller cylinders with an
inner diameter of 43 mm and were circularly arranged inside of a larger cylinder �lled with
pure NaCl solution having a diameter of 190 mm (cf. Figure 3.3). The base medium of the
phantom is a 0.9 % NaCl solution. This phantom was �rst presented by Benkhedah [2013].
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3.1 The imaging process

a b c
 23Na Tx/Rx BC

(1-ch)

23Na Tx/Rx BC
with 30-ch Rx

1H Tx/Rx BC
with 24-ch Rx

Figure 3.2: Radio frequency coils used in this work. a) 1-channel 23Na Tx/Rx birdcage (BC),
b) 23Na Tx/Rx birdcage with 30-channel Rx array, and c) 1H Tx/Rx birdcage with 24-channel
Rx array. Courtesy of RAPID Biomedical (a, b).

Figure 3.3: Image of the phantom with di�erent agarose concentrations. The smaller tubes
are �lled with agarose concentration from 1 % to 7 % and have a diameter of 43 mm. They
are surrounded by pure 0.9 % NaCl solution in a cylinder of 190 mm diameter.
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Computational recourses All computations were performed on either of the following
machines: a standard desktop PC for basic development ("PC1"), another PC equipped with
strong recourses of random access memory (RAM) ("PC2"), which was used especially for the
memory-intensive reconstructions of the array-coil data, and a high performance computing
cluster (HPC), which allowed strong parallelization necessary for the optimization and
calculation of SNR maps.

PC1 The standard desktop PC was running Windows 7 Enterprise (Microsoft, Redmond,
Washington, USA) and based on a 64-bit architecture with Core i7 processor (Intel, Santa
Clara , California, USA) having 4/8 cores/threads and 16 GB RAM.

PC2 The PC with increased RAM was running Windows 7 Enterprise with a processor of
the type Intel Xeon E5-v3 having 8/16 cores/threads and 128 GB RAM.

HPC The HPC was running on Windows Server 2008 R2 Enterprise and based on the
64-bit architecture. The cluster setup consisted of one head node managing four worker
nodes. The head node was equipped with two Intel Xeon E5620 CPUs with 4/8 cores/threads
and 24 GB memory. The worker nodes consisted of two Intel Xeon E5649 CPUs with 6/12
cores/threads. In total, 96 hyperthreaded cores could be used with 2 GB memory each and
128 GB for the complete HPC. This cluster setup was developed by Breithaupt [2015].

MR pulse sequences

The acquisition of the 23Na MRI signal data was performed using a sampling-density-adapted
3D radial (DA 3D-RAD) sequence proposed by Nagel et al. [2009]. A multi-echo version
of this readout allowed time resolved measurements of the signal decay. For anatomical
reference, two 1H sequences were measured. These were the magnetization prepared rapid
acquisition gradient echo (MPRAGE) and the constructive interference in steady state (CISS)
sequences. In the following, basic characteristics of these acquisition schemes are given.

Density-adapted 3D radial sequence (DA 3D-RAD) The fast relaxation of the 23Na
signal requires shorter echo times than conventional Cartesian trajectories. Radial k-space
sampling allows immediately acquiring the signal after the excitation pulse and is therefore
most suitable for fast decaying signal [Konstandin and Nagel, 2014]. A disadvantage of
radial acquisition is the decreasing sampling density towards the k-space periphery, which
leads to lower SNR e�ciency [Liao et al., 1997]. This can be compensated by adapting the
k-space trajectory to the radial sampling density [Boada et al., 1997; Nagel et al., 2009]. A
derivation of the gradient waveform is outlined in the following.
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3.1 The imaging process

In the case of white Gaussian noise and variance σ 2
k

in each k-space sample point, the noise
variance in image space σ 2

i is determined by

σ 2
i ∝

∫
Vk

σ 2
k

D(k)
d3k . (3.1)

The integration is evaluated over the acquired k-space volume Vk and D(k) is an arbitrary
�lter function. The highest SNR e�ciency is achieved for uniform sampling [Liao et al.,
1997]. To realize this, the amplitude of the imaging gradients can be modulated as a function
of the k-space radius. This is expressed in a �lter function with the property

D(k) ∝
1

k2G(t)
, (3.2)

whereG(t) =
√
Gx (t)2 +Gy(t)2 +Gz(t)2 is the gradient magnitude. By considering hardware

constraints, the solution for the gradient waveform can be found to be [Nagel et al., 2009]

G(t) = k2
0G0(3γk2

0G0(t − t0) + k
3
0)
−2/3 . (3.3)

Here, k0 is the k-space radius at which the sampling-density adapted acquisition can start
after measuring the center with constant amplitude G0. The time at which the adapted
trajectory starts is t0 and the maximum gradient amplitude G0 is determined by the desired
resolution. A sketch of the gradient shape is shown in the sequence diagram in Figure 3.4.
The full k-space volume is covered subsequently by sampling from the center towards end-
points, which are distributed over a spherical surface following the algorithm of Rakhmanov
et al. [1994]. This is shown for 50 spokes in Figure 3.5. The minimal echo time (TEmin)
which can be achieved is constrained by the pulse length and the ring-down time of the RF
coil after the excitation pulse. It is de�ned de�ned as half of the duration of the excitation
pulse plus a delay time (50 µs) to allow for ring-down The duration of the sampling with a
trapezoidal gradient was set to t0 = 0.5 ms for all measurements in this work.

G0

t0

timeTE

Gr

ADC

RF

TRO

Figure 3.4: Readout scheme of the
DA 3D-RAD sequence. The gradient
magnitude Gr decreases towards the
k-space periphery in order to sustain
a constant sampling density. Due to
hardware limitations, this gradient
form can only start at times later t0.
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kmax

0
-kmax

kx

ky

k z

Figure 3.5: Schematic for the k-space cover-
age in the employed radial sampling scheme.
The readout spokes are distributed succes-
sively along a spiral on the sampling surface
at kmax [Rakhmanov et al., 1994].

Multi echo readout scheme In order to spatially resolve the T ∗2 relaxation, the signal
decay had to be sampled in the temporal domain at multiple time points TEi . To this end,
the DA 3D-RAD sequence was extended by additional rewinder gradients allowing for a
multi echo acquisition (cf. Figure 3.6). The temporal amplitude integral of the rewinder is
identical to the one of the preceding readout gradient but with inverted polarity. Thus, the
phase which is acquired during the readout is reverted and a sampling point at the end of
the rewinder is located again in the k-space center. The implementation used in this work
allowed the acquisition of eight echoes and echo times TE could be set within an accuracy of
0.01 ms if TE < 10 ms and 0.1 ms if TE ≥ 10 ms. This restriction was given by the scanner’s
interface.

Anatomical Sequences For the purpose of tissue segmentation, two anatomical 1H pulse
sequences, namely the MPRAGE for the segmentation and a CISS to improve brain extrac-
tion. The MPRAGE (magnetization prepared rapid acquisition gradient echo) proposed by
Mugler and Brookeman [1990] is a fast 3D readout with pronounced contrast between GM
and WM, which renders it especially suitable for the purpose of tissue segmentation. The
distinct contrast of this readout scheme is determined by an inversion pulse followed by
a fast 3D gradient echo (GRE) readout and a magnetization recovery period leading to a
T1-weighted contrast. Even though the liquid suppression is strong in the MPRAGE, an ad-
ditional T2-weighted pulse sequence was acquired for the brain extraction (cf. Section 3.3.3).
A CISS (constructive interference in steady state) was chosen due to the strong T2 contrast
[Besta et al., 2015]. This sequence is a steady-state free precession scheme with reduced
banding artifacts from B0 inhomogeneities typical for steady-state free precession sequences.
Two separate acquisitions with di�erent RF-cycling schemes are averaged and thereby these
artifacts can be reduced.
An impression of the image contrast obtained by these sequences is given in Figure 3.7.
In the MPRAGE measurement WM and GM can be clearly distinguished. However, brain
parenchyma and skull are not always separated in their image intensity. In the CISS acquisi-
tion, a continuous signal void can be acknowledged. In the frontal region, typical banding
artifacts are visible.
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Gr

TEmin

ADC

Spoiler

pu
ls
e

rewinder

RF

TRW

ΔTE

TRO

Figure 3.6: Pulse sequence diagram of the multi-echo acquisition scheme. The radial readout
trajectory of duration TRO was repeated eight times with a rewinder gradient of duration
TRW interleaved. The echo spacing is ∆TE = TRO + TRW. The echo time ∆TEmin of the �rst
acquisition is de�ned as half of the pulse duration plus an RF ring-down time of 50 µs.

a b

Figure 3.7: Example data
of anatomical 1H sequences:
MPRAGE (a) and CISS (b). WM
and GM can be clearly dis-
tinguished in the MPRAGE
acquisition. Brain parenchyma
and skull are not continuously
separated in image intensity. In
the CISS data, skull can be clearly
separated. Banding artifacts are
visible as dark stripes.
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3.1.2 Image reconstruction

In this section, the image reconstruction for the cases of radial k-space data and multi-channel
coils is explained.

Non-Cartesian reconstruction

For Cartesian k-space sampling, the raw data can be transformed to image space in a
straightforward manner by the application of the FFT [Cooley and Tukey, 1965]. For the
radial trajectories used here, a direct evaluation of the Fourier coe�cients would be of
order O(N 2) operations in comparison to the FFT being O(N logN ). To this end, practical
implementations prefer an interpolation of the non-Cartesian data onto a regular grid prior
to a application of the FFT. This is sometimes also termed gridding. An e�cient, accurate,
and convenient implementation is the non-uniform fast Fourier transformation (nuFFT) by
Fessler and Sutton [2003].
In more detail, a non-Cartesian readout determines the MRI signal S(km) at k-space positions
km. For the interpolation onto a Cartesian grid, the following operation has to be evaluated

S(kn) =

N∑
n=1

vn,mS(km) . (3.4)

Here, n designates the index enumerating the set of points on a Cartesian grid from 1 to N
and likewise the number of radial points are designated by m = 1, ... ,M . For the presented
application typically M > N without further implications. The interpolation process is
depicted in Figure 3.8. The values ofv are determined by the chosen interpolation kernel.
The ideal kernel is the sinc-function and would span the full matrix size N . For e�ciency
reasons, this range can be reduced to a neighborhood of widthW . A widely used interpolation
function is the Kaiser-Bessel window [Rasche et al., 1999]. In the implementation of Fessler
and Sutton a so-called min-max approach is applied which further reduces interpolation
errors.

Image reconstruction for multi-channel data

For a multi-channel acquisition, the data from each separate channel have to be combined
into one image. Here, it has to be considered, that the SNR may vary over the object
dependent on the coil pro�les and their location relative to the object. Furthermore, the data
of di�erent channels is correlated in both signal and noise. Two approaches were used in
this work: the sum-of-squares combination and the adaptive channel reconstruction, which
are explained in the following.
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vn,m

S(km)
S(kn)

W

Figure 3.8: Schematic of the gridding pro-
cess. Data from the non-Cartesian sam-
pling (red) are interpolated onto points
on a Cartesian grid (green) by weighting
with the �lter coe�cients vn,m inside a
window of widthW .

Sum-of-squares combination The sum-of-squares (SOS) reconstruction is a simple
method for combining multi-channel data. The combined image Icomb is obtained by voxel-
wise summation of the squared image intensity from the N separate channels Ii

I comb =

√√√
N∑
i=1

I 2
i . (3.5)

Here, the spacial dependence of the image intensity I = I (x ,y, z) is omitted for clarity. In the
SOS combination, voxels with high intensity are implicitly assumed to stem from regions
with high coil sensitivity and contribute stronger to the �nal image. This is a suitable
approach for su�ciently high SNR and in regions of signal [Larsson et al., 2003]. However,
for poor SNR and noise regions it leads to noise ampli�cation.

Adaptive combination The adaptive combination (AC) proposed by Walsh et al. [2000]
allows taking into account the coil pro�les and the noise correlation between data from
separate channels. Thereby, a reconstruction with near-optimal SNR behavior is possible
[Roemer et al., 1990]. The image is formed by a linear combination of the separate image
reconstructions which are locally scaled by the complex weighting factors mi . Thus, the
�nale image is determined by

I comb =
N∑
i=1

miI i . (3.6)

The linear combination has the advantage of retaining the signal phase in contrast to the
SOS approach.

35



3 Methods

The weighting factors are determined by an analysis based on stochastic signal theory. It can
be found that the vector, which optimizes the SNR of the �nal image I comb, is determined by
the signal and noise correlation of the individual channels. Denoting the signal correlation
by Rs and the noise correlation by Rn, the vectorm is determined by the highest eigenvalues
of the matrix R−1

n Rs . The signal correlation can be estimated from a block-wise covariance
analysis of the image data from each coil using

Rs(i, j) =
∑
Block

I iI
∗
j . (3.7)

The indexes i and j run over the N coil elements. The receive pro�les are accounted for
by stronger weighting of channels with a higher local SNR. The noise correlation can be
determined by a covariance analysis of either the image data or, prior to the reconstruction,
from raw data. Therefore, a noise scan is acquired by setting the amplitude of the excitation
pulse to zero. The combination parameters used in this work are listen in Table 3.1. These
values were reported previously by Benkhedah et al. [2016] for the application in 23Na MRI.

3.2 Techniques for the observation of theT ∗
2 decay

The main goal of this work was to improve the accuracy ofT ∗2 quanti�cation for 23Na MRI in
vivo. In this section, the basic techniques are described which were used for the determination
of the decay parameters. First, the employed signal model is established together with
di�erent approaches to incorporate noise bias in the data. Then, an optimization procedure
is described, which was developed in order to tailor the sampling scheme with respect to
the low SNR and rapid biexponential decay of the 23Na signal.

3.2.1 Signal model and decay parameter fi�ing

The two relaxation times T ∗2,s and T ∗2,l of the biexponential signal decay were determined by
voxel-wise �tting of image data acquired with a multi-echo pulse sequence (cf. Section 3.1.1).

Table 3.1: Parameters for AC channel combination. These parameters were reported previ-
ously by Benkhedah et al. [2016].

