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Zusammenfassung

Diese Dissertation befasst sich mit numerischen Methoden fiir gemischt-ganzzahlige
Optimalsteuerungsprobleme mit kombinatorischen Nebenbedingungen. Es wird ein
Approximationssatz bewiesen, der ein gemischt-ganzzahliges Optimalsteuerungs-
problem mit kombinatorischen Nebenbedingungen in Beziehung zu einen kontinu-
ierlichen Optimalsteuerungsproblem mit sogenannten verschwindenden Nebenbe-
dingungen setzt und das Fundament fiir numerische Rechnungen bildet. Ein Run-
dungsalgorithmus, der auf dieser Korrespondenz aufbaut und die verschwindenden
Nebenbedingungen beachtet, wird entwickelt.

Direkte Diskretisierungen von Optimalsteuerungsproblemen mit verschwindenden
Nebenbedingungen sind Beispiele von Mathematischen Programmen mit Komplemen-
tarititsnebenbedingungen. Diese bilden eine anspruchsvolle Klasse von Problemen
aufgrund ihrer inharenten Nicht-Konvexitit und fehlenden Regularitat. Ein Active-Set
Algorithmus fiir Mathematische Programme mit Komplementaritatsnebenbedingung-
en wird entwickelt und es wird bewiesen, dass dieser Algorithmus global konvergent
zu Bouligand-stationdren Punkten ist, sofern gewisse technische Voraussetzungen
erfillt sind.

Zur effizienten Berechnung newtonartiger Schritte bei Optimalsteuerungsproble-
men wird die verallgemeinerte Lanczos-Methode fiir Trust-Region Probleme in Hil-
bertrdumen entwickelt. Um Echtzeitanforderungen in Online Optimalsteuerungskon-
texten gewéhrleisten zu kénnen wird ein Gauf3-Newton Vorkonditionierer fir die
iterative Losung des Trust-Region Problems erarbeitet.

Die vorgestellten Methoden werden implementiert und ihre Anwendbarkeit und
Effektivitat wird an Hand von Benchmark-Problemen unter Beweis gestellt.






Abstract

This thesis is concerned with numerical methods for Mixed-Integer Optimal Control
Problems with Combinatorial Constraints. We establish an approximation theorem
relating a Mixed-Integer Optimal Control Problem with Combinatorial Constraints
to a continuous relaxed convexified Optimal Control Problems with Vanishing Con-
straints that provides the basis for numerical computations. We develop a a Vanishing-
Constraint respecting rounding algorithm to exploit this correspondence computa-
tionally.

Direct Discretization of the Optimal Control Problem with Vanishing Constraints
yield a subclass of Mathematical Programs with Equilibrium Constraints. Mathemati-
cal Programs with Equilibrium Constraint constitute a class of challenging problems
due to their inherent non-convexity and non-smoothness. We develop an active-set
algorithm for Mathematical Programs with Equilibrium Constraints and prove global
convergence to Bouligand stationary points of this algorithm under suitable technical
conditions.

For efficient computation of Newton-type steps of Optimal Control Problems, we
establish the Generalized Lanczos Method for trust region problems in a Hilbert space
context. To ensure real-time feasibility in Online Optimal Control Applications with
tracking-type Lagrangian objective, we develop a Gau3-Newton preconditioner for
the iterative solution method of the trust region problem.

We implement the proposed methods and demonstrate their applicability and
efficacy on several benchmark problems.
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1. Introduction

Ordinary differential equations constitute a fundamental tool for quantitatively de-
scribing dynamic processes. By introducing an explicit external control variable, this
naturally extends to the description of systems that can be influenced.

Finding a suitable control to achieve a certain goal and in particular to minimize
a selected cost function is an important problem. Many questions in engineering,
natural sciences, economics and even humanities can be cast into this framework.

In this thesis, we focus on numerical methods for the challenging class of Mixed-
Integer Optimal Control Problems. In Mixed-Integer Optimal Control Problems, some of
the control influences are constrained to map into a finite set. Mixed-Integer Optimal
Control Problems generalize Optimal Control Problems and Integer Programming
Problems. The latter are static optimization problems with integrality requirements on
the variables. Analyzing Mixed-Integer Optimal Control Problems is challenging due
to their combinatorial, nonlinear and dynamic nature. An intuitive understanding
of such systems is hard to obtain and thus applications of such systems have high
potential for optimization. Mixed-Integer Optimal Control Problems have gained
increasing attention in the past fifteen years with the emergence of practical solution
methods. Recent approaches are based on convexification, relaxation and suitable
rounding to compute suboptimal solutions with arbitrary small optimality loss and
have been applied successfully to real-time control.

The techniques are limited to the situation in which no constraints, with the
exception of the integrality constraint, are imposed on integer control variables.
Generalizing this setting, we focus on the class of Mixed-Integer Optimal Control
Problems with Combinatorial Constraints, where by combinatorial constraints we
understand mixed state-control constraints that depend on integer control variables.

Direct discretizations of relaxed convexifications of Mixed-Integer Optimal Control
Problems with Combinatorial Constraints are optimization problems with a special
non-smooth structure. They exhibit Vanishing Constraint behavior, which reflects
the combinatorial origin of the problem. Mathematical Programming Problems with
Vanishing Constraints have non-convex feasible set and violate standard regular-
ity assumptions. Therefore tailored optimization algorithms addressing the lack of
smoothness of the problem must be used. We develop such an algorithm based on
the SLEQP method as part of the thesis.
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1.1. Contributions and results of this thesis

In this thesis, we develop an efficient numerical method for Mixed-Integer Optimal
Control Problems with Combinatorial Constraints. We obtain novel results and ad-
vances over established techniques in various parts of Optimal Control and Nonlinear
Programming. They are described in the following.

Convexification and Relaxation for Mixed-Integer Optimal Control
Problems with Combinatorial Constraints

Sager [Sag06] proposes and analyzes a convexification and relaxation approach to-
wards Mixed-Integer Optimal Control Problems without Combinatorial Constraints.
Kirches and Jung [Kir10; Jun13] extend Sager’s partial outer convexification technique
towards Mixed-Integer Optimal Control Problems with Combinatorial Constraints,
but do not analyze approximation properties nor guarantee feasibility. We establish a
novel analysis of partial outer convexification and relaxation of Mixed-Integer Op-
timal Control Problems with Combinatorial Constraints. As main contribution, we
prove Theorem 6.7 that asserts that every feasible point of the relaxed convexified
problem can be approximated arbitrarily well by an integer feasible point. A corollary
to this is that a suboptimal solution to a Mixed-Integer Optimal Control Problem with
arbitrarily small feasibility and optimality loss can be obtained by solving the relaxed
convexified problem, which is a continuous optimal control problem with function
space vanishing constraint.

Rounding Scheme

Applying the rounding schemes of Sager [Sag06] or Jung [Jun13] for reconstruction
of integer feasible points can lead to severe violation of Combinatorial Constraints.
We introduce a novel class of rounding schemes, Vanishing Constraint convergent
rounding schemes and prove that these are applicable for integer reconstruction in
the sense of the Approximation Theorem and respect Combinatorial Constraints. We
propose a novel rounding scheme VC-SOS-SUR which strictly respects Combinatorial
Constraints and guarantees e-feasibility. VC-SOS-SUR exhibits linear computational
complexity in the temporal discretization grid and thus provides an efficient mean for
practical computations.
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Sequential LPEC method for Equilibrium Constrained Problems
with Global Convergence to B-stationary Points

Discretizations of relaxed convexified Mixed-Integer Optimal Control Problems are
Mathematical Programs with Vanishing Constraints that require tailored optimization
algorithms to address the non-smooth and non-convex structure of the problems.
We propose a novel class of algorithms to solve composite non-smooth optimization
problems that comprise Mathematical Programs with Vanishing Constraints and
Mathematical Programs with Equilibrium Constraints. The algorithm class builds
upon the SLEQP method for Nonlinear Programming Problems without Equilibrium
Constraints. With Theorem 7.8, we establish a global convergence result for our
method and show that convergence to Bouligand stationary points is ensured. This
distinguishes our contribution from the methods considered in the literature, which
may only converge to points satisfying weaker stationary conditions that do not
preclude the existence of first-order descent directions.

Practical Sequential LPEC method with EQP Acceleration

The algorithmic framework we present for theoretical analysis described a generic
class of algorithms and we obtain a convergence result that covers a broad range of
possible realizations. We specify a particular realization extending the SLEQP imple-
mentation of Waltz and Nocedal [Byr+03] with an additional equality constrained
quadratic programming phase to obtain a Newton-type step that promotes fast local
convergence. A trust region globalization is used to allow using exact Hessians and
indefinite Hessian approximations. An iterative method built upon Krylov subspace
techniques is used to solve the trust region subproblem addressing the situation in
which evaluations of the Hessian matrix are expensive, but matrix vector products
with the Hessian can be computed with reasonable effort as it is typically the case for
discretizations of optimal control problems.

Trust Region Problems in Hilbert Space

Trust region problems constitute an important subproblem in optimization and are
also an important building block in our Sequential LPEC EQP method. We show
existence of solutions to Hilbert space trust region problems under suitable compact-
ness assumptions on the negative part of the defining quadratic form and generalize
Gould’s Generalized Lanczos Method for trust region problems [Gou+99] to a Hilbert
space setting. The Hilbert space setting allows direct application of the method to prob-
lems formulated in function space and covers in particular applications within PDE
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constrained optimal control. We develop a novel heuristic to address ill-conditioning
and establish hot-starting results upon trust-region radius change.

Gauf3-Newton Preconditioner for Model Predictive Control

We propose a novel preconditioner for applications in Nonlinear Model Predictive
Control with least-squares tracking objective based on the Gau3-Newton Approxima-
tion to the Hessian. This constitutes an important ingredient in a real-time feasible
algorithm based on iterative methods for online optimal control and can be incorpo-
rated into our SLPECEQP method that allows for preconditioning. We are able to
significantly decrease the number of matrix vector evaluations with the Hessian that
constitute the dominant computational expense.

Implementations

We have implemented all developed algorithms in the software packages trlib,
SLPECEQP and OptimIND. The algorithm for trust region problems is implemented in
the C11 software package trlib and features a vector free reverse communication
interface that only makes use of the Hilbert space structure of the problem without any
assumption on a possible discretization. Our implementation tr1lib is now included
as core optimization solver in the scientific computation environment SciPy.

With SLPECEQP we have developed a hybrid Python, C and Fortran implementation
of the sequential LPEC EQP method. With OptimIND we have established a multiple
shooting discretization of optimal control problems in Python and C++, relying on
Internal Numerical Differentiation and Automatic Differentiation for consistent and
efficient derivative generation.

We compare trlib and SLPECEQP with state-of-the-art solvers for trust region
problems and for nonlinear programming respectively using the benchmark collec-
tions CUTEr and CUTEst and find performance competitive to state-of-the-art solvers
for the respective problem classes.

Case Studies

We analyze an example of Cesari to study the proposition of the Approximation
Theorem for Mixed-Integer Optimal Control and the VC-SOS-SUR rounding scheme
by means of an example.

We further demonstrate the efficacy of the methods and implementations for an
optimal control problem describing the re-entry of an Apollo type vehicle into earth’s
atmosphere, for variants of a Mixed-Integer Optimal Control Problem by Egerstedt
with and without Combinatorial Constraints and for applications in online optimal
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control studying a nonlinear batch reactor and a continuously stirred tank reactor.
As comparison for the online optimal control applications, we compute reference
solutions to the offline problems using Pontryagin’s Maximum Principle.

Publications
During the work on this thesis, we contributed the following publications:

[Kir+15]  C.Kirches, M. Jung, F. Lenders, and S. Sager. “Approximation properties
of complementarity problems from mixed-integer optimal control.” In:
Mixed-integer Nonlinear Optimization: A Hatchery for Modern Mathe-
matics. Ed. by L. Liberti, S. Sager, and A. Wiegele. Vol. 12. Oberwolfach
Reports 4. 2015, pp. 2736-2737. URL: https://www.mfo.de/document/
1543/OWR_2015_46.pdf.

[KL16] C. Kirches and F. Lenders. “Approximation Properties and Tight Bounds
for Constrained Mixed-Integer Optimal Control” In: Optimization Online
(Apr. 2016). (submitted to Mathematical Programming). URL: http://www.
optimization-online.org/DB_HTML/2016/04/5404.html.

[LKB17]  F. Lenders, C. Kirches, and H. G. Bock. “pySLEQP: A Sequential Linear
Quadratic Programming Method Implemented in Python” In: Modeling,
Simulation and Optimization of Complex Processes. Ed. by H. G. Bock, H. X.
Phu, R. Rannacher, and J. P. Schldder. Springer Verlag, 2017, pp. 103-113.
DoI: 10.1007/978-3-319-67168-0_9.

[LKP16] F. Lenders, C. Kirches, and A. Potschka. “trlib: A vector-free implemen-
tation of the GLTR method for iterative solution of the trust region
problem.” In: Optimization Online (Nov. 2016). (submitted to Optimiza-
tion Methods and Software). URL: http://www.optimization-online.org/
DB_HTML/2016/11/5724.html.

Parts of Chapter 6 are based on [KL16] and [Kir+15], parts of Chapter 15 are based
on [Kir+15]. Parts of Chapter 7 and Chapter 12 are based on [LKB17]. Chapter 8 and
Chapter 11 are based on [LKP16].

1.2. Thesis outline

This thesis is divided into three parts. The first part introduces the necessary back-
ground and surveys the literature, the second part develops our theoretical and
algorithmic contributions and the final third part presents the implementations and
numerical results.


https://www.mfo.de/document/1543/OWR_2015_46.pdf
https://www.mfo.de/document/1543/OWR_2015_46.pdf
http://www.optimization-online.org/DB_HTML/2016/04/5404.html
http://www.optimization-online.org/DB_HTML/2016/04/5404.html
https://doi.org/10.1007/978-3-319-67168-0_9
http://www.optimization-online.org/DB_HTML/2016/11/5724.html
http://www.optimization-online.org/DB_HTML/2016/11/5724.html

6 1. Introduction

Part I starts with Chapter 2 that introduces the notational conventions used in the
thesis and recalls the definitions of the necessary function spaces of Lebesgue, Bochner
and Sobolev type. Chapter 3 gives an overview on numerical methods for Optimal
Control Problems and Mixed-Integer Optimal Control Problems and in particular
describes the Direct Multiple Shooting Discretization of Optimal Control Problems. It
is followed by Chapter 4 that provides material from Nonlinear Programming required
for analyzing Mathematical Programs with Vanishing and Equilibrium Constraints and
our sequential LPEC EQP algorithm. Necessary conditions, Constraint Qualifications
and the relation to multiplier uniqueness and penalization are discussed. In Chapter 5
we introduce the classes of Mathematical Programs with Vanishing and Equilibrium
Constraints, review stationarity concepts and give a literature overview on solution
methods and applications.

Part II begins with the analysis of Mixed-Integer Optimal Control Problems with
Combinatorial Constraints in Chapter 6. We introduce the notion of partial outer
convexification and relaxation and establish a novel approximation result between a
relaxed convexified problem and a Mixed-Integer Optimal Control Problem. Vanishing
Constraint-convergent rounding schemes as effective reconstruction algorithms are
proposed. We close the chapter with a consideration of the results by means of an
example of Cesari.

In the following Chapter 7, we develop a sequential LPEC algorithm for a composite
non-smooth optimization problem with equilibrium constraints that covers the case
of Mathematical Programs with Equilibrium Constraints. We show that stationary
points of the composite non-smooth optimization problem are exactly Bouligand
stationary points for Mathematical Programs with Equilibrium Constraints. We
establish global convergence of the algorithm and give a practical variant of the
algorithm that promotes fast local convergence with a Newton-type EQP step.

Chapter 8 considers trust region problems in Hilbert space. We show existence of
solutions under suitable compactness assumptions and necessary conditions are de-
rived. We develop a generalization of Gould’s Generalized Lanczos Method to Hilbert
spaces. We close the chapter by presenting a heuristic addressing ill-conditioned
problems.

The final Chapter 9 of the second part proposes a Gauf3-Newton preconditioner
for Nonlinear Model Predictive Control to approach real-time feasibility by quickly
computing solutions to the trust region subproblem.

In Part ITI, we first review in Chapter 10 performance profiles as a method to analyze
the performance of different solvers on a set of benchmark problems and introduce
the CUTEr and CUTEst benchmark collections for nonlinear programming. In Chap-
ter 11, we introduce our vector free implementation tr1lib of the Generalized Lanczos
Method, assess its performance on the CUTEst benchmark collection by comparing
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it with state-of-the-art iterative solvers and solve a PDE constrained trust region
problem to demonstrate the applicability to Hilbert space problems. We continue
in Chapter 12 by introducing our SLPECEQP implementation and by analyzing the
performance of our implementation on the CUTEr benchmark collection, comparing
it with state-of-the-art active set solvers for nonlinear programming. Chapter 13
introduces our implementation OptimIND of the direct multiple shooting discretiza-
tion for optimal control problems building on Internal Numerical Differentiation
and Automatic Differentiation. The last three chapters of the part are case studies
for Optimal Control, Mixed-Integer Optimal Control and Online Optimal Control.
Re-entry of an Apollo type space shuttle is considered in Chapter 14 and the optimal
control problem used as an example to compare OptimIND with SLPECEQP with
MUSCOD-II. In Chapter 15, we consider an example of Egerstedt as a case study for
Mixed-Integer Optimal Control Problems and consider variants of the problem with
and without Combinatorial Constraints. We analyze the behavior of our convexifi-
cation, relaxation and rounding approach with OptimIND and SLPECEQP with the
smoothing approach of Hoheisel together with the interior point algorithm IpOpt
and with applying the Mixed-Integer Nonlinear Programming Solver Bonmin. Chap-
ter 16 considers the applicability of a real-time optimal control scheme based on the
SLPECEQP algorithm on a nonlinear batch reactor and a continuously stirred tank
reactor. Reference solutions to the offline problems are computed by solving the
necessary conditions of Pontryagin’s Maximum Principle and the effectiveness of the
Gauf3-Newton preconditioner is studied.
We conclude the thesis with an outlook in Chapter 17.

Computational Environment

The computational results presented in Chapter 12 have been obtained on an Ubuntu
Linux 14.04 system powered by an Intel Core i7-920 CPU with 24 GB of main memory.
Results presented in Chapters 11, 14, 15 and 16 have been obtained on a Ubuntu Linux
16.04 system powered by an Intel Core i7-6800K CPU with 32 GB of main memory.






Part 1.

Background






2. Notational Conventions and
Function Spaces

In this chapter, we declare the notational conventions and introduce the function
spaces that are used in this thesis.

2.1. Notation

Sets, Operations involving Natural Numbers and Logical
Propositions

We denote by N = {0, 1, ...} the natural numbers and by R the real numbers. For a
natural number n we denote by [n] the set [n] := {0,...,n—1}.

The Iverson bracket [-] is used for propositions as generalization of the Kronecker
6 and is defined for a logical proposition P by

1, P true,
[P] =
0, P false.

Vectors in R", Matrices and Indexing

We use lowercase latin letters to denote vectors a, b, x, y, z € R™. In chapters 8 and 11
we used boldface letters for coordinate vectors x € R” representing a discretization
of a vector x in a function space. The i-th component of the vector x resp. x is
denoted by x; resp. x;. For an index set 7 C [n], we define ey € R" resp. ey by
er := ([i € I])ie[n) and for i € [n] we define e; := ey;), resp. e; to be the i-th unit
vector in the standard basis of R". In particular, x = }};¢[,] Xie; and e[, the vector
having all entries 1.

Matrices are denoted by uppercase latin letters A, B,C € R™*". g;; denotes the
entry in the i-th row, j-th column of A. AT denotes the transpose of A. The identity is
denoted by I.

We use subscripts to index sequences of objects, (x"),en.
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Vector Spaces, Subsets of Vector Spaces

If (X, || - ||) is a normed vector space, we denote by X’ its topological dual space
consisting of continuous linear functionals ¢ : X — R and equip it with the operator
norm ||¢| := sup)j, < [@(x)[. I (X, [|-[[x) and (Y, || - ||y) are normed vector spaces, we

denote by (L(X,Y), || - l z(x,v)) the space of continuous linear mappings T : X — Y
with the norm ||T| £(x,v) = sup | <1 IT()ly-

For a subset S € X of a topological vector space X, we denote the interior of S by
int S, the closure of S by S, the convex hull of S by co S and the closed convex hull
by coS :=coS.

For a measurable set Q C R", a vector space X, a subset M C X and A(Q,X) a
subspace of the space of mappings Q — Y we define by slight abuse of notation the
set A(Q, M) as the set of functions f € A(Q, X) such that f(x) € M for almost all
x € Q.

Derivatives

For a function f : D € X — Y between to normed spaces X and Y, that is Fréchet-
differentiable in & € D, we denote its derivative in & by %(f) e L(X,Y)or % if the
base point & is clear. If X = R we may write f instead of %. If X and Y are Hilbert
spaces, we denote the adjoint of % by Vf e L(Y’,X’). In the case X = R",Y = R™,
we use % as well to denote the matrix % € R™*" representing % with respect to the
standard coordinate basis and similar Vf € R™™ to denote the matrix representing
Vf.In particular, Vf = (%)T.

For a function f : D € R" — R that admits partial derivatives in ¢ € X we denote
by g—£(§) € R™*" the matrix consisting of all partial derivatives, g—£ = (0;fi)ie[m),jeln)-
If f happens to be differentiable as well in ¢ € X, %(f) = %(zf). If f is k-times
partial differentiable in £ € X and « € N" is a multi-index with |a| := X;¢(n @i = k,

we denote by 9% f := 3 o'y

A0 ,,.9,%n-1"
X, Ox, "

2.2. Function spaces

We introduce the notion of Lebesgue, Bochner, and Sobolev spaces and of absolute
continuity. We identify the Sobolev space W?(I,R") with spaces of absolutely
continuous functions.
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2.2.1. Lebesgue, Bochner, and Sobolev spaces

We recall the definition Lebesgue, Bochner and Sobolev spaces and refer to the
monographs by Adams and Fournier [AF03], Clarke [Cla13], Yosida [Yos78] and
Wloka [Wlo71].

2.1 Definition (Lebesgue spaces L?(Q)).

For a non-empty set @ C R"” and 1 < p < oo we denote by LP(Q) the Lebesgue space of
all equivalence classes of measurable functions f : Q — R such that | f|? is integrable
and equip it with the norm

I fllee == {p /Q |f(OIP dx, 1<p <o,

esssup,.cq |f(x), p=oco. A

2.2 Definition (Bochner spaces L (Q, X)).

If (X, || - |]) is a separable Banach space and p > 1, the Bochner space LP(Q, X) consists
of all equivalence classes of measurable functions f : Q — X such that || f]|? is
integrable and is equipped with the norm

umuz{Pkuﬂmwﬁ, L<p<o,

esssup, e lf )]l p = oo, A

The Lebesgue and Bochner spaces satisfy the following properties:

2.3 Proposition.
Let Q@ € R” be a measurable set, X a Banach space, 1 < p < co. Then:

(1) (LP(22,X), || - llLr) is a Banach space ([AF03, 2.16]).

(2) If (X, {-,-)) is a Hilbert space, we declare an inner product on L?(Q, X) by

(foghe = /Q (F(x). g(0)) dx.

This turns (L3(Q, X), (-, );2) into a Hilbert space ([AF03, 2.18]).

(3) If Q is of bounded measure, L9(Q,X) C LP(Q,X) forall p < g < o and
the canonical injection is continuous: || f]|, < (vol Q)l/P_l/quHq forall f €
L9(Q, X) ([AF03, 2.14]).



14 2. Notational Conventions and Function Spaces

(4) f1 <p<ooand1/p+1/q = 1, the mapping
LY(Q,X') - LP(Q,X), g /(g(x), ) dx
Q

defines an isometric isomorphism between the dual of L?(Q, X) and L1(Q, X")
([AF03, 2.44, 2.45]). A

2.4 Definition (Sobolev spaces W *-?),
Let Q@ C R” be an open set, X a separable Banach space, 1 < p < oo, k > 0.

The Sobolev space W*P(Q, X) is defined to be the space of all functions of L”(Q, X)
that admit all weak derivatives of order at most k:

Wk’P(Q,X) ={f e LP(,X)|0%f € LP(Q,X) for all |a| < k}.
It is endowed with the Sobolev-norm

{dzlalsk 0% fllLe, 1<p<oco

max|q|<k [|0% f ||, p = o0. A

||f||wk,p =

It is also possible to define the Sobolev space W5?(Q, X) as the completion of
{f € K, X)||Ifllyxr} With respect to the Sobolev norm || - ||lyyx.,. We prefer
the definition given here as it provides a less abstract description. Meyers and Serrin
[MS64] proved that these definitions coincide.

2.2.2. Absolutely continuous functions

We will be concerned in particular with the space W#(I, R") for a non-empty open
interval I C R and will characterize it in the following using absolutely continuous
functions, see [Rud66, Ch. 7].

2.5 Definition (Absolute continuity).
Let I € R be a non-empty interval. A measurable function f : I — R is absolutely
continuous if there exists d € L!(I) satisfying

£6) = ()] < / “d)dr forallrselr<s,

A measurable function f : I — R" is absolutely continuous if every component
fi : I > R is absolutely continuous for every i € [n]. A

Absolutely continuous functions satisfy the Fundamental Theorem of Calculus:
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2.6 Proposition (Fundamental Theorem of Calculus).
Let I € R be a non-empty interval and f : I — R”" be absolutely continuous and
th € 1.
Then there exists f € L'(I, R") such that the Fundamental Theorem of Calculus
holds: ,
() = f(t) + / f(r)dr foralltel.
ty

A

We thus note that for an open non-empty interval I C R and a function f € W?(I,R")
there exists an absolutely continuous representative g : I — R" with g(t) = f(¢)
almost everywhere: If t, € int[ is fixed, since f € LP(I,R"), the difference f(t) —
/ts f(r) dr equals a constant ¢ almost everywhere as its derivative vanishes almost

everywhere. Setting g(t) := ¢+ ft; f(r) dr yields then a desired absolutely continuous
representative.

We can identify the space W?(I,R") for an open non-empty interval I C R
with absolutely continuous functions f : I — R” such that f € L?(I,R") and use
this identification to generalize the definition of W#(I,R") for arbitrary bounded
non-empty intervals I € R.

2.7 Definition (Absolutely Continuous functions W P (I, R™)).
Let I € R be a non-empty bounded interval and 1 < p < oco.

The space WP (I,R") consists of absolutely continuous functions f : I — R"” such
that f € LP(I,R").

It is equipped with the Sobolev norm

1 llwep 5= { AL, +1F1E,,  1<p<e
maX{||f||L°°, ||f||Loo}, p = co. .

We have just noted that this is no clash with the previous definition of W?(I,R")
for open non-empty intervals, as the spaces can be identified.






3. Numerical Methods for Optimal
Control Problems

In this chapter, we survey solution methods for optimal control problems and mixed-
integer optimal control problems.

In particular, we discuss the direct multiple shooting discretization which, applied
to the relaxed partial outer convexification (RC) of a mixed-integer optimal control
problem developed in Chapter 6, yields a Mathematical Program with Vanishing
Constraints.

3.1. Approaches to solve Optimal Control Problems

We consider the optimal control problem

min P(x(1))
xeWb*([0, 1], R"x),
weL®([0,1],R")

s.t. x(t) = f(x(t),u(t)) ae.tel0,1], (OCP)
x(0) = x°,
0 < d(x(t),u(t)) ae.tel]0,1],

where D, € R™ and D, € R" are domains, ¢ : D, — R is a continuously
differentiable function and f : Dy X D, — R"™ andd : D, X D, — R" are
continuous functions.

This problem formulation differs from (MIOCP) considered in Chapter 6 in the
omission of the discrete control function v and the omission of the combinatorial
constraint c(x(t), u(t), v(t)) > 0. As noted for the mixed-integer case, it is well known
that more general classes of problems can be reduced to this class of problems, namely
problems with free endtime, with non-autonomous dynamics and problems with
Bolza type objective function that are a sum of a Mayer type final time objective
contribution and a Lagrange type objective contribution. Furthermore, problems
with point constraints, multi-stage problems and problems with additional parameter
dependence may be considered.

Solution approaches for (OCP) can be roughly classified into direct methods, indirect
methods and dynamic programming methods. An exhaustive comparison of these
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approaches is given for example by Binder et al. [Bin+01] and an illustrative side-
by-side comparison of the methods for the example of a missile guidance problem
by Subchan and Zbikowski [SZ09]. We thus give a short outline of the different
approaches and focus in particular on the direct multiple shooting approach, which
has been used as discretization technique for the optimal control examples considered
in this thesis. The special case of linear optimal control problems is considered
separately as their solutions satisfy a bang-bang principle that can be exploited.

3.1.1. Direct Methods

Direct methods discretize (OCP) before optimizing and yield a finite dimensional
nonlinear program that can be solved using algorithms from finite-dimensional non-
linear programming. Notable direct methods are direct single shooting, direct multiple
shooting and direct collocation.

Direct Single Shooting In direct single shooting, the control space L([0, 1], R"*)
is replaced by a finite-dimensional subspace of L*([0, 1], R"#) and the initial value
problem constraint eliminated by integration. Satisfaction of the path constraint
d(x(t),u(t)) > 0is requested only at a finite grid in time, see for example [SS78; Kra85;
Kra94] for details and practical implementation of this approach.

Single shooting has the advantage of being easy to implement, the resulting non-
linear program is low-dimensional. It suffers from the drawbacks that the resulting
nonlinear program is highly nonlinear for nonlinear right-hand sides f, that the
solution of the initial value problem may not exist outside of a possibly tiny vicinity
of the solution and that a priori knowledge on the solution trajectory cannot be
exploited in the solution process of the nonlinear program.

Direct Multiple Shooting Direct multiple shooting [P1i81; BP84; Lei95; Lei99]
aims at circumventing the difficulties of single shooting. Again, the control space
L*([0, 1], R"™) is replaced by a finite-dimensional subspace. To eliminate the initial
value problem constraint, a temporal multiple shooting grid is chosen and initial
guesses on the multiple shooting nodes are introduced. The initial value problem
is then integrated only over the multiple shooting intervals and continuity at the
multiple shooting nodes of the resulting piecewise trajectory is enforced as additional
constraint.

Under suitable conditions, multiple shooting reduces the nonlinearity of the result-
ing nonlinear program, as has been shown in the context of Lifted Newton Methods
[AD10], enlarges the region in which the initial value problem constraint is defined
and allows trivially the exploitation of a priori trajectory knowledge.
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We will discuss the method in further detail in the next section and focus exclusively
on direct multiple shooting in this thesis.

Direct Collocation Direct collocation [THE75; B4ar83; Bie84; Sch90; Sch96; Str93;
Str95] discretize states and controls on a temporal collocation grid and enforces the
initial value problem constraint to hold on every collocation interval as requested by
a chosen collocation scheme. This yields a possibly very large, but sparse nonlinear
program.

A priori trajectory information can be exploited in direct collocation methods.
Direct collocation has the drawback, that due to the chosen collocation grid, it is
hard to integrate the initial value problem constraint with a given accuracy as either
the step size has to be very small or, if adaptivity based on error control is used, the
discretization grid has to be replaced by a suitable refinement during the course of
optimization, which results in a different nonlinear program. It has furthermore been
reported [KB06] that collocation shows oscillatory behavior on singular arcs and
requires advanced regularization to circumvent this phenomenon.

3.1.2. Indirect Methods

Indirect methods formulate necessary optimality conditions of (OCP) in function space
and then solve a discretization of these necessary conditions. Necessary optimality
conditions are given by Pontryagin’s maximum principle and are stated in the form of a
multipoint boundary value problem. The maximum principle has been formulated and
proven by Pontryagin, Boltyanski, Gamkrelidze and Miscenko, and their publication in
the seminal book “The Mathematical Theory of Optimal Processes” [Pon+61] pointed
the way for further developments and coined standard notation and terminology.
Precursors to the maximum principle had already been formulated by Carathéodory
and Hestenes, see Pesch and Bulirsch [Pes94] and Pesch and Plail [PP09] for historical
notes. Using methods of non-smooth analysis, Clarke et al. considerably generalized
the maximum principle, compare [Vin10; Cla13].

