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Summary 
Aim of this thesis was to investigate various possible mechanisms involved in FMR1 gene epigenetic expression 

control in human granulosa cells. 

Systematic CpG site methylation analysis within the extended FMR1 promoter domain in COV434 and in 

primary human granulosa cells by subsequent sequence analysis revealed four distinct regions with a unique 

CpG site methylation pattern: “FMR1-UMR, FMR1-DMR1;-DMR2 and –DMR3”, of which two (FMR1-DMR1 

and –DMR2) with distinct patterns were found earlier in leukocytes. Most interesting, FMR1-DMR3 contained a 

conserved double binding site for E2F1, binding only to unmethylated CpG sites. I experimentally confirmed 

that E2F1 binds to its predicted consensus sequence within FMR1-DMR3 but only when containing an 

unmethylated CpG 94 site. In human primary granulosa cells, the CpG 94 site methylation rate within FMR1-

DMR3 was found to be dependent on patient ovarian reserve; being lower when the amount of matured follicles 

seems low (i.e., in POR patients). Increased binding of E2F1 to CpG 94 is the consequence activating FMR1 

transcript expression. This, however, results in reduction of the cellular FMRP protein level due to the well-

known gene´s negative feedback loop mechanism. My experimental data therefore indicate that there is an 

epigenetic control mechanism of FMR1/FMRP expression in human granulosa cells that is functionally 

associated with the rate of E2F1 binding to CpG94 located in FMR1-DMR3 and that its impairment probably 

interferes with women ovarian reserve. 

FMR1-UMR a completely CpG unmethylated region, covered the FMR1 minimal promoter and the CGG repeat 

block in exon1. CpG sites located within FMR1-UMR were demethylated on both gene alleles but only in 

granulosa cells indicating that FMR1 transcription is activated on both alleles in these cells. Escape from X 

inactivation seemed to be focused on FMR1-UMR, since outside of this region, the CpG sites methylation 

pattern reflected the presence of one CpG methylated and one unmethylated allele, respectively three 

differentially methylated regions coined DMR1, DMR2 and DMR3, respectively. 

Analysis of the complex splicing pattern of the Anstisense FMR1 gene (ASFMR1), a long non coding RNA 

expressed in antisense direction, revealed three novel and probably granulosa cell specific initiation sites 

characterized by at least 8 different ASFMR1 transcript splice forms in human granulosa cells, not previously 

described in the literature. Similar to FMR1, ASFMR1 expression varied between patients with different ovarian 

reserve. Taken together, these observations suggest that in addition to the CpG methylation control of FMR1 

expression, ASFMR1 expression may also contribute to the variable ovarian reserve observed in patients entering 

the in vitro fertilization (IVF) clinic. 

Analysis of putative signal pathways involved in the regulation of FMR1-gene expression in human granulosa 

cells, by microarray assays after FMR1 gene knock down revealed 748 genes with significant differential 

expression. They could be grouped into 7 main signal pathways covering a wide range of regulatory networks, 

including cell cycle regulation, apoptosis, mRNA decay and vesicle transport. Among the most important signal 

pathways is the PI3K/AKT/mTOR pathway already known to be involved in primordial follicle activation and 

follicular pool maintenance. Inhibition of FMR1 gene expression induced an increase of mTOR, AKT, S6K at 

both transcripts and protein levels. Most interesting S6K expression reached a statistical significant difference at 

both mRNA (p=0.05) and protein level (p=0.03). Another identified signal pathway was the methionine salvage 

pathway (MTA). This pathway is highly conserved from yeast to human and was reported to be involved in 

Drosophila fecundity. These results provide new starting points to study functional FMR1/FMRP expression in 

human folliculogenesis and ovarian reserve.  
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Zusammenfassung 

Ziel dieser Doktorarbeit war es, epigenetische Kontrollmechanismen der FMR1-Genexpression an humanen Granulosazellen 

zu untersuchen. 

Durch eine systematische Analyse des CpG-Methylierungsmusters entlang des FMR1 Promotors in der COV434-Zellinie 

(Modelsystem) und in primären humanen Granulosazellen durch Sequenz-Analyse wurden vier unterschiedliche Regionen 

mit einem einzigartigen CpG-Methylierungsmuster detektiert: "FMR1-UMR, FMR1-DMR1, -DMR2 und – DMR3, von 

denen zwei (FMR1-DMR1 und -DMR2) bereits früher in Leukozyten gefunden wurden. Interessanterweise enthielt FMR1-

DMR3 eine doppelte Bindungstelle für den Transkriptionsfaktor E2F1, an der dieser lediglich bei unmethylierten CpG-

Dinukleotiden binden kann. Ich habe experimentell bestätigt, dass E2F1 an dieser Sequenz von FMR1-DMR3 nur dann 

gebunden wird, wenn ein unmethyliertes CpG in Position 94 enthalten ist. In humanen primären Granulosazellen von Frauen 

mit unterschiedlicher Eizell-Reserve (NOR; POR) erschien die Methylierungsrate in FMR1-DMR3 abhängig von dieser 

ovariellen Reserve. Diese Daten deuten daher darauf hin, dass die epigenetische Kontrolle der FMR1 Expression in 

Granulosazellen funktionell mit der Bindung von E2F1 an FMR1-DMR3 verbunden ist und, dass dies einen Einfluss auf die 

ovarielle Reserve der Frau haben könnte. 

FMR1-UMR bezeichnet eine neu entdeckte unmethylierte CpG Region im FMR1-Gen, die den minimalen 

Promotorbereich und den CGG-Repeat in Exon1 umfasst. Alle CpGs der FMR1-UMR waren auf beiden Allelen des 

Gens, aber nur in Granulosazellen, demethyliert, was impliziert, dass FMR1 in diesen Zellen auf beiden Allelen 

transkribiert wird. Die Abwesenheit der sonst auf dem X Chromosom üblichen Inaktivierung eines Gen-Allels war auf 

die FMR1-UMR beschränkt. Außerhalb dieser Region wird das typische CpG-Methylierungsmuster eines methylierten und 

eines unmethylierten Gen-Allels gefunden, beziehungsweise drei differentiell CpG methylierte Regionen genannt DMR1, 

DMR2 und DMR3. 

Die Analyse des Antisense FMR1 Gens (ASFMR1), einer langen nicht kodierenden RNA in Antisense Richtung zu 

FMR1, ergab drei neue und wahrscheinlich granulosazellspezifische Initiationsstellen, die durch mindestens 8 

verschieden gesplicte ASFMR1 Transkripte in menschlichen Granulosazellen charakterisiert werden, welche nicht 

vorher in der Literatur beschrieben wurden. Ähnlich wie bei FMR1 variiert die ASFMR1 Expression zwischen 

Patienten mit unterschiedlicher ovarieller Reserve. Zusammenfassend deuten die Ergebnisse darauf hin, dass neben der 

Kontrolle durch FMR1 auch ASFMR1 einen Einfluss auf die variable ovarielle Reserve von Patientinnen in der 

Kinderwunschbehandlung hat. 

Die Analyse vermeintlicher Signalwege, die bei der Regulation der FMR1-Gen-Expression in menschlichen 

Granulosazellen involviert sind, durch Microarray Analyse nach FMR1 Gene Knock-Down ergab 748 Gene mit 

signifikant unterschiedlicher Expression. Davon konnten 7 Haupt-Signalwege, die eine breite Palette von 

regulatorischen Netzwerken umfassen, involviert bei der Zell-Zyklus-Regulierung, der Apoptose, des mRNA decay 

und des Vesikeltransports. Zu den wichtigsten Signalwegen gehört der PI3K/Akt/mTOR-Signalweg, der bereits 

bekannt ist, bei der Aktivierung primordialer Follikel und ihrer Reifung eine wichtige Rolle zu spielen. Die Inhibierung 

der FMR1 Gen-Expression führte zu einer Zunahme der Expression von mTOR, Akt und S6K sowohl auf Transkript- als 

auch auf Protein-Ebene. S6K Expression erreichte hierbei einen statistisch signifikanten Unterschied sowohl bei der mRNA (p = 

0.05) als auch bei der Protein-Expression (p = 0.03). Als ein weiterer potentiell wichtiger Signalweg für die Eizell-Reifung 

wurde der Methionine Salvage Pathway (MTA) erkannt. MTA ist von der Hefe bis zum Menschen konserviert; bei Drosophila 

wurde nach seiner Beeinträchtigung von einer Verringerung der Fruchtbarkeit berichtet. Die in dieser Studie gefundenen 

experimentellen Resultate liefern neue Ansatzpunkte, für die funktionelle Analyse der FMR1/FMRP Expressionsregulation 

in der menschlichen Follikulogenese und zur ovariellen Reserve. 
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1. Introduction 

1.1. Human female fertility 

Human female fertility can be defined by the functional quality and quantity of oocytes in the 

follicles during female’s reproductive life cycle
1
. According to the world health organization, 

female infertility or subfertility is defined by the inability of a woman to become pregnant, the 

inability to maintain a pregnancy or the inability to carry a pregnancy to live birth 

(http://www.who.int/topics/infertility/en/ 2017). Female infertility is multifactorial and can be 

due to social factors, genetic factors, endocrinological factors and autoimmune diseases and 

other reasons
2-8

. It is estimated that for 40% to 50% of couples, subfertility may result from 

factors affecting women
8
. 

1.1.1.  Folliculogenesis 

Folliculogenesis is the process of activation and growth of primordial resting follicles in order 

to release a mature oocyte, which can be fertilized
9
. In human during embryogenesis the 

primordial germ cells (PGCs) migrate into the genital ridge. Once arrived in the ridge, these 

cells become surrounded by a layer of supporting somatic cells. In women with 46, XX 

karyotype, the PGCs will differentiate into oocytes. The oocyte will be blocked at prophase I 

of the first meiosis while the supportive cells will differentiate into granulosa cells (4-4.5 

gestational months). The ovaries become discernible at this stage. This will constitute the 

primordial follicles pool of a female for her lifetime
7; 10; 11

. 

Shortly after ovaries colonization a first wave of primordial follicles will leave the resting 

pool. This recruitment is unidirectional and irreversible. It is marked by a modification in 

germ cells morphology (from squamous to cuboidal). Immediately a first wave of primordial 

follicles is recruited for activation. The transition from primordial to primary follicles is not 

yet fully understood. Based on the mouse model, a number of activating and inhibiting factors 

play a role to fine- tune this process
7; 12

 (Figure 1). This transition is independent from follicle 

stimulating hormone (FSH) expression
7; 13

. 

After birth, follicles continue their maturation. Granulosa cells actively proliferate which will 

increase FSH receptor expression; follicles increase in size and layers of theca cells (stromal 

cells) will surround granulosa cells. The subsequent follicle transition phases are called: 

secondary, preantral and antral follicle phases. Follicle development up to and including early 

antral development are independent of the pituitary gonadotrpins, FSH and LH
14; 15

. Only the 

antral/late antral follicle development is gonadotropin dependent. FSH expression then 

http://www.who.int/topics/infertility/en/
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stimulates granulosa cell proliferation, prevents granulosa cell apoptosis, promotes estradiol 

production and LH-receptor expression
14

. Granulosa cells then differentiate into two cell 

types: cumulus cells, that are in direct contact with the oocyte and mural cells (cell type used 

in this thesis) that are lining the follicular wall. The most developed follicle (which has the 

highest number of FSH receptors) will become dominant (i.e. will be selected for ovulation). 

Mural granulosa cells of the dominant follicle will secrete inhibins which block FSH secretion 

by a negative feedback loop mechanism. As a result the other antral follicles that are still FSH 

dependent developing will degenerate by apoptosis
15

. 

After oocyte ovulation, the post ovulatory follicle will develop to the corpus luteum. If 

pregnancy occurs the corpus luteum will be maintained and produces progesterone (corpus 

luteum cells are former granulosa cells) for the first pregnancy trimester. In the absence of 

pregnancy it will regress to a corpus albicans and disappear completely over time
15

. 

The process of primordial follicle recruitment is continuous during women reproductive life 

cycles until menopause. Once a follicle leaves the resting pool it is also subjected to atresia at 

all developmental stages or, respectively, to ovulation. At each stage many factors play a role 

in controlling which follicle will continue development or degenerate
7; 13

. Genetic factors 

playing an important role in different stages of follicular development, fertilization and 

implantation (mainly by functional studies in mice) are illustrated in Figure. 1
7
.  

The most important somatic cell type are granulosa cells (cell type used in this thesis) that are 

crucial for oocyte growth, meiosis maturation and thereby regulating oocytes’ transcriptional 

activities. However, development of the follicles requires a bidirectional communication 

between oocytes and surrounding granulosa cells
13; 16

. This dialogue takes place via their 

cytoplasmic extensions and gap junctions
16; 17

. 
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Figure 1: Genetic dissection of female fertility pathways (based on mouse model).  

The different stages of the follicles development are presented (see section 1.1). From primordial follicle 

recruitment till ovulation and even in fertilization and implantation, a number of key genes are involved to 

ensure proper development and oocyte maturation. The following picture is a direct copy from Matzuk et al.,
7
. 

1.1.2.  Ovarian reserve/response 

Ovarian reserve refers to the quantity and quality of the ovarian primordial follicle pool
18

. 

This pool serves as a source of developing follicles and oocytes. From a peak of 6–7 million 

at 20 weeks of gestation, the number of oocytes falls radically down that there approximately 

300,000 to 400,000 remaining oocytes per ovary at birth
19; 20

. During reproductive years in 

humans, the decline in the number of primordial follicles remains steady at about 1,000 

follicles per month and accelerates after the age of 37, causing ovarian aging (resulting in 

menopause)
21

. Over the last years, some ovarian reserve tests have been used to diagnose the 

woman's remaining follicular pool, including measurement of gonadotropins (FSH), Anti 

Müllerian hormone (AMH) and the antral follicles count (AFC) by ultrasound
22; 23

. One major 

cause of female infertility in many couples is accounted to Diminished Ovarian Reserves 

(DOR). This is manifested by a limited reproductive lifespan in women due to reduction in 

the quantity of ovarian follicular pool and affects women from different age groups and risk 

increases physiologically with age
24-26

. Major factor determining the success of infertility 

treatment in DOR patients’ is their response to controlled ovarian stimulation (COS) applied 

in the in vitro fertilization (IVF) clinic. Patients with DOR show generally a poor response to 

COS and are therefore called poor responders (POR)
24; 25

. POR patients are at risk of lower 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3786590_nihms508207f4.jpg
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pregnancy rate compared to patients with normal ovarian reserve/response called normal 

responders (NOR) from the same age group
26

. The most severe form of DOR is the premature 

ovarian insufficiency/failure (POI/POF; POF; MIM: 615723) syndrome
27

. Clinically, 

POI/POF patients develop oligoamenorrhoea or amenorrhea with an increased level of FSH 

(>25 IU/ ml for POI
28

) before the age of 40
29

. 

1.2.  Genetic factors impacting folliculogenesis and ovarian reserve 

Many genes have been reported to be crucial for optimal ovarian maintenance. Interestingly, 

these genes seem to be concentrated on the X chromosome
30; 31

. In women up to 15% of X-

linked genes are bi-allelically expressed
32

. Women carrying one X chromosome (Turner 

Syndrome) suffer from accelerated depletion of their follicular poo already before birth
33

. 

This led to the assumption that important ovarian development genes are located on the X 

chromosome
32

. In addition, the requirement of biallellic gene expression from both X-

chromosomes was further supported from reports of women with POI/POF carrying different 

X-chromosome deletions and translocations (reviewed in Fassnacht et al.,
27

). Three major 

regions X chromosomal regions with genes functional in expression of POF-syndrome were 

identified: POF1 (Xq26-q28) and POF2 (Xq13.3-q22) and POF4 also called Turner 

syndrome locus
34

 (Xp11.2-p22.1) (Figure 2). The most prominent X-gene associated with the 

POI/POF syndrome is the Fragile X Mental Retardation 1-gene
35

 (FMR1, MIM 309550) 

located in POF1 (Xq27.3). 

 

 

Figure 2: Multiple genetic loci for maintenance and 

progression of human folliculogenesis are located on 

the X chromosome. 

According to the OMIM database they are summarized 

under POF1 (OMIM: #311360) with FMR1 (highlighted 

with a red circle) as the most prominent POF candidate 

gene (because most frequently mutated), POF2 (OMIM: 

#300511 and #300604) and POF4 (OMIM: #300247) 

Associated POF candidate genes, i.e., genes known to be 

expressed during human folliculogenesis of which some 

were already found with mutations in women with 

POI/POF syndrome are listed at the right (Figure and 

legend are copied from Vogt et al.,
34

). 
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1.2.1.  The FMR1 gene 

The FMR1 gene, located within POF1 region, was first identified in 1991 through positional 

cloning
35

. It contains 17 exons spanning 38 kb
36

. The FMR1 gene produces a 4.4 kb mRNA 

with an open reading frame (ORF) of 1.9 kb, plus up to 16 isoforms resulting from alternative 

splicing
37

. The most common splicing events involve the inclusion or exclusion of exon 12 

and 14 and the use of different splice acceptors located in exons 15 and 17
38

. The gene is 

characterized by presence of variable CGG-triplet numbers (26<n<32 in general population
39

) 

in the 5′-untranslated region of exon1
35

. The expansion of the CGG triplet block to the range 

of 55 to 200 repeats has been called Pre-Mutation (PM), because CGG triplet numbers above 

54 repeats become unstable and much longer CGG triplet blocks (500-2000 repeats) can occur 

in the next generation
39

 causing the fragile X syndrome (FXS; OMIM 30955). In women, the 

presence of a FMR1-PM allele has been associated with the onset of fragile X-associated 

tremor/ataxia syndrome (FXTAS; OMIM 300623)
40; 41

 and Fragile X POI (FXPOI; MIM 

311360)
29; 42

 or POI/POF
42

 respectively. Expansion of the CGG triplet block to more than 200 

repeats is usually associated with DNA hypermethylation at CpG sites of the promoter region 

which leads to an epigenetic silencing of the gene, resulting in the lack of its protein 

translation, the FMR protein (FMRP)
35; 43

 (Figure 3). 

1.2.2.  FMR-protein (FMRP) 

FMRP, a 632amino acids protein is the main product of FMR1 expression
44

. In mouse brain 

up to 12 different isoforms of FMRP exist due to FMR1 transcripts alternative splicing
45

. 

FMRP was first described in brain as a RNA binding protein that regulates translation of 

target mRNAs associated with neuronal development
46

. Recent reports suggested that FMRP 

may also bind to noncoding RNA (BC1 rodent specific) as well
47

. FMRP function can be 

modulated by phosphorylation. The phosphorylated FMRP mostly inhibits translation of 

associated mRNA targets including its own mRNA
48; 49

. FMRP involvement in the miRNA 

pathway require the association of the non-phosphorylated form with the Dicer complex
48; 49

 . 

FMRP harbors two K-homology RNA-binding domains (KH1 and KH2 encoded by exons 8-

10 and exon 13), an arginine glycine glycine (RGG) high affinity RNA-binding domain 

encoded by exon15, a nuclear export signal (encoded by exon 14), Tudor domains (encoded 

by exon 3) and a nuclear localization signal (encoded by exons 5 and 6)
50-54

. Therefore, 

splicing and removal of exons encoding one or more of these functional motifs may have a 

major impact on protein function and localization
55-57

.  

https://www.omim.org/entry/311360
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FMRP expression is affected by the dynamic expansion of the CGG triplet block into the PM 

range, where elevated FMR1-PM mRNA levels are accompanied by reduced FMRP levels 

suggesting a negative feedback loop
58; 59

. 

 

Figure 3: Molecular structure of the FMR1 gene. 

The FMR1 gene (NC_000023.11:147,911,951-147,951,127 H. sapiens) consists of 17 exons represented by 

yellow cylinders. Major splicing sites involving exons 12, 14, 15 and 17 are indicated. The CGG triplet block 

repeat located in the 5’ UTR of exon1 is indicated by a violet cylinder. Three classes of FMR1 alleles and their 

associated phenotypes are presented. CGG triplet repeats ranging around 30 repeats lead to normal FMR1 

mRNA transcription and translation, and normal function of FMRP. The PM range (55-200 repeats) is associated 

with elevated FMR1 mRNA transcription and reduced FMRP expression. Presence of the PM increases the risk 

of developing FXTAS in males or FXPOI or POF in females. When the CGG triplet repeats exceeds 200 repeats, 

the FMR1 gene is silenced due to hypermethylation. Absence of FMRP leads to the FXS (Figure is adapted from 

Zalfa et al.
47

). 

1.2.3.  FMR1 gene implication in folliculogenesis 

a- Influence of the size of the CGG triplet block 

FMR1 gene expression, is supposed to be functional also during folliculogenesis. Women 

carrying an FMR1-PM allele (55 <CGG< 200 repeats) display increased FMR1 expression in 
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their leukocytes and granulosa cells have a risk of around ~20% to develop POI/POF also 

called FXPOI
42; 60

. Yet, it is not known why the development of FXPOI ovarian dysfunction 

is limited to FMR1-PM allele carriers and the underlying pathogenesis of FXPOI is still under 

investigation.  