Parameter Value

block size 8
interpolation factor 2
pre�ltering Gauss with σ = 2 voxels
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3.2 Techniques for the observation of the T ∗2 decay

A biexponential decay model following from the signal theory of 23Na MRI in biological
tissue was �tted to the data (cf. Section 2.1.4). The general form of the model is

S(A0,T
∗
2,s,T

∗
2,l,n) =

√
A2

0

(
re−TE/T ∗2,s + (1 − r )e−TE/T

∗
2,l
)2
+ n2 . (3.8)

The signal amplitude measured in a voxel at position x is denoted by S . The spatial de-
pendence is omitted for clarity. A0 is the apparent magnetization which comprises the
spin-density ρ, T1 relaxation, the excitation, and other contributions (cf. Section 2.2.3). The
percentage of the signal decaying with T ∗2,s is denoted by r and is set to r = 0.6 as follows
from 23Na interaction theory. The additional parameter n expresses the magnitude bias due
to noise (cf. next section).

Models for the incorporation of the noise bias The non-zero mean of the Rician distri-
bution has to be taken into account when �tting low-SNR magnitude data (cf. Section 2.2.4).
Three possible formulations for the parameter n in Equation 3.8 where investigated. These
are

(1) including a constant predetermined Rician noise �oor by setting
n =

√
(2 − π/2)σ as described by Gudbjartsson and Patz [1995]

(2) determination of the noise amplitude n by �tting

(3) ignoring the noise contribution (n = 0)

In the models (1) and (3) a constant term is used to take noise into account whereas model
(2) requires an additional �tting of this parameter.
All �t models were evaluated with regard to varying noise amplitude (SNR = 10/15/20).
Furthermore, the �t quality was investigated as function of the number of samples acquired
because it might be bene�cial to sample the decay until late TE for more accurate measure-
ment ofT ∗2,l. This however, can also increase noise bias since later samples exhibit lower SNR.
Assuming an equidistant sampling scheme, the total number of samples can be parametrized
by the latest sample at TEmax, which is determined by TR. For the evaluation, signal was
synthesized with T ∗2,s = 5 ms and T ∗2,l = 40 ms and an increasing number of sampling points
spaced with ∆TE = 5 ms from TEmax = 20 ms to 150 ms. Thus, the number of sampling points
ranged from 5 to 30.

Non-linear least squares fi�ing The parameter �tting was performed using the non-
linear least squares (NLLS) method. The parameters β of the model fβ are determined by
minimization of the sum of the squared deviations Φ between model and the measurement
y at point x for all N observations according to

arg min
β

Φ with Φ =
N∑
i=1
(fβ (xi) − yi)

2 (3.9)
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as proposed by [Legendre, 1805] and [Gauss, 1809]. The minimization of the objective
function was executed with a trust region method [Coleman and Li, 1994, 1996] implemented
in MATLAB (The MathWorks, Inc., Natick, Massachusetts, USA).

3.2.2 Optimization of the temporal sample distribution forT ∗
2

measurements

A factor which impacts the quality of a decay measurement is the distribution of sampling
points on the curve, i. e. the form of the temporal sampling. For an accurate and e�cient
parameter estimate, the sampling scheme should match the decay and SNR situation. To
this end, an approach was designed to evaluate di�erent sampling schemes on the basis of
one single quality measure including bias and uncertainty for all model parameters. Using
this metric, a dedicated sampling pattern was designed for 23Na T ∗2 quanti�cation in human
brain. This process is described in more detail in the following section.

Development of a dedicated sampling strategy

Sampling strategies from 1H MRI cannot be directly translated to 23Na MRI due to the lower
SNR and the short T ∗2 compared to the readout duration TRO. For 23Na T ∗2 sampling, multi-
ple echoes are acquired after each excitation pulse. These samples are distributed with a
temporal spacing of at least ∆TEmin. The minimal echo spacing of the multi-echo scheme
used in this work is the sum of the duration of the readout TRO and the rewinder gradient
(∆TEmin = TRO + TRW). However, to be able to resolve short T ∗2,s, a �ner temporal sampling
is required. This is realized by repeating the echo train with the �rst sampling point shifted
to a later TE (cf. Figure 3.9).
For 23Na MRI, SNR is the crucial limitation (cf. Section 2.1.5) and all available signal energy
should be exploited. For SNR e�ciency, dead times should be avoided since during these

ΔTE ≥ TRO +TRW

si
gn

al

time

1st  set
2nd set

ΔRep

Figure 3.9: Schematic of T ∗2 sampling in
23Na MRI. A decay curve is shown with
symbolic sampling times TEi . Due to the
time required for the readout (TRO) and
the rewinder (TRW) a minimal spacing
between two samples (∆TE) is required
(red). A �ner temporal sampling can
be achieved by an additional acquisition
shifted by ∆Rep (orange marks).
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3.2 Techniques for the observation of the T ∗2 decay

signal energy is lost. Thus, within one TR successive sampling points were acquired immedi-
ately after the previous readout separated by ∆TEmin. This leads to a base pattern of NEchoes
equidistant samples, which was repeated NReps times with a shift ∆Repi relative to the �rst
acquisition (cf. Figure 3.9). The �rst point in the �rst set was acquired at the earliest TE
possible (ideally TE1 = TEmin = 0 ms) since this yields the highest SNR. For this type of sam-
pling scheme, the distribution of all samples can be solely parametrized by the shifts ∆Repi .
The repetition of an equidistant sampling train compared to an arbitrary distribution of all
sample points reduces the degrees of freedom from NReps · NEchoes down to NReps − 1. The
parametrization via the ∆Repi allows tuning the sampling scheme to the optimal trade-o�
between reliability and accuracy for a given decay and SNR. For example, higher reliability
can be achieved by averaging (∆Repi = 0 ms) or a better temporal resolution by denser
sampling (e.g. linear sampling with ∆Repi = ∆TE/NReps · (i − 1)).

The base sampling scheme consisting of 8 echoes. Sequence parameters were adjusted to
achieve an SNR of approximately 15 in brain parenchyma since this was determined to be the
minimum requirement for the parameter �tting of the biexponential model (cf. Section 4.1.2).
Thereby, the spacing ∆TE is determined by the sequence parameters (detailed sequence
parameters in Section 4.2.1). The acquisition time was constraint to one hour, which is
assumed to be tolerable with regard to in vivo applicability. Within this time, NReps = 4
repetitions could be acquired determined by the measurement parameters. Therefore, the
following optimization was conducted for 4 shifts ∆Repi .

�ality metric for parameter estimation

The evaluation of the �tting quality for the biexponential decay is ambiguous since multiple
model parameters exist. To this end, a single evaluation measure was designed, which
captures the most important �t criteria. For the low-SNR signal of 23Na MRI, these are
namely the deviation of the parameter estimate from the true value (bias) and the variation
due to noise (uncertainty). To establish a single quality measure, the metric Q was de�ned
which incorporates both criteria as follows.
If the same underlying parameter i with the true value Xi is measured over a volume of
voxels, the bias is expressed by the deviation of the measured mean value over this set X̄ ′
from Xi . The uncertainty can be judged by the magnitude of the standard deviation of the
set of parameter estimates σ (X ′i ). Therefore, the quality Q of the estimate was de�ned to be
the sum of the relative bias scaled by the relative standard deviation over all parameters

Q =
3∑

i=1

(
σ (X ′i )

Xi
·
X̄ ′i − Xi

Xi

)2

. (3.10)

The index i runs from 1 to 3 representing the amplitude A0,T ∗2,s, andT ∗2,l. The contribution of
each model parameter is squared in order to penalize strong bias and improve smoothness of
the metric. Thus, a larger Q indicates a reduced overall quality of the parameter estimation.
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The shape ofQ for di�erent values of bias and standard deviation is visualized in Figure 3.10
for a single parameter i .

Design of the optimization

The metric Q is a function of the sampling scheme and an optimization problem can be
formulated to minimize Q with regard to the shifts ∆Repi . To determine Q , the following
procedure was conducted. First, signal was simulated with decay constants of T ∗2,s = 5 ms
and T ∗2,s = 40 ms as reported for brain parenchyma with 60 % amplitude stemming from the
short component [Nagel et al., 2011; Bydder et al., 2017]. Then, Gaussian noise scaled for
an SNR of 15 was added. By calculating the absolute value, a Rician noise distribution was
obtained [Gudbjartsson and Patz, 1995]. From this data, the parameter estimates X ′i were
determined via �tting. This process was repeated N = 30,000 times to sample the �t statistics
su�ciently accurate. Q was then calculated from the �t results by Equation 3.10. The full
process is depicted in Figure 3.11. The �t parameters were initialized with 1, 3 ms and
30 ms (A0, T ∗2,s, and T ∗2,l) and were loosely constraint to the intervals [0,10], [0,100] ms and
[0,100] ms, respectively. The constraints of the �t were deliberately set to a wide parameter
region to not constrain the problem with any prior knowledge not existing in the in-vivo
situation. The minimization of Q was performed numerically using a multi-start approach
described in more detail in the next section.

Global optimization algorithm

The shape of the parameter space of Q as a function of the shifts ∆Rep is not known and
convexity cannot be assumed. For this reason, a global search approach was chosen. The
minimization was conducted with a multi-start heuristic algorithm presented by Ugray et al.
[2007]. The procedure constitutes of two main phases: (1) a global phase and (2) a local
phase. In the �rst phase a scatter search algorithm [Glover, 1998] is employed to sample the
objective function on a global scale and to provide good candidates for the second phase.
The second phase then runs a gradient based solver on the initial points to �nd the global
minimum. In the following these two phases are outlined in more detail.

1 Global Phase: Sca�er search The so called scatter search iterates through the follow-
ing steps:

(a) Input of a seed solution x0 and creation of additional starting points which lie at the
upper and lower problem boundaries and on the midpoint in between.

(b) A diversi�cation generator creates a larger set of new trial points. The generator intro-
duces new points in a region spanned by two neighboring trial points by distributing
random points over this region. If these points do not ful�ll the problem conditions,
they are mapped towards the nearest point within the boundaries. A new trial point
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Figure 3.10: Quality metric Q for varying bias and uncertainty for single parameter i
(cf. Equation 3.10). The standard deviation (StD) ranges from 0 % to 50 % and the bias from
−50 % to 50 % (under- to overestimation). For a better visualization the logarithm of Q is
shown. The strong decrease of Q towards low bias and standard deviation can be acknowl-
edged.

1. Simulate data 

SNR = 15

ality metric Q

fit
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T2,l*  = 40 ms

2. Add noise 3. Fit model

4. Repeat N times

Calculate metric 

T2,s*  =   5 ms

Figure 3.11: Visualization of the quality metric Q as determined in the optimization. The
following process is repeated N times: (1) biexponential decay data are calculated at the
times determined by the sampling scheme, (2) Rician noise is added, and (3) �t of the model
parameters.
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is then chosen as the point being located the farthest aways from all preexisting
neighbors.

(c) The points retrieved by step (b) are rated by a penalty function consisting of the
objective function and an additional weight for constraint violation. Non-promising
candidates are discarded.

(d) The preceding steps are repeated until a designated number of trial points is reached.

2 Local Phase: Gradient-based optimization In this phase the gradient based solver
is started iteratively from promising candidates determined in phase 1. These points are
retrieved by two �lters. The �rst �lter is called a distance �lter. It makes sure that points
close to previous evaluations are are not considered multiple times. The second �lter is
a merit �lter, which compares local solutions to previous results in the database. If the
solution does not pass a threshold of the penalty function it is discarded.

For the minimization in this work, the algorithm was started on the linear scheme as the seed
solution x0. This pattern is considered to be the most neutral in terms of weighting towards
a speci�c model parameter. Furthermore, 50 initial points were allowed. The evaluation ofQ
was split up to run in parallel on 16 cores on PC2 (cf. Section 3.1.1). The local gradient-based
solver used in the implementation of the algorithm is MATLAB’s fmincon.

Comparison to alternative sampling schemes

The sampling pattern retrieved from the optimization procedure was compared to four
alternative sampling schemes (Figure 3.12). These were a linear scheme, an early TE
pattern, the pattern by Jones et al., and simple averaging. The linear pattern (a) was chosen
to investigate a "neutral" pattern without focus on a speci�c decay time. The early TE scheme
(b) is an example for a pronounced focus on the resolution of T ∗2,s. The scheme of Jones et al.
[Jones et al., 1996] (c) is an optimized solution for the problem of sampling a monoexpontial
decay. This pattern was adapted to the presented parametrization by settingT2 = T

∗
2,s = 5 ms

in order to focus on the short component T ∗2,s. The averaging pattern (d) only focuses on
the aspect of improving the reliability of the parameter estimation. In a real measurement,
all shifts are delayed by the TEmin (cf. Section 3.1.1). Example image reconstructions of the
linear pattern are shown in Figure 3.13. The respective shifts ∆Repi of each pattern are
given in Table 3.2.
For the comparison, biexponential decay data were simulated with SNR = 10/15/20/40 and
N = 100,000 repetitions. Accuracy and parameter uncertainty were investigated over a range
of T ∗2 values. T ∗2,s and T ∗2,l ranged from 0 ms to 20 ms and from 20 ms to 60 ms, respectively.
For T ∗2,s = 0 ms the smallest 64-bit number ϵ = 2−53 ≈ 2.2 × 10−16 was set.
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Sampling
schemes

sampling time TE [ms]

linear (a)

early TE (b)

Jones et al. (c)

0 10 20 30 40 50

ΔRep4ΔRep3ΔRep2ΔRep1 = 0 ms

averaging (d)

1
2
3
4

Sets

Figure 3.12: Overview of the alternative sampling schemes under investigation. A typical
decay curve for brain parenchyma with T ∗2,s = 5 ms and T ∗2,l = 40 ms is shown (gray). The
repetition number of the base pattern (1–4) and the respective shifts ∆Repi are depicted
in the linear pattern (a). The ∆Repi are given in Table 3.2. See Figure 3.13 for an example
image data set of the linear scheme.

