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ABSTRACT 
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Abstract 
Inflammation and mutagenesis contribute to cancer progression. The cytidine 

deaminase APOBEC3A might link these two processes. On the one hand, the expression 

of APOBEC3A is regulated by infections and pro-inflammatory stimuli. On the other 

hand, APOBEC3A causes mutational signatures that have been found in the genomes of 

various cancer types. However, the major contribution of APOBEC3A during the process 

from tumour initiation to a fully formed disease is still under debate. APOBEC3A-

mediated mutagenesis could (a) affect early stages of tumour development by mutating 

cancer driver and/or tumour suppressor genes, (b) have an influence by increasing the 

total mutational load, or (c) shape the tumour by increasing genetic heterogeneity, in 

particular during late stages of cancer progression. In addition, it is unclear whether 

parameters capturing the process of APOBEC3A-mediated mutagenesis during cancer 

progression have a prognostic value. Here, we address (I) whether APOBEC3A-mediated 

mutations alter tumour growth of already immortalised, transformed cells and (II) 

whether a combination of parameters describing past and ongoing APOBEC3-mediated 

mutagenesis have a prognostic value in a cohort of head and neck squamous cell 

carcinoma (HNSCC) patients. In this study, we established HEK293 cell populations 

carrying the APOBEC3-mediated mutational signatures. As ongoing APOBEC3A-driven 

mutagenesis causes a genetically heterogeneous cell population, single cell clones were 

isolated and analysed. APOBEC3A activity was lost in these clones by various 

mechanisms after creating the APOBEC3 mutational signature. The clones were 

characterised by quantifying proliferation, migration, cisplatin resistance and in vivo 

tumour growth in a xenograft mouse model. No phenotypic difference was observed 

between APOBEC3A-mutagenised cells and controls regarding any of the studied 

phenotypes either in vitro or in vivo. This suggests that APOBEC3A-mediated 

mutagenesis has no effect on the tumour growth of immortalised and transformed 

HEK293 cells. These results hint that additional APOBEC3A-mediated mutagenesis in 

cells with a large number of pre-existing tumourigenic alterations cannot further affect 

cellular growth. Analysing material from tumour patients with HNSCC revealed that 

tumours can show APOBEC3A expression and/or APOBEC3B expression and/or the 

APOBEC3 mutational signature. None of these parameters by themselves succeeded in 

stratifying an HNSCC cohort. In contrast, a principal component analysis combining 

transcriptional and genomic data lead to a statistically significant stratification regarding 

progression-free survival. The approach developed here might be a valuable additional 

tool in personalised medicine.
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Zusammenfassung 
Entzündung und Mutagenese tragen zur Tumorprogression bei. Die Cytidin-Deaminase 

APOBEC3A ist eine potentielle Verbindung zwischen diesen Prozessen. Einerseits wird 

die Expression von APOBEC3A durch Infektionen und pro-inflammatorische Stimuli 

reguliert. Andererseits verursacht APOBEC3A Mutationssignaturen, die in den Genomen 

verschiedener Krebsarten gefunden wurden. Der wesentliche Beitrag von APOBEC3A zu 

dem Prozess von der Tumorinitiierung bis hin zur vollendeten Krankheit wird jedoch 

immer noch diskutiert. APOBEC3A-vermittelte Mutagenese könnte (a) frühe Stadien der 

Tumorentstehung durch Mutation von Tumortreiber- und/oder Tumorsuppressorgenen 

beeinflussen, (b) die Gesamtmutationslast erhöhen oder (c) den Tumor durch Erhöhung 

der genetischen Heterogenität, insbesondere in späten Stadien der Tumorprogression, 

verändern. Darüber hinaus ist unklar, ob Parameter, die den Prozess der APOBEC3A-

vermittelten Mutagenese während der Krebsentstehung festhalten, zur Prognose 

verwendet werden können. Hier wird untersucht, (I) ob APOBEC3A-vermittelte 

Mutationen das Tumorwachstum bereits immortalisierter, transformierter Zellen 

verändern kann und (II) ob eine Kombination von Parametern, die vergangene und 

gegenwärtige APOBEC3-vermittelte Mutagenese beschreiben, zur Prognose einer 

Patientenkohorte mit Kopf- und Halskrebs (HNSCC) beitragen kann. In dieser Studie 

wurden HEK293-Zellpopulationen etabliert, die APOBEC3-vermittelte 

Mutationssignaturen tragen. Da die APOBEC3A-getriebene Mutagenese eine genetisch 

heterogene Zellpopulation erzeugt, wurden Einzelzellklone isoliert und analysiert. Die 

APOBEC3A-Aktivität ging in diesen Klonen nach dem Entstehen der APOBEC3 

Mutationssignaturen durch verschiedene Mechanismen verloren. Die Klone wurden 

bezüglich Proliferation, Migration und Cisplatinresistenz sowie in vivo Tumorwachstum 

in einem Xenograft-Mausmodell charakterisiert. Es wurde kein Unterschied zwischen 

APOBEC3A-mutagenisierten Zellen und Kontrollen für die in vitro oder in vivo 

untersuchten Phänotypen beobachtet. Dies deutet darauf hin, dass die APOBEC3A-

vermittelte Mutagenese keinen Einfluss auf das Tumorwachstum von immortalisierten 

und transformierten HEK293-Zellen hat. Diese Ergebnisse deuten an, dass eine 

zusätzliche APOBEC3A-vermittelte Mutagenese das Wachstum von Zellen, die bereits 

eine große Anzahl tumorerzeugender Veränderungen enthalten, nicht weiter verändern 

kann. Bei der Analyse von HNSCC-Tumorpatienten zeigte sich, dass Tumore APOBEC3A-

Expression und/oder APOBEC3B-Expression und/oder die APOBEC3-Mutationssignatur 

aufweisen können. Mit keinem dieser Parameter allein kann die HNSCC-Kohorte 

stratifiziert werden. Im Gegensatz dazu führt eine Principal Component Analyse, die 

transkriptionelle und genomische Daten kombiniert, zu einer statistisch signifikanten 
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Stratifizierung für progressionsfreies Überleben. Der hier entwickelte Ansatz könnte ein 

wertvolles zusätzliches Hilfsmittel in der personalisierten Medizin sein. 
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1. Introduction 
Cancer is often linked closely with inflammation and infection (Hanahan and Weinberg, 

2000; Hanahan and Weinberg, 2011; Hoste et al., 2015). Mutagenesis and genetic 

instability have been linked to an inflammatory tumour environment (Colotta et al., 

2009). Mutations are essentially the driving force of cancer (Stratton et al., 2009; 

Stratton, 2011). They start accumulating well before cancer initiation and shape the 

behaviour and characteristics of a tumour throughout its promotion and progression. 

The mutations a tumour accumulates during its development can determine the 

prognosis and survival of patients. While it is clear that infection and inflammation are 

linked to mutagenesis in cancer, the causal relation still remains unclear. One potential 

link between infection, inflammation and cancer is the family of APOBEC3 cytidine 

deaminases, which can act as mutagens under inflammatory conditions. 

1.1. APOBEC3A is part of the innate immune system 

The apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) 

proteins are a family of cytidine deaminases (reviewed in Harris and Liddament, 2004; 

Cullen, 2006; Conticello et al., 2007; Aguiar and Peterlin, 2008; Chiu and Greene, 2008; 

Conticello, 2008; Smith et al., 2012; Refsland and Harris, 2013; Knisbacher et al., 2015; 

Swanton et al., 2015). The APOBEC family members exhibit the ability to deaminate 

cytidine to uracil in RNA (Teng et al., 1993) and/or DNA substrates (Harris et al., 2002a). 

They are defined by cytidine deaminase active sites with the consensus sequence His-

Xaa-Glu-Xaa23-28-Pro-Cys-Xaa2-4-Cys (with Xaa denoting any amino acid). This conserved 

zinc-coordinating motif is present in all members of the APOBEC family and is required 

for deaminase activity (Wedekind et al., 2003). APOBEC1 was the first of this enzyme 

family to be discovered. It specifically deaminates C6666 of the apolipoprotein B (apoB) 

mRNA, thus creating a truncated version of the apoB protein by creating a premature 

stop codon (Teng et al., 1993). Expression of APOBEC1 in E. coli furthermore showed its 

potential to deaminate cytidine in DNA (Harris et al., 2002a). Another family member, 

activation-induced deaminase (AID), is essential for somatic hypermutation and class 

switch recombination during antibody maturation by editing the immunoglobulin-

encoding genes (Muramatsu et al., 2000; Harris et al., 2002b). So far, the physiological 

functions of APOBEC2 (Liao et al., 1999; Jarmuz et al., 2002) remain unknown, and it 

does not appear to share the cytidine deaminase activity of the other family members 

(Harris et al., 2002a). Hardly anything is known about APOBEC4. APOBEC4 contains the 

zinc-coordinating domain characteristic of the APOBEC family, suggesting that it may 

possess cytidine deaminase activity (Rogozin et al., 2005). However, so far, no 

deamination of single stranded DNA substrates has been observed (Ito et al., 2017). 
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1.1.1.  APOBEC3 cytidine deaminase family 

There are in total seven human APOBEC3 isoforms, namely APOBEC3A, APOBEC3B, 

APOBEC3C, APOBEC3DE, APOBEC3F, APOBEC3G and APOBEC3H (Figure 1), encoded in 

tandem on chromosome 22 (Jarmuz et al., 2002). While APOBEC3A, C and H each 

contain only one active site, APOBEC3B, DE, F and G each contain two cytidine 

deaminase domains (Jarmuz et al., 2002; Wedekind et al., 2003; Conticello et al., 2005). 

 

Figure 1 The human APOBEC3 family of cytidine deaminases. APOBEC3A, C and H contain one 

deaminase domain, whereas APOBEC3B, DE, F and G contain two deaminase domains. The dark 

grey boxes represent the cytidine deaminase active sites, whose consensus sequence is given 

below. The numbers represent the number of amino acids for each protein. Adapted and modified 

from Conticello et al. (2005), Holmes et al. (2007), Chiu and Greene (2008), Smith et al. (2012) and 

Wang et al. (2015). 

The APOBEC3 family members are expressed in different tissues and cell types. 

APOBEC3C, F and G are ubiquitously expressed (Refsland et al., 2010 and reviewed by 

Conticello, 2008 and Aguiar and Peterlin, 2008). The expression profile of the other 

APOBEC3 family members is more restricted. APOBEC3A is expressed in monocytes and 

keratinocytes, and has also been found to be upregulated in lung tissue (Madsen et al., 

1999; Jarmuz et al., 2002; Refsland et al., 2010; Land et al., 2013; Wang et al., 2014; Yang 

et al., 2016). APOBEC3B expression has been described in the intestines, mammary 

glands, uterus, and liver, as well as in keratinocytes (Madsen et al., 1999; Jarmuz et al., 

2002; Bonvin et al., 2006; Wang et al., 2014 and reviewed by Conticello, 2008). 

APOBEC3DE and H are restricted to expression in immune cells and related organs such 

as the thymus and spleen as well as the thyroid (reviewed by Conticello, 2008). 

APOBEC3A, C, DE, F and G have also been found in primary fallopian epithelial tissues 

(Brachova et al., 2017). 
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1.1.2.  APOBEC3 as restriction factors of viruses, endogenous retroelements and 
foreign DNA 

The family of APOBEC3 deaminases are antiviral restriction factors and as such part of 

the innate and intrinsic immune defense (reviewed by Harris and Liddament, 2004; 

Aguiar and Peterlin, 2008). APOBEC3G was first identified as an HIV restriction factor 

when Sheehy et al. (2002) noticed that virus infectivity factor (Vif)-deficient HIV-1 was 

able to replicate in some permissive cell lines, but not in other (non-permissive) cells. 

The presence or absence of APOBEC3G expression was found to be the distinguishing 

factor between a non-permissive and a permissive cell line, respectively. APOBEC3G 

restricts retroviruses based on its ability to cause in the the viral genome after reverse 

transcription (Harris et al., 2002a; Harris et al., 2003). APOBEC3G deaminates cytidines 

to uracils in the first single-stranded cDNA during the reverse transcription step of 

retroviral genome replication (Suspène et al., 2004). The uracils then serve as templates 

for the incorporation of adenines in the complementary strand, thereby introducing a 

large number of G-to-A mutations into the viral genome and affecting the viability of the 

virus (reviewed by Harris and Liddament, 2004 and Chiu and Greene, 2008). Since then, 

various members of the APOBEC3 family have been found to restrict various retroviruses 

(summarised by Chiu and Greene, 2008). In addition, some APOBEC3 family members 

are able to restrict DNA viruses. For instance, APOBEC3A has been found to restrict 

adeno-associated virus (Chen et al., 2006) and human papillomavirus (HPV) (Warren et 

al., 2015b). APOBEC3B is able to restrict hepatitis B virus (HBV) (Lucifora et al., 2014). A 

review by Warren et al. (2017) gives an overview of the DNA viruses restricted by the 

different APOBEC3 family members. 

The APOBEC3 cytidine deaminases are furthermore involved in the restriction of 

endogenous retroelements (Schumacher et al., 2008, reviewed by Aguiar and Peterlin, 

2008). Retroelements are mobile DNA sequences that propagate by coupling 

transcription with reverse transcription. The reverse transcribed retroelement DNA is 

then inserted into the genome in a process called retrotransposition. Endogenous 

retroelements comprise retrovirus-like elements containing long terminal repeats 

(LTRs), as well as non-LTR retrotransposons such as human long interspersed nuclear 

elements (LINEs, e.g. LINE-1) and short interspersed nuclear elements (SINEs, such as 

Alu) (reviewed by Kazazian, 2004). All APOEBC3 family members are able to inhibit 

retrotransposition of LINE-1 to different degrees (Chen et al., 2006; Muckenfuss et al., 

2006; Kinomoto et al., 2007; Bulliard et al., 2011). Retrotransposition of murine 

intracisternal A-particle (IAP), as an example of an LTR-retrotransposon, is strongly 

inhibited by APOBEC3A and APOBEC3B, and to a lesser degree by APOBEC3G (Bogerd et 

al., 2006; Chen et al., 2006; Knisbacher and Levanon, 2015). The reviews by Chiu and 
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Greene (2008) and Smith et al. (2012) provide an overview about the spectrum of viruses 

and retroelements restricted by the different APOBEC3 cytidine deaminases. 

In addition, APOBEC3A was found to cause the degradation of foreign DNA such as 

transfected plasmids both in cell culture (Stenglein et al., 2010) and in mice (Kostrzak et 

al., 2015), and was found to edit mRNA in human cells (Niavarani et al., 2015; Sharma et 

al., 2015; Sharma et al., 2017).  

1.1.3.  Regulation of APOBEC3 expression by inflammatory stimuli 

Inflammation and cancer are intricately linked (reviewed by Colotta et al., 2009). As 

restriction factors and as part of the innate immune system, APOBEC3 expression can 

be upregulated by various inflammatory stimuli in a range of cell types and tissues 

(Figure 2). APOBEC3A and APOBEC3B (formerly called phorbolin-1 and phorbolin-1-

related protein/phorbolin-2, respectively) were first identified in primary human 

keratinocytes after treatment with the tumour promoter phorbol 12-myristate-1-

acetate (PMA), also known as 12-O-tetradecanoylphorbol 13-acetate (TPA) (Madsen et 

al., 1999). PMA/TPA treatment has also been found to induce APOBEC3B expression in 

a range of cell lines through protein kinase C (PKC) and nuclear factor kappa-light-chain-

enhancer of B cells (NF-κB) signalling (Leonard et al., 2015; Maruyama et al., 2016). All 

APOBEC3 family members with the exception of APOBEC3DE are induced by interferon-

α (IFN-α) in macrophages and monocytes (Peng et al., 2006; Refsland et al., 2010; 

Stenglein et al., 2010; Thielen et al., 2010; Aynaud et al., 2012; Carpenter et al., 2012; 

Mehta et al., 2012; Suspene et al., 2017). IFN-α was also shown to stimulate the 

expression of all APOBEC3 members to different degrees in a range of cancer cell lines 

(Menendez et al., 2017). Similarly, lipopolysaccharides (LPS) can also induce expression 

of all APOBEC3 family members with the exception of APOBEC3B in human monocytes 

(Mehta et al., 2012). APOBEC3A expression is potently upregulated by IFN-α in CD4+ T-

cells, while APOBEC3G, F and H are only moderately induced (Koning et al., 2009). 

Treatment with IFN-α also increases expression of APOBEC3A, B, F and G in hepatocytes 

(Bonvin et al., 2006; Lucifora et al., 2014) as well as expression of APOBEC3A and G in 

both chimpanzee and human livers (Lucifora et al., 2014). It furthermore induces 

expression of APOBEC3A, G and F in myeloid dendritic cells (Mohanram et al., 2013).  

In addition, APOBEC3A can also be induced by IFN-β in normal immortalised skin 

keratinocytes (Wang et al., 2014; Warren et al., 2015b), by cytoplasmic double-stranded 

DNA (such as viral DNA genomes or transfected plasmids) in a human monocytic cell line 

(Suspene et al., 2017), by follicular fluid in fallopian cell lines (Brachova et al., 2017) and 

by viral infection in breast and bladder cancer cell lines (Middlebrooks et al., 2016). 
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Figure 2 Inflammatory stimuli induce expression of APOBEC3A and B.  Lipopolysaccharides (LPS) 

via Toll-like receptor 4 (TLR4) and 12-O-tetradecanoylphorbol 13-acetate (TPA) induce expression 

of APOBEC3A and B as well as type-I interferon (type-I IFN) expression through activation of protein 

kinase C (PKC) and nuclear factor kappa-light-chain-enhancer of B cells (NF-κB) signalling. 

Intracellular DNA (such as viral DNA genomes or transfected plasmids) is recognised mainly by 

stimulator of interferon genes (STING) or toll-like receptor 9 (TLR9), which activate expression of 

APOBEC3A and B and type-I interferons via NF-κB and interferon regulatory factors 3 and 7 (IRF3 

and 7). Type-I interferons (either autocrine or paracrine) are recognised by the interferon receptor 

(IFN-R) and activate expression of APOBEC3A and B through the Janus kinase/signal transducer and 

activator of transcripton (JAK/STAT) pathway. Human papilloma virus E6 and E7 oncoproteins can 

also cause APOBEC3A and B expression. Figure based on Madsen et al., 1999; Bonvin et al., 2006; 

Peng et al., 2006; Schoggins et al., 2011; Mehta et al., 2012; Vieira et al., 2014; Wang et al., 2014; 

Dempsey and Bowie, 2015; Leonard et al., 2015; Warren et al., 2015b; Maruyama et al., 2016; 

Raftery and Stevenson, 2017; Suspene et al., 2017. 

Drug-induced replication stress has recently been linked to increased APOBEC3B 

expression (Kanu et al., 2016). A role of p53 in the transcriptional regulation of APOBEC3 

was recently reported by Menendez et al. (2017). Activation of p53 in response to 

genotoxic stress leads to an increase in expression of APOBEC3A, C, DE, H and in some 

cases also APOBEC3G, but interestingly also causes repression of APOBEC3B expression 

in human cancer cell lines. APOBEC3B repression is prevented in cells where p53 is either 

silenced or contains tumour-associated mutations. Furthermore, p53 can enhance IFN-

induced APOBEC3 expression (Menendez et al., 2017). The HPV oncoproteins E6 and E7 

can also induce APOBEC3A and APOBEC3B expression in human keratinocytes (Vieira et 

al., 2014; Warren et al., 2015b). In summary, APOBEC3 expression can be induced by 

inflammatory stimuli and danger signals such as cytoplasmic DNA in a range of cells and 

tissue types. 
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1.2. APOBEC3A and APOBEC3B mutate genomic DNA 

The different APOBEC3 family members can deaminate DNA viruses to different 

degrees. Thus, if they have access to the nucleus, they may also induce mutations in 

genomic DNA. The different APOBEC3 family members are located either in the nucleus, 

the cytoplasm or both. Overexpression of transgenic APOBEC3 proteins showed that 

APOBEC3B is the only variant predominantly located in the nucleus due to an active 

nuclear import mechanism (Lackey et al., 2012). APOBEC3DE, G and F are exclusively 

found in the cytoplasm, whereas APOBEC3A, C and H can be found cell-wide (Burns et 

al., 2013b; Burns et al., 2013a). Localisation of APOBEC3 proteins seem to be 

independent of the cell type (summarised by Land et al., 2013). In total, four of the seven 

APOBEC3 proteins (A, B, C and H) have access to the nucleus. This means that these 

enzymes can potentially deaminate the cytidine residues in genomic DNA. Out of the 

APOBEC3 family members that locate to the nucleus, overexpression of transgenic 

APOBEC3A has been shown to edit both mitochondrial (Suspène et al., 2011) and 

genomic DNA (Suspène et al., 2011; Aynaud et al., 2012; Shinohara et al., 2012; Caval et 

al., 2014b). Endogenous APOBEC3A expression in CD4+ T lymphocytes has been shown 

to edit nuclear DNA (Mussil et al., 2013). APOBEC3B can also edit nuclear DNA (Caval et 

al., 2014a).  

 

Figure 3 APOBEC3 cytidine deaminases cause C-to-T and C-to-G mutations in genomic DNA. A 

Cytidine deaminases catalyse deamination of cytidine to uracil. B Uracil can pair with adenine 

during DNA replication, resulting in a C-to-T substitution (top). Uracil-DNA-glycosylase remove 

uracil from DNA, and a C is inserted during error-prone bypass in translesion DNA synthesis, 

resulting in a C-to-G substitution (bottom). Adapted and modified from Harris and Liddament 

(2004), Conticello et al. (2007), Refsland and Harris (2013), and Helleday et al. (2014). 
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The activity of both APOBEC3A and APOBEC3B on chromosomal DNA results in the 

deamination of cytidine to uracil (Harris et al., 2002a) (Figure 3A). If this uracil is paired 

with adenine during DNA replication, it results in a permanent C-to-T substitution. 

However, uracil-DNA-glycosylases (UNGs) remove uracil resulting from deamination of 

cytidine in DNA, thus creating an abasic site (Lindahl, 1974). Translesion DNA synthesis 

then inserts adenine or cytidine opposite the abasic site during error-prone bypass of 

the abasic sites (Chan et al., 2013) (Figure 3B). Deamination of methyl-cytidine directly 

results in a C-to-T substitution (Carpenter et al., 2012). Thus, deamination of cytidine 

and methyl-cytidine in genomic DNA by APOBEC3A and APOBEC3B creates C-to-T and C-

to-G mutations. 

1.2.1.  APOBEC3 deaminases edit ssDNA 

APOBEC3A binds to and deaminates single-stranded DNA (ssDNA), but it is unable to 

deaminate double-stranded DNA (dsDNA) or DNA:RNA hybrids (Chen et al., 2006; 

Carpenter et al., 2012; Bohn et al., 2015; Sharma et al., 2015; Harjes et al., 2017; Kouno 

et al., 2017). Processive APOBEC3-mediated deamination of ssDNA (Chelico et al., 2006) 

results in the generation of strand-coordinated mutation clusters (Chan et al., 2012). In 

the nucleus, ssDNA is present either during transcription, at double-strand breaks or 

during DNA synthesis. No transcriptional strand bias has been observed for C-to-T or C-

to-G mutations (Chan et al., 2012; Nik-Zainal et al., 2012a; Alexandrov et al., 2013b; 

Kazanov et al., 2015), suggesting that APOBEC3 deaminases do not edit genomic DNA 

during transcription. It has also been discussed that break-induced replication at dsDNA 

breaks may be a substrate for APOBEC3-mediated mutagenesis (Roberts et al., 2012; 

Sakofsky et al., 2014). 

The majority of APOBEC3-mediated mutations, however, are enriched in late-replicating 

regions of the lagging strand during DNA replication (Kazanov et al., 2015; Haradhvala 

et al., 2016; Hoopes et al., 2016; Morganella et al., 2016; Seplyarskiy et al., 2016b; 

Seplyarskiy et al., 2016a). Furthermore, APOBEC3A-mediated deamination is more 

prevalent in replicating than in resting cells (Green et al., 2016). This suggests that 

APOBEC3-driven mutagenesis occurs primarily on the ssDNA of the lagging-strand 

template that is exposed between Okazaki fragments during DNA replication (discussed 

in Haradhvala et al., 2016). 

1.2.2.  Context of APOBEC3-mediated mutations 

APOBEC3 family members show a preference regarding the nucleotide immediately 5’ 

of their target cytidine (reviewed by Refsland and Harris, 2013). Both APOBEC3A and 

APOBEC3B prefer a thymine in the 5’-position of their target cytidine, so deamination 
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occurs in a 5’-TC context (the edited base is underlined) (Bishop et al., 2004; Chen et al., 

2006; Thielen et al., 2010; Love et al., 2012; Shinohara et al., 2012; Burns et al., 2013a; 

Byeon et al., 2013; Chan et al., 2015; Shi et al., 2016; Harjes et al., 2017).  

In summary, APOBEC3A and B edit genomic DNA, which is accessible in a single-stranded 

form as the lagging strand during DNA replication, thus ultimately creating strand-

coordinated C-to-T and C-to-G mutations in a 5’-TC context. 

1.3. APOBEC3 deaminases create mutational signatures 

APOBEC3 cytidine deaminases with a 5’-TC target specificity have been attributed as the 

source for the mutational signatures 2 and 13 described by Alexandrov et al. (2013b; 

2013a). A mutational signature is a characteristic pattern of mutations. All single 

nucleotide exchanges can be classified into six subgroups if they are referred to by the 

pyrimidine of the mutated Watson-Crick base pair: C-to-A, C-to-G, C-to-T, T-to-A, T-to-C 

and T-to-G. These can be directly flanked by either A, C, T or G on both sides. Thus, 

including information on the bases immediately 5’ and 3’ of the mutated position results 

in a total of 96 unique combinations. These combinations can be used to distinguish the 

same base substitutions occurring in different sequence contexts (Alexandrov et al., 

2013b; Alexandrov et al., 2013a). Mutational signatures are characterised by the 

frequency of all possible 96 combinations of single nucleotide exchanges in their 

immediate sequence contexts. Different mutational processes cause different 

mutational patterns (reviewed by Alexandrov and Stratton, 2014; Helleday et al., 2014; 

Roberts and Gordenin, 2014b; Hollstein et al., 2016; Petljak and Alexandrov, 2016). 