Several studies
61-65

 proposed a toxic gain of function of the elevated FMR1-PM mRNA as 

was observed in brain of women diagnosed with FXTAS and carrying an FMR1-PM allele
40; 

41
. In the brain tissue of female carrying an FMR1-PM allele, the excess of FMR1-PM mRNA 

was proposed to induce the formation of intranuclear neuronal and astrocytic inclusions 

probably resulting from aberrant protein binding to specific hairpin structures (resulting from 

the extended CGG triplet block) within the 5′ UTR of FMR1-PM message within the 

nucleus
66; 67

. The sequestration of the FMR1-PM message in nucleus was proposed as 

causative agent of the elevated rate of transcription. Accordingly, by investigating the 

expression of up to 16 FMR1 isoforms in leukocytes from normal and PM allele carriers, 

Pretto et al.,
37

 reported an up to eight fold increase in expression of nuclear isoforms (lacking 

both exons 12 and 14) in leukocytes of FMR1-PM carriers which further supports the nuclear 

sequestration theory of FMR1-PM messages. However, Tassone et al.,
58

 showed in male 

lymphoblastoid cell lines that FMR1 mRNA was mainly located in the cytoplasm for both 

normal and FMR1-PM alleles, ruling out the observed nuclear sequestration phenotype as a 

contributing factor for the elevated mRNA levels
58

. 

In women leukocytes the presence of a FMR1-PM allele is also associated with increased 

levels of FMR1-PM mRNA and decreased levels of FMRP
58

 suggesting the presence of a 

negative feedback FMR1/FMRP control loop. Beilina et al.,
68

 identified multiple FMR1 

transcriptional initiation sites (TSS) in most FMR1-PM-transcripts located upstream of the 

main TSS used for transcription of gene alleles carrying a normal range of CGG triplet 

numbers. It suggests some influence of the CGG repeat number on the transcriptional start site 

in the FMR1 promoter. 

The negative feedback loop control of FMR1/FMRP expression was found to be present also 

with FMR1 transcripts including CGG triplet number below the PM range
69

. Investigations 

performed with human neuronal and fetal kidney cell lines showed that with a CGG triplet 

block size higher than 30 repeats FMRP expression decreased, while FMR1 expression is 

slightly increased
69

. However, FMR1 transcripts with CGG triplet number below the normal 

range showed a lower expression rate in these cell lines associated with an increase of their 

transcription rate
69

. These data suggest that the CGG repeats may act as a translational 

modulator of the FMR1 transcripts
69

. It has been assumed that causative agent for reduced 
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FMRP levels may be a decrease in translation efficiency due to ribosome stalling of FMR1 

transcripts with extended CGG repeat block. Folding of the FMR1 5’UTR including the CGG 

repeat block transcripts into quadruplex structures was recently shown for human embryonic 

kidney cells
70

. Such structures also decrease their translation efficiency. 

Variations in FMR1 expression levels were also observed in leukocytes from POI/POF 

patients not carrying a CGG-PM allele
71

. Accordingly, it has been postulated that even a small 

deviation in the normal CGG triplet repeats number from the normal range (26<n<32)
39

 has 

some impact on human ovarian reserve and fertility
72-75

. Patients carrying shorter CGG triplet 

block (n < 26) were suggested to be more prone to have lower follicular reserve
72-74

. Based on 

expression observations in female leukocytes, Gleicher et al.,
72

 suggested a possible 

implication of FMR1 expression in follicular recruitment, although expression of FMR1 in the 

female germline has not been yet studied up to now. 

These findings remain controversial since there were not observed in other studies
76; 77

. 

b- POI/ POF animal models 

More insight about the involvement of FMR1 CGG-PM allele in the development of POI/POF 

was provided from studies performed in vivo with several mouse models carrying an FMR1-

PM allele
78-80

.  

Hoffman et al.,
78

 reported that increased fmr1-PM (CGG n=130) transcripts were associated 

with a faster loss of follicles and the presence of ovarian abnormalities involving both the 

oocytes and GCs. Similar observations were reported in ovaries of mice carrying fmr1-PM 

(CGG n=98) on both alleles
79

. Both studies revealed that FMR1-PM transcripts expression 

impaired folliculogenesis after birth probably interfering with the follicular development 

phase. Another mouse POF model created with a human transgene carrying an FMR1-PM 

allele. In the ovaries of these animals, increase of human FMR1-PM transcript level was again 

associated with reduction in the number of growing follicles and impaired fertility
80

. The 

impairment in phosphorylation of key protein elements involved in the Akt/mTOR (Activated 

protein kinase B/ mammalian target of rapamycin) pathway in the ovaries of these mice led 

the authors to hypothesize the presence of a functional link between the presence of human 

FMR1-PM transcript expression and the mTOR pathway
80

. 

In vitro experiments mainly performed using mouse mouse models showed that two cellular 

pathways are essential for activation of primordial follicles and their further development: the 

PI3K /Akt (intacellular Phosphoiosid 3 kinase/ activated protein kinase B) pathway
81

 
82; 83

 and 

mTORC1 pathway
7; 81-83

. Endpoint of both signaling pathways is phosphorylation of S6K1 

(ribosomal protein S6 kinase polypeptide) that controls the translation of mRNA via 
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stimulation of ribosomes leading to follicle activation
84

. The PI3K/Akt pathway is activated by 

growth factors such as kit ligand and a cascade of enzymatic reactions that results in AKT 

phosphorylation for activation. Phosphorylated AKT will in turn phosphorylate its 

downstream effector FOXO3 (Forkhead box O3). This leads to its translocation to the 

cytoplasm. Unphosphorylated FOXO3 acts as a transcription repressor
85

; foxo3 knockout 

mice have an excessive recruitment of primordial follicles and suffer from follicles depletion 

at an early age
85

. The importance of FOXO3 on primordial follicle depletion was also 

observed in pig and bovine ovaries
86; 87

.  

Although all these studies reveal potential implication of the FMR1 gene and the mTORC/ 

PI3K /Akt in murine folliculogenesis, little is yet known about their implication in human 

folliculogenesis. In human ovaries, FMRP is mainly expressed in GCs after birth
71

. So far 

only one study reported a potential functional link between FMR1/FMRP expression and the 

AKT/mTOR signalling pathway in a human proliferating granulosa cell model system not 

carrying an FMR1-PM allele
88

. 

1.3. Epigenetic regulation of FMR1 gene expression  
Epigenetic defines all heritable changes in gene expression not coded within the DNA sequence 

itself but by methylation of distinct nucleotides; mainly CpGs and the post-translational 

modification of histones sites
89; 90

. Epigenetic mechanisms contribute to stabilize cell type-specific 

gene expression
89

. Four major levels of epigenetic controls have been identified: DNA 

methylation, histone modification, chromatin remodeling and non-coding RNAs
90; 91

. In this 

thesis, I will put the focus on the epigenetic control of FMR1 gene expression by CpG 

methylation and by long non-coding RNA (lncRNA) expression. 

1.3.1.  CpG methylation and CpG islands 

CpG methylation is defined by addition of a methyl group at the 5’ position of cytosine residues 

located within the dinucleotide CpG in the DNA sequence, established by DNA 

methyltransferases
92-95

. In the human genome, differentially CpG methylation mainly occurs in 

the genes promoter regions but also in the gene body (exons and introns) and in intergenic 

regions
96

. The majority of CpG dinucleotides concentrated in CpG islands
97

. It has been 

shown that the pattern of CpG site methylation has an impact on the control of gene 

expression. For example, CpG methylation located in close proximity of the TSS blocks 

transcription initiation, whereas methylation of CpG sites located in the gene body seem to 

help in transcription elongation and might be also involved in their splicing processes
93; 98

. 
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In the literature there is no standard definition for CpG islands. Bird et al.,
97

 defined CpG 

islands as stretches of DNA roughly 1000 base pairs long that have a higher CpG density than 

the rest of the genome and are often not methylated. Gardiner-Garden and Frommer.,
99

 

defined CpG islands as 200-500 base pair DNA stretches with a CG content greater than 50%. 

CpG islands usually encompass the promoter, the first exon, and sometimes also the first 

intron of a gene
100

. Promoters having CpG islands are usually, when transcriptionally active, 

non-methylated and characterized by nucleosome-depleted regions at their TSS
92

 and their 

gene expression level is  usually controlled by specific transcription factors that bind to their 

CG rich regions
94

. It can be assumed that CpG islands possess a functional importance since 

their location among the genome seems to be conserved throughout evolution
101

. Methylation 

of CpG islands is a mechanism used to repress gene transcription such as for genes located on 

the inactive X chromosome
93; 102

. Possible mechanisms leading to gene silencing associated 

with CpG sites hypermethylation include the loss of transcription factors binding within the 

promoter region
103; 104

 and the formation of an inactive chromatin structure which facilitates 

transcriptional silencing
105

. 

1.3.2.  CpG island in the FMR1 promoter 

The functional FMR1 promoter includes a CpG island
106

. The CpG rich promoter lacks a 

canonical TATA box, but includes three initiator-like sequences located within the minimal 

core promoter. The minimal core promoter has been estimated with an extension of 131 bases 

upstream of the main TSS
107

. The conserved downstream regions may represent regulatory 

elements in the first intron, but they have not been studied in detail so far
107

. This core 

promoter sequence seems to be evolutionary conserved across human, chimpanzee, macaque, 

dog and mouse
107

. It contains several restriction enzyme methylation sensitive cutting sites 

and five conserved evolutionary DNA footprint patterns which include consensus binding 

sites for various positive regulator proteins of FMR1 transcription: α-Pal/Nrf-1, Sp1, Sp1-like, 

USF1/USF2 and E-box
106-108

. Interestingly, the binding of α-Pal/Nrf-1 and USF1/USF2 

transcription factors was shown to be functionally influenced by CpG methylation
107

. The 

putative functional sequence promoter domains include upstream a long CpG island bordered 

at the 5’ side by a methylation boundary zone (MB) that acts as a transition zone to the 

hypermethylated upstream genomic region of both alleles
109; 110

. Downstream, the proposed 

functional FMR1 promoter domain extends probably to intron1
111

. 

Methylation of the FMR1 promoter CpG island associated with the expansion of the CGG 

triplet block interferes with FMR1 transcription by directly preventing the binding of 
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transcription factors within the core promoter
107

. Since CpG hypermethylation is accompanied 

by a number of modifications in histone N-tails, also the chromatin structure is modified
112

. In 

addition, it has been postulated that inactivation of the FMR1 gene by CpG methylation could 

be initiated by down-regulation of transcription and chromatin modifications prior to CpG 

methylation in human embryonic stem cells
113

 and through the binding of methyl-CpG 

structures
92

. However, silencing of FMR1 by CpG methylation of the promoter region was 

also reported to occur independently of the presence of the CGG triplet block repeat
114

. This 

suggests that size of the CGG triplet block is not the only epigenetic factor controlling FMR1 

gene expression. 

It is important to note that most epigenetic studies described the association of CpG 

methylation within the FMR1 promoter and gene its expression with male patient DNA 

probes or male cell lines that have only one X chromosome. Only few studies
109-111; 115; 116

 

investigated the influence of CpG methylation status within the FMR1 promoter region on 

gene expression in leukocytes and brain tissue of women carrying normal or expanded CGG 

triplet block alleles. 

Using direct bisulfite sequencing analysis, Naumann et al.,
109; 110

 showed the presence of a 

mosaic CpG methylation pattern in the region located between the MB and the CGG triplet 

block in leukocytes of women carrying normal and FMR1-PM allele,. This mosaic pattern 

probably reflected the disparity of CpG methylation levels on the two female X 

chromosomes, one being highly CpG methylated and the other CpG unmethylated or 

hypomethylated
109; 110

. However, variation of FMR1 expression in leukocytes of these women 

in relation to CpG methylation patterns in the FMR1 promoter was not explored. 

In brain tissues of two sisters carrying one FMR1-PM allele, development of FXTAS was 

correlated with the activation ratio of the FMR1 gene, which reflects the degree of CpG 

methylation of the promoter region
115

. Similar findings were reported in a larger cohort of 

women (82 patients), in which the activation ratio of the FMR1 gene was dependent on the 

size of the CGG triplet block and probably contributed to the onset of FXTAS
116

. A 

correlation between the activation status of the PM FMR1 allele and FXPOI manifestations 

was also reported from an assessment performed in leukocytes of three sibling pairs with 

similar FMR1 expansions, but different FXPOI phenotype
117

. This discordance in the FXPOI 

phenotype was suggested to be associated with a variable X-inactivation rate of the FMR1-

PM allele. However the X-inactivation ratio in leukocytes does not necessarily resemble that 

of the ovarian tissue.  
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Recently, two epigenetic control elements located outside the minimal core promoter region 

were mapped to the extended FMR1 promoter domain because also contribute to the 

transcription efficiency of FMR1 in women leukocytes
111

. They were designated Fragile-X-

Epigenetic Element-1and-2 (FREE1 and FREE2) respectively
111; 118

. FREE1 contains 10 CpG 

sites whereas FREE2 contains 12. Godler et al
111; 119

 found that the methylation pattern of 

specific CpG sites located in these elements influence FMRP expression levels in women’s 

leukocytes. In addition, single CpG methylation patterns within FREE1 and FREE2 were also 

found to be dependent on the size of the CGG triplet block in exon 1
119; 120

. Although these 

FREE elements were found to be present also in other female somatic cells
111

, they were not 

yet studied in female germline cells.  

1.3.3.  Long non-coding RNA (lncRNAs) expression in folliculogenesis 

Another mechanism to regulate gene expression involves long non protein coding transcripts 

located on the same (sense) or the antisense DNA strand in the form of antisense transcripts. It 

is believed that these RNAs might affect gene expression by triggering histone modifications 

and DNA methylation including heterochromatin formation
91

. 

Expression of lncRNAs is involved in the regulation of protein encoding gene transcription 

stability, in splicing, in subcellular localization and in translational efficiency
121

. LncRNAs, 

are characterized as ncRNAs with more than 200 nucleotides
122

. The transcription of lncRNA 

can be initiated from introns, promoters, exons and 3’end regions from both sense and 

antisense strands of protein-coding genes
122

. In the past few years, several lncRNAs were 

proposed to be important for human folliculogenesis as they were associated with proper 

oocyte growth and maturation e.g NEAT1, MALAT-1, GAS5, XIST and OIP5-AS1
123; 124

. In 

addition, differential expression patterns of several lncRNAs were reported to play a role in 

the differentiation of ovarian somatic cells, granulosa and cumulus cells
124; 125

. In human 

ovarian cumulus cells, the aberrant expression of several lncRNAs (XLOC_011402, 

ENST00000454271, ENST00000433673, ENST00000450294, and ENST00000432431) was 

found to be associated with a folliculogenesis disorder, the polycystic ovarian syndrome 

(PCOS)
126

. Furthermore, the expression level of the lncRNA AK124742 in these somatic cells 

showed a correlation with the embryo quality in women undergoing infertility treatments and 

was, therefore, proposed to be used as potential biomarker for embryo selection
127

. In mouse 

ovarian granulosa cells, an increased expression of the lncRNA-Meg3 promoted the inhibition 

of granulosa cells proliferation and led to premature ovarian failure
128

. 

Four lncRNAs seem to be associated with the FMR1 gene locus: the Antisense of the FMR1 

gene (ASFMR1), FMR4, FMR5 and FMR6 
129-132

 (Figure 4). Only FMR5 is located sense-
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oriented upstream of the TSS of FMR1 (Figure 4). ASFMR1, FMR4 and FMR6 levels seem to 

be influenced by the length of the CGG triplet repeats in FMR1 exon 1
129; 130; 132

. Only FMR5 

expression was found to be independent of the size of the CGG triplet block
131

. ASFMR1 and 

FMR4 use the same promoter domain of the FMR1 gene. In contrast to FMR4, ASFMR1 

displays complex alternative splicing process and its transcription could also be initiated also 

downstream of the CGG triplet repeats in intron 2 of the FMR1 gene
130

. FMR6 overlaps with 

exons 15–17 including the 3’UTR of the FMR1 gene. Thereby, its transcript uses the same 

acceptor/donor splicing sites as FMR1 exons 15, 16 and 17 and starts in its 3’UTR
131

. 

All of these lncRNAs associated with FMR1 seem to be expressed in a wide range of tissues. 

In human ovarian tissues, FMR4 and FMR6 expression was analyzed in  primary granulosa 

cells
133

. Both transcripts were found to be highly expressed in these somatic cells, although 

FMR4 was not identified in ovarian tissue earlier
129

. Expression of ASFMR1 and FMR5 

transcripts in human granulosa cells have not yet been investigated so far. 

 

Figure 4: Schematic view of lncRNAs transcripts associated with FMR1 gene.  

The horizontal axes are formed by the intronic sequence, and the numbered vertical filled boxes represent the 

exons. 5’ and 3’ UTRs of the FMR1 gene are shown in orange. The arrows represent the TSS of FMR5 (blue), 

ASFMR1 (grey), FMR4 (purple), FMR1 (black), and FMR6 (green) genes. All genomic positions are indicated 

according to the TSS +1 of the FMR1 gene. The four isoforms (Non- processed, ISO A, B and C) and the PM 

specific transcript of the ASFMR1 gene identified in leukocytes
130

 are indicated. 
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2.  Aims of the thesis 

Major aim of my thesis was to investigate the complexity of epigenetic control elements 

involved in the expression of FMR1 in human granulosa cells in order to reveal the potential 

contribution of FMR1 gene expression during follicular oocyte maturation. In addition, I 

wanted to explore whether expression of this gene may affect differences in women ovarian 

response after controlled ovarian stimulation during the in vitro fertilization protocols used in 

any IVF clinic.  

For this purpose,  

- the CpG methylation pattern of the extended FMR1 promoter in a human granulosa 

cell line, COV434, was analyzed in order to confirm its usefulness as a model system 

for human primary granulosa cells, usually only available in small amounts from the 

IVF laboratory. 

- Expression pattern of ASFMR1 lncRNA expressed in antisense from the FMR1 locus 

in human leukocytes was analyzed in COV434, to judge its putative contribution to 

the epigenetic control of FMR1 besides the CpG methylation pattern. 

After confirmation of COV434 as model system for FMR1 gene expression in primary 

granulosa cells, it was used: 

(a) for the analyses of putative variabilities of the observed CpG site methylation 

pattern in primary granulosa cells of women with a variable ovarian response. 

(b) for EMSA studies using COV434 nuclear protein extracts to identify first putative 

transcription factors binding to differentially methylated CpG sites. 