Using indirect methods it is possible to compute very accurate solutions to an
optimal control problem. However, formulating and solving the arising boundary
value problems can be very challenging. The boundary value problem is typically
ill-conditioned and nontrivial analytical considerations are required to eliminate
controls by adjoints that may introduce many different special cases to be considered.
Furthermore, an analysis of the switching structure that defines activity of the con-
straints is required, which itself is highly problem- and data-dependent and requires
insight into the problem to be determined. These difficulties render indirect methods
impractical for many real-world applications.
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Discretization of the boundary value problem leads to a root-finding problem
that can be solved by a globalized Newton method, where different discretization
methods for the boundary value problem lead to different indirect methods. All
these methods share the property that the basin of attraction of Newton’s method
is typically very small due to the ill-conditioning of the boundary value problem
and advanced globalization methods such as the restrictive monotony test [BKS00] or
backward step control [Pot16] that are realized in the framework of affine invariant
Newton methods [Deu74; Deu06] are required.

Popular indirect methods are indirect single shooting, indirect multiple shooting
[Fox60; Kel68; Osb69; Bul71; Boc77; Boc78b; Boc78a; Boc81b; Obe86] and indirect
collocation [Vai65; RS72; DW75; Bar83; ACR79; AMRSS].

3.1.3. Dynamic Programming

Dynamic Programming is based on Bellman’s principle of optimality [Bel57], that
asserts that “an optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision”. This principle leads to a partial
differential equation, the Hamilton-Jacobi-Carathéodory-Bellman equation

V(t,x) + min(VV(t,x), f(x,u)) =0, V(1,x)= ¢(x),

for the cost-to-go function V(t,x) := ming ; feasible, x(r)=x P(x(1)), see e.g. [Pes94;
Ber05].

Using the Hamilton-Jacobi-Carathéodory-Bellmann equation has the advantage
that the obtained solution is a global optimum, as solution of the equation involves
tabulation of the complete state space. In some cases it is possible to solve this
equation analytically. For most instances, this is not possible and attempting to solve
this equation numerically is usually impossible due to the curse of dimensionality
unless the problem size is tiny.

Analysis of the Hamilton-Jacobi-Carathéodory-Bellmann equation is involved as,
in general, it does not have a classical smooth solution and a suitable notion of
generalized solutions is necessary.

3.1.4. Linear Optimal Control Problems

A linear optimal control problem is a problem such that the dynamics f(x, u) = Ax+Bu
are described by a linear function. Furthermore it is required that no path constraints
of the form d(x(t), u(¢)) > 0 are present and that only box constraints are imposed on
the controls. For such problems, a bang-bang principle can be shown that asserts that
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the reachable set of all admissible controls is identical to the reachable set of bang-
bang controls, which take values only at the boundary of the box, see for example
[HL69]. This can be exploited in solution methods as consideration can be restricted
to bang-bang controls.

3.2. Direct Multiple Shooting Discretization

We now discuss a direct multiple shooting discretization of (OCP). It was introduced
for optimal control problems in the diploma thesis of Plitt [Pli81] supervised by
Bock and published by Bock and Plitt [BP84]. The method has been extended to
systems constrained by differential-algebraic equations by Leineweber [Lei99; Lei+03b;
Lei+03a], by Schloder [Sch88] and Schafer [Sch05] to efficiently exploit the structure
of large-scale systems with a small number of degrees of freedom and by Potschka
[Pot11] to partial differential equations. Gallitzendérfer and Bock [GB94; Gal97]
analyze how the intrinsic parallel structure of the discretization can be exploited for
efficient parallel implementations. The software packages MUSCOD [BP84], MUSCOD-I1
[DLS01; Die+16], OMUSES/HQP [FMT02], muse [Jan10; Jan15], MuShROOM [Kir+10a],
MUSCOP [Pot11] and ACADO [HFD11] provide implementations of the multiple shooting
discretization. We provide an implementation OptimIND of the multiple shooting
discretization with interfaces to the python programming language.

For the discretization, a multiple shooting grid 0 = 70 < ... < ©ny—1 = 11is
used that partitions the time horizon [0, 1]. On every shooting interval [z;, 7j41],
a finite-dimensional subspace V; C L®([r;, 7+1], R™) is chosen with a fixed basis
{&j,j € [dim V;]}. Denote by & : R¥™ Y — V;,q > 3;c1aim;) ¢;&ij the coordinate
isomorphism.

Associated to every shooting node 7; is now a guess s’ € R"~ of x(z;) and ¢’ pa-
rameterizing u|[7;, 7;+1]. By x'*1(s’, ¢") we denote the solution of the initial value
problem x = f(t,x(t), $i(q")(t)), x(r;) = s' evaluated at t = 7;;;. The multiple shoot-
ing discretization eliminates the initial value problem by integration on the shooting
intervals and enforces continuity on the shooting nodes. Satisfaction of the path con-
straint is enforced on the shooting nodes only. This results in the following nonlinear
program:

min ¢(sN71)

s.q

st 0=x(st, q") — s, i€[N-1],
0= En—2(qV ) (eN-1) = En-1(g ) (En-0),
0 < d(s", &i(g")(7:)), i € [N].

The nonlinear program is separable in the sense that the coupling between (s’, ') and
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(s/,¢) for all i # j is linear. The Jacobian matrices thus have block structure, which
can be exploited by using tailored linear algebra algorithms in the subproblems of
nonlinear programming methods, see Bock and Plitt [P1i81; BP84; Boc87], Steinbach
[Ste94; Ste95; Ste96], Leineweber [Lei95; Lei99; Lei+03a], Schifer [Sch05] and Kirches
[Kir+11; Kir10].

Enforcing the path constraint only on a discrete time grid may render the solution
of the discretized problem infeasible to the solution (OCP). In many real-world
applications it turns out the solution of the discretized problem satisfies the path
constraint along the complete time horizon. If this is not the case, an adaptive
refinement strategy of the shooting grid can be employed.

As an alternative a semi-infinite programming approach has been developed by
Potschka [Pot06; PBS09] that tracks the constraint violations in the interior of shooting
intervals.

3.3. Solving Mixed-Integer Optimal Control Problems

We now review approaches to compute solutions to mixed-integer optimal control
problems that will be analyzed in further detail in Chapter 6.

Convexification, Relaxation and Rounding In Chapter 6 we outline an ap-
proach using partial outer convexification and reconstruction via a Vanishing Con-
straint convergent rounding scheme. This yields a suboptimal solution to a mixed-
integer optimal control problem with arbitrary small optimality and feasibility loss.
The computational effort involves solving the relaxed partial outer convexification
and subsequent reconstruction using the rounding scheme. The relaxed partial outer
convexification is a continuous optimal control problem with vanishing constraints,
that in principle can be dealt with any of the previously mentioned methods for
continuous optimal control problems. The non-convex vanishing constraint poses
additional challenges and care must be exercised to properly treat this constraint.
Reconstruction using the rounding scheme (VC-SOS-SUR) is computationally cheap,
as the computational effort is linear in the size of the temporal grid. Kirches [Kir10;
Kir+13a] has demonstrated that this approach can be sufficiently fast to be real-time
feasible.

Direct Discretization Direct discretization of (MIOCP) similar as described for
continuous optimal control problems yields a mixed-integer nonlinear program.
Mixed-integer nonlinear programs are NP hard [G]79]. Solution algorithms for mixed-
integer nonlinear programs constitute a very active area of contemporary research,
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see Belotti et al. [Bel+13] for a recent survey. A naive approach solving a mixed-
integer nonlinear program is full enumeration of the integer search space, which has
a complexity exponential in the number of integer variables and is thus computa-
tionally prohibitive. Among the most successful approaches are methods based on
branch-and-bound, branch-and-cut, outer approximation or Benders decomposition.
Gerdts [Ger05] studies the application of branch-and-bound to a mixed-integer opti-
mal control problem of an automotive test-drive with gear shifts. Mayne and Rakovic¢
[MRO3] use outer approximation for the optimal control of constrained piecewise
affine-discrete time systems.

Indirect Method: Competing Hamiltonians Applying indirect methods to Mixed-
Integer Optimal Control Problems is possible, as the maximum principle holds also
for admissible control sets that are disjoint. Bock and Longman [BL82] developed the
Competing Hamiltonians approach for the computation of energy-optimal braking of
the New York subway. This method also suffers from the mentioned drawbacks of
the indirect approach and, in addition, requires computation and comparison of the
values of the Hamilton function for every possible mode of operation.

Dynamic Programming Dynamic Programming can be directly applied to Mixed-
Integer Optimal Control Problems as integer controls can be naturally treated without
control space discretization, the approach is appealing as it yields a global solution.
For all but very tiny examples it is however impractical as the curse of dimensionality
inhibits the necessary space tabulation. Buchner [Buc10] and Hellstrom et al. [Hel+09]
have applied dynamic programming to mixed-integer control of trucks.

Linear Case If (MIOCP) or the partial outer convexification of (MIOCP) is a linear
optimal control problem, the bang-bang principle holds and thus optimal solutions
to the mixed-integer problem can be found among optimal solutions of the relaxed
problem.

3.4. Summary

In this chapter, we have reviewed different methods to solve optimal control problems
and mixed-integer optimal control problem. For our purposes, the method of choice to
discretize optimal control problems is Bock’s direct multiple shooting method. We will
approach mixed-integer optimal control problems by the partial outer convexification,
relaxation and reconstruction approach laid out in detail in Chapter 6. Discretization
of the relaxation of the partial outer convexification of a mixed-integer optimal control
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problem leads to a Mathematical Program with Vanishing Constraints. The class of
Mathematical Programs with Vanishing Constraints will be discussed in Chapter 5 and,
in Chapter 7, a novel algorithm for solving Mathematical Programs with Vanishing
Constraints will be presented.



4. Nonlinear Programming

The aim of this chapter is to provide necessary background from nonlinear program-
ming to discuss and analyze Mathematical Programs with Vanishing Constraints,
Mathematical Programs with Equilibrium Constraints and algorithms for their solu-
tion. We define a nonlinear programming problem in finite-dimensional real space
and review necessary concepts from convex analysis to state necessary conditions
for solutions of nonlinear programs. We refer to the text books by Clarke [Cla13],
Rockafellar [Roc70] and Nocedal and Wright [NW06] as references.

4.1. Problem Definition

4.1 Definition (Nonlinear Programming Problem).
Let 7, & be disjoint finite index sets, f : R” — R and ¢ : R” — R¥"Y€ be continuously
differentiable functions.

The problem
min  f(x)
x€eRn
st. 0=cg(x), (NLP)
0 < cr(x),
is the nonlinear program defined by f,c, 7 and &. A

It is possible to formulate problems with lower and upper bounds for the constraints
in this form by introducing slack variables. For theoretical purposes this form is thus
no loss of generality. In implementations we consider instead always a formulation
with lower and upper bounds on the constraints, as this liberates from introducing
slacks and enlarging problem dimensions.

4.2 Definition (Local Solution of Nonlinear Program).
The vector x* € R" is a local solution of (NLP), if there is a neighborhood U of x* such
that for all x € U with cg(x) = 0, cr(x) > 0 the relation f(x*) < f(x) holds.

It is a strict local solution, if furthermore f(x*) < f(x) provided that x # x™. A

4.3 Definition (Feasible Set).
The feasible set of (NLP) is defined as the set

Q:={xeR"|cg(x) =0,cr(x) > 0}. A
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4.4 Definition (Active Set).
Let x € Q be feasible for (NLP). The index set A(x) := {i | c;(x) = 0} is the active set
at x. A

4.5 Definition (Lagrange function).
The Lagrange function associated to (NLP) is L : R"” x R® x RY — R defined by

L(x, A, p) = f(x) = (A ce(x)) = (p. c1(x)). A

4.2. Selected Material from Convex Analysis

To formulate necessary conditions we need the concepts of cones, in particular the
tangential and feasibility cone.

4.6 Definition (Cone, Polar Cone).
A set C C R¥ is a cone, if R5oC C C.
The polar cone of a cone C is defined as C° := {y e R* | (y,x) < Oforallx € C}. A

4.7 Proposition.
Let C, Cy, C, be cones.

(1) C° is closed convex.
2 G CC=CcC

G cc=" N L

L convex,CCL

(4) If Cy, C; are convex and C} = C3, then C; = C,. A

4.8 Definition (Tangential and Feasibility Cone).
Let x € Q be feasible for (NLP).
The tangential cone of Q at x is defined by

T(Q,x) := {d € R" | there is (x,)ney in Q with x, — x, 22— — ﬁ} .

> lxn—x|l |

The linearized feasibility cone of Q at x is defined by

FQx):= (] {d[(Vesx),dy 20} 0 [ [{d|(Vei(x),d) = 0}.
iel, ie&
ci(x)=0 A
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Both T(Q, x) and F(Q, x) are closed cones, F(Q, x) is in addition also a convex cone.
Note that T(Q, x) is a geometric object as it depends on the function c only via the
feasible region Q, while F(Q, x) depends directly on c. The inclusion T(Q, x) C F(Q, x)
holds.

4.9 Lemma (Farkas [Far02]).
Let A € R™™ and b € R". Then exactly one of the following statements is true:

(1) There is x € R™ such that x > 0 and Ax = b.

(2) There is y € R" such that (A,y) > 0 and (b,y) < 0. A

From a geometric viewpoint, the Farkas Lemma is essentially a separation property
of finite-dimensional real space. In infinite-dimensional Banach or Hilbert spaces,
separation theorems may be fundamentally different from the finite-dimensional case,
see [Roc70]. This demonstrates that generalizations of necessary conditions to infinite-
dimensional Banach or Hilbert spaces cannot be obtained by trivial generalization of
the finite-dimensional case.

4.3. Necessary Conditions for Nonlinear Programs

We first state necessary conditions for the solution of the nonlinear program assum-
ing the general Guignard Constraint Qualification and discuss simpler Constraint
Qualifications that imply this condition afterwards.

4.10 Theorem (Karush-Kuhn-Tucker Conditions, [Kar39; KT51]).
Let x* € Q be a local minimizer of f such that the regularity condition GCQT(Q, x*)° =
F(Q, x*)° holds.

Then there exist Lagrange Multipliers A* € R, y* € RY satisfying:

V,L(x*, A", p*) = 0 (Stationarity),
pr=0 (Dual Feasibility), (KKT)
(Wer(x*) =0 (Complementarity).

Proor. Note that (Vf(x*),d) > 0 for all d € T(Q, x*) is necessary for x* to be a local
minimizer. This means —V f(x*) € T(Q, x*)°.

By means of Farkas’ Lemma, satisfaction of the (KKT) is equivalent to -V f(x*) €
F(Q,x*)°: Setting A := (Veg(x*) —Veg(x*)T  Ver(x*)T), it holds for all d € R”
that d € F(Q,x") if and only if ATd > 0. Thus -V f(x*) € F(Q,x*)° if and only if
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(V£(x*),d)y > 0 for all d € R" with ATd > 0. Alternative 2 of Farkas’ Lemma cannot

A+

be satisfied and hence there must be £ = | 1~ | € R®Y8Y! with ¢ > 0 and A¢ = —Vf.
J7;

By GCQ T(Q, x*)° = F(Q, x")° which proves the Theorem. O

The constraint qualification GCQ cannot be dropped, as in general, only T(Q, x*) C
F(Q,x") and thus F(Q, x")° C T(Q, x*)°, but there are examples for which the polar
cones F(Q,x*)° and T(Q, x*)° are not identical.

4.4. Constraint Qualifications

The condition GCQ is unsuited to be checked in algorithms and hard to handle
in computations. This motivates the consideration of further, stronger regularity
conditions. For a review of constraint qualifications, proofs of their relationships as
well as examples and counterexamples see Peterson [Pet73].

4.11 Definition (Constraint Qualifications).
Let x € Q be feasible.

« LICQ: Linear Independence CQ, [Hes66, p. 29] holds at x if (V¢;)iea(x) is
linear independent.

« MFCQ: Mangasarian-Fromovitz CQ, [MF67] holds at x if (V¢;(x));eg is linear
independent and there is d with (Vcg(x),d) = 0, and (Vc;(x),d) > 0 for all
i € I with ¢;(x) = 0.

« SMFCQ: Strict Mangasarian-Fromovitz CQ at (x, A, i), where (x, A, 1) satisfy
(KKT), [MF67] holds at x if (V¢;(x));eg is linear independent and there is d
with (Veg(x),d) = 0 and (Vc;(x),d) = 0 foralli € I with ¢;(x) =0, p; > 0and
(Vei(x),d) > 0foralli € I with ¢;(x) =0, p; =0.

« CRCQ: Constant Rank CQ, [Jan84] holds at x if for every J C A(x) the
rank of Ve 4(y) is constant in a neighborhood of x.

« ACQ:  Abadie CQ, [Aba67] holds at x if T(Q, x) = F(Q, x).

« GCQ:  Guignard CQ [Gui69] holds at x if T(Q, x)° = F(Q, x)° A
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4.12 Lemma (Relationship between Constraint Qualifications).
Let x € Q be feasible. Then the following implications hold:

MFCQ

LICQ ACQ =—=> GCQ

N

CRCQ

4.5. Uniqueness of Multipliers

For a fixed local minimizer x* € Q, multipliers A*, y* satisfying (KKT) need not nec-
essarily be unique. The following Theorem relates the set of multipliers to constraint
qualifications and states that multipliers are unique provided that LICQ holds.

4.13 Theorem (Constraint Qualifications and Uniqueness of Multipliers).
Let x* € Q be a local minimizer of f. Let A := {(A, p) | (x*, A, u satisfy (KKT)}. Then

(1) Ais closed and convex.

(2) If GCQ holds, then A # @.

(3) MFCQ holds if and only if A is a compact set.
(4) If LICQ holds, then A = {(1%, u*)} is a singleton.

(5) If A # @, then A is a singleton if and only if there is (A*, #*) such that SMFCQ
holds at (x*, A%, u*). A

In addition to the already cited references, see [Wac13] for a discussion and proofs.

4.6. Penalization

For theoretical and practical purposes it is important to note that there is an equiva-
lence between (NLP) and a class of unconstrained non-smooth optimization problems,
denoted by penalization. This is often exploited as merit function mechanism in
globalization strategies of algorithms that attempt to solve (NLP) and we will make
use of it in the construction of a SLPECEQP method. The penalization result here has
been established by Han and Mangasarian [HM?79, Section 4].
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4.14 Theorem (Penalization).
Let || - || be anorm on R€ and || - |7 a norm on R, and || - llg: Il - I their respective
dual norms.

Let (x, ) i= £(x) + yllcs(lle + y min{0, ller (x)} -

If x* is a local minimizer of (NLP) such that MFCQ holds with (x*, 1*, u*) satisfying
(KKT), then x* is a local minimizer of ¢(x, y) for every y > max{|[A*[|%, Iz} }-

If there is y such that lim, |, %(gb(x* +td,y)—¢(x*,y)) =0foralld e R" andy > 7,
then there are A%, u* such that (x*, A%, u*) satisfy (KKT). A

4.7. Summary

In this chapter, we have collected the necessary material from convex analysis to ana-
lyze Mathematical Programs with Vanishing and Equilibrium Constraints in Chapter 5
and the novel algorithm to solve these programs in Chapter 7. We have discussed
necessary conditions of nonlinear programs and constraint qualifications that imply
necessary conditions. The relation between uniqueness of multipliers and constraint
qualifications has been considered and penalty reformulations of nonlinear programs
have been given.



5. Mathematical Programs with
Vanishing and Equilibrium
Constraints

In this chapter, we introduce two challenging classes of nonlinear problems, Math-
ematical Programs with Vanishing Constraints (MPVC) and Mathematical Programs
with Equilibrium Constraints (MPEC). We review their properties, lack of constraint
qualifications, stationarity concepts and existing solution approaches. We note that
MPVC can be considered as a subclass of MPEC. MPVC play an important role in
mixed-integer optimal control problems, as already seen in Chapter 6 discretizations
of such problems lead to MPVC. In the subsequent chapter, we propose a Sequential
Linear Equilibrium Constraint Equality Constraint Quadratic Programming Method
(SLPECEQP) for MPEC.

MPVC and MPEC have attracted a lot of theoretical and algorithmic research interest
in the past twenty years due to the challenges posed by this problem class and the
wide applicability to real-world problems. The results presented in this section are a
summary of the analyses of Scheel and Scholtes [SS00; Sch02; Sch04], Outrata [Out99;
Out00], Izmailov and Solodov [IS09], Achtziger and Kanzow [AK08], Flegel and
Kanzow [FKO03; Fle05], Hoheisel and Kanzow [HK07; HK08; Hoh09; HK09b; HKS13],
Kanzow and Schwartz [KS13], Luo, Pang, Ralph [LPR96], Pang and Fukushima [PF99]
and Gfrerer [Gfr14].

Furthermore, MPVC and MPEC in infinite dimensional spaces are analyzed by
Hintermiller et al. [HK09a; HS11] and Wachsmuth [Wac15; Wac16]. Considering
bilevel optimization and bilevel optimal control problems leads in suitable formulation
to MPEC. MPEC results in bilevel form have been obtained by Chen and Florian
[CKA95], Ye [Ye95; Ye00; Ye05], Dempe [Dem02; DZ13] and Mehlitz [Meh17].

5.1. Mathematical Programs with Vanishing Constraints

Mathematical Programs with Vanishing Constraints (MPVC) constitute a challenging
class of nonlinear programs and in our context naturally arise from discretizations
of mixed-integer optimal control problems. Their feasible set is non-convex and
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violates constraint qualifications, which renders standard algorithms for nonlinear
program unsuitable as they rely, for instance, on satisfaction of LICQ. Mathematical
Programs with Vanishing Constraints can be seen by introduction of slacks to be
a subclass of Mathematical Programs with Equilibrium Constraints (MPEC). We will
note below that the slack must not bee unique and thus Mathematical Programs with
Vanishing Constraints are slightly less degenerate than Mathematical Programs with
Equilibrium Constraints.

5.1 Definition (MPVC).
Let 7, & be disjoint finite index sets, f : R™ X R" — R, ¢ : R™ xR"™ — RIVY€ and
g : R™ x R" — R be continuously differentiable functions.

min f(x,s)

X, S

st. 0=cglx,s),
0<cr(x,s), (MPVC)
0 < sx*g(x,s),
0<s,

is called a Mathematical Program with Vanishing Constraints. Here * denotes the
component-wise product of vectors. A

If s; = 0, the constraint s;g;(x) > 0 is satisfied regardless of g;(x, s), the constraint
gi(x, s) “vanishes”. This gives the equivalent logical reformulation of (MPVC):

min f(x,s)
x,S
st. 0=cg(x,s),
0<cr(x,s),
0<s,
0<s; = 0<gix,s).

This logical reformulation is a special case of so called Constraint Programming
Problems which are studied in the context of Mixed-Integer Linear Programming
Problems by Achterberg [Ach07]. Variants with two-sided general constraints of the
form 0 < g1(x) * go(x) can be reduced to (MPVC) by introduction of slack variables.

Part of the challenges given by MPVC is that they do not satisfy regularity assump-
tions that nonlinear programs are usually expected to satisfy:

5.2 Proposition (Violation of standard constraint qualifications for MPVC).
Let x, s be feasible for (MPVC).

If {i|s; = 0} # @, then LICQ is violated in x, s.

If {i|s; = 0 and g;(x,s) > 0} # @, then MFCQ is violated in x, s. A
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For a proof see [AK08]. Considering Theorem 4.13, violation of LICQ may result in
non-unique multipliers. Violation of MFCQ implies non-uniqueness of multipliers
and unboundedness of the set of multipliers.

5.2. Mathematical Programs with Equilibrium
Constraints

Mathematical Programs with Equilibrium Constraints constitute a more general class
with even less regularity than MPVC. They are defined as follows:

5.3 Definition (MPEC).
Let 7, & be disjoint finite index sets, f : R"*xXR"sxR™ — Randc : R*™*XR"sxR"s —

R7Y€ be continuously differentiable functions.

min  f(x,s,1t)

x,S,t

st. 0=cg(x,s,t), (MPEC)
0<cr(x,s,t),
0<slt=>0,

is called a Mathematical Program with Equilibrium Constraints, sometimes also called
Mathematical Program with Complementarity Constraints. Here 0 < s L t > 0 denotes
0<s,0<t st)=0. A

Again, with two-sided general constraints of the form 0 < hy(x) L hy(x) > 0 can be
reduced to the presented form by introduction of slack variables.
As for MPVC, MPEC lack satisfaction of standard constraint qualifications:

5.4 Proposition (Violation of standard constraint qualifications for MPEC).
Let x, s, t be feasible for (MPEC). Then MFCQ is violated for the nonlinear program-
ming formulation of (MPEC):

min f(x,s,t)
X,S,t
st. 0=cglx,s,t),
0 <cy(x,s,t),
0<s,
0<t,
0= (s,t). A

For a proof see [CKA95; SS00]. Violation of MFCQ implies non-uniqueness of multi-
pliers and unboundedness of the multiplier set, see Theorem 4.13.
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5.3. Relation between MPVC and MPEC

We will now show that MPVC can be considered as subclass of MPEC by introduction
of slacks:

5.5 Lemma (MPVCs are MPECs).
Every MPVC can be written as an MPEC by the introduction of slack variables:
Then the problem (MPVC) has a solution if and only if the problem

min f(x,s)

X,S,t

st. 0=cglx,s),
0 <cr(x,s),
0 < g(x,s)+t,
0<slt=>0,

has a solution. A

Note however, that the slack t is not uniquely defined and thus MPVC are truly a
different class of problems than MPEC and must be treated separately from MPEC for
certain questions. Nevertheless, for our purposes we will treat (MPVC) as (MPEC) by
introduction of slacks and thus focus from now on (MPEC).

5.4. Related Nonlinear Programs to MPEC

In this section, we introduce several nonlinear programs that are related to (MPEC)
as a tool for the analysis of (MPEC) in a decomposition approach.

5.6 Definition (Set of Degenerate Indices).
Let x,s,t be feasible for (MPEC). Then the set of degenerate indices is defined by
D(x,s,t):={i|s; =t; = 0}. A

5.7 Definition (MPEC-Lagrangian).
The MPEC Lagrangian

L, :R™ xR™ xR™ xRE x RY x R™ xR™ — R
is given by

Li(x,s,t, A, u,v,0) = f(x,s,t) — (A, ce(x,s, 1)) — (i, cr(x,s,1)) — (v, s) — (o, ).
A
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The MPEC Lagrangian differs from the standard Lagrangian L of a nonlinear pro-
gram as defined in 4.5 with nonlinear formulation of the equilibrium constraint
0 <s,0<t0=(s,t)in omitting the multiplier pairing for 0 = (s, t).

5.8 Definition (TNLP, RNLP, branch NLP s, s,))-
Let %, 3,  be feasible for (MPEC). The tightened NLP at X, 5, f is defined as

min f(x,s,t)

X,S, b

st. 0=cglx,s,t),
0<cr(x,s,t),
0= Si,
0<s;i,
0= t,‘,
0<t,

the relaxed NLP at x, 5 is defined as

min f(x,s,t)

X,S,t

st. 0=cglx,s,t),
0 <cy(x,s,t),
0= Si,
0<s;,
0 = ti,
0<t,

if5 = 0, (TNLP)
if s; >0,
lf fl' = 0,
if f; > 0,

if £ > 0, (RNLP)
lf fi = 0,
if§i >0,
if§i =0.

Let (So, S+) be a partition of D(x, 5, f), D(X, 5, ) = SoUS... Then the branch NLP s, s.)

is defined as

min  f(x,s,t)

X,S, b

st. 0=cglx,s,t),
0 < C[(x, S, t)’

0=s, ifi e Sgort; >0, (NLP(s,,s,))
0<s;, ifi e S+,

0=t ifieS; ors; >0,

0<1t, ifi e So. A

Using the branch programs, the MPEC can be decomposed by taking partitions of
the set of degenerate indices. As the number of partitions of D(%, 3, f) is 2| 2% 591
decomposition approach requires consideration of 2259 branch programs which
demonstrates the combinatorial nature of this class of problems. The branch programs
allow a description of the feasibility cones of the MPEC:
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5.9 Lemma ([SS00]).
For the feasibility cones FTNLP(QTNLP, x,$, 1), FMPEC(QMpEc, x,8,1), FRNLP(QRNLP, x,5,1)
at x, 5, t the following inclusions hold:

FINLP _ ﬂ FNLP(s,.5,) ¢ pMPEC U FNLP(s.8,) — pRNLP

SoUS,=D(x,5,t) SoUS,=D(x,5,t) A

5.10 Lemma ([SS00]).
Let x, s, t be feasible for (MPEC).

(1) The point x, s, ¢ is a local minimizer of (MPEC) if and only if it is a local mini-
mizer of (NLP(gs, s,)) for every partition D(x, s, t) = SoUS,.

(2) If x, s, t is a local minimizer of (RNLP), it is a local minimizer of (MPEC).
(3) If x,s, t is a local minimizer of (MPEC), it is a local minimizer of (TNLP).

(4) If strict complementarity holds at x,s,t, i.e. D(x,s,t) = @, then FINLP —
FMPEC — FRNLP apd x, s, t is a local minimizer of (MPEC), if and only if it a local
minimizer of (TNLP) and if and only if it is a local minimizer of (RNLP). A

5.11 Definition (CQ for MPEC).
We say that (MPEC) satisfies a constraint qualification in X, 3, ¢, if this is true for
(TNLP) at x, 5, t of MPEC. A

If (MPEC) satisfies MPEC-LICQ or MPEC-MFCQ in %, §, £, then (TNLP), (RNLP) and
(NLP(s,,s,)) satisfy LICQ respective MFCQ.

5.5. Stationarity for MPEC

5.12 Definition (Stationarity for MPEC).
Let x, s, t be feasible for (MPEC).

 B-stationarity [Luo+96]: The point x,s,t satisfies Bouligand stationarity if
d = 0 is a local minimizer of the Linear Program with Equilibrium Constraints
obtained by linearizing (MPEC) at x, s, t:

m;n (Vf(x,s,t),d)

st. 0=cglx,s, t)+ (Veg(x,s, t),d),
0 <cr(x,s,t) +(Ver(x,s, 1), d),
0<s+ds Lt+d, >0.
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« weak stationarity [SS00]: The point x,s, ¢ satisfies weak stationarity if the
corresponding (TNLP) at x, s, t admits satisfaction of Karush-Kuhn-Tucker
conditions, i.e. there are v, o such that

VasLi(x,s, t,A,u,v,0) =0,
0<puLcyx,s,t)=0,
s>0,

t>0,

vxs =0,
oxt=0.

« strong stationarity [LPR96]: The point x, s, ¢ satisfies strong stationarity if it is
weakly stationary and

vi=20ando; >0 ifie D(x,s,t).

« C-stationarity [SS00]: The point x, s, t satisfies Clarke stationarity if it is weakly
stationary and

vio; 20 ifie D(x,s,t).

« M-stationarity [YY97; Out99; Out00; Ye00]: The point x, s, t satisfies Mordukhovich
stationarity if it is weakly stationary and

(vi>0ando; > 0)orvio; =0 ifi € D(x,s,t).

« A-stationarity [FK03]: The point x, s, t satisfies Abadie/Alternative stationarity
if it is weakly stationary and

vi=0oro; =0 ifie D(x,s,t).
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With the exception of A-stationarity, the names for these stationarity concepts have
been coined by Scheel and Scholtes [SS00].

The following Theorem summarizes the relationship between the stationarity con-
cept and shows that Bouligand stationarity and strong stationarity are equivalent if
MPEC-SMFCQ holds, and that all other stationarity concepts are weaker.

5.13 Theorem (Relations between stationarity concepts).
Let x, s, t be feasible for (MPEC). Then the following implications hold:

B-stationary
AN

MPEC-SMFCQ

strong stationary

\%
> M-stationary

MPEC-GMFCQ

local minimizer

C-stationary A-stationary

A weak stationary A

For a definition of MPEC-GMFCQ we refer to [Ye05] and for [SS00; LPR96; Out99;
FKO03; Ye05] proofs of the statement of the Theorem.

We consider Bouligand stationarity as the stationarity concept of interest, as it pre-
vents the existence of first-order descent directions by definition. Clarke stationarity,
Mordukhovich stationarity and weak stationarity suffer from this artifact. They can
be prone to spurious points: These are points that satisfy the respective necessary
condition, but descent directions do exist and thus they cannot be local minimizers.
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Scheel and Scholtes [SS00] give the following counterexample for the existence of
descent directions in points satisfying Clarke and weak stationarity:

5.14 Example (Descent directions in C-stationary points).
Consider the following problem:

min (s — 1)+ (t — 1)?
s, t
st. 0<sLt>0.