Table 3.2:Timings of the alternative sampling schemes. Each pattern is completely described
by the ∆Repi , which denote the shift of each equidistant sampling block relative to the earliest
point at TEmin. For the pattern of Jones et al. T2 = 5 ms was assumed.

sampling scheme ∆Repi [ms]

linear 0.00, 1.75, 3.50, 5.25
early TE 0.00, 0.50, 1.00, 1.50

Jones et al. [1996] 0.00, 6.50, 6.50, 6.50
averaging 0.00, 0.00, 0.00, 0.00
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ΔRep2 = 1.8 ms

ΔRep3 = 3.5 ms

ΔRep4 = 5.3 ms

ΔRep1 = 0.0 ms

sampling time TE [ms]

0.35
(TEmin)

7.35 14.35 21.35 28.35 35.35 42.35 49.35

1

2

3

4

Sets

Figure 3.13: Example image data of a healthy volunteer using the linear sampling scheme.
Four acquisition sets are shown with increasing shifts ∆Repi (1–4).

3.3 Additional procedures

For the characterization of the novel 30-channel array coil and the in vivo evaluation of the
T ∗2 data, additional methods were required which are described in the following. These are
SNR measurement techniques, B1 mapping, and segmentation algorithms.

3.3.1 Measurement of the signal-to-noise ratio (SNR)

The SNR is a measure for the uncertainty of a data point with respect to the expected
variance due to noise. For MRI, the SNR in the image space is of interest even though data
is acquired in the Fourier domain of this image. Special care has to be taken when analyzing
the SNR in the image space since the reconstruction process can in�uence the apparent
SNR. Examples leading to such alterations are the calculation of a magnitude image from
the complex-valued data [Gudbjartsson and Patz, 1995], parallel imaging [Dietrich et al.,
2007], or non-linear reconstruction such as compressed sensing [Lustig et al., 2007].

Region-of-interest approach A simple estimate of the image SNR can be retrieved
from the ratio of the mean signal S0 in a region of interest (ROI) in the object and the
standard deviation σ ′ in a noise ROI (cf. [Haacke et al., 1999], Sec. 15.1.5). For noise signal
in amplitude images, the Rician distribution is equivalent to the Rayleigh distribution
(cf. Section 2.2.4). The observed variance σ ′ of the noise can be corrected to the true standard
deviation σ of the underlying Gaussian distribution with the relation

σ ′ =

√
2 − π2 σ ≈ 0.66σ . (3.11)
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Thus, the SNR can be determined via

SNR = S0
σ
≈ 0.66 · S0

σ ′
. (3.12)

The advantage of this approach is its’ ease in use. However, it cannot be applied anymore
for nonlinear reconstruction techniques such as the SOS channel combination.

Pseudo multiple replica approach A more robust method for the SNR determination
is the pseudo multiple replica approach [Robson et al., 2008; Dietrich et al., 2007], which
allows to determine the SNR on a pixel basis. Multiple reconstructions of the raw data are
performed. Prior to every Fourier transform, white Gaussian noise scaled to the actual
measurement noise is added. The SNR of each pixel is then determined by the ratio of the
mean and the standard deviation over all reconstructions. The scaling of the synthetic noise
is determined through a noise scan which has to be performed in addition to the actual
measurement. This method is relatively time intensive due to the many reconstructions
which have to be carried out.

3.3.2 B1 field mapping

Mapping of the B+1 excitation �eld was carried out using the so-called phase-sensitive method
by Morrell [2008], which has been shown to be an appropriate technique for the low SNR
of 23Na [Lommen et al., 2016a]. The excitation �eld is mapped into the signal phase by the
application of a 180°-90° composite pulse. Additional phase contributions are removed by
the subtraction of two image reconstructions of data acquired with opposed phase of 0° and
180°. In the case of a Tx/Rx coil, the receive �eld pro�le B−1 can be assumed to have the same
spatial distribution by the argument of reciprocity at the 23Na frequency [Hoult, 2000].

For a coil with separate Tx and Rx channel, as is the case for the 30-channel array coil
(cf. Section 3.1.1), the sensitivity pro�le of the Rx unit B−1,Rx (e.g. the receive array) can be
determined from a B+1 map of the Tx unit B+1,Tx (e.g. birdcage) and two standard image
acquisitions one acquired with the Tx unit STx and one with the Rx unit STx [Volz et al., 2012].
The excitation �eld of the image from the Tx unit and the Rx unit are equivalent (B+1,Tx) since
excitation is only performed by the Tx unit. The object speci�c structure is removed by the
ratio of images from both units. To this end, the receive pro�le can be determined by

B−1,Rx =
SRx
STx
· B+1,Tx . (3.13)
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3.3.3 Registration and segmentation

For the purpose of tissue segmentation, image registration, tissue segmentation, and brain
extraction were carried out using the FMRIB software library (FSL). FSL is a collection
of analysis tools developed for the purpose of functional MRI imaging. In this work the
following tools were employed:

FLIRT The FLIRT (FMRIB’s linear image registration tool) algorithm allows the registra-
tion of images from di�erent image modalities by a diverse set of rigid and a�ne transfor-
mations [Jenkinson and Smith, 2001; Jenkinson et al., 2002]. During this work, the capability
of intra-modal registration was useful for the registration of 1H and 23Na image data. It was
found to be bene�cial for the process to smooth 23Na images prior with either a Gaussian
or a Hamming �lter. The result of the registration was found to be strongly dependent on
the image data and the chosen cost function, which often require individual adjustment in
order to obtain satisfying results.

BET BET (brain extraction tool) allows the extraction of the brain from surrounding skull
and scalp tissue [Smith, 2002]. This is a necessary step prior to the tissue segmentation
based on image intensity.

FAST The FAST (FMRIB’s automated segmentation tool) algorithm allows fully automated
tissue segmentation with optional bias �eld removal. The method is based on a hidden
Markov random �eld model combined with a expectation-maximization algorithm [Zhang
et al., 2001]. The algorithm was set to segment three tissue types: white matter (WM), gray
matter (GM), and cerebrospinal �uid (CSF).
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In the following chapter, the main results of this thesis are presented. First, improved SNR
e�ciency by means of a multi-channel receive array is shown. Then, an optimized sampling
scheme for the purpose of 23Na T ∗2 measurement is given and compared to alternative
patterns. The in�uence of noise in the parameter �tting is analyzed for three signal models.
Finally, spatially resolved in vivoT ∗2 maps are presented, and from these data the correlation
time of the interaction of 23Na ions in brain tissue is estimated.

4.1 Methodical development forT ∗
2 determination

In this chapter, the methodical developments are presented which eventually lead to a
spatially resolved measurement of 23Na T ∗2 in the human brain in vivo. First, the increased
SNR performance of the novel 30-channel array coil is characterized and compared to a
standard birdcage radio frequency coil. Then, an optimized distribution for the temporal
sampling points is shown. This pattern is compared to common alternatives over a range of
relaxation times and SNR. Furthermore, systematic in�uences due to the �tting model are
investigated.

4.1.1 Improved SNR e�iciency by means of a multi-channel coil

The use of multi-channel RF coils allows a higher SNR e�ciency compared to volume
coils such as birdcage resonators [Roemer et al., 1990]. The improvements in image SNR
which could be achieved by utilization of the 30-channel array coil (cf. Section 3.1.1) are
demonstrated in the following sections. First, important coil characteristics such as noise
correlation and B1 transmit and receive �elds are determined. Then, a quantitative SNR
comparison of the novel coil and a standard reference are given. Parts of this work were
presented at the Annual Meeting of the ISMRM 2016 [Lommen et al., 2016b].

Noise correlation and field profiles

On the 23Na frequency, the 30-channel array coil is built up from a Tx birdcage and a nested
array of 30 separate Rx channels. For the purpose of localization and shimming, an additional
1H birdcage is �t around the 23Na unit. In Figure 4.1 separate image reconstructions are
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shown for each channel in axial and coronal view to give an impression of the channel
locations and the individual sensitivity pro�les of the separate channels. As can be seen, the
image quality is not similar for all channels. The channels 18 and 28, which are located at the
top of the head, exhibit higher noise amplitude. The sensitive depth of most channels appears
to be larger than the radius of the array. E.g. for channels 6, which is located left of the head
in Figure 4.1 (A), still the complete ventricle and the border between the hemispheres are
visible.
The noise correlation between the single channels was calculated from a radial acquisition
with 1,000 projections by setting the voltage of the excitation pulse Vp = 0 V. This has been
reported to be su�cient to sample the noise statistics [Benkhedah et al., 2016]. The noise
correlation of the 30-channel coil acquired from a head scan is shown in Figure 4.2. The
highest correlation is found to be 50 % and the mean is 13 %. The patterns of high correlation
for channels 1-6 and around 25 are due to the neighboring positions (cf. Figure 4.1).
The transmit �eld was measured using the so-called phase sensitive approach by Morrell
[2008], which was demonstrated to be the most appropriate B+1 mapping technique for 23Na
MRI [Lommen et al., 2016a]. The receive �eld of the array coil was determined via the �eld
ratios of Tx birdcage and Rx array (cf. Section 3.3.2). For the single channel birdcage, B+1
is assumed to equal B−1 by the reciprocity. All reconstructions for the B1 mapping were
performed using a 6 mm Gauss �lter to increase the base SNR. The resulting �eld maps are
shown in Figure 4.3. The excitation and receive �elds for both coils are displayed in the
same volunteer at equivalent measurement parameters (cf. Table 4.1). The comparison of
the B+1 maps displays similar pro�les for both coils. A reduced �eld strength in the top and
bottom regions is seen as is typical for birdcage coils. A slight asymmetry of the �eld is seen
in the axial slice of the 30-channel coil. The di�erence in excitation strength was evaluated
by the ratio of the �eld strength in two ROIs left and right of the center. A di�erence of about
7 % in �eld strength was observed. The array coil exhibits a lower B1 e�ciency as seen from
the ratio of the reference voltages for a 90° �ip angle (VRef,30/VRef,BC = 390 V/294 V = 1.3). If
both coils were driven at the same voltage, this would lead to an increased pulse duration of
factor 1.3 for the 30-channel coil. The B−1 receive pro�le displays a sensitivity increase of
more than a factor two from the coil center towards the brain periphery.

SNR comparison between birdcage and 30-channel array coil

The novel multi-channel receive array was compared to a standard birdcage by the same
vendor. To quantitatively compare the SNR in vivo, image data were acquired from one
subject with both coils at equivalent acquisition parameters (cf. Table 4.2). SNR maps were
then determined using the pseudo multiple replica approach (cf. Section 3.3.1). The SNR
maps are depicted in Figure 4.4. For the 30-channel receiver an improved image SNR can be
acknowledged in regions closer to the coil when compared to the birdcage data. The mean
SNR was determined in three regions of interest (ROIs) relative to the coil: center, slight
o�set of the center in a lateral ventricle, and periphery (cf. Figure 4.4 for the locations).
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Figure 4.1: Separate channel data of the 30-channel array coil in axial and coronal view.
Channels 18 and 28 show highest noise. The sensitive depth of most channels is larger than
the radius of the array.
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Figure 4.2: Noise correlation matrix of
the 30-channel coil. The correlation was
calculated from 1,000 projections ac-
quired with pulse voltageVp = 0 V. The
highest correlation is found to be 50 %
and the mean is 13 %. Strongest cou-
pling is found for channel 9 and 19. The
patterns of high correlation for chan-
nels 1-6 and around 25 are due to the
neighboring positions. See Figure 4.1
for their location.
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Figure 4.3: B1 maps of 30-channel array and birdcage coil. B+1 maps are normalized to
the nominal �ip angle (α0) and B−1 to the center amplitude. Both coils show similar B+1
distribution with highest �eld strength in the coil center. The birdcage exhibits a higher
transmit e�ciency as seen in the reference voltages VRef (bottom). The receive pro�le of the
array exhibits more than twice the sensitivity in the periphery compared to the center.
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4.1 Methodical development for T ∗2 determination

Table 4.1: Acquisition parameters for the B+1 �eld mapping.
Parameter Value

Sequence DA 3D-RAD + phase-sensitive
excitation scheme

nom. resolution ∆x 4 mm
max. gradient amplitude G0 5.87 mT/m
projections Nproj 3,000
radial samples #RadSamples 384
echo time TE 0.55 ms
repetition time TR 150 ms
readout duration TRO 20 ms
�ip angle α 180°–90°
pulse length tp 2000 µs–1000 µs
acquisition time TAQ 2 × 7:30 min

Table 4.2: Acquisition parameters for the SNR comparison of the 30-channel array and the
birdcage coil.

Parameter Value

Sequence DA 3D-RAD
nom. resolution ∆x 4 mm
max. gradient amplitude G0 5.87 mT/m
projections Nproj 10,000
radial samples #RadSamples 256
echo time TE 0.35 ms
repetition time TR 30 ms
readout duration TRO 10 ms
�ip angle α 53°
pulse length tp 600 µs
averages 2
acquisition time TAQ 2 × 5 min
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Figure 4.4: In vivo SNR comparison of the 30-channel array coil and the 1-ch birdcage
without array. a) Single channel birdcage data, b) SOS channel combination, and c) adaptive
combination reconstruction. The 30-channel data exhibit doubled SNR in the brain periphery
and similar quality in the center compared to the 1-ch birdcage. The adaptive channel
combination results in a further increase of the SNR in areas close to the coils. Mean values
in the marked regions (1–3) are given in Table 4.3.
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4.1 Methodical development for T ∗2 determination

In the periphery the highest di�erence is expected between the coils and in the ventricle
generally highest signal is found due the high concentration in CSF. The mean ROI values
are given in Table 4.3. The SNR in the periphery was found to be signi�cantly higher for
the array coil (SNR30,AC/SNRBC = 2.5). A slight decrease in SNR is apparent in the center
region (SNR30,AC/SNRBC = 0.9). However, already in the ventricle located slightly o� center
an improvement of factor 1.2 is seen.

Table 4.3: Mean SNR values in three brain regions marked in Figure 4.4: center, periphery,
and ventricle. The SNR e�ciency increases for the 30-channel coil towards the brain
periphery as re�ected in the ratio SNR30,AC/SNRBC.