(c) for functional knockdown of FMR1 in these cells by an optimal siRNA expression 

protocol to reveal putative signal pathways expressed in human granulosa cells 

interacting with FMR1/FMRP during ovarian maturation. 
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3.  Material 

3.1  Equipment 

Table 1: Equipment used in this study 

name supplier 

ABI PRISM 3100 Genetic Analyzer Applied Biosystems, USA 

Accu-Jet Pro  Brand, Germany 

Agilent 2100 bioanalyzer Agilent, USA 

Autoclave 3870 ELV Tuttnauer, Netherlands 

Bacterial incubator shaker IH 50 K/15/500 Noctua, Germany 

Bench centrifuge TMC 1601012 NeoLab, Germany 

Biophotometer No. 613101974 Eppendorf, Germany 

Blotting and transfer system Serva Serva, Germany 

Blotting System, CTI CTI, Germany 

Cell culture bench HERASAFEKSP Typ KSP 12 Herasafe KSP, Germany 

Centrifuge cooling Heraeus FRESCO 21 Thermo fisher scientific, USA 

Cryotank GT55 Air Liquide Cryotechnik, Germany 

Digestorium Weiler 0179 Weiler, Germany 

Electrophoresis Chamber CTI CTI, Germany 

Fluorescence microscope Spectra Cube Model CCD-1300DS Leica, Germany 

Freezer -20°C Liebherr, Germany 

Freezer -80°C NapCOIL UF600 Napco, USA 

Freezer -80°C NapCOIL UF650 Napco, USA 

GS GENE linkerTM BioRad, Germany 

Homogenisator Ultra Turrax T8 IKA Labortechnik, Germany 

Icemachine Scotsman AF 80 Scotsman, USA 

Incubator for bacteria Typ 1511530000202 No 950373 WTB Binder Germany 

Incubator for cell culture CB 150 #05-8892 WTB Binder Germany 

Magnetic stirrer MR2000 Heidolph, Germany 

Magnetic stirrer RCT IKA Labortechnik, Germany 

Microcentrifuge  Typ 1-14 #10014 Sigma, Germany 

Microscope DIAVERT 114191 Leitz, Germany 

Microwave Sharp Express R-239 Sharp, Germany 

Milli-Q biocel Water system A10 Millipore, Germany 

Nanodrop Spectrophotometer ND-1000 peqLab, Germany 

pH-Meter Calimatic 761 Knick, Germany 

Plate centrifuge 2019R Napco, USA 

Plate shaker LS10 Gerhardt, Germany 

Power Supplies 500V 0,5A Fischer, Germany 

Scale EW 150-3M Kern, Germany 

Spectral photometer LS 500 Dr. Lange, Germany 

sonifier cell disruptor Branson B15 Branson sonic power co Germany 

SRX-101A Film developper Konica, Japan 

T1 Thermocycler PCR machine Biometra, Germany 

TaqMan machine 7500 Fast Real Time PCR-System Applied Biosystems, USA 

T-Gradient PCR machine Biometra, Germany 



                                                                                                                                                  3. Material 

 

- 16- 

 

Thermoblock QBT2 Grant instruments, England 

Thermoblock TDB-120 Biosan, Lettland 

Thermomixer comfort Eppendorf, Germany 

UV plate reader Photometer Anthos labtec instruments, Germany 

UV-Imager GelDoc2000 BioRad Germany 

UV-Transilluminator IL-200-M Bachhofer, Germany 

Vortex-Mixer Reax 2000 Heidolph, Germany 

Water bath GFL 1083 GFL GmbH, Germany 

 

3.2 . Chemicals 

Table 2: Chemicals and reagents used in this study 

name supplier, catalog number 

Acetic acid (100%) Roth, Germany #3738 

Acrylamide 30% Roth, Germany #3029.1 

Agar  Roth, Germany #5210.3 

Agarose  Biozym, Germany #840004 

Ampicillin Sodium AGS GmbH, Germany #101195  

Ammoniumperoxodisulfat (APS) Roth, Germany # 9592.1 

Anti Anti (Antibiotic/Antimycotic) 100x Thermo fisher scientific, USA #15240-062 

Bacto Yeast Extract Becton Dickinson, USA #212750 

Bacto Trypton Becton Dickinson, USA #211705 

β-ME (2-Mercaptoethanol), 99%  ICN Biomedicals, USA #806443 

Biorad Protein Assay BIORAD, Germany #500-0006 

Boric acid Sigma-Aldrich, Germany#31146   

Bromphenol blue  Sigma-Aldrich (Merck), Germany #69010 

BSA (Bovine Serum albumin, Albumin Fraktion V) Roth, Germany#8076.4 

Calcium chloride (CaCl2-2H2O)  Merck, Germany #611TA143982 

Chloroform Fluka, Germany #25690 

D-(+)-Glucose  Merck, Germany #620K1261442 

DAPI Thermo fisher scientific, USA #62247 

DABCO Sigma-Aldrich (Merck), Germany #D2522 

Desoxyribonucleotides (dNTPs) Bioron, Germany #110012 

DMEM (Dulbecco Modifiziertes Eagle Medium) 

+ L-Glutamine, low Glucose 

Biochrom, Germany #FG0415 

DMSO (Dimethylsulfoxide) Serva, Germany #20385 

DTT (1,4-Dithiothreitol)  Sigma-Aldrich, Germany #D-8255 

EDTA (Ethylendiamintetraacetat)  Roth, Germany #8043 

Ethanol absolute  Roth, Germany #9065.2 

Ethanol denaturated Roth, Germany #K928.4 

Ethidiumbromid Serva, Germany #21238 

FCS, heat activated Thermo fisher scientific, USA #10500064  

Formaldehyde, 37%  Sigma-Aldrich GmbH, Germany #252549 

Gene RulerTM 100bp DNA ladder plus Fermentas, USA #SM0322 

Gene RulerTM 1000bp DNA ladder plus Fermentas, USA #SM0311 

GeneRuler Ultra Low Range DNA Ladder Thermo fisher scientific, USA #SM1211 
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Glycerin, 100%  J.T. Baker (Avantor), Germany #7044 

Glycine 1M Solution Sigma-Aldrich GmbH, Germany #67419 

H2O Ampuwa  Fresenius Kabi, Germany, #6605508  

H2O Aqua ad injectabilia B. Braun Melsungen AG, Germany #2351744 

H2O destilled RNAse free Thermo fisher scientific, USA #10977035 

HCl (37%) Merck, Germany #1.00317.2500 

HiPerFect Transfection Reagent Qiagen GmbH, Germany #301705 

HPLC-water J.T. Baker (Avantor), Germany #4218 

Isopropanol (2-Propanol)  Roth, Germany #9866.2 

L-Asparagine Sigma-Aldrich (Merck), Germany #A4159 

Lipofectamine® RNAiMAX Transfection Reagent Thermo fisher scientific, USA #13778075 

Lipofectamine-2000 Reagent Thermo fisher scientific, USA #11668027 

Magnesium chloride (MgCl2)  Roth Germany #2189.1 

Magnesium sulfate (MgSO4) JT. Baker USA #0168 

Methanol 99,9% Roth, Germany #4627 

MOPS (3-[N-Morpholino]-propanesulfonic acid)  AppliChem, Germany#A1076 

Orange G Merck, Germany #A1404 

PBS w/o CaCl2 and MgCl2 Thermo fisher scientific, USA #14190-094 

PGEM-T Easy Vector  Promega, USA  #A1360 

PMSF (Phenylmethylsulfonylfluoride) Roth, Germany #6367.3 

PageRuler Plus Prestained Protein Ladder Fermentas, USA #SM1811 

Potassium Chloride (KCl)  Baker USA  #0509 

SDS (Natriumdodecylsulfate, ultrarein)  Serva Germany #20763 

TEMED Roth, Germany #2367.3 

Sodium acetate Roth, Germany  #6773 

Sodium chloride (NaCl)  Roth, Germany  #3957.1 

Sodium hydroxide Roth, Germany #6771 

TaqMan Uiversal PCR Master Mix, 

no AmpErase UNG 

Thermo fisher scientific, USA #4364343 

Tris-Borate-EDTA buffer (5x) Sigma-Aldrich, Germany #T7527-4L 

Tris EDTA Buffer Solution pH = 8 Sigma-Aldrich, Germany #93283 

TRIS (Tris-[hydroxymethyl]-aminomethane)  Roth, Germany  #4855 

Trypan blue Serva, Germany #47285 

Trypsine/EDTA-Solution (10x) Biochrom AG, Germany #L2153 

Tween 20 Gerbu, Germany #2001.0500 

X-Gal (5-Bromo-4-Chloro-3-Indoyl-ß-D-Galactoside) Promega, USA #V394 

 

 

3.3  Consumables 

Table 3: Consumables used in this study 

name supplier 

Adhesive sealing cover for sequencing plates Neolab, Germany 

Cryotubes Nunc, Germany 

Microplates Luminomator 96-Well Format Berthold, Germany 

Gloves TouchNTuff Ansell, Germany 

Parafilm  Pechiney, USA 

Pasteur serological pipettes WU-Mainz, Germany 
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PCR-plates for sequencing, 96-Wells, 0.2ml Nerbe Plus, Germany 

PCR reaction tubes Biozym, Germany 

Petri dishes Greiner, Germany 

Pipette Tips 10, 20, 200, 1000µl Steinbrener, Germany 

Pipette Tips with filter Stein Labortechnik, Germany 

Reaction tubes Starstedt, USA 

RN ase free tubes AppliChem, Germany 

UV-cuvettes Neolab, Germany 

Cell culture flasks Sarstedt, USA 

Drigalski glas column Neolab, Germany 

Neubauer Cell counter LO Laboroptik, Germany 

Combitips 0,1 - 0,2 - 0,5 - 10ml Eppendorf, Germany 

Dispenser for combitips Eppendorf, Germany 

Rainin Encode tips 0,1ml sterile Steinbrenner, Germany 

Rainin Encode tips 0,5ml sterile Steinbrenner, Germany  

Filterpapier MN 827 B Macherey-Nagel, Germany  

Nylon Membran, positiv charged Roche Diagnostics, Germany 

PVDF Membrane Immobilon Membran; Millipore, USA 

Adhesive cover for PCR plates Applied Biosystems, USA 

Tubes 15, 50 ml Sarstedt, Germany 

X-ray films 

Syringe filter 0.2µm 

Konica Medical Films, Germany 

Sarstedt, Germany  

 

 

3.4 . Kits 

Table 4: Kits used in this study 

name supplier, catalog number 

ABI Big DyeTM Terminator v1.1 Cycle Sequencing RR100 Applied Biosystems #4336768 

ABI High-DiTM Formamide Applied Biosystems #4311302 

CST-PathScan Phospho mTOR Sandwich ELISA Kit New Englan Biolabs #7976C 

CST-PathScan Phospho-Akt Sandwich ELISA Kit New Englan Biolabs #7252 

CST-PathScan total AKT1 Sandwich ELISA Kit New Englan Biolabs #7170C 

CST-PathScan total mTOR Sandwich ELISA Kit New Englan Biolabs #7974C 

CST-PathScan total p70 S6K Sandwich ELISA Kit New Englan Biolabs #7038 

EpiTect Bisulfite Kit Qiagen, Hilden #59104 

FirstChoice™ RLM-RACE Kit Thermo fisher scientific #AM1700 

Human FMR1/FMRP ELISA-Kit Biozol Diagnostica #LS-F9020-1 

NE-PER Nuclear and Cytoplasmic  Extraction Reagents Thermo fisher scientific #78833 

Nuclear Extraction Kit 200 rxns Biocat GmbH #SK-0001-SO 

NucleoSpin® Triprep Macherey-Nagel #740966:50 

One Step PCR Kit Quiagen GmbH #210212 

PGEM®-T Easy Vector  Promega #A1360 

Protein Quantification Assay Macherey-Nagel #74096250 

QIAprep® Spin Miniprep Kit Qiagen, Hilden #27106 

Rneasy Minikit Qiagen, Hilden #74106 
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Signosis E2F-1 Emsa-Kit-Gel shift Kit 30 rxns Biocat GmbH #GS-0011-SO 

Signosis Emsa-Kit-Gel shift Kit 30 rxns Biocat GmbH #GS-0000-SO 

Wizard DNA Clean-Up System Promega #A7280 

Western Lightning® Plus-ECL 

 

PerkinElmer #NEL10400EA 

 

3.5 . Enzymes 

Table 5: Enzymes used in this study 

name supplier, catalog number 

Taq PCRx DNA Polymerase Invitrogen #11508-017 

GO Taq DNA Polymerase Promega #M300B 

M-MLV Reverse Transcriptase Promega #M368C 

Pfu DNA Polymerase Promega #M7774 

Proteinase K Merck, Darmstadt #1245680500 

RNase free DNase Set Qiagen, Hilden #79254  

RNase A  Invitrogen #12091021 

Rnase H Promega #M428C 

SuperScriptTM III Rnase H- Reverse Transcriptase Invitrogen #18080-093 

SupersScript® VILOTM Invitrogen #100002279 

Taq DNA Polymerase Invitrogen #10342-020 

T4 DNA Ligase Promega #M180A 

T4 DNA Polymerase Fermentas # EP0061 

 

 

3.6 . Antibodies 

Table 6: Antibodies used in this study 

name supplier, catalog number 

FMRP Euromedex (mAb1C3) 

Anti-Histone H3 Abcam (ab 9053) 

Anti-GAPDH Santa Cruz (sc-25778) 

Peroxidase-AffiniPure Goat Anti-Rabbit IgG, Jackson (111-035-046) 

Peroxidase AffiniPure Goat Anti-Mouse IgG Jackson (115-035-062) 

 

 

3.7 . siRNAs 

Table 7: siRNAs used in this study 

name supplier, catalog number 

siRNA FMR1 homo 10919 Thermo fisher scientific AM16708 

siRNA FMR1 homo 11010 Thermo fisher scientific AM16708 

Silencer Select Pre-Designed si RNA FMR1 Thermo fisher scientific 4392420 ID: 

s5316 

Silencer Select Negative Control 1 Thermo fisher scientific 4390843 
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3.8 . Buffers and Solutions 

Ampicillin, 50mg/ml: 5g of ampicillin sodium salt were dissolved in 100ml of H2O 

(Ampuwa) and passed through a 0.2μm syringe filter. The solution was aliquoted and stored 

at -20°C. 

dNTP, 10mM: For 100 μl, 10μl of 100mM dATP, dCTP, dGTP and dTTP were mixed with 

60μl of H2O (Ampuwa) and stored at -20°C. 

LB-Medium (Luria-Bertani): 10g of Bacto Tryptone, 5g of yeast extract and 5g of NaCl 

were dissolved in 950ml of Milli-Q H2O. The solution was autoclaved and stored at room 

temperature. For minipreps, the medium was supplemented with 50μg / ml of ampicillin.  

LB-Agar plates: 10g of Bacto Trypton, 5g yeast extract, 5g NaCl and 16g agar were 

dissolved in 1liter (l) of Milli-Q-H2O, autoclavated and cooled to 56°C. Subsequently 

ampicillin (100μg / ml) and 2% X-Gal were added. 10cm petri dishes were filled with 20ml of 

LB agar and stored at 4°C. 

SOC-Medium: 20g Bacto Trypton, 5g Yeast extract, 0.6g NaCl and 0.2g KCl were dissolved 

in 1l Milli-Q H2O. The solution was then autoclaved. For each 100ml medium, 1M MgSO4 

(sterile), 1ml 1M MgCl2 (sterile) and 2ml 1M D-(+)-Glucose were added. 

Lysis-buffer for gDNA extraction from granulosa cells: 40mM Tris buffer pH 7.8, 20 mM 

sodium acetate, 1mM EDTA, 1%SDS and H2O (Ampuwa)  were mixed in a final volume of 

100ml. 

Lysis-buffer for gDNA extraction from leukocytes: 1l solution contained a final 

concentration of: 155 mM NH4Cl (8.29g), 10mM KHCO3 (1 g) and 0.1mM Na2EDTA (200μl 

0.5M solution). pH was adjusted using  glacial acetic acid solution to 7.4. 

10X TAE buffer: 1l solution contained a final concentration of: 40mM Tris-Acetat pH 7,8, 

1mM EDTA and 18.6g of Na2EDTA. pH was adjusted to 7.2. 

SE buffer : 1l solution contained a final concentration of: 75mM NaCl (4.39 g)  and 25mM 

Na2EDTA (8.41g). pH was adjusted to 8.0. 

Saturated NaCl: NaCl was dissolved in water until a sediment is formed, and subsequently 

autoclaved 

RLT + β-Mercaptoethanol: 10µl β-Mercaptoethanol in 1ml RLT-Puffer (RNeasy Mini Kit) 

3M Sodium acetate: 61.5g of sodium acetate were dissolved in 250ml of distilled water. pH 

was adjusted to 4.3. 

Anode buffer I: 1l solution contained a final concentration of: 0.3M Tris and 10% methanol. 

pH was adjusted to 10.4. 
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Anode buffer II: 1l solution contained a final concentration of: 0.025M Tris and 10% 

methanol. pH was adjusted to 10.4 

Cathode buffer: 1l solution contained a final concentration of: 0.025M Tris, 0.040M 

ammonium caproic acid and 10% methanol. pH was adjusted to 9.4. 

TNT buffer 1X: 1l solution contained a final concentration of: 50mM Tris, 150mM NaCl, 

5mM EDTA, and 0.05% Tween 20. pH was adjusted to 7.6. 

 

3.9 . Cell lines and human tissues 

The COV434 cell line: was derived from a 27-year-old woman suffering from a solid 

granulosa cell tumour. It shares characteristics with proliferating granulosa cells such as FSH-

dependency, 17β-oestradiol production, the formation of intercellular connections
134

. This cell 

line was grown in DMEM medium supplemented with 10%FBS and 3mM L-asparagine. 

gDNA for CpG methylation studies was also extracted from PBS pellets of female 

fibroblasts (06FO31), from primary female tissues (primary granulosa cells and 

leukocytes) and from tissues (female kidney and ovary). 

The DH5α bacterial strain: was used for all cloning experiments. Genotype: F- 

Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK-, mK+) phoA supE44 λ- 

thi-1 gyrA96 relA1. 

3.10 . Oligonucleotides and primers 

Table 8: Oligonucleotides and primers used in this study 

H. sapiens FMR1 gene region (147,911,046-147,912,539) (Figure 12) 

name sequence 5‘ to3‘ genomic 

position  

 type CpG site 

covered 

A9 TATAGTGGAATGTAAAGGGTTGT 147,911,046 F BSP -5 to 5 

A9 CCAAAATAACCCAAACTTTTAT 147,911,526 R BSP -5 to 5 

A1M AGAGGTCGAATTGGGATAATC 147,911,609 F MSP 11 to 18 

A1M ACGATAACAAATCGCACTACCT 147,911,683 R MSP 11 to 18 

A1U TAGAGAGGTTGAATTGGGATAATT 147,911,607 F MSP 11 to 18 

A1U AAAACAATAACAAATCACACTACCT 147,911,685 R MSP 11 to 18 

A2M CGAGGTAGTGCGATTTGTTATC 147,911,672 F MSP 16 to 32 

A2M GCATACGCGCTACTAAAAACC 147,911,794 R MSP 16 to 32 

A2U GTGAGGTAGTGTGATTTGTTATT 147,911,671 F MSP 16 to 32 

A2U C ACATACACACTACTAAAAACC 147,911,799 R MSP 16 to 32 

A3M TTCGGTCGGTTTTTAGTAGC 147,911,766 F MSP 29 to 36 

A3M ACGTCACGTAATCAACGCTA 147,911,860 R MSP 29 to 36 

A3U TATTTTGGTTGGTTTTTAGTAGT 147,911,762 F MSP 29 to 36 

A3U ACCACATCACATAATCAACACTA 147,911,865 R MSP 29 to 36 
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A4M GGGTTCGGTTTTAGTTAGGC 147,911,910 F MSP 46 to 65 

A4M CCTAACAACGACGCCTCC 147,912,036 R MSP 46 to 65 

A4U GGGGGTTTGGTTTTAGTTAGGT 147,911,908 F MSP 46 to 65 

A4U CCCTAACAACAACACCTCCA 147,912,038 R MSP 46 to 65 

A10 TAGTTTYGTTTYGGTTTTATT 147,911,934 F BSP 36 to 72 

A10 CATCTTCTCTTCAACCCTACTAAC 147,912,161 R BSP 36 to 72 

A5M GTAGTTTATTTTTCGGGGGC 147,912,128 F MSP 72 to 77 

A5M  AAACCAAATACCTTATAAAAAACGC 147,912,243 R MSP 72 to 77 

A5U AGTTTATTTTTTGGGGGTGG 147,912,126 F MSP 72 to 77 

A5U AACCAAATACCTTATAAAAAACACC 147,912,244 R MSP 72 to 77 

A6M TTTTTTTTTTGGTGTCGGC 147,912,278 F  MSP 79 to 92 

A6M CTATCGAAATGAGAGACCAGCGA 147,912,457 R  MSP 79 to 92 

A6U TTTTTTTTTTTTTGGTGTTGGT 147,912,276 F  MSP 79 to 92 

A6U CCTCACTAATCTCTCATTTCAATAAAC 147,912,459 R  MSP 79 to 92 

A7M GGGGTTTTTTTTTCGAGTATC 147,912,310 F MSP 82 to 92 

A7M TCGCTAATCTCTCATTTCGA 147,912,457 R MSP 82 to 92 

A7U GGGGTTTTTTTTTTGAGTATT 147,912,310 F MSP 82 to 92 

A7U TCACTAATCTCTCATTTCAA 147,912,457 R MSP 82 to 92 

A8M CGATTTCGAGAGGTTTTAGC 147,912,412 F MSP 88 to 101 

A8M CCCGACTCTATACCTACCGC 147,912,539 R MSP 88 to 101 

A8U TTTGATTTTGAGAGGTTTTAGT 147,912,409 F MSP 88 to 101 

A8U CCCAACTCTAATACCTACCACC 147,912,539 R MSP 88 to 101 

 

 

X78592.1 H.sapiens DNA for AR promoter: 5570-5750 (Figure15) 

name sequence 5‘ to3‘ genomic 

position  

 type 

AR1 TTTAGGGTTAGAGTTAGTTTTTTT

TGTTTT 

5570–5599 F BSP 

AR2 CCTCCTCTACCTATAAACTTACTC 5833–5856 R BSP 

 

5’RLM RACE primers NC_000023.11:147,911,951-147,951,127 H. sapiens FMR1 gene region (Figure 

9) 

name sequence 5‘ to3‘ genomic position  

5‘ outer adaptor primer CGCGGATCCGAACACTGCGTTTGCTGGCTTTGATG

AAA 

 F 

5‘ inner adaptor primer TTTCAGTGTTTACACCCGCAG  F 

3’outer GSP CTCGCCGTCGGCCCGCCGCC 147,9120,097 R 

3’inner GSP CCTCCACCGGAAGTGAAACCGAAA 147,9120,018 

 

R 

 

Oligonucleotides used for EMSA (Figure20) 

Name Sequence 5‘ to3‘ 

E2F CG84 non-methylated  TTCTCTTTCGGCGCCGAGCCC 

E2F CG84 non-methyatedl complementary GGGCTTGGCGCCGAAAGAGAA 

E2F  CG84 mutated  TTCTCTTTCTTTTCCGAGCCC 
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E2F  CG84 mutated complementary GGGCTTGGAAAAGAAAGAGAA 

E2F biotin CG84 non-methylated 5' Biotin-TTCTCTTTCGGCGCCGAGCCC  

E2F biotin CG84 non-methylated complementary 5' Biotin-GGGCTTGGCGCCGAAAGAGAA 

 
NC_000023.11:147,909,431-147,911,817, complement H. sapiens AFMR1 gene region (Figure22, 24) 

name sequence 5‘ to3‘ genomic position 

Relative to FMR1 

TSS+1 

 