1.3.1.  Mutational signatures are the product of mutagenesis and repair 

Generally, mutational signatures are thought to be the result of both mutagenesis and 

DNA repair processes. In combination, mutational and repair processes generate the 

characteristic patterns of the different mutational signatures (reviewed by Helleday et 

al., 2014). For instance, mutational signature 2 is characterised by C-to-T mutations, 

while signature 13 consists of mostly C-to-G mutations in a 5’-TC context. APOBEC3-

mediated deamination of cytidine to uracil in genomic DNA is likely the mutagenic 

process behind both these signatures (Nik-Zainal et al., 2012a; Roberts et al., 2012; 

Alexandrov et al., 2013b; Alexandrov et al., 2013a; Roberts et al., 2013). The C-to-T 

mutations found in signature 2 are created by uracil serving as a template in DNA 

replication. The C-to-G transversions making up signature 13 are caused by the error-

prone bypass (Chan et al., 2013) of abasic sites created through the excision of uracil by 

uracil-DNA-glycosylase (Lindahl, 1974). This signature shows a bias for C-to-G over C-to-

A mutations, which could be caused by REV1 inserting a C opposite the abasic site during 
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replication (Nik-Zainal et al., 2012a; Taylor et al., 2013). Thus, the underlying mutagenic 

process is mediated by APOBEC3 deaminase activity in both cases, and the differences 

in the mutational signatures are likely caused by different involvement of repair 

processes (Alexandrov et al., 2013a; Taylor et al., 2013; Helleday et al., 2014).  

1.3.2.  APOBEC3-mediated mutagenesis creates a mutational signature 

Based on their nuclear localisation and deaminase activity in a 5’-TC sequence context 

leading to C-to-T or C-to-G mutations in single-stranded genomic DNA (Nik-Zainal et al., 

2014, Morganella et al., 2016 and reviewed by Roberts and Gordenin, 2014b), 

APOBEC3A and APOBEC3B have been discussed as the most likely causes of mutational 

signatures 2 and 13 (Figure 4) (Nik-Zainal et al., 2012a; Alexandrov et al., 2013a; Burns 

et al., 2013b; Burns et al., 2013a; Roberts et al., 2013; Taylor et al., 2013; Alexandrov 

and Stratton, 2014; Caval et al., 2014b; Caval et al., 2014a; Chan et al., 2015; Hedegaard 

et al., 2016; Rogozin et al., 2017; Warren et al., 2017). 

APOBEC3-mediated mutations have furthermore been associated with regional clusters 

of hypermutation called kataegis (Greek for thunderstorm) originally found in breast 

cancer genomes (Lada et al., 2012; Nik-Zainal et al., 2012a). The mutations within 

regions of kataegis match the APOBEC3 mutational signatures and are found on the 

same chromosomal strand over long genomic distances, implying that they were 

introduced either simultaneously or in a processive manner over a short period of time 

(Nik-Zainal et al., 2012a; Alexandrov et al., 2013a). They are furthermore associated with 

chromosomal rearrangements and with chromothripsis (Nik-Zainal et al., 2012b), a 

single event of catastrophic shattering and subsequent complex rearrangement of 

chromosomal regions first described by Stephens et al. (2011). The induction of these 

kataegis mutation showers have been linked to APOBEC3A and B, which act upon ssDNA 

exposed during repair of DNA double-strand breaks (Roberts et al., 2012; Taylor et al., 

2013). Kataegis has been observed in bladder, lung, head and neck and breast cancer, 

which all also show a prominent presence of the APOBEC3 mutational signatures (Burns 

et al., 2013b; Secrier et al., 2016), as well as a range of other cancer types (reviewed in 

Roberts and Gordenin, 2014a). 

Overall, the APOBEC3-mediated mutational signatures are found in 16 out of 30 cancer 

types and contribute more than a quarter of the total mutations in 15% of all examined 

cancer samples (Alexandrov et al., 2013a). APOBEC3-mediated mutagenesis can thus be 

considered one of the most important human carcinogens, whose prevalence surpasses 

even that of tobacco smoke and exposure to UV light (Alexandrov and Stratton, 2014). 
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Figure 4 Mutational signatures attributed to APOBEC3-mediated mutagenesis. Each signature 

consists of the 96 categories classified by the single nucleotide exchange and their immediate 

sequence context as depicted on the horizontal axis. The bars on the vertical axis represent the 

probability of specific mutations found within a mutational pattern. A Mutational signature 2 is 

characterised by C-to-T mutations in a 5’-TC context. B Mutational signature 13 is characterised by 

C-to-G mutations in a 5’-TC context. Adapted from http://cancer.sanger.ac.uk/cosmic/signatures 

(Forbes et al., 2017) accessed on 27.9.2017. 

1.3.3.  Cancer types carrying APOBEC3-mediated mutations 

The APOBEC3 mutational signatures 2 and 13 were originally found in 16 cancer types 

(Alexandrov et al., 2013a). This has since been expanded to 22 cancer types according 

to the Catalogue Of Somatic Mutations In Cancer (COSMIC) and Alexandrov (2015). The 

APOBEC3 mutational signatures are particularly prominent in bladder cancer, cervical 

cancer, head and neck squamous cell carcinoma, breast cancer and lung cancer (Roberts 

et al., 2012; Alexandrov et al., 2013a; Roberts et al., 2013; Jia et al., 2014; Lin et al., 

2014a; Nordentoft et al., 2014; Roberts and Gordenin, 2014a; Zhang et al., 2015a; 

Hedegaard et al., 2016; Zehir et al., 2017; Zhou et al., 2017).  

Cervical and head and neck cancer are of particular interest due to the interactions 

between human papillomavirus (HPV) and APOBEC3. APOBEC3A can restrict HPV 

infectivity (Vartanian et al., 2008; Warren et al., 2015b), edit HPV genomes (Wang et al., 

2014; Wakae et al., 2015) and may even trigger integration of the HPV virus into the host 

genome (Herdman et al., 2006; Lace et al., 2015; Kondo et al., 2017). Warren et al. (2017) 

discussed the possibility that APOBEC3A may mediate the clearance of HPV DNA during 

persistent infection. 

Almost all cervical cancers (Walboomers et al., 1999) as well as 45-65% of oropharyngeal 

cancer and 5-25% of other head and neck cancers (Stransky et al., 2011; Ndiaye et al., 

http://cancer.sanger.ac.uk/cosmic/signatures
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2014; The Cancer Genome Atlas Network, 2015) are caused by high-risk HPV infection. 

While the E6 and E7 oncoproteins of high-risk HPVs cause immortalisation of cells, they 

are not sufficient for transformation: HPV-driven tumourigenesis requires the 

acquisition of additional mutations, which accounts for the latency period between HPV 

infection and development of cancer (reviewed by McLaughlin-Drubin and Münger, 

2009, discussed by Henderson et al., 2014). Thus, it is interesting to note that mutations 

matching the APOBEC3 mutational signatures are found in many head and neck cancers 

(Lin et al., 2014a; Zhang et al., 2015a; Fanourakis et al., 2016; Sawada et al., 2016; Secrier 

et al., 2016; Chang et al., 2017) as well as more than 50% of cervical cancers (Ojesina et 

al., 2014), and are particularly frequent in HPV-driven cases (Lawrence et al., 2013; 

Henderson et al., 2014, The Cancer Genome Atlas Network, 2015, The Cancer Genome 

Atlas Research Network, 2017 and reviewed by Litwin et al., 2017). 

All APOBEC3 family members except APOBEC3B are more highly expressed in mucosal 

tissue, which is more vulnerable to virus infection in comparison to cutaneous skin 

(Warren et al., 2015a). Normal skin keratinocytes already show expression of APOBEC3A 

(Yang et al., 2016). An antiviral response can upregulate APOBEC3A expression in both 

skin keratinocytes (Wang et al., 2014; Warren et al., 2015b) and cancer cell lines 

(Middlebrooks et al., 2016). Expression of both APOBEC3A and APOBEC3B is 

furthermore induced by HPV E6 and E7, and it is higher in HPV-positive cancers than in 

HPV-negative ones (Vieira et al., 2014; Warren et al., 2015b; Kondo et al., 2017). 

Additionally, Warren et al. (2015b) found that expression of both APOBEC3A and B is 

upregulated in early stages of HPV-driven cervical neoplasia. This upregulation is no 

longer significant in fully formed cervical cancers. 

1.4. APOBEC3A and APOBEC3B can shape the genomic landscape of 
cancer 

APOBEC3A and APOBEC3B share the characteristics that allow them to create the 

mutational signatures attributed to APOBEC3-mediated deamination. Both have access 

to the nucleus and thus to genomic DNA (Chen et al., 2006; Muckenfuss et al., 2006; 

Kinomoto et al., 2007; Bulliard et al., 2011; Landry et al., 2011; Aynaud et al., 2012; 

Lackey et al., 2012; Burns et al., 2013a; Lackey et al., 2013; Mussil et al., 2013; Lucifora 

et al., 2014). Both can introduce C-to-T mutations in genomic DNA (Shinohara et al., 

2012; Burns et al., 2013a). Both prefer to deaminate cytidine in a 5’-TC context (Bishop 

et al., 2004; Chen et al., 2006; Thielen et al., 2010; Burns et al., 2013a; Byeon et al., 2013; 

Taylor et al., 2013; Mitra et al., 2014; Shi et al., 2016; Kouno et al., 2017). They show 

different expression patterns in various tissues, but their expression is generally low 

(Koning et al., 2009; Refsland et al., 2010; Refsland and Harris, 2013), yet overexpression 
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has been observed in cancer (Lin et al., 2014a; Boichard et al., 2017; Chen et al., 2017). 

Both may contribute to the deaminase activity observed in cancer cells (Buisson et al., 

2017). Opinions are divided about whether APOBEC3A (Roberts et al., 2013; Caval et al., 

2014a, 2014a; Chan et al., 2015; Faltas et al., 2016) or APOBEC3B (Burns et al., 2013b; 

Burns et al., 2013a; Nikkilä et al., 2017) is the main source of mutations forming the 

APOBEC3 mutational signatures.  

APOBEC3B alone is not sufficient to explain the APOBEC3 mutational signatures 

(discussed by Nik-Zainal et al., 2014, Akre et al., 2016 and Radmanesh et al., 2017). 

Similar to APOBEC3B, APOBEC3A expression is induced by HPV E7 (Warren et al., 2015b) 

and found to be overexpressed in various cancers and cancer cell lines (Hedegaard et 

al., 2016; Boichard et al., 2017; Buisson et al., 2017; Chang et al., 2017; Chen et al., 2017; 

Green et al., 2017). APOBEC3A expression has also been correlated with the presence 

of the APOBEC3 mutational signatures (Jia et al., 2014; Hedegaard et al., 2016). In 

contrast to the findings arguing for APOBEC3B as the cause of the APOBEC3 mutational 

signatures, the absence of APOBEC3B in a deletion polymorphism has been associated 

with an increased risk of breast cancer (Komatsu et al., 2008). A similar association has 

been found for liver cancer (Zhang et al., 2013) and oesophageal cancer (Chen et al., 

2017). Further studies had some conflicting results: while this association with an 

increased breast cancer risk has been confirmed in a Chinese and European population 

(Long et al., 2013; Xuan et al., 2013), others did not find an association in a Swedish, 

South Indian and an Eastern European population (Göhler et al., 2015; Revathidevi et 

al., 2016; Klonowska et al., 2017). Meta-analyses of several studies confirmed the overall 

association with breast cancer in Asian, but not Caucasian populations (Han et al., 2016; 

Klonowska et al., 2017). It has been suggested that the discordances between the 

studies may be due to differences in genetic background (Klonowska et al., 2017). 

The APOBEC3 polymorphism deletes the sequence between the fifth exon of APOBEC3A 

and the eighth exon of APOBEC3B. This results in a complete loss of the coding sequence 

for APOBEC3B and a chimeric construct consisting of the APOBEC3A coding sequence 

with the 3’-untranslated region (UTR) of APOBEC3B (Kidd et al., 2007). The protein 

sequence encoded by this chimeric construct is identical to APOBEC3A. Heterozygous 

carriers of the deletion polymorphism show reduced APOBEC3B expression, and the 

APOBEC3B transcript cannot be detected in carriers of homozygous deletions (Komatsu 

et al., 2008; Zhang et al., 2013; Nik-Zainal et al., 2014; Cescon et al., 2015; Zhang et al., 

2015b; Chen et al., 2017; Klonowska et al., 2017). While some studies found an increase 

in APOBEC3A mRNA levels in carriers of the polymorphism (Caval et al., 2014a; Chen et 

al., 2017), others found the APOBEC3A transcript levels unchanged (Cescon et al., 2015). 

As the 3’-UTR of APOBEC3A is replaced with the 3’-UTR of APOBEC3B in the 
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polymorphism, the change may be in protein rather than transcript levels due to 

differential regulation of translation (reviewed by Matoulkova et al., 2012). Caval et al. 

(2014a) showed that the chimeric construct resulted in an increase of APOBEC3A protein 

expression, as well as an increase in DNA damage.  

No difference is apparent in the frequency of C-to-T or C-to-G mutations in patients with 

two wild-type APOBEC3B genes and heterozygous or homozygous deletion of 

APOBEC3B (Zhang et al., 2015b). In fact, the number of C-to-T and C-to-G mutations in 

the 5’-TC context preferred by APOBEC3 is increased in heterozygous carriers and even 

higher in homozygous carriers of the APOBEC3B deletion polymorphism (Zhang et al., 

2015b). Furthermore, the APOBEC3B deletion allele was associated with a higher 

mutational burden of APOBEC3-attributed mutational signatures 2 and 13, and with a 

subset of hypermutator breast cancers (Nik-Zainal et al., 2014). Despite the 

inconsistencies between the studies regarding an increase in cancer risk, the fact that 

the mutational signatures 2 and 13 are not just present but increased in carriers of 

homozygous deletions of APOBEC3B shows that APOBEC3B cannot be solely responsible 

for the mutations attributed to APOBEC3 (discussed by Caval et al., 2014a; Nik-Zainal et 

al., 2014). Instead, the results point to the possibility that APOBEC3A may be a major 

mutagenic force shaping cancer genomes. 

There are additional findings which hint that APOBEC3A may have greater relevance 

than APOBEC3B in cancer. The sequence context of single nucleotide exchanges in the 

mutational signature analysis only considers the nucleotides directly adjacent to the 

mutated base. Extending the sequence context of APOBEC3-mediated mutations shows 

that APOBEC3A prefers a YTCA sequence context, whereas APOBEC3B prefers RTCA sites 

(with Y being a pyrimidine base and R being a purine base) (Chan et al., 2015). This means 

that APOBEC3A-like and APOBEC3B-like mutations can be distinguished. Cancers with a 

high contribution of APOBEC3-type mutations (bladder, breast, lung and head and neck 

cancer) were subcategorised into APOBEC3A- and APOBEC3B-like subgroups depending 

on the enrichment of YTCA or RTCA sites, respectively. Cancers with an APOBEC3A-like 

mutational pattern were found to carry more than tenfold the number of mutations 

found in APOBEC3B-like cancers. Furthermore, cancers with the APOBEC3B deletion 

polymorphism also show an APOBEC3A-like mutational pattern. The APOBEC3A-like 

mutational pattern was furthermore found to contribute more than APOBEC3B-like 

mutations to the mutational landscape of urothelial carcinoma (Faltas et al., 2016; Lamy 

et al., 2016) and oesophageal squamous cell carcinoma (Chen et al., 2017). Chan et al. 

(2015) suggest that in APOBEC3B-like cancers, the low mutational activity of APOBEC3B 

and low or no activity of APOBEC3A results in a low APOBEC3 mutational load with an 

APOBEC3B-like pattern. In contrast, the background APOBEC3B-like mutations are 
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dwarfed by the high mutagenic activity of APOBEC3A in APOBEC3A-like cancers, 

resulting in a high mutational load of APOBEC3A-like mutations. This is consistent with 

the observation that APOBEC3A deaminates cytidine more efficiently than APOBEC3B. 

APOBEC3A outperforms both APOBEC3B (Caval et al., 2014a; Chan et al., 2015; Lamy et 

al., 2016; King and Larijani, 2017) and APOBEC3G (Carpenter et al., 2012; Shlyakhtenko 

et al., 2016), and shows the highest deaminase activity for both cytidine and methyl-

cytidine (Ito et al., 2017). 

Finally, Akre et al. (2016) found that overexpression of transgenic APOBEC3B in HEK293 

cells created mutations in the genomic DNA and increased the mutational load, but did 

not observe the mutational signatures 2 and 13 attributed to APOBEC3 in these cells. In 

summary, APOBEC3A, possibly supported by APOBEC3B, can contribute a substantial 

amount of mutations to the total mutational load of various cancer types. This raises the 

question whether APOBEC3-mediated mutations functionally affect the tumours that 

carry them. 

1.5. APOBEC3A – a double-edged sword 

APOBEC3A can be considered a double-edged sword. On the one hand, it is involved in 

innate immunity to viral infection. On the other hand, it can contribute to cancer 

mutagenesis. These contrasting effects of APOBEC3A also extend within the context of 

cancer: APOBEC3A expression has deleterious acute effects, but the potential long-term 

effects may cause or influence cancer progression. 

1.5.1. Acute effects of APOBEC3A expression 

Overexpression of transgenic APOBEC3A has a deleterious and genotoxic acute effect 

on cells. It causes cell cycle arrest, apoptosis and dsDNA breaks (Landry et al., 2011; 

Burns et al., 2013a; Lackey et al., 2013; Mussil et al., 2013; Green et al., 2016). The 

deleterious acute effect of APOBEC3A expression has even been shown in mouse 

tumours, where transgenic expression of APOBEC3A reduces tumour volume and causes 

necrosis (Kostrzak et al., 2016). These negative effects may build selection pressure on 

cells with high APOBEC3A activity. 

1.5.2. Potential long-term effects of APOBEC3A-mediated 

APOBEC3-mediated mutagenesis may also have a more long-term effect in cells that 

survive the acute deleterious effects. Other members of the AID/APOBEC family have 

been shown to be directly involved in carcinogenesis. Transgenic mice which 

overexpress either APOBEC1 or AID were found to develop tumours (Yamanaka et al., 

1995; Okazaki et al., 2003), with the mutations found in genes commonly mutated in 
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cancer matching their typical deaminase activity and target sequence (Beale et al., 

2004). APOBEC3 signature mutations have been observed to affect cancer driver genes 

and tumour suppressor genes (Table 1) (Roberts et al., 2013; Tornesello et al., 2014; Li 

et al., 2017; Litwin et al., 2017), and a high APOBEC3 mutational load is associated with 

mutations in various cancer driver and tumour suppressor genes (Kanu et al., 2016).  

Table 1 Selection of cancer driver and tumour suppressor genes carrying APOBEC3-mediated mutations 

Mutated gene Function Reference 

PIK3CA Cancer driver 

Kang et al. (2005), Bader et al. (2006), Nichols et al. 

(2013), Roberts et al. (2013), Henderson et al. (2014), 

Tornesello et al. (2014), Zhang et al. (2015a), 

McGranahan and Swanton (2015), Litwin et al. (2017) 

TP53 Tumour supressor 
Roberts et al. (2013), Tornesello et al. (2014), 

McGranahan and Swanton (2015), Kanu et al. (2016) 

PTEN Cancer driver 
Roberts et al. (2013), Kanu et al. (2016), McGranahan 

and Swanton (2015), Litwin et al. (2017) 

BRAF Cancer driver Roberts et al. (2013) 

ATM Tumour suppressor Roberts et al. (2013) 

APC Cancer driver Roberts et al. (2013) 

NF1 Tumour suppressor Roberts et al. (2013), Kanu et al. (2016) 

KRAS Cancer driver Litwin et al. (2017) 

The majority of mutations in the most frequently mutated cancer drivers in cervical 

cancer were found to correspond to the APOBEC3 mutational signatures (analysis by 

Litwin et al., 2017 based on data from The Cancer Genome Atlas Research Network, 

2017). In particular, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 

alpha (PIK3CA) is the most frequently mutated oncogene in HPV-driven cancers 

(reviewed by Litwin et al., 2017). PIK3CA contains mutation hotspots with the ability to 

induce oncogenic transformation in its helical and its kinase domain (Kang et al., 2005; 

Bader et al., 2006). Helical domain mutations are particularly frequent in HPV-positive 

cervical (Ojesina et al., 2014; The Cancer Genome Atlas Research Network, 2017) and 

head and neck cancers (Nichols et al., 2013; The Cancer Genome Atlas Network, 2015). 

Mutations in the helical domain have been linked to APOBEC3-mediated mutagenesis 

(Henderson et al., 2014). They occur more frequently in cancers with a high number of 

mutations matching the APOBEC3 mutational signature (Henderson et al., 2014; Zhang 

et al., 2015a; Kanu et al., 2016; Sawada et al., 2016) and are more frequent in HPV-

positive than HPV-negative cancers (Nichols et al., 2013; Henderson et al., 2014; Zhang 

et al., 2016, reviewed by Litwin et al., 2017). 

APOBEC3-mediated mutations of cancer driver and tumour suppressor genes may give 

the mutagenised cells an advantage and help them survive the negative acute effects of 
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APOBEC3 expression. Ultimately, APOBEC3-mediated hypermutation of genomic DNA 

may thus contribute to carcinogenesis, especially if it is transient. The acute negative 

effects disappear with APOBEC3 expression, but the mutations it generated remain 

(reviewed in Roberts and Gordenin, 2014a, discussed by Middlebrooks et al., 2016).
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2. Aims 
We hypothesized that cells which received mutations conferring a selective advantage 

such as increased proliferation could survive under the selective pressure created by the 

negative effects of APOBEC3A, while cells with neutral or detrimental mutations would 

be selected against. Cancer development is caused by mutagenesis and selection in an 

evolutionary process (reviewed by Stratton et al., 2009), so the combination of 

mutagenesis and selection caused by APOBEC3A could influence tumour growth. Thus, 

we asked whether APOBEC3A-mediated mutations can alter tumour growth of already 

immortalised, transformed cells.  

The aim of this thesis was to study the effect of APOBEC3A-mediated mutagenesis on 

tumour growth of already immortalised, transformed cells. This required genetically 

defined cell lines that carry the APOBEC3 mutational signatures, but were stable 

concerning further APOBEC3-mediated mutagenesis to prevent moving targets. In order 

to find out whether APOBEC3A-mediated mutagenesis had an effect on tumour growth, 

cancer-relevant phenotypes of the APOBEC3A-mutagenised cells were assessed both in 

vitro and in vivo. Specifically, we asked whether the behaviour of APOBEC3A-

mutagenised cells was altered concerning proliferation, migration and cisplatin 

sensitivity in cell culture, and concerning proliferation, necrosis, tumour growth and 

survival time in a xenograft mouse model. Finally, it was addressed whether an 

integration of genomic data and gene expression levels reflecting past and present 

APOBEC3-mediated mutagenesis in head and neck squamous cell carcinomas can be 

applied as a novel way to identify patient subgroups with prognostic value. 
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3. Material & Methods 

3.1. Material 

All material used in this study is listed alphabetically under the relevant heading, 

together with the supplier it was acquired from. In addition, the recipes of all buffers 

used here are listed. 

3.1.1. Equipment 

Bio Gard Hood The Baker Company 

Bioruptor Sonicator Diagenode 

BoltTM Mini Gel Tank Novex 

BoltTM Mini Blot Module Novex 

Centrifuge 5417R Eppendorf 

Electrophoresis chamber large Peqlab 

Electrophoresis chamber small Peqlab 

Electrophoresis power supply Bio-Rad 

Electrophoresis power supply PEQPower Peqlab 

Gel Doc EZ Imager Bio-Rad 

Heater/magnetic stirrer Fisher Scientific 

Intas ECL chemical imager Intas 

Lightcycler 480 Roche 

Microcentrifuge Eppendorf 

Microplate reader Multiskan Go Thermo Scientific 

Mini Spin plus centrifuge Eppendorf 

Minifuge RF Heraeus SEPATECH 

Nanodrop Spectrophotometer Peqlab 

Nikon Eclipse Ti fluorescence microscope Nikon 

Precellys 24 tissue homogeniser Bertin 

Rotary microtome Microm HM 355 S Thermo Scientific 

Scales Kern & Sohn GmbH 

Steam cooker Vitacuisine Tefal 

Thermo Forma series II water jacketed CO2 incubator Thermo Scientific 

Thermomixer 5436 Eppendorf 

Thermomixer 5437 Eppendorf 

UItra Cruz Mini centrifuge Santa Cruz Biotechnology 

Vortex-Genie 2 Scientific Industries, lnc. 

Water bath GFL 
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Widefield Olympus IX81 Cell^R Olympus 

Widefield motorized inverted Cell Observer.Z1 Zeiss 

Xcell sure lock electrophoresis cell Invitrogen 

3.1.2. Kits, reagents and consumables 

Commercially available kits 

AllPrep DNA/RNA/Protein Mini Kit QIAgen 

Cell proliferation reagent WST -1 Roche 

DC protein assay kit Bio-Rad 

ImmPRESS™ HRP Anti-Rabbit IgG (Peroxidase) 

Polymer Detection Kit Vector Laboratories Inc. 

LightCycler ® 480 Probes Master Kit Roche 

QIAquick Gel Extraction Kit QIAgen 

QIAshredder columns QIAgen 

QuantiTect Reverse Transcription Kit QIAgen 

RNeasy Mini Kit QIAgen 

Chemicals 

1,4-Dithiothreitol (DTT) Roth 

2 - Mercaptoethanol Sigma-Aldrich 

Acetic acid Roth 

Agarose basic AppliChem GmbH 

Amersham ECL Select Western Blotting Detection 

Reagent GE Healthcare 

Amersham ECL Western Blotting Detection 

Reagents GE Healthcare 

Ammonium persulphate (APS) Sigma-Aldrich 

Boric acid J.T. Baker 

BSA - Type H1 Gerbu 

Cisplatin Sigma-Aldrich 

Coomassie GelCode™ Blue Stain Reagent Thermo Scientific 

DAB substrate kit for peroxidase Vector Laboratories Inc. 

