
 
 
 
 
 
 
 

 
 

Dissertation 
submitted to the 

Combined Faculties for the Natural Sciences and for Mathematics 
of the Ruperto-Carola University of Heidelberg, Germany 

 
for the degree of 

 
 

Doctor of Natural Sciences 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 presented by  
 

MSc. Sibgha Tahir 
 

Born in Toba Tek Singh, Pakistan 
Oral examination: 23.01.2018  



 

 

 

 

 

CD40L-dependent von Willebrand factor-

platelet string formation in the mouse 

microcirculation in vivo 

 

 

 

 

 

 

 

 

 

 

 

 

Referees:   Prof. Dr. Markus Hecker 
Prof. Dr. Peter Angel 

  

 



Dedication 

 

 

 

 

 

 

 

 

 

To my loving parents and husband 

  



i 
 

Table of contents 

List of Figures ............................................................................................................... v 

List of Tables ................................................................................................................ vii 

List of Abbreviations ................................................................................................... viii 

1. SUMMARY ......................................................................................................... x 

Graphical Summary........................................................................................................ xii 

Zusammenfassung ........................................................................................................ xiii 

2. INTRODUCTION ............................................................................................... 1 

2.1 Vascular remodeling .............................................................................................. 1 

2.2 Role of platelets in vascular remodeling ................................................................ 3 

2.3 Role of leukocytes in vascular inflammation and remodeling ................................. 6 

2.4 VWF contribution to vascular remodeling .............................................................. 6 

2.4.1 Distribution of vWF ........................................................................................... 6 

2.4.2 Structure of vWF ............................................................................................... 7 

2.4.3 VWF in vascular hemostasis and remodeling ................................................... 8 

2.4.4 Regulation of vWF by ADAMTS13 ................................................................... 9 

2.4.5 Shear stress dependency of ULVWF multimer-platelet string formation ........ 12 

2.5 Role of CD40-CD40L interactions in vascular remodeling ................................... 13 

2.5.1 Distribution ..................................................................................................... 13 

2.5.2 Mechanism of action in vascular remodeling .................................................. 14 

2.6 Purpose and investigated problem....................................................................... 16 

3. MATERIALS .................................................................................................... 17 

3.1 Chemicals and reagents ...................................................................................... 17 

3.2 Kits ....................................................................................................................... 17 

3.3 Antibodies ............................................................................................................ 18 

3.4 Consumables ....................................................................................................... 19 



ii 
 

3.5 Buffers ................................................................................................................. 20 

3.6 Anesthetics, analgesics and antidotes ................................................................. 21 

3.7 Equipments .......................................................................................................... 22 

3.8 Software ............................................................................................................... 23 

4. METHODS ........................................................................................................ 24 

4.1 Preparation of ex vivo labeled platelets ............................................................... 24 

4.1.1 Blood withdrawal from donor mouse .............................................................. 24 

4.1.2 Isolation and staining of platelets.................................................................... 25 

4.2 Labeling of endogenous platelets ........................................................................ 25 

4.3 Preparation of recipient mice cremaster .............................................................. 26 

4.3.1 Labeling of cremaster microvasculature ......................................................... 27 

4.4 Preparation of recipient mice ear pinna ............................................................... 28 

4.5 Preparation of femoral artery catheter ................................................................. 28 

4.6 Two-photon excitation fluorescence microscope ................................................. 29 

4.7 Experimental protocol .......................................................................................... 31 

4.7.1 Experimental groups ....................................................................................... 31 

4.7.2 CCD-camera recording ................................................................................... 32 

4.7.3 Single-beam TiSa recording ........................................................................... 34 

4.8 Images/video analysis by IMARIS software ......................................................... 38 

4.8.1 Time-time videos and 3D z-stacks .................................................................. 38 

4.8.2 Quantification of perivascular leukocytes ....................................................... 39 

4.9 Analysis by FIJI/ImageJ ....................................................................................... 40 

4.9.1 Platelet velocity and shear rate calculations ................................................... 40 

4.9.2 Confirmation of platelet strings by average and maximum intensity features of 

FIJI/ImageJ ..................................................................................................... 41 

4.10 Cremaster fixation ................................................................................................ 42 

4.11 Statistical analysis................................................................................................ 42 

5. RESULTS ......................................................................................................... 44 



iii 
 

5.1 Ex vivo labeled platelets form pearl like strings preferentially in venules                

in vivo ................................................................................................................... 44 

5.1.1 ADAMTS13ko mice show platelet adhesion in the microcirculation even   

under non-invasive conditions in ear pinna .................................................... 46 

5.1.2 By use of ex vivo labeled platelets the total number of platelet strings is 

underestimated but facilitates signal detection ............................................... 47 

5.2 CD40L enhances ULVWF multimer-platelet string formation preferentially in 

venules ................................................................................................................ 49 

5.3 ADAMTS13 deficiency significantly raises the number of ULVWF             

multimer-platelet strings in venules ...................................................................... 49 

5.4 CD40L exacerbates string formation in venules in the absence of ADAMTS13 .. 50 

5.5 Shear rate does not affect the number of platelet strings ..................................... 51 

5.6 High shear rate increases the length of ULVWF multimer-platelet strings in the 

absence of ADAMTS13 ....................................................................................... 53 

5.7 VWF is abundant in venules ................................................................................ 55 

5.8 VWF deposition in venules stimulated by CD40L is time-dependent ................... 57 

5.9 VWF co-localizes with platelet strings .................................................................. 57 

5.10 Leukocyte extravasation focuses on regions with visible ULVWF              

multimer-platelet strings ....................................................................................... 58 

5.11 ADAMTS13 deficiency increases the number of perivascular leukocytes in 

venules in response to CD40L stimulation ........................................................... 60 

5.12 CD40 receptor expression is triggered by inflammation ....................................... 61 

5.13 Post-surgery trauma also upregulates CD40 expression in control and 

ADAMTS13 knockout mice .................................................................................. 63 

5.14 CD40 and vWF partially co-localize in the microcirculation .................................. 64 

6. DISCUSSION ................................................................................................... 65 

6.1 CD40L: a potent vWF secretagogue in vascular ECs .......................................... 67 

6.2 Formation of ULVWF multimer-platelet strings in response to CD40L     

stimulation ............................................................................................................ 68 

6.3 Effect of ADAMTS13 on the number of ULVWF multimer-platelet strings ........... 70 



iv 
 

6.4 Is shear stress a regulator of endothelial cell vWF release and platelet string 

formation? ............................................................................................................ 72 

6.5 Preferential leukocyte extravasation in venules ................................................... 73 

6.6 CD40 receptor expression ................................................................................... 74 

6.7 General Discussion .............................................................................................. 76 

7. OUTCOME ....................................................................................................... 79 

Bibliography ................................................................................................................ 80 

Acknowledgements ..................................................................................................... 93 

List of own publications and conference papers ..................................................... 95 

  



v 
 

List of Figures 

Figure 1: Graphical representation of CD40-CD40L mediated interactions ................. xii 

Figure 2: Schematic representation of dimeric vWF domains ....................................... 8 

Figure 3: Schematic diagram showing functions of vWF .............................................. 9 

Figure 4: Inter-domain interactions between vWF and ADAMTS13 ............................ 10 

Figure 5: Model showing proteolytic activity of ADAMTS13 ........................................ 11 

Figure 6: Workflow of ULVWF multimer-platelet mediated leukocyte recruitment         

to the vessel wall ......................................................................................... 15 

Figure 7: Murine cremaster preparation ...................................................................... 26 

Figure 8: Endothelial cell labeling in vivo .................................................................... 27 

Figure 9: Murine ear pinna model ............................................................................... 28 

Figure 10: Single and double photon excitation fluorescence at one focal point ........... 30 

Figure 11: Experimental setup of multiphoton-based live cell imaging method. ............ 32 

Figure 12: CCD-camera settings for bright field microscopy ......................................... 34 

Figure 13: Single Beam TiSa laser settings for two-photon excitation fluorescence 

microscopy ................................................................................................... 36 

Figure 14: Graphical representation of MegaCD40L..................................................... 37 

Figure 15: IMARIS software used for re-establishment of recorded images/videos. ..... 38 

Figure 16: Representative images of perivascular leukocyte quantification .................. 39 

Figure 17: Measurement of platelet velocity and shear rate in the microvasculature .... 40 

Figure 18: Confirmation of platelet strings by average and maximum intensity feature   

of ImageJ ..................................................................................................... 41 

Figure 19: ULVWF multimer-platelet string formation and its quantification in vivo ...... 45 

Figure 20: Representative image of ULVWF multimer-platelet strings formation in 

ADAMTS13ko mice at baseline ................................................................... 46 

Figure 21: Confirmation of effective ULVWF multimer-platelet string detection using     

ex vivo labeled platelets ............................................................................... 48 

Figure 22: Increase in ULVWF multimer-platelet string formation in venules in   

response to CD40L stimulation .................................................................... 49 



vi 
 

Figure 23: Absence of ADAMTS13 augments baseline ULVWF multimer-platelet    

string formation in venules but not in arterioles ............................................ 50 

Figure 24: ADAMTS13ko mice are more responsive to CD40L stimulation than  

C57/BL6 mice .............................................................................................. 51 

Figure 25: Arterioles have higher shear rates than venules .......................................... 52 

Figure 26: At comparable shear rates ULVWF multimer-platelet string formation is     

still more prevalent in venules of ADAMTS13ko mice in response to CD40L 

stimulation than in arterioles ........................................................................ 53 

Figure 27: Higher shear rate in arterioles enhances the length of ULVWF multimer-

platelet strings as compared to venules only in the absence of ADAMTS13 54 

Figure 28: VWF is preferentially expressed in venules ................................................. 56 

Figure 29: Inhomogeneous distribution of vWF in the cremaster microvasculature ...... 57 

Figure 30: Co-localization of extracellular vWF with platelet strings in vivo .................. 58 

Figure 31: Leukocytes transmigrate preferentially in hotspot regions with visible   

platelet strings .............................................................................................. 59 

Figure 32: Preferential leukocyte extravasation in venules of ADAMTS13ko mice is 

significantly enhanced following CD40L stimulation .................................... 61 

Figure 33: Inflamation induces CD40 receptor expression in the cremaster 

microcirculation ............................................................................................ 62 

Figure 34: Post-surgery trauma also enhances endothelial cell CD40 (green) 

abundance in the isolated cremaster of C57/BL6 (A) and ADAMTS13ko (B) 

mice. ............................................................................................................ 63 

Figure 35: Partial co-localization of CD40 and vWF in venules .................................... 64 

Figure 36: Schematic diagram of leukocyte trafficking across the vessel wall .............. 66 

Figure 37: Possible CD40-CD40L mediated interactions between immune and non-

immune cells ................................................................................................ 78 

  



vii 
 

List of Tables 

Table 1:   List of chemicals and reagents used ............................................................. 17 

Table 2:   List of kits used .............................................................................................. 17 

Table 3:   Antibodies used in this study ......................................................................... 18 

Table 4:   List of materials used in this study ................................................................. 19 

Table 5:   List of buffers used ........................................................................................ 20 

Table 6:   Various anesthetics, analgesics and antidotes used in this study ................. 21 

Table 7:   List of equipments used ................................................................................ 22 

Table 8:   List of softwares used in this study ................................................................ 23 

Table 9:   Functions and settings of CCD top recording ................................................ 33 

Table 10: Functions and their settings for two-photon excitation fluorescence 

microscope .................................................................................................... 35 

Table 11: ADAMTS13ko vessels with comparable shear rates selected for     

comparison of platelet string formation ......................................................... 51 

  



viii 
 

List of Abbreviations 

A disintegrin and metalloproteinase with a 

thrombospondin type 1 motif, member 13 

ADAMTS13 

ADAMTS13 knockout ADAMTS13ko 

Carboxy fluorescein diacetate CFDA 

Cluster of differentiation CD 

CD40 ligand CD40L 

Charge coupled device CCD 

Endothelial cell(s) EC(s) 

Interferon IFN 

Interleukin-1 IL-1 

Intraperitoneal IP 

Intravenous i.v 

Kilo Dalton kDa 

MegaCD40ligand MegaCD40L 

Nitric oxide NO 

Platelet derived growth factor PDGF 

Prostacyclin PGI2 

P-selectin glycoprotein ligand-1 PSGL-1 

Quantum dot Qdot 

Reactive oxygen species ROS 

Smooth muscle cell(s) SMC(s) 

Standard error of the mean SEM 

Stromal cell-derived factor-1 SDF-1 

Thrombozyten (thrombocyte) buffer Tz-buffer 

Thrombotic thrombocytopenic purpura TTP 

Transforming growth factor-β TGF-β 

Tumor necrosis factor-α TNF-α 

Tumor necrosis factor receptor TNFR 

Ultra-large von Willebrand factor ULVWF 



ix 
 

  Vascular endothelial growth factor VEGF 

Von Willebrand factor vWF 

Weibel-Palade bodies WPBs 

Zinc fixative buffer Zn-fixative buffer 



x 
 

1. Summary 

 

Both physiological and pathophysiological vascular remodeling processes involve the 

crosstalk between vascular and immune cells. CD40 ligation on endothelial cells (EC) in 

vitro promotes the release and deposition of ultra-large von Willebrand factor (ULVWF) 

multimers on their surface. Platelets rapidly adhere, turn P-selectin positive and recruit 

circulating leukocytes, allowing their attachment to and subsequent diapedesis through 

the EC monolayer. ULVWF multimers are cleaved by the zinc metalloproteinase 

ADAMTS13. However, it is not yet known whether CD40-CD40L interactions play a role 

in microvessels in vivo. In particular, it is not known whether the shear stress 

dependency observed in vitro leads to ULVWF multimer-platelet string formation 

predominantly in arterioles being exposed to higher shear stress than venules, and 

whether these strings are formed in the presence of ADAMTS13. 

We hypothesized that CD40L serves as potent stimulator of endothelial cell von 

Willebrand factor (vWF) release in the microcirculation in vivo which leads to formation 

of ULVWF multimers providing active binding sites for surveilling platelets and, 

secondarily, circulating leukocytes (see graphical summary Figure 1). To test this 

hypothesis, multiphoton-based live cell imaging in cremaster vessels of the mouse was 

used to study ULVWF multimer-platelet string formation and leukocyte-EC interaction in 

vivo. Carboxy fluorescein diacetate (CFDA) stained platelets were injected into the 

circulation of both wild type and ADAMTS13 knockout mice. Leukocytes were labeled 

using PE-conjugated anti-mouse CD45 antibody. Then ULVWF multimer-platelet string 

formation together with interaction of leukocytes was observed in the microvasculature 

of these animals before and after CD40L stimulation. The distribution of CD40 and vWF 

in the vasculature was observed by using Qdot-525 labeled anti-CD40 and Qdot-565 

labeled anti-vWF antibodies, respectively.  

Herein, it is reported that CD40L is a potent stimulator of vWF-dependent platelet string 

formation in the murine microcirculation in vivo. ULVWF multimer-platelet strings form 
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both in arterioles (mean diameter = 53 µm) and venules (mean diameter = 60 µm) after 

CD40L treatment in vivo but are clearly more prevalent in venules in spite of the lower 

shear stress there. However, in the presence of ADAMTS13 their number is kept rather 

low. The deficiency of ADAMTS13 enhances ULVWF multimer-platelet string formation 

following CD40L stimulation. Leukocyte extravasation is much more prominent in 

venules and boosted in the absence of ADAMTS13, namely following CD40L 

stimulation. Therefore, low ADAMTS13 plasma levels as observed in patients with 

coronary heart disease may contribute to the pro-thrombotic and pro-inflammatory state 

of the vessel wall. ULVWF multimers are preferentially observed in venules where they 

co-localize with both platelets and the endothelial cell CD40 receptor. Based on these 

observations, we propose that pro-inflammatory leukocyte extravasation preferentially 

takes place at sites of vWF-induced platelet adherence, a process which is elicited by 

platelet-CD40L stimulation of endothelial cells.  



xii 
 

Graphical Summary 

 

 

 

Figure 1: Graphical representation of CD40-CD40L mediated interactions. CD40 
ligation on ECs induces the release of vWF from Weibel-Palade body (WPB) stores that 
in turn leads to ULVWF multimer-platelet string formation on the luminal EC surface 
followed by leukocyte recruitment and their subsequent extravasation through the EC 
monolayer.  
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Zusammenfassung 

Sowohl physiologische als auch pathophysiologische vaskuläre Umbauprozesse 

beinhalten Interaktionen zwischen Gefäß- und Immunzellen. Die Bindung des CD40-

Liganden (CD40L) an den CD40-Rezeptor auf Endothelzellen (EZ) in vitro fördert die 

Freisetzung und Ablagerung von ultralangen von Willebrand-Faktor (ULVWF) 

Multimeren auf ihrer luminalen Oberfläche. Blutplättchen haften hieran an, werden P-

Selektin-positiv, rekrutieren zirkulierende Leukozyten und ermöglichen so deren 

Anhaftung an und die anschließende Diapedese durch die einschichtigen 

Endothelzellen. ULVWF-Multimere werden durch die Zinkmetalloproteinase ADAMTS13 

gespalten. Bislang ist jedoch noch nicht bekannt, ob derartige CD40-CD40L-

Interaktionen in Mikrogefäßen in vivo eine Rolle spielen. Insbesondere ist unbekannt, 

ob die in vitro beobachtete Schubspannungsabhängigkeit zu einer ULVWF Multimer-

Blutplättchen-Komplexbildung vorwiegend in Arteriolen führt, da diese einer höheren 

Schubspannung ausgesetzt sind als Venolen, und ob diese Komplexbildung in 

Gegenwart von ADAMTS13 überhaupt stattfindet. 