-1805F  CTGAAAACAAGGACCCTGTAGGGACTGA -1805 F 

-1000F CAGTGTCTGGCACACGATAGATGCTC -1000 F 

-274R GGTGCACTCAGTGGCGTGGGAAATC -274 R 

-196R GGTGGAGGGCGGGAAGGCTGAAGGG -196 R 

+15F GCTCAGCTCCGTTTCGGTTTCACTTCCGGT +15 F 

+59R CAGAGGCGGCCCTCCACCGGAAGTG +59 R 

+210F CCCGCAGCCCACCTCTCGGGGGCG +210 F 

+295R AGCCCCGCACTTCCACCACCAGCTCCTCCA +295 R 

+10028F AGGATGTTCATGAAGATTCAATAAG +10028 F 

+10243R AGCAGAAACAGTCATTCCATTAG +10243 R 

+13848R ATCTGCCTATCAGGCTGCCA   +13848 R 

    

5’RACE primers ASFMR1 (Figure 23) 

+210F CCCGCAGCCCACCTCTCGGGGGCG +210  

-258F CTGGCCCTCGCGAGGCAGTGCGAC -258  

Sequencing primers 

pUC/M13 CAGGAAACAGCTATGAC 176-192 from T7  F   

pUC/M13 GTAAAACGACGGCCAGT 2956-2972 from 

T7  

R   

FMR1 isoforms (Figure10, 11) 

name sequence 5‘ to3‘ position   

A For  TGGCTTCATCAGTTGTAGCAGG exon 12 F 

A Rev  TCT CTC CAAACG CAA CTG GTC exon 14 R 

B For GAGGAGCTGGTGGTGGAAG exon 1 F 

B Rev CAGAATTAGTTCCTTTAAATAGTTCAGG exons 13-15 R 

C For TCCAGAGGGGTATGGTACCATT exons 11-13 F 

C Rev GCTTCAGAATTAGTTCCTGAAGTATATCC  exon 14 R 

D For TCCAGAGGGGTATGGTACCATT exons 11-13 F 

D Rev CAGAATTAGTTCCTTTAAATAGTTCAGG exonx 13-15 R 

E For GTGAGGGTGAGGATTGAGGC exon 11 F 

E1 Rev ACTAATTCTGAAGCATCAAATGCT exon 15 R 

E2 Rev CACTGAGTTCGTCTCTGTGGT exon 15 R 

E3 Rev TCCCTCTCTTCCTCTGTTGGA exon 15 R 
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TaqMan Probe 
Company Catalog number 

TaqMan Gene Expression Assay HPRT1 Thermo fisher scientific 
#4331182 Assay 

Hs99999909_m1 

TaqMan Gene Expression Assay AR Thermo fisher scientific 
#4331182 Assay 

Hs00171172_m1 

TaqMan Gene Expression Assay FMR1 Thermo fisher scientific 
#4331182 Assay 

Hs00924544_m1 

TaqMan Gene Expression Assay AKT1 Thermo fisher scientific 
#4331182 Assay 

Hs00178289_m1 

TaqMan Gene Expression Assay mTOR  Thermo fisher scientific 
#4331182 Assay 

Hs00234508_m1 

TaqMan Gene Expression Assay S6K Thermo fisher scientific 
#4331182 Assay 

Hs00177357_m1 

TaqMan Gene Expression Assay XIST Thermo fisher scientific 
#4331182 Assay 

Hs01079824_m1 

 

3.11 . Vectors 

pGEM
®
 -T easy Vector  

 
 

3.12 . Databases and software  

ECR browser: https://ecrbrowser.dcode.org/xB.php?db=hg19. 

USCS genome browser: http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38.  

Methyl Primer Express software v1: 

https://www.google.de/search?source=hp&q=methyl+primer+express+software+v1+0&oq=m

ethylprimer+software. 

National Center for Biotechnology Information (NCBI): http://www.ncbi.nlm.nih.gov. 

Primer Blast: 

https://www.ncbi.nlm.nih.gov/tools/primerblast/index.cgi?LINK_LOC=BlastHome. 

Ensembl Genome Browser: http://www.ensembl.org. 

Figure 5: PGEM
®
-T easy 

map and sequence 

reference points. 

This figure is a direct 

copy from: 

https://www.promega.de/

/media/files/resources/pr

otocols/technical-

manuals/0/pgem-t-and-

pgem-t-easy-vector-

systems-protocol.pdf-

2017 

 

https://ecrbrowser.dcode.org/xB.php?db=hg19
https://www.google.de/search?source=hp&q=methyl+primer+express+software+v1+0&oq=methylprimer+software
https://www.google.de/search?source=hp&q=methyl+primer+express+software+v1+0&oq=methylprimer+software
http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/
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Chromas 2.2.: for sequences analysis after Big-Dye-Sequencing (license provided by the 

laboratory). 

geneXplain platform (TRANSFAC): 

http://www.cisreg.ca/cgibin/tfe/articles.pl?tfid=131&tab=tfbs. 

MicrosoftOffice: MS Excel, Word and PowerPoint 2010 (license provided by the clinic) 

SPSS 20: for statistical analysis (license provided by the clinic) 

Sequence alignment using Clustal W2: https://www.ebi.ac.uk/Tools/msa/clustalw2/. 

JASPAR: transcription factors database, http://jaspar.genereg.net/. 

http://www.cisreg.ca/cgibin/tfe/articles.pl?tfid=131&tab=tfbs
https://www.ebi.ac.uk/Tools/msa/clustalw2/
http://jaspar.genereg.net/
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4.  Methods  

Part of Methods are copied from Youness et al., (manuscript submitted) 

4.1.  Gene expression analysis 

Primer design for Reverse transcription-Polymerase Chain Reaction (RT-

PCR) assays 

Primers used in RT-PCR, nested PCR and gene specific PCR (GSP-PCR) were designed 

using NCBI primer Blast website. Whenever possible, RT-PCR primers were designed 

encompassing at least two exonic regions to avoid any possible PCR products by 

contamination with gDNA that can occur during RNA extraction.  

RNA extraction  

Total RNA was extracted from cells PBS pellets using the RNAeasy mini kit as described in 

the kit protocol manual. Extracted RNA was digested on Shredder column using DNAse I to 

ensure the removal of gDNA. Quality and concentration of extracted RNA were measured 

using a Nanodrop
®
. 

cDNA synthesis 

For cDNA synthesis, total mRNA was reverse transcribed (RT) using oligo(dT)15-primer and 

the Moloney Murine Leukemia Virus (M-MLV)-enzyme. This method was used to select for 

mature and polyadenylated fraction of mRNA. Briefly, 1µg of mRNA was mixed with 2µl 

oligo(dT)15-primer and brought up to a final volume of 14µl with RNAse free H2O. Samples 

were incubated 5 min at 70°C. Subsequently, samples were transferred to ice for 5 min prior 

to the addition of 5µl RT-buffer, 1.25µl dNTP-mix, 1µl M-MLV enzyme and 3.75µl of 

RNase free H2O. Samples were incubated for 10 min at 40°C, 50 min at 42°C, 15 min at 

70°C. Residual RNA was then degraded by adding 1µl of RNase H and incubated for 

additional 20 min at 37°C. cDNA was stored at -20°C.  

For gene specific RT, the oligo(dT)15-primer was replaced with the a gene specific primer and 

the Superscript
TM 

III enzyme was used. This method selected preferentially synthesis of the 

gene of interest and was used for the lncRNAs study (Chapter 3). Briefly, 1μg total RNA and 

1μl of 2μM GSP and 1μl 10mM dNTP mix, made up to 13μl with RNase free H2O. Samples 

were incubated at 65˚C for 5 min and then transferred to ice for 1 minute. Subsequently, 4μl 

5X Superscript
TM 

III-First-Strand Buffer, 1μl 0.1M Dithiothreitol (DTT), 1μl RNaseOUT™ 

and 1μl Superscript
TM 

III RT were added. Samples were then incubated for 60 minutes at 

55˚C. Enzyme was then inactivated by incubation at 70˚C for 15 min. cDNA was stored at -
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20˚C. The quality of the cDNA synthesis was checked by performing a PCR for the Beta-

Actin gene. 

PCR 

All PCR reactions for transcript analysis (RT-PCR) were set up using 1μl of the prepared 

cDNA (40ng), 3.75µl 10X Taq- Polymerase buffer (without Mg
++

), 1.25µl MgCl2, 0.25 µl 

dNTP mix, 0.25µl forward primer, 0.25µl reverse primer, 0.3µl Taq-Polymerase (5U/µl) and 

made up to a final volume of 25µl with sterile H2O. PCR reactions were carried out using the 

following thermal cycling conditions: 1 cycle at 95°C for 4 min; 35 cycles (4 min at 95°C, 30 

s at 95°C, 45 s at annealing temperature (59-63°C) for 45s, 50 s at 72°C, and a final 

elongation for 4 min at 72°C).  

For nested PCR, 1µl of the first PCR product was used as template. The reaction mix was set 

up as previously described using 0.5µl of each forward and reverses nested primers. 

For GSP-PCR, primer used for cDNA synthesis was used as forward primer and another GSP 

primer was used as a reverse primer.  

Real time PCR  

10ng of cDNA was used as template for TaqMan®- real time PCR. Briefly 2.75µl master mix 

containing TaqMan
®
- probes and the corresponding universal master mix were added to 

2.25µl cDNA. The mix was pipetted into a 96 well plate sealed by a plastic cover. Gene 

expression measurements were performed in 7500 Fast Real Time PCR-System using the 

following cycling conditions: 15 min at 95°C and 45 cycles at 60°C. All reactions were 

performed in triplicates. Data analysis was performed using the comparative ΔΔCt method
135

. 

Rapid Amplification of cDNA Ends (5’RLM-RACE and 3’RACE) 

RACE is a PCR based technique which allows the cloning of full length cDNA sequences
136

 

starting at the cap site (5’) and ending after the Polyadenylation Start Site (PAS) in the 

3’UTR. RACE results in the production of a cDNA copy of the RNA sequence of interest, 

produced through reverse transcription, followed by PCR amplification of the cDNA copies at 

the 5’ and 3’ ends respectively. The amplified cDNA copies are sequenced and should map to 

unique genomic regions. RNA Ligase Mediated Rapid Amplification of cDNA Ends (RLM-

RACE) represents a major improvement to the classic RACE technique. RLM-RACE is 

designed to improve amplification of cDNA only from full-length, capped mRNA, usually 

producing only a single band after PCR. 5’ and 3’ end of FMR1 and ASFMR1 genes were 

analyzed using the FirstChoice RLM-RACE Kit using published methods
68; 130; 137

. PCR products 

were ligated into the pGEM®-T Easy Vector and sequenced afterwards. 

https://en.wikipedia.org/wiki/Complementary_DNA
https://en.wikipedia.org/wiki/Reverse_transcription
https://en.wikipedia.org/wiki/PCR
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4.2.  CpG site methylation analysis 

The human cell lines, primary tissues and DNA samples used in this work for the analysis of 

CpG methylation patterns are listed in Materials section 3.9.  

Extraction of genomic DNA (gDNA) from primary cells and PBS pellets 

The gDNA was extracted using an optimized protocol for small cell numbers. Briefly, cells 

were suspended in 200µl lysis buffer (40mM Tris buffer pH 7.8, 20 mM sodium acetate, 

1mM EDTA and 1%sodium dodecyl sulfate). After addition of 66µl of sodium chloride (5M), 

samples were centrifuged at 16000 g for 10 min. The supernatant was transferred into a new 

tube and one volume of phenol:chloroform:isoamyl alcohol (25:24:1) was added. After 

centrifugation at 14000g for 3 min the aqueous layer was transferred to new tubes and DNA 

was precipitated with 90% ethanol and 0,3M sodium acetate overnight at -20°C. The next day 

samples were centrifuged 10 min at 14000g. Precipitated DNA was washed with 70% ethanol 

and again re-centrifuged. Finally, DNA was air-dried and re-suspended in 20µl nuclease free 

water. 

Extraction of gDNA from leukocytes 

Blood was collected from patients using EDTA tubes. 5ml from the blood was transferred to 

50 ml falcon, 15ml of cold SE Lysis buffer were added, and cells were lysed for 30 min on 

ice. The lysate was centrifuged at 1200 rpm for 10 min at 4°C. Supernatant was then 

discarded and cell pellet was washed with SE Lysis buffer and re-centrifuged until a white 

pellet was obtained. The pellet was resuspended using 5ml of warm SE buffer, 40µl 

Proteinase K and 250µl of 20% SDS. The mix was incubated overnight (O.N) at 37°C. The 

next day, an ethanol precipitation was performed. Briefly, 10ml of SE buffer and 3.3ml of 

saturated NaCl and were added to the cell lysate and then centrifuged 5 times at 3000 rpm for 

15 min at RT. After each centrifugation the supernatant was transferred to a new falcon. 

gDNA was then precipitated by adding 1.7ml Na-Acetate (3M) and 17ml Isopropanol. gDNA 

threads were transferred to a 1.5ml microcentrifuge tube and washed with 80% ethanol. The 

gDNA was allowed to air dry and then resuspended with 500µl TE 10/1 O.N at 4°C under 

gentle rotation. gDNA concentration was measured using the NanoDrop™ and stored at 4°C. 

Bisulfite conversion 

The most common used method for analyzing the cytosine residues methylation within a CpG 

pair is bisulfite conversion of DNA followed by sequencing. gDNA that has been treated with 

bisulfite retains only cytosines if methylated since bisulfite treatment induces a spontaneous 

deamination of non-methylated cytosines that will be subsequently converted to uracil in the 

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwi2wai1m4bVAhXDVhQKHaxYBsgQFghFMAM&url=https%3A%2F%2Fwww.thermofisher.com%2Forder%2Fcatalog%2Fproduct%2FND-2000&usg=AFQjCNEFyXPX2xB-4k-k_StUXh5fh4Yi-A
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sequencing reaction. An overview is provided in Figure 6. Bisulfite treatment of the genomic 

DNA was carried out with aid of the EpiTect Bisulfite Kit. Briefly, in a PCR tube, 200-400ng 

of gDNA samples were mixed with reagents and filled up with RNase-free water to a total 

volume of 20µl as described in the kit manual. The conversion reaction was performed in a 

thermocycler according to the program listed in the kit manual. After 5 h of conversion, single 

stranded converted gDNA was cleaned up using a spin column, washed, desulfonated, washed 

again and eluted in 20µl of elution buffer according to manufacturer’s instructions. The eluate 

was then stored at -80°C. 

 

Methyl Specific PCR (MSP) and Bisulfite-conversion Specific PCR (BSP) 

assays 

MSP is a sensitive method to measure CpG methylation of candidate genes. MSP allows to 

discriminate between methylated and unmethylated alleles after gDNA bisulfite conversion
138

 

by cloning the reaction products and subsequent sequence analyse of at least 10 clones 

samples for comparison of CpG methylation pattern. MSP is highly sensitive and able to 

detect one methylated allele in a population of more than 1000 unmethylated
139

 alleles and 

requires only small quantities of gDNA. In addition, it allows the elimination of false positive 

results that may generate from using PCR-based approaches which relied on differential 

restriction enzyme cleavage to distinguish methylated from unmethylated gDNA
139

. Primers 

were designed using the Methyl_Primer_Express software v_1 and defaults parameter. The 

primers covered amplicons with a size of 89 to 500 base pairs. For MSP analysis of each 

amplicon a methylated set (forward and reverse named AM) and an unmethylated primer set 

(forward and reverse named AU) were designed. Unlike MSP primers, the BSP
140

 assay use 

Figure 6: Outline of bisulfite 

conversion of sample 

sequence of genomic DNA 

Nucleotides indicated in blue 

are unmethylated cytosines 

converted to uracils by 

bisulfite, while red 

nucleotides are 5-

methylcytosines resistant to 

conversion. This figure is a 

direct copy from Wikipedia 

(https://en.wikipedia.org/wiki/

Bisulfite_sequencing 2017). 

https://en.wikipedia.org/wiki/Bisulfite_sequencing%202017
https://en.wikipedia.org/wiki/Bisulfite_sequencing%202017
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primers which bind to both the methylated and the unmethylated amplicon since the software 

excludes regions with CpG dinucleotides for potential primer binding sites. CpG methylation 

patterns of the extended FMR1 promoter including the first intron region were analyzed 

mainly using MSP. When MSP analysis was not possible due to low sequence complexity, 

PCR and sequence analysis was applied directly after bisulfite treatment using the BSP assay. 

Briefly, 4µl of bisulfite converted gDNA served as a template for each 25µl PCR reactions. A 

master mix using reagents from the GoTaq DNA Polymerase with the appropriate primer sets 

(AM, AU or BSP, listed in Material section 3.10) was then prepared before addition of 

gDNA. Thermal cycling conditions were as follows: 1 cycle at 95°C for 10 min; 39 cycles (10 

min at 95°C, 30 s at 95°C, 45 s at annealing temperature (59-63°C) for 45 s, 50 s at 72°C, and 

a final elongation for 4 min at 72°C). Non-converted gDNA and water were included as 

negative control in each PCR reaction. 

Agarose gel electrophoresis 

Agarose gel electrophoresis was used to determine the length of MSP, BSP and any other 

linearized gDNA fragments to separate them for further applications. For preparation of 2% 

concentrated gels, agarose powder was added to TAE (1X) and the mixture was heated in a 

microwave oven until the agarose was completely dissolved. Gels were then casted and 

mounted in the electrophoresis tank prefilled with TAE (1X). PCR products were mixed with 

(5X) loading buffer and loaded into the slots of the gel. A 100bp or 1Kb size standards were 

used. Gels were run at 100V until the loading dye reached the bottom of the gel. Afterwards, 

gels were stained with ethidium bromide for 10 min and then visualized using a UV-plate. 

Extraction of PCR products from agarose gels 

After visualization, PCR products selected for cloning were extracted from gel. Gels were 

placed on a UV-lamp and desired bands were extracted using a scalpel and transferred to a 

1.5ml microcentrifuge tube.  Gel slices were then weighed and extracted using the Wizard
® 

SV Gel and PCR Clean-Up System as described in the manual of the kit. The concentration of 

purified PCR products was measured using a NanoDrop
TM 

and either used immediately for 

cloning or stored at -20°C. 

Cloning 

Preparation of chemical competent bacteria 

With the aid of a sterile tooth pick a portion from the top of the frozen E.Coli DH5α was 

scraped off and then streaked into a culture LB agar plate. The plate was incubated O.N at 

37°C. The second day, a colony was picked from the culture plate and served to inoculate 5 

ml of LB medium O.N at 37°C under shaking at 250 rpm . On the third day, 1ml of the 
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resulting bacterial culture was transferred to a container filled with 100 ml of sterile LB 

medium. The bacterial culture was allowed to grow at 37°C under shaking at 250 rpm until an 

optical density of 0.4 to 0.6 was reached. Cells were then collected into a 50ml falcon, 

incubated for 5 min on ice and then centrifuged at 4000g for 10 min at 4°C. Supernatant was 

then removed and cell pellet was resuspended with 1.6ml ice cold 100mM CaCl2. After an 

incubation of 30 min on ice, cells were centrifuged, supernatant was discarded and cell pellet 

was re-suspended as previously described. Finally 300µl of sterile glycerol was added to cell 

suspension. Bacterial glycerol stocks were then stored at -80°C. 

Ligation 

PCR products were ligated into a pGEM
®
-T easy vector. Ligation was carried out over night 

at 16°C in a volume of 10µl. the following components were added to the ligation reaction: 

1µl T4 DNA ligase, 0.5μl pGEM
®
-T vector, 1μl T4 DNA ligase and 5μl 2X ligation buffer 

and up to 3.5 µl of purified PCR product.  

Transformation 

Chemical competent bacterial cells were allowed to thaw on ice. Subsequently, 4µl of the 

ligation reaction product was added to cells and incubated 20 min on ice. Heat shock was 

performed for 45 s at 42°C followed by incubation for 2 min on ice. 200µl of SOC medium 

were then added and cells were incubated for 90 min at 37°C under shaking of 300 rpm. 

Bacterial cells were then plated out on LB-agar culture plate containing ampicillin 1mg/ml 

and 50 mg/ml X-gal and incubated O.N at 37°C. 

Single colony PCR 

Only white colonies were picked to ensure the greatest chance of picking colonies containing 

the insert. The white color indicates a successful insertion of the insert due to the disruption of 

the β-galactosidase gene sequence which is a feature of the pGEM-T easy vector. 

Undisrupted plasmids are capable of producing the β-galatosidase enzyme that can utilize the 

X-gal producing a blue by-product; thus blue colonies probably have empty plasmids while 

white colonies have inserts. Selected colonies were picked with the aid of 200µl pipette tip 

and stroke into a LB agar culture plate. The remaining bacteria on the tip were then used as 

material for PCR colony. PCR products were then loaded into a 2% agarose gel, stained with 

ethidium bromide and visualized as previously described. 