ROI position 1-ch BC 30-ch 30-ch SNR30,AC/SNRBC
SOS AC

center (1) 14 14 13 0.9
ventricle (2) 23 27 27 1.2
periphery (3) 11 24 27 2.5
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Comparison of image data

The image quality obtained by the two coils is compared in vivo in a healthy volunteer in
Figure 4.5. Additionally, 1H data are shown which were acquired with a fast GRE scan
to demonstrate the performance of the 1H channel. Respective acquisition parameters are
listed in Table 4.4. As expected from the SNR maps, the image data from the single-channel
birdcage coil exhibits higher noise than the array data. However, the SOS reconstruction
shows high background noise. This is greatly reduced for the AC channel combination, where
almost no background noise is visible. The 30-channel data exhibit an intensity decrease
towards the brain center due to the receive sensitivity of the array. By normalization to the
B−1 �eld, this can be compensated. The 30-channel data allows an improved discrimination of
�ner structures in the cortex. Concerning the 1H channel, a full brain coverage is achieved.

Table 4.4: Acquisition parameters for the comparison of the image quality between the
birdcage and the 30-channel array.

Parameter Value

Sequence DA 3D-RAD
nom. resolution ∆x 2 mm
max. gradient amplitude G0 12.00 mT/m
projections Nproj 25,000
radial samples #RadSamples 512
echo time TE 0.35 ms
repetition time TR 30 ms
readout duration TRO 10 ms
�ip angle α 53°
pulse length tp 600 µs
averages 2
acquisition time TAQ 2 × 12:30 min
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Figure 4.5: In vivo comparison of image data from the 30-channel array coil and the birdcage
at same acquisition parameters. Shown are single channel birdcage data (a), 30-channel data
with SOS combination (b), with AC (c), and AC with additional correction of the B−1 pro�le
(d). The higher SNR of the array coil allows for a better resolution of �ne structures in the
cortex. A fast 1H GRE acquisition is shown in e).
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4.1.2 Optimization ofT ∗
2 sampling

In the following, the results from the optimization of the sampling pattern will be pre-
sented.

Minimum SNR for parameter fi�ing of a biexponential model

In this work, the acquisition parameters for in vivo the T ∗2 measurements are determined
through a minimum SNR requirement in WM for reliable parameter estimation. In order to
obtain this threshold value, the �tting quality was analyzed over a range of possible SNRs. A
typical biexponential signal decay was calculated over a range of SNR = 1–40 and �tted with
the signal model (Section 3.2.1). The curve was sampled at the positions of a linear pattern
with 4 sets and ∆TE = 7 ms. This results in 32 points at the time points [0:1.75:54.25] ms.
The mean bias and standard deviation over 100,000 repetitions are depicted in Figure 4.6.
The bias of the amplitude A0 and the short component T ∗2,s display similar behavior with
values less than 5 % down to an SNR of 5. Below this value, a strong increase of a systematic
overestimation is found. For the long component T ∗2,l, �tting below an SNR of 10 leads
to an overestimation by more than 10 % (cf. Figure 4.6, a). At SNR>15, all parameters are
determined with a bias smaller than 3 %. The standard deviation displays an increasing
accuracy for an SNR greater 5 (cf. Figure 4.6, b). The short component exhibits highest and
the amplitude lowest variation. The long relaxation time exhibits a medium uncertainty in
between. At SNR = 15, the uncertainty of T ∗2,s drops below 20 % and the standard deviations
of T ∗2,l and A0 are 12 % and 5 %. At SNR = 30, a variation lower than 10 % is reached.

Optimization of the sampling scheme

The calculation of the metric Q (cf. Equation 3.10) required repetitive data �tting and the
variation between these �tting repetitions was used as a measure for the quality of the
sampling pattern. To this end, the number N ′ of �t repetitions had to be determined at
which the �t statistics are su�ciently sampled and Q becomes well-de�ned. This was done
by reevaluatingQ 100 times for di�erent N ranging from 100 to 300,000. If N ′ is reached, the
standard deviation over the 100 evaluation of Q should not change with further increasing
N and converge to minimum. The standard deviation over the 100 results forQ as a function
of N are displayed in Figure 4.7. As can be seen, at a value of N = 5, 000 the variation
of Q becomes minimal. For the optimization of the sampling pattern, a higher value of
N = 30, 000 was used for more reliability and for the comparison of the di�erent pattern
N = 100, 000 was chosen. In Figure 4.8, the value of Q is shown for one path from the
global optimization procedure. As can be seen, the value of Q steadily decreases until the
minimization stops after 9 iterations.
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Figure 4.6: Bias (a) and standard deviation (StD, b) for �tting a biexponential decay at
varying SNR. The SNR was varied from 1 to 40 (black line at SNR = 15). The short component
displays the highest bias and variation. At SNR = 15, the bias of all parameters is less than
5 % and the variation drops below 20 %.
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Figure 4.7: Test for well-de�nition
of Q . Shown is the standard devi-
ation for repetitive evaluation of Q
for a varying number of noise repeti-
tions N . If the �t statistics inside Q
are sampled su�ciently accurately,Q
becomes well-de�ned and converges
to a minimum value. This is reached
at N ′ = 5, 000 noise repetitions.
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Figure 4.8:Convergence behavior of
Q during optimization. Shown is one
optimization path in the multi-start
algorithm. The minimization of Q
progresses steadily and stops after
nine iterations.

Optimized sampling scheme

The sampling scheme obtained from the minimization of the quality metric Q described
in detail in Section 3.2.2 resulted in the shifts ∆Repi given in Table 4.5. A visualization
together with the alternative sampling patterns is shown in Figure 4.9. The optimized
sampling is determined by ∆Rep = [0.0, 0.0, 0.0, 4.1] ms. Thus, the pattern consists of 3
averages at TEmin and an additional point at TE = TEmin + 4.1 ms.

4.1.3 Evaluation ofT ∗
2 determination

In this section, di�erent aspects are investigated which have an in�uence on the accuracy
and uncertainty of the T ∗2 determination. First, a comparison of the di�erent sampling
patterns is presented. Signal simulations were performed for �ve di�erent schemes for a
variety of T ∗2,s and T ∗2,l as well as for di�erent SNR. Furthermore, three �tting models are
analyzed with regard to systematic bias due to noise signal.

Table 4.5: Shifts ∆Repi of the scheme resulting from the optimization shown together with
values of the alternative patterns. The optimized pattern consists of three averages at TEmin
and one intermediate point at 4.1 ms.

sampling scheme ∆Repi [ms]

optimized 0.00, 0.00, 0.00, 4.10
linear 0.00, 1.75, 3.50, 5.25

early TE 0.00, 0.50, 1.00, 1.50
Jones et al. [1996] 0.00, 6.50, 6.50, 6.50

averaging 0.00, 0.00, 0.00, 0.00
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Figure 4.9: Sample distribution of the optimized scheme (dark red) determined by the shifts
∆Rep = [0.0, 0.0, 0.0, 4.1] ms. The optimized pattern consists of 3 averages at TEmin and an
additional point at TE = TEmin + 4.1 ms. The pattern is shown together with the investigated
alternatives for comparison.
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T ∗
2 resolution of di�erent sampling schemes

The performance of the considered sampling schemes (cf. Figure 4.9) was investigated for
a range of T ∗2,s and T ∗2,l which are likely to occur in vivo. To this end, data was simulated
and analyzed as described in Section 3.2.2. Bias, uncertainty, as well as overall quality Q
were determined for T ∗2,s ranging from 0 ms to 20 ms (0.0, 0.1, 0.5, 1.0 ms, and 2 ms to 20 ms
in steps of 2 ms) and for T ∗2,l varying from 20 ms to 52 ms in steps of 4 ms. Averaging and
the optimized pattern exhibit the most accurate determination of A0 (0.1 % to 0.5 % bias,
Figure 4.10). For the other schemes, a lower reliability is found as demonstrated by the
higher standard deviation (≈ 7 %, Figure 4.11). T ∗2,s is generally overestimated for very short
relaxation times. At higherT ∗2,s, a transition from underestimation to overestimation is found
as a function of T ∗2,l in the range of T ∗2,l = 30 ms to 40 ms. Most accurate determination of T ∗2,s
is found forT ∗2,s between 4 ms to 10 ms andT ∗2,l in the range of 30 ms to 50 ms. For all schemes,
this region also exhibits low variation (18 % to 25 %) with increasing uncertainty towards very
shortT ∗2,s (Figure 4.11). Averaging, early TE, and the optimized pattern exhibit an extended
region of improved �tting quality as seen in the maps of the metric Q (Figure 4.12). This
region is most extended for the optimized and linear pattern as a�rmed by a low standard
deviation over a wider range (cf. Table 4.6 and Figure 4.12 for the evaluation region).
The optimized pattern exhibits the lowest mean values which demonstrates best overall
parameter estimation. The optimized scheme exhibits a more robust determination whilst
the linear pattern allows to resolve shorter relaxation times. The accuracy of T ∗2,l does not
display a pronounced dependency on the sampling pattern. The variation of T ∗2,l increases
slightly for longerT ∗2,s and a systematic overestimation for values close toT ∗2,s is found. Even
for T ∗2,s close to zero, T ∗2,l and A0 can be observed without additional bias (cf. Figure 4.10
and 4.11, top rows).

Table 4.6: Mean values and standard deviation (StD) of quality Q over a range of T ∗2 for the
considered sampling schemes. A low mean value displays a higher quality of the parameter
estimate. A low standard deviation represents a constant behavior over the considered
region. The values were normalized to the lowest (best) value retrieved by the optimized
pattern. Please note that in Figure 4.12 the logarithm of the values is shown which makes
variations appear smaller.

linear early TE Jones et al. averaging optimized

Mean ± StD 1.02 ± 1.35 3.33 ± 6.38 23.02 ± 62.33 19.49 ± 47.87 1.00 ± 1.61
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Figure 4.10: Relative bias of parameter estimation over a range of T ∗2 values for di�erent
sampling schemes at SNR = 15. See text for more information on the exact T ∗2 values.
Smoothest variation and lowest bias are found for the linear and optimized pattern. The
latter shows a more robust determination, whilst the linear pattern allows to resolve shorter
relaxation times. T ∗2,s is underestimated for short T ∗2,l whilst overestimated for longer T ∗2,l.
Most accurate determination is found forT ∗2,s between 4 ms and 10 ms andT ∗2,l between 30 ms
and 50 ms. The accuracy of T ∗2,l does not show a pronounced dependence on the sampling
pattern.
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Figure 4.11: Relative standard deviation of parameter estimation over a range of T ∗2 values
for di�erent sampling schemes at SNR = 15. See text for more information on the exact
T ∗2 values. For A0, averaging and the optimized pattern show most favorable behavior (≈ 4 %
variation). A stronger variation (≈ 7 %) is found at very shortT ∗2,s for the other patterns. The
short componentT ∗2,s exhibits a region with relatively low variation (18 % to 25 %) at medium
T ∗2,s, which is most pronounced in the optimized scheme. For all schemes the variation
increases for short T ∗2,s. The long relaxation component T ∗2,l does not exhibit a pronounced
dependency on the sampling pattern.
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Figure 4.12: Quality metric Q representing overall performance of parameter estimation.
The logarithm of Q is shown for better visualization. A region with favorable behavior is
found for the early TE pattern, averaging, and the optimized pattern at medium T ∗2,s and
T ∗2,l. This region is most extended for the optimized and linear pattern as a�rmed by the
mean and standard deviation in the marked region (cf. Table 4.6). The pattern of Jones et al.
and averaging exhibit decreased resolution for very short T ∗2,s, whilst the early TE scheme
performs best in this aspect. Please note that the logarithm makes variations appear smaller
than they actually are.
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T ∗
2 determination at varying SNR

The performance of the di�erent sampling schemes is shown as a function of the image
SNR in Figure 4.13. The parameter estimates were averaged over a range of T ∗2 values in
order to take into account variations in the relaxation times, e. g. due to pathologies. The
range was chosen symmetrically around reported relaxation values for brain parenchyma
(T ∗2,s = 3 ms to 7 ms,T ∗2,l = 32 ms to 48 ms [Nagel et al., 2011]). For SNR = 15, the average bias
for all schemes is 0.4 %, 4 %, and 11 % (A0, T ∗2,s, and T ∗2,l) and the uncertainty is of the order
of 5 %, 25 %, and 15 %, respectively. The signal amplitude is most accurately determined
by averaging (0.16 %) and the optimized pattern (0.22 % bias). T ∗2,s is captured best by the
optimized pattern (2.0 % bias) whereas averaging exhibits highest bias (4.4 %). The uncer-
tainty is similar for the optimized, linear, and early TE pattern (26.0 %) and highest for the
pattern by Jones et al. (34.5 %). The in�uence on T ∗2,l is low. Here, the highest accuracy is
found for the early TE pattern and averaging (2.7 %), and lowest for Jones et al. (4.5 %). The
uncertainty is in the range of 15 %. The overall performance Q rates the optimized pattern
as the most appropriate. Linear sampling exhibits similar behavior while early TE, Jones et
al., and averaging result in lower overall quality.