Then (s, t,v,0) = (0,0,—-2,—-2) is Clarke stationary and thus weak stationary, but
increasing either s or ¢ reduces the objective. The unit vectors are descent directions.A

As counterexample for Mordukhovich stationarity, Leyffer and Munson [LM07] give
the following problem:

5.15 Example (Descent directions in M-stationary points).
Consider the following problem:

min (¢t —1)? +s%(s + 1)
s, t

st. 0<sL1lt>0.

Then (s, t,v,0) = (0,0,-2,0) is Mordukhovich, Clarke and weak stationary, but
increasing t decreases the objective function. A

5.6. Numerical Methods for MPEC

Several approaches have been considered in the literature to solve Mathematical Pro-
grams with Equilibrium Constraints. These can be classified into nonlinear equation
approaches, smoothing approaches and structural approaches.

5.6.1. Nonlinear Equation and Smoothing, Regularization and
Penalization Approach

In nonlinear equation, smoothing, regularization and penalization approaches, the
complementarity constraint is expressed as a nonlinear equation. These approaches
have been successful in a range of applications spanning from chemical engineering
[RDB04; BRB08], switched systems [BB09], engineering and economics [FP97], market
and risk analysis [Su05], automotive engineering [Kir+10a] to locomotion and cerebral
palsy gait modeling [Hat14].

In general for these approaches only convergence to points satisfying weak, M-,
C- or A-stationarity can be shown, whereas B-stationarity is the desired stationarity
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criterion. Convergence to spurious stationary points have been observed in real-world
applications for example by Chen et al. [Che+06] in an application involving the
Pennsylvania-Jersey-Maryland electricity market.

Nonlinear Equation Approach In the nonlinear equation approach, the equilib-
rium constraint 0 < s L h(x,s) > 0 is formulated as nonlinear equation, for example
as0 < s,0—h(x,s) =0,0 < 0,(s,0) <0, [Ley06] and the resulting nonlinear program
treated with an algorithm for solving nonlinear programs. A major obstacle of the
nonlinear equation approach is that the resulting nonlinear program does not satisfy
constraint qualifications as LICQ or MFCQ. Convergence proofs of standard nonlinear
programming algorithms rely on satisfaction of these constraint qualifications, so
convergence is not necessarily guaranteed. Numerically, the lack of satisfaction of
these constraint qualifications can be seen by severe ill-conditioning of subproblems
and infeasible subproblems arbitrarily close to a solution, as consistence of lineariza-
tions is only guaranteed under MFCQ. Despite these difficulties, Fletcher and Leyffer
[FL04] have shown that the nonlinear equation approach can give good results on a
wide range of practical problems if active set methods are used, and that smoothing
or penalty approaches are favorable if interior point methods are used.

Bard [Bar88] used a branch-and-bound approach to solve complementarity prob-
lems arising from a reformulation of a bilevel optimization problem. Ralph [Ral94]
describes a stabilized Newton type method for solving the non-smooth equations
using a path-generation technique in which a piecewise-linear path from one iterate
to the next Newton point is traced. It has been extended by Dirkse and Ferris [DF95]
with step-size selection mechanism and implemented in the PATH solver. Further
extension and analysis in the framework of semi-smooth Newton methods are given
by Munson et al. [Mun+01]. Outrata et al. [OKZ98] have suggested a semi-smooth
Newton method using an implicit formulation of the equilibrium constraint. Luo
et al. [LPR98] consider a piecewise SQP approach and show convergence of the
method if multipliers are unique and Zhang and Liu [ZL01] propose an extreme point
piecewise SQP algorithm. Izmailov et al. [IPS12] present a lifting approach to obtain
a semi-smooth system that can be solved using a semi-smooth Newton method.

Fletcher et al. [Fle+06] have shown the following that local SQP methods in con-
junction with the nonlinear equation approach can converge to a strongly stationary
point if started in a neighborhood of a strong stationary point and MPEC-LICQ and
further nontrivial technical assumptions are satisfied. The analysis does not extend to
globalized SQP methods.

Leyffer [LLN06] analyzes formulations using nonlinear complementarity functions
as defined below to formulate the equilibrium constraint and applying nonlinear
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programming techniques to these without smoothing, gives a convergence proof to
strong stationary points provided that similar, strong assumptions as given by Fletcher
et al. [Fle+06] for SQP methods are satisfied.

Smoothing and Regularization Approach The smoothing and regularization
approach builds upon the nonlinear equation approach by formulation the equilibrium
constraint 0 < s L t > 0 as ¢(s,t) = 0 where ¢ is a nonlinear complementarity
problem (NCP) function that satisfies the axiom ¢(a, b) = 0ifand onlyif0 < a L b > 0.
¢ is then identified as the limit 7 — 0 of a family of smooth functions ¢* and the
parametric nonlinear program with constraint ¢*(s,¢) = 0 is considered such that
for 7 # 0 the nonlinear program is regular in the sense that constraint qualifications
are satisfied. Then a sequence of nonlinear programs with 7 — 0,7 # 0 is solved or
during the course of solution of one nonlinear program the parameter 7 is driven to
zZero.

Facchinei et al. [FJQ99] have shown that this approach using a suitable NCP func-
tion guarantees convergence to C-stationary points. This analysis is complemented by
Scholtes [Sch01], Ralph and Wright [RW04] giving conditions that guarantee conver-
gence to M-, C- or B-stationary points. The requirements for B-stationarity, namely
satisfaction of certain second order necessary conditions and satisfaction of so called
upper level strict complementarity are rather restrictive and not generic. Fukushima
and Pang [FP99] give an analysis that establishes convergence to B-stationary points
if certain second order necessary conditions and a certain non-degeneracy assumption
is satisfied.

Fukushima and Tseng [FT99] suggest an SQP method using a so called e-feasible
set and show convergence to B-stationary points if the e-feasible sets show uniform
satisfaction of LICQ.

Raghunathan and Biegler [RB03] proposed a smoothing approach in conjunction
with an interior point algorithm where 7 is reduced along with the barrier parameter. A
similar approach has been suggested by Liu and Sun [LS04] with a different relaxation
scheme that ensures convergence to weak stationary points and gives a monitoring
condition for convergence to strong stationary points. Lin and Fukushima [LF03; LF05]
give an expansive simplex relaxation approach and show convergence to C-stationary
points. De Miguel et al. [DeM+05] considered such an approach with a two-sided
relaxation on complementarity and non-negativity, solving a sequence of nonlinear
programs with an interior point algorithm. Kadrani et al. [KDB09], Steffensen and
Ulbrich [SU10] and Kanzow and Schwartz [KS13] suggest approaches that ensure
convergence to M-stationarity points. Hatz [Hat+13] developed a lifting approach
for bilevel optimization problems that ensures MPEC-LICQ of the lifted problem.
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Stein [Ste12] introduces a lifting approach that gives a smooth but degenerate lifted
problem which can be solved upon regularization and discusses the relationship
between stationarity concepts of the equilibrium constraint problem and the lifted
problem.

Hoheisel et al. [HKS13] review these different regularization concepts, improve on
some of the convergence results and provide a comparison of the numerical behavior
of these schemes.

Penalization Approach The penalization approach also builds on the nonlinear
equation approach and considers a modified problem where the complementarity
constraint is added as soft constraint in a penalty formulation to the objective function.

A penalty method with an interior point type regularization has been suggested by
Luo, Pang and Ralph [LPR96, Ch. 6.1] and a convergence result has been obtained
under strong assumptions. Leyffer [Ley05] has analyzed the convergence properties
of this algorithm and provided a simple example in which the algorithm fails to
converge to a stationary point.

Leyffer et al. [LLN06] give an interior point penalty algorithm and establish conver-
gence to C-stationary points of this algorithm and a monitoring condition for strong
stationary points that is satisfied if the penalty parameter sequence is bounded.

Fukushima et al. [FLP98] suggest using a SQP method with a penalization of a NCP
formulation of the complementarity constraint and give a global convergence proof
that requires a non-degeneracy assumption of the problem. Hu and Ralph [HR04]
extend the analysis of smoothing approaches by Scholtes, Ralph and Wright to penalty
approaches and provide conditions for convergence to B-stationary points and find
similar conditions to those of the smoothing case. Jiang and Ralph [JR00] suggest a
smoothing method with a SQP algorithm using an either explicit or implicit formu-
lation and provide global convergence result under a non-degeneracy assumption.
Stohr and Scholtes [SS99; St600] establish the existence of an exact penalty function
and show global convergence of a trust region SQP method.

Benson [Ben+06] used a penalty approach with a £* penalty function together
with an interior point method. Anitescu [Ani05a; Ani05b; ATWO07] considers a
particular variant of the penalization approach to deal with the potential infeasibility
of subproblems. Using a globalized SQP algorithm with an elastic mode penalty
formulation of infeasible subproblems, convergence to C-stationary points can be
shown.
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5.6.2. Structural Treatment Approach

By structural treatment approach we understand approaches that keep complemen-
tarities without explicitly reformulating them as a more general object in which the
complementarity is not longer present.

Scholtes [Sch04] proposes a SQPEC method to solve MPEC where the complemen-
tarity constraint is a structural constraint in the quadratic subproblem. However, this
does not preclude convergence to spurious points as Leyffer and Munson [LM07]
point out. In the example 5.15 that still exhibits descent directions in the M-stationary
point (s, t,v,0) = (0,0, -2, 0), the SQPEC method generates iterates that converge
quadratically to (s, t) = (0, 0).

Leyffer and Munson [LM07] propose a Filter SLPEC method and claim convergence
to B-stationary points. Their preprint however gives only an outline of such a method
and does not answer several questions, most importantly infeasibility handling.

Giallombardo and Ralph [GR08] consider a piecewise decomposition trust search
algorithm for MPEC and establish multiplier convergence results and convergence
to B-stationary points if upper level strict complementarity holds. Kirches [Kir+10a;
Kir+13b] presents a SQPVC method for MPVC with a non-convex parametric algo-
rithm for the QPVC subproblem that ensures convergence to strong stationary points
of the subproblems if MPEC-LICQ is satisfied. Benko and Gfrerer [BG16] propose an
SQPEC algorithm, provide an active set method to compute M-stationary points of
the QPEC subproblem and show convergence to M-stationary points.

For practical implementations, it is important that structural information about
complementarities is available. Modeling languages such as AMPL [FGK90; FGK02]
and GAMS [GAM] have been augmented to provide formulation of equilibrium
constraints as structural constraints and may also in addition provide methods to
reformulate them as nonlinear programs [FFG99; FDMO05].

In Chapter 7 we develop a SLPECEQP method that ensures global convergence to
B-stationary points under certain assumptions.

5.7. Summary

We have introduced the challenging classes of Mathematical Programs with Vanish-
ing Constraints and Mathematical Programs with Equilibrium Constraints and have
reviewed their properties. We have noted that Mathematical Programs with Vanish-
ing Constraints constitute a subclass of Mathematical Programs with Equilibrium
Constraints and focused on the latter. Standard constraint qualifications fail for both
classes and necessitate the introduction of tailored constraint qualifications and sta-
tionary concepts. This is done via a decomposition approach. Several stationarity
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concepts have been proposed in the literature, of which we single out B-stationary
and strong stationarity as the most interesting concepts as they prevent by definition
first order descent directions. The next weaker concept of M-stationary does not
prevent this, as has been shown for an example.

We have reviewed approaches to solve Mathematical Programs with Equilibrium
Constraints and their convergence properties. Very few of the algorithms proposed
so far guarantee convergence to B-stationary points under mild assumptions. In
Chapter 7 we develop a sequential LPEC algorithm and prove that it ensures global
convergence to B-stationary points under suitable assumptions.
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6. Mixed-Integer Optimal Control
Problems

In this chapter, we introduce the challenging class of Mixed-Integer Optimal Control
Problems (MIOCP). Associated to a Mixed-Integer Optimal Control Problem, we
formulate a relaxed convexified problem that has vanishing constraint structure.
As main result, we generalize a result of Sager [Sag06] and prove that there is a
correspondence between feasible points of the relaxed convexified problem and ¢-
feasible points of the Mixed-Integer Optimal Control Problem. We present SOS-1
respecting vanishing constraint sum-up rounding (VC-SOS-SUR) as an algorithm to
computationally exploit this correspondence.

We conclude the chapter by an counterexample of Cesari [Ces83] that illustrates
the results in the case of an ill-posed problem.

Parts of the results of this chapter are published in [Kir+15; KL16].

6.1. Problem Formulation

In the following we will introduce the class of Mixed-Integer Optimal Control Prob-
lems. This class of problems covers many real-world problems. Variants and examples
of this class of problems have been already considered by Bock and Longman [BLS80;
BL82; BL85], Kaya and Noakes [KN03], Gerdts [Ger05], Sager [Sag06; SRB09; SBD12],
Kirches [Kir10] and Ringkamp et al. [ROL17]. Challenges are presented in particular
by the constraints v(t) € V for a discrete set V and the combinatorial constraint
c(x(t), u(t), v(t)) > 0 in which the discrete control v enters. Direct discretizations of
such problems constitute mixed-integer nonlinear programs, a problem class that is
NP hard [G]79]. In this chapter, we show how suboptimal solutions that approximate
solutions to this problem with arbitrary small optimality and feasibility loss can be
computed with a complexity equal to that of solving a continuous optimal control
problem.

6.1 Definition (Mixed-Integer Optimal Control Problem).
Let V := {vy,...,vjy|} € R™ be a finite, discrete set of choices. Let D, € R"~,D,, C
R™ be domains. Let ¢ : D, — R be a continuously differentiable function and
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f i DyXD,xV — R™, d:DyxD, - Randc: Dy XD, xV — R"™ be
continuous functions.
Then the following problem denotes a mixed-integer optimal control problem:
min $(x(1))
xewb>([o,1],R"x),

ueL®([0,1],R"),
veLl™([0,1],R"™)

s.t. ;c(((t)‘% z )]:(g’x(t), u(t),o(t)) ae.te]0,1], (MIOCP)
v(t)eV ae. t €[0,1],
0 < d(x(t),u(t)) a.e. t €[0,1],

0 < c(x(t),u(t),v(t)) ae.tel0,1]. A

It is well known that more general classes of problems can be reduced to this class
of problems, namely problems with free endtime, with non-autonomous dynamics
and problems with Bolza type objective function that are a sum of a Mayer type
final time objective contribution and a Lagrange type objective contribution. Fur-
thermore, problems with point constraints, multi-stage problems and problems with
additional parameter dependence may be considered. These additional ingredients do
not contribute to the arguments of this chapter and we restrict our consideration to
the defined problem class for notational simplicity.

An admissible or feasible point of (MIOCP) is a point that satisfies all the constraints:

6.2 Definition (Admissible Point).
Functions x € Wb([0,1],R™), u € L*([0,1],R") and v € L*([0,1],R") are
admissible, if

(1) x(t) € Dy forallt € [0,1] and u(t) € D, and v(t) € V for almost all ¢ € [0, 1],
(2) x(t) = f(x(¢), u(t),v(t)) for almost all ¢ € [0, 1],

(3) x(0) = x°,

(4) 0 < d(x(t),u(t)) and 0 < c(x(t), u(t), v(t)) for almost all ¢ € [0, 1]. A

6.3 Definition (Minimum and Local Minimum).
An admissible tuple (x*, u*, v*) is a minimizer if $(x*(1)) < ¢(x(1)) for all admissible
points (x, u, v).

It is a strong local minimizer, if there is ¢ > 0 such that ¢(x*(1)) < ¢(x(1)) for all
admissible points (x, u, v) that satisfy ||x — x*||f~ < e.

It is a weak local minimizer, if there is ¢ > 0 such that ¢(x*(1)) < ¢(x(1)) for all
admissible points (x, u, v) that satisfy ||x — x*||jy.~ < € and ||ju — u*||f~ < € and
lo— vl < e A
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It is evident, that every weak local minimizer is also a strong local minimizer. Strong
local minimizers are local minimizers if the state space W* is endowed with the
topology induced by the L™-norm and the control spaces are equipped with the trivial
topology. The notion of strong and weak local minimizer plays an important role in
the calculus of variations and the analysis of the maximum principle and is mentioned
for these reasons. In this thesis, we focus on strong local minimizers and will for
brevity use local minimizer as synonym for strong local minimizer.

We assume the following regularity of the data:

6.4 Assumption.
L. The mappings f(-,u,v) and c(-, u, v) are uniformly Lipschitz continuous for
every u € D, and v € V, i.e., there exists Ly >0 and L. > 0 such that for all
x,X € Dy, ueD,andv e V:

1f (e, u,0) = f(X w0l < Lellx - x|,
lle(e, u,v) = e(®, u, V)| < Lellx — X||. A

We will need the Lipschitz continuity assumption on f for the proof of Theorems 6.7
and 6.12, while the Lipschitz continuity assumption on ¢ is only required to provide
the existence of an e-feasible grid for the reconstruction via a rounding scheme in
Section 6.4.

6.2. Convexification and Relaxation

We introduce now a convexified problem associated to (MIOCP) that provides a
reformulation of (MIOCP) suitable for subsequent relaxation, such that solutions of
this relaxed problem can be approximated arbitrary well by binary feasible solutions.
This convexification and relaxation approach is similar to the notion of generalized
curves introduced by L.C. Young [You37] to study existence questions in the calculus of
variations and to the notion of relaxed controls used by Cesari and Berkovitz to obtain
existence results for optimal control problems, see [Ces83, Ch. 18], [Ber74] and [BM12,
Ch. 3]. It is a generalization of the results of Sager [Sag06; SBD12] who studied the
case of (MIOCP) without combinatorial constraints of the type c(x(t), u(t), v(t)) = 0
that depend on discrete controls. Sager used this convexification approach to proof a
conjecture of Veliov [Vel03; Vel05] concerning the Hausdorff-distance of reachable
sets.
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6.5 Definition (Convexification and relaxation).
The partial outer convexification of (MIOCP) is given by

min $(x(1))
xeWbh>([0,1],R"x),
uel™([0,1],R"™u),

weLl™([0,1],RIV]

s.t. x(t) = Xievy @i®) f(x(t), u(t),vi) ae. te[0,1],
x(0) = x°, (BC)

w(t) € {0, 1}VI a.e. t €0,1],

1= Zie[|V|] a)i(t) ae. t € [O, 1],

0 < d(x(t), u(t)) a.e. t €[0,1],

0 < wi(t)e(x(t), u(t),v;), i € [|[V]] ae. te][0,1]

The relaxed partial outer convexification of (MIOCP) is given by

min $(x(1))

xewb([0,1], R"x),

ueL™([0,1, k"),
aeL™([0,1],RIV]
s.t. x(t) = Dieqvp @) f (x(t), u(t),v;) ae. t€[0,1],
x(0) = x°, (RC)
a(t) € [0, 1]'V! ae. tel0,1],
1= Zi€[|V|] (xl-(t) a.e. t € [0, 1],
0 < d(x(t), u(t)) ae. t €[0,1],
0 < ai(t)e(x(t), u(t),v;), i € [|V|] ae. te€]0,1] A

The binary convexified problem (BC) is equivalent to (MIOCP) in the following sense:

6.6 Proposition.
Problem (MIOCP) has a solution if and only if (BC) has a solution.

If (xg, uy, a)g) is a solution of (BC), then (x*,u",v*) is a solution of (MIOCP), where
x* = xj, u" = uy and v* is defined by

.
V()= ) oty

ie[|V]]

Proor. The mapping

([0, 1], {0, 1}V)) > L2([0,1, V), 0 = 0(t) i= > wx(t)vs
ie[IVi]

defines a bijection between the subset {w € L®([0, 1], {0, 1}V Zie[|v) @i(t) = 1} of
L=([0, 1], {0,1}V1) and L*([0, 1], V) and preserves the objective function value. O
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The relaxed partial outer convexification arises by relaxing the integrality constraint
w; € {0,1} to a; € [0,1]. The constraints w;(t)c(x(t), u(t),v;) = 0 in (BC) and
a;(t)e(x(t), u(t),v;) = 0 in (RC) are vanishing constraints: If w;(t) = 0 or a;(t) = 0,
they are satisfied regardless of ¢, whereas the constraint c(x(t), u(t), v;) > 0 has to be
taken into account if w;(t) > 0 or «;(t) > 0.

In contrast to outer convexification are inner convexification approaches, where
instead of the linear convex combination x(t) = ;; w;(t) f (x(t), u(t), v;) the nonlinear
expression x(t) = f(x(), u(t), 2;; wi(t)v;) is used. Jung et al. [JKS13; Jun13] compared
these approaches and found that the outer convexification approach is superior as
it yields tighter relaxations and does not require f(x(t), u(t), -) to be defined on the
convex hull of V.

6.3. Relation between Mixed-Integer and Relaxed
problem

We now get to the main result of the chapter, which states that for a feasible point of
(RC) there is an essentially feasible point of (BC) with essentially the same objective
function value:

6.7 Theorem (Zero Integrality Gap in Function Space).
Let (x, u, @) be feasible for (RC) and suppose that t — f(x(t),u(t),v;),i € [|[V]] are
WL functions. Let £ > 0.
Then there are functions x¢ € W-*([0, 1], R"*) and w¢ € L*([0, 1], {0, 1}!V]) such
that
[¢(x“(1)) - ¢(x)| < &

and
X6(t) = Dierpvp @f () f (x(), u(t),v;) ae. te€[0,1],
x£(0) = x9,
1= Zi€[|V|] a)f(t) ae. t € [0, 1],
—& < d(xf(t), u(t)) a.e. t €][0,1],
—& < i (H)e(x?(t),u(t),v;),i € [|[V|] ae. te][0,1]. A

This Theorem shows that every feasible point of the relaxed problem can be approxi-
mated arbitrarily well by a binary feasible point. The Theorem and its proof are not
constructive and the binary feasible point depends on the prescribed accuracy & > 0.
We will later on show how to construct such a point.

We defer the proof to the end of the section, as some preparatory results are
required. Gronwall’s Lemma, the Banach-Alaoglu and the Krein-Milman Theorem
will be utilized, which we restate for convenience:
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6.8 Lemma (Gronwall, [Gr619], [Cla13, Thm 6.41]).
Let x € W*([0, 1], R") such that there are y, # € L!([0,1]) with y(t) > 0,ae. t €
[0,1] and

@I < yOllx@)I + p(t)  aet €[0,1].

Then the following estimate holds for all ¢ € [0, 1]:
¢ . )
llx(t) = x(0)[| < / (©lIx(O)]] + B(s)els ¥4 ds,
0

6.9 Theorem (Banach-Alaoglu, [Ban32; Ala40; Bou38], [Cla13, Cor. 3.15]).
Let X be a normed space. If K € X’ is bounded and closed with respect to the weak *
topology, then K is compact with respect to the weak * topology. A

For a definition of the weak * topology, we refer to [Cla13, Ch. 3.3].

6.10 Definition (Extreme Point).

Let X be a normed space and K € X a non-empty subset. A point x € K is an extreme
point of K, if x cannot be written as proper convex combination of elements in K|, i.e.,
ty+(1—-r1)y’ #xforally,y’ € Kand 7 € (0,1). A

6.11 Theorem (Krein-Milman, [KM40], [Cla13, Thm 8.56]).
Let X be a normed space, K C X a non-empty compact convex subset of X. Let E be
the set of extreme points of K.

Then K = co E. A

Using Gronwall’s Lemma, the influence of control perturbations on the relaxed
control & can be bounded.
6.12 Theorem (Influence of Control Perturbation).
Let x,y € W-([0,1],R™), a, B € L=([0,1],[0,1]"V]) and u € L=([0,1],R"™) such
that
X(t) = Lieqvpy ai(t) f(x(), u(t),v;) ae. t €[0,1],
y(t) = Zierv Bi®) f(y(t), u(t),v;) ae. t€[0,1],
x(0) = x°,
y(0) = x°

(1) If there exists 6 € L'([0, 1], R) with

/t Z (ai(t) = Bi(0)) f (x(7), u(r), v;) dr|| < 6p(t) ae. t€[0,1], (6.1)

O ieqvy]

then ||x(t) — y(1)]| < 5f(t)eLft forallt € [0,1].
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(2) Assume thatt — f(x(t),u(t),v;),i € [|V|] are W-* functions. Define for
j=0,1:

él_; Z Flx(t), u(t),v;)

ie[|V1]

M; := esssup
telo,1]

If there is 6 > 0 such that

<Jd ae teo,1], (6.2)

/0 (a(r) - () dr

then ||x(t) — y(t)|| < 5(My + tMy)elrtae. t € [0,1].

Proor. To ease notation, let fi(t,x) := f(x, u(t), v;).

(1) By Lipschitz-continuity assumption L and }} ; = 1 the following estimate
follows:

< D BN x(@) - file.y@)l

ie[Iv]

D B (file x(1) - filr,y(r)

ie[Ivl]

< > Lellx(0) - y(o)l|

ie[|V1]

It follows for ¢ € [0, 1]:

llx(8) =yl = /0 Z (ai(7) filz, x(7)) = Bi(7) fi(7, y(r))) dr

ie[lvVl]

N[ Y @ostexe) - pofir e

ie[|V]]

Bi(0) fi(z, x(7)) = pi(7) fi(r, y(r))) dz

< 6p(t) + Ly ”‘/0 x(r) —y(r)dr

The result follows by applying Gronwall’s Lemma 6.8 to [|x(t) — y(2)]|.
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(2) Set ¢ := a— B, lett € [0,1]. By partial integration we find

/ Y w@ i)

ie[|V]]

ex) [ odr- [ Lfex) [ oi)ds] dr
0 0 0

ie[|V]]
< (Mo + tM1)5.

<

Using (1) with 67(t) := 6(My + tM;) concludes the proof. O

6.13 Definition.
Let (X, u, @) be feasible for (RC). Then define the sets I and I'y for N € N by

0<a;i(t)c;i(x(t),u(t),v;), i€

1=3s¢(|v)) @i(t) and (v &t € [0, 1]},

In:=qaeTl

T = {a e L([0,1],RIV]

(k+1)/N
0= ‘/k Z (ai(t) —ai(0)f(x(7), u(r),v;)dr, k € [N]}
A

IN - iev

6.14 Lemma (weak * compactness of I, T'n ).
The sets T and Ty for all N € N are L'([0, 1], RIV)-weakly * compact, i.e. compact in
the weak * topology on L™([0, 1], RIV]).

Proor. We consider L'([0, 1], (R!V!)")’ equipped with the weak * topology and the
isometric isomorphism

L0, 1L BV - 20, 11, @YY, o (ﬁ - / (@), B dr)

to define the weak * topology on L*([0, 1], RI"!). Then I and I'y are closed in the
weak * topology. As Ty € T C {a € L°([0,1],RIV))| |||l < 1}, T is mapped by
this isometric isomorphism to a subset of the unit ball in L'([0, 1], (RIV!)’)". The
latter is compact in the weak * topology by the Banach-Alaoglu Theorem 6.9. Weak *
compactness of I and I'y follows now from the fact that I" and I'y are closed subsets.O
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6.15 Lemma (Extremal points are binary feasible).
Let a € Ty be an extremal point for N € N . Then a(t) € {0, 1}V for a.e. t € [0,1].

Proor. Assume to the converse, that this is not the case. Then there is a constant
0 <6< % and disjoint indices iy,iz € [|V]] such that {t € [0,1]|J < a;(t) <
1 -6 for i = iy, iy} has positive measure. In particular, there is 0 < j < N such that
Tj:={t€ (j/N,(j+1)/N)|6 < ai(t) < 1= fori = iy, ip} has positive measure. Let
T; = U{»e[nxﬂ]Tg be a finite partition of T; into n, + 1 disjoint subsets of positive
measure.

Define for £ € [|V|] the function ¢ € L*([0, 1], RIV]) by

0, t & Tpork#iq,is,
Bi(t) =48, teT,andk =i, (6.3)
-6, teTpandk = iy.

Ify € [-1,1]™*, let B(y) € L*([0,1],RI"!) be defined by the linear combination

Bly) = Zt’e[nxﬂ] Wﬁf'
Then

« a(t) + py)(t) € [0,1]V] for a.e. t € [0, 1] by definition of ¢

 2ielv| Bi(t) = 0 by construction, thus 3¢y j(ai(t) + B(y)i(t)) = 1 for a.e.
t €[0,1];

o If a;(t) + B(y)i(t) > 0 the implication «;(t) > 0 holds as ﬁf(t) =0ifa;(t) =0
by construction;

which proves « + (y) € T. Furthermore, @ — f(y) = a + f(-y) € I.

We show that there is y € [—1,1]"<*1,y # 0 with @ + B(y) € T, which then shows
a= %((x - By)) + %(a + B(y)) that « is a proper convex combination of points in I'y
in contradiction to « being an extreme point.

To find such a y, we note a + f(y) € Iy if and only if

U+1)/
0= [ Y B, ue) o) de
J

N v
(j+1)/N
- Z / Z ,Bf(l’)f(x(r), U(T), U,') dr Ye.
telmer] "IN ieiv)

This condition is equivalent for y to satisfy a consistent underdetermined linear

1 ~
Tl Y-8

system, which has nontrivial solution 0 # y. Rescaling yields a desired y :=
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We are now empowered with the tools to prove Theorem 6.7:

Proor. I'y is convex, non-empty since o € I'y and compact in the weak * topology
on L™([0, 1], RV by Lemma 6.14.

Application of the Krein-Milman Theorem 6.11 yields an extremal point ™ which
then is binary feasible by 6.15.

Define x¥ € W>([0, 1], R™) as solution of the initial value problem

{ AN = Ly @O f V@), ut), ) ae.t e [0,1]
x(0) = x°.

Let M; := esssup, gy ||% Zieqv f&x(0), u(t),v;)|| for j = 0, 1. By definition of
I'y, the estimate

[ o -aenso.u. o dr

O ieqvy]

- /L 3 (i) = E () D). u(D), v) dr | < Mo

tINTiefv

holds. Thus by 6.12, (2) [|xN (t) - X(t)]] < Xe(My + tMy)els?.
By continuity of ¢, d and c the result follows with w* = " and x¢ = xN, provided
N is large enough. O

6.4. Rounding Scheme

Theorem 6.7 asserts that for a feasible point of the relaxed problem there is a point
of the binary problem that is close in optimality and feasibility. It is, however, not
constructive and thus the question how to practically reconstruct a binary solution
from a relaxed solution arises. Theorem 6.12 gives a hint: If « is the relaxed control of

a feasible point of the relaxed problem and w is chosen such that ” fot(a(r) — (1)) dT”

is small for all t € [0, 1], then the trajectories associated with « and w are also close.
The difficulty remains in staying feasible with respect to the combinatorial constraints
0 < w;(t)e(x(t), u(t),v;) for all i. Sager [Sag06; SBD12] has developed a reconstruction
algorithm, Sum-Up Rounding in the absence of combinatorial constraints, which
has linear complexity in the size of the temporal grid. Jung [Jun13] established an
algorithm, Next-Forced Rounding, that provides improved approximation properties
but is anticipative and has quadratic complexity in the size of the temporal grid.
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We present a novel rounding scheme addressing the case of combinatorial con-
straints that extends Sum-Up Rounding for problems without combinatorial con-
straint.

First we introduce the notion of e-feasible grids that allows us to stay feasible even
after rounding;:

6.16 Definition (¢e-feasibility).
Let (x, u, a) be feasible for (RC), ¢ > 0 an acceptable constraint violation.

A temporal grid 0 =ty < ... < ty = 1is e-feasible, if for every & € L™([0, 1], R"x)
with ||£(t) — x(t)|| < &,a.e. t € [0, 1] the following implication holds:

If | t a;(t)dt > 0, also c(£(t), u(t), v;) = —¢,a.e. t € [1},tj41]- A

6.17 Lemma.
Let (x,u, @) be feasible for (RC) and &€ > 0 an acceptable constraint violation.
Then there exists an e-feasible grid.