Plasmid DNA Minipreps 

Clones that showed the presences of inserts were further amplified O.N in 5ml LB culture 

medium containing 1 µg/ml ampicillin. Plasmid-DNA was extracted using the Qiagen 
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Minipreps system according to the manufacturer’s instructions. The concentration of the 

extracted plasmid was measured using NanoDrop™ and then stored at -20°C. 

Sequencing 

Sequencing PCR products according to Sanger chain termination method
141

. 

For sequencing PCR, Big Dye Terminator v3.1 Cycle Sequencing Kit was used according to 

manufacturer’s recommendations using 200ng DNA. Cycling program was as follow 1 cycle 

at 94°C for 10 min; 25 cycles (4 min at 94°C, 30 s at 95°C, 25 s at 50°C, 30 s at 72°C and a 

final elongation for 7 min at 72°C). 

Purification of DNA fragments  

Following sequencing reaction, samples were precipitated O.N at -20°C using a precipitation 

buffer (250 µl of 100% ethanol and 3M sodium acetate). The next day, samples were 

centrifuged at 16.000g for 15 min, washed once with 70% ethanol (v/v) and centrifuged as 

previously described. Supernatant was removed and samples were allowed to air dry. Pellets 

were resuspended in 20 μl Hi-Di Formamide and transferred into a 96-well sequencing plate. 

DNA sequencing was performed at the department of Human genetics (Heidelberg 

University, Germany).  

Analysis of the sequencing results  

Sequence analysis was proofread using Chromas version 2 and compared with NCBI 

reference sequence.  

4.3.  Electromobility shift assay (EMSA) 

EMSA is a rapid and sensitive mean for detecting sequence-specific DNA-binding proteins. 

The assay is based upon the ability of a transcription factor to bind in a sequence specific 

manner to a biotin labeled oligonucleotide probe
142

 and retard its migration through a non-

denaturing polyacrylamide gel. 

For the extraction of sufficient cell nuclei, COV434 cells were grown in triplicates at a 

density of 1 million cells in 100 mm petri dishes. Nuclear extracts were prepared using NE-

PER™ Nuclear and Cytoplasmic Extraction kit and protein concentrations were measured 

using Bradford reagent according to manufacturer’s instructions. Purity of nuclear protein was 

checked by western blot for cytoplasmic GAPDH expression. 

Biotin labeled and non-labeled oligonucleotides spanning the region of interest (positions 

+552 to + 567 relative to the FMR1 TSS +1 (listed in section Materials section 3.10) were 

designed to contain the desired transcription factor binding site and then orderd with their 

respective complementary strands. Complementary oligonucleotides were annealed with a 

thermocycler initially at 95°C for 1 min, then for 70 cycles by decreasing temperature of the 

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=0ahUKEwi2wai1m4bVAhXDVhQKHaxYBsgQFghFMAM&url=https%3A%2F%2Fwww.thermofisher.com%2Forder%2Fcatalog%2Fproduct%2FND-2000&usg=AFQjCNEFyXPX2xB-4k-k_StUXh5fh4Yi-A
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heating block 1°C per cycle. Nuclear protein extract preparations (2 µg) were mixed with 1× 

binding buffer, poly-dI-dC and preincubated, when appropriate, with unlabeled 

oligonucleotide or with E2F1 antibody (2 μg) as described in the protocol manual of the 

EMSA assay kit. The binding reaction products were mixed with 1μl of loading dye and 

separated on a 6,3% polyacrylamide gel. After electrophoresis, DNA-protein complexes were 

transferred to a nylon membrane, blocked and exposed using a Konica SRX- 101A 

chemiluminescence imaging system. 

 

4.4.  Patients selection  

This study was approved by the local ethical committee of the University of Heidelberg, 

Germany (S-145/2012). All patients included in this study gave written informed consent. The 

study population consisted of women entering the clinic for in vitro fertilization (IVF) 

treatments. Of these patients, 20 women were selected randomly, excluding patients suffering 

from gynecological problems that can affect female fertility and ovarian response (e.g. 

endometriosis and myomas). Patients from the same age group were then divided into two 

groups according to their ovarian response after COS, the Anti-Müllerian hormone (AMH) 

level and reproductive parameters (antral follicle count [AFC]), total number of oocytes 

recovered and MII oocytes retrieved). The poor responder group (POR n=5) was selected 

according to “Bologna Criteria”
24; 25

. The rest of the patients who did not fulfill criteria of 

POR were referred as normal responder (NOR n=5). For XIST expression evaluation in 

human granulosa cells 35 NOR and 16 POR were randomly selected. 
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Table 9:Patients selected for the methylation study 

Patient 

number 

 

Age Gynecological  disease AMH 

(ng/ml) 

Number of retrieved 

oocytes 

CGG-triplet 

repeats number 

NOR 1 31 None 1.91 20 20/30 

NOR 2 34 None 2.46 7 21/26 

NOR 3 36 None 2.66 6 23/33 

NOR 4 39 None n.a. 8 29/29 

NOR 5 38 None 3.70 6 30/33 

NOR 6 27 None 4.74 12 30/40 

NOR 7 25 None 2.48 8 29/33 

NOR 8 37 None 2.27 11 23/23 

NOR 9 39 None 3.43 15 30/30 

NOR 10 45 None 2.03 6 31/31 

POR 1 31 None 0.64 3 23/31 

POR 2 34 None 0.3 4 22/30 

POR 3 39 None 1.67 2 23/30 

POR 4 40 None 0.55 5 29/32 

POR 5 40 None 0.36 2 33/33 

POR 6 39 Endometriosis 0.27 4 30/30 

POR 7 33 Endometriosis 0.83 3 23/25 

POR 9 42 None 0.59 6 30/30 

POR 10 44 None 0.25 1 29/29 

NOR=Normal Responders, POR= Poor Responders, AMH=Anti Müllerian Hormone (normal range), AFC= Antral Follicular Count. n.a. = 

not applicable. 

Primary granulosa cells retrieval (performed by the IVF lab) 

Granulosa cells were collected from follicular fluid after transvaginal ultrasound-guided follicle 

puncture with an ovum aspiration needle (Cook Medical, Bloomington, IN, USA) connected to a 

vacuum pump (Cook Medical Inc.). Follicular fluid was moved to 14ml round-bottom tubes and kept 

at 37°C in a test tube heater (Cook Medical Inc.) or in a Thermo-Cell-Transporter (Labotect, Rosdorf, 

Germany). After transferring the follicular fluid to a 100mm cell culture dish on a heated table at 37°C 

(K-Systems, Birkerød, Denmark) mural GCs were identified morphologically as epithelial cell 

aggregates using a zoom-stereomicroscope (Nikon SMZ1500). In case of bloody follicle fluid, the 

mural GCs were briefly washed in MHM (with 10% v/v SSS) or Sydney IVF Fertilization medium 

(Cook Medical Inc.). Mural GCs were taken up in a volume of 2.5µl with a sterile tip, transferred to 

1.5ml tubes (Sarstedt, Nümbrecht, Germany) pre-filled with 12-13µl RNAlater® (Ambion, Life 

technologies, USA). 
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4.5.  Microarray gene expression analysis 

Cell culture 

Culture of COV434 cells 

COV434 cell line was cultured in DMEM medium with stable L-glutamine. The cells were 

cultured in 75 cm
2
 flasks under conditions of 5% CO2 and 37°C. Cell culture medium was 

supplemented with 10% FCS, 50μg/ml Antibiotic/antimycotic mix, and 1mM L-Asparagine. 

For subculture, culture medium was removed and cells were washed with PBS 1X. 

Subsequently, PBS was removed and cells were incubated with trypsin 1X for 7 min at 37°C. 

Trypsin reaction was then stopped by adding 10ml of culture medium. Cells were then 

subcultured at a dilution of 1:3. The doubling rate of the cells was 32 hours. All cell culture 

work was performed under sterile conditions.  

DMSO stocks and Thawing frozen cells 

Cells were grown at 80% confluence as previously described, collected in a 15ml falcon tube 

and centrifuged at 1200rpm for 5min. Cell pellet was then washed twice using PBS 1X and 

re-suspended using pre-cooled freezing solution (92% FCS, 8% DMSO). DMSO stocks were 

then incubated for 2h at -20C followed by an incubation O.N at -80°C. The next day stocks 

were transferred in the liquid nitrogen cell storage (-196°C).When a new cell culture was 

initiated, frozen cells were directly thaw in a water bath at 37°C and immediately transferred 

to a T25 flask already filled with 8ml fresh complete medium. Cells were allowed to attach 

for one day and medium was replaced with fresh complete medium. 

PBS pellet generation 

Cell pellet was re-suspended after washing steps and cells were counted. Cells were then 

transferred to 2ml tubes and centrifuged at 1200 rpm for 5 min at 4°C. Supernatant was 

removed, PBS pellets were snap frozen and stored in liquid nitrogen. 

siRNA transient Transfection (Fast forward protocol) 

COV434 cells usually grow in tight clusters and are therefore more difficult to transfect than 

many other cell lines. In order to establish a working transfection protocol, transfections were 

attempted at varying cell densities (1x10
6
, 8x10

4
, 4x10

4
 and 2x10

4
 cells) plated on slides, 

using three liposomal based reagents (Lipofectamine 2000 and Lipofectamine RNAiMax) and 

25, 50, 85 and 100nM FITC-labeled siRNA (sc-36869) according to protocol 1 (liposomal 

reagent manufacturer’s protocol) or protocol 2
143

 (a well-established protocol for hard to 

transfect cells). In parallel experiments, cells treated only with transfection reagent and the 

non-transfected cells served as negative controls to assess whether the liposomal reaction and 
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the addition of nucleic acid have an impact on cell viability. Six hours post-transfection, slides 

were washed twice using PBS 1X. Cells were then fixed using 4% formaldehyde for 10 min 

at RT under gentle shaking. After fixation, slides were washed 3 times using PBS 1X for 3 

min each. Nuclei were stained for 5 min at RT using 500µl DAPI (at a concentration). Slides 

were then washed with water 3 times for 3 min and mounted using DABCO. Slides were 

allowed to dry and then stored O.N at 4°C. The next day, the efficiency of transfection was 

determined under microscope by counting the number of cells with a green signal. 

For FMR1 siRNA, at the day of transfection, transfection mix was prepared in DMEM 

medium without FBS and antibiotics. A ratio of 7.5μl of RNAi max was used for every 50nM 

of FMR1 siRNA (silencer select cat# 4392420) or control siRNA (silencer select cat# 

4390843) according to instruction manual. In the meantime, cells were detached and counted 

at a concentration of 40000 cells /ml. Cells were then transferred to 1.5 ml eppendorfs and 

centrifuged at 1500 rpm for 5 min. Cell pellet was re-suspended using the transfection reagent 

followed by an incubation for 20 min at RT. Cells were subsequently seeded in a 6 well plate 

containing 1ml of fresh complete medium. 24 h post transfection, medium was changed and 

cells were incubated until lysis. 

Total RNA and proteins extraction 

At 24, 48, 72 and 96h post- transfection, culture medium was removed and cells were washed 

twice with PBS 1X. Cells were then lysed with a mix of RP1 buffer and ß-Mercaptoethanol 

(1:1000), harvested by scraping, collected in 1.5 ml eppendorfs and vortexed. Extraction of 

total RNA and protein (for western blot) was performed immediately using the NucleoSpin 

TriPrep kit according to instruction manual. RNA and protein were then stored at -80°C. RNA 

concentration was measured using a Nanodrop. Protein concentration was measured using 

Protein Quantification assay kit according to the instruction manual. For ELISA application, 

transfected cells were lysed at the different time points using lysis buffers provided by the 

desired ELISA kit. 

Analysis of protein expression after FMR1 knockdown by western blot  

Western Blotting 

Protein can be easily separated under denaturing conditions in a SDS-polyacrylamide gel 

based on their mass. The SDS-polyacrylamide gels were composed of two layers: a 12.5% 

acrylamide/bisacrylamide separating gel that separates the proteins according to size and a 

lower percentage (4%) stacking gel that insures simultaneous entry of the proteins into the 

separating gel at the same height. After preparation, the gels were poured into a Mini-

PROTEAN® 3 multi-casting chamber. 
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separating Gel final concentration stacking gel final concentration 

1,5 M Tris pH 8,8 0.375M 1.5 M Tris pH 8,8 0.375 M 

30%Acrylamide 12.5%  30%Acrylamide 4% 

20%SDS 0.1% 20%SDS 0.1% 

TEMED 0.15% TEMED 0.1% 

10%APS 0.03% APS 0.05% 

H2O Up to 10ml H2O Up to 10ml 

Proteins were transferred from the SDS gel onto a PVDF membrane for 60 min at 65 mA 

using SD Semi-dry Transblot Apparatus. The pre-stained molecular weight protein ladder 

served as an indication of successful transfer. Afterwards the membrane was quickly rinsed 

with distilled H2O. To reduce unspecific binding, the membrane was then blocked using a 

blocking solution for 90 min at RT under gentle agitation throughout all steps. The blocking 

solution was then replaced with the primary antibody solution and incubated O.N at 4C. The 

next day, the membrane was washed 3 times with TBST 1X for 10 min at RT. Then the 

membrane was incubated with the appropriate secondary antibody solution for 90 min and 

then washed as described before. The membrane was then washed one time with Millipore 

water to remove any residual traces of the washing buffer. Finally, the membrane was placed 

between the two parts of a plastic covering sheet and then covered with an enhanced 

chemiluminescence solution containing the peroxidase substrates and incubated for 

approximately 1 min before measuring the luminescence signal. For low intensity signals a 

more sensitive detection system was used. The luminescence was detected using a 

chemiluminescence imaging system.  

Enzyme-Linked Immunosorbent Assay ELISA 

At 48 and 72h post transfection, culture medium was removed and cells were washed with 

PBS 1X. Cells were then lysed and harvested according to the manufacturer’s protocol of the 

used ELISA kit (see Table 4). 

Measuring of total protein for ELISA 

Several dilutions of BSA standards ranging from 2mg/ml to 0.2mg/ml were prepared. 20µl of 

protein lysate was pipetted into spectrophotometer cuvette and then filled up with 4 ml 

Bradford solution. After incubation of 15 min at RT, protein concentrations were measured 

using a spectrophotometer and a regression line was calculated. 
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Illumina HumanHT-12 v4 array 

The quality of the extracted RNA was checked for integrity and concentration using a 

Bioanalyser. Only high quality RNA that showed a RIN value above 9 was used for the 

microarray analysis. All further handling processes for the Microarray profiling were 

performed by the DKFZ ‘Genomics and Proteomics Core Facility’ according to the 

manufacturer’s recommendations using the HumanHT-12 v4 Expression BeadChip Kit. This 

array offers a comprehensive analysis of the expression of 31,000 annotated genes with more 

than 47000 probes derived from the NCBI RefSeq and other sources. 

Pathway analysis 

Microarray data were analyzed using Resolver™ software and exported into Excel tables for 

further analysis. Pathway analysis was performed at the department of Bioinformatics using 

the ConsensusPathDB-human (http://cpdb.molgen.mpg.de/) software package. This software 

integrates interaction networks in Homo sapiens including binary and complex protein-

protein, genetic, metabolic, signaling, gene regulatory and drug-target interactions, as well as 

biochemical pathways. The interaction data are integrated in a complementary manner 

(avoiding redundancies), resulting in a seamless interaction network containing different 

types of interactions. ConsensusPathDB-human calculates the percentage of the genes 

measured that meet the following defined criterion for this analysis (log fold change ≥ 0.5 and 

p-value ≤0.05, or p-value ≤0.01). 
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5.  Results 

Chapter 1: expression of FMR1 gene in human granulosa cells 

1.1. FMR1 expression in COV434 cell line  

The COV434 cell line was derived from a 27-year-old woman suffering from a solid 

granulosa cell tumour. It shares characteristics with proliferating granulosa cells such as FSH-

dependency, 17β-oestradiol production, the formation of intercellular connections
134

. In order 

to proof the suitability of the COV434 cell line as a model system to study FMR1 gene 

expression in human granulosa cells, I first started by analysis of the karyotype of this cancer 

cell line used in our laboratory. In the literature some sub clones of the cell line were reported to 

have minor chromosomal aberrations (46XX + 5, 22q+)
144

. Multicolor FISH showed that cells 

used in our lab have a normal karyotype (46, XX) (Figure 7). 

 

Figure 7: Spectral karyotype from COV434 cells. 

The 24 chromosome pairs are depicted in so-called pseudo-colors as shown here. Each chromosome pair is 

marked with a specific mixture of fluorochromes. In addition a classical banding analysis was performed (black 

and white), with courtesy of Ulrike Bender.  

 

Further analysis for FMR1 and FMRP expression in COV434 revealed expression of several 

alternative spliced transcripts (Figure 10) and phosphorylated/unphosphorylated protein forms 

(Figure 8A). Immunohistochemical localization of FMRP revealed its expression mainly in the 

cytoplasm of COV434 cells (Figure 8B) 
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1.2. Identification of 5’ and 3’ends of the FMR1 gene transcripts in COV434  

To investigate putative variable 5’ and 3’ends of FMR1 gene transcripts in COV434 cell line, 

5′-RLM RACE and 3’-RACE were performed. A dominant 5′ transcript end was detected on 

agarose gels (Figure 9A). Its sequence analysis showed that in COV434 cells the transcription 

of FMR1 transcripts is mainly initiated at genomic position 147.911.920 i.e. 135bp upstream 

of the CGG triplet repeats (Figure 9A). Sequencing of 10 individual clones showed that this 

initiation site corresponds to the previously reported FMR1 major TSS
68

. In contrast, several 

3’ transcripts ends were detected on the agarose gel pointing to the presence of multiple 

polyadenylation sites (PASs) (Figure 9B). Although, the different detected amplification 

products were not sequenced, their molecular length were found according published 

results
145

. 

 

1.3. FMR1 gene is alternatively spliced in human granulosa cells 

Nothing is known about the set of FMR1 transcript isoforms expressed in human granulosa cells, 

and whether expression of some isoforms may vary in patients with different ovarian response. I 

aimed, therefore, to characterize the four major FMR1 transcript isoform groups
37

 (Figure 10) (see 

Introduction section 1.2.1.) in COV434 cells and then in human primary granulosa cells of NORs 

and PORs for comparison. I added a fifth transcript isoforms group, named here group E, which 

Figure 8: Expression and localization 

of FMRP in the COV434 cell line. 

(A) Representative Western blot of 

protein extracts from COV434 cells 

using the anti-FMRP (mAb1C3, 

Euromedex). 5µg of proteins were 

loaded. (B) Representative IHC for 

FMRP expression (brownish color) in 

COV434 cells showed a strong 

cytoplasmic staining. 

 

Figure 9: Identification of FMR1 gene 5’ and 3’ 

ends in COV434 granulosa cell line. 

(A) 5’RLM RACE and (B) 3’RACE were performed 

according to published protocols (see Material and 

Methods). 1 or 2µl of cDNA served as template for 

the second PCR step of the RACE procedure. Water 

control was used as a negative control to exclude 

possible contamination. Primer dimers are indicated 

by . 
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differs in alternative splicing at exon 15
146

. Expression of FMR1 transcript isoforms containing 

both exons 12 and 14 (group A), those missing exon 14 (group B), those missing exon 12 (group 

C), those simultaneously missing exons 12 and 14 (group D), and those with alternative splice site 

in exon 15 (group E) were analyzed by RT-PCR with polyadenylated in RNA isolated from 

COV434 cells and compared to female leukocytes (Figure 10B). All five isoforms groups were 

detected in COV434 cells (Figure 10B). In addition, groups B and E also displayed some isoforms 

with probably cell specific expression being detected only in COV434 cells or only in leukocytes. 

Due to the very low amount of expression of these new isoforms I did not get enough material to 

proceed with cloning and sequencing procedures. 

 

Figure 10: Characterization of FMR1 isoform groups in COV434 cell line. 

(A) Diagram of FMR1 gene. Nucleotide numbering was adapted from the NCBI nucleotide nomenclature: FMR1 

gene region NC_000023.11: 147,911,951-147,951,127 H. sapiens. UTRs are represented by orange boxes with 
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the CGG repeat block indicated in the 5’UTR region. The identified FMR1 TSS+1 is indicated with black arrow 

to the left. Exons are represented by vertical black bars and horizontal axes correspond to introns. Positions of 

primers used to identify the different isoforms groups are indicated with arrows: Group A (blue), group B 

(black), group C (red), group D (purple) and group E (green). (B) Amplification products detected on agarose 

gels. Female leukocytes served as a positive control. Unexpected new detected isoforms are indicated by black 

and red arrow heads. Primer dimers are indicated by . 

1.4. Expression of FMR1 in human primary granulosa cells from NORs and 

PORs 

For comparison to COV434, the expression patterns of FMR1 transcript isoforms within 

groups A, B, C and D were also analyzed in primary granulosa cells from some NOR and 

POR patient samples (see Methods section 4.4). Transcripts from leukocytes from the same 

patients served as control, with exception for group A, due to limited patient material. The 

four groups of transcript isoforms identified in COV434 cells were also present in primary 

granulosa cells of both NOR and POR. Also in leukocytes from both NOR and POR, these 

four transcript groups were identified. The intensities of all detected amplification products 

suggest no major difference in their expression pattern in leukocytes of the two patients’ 

groups. In granulosa cells, POR samples seemed to express lower levels of isoforms within 

groups A and B. compared to NOR. As already found in COV434 cells (Figure 10B), some 

cell specific transcripts present within group B were also detected in the primary granulosa 

cells of one POR and one NOR (Figure 11B). 