Der vorliegenden Doktorarbeit liegt die Hypothese zugrunde, dass CD40L als potenter 

Stimulus der vWF-Freisetzung in der Mikrozirkulation in vivo dient, was zur Bildung von 

ULVWF-Multimeren führt, die aktive Bindungsstellen für patrolierende Blutplättchen und 

sekundär zirkulierende Leukozyten darstellen. Um diese Hypothese zu testen, wurde 

eine Multiphoton-basierte Live-Zell-Bildgebung in Blutgefäßen des M. cremaster der 

Maus verwendet, um die ULVWF-Multimer/Blutplättchen-Komplexbildung bzw. die 

Leukozyten-EZ-Interaktion in vivo zu untersuchen. Carboxyfluoresceindiacetat (CFDA)-

gefärbte Blutplättchen wurden in die Zirkulation von Wildtyp- und ADAMTS13-Knockout-

Mäusen injiziert. Leukozyten wurden durch Verwendung von PE-konjugiertem anti-

Maus-CD45-Antikörper markiert. Dann wurden in den Mikrogefäßen dieser Tiere vor 

und nach CD40L-Stimulation die Bildung von Plättchen-dekorierten vWF-Fäden 

zusammen mit der Wechselwirkung von Leukozyten beobachtet. Die Verteilung von 

CD40 und vWF im Gefäßsystem wurde durch den Einsatz von Qdot-525-markierten 

Anti-CD40 und Qdot-565-markierten Anti-vWF-Antikörpern untersucht. 
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Die vorliegende Doktorarbeit zeigt, dass CD40L ein starker Stimulus für die ULVWF-

Multimer/Blutplättchen-Komplex- bzw. Fadenbildung in der Mikrozirkulation der Maus in 

vivo ist. ULVWF-Multimer/Blutplättchen-Fäden bilden sich in vivo nach CD40L-Zugabe 

sowohl in Arteriolen (mittlerer Durchmesser 53 µm) als auch in Venolen (mittlerer 

Durchmesser 60 µm), sind aber in Venolen weiter verbreitet, trotz der dort nachweislich 

niedrigeren Schubspannung. In Gegenwart von ADAMTS13 ist die Anzahl der 

nachweisbaren Fäden niedrig. In Abwesenheit von ADAMTS13 ist die ULVWF-

Multimer/Blutplättchen-Fadenbildung nach CD40L-Stimulation deutlich gesteigert. Die 

Leukozyten-Extravasation ist in den Venolen deutlich erhöht und nimmt in Abwesenheit 

von ADAMTS13 nochmals zu, besonders nach CD40L-Stimulation. Daher können 

niedrige ADAMTS13-Plasmaspiegel, wie sie bei Patienten mit koronarer Herzkrankheit 

nachweisbar sind, zu dem prothrombotischen und proentzündlichen Zustand der 

Gefäßwand beitragen. ULVWF-Multimere konnten bevorzugt in Venen nachgewiesen 

werden, wo sie mit Blutplättchen-dekorierten Fäden und endothelialen CD40-

Rezeptoren kolokalisieren. Basierend auf diesen Beobachtungen wird postuliert, dass 

die proinflammatorische Leukozyten-Extravasation bevorzugt an Stellen der vWF-

induzierten Plättchen-Adhäsion stattfindet, die durch die Blutplättchen-CD40L-

vermittelte Stimulation von Endothelzellen hervorgerufen wird. 
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2. Introduction 

2.1 Vascular remodeling 

The term vascular remodeling refers to the changes in blood vessel geometry that are 

occur in response to long term variations in blood hemodynamics or as a result of 

vascular injury caused by trauma and underlying cardiovascular risk factors. The kind 

and extent of vascular remodeling does not only depend on the type of stimuli but also 

on the location of blood vessels, e.g. the type of remodeling taking place in small 

resistance vessels is different from the one occurring in large conduit arteries (Mulvany 

2002). Although the variations in hemodynamic forces are the principal cause of 

vascular remodeling in the majority of physiologic and pathologic conditions (Langille 

1996), many pathophysiologic stimuli such as oxidative stress (Montezano and Touyz 

2014), inflammation and apoptosis (Walsh et al. 2000) are major causes of vascular 

remodeling through inducing endothelial dysfunction. The mechanisms underlying these 

pathophysiologic processes are complex and involve a variety of cell types, chemokines 

and changes in extracellular matrix but their primary feature is the abnormal growth or 

proliferation of smooth muscle cells (SMCs) that might be caused by 1) increased 

endothelial permeability, 2) release of growth factors from platelets and/or monocytes, 

and 3) release of growth factors from endothelial cells (ECs) or SMCs themselves 

(Dzau et al. 2002; Owens 1989). 

The blood vessels are mainly composed of ECs, SMCs and fibroblasts that interact with 

one another in an autocrine-paracrine fashion (Gibbons and Dzau 1994). Although all 

cells can participate in vascular remodeling, but the vascular endothelium due to its 

prime location in the blood vessel lumen plays an essential role in maintaining vascular 

function and homeostasis (Quyyumi 1998). The vascular endothelium not only serves 

as sensor for detecting humoral signals but also works as effector for eliciting biological 

responses leading to changes in structure (and function) of blood vessels. 
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The underlying process of vascular remodeling involves the complex and highly 

regulated events of: 

a) Detection of hemodynamic changes/vessel injury by the cell sensors. 

b) Transduction of signals within cells and between neighboring cells. 

c) Synthesis and release of vasoactive substances that influence cell growth, 

proliferation, apoptosis, migration and changes to the extracellular matrix.  

d) The resultant change in vessel geometry in response to cellular or non-cellular 

components. 

Under normal physiological conditions, the endothelium is responsible for the 

maintenance of vascular tone and homeostasis through the release of vasodilators (e.g. 

nitric oxide (NO) and prostacyclin) and vasoconstrictors (e.g. thromboxane A2, 

endothelin and free radicals). NO aids in vasodilation, downregulates pro-inflammatory 

and cell adhesion molecules, and inhibits proliferation and migration of SMCs hence 

contributing to maintaining vascular tone (Tousoulis et al. 2012; Drexler and Hornig 

1999). While the endothelium-derived contractile factors increase intracellular calcium 

levels in SMCs, reactive oxygen species (ROS) and activation of cyclooxygenase-1 or 2 

cause endothelium-dependent contractions that can be observed in numerous animal 

models of diabetes, hypertension and aging (Feletou et al. 2011). Endothelial 

dysfunction has been recognized as the doorstep to major cardiovascular events such 

as thrombus formation, atherosclerosis, myocardial infarction, stroke and peripheral 

artery disease (Cai and Harrison 2000; Eyries et al. 2004; Roquer et al. 2009). 

Cardiovascular risk factors play a major role in endothelial dysfunction causing oxidative 

stress that in turn leads to inactivation or degradation of NO. Thus activated, ECs 

produce large amounts of reactive oxygen species (ROS) that upregulate the 

transcription of pro-inflammatory and pro-thrombotic genes, chemokines and adhesion 

molecules resulting in microvascular dysfunction and enhanced leukocyte infiltration 

(Cai et al. 2003). The vascular remodeling which is initiated as an adaptive response 

(e.g. in arteriogenesis) may eventually become maladaptive (e.g. in atherosclerosis) 

and leads to impaired vascular functions. 
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2.2 Role of platelets in vascular remodeling 

Platelets, also called thrombocytes, are anuclear disc-shaped cell fragments (2-4 µm) 

that are generated from bone marrow megakaryocytes by a process called 

thrombopoiesis and released into the circulation (Junt et al. 2007). Regardless of being 

anuclear, platelets are active moieties due to the presence of cell organelles 

(endoplasmic reticulum, mitochondria, Golgi apparatus), and are still able to synthesize 

proteins from mRNA. Under normal physiologic conditions, there are around 750 billion 

quiescent platelets circulating in human blood and patrolling for any endothelial damage 

in the vasculature. Upon encountering such an injury platelets become activated and 

come in to play their main role of maintaining a vascular barrier by attaching to the 

subendothelial matrix, namely collagen, aggregating and closing the wound by serving 

as a hemostatic plug to prevent bleeding (Ho-Tin-Noe et al. 2011).  

Platelets contain alpha granules, dense granules and lysosomes. The alpha granules 

are large vesicles (200-400 nm) that store adhesion and repairing factors like von 

Willebrand factor (vWF), multimerin and factor V which are important for both platelet-

platelet interactions and platelet-blood cells interactions. The dense granules are small 

platelet granules (150 nm) with non-protein constituents that are pro-aggregating factors 

like nucleotides (ADP, ATP), biogenic amines and bivalent cations. Lysosomes contain 

clearing factors with bactericidal activity (Rendu and Brohard-Bohn 2001; Hayward et al. 

1995). Upon activation, the release of ADP, fibrinogen, fibronectin, serotonin and vWF 

from platelet granules, but namely synthesis and release of thromboxane A2 leads to 

reversible and irreversible platelet aggregation, respectively. The platelet aggregate 

grows by associating with other platelets through fibrinogen binding to glycoprotein 

IIb/IIIa receptors. It is tethered to the subendothelial matrix through glycoprotein Ib-vWF 

and glycoprotein VI-collagen interactions. 

Platelets are best known for their vital role in hemostasis but in addition they are equally 

important in vascular remodeling by linking hemostasis to inflammation (von Bruhl et al. 

2012; Zarbock et al. 2007; Van Hinsbergh and Tasev 2015). Platelets have numerous 

cell surface receptors and adhesion molecules which on engaging activate intracellular 

signaling pathways resulting in the release of chemokines and cytokines that play a key 
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role in inflammation (Lam et al. 2015). Amongst them, CXCL4 (also called PF4) and 

CXCL7 (also called NAP-2) are the most abundant chemokines derived from platelets 

(Karshovska et al. 2013). Besides these, platelets express and release several other 

chemokines like CCL3, CCL5, CCL7, CXCL5, CXCL1, CXCL12 and MIF (Karshovska et 

al. 2013).  

Vascular inflammation is a key process during remodeling of macrovascular (e.g. 

atherosclerosis, (Hansson et al. 2006))and microvascular (e.g. arteriogenesis (Liu et al. 

2014) arterial blood vessels in the as well as in diabetes or as a consequence of arterial 

hypertension (Savoia and Schiffrin 2007; Schiffrin 2015), regardless of whether it 

constitutes an adaptive or maladaptive change, that is accompanied by platelet 

activation and amplified by their interaction with ECs and leukocytes (Fuentes et al. 

2013). Platelets are not only involved in modulating inflammatory and immune 

responses but they are also considered equally important in thrombus formation upon 

plaque rupture and atherosclerosis progression (Lievens and von Hundelshausen 2011; 

Gawaz et al. 2005). Inflammation is a complex process that can be either protective or 

pathologic and its investigation may lead to identification of new therapeutic targets for 

controlling cardiovascular diseases. 

Platelets also play a role in protecting developing vessels in the microcirculation and the 

lymphatics at sites of inflammation. Recently, the role of platelets in arteriogenesis has 

regained attention (Kahn 2015). Arteriogenesis refers to an increase in diameter of 

existing collateral arterioles in response to a blockade in the main feeding artery for 

which the collaterals serve as natural bypasses maintaining normal blood flow at least 

at rest (Deindl and Schaper 2005). Thus, platelet GPIbα has been found to facilitate 

platelet-EC interactions via integrin receptors that enable the recruitment of innate 

immune cells under conditions of high shear stress hence promoting arteriogenesis 

(Chandraratne et al. 2015). By secreting several of the aforementioned chemokines, 

cytokines and growth factor, namely Platelet derived growth factor (PDGF), platelets 

support remodeling of the collateral arterioles to small arteries. 

In the hypoxic tissue, arteriogenesis mostly goes hand in hand with angiogenesis. 

Angiogenesis involves the sprouting of new blood vessels (Ribatti and Crivellato 2012). 
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Platelets can also produce pro-angiogenic mediators and assist in tissue repair and 

regeneration. There are extensive studies on the involvement of the hemostatic system 

in angiogenesis (Kisucka et al. 2006; Feng et al. 2011) where the presence of platelets 

has been found to stimulate angiogenesis followed by vessel maturation through 

releasing, e.g. transforming growth factor-β (TGF-β), PDGF, vascular endothelial growth 

factor (VEGF) and stromal cell-derived factor-1 (SDF-1). In addition, this has been 

attributed on the one hand to the deficiency of an antiangiogenic factor in platelets 

called thrombospondin-1, which regulates the balance between proangiogenic and 

antiangiogenic factors during neovascularization (Feng et al. 2011). On the other hand, 

thromboxane A2 produced by activated platelets has been found to restore blood flow 

through thromboxane prostanoid receptor in a hind limb ischemia model by aiding in 

releasing platelet proangiogenic factors, thereby promoting angiogenesis and 

arteriogenesis (Amano et al. 2015). 

Atherosclerosis, a chronic inflammation of large to medium-sized arteries at the typical 

predilection sites (branches, curvatures), is composed of asymmetric focal thickenings 

constituting lipid droplets, debris and immune cells (Hansson et al. 2006). It is 

characterized by the recruitment of platelets, monocytes and neutrophils to these 

developing lesions which is followed by  infiltration of various subsets of T-cells as well 

as dendritic cells (Weber et al. 2008). Arterial bifurcations and curvatures serve as 

predilection sites for atherosclerosis due to blood flow disturbances causing endothelial 

dysfunction and subsequent leukocyte recruitment and infiltration of the vessel wall 

(Galkina and Ley 2009). In this context, platelets play a major role in the initiation of this 

process by interacting with the ECs through platelet GPIbα (which interacts with vWF 

and P-selectin) and GPIIb-IIIα (also called integrin αIIbβ3, which interacts with fibrinogen 

and vWF) that is followed by leukocyte recruitment (Massberg et al. 2002). Thrombin 

activated platelets secrete RANTES (also called CCL5) which is deposited on EC 

surface that triggers monocyte arrest hence spurring inflammation, neointima and 

ultimately plaque formation in the arterial vessel wall (von Hundelshausen et al. 2001). 

In addition, increased platelet CX3CR1 expression has been suggested to augment 

platelet-monocyte interaction through CX3CL1-CX3CR1 mediated platelet activation at 

sites of atherosclerosis (Postea et al. 2012). In this milieu, neutrophils release their 
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nuclear contents called neutrophil extracellular traps (NETs), composed of DNA and 

granule proteins containing neutrophil elastase, thereby exacerbating atherosclerotic 

lesion formation (Megens et al. 2012). However, the interaction between these immune 

cells still needs further investigation as it is ambiguous how they, especially monocytes, 

transmigrate through the EC barrier at atherosclerosis-prone sites.  