Proor. Follows from Lipschitz continuity assumption on c. O

Next we introduce the notion of a Vanishing Constraint convergent algorithm:

6.18 Definition.
An algorithm that is defined for inputs

« afunction a € L°([0, 1], RV!) such that Zjevn@it) = Lae t €[0,1],
« atemporal grid0 =ty < ... <ty =1

and outputs a function w € L*([0, 1], RIV!) such that Zjevywi(t) = Lae. t €[0,1]
is called Vanishing Constraint convergent if there exists a constant C > 0 such that

tit1
/ aj(t)dt =0 = wi(t)=0ae.t € (t,tit1), (6.4)
t
t — —
sup / (a(r) —w(r))dr|| < CA, A:=max(tj+;— t;). (6.5)
tel0,1] 0 <) A

The first requirement is needed to ensure the combinatorial constraint. Without this
feasibility requirement it cannot be guaranteed that c(x(t), u(t), 2 je[jv|) @j(t)v;) = 0
for the case a(t) = 0, as only a(t)c;(x(t), u(t),v;) = 0 holds in the solution of (RC).
The second requirement ensures applicability of Theorem 6.12.
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6.19 Proposition.
Let (x,u, @) be feasible for (RC) and &€ > 0 an acceptable constraint violation.

Assume that a Vanishing Constraint convergent algorithm exists.

Then there exists an ¢-feasible temporal grid 0 = ty < ... < ty = 1 such that
application of the algorithm with input a and t, . . ., ty yields a point (x?, u, ©°) that
satisfies the conclusion of Theorem 6.7.

Proor. By Lemma 6.17 there exists an e-feasible grid. Using a refinement of this grid
that ensures that sup, ¢ ” /Ot(a(r) — (1)) drH is sufficiently small, the existence of
(x%, u, w°) that satisfies the conclusion of Theorem 6.7 can be concluded as in the proof
of Theorem 6.7 with the exception of the feasibility of w;(t)c(x®(t), u(t),v;) > —e.
This is satisfied by e-feasibility of the grid and the property (6.4) on the algorithm.O

The Sum-Up Rounding Scheme of Sager is not Vanishing Constraint convergent as
the following example shows:

6.20 Example.
Consider a € L*([0, 1], R?) defined by

3 1
a(t) = (g) [t < 2]+ (0) [t > 2].
5

2

Application of the Sum-Up Rounding Scheme of Sager applied on the grid 0, 5, 1 yields

&SR = ((1)) [t < 2]+ ((1’) [t > 21.

This motivates our definition of the Vanishing Constraint SOS-Sum-Up Rounding
scheme:

6.21 Definition.
Let0 =1ty <... <ty = 1be atemporal grid.

The Vanishing Constraint SOS-Sum-Up Rounding Scheme is defined recursively by
Y€ |(t;, tis1) == (a)})je[|v|] with

A

) tiv1 L
w; = |j = arg max / ar(t)dt — / wZC(t) de]. (VC-SOS-SUR)
ke[lvV]], 0 0

[ ag () de>0
1

If the maximum in (VC-SOS-SUR) is attained for several indices k, exactly one has to
be chosen by arg max. A
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The rounding scheme (VC-SOS-SUR) differs from the Sum-Up Rounding scheme of
Sager by the addition of the feasibility requirement f " (t)dt > 0 in the selection

of the index. For the Example 6.20, (VC-SOS-SUR) ylelds

a

which satisfies the feasibility requirement.

The Vanishing Constraint SOS-Sum-Up Rounding Scheme satisfies the feasibil-
ity property while maintaining the favorable properties of the Sum-Up Rounding
Scheme, namely preservation of the Special Ordered Set (SOS) property and being
computationally cheap:

6.22 Proposition.
Let (x,u, ) be feasible for (RC), 0 =ty < ... < ty = 1 be a e-feasible grid for an
acceptable constraint violation € > 0.

Let ©VC be defined by (VC-SOS-SUR). Then

(1) /j at)dt=0 = wY(t)=0ae t €t i),
(2) the Special Ordered Set Property 3. icijv |, w}’c = 1l,a.e. t € [0,1] holds and
(3) the computational complexity to evaluate ®¥© is O(N).

Proor. Satisfaction of the implication / ait)dt=0 = ]Vc(t) =0ae.t€

(t;, ti+1) and of the Special Ordered Set Property follow immediately by definition.
The recursive definition of w"* provides an algorithm to evaluate »"* in N steps

which implies the last assertion. ]

We conjecture that (VC-SOS-SUR) is a Vanishing Constraint convergent algorithm
and thus Prop. 6.19 holds with (VC-SOS-SUR). However, a proof for the existence of

ft(a(r) - 0(1)) drH < CA has not been found so far

C > 0 such that SUP;¢[o,1]

as analysis of (VC-SOS-SUR) is challenging due to the requirement / Yaj(t)dt >0
for rounding up. Numerical investigations provide overwhelming evidence for the
following conjecture:

6.23 Conjecture.
The Vanishing Constraint SOS-Sum-Up Rounding Scheme (VC-SOS-SUR) satisfies

sup < 2(VI- DA.

tel0,1]

/(a(r) a)VC(T))dT

In particular, VC-SOS-SUR is a Vanishing Constraint convergent algorithm. A
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We assume the truth of this conjecture and use (VC-SOS-SUR) as Vanishing Constraint
convergent algorithm to obtain a reconstruction algorithm as stated in Prop. 6.19.

6.5. Cesari’s Example: An Ill-Posed Problem

It is important to notice the direction of the result given by the Approximation
Theorem 6.7:

Any feasible point of the relaxed problem can be approximated arbitrary well by a
binary one. Cesari [Ces83] provided an example where one binary feasible point and
infinitely many relaxed feasible points exist, with different objective function values:

6.24 Example (Cesari, [Ces83, Ch. 18.7]).
Let parameters 0 < ¢ < é and 0 < o < 1 be given, and consider the following problem,

1
min /1—2|v(t)—l| dt

X, U,V

st x(t) = (”“;f;“) u®), 1 () — ()T ae. t € [0,1],
x(0) = (3, 3,07, (6.6)
x3(1) = 0,
u(t) € [—c, ] ae. t€0,1],
u(t) € {0, 1 5> 1} a.e. t €[0,1],

wherein the function x € W*([0, 1], R®) is assumed to be absolutely continuous and
u,v € L*([0, 1], R) measurable. A

It can be seen that, due to the terminal constraint and the growth condition imposed
by |u(t)| < ¢, this MIOCP has only one feasible point:
6.25 Lemma.
The only feasible point of (6.6) is given by (x(t), u(t),v(t)) = ((2, 2,O)T , 2) with
objective function value 1.

ProoF. ([CEs83]) Let (x1(t), x2(t), x3(t), u(t), v(t)) be feasible for (6.6), then x3(1) =
x3(0) = 0 and x3(t) > 0 implies x3(t) = 0 a.e. t € [0,1]. Thus x1(t) = x,(t) a.e.

t € [0,1], therefore |x1(¢)] = |v(t)] < ¢ and thus x is Lipschitz of rank ¢ < %.
Hence |x;(t) — %l = |x1(t) = x1(0)] < et < I which implies 2 < xi(t) < %a.e.

€ [0,1]. Since |u(t) — x1(t)| = |x1(t)(& + 0)| < 2¢ = }L it follows that v(t) = % a.e.
€ [0,1]. We find 1 = o(t) = xl(t) + (t + o)xi(t) = d((t + cr)xl(t)) integrating
and using x;(0) = ylelds x1(t) = 5 ae. t € [0,1]. Thus x5(t) = 5 a.e. t € [0,1]
which implies 3’(2(1‘) 0 and u(t) = 0 ae. t € [0,1]. It is easy t0 confirm that

(x1(8), x2(1), x3(8), u(t), v(t)) = (%, %, 0,0, 2) indeed is feasible for (6.6). O
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Applying partial outer convexification with respect to the three choices for v(t),
the counterpart problem BC-VC for (6.6) reads

1
min /wz(t) dt

X, U,y 0

s.t. ;(t) = Z?zl wi(t)f(t,x(t), u(t),e;) ae.tel0,1],
x(0) = (3, 3,07,

(6.7)
x3(1) =0,
u(t) € [—c,c] ae. t €[0,1],
w;(t) € {0,1} a.e. t €[0,1],
1= wi(t) + wo(t) + ws(t) ae. t €[0,1].

Again, this problem has only one feasible point with objective function value 1. The
situation changes upon relaxation:

6.26 Lemma.

The relaxation of (6.7) obtained by substituting a;(t) € [0,1] for w(t) € {0,1}, has
optimal objective function value 0.

Proor. One immediately confirms that (x(t), u(t), a(t)) = ((%, %, 0)7,0, (%, 0, %)T) is
feasible with objective function value 0. Since a;(¢) > 0 for all ¢ € [0, 1] and for every
feasible point, this point is also optimal. O

We see that there is a gap between the optimal objective function values of (6.7) and
its relaxation. If, however, one allows arbitrarily small violations of the end point
constraint x3(1) = 0, this gap can be made to zero as was done in and claimed by the
Approximation Theorem 6.7. We show this in detail for (VC-SOS-SUR):

6.27 Proposition.
If (VC-SOS-SUR) is applied to (x(t), u(t), a(t)) = ((%, %, 0)7,0, (1,0, %)T) on an equidis-
tant grid of size 2N, the violation of the constraint x5(t) = 0 is given by
\(® 1
s~ (DI < TR

Proor. We consider a solution of the IVP in (6.7) obtained by rounding of a(t): We
replace a(t) by 0?(t) given by w?(t) := (1 — [t € A],0, [t € A])T, where A C [0,1] is
measurable and specify for A generated by (VC-SOS-SUR) later. The objective function
stays 0 for this control.

Since %((t + a)xf‘(t)) =(t+ U)J'cf‘(t) +xf(t) = %wz(t) + ws(t) = [t € A], integrating

and using xlA(O) = % yields xf(t) =L (% + /Ot [z € A] dr). Furthermore we find by

t+o
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v(t) = 0 that xé“(t) = %a.e. t €[0,1]. Thus

t+a(z+/0t[r€A]dr)—§] —(HU/(TEA )df)
xg‘(l)zf (t+6/(T€A )dr) dt.

Now, applying (VC-SOS-SUR) on an equidistant grid of size 2N yields

S AOE

and therefore

N-1
A=Ay = J(@i+DA2i+20),  withA =%
i=0

Denoting tn(t) = § L | Nt] the largest multiple of & L that is < t, we find:

/ ([r € An] - D = / " (v e Anl-bydr = {_%(t ~iv),  rsin()+A
0 t

N(D) =) = A, 2 () + A,
Thus |/0 [z € AN](7) — —)dz’| < 4N and therefore

An 1 dt 1 (1 1 1
X3 (1) < 2 2= 2\ > = 2 :
16N2 J, (t+o0) 16N2 \oc o +1 16N?%0(c + 1) O

Cesari’s example is in some way pathological and ill-posed, as its solution depends
in a discontinuous way on the terminal constraint x3(1) = A with qualitatively dif-
ferent solutions for A = 0 and A # 0. Using [Ces83, Thm 18.6.1], it is possible to find
a priori conditions to be imposed on (MIOCP) that ensure amenability to approx-
imation without feasibility loss in constraints. An example of such a condition is
the requirement that c(-,-,v;) = ¢; does not depend on x and u, which is a rather
restrictive condition so that we refrain from formulating a result. Palladino and
Vinter [PV14] study a related question concerning relaxation gaps for certain optimal
control problems. They consider problems where the differential equation constraint
is expressed as differential inclusion x(¢) € F(t, x(t)) for a multifunction F. The relax-
ation in this case is given by a convexification of the velocity sets x(t) € co F(t, x(t)).
The relaxation gap is then defined as the difference between the infima of the two
problems. This question is important from a theoretical point of view, since the latter
formulation admits minimizers if certain technical assumptions are satisfied. They
find a relationship between the occurrence of a relaxation gap and optimal solutions
being non-trivial Fritz-John points with zero Fritz-John multiplier of the cost function.
Cesari’s example fits these considerations: Problem (6.6) has only a single feasible
point and the solution does not depend on the objective function.
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6.6. Summary

In this chapter, we have introduced the class of mixed-integer optimal control problems
(MIOCP) that comprises optimal control problem with combinatorial constraints.
Direct discretizations constitute mixed-integer nonlinear programs, which are NP
hard. We have formulated a relaxed partial outer convexification of (MIOCP), that is
a continuous optimal control problem without combinatorial constraints but with
vanishing constraints. As main result, a correspondence between solutions of the
relaxed partial outer convexification and solutions of the original problem (MIOCP)
has been formulated and proven. It has been shown how this correspondence can
be practically used with a Vanishing Constraint convergent rounding algorithm.
With (VC-SOS-SUR) we have formulated an algorithm that is linear in the size of the
temporal grid and conjecture that it is Vanishing Constraint convergent.






7. Sequential LPEC EQP Method for
Equilibrium Constrained Problems

In this chapter, we develop a Sequential Linear Equilibrium Constrained Equality
Constrained Quadratic Programming Method (SLPECEQP) for MPEC.

This method extends the Sequential Linear Equality Constraint Quadratic Program-
ming Method (SLEQP) of Nocedal and Waltz [Byr+03; Byr+05] for nonlinear programs
to MPEC and is similar in spirit to the suggestion of a Filter-SLPEC method by Leyffer
and Munson [LMO07]. A precursor of the method for equality constrained nonlinear
programming is given by the ETR algorithm of Lalee et al. [LNP98], the first proposi-
tion of such methods for nonlinear programming is by Fletcher and Sainz de la Maza
[FM89] and Chin and Fletcher [CF03].

We start by describing a general algorithmic framework for composite non-smooth
problems with equilibrium constraints that covers MPEC by penalization of the
nonlinear constraints and treatment of the complementarities as structural constraints
and show global convergence to B-stationary points under certain assumptions. In the
second part of the chapter, we describe a practical implementation of an algorithm of
this class with a Newton-type acceleration given by an equality constraint quadratic
programming step.

Parts of the results of this chapter are published in [LKB17].

7.1. A Composite Non-Smooth Problem Formulation

We consider the following composite non-smooth problem:

7.1 Definition.

Let &, I be finite, disjoint index sets, F : R"™* X R"s X R"s — R X R® x R be
continuously differentiable and w : R x R® x R’ — R be convex. Define ¢ :
R™ x R" x R™ — R by composition, ¢(x,s,t) := w(F(x,s,t)). The composite
non-smooth problem defined by F and w is given by

min  @(x,s, 1)
X,S, b

st. 0<slt=>0.

(PenEC)
A
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We consider a Sequential Linear Equilibrium Constraint Method for solving (PenEC).

Assuming that MPEC-MFCQ holds for (MPEC), boundedness of multipliers corre-
sponding to cg and cy is ensured and solving (MPEC) is equivalent to solving exact
penalty formulation (PenEC) with F(x,s,t) = (f(x,s,t),ce(x,s,t),cr(x,s,t)) and
w(f,ce,cr) == f +vllcglls + yll min{0, ¢z }||; for sufficiently large y > 0, compare
Theorem 4.14.

The presentation, algorithmic development and convergence proof follows the
nonlinear programming case without equilibrium constraints developed by Nocedal
and Waltz [Byr+03; Byr+05], which is related and builds upon the algorithm and
analysis developed by Fletcher and de la Maza [FM89], Chin and Fletcher [CF03]
and the non-smooth trust-region convergence framework of Yuan [Yua85]. Most of
the parts unrelated to the complementarity constraint and the linearized model hold
without adaption as in [Byr+05] and are restated here with proof for completeness
and convenience.

7.2. Stationarity of Composite Non-Smooth Problem

In this section, we define a stationarity concept for (PenEC) and show its equivalence
to B-stationarity if applied to (MPEC). To this end, we introduce the definition of a
linearized model £ and in addition for the algorithm require a quadratic model g that
we introduce now as well.

7.2 Definition (Linearized model ¢, quadratic model q of ¢).

Let z = (x,s,t) € R"™ X R™ X R"s. Then the linearized model € of ¢ at z is defined by

€:d— w(F(z)+ (VF(z),d))

Let furthermore H € R("x+21s)X(nx+2n5) he symmetric. Then the quadratic model q of
¢ at z is defined by
q:d ((d)+ 3(d, Hd).
We will write £(z,d) for £(d) and q(z,d) for q(d) if the linearization point z is
not clear and if we are considering a sequence (z¥); of points, we will write ¢ for
d > £(z*,d) and g for d +— q(z*, d) corresponding to a sequence (Hy)x. A

With the linearized model we can introduce the notion of optimal linear decrease
¥, which ultimately allows us to define stationarity.

7.3 Definition (Optimal linear decrease ).
The optimal linear decrease  : R™ X R™ X R™ X R.¢g — R U {—oo} is defined by
Y(z,A) := €(z,0) — min £(z,d),

lld o <A,
0<s+dsLt+d; >0
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provided that the minimum in the second term exists, and /(z, A) := —co otherwise.
Again, we write i for A — /(z¥, A) if we are considering a sequence (2% ). A

7.4 Definition (Stationarity of ¢).
A point z* = (x*,s%,t") € R™ X R"s X R"s is defined to be critical, if 0 < s* L t* >0
and ¥(z*,1) = 0. A

We will now show that this stationarity notion matches exactly B-stationarity for
(MPEC).
7.5 Theorem.
Assume that (MPEC) has a feasible point and satisfies MPEC-MFCQ. Let F and w be
defined by

F(z) = (f(2), c(2), c1(2)),
o(f,cs,cr) = f +yllegll + yll min{0, ¢z}

withy > 0 sufficiently large.

Then z* is critical for (PenEC) if and only if z* is B-stationary for (MPEC).

Proor. The point z* is critical by definition if and only if d = 0 solves

min £(x,s,t,d). (7.1)
lld ]l <1,
0<s+dsLlt+d; >0

By choice of F and w, £(z*,d) = A + yA® + yAT with

N = (Vf(2).d),
A® = (Ve (), d) .
AT = || min{0, (Ver ("), d)} -

By feasibility of (MPEC), satisfaction of MPEC-MFCQ and classical penalty arguments
of Theorem 4.14, assuming that y > 0 sufficiently large, solving (7.1) is equivalent to
solving

mdin (Vf(z),d)

s.t. 0=cg(z) +(Vecg(z),d),
0 < cr(z) +(Ver(2),d),
0<s+ds Lt+d;, >0,

ld|le < 1.

The point z* is thus critical if and only if d = 0 solves this LPEC, where the trust-region
constraint is inactive and thus can be omitted. Thus, criticality of z* is equivalent to
B-stationarity. O
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7.3. Algorithmic Framework

We consider a class of algorithms described by Algorithm 7.1. Let || - || be a norm on
R™ x R"s x R"s, for example || - || = || - ||2- Since all norms on a finite-dimensional
real vector space are equivalent, there is C > 0 with || - || £ C|| - ||co-

We note that the problem defining d,’lf is always feasible and Algorithm 7.1 is thus
well-defined.

7.4. Global Convergence Result

We show global convergence of Algorithm 7.1 and show that the sequence of points
generated by Algorithm 7.1 contains either a critical point or has an accumulation
point that is critical.

Throughout the section we assume that (z¥); has been generated by Algorithm 7.1
and make the following general assumptions:

7.6 Assumption.
T. The trust-region radii for model ¢ are bounded, lim inf A'g > 0.

C. {d|0<sk+ds Ltk +d, >0,||d]le < Alg} # @ for almost all k.

L. There exists a set D € R™* x R™s x R™s such that

zF € int D for all k and z € int D for every accumulation point z of (z¥)x,

D is bounded and convex,

F and VF are Lipschitz-continuous on D,

— w is Lipschitz-continuous on F(D).

B. The sequence of Hessians Hy associated to gy is uniformly bounded, there exists
Cy > 0 such that |{(d, Hid)| < Cg||d||? for all k and d. A

Assumptions L and B are standard assumptions for convergence of nonlinear pro-
gramming algorithms while assumption C states that the complementarity constraint
can be satisfied in a neighborhood of the iterates. In numerical examples we have
observed convergence even if assumptions T and C are not satisfied. We need these
assumption however to prove Lemmata 7.12 and 7.13.

Assumption C can be guaranteed by choosing an initial point z° that is feasible
with respect to the complementarity, 0 < t° 1 s° > 0 and by parametric computation
of steps ii. and iii. along the projection of the complementarities.

By rescaling and skipping the first iterates we can strengthen these assumptions
and assume from now on these stronger assumptions:
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Algorithm 7.1: Sequential Linear Equilibrium Constraint Framework for
solving (PenEC), with the notation z* = (x*, s, t%).
input :
« initial point x9, 50, 10
« trust-region radius A} > 0 for model £
« master trust-region radius A° > 0
« trust-region thresholds 0 < p" < p* < 1
« master trust-region shrinking factors 0 < k' < k" < 1
« linesearch constant n > 0 and reduction factor 7 > 0
« constant 6 > 0 coupling ¢ trust-region and master trust-region

for k > 0do

i. Compute solution d’; to min  {i(d).
! k
lld ll <AE,

max{O,sk—Al;}Ssk+dsltk+d[2max{0,tk—A’[f}
ii. Compute Cauchy step d’Cc =ak d’g by computing maximal ¥ among
(r' min{1, ”3—,12”})1- such that ¢(z¥) — qk(akd’g) > n(p(zF) - t’(akd’g)).

t
iii. Compute trial step d* such that ||d*|| < A and g (d¥) < qk(d]é).

ky_ k k
iv. Compute step performance ratio p* = ﬁ;f—m.

Ak+1 > Ak, pk > pS’
KIHdk” < Ak+1 < K,'uAk, pk < ps.
vi. Update trust-region radius for model ¢
A’g“ > [|dE oo, pk > pand ok =1,
AK > AR > | gE |, pk > pUand ak < 1,
min{0||d* ||, AR} < AKFT < AR pE < pu
Zk + dk, pk > pu’

z*, pk < pt.

v. Update master trust-region radius {

vii. Update iterate zF*1 = {

end
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7.7 Assumption.
T. A’; > 1 for all k.

C. {d|0<sk+d; Ltk +d >0,||d]l < AK} # @ forall k. A

The central convergence result of this section is given by the following Theorem
and states that Algorithm 7.1 converges in a critical point after a finite number of
iterations or generates a sequence that contains a critical accumulation point.

7.8 Theorem (Convergence result).
Assume that lim inf ¢(zX) > —co, then either there is m € N with ¢/,,(1) = 0 or
lim inf (1) = 0. A

In view of Theorem 7.5, if this Algorithm is applied to (MPEC), convergence to B-
stationary points is guaranteed.

We defer the proof of Theorem 7.8 to the end of the section and start by formulating
and proving several lemmata that sum up to the ultimate convergence result.

7.9 Definition.
For z = (x,s,t) € Dand A > 0, let d(z, A) be the solution of

min {(z,d).
lld |l <A,
max{0,s—A}<s+dsLt+d; >max{0,t—-A} A

7.10 Lemma.
Letze D, 7 €[0,1] andd,d” € R™ x R™ x R"s,
Then {(z,0) — {(z,7d) > 1({(2,0) — (2, d)) and $(z*) — €1.(rd) > T($(zF) = Lx(d)).

Proor. By convexity of w, convexity of £(z, -) follows. Thus
Uz, 7d) = l(z,7d + (1 — 7)0) < 7l(z,d) + (1 — 7){(2,0),
which is equivalent to the assertion. O

7.11 Lemma (Lipschitz-continuity of ¢, £, approximation error of £).
The function ¢ is Lipschitz-continuous and the mapping d — {(z,d) is uniformly
Lipschitz-continuous.
We denote by Ly, Lyvr, L, > 0 Lipschitz constants such that
6(z,d) = U(z,d")| < Lelld = d' |,
IVF(z) - VF(z')|| < Lvrllz = 2'll,
(&) = w(E)] < Lo llE = &'l

Then the inequality |{(z,d) — ¢(z + d)| < %LQ,LVFHa'H2 holds.
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Proor. Lipschitz continuity of ¢ and £(z, -) follows from assumption L.
The following computation demonstrates the inequality:

t(z.d) = $(z + d)| = |w(F(2) + (VF(2),d)) — o(F(z + d))|
< LollF(z +d) — F(z) = (VF(2),d) ||

1
<L, / (VF(z + td) — VF(z),d) dt
0

1
< Lw||d||/ IVF(z + td) — VF(z)| dt
0

1
< LoLyzlld] / ltd]l dt = 1L Los|ld]l>
0

7.12 Lemma (Comparison of achievable reduction to A = 1 case).
For A > A’; the inequality Yi.(A) > Yx(1) holds.

Proor. If Y4(1) = —co, there is nothing to prove. We can thus assume /4 (1) > —oo,
which shows that {d |0 < s+d, L t+d; > 0,||d||e <1} # @ and d(z*, 1) exists. By
definition, Y (A) = £(0) — £x(d(z¥, A)). Since by assumption T* ||d(zF, 1)]lo < 1 < A
and by assumption C’ d(z*, 1) is feasible in the definition of the minimization problem
of Yx(A) and it follows Y (A) = €x(0) — €k (A) > €x(0) — £k (1) = Y (1). O

7.13 Lemma (Trust-region is active at noncritical points).
IfYr(1) # 0 and A > A%, then ||d(z*, A)||e > min{A, l[gbk(l)}.

Proor. Assume ||d(z, A)||o < L%)lhc(l) By Lipschitz-continuity of £, and optimality
of d(z, A) it follows that % (A) = €x(0) — £1(d(z, A)) = |€x(0) — € (d(z, A)) — €(0)] <
Le|ld(z, A)|loo < (1) which contradicts Lemma 7.12. |

7.14 Lemma (Lower bound on achievable reduction).
The predicted reduction satisfies

$(2") — qi(d") 2 $(=") ~ qi(dg) 2 na*Yu(F) = na (V).
Proor. The first inequality ¢(z¥)— qi(d*) > $(z¥) - qk(dé) follows from the choice of

dé = akd’g in iii. in Algorithm 7.1. The second inequality ¢(z*) — qk(dé) > naki,bk(A]g)
follows from ii. in Algorithm 7.1 and Lemma 7.10:

B(25) - qr(adb) = p(p(b) - G(a*d¥) 2 ek (p(eb) - £(db)) = na* yr(ak).

The remaining inequality follows from Lemma 7.12. O
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7.15 Lemma (Approximation error of quadratic model).
The estimation |qi(d*) — ¢(zF + d¥)| < %(Lvap +Cr)||d*||? holds.

Proor. By Lemma 7.11 and Assumption B, it follows

g (d*) — $(z* +ab)|

IA

1k (d%) = ¢(2* + d*)| + |2(d*, Hd")|
NLoLyr + Cr)lld¥|%. -

IA

7.16 Lemma (Bounds on Cauchy step size).
. 2(1

The Cauchy step satisfies (xkA’éf > ||dk||OO > mln{Ak 1 Ak, i (1), AEVC’])(; U(1)}.
Proor. By definition, in step ii. in Algorithm 7.1, dé = akdéf. Since ”dlg“oo < A’g, the
upper inequality follows immediately.

We now prove the lower inequality. In the case /(1) = 0, there is nothing to prove.
We can thus assume 1 (1) # O

Suppose that a* = min{1,

}. By norm equivalence Az Then

>
IIdeI A Clldklloo

A¥ k : ky ARy T3 Ak Ak
Hidy llo = min{l|dy [lo, =} = min{A ’L%,Ebk(l)’f

lle*df || = min{1, -2
[EAL

which proves the lower inequality in this case.

. 2(1-7)
k < min{1, ||d’<||} and we attempt to prove ||dk||Oo > AkcncTZ¢ (1)

in that case. Then, the decrease condition ¢(z¥) — qk(ad’g ) > n(p(zF)—¢ (adk )) in step
ii. must have been violated for o~ := %ak as previous trial step length. In particular,

Now assume a

$(z") — ti(a™dy) = 3(a7)dy, Hidp) = $(z5) — qi(a™dy) < n(¢(z") — t(a”dy)).

We thus find

7.10
3@)Xdf, Hidf) > (1= n)(@(2") = Grla™dp)) 2 a (1= (@) = l(dy))
7.12
= a (1= (D) = a (1= (D)
and by norm equivalence and trust-region feasibility
(df, Hedy) < Culldf|I* < CuCPldy 1|5 < CuCPlldy lloAy.

Combining these two inequalities yields the desired result

(df Hedb)y > 22020y, (1) = B0y (1),

k| gk
@ lldf”"" 2 ChCiAk Akcyc?

k
CpC?Ak
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7.17 Lemma (Lower bound on master trust-region radius and Cauchy step).
Let lim sup A’g < co and there is & > 0 with (1) > & > 0 for all k.

Then there exists a lower bound A > 0 for the master trust region radius with AK > A
and a* A’; > %é.

Proor. By assumption Alg < Ay with 1 < Ay < co. Since (1) > & > 0, it follows

. : . 2(1-
from Lemma 7.16 that ||d](§||oo > mm{%Ak, A];, Acrit} with Ag = mln{Lif K(CU)CTZ 6.

} for

We will first show the recursive lower bound Ak“ > min{ LAK Ak Agrit, A

the ¢ trust region radius, where Acm = min{6?, (K1)2} min{(1-p"), (1-p*)}

cnt
C2L,, L vrhe

If the iteration is successful, p* > p® the update vi. in Algorithm 7.1 ensures
A’g“ > ||d](§||OO > min{ %Ak, A’{f , Acrit}- On the other hand, if the iteration yields a
discarded step, p* < p", we find

akak Hd lloo
k

7.14 S
¢(Zk) - C]k(dk) 2 U“klﬁk —02>= ,7 ln{cAk, AIZa Acrit}

and by Lemma 7.15 and step acceptance failure we thus find for 1 — pk:

k k k A k2
1 _u < 1 _ k — (],S(Z +d )—qk(d ) S Af(L(uLVF"'CH)”d “ .
p P $(zF)~qr(d¥) 218 min{ CA A > Derit }

This inequality yields
2 k)2 s 62 9k2 2n(1-p*)é s (1ak Ak
O*1ld 12, 2 ZollafIf? > 22U i LK, A, A}

. 1Ak Ak ’ 2
(mll’l{EA s A[’ Acrit, Acrit}) >

\%

where the last inequality follows from the fact that for both factors _2n0-p)d
A¢(LoLyp+Ch) —

mln{EAka A’;a ACl'lt’ ACI‘lt} and mln{EAk, Alga Crit} = mln{EAks Alg’ Acrlt’ ACrlt} As
step vi. ensures A](f“ > min{60||d*||c, A’g} the asserted recursive lower bound for
A]{f“ follows.

Next, we show a recursive lower bound %Ak“ > min{%Ak, A’{f, Amt, Amt} ina
similar way for the master trust-region radius. Since AK*! > A¥ for p* > p*, there is
nothing to prove in that case. Suppose therefore p* < p°. Then 1 — p* < 1 — p* and
exactly the same reasoning as before with p® instead of p" and " instead of 6 by the
update mechanism of step vi yields the desired result.

Combining the recursive lower bounds for the two trust-region radii yields

min{A];“, lAlgﬂ} > min{%Ak,Ak Acrits Ayt )
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and via induction finally

. k+1 1 Ak+1 . 1 A0 AO ’ .
min{A; ", ZA,; 7} 2 min{GA", Ay, Acrit, Al ) =2 A,

Thus AF > CA, =: A and a* Ak > ||kl > A, = LA

We are now in a position to prove the convergence result of Theorem 7.8:

Proor. We first consider the case that only a finite number of iterations yield a
successful step, i.e. p¥ < p* for almost all k. Then the sequence (z¥); becomes
stationary and in consequence also (x(1)). Since x* < 1 and A**! < x"A* for
almost all k, it follows A¥ — 0. By Lemma 7.17 it follows liminf /(1) = 0 as
otherwise A¥ — 0 would contradict the assertion of the Lemma. Thus /(1) = 0 for
almost all k.

Next, we consider the case that an infinite number of iterations yield a successful
step, i.e. p¥ > p* for infinitely many k and show that liminf /4 (1) > 0 results in a
contradiction. We consider the cases lim sup A,]; < oo and lim sup A’g = oo separately.

Suppose § := liminf ¢4 (1) > 0 and A’ = lim sup Alg < o0, We find by Lemma 7.17
that there is A with A*¥ > A for all k. For every k with p* > p® we thus find

B(2F) — BT = (2F) — P(* + d¥) 2 pU(p(e) — qi(d®)) = pinaks

k717
_ u kA P nASs
=pinat5é 2 —=
4

CA

and conclude

$F) = Y (P - g = > (GG - §(z™)
i<k ik,
LI |{m < k| p™ 2 pU}| — oo,

o

which contradicts the assumption lim inf ¢(z¥) > —co.

