
Dissertation

submitted to the

Combined Faculty of Natural Sciences and Mathematics

at Heidelberg University

for the degree of

Doctor of Natural Sciences

put forward by

Diplom-Informatiker: Markus Roman Müller

Born in: Mannheim

Date of oral exam:

Digital Centric Multi-Gigabit SerDes Design and

Veri�cation

Advisor: Prof. Dr. Ulrich Brüning

Abstract

Advances in semiconductor manufacturing still lead to ever decreasing feature

sizes and constantly allow higher degrees of integration in application speci�c

integrated circuits (ASICs). Therefore the bandwidth requirements on the exter-

nal interfaces of such systems on chips (SoC) are steadily growing. Yet, as the

number of pins on these ASICs is not increasing in the same pace - known as pin

limitation - the bandwidth per pin has to be increased.

SerDes (Serializer/Deserializer) technology, which allows to transfer data serially

at very high data rates of 25Gbps and more is a key technology to overcome

pin limitation and exploit the computing power that can be achieved in todays

SoCs. As such SerDes blocks together with the digital logic interfacing them

form complex mixed signal systems, veri�cation of performance and functional

correctness is very challenging.

In this thesis a novel mixed-signal design methodology is proposed, which tightly

couples model and implementation in order to ensure consistency throughout the

design cycles and hereby accelerate the overall implementation �ow. A tool �ow

that has been developed is presented, which integrates well into state of the art

electronic design automation (EDA) environments and enables the usage of this

methodology in practice.

Further, the design space of todays high-speed serial links is analyzed and an

architecture is proposed, which pushes complexity into the digital domain in order

to achieve robustness, portability between manufacturing processes and scaling

with advanced node technologies. The all digital phase locked loop (PLL) and

clock data recovery (CDR), which have been developed are described in detail.

The developed design �ow was used for the implementation of the SerDes ar-

chitecture in a 28nm silicon process and proved to be indispensable for future

projects.

Zusammenfassung

Fortschritte in der Halbleiterfertigung führen weiterhin zur Realisierung immer

feinerer Strukturen und erlauben immer höhere Grade der Integration in an-

wendungsspezi�schen integrierten Schaltungen (ASICs). Als Konsequenz hieraus

steigen auch die Bandbreitenanforderungen an den externen Schnittstellen sol-

cher 'Systems on Chips' (SoCs) immer weiter an. Da allerdings die Anzahl der

Kontakte an solchen Mikrochips nicht im gleichen Maÿe erhöht werden kann -

bekannt als Pin Limitierung -, muss stattdessen die Bandbreite pro Pin gesteigert

werden.

Die SerDes (Serializer/Deserializer) Technologie, die es erlaubt Daten seriell mit

sehr hohen Raten von 25Gbps und mehr zu übertragen, ist eine Schlüsseltechno-

logie um der Pin Limitierung entgegenzuwirken und die Rechenleistung welche in

heutigen SoCs erreicht werden kann auszuschöpfen. Da solche SerDes Blöcke zu-

sammen mit der digitalen Logik die sie ansteuert komplexe mixed-signal Systeme

bilden, ist die Veri�kation von Leistungsfähigkeit und funktionaler Korrektheit

eine groÿe Herausforderung.

In dieser Arbeit wird eine neue mixed-signal Entwurfsmethodik vorgeschlagen, die

Modell und Implementierung eng aneinander koppelt, um die Konsistenz über die

einzelnen Entwurfsschritte hinweg sicherzustellen und dadurch den gesamten Im-

plementierungsprozess beschleunigt. Ein Softwarewerkzeug, dass entwickelt wur-

de und sich gut in aktuelle electronic design automation (EDA) Software integriert

und dadurch die Methodik in der Praxis unterstützt, wird vorgestellt.

Weiterhin wird der Entwurfsraum aktueller serieller Hochgeschwindigkeitsverbin-

dungen analysiert und eine Architektur vorgeschlagen, in der die Komplexität in

digitale Schaltungen verlagert ist, um ein robustes, zu anderen Fertigungsprozes-

sen portierbares und mit Fortschritten in der Technologie skalierendes Design zu

erhalten. Der digitale Phasenregelkreis und die Taktrückgewinnung, die entwi-

ckelt wurden, werden im Detail beschrieben.

Der entwickelte Entwurfsprozess wurde zur Implementierung der SerDes Archi-

tektur in einem 28nm Silizium Prozess verwendet, in dem es sich bewährte und

sich auch für zukünftige Projekte als unverzichtbar erwies.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 3

2 Design Methodology 5

2.1 Introduction . 5

2.2 State of the Art Design Methodologies 7

2.3 Mixed Signal Modeling . 9

2.4 Top-Down Design Methodology 13

2.5 Schematic Generation Tool . 18

2.6 Liberty File Generation Tool . 21

2.7 Link Budgeting . 23

3 High Speed SerDes Architecture 33

3.1 State of the Art Serial Links . 33

3.1.1 Line Coding . 35

3.1.2 Synchronization . 36

3.1.3 Line Drivers . 36

3.1.4 Equalization . 38

3.2 Architecture Overview . 43

3.3 All Digital PLL . 45

3.3.1 Introduction . 45

3.3.2 Implementation . 51

3.4 Lane Clocking . 64

3.5 Receiver . 68

3.5.1 Overview . 68

3.5.2 Datapath . 69

3.5.3 Clocking . 73

3.5.4 Digital Clock Data Recovery 80

3.5.5 Divider Initialization . 91

3.5.6 Bit Slip Mechanism . 93

3.5.7 Calibration . 95

ix

3.6 Transmitter . 100

3.6.1 Overview . 100

3.6.2 Datapath . 101

3.6.3 Interface Synchronization 102

3.7 Testability Concept . 106

3.8 Physical Coding Sublayer . 114

3.8.1 Datapath Overview . 115

3.8.2 Clocking Architecture . 118

3.8.3 Gearbox . 119

3.8.4 Elastic Bu�er . 121

3.8.5 Figure of Merit Calculation 123

4 Implementation 127

4.1 Overview . 127

4.2 Layout Implementation . 127

4.3 Simulations . 132

4.4 Testchip . 135

4.5 Lessons Learned . 137

5 Conclusion and Outlook 139

List of Figures 143

Bibliography 147

1 Introduction

1.1 Motivation

While the transistor count per area in modern system on chips (SoCs) is increas-

ing, more and more data is processed and needs to be moved from and onto chips.

As pin pitch and number of contacts is not scaling with the same pace, the band-

width per pin needs to be increased in order to keep up with the processing power.

To solve this problem known as pin limitation, high speed serialization/deserial-

ization (SerDes) technology is necessary in order to drive innovation further.

A serializer samples parallel data and puts it serially on a single transmission

channel with a respectively higher clock rate. On the receiving side, the serial

data is sampled and deserialized to a lower clock speed parallel data bus again

(see �gure 1.1). With application speci�c integrated circuit (ASIC) core clock

frequencies of 2 GHz and more and serialization factors of typically 16, extremely

high speed circuits are required in these SerDes macros. Line rates of 25Gbps

and more, where a single bit time lasts only about 40ps, require immense e�orts

to counter the e�ects of the lossy transmission lines.

Figure 1.1: SerDes working principle

Because of the increasing importance for the overall system, high-speed serial

links have become an extremely important component in todays systems on chips.

Complex protocols like e.g. PCI Express (PCIe) require a lot of interaction

between the SerDes macro, which is usually implemented as an analog or mixed

1

1 Introduction

signal block in a full custom manner, and the digital logic implementing the actual

protocol, which is synthesized from a hardware description language (HDL) using

highly automated electronic design automation (EDA) tools.

The di�erent design and veri�cation approaches established over the years in

full custom analog and semi custom digital design can lead to serious integra-

tion problems during the SoC implementation. This, in turn leads to exceeded

deadlines, erroneous designs being submitted and costly chip re-spins. While

synthesizable logic written in a hardware description language can be simulated

and veri�ed with an event driven simulator, a full custom block like a SerDes

has a schematic representation and is usually simulated using circuit simulators

like SPICE. Because computation times for SPICE simulations are magnitudes

higher than those of event driven HDL simulation, abstract models need to be

created for the full custom blocks in order to be able to simulate the whole SoC

in a realistic time frame. The creation of fast, accurate models which are kept

consistent throughout the overall design cycle is a key aspect for the entire SoC

veri�cation to work.

This thesis presents a design methodology, which ensures correctness between

model and implementation, accelerates the design cycle and improves mixed sig-

nal veri�cation to address the issues mentioned above. The architecture of a

complex high-speed multi-gigabit SerDes macro is described and implemented by

applying the developed methodology as a proof of concept.

2

1.2 Outline

1.2 Outline

In the subsequent chapter, current methodologies for semi and full custom designs

are brie�y introduced. After this, the design and veri�cation methodology, which

was developed in the course of this thesis and the tools assisting it are presented.

In chapter three, �rst an overview on current SerDes architectures is given. Af-

terwards the SerDes, which was designed and implemented in the course of this

thesis is described. A certain focus is put on the clock data recovery (CDR) in the

SerDes receiver, the phase locked loop (PLL) for central clock generation and the

overall clocking architecture. The chapter is concluded with a look on testability

and the physical coding layer which interfaces a SerDes.

Chapter four presents the physical implementation and the testchip for the SerDes

architecture, which was taped out to manufacturing. Further, lessons learned

during the actual implementation are stated, it is analyzed how the design did

actually bene�t from the methodology and what needs to be addressed addition-

ally in the future in order to further improve the design cycle.

Finally a summary and conclusion as well as an outlook on future work conclude

this thesis.

3

2 Design Methodology

2.1 Introduction

The design of a high-speed SerDes is a challenging task. As a complex mixed

signal design, which is later on integrated in a larger system and also communi-

cates with the outside world over a transmission channel, there are many topics

to be addressed in order to produce a robust design, which is able to deliver a

well speci�ed performance.

First, the mixed signal design itself needs a proper veri�cation methodology. For

the digital part, which is synthesizable, well developed methodologies like Metric

Driven Veri�cation [1] using frameworks like the Uni�ed Veri�cation Methodology

(UVM) [2] exist and can be utilized.

Assertions and test coverage databases can be used to ensure a certain level of

con�dence that everything has been tested exhaustively so the design does not

contain any more bugs. These approaches are also well supported by state of

the art EDA tools and automation �ows. For pure analog circuit veri�cation the

primary approach is still often cell and block based testbenches complemented

by spreadsheets to collect data if a certain cell meets speci�cation or has been

veri�ed against certain manufacturing process corner cases.

This of course makes it very di�cult to keep track of the veri�cation status on a

larger project. That may have not been a problem in the past when there was

not much interaction between an isolated analog block and the rest of the often

digital standard cell based design, but this is getting increasingly problematic as

more tightly coupled mixed signal designs emerge. The lack of formalized analog

and mixed-signal veri�cation approaches can also be viewed by the fact that there

have been very few publications on this matter in the past. Though, this is a

topic which lately got traction in the EDA industry and methodologies as well

as tools to address these problems are coming up [3].

The second topic is about models for system integration. As there are many in-

teractions between analog and digital in the SerDes macro itself, as well as with

the rest of the system a simulation of the complete design is necessary. By the

5

2 Design Methodology

usage of schematics and SPICE transistor models, it is almost impossible to sim-

ulate more complex scenarios because of the required simulation time intervals.

To tackle this problem, modeling languages have been developed and extended

to allow the description of analog and mixed signals systems, namely VerilogA,

Verilog AMS, AHDL and now SystemVerilog [4]. The major challenges here are

that the models need to be precise enough to re�ect the actual cell behaviour and

still be coarse enough to get a speedup in simulation time. As the models are

normally developed separately and after the actual implementation of the cells,

it can be hard to keep them consistent with the actual design.

Another aspect is performance prediction and veri�cation. The performance of

the system to be designed needs to be predictable - preferably early in the design

phase. This can be done by early �rst order estimations, calculations in MATLAB

or simulations in system simulators like ADS or Simulink. Yet, later on it needs

to be veri�ed that these simulations and estimations are matched by the actual

implementation, which can be hard to do.

Last but not least, testability and design for test (DFT) is of great importance for

a successful design. After the completed chip is received back from manufacturing

one obviously needs to be able to verify functionality as well as performance. Also,

if problems turn up there need to be enough means to be able to identify the root

cause inside the circuits to be able to �nd a workaround or �x in a next iteration.

Additional logic or circuits have to be added to the design in advance to be able

to accomplish this and testability has to be taken into account during the design

phase.

In the following an overview over current developments in the �eld of mixed signal

design methodologies is given. After this, the top-down methodology developed

in the course of this thesis is presented.

6

2.2 State of the Art Design Methodologies

2.2 State of the Art Design Methodologies

When looking at design methodologies, one has to take the whole process into

account. This may span over writing HDL code, creating schematics, implement-

ing a layout and verifying correctness at various stages during the design �ow.

For all of this, quite di�erent approaches in analog full custom design and semi

custom digital design exist.

Whereas a pure digital design is usually written in an HDL and therefore text

based, a full custom design is generally created on a schematic level and therefore

naturally has a graphical representation. The digital implementation �ow is

highly automated and constraint driven - EDA tools like HDL synthesis and

place & route e.g. receive timing and placement constraints, then the design is

implemented with the use of optimization algorithms.

Analog design in contrast is often a very manual process - almost all tasks during

schematic and layout generation are directly executed by the designer himself.

Further, for veri�cation of the HDL based digital designs, metric driven veri�ca-

tion (MDV) using constraint random stimulus is well established with industry

standards like the 'Universal Veri�cation Methodology' (UVM) [2]. This enables

automated testing like regression tests together with collection of test coverage in

order to be able to assess how good a design was actually veri�ed. In the world of

analog design, not much of this kind of automation is present. Design veri�cation

is often mostly done manually and often simulation outputs are judged by 'visual

inspection' if a design works correctly or not. Further, there is no well established

way how test results are eventually collected to asses veri�cation quality.

These di�erent approaches obviously clash in the creation of a mixed signal de-

sign. And, though the main portions of a big SoC may be synthesized logic almost

every chip needs some analog parts, which may be small in some cases but vital

for the overall operation of it. Additionally with shrinking feature sizes in the

semiconductor industry and more 'digitally assisted analog' circuits [5], the con-

nections between digital and analog parts tend to be closer and more complex,

which increases the requirements and problems.

The EDA industry has noticed this and e�orts are undertaken to bring the

two worlds closer together, mostly by trying to apply some of the automa-

tion and methodology known from the semi custom digital design �ow to the

analog/mixed-signal world. For example there is the attempt to extend the UVM

methodology to metric driven analog veri�cation, namely UVM-MS [6]. Also,

tools are coming up to gather analog simulation results, to get a global view on

7

2 Design Methodology

the veri�cation status of a design, which is called 'plan based veri�cation' [3]

by e.g. Cadence Design Systems. To complement this, means for self-checking

like assertions, which are a well known technique in programming are brought to

SPICE based circuit simulators [7].

Also, the overall design approach is often quite di�erent. Whereas digital logic

is usually implemented in a top-down process, analog circuits are often designed

in a bottom-up block oriented fashion. This can lead to architectural problems

showing up late in the design cycle, which leads to time consuming redesigns [8].

There have been many e�orts to bring the top down design process into the

analog world.

One approach to increase automation in analog design are circuit generators,

which build both layout and schematics for entire blocks like DACs, ADCs, DC-

DC converters etc. There are two di�erent classes of circuit generators. The �rst

one is constraint or optimization driven, which means the designer inputs con-

straints for the circuit he wants to generate, and the design is then synthesized

from templates with the help of optimization algorithms. For this, the circuit gen-

erator does not need to follow the same procedure that a human designer would

do. Though, top-down generated designs are often rejected by designers, because

their expectations are not met [9]. This may be for example because the synthe-

sized design does not exhibit the same symmetries or layout that the designer

originally envisioned - even if they have no impact on the circuits performance.

The second class are design procedure driven generators [10], [11], [12]. Here a

human 'expert' designer basically codi�es the design procedure that he would

adhere to. Therefore this approach and the outputs of these generators are more

comprehensible and are more likely to be adopted by designers.

All generators have the advantage, that they automate the cell- or block-level

implementation and also improve portability to other process nodes.

8

2.3 Mixed Signal Modeling

2.3 Mixed Signal Modeling

Creating simulation models for a mixed-signal design is a very important task to

facilitate integration and veri�cation in the context of a complete chip. Without

them, the interaction between synthesizable parts and full custom blocks can

not be veri�ed. SPICE models, which are used for transistor level simulations

are not suitable for this task because of the long simulation run times. There

are several programming languages, which can be used to create more abstract

models to increase simulation performance (see �gure 2.1). The challenge here is

the trade-o� between accuracy and simulation performance.

Ac
cu

ra
cy

Simulation Performance/Capacity

SPICE

FastSPICE

Conservative
 Verilog-A
 Verilog-AMS
 VHDL-AMS

RNM
SV-RNM

Pure Digital

Modeling Tradeoffs

Figure 2.1: Performance to accuracy trade-o� for di�erent modeling styles [13]

The main languages for the creation of analog/mixed-signal behavioral models

are

� Verilog A

� Verilog AMS

� SystemVerilog (with real number modeling extension since IEEE1800-2009)

VerilogA targets continuous time analog behavioral modeling. It allows to model

behavior in the voltage/current domain and the simulator still needs to solve

Kirchho�s Current/Voltage Law (KCL/KVL). Although an abstract model writ-

ten for an analog block in VerilogA executes faster than the schematic implemen-

tation, the need for a SPICE simulator is a drawback for fast system simulations.

9

2 Design Methodology

There is no support for event driven digital logic, which makes it unsuitable for

mixed signal modeling.

This restriction is resolved in VerilogAMS, which combines the capabilities of

VerilogA with those of Verilog-2005 [14]. The parts of the behavioral model, which

represent the analog part, can be described in the continuous time voltage/current

domain. The digital part is described in standard Verilog. Events can be created

from certain conditions happening in the analog domain to facilitate interaction

between continuous time and event based simulation.

Another interesting feature, that is added in VerilogAMS is the introduction of

the wreal signal type. Whereas in pure Verilog a module port can only have the

values 0,1,X,Z this adds the capability to have real number valued ports, which

makes it possible to transport �oating point values from one module to another

and therefore model analog behavior purely in an event driven simulator. When

only wreal nets are used instead of electrical voltage/current nets, the simulation

speed is increased a lot. Though, a huge drawback is, that only one real value

can be assigned per port, which e.g. implicates that either voltage or current

information can be transfered to the next module.

With IEEE1800-2009 the wreal capabilities were also added to SystemVerilog,

which opens up the whole testbench code and veri�cation capabilities to mixed

signal modeling and more importantly makes it possible to simulate real number

models in a pure Verilog/SystemVerilog simulator. After wreal seems a very

promising approach, the newest revision of the standard (IEEE1800-2012 [4])

adds some more interesting features for analog/mixed signal behavioral modeling.

Speci�cally user de�ned types (UDT) and user de�ned resolutions (UDR) were

added. UDTs allow the creation of custom types, which can be constructed of

multiple values. This overcomes the problem that only one real value can be

passed to other modules per port. Now a user de�ned type can be constructed

that e.g. consists of one real value for current and one for voltage. As ports

can be of a user de�ned type, one port can now transport multiple values. With

UDRs, custom resolution functions can be de�ned, which handle the problem of

multiple drivers when UDTs are involved. Every time a UDT net is driven from

multiple drivers the de�ned UDR is called to compute the actual value of the net

(or each value of the net, if it is a multi value net) and resolve the con�ict.

To emphasize the possibilities of user de�ned types and resolution functions, the

model of a simple ring oscillator as depicted in �gure 2.2 is described for il-

lustration below: To re�ect the modular implementation structure of the ring

oscillator, the inverter and the controllable capacitance should are modeled in

10

2.3 Mixed Signal Modeling

Figure 2.2: Simple ring oscillator model example

separate modules in this example. The capacitance bit model should be able to

interact with the inverter model to modify its propagation delay and hereby even-

tually control the oscillator frequency. Still, the inverter model and capacitance

bit should have the same portlist like the actual schematic implementation will

later on have. Therefore, load capacitance and time domain waveform both have

to be present at the inverter output. To accomplish this, a user de�ned net type

cap_net together with a resolution function will be de�ned in the following.

A struct cap_struct is de�ned, which is constructed of a real value C for capac-

itance and a wire net for a digital time domain waveform.

typedef struct {

logic net;

real C;

} cap_struct;

On the basis of this struct, a resolution function c_sum is de�ned, which iterates

over all drivers of the net, constructs the time domain waveform and accumulates

all capacitance present at the node. This resolution function is used to create the

nettype.

11

2 Design Methodology

function automatic cap_struct c_sum (input cap_struct driver[]);

foreach(driver[i]) begin

c_sum.C += driver[i].C;

if (driver[i].net === 1'bZ) begin

c_sum.net |= 1'b0;

end else begin

c_sum.net = driver[i].net;

end

end

endfunction

nettype cap_struct cap_net with c_sum;

The simpli�ed models for inverter and capacitance bank can use the nettype, to

model the ring oscillator as follows:

module INV (input cap_net IN, output cap_net OUT);

reg out_net = 0;

assign IN = cap_struct'{1'bZ, 0.1 }; //add load cap

always @ (*) begin

#(10.0+OUT.C); //compute delay

out_net = ~IN.net;

end

assign OUT = cap_struct'{out_net,0.0 };

endmodule

The inverter model INV assigns a capacitance to its input IN, which represents

the load for the preceding stage. The output net OUT is driven with the com-

plement of the input after a delay, which is calculated from a �xed delay and the

load capacitance OUT.C seen at the output.

module CAP (input wire CTRL, output cap_net OUT);

assign OUT = CTRL ? cap_struct'{1'bZ, 0.1 } : cap_struct'{1'bZ, 0.2 };

endmodule

The switchable capacitor model CAP, adds a capacitance to the output node

OUT, depending on the control input net. It is not driving any waveform on the

node.

From these modules the ring oscillator, which is depicted in �gure 2.2 can be

constructed:

12

2.4 Top-Down Design Methodology

module toplevel;

interconnect wire12, wire23, wire31;

...

INV INV1 (.IN(wire31), .OUT(wire12));

INV INV2 (.IN(wire12), .OUT(wire23));

INV INV3 (.IN(wire23), .OUT(wire31));

CAP CAP1 (.CTRL(ctrl), .OUT(wire12));

CAP CAP1 (.CTRL(ctrl), .OUT(wire23));

CAP CAP1 (.CTRL(ctrl), .OUT(wire31));

...

endmodule

At the toplevel, the inverter and switchable capacitor instances can be connected

using so-called interconnect nets. These nets are basically typeless and are co-

erced to a certain type by the sinks or drivers connected to it through the module

hierarchy. This makes it possible to use the same structural Verilog description

and swap and mix di�erent model types, such as RNM or SPICE in and out

depending on the current simulation scope.

These concepts allow to model the actual implementation very closely using real

number models, while keeping all the module interface de�nitions of the actual

implementation. This is a very important property, which is used in the following

top-down design methodology.

2.4 Top-Down Design Methodology

The main goals of the mixed-signal top-down design methodology developed in

the course of this work were to keep the model of the system in sync with the

actual implementation and vice versa, to predict the performance early in the

design cycle, identify and reuse as many common building blocks as possible and

to be able to handle a complex design with a small team.

To accomplish this, the idea is to �rst model the complete system that is built

from both synthesizeable logic and full custom modules in a top-down approach

using SystemVerilog HDL. The design hierarchy is fully di�erentiated down to

the individual modules, which later will have a transistor implementation, like

depicted in �gure 2.3. Hereby, it is important to distinguish between the di�erent

cell types which are present in the design and adhere to the following naming

13

2 Design Methodology

convention:

� "verilog": modules written in synthesizable verilog

� "structural": full custom blocks which only contain leaf cells, but no prim-

itives such as transistors etc.

� "functional": digital only model for a full custom leaf cell

� "rnm": real number model for a full custom leaf cell

� "leaf": generalized leaf cell model usable in both real number and functional

context

Figure 2.3: Design hierarchy example

Structural cells therefore only describe the connectivity of full-custom cells. This

means the structural modules must only contain instantiations and connections

between modules without any behavioral code statements which would require

synthesis. Structural modules can either instantiate other structural modules or

so called leaf cells.

A leaf cell needs at least two model views. A functional model which only exhibits

basic behavior of the cell, like signal �ow, resets, power downs but does not model

cell performance metrics. These models are very fast and can be used in large

system level simulations. The other type of simulation view is the real number

model (RNM). These models exhibit analog metrics of importance to system

14

2.4 Top-Down Design Methodology

scope and cell performance and can be used to explore the design space and

system behavior. The metrics derived and de�ned for these models later serve as

a speci�cation for the full custom cell designer. For better code reuse there is also

the leaf cell type which contains an instance of a more generalized model. This

is for example useful, when there are multiple ampli�ers present in the design,

which all have di�erent characteristics. First, a parameterized ampli�er model is

created for each functional and rnm context. Then, multiple di�erent leaf type

cells can instantiate this ampli�er model, each with a di�erent set of parameters.

Because the actual full custom implementation will di�er, it is necessary to have

di�erent cells, but for the simulation, they can all share the same parameterized

model.

Over time a library of generalized models for all commonly used leaf cell times is

developed, which accelerates design space analysis.

To keep the developed models in sync with the actual implementation as much as

possible, the structural verilog and the leafs cells are used to automatically create

the schematic hierarchy which is used in the full custom design �ow. For this, a

special tool was developed and integrated into the full custom design environment

of Cadence Virtuoso, as will be described in section 2.5.

The text based Verilog views are handled well in version control tools like svn

or git, which eases collaboration between multiple designers. The binary coded

schematic view �les used in EDA tools like Cadence Virtuoso can always be

regenerated to keep consistency.

Changes like adjusting bus widths or introducing new pins in cells deep down

in the hierarchy are faster to incorporate in Verilog than in schematics, where

pins need to be added/edited and symbols regenerated for each level of hierar-

chy. Additionally integrated development environments (IDEs) can be used on

text views, which have sophisticated refactoring capabilities to ease such time

consuming tasks.

As the structural modules only contain instantiations and connectivity they can

be directly synthesized to schematics. For the leaf cells, schematic templates for

the designer are generated. These templates exhibit correct port names, widths

and serve as speci�cation for transistor level implementation. Additionally the

parameters, which are passed to the models to specify circuit performance, such

as gain, poles, zeros etc. are annotated as comments in the schematic.

Because the RNM models exhibit the critical performance parameters, the actual

cell implementations as well as the complete system can be checked against them

15

2 Design Methodology

as a golden sample.

For this methodology to pay o�, it is essential to push as much connectivity into

structural modules and keep the leaf cells as simple as possible. The average leaf

cell usually only contains a handful transistors or other devices. All connectivity

and complexity, which is already present in the structural module hierarchy can

be veri�ed early and will later be automatically generated, hereby eliminating

possible mismatches between model and implementation.

Once the complete mixed signal macro is described, the model can already be

used at the SoC level for further integration and veri�cation while the mixed

signal macro development is still ongoing - guided by the leaf cell models.

Through the use of generated templates for the leaf cell implementation, the mod-

ule boundary such as port widths, port names and instance names stay consistent

throughout the design cycle. It is also easier to work with a team on the design

as block level implementations derived from the templates are guaranteed to �t

together in the end. The complete design �ow is depicted in �gure 2.4.

Figure 2.4: Overall mixed-signal design �ow

In a top-down approach the structural/functional model is created from the spec-

i�cation. This model is already fully di�erentiated down to the leaf cell level and

exhibits the same module hierarchy that the actual implementation is going to

have. It is used for functional veri�cation purposes. For implementation the

digital portions of the design, which have been modeled in synthesizable Verilog

are handled by the established semi-custom EDA �ows. For the custom, analog

16

2.4 Top-Down Design Methodology

parts �rst real number models are created, which are used as speci�cation for the

schematic implementations. As the real number models are used to accurately

model the performance of the complete system, they are used in the Budgeting

step to determine the required leaf cell parameters in the overall system context.