In summary, these data confirm the usefulness of COV434 as model system for the molecular 

analysis of FMR1 gene expression in human granulosa cells. 
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Figure 11: Characterization of FMR1 transcript isoform 

groups in human primary granulosa cells.  

RT-PCR analysis was used to study the expression of 

FMR1 isoforms within group A (blue), group B (black), 

group C (red) and group D (purple) in primary granulosa 

cells from NOR and POR. Whenever possible, leukocytes 

from the same patients served as positive control. Water 

was used as a negative control to exclude any 

contamination. Unexpected new detected isoforms are 

indicated by black arrow heads. Primer dimers are indicated 

by . 
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Chapter 2: Single CpG site methylation mapping along extended 

FMR1 promoter 

2.1. Identification of FMR1-DMR1;-2;-3 and FMR1-UMR  

Single CpG site methylation analysis was performed along the putative extended promoter 

region of the FMR1 gene (Figure 12:147,911,046-147,912,539 H. sapiens). In total, the CpG 

methylation pattern of 10 amplicons was analyzed (Figure 12; see also Youness et al., 

submitted) including 106 CpG sites along the overlapping amplicons as shown in Figure 13. 

 

Figure 12: Distribution of MSP and BSP primers among the FMR1 gene locus (Xq 27.3) in COV434 cells. 

Nucleotide numbering in this and the following graphs was adapted from the NCBI nucleotide nomenclature: 

NC_000023.11:147,911,046-147,912,539 H. sapiens FMR1 gene region. The transcription start site (TSS+1 at 

genomic position 147,911,920) is indicated by an arrow. The first exon includes CpG sites 46 to 78 and the 

proximal intron1 includes CpGs 79 to 101. A total of 106 CpGs were covered by the amplicons A1 to A10 

(represented as boxes). The exact CpG numbers covered by each of the amplicons are indicated. CpG 1 refers to 

the first CpG located downstream of the methylation boundary (MB). The MB is designated by a black bar and 

CpGs located in the upstream amplicons are negatively numerated (CpGs-5 to -1), whereas, CpGs located 

downstream are positively numerated (CpGs 2 to 101). Methylation patterns of CpGs 6 to 10 and 78 were not 

analyzed and are indicated by a gap symbol (\/) at their location. CGG triplet repeat position is indicated by a 

yellow box. The position of the four differentially methylated CpG regions is indicated by a color code: FMR1-

DMR1 (blue box), 2 (orange box), 3 (red box) = FMR1 differentially methylated regions, FMR1-UMR= FMR1-

unmethylated region (purple box). 

 

The MB zone was apparent in this cell line at CpG sites -5/-1 and the first CpG site located 

downstream of it was numbered as CpG +1. Due to difference in CGG triplet repeat numbers 

on both FMR1 alleles in this cell line (19/41), I was able to discriminate between the two 
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alleles by analysis of amplicon A10 (Figure 13). The FMR1 main transcription start site
68

 

(TSS +1) was located between CpG sites 46 and 47.  

CpG sites covered by A10 (CpGs 46-72) including the CGG triplet block (represented as a 

unit between CpG sites 68/69) were completely demethylated on both gene alleles (Figure 

13). This region was therefore named “FMR1 unmethylated region” (FMR1-UMR). 

Upstream, FMR1-UMR could be extended to all CpG sites located in the FMR1 minimal 

promoter (CpG sites: 32-36 covered by A3). Downstream, FMR1-UMR includes CpG sites 

73-75 (covered by A5) located in exon1; thus, ending at the common ATG translation located 

between CpG sites75 and 76 (Figure 13). 

Next, I explored the presence of the epigenetic FREE1 and FREE2 elements found by Godler et 

al.,
111

 in leukocytes in the COV434 cell line. CpG sites 5-14 in our analysis correspond to CpG 

sites 1-10 of FREE1
111

. CpG sites 5 and 11-13 were methylated in half of the analyzed clones, 

whereas CpG 14 was demethylated. Due to technical limitations, CpG sites 6-10 could not be 

analyzed. CpG sites 1-4 located upstream of FREE1 and downstream of the MB were completely 

demethylated at CpG sites 1 and 2. Presence of FREE1 was thus confirmed in COV434 and 

extended upstream. It was therefore named “FMR1 differentially methylated region 1” (FMR1-

DMR1). 

I also confirmed presence of FREE2 in COV434 cells and named it here, “FMR1-DMR2”. 

FMR1-DMR2 was located downstream of FMR1-UMR at the boundary exon1/ intron1. CpG 

sites 76-87 located in FMR1-DMR2 refer to CpG sites 1-12 of the FREE2 element. FMR1-DMR2 

reflected a similar methylation pattern as the one reported for FREE2 in female leukocytes 

carrying a normal CGG triplet block allele
111; 119

. CpG sites 76, 77, 81, 82, 83 and 85 were largely 

demethylated, whereas the other CpG sites were methylated in half of the analyzed clones. 

Bisulfite sequence analysis of amplicons located downstream of FMR1-DMR2, showed the 

presence of a third and novel DMR, covering CpG sites 88-101. This region was accordingly 

named “FMR1-DMR3”. I observed a partial methylation for CpG sites 92, 93 and 98 and a full 

demethylation of CpG sites 94, 95, 96 and 99. CpG sites 88 to 91 and 97 were methylated in half 

of the analyzed clones (Figure 13). 
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Figure 13: Methylation pattern of CpG sites in the extended FMR1 promoter region in the COV434 cell 

line. 

The methylation pattern of 106 CpG sites covered by 10 amplicons was combined in this graph. Black, white 

and grey squares mark methylated, unmethylathed and not sequenced CpG sites respectively. Each square line 

within a box corresponds to a single DNA clone that was sequenced. The transcription start site (TSS+1) is 

indicated by an arrow. ATG refers to FMRP translation start site. The location of the FMR1 minimal promoter is 

indicated. Two alleles were detected with CGG triplet blocks ranging between ±19/41. The MB zone was 

apparent in this cell line at CpG sites -5/-1 and is designated by a black bar. The first CpG site located 

downstream of the MB zone was numbered as CpG +1 and all CpG sites were numbered accordingly. Colored 

boxes indicate the four most differentially methylated CpG regions identified in COV434 DNA. FMR1-DMR1 

(blue box), -DMR2 (orange box), -DMR3 (red box) and FMR1-UMR (purple box). Methylation patterns of 

CpGs 6 to 10 and 78 were not analyzed in this study and are indicated by a gap symbol (\/) at their location. 

 

In summary, single CpG site methylation analysis detected for differentially methylated CpG 

site domains including a full demethylated region in the core promoter domain not yet found 

in leukocytes. 
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2.2. Biallelic expression of FMR1 core promoter in human granulosa cells 

2.2.1. FMR1-UMR escapes X inactivation specifically in COV434 cells 

Presence of FMR1-UMR (CpG sites 32 to 77) led me to investigate whether it is specific for 

COV434 cells, being a tumor cell line or also present in other human cell lines. For this 

purpose, I screened the A4 amplicon CpG methylation patterns (CpG 46 to 65) also in 

bisulfite converted gDNA samples extracted from female and male leukocytes and female 

fibroblasts. A4 was selected since it is located 5’ upstream adjacent to the CGG repeat and it 

is possible to discriminate between methylated and unmethylated allele using MSP assay. 

gDNA from male fibroblasts served as a control. In both female cell types, one methylated 

amplicon and one unmethylated amplicon were detected on gel (Figure 14). This result 

indicated the presence of only one active X chromosome in these somatic female cells. In 

contrast, only one unmethylated amplicon was detected using COV434 cells gDNA and in 

male fibroblasts confirming that only demethylated CpG sites are found in FMR1-UMR of 

COV434 as also expected for male fibroblasts containing only one active X chromosome 

(Figure 14). 

 

 

I wanted to clarify whether also other genes located on the X chromosome may escape X-

inactivation in COV434 cells because being a tumor cell line. Therefore, I analyzed the 

methylation pattern of 11 CpG sites located within an 180bp promoter segment of the 

Androgen Receptor (AR) gene in COV434 and in female leukocytes using a well-established 

BSP protocol
147

. AR promoter is one of the most popular genomic regions used to study the 

rate of X- inactivation in female cells
148; 149

. Both female cell types showed a similar mosaic 

CpG methylation pattern as expected, which probably reflects the CpG methylation levels on 

the two X chromosomes (Figure 15).  

Figure 14: FMR1-UMR screening in human female and 

male cells.  
MSP A4U and A4M primer sets covering CpG sites 46-55 

were used for amplification of gDNA from three female 

somatic cells, COV434 cells, leukocytes and fibroblasts 

and from male leukocytes as control. The A4M primer set 

was designed to target CpGs within the methylated allele, 

whereas the A4U primer set targeted the CpG within the 

unmethylated allele. The 125 bp A4M and A4U amplicons 

detected on gel are indicated by black arrow heads. Primer 

dimers are indicated by black arrows. The water and a non-

coverted gDNA from COV434 cells served as negative 

controls. 
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Figure 15: Comparison of CpG site methylation pattern within AR promoter in COV434 and female 

leukocytes. 

(A) Genomic map of the AR gene (adapted from Crona et al.,
150

). Nucleotide numbering was adapted from NCBI 

accession number X78592.1 and numbering 5570-5750. CpG sites located within this segment are numbered. 

BSP assay was used to check for the CpG methylation pattern in gDNA from COV434 (B) and in female 

leukocytes (C). Each line represents one clone. ■ methylated CpG site, □unmethylated CpG site.  

2.2.2. FMR1-UMR is present in primary human granulosa cells 

Presence of FMR1-UMR was then analyzed in primary granulosa cells from patients with 

variable ovarian reserve (1 NOR and 1 POR samples). Leukocytes from the same patients 

served as control. Similar to the findings observed in COV434 cells (Figure 16A), CpGs 46 to 

65 were also largely unmethylated in both NOR and POR primary granulosa cells. However, 

this was not the case in patients’ leukocytes, which showed the presence of one CpG 

methylated and one unmethylated allele as expected (Figure 16C). 
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2.2.3. Human granulosa cells express low levels of XIST 

Presence of two alleles with an unmethylated FMR1 core promoter region suggests that in 

granulosa cells both X chromosomes might generally escape X inactivation. To clarify 

whether human granulosa cells have indeed two active X chromosome, the expression of the 

X-inactive specific transcript (XIST) levels have been analyzed. XIST is a long non coding 

RNA which is responsible of X-chromosome inactivation in female mammals
151

. XIST 

expression level was first measured in COV434 and compared to female leukocytes using 

TaqMan based real time PCR. Male fibroblasts and leukocytes were included as positive 

controls. XIST expression level was significantly lower in COV434 (p=0.03) compared to 

female leukocytes (Figure 17A). As expected, the levels of XIST transcripts were below 

detection level in both male fibroblasts and leukocytes (Figure 17A). 

I also analyzed XIST expression levels in primary granulosa cells from NOR (n=35) and POR 

(n=16). The expression level of XIST varied largely between patients of both groups and did 

not show a difference between NORs and PORs (Figure 17C). However, a statistically 

significant lower expression level of XIST were detected as well in primary granulosa cells 

from both NOR (p=0.01) and POR (p=0.00) compared to women’s leukocytes (Figure 17B). 

Figure 16: CpG site methylation analysis of FMR1-UMR 

in gDNA from human primary granulosa cells.  
CpG methylation pattern in (A) COV434, (B) NOR primary 

granulosa cells and (C) in NOR leukocytes is presented. (A) 

and (B): amplification products were only got with A4U 

amplicon confirming absence of the CpG site methylation in 

this genomic region.■ methylated CpG site, □ unmethylated 

CpG site. 
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Figure 17: XIST expression in human granulosa cells. 

XIST mRNA expression levels were analyzed using TaqMan based real time PCR. mRNA levels were 

normalized to HPRT mRNA expression and results are presented as comparative Ct value means ± SD (n = 3). 

(A) XIST expression levels were significantly lower expressed in COV434 compared to female’s leukocytes and 

not detectable in male leukocytes and fibroblasts. (B) Significant lower expression of XIST transcripts was also 

detected in primary granulosa cells from both NOR and POR. (C) Individual variation of XIST transcript levels 

detected in granulosa cells from patients. 

2.3. FMR1-DMR3 is also present in other human female tissues 

Another novel regions identified in my CpG methylation analysis in COV434 cells was 

FMR1-DMR3. Therefore, I investigated whether the differential CpG site methylation pattern 

of FMR1-DMR3 observed in COV434 is also present in other female tissues including ovary, 

kidney and leukocytes (Figure 18). Although FMR1-DMR3 was found in these female tissues, 

the specific CpG sites methylation pattern displayed some tissue specificities. A statistically 

significant difference of CpG site methylation rates was reached in CpG sites 94 (p=0.01), 95 

(p=1.00x10
-5

), 96 (p=0.02) and 99 (p=0.02) (Figure 18E).  
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2.4. Analysis of FMR1-DMR3 for putatively functional transcription factors 

binding sites  

I examined the proposed FMR1-DMR1,-2 and-3 sequence regions for putative Transcription 

Factors (TFs) binding sites with the TRANSFAC-match tool, using vertebrate matrices and a 

standard threshold of 0.9. Only TFs whose binding is known to be dependent on CpG site 

methylation pattern
152-154

 are presented in Table 10.  

Table 10: Prominent CpG methylation sensitive regulatory motif locations within the FMR1-DMR1, 2 and 

-3 

Transcription factor sites/potential 

regulatory motifs 

Sequence FMR1-DMR location 

AP2ALPHA cCACAGGGC DMR1 

GATA3 ccccATCtt DMR2 

AP2ALPHA gCGGGAGGC DMR2/DMR3 

E2F1_Q6_01 tTTCGGCGcc DMR3 

E2F_Q2 GGCGcc DMR3 

E2F_Q2 ggCGGG DMR3 

GATA1 cggGATgttg DMR3 

E2F_Q2 ccCGCC DMR3 

GATA1_01 gggGATgggc DMR3 

GATA2_01 gggGATgggc DMR3 

AP2ALPHA_01 GCCGGCGGc DMR3 

AP2ALPHA_01 gCCGGCGGC DMR3 

 

Figure 18: Methylation pattern of CpG sites within FMR1-DMR3 

(A8 amplicon) in different human female tissues. 
One allele is completely demethylated in all samples analyzed. The 

second displays the allele with the methylation pattern as shown in (A) 

COV434 cell line, (B) ovary, (C) kidney, and (D) leukocytes. Each 

square line within the box refers to a single DNA clone that was 

sequenced (see Figure 1). (E) Methylation rate of CpGs 92 to 99. A 

significant statistical difference, marked by*, was reached for CpGs 94, 

95, 96 and 99. 
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Most interesting was the identification of E2F1 double site present only in FMR1-DMR3 

(Figure 19). E2F1_Q6 (also known as E2F1) binding is known to depend on CpG 

methylation, with a preference of binding to unmethylated CpGs
154

. CpG sites 93, 94 and 96 

which were higher demethylated in COV434 cells, were found to be part of the E2F1 

consensus sequence motif. Presence of two neighbored E2F sites suggests a strong binding 

just in this DMR domain. Sequence homology analysis showed that FMR1-DMR3 is 

conserved in primate and that E2F1 binding site has evolved probably first during primate 

evolution 50 million years ago (Table 11). 

 

 

 

 

 

 

Figure 19: E2F1 binding site motif within FMR1-DMR3 sequence. 

(A) CpG sites located within FMR1-DMR3 are indicated with grey filled circles. (B) E2F1 binding site within 

FMR1-DMR3 sequence is highlithed by an orange box. (C) Empirical (‘True’) E2F1 motif logo within FMR1-

DMR3 predicted by TRANSFAC 
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Table 11: Sequence homology of the FMR1-DMR1, 2, 3 in different species. 

Homo sapiens  

(human hg 19) 

Pan troglodytes  macaca mulatta  callithrix jacchus Carlito syrichta  

Divergence time155 

(Mya) 

8 Mya 35 Mya  50 Mya 

FMR1-DMR1 92.6% 84.4% 34.1% 14% 

FMR1-DMR2 99.6% 93.8% 92.2% 27% 

FMR1-DMR3 98.4% 97.6% 90.9% 12.8% 

 

2.5. E2F1 binds within FMR1-DMR3  

I investigated the capacity of nuclear E2F1 to bind within FMR1-DMR3 experimentally. A 

22bp DNA biotin-labeled probe which contains a non-methylated CpG site 94 within the 

E2F1 binding site was used as probe to screen for binding from factors in the nuclear extracts 

from the COV434 cell line. EMSA produced a pattern of retarded bands indicating the 

binding of nuclear proteins only to the CpG 94 site non-methylated probe (Figure 20, lane 2). 

This binding was specific for E2F1, since it could be eliminated by an increasing 

concentration of an unlabeled competitor probe (Figure 20, lanes 3, 4, 5) but not with an 

unlabeled mutated probe (Figure 20, lane 6).  

 

Figure 20: Specific binding of nuclear 

proteins from COV434 cells within FMR1-

DMR3.  
EMSA was performed with a probe containing 

the unmethylated CpG site 94 within the E2F1 

consensus present in the FMR1-DMR3 region. 

Nuclear extracts from proliferating COV434 

cells were incubated with the E2F1 probe alone 

(lane 2) or in the presence of excess (10X, 20X 

and 50X) unlabeled probe (lanes 3 and 5) or a 

probe containing a 20X excess of mutated 

E2F1 consensus motif (lane 6).  
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2.6. FMR1-DMR3 analysis in primary human granulosa cells 

For the CpG sites methylation analysis in human primary granulosa cells I had to concentrate 

on one of the identified FMR1-DMRs due to patient material restrictions. Therefore, I decided 

to analyze the CpG methylation pattern of FMR1-DMR3 due to presence of the unique 

methylation dependent E2F1 binding sites. 

The CpG methylation pattern of FMR1-DMR3 sequence was analyzed in human primary 

granulosa cells, collected from patients that showed a different ovarian response after 

controlled ovarian stimulation in order to explore whether (1) this domain is also present in 

primary granulosa cells. (2) Whether the pattern of CpG site methylationis different in NOR 

and POR samples. Primary granulosa cells from NOR (n=10) and POR (n=9) patients were 

analyzed in comparison. 

The FMR1-DMR3 CpG methylation pattern was analyzed in 5 patients of each group. CpG 

sites 92 to 99 showed a differential methylation pattern (Figure 21A). The degree of 

methylation of these CpG sites varied between both patient groups as between patients within 

the same group (Figure 21A). A statistical significant difference was reached with this small 

number of patients only for CpG site 94 (p=0.01) that was highly demethylated in POR 

(89.74%) granulosa cells compared to NOR (59.38%) (Figure 21B). In addition, I analyzed 

the expression of FMR1 transcripts in primary granulosa cells between the two groups. POR 

showed a tendency towards higher FMR1 expression compared to NOR (Figure 21C), 

although no statistically significant difference was reached. 
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Figure 21: Methylation pattern of CpG sites within FMR1-DMR3 in human primary granulosa cells. 

In granulosa cells from POR (n=5) and NOR (n=5), MSP analysis of A8 showed the presence of one 

unmethylated allele and one methylated allele with individual CpGs that remained unmethylated. Only the allele 

with the methylated pattern is shown here (A). Each box represents one patient and each lane within the box 

corresponds to a single DNA molecule that was sequenced. (B) Quantification of methylation levels of the CpGs 

92 to 99. A significant difference (*) was reached in CpG 94 (p=0.01). (C) Expression of FMR1 transcripts in 

patients’granulosa cells. POR (n=9) showed a tendency towards a higher expression compared to NOR (n=10). 
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Chapter 3: Characterization of expression pattern of ASFMR1 

long non coding transcripts in human granulosa cells 

The aim of this study was to analyze the expression pattern and rate of ASFMR1 transcripts in 

the COV434 granulosa cell line and in primary graulosa cells collected from patients with 

different ovarian response (NOR and POR) in order to compare the results with view to the 

clinically observed variable ovarian response in NOR and POR samples. 

3.1. ASFMR1 is expressed in the COV434 cell line 

Due to known difficulties to amplify transcripts through the CGG repeats, I opted for a nested 

PCR approach at different transcript positions to analyze the expression of the complex 

ASFMR1 transcript splicing pattern (see introduction section 1.3.3). The originality of this 

approach is that it allowed to characterize complete polyadenylated ASFMR1 transcripts 

starting at FMR1 intron 2 (genomic position +10243 relative to the TSS+1 of the FMR1 gene) 

and ending in PAS1 site (genomic position -1815 relative to the TSS+1 of the FMR1 gene). A 

first round of PCR was performed to select for polyadenylated transcripts starting at +10243 

bp and ending with PAS1 (Figure 22A). Nested PCR results then showed that ASFMR1 

transcripts starting at +10243 are expressed in COV434 cells. Mapping for transcript regions 

upstream of the CGG repeats revealed presence of an unspliced form and two different 

spliced isoforms (A and B) in COV434 cells as depicted in Figure 22B. The third isoform (C), 

reported in lymphoblastoid cell lines
130

, was not detected on gel. Mapping of the transcript 

region containing the CGG repeats, showed the presence of one band with a size 

corresponding to the FMR1 transcript allele containing 42 CGG triplet repeats (Figure 22C). 