The last case that remains to be considered is given by § = liminf ¢/4(1) > 0
and lim sup AZ; = oo. A]tf is eventually increased in step vi. of Algorithm 7.1 and an
increase only occurs if «F = 1, there are infinitely many k such that A’g > 1,0k >1
and p* > p". For every such k we similarly find

B) = () = G) — 9 +d) 2 pU(HE) - qe(@d) 2 pinats = pUus,

and exactly as in the previous case we conclude lim inf ¢(zF) = —co in contradiction
to lim inf ¢(z¥) > —co. |
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7.5. The SLPECEQP Algorithm

The framework 7.1 is rather generic and if viewed towards a practical implementation
leaves a number of questions untouched and unanswered. In this section, we describe
an active set algorithm that falls into the category of algorithms constituted by 7.1 and
thus exhibits its global convergence properties. Fast local convergence is promoted
with a Newton-type step. The algorithm extends the SLIQUE/SLEQP algorithm of
Waltz and Nocedal [Byr+03; Byr+05] for nonlinear programming that is implemented
in the commercial solver Knitro [BNWO06].

Step ii. of 7.1 is computed by the solution of a Linear Program with Equilibrium
Constraints and yields a step d’g and a working set guess ‘WX_ The trial step d* in step
iii. of 7.1 is computed by solving an equality constrained quadratic program on the
working set estimate ‘W*. The SLPECEQP algorithm is outlined in algorithm 7.2 and
attempts to solve (MPEC) by solving (PenEC) with

F(x,s,t) .= (f(x,s,t),ce(x,s, 1), cr(x,s,t)),
w(f,ce cr) = f +yllegll + vl min{0, ¢z } ;.

Algorithm 7.2: SLPECEQP algorithm for solving (MPEC), with the notation
zF = (x*, s, t¥). Roman enumeration corresponds to steps of Algorithm 7.1.

input :
« initial point x°, s°, £°
» { trust-region radius A% > 0
« master trust-region radius A° > 0

for k > 0 do

a. (i.) Compute penalty choice y*, linear step d¥, working set guess Wk,
b. Compute least-squares multiplier estimation Allis’ ,ufs, VI]fS’ GI]fS.

c. (ii.) Compute Cauchy step d(’; = akd’;.

d. (iii.) Compute trial step d¥ as solution of an EQP on “Wk.

ky_ k gk
e. (iv.) Compute step performance ratio p* = %.

f. Eventually compute second order correction, update trial step d.
g. (v.) Update master trust-region radius AF*!,

h. (vi.) Update ¢ trust-region radius A];“.
k+1

i. (vii.) Update iterate z
end
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We describe and elaborate on the steps a.—i. of 7.2 in the following. To shorten
notation, we set f¥ := f(zX), Vfk := Vf(z5), c’é = cg(zh), c_’; = cg(Zh), Vc]é =
Veg(2F) and Vc§ := Veg(2F) and ¢(2) := (cg(2), c1(2), s, 1).

LPEC phase (Step a)

In this phase, the step d¥, and the working set guess ‘W* are computed and it is
ensured that the penalty parameter y* is of suitable size. Computing the step dlg is
done by solving a Linear Program with Complementarity Constraints. Judice [Jud12]
surveys methods for solving LPEC including also methods designed for MPEC. Meth-
ods targeted directly at LPEC are given by the Complementarity Active-Set algorithm
of Judice [Jud+07], the algorithm of Hu and Pang [Hu08; Hu+12] building on integer
programming and by Yu and Pang [YMP] building on a branch-and-cut framework.
Fang et al. [FLM12] develop a pivoting algorithm that builds on the Simplex Algo-
rithm for Linear Programming. Kirches [Kir17] proposed an augmented Lagrangian
Algorithm using Gradient Projection that we utilize in our implementation. In the
absence of complementarity constraints, this is a linear problem for which highly
efficient active set algorithms based on the Simplex method exist which provide “W*
via Simplex basis information.

Byrd et al. [Byr+13] describe an approach building on parametric linear pro-
gramming that samples several trust-region choices to promote quick active-set
identification.

Step i. of 7.1 requires solving

min (i (d), (7.2)
ldlle <A,

max{O,sk—A];}Ssk+dSJ_tk+dt Zmax{O,tk—A]Z}

where by choice of F and w the linearized model ¢ is piecewise linear and given by
the expression

te(d) = fX+ Ap +y*Ag + v A7,
Ar = (VK ),
Ag = llck + (Ve )|,

Ar = || min{0, ¢k + (Ve d)} ;.

By introduction of slack variables u*,u™ and v, (7.2) can be reformulated as Linear
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Problem with Equilibrium Constraints:

min (VFE dy + y*(1,u +u™) +y*(1,07)

d,ut,u",v"
s.t. c'é + (ch, dy=u*-u",
c§ + (Vc’;_,d) > —7’:_,
lldllo < Ay,

max{0, sk — A’g} <sk+ds L t5+d, > max{0, t* — A?},
ut,u",v” >0.

The working set ‘W is defined as a maximal linearly independent active subset of the
active set A(z* + d’g ) at the solution of (7.2), omitting active trust-region constraints.
Solving the Linear Problem with Equilibrium Constraints with an active-set method
gives besides the step also a suitable ‘W,

The penalty parameter adaption is not based on classical approaches by comparison
to Lagrange multiplier size, but on a steering-rules-based heuristic that ensures that
if the linearized constraints are feasible, the penalty parameter is large enough that
they are satisfied and otherwise provide a sufficient decrease in infeasibility. Denote
dy(y) the solution of (7.2) with y instead of y* and d/(c0) the solution of (7.2) with
V f* replaced by 0. Then the infeasibility of y is defined by

infeasi(y) := g7y (llcf + (Ve de(y)l + | min{o,¢f + (Vek. dr(y)} i)

Every evaluation of infeasi(y) involves one solution of (7.2).
Using this notion and a constant 0 < ¢ < 1, the sufficient decrease condition is
given by

k—l) _

infeasy (y infeas (y¥) > e(infeas; (y*7!) — infeasy (o)) (7.3)

and the employed heuristic can be made precise:

atkyk=1, infeasy(o0) < tol,
v, infeasy (y*~!) — infeasy(c0) < tol,
K infeasj(co) < tol and
vo= j j

1A Moo N g 1 oo > 1031 + (A, 1] lleo),
j=k-5,... k-1

alkyk=1, else,

with iy := min{m > 0|infeas;(a™y*!) < tol} and ji := min{m > 0](7.3) holds}.
Here tol > 0 denotes a comparison tolerance and a > 1 an increase factor. The first
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case eventually increases the penalty parameter by a factor a until the linearized
constraints are satisfied, provided that they are feasible. The second case keeps the
penalty parameter if no reduction in infeasibility is possible. In the third case, the
penalty parameter is reset to the size of Lagrange multipliers if, for five consecutive
iterations, it is much larger than the Lagrange multipliers. In the final case, the penalty
parameter is increased by a factor a until the sufficient decrease condition (7.3) is
satisfied. An analysis of this penalty update scheme is given by Byrd et al. [BNWO08].

In our implementation the choices y° = 10, ¢ = 107!, @ = 10 and tol = 1078 are
made.

Least-Squares Multiplier Estimation (Step b)

Although the linear phase already provides a multiplier estimation, a least-squares
multiplier estimation is computed that is optimal in the sense that is satisfies (KKT) as
well as possible. The cost of doing this is one backsolve with a matrix that nevertheless
has be to factorized in the solution of the Equality Constrained Quadratic Program
(EQP), if the EQP is solved with preconditioner being identity.

The minimal residual problem is given by

min ||VZLL(zk, A, 1, v, o)l?

A p,v,o
st. A =0,i¢ Wk,
pi = 0,i ¢ WE,
vi =0,i ¢ Wk,
o;=0,i ¢ Wk.

Denote the solution of this problem by A, y1, v, 0. The least squares estimation is then

defined by

ALs = A,
prs = max{0, u},
Vs = v,
01 = 0.

Denoting by Ay the matrix composed from the gradients corresponding to indices in
Wk the nonzero components Aqy« of the tuple A, i, v, o are obtained as

e i ) ()
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Quadratic Model and Cauchy Step (Step c)

For the quadratic model, we choose the exact Hessian of the Lagrangian Hy :=
Vi L L(zk , ALSs HLSs VLS, 0Ls) With the least-squares multiplier estimation. This choice
has the advantage that it defines a quadratic model of the original problem (MPEC)
rather than that of the penalized problem (PenEC). The Cauchy step d]é =ak d'{f that
is crucial for global convergence is now computed by backtracking linesearch until
the condition ¢(zF) — qk(akd’g) > n(p(zF) - f(akdlg)) is met with the choice n = 107!
in our implementation.

Trial Step by solving an EQP (Step d)

We compute a Newton-like trial step by solving an equality constrained quadratic

program (EQP) in a trust-region. Instead of Hj used for the quadratic model in

the globalization, we incorporate information on violated constraints not covered

by the working set in the quadratic model for the EQP step. To this end we set
EQP _ y2 k 2k k ko kY wi

H < = Ve, Li(z ’AEQP’ﬂEQP’ Vs O'LS) with

(/VLCS),-, ieWkor cf =0,

Arop)F =
(zoe); {— sgn(c; + (Vei, amdm)) v*, i ¢ WK and cf # 0,

(pege) = (4f)i» i€ Wrorek >0,
! yk, i¢ Wk andcf.C <0,

where a;,d,, will be defined below. This definition ensures that the terms in the
quadratic model for violated constraints not covered by the working set constraints
are a quadratic approximation of the corresponding constraint contribution in the
penalized objective.

To solve the trust-region EQP

min (¥ f*dy+ Hd, H " d)

st. Ard+ cf‘wk =0,

ld]l < A%,
we use a combination of the inexact decomposition approach of Byrd and Omojokun
[Byr87; Omo89; LNP98] and the Krylov subspace approach for equality constrained
problems of Gould et al. [GHNO1]. A solution of the of equality constraint Axd =

—wak is decomposed d = ay,dp, + d, into the minimum norm solution

dn = (I 0) (,afk /g)_l (—c%,k)
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and step d, in the nullspace of Ay that is normal to d,,. Choosing the stepsize
am = min{l1, rﬁ} with 0 < 7 < 1 satisfies the trust-region constraint in the
interior of the trust-region sphere. The normal step d, is now given as solution of

n’éil’l <ka + amAkdma dz> + %(dz’ H]EQsz>

st. Apd, =0,
111 < (AF)? — a2, lldmI*.

This nullspace trust-region problem is solved with the Generalized Lanczos method
that is discussed in detail in Chapter 8. This is a preconditioned Krylov subspace
method, in which the nullspace constraint is satisfied by using the orthogonal projec-

tion onto ker Ax given by
I AL\ (I
= k
neoa ) o
T

as preconditioner. Computing the projection requires factorizing A Ok , the same
k

matrix that was required to compute the Least-Squares Multiplier Estimation and
the step d,,,. An additional precondition can be applied by using the M~! orthogonal

projection
M AT\ (T
- k
ity ) ()

instead of P; for a matrix M that is positive definite. This implies replacing the
trust-region norm || - || by || - |lm : x — +/{x,Mx). By norm-equivalence on a
finite-dimensional space, the convergence proof still works mutatis mutandis and
the convergence result holds. The least-squares multiplier estimation must still be
computed as described in the step c. if weak stationarity is measured in the || - || norm,
and must be computed by
-1
AML = (0 1) (i” Ai) (—ka)
k O 0

if weak stationarity is measured in the || - |[3;-1 norm.

Having computed the EQP step degp = amdm, +2, a trial step d* that makes progress
at least as good as the Cauchy step has to be selected. To this end, a back-tracking
linesearch of ¢ along the segment & € [0,1] — dé + a(degp — dé) is used. The
trial-step is accepted as defined in steps iv. and vii. of Algorithm 7.1.

In our implementation we use 7 = 0.8 and M = I with the exception of the Gaufi-
Newton NMPC applications. We employ || - || always to measure weak stationarity in
all cases. The step acceptance constants chosen are p* = p* = 1078,
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Second Order Correction Step (Step e)

If the trial step is rejected by vii. of Algorithm 7.1, we compute another trial step by
second order correction as suggested by Fletcher [Fle87]. This is a safeguard against the
Maratos effect [Mar78] describing the phenomenon that steps that make good progress
towards the solution can be rejected. The second order correction step that updates
the trial direction is given by minimum norm solution of Axd + cqy« (ZF+d*) =0

M AT\ 0
computed by d; = (I 0) (Ak Ok) (_ka(zk + dk)) .

Trust-Region Radii Update (Step f and g)

In our implementation the following trust-region updates are used that satisfy the
requirements of steps v. and vi. of Algorithm 7.1:

max{A¥, 7||d||}, p* > 0.9,
AR max{A¥, 2||d¥||}, 0.9 > pF > 0.3,
Ak, 0.3 > p* > 1078,
Imin{AX, ||d*||}, pF <1078
min{max{1.2[|d*||w, 1.2||dX, 0.1AK}, 7AK}, p* > 107® and dX = dk,
AP = < min{max{1.2]|d" ||, 1.2[|dK, 0.1AK}, Ak}, pF > 1078 and dk # dF,
min{max{0.5[|d* ||, 0.1A5}, A}, pk <1078,

7.6. Remarks

The practical algorithm is a member of the algorithms described by the framework
7.1 and consequently shares the convergence property towards B-stationary points
under assumptions T, C, L and B. It incorporates a Newton-like step where exact and
possibly indefinite Hessians can be used leading to quadratic convergence if the active
set estimation ‘W* becomes stationary. The method to solve the quadratic subproblem
is iterative and thus requires access to the Hessian only in operator form, i.e. via
evaluations v — Hv which can be favorly exploited in optimal control applications.

In computational experience it turned out that the usage of the Hessian with
modified Lagrange multipliers incorporating information about violated constraints
not covered by the working set estimate is important to make quick progress towards
feasibility. If the penalty parameter y* becomes large this may however force the
algorithm to prioritize establishing feasibility over optimality.
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The algorithm is built on a trust-region globalization framework of the penalized
problem (PenEC) and thus has the drawback of not being affine invariant [Deu74;
Deu06]. We have observed that it is very sensitive to variable and constraint scaling,
and it is crucial that applications treated with the algorithm are carefully scaled.

7.7. Summary

In this chapter, we have extended the SLIQUE algorithm of Byrd et al. towards
(MPEC). The presented algorithm constitutes a novel method for solving (PenEC),
which includes (MPEC) via penalty reformulation of nonlinear constraints. The
algorithm employs a trust-region globalization and makes use of linear phase and
a step determination phase that finds a step that is at least as good as the Cauchy
step. Convergence to B-stationary points under assumptions T, C, L and B is proven,
which distinguishes this algorithm from the majority of methods for (MPEC) that
only ensure satisfaction of weaker stationarity concepts.

A practical method of the algorithm is presented and its implementation forms the
basis for the numerical results presented in Part III.



8. Trust Region Problems in Hilbert
Space

A fast and reliable method for solving the trust region subproblem is an important

ingredient in the SLPECEQP algorithm of Chapter 7.5. In this chapter, we present

Gould’s Generalized Lanczos Method and extend it towards trust region problems in

Hilbert spaces. We have developed an additional heuristic addressing ill-conditioning.
The results of this chapter are published in [LKP16].

8.1. Trust Region Subproblem

In this chapter, we are concerned with solving the trust region problem, as it frequently
arises as a subproblem in sequential algorithms for nonlinear optimization.

8.1 Definition (Trust Region Subproblem).
Let (H, (-,-)) be a Hilbert space. Let H : H — H be self-adjointand M : H — H
be self-adjoint, bounded and coercive. Let (-, -)s; be the inner product induced by M
via (x,y)p := {(x, My) and || - ||y the corresponding norm. Let X C H be a closed
subspace. Let A > 0 and g € H.

Then the trust region subproblem defined by H, g, M, A and X is

|
min 3(x, Hx) + (x,9)

x € X.
We denote by g(x) := %(x, hx) + (x, g) the objective function. A

8.2. Survey on Unconstrained Trust Region Problems

Trust Region Subproblems are an important ingredient in modern optimization algo-
rithms as globalization mechanism. The monograph [CGT00] provides an exhaustive
overview on Trust Region Methods for nonlinear programming, mainly for problems



84 8. Trust Region Problems in Hilbert Space

formulated in finite-dimensional spaces. For trust region algorithms in Hilbert spaces,
we refer to [KS87; Toi88; Hei93; UU00]. In [ABGO07] applications of trust region
subproblems formulated on Riemannian manifolds are considered. Recently, trust
region-like algorithms with guaranteed complexity estimates in relation to the KKT
tolerance have been proposed [CGT11a; CGT11b; CS16]. The necessary ingredients
in the subproblem solver for the algorithm investigated by Curtis and Samadi [CS16]
have been implemented our implementation trlib presented in Chapter 11.

Solution algorithms for trust region problems can be classified into direct algorithms
that make use of matrix factorizations and iterative methods that access the operators
H and M only via evaluations x — Hx and x + Mx or x — M™'x. For the Hilbert
space context and the application to the SLPECEQP algorithm of Chapter 7.5, we are
interested in the latter class of algorithms and in particular to Krylov subspace based
algorithms as these can ensure equality constraints via preconditioner.

We refer to [CGTO00] and the references therein for a survey of direct algorithms,
but point out the algorithm of Moré and Sorensen [MS83] that will be used on a
specific tridiagonal subproblem, as well as the work of Gould et al. [GT10], who
use higher order Taylor models to obtain high order convergence results. The first
iterative method was based on the conjugate gradient process, and was proposed
independently by Toint [Toi81] and Steihaug [Ste83]. Gould et al. [Gou+99] proposed
an extension of the Steihaug-Toint algorithm. There, the Lanczos algorithm is used to
build up a nested sequence of Krylov spaces, and tri-diagonal trust region subproblems
are solved with a direct method. Hager [Hag01] considers an approach that builds
on solving the problem restricted to a sequence of subspaces that use SQP iterates to
accelerate and ensure quadratic convergence. Erway et al. [EGG09; EG10] investigate
a method that also builds on a sequence of subspaces built from accelerator directions
satisfying optimality conditions of a primal-dual interior point method. In the methods
of Steihaug-Toint and Gould, the operator M is used to define the trust region norm
and acts as preconditioner in the Krylov subspace algorithm. The method of Erway
et al. allows to use a preconditioner that is independent of the operator used for
defining the trust region norm. The trust region problem can equivalently be stated
as generalized eigenvalue problem. Approaches based on this characterization are
studied by Sorensen [Sor97], Rendl and Wolkowicz [RW97] Rojas et al. [RSS01; RSS08]
and Adachi et al. [Ada+17].

8.3. Existence and Uniqueness of Minimizers

In this section, we briefly summarize the main results about existence and uniqueness
of solutions of the trust region subproblem. To prove existence of minimizers, we
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have to impose a certain compactness condition on H:

8.2 Definition (Compact negative part).

A self-adjoint, bounded operator H : H — H has compact negative part, if there are
self-adjoint, bounded operators P and K with H = P — K and (x, Px) > 0 and K is
compact. A

From now on we impose the following setting that will ensure existence of a solution:

8.3 Assumption.

(H, (-, -)) is a Hilbert space. The operator H : H — H is self-adjoint, bounded and
with compact negative part. The operator M : H — H is self-adjoint, bounded and
coercive. The trust region radius A > 0 is positive, g € H and X C H is a closed
subspace. A

8.4 Lemma (Properties of (TR(H, g, M, A, X))).
(1) The mapping x — (x,Hx) is sequentially weakly lower semicontinuous, and
Frechet differentiable for every x € H.

(2) The feasible set ¥ := {x € H | ||x||m < A} is bounded and weakly closed.
(3) The operator M is surjective.

Proor. H = P — K with compact K, so (1) follows from [Hes51, Thm 8.2]. Fréchet
differentiability follows from boundedness of H. Boundedness of # follows from
coercivity of M. Furthermore, 7 is obviously convex and strongly closed, hence
weakly closed. Finally, (3) follows by the Lax-Milgram Theorem [Cla13, ex. 7.19]:
By boundedness of M, there is C > 0 with |(x, My) < C||x|| ||y||. The coercivity
assumption implies existence of ¢ > 0 such that {x, Mx) < cl||x||? for all x,y € H.
Then, M satisfies the assumptions of the Lax-Milgram Theorem. Given z € H,
application of this Theorem yields ¢ € H with (x, M¢) = (x, z) for all x € H. Thus
ME =z O

8.5 Lemma (Existence of a solution).
Problem (TR(H, g, M, A, X)) has a solution.

Proor. By Lemma 8.4, the objective functional q is sequentially weakly lower semi-
continuous and the feasible set 7 is weakly closed and bounded, the claim follows
then from a generalized Weierstrass Theorem [KZ06, Ch. 7]. O

To present optimality conditions for the trust region subproblem, we first present
a helpful lemma on the change of the objective function between two points on the
trust region boundary.
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8.6 Lemma (Objective Change on Trust Region Boundary).

Let x°, x! € H with ||x'||ar = A fori = 0,1 be boundary points of (TR(H, g, M, A, X)),
and let A > 0 satisfy (H + AM)x° + g = 0. Thend = x' — x° satisfies q(x') — q(x°) =
1d, (H + AM)d).

Proor. Using 0 = ||x1||12w - ||x°||]2w = (x" + d, M(x° + d)) — (x°, Mx®) = (d, Md) +
2(x°, Md) and g = —(H + AM)x° we find

~1(d. Md)

—_——

q(x") — q(x°) = 1(d, Hd) + (d, Hx") + (g, d) = 1(d, Hd) 1(x°, Md)
= 1(d, (H + AM)d). a

Necessary optimality conditions for the finite dimensional problem, see e.g. [CGT00],
generalize in a natural way to the Hilbert space context.

8.7 Theorem (Necessary Optimality Conditions).
Let x* € H be a global solution of (TR(H, g, M, A, H)). Then there is A* > 0 such that

(1) (H+A*™M)x* +g =0,

@) llx*llm —A <0,

(3) A(llx*[lm = A) =0,

(4) (d,(H + A*M)d) > 0 foralld € H.

ProOOF. Let 0 : H — R,o(x) := (x, Mx) — A?, so that the trust region constraint
becomes o(x) < 0. The function o is Fréchet-differentiable for all x € H with
surjective differential provided x # 0 and satisfies constraint qualifications in that
case. We may assume x* # 0 as the Theorem holds for x* = 0 (then g = 0) for
elementary reasons.

Now if x* is a solution of (TR(H, g, M, A, H)), conditions (1)-(3) are necessary
optimality conditions, cf. [Cla13, Thm 9.1].

To prove (4), we distinguish three cases:

First, suppose ||x||py = A and d € H with (d, Mx*) # 0: Given such d, there
isa € R\ {0} with ||[x* + ad||y = A. Using Lemma 8.6 yields (d,(H + A*M)d) =
%(q(x* + ad) — q(x*)) > 0 since x™ is a solution.

Second, assume ||x||yy = A and d € H with (d, Mx*) = 0: Since x* # 0 and M
is surjective, there is p € H with (p, Mx*) # 0, let d(r) := d + 7p for r € R. Then
(d(1), Mx™) # 0 for t # 0, by the previous case

0 < (d(r),(H + A*M)d(r))
= (d,(H + A*M)d) + t{p, (H + A*M)d) + t*(p, (H + 1*M)p).
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Passing to the limit 7 — 0 shows (d, (H + A*M)d) > 0.

In the final third case assume ||x||ps < A: Then A* = 0 by (c). Let d € H and
consider x(7) = x* + rd, which is feasible for sufficiently small 7. By optimality and
stationarity (a):

0 < q(x(7)) — q(x*) = t{x", Hd) + T (d, Hd) + 7{(g,d) = T (d, Hd),
thus (d, Hd) > 0. O

8.8 Corollary (Sufficient Optimality Condition).
Let x* € H and A* > 0 such that (a)—(c) of Theorem 8.7 hold and {d,(H + A*M)d) > 0
holds for alld € H. Then x* is the unique global solution of (TR(H, g, M, A, H)).

Proor. This is an immediate consequence of Lemma 8.6. O

8.4. The Generalized Lanczos Method

The Generalized Lanczos Trust Region (GLTR) method is an iterative method to
approximately solve (TR(H, g, M, A, H)) and has first been described in Gould et
al. [Gou+99]. In every iteration of the GLTR process, problem TR(H, g, M, A, H) is
restricted to the Krylov subspace K; := span{(M'HYM™1g |0 < j < i},

min %(x, Hx) + (x,g)

xeH

st lxllm < A, (TR(H, g, M, A, K;))
X € 7(,'.

The following Lemma relates solutions of (TR(H, g, M, A, K;)) to those of the original
problem TR(H, g, M, A, H).

8.9 Lemma (Solution of the Krylov subspace trust region problem).

Let x* be a global minimizer of (TR(H, g, M, A, %;)) and A' the corresponding Lagrange
multiplier. Then (x', A') satisfies the global optimality conditions of (TR(H, g, M, A, H)),
Theorem 8.7, in the following sense:

(1) (H+AM)x'+g Ly K,
2) lIx'llm — A <0,
(3) A'(|lxlm — A) =0,

(4) (d,(H + A'M)d) > 0 for all d € K.
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ProorF. (2)-(4) are immediately obtained from Theorem 8.7 as ‘K; C H is a Hilbert
space. Assertion (1) follows from x* = x’ +x* with x' € K;, x* L K; and Theorem 8.7
for x*. O

Solving problem (TR(H, g, M, A, H)) may thus be achieved by iterating the following
Krylov subspace process. Each iteration requires the solution of an instance of the
truncated trust region subproblem (TR(H, g, M, A, ‘K;)).

Algorithm 8.1: Krylov subspace process for solving (TR(H, g, M, A, H)).
input :H, M, g, A, tol
output:i, x’, A’

fori > 0do
Construct a basis for the i-th Krylov subspace K;
Compute a representation of g(x) restricted to K;
Solve the subproblem (TR(H, g, M, A, K;)) to obtain (x?, A?)
if ||(H + A'M)x" + g||y-1 < tol then return

end

Algorithm 8.1 stops the subspace iteration as soon as ||(H + A!M)x" + g|[ ;-1 is small
enough. The norm || - |[;-: is used in the termination criterion since it is the norm
belonging to the dual of (H, || - ||ar) and the Lagrange gradient (H + A'M)x’ + g should
be regarded as element of the dual.

8.4.1. Krylov Subspace Buildup

In this section, we present the preconditioned conjugate gradient (pCG) process and
the preconditioned Lanczos process (pL) for construction of Krylov subspace bases.
We discuss the transition from pCG to pL upon breakdown of the pCG process.

Preconditioned Conjugate Gradient Process

An H-conjugate basis (p;)o<;<; of K; may be obtained using preconditioned conjugate
gradient (pCG) iterations, Algorithm 8.2.

The stationary point s’ of g(x) restricted to the Krylov subspace ; is given by
st = ;:0 o/’ and can thus be computed using the recurrence

= a’’, I TP 0<j<N-1

as an extension of Algorithm 8.2. The iterates’ M-norms ||s||5; are monotonically
increasing [Ste83, Thm 2.1]. Hence, as long as H is coercive on the subspace %; (this
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Algorithm 8.2: Preconditioned conjugate gradient (pCG) process.
input :H, M, go, ieN
output:v’, ¢', p', a1, pi-1

Initialize 0° « M~1¢°, p° « —0°

forj«—O0toi—1do
ol — (¢, o) /(. Hp') = |1/ lm /<0’ HP')
G — ¢ +alHpy
éj_-ﬂ — M—lgA]:+1 o ' .
B (g O (G ) = 1 RN
P"j+1 — _Z')j+1 +ﬂijj

end

implies @; > 0 for all 0 < j < i) and ||s’||m < A, the solution to (TR(H, g, M, A, K;)) is
directly given by s’. Breakdown of the pCG process occurs if a’ = 0. In computational
practice, if the criterion || < e is violated, where £ > 0 is a suitable small tolerance,
it is possible — and necessary — to continue with Lanczos iterations, described next.

Preconditioned Lanczos Process

An M-orthogonal basis (p;)o<j<; of K; may be obtained using the preconditioned
Lanczos (pL) process, Algorithm 8.3, and permits to continue subspace iterations even
after pCG breakdown.

Algorithm 8.3: Preconditioned Lanczos (pL) process.

input :H, M, go,j eN
output:vi, gi,pi_l, yi_l, §i-1

Initialize 7' «— 0,y ™! « 1,0° «~ M7'g° p® « o°

fori—Otoj—1do
v g7y = gl = 1l
P (YW = (/o)
&) — (p/,Hp’)
g —Hp = (& [y)g - (v [y g™
P Mg

end
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The following simple relationship holds between the Lanczos iteration data and
the pCG iteration data, and may be used to initialize the pL process from the final
pCG iterate before breakdown:

l._{||z30||M, i=0 5 {1/a°, i=0
rT VB e, iz IRV Y O B
i1 i1
p= 1/||z>i||M[]_[<— sgn af)] o g =V/Gillm [1‘[(— sgn af)] gi-
Jj=0 J=0
In turn, breakdown of the pL process occurs if an invariant subspace of H is exhausted,
in which case y* = 0. If this subspace does not span H, the pL process may be restarted

if provided with a vector ¢° that is M-orthogonal to the exhausted subspace.
The pL process may also be expressed in compact matrix form as

HP,' - MP,'T,‘ = gi+1eT <P,',MP1'> = I,

i+1°
with P; being the matrix composed from columns py, ..., p;, and T; the symmet-
ric tridiagonal matrix with diagonal elements &°, ..., 5 and off-diagonal elements
1 i
YL vk

As P; is a basis for K, every x € K; can be written as x = P;h with a coordinate vec-
tor h € R, Using the compact form of the Lanczos iteration, one can immediately ex-
press the quadratic form in this basis as g(x) = %(h, T;h)+y°(eq, h. Similarly, ||x||ar =
||kl Solving (TR(H, g, M, A, ;)) thus reduces to solving TR(T;, y%ey, I, A,RI*1) on
R*! and recovering x = P;h.

8.4.2. Easy and Hard case of the Tridiagonal Subproblem

As just described, using the tridiagonal representation T; of H on the basis P; of the
i-th iteration of the pL process, the trust-region subproblem TR(T;, y%ey, I, A, R'*1)
needs to be solved. For notational convenience, we drop the iteration index i from T;
in the following. Considering the necessary optimality conditions of Theorem 8.7, it
is natural to define the mapping

A x(A) := (T + A)*(=y°ey) for A € I := [max{0, —Omin }, 00),

where i denotes the smallest eigenvalue of T, and the superscript + denotes the
Moore-Penrose pseudo-inverse. On I, T + Al is positive semidefinite. The following
definition relates x(1*) to a global minimizer (x*, A*) of TR(T;, ey, I, A, R'*1).
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8.10 Definition (Easy Case and Hard Case).

Let (x*, A*) satisfy the necessary optimality conditions of Theorem 8.7.

If (y%ey, Eig(Omin)) # 0, we say that T satisfies the easy case. Then, x* = x(1*).

If (y%eq, Eig(Omin)) = 0, we say that T satisfies the hard case. Then, x* = x(1*)+v with
suitable v € Eig(Omin). Here Eig(0) = {v € R™*! | Tv = fv} denotes the eigenspace
of T associated to 6. A

With the following Theorem, Gould et al. in [Gou+99] use the the irreducible
components of T to give a full description of the solution x(1*) + v in the hard case.

8.11 Theorem (Global Minimizer in the Hard Case).
Let T = diag(Ry, ..., Ry) with irreducible tridiagonal matrices R; andlet 1 < £ < k
be the smallest index for which 0in(R¢) = Omin(T) holds. Further, let x1(0) = (R; +
0I)*(—y°eq) and let (x}, A}) be a KKT-tuple corresponding to a global minimum of
TR(R;, %y, I, A,R™), x7 = x1(A]).

If A7 > —0Onin, then x* = (x4 ()L’{)T, 0, ..., 0)T satisfies Theorem 8.7 for the problem
TR(T, y%e;, I, A, R

If A7 < —Omin, then x* = (x1(=Omin)T, 0, ..., 0, ©T,0, ..., 0)T, with an eigenvec-
tor v € Eig(R¢, Omin) such that ||x* |3 = ||x1(=Omin)||5+]|v]|? = A® satisfies Theorem 8.7
for TR(T, y%ey, I, A,R™Y), A

In particular, as long as T is irreducible, the hard case does not occur. For the tridiag-
onal matrices arising from Krylov subspace iterations, this is the case as long as the
pL process does not break down.