Analysis of data fi�ing

To understand the in�uence of the �tting model in the parameter estimation three mod-
els were investigated with regard to their behavior under di�erent noise amplitudes and
sample numbers. To this end, multiple �tting repetitions were performed for all parameters
(cf. Section 3.2.1). The mean and standard deviation were determined for all models and
are shown in Figure 4.14 for SNR = 10, 15, and 20. In general, the short component is
overestimated (≈ 6 %) whilst amplitude and long component exhibit a more complicated
behavior. Including the noise �oor as an additional �t parameter results in the strongest bias
at low SNR and low TEmax < 80 ms (bias ≈ 40 %). The bias decreases for a higher number
of samples. The two models with constant noise term yield similar results at lower TEmax.
However, if the noise contribution is neglected (n = 0), a systematic bias is found for higher
TEmax, resulting in an overestimation of T ∗2,l and an underestimation of A0. For rather low
TEmax, like TEmax = 55 ms used in this study for in vivo T ∗2 mapping, the short component is
determined most accurately by neglecting the noise contribution. A0 and T ∗2,l are captured
comparably by neglecting or including the known SNR up to medium TEmax around 80 ms.
For A0, the standard deviation is almost independent for all models. For the relaxation times,
decreasing uncertainty is found for higher number of sampling points. However, at TEmax
≈ 100 ms, the reliability of T ∗2,s does not increase further which similarly applies to T ∗2,l for
TEmax higher 80 ms. T ∗2,s is detected most reliably by using a constant noise �oor.
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Figure 4.13: Performance of the di�erent sampling schemes for varying SNR. Bias, standard
deviation, and the overall quality Q are depicted for SNR = 10/15/20/40. To determine the
quality of the di�erent schemes when quantifying tissue with varying relaxation times (e.g.
due to pathologies), values were averaged over a range around reported T ∗2 values for brain
withT ∗2,s = 3 ms to 7 ms andT ∗2,l = 32 ms to 48 ms. At SNR = 15, lowest bias and variation are
found for the optimized scheme. T ∗2,l does not show a strong dependency on the sampling
pattern. The overall quality Q is best (lowest values) for the optimized pattern.
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Figure 4.14: Bias and standard deviation (StD) of parameter estimation for three di�erent
�tting models as function of the SNR and the number of sampling points. TEmax is the
latest sampling point and determines the number of samples. The di�erent �t models are
characterized by neglecting (red), �tting (blue), and setting the known noise amplitude for
the noise �oor (green). At low TEmax, lowest bias is found when neglecting the noise �oor. If
more samples are acquired, it has to be taken into account. The reliability of theT ∗2 estimates
increases up to a certain threshold around 80 ms after which most of the signal has decayed.
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4.2 In vivo T ∗2 mapping

4.2 In vivoT ∗
2 mapping

In this section, in vivo T ∗2 mapping of 23Na ions in healthy human brain is presented. The
quanti�cation of the signal relaxation was conducted with the linear and the optimized
pattern in three healthy volunteers. Possible errors due to signal blurring from liquid com-
partments into the parenchyma are analyzed. Finally, the correlation time of the interaction
of the 23Na ions with their environment is determined.

4.2.1 Workflow of the in vivo evaluation

In vivo T ∗2 mapping in healthy human brain was performed with both the linear and the
optimized acquisition scheme in 3 healthy volunteers (age 26±4 years). Acquisition pa-
rameters were chosen such that an SNR of approximately 15 was achieved at TEmin in
WM after Hamming �ltering. This resulted in a measurement time of 15 min per set and
Nreps = 4 repetitions could be acquired within one hour. 23Na measurements were con-
ducted with the 23Na 30-channel array coil (cf. Section 3.1.1), using the multi echo version
of the DA 3D-RAD sequence (cf. Section 3.1.1). The �ip angle was determined via the Ernst
angle (cf. Equation 2.64) for T1 = 37 ms as reported by Nagel et al. [2011]. Additionally, two
anatomical scans were acquired using the 24-channel 1H coil (cf. Section 3.1.1). These were,
an MPRAGE sequence (T1 weighted) for the tissue segmentation and a CISS sequence (T2
weighted) with strong brain-liquor contrast to improve the brain extraction (cf. Section 3.1.1).
Acquisition parameters of the pulse sequences are listed in Table 4.7 and Table 4.8.
The image data were reconstructed using adaptive combination (cf. Section 3.1.2) and then
each echo time was coregistered to the acquisition at TEmin = 0.35 ms. In each voxel, the
biexponential signal model was �tted with the noise parameter n = 0 (Equation 3.8). This
was determined to be the most reliable signal model at the chosen acquisition parameters
(cf. Section 4.1.3). Mono- and biexponential compartments were separated by re�tting voxels
withT ∗2,l > 50 ms with a monoexponential model similar as proposed by Blunck et al. [2017].
The relaxation constants were initialized with T ∗2,s/T

∗
2,l = 3 ms/30 ms and the amplitude

A0 with the intensity of the �rst echo A0 = S(TEmin) due to varying signal intensity of
di�erent tissues (e.g. SCSF ≈ 4 · SWM). The values were loosely constraint to the intervals
[0,1.2], [0,15] ms and [0,80] ms (A0/T

∗
2,s/T

∗
2,l ). Image data was normalized to the maximum

value of the image acquired at TE = 0.35 ms.
The compartments of WM and CSF were segmented with masks retrieved from the MPRAGE
scan using FSL (cf. Section 3.3.3). The segmentation was conducted at 1H resolution and
then coregistered to the 23Na scan (cf. work�ow diagram, Figure 4.15). Only voxels with a
partial volume share of at least 90 % were included. During this process, the mask for GM
could not be retained due to the small extent of this compartment.
Exemplary reconstructions of the data used for T ∗2 mapping are displayed in Figure 4.16
for one volunteer (age 22). Shown are the �rst 30 echoes of the linear pattern representing
equidistant time steps of ∆TE = 1.75 ms. The data were acquired at a nominal resolution of
2.8 mm and reconstructed with a Hamming �lter. The long T ∗2 of CSF can be acknowledged
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Table 4.7: Acquisition parameters for the in vivo T ∗2 mapping using the multi echo readout
(cf. Section 3.1.1) with the optimized and linear sampling scheme.

Parameter Value

Sequence ME DA 3D-RAD
nom. resolution ∆x 2.8 mm
max. gradient amplitude G0 10.45 mT/m
projections Nproj 14,000
radial samples #RadSamples 384
minimal echo time TEmin 0.35 ms
other sample points cf. Section 4.1.2
repetition time TR 65 ms
readout duration TRO 5.6 ms
rewinder duration TRW 1.4 ms
echo spacing ∆TE 7 ms (= TRO +TRW)
�ip angle α 79°
pulse length tp 600 µs
acquisition time TAQ 4 × 15 min

(Nreps = 4)

Table 4.8: Acquisition parameters for the anatomical 1H scans used for the brain tissue
segmentation. The MPRAGE was used for the segmentation and the CISS for an improved
brain extraction.

Parameter Value

Sequence MPRAGE
resolution ∆x 0.6 mm
echo time TE 1.99 ms
repetition time TR 3400 ms
inversion time TI 1200 ms
bandwidth BW 362 Hz
�ip angle α 9°
acquisition time TAQ 10 min

Parameter Value

Sequence CISS
resolution ∆x 0.6 mm
echo time TE 2.2 ms
repetition time TR 5.01 ms
inversion time TI -
bandwidth BW 610 Hz
�ip angle α 13°
acquisition time TAQ 7:30 min
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Figure 4.15: Work�ow of the in vivo evaluation. First, the 23Na data were reconstructed and
coregistered to the �rst acquisition at TEmin. Then, the signal model was �tted to the image
data. The tissue compartments were separated using masks retrieved from an MPRAGE
scan.

69



4 Results

compared to the fast signal decay in parenchyma. For later echo times, distortions in the
frontal region become stronger due to B0 inhomogeneities caused by air in the paranasal
sinuses. In Figure 4.17, the signal decay is depicted for two example voxels, one located in
WM and one in CSF. The location of the voxels is marked in the �gure. The biexponential
signal decay can be seen in the WM voxel. In CSF, the signal decays more slowly exhibiting
monoexponential shape. The SNR of the data in WM is reduced compared to CSF due to the
lower tissue concentration ([23Na] ≈ 30 mM vs. 150 mM [Madelin and Regatte, 2013]).

4.2.2 T ∗
2 relaxation in human brain

Voxel-wise T ∗2 maps were determined by �tting of the image data with the respective signal
model expected from theory (cf. Section 3.2.1). An example T ∗2 map of one volunteer is
depicted in Figure 4.18. In both sampling strategies an intensity increase towards the brain
periphery is seen in the amplitude data, which is due to the sensitivity pro�le of the coil.
Substructures of the WM adjacent to the lateral ventricles can be acknowledged. These
structures are more clearly visible in the data of the optimized pattern. In the maps of the
relaxation components in brain parenchyma (b,c,f,g) a strong contrast between �uid and
tissue compartments is seen, stemming from the slower decay times in the CSF. In the
comparison of the relaxation maps of the short component, the cortex region exhibits slightly
higher overall values in the linear pattern than in the optimized. From the relaxation maps,
the compartments of WM and CSF were segmented to obtain mean values for these tissue
types. Additionally, data from a smaller ROI were extracted to reduce errors due to signal
blurring from neighboring compartments. These ROIs were located in the WM close to the
ventricles (cf. Figure 4.18 for the location). An overview of all relaxation times is given in
Table 4.9. For all volunteers, theT ∗2,s obtained with the linear pattern were higher than those
of the optimized pattern. These were 7.1 ± 2.0 ms, 5.6 ± 0.5 ms, and 6.7 ± 1.2 ms for the
linear pattern and 6.6 ± 2.2 ms, 5.4 ± 1.3 ms, and 6.3 ± 1.8 ms for the optimized scheme. The
respective mean values are 6.5 ± 0.8 ms and 6.1 ± 0.6 ms (linear/optimized). This di�erence
was more pronounced for the local ROI evaluation than in the segmentation over the whole
brain. There, the values for linear sampling were 6.2 ± 1.3 ms, 4.5 ± 0.9 ms, and 4.6 ± 0.9 ms
and 4.8 ± 0.6 ms, 4.0 ± 0.6 ms, and 3.9 ± 1.0 ms for the optimized scheme. The mean values
are 5.1 ± 0.8 ms and 4.2 ± 0.4 ms. The long relaxation component displays a similar trend
with mean values of 40.9 ± 2.2 ms and 40.1 ± 2.2 ms in the full WM segmentation and
35.7 ± 2.4 ms and 34.4 ± 1.5 ms in the ROI. In CSF, the mean monoexponential relaxation
times of both patterns are similar being 53.6 ± 6.9 ms and 54.4 ± 5.7 ms.
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0.35 ms 10.90 ms 21.40 ms 31.90 ms 42.40 ms

2.10 ms 12.60 ms 23.10 ms 33.60 ms 44.10 ms

3.85 ms 14.40 ms 24.90 ms 35.40 ms 45.90 ms

5.60 ms 16.10 ms 26.60 ms 37.10 ms 47.60 ms

7.35 ms 17.90 ms 28.40 ms 38.90 ms 49.40 ms

9.10 ms 19.60 ms 30.10 ms 40.60 ms 51.10 ms

Figure 4.16: Image reconstructions of the base data for T ∗2 mapping. Shown are the �rst 30
echoes of the linear pattern. The data were acquired at a nominal resolution of 2.8 mm and
reconstructed with a Hamming �lter. The longT ∗2 of CSF can be acknowledged compared to
the fast signal decay in parenchyma. For later echo times, distortions in the frontal region
become visible due to B0 inhomogeneities caused by air in the paranasal sinuses.
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Figure 4.17: Example voxel data and decay curves in brain tissue. The signal decay in two
voxels of WM and CSF (red circles and green triangles) is shown together with decay curves
describing the mean decay from this volunteer (b). The location of the voxels is marked in
the image data (a). Signal intensities in both voxels were normalized to the �rst point. The
lower SNR of WM is due to a lower concentration compared to CSF.
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Figure 4.18: In vivo parameter maps of the relaxation times in a healthy volunteer measured
with the linear sampling pattern (a-d) and the optimized scheme (e-h). A0, T ∗2,s, and T ∗2,l are
shown from left to right. T ∗2,l is displayed for �uid compartments with a monoexponential
�t (d, h) and with a biexponential �t for parenchyma (b, c and f, g). In parenchyma, the
optimized pattern yields shorter relaxation times compared to linear sampling (black circle,
also cf. Table 4.9).
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4.2 In vivo T ∗2 mapping

Table 4.9: In vivo T ∗2 times in WM and CSF of 3 healthy volunteers (age 26 ± 4) with two
di�erent sampling patterns. Only voxels with more than 90 % compartment probability in
the segmentation were included (Seg). In WM, the optimized pattern results in lower T ∗2
values for both short and long component as shown in a separate ROI. In CSF, the relaxation
time of the monoexponential model agrees within the uncertainty for both patterns.

Sampling scheme Volunteer (Age) T ∗
2,s [ms] T ∗

2,l [ms]
WM WM CSF

Linear

1 (22) Seg
ROI

7.1 ± 2.0
6.2 ± 1.3

42.3 ± 11.4
34.0 ± 2.8 57.0 ± 11.4

2 (26) Seg
ROI

5.6 ± 1.5
4.5 ± 0.9

38.3 ± 7.1
32.3 ± 4.7 45.6 ± 10.3

3 (30) Seg
ROI

6.7 ± 1.2
4.6 ± 0.9

42.0 ± 11.0
36.4 ± 4.2 58.0 ± 11.7

Mean ± StD Seg
ROI

6.5 ± 0.8
5.1 ± 0.8

40.9 ± 2.2
35.7 ± 2.4 53.6 ± 6.9

Optimized

1 (22) Seg
ROI

6.6 ± 2.2
4.8 ± 0.6

41.5 ± 11.8
33.5 ± 2.7 56.2 ± 11.3

2 (26) Seg
ROI

5.4 ± 1.3
4.0 ± 0.6

37.5 ± 7.1
34.6 ± 2.7 48.0 ± 9.4

3 (30) Seg
ROI

6.3 ± 1.8
3.9 ± 1.0

41.2 ± 11.2
39.0 ± 5.9 59.0 ± 12.3

Mean ± StD Seg
ROI

6.1 ± 0.6
4.2 ± 0.4

40.1 ± 2.2
34.4 ± 1.5 54.4 ± 5.7
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4.2.3 Influence of signal contamination from CSF

For quanti�cation measurements in parenchyma, the signal contribution coming from CSF
due to partial volume e�ects results in a systematic error. To this end, the deviation in the
observed relaxation times was investigated. The di�erence due to the sampling scheme was
analyzed for varying amount of liquid contamination. Furthermore, measurements were
performed at two di�erent resolutions and quanti�cation before and after �ltering were
compared.