Using the developed custom scripted �ow, the full custom schematic hierarchy is

generated, which ensures consistency between model an implementation.

With the help of schematic driven layout tools like Cadence Layout XL, the layout

of structural cells can be directly generated from the schematics. This ensures,

that the connectivity is the same like in the structural model and correct by

design from model to full custom layout.

All early design space exploration is faster and more e�cient in this top-down

design �ow. Cells, which can be reused at di�erent places in the design are

identi�ed easier and problems arising from interactions on the system level are

found early in the design phase. This increases the chance of avoiding funda-

mental problems during the implementation phase which are costly and can ruin

the complete tapeout schedule. Also, the veri�cation environment can be devel-

oped in parallel. The real number models can be used during the development

phase of the testbenches and can later be replaced with SPICE netlists, where

required. By this, the methodology accelerates the design process signi�cantly,

avoids errors and provides higher �exibility for design changes. Implementation

and veri�cation of the complete mixed signal system are e�ectively coupled into

the same design �ow.

17

2 Design Methodology

2.5 Schematic Generation Tool

In this section the actual schematic and leaf cell template generation, depicted

in �gure 2.5, is now described in more depth. The tool is build around Genus,

the HDL synthesis solution from Cadence and Virtuoso, which is the full custom

implementation tool. It is mostly written in TCL with some parts being SKILL

code, which is necessary to control Virtuoso.

Figure 2.5: Schematic generation �ow overview

The structural modules, as well as the leaf cells are assumed to be stored in the

OpenAccess database used by Virtuoso. This makes sense, because the actual

implementation based on the generated schematics and templates will take place

in Virtuoso. Synthesizable HDL code can be stored anywhere on the �lesystem

and does not necessarily need be in an OpenAccess library (oalib).

Two input �les are needed for the schematic generation tool to work properly.

One is a �lelist, which contains a list of all verilog sources necessary for the

design (structurals, leafs, synthesizable HDL). The �lelist can actually be the

same �le, which is normally used as input for the event driven simulator used

for mixed signal veri�cation - in this case Cadence Incisive. This helps to keep

veri�cation and schematic generation consistent. The other input is a setup �le,

which contains information about the path to the oalib, the toplevel instance

18

2.5 Schematic Generation Tool

name and the open access library names used for the generation process.

Next, the design hierarchy has to be elaborated. Module parameters need to be

evaluated and values propagated from the toplevel instance down to all leaf cells.

Verilog generate statements need to be evaluated, which can create or remove

instances and modify the design hierarchy. For this, like mentioned earlier, the

capabilities of Genus are used, as this is normally the �rst step for HDL code

synthesis. A custom or open source solution might be used for HDL elaboration

as well in the future, as the current approach also has some limitations, which

need to be worked around. As Genus can only work on synthesizable constructs

and the leaf cell modules contain all sorts of non synthesizable SystemVerilog code

like User De�ned Types, the �rst step before elaboration is to generate Verilog

stub modules. These stubs only contain the module declaration, local parameter

de�nitions and comments. UDTs are replaced with simple wires. Next, Genus is

not able to correctly evaluate and elaborate real valued parameters, which makes

it necessary to extract all local parameters of the leaf cells before elaboration, in

order to be able to evaluate them separately afterwards. Regular expressions are

used to extract module header, parameters etc. from the original source �le.

During elaboration, beginning from the toplevel instance, which was speci�ed in

the setup �le, the design hierarchy is build up and parameters are passed through

the structure down to the leaf cells. Further more, problems in the design like

unconnected ports, wrong port widths etc. show up now, allowing the designer

to �x them early in the design cycle.

After elaboration the real valued local parameters, which might be dependent on

other integer valued module parameters are evaluated. A SKILL script is created,

which is later processed in Cadence Virtuoso to annotate these parameters to the

schematic template cells as text comments and oalib properties.

Next, the design hierarchy is traversed to see if modules, which are going to have

a full custom implementation have been instantiated with di�erent parameters.

If so, the names of these so called subdesigns need to be changed accordingly

because the actual implementation needs to di�er and multiple cells need to be

generated. All parameters of the instances are compared and only di�ering ones

are used to rename and identify the subdesigns. The parameters are appended

to the original module name.

An example is a bu�er leaf cell 'BUF', which has a parameter D for 'drive strength'

and is instantiated with e.g. D = 4 and D = 3. Though there was only one leaf

cell as input for the schematic generation, there will be two leaf cells created in

19

2 Design Methodology

the Virtuoso database: BUF_D4 and BUF_D3, because they need a di�erent

schematic implementation.

At this stage an overview of how often which cells are used in the design is

generated as well. This helps to identify possible opportunities for cell reuse

or can show issues with excessive parameterization, which later on will create

manual implementation work.

At last, structural and leaf cells are exported as verilog �les and afterwards im-

ported as schematics to the open access library where they were originally read

from. For this, the verilog import function of Virtuoso is used, which is able to

create schematics and symbols from verilog source code. In order to be able to

construct the structural schematics correctly, the import order has to be con-

trolled in advance. This makes sure all necessary symbols are present for each

schematic once it is generated. The SKILL scripts, which were generated earlier

to annotate the parameters are afterwards processed in a Virtuoso session.

The result of the schematic generation tool are generated schematics for all mod-

ules, which had a structural SystemVerilog description and schematic templates

for all leaf cells. The schematic templates contain correct port names and bus

widths, derived through the hierarchy. Parameters, which were used in the RNM

models are annotated to the schematic templates as comments to guide the de-

signer in the implementation process.

To ease the usage of the schematic generation �ow, it has been integrated in the

context menu of the Virtuoso Library Manager. The designer can right click on a

cell and chose to generate a schematic or template either for all hierarchy starting

from the selected cell or only for the selected cell. The schematic generation tool

is then invoked in the background. After completion the current libraries are

refreshed. This integrates the methodology seamlessly into the known working

environment, makes it easy to use and increases the acceptance by designers,

which is an important factor.

The actual TCL implementation of the tool is not further discussed here, as there

is not much scienti�c value in the code itself, but in the process that has been

described earlier.

20

2.6 Liberty File Generation Tool

2.6 Liberty File Generation Tool

During the back-end implementation process of the mixed signal macro, full cus-

tom modules are used together with synthesized logic. Timing information, so

called timing arcs, for the full custom blocks can be passed to the synthesis tool

using timing abstract models. The industry standard to describe timing informa-

tion during synthesis is the Liberty File Format (.lib). So, for proper integration

into a mixed signal design �ow, the generation of .lib �les for the implemented

full custom blocks is necessary.

There are commercial tools such as 'Cadence Liberate' available, which analyze

and extract timing arcs from a design. Though in the course of this thesis it

turned out, that these tools are mostly focusing on CMOS based standard cell

logic characterization. Additionally the setup is quite complicated, which might

be exaggerative if only a very small number of cells with fairly easy timing arcs are

to be characterized. Therefore a .lib �le generation tool was implemented in TCL,

which complements the described methodology and helps enforcing consistency

throughout the whole design �ow.

The tool takes a setup �le and the structural Verilog description of the full cus-

tom toplevel as inputs. All input/output ports are extracted from the Verilog

description, which makes sure that the .lib �le and the implementation can easily

be kept in sync with respect to port names, bus width etc. The setup �le de�nes

all timing arcs, which are present in the design and additional information which

should be added to the .lib �le later on.

Figure 2.6: Timing library generation �ow overview

21

2 Design Methodology

In a �rst pass, the Verilog source code is read and a .lib �le template is generated.

This template �le already contains all non corner related information, such as

pin and timing arc de�nitions, but lacks actual values for propagation delay or

setup/hold times. This corner dependent timing information needs to be derived

from circuit simulations �rst and is then annotated to the template �le in a

second pass later on. To ease the testbench creation and timing annotation

to the template, measurement expressions for Cadence' simulation environment

ADE XL are created. These expression can be imported in the ADE XL GUI

and make sure that simulation results, which are exported from the testbench

match the ones expected by the .lib �le generation.

The testbench to derive the timing arcs needs to be created manually. The

creation of a suitable simulation environment as well as stimulus generation is very

hard to automate, because every circuit that has to be characterized is slightly

di�erent and has to be driven di�erently in order to stimulate the desired timing

arcs. A textual description of the necessary stimulus which would be needed for

automatic testbench generation, that can support a wide range of di�erent circuits

would probably be more complicated for the user than the manual testbench

schematic creation.

As the actual simulations then take place in ADE XL, all features like corner

setup and distributed processing can be used to generate the desired timing arc

data. After the simulations complete, the results of the measurement expressions

are exported to comma separated values (CSV) �les. CSV �les exported from

multiple testbenches can then be processed by the .lib generation tool in a second

pass to build the timing tables and �ll them into the template �le. For every

simulation corner de�ned in the ADE XL corner setup a copy of the template

�le is created and the respective timing data is inserted. The .lib �le names

are automatically generated from the operating conditions and include process,

voltage, temperature (PVT) for a consistent naming scheme.

22

2.7 Link Budgeting

2.7 Link Budgeting

As one of the goals of this thesis is the implementation of a high-speed serial link,

a major concern is to be able to verify and predict the performance of a SerDes

design in advance.

Link budgeting tries to gives an answer to the question how every component in

a serial high speed link contributes to the overall performance - or rather how

much each component e.g. the transmitter, channel and receiver degrades the

quality of a link. The main �gure of merit is the bit error ratio (BER).

Besides all functional veri�cation done on a SerDes design, it is a very important

question which BER is going to be achieved for a given SerDes and transmission

channel setup. The bit error ratios, which need to be achieved for protocols like

PCIe or Ethernet lie in the range of 10−12 to 10−15 [15]. This means, that for

a 10G Ethernet link with 10.000.000.000 bits being transmitted per second, one

error is allowed to happen every 100 seconds to achieve exactly a BER of 10−12.

It is obvious then, that with practical circuit simulations where maybe only 1µs

of normal operation is simulated, the existence of multiple bit errors during this

time would indicate that the design is completely broken.

Additionally, because of the unbounded statistical processes which play a role

in BER calculations, even the simulation of error free operation of 100 seconds

would not be enough to indicate a BER of 10−12, as at least 3 · 1012 bits are

required to measure such a BER with 95% con�dence [16]. In the following, �rst

some more detail is given on what factors play a role for serial link performance

and afterwards the link budgeting procedure for the SerDes developed in the

course of this work is described in more detail.

There are two types of graphs often used to asses the quality of a high speed

serial link. One is the so called eye diagram and the other one is the bathtub

curve.

An eye diagram (see �gure 2.7) is usually constructed from a recorded time do-

main waveform. The time information of each sample that has been captured

is taken modulo by the bit time, when plotting the diagram. Hereby the wave-

forms of all bits that are transmitted are overlayed multiple (thousand or even

million) times. By this, a graph is constructed that essentially depicts what the

probability of the sampled signal is to take on a certain value. From this plot

it is then also clear that the best sampling position to decide if the received bit

is a zero or a one, is the middle of the eye. If this point is never crossed by the

received signal, every bit can be correctly identi�ed. There will be no bit errors,

23

2 Design Methodology

and the eye is called open. The open space left in the middle of the eye is then

the eye-margin.

Figure 2.7: Eye diagram of a 10 Gbps signal

Variations in the time (horizontal) or the voltage (vertical) domain, which cause

the eye to close by shifting the signal with respect to its ideal position are called

jitter and noise respectively. There are di�erent types of jitter, which are caused

by di�erent underlying phenomena in a real serial link. Jitter can be divided into

two di�erent main classes: deterministic and random.

Figure 2.8: Jitter type taxonomy

Whereas for deterministic e�ects, it can be said with certainty how they a�ect the

signal, for random e�ects there is only a certain probability, which can be used

to predict the e�ect with a certain con�dence [16]. The e�ect of deterministic

impairments is generally bounded, whereas random jitter is unbounded. Figure

2.8 gives an overview on di�erent jitter classes which are brie�y discussed in the

following.

24

2.7 Link Budgeting

The most obvious deterministic e�ect in the context of serial links is so called

inter symbol interference (ISI), a type of data dependent jitter (DDj).

Figure 2.9: Single bit response, the waveform of a lone bit transmitted over the
channel, spreading into multiple unit intervals

Because of the low pass characteristic of common transmission channels, the

transmitted symbol (zero or one) will smear into the next symbol time(s) and

a�ect the waveform. The single bit response (SBR) (�gure 2.9) can be used to

analyze how subsequent bit times are a�ected by a previously transmitted symbol.

If the transfer function of the transmission channel is assumed to be �xed over

the time of operation, the SBR and therefore the ISI will always be the same

and hence deterministic for a given bit sequence. Coding of the transmitted data

can be used to only allow certain patterns and limit the number of consecutive

equal symbols (maximum run length), thereby limiting the ISI. Figure 2.10 shows

the resulting ISI for a PRBS31 pattern which contains up to 31 consecutive ones

and zeros and 8B/10B coded data, which has a maximum run length of 5 and

a limited amount of allowed symbols. In modern protocols, such as PCIe 3.0

even longer run length of 130 bits are theoretically possible because of the use

of scrambling polynomials to code the data [15]. The actual di�erence observed,

though depends on the SBR and therefore on the channel characteristics.

Another deterministic jitter type is sinusoidal Jitter (Sj), which can be caused by

deterministic noise sources on clock generation or power supply. If there is for

example a sinusoidal perturbation on the sampler clock, this will have an impact

on the eye diagram, because the sampling clock is now no longer in the center of

25

2 Design Methodology

Figure 2.10: Eye diagrams of 8b/10b coded and PRBS31 data

the eye, but has a certain probability for its position. This is best described by

a probability density function (PDF). In short, a PDF f(x) gives the likelihood

that a sample of a certain random variable X will take on the value x. It is

important to say, that the PDFs of these sources are bounded and therefore can

be characterized by a peak to peak value.

Additionally, real samplers in a receiver are not like ideal dirac samplers, that

are used in signal processing theory, which are able to obtain an instantaneous

signal value in an ideal way [17]. In reality a sampler has a sampling aperture.

This aperture spans over a certain time interval and the input waveform over

the whole interval is taken into account to form the sampled value. This can be

characterized, extracted as a PDF and used in the link budgeting process [18].

Also, there might be static voltage or timing o�sets in the receiver, duty cycle

distortion in the transmitter or crosstalk from nearby channels. It should now

be obvious that if the eye is closed solely by deterministic e�ects, the link will

de�nitely not work. Though, usually various equalization techniques are applied

on the transmitting and receiving side in modern serial links to counter ISI. Cali-

bration methods can further be used to minimize static o�sets. These techniques

are discussed in chapter 3.1.

26

2.7 Link Budgeting

Once the eye was opened up through the means of equalization, random jitter

becomes the limiting factor in terms of BER. Random jitter is caused by thermal

or device noise. For the underlying physical process in general a Gaussian distri-

bution of the jitter amplitude is assumed. The well known PDF of the normal or

Gaussian distribution (�gure 2.11) is given below:

Figure 2.11: Gaussian distribution used to model random jitter

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.1)

For the Gaussian distribution µ is the mean, σ the standard deviation and σ2

the variance. The integral over a Gaussian bell is 1, but the tails spread out to

in�nity. This means that the random jitter amplitude is unbounded, the eye will

be closed eventually and a bit error will theoretically happen if the link runs long

enough (maybe for an in�nite amount of time). Of course, like stated earlier it is

su�cient to guarantee e.g. that for PCIe the transmitted bit error ratio is better

than 10−12.

The integration of a PDF yields the cumulative distribution function (CDF) of

a random variable. A CDF f(x) gives the probability that a certain random

variable will take a value less than or equal to x. For the special case of a normal

distribution having a mean µ = 0 and a variance σ2 = 1/2 the CDF of the

Gaussian distribution is called the error function erf(x).

If a noise source can be approximated by a Gaussian distribution, it is fully

characterized by its standard deviation. The complementary error function can

then be used to convert the standard deviation of the noise into a peak-to-peak

27

2 Design Methodology

value at a given BER [19]. By this, a �rst order estimation of a link timing

margin can be calculated in a quick way like shown below:

For a 10Gbps link, let the UI be 100ps (Tui = 100ps). Let's also assume the

following jitter contributions

� 30ps peak-to-peak of data-dependent jitter through ISI (DDj,pp = 30ps)

� 5ps peak-to-peak of sinusoidal jitter through power supply noise (Sj,pp =

5ps)

� 2ps random jitter on the transmitter side from device noise in the driver

and clock generation (Rj,tx,σ = 2ps)

� 3ps random jitter on the receiving side from device noise in the sampler

and clock generation (Rj,rx,σ = 3ps)

From statistics textbooks we know, that two Gaussian distributions with σa and

σb can be added to a new Gaussian distribution with variance σc by calculating

the root sum square (RSS) of the contributing variances: σc =
√
σ2
a + σ2

b . The

Tx and Rx random jitter values can therefore be combined to a single Rj. With

the complementary error function, we can calculate that the variance has to be

multiplied by approximately 14 to yield the peak-to-peak value at a BER of 10−12

(as derived in [19]).

Therefore the timing margin Tmargin at 10−12 is

Tmargin = Tui −DDj,pp − Sj,pp − 14 ·
√
R2
j,rx,σ +R2

j,tx,σ

= 100ps− 30ps− 5ps− 14 · 3, 6ps

= 14, 6ps

(2.2)

Because Tmargin is still positive, the link will work with the desired BER. Of course

this is a very rough estimation, but it illustrates the interaction of deterministic

and random sources. For a more accurate answer the eye diagram is much better

suited, also because it gives the margin in both timing and voltage domain. The

PDFs of di�erent noise sources are added together by convolution (as illustrated

in �gure 2.12), yielding a more accurate picture than just peak-to-peak values.

Eventually by convolving all sources together an eye diagram containing both

deterministic and random e�ects is constructed (see �gure 2.13). While the eye

diagram now basically displays the probability density function, with the BER

coded as colors, a bathtub curve can be constructed from it through integration of

the PDFs (�gure 2.14) from both sides of the eye. The bathtub curve has the BER

28

2.7 Link Budgeting

Figure 2.12: Convolution of deterministic (Dj) and random (Rj) jitter PDFs to
derive a total jitter PDF

on the Y-axis and the timing margin on the X-axis. Because the deterministic

parts get integrated �rst, the timing margin drops rapidly, whereas the tails of

the bathtub are entirely dictated by the amount of random jitter. The bathtub

curve can be used to easily get the timing (or voltage) margin for a given BER.

Figure 2.13: Eye diagram with random and deterministic jitter added. PDFs
and CDFs for the transitions which are used to derive link budgets

There are statistical simulators like Seasim [20] available, which can calculate an

eye diagram from a set of input jitter and channel parameters.

Though, for the SerDes developed in the course of this thesis an improved ap-

proach is used. It leverages real number modeling, integrates well with the overall

design methodology and makes it possible to visualize and verify the impact of

architectural decisions on bit error ratio.

29

2 Design Methodology

Figure 2.14: Bathtub curve for the horizontal centerline of an eye diagram.

In [18] a framework was developed, which allows S-parameter models of a trans-

mission channel to be used in an event based simulator in order to be able to

carry out the budgeting simulations. With the help of real number modeled

transmitter, channel and receiver simulation speeds are high enough to use the

same equalization adaptation and calibration mechanisms that are later used in

the manufactured device. With SPICE simulations this would not be possible in

reasonable time frames. Because the whole system is accurately modeled down

to the leaf cell level like stated earlier, the real number model exhibits the same

behavior and performance that are expected from the transistor implementation.

This makes it possible to take additional e�ects like deterministic jitter induced

by the clock data recovery (CDR) in the receiver into account, that are otherwise

hardly covered by the statistical simulators mentioned above. Although the simu-

lations are order of magnitudes faster, they would still take a lot of time if random

e�ects would be simulated for extremely low BER like 10−12 or 10−15 as required

by some standards. Therefore, in the budgeting simulations only deterministic

e�ects are derived and random contributions are added through post processing

the data. To verify the framework, the simulations can still be executed with

random e�ects included, with the penalty of much longer runtime, depending on

required BER.

In the following, the link budgeting procedure for the SerDes is brie�y described

(depicted in �gure 2.15). For details on channel modeling, ISI extraction and

post-processing be kindly referred to [18].

30

2.7 Link Budgeting

Figure 2.15: Budgeting process overview

The �rst step of the actual budgeting simulation is the initialization of the SerDes,

which includes power-up and reset sequence of the di�erent blocks like receiver

front-end, clock dividers, CDR, etc.

Next, o�set calibration takes place. This can either be executed using the actual

built-in hardware control loops (see 3.5.7) or by determining the residual o�sets

in the speci�c blocks directly according to achievable granularity. Both should

yield the same results and the hardware calibration can be bypassed once veri�ed,

to save simulation time. Next, random patterns are sent by the Tx side and the

Rx side uses its built-in equalization adaptation to set the control vectors of all

equalizers for the given implementation and channel. This, again can be veri�ed

against the theoretical optimum settings which are achievable. Simultaneously,

the CDR is used to �nd and adjust the optimal sampling point. Once the adap-

tation is converged, the transmitter is used to send a single bit response. The

resulting waveform is recorded and used for post-processing.

During post-processing an eye diagram, which includes ISI is constructed from

the single bit response. Theoretically this could also be done through transient

simulation and waveform overlay, but depending on the channel characteristics

and pattern lengths quite long simulation times are needed to determine all possi-

ble ISI. A faster way is to use the single bit response and so called peak distortion

analysis (PDA). The basic idea is to convolve the single bit responses of a lone

zero and a lone one with shifted versions of itself to form an overlay of all possible

31

2 Design Methodology

patterns (see [21] for details). This eventually yields an eye diagram. A modi-

�ed version of the PDA algorithm also takes the probability for a given pattern

into account, yielding a more accurate result if true random tra�c is assumed

[22]. Though, depending on the line coding (like 8b/10b) used on the link, true

randomness might not always be the case.

The e�ects of equalizers on both the Tx and Rx side are already fully taken into

account, so that only residual channel ISI is used for BER calculations.

CDR induced bounded jitter - which is dependent on the residual ISI - is also

accounted for in the �nal timing budget as it is extracted from time domain

simulations.

Because the RNMmodels of the leaf cells exhibit parameters for impairments such

as o�sets or non-linearities, the impact of these e�ects on the system performance

can be explored in a fast way and speci�cations for the leaf cell implementation

can be derived. This can also be done the other way around, to �nd out if

the performance achieved by a transistor implementation is appropriate in the

system context. The advantage over other system modeling approaches such as

Matlab/Simulink is, that the gap between model and implementation is very

small and less abstract, while still providing a good simulation performance.

32

3 High Speed SerDes Architecture

3.1 State of the Art Serial Links

Although this work focuses mainly on the physical layer (SerDes PHY) of a serial

link, a quick look on the broad topic of serial links in general should be taken.

By understanding what applications for serial links exist, it will get clearer that

a multitude of di�erent constraints are imposed onto the actual SerDes.

The most prominent high level distinctions are data rates and transmission chan-

nel characteristics. Table 3.1 and �gure 3.1 give a brief overview of line rates,

channel lengths and channel loss for a small selection of standards.

Name Datarates (Gbps) Comment
PCIe 2.5, 5, 8, 16 Tens of centimeters PCB
10G Ethernet 10.3125 Several meters cable
HMC 10.0, 15.0, 30.0 Few centimeters PCB
OIF CEI1 10.3125, 25.x, 28.x Few centimeters PCB

Table 3.1: Selection of serial link standards datarates and approximate transmis-
sion channel characteristics

While some standards, like the Hybrid Memory Cube (HMC) serial link are

meant to only be used between chips on the same PCB spaced a few centimeters

apart, others like 10G Ethernet can consist of multiple connectors and meters of

cable. PCIe transmission channels normally also have at least one connector and

are tens of centimeters of fairly low cost PCB long, which increases attenuation.

Additionally a PCIe 3.0 link for example has to support multiple datarates, which

are not even integer multiples of one another. When taking the channels de�ned

for Common Electrical I/O (CEI) of optical transceiver modules into account,

these range from ultra short range (USR) over medium range (MR) to long range

(LR) with data rates up to around 28Gbps. Of course it would be possible to

build an optimized custom transceiver for each of these use cases, but from the

standpoint of a SoC designer it is highly desirable to have a single SerDes block

which �ts the needs of multiple protocols. Also, complex SoCs are implemented

1The Optical Internetworking Forum (OIF) de�nes a Common Electrical I/O (CEI), which is
primarily used to electrically interface optical transceiver modules.

33

3 High Speed SerDes Architecture

in semiconductor processes which focus on digital standard cell logic performance.

Most traditional analog macros in contrast, do not bene�t from advanced process

nodes in the same way in terms of performance and scaling. For example, a 100

Ohm polysilicon resistor, which sustains a certain current will have approximately

the same size in a 28nm technology as it had in a 180nm process and the size

of an inductor used in an LC oscillator is also not going to scale down. Further,

operating voltages keep decreasing to save power in the digital logic, but transistor

threshold voltages are not decreasing in the same way. This means some proven

analog circuit topologies are getting harder to realize. Noise margins are going

down, which is a bigger problem for analog than digital circuits. Additionally

local variations and leakage are increasing, which makes the design of structures

that depend on well matched components more challenging. Power consumption

is also becoming an even more important concern, as the serial I/O takes up a

decent chunk of the overall power budget. The metrics of pJ/bit or mW/Gbit

are therefore commonly used to asses the power e�ciency of a serial link PHY.

All the constraints mentioned above are driving the design process of state of the

art multi-protocol SerDes designs.

An extensive study has been done in order to get an overview of current devel-

opments, implementations and trends in the design of high-speed SerDes PHYs.

On this basis a short overview of state of the art serial links is given to motivate

the architecture created in the course of this thesis.

Figure 3.1: Channel loss for di�erent transmission channel standards.

34

3.1 State of the Art Serial Links

3.1.1 Line Coding

An important feature in the design space that does sometimes get overlooked is

the line coding or modulation. The vast majority of high speed wireline SerDes

nowadays used in the context of computing or high speed networking are built

for non-return-to-zero (NRZ) coding. The advantages of this very simple scheme

are that it does not impose additional complexity to modulate or demodulate

the data, which would add latency or require additional power. This is only

possible because of fairly good channel characteristics and exclusive use of the

transmission medium. Wireline transmissions, which use higher order modulation

schemes, such as quadrature amplitude modulation (QAM), that are for example

used in digital cable TV networks, are out of scope of this thesis. Though,

since data rates are increasing, it is getting harder to achieve further bandwidth

increase with NRZ coding over the presently used transmission channels. This

currently leads to the emergence of another modulation technique, namely 4 level

pulse amplitude modulation (PAM4).

Figure 3.2: NRZ and PAM4 transient signal as well as resulting eye diagrams.

Compared to NRZ (which is equivalent to PAM2), PAM4 uses 4 levels compared

to 2 levels of plain NRZ (see �gure 3.2). This doubles the achievable data rate

but cuts the signal to noise ratio (SNR) by 1/3 compared to NRZ. Bandwidth

is therefore traded with SNR. This can be favorable, depending on the channel

characteristics and data rate.

The additional complexity imposed on Tx and Rx are the need for multilevel

signaling on the transmitting side and multilevel sampling on the receiving side.

35

3 High Speed SerDes Architecture

Nevertheless a lot of research work is currently being done in the area of PAM4

wireline transceivers.

3.1.2 Synchronization

Another factor, that de�nes the complexity, mainly of the receiver, is the re-

lationship between Tx and Rx clocking. Earlier source synchronous links like

HyperTransport used to forward the Tx clock to the Rx via a dedicated clock

lane so that it could be used in the Rx block to sample the received data syn-

chronously. This obviously required additional space on die, package and board

to transmit the high-speed clock. Moreover it induced very tight skew constraints

on the data lanes if no additional phase shifting was used in the receiver. With

shrinking UIs this practice is now only rarely used.