2.3 Role of leukocytes in vascular inflammation and remodeling 

Leukocyte infiltration has been found to be one of the hallmark events of vascular 

inflammation (Ley 1996). During vascular inflammation, platelets tend to adhere to the 

endothelium and serve as recruitment site for circulating pro-inflammatory leukocytes, 

such as neutrophils and monocytes, even at high shear stress of 20 and 40 dyn/cm2 

(Bernardo et al. 2005). Circulating leukocytes through their P-selectin glycoprotein 

ligand-1 (PSGL-1) interact with P-selectin on activated platelets (McEver 2001) which 

leads to ERK1/2MAPK-dependent conformational change in leukocyte integrins, hence 

promoting extravasation of leukocytes into the perivascular tissue (Zuchtriegel et al. 

2016). In addition, platelets are also capable of forming platelet-leukocyte complexes in 

the circulation which have a high affinity for ECs and may thus expedite extravasation 

(Gawaz et al. 2005).  

In the pathophysiologic condition of atherosclerosis, the monocytes soon after 

extravasation into the subintimal space acquire the properties of resident macrophages, 

by expressing scavenger receptors, take up preferentially oxidized LDL cholesterol 

particles and convert into foam cells. In addition, SMCs switch from a contractile to 

synthetic phenotype and generate significant amount of foam cells (Chaabane et al. 

2014). These foam cells then form a fatty streak which is a hallmark of developing 

atherosclerotic lesions (Libby 2002; Libby and Aikawa 2002).  

2.4 VWF contribution to vascular remodeling 

2.4.1 Distribution of vWF 

VWF, the largest multimeric glycoprotein present in plasma, is encoded by a gene on 

chromosome 12pter-p12 with a length of 180 kb and comprising 52 exons (McKusick 



7 
 

and Amberger 1993). It is mainly synthesized by ECs (Jaffe et al. 1974) where it is 

stored in specialized vesicles called Weibel-Palade bodies (WPBs) (Warhol and Sweet 

1984). In addition, it is also synthesized in platelet precursors called megakaryocytes 

and stored in platelets’ α-granules together with P-selectin (Kupinski and Miller 1985). In 

the vasculature, vWF can be found in three different pools namely (i) soluble plasma 

vWF (secreted from ECs and platelets upon activation), where ECs are the major 

source of plasma vWF, (ii) basement membrane vWF (deposited in the extracellular 

matrix) and (iii) cellular vWF (stored in ECs and platelet α-granules).  

2.4.2 Structure of vWF 

VWF circulates through the vasculature in multimeric form with the smallest dimer of 

500 kDa that can multimerize through disulfide bonds up to an ultra-large molecule of 

20,000 kDa (Wagner 1990). VWF comprises a multidomain structure that is essential for 

its regulatory function (Figure 2). The important domains of vWF and their respective 

binding partners are: 

1) D’D3 ­ binding to clotting factor VIII 

2) A1 ­ binding to platelet GPIbα 

3) A2 ­ binding of ADAMTS13 

4) A3 ­ binding to type I and III collagen 

5) C1 ­ binding to platelet GPIIb-IIIα 

6) C terminal CK domain ­ dimerizes vWF 
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Figure 2: Schematic representation of dimeric vWF domains. The important 
domains of vWF with their respective binding and cleavage sites are shown (De Meyer 
et al. 2012). 

 

2.4.3 VWF in vascular hemostasis and remodeling 

VWF plays an important role in maintaining vascular hemostasis in two ways. Firstly, 

plasma vWF serves as a carrier molecule for clotting factor VIII in the blood thus 

enhancing its half-life by protecting it against proteolysis (Zimmerman et al. 1983).  

Secondly, it acts as a cross linker molecule that initiates the first interaction between 

non-activated circulating platelets and damaged endothelium during vascular injury 

(Federici 2003). Circulating vWF is present in a globular conformation where its A2 

domain interacts with the A1 domain causing its blockade and unavailability of vWF for 

both GPIbα and proteolytic cleavage by ADAMTS13 (a disintegrin and 

metalloproteinase with a thrombospondin type 1 motif, member 13). Similarly, the 

secreted vWF also adopts the globular conformation which later on tends to form ultra-

large vWF (ULVWF) multimers anchored to the luminal EC surface (Mourik et al. 2013). 

Upon vascular damage, endothelial vWF is released which binds to the exposed 

collagen via its A3 domain and the high shear rate in the vessel promotes 
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conformational changes that cause dissociation of the A1-A2 complex resulting in 

unfolding of the A1binding domain for platelet GPIbα. The A1 domain is exposed prior to 

the A2 domain, ensuring that vWF initiates/contributes to hemostasis before it is 

inactivated by ADAMTS13 (Aponte-Santamaria et al. 2015). The A1- GPIbα interaction 

allows the initial rolling and arrest of non-activated platelets on the endothelium followed 

by their firm adhesion on collagen via GPVI-α2β1 integrin leading to platelet activation. 

Later on, vWF facilitates the aggregation of activated platelets at the injured site like 

fibrinogen by crosslinking neighboring platelets through their GPIIb-IIIα integrin 

receptors (Figure 3) (De Marco et al. 1986). 

 

Figure 3: Schematic diagram showing functions of vWF. VWF serves as a carrier of 
clotting factor VIII as well as a cross linker molecule between platelets (GPIbα) and the 
damaged endothelium (collagen in the subendothelial matrix) during vascular injury 
(Shahidi 2017). 

 

2.4.4 Regulation of vWF by ADAMTS13 

The amount (and length) of the ULVWF multimers deposited on the EC surface is 

regulated by ADAMTS13  that cleaves the potentially hyperactive ULVWF multimers 

into inactive monomers thus preventing thrombosis and replenishing plasma vWF 

(Dong et al. 2003). Initially, ADAMTS13 was found to be synthesized in hepatic stellate 

cells (Zhou et al. 2005) but later on it was found to be synthesized and constitutively 

released by ECs (Turner et al. 2006; Tati et al. 2011).  
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The various domains of ADAMTS13 starting from the N-terminus are (Figure 4): 

1) Ca+2 and Zn+2 dependent metalloprotease (MP) 

2) Disintegrin like domain (Dis) 

3) Thrombospondin-1 repeat (1) 

4) Cysteine rich domain (Cys) 

5) Spacer domain 

6) Seven tandem repeats 

7) Two CUB domains (CUB1 and CUB2) 

 

 

Figure 4: Inter-domain interactions between vWF and ADAMTS13. Different 
domains of ADAMTS13 (B) showing their association with respective vWF (A) domains 
during their globular and stretched states (Crawley and Scully 2013). 

ADAMTS13 carries out the cleavage of platelet-decorated ULVWF multimer strings in 

vivo (De Maeyer et al. 2010) and the cleavage is done at the Tyr1605-Met1606 bond in 

the A2 domain (Figure 5).  
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Figure 5: Model showing proteolytic activity of ADAMTS13. Regulation of platelet-
decorated ULVWF multimer strings on the EC surface by the proteolytic activity of 
ADAMTS13 that converts it into smaller fragments (De Ceunynck et al. 2013). 

 

Since long time, it was believed that ADAMTS13 is constitutively active in plasma and 

that the globular conformation of vWF hides the cleavage site preventing it from 

degradation. Recently, it has been shown that ADAMTS13 is conformationally activated 

by vWF via their various domains interactions. The spacer domain of ADAMTS13 is 

covered by its CUB1 domain, thus limiting the proteolytic activity of its catalytic site 

comprising the MP, Dis, 1, Cys and S domains. The initial low affinity interaction of vWF 

with ADAMTS13 via the D4-CK domains engages the TSP8-CUB2 domains, hence 

disrupting the CUB1-spacer domain interaction leading to ADAMTS13 activation (South 

et al. 2017).  

Platelet vWF differs from plasma vWF in terms of forming higher molecular weight 

multimers and reduced N-linked sialylation that impart resistance against ADAMTS13 

proteolysis, hence enabling platelet plug formation at sites of vascular injury (McGrath 

et al. 2013). In addition to ADAMTS13, activated leukocyte proteases (elastase, 

proteinase 3, cathepsin G, and matrix metalloproteinase 9) have been found to cleave 

synthetic vWF at or near the A2 domain of vWF (ADAMTS13 cleavage site), implicating 

a possible role of activated leukocytes in vWF regulation (Raife et al. 2009; Lancellotti et 

al. 2013; Tati et al. 2017). 

An imbalance between ADAMTS13 activity and EC vWF release causes the formation 

of ULVWF multimers on the EC surface which in turn induces platelet adhesion and 

aggregation. Previously, low levels of ADAMTS13 were only associated with the 

thromboembolic complications of thrombotic thrombocytopenic purpura (TTP) (Zheng et 

al. 2001) but later studies have related both low levels of ADAMTS13 and high levels of 

https://en.wikipedia.org/wiki/Thrombotic_thrombocytopenic_purpura
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vWF to the occurrence of cardiovascular events (Bongers et al. 2009) including 

hypertension, thrombotic microangiopathies, arterial thrombosis, ischemic stroke, 

myocardial infarction and heart failure (Akyol et al. 2016; Dhanesha et al. 2016). 

VWF plays a very important role in communication between circulating leukocytes and 

endothelium via adhered platelets and promotes leukocyte extravasation (Petri et al. 

2010). Leukocytes are preferentially recruited to and extravasate in postcapillary 

venules (Bruce et al. 2014) which raises the question whether this is due to  an 

exclusive release of vWF in venules and capillaries or whether there are any 

predilection sites for vWF release like, e.g. bifurcations. There is also limited information 

whether in the microcirculation in vivo the regions with visible ULVWF multimer-platelet 

strings have any influence on leukocyte extravasation and whether this is enhanced in 

the absence of ADAMTS13.  

VWF also plays a vital role in vascular remodeling, both in arteriogenesis and 

angiogenesis, by facilitating leukocyte infiltration and blood flow recovery during post 

ischemic neovascularization (de Vries et al. 2017). Recently, ADAMTS13 and vWF 

have been found to play an antagonistic role in post ischemic vascular remodeling 

where the administration of recombinant ADAMTS13 in mice after stroke has been 

found to improve vascular repair and neovascularization (Xu et al. 2017). 

2.4.5 Shear stress dependency of ULVWF multimer-platelet string 

formation 

Following vascular injury platelets are capable of adhering to subendothelial vWF even 

under conditions of high shear stress. Fluid shear stress regulates ULVWF multimer-

platelet strings in three distinct ways. Firstly, it facilitates the multimerization of vWF into 

ULVWF multimers deposited on the EC surface. Secondly, it enables the unfolding of 

ULVWF multimers thus exposing their binding domain A1 for platelet adhesion resulting 

in formation of ULVWF multimer-platelet strings. Thirdly, shear stress regulates the 

force dependent cleavage of ULVWF multimers by stretching the concatamers thereby 

exposing the cleavage domain A2 to ADAMTS13 (Kragh et al. 2014; Shim et al. 2008). 

It is still elusive though whether shear stress does play any role in vWF release and 

ULVWF multimer-platelet string formation in vivo. In the vasculature, shear stress varies 
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from arteries, arterioles, capillaries, venules and veins depending upon their 

morphology and physical dimensions. If shear stress helps in unwinding ULVWF 

multimers, it is also not known whether there are any difference in arterioles and 

venules in terms of the number of ULVWF multimer-platelet strings. In vitro, cleavage of 

ULVWF multimers on the EC surface has been reported at both arterial (20-50 dyn/cm2) 

and venous (2.5 dyn/cm2) levels of shear stress (Dong et al. 2002). If that was the case 

in vivo, too, it would raise the question which difference or not it will make on ULVWF 

multimer-platelet string formation in the absence of ADAMTS13. 

2.5 Role of CD40-CD40L interactions in vascular remodeling 

Among many pathways for initiating platelet-EC-leukocyte interactions, one important 

co-stimulation is CD40-CD40L interaction. 

2.5.1 Distribution 

CD40L (also called CD154 or gp39), a member of the tumor necrosis factor (TNF) 

family, is a 33 kDa type II transmembrane glycoprotein initially recognized as a cell 

surface trimer on T-cells (Foy et al. 1996). The initial studies suggested its molecular 

weight to be 39 kDa, hence named gp39, but most cell types have a 32-33 kDa cell 

surface protein. CD40L is predominantly expressed on activated CD4-positive T cells 

(Roy et al. 1993) and on platelets (Henn et al. 1998) while in a lesser amount on 

activated CD8-positive T cells, natural killer (NK) cells, monocytes, macrophages, 

basophils, mast cells (Gauchat et al. 1993) and activated eosinophils (Gauchat et al. 

1995). In addition CD40L is also expressed on non-immune cells like ECs and SMCs 

(Mach et al. 1997).  

CD40L is pre-formed in platelets and translocated to the surface upon activation. 

Extracellular proteases can cleave CD40L from the membrane of activated platelets 

yielding a functional polypeptide which is termed soluble CD40L (Choi et al. 2010). 

Elevated levels of soluble CD40L have been found in the plasma of patients suffering 

from cardiovascular disease(s) that predominantly involve platelets (Tousoulis et al. 

2010; Varo et al. 2003).  
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CD40, a member of the tumor necrosis factor receptor (TNFR) superfamily, is a 48 kDa 

type I transmembrane protein initially recognized and characterized as a receptor on B-

lymphocytes. It plays an important role both in humoral and cell-mediated immune 

responses (Vogel and Noelle 1998). CD40 is expressed not only on immune cells like 

B-lymphocytes, dendritic cells, follicular dendritic cells, granulocytes, monocytes, 

macrophages and platelets (Henn et al. 2001) but also on non-hematopoietic cells like 

ECs, epithelial cells, vascular SMCs, fibroblasts and neuronal cells (Hollenbaugh et al. 

1995; Tan et al. 2002).  

CD40 and CD40L due to their presence in soluble forms are also able to act in a 

paracrine and endocrine fashion. The abundance of CD40 on the vascular EC surface 

has been found to be heterogeneous in mice where it is expressed preferentially in 

capillaries, venules and veins but not in arteries or arterioles except in atherosclerotic 

animals where it is upregulated at the prototypic atherosclerosis predilection sites (Korff 

et al. 2007). 

2.5.2 Mechanism of action in vascular remodeling 

In the initiation and progression phase of vascular remodeling processes there exists a 

link between hemostasis and innate immunity but the underlying intercellular crosstalk 

still remains elusive. CD40L on platelets is highly regulated for initiating immune 

response despite constitutive CD40 co-expression on platelets. While ECs also strongly 

control the amount and functionality of CD40 present on their surface (Korff et al. 2007; 

Wagner et al. 2011), CD40 ligation triggers the downstream activation of TRAF6 

followed by inositol-1,4,5 trisphosphate-mediated calcium mobilization. It has been 

shown by our group previously that this way CD40 ligation stimulates the release of 

vWF from the WPBs in vitro and causes its deposition as ULVWF multimers on the EC 

surface in the presence of flow (Moller et al. 2015). Platelets promptly adhere to these 

ULVWF multimers, translocate P-selectin on their surface and recruit circulating 

monocytes, hence facilitating their attachment to and successive diapedesis through the 

EC monolayer even under conditions of intermediate to high shear stress (Figure 6).  In 

addition, CD40L stimulation of ECs evokes expression of the ligand itself on their 

surface (Wagner et al. 2004), (Danese et al. 2004). The interaction of CD40L on 
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platelets with CD40 on neighboring platelets in a thrombus leads to the cleavage of 

membrane bound CD40L, releasing the 18 kDa soluble form of CD40L that is capable 

of inducing only a weak pro-inflammatory reaction by ECs, hence regulating the overall 

pro-inflammatory response (Henn et al. 2001). Platelet CD40 has been shown to play a 

crucial role in the progression of pathophysiologic macrovascular remodeling by 

activation of ECs and leukocytes, thus resulting in leukocyte infiltration at 

atherosclerosis predilection sites (Gerdes et al. 2016). Patients with elevated levels of 

CD40L are at a higher risk of developing cardiovascular diseases according to clinical 

data (Garlichs et al. 2001). However, it is still not clear whether CD40L is a potent 

stimulus for vWF release in the microcirculation as well. Investigating CD40-CD40L 

interaction, the respective crosstalk between endothelial and immune cells, and the 

signaling pathways leading to their adherence, transmigration and differentiation, will 

enable us to better address the physiologic and pathophysiologic conditions of 

microvascular remodeling. 