Dako fluorescent mounting medium Dako 

Dimethyl sulphoxide (DMSO) Roth 

Eosin Roth 

Ethanol Sigma-Aldrich 

Ethidium bromide  Sigma-Aldrich 
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Ethylenediaminetetraacetic acid (EDTA) Roth 

Formaldehyde solution (37%) Merck 

Formamide Fluka 

Glycerol Roth 

HEPES Eurobio 

Hoechst 33342 Sigma-Aldrich 

Hygromycin B Roche 

Isopropanol Fisher Scientific 

Mayer's Haemalaun solution AppliChem GmbH 

Methanol Sigma-Aldrich 

Methylene blue∙HCl Serva 

Milk powder Roth 

Mitomycin C Sigma-Aldrich 

N,N,N',N'-Tetramethylethylenediamine (TEMED) Sigma-Aldrich 

NaOH VWR 

Paraformaldehyde Roth 

poly-L-lysine (0.01%) Sigma-Aldrich 

Rotiphorese Gel 30 (37.5:1) acrylamide/bis-

acrylamide Roth 

Sodium dodecyl sulphate (SDS) Gerbu 

Tris base Sigma-Aldrich 

Tri‐sodium citrate 2‐hydrate (C6H5Na3O72H20) Merck 

Triton X-100 Roth 

Trypan blue Merck 

Tween-20 Gerbu 

Urea Roth 

Xylene cyanol Sigma-Aldrich 

Xylene Fischer Scientific 

Consumables 

Amersham Hyperfilm ECL GE Healthcare 

Coverslips Menzel 

DAKO pen Dako 

Distilled water, DNase/RNase free Gibco 

Dulbecco's Modified Eagle's Medium Sigma-Aldrich 

Eukitt Kindler GmbH 

Foetal calf serum (FCS) Biochrom AG 
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Gel cassettes Novex 

LightCycler ® 480 Multiwell plate 96 well, white Roche 

Nalgene Cryoware cryogenic vials Thermo Scientific 

Nitrocellulose membrane Thermo Scientific 

NuPAGE 4-12% Bis-Tris Gel 12 well Novex 

NuPAGE 4-12% Bis-Tris Gel 15 well Novex 

Penicillin Streptomycin solution Gibco 

Precellys Soft Tissue Homogenizing Ceramic Beads Bertin Technologies 

Protease Inhibitor Cocktail Roche 

Superfrost Plus microscope slides Thermo Scientific 

Tissue culture dish 100 Sarstedt 

Tissue culture flask 25 TPP 

Tissue culture flask 75 TPP 

Tissue culture flask 100 TPP 

Tissue culture plate 6 wells Corning Incorporated 

Tissue culture plate 12 wells Corning incorporated 

Tissue culture plate 24 wells Falcon 

Tissue culture plate 96 wells Falcon 

Buffers and solutions 

1x PBS 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 

1.47 mM KH2PO4 in mqH2O, pH 7.4 

1x TAE buffer 40 mM Tris (pH 7.6), 20 mM acetic acid, 1 mM EDTA in 

mqH2O 

6x DNA loading dye 10 mM Tris-HCl (pH 7.6), 0.03% bromophenol blue, 

0.03% xylene cyanol, 60% glycerol, 60 mM EDTA 

Trypan blue 0.5 g trypan blue, 0.9 g NaCl in 100 ml mqH2O 

Buffers for immunofluorescence: 

Fixation solution 4% (w/v) paraformaldehyde in PBS 

Permeabilisation solution 0.5% (v/v) Triton X-100 in PBS 

Blocking buffer 1% (w/v) BSA in PBS 

Buffers for immunohistochemistry: 

Antigen retrieval buffer 10 mM tri-sodium citrate 2-hydrate in mqH2O, 

adjusted to pH 6.0 with citric acid 
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Buffers for deamination assay:  

1x HED buffer 25 mM HEPES, 5 mM EDTA, 10% (v/v) glycerol, 1 mM 

DTT, 4% (v/v) protease inhibitor cocktail, pH 7.8 

10x TBE buffer 89 mM Tris, 89 mM boric acid, 2 mM EDTA 

2x formamide buffer 80% (v/v) formamide, 0.05% (w/v) bromophenol blue, 

0.01% (w/v) xylene blue in 1x TBE buffer 

Buffers for SDS-PAGE and Western Blot: 

Lysis buffer 40 µl protease inhibitor cocktail in 960 µl 1% (v/v) SDS 

5x lane marker reducing 

sample buffer Ready to use by Thermo Scientific 

Running buffer 1x NuPAGETM MOPS SDS running in mqH2O 

Transfer buffer 1x NuPAGETM transfer buffer, 20% (v/v) methanol in 

mqH2O 

Coomassie GelCode™ Blue 

Stain Reagent Ready to use (Thermo Scientific) 

Blocking buffer 4% (w/v) skim milk powder, 0.05% Tween-20 in PBS 

PBS-T 0.05% (v/v) Tween-20 in PBS 

Stripping buffer 67.5 mM Tris-HCl, 2% (w/v) SDS, 100 mM β-

mercaptoethanol in PBS, pH 6.8 

DNA and protein size markers 

GeneRuler 1 kb DNA Ladder Thermo Scientific 

GeneRuler 100 bp DNA Ladder Fermentas 

Page Ruler Prestained Protein Ladder Thermo Scientific 

Antibodies 

The anti-APOBEC3G antibody listed below is cross-reactive with both APOBEC3A and 

APOBEC3B. 

Rabbit anti-human APOBEC3G (polyclonal) Sigma-Aldrich 

Rabbit anti-Ki-67 (monoclonal) Thermo Scientific 

Mouse anti-ACTB, HRP-conjugated (monoclonal) Abcam 

Goat anti-rabbit Alexa Fluor 594 Thermo Scientific 

Goat anti-rabbit, HRP-conjugated Sigma-Aldrich 

Enzymes 

Accutase Sigma-Aldrich 

Phusion High Fidelity DNA Polymerase New England Biolabs 
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RNase A QIAgen 

Trypsin-EDTA Sigma-Aldrich 

Uracil-DNA glycocylase New England Biolabs 

Oligonucleotides 

The standard primers CMV forward and BGH reverse are used for amplification of the 

APOBEC3A and APOBEC3AE72A transgenes in polymerase chain reactions (PCR). The 

same primers are used to sequence the resulting PCR products. 

CMV forward 5’-CGC AAA TGG GCG GTA GGC GTG-3’ 

BGH reverse 5’-TAG AAG GCA CAG TCG AGG-3‘ 

The gene-specific qPCR primers listed below are used to specifically amplify the target 

genes in order to quantify their transcript levels in a qPCR. The separate primer pairs for 

each target gene consist of one left (L) or forward primer and one right (R) or reverse 

primer. 

APOBEC3A-L3 5’-GAG AAG GGA CAA GCA C-3’ 

APOBEC3A-R3 5’-GTG TGG ATC CAT CAA AAG TG-3’ 

APOBEC3B-L6 5’-GAC CCT TTG GTC CTT CGA C-3’ 

APOBEC3B-R6 5’-GCA CAG CCC AGG AGA AG-3’ 

ACTB-L1 5’-ATT GGC AAT GAG CGG TTC-3’ 

ACTB-R1 5’-CGT GGA TGC CAC AGG ACT-3’ 

The following probes are used to detect the target transcripts in qPCR. The APOBEC3A 

and APOBEC3B probes are labelled with Hex, the ACTB probe is labelled with Fam. 

APOBEC3A-Hex probe 5’-HEX-GAA GCC AGC CCA GCA TCC-BBQ-3’ 

APOBEC3B-Fam probe Universal Probe Library #39 (Roche) 

ACTB-Fam probe Universal Probe Library #11 (Roche) 
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3.1.3. Software and internet resources 

The software programs and internet resources listed in Table 2 are used for data 

processing, statistical analyses, control of equipment and image acquisition as well as 

image processing. 

Table 2 Overview of software programs and internet resources used 

Software or webtool Source 

Citavi for Windows, version 5.7.0.0 Swiss Academic Software 

Clustal Omega http://www.ebi.ac.uk/Tools/msa/clustalo/ 

ClustVis webtool http://biit.cs.ut.ee/clustvis/ (Metsalu and Vilo, 2015) 

GIMP version 2.8.16 https://www.gimp.org/ 

GraphPad Prism for Windows, version 5.04 
GraphPad Software, San Diego California USA, 

https://www.graphpad.com/ 

ImageJ version 1.50b http://rsbweb.nih.gov/ij/ (Schneider et al., 2012) 

Inkscape version 0.92 https://inkscape.org 

Intas ChemoStar Software Intas 

LightCycler Software 480 release 1.5.0.SP1 Roche Diagnostics 

NanoDrop version 3.6.0 NanoDrop Technologies 

NIS-Elements AR version 4.40.00 Nikon 

SkanIt Software 3.2 for Multiskan GO Thermo Fisher Scientific 

Xcellence rt version 2.0 Olympus 

Zeiss ZEN blue Zeiss 

 

http://www.ebi.ac.uk/Tools/msa/clustalo/
http://biit.cs.ut.ee/clustvis/
https://www.gimp.org/
https://www.graphpad.com/
http://rsbweb.nih.gov/ij/
https://inkscape.org/
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3.2. Methods 

3.2.1. Cell Culture 

All cells used in this study are Flp-InTM T-RexTM HEK293 cells (Life Technologies). They 

carry a stably integrated FRT site followed by a lacZ/zeocin resistance fusion gene as well 

as a tetracyclin-repressor gene. All cell lines used here were originally created and 

characterised by Ann-Mareen Franke. She created cell lines with stable integrations of 

APOBEC3 transgenes under transcription control of a tet-on regulator. The cell 

population containing the APOBEC3A transgene already contains the APOBEC3 

mutational signatures. 

All cell lines used in this study are frequently confirmed to be free of contaminations 

including mycoplasma infection, and their identity is authenticated by Multiplexion 

GmbH (Heidelberg). 

3.2.1.1. Culturing cells 

All cells in this study are cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 

low glucose at a concentration of 1000 mg/l supplemented with L-glutamine, sodium 

pyruvate and sodium bicarbonate containing 10% (v/v) foetal calf serum (FCS) and 1% 

(v/v) Penicillin-Streptomycin solution. As transgene expression in the HEK293 cells is 

doxycycline-regulated, certified tetracycline-free FCS is used for their culture. The 

transgene-containing HEK293 cells furthermore carry a gene for hygromycin B 

resistance, so they can also be cultivated in standard medium containing 200 µg/ml 

hygromycin B. All cells are incubated in cell culture incubators at 37°C in a humidified 

atmosphere containing 5% CO2. An exponentially growing asynchronous cell population 

is passaged by removing the medium, washing the cells with PBS and detaching them 

from the cell culture vessel by incubation with accutase or trypsin/EDTA. The detached 

cells are washed off the cell culture vessel with an appropriate volume of pre-warmed 

medium, and pelleted by centrifugation at 300 rcf for 5 minutes at room temperature. 

The pelleted cells are then resuspended in an appropriate volume of pre-warmed 

medium. The cell count is determined by mixing cell suspension with trypan blue (0.5 g 

trypan blue and 0.9 g NaCl per 100 ml mqH2O), and counting the unstained cells in a 

Neubauer chamber at 100x magnification under a light microscope. The cells are plated 

in a fresh cell culture vessel at a density of 1.3x104 cells/cm2 for maintenance culture, if 

not stated differently. 
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3.2.1.2. Cryo-conservation of cells 

For long-term storage of cryo-conserved cells, an exponentially growing asynchronous 

cell population is harvested, centrifuged at 300 rcf for 5 minutes at room temperature, 

resuspended in freezing medium (FCS + 10% (v/v) DMSO) and transferred into 

cryotubes. A total of 1x106 cells suspended in 1 ml freezing medium is added to each 

cryotube. The cells are cooled down at a rate of -1°C per minute, either by placing the 

cryotubes into a freezing box filled with isopropanol or by wrapping them in several 

layers of paper tissues and placing them in the -80°C freezer for several days. The cells 

are finally placed in the vapour phase of liquid nitrogen for long-term storage.  

3.2.1.3. Reviving cells 

Cryo-conserved cells are revived by warming them until they are almost completely 

thawed, and then transferring the thawed cells into 10 ml pre-warmed medium. The 

cells are pelleted by centrifugation at room temperature for 5 minutes at 300 rcf. The 

supernatant is discarded, the cells are resuspended in pre-warmed medium and plated 

at a cell density of 1.3x104 cells/cm2. One day after reviving the cells, the medium is 

replaced with fresh pre-warmed medium. 

3.2.1.4. Long-term culture 

The long-term culture exposes three independent cell populations called 

APOBEC3A pop. 01, APOBEC3A pop. 12 and APOBEC3A pop. 20 to both basal and 

doxycycline (dox)-induced APOBEC3A transgene expression over a period of 11 weeks. 

A cell population called APOBEC3AE72A pop. carrying a transgene of the enzymatically 

inactive APOBEC3AE72A variant as well as a transgene-free population of parental cells 

called HEK293 pop. are included as controls. At the start of the long-term culture, each 

cell population is split into one cell line that is kept without doxycycline and one cell line 

that is induced with doxycycline during the course of the long-term culture. The cells are 

plated at a density of 1.7x104 cells/cm2 in 6-well plates. On the day after plating the cells, 

doxycycline is added to a final concentration of 1 µg/ml to the cell lines to be kept under 

induction. The cells are then incubated in cell culture incubators at 37°C in a humidified 

atmosphere containing 5% CO2 for 3 days. At every fourth passage, all cell lines are 

expanded in two 10 cm cell culture dishes each in addition to the 6-well plates. To the 

cell lines kept under doxycycline induction, a final concentration of 1 µg/ml doxycycline 

is added to the medium three days before the cells are harvested for further processing. 

One of these plates is harvested for extraction of total protein, genomic DNA and total 

RNA, the cells on the other plate are used for cryo-conservation. 
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3.2.1.5. Isolating and expanding single cell clones 

Single cells are isolated from a cell population by plating the cells of the population in a 

96-well plate at a cell density so that a single cell is on average contained in one well. 

This is achieved by preparing a cell suspension with a concentration of 640 cells/ml, 

which is then diluted in a 1:2 dilution series with the final dilution being 1:512 (or 

1.25 cells/ml). Of each dilution, 100 µl/well are plated in eight wells of a 96-well plate. 

An average of one cell per well is expected at a dilution of 1:64 (or a cell concentration 

of 10 cells/ml). The cells are incubated in a cell culture incubator at 37°C in a humidified 

atmosphere containing 5% CO2 for 6 days. At regular intervals starting from day 3, the 

plates are visually inspected under a light microscope at 100x magnification in order to 

identify wells containing one cell colony derived from a single cell. Three single clones 

are isolated from each population, with only two clones each isolated from the parental 

HEK293 and APOBEC3AE72A populations that had been treated with 1 µg/ml doxycycline, 

and the APOBEC3AE72A population kept without doxycycline over 11 weeks. The clones 

are expanded by passaging them into successively larger cell culture vessels, up to T100 

cell culture flasks, for characterisation and cryoconservation. 

3.2.2. Characterisation of HEK293 clones 

The HEK293 cell populations are characterised for expression of the APOBEC3A and 

APOBEC3AE72A transgenes on a single cell level by immunofluorescence. The HEK293 cell 

clones are characterised regarding proliferation, migration and cisplatin sensitivity. 

Proliferation is determined by staining the cells for the proliferation marker Ki-67 using 

immunofluorescence, and determining the proliferative index. Cell migration speed is 

quantified in a scratch assay. Cisplatin sensitivity is determined in a viability assay of cells 

after exposing them to a cisplatin concentration gradient. 

3.2.2.1. Immunofluorescence 

For immunofluorescence stains, cells are grown on poly-lysine coated coverslips. In 

order to coat the coverslips, they are covered in 0.01% poly-lysine solution and 

incubated at room temperature for 5 minutes. Then, the liquid is removed and the 

coverslips are dried before they are placed in a 12-well plate with the poly-lysine coated 

side facing upwards. Per well, a total of 1x105 cells are plated in a total volume of 2 ml 

medium per well (cell density 2.5x104 cells/cm2), and incubated for 24 hours in a cell 

culture incubator at 37°C in a humidified atmosphere containing 5% CO2. After allowing 

the cells to grow for one day, the medium is aspirated, and the cells are fixed by addition 

of 0.5 ml 4% (w/v) paraformaldehyde in PBS per well. After 20 minutes incubation at 

room temperature, the fixation solution is carefully aspirated, and the coverslips are 
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washed in PBS for 3x5 minutes. The cells are permeabilised in 0.5 ml 0.5% (v/v) Triton X-

100 in PBS for 15 minutes at room temperature, followed by 30 minutes incubation in 

1 ml blocking buffer (1% (w/v) BSA in PBS) at 37°C. Following the blocking step, the cover 

slips are placed with the cell-bearing side facing down on 50 µl drops of primary 

antibody diluted in blocking buffer spotted on parafilm in a wet chamber. In order to 

determine the proliferative index, the anti-Ki-67 antibody is used at a 1:300 dilution. The 

anti-human APOBEC3G antibody is used at a 1:100 dilution to detect APOBEC3A 

transgene expression. The primary antibody is incubated either at room temperature 

for 1 hour, or overnight at 4°C. After the incubation, the coverslips are washed in PBS 

for 3x5 minutes at room temperature, and then placed with the cell-bearing side facing 

down on 50 µl drops of blocking buffer containing 1:5000 diluted Hoechst 33342 stain 

as well as 1:2000 diluted secondary antibody goat anti-rabbit Alexa Fluor 594. The 

secondary antibody and Hoechst 33342 stain are incubated for 1 hour under the 

exclusion of light at room temperature. After this final incubation, the cover slides are 

again washed in PBS for 3x5 minutes, and finally mounted on glass slides in anti-fade 

mounting medium. The fluorescence is recorded using the TRITC and DAPI filters of a 

Nikon Eclipse Ti microscope at 100x or 200x magnification. The different fluorescence 

channels are then combined into an overlay image using GIMP 2.8.16 (GNU Image 

Manipulation Program). 

3.2.2.2. Ki-67 proliferative index 

Ki-67 is a marker for cell proliferation. It is used to determine the fraction of proliferating 

cells in a population, called the proliferative index. Ki-67 positive cells are detected by a 

monoclonal anti-Ki-67 antibody in both immunofluorescence stains of cell culture 

samples and immunohistochemistry stains of tumour sections. This assay is used to 

determine the proliferative index of the HEK293 clones in vitro. 

In cell culture, the proliferative index is determined using immunofluorescence (as 

described in chapter 3.2.2.1). The cells are stained with monoclonal rabbit anti-Ki-67 IgG 

as primary and anti-rabbit IgG AlexaFluor 594 conjugated as secondary antibody, as well 

as Hoechst 33342 fluorescent DNA stains as a counterstain. The results are imaged using 

the DAPI and TRITC filters of the Nikon Eclipse Ti microscope at 100x magnification. At 

least three different fields of vision at 100x magnification are analysed per sample. The 

proliferative index is determined by counting the number of Ki-67 positive cells and 

dividing it by the total number of living cells for each field of vision. 
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3.2.2.3. Scratch migration assay 

The migration speed of the HEK293 clones is determined in a live-cell imaging assay that 

tracks the closure of a scratch created in an otherwise confluent layer of cells. Two 

variations of this assay are used. One is employed to characterise all HEK293 clones for 

migration only, and an optimised version is used to determine both migration speed and 

the scratch closure speed with the combination of migration and proliferation in the six 

selected HEK293 clones. For the characterisation of migration speed in all HEK293 

clones, a total of 1x106 cells per well (cell density 8.9x105 cells/cm2) are plated in a 12-

well plate in a minimum of 3 ml medium. The cells are allowed to grow confluent for 

1 day in a cell culture incubator at 37°C in a humidified atmosphere containing 5% CO2. 

The method is optimised for the quantification of scratch closure speed using migration 

alone or a combination of migration and proliferation in the six selected HEK293 clones. 

In this case, a total of 4x105 cells per well (cell density 3.6x105 cells/cm2) are plated in a 

12-well plate in a minimum of 3 ml medium. The cells are allowed to grow confluent for 

3 days in a cell culture incubator at 37°C in a humidified atmosphere containing 5% CO2. 

Four hours before inflicting the scratch and starting the life-cell imaging, the supernatant 

is aspirated and gently replaced with fresh medium either with or without a final 

concentration of 5 µg/ml mitomycin C. Mitomycin C inhibits proliferation, and is added 

in order to exclude the effect of cell proliferation on scratch closure and measure only 

the effect of migration. In cases where the combined effect of proliferation and 

migration on scratch closure is determined, the cells are cultivated in mitomycin C-free 

medium. After the medium change, the cells are incubated in a cell culture incubator at 

37°C in a humidified atmosphere containing 5% CO2 for another four hours. Then, a 

scratch is created in the confluent cell layer using a p10 pipette tip. Scratch closure is 

imaged in time-lapse microscopy of live cells using the widefield Olympus IX81 Cell^R 

microscope. At least three positions along the scratch are imaged per sample, and a 

picture at 100x magnification is taken every 10 minutes over a period of 22.5 hours. Care 

is taken that the imaged positions are not in the immediate neighbourhood of the end 

of a scratch. During the time-lapse imaging, the cells are kept at 37°C in a humidified 

atmosphere containing 5% CO2. The area of the scratch is quantified using ImageJ 1.50b 

(Schneider et al., 2012). The difference between the scratch area A0 at the beginning of 

the time-lapse and the scratch area At at time point t describes the area ΔAt covered by 

cells within t minutes:  

∆𝐴𝑡 = 𝐴0 − 𝐴𝑡 

The area ΔAt covered by cell migration or cell migration and proliferation is plotted 

against time. A line is fit through the linear part of this graph between time point 
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t=100 min and t=1000 min. The slope of this linear fit represents the scratch closing 

speed of the different cell clones. 

3.2.2.4. Cell viability measurement after cisplatin treatment 

The cisplatin sensitivity of HEK293 cells is determined by measuring the cell viability in a 

WST-1 test according to the manufacturer’s instructions after the cells had been 

exposed to a cisplatin dilution series for 2 days. The half-maximal inhibitory 

concentration (IC50) is used as a measure for cisplatin sensitivity. It describes the 

cisplatin concentration that causes a cell viability halfway between the maximum (100% 

cell viability untreated with cisplatin) and baseline (at the highest cisplatin 

concentration). HEK293 cells are plated at 3,000 cells in 50 µl medium per well in 96-

well plates (at a cell density of 9.4x103 cells per cm2). Each cell line is plated into a total 

of 3x11 wells, so that the ten cisplatin dilutions and a background control without the 

addition of WST-1 is measured in triplicate each. In addition, wells containing only 

medium but no cells are included in triplicate as blank controls. After incubating the cells 

for 24 hours in cell culture incubators at 37°C in a humidified atmosphere containing 5% 

CO2, 50 µl 2x cisplatin diluted in medium is added to the 50 µl medium per well to reach 

the final cisplatin concentrations of 0 µM, 0.05 µM, 0.2 µM, 0.8 µM, 2 µM, 3.2 µM, 

5 µM, 15 µM, 50 µM and 150 µM in 3 wells per cell line each. After 2 days of cisplatin 

treatment, 10 µl WST-1 is added per well to determine the cell viability. After incubating 

the cells with WST-1 for 4 hours in a cell culture incubator at 37°C in a humidified 

atmosphere containing 5% CO2, the absorption of each well is measured at a wavelength 

of 440 nm. The absorption values are blank-corrected by subtracting the mean value of 

the blank wells containing no cells but treated with WST-1. The cell viability is calculated 

by normalising all values to the mean absorption of cells cultivated without cisplatin, 

which is set as 100%. The normalised cell viability in percent is plotted against the log10 

values of the cisplatin concentrations in a dose-response curve, and the IC50 is calculated 

by nonlinear regression using the FindECanything function of GraphPad Prism 5 for 

Windows. 

3.2.3. DNA methods 

Genomic DNA is extracted from HEK293 cells and mouse xenografts for whole genome 

sequencing as well as PCR amplification and sequencing of specific target genes. The 

Sanger sequencing service provided by the company GATC (Konstanz) is used to 

sequence DNA fragments such as PCR products. 
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3.2.3.1. Total DNA extraction 

Total genomic DNA is isolated from cells using the DNeasy Blood & Tissue Kit according 

to manufacturer’s instructions. Up to 5x106 cells are collected by centrifugation for 

5 minutes at 300 rcf. The cell pellet is resuspended in 200 µl PBS, and 20 µl proteinase K 

are added to the cell suspension. The cells are lysed by addition of 200 µl buffer AL and 

thoroughly vortexed. After incubation at 56°C for 10 minutes, 200 µl ethanol (96-100%) 

are added, and the samples are mixed thoroughly by vortexing. The cell lysate is then 

pipetted into a DNeasy Mini spin column and centrifuged for 1 minute at 20,000 rcf. The 

flow-through and the collection tube are discarded, and the column is placed in a new 

collection tube. The column is washed with 500 µl buffer AW1, then centrifuged for 

1 minute at 20,000 rcf and placed in a new collection tube. The old collection tube and 

the flow-through are discarded. The column is washed again with 500 µl buffer AW2, 

then centrifuged for 3 minutes at 20,000 rcf to dry the membrane of the column. The 

flow-through and collection tube are discarded, and the column is placed in a new 1.5 ml 

collection tube. Finally, 200 µl buffer AE are pipetted directly onto the membrane of the 

column, incubated for 1 minute at room temperature and centrifuged for 1 minute at 

20,000 rcf to elute the genomic DNA. Finally, the DNA concentration and the ratio of 

absorption at 260 nm and 280 nm wavelength as a measure of DNA purity are 

determined using the NanoDrop spectrophotometer. A 260 nm/280 nm ratio of 1.8 is 

generally considered ideal for DNA, and DNA extracts with a ratio between 1.8 and 2.0 

are accepted as possessing a sufficient quality for further processing. If DNA, RNA and 

protein extracts are required of the same sample, the AllPrep DNA/RNA/Protein Mini Kit 

is used instead (see chapter 3.2.6). 