Instead of using an additional signal for clock transmission, the clock is nowadays

embedded into the data stream. This means a coding is applied which guarantees

a speci�c minimum amount of data transitions within a de�ned number of bits,

and a clock data recovery (CDR) system is used on the receiving side to extract

the optimum sampling phase. Depending on whether the reference clock of Tx

and are Rx synchronous (like PCIe) or completely asynchronous (like Ethernet)

this CDR may have to be able to compensate for a continuous frequency drift

instead of only a static phase o�set. Depending on the magnitude of the allowable

frequency di�erence this requires additional e�ort from the CDR.

3.1.3 Line Drivers

At the transmitter side current mode logic (CML) drivers were dominant for a

long time. This has now shifted towards voltage mode stub series terminated

logic (SSTL) drivers. In �gure 3.3 the two di�erent circuit topologies are shown

from a high level perspective.

Whereas the SSTL driver has the termination resistance in series, the current

mode driver has its termination resistors in parallel. This leads to an inherent

lower power consumption of 1/4 for an SSTL driver as a �rst order estimation,

if the same swing is going to be achieved [23]. Additionally, the power consump-

tion of the SSTL driver is really proportional to the number of data transitions,

compared to static power burned by the CML driver, regardless of the datarate.

The downside is, that SSTL is usually implemented as pseudo di�erential, hav-

ing two rather independent single ended drivers which are just sending data with

36

3.1 State of the Art Serial Links

Figure 3.3: CML driver (left) and SSTL driver (right) topologies

opposite polarity. This makes them more susceptible to skew and power supply

noise. CML on the other hand is truly di�erential and has a better power supply

rejection because of the tail current source. Still, with the focus on e�ciency and

power consumption, most recent implementations are using SSTL drivers.

37

3 High Speed SerDes Architecture

3.1.4 Equalization

To overcome the impact of channel loss and impedance discontinuities at very

high data rates, equalization has also become a very important part of serial link

design. Whereas legacy standards, like PCIe Gen1 relied only on a very simplistic

static equalization scheme on the transmitter side, modern links usually split the

equalization between Rx and Tx. Di�erent types of equalizers, which are often

complemented by adaptation algorithms to �nd the best settings for a given data

rate and channel, are used. This makes equalization expensive in terms of die

area and power consumption. In the following three basic concepts, which are

implemented in most modern SerDes PHYs are discussed.

Figure 3.4: Feed forward equalizer

The transmitter side usually implements a so called feed forward equalizer (FFE),

which basically is a �nite impulse response (FIR) �lter. In �gure 3.4 a 3 tap FEE

is depicted. The output signal is constructed by building a weighted sum from

delayed versions of the input signal:

Dout = c−1 ∗D−1 + c0 ∗D0 + c1 ∗D1 (3.1)

Where D−1 is called pre cursor, D0 main cursor and D1 post cursor. cx are the

respective pre, main, post cursor coe�cients. Usually the sum over all absolute

coe�cient values |cx| is equal to 1. This means that the maximum signal swing

is kept constant regardless of the chosen coe�cients. A sample waveform is given

in �gure 3.5.

With an FFE the signal gets pre-distorted on the transmitting side. Because

the overall signal swing is kept constant, the emphasis of high frequency content

is e�ectively achieved by attenuating the DC content. The resulting eye at the

receiver in more equalized, but at the cost of smaller signal swings.

38

3.1 State of the Art Serial Links

Figure 3.5: Feed forward equalizer resulting waveform with pre and post emphasis

The �nite signal swing also limits the magnitude of distortion that can be applied

to counter the channel characteristics. The optimum coe�cients are speci�c for

a given channel, and need to be derived either through simulation or in system

adaptation. Most SerDes PHYs implement a 3 tap FFE, which is also a require-

ment for PCIe Gen3. It is interesting to note, that a 4 tap FFE transmit equalizer

can also be used to encode data into PAM4 [24].

On the receiving side in state of the art designs usually two di�erent types of

equalizers, which complement each other, are implemented. At the input there

normally is a �rst stage implementing a continuous time linear equalizer (CTLE),

followed by a digital time discrete decision feedback equalizer (DFE).

The CTLE is a fully analog ampli�er with a transfer function that counteracts

the channel loss as seen in �gure 3.6. This is usually partly achieved through

actual high frequency gain and partly again by DC attenuation.

Figure 3.6: Low pass transmission channel, CTLE and equalized combined
channel+CTLE transfer function

39

3 High Speed SerDes Architecture

The basic circuit topology of a CTLE is given in �gure 3.7. Basically it is a

CML ampli�er with a degenerated tail current source. The single tail current

source is split into two sources which are again shorted with a combination of

resistor and capacitor. The resistor de�nes the DC gain of the ampli�er, whereas

at high frequencies the capacitor shorts the tail current sources branches together

leading to increased high frequency gain again [25]. The zero and 1st pole of the

transfer function are dependent on both R and C. Usually both components are

adjustable, so they can be used to adapt the CTLE frequency response.

Figure 3.7: Basic CTLE circuit topology

The downside of a CTLE is, that every input is obviously treated the same way.

This implicates that all noise and crosstalk is also ampli�ed along with the desired

signal. Therefore, in modern serial links, where a large amount of channel loss is

present a CTLE is often used together with a decision feedback equalizer, which

does not su�er from noise ampli�cation in the same way.

Figure 3.8 depicts the working principle of a DFE, which is a digital, time discrete

�lter. At the input, a comparator is used to decide if the sampled signal is a logic

zero or one. In front of the comparator a weighted summation of previously

received bits and the input signal is performed. This basically implements an

in�nite impulse response (IIR) �lter. If for example several consecutive logical

ones are received, the summation leads to an o�set at the comparator input,

which then favors a weak zero. Because of the feedback path it is theoretically

possible for a DFE to lead to error propagation once wrongly sampled bits entered

the feedback path. In practice the bit error rates are normally low enough to get

40

3.1 State of the Art Serial Links

the DFE back to error free operation, if this happened.

Figure 3.8: 2-Tap DFE working principle

The number of previously received bits, which are summed at the input deter-

mines the number of taps of the DFE. PCIe Gen3 demands at least a 1-tap DFE,

to cancel the e�ect of the �rst post cursor tap. The �rst tap usually has the

largest impact but in practice often 3 or 5 taps are implemented. There are also

designs, especially for long backplane scenarios were DFEs with tens of taps are

used [26]. The necessary number of taps of course depends on the channel char-

acteristics and should be kept at a minimum because the actual implementations

are often very power hungry. For the actual summation in front of the compara-

tor di�erent mechanisms are used. State of the art implementations have been

analyzed in [27].

41

3 High Speed SerDes Architecture

Figure 3.9: DFE corrected SBR

Figure 3.9 shows a single bit response (SBR) after DFE correction. Due to the

time discrete nature, discontinuities are visible at the time the o�set is applied.

From this, it is also visible that a DFE equalizes the signal only at the data

sampling points. If e.g. an oversampling clock data recovery circuit is used,

which takes additional samples at UI boundaries, a DFE in the datapath does

not remove ISI from these additional samples.

In contrast to a CTLE, a DFE does not amplify noise or crosstalk. Another

helpful property is the ability to counter re�ections, caused by impedance dis-

continuities at connectors or vias. Depending on channel length a re�ection might

arrive at the receiver several bit times after the bit which caused it. This can

not be equalized using a CTLE, but if a DFE has a tap which corresponds to

the necessary delay, the re�ection can be completely canceled as it is a determin-

istic e�ect. For this, recent DFE implementations added so called sliding taps.

These can be adjusted according to their delay in respect to the main cursor and

positioned at times the re�ections are received.

42

3.2 Architecture Overview

3.2 Architecture Overview

In this chapter the SerDes architecture developed in the course of this thesis is

described. First a general overview is given and the main ideas driving the overall

architecture are stated. Afterwards the di�erent main components such as clock

distribution and generation, the receiver and transmitter are described in more

detail.

A serial link is normally build from multiple lanes. To support di�erent protocols

with di�erent link widths, the individual lanes were built to be independent from

each other and can be cascaded by abutment. The common clock is generated by

a central phase locked loop (PLL), which is then distributed from lane to lane.

Every lane contains a bu�er to distribute the common clock to the next lane. The

number of lanes, which share a common PLL is only limited by the jitter which is

accumulated by the clock distribution bu�ers. The more lanes share a common

PLL, the better the power e�ciency of the clock generation. Every lane contains

a receiver and a transmitter, which share some common clocking infrastructure.

Parallel
DatavOutput

BER
Estimation

Terminationv
&vESD

Deserializer

CDRvLogic

Controlv&vCalibrationvLogic EyevMonitor

ParallelvDatav
Input

Serial
Data

Controlv&vCalibrationvLogic

ReceivervLane

TransmittervLane

FullvCustomvLogic SynthesizedvLogic

Clocking

Clocking

Equalizer
Serial
Data

Digitalv
PLL

Outputv
Driver

Equalizer Samplers

Serializer

Figure 3.10: Coarse SerDes architecture overview

Figure 3.10 gives a coarse overview of the general architecture of a single SerDes

lane. The main goal was to create a �exible, robust and portable design. This

immediately lead to the conclusion to use as much synthesizable, digital logic

as possible. Digital logic is much more immune against process variation than

43

3 High Speed SerDes Architecture

analog circuits and synthesizable logic written in an HDL is much more portable

than full custom logic. This is especially true in advanced nodes such as 28nm

and below where variations are increasing and supply voltages are decreasing.

Full-custom and semi-custom parts are distinguished in �gure 3.10.

Frontend parts in the high-speed datapath such as the output driver in the trans-

mitter and the equalizers and samplers in the receiver are implemented as full-

custom blocks. Same is true for most of the clocking resources, which are partly

shared between Rx and Tx. All control and calibration logic, which includes most

parts of the actual serializer/deserializer as well as the CDR are implemented in

semi-custom fashion.

The main focus of the work carried out in the course of this thesis was on clock

data recovery and clock synthesis using a digital PLL, which is subsequently

presented.

44

3.3 All Digital PLL

3.3 All Digital PLL

Both transmitter and receiver require a high speed clock for their operation. This

clock has to be generated and distributed to the individual lanes. Usually high

speed clock generation is done using a phase locked loop (PLL). A PLL uses

an external reference oscillator to generate a synchronous output clock, which

is a multiple of the reference clock. For a high-speed SerDes very high clock

frequencies of up to 14GHz and more are necessary. In order to achieve the

desired bit error ratios at data rates of 28Gbps, a generated clock random jitter

of below 1ps is necessary. This is very challenging to achieve. Moreover, the

clock generation needs to be �exible enough to support di�erent reference clocks

and output frequencies, in order to support di�erent SerDes rates. For increased

power e�ciency it is also desirable to share one clock generation unit between as

many lanes as possible. As the main clocking component, the PLL which was

developed in the course of this thesis is now described in detail.

3.3.1 Introduction

In �gure 3.11 the general architecture of a PLL is depicted. In a traditional

analog PLL, there is a phase detector (PD), that generates a voltage, which is

proportional to the phase di�erence of the reference clock fref and the feedback

clock ffb.

Figure 3.11: PLL working principle

The output signal of the phase detector is �ltered by the loop �lter (LF). As a

PLL is basically a control loop which minimizes the phase error of reference and

feedback clock, the loop �lter is responsible for the control loop characteristics

45

3 High Speed SerDes Architecture

such as stability and bandwidth. The loop �lter design is usually a major concern

when building a PLL.

The �ltered output of the PD is fed to an oscillator, which is traditionally a

voltage controlled oscillator (VCO). The control voltage determines the instan-

taneous frequency of the VCO. To close the loop, the VCO output fout is used to

clock the feedback divider which has a division factor of N . The divided clock is

fed back into the phase detector.

By this, the output frequency fout is set as

fout = fref ∗N (3.2)

Besides the fact that one is usually interested in fout, the PLL control loop does

not work in the frequency but in the phase domain. This stems from the fact,

that the VCO over time integrates an o�set in frequency into a phase error. The

analog PLL characteristics can be analyzed by using traditional control theory

transfer functions.

The open loop transfer function of the PLL depicted in �gure 3.11 can be written

as

G(s) = Kpd ∗ Zlf (s) ∗
Kvco

s
(3.3)

where Kpd is the phase detector gain coe�cient, Zlf (s) the loop �lter transfer

function and Kvco the VCO gain coe�cient [28].

The transfer function of the feedback path H only consists of the division factor

N and can be written as

H =
1

N
(3.4)

Finally, the transfer function for the feedback system, consisting of G(s) and

H(s) can be put together according to control theory textbooks, to form the

closed loop transfer function

CL(s) =
G(s)

1 +G(s) ∗H
(3.5)

By analysis of poles and zeros of this transfer function the characteristics of the

PLL can now be assessed. This can be complex, especially if higher order loop

46

3.3 All Digital PLL

�lters are used [28]. However, this is not the scope of this thesis, especially

because the PLL, which was built is not an analog but a so called all digital

PLL (ADPLL). Still the introduction above will be very useful for the general

understanding of the following.

As stated earlier, in a traditional PLL the control information is represented

as an analog voltage. As all subcomponents are susceptible to di�erent sources

of voltage noise, the performance can easily be degraded. This is especially

a problem in advanced semiconductor process nodes where supply voltages are

being scaled down, decreasing the voltage headroom and signal to noise ratio.

Additionally in these types of processes analog properties such as linearity or

device matching are getting worse and analog loop �lters, built from resistors and

capacitors, are not scaling down with the technology. This lead to the emergence

of digital PLL architectures, which tend to bene�t from process scaling. The

control information is no longer stored as an analog voltage but encoded in digital

codes stored in registers.

Despite the bene�ts that digital PLLs bring, there are also new problems which

arise, such as quantization errors and non linearities in the control loop. These

can degrade the performance and complicate the analysis compared to traditional

PLLs.

In �gure 3.12 the general architecture of a second order ADPLL is depicted and

will be described in the following. As it can be viewed as a time discrete control

system, it is possible to employ the z-transformation as a time discrete version

of the Laplace transformation for system analysis [29].

Figure 3.12: ADPLL working principle

Because the phase error information is processed by a digital loop �lter, it has to

47

3 High Speed SerDes Architecture

be digitized �rst. This is done by means of a so called time to digital converter

(TDC). The simplest implementation of a TDC is a binary or bang-bang phase

detector (BPD), which is basically a 1-bit TDC. The output bit therefore only

indicates if the reference phase is leading or lagging the feedback clock phase.

As this is a highly non-linear behavior, it complicates analysis using traditional

control theory for linear time invariant (LTI) systems. Though, there are several

di�erent approaches to linearize the BPD and alleviate this issue [30], [31].

The loop�lter itself is pure digital logic. The digital implementation makes it

much easier to implement mechanisms like con�gurable loop�lter coe�cients com-

pared to an analog implementation, while not su�ering from problems like leakage

or voltage noise e�ects. The �lter depicted in �gure 3.12 includes a proportional

path with coe�cient β and a integral path with coe�cient α. The number of

delay cycles D necessary for processing the phase information obtained by the

TDC can be modeled using a delay element.

An alternate approach to describing the ADPLL behavior using z-domain anal-

ysis are time domain approaches developed in [32] and [33]. In contrast to the

traditional LTI-systems approach the time domain technique can be used to pre-

dict e�ects of random noise in the system on the behavior of the �nite resolution

control loop. The time domain approach can be used to accurately predict lower

bounds for achievable jitter due to quantization and select proper loop �lter coef-

�cients to guarantee stability. In the following, equations predicting the ADPLL

behavior which were derived in [33] are used to show how the systems parameters

depend on each other. This is then used to explain design decisions that need to

be considered when building an ADPLL.

Key parameters that have to be considered are:

� N : PLL multiplication factor

� D: PLL loop latency

� σTdco : DCO random jitter

� KT : DCO period gain

� β: PLL loop �lter proportional path coe�cient

� α: PLL loop �lter integral path coe�cient

The notation adheres to the one used in [33] to keep consistency. The period of

the PLL output clock is de�ned as Tν = Tν0+KT ·ω, where Tν0 is the free-running
period and ω is the tuning word. This tuning word is the output of the PLL loop

�lter.

48

3.3 All Digital PLL

It can be derived that for stability, the proportional path coe�cient β needs to

be su�ciently higher than the integral path coe�cient α. The actual ratio is

dependent on the loop delay D. The higher the loop delay is (the more cycles

are used to compute the new tuning word from the phase detector output), the

higher the β/α ratio needs to be. For D = 1 a ratio of 16 is su�cient for a phase

margin of 60° [33].

According to [33], the PLL output jitter can be approximated as

σtv ≈
1 +D√

3
·NβKT +

√
π

8
·
σ2
Tdco

βKT

(3.6)

The �rst term in equation 3.6 refers to the quantization noise of the loop (limit

cycle), the second term describes the jitter of the DCO. To achieve minimum

jitter, an optimum β has to be chosen. If β is too high, quantization of the loop

�lter is not scrambled enough by the random jitter of the DCO. If β is too small,

the DCO random jitter is not �ltered by the PLL properly. Both scenarios result

in increased jitter. Because the �rst term is proportional to βKT and the second

one is proportional to 1/βKT a minimum can be found.

The optimum β can be approximated by

βopt ≈ 2 · 1√
((1 +D)N

· σTdco ·
1

KT

(3.7)

as derived in [33].

From these equations the following can be deduced:

Equation 3.6 leads to the conclusion, that in order to minimize the PLL output

jitter, all contributors need to be minimized. For best performance, the loop

latency D needs to be minimal, which means the number of pipeline stages in the

digital loop �lter needs to be kept small. Also, the division factor N should be

as small as possible. This is often something, that can not be directly in�uenced

because both PLL output frequency as well as reference clock frequency are often

given by a certain standard, which tries to minimize cost and therefore aims to

use a low reference clock frequency.

Further, if intrinsic DCO jitter is not dominant, KT needs to be minimized, which

means the LSB resolution in the DCO needs to be minimized. This is mostly

technology dependent but scales nicely with the semiconductor manufacturing

technology feature sizes. Yet, there are additional constraints such as tuning

49

3 High Speed SerDes Architecture

range and parasitic capacitance, which prevent the usage of large minimum sized

capacitor arrays in the DCO.

At last, β needs to be minimized. For stability reasons, and in order not to

introduce some further quantization at the DCO input, α is chosen �rst, so that

an LSB change in the loop �lter results in a minimum period change of KT in

the DCO. Afterwards β can be chosen after equation 3.7, according to the DCO

random jitter and period gain. Though, a lower bound for β exists because of

the loop stability considerations.

This illustrates again that there are two cases. In case one, the quantization

e�ects from the loop dominate. The DCO random jitter is so small that a lower

β would result in lower jitter, but it can not be selected because it would break

stability. In case two, DCO random jitter dominates. Therefore β needs to be

increased according to equation 3.7, in order to still get the best result out of the

given DCO random jitter.

Therefore, though not directly visible in equation 3.6, it is also very important to

minimize the DCO random jitter, in order to be able to chose a small β, which

is then only limited by DCO tuning word quantization. DCO quantization and

random jitter both have to be maintained in a reasonable relation in order not

to spoil the overall performance mutually.

Figure 3.13: Phase noise plots for random noise regime (β too small), optimum
β and limit-cycle regime (β too high)

To reassess, if the predictions made by time domain analysis �t simulations, a

simple reference model was implemented in SystemVerilog. The results appeared

to be in good agreement with the equations above. To illustrate the di�erent

50

3.3 All Digital PLL

cases of random jitter and quantization (limit cycle) regime, �gure 3.13 shows

phase noise plots for three di�erent values of β. While keeping all other pa-

rameters constant, only β was varied to produce the di�erent scenarios. The

reference model was used later on to validate the actual implementation in terms

of performance.

3.3.2 Implementation

The actual implementation of the designed PLL is depicted in �gure 3.14. Semi

custom parts are highlighted to emphasize that most complexity is pushed into

synthesizable HDL code. This improves portability to other processes.

Binary Phase

Detector

(BPD)

PLL Toplevel

Digitally

Controlled

LC Oscillator

(DCO)

/2 Prescaler

Clock

Output

Reference

Clock

Feedback

Clock

Proportional Path

Integral Path

PVT Path

Buffer

Synchronous Dividers

Digital Loopfilter

(LF)

PVT Calibration

&

Frequency Adjustment

DS Modulator
Dither

Generator

Fractional Path

DSM Clock

Synthesized Full Custom

/2 Prescaler
M

U

X

M

U

X

M

U

X

Bypass

Input

ACQ Path

Figure 3.14: Block diagram ADPLL implementation

There are some di�erences compared to the general ADPLL architecture from

�gure 3.12.

A PVT calibration block is added, which is necessary to tune the oscillator free

running frequency to the nominal range, where the loop �lter with its proportional

and integral path can be used.

Moreover, the addition of the loop �lter proportional path and integral path ac-

cumulator is done intrinsically in the DCO itself by separately controlled parallel

51

3 High Speed SerDes Architecture

capacitor arrays. This saves an additional adder in the loop �lter and thereby

helps reducing the overall loop latency [34], which in turn helps reducing the

output jitter.

The PLL output clock can be selected from the actual DCO frequency, half and

quarter rate. A bypass input can also be selected to use an external clock for test

and debug purposes.

A very important addition is the delta sigma (DS) modulator, which can be used

to increase the e�ective resolution at the DCO as described in [35].

The di�erent modules of the PLL are now described in more detail.

Digitally Controlled Oscillator (DCO)

To meet low jitter speci�cations required by high speed serial links, an LC tank

has to be used in the DCO [36]. Because the general design of a DCO and LC

oscillator has already been covered numerous times, e.g. in [37],[38] and [39],

the architecture will only be discussed brie�y. The general idea of the DCO is

depicted in �gure 3.15.

Figure 3.15: General oscillator architecture showing all elements, which are con-
nected in parallel in the DCO

In parallel to the actual LC tank oscillator, there are several additional capacitor

arrays, which can be controlled separately. The di�erent tuning banks have

di�erent granularities to ful�ll di�erent purposes.

There are binary weighted PVT and acquisition (ACQ) banks, which are used to

set the free running frequency of the DCO to the required range.

The two banks have 6 bits each, for easier implementation compared to a single

12 bit capacitor bank. Within 6 bits linearity and layout matching is much better

than it would be over a complete 12 bit array.

52

3.3 All Digital PLL

For reasonable tuning, the ACQ bank, which has �ner steps compared to the

PVT bank, has to overlap the PVT LSB over all process corners.

The 8 bit integral path bank is constructed from equally sized capacitors, which

are organized in a 8x8 matrix structure. Each capacitor element has its own

decoder logic, which allows the 8x8 matrix to be controlled with 8 bit thermometer

row and column codes (see �gure 3.16). Through this only 2*N instead of 2N

wires are necessary to control the capacitor array, which greatly reduces the

routing e�ort and parasitic capacitances. Since the integral path bank control

code is constantly changed during PLL operation, equal weighting was chosen

over binary weighting for better linearity and absence of glitches. To further

prevent glitches when selecting/deselecting a row, the control inputs to the DCO

are retimed again by sampling latches. For best achievable DCO LSB resolution

(lowest KT), the integral path capacitors are implemented using the smallest

switchable capacitors available in the given technology.

Figure 3.16: DCO integral path capacity matrix

The integral path frequency range spans at least double the range of an ACQ

bank LSB to be able to compensate for temperature drifts in system, without

having to switch ACQ bits during normal operation.

The fractional bank, which is controlled by the DS modulator is made from the

same capacitors as the integral path, for proper matching.

Because all banks are placed in parallel in the LC tank, the DCO intrinsically

adds all separate tuning PVT, ACQ, integral, fractional and proportional tuning

words into the single DCO tuning word ω, rendering additional accumulators

redundant. As otherwise a digital adder would be necessary, this helps to save

latency in the loop �lter.

53

3 High Speed SerDes Architecture

With the tank inductance �xed, and the oscillation frequency FDCO determined

as

FDCO =
1√
LC

(3.8)

the relative amount of capacity is chosen to be larger compared to the inductance,

in order to achieve a wide tuning range. This is bene�cial in order to be able

to support di�erent line rates for multiple protocols using the overall SerDes

architecture. Though, this also degrades noise performance and increases non-

linearity of the oscillator tuning word. An alternative would be to have a switched

inductor to increase tuning range with variable L and improved performance

[40]. Though, the actual implementation of a switched inductor with predictable

inductance is quite hard for practical reasons and was therefore not implemented

in this DCO. Because such an inductor is not part of the usual device libraries,

which are provided by semiconductor manufacturers it has to be implemented and

characterized by the designer himself. This requires the use of an electromagnetic

�eld solver and in-depth knowledge of the materials and stack up used in the

speci�c manufacturing process, which is not always available.

Feedback Divider

To determine, which feedback dividers are necessary, it has to be analyzed �rst,

which standards or line rates the SerDes should support using which reference

frequencies. The following table gives an overview of the di�erent frequencies

taken into account.

Standard Name Line Rate Reference Clock Division Factor
PCIe 1.0 2.5 Gbps 100 MHz 25
PCIe 2.0 5 Gbps 100 MHz 50
PCIe 3.0 8 Gbps 100 MHz 80
HMC 10G 10 Gbps 125 MHz 80
HMC 12.5G 12.5 Gbps 125 MHz 100
10G Ethernet 10.3125 Gbps 161.1328125 MHz 64

Table 3.2: Line rates and reference clock frequencies considered for PLL
architecture

The division factors for the di�erent rates can be constructed using the feedback

divider and output multiplexers. The output multiplexers can be used to select a

full, half or quarter rate clock. Therefore the lower PCIe rates can be constructed

54

3.3 All Digital PLL

with a feedback divider of 100 and an output selection of 2 or 4 respectively. This

leaves the required feedback divider values to 64, 80 and 100. They are factorized

to �nd the common factors:

64 = 2 · 2 · 2 · 2 · 2 · 2

80 = 2 · 2 · 2 · 2 · 5

100 = 2 · 2 · 5 · 5

As 22 is the least common multiple, this factor can be implemented in the full

custom part of the PLL, as it brings down the working frequencies low enough so

that a semi-custom implementation can be used for the subsequent con�gurable

dividers. This improves the �exibility and lowers the implementation e�ort that

would otherwise be required to implement a factor other than 2 as a full custom

design.

A common approach to realize con�gurable feedback dividers in a PLL are so

called dual modulus dividers [41]. Luckily, the residual factors of 16, 20 and 25

can be perfectly covered by two cascaded 4/5 modulus dividers. In �gure 3.17 a

block diagram of the 4/5 modulus divider is given.

Figure 3.17: 4/5 modulus divider block diagram

If CTRL is set to 0, the output of FF3 is kept at a constant 1 and the circuit

works like a normal synchronous divide by 4 module. If CTRL is set to 1, FF3

injects the delayed version of FF2 into the feedback path, masking the high signal

of FF2 for one additional clock cycle. Hereby a divide by 5 is realized. It should

be noted, that the output clock signal does have a duty cycle of 40:60 instead

55

3 High Speed SerDes Architecture

of 50:50 in divide by 5 mode, but this is not a problem in case of the feedback

divider.

Because the feedback dividers are currently implemented as a series of cascaded

dividers, their jitter is accumulated, hereby degrading the overall jitter perfor-

mance. In future implementations, it should be considered to realize especially

the lower speed dividers as synchronous implementations by re-timing the output

stage with the fast input clock for better jitter performance.

PVT Calibration

Before the actual PLL operation can take place, the DCO free-running frequency

needs to be adjusted after power-up to bring it as close to the nominal frequency as

possible. The algorithm to �nd the optimum free-running frequency is described

in the following.

To be able to tune to the desired free-running frequency, the average DCO fre-

quency after power-up has to be determined. The binary phase detector itself

can not be used for this purpose, as it does deliver only phase, not frequency

information - in contrast to the popular phase frequency detector (PFD) used

in analog PLLs. Therefore, Bang-Bang PLLs often have an additional frequency

detector.