 

Figure 6: Workflow of ULVWF multimer-platelet mediated leukocyte recruitment to 
the vessel wall. sCD40L or platelet CD40L binding to CD40 receptor on the EC surface 
induces the Ca2+-dependent release of vWF which forms ULVWF multimers on the EC 
surface enabling binding and activation of platelets that in turn recruit circulating 
monocytes and enforce their adhesion via P-selectin-PSGL-1 interaction. Modified from 
(Moller et al. 2015). 
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2.6 Purpose and investigated problem 

Cardiovascular disease is the leading cause of death worldwide, accounting for 31 % of 

all global deaths according to the 2016 WHO report. ULVWF multimer-platelet mediated 

leukocyte extravasation is one of the hallmarks of vascular inflammation which serves 

as a doorstep to cardiovascular events. While we found previously that the CD40 

pathway is important for vWF release in vitro, it is not yet known whether CD40-CD40L 

interactions play a role in thrombus formation and/or leukocyte diapedesis in 

microvessels in vivo. In addition, it is also not known whether the shear stress 

dependency observed in vitro preferentially leads to ULVWF multimer-platelet string 

formation in arterioles in vivo and whether these strings form at all in the presence of 

ADAMTS13. 

The aims of the present study were to analyze in the microcirculation in vivo: 

1. The role and effect of CD40L as a stimulus for vWF release and subsequent 

ULVWF multimer-platelet string formation. 

2. The potential modulatory role of shear stress for vWF exposure and platelet 

adhesion. 

3. The control of ULVWF multimer-platelet string formation by ADAMTS13. 

4. The role of such strings in leukocyte extravasation. 

Investigation of these new questions in the intact microcirculation is expected to 

advance our understanding about cellular dynamics in the initial steps of microvascular 

vascular remodeling and will potentially enable development of diagnostic and early 

therapy approaches for prevention and treatment of cardiovascular diseases.  
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3. Materials 

 

3.1 Chemicals and reagents 

Table 1: List of chemicals and reagents used 

Chemical/reagent Catalog No. Supplier 

5-Carboxy fluorescein diacetate 

(CFDA) 
C1354 ThermoFisher Scientific 

MegaCD40 ligand 
ALX-522-110-

C010 
Enzo 

Prostaglandin I2.Na (Prostacyclin) sc-201231 Santa Cruz Biotechnology 

Isoflurane (Forene) Ch-B:6044172 abbvie 

Na-citrate MEG 256001 Megro GmbH 

Heparin-Natrium-25000-ratiopharm 

injektionslösung (5x5ml) 
PZN3029843 Ratiopharm GmbH 

Saline solution 0.9 % NaCl (10 ml) B306175/01 Fresenius Kabi 

 

 

3.2 Kits 

Table 2: List of kits used 

Kit Name Catalog No. Supplier 

Alexa Fluor® 488 Antibody Labeling 

Kit 

A20181 ThermoFisher Scientific 
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SiteClick™ Qdot® 525 Antibody 

Labeling Kit 

S10449 ThermoFisher Scientific 

SiteClick™ Qdot® 565 Antibody 

Labeling Kit 

S10450 ThermoFisher Scientific 

 

 

3.3 Antibodies 

Table 3: Antibodies used in this study 

Antibody Catalog No. Supplier 

Alexa Fluor® 488 anti-mouse CD40 

Antibody 

102910 Biolegend 

Alexa Fluor® 647 anti-mouse CD31 

Antibody 

102516 Biolegend 

PE anti-mouse CD154 Antibody 106505 Biolegend 

PE anti-mouse CD41 Antibody 133906 Biolegend 

Alexa Fluor® 647 rat anti-mouse 

CD31Antibody 

563608 BD Biosciences 

PE anti-Mouse CD45 Antibody 12-0451-83 eBioscience 

Von Willebrand Factor, Polyclonal, 

Unconjugated, Ig fraction. 

A008202-2 Dako 

CD40 Monoclonal Antibody MA1-80627 ThermoFisher Scientific 

Alexa Fluor 488 chicken anti-rat IgG A-21470 ThermoFisher Scientific 

http://www.bdbiosciences.com/eu/applications/research/stem-cell-research/cancer-research/mouse/alexa-fluor-647-rat-anti-mouse-cd31-390/p/563608
http://www.bdbiosciences.com/eu/applications/research/stem-cell-research/cancer-research/mouse/alexa-fluor-647-rat-anti-mouse-cd31-390/p/563608
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Secondary Antibody 

Alexa Fluor 546 goat anti-rabbit IgG 

Secondary Antibody  

A11010 ThermoFisher Scientific 

FITC rat monoclonal anti-mouse 

CD40 Antibody 

Ab22470 abcam 

 

3.4 Consumables 

Table 4: List of materials used in this study 

Material Catalog No. Supplier 

µ-Slide I 0.4 Luer ibiTreat: Flow 

chambers 

80176 ibidi 

Cover slips 18×18 mm, thickness 1 235503104 Wagner & munz 

Confocal-UV-matrix CONFO30 Micro Tech Lab 

Glass slides (Menzel-Gläser 

Superfrost Plus) 

4951PLUS4 ThermoScientific 

Quick dry top coat - Essence 

Silicone adhesive (hochviskos) - GE Bayer Silicones 

Adhesive surgical tape 3M ID DH888843181 DuraporeTM 

Fine Bore Polythene Tubing 

0.288 mm ID, 0.61 mm OD 

REF 800/100/100 

LOT 243137 

Smiths medical 

Eye ointment Bepanthen (5 g) 81552983 BAYER 

http://h66k1.catalogus.de/66/1/AD47/MjM1NTAzMTA0/47%20235503104%20WagnerMunz.html
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Surgical threads  

Metric 0.5 

Metric 1 

 

10A051000 

10C103000 

Pearsalls Limited 

Surgical gloves (Latex free, 

powder free) 

- SEMPERCARE® 
nitrileskin2 

 

3.5 Buffers 

Table 5: List of buffers used 

Buffers Purpose Composition Amount 

Thrombocyte buffer 

(Tz-buffer) (500 ml) 

Platelet isolation 138 mM NaCl 

2.7 mM KCl 

12 mM NaHCO3 

0.4 mM NaH2PO4 

1 mM MgCl2×6H2O 

5 mM D-Glucose 

5 mM Hepes 

4.03 g 

0.1 g 

0.5 g 

0.03 g 

0.1 g 

0.45 g 

0.6 g 

The Tz-buffer was adjusted to a pH of 7.35 and was filtered under sterile conditions. 

Stored at 4 oC. Upon every use it was supplemented with 500 ng/ml of prostacyclin 

(PGI2) (1 mg/ml stock, 1:2000).   

Zinc fixative buffer 

(1000 ml) 

Tissue fixation 0.1 M Tris (pH 7.4) 

Tris 

Distilled water 

 

12.1 g 

1000 ml 
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Zinc-fixative 

0.1M Tris buffer 

Calcium acetate 

Zinc acetate 

Zinc chloride 

 

1000 ml 

0.5 g 

5 g 

5 g 

Do not adjust the pH value further, it will cause zinc failure. The buffer was stored at 

room temperature.  

 

3.6 Anesthetics, analgesics and antidotes 

Table 6: Various anesthetics, analgesics and antidotes used in this study 

Category Dosage Volume 

Anesthesia 

Ketamine 

Xylazine 

NaCl  

 

100 mg/kg 

10 mg/kg 

0.9 % 

(For 1 ml solution) 

100 µl 

100 µl 

800 µl 

The amount of ketamine-xylazine anesthesia administered was 10 µl/g for male 

mouse which was maintained, after observing mouse reflexes, by the additional IP 

injection of 100 µl. 

Anesthesia 

Medetomidin 

Midazolam 

Fentanyl 

NaCl 

 

0.5 mg/kg 

5 mg/kg 

0.05 mg/kg 

0.9 % 

(For 4 ml solution) 

160 µl 

320 µl 

320 µl 

3200 µl 
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The amount of narcosis administered was 15 µl/g of mouse weight which was 

maintained, after observing mouse reflexes, by the additional IP injection of 100 µl. 

Category Dosage 

Antidote 

Flumazenil 

Atipamezol 

 

0.5 mg/kg 

2.5 mg/kg 

Analgesic 

Buprenorphin 

 

0.065 mg/kg 

 

3.7 Equipments 

Table 7: List of equipments used 

Equipment Model Supplier 

Two-photon excitation 

fluorescence microscope 

TriM Scope LaVision BioTec GmbH 

Confocal microscope TCS-SP5 Leica 

Centrifuge (without brake) Centrifuge 5810R Eppendorf 

Water bath Precision CIR 35 ThermoScientific 

Pipettes Eppendorf research plus eppendorf 

Tips ep T.I.P.S ThermoFischer Scientific 

Surgical tools Complete set F.S.T (Fine Science Tools) 

GEMINI Cautery system GEM5917 BRAINTREE 
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SCIENTIFIC,INC. 

Syringes (1ml) LOT 1602003P 

LOT 16H29C8, REF 

9151141 

BD plastipak 

B|BRAUN 

Needles 0.4 mm × 19 mm 

0.3 mm × 12 mm  

BD Microlance 

B|BRAUN 

pH meter inoLab® pH 7110 SET 2 WTW 

Cremaster stage Prepared in laboratory 

workshop 

Walter Brendel Center, LMU, 

Munich 

 

3.8 Software 

Table 8: List of software used in this study 

Software Version Company 

ImageJ/FIJI ImageJ-win64 (Schindelin 

et al. 2012) 

FIJI 

ImSpector v0.1 (Schönle A. 2006)  Abberior Instruments GmbH 

IMARIS IMARIS x64 (7.6.5) Bitplane 

  

http://www.abberior-instruments.com/
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4. Methods 

For observing CD40-CD40L dependent ULVWF multimer-platelet interaction and 

leukocyte extravasation, a two-photon excitation fluorescence microscopy (TriMScope 

by LaVision BioTec GmbH) based live cell imaging system was established by using 

murine cremaster microcirculation model and non-invasive murine ear model. The mice 

utilized for this study were either C57/BL6 wild type animals or ADAMTS13 knockout 

mice. 

4.1 Preparation of ex vivo labeled platelets 

Freshly isolated platelets from the donor mice were utilized for individual experiments. 

The platelets were isolated and stained by following a simple 2-step centrifugation 

process. The advantage of using ex vivo labeled platelets was that they gave better 

signal detection when used in conjunction with other labeled biomolecules in 

microvasculature. 

4.1.1 Blood withdrawal from donor mouse 

For taking the mice blood, a syringe was pre-filled with the anticoagulant Na-citrate to 

obtain a final citrate/blood ratio of 1:10. All the tools for surgical procedure were sterile. 

The donor C57/BL6 mouse was euthanized by an overdose of isoflurane inhalation. The 

mouse suffered from respiratory arrest momentarily, after which the mouse was fixed on 

the sterile stage and the abdomen was wiped off with 70 % ethanol. The peritoneum 

was cut wide open and pinned down. The intestines were carefully grabbed with blunt 

forceps and placed on one side. The organs were grabbed by the attached connective 

tissue and fat to avoid any bleeding. To have a clear view of vena cava, the mesentery 

attached to spleen was pinned towards right. The connective tissue around vena cava 

was carefully removed with the help of two sharp forceps when necessary, that also 

caused vena cava to dilate. The vessel was then punctured with a needle pointing up. 

The syringe was filled slowly while carefully watching for filling of the vessel. If the 

syringe was pulled too strong a vacuum was created which impeded blood sampling 

and activated platelets, which must be avoided. In order to get maximum blood out of 
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vena cava, the chest was pressed carefully without moving the needle inside vena cava. 

Once the vacuum was created inside vessel, blood sampling was stopped and the 

syringe was slightly tilted to mix anticoagulant properly. The blood was then transferred 

to an Eppendorf tube for platelet isolation. 

4.1.2 Isolation and staining of platelets 

Platelets from C57/BL6 donor animal were washed and labeled ex vivo with 

carboxyfluorescein diacetate (CFDA). For this purpose, the thrombocyte buffer (Tz-

buffer) was adjusted to a pH of 7.35 and supplemented with 500 ng/ml of prostacyclin 

(PGI2)   before every use and placed in water bath at 37 oC. The equal volume of buffer 

was added to the collected blood and centrifuged for 5 minutes at 150 g without brake. 

The centrifugation gave us a clear supernatant i.e. platelet rich plasma (PRP) which 

was separated carefully in another Eppendorf tube. The transfer of PRP was done by 

using the pipette tip cut from top to reduce shear induced activation of platelets. To 

prepare the stain, Tz-buffer was supplemented with CFDA stain in a concentration of 

1:2000 (50mg/ml stock in DMSO) and vortexed well. Later on, Tz-buffer containing PGI2 

and CFDA stain was added to an equal amount of diluted PRP with desired number of 

thrombocytes to be stained. The solution was incubated for 15 minutes at 37 oC in dark 

followed by centrifugation for 10 minutes at 450 g with zero brake. This left us with the 

pellet containing stained platelets while the clear supernatant was discarded. The pellet 

was resuspended in 200 µl of Tz-buffer for in vivo application. The stained platelets 

were always freshly prepared for individual experiment(s). 

4.2 Labeling of endogenous platelets 

In some experiments, alternatively or additionally, the animal’s own platelets 

(endogenous platelets) were labeled by injecting PE-conjugated anti-mouse CD41 

antibody intravenously (i.v., tail vein).  5-10 µl of labeled antibody always proved to be 

enough for labeling maximum endogenous platelets within a minute after injection. The 

endogenous platelets were labeled to confirm the efficacy and sensitivity of using ex 

vivo labeled platelets. The labeled endogenous platelets proved to be difficult in 

detection of adhered platelets in comparison to ex vivo labeled platelets because of 
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their high amount in circulation which made the vessels looked saturated. While in case 

of ex vivo labeled platelets, the injected platelet volume in vivo was easily controlled by 

adding desired number of stained platelets and they were brighter to detect. 

4.3 Preparation of recipient mice cremaster 

Before the start of surgery, the recipient mice were anesthetized using a combination of 

ketamine/xylazine in initial experiments which was replaced by a combination of 

medetomidin, midazolam and fentanyl in later experiments. It normally took 15 minutes 

for the mice to go to deep sleep. Meanwhile, all the tools for surgical procedure were 

sterilized. Before starting surgery, the animal was checked for its reflexes by pinching at 

the toe. The mice were then transferred onto the cremaster preparatory stage and an 

eye-ointment was applied to prevent their eyes from damage. The stage was connected 

with the heating platform that maintained a constant normal body temperature. The 

chamber was then sealed with silicone and filled with warm saline solution to keep the 

cremaster moist during preparation. The mice were stabilized by fixing their legs with 

adhesive surgical tape around the cremaster stage. A tiny cut was made on the skin of 

scrotum and one out of two cremasters was pulled out using blunt forceps. It was 

pinned to one side of chamber and the excessive connective tissue around the 

cremaster was carefully removed using sharp forceps. That helped to reduce the 

tension exerted on cremaster, which if not removed normally pulled back the cremaster 

in and also caused muscle movement during intravital microscopy recording. 

 

Figure 7: Murine cremaster preparation. Prepared cremaster pinned down in a form 
of sheet with finely visible microvasculature to be observed under two-photon laser 
scanning microscope. 
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The cremaster was carefully cut using small surgical scissors, avoiding to damage the 

big vessels. The cut opened muscle was then pinned down in the form of sheet 

circumventing any excess stretch (Figure 7). 

4.3.1 Labeling of cremaster microvasculature 

The endothelium was labeled by topical application of 50 µl of anti-mouse Alexa Flour 

647-labeled-CD31 antibody to cremaster muscle for 1 hour. The chamber was covered 

during the incubation time to prevent the conjugated antibody from susceptible photo-

bleaching. After 1 hour, the antibody was washed away and the chamber was filled 

again with fresh warm saline solution. The microvasculature was nicely labeled for ECs 

when observed under two-photon microscopy (Figure 8). 