3.2.3.2. Polymerase chain reaction PCR 

The polymerase chain reaction is used to amplify DNA segments from genomic DNA 

templates. The amplified segments are then visualised by gel electrophoreses to check 

whether the target sequence is present in the genome, or used for sequencing of the 

target sequence. Amplicons used for verifying the target sequence by Sanger sequencing 

are produced in 20 µl reactions. The components and concentrations of a PCR reaction 

are detailed in Table 3. 
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Table 3 Components and concentrations of a PCR reaction 

Component Stock concentration Final concentration 

Nuclease-free H2O n/a n/a 

5x Phusion HF buffer 5x 1x 

dNTPs 2.5 mM 0.2 mM 

Forward primer 100 µM 0.5 µM 

Reverse Primer 100 µM 0.5 µM 

Phusion HF DNA Polymerase 2 units/µl 0.02 units/µl 

Template genomic DNA variable 250 ng/reaction 

The thermocycling conditions (Table 4) are modified depending on the primers used. 

The annealing temperature is chosen as 3°C above the lower melting temperature of the 

primer pair. 

Table 4 Thermocycling conditions for PCR 

Step Temperature Time Cycles 

Initial denaturation 98°C 3 min 1x 

Denaturation 98°C 15 sec  

Annealing Primer dependant 30 sec       

Elongation 72°C 60 sec per kb  

Final elongation 72°C 10 min 1x 

Hold 4°C indefinite 1x 

3.2.3.3. Agarose gel electrophoresis 

DNA fragments such as PCR products are separated according to their size by agarose 

gel electrophoresis. The gels are created by melting 1% (w/v) agarose in an appropriate 

volume of 1x TAE electrophoresis buffer (40 mM Tris (pH 7.6), 20 mM acetic acid, 1 mM 

EDTA in mqH2O), pouring the melted agarose into a gel chamber of the desired size and 

adding a comb to create the desired number of wells. Ethidium bromide is added to the 

gel to a final concentration of 0.5 µg/ml in order to visualise the DNA fragments. One 

volume 6x DNA loading dye (10 mM Tris-HCl (pH 7.6), 0.03% bromophenol blue, 

0.03% xylene cyanol, 60% glycerol, 60 mM EDTA) is added to five volumes of DNA 

sample, and 10 µl DNA sample are loaded into each well. On each gel, 10 µl of a DNA 

molecular-weight size marker with a size range appropriate for the expected DNA 

fragments is included. The gel is run in 1x TAE buffer at 120 V and 300 mA for 1 hour. 

The DNA fragments are visualised and recorded in a Gel Doc EZ Imager under UV light, 

which causes the ethidium bromide that intercalated into the DNA to emit light at a 

wavelength of 590 nm.  

  

35x 
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3.2.3.4. DNA extraction from agarose gels 

DNA fragments are extracted from agarose gels using the QIAquick Gel Extraction Kit 

according to manufacturer’s instructions. The DNA fragment with the desired size is 

visualised with UV light, excised from the agarose gel with a clean scalpel and 

transferred to a 2 ml tube. The weight of the gel slice is determined. 100 mg gel 

approximately correspond to a volume of 100 µl. Three volumes of buffer QG are added 

to each volume of gel, and the mixture is incubated at 50°C for 10 minutes (or until the 

gel slice is completely dissolved) with intermittent vortexing. All following steps are 

performed at room temperature. One gel volume of isopropanol is added, the samples 

are mixed by vortexing and then transferred to a QIAquick spin column. The columns 

are centrifuged for 1 minute at 20,000 rcf, and the flow-through is discarded. The 

columns are first washed with 500 µl QG buffer and then with 750 µl PE buffer; after the 

addition of each buffer the columns are centrifuged for 1 minute at 20,000 rcf and the 

flow-through is discarded. In order to remove residual wash buffer and dry the 

membrane, the columns are centrifuged again for 1 minute at 20,000 rcf, before they 

are placed in fresh 1.5 ml collection tubes. To elute the DNA, 50 µl buffer EB are applied 

to the centre of the membrane, incubated for 1 minute at room temperature and 

centrifuged for 1 minute at 20,000 rcf. Finally, the DNA concentration and the ratio of 

absorption at 260 nm and 280 nm wavelength as a measure of DNA purity are 

determined using the NanoDrop spectrophotometer. A 260 nm/280 nm ratio of 1.8 is 

generally considered ideal for DNA, and DNA extracts with a ratio between 1.8 and 2.0 

are accepted as possessing a sufficient quality for further processing. 

3.2.3.5. Whole genome sequencing 

Whole genome sequencing is performed by the DKFZ Genomics & Proteomics Core 

Facility. Total genomic DNA is submitted to the core facility for sample quality control 

and library preparation using the Illumina® TruSeq® Nano DNA Library Prep kit, followed 

by HiSeq X (150 bp Paired End) whole genome sequencing using the Illumina HiSeq X 

sequencing platform. 

3.2.4. RNA methods 

Total RNA is extracted from HEK293 cells and xenograft tumours in order to quantify 

APOBEC3A, APOBEC3B and ACTB transcript levels. Furthermore, mRNA extracted from 

head and neck squamous cell carcinoma samples is obtained for quantification of 

APOBEC3A, APOBEC3B and ACTB mRNA expression. Transcript levels are quantified by 

a gene-specific quantitative PCR (qPCR) after reverse transcription of the mRNA into 

cDNA. 
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3.2.4.1. Total RNA extraction 

Total RNA is isolated from cultured cells using the RNeasy Mini Kit according to 

manufacturer’s instructions. Up to 5x106 cells are collected by centrifugation at 300 rcf 

for 5 minutes. The supernatant is discarded, and the pelleted cells are lysed in 350 µl 

buffer RLT. The cell lysate is pipetted directly into a QIAshredder spin column and 

centrifuged for 2 minutes at 20,000 rcf. One volume (350 µl) 70% ethanol is added to 

the homogenised lysate before immediately transferring it to an RNeasy spin column in 

a 2 ml collection tube, followed by centrifugation for 15 seconds at 20,000 rcf. The flow-

through is discarded. The column is washed with 700 µl buffer RW1 and centrifuged for 

15 seconds at 20,000 rcf before the flow-through is discarded. Afterwards, the column 

is washed twice with 500 µl buffer RPE, centrifuged for 15 seconds at 20,000 rcf and the 

flow-through is discarded. To remove any remaining wash buffer, the column is 

centrifuged again for 15 seconds at 15,000 rpm. Finally, the column is placed in a 1.5 ml 

collection tube, and 50 µl RNase-free water is pipetted directly onto the centre of the 

membrane. The RNA is eluted into the collection tube by a 1 minute centrifugation at 

20,000 rcf. Finally, the RNA concentration and the ratio of absorption at 260 nm and 

280 nm wavelength as a measure of RNA purity are determined using a NanoDrop 

spectrophotometer. A 260 nm/280 nm ratio of 2.0 is generally considered ideal for RNA, 

and RNA extracts with a ratio between 2.0 and 2.2 are accepted as possessing a sufficient 

quality for further processing. If DNA, RNA and protein extracts are required of the same 

sample, the AllPrep DNA/RNA/Protein Mini Kit is used instead (see chapter 3.2.6). 

3.2.4.2. Reverse Transcription 

Total mRNA extracted from cells is reverse transcribed into cDNA using the QuantiTect 

Reverse Transcription Kit according to the manufacturer’s instructions. The total mRNA 

extract is thawed on ice. Per sample, two genomic DNA elimination reactions are 

performed to provide enough DNA-free RNA for one cDNA synthesis reaction containing 

reverse transcriptase (RT) and one without reverse transcriptase (NRT). The NRT 

samples serve as a control to exclude a contamination of the samples with remaining 

gDNA, which may lead to a false positive signal during qPCR. The components and final 

concentrations per reaction are given in Table 5. 

Table 5 Components and concentrations of a standard genomic DNA elimination reaction 

Component Stock concentration Final concentration Volume per reaction 

RNase-free H2O n/a n/a Fill up to 14 µl 

7x gDNA wipeout buffer 7x 1x 2 µl 

Template RNA variable 1 µg/reaction variable 
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The genomic DNA elimination reaction is incubated for ten minutes at 42°C and then 

immediately placed on ice. For each RNA extract, both RT and NRT reactions are 

prepared on ice according to Table 6.  

Table 6 Components and concentrations of a standard RT and NRT cDNA synthesis reaction 

Component 
Stock 

concentration 

Final 

concentration 

Volume per RT 

reaction [µl] 

Volume per NRT 

reaction [µl] 

5x RT buffer 5x 1x 4 4 

RT primer mix   1 1 

Reverse 

transcriptase (RT) 
  1 - 

RNase-free H2O n/a n/a - 1 

gDNA elimination 

reaction 
  14 14 

For cDNA synthesis, the reactions are incubated at 42°C for 30 minutes. The reverse 

transcriptase is then inactivated by an incubation at 95°C for three minutes. Finally, the 

concentration of the cDNA is adjusted to 10 ng/µl by diluting the sample 1:4 with RNase-

free H2O. The samples are either stored on ice and used directly for qPCR, or stored at -

20°C until further processing.  

3.2.4.3. Quantitative polymerase chain reaction qPCR 

Quantitative real-time PCR (qPCR) is employed to quantify the expression of APOBEC3A 

and APOBEC3B on mRNA level. The number of APOBEC3A and APOBEC3B transcripts is 

determined relative to the transcripts of the household gene ACTB (β-actin). The 

reactions are set up by first preparing a primer mix according to Table 7.  

Since the APOBEC3A probe is labelled with Hex and the ACTB probe UPL 11 is labelled 

with Fam, both signals can be measured in the same reaction. As the APOBEC3B probe 

UPL 39 also carries a Fam fluorophore, it has to be quantified separately from ACTB. To 

create the qPCR master mix, 1 µl of the primer mix is added to 5 µl 2x LightCycler 480® 

Probes Master and 3 µl PCR-grade H2O per reaction. Then, 1 ng cDNA sample is added 

to 9 µl master mix per well in a 96-well qPCR plate. The plate is covered in sealing foil 

and briefly centrifuged before the transcript levels are determined in a Lightcycler. All 

samples are measured in duplicates. 

  



METHODS  

36 
 

Table 7 Primer mix: concentrations of primers and probes per reaction used for transcript 

detection in qPCR 

Transcript Component 

Stock 

concentration 

[µM] 

Final concentration 

[µM] 

APOBEC3A 

Left Primer APOBEC3A-L3 10 0.75 

Right Primer APOBEC3A-R3 10 0.75 

Probe APOBEC3A-Hex 1 0.1 

ACTB 

Left Primer ACTB-L1 10 0.5 

Right Primer ACTB-R1 10 0.5 

Probe UPL 11 1 0.1 

APOBEC3B 

Left Primer APOBEC3B-L6 10 0.25 

Right Primer APOBEC3B-R3 10 0.25 

Probe UPL 39 1 0.1 

RNase-free H2O n/a Fill up to 1 µl 

3.2.5. Protein methods 

Whole cell lysates of HEK293 cells are produced by different methods depending on 

whether a native protein is required or not for downstream processes. If native protein 

is required (e.g. for a deamination assay, which requires the deaminases to be intact and 

enzymatically active), cells were lysed in 1x HED buffer using sonication. If the protein 

extract is solely used for Western Blotting, the cells can be lysed using SDS. 

3.2.5.1. Whole cell lysate in SDS 

Total protein is extracted from cultured cells by producing whole cell lysates. Cell lysis 

using sodium dodecyl sulphate (SDS) denatures all proteins, so the resulting whole cell 

lysate can be used for SDS-PAGE, but is unsuitable for the deamination assay. Whole cell 

lysate in SDS is produced by centrifuging cultured cells at room temperature for 

5 minutes at 300 rcf, discarding the supernatant, resuspending the cells in 20 µl PBS and 

adding 200 µl lysis buffer. The lysis buffer consists of 40 µl protease inhibitor cocktail in 

960 µl 1% (v/v) SDS. The cell lysate is vortexed thoroughly. In order to homogenise the 

lysate, it is applied to a QIAshredder spin column and centrifuged at room temperature 

for 5 minutes at 20,000 rcf. The flow-through is re-applied to the column and 

centrifuged again. The homogenised lysate is then stored at -20°C until its total protein 

concentration is determined and it is further processed for SDS-PAGE followed by 

Western Blot. If DNA, RNA and protein extracts are required of the same sample, the 

AllPrep DNA/RNA/Protein Mini Kit is used instead (see chapter 3.2.6). 
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3.2.5.2. Whole cell lysate (native) 

Whole cell lysates containing native proteins are used for deamination assays requiring 

enzymatic function, as well as for SDS-PAGE followed by Western Blot. As the addition 

of SDS denatures all proteins, the cells are instead disrupted by sonication. Native whole 

cell lysate is produced by centrifuging cultured cells for 5 minutes at 300 rcf, discarding 

the supernatant and resuspending the cells in 200 µl 1x HED buffer (25 mM HEPES, 

5 mM EDTA, 10% (v/v) glycerol, 1 mM DTT, 4% (v/v) protease inhibitor cocktail, pH 7.8). 

The cells are disrupted in a bath sonicator, which cycles between 30 seconds sonication 

and 30 seconds inactivity for 10 minutes. The samples are cooled to 4°C during 

sonication by adding ice to the sonicator bath. The lysed cells are finally homogenised 

by applying them to QIAshredder spin columns and centrifuging them at room 

temperature for 5 minutes at 20,000 rcf. The homogenised lysate is then stored at -20°C 

until its total protein concentration is determined and it is further processed for a 

deamination assay or SDS-PAGE followed by Western Blot. 

3.2.5.3. Protein concentration assay 

The total protein concentration of all whole cell lysates is determined using the DC 

protein assay according to the manufacturer’s instructions. The assay is a colorimetric 

determination of protein concentration after solubilisation in detergent; essentially it is 

a slightly improved version of the assay described by Lowry et al. (1951) (reviewed by 

Peterson, 1979). A 1:2 dilution series of bovine serum albumin (BSA) from 8 mg/ml to 

0.125 mg/ml in lysis buffer as well as a negative control containing no protein serves as 

a protein standard. This standard curve is included each time the assay is performed. If 

the protein samples contain detergents, a working reagent consisting of 20 µl reagent S 

per 1 ml reagent A is required. A volume of 10 µl per protein sample and protein 

standard are pipetted into a 1.5 ml tube. First, 50 µl working reagent are added to each 

tube, followed by 400 µl reagent B. After 15 minutes incubation at room temperature, 

200 µl of the mixture is transferred into two wells of a clear microtiter plate each. Finally, 

the plate is mixed for 5 seconds in the microplate reader Multiskan Go and the 

absorbance is read at 750 nm. The absorbance values are blank-corrected by subtracting 

the reading of the wells containing no protein. Finally, the protein concentration of the 

samples is calculated using the standard curve as a reference. The slope of the standard 

curve multiplied by the absorbance of a sample equals the protein concentration. 

3.2.5.4. SDS-PAGE and Western Blot 

The proteins of whole cell lysates are separated according to their size using a 

discontinuous sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). 
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A total of 20 µg protein per lane are applied to the SDS-PAGE. The total protein 

concentration of all whole cell lysates used for SDS-PAGE is adjusted to 2.5 µg/µl by 

dilution with 1% (v/v) SDS. Four volumes of the concentration-adjusted whole cell lysate 

are mixed with one volume 5x lane marker reducing sample buffer to a final 

concentration of 2 µg/µl total protein, incubated at 95°C for 5 minutes and briefly 

centrifuged. The protein size marker Page RulerTM Prestained Protein Ladder and 20 µg 

total protein per well are loaded onto an SDS gel submerged in 1x NuPAGE MOPS SDS 

running buffer. The gel is run for 3 minutes at 200 V followed by 1.5 hours at 120 V. 

After separation, the proteins are transferred from the SDS-PAGE to a carrier material. 

Wet (tank) electroblotting is employed to transfer the proteins from the SDS-PAGE to a 

nitrocellulose membrane. Per SDS-PAGE, two sponges, two pieces of filter paper and 

one piece of nitrocellulose membrane are briefly submerged in transfer buffer (1x 

NuPAGETM transfer buffer, 20% (v/v) methanol in mqH2O). In the wet tank transfer 

assembly, the nitrocellulose membrane is located on the anode-facing side of the SDS-

PAGE gel. They are sandwiched between a filter paper and a sponge on either side, with 

the sponges being in direct contact with the electrodes. The assembly is placed in a tank, 

submerged in transfer buffer and exposed to a voltage of 1.5 mA x cm2 for 1 hour. 

After blotting, the gel is stained in Coomassie GelCode™ Blue Stain Reagent for 1 hour 

to detect untransferred protein. The result is recorded using the Gel Doc EZ Imager. 

The protein-bearing nitrocellulose membrane is used to detect specific target proteins 

by probing with antibodies. All following incubation steps are performed while gently 

agitating the membrane on a shaker. Unless otherwise noted, incubation is done at 

room temperature. Firstly, the nitrocellulose membrane is incubated in blocking buffer 

(4% (w/v) skim milk powder, 0.05% Tween-20 in PBS) for one hour in order to block all 

unbound membrane sites and prevent unspecific binding of probes to the membrane. 

Secondly, the membrane is washed three times in PBS-T (0.05% (v/v) Tween-20 in PBS) 

for five minutes each. The primary anti-human APOBEC3G antibody used to probe for 

the APOBEC3A and APOBEC3B expression is diluted 1:2500 in blocking buffer and added 

to the membrane overnight at 4°C. Following three washing steps of five minutes in PBS-

T, the membrane is incubated with the goat anti-rabbit secondary antibody diluted 

1:3000 in blocking buffer for 1 hour at room temperature. The secondary antibody 

recognises the constant region of the primary antibody and is conjugated to horse radish 

peroxidase (HRP). After another three washing steps in PBS-T for five minutes each and 

an additional five minutes washing in PBS, a 1:1 mixture of the enhanced 

chemiluminescence (ECL) detection reagents A and B is added to the membrane. The 
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resulting chemiluminescence signal is either detected using Amersham Hyperfilm ECL X-

ray film or the Intas ECL chemical imager at suitable exposure times. 

In order to allow probing the membrane with additional primary antibodies, the 

membrane is stripped of the original probe and detection antibodies. This is achieved 

by incubating the membrane in 2 ml stripping buffer (67.5 mM Tris-HCl, 2% (w/v) SDS, 

100 mM β-mercaptoethanol in PBS, pH 6.8) for 20 minutes at 55°C. Afterwards, the 

membrane is first washed in PBS-T for five minutes and then incubated in blocking buffer 

for one hour at room temperature. Following three washing steps of five minutes each 

in PBS-T, the membrane is incubated with anti-ACTB IgG-HRP 1:5000 diluted in blocking 

buffer for one hour at room temperature. After the final three washing steps of 

5 minutes PBS-T followed by 5 minutes PBS, a 1:1 mixture of the ECL detection reagents 

A and B is added to the membrane and the chemiluminescence is detected as described 

above. 

3.2.5.5. Deamination assay 

The deamination assay is a method to determine the enzymatic activity of cytidine 

deaminases such as APOBEC3A in a native whole cell lysate adapted from McDougle et 

al. (2013). The deaminase assay is an oligonucleotide cleavage assay of an oligo that 

carries only a single C nucleotide (5’-ATT ATT ATT ATT CTA ATG GAT TTA TTT ATT TAT 

TTA TTT ATT T-AlexaFluor488-3’, Eurofin). The sequence context of this C is in the TC 

target sequence of APOBEC3A. Enzymatically active deaminases can deaminate this 

cytidine to uracil. Addition of uracil-DNA glycosylase cleaves the glycoside bond 

between the uracil base and the deoxyribose, creating an abasic site that can be cleaved 

by addition of NaOH. Thus, in samples containing enzymatically active deaminases, the 

shorter cleavage product can be observed when separating the oligonucleotides 

according to their size on a gelelectrophoresis in TBE buffer (8.9 mM Tris, 8.9 mM boric 

acid, 0.2 mM EDTA). The intact and cleaved oligo are made visible by methylene blue 

staining. Alternatively, it can be detected using the green fluorescence of the Alexa-488 

tag attached to the 3’-end of the oligonucleotide for visualisation. 

First, the total protein concentration of all samples for the deamination assay is adjusted 

to 2 µg/µl by diluting 10 µg of the homogenised native whole cell lysates in nuclease-

free H2O to a final volume of 5 µl. To each sample, 5 µl of deamination master mix is 

added, resulting in a final protein concentration of 1 µg/µl. The concentrations and 

volumes of the components per reaction used in the deamination master mix is detailed 

in Table 8. 
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Table 8 Deamination reaction master mix: components, concentrations and volumes used per 

reaction 

Component 
Stock 

concentration 

Final concentration in 

10 µl reaction 

Volume per 10 µl 

reaction 

Nuclease-free H2O n/a n/a 3 µl 

10x UDG buffer (New England 

Biolabs) 
10x 1x 1 µl 

UDG (New England Biolabs) 5,000 units/ml 125 units/ml 0.25 µl 

RNase A (QIAgen) 4 mg/ml 0.1 mg/ml 0.25 µl 

Alexa-488 labelled 

oligonucleotide (Eurofin) 
1,000 ng/µl 50 ng/µl 0.5 l 

The deamination reactions are incubated at 37°C for 2 hours. Afterwards, 2 µl 1M NaOH 

are added to each 10 µl reaction, and the samples are incubated for 10 minutes at 95°C 

before they are immediately cooled on ice. Finally, the samples are mixed with an equal 

volume (12 µl) of 2x formamide buffer (80% (v/v) formamide, 0.05% (w/v) bromophenol 

blue, 0.01% (w/v) xylene blue in 1x TBE buffer), which serves as loading buffer for the 

gel electrophorese.  

During the incubation time of the deamination reaction, the 15% acrylamide/urea gel 

for the gel electrophoresis of the samples is prepared. This gel is capable of resolving 

18-30 nucleotide long oligonucleotides. For one gel measuring 7 cm x 10 cm x 0.1 cm, 

7.5 ml Rotiphorese Gel 30 (37.5:1) acrylamide/bis-acrylamide solution is mixed with 

7.2 g urea and 1.5 ml 1x TBE buffer. This mixture is incubated at 37°C while shaking for 

approximately 10-15 minutes, or until the urea is completely dissolved. After the 

solution has cooled down to room temperature, 75 µl 10% ammonium persulphate 

solution (APS) and 7.5 µl N,N,N',N'-tetramethylethane-1,2-diamine (TEMED) are added 

to start polymerisation of the gel. After briefly mixing the solution by swirling, the gel is 

immediately poured into an empty standard gel cassette, and a comb is placed on the 

top of the cassette. Best results are generally accomplished with a 12-well gel. The gel 

should solidify within 10-15 minutes at room temperature. 

Once the gel is completely solidified, it is placed in a gel running chamber filled with 

1x TBE buffer. After a pre-run of the gel without the deamination assay samples for 

30 minutes at 200 V, the wells of the gel are rinsed to remove unpolymerised material 

by pipetting the contents of each well up and down a few times and then aspirating the 

buffer in the wells until no more unpolymerised material is visible. The gel is loaded with 

10 µl of each deamination reaction before it is run for 1.5 hours at 200 V.  

For visualisation of the substrate and product oligonucleotides, the gel is stained with 

methylene blue (0.02 % (w/v) methylene blue in 1x TBE buffer) for 5 minutes, followed 

by several washing steps in water until non-specific staining is removed. An image of the 
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methylene blue stained gel is recorded using the Gel Doc EZ Imager with the settings for 

Coomassie blue stained gels. 

3.2.6. Simultaneous isolation of total genomic DNA, RNA and protein from the same 
sample 

Simultaneous extraction of total genomic DNA, total RNA and total protein from the 

same sample cell or tissue sample is done with the QIAgen AllPrep DNA/RNA/Protein 

Mini Kit according to manufacturer’s instructions. The disruption and homogenisation 

steps depend on the starting material.  

If cells serve as starting material, up to 5x106 cells are collected by centrifugation at 

300 rcf for 5 minutes at room temperature. All subsequent centrifugation steps are 

done at 20,000 rcf. The supernatant is discarded, and the pelleted cells are disrupted by 

the addition of 350 µl buffer RLT. The cell lysate is homogenised by loading it onto a 

QIAshredder spin column and centrifuging it for 2 minutes. The homogenised lysate is 

then used for AllPrep extraction. 

If tissue serves as starting material, a 30 mg sample is cut off a frozen tumour using a 

clean scalpel. During the handling and weighing, the tumour is kept frozen by keeping it 

on dry ice whenever possible. The 30 mg tumour sample is placed in 600 µl buffer RLT 

in a Precellys tissue lysis tube containing ceramic beads, and disrupted and homogenised 

using a Precellys tissue lyser for twice 30 seconds at 5,000 Hz with a 5 second break in 

between. After disruption, the lysate is centrifuged for 3 minutes, and the entire 

supernatant is then used for AllPrep extraction. 

The disrupted and homogenised lysate of cells or tissue is transferred to an AllPrep DNA 

spin column and centrifuged for 30 seconds. The AllPrep DNA spin column is placed in a 

fresh 2ml collection tube and stored at 4°C for later DNA purification, while the flow-

through is used for RNA and protein purification. Depending on the amount of 

buffer RLT used for the starting material, 250 µl (if 350 µl buffer RLT is used) or 400 µl (if 

600 µl buffer RLT is used) 96-100% ethanol is added and mixed by pipetting. Up to 700 µl 

of the sample is transferred to an RNeasy spin column and centrifuged for 30 seconds. 