One way to detect a frequency o�set detection is by counting edges in both the

reference and feedback clock. If the number of edges detected for the feedback

clock is higher than the number of reference clock edges, the DCO is running to

fast and vice versa. The accuracy of this method only depends on the measure-

ment time.

As the feedback clock period Tfb will have a small di�erence to the reference clock

period Tref , it will accumulate over the number of reference clock cycles Nref .

Therefore it takes

Nref =
Tref

|Tref − Tfb|
(3.9)

reference clock periods until the di�erence accumulated to a whole period.

If a simple counter is used for each of the two clocks, a frequency di�erence

can only be determined once it has been accumulated to a phase di�erence of a

complete period and one counter actually "overtakes" the other by one. Because

the reference clock frequencies are usually relatively slow this can take quite long

for small o�sets. Also, the two counters can also only be compared after a �xed

56

3.3 All Digital PLL

time interval, because they obviously run in di�erent clock domains and can not

be compared easily while incrementing.

Therefore, the implementation in this work uses a modi�ed approach for faster

frequency acquisition. Instead of having a counter for each clock domain. The

faster DSM clock (see �gure 3.14) is used to oversample both feedback and ref-

erence clock and count the edges. This has the bene�t that the resolution is

improved by at least 16 (which is the smallest low speed divider value), which

in turn results in a measurement time reduction. Also, as the two counters now

reside in the same clock domain, a frequency di�erence can be detected as soon

as one counter overtakes the other because no synchronization is necessary. This

makes �xed measurement intervals redundant and further speeds up the PVT

tuning.

The main �nite state machine (FSM), which controls the PVT tuning procedure

is depicted in �gure 3.18.

Figure 3.18: PVT tuning main FSM

To guarantee a stable operation, the FSM is clocked by the PLL reference clock.

In the init step, all counters are reset and afterwards enabled. As soon as one

counter overtakes the other, the results are compared and the capacitor array

is adjusted accordingly in the compare state. After each tuning operation the

feedback dividers are reset after a guard interval in the wait state, because it can

not be ruled out that there are glitches on the feedback clock when switching the

large tuning capacitors into the LC tank.

57

3 High Speed SerDes Architecture

Figure 3.19: Binary search on PVT register

To speed up the tuning procedure, a binary search is implemented on top of the

capacitor bank control registers. Instead of linear incrementing or decrementing

the control vector, which would take 2N − 1 iterations for an N bit wide control

register, the number of iterations is reduced to only N . The binary search is

implemented in a very e�cient way by walking linearly over the control vector,

starting with the MSB. According to the determined frequency information the

current bit is either �ipped or kept "as-is" in order to get to the upper or lower

part of the interval, like depicted in �gure 3.19. This is done for each bit from

MSB to LSB.

In �gure 3.20 a complete PVT and ACQ bank tuning is depicted. It can be

observed, that the time for a control vector step depends how far the current

average frequency is from the nominal frequency. The bigger the o�set, the

faster it can be obtained.

After the PVT and ACQ tuning is �nished, the loop �lter is activated and normal

PLL operation can begin.

Digital Loop Filter

For the loop �lter, it is very important to minimize the number of pipeline stages

and thus, latency D. This is especially true for the proportional path, whereas

the integral path latency can be higher without performance impact [32].

Therefore the proportional path does not have a register at all, but uses combina-

58

3.3 All Digital PLL

Figure 3.20: DCO free running frequency during PVT and ACQ tuning

tional logic in order to scale the proportional paths coe�cient value. The latency

is hereby kept at a small number of gate delays. The integral path accumulator is

actually wider than the DCOs integral path. This means, that depending on the

con�gured coe�cients the accumulators LSBs get truncated, because a change

in the accumulator does not change the DCO control vector. This truncation is

actually a quantization, which does introduce additional noise in the PLL [33].

Still, it can be bene�cial to use loop �lter settings that apply this kind of quanti-

zation, if this allows a reduction of the proportional path coe�cient β. This is the

case as long as the jitter reduction by decreased β is higher, than the additional

quantization noise caused by truncation in the integral path. To prevent this

quantization to occur in this way and still use a higher resolution integral path

accumulator, delta sigma modulation (DSM) can be used. This is described in

the next sub section.

When the loop �lter gets activated after PVT tuning, there might still be a small

frequency o�set, which has to be corrected by the integral path. If the loop �lter

is con�gured for very small proportional gain, it can still take quite long for the

PLL to actually lock, or in extreme cases it might not lock at all. Therefore a

variable gain mechanism has been implemented.

To activate it, the phase detector output is monitored. If it is constant for

a con�gurable amount of feedback clock cycles, the proportional path gain is

continuously increased in order to prevent a reference clock cycle to slip at the

phase detector. As soon as a change at the phase detector output is observed,

59

3 High Speed SerDes Architecture

the gain is reduced to nominal. To be able to apply enough proportional path

gain, the ACQ bank capacitance bits can be controlled by the loop �lter, when

variable gain is necessary. With this mechanism the last bit of frequency o�set

is tuned out by the loop�lter integral path.

Delta Sigma Modulator

Delta sigma modulators are used extensively in modern analog-to-digital convert-

ers (ADCs) and digital-to-analog converters (DACs) to increase resolution and

signal-to-noise ratio. Though they are also popular in the context of all-digital

PLLs. As mentioned earlier, delta sigma modulation (DSM) can be used to in-

crease the actual resolution of the DCO control word and hereby improve the

frequency resolution and DCO period gain. This is achieved by a combination

of oversampling and noise shaping, to provide smaller capacitance steps in the

DCO through time-averaging. Figure 3.21 depicts the working principle of a 1-bit

DSM.

Figure 3.21: DSM working principle

At the input X, �rst the actual input data, which is m bits wide is added to the

1-bit feedback path value. The summation result is afterwards low pass �ltered.

The low pass �lter, in turn is followed by a quantizer, which is the 1-bit output

Y of the DSM and the feedback path value.

The general idea is, that similar to normal oversampling the delta sigma modu-

lator is running at a higher frequency than the input data is changing. During

one period of input data change, the output switches much faster between 0 and

1 in such a manner that the time averaged ratio of the two values matches the

multi bit input value. The faster the output value switches compared to the in-

put (the higher the oversampling ratio), the �ner the resolution obtained because

more output samples are used to create the average in the same time interval.

Therefore, to reconstruct the input value an additional low pass �lter is needed

60

3.3 All Digital PLL

at the DSM output to create the average of the output values. In context of the

PLL, the high frequency noise of the DSM gets �ltered by the DCO and control

loop.

The second aspect of the DSM is its noise shaping nature, which can be deduced

when analyzing its transfer characteristics. Figure 3.22 depicts the linearized

z-domain model of the 1-bit delta sigma modulator.

Figure 3.22: DSM z-domain model

The low pass �lter has been exchanged with a generalized block of transfer func-

tion H(z) and the quantizer is modeled a random noise source E(z). This is

a valid assumption as long as the quantization error is uncorrelated to the in-

put value. The overall transfer function can be derived as a combination of the

so called noise transfer function (NTF) and the signal transfer function (STF).

Setting X(z) to 0 in �gure 3.22 results in the NTF de�ned as

NTF (z) =
Y (z)

E(z)
=

1

1 +H(z)
. (3.10)

The same is done for E(z) = 0 to obtain the signal transfer function:

STF (z) =
Y (z)

X(z)
=

H(z)

1 +H(z)
(3.11)

Through superposition the overall transfer function of the DSM is formed as

Y (z) = X(z) · STF (z) + E(z) ·NTF (z) (3.12)

For a simple digital accumulator, the �lter transfer function H(z) would be

H(z) =
1

z − 1
(3.13)

61

3 High Speed SerDes Architecture

which yields

NTF (z) =
Y (z)

E(z)
=

1

1 +H(z)
=
z − 1

z

STF (z) =
Y (z)

X(z)
=

H(z)

1 +H(z)
=

1

z
= z−1

(3.14)

Substituting these into equation 3.12 gives the overall transfer function

Y (z) = X(z) · z−1 + E(z) · z − 1

z
(3.15)

From this, it is now visible, that the quantizer noise E(z) is shaped by the NTF

which has a transfer function of a �rst order high pass, while the input signal

X(z) is only delayed by one cycle. The noise gets shaped and the original signal

is passed to the output unchanged. Quantizer noise is not reduced but "pushed"

to higher frequencies, where it can later be removed when low pass �ltering is

applied for reconstruction of the input value. Higher order �lters can be used

in the DSM to further increase the noise �ltering performance. The number of

integrators de�nes the order of the delta sigma modulator. The DSM in the

former example therefore is of order 1.

The noise shaping aspect results in an increase in dynamic range compared to

simple oversampling, which lowers the required oversampling ratio and therefore

the frequency the DSM needs to be operated at for a desired resolution increase.

Simple oversampling also increases the dynamic range, but only spreads noise

over a wider frequency range. The increase in bits can be derived, according to

[42] as

DR = 0.5 · log2OSR (3.16)

where OSR is the oversampling ratio. With delta sigma modulation the gain in

dynamic range also depends on the modulator order. In [43] the dynamic range

of a N-order DSM is derived as

DR = log2

3 · (2N + 1)

2π2N
·OSR2N+1 (3.17)

With a DSM clocked at 16x oversampling ratio, which is the minimum in the

PLL developed in this thesis, this yields a DR of around 10 bit for 1st order DSM

and around 21 bit for a 3rd order DSM, which is su�cient for the fractional part

bits of the loop �lter.

The order of the DSM can either be increased by a higher order �lter or by cas-

62

3.3 All Digital PLL

cading multiple 1-bit modulators. While the former can introduce stability issues,

cascading multiple modulators increases the delay. Because the DSM is used in

the integral path of the loop �lter, which is less sensitive to additional delay, a

3rd order multi stage noise shaping (MASH) DSM architecture was implemented

in this work.

A key assumption for the DSM to work as intended and the analysis above to

be valid, is that the input value is a uniform distribution in frequency. In the

case of an ADC, this is generally satis�ed, but not in case of the DCO fractional

control word. Therefore additional dithering needs to be applied in order to

prevent periods in the DSM output [44]. To accomplish this, a con�gurable

PRBS generator is implemented and added as LSB into the fractional control

word and DSM input. The con�gurable dithering polynomial provides additional

pseudo random noise, which satis�es the assumptions.

63

3 High Speed SerDes Architecture

3.4 Lane Clocking

In order to increase power e�ciency, a central PLL is used to generate a link

clock, which is then distributed to the individual lanes. In contrast to each lane

having a dedicated PLL, the more lanes that share the same PLL, the higher

the power e�ciency. The actual number of lanes which can be fed by a single

PLL depends on the clock distribution. When more lanes are added, the clock

distribution has to cover a longer distance, which necessitates more clock bu�ers.

Each clock bu�er adds a speci�c amount of jitter, which step by step degrades

the lane performance when getting farther away from the link PLL. It should

be noted, that in contrast to clock distribution used in digital logic designs, no

clock tree is built because balancing the clock delay to the individual lanes is not

necessary. This approach is depicted in �gure 3.23.

Figure 3.23: Lane clock distribution

Another potential drawback which should be taken into account is the obvious

fact that when sharing a common PLL, all lanes of a link need to run at the same

line rate. This is not an issue for the protocols or applications targeted with this

architecture, but might be for others.

The lane clock distribution is implemented on-chip using the top most thick metal

layers, which have the lowest resistance. Further, the geometry should be laid

out to form an on-chip transmission line for lowest jitter [45].

Because of the Tx and Rx architecture, which is described in full detail in the

following sections, four clock phases are required at each lane. Therefore, the

question arises, whether to generate these four quadrature phases in the central

PLL and distribute them or to generate them locally in each lane. This was

analyzed in [46], taking into account the design space depicted in �gure 3.24.

64

3.4 Lane Clocking

Figure 3.24: Di�erent possibilities for quadrature clock distribution, after [46]

Centralized phase generation has the downside, that the amount of space and

bu�ers necessary for distribution doubles. Also, there will be a skew introduced

between the phases by the independent bu�ering, which in turn will degrade the

lane performance. Therefore, it is desirable to generate the quadrature phases

locally at each lane. The easiest way to generate quadrature clocks from a dif-

ferential clock is by the use of a clock divider. Obviously, then either the central

clock has to have twice the clock frequency or the achievable line rate is halved.

If a divider should not be used because of the reason stated above, PLLs or delay

locked loops (DLLs) could be used, but this would run contrary to the idea of a

central link PLL resulting in usual power and area requirements. Further, there

is the choice between inductor based oscillators (LCO) or ring oscillators. LCOs

tend to have lower jitter, but also have higher area requirements and lower tuning

range. After the analysis carried out in [46], the use of an injection locked ring

oscillator (ILRO) eventually proved to be suited best.

An ILRO is a ring oscillator with additional ports that permit the injection of

another clock signal into the feedback loop. When the free-running frequency of

the ring oscillator is adjusted to be close to the injected clock, the oscillator will

align itself to the injection frequency. As a multi-stage ring oscillator can be used

to generate multi-phase clocks, this is a method to create local quadrature spaced

clocks. When the ILRO is in injection locked mode, the noise characteristic is

greatly improved if a low jitter clock is used as injection signal, as illustrated in

�gure 3.25.

Because the tuning range of the ILRO is limited, for lower speed line rates a

divider based quadrature (I/Q) clock generation is still useful. Therefore, each

lane contains a clock generation/selection module, which is depicted in �gure

3.26. Depending on the line rate the clock is locally generated by division, using

65

3 High Speed SerDes Architecture

Figure 3.25: Oscillator spectrum for free running (red) and injection locked
(green) ILRO at 8 GHz [46]

a quadrature divider or by using the ILRO, which generates the four phases

without division. For lower line rates, the link clocks are prescaled by the PLL

output dividers. Table 3.3 lists the combinations, which are used to achieve the

necessary clock frequencies for some common line rates.

Line Rate Link PLL Clock Link PLL Output Divider I/Q Gen
2.5 Gbps 10 GHz 4 Divider
5 Gbps 10 GHz 2 Divider
8 Gbps 8 GHz 1 Divider
10 Gbps 10 GHz 1 Divider
16 Gbps 8 GHz 1 ILRO
20 Gbps 10 GHz 1 ILRO
25 Gbps 12.5 GHz 1 ILRO

Table 3.3: Line rate and clocking mode combinations

The lane top clocking module also contains two additional multiplexers (DFT_MUX

and TX_MUX), which allow the receiver recovered clock to be used to clock the

transmitter. This is useful for debugging and characterization purposes. Fur-

ther the ILRO can be used to clock the transmitter, while the receiver uses the

link PLL clocks directly. This mode is necessary for calibration purposes and is

described in section 3.5.7.

66

3.4 Lane Clocking

Figure 3.26: Common Rx/Tx lane clock top module

67

3 High Speed SerDes Architecture

3.5 Receiver

3.5.1 Overview

The developed receiver architecture includes an analog frontend with a CTLE,

a 5-tap decision feedback equalizer and digital clock data recovery. There are

several digital calibration mechanisms to trim out both voltage and timing o�-

sets in the datapath. The equalizers can be adapted automatically to a given

transmission channel with an adaptation algorithm implemented in hardware.

The receiver toplevel is partitioned into a digital semi-custom (Rx Digital) and

a full custom (Rx Core) part, as shown in �gure 3.27.

Figure 3.27: Rx overview block diagram

The full-custom part is divided into several main blocks. There is the datapath,

which consists of the analog frontend, followed by all the samplers. Additionally

there is a clocking module, which generates all the sampler clock phases from the

lane clock received from the lane PLL, with the ability to shift phases according to

the CDR control vectors. Further the Rx core contains the central bias generation

for all full custom blocks as well as the reference level generation for the DFE.

All control and status signals are brought to the Rx core module boundary and

are processed by the digital toplevel.

As mentioned earlier the goal of the design was to move as much complexity as

possible into the digital part. Therefore it includes the actual demultiplexers for

the various samplers, several clock dividers and corresponding divider initializa-

tion circuits as well as the digital CDR.

68

3.5 Receiver

The auxiliary digital logic contains the equalization adaptation logic, a concurrent

eye monitor, the calibration loops as well as pattern checkers for testability.

The di�erent blocks are now described in more detail.

3.5.2 Datapath

The datapath can be divided into the front end and the sampling stage followed

by demultiplexers (see �gure 3.28). The sampling stage is actually split into three

di�erent paths. There is the actual data sampling stage, the edge sampling stage

used for the CDR and the eye sampling stage used for the concurrent eye monitor

as well as the equalization adaptation. All stages have the same signal as input

but are sampling at di�erent phases.

Figure 3.28: Receiver datapath overview

At the receiver input a termination is necessary to match the characteristic

impedance of the transmission line and eliminate re�ections, which show up as

ISI and degrade the received signal quality. Figure 3.29 depicts the termination

used in the developed architecture.

To prevent damage of the input transistors by electrostatic discharge (ESD) ad-

ditional ESD prevention structures are needed. Unfortunately these structures

add a very high input capacitance, which has a negative impact on the high fre-

quency characteristic of the termination by degrading bandwidth and impedance

matching. Therefore, inductive compensation techniques have to be applied to

counter the capacitive load. This has been analyzed in depth in [47].

Further, because the manufacturing process variations of the internal termination

resistors are quite high, they need to be adjustable in order to be able to tune

69

3 High Speed SerDes Architecture

Figure 3.29: Receiver termination overview

them to the required line impedance. As the receiver is meant to be AC-coupled

to a transmitter, a receiver input common mode has to be generated. This is

done by an operational ampli�er used as voltage follower and a DAC to generate

the common mode reference voltage.

After passing the ESD structures, the di�erential signal is fed into the continuous

time linear equalizer stage. The CTLE is built as a multi stage ampli�er with

source degeneration in the di�erent stages, like described in section 3.1. This gives

the �exibility to adapt to a wide range of di�erent channels. For implementation

details of the CTLE please refer to [18].

After passing the CTLE, the partly equalized signal is processed in the sampler

stages.

Figure 3.30: Quarterrate receiver principle

Generally the receiver is built as a quarter rate design. This means that instead

of a single sampler which samples at the full data rate there are four samplers in

parallel, which are interleaved using di�erent sampling phases running at a quar-

ter of the line rate (see �gure 3.30). The main bene�t is, that the highest clock

70

3.5 Receiver

speed in the design is reduced by a factor of 4. Another advantage is, that the

input signal is already deserialized to 4, which makes high speed deserialisation

stages from 1 to 2 and 2 to 4 obsolete, as they would be necessary in a full rate

design. The downside is that the capacitive loading of the CTLE stage is higher

because of the increased number of samplers. Still, quarter rate designs are more

power e�cient than full rate designs and are therefore generally preferred for high

data rates. For better power e�ciency at lower data rates, it is also possible to

e.g. power down two samplers completely when only half the maximum lane rate

is used.

Figure 3.31: 1 to 4 demultiplexer tree after each sampler

The samplers themselves have been designed and characterized by [18].

Each sampler is followed by a two stage demultiplexer tree, as depicted in �gure

3.31. Hereby the quarter rate data bit of each sampler is demultiplexed to 4 bit,

now at 1/16th of the line rate. This clock is called the word clock.

Each demultiplexer tree in turn is constructed from demultiplexer (demux) ele-

ments.

Each demux itself (�gure 3.32) has a data input Din, which is sampled by two

�ip-�ops (FF). One FF is sampling at the rising edge (Deven), the other one at

the falling edge (Dodd). To be able to cascade the demux elements, the Dodd

is followed by a latch, which retimes the output data transition to match the

time of the even path. The timing diagram is given in �gure 3.33 for better

understanding.

With this scheme all samples taken by the di�erent samplers are deserialized to

the same word clock, in order to be used by subsequent logic.

71

3 High Speed SerDes Architecture

Figure 3.32: Demultiplexing element

Figure 3.33: Demultiplexing element timing diagram

In contrast to the data and edge samples, the eye sample path does contain only

one sampler. This has been done in order to reduce power and area requirements

for the eye sampling path, which is used to analyze the incoming data levels

and adapt the equalization control vectors. In contrast to the normal data path,

the number of samples can be traded against increased adaptation time of the

algorithms. Since measurement time is not important in this case, the area for

additional samplers was saved.

An additional bene�t of the quarter rate architecture is the possibility to realize

a decision feedback equalizer without a lot of overhead. The implementation of

the speculative 5-tap DFE which �ts the overall architecture was done in [27].

The datapath is complemented by the clock generation, which is now described

in more detail.

72

3.5 Receiver

3.5.3 Clocking

The purpose of the Rx clocking module is to generate all the clock phases needed

by the di�erent samplers. The main challenge here is, that these phases need to

be adjustable according to the control vectors of the digital clock data recovery

logic for the optimum sampling instant. This gets especially di�cult because of

the di�erent clock rates, which are necessary for a true multi-rate SerDes design.

Figure 3.34 gives a high level overview of the overall Rx clocking architecture.

Figure 3.34: Rx clocking overview

The Rx receives four quadrature clock phases from the transmitter. These are

necessary to realize the phase adjustment method via phase interpolation. For

proper use in the phase interpolators (PI), the input clocks have to be shaped in

advance. Because the three sampling paths (data, edge, eye) need to be adjustable

independently, there is an independent PI for each of them. A PI interpolates

four input phases into two output phases. To generate the quadrature clocks,

which are needed in every sampling path, each PI is then followed by a divider.

By this division four quadrature phases are generated again. Each phase is fed to

a phase and duty cycle correction (DCC) bu�er, before it is used by the sampler.

Because every sampler has its individual DCC bu�er, all timing o�sets can be

calibrated (see section 3.5.7). In the following, the main blocks of the receiver

clocking architecture are described in more detail.

Clock Shaping

As mentioned earlier, the Rx clocking module uses phase interpolation to shift the

sampler clocks to the desired time instant. The phase interpolation is achieved

through analog weighted summation of quadrature spaced input clocks. For best

interpolation results, sinusoidal shaped clocks lead to the highest accuracy. This

unfortunately comes into con�ict with the requirements of the clock distribution,

73

3 High Speed SerDes Architecture

where fast rise times are necessary to minimize jitter accumulation. This is

illustrated in �gure 3.35, which shows the simulated RMS random jitter at the

output of a CMOS inverter that is driven by clock signals with di�erent rise times.

It can be observed that the jitter increases steadily with the rise time. Voltage

noise, which overlays the original input signal can lead to higher timing o�sets,

if the signal slope decreases. Therefore, fast rise times inevitably need to be used

throughout the the clock distribution when possible and some means of shaping

need to be employed in front of the phase interpolator for proper interpolation.

Figure 3.35: Simulated RMS random jitter at the output of a CMOS inverter
driven with clock signals exhibiting di�erent rise/fall times

To construct a sine or at least triangular waveform from a nearly rectangular

clock several approaches are possible. One main constraint, which limits the

solution space is the requirement for the shaping to produce reasonable clocks

ranging from 1.25 to 12.5 GHz, in order to �t the multi-rate targets of the SerDes

architecture.

To implement the shaping, di�erent mechanisms like analog low pass �ltering,

digital FIR �ltering and a clocked charge-pump approach were analyzed and are

now brie�y discussed.

The straight forward approach of analog low pass �ltering to bring down the edge

rate has the drawback that either a higher order �lter would be necessary or the

fundamental frequency would be attenuated signi�cantly. Also a very wide tuning

range to adjust the cuto� frequency would be necessary to cover all the di�erent

clock speeds. As passive on-chip components are very expensive in terms of area

and their variation is quite high in modern CMOS processes, this was deemed

not to be an acceptable solution.

74

3.5 Receiver

As the di�erent input clock phases could also be seen as delayed versions of

each other, there could be the idea to construct a digital FIR �lter by building

weighted sums of the di�erent phases and hereby construct a low pass �lter. This

approach is documented by [48]. The bene�t is, that it can be adapted to di�erent

rates by adjusting the summation weights (�lter coe�cients), but the downside

is, that many stages are necessary in order to get a decent waveform and very

low swings are used in the FIR stage depending on the coe�cients, which makes

them susceptible to jitter.

Figure 3.36: Charge pump working principle

The charge pump approach, which turned out to be the most �exible and robust

one, was implemented in [49] and later on extended further to work with multiple

clock rates. The general idea is depicted in �gure 3.36. A capacitor C is periodi-

cally charged and discharged, via current sources I1 and I2, which are connected

and disconnected by switches SW1 and SW2. As the charge on a capacitor is

de�ned by

Q(t) = Q(0) +

∫ t

0

I(t) dt. (3.18)

for constant I(t) and Q(t) = 0 the equation simpli�es to

Q(t) = I · t (3.19)

75

3 High Speed SerDes Architecture

By taking

Q = C · U (3.20)

into account, the voltage Uc after a time t on the capacitor is de�ned as

Uc =
Q

C

Uc =
I · t
C

(3.21)

and therefore linear in C, I and t. Therefore, ideally rectangular clocks at the

switches yield a triangular clock at the capacitor. Additionally, the current and

capacitance can be adjusted to get the same voltage swing for di�erent clock

periods. The actual implementation is built as a di�erential charge pump for

better immunity against power supply variations. Because of current sources

in both pull-up and pull-down branches the output common mode voltage is

poorly de�ned [50]. This makes a common mode feedback circuit necessary,

which regulates the upper branch so that the output common mode matches a

reference voltage. The triangular waveforms are then used at the input of the

phase interpolator.

Phase Interpolation

The idea of phase interpolation is to construct the weighted sum of two input

phases to obtain an output phase in between as a result. This is illustrated in

�gure 3.37.

The positive y-axis denotes 0° and the positive x-axis 90° . If e.g. these two

phases are summed together weighted equally by 0.5, the new output phase is

located exactly in the middle at 45°with an amplitude of 1/
√

2. In �gure 3.37

di�erent weighting functions were used to construct 64 points to approximate

the 360° phase space. The ideal constellation would be to have the points equally

spaced on the unit circle. This results in a constant amplitude and equal phase

spacing for all points. Obviously, this can be achieved by a sinusoidal weighted

summation of the respective input phases. The problem is, that such weighting

is rather impractical for an actual implementation.

Usually, phase summation is performed like depicted in �gure 3.38. There is an

di�erential input stage for each of the four phases, all sharing common load re-

sistors. The input phases are then summed, weighted by the tail current sources.

76

3.5 Receiver

Figure 3.37: Comparison of di�erent summation weighting functions to construct
interpolated phases

The design of the tail current source DACs de�nes the phase positions, approxi-

mating the unit circle.

Figure 3.38: CML phase interpolator

The simplest implementation would be to use linear weighted DACs. Current

taken from one branch is steered into the other branch, while keeping the overall

current constant. At quadrant boundary current is steered almost completely

through one branch, whereas the other branches receive almost no current. This

also modi�es the bias conditions of the mixing transistors, therefore reducing their

bandwidth and modifying their delay. This possibly introduces non-linearities in

the phase interpolation.

An ideal linear DAC implementation constructs the points on the diamond shape

77

3 High Speed SerDes Architecture

depicted in �gure 3.37. The points are equally spaced on the straights, yet the

phase angles are not equal. Also the amplitude varies by up to 30%. A much

better approximation to the ideal unit circle is achieved by an octagonal phase

diagram. The main improvement is a much smaller amplitude variation and a

decreased maximum phase error. A very e�cient implementation of an octagonal

weighted interpolator is described in [51].

For a 6 bit quantized weighting, key �gures are summarized in table 3.4.

Linear Weighting Octagonal Weighting
Max. Amplitude Error 29.2% 3.8%
Max. Phase Step DNL 1.81° 1.46°
Max. Phase Step INL 4.06° 4.56°

Table 3.4: Maximum errors for linear and octagonal weighting

The error of the interpolated phase can be also described as integrated non-

linearity (INL) and di�erential non-linearity (DNL) error. The DNL error de-

scribes the di�erence between ideal step size and the actual step, whereas the

INL error describes the accumulated di�erence which stems from the DNL error

of the individual steps. The INL error, though is not important in the context of

a CDR, as it will be automatically compensated by the control loop.