 

Figure 8: Endothelial cell labeling in vivo. Representative image for the EC (violet) 
labeling of murine cremaster microcirculation showing an arteriole and a venule. The 
differentiation between blood vessels was made possible under bright field microscopy 
by observing different blood flow directions. 
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4.4 Preparation of recipient mice ear pinna 

In addition to murine cremaster microcirculation experiments, murine ear pinna 

experiments were also performed to confirm the phenomenon of platelet string 

formation in ADAMTS13ko mice even under non-invasive conditions (Figure 9). For this 

purpose the mice ear pinna was disinfected using 70 % ethanol and the endothelium of 

microvasculature was labeled by injecting 20 µl of anti-mouse Alexa Fluor 647-

conjugated-CD31 antibody into the pinna. It labeled the microvessels within 30 minutes 

of its injection. This model was used only to confirm the formation of platelet strings in 

ADAMTS13ko mice microvasculature and not used for further studies since we were not 

able to differentiate between arterioles and venules under bright field microscopy. And 

under two-photon excitation fluorescence microscope we were able to observe only 

endothelial-platelet interactions. 

 

Figure 9: Murine ear pinna model. The finely visible microvasculature of murine ear 
pinna for intravital microscopy (Institute of Physiology and Pathophysiology 2014). 

 

4.5 Preparation of femoral artery catheter 

For the administration of ex vivo labeled platelets and labeling antibodies, the recipient 

mice were implanted with a femoral artery catheter. The preparation involved the 

formation of fine head catheter connected to a syringe. In order to prepare a thin 
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femoral artery catheter, a flanked tubing was prepared by burning the catheter tubing 

and pulling it apart from both sides. It gave us a sharp pointed catheter for easy 

insertion into femoral artery. The tubing was then connected to a syringe filled with 

heparin solution and the catheter was filled with anticoagulant to prevent blood 

coagulation. After that, the artery in the hind limb was spotted through the translucent 

skin and the area was wiped off with 70 % ethanol. A small skin incision was made and 

with the help of sharp forceps the tissue fats were removed from the neurovascular 

bundle. The artery was carefully separated from the neighboring vein and nerve bundle. 

During the surgery, the artery was kept moist at all times with 0.9 % saline solution. At 

the proximal end of the artery a loop of surgical thread was loosely placed to be closed 

later, while at the distal end the artery was blocked with the help of a tightened suture 

knot. The aneurysm clip was placed at the proximal end above the loosened thread to 

stop the arterial blood flow temporarily. With the help of a needle femoral artery was 

punctured in between proximal and distal ends and the catheter was then carefully 

implanted into the artery. The loosened loop of surgical thread was then tightened firmly 

to affix the catheter within the artery and the catheter was further secured with the artery 

by tying at the distal end. The surgical clip was removed and the successful catheter 

implantation was assured by the spontaneous inflow of blood into catheter. The skin 

was stitched with the help of sutures and finally the catheter together with syringe was 

fixed on the stage with the help of adhesive tape.  

4.6 Two-photon excitation fluorescence microscope 

In order to visualize inter-cellular crosstalk between platelets, ECs and leukocytes in 

microvasculature, multifocal two-photon excitation fluorescence microscope was 

selected. Similar as confocal microscopy it allows to study defined optical sections 

within a tissue, however it allows to study structures in a greater depth below the organ 

surface than confocal microscopy. Images can be obtained when two photons of 

infrared light arrive at an absorbing electron within 1 attosecond (1×10-18 s). Since this is 

very unlikely to happen under normal conditions, so a focused pulsed laser (TiSa-

Sapphire) is used to generate a high photon density. At any given time, the incident 

photons generate light emission from one point which is scanned over the specimen. 
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The emitted photons from each point is recorded by the detectors (PMTs or HPD) and 

the images are re-constructed by computer. Although, this technique is complex and 

expensive but it also offers many advantages such as: 

1. As it uses near infrared range as incident light and the scattering decreases with 

longer wavelengths so there is less absorption and deep tissue penetration, 

allowing us to image a live tissue up to a depth of 1 mm. 

2. The excitation and bleaching occurs at only one focal point, not above or below it 

like with confocal microscopy, hence preventing the sample from phototoxicity 

and out of focus bleaching (Figure 10).  

3. Unlike confocal microscopy, two-photon microscope does not have a pinhole, 

hence preventing any loss of emitted photons and enabling non-ballistic photons 

to contribute to the image. 

  

Figure 10: Single and double photon excitation fluorescence at one focal point. 
Notice that the single photon excitation fluorescence bleaches the sample above and 
below the focal point while double (white arrow) photon excitation fluorescence prevents 
the unwanted bleaching of sample (MRC Laboratory of Molecular Biology). 

 

In the two-photon excitation fluorescence microscope separation of neighboring 

fluorochromes are more difficult due to crosstalk of emission spectra, so at a time, a 

maximum of three detecting channels could be utilized for simultaneous recording. 
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Compromises were made for the selection of following labeled molecules for their 

detection depending upon the aim of experiment. 

1. Platelets 

2. Leukocytes 

3. Endothelial cells 

4. vWF 

5. CD40 

4.7 Experimental protocol 

4.7.1 Experimental groups 

With the aim of observing ULVWF multimer-platelet string formation and leukocyte 

extravasation in the murine cremaster microcirculation, two different experimental 

groups were established, namely: 

1. C57/BL6 mice  

 Control  

 CD40L stimulation 

2. ADAMTS13 knockout mice 

 Control 

 CD40L stimulation 

The recipient mice were first checked for any further dose of anesthesia by pinching at 

the toe. A volume of 200 μl corresponding to about 8 × 106 labeled ex vivo platelets 

were injected into the circulation through either tail vein or femoral artery catheter and 

the mice were then placed on the microscopic stage inside a two-photon microscopy 

chamber for recordings (Figure 11).  
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Figure 11: Experimental setup of multiphoton-based live cell imaging method. An 
anaesthetized recipient mouse with prepared cremaster and femoral artery catheter 
placed under two-photon excitation fluorescence microscope for observing ULVWF 
multimer-platelet mediated leukocyte transmigration in microcirculation.  

 

4.7.2 CCD-camera recording 

The microscope was capable of recording bright field, fluorescence and two-photon 

microscopy as per requirement. The cremaster microcirculation was first visualized 

under camera recording with a CCD-camera that allowed to gain an overview over the 

whole cremaster preparation and to select 3-5 areas of interest. For all microscopic 

recordings either 20x or 60x water immersion lenses were used. The cremaster was 

kept moist with warm saline solution throughout the recording phase. This on one hand 

prevented the tissue from drying and on the other hand facilitated the water immersion 

lenses in recording. The initial camera recording helped to achieve three aims:  

a. To distinguish between arterioles and venules on the basis of blood flow 

direction. 

b. To calculate platelet velocities from their traces and to perform shear rate 

calculations. 

c. To locate platelet hotspots as we called areas with visible preferential platelet 

adhesion. 
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For the image acquisition the ImSpector® software was used. The settings used for 

CCD top recording were as follows (Table 9) (Figure 12): 

Table 9: Functions and settings of CCD top recording 

Functions 
Settings 

Instrument mode CCD top 

Devices Time-time 

Scanfield 300 µm × 300 µm 

Frequency 1200 Hz 

Scan Quality Medium 

Exposure Time 48 ms 

Binning 2 × 2 

Wait time 30 s 

Fast mode On 

No. of steps 120 

Frame time should be around 50 ms. 
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Figure 12: CCD-camera settings for bright field microscopy. Screenshot of 
ImSpector software displaying settings for CCD top recording of cremaster 
microcirculation for platelet velocity and shear rate measurements. 

 

4.7.3 Single-beam TiSa recording 

Soon after distinguishing between arterioles and venules, recording platelet velocities 

and identifying any hotspot(s), the cremaster microvasculature was observed under 

two-photon excitation fluorescence microscope for the selected vessels before and after 

stimulated conditions. The settings used for regular recording under two-photon 

microscope were as follows (Table 10) (Figure 13): 
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Table 10: Functions and their settings for two-photon excitation fluorescence 

microscope 

Functions Settings 

Instrument mode SingleBeam Tisa 

Devices Time-time or xyz-Table z 

Size 
500 µm × 500 µm (for 

overview) 

Frequency 800 Hz 

Line average 1 

Wavelength 800 nm 

System On 

Shutter Open 

TiSa power 10-30 % 

TiSa shutter Open S&P 

OPO shutter Closed 

Xyz-Table Z Step size 0.5 µm – 2 µm 

PMTs 

USP-525 (for CFDA/Qdot 525) 

580-560 (for PE/Qdot 565) 

665-660 (for AF647) 

Wait time 30 s 

Fast mode On 

No. of steps 120 
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Figure 13: Single Beam TiSa laser settings for two-photon excitation fluorescence 
microscopy. Screenshot of ImSpector software displaying the settings of wavelength, 
laser power and the desired channels for observing endothelial-platelet-leukocyte 
interaction under two-photon excitation fluorescence microscope. Here the PMTs used 
were USP-525, 580-560 and 665-660 for CFDA stained platelets, PE-labeled 
leukocytes and AF-647 labeled ECs respectively. 

 

Before the application of stimulus at least 3 arterioles and 3 venules, previously 

identified under CCD top recordings, were observed for any signs of adhered platelets. 

If the platelets were found to adhere on vessel wall and they formed pearl like structures 

(consisting of at least three platelets at short distance in a row), we termed them as 
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"platelet strings". The two experimental groups were compared in terms of amount and 

length of platelet strings under control and stimulated conditions. ULVWF multimers 

were elicited by superfusion of commercially available (ENZO) recombinant soluble 

CD40L called MegaCD40L for 20 minutes. It is an effective stimulator of CD40 because 

of its two linked trimeric CD40L molecules through their collagen domain of 

Adiponectin/ACRP30/AdipoQ (Figure 14). After 20 minutes of CD40L stimulation, the 

selected vessels were again observed for any increase in platelet strings formation. In 

addition to this, in a subset of experiments all circulating leukocytes were labeled by 

injecting 50 µl of PE-conjugated anti-mouse CD45 antibody i.v. or via femoral artery 

catheter. The labeled leukocytes were then observed for their interaction with the 

platelet strings and their extravasation in the cremaster muscle arterioles and venules. 

 

Figure 14: Graphical representation of MegaCD40L. The cartoon showing two 
trimeric CD40L molecules attached to the chimeric domain for an enhanced stimulation 
(ENZO). 

 

VWF and CD40 visualization was made possible by labeling vWF and CD40 with 

primary antibodies coupled to Qdot-565 and Qdot-525, respectively, and injected i.v. 

The protocol followed for Qdot labeling was provided together with SiteClick™ Qdot® 

525,565 antibody labeling kits. 5-10 µl of injected labeled antibody was sufficient for 

observing the distribution of CD40 and vWF in the microvasculature. 
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4.8 Images/video analysis by IMARIS software 

The recorded images and videos from two-photon excitation fluorescence microscopy 

were analyzed off line using IMARIS x64 software (Figure 15A). Imaris is Bitplane’s 

scientific software that facilitated us to analyze, visualize and interpret two photon 

microscopy datasets in time-time as well as 3D simulations. 

 

Figure 15: IMARIS software used for re-establishment of recorded images/videos. 
Screenshot of IMARIS x64 version used to simulate recorded data from two-photon 
excitation fluorescence microscope (A), and 3D construction of a venule made by 
IMARIS showing circulating platelets (green) in the vessel, violet = endothelium (B). 

 

4.8.1 Time-time videos and 3D z-stacks 

IMARIS was very helpful in analyzing the interaction between different stained 

molecules by turning ON or OFF utilized channels and adjusting the brightness/contrast 

of recorded fluorescence at a time. In addition, by using the “Surpass view” it was 

possible to visualize 3D constitution of vessels by adding the original data sets (sheets) 

to a stack that helped to discover the otherwise hidden vascular and immune cells 

interactions in all dimensions (Fig. 4.9B). The “Snapshot” feature was convenient to 
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capture any image view during the recording, which was saved in a standard format for 

offline evaluation. 

4.8.2 Quantification of perivascular leukocytes 

IMARIS was also utilized for quantifying labeled perivascular leukocytes next to venules 

and arterioles for comparison. During the experiment, since only intravascular 

leukocytes were labeled by injecting PE-conjugated CD45 antibody into the circulation, 

labeled perivascular leukocytes could be identified as extravasated since the time of 

intravascular labeling. For quantification, 200 µm2 areas were selected along the 

vessels and the number of extravasated leukocytes was manually counted for 

comparison (Figure 16). The 3D feature of IMARIS helped to include extravasated 

leukocytes in all dimensions for quantification. 

 

Figure 16: Representative images of perivascular leukocyte quantification. The 
perivascular space of 200 µm2 (representative white square) around arteriole (A) and 
venule (B) selected for manual quantification of extravasated leukocytes. Blue arrows 
indicate the direction of blood flow while white arrow heads are pointing towards single 
extravasated leukocytes (red). Violet = endothelium. 
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4.9 Analysis by FIJI/ImageJ 

Further analysis for velocity, shear rate measurements and confirmation of platelet 

strings in the vessels was performed using FIJI/ImageJ software. 

4.9.1 Platelet velocity and shear rate calculations 

From the CCD top recordings platelet velocity (𝑣) was calculated first by measuring the 

distance traveled by platelet in one frame. It was done by taking the average of two 

recorded frames and tracking the trails of circulating platelets from the start of one 

frame till the start of second frame and dividing the distance traveled by time for one 

frame (Figure 17A) i.e. 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑣) =
Distance traveled

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑓𝑟𝑎𝑚𝑒
 

The vascular diameter (𝑑) was simply measured by measuring the distance between 

vessel walls perpendicularly (Figure 17B). Platelet velocity and vascular inner diameter 

measured by video microscopy were then used for calculating respective shear rates 

(𝛾̇) in the vessels in sec-1 as follows: 

𝛾̇ =
8𝑣

𝑑
 

 

Figure 17: Measurement of platelet velocity and shear rate in the 
microvasculature. CCD top recordings of ex vivo labeled platelets (yellow) in 

cremaster microcirculation for measuring platelet velocity (𝒗) (A) and vascular inner 

diameter (𝒅) (B) which were used for calculating shear rates (𝜸̇) in the vessels. 
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4.9.2 Confirmation of platelet strings by average and maximum intensity 

features of FIJI/ImageJ 

The adhesion of platelets to the vascular wall in the form of platelet strings as observed 

under two-photon microscopy recordings were confirmed by FIJI/ImageJ. For this 

purpose, the average intensity of images from time-time recordings of two-photon 

microscopy were taken that showed all the stationary platelets adhered to the vascular 

wall during the time span of recording, confirming the presence of platelet strings in the 

microvasculature. In contrast, the maximum intensity images of time-time recordings 

showed all the platelets that passed through the selected region of vessel during given 

period of time (Figure 18). In FIJI/ImageJ this feature was done by following: 

Image > Stacks > Z-project > Average/Maximum Intensity 

 

Figure 18: Confirmation of platelet strings by average and maximum intensity 
feature of ImageJ. Average intensity output from ImageJ showed the stationary 
adherent platelets at vascular wall during the time course of recorded observation (A), 
while the maximum intensity output showed the platelets altogether passed through the 
vessel during the same time interval (B), green = platelets, violet = endothelium. 

 



42 
 

4.10 Cremaster fixation 

In order to observe the expression and distribution of CD40 in microvasculature, freshly 

isolated cremasters were fixed and labeled for CD40 and ECs. For this purpose zinc 

fixative (Zn-fixative) buffer was used since zinc based fixatives preserve protein 

structures well and they are better for observing protein expression (Wester et al. 2003). 

Freshly isolated cremasters were pinned down in a lab-designed silicone rubber based 

petri-plates. Here it was important to stretch the cremasters in a form of sheet and then 

pin them down for proper EC and CD40 labeling. The cremasters were washed well 

with PBS for any blood removal and fixed for 15 minutes in Zn-fixative buffer. After 

fixation, the cremasters were washed well 3X with PBS. The cremasters were then 

blocked and permeabilized together with 2 % BSA and 0.1 % Triton X-100 respectively 

for 1 hour at room temperature. The tissues were washed again thoroughly 3X with 

PBS. CD40 receptor was then labeled by using AF-488 labeled anti-mouse CD40 

antibody in a concentration of 1:250 for 1 hour in dark at room temperature. After 1 hour 

the unbound antibody was washed 3X with PBS for 10 minutes each. The cremasters 

were finally labeled for ECs with AF-647 conjugated anti-mouse CD31 antibody in a 

concentration of 1:250 for 1 hour in dark at room temperature. Then the final washing 

was done with PBS 3X for 10 minutes each to remove the unbound antibody. The 

cremasters were placed on glass slides and left for 5 minutes for drying. They were 

mounted in 1-2 drops of confocal-UV-matrix and covered with 18×18 mm coverslips. 