The flow-through is transferred to a 2 ml tube for later protein purification, while 700 µl 

buffer RW1 is added to the RNeasy spin column. After centrifugation for 30 seconds, the 

flow-through is discarded. The column is washed twice with 500 µl RPE buffer, followed 

first by 30 seconds and then 2 minutes of centrifugation and disposal of the flow-

through. After one more centrifugation step for 1 minute to dry the membrane, the 

RNeasy spin column is placed in a new 1.5 ml collection tube, and 30 µl RNase-free water 

is pipetted on the centre of the spin column membrane. The total RNA is eluted by 
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centrifugation for 1 minute. Finally, the RNA concentration and the ratio of absorption 

at 260 nm and 280 nm wavelength as a measure of RNA purity are determined using the 

NanoDrop spectrophotometer. A 260 nm/280 nm ratio of 2.0 is generally considered 

ideal for RNA, and RNA extracts with a ratio between 2.0 and 2.2 are accepted as 

possessing a sufficient quality for further processing. The sample stored at -80°C until 

further processing. 

Protein is precipitated from the flow-through from RNA purification mentioned above. 

One volume (either 600 µl or 1000 µl) buffer APP are added to the flow-through, and 

the samples are mixed vigorously by pipetting up and down and then incubated for 

10 minutes at room temperature to precipitate the total protein content. Then, the 

samples are centrifuged for 10 minutes, and the supernatant is decanted. The protein 

pellet is washed in 500 µl 70% ethanol and centrifuged again for 1 minute. The 

supernatant is carefully aspirated, and the protein pellet is air-dried for 5-10 minutes at 

room temperature. The dried pellet is dissolved in 250 µl lysis buffer (960 µl 

1% (v/v) SDS and 40 µl protease inhibitor cocktail) by mixing vigorously and incubated 

for 5 minutes at 95°C. Then, the sample is centrifuged for 1 minute to pellet residual 

insoluble material, and the supernatant is stored at -20°C until it is used for protein 

concentration determination and SDS-PAGE followed by Western Blot. 

Finally, the genomic DNA is purified from the AllPrep DNA spin column mentioned 

above. The column is washed with 500 µl buffer AW1, centrifuged for 30 seconds and 

the flow-through is discarded. Then, 500 µl buffer AW2 are added to the column, it is 

centrifuged for 2 minutes and the flow-through is discarded. In order to dry the 

membrane of the column, the centrifugation is repeated for 1 minute. The genomic DNA 

is eluted by adding 100 µl buffer EB pre-heated to 70°C to the centre of the column 

membrane, incubating it for 2 minutes at room temperature and centrifuging it for 

1 minute. The elution step is then repeated with an additional 50 µl buffer EB in the 

same way to elute further DNA. Finally, the DNA concentration and the ratio of 

absorption at 260 nm and 280 nm wavelength as a measure of DNA purity are 

determined using the NanoDrop spectrophotometer. A 260 nm/280 nm ratio of 1.8 is 

generally considered ideal for DNA, and DNA extracts with a ratio between 1.8 and 2.0 

are accepted as possessing a sufficient quality for further processing. The sample is 

stored at -20°C until further processing. 

3.2.7. Mouse xenograft growth and characterisation 

Six different HEK293 clones are injected into mice to characterise their tumour growth. 

Four of these clones had been exposed to APOBEC3A-mediated mutagenesis and two to 

the enzymatically inactive APOBEC3AE72A variant previous to the xenograft experiment. 
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3.2.7.1. Xenograft mouse model 

All animal work in this study was done in cooperation with Karin Müller-Decker, and all 

animal handling was performed by Brigitte Steinbauer. A total of 52 female NOD scid 

gamma (NSG) mice are injected with xenografts for this study. The cells are expanded in 

cell culture, harvested and resuspended in a total of 300 µl PBS. Shortly before injection, 

the cell suspensions are mixed with an equal volume of matrigel. Each HEK293 clone is 

injected into eight NSG mice. Four of these mice are injected with 5x104 cells, the other 

four with 3x105 cells in a total volume of 100 µl 1:1 matrigel and PBS mixture. As an 

additional control, 3x105 standard HEK293 Flp-In T-Rex cells in a total volume of 100 µl 

1:1 matrigel and PBS mixture are injected into four mice. The size of the xenograft 

tumours is determined every 3-4 days with a calliper. Once the tumour reaches a 

diameter of 1.4 cm in any dimension, the experiment is terminated and the mice are 

killed by cervical dislocation. Pictures of the mice bearing the tumours are recorded. Of 

each mouse, the entire tumour as well as tissue samples of lung, liver and kidney are 

collected. The draining lymph nodes are also collected if they are found to be enlarged. 

The weight of the tumour is recorded. A quarter of the tumour as well as the lung, kidney 

and liver tissue samples are fixed in formalin and embedded in paraffin. Another quarter 

of the tumour is prepared for cryosections. The remaining half of the tumour is flash-

frozen in liquid nitrogen, to be used for extraction of total DNA, RNA and protein.  

3.2.7.2. Creating tumour sections 

One half of each xenograft tumour is formalin-fixed and paraffin-embedded (FFPE). In 

order to assess tumour morphology and perform immunohistochemistry, the tumours 

are cut into sections. The paraffin blocks containing the tumour samples are cooled to 

4°C on a cooling plate, and then cut into 0.5 µm thick sections using a rotary microtome. 

The sections are allowed to relax and straighten out on a 37°C water bath, before they 

are mounted on Superfrost Plus microscope slides. The slides with the tumour sections 

attached to them are dried at 37°C overnight.  

3.2.7.3. Haematoxylin eosin stain 

FFPE tumour sections are stained with haematoxylin and eosin (HE) to assess the 

morphology of the xenograft tumours. First, the sections are deparaffinised according 

to the deparaffinisation series detailed in Table 9.  
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Table 9 Deparaffinisation series steps and durations 

Deparaffinisation steps Duration 

Xylene 5 minutes 

Xylene 5 minutes 

100% ethanol 3 minutes 

100% ethanol 3 minutes 

3% H2O2 in 70% ethanol 10 minutes 

mqH2O 1 minute 

The slides are then submerged in haematoxylin until the tumour sections are suitably 

stained, followed by washing 10 minutes in running tap water to fix the stain. Then, the 

sections are submerged in eosin until a good counterstain is evident, and briefly washed 

in deionised H2O. After staining, the sections are dehydrated in a dehydration series 

detailed in Table 10. The stained sections are imaged with the Cell observer microscope 

at 100x magnification. The overlapping images are stitched together to an image of the 

entire tumour section using the Zeiss Zen software. 

Table 10 Dehydration series steps and duration 

Dehydration steps Duration 

70% ethanol briefly 

96% ethanol briefly 

100% ethanol briefly 

100% ethanol 2 minutes 

Xylene briefly 

Xylene 2 minutes 

The HE-stained sections are used to determine tumour morphology and estimate how 

much of the tumour is necrotic. Estimation of the necrotic fraction is done by Jochen 

Heß. 

3.2.7.4. Immunohistochemistry 

Ki-67 is a marker for cell proliferation. It is used to determine the fraction of proliferating 

cells in a population, called the proliferative index. Ki-67 positive cells are detected by a 

monoclonal anti-Ki-67 antibody in both immunofluorescence stains of cell culture 

samples and immunohistochemistry stains of tumour sections. This assay is used to 

determine the proliferative index of the xenograft tumours grown in mice. 

Formalin-fixed paraffin-embedded tumour sections are stained for presence of the 

proliferation marker Ki-67. First, the sections are deparaffinised according to the 

deparaffinisation series detailed in Table 9. Antigen retrieval is done by placing the slides 

in citrate buffer (10 mM tri-sodium citrate 2-hydrate in deionised H2O, adjusted to 
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pH 6.0 with citric acid) pre-heated to 100°C and boiling them for 10-20 minutes in a 

steam cooker. The slides submerged in citrate buffer are allowed to cool down to room 

temperature for approximately 20-40 minutes. Then, the slides are washed in PBS for 

5 minutes while shaking the chamber. The tumour sections are circled with a 

hydrophobic pen, placed in a wet chamber and incubated with normal serum from the 

ImmPRESS HRP anti-rabbit detection kit for 20 minutes at room temperature. After 

removal of the normal serum, the sections are not washed but immediately incubated 

with rabbit monoclonal anti-Ki-67 IgG diluted 1:300 in PBS. After incubation at room 

temperature for 1 hour, the primary antibody is removed and the slides are washed 

twice in PBS for 5 minutes at room temperature. The sections are incubated with an 

anti-rabbit IgG peroxidase-conjugated secondary antibody from ImmPRESS HRP anti-

rabbit detection kit for 20 minutes at room temperature, before again being washed 

twice in PBS for 5 minutes. The 3,3’-diaminobenzidine (DAB) substrate producing a 

brown stain in the presence of peroxidase is prepared from the Vector Laboratories DAB 

substrate kit for peroxidase according to manufacturer’s instructions. One drop buffer, 

two drops DAB and one drop H2O2 solution are added to 2.5 ml mqH2O. The slides are 

incubated with the DAB substrate mixture until a sufficient stain develops. The stained 

slides are incubated for 3 minutes in 50 mM NaHCO3 and briefly washed in deionised 

H2O before being submerged in haematoxylin until a good counterstain is evident. 

Finally, the slides are washed in running tap water for 10 minutes. After staining, the 

sections are dehydrated in the dehydration series detailed in Table 10. 

The dehydrated sections are covered with Eukitt (Kindler GmbH) and a cover slip and 

allowed to dry. Imaging of the stained sections is done with the Cell observer microscope 

at 100x magnification. The overlapping images are stitched together to an image of the 

entire tumour section using the Zeiss Zen software. 

The proliferative index of tumours is determined by immunohistochemistry of formalin-

fixed paraffin-embedded (FFPE) sections and estimating the percentage of Ki-67 positive 

cells in living tumour tissue. Necrotic areas are excluded from the estimation of the 

proliferative index. Estimation of the proliferative index of tumour sections is performed 

by Jochen Heß. 

3.2.8. Patient sample acquisition and analysis 

The tumour samples of head and neck squamous cell carcinoma (HNSCC) patients as 

well as their clinical data are kindly provided by Jochen Heß. They form the basis of the 

prospective study HIPO-POP019 to elucidate the molecular mechanisms of treatment 

failure in HNSCC patients.  
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3.2.8.1. Data and material available from HNSCC patients 

All HNSCC samples consist of at least 50% tumour tissue. Whole exome sequences of all 

tumours and corresponding healthy tissue references are available. Mutations in the 

tumours are called by comparing the tumour whole exome sequence to that of the 

healthy tissue reference. The HPV status of all tumours is determined by Lea Schröder 

and Dana Holzinger using Multiplex Genotyping to detect the DNA of 51 different HPV 

types with β-globin as a control. The samples are considered HPV-positive if HPV DNA is 

detected, and HPV-negative if HPV DNA is absent but β-globin is detected. In addition, 

HPV RNA of E6*I (the spliced mRNA of HPV E6) and ubiquitin C mRNA as internal control 

are detected using the luminex platform. The samples are considered HPV-positive if 

HPV E6*I mRNA is detected, and HPV-negative if HPV E6*I mRNA is absent but ubiquitin 

C mRNA is detected. A tumour is considered HPV-driven if it is positive for both HPV DNA 

and HPV E6*I mRNA.  Extraction of the mutational signatures from tumour exomes is 

done by non-negative matrix factorisation. The analysis of the mutational landscape in 

all HNSCC samples is done by Marc Zapatka and Mario Hlevnjak. Furthermore, 

transcriptome data is available from a microarray. RNA extracts of the tumours are also 

provided and are used to quantify transcript levels of APOBEC3A and APOBEC3B relative 

to ACTB in a gene-specific qPCR (see chapters 3.2.4.2 and 3.2.4.3 for details on reverse 

transcription and qPCR). 

3.2.8.2. Principal component analysis 

A principal component analysis of the total mutational load, the APOBEC3A and 

APOBEC3B expression levels and the percentage of APOBEC3-mediated mutations out 

of all mutations is performed and the resulting data visualised in a heatmap using the 

ClustVis webtool (http://biit.cs.ut.ee/clustvis/ and described by Metsalu and Vilo, 2015). 

The default settings are used for principal component analysis and generation of the 

heatmap. The parameters used for principal component analysis are first converted into 

z-scores by subtracting the mean μ of the parameter over all samples from the value x 

for a parameter in a specific sample, and dividing the difference by the standard 

deviation σ for this parameter. 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑥 −  𝜇

𝜎
 

This is done separately for each of the parameters in question. In addition to the z-scores 

for the parameters mentioned, all samples are annotated with their HPV-status, lymph 

node involvement and extracapsular spread status where available and included in the 

heat map.  

http://biit.cs.ut.ee/clustvis/
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4. Results 
The HEK293 cells carrying isogenically inserted and doxycycline (dox)-regulated 

transgenes used in this study had previously been established by Ann-Mareen Franke. 

Previous experiments by Franke et al. (unpublished) provided experimental proof that 

APOBEC3A causes a mutational signature in the genome of human HEK293 cells, while 

no signature was found in HEK293 cells exposed to the enzymatically inactive variant 

APOBEC3AE72A. This APOBEC3A-mediated mutational signature is characterised by C-to-

T and C-to-G mutations in a 5’-TC context, and it is a combination of the two published 

signatures 2 and 13 that had previously been attributed to 5’-TC-specific APOBEC3 

family members in general (Alexandrov et al., 2013b; Alexandrov et al., 2013a). The 

HEK293 cells carrying the dox-regulated APOBEC3A transgenes were used as a model in 

this study to determine the effect of APOBEC3A-mediated mutagenesis on tumour 

growth of immortalised and transformed cells in vitro and in vivo. 

4.1. APOBEC3A-mediated mutagenesis in HEK293 cells leads to a 
genetically mixed population 

This study made use of five cell populations created by Ann-Mareen Franke. Out of these 

five populations, the three populations called APOBEC3A pop. 01, APOBEC3A pop. 12 

and APOBEC3A pop. 20 carry a transgene encoding functional APOBEC3A. Two cell 

populations were included as controls. The first control was a cell population called 

APOBEC3AE72A pop. carrying a transgene that encodes an enzymatically inactive variant. 

The second control was a population of parental cells called HEK293 pop. All cell 

populations had been expanded from single cells containing the respective transgenes. 

APOBEC3A pop. 01 as well as APOBEC3AE72A pop. have previously been used in the study 

by Ann-Mareen Franke. During the course of this study, the cell populations cultured in 

certified dox-free FCS were exposed to basal expression levels of APOBEC3A and 

APOBEC3AE72A, respectively. After an additional transgene expression boost by dox 

treatment for three days, whole genome sequencing and signature extraction showed 

that APOBEC3A pop. 01 carried the APOBEC3A mutational signature, whereas it was 

absent in APOBEC3AE72A pop. before the start of this study. The other two APOBEC3A 

populations, APOBEC3A pop. 12 and 20, were been employed in the previous study and 

were derived from independent clones after transgene insertion. It was thus assumed 

that the time they had been exposed to basal APOBEC3A expression was shorter, and 

consequently that they had a lower mutational load caused by APOBEC3A-mediated 

mutagenesis than APOBEC3A pop. 01 at the beginning of the study presented here. 
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4.1.1. Prolonged mutational pressure by APOBEC3A can lead to loss of APOBEC3A 
activity by various mechanisms 

Expression and/or activity of endogenous deaminases in HEK293 cells may create 

background cytidine deamination that can result in mutations. In order to exclude an 

influence of endogenous deaminases on the genome, the parental HEK293 cells were 

tested for cytidine deaminase activity as well as expression of endogenous APOBEC3A 

and APOBEC3B. Endogenous APOBEC3A or APOBEC3B expression was neither observed 

at protein level (Figure 5A) nor at mRNA level (Figure 5B) in parental HEK293 cells. An 

absence of background deaminase activity in the 5’-TC sequence motif by other cytidine 

deaminases was confirmed in the deamination assay (Figure 5C). 

 

Figure 5 HEK293 cells do not show endogenous APOBEC3A (A3A) expression or activity, but the 

APOBEC3A transgene shows basal expression and deaminase activity that can be increased by dox 

treatment. The cell populations were cultured for three days either with or without 1 µg/ml dox. 

A Basal and dox-induced APOBEC3A (A3A) transgene expression in all HEK293 cell populations. 

Whole cell lysates in 1% SDS where separated in an SDS-PAGE and transferred to a nitrocellulose 

membrane in a Western blot. The membrane was probed with a polyclonal rabbit anti-APOBEC3G 

antibody which cross-reacts with APOBEC3A as primary and a goat anti-rabbit HRP conjugate as 

secondary antibody. ACTB served as a loading control. B Endogenous APOBEC3B (A3B) mRNA 

expression in all HEK293 cell populations. Total mRNA was extracted and reverse transcribed into 
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cDNA. APOBEC3B expression was determined in a gene-specific qPCR and normalised to ACTB 

mRNA expression. Expression of basal and dox-induced APOBEC3BD316N transgene was included as 

a positive control. C Basal and dox-induced deaminase activity in all HEK293 cell populations as 

determined in the oligonucleotide cleavage assay. Deaminase activity leads to the cleavage of the 

oligonucleotide substrate into a shorter product. 

Based on these parental cells, Ann-Mareen Franke had established the cells carrying 

stably integrated APOBEC3 transgenes. In all cell populations, the transgenes showed a 

basal level of transgene expression in the absence of dox, which could be enhanced by 

dox treatment (Figure 5A). Dox-induced expression of the functional APOBEC3A 

transgene caused a strong induction of deaminase activity. No deaminase activity was 

observed in cells expressing the enzymatically inactive APOBEC3AE72A (Figure 5C). The 

constant basal expression implies that constant APOBEC3A-mediated mutagenesis 

occurs in the cells carrying the enzymatically active transgene. This basal expression 

likely also causes cytidine deamination that is below the detection threshold of the 

deamination assay, but still able to mutagenise the genome at a low rate over a 

prolonged period of time. 

In order to test whether all cells in each of the populations expressed the transgene, 

APOBEC3A and APOBEC3AE72A expression after dox induction was analysed at single cell 

level. After two days of culturing the cells in medium containing 1µg/ml dox, APOBEC3A 

expression was detected by immunofluorescence (Figure 6A). The enzymatically inactive 

variant APOBEC3AE72A was expressed in all cells, whereas on average only 70% of the 

cells expressed the enzymatically active APOBEC3A transgene (Figure 6B).  

There are two possible explanations why the APOBEC3A cell populations were 

heterogeneous for transgene expression: either the expression levels were below the 

detection limit, or the cells lost transgene expression entirely. The loss of transgene 

expression in a fraction of the cells was observed in all three APOBEC3A populations, 

but not in the APOBEC3AE72A population. This hints at a gradual loss of APOBEC3A 

expression in the population, which may be caused by sustained APOBEC3A-mediated 

mutagenesis, the cyto- and genotoxic effects is causes and the resulting selection 

processes. 

In order to test whether the APOBEC3A-mediated mutational signatures 2 and 13 can 

still be observed in a cell population that is heterogeneous for transgene expression, 

total genomic DNA was extracted and the whole genome sequenced. The APOBEC3A 

mutational signatures were detected in the whole genome sequence of the cell 

population APOBEC3A pop. 01, although 20% of the cells no longer expressed 

APOBEC3A even after dox induction (Figure 6C). 
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Figure 6 APOBEC3A transgene expression is absent in a fraction of the APOBEC3A-mutagenised 

HEK293 cell populations. A APOBEC3A (A3A) transgene expression at single cell level after dox 

induction. The cell populations had been cultured on poly-Lys coated cover slips for two days with 

1 µg/ml dox. APOBEC3A expression was detected in an immunofluorescence stain with a polyclonal 

rabbit anti-APOBEC3G antibody which cross-reacts with APOBEC3A as primary and a goat anti-

rabbit AlexaFluor 594 conjugate as secondary antibody. Hoechst 33342 served as counterstain. B 

Quantification of APOBEC3A-expressing cells (mean ± standard deviation) in immunofluorescence 

images. For each cell population, the fraction of APOBEC3A-positive cells out of the total number 

of cells in percent was determined. Three images of each cell line were quantified. C APOBEC3A 

mutational signatures 2 and 13 can be detected in a cell population which is heterogeneous for 

APOBEC3A expression. Total DNA extracted from APOBEC3A pop. 01 was whole genome 

sequenced, and an extraction of mutational signatures was performed. The stacked bars represent 

the number of somatic mutations ascribed to each of the mutational signatures detected in the 

cell population. 

If the loss of APOBEC3A expression is indeed gradual, the fraction of cells which lost the 

transgene expression should increase over time. If it is caused by sustained APOBEC3A-

mediated mutagenesis and selection, an increased rate of mutagenesis as well as an 

increase in selection pressure should speed up the loss of transgene expression. Both 

mutagenesis and selection can be increased by increasing APOBEC3A expression. Thus, 

the three APOBEC3A populations as well as one APOBEC3AE72A and one parental HEK293 
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population were exposed to basal or dox-induced transgene expression over 11 weeks 

(22 passages). 

Cells that had been subjected to high mutagenic pressure caused by dox-induced 

APOBEC3A expression over a course of 11 weeks completely lost all transgene 

expression at the end of this experiment. Cells that had been subjected to lower 

mutagenic pressure caused by basal expression of APOBEC3A showed a loss of basal 

transgene expression and greatly reduced transgene expression after dox induction. The 

expression levels of the enzymatically inactive APOBEC3AE72A mutant remained 

unchanged over time (Figure 7A). As expected, cell populations which lost the 

expression of the enzymatically active APOBEC3A transgene also lost deaminase activity 

(Figure 7B). These observations suggest that the loss of APOBEC3A expression is indeed 

gradual, and as it depends on the APOBEC3A dose, it was most likely caused by 

APOBEC3A-mediated mutagenesis and selection processes.  

One potential reason for the loss of APOBEC3A expression may be either the loss or 

mutagenesis of the APOBEC3A transgene inserted into the HEK293 genome. Thus, a 

transgene-specific PCR was employed to determine the presence and sequence integrity 

of the APOBEC3A transgene. It showed that the transgene itself was absent in the 

APOBEC3A pop. 12 population (Figure 7C). Sequencing of the PCR products revealed that 

the other two APOBEC3A populations, pop. 01 and pop. 20, both carried a different 

premature stop codon in the transgene sequence (Figure 7D). Both stop codons were 

caused by C→A mutations in a 5‘-TC context and thus match the APOBEC3 mutational 

signature 13. The loss of APOBEC3A expression in the cell populations with the 

premature stop codon may be due to nonsense-mediated decay of the mRNA. 

Alternatively, this mutation might also result in loss of the epitope, so that the protein 

can no longer be detected in Western Blot. Overall, the activity of the APOBEC3A 

transgene was lost due to various mechanisms, while the enzymatically inactive mutant 

remained unchanged. 
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Figure 7 APOBEC3A (A3A) activity in HEK293 cell culture is lost over time due to different 

mechanisms after inducing a mutational signature. For 11 weeks, the cells were either exposed to 

basal transgene expression (without dox during long-term culture) or to enhanced transgene 

expression (by adding 1 µg/ml dox to the medium during long-term culture). The cell populations 

were additionally cultured for three days either with or without 1 µg/ml dox before extraction of 

protein samples. A APOBEC3A expression at the start (week 0) and the end (week 11) of the long-

term culture. Whole cell lysates in 1% SDS where separated in an SDS-PAGE and transferred to a 

nitrocellulose membrane in a Western blot. The membrane was probed with a polyclonal rabbit 

anti-APOBEC3G antibody which cross-reacts with APOBEC3A as primary and a goat anti-rabbit HRP 

conjugate as secondary antibody. ACTB served as a loading control. B Basal and dox-induced 

deaminase activity in all HEK293 cell populations as determined in the oligonucleotide cleavage 

assay. Deaminase activity leads to the cleavage of the oligonucleotide into a shorter product. C All 

cell populations at the start (week 0) and end (week 11) of the long-term culture were tested for 

the presence of the APOBEC3A transgene. A transgene-specific PCR was performed on an extract 

of total genomic DNA of all cell populations at the beginning and end of the long-term culture. The 

PCR products were separated and visualised by gel electrophoresis. D Potentially APOBEC3A-

mediated mutations (in bold) causing premature stop codons (underlined) in the transgene-

specific PCR products of APOBEC3A pop. 01 (left) and APOBEC3A pop. 20 (right). The mutations 

were identified by Sanger sequencing of the transgene-specific PCR products. E APOBEC3 

mutational signatures 2 and 13 can be detected in all APOBEC3A cell populations despite the 

absence of APOBEC3A activity. Total DNA extracted from APOBEC3A pop. 01, 12 and 20 as well as 

the APOBEC3AE72A population as control were whole genome sequenced. All cell populations used 

for whole genome sequencing had been kept under dox-induced transgene expression during the 

long-term culture. An extraction of mutational signatures was performed. The stacked bars 

represent the number of somatic mutations ascribed to each of the mutational signatures detected 

in the cell population. 

Two processes could have led to the absence of functionally active APOBEC3A 

transgene. The first possibility is that there were a few cells in the original population 

that lost functional APOBEC3A shortly after it was inserted. These cells would have an 

advantage over all cells expressing functional APOBEC3A, as they would not experience 

the acute negative effects caused by APOBEC3A activity, such as increased cell cycle 

arrest and apoptosis. Due to this selection advantage, they could have overgrown all 

other cells. In this case, as the cells had been exposed to APOBEC3A-mediated 

mutagenesis only for a very short time, detection of the APOBEC3A mutational signature 

should not be possible.  

The other possibility is that the cells were subjected to APOBEC3A-mediated 

mutagenesis and carry the resulting mutational signature. In this case, the APOBEC3A 

activity was lost over time because it was selected against due to its negative acute 

effects. Despite the absence of continuing APOBEC3A activity, a large number of somatic 

mutations were found in the APOBEC3A-mutagenised populations, and most of these 

mutations are due to the APOBEC3A mutational signatures 2 and 13. These mutational 

signatures are entirely absent in the APOBEC3AE72A control population, and the total 

mutational load is also 7-fold lower than in APOBEC3A population 01 and 3-fold lower 

than APOBEC3A population 20 (Figure 7E). Due to the loss of functional transgenic 
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APOBEC3A, the cells were no longer subjected to APOBEC3A-mediated deamination and 

can thus be considered genetically stable, at least concerning APOBEC3A-driven 

mutagenesis.  