Figure 3.39: DNL error of the phase interpolator for clock signal with di�erent
rise times

In �gure 3.39 the simulated DNL error of the interpolator output is shown for

di�erent input waveform rise times at 5GHz. The values are obtained from SPICE

transistor level simulations under typical conditions. It can be observed that the

lowest DNL is achieved for 100ps rise time, which is a triangular waveform like

produced by the clock shaping circuit.

78

3.5 Receiver

In �gure 3.40 the simulated DNL error of the interpolator output versus the

digital control code at 5GHz is plotted. The reference is the simulated DNL error

for ideal octagonal weighting, which is obtained from the real number model.

The data for sine wave and triangular wave inputs is obtained from schematic

level simulations. The plot of sine wave and triangular waveform look almost

identical. Further, it can be observed that the maximum DNL error for both sine

and triangular waveform is smaller than the reference DNL error, which is due to

non idealities of the schematic implementation, which work in favor of the overall

DNL error under the simulation conditions.

Figure 3.40: DNL error of the phase interpolator for di�erent input waveforms at
5GHz

79

3 High Speed SerDes Architecture

3.5.4 Digital Clock Data Recovery

The clock data recovery is a very important part of the receiver and greatly

determines the overall performance. Its purpose is to extract the phase infor-

mation from the incoming data stream and adjust the receiver sampling phase

accordingly.

Figure 3.41: Analog CDR working principle

Figure 3.41 depicts the basic working principle of an analog CDR. It is in fact

very similar to that of a PLL. From a high level perspective, there is a phase

detector (PD), which compares the incoming data phase with the current sam-

pling phase. The phase detector generates a control voltage proportional to the

phase di�erence, which is �ltered by the loop�lter (LF) to determine the CDR

control loop characteristics. The �ltered control voltage is used to set the instan-

taneous frequency of a voltage controlled oscillator (VCO), which integrates into

the sampling clock phase. Unlike in a PLL, there is no feedback divider required,

because no frequency multiplication takes place.

Yet, the traditional analog implementation has some drawbacks when it comes to

scaling, performance and area e�ciency. Because the LF has to be implemented

as a time continuous linear �lter, it usually consists of resistors and capacitors,

which have high tolerances when implemented on-chip and require a lot of area.

Further, they do not scale well with shrinking manufacturing technologies and

are inherently noisy.

Just like in the �eld of PLLs, this lead to the emergence of digital clock data re-

covery circuits. The digital implementation results in higher noise immunity and

robustness against power supply variations. It also provides better scaling char-

acteristics concerning process shrinks because of the lack of passive components

in the loop �lter. Additionally it provides higher �exibility because of digitally

con�gurable �lter coe�cients.

However the digital approach contains its own set of challenges, such as the

80

3.5 Receiver

introduction of quantization noise in the oscillator and phase detector as well as

control loop latencies.

Figure 3.42 depicts the general high level architecture of the so called dual-loop

CDR, which was implemented as part of this thesis.

Figure 3.42: Digital dual loop CDR working principle

Just like the analog counter part, this CDR has a phase detector and loop �lter.

The PD now has to provide the phase di�erence in digital representation, hence it

is often also designated as time to digital converter (TDC). Di�erent approaches

to accomplish phase detection exist and will be discussed later in this section. As

the phase di�erence is present in a digital representation, the loop �lter can be

implemented as a completely digital �lter, which allows to leverage the bene�ts

of digital semi-custom design.

The dual-loop CDR architecture does not include a dedicated oscillator on its

own, but utilizes a clock which is generated by an additional PLL. The sampling

phase is adjusted by a so-called digital-to-phase converter (DPC), which uses the

supplied central PLL clock and shifts it by the amount determined by a digital

code supplied by the loop �lter. In the actual implementation this is accomplished

by the phase interpolator already described in section 3.5.3.

The dual-loop approach solves a problem, which arises from two orthogonal re-

quirements on the CDR and (traditionally) its oscillator. On the one hand, it

should be able to track changes in the incoming data phase, which suggests a high

control loop bandwidth. On the other hand, the sampling clock should have as

little jitter as possible, which would suggest a rather low control loop bandwidth.

This is especially true, when the reference - which is the datastream itself in this

case - is rather jittery. With a dual-loop CDR a low bandwidth PLL can be used

to produce a low jitter high speed clock, which is then only phase shifted by a

high bandwidth CDR loop.

81

3 High Speed SerDes Architecture

To obtain the CDR characteristics, the system can be viewed as linear time in-

variant (LTI) system and analyzed using standard control theory approaches.

Because of the digital time discrete nature of the system, the natural choice is to

use the z-transformation to describe the transfer function [52]. Though most of

the components in the digital CDR are truly linear and can be accurately mod-

eled, the phase detector often is a non-linear circuit which needs to be linearized

�rst.

It should be noted, that although a CDR is very similar to a PLL, not all analysis

can be carried out the same way. In a digital PLL the DCO jitter is the dominant

noise source and the reference is often assumed to be very clean. The focus lies

on the DCO and its quantization e�ects. In a CDR, the 'reference clock jitter',

which is the phase variation of the received data, is dominant. Therefore, the

analysis and research focuses much more on the phase detector and its linearized

model than in the case of a PLL [53], [54], [55].

Figure 3.43 depicts the z-domain model of the CDR architecture seen in �gure

3.42.

Figure 3.43: Digital CDR Z-domain model

The phase detector is linearized and represented by a constant gain coe�cient

Kpd. As the actual phase information is supplied at symbol rate, but the digital

loop �lter has to work at a lower clock frequency for practical reasons, another

factor Kd is inserted to represent the decimation gain introduced by the demul-

82

3.5 Receiver

tiplexing. The loop �lter itself consists of a proportional and integral path, with

adjustable �lter coe�cients Kp and Ki. As no oscillator is present in the CDR,

an additional adder is necessary in front of the digital-to-phase converter to accu-

mulate the phase information. The DPC itself is represented by a gain coe�cient

Kdpc. To model the loop latency which is introduced by the pipeline stages in

the digital logic, �nally a delay element of latency D is added.

The open loop transfer function is given by:

OLTF (z) =
KpdKdKdpc

1− z−1
· (Kp +

Ki

1− z−1
) · z−D (3.22)

The z domain transfer function can be transformed to s-domain space by means

of the backward Euler method, which approximates the Laplace integration by

setting z = 1/(1 − s · T). This happens at the expense of non-linear distortion

being present in the resulting equation. The transformed transfer function is

therefore only meaningful for frequencies much lower than the sampling frequency

1/T , which is not a major drawback because the CDR loop bandwidth is usually

orders of magnitude lower.

The open loop transfer function is used to determine the phase margin of the

control loop, in order to ensure stable operation.

The closed loop transfer function

CLTF (z) =
φout
φin

=
OLTF (z)

(1 +OLTF (z))
(3.23)

of the feedback system can be obtained from the open loop transfer function

using standard control theory. The CLTF will be used later on to asses important

performance metrics of the CDR.

Phase Detection

As mentioned earlier, the phase detection mechanism in the CDR is a critical

point. There are generally di�erent methods to obtain the optimal sampling

instant from the incoming data. In the following three methods, which are used

in modern digital CDRs are brie�y discussed. Hereby the focus is on so called

bang-bang phase detection (BBPD) techniques which only supply 1-bit phase

information, in contrast to multi-bit TDCs. Bang-bang phase detection is widely

used in both PLLs and CDRs because of its robustness and simplicity.

The most common method by far, which is used in the majority of reported

83

3 High Speed SerDes Architecture

designs uses the threshold crossing of the data to extract the phase information.

The general working principle of this scheme is depicted in �gure 3.44.

Figure 3.44: Bang bang phase detection

The general assumption is, that the optimum sampling instant is in the center of

the eye and therefore half a bit time away from the data crossing the reference

threshold. Therefore one sampler is used to sample the data directly at the

crossing point (edge sampler), whereas another sampler obtains the actual data

(data sampler). The sampling instants of the two samplers are spaced by half

a bit time, which means that once the edge sampler is aligned with the data

crossings, the data sampler will be in the middle of the eye.

From the comparison of data and edge samples the phase information can be

extracted according to table 3.5.

Dn

0 1

En
0 early late
1 late early

Table 3.5: Binary phase detector phase information

The advantages of this type of implementation is its simplicity, while still achiev-

ing good accuracy. Though, the disadvantage is the inherent non-linearity, which

can lead to noise generation and complicates the overall analysis. This disadvan-

tage is common to all the discussed techniques, because it is inherent to bang-bang

phase detection.

Another approach is the Mueller-Mueller phase detection (MMPD) scheme [56],

which does not work on data transitions, but uses samples at di�erent reference

levels to equalize the impulse response between the sampling instants like depicted

in �gure 3.45.

84

3.5 Receiver

Figure 3.45: Mueller-Mueller based phase detection scheme

The assumption is, that when the amplitude of the impulse response h(t) is

equal for samples h−1 and h1, then the sample h0 is taken at the maximum of

h(t), hence at the optimum position. The properties of the MMPD were further

analyzed through simulations in the work carried out in [57]. The advantage is

that the phase detection happens at baud rate, in contrast to the oversampling,

which is required by the �rst technique. The disadvantage though is, that the

obtained sampling position is quite sensitive to the reference levels and the shape

of the impulse response, which itself depends on the transmission channel and

equalization.

At last there is a phase detector approach, which works on the spectral content

of the received data to obtain phase information. These are so called spectral

line or mixer based phase detection schemes. The general working principle is

depicted in �gure 3.46.

Figure 3.46: Spectral line based phase detection scheme

Non-return-to-zero (NRZ) coded random data generally exhibits a spectral har-

monic at TUI/2 [58]. This can be extracted by feeding the received data, as well

as a TUI/2 delayed version of it into an XOR gate. The XORed data is then

mixed with the sampling clock. The average mixer output is proportional to the

phase di�erence, like depicted in �gure 3.47. For use in a digital CDR the out-

85

3 High Speed SerDes Architecture

put is low pass �ltered and sampled with a low speed comparator to obtain an

early/late indication. Because no sampling is involved in the high speed domain,

this phase detection is suitable for extremely high data rates. The requirement

for a precise delay element in a full-rate mixer implementation like depicted in

�gure 3.46 is removed in a half-rate quadrature mixer scheme like described in

[59].

One disadvantage of this scheme is, that because of the rather analog nature of

the phase detector, for use in a digital CDR an analog low pass �lter is required

at the mixer output, which needs passive components and does not scale very well

with technology. The requirements on the �lter transfer function also depend on

the actual line rate, which is a problem in a multi-rate SerDes design, where the

line rate is not �xed.

Figure 3.47: Timing diagram of spectral line PD

Though the di�erent phase detection schemes all have their strengths and weak-

nesses, the classic BBPD was chosen for the architecture of this thesis, because

it shares all circuit elements with the normal data sampling path and so no ded-

icated modules are necessary, which is important for a modular and portable

design.

As stated earlier, because the BBPD outputs only early/late phase information,

which is highly non-linear behavior, it needs to be linearized in order to be able

to apply standard control theory to the CDR.

Although the transfer function of an ideal BBPD is in theory a step function,

in practical implementations the probability density function of phase detector

output versus input phase does have a �nite slope. This stems from the fact, that

86

3.5 Receiver

the non linear behavior of the BB phase detector is averaged by the sampling clock

and the metastability of the comparator �ip-�op [60].

Because the input signal can be generally viewed as uncorrelated to the PD, the

output PDF for a given input signal can be obtained from convolution of the

ideal step-like PDF and the PDF of the input signal as depicted in �gure 3.48.

The resulting PDF exhibits a �nite slope which can be linearized to the gain

coe�cient Kpd.

In practical implementations the input jitter is the dominant factor, while intrin-

sic metastability is comparatively small. All di�erent jitter components of the

input signal can be combined to a single PDF and convolved with the PDs PDF

to obtain the phase detector gain under these conditions [61].

Figure 3.48: Bang-Bang phase detector linearization

If only random jitter with a Gaussian distribution is assumed, Kpd can be calcu-

lated (as derived in [52]) as

Kpd =
T

2π · σj
(3.24)

where σj is the random jitter standard deviation and T the unit interval. This

is the value of the derivative at the origin of the convolution of the step PDF

and a Gaussian shaped PDF with standard deviation σj, normalized to the unit

interval.

Because the slope is not really linear, this means this approximation is only valid

for very small phase di�erences in the locked state. It is also apparent that the

whole CDR system behavior heavily relies on the input jitter distribution, which

might not be known exactly during the design phase. This has to be taken into

account in the implementation.

87

3 High Speed SerDes Architecture

Implementation

Figure 3.49 depicts the actual implementation of the CDR, which matches the

previously discussed theoretical Z-domain model.

Figure 3.49: CDR architecture

The data is supplied from the analog frontend to the 4 edge and data samplers.

The samples are then demultiplexed to 8 bit to lower the clock frequency. Af-

terwards the 8 edge and data samples are processed in the semi-custom digital

CDR block. This block, in turn controls the two phase interpolators, which shift

the edge and data sampler clocks. This closes the CDR control loop.

As loop latency is a major concern, the number of pipeline stages in the digital

CDR block needs to be minimized. Figure 3.50 depicts the processing steps

undertaken to compute the phase interpolator control vector from the edge and

data samples.

Figure 3.50: Digital CDR logic pipeline

88

3.5 Receiver

The �rst pipeline stage extracts early/late information from the edge/data sam-

ples according to table 3.5. The second stage uses these vectors to compute

the resulting phase increment or decrement. In the third stage, the phase and

frequency accumulators are located, which compute the new phase interpolator

control vector depending on the loop �lter coe�cients. The last stage decodes

the binary interpolator vector to the actual control vector required by the DACs

of the octagonal phase interpolator. Because the CDR clock is divided by 8 com-

pared to the line rate, the 4 pipeline stages add a delay of 32 bit times to the

loop latency.

As the input jitter is not known during the design phase, the loop �lter coe�cients

are implemented to be highly adjustable, in order to be able to tune the control

loop characteristics to �t a wide range of usage scenarios.

Because there are separate PIs for edge and data sampling, possible skews between

edge and data path can be calibrated with the help of the eye monitor.

Metrics

There are two metrics, which are most important to characterize the performance

of the CDR in this context, namely jitter transfer (JTRAN) and jitter tolerance

(JTOL).

The jitter transfer function describes, how a phase error at the input is translated

to a phase error at the output (the sampling clock) of the system in respect to

the frequency of the phase change. This is actually the same, as the closed loop

transfer function.

The jitter tolerance function describes, what the maximum tolerable jitter ampli-

tude at a certain BER is, in respect to the frequency of a sinusoidal modulation

of the data. This is probably the most important property of a CDR and often

also part of serial link speci�cations. Sinusoidal input phase modulation is of

course a simpli�cation, but there are several reasons which make sinusoidal jitter

a good candidate for this metric.

Random components are not predictable and can therefore not be tracked by

the CDR. Deterministic jitter due to channel ISI is bounded, but its frequency

content is usually beyond the CDR bandwidth and can not be be tracked either

for the most part.

Sinusoidal jitter is predictable and well de�ned. A frequency o�set between Tx

and Rx will result in deterministic jitter, as well as for example the (undesired)

89

3 High Speed SerDes Architecture

modulation of the sampling point by a switching converter through the power

delivery network. Another view on sinusoidal jitter is, that it represents a worst

case scenario, because most of the probability mass of the jitter is located at ±a
for a modulation of the form a · sin(ωj · t) [62]

During the jitter tolerance test, the amplitude of the modulation is increased

until a particular BER limit is exceeded [63]. This is repeated for increasing

modulation frequencies. The available sampling time Tslack for the CDR can be

approximated as

Tslack = 0.5 · UI −Dj − σj · ρ (3.25)

where Dj is the deterministic jitter cause by channel ISI, σj is the standard

deviation of the random jitter and ρ is the number of standard deviations to

calculate the random jitter peak-to-peak value at the desired BER. It can be

obtained from the Q-function and is approximately 7 for a BER of 10−12 (see

section 3.8.5). From the linearized phase domain model of the CDR, additionally

to the phase transfer function φout/φin, a phase error function φe/φi can be derived

from the phase domain model (�gure 3.43) as

φe =
1

OLTF (f) + 1
· φi (3.26)

where φi is the input phase di�erence and OLTF the open loop transfer function.

Therefore, the jitter tolerance at a given frequency can be calculated as

JTOL(f) = Tslack · (OLTF (f) + 1) (3.27)

Below, jitter transfer and jitter tolerance for the implementation described above

are plotted. Jitter tolerance, has also been simulated using the real number model

implementation in order to validate the design.

As long as the non-linear behavior of the BBPD is su�ciently linearized by ran-

dom noise, the analytical expressions are in fairly good agreement with the simu-

lations, as seen in �gure 3.51. Tough, because the phase detector gain Kpd highly

depends on the input jitter, it is very di�cult to choose loop �lter coe�cients in

advance. Because of this, the automatic adaptation of loop �lter coe�cients in

system is an active research topic.

90

3.5 Receiver

Figure 3.51: Jitter transfer and jitter tolerance functions for di�erent loop �lter
coe�cient and 3ps RMS random jitter in JTOL simulations

3.5.5 Divider Initialization

All the di�erent clocks in the receiver need to have a speci�c phase relationship

to each other for proper operation. For the lower speed clock dividers in the

deserialization stages this is solved by initializing the divider �ip-�ops to known

values after power-up. This results in a known phase relationship after reset. A

di�erent approach is chosen for the high speed divider path.

Figure 3.52: High speed divider and phase sense logic (left) and waveforms for
two di�erent reset cases CLK_I1 and CLK_I2 (right)

As depicted in �gure 3.52, there is a clock divider to generate the quadrature

phases (IQ divider) for data and edge path respectively. For proper operation

of the CDR, the edge clock rising edge has to follow the data clock rising edge.

Because the divider has to operate at clock speeds up to 12.5GHz, it is not

desirable to add an initialization or reset signal like in the low speed divider case.

Additionally the challenge is to pass the initialization signal to both dividers

91

3 High Speed SerDes Architecture

simultaneously. It would be necessary to use a synchronizer to sample the init

signal into the clock domain of one divider, and from there pass it synchronously

into the domain of the other divider.

The synchronizer itself, which consists of �ip-�ops, would need to work at the

highest clock speed of 12.5GHz. This would lead to additional clock load, area and

power consumption. Also the synchronizer would be clocked all the time, while

it is only used during initialization, which is a fraction of the overall operation

time of the receiver. Of course the synchronizer could be clock gated, but this

would only lead to additional complexity.

Therefore, a special initialization scheme was developed which makes the need of

init signal synchronization at the dividers redundant.

The scheme uses the special fact that both dividers are driven by phase interpo-

lators.

Because the IQ dividers are located behind the interpolators the e�ective phase

between them can be controlled by the digital control vector of of the PIs. After

the power up, when the dividers started operation, the actual phase only needs

to be determined. This is achieved by an XOR gate, which is used as a phase

detector.

Figure 3.53: High speed divider initialization sequence

Figure 3.53 shows the overall initialization procedure. On startup, the PIs are set

in phase using the digital control vectors. The dividers are powered up and the

output of the XOR gate is sampled by a low speed �ip-�op. As the output clocks

of the IQ dividers can now only be in phase or 180 deg out of phase, the output

of the XOR is always static. Small glitches due to very small di�erence in rise

time or duty cycle of the two outputs are �ltered out by the load capacitance and

92

3.5 Receiver

�nite bandwidth of the XOR gate. After the initial phase has been determined,

static o�sets are added to the control vectors of the interpolators in the CDR

in order to get the desired phase relationship of the data and edge PIs. The

hardware overhead is very small and this approach is very area and power e�cient.

The prolonged initialization phase in contrast to a synchronizer approach can be

neglected, because the procedure is only necessary once after power up.

3.5.6 Bit Slip Mechanism

Protocols, which are built on top of the SerDes interface, usually work on the

granularity of symbols/words which have a width of several bits. In contrast to

this, the receiver operates on raw bits of a serial data stream. The CDR �nds the

optimum sampling point in the middle of the eye, and the data gets deserialized.

From this perspective, the alignment of a word boundary at the parallel side of

the SerDes, like depicted in �gure 3.54, is entirely random.

Figure 3.54: Possible word alignments at SerDes parallel side

Because subsequent logic usually needs a speci�c word alignment at the parallel

side, additional logic, which aligns the parallel data to desired word boundaries

is therefore required. This additional logic can be built from bu�ers and barrel

shifters, in order to select the desired bits from a number of bu�ered received

bits. This adds additional latency and often also makes the delay through the

SerDes block nondeterministic.

Latency variations for di�erent word alignments in Xilinx Virtex 4 and 5 FPGAs

have been investigated in [64]. Further, the latency through the so-called 'Comma

Alignment' module is reported to be between 32 to 55 UI according to [65] for

the latest available Xilinx FPGA devices.

93

3 High Speed SerDes Architecture

Still, in SerDes applications such as readout networks for physics projects, de-

terministic latency is often a requirement, and achieving low latencies is very

desirable in high-performance networking applications.

While [66] states the existence of implementations based on the mentioned FPGA

devices which allow almost �xed latencies irrespective of the alignment, these

implementations still increase the overall latency.

In the following a bit slip mechanism which adds no additional latency and pro-

vides deterministic and identical delay for every possible alignment is introduced.

The mechanism is directly integrated into the digital CDR as depicted in �gure

3.55. As the current sampling position is determined by the digital control input

of the phase interpolator, the sampling position can be rotated into the next

UI by adding an o�set to the phase accumulator. This keeps the latency from

sampler clock to word clock edge constant and the symbol alignment is shifted

by one bit on the 16 bit parallel side of the SerDes.

Figure 3.55: Bitslip functionality in the Rx CDR

The penalty is an additional input at the phase accumulator, to add the �xed

o�set for one UI on top of the updates from the CDR loop �lter, when a bit slip

is requested. The o�set accumulation does not happen in one cycle, but is spread

into multiple clock cycles to prevent glitches from sudden code changes.

When the sampling point is rotated to the adjacent UI, the phase information

will be corrupted for a number of bit times. Still, because the rotation happens

in a very short time frame compared to the time constant of the CDR control

loop, the operation of the CDR is not disturbed. The CDR stays locked after the

rotation is �nished.

This shows the bene�t of a digital CDR architecture, which allows precise control

of the sampling phase compared to an analog counter part, where such a scheme

94

3.5 Receiver

could not be implemented.

The mechanism has been veri�ed in simulations to prove its reliability.

3.5.7 Calibration

While a static 10ps sampler o�set from the ideal position in a receiver at 5Gbps

results in only 5% loss of eye margin, at 25Gbps this increases to already 25%.

Therefore, the removal of static o�sets in both time and voltage domains is get-

ting more and more important with increasing data rates. The single bit times

are shrinking, but static o�sets are not necessarily decreasing the same way. In

fact, higher data rate SerDes PHYs are usually implemented in advanced manu-

facturing nodes, which tend to increase local variations [67].

A basic problem of calibration usually is that either some kind of reference or

additional sensing is necessary. Since the calibration should happen completely

on-chip, without the use of external components, a method has to be used which

does not involve the use of external references. Also the goal was to add as little

additional hardware as possible to measure both timing and voltage o�sets, since

additional sense hardware is most likely also a�icted by the same o�set issues,

in turn requiring a calibration. Additionally, dedicated hardware would consume

additional area and power which is undesirable. The optimum solution to all

of this is, to use the actual data samplers of the receiver themselves to sense

the voltage and timing o�sets at their input. This approach is called in-situ

calibration. In the following the calibration mechanisms, which are implemented

by using unique features of the developed SerDes architecture are described in

detail.

Vertical Calibration

Because voltage o�sets in the sampling paths would eventually translate into tim-

ing o�sets during horizontal calibration, the overall o�set removal in the receiver

has to start with vertical/voltage o�set calibration.

The actual voltage magnitude which needs to be calibrated is technology speci�c

and needs to be obtained from transistor level simulations using mismatch models

from the respective foundry. Acceptable residual o�sets, which de�ne the �nite

calibration resolution can be obtained from link budgeting.

The datapath in the receiver frontend up to the samplers is basically an ampli�er

chain, as depicted in �gure 3.56.

95

3 High Speed SerDes Architecture

Figure 3.56: Vertical calibration setup

Each of the CTLEs as well as the samplers can have their own intrinsic o�set.

Therefore they have to be calibrated one by one.

First, everything in front of the samplers is powered-down and a common mode

signal is applied to the di�erential inputs of the sampler comparator. The dat-

apath demultiplexer is used to obtain the sampler results. With its di�erential

inputs basically tied together, due to intrinsic noise, the comparator will on the

long term resolve the input signal an equal number of times to both possible

logic levels. If an o�set exists, one level is favored and either more logic ones or

logic zeros are visible at the demultiplexed output. The individual bits in the

parallel data output can be associated to a speci�c sampler. Usually there will

be an o�set in an di�erential ampli�er stage because of a shift in the di�erential

transistor pair threshold voltage Vt or a mobility mismatch due to local doping

variations [68].

A DAC at the sampler input (the same one, which is used to adjust the o�sets

required by the DFE) is used to introduce an additional o�set. With this, a

digital control loop can be build.

The DAC control code is monotonically incremented and an up-down counter is

used to record the number of logic zeros and ones resolved by the comparator.

Hereby a histogram like depicted in �gure 3.57 can be obtained. For extreme o�set

codes always the same logic level is resolved, while there is also an optimum DAC

control code, which yields an almost equal number of logic zeros and ones. The

histogram can also give a qualitative hint to the amount of noise in the sampling

process by the spread of non-saturated counter results, This can be helpful to

asses the impact of other noise sources in the entire system.

96

3.5 Receiver

Figure 3.57: Vertical calibration histogram

To calibrate the entire chain, �rst the optimum code for the sampler o�set DAC is

obtained. Afterwards, the next ampli�er stage in front of the sampler is powered

on, its di�erential inputs tied to a common mode and an o�set DAC is used

to introduce an additional o�set. This procedure is repeated until the complete

receiver input chain has been calibrated.

Horizontal Calibration

After vertical calibration has been performed, timing o�sets can be addressed. As

mentioned in section 3.5.3 each sampler has its own clock bu�er which allows to

adjust the delay. The sampler phase o�set is not calibrated against some external

reference. Instead one sampler is chosen as reference and the timing o�set against

this reference phase sampler is measured.

The actual measurement is then executed as a modi�ed code density test (CDT)

in the following way as depicted in �gure 3.58.

The internal near end serial loopback is activated, and the transmitter is used

to send a low speed clock pattern at the receiver. Hereby, the lane clocking

is con�gured in such a way that the transmitter is clocked by the free running

injection locked ring oscillator. In contrast, the receiver is still clocked by the

locked lane PLL. Also, the clock data recovery in the receiver is deactivated

during calibration.

The received signal and the sampling instant of the receiver are now (ideally)

completely asynchronous and uncorrelated. Therefore, from the Rx perspective a

rising edge in the received signal can occur at any time with the same probability,

97

3 High Speed SerDes Architecture

Figure 3.58: Horizontal calibration setup

as depicted in �gure 3.59. The phase di�erence to be measured between the

reference sampler D0 and sampler D1 is designated ∆T . If the transmitted clock

signal period is guaranteed to be greater than T , the probability for a rising edge

to fall between two sampling points of D0 is equal to 1. Therefore, the probability

for a rising edge to fall in the interval ∆T is ∆T/T . By counting the transmitted

rising edges and the rising edges seen between D0 and D1, the phase shift in

degrees between the two samplers can be calculated as

Φ =
edges detected

edges transmitted
∗ 360 (3.28)

The accuracy of the measurement is improved with the number of samples taken.

Using this technique a repeatability of 10fs rms and absolute accuracy 250fs has

been achieved in [69].