8.4.3. Solving the Tridiagonal Subproblem in the Easy Case

Assume that T is irreducible, and thus satisfies the easy case.. Solving the tridiagonal
subproblem amounts to checking whether the problem admits an interior solution
and, if not, to finding a value A* > max{0, —Oin} With ||x(1%)|| = A.

We follow Moré and Sorensen [MS83], who define 0,(1) := |[x(1)[|” — A? and
propose the Newton iteration

_ (D[P — AP 0
pllx@ADIIP=2(x(A), x" (A1)~ 7

with x’(1) = —(T + AI)*x(A), to find a root of o_1(A). Provided that the initial value
A lies in the interval [max{0, —Omin }, A*], such that (T + A°I) is positive semidefinite,
|x(1%)|| > A, and no safeguarding of the Newton iteration is necessary, it can be
shown that this leads to a sequence of iterates in the same interval that converges to
A* at globally linear and locally quadratic rate, cf. [Gou+99].

/‘{i+1 — /1i —O'p(/v.)/O};(/li) - Ai
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Note that A* > —0p;, as 0_;(4) has a singularity in —60p,;, but 0_1(1*) = 1/A and it
thus suffices to consider A > max{0, —Oyjn}.

Both the function value and derivative require the solution of a linear system of
the form (T + AI)w = b. As T + Al is tridiagonal, symmetric positive definite, and
of reasonably small dimension, it is computationally feasible to use a tridiagonal
Cholesky decomposition for this.

Gould et al. in [GT10] improve upon the convergence result by considering higher
order Taylor expansions of 0,,(1) and values p # —1 to obtain a method with locally
quartic convergence.

8.4.4. The Newton initializer

Cheap oracles for a suitable initial value A° may be available, including, for example,
zero or the value 1* of the previous iteration of the pL process. If these fail, it becomes
necessary to compute Gpin. To this end, we follow Gould et al. [Gou+99] and Parlett
and Reid [PR81], who define the Parlett-Reid Last-Pivot function d(6):

8.12 Definition (Parlett-Reid Last-Pivot Function).

if there exists (do, . ..,d;) € (0,0) X R, and L unit lower
d9) = “  triangular such that T — 6I = L diag(dy, ..., d;) LT
—oo, otherwise. A
Since T is irreducible, its eigenvalues are simple [GL96, Thm 8.5.1] and Oy is given by
the unique value 8 € R with T — 01 singular and positive semidefinite, or, equivalently,
d(9) = o.

A safeguarded root-finding method is used to determine ;, by finding the root of
d(0). An interval of safety [92‘, 6%] is used in each iteration and a guess 0~ € [92‘, 60F]
is chosen. Gershgorin bounds may be used to provide an initial interval [GL96, Thm
7.2.1]. Depending on the sign of d(0) the interval of safety is then contracted to
[9?, 0] if d(6%) < 0 and to [0%, 6] if d(6%) > 0 as the interval of safety for the next
iteration. One choice for 6 is bisection. Newton steps as previously described may
be taken advantage of if they remain inside the interval of safety.

For successive pL iterations, the fact that the tridiagonal matrices grow by one
column and row in each iteration may be exploited to save most of the computational
effort involved. As noted by Parlett and Reid [PR81], the recurrence to compute the
d; via Cholesky decomposition of T — 61 in Def. 8.12 is identical with the recurrence
that results from applying a Laplace expansion for the determinant of tridiagonal



8.4. The Generalized Lanczos Method 93

-
-
-~
-~
-~
~
~.
~

0

Figure 8.1.: The Parlett-Reid last-pivot function d(6) and the lifted function d(6) have
the common zero Oy,;,. Dashed lines show the a}nalytic continuation of
the right hand side of d(0) = [];(6 — 0;)/];(6 — 0;) into the region where
d(f) = —c0

matrices [GL96, §2.1.4]. Comparing the recurrences thus yields the explicit formula

4(6) = det(I: -0n _ [1;(6 - 9}), 6.1)
det(T — 1) [1,00-96))

where T denotes the principal submatrix of T obtained by erasing the last column and
row, and 0; and 9 enumerate the eigenvalues of T and T, respectively. The right hand
side is obtamed by identifying numerator and denominator with the characteristic
polynomials of T and T, and by factorizing these.

It becomes apparent that d(0) has a pole of first order in Oumin. After lifting this pole,
the function cf(@) = (60— émm)d(G) is smooth on a larger interval. When iteratively
constructing the tridiagonal matrices in successive pL iterations, the value Oumin i
readily available and it becomes preferable to use d(6) instead of d() for root finding.

8.4.5. Solving the Tridiagonal Subproblem in the Hard Case

If the hard case is present, the decomposition of T into irreducible components has
to be determined. This is given in a natural way by Lanczos breakdown. Every time
the Lanczos process breaks down and is restarted with a vector M-orthogonal to
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the previously considered Krylov subspaces, a new tridiagonal block is obtained.
Solving the problem in the hard case then amounts to applying Theorem 8.11: First
all smallest eigenvalue 0; of the irreducible blocks R; have to be determined as well
as the KKT tuple (x7, A]) by solving the easy case for TR(R;, y0e1, L A,R™). Again,
let £ be the smallest index i with minimal 6;. In the case A} > -0, the global
solution is given by x* = ((x;‘)T, 0, ...,0)". On the other hand if Al < —0; the
eigenspace of Ry corresponding to 6, has to be obtained. As Ry is irreducible, all
eigenvalues of R, are simple and an eigenvector o spanning the desired eigenspace
can be obtained for example by inverse iteration [GL96, §8.2.2]. The solution is
now given by x* = (x1(=6,)7, 0, v, 0)T with x1(~0min) = (R — 0,17 (~y ;)
and v := av where a has been chosen as the root of the scalar quadratic equation
A? = ||x1(=Omin)||? + @?||D||? that leads to the smaller objective value.

8.4.6. Heuristic addressing ill-conditioning

The pL directions P; are M-orthogonal if computed using exact arithmetic. It is well
known that, in finite precision and if H is ill-conditioned, M-orthogonality may be
lost due to propagation of roundoff errors . An indication that this happened may be
by disproving

3¢h. Tih) +y"(h. e1) = q(Pih),

which holds if P; indeed is M-orthogonal. On several badly scaled instances, for
example ARGLINB of the CUTEst test set, we have seen that both quantities above
may even differ in sign, in which case the solution of the trust-region subproblem
would yield a direction of ascent. This issue becomes especially severe if H has small,
but positive eigenvalues and admits an interior solution of the trust region subproblem.
Then, the Ritz values computed as eigenvalues of T; may very well be negative due to
the introduction of roundoff errors, and enforce a convergence to a boundary point
of the trust region subproblem. Finally, if the trust region radius A is large, the two
“solutions” can differ significantly.

To address this observation, we have developed a heuristic that, by convexification,

permits to obtain a descent direction of progress even if P; has lost M-orthogonality.
(pjHpj) (pjHpj)
(pj»Mpj) (pjsMpj)
Rayleigh quotients used as estimates of extremal eigenvalues of H. Both are cheap to

compute during the Krylov subspace iterations.

For this, let p := min; and p := max; be the minimal and maximal

(1) If algorithm 8.1 has converged with a boundary solution such that

A > 102 max{1, pmax} and |pmin| < 107 prmaxs
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the case described above may be at hand. We compute g, := q(P;h) in addition
to qp := %(h, T;h) + y°(h, e1). If either g > 0 or |gx — qn| > 1077 max{1, |g,|},
we resolve with a convexified problem.

(2) The convexification heuristic we use is obtained by adding a positive diagonal
matrix D to T;, where D is chosen such that T; + D is positive definite. We
then resolve then the tridiagonal problem with T; + D as the new convexified
tridiagonal matrix. We obtain D by attempting to compute a Cholesky factor
T;. Monitoring the pivots in the Cholesky factorization, we choose d; such
that the pivots 7; are at least slightly positive. The formal procedure is given
in algorithm 8.4. In our implementation we use the constants ¢ = 1072 and
o = 10.

Algorithm 8.4: Convexification heuristic for the tridiagonal matrix T;.
input :T;,e>0,0>0
output:D such that T; + D is positive definite

forj=0,...,ido

A 50’ ]:O

it .
51'—)/].2/%]'_1, ] >0
0, ﬁ'j > €

j = .
alyjz/nj_l -6, 7j<e

T = T + dj
end

8.5. Summary

We have analyzed trust-region subproblems in Hilbert space and showed existence
under appropriate assumptions. We have extended Gould’s Generalized Lanczos
Method for trust region problems in Hilbert spaces. We have developed a novel
heuristic addressing ill-conditioned problems. The implementation trlib of this
algorithm is presented in Chapter 11.






9. Gauf3-Newton Preconditioner for
Model Predictive Control

Real-time control of processes mandate the development of computationally fast
algorithms that quickly yield good approximations to solutions of optimal control
problems. We give a short overview on Nonlinear Model Predictive Control (NMPC)
and develop a Gau3-Newton Preconditioner to accelerate the SLPECEQP algorithm
of Chapter 7 in nonlinear model predictive control applications.

9.1. Online Optimal Control

In real-time optimal feedback control scheme, a family of optimal control problems
parameterized by time is considered. At a given time, an optimal control problem
describing the system under consideration is set up, solved instantaneously and the
obtained optimal control evaluated at this time point is applied to the system.

As it is not possible to solve optimal control problems instantaneously, such an
idealized scheme cannot be applied in practice. Instead, a set of discrete sampling
times is selected at which the optimal control problem is solved and feedback control
can be given afterwards. The duration between two subsequent sampling times has
to be longer as the computations for solving the optimal control problem take. The
computed feedback control is available with a delay bounded by the time it takes to
solve the optimal control problem, which is hard to estimate a priori.

9.2. Real-Time lterations

It is desirable to ensure that the duration between two subsequent samples is small as
this ensures that the computed feedback control matches the process state that has
been assumed upon computation. To this end, Diehl [Die01; Die+02] has developed
the concept of real-time iterations, which we sketch in the following.

Suppose that at a time instance ¢ an approximation to the optimal control problem
corresponding to the process state x(t) has to be computed and that previous to
t a prediction xP*4(t) of x(t) is available. If a direct method for discretization of
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the optimal control problem and an iterative method for solution of the resulting
nonlinear program is used, the iterative method can be prepared and initialized with
xPrd(t) instead of x(t) previously to t in a preparation phase. Once x(t) becomes
available at t, the iteration data is updated by replacing the prediction xP*4(t) with
x(t) and an approximate solution to the updated nonlinear program can be quickly
computed in a feedback phase. With this solution a prediction for the state at the next
time instance can be obtained and it can be used to initialize the subsequent nonlinear
program in a transition phase.

By including an initial value embedding into the optimal control problem, Diehl
showed, using techniques from parametric nonlinear programming and the local
contraction Theorem of Bock [Boc87], that a full-step SQP real-time iteration scheme
is contractible and provides a tangential predictor to the solution of the optimal
control problem. In particular, only one SQP iteration is performed per problem in
the feedback phase. In the transition phase, a shift strategy is employed for moving
horizon problems. Crucial is the usage of the SQP method, as it is an active-set method
with excellent warm starting capabilities. In comparison with interior point methods,
it has been shown by Diehl [DFH09] and Zavala [ZLB07] that the computed tangential
predictors by an interior point method are inferior to those of an active set method.

Kirches [Kir10; Kir+13a] has extended the real-time iteration scheme to the case
of mixed-integer nonlinear model predictive control and proved contractibility of a
scheme based on a full-step SQPVC method even in the presence of rounding. Bock
et al. [BKS07], Wirsching et al. [WBDO06; Kir+10b] and Frasch et al. [Fra+12] have
developed a multi-level iteration and mixed-level iteration framework with adaptive
reevaluation and relinearization. Wynn et al. [WVD14] establish conditions for
convergence of real-time moving horizon schemes. Gros et al. [Gro+16] provide a
comparison of nonlinear model predictive control and linear model predictive control.

9.3. SLPECEQP Real-Time lteration Scheme

In this section, we present a real-time iteration scheme based on the SLPECEQP
algorithm of Chapter 7. We assume that the SLPECEQP algorithm has been initialized
with a solution of the offline problem. The real-time iteration scheme is outlined in
Algorithm 9.1. The following three phases are iterated in the scheme:

Preparation Phase. In the preparation phase, the most expensive computations
can be set up already without knowledge of the initial system state x°, that is included
in the optimal control problem via the initial value embedding constraint 0 = x(ty)—x°.
In this phase, the solution is prepared as far as possible without knowledge of x°. In
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Algorithm 9.1: SLPECEQP Real-Time Iteration Scheme. Lower case alpha-
betic enumeration corresponds to steps in Algorithm 7.2

I. Preparation. Function and derivative evaluation.

II. Feedback. Insert x° into initial value embedding 0 = s° — x°.

ITa. Compute penalty choice y, linear step d, working set guess W.
ITb. Compute least-squares multiplier estimation Arg, pirs, vLs, OLs-
IIc. Compute Cauchy step dc = ady.

IId. Compute step d as solution of an EQP on ‘W.

IL. Provide feedback control u(t).

II1. Transition. Shift time horizon and variables.

particular, all function and derivative evaluations necessary are executed.

Feedback Phase. Once the system state x° is known, it is included in the evaluation
of the initial value embedding. For the Direct Multiple Shooting Discretization as
presented in Chapter 3.1.1, the initial value embedding constraint is given by 0 = s?—x°
with the shooting variable s° on the first multiple shooting node. Afterwards, one
iteration of the SLPECEQP method is performed. This can be done cheaply as the
solution of the LPEC with an active-set method from a neighboring point usually
requires very few active-set iterations due to warm-starting capabilities of active-
set LPEC solution algorithms. To ensure fast solution of the EQP we rely on the
Gauf3-Newton Preconditioner discussed in the next section.

The solution estimate obtained bye one iteration of the SLPECEQP method is used
to compute u(ty) that can be immediately applied to the process. If the working
set estimate ‘W identifies the active set at the solution, u(t,) provides a tangential
predictor to the optimal feedback control.

Transition Phase. In the transition phase the problem for the next sampling time is
prepared. This involves shifting the time horizon and the shooting variables motivated
by the principle of optimality of subarcs. In a moving horizon setting, new estimates
for the variables on the last shooting node are required as these are lost upon shifting.
Several strategies exist to this end. One possibility is to reuse the values of the
variables of the previous problem, which may render the matching condition on
the last shooting interval infeasible. Another possibility is to integrate the initial
value problem on the last shooting interval from the shifted state variable on the
penultimate shooting node.
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9.4. Gauf3-Newton Preconditioner

The dominating computational effort in solving multiple-shooting discretizations
of optimal control problems with the SLPECEQP algorithm is the iterative solution
of the EQP. The computational effort for solving the EQP is in essence determined
by two factors: The number of preconditioned Krylov subspace iterations required
and the time it requires to evaluate one matrix-vector product with Hessian of the
Lagrangian. For online optimal control applications it is crucial to solve the EQP as
fast as possible. While the time to evaluate one matrix-vector product is fixed, the
number of Krylov subspace iterations can be influenced by the choice of a suitable
preconditioner that either is a good approximation to the inverse or clusters the
eigenvalues of the Hessian of the Lagrangian.

In online optimal control, objective functions often are of tracking type and thus
have a Least-Squares Lagrange type objective function. For this case of problems with
Least-Squares Lagrange type objective function, there is a natural preconditioner
given in the form of the Gauf3-Newton approximation to the Hessian matrix. Direct
multiple shooting discretization of such a problem yields an objective function that
can be represented as

f(2) = 3lr@li3, (9.1)
with a twice continuously differentiable function r(z).

9.1 Definition (Gauf3-Newton preconditioner).
The Gau8-Newton preconditioner of (9.1) in z is defined by M := JT ], J = dg—(zz). The
corresponding projection in the EQP solution is defined by

Py = (I 0) (fif f‘g)_l (f)) .

Gaufl-Newton methods based on the Gaufl-Newton approximation J7 J of the Hessian
JTJ + 3, ri(2)V?ri(z) for nonlinear least-squares problems are analyzed in detail by
Bock [Boc87]. The following lemma gives a rank conditions for the existence of P;r:

A

9.2 Lemma ([Boc87, 3.1.25,3.1.28]).
Let J € R™*" and A € R™*" with m, < nand n < m; + my. Suppose that the rank

conditions rank A = m, and rank (1{‘) = n hold.

J'] AT
A 0
Furthermore, J7 J is positive definite on the null-space of A. A

Then ( ) is non-singular and P;r is well-defined.
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For our purposes we use the Gauss-Newton Hessian approximation as precondi-
tioner. An preconditioner is efficient if it either ensures clustering of eigenvalues or
reduces the condition number. An optimal preconditioner that would yield conver-
gence within one iteration is given by the Hessian of the problem, provided that is
positive definite. The Gauss-Newton Hessian approximation is cheap to compute and
provides a good approximation to the Hessian that is always positive semi-definite.
A quantitative description of the quality of the approximation can be found in the
context of the estimation of ¥ and w-conditions of Bock’s local contraction Theorem
[Boc87], see also [Deu06] and [Pot11, Ch. 5.2].

A computational example that demonstrates the efficiency of the Gauf3-Newton
preconditioner is given in Chapter 16.2.

9.5. Summary

In this chapter, we gave a short introduction into online optimal control and introduced
a Gauf3-Newton preconditioner that is effectively applied in 16.2.
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10. Benchmarking Optimization
Software

In this chapter, we introduce Dolan-Moré Performance Profiles used to benchmark
optimization software and the benchmark collections CUTEr and CUTEst.

10.1. Performance Profiles

Dolan and Moré [DM02] have introduced performance profiles to assess the perfor-
mance of different solvers on a collection of benchmark problems.

10.1 Definition (Performance Profile).
Assume a finite set # of benchmark problems and a finite set S of solvers is given
andt: P xS — R, (p,s) — tp s a performance mapping.
The performance ratio r : # X S — R is then defined by normalization to best
performance,
L
. p.s
Fpsi= —————.
MmiNges ip o

The performance profile ps : R~y — [0, 1] of solver s € § is defined as cumulative
distribution of 7. g,
{p € PI7ps <1}l
|| ' A

ps(t) ==

By definition, ps(1) gives the ratio of problems solver s solves fastest, while
lim; o ps(7) gives the fraction of problems that solver s can solve at all. For 7 > 1,
ps(7) that can be solved by s within a factor 7 of the fastest solver.

Mahajan et al. [MLK11] noted that this lacks the information if a solver s is faster
than any other solver by a factor of at most 7 and to this end introduced extended
performance profiles:

10.2 Definition (Extended Performance Profile).
Assume a finite set £ of benchmark problems and a finite set S of solvers is given
andt: P xS — R, (p,s) — tp s a performance mapping.
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The extended performance ratio r : £ X & — R is then defined by

tp’ s

Fps i= ——————————.
p.s X
MiNg eS8, o#i tp, o

The extended performance profile ps : R~o — [0, 1] of solver s € S is defined as
cumulative distribution of r. g,

Hp € Plrps < 1}
|P] ' A

ps(t) =

Extended performance profiles extend the notion of performance profiles. It holds
ps(t) = ps(7) for all 7 > 1. Now lim,\ o ps(7) gives the fraction of problems that can
be solved only by s.

10.2. Benchmark Sets CUTEr and CUTEst

CUTEr [GOTO02] and its successor CUTEst [GOT15] are established collections of
benchmark problems for nonlinear programming. The problems stem both from
real-world applications and from academic examples and represent a variety of dif-
ferent classes of problems. All problems have objective and constraints functions
that are at least twice continuously differentiable and are without integrality con-
straints. Problems are categorized in unconstrained and constrained and in linear,
quadratic or general nonlinear and span sizes from one up to 250,000 variables and
constraints. They are distributed together with a Fortran library that provide routines
for evaluation of objective and constraint functions and their derivatives.

Benson [Ben01] has translated the CUTEr collection as of 2001 into AMPL [FGK90;
FGKO02] which provides a convenient tool for comparison involving a wide range of
solvers, as most solver have interfaces to AMPL. The AMPL translation consists of a
924 instance subset of current CUTEr that may slightly differ from its CUTExr/CUTEst
counterpart in supplied start points, parameter values, and choices for variable sized
problems.

10.3. Summary

We have introduced performance profiles as a tool to compare different solvers on
benchmark sets and the collections of benchmark problems CUTEr and CUTEst.



11. Implementation and Benchmark of
Generalized Lanczos Method

We introduce trlib, which is a vector-free implementation of the GLTR (Generalized
Lanczos Trust Region) method for solving the trust region subproblem described
in chapter 8. We assess the performance of this implementation on trust region
problems obtained from the set of unconstrained nonlinear minimization problems
of the CUTEst benchmark library, as well as on a number of examples formulated in
Hilbert space that arise from PDE-constrained optimal control.

The results of this chapter are published in [LKP16].

11.1. Implementation trlib

In this section, we present details of our implementation tr1ib of the GLTR method.

11.1.1. Existing Implementation

The GLTR reference implementation is the software package GLTR in the optimization
library GALAHAD [GOTO04]. This Fortran 90 implementation uses conjugate gradient
iterations exclusively to build up the Krylov subspace, and provides a reverse commu-
nication interface that requires to exchange vector data to be stored as contiguous
arrays in memory.

11.1.2. trlib Implementation

Our implementation is called tr1ib, short for trust region library. It is written in plain
ANSI C99 code, and has been made available as open source [LKP16]. We provide a
reverse communication interface in which only scalar data and requests for vector
operations are exchanged, allowing for great flexibility in applications. trlib has
been added to the SciPy library package in version 1.0 as core optimization solver.
Beside the stable and efficient conjugate gradient iteration we also implemented
the Lanczos iteration and a crossover mechanism to expand the Krylov subspace, as
we frequently found applications in the context of constrained optimization with
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an SLPECEQP method where conjugate gradient iterations broke down whenever
directions of tiny curvature had been encountered.

11.1.3. Vector Free Reverse Communication Interface

The implementation is built around a reverse communication calling paradigm. To
solve a trust region subproblem, the according library function has to be repeatedly
called by the user and, after each call, the user has to perform a specific action indicated
by the value of an output variable. Only scalar data representing dot products and
coefficients in axpy operations as well as integer and floating point workspace to hold
data for the tridiagonal subproblems is passed between the user and the library. In
particular, all vector data has to be managed by the user, who must be able to compute
dot products (x, y), perform axpy vy := ax +y on them and implement operator vector
products x — Hx,x — M~ 1x with the Hessian and the preconditioner.

Thus, no assumption about representation and storage of vectorial data is made,
as well as no assumption on the discretization of H if H is not finite-dimensional.
This is beneficial in problems arising from optimization problems stated in function
space that may not be stored naturally as contiguous vectors in memory or where
adaptivity regarding the discretization may be used along the solution of the trust
region subproblem. It also gives a trivial mechanism for exploiting parallelism in
vector operations as vector data may be stored and operations may be performed on
GPU without any changes in the trust region library.

In particular, this interface allows for easy interfacing with the PDE-constrained
optimization software DOLFIN-adjoint [Far+13; FF13] within the finite element
framework FEniCS [Aln+15; LW10; Aln+14] without having to rely on assumptions
on how the finite element discretization is stored.

11.1.4. Conjugate Gradient Breakdown

Per default, conjugate gradient iterations are used to build the Krylov subspace. The
algorithm switches to Lanczos iterations if the magnitude of the curvature |(p, Hp)| <
tol_curvature, with a user defined tolerance tol_curvature > 0.

11.1.5. Easy Case

In the easy case after the Krylov space has been assembled in a particular iteration, it
remains to solve (TR(T;, y%ey, I, A, R"*1)), which we do as outlined in Chapter 8.4.3.
As mentioned there, an improved convergence order can be obtained by higher order
Taylor expansions of 0,,(A) and values p # —1, see [GT10]. However, in our case the
computational cost for solving the tridiagonal subproblem — often warm started in a
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suitable way — is negligible in comparison to the cost of computing matrix vector
products x — Hx. We thus decided to stick to the simpler Newton root-finding on
o_1(A).

To obtain a suitable initial value A° for the Newton iteration, we first try A* obtained
in the previous Krylov iteration if available, and A° = 0 otherwise. If these fail, we
use 1% = —0,in computed as outlined in Chapter 8.4.4 by zero-finding on d(6) or
cf(@) This requires suitable models for cf(@) Gould et al. [Gou+99] propose to use a
quadratic model 6% + af + b for d(6) that captures the asymptotics  — —oo obtained
by fitting function value and derivative in a point in the root finding process. We
have also had good success with the linear Newton model af + b, and with using a
second order quadratic model af? + bf + c, that makes use of an additional second
derivative. Derivatives of d(29) or J(G) are easily obtained by differentiating the

. 2 .
recurrence di4q = 041 — 6 — yg—: for the Cholesky decomposition, di+; = -1+ Y;;l dy.
k

. YZ
and di4; = 5;1
k

decomposition. In our implementation, a heuristic is used to select the option that is
inside the interval of safety and promises good progress. The heuristic is given by using
6% + af + b in case that the bracket width 6% — ng satisfies 0 — 9;5 > 0.1 max{1, |6%|}
and a6 + b0 + ¢ otherwise. The motivation behind this is that in the former case it
is not guaranteed that #* has been determined to high accuracy as zero of d(#) and
thus the model that captures the global behavior might be better suited. In the latter
case, O% has been confirmed to be a zero of d(6) to a certain accuracy and it is safe to
use the model representing local behavior.

.. .2
(dy — 23—’;) and are cheaply to compute together with the Cholesky

11.1.6. Hard Case

We now discuss the so-called hard case of the trust region problem, which we have
found to be of critical importance for the performance of trust region subproblem
solvers in general nonlinear non-convex programming. We discuss algorithmic and
numerical choices made in trlib that we have found to help improve performance
and stability.

Exact Hard Case

The function for the solution of the tridiagonal subproblem implements the algorithm
as given by Theorem 8.11 if provided with a decomposition in irreducible blocks.
However, from local information it is not possible to distinguish between conver-
gence to a global solution of the original problem and the case in which an invariant
Krylov subspace is exhausted that may not contain the global minimizer as, in both
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cases, the gradient vanishes.

The handling of the hard case is thus left to the user in the reverse communication
calling scheme if arrived at a point where the gradient norm is sufficiently small. The
user then has to decide if the solution in the Krylov subspaces investigated so far is
accepted, or further Krylov subspaces should be investigated. In that case it is left
to the user to determine a new nonzero initial vector for the Lanczos iteration that
is M-orthogonal to the previous Krylov subspaces. One possibility to obtain such a
vector is using a random vector and M-orthogonalizing it with respect to the previous
Lanczos directions using the modified Gram-Schmidt algorithm.

Near Hard Case

The near hard case arises if (y’e;, ﬁ) is tiny, where © spans the eigenspace Eig(6in)-

Numerically this is detected if there is no A > max{0, —6y,in} such that ||x(1)|| > A
holds in floating point arithmetic. In that case we use the heuristic A* = —60,,;, and
x* = x(—6min) + av with v € Eig(fn,in) where « is determined such that [|x*|| = A.

Another possibility would be to modify the tridiagonal matrix T by dropping
off-diagonal elements below a specified threshold and work on the obtained decom-
position into irreducible blocks. However, we have not investigated this possibility as
the heuristic delivers satisfactory results in practice.

11.1.7. Reentry with New Trust Region Radius

In nonlinear programming applications it is common that, after a rejected step, another
closely related trust region subproblem has to be solved with the only changed data
being the trust region radius. As this has no influence on the Krylov subspace but
only on the solution of the tridiagonal subproblem, efficient hot-starting has been
implemented. Here, the tridiagonal subproblem is solved again with exchanged
radius and termination tested. If this point does not satisfy the termination criterion,
conjugate gradient or Lanczos iterations are resumed until convergence. However,
we rarely observed the need to resume the Krylov iterations in practice.

An explanation is offered based on the use of the convergence criterion ||VL|[j-1 <
tol as follows: In the Krylov subspace %K,

VLI = ¥ (x(A), i) < ¥ HIx(Dllz = y™'A,

convergence occurs thus if either y'*! or the last component of x(1) < A are small.
Reducing the trust region radius also reduces the upper bound for ||VL||3-1, so
convergence is likely to occur, especially if y**! turns out to be small.
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If the trust region radius is small enough, or equivalently the Lagrange multiplier
large enough, it can be proven that a decrease in the trust region radius leads to a
decrease in || VL||p-1:

11.1 Lemma.
There exists A > max; |A;(T)| such that A — y'"1|(x(A), e;+1) is a decreasing function

forA > A

Proor. Using the expansion (T; + AI)™! = Zkzo(—l)kﬁTk, which holds for A >
max; |A;(T)|, we find:

IVL|[p-1 = y”1|<X(A),ei+1>| = }’i+1)’0|<(Ti + /U)_lel,ei+1>|

i+1

J
. k k j=0¥ i
=}/z+1y0 E (1) ﬁeiTHT e = P +O((%)l+z),
k>0

where we have made use of the facts that e,

; +1Tkeo vanishes for k < i, and that
e{HTkeo = Hji-:1 y/, which can be easily proved using the relation Te; = y/~e;_; +
y'*'ej+1 + &;e;. The claim now holds if 1 is large enough such that higher order terms

in this expansion can be neglected. O

11.1.8. Termination criterion

Convergence is reported as soon as the Lagrangian gradient satisfies

max{tol_abs_i,tol rel il|g|lp-1}, ifA=0
max{tol_abs_b,tol_rel b|g|y-}, ifA>0"

VLl < {

The rationale for using possibly different tolerances in the interior and boundary
case is motivated from applications in nonlinear optimization where trust region
subproblems are used as globalization mechanism. There a local minimizer of the
nonlinear problem will be an interior solution to the trust region subproblem and it
is thus not necessary to solve the trust region subproblem in the boundary case to
highest accuracy.

11.1.9. TRACE

In the recently proposed TRACE algorithm [CS16], trust region problems are also
used. In addition to solving trust region problems, the following operations have to
be performed:

e min, %(x, (H + AM)x) + (g, x),
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« Given constants o, 6, compute A such that the solution point of min, %(x, (H+

AM)x) + (g, x) satisfies o < IIx)ILIM < oy

These operations have to be performed after a trust region problem has been solved
and can be efficiently implemented using the Krylov subspaces already built up.

We have implemented these as suggested in [CS16], where the first operation
requires one backsolve with tridiagonal data and the second one is implemented as
root finding on A — m — o with a certain o € [0}, 0y] that is terminated as soon

A
as =0T € [O'],O'u].

11.1.10. C11 Interface

The algorithm has been implemented in C11. The user is responsible for holding vector-
data and invokes the algorithm by repeated calls to the function trlib_krylov_min
with integer and floating point workspace and dot products (v, g), (p, Hp) as argu-
ments and in return receives status information and instructions to be performed on
the vectorial data. A detailed reference is provided in the Doxygen documentation to
the code.

11.1.11. Python Interface

A low-level python interface to the C library has been created using Cython that
closely resembles the C API and allows for easy integration into more user-friendly,
high-level interfaces.

As a particular example, a trust region solver for PDE-constrained optimization
problems has been developed to be used from DOLFIN-adjoint [Far+13; FF13] within
FEniCS [Aln+15; LW10; Aln+14]. Here vectorial data is only considered as FEniCS-
objects and no numerical data except for dot products is used of these objects.

11.2. Performance on CUTEst Benchmark Collection

In this section, we present an assessment of the computational performance of our
implementation trlib of the GLTR method, and compare it to the reference imple-
mentation GLTR as well as several competing methods for solving the trust region
problem and their respective implementations.

11.2.1. Generation of Trust-Region Subproblems

For want of a reference benchmark set of non-convex trust region subproblems, we
resorted to the subset of unconstrained nonlinear programming problems of the
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CUTEst benchmark library, and use a standard trust region algorithm, e.g. Gould et
al. [Gou+99], for solving min,crn» f(x), as a generator of trust-region subproblems.
The algorithm starts from a given initial point x° € R” and trust region radius A° > 0,
and iterates for k > 0:

Algorithm 11.1: Standard trust region algorithm for unconstrained nonlinear
programming, used to generate trust region subproblems from CUTEst.

input :f, x° A° pacc, pine> ¥*, ¥, tol_abs

output:k, x*

for k > 0do

Evaluate g* := V f(x¥)

Test for termination: Stop if ||g*|| < tol_abs

Evaluate H* := V2_f(x¥)

Compute (approximate) minimizer d¥ to TR(H¥, g*, I, AF)

Assess the performance p* := (f(x* + d¥) — f(x*))/q(d*) of the step

k k k
x* +d<, >
Update step: x**1 := { P = Pace

xk, Pk < Pacc
Y+Aka Pk 2 Pinc
Update trust region radius: AR+ .= S AR Pace < P* < Pine

YﬁAk, Pk < Pacc
end

In a first study, we compared our implementation trlib of the GLTR method to
the reference implementation GLTR as well as several competing methods for solving
the trust region problem, and their respective implementations, as follows:

+ GLTR [Gou+99] in the GALAHAD library implements the GLTR method.