 

Figure 8 Dynastic tree illustrating the relationships between the original HEK293 cell populations 

containing the APOBEC3A transgene, the cell populations resulting from the different treatment 

during long-term culture, the single cell clones and the mouse xenografts. Three independent 

APOBEC3A (A3A) populations as well as one APOBEC3AE72A (A3AE72A) population and one 

population of parental HEK293 cells were cultured either with 1 µg/ml dox (denoted by *) or 

without 1 µg/ml dox (denoted by °) over a period of 11 weeks. The cell populations printed in bold 

italics were whole genome sequences, and the mutational signatures were extracted (results see 

Figure 7E). A total of 26 single cells were isolated and expanded from the populations after the 

long-term culture. The six clones c05, c11, c15, c16, c18 and c19 printed in bold were whole 

genome sequenced. They were furthermore used to verify the stability and reproducibility of the 

proliferation and migration phenotypes that had been tested in all clones, and injected into eight 

mice each as xenografts. 
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The resulting cell populations consisted of varying numbers of clones, each carrying a 

distinct set of mutations and therefore showing differences in phenotype. The 

phenotype of the population was thus defined by its clonal composition. The clonal 

composition of a cell population depends on selection processes, and may change under 

subtly different culture conditions. To prevent effects on the phenotype by changes in 

the clonal composition of the culture, single cell clones from each population were 

isolated and expanded. A total of 26 clones were isolated. The exact relationships 

between the different populations and clones are depicted in Figure 8.  

All clones were tested for transgene expression after dox treatment. None of the clones 

derived from the cell populations that had been subjected to APOBEC3A-driven 

mutagenesis showed any expression of the transgene even after dox induction. In 

contrast, the clones derived from the APOBEC3AE72A cultures all retained the ability to 

express the transgene after dox induction (Figure 9A). This confirms that no more 

APOBEC3A-mediated mutagenesis occurs in these clones, and they are genetically stable 

in this respect. The absence of APOBEC3A expression is caused by a loss of the transgene 

in 16 out of the 17 APOBEC3A clones (Figure 9B). The sequence of the transgene was 

found to carry a premature stop codon in c16, which still contained the transgene 

sequence. As in the underlying cell population, the mutation causing the premature stop 

codon matches the APOBEC3 mutational signature 13 (Figure 9C).  

The clones were compared to the populations they were derived from. This confirmed 

that APOBEC3A activity was lost by different mechanisms within the same population. 

For instance, the population APOBEC3A pop. 20 contained transgenes carrying a 

premature stop codon (Figure 7D). Two out of three clones derived from this population 

(c14 and c17) lost the transgene, while the remaining clone (c16) shows the same 

premature stop codon mutation found in the population (Figure 9B and C). This implies 

that a part of the population lost APOBEC3A activity due to loss of the transgene, while 

another part received a mutation resulting in the premature stop codon. 

As none of the clones still contained functional APOBEC3A, proof was needed that they 

had been exposed to enzymatically active APOBEC3A in the past and contained the 

APOBEC3A mutational signature. Out of the 26 clones, a total of 6 were whole genome 

sequenced. Clones c5, c11, c15 and c16 were derived from populations that had been 

exposed to APOBEC3A and that carry the APOBEC3 mutational signatures. The clones 

should therefore also carry the APOBEC3 mutational signatures. Clones c18 and c19 

were included as controls, as they had only been subjected to the enzymatically inactive 

APOBEC3AE72A and should therefore have a much lower total mutational load and not 

contain the APOBEC3A mutational signatures.  
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Figure 9 HEK293 clones derived from APOBEC3A-mutagenised cell populations are genetically 

stable regarding further APOBEC3A-mediated mutagenesis after they acquired the APOBEC3 

mutational signature. A Dox-induced APOBEC3A (A3A) expression of all single clones. The clones 

were cultured with 1 µg/ml dox for three days. Whole cell lysates in 1% SDS where separated in an 

SDS-PAGE and transferred to a nitrocellulose membrane in a Western blot. The membrane was 

probed with a polyclonal rabbit anti-APOBEC3G antibody which cross-reacts with APOBEC3A as 

primary and a goat anti-rabbit HRP conjugate as secondary antibody. ACTB served as a loading 

control. Dox-induced APOBEC3AE72A expression and a sample containing no cell lysate served as 

positive (pos) and negative (neg) controls. B All single clones were tested for the presence of the 

APOBEC3A transgene. A transgene-specific PCR was performed on an extract of total genomic DNA 

of all cell populations at the beginning and end of the long-term culture. The PCR products were 

separated and visualised by gel electrophoresis. C Potentially APOBEC3A-mediated mutations (in 

bold) causing a premature stop codon (underlined) in the transgene-specific PCR product c16. The 

mutation was identified by Sanger sequencing of the transgene-specific PCR product. 

However, the extensive number of mutations found in the HEK293 clones and the large 

number of structural changes such as loss of heterozygosity made a comparison 
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between the whole genome sequences of the clones and the whole genome of the 

original parental population impossible. This was further complicated by the differences 

in sequencing depth: the original parental HEK293 cell population was sequenced at a 

10x coverage, whereas the clones were sequenced at 30x coverage. As a result, 

mutations could not be confidently called, and an extraction of mutational signatures 

was not possible. 

4.1.2. APOBEC3A-mediated mutagenesis does not affect mean cellular proliferation 
and migration in HEK293 cell populations 

Following the confirmation that the clones were genetically stable concerning additional 

APOBEC3A-mediated mutagenesis, they were characterised concerning their 

proliferation and migration phenotypes. The proliferation phenotype was characterised 

as the proliferative index, i.e. the fraction of Ki-67 positive cells out of all living cells. The 

migration phenotype was described by the speed at which the cells closed a scratch in 

an otherwise confluent cell layer. In order to exclude the effect of cell proliferation on 

scratch closure, cell division was inhibited by the addition of mitomycin C to the cell 

culture medium during the scratch assay. 

Differences in proliferation and migration phenotype were observed between clones 

derived from the same underlying population. These phenotypic differences between 

clones suggest an underlying phenotypic variability within each cell population. Only the 

APOBEC3A-mutagenised clone c15 showed a significantly higher proliferative index than 

was observed in any of the clones derived from the APOBEC3AE72A or parental HEK293 

control populations. The proliferation phenotypes of all other clones that had been 

exposed to APOBEC3A were consistent with the phenotypic variability present within 

the controls (Figure 10A). None of the APOBEC3A-mutagenised clones displayed a 

migration speed outside the range observed in the controls (Figure 10B). 

In order to determine the stability and reproducibility of the phenotypes of different 

clones as well as the phenotypic differences between clones, the proliferation and 

migration of the same six clones c5, c11, c15, c16, c18 and c19 that had been selected 

for whole genome sequencing were repeatedly characterised in three additional 

independent experiments. In contrast to previous experiments, cell migration was 

determined with a modified experimental setup. Regarding the proliferative index, the 

results in both the original characterisation and the verification experiments do not 

differ for the selected clones (Figure 10C), i.e. a comparison of the proliferative index of 

these six clones between the original characterisation and the verification experiments 

showed no significant difference.  
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Comparing the three independent migration experiments, the observed phenotypes 

and differences between clones were found to be stable and reproducible (Figure 10D). 

Due to the modified experimental setup, a direct quantitative comparison with the 

previous results is not valid. 

In addition, two-dimensional growth was determined as a further verification. Two-

dimensional growth is essentially a combination of migration and proliferation. It was 

determined in a scratch assay without the addition of proliferation-inhibiting mitomycin 

C, with the speed of scratch closure as a measure for the speed of two-dimensional 

growth (Figure 10D). As expected, the scratch closed faster if the cells were proliferating 

as well as migrating than it did if it was closed only by cell migration. The increase in 

scratch closing speed caused by proliferation mostly matched the proliferative index of 

the clones: clones with a higher proliferative index generally showed a larger increase in 

scratch closing speed, with c11 showing a stronger increase than would be expected 

from its proliferative index (Figure 10A, C and D). This result obtained with an 

independent method confirmed the proliferation phenotypes determined with Ki-67 

staining. 

Finally, the mean phenotype of each cell population was calculated as the mean 

phenotype over all clones derived from the population in question. This is possible under 

the assumption that the average phenotypes of the clones derived from one population 

reflects the average phenotype of that population. Neither the mean proliferation 

(Figure 10E) nor the mean migration (Figure 10F) were found to be altered in APOBEC3A-

mutagenised populations in comparison to the APOBEC3AE72A and HEK293 control 

populations. This suggests that APOBEC3A-mediated mutagenesis does not influence 

proliferation and migration in HEK293 cells.  
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Figure 10 Characterisation of HEK293 single cell clones derived from APOBEC3A-mutagenised cell 

populations regarding their proliferation and migration phenotype. The clones had been exposed 

to APOBEC3A (A3A) or the enzymatically inactive APOBEC3AE72A (A3AE72A) during long-term culture, 

or belonged to the parental HEK293 population. A Proliferative index of all single cell clones as 

determined by Ki-67 immunofluorescence stain (mean ± standard error). The proliferative index is 

a measure of the number of dividing cells in a sample, and it is calculated as the quotient of 

proliferating cells to total cells as determined in a Ki-67 immunofluorescence assay. Per sample, at 

least three independent visual fields at 100x magnification were counted to determine the 

proliferative index. B Migration speed in pixels per minute of all single clones as determined in a 

scratch assay (mean ± standard error). Proliferation of these cells was inhibited by 5 µg/ml 

mitomycin C in the medium. Per sample, at least three scratch positions were recorded at 

100x magnification and analysed. C Proliferative index of selected single clones (mean ± standard 

error), determined in three independent experiments. The proliferative index was determined as 

described in A. D Scratch closure speed of selected single clones (mean ± standard error) with and 

without the added influence of proliferation, determined in three independent experiments. 

Scratch closure speed was compared between cells treated with mitomycin C (migration alone) 

and untreated cells (migration + proliferation) to determine the combined effect of migration and 

proliferation in selected clones with low, medium and high proliferative index. The migration speed 

was determined as described in B. Significance analysed using 2-way ANOVA followed by 

Bonferroni multiple comparison (* P<0.05, **** P<0.0001) E Mean proliferative index (± standard 

error) of all clones derived from APOBEC3A (A3A), APOBEC3AE72A (A3AE72A) or parental HEK293 cell 

populations. The mean for each population was calculated as the average proliferative index of all 

clones derived from the respective population as shown in Figure 10A. F Mean migration speed 

(± standard error) of all clones derived from APOBEC3A, APOBEC3AE72A or parental HEK293 cell 

populations. The mean for each population was calculated as described in E.  

4.1.3. APOBEC3A-mediated mutagenesis affects chemotherapy tolerance in HEK293 
cells 

Proliferation and migration are phenotypes that can directly influence the growth of a 

tumour. However, APOBEC3A-mediated mutagenesis may also influence other aspects 

of the mutagenised cells which only become important in patients. Chemotherapy is an 

important factor that puts selective pressure on fully formed tumours in patients. 

APOBEC3A-mediated mutagenesis may enable some cells to become more tolerant to 

chemotherapy. Thus, the HEK293 cell clones were tested for their tolerance towards 

cisplatin treatment. Cisplatin is a commonly used agent in chemotherapy of various 

cancer types, among them head and neck squamous cell carcinomas. It causes DNA 

damage by cross-linking guanidines adjacent on the same DNA strand or located on 

different DNA strands, which ultimately leads to apoptosis, as well as oxidative stress 

(reviewed by Dilruba and Kalayda, 2016). 
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Figure 11 Cisplatin sensitivity of HEK293 single cell clones derived from APOBEC3A-mutagenised 

populations. The clones had been exposed to APOBEC3A (A3A) or the enzymatically inactive 

APOBEC3AE72A (A3AE72A) during long-term culture, or belonged to the parental HEK293 population. 

The cisplatin sensitivity is expressed as the half-maximal inhibitory concentration (IC50). The IC50 

value is determined in a WST-1 viability assay of cells treated with a cisplatin gradient for 2 days. It 

was calculated from the resulting dose-response curve using non-linear regression. The cisplatin 

sensitivity was determined in at least two independent experiments, with all clones measured in 

triplicates in each experiment.  

The cisplatin sensitivity of all HEK293 single cell clones was determined, including a 

population of parental HEK293 cells as a control (Figure 11). The half-maximal inhibitory 

concentration (IC50) was used as a measure for cisplatin sensitivity. It describes the 

cisplatin concentration that caused a cell viability halfway between the untreated 

sample with 100% viability and the sample with the highest cisplatin concentration, 

where all cells were dead. Thus, a lower IC50 indicates a higher sensitivity towards 

cisplatin.  

Without APOBEC3A-mediated mutations, both the clones from the APOBEC3AE72A and 

the parental populations as well as the population of parental HEK293 cells have an IC50 

between 1.8 µM and 3.75 µM, with the majority between 2 µM and 3 µM. Out of the 17 

APOBEC3A clones, nine clones also show an IC50 of approximately 2 µM, while the IC50 

of the remaining eight APOBEC3A clones is at approximately half that value, between 

0.8 µM and 1.3 µM. This indicates that some of the HEK293 clones that had been 

exposed to APOBEC3A have become more sensitive towards cisplatin. 

4.2. Tumour growth of immortalised and transformed HEK293 cells is not 
altered by APOBEC3A-mediated mutagenesis 

Tumour growth in vivo is influenced by many different factors, and the conditions are 

quite different from cell culture. In order to find out whether APOBEC3A-mediated 

mutagenesis has an effect on tumour growth of immortalised, transformed HEK293 
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cells, six clones were injected into NOD scid gamma mice as xenografts. As the parental 

HEK293 cells are already tumorigenic, any effect by APOBEC3A-driven mutations would 

be modulating. Four mice per clone were injected with 5x104 cells, the other four with 

3x105 cells.  

 

Figure 12 Tumour volume of xenografts formed by APOBEC3A-mutagenised HEK293 clones over 

time. A total of 24 NSG mice each were injected either with a low cell number of APOBEC3A (A3A) 

or APOBEC3AE72A clones (5x104 cells, red and dark blue lines, respectively) or a high cell number of 

APOBEC3A and APOBEC3AE72A clones (3x105 cells, orange and light blue lines, respectively) in a 1:1 

mixture of PBS and matrigel into the flank. Tumour size was monitored with a calliper, and tumour 

volume was calculated as ½hd2, with d being the tumour diameter and h being its height in 

centimetres. The experiment was terminated once the tumour reached a diameter of 1.4 cm in 

any dimension. 

All mice developed a visible tumour within approximately one to two weeks after 

injection of the cells (Figure 12). Once a tumour reached a diameter of 1.4 cm in any 

dimension, the experiment was terminated. Within seven weeks after injection of the 

cells, all mice but one had been sacrificed (Figure 12). 

4.2.1. Xenograft tumours did not acquire additional APOBEC3A-mediated mutations 
during tumour growth 

In order to allow a reasonable comparison between the results of the tumour 

characterisation and the results observed in cell culture, it was confirmed that the cells 

had not acquired additional APOBEC3-mediated mutations during tumour growth. One 

representative tumour of each clone was tested for expression of endogenous 

APOBEC3A and APOBEC3B. Neither expression of endogenous APOBEC3A (Figure 13A 

and B) nor endogenous APOBEC3B (Figure 13B) was observed in any of the tumours. The 

tumours formed by clones c18 and c19 still retained the basal expression of the 

enzymatically inactive APOBEC3AE72A transgene (Figure 13A and B). The lack of 
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functional APOBEC3A and APOBEC3B implies that in the fully formed tumours, no 

additional APOBEC3-mediated mutations could arise.  

 

Figure 13 Xenograft tumours did not acquire additional APOBEC3A (A3A)- or APOBEC3B (A3B)-

mediated mutations in comparison to clones in cell culture. One representative xenograft tumour 

per clone is shown. A Endogenous APOBEC3A protein expression in xenograft tumours. Tissue 

lysates in 1% SDS where separated in an SDS-PAGE and transferred to a nitrocellulose membrane 

in a Western blot. The membrane was probed with a polyclonal rabbit anti-APOBEC3G antibody 

(Sigma) which cross-reacts with APOBEC3A as primary and a goat anti-rabbit HRP conjugate as 

secondary antibody. ACTB served as a loading control. B Endogenous APOBEC3A and APOBEC3B 

mRNA expression in xenograft tumours. Total mRNA was extracted and reverse transcribed into 

cDNA. APOBEC3A and APOBEC3B expression was determined in a gene-specific qPCR and 

normalised to ACTB mRNA expression. Dox-induced expression of the APOBEC3AE72A and 

APOBEC3BD316N transgenes was included as positive controls. C Comparison of whole genome 

sequences between cell culture clones and respective mouse xenografts. Total DNA extracted from 

clones c05, c11, c15, c16, c18 and c19 in cell culture as well as one representative xenograft per 

clone were whole genome sequenced. Single nucleotide variants in the xenografts were called 

using the cell culture clones as reference. An extraction of mutational signatures was performed 

based on the single nucleotide variants found in the xenografts. The stacked bars represent the 

number of somatic mutations ascribed to each of the mutational signatures detected in the 

xenografts. 
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However, the absence of endogenous APOBEC3A and APOBEC3B expression in the fully 

formed tumour does not exclude previous activity during tumour growth, and previous 

results in this study suggest that loss of APOBEC3A expression and/or activity is a 

frequent consequence of APOBEC3A-mediated mutagenesis. In order to find out 

whether additional mutagenesis occurred in the HEK293 cell clones during tumour 

growth in mice, the whole genome of one representative tumour of each clone was 

sequenced. The resulting sequences of the tumours were compared to the whole 

genome sequences of the HEK293 clones in cell culture to find out if any additional 

APOBEC3-mediated mutations arose during tumour growth. None of the clones 

acquired additional APOBEC3-mediated mutations during tumour growth, as shown by 

the absence of mutational signatures 2 and 13 (Figure 13C). However, all clones acquired 

additional mutations by other mutagenic processes. This indicates that the HEK293 

clones are genetically unstable, and subject to background mutagenic processes 

independent of editing by APOBEC3A. With the exception of clone c11, the APOBEC3A 

clones (c05, c15 and c16) as well as the APOBEC3AE72A clones (c18 and c19) acquired 

between 200 and 300 additional mutations. The majority of these mutations correspond 

to mutational signatures 3, 12, 16 and 25. Clone c11 acquired four to six times the 

number of additional mutations present in the other clones. This suggests that an 

additional mutagenic process was switched on in this clone. While the mutational 

signatures present in clone c11 are the same as the ones detected in the other clones, 

they are responsible for a larger number of mutations. Signature 16 in particular caused 

roughly 700 mutations, more than half the mutational load acquired by clone c11 during 

tumour growth in mice. 

4.2.2. Tumour growth of APOBEC3A mutagenised cells is unchanged in vivo 

The xenograft tumours derived from APOBEC3A-mutagenised HEK293 clones were 

compared to the controls that had been exposed to the enzymatically inactive 

APOBEC3AE72A variant concerning parameters that could describe or influence tumour 

growth. This includes tumour morphology, proliferation, necrosis, and survival time.  

The tumours were xenografts of HEK293 clones that already showed interclonal 

phenotypic differences in vitro, even though the means of the populations they were 

derived from showed no difference. Furthermore, as four out of the six clones had 

undergone APOBEC3A-mediated mutagenesis, the clones presumably all carried their 

own distinct set of mutations. Thus, the morphological heterogeneity observed in the 

HE stains of the xenograft tumours was not unexpected (Figure 14). For instance, some 

of the tumours had very defined borders, while others had more jagged outlines; some 

tumour tissues looked very homogeneous and consisted solely of HEK293 cells, whereas 
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others also contained mouse cells and were thus much more heterogeneous. It was, 

however, also observed that the morphology of tumours derived from the same clone 

varied greatly, so that it was not possible to assign a clear morphological phenotype to 

each clone. 

 

Figure 14 Morphological heterogeneity both between and within the xenograft tumours formed 

by the different HEK293 clones visualised by HE-staining of tissue sections at 100x magnification. 

Each of the six clones was injected into eight mice. Each row depicts the tumours derived from the 

same clone, labelled with the identity of the mouse it was grown in.  

Proliferation, necrosis and tumour growth of the xenografts were characterised in more 

detail. Proliferation was determined by immunohistochemistry for the proliferation 

marker Ki-67 and expressed as the proliferative index, i.e. the percentage of Ki-67 

positive cells out of all living cells. The necrotic area was estimated from the HE stains, 

and expressed as a percentage of the whole tumour area. Survival time served as a 

measure for tumour growth. The experiment had to be terminated once the tumour 

reached a diameter of 1.4 cm in any dimension. Thus, the survival time represents the 

time it took the tumour to grow to this size and so indirectly reflects tumour growth.  

The differences in proliferative index between tumours derived from different clones 

are not significant (Figure 15A). Due to the small sample sizes in vivo, the standard 

deviations were very high. The necrotic area shows a very high variability even between 

tumours formed by the same clone (Figure 15B). The necrotic area of APOBEC3A-

mutagenised clones and the APOBEC3AE72A control clones did not show a significant 

difference. Overall, this suggests that neither cell proliferation nor necrosis of 
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immortalised, transformed HEK293 cells is affected by APOBEC3A-mediated 

mutagenesis.  

 

Figure 15 APOBEC3A (A3A)-mediated mutagenesis does not affect proliferation, necrosis or 

tumour growth of HEK293 xenografts. A The proliferative index (mean ± standard deviation) of all 

xenograft tumours was determined by performing an immunohistochemistry stain of formalin-

fixed paraffin-embedded tissue sections for the proliferation marker Ki-67, and counterstained 

with haematoxylin and eosin. The proliferative index is the percentage of Ki-67 positive cells out of 

all living cells. It was estimated by Jochen Heß. B The necrotic area (mean ± standard deviation) as 

a percentage of the entire tumour area was estimated in haematoxylin and eosin-stained tumour 

sections of all xenografts by Jochen Heß. C The survival time (mean ± standard deviation) of each 

mouse separated by number of injected cells. It measures the time until the tumour reached a 

diameter of 1.4 cm in any dimension, at which point the experiment was terminated. Thus, survival 

time reflects the time it took the tumour to reach a certain size and can thus be used as a measure 

of tumour growth.  

No difference was observed between the survival times of clones derived from 

populations with and without the APOBEC3A mutational signature (Figure 15C). 

Generally, the mice which were injected with a smaller number of cells survived longer 

than the mice which received the higher cell number, as it took some more cell cycles to 

form a tumour of the same size. This is why the tumours grown from a lower and a 

higher number of injected cells are depicted separately, as the starting cell number may 
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influence the final survival time, whereas an influence on other parameters such as 

proliferation or necrosis in the tumour at the time of harvest are not influenced by 

starting cell number. The difference in survival time between mice injected with a high 

or low number of cells was not found to be statistically significant. A higher proliferative 

tendency did not correspond with a decrease in survival time. 

Overall, no difference was observed between APOBEC3A-mutagenised and control 

xenografts in either proliferative index (Figure 15A), necrosis (Figure 15B) or survival 

time (Figure 15C). All of the clones showed a high variability in their phenotypes in vivo. 

In summary, these results suggest that APOBEC3A-mediated mutagenesis does not have 

an effect on tumour growth of already immortalised and transformed HEK293 cells. This 

implies that APOBEC3A-driven mutagenesis does not play a role in the growth of fully 

formed cancer.  

4.3. A combination of APOBEC3A and APOBEC3B expression and 
APOBEC3 mutational signature can be used to stratify an HNSCC patient 
cohort 

APOBEC3-mediated mutations can make up a large fraction of the total mutational load 

in various cancer types. Furthermore, both APOBEC3A and APOBEC3B expression has 

been observed in some of the tumours containing the APOBEC3 mutational signatures. 

One cancer type where this is the case is head and neck squamous cell carcinoma 

(HNSCC). It is, however, not clear which, if any, of these parameters influence the 

outcome for the patients. Thus, expression of APOBEC3A and APOBEC3B as well as total 

mutational load and contribution of APOBEC3-mediated mutations to the cancer 

genome were determined in a HNSCC patient cohort, and their influence on outcome 

was assessed. 

The patient samples in this work were kindly provided by Jochen Heß. They were 

collected in the prospective study HIPO-POP019 to elucidate the molecular mechanisms 

of treatment failure in HNSCC patients. This study includes a total of 90 HNSCC samples 

consisting of 88 primary tumours and 2 metastases along with healthy tissue used as 

reference from 88 HNSCC patients. All tumour samples contain a minimum of 50% 

tumour tissue. A total of 11 samples were excluded from the following analyses due to 

either lack of sequencing data, low mRNA extract quality, accidental sample swapping 

during whole exome sequencing or different enrichment kits being used for a sample 

and its cognate control. The two metastases were also excluded. The remaining 79 

samples were included for all following analyses. 
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4.3.1. A subgroup of HNSCC patients carries the APOBEC3 mutational signatures in the 
tumour genome 

Whole exome sequencing of all the tumours in this study was performed by the DKFZ 

Genomics & Proteomics Core Facility. The whole exome sequences were compared to 

the whole exome of the corresponding healthy tissue sample to identify the mutations 

present in the tumour. The mutations were called and the extraction of mutational 

signatures was done by Marc Zapatka and Mario Hlevnjak. The mutational signature 

extraction showed that the APOBEC3 mutational signatures 2 and 13 are present in a 

subset of patients, and together contribute up to 76% of the total mutational load in this 

cohort (Figure 16). Signature 4, which is associated with smoking, was also found to a 

lesser degree and contributes up to 43% of the total mutational load, despite most of 

the patients being heavy smokers. Signature 29, which is associated with tobacco 

chewing rather than smoking, was also observed in a number of samples and 

contributed up to nearly 22% of the total mutational load. Signature 16 was found to be 

very prominent in this patient cohort, contributing up to 75% of the total mutations. It 

was originally found in liver cancer, and its aetiology remains unknown.  