The coverslips were placed on top very carefully avoiding any trapping of air bubbles 

which can oxidize the fluorophores. The coverslips were then sealed with a quick dry 

top coat of transparent nail polish and stored in dark at 4 oC for further observations 

under two-photon excitation fluorescence microscope. 

4.11 Statistical analysis 

Data analysis was performed using Sigma Plot 13.0. Statistical tests were chosen 

where appropriate and comprised student’s t-test for unpaired data, Mann-Whitney 

Rank Sum Test, One Way Analysis of Variance followed by post-hoc tests (Holm-Sidak 

method) or Kruskal-Wallis One Way Analysis of Variance on Ranks followed by Dunn's 
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Method post-hoc test, and the differences were considered statistically significant with 

an error probability of <0.05. The individual statistical method used is indicated in all 

figure legends. All results shown here are presented as means ± SEM even when non 

parametric testing was applied. A total of 3-10 blood vessels were observed in each 

experimental group with the total number of animals varying from 3 to 13.  
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5. Results 

5.1 Ex vivo labeled platelets form pearl like strings preferentially in 

venules in vivo 

In order to establish a working model for live cell imaging with two-photon excitation 

fluorescence microscopy to investigate ULVWF multimer-platelet string formation in 

vivo, the first step was labeling of the endothelium and detection of platelets in the 

microcirculation in vivo. The endothelium of the cremaster microcirculation was labeled 

successfully by fluorescently labeled CD31 antibody throughout all tissue layers studied. 

When the ex vivo labeled platelets from the donor mice were injected intravenously into 

anesthetized C57/BL6 (n=4) recipient mice, they could be observed flowing through all 

vessels within less than one minute after injection. With time, some of the platelets were 

found to become stationary at the vessel wall where they formed pearl necklace like 

“platelet strings” (Figure 19A, B). In addition, single sticky platelets were observed but 

the vast majority was part of strings. The strings were initially spotted with conventional 

CCD recording that helped to more easily distinguish whether they were located in 

arterioles or in venules, evaluating the different flow characteristics of these vessels 

which was more difficult with two-photon microscopy recording. 

Platelet strings under control conditions were found preferentially in venules while they 

were only occasionally present in arterioles (Figure 19C). In more than 70 % of the 

cases we observed the strings at the same place over an observation period of 60 mins. 

In the remaining cases, the platelet strings vanished again within this period of time. It 

was not possible to determine the exact time since always several vessels had to be 

observed in a strict order. So, to study the development of strings under comparable 

conditions during control and subsequent treatment conditions, ex vivo labeled platelets 

were injected twice (each dose containing 8 × 106 platelets), one before and the other 

after treatment, e.g. application of CD40L, with a mean time difference of 48 ± 9 min. 

While observing these strings, there were always fine spaces between adjacent 

adhered platelets, suggesting the possible contribution of unlabeled endogenous 
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platelets in making up these strings. The average length of platelet strings observed in 

all experimental groups was 14 ± 2 µm (n=29). 

 

Figure 19: ULVWF multimer-platelet string formation and its quantification in vivo. 
Representative images of pearl like platelet string formation (white arrow heads) under 
CCD top recording (A) and two-photon laser scanning microscopy (B) in the murine 
cremaster microcirculation. Blue arrows indicate the direction of blood flow. The 
phenomenon of platelet string formation preferentially occurred in venules (C), n=4 
mice, **p≤0.01, Mann-Whitney Rank Sum Test. 

The threshold length was set to 6 µm (consisting of at least three platelets at short 

distance in a row) to be included in the definition of a platelet string. These strings were 

observed with a predisposition of 2:1 in bifurcations to linear segments of the vessels. 
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5.1.1 ADAMTS13ko mice show platelet adhesion in the microcirculation 

even under non-invasive conditions in ear pinna 

Since the cremaster preparation involved an invasive surgery that could lead to a pro-

inflammatory condition, promoting platelet adhesion to the vessel wall. In order to 

validate the working model of ADAMTS13ko mice under non-invasive control conditions, 

the behavior of circulating ex vivo labeled platelets in the microcirculation of the ear 

pinna was observed. The mouse ear pinna is a natural thin tissue with fine visible blood 

vessels that were easily detectable with two-photon excitation fluorescence microscopy. 

The microvascular ECs in the ADAMTS13ko mice were labeled by firstly disinfecting the 

ear with 70 % ethanol and then injecting AF647-labeled anti-CD31 antibody into the ear 

pinna. The ear preparation did not involve any invasive surgery. After 20 min of 

endothelial labeling, ex vivo labeled platelets were injected i.v. The dorsal ear was then 

observed with two-photon excitation fluorescence microscopy that revealed occasional 

adhesion of labeled platelets to the vessel wall (Figure 20), thus providing evidence for 

platelet adhesion without trauma in the ear pinna of the knockout mice at baseline. 

 

Figure 20: Representative image of ULVWF multimer-platelet strings formation in 
ADAMTS13ko mice at baseline. Average intensified image of ADAMTS13ko mice ear 
microcirculation under non-invasive control conditions showed prolonged adhesion of 
platelets (green) to the ECs (violet). Blue arrows indicate the direction of blood flow. 
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Despite of the usefulness of the ear model, it was not easy to distinguish between 

arterioles and venules, as blood flow in the microvasculature was not visible under 

bright field microscopy. So, all the forthcoming experiments were performed in the 

murine cremaster microcirculation. 

5.1.2 By use of ex vivo labeled platelets the total number of platelet strings 

is underestimated but facilitates signal detection 

In some experiments, the endogenous platelets were labeled (using a different 

fluorescence dye) in addition to the injected ex vivo labeled platelets to investigate 

efficiency and sensitivity of detection of ULVWF multimer-platelet strings comprised of 

mixed endogenous and exogenous platelets. In fact, both kinds of platelets participated 

in string formation (Figure 21A) which contained exogenous (yellow) and endogenous 

(red) platelets. However, exogenous platelets did either not participate in all strings, or 

appeared as “single” platelets and as such were not recognisable due to a too weak 

fluorescence signal. Quantification revealed that strings containing exogenously labeled 

platelets were significantly fewer in number than all strings (Figure 21C). In spite of its 

limitations, the use of only ex vivo labeled platelets proved to be helpful as it provided a 

brighter fluorescence signal (Figure 21B) which was particularly helped when other 

labeled immune cells like leukocytes were monitored in parallel. Therefore all further 

observations are based on the quantification of strings containing exogenous platelets- 

only.  



48 
 

 

Figure 21: Confirmation of effective ULVWF multimer-platelet string detection 
using ex vivo labeled platelets. Platelet strings (white arrow head) containing both 
exogenous (yellow) and endogenous (red) platelets confirmed effective string detection 
using ex vivo labeled platelets (A). Top right box in A shows higher magnification of a 
string. Ex vivo labeled platelets gave brighter fluorescence signals (B). Bar graph 
showing that ~3 times more strings/vessel were detected when labeling endogenous 
platelets (C). n=3 mice, ***p ≤ 0.001, t-test. 
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5.2 CD40L enhances ULVWF multimer-platelet string formation 

preferentially in venules 

The cremaster microcirculation of C57/BL6 mice was exposed to CD40L for at least 20 

min prior to observing ULVWF multimer-platelet string formation. No change was 

detected in arterioles in terms of string formation following application of CD40L. By 

contrast, in venules CD40L was found to significantly enhance string formation by ~2 

fold (Figure 22). 

 

 

Figure 22: Increase in ULVWF multimer-platelet string formation in venules in 
response to CD40L stimulation. n = 4-7, ***p≤0.001, n.s=non-significant, Mann-
Whitney Rank Sum Test. 

 

5.3 ADAMTS13 deficiency significantly raises the number of ULVWF 

multimer-platelet strings in venules  

In the presence of ADAMTS13, the number of ULVWF multimer-platelet strings 

observed was rather low in arterioles as compared to venules. In the absence of 

ADAMTS13, string formation in the venules increased even further by about 2-fold. In 
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contrast, the arterioles showed no significant difference with regard to the number of 

strings either in the presence or in the absence of ADAMTS13 (Figure 23). 

 

Figure 23: Absence of ADAMTS13 augments baseline ULVWF multimer-platelet 
string formation in venules but not in arterioles. n=4-5, *p≤0.05, **p≤0.01 
***p≤0.001, One Way Analysis of Variance followed by Holm-Sidak post-hoc test. 

 

5.4 CD40L exacerbates string formation in venules in the absence of 

ADAMTS13 

The deficiency of ADAMTS13 exerted its effect mainly in venules through enhanced 

ULVWF multimer-platelet string formation which was significantly enhanced further in 

response to CD40L stimulation. Both baseline and CD40L-stimulated string formation in 

venules was enhanced further in ADAMTS13ko mice while string formation in the 

arterioles of these animals was not different at baseline or following exposure to CD40L 

(Figure 24). 



51 
 

 

Figure 24: ADAMTS13ko mice are more responsive to CD40L stimulation than 
C57/BL6 mice. ULVWF multimer-platelet string formation in arterioles and venules of 
ADAMTS13ko mice in the absence and presence of CD40L. n=4-13, ***p≤0.001, One 
Way Analysis of Variance followed by Holm-Sidak post-hoc test. 

 

5.5 Shear rate does not affect the number of platelet strings 

According to in vitro studies, higher unidirectional shear rate supports the phenomenon 

of ULVWF multimer-platelet string formation by unfolding vWF concatamers and 

exposing their binding sites for platelets to adhere. To validate this finding in vivo, the 

effect of the shear rate, which under conditions of constant viscosity is inversely related 

to shear stress, on string formation was studied. As anticipated, arterioles on average 

revealed higher shear rates than venules (Figure 25). 
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Figure 25: Arterioles have higher shear rates than venules. n=21, ***p≤0.001, 
Mann-Whitney Rank Sum Test.  

In order to study a potential effect of the shear rate on the number of ULVWF multimer-

platelet strings in response to CD40L stimulation, venules and arterioles of 

ADAMTS13ko mice were selected on the basis of comparable shear rates ranging from 

240 to 440 s
-1

 (Table 11).  

Table 11: ADAMTS13ko vessels with comparable shear rates selected for 
comparison of platelet string formation. Random selection of arterioles and venules 
having comparable shear rates from 6 different ADAMTS13ko mice which were later 
compared for ULVWF multimer-platelet string formation in response to CD40L 
stimulation. 

Animal 
Shear Rate (s-1) 

Arteriole Venule 

1 311 349 

2 311 327 

3 242 249 

4 310 290 

5 415 428 

6 415 436 

Mean ± SEM (n=6) 334 347 
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These vessels were then matched and compared with regard to the number of strings. 

Despite having similar shear rates, again venules revealed significantly higher number 

of platelets strings than arterioles (Figure 26). 

 

 

Figure 26:  At comparable shear rates ULVWF multimer-platelet string formation 
is still more prevalent in venules of ADAMTS13ko mice in response to CD40L 
stimulation than in arterioles. The individual shear rates are listed in Table 11. n=6, 
**p≤0.01, t-test. 

 

5.6 High shear rate increases the length of ULVWF multimer-platelet 

strings in the absence of ADAMTS13 

Since high shear rate was found to show no effect on the number of ULVWF multimer-

platelet strings, one step ahead was taken and the length of strings in individual 

arterioles and venules was measured both in wild type and ADAMTS13ko mice.  
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Figure 27: Higher shear rate in arterioles enhances the length of ULVWF 
multimer-platelet strings as compared to venules only in the absence of 
ADAMTS13. n=6-14, mean (red horizontal line) ± SEM, *p≤0.05, One Way Analysis of 
Variance on Ranks followed by Dunn’s method. 

Arterioles and venules in C57/BL6 (control) mice did not show any difference in length 

of the ULVWF multimer-platelet strings, suggesting that ADAMTS13 present in plasma 

is cleaving the released ULVWF multimers thus limiting the length of the strings. In the 

absence of ADAMTS13, although there was a greater number of strings in venules, they 

were not longer. In contrast, in the arterioles string length increased by about 50 % in 

the ADAMTS13ko mice (Figure 27) consistent with an unfolding of ULVWF multimers at 

higher shear rates in arterioles when not cleaved by ADAMSTS13. 
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5.7 VWF is abundant in venules 

The finding that ULVWF multimer-platelet string formation was predominant in venules 

as compared to arterioles raised the question whether vWF is differentially expressed in 

the microcirculatory blood vessels of the two mouse lines studied. To this end, vWF 

distribution in the microvasculature was analyzed by labeling it in vivo using a Qdot-

coupled anti-vWF antibody and then subjecting the cremaster preparation to CD40L to 

elicit endothelial cell vWF release. VWF was detected in arterioles (20-50 µm diameter) 

and venules (10-50 µm diameter) before and after CD40L stimulation. Before 

stimulation with CD40L there was nearly no vWF detectable whereas after exposure to 

CD40L abundance of vWF increased in the venules but not in the arterioles (Figure 

28A). Upon quantification nearly 40 % of the length of the venules was positive for vWF 

following CD40 stimulation (Figure 28B).  
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Figure 28: VWF is preferentially expressed in venules.  Representative image where 
vWF (green) was primarily found in a branching venule in comparison to an unbranched 
arteriole after CD40L stimulation (A), violet = endothelium. Quantification indicated that 
in venules 40 % of their vessel length is covered by vWF (B), n=4-7, **p≤0.01, t-test. 
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5.8 VWF deposition in venules stimulated by CD40L is time-

dependent 

By following the occurrence of vWF in venules and capillaries after CD40L stimulation, it 

was found that CD40L triggered a gradual increase in venular vWF abundance in both 

wild type and ADAMTS13ko mice. The buildup of vWF on the EC surface initiated within 

20 min of CD40L application kept on increasing with time. Localization of these changes 

in vWF disposition was not limited to bifurcations but extended to straight regions of the 

venules (Figure 29).  

 

Figure 29: Inhomogeneous distribution of vWF in the cremaster 
microvasculature.  Representative images of venules in the cremaster of 
ADAMTS13ko show a time-dependent release of vWF (green) before (A) and after 60 
min of CD40L stimulation (B). Notice that vWF buildup in the venules is not limited to 
bifurcations. 

 

5.9 VWF co-localizes with platelet strings 

When ex vivo labeled platelets were injected together with Qdot-labeled anti-vWF 

antibody to study their interaction, platelets were found to associate with extracellular 

vWF resulting in the formation of ULVWF multimer-platelet strings both in wild type and 
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ADAMTS13ko mice (Figure 30). Localization of strings was somewhat unpredictable 

although there was a preference of bifurcations over inter-segment regions of 2:1. 

 

Figure 30: Co-localization of extracellular vWF with platelet strings in vivo. 
Screenshot where vWF (red) is co-localized with adherent platelets (yellow) in a venule 
of an ADAMTS13ko mouse following CD40L stimulation, violet = endothelium. 

 

5.10 Leukocyte extravasation focuses on regions with visible ULVWF 

multimer-platelet strings 

According to our hypothesis, ULVWF multimer-platelet strings serve as a recruiting 

mechanism for circulating leukocytes at the site of the atherosclerotic lesion, helping in 

their adhesion and transmigration through the EC monolayer. Soon after recognition of 

the platelet strings and their co-localization with vWF, the next step was to examine their 

interaction with circulating leukocytes and their role in leukocyte extravasation. Herein, 

platelet adhesion and string formation were found to be random inside the vasculature 

with a clear preference for venules. Even inside the same venule there were certain 

regions with high susceptibility to ULVWF multimer-platelet string formation which were 

termed “hotspots” as compared to platelet-free regions (Figure 31A).  
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Figure 31: Leukocytes transmigrate preferentially in hotspot regions with visible 
platelet strings. White squares specifying hotspot regions in a venule of a … mouse 
following exposure to CD40L showing ULVWF multimer-platelet (yellow) strings in an 
otherwise empty vessel (white arrow) (A). Subsequent to leukocyte labeling hotspots 
show leukocyte (red) adhesion (white arrow heads) in contrast to the upstream 
leukocyte-free region of the same vessel (white arrow) (B). The same venule observed 
150 min later reveals prominent extravasation of leukocytes (white arrow heads) at 
hotspots only, while leukocyte-free regions (white arrow) remain as such (C), 
violet=endothelium. The statistical summary of this phenomenon is shown in (D). n=6, 
***p≤0.001, t-test. 
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Distinction between these regions was confirmed by observing the average intensified 

images of time-time recordings of the two-photon microscope in ImageJ. This feature 

allowed to detect regions within a vessel where platelets were tethered to the luminal 

EC surface throughout the time period of recording by taking the average of the 

recorded intensities in xyz projection. Venules with such hotspots were then followed for 

150 min post CD40L stimulation. Directly after labeling of the leukocytes, the hotspot 

region(s) displayed increased leukocyte rolling and adhesion while the clear region(s) 

showed no sign of either platelet or leukocyte adhesion according to several 

screenshots (Figure 31B). During the 150-min follow-up hotspots were found not only to 

be more crowded with adherent leukocytes but there was also a very prominent 

leukocyte extravasation in comparison to the clear regions that could be followed easily 

(Figure 31C). Quantification of the perivascular leukocytes in the same venule 

suggested that regions with ULVWF multimer-platelet strings show a marked increase in 

the number of extravasated leukocytes in comparison to regions without any platelet 

adhesion during the follow-up period (Figure 31D). 