Mapping of the region downstream of the CGG triplet repeats also showed the presence of 

two transcript isoforms. Since the splicing pattern was very complex, it was not possible to 

associate the isoforms detected upstream and downstream the CGG repeats together, 

therefore, they were named; ISO1 and 2 (Figure 22D). The first transcript, ISO1, contained a 

9.7 kb intron corresponding to the FMR1 intron1 that uses the complementary splice donor 

and acceptor sites also used for FMR1 transcripts, representing a non-consensus CT to AC 

splice site. The second isoform, ISO2, revealed another alternative splice form of the 

ASFMR1 transcript with a small intron from +10155 to +10070 that uses a second non-

consensus CT-AC splice site. Surprisingly, this isoform described “PM specific” in former 

publications
130

, was mainly expressed in COV434, which does not carry an FMR1-PM allele. 

A schematic summary of the results is presented in Figure 22E. 
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Figure 22: Mapping of ASFMR1 transcripts in COV434 cells.  

(A) Diagram of ASFMR1 gene according to published results by Ladd et al.
130

. Numeric values indicate the 

genomic positions relative to the TSS +1 of FMR1 gene. Exons of ASFMR1 are indicated by grey rectangles. 

TSS located at +10243bp and the cluster of TSSs between -99bp and -208bp are indicated with grey arrows. A 

first round of strand-specific RT–PCR from −1805 bp (PAS1) to +10243 bp (TSS located in intron2 of the 

FMR1 gene) was performed and primer positions are indicated by short grey arrows. Position of primers used for 

nested PCRs are indicated by red, blue and yellow arrows. Nested PCR showed the presence of ASFMR1 

transcripts at the positions (B) −196 to −1000, revealing multiple splice forms A, B and the non-processed 

transcript, and (D) +210F to +10243R, revealing transcript splice forms ISO1 and 2. (C) Amplification of CGG-
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rich sequences identified an antisense transcript spanning the CCG repeat region from +295F to +15R in 

COV434 containing 42 CGG repeats. (E) Schematic summary of ASFMR1 transcripts and the splice sites 

detected in COV434 cells. 

3.2. Identification of the novel 5′ ends of ASFMR1 in COV434 cells. 

To investigate whether there are different 5’ends of ASFMR1transcripts in COV434 cells, 5′-

RLM-RACE was performed. Three distinct starts of 5′ends downstream of the CGG triplet 

repeats were detected on gel (Figure 23B). Sequencing of the detected amplification products 

showed that in COV434 cells the transcription of the ASFMR1 transcripts is initiated at 

positions +305 bp and +10070 bp and +13848 bp. Taken together, these data suggest the 

presence of three alternative core promoters driving the transcription of ASFMR1, with the 

+305 bp site as major TSS as depicted in Figure 23B. In contrast to TSS located at +305 bp, 

the +10070 bp and the +13848 bp TSSs were not previously reported in any cell type. 

Upstream of the CGG triplet block, I did not detect any further TSS.  

 

 

3.3. Identification of new ASFMR1 transcript isoforms in COV434 cells 

Next, I aimed to characterize the length of transcripts starting at position +13848bp. 

Transcripts initiated at TSSs +305 and +10070 were not studied. A similar approach as 

described above was performed to select for only polyadenylated transcripts (Figure 24A). 

The presence of different spliced transcript isoforms was detected upstream and downstream 

of the CGG repeats (Figure 24B, C). Two isoforms (ISO1 and ISO2) were detected between 

Figure 23: Identification of 5’ ends of the ASFMR1 

transcript in COV434 cells.  
(A) ASFMR1 genomic locus is depicted see Figure 19 

and the position of primers used for 5′-RLM RACE are 

indicated with black arrows. Bold grey arrows indicate 

the three transcription initiation sites identified in 

COV434 cells at +305bp, +10070bp and +13848bp. 

(B) Detection on gel of ASFMR1 5’ends using 5’RLM 

RACE primers -258 RACE and +210 RACE. The 

RNA CTRL was used to ensure that the obtained 

products are specific. The negative control using water 

indicated the absence of contamination. 

 

 
major 
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positions +13848bp and +210bp (Figure 24C). The first isoform, contained two introns 

corresponding in length and position to FMR1 intron 1 and part of intron 2 that uses the 

complementary splice donor and acceptor to FMR1, representing a non-consensus CT to AC 

splice site. The second isoform had an additional small intron between +10070 bp and +10155 

bp that uses a non-consensus CT-AC splice site located in FMR1 intron 2 (Figure 24D). These 

isoforms are probably the extension of ISO1 and ISO2 depicted in Figure 24D. Upstream of 

the CGG triplet repeats three spliced transcript isoforms (ISO A, B and C) were expressed; 

non-spliced ASFMR1 transcripts were not detected on gel (Figure 24B). Presence of these 

isoforms suggests that the transcripts initiated at TSS +13848 are continuous and pass through 

the CGG repeats. Naturally, it was not possible to find out which transcript isoforms upstream 

of the CGG triplet block (ISO1 and 2) are combined with the three transcript forms 

downstream of the CGG triplet block (ISO A, B and C). At least, up to 8 transcript variants 

may be present in the COV434 granulosa cell line. However it can be concluded that there is a 

high complexity of ASFMR1 transcript isoforms in COV434 and probably then also in 

primary human granulosa cells. 
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Figure 24: Mapping of the ASFMR1 transcripts initiated from TSS +13848 in COV434 cells. 

(A) Diagram of the ASFMR1 gene according to results obtained in COV434 cell line. Numeric values indicate 

the genomic positions relative to the TSS +1 of FMR1 gene. Exons of ASFMR1 are indicated by grey rectangles 

with the CGG repeat region noted. The three newly identified TSSs are indicated with grey arrows. Experimental 

procedure was performed as noted in Figure 22. A first round of strand-specific RT–PCR from −1805bp (PAS1) 

to +13848bp was performed and primer positions are indicated by grey arrows. Position of primers used for 

nested PCRs are indicated by red, and green arrows. Nested PCR showed the presence of ASFMR1 transcripts at 

positions (B) −196 F to −1000R, revealing multiple transcript splice forms ISO A, B and C, and (C) +210F to 
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+13848R, revealing the extension of splice forms ISO1 and 2. (D) Schematic summary of ASFMR1 transcripts 

and the splice sites detected in COV434 cells. 

3.4. ASFMR1 is expressed in primary granulosa cells from patients 

After having established the complexity of ASFMR1 expression in COV434, the expression 

pattern of ASFMR1 transcript in primary granulosa cells from NOR and PORs patients have 

been analyzed. My aim was to investigate if the expression pattern of specific isoforms may 

vary according to womens’ ovarian response. Therefore I compared the ASFMR1 transcript 

splicing pattern in NORs and PORs. Primary results showed that polyadenylated ASFMR1 

transcripts are expressed in primary granulosa cells of both, NORs and PORs. Mapping of 

transcripts upstream of the CGG triplet block showed presence of the unspliced transcript and 

ISO A. Interestingly, the expression pattern of these isoforms varied between patients with the 

unspliced transcript isoform being majorly expressed (Figure 25). 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Expression profile of the 

ASFMR1 transcript in human primary 

granulosa cells.  

Nested PCR using primer pair -196F/-1000R 

performed in primary granulosa cells from NOR 

(n=4) and POR (n=4) revealed mainly the 

presence of an unspliced isoform and the spliced 

isoform A.  
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Chapter 4: FMR1 gene expression silencing in COV434 cells. 

One possibility to examine the influence of FMR1 gene expression on human granulosa cell 

function, respectively its association with the expression of potential signal pathways was to 

inhibit FMR1 mRNA expression by siRNA-treatment followed by microarray gene 

expression analysis of the COV434 granulosa cell transcriptome. 

4.1.  Efficiency of siRNA delivery in COV434 cells 

In order to establish an optimal working transfection protocol, COV434 were transfected 

using FITC siRNA (sc-36869) according to two protocols (see Methods section 4.5). 

Transfection efficiency varied markedly between reagents (Table 12 and 13). The highest 

efficiency observed by FITC positive cells was for 4x10
4
 using th reagent, exhibiting 90 % 

FITC-positive cells when transfected with 50nM (Figure 26) or 100nM siRNA according to 

protocol 2 (Table 13). Since there was no difference in the transfection efficiency with 50nM 

or 100nM of siRNA using protocol 2, the 50nM was used as a working concentration in all 

following transfection experiments. 

Table 12: Transfection efficiencies of FITC-labeled siRNA in COV434 cells using transfection protocol 1 

Protocol 1 25nM 50nM 100nM 

Lipofectamine 2000 20% 36% 39% 

Lipofectamine RNAiMax 35%1 45% 54% 

HiPerFect 23% 32% 30% 

1% indicates the amount of COV434 cells showing a green signal that corresponds to a positive uptake of the FITC-siRNA: 100 cells were 

couned per slide. 

 

Table 13: Transfection efficiencies of FITC-labeled siRNA in COV434 cells using transfection protocol 2 

Protocol 2 25nM 50nM 100nM 

Lipofectamine 2000 25%1 45% 48% 

Lipofectamine RNAiMax 64% 90% 88% 

HiPerFect 20% 39% 38% 

1% indicates the amount of COV434 cells showing a green signal that corresponds to a positive uptake of the FITC-siRNA: 100 cells were 

couned per slide 
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Figure 26: Analysis of transfection efficiencies by fluorescence microscopy.  

COV434 cells were transfected with FITC-labeled siRNA at a concentration of 50 nM using Lipofectamine 

RNAiMax. 6h after transfection, the cells were fixed and analyzed visually. Specific intracellular FITC staining 

was detected (green). The nuclei were identified by DAPI staining (blue). 

4.2.  Inhibition of FMR1 expression in COV434 cells by the siRNA-

treatment 

After the establishment of a working transfection protocol in COV434 cells, my aim was to 

examine the effects of FMR1 in granulosa cells function , therefore the mRNA expression of 

FMR1 was inhibited by siRNA treatment. For this, the knock down efficiency of several 

commercialized siRNA sequences targeting the FMR1gene was tested (silencer FMR1-siRNA 

(10919), silencer FMR1-siRNA (11010) and siRNA Silencer
®
 Select (4392420). Among these 

siRNA, The FMR1 siRNA Silencer
®
 Select showed the highest knock down efficiency and 

lowest side effects on cell viability and was selected for further analysis.  

Using the same protocol as mentioned above, 4*10
4
 COV434 cells were transfected with 

50nM Silencer
®
 Select FMR1-siRNA or with a Silencer

®
 Select non-silencing control siRNA 

(ctrl-siRNA). In parallel experiments cells transfected with the transfection reagent without 

siRNA served as a control to assess whether the transfection impacts cell viability and 

proliferation. The 96h time point was not used in the following analysis as no knock down 

effect was detected in all of the analyzed FMR1-siRNA (preliminary experiments, data not 

shown).  

Expression of FMR1 mRNA expression was analyzed using TaqMan based real time PCR. 

Each experiment was repeated two times and each sample was run in triplicates. 

Up to 89% decrease in FMR1 mRNA expression was detected at 48h post-transfection, as 

compared to cells transfected with Ctrl-siRNA group (p=0.05) (Figure 27). At 72h, the FMR1 

mRNA levels were comparable to Ctrl-siRNA group and to non-transfected cells group 

indicating a short half-life for FMR1 siRNA (Figure 27). There was no difference in FMR1 

mRNA expression between Ctrl-siRNA group and the non-transfected cells group at each 

time point. 
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Specific knock down of FMR1 mRNA should have a corresponding effect on the protein. To 

explore this effect, FMRP levels were analyzed 48 and 72h post transfection by western blot 

using protein extracted from the same samples used for the TaqMan analysis. FMRP has a 

half-life of 30h
156

. 

Western blot analysis showed a clear reduction in FMRP levels at 48h in COV434 cells 

transfected with FMR1-siRNA (Figure 28A, lane1) compared to Ctrl-siRNA group (Figure 

28A, lane 2) and non-transfected cells (Figure 28A, lane 3). This result is in accordance with 

the high knockdown efficacy (89%) observed on the mRNA level. As seen in FMR1 mRNA 

levels at 72h post-transfection there was no difference anymore in FMRP levels between the 

groups (Figure 28C). 

 

Figure 28: Western blot analysis of FMRP expression after FMR1 gene knock down. 

siRNA was transfected into COV434 cells at a concentration of 50 nM. At 48 and 72 h post-transfection, cells 

were lysed and protein expression was analyzed by western blot. (A) Protein analysis at 48h after transfection in 

FMR1-siRNA (lanes1), Ctrl-siRNA (lane3) and non-transfected cells (lane 4) groups. (B) Protein input was 

normalized using GAPDH. (C) Protein analysis at 72 h post-transfection in FMR1-siRNA (lanes1, 2 and 3), 

Control non-silencing siRNA (lanes 4, 5 and 6) and non-transfected cells (lane 7 and 8). (D) Protein input was 

normalized using GAPDH. 

 

Figure 27: FMR1 mRNA expression in 

COV434 transfected cells.  

A siRNA Silencer
®
 Select targeting the 

FMR1 gene was transfected into 

COV434 cells at a concentration of 

50nM. The silencing activity of FMR1-

siRNA was monitored by TaqMan based 

real time PCR. mRNA levels were 

normalized to HPRT mRNA expression 

and results are presented as comparative 

Ct value means ± SD (n = 3). FMR1 

mRNA expression was quantified 48h 

and 72h (C) after transfection. 
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4.3.  Microarray profiling and signal pathway analysis 

After having confirmed the 89% knock down of FMR1 gene expression on both; mRNA and 

protein levels at 48h post transfection, these samples were selected for COV434 transcriptome 

analysis by appropriate microarray assay (Human HT-12 v4 Expression Bead Chip Kits, 

Illumina). The aim of this experiment was to identify potential biological pathways that are 

influenced by the decrease in expression of the FMR1 gene in the COV434 cell line used as a 

model for human granulosa cells. Total RNA was extracted from cells at 48h post transfection 

that showed the highest knockdown of the gene expression at both, mRNA and protein levels. 

Variation in gene expression was compared between cells treated with FMR1-siRNA and 

cells treated with Ctrl-siRNA. The top candidates, which showed a higher differential gene 

expression compared to the control group are listed in Table 14. 

Table 14: List of genes showing the highest variation in gene expression levels in the microarray analysis 

Gene symbol Fold change p-value         Definition 

MIR1974 1.84 0.119 Homo sapiens microRNA 1974  

PTPMT1 1.81 0.006 Homo sapiens protein tyrosine phosphatase, 

mitochondrial 1  

TPRG1L 0.59 0.001 Homo sapiens tumor protein p63 regulated 1-like  

TMX1 0.61 0.005 Homo sapiens thioredoxin-related transmembrane 

protein 1  

PSME3 0.62 0.010 Homo sapiens proteasome (prosome, macropain) 

activator subunit 3 (PA28 gamma; Ki)  

ANKRD46 0.63 0.002 Homo sapiens ankyrin repeat domain 46  

TOMM20 1.57 0.0005 Homo sapiens translocase of outer mitochondrial 

membrane 20 homolog (yeast) 

SepT 11 0.65 0.011 Homo sapiens septin 11 

FAM44B 1.54 0.0001 Homo sapiens family with sequence similarity 44 

SBDSP 0.65 0.0009 Homo sapiens Shwachman-Bodian-Diamond 

syndrome pseudogene 

NUDT21 0.66 0.0013 Homo sapiens nudix (nucleoside diphosphate 

linked moiety X)-type motif 21  

SNCA 1.5 0.120 Homo sapiens synuclein, alpha (non A4 

component of amyloid precursor)  

MSRB3 1.48 0.001 Homo sapiens methionine sulfoxide reductase B3 

RUVBL1 0.68 0.05 Homo sapiens RuvB-like 1  
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4.3.1. Identification of differential gene pathways potentially involved in FMR1 

expression control in human granulosa cells 

Signal pathway analysis of the FMR1 KD signature was performed at the department of 

Bioinformatics using the ConsensusPathDB-human (http://cpdb.molgen.mpg.de/) software 

package. The identified pathways are presented in table 15. 

Table 15: Predicted pathways to be altered after FMR1 knockdown using p<0.05  

p-value pathway members Size1 

0.0002 Methionine salvage 

pathway 

ADI1; GOT1; MTAP; APIP 6 

0.0053 Integrin alphaIIb beta3 

signaling 

CRK; PTPN1; RAP1B; CSK; RAP1A 28 

0.0067 Platelet Aggregation (Plug 

Formation) 

CRK; PTPN1; RAP1B; CSK; RAP1A 38 

0.0071 RHO GTPases Activate 

Rhotekin and Rhophilins 

RHOB; TAX1BP3; RHPN2 9 

0.0083 Deadenylation of mRNA EIF4A1; CNOT1; CNOT7; CNOT6; 

EIF4A3 

25 

0.0092 Deadenylation-dependent 

mRNA decay 

CNOT7; LSM7; EXOSC7; EXOSC3; 

CNOT1; EIF4A1; CNOT6; EIF4A3 

57 

0.00966 Cysteine and methionine 

metabolism - Homo sapiens 

(human) 

DNMT3B; ADI1; APIP; GOT1; MTAP; 

LDHA 

45 

1 Size= number of genes included in the pathway. The Methionine salvage (MTA) pathway is highlighted in bold. 

4.4.  Analysis of expression of genes involved in the mTOR/AKT signalling 

pathway after FMR1 gene knock down in COV434 cells. 

I decided to analyse the expression of key genes involved in the AKT/mTOR signalling 

pathway (S6K, AKT, and mTOR) and FOXO3 expression as a possible functional link between 

the human FMR1 expression and the expression of key genes involved in the AKT/mTOR 

signalling pathway was reported recently
80; 88

. Expression of these genes was below the 

detection limit of the microarray analysis. Therefore, I quantified their expression in COV434 

cells, at 48h and 72h in cells treated with FMR1-siRNA or with Ctrl-siRNA at the mRNA and 

protein levels using individual TaqMan probes and ELISAs. 

At 48h post-transfection, silencing of the FMR1 gene resulted in a significant decrease in 

FMR1 transcripts levels as noticed earlier (p=0.05). In addition a significant increase in both, 

S6K (p=0.05) and AKT1 (p=0.05), levels were present in group treated with FMR1-siRNA 

compared to control group. mTOR and FOXO3 expression were also increased although they 

did not reach a statistically significant difference (Figure 29A). In contrast, at 72h post 
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transfection, no significant difference in expression level was noticed between the two groups 

(Figure 29B). 

 

Figure 29: Gene expression changes of key genes involved in the AKT/mTOR signaling pathway in human 

granulosa cells following treatment with FMR1-siRNA. 

COV434 cells were transfected with FMR1-siRNA or with a non-silencing control siRNA (ctrl siRNA) at a 

concentration of 50 nM.  Gene expression of S6K, FMR1, mTOR, AKT1 and FOXO3 was measured at (A) 48h 

and (B) 72h post-transfection. mRNA levels were normalized to HPRT mRNA expression and results are presented 

as comparative Ct value means ± SD (n = 3).  

 

Next, the protein expression levels of FMRP, S6K, mTOR, phospho-mTOR, AKT1 and 

phosphor AKT/ERK/S6K were analyzed using ELISAs at 48h and 72h post transfection. At 

48h post transfection, a significant reduction in the FMRP levels (p= 0.05) was present in 

cells treated with FMR1-siRNA. This result is in accordance with results obtained from 

western blot analysis (see Figure 28). In addition, a significant increase in S6K protein 

(p=0.03) was also detected in cells treated with FMR1-siRNA (Figure 30A). Surprisingly, at 

72h post-transfection the reestablishment of FMR1 gene expression to control levels (Figure 

29B) was accompanied by a significant increase in FMRP levels (p=0.04) (Figure 30B). In 

addition, there was an increase, although not significant, in the total and in the phosphorylated 
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protein form of mTOR and in the phosphorylated form of AKT/ERK/S6K in the group treated 

with FMR1-siRNA compared to the control group. 

 

Figure 30: Protein expression changes of key genes involved in the AKT/mTOR signaling pathway in 

human granulosa cells following treatment with FMR1-siRNA. 

COV434 cells were transfected with FMR1-siRNA or with a non-silencing control siRNA (ctrl-siRNA) at a 

concentration of 50 nM and protein expression was at 48h (A) and 72h (B) post-transfection. The expression of 

FMRP, S6K, mTOR, phospho-mTOR (Ser 2448), AKT1 and phospho-AKT/ERK/S6K was monitored using 

specific ELISAs. Protein expression levels are represented relative to the control group ± SD (n = 3).  

In summary analysis of COV434 transcriptome after FMR1 mRNA expression knock down 

revealed presence of several potential pathways affected by FMR1 expression level. Most 

interesting, with view to the female germ cell development seem to be the MTA and 

AKT/mTOR signal pathways. 
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6- Discussion 

6.1.  Validation of COV434 cell line as a human granulosa cell model to study 

FMR1 gene transcriptional control.  