 

Figure 16 Mutational signatures in HNSCC patients. The bars represent the contribution of 

mutational signatures associated with APOBEC3 (signatures 2 and 13) and tobacco (signatures 4 

and 29) as well as signature 16 of unknown aetiology to the total mutational load of HNSCC patients 

in percent. All remaining mutational signatures not separately included were combined into the 

“other” category. All signatures were extracted from whole exome sequencing of DNA extracts 

from samples consisting of at least 50% tumour cells. The samples were ordered by total 

contribution of the APOBEC3 mutational signatures. 

4.3.2. APOBEC3A and APOBEC3B mRNA expression in a cohort of HNSCC patients 

The expression of both APOBEC3A and APOBEC3B mRNA was determined in all available 

patient samples using a gene-specific qPCR. Both APOBEC3A (Figure 17A) and APOBEC3B 

(Figure 17B) were found to be expressed to different degrees in a subset of HNSCC 

patients. 
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The presence of the APOBEC3 mutational signature and a simultaneous absence of 

APOBEC3A and APOBEC3B expression was observed in some of the HNSCC tumours. This 

reflects the situation in the HEK293 cells, which lost APOBEC3A activity by different 

mechanisms after acquiring the mutational signature. 

 

Figure 17 APOBEC3A and APOBEC3B expression in HNSCC patients. A APOBEC3A (A3A) and B 

APOBEC3B (A3B) mRNA expression ordered by expression level in HNSCC patients. Total mRNA 

was extracted from tissue samples consisting of at least 50% tumour cells and reverse transcribed 

into cDNA. APOBEC3A and APOBEC3B expression was determined in a gene-specific qPCR and 

normalised to ACTB mRNA expression. C and D Correlation of C APOBEC3A and D APOBEC3B 

expression as measured in the same samples by gene-specific qPCR relative to ACTB and by 

microarray carried out in the context of the HIPO-POP 019 study. Correlation between qPCR and 

microarray results was determined using Spearman’s rank correlation. 
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A microarray expression profile was also available for all HNSCC samples. The expression 

levels of APOBEC3A and APOBEC3B obtained by qPCR were compared to the results 

obtained in the microarray expression analysis (Figure 17C and D). The samples were 

ranked according to their respective expression levels as determined by each method, 

and the ranks of the two methods were compared for each sample in a Spearman’s rank 

correlation. The correlation between the qPCR results and the microarray results is 

better for APOBEC3A than for APOBEC3B, but it was highly significant for both 

APOBEC3A and APOBEC3B expression. This validates the quantification of transcript 

levels using an independent method. 

4.3.3. APOBEC3 expression correlates with clinical parameters 

For correlation of APOBEC3A and APOBEC3B expression levels with clinical parameters, 

the HNSCC samples were stratified into two groups according to APOBEC3A or 

APOBEC3B expression. The groups of interest were delimited at the median: samples 

with an mRNA expression value greater than the median (APOBEC3Ahigh and 

APOBEC3Bhigh) were compared with samples with expression levels equal to or below 

the median (APOBEC3Alow and APOBEC3Blow). 

In a contingency analysis (Table 11), APOBEC3A expression was found to be associated 

with the pathological grade of the tumours and with extracapsular spread (ECS). 

Extracapsular spread is the infiltration of cancer cells beyond the nodal capsule of a 

metastatic lymph node into the perinodal fatty tissue (Lagarde et al., 2006; Metzger et 

al., 2009) and was thus only assessed in tumours with lymph node involvement. 

However, the mean APOBEC3A expression was the same in tumours both with and 

without extracapsular spread (Figure 18C). Furthermore, APOBEC3A expression levels 

did not differ between HPV-driven and non-HPV driven tumours (Figure 18A). The 

contingency table shows that APOBEC3B expression correlates with the HPV status of 

the tumours as well as with tumour location and gender of the patient (Table 11). The 

mean APOBEC3B expression level was also found to be significantly higher in HPV-driven 

tumours than in non-HPV driven ones (Figure 18B). Tumours with lymph node 

involvement showing extracapsular spread also showed higher APOBEC3B expression 

levels than tumours without extracapsular spread (Figure 18D). This association was, 

however, not found in the contingency analysis (Table 11). 
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Table 11 Association between APOBEC3A and APOBEC3B mRNA expression levels and clinical 

parameters. APOBEC3A and APOBEC3B expression levels were each delimited into interest groups 

at the median. Statistical significance was determined by Fisher’s exact test for all parameters 

except tumour location, where it was determined with the chi-square test. 
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Gender 
Female 8 9 

0.7909 
13 4 

0.0278 
Male 34 32 29 37 

Age [years] 
≤61.44 22 16 

0.2730 
17 21 

0.3817 
>61.44 20 25 25 20 

Tumour size 
T1-2 20 20 

1.0000 
16 24 

0.0802 
T3-4 22 21 26 17 

Lymph node 
N0 17 18 

0.8257 
21 14 

0.1839 
N1-3 25 23 21 27 

Pathological grading 
G1-2 22 31 

0.0396 
30 23 

0.1745 
G3 20 10 12 18 

Tumour location 

Larynx and hypopharynx 8 10 

0.061 

12 6 

0.0274 
Nasopharynx 9 1 6 4 

Oral cavity 9 13 14 8 

Oropharynx 16 17 10 23 

Alcohol 
No 23 18 

0.3828 
12 12 

1.0000 
Yes 19 23 30 29 

Tobacco 
No 16 8 

0.0898 
12 12 

1.0000 
Yes 26 33 30 29 

HPV status 
Non-HPV driven 29 30 

0.8095 
35 24 

0.0161 
HPV-driven 13 11 7 17 

Extracapsular spread 
Negative 13 4 

0.0168 
9 8 

0.3775 
Positive 12 19 12 19 
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Figure 18 Association between APOBEC3A (A3A) and APOBEC3B (A3B) mRNA expression levels, 

HPV status and extracapsular spread in head and neck squamous cell carcinomas. A and B 

Expression levels of APOBEC3A (A) and APOBEC3B (B) in non-HPV-driven and HPV-driven tumours. 

C and D Expression levels of APOBEC3A (C) and APOBEC3B (D) in tumours with lymph node 

involvement without or with extracapsular spread. Significance was determined in a t-test (* 

P<0.05; ** P<0.01; ns not significant). 

4.3.4. Enhanced APOBEC3A expression is associated with an increased presence of 
APOBEC3 mutational signature 

The HNSCC tumours carry the APOBEC3 mutational signatures (Figure 16) and show 

expression of both APOBEC3A and APOBEC3B to different extents (Figure 17A and B). In 

order to find out whether the expression of APOBEC3A and/or APOBEC3B is associated 

with the mutations found in head and neck tumours, the mutational load was compared 

between patients with high and low APOBEC3A and APOBEC3B expression levels.  

The total number of mutations was found to be significantly increased in the patient 

group with high APOBEC3A expression (Figure 19A). While the contribution of APOBEC3-

mediated mutations to the total mutational load in percent is not associated with 

APOBEC3A expression (Figure 19C), samples with a high APOBEC3A expression were 

associated with a higher number of mutations matching the APOBEC3 mutational 

signatures (Figure 19E).  
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Figure 19 Correlation of APOBEC3A (A3A) and APOBEC3B (A3B) expression with the mutational 

landscape in HNSCC patients. The mutational landscape of the HNSCC patient samples was 

extracted from whole exome sequencing data. APOBEC3A and APOBEC3B mRNA expression levels 

were quantified using gene-specific qPCR and normalised to ACTB mRNA expression. A - F Patients 

were stratified into groups with APOBEC3A or APOBEC3B expression greater than the median value 

(APOBEC3Ahigh, APOBEC3Bhigh) and equal to or lower than the median value (APOBEC3Alow, 

APOBEC3Blow). A and B Total number of mutations found in patients with high and low expression 

levels of either APOBEC3A (A) or APOBEC3B (B). C and D Percentage of mutations matching the 

APOBEC3 (A3) mutational signatures out of all mutations in the patients with high or low 

expression levels of either APOBEC3A (C) or APOBEC3B (D). E and F Number of single nucleotide 

exchanges matching the APOBEC3 mutational signatures in the patients with high or low 

expression levels of either APOBEC3A (E) or APOBEC3B (F). Statistical significance was determined 

in a t-test for figures A-F (* P<0.05, ns not significant). G and H Scatter plot of the number of 

mutations matching the APOBEC3 mutational signatures found in the patients plotted against the 

mRNA expression levels of APOBEC3A (G) or APOBEC3B (H) normalised to ACTB. Correlation 

between APOBEC3 mRNA expression and the number of APOBEC3 signature mutations was 

determined using Spearman’s rank correlation. 

The level of APOBEC3B expression was not associated with any of these parameters 

(Figure 19B, D and F). A scatter plot of the APOBEC3A expression against the number of 

APOBEC3-mediated mutations for each individual sample showed, however, that the 

correlation is in this case not significant (Figure 19G), whereas the same plot with 

APOBEC3B expression showed a weak, but significant correlation (Figure 19H). 

4.3.5. APOBEC3 expression in combination with APOBEC3 mutational signature and 
total mutational load correlates with survival 

APOBEC3-mediated mutagenesis plays a large role in shaping the genomes of some 

HNSCC patients. Yet, no difference in overall progression-free survival was observed 

between patients with high or low APOBEC3A (Figure 20A) or APOBEC3B expression 

levels (Figure 20B). Additional stratifications into patients with a high and low total 

mutational load (Figure 20C) or a high and low contribution of APOBEC3-mediated 

mutations to the cancer genome (Figure 20D) also did not result in a difference in 

progression-free survival. Neither expression of APOBEC3A or APOBEC3B, nor the total 

number of mutations or the contribution of APOBEC3-mediated mutagenesis to the final 

landscape of the cancer genome as single parameters resulted in any difference in 

progression-free survival for HNSCC patients.  

This approach, however, does not take time into account. It does not consider whether 

APOBEC3-mediated mutagenesis occurred in the past, was ongoing at the time of 

tumour resection or started only a short time previously. Thus, an approach was chosen 

that combines the APOBEC3A and APOBEC3B expression levels with the contribution of 

APOBEC3-mediated mutations to the total mutational load and the total number of 
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mutations for each patient. The aim was to identify patterns in the parameter values, 

and form groups of patients with similar patterns. 

 

Figure 20 Progression-free survival shows no difference between patients with high or low 

expression of APOBEC3A (A3A) and APOBEC3B (A3B), total mutational load and fraction of 

mutations due to APOBEC3-mediated mutagenesis. Patients were stratified into groups with values 

greater than the median and values equal to or lower than the median. Differences in survival were 

assessed using the Mantel-Cox (log-rank) test (ns not significant). A and B APOBEC3A (A) and 

APOBEC3B (B) mRNA expression levels were quantified using gene-specific qPCR and normalised 

to ACTB mRNA expression. C and D Total mutational load (C) and the percentage of APOBEC3-

mediated mutations (D) were determined from whole exome sequences of tumours in comparison 

to matched healthy tissue. 

A principal component analysis of the four parameters mentioned was performed, and 

the results were visualised and clustered in groups in a heatmap (Figure 21A). Out of the 

16 possible patterns that can be formed by combining four parameters, nine different 

patterns were identified in the HIPO-POP019 study. This suggests that the groups 

identified by the principal component analysis are not just random patterns. If this holds 

true, identical patterns should be identified in an independent dataset. Indeed, the same 

analysis applied to 500 HNSCC samples extracted from The Cancer Genome Atlas (TCGA) 

found the same patterns (Figure 22).  
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Figure 21 Subgroups of HNSCC patients in the HIPO-POP019 study based on a combination of 

genomic landscape and APOBEC3 expression data show a difference in progression-free survival.  

Stratification and survival of patients in the HIPO-POP019 study with good and poor prognosis 

based on APOBEC3A (A3A) and APOBEC3B (A3B) expression, total mutational load and contribution 

of APOBEC3-mediated mutagenesis to total mutational load. A Heatmap of principal component 

analysis of patient samples according to total mutational load, the contribution of APOBEC3A-

mediated mutations to the total number of mutations in percent identified in the whole exome 

sequence, and standardised APOBEC3A and APOBEC3B mRNA expression levels relative to ACTB 

expression as determined by gene-specific qPCR. All parameters were standardised by subtracting 

the mean value from the value of each sample and dividing the difference by the standard 

deviation, thus converteing the values into z-scores. These z-scores were used as the basis for a 

principal component analysis. The colour range visualises the values of the principal component 

analysis assigned to each sample and parameter. The samples were grouped in a heatmap 

according to similarity using unsupervised clustering. HPV-status, lymph node involvement and 

extracapsular spread status of each patient were additionally included. Rows are centred; unit 

variance scaling is applied to rows. Rows are clustered using correlation distance and average 

linkage. 79 rows, 4 columns. B Progression-free survival of patients assigned to each of the 

different groups defined in A. C Progression-free survival of the groups defined in A with good or 

poor prognosis. Differences in survival were assessed using the Mantel-Cox (log-rank) test. 

As the heatmap represents the principal components rather than the absolute values 

for all the parameters, the colours represent the values each in relation to the others. 

The different groups identified in the principal component analysis represent two things. 

The genomic data represents the different ways the tumours acquired their mutational 

landscapes during tumour development. The expression data represents the different 

states of gene expression at the time of tumour resection. While the mutational 

signatures reflect the mutagenic forces that were active in the past, the APOBEC3 

expression status reflects the APOBEC3 mutagenic activity in the tumour in the tumour 

at time of resection 

The genetic landscapes of the tumours in group 1 were shaped by APOBEC3-mediated 

mutagenesis as the major mutagenic force in the past, as suggested by the high 

percentage of APOBEC3 signature mutations. Other mutagenic processes independent 

of APOBEC3 hardly contributed to the total mutational load. The low to moderate 

expression levels of APOBEC3A and B indicate that little to no additional APOBEC3-

mediated mutagenesis is active in these tumours. The situation in group 2 is very similar, 

but the moderate APOBEC3B expression suggests that a moderate level of APOBEC3B-

mediated mutagenesis is ongoing in these tumours. The cancer genomes in group 3 

carry a large number of mutations that were caused by both APOBEC3-mediated 

mutagenesis as well as other mutagenic processes, as suggested by the moderate 

contribution of APOBEC3 signature mutations to the total mutational load. The low 

expression of both APOBEC3A and B indicates that no additional APOBEC3-mediated 

mutagenesis is happening in the final tumour. In group 4, other mutagenic processes 

independent of APOBEC3 shaped the cancer genome, as indicated by the low 
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contribution of APOBECC3 signature mutations to the total mutational load. The high 

APOBEC3B expression levels further suggest that APOBEC3B-mediated mutagenesis is 

ongoing. Group 5 is characterised by the high total mutational load, which is entirely 

due to other mutagenic processes independent of APOBEC3, as indicated by the low 

contribution on APOBEC3-mediated mutations to the total mutations. Moderate 

expression levels of either APOBEC3A or B suggest ongoing APOBEC3-mediated 

mutagenesis in the tumour at time of resection. The moderate percentage of APOBEC3 

signature mutations in group 6 suggests that both APOBEC3-mediated mutagenesis as 

well as other mutagenic processes shaped the genomes of these cancers. In contrast, 

most of the mutations in group 7 were caused by non-APOBEC3 mutagenic processes. 

The high APOBEC3A expression levels in groups 6 and 7 indicate that APOBEC3-mediated 

mutagenesis is ongoing in these tumours at the time of resection. Only a low to 

moderate percentage of the total mutations in groups 8 and 9 are due to APOBEC3-

mediated mutagenesis, which indicates that other processes were the main mutagenic 

force in these tumours in the past. The high APOBEC3B expression levels in group 8 and 

the moderate to high expression of both APOBEC3A and APOBEC3B in group 9 indicate 

ongoing APOBEC3-mediated mutagenesis in these tumours. The low contribution of 

APOBEC3-mediated mutations to the total mutational load in groups 6, 7, 8 and 9 

suggests that APOBEC3A and/or APOBEC3B expression has not been going on long 

enough to create a mutational signature in these tumours. 

The groups identified in the principal component analysis show differences in 

progression-free survival (Figure 21B). Combining groups 1 to 4 and groups 5 to 9 into 

two categories with good and poor prognosis, respectively, results in a statistically 

significant difference in progression-free survival between these two categories (Figure 

21C). In addition, the HPV-status, lymph node involvement (N-status) and extracapsular 

spread status is indicated for each patient (Figure 21A). The frequency of HPV-driven 

tumours, tumours with lymph node involvement and tumours with extracapsular spread 

are the same in the categories with good and poor prognosis (Fisher’s exact test, HPV- 

status P = 1.0, N-status P = 0.64, extracapsular spread P = 0.09 and Figure 21A), implying 

that this stratification is independent of these parameters.  

In summary, the principal component analysis using a combination of genomic data and 

APOBEC3 expression levels at time of resection allows a clear stratification of patients 

into groups with good and poor prognosis (Figure 21C) when the single parameters 

failed to do so (Figure 20). 
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Figure 22 The same subgroups of HNSCC patients identified in the HIPO-POP019 study are also 

observed in the TCGA database. Stratification of 500 HNSCC patients in the TCGA database into 

groups with good and poor prognosis based on APOBEC3A (A3A) and APOBEC3B (A3B) expression, 

total mutational load and contribution of APOBEC3-mediated mutagenesis to total mutational 

load. A Heatmap of principal component analysis of TCGA patient data according to total 

mutational load, the contribution of APOBEC3-mediated mutations to the total number of 

mutations in percent identified in the whole exome sequence, and relative APOBEC3A and 

APOBEC3B mRNA expression levels as determined by RNAseq. All parameters were standardised 

by subtracting the mean value from the value of each sample and dividing the difference by the 

standard deviation, thus converted the values into z-scores. These z-scores were used as the basis 

for a principal component analysis. The colour range visualises the values of the principal 

component analysis assigned to each sample and parameter. The samples were grouped in a 

heatmap according to similarity using unsupervised clustering. Rows are centred; unit variance 

scaling is applied to rows. Rows are clustered using correlation distance and average linkage. There 

are 500 rows and 4 columns in total. B Heatmap of HIPO-POP019 dataset as shown in Figure 21 to 

scale. 
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5. Discussion 
This study showed that a cohort of HNSCC patients that could not be stratified using 

single APOBEC3-related parameters was divided into subgroups with good and poor 

prognosis using a principal component analysis of a combination of APOBEC3-related 

genomic data and transcriptional data. The parameters in question reflected past and 

present APOBEC3-mediated mutagenesis, suggesting that APOBEC3-mediated 

mutagenesis has an impact on these cancers. However, APOBEC3A-mediated 

mutagenesis had no detectable phenotypic effect on the tumour growth of 

immortalised, transformed HEK293 cells either in vitro or in vivo. This implies that 

APOBEC3-mediated mutagenesis at a late stage during tumour development does not 

influence tumour growth. It was also observed that prolonged mutational pressure by 

APOBEC3A in HEK293 cells lead to a loss of APOBEC3 activity by various mechanisms. 

The premature stop codons found in some of the APOBEC3A transgenes match the 

APOBEC3 mutational signature, suggesting that APOBEC3A activity may be self-limiting. 

Finally, the HEK293 cells were genetically unstable even in the absence of cytidine 

deaminase activity. 

5.1. Limitations of the HEK293 cell model 

The cell culture model used in this study is based on HEK293 cells (ATCC accession 

number CRL-1573; www.atcc.org). HEK293 cells are primary human embryonic kidney 

cells transformed by sheared DNA of human adenovirus type 5 (Graham et al., 1977). 

The origin of HEK293 cells is still debated, with different studies suggesting kidney 

epithelial cells or fibroblasts, while others propose them to be derived from a neuronal 

lineage (reviewed by Stepanenko and Dmitrenko, 2015). Their expression profile 

suggests that they are most likely derived from an adrenal lineage of ectodermal origin 

(Lin et al., 2014b). They resemble dedifferentiated cells (Shaw et al., 2002), and could 

thus be considered a valid model for dedifferentiated tumour cells of ectodermal origin 

in a late stage of tumour development. However, as the HEK293 cells are already 

immortalised and transformed, they do not allow to study the effects of APOBEC3A-

mediated mutagenesis during tumour promotion and/or progression.  

HEK293 cells are known to be pseudotriploid (Bylund et al., 2004; Lin et al., 2014b), 

meaning that they are triploid but with chromosomal translocations (Battaglia, 1956). 

Repeated whole genome sequencing of the same HEK293 clones during this study 

revealed that the HEK293 cells are genetically unstable and acquire single nucleotide 

variants over time (Figure 13C). The majority of mutations acquired by the HEK293 cell 

clones were attributed to mutational signatures 3, 12, 16 and 25. Signature 3 has been 

http://www.atcc.org/
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attributed to failure of DNA double-strand break repair by homologous recombination 

and BRCA1/2 mutations; the aetiology of signatures 12, 16 and 25 remains unknown 

(Alexandrov et al., 2013a). In addition, deletions and loss of heterozygosity were 

observed for large genomic regions. These results are consistent with prior studies that 

found a large number of mutations and a wide variety of karyotypes including loss of 

heterozygosity in different HEK293-derived cell lines (Lin et al., 2014b) and HEK293 cells 

from different sources (reviewed in Stepanenko and Dmitrenko, 2015). A large number 

of single nucleotide variants and copy number alterations were also found in the same 

Flp-In T-RexTM HEK293 cell system used here (Akre et al., 2016). Akre et al. (2016) suggest 

that the mutator phenotype may be caused by faulty replicative DNA polymerase 

proofreading and/or defective mismatch repair. Stable transfection of an empty vector 

or replication stress is sufficient to increase chromosomal instability and genetic 

heterogeneity in HEK293 cells (Stepanenko et al., 2015, reviewed by Stepanenko and 

Dmitrenko, 2015). Both APOBEC3A and APOBEC3B can induce replication stress by 

deamination of cytidine at DNA replication forks (Kanu et al., 2016; Buisson et al., 2017), 

thus possibly increasing chromosomal instability beyond the normal effect of APOBEC3-

mediated mutagenesis. In addition, the increase in chromosomal instability has even 

been shown to influence phenotype, including but not limited to proliferation, migration 

and apoptosis (reviewed by Stepanenko and Dmitrenko, 2015). Bylund et al. (2004), Lin 

et al. (2014b) and Stepanenko and Dmitrenko (2015) further discuss that it is impossible 

to discriminate whether the expression or activity of the introduced transgene or the 

stress-induced chromosomal changes are the cause of any observed phenotype. Thus, 

any phenotypes observed in the APOBEC3A-mutagenised clones cannot be 

unequivocally attributed to APOBEC3A.  

Furthermore, as HEK293 cells are highly genetically unstable (Lin et al., 2014b; 

Stepanenko and Dmitrenko, 2015; Akre et al., 2016) and have been around since 1977 

(Graham et al., 1977), they have very likely acquired a high load of pre-existing 

mutations since then. As no healthy tissue reference is available for HEK293 cells, it is 

impossible to determine how large the contribution of APOBEC3 signature mutations in 

the APOBEC3A-mutagenised cells actually is. Gene expression patterns of HEK293 cells 

suggest that they have already been selected for rapid growth by extensive in vitro 

cultivation (Lin et al., 2014b), so that an additional increase in proliferation by 

APOBEC3A-mediated mutagenesis may not be possible. 

Finally, the genetic background can have an influence on the effect of certain mutations 

on the phenotype (discussed by Klonowska et al., 2017). The HEK293 cells used in this 

study went through several genetic bottlenecks during the introduction of transgenes 

as well as during the expansion of single cell clones following the APOBEC3A-mediated 
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mutagenesis. Due to the genetic instability of the HEK293 cells, it has to be assumed that 

the genetic background is different for each of the single cell clones. In order to find out 

whether and how the genetic background has an influence on the phenotypic effect of 

APOBEC3-mediated mutagenesis, it would be necessary to study the effects of 

APOBEC3-mediated mutagenesis in different cell types. 

In summary, the HEK293 cells can serve as a valid model for dedifferentiated tumour 

cells of ectodermal origin in a late stage of tumour development. However, cells at such 

late stages already have many mutations that have been selected for increased 

proliferation and tumourigenicity. The genetic instability of HEK293 cells, which was also 

observed in the HEK293 cells used in this study, contributes to this by creating further 

mutations that selection can act on. Thus, it is likely that additional mutations 

introduced by APOBEC3A in HEK293 cells do not result in additional selection 

advantages that are large enough to produce a phenotypic difference. This implies that 

APOBEC3-mediated mutagenesis at a late stage of tumour development may not 

influence tumour growth due to previous extensive mutagenesis and selection 

processes. 

5.2. The contribution of APOBEC3A and APOBEC3B to the APOBEC3 
mutational signature 

It is an ongoing debate whether APOBEC3A or APOBEC3B is the main source of the 

APOBEC3 mutational signatures. APOBEC3B was found to be overexpressed in cancer 

cell lines (Zhang et al., 2015b; Kanu et al., 2016; Buisson et al., 2017) breast cancers 

(Burns et al., 2013a), head and neck squamous cell carcinomas (Lin et al., 2014a; 

Fanourakis et al., 2016; Kosumi et al., 2016) and other tumour types (Burns et al., 2013b; 

Hedegaard et al., 2016). Its expression is upregulated by HPV oncoproteins E6 (Vieira et 

al., 2014) and E7 (Warren et al., 2015b). These findings suggest that APOBEC3B is 

involved in APOBEC3-mediated mutagenesis of cancer genomes. 

So far, the overexpression of APOBEC3B in many different cancers has been assumed to 

be the cause of mutations, and in particular the cause of the APOBEC3 mutational 

signatures found in cancer (Burns et al., 2013b; Burns et al., 2013a). Recent studies 

found that there is a possibility that APOBEC3B overexpression may also be a result of 

mutation, inactivation or absence of p53 (Menendez et al., 2017). In breast cancer, 

APOBEC3B expression levels were also found to correlate with inactivation of p53 (Burns 

et al., 2013a). Menendez et al. (2017) showed that activation of p53 reduced expression 

of APOBEC3B, whereas tumour-associated mutants or absence of p53 were found to 

promote APOBEC3B upregulation. In contrast, activation of p53 by genotoxic stress 

caused an upregulation of APOBEC3 family members including APOBEC3A, and 
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functional p53 is required to maintain IFN-induced expression of APOBEC3A (Menendez 

et al., 2017). DNA replication stress has been found to increase APOBEC3-mediated 

mutagenesis (Green et al., 2016; Hoopes et al., 2016; Kanu et al., 2016), which 

potentially provides another link between p53 and APOBEC3 activity. 

p53 is the most frequently mutated gene in human cancer (Zehir et al., 2017, reviewed 

by Kastenhuber and Lowe, 2017), which may explain why APOBEC3B overexpression is 

reliably found in many cancers and cancer cell lines, while the results are less clear for 

APOBEC3A (Burns et al., 2013b; Burns et al., 2013a; Roberts et al., 2013; Kosumi et al., 

2016; Yang et al., 2016; Boichard et al., 2017; Buisson et al., 2017). APOBEC3B expression 

was found to be upregulated in breast cancer with p53 mutations (Cescon et al., 2015). 