« LSTRS [RSS08] uses an eigenvalue based approach. The implementation uses
MATLAB and makes use of the direct ARPACK [LSY98] reverse communication
interface, which is deprecated in recent versions of MATLAB and lead to crashes
within MATLAB 2013b used by us. We thus resorted to the standard eigs eigen-
value solver provided by MATLAB which might severely impact the behavior of
the algorithm.

« SSM [Hag01] implements a sequential subspace method that may use an SQP
accelerated step.
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solver  t interior convergence 7 boundary convergence

GLTR  min{0.5, ||g¥ ||y~ }lg* Iy  identical to interior

LSTRS defined in dependence of convergence of implicit restarted Arnoldi method
SSM min{0.5, [|g¥ ||} p-11lg¥ Iy~ identical to interior

ST min{0.5, [|g¥ ||} p-11lg% ||+  method heuristic in that case

trlib  min{0.5, ¥ (|} y-illg* [y max{107%, min{0.5, lg*[ly/% }llg los-

Table 11.1.: Convergence criteria for subproblem solvers ||[VL||;-1 < T

« ST is an implementation of the truncated conjugate gradient method proposed
independently by Steihaug [Ste83] and Toint [Toi81].

« trlib is our implementation of the GLTR method.

All codes, with the exception of LSTRS, have been implemented in a compiled
language, Fortran 90 in case of GLTR and C in for all other codes, by their respective
authors. LSTRS has been implemented in interpreted MATLAB code. The benchmark
code used to run this comparison has also been made open source and is available as
trbench [Len16].

In our test case the parameters A° = \/Lﬁ, tol_abs = 1077, Pacc = 1072, Pinc = 0.95,
y"=2andy” = % have been used. We used the subproblem convergence criteria
as specified in Table 11.1 for the different solvers, trying to have as comparable
convergence criteria as possible within the available applications. Our rationale for
the interior convergence criterion to request ||VL||-1 = O(||g* || 12\4,1) is that it defines
an inexact Newton method with q-quadratic convergence rate, [NW06, Thm 7.2]. As
LSTRS is a method based on solving a generalized eigenvalue problem, its convergence
criterion depends on the convergence criterion of the generalized eigensolver and is
incomparable with the other termination criteria. With the exception of trlib, no
other solver allows to specify different convergence criteria for interior and boundary
convergence.

Figure 11.1 shows extended performance profiles. It can be seen that GLTR and
trlib are the most robust solvers on the subset of unconstrained problems from
CUTEst in the sense that they eventually solve the largest fraction of problems among
all solvers and that they are also among the fastest solvers. That GLTR and trlib
show similar performance is to be expected as they implement the identical GLTR
algorithm, where trlib is slightly more robust and faster. We attribute this to the
implementation of efficient hot-start capabilities and also the Lanczos process to build
up the Krylov subspaces once directions of zero curvature are encountered.
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Figure 11.1.: Performance Profiles for matrix-vector products, NLP iterations and
total CPU time for different trust region subproblem solvers when used
in a standard trust region algorithm for unconstrained minimization
evaluated on the set of all unconstrained minimization problems from
the CUTEst library.
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11.3. PDE constrained Trust Region Problem in Hilbert
Space

We solved a modified variant of SCDIST1 [Cas86; MRT06] of the OPTPDE benchmark
library [Her+; Her+14] for PDE constrained optimal control problems. The state
constraint has been dropped and a trust region constraint added in order to obtain
the following function space trust region problem:

- Ly = yqll? Bllu = uy|2
yer’Zg;,I}JGLZ(Q) 2 ||y yd”Lz(Q) + 3 ||U udHLZ(Q)

s.t. -Ay+y=u, x€Q,
Ohy=0, x€dQ,
19122 gy + lullZs g < A

Here Q C R” is a domain and A is the Laplace operator A = Y}/, 9%.

Tracking data yq, ug has been used as specified in OPTPDE where typical regular-
ization parameters have been considered in the range 107® < f < 1073, Different
geometries Q € {(0,1)%,(0,1)3, {x € R?|||x|| < 1},{x € R*|||x|| < 1}} in two and
three dimensions have been studied.

The finite element software FEnICS has been used to obtain a finite element dis-
cretization of the problem:

. 1 2 B 2
min slly — + 5||lu—u
YR,y R 2||y deM 2 ” d”M

s.t. Ay - Mu =0,

Iy}, + llullf, < A

where M denotes the mass matrix and A = K + M with K being the stiffness matrix.
We used the approach suggested by Gould et al. [GHNO1] to solve this equality
constrained trust region problem:

(1) A null-space projection in the preconditioning step of the Krylov subspace
iteration is used to satisfy the discretized PDE constraint. The required precon-
ditioner is given by

-1
M 0 AN/l o
(y)H(I 0 0) o M -M| o I (Z)
A M 0 0 0

(2) We used MINRES [PS75] for solving with the linear system arising in this pre-
conditioner to high accuracy. MINRES iterations themselves are preconditioned
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using the approximate Schur-complement preconditioner

M -1

M b
AM™1A

as proposed by [RDW10]. This preconditioner is an approximation to the
optimal preconditioner
M -1
M
AMT'A+ M

that would lead to mesh-independent MINRES convergence in three iterations,
provided that exact arithmetic [Kuz95; MGW00] is used.

(3) In the MINRES preconditioner of step (2), products with M~' and A™! are
computed using truncated conjugate gradients (CG) to high accuracy, again
preconditioned using an algebraic multigrid as preconditioner.

In Figure 11.2, it can be seen that using the GLTR method for these function space
problems yields a solver with mesh-independent convergence behavior. The number
of outer iterations is virtually constant on a wide range of different meshes and varies
at most by one iteration. The number of inner (MINRES) iterations varies only slightly,
as is to be expected due to the use of an approximately optimal preconditioner in step

2).

11.4. Summary

We have presented trlib which implements Gould’s Generalized Lanczos Method
for trust region problems and is now part of the core optimization library of the
scientific computing python package SciPy. Distinct features of the implementation
are by the choice of a reverse communication interface that does not need access
to vector data but only to dot products between vectors and by the implementation
of preconditioned Lanczos iterations to build up the Krylov subspace. The package
trbench, which relies on CUTEst, has been introduced as a test bench for trust
region problem solvers. Our implementation trlib shows similar and favorable
performance in comparison to the GLTR implementation of the Generalized Lanczos
Method and also in comparison to other iterative methods for solving the trust region
problem.
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Figure 11.2.: Results for distributed control trust region problem for different mesh
sizes. Results are shown for four different geometries. Regularization
parameters 8 € {1073,107%,107°,107%, 1077, 108} have been considered,
however computational results for a fixed geometry hardly change with
B leading to near-identical plots.
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Moreover, we have solved an example from PDE constrained optimization to show
that the implementation can be used for problems stated in Hilbert space as a function
space solver with almost discretization independent behavior in that example.






12. SLPECEQP Implementation and
Benchmark

In this chapter, we analyze the performance of the proposed SLPECEQP algorithm on
the CUTEr and CUTEst set of benchmark problems for nonlinear programming.
The results of this chapter are published in [LKB17].

12.1. Implementation Details

We have implemented the SLPECEQP algorithm described in Chapter 7.5 using the
Python scripting language and made the implementation open source [LKB17]. Similar
to Matlab, Python is an interpreted language that provides fast methods to work on
numerical data with the NumPy and SciPy packages [JOP+15]. Via the Cython
package [Beh+11], C, C++, and Fortran code can be used directly from Python. Thus,
rapid prototyping is possible while time critical components of the algorithm can be
implemented in a compiled language.

For nonlinear programs, the LPEC of step a. of the SLPECEQP algorithm is a linear
program and we use the dual simplex method of GuRoBi 6.0 [Gur15] to solve it. The
Generalized Lanczos method described in Chapter 8 is used to solve the trust-region
subproblem in the EQP step, where the projection systems in the preconditioned
Krylov method are solved with the sparse indefinite solver MA57 [Duf04].

The implementation has been realized as a Python module. We allow slightly more
general formulations for (NLP) with two-sided bounds for variables and constraints.

We use the following termination criterion that quantifies satisfaction of (KKT)
relative to the initial point. To this end define

k k 1k k
stat” := ||V L(x", Afs, prg)llcos

k k k
compl® := ||prg * ¢7(X")||co,

optX := max{stat*, comp1*},
feask = [lcg(x*) o,
k : k
feas} = || min{0, 7 (x")}lcos
feask := max{feaslé,feas]}}.
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Step of Algorithm Y mean % var. %
Active Set Determination 55.5 34
EQP Setup 12.6 1.8
Line search dggp 11.4 0.7
EQP Solution 11.3 4.7
Factorization pCG 2.9 0.1
Penalty, Term. Test 2.6 0

Line search dc 2.0 0.1
Second Order Corr. 1.7 0.1

Table 12.1.: Distribution of CPU time, excluding function evaluations.

The termination criterion requires now satisfaction of the following two conditions

ko {10_6 max{1, min{| f(x*)|, [VFf(x°)||lo}}, unconstrained case,

107 max{1, ||V (x*)||c}, constrained case,

< 107° max{1, leg (x")lloos lle (x°)lloo} -

Hh
®
Y]
wn
-
A

12.2. Performance on CUTEst Benchmark Collection

We used CUTEst to analyze the performance of our implementation. 40 instances
have been omitted from CUTEst for which evaluations fail due to, e.g., starting points
for which functions are not well-defined, the remaining benchmark set then consists
of 1109 instances that are considered. Figure 12.1 shows the ratio of instances that
could be solved within a wall time limit of ¢, respective an iteration limit n or an limit
ni, on the number of Hessian vector products.

Table 12.1 gives a breakdown of the relative computational cost of the steps of
the algorithm, excluding function evaluations. As can be seen, LP solution to obtain
an active set estimate and EQP solution to obtain a Newton-type step dominate the
computational effort. Significant amounts of interpreted Python code are executed
during EQP setup, trust region ratio computation, penalty function evaluation, and in
the termination test. Here, one may expect speed-ups after reimplementation in a
compiled language.
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Figure 12.1.: Performance of implementation on CUTEst. Plots show the ratio of
problems of the CUTEst benchmark collection solved within at most ¢
seconds respective at most n iterations respective at most ng,, products
with the Hessian of the Lagrangian.



124 12. SLPECEQP Implementation and Benchmark

1 [T LLLARAL] LN T LN LRI LLLRAL LRI LILLRAL LA T T 1]
0.8 e
o6 A e i
O
S 04 ]
SLPECEQP
0.2+ -—- SNOPT B
------- MINOS
——- filterSQP
0r ——Knitro (commercial) | |

T T O
10 10% 1072 107t 10 10t 10 10° 10* 10°

T

Figure 12.2.: Extended performance profile comparing the SLPECEQP implementation
with state-of-the-art active set nonlinear programming solvers on AMPL
translation of CUTEr.

12.3. Comparison with Active-Set Solvers on CUTEr
Benchmark Collection

Not all the solvers we are using to compare our implementation directly support
CUTEst. Hence, we have chosen to use the AMPL translation of CUTEr for that purpose.
Like done for CUTEst, we omit all instances for which evaluations fail. We also omit
instances that could be solved by any solver in less than 0.11 seconds which constitutes
a test set including 183 problems. For such tiny instances, the overhead time required
for starting the Python interpreter (0.11 seconds) dominates the actual solution time.
Again, we imposed a wall time limit of one hour on the solution time per instance.

To compare our SLPECEQP implementation with the established active set solvers
filterSQP [FL02], SNOPT [GMS02], MINOS [MS03], and the active-set solver of the
commercial Knitro package [BNWO06], we compute an extended performance pro-
file. The result for the above subset of the CUTEr benchmark collection is shown in
Figure 12.2. It can be seen that together with Knitro and filterSQP our implemen-
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tation is among the most robust of the five solvers, in the sense that they solve the
largest fraction of problems within the wall time limit. Our SLPECEQP implementation
is in the interpreted language Python that incurs some speed limitations, and is hence
not the overall fastest solver. Still, it achieves a performance that is competitive with
other solvers that have been implemented in the compiled languages Fortran/C++.

12.4. Summary

In this chapter, we have considered the performance of our Python implementation
of a SLPECEQP method for solving the nonlinear programming problem. On the
well-established CUTEr benchmark collection, the implementation has been show
to deliver competitive performance and to be more robust than three popular NLP
solvers examined.






13. Implementation of Multiple
Shooting Discretization

This chapter introduces the python implementation OptimIND that evaluates a mul-

tiple shooting discretization and their derivatives of an optimal control problem

following the principle of internal numeric differentiation [Boc81a; Boc83] and auto-
matic differentiation.

13.1. Problem Formulation

Letty = 79 < ... < 7y—1 < 71 = ty be a grid of N nodes partitioning the time
horizon [ty, t¢]. The class of problems treated by OptimIND is then given by

iy
min / et x,u, )| + m(x(ty).p)

X,U,p t
st x(t) = fx(t),ut),p) a.e. t € [to, tr],
0 = Xieny dilTi, x(12), u(zy), p)s
¢ < c(t,x(t),u(t),p) <c, a.e. t € [to, tr],
x < x(t) <X, a.e. t € [to, tr],
u<u(t) <u, a.e. t € [to, tr],
pP<p<p

Here x : [y, tr] — R"* denotes states, u : [to, tr] — R"“ controls, p € R"» parameters.
The function ¢ denotes a least-squares Lagrangian objective term, m a Mayer objective
term. The dynamics exhibited by the states is defined by the function f, the function
c is used to describe path constraints and the functions d; to describe multi-point

boundary constraints.

13.2. Multiple Shooting Discretization

We use Bock’s Direct Multiple Shooting Method [P1i81; BP84; Lei95; Lei99; Lei+03a]
to transform the optimal control problem into a nonlinear program. Let V; C
L*([7;, 7i41], R™) be a finite dimensional vector space of control functions with a
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chosen basis {£;,j € [dimV;]}, denote & : RE™Vi — V, g Y jeldimv;] 9;¢ij the
coordinate isomorphism. The shooting discretization introduces now on every shoot-
ing node 7;,i € [N] an initial value s’ and a control parameterization value g’ and
requires continuity of the solution trajectory along the states. By x'*1(s’, ¢, p) we
denote the solution of the initial value problem x = f(t, x(t), &(g")(t), p), x(1;) = s°
evaluated at 7;,;. The least-squares Lagrangian objective function is discretized by a
trapezoidal rule approximation in the shooting nodes with a weights vector o. Path
constraints are discretized by enforcing them at shooting nodes.

The resulting nonlinear program is now given by

min > oillt(ri. s’ E(@ ) p)E + m(sN )

PN

st 0=x"(st, ¢!, p) — st ie[N-1]
0= fN—z(QN_z)(TN—O - En-1(gN ) (Tn-1),
0= Yen di(7ins's Ei(g' (i), p),

4 < C(Ti’si’ﬁzi(qi)(ri)’p) < E’ i€ [N]’
§i£s'<§i i € [N],

u' < &(g)(m) <@, ie[N-1],
p=p= p-

13.3. Implementation OptimIND

For the control ansatz spaces, we used constant controls per shooting interval, i.e.
&i(qi)(t) = q;. To solve the initial value problems, we use the integrator package
SolvIND that provides an adaptive BDF method DAESOL-IT [Alb10] for stiff problems
and a Runge-Kutta-Fehlberg method RKFSWT [Feh69; Feh70; Kir06] for non-stiff
problems. For a definition of stiff and non-stiff problems and a description of the
methods, we refer to the monographs by Hairer, Norsett and Wanner, [HNW93;
HW96]. A distinctive feature of SolvIND is the ability to compute sensitivities
satisfying the principle of internal numerical differentiation [Boc81a; Boc83] combined
with automatic differentiation [GW08; Spe80] and Taylor-coefficient propagation
[BCG93; GW08].

OptimIND allows the specification of the functions ¢, m, f,r,d as So1vIND model
file in C++ and provides a python interface to compute evaluations of the nonlinear
program function evaluations and their first and second order derivatives.
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13.4. Derivative Computation

For the SLPECEQP algorithm to be applied, first-order derivatives of all functions and
second-order derivatives in the form of matrix-vector products with the Hessian of the
Lagrangian of the nonlinear problem are required. Furthermore, to obtain derivatives
of the nonlinear program, it is necessary to compute derivatives of the solutions x;4
of the initial value problems with respect to initial values s; and parameters p.

It is crucial that second-order derivative evaluations are consistent in the following
sense: If H(v) = Hv denotes the matrix-vector product with a direction v and exact
Hessian H and evaluations compute the approximation H(v), then v — H(v) must
be linear. Otherwise, rapid loss of orthogonality may happen in the Krylov subspace
algorithm solving the equality constrained subproblem.

13.4.1. Automatic Differentiation and Taylor Coefficient
Propagation

The Direct Multiple Shooting Discretization yields a factorable programming formu-
lation [McC74; Sha80; Jac01] where all involved functions are factorable functions.
Evaluating a factorable function f in a point x giving y = f(x) on a computer is
done by formulating an algorithm that computes y = f(x) as a sequence of elemental
operations like addition, subtraction, multiplication, division, exponential function
etc, where every elemental function is locally an analytic function. This constitutes
an evaluation graph with intermediate results as vertices and elemental operations
as edges. Every analytic function has by definition a power series expansion and
composition of convergent power series yields again a convergent power series that
converges to the composition of the corresponding analytical functions. Using com-
position of power series as edges allows to define a lifted computational graph with
nodes given by intermediate power series. Projection onto constant coefficient yields
the original computational graph.

Forward mode. The forward mode of automatic differentiation uses the lift of the
computational graph of f to power series and truncates it up to a certain order k.

(i) i, . .
Evaluating x + td for a given direction d yields Zé(:o #t‘ where f(x)d is to
be understood as i-fold contraction of £ with d.

Forward/reverse mode. Using forward mode with truncation order k and input
x + td and storing all intermediate results on a tape allows the application of the
reverse mode where a direction y of dependent variables is required as additional
input. Traversing the computational graph backwards after forward evaluation from
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dependent to independent variables while accumulating derivative information allows

T (i) i .
to compute - ZkH —y fL)d

Forward and forward/ reverse mode only require a small multiple of the compu-
tational effort to compute f(x), forward/reverse mode may require in addition a

substantial amount of memory to store the tape. Using this approach it is possible to
[D@)d! <x)d' 4 -4y f0ed!
and gy

compute the Taylor coefficients a respectively up to machine

premsmn.

First-order derivatives. We require ]acoblans 3, These can be computed using

the forward mode with k = 1 and d = e; for all basis vectors e;, yleldlng 35 € by
extraction of the first Taylor coefficient. If f is defined on a subset of R”, n evaluatlons
of forward directional derivatives are needed.

Second-order derivatives. We require Hessian-vector products Ava These
can be computed using the forward/reverse mode withk =1,d = v and y = A, the
desired vector product is obtained by extraction of the first Taylor coefficient.

We use the implementation ADOL-C [WKGO05] for automatic differentiation. It
provides Taylor coefficient propagation that relies on operator overloading techniques
and can be applied to algorithms defined in C++ composed from smooth elemental
functions. This approach allows to compute the necessary derivatives up to machine
precision. In particular, matrix-vector products are consistent.

13.4.2. Derivatives of solutions to initial value problems

The solutions x;4+1(s;, q;, p) of the initial value problems x(t) = f(¢, x(t), £i(q;)(¢), p),
x(t;) = s; evaluated at 7;,1 are computed using an adaptive discretization scheme for
ordinary differential equations. Their first- and second-order derivatives with respect
to initial values s; and parameters g;, p are required as well.

Several strategies can be considered to acquire these derivatives, where we choose
the strategy of Internal Numerical Differentiation. We briefly discuss those strategies
and their merits and disadvantages.

External Numerical Differentiation. Treating the adaptive discretization scheme
as composition of smooth functions we could consider it as black box and apply auto-
matic differentiation or finite difference approximation to obtain sensitivities. External
Numerical Differentiation has the advantage that it is easy to implement. However,
derivatives computed by external numerical differentiation are not consistent in the
sense that they do not necessarily converge to the exact derivatives if integrator
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accuracy is increased. Furthermore adaptive components are usually implemented by
conditional statements that are non-smooth, so that x?ffretized(si, qi,p) is not a smooth
function! This does not allow the usage of automatic differentiation and, while it is
still possible to compute finite difference approximations, these are inaccurate due to
non-smooth behavior of xdiscretized
nal numerical differentiation, especially as we require second-order matrix-vector
products to describe a linear operator which would be lost in this approach due to

non-smoothness.

. For these reasons, it is not desirable to use exter-

Variational Differential Equations. Variational differential equations in forward
and adjoint mode can be formulated using a differentiate-then-discretize approach.
They allow computations of the derivatives by solving augmented initial value prob-
lems. These yield consistent results even after discretization for the forward form,
but are not necessarily consistent for the adjoint form as adaptive error control for
the adjoint equation in general gives a different discretization scheme. For efficient
computation of second-order derivatives the adjoint form is required, due to the incon-
sistency of second-order matrix-vector products it is not desirable to use variational
differential equations.

Internal Numerical Differentiation. The principle of Internal Numerical Differ-
entiation (IND) [Boc81a; Boc83] states that derivatives of an adaptive discretization
scheme must be computed from the discretization scheme with all adaptive compo-
nents kept frozen and must be convergent for the nominal value as well as for the
derivative. Following the principle of IND solves the aforementioned problems. The
integrator package SolvIND used in OptimIND implements IND by using automatic
differentiation and skipping differentiation of adaptive components.

13.5. Summary

In this chapter, we introduced the implementation OptimIND of a Multiple Shooting
Discretization framework. It makes use of internal numerical differentiation and auto-
matic differentiation for sensitivity generation and in particular computes consistent
Hessian-vector products.






14. Optimal Control Case Study:
Re-entry of Apollo type space
shuttle

In this chapter, we assess the performance of our SLPECEQP algorithm on the well-
studied and challenging problem given by re-entry of a space shuttle of Apollo type.
We compare using the SLPECEQP algorithm with the multiple shooting package
MUSCOD-II.

14.1. Reentry problem

A well studied and interesting benchmark optimal control problem is given by re-entry
of a space shuttle of Apollo type [Pli81; BP84; Pes89; SB02; Pot06] to be maneuvered
into a position that is suitable for splashdown in the Pacific. The Space Shuttle
Columbia disintegrated upon reentering Earth’s atmosphere on February 1, 2003
killing all seven crew members, the incident is known as Space Shuttle Columbia dis-
aster and demonstrates the importance to compute reliable solutions to this problem.

The problem is given by finding a trajectory for the space shuttle that allows
splashdown at a defined favorable position in the Pacific while minimizing convective
heating during the flight through the earth’s atmosphere. This problem is challenging
as the differential equations are highly nonlinear with solutions that are very sensitive
to changes in initial values and controls and have moving singularities with solutions
to the initial value problem only in a small vicinity of the solution of the optimal
control problem.

Using the quantities defined in Table 14.1, the optimal control problem is stated as
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Symbol Description Value
v tangential velocity
vy =0.36-10° &
vr =0.27-10° &
Y flight path angle
_ _81°nm
Yo =~ o0
yr=0
R earth’s radius 209 - 10° ft
£ normalized altitude above earth’s surface %
=%
o atmospheric density o = ppe PRE
00 = 2.704 - 1073 S%g
_ 1
=426 -
u angle of attack
Cw aerodynamical drag coefficient 1.174 - 0.9cosu
Ca aerodynamical lift coefficient 0.6sinu
S/m frontal area over mass of vehicle 53200 ﬁ
g gravitational acceleration 3.2172-107* 12%
Table 14.1.: Definition of quantities in re-entry problem
follows:
T
min / 10 v*4/p dt
v,y,&u, T 0
. Spv? i
s.t. U= ; sz Cw(u) — (glsf;j’;, .
. _ Sov vV CoS Y gsiny
V= 2m CaW) + rivy ~ varee
> _ vsiny
&=—%
v(0) = vy, o(T) = vy,
r©=yo, v =y,
£O0)=&,  &I)=¢f.

To obtain the complete trajectory requires in addition integrating the distance {

on the earth’s surface, which satisfies the initial value problem

Z(0) = 0.

(= ﬁcosy,
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# shooting intervals  objective constraint violation # SLPECEQP iter.
14 2.9487-107% 1.13-107% 27
100 2.7808 1072  2.4-107" 38

Table 14.2.: Computational results in re-entry problem.

As { is decoupled from the objective function, the constraints and the differential
equations for v, y, £, it is not necessary to treat it in the optimal control problem.

14.2. Computational results using OptimIND and
SLPECEQP

We used the Software Package OptimIND to solve the optimal control problem with
integrator DAESOL-IT and SLPECEQP using an equidistant multiple shooting grid
with piecewise constant controls, that are constant on every shooting interval. The
problem has been initialized with a constant control u = 0.1 and initial values 0 on
the multiple shooting nodes with the exception of the initial and final shooting node,
where (v, yo. £)7 and (vy, yr, £¢)7 respectively have been used.

We found that the problem is infeasible if less than 14 multiple shooting intervals
are used and report objective function value, constraint satisfaction and number of
SLPECEQP iterations in Table 14.2. On the finest discretization with 100 shooting
intervals, the SLPECEQP algorithm converged with 38 iterations with 24 accepted
trust region attempts and 14 discarded attempts. This illustrates the high nonlinearity
of the problem, as in about a third of the cases the prediction of the quadratic model
did not capture the real behavior. In total 946 Hessian vector products had to be
computed, where the maximum of Hessian vector products in an iteration was 88.
98.8% of the CPU time was spent in evaluation, 0.73% on the solution of the linear
programs, 0.2% on the solution of the equality constraint quadratic programs, 0.19%
on the factorization of the projection matrix and 0.07% on the remaining computations
necessary.

The optimal value T of the free end time has been determined to T = 225.00.
Figure 14.1 shows the optimal trajectories and control.
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Figure 14.1.: Optimal control and trajectory in re-entry problem on fine grid with 100
shooting intervals computed by OptimIND and SLPECEQP.
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14.3. Computational results with MUSCOD-II

We first note that the Open Source solver SLSQP [Kra88] failed on a multiple shooting
discretization of the problem and the Open Source solver IpOpt [Wac02; WB06]
required a huge number of interior point iterations and are thus no viable option
to solve this problem. For comparison purposes we thus have solved the optimal
control problem also with MUSCOD-IT [Lei99; Die+16]. MUSCOD-ITI employs a similar
multiple shooting discretization and uses a structure exploiting SQP algorithm to solve
the discretized problem. The re-entry problem is part of the examples implemented
in MUSCOD-1I1I, where a coarse control discretization on the shooting grid

0,0.25T,0.375T,0.5T,0.675T,0.75T, T

with continuous piecewise linear controls is used. A Runge-Kutta-Fehlberg integrator
of order 4/5 with internal numerical differentiation is used for discretization of the
ordinary differential equation and finite difference approximations for the Hessian
approximation in the SQP method.

It was not possible to solve the optimal control problem with MUSCOD-II using
the identical discretization, as the SQP algorithm failed on a discretization with
equidistant grid and either piecewise constant or piecewise controls for all grid sizes
up to 100 multiple shooting nodes. The failure was always due to the employed
quadratic program subproblem solver QPOPT [GMS95] not being able to solve the
quadratic program within the increased iteration limit of 108 QP iterations, regardless
if condensing for structure exploitation is used or not.

The only comparison is thus possible with the solution using the discretization
with continuous piecewise linear controls on the above mentioned non-equidistant
shooting grid. Initial point in MUSCOD-II was chosen by the standard option given by
linear interpolation between (vy, yo, &)” and (v, yfs §f)T for the initial values of the
states on the shooting nodes and u = 0.1 as in the SLPECEQP case. The SQP methods
converges with objective function value 0.027827 and terminal time T = 225.35in 9
iterations with 82% of the CPU time spent in evaluations, 4.9% on condensing, 2.5%
on solution of the condensed quadratic program and 10% for remaining calculations.
Figure 14.2 shows the optimal trajectories and control.

Comparing MUSCOD-I1I and solving the discretized optimal control problem with
the SLPECEQP algorithm, it turns out that the SLPECEQP method works for a wider
variety of discretizations. To set up and solve the re-entry problem in MUSCOD-I1I,
expert knowledge is required to find the non-equidistant grid used in the discretization.
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Figure 14.2.: Optimal Control and Trajectory in re-entry problem as computed by
MUSCOD-IT.
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14.4. Summary

In this chapter, we have tested the SLPECEQP algorithm on the challenging re-entry
problem and compared it to both packages found comparable solutions. We could
employ the SLPECEQP on a range of discretizations while MUSCOD-IT could only be
used with an expert provided discretization on a non-equidistant grid.






15. Mixed-Integer Optimal Control
Case Study: Egerstedt Example

In this chapter, we study an extension of a problem due to Egerstedt as benchmark
case for mixed-integer optimal control. We apply the partial outer convexification
and relaxation approach of Chapter 6 and the SLPECEQP algorithm on the discretized

problem.
Parts of the results of this chapter are published in [KL16].

15.1. Problem Formulation

We use a modified version of an example originally due to Egerstedt [EWD03; EWA06]
that has been extensively studied as benchmark example for mixed-integer optimal
control by Sager [SBD12; Bur11].

Example by Sager and relationship to the example of Egerstedt

In [SBD12] the example is formulated as the following problem:

mln /||x||2dt
t. X

0 = —xowo + (X0 + x1)@1 + (X0 — Xx1) o,
= (xo + 2x1)wo + (xo — 2x1)w1 + (X0 + X1) w2,
x(o) - (29 Z)T
0.4 < X0,
1=wy+w +w, ot)e{0,1}>.

In contrast, Egerstedt originally formulated the problem

mm /||x||2 dt

x € {A1x, Ayx},
x(0) = (1,0)T.
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which has been modified by Szymkat and Korytowski [SK08] by replacing the time
horizon [0, 10] with [0, 1] and the differential inclusion initial value problem with
x € {A1x, Ayx, Asx}, x(0) = (%, %) The matrices are given by

-1 0
a0

11
AZ_(l _29

1 -1
A3_(1 1

The formulation of Sager arises if binary indicator functions wy, w1, w; are intro-
duced for the choices in the differential inclusion and the additional path constraint
xo(t) = 0.4 is introduced. Note that the computation in [SBD12] has been performed
with the constraint xy(t) > 0.4, while the paper states x;(t) > 0.4.

To study the effect of different convexification schemes, Sager presents also a
version of the problem with nonlinear dependence on the controls.

Modified Example with Vanishing Constraint

As a benchmark problem for mixed-integer optimal control with control dependent
constraint we modify the problem by adding the constraint x,(¢)(wo(t) + 201(t)) +
x1(t)wo(t) — 1 > 0 and express it as mixed-integer optimal control problem with
vanishing constraint formulation:

1
min /||x||2dt
X, 0
s.t

Xo = —xowo + (x0 + x1)w1 + (X0 — X1)@2,
X1 = (xo + 2x1)wp + (xo — 2x1)w1 + (Xo + X1)w2,
x(0)= (5 )7,
0.4 < xo,
0 < wo(xo — 1),
0 < (2% — 1),
0 < wy(x; — 1),
1=wy+w +w, ot)e{0,1}>.
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15.2. Comparing SLPECEQP with Hoheisel’s
Regularization and IpOpt

15.2.1. Comparing SLPECEQP and MUSCOD-II on Problem without
Vanishing Constraint

We study solving the relaxed problem without vanishing constraint that has been
considered by Sager [SBD12]:

m1n /||x||2dt
xo

= =X + (xo + x1)a1 + (X0 — x1)Q2,
= (x0 + 2x1)ag + (xo — 2x1)a1 + (X9 + x1)axz,
X(O) — (1 1 T
0.4 < xo,
l=ay+a +az, at)€0,1]°.