In this study, I present strong experimental evidences that the granulosa cell line, COV434 

can be used as a viable model system to analyze transcript complexity and epigenetic control 

of the human FMR1 gene in human primary granulosa cells.  

CpG methylation analysis of the extended FMR1 promoter in COV434 cells revealed the 

presence of a completely unmethylated CpG sequence domain around its core promoter 

(FMR1-UMR), i.e, on both gene alleles. FMR1-UMR was then found to be also present in 

human primary granulosa cells but not in female leukocytes nor in fibroblasts (Figure 14 and 

16). The differentially CpG methylation pattern within FMR1-DMR3 detected in COV434 

was also found to be comparable to human primary granulosa cells and different from that in 

female leukocytes, ovary and kidney tissues (Figure 18 and 21). Furthermore, investigation of 

FMR1 and ASFMR1 transcript splicing patterns in COV434 cells revealed only minor 

differences with the pattern of FMR1 transcript splice variants detected in human primary 

granulosa cells. These results were an essential perquisite to study then also the variation of 

CpG site methylation in FMR1-UMR and -DMR3 in NORs and PORs granulosa cells; 

dependent on women ovarian reserve and to start functional knock down assays for the FMR1 

gene in COV434 by optimized siRNA tools developed for this gene. 

6.2.  FMR1 gene transcriptional control in primary human granulosa cells 

from patients with different ovarian reserve. 

Comparison of CpG site methylation patterns in women with different ovarian reserves 

(NORs and PORs) revealed that FMR1-UMR in primary human granulosa cells was present 

independent of women ovarian reserve, suggesting that this region is generally important for 

control of FMR1 gene expression during human folliculogenesis. In contrast, analysis of the 

CpG methylation pattern of FMR1-DMR3 in the same primary granulosa cells (NORs and 

PORs) was found to be dependent on women ovarian reserve. Statistically confirmed 

difference was found for CpG 94 site being higher demethylated in granulosa cells from 

women with lower ovarian maturation potential (PORs). Since CpG 94 is part of the doubled 

target site of E2F1, these results suggest that E2F1 binding efficiency to FMR1-DMR3 
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functionally contribute to the rate of FMR1 expression being variable and depending on 

women ovarian reserve.  

Expression of splice variants of the FMR1 and ASFMR1 genes seem not to be depending on 

women ovarian reserve. Although a complex splicing pattern of both genes was present in the 

primary granulosa cells like in COV434, no differences in the set of transcript variants 

expressed in granulosa cells of both NORs and PORs could be identified. 

6.3.  FMR1-UMR part of FMR1 gene activation in human granulosa cells. 

CpG sites located within FMR1-UMR were found to be demethylated on both gene alleles 

only in human granulosa cells. It suggests that the FMR1 gene was expressed from both gene 

alleles in granulosa cells thus escapes inactivation on the second X chromosome. It has been 

repeatedly assumed that at least some of the X genes functional during folliculogenesis and 

the female reproduction cycle require the expression of both X gene alleles genes that means 

escape X-inactivation
30; 31

. This view gained support by the observation that most women 

with Turner syndrome carrying one copy of the X chromosome suffer from an accelerated 

depletion of their follicular pool and develop POF
27; 33; 157; 158

. 

Indeed, most of the identified female reproduction related genes are concentrated on the X 

chromosome
27; 31

 and at least 15% of genes located on the X chromosome escape X 

inactivation
32; 159

. These genes are called escapee genes
32; 102; 160

. However, escapee genes 

seem to exhibit some tissue-specific differences in their rate of escaping from X 

inactivation
32

. X chromosomal deletions and translocations found in women with POF 

strongly indicate that at least some X genes require indeed two gene alleles for female ovarian 

function
161-163

. 

In adult tissues, CpG islands located in the promoter region of escapee genes are 

demethylated and are associated with a histone code which is characteristic for active 

chromatin
164

. In female leukocytes and fibroblasts, FMR1 gene was reported to be subjected 

to X inactivation
159; 165-168

. In granulosa cells however, FMR1 transcription may be active on 

both gene alleles because I found only a low expression of XIST (Figure17). This fits to the 

biallelic expression of the FMR1 core promoter including FMR1-UMR. However, the 

additional presence of FMR1-DMR1, -2 and -3 with specific CpG site methylation patterns in 

granulosa cells suggests some molecular mechanisms probably controlling the efficiency of 

the proposed biallelic gene expression in these germ line cells. One possibility may be that 

FMR1-DMR1, -2 and -3 include some repressive control elements to attenuate quantitatively 
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this biallelic gene expression. If this holds true, it suggests that some epigenetic dosage 

control of a biallelic FMR1 gene expression is required at least in human granulosa cells. 

6.4.  E2F1 binding site in FMR1-DMR3 is functional for FMR1 expression in 

human granulosa cells. 

In this study, I present strong experimental evidence that the efficiency of FMR1 gene 

transcription in human granulosa cells is controlled by some epigenetic mechanism located in 

the FMR1-DMR3 region identified in intron1 (Figure 13). FMR1-DMR3 was also found in 

different female tissues; however, its CpG methylation pattern showed tissue specificity 

(Figure 18).  

FMR1-DMR3 is part of the extended FMR1 gene promoter extending to intron 1
111

. Intronic 

CpG islands were found to be equally essential for gene expression as the genomic regions 

located close to the core promoter
169; 170

. Indeed, silencing of several genes has been shown to 

be induced by hypermethylation of the CpG island located in the first intronic region
169-171

. 

Also the methylation pattern of a single CpG site located in an intronic region has been shown 

with an impact on gene expression. In prostate cancer cell lines, hypermethylation of a single 

CpG site located in intron1 of the peroxisomal membrane protein 24 gene (PMP24) resulted 

in gene silencing, probably by preventing binding of some methylation sensitive AP-2- or a 

Sp1 factors
171

. 

The influence of a single CpG methylation rate within a gene on the development of diseases 

is well studied in cancer
172

. Recently, it has also been reported to be involved in the 

development of PCOS syndrome
173

 .Therefore, the methylation rate of single CpG sites if part 

of Transcription Factor (TF) target site; can generally serve as a dynamic switch module to 

activate or inactivate gene expression. 

TFs analysis along the distinct differential CpG methylated sequence regions, FMR1-DMR1, -

2 and -3 predicted the presence of several E2F binding sites only in FMR1-DMR3. E2F1 is 

known to be a transcriptional activation factor, controlling its DNA binding affinity by 

methylation of single CpG sites in its target sequence
153; 154

. Using EMSA analysis, I 

confirmed that E2F1 binds indeed to its predicted consensus sequence within FMR1-DMR3 

when containing a non-methylated CpG 94 site. Conservation of the doubled E2F1 target site 

in FMR1-DMR3 since 50 Mya supports that this E2F1 binding site is functionally required for 

FMR1 expression in granulosa cells. This assumption gained further support by the 

experimentally observed variation of CpG 94 site methylation dependent on ovarian reserve; 

being part of the doubled E2F1 target site. In women with lower ovarian reserve (POR), the 
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CpG 94 site displayed a lower methylation rate increasing E2F1 binding affinity. Since E2F1 

is usually a transcriptional activator we can assume that increasing E2F1 binding to FMR1-

DMR3 should increase the transcription rate of FMR1 in POR granulosa cells (shown in 

Figure21C).  

E2F1 is expressed in granulosa cells from human
174

, mouse
175

, rat
174

, and bovine
176

. In mouse 

and bovine ovaries, E2F1 was reported to be involved in granulosa cells proliferation and 

steroidogenesis
175; 176

. In human, E2F1 expression was reported to affect the transcription of 

key genes involved in granulosa cells differentiation and proliferation such as the FSH 

receptor and the forkhead box L2 gene (FOXL2)
174; 177

, but not for the FMR1 gene. 

Additionally, in human primary granulosa cells, reduced E2F1 expression level was suggested 

to be associated with the development of PCOS
175

. Recently, a possible implication of E2F1 

in the development of POF syndrome was described in a transgenic mouse model with an 

ovarian granulosa cell conditional knockout of the retinoblastoma protein (Rb)
178

. Indeed, 

E2F1 is the most studied target of pRB
179

. pRB binds to E2F1 and leads to its inactivation
179

. 

In this mouse model, depletion of pRb was associated with increased follicular atresia that 

may arise from increased E2f1 levels in preantral follicles
178

. Another studied protein seeming 

to interact with E2F1 is prohibitin, a tumor suppresser protein. Prohibitin plays an important 

role in the transcriptional regulation of various genes involved in cell-cycle control and 

proliferation
180

. In HEK293 and T47D cells, the growth-suppressive property of the prohibitin 

protein is exhibited by its physical interaction with E2F1 and its subsequent repression of 

their transcriptional activity
181; 182

. Most interesting, in rat ovary, prohibitins are differentially 

expressed in granulosa cells in which they may function as a molecular switch that control 

cell fate and thereby determine the progress of follicular development in the ovary
183-185

. It 

would be therefore meaningful to investigate whether prohibitin interact with E2F1 then also 

in human granulosa cells. 

In a mouse POF model carrying a FMR1 human transgene, the increase of FMR1 RNA was 

associated with a reduction in the number of growing follicles in ovaries and was sufficient to 

impair female fertility
80

. The impairment in phosphorylation of key genes involved in the 

Akt/mTOR pathway expressed in the ovaries of these mice led the authors to hypothesize the 

presence of a functional link between FMR1 and the mTOR pathway
80

. A link between FMR1 

expression and the Akt/mTOR pathway was also reported recently in a human granulosa cell 

line under proliferation conditions
88

. Interestingly, E2F1 is capable to modulate cellular 

growth and proliferation in osteosarcoma cell lines by regulating mTORC1 activity, and this 

effect does not depend on Akt
186

. It can therefore be assumed that variation in E2F1 
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expression levels in granulosa cells may impact ovarian reserve directly via FMR1 expression 

control as indirectly by expression in mTORC1 signal pathway. 

In summary, my data confirm completely earlier experimental data with regards to the 

presence of FREE1 and FREE2 in leukocytes
111; 120

. These epigenetic control elements were 

found to be also present in COV434 cells. Additionally, a novel third DMR was found 

downstream of FMR1-DMR2 in COV434 and in primary granulosa cells, as well as in 

leukocytes and fibroblasts. FMR1-DMR3 contains a double E2F1 target site. However, in the 

FMR1 minimal core promoter region binding of α-Pal/Nrf-1 and USF1/USF2 transcription 

factors were reported to be functionally influenced by methylation of the CpG site
187

. Since 

this promoter region is completely demethylated on both alleles (FMR1-UMR), it is obviously 

also required for epigenetic control of FMR1 expression just in granulosa cells. Although 

more E2F1 binding sites have not been identified along the 2kb long FMR1 extended 

promoter, more CpG methylation sensitive TF binding sites have been predicted in FMR1-

DMR1 and -DMR2 (Table 10). It can therefore be assumed that fine-tuned epigenetic control 

mechanisms are required for controlling quantitatively the rate of the proposed bi-allelic 

FMR1 gene expression in human granulosa cells. 

6.5.  Transcription at the FMR1 locus and ASFMR1 in human granulosa 

cells 

Further aim of this work was to study the initiation of FMR1 transcripts and to search for 

possible specific splicing variants expressed in human granulosa cells and their possible 

influence on human folliculogenesis. In this study, it was possible to characterize, for the first 

time, also the initiation sites of FMR1 transcripts in human granulosa cells. In COV434 cells, 

transcription of FMR1 seems to be initiated from one TSS (Figure 9); corresponding to the 

major TSS previously reported in other tissues
68; 145; 188

. Complexity of FMR1 splice variants 

in both COV434 cells and in primary human granulosa cells were found to be comparable to 

that in leukocytes
37

 (Figure 10 and 11). 

Several lncRNAs were found to be part of the FMR1 locus
129-131; 189

. In my thesis, I aimed to 

characterize the expression of ASFMR1, a natural antisense transcript (NAT), since it has not 

yet been investigated in human granulosa cells. 

Up to 61-72% of all transcribed human gene regions possess LncRNAs in an antisense 

orientation
190-193

. NATs contribute to epigenetic silencing of the associated gene loci by 

recruiting epigenetic complexes as reported for imprinting genes
192; 193

. Additionally, NATs 

play an important role in regulating mRNA dynamics and splicing pattern of associated sense 
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genes
194

. Recently, an increased number of studies focused on the implication of NATs 

expression in human diseases and proposed that NATs expression can be serve as prognostic 

markers for tumorigenesis and cancer progression
195-197

. 

In this study, I report for the first time expression of ASFMR1 transcripts in primary human 

granulosa cells (Figure 22). As reported in lymphoblastoids cell lines
130

, ASFMR1 transcripts 

were found to be capped, spliced and polyadenylated also in COV434 cells. However, in 

COV434, ASFMR1 transcripts seem to be initiated from three distinct FMR1 exon sites 

located in exon1, 2 and 3, respectively (Figure 23). The major TSS was located at exon 1 of 

the FMR1 gene (Figure 23). These TSSs were not reported in the literature suggesting some 

tissue specificity for the initiation of expression of ASFMR1. Interestingly, the putative main 

ASFMR1 promoter region located in exon1 overlaps with FMR1-DMR2 and -DMR3, 

respectively. This suggests that these epigenetic control elements may be also involved in 

regulation of ASFMR1 expression in COV434 cells. 

Although I was not able to amplify full ASFMR1 transcript lengths bridging the CGG repeat 

block with an amount visible in agarose gels, the complexity of the identified splicing patterns 

suggests the presence of at least 8 ASFMR1 possible isoforms originating from TSS at exon 3 

(Figure 24). Interestingly, the PM-specific alternative splice form in lymphoblastoid cells 

reported by Ladd et al.,
130

 was found here to be part of an transcript isoform in COV434 cells 

which do not carry an FMR1-PM allele. Whether this transcriptional start site is specific to 

human granulosa cells is still unclear and an investigation in different cell types will clarify 

this matter.  

Like for FMR1, variations in ASFMR1 expression were also detected in human granulosa 

cells of NORs and PORs (Figure 25). The aberrant expression of several other lncRNAs was 

found to be associated with PCOS in human ovarian cumulus cells
126

. Therefore, expression 

of specific ASFMR1 isoforms in human primary granulosa cells in regards to patient ovarian 

reserve may be also important from a clinical perspective. 

6.6.  Pathways involved in FMR1 gene regulation and Clinical perspectives 

To identify potential signaling pathways involved in FMR1 gene expression control in 

COV434 cells, FMR1 mRNA expression was knocked down to 89% using a specific siRNA 

followed by analysis of its transcriptome by microarray assays. Microarrays containing more 

than 48,000 probes were analyzed and approximately 33% of the probes had a detectable 

signal using RNA isolated from COV434 cells. Only genes showing a statistically significant 

differential expression (748 genes, p <0.05) compared to controls were selected for pathway 
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analysis. Differentially expressed genes could be grouped then into 7 main signal pathways 

(Table 15). The genes included in the identified pathways were found to cover a wide range of 

regulatory networks, including cell cycle regulation, apoptosis and mRNA decay and vesicle 

transport. 

The most significant pathway which was altered by FMR1 gene knock down seems to be the 

methionine salvage pathway (MTA; p= 2x10
-4

). MTA cycle allows regenerating methionine 

and is also responsible for the production of polyamines which are critical for cell 

proliferation
198; 199

. The biochemical reactions in the MTA cycle are mainly carried out by six 

enzymes which are conserved from bacteria to yeast to human
200

. Methionine, an essential 

amino acid, is required for protein synthesis and normal cell metabolism. Interestingly, in 

Drosophila, Acireductone Dioxygenase 1 (ADI1), an MTA cycle enzyme conserved in 

human
200

 and also a hit in our microarray analysis (1.8 fold change after FMR1 knock down), 

was shown to affect fly fecundity probably through the regulation of amino acid signals via 

mTOR and insulin signal pathways
201

. Indeed, there is evidence of amino acid control by 

S6K1 expression through a mechanism involving the mTOR signaling pathway
202; 203

. In a 

chicken muscle cell line, availability of methionine was able to regulate S6K1 

phosphorylation, thus its activation, through the mTOR/PI3-kinase pathway in an insulin-

independent manner
204

. This may explain why the mTOR pathway and S6K expression at 

both protein and transcript levels was also affected by FMR1 knock down in this study. In 

human cells, ADI1 is involved in several processes including apoptosis and RNA 

processing
205; 206

. Therefore, exploring the expression of more genes involved in both signal 

pathways, MTA and mTOR, in primary granulosa cells from POR and NOR may give more 

insight regarding possible interference of these pathways with human ovarian reserve. 

PI3K/AKT/mTOR pathway that plays a critical role in primordial follicle activation and 

follicular pool maintenance was also altered by FMR1 knock down. Recently, a functional 

link between FMR1 gene expression and the AKT/mTOR pathway was already reported in a 

POF mouse model and in COV434 cells under proliferation conditions
80; 88

 (see Introduction 

section 1.2.3 b). In this study, inhibition of FMR1 gene expression using siRNA technology 

induced an increase of mTOR, AKT, S6K at both transcripts and protein levels. Most 

interesting S6K (the endpoint of the signaling pathway) expression reached a statistical 

significant difference at both mRNA (p=0.05) and protein level (p=0.03). It has been already 

reported that an increase in S6K phosphorylation lead to follicle depletion and results in 

POF
84

. However, in my study the total protein levels of S6K were analyzed, therefore future 

analysis evaluating the phosphorylation status of this protein will further give confidence in 
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the obtained results. In addition, although there was a tendency towards an increase in total 

protein levels of mTOR and AKT, the levels of phosphorylated mTOR were comparable to 

control. These results may be also explained by the still incomplete silencing of FMR1 

expression (only 87%). Using more effective approaches to silence FMR1 gene expression 

completely (e.g. CRIPSR-Cas technology) will be therefore helpful to clarify the obtained 

results. 

Additionally, both western blot and ELISA analyses showed a significant decrease in FMRP 

expression levels at 48h post transfection, however, the results of both analyses were not in 

accordance at 72h post transfection. Western blot analysis showed that FMRP levels were 

comparable to control; in contrast using ELISA a threefold increase in FMRP levels was 

detected. This difference should be clarified in future experiments in order to exclude that the 

obtained results may be due to a difference in the detection sensitivity of the technique. A 

negative feedback loop control mechanism for FMR1/FMRP was already reported in the 

COV434 cell line
88

. This may explain the significant increase of FMRP at 72h post 

transfection. 

These results stress the importance of FMR1 gene expression in follicle pool activation and its 

probably recruitment via interaction with the AKT/mTOR signal pathway. In order to further 

validate the obtained results, the analysis of proteins involved in this pathway and their 

phosphorylation status in primary granulosa cells of patients is required. 

In summary, this is the first study investigating candidate pathways altered by FMR1 gene 

knock down in a human granulosa cell model system. Several potential candidate pathways 

were identified. From the clinical perspective, this study provides new starting points for 

functional research of potential molecular mechanisms involved in the recruitment, 

development and maturation of follicles in the human ovary. A closer look to the identified 

pathways may also provide better understanding of ovarian pathologies such as poor ovarian 

reserve/response and POI/POF leading to female infertility. 
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7- Future directions  

My thesis presents strong experimental evidence that complex epigenetically based 

mechanisms control the transcriptional activity of FMR1 from both gene alleles in human 

granulosa cells. This points to the importance of dosage control of FMR1/FMRP function in 

human granulosa cells. As a perspective, screening for CpG methylation pattern of FMR1-

DMR3 in a higher number of patients is required to further support the data presented in this 

study. Besides E2F1, other CpG methylation sensitive binding sites were predicted in FMR1-

DMR1 and -DMR2 such as GATA factors and AP2α (Table 10). Binding of these TFs within 

FMR1-DMR1and-2 has not been yet investigated. Studying the dynamic of binding efficiency 

of these factors depending on CpG methylation will improve analysis of the complexity of 

these DMRs based epigenetic control mechanisms; as potential repressor elements of the 

transcriptional activity of FMR1 from both gene alleles in human granulosa cells. 

Another aspect is to investigate the molecular function of E2F1 putative expression in human 

granulosa cells and its association with human ovarian reserve. E2F1 was reported to affect 

human folliculogenesis by targeting key genes of granulosa cells proliferation and 

differentiation such as FOXL2 and FSH receptor
174; 177

. However the underlying molecular 

signal pathways were not yet described. In mouse and rat ovaries, E2F1 seem to control 

granulosa cells activity through its interaction with RB and prohibitins
178; 181; 182

. Functional 

study of expression of RB and prohibitins and genes associated in their signaling network in 

granulosa cells of women with different ovarian reserve will be helpful to better understand 

the function of E2F1in human granulosa cells.  

Another possible mechanism to control E2F1 expression is by miRNA expression as was 

shown in mouse granulosa cells
175

. MiRNA-320 interfered with granulosa cell proliferation 

through inhibiting the expression of E2F1. If also miRNA-320 impact transcription regulation 

of E2F1in human granulosa cells and if some variability might have an influence on human 

ovarian reserve needs to be further investigated. 
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