In addition, p53 is bound and inhibited by the HPV oncoprotein E6 (Werness et al., 1990; 

reviewed by Freitas et al., 2014). Since p53 is already inactivated by HPV E6, an 

inactivating mutation of p53 would not provide a selection advantage to HPV-positive 

tumours. This is likely the reason why p53 is more frequently mutated in HPV-negative 

than HPV-positive tumours (Gaykalova et al., 2014; The Cancer Genome Atlas Network, 

2015). The increased APOBEC3B expression levels in HPV-driven head and neck cancers 

observed in the HNSCC cohort (Figure 18B) could thus be explained by the inactivation 

of p53 in addition to the upregulation of APOBEC3B by HPV E6 and E7 (Vieira et al., 2014; 

Warren et al., 2015b). In summary, p53 loss of function provided by inactivating 

mutations in HPV-negative tumours and E6 in HPV-positive tumours may be one of the 

causes for both APOBEC3B overexpression and the low APOBEC3A expression in so 

many different tumours and cancer cell lines.  

So far, the transcriptional regulation of APOBEC3 cytidine deaminases by p53 has only 

been shown in a panel of human cancer cell lines and primary human immune cells 

(Menendez et al., 2017). Prior studies made observations that support these findings as 

explained in detail above (Burns et al., 2013a; Green et al., 2016; Hoopes et al., 2016; 

Kanu et al., 2016). It may prove interesting to see whether a correlation between p53 

loss of function and APOBEC3 expression can also be observed in the HIPO-POP019 and 

TCGA datasets, in particular considering HPV status. 

The strongest argument brought forward in favour of APOBEC3B as the main contributor 

to the mutational signatures 2 and 13 is that the APOBEC3B mRNA expression levels can 

correlate with the presence of the APOBEC3 mutational signatures in breast cancer, 

bladder cancer, lung cancer, head and neck cancer, cervical cancer as well as a panel of 

33 cancer types in TCGA (Burns et al., 2013b; Burns et al., 2013a; Roberts et al., 2013; 

Henderson et al., 2014; Seplyarskiy et al., 2016a; Chou et al., 2017). A similar weak but 

significant correlatin between APOBEC3B expression and the number of APOBEC3 
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signature mutations was found in HNSCC patients in this study (Figure 19H). C-to-T 

mutations in PIK3CA were found to be more frequent in oesophageal squamous cell 

carcinomas with higher APOBEC3B expression (Kosumi et al., 2016). Expression of 

transgenic APOBEC3B in HEK293 cells was also shown to cause a large number of C-to-T 

mutations, although neither mutational signature 2 nor signature 13 were observed 

(Akre et al., 2016). A recent study also suggested APOBEC3H haplotype I as an additional 

source of the APOBEC3 mutational signature in breast and lung cancer (Starrett et al., 

2016). However, many of these arguments are based on a correlation of APOBEC3 

expression with the presence of the APOBEC3 mutational signature in fully formed 

cancers at the time of resection. This does not necessarily reflect the situation in the 

cancers when the APOBEC3 signature was created (discussed by Caval et al., 2014a), 

especially as the exposure to APOBEC3 that leads to the mutational signature may well 

be transient in nature (Roberts and Gordenin, 2014a; Middlebrooks et al., 2016). 

APOBEC3A activity in HEK293 cells is lost after inscribing the APOBEC3 mutational 

signatures. Similarly, it is possible that APOBEC3 expression is induced and afterwards 

lost during cancer development (discussed by Cescon et al., 2015). Such a scenario is 

consistent with the situation found in tumours both in this study and others, where 

tumours carrying the APOBEC3 mutational signature show no expression of either 

APOBEC3A or APOBEC3B at the time of resection (Roberts et al., 2013; Nordentoft et al., 

2014; Chan et al., 2015; Lamy et al., 2016). The HIPO-POP019 dataset also contains 

several examples of tumours that carry the APOBEC3 mutational signature but do not 

express APOBEC3A and APOBEC3B. This idea is further supported by the fact that 

expression of both APOBEC3A and APOBEC3B is upregulated in precancerous cervical 

lesions, but the upregulation is no longer significant in fully formed cervical cancer 

(Warren et al., 2015b). Thus, the APOBEC3 transcript levels in the final tumour do not 

necessarily reflect the situation at the time the signatures were generated (discussed by 

Caval et al., 2014a; Lamy et al., 2016). It has been suggested that transient 

hypermutation may be more likely to cause cancer than sustained mutagenesis (Roberts 

and Gordenin, 2014a; Middlebrooks et al., 2016). This would be the case with a 

temporary induction of APOBEC3 expression during cancer development. The principal 

component analysis of both the HIPO-POP019 and the TCGA dataset identified groups 

of HNSCC patients that show signs of transient APOBEC3-mediated mutagenesis. Group 

3 as well as potentially groups 1 and 2 can be explained by transient induction of 

APOBEC3 expression early during tumour development. After inscribing the APOBEC3 

mutational signatures into the cancer genomes and so creating a large fraction of the 

mutations in these cancers, the APOBEC3 expression is eventually reduced or lost 

entirely. 
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5.3. Timeframe of APOBEC3-mediated mutagenesis during cancer 
development 

It is still unclear when the APOBEC3 mutational signatures arise during tumour 

progression (Litwin et al., 2017). Some studies have found evidence that suggests 

APOBEC3-mediated mutagenesis may be a late event (Cui et al., 2009; Nik-Zainal et al., 

2012b; McGranahan et al., 2015; Verlaat et al., 2015; Lamy et al., 2016), while others 

point towards APOBEC3-mediated mutagenesis occurring early during tumour 

progression (Nik-Zainal et al., 2012b; McGranahan et al., 2015). This suggests that 

APOBEC3-mediated mutagenesis may be active early in some cases and late in others 

(Yates et al., 2017, reviewed in Swanton et al., 2015), and may even be active over a 

longer period of time (Nordentoft et al., 2014; McGranahan et al., 2015).  

The principal component analysis of the HIPO-POP019 and TCGA datasets suggests that 

some of the cancers were exposed to APOBEC3-mediated mutagenesis in the past, but 

show no signs of ongoing APOBEC3-driven mutagenesis. In contrast, APOBEC3-mediated 

mutagenesis is ongoing in others, but has not had a large impact on the cancer genome 

in the past. A strong contribution of APOBEC3-type mutations does not always co-occur 

with a high expression of APOBEC3A and/or APOBEC3B. This implies that all the 

APOBEC3 signature mutations in group 3 and the majority of the APOBEC3 signature 

mutations in group 1 and 2 were generated in the past at an early phase of cancer 

development, and APOBEC3 expression has been greatly reduced or entirely lost since 

then. In contrast, tumours with high expression of APOBEC3A and/or APOBEC3B in 

groups 4, 6, 7, 8 and 9 show a low contribution of APOBEC3 signature mutations to the 

total mutational load. This implies that the APOBEC3 expression observed in these 

groups only started a short while ago and has not yet had an impact on the genomic 

landscape. The ongoing APOBEC3-mediated mutagenesis at a late stage in the 

progression of these cancers may increase the genetic heterogeneity of the tumours. 

The cancers that received the APOBEC3 mutational signatures early during tumour 

development can be found in group 3 as well as potentially in groups 1 and 2. In these 

cases, APOBEC3 was found to be the main mutagenic force shaping the cancer genome, 

but expression of both APOBEC3A and APOBEC3B is either absent or low. Similarly, the 

presence of the APOBEC3 mutational signature in the absence of APOBEC3A and/or 

APOBEC3B expression was also observed in some patients with various cancer types 

(Burns et al., 2013b; Burns et al., 2013a; Roberts et al., 2013; Henderson et al., 2014; 

Lamy et al., 2016; Seplyarskiy et al., 2016b; Chang et al., 2017; Chou et al., 2017). In 

contrast, there were also cases such as in groups 4, 7, and potentially 9, where no 

evidence of past APOBEC3 activity was found in the cancer genome, but either 

APOBEC3A, APOBEC3B or both were highly expressed. This suggests a recent 
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upregulation of APOBEC3 expression along with ongoing APOBEC3-mediated 

mutagenesis late in cancer progression. Groups 6 and 8 are examples of APOBEC3-

mediated mutagenesis over a longer period of time. These tumours combine high 

expression of either APOBEC3A or APOBEC3B with a moderate contribution of APOBEC3 

signature mutation to the total mutational load. This implies that APOBEC3-mediated 

mutagenesis has been active long enough to create an impact on the genomic 

landscape, but is also still ongoing. 

In summary, the principal component analysis of patient samples found examples of 

early APOBEC3-mediated mutagenesis in groups 3 and potentially 1 and 2, and of late 

APOBEC3-mediated mutagenesis in groups 4, 7 and 9, as well as APOBEC3-mediated 

mutagenesis over a longer period of time in groups 6 and 8. Group 5 was found to be 

shaped by other mutagenic processes and thus entirely independent of APOBEC3-

mediated mutagenesis. 

5.3.1. APOBEC3-mediated mutagenesis as an early event 

APOBEC3 activity at a very early time point during cancer development may be involved 

in creating the tumour. It can cause mutations in cancer drivers that are clonal in all 

cancer cells (McGranahan et al., 2015). Such a scenario may be particularly relevant in 

HPV-driven cancers. Whereas the HPV E6 and E7 oncoproteins can immortalise cells, 

they are not sufficient for transformation, which requires additional mutations (Münger 

et al., 1989, reviewed by McLaughlin-Drubin and Münger, 2009, discussed by Parfenov 

et al., 2014). Since viral infection (Middlebrooks et al., 2016) as well as HPV E6 and E7 

can induce expression of APOBEC3A and B, and expression of both is upregulated in 

precancerous cervical lesions (Vieira et al., 2014; Warren et al., 2015b), it is possible to 

speculate that APOBEC3-mediated mutagenesis may be the factor that provides the 

additional mutations necessary for the transformation of HPV-immortalised cells.  

As the acute effects of both APOBEC3A and APOBEC3B overexpression are toxic for the 

cells and cause cell death (Landry et al., 2011; Burns et al., 2013a; Lackey et al., 2013; 

Mussil et al., 2013; Akre et al., 2016; Kostrzak et al., 2016; Brachova et al., 2017), it is 

likely that only a few cells survive APOBEC3-mediated mutagenesis to become 

transformed cancer cells. Transient APOBEC3 expression early during cancer promotion 

is thus likely to result in a tumour that is homogeneous concerning the APOBEC3 

mutational signatures. The genomic landscape of tumours in group 3 and potentially 

groups 1 and 2 suggests that APOBEC3-mediated mutagenesis was an early event in 

these patients. Thus, it can be speculated that these tumours are homogeneous for the 

APOBEC3 mutational signature, and that APOBEC3-mediated mutagenesis contributed 

to the transformation of these cancers. 
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5.3.2. APOBEC3-mediated mutagenesis as a late event 

APOBEC3-mediated mutagenesis was also observed late during tumour progression of 

cells that were transformed by other mutagenic processes (Cui et al., 2009; Nik-Zainal 

et al., 2012b; de Bruin, Elza C. et al., 2014; Verlaat et al., 2015; Hao et al., 2016; Lefebvre 

et al., 2016). In this case, expression of APOBEC3A and/or APOBEC3B drives subclonal 

diversification and increases genetic heterogeneity (McGranahan et al., 2015; Lamy et 

al., 2016; Lefebvre et al., 2016).  

APOBEC3-mediated mutagenesis late in tumour progression may be of advantage for 

the tumour. A high genetic diversity has been linked to higher tumorigenicity (Ye et al., 

2009; Smid et al., 2016), and an increase in genetic heterogeneity has been linked to an 

increase in drug-resistant cells within a population (Brammeld et al., 2017). Drug 

resistance mutations in several different genes match the APOBEC3-type nucleotide 

exchange and target sequence (reviewed by Swanton et al., 2015). Expression of 

APOBEC3B was found to be higher in doxorubicin and etoposide-resistant cells of a 

breast cancer cell line (Onguru et al., 2016). Furthermore, urothelial carcinomas that 

had undergone chemotherapy showed an enrichment of APOBEC3 signature mutations 

(Faltas et al., 2016). This suggests that APOBEC3-mediated mutagenesis may be linked 

to the development of therapy resistance. Several resistant clones may even already be 

present in a lesion before start of the treatment (Bozic and Nowak, 2014). A high number 

of mutations also offers a larger sequence diversity on which selection can act (Stratton 

et al., 2009). It has furthermore been suggested that populations with greater 

heterogeneity may be more robust, meaning they can better maintain their function 

and/or performance when faced with perturbations (Kitano, 2007). Although cancer 

driver mutations are generally early events and thus clonal within a tumour 

(McGranahan et al., 2015; Yates et al., 2017), some mutations in both cancer driver 

genes and tumour suppressor genes were also found to be subclonal and thus happened 

later during cancer progression (de Bruin, Elza C. et al., 2014; McGranahan et al., 2015; 

Verlaat et al., 2015). In summary, APOBEC3-mediated mutagenesis late during tumour 

development may provide the tumour with advantages such as increased 

heterogeneity, subclonal diversification or resistance to therapy. 

APOBEC3-mediated mutagenesis late in tumour progression may also have a deleterious 

effect for the tumour. More mutations increase the chance of developing neo-antigens. 

Neo-antigens are epitopes of mutated protein versions expressed in cancer cells that 

can be recognised by autologous T-cells, causing anti-tumour immunity (reviewed by 

Heemskerk et al., 2013; Schumacher and Schreiber, 2015; Berger and Pu, 2017). Cancer 

cells that express immune checkpoint molecules such as programmed death ligand-1 

(PD-L1) incapacitate effector T-cells, thus evading the immune response against neo-
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antigens. PD-L1 achieves this by binding to the programmed death-1 (PD-1) receptor 

mainly expressed on the surface of T-cells, which inhibits the ability of effective T-cells 

to kill the cancer cells (reviewed by Berger and Pu, 2017). This is countered in 

immunotherapy with checkpoint inhibitors, which block the interaction and thus 

activate anti-tumour immunity (reviewed by Sukari et al., 2016). Between 45-80% of 

head and neck cancers express PD-L1 on their surface, and chemo- and/or radiotherapy 

may further upregulate its expression (reviewed by Fuereder, 2016). Trials of treating 

HNSCC with checkpoint inhibitors have shown promising results, but predictive 

biomarkers to select patients who benefit from it are still missing (summarised by 

Fuereder, 2016). There is evidence that a high mutational load may lead to more neo-

antigens and so improve the chances that a neo-antigen which can be recognised by 

autologous T-cells arises (Heemskerk et al., 2013; Connor et al., 2016; Madore et al., 

2016, 2016; Secrier et al., 2016; Smid et al., 2016), but the total mutational load is only 

an imperfect marker for success of immunotherapy (Schumacher and Schreiber, 2015; 

Boichard et al., 2017). Interestingly, an increased expression of APOBEC3A has been 

found to correlate with a stronger expression of PD-L1 and an increased presence of 

tumour-infiltrating mononuclear cells in urothelial carcinoma (Mullane et al., 2016). In 

breast cancer, the presence of the APOBEC3 mutational signatures was found to be 

associated with tumour-infiltrating lymphocytes (Smid et al., 2016). A study on the TCGA 

pan-cancer dataset also found a correlation of PD-L1 expression levels with 

overexpression of all APOBEC3 family members, as well as the presence of APOBEC3-

mediated mutations and kataegis (Boichard et al., 2017). Boichard et al. (2017) suggest 

that this correlation between APOBEC3 expression and PD-L1 expression may be caused 

by common underlying mechanisms. One such mechanism may be the upregulation of 

both by a viral infection, or a common signalling cascade such as protein kinase C. 

Furthermore, tumour cells with a high load of neo-antigens potentially created by 

APOBEC3-mediated mutagenesis derive a selection advantage from PD-L1 expression: 

without a mechanism to evade immunity, the cancer would be cleared by the immune 

response against the neo-antigens. Overall, these are hints that patients whose tumours 

show a high expression of APOBEC3A and/or APOBEC3B may benefit from immune 

checkpoint inhibitor therapy, but further studies are needed in this regard.  

DNA damage and replication stress induce the DNA damage response via the ATR (ataxia 

telangiectasia and Rad3-related protein) and ATM (ataxia telangiectasia mutated) 

kinases (reviewed by Maréchal and Zou, 2013). Both APOBEC3A and APOBEC3B activity 

have a genotoxic effect and cause replication stress and DNA damage (Landry et al., 

2011; Burns et al., 2013a; Lackey et al., 2013; Land et al., 2013; Mussil et al., 2013; Taylor 

et al., 2013; Akre et al., 2016; Kanu et al., 2016; Kostrzak et al., 2016; Brachova et al., 
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2017; Nikkilä et al., 2017). Thus, APOBEC3A- and APOBEC3B-mediated cytidine 

deamination can result in activation of DNA replication checkpoints (Landry et al., 2011; 

Green et al., 2016), which is essentially a mechanism to protect the genome from 

unchecked damage and mutagenesis and to maintain genome integrity (reviewed by 

Maréchal and Zou, 2013, discussed by Green et al., 2017). It has been suggested that 

cancer cells require the DNA damage response pathways in order to be able to tolerate 

genomic instability, and that its inhibition in cancers with specific kinds of genomic 

instability may result in synthetic lethality (Maréchal and Zou, 2013). Indeed, it has been 

shown that cancer cells with high APOBEC3A or APOBEC3B expression are dependent 

on the ATR checkpoint for survival, which makes them susceptible to ATR inhibition 

(Buisson et al., 2017; Green et al., 2017; Nikkilä et al., 2017). Interestingly, although 

overexpression of APOBEC3A activates both the ATR and the ATM signalling pathways 

(Green et al., 2016), inhibition of ATM signalling does not result in synthetic lethality in 

leukaemia cells (Green et al., 2017). Activation of ATM is primarily mediated by double-

stranded DNA breaks, whereas ATR is also involved in other forms of DNA repair 

including re-starting of stalled replication forks as well as mismatch and nucleotide 

excision repair (reviewed by Maréchal and Zou, 2013). One possible reason why 

inhibition of ATM does not lead to synthetic lethality is that what is considered high 

APOBEC3A expression levels in leukaemia cells may not be high enough to cause DNA 

double-strand breaks, while still activating the ATR DNA damage response (Buisson et 

al., 2017). This would result in an increased sensitivity towards inhibition of the ATR 

response, while sensitivity towards ATM inhibition would remain unchanged. In 

summary, synthetic lethality induced by ATR inhibition may also benefit tumour patients 

with high APOBEC3A and/or APOBEC3B expression levels.  

These contrasts between the potentially negative effects of ongoing APOBEC3-mediated 

mutagenesis and its potentially positive effects further demonstrate its double-edged 

nature. As expression of APOBEC3A and/or APOBEC3B causes genetic instability and 

increases genetic heterogeneity by inducing mutations and can thus create neo-

antigens, the patients in groups 6 to 9 with high APOBEC3A and/or APOBEC3B 

expression and a poor prognosis may benefit from immune checkpoint inhibition and 

ATR inhibition. However, these patients may also have a higher risk of developing 

therapy-resistant tumours, and might thus potentially benefit from a combination 

therapy to prevent the survival of resistant subclones.  
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5.4. Patient stratification and outlook 

Generally, stratification attempts focus on one characteristic such as mutations in 

certain cancer- or therapy-relevant genes (Sawada et al., 2016; Zehir et al., 2017), 

expression of a single gene (Mullane et al., 2016; Chen et al., 2017) or an entire 

transcription profile (Keck et al., 2015; Hedegaard et al., 2016; Smid et al., 2016; Svoboda 

et al., 2016; Zhang et al., 2016), or the presence of mutational signatures (Connor et al., 

2016; Secrier et al., 2016; Wang et al., 2017). While the subgroups that were generated 

using one of these characteristics were often checked for an association with other 

parameters (e.g. subgroups created by translational profile were checked for 

enrichment of mutational signatures), none of the approaches integrated both genomic 

data and gene expression data in creating the subgroups. In this study, stratification of 

head and neck squamous cell carcinoma patients in the HIPO-POP019 dataset based on 

a single APOBEC3-related parameter showed no difference in progression-free survival 

(Figure 20). In contrast, the principal component analysis performed here (Figure 21A 

and Figure 22) considered both the genomic data, which essentially reflects the 

mutagenic processes that shaped the cancer genome in the past, and the gene 

expression data of APOBEC3A and APOBEC3B, which indicates ongoing mutagenesis in 

the tumour at the time of resection. This also allowed a distinction between APOBEC3-

mediated mutagenesis as early and late events during tumour development. The 

resulting patterns identified in the heatmap of the principal component analysis allowed 

to distinguish groups of patients with good and poor prognosis concerning progression-

free survival (Figure 21C). The defining characteristic of a large fraction of HNSCC 

patients with a poor prognosis was the high APOBEC3A and/or APOBEC3B expression. 

As discussed above, APOBEC3-mediated mutagenesis late during tumour development 

may be detrimental for the patient by increasing tumour heterogeneity, or 

advantageous by creating neo-antigens. Thus, the patients with the high APOBEC3 

expression levels may benefit from immune checkpoint inhibitor therapy. Furthermore, 

APOBEC3A specifically as well as APOBEC3B themselves may be potential therapeutic 

targets, in particular in the patients with poor prognosis. 

While either high past or ongoing APOBEC3-mediated mutagenesis is the characterising 

feature of many of the patterns defined by the principal component analysis, group 3 

and particularly group 5 show a low overall involvement of APOBEC3. This suggests that 

different mutagenic process shape the genomes of the cancers in these. Aside from 

APOBEC3-driven mutagenesis, signature 16 is prominent in HNSCC, whereas the 

signatures 4 and 24 attributed to tobacco only contribute a small fraction of mutations 

in most cases. This is consistent with observations made by Zhang et al. (2015a), 

Alexandrov et al. (2016) and Chang et al. (2017). An association between smoking and 
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drinking and mutational signature 16 has been suggested (Chang et al., 2017), possibly 

as an indirect effect of tobacco and alcohol.  

The patterns derived from the principal component analysis were based on the z-scores 

of an entire dataset consisting of either 79 patients in case of the HIPO-POP019 study or 

500 patients in the TCGA dataset. The z-scores are all relative and depend on the mean 

and standard deviation of the entire population. Thus, no cut-offs were defined for 

absolute values, making it impossible to assign single patients to one of the subgroups. 

In order to use the analysis performed in this thesis to make a prognostic statement 

about single patients, absolute cut-off values need to be defined, tested and verified.  

Aside from prognostic value concerning progression-free survival, the patterns defined 

in the heatmap of the principal component analysis might also provide valuable 

information concerning treatment choices. Upregulation of APOBEC3A expression has 

been linked to higher PD-L1 expression (Mullane et al., 2016; Smid et al., 2016; Boichard 

et al., 2017), possibly because APOBEC3-mediated mutagenesis causes the creation of 

neo-antigens. This suggests that patients with ongoing APOBEC3-mediated mutagenesis 

in end-stage tumours may benefit from immune checkpoint inhibitor therapy. 

Furthermore, ongoing APOBEC3A and APOBEC3B expression activates DNA replication 

checkpoints (Landry et al., 2011; Green et al., 2016), thus causing synthetic lethality with 

ATR inhibition (Buisson et al., 2017; Green et al., 2017; Nikkilä et al., 2017). Ongoing 

APOBEC3-mediated mutagenesis in late stages of tumour development is also involved 

in subclonal diversification of tumours (Cui et al., 2009; Nik-Zainal et al., 2012b; de Bruin, 

Elza C. et al., 2014; Verlaat et al., 2015; Hao et al., 2016; Lefebvre et al., 2016), thus 

increasing their genetic heterogeneity (McGranahan et al., 2015; Lamy et al., 2016; 

Lefebvre et al., 2016) and potentially contributing to therapy resistance (Swanton et al., 

2015; Faltas et al., 2016; Onguru et al., 2016; Brammeld et al., 2017). Thus, APOBEC3A 

and APOBEC3B may themselves be therapeutic targets, especially in combination with 

other therapeutic approaches, to reduce the chance of resistant clones arising. While 

certainly of interest for the groups 2 and 4 in the principal component analysis, patients 

in these subgroups already have a good prognosis. Thus, these treatment options would 

be particularly relevant for the patients in the groups 6 to 9, as they have a poor 

prognosis for progression-free survival and are characterised by high APOBEC3A and/or 

APOBEC3B expression levels. Therefore, it would be interesting to see whether the 

patients in these subgroups derive a benefit from any of these therapy options.  

As HPV-positive head and neck cancers are associated with improved survival and better 

prognosis (Schwartz et al., 2001; Fakhry et al., 2008; Hay and Ganly, 2015), a de-

intensification of therapy in HPV-driven tumours has been suggested (reviewed by 
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Benson et al., 2014). However, the principal component analysis found that 

approximately half the patients with HPV-driven tumours were in the subgroups with 

poor prognosis (Figure 21A), where a de-intensified therapy may be ill-advised. The 

subgroups defined by the principal component analysis may thus be helpful in further 

stratifying patients with HPV-driven cancers to identify the cases where therapy can be 

safely de-escalated. 

In conclusion, the generation of the patterns based on a principal component analysis 

of both genomic and expression data may be a valuable addition not just for prognosis, 

but also an additional stratification method concerning treatment choices and 

personalised medicine. 
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