Apparent relaxation in case of liquid contamination

In the analysis of the sampling patterns, the linear and optimized sampling strategies were
found to be the most appropriate ones (cf. Section 4.1.3). Therefore, the behavior of these
schemes was investigated for the case of signal contamination in parenchyma coming from
liquid compartments. A biexponential decay was simulated (T ∗2,s/T ∗2,l = 4.5 ms/35.0 ms) with
a varying contribution of slow decaying monoexponential signal with a signal intensity
ratio from 0 % to 30 % (T ∗2,l = 54.0 ms). The resulting parameter estimates for A0, T ∗2,s, and
T ∗2,l are depicted in Figure 4.19. The signal amplitude is captured more accurately by the
optimized pattern which leads to a maximum deviation of less than 1 %. A bias of 3 % is
found for the linear pattern. For both relaxation components, the linear pattern results in
higher estimates. Especially, for the short component the two sampling schemes deviate
in their parameter estimate by 11 % of the underlying T ∗2,s. For the long component this
deviation is only 3 % of the set value for T ∗2,l. In general, an increasing signal contribution
with slow relaxation behavior, as it is the case for CSF signal, results in an underestimation
of the true signal amplitude of less than 3 %. Both relaxation components are observed with
increasing values with a higher relative in�uence in the short component.

Measurement resolution and filtering: Influences on theT ∗
2 mapping

To demonstrate the advantage of acquiring data at higher resolution with subsequent
Hamming �ltering, Figure 4.20 displays both T ∗2 maps derived from a measurement with
4 mm nominal resolution and one with 2.8 mm. All other sequence parameters were kept
constant (cf. Table 4.7). The 4 mm acquisition is shown with and without Hamming
�ltering before image reconstruction (cf. Figure 4.20, A and B) and the 2.8 mm acquisition
with �ltering (cf. Figure 4.20, C). At lower resolution, Gibbs ringing artifacts occur in the
parenchyma. These can be suppressed by applying a Hamming �lter. However, this results
in a loss of resolution. At the higher resolution and additional �ltering no ringing artifacts
are visible. To evaluate the in�uence of resolution and �ltering, the mean relaxation times
from a segmentation of WM and CSF are displayed in Figure 4.21. It can be recognized that
the observed T ∗2 values in CSF decrease for the low resolution data from 60.1 ms to 51.4 ms
if Hamming �ltering is applied. At the same time, the value of T ∗2,s in WM increased from
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Figure 4.19: Change in parameter estimation of biexponential signal in case of CSF con-
tribution for the linear and optimized pattern. The actual signal amplitude (black line) is
captured more accurately by the optimized pattern. Both decay components increase with
higher CSF contribution. ForT ∗2,s, a larger value is determined by the linear pattern compared
to the optimized scheme. This di�erence increases for higher CSF contribution.
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Figure 4.20: Comparison of the in�uence of nominal spatial resolution and Hamming �lter-
ing on the parameter maps. Shown are data with 4 mm nominal resolution without and with
Hamming �lter (A and B) and a 2.8 mm acquisition with Hamming �ltered reconstruction
(C). The un�ltered data show ringing artifacts which can be reduced by �ltering. However,
this leads to a blurring of the PSF which can be compensated by acquiring higher resolution
data but still �ltering the data.
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Figure 4.21: Relaxation times in WM and CSF segmented from the data presented in
Figure 4.20 (resolution of 4 mm w/ and w/o �ltering and 2.8 mm w/ �ltering). Filtering
of the low resolution data leads to signal blurring from the CSF compartment into WM. As a
result, the CSF relaxation time is underestimated (orange triangle and circle) and the values
in the parenchyma are overestimated (blue triangle and circle). The loss in resolution can be
compensated by acquiring the data at a higher resolution (squares).

5.8 ms to 6.8 ms. If the data are acquired at higher resolution, the e�ect of the broadening of
the PSF is compensated resulting in a value of T ∗2,s = 6.1 ms in the WM compartment. This
value is still slightly higher than the 4 mm measurement but is in accordance within the
measurement uncertainty.

4.2.4 Determination of the correlation time fromT ∗
2

In the case of dominating quadrupolar interaction, the correlation time of the interaction
between 23Na ions and the external electrical �eld gradient can be determined by the ratio
of fast and slow relaxation components. The correlation time was calculated from the ratio
R = T ∗2,l/T

∗
2,s by using the formula

τc =
1

2
√

2

√√
25R2 − 58R + 49

ω2
0

+
5R
ω2

0
−

9
ω2

0
. (4.1)

This relation is the positive solution of the quadratic equation resulting from the ratio of the
equations for the short and long relaxation times (cf. Equation 2.49 given in Section 2.1.4).

Correlation times of 23Na in brain tissue

Spatially resolved maps of the correlation time are depicted in Figure 4.22. These maps were
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Figure 4.22: Maps of the apparent correlation time τc for three healthy volunteers. Values
were determined from a measurement of the optimized pattern. For all three subjects a
slight asymmetry between left and right hemisphere appears to be present. The locations of
the ROIs used for the evaluation are depicted in volunteer 1.

determined from theT ∗2 data acquired with the optimized pattern (cf. Section 4.2.2). Highest
values of τc are found in WM regions close the ventricle. Towards tissue borders with CSF, an
increase of the values is observed as well. Going from the center to the brain periphery, the
observed correlation time gradually declines. In the CSF of the lateral ventricles, a constant
value of 27.9 ns is found, which is not valid since the biexponential model is not applicable
in liquids. A slight asymmetry between the left and right hemisphere appears to be present.
An ROI analysis was performed in the WM located left and right of the lateral ventricles.
For the three volunteers, the mean correlation times were 35.5 ± 3.8 ns, 40.6 ± 3.8 ns, and
43.1 ± 6.3 ns. The mean value over all three volunteers was determined to be 39.3 ± 2.5 ns.
The resulting correlation times for the left and right hemisphere are depicted in Figure 4.23.
The values of the correlation times are shown in Table 4.10.

The respective base parameters are shown in Figure 4.24. The asymmetry is also visible
in the A0 as well as T ∗2,l. T

∗
2,s does not exhibit this trend. The variation of the data in the

evaluated ROI is larger than the discrepancy between the values.

Table 4.10: In vivo correlation times in three healthy volunteers. Given are values in an
ROI in WM located left and right of the lateral ventricle (cf. Figure 4.22).

correlation time τc [ns]
Volunteer #1 #2 #3

left 36.8±6.3 41.9±6.3 48.2±12.7
right 34.2±5.1 38.1±5.1 36.8±3.8

intra volunteer mean 35.5±3.8 40.6±3.8 43.1±6.3
total mean 39.3±2.5
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Figure 4.24: The base parameters T ∗2,s and T ∗2,l for the calculation of the correlation times.
Additionally, the amplitude A0 is shown as well.
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Correlation times of 23Na in agarose phantoms

For the purpose of comparison to the in vivo results, correlation times were determined in
agarose phantoms. These are often used to imitate tissue environment. The relaxation was
measured in seven phantoms containing 1 %–7 % agarose concentration (cf. Section 3.1.1).
The measurement parameters are given in Table 4.11. The correlation times are shown as
a function of the agarose concentration in Figure 4.25 and are given in Table 4.12. The
observed correlation times exhibit a monotonic rise as function of the agarose concentration.
At around 4 % the slope becomes lower and the values of 5 % and 6 % are almost the same.

Table 4.11: Acquisition parameters for phantom relaxation measurement.
Parameter Value

Sequence ME DA 3D-RAD
nom. resolution ∆x 4 mm
max. gradient amplitude G0 7.55 mT/m
projections Nproj 7050
radial samples #RadSamples 384
echo time TE linear patter (cf. Section 3.2.2)
repetition time TR 120 ms
readout duration TRO 5 ms
�ip angle α 90°
pulse length tp 600 µs
acquisition time TAQ 4 × 14:07 min

Table 4.12: Correlation times measured in agarose phantoms. The uncertainty of the value
in the phantom with 1 % agarose is increased compared to higher concentrations. The
assumption of one single compartment might not be ful�lled.

Agarose [%] τc [ns]

1 14.9±1.2
2 21.5±0.6
3 26.5±0.7
4 28.5±0.7
5 31.0±0.8
6 31.6±0.9
7 33.8±0.7
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Figure 4.25: Correlation times in agarose as a function of agarose concentration. A linear
relation would be expected if the agarose concentration had a linear in�uence on the
correlation time. This is not the case for concentration higher than 4 %.
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5 Discussion

The aim of this work was the e�cient and accurate quanti�cation of the T ∗2 decay of the
23Na MRI signal in vivo. The observation of the 23Na signal relaxation is challenging due
to low SNR and a fast biexponential decay in the order of a few milliseconds. The origin
of the rapid relaxation is the electric quadrupole moment of the nucleus which enables an
additional interaction path via electric �eld gradients present in the ionic environment. To
this end, the signal relaxation represents a direct probe into the microscopic surrounding
through electric interaction. The information contained in the decay properties with regard
to biological tissue is still not fully understood but is assumed to be linked to the location of
the ions relative to the cell. Having in mind, the major regulatory role of 23Na ions when
transported between intra- and extracellular space for the purpose of signal conduction and
cell homeostasis, further understanding of the relaxation characteristic could add another
layer of information to the imaging of this nucleus, which exhibits second best MRI proper-
ties after 1H in the human body.

In brain tissue, the concentration of 23Na ions is about 40 mM [Niesporek et al., 2015]. This
low abundance is the main reason for the SNR of 23Na MRI being four orders of magni-
tude lower compared to imaging of the 1H nucleus [Madelin and Regatte, 2013]. In the
past, mostly concentration measurements were performed using spin-density weighted
sequences and are still considered challenging in the clinical context. The concentration
was reported to be a measure of cell viability and is a useful parameter in the research of
neurodegenerative diseases and tumor response. Due to the overall importance of 23Na in
cells, further studies showed wide-spread applications in muscle and cartilage, heart, kidney,
and others [Madelin and Regatte, 2013]. The additional observation of the signal decay is
even more challenging than the acquisition of a single image. Therefore, �rst in vivo T ∗2
measurements were performed using global FID sampling [Nordenskiold et al., 1984; Cope,
1970]. Higher �eld strengths and more e�cient readout schemes led to increased SNR and
in turn allowed compartment-wise T ∗2 determination [Nagel et al., 2011], or even voxel-wise
�tting [Lu et al., 2011; Blunck et al., 2017]. Nevertheless, the low SNR still restricts reliability
as well as detailed analysis of the signal behavior.

The large variations in previous reports of 23NaT ∗2 in brain tissue demonstrate the existence
of in�uences on the parameter estimation which have not been completely explained yet.
A summary of 14 studies reporting T2 or T ∗2 values for 23Na of brain parenchyma is given
in Table 2.3. Reported values range from 0.2 ms to 5 ms for T ∗2,s and from 10 ms to 64 ms
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for T ∗2,l. The shown biexponential relaxation times exhibit an apparent rise with the �eld
strength as expected from theory [Nagel et al., 2016]. However, even when only considering
studies at 7 T, a variation from 2 ms to 5 ms is found for T ∗2,s. Also, a medium T2 = 3 ms
measured with a spin-echo sequence was reported in rats at 9.4 T [Winter and Bansal,
2001]. T ∗2,l is often considered to be detectable with higher accuracy since a higher sampling
rate can be achieved (TRO < T

∗
2,l). Still, a large spread of values between 22 ms and 40 ms

was reported at 7 T. The even longer decay time of CSF was reported with values ranging
from 47 ms to 57 ms at 7 T and 64 ms at 4 T. In�uences which could lead to this spread are
likely due to several reasons which could involve the experimental setup (shimming), the
acquisition (sequence, sampling scheme), as well as the evaluation and post processing (seg-
mentation, reconstruction, �ltering, �tting procedure). In this work the sampling scheme
and the post preprocessing were investigated.

The sampling of 23Na T ∗2 faces a trade-o� between two main challenges: low SNR and a fast
biexponential signal decay in the range of or even shorter than TRO (TRO = 2 ms to 20 ms,
and mostly TRO/T

∗
2,s ≥ 1). Consequently, the acquisition of su�cient information about the

decay during one TR requires multiple repetitions of a multi-echo measurement. The topic
of relaxation quanti�cation has been investigated for 1H imaging and dedicated sampling
schemes have been developed and analyzed in detail [Poon and Henkelman, 1992; Jones
et al., 1996; Anand et al., 2009; Uddin et al., 2013; Linnet and Teilum, 2016]. Acquisition
schemes range from linear sampling to logarithmic patterns towards more sophisticated
schemes as proposed by Jones et al. [1996]. The latter authors used the Cramér-Rao theory
to analytically solve for an optimal sampling scheme for a speci�c T2. Dula et al. [2008]
also applied the Cramér-Rao theory to the question of optimal receiver bandwidth in the
case of biexponential decay. However, these results cannot be transfered directly to 23Na
MRI due to the lower SNR and di�erent relaxation behavior. Due to the biexponential
decay straightforward T2 determination from signal ratios [Haacke et al., 1999] can only be
applied to the long component by using long TE as demonstrated by Fleysher et al. [2009].
Furthermore, conventional fast transverse relaxation time (T2) sampling schemes such as
Carr-Purcell-Meiboom-Gill [Poon and Henkelman, 1992; Pell et al., 2006] are not applicable
to 23Na MRI due to high SAR and increased echo spacings. Additional refocusing pulses lead
to an increase of TE andT ∗2,s cannot be resolved anymore. Thus, most studies focus onT ∗2 . In
the case of rapid relaxation T2 ≈ T

∗
2 , since for the short transverse relaxation times and the

low gyromagnetic ratio of 23Na (γNa = γH/3.7) dephasing due to �eld inhomogeneities is
assumed negligible. However, deviations from this assumption have been reported for brain
areas exhibiting irregular shape and susceptibility changes such as the sulci [Niesporek
et al., 2017]. There, deviations of up to 56 % can occur for moderate �eld inhomogeneities.
In the parenchyma, only small deviation of less than 10 % are expected. To this end, careful
shimming is of high importance for T ∗2 determination.