Figure 3.59: Horizontal calibration waveform

98

3.5 Receiver

After the o�set has been determined, the delay of the respective sampler can be

adjusted using the DCC bu�er. Afterwards the measurement is repeated. This

has to be iterated until the o�set is minimized. Theoretically all samplers can

be calibrated in parallel. However, to keep the number of counters in the digital

part small, the actual implementation is limited to one sampler pair at a time.

Because the calibration is only performed once on power-up, the additional time

needed for calibration can be neglected.

The advantage of this technique is that no additional hardware is necessary in the

full custom part of the SerDes. The actual samplers are used to determine the

o�sets, with no di�erence to the actual receiver operation. Moreover a very high

accuracy is achievable, which is superior to most direct measurement techniques,

that would all require some additional sensing hardware.

99

3 High Speed SerDes Architecture

3.6 Transmitter

3.6.1 Overview

The transmitter is, just like the receiver divided into a full custom partition and

a semi custom implementation part as depicted in �gure 3.60 The functional-

ity implemented in the full custom partition is kept at a minimum in terms of

complexity, in order to improve portability and reduce manual implementation

work. Therefore it mainly consists of a segmented SSTL driver and clocking

resources which are necessary to distribute high-speed clocks to the driver seg-

ments and implement the interface synchronization described in section 3.6.3.

The synthesizable logic implements multiplexers from 16 bit parallel data up to

4bit at quarter rate. Additionally the data selection logic for the 4-tap FIR �lter

is implemented in front of the multiplexer trees.

Figure 3.60: Overall Tx overview

Further, all low speed dividers to generate clock phases, which are necessary in

the multiplexer stages along with their respective reset logic are located in the

semi custom partition. Same is true for auxiliary debug logic used for test pattern

generation and loopback.

In the following, the datapath of the transmitter is described in more detail.

100

3.6 Transmitter

3.6.2 Datapath

As stated earlier, the transmitter implements a 4-tap FIR �lter in order to apply

pre-distortion to the output signal to partly counter the channel characteristics.

The number of taps was chosen to be 4, because it also allows to generate PAM4

signal levels.

Figure 3.61: SSTL driver segments

Figure 3.61 depicts the working principle of the segmented SSTL output driver.

There are multiple CMOS bu�ers, connected in parallel. Each bu�er has a

weighted resistance attached in series. The overall segmented driver is designed

in a way that all parallel resistors yield an e�ective 50 Ω resistance. To create

a di�erential output driver, two single ended drivers are used with one driver

sending the logical complement.

To create the pre-distorted FIR output waveform, not all segments are con�gured

to send the same data, but some are sending the previous or subsequent bit.

Due to the weighted series resistors, the output driver then works like a voltage

divider. The number and weighting of the segments dictates the resolution of the

FIR coe�cients.

For maximum �exibility the cursor time each segment is assigned to, is fully

con�gurable in the synthesized part. Because the driver is built as a quarter rate

design, each segment is preceded by a 4 to 1 multiplexer. Therefore the semi

custom part needs to supply 4 ·Nseg data bits at quarter rate to the full custom

segmented di�erential output driver, where Nseg is the number of output driver

segments.

Figure 3.62 depicts the Tx datapath in more detail. Like previously stated, the

transmitter is implemented as a quarter rate design to improve energy e�ciency

[70].

101

3 High Speed SerDes Architecture

Therefore, the 16 bit parallel input data is split into 4 x 4 bit, and every 4 bit

slice is then multiplexed to 1. Because every segment can be con�gured in respect

to the cursor value it drives, each segment requires its own dedicated multiplexer

tree. Therefore the 4 quarter rate multiplexer are replicated Nseg times.

Figure 3.62: Tx datapath

Finally, in front of each multiplexer is a tap selection logic, which allows to select

the cursor that the driver segment is going to send. By this tap selection logic,

the FIR coe�cients are determined.

3.6.3 Interface Synchronization

A special interface synchronization scheme was implemented in the transmitter to

facilitate two things: First, the input signals for the 4 to 1 full custom multiplexers

need to arrive with proper timing to avoid glitches at the transmitter output.

Secondly, it is desirable to use the same transmit side parallel clock for multiple

lanes. Both issues are addressed by the mechanism described in the following.

As stated earlier, the transmitter is split into a semi- and a full-custom part.

Figure 3.63 depicts the interface boundary without synchronization mechanism

to illustrate the problem. High speed clocks are generated within the transmitter

core partition and used to clock latches, which are in front of the actual full

custom driver segments to retime the incoming data. Because of the relatively

small number of latches, they are all driven by the same clock bu�er. The clocks

are also used in the digital partition to clock the last multiplexer stages. During

semi-custom implementation, a clock tree is usually inferred into the design in

order to distribute the clock to the individual clock tree leaf elements. This bu�er

102

3.6 Transmitter

tree adds an additional latency tskew from the clock root to the leaf. The problem

is, that this latency degrades the setup timing margin of the latch (tslack,setup),

which can be calculated as

tslack,setup = tcycle − tco − tsetup − tskew − tpd (3.29)

where tcycle is the clock cycle time, tco the �ip-�op clock-to-output time, tsetup the

sampling latch setup time, tskew the clock skew and tpd the propagation delay.

Because of the timing variations introduced by process, voltage, temperature

(PVT) and very small cycle times in the range of 200ps or less, positive setup

slack is very hard to achieve.

Figure 3.63: Tx semi to full custom interface

To overcome this issue, a synchronization mechanism similar to a delay locked

loop (DLL) was implemented at the interface boundary, as depicted in �gure

3.64.

A phase interpolator is introduced in front of the clock output to the digital

partition. By this, the high speed clock (and the derived word clock) can be

shifted, to tune out tskew and align the clock phase at the �ip �ips and latches on

both sides of the interface. It should be noted, that the transmitting clock itself

is not touched and no additional jitter at the output driver is introduced.

In order to adjust the interface clock properly, the ideal phase adjustment has to

be determined �rst. This could be facilitated by adding a phase detector, which

compares the clock phase at the clock tree leaf and the retime latch, like in a

103

3 High Speed SerDes Architecture

Figure 3.64: PI used for interface synchronization

traditional DLL. Still, a very good timing characterization of the retime latch

setup time would be necessary, to allow proper balancing in the semi custom

design �ow. To overcome this issue, another scheme is used, which adjusts the

clock to the optimum retiming instant, regardless of the actual tco, tsetup or tpd.

In parallel to the actual data path multiplexers an additional multiplexer, which

constantly switches between 1 and 0 is added. This clock signal, which is hereby

generated is sampled by two retime latches at the full custom side, like depicted

in �gure 3.65. The outputs of the two latches work like a bang-bang phase

detector and can be used to determine the optimum sampling phase. Because

the synchronization signal as well as the sampling is done using the same circuits

like the actual data path, the optimum phase adjustment can be determined,

without knowing the actual delays of the individual components.

Figure 3.65: Interface synchronization phase detection scheme

104

3.6 Transmitter

D0n
0 1

D1n
0 lag no decision
1 lead lag

Table 3.6: Two bit phase detector truth table

The phase information can be extracted from the two bit value like shown in

table 3.6

No extra components need to be implemented in the full-custom design, because

all can be reused from the receiver CDR.

As hinted earlier, once this mechanism is implemented, it can also be used to

synchronize multiple transmitter lanes. While all Tx clocks in a link are derived

from the same PLL and therefore have �xed phase relationship, this relation is

not known a priori when multiple lanes are used together. Therefore, often one

Tx word clock is chosen to drive the main logic of a chip and all other word

clocks are treated as asynchronous to the chosen word clock. This means that

data, which is processed by the main logic and is to be sent over the multi-lane

link �rst has to be synchronized into each local transmitter clock domain. This

adds additional latency, which is often undesired.

A two step approach can now be used to synchronize the transmitter word clocks

and get rid of any additional synchronization in the datapath. First, phase de-

tectors are necessary at the word clock outputs of two adjacent transmitter lanes.

The phase interpolators at each transmitter clock root can now be used to shift

the word clock of one transmitter until the phases are aligned. Afterwards the

high speed interface synchronization has to take place like described above. This

will introduce a small skew between the two transmitter word clocks. Still, the

o�set is smaller than half a high speed clock period, which is around 100ps at

the highest rate. This is the maximum uncertainty that has to be taken into

account between two word clock domains. For lower data rates, this uncertainty

increases, because the high speed clock frequency decreases - yet the word clock

period decreases as well, which compensates for the higher uncertainty.

105

3 High Speed SerDes Architecture

3.7 Testability Concept

Though sometimes overlooked, it is very important to think about testability and

debug capabilities during the design phase.

To be able to characterize and debug the design in silicon or on the system level,

it has to be ensured that necessary hardware structures which are needed to

facilitate the measurement tasks are actually present in the design. Signals or

data samples which are easily accessible in simulation need to be made observable

in the �nal chip. Therefore a number of additional functions, which are dedicated

to test and characterization need to be implemented.

The test and debug functions are integrated in each individual lane. As the

SerDes is developed as a multi-protocol transceiver this makes sure that in each

scenario all debug functionality is present, regardless of the capabilities which

might be provided by the respective protocol.

In the following, di�erent functions which all contribute to the overall testability

of the SerDes are introduced.

Test pattern Generation and Checking

Test pattern generation using pseudo random bit sequences (PRBS) is a standard

approach in the industry. They are normally employed during bit error rate

testing (BERT). The test patterns are usually generated by the means of linear

feedback shift registers (LFSR), like depicted in �gure 3.66.

Figure 3.66: LFSR for PRBS7

The input of the shift register is constructed from feedback taps of the shift

registers and XOR gates.

The position of the taps determines the generator polynomial of the LFSR. Di�er-

ent generator polynomials can be used to mimic data encodings used by di�erent

106

3.7 Testability Concept

protocols. For this multi-protocol SerDes, PRBS generators and checkers for

di�erent standard polynomials are included, speci�cally:

� PRBS7 (X7 +X6 + 1)

� PRBS15 (X15 +X14 + 1)

� PRBS23 (X23 +X18 + 1)

� PRBS31 (X31 +X28 + 1)

The number identifying the PRBS sequence hints the generator polynomial,

which is used and also states the number of possible pattern combinations, the

length of the shift register and how many consecutive ones or zeros can occur.

Because of the nature of LFSRs, the checkers used on the receive side are self-

aligning, which means there is no extra hardware needed to obtain a symbol

alignment. It should be noted, that some extra logic needs to be added to iden-

tify if the received data is all zero, because all zero data fed into the checker

LFSR will always return zero. This is because mathematically the checker di-

vides the incoming data stream by the generator polynomial and zero divided by

anything will always return zero and can be mistaken for no erroneous bits being

received. This could lead to a lane being falsely identi�ed as working perfectly

while actually being stuck at zero.

Additionally, a 128bit long custom pattern can be send, which can be used to

characterize speci�c details in the transmitter, such as multiplexer setup/hold

issues, duty cycle distortion, PLL and clock generation jitter as well as channel

issues like worst case ISI.

On the receive side, there is no checker for the custom pattern generator because

this would require symbol alignment logic, which requires additional logic.

The bit sequence, which is generated by the LFSR also depends on the initial

values of the shift registers (seed value). It is bene�cial to be able to control the

seed value in order to load di�erent seeds for neighboring lanes, when crosstalk

is going to be analyzed. If all lanes are using the same seed, the bit pattern is

synchronized and cross talk e�ects might be underestimated during PRBS testing,

when all lanes are sending the same pattern.

Loopback Paths

Loopbacks are essential for debugging to determine in which portion of the design

or link errors are introduced. Figure 3.67 shows the di�erent types of loopbacks,

107

3 High Speed SerDes Architecture

which are usually present in a SerDes design. They can be divided into near-end

and far-end as well as serial or parallel.

Figure 3.67: Di�erent types of loopback locations: 1) near end serial 2) far end
serial 3) near end parallel 4) far end parallel

At the near end parallel loopback, data which is sent on the transmitter is looped

back to the parallel side of the own receiver before even being multiplexed to the

highest data rates. Using this loopback, timing errors in the digital part and on

the interface of the SerDes to the surrounding logic can be identi�ed. The actual

serial part, nor the transmission channel nor the receiver on the other side (far

end receiver) are involved. Some designs introduce additional near end parallel

loopbacks at di�erent stages of the multiplexers for internal testing of the high

speed multiplexer/demultiplexer structures.

The near end serial loopback takes serialized data of the transmitter and loops

back to the own receiver serial input. This is useful to test all serial and high

speed logic of a complete lane, without the degradation of the actual transmission

channel. It can be used to make sure that the actual transceiver is operating

correctly, taking all external structures, like PCB, package, soldering etc. out

of the equation. To stress the receiver, some designs have the ability to add a

degrading bu�er in the loopback path to mimic channel loss.

A far end parallel loopback takes received and fully deserialized data at the

parallel digital side and sends it on the own transmitter. This can be used to test

a lane, with a transmission channel and a remote transceiver involved.

At last a far end serial loopback takes the serially received data and sends it back

out on the local transmitter right away without using its own CDR to sample the

data, while the transmitter often only works in a simple bu�er mode.

In the current design, all these possibilities except the far end serial loopback

108

3.7 Testability Concept

have been implemented. If bit errors turn up, the loopback modes greatly help

to narrow down the problem and identify the location of the root cause.

Digital Observation and Override

Each lane has a dedicated control and status register �le as well as a direct

con�guration and control interface. The register �le is built using a generator,

which allows to automatically generate HDL and veri�cation code from a special

register �le description language [71]. The register �le can be accessed over a

memory interface, which can for example be hooked up to the internal register

�le structure of an SoC or is directly attached to an o�-chip interface like I2C. A

single lane has about 250 di�erent con�guration and status registers which sum

up to around 4kb in combination.

The direct interface is intended to be controlled by hard-wired FSMs, which

e.g. control power-up, rate change, calibration, bitslip, equalization adaptation.

Despite all veri�cation e�orts, there is always the probability that such FSMs

contain bugs which prohibit proper system functionality and are very hard to

debug in system. To address such issues, every functionality in the SerDes can

be controlled and observed via the register �le, using the scheme depicted in

�gure 3.68.

Figure 3.68: Observation and override through the register �le

For each direct control signal, there is a multiplexer which is controlled by an

override enable from the register �le. The multiplexer determines, if the internal

logic is controlled by the direct interface or the register �le itself. When the

override is not enabled, the current value, which is driven to the internal logic

can be observed from the register �le. This can be used to debug external FSMs

109

3 High Speed SerDes Architecture

and override their behavior if necessary. Via this mechanism the whole PHY can

be initialized and controlled entirely by external software as a fall back solution.

On-Die Eye Monitor

The on-die eye monitor is implemented using the eye/error sampler, which can

also used for equalization adaptation. The eye sampler is an additional sampler

in parallel to the data samplers which can be con�gured to di�erent sampling

instants and signal levels independently. Sampled eye data can be compared

with the values obtained from the data samplers. By sweeping the eye sampler

horizontal and vertical o�sets compared to the data samplers, a 2D map of the

received data eye can be constructed. If a su�cient number of samples is taken,

this information can be used identify the e�ect of transmitter and receiver equal-

ization as well as random noise levels or construct bathtub curves to analyze the

quality of the link in terms of BER. In �gure 3.69 on-die eye diagrams obtained

using the actual hardware implementation and RNM models for an equalized and

unequalized channel are plotted for illustration.

Figure 3.69: Plots for di�erent equalizer settings using the on-die eye monitor

It can be observed how the eye for the equalized channel on the right side opens

up because of the reduction of ISI. Because the eye diagram is obtained with an

additional sampler, it can be built concurrently, while real tra�c is sent over a

link. This can give better insight on the nature of additional noise e�ects, which

might arise when more digital logic on a larger chip is activated and produces

switching noise on the power supply rails. The on-die eye monitor is especially

useful because the actual sampling hardware of the SerDes is used, which ob-

viously takes into account all the degradations on signal and power supply the

samplers su�er. Additionally it is nearly impossible to probe the signal at the

receiver using external equipment without introducing further changes to the

110

3.7 Testability Concept

transmission channel. It would not be possible to use an external probe in a real

system, because there is simply no probing location where a meaningful signal

could be obtained at such high frequencies.

Analog Test Bus

Besides the digital testability functions, sometimes it is useful to be able to probe

actual voltages in the design. As it is obviously impossible because of pin limita-

tions to add dedicated pins for every node that should be observable, some kind

of multiplexing has to be employed.

A single analog test bus (ATB) pin is used to access probes, which are added to

the design for speci�c nodes. The probes and multiplexer structure can then be

controlled via a control register �le to connect the node of interest to the shared

ATB pin.

Whereas in [72] an actual passgate based multiplexer structure is proposed, which

also allows nodes to be controlled, in [73] source followers are used to sense the test

point voltages over a common test pin as depicted in �gure 3.70. This approach

has been adopted for the current design.

Figure 3.70: ATB probe circuit (lef) and on-chip probing architecture (right)

As described in [73], to measure an internal node, a current Isense is applied at

the ATB pin and the speci�c test point is activated by closing switch S3. First,

switch S2 is closed, while S1 is open and the voltage at the ATB is measured.

Afterwards S1 is closed, while S2 is open and the voltage is measured again. The

voltage at the probed node can then by calculated as the di�erence of the two

measurements.

This approach does only permit sensing voltages, but also results in higher iso-

lation between probed nodes. Also, the bandwidth is very limited because the

ATB bus is loaded by the capacitance of all probes and interconnect.

111

3 High Speed SerDes Architecture

The ATB can be extended in the future, by adding an on-chip ADC and current

source as depicted in �gure 3.70. The ATB could then not only be used for test an

debug, but also as shared means for PVT calibrations after power-up. Because all

probed voltage values could be accessible from a central register �le, this could be

used for software controlled calibration loops to adjust bias currents or resistors

to optimum values. As the ADC can be shared over all probes connected to the

bus, the area penalty is small, while more sophisticated implementations can be

used.

JTAG Boundary Scan

The Joint Test Action Group (JTAG) developed the IEEE standard 1149.1 [74]

in the mid 1980s, which de�nes so called boundary scan testing. This mechanism

is intended to test interconnect structures between di�erent ICs after assembly

on a printed circuit board (PCB), which was formerly done by connecting test

probes in a "bed of nails" - like approach.

Figure 3.71: JTAG boundary scan

As depicted in �gure 3.71, to accomplish this, every I/O has to contain a boundary

scan cell (BSC). The BSC does provide means to drive or capture the data on

that speci�c pin, independently from its original functionality. It also contains

multiplexer structures in order to be transparent during normal operation. All

BSCs are connected like a shift register chain, in order to be able to serially write

or read test patterns using the standardized test access port (TAP). Multiple ICs

can be connected in series, in order to have a low pin count interface for testing

that well suits the automatic test equipment (ATE). While the original standard

only addressed the use of static test pattern, with the emergence of high-speed

links, the IEEE standard was extended in [75] to cover testing of di�erential

AC-coupled signals.

112

3.7 Testability Concept

Obviously for a SerDes it is also desirable to have boundary scan capability for the

serial input/output in order to be able to integrate it in standard manufacturing

tests. Yet, because of the very high data rates it is not straight forward to add

a simple boundary scan cell to the I/O port, like it is e.g. on a digital CMOS

con�guration pin. Every additional logic adds capacitive loading at the high speed

nodes, which potentially degrades the performance. Though, because boundary

scan is usually only used in high volume testing, it was not considered in the

architecture developed in this thesis.

Digital Internal Scan

To test synthesized, digital logic for manufacturing faults, internal scan is the

standard approach. During implementation, all �ip-�ops in the design have to

be exchanged with scan �ip-�ops like depicted in �gure 3.72. A scan FF has

a multiplexer in front of the actual storage element, which selects between the

data- and the scan input. Via the scan input all �ip �ops in the design can be

connected as a shift register (or multiple parallel shift registers). When the scan

enable (SE) is activated a speci�c test pattern can be serially shifted into all FFs.

Figure 3.72: Internal scan

Afterwards, the SE is deactivated and the clock signal is toggled. Now the SE can

be activated again and the results are shifted out for evaluation. Special auto-

matic test pattern generation (ATPG) software is used to generate and evaluate

the scan �ip-�ip data based on fault models. With this technique consequently

applied, a digital �ip-�op based design can be exhaustively tested for manufac-

turing faults. The combinational logic in between of the FFs is directly tested

this way, in contrast to normal operation where it would be very di�cult, if not

impossible to identify manufacturing faults down to the root cause.

113

3 High Speed SerDes Architecture

3.8 Physical Coding Sublayer

The Open Systems Interconnection (OSI) model, which partitions a communi-

cation system into 7 abstract layers, designates the lowest layer as the physical

layer. On this layer the actual raw data transmission takes place, independent

from higher level protocol related issues.

The physical layer itself is often also split into two sublayers, the physical media

attachment (PMA) layer and the physcial coding sublayer (PCS). The PMA is

essentially the raw SerDes, which is discussed in chapter 3, that electrically (or

optically) interfaces the transmission medium and provides a parallel interface to

a serial channel.

The PCS builds on top of the PMA and ful�lls a number of slightly higher level

tasks, such as applying line coding/decoding and data scrambling, establishing

symbol alignment and word synchronization or providing elastic bu�ering to over-

come frequency o�sets between far end and local reference. These functionalities

will be covered in context of a 'PHY Interface for the PCI Express Architecture'

(PIPE) implementation, which is described in the following.

Figure 3.73: Physical layer partitioning, after [76]

The PIPE is a standard interface between the SerDes PHY composed of PMA/PCS

and the media access controller (MAC), which handles the overlying protocol

114

3.8 Physical Coding Sublayer

layers. Figure 3.73 depicts the physical layer as it is de�ned according to the

PCIe speci�cation. Because PHY and MAC are often not developed by the same

company, the PIPE interface is an attempt to ensure interoperability and ease

concurrent developments.

The PIPE speci�cation only de�nes the interface signals, but makes no asser-

tions on the actual implementation. To be able to use the SerDes developed in

the course of this thesis with a standard PCIe MAC a PIPE compatible PCS

was implemented. In the following, the PCS and the challenges that had to be

overcome will be discussed in more detail. Hereby the focus is on the general

ideas, which are universal to PCS layers and not only speci�c to PCIe. Therefore

the actual PIPE interface, which is de�ned in [76] is not described in detail.

The PIPE PCS is written in Verilog HDL, in order to be used in an FPGA or

implemented as a semi-custom design in an ASIC.

3.8.1 Datapath Overview

Figure 3.74 depicts the complete PIPE PCS of a single lane. Each lane top

module contains the receiver and transmitter datapath top modules. Because the

line coding is di�erent for PCIe Gen 1/2 and Gen 3, each datapath is split and the

appropriate coding can be selected depending on the mode of operation. Whereas

PCIe Gen 1/2 uses 8b/10b coding, Gen 3 uses 128b/130b coding together with

scrambling.

The top module of the Tx data path contains encoders for 8b/10b and 128b/130b

as well as a 20 to 16 bit gearbox and a rate converter respectively.

The 8b/10b encoder takes 2 bytes and maps them to 2 10bit symbols according

to the coding de�ned in [77]. The coding ensures DC balance, which means that

the number of 1 and 0 bits over a certain interval is equal on average, which

is important for AC-coupled serial links. It also ensures a maximum runlength

of 5 bits, which guarantees a minimum amount of data transitions, which is

important for the CDR. The downside is that there is a coding overhead of 25%,

which reduces the net data rate.

Gen3 operation uses a 128b/130b encoder, which directly works on a 16bit data

path instead of bu�ering to 128bit to save latency. 128b/130b coding only inserts

2 additional bits into the data stream and appends 128bit payload. The payload

is scrambled data [15], which means the raw data is XORed with a scrambling

polynom like PRBS23 in order to increase the number of transitions. The two

115

3 High Speed SerDes Architecture

Figure 3.74: PIPE implementation datapath overview

additional bits are used for block alignment and identi�cation of control char-

acters. Though the net data rate is increased compared to 8b/10b coding, DC

balance and maximum runlength are not tightly controlled anymore.

The 128b/130b encoder is followed by a rate converter to accommodate the two

extra control bits which must be added to the data stream every 8 cycles as part

of the 128b/130b encoding. It relies on the previous unit � which is in fact the

PCIe MAC - to insert a gap of one clock cycle every eight blocks (after 64 clock

cycles) to account for the extra bits being added.

Whereas in PCIe Gen3 modes gaps are inserted by the MAC to account for the

coding overhead, this is not the case in Gen1/2 mode. The 20 bit output of the

8b10b encoder has to be supplied to the 16 bit SerDes input without interruptions.

This is of course only possible by using two di�erent clocks and passing the data

116

3.8 Physical Coding Sublayer

from one clock domain to another in an e�cient way. This is facilitated in the

20 to 16 gearbox, which is described separately in a subsequent section.

The top module of the Rx data path contains a 16 to 20 gearbox, block and

symbol alignment logic as well as so called elastic bu�ers. There are also the

8b/10b and 128b/130b decoder modules for Gen1/2 and Gen3.

The 16 to 20 gearbox uses the same scheme as the 20 to 16 gearbox to transform

the 16 bit stream from the SerDes Rx data output domain to a 20 bit stream in

a slower clk_20 clock domain.

The symbol aligner module is used to �nd the correct starting point of the 8b/10b

symbols in Gen1/2 mode.

The implementation uses a barrel shifter to align the data output to encoded

8b10b symbol boundaries. Instead of using a barrel shifter to change the align-

ment of the input data to the desired bit position, the bit slip mechanism of the

SerDes as described in section 3.5.6 can be used to save latency. Though to keep

the implementation generic, a barrel shifter is used. The barrel shifter position is

obtained by matching the input data against the 8b/10b COM character (K28.5)

in the bit stream which is used for symbol alignment during link initialization.

The matching is done in parallel at all possible positions in the 20 bit input word.

When the pattern is found, it has to be found on the same position again for the

alignment to get locked. If the 8b/10b decoder module which sits at the end

of the data path detects too many bit errors at some later point in time during

operation, it can request a relock from the symbol aligner.

The block alignment module is needed when operating in Gen3 mode. 128b/130b

block boundaries are initially detected by using a special repeating pattern (the

so called EIEOS) during the initialization phase of the PCIe link.

The block aligner bu�ers two symbols to accommodate the 128b/130b data rate

di�erence. Every 8 blocks a gap is inserted into the data stream to the MAC, to

bu�er a new data word to be able to allow an uninterrupted data stream for the

next 8 blocks.

If block lock is lost, this is signaled to the subsequent data path, which is then

drained. The loss of block lock is recognized by either the detection of an EIEOS

at a di�erent position in the data stream than the current alignment position or

a corrupted 128b/130b sync header. Therefore the block alignment logic needs to

keep track of the current block start position, which is constantly moving because

of the two extra sync header bits every 8 cycles.

117

3 High Speed SerDes Architecture

3.8.2 Clocking Architecture

As serial links are usually formed from multiple lanes, a complete link contains

multiple parallel PCS layers, e.g. up to 16x for PCIe. At the PCS level, all lanes

are completely unrelated to each other in terms of data transfer and coding.

Synchronization mechanisms are required because a single interface clock to the

MAC is used, even though every lane's Tx an Rx has its own word clocks. The

clocking architecture to facilitate this is depicted in �gure 3.75.

Figure 3.75: PCS clocking overview (3 lane example)

There are a number of clock domain crossings in the design because the PCS logic

itself needs to run on a single clock. This single clock, which is used as PCLK is

selected to be the Tx word clock of lane 0.

On the Tx side, each SerDes lane has /16 and /20 word clocks, which are all

assumed to run at the same frequency, but do not necessarily have the same

phase. The /20 word clock is necessary to be able to process the data from the

8b/10b encoder without gaps in Gen1/2 mode. All clock domain crossings on the

Tx side are handled in the 20to16 gearbox.