This problem is bilinear in states and controls as the right hand side depends linearly
on controls and constraints and the objective dependence is quadratic on states.
SLPECEQP makes use of the exact Hessian which is singular. We have observed that
this singular dependence leads to inefficiencies and it is better to solve the equivalent
problem given by the identification a; := f2.

We used the same equidistant shooting discretizations with 80 shooting intervals
as in [SBD12] with Gauf}-Newton approximation to the objective Hessian matrix.
After 58 SLPECEQP iterations with a total number of 214 Hessian vector products,
we found a solution satisfying KKT conditions with residual 1.6 - 107> with objective
function value 0.995590. It was not possible to compute solutions to higher accuracy
as the Jacobian matrix in this point has a condition number of 2.4 - 10'° and the KKT
matrix of 2.4 - 10!, indicating that the problem may be singular in the solution.

We also solved the problem using MUSCOD-II where the original problem for-
mulation could be used by employing a positive definite structured BFGS Hessian
approximation [Bro70; Fle70; Gol70; Sha70; BP84] that is not as affected by the sin-
gularity problems as the exact Hessian SLPECEQP algorithm. Trying to solve the
problem with finite difference exact Hessian approximation within MUSCOD-I1 failed
upon solving the first QP subproblem due to the singularity. MUSCOD-II converged
with the same shooting discretization in 40 SQP iterations with an objective function
value of 0.995593, that is comparable within the integration tolerance but slightly
worse to the function value computed with the SLPECEQP algorithm. Sager reports a
slightly better objective function value of 0.995569 which is comparable to the objec-
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tive function values computed by SLPECEQP and MUSCOD-II within the integration
tolerances. Controls and Trajectories are shown in Figure 15.1.

15.2.2. Solution of Relaxed Problem with Vanishing Constraints

We employed a discretization with 512 shooting intervals for the problem with van-
ishing constraints within the shooting framework OptimIND and used again a Gauf3-
Newton approximation for the objective Hessian matrix. A slack reformulation has
been used to formulate the vanishing constraints as complementarity constraint.

We used the proposed SLPECEQP algorithm within in the SLPECEQP implementa-
tion with the Augmented Lagrangian Gradient Projection solver ALGRAPS to solve
the LPEC subproblem to solve the relaxed problem with vanishing problems, that has
been reformulated in a complementarity constraint form.

Solving the problem on a fine discretization using (xo, x1, a9, a1, @2) = (3, 3, %, %, 3
as initial point on all shooting nodes lead the algorithm frequently to points of local
infeasibility with the penalty parameter rising to it’s upper bound i = 102°. Due to
the high condition numbers of the problem’s constraint Jacobian, no further progress
in decreasing infeasibility was possible. We thus used a bootstrapping and shooting
based restoration strategy to solve the problem on a fine discretization by solving
the problem on a sequence of grids G; with 2’ shooting intervals for i = 3,...,9 and
initializing the problem on the grid G;;; with the control obtained by the solution
on the grid G; and states obtained by forward integration using the initial value
constraint. If the algorithm terminated in a point of local infeasibility, we used
forward integration as restoration mechanism.

Using this scheme and a grid with 512 = 2°, we could solve the problem equidistant
multiple shooting intervals to a KKT tolerance of 107> with the integrator DAESOL-IT.
Solving the problem on the finest grid Gy required 12 SLPECEQP iterations with a
total number of 27 Hessian vector product evaluations. A higher accuracy could not
be achieved due to the condition of the problems constraints with Jacobian condition
number of 10,

For comparison purposes, we used CasADi [AAD12] and IpOpt [Wac02; WB06]
to solve a smoothened vanishing constraint formulation while ensuring that the
smoothened problem satisfies constraint qualifications. We use the smoothing pro-
posed by Hoheisel [Hoh09], where the vanishing constraints of type 0 < xc(x) are
replaced by ¢”(—c(x), x) < 7, where the smoothing function for 7 > 0 is given by

¢ (a,b) := 1(ab + Va2b? + t2 + Vb% + 72 — b).

We used values 7 = 1074,107°,107%,1077, 10783, for values 7 < 10~° we could not

achieve convergence with IpOpt. Computational results are listed in Table 15.1,
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Figure 15.1.: Optimal Control and Trajectory in relaxed Egerstedt problem on 80
shooting intervals. Control and Trajectory computed using SLPECEQP
are shown in blue and control and trajectory computed using MUSCOD-II
in red.
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solver problem formulation objective  VC violation
SLPECEQP MPEC 1.313759 0

IpOpt smoothened MPVC 7 = 10™*  1.312688 7.9-107°
IpOpt smoothened MPVC 7 = 107>  1.312859 1.3-107°
IpOpt smoothened MPVC 7 = 107°® 1.312873 6.1-107°
IpOpt smoothened MPVC 7 = 1077 1.313684 2.4-107*
IpOpt smoothened MPVC 7 = 1078 1.313515 3.9-107°

Table 15.1.: Computational results for relaxed problem with vanishing constraints,
comparing SLPECEQP solution with smoothed MPVC solution for differ-
ent values of the smoothing parameter 7. Vanishing Constraint violation
denotes the largest constraint violation of any vanishing constraint on
any shooting interval.

controls and trajectories shown in Figure 15.2. Using the approach with smoothing
of the vanishing constraint yields a solution with better objective function value,
but constraint violation in the range 107°-107° for all values of 7 that have been
tested. In contrast, the SLPECEQP approach yields a solution that maintains strict
feasibility with respect to the vanishing constraint. Decreasing the value of 7 yields
highly oscillatory solutions as can be seen in the plot of the controls in Figure 15.2.
The orange lines corresponding to 7 = 10™* are much smoother than the red lines
corresponding to 7 = 107°,

15.3. Comparison of Rounding Scheme with Branch &
Bound Solver Bonmin

We used (VC-SOS-SUR) introduced in Chapter 6 to compute binary feasible solutions
by rounding on N equidistant intervals from the solution of the relaxed problem on
the finest shooting grid.

In addition, we compare the VC-SOS-SUR solution to the solution obtained with
state-of-the-art mixed-integer nonlinear programming solver Bonmin [Bon+08]. As
Bonmin requires definition of the optimization problems in the modeling language
AMPL [FGK90; FGK02] which does not provide integrators, a similar multiple shooting
discretization was not possible. We thus used a discretization partitioning the time
interval into N equidistant intervals with constant controls on each interval and
discretized the differential equation with an implicit Euler discretization using 400
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N objective constraint violation
BB VC-SOS-SUR  gap shooting nodes  along trajectory
8 1.37148  1.350888 3.7-1072  1.3-107! 1.3-1071
16 1.32679 1.315212 1.5-107°  6.6-1072 6.8-1072
32 1.31965 1.316310 25-107% 3.7-1072 3.8-1072
64  timeout 1.315079 1.3-107° 1.6-1072 1.8-1072
128 timeout 1.313661 -9.8-10 8.3-107° 1.0 - 1072
256 timeout 1.313700 -5.8-107 3.3-1073 5.2-1073
512 timeout 1.313747 -1.2-107 6.4-107* 2.6-1073

Table 15.2.: Binary feasible solution obtained with branch-and-bound and VC-SOS-
SUR scheme. With branch-and-bound using the Bonmin, computations
terminated only for N < 32 within a walltime limit of 24 hours. Objec-
tive gap denotes difference between objective function value of relaxed
solution and of rounded solution obtained with VC-SOS-SUR scheme. A
negative gap may occur by the slight constraint violation.

steps on each interval.

Figure 15.3 and Figure 15.4 show the relaxed solution and the binary feasible point
for N = 32 and N = 128. Table 15.1 and Figure 15.5 show the computational results.
Using Bonmin, we have been able to compute the solution within a walltime of
24 hours only for N < 32. In contrast, the solution obtained by the VC-SOS-SUR
scheme has a computational effort linear in N and can be computed in milliseconds
once the relaxed problem has been solved. The solutions obtained via the VC-SOS-
SUR are approximately feasible with feasibility violation showing 1/N behavior and
approximately optimal with optimality gap in comparison to relaxed problem showing
1/N? behavior.

15.4. Summary

We considered an extended variant of the Egerstedt benchmark example for mixed-
integer optimal control. We compared the SLPECEQP algorithm and MUSCOD-II
on a relaxed problem variant without vanishing constraints and SLPECEQP and
IpOpt with Hoheisel’s regularization scheme on the relaxed problem with vanishing
constraint. We demonstrated the effectiveness and efficiency of the rounding scheme
by comparison with the branch-and-bound solver Bonmin.
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16. Nonlinear Model Predictive Case
Studies

In this chapter, we study a nonlinear batch reactor and a continuous stirred tank
reactor as case studies for the applicability of the SLPECEQP algorithm for model pre-
dictive control. The continuous stirred tank reactor has a least-squares tracking type
objective that allows application of the Gauf3-Newton preconditioner introduced in
Chapter 9 and study it’s performance at the hand of this example. We use Pontryagin’s
Maximum Principle to compute reference solutions to the offline problems.

16.1. Real-Time Feasibility for Nonlinear Batch Reactor

Optimal control and model predictive control of chemical batch reactor with nonlinear
dynamics is analyzed in section. The model has been described by Biegler [Bie84] and
has been studied as benchmark problem for optimal control by Biegler, Renfro [Ren86],
Logsdon and Biegler [LB89; LB92] and Leineweber [DLS01] and as benchmark problem
for model predictive control by Kirches [Kir+12]. Biegler and Logsdon note that this
problem is interesting as optimal control benchmark problem, as the control becomes
saturated it is difficult to compute an accurate solution if a direct method is used on a
fixed grid without adaptive grid refinement.

The batch reactor is assumed to operate over a one hour period producing two
products B and C in parallel reactions A — B and B — C that are irreversible
and first order in A. Reaction rates are given by ks—,; = k?«\—n' exp(—E4—;/RT) with
K 5 =100L kS =510 L Eyp =101 -2 By 0 = 2-10% -2 Note that
the reference [Bie84] states units 1/s for the pre-exponential factors, which does not
match the optimal control problem stated in hours without time transformation.

Dynamics of the reactor are then described by

¢a = —kapca —kascea,
¢ = ka—Bca,
¢c = kascea.

The goal is to find a temperature control T < 412 K that maximizes the yield of B
after one hour. Introducing normalized concentrations x4 := #«))CA,xB = #(O)CB
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and noting that T — u := ksp = kﬁl—»B exp(—Ea—p/RT) is bijective with ks—,c =

%kg_@ = pu® with p := % the problem under consideration is the following:

min  xg(1h)

XA, XB,U
s.t. XA = —UXA —puzxA,
J'CB = UXAp,
xa(0)=1, xp(0) =0,
0<u<5¢.

Solution to the optimal control problem using Maximum Principle

As reference we have computed the function space solution satisfying necessary
conditions given by Pontryagin’s Maximum Principle [Pon+61].

Defining the Hamilton function H(x, A, u) := —Aaxa(u+ %2) + Apxau, the Maximum
Principle asserts that if x*,u” is a solution to the problem there are costates 1* =
(A%, A*B)T such that the following conditions are met:

1) x* = VH(x*, A*,u"),
2) 1* = V. H(x* 1*,u),

4) A*(1h) = (0,17,

(1)
(2)
(3) H(x*,A*,u") = maxye[o,5] H(x", A", u),
(4)
(5) t > H(x*(t), A*(t), u*(t)) is constant.

Expanding the Hamiltonian and using (1)-(4) leads to the following two-point
boundary value problem:

>

A A
_ ﬁ(ﬁ—l), AAXAZOandlgﬁgé,
0 or 53 else,

XA = —UXA —puzxA, XB = UXa,

/iA :)LA(u +pu2)—/13u, /iB =0,
xA(O) = 1, xB(O) = 0, /1A(1 h) = 0, /13(1 h) =1.

Using Az = 0 and Ag(1h) = 1 allows immediately to eliminate Az = 1. Using a
computation with the direct multiple shooting method, we estimated that there is one
switching point 7 € [0, 1 h] where u is free in [0, 7] and is at its upper bound in [z, 1 h],
which is confirmed a posteriori by the solution of the boundary value problem.
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We denote by I(ty, to, &4, £, £)) the solution evaluated at t; of the initial value
problem

o S - 1), AAxAZOandls%$6,’
0or5, else,
XA = —UXa —puzxA, XB = UXp,
A.A = )LA(u +pu2) — ABu,
xa(to) = €a, xB(to) = &g, Aa(ty) = &).
Using this notation we solved the boundary value problem by a two stage shooting
approach as zero-finding problem of the mapping

T
25 I(r,0,1,0,49) — (x}, x5, AT
R> — R, xh |- I, (1h,7,x}, x5, AL)
xp H(1h) - H(0)
1
Aa

and used Newton’s method to compute the solution to the root-finding problem.
To initialize the root-finding algorithm, we used estimations from the computation
with the direct multiple shooting method, namely 7 = 0.9, x4(7) = 0.1, x5(7) = 0.5.
Missing are multiplier estimates /1?4 and /1;‘. An estimate for u(0) ~ 0.75 is available
from the direct method, from which it is possible to estimate A% ~ 0.57 as A% = 1.
Finally, A}, could be easily found by backward integrating Aa = Aa(u + pu?) — ulp
over [z, 1h] with terminal value A4 = 0, using u = 5,A5 = 1. We used a coarse
estimate A}, = 0.15. We used the integrator DAESOL-II with integration tolerance
1071 to solve the initial value problems and compute derivatives. With this initial
point, Newton’s method with exact derivatives converged in 21 iterations with a final
residual of 4 - 10714, further progress was not possible as the Jacobian in the solution
point has a condition number of order 10° and is not desirable, as the integration
result has not been computed to this accuracy. The solution point is given by

T =9.4995765858621 - 10,
2% = 5.7354506073338 - 107",
x} = 7.6121655731059 - 1072,
xp = 5.6085564700249 - 107",
Al =1.6669907171844 - 107",

and the objective function value by 0.573545056322502 which compares well with
the objective value of 0.57353 reported by Logsdon and Biegler computed using a
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N objective xg(1h) objective residual xp — xgldire“ # SLPECEQP #Hv

5 0.5683867 5-1073 18 151
10  0.5722421 1-1073 16 190
20 0.5732976 2-1074 14 207
40  0.5734790 7-107° 15 295
80  0.5735282 1-107° 105 1317
160  0.5735380 7-107° 165 1787
320  0.5735440 1-107° 40 612
550 0.5735447 4-1077 42 695

Table 16.1.: Computational results for offline nonlinear batch control problem for a
different number of shooting intervals N. # SLPECEQP denotes the num-
ber of SLPECEQP iterations, # Hv the number of Hessian vector products
computed. Objective residual compares the objective as determined by the
direct shooting approach with the objective obtained from the solution
satisfying necessary conditions of Pontryagin’s Maximum Principle.

direct approach with orthogonal collocation. The Hamiltonian has been confirmed to
be constant along the trajectory up to a residual of 8 - 107°. Figure 16.1 shows the
trajectory, costates, control and Hamiltonian along the trajectory.

Solution to the optimal control problem with shooting discretization

We used a multiple shooting discretization with piecewise constant controls along
shooting intervals within the shooting framework OptimIND with the integrator
DAESOL-II and solved the resulting nonlinear problem with SLPECEQP. As initial
point (x4, xp,u) = (1.0,0.0,2.5) was used. We report computational results for a
different number of equidistant shooting intervals N in Table 16.1. Figure 16.2 shows
the computed control and trajectory for N = 550. Comparing with the solution of
the indirect approach, the objective function matches and we find empirically a N2
dependence for the gap between objective computed by direct shooting approach
on N intervals and the objective computed using the indirect approach, compare
Figure 16.3.
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Disturbance Scenario

We consider the parameter perturbation scenario described by Kirches [Kir+12] given
by
0.5, t<0.5hort>0.55h,

= t) =
p=plt) {1.2, 0.5h <t <0.55h.

This is a large perturbation of the pre-exponential factor kz_,c which could be inter-
preted as a temporary impurity in the tank modifying the reaction rate.

We compare a model predictive controller that does not assume this parameter
perturbation a priori with the offline optimal control that accounts for the set-point
change. For the offline optimal control problem we used the same direct shooting
discretization as in the case without parameter perturbation on 500 shooting intervals
and found an objective function value of 0.5688503. As reference we have computed
the solution with the indirect approach again, using the same technique as for the
case without disturbance. Newton’s method converged within 26 iteration from the
same initial point with a final residual of 5 - 107!* and a condition number of the final
Jacobian of 10°. The objective function value determined by necessary conditions from
Pontryagin’s Maximum Principle is 0.5688508264711951146, so there is an objective
gap between shooting discretization on 500 shooting intervals and solution via indirect
method of 4 - 1077, In the model predictive control scenario, we used a shrinking
horizon control where 160 shooting intervals have been used for the complete time
horizon. Using this controller that does not account for the parameter perturbation a
priori, we find an objective function value of 0.5658556, an optimality loss of about
0.5%. The controller required an average of 1.9 Hessian matrix-vector evaluations
per NMPC iteration with a maximum of 22 Hessian matrix-vector products, making
it feasible for fast feedback. Kirches reports an objective function value of 0.564731
using a full SQP predictive controller with the same discretization and 0.563029 using
an adjoint SQP controller, an optimality loss of about 0.7% and 1% respectively.

Computational results are shown in Figure 16.4.

16.2. Gauf3-Newton Preconditioner for Stirred Tank
Reactor

As second case study we consider the nonlinear process modeling a continuous stirred
tank reactor. The basic model was first considered by Seborg et al. [SEM89; Seb+10,
Ch. 2.4] with constant tank level and has augmented by modeling the tank level
by Pannochia and Rawlings [PR03]. It is frequently used as a benchmark for model
predictive control, see for example Klatt and Engell [KE93], Henson and Seborg [HS97,
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Figure 16.4.: Optimal control and trajectory in parameter disturbance scenario for
0.5 < t < 0.55. In blue the offline control and trajectory is shown,
both the one computed by the shooting method on 500 intervals and the
one computed using Pontryagin’s Maximum Principle. They cannot be
distinguished in plotting resolution. In red is the answer of the model
predictive shrinking horizon controller on 160 shooting intervals that
does not anticipate the disturbance, leading to a suboptimality in yield
of xp at the final time of only 0.5%. The Hamiltonian is only piecewise
constant as the differential right hand side is discontinuous.
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Symbol  Description Value

h tank level

ca molar concentration of A

T reactor temperature

F outlet flow rate

T, coolant liquid temperature

Ty inflow temperature 3.5-10%K

r tank radius 2.19-107'm
Fy inlet flow rate 107! :11;

Co inlet molar concentration of A 10% ol

ko pre-exponential factor in Arrhenius law 7.2 1010 —=
B =E/R E activation energy, R universal gas constant  8.75 - 103 K
U heat transfer coefficient 5.4936 - 10* — m2K
p mass density of feed and product stream 103 kg

Cp constant pressure heat capacity 2.39 - 102 kgK
AH heat of reaction -5-10* rnJol

Table 16.2.: Definition of quantities in stirred tank reactor dynamics

Ch. 1] and Diehl [Die01]. We follow Kirches et al. [Kir+12] in choice of parameters
and scenarios.

In the liquid phase of the tank reactor, a irreversible exothermic reaction A — B
takes place in the liquid phase of the reactor which is subject to external cooling.
Formulating mass and energy balances leads to the following dynamic description:

h=-L(F-F),

¢a = —5m(co — ca) - kOCA exp(-£),

T= rzh(To -T) + 3 kocA exp(— )+ (T, - T).

rpC

Set-Point and Steady State

We consider a scenario Where it is desired to run the batch reactor in a set-point
3
given by h*' = 6.59 - 1071 m, ¢S = 8.77 - 10 2, T5¢t = 3.245 - 10°K, F*' = 107! &,

TSt = 3 - 10? K. This set- p01nt isin a nelghborhood of a steady state of the system
if the controls F and T, are at their respective set-points. Using Newton’s method
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we computed the steady state for F = F*¢!, T = T3 and found A%'*% = 6.59 - 107" m,
LY = .77798024197374729738 - 102 M TSteady = 3.24499656537196187855 - 102K,

satisfying ||(h, ¢4, T)T|| < 10712,

16.2.1. Offline scenario with inlet molar concentration disturbance

As an optimal control test problem, we consider a scenario that involves a known dis-
turbance of the inlet molar concentration, so that the data ¢, now has to be considered
as a function of time:

103 mol, t < 9min
CO( ) = m 3 1 .
1.05-10 rr’;—‘;, t > 9min.

The process is started in the set-point and the objective aims at steering tank level
and concentration into the set-point as well as it violates too large deviations of the
outlet flow rate and coolant liquid temperate from the control set-points.

The problem under consideration is thus

50 min
1 h(t) — h*t)? ) -
henT ET, /0 yu(h(t) = B + e, (ea(t) = ¢
Yr(F(E) = Py (Te(t) = T)° de

s.t. h=—L:(F - P),
éa= —b(co—ca) - kocA exp(-£),
T= mzh(TO T)+ =%+ kocA exp(— ﬁ) +
h(0) = k%, cA(O) = cjft, T(0) = T5t,
Fe[0.085 1 0.115 ], T, € [299K,301K].

rpC (T T)

min’

Tracking weights used are y, = 1 —5,y., = 107* Z,yF =105 02y =101 2

We used a multiple shooting dlscret1zat10n on 50 shootmg 1ntervals with the
integrator RKFSWT within the shooting framework OptimIND and solved the resulting
nonlinear program with SLPECEQP. We used a least squares approximation of the
objective function on shooting nodes and a Gauf3-Newton approximation to the
objective Hessian.

We have considered solving the nonlinear program with and without variable
scaling and with and without Gauf3-Newton preconditioning. Scaling factors have
been chosen as s, = 1,s., = 103, s = 10%,sp = 1071, ST, = 102. Computational
results are shown in Table 16.3, trajectories and controls in Figure 16.5. Results clearly
demonstrate the effectiveness of the Gauf3-Newton preconditioner and also the lack
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of affine contravariance of the SLPECEQP algorithm. In the case without variable
scaling, the lack of variable scaling can be also understood as a bad preconditioner
so that the effect of bad variable scaling is twofold. First, it affects the nonlinear
programming solver that is not affine contravariant due to penalty function and
trust region globalization, which can be seen by the fact that the maximum penalty
parameter has been increased to 10* from its initial value 10. Second, it acts as a bad
preconditioner in the CG method for the trust region subproblem solver, forcing a
high number of CG iterations with too early termination for good nonlinear progress,
as the convergence criterion of the subproblem solver depends on the preconditioner.
All variants terminate in the same point with identical function value satisfying KKT
conditions with a residual < 1078,

Offline scenario comparison with indirect approach

For comparison purposes we have computed the offline solution again using the
indirect approach. The boundary value problem resulting from Pontryagin’s Maximum
Principle is given in this case by

Ap An
F = F* o+ 2wWrmr?’ |2w1:7rrz 0.15 7 min
3 b
0.085 &2 o or 0. 115 & el else,
s _ _ArU ArU
T, = L wr.rpCp’ wi.rpCy | = 1K
299K or 301K, else,
I:l = #(FO - F),
éa = L( _ —k _B
A= 2o ca) — koca exp( )
T= B (T~ 1) + Blkgcy exp(-4) + 24 (T, - T),

Ap = —2wp(h = 1%) + =2 (Ae(co — ©) + Ar(Ty = 7)),

Je, = —2we, (ca — ¢) + Ao, (mzh + ko exp(— )) + 27 B ky exp(—£),

= e, B2 exp(=) + r (7 + SR (- F) 4 2.
h(0) = h*°,
ca(0) = ¢y,
T(0) = T,

A(50 min) = (0,0, 0)”.
We have solved the boundary value problem using a multiple shooting method
with shooting nodes at times 0, 5, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50 (in minutes) and
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N Scaling PC #SLPECEQP #Hv Objective max. penalty
NLP OCP

17 Yes GN 7 58 0.6415932 1.0054737 102
17 Yes I 8 202 0.6415932 1.0054737 102
17 No GN 8 73 0.6415932 1.0054737 102
17  No I 25 1070  0.6415932 1.0054737 10°
34  Yes GN 38 66 0.7603741 0.9625429 102
34  Yes I 7 224 0.7602741 0.9625429 102
34 No GN 14 143 0.7602741 0.9625429 102
34 No I 50 2681 0.7602741 0.9625429 10°
68  Yes GN 6 49 0.8548115 0.9340243 10?
68  Yes I 6 223 0.8584115 0.9340243 102
68 No GN 10 98 0.8548115 0.9340243 102
68 No I 94 1936  0.8548115 0.9340243 103
137 Yes GN 7 49 0.8985745 0.9045564 102
137  Yes I 5 223 0.8985745 0.9045564 10?
137 No GN 187 1739  0.8985745 0.9045564 102
137 No I 9 1073 0.8985745 0.9045564 10°
275 Yes GN 7 49 0.8978458  0.9046565 102
275 Yes I 46 719 0.8978458  0.9046565 102
275 No GN 214 1749  0.8978458 0.9046565 10°
275 No I 289 4675 0.8978458 0.9046565 10*
550 Yes GN 77 623 0.9011404 0.9008656 102
550 Yes I 15 334 0.9011404 0.9008656 103
550 No GN > 500

550 No I failure

Table 16.3.: Computational results with different variants of the nonlinear program. N

is the number of shooting intervals. PC denotes the used preconditioner
with I being identity and GN being the Gaufi-Newton preconditioner.
# SLPECEQP denotes the number of SLPECEQP iterations, # Hv the
number of Hessian vector product evaluations. NLP objective denotes the
approximation of the least-squares objective using a trapezoidal rule in
shooting nodes, OCP objective the least-squares integral as defined for
the optimal control problem obtained by a posteriori integration. Failure
occurred during integration if the maximum number of allowed integrator
steps was reached.

Using Gaufl-Newton preconditioning and proper scaling yields a nearly
discretization independent behavior.
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Figure 16.5.: Optimal control and trajectory in offline disturbance scenario with inlet
molar concentration disturbance at ¢ = 9 min on 320 shooting intervals.
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used Newton’s method to solve the resulting root-finding problem. As initial point
we used the values of h,c4,T at the shooting nodes obtained from the solution
computed with the direct shooting method and A, = 2wpar®(F — F*),Ac, = 0,41, =
-wr, 2 UC L(T. — T?) with F, T, as controls obtained from the solution computed with
the direct method. Newton’s method converged with a final residual of 1.0 - 107°
and condition of the Jacobian of 3.2 - 10% and yields an objective function value of
0.9008569215. The computed trajectory, costates, controls and Hamiltonian along the
trajectory are shown in Figure 16.6. A comparison of the optimal control objective
between the solutions computed with the direct approach using an trapezoidal rule
for objective approximation in shooting nodes and objective function value obtained
from indirect approach are shown in Figure 16.7.

Using the starting point given by the steady state or the set point and the same
costate initialization strategy does not allow integration of the trajectories. Without
the introduction of a finer shooting grid and further advanced globalization strategies,
knowledge of the solution obtained by the direct method is thus crucial for initializa-
tion of the indirect method. Without this knowledge, it would have not been possible
using, the described grid of 21 shooting nodes to compute the solution satisfying the
necessary conditions of Pontryagin’s Maximum Principle.

Online scenario with inlet flow rate disturbance

As second disturbance scenario we consider a set-point change in inlet flow rate given
by
1'1'13 M
F(t) = 0.1 ﬁ; t < 5min
0.11 &, ¢ > 5min.

6

We follow [Kir+12] in choice of tracking weights y, = 1 #, Yea = 1074 n’lr(l)lz,yp =
1078 min® yr, = 107* L as the tracking weights used in the offline scenario enforce a
m c K

control regularization that is too strong.

We use a moving-horizon nonlinear model predictive controller with prediction
horizon of 5 min that is initialized in the steady state and consider the controller reac-
tion on the time horizon [0, 10 min]. Figure 16.8 shows the reaction of the SLPECEQP-
NMPC controller to the disturbance scenario. Using the Gauf3-Newton preconditioner,
an average of 2.9 Hessian-vector products is computed per NMPC iteration with a
maximum of 23 Hessian-vector products which constitute the main computation cost
during the NMPC feedback phase. An objective function value < 1072 is reached
after 55 s after the disturbance happened which demonstrates the contractivity of the
scheme in that case. Using the identity instead of the Gau3-Newton preconditioner,
an average of 43 Hessian-vector products are required per NMPC iteration with a
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maximum of 233 products in one iteration, which severely degrades the applicability
of the scheme. The preconditioner is thus essential to guarantee fast feedback in a
real-time application setting.

16.3. Summary

In this chapter, we studied a nonlinear batch reactor and a continuous stirred tank
reactor as benchmark problems for nonlinear model predictive control. We found that
a real-time iteration scheme based on the SLPECEQP algorithm shows satisfactory
performance and demonstrated the effectiveness of the Gauf3-Newton preconditioner
in the example of the continuous stirred tank reactor. As a reference we computed
solutions to the offline problems that satisfy the necessary conditions of Pontryagin’s
Maximum Principle.
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17. Conclusion and Outlook

In this thesis we contributed to numerical methods for Mixed-Integer Optimal Prob-
lems with Combinatorial Constraints. Our results generalize findings of Sager [Sag06;
SBD12] by allowing combinatorial constraints that depend on integer control vari-
ables.

We considered a reformulation based on partial outer convexification and relaxation
and established an approximation result connecting these problems. We found that
suboptimal solutions to a Mixed-Integer Optimal Control Problem with arbitrary
small infeasibility and optimality loss can be computed by solving the continuous
relaxation of the partial outer convexification of the problem. With VC-SOS-SUR we
introduced a new rounding scheme that computationally exploits this approximation
property.

Direct discretizations of the relaxed convexified problem mandate the solution of
non-smooth and non-convex Mathematical Programs with Vanishing Constraints.
We established a Sequential LPEC EQP method for Mathematical Programs with
Vanishing Constraints that extends the SLEQP algorithm for nonlinear programming
of Nocedal and Waltz [Byr+05]. We proved global convergence of the method to
Bouligand stationary points. Fast convergence of the algorithm is promoted via
Newton-type steps computed from EQP trust region subproblems.

We generalized Gould’s Generalized Lanczos method for the trust region subprob-
lem to a Hilbert space setting. The Hilbert space setting covers the application in
the SLEQP algorithm as well as, for example, applications from PDE constrained
optimal control. To achieve real-time feasibility in an online optimal control context,
we developed a Gauf3-Newton preconditioner for effective iterative solution of the
trust region subproblem.

We implemented the proposed methods and demonstrated the applicability and
efficiency on a set of benchmark problems and found performance competitive with
state-of-the art solvers.

Our research can be extended in several directions.

We have developed our method for Mathematical Programs with Vanishing Con-
straints for the discretization of an Optimal Control Problem with Vanishing Con-
straints. It is appealing to establish and study the method in a function space context.
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While we have established partial results concerning the trust-region part of the
algorithm, two obstacles have to be addressed. First, algorithms for LPEC have to be
generalized into a function space context. This requires establishing a suitable theo-
retical framework and defining corresponding notions from the finite-dimensional
case, compare Anderson and Nash [AN87] for partial results concerning the LP case.
Second, our convergence proof relied on norm-equivalence in finite-dimensional
space. Care must be exercised in defining a function space framework that ensures
that the embedding into the space defining the linear model is continuous.

Furthermore, an interesting algorithmic enhancement can be obtained by consider-
ing a SLPECEQP algorithm with Newton lifting for problems with many intermediate
variables. The lifted Newton approach [AD10] has been proven to be advantageous for
optimization problem with a tree-structure of intermediate variables. Such a structure
is present in many real-world problems and in particular in a natural way in problems
arising as multiple shooting discretizations of optimal control problems. Efficient
exploitation of the structure of lifted Newton problems is possible at both the level of
the LPEC part and the EQP part of the algorithm.

Considering the Generalized Lanczos method used to solve the trust region sub-
problems, we have added a convexification heuristic to handle ill-posed problems.
However, it is not necessary to use conjugate gradient or Lanczos iterations to build
Krylov subspaces. Using the minimal residual method [PS75] for Krylov subspace
generation provides a method that we conjecture to be robust on ill-posed problems
without additional convexification. On the same time, the increase in computational
effort promises to be modest.

Having established these methodological and algorithmic extensions and general-
izations, it is interesting to apply the proposed methods to further real-world examples.
Especially via MPEC reformulation of bi-level Optimal Control Problems, our methods
are applicable to a wide range of interesting problems as parameter estimation in
human gait analysis [Hat14] or robust model predictive control [DBK06; Die+08;
HD13].
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