The aim of this work was to enable a more e�cient and accurate quanti�cation of the
fast biexponential decay of the 23Na MRI signal. To this end, the temporal distribution of
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sampling points was analyzed with respect to resolution of the di�erent decay components.
A dedicated sampling scheme was developed for brain parenchyma employing numerical
optimization. Bias and uncertainty of T ∗2 quanti�cation was investigated for di�erent SNR
values and �tting approaches. The image SNR could be signi�cantly improved by the utiliza-
tion of a novel 30-channel array coil. Finally, two sampling schemes were compared in vivo
and T ∗2 values for di�erent brain compartments could be determined. From the relaxation
components the correlation time τc was calculated which governs the interaction of the
23Na ions in tissue.

5.1 Improved SNR e�iciency via a multi-channel coil

In the course of this work, a novel 30-channel array coil for 23Na imaging could be put in
operation. The advantage of multi-channel coils is applied for 1H MRI as a standard but is
not that common in X-nuclei imaging due to lower demand and higher costs. For 23Na MRI,
the use of a receive array comes with a complication when measuring concentrations due to
an intensity modulation caused by the receive pro�le of the array. In this work, the aim was
the quanti�cation of the T ∗2 decay, where only the relative signal decay is of interest. Thus,
the sensitivity pro�le did not create di�culties.
The 30-channel array was compared to a conventional 1H/23Na birdcage coil present at
the site. Two types of multi-channel reconstruction were furthermore investigated: the
sum-of-squares approach and adaptive channel combination. Compared to the birdcage
coil, the new 30-channel array yielded a factor 2.5 SNR increase in the brain periphery
and only a slight loss in the coil center by a factor of 0.9. The excitation �eld pro�le of
the array coil showed comparable homogeneity to the birdcage coil. A small gradient in
the �eld pro�le of 7 % was observed from left to right in the axial view. This gradient is
probably due to the more complicated wiring of the coil which includes the 30-channel array
inside of the excitation birdcage. The B+1 e�ciency of the coil is lower by about 30 % if only
considering global signal maximization which is mostly done for the �ip angle calibration.
Since the actually applied pulse voltage is mostly limited by hardware constraints, this
can have an e�ect on the excitation pulse length. In case of rapidly decaying signal, this
could be disadvantageous. However, for the relaxation times measured in this work, this
represents a signal loss of a few percent and is compensated by the strong SNR gain through
the use of the array geometry. The noise correlation of the coil (mean/maximum 13 %/50 %)
was comparable or lower than previously reported for multi-channel sodium coils. For a
30-channel coil at 3 T 17 %/84 % were obtained [Benkhedah et al., 2016] as well as 9 %/54 %
for a 27-channel coil built for 9.4 T [Shajan et al., 2016]. In the SNR comparison of the two
reconstruction approaches, the AC method resulted in a 13 % higher value close to the coil
elements. This is lower than reported by Benkhedah et al. [2013a] (50 %), which is likely
due to the lower noise correlation of the utilized coil. The AC reconstruction exhibits the
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additional advantage of retaining the signal phase as compared to the SOS combination
which yields a magnitude image.

5.2 Optimization of the temporal sampling

Due to the rapid signal decay, center-out FID sampling strategies are most appropriate for
23Na MRI [Boada et al., 1997; Gurney et al., 2006; Nagel et al., 2009]. In these sequences,
the acquisition time of each echo can be shifted arbitrarily to a later time point. This is
useful to capture the speci�c shape of the signal. However, it also renders the search for
a dedicated pattern more complicated. On the acquisition side, various interdependent
parameters had to be optimized to develop a dedicated sampling scheme: the echo time TEi
of each sampling point in each multi-echo acquisition, the number of repetitions Nreps, the
TRO, and the repetition time TR.

5.2.1 Base pa�ern of the optimization

Since SNR is the major constraint in 23Na imaging, it was employed as a central parameter
in the optimization process. The starting point for the optimization of sampling was to avoid
dead times during the acquisition. Therefore, a base readout scheme was set. It constituted
a multi-echo readout starting immediately after the excitation without delays between the
acquired echoes. For a speci�c signal course there might exist an optimal distribution of
sampling points to capture the decay parameters most accurately as shown for 1H imaging
[Jones et al., 1996; Fleysher et al., 2008]. This might be especially important for T ∗2,s. To this
end, multiple acquisitions of this equidistant sampling were repeated but shifted by ∆Repi .
The parametrization via these shifts allows tuning the sampling scheme to the optimal
trade-o� between reliability and accuracy for a given decay and SNR. For example, higher
reliability can be achieved by averaging or a better temporal resolution by denser sampling
(e.g. linear sampling).

5.2.2 Minimum SNR for parameter estimation

To determine the minimum SNR needed for �tting a biexponential decay, the �t quality
was analyzed for di�erent noise levels. An SNR of 15 was concluded to be the minimum
requirement to retrieve a reliable parameter estimate, since at this point systematic bias
decreases below 5 % and the variation of T ∗2,s is less than 20 %. These results were applied as
basis for the sequence parameters in the in vivo study which were adjusted such that an
SNR of approximately 15 was obtained in WM.
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5.2 Optimization of the temporal sampling

5.2.3 Optimization procedure

The evaluation of parameter estimation of the biexponential decay is ambiguous since
multiple model parameters exist. To this end, a single evaluation measure was designed,
which captures both uncertainty and bias for all three �t parameters. This metric is a
function of the sampling pattern and was therefore used to optimize the sample distribution.
This was performed using a global multi-start approach.
There exist two drawbacks of the presented method. First, the sampling of the �tting
statistics via the N repetitive �ts for the calculation of the metric can only give an estimate
of the true value distribution. This can lead to prolonged duration of the optimization as
well as to convergence towards local minima. However, the probability of local minima was
reduced by the application of a multi-start optimization algorithm. Secondly, the quality
metric Q is not strictly convex. In case of either 0 % bias or 0 % uncertainty it becomes
zero and the optimization could stop at this point. However, this degenerate case did not
occur during the presented optimization. In future applications, it could be captured and
this path of the optimization could be restarted at another point. Furthermore, slightly
better solutions might be found using more initialization points in the multi-start algorithm.
Despite these drawbacks, it is straightforward to implement and can be generalized to a
variety of SNR and decay environments.
In the presented metric, the �t amplitude A0, T ∗2,s, and T ∗2,l were weighted equally. Since the
accuracy of T ∗2,l is not impacted as strongly by the acquisition scheme, a stronger weighting
of T ∗2,s could be applied without degradation of T ∗2,l. This might be of interest in applications
where pathological changes are re�ected mostly in one of the two decay components as
reported for the long component in cartilage [Regatte et al., 1999].

5.2.4 Properties of the developed sampling distribution

The sample distribution obtained by the optimization procedure is determined by four
repetitions of the linear base scheme with a shift of ∆Rep = [0.0, 0.0, 0.0, 4.1] ms. Thus,
the pattern consists of 3 averages at the earliest possible TE and one additional point at
TE = TEmin + 4.1 ms. This is comparable to the �ndings by Jones et al. [1996] in the context
of 1H MRI. Their scheme increases reliability for the monoexponential case by placing one
sample at the earliest possible TE = TEmin and four at TE = 1.28 · T2. Thus, the sample
with lower SNR is averaged to retrieve comparable reliability of both time points. For 23Na
MRI, averaging is also superior to denser temporal sampling. However, the �ndings of the
presented work suggest an inverted averaging pattern with focus on the �rst point compared
to the results of Jones et al. [1996]. This can be explained by the low SNR of 23Na where a
reliable de�nition of the earliest sample is crucial for the determination of the decay curve.
When compared to theT ∗2 times which were set in the optimization, the intermediate sample
is placed at TE = 0.82 ·T ∗2,s, or when described by the ratio of the short and long component
at TE = 32.8 ms · T ∗2,s/T

∗
2,l. This deviates from the scheme described by Jones et al. [1996]

where the second sample is placed at 1.28 ·T2. However, the optimization was carried out
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for biexponential decay and lower SNR. Therefore, deviations are expected. Apparently,
the focus is set more on rapid decay of T ∗2,s by an early sampling point. The smaller factor
relating decay and sample time can be further understood by the fact that T ∗2,l is already
su�ciently sampled as demonstrated by the small variation of bias and uncertainty for
di�erent sampling schemes (cf. Figure 4.10, 4.11, and 4.12). An earlier intermediate point
might also be bene�cial to separate the two decay components.

5.2.5 Comparison to alternatives schemes

The developed scheme was compared to four alternative patterns by signal simulations
over a wide range of decay constants and SNR. The evaluation revealed that the quality
of T ∗2 measurements is a complicated function of the sampling scheme and the speci�c
relaxation times. A trade-o� between accuracy and reliability could be recognized by the
fact that the standard deviation of schemes, which include averaging (optimized, averaging,
Jones et al.), is lower around medium T ∗2 values (cf. Figure 4.11). However, for schemes
with sampling points at early TE (linear, early TE), a better resolution of very short T ∗2,s
is found (cf. Figure 4.10). The optimized sampling pattern allows for a reliable sampling
with the capability to resolve short T ∗2,s. The linear scheme did show the second best overall
performance and was therefore also tested in the in vivo measurements.

5.3 Influence of the fi�ing procedure

At low SNR, noise energy contributes systematically to the signal amplitude as described
by the Rician distribution [Gudbjartsson and Patz, 1995]. This additional contribution can
be taken into account in the �tting model. To this end, three models were investigated
with regard to accuracy for di�erent SNR and number of measurement points. The latter
are essentially determined by TR. Generally, the applicability of the di�erent models was
found to be dependent on the acquisition scheme and the SNR. One single best method
could not be determined (cf. Figure 4.14). At low maximum sampling times TEmax < 80 ms,
the in�uence of the noise contribution is small and can either be neglected or included
as a constant if the SNR is well-known. For data with additional sampling points at late
TE > 80 ms, the noise �oor has to be taken into account to prevent a systematic bias in the
magnitude and T ∗2,l. For T ∗2,s, regardless of the model and the SNR, a slight overestimation is
seen, which is a typical problem in multi-component �tting [Papy et al., 2009]. In case of low
SNR ≈ 10, most reliable determination is achieved by minimizing the degrees of freedom of
the �t by a model with constant noise term.
Since the SNR is low, additional open parameters generally decrease the reliability of the
parameter estimate as seen for including an additional noise �oor parameter. Thus, the
inclusion of both an additional noise parameter as well as the ratio of the fast and slow
decaying signal contribution can result in a degraded estimate. In this work, the contribution
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5.4 In vivo T ∗2 observation in healthy human brain

of the short component was always set to 60 %. This might be a strong assumption but
ensured comparability to previous studies which were obtained in the majority using this
assumption. This is a common simpli�cation representing only one pool of 23Na ions and
was recently a�rmed in WM by Bydder et al. [2017]. However, in biological tissue a number
of di�erent binding states of 23Na ions are present which are in constant exchange [Thulborn
et al., 1999a; Regatte et al., 1999; Payne and Styles, 1991]. It has also to be noted, that in
the case of extremely short T ∗2,s, a signi�cant signal amount decays during the excitation
pulse. This can lead to systematic bias of the relaxation estimates. It could be taken into
account by including a model of the signal decay during the excitation pulse into the �tting
procedure [Stobbe and Beaulieu, 2005; Johnson et al., 2017].

5.4 In vivoT ∗
2 observation in healthy human brain

In vivo T ∗2 mapping was conducted in three healthy volunteers both with the optimized and
the linear pattern in order to determine the potential variation due to di�erent sampling
strategies. For all volunteers the optimized pattern resulted in lower T ∗2,s values in WM
compared to the linear scheme (mean: 5.1 ± 0.8 ms vs. 4.2 ± 0.4 ms, cf. Figure 4.9). This
systematic deviation between the two schemes is con�rmed by the presented simulations,
where a slight overestimation is found for the linear pattern and a smaller underestimation
for the optimized scheme (cf. Figure 4.10). The optimized sampling allows a more accurate
determination of the �rst point which is crucial for the quanti�cation of T ∗2,s. Together with
lower standard deviation and a lower bias found in the simulation study, it is concluded
that values from the optimized pattern are more reliable. The T ∗2 values in CSF exhibit
a rather large uncertainty amongst the volunteers. This can be explained by remaining
partial volume e�ects at tissue borders and stronger �eld inhomogeneities in the area of
the sulci as demonstrated by Niesporek et al. [2017]. It has to be noted, that registration
and segmentation can cause an additionally variation, which is not actually present in the
data. Still, the results of the two sampling schemes agree within the uncertainty for T ∗2,l in
CSF. The in vivo T ∗2,s maps obtained with the linear pattern exhibit a gradient towards the
brain periphery, which is probably due to CSF contamination (cf. Figure 4.18). The linear
pattern was demonstrated to be more susceptible to CSF contamination which explains
higher T ∗2,s (cf. Figure 4.19 and Figure 4.20). In tissue adjacent to the lateral ventricles,
CSF contamination is smaller compared to the cortex. The strongest di�erence between
the two sampling patterns was observed in WM close to the lateral ventricles (cf. ROI data,
Table 4.9). This is probably due to the fact, that there residual e�ects are smallest due to
the rather large extent of this compartment. In future, the e�ect of liquid contamination
could be investigated by comparison of two measurements, one with and one without a
liquid suppressing inversion pulse. First attempts have been reported for 23Na in phantoms
[Gilles, 2012] and was recently demonstrated in cartilage for 1H imaging using a 3D cones
readout [Ma et al., 2017].
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Concerning the imaging parameters, Gibbs ringing artifacts occur in the parenchyma, which
can lead to locally wrong relaxation estimates due to liquid contribution. These can be sup-
pressed by applying a Hamming �lter which results in a loss of resolution. This degradation
of the PSF can be compensated by an acquisition with higher resolution and subsequent
�ltering. Due to the bene�cial behavior of the Hamming �lter, the resolution can be retained
but a higher SNR is achieved [Konstandin and Nagel, 2013; Stobbe and Beaulieu, 2008a].