5.11 ADAMTS13 deficiency increases the number of perivascular 

leukocytes in venules in response to CD40L stimulation 

The number of perivascular leukocytes was quantified in arterioles and venules of 

ADAMTS13ko mice both at baseline and following CD40L exposure. The number of 

emigrated perivascular leukocytes (which originally had been labeled intravascularly) 

was very low in arterioles as compared to venules in ADAMTS13ko mice under both 

conditions. CD40L stimulation reinforced leukocyte extravasation only in venules. 

Quantification revealed a ~3-fold rise in the number of perivascular leukocytes along in 

venules of ADAMTS13ko mice after exposure to CD40L (Figure 32). 
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Figure 32: Preferential leukocyte extravasation in venules of ADAMTS13ko mice 
is significantly enhanced following CD40L stimulation. Representative images of 
perivascular leukocytes (red) in an arteriole (A) and venule (B) of a ADAMTS13ko 
mouse, violet=endothelium, green=platelets. Statistical summary (C), n=6, ***p≤0.001, 
**p≤0.01, Two Way ANOVA followed by Holm-Sidak post-hoc test. 

 

5.12 CD40 receptor expression is triggered by inflammation 

So far there is very limited information on the distribution of endothelial cell CD40 in 

microvessels. At baseline, there was no constitutive CD40 expression at all in freshly 

isolated cremaster preparations from both wild type and ADAMTS13ko mice (Figure 
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33A and B). Once inflammation had been induced in the C57/BL6 cremaster muscle by 

TNF-α injection into the scrotum 2 hours prior to isolation of the cremaster, there was a 

striking increase in CD40 abundance on the luminal EC surface. It was difficult though 

to differentiate between arterioles and venules in the fixed cremaster due to the no-flow 

conditions. Perivascular leukocyte(s) could also be observed due to the presence of 

CD40 on the surface of the leukocytes (Figure 33C).  

 

 

Figure 33: Inflamation induces CD40 receptor expression in the cremaster 
microcirculation. No constitutive CD40 receptor expression was observed at baseline 
in the isolated cremaster of C57/BL6 (A) or ADAMTS13ko (B) mice. CD40 (green) 
abundance was markedly increased following stimulation with TNF-α in C57/BL6 
cremaster microcirculation. Due to their expression of CD40, perivascular leukocytes 
also became visible (white arrow head) (C), violet=endothelium. 
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5.13 Post-surgery trauma also upregulates CD40 expression in 

control and ADAMTS13 knockout mice 

Since there was no use of TNF-α in our experimental groups for inducing endothelial 

cell CD40expression, it was important to check the “spontaneous” abundance following 

isolation of the cremaster muscle. For this purpose, we recorded the amount of CD40 

on the luminal EC surface without any CD40L stimulation in the isolated cremaster of 

both wild type and ADAMTS13ko mice over the same 5-hour time period as in the 

experiments with CD40L stimulation.  

 

Figure 34: Post-surgery trauma also enhances endothelial cell CD40 (green) 
abundance in the isolated cremaster of C57/BL6 (A) and ADAMTS13ko (B) mice. 
Representative images, violet=endothelium.   

Post-surgery trauma proved to be sufficient for inducing tissue inflammation and, as a 

consequence, a marked rise in endothelial cell CD40 abundance both in C57/BL6 and 

ADAMTS13ko mice (Figure 34). Yet again, no differentiation between arterioles and 

venules was possible in the fixed cremaster. About 73 % of the microvessels after 5 
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hours stained positive for endothelial cell CD40 (n=3, 30 observed vessels). In addition, 

the smooth muscle cells also stained positive for CD40 in some recordings. 

 

5.14 CD40 and vWF partially co-localize in the microcirculation 

So far, there was no evidence for the co-localization of CD40 and vWF in microvessels. 

To address this question, CD40 and vWF were labeled simultaneously by injecting the 

corresponding Qdot-labeled primary antibodies into the C57/BL6 mice followed by 

CD40L stimulation. This in situ labeling yielded a partial co-localization of CD40 and 

vWF in the microvessels. Interestingly, only the venules showed a labeling for both 

biomolecules although it was not homogenous, while the arterioles essentially remained 

unstained (Figure 35). This finding is in agreement with the preferential ULVWF 

multimer-platelet string formation and leukocyte extravasation in venules observed 

herein.  

 

Figure 35: Partial co-localization of CD40 and vWF in venules. Representative 
images of the simultaneous in situ staining of CD40 (green) and vWF (red) in the 
microcirculation of the cremaster of a C57/BL6 mouse, violet=endothelium.   
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6. Discussion 

Vascular remodeling processes involve the innate immune responses that can be linked 

to primary hemostasis. On the one hand, platelets maintain hemostasis by thrombus 

formation and prevent blood loss in case of tissue injury, but on the other hand the 

same mechanism can either lead to a life-threatening situation in advanced 

atherosclerosis (Lievens and von Hundelshausen 2011; Huo and Ley 2004) by causing 

acute thrombotic occlusion or result in a potentially life-saving mechanism of remodeling 

collateral arterioles during arteriogenesis (Van Hinsbergh and Tasev 2015; Deindl et al. 

2011). Endothelial dysfunction serves as an early marker of vascular diseases and 

provides the platform for interaction of platelets with immune cells leading to 

inflammation. Both inflammation and coagulation are mutually dependent processes 

that can reinforce each other, however the underlying mechanism that links 

inflammation and coagulation to thrombosis and vascular remodeling still remains 

poorly understood. One of the important pathways that is implicated in the maintenance 

of blood vessel integrity is CD40-CD40L co-stimulation. The ligation of CD40L on 

numerous cell types has been found to play an essential role in inflammation leading to 

vascular remodeling (Mach et al. 1998; Henn et al. 1998). In this regard, particular 

emphasis herein was placed on investigating the interaction of platelets with endothelial 

and immune cells in a CD40-CD40L dependent manner particularly in the less well 

studied microcirculation. 

During inflammatory reactions, resident cells of the innate immune system secrete 

cytokines and pro-inflammatory mediators that activate ECs. The activated endothelium 

expresses cell adhesion molecules including selectins on their surface which are 

recognized by the respective ligands on circulating leukocytes, initiating a cascade of 

events (Muller 2014). Leukocytes are then captured followed by their slow rolling, firm 

adhesion, adhesion strengthening, intraluminal crawling and transmigration (Vestweber 

2015) (Figure 36). Leukocytes adhere and transmigrate mainly after direct interaction 

with EC adhesion molecules and leukocyte crawling seems not to be affected by 

ULVWF multimer-platelets strings. But it is well known that the intercellular crosstalk 



66 
 

between ECs and platelets serves as an additional gateway for leukocyte recruitment 

and eventually their transmigration into the vessel wall. The mechanism by which 

platelets link primary hemostasis to vascular remodeling by facilitating leukocyte 

recruitment to the vessel wall is still elusive. Inflammation-driven release and deposition 

of vWF on the luminal EC surfaces followed by the adherence and activation of platelets 

is such a likely link and can be described as an additional effect, perhaps especially 

when inflammation conditions occur which reinforce the expression of CD40 by the 

ECs.  

 

Figure 36: Schematic diagram of leukocyte trafficking across the vessel wall. 
Leukocytes interact with the activated endothelium expressing adhesion molecules and 
chemokines, leading to a series of events comprising leukocyte capture, rolling, slow 
rolling, firm adhesion, adhesion strengthening, intraluminal crawling and subsequent 
transmigration that can be either paracellular or transcellular (Gerhardt and Ley 2015). 

Herein, we have shown that CD40L acts as a potent stimulus for ULVWF multimer-

platelet recruitment also fostering recruitment of leukocytes and their extravasation in 

the murine microcirculation in vivo. Using the cremaster muscle preparation as a model, 

we have shown that EC CD40-(platelet) CD40L interaction induces release from and 

deposition of ULVWF multimers on the luminal surface of the ECs that is followed by 

platelet binding to vWF in a pearl necklace-like conformation leading to their activation. 

This in turn leads to the recruitment of leukocytes distal to the site of formation of these 

ULVWF multimer-platelet strings and their transmigration, namely in venules. This 
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mechanism may thus be an important player in inflammation-enhanced vascular 

remodeling though it can hardly explain arteriolar remodeling by direct interaction. 

 

6.1 CD40L: a potent vWF secretagogue in vascular ECs 

Elevated plasma levels of CD40L have been observed in patients suffering from 

cardiovascular diseases including coronary artery disease, hypercholesterolemia, 

unstable angina and acute myocardial infarction (Antoniades et al. 2009; Tousoulis et 

al. 2010). Another study has shown that CD40-CD40L interaction on ECs increases 

their  generation of ROS which is regarded as an initial symptom of endothelial 

dysfunction (Chakrabarti et al. 2007). The impaired endothelium serves as an anchoring 

site for surveilling platelets that lead to their activation. Recently, it has been shown by 

our group that human platelet-bound or soluble CD40L induces the calcium-dependent 

release of vWF from WPB stores of human ECs in the presence of shear stress in vitro 

(Moller et al. 2015) thus potentially further enhancing platelet adhesion and activation. 

In our study, we used the commercially available MegaCD40L to stimulate ECs and we 

also observed CD40L to be a potent stimulus for vWF-mediated platelet adhesion in the 

murine microcirculation in vivo.  

The predilection sites for vWF accumulation on the EC surface were found to be 

venules where also platelet adhesion and leukocyte extravasation were preferentially. 

Interestingly, ULVWF multimer deposits were not limited to bifurcations which are 

believed to be especially prone for initiating vascular inflammation. The straight regions 

were also partly covered by ULVWF multimer-platelet strings albeit to a lesser extent. 

ULVWF multimer buildup in response to CD40L stimulation was found to be a time-

dependent process with a linear increase in vWF concatamer formation within the 

microvessels which probably reflects the time-dependent expression of CD40 on the 

luminal EC surface as observed after surgical preparation of the cremaster.  

Though we have directly demonstrated the presence of extracellular vWF in venules, 

we cannot exclude that part of this signal came also from the trapped platelets releasing 

vWF from their α-granules at the site of adhesion. Therefore, it is difficult to 
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quantitatively evaluate the role of endothelial vWF as compared to platelet vWF in our 

setting.  However, other studies have clearly identified the endothelium as a source of 

ULVWF multimers in vivo (Chauhan et al. 2007). Moreover, in vitro data suggest that 

vWF concatamers normally are stored in the WPBs as a globular molecule which upon 

release can stretch up to a length of 100 µm (Schneider et al. 2007). CD40-CD40L 

interaction also induces the expression of CD40L on the EC surface in vitro which can 

be seen at both the mRNA and protein level after CD40L stimulation (Wagner et al. 

2004). It appeared to influence the inflammatory response by activation of 

transmigrating CD40-expressing monocytes.  

In addition, platelets are also known to become activated by the constitutively 

expressed CD40 on their surface. The ligation of platelet CD40L to platelet CD40 

induces the expression of CD62P, release of platelet α and dense granules together 

with the morphological changes linked to activated platelets (Inwald et al. 2003). Since 

vWF is stored in platelet α-granules, platelet activation causes its release at sites of 

platelet adhesion that recruit more platelets and circulating leukocytes, hence 

exacerbating the inflammatory response. In another study platelet CD40 was found to 

play an essential role in inflammation by transcellular activation of ECs and leukocytes 

(Gerdes et al. 2016). Therefore, CD40-CD40L interactions may play a central role in 

boosting the ensuing pro-inflammatory response through the simultaneous two-way 

activation of ECs platelets and leukocytes. In our experiments, it cannot be excluded 

therefore that part of the superligand we used for EC stimulation may also have reached 

platelets directly and activated them. However, we consider this not likely since the 

streaming blood may have rapidly dissolved any superficially applied CD40L eventually 

permeating the internal elastic lamina and the endothelial barrier.   

6.2 Formation of ULVWF multimer-platelet strings in response to 

CD40L stimulation 

ECs and platelets tightly regulate expression of the CD40 receptor and its ligand 

(CD40L) on their surfaces. We have observed that the endothelium did not express 

CD40 at all under resting conditions, unlike the endothelium of atherosclerotic large 
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arteries (Korff et al. 2007). Only upon TNF-α stimulation or inflammation due to surgical 

trauma, ECs started to express CD40 on their surface preferentially in venules. The 

CD40-dependent release of vWF from WPBs in ECs results in the deposition of ULVWF 

multimers on their luminal surface that provide the binding sites for platelet adhesion. 

Platelet-vWF interaction is initiated by the weak reversible binding of platelet GPIbα to 

theA1 domain of vWF (Madabhushi et al. 2014) that permits platelet rolling and 

adhesion on the EC surface which is reinforced by platelet GPIIb-IIIα (also called 

integrin αIIbβ3) interaction with the C1 domain of vWF (Bryckaert et al. 2015; Savage et 

al. 1996). As a consequence, in our experimental model, the murine cremaster 

microcirculation, pearl necklace-like ULVWF multimer-platelet string formation was 

observed. The co-localization of platelet strings with the released vWF shows their 

direct interaction on the EC surface, but it is still not clear whether this co-localization 

was only with endothelium-derived or additionally with platelet-derived vWF, since we 

were not able to differently label them. 

ULVWF multimer-platelet strings formed both in arterioles and venules after CD40L 

treatment in vivo but were clearly more prevalent in venules in spite of the lower shear 

rate there. Whether the sparse formation in arterioles can support a possible role in 

arterial thrombosis remains to be studied in more detail. Moreover, arteriolar remodeling 

seems not to be induced directly by enhanced ULWF multimer-platelet string formation 

and platelet activation in the arterioles themselves, though higher numbers of 

perivascular monocytes have been observed in arterioles undergoing arteriogenesis 

(Deindl and Schaper 2005). Whether venous platelet adhesion supports emigration of 

monocytes which secondarily migrate towards arterioles has not yet been studied.  

Bifurcations having disturbed flow conditions are considered in the macrocirculation to 

be the regions with high predisposition towards thrombus formation and atherosclerosis 

(Spanos et al. 2016; Chiu and Chien 2011). In the microcirculation, the occurrence of 

ULVWF multimer-platelet strings was not strictly limited to bifurcations as many were 

observed in linear regions as well. The length of the platelet strings observed in our 

experimental studies in the microvasculature ranged from 10 to 140 µm, though this 

only incompletely can indicate the true length of the vWF concatamers. Moreover, we 

have shown that our labeling with exogenous platelets underestimates the number and 
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length of the platelet strings. Therefore it is difficult to compare our results with the ones 

of others reported for the microcirculation.  However, within these constraints our 

findings are in agreement with results reported before by others. In mesenteric vessels 

in vivo platelet strings in the range between 30 and 100 µm length have been reported 

(Chauhan et al. 2007). However, much longer platelet strings have been observed in 

vitro in response to CD40L stimulation, ranging from 100 to 300 µm (Moller et al. 2015). 

Under in vitro conditions, the length of fully stretched vWF was found to be around 100 

µm (Schneider et al. 2007). Of note, one study has shown extraordinarily long platelet-

decorated ULVWF strings on the EC surface with a maximum length of 3 mm at a shear 

stress of 2.5 dyn/cm2 (Dong 2005). Surprisingly, the lack of the ULVWF multimer-

cleaving enzyme ADAMTS13 had not generally increased the length of platelet strings 

herein, indicating that other mechanisms may also be involved in the control of string 

length.   