118

3.8 Physical Coding Sublayer

On the Rx side things are more complicated due to the additional clock domain

crossing from the Rx clock domain to the PCLK domain. There is the 16to20

gearbox which is equivalent to its 20to16 counterpart in the Tx data path and

additionally the elastic bu�er, which implements the clock domain crossing from

the Rx to the Tx domain to maintain a constant �ow of data without gaps by

compensating up to ± 300ppm frequency o�set between the far end and local

reference clock.

3.8.3 Gearbox

There are two di�erent gearboxes present in the PCS. One to transforms the

20bit wide stream from the 8b/10b encoder into a 16bit wide stream which is

expected by the SerDes parallel side and the other to transform the 16bit wide

receive data to a 20bit wide stream for use in the symbol aligner. Both work on

the sample principle, which is described by example of the 20to16 gearbox below.

To work continuously without gaps or over�ows, the 20bit stream runs at a slower

clock and is transformed to a 16bit stream in a faster clock domain. The clocks

are assumed to have a ratio of 4 to 5 and �xed but not priorly known phase

relationship. The goal is to facilitate this rate conversion and clock domain

crossing with minimum latency.

Figure 3.76: Gearbox block diagram

Figure 3.76 shows the block diagram of the 20 to 16 gearbox. The operation

119

3 High Speed SerDes Architecture

is similar to an asynchronous FIFO, but because the phase relation of the two

clocks is �xed and the ratio is known, no extra bu�er space needs to be allocated

and latency can be minimized.

The input data is sampled into a ring bu�er on the clk_20 side depending on

the write pointer state and is read out from the clk_16 side. The clk_16 starts

reading from the ring bu�er, after the !empty signal was received from the clk_20

side. A selection logic multiplexes the 20bit data stream into 16bit data chunks

depending on the read pointer state. This ensures that data, which is read

has already settled, thereby preventing metastability and setup violations. The

!empty is generated from the write pointer, once the gearbox is enabled.

In the following the clock relationship is analyzed closer, in order to determine

the minimum achievable latency.

Because of the 4 to 5 ratio of the clocks, one out of four clk_20 cycles is always

sampled twice by the clk_16 domain. This is always the last edge right before

clk_20 and clk_16 are aligned (or the closest to being in phase). Figure 3.77

shows one possible phase relationship for illustration.

Figure 3.77: Gearbox clocks timing diagram

To get rid of the tough timing requirements, which could lead to setup/hold

violations for the �rst clk_16 edge at T1, a ring bu�er is used to transfer data

between the two clock domains. In clk_16 only data, which has already settled

for one cycle is read. Only one signal which indicates the ring bu�er �ll grade

must then be synchronized from clk_20 to clk_16. This signal is sampled in the

clk_16 domain using a synchronizer circuit to prevent possible meta stability.

When sampling only settled data values, timing requirements are greatly relaxed

(see �gure 3.78). Nevertheless care must be taken that the ring bu�er has proper

depth. No data should be overwritten and there must always be enough data

available to facilitate the gearbox mechanism.

The synchronizer circuit, which is used to transfer the !empty signal, introduces

120

3.8 Physical Coding Sublayer

Figure 3.78: Gearbox clocks relaxed timing diagram

a best and worst case scenario. In the worst case scenario the ring bu�er �ll

grade is missed by the �rst clk_16 edge and not sampled correctly (or the �rst

synchronizer FF goes metastable), so one additional bu�er space must be reserved

for this case, as seen in �gure 3.79.

Figure 3.79: PIPE gearbox timing diagram

Because the start of the data transfer has no relation to the current clock phase,

it is not know when a clk_20 edge is sampled twice from clk_16. Therefore

at least two data samples must be available in the bu�er before starting in the

clk_16 domain, to allow the gearbox mechanism to work properly. This leads to

a best case latency of one clk_20 cycle and a worst case latency of two clk_20

cycles to cross the clock domain.

3.8.4 Elastic Bu�er

The elastic bu�er has the purpose to compensate a possible frequency di�erence

between remote transmitter and the local PCS clock, which originates from an

o�set between the reference clocks. The PCIe speci�cation for example allows a

reference clock di�erence of ± 300 ppm between host and device.

121

3 High Speed SerDes Architecture

If the remote transmitter runs faster than the local PCS clock the bu�ers in

the receiver would eventually over�ow and the data would be corrupted. In

the opposite case, if the remote transmitter reference is slower than the local

reference, the receive bu�ers in the MAC would eventually under�ow. To keep

latencies small it is further desirable to bu�er as little data as possible.

To compensate such frequency di�erences special symbols or so called 'ordered

sets' are inserted into the data stream by the transmitter in de�ned intervals. In

the case of PCIe these sets consist of multiple symbols and need to be scheduled

between 1180 to 1538 symbols [15], to be able to compensate worst case frequency

di�erences. The receiver has to detect these sets and can either add or remove

symbols to them in order to prevent a bu�er over or under run. Using this

mechanism the actual payload data can be received undisturbed. It is up to the

transmitter to insert as many ordered sets as necessary to be able to compensate

the possible frequency o�set. If there is no o�set, the number of symbols is not

modi�ed by the PCS. In the following the actual implementation of an elastic

bu�er depicted in �gure 3.80, which can be used for PCIe is described.

Figure 3.80: Elastic bu�er block diagram

The main building block in the elastic bu�er is an asynchronous FIFO, which is

used for clock domain crossing. Additional control logic is added, to keep the �ll

grade of the FIFO at a steady level and prevent it from running empty or full.

In the case of PCIe the symbols which are used for clock compensation are called

skip (SKP) symbols.

To detect the need for SKP insertion/removal, almost full/empty signals of the

122

3.8 Physical Coding Sublayer

asynchronous FIFO are used in contrast to the actual FIFO full/empty. The

almost full/empty signals can be con�gured to signal when the FIFO holds only

a speci�c number of entries or has only a speci�c number of entries left. Hereby it

is ensured that there is always either still some data or respectively some bu�er

space left. This is necessary because the SKP ordered sets are only added in

�xed intervals into the data stream by the transmitter independent from the

actual frequency o�set. The decision to add/remove a SKP symbol must take

the maximum number of symbols that may increment/decrement the FIFO �ll

grade due to the frequency o�set in between two SKP sets into account. SKP

symbols can be removed on the input side to prevent a FIFO overrun. For this,

there is a logic which detects the beginning of a SKP ordered set at the FIFO

input side. If the FIFO is almost full, the shift_in is not asserted and the SKP

symbol is dropped.

Respectively, SKPs can be added at the output side to prevent a bu�er underrun.

A logic detects, that there is a SKP ordered set to be shifted out of the FIFO.

If the FIFO is almost empty, the shift_out is not asserted and the current SKP

symbol in the FIFO is replicated at the elastic bu�er output.

Because SKP removal has to be signaled to the MAC, this information also needs

to cross the clock domain, synchronous to the SKP ordered set. Therefore the

removal of SKPs is signaled through an extra bit in the asynchronous FIFO going

from the Rx to the Tx clocked side. This allows keeping track of the exact data

point where the SKPs have actually been removed in the data stream over the

clock domain crossing.

To save latency, SKP insertion/deletion thresholds (FIFO almost full/empty lev-

els) and the initial �ll level are con�gurable. If the frequency o�set between

remote and local reference is smaller, the �ll level can be reduced, which in turn

reduces the latency through the elastic bu�er and vice versa.

3.8.5 Figure of Merit Calculation

Modern serial link standards such as PCIe Gen3 require, that the MAC gets

information on the current bit error ratio from the PCS. This '�gure of merit'

(FOM) is used to indicate if a link operates within its speci�cation, which means

if it has a BER better than e.g. 10−12. Only if this is the case, the speci�c lane

or complete link is seen as functional and can be used for data transmission.

During the initialization phase a training sequence is used to determine the op-

timum equalizer settings. While there are algorithms to adapt DFE and FFE

123

3 High Speed SerDes Architecture

equalizer coe�cient values in system, as presented in [78], these optimum equal-

izer settings usually do not relate to a speci�c BER.

Though on-die eye monitors, like the one presented in section 3.7, can be used to

create eye diagrams and bathtub curves concurrently to the training sequences to

assess link quality, there is usually not enough time to complete such exhaustive

measurements.

For example the PCIe speci�cation de�nes that the evaluation of a requested

transmitter equalization setting must not take longer than 2 ms (see [15], section

4.2.6.4.2.). In contrast to this, to be able to assume with a con�dence of 95% that

the BER is better than 10−12 at least 3 · 1012 bits need to be received without an

error happening during that time (as derived in [16]). At 8 Gbps it would therefore

take at least 375 seconds to measure a BER of 10−12. Therefore, the required

FOM can not be measured directly. Under some assumptions, estimations on the

current BER can be made using the following technique.

The assumption is, that the jitter at the middle of the eye is totally in the random

jitter regime. This is a valid assumption, because if there would be bit errors,

which are caused by deterministic e�ects such as ISI or crosstalk, the link would

not be able to work at all and the link initialization would already fail completely.

To simplify the following analysis, a normalized type of the standard bathtub

curve, introduced in section 2.7, will prove to be very useful. The so-called Q-

Scale [79] uses the inverse error function to normalize a bathtub plot from BER

to the standard deviation of a normal distribution. The bene�t is, that a random

jitter source of Gaussian shape translates to a constant slope of 1/σrj on a Q-

scale bathtub curve [79], where σrj is the standard deviation of the random jitter.

As the jitter near the center of the eye is de�ned by random jitter, the bathtub

curve tails in the Q-Scale are therefore linear in σrj, which simpli�es the following

considerations.

For reference, the Q-function

Q(BER) =
√

2 · erf−1(1− 1

0.5
·BER) (3.30)

is tabulated for common BER �gures below:

BER 10−4 10−5 5 · 10−6 10−6 10−7 10−8 1−9 10−10 10−11 10−12

Q 3.7 4.3 4.4 4.8 5.2 5.6 6.0 6.4 6.7 7.0

Table 3.7: Q-Scale vs BER values

124

3.8 Physical Coding Sublayer

As the actual jitter present in the system is not known, but the FOM also only

needs to re�ect if the BER is better than a prede�ned BER, the worst case jitter,

which is allowed as per speci�cation can be assumed. Therefore, for a given worst

case σrj and a de�ned target bit error rate, the BER can be measured for a lower

BER, at a distance of (qt − qo) · σrj from the middle of the eye, where qt is the

target BER and qo is the observed BER, as seen in �gure 3.81. If the actual

jitter present in the system is better than the maximum value allowed in the

speci�cation, then the measurement will be too pessimistic, but the FOM is still

valid, as the actual BER is better than the targeted BER.

For the PCIe example above, the BER, which can be measured in 2 ms with

a con�dence of 95% is about 5.3 · 10−6, which translates to a Q of 4.4 as per

equation 3.30. Further, the worst case random jitter allowed for PCIe Gen3 is 3

ps RMS at the Rx for a stressed eye, according to the speci�cation [15]. Using

the Q-scale, the observation point o�set tFOM for the FOM can be determined as

tFOM = (qt − qo) · σrj
= 7− 4.4 · 3ps

= 7.8ps

(3.31)

as seen in �gure 3.81.

Figure 3.81: Q-Scale bathtub curves for same σrj, but di�erent deterministic jitter
due to ISI

A problem arises, if the eye is dominated by deterministic e�ects and the random

125

3 High Speed SerDes Architecture

jitter is much lower than the maximum allowed value and the deterministic jitter

is in contrast very high. From the observation point it will be assumed, that the

target BER is not achieved, while it actually is (see �gure 3.82). The estimation

would be overly pessimistic. A link might be labeled as not working by the FOM,

while it actually achieves the desired BER.

This problem could be solved by complementing this scheme by a circuit, which is

able to estimate the current random jitter in the system (like described in [80]) or

provide pre-characterized random jitter �gures for a known system. This might

be possible depending on the application, since the random jitter is independent

from the transmission channel.

Another option, which might be feasible in some cases is to increase the measure-

ment times. The smaller the distance between the target BER and the observed

BER, the lower the chance to overestimate the BER.

Figure 3.82: Overly pessimistic estimation due to domination of deterministic
jitter

The short timeframe of about 2ms allows only a rough estimation of the BER.

Assumptions on the deterministic and random jitter magnitudes have to be made

in order to pick an observation point. Still, if the channel is not heavily dominated

by deterministic jitter, this method can be used to provide a �gure of merit for

protocols like PCIe that indicates the BER at the center of the eye as an upper

bound.

126

4 Implementation

4.1 Overview

While the previous chapters focused on the design methodology and the SerDes

architecture itself, this chapter describes the actual implementation that was done

on the basis of these considerations.

The complete SerDes architecture, presented earlier, was modeled top-down to

every leaf cell using SystemVerilog real number models, afterwards schematics

and layouts of the complete design were created in a 28nm manufacturing pro-

cess. The SerDes was integrated into a testchip and was eventually taped out

to a foundry for manufacturing. These actual implementation tasks were carried

out in a team e�ort, which also proved the e�ectiveness of the proposed design

methodology.

In the following sections, �rst the physical implementation is reviewed, afterwards

simulation results as well as the toplevel simulation setup are described. At last

the considerations done for the testchip are discussed.

4.2 Layout Implementation

The �oorplan of the physical layout implementation is, from a high-level per-

spective, dictated by the location of the interfaces. The serial interface pins are

located on a bump array and the internal digital interface for the parallel data

and all the con�guration signals has to be well accessible by other logic on the

chip. Further, each lane has a dedicated power supply for the full custom part in

order to be able to reduce power supply noise. An example bump con�guration

for four lanes and a PLL, is depicted in �gure 4.1 below.

Because of the connectivity between Rx and Tx such as the loopbacks and com-

mon clocking resources, they have to be located next to each other. Further, to

keep the aspect ratio reasonable when a larger number of lanes is placed side by

side, the serial I/O pins have to be placed vertically to each other, instead of

horizontally. The rest of the space, which is necessary for the implementation of

127

4 Implementation

Figure 4.1: Bump layout of four lanes and a common PLL

the SerDes can be used for the dedicated power supply bumps. Overall, one lane

has to have a minimum height of 4 bumps to accommodate the di�erential pair

and the power supply. With the utilized technology, this space was not su�cient

to implement the receiver, so one additional power bump was added. For the

internal interface to be accessible, only the bottom side of the SerDes macro is

left.

In the following, the considerations driving the receiver �oorplan, which is de-

picted in �gure 4.2 are given.

The Rx �oorplan can generally be broken down into the analog frontend, sampling

stage, clock generation and digital synthesized logic. The frontend is located

directly at the serial input bumps and far away from the clocking resources. The

largest individual components are the termination resistors and ESD protection

structures, which are placed symmetrically to the input pins.

As the datapath spans from the serial pins to the parallel side, the CTLE stages

are spread vertically to transfer the signal down to the sampling stage.

Above the sampling stage, where there is no clocked digital logic, there is room

for the common bias generation and the reference level generation for the DFE,

which is used by the sampler and DFE stage.

Because of the implemented quarter rate architecture, there are many samplers

in the design, which all need to receive the same signal. Therefore the samplers

are placed in parallel in order to be able to balance the input signal traces. The

sampler layout itself has to have a very stretched portrait aspect ratio, in order

to be able to �t all the samplers next to each other. The width of a lane is, as

mentioned earlier, determined by the bump pitch so that multiple lanes next to

128

4.2 Layout Implementation

each other align to the bump grid.

Below the sampling stage, the left side contains all the clocking resources, while

the datapath continues down to the bottom side of the macro on the right side.

Figure 4.2: Receiver �oorplan overview. (Full custom parts in green, Semi custom
parts in blue)

The clock generation module below the samplers, includes the clock bu�ers which

are used to supply the di�erent clock phases to the respective sampling stages.

The clock bu�ers themselves are driven by the three phase interpolators, which

produce data, edge and eye path clock phases. Below the interpolators is the

shaping circuitry, which receives its input clocks from the adjacent transmitter.

129

4 Implementation

The full custom part, which is depicted by the green blocks in �gure 4.2, is not

a rectangular box, but the lower right edge is cut o� to �t in the synthesized

digital partition. Below the samplers there is the semi custom demultiplexer and

the CDR logic, next to the phase interpolators.

Figure 4.3: Transmitter �oorplan overview (Full custom parts in green, Semi cus-
tom parts in blue)

The structure of the transmitter is simpler than the one of the receiver and

requires less area. Therefore, common clocking resources of the lane clock top

module, which contains the ILRO and all the clock multiplexers, are located in

the transmitter �oorplan.

130

4.2 Layout Implementation

The constraints for the datapath of the transmitter, shown in �gure 4.3 are of

course the same as for the receiver. The parallel input is located at the lower

side and interfaces the FIR encoder and the semi custom multiplexer path. Next,

there is the full custom retiming stage and the actual driver. All the segments of

the output driver are put in parallel and therefore have to have a very stretched

aspect ratio. Right at the bumps of the di�erential output, there is the ESD

structure along with the compensation structures.

The common clocking resources are on the right side, because they interface with

the receiver lane which is abutted there.

All gaps, which are left in the �oorplan are used to place additional decoupling

capacitance, in order to reduce power supply noise caused by high frequency

transient currents.

In �gure 4.4 below, a micrograph of a section of the manufactured SerDes testchip

is given, which shows the common lane PLL and two adjacent lanes constructed

from transmitter and receiver.

Figure 4.4: Micrograph of two SerDes lanes next to the common lane PLL, with
leftmost lane Tx and Rx areas being marked

131

4 Implementation

4.3 Simulations

As per the methodology developed, the whole SerDes system was modeled as a

structural SystemVerilog description down to the leaf cells. For the leaf cells plain

functional (digital) and real number models, which cover the di�erent simulation

scopes were implemented. Transistor level SPICE simulations were carried out

for all the leaf cell schematics, which were afterwards developed to verify their

performance against the real number models. Additionally, system-level simu-

lations of a complete lane were performed to verify performance and functional

correctness.

Because of the size and the di�erent time constants in the design (bit time vs.

number of bits required in a simulation) the real number modeling proved to

be essential for the veri�cation process. This is especially visible from table 4.1

below:

Functional RNM SPICE Extracted SPICE
Simulation Time 0.6s 6.3s 5.3h >24h

Table 4.1: Simulation time (wallclock) for the same SerDes initialization sequence
lasting 1µs

To illustrate the speedup of the di�erent models, the same SerDes initialization

sequence is simulated on a 16 core Intel Xeon E5-1660 CPU running at 3.20GHz

with 64GB RAM, using di�erent leaf cell views in the same structural Verilog

hierarchy. While there is of course a degradation of accuracy, huge speed-ups for

the di�erent leaf cell models are visible. Depending on the simulation scope it

has to be assessed, which kind of accuracy is necessary in order to chose the right

model.

For example, when the SerDes is integrated into a larger design, which can contain

hundreds of lane instances, and only digital higher level protocol related functions

need to be veri�ed, the functional models are su�cient and provide the highest

simulations speeds. If e.g. the equalization adaptation mechanisms in a protocol

such as PCIe should be veri�ed, the real number models can be used in order to

be able to actually verify SerDes performance. Because the real number models

already provide a lot of performance related information, time consuming SPICE

simulations could be reduced to a minimum. This greatly speeds up the overall

design and veri�cation process, especially in the context of larger designs.

Nevertheless some SPICE simulations have to be carried out, also at the scope of

a complete lane. From table 4.1 it is visible that simulator runtimes increase dra-

132

4.3 Simulations

matically. Though, runtimes of the SPICE simulations depend on their accuracy

and vice versa. Every SPICE simulator has several parameters to tweak toler-

ances and minimum time steps in order to relax accuracy and improve simulation

speeds.

To determine, which kind of relaxation is tolerable, the design has to be simulated

at highest accuracy �rst to obtain the 'correct' result. Afterwards, accuracy can

be relaxed step by step, as long as the di�erence of the simulation results is

tolerable. The larger the design and the more complex the metrics are to assess

the loss of accuracy, it can be very hard to determine which settings are still

tolerable. Because the toplevel simulations need to be carried out over PVT

corners, a possible speed-up gets multiplied by the number of corners.

Still, by using functional and real number model simulations the number of SPICE

simulations can be reduced to a minimum. Because the design has most of its

sequential complexity, like control loops and calibration algorithms, implemented

in digital logic, pure functional simulations can be used to identify most bugs

early in the design cycle.

Extracted SPICE simulations on the toplevel, which also include parasitics were

performed to gain more con�dence in the design.

Schematic level simulations are mainly necessary to ensure correct timings at

the custom/ semi-custom boundary and identify setup/hold problems, to check

correct biasing over corners, and to predict power consumption. Only relatively

short simulation times are required for this.

Real performance estimations, such as BER predictions are not possible using

SPICE simulations. These performance �gures are obtained from post processing

and analysis as described in [18].

To ensure consistency and keep the maintenance e�ort for di�erent test scenarios

reasonable, the same simulation setup, which is depicted in �gure 4.5, is reused

for all toplevel tests.

Rx and Tx of a single lane are connected in an external loopback through a

channel model. PRBS generator and checker modules are used at the parallel

side to create and check the tra�c.

The actual test procedure is coded in the mgt_test module, which is speci�c to

the individual tests. This concept to run di�erent tests with same testbench is

inspired by the uni�ed veri�cation methodology (UVM) [2].

This single testbench can be used to either run tests from command line, using

functional and real number leaf cells, as well as to run tests from inside of Ca-

133

4 Implementation

Figure 4.5: Reusable testbench setup

dence Virtuoso using schematic or extracted leaf cells over di�erent PVT corners.

Test scenarios can be developed and debugged with fast functional or RNM sim-

ulations before �nally deploying them to schematic simulations, to improve test

development times.

Figure 4.6: Eye diagrams obtained from RNM simulations before and after equal-
izer coe�cient adaptation using the built-in hardware adaptation

With this setup complex scenarios can be simulated. As an example, �gure 4.6

shows pre- and post equalized eye diagrams, which were obtained from RNM sim-

134

4.4 Testchip

ulations. The equalizer coe�cients of the transmitter were adapted in the simula-

tion, using the built-in hardware logic. Because of the long runtime requirements,

such simulations can not be carried out with SPICE models in reasonable time

frames.

4.4 Testchip

A testchip, which included the SerDes design was planned, implemented and

manufactured. The main goal was to verify the full custom mixed-signal part of

the SerDes in silicon against the simulation results to assess their accuracy and

correctness.

A block diagram of the testchip is given in �gure 4.7.

Figure 4.7: Testchip blockdiagram

Though the SerDes performance is simulated over di�erent process corners and

operating conditions with respective channel models, there still exists an uncer-

tainty whether the projected electrical performance is really achieved in silicon.

Therefore a characterization of performance parameters such as jitter, signal am-

plitude and bit error ratio (BER) on real silicon is necessary to validate the

design. Additionally, the interaction of the SerDes together with a low latency

10G Ethernet MAC and commercial hardware, such as 10G Ethernet devices,

should be tested.

Careful planning of the testchip is necessary, in order to be able to perform

the measurements, which are necessary to characterize the design afterwards.

135

4 Implementation

Measurements, which are simple to carry out in simulation environments might

be di�cult to accomplish in silicon, or require special hardware structures, which

need to be implemented in advance. All the test structures, which were described

in section 3.7, have been implemented in the SerDes PHY and can be used to

validate simulation results against measurements.

10G Ethernet functionality is intended to be tested with the MAC acting as a far

end protocol loopback. This means another external Ethernet device is used to

create tra�c, which is received and decoded by the testchip MAC. This decoded

tra�c is then sent back to the device through the testchip transmitter lane. By

this, the interaction of MAC and PHY with each other as well as with other

devices is tested in a straight forward way.

To accomplish these tasks, the testchip includes:

� 8 SerDes transceiver lanes capable of 2.5, 5, 8, 10.3125, 16 and 20 Gbps

� Common lane LC ADPLL

� 10G Ethernet low latency MAC

As well as the following hardware structures for control, test and characterization:

� Control and status register�le

� I2C debug interface

� Microcode engine for PHY con�guration and calibration tasks

The testchip was taped out and manufactured in a 28nm silicon process. A

micrograph of a die is given in �gure 4.8.

Figure 4.8: Micrograph of the complete testchip

In the middle of the die, the eight SerDes lanes to the left of the PLL are visible.

The PLL can be identi�ed by the inductor of the LC-oscillator.

136

4.5 Lessons Learned

4.5 Lessons Learned

This section summarizes lessons learned during the design and implementation

process and states ideas on how the process can be improved in the future.

When looking at the durations of individual tasks throughout the overall design

process in the entire project, it becomes clear that a lot of time was spent in

the layout phase. As the whole methodology was originally targeting simulation,

veri�cation and schematic design, this suggests that more automation in the

layout phase is necessary. Though the design is very modular and many leaf

cells are reused, each leaf cell layout itself has many recurring structures, such as

di�erential pairs or current sources, which had to be manually created over and

over again with only minor modi�cations. As this is a repetitive task which can

be automated, this needs to be addressed better in a future project.

A possibility would be to identify recurring primitives and create parameterized

cells (PCells) for their layouts. PCells are coded in the SKILL programming

language and allow geometry such as number of transistor �ngers, length or

width to be controlled by parameters on their instantiation. Leaf cell schematics

and layouts can be constructed from these primitive PCells instead of single

transistors. The PCell implementation will require additional time, but if the

cells can be reused often throughout the design, this time will be well spent. It

will also ease porting to other technologies, as a major part of the layout is already

ported once the primitive PCells have been implemented in the new technology.

The goal should be to break the leaf cells down to a small number of primitives,

instead of trying to build complete layout generators on the granularity of whole

DACs or operational ampli�ers, which is a very complex task.

As the layout implementation happened in a team e�ort, common design con-

straints/standards were established initially to allow integration of the di�erent

layouts on the toplevel. These constraints for example de�ned the pin layers to

be used on di�erent cell levels, maximum number of metal layers on cell levels,

power rail locations, minimum metal widths for di�erent types of signals and so

on. Still, as the layout allows many degrees of freedom, which can eventually

complicate integration, the issue of common design standards also needs to be

addressed in the future.

One attempt to reduce these degrees of freedom and harmonize di�erent cell

designs is to introduce additional grids for cell outlines and signal lines. These

grids should be much more coarse than the manufacturing grid. This approach

is very similar to the concept of routing tracks, which is commonly used in semi

137

4 Implementation

custom design. The grids can have di�erent spacings for di�erent layers, such

as coarser grids on higher metal layers to account for di�erent manufacturing

rules. The devices, such as transistors, do not have to be on these grids, as the

transistor geometries of di�erent width/length gates used throughout the design

normally do not align very well to a common grid. The toplevel block integration

will be much easier, if every block has its pins, outline and power on common

grids, rather than only on prede�ned layers.

Another important topic in layout that needs to be addressed better in the future,

is the requirement for uniform density. Advanced node technologies of 28nm and

beyond have extremely strict density requirements for all the di�erent layers in

order to enforce uniform pattern density which is required for manufacturing.

If density requirements are only considered after the layout is completely as-

sembled at the top level, problems can be extremely hard to �x. For example,

excessive chaining of many transistor �ngers on the same di�usion to improve

matching, might be undesirable, because it can create areas of high poly silicon

density, which can not be �xed on the toplevel.

Therefore, density requirements need to be taken into account on leaf cell level.

If every leaf cell already has uniform density, a design which is constructed from

leaf cells, which align to a common grid, will also have a uniform density. This

would require the designer to already include shapes, which only serve density

requirements at design time and check density at leaf cell level. If primitive PCells

are used to construct the leaf cells, these PCells can also include density related

shapes and generate them automatically. This will also lead to a better parasitic

estimation at leaf cell level, but might increase simulation times for extracted

SPICE simulations.

In conclusion, it can be said, that the layout in advanced nodes is much more

driven from a manufacturing requirements point of view than by the designer,

which removes many degrees of freedom and may hereby eventually lead to easier

integration.

138

5 Conclusion and Outlook

High-speed serial I/O is a key technology, necessary to build state of the art,

highly integrated systems on chips. Without SerDes technology the degree of

integration and processing power that is achieved in modern ASICs can not be

fully exploited.

Though, the design of a SerDes for data rates up to 25 Gbps, that �ts the mul-

titude of requirements is a very challenging task. This is manifested by the fact

that such designs are only commercially available from a handful of companies.

In this thesis a mixed signal design methodology was introduced, which addresses

both implementation and veri�cation of such complex systems. It leverages real

number modeling as a key element to overcome the consistency gap between

model and implementation. A tool �ow, which supports the designer was de-

veloped to complement state of the art EDA software to e�ciently apply this

methodology in practice.

The analysis of todays high-speed serial link architectures lead to a design, which

moves most of its complexity into digital semi custom logic. This paves the way

to fully leverage the advantages of advanced node semiconductor manufacturing.

The developed high-speed SerDes architecture was analyzed and veri�ed using

the methodology introduced earlier. The SerDes design was implemented on a

testchip, taped out and manufactured in a 28nm silicon process.

The contribution of this work is a new mixed signal design methodology, which

tightly couples model and implementation and hereby enforces consistency through-

out the design �ow. The methodology was used in practice to implement a com-

plex high-speed SerDes with a small design team and proved to be indispensable

for future developments.

Further, architectural improvements to high-speed SerDes implementations, such

as an innovative divider initialization and bit slip mechanism for word alignment

were proposed.

139

5 Conclusion and Outlook

For the future, improvements to both the SerDes architecture, as well as the

design methodology are planned.

As a next step, the SerDes testchip, which was manufactured, will be character-

ized in order to determine the accuracy of the real number model based perfor-

mance prediction, which was priorly con�rmed through circuit simulations.

The methodology will be extended to cover the layout process, as discussed in

section 4.5. With the usage of PCells for primitive building blocks such as current

sources and di�erential pairs, the layout reuse will be improved to accelerate the

implementation process in the future. This will also improve portability to other

process nodes.

Further, a schematic generator approach for frequently used elements such as

ampli�ers or bu�ers will be integrated into the schematic generation �ow to fur-

ther assist the designer with already initially dimensioned schematic templates

for leaf cell development. As the high level speci�cations for the leaf cells are

already derived through the hierarchy in the current methodology, these can be

used as inputs to generator scripts, which then in turn compute initial transis-

tor geometries for a given technology based on prede�ned circuit topologies and

technology speci�c gm/Id tables.

Concerning the SerDes architecture, two major issues, namely robustness and

power e�ciency need to be further investigated. Means to e�ciently remove PVT

mismatch of the Rx and Tx termination resistors in order to improve impedance

matching need to be integrated. Further, the implementation of an in-situ calibra-

tion method for the Tx quarter rate clocking structure, similar to the mechanism

in the receiver should be investigated. This could reduce duty cycle distortion and

deterministic jitter e�ects, hereby improving the link timing margin. Finally, the

automatic adaptation of CDR loop �lter coe�cients to the current jitter pro�le

is an important topic that needs to be addressed.

In order to improve power e�ciency, which is one of the major challenges for

future high-speed serial links, the use of CMOS logic, primarily in the clock

distribution, should be explored.

140

List of Figures

1.1 SerDes working principle . 1

2.1 Performance to accuracy trade-o� for di�erent modeling styles [13] 9

2.2 Simple ring oscillator model example 11

2.3 Design hierarchy example . 14

2.4 Overall mixed-signal design �ow 16

2.5 Schematic generation �ow overview 18

2.6 Timing library generation �ow overview 21

2.7 Eye diagram of a 10 Gbps signal 24

2.8 Jitter type taxonomy . 24

2.9 Single bit response, the waveform of a lone bit transmitted over

the channel, spreading into multiple unit intervals 25

2.10 Eye diagrams of 8b/10b coded and PRBS31 data 26

2.11 Gaussian distribution used to model random jitter 27

2.12 Convolution of deterministic (Dj) and random (Rj) jitter PDFs to

derive a total jitter PDF . 29

2.13 Eye diagram with random and deterministic jitter added. PDFs

and CDFs for the transitions which are used to derive link budgets 29

2.14 Bathtub curve for the horizontal centerline of an eye diagram. . . 30

2.15 Budgeting process overview . 31

3.1 Channel loss for di�erent transmission channel standards. 34

3.2 NRZ and PAM4 transient signal as well as resulting eye diagrams. 35

3.3 CML driver (left) and SSTL driver (right) topologies 37

3.4 Feed forward equalizer . 38

3.5 Feed forward equalizer resulting waveform with pre and post em-

phasis . 39

3.6 Low pass transmission channel, CTLE and equalized combined

channel+CTLE transfer function 39

3.7 Basic CTLE circuit topology . 40

3.8 2-Tap DFE working principle . 41

3.9 DFE corrected SBR . 42

3.10 Coarse SerDes architecture overview 43

143

List of Figures

3.11 PLL working principle . 45

3.12 ADPLL working principle . 47

3.13 Phase noise plots for random noise regime (β too small), optimum

β and limit-cycle regime (β too high) 50

3.14 Block diagram ADPLL implementation 51

3.15 General oscillator architecture showing all elements, which are con-

nected in parallel in the DCO . 52

3.16 DCO integral path capacity matrix 53

3.17 4/5 modulus divider block diagram 55

3.18 PVT tuning main FSM . 57

3.19 Binary search on PVT register . 58

3.20 DCO free running frequency during PVT and ACQ tuning 59

3.21 DSM working principle . 60

3.22 DSM z-domain model . 61

3.23 Lane clock distribution . 64

3.24 Di�erent possibilities for quadrature clock distribution, after [46] . 65

3.25 Oscillator spectrum for free running (red) and injection locked

(green) ILRO at 8 GHz [46] . 66

3.26 Common Rx/Tx lane clock top module 67

3.27 Rx overview block diagram . 68

3.28 Receiver datapath overview . 69

3.29 Receiver termination overview . 70

3.30 Quarterrate receiver principle . 70

3.31 1 to 4 demultiplexer tree after each sampler 71

3.32 Demultiplexing element . 72

3.33 Demultiplexing element timing diagram 72

3.34 Rx clocking overview . 73

3.35 Simulated RMS random jitter at the output of a CMOS inverter

driven with clock signals exhibiting di�erent rise/fall times 74

3.36 Charge pump working principle 75

3.37 Comparison of di�erent summation weighting functions to con-

struct interpolated phases . 77

3.38 CML phase interpolator . 77

3.39 DNL error of the phase interpolator for clock signal with di�erent

rise times . 78

3.40 DNL error of the phase interpolator for di�erent input waveforms

at 5GHz . 79

3.41 Analog CDR working principle . 80

144

List of Figures

3.42 Digital dual loop CDR working principle 81

3.43 Digital CDR Z-domain model . 82

3.44 Bang bang phase detection . 84

3.45 Mueller-Mueller based phase detection scheme 85

3.46 Spectral line based phase detection scheme 85

3.47 Timing diagram of spectral line PD 86

3.48 Bang-Bang phase detector linearization 87

3.49 CDR architecture . 88

3.50 Digital CDR logic pipeline . 88

3.51 Jitter transfer and jitter tolerance functions for di�erent loop �lter

coe�cient and 3ps RMS random jitter in JTOL simulations . . . 91

3.52 High speed divider and phase sense logic (left) and waveforms for

two di�erent reset cases CLK_I1 and CLK_I2 (right) 91

3.53 High speed divider initialization sequence 92

3.54 Possible word alignments at SerDes parallel side 93

3.55 Bitslip functionality in the Rx CDR 94

3.56 Vertical calibration setup . 96

3.57 Vertical calibration histogram . 97

3.58 Horizontal calibration setup . 98

3.59 Horizontal calibration waveform 98

3.60 Overall Tx overview . 100

3.61 SSTL driver segments . 101

3.62 Tx datapath . 102

3.63 Tx semi to full custom interface 103

3.64 PI used for interface synchronization 104

3.65 Interface synchronization phase detection scheme 104

3.66 LFSR for PRBS7 . 106

3.67 Di�erent types of loopback locations: 1) near end serial 2) far end

serial 3) near end parallel 4) far end parallel 108

3.68 Observation and override through the register �le 109

3.69 Plots for di�erent equalizer settings using the on-die eye monitor . 110

3.70 ATB probe circuit (lef) and on-chip probing architecture (right) . 111

3.71 JTAG boundary scan . 112

3.72 Internal scan . 113

3.73 Physical layer partitioning, after [76] 114

3.74 PIPE implementation datapath overview 116

3.75 PCS clocking overview (3 lane example) 118

3.76 Gearbox block diagram . 119

145

List of Figures

3.77 Gearbox clocks timing diagram 120

3.78 Gearbox clocks relaxed timing diagram 121

3.79 PIPE gearbox timing diagram . 121

3.80 Elastic bu�er block diagram . 122

3.81 Q-Scale bathtub curves for same σrj, but di�erent deterministic

jitter due to ISI . 125

3.82 Overly pessimistic estimation due to domination of deterministic

jitter . 126

4.1 Bump layout of four lanes and a common PLL 128

4.2 Receiver �oorplan overview. (Full custom parts in green, Semi

custom parts in blue) . 129

4.3 Transmitter �oorplan overview (Full custom parts in green, Semi

custom parts in blue) . 130

4.4 Micrograph of two SerDes lanes next to the common lane PLL,

with leftmost lane Tx and Rx areas being marked 131

4.5 Reusable testbench setup . 134

4.6 Eye diagrams obtained from RNM simulations before and after

equalizer coe�cient adaptation using the built-in hardware adap-

tation . 134

4.7 Testchip blockdiagram . 135

4.8 Micrograph of the complete testchip 136

146

Bibliography

[1] Nick Heaton. White paper: Maximizing Veri�cation E�ectiveness Using

MDV. Technical report, Cadence Design Systems, Inc.

[2] IEEE Standard for Universal Veri�cation Methodology Language Reference

Manual. IEEE Std 1800.2-2017, pages 1�472, May 2017.

[3] Walter Hartong. White paper: Plan-Based Analog Veri�cation Methodology.

Technical report, Cadence Design Systems, Inc.

[4] IEEE Standard for SystemVerilog�Uni�ed Hardware Design, Speci�cation,

and Veri�cation Language. IEEE Std 1800-2012 (Revision of IEEE Std

1800-2009), pages 1�1315, Feb 2013.

[5] B. Murmann. A/D converter trends: Power dissipation, scaling and digitally

assisted architectures. In 2008 IEEE Custom Integrated Circuits Conference,

pages 105�112, Sept 2008.

[6] Yaron Kashai Neyaz Khan. From Spec to Veri�cation Closure: a case study

of applying UVM-MS for �rst pass success to a complex Mixed-Signal SoC

design. Technical report, Maxim Integrated Products.

[7] Prabal Bhattacharya Donald O'Riordan. PSL/SVA Assertions in SPICE.

Technical report, Cadence Design Systems, Inc.

[8] Ken Kundert. Top-Down Design and Veri�cation of Mixed-Signal Circuits.

EE Times, Jun 2005.

[9] Juergen Scheible and Jens Lienig. Automation of Analog IC Layout: Chal-

lenges and Solutions. In Proceedings of the 2015 Symposium on International

Symposium on Physical Design, ISPD '15, pages 33�40, New York, NY, USA,

2015. ACM.

[10] J. Crossley, A. Puggelli, H. P. Le, B. Yang, R. Nancollas, K. Jung, L. Kong,

N. Narevsky, Y. Lu, N. Sutardja, E. J. An, A. L. Sangiovanni-Vincentelli,

and E. Alon. BAG: A designer-oriented integrated framework for the de-

velopment of AMS circuit generators. In 2013 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), pages 74�81, Nov 2013.

147

Bibliography

[11] B. Prautsch, U. Eichler, S. Rao, B. Zeugmann, A. Puppala, T. Reich, and

J. Lienig. IIP framework: A tool for reuse-centric analog circuit design. In

2016 13th International Conference on Synthesis, Modeling, Analysis and

Simulation Methods and Applications to Circuit Design (SMACD), pages

1�4, June 2016.

[12] D. Marolt, M. Greif, J. Scheible, and G. Jerke. PCDS: A new approach for

the development of circuit generators in analog IC design. In 22nd Austrian

Workshop on Microelectronics (Austrochip), pages 1�6, Oct 2014.

[13] Pete Hardee Sathishkumar Balasubramanian. Whitepaper: Solutions for

Mixed-Signal SoC Veri�cation Using Real Number Models. Technical report,

Cadence Design Systems, Inc.

[14] IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-

2005 (Revision of IEEE Std 1364-2001), pages 1�560, 2006.

[15] PCI-SIG. PCI Express Base Speci�cation, November 2010. Revision 3.0.

[16] McHugh Russ Müller Marcus, Stephens Ransom. Total Jitter Measurement

at Low Probability Levels, Using Optimized BERT Scan Method. In De-

signCon 2005, 2005.

[17] Norbert Fliege and Markus Gaida. Signale und Systeme - Grundlagen und

Anwendungen mit MATLAB ; mit 8 Tabellen und 38 MATLAB-Projekten.

Schlembach Fachverlag, Wilburgstetten, 1. au�. edition, 2008.

[18] Maximilian Thürmer. Modelling and performance analysis of multigigabit

serial interconnects using real number based analog veri�cation methods. PhD

thesis, Heidelberg University, 2017.

[19] Maxim Integrated. Converting between RMS and Peak-to-Peak Jitter at a

Speci�ed BER, 2008.

[20] Seasim. Release 0.54. PCI-SIG, 2015.

[21] B. K. Casper, M. Haycock, and R. Mooney. An accurate and e�cient analysis

method for multi-Gb/s chip-to-chip signaling schemes. In 2002 Symposium

on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302), pages

54�57, June 2002.

[22] Sam Palermo. ECEN689: Special Topics in High-Speed Links Circuits and

Systems, Lecture 22: ISI and Random Noise, Spring 2010.

[23] Thomas Toi�. Low-power High-Speed CMOS I/Os: Design Challenges and

Solutions. Sept 2012.

148

Bibliography

[24] J. Kim, A. Balankutty, A. Elshazly, Y. Y. Huang, H. Song, K. Yu, and

F. O'Mahony. 3.5 A 16-to-40Gb/s quarter-rate NRZ/PAM4 dual-mode

transmitter in 14nm CMOS. In 2015 IEEE International Solid-State Circuits

Conference - (ISSCC) Digest of Technical Papers, pages 1�3, Feb 2015.

[25] S. Gondi and B. Razavi. Equalization and Clock and Data Recovery Tech-

niques for 10-Gb/s CMOS Serial-Link Receivers. IEEE Journal of Solid-State

Circuits, 42(9):1999�2011, Sept 2007.

[26] T. Kawamoto, T. Norimatsu, K. Kogo, F. Yuki, N. Nakajima, M. Tsuge,

T. Usugi, T. Hokari, H. Koba, T. Komori, J. Nasu, T. Kawamata, Y. Ito,

S. Umai, J. Kumazawa, H. Kurahashi, T. Muto, T. Yamashita, M. Hasegawa,

and K. Higeta. 3.2 multi-standard 185fsrms 0.3-to-28Gb/s 40dB backplane

signal conditioner with adaptive pattern-match 36-Tap DFE and data-rate-

adjustment PLL in 28nm CMOS. In 2015 IEEE International Solid-State

Circuits Conference - (ISSCC) Digest of Technical Papers, pages 1�3, Feb

2015.

[27] Stefan Kosnac. Design-Aspects of a Decision Feedback Equalizer in a 28 nm

Technology. Master thesis, University of Heidelberg, 2016.

[28] Dean Banerjee. PLL Performance, Simulation, and Design. Fourth edition

edition, 2006.

[29] W. Li and J. Meiners. Introduction to phase-locked loop system modeling,

2005.

[30] N. D. Dalt. Markov Chains-Based Derivation of the Phase Detector Gain in

Bang-Bang PLLs. IEEE Transactions on Circuits and Systems II: Express

Briefs, 53(11):1195�1199, Nov 2006.

[31] Jri Lee, K. S. Kundert, and B. Razavi. Analysis and modeling of bang-

bang clock and data recovery circuits. IEEE Journal of Solid-State Circuits,

39(9):1571�1580, Sept 2004.

[32] Nicola Da Dalt. Theory and Implementation of Digital Bang-Bang Fre-

quency Synthesizers for High Speed Serial Data Communications. PhD the-

sis, RWTH Aachen, Feb 2007.

[33] M. Zanuso, D. Tasca, S. Levantino, A. Donadel, C. Samori, and A. L. La-

caita. Noise Analysis and Minimization in Bang-Bang Digital PLLs. IEEE

Transactions on Circuits and Systems II: Express Briefs, 56(11):835�839,

Nov 2009.

149

Bibliography

[34] Robert Bogdan Staszweski. Digital Deep-Submicron CMOS Frequency Syn-

thesis for RF Wireless Applications. PhD thesis, University of Texas at

Dallas, August 2002.

[35] G. Marucci, S. Levantino, P. Ma�ezzoni, and C. Samori. Analysis and Design

of Low-Jitter Digital Bang-Bang Phase-Locked Loops. IEEE Transactions

on Circuits and Systems I: Regular Papers, 61(1):26�36, Jan 2014.

[36] Ming-Ta Hsieh and Gerald E Sobelman. Comparison of LC and Ring VCOs

for PLLs in a 90 nm Digital CMOS Process. 01 2006.

[37] M. M. Mansour and M. M. Mansour. On the design of low phase-noise CMOS

LC-tank oscillators. In 2008 International Conference on Microelectronics,

pages 407�412, Dec 2008.

[38] P. Kinget, B. Soltanian, S. Xu, S. a. Yu, and F. Zhang. Advanced Design

Techniques for Integrated Voltage Controlled LC Oscillators. In 2007 IEEE

Custom Integrated Circuits Conference, pages 805�811, Sept 2007.

[39] R. B. Staszewski, Chih-Ming Hung, D. Leipold, and P. T. Balsara. A �rst

multigigahertz digitally controlled oscillator for wireless applications. IEEE

Transactions on Microwave Theory and Techniques, 51(11):2154�2164, Nov

2003.

[40] B. Sadhu and R. Harjani. Capacitor bank design for wide tuning range

LC VCOs: 850MHz-7.1GHz (157In Proceedings of 2010 IEEE International

Symposium on Circuits and Systems, pages 1975�1978, May 2010.

[41] Ching-Yuan Yang. A High-frequency CMOS Multi-modulus Divider for PLL

Frequency Synthesizers. Analog Integr. Circuits Signal Process., 55(2):155�

162, May 2008.

[42] Silicon Labs. AN118:Improving ADC resolution by oversampling and aver-

aging.

[43] Juan Jesus Ocampo Hidalgo. System and Circuit Approaches for the Design

of Multi-mode Sigma-Delta Modulators with Application for Multi-standard

Wireless Receivers. Dissertation, TU Darmstadt, 2004.

[44] J. Zhuang, K. Waheed, and R. B. Staszewski. Design of Spur-Free Sigma

Delta Frequency Tuning Interface for Digitally Controlled Oscillators. IEEE

Transactions on Circuits and Systems II: Express Briefs, 62(1):46�50, Jan

2015.

[45] Kangmin Hu, Tao Jiang, and P. Chiang. Comparison of on-die global clock

150

Bibliography

distribution methods for parallel serial links. In 2009 IEEE International

Symposium on Circuits and Systems, pages 1843�1846, May 2009.

[46] Tobias Markus. High-Speed Clock Generation Architecture for a Multi-Rate

SerDes in 28 nm. Master thesis, University of Heidelberg, 2015.

[47] Stefan Kosnac. Design of a T-Coil Termination and an Electrostatic Dis-

charge Structure in 28 nm. Project report, University of Heidelberg, 2015.

[48] H. Camara and S.V. Rylov. Conditioning input bu�er for clock interpolation,

2010. US Patent 7,659,763.

[49] Stephan Walter. On-Chip Measurement Units for High-Speed Signals.

Diploma thesis, University of Heidelberg, 2015.

[50] Diarmuid Collins. A Fully Di�erential Phase-Locked Loop With Reduced

Loop Bandwidth Variation. Master thesis, National University of Ireland,

Maynooth, 2011.

[51] S.V. Rylov. Phase shifting using asymmetric interpolator weights, Aug 2009.

US Patent App. 12/024,043.

[52] J.L. Sonntag and J. Stonick. A Digital Clock and Data Recovery Architecture

for Multi-Gigabit/s Binary Links. Solid-State Circuits, IEEE Journal of,

41(8):1867�1875, Aug 2006.

[53] Jri Lee, K. S. Kundert, and B. Razavi. Analysis and modeling of bang-

bang clock and data recovery circuits. IEEE Journal of Solid-State Circuits,

39(9):1571�1580, Sept 2004.

[54] Richard C. Walker. Designing BangBang PLLs for Clock and Data Recovery

in Serial Data Transmission Systems, pages 34�45. Wiley-IEEE Press, 2003.

[55] Myeong-Jae Park and Jaeha Kim. Pseudo-Linear Analysis of Bang-Bang

Controlled Timing Circuits. Circuits and Systems I: Regular Papers, IEEE

Transactions on, 60(6):1381�1394, June 2013.

[56] K. Mueller and M. Muller. Timing Recovery in Digital Synchronous Data Re-

ceivers. IEEE Transactions on Communications, 24(5):516�531, May 1976.

[57] Tobias Markus. Verilog-AMS Model of a Mueller Mueller CDR. Project

report, University of Heidelberg, 2015.

[58] Maxim Integrated. AN3455:Spectral content of NRZ test patterns, 2004.

[59] S. Erba, M. Pozzoni, M. Pisati, R. Brama, D. Sanzogni, E. Depaoli, P. Viola,

and F. Svelto. A 10Gb/s receiver with linear backplane equalization and

151

Bibliography

mixer-based self-aligned CDR. In 2008 IEEE Custom Integrated Circuits

Conference, pages 559�562, Sept 2008.

[60] Yehui Sun and Hui Wang. Analysis of digital bang-bang clock and data

recovery for multi-gigabit/s serial transceivers. In Custom Integrated Circuits

Conference, 2009. CICC '09. IEEE, pages 343�346, Sept 2009.

[61] A. Zargaran-Yazd and W.T. Beyene. Discrete-time modeling and simulation

considerations for high-speed serial links. In Electrical Performance of Elec-

tronic Packaging and Systems (EPEPS), 2014 IEEE 23rd Conference on,

pages 165�168, Oct 2014.

[62] Chao He and T. Kwasniewski. Bang-Bang CDR's acquisition, locking, and

jitter tolerance. In Electrical Computer Engineering (CCECE), 2012 25th

IEEE Canadian Conference on, pages 1�4, April 2012.

[63] Kundert Ken. Veri�cation of Bit-Error Rate in Bang-Bang Clock and Data

Recovery Circuits. The Designers Guide Community, 2010.

[64] Sven Schenk. Architecture Analysis of Multi-Gigabit-Transceivers for Low

Latency Communication. Diploma thesis, Mannheim University, 2008.

[65] Xilinx. UltraScale GTY Transceiver: TX and RX Latency Values.

[66] Ra�aele Giordano, Vincenzo Izzo, and Alberto Aloisio. High-Speed

Deterministic-Latency Serial IO. In George Dekoulis, editor, Field - Pro-

grammable Gate Array, chapter 11. InTech, Rijeka, 2017.

[67] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif,

E. J. Nowak, D. J. Pearson, and N. J. Rohrer. High-performance CMOS

variability in the 65-nm regime and beyond. IBM Journal of Research and

Development, 50(4.5):433�449, July 2006.

[68] Sam Palermo. ECEN689: Special Topics in High-Speed Links Circuits and

Systems Spring 2012, Lecture 15: RX Circuits, Spring 2012.

[69] M. Mansuri, B. Casper, and F. O'Mahony. An on-die all-digital delay mea-

surement circuit with 250fs accuracy. In 2012 Symposium on VLSI Circuits

(VLSIC), pages 98�99, June 2012.

[70] A. A. Hafez, M. S. Chen, and C. K. K. Yang. A 32-to-48Gb/s serializing

transmitter using multiphase sampling in 65nm CMOS. In 2013 IEEE Inter-

national Solid-State Circuits Conference Digest of Technical Papers, pages

38�39, Feb 2013.

[71] TCL based extensible Register File Generator. http://unihd-

cag.github.io/od�-rfg/. Accessed: 2017-09-29.

152

Bibliography

[72] V. A. Zivkovic, F. v. d. Heyden, G. Gronthoud, and F. d. Jong. Analog Test

Bus Infrastructure for RF/AMS Modules in Core-Based Design. In 2008

13th European Test Symposium, pages 27�32, May 2008.

[73] M. Franco, J. Güiza, E. Chiappetta, S. Rueda, H. Luis, J. Bertuzzo,

J. Koeppe, T. Robins, J. Jenkins, and T. Hamilton. Electronically pro-

grammable test points for on-chip analog/digital measurements. In 2013

IEEE International Symposium on Circuits and Systems (ISCAS2013),

pages 2670�2673, May 2013.

[74] IEEE Standard Test Access Port and Boundary-Scan Architecture. IEEE

Std 1149.1-2001, 2001.

[75] IEEE Standard for Boundary-Scan Testing of Advanced Digital Networks.

IEEE Std 1149.6-2003, pages 0�132, 2003.

[76] Intel Corporation. PHY Interface for the PCI Express Architecture, PCI

Express 3.0, Revision 0.5.

[77] A. X. Widmer and P. A. Franaszek. A DC-Balanced, Partitioned-Block,

8B/10B Transmission Code. IBM Journal of Research and Development,

27(5):440�451, Sept 1983.

[78] V. Stojanovic, A. Ho, B. W. Garlepp, F. Chen, J. Wei, G. Tsang, E. Alon,

R. T. Kollipara, C. W. Werner, J. L. Zerbe, and M. A. Horowitz. Au-

tonomous dual-mode (PAM2/4) serial link transceiver with adaptive equal-

ization and data recovery. IEEE Journal of Solid-State Circuits, 40(4):1012�

1026, April 2005.

[79] Inc. Agilent Technologies. Jitter analysis: The dual dirac model, RJ/DJ,

and Q-scale. December 2004.

[80] J. Liang, M. S. Jalali, A. Sheikholeslami, M. Kibune, and H. Tamura. On-

Chip Measurement of Clock and Data Jitter With Sub-Picosecond Accu-

racy for 10 Gb/s Multilane CDRs. IEEE Journal of Solid-State Circuits,

50(4):845�855, April 2015.

153

	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Design Methodology
	2.1 Introduction
	2.2 State of the Art Design Methodologies
	2.3 Mixed Signal Modeling
	2.4 Top-Down Design Methodology
	2.5 Schematic Generation Tool
	2.6 Liberty File Generation Tool
	2.7 Link Budgeting

	3 High Speed SerDes Architecture
	3.1 State of the Art Serial Links
	3.1.1 Line Coding
	3.1.2 Synchronization
	3.1.3 Line Drivers
	3.1.4 Equalization

	3.2 Architecture Overview
	3.3 All Digital PLL
	3.3.1 Introduction
	3.3.2 Implementation

	3.4 Lane Clocking
	3.5 Receiver
	3.5.1 Overview
	3.5.2 Datapath
	3.5.3 Clocking
	3.5.4 Digital Clock Data Recovery
	3.5.5 Divider Initialization
	3.5.6 Bit Slip Mechanism
	3.5.7 Calibration

	3.6 Transmitter
	3.6.1 Overview
	3.6.2 Datapath
	3.6.3 Interface Synchronization

	3.7 Testability Concept
	3.8 Physical Coding Sublayer
	3.8.1 Datapath Overview
	3.8.2 Clocking Architecture
	3.8.3 Gearbox
	3.8.4 Elastic Buffer
	3.8.5 Figure of Merit Calculation

	4 Implementation
	4.1 Overview
	4.2 Layout Implementation
	4.3 Simulations
	4.4 Testchip
	4.5 Lessons Learned

	5 Conclusion and Outlook
	List of Figures
	Bibliography