In summary, if only T ∗2 values are of interest, relatively short TR (e. g. 60 ms to 70 ms) and
low TEmax together with a �tting model neglecting the noise contribution are preferable
for SNR e�ciency. In the case of long TR > 80 ms and long TEmax, e. g. for simultaneous
concentration measurements, it is necessary to include a noise contribution. This can be
done by estimating the image SNR as accurately as possible, e. g. from background voxels
[Blunck et al., 2017; Bouhrara et al., 2015]. In future studies, the accuracy of 23Na T ∗2 mea-
surements could bene�t largely by using modern reconstruction techniques [Madelin et al.,
2012; Gnahm et al., 2014; Gnahm and Nagel, 2015; Behl et al., 2016]. Also, the e�ciency of
the signal sampling could be further improved by applying a bipolar readout [Blunck et al.,
2017]. However, in this work a monopolar readout was utilized, which is less susceptible to
artifacts, since the same readout direction is used for all echoes. The use of a multi-echo
readout instead of a single-echo acquisition was demonstrated to have negligible impact on
the T ∗2 estimate whilst being more time e�cient [Niesporek et al., 2017].

The results of this study suggest that both, the �tting procedure and the sampling scheme
strongly in�uence the observed relaxation times. This allows understanding certain aspects
of the variation found across the literature. The T ∗2,s values in parenchyma observed in this
study range between 4 ms and 5 ms similar to those reported by Nagel et al. [2011], Niesporek
et al. [2017], and Bydder et al. [2017]. The values of the optimized pattern are lower than
those of the linear scheme. In comparison, the values of Blunck et al. [2017] and Lu et al.
[2011] are signi�cantly shorter (2 ms and 0.3 ms to 3.0 ms). These studies employed di�erent
readout parameters such as longer TR and shorterTRO. However, theT ∗2,l in CSF are reported
consistently along previous studies with values around 55 ms. During the evaluation of the
presented data a strong dependence of the �t results on the start values of the amplitude was
observed especially at low SNR. Together with the results concerning the noise �oor, which
can lead to overestimates, it is concluded that the �tting procedure can have a strong impact
on the parameter estimate. Parts of the variation across the literature could be due to this
fact. The trajectories employed for 23Na MRI (TPI [Boada et al., 1997], 3D cones [Gurney
et al., 2006], DA 3D-RAD [Nagel et al., 2009]) are not expected to yield varying relaxation
times when used with identical readout timings since the radial evolution in k-space is
similar. From the apparent rise of the decay time in the literature, the assumption ofT2 ≈ T

∗
2

seems to be con�rmed and speaks for a rather low in�uence of B0 �eld inhomogeneities on
the relaxation times.
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5.5 Correlation time of quadrupolar interaction

5.5 Correlation time of quadrupolar interaction

In the case of dominating quadrupolar interaction, the correlation time between the 23Na
ions and the external electrical �eld gradient can be determined from the ratio between fast
and the slow relaxation times. Thereby, the two observables can be traced back to the one
single underlying parameter.

The correlation time was determined from the in vivo T ∗2 measurements of the optimized
pattern. A mean value of 39.3 ± 2.5 ns was found. This is equivalent to a value of 3.1 ± 0.2
in units of inverse Larmor frequency, which is in accordance with the underlying theory
predicting a biexponential decay for τcω0 & 1. In regions close to the lateral ventricles, a
higher value of τc was found. This can be explained by an increased ratio T ∗2,l/T

∗
2,s due to

partial volume e�ects (cf. Figure 4.19). An apparent asymmetry was found between the
values in WM of the two hemispheres which, however, were still in accordance within the
uncertainty. Together with possible systematic deviations in the measurement stemming
from assumptions in the theory and in the evaluation, this e�ect cannot be considered
signi�cant. In the brain periphery, low values of τc were found. This is in accordance with
the theory predicting lower correlation times in case of smaller interaction strength as is
the average case for the superposition of liquid and parenchyma compartments in this area.
However, due to this complicated composition of the signal, these values have to be seen
critically and require further tests.

In order to compare the in vivo data to a simpler system, correlation times have also been
determined in agarose phantoms with varying concentrations similar as done previously
by Benkhedah [2013] and Gilles [2012]. The assumption is that in these systems the cor-
relation time increases linearly with the agarose concentration due to restriction of the
ion movement. In the experiments, the correlation times increased monotonically with the
agarose concentration. However, a plateau-like behavior is seen at concentrations of 4 %.
This could be explained by the fact that the spatial constraint for the 23Na ions �rst increases
linearly with increasing concentration but at a certain point, most of the ions are bound
to the agarose molecules. Then, additional agarose does not change the correlation time
further. Compared to the in vivo results, the correlation times of the agarose phantoms were
lower by about 16 %. This could point to a stronger interaction of the 23Na ions in vivo than
in agarose models. However, due to more complicated composition of the in vivo signal, this
interpretation would require further analysis. This could be done using more realistic model
environments by adding proteins to the agarose phantoms which should approximate the in
vivo situation more closely. Also, a multi-compartment model as employed by Payne and
Styles [1991] would be a more realistic description. Correlation times have been published
before for di�erent model environments by Monoi [1976] who report values of 4 ns to 9 ns.
For similar agarose phantoms used in the present work, comparable values ranging between
10 ns to 40 ns were reported [Benkhedah, 2013]. Nagel et al. [2016] determined slightly
shorter values of about 1 ns for agarose models.
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In the case of dominating quadrupole interaction bothT1 andT2 are determined by τc . There-
fore, an additional path for veri�cation could be the observation of the correlation time via
T1. This has also the advantage of not being biased by B0 inhomogeneities. However, to the
knowledge of the author, the biexponential behavior ofT1 has not yet been observed in vivo.
However, �rst attempts of measurement optimizations based on this relation were presented
by Stobbe and Beaulieu [2005, 2008b]. It could be also interesting, to develop structural
phantoms which mimic �bers as they occur in brain tissue. Thereby, the assumption of the
rotational symmetric electric �eld gradient could be analyzed. Also, it would be insightful to
compare the properties of the 23Na signal decay with other methods, which can detect the
actual position of the sodium ions inside the cell such as shift reagents [Gupta and Gupta,
1982; Winter and Bansal, 2001] or compare the signal of solutions containing di�erent types
and concentrations of cells similar to Nordenskiold et al. [1984] or Neubauer et al. [2017].
Due to the strong electro-chemical gradient, sodium ions are expected to be clustered close
to the cell membrane [Alberts et al., 2002].

In summary, this work reports T ∗2 quanti�cation in the healthy human brain with the up-
to-date highest resolution of nominal isotropic 2.8 mm. To achieve this, an SNR increase of
more than a factor of two could be exploited by using a novel 30-channel array coil. The
temporal signal sampling was optimized in order to minimize bias and uncertainty. By the
analysis of a variety of di�erent aspects which can result in deviations of the T ∗2 estimate,
parts of the variations across literature could be understood. From the measured relaxation
times, the correlation time of the quadrupolar interaction of the 23Na ions in biological tissue
was estimated. Further research in this �eld combined with more e�cientT ∗2 measurements
could be extremely insightful and potentially open up a number of applications, e.g. in the
�eld of neurodegenerative diseases where sodium plays a crucial role as shown for multiple
sclerosis or Alzheimer’s disease [Zostawa et al., 2016; Vitvitsky et al., 2012].
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6 Summary

Sodium (23Na) ions play a crucial role in the physiology of animal tissue as they are an
integral part of the signaling processes and required for maintaining cell homeostasis. Due
to a nuclear spin of 3/2, the concentration of the 23Na ions can be observed non-invasively by
MRI and has become a growing tool in clinical research. However, a spin ≥ 1 also implies
an asymmetric charge density of the nucleus, which opens up an additional interaction path
with local electric �eld gradients. Dependent on the electric surrounding, this quadrupole
interaction leads to a rapid biexponential decay of the NMR signal. The fast signal relax-
ation has long been an obstacle for the imaging of 23Na but it also represents a probe into
the microscopic environment of the 23Na ions. Faster signal decay has been attributed to
ions which are restricted in the intracellular space and undergo stronger interaction with
surrounding macromolecules. The in vivo determination of the 23Na signal relaxation could
therefore yield speci�c information about the microscopic environment of the essential
ion. However, the 20,000 times lower SNR compared to 1H NMR together with readout
bandwidths being in the order of the relaxation rate, render a reliable in vivo quanti�cation
challenging.

The aim of this work was to improve the quanti�cation of the fast biexponentialT ∗2 decay of
the 23Na MRI signal in vivo. To this end, the temporal distribution of sampling points was
analyzed and a dedicated sampling scheme was developed for brain parenchyma employing
numerical optimization. Bias and uncertainty of relaxation measurements were investigated
for di�erent SNR values and �tting approaches. By utilization of a novel radio frequency
coil, the image SNR could be signi�cantly improved. Two sampling schemes were compared
in vivo and T ∗2 values were determined for di�erent brain compartments. Finally, the corre-
lation time τc that governs the interaction of the 23Na ions in tissue was estimated from the
relaxation components.

During this thesis, a novel 30-channel array coil could be put into operation which allowed an
increased SNR e�ciency compared to a 1-channel birdcage radio frequency coil. In the cortex,
an SNR improvement of 145 % was determined. In the coil center, the SNR of both coils was
comparable. A slight decrease of the excitation e�ciency of 30 % is found due to the nested
receive array. Furthermore, the application of adaptive channel combination allowed an
SNR increase in the cortex of 13 %, when compared to sum-of-squares reconstruction. Com-
plications due to a signal modulation with the sensitivity pro�le as present in concentration
quanti�cation do not arise forT ∗2 measurements since only relative signal decay is of interest.
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For the temporal distribution of the sampling points there exists a trade-o� between re-
liability and increased resolution for short decay times. The latter can be achieved by a
denser distribution of sampling times, while reliability through averaging. In order to adjust
the sampling strategy to a speci�c SNR and decay environment, a parametrization of the
sampling times was developed which assures SNR e�ciency and is �exible to tune towards
either reliability or accuracy. This was realized by shifted acquisitions of an e�cient base
pattern. This reduced the multi-parameter optimization to only two major variables: the
SNR of the base pattern and the timings of the shifts.

To assess the quality of theT ∗2 parameter estimation, a metric was developed which captures
both reliability and accuracy for all decay parameters. This metric could then be used to
numerically optimize the sample distribution. The resulting sampling scheme shows similar
properties compared to previous reports for 1H. This pattern was compared to four alter-
natives over a wide range of relaxation values, as well as for varying SNR. The optimized
pattern is able to discriminate the two relaxation components more e�ectively compared
to standard linear sampling as seen by a reduction of the mean bias from 3.0 % to 0.8 % for
the short component and from 2.9 % to 2.6 % for the long component. Also, the reliability
improved as demonstrated by a reduced parameter variation from 26 % to 22 %.

The low SNR of 23Na MRI results in a systematic signal bias in magnitude data as determined
by the Rician noise distribution which has to be considered in the �tting. To this end, three
signal models were investigated for varying SNR and di�erent number of samples. The
results demonstrate that there exists not a single approach which is optimal for every type
of acquisition. Rather, it is determined by the SNR and TR, which determines an upper limit
for the largest TE. For short TE < 80 ms, the noise contribution can be neglected. However,
if data are sampled until later TE, the noise contribution has to be taken into account via
a priori information or �tting of the noise �oor to avoid an overestimation of the long
component. The presented analysis showed that by an appropriate choice of the signal
model, typical overestimates of 15 % can be reduced to under 5 %.

The combination of hardware advances together with the improved sample distribution
allowed the in vivoT ∗2 mapping of 23Na with an isotropic nominal resolution of 2.8 mm. For
T ∗2 measurements, this is up-to-date the highest reported resolution. In order to determine
the dependence of the observed T ∗2 values on the sampling strategy, in vivo measurements
were conducted in three volunteers with both a linear and the optimized pattern. In white
matter, the average short component was determined to be 5.1 ± 0.8 ms and 4.2 ± 0.4 ms
for the linear and the optimized pattern, and for the long component 35.7 ± 2.4 ms and
34.4 ± 1.5 ms were observed, respectively. The values in CSF were in accordance within
the uncertainty being 53.6 ± 6.9 ms and 54.4 ± 5.7 ms. The optimized pattern resulted in
generally lower values. The results of the simulation study suggest that these values are
closer to the actual relaxation times. In white matter, the optimized sampling strategy
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resulted in a 29 % reduction of the mean variation in the short component. Concerning a
comparison to the literature it has to be noted that a high variation in the reported values
was found. Still, the measured relaxation times are in accordance with recent studies. Even
though the presented work allows explaining signi�cant aspects of the variation across
literature, experimental validation by studies with larger populations is required.

For a pure quadrupolar interaction, the ratio between short and long component is solely
determined by the correlation time of the 23Na ions with respect to the electric �eld gradient.
Through this relation, a spatially resolved map of the correlation time in brain parenchyma
could be estimated. The mean value in white matter was found to be 39.3 ± 2.5 ns. For
comparison, τc was also determined in agarose phantoms. A lower value of 28.5 ± 0.8 ns
was observed in 4 % agarose, which could point to a stronger interaction in biological tissue
than in the simple environment of the phantoms.

To conclude, this work represents an in vivo study of the T ∗2 relaxation in 23Na MRI. A
dedicated sampling scheme was developed for the fast biexponential decay of the low
SNR signal and the impact of di�erent sample distributions was studied. Together with a
novel 30-channel array coil, in vivo T ∗2 mapping was achieved with a nominal resolution
of 2.8 mm. First steps could be taken towards a deeper understanding of the signal decay
by estimating the correlation time of 23Na ions in brain parenchyma. Future studies could
further analyze the connection between relaxation and the signal percentage arising from
intra- and extracellular 23Na ions. With this work, progress could be made towards a
further understanding of the potentially valuable information connected to the quadrupolar
relaxation of the in vivo 23Na MRI signal being an additional contrast that is not present in
standard 1H imaging or 23Na concentration measurements.
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