The platelet strings were anchored to the endothelium for a comparatively long time 

period of approximately 30 min in comparison to previously observed periods of 45 s on 

average (Chauhan et al. 2007). The contribution of platelets in thrombus development is 

dependent on their adhesive properties and the longer they adhere the more likely is the 

buildup of a thrombus. Upon activation by platelet agonists, like ADP or thromboxane 

A2, adherent platelets transition into a highly active state that enables them to recruit 

additional platelets to the site of injury, which is mediated by their GPIbα receptors. This 

whole platelet buildup can then result in a progression towards thrombosis, which could 

be explained herein by the detection of blocked vessels with minor to no flow in 

ADAMTS13ko blood vessels. Nonetheless, the degree of thrombosis also in these 

animals appeared to be rather low following stimulation with CD40L. 

 

6.3 Effect of ADAMTS13 on the number of ULVWF multimer-platelet 

strings  

VWF defines a fine line between carrying out normal hemostasis and causing potential 

life-threatening thrombotic events. It is therefore very important to maintain regular 
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levels of this protein in plasma which is taken care of by ADAMTS13. In the context of 

its proteolytic action, it has long been believed that ADAMTS13 is a constitutively active 

enzyme in plasma efficiently cleaving ULVWF multimers upon encounter, but recently it 

has been shown that ADAMTS13 is itself activated by conformational changes after 

vWF-ADAMTS13 inter-domain interactions (South et al. 2017). ADAMTS13 plays an 

important role in maintaining vascular integrity by preventing thrombus formation 

whereas its deficiency has been related to various microangiopathies including the life-

threatening microangiopathy TTP (Zheng et al. 2001). Recently, low plasma 

ADAMTS13 activity has also been associated with an increased risk of ischemic stroke. 

Moreover, it has been reported in many studies that the high plasma levels of vWF are 

directly linked to an increase risk of cardiovascular diseases including myocardial 

infarction and ischemic stroke (Wieberdink et al. 2010; Wannamethee et al. 2012; 

Bongers et al. 2006). The link between low levels of ADAMTS13 and the increased risk 

of ischemic stroke can be explained by the reduced cleavage of ULVWF multimers, 

which by nature are highly pro-thrombotic, on the EC surface. As a result, there is an 

increased incidence of ULVWF multimers which may be further aggravated by 

enhanced CD40 expression, providing even more binding sites for platelet adhesion at 

the damaged site thus leading to thrombus progression. Therefore, low ADAMTS13 

plasma levels as observed in patients with coronary heart disease may contribute to the 

pro-thrombotic and pro-inflammatory state of the vessel wall. 

In our study we also observed a similar role of ADAMTS13 in platelet adhesion on the 

EC surface. In C57/BL6 control mice, platelet adhesion to the vessel wall was rather low 

in venules and particularly in arterioles because of the presence of ADAMTS13 in the 

plasma (and on the ECs). However, in spite of this the balance can be shifted towards a 

higher number of ULVWF multimer-platelet strings upon exposure to CD40L. This 

possibly could be due to more release of vWF (which was profound in venules) from the 

endothelial cell WPBs in response to CD40L stimulation while the abundance and 

activity of ADAMTS13 did not change. In contrast, deficiency of ADAMTS13 significantly 

augmented the number of platelet strings at the luminal EC surface in vivo in the 

absence and presence of CD40L. Moreover, this effect was restricted to venules. 

Therefore, the (relative) lack of ADAMTS13 might become most important under pro-
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inflammatory conditions where endothelial cell CD40 expression is upregulated. The 

difference in platelet string formation in arterioles and venules (of the same animal) 

despite identical ADAMTS13 plasma levels and exposure to CD40L stimulation 

supports the idea that the preferential ULVWF multimer-platelet string formation in 

venules is closely related to the abundance of endothelial cell CD40 in these 

microvessels. 

  

6.4 Is shear stress a regulator of endothelial cell vWF release and 

platelet string formation? 

Shear stress, which is a product of shear rate and plasma viscosity, is an important 

parameter for controlling EC function and is known to play a significant role in every 

stage of vascular remodeling. With regard to ULVWF multimers, shear stress facilitates 

uncoiling of the vWF concatamer, so that more binding sites become available for 

platelet adhesion leading to their activation and subsequently an augmentation of the 

ensuing pro-inflammatory response (Casa and Ku 2017). According to in vitro studies, 

shear stress has received much attention in this regard and is believed to be directly 

involved in controlling vascular integrity by regulating both vWF-platelet and vWF-

ADAMTS13 interactions (Reininger 2015; Bonazza et al. 2015). Several groups have 

shown that non-physiologically high shear stress causes activation of platelets in the 

absence of any agonist (Kroll et al. 1996) via GPIbα and GPIIb/IIIα-mediated 

interactions with vWF (Goto et al. 2000; Tamura et al. 2002). Shear stress regulates the 

length of ULVWF multimers. Once vWF is stretched upon encountering a critical level of 

shear stress they expose their cleavage sites for ADAMTS13 (Huisman et al. 2017) and 

serve as a preferential substrate for ADAMTS13 cleavage in the presence of shear 

stress (Shim et al. 2008). 

Arterioles should always have a higher shear rate in comparison to venules 

(Papaioannou and Stefanadis 2005). It has been shown in older humans that exercise-

induced shear stress raises the plasma level of vWF through EC activation (Gonzales et 

al. 2009). As pointed out before, shear stress dynamically regulates ULVWF multimers 
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by not only exposing their binding sites for platelets but also their faster cleavage by 

increasingly exposing cleavage sites ADAMTS13. These opposing effects are probably 

the reason why we did not observe any elongation of platelet strings in arterioles as 

compared to venules under control conditions. We did also not find that shear stress 

could affect the number of platelet strings, since in arterioles and venules with 

comparable shear stress (shear rate) the arteriolar/venular distribution of ULVWF 

multimer-platelet strings was not altered compared to the overall situation.  

To take a step further, the lengths of platelet strings was measured and compared 

between the experimental groups. Although the higher shear rate in arterioles should 

have facilitated multimerization and unfolding of vWF units, this was not observed in 

control mice. However, it was very interesting to find that shear rate was in fact playing 

some role in arterioles in the absence of ADAMTS13 where the string length was 

significantly higher than in venules, suggesting that ADAMTS13 may cleave the 

unfolded ULVWF multimer-platelet strings in arterioles more effectively as shown in vitro 

(Gogia and Neelamegham 2015). 

 

6.5 Preferential leukocyte extravasation in venules 

Even though there are many cells contributing to vascular remodeling including ECs, 

vascular SMCs, granular and agranular leukocytes, the major cell type mediating the 

pro-inflammatory response are monocyte-derived macrophages (Bobryshev 2006). 

CD40L stimulation of ECs induces their expression of CD40L and their release of MCP-

1 enabling the enhanced recruitment of CD40-positive immune cells (Wagner et al. 

2004; Chakrabarti et al. 2007). Leukocyte recruitment to the vessel wall has been the 

hallmark of pathophysiologic remodeling processes in large vessels (Braunersreuther 

and Mach 2006). Therefore, understanding the mechanism by which these leukocytes 

arrive at the vessel wall is essential, as it might give us therapeutic targets for driving 

the vascular remodeling processes and preventing disease onset and/or progression.  

In our in vivo studies we labeled leukocytes intravascularly to ensure that the leukocytes 

which we observed in perivascular tissue are derived from the circulating blood. It was 
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interesting to note that despite the formation of ULVWF multimer-platelet strings in both 

arterioles and venules, leukocyte extravasation was observed only in venules. By 

carefully following the labeled leukocytes, there was preferential leukocyte adherence 

and transmigration towards regions with visible ULVWF multimer-platelet strings. This is 

in accordance with the findings of others (Zuchtriegel et al. 2016). Of note is that 

regions devoid of platelet strings even in the same vessel behaved normally with 

circulating platelets and leukocytes, showing no apparent sign of either adhesion or 

transmigration, though the endothelium there probably constitutively expressed 

adhesion molecules for integrin-dependent leukocyte adhesion (Bevilacqua 1993; 

Cybulsky and Gimbrone 1991; Dustin et al. 1986). Consequently, it provides direct 

evidence that ULVWF-tethered platelets (Andre et al. 2000) serve as a preferential 

docking site for circulating leukocytes (van Gils et al. 2009; Brill et al. 2011; Bernardo et 

al. 2005). Moreover, leukocyte transmigration was enhanced in the absence of 

ADAMTS13, namely following CD40L stimulation. Impaired ADAMTS13 activity is 

expected to reduce ULVWF multimer degradation on the EC surface, thus reinforcing 

platelet adhesion and in turn leukocyte transmigration. 

Since we observed leukocytes to extravasate from venules only, it is partly due to the 

preferential ULVWF multimer deposition in venules which was also in line with our in 

situ staining data. It was interesting that leukocyte extravasation which initially started 

from the ULVWF multimer-platelet string hotspots spread to the vicinity of such regions. 

It suggests that the adhered platelets therein initiated leukocyte transmigration which 

then signals to nearby ECs in a paracrine fashion leading to increased permeability and 

massive leukocyte transmigration. As we were unable to visualize individual ECs with 

distinct cell borders at such sites, we could not distinguish between paracellular and 

transcellular leukocyte transmigration. 

 

6.6 CD40 receptor expression 

The CD40 receptor is an important co-stimulatory molecule for both humoral and cell-

mediated immune responses (Grewal and Flavell 1998; van Kooten and Banchereau 
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2000). It was initially characterized in lymphomas and carcinomas (Paulie et al. 1985; 

O'Grady et al. 1994) but later on its presence on non-immune cells (like ECs) opened a 

new era of investigation. Since long CD40 expression has been studied on ECs in 

culture as well in tissues which upregulate CD40 expression in response to 

inflammatory mediators such as TNF-α, IL-1, IFN-β and IFN-γ, and also in inflamed 

tissues (Karmann et al. 1995; Pammer et al. 1996). Because of its detection on ECs in 

inflammatory responses, it is believed that CD40 actively participates in inflammation. 

The interaction of CD40 receptor on ECs with its ligand leads to EC activation which is 

mediated by the expression of E-selectin, ICAM-1 and VCAM-1 on the EC surface 

(Hollenbaugh et al. 1995). The upregulation of these adhesion molecules then aids in 

the recruitment and activation of leukocytes at the sites of inflammation. Small 

interfering RNA silencing of endothelial CD40 receptor expression has shown to prevent 

CD40L-mediated leukocyte adhesion (Pluvinet et al. 2004). This shows the importance 

of endothelial CD40 expression in pro-inflammatory responses.  

However, little is known about the distribution of CD40 on microvascular ECs in vivo. 

Herein, we show that CD40 expression on normal microvascular ECs is minimal but that 

its expression is responsive to inflammation as was observed by a prominent increase 

in its expression in response to TNF-α stimulation. The time period of only two hours for 

this effect to occur suggests that CD40 may not be synthesized de novo, but is 

transported from intracellular EC stores to the surface, which warrants further 

investigation regarding the molecular mechanism involved therein. To verify that CD40 

expression is upregulated in our model, surgically prepared cremasters were kept 

untreated for 5 hours. This post-surgery trauma proved to be sufficient for raising 

endothelial cell CD40 abundance primarily in the venules. However, this was not a 

general phenomenon throughout these microcirculatory blood vessels.  

Previously, endothelial cell CD40 distribution in bigger vessels has been studied ex vivo 

in mice and was shown to be mainly expressed in veins (mesenteric and femoral vein) 

but not in arteries (mesenteric and femoral artery) (Korff et al. 2007). But its distribution 

in the microvessels was not clear. We therefore studied CD40 receptor distribution in 

the murine cremaster microcirculation both under fixed and living conditions. During in 

vivo experiments, we tracked CD40 by using very bright Qdot-labeled anti-CD40 
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antibodies that enabled us to visualize surface CD40 in conjunction with other labeled 

cells. Here, we also report that CD40 is distributed mainly in the venules and capillaries 

but usually not in arterioles in vivo, which suggests that its distribution is governed by 

the microenvironment. Arteriolar specific determinants seem to prevent the expression 

of CD40 on ECs while venular and capillary specific determinants enhance its 

expression, the latter being involved in the inflammatory processes by the recruitment 

and adhesion of leukocytes. 

In addition, the co-localization of CD40 with vWF concatamers on the luminal EC 

surface of only venules and small capillaries in vivo suggests a heterogeneous 

expression pattern the reason for which is still unknown. Part of the inhomogeneous 

distribution could be attributed to the possibility that the detected CD40 was not solely 

derived from ECs, but also from leukocytes and platelets gathered at the prototypic site 

of leukocyte diapedesis in inflammation, i.e. the post-capillary venules. Similarly, the 

detected vWF could have been platelet-derived as well, released from the vWF-bound 

activated platelets at these sites. 

  

6.7 General Discussion 

There is strong evidence that platelet-mediated EC-leukocyte interactions increase 

significantly during cardiovascular events (Totani and Evangelista 2010; Sarma et al. 

2002) or in the presence of prototypic cardiovascular risk factors like hypertension or 

dyslipidemia on blood vessels in such diseases (Kossmann et al. 2017). It is still not 

clear though whether these interactions are the cause or consequence of such events. 

Animal models of vascular diseases like atherosclerosis have shown platelets to be an 

important regulator of disease progression (Massberg et al. 2004). Moreover, both the 

in vivo and in vitro data support that platelets play a role in vascular remodeling 

(physiologic or pathophysiologic response) by recruiting leukocytes to the vessel wall 

(Gawaz et al. 2005). It is still an open question whether interfering with this platelet-

mediated leukocyte recruitment will have any beneficial effect in controlling 

cardiovascular diseases especially in the microcirculation. 
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Since vWF concatamers were preferentially deposited on the venular endothelium 

where they co-localized with platelet strings and CD40 we suggest that pro-

inflammatory leukocyte extravasation preferentially takes place at such hotspots 

presumably following platelet activation due to binding to vWF multimers that had been 

released from the ECs, at least in part, through platelet-CD40L stimulation. A similar 

mechanism may reinforce leukocyte diapedesis at macrovascular atherosclerosis 

predilection sites where endothelial cell CD40 is upregulated (Korff et al. 2007). 

Leukocyte transmigration in venules and capillaries but not arterioles suggests that 

vascular remodeling processes which take place in arterioles and arteries might be 

facilitated by these transmigrated leukocytes that somehow line up alongside the 

arteriolar vessel wall and release chemotactic mediators or migrate themselves into the 

arteriolar vessel wall from “behind” to maintain the pro-inflammatory process.  

ADAMTS13 controls the interaction between ECs and platelet by cleaving released 

ULVWF multimers into smaller inactive fragments (Crawley et al. 2011). The absence of 

ADAMTS13 enhances platelet adhesion and leukocyte transmigration especially in 

conditions of CD40L stimulation. Because of the co-expression of CD40 and CD40L on 

platelets and ECs alike during such an inflammatory episode, it may greatly augment 

the immune response during cardiovascular events (Figure 37). Therefore both 

molecules might provide a suitable therapeutic target for intervening in unwanted 

interactions between immune and non-immune cells during the onset or progression of 

vascular diseases. 
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Figure 37: Possible CD40-CD40L mediated interactions between immune and 
non-immune cells. Schematic diagram showing the potential CD40-CD40L mediated 
interactions between ECs, platelets and leukocytes. ADAMTS13 can regulate these 
interactions by cleaving vWF concatamers into smaller monomers thus limiting platelet-
EC interaction. 
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7. Outcome 

Taken together, our study revealed the following: 

1. CD40L induces vWF-platelet string formation on the surface of microvascular EC 

preferentially in venules in vivo. 

2. ADAMTS13 deficiency augments the number of vWF-platelet strings formed 

following CD40L stimulation. 

3. Shear stress plays no obvious role for the number of vWF-platelet strings but 

enhances vWF-platelet string length in arterioles in the absence of ADAMTS13.  

4. Leukocyte extravasation prevails in areas with high density of vWF-tethered 

platelets. 

5. In the microvasculature, CD40 expression on EC appears to be highly dependent 

on the microenvironment with preferential localization in venules and capillaries. 

6. CD40-positive EC partially co-localize with vWF in venules and capillaries in vivo